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PREFACE 

This book is intended for a first undergraduate course in modem abstract algebra. 
Linear algebra is not a prerequisite. The flexible design makes the text suitable for 
courses of various lengths and different levels of mathematical sophistication, in­
cluding (but not limited to) a traditional abstract algebra course, or one with a more 
applied flavor, or a course for prospective secondary school teachers. As in previous 
editions, the emphasis is on clarity of exposition and the goal is to prodooe a book that 
an average student can read with minimal outside assistance. 

New in the Third Edition 
Groups First Option Those who believe (as I do) that covering rings before groups 
is the better pedagogical approach to abstract algebra can use this edition exactly as 
they used the previous one&. 

Nevertheless, anecdotal evidence indicates that some instructors have used the sec­
ond edition for a "groups first'' course, which pnzwnably means that they liked other 
aspects of the book enough that they were willing to take on the burden of adapting it to 
their needs. To make life easier for them (and for anyone else who prefers "groups first'') 

lt is now possible (though not necessary) to use this text for 
a course that corers groups before rings. 

See the TO THE INSTRUCTOR section for details. 
Much of the rewriting needed to make this option feasible also benefits the "rings 

first" users. A number of them have suggested that complete proofs were needed in 
parts of the group theory chapters instead of directions that said in effect "adapt the 
proof of the analogous theorem for rings". The full proofs are now there. 

Proofs for Beginners Many students entering a first abstract algebra course have 
had little (or no) experience in reading and writing proofs. To assist such students (and 
better prepared students as well), a number of proofs (especially in Chapters l and 2) 
have been rewritten and expanded. They are broken into several steps, each of which 
is carefully explained and proved in detail. Such proofs take up more space, but I think 
it's worth it if they provide better understanding. 

So that students can better concentrate on the essential topics, various items from 
number theory that play no role in the remainder of the book have been eliminated 
from Chapters l and 2 (though some remain as exercises). 



x Pref~:~ce 

More Examples and Exercises In the core course (Chapters 1-8), there are 35% 
more examples than in the previous edition and 13% more exercise& Some older exer­
cises have been replaced, so 18% of the exercises are new. The entire text has about 350 
examples and 1600 exercises. For easier reference, the examples are now numbered. 

Coverage The breadth of coverage in this edition is substantially the same as in 
the preceding ones, with one minor exception. The chapter on Lattices and Boolean 
Algebra (which apparently was rarely used) has been eliminated. However, it is avail­
able at our website (www.CengageBrain.com) for those who want to use it. 

The coverage of groups is much the same as before, but the first group theory chapter 
in the second edition (the longest one in the book by fur) has been divided into t....u chap­
ters of more manageable size. This arrangement has the added advantage of making the 
parallel development of integers, polynomials, groups, and ring:> more apparent, 

Endpapers The endpapers now provide a useful catalog of symbols and notations. 

Website The website (www.CengageBrain.com) provides several downloadable 
programs for TI graphing calculators that make otherwise lengthy calculations in 
Chapters 1 and 14 quite easy. It also contains a chapter on Lattices and Boolean 
Algebra, whose prerequisites are Chapter 3 and Appendices A and B. 

Continuing Features 
Thematic Development The Core Course (Chapters 1--S) is organized around two 
themes: Arithmetic and Congruence. The themes are developed for integers (Chapters 1 
and 2), polynomials (Chapters 4and 5), rings (Chapters 3 and 6), and groups (Chapters 7 
and 8). See the Thematic Table of Contents in the TO THE STUDENT section for a 
fuller picture. 

Congruence The Congruence theme is strongly emphasized hi the development of 
quotient rings and quotient groups. Conseqnently, students can see more clearly that 
ideals, normal smgroups, quotient rings, and quotient groups are simply an extension 
of familiar concepts in the integers, rather than an unmotivated mystery. 

Useful Appendices These contain prerequisite material (e.g., logic, proof, sets, 
functions, and induction) and optional material that some instructors may wish to 
introdnce (e.g., equivalence relations and the Binomial Theorem). 

Acknowledgments 
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TO THE INSTRUCTOR 
Here are some items that will assist you in making up your syllabus.. 

Course Planning 
Using the chart on the opposite page, the Table of Contents (in which optional !illCtions 
are marked), and the chapter introductions. you can easily plan courses of wrying length, 
emphasis, and order of topics. If you plan to cover groups bdme ringli, please note that 
Section 7.1 should be replaced by Section 7.1.A (which appears immediately after 7.1). 

Appendices 
Appendix A (Logic and Proof) is a prerequisite for the entire text Prerequisites for 
various parts of the text are in Appendices B-F. Depending on the preparation of 
your students and your syllabus, you may want to incorporate some of this material 
into your course. Note the following. 

• Appendix B (Sets and Functions): The middle part (Cartesian 
products and binaiY operations) is first used in Section 3.1 [7.1.A].* The last 
five pages (injective and surjective functions) are first used in Section 3.3 [7 .4]. 

• Appendix C (Induction): Ordinary induction (Theorem C.1) is lint used 
in Section 4.4. Complete Induction (Theorem C2) is first used in Section 4.1 
[9.2]. The equivalence of induction and wellMordering (Theorem C.4) is not 
needed in the body of the teJrt. 

• Appendix D (Equivalence Relations): Important examples of 
equivalence relations are pn:sented in Sections 2.1, 5.1, 6.1, and 8.1, but the 
formal definition is not needed until Section 10.4 [9.4]. 

• Appendix E (The Binomial Theorem): This is used only in Section 
11.6 and oa;asional exercises earlier. 

• Appendix F (Matrix Algebra): This is a prerequisite for Chapter 16 but 
is not needed by students who have had a linear algebra course. 

Finally, Appendix G presents a formal development of polynomials and indetermi­
nates. I personally think it's a bit much for beginners, but some people like it. 

Exercises 
The exercises in Group A involve routine calculations or short straightforward proofs. 
Those in Group B require a reasonable amount of thought, but the vast maJority 
should be aocessible to most students. Group C consists of difficult exercises. 

Answers (or hints) for more than half of the oddMnumbered exercises are given 
at the end of the book. Answers for the rmnaining exercises are in the Instructor's 
Manual available to adopters of the text. 

•The section numbers in brackets are for groups-first courses. 
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CHAPTER INTERDEPENDEN(;E; 
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NOTE: To go quickly from Chapter 3 to Chapter 6, first cover Section 4.1 (except the 
proof of the Division Algorithm), then proceed to Chapter 6. If you plan to cover 
Chapter 11, however, you will need to cover Chapter 4 first. 

~A solid arrow A-.S means that A is a prereq uisitefor 8; 11 d!ls hed arrow A-'>-8 means that Bdepends 
only on pe~rts of A (see the Table of Contents for specifics), For the dotted arrow S >6, see the Note 
at the bot 1om of the chllrt. 
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T 0 THE STUDENT 

Overview 
This book begins with grade-school arithmetic and the algebra of polynomials from 
high school (from a more advanced viewpoint, of course). In later chapters of the 
book, you will see how these familiar topics fit into a la.tger framework of abstract 
algebraic systems. This presentation is organized aro1md these two themes: 

Arithmetic You will see how the familiar properties of division, remainders, factor­
ization, and primes in the integers carry over to polynomials, and then to more general 
algebraic systems. 

Congruence You may be fumiliar with "clock arithmetic".* This is an example of 
congruence and leads to new finite arithmetic systems that provide a model for what 
can be done for polynomials and other algebraic systems. Congruence and the related 
concept of a quotient object are the keys to understanding abstract algebra. 

Proofs 
The emphasis in this course, much more than in high-school algebra, is on the rigor­
ous logical development of the subject. If you have had little experience with reading 
or writing proofs, you would do well to read Appendix A1 which summariz.es the basic 
rules of logic and the proof techniques that are used throughout the book. 

You shouki first concentrate on understanding the proofs in the text (which is quite 
different from constructing a proof yourself). Just as you can appreciate a new build­
ing without being an architect or a contractor, you can verify the validity of proofs 
presented by others, even if you tXII{t see how anyone ever thought of doing it this way 
in the first ploce. 

Begin by skimming through the proof to get an idea of its general outline before 
worrying about the details in each step. It's easier to understand an aiglllllent if you 
know approximately where it's headed Then go back to the beginning and read the 
proof carefully, line by line. If it says "such and such is true by Theorem 5.18", check 
to see just what Theorem 5.18 says and be sure you understand why it applies here. If 
you get stuck, take that part on faith and finish the rest of the proof. Then go back and 
see if you can figure out the sticky point. 

•when the hour hand of a clock moves 3 hours or 15 hours from 12, it ends in the same position, so 
3 = 15 on the clock. If the hour hand starts at 12and moves 8hoors, then moves an addilional 
9 hours, it finishes at 5; so 8 + 9 = 5 on the clock. 
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When you're really stuck, ask yoW' instructor. He or she will welcome questions that 
arise from a serious effort on your part. 

Exercises 
Mathematics is not a spectator sport. You can't expect to learn mathematics without 
doing mathematics, any more than you could learn to swim without getting in the 
water. That's why there are so many eJrei"cises in this book. 

The exercises in group A are usually straightforward. If you can't do almost all of 
them, you don't really understand the material. The exercises in group B often require 
a reasonable amount of thought----and for most of us, some trial and error as well. But 
the 'Ia& majority of them are within your grasp. The exercises in group C are usually 
difficult ... a good test for strong students. 

Many exercises will ask you to prove something. As you build up your skill in un­
derstanding the proofs of others (as discussed above), you will find it easier to make 
proofs of your own. The proofs that you will be asked to provide will usually be much 
simpler than proofs in the teK.t (which can, nevertheless, serve as models). 

Answers (or hints) for more than half of the odd-numbered exercises are given at 
the back of the book. 

Keeping It A II Straight 
In the Core Course (Chapten 1-8), students often have trouble seeing how the various 
topics tie together, or even ifthey do. The Thematic Table of Contents on the next two 
pages is arranged according to the themes of arithmetic and congruence, so you can 
see how things fit together. 
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Directions: Reading from left to right across these two pages shows how the theme or 
subtheme in the left-hand column is developed in the four algebraic systems listed in the 
top row. Each vertical column shows how the themes are carried out for the system listed 
at the top of the column. 

RINGS* GROUPS* 

3. Rings 7. Groups 
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7.5 The Symmetric and Ahernating Groups 

3.2 Basic Properties of Rings 7.2 Basic Properties of Groups 
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*In the Arithmetic Theme, the sections of Chapters 3 (Rings) and 8 (Groups) do not correspond to the individual 
subthemes (as do the sections of Chapters 1and 4). For integral domains, however, there is a correspondence, as 
you will see in Chapter 10 (Arithmetic in Integral Domains). 
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THE CORE COURSE 





CHAPTER 1 

Arithmetic in 7L Revisited 

Algebra grew out of arithmetic and depends heavily on it. So we begin our study of 
abstract algebra with a review of those facts from arithmetic that are used frequently 
in the rest of this book and provide a model for much of the woril. we do. We stress 
primarily the underlying pattern and properties rather than methods of c amputation, 
Nevertheless, the fundamental concepts are ones that you have seen before, 

Ill The Division Algorithm 

Our starting point is the set of all integers Z = {0, ±1, ±2, ... } . We assume that you 
are familiar with the arithmetic of integers and with the usual order relation ( <) on 
the set Z. We also assume the 

WELL-ORDERING A XI 0 M Every nonempty subset of the set of nonnegative 
Integers contains a smallest ekment. 

If you think of the nonnegative integers laid out on the usual number line, it is 
intuitively plausible that each subset contains an element that lies to the left of all the 
other elements in the subset-that is the m~allest element. On the other hand, the Well­
Ordering Axiom does not hold in the set Z of all integers (there is no smallest ne~e 
integer). Nor does it hold in the set of all nonnegatiw rational numbers (the subset of 
all positiw rationals does not contain a smallest element because, forany positive ratio­
nal number r, there is always a smaller positiw rational-for instance, r/2). 

NOTE: The rest of this chapter and the next require Theorem 1.1, which 
is stated below. Unfortunately, its proof is a bit more complicated than 
is desirable at the beginning of the course, since some readers may not 
have seen many (or any) formal mathematical proofs. To alleviate this 

3 
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situation, we shall first look at the origins of Theorem 1.1 and explain the 
idea of its proof. Unless you have a strong mathematical background, we 
suggest that you read this additional material carefully before beginning 
theproo£ 

To ease the beginner's way, the proof itself will be broken into several 
steps and given in more detail than is customary in most books. Ho~ 
because the proof does not show how the theorem is actually used in prac­
tice, some instructors may wish to postpone the proof until the class has 
more experience in proving results. In any case, all students should at least 
read the outline of the proof (its first three lines and the statements of 
Steps 1-4). 

So here we go. Consider the following grade-school division problem: 

Quotient 
Di'iisor 
Di'iidend 

~· 11 

~· 
12 
7 

Remainder~ 5 

Check: 11 +---- Quoti.enJ 
X1~DMsor 

77 
+5 +--- kmainder 
82 +--- Di'iidend 

The division process stops when we reach a remainder that is less than the divisor. 
All the essential facts are contained in the checking procedure, which may be verbally 
summarized like this: 

dividend = (divisor) (quotient)+ (remainder). 

Here is a formal statement of this idea, in which the dividend is denoted by a, the 
divisor by b1 the quotient by q, and the remainder by r: 

Theorem 1.1 The Division AI go rith m 
Let a, b be Integers with b > o. Then there exist unique Integers q and r such 
that 

a=bq+r and 0 s r <b. 

Theorem 1.1 allows the possibility that the dividend a might be negative but re­
quires that the remainder r must not only be less than the divisor b but also must be 
~gative. To see why this last requirement is necessary, suppose a = -14 is divided 
by b = 3, so that -14 = 3q + r. If we only require that the remainder be less than 
the divisor 3, then there are many possibilities for the quotient q and remainder r, 
including these three: 

-14 = 3(-3) + (-5), with -5 < 3 

-14 = 3(-4) + (-2), with -2 < 3 

-14 = 3(-5) + 1, with 1 < 3 

[Here q = -3 and r = --S.] 

[Here q = -4 and r = -2.] 

[Here q .= -sand r .= 1.]. 
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When the remainder is also required to be nonnegative as in Theorem l.I, then there 
is exactly one quotient q and one remainder r, namely, q = -5 and r = 1, as will be 
shown in the proof. 

The fundamental idea underlying the proof of Theorem 1.1 is that division is just 
repeated subtraction. For example, the division of 82 by 7 is just a shorthand method 
for repeatedly subtracting 7: 

82 
-7 
75 +--- 82 - 7 • I 
-7 
68 +--- 82 - 7 . 2 
-7 
61 +--- 82 - 7 . 3 
-7 
54 +--- 82 - 7 . 4 
-7 
47 +--- 82 - 7 . 5 
-7 
40 +--- 82 - 7 . 6 

40 
-7 
33 +-- 82 - 7 . 7 
-7 
26 +-- 82 - 7 • 8 
-7 
19 +--- 82 - 7 • 9 
-7 
12 +-- 82 - 7. 10 
-7 

5 +--- 82 - 7 • 11 

The subtractions continue until you reach a nonnegative number less than 7 (in this 
case 5). The number 5 is the remainder, and the number of multiples of 7 that were 
subtracted (namely, 11, as shown at the right of the subtractions) is the quotient. 

In the preceding ~aa~nple we looked at the numbers 

82- 7 · 1, 82- 7 · 2, 82- 7 · 3, and so on. 

In other words, we looked at numbers of the form 82- 1x for x = 1, 2, 3, .. , and 
found the smallest nonnegative one (namely, S). In the proof of Theorem 1.1 we shall 
do something very similar. 

Proof of Theorem 1.1* ... Let a and b be fixed integers with b > 0. Consider the set s 
of all integers of the form 

a- bx, where x is an integer and a - bx ~ 0. 

Note that x may be any integer-positive, negative, or 0--but a - bx must 
be nonnegative. There are four main steps in the proof, as indicated below. 

Step I Show that Sis nonempty by fording a -value for x such that a - bx ~ 0. 

Proof of Step 1: We first show that a + b Ja I ~ 0. Since b is a positive 
integer by hypothesis, we must have 

b~l 

bja] ~ Ja] 

b]a] ~-a 

a+ bja] ~ 0. 

[Multip~ both sides of the preceding inequo.lity by Ja ].] 

[&cause ]a] «:: -a by the definition of absolute val~re.] 

5 For an a It ern ate proof by induct ion of part of the theorem, see Example 2 in Appendix C, 
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Now let x = ~1a1. Then 

a ~ bx = a ~ b( ~ Ia D = a + bl a r ~ o. 

Hence, a- bx is in Swhen x = -lal, which means that Sis nonempty. 

Step 2 Find q and r such that a = bq + r and r ~ 0. 

Proof of Step 2: By the Well-Ordering Axiom, S contains a smallest 
element--call it r. Since r E S, we know that r ~ 0 and r = a - bx for 
some x, say x = q. Thus, 

r = a - bq and r :2: 0, or, equivalently, a = bq + r and r ;,::.;: 0. 

Step 3 Show that r <b. 

Proof of Step 3: We shall u;e a "proof by contradiction" (which is 
explained on page 506 of Appendix A). We want to show that r < b. 
So suppose, on the contrary, that r ~b. Then r- b ~ 0, so that 

0 :s r - b = (a - bq) - b = a - b(q + 1). 

Since a - b(q + I) is nonne~tive, it is an element of S by definition. But 
since b is positive, it is certainly true that r- b < r. Thus 

a - b(q + I) = r - b < r. 

The last inequality states that a - b(q + I)-which is an element of 
S-is less than r, the smallest element of S. This is a contradiction. 
So our assumption that r ~ b is false, and 'iYe conclude that r < b. 
Therefore, we have found integers q and r such that 

a=bq+r and 0 :s r <b. 

Step 4 Show that r and q are the only numbers with these properties (that's what 
"uniqw/' means in the statement of the theorem). 

Proof of Step 4: To prove uniqueness, we suppose that 1here are integers 
ql and rt such that a = bq1 + rt and 0 :s rt < b, and prove that q1 = q 
and r1 = r. 

Since a = bq + r and a = bq1 + rh we have 

so that 

(*) 

Furthermore. 

bq + r = bql + r1 

b(q - qt) = r1 - r. 

O:sr<b 

0 :s r1 <b. 
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Multiplying the first inequality by -I (and reversing the direction of the 
inequality), we obtain 

-b< -rs 0 

0 s r 1 <b. 

Adding these two inequalities produces 

-b < r 1 -r<b 

-b < b(q- q1) < b [By Equation(*)] 

-I < q - q1 < I [Dill Ide each term by b.] 

But q - q1 is an integer (because q and q1 are integers) and the only 
integer strictly between -1 and I is 0. Therefore q - q1 = 0 and q = q1• 

Substituting q - q1 = 0 in Equation (*)shows that r 1 - r = 0 and 
hence r = r1• Thus the quotient and remainder an= unique, and the 
proof is complete. r 

When both the dividend a and the divisor bin a division problem are positive, then 
the quotient and remainder are easily found either by long division (as on page 4) or 
with a calculator when the integers involved are huger. 

EXAMPLE 1 

Suppose a= 4327 is divided by b = 281. Entering a/bin a calculator produces 
15.39857 · · • . The integer to the left of the decimal point (15 here) is the quo­
tientqandthe~nder~ 

r = a - bq = 4327 - 281 • 15 = 112. 

These calculations are shown on the graphing calculator screen in Figure I. 

4327/281 
15.39857651 

4327-281*15 
112 

FIGURE I 

When the dividend a is negative, a slightly different procedure is needed so that the 
remainder will be nonnegative. 

•The symbol• indicates the end of a proof. 
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EXAMPLE 2 

Suppose a = -7432 is divided by b = 453. Entering a( bin a calculator pro­
duces -16.40618 • · ·. In this case the quotient q is not -16; instead, 

q = (the integer to the left of the decimal point) -1 = -16 - I = -17, 

(Without this adjustment, you will end up with a negative remainder,) Now, as 
usual, 

r =a- bq = -7432-453 · (-17) = 269. 

The ~ng calculations are summarized in the ~::alculator ~in Figure 2. 

FIGURE2 

• Exercises 

A. In Exercises 1 and 2. find the quotient q and remainder r when a is dMded by b. 
without using technology. Check your answen 

1. (a) a= 17;b=4 

2. (a) a = -51; b = 6 

(b) a = 0; b = 19 

(b) a = 302; b = 19 

(c) a= -17; b = 4 

(c) a= 2000; b = 17 

In Exercises 3 and 4, use a calculator to find the quotient q and remainder r when 
a is divided by b. 

J. (a) a= 511;b = 83 (b) a= -612;b = 74 

(c) a= 7,965,532; b = 127 

4. (a) a= 8,126,493; b = 541 (b) a = -9,217,645; b = 617 

(c) a= 171,819,920; b = 4321 

5. Let a be any integer and let band c be positive integem Suppose that when 
a is divided by b, the quotient is q and the remainder is r, so that 

a=bq+r and 0 s r <b. 

If ac is divided by be, show that the quotient is q and the remainder is rc. 

B. 6. Let a, b, c, and q be as in Exercise 5. Supp05e that when q is divided by c, the 
quotient is k. Prove that when a is divided by be, then the quotient is also k. 

7. Prow that the square of any integer a is either of the form 3k or of the 
form 3k + I br some integer k. [Hint: By the Division Algorithm, a must 
be of the form 3q or 3q + 1 or 3q + 2.] 
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8. Use the Division Algorithm to prove that every odd integer is either of the 
form 4k + I or of the form 4k + 3 for some integer k. 

9. Prove that the cube of any integer a has to be exactly one of these forms: 9k 
or 9k + 1 or 9k + 8 for some integer k. (Hint: Adapt the hint in Exercise 7, 
and cube a in each case.] 

10. Let n be a positive integer. Prove that a and cleave the same remainder when 
divided by n if and only if a - c = nk for some integer k. 

11. Prove the following version of the Division Algorithm, which holds for both 
positive and negative divisors. 

&tetuled Division Algorithm: Let a and b be integers with b 'f:. 0. Then there 
exist unique integer.> q cuui r such that a = bq + rand 0 s r < I bl. 

(Hint: Apply Theorem 1.1 when a is divided by lb 1. Then consider two cases 
(b > Oand b < 0).] 

II Divisibility 

Definition 

An important case of division occurs when the remainder is 0, that is, when the divisor 
is a factor of the dividend Here is a formal definition: 

Leta and b be integers with b:;:. 0. We say that b divides a (or that b is a divi­
sor of a, or that b is a factor of a) if a = be for some integer r:. In symbols, "b 
divides a" is written b I a and "b does not divide a" Is written b .t a. 

EXAMPLE 1 

3[24 because 24 = 3 • 8, but 3 ~ 17. Negative divisors are allowed: -6[54 
because 54 = ( -6)(-9), but -6 .ji( -13). 

EXAMPLE 2 

Every nonzero integer b divides 0 because 0 = b • 0. For every integer a, we 
have II a because a= I ·a. 

Remark If b divides a, then a = be for some c. Hence -a= b(-c), so that 
b I (-a). An analogous argument shows that every divisor of -a is also a divisor of a. 
Therefore 

a and -a have the same divisors. 

Remark Suppc»ea ¢0 and b I a. Then a= be, so that Ia f= lbllcl. Consequently, 
0 s lb I :S Ia I· This last inequality is equivalent to - ]a I s b s Ia 1. Therefore 

(i) every divisor of the nonzero integer a is less than or equal to I a I; 
(ii) a nonzero integer has only finitely many di\·lsors. 
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Definition 

All the divisors of the integer 12 are 

1, -I, 2, -2l 3, -3, 4, -4, 6, -6, 12, -12. 

Similarly, all the divisors of 30 are 

1, -1, 2, -2, 3, -3, 5, -5, 6, . .,6, 10, -10,15,-1:5,30, -30. 

The common dJvlsors of 12 and 30 are the numbers that divide both 12 and 30, that 
is, the ntunbers that appear on both of the preceding lists: 

I, -1, 2, -2. 3, -3, 6, -6. 

The largest of these common divisors, namely 6, is called the "greatest common 
divisor" of 12 and 30. This is an example of the following definition. 

Leta and b be integers, not both D. The greatest common divisor (gcd) of 
a and b is the largoot integer d that divides both ct and b. In other words, 
d is the ged ot a and b provided that 

(1) dla and dlb; 
(2} If cj B .and c lb, then r: s d. 

The great~st common divisor of ct and b is usually denoted (a, b). 

If a and bare not both 0, then their gcd exists and is unique. The reason is that 
a nonzero integer has only finitely many divisors, and so there are only a finite num­
ber of common divisors. Hence there must be a unique largest one. Furthermore, the 
greatest common divisor of a and b satisfies the inequality 

(a, b)~ I 

because I is a common divisor of a and h. 

EXAMPLE 3 

(12, 30) = 6, as shown above. The only common divisors of 10 and 21 are 1 and 
-I. Hence (10, 21) = I. Two integers whose greatest common divisor is 1, such 
as 10 and 21, are said to be relatively prime. 

EXAMPLE4 

The common divisors of an integer a and 0 are just the divisors of a. If a > 0, 
then the largest divisor of a is clearly a itself. Hence, if a > 0, then (a, 0) = a. 
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Listing all the divisors of two integers in order to find their gcd can be quite time 
oonsum.ing. However, the Euclidean Algorithm (EXllrcise 15) is a relatively quick 
method for finding gcd's by hand. You can also use technology. 

Tecll.oology Tip: To find a gcd on a TI-grnphing ca1culator, select "gcd" in the 
NUM submenu of the MATH menu. 

We have seen that 6 = (12, 30). A little arithmetic shows that something else is true 
here: 6 is a linear combination of 12 and 30. For instance, 

6 "" 12( -2) + 30(1) and 6 "" 12(8) + 30(-3). 

You can readily find other integers u and v such that 6 = 12u + 30v. The following 
theorem shows that the same thing is possible for any greatest common divisor. 

Theorem 1.2 
Let a and b be integers, not both 0, and let d be their greatest common divi­
sor. Then there exist (not necessarily unique) integers u and v such that 
d =au+ bv. 

CAUTION: Read the theorem carefully. The fact that d = au + bv does 
not imply that d =(a, b). See Exercise 25. 

For the benefit of inexperienced readers, the proofs of Theorem 1.2 and 
Corollary 1.3 will be broken into several steps. The basic idea of the proof of 
Theorem 1.2 is to look at all possible linear oombinations of a and b and find one 
that is equal to d. 

proof ofTheorem 1.2 .. Let s be the set of all linear combinations of a and b, that is 

S = {am + bn lm, n E Z} . 

Step I FiJid til€ smallest positive element of S. 

Proof of Step 1: Note that al + b1 = aa + bb is in Sand cr +!? <!: 0. 
Since a and bare not both 0, a2 + b1 must be positive. Therefore S 
contains positive integers and hence must contain a smallest positive 
integer by the Well-Ordering Axiom. Let t denote this smallest positive 
element of S. By the definition of S, we know that t = au + bv for 
some integers u and u. 



12 Chapter 1 Arithmetic in Z Revisited 

Step 2 Prove that t is the gcd of a and b. that fs, t = d 

Proof of Step 2; We must prove that t satisfies the two conditions in the 
definition of the gcd: 

(I) t I a and tlb; 

(2) Ifclaandclb,thencst. 

Proof of (1): By the Di"ision Algorithm, there are integers q and r 
such that a= tq + r, with 0 s r < t. Consequently, 

r =a- tq, 

r = a - (au + bv)q = a - aqu - bvq, 

r = a(1 - qu) + b(-vq) 

Thus r is a linear combination of a and b, and hence r E S. Since 
r < t (the smallest positive element of S'), we know that r is not 
positive. Since r <;!: 0, the only possibility is that r = 0. Therefore, 
a = tq + r = tq + 0 = tq, so that t Ia. A similar argument shows 
that t I b. Hence, tis a common divisor of a and b. 

Proof of {2): Let c be any other common divisor of a and b, so that 
cIa and c I b. Then a = ck and b = cs for some integers k and s. 
Consequently, 

t = au + bv = (ck)u + (cs)v 

= c(ku + .Jv). 

The first and last terms of this equation show that cIt. Hence, 
c sIt I by the second Remark on page 9. But tis positive, so It I= t. 
Thus cs t. 

This shows that t is the greatest common divisor d and completes 
the proof of the theorem. • 

Tecllaology Tip: To filld the gcd of a and band express it in the form au +1m on 
a TI calculator, download the GCD program on our website (www.CengageBrain 
,com). Figure 1 shows the result when you enter a = 2S79 and b = 4321: The gcd 
is 1 and you can easily verify that 2579 · 826 + 4321 • ( -493) = 1. 

AU+BV=GCO= 
1 

U= 
826 v-

FIGURE I 

-493 
Done 

To do the same thing with Maple, use the command igcdex(a, b, 'tf, 't');. 
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Corollary 1.3 
Let a and b be integers, not both 0, and let d be a positive integer. Then d is the 
greatest common divisor of a and b if and only if d satisfies these conditions: 

(i}d I a and dlb; 

(ii) if cIa and c I b, then c I d. 

Proof~ The proof of an "if and only if" statement requires two stqJs 
(see page 507 in Appendix A). 

Step I Prove: If d ={a, h), then dsat4fiescondit1Dns {i) and {ii). 

Proof of Step 1: If d = (a, h), then by the definition of the gcd, d divides 
both a and h. So d satisnes condition (i). 

To wrify that d satisfies condition ("n), suppose that c is an integer such 
that c Ia and c lb. Then a = cr and h = cs for some integers rands, by the 
definition of "divides". By Theorem 1.2 there are integers u and v such that 

d=au+hu 

d = (a)u + (cs)u (Because a = cr andh = cs.] 

d = c(ro + J'tJ) (Factor c out of both tenns..] 

But this last equation says that c I d. Therefore, d satisfies condition ("ri.). 

Step 2 Prove: If dis a positive integer that satisfos conditions {i) and (ii), then 
d= (a, h). 

Proof of Step 2: To prove that d = (a, h), we must show that d satisfies 
the requilements of the definition of the gcd, namely, 

(1) dla and dlh; 

(2) If c I a and c I h, then c :S d. 

Obviously d satisfies (1) since requirement (1) and condition (i) are 
identical. To prove that d satisfies requirement (2), suppose cis an inte-­
ger that divides both a and h, then c I d by condition (ii). Consequently, 
by the second Remark on page 9, c :S I dl. But dis positive, so I dl = d. 
Thus, c :S d. Therefore, d satisfies requirement (2) and, hence, dis the 
gcd of a and h. • 

The answer to the following questK>n will be needed on several occasions. rr a I he, 
then under what conditions is it true that a lh or a I c7 It is certainly not always trw; as 
this example shows; 

but and 6.t4. 

Note that 6 has a nontrivial factor in comllX>n with 3 and another in common with 4. 
When a divisor of he has no common factors (except ± 1) with either h or c, then there 
is a useful answer to the question. 
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Theorem 1.4 
lfalbc and (a, b)= 1, then ajc. 

Proof ~ Sinoe (a. b) = 1, Theorem 1.2 shows that au + bv = 1 for some integers 
u and v. Multiplying this equation by c shows that acu + bcv = c. But 
a I be, so that be = ar for some r. Therefore 

c = acu + bcv = acu + (ar)v = a(cu + ro), 

The first and last parts of this equation show that a I c. • 

• Exercises 

1. Find the greatest common divisors. You should be able to do parts (a)-{c) by 
hand, but technology is OK for the rest. 

(a) (56, 72) 

(d) (143, 231) 

(g) (4144, 7696) 

(b) (24, 138) 

(e) (306, 657) 

(h) (12378, 3054) 

2. Prove that b I a if and only if (-b) I a. 

3. If a I band b I c, prove that a I c. 

4. (a} If alb and a I c, prove that a I (b + c). 

(e) (112, 57) 

(f) (272, 1479) 

(b) If a I b and a I c, prove that a I (b7 + ct) for any 7, t E Z. 

S. If a and b are nonzero integers such that a I b and b I a, prove that a = ±b. 

6. If a I b and c I d, prove that ac I bd. 

7. If a < 0, find (a, 0). 

8. Prove that (n, n + 1) = 1 for~ integer n. 

9. If a I c and b I c, must ah divide c? Justify your answer. 

10. If (a, 0) = 1, what can a possibly be? 

11. If n E Z, what are the possible values of 

(a) (n, n + 2) (b) (n,n + 6) 

12. Suppose that (a, b)= 1 and (a, c) = 1. Are any of the following statements 
false? Justify your answers. 

(a} (ah,a) = 1 (b) (b, c)= 1 (e) (ah, c) = 1 

13. Suppose that a, b, q, and r are integers such that a = bq + 7. Prove each of the 
following statements. 

(a} Every common divisor c of a and b is also a common divisor of b and 7. 

[Hillt: For some integers sand t, we have a = cs and b = ct. Substitute 
these results in to a = bq + r, and show that c I r .] 
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(b) Every common divisor of b and r is also a common divisor of a and b. 

(c) (a, b) = ( b, r'). 

14. Find the smallest positive integer in the given set. [Hint: Theorem 1.2.] 

(a} {6u + 15v lu, v E Z} (b) {12r + 17s lr, s E Z} 

15. The Euclidean Algorithm is an efficient way to -find (a, b) for any positive 
integers a and b. It only requires you to apply the Division Algorithm 
several times until you reach the gcd, as illustrated here for (524, 148). 

(a) Verify that the following statements are correct. 

524 "" 14.8·3 + ,80 0 :S !10 < 148 
' ,. 

~ 

0 :S 68 < 80 

0 :S 12 < 68 

0 s 8 < 12 

li;: 8·l + 4 0 s 4 < 8 ,. 

' 
8 = 4·2 + 0 

[The divi:Jot in each line becomes 
the dividend in the next line, 
and the remainder in each line 
becomes the divisor in the next line.] 

[As shown in part (b), the last 
nomero remainder, namely 4, 
is the gcd (a. b).] 

(b) Use part (a) and Exercises 13 and Example 4 to prove that 

(524, 148) ;: (148, 80) ;: (80, 68);: (68, 12) = (12, 8) = (8, 4) = (4, 0) = 4. 

Use the Euclidean Algorithm to -find 

(c) (1003, 456) (d) (322, 148) (e) (5858, 1436) 

The equations in part (a) can be used to express the gcd 4 as a linear 
combination of 524 and 148 as follows. First, rearrange the "first 5 equations in 
part (a), as shown below. 

80 = 524 - 148·3 (I) 

68 = 148 - 80 (2) 

12 = 80- 68·3 

8 = 68- 12·5 

4 = 12-8 

(3) 

(4) 

(5) 

(f) Equation (I) expresses 80 as a linear combination of 524 and 148. Use this 
fact and Equation (2) to write 68 as a linear combination of 524 and 148. 

(g) Use Equation (I), part (t), and Equation (3) to write 12 as a linear 
combination of 524 and 148. 

(h) Use parts (f) and (g) to write 8 as a linear combination of 524 and 148. 

(i) Use parts (g) and (h) to write the gcd 4 as a linear combination of 524 and 
148, as desired. 

(j) Use the method described in parts (1)-(i) to express the gcd in part (c) as a 
linear combination of I 003 and 456. 
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B. 16. If (aj b)= d, prove that(~.~)= l. [Hint: a"" dr and b"" ds for some 

integers rands (Why?). So af d =rand b/d =sand }'UU must prove that 
(r, s) = 1. Apply Theorem 1.2 to (a, b) and divide the resulting equation by d.] 

17. Suppose (a, b) = l. If a I c and b I c, prove that ab I c. [Hint: c = bt (Why?), so 
a)bt. Use Theorem 1.4.] 

18. If c > 0, prove that (ca, cb) = c(a, b). [Hint: Let (a, b) = d and (ca, cb) = k. 
Show that cdlk and k I cd See Exercise 5.] 

19. If a I (b + c) and (b, c) = 1, prove that (a, b) = 1 """(a, c). 

20. Prove that (a, b) = (a, b + at) for el1:ry t E Z. 

21. Prove that (a, (b, c))= ((a, b), c). 

22. If (a, c) = 1 and (b, c) = 1, pr0l1: that (ab, c) = l. 

23. Use induction to show that if (a, b)= 1, then (a, 11') = 1 for all n <'! L* 

14. Let a, b, c E Z. Prove that the equation ax + by = c has integer solutions if 
and only if (a, b) I c. 

25. (a) If a, b, u, v E Z are such that au + bv = 1, prove that (a, b) = L 

(b) Show by example that if au+ bv = d > 1, then (a, b)maynot be d. 

26. If a I c and b I c and (a, b) = d, pr0l1: that ab I cd. 

21. If c Jab and (c, a) =-d, prove that cldb. 

28. Prove that a positive integer is divisible by 3 if and only if the sum of its digits 
is divisible by 3. [Hint: 101 = 999 + 1 and similarly for other powers of 10.] 

29. Prove that a positive integer is divisible by 9 if and only if the sum of its digits 
is divisible by 9. [See Exercise 28.] 

30. If a 1, a2, ••• , a, are integers, not all zero, then their greatest common 
divisor (gcd) is the largest integer d such that d[ a, for every i. Prove that 
there exist integers 'Uj such that d = a 1 u1 + a2u2 + · • · + anuw [Hint: Adapt 
the proof of Theorem 1.2.] 

31. The least ~ornmon rn11Uiple (lcm) of nonzero integers ah ~ •... , ak is the 
smallest positive integer m such that a, I m for i = 1, 2, ... , k and is denoted 

[a" ~ " ., akJ. 
(a) Find each of the following: [6, 10], [4, 5, 6, 10], [20, 42], and [2, 3, 14, 36, 42]. 

(b) If tis an integer such that a1 1 t for i = 1, 2, ... , k, prove that 
[ah ti2, •.• , aklJ t. [Hint: Denote [ah a2, •.. , ak] by m. By the Division 
Algorithm, t = mq + r, with 0 s r < m. Show that a.Jr fori = 1, 2, ... , k. 
Since m is the smallest positive integer with this property, what can }'UU 

conclude about r?] 

•1 nduction is discussed in Appendix c. 
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32. Let a and b be integerll, not both O, and lett be a positive integer. Prove that tis 
the least oommon multiple of a and b if and only if t satisfies these conditions: 

(i) a j t and bIt; 

(ii) If a I c and b jc, then t) c. 

C. 33. ff a > 0 and b > 0, prove that [a, b] = (a~). ([a, b] is defined in Exercise 3.1.) 

34. Prove that 

(a) (a, b) j(a + b, a- b); 

(b) if a is odd and b is even, then (a, b) =(a + b, a - b); 

(c) if a and bare odd. then 2(a, b) = (a + b, a - b). 

II Primes and Unique Factorization 

Definition 

Every nonzero integer n except ±1 has at least four <llstinct divisors, namely 1, -I~ n, -n. 
Integers that have only these four diviDrs play a crucial role. 

An lntegerp is said to be prime tf p #- o, ± 1 and the only divls<:Jrs <If p are 
:!;1 and ;!;.p. -

EXAMPLE 1 

3, -:>, 7, -11, 13, and -17 are prime, but 15 is not (because 15 has divisors 
other than :!: I and :!: 15, such as 3 and 5). The integer 4567 is prime, but prov­
ing this fact from the definition requkes a tedious check of all its possible divi­
sors. Fortunately, there are more efficient methods for determining whether an 
integer is prime, one of which is discussed at the end of this section. 

It is not difficult to show that there are infinitely many distinct primes (Exercise 32). 
Because an integer p has the same divisors as -p, we see that 

pis prime if and only if-pis prime. 

If p and qare both prime and p jq, thenp must be one of I, -1, q, -q. But since pis 
prime, p #- :!: 1. Hence, 

if p and q are prime and pI q, then p = ::t:q. 

Under what conditions does a divisor of a product be necessarily divide b or c'l 
Theorem 1.4 gave one answer to this question. Here is another. 
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Theorem 1.5 
Let p be an integer with p ¢ 0, ±1. Then p i.S prime if and onty if p has this 
property: 

whenever pI be, then p 1 b or pI c. 

Proof• Since this is an "if and only if" statement, thc:re are t\W parts to the proof. 

Step I Assume tJ/lJI p u priml! and prove thllt p has the property stated in the theorem. 

Proof of Step 1 .' If p is prime and divides be, consider the god of p and b. 
Now (p, b) must be a positive divisor of the prime p. So the only possibilities 
are (p, b)= I and (p, b)= ±p (whichever is positive). H (p, b)= ±p, thm 
pI b. If (p, b) = l, since pj be, we must have pIc by Theorem 1.4. In every 
case, therefun;p I b or pI c. Hence, p has the property stated in the theorem. 

Step 2 Assume that p iS an integer that has the pro~rty stated in the theorem and 
prove that p is prime. 

Proof of Step 2: This proof is left to the reader (Exercise 14 ). • 

Corollary 1.6 
If p is prime and p llil1a2 • • • an, then p divides at least one of the Iii" 

Proof • If pI a1 (tl::!~ · · · a,), then pI a1 or pI a2'13 • • • a,. by Theorem 1.5. If p la~o 
we are finished. If pI a2 (etA · · • a,.), then pI~ or p 14ja,. · · · a, by 
Theorem 1.5 again. If PI "l• we are finished; if not. continue this process, 
using Theorem L5 repeatedly. After at most n steps, there must be an a1 

that is divisible by p. • 

Choose an integer other than 0, ±1. If you factor it "as much as possible," you will 
find that it is a product of one or more primes. For example, 

12 = 4 . 3 = 2 • 2 • 3, 

60 = 12 . 5 = 2 • 2 ' 3 . 5, 

113 = 113 {prime). 

In this wntex.t, we allow the possibility of a "product" with }Wt one factor in case the IJUIIlber 
we begin with is actuaJiy a prime. What was done in these examples can always be- done: 

Theorem 1.7 
Every integer n except 0, ±1 is a product of primes. 

Proof • Frrst note that if n is a pro duct of primes, say n = Pt.P2 • • • P~<> then· -n = 
(-Pl)Pz • • ·Pic is also a product of primes. Consequently, "" need prove 
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the theorem only when 11 > L The idea of the proof can be summarired 
like this: 

LetS he the .set of all integers greater than I that are not a product rJf 
primes. Show that Sis the empty .set. Then, .since there are no integers 
inS. it must he the case that every integer gm:Jter than I is a product of 
primes (otherwise, it would he inS). 

Proof that S is empty: The proof is by contradiction: ~ assume that Sis 
not empty and use that assumption to rwch a contradiction. So assume that 
S is not empty. Then S contains a smallest integer m by the Wdl-Ordering 
Axiom. Since m e: S, m is not itself prime. Hence m must have positive divi­
sors other than 1 or m, say m = ah with 1 < a < m and 1 < h < m. Since 
both a and h are less than m (the smallest element of S ), neither a nor b is in 
S. By the definition of S, both a and hare the product of primes, say 

a= PlP2 ·' •p, and 

with r ::a: 1, s ::a: 1, and each p1, (/j prime. Therefore 

is a product of prime!, so that m It S. ~ have reached a contradiction: 
m e: S and m It S. Therefore, S must be empty. • 

Technology Tip: To find the prime factorization of integers as large as 10--12 dig­
its on a TI graphing calculator, download the FACTOR program on our website 
(www.CengageBrain.com). The program uses Theorem 1.10, which is proved on 
page 21, to do the fiwtorization. Maple and Mathematica can find the prime fac­
torization of these and much larger integen very quickly. 

An integer other than 0, ± 1 that is not prime is called composite. Although a com­
posite integer may have several different prime factorization!, such as 

45 = 3. 3. 5, 

45 = (-3). 5. (-3), 

45 = 5. 3. 3, 

45 = (-!!). (-3). 3, 

these factorizations are essentially the same. The only differences are the order of the 
factors and the insertion of minus signs. You can readily convince yourself that every 
prime factorization of 45 has exactly three prime factors, say fJIJhfh· Furthermore, 
by rearranging and relabeling the q's, you will always have 3 = ±q., 3 = ±q,. and 
5 = ±q3• This is an example of the following theorem. 
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Theorem 1.8 The Fundamental Theorem of Arithmetic 
Every integer n except o, ±1 is a product of primes. This prime factorization 
is unique in the following sense: If 

n = p.,p,_ • • • Pr and 

with each p1, QJ prime, then r = s (that is, the number of factors iS the same) 
and after reordering and relabeling the qs, 

p, = ±q,, P3 = ±Qa, • • · • Pr = ±q,. 

Proof~ Every integer n e~Wept 0, ;tl has at least one prime factorization by 
Theorem 1.7. Suppose that n has two prime factorizations, as listed in 
the statement of the theorem. Then 

PlP'lP3 • • · p,) = qiq'1!/3 • • • qlll 

so that p 11 q1 fh. • • • q~. By Corollary I, 6, p 1 must divide one of the (/)· By 
reordering and relabeling the q's if necessary, we may assume that Ptl qi. 
Since p1 and q1 are prime, we must have PI = ± qi. Consequently, 

±qiPlPJ ... p, = qlq2% •.. qJ. 

Dividing both sides by q1 shows that 

p.J..±p3p4 · · • p,) = q2q3q4 • · • qlll 

so that Pll q2q3 • • • qJ. By Corollary 1.6, P2 must divide one of the q1; as 
before, we may assume Pzl fh· Hena; P2. = ±q2 and 

±q2P3P4 · · • p, = q2q3q4 · • · q;-

Dividing both sides by q2 shows that 

P3(±p• • · ·P,) = q3q4- • • • q.. 

We continue in this manner, repeatedly using Corollary 1.6 and elimi­
nating one prime on each side at every step. If r = s, then this process 
leads to the des ired conclusion: PI = ± q1, Pl = ±q2, ••• , p, = ±q ,. So 
to r.mmpletethe proof of the theorem, we must show that r = s. The 
proof that r = s is a proof by contradiction: We assume that 1' * s 
(which means that r > s or that r < s), and show that this assumption 
leads to a contradiction. 

First, suppose that r > s. Then after s steps of the pte(Uling process, all 
the q's will have been eliminated and the equation will read 

±pl+th+2' ··p, = I. 
This equation says (among other things) that p, jl. Since the only divi­
sors of 1 are ± 1, we have p, = ±I. However, sinoe p, is prime, we know 
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that~¢± 1 by the definition of "prime". We have reached a contradic­
tion (p, = ± 1 and Pr if:. :t 1). So T > s cannot occur. A similar argument 
shows that the assumption r < s also leads to a contraction and, hence, 
cannot occur. Therefore, r = s is the only possibility, and the theorem is 
proved. • 

Tecll.oology Tip; The FACTOR program for TI calculators on our website 
(www.CengageBrain.com) factors an integer n as a product of primes relatively 
quickly. For example, if n = 94,017, then11 = 3 · 7 · 111 • 37, as shown in Figure 1. 

d 
Done 

FIGURE! 

On Maple, the oommand ifactot(n); will produce the prime factorization of 11. 

If consideration is restricted to positive integers, then there is a stronger version of 
unique factorization; 

Corollary 1.9 
Every integer n > 1 can be written in one and only one Waf in the form 
n = p1p2p3 • • • p,. where the p1 are positive primes such that p1 s p2 s 
P3 s · · · :5: Pr· 

Proof• Exercise 12 • 

Primality Testing 
[n theory it is easy to determine if a positive integer 11 is prime. Just divide n by every 
integer between 1 and n to see if n has a factor other than 1 or n. Actually, you need only 
check prime divisors because any factor of n (except 1) is divisible by at least one prime. 
1be following primality test greatly reduces the number of divisions that are necessary. 

Theorem 1.10 
let n > 1. If n has no positive prime factor less than or equal to Vn, then n 
is prima 

Before proving this theorem, it may be helpful to see how it is used. 
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EXAMPLE 2 

To prove that137 is prime, the theorem says that -.ve must verify that 137 has no 
positive prime factors less than or equal to Vf37 - 11. 7; that is, -.ve need only 
show that 2, 3, S, 7, and 11 are not factors of 137. You can easily verify that 
none of them divide 137. Hence, 137 is prime by Theorem 1.1 0. 

The proof of Theorem 1.10 (like several earlier in this chapter) is somewhat more 
detailed than is necessacy. In particular, the underlined parts of the proof are normally 
omitted. 

Proof of Theorem uo ... The proof is by contradiction. Suppose that n is /tOt 

prime. Then n has at least two positive prime factors, say Pt and p 2, 

so that n = pJP2k for some positive integer k. By hypothesis, n has no 
positive prime divison~less than or egual to yn, Hence.p1 > Vii and 
P7 > Vii. Therefore, 

n = P1P2 k ~ P1P2 > VnVii = n, 

which says that n > n, a contradiction. Since the assumption that n is not 
prime has led to a contradiction, -.ve concluie that n is prime. • 

Theorem 1.10 is useful when working by hand with relativdy small numbers. 
Testing very large integers for primality, however, requires a computer and techniques 
that are beyond the scope of this book. 

• Exercises 

A. I. Express each number as a product of primes; 

(a) 5040 

(c) 45,670 

(b) -2345 

(d) 2,042,040 

2. (a) Verify that2S - 1 and 27 - 1 are prime. 

(b) Show that 211 - 1 is not prime. 

3. Which of the following numbers are prime: 

(a) 701 

(c) 1949 

(b) 1009 

(d) 1951 

4. Primes p and q are said to be twin primes if q = p + 2. Ebr eumple, 3 and 5 are 
twin primes; so are 11 and 13. Find all pairs of positive twin primes less than 200. 

5. (a) List all the positive integer divisors of Y5', where s, t E Z and J, t > 0. 

(b) If r, s, t E Z are positive, how many positive divisors does 2'3'5' have? 

6. If p > S is prime and p is divided by 10, show that the remainder is 1, 3, 7, or 9. 
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7. If a, b, care integers and pis a prime that divides both a and a + be, prove 
thatp J b or p Jc. 

8. (a) VerifY that x - I is a factor of X' - I. 

(b) If n is a positive intege~; prove that the prime factorization of '!?' • 3"- I 
includes II as one of the prime fact on [Hint: (2'-" • 311) = (2z • 3)1".] 

9. Let p be an integer other than 0, ± I. Prove that p is prime if and only if it 
has this property: Whenever r and s are integers such that p = rs, then r = 

±lors=±l. 

I 0. Let p be an integer other than 0, ± 1. Prove that p is prime if and only if for 
each a E Z either (a,p) =I or p Ja. 

II. If a, f;, c, dare integers and pis a prime factor of both a - b and c - d, prove 
that p is a prime factor of (a + c) - (b + d). 

12. Prove Corollary 1.9. 

13. Prove that every integer n > I can be written in the formp[•JJ2• · · · p~', with the 
p1 distinct positive primes and every r1 > 0. 

14. Let p be an integer other than 0, ±I with this property: Whenever b and c 
are integers such that p I be, then pI b or p I c. Prove that p is prime. 
[Hint: If dis a divisor of p, say p = dt, then p ) d or p I t. Show that this 
implies d = ±p or d = ±I.] 

15. If pis prime and pIa", is it true that rl' ld'? Justify your answer. 
[Hint: Corollary 1.6.] 

16. Prove that (a, b) = 1 if and only if there is no prime p such that p I a and p I b. 

17. If pis prime and (a, b) = p, then (~.1?) =? 

18. Prove or disprove each of the following statements: 

(a) If p is prime and pI ( d'- + tl) and p I (C'- + if), then p I (cr - d-), 

(b) If pis prime and pI (c?- + ~and p l(c2 + Jl), thenp I (c? + cl). 

(c) If pis prime and pia andp I(~+ 11), thenp lb. 
B. 19. Suppose that a = .PJ' JTi · • · p'f and b = .W ~ • • · fit, where Pt. P2• ... , Pk are 

distinct positive primes and each r,. s, ~ 0. Prove that a I b if and only if 
r 1 s s1 for every i. 

20. If a = Jf..'p'.fp'f · · • pJ;' and b = M Pr PI • • • pt, where Ph Pz, ..• , Pk are distinct 
positive primes and each r1, s1 <=!: 0, then prove that 

(a) (a, b)= P~P2"'Pl"' • · • ]lk>, where for each i, n, =minimum of r1, s1• 

(b) [a, b) = JIJ• ~p'.J · • · p~, where t1 = maximum of r11 s,. [See Exercise 31 in 
Section 1.2.] 

21. If c?- = ab and (a, b) = 1, prove that a and bare perfect squares. 

22. Let n = #l';fi · · · p/l, where Pt. P2o ••. ,Pk are distinct primes and each r1 <=!: 0. 
Prove that n is a perfect square if and only if each r1 is even. 

23. Prove that a I b if and only if c? IIJ. [Hint: Exercise 19.] 
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24. Prove that a[b if and only if d' [h". 

25. Let p be prime and 1 :s; k < p. Prove that p divides the binomial coefficient ( f} 
[Recall that(~)= k!(pp~ k)l"] 

26. If n is a positive integer, prove that there exist n consecutive composite 
integers. [Hint: Consider (n + 1)! + 2. (n + 1)! + 3, (n + 1)! + 4, .... ] 

27. If p > 3 is prime, prove that r + 2 is composite. [Hint: Consider the possible 
remainders when pis divided by 3.] 

28. Prove or disprove: The sums 

1+2+4, 1+2+4+8, 1 + 2 + 4 + 8 + 16, ... 

are alternately prime and composite. 

29. If n E Z and n of- 0, prove that n can be written uniquely in the form n = '1!-m, 
wherek 2:0 andm is odd 

30. (a) Prove that there are no nonzero integers a, b such thatt? = 'lh'-. 
[Hint: Use the Fundamental Theorem of Arithmetic.] 

(b) Prove that v'2 is irrational. [Hint: Use proof by oontradi:tion (Appendix A). 
AsSI.liDfl that V2 = ajb (with a, b E Z) and use part(a) to reach a contradiction.] 

31. If pis a positive prime, prove that yp is irrational. [See Exercise 30.] 

32. (Euclid) Prove that there are infinitely many primes. [Hint: Use proof by 
contradiction (Appendix A). Assume there are only finitely many primes 
p 1, p1, • , • , Pk• and reach a contradiction by showing that the number 
p 1 P1 · · · Pk + 1 is not divisible by any of PI> P1, ... , Pk-1 

33. Let p > 1. If 2P - 1 is prime, prove that pis prime. [Hillt: Prove the 
contrapositive: If p is composite, so is '}!' - L] 
Note: The converse is false by Exercise 2(b). 

C 34. Prove or disprove: If n is an integer and n > 2, then there exists a prime p such 
that n < p < n!. 

35. (a) Let a be a positive integer. If Va is rational, prove that Va is an integer. 

(b) Let r be a rational number and a an integer such that I' = a. Prove that r 
is an integer. [Part (a) is the case when n = 2.] 

36. Let p, q be primes with p 2: S, q 2: 5. Prove that 241 (/1" - t/). 



CHAPTER 2 

Congruence in 7L and Modular Arithmetic 

Basic concepts of integer arithmetic are extended here to include the idea of 
"congruence modulo n." Congruence leads to the construction of the set Zn of all 
congruence classes of integers modulo n. This construction will serve as a model 
for many similar constructions in the rest of this book. It also provides our first 
example of a system of arithmetic that shares many fundamental properties with 
ordinary arithmetic and yet differs significantly from it 

II Congruence and Congruence Classes 

Definition 

The concept of "congruence" may be thought of as a generalization of the equality 
relation. Two integers a and bare equal if their difference is 0 or, equivalently, if their 
difference is a multiple of 0. If n is a positive integer, we say that two integers are conM 
gruent modulo n if their difference is a multiple of n. To say that a - b = nk for some 
integer k means that n divides a - b. So we have this formal definition: 

Let a, b, n be integers with n > 0. Then a is congruent to b modulo n 
[written "a """ b (mod n)"], provided that n divides a - b. 

EXAMPLE1 

17 "" 5 (mod 6) because 6 divides 17 - 5 = 12. Similarly, 4 "" 25 (mod 7) 
because 7 divides 4- 25 = -21, and 6"" -4 (mod 5) because 5 divides 
6 -.(-4) = 10. 

Remark In the notation "a "" b (mod n~" the symbols """"" and "(mod n)" 
are really parts of a single symbol; "a "" li' by itself is meaningless. Some texts write 
"a ..,.,.b" instead of "a"" b (modn)." Although this singl~symbol notation is advanta­
geous, we shall stick with the traditional "(mod n)" notation here. 

25 
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The symbol used to denote congruence looks very much like an equal5ign. This is 
no accident since the relation of congruence has many of the same properties as the 
relation of equality. For example, we know that equality is 

reflexive: a= a for evm-y integer a; 

symmetric: if a= b, then b =a; 
transitive: if a = band b = c, then a = c. 

We now see that congruence modulo n is also reflexive, symmetric, and transitive. 

Theorem 2.1 
Let n be a positive Integer. For all a, b, cr=Z, 

(1) a== a (mod n); 

(2) If a ""b (mod n), then b"" a (mod n); 

(3) if a ""b (mod n) and b ""c (mod n), then a ""c (mod n). 

Proof • (1) To prove that a == a (mod n), we must show that n I (a- a). But 
a - a = 0 and n I 0 (see Example 2 on page 9). Hence, n I (a - a) and 
a"" a(modn). 

(2) a == b (mod n) means that a - b = nk for some integer k. Therefore, 
b - a = -(a- b) = -nk = n{ -k). The first and last parts of this 
equation say that n I (b ~ a). Hence, b "" a (mod n). 

(3) If a"" b (mod n) and b"" c(modn), then by the definition of 
congruence, there are integers k and I such that a - b = nlc and 
b - c = nt. Therefore, 

(a - b) + (b - c) = nk + nt 

a - c = n(k + 1). 

Thus n I (a - c) and, hence, a "" c (mod n). • 

Several essential arithmetic and algebraic manipulations depend on this key fact: 

If a = b and c = d, then a + c = b + d and ac = bd. 

We now show that the same thing is true for congruence. 

Theorem 2.2 
If a "" b (mod n) and c "" d (mod n}, then 

(1) a+ c == b + d (mod n); 

(2) ac "" bd (mod n). 
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Proof .. (1) To prove that a + c "" b + d (mod n), we must show 1hat n divides 
(a + c) - (b + d). Since a "" b (mod 11) and c"" d (mod n), we know that 
n J (a - b) and nl (b - d). Hence, 1here are integers k and t such that 

a-b=nk and c-d=nt. 

We use these facts to show thatn divides (a +c) - (b +d): 

(a+ c)-(b +d)= a+ c-b-d 

= (a - b) + (c - d) 

=me+ nt 

(a + c) - (b +d) = n(k +t) 

(Arithmetic] 

(Rearra~~~ge terms.] 

(a- b = nkandc- d =nt.] 

(Factor right side] 

The last equation says that n divides (a + c) - (b + d). Hence, a + c"" 
b + ri (mod n). 

(2) We must prove that n divides ac - bd. * 
ac-bd=ac+O-bd 

=ac-he+ be- bd [-be+ be= 0.] 

= (a - b)c + b( c - d) (Factor fort nm terms and lost hWJ temu.] 

=(nk)c+ b(nt) (a-b=nk and c-d=ntby(•)above.] 

ac - bd = n(kc + bt) (Factor nfrom each term.] 

The last equation says that n I (ac - bd). Therefore, ac "" bd (mod 11). • 

With the equality relation, it's easy to see what numbers are equal to a given 
number a-just a itJ;elf. With congruence, however, the story is different and leads to 
some interesting consequences. 

Let a and n be integers with n >D. The congruence class of a modulo n 
(denoted [a]) is the set of all those integers that are congruent to a modulo 
n, that ls 1 

[a]= {b]bEZ and b,.. a (mod n)}. 

To say that b "" a (mod 11) means that b - a = kn for some integer k or, equivalently, 
that b = a + kn. Thus 

(a]= {hi b =a (modn)} = {b lh =a+ knwith kEZ} 

={a +kn I kEZ}. 

5 The first two lines of this proof are a standard algebraic technique: Rewrite 0 in the form -X+ X 
lor a suitable expression X. 
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EXAMPLE 2 

In congruence modulo 5, we have 

[9] = {9 + 5k I kEZ} = {9, 9 ± 5, 9 ± 10,9 ± 15, ..• } 

= { ... ' -11, -6, -1, 4, 9, 14, 19, 24, ... }. 

EXAMPLE 3 

The meaning of the symbol "[ ]" depends on the context. In congruence 
modulo 3, for instance, 

{2] = {2 + 3kl kEZ} = { ... , -7, -4, -1, 2, 5,8, ..• }, 

but in ~modulo 5the ~class [2] is the set 

{2 + 5k I kE Z} = { ...• -13, -s. -3, 2, 7' 12, ..• }. 

This ambiguity will not cause any difficulty when only one modulus is 
under discussion. On the few occasions when several moduli are discussed 
simultaneously, we avoid confusion by denoting the congruence class of a 
modulo n by [a],. 

EXAMPLE .. 

In congruence modulo 3, the congruence class 

[2] = { ... ' -7, -4, -1, 2, 5, 8, ..• }. 

Notice, h~ that [ -1] is the same class becau:>e 

[-1] = {-1 + 3k lkEZ} = { ... , -7, -4, -1, 2, 5, •.. }. 

Furthermore, 2 == -1 (mod 3). This is an example of the following theorem. 

Theorem 2.3 
a == c (mod n) if and only if [a] = [c]. 

Since Theorem 2.3 is an "if and only if" statement, we must prove two different 
thing;: 

1. If a== c (mod n), then [a] = [c]. 

2. If [a] = [c ], then a == c (mod n ). 

Neither of these proofs will use the definition of congruenoo. Instead, the proofs will 
use only the fact that congruence is reflexive, symmetric, and transitive (Theorem 2.1 ). 
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Proof of Theorem 2.3 ... First, assume that a"" c (mod n). To prove that [a]= (c], we first 
show that [a] ~[c]. '1b do this, let bE [a]. Then by definition b==- a (modn). Since 
a ==- c (mod n), we have b ==- c (mod n) by tnmsitivit)< TherefOre, bE (c] and 
[a]!;;;;; (c]. ~the role:> of a md.c in this~ and usiogthe fact that 
c ==-a by syDJIIletrj, show that (c]!;;;;; [a~ Therefore, [a] = [c]. 

Conversely, assume that [a] = [c]. Since a ==a (mod n) by reflexivity, 
we have a E [a] and, henot; a E [c]. By the definition of [c], we see that 
a==- c (modn). • 

If A ao:l Care two sets, there are usually three possibilities: Either A and Care dis· 
joint, or A = C, or A n Cis nonempty but A #-C. With congruence classes, however, 
there are only two possibilities: 

Corollary 2.4 
Two congruence classes modulo n are either disjoint or identical. 

Proof .. If [a] and [c] are disjoint, there is nothing to prove. Suppose that 
(a] n (c] is nonempty. Then there is an integer b with bE [a] and bE (c]. 
By the definition of congruence class, b == a (mod n) and b == c (mod n). 
Therefore, by symmetry and transitivity, a== c (mod 11). Hence, (a] = [c] 
by Theorem 2.3. • 

Corollary 2.5 
Let n > 1 bean integer and consider congruence modulo n. 

(1} tf a is any integer and r is the remainder when a is divided by n, then 
(a]= [r]. 

(2) There are exactly n distinct congruences classes, namely, (O], (1], 
(2], ... ,(n-1]. 

Proof"' ( 1) Let a E Z. By the Division.Algorithm, a = nq + r, with 0 s r < n. 
Thus a - r = qn, so that a == r (mod n). By Theorem 2.3, [a] = [r]. 
(2) If (a] is any congruence class, then (1) shows that [a] = (r] with 
0 s r < n. Henot; (a] must be one of [0], [1], (2], ... , [n- 1]. 

To complete the proof, we must show that these n classes are all dist:inrt. 
To do thi5, we first show that no two of 0, I, 2, .. , , n- 1 are congruent 
modulo n. Suppose that s and t are distinct integers in the list 0, 1 , 2, , .• , 
n - 1. Then one is larger than the other, say r, so that 0 s s < t < n. 
Consequently, t - .f is a positive integer that is less than n. Hence, n does 
not divide t - s, which means that t ¢ s. Thus, no two of 0, 1, 2, ... , 
n - 1 are congruent modulo n. Therefore, by Theorem 2.3, the classes (0], 
(1], (2], ••. , [n- 1] are all distinct. • 
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Definition The set of all congruence classes modulo n is denoted ~ (which is read 
~Zmod n"). 

There are several points to be careful about here. The elements of Zn are dasses. 
not single integen;. So the statement [5] E~ is true, but the statement 5 E Z,. is not. 
Furthermore,~ element of Z,. can be denoted in many different ways. For example, 
weknow1hat 

2 = 5 (mod3) 2 =-I (mod 3) 2 = 14 (mod 3). 

Therefore, by Theorem 2.3, [2] = (5] = [-I] ~ [14] in Z3. Even though each element 
of Z,. (that is, each congruence class) has infinitely many different labels, there are only 
finitely many distinct classes by Corollary 2.5, which says in effect that 

The set Z~ has exactly n elements. 

For example, the set Za consists of the three elements [OJ, [1], [2]. 

• Exercises 

A. I. Show that aJO- 1 = I (mod p) for the givenp and a: 

(a) a= 2,p = 5 (b) a= 4,p = 7 (c)a=3,p=ll 

2. {a} If k = 1 (mod 4), then what is 6k + 5 congruent to modulo 4? 

(b) If r = 3 (mod 10) and s = -7 (mod 10), then what is 1r + 3s congruent to 
modulo 10? 

3. Every published book bas a ten-digit ISBN-10 number (on the back cover 
or the copyright page) that is usually of the form x 1-X2X3Xt-XsX6X7XaXq-X10 

(where each x1 is a single digit).* The fin;t 9 digits identify the book. The last 
digit x 10 is a check digit; it is chosen so that 

10x1 + 9x2 + 8x3 + 7~ + 6x5 + 5~ + 4x, + 3xt + ~ + x10 = 0 (mod 11). 

If an error is made when scanning or keying an ISBN number into a computer, 
the left side of the congruence will not be congruent to 0 modulo 11, and the 
number will be rejected as invalid. t Which of the following are apparently valid 
ISBN numben;'l 

(a) 3-540-90518-9 (b) 0-031-10559-5 (c) 0-385-49596-X 

•sometimes the last digit of an ISBN number is the letter X. In such cases, treat X as if it were the 
number 10. 

trhe procedures in Exei'Cises 3 and 4 will detect evety single dig it substitution error (for instance, 
lis entered as Band no other error is made).They will detect about 90% oftransposilion errors (for 
instance, 74 is entered as 47 and no other error is made). However, they may not detect multiple errors. 
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4. Vrrtually e\'l:ry item sold in a store has a 12~digit UPC barcode which is ~ned 
at the checkout counter. The first II digits of a UPC number d1drf3• • • • d11d12 
identify the manufacturer and product. The last digit d12 is a check digit which 
is chosen so that 

If the congruence does not hold, an error has been made and the item must 
be scanned again, or the UPC code entered by hand. Which of the following 
UPC numbers were scanned incorrectly? 

(a) 037000356691 (b) 833732000625 (c) 040293673034 

5. (a) Which of [0], [I), [2], [3] is equal to [5:nxl_] in~? [H illt: 5 == I (mod 4 ); use 
Theorems 2.2 and 2.3.] 

(b) Which of [0], [I], [2], [3], [4] is equal to [42001] in Zs? 
6. ff a == b (mod n) and k In, is it true that a == b (mod k)? Justify your answer. 

7. If aEZ, prove that d-is not congruent to 2modulo4 or to 3 modulo 4. 

8, Prove that every odd integer is congruent to 1 modulo 4 or to 3 modulo 4. 

9. Prove that 

(a} (n - a'f == QZ (mod n) (b) (2n- a'f == fil (mod4n) 

10. If a is a nonnegative integer, prove that a is congruent to its last digit mod 10 
[for example, 27 == 7 (mod 10)]. 

B. 11. If a, bare integers such that a == b (mod p) for every positive prime p, prove 
that a= h. 

12. If p 2! 5 and pis prime, prove that [p] = [1] or [p] = [5] in lo. 
[Hint: Theorem 2.3 and Corollary 2.5.] 

13. Prove that a == b (mod n) if and only if a and b leave the same remainder when 
divided by 11. 

14. (a) Prove or disprove: ff ab == 0 (mod n), then a == 0 (mod n) or b == 0 (mod n). 

(b) Do part (a) when n is prime. 

15. If (a, n) = I, prove that there is an integer b such that ab == I (mod n). 

16. If (a] "" [I] in Z,, prove that (a, 11) = 1. Show by example that the converse 
may be false. 

17. Prove that 10" == (-!)"(mod 11) for every positive n. 

18. Use congruences (not a calculator) to show that 
(125698) (23797) ¢ 2891235306. [Hint: See Exercise 21.] 

19. Prove or disprove: If [a] = [b] in Z,, then (a, n) = ( b, n). 

20. (a} Prove or disprove: If a2 == b2 (mod 11), then a == b (mod n) or 
a == -b (mod n). 

(b) Do part (a) when 11 is prime. 
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21. (a} Show that HY' = 1 (mod 9) for every positive n. 

(b) Prove that every positive integer is congruent to the sum of its digits mod 
9 [for example, 38 = 11 (mod 9)]. 

22. (a} Give an example to show that the following statement is false: 1f ab = ac 
(mod n) and a '!/! 0 (mod n), then b = c (mod n). 

(b) Prove that the statement in part (a) is true whenever (a, n) = l. 

EXCURSION: The Chinese Remainder Theorem (Section 14..1) may be 
covered at this point if desired. 

Ill Modular Arithmetic 

The finite set Z., is closely related to the infinite set Z. So it is natural to ask if it is 
possible to define addition and multiplication in Z.. and do some reasonable kind of 
arithmetic there. To define addition in Z.., we must have some way of taking two classes 
in ~and producing another class-their sum. Because addition of integers ~ defined, 
the following tentatil'e definition seems worth investigating: 

The sum of the classes [a] and [c) is the class containing a + cor, in symbols, 

[a) Ef> [c)= [a+ c], 

where addition of classes is denoted by 1$ to distinguish it from ordinary addition of 
integers. 

We can try a similar tentative definition for multiplication: 

The product of [a] and [c] is the class containing ac:. 

[a] 0 kJ = [ac], 

where 8 denotes multiplication of classes. 

EXAMPLE 1 

In 1',; we have [3] Ef> [4] = [3 + 4] = [7] = [2] and [3] 0 [2] = [3 • 2] = [6] = (1]. 

Everything seems to work so far, but there is a possible difficulty. Every element of 
~can be written in many different ways. In 1',;, for instance, [3] = [13] and [4] = [9].1n 
the preceding example, we saw that [3] Ef> [4] = [2] in 1',;. Do we get the same answer if 
we use [ 13] in place of [3] and [9] in place of [4]? In this case the answer is "yes" because 

[13] EB [91 "" [13 + 91 = [22) = [2J. 

But how do we know that the answer will be the same no matter which way we write 
the classes? 
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To get some ilea of the kind of thing that might go wrong, consider th~ five 
classes of integers: 

A={ ... , -14, -8, -2, 0, 6, 12, 18, •.• } 

B= { ... , -n. -1, -3.1, s, 9, 13, ... } 

c = { ... ,-9, -5, -1. 3, 7. ll, 15, .•. } 

D = { ... , -16, -10, -4, 2, 8, 14, 20, .•• } 

E = { ... , -18, -12, -6, 4, 10, 16, 22, •.. }. 

These classes, like the classes in ~. have the following basic properties; Every integer 
is in one of them, and any two of them are either disjoint or identicaL Since 1 is in B 
and 7 is in C, we could define B + Cas the class containing 1 + 7 = 8, that is, B + C = 
D. But B is also the class containing -3 and C the class containing 15, and so B + C 
ought to be the class containing -3 + 1 S = 12. But 12 is in .A., so that B + C = A. Thus 
you gd: different answers, depending on which "representatives" you choose from the 
classes B and C. Obviously you can't have any meaningful concept of addition if the 
answer is one thing this time and something else another time. 

In order to remove the word "tentative" from our definition of addition and mul­
tiplication in Z,., we must first prove that these operations do not depend on the 
choice of representatives from the various classes. Here is what's needed: 

Theorem 2.6 
tf (a]= (b] and [c] =[d) in~. then 

[a+ c] = [b + d] and [ac] = [bd). 

Proof • Since (a] = [b], we know that a"" b (mod n) by Theorem 2.3. Similarly, 
(c] = (d] implies that c "" d (mod n). Therefore, by Theorem 2.2, 

a + c == b + d (mod n) and ac == bd(mod n). 

Hence, by Theorem 2.3 again, 

[a+ c] = (b + d] and (ac] = (bd]. • 

Because of Theorem 2.6, we know that the fullowing formal definition of addition 
and JWJ.tiplication of classes is independent of the choice of representatives from each 
class; 

AdditiOn and multiplication in Zn are defined by 

[a] i3J [c)= [a+ c] and [aJ 0 [c:] = [ac). 
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EXAMPLE 2 

Here are the complete addition and multiplication tables for ~ (verify that 
these calculations are correct):* 

@ [0] [I] [2] [3] [4] 8 [0] [I] [2] [3] [4] 

[0] [0] [I] [2] [3] [4] [0] [0] [0] [0] [0] [0] 

[I] [I] [2] [3] [4] [0] [I] [0] [1] [2] [3] [4] 

[2] [2] [3] [4] [0] [I] [2] [0] [2] [4] [l] [3] 

[3] [3] [4] [0] [I] [2] [3] [0] [3] [I] [4] [2] 

[4] [4] [0] [I] [2] [3] [4] [0] [4] [3] [2] [I] 

And here are the tables for ~: 

® [0] [I] [2] [3] [4] [S] 

[0] [0] [I] [2] [3] [4] [S] 

[I] [I] [2] [3] [4] [S] [0] 

[2] [2] [3] [4] [S] [0] [I] 

[3] [3] [4] [S] [0] [I] [2] 

[4] [4] [S] [0] [I] [2] [3] 

[S] [S] [0] [1] [2] [3] [4] 

8 [0] [I] [2] [3] [4] [S] 

[0] [0] [0] [0] [0] [0] [0] 

[I] [0] [I] [2] [3] [4] [S] 

[2] [0] [2] [4] [0] [2] [4] 

[3] [0] [3] [0] [3] [0] [3] 

[4] [0] [4] [2] [0] [4] [2] 

[S] [0] [S] [4] [3] [2] [I] 

Properties of Modular Arithmetic 
Now that addition and multiplication are defined in Z.,,we want to compare the properties 
of these "miniature arithmetics" with the well-known properties of Z The key facts about 
arithmetic in Z (and the usual titles for these properties) are as follows. For all a, b, c E Z:. 

I. If a, be Z, then a + beZ [Closure for addition] 

2. a + (b+ c) ~ (a + b) + c. [AssociatiVe addition] 

3. a+b = b+a. [ Comm utatiYe addition] 

4. a + 0 = a = 0 + a. [Additive identity] 

•Ttwsetables are read like this: If [a] appears in the left-hand vertical column and [c] in the top 
horizontal row of theadditiontable, for example, then the sum [a]® [c] appears atthe intGrsection 
of the horizontal row containing [a] and the vertical column containing [c]. 



5. For each a E Z, the equation 
a + x = 0 has a solution in Z. 

6. If a, beZ, then abeZ. 

7. d.._bc) = (ab)c. 

8. c(b + c) = ab + ac and 

(a+ b)c = ac +be. 

9. ab = ba 

10. a • 1 = a = l • a 

11. If ab = 0, then a = 0 or b = 0. 
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(Closure for multiplication] 

(A.rsociative multiplication] 

(Distributive laws] 

(Commutative multiplication] 

(Multipllcati~e identity] 

By using the tables in the preceding example, you can verifY that the first ten of 
the~e properties hold in Zs and Z 6 and that Property 11 holds in Zs and fails in 
~- But using tables is not a very efficient method of proof (especially for verify­
ing associativity or distributivity). So the proof that Properties l-10 hold for 
any Z, is based on the definition of the operations in Z,. and on the fact that 
these properties are known to be valid in Z. 

Theorem 2.7 
For any classes (a], (b1 (c] In~. 

1. lf(a]e.Z., and (b] E~, then (a] Ef)(b]e~. 

2. [a]® ((b] ® [c]) = ([a]® (b]) ® [c]. 

3. [a]® (b] = [b] Ef.l [a]. 

4. [a] ® [O] = [a] = [O] ®(a]. 

5. For each (a] In~. the equation (a]® X= (O] has a solution in Z.,. 
6. lf(a]el:, and (b]eZ,.,, then (a] 0 (b]eZ,.,. 

7. [a] 0 ((b] 0 [c]) = ([a] 0 (b]) 0 [c]. 

B. [a] 0 ((b] Ef)(c]) =(a] 0 [b] ®[a] 0 [c] and 

((a]® (b]) 0 (c] =(a] 0 [c] Ef.l (b] 0 [c]. 

9. [a] 0 (b] = (b] 0 (a]. 

10. [a] 0 [1] =(a]= [1] 0 (a]. 

Proof~ Properties 1 and 6 are an itnmediate consequence of the definition of Ef.l 
and 0inZ,.. 

To prove Property 2, note that by the definition of addition, 

(a]® ([b] ® [cD = (a]® (b + cl =(a + (b + c)]. 

In Z we know that a+ (b +c)= (a+ b)+ c. So the classe! of these 
integers must be the same in Z,; that is, [a + (b +- c)] = [(a + b) + c). By 
the definition of addition in Z,., we have 

[(a+ b) + c] = [a+ b] (B (cl = ([a]® (bD ® [c]. 
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This proves Property 2. The proofs of Properties 31 7, B, and 9 are 
analo~ms (Exerc.R 10). 

Properties 4 and 10 are proved by a direct calculation; for imtance, 
[a] 0 [l] =[a· I]= [a]. 

For Property 5, it is easy to see that X= [-a] is a solution of the 
equation since [a] EiJ [-a] = Ia + (-a)] = [0]. • 

Exponents and Equations 
The same exponent notation used in mdinary arithmetic is also used in ~. If [a] E~, 
and k is a positive integer, then [aJ~ denotes the product 

[a] 0 [a] 0 [a] 0 · · · 0 [a] (!c factors). 

EXAMPLE 3 

In Z, [3f = [3] 0 [3] = [4] and [3f = [3] 0 [3] 0 [3] 0 [3] = [1]. 

As noted on page 9, the set Z., has exactly n elements. Consequently, any equation 
in Z., can be solved by substituting each of these n elements in the equation to soo 
which ones are solutions. 

EXAMPLE 4 

To solve x1 EiJ [5] 0 x = [0] in~. substitute each of [0], [1], [2], [3], [4], am [5] 
in the equation to see if it is a solution: 

X r EiJ[S] 0x Is r ® [5] 0 X = [0]? 

[0] [0]0[0] ® [5]0[0] = [0] ® [0] = [0] Yes; solution 

[l] [1]0[1] ® [5]0[1] = [ l] ® [5] = [0] Yes; solution 

[2] [2]0 [2] EiJ [5]0[2] = [4] EiJ [4] = [2] No 

[3] [3]0[3] ® [5]0[3] = [3] ® [3] = [0] Yes; solution 

[4] [4]0[4] ® [5]0[4] = [4] ® [2] = [0] Yes; solution 

[5] [5]0[5] EiJ [5]0[5] = [ l] EiJ [I] = [2] No 

So the equation has four solutions; [0], [1 ], [3], and [4]. 

Example 4 shows that solving equations in Z,. may be quite diffen::nt from solving 
equations in Z. A quadratic equation in Z has at most two solutions, whereas the 
quadratic equation r (!1 [5]0x = [0] has four solutions in zfi. 

• Exercises 

A. I. Write out the addition and multiplication tables for 

(a) z2 (b) z. (c) z, 
In E:JU!Tcises 2-8, solve the equation. 

2. x'-EiJ X= [0) inZ. 



2.3 The Structure of z_ (p Prime) and Zn 37 

3. r= l'l in.lt 

4. X"= [I] in Zs 
5. x1 (£) [3] 0 x EB [2] = [0] in~ 

6. r (£) [8] 0 X = [0) in .4 
7. x3 (f)ilE£)xE£)[l]=[O]in~ 

8. x3 + x1 = (2] in .l10 

9. (a) Find an element (a] in Z7 such that every nonzero element of Z7 is a power 
of [a]. 

(b) Do part(a)inZs. (e) Can you do part (a) in £6? 
I 0. Prove parts 3, 7, 8, and 9 of Theorem 2. 7. 

II. Solve the following equations. 

(a) x EiJx EB x = [0] in .l3 

(b) xE£) x EiJx E!Jx = [0] in Z. 
(c) x(f)xE!JxE!JxE!Jx =[O]in~ 

12. Prove or disprove: If (a] 8 [ b] = [0] in Z, then [a] = [0] or [b] = [0]. 

13. Prove or disprove: If (a]8 [b] =[a] 0 [c] and [a]"'' [0] inZ,., then [b] = [c]. 

B. 14. Solve the following equations. 

(a) xl + x = [0] inZs 

(b) x2 + x = [0] in £6 
(c) If p is prime, prove that the only solutions of x1 + x = (0] in Z, are [0] and 

(p-I]. 

15. Compute the following products. 

(a) ([a] EB [b])2 in .lz 
(b) ([a] EB [b]f in .l3 [Hint: Exercise ll(a) may be helpful.] 

(c) Ua] ® [b])5 inZs [Hint· See Exercise ll(c).] 

(d) Based on the results of parts (a)-(c)1 what do you think ([a] ffil [bD7 is 
equal to in ll,? 

16. (a) Find all [a] in Zs for which the equation [a]0 x =[I] has a solution. Then 
do the same thing for 

(b) 4 (d)~ 

Ill The Structure of ZP (p Prime) and Zn 

We now present some facts about the structure of Z,. (particularly when n is prime) 
that will provide a model for our future. work. First, however, we make a change of 
notation. 
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New Notation 
We have been very careful to distinguish integers in Z and classes in Z., and have 
even used dilferent symbols for the operations in the two systems. By now, however, 
you should be reasonably comfortable with the fundamental ideas and familiar with 
arithmetic in Z.,. So we shall adopt a new notation that is widely used in mathemat­
ics, even though it has the flaw that the same symbol represents two totally different 
entities. 

Whenever the context makes clear that we are dealing with~' we shall abbrevi­
ate the class notation "[a]" and write simply "a." In~' for instance, we might say 
6 = 0, which is certainly true for classes in~ even though it is nonsense if 6 and 
0 are ordinary integers. We shall use an ordinary plus sign for addition in Z., and 
either a small dot or juxtaposition for multiplication. For example, in~ we may 
write things like 

4+1=0 or or 4 + 4 = 3. 

On those few oe£asions where this usage might cause confusion, we will returo to the 
brackets notation for classes. 

EXAMPLE 1 

In this new notation, the addition and multiplication tables for~ are 

+ 0 

0 0 

2 2 

1 

2 

0 

2 

2 

0 

0 

2 

0 

0 

0 

0 

0 

2 

2 

0 

2 

1 

CAUTION: Exponents are ordinary integers-not elements of Z.,. In ~' 
for instance, 24 ""' 2 • 2 · 2 • 2 ""' I and 21 ""' 2, so that zi ¢ 21 

even though 4 ""' I in Z1. 

The Structure of~ When p Is Prime 
Some of the Z.. do not share all the nice properties of Z. For instance, the product 
of nonzero integers in Z is always nonzero, but in .l1; we have 2 · 3 ""' 0 even though 
2 ¢ 0 and 3 * 0. On the other hand, the multiplication table on page 34shows that the 
product of nonzero elements in ~ is always nonzero. Indeed, ~ has a much stronger 
property than Z. When a ¢ -0. the equation ax= I has a solution in Z if and only if 
a = ± 1. But the multiplication table for ~ shows that, for any a ¢ 0, the equation 
ax = 1 has a solution in~; for example, 

x = 3 is a solution of 1x = I 
x = 4 is a solution of 4x = I. 
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More generally, whenever n is prime, ~ has special properties: 

Theorem 2.8 
If p > 1 is an integer, then the following conditions are equivalent:• 

(1) p is prime. 

(2) For any a ¢ 0 in Zp, the equation ax = 1 has a solution in Zp. 
(3) Whenever be= 0 in Zp, then b = 0 or c = 0. 

The proof of this theorem illustrates the two basic techniques for proving state­
ments tbat involve~: 

(i) 'Ihmslare equations in Z, lnto equivahmt congruence statements in Z Then 
the properti:3 of congruence and arithmetic in Z can be used. The brackets 
notation lbr elanents of~ may ben~ to avoid confusion. 

(ii) Use the aritlnnet.i: properties of Z. dinrtty, without imulving arithmetic in Z. 
In this case, the brackets notation in Z.. isn't needed. 

Proof oflheorem 2.8 • ( l) :;;;;. (2) We use the first technique. Suppose p is prime 
and [a]¢ [0] in~- Then in Z, a~ 0 (modp) by Theorem2.3. Hence, 
p -r a by the definition of congruence. Now the gcd of a and pis a posi­
tive divisor of p and thus must be either p or 1, Since (a, p) also divides 
aandp .fa, we must have(a,p) = l. By Theorem LZ. au+ pv = 1 for 
some integers u and 1!. Hence, au - l = p( -), so that au "" l (mod p). 
Therefore [au] = [1] in~ by Theorem 23. Thus [a][u] = [au] = [1], so 
thatx = [u] is a solution of [a]x = [1]. 

(2) :;;;;. (3) We use the second technique. Suppose ah = 0 in ~- If 
a = O, there is nothing to prove. If a ¢ O, then by (2) there exists u E Zy 
such that au = l. Then 

0 = u • 0 = u(ah) = (-ua)b = (au)b = l • b = b 

In ~Wery case, therefore, we have a = 0 or b = 0. 

(3):;;;;. (l) Back to the first technique. Suppose that b and c are any 
integers and that pI be. Then be"" 0 (mod p). So by Theorem 2.3, 

[b][c] = [be] = [0] in z,. 
Hence, by (3), we have lb] =[OJ or [c] = [0]. Thus, b"" 0 (mod p) or c"" 0 
(mod p) by Theorem 2.3, which means that p I b or p I c by the definition 
of congruence. Therefore, pis prime by Theorem 1.5. • 

The Structure of~ 
When n is not prime, the equation ax = l need not have a solution in Z,. For instance, 
the equation 2x = l has no solution in 4 as you can easily veri:fY. The next resuh tells 
us exactly when ax= l does have a solution in 4 For clarity, we use brackets notation. 

•see page 508 in Appendix A for the meaning of ''the following conditions are equivalent" and what 
must be done to prove such 11. statement. 
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Theorem 2.9 
Let a and n be integers with n > 1. Then 

The equation [.a)K = [1] has a solution in Zn if and only if(a, n) = 1 in Z. 

Proof • Since this is an ''if and only if" statement, the proof has two parts. 
First we assume that the equation has a solution and show that (a, n) = 1. 
If [w] is a solution of [a]x = [I], then 

[a][w] = [1] 

[aw] "" [1] 

aw "" 1 (mod n) in Z 
aw - 1 = kn for some integer k 

aw + n(-k) = 1 

[Multiplication ill .l,J 

[11leorem 2. 3] 

[Definition tJj congruence] 

[Rearrange terms] 

Denote (a, n) by d. Since dis a common divisor of a and n, there are inte­
gers rand s such that dr = a and ds = n. So \W have 

ow+ n(-k) = 1 

drw + d.s( -k) "" 1 
d(rw - sk) = l. 

So djl. Since dis positM: by definition, wemusthaved = 1, that is, (a,n) = l. 
Now we assunre that (a, n) = 1 and show that [a]x = [I] has a sol u­

ti on in Z,. Actually, we've already done this. In the proof of (1) ::=> (2) 
of Theorem 2.8, the primeness of p is used only to show that (a, p) = 1. 
From there on, the pro of is valid in ;my Z, when (a, n) = 1, and shows 
that [a]x = [I] has a solution in Z,. • 

Units and Zero Divisors 
Some special terminology is often used when dealing with certain equations. An ele­
ment a in Z.. is called a unit if the equation ax = 1 has a solution. In other words, a is 
a unit if there is an element bin Z;. such that ab = l. In this case. we say that b is the 
inverse of a. Note that ab = 1 also says that b is a unit (with inverse a). 

EXAMPLE 2 

Both 2 and 8 are units in Z15 because 2 · 8 = 1. 8 is the inverse of 2 and 2 is the 
inverse of 8. Similarly, 3 is a unit in Z. because 3 • 3 = 1. So 3 is its own inverse. 

EXAMPLE 3 

Parl (2) of Theorem 2.8 says that when pis prime, every nonzero element of z, 
is a unit. 

Here is a restatement of Theorem 29 in the terminology of units. 
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Theorem 2.10 
Let a and n be Integers with n > 1. Then 

[a] Is a unit in Znlf and only if (a, n) "' 1 In Z. 

A nonzero element a of Z.. is called a zero divisor if the equation ax = 0 has a 
nonzero solution (that is, if there is a nonzero element c: in Z.. such that ac "' 0). 

EXAMPLE 4 

Both 3 and 5 are zero divisors in Z15 because 3 • 5 = 0. Similarly, 2 is a zero 
divisor in L. becaux 2 · 2 = 0. 

EXAMPLE 5 

Part (3) of Theorem 2.8 says that when pis prime, there are no zero divisors in Z,. 

• Exercises 

A. I. Find all the units in 

(a) z, (b) z. 
2. Find all the zero divisors in 

(a) Z7 (b) z. 

(c) '4 (d) Zto· 

(c) '4 
3. Based on Exercises 1 and 2! make a conjectuze llbout units and zero divisors 

inZ.,. 

4. How many solutions does the equation 6x "' 4 have in 

(a) Z7? (b) Z,? (c)~? 

5. If a is a unit and b is a zero divisor in Z,., show that ab is a zero divisor. 

6. If n is composite, prove that there is at least one zero divisor in Z.,. (See 
Exercise2.) 

7. Without using Theorem 2.8, prove that if pis prime and ab = 0 in Zp, then 
a = 0 orb = 0. [Hint: Theorem 1.8.] 

8. (a) Give three lruUilples of equations of the form ax "' bin Z12 that have no 
nonzero solutions. 

(b) For each of the equations in part (a), does the equation ax "' 0 have a 
nonzero solution? 

B. 9. (a) If a is a unitin.z'.t, prove that a is not a zero divisor. 

(b) If a is a zero divisor in Z,., prove that a is not a unit. [Hint: Think 
contrapmritive in part (a).] 
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10. Prove that every nonzero element of Z,. is either a unit or a zero divisor, but 
not both. [Hint: Exercise 9provides the proof of "not both".] 

11. W"rthout using Exercises 13 and 14, prove: If a, bE Z... and a is a unit, then the 
equation ax = b bas a unique solution in Z.,. [Note: You must find a solution 
for the equation and show that this solution is the only one.] 

12. Let a, b, n be integers with n > 1 and let d = (a, n). If the equation [ a]x = [b] 
has a solution in Z.., prove that d I b. (Hint: If x"" [r] is a solution, then [ar] = 
(b] so that ar - b = kn for some integer k.] 

13. Let a, b, n be integers with n > 1. Let d = (a, n) and assumed I b. Prove that 
the equation (a]x = (b] has a solution in 1!., as follows. 

(a) Explain why there are integers -u, v, at> bh n 1 such that au+ nv = d, 
a= da1, b = dh1,n = dn1• 

(b) Show that each of 

[ ubtl. (ub1 + n 1], (ub1 + 2n1], [ub,, + 3n1], ••• , (ub1 + ( d - 1)ntl 

is a solution of (a]x = [b]. 

14. Let a, b, n be integers with n > 1. Let d = (a, n) and assumed I b. Prove that 
the equation (a]x = ( b] has d distinct solutions in 1!., as follows. 

(a) Show that the solutions listed in Exercise 13 (b) are all distinct. 
[Hint: [r] = (s] if and only if n I (r - s).] 

{b) If x = [r] is any solution of [a]x = (b], show that [r] = (ub1 + kntl for some 
integer k with 0 $. k s d - 1. [Hint: (ar] - [ aub J = (0] (Why?), so that 
n I (a(r - ub1)). Show that n1 1 (a1(r - ub1)) and use Theorem 1.4 to show 
that n1 I (r - ub1).] 

15. Use Exercise 13 to solve the following equations.s 

(a) 15x"" 9 in Zts (b) 25x = 10 in~-

16. If a + 0 and b are elements of Z.. and ax == b has no solutions in Z,, prove that 
a is a zero divisor. 

17. Prove that the product of two units in Z,, is also a unit. 

18. The usual ordering of l by < is transitive and behaves nicely with respect to 
addition. Show that there is no ordering of Z, such that 

(i) if a < b and b < c. then a < c; 

(ii) if a < b, then a + e < b + c for every c in Z,. 

(Hint: If there is such an ordering with 0 < 1, then adding 1 repeatedly to both 
sides shows that 0 < I <2 <·· · · < n -1 by (ii). Thus 0 < n- 1 by (i). Add 1 
to each side and get a contradiction. Make a similar argument when 1 < 0.] 

APPLICATION: Public Key Cryptography (Chapter 13) may be covered 
at this point if desired. 
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Rings 

ALTERNATE ROUTE: If you want to cover groups before studying rings, 
you Mlould read Chapters 7 and 8 now. 

We have seen that many rules of ordinary arithmetic hold not only in Z but also in 
the miniature arithmetics ~.You know other mathematical systems, such as the 
real numbers, in which many of these same rules hold. Your high-school algebra 
courses dealt with the arithmetic of polynomials. 

The fact that similar rules of arithmetic hold in different systems suggests 
that it might be worthwhile to consider the common features of such systems. 
In the long run, this might save a lot of work: If we can prove at heorem about one 
system using only the properties that it has in common with a second system, 
then the theorem is also valid in the second system. By "abstracting" the com­
mon core of essential features, we can develop a general theory that includes 
as special cases Z, Zn, and the other familiar systems. Results proved for this 
general theory wi II apply simultaneously to all the systems covered by the theory. 
This process of abstraction will allow us to discover the real reasons a particular 
statement is true (or false, for that matter) without getting bogged down in non­
essential detai Is. In this way a deeper understanding of all the systems involved 
should result. 

So we now begin the development of abstract algebra This chapter is just 
the f1rst step and consists primarily of defmitions, examples, and terminoloyy. 
Systems that share a minimal number of fundamental properties with Z and Z, 
are called rings. other names are applied to rings that may have additional prop­
erties, as you will see in Section 3.1. The elementary facts about arithmetic and 
algebra in arbitrary rings are developed in Section 3.2. I n Section 3.3 we consider 
rings that appear to be different from one another but actually are "essentially the 
same" except for the labels on their elements. 

43 
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II Definition and Examples of Rings 

Definition 

Definition 

Definition 

We begin the process of abstracting the common features of familiar systems with this 
definition: 

A rl ng is a nonem pty set R equipped with twooperations* (usually written 
as addition and multiplication) that satisfy the following axioms. For all a, 
b,ceR: 

1. lfi:ie Rand beR, then a+ beR. 

2. a + (b + c) = (a +b) + c. 

3. a+ b = b +a. 

4. There is an element OR in R sL£h 
that a + 011 "" a "" OR + a for every 
aeR. 

5. For each a E R, the equation 
a+ x"" OR has a solution in R.t 

6. If a eR and be R, then abeR. 

7. a(bc) = (ab)c. 

8. a(b +c)= ab + ac and 
(a + b)c = ac + be, 

[Closure for add itron] 

(Associative addition] 

[ CommufJJ.tive add it ion] 

[Additive identity 
or zero element] 

[Closure for multiplication] 

(Associative multiplication] 

[Distributiv~ taws] 

These axioms are the bare minimum needed for a system to resemble Z and Z,. But 
Z and Z, have several additional properties that are worth special mention: 

A commutative rl ng is a ring R that satisfies thIs axiom: 

9. ab = ba for alia, b eR. [Commutative multiplication] 

A ring with identity is a rfng R that contains an element 1R satisfying this 
axiom: 

(Muftip/lcative identity] 

"''Operation" and "closure" are defined in Appendix B. 

'Those who have already read Chapter 1 should note that Axioms 1-5 simply say that a ring is an 
abelian group under addition. 
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In the following examples, the verification of most of the axioms is left to the 
reader. 

EXAMPLE 1 

With the usual addition and multiplication, 

7L (the integers) and IR (the real numbers) 

are commutative rings with identity. 

EXAMPLE 2 

The set 7L1., with the usual addition and multiplication of classes, is a commuta­
tive ring with identity by Theorem 2, 7. 

EXAMPLE 3 

Let E be the set of even integers with the usual addition and multiplication. 
Since the sum or product of two even integers is also even, the closure 
axioms (1 and 6) hold. Since 0 is an even integer, E has an additive identity 
element (Axiom 4). If a is even, then the solution of a + x = 0 (namely- a) is 
also even, and so Axiom 5 holds. The remaining axioms (2, 3, 7, 8, and 9) 
hold for all integers and, therefore, are true whenever a, b, care even. 
Consequently, Eisa commutative ring. E does not have an identity, however, 
because no even integer e has the property that ae = a = ea for every even 
integer a. 

EXAMPLE 4 

The set of odd integers with the usual addition and multiplication is not a 
ring. Among other things, Axiom 1 fails: The sum of two odd integers is 
not odd. 

Although the definition of ring was constructed with Z and Z,. as models, there 
are many rings that aren't at all like these models. In these rings, the elements may not 
be numbers or classes of numbers, and their operations may have nothing to do with 
"ordinary" addition and multiplication. 



46 Chapter 3 Rings 

EXAMPLE & 

The set T = {r, s, t, z} equipped with the addition and multiplication defined 
by the following tables is a ring: 

+ z r 

z z r 

r r z 
s s t 

s 

s 
s 

z 

r 

s 
,. 
z 

z 
r 

3 

z 
z 
z 
z 

z 

r 

z 
z 
z 

z 

z 
r 

z 
r 

You may take our word for it that associativity and distributivity hold 
(Axioms 2, 7, and 8). The remaining axioms can be easily verified from the 
operation tables above. In particular, they show that Tis closed under both 
addition and multiplication (Axioms I and 6) and that addition is commuta­
tive (Axiom 3). 

The element z is the additive identity-the elem:nt denoted OR in Axiom 4. It be­
haves in the same way the number 0 does in Z (that's why the notation OR is used in the 
axiom), butz is not the integer 0-in fact, it's not any kind of number. Nevertheless, 
we shaD caB z the "zero element" of the ring T. 

In order to verify Axiom 5, you must show that each of the equations 

r+ x:=: z s+x==t t +x ==t z+ x:=: z 

has a solution in T. This is easily seen to be the case from the addition table; for 
example, x = r is the solution of r + x = z because r + r = z. 

FinaUy, note that Tis not a commutative ring; for instance, rs =rand 
sr = z, so that rs .P sr. 

EXAMPLE 6 

Let M(R.) be the set of all 2 X 2 matrices over the real numbers, that is, M(R) 
consists of all arrays 

where a, b, c, dare real numbers. 

T'MI matrices are equal provided that the entries in co!Rlsponding positions are equal; 
that is, 

if and only if a :=: r, b = s, c = t, d :=: -.... 

fur example, 

0) = (2 + 2 
I I - 4 ~) but ~) * G 5) 2 . 
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Addition of matrices is defined by 

(a b) + (a' b') o: (a + a' b + b'). 
c d c' d' c + c' d + d' 

fbr example, 

Multiplication of matrices is defined by 

fbr example, 

-s) (2 • 1 + 3 • 6 
7 = 0 • 1 + ( -4 )6 

0: (-~ -~} 

2(-S) + 3 · 7 ) 
0( -5) + ( -4)7 

Rlmr:sing the order of the factors in matrix multiplication m({V produce a different 
answer, as is the case here: 

3) 0: (1 · 2 + ( -s)o 1 . 3 + ( -s)( -4)) 
~4 6 .• 2 + 7 • 0 6 • 3 + 7( -4) 

23) 
-10 . 

So this multiplication is not commutative. With a bit of 'Mlrk, y(U can verify that 
M(IR) is a ring with identity. The zero element is the ztro matrix 

which is denoted Oand X= ( == =!)is a solution of 

We claim that the multi.plicati.veiden tityd:ment (Axiom I O)is the matrix! = G ~). 
To prove this c1ahn, we first multiply a typical matrix in M(R) on the right by /: 

(a b)(l 0) = (a· 1 + b · 0 a· 0 + b · 1) =(a b). 
c d 0 1 c·I+d·D c·O+d·l c d 
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Definition 

Since multiplication is not commutativeha-e, ~also need to check left multiplication 
bylas~ll; 

o)(a b)= (I • a+ O·c 
1 c d O•a+l·c 

l·b+O·d\ (a b'\ 
O·b+l·d}= c d)" 

This proves that I satisfies Axiom 10. * ~~ I is called the identity matrix. 
Note that the product of nonzero ele:rrents of M(R) may be the zero element; for 

example, 

-9) = (4(-3) + 6·2 
6 2(-3) + 3 ·2 

EXAMPLE 1 

4(-9) + 6·6) (0 
2( -9) + 3 . 6 = 0 

If R is a commutative ring with identity, then M(R) denotes the set of all 
2 X 2 matrices with entries in R. With addition and multiplication defined as 
in Example 6, M(R) is a noncommutative ring with identity, as )QU can read· 
ily verify. For instance, M(Z) is the ring of 2 X 2 matrices with integer entries, 
M(O) the ring of 2 X 2 matrices with rational number entries, and M(Z,J the 
ring of 2 X 2 matrices with entries fromZ;.. 

EXAMPLE B 

Let The the set of all functions from IR to n, where R is the set of real 
numbers. As in calculus,[+ g andjg are the functions defined by 

(f + gXx) =fix) + g(x) and (fgXx) = flx)g(x). 

You can readily verify that Tis a commutative ring with Kientity. The zero ele. 
ment is the function h given by h(x) = 0 for all x E IR!. The identity element is the 
function e given by ~x) = I for all x E R. Once again the product of nonzero 
elements of Tmay turn out to be the zero element; see Exercise 36. 

We have seen that some rings do not have the property that the product of two 
nonzero elements is always nonzero. But some of the rings that do have this property, 
such as Z, occur frequently enough to merit a title. 

An integral domain is a commutative ring R with identity 1R * OR that 
satisfies this axiom: 

11. Whenever a, be R and ab = On, then a = Dn orb = an. 

"Checking a possible identity element under both right and left multiplication is essential. There 
are rings in which an element acts like an identity when you multiply on the right, but not when you 
multiply on the left see Exerdse 11. 
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The condition I R ;1:. OR is needed to exclude the :rero ring (that is, the single-element 
ring {OR}) from the class of integral domains. Note that Axiom 11 is logically equiva­
lent to its contrapositive. * 

Whenever a '# OR and b ¢. OR> then ab ¢. OR. 

EXAMPLE 9 

The ring 7L of integers is an integral domain. If pis prime, then lLP is an integral 
domain by Theorem 28. On the other hand, z~ is not an integral domain because 
4 · 3 = O, even though 4 'f. 0 and 3 ¢. 0. 

You should be familiar with the set Q of rational numbers, which consists of all 
fractions a/ b with a, b E 7/_ and b '/. 0. Equality of fractions, addition, and multiplica­
tion are given by the usual rules; 

if and only if as= br 

a c ac 
-·- ==-
b d bd 

It is easy to verify that 0 is an integral domain. But 0 has an additional property that 
does not hold in 7/_: Every equation of the form ax= 1 (with a¢. 0) has a solution in 
0. Therefore, Q is an example of the next definition. 

A fleld is a commutative ring R with identity 1R #- OR that satisfies this 
axiom: 

12. For each a 'f. ORin R, the equation ax= 1,. has a solution in R. 

Once again the condition IR + OR is needed to exclude the zero ring. Note that 
Axiom 11 is not mentioned explicitly in the definition of a field. However, Axiom 11 
does hold in fields, as we shall see.in Theorem 3.8 below. 

EXAMPLE 10 

The set R of real numbers, with the usual addition and multiplication, is a field. 
If p is a prime, then ZP is a field by Theorem 2.8. 

EXAMPLE 11 

The set C of complex numbers consists of all numbers of the form a + bi, 
where a, b E R and P. = -1, Equality in C is defined by 

a+ bi = r + :ti if and only if a == r and b = s. 

~see Appendix A for a discussion of contrapositives. 
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The set Cis a iield with addition and multiplication given by 

(a + bl) + (c + ro) = (a + c) + (b + d)i 

(a+ b1)(c + di) = (ac - lxlJ +(ad+ bc)i. 

The field n of real rumbers is oontained inc because ~ oonsists of all complex 
nwnbers of the form a+ Oi. If a+ bi :1: 0 inC, then the solution of the equation 
(a + b()x = 1 is x = c + di, Where 

c = aj(a'l + h')ER 

EXAMPLE 12 

and d = -bj(a'l + fil}E IR (verify!). 

Let K be the set of all2 X 2 matrioes of the form 

where a and b are real numbers. VW:: claim that K is a field. For any two matrio;;e:;; in K, 

( 
a b) ( c d\ ( a + c b +-d\ 

-b a + -d c/ = -b- d a+ c} 

( 
a b) ( c d\ ( ac- bd ad +be) 

-b a · -d c} = -ad- be ac - bd ' 

In each case the matrix on the right is inK because the entries along the main 
diagonal (upper left to lower right) are the same and the entries on the opposite 
diagonal (upper right to lower left) are negatives of each other. Therefore, K is 
closed under addition and multiplication. K is commutative because 

( 
c d\( a b) ( ac - bd ad + be) ( a b)( c d\ 

-d c) -b a - -ad -be ac - bd -b a -d c/ 
Clearl~ the zero matrix and the identity matrix I are in K. If 

A=(a b) 
-b a 

i! not the zero matrix, then verity that the solution of AX= I is 

(
aid 

X= bid 
-bfd) " 

aid En, where d = Ql + b1
• 

Whenever the rings in the preceding eJ~:amples are mentioned, you may assume 
that addition and multiplication are the operations defirEd above, unless there is some 
specific statement to the contrary. You should be aware, ho'Wever, that a given set (such 
as Z) may be made into a ring in many different ways by defining different addition 
and multiplication operations on it. See Exercises 17 and 22-26 for examples. 
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Now that we know a variety of different kinds of rings,. we can use them to produce 
new rings in the following way. 

EXAMPLE 13 

Let Tbe the Cartesian product ~ X Z, as defined in Appendix B. Define 
addition in Thy the rule 

(a,z) +(a', z1 =(a+ a',.z + z'). 

1bc plus !oign is being used in three ways ixnl: In the first roonfulate on the right-hand 
side of the equal sign, + denotes additKm in~ in the 9e00lld OXlldinste., + denotes 
ad:lition in Z; the + on the left of the equal sign is the addition in TtlW:is being defined. 
Silxe "4 is a Iing aud a, a' E~ the first OOOidio;de on the right, a + a', is in~· Siinil.aey 
z + :i E Z. Therefore, addition in Tis cbcd. Mulilplation is&:fined1irmlarly: 

(a, z)(a', z') = (aa', z:t). 

For example,. (3, 5) + (4, 9) = (3-+ 4, 5 + 9) = (1, 14) and (3. 5)(4, 9) = 
(3 • 4, 5 • 9) = (0, 45). You can readily verify that Tis a commutative ring with 
identity. The zero element is {0, 0), and the multiplicative identity is (1, 1 ). What 
was done here can be done for any two rings. 

Theorem 3.1 
Let R and S be rings. Define addition and multiplication on the Cartesian 
product R X S by 

(r, s) + (r', s') = (r + r', s + s') and (r, s)(r', s') = (rr', ss'), 

Then R x S is a ring. If R and S are both commutative, then so is R x S. If both 
R and S have an identity, then so does R x S. 

Proof~ Exercise 33. • 

Subrings 
If R is a ring and Sis a subset of R, then S may or may not itself be a ring under the 
operations in R. In the ring Z of integers, for example, the subset E of even integers is 
a ring, but the subset 0 of odd integers is not, as we saw in Examples 3 and 4. When 
a subset S of a ring R is itself a ring under the addition and multiplication in R, then 
we say that Sis a subl-iog of R. 

EXAMPLE 14 

Z is a subring of the ring Q of rational numbers and Q is a subring of the field 
R of all real numbers. Since Q is itself a field, we say that Q is a subfietd of R. 
Similarly, R is a subfield of the field C of complex numbers. 
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EXAMPLE 15 

The matrix ring; M(Z) and M( Cl!) in Example 7 are subrings of M(R). 

EXAMPLE 16 

The ring Kin Example 12 is a subring of M(R). 

EXAMPLE 11 

Let The the ring of all functions from R: toR in Example 8. Then the subsetS 
consisting of all continuous functions from R to R is a subring of T. To prove 
this, you need one fact prowd in calculus: The sum and product of continuous 
functions are also continuous. So Sis closed under addition and multiplication 
(Axioms 1 and 6), You can readily verify the other axioms. 

Proving that a subset S of a ring R is actually a subring is easier than proving directly 
that Sis a ring. For instana; since a + b = b + a fur all elements of R, this fact is also true 
when a, b happen to be in the subset S. 1bus Axiom 3 (connnutatiw addition) automati­
cally holds in any subset Sofa ring. In fact, to prow that a subset of a ring is actually a 
subring, you need only wrify a f~ of the axioms for a ring, as the next theorem shows. 

Theorem 3.2 
Suppose that R is a ring and that S is a subset of R sue h that 

(i) S is c lased under addition (if a, bE S, then a + bE S); 

(ii) S is c lased under multi pi ication (if a, bE S, then abE S); 

(iii) 011 ES; 

(iv) If 8 E S, then the sol uti on of the equation 8 + x = OR is in S. 

Then S is a subring of R. 

Note condition (iv) ca.Mully. To verify it, you need not show that the equation 
a + x = 0 R has a solution-we already know that it does because R is a ring. You need 
only show that this solution is an element of S (which implie'i that Axiom 5 holds for S). 

Proof of Theorem 3.2 .. As noted before the theorem, Axioms 2, 3, 1, and s hold 
for all elements of R, and so they necessarily hold for the elements of the 
subsetS. Axioms 1, 6, 4, and 5 hold by (i}-(iv). • 

EXAMPLE 18 

The subsetS = {0, 3} of~ is closed under addition and multiplication 
(0 + 0 = 0; 0 + 3 = 3; 3 + 3 = 0; similarly, 0 • 0 = 0 = 0 · 3; 3 • 3 = 3). By the 
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definition of S we have 0 E S. Finally, the equation 0 + x = 0 has solution 
x = 0 E S, and the equation 3 + x = 0 has solution x = 3 E S. Therefore, Sis a 
subring of ~ by Theorem 3.2. 

EXAMPLE 19 

Let S be the subset of M(R) consisting of all matrices of the form (: 
0
) 

Then Sis closed under addition and multiplication because c. . 

(ab Oc) + ('s 0) (a + r 0 + 0) (a + r 0 ) and 
t = b+s c+t =\b+s c+t eS 

( a 0)(" 0) ( ar 0) S 
b c 3 t = br+cs ct E • 

The identity matrix is in S (let a = 1, b = 0, c = 1) and the solution of 

Hence Sis a subring by Theorem 3 2. 

EXAMPLE 20 

O) E S. 
-c 

The set Z{Yl] = {a + bVl I a, b E Z} is a subring of R. You can easily verifY 
that 

(a+ bVl)(c + dv'1) = ac + ad\12 + bcv'2 + bdVl · Vz 

= (ac + 2bd) + (ad+ bc)v2) e Z[V2} 

So Z[Vz] is dosed under multiplication. See Exercise 13 tbr the rest of the proo£ 

• Exercises 

A. I. The following subsets of l (with ordinary addition and multiplication) satisfy 
all but one of the axioms for a ring. In each case, which axiom fails? 

(a} The set S of all odd integers and 0. 

(b} The set of nonnegative integers. 

2. Let R = { 0, e, b, c} with addition and multiplication defined by the tables on 
page 54. Assume associativity and distributivity and show that R is a ring with 
identity. Is R commutative? Is R a field? 
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+ 0 e b c 0 e b c 

0 0 e b c 0 0 0 0 0 

e e 0 c b e 0 e b c 

b b c 0 e b 0 b b 0 

c c b e 0 c 0 c 0 c 

3. Let F = {0, e, a, b} with operations given by the following tables. Assume 
associativity and distributivity and show that Fis a field. 

+ 0 e a b 0 e a b 

0 0 e a b 0 0 0 0 0 

e e 0 b a e 0 e a b 

a a b 0 e a 0 a b e 

b b a e 0 b 0 b e a 

4. Find matrices A and C in M(R) such that AC = 0, but CA *- 0, where 0 is the 
zero matrix. [Hint: Example 6.] 

5. Which of the rollawing six sets are subring~ of M(R)? Which ones have an identity? 

(a) All matrices of the form (~ 

(b) All matrices of the form ( ~ 

(c) All matrices of the form (: 

(d) All matrices of the form (: 

(e) All matrices of the form ( ~ 

. (a (f) All matnces of the form 
0 

~)with rEQ. 

~)with a, b, cEZ. 

:) with a, b, c ER 

~)with a ED"i. 

~)with a ER. 

~)with aER. 

6. (a) Show that the set R of all multiples of 3 is a subring of Z. 

(b) Let k be a fued integer. Shaw that the set of all multiples of k is asubring of Z. 

7. Let K be the set of all integer multiples of v2, that is, all real numbers of the 
form nVi. with n E z. Show that K satisfies Axioms 1-5, rut is not a ring. 

8. Is the subset {1, -1, i, -i} a subring of C1 

9. Let R be a ring and consider the subset R* d' R X R defined by R* = { (r, r) ] r ER}. 

(a) If R = Z6, list the elements of R*. 

(b) For any ring R, show that R* is a su bring of R x R. 
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10. IsS= {(a, b) J a+ b = 0} a rubring of 7L X lL? Justify your answer. 

II. LetS be the subset of M(R.) consisting of all matrices of the form (: :). 

{a) Prove that Sis a ring. 

{b) Show that J = ( 
1 ~) is a right identity in S (meaning that AJ = A for 

every A in S). 0 

(c) Show that J is not a left identity inS by finding a matrix Bin S such that 
JB+B. 

For more information about S, see Exercise 41. 

12. Let 1L[1] denote the set {a + bi I a, bE: Z}. Show that 7L[l] is a subring of C. 

13. Let Z(\/2) denote the set {a + ffll a, b E: 7L}. Show that Z(Vl) is a subring 
of~- [See Example 20.] 

14. Let Tbe the ring in Example 8. LetS= {fE T]f{2) = 0}. Prove that Sis a 
subring of T. 

15. Write out the addition and multiplication tables for 

Ui. Let A = C !) and 0 = (~ ~) in M(R.). LetS be the set of all matrices B 

such that AB = 0. 

{a) list three matrices in S. [Many correct answers are possible.] 

(b) Prove that Sis a subring of M(R.). [Hint: If Band Care in S, show that 
B + C and BC are in S by computing A(B + C) and A (BC).] 

17. Ddine a new multiplication in 7L by the rule: ah = 0 for all a, b, E:Z. Show that 
with ordinary addition and this new multiplication, 7L is a commutative ring. 

18. Define a new multiplication in 7L by the rule: ah = 1 for all a, b, E: 7L. With 
ordinary addition and this new multiplication, is 7L is a ring1 

19. Let S = {a, b, c} and let P(SJ be the set of all subsets of S; denote the 
elements of P(S) as follows: 

S={a,b,c}; D={a,b}; E={a,c}; F={b,c}; 

A = {a}; B = {b}; C = {c}; 0 = 0. 

Define addition and multiplication in P(S) by these rules: 

M + N = (M- N) U (N- M) and MN=MnN. 

Write out the addition and multiplication tables for P(S). Also, see Exercise 44. 

B. 20. Show that the subset R = {0, 3, 6, 9, 12, 15} of lL18 is a subring. Does R have 
an identity? 

21. Show that the subset S = {0, 2, 4, 6, 8} of 7L 10 is a subring. Does Shave an 
identity? 



56 Chapter 3 Rings 

22. Define a new addition EiJ and multiplication 0 on 71. by 

a EiJ b "" a + b - I and a 0 b = a + b - ab, 

where the operations on the right-hand side of the equal signs are ordinary 
addition, subtraction, and multiplication. Prove that, with the new operations 
EiJ and 0, 71. is an integral domain. 

23. Let Ebe the set of even integers with ordinary addition. Define a new 
multiplication* on Eby the rule "a* b = ab(2" (where the product on the 
right is ordinary multiplication). Prove that with these operations E is a 
commutative ring with identity. 

24. Define a new addition and multiplication on 71. by 

a EiJ b = a + b - I and a 0 b = ah - (a + b) + 2 

Prove that with these new operations 71. is an integral domain. 

25. Define a new addition and multiplication on Q by 

r EiJ s = r + s + I and r 0 s = rs + r + s. 

Prove that with these new operations Q is a commutative ring with identity. Is 
it an integral domain? 

26. Let L be the set of positive real numbers. Define a new addition and 
multiplication on L by 

a EiJ b = Clb and a® b = d"P. 
(a) IsLa ring under these operations? 

(b) Is La commutative ring? 

(c) Is La field? 

27. Let S be the set of rational numbers that can be written with an odd 
denominator. Prove that S is a subring of Q but is not a lield. 

28. Let p be a positive prime and let R be the set of all rational numbers that can 
be written in the form r /F with r, i E 71., and i ~ 0. Note that 71. !:;;;; R because 
each 11 E 71. can be written as 11/JI. Show that R is a subring of Q. 

29. The addition table and part of the multiplication table for a three-element ring 
are given below. Use the distributive laws to complete the multiplication table. 

+ r $ r $ t 

r r s r r r r 

s s r s r 

r s t r 

30. Do Exercise 29 for this four-element ring: 

+ w X y z w X y z 

w w X y z w w w w w 

X X y z w X w y 

y y z w X y w w 

z z w X y z w w y 
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31. A scalar matrix in M(R) is a matrix of the form (~ ~)for some real 
numberk. 

(a) Prove that the set of scalar matrices is a subring of M(R). 

(b) If K is a scalar matrix, show that KA = AK for every A in M(RJ. 

(c) If K is a matrix in M(R.) such that KA = AK for every A in M(R), show 

that K is a scalar matrix. [Hint: If K = (: !). let A = G ~). Use. the 

fact that KA = A.K to show that b = 0 and c = 0. Then make a similar 

argument with A = G ~)to show that"= d.] 

32. Let R be a ring and let Z(R) = {a E R I ar = ra !or evexy r E R}. In other 
M:Jrds, Z(R) consists of all elements of R that commute with ~other 
element of R. Prove that Z(R) is a subring of R. Z(R) is called the center of 
the ring R. [Exercise 31 shows that the center of M(R) is the subring of scalar 
matrices.] 

33. Prove Theorem 3.1. 

34. Show that M(Z2) (all2 X 2 matrices with entries in Z2) is a 16-element 
noncornmutative ring with identity. 

35. Prove or disprove: 

(a) If Rand S are integral domains, then R X Sis an integral domain. 

(b) If R and S are fields, then R X Sis a field. 
36. Let T be the ring in Example 8 and let j; g be given by 

ifx s2 

ifx > 2 {
2- X 

g(x) = 0 
ifx :s; 2 
ifx > 2. 

Show thatj, gr= T and thatfg = Op Therefore Tis not an integral domain. 

37. (a) If R is a ring, show that the ring M(R) of all 2 X 2 matrices with entries in 
R is a ring. 

(b) If R has an identity, show that M(R) also bas an identity. 

38. If R is a ring and a E R, let AR = {r E R I ar = OR}, Prove that AR is a subring 
of R. AR is called the rigbt annihilator of 11. [Thr an example, see Exercise 16 in 
which the ring Sis the right annihilator of the matrix A.] 

39. Let Q(V2) = (r + Ml r, sEQ}. Show that 0(\12) is a subfield of R. 
[Hint: To show that the solution of (r + Nljx = I is actuaRy in Q('\12), 
multiply 1/(r + sVl) by (r- Nl)/(!- s'\/2).) 

40. Let d be an integer that is not a perfect square. Show that 0(\/d) = 
{D + bVd I a, bE Q} is a sub field of C. [Hint: See Exercise 39.] 
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41. Let S be the ring in Exercise 11. 

(a) Verify that each of these matrices is a right identity in S: 

(~ k) (·7 
1 1 ' .3 
2 2 

.7) ( 2 

.3 ' and -1 

(b) Prove that the matrix ( x x) is a right identity inS if and only if 
x+y=l. \y Y 

(c) If x + y = I, show that G ;) is not a left identity in S. 

42. A division ring is a (not necessarily oommutative) ring R with identity 
IR ¢ OR that satisfies Axioms 11 and 12 (pages 48 and 49). Thus a field is a 
commutative division ring. See Exercise 43 for a noncommutative example. 
Suppose R is a division ring and u, b are nonzero elements of R. 

(a) If bb = b, prove that b = IR. [Hint: Let u be the solution of bx = IR and 
note that bu = lh.] 

(b) If u is the solution of the equation ax = llb prove that u is also a solution 
of the equation xa = IR· (Remember that R may not be commutative.) 
[Hint: Use part (a) with b = w.] 

43. In the ring M(C), let 

1 = G ~) . ( i 0) (= 
0 -; 

• ( 0 J= -1 ~) k= e ~) 
The product of a real m~mber and a matrix is the matrix given by this rule; 

The set H of real quaternions consists of all matrires of the form 

al+hj+g+dk=aG ~) +bG -~) +c(_~ ~)+de ~) 
= (a0 ao) + (b0; o) ( o c) ( o di) 

-bi + -c 0 + di 0 

( 
a+bi c+di) 

= -c + di a - bi ' 

where a, b, c, and d are real numbers. 

(a) Prove that 

Jl = jl = kl = -1 

Jk =-kj = i 
ij=-Ji=k 

ki =-ik = j. 

(b) Show that H is a noncommutative ring with identity. 
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(c) Show that His a division ring (defined in Exercise 42). [Hint: If M = al + 
hi + cj + dk, then verify that the solution of the equation Mx = 1 is the 
matrix tal - tbi- tcj - tdk, where t = lf(a1 + fil + t? + d:t:l.J 

(d) Show that the equation il = -1 has infinitely many solutions in H. 
[Hint: Consider quatemions of the form 01 + hi + cj - dk, where 
b1 + t? + d 1 = l.] 

44. Let S be a set and let P(S) be the set of all subsets of S. Define addition and 
multiplication in P(S) by the rules 

M + N = (M- N) U (N - MJ and MN = Mn N. 

{a) Prove that P(S) is a commutative ring with identity. [fhe verification of 
additive associativity and distributivity is a bit messy, but an informal 
discussion using Venn diagrams is adequate for appreciating this example. 
See Exercise 19 for a special case.] 

(b) Show that every element of P(S) satisfies the equations il = x and 
X+ X= Ol'(SJ' 

C. 45. Let C be the set ~ X Pl with the usual coordinatewise addition (as in 
Theorem 3.1) and a new multiplication given by 

(a, b)(c, d) = (ac- bd, ad+ be) 

Show that with these operations Cis a field. 

46. Let rands be positive integers such that r divides ks + 1 for some k with 
1 s k ~ill r. Prove that the subset {0, r, 2r, 3r, ... , (s - I )r} of Z, is a ring with 
identity ks + I under the usual addition and multiplication in Z14 • Exercise 21 
is a special case of this result. 

APPLICATION: Applications of the Chinese Remainder Theorem 
(Section 14.2) may be covered at this point if desired 

Ill Basic Properties of Rings 

When you do arithmetic in Z, you often use far more than the axioms for an integral 
domain, For instance, subtraction appearsregularly, ag do cancelation and the various 
rules for multiplying negative numbers. We begin by showing that many of these same 
properties hold in every ring. 

Arithmetic in Rings 
Subtraction is not mentioned in the axioms for a ring, and we cannot just assume 
that such an operation exists in an arbitrary ring. If we want to define a subtraction 
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operation in a ring, we must do so in terms of addition. multiplication, and the ring 
axioms. The first step is 

Theorem 3.3 
For any element a in a ring R, the equation a + x = 0" has a unique solution. 

Proof ~ W: know that a + x = 0 R has at least one solution u by Axiom 5. If v is 
also a solution, then a + u = OR and a + v = 0 R• so that 

u = OR + v =(a + u) + v = (u + a) + v = u +(a + v) = u + OR= u. 

TherefOre, u is the only solution. • 

We can now define negatives and subtraction in any ring by copying what happens 
in familiar rings such as Z. Let R be a ring and ae R. By Theorem 3.3 the equa­
tion a+ x =OR has a unique solution Using notation adapted ftom Z, we denote this 
unique solution by the symbol "-a." Since addition is commutative, 

-a is the unlqoe element of R such that 

a+ (-a) = o. =(-a)+ 11. 

In familiar rings, this definition coincides with the known concept of the negative of 
an element. More importantly, it provides a meaning for "negative" in any ring. 

EXAMPLE 1 

In the ring zf» the solution of the equation 2 +X= 0 is 4, and 50 in this ring 
-2 = 4. Similarly, -9 = 5 in .f:14 because 5 is the solution of 9 +X= 0. 

Subtraction in a ring is now defined by the rule 

b - 11 means b +(-a). 

In Z and other familiar rings, this is jwt ordinary subtraction. In other rin~Y~ we have 
a new operation. 

EXAMPLE 2 

In~wehave 1- 2= 1 + (-2) = 1 + 4= 5. 

In junior high school you learned many computational and algebraic rules for deal­
ing with negatives and subtraction. The next two theorems show that these rules are 
valid in any ring. Although these facts are not particularly interesting in themselves, it 
is essential to establish their validity ~n that we may do arithmetic in arbitrary rings. 

Theorem 3.4 
If a + b = a + c in a ring R, then b = c. 
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Proof"' Adding - a to both sides of a + b = a + c and then using associativity 
and negatives show that 

Theorem 3.5 

-a + (a + b) = -a + (a + c) 

(-a+ a)+ b =(-a+ a)+ c 

OR+ b =OR+ c 
b=c. • 

For any elements a and b of a ring R, 

(1) a ·OR= OR= OR· a. In particular, OR· 41 =OR. 

(2} a( -b) = -ab and ( -a)b = -a.b. 

(3) -{-a.}= a. 

(4) -(a+ b)= (-a)+ (-b). 

(5) - (a - b) = -a + b. 

(6) (-a)( -b) = ab. 

It R has an identity, then 

(7) (-1R)a = -a. 

Proof • (1) Since oR + OR = o R• the distributive law shows that 

a· OR+ a· OR= a(OR +OR)= a· OR= a· OR+ OR. 

Applying Theorem 3.4 to the first and last parts of this equation shows 
that a • OR= OR. The proof that OR· a= OR is similar. 

(2) By definition, -ab is the ullique solution of the equation 
ab + x = OR, and so any other solution of this equation must be equal 
to - ab. But x = a( -b) is a solution because, by the distribution law 
and (1), 

ab +a( -b) = a[b +(-b)] = a[OR] =OR. 

Therefore, a(-b) = -ab. The other part is proved similarly. 

(3) By definition, -(-a) is the unique solution of (-a) + x = 0 R' But 
a is a solution of this equation since (-a) +a = OR. Henoe, -(-a) = a 
by uniqueness. 

(4) By definition, -(a+ b) is the unique solution of (a+ b)+ x = 
0 R• but (-a) + (-b) is also a solution, lx£ause addition is commutative, 
so that 

(a+ b)+ [(-a)+ (-b)]= a+ (-a}+ b +(-b) 

= OR + OR =OR. 
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Therefore, -(a +b)= (-a)+ (-b) by uniqueness. 

(5) By the definition of subtraction and (4) and (3), 

-(a- b)= ~(a+ (-b))= (-a) +(~(-b))= -a +b. 

(6) ( -a)(-b) = -(a (-b)) [By the second equation in {2), with -b in 
place-of b) 

= -(-ab) 

=ab 

[By the j'ir$t equation in {2 )] 
[By {3 ), with ab in place of a) 

{7) By(2), 

( -lR)a = -(l_r~) = -(a)= -a. • 

When doing ordinary arithmetic, exponent notation is a definite convenience, as is 
its additive analogue (for instance, a + a + a = 3a). We now carry these concepts over 
to arbitrary rings. If R is a ring, a E R, and n is a positive intege~; then we define 

a•=aaa•••a (11 factors). 

It is easy to verify that for any a E Rand positive integers m andn, 

and (ti")" = d"". 

If R has an identity and a¢ OR, then we define Jl to be the element lR. In this case, the 
exponent rules are valid for all m, 11 ?.: 0. 

If R is a ring, a E R, and n is a positive integer, then we define 

na = a + a + a + · · · + a. (11 summands) 

-na =(-a)+ (-a)+ (-a)+··· +(-a). (nsummands) 

Finally, we define Oa = OR- In familiar rings this is nothing new, but in other rings it 
.gives a meaning to the "product" of an integer n and a ring element a. 

EXAMPLE 3 

LetR be a ring and a, heR. Then 

(a + b"f = (a + b)(a + b) = a(a + b) + b(a + b) 

= aa + oo + ba + bb = t1 + ab + ba + If. 
Be careful here. If oo ¢ ba, then you caJit combine the middle terms. If R is a com­
mutative ring, howem; then ab = ba and we have the familiar pattern 

~+W=t1+ab+ba+if=t1+ab+ab+if=~+~+~ 

For a calculation of (a+ b)n in a commutative ring, with n > 2, see the Binomial 
Theorem in Appendix E. 

It's worth noting that subtraction provides a faster method than Theorem 3.2 for 
showing that a subset of a ring is actually a subring. 
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Theorem 3.6 
LetS be a nonempty subset of a ring R such that 

( 1) S is dosed under subtract ion (if a, bE S, then a - bE S); 

(2) Sis dosed under multiplication (if a, bE S, then abE S). 

Then Sis a subring of R. 

Proof .. We showthatSMtisfiesconditions(i)-(iv)of Theorem 3.2 and hence 
is a subring. The conditions will be proved in this order: (ii), (iii), (iv), 
and (i). 

(ii) Hypothesis (2) here is identical with condition (ii) of Theorem 3.2. 
Hence, S satis:fie:> condition (ii). 

(iii) Since Sis nonempty, there is some element c with c E S. Applying (1) 
(with a = c and b = c), we see that c-- c = OR is inS. Therefore, S 
satisfies condition (iii) of Theorem 3.2. 

(iv) If a is any element of S, then by (1), OR- a = -a is also inS. Since 
-a is the solution of a + x = OR, condition (iv) of Theorem 3.2 is 
satisfied. 

(i) If a, hES, then -b is in Shy the proof of (iv). By (1),a- (-.b)= 
a + b is in S. So S satisfies condition (l) of Theorem 3.2. 

Therefore, S is a subring of R by Theorem 3.2. • 

Units and Zero Divisors 
Units and zero divisors in Z.. 'Were introduced in Section 2.3. We now carry these con­
cepts over to arbitrary rings. 

An element a in a ring R with identity is called a unit if there exists u r;;.R 
suc_h that au= 1R = ua.l n this case the element u i.s called the (multipl ica­
tive) inverse of a and is denoted a-1• 

EXAMPLE .f 

The only units in Z are 1 and -1. 

EXAMPLE 5 

By Theorem 2.10, the units inZ15 are 1, 2, 4, 7, 8, 11, 13, and 14. For instance, 
2. 8 = 1, so 2-1 = 8 and s-l = 2. 
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Definition 

EXAMPLE 6 

I 
Everynonzeroelementofthefield ~is a unit: If a:+ 0, then a •-; = I. The same 

thing is true for every field F. By definition, FsatisfiesAxiom 12: If a '# Op, then 

the equation ax = lp has a solution in F. Hence, 

Evecy non zero element of a field is a unit. 

EXAMPLE 7 

A matrix (; ~) in M(lll) such that ad- be + 0 is a unit because, as you can 

easily verify, 

0) (ad~ be 
I and -c 

ad- be 

In particu1ru; each of these matrices is a unit: 

A = G ~). B = ( -~ ~). 
Units in a matrix ring are caUed imert:ible matrii:e;. 

EXAMPLE 8 

C = (1
5
/3 o) 6 . 

Let Fbea field and M(F) the ring of 2 X 2 matri:.es with entries in F. If 

A = e ~)EM( F) and ad- be#- Op, then ad- be is a unit in Fby Example 6. 

The comiU!ations in E.xampe 7, with d 
1 

replaced by(ad - bct1
, show that A is 

<J -be 

( 
d(ad- bc)-l -b(ud- bc)-1) 

an invertible ma:l:rD!. [unit in M(l')} with im1:rne -c( ad _ he) -l a( ad _ be )-1 · 

An element a in a ring R Is a zero divisor p-ov kied that 

(1) a¢~. 

(2} Thera exists a nonzero element c In R such that ac = ~ orca = On. 

Note that in requirement (2), the clemente is not unique: Many elements in the ring 
may satisfY the equation ax =OR or the equation xa = Og (Exeicise 6). Furthermore, 
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in a noncommutative ring, it is possible to have ac = OR and ca #- OR (Exercise 4 in 
Section 3.1). 

EXAMPLE 9 

Both 2 and 3 are zero divisors in ~ because 2 • 3 = 0. Similarly, 4 and 9 are 
zero divisors in Zu because 4 · 9 = 0, 

For a zero divisor A in a matrix ring, it is possible to find a matrix C such that 
AC = Oand C4. = 0. 

EXAMPLE 10 

Let F be a field. A nonzero matrix (: ~) in M(F) such that ad- be = OF is a 

zero divisor because, as you can easily verify, 

In particular, each of these matrices is a zero divisor in the given ring: 

A=G !) in M(Di), 

EXAMPLE 11 

B= (4/3 
-2 ~:)inM(O), and C= (; !)inM(Z6). 

Every integral R domain satisfies Axiom 11: If ab = 010 then a = 0 R or b = OR. 
In other words, the product of two nonzero elements cannot be 0. Therefore, 

An integra] domain contains no zero divisors. 

Finally, we present some -useful facts about integral domains and fields. 

Theorem 3.7 
Cancelatibn is valid in any inttlgral domain R: tf a+~ and ab = ac in R, then 
b =c. 

Cancelation may fail in rings that are not integral domains. In Z12, for instance, 
2. 4 = 2. 10, but 4.,;:. 10. 

Proof oflheorem 3.7 .. If ab = be, then ab -be = OR> so that a(b - c) = OR. Since 
a ¢ OR> we must have b - r: = OR (if not, then a is a zero divisor, contra­
dicting Axiom 11). Therefore, b = c. • 
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Theorem 3.8 
Every field F Is an Integral domain. 

Proof • Since a field is a commutative ring with identity by de1inition, we need 
only show that F satisfies Axiom 11: If ah = Oy, then a = Oy or b = Op. 
So suppose that ah = Op. If b = Op, there is nothing to prove. If b "# 0 F• 

then b is a unit (Example 6). Consequently, by the definition of unit and 
part (1) of Theorem 3.5, 

a = alF = abb-1 = Oph-1 = Op. 

So in every case, a = OF orb = ol, Hence, Axiom 11 holds and F is an 
integral domain. • 

The converse of Theomn 3.8 is false in general (Z is an integral domain that is not 
a field), but true in the finite case. 

Theorem 3.9 
Every fi nlte Integral domain R Is a field. 

Proof• Since R is a commutative ring with identity, ._ need only show that for 
each a :P OR, the equation ax = 1 R has a solution. let a 1, ~ ••• , a,. be 
the distinct elements of Rand suppose a1 :P OR, To show that a1x = lR 
has a solution, consider the products a1at, a102, a1a~, ••• , a ,a,.. If a1 :P a1, 
then we must have ap1 ,P a,a1 (because atlJ1 = t:~ta1 would imply that a1 = a1 
by cancelation). Therefore, a,a., OtlJb ... , ap,. are n distinct elements of 
R. However, R has enctly n elements all together, and so these must be 
all the elements of R in some order. In particular, fur some), tJra1 = lR. 
Therefore, the equation atx = lR has a solution and R is a field. • 

• Exercises 

A. 1. LetR be a ring and a, b ER. 

(a)(a+b)(a-b)=? (b) (a+h)'=? 

(c) What are the answers in parts (a) and (b) if Rill commutative? 

2. Find the inverse of matrices .A., B, and Cin Example 7. 

3. An element e of a ring R is said to be idempotent if e1 = e. 

(a) Find four idempotent elements in the ring M(R.). 

(b} Find all idempotents in Z 12• 
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4. For each matrix A find a matrix C such that AC = 0 or CA = 0: 

A=(~ ~} A= ( 5 
-2 

-10)· 
4 ' 

114) 
3/2 . 

S. (a) Show that a ring has only one zero element. [Hint: If there were more 
than one, how many solutions v.uu ld the equation OR + x = OR have?] 

(b) Show that a ring R with identity has only one identity element. 

(c) Can a unit in a ring R with identity have more than one inverse? Why? 

6. (a) Suppose A and Care nonzero matrices in .M(Dl) such that AC = 0. If k 
is any real number, show that A(kC) = 0, where kCis the matrix Cwith 
every entry multiplied by k. Hence the equation AX= 0 has infinitely 
many solutions. 

(b) If A = G ~).find four solutions of the equation AX= 0. 

7. Let R be a ring with identity and let S = {n lR I n E Z}. Prove that S is a 
subring of R. [The definition of 1ll1 with 11 E Z, a E R is on page 62. Also see 
Exercise 27.] 

8. Let R be a ring and b a fixed element of R. Let T = {rb I r E R}. Prove that T 
is a subring of R. 

9. Show that the set S of matrices of the form ( = 4b), with a and b real 
numbers is a subring of M(lll). \. a 

I 0. Let R and S be rings and consider these subsets of R X S: 

R = {(r,Os) I rER} and S = {(0& s) I SES}. 

(a) If R = z3 and s = Zs. What are the sets R and S'l 

(b) For any rings R and S, show that R is a subring of R X S. 

(c) For any rings R and S, show that Sis a su bring of R X S. 

11. Let R be a ring and m a fixed integer. Let S = { r E R I mr = OR}. Prove that S 
is a subring of R. 

12. Let a and b be elements of a ring R. 

(a) Prove that the equation a + x = b has a unique solution in R. (You 
must prove that there is a solution aJJd that this solution is the only 
one.) 

(b) If R is a ring with identity and a is a unit, prove that the equation ax = b 
has a unique solution in R. 

13. LetS and Tbe subrings of a ring R. In (a) and (b), if t:be answer is "yes," 
prove it. If the answer is "no," give a counterexample. 

(a) Is sn Tasubringof R7 

(b) Is SU Tasubringof R7 
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14. Prove that the only idempotents in an integral domain Rare OR and IR. (See 
Exercise 3.) 

15. (a) If a and bare units in a ring R with identity, prove that ah is a unit whose 
inverse is (ab)-1 "" b-1a-1• 

(b) Give an example to show that if a and bare units, then a-1b-1 need not be 
the multiplicative inverse of ab. 

16. Prove or disprove: The set of units in a ring R with identity is a subring of R. 

17. If u is a unit in a ring R with identity, prove that u is not a zero divisor. 

18. Let a be a nonzero element of a ring R with identity. If the equation ax= IR 
has a solution u and the equation )U = IR has a solution -u. prove that u = 1.!. 

19. Let R and S be rings with identity. What are the units in the ring R X S1 

20. Let R and S be nonzero rings (meaning that each of them contains at least 
one nonzero element). Show that R X S contains zero divisors. 

11. Let R be a ring and let a be a nonzero element of R that is not a zero divisor. 
Prove that cancelation holds for a; that is, prove that 

(a) If ab = ac in R, then b = c. 

(b) If ba = cain R, then b = c. 

22. (a) If ah is a zero divisor in a ring R, prove that a or b is a zero divisor. 

(b) If a or b is a zero divisor in a commutative ring R and ah + 0 R• prove that 
ab is a zero divisor. 

23. (a) Let R be a ring and a, bE R. Let m and n be nonnegative integers and 
prove that 

(i) (m + n)a = ma + na. 

(ii) m(a +b)= ma + mb. 

(iii) m(ab) = (ma)b = a(mb). 

(iv) (ma)(nb) = m11(ab). 

(b) Do part (a) when m and n are any integers. 

24. Let R be a ring and a, bE R. Let m and n be positive integers. 

(a) Show that a"'d' =a~" and (aj" =a""'. 

(b) Under what conditions is it true that (abY' = u11bnc 
15. Let S be a su bring of a ring R with identity. 

(a) If S has an identity, show by example that Ismay not be the same as lR. 

(b) If both Rand S are integral domains, prove that Is = IR. 

B. 26. Let Sbe a subringof a ringR. Prove that 05 =OR. [Htnt: ForaE S,consider 
the equation a + x = a.] 

27. Let R be a ring with identity and b a fixed element of Rand letS= {nh InEZ}. 
IsS necessarily a subring of R'l [Exercise 7 is the case when b = IR.] 
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28. Assume that R = {OR> l R• a, h} is a ring and that a and h are units. Write out 
the multiplication table of R. 

29. Let R be a commutative ring with identity. Prove that R is an integral domain 
if and only if cancelation holds in R (that is, a :F- OR and ab = ac in R imply 
h= !:)). 

30. Let R be a commutative ring with identity and b E R. Let T be the subring of all 
muhiplesof h (as in Exercise 8). If -u is a unit in Rand -uE T, prove that T = R. 

31. A Boolean rfogis a ring Rwith identity in whichK = x for every x E R. fur 
examples, see Exercises 19 and 44 in Section 3.l. If R is a Boolean ring, prove that 

(a) a+ a= OR for every aER, which means that a= -a. [Hint: Expand 
(a+ al.J 

(b) R is commutative. [Hillt: Expand (a+ hl.J 
32. Let R be a ring without identity. Let The the set R X Z. Define addition and 

multiplication in Thy these rules: 

(r, m) + (s, n) == (r + s, m + n). 

(r, m)(s, n) = (rs + ms + nr, mn). 

(a) Prove that Tis a ring with identity. 

(b) Let R consist of all elements of the form (r, 0) in T. Prove that R is a 
subring ofT. 

33. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit. 

34. Let Fbe a field and A = (: !) a matrix in M(F). 

(a) Prove that A is invertible if and only if ad - he :F- OF- [Hint: Examples 7, 
8, and 10 and Exercise 17.] 

(b) Prove that A is a zero divisor if and only if ad- be= OF' 

Let (
a h) b . . h . . 35. A = c d e a matnx Wit mteger entnes. 

(a) If ad - he == ±I, show that A is invertible in M(Z.). [Hint: Example 7 .] 

(b) If ad- he ¢ 0, I, or -1, show that A is neither a unit nor a zero divisor in 
M(Z). [Hint: Show that A has an inverse in M(R) that is not in M(Z); see 
Exercise 5(c). fur zero divisors, see Exercise 34(b) and Example 10.] 

36. Let R be a commutative ring with identity. Then the set M(R) of 2 X 2 
matrices with entries in R) is a ring with identity by Exercise 37 of Section 3.1. 

If A = (: ~) E M( R) a~d ad - he is a unit in R, show that A is invertible in 

M(R). [Hint: Replace ad_ be by (ad- he)-1 in Example 7.] 

37. Let R be a ring with identity and a, hER. Assume that a is not a zero divisor. 
Prove that ab = IR, if and only if ba = IR. [Hint: Note that both ab = lR and 
ba = LRimply aha = a (why?); use Exercise 21.] 
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38. Let R be a ring with identity and a, bE R. Assume that neither a nor b is a 
zero divisor. If ab is a unit, prove that a and bare units. {Hint: Exercise 21.] 

39. (a) If R is a finite commutative ring with identity and aE R, prove that a is 
either a zero divisor or a unit. {Hint: If a is not a zero divisor, adapt the 
proof of Theorem 3.8, using Exercise 21.] 

(b) Is part (a) true if R is infinite? Justify your answer. 

40. An element a of a ring is nilpotent if a" = OR for some positive integer n. 
Prove that R has no nonzero nilpotent elements if and only if OR is the unique 
solution of the equation i! = OR. 

'DlefolloWing dEfinition is twetkdfor Exerdse3 41-43. Let R be a rillg with idEntity. 
If there is a smalkst positive integer n such that nl R = OR, then R is said to have 
chllracteristic n. If no such n exists, R is said to have chamcterimc zero. 

41. (a) Show that Z has characteristic zero and Z, has characteristic n. 

(b) What is the characteristic of Z. X 4,? 

42. Prove that a finite ring with identity has characteristic n for some 11 > 0. 

43. Let R be a ring with identity of characteristic n > 0. 

(a) Prove that na = OR for every a E R. 

(b) If R is an integral domain, prove that n is prime. 

C. 44. (a) Let a and b be nilpotent elements in a commutative ring R (see 
Exercise 40). Prove that a + band ab are also nilpotent [You will need the 
Binomial Theorem from Appendix E.] 

(b) Let N be the set of all nilpotent elements of R. Show that N is a subring 
of R. 

45. Let R be a ring such that xg = x for every x E R. Prove that R is commutative. 

46. Let R be a nonzero finite commutatM: ring with no zero divisors.. Prove that 
Risa field. 

Ill Isomorphisms and Homomorphisms 

If you were unfamiliar with roman numerals and came across a discussion of integer 
arithmetic written solely with roman numerals., it might take you some time to realize 
that this arithmetic was essentially the same as the familiar arithmetic in Z except for 
the labels on the elements. Here is a less trivial example. 

EXAMPLE 1 

Consider the subsetS= {0, 2, 4, 6, 8} of Z 10• With the addition and multiplica­
tion of Z10, S is actually a commutative ring, as can be seen from these tables:* 

•The reason the elements of S are I isted in this order will bee ome clear in a moment 
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+ 0 6 2 8 4 0 6 2 8 4 
0 0 6 2 8 4 0 0 0 0 0 0 

6 6 2 8 4 0 6 0 6 2 8 4 
2 2 8 4 0 6 2 0 2 4 6 8 
8 8 4 0 6 2 8 0 8 6 4 2 
4 4 0 6 2 8 4 0 4 8 2 6 

A careful oounination of the tables shows that Sis a field with five elements and that 
the Im.lltiplicati\le identity of this field is the element 6. 

We claim that S ~ "essentially the same'' as the field 7L5 arept for the labels on the 
elements. You can see this as follows. Write out addition and multiplication tabb! 
for "4.* To a-.uid any po$ible confusion with elements of S, denote the elements of 
ll5 by 0, I, 2, 3, 4. Then relabel the entries in the7L5 tables acwrdingto this scheme: 

Relabel 0 as 0, relabel I as 6, relabel2 as 2, 
relabel 3 as 8, relabel4 as 4. 

Look what happens to the addition and multiplication tables for 7L5: 

0 6 2 8 4 0 6 2 8 4 
+ jJ 1 2 J if . jJ 1 2 J if 

0 0 6 2 8 4 0 0 0 0 0 0 
fj fj j 1 j if fj fj fj fj fj fj 

6 6 2 8 4 0 6 0 6 2 8 4 
1 1 2 J A g 1 g 1 2 1 A 

2 2 8 4 0 6 2 0 2 4 6 8 
:z z j /. fj r :z ;0 :z - r J ~ 

8 8 4 0 6 2 8 0 8 6 4 2 
J 1 /. fj j t J ]j j 1 if t 

4 4 0 6 2 8 
if if jj 1 2 1 

4 0 4 8 2 6 
if ]j if j j j 

By relabeling the elements of "4, you obtain the addition and multiplication 
tables for S. Thus the operations in 7L5 and S work in exactly the same way-the 
only difierence is the way the elements are labeled. As far as ring structure goes, 
Sis just the ring ll5 with new labels on the elements. In more technical terms, lLs 
and S are said to be isomorphic. 

71 

In generaL isomorphic rings are rings that have the same structure, in the sense that 
the addition and multiplication tables of one are the tables of the other with the ele­
ments suitably relabeled, as in Example 1. Although this intuitive idea is adequate for 
small finite systems, we need a rigorous mathematical definition of isomorphism that 
agrees with this intuitive idea an dis readily applicable to large rings as well. 

There are two aspects to the intuitive idea that rings R and S are isomorphic: 
relabeling the elements of R and comparing the resulting tables with those of S to 
wrify that they arethe same. Relabeling means that every element of R is paired with 
a unique element of S (its new label). In other words, there is a function f:R ~ S that 

•rh e Z,. tables (in congruence class notation) are shown in EJtampl e2 of Section 2..2.. 
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Definition 

assigns to each r ~ R its new label/(r) ~ S. In the preceding example, we used the rela­
beling function f: Zs -+ S, given by 

/(0) = 0 f(l) = 6 /Ci) = 2 f(J) = 8 f(4) = 4. 

Such a ftmction must have these additional properties: 

(i) Distinct elements of R must get distinct new labels: 

If r #- r' in R, thenf(r) #- f(r') inS. 

(ii) Every element of S must be the label of some element in R:* 

For each:;~ S, there is an r~ R such thatf(r) = s. 

Statements (i) and (ii) simply say that the function/ must be both injective and surjec­
tive, that is,f must be a bijection. t 

In order for a bijection (relabeling scheme)fto be an isomorphism, applying/to 
the addition and multiplication tables of R must produoe the addition and muhiplica­
tion tables of S. So if a+ b = c in the R-table, we must havef(a) + f(b) = f(c) in the 
S-table, as indicated in the diagram: 

~ 
R ~ S -4- ft!J) 

a, I ~ j(a) f{c) 

~--- ---~ 
However, since a+ b = c, we must also havef(a + b) =!(c). Combining this with the 
fact thatf(a) + f(b) = f(c), we see that 

f(a + b) = f(a) + f(b). 

This is the condition that f must satisfy in order for f to change the addition tables 
of R into those of S. The analogous condition on f for the multiplication tables is 
f(ah) = f(a)f(b). We now can state a formal definition of isomorphism: 

A ring R Is lsomorphl c to a r lng S (In symbols, R ~ S) if there Is a function 
(:R-+ S such that 

(I) f Is injective: 

(II) f Is surjective: 

(Ill) ({a+ b) = ((a)+ ((b) and ((ab) = ((a) ((b) for all a, bE R. 

In this case the function f Is ca lied an lsomo rph ls m. 

"'therwise, we couldn't possibly get the complete tables of S from those of R. 
tlnject ive, s u ~ ecti ve, a ncl bijective functions are discussed in Ap p encli x B. 
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CAUTION: In order to be an isomorphism, a function must satisfy all 
three of the conditions in the definition. It is quite possible 
for a function to satisfy any two of these conditions but not 
the third; see Exercises 4, 25, and 32. 

EXAMPLE 2 

In Example 12 on page 50, we considered the field K of a112 x 2 matrices of 
the form 

where a and bare real numbers. We claim that Kis isomorphic to the field 
C of complex numbers. To prove this, define a functionfK ~ C by the 
rule 

1( _: !) = a + bi. 

To show that/is injective, suppose 

!( a b)=!( r s). 
-b a -s r 

Then by the definition of/, a + bi = r + si in C. By the rules of equality in C, 
we must have a = rand b = s. Hence, inK 

so that/is injective. The function/is surjective because any complex number 
a + bi is the image under f of the matrix 

in K. Finally, for any matrices A and Bin K, we must show that f(A + B) = 
f(A) + f(B) andj(AB) = f(A)f(B). We have 

![( a b)+ ( c d)]_ I( a+ c b + d\ 
-b a -d c - -b - d a + c} 

= (a + c) + (b + d)i 

= (a + bi) + (c + di) 

=I( a b) + !( c d) 
-b a -d c 
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and 

![( a b)( c d\] _ !( ac - bd ad+ be\ 
-b a -d c} - -ad- be ac - bd) 

= (ac - bd) + (ad+ bc)i 

= (a + bi)(c + di) 

=t(_: !)!(_; J· 
Therefore, f is an isomorphism. 

It is quite possible to relabel the elements of a single ring in such a way that the ring 
is isomorphl:. to itsel£ 

EXAMPLE 3 

LetfC ~ C be theoomplexconjugationmap given byf(a + bi) =a- bi.* The 
function/ satisfies 

and 

f[(a t- b;) + (c + di)] =/[(a +c) + (b + d)i] 
= (a + c) - (b + d)i = (a - b;) + (c- di) 

= f(a + bi) + f(c + di) 

f[ (a + bi)(c + di)] = f[(ac - bd) + (ad+ bc)i] 
= (ac - bd) - (ad+ bc)i = (a - bi)(c - di) 

= f(a + bi)f(c + di). 

You can readily verify thatfis both injective and surjective (Exercise 17). 
Therefore f is an isomorphism. 

EXAMPLE 4 

If R is any ring and ~R:R ~ R is the identity map given by ~R(r) = r, then for 
auya,bER 

and 

Sim:e 'R is obviously bijective, it is an isomorphism. 

Our intuitive notion of isomorphism is symmetric: "R is isomorphic to S" means 
the same thing as "Sis isomorphic to R". The formal definition of isomorphism is not 

•The function (has a geometric int91"pr9tation in the complex plane, where a + bi is identified with 
the point (a, b): It reflects the plane in the x-a KiS. 



Definition 

3.3 Isomorphisms and Homomorphisms 75 

symmetric, however, since it requires a function from R onto S but no function from 
S onto R. This apparent asymmetry is easily remedied. If f.R ~ S is an isomorphism, 
then/is a bijective function of sets. Therefore, }bas an inverse functiong:S ---1> R such 
that g •I = ~.R (the identity function on R) and/ o g = ~s-* It fi not hard to verifY that 
the function g is actually an isomorphism (Exercise 29). Thus R = S implies that 
S = R, and symmetry is restored. 

Homomorphisms 
Many functions that are not injective or surjective satisfy condition (iii) of the definition 
of isomorphism. Such functions are given a special name. 

Let R and S be rings. A function f;R-+ S is said to be a homomorphism if 

f(8 +b) = f(a) + ({b) and f(ab) = f(a)f(b) ·for all a, bE R. 

Thus every isomorphism fi a homomorphism, but as the following examples show, 
a homomorphism need not be an isomorphfim because a homomorphism may fail to 
be injective or sutjective. 

EXAMPLE 5 

For any rings R and S the zero map z:R ---1> S given by z(t) = 05 for every r E R is 
a homomorphfim because for any a, beR 

z(a +b)= Os = 05 + Os = z(a) + z(b) 

and 
z(ab) = Os = Os · Os = z(a)z(b~ 

When both R and S contain nonzero elements, then the zero map fi neither 
injective nor surjective. 

EXAMPLE 6 

The functionf:Z ---1> ~given by /(a) = [a] is a homomorphism because of the 
way that addition and subtraction are defined in Z6: for any a, bE Z 

f(a +b) = [a+ b] =[a]+ [b] =/(a)+ /(b) 

and 

/(ab) = [ab] = [a{b] = f(a)f(b). 

The homomorphism/is surjective, but not injective (Why?). 

•See Apperrdi x B for details. 
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EXAMPLE 1 

The map g: R ~ M(R) given by 

g(r) = ( 0 OJ 
-r r 

is a homomorphism because for any r, s E R 

""' ~ g(r +.f) ( 
0 0 J 

-(r + s) r + s 

g(r)g(s) = ( 0 0)( 0 0'\ = ( 0 0) = g(rs). 
-,. r -s s) -rs rs 

The homomorphism g is injective but not surjective (Exercise 26). 

CAU 110 N: Not all functions are homomorphisms. The properties 

Theorem 3.10 

f(a +b) = j(a) + f(b) and f(ab) = f(a)j(b) 

fail for many functions. R>r example, if fR-+ R given by 
f(x) = x + 2, then 

/(3 + 4) = /(7) = 9 but /(3) + /(4) = S + 6 = 11 

so that/(3 + 4) ,_ /(3) + /(4). Similarly,/(3 • 4) #= /(3)/(4) 
because 

/(3. 4) = /(12) = 14, but /(3lf(4) = s. 6 = 30. 

Let f:R ~ S be a homomorphism of rings. Then 

(1) f{OR) = Os. 

(2) f(-a) = -t(a) for every a eR. 

(3) f(a- b) = ((a) - f(b) for aU a, b eR. 

If R is a ring with identity and f is surjective, then 

(4) Sis a ring with identity ((1 Rl· 

(5) Whenever u is a unit In R, then f(u) is a unit in Sand f(u)-1 = f(u-1). 
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Proof .. (t) J{o.RJ + tco.RJ = tcoR + oR) 
f(OR) + f(OR) = f(Os) 

f(O_g) + f(O_g) = f(O_g) + Os 

f(Os) = Os 

(2) First, note that 

[/i-f a homomorphism.] 

[OR+ OR= ORin R) 

[f(OR) + Os = j(O_g) in S] 

[SUbtract f(O_g)from both side3.]. 

f(a) + f( -a) = f(a + (-a)) [f is a homomorphism.] 

= fl..OR) [a+ (-a)= OR] 

= Os (Jbrt (J)]. 
TherefOre,/( -a) is a solution of the equa.tionf(a) + x = O,s. But the 

unique solution of this equation i& -f(a) by Theorem 3.3. Hence 
f(-a) = -f(a) by uniqueness. 

(3) f(a - b) = f(a + (-b)) 

= f(a) + fl..-b)) 

= f(a) + (-f(b)) 

= f(a)- f(b) 

[Definition of subtraction] 

If is a homomorphifm..] 

[Part {2)] 

[Definition of subtraction]. 

(4) We shall show thatf(l_g)E Sis the identity element of S. Let .s 
be any element of S. Then sirwefis surjective, s = f(r) for some rER. 
Hence, 

s • f(lf() = f(r)f(JR) = f(r • lR) = f(r) = s 

and, similarly,f(l_,J • s = 9. ~fc:m; Shasf(l~ as its identity element. 

(5) Since u is a unit in R, there is an element v in R such that 
uv = lR = vu. Hence, by (4) 

f(u)f(v) = f(uv) = f(l_g) = ls-

Similarly, vu = 1 R implies that f( v )f(u) = ls. Therefore, f(u) is a unit in 
S, withinversef(v). In otherwotds,f(u)-1 = f(v). Sincev = u-1, we see 
thatf(u)-1 = /(tJ) = f(u-1). • 

lffR-4- Sis a function, then the image off is this subset of S: 

lmf= {sES I J = f(r) for some rER} = {f(r) I rER}. 

Iff is surjective, then 1m f = S by the definition of surjective. In any case we have: 

Corollary 3.11 
If f:R-+ S is a homomorphism of rings, then the image of f is a subring of S. 

Proof .. Denotclmfby L Jisnonemptybecause Os = fl..OR) Elby(l)of'Ibeon:m 3.10. 
The definition of homomorphism shows that I iscl09ed under multiplica­
tion: Iff( a),!( b) El, thenf(a)ftb) = f(ah) El. Similarly, /is closed under 
subtraction because f(a) - f(b) = f(a - b) E I by Theon!m 3.10. Therefore, I 
is a subring of S by 'I'heomn 3.6. • 
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Existence of Isomorphisms 
If you suspect that two rinp are isomorphic; there are no hard and fast rules for 
finding a function that is an isomorphism between them. However the properties of 
homomorphis= in Theorem 3.10 can sometimes be helpful 

EXAMPLE a 

If there is an isomorphism/from Zt2 to the ring "L, X Z4o then/(1) = (1, 1) by 
part (4) of Theorem 3.10. Since/is a homomorphism, it has to satisfy 

/(2) = /(1 + I) = /(1) + /(1) = (1, I) + (1, I)= (2, 2) 

/(3) = /(2 + I) = /(2) + /(1) = (2, 2) + (1, I) = (0, 3) 

/(4) = fr) + I) = /(3) + /(1) = (0, 3) + (1, I) = (I, 0). 

Continuing in this fashion shows that if/is an isomorphism, then it must be 
this bijective function: 

/(1) = (1, I) 

f(J.) = (2, 2) 

/(3) = (0, 3) 

/(4) = (1, 0) 

/(5) = (2, I) 

/(6) = (0, 2) 

/(7) = (1, 3) 

/(8) = (2, 0) 

/(9) = (0, 1) 

/(10) = (1, 2) 

/(II) = (2, 3) 

/(0) = (0, 0). 

All we have shown up to here is that this bijective function/ is the only possible 
isomorphism. To show that this factually is an isomorphism, we must verify 
that it is a homomorphism. This can be done either by writing out the tables 
(tedious) or by observing that the rule off can be described this way: 

f([a]!l) = ([ah, [a].(), 

where [a]12 denotes the congruence class of the integer a in Z12, [ab denotes the 
class of a in z., and [a]4 the class of a in 4 (Verify that this last statement is 
correct.) Then 

f([a]ll + [hltl) = f([a + b]t:i) 

=([a+ hh, [a+ b]..) 

= ([a]J + [b]J, [a]4 + [h1) 

= ([a]J,[a]4) + ([hh, [b)() 

= f([a] 12) + f([hhl) 

[Dejlnition of addition in Zu] 

[Definition off] 

[Definition of addition in Z1 and Z~] 

[Definition of addition in Z3 X ~] 

[Definition off]. 

An identical argument using multiplication in place of addition shows that 
f([a]ll[b]ti) = f([a]tllf([b]tz). Therefore,fis an isomorphism and Zn = Z3 X z.. 

Up to now ~ have concentrated on showing that various rings are isomorphic, 
but sometimes it is equally important to demonstrate that two rings are IWt isomorphic. 
To do this, you must show that there is no possible function from one to the other 
satisfying the three conditions of the definition. 
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EXAMPLE 9 

~ is not isomorphic to £'12or to£' ba.ause it is not p;lSSible to have a smjective l'wL:­
tion from a six-element set to a larger set (or an injective one from a larger set to ~-

To show that two infinite rings or t..-ro finite rings with the same number of elements 
are not isomorphic, it is usually best to proceed indirectly. 

EXAMPLE 10 

The rings 7L,. and £'2 X £'2 are not isomorphic. To show this, suppose on the 
contrary thatf:Z. -4 £'1 X £'2 is an isomorphism. Thenf(O) """ (0, 0) and 
/(1)""" (1, 1) by Theorem 3.10. Consequently, 

/(2) """/(1 +I)""" /(1) + f( I)""" (1, I)+ (1, I)""" (0, 0} 

Since f is injective and /(0) o: /(2), we have a contradiction. Therefore, no 
isomorphism is possible. 

Supposethatf:R-4Sis an isomorphism and theelementsa, b,c, ... of R have a par­
ticolar property. If the elenlentsf(a1 f(h),f(c), . .. of Shave the same property, then we 
say that the property is pre!iiUved by isomorpllism.. According to parts (1), (4), and (5) of 
Theorem 3. 10, for exampk:, the property of being the zero element or the identity element 
or a unit is preserved by isomorphism. A property that is preserved by isomorphism can 
sometimes be used to prove that two ri~ are not isomorphic, as in the following examples. 

EXAMPLE 11 

In the ring~ the elements I, 3, S, and 7 are units by Theorem 2.10. Since 
being a unit is preserved by isomorphism, any isomorphism from ~ to another 
ring with identity will map these four units to four units in the other ring. 
Consequently, ~ is not isomorphic to any ring with less than four units. In 
particular, 18 is not isomorphic to Z,. X £'2 because there are only t..-ro units in 
this latter ring, namely (1, 1) and (3, I) as you can readily verify. 

EXAMPLE 12 

None of 0, R, or C is isomorphic to£' because every nonzero element in the 
fields Q, R, and Cis a unit, whereas£' has only two units (1 and -1). 

EXAMPLE 13 

Suppose R is a commutative ring and f R -4 Sis an isomorphism. Then for any 
a, bE R, we have ab o: ba in R. Therefore, in S 

f(a)f(b) o: f(ab) o: f(ba) o: f(b)f(a). 
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Hence, Sis also commutative because any two elements of S are of the formf(a), 
f(b) (sinoe f is surjective). In other words. the property of being a commutative 
ring is preserved by isomorphism. Therefore, no commutative ring can be iso­
morphic to a noncommutative ring. 

• Exercises 

A. l. Letf:Z6-+Z2 X Z3 be the bijection given by 

0-4 (0, 0), I -+ (1, 1), 2 -+(0, 2), 3--+(1, 0), 
4-+ (0, 1), 5-+ (1, 2). 

Use the addition and multiplication tables of ~and Z2 X Z~ to showthatfis 
an isomorphism. 

2. Use tables to show that Z2 X Z2 is isomorphic to the ring R of Exercise 2 in 
Section 3.1. 

3. Let R be a ring and let R* be the subring of R X R consisting of all elements 
of the form (a, a). Show that the function fiR-+ R* given by f(a) = (a, a) is an 
isomorphism. 

4. Let Sbe the subring {0, 2, 4, 6, 8.} of ZIO and let z5 = {o, T, 2. 3, 4,} (notation 
as in Example I). Show that the following bijection from Z5 to Sis not an 
isomorphism: 

o ----;. o T --+ 2 2 ----;. 4 3 --+ 6 4 ----;. s. 

5. Prove that the field i;l of real numbers is isomorphic to the ring of all 2 X 2 

matrices of the form G ~).with aER. (Hint: Consider the functionfgiven 

by f(a) = (~ :).1 
6. Let R and _s be rings and let R be the subring of R X S consisting of all 

elements of the form (a, Os). Show that the functionf:R-+ R given by 
f(a) = (a, Os) is an isomorphism, 

7. Prove that Ill is isomorphic to the ring S of all2 X 2 matrices of the form 

(~ ~).where a ER. 

8. Let 0( V2) be as in Exercise 39 of Section 3.1. Prove that the function 

f:O(V-'2)-+ O(V'2) given by f(a + hv'i.) = a- hv'i. is an isomorphism. 

9. If f:Z.-+ Z is an isomorphism, prove thatfis the identity map. (Hint: What 
aref(l),j(l + 1), ... ?] 

10. If R is a ring with identity andf:R-+ Sis a homomorphism from R to a 
ringS, prove thatf{lR) is an idempotent inS. fldempotents were defined in 
Exercise 3 of Section 3.2.] 
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II. State at least one reason why the given function is trot a homomorphism. 

(a} f:R-+ R andf(x) = Vx. 
(b} g:E-+E, where Eis the ring of even integers a.ndf(x) = 3x. 

(c) h:R-+ R andf(x) = 2"'. 

(d) /d) -+0, wherek(O) = 0 and k(~) =~if a"#- 0. 

ll. Which of the foBowing functions are homomorphisms? 

(a} fll-+Z, defined byf(x) = -x. 

(b} f..Z1-+Zz., defined by f(x) = -x. 
I 

(c) g:O-+ Q, defined by g(x) = XZ + 
1
. 

(d) h:R-+M(R),definedbyh(a) = (-: ~). 
(e) f:Z 12 -+ 4 defined by f([x] 1J = (xJ., where [u],. denotes the class of the 

integer u in 7L,. 

13. Let R and S be rings. 

(a} Prove thatf:R X S-+ R given by .f((r, s)) = r is a surjective homomorphism. 

(b) Prove that g:R X S -+S given by g((r,s)) =sis a surjective homomorphism. 

(c) If both R and S are nonzero rings, prove that the homomorphisms f and g 
are not injective. 

14. Letj:7L-+ 7L6 be the homomorphism in Example 6. Let K = {a Ell If( a) = [0]}. 
Prove that K is a subring of ll. 

15. Let f:R -+ S be a homomorphism of rings. If r is a zero divisor in R, is .f(r) a 
zero divisor in S? 

B. 16. Let T, R, and Fbe the four-element rinpwhose tables are given in Example 5 
of Section 3.1 and in Exercises 2 and 3 of Section 3.1. Show that no two of 
these rings are isomorphic. 

17. Show that the complex conjugation function fC -+ C (whose rule is 
f(a + b{) = ~- b{) is a bijection. 

18. Show that the isomorphism of lls and Sin Example 1 is given by the function 
whose rule isj([x]s) = [6x]Jo (notation as in Exercise 12(e)). Give a direct 
proof (without using tables) that this map is a homomorphism. 

19. Show that S = { 0, 4, 8, 12, 16, 20, 24} is a subring of Z21.. Then prove that the 
mapf:7L7 -+ S given by f([x]1) = [8xb is an isomorphism. 

20. Let Ebe the ring of even integers with the • multiplication defined in 
Exercise 23 of Section 3.1. Show that the map f:E-+ 7L given by f(x) = xj2 is 
an isomorphism. 

ll. Let 7/!1' denote the ring of integers with the E£l and 8 operations defined in 
Exercise 22 of Section 3.1. Prove that L is isomorphic to L•. 
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22. Let Z denote the ring of integers with the ffi and 0 operations defined in 
&ercise 24 of Section 3.1. Prove that Z is isomorphic to Z, 

23. Let C be the field of Exercise 45 of Section 3.1. Show that Cis isomorphic to 
the field IC of complex numbers. 

24. (a) Let R be the set ~ X ~with the usual coordinatewise addition, as in 
Theorem 3.1. Define a new multiplication by the rule (a, bXc, d) = 
(at:, be). Show that R is a ring. 

(b) Show that the ring of part (a) is isomorphic to the ring of all matrices in 

M(R) of the form (: ~). 
25. Let L be the ring of all matrices in M(Z) of the form (: ~). Show that the 

functio~f:L ~~given by A: ~) =a is a surjective homomorphism but 
not an lsomorphiSID. J \ 

26. Show that the homomorphism g in Example 7 is injective but not surjecti~. 

27. (a) If g:R ~ SandfS ~Tare homomorphisms, showthatfo g:R ~Tis a 
homomorphism. 

(b) Iff and g are isomorphisms, show that f o g is also an isomorphism. 

28. (a) Give an example of a homomorphism fiR~ S such that R has an identity 
butS does not. Does this contradict part (4) of Theorem 3.10? 

(b) Give an example of a homomorphismj:R ~ S such that S has an identity 
but R does not. 

29. Let fiR ~ S be an isomorphism of rings and let g:S ~ R be the inverse 
function of f(as defined in Appendix B). Show that g is also an isomorphism. 
[Hint: To show g(a + b) = g(a) + d._ b), consider the images of the left- and 
right-hand side under f and use the facts that fis a homomorphism and f" g is 
the identity map.} 

30. Letf:R ~She a homomorphism of rings and let K = {rER lf(r) = Os}· 
Prove that K is a sulring of R, 

31. Let f:R ~ S be a homomorphism of rings and Ta subring of S. 
Let P = {r E R lf(r) E T}. Prove that P is a subring of R. 

32. Assume 11 .., I (mod m). Show that the function f: Z, ~ lm~~ given by 
/({x},) = [nx:J.... is an injective homomorphism but not an isomorphism when 
n ~ 2 (notation as in Exercise 12( e)). 

33. (a) Let Tbe the ring of functions from ~to Ill, as in &ample 8 of Section 3.1. 
Let 0: T ~ R be the function defined by (}(_f) = f( 5). Prove that 0 is a 
surjective homomorphism, Is 0 an isomorphism? 

(b) Is part (a) true if 5 is replaced by any constant c E R? 

34. If f:R ~ S is an isomomorphism of rings, which of the following propertie5 
are preserved by this isomorphism? Justify your answers. 

(a) a ER is a zero divisor. 
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{b) a ER is idempotent.* 

(c) R is an integral domain. 

35. Show that the first ring is not isomorphic to the second. 

(a) E and Z {b) IR X Ill X n X IR and M(R) 

(c) Z., X Z 14 and Zjfi (d) Q and Ill 

(e) Z X Z2 and Z 

36. (a) If f:R-+ Sis a homomorphism of rings, show that fOr any r E Rand 
n E Z,f(nr) '= nf(r). 

{b) Prove that isomorphic rings with identity have the same characteristic. 
[See Exercises 41--43 of Section 3.2.] 

(c) If f:R-+ Sis a homomorphism of rings with identity, is it true that Rand 
S have the same characteristic? 

37. (a} Assume that e is a nonzero idempotent in a ring Rand that e is not a zero 
divisor.* Prove that e is theidentityelementof R. [Hint: r :=: e (Why?). If 
a E R, multiply both sides of i'- :=: e by a.] 

{b) Let S be a ring with identity and T a ring with no zero divisors. Assume 
that f:S-+ Tis a nonzero homomorphism of rings (meaning that at least 
one element of Sis not mapped to OT ). Prove that f(ls) is the identity 
element of T. [Hint: Show thatf(ls) satisfies the hypotheses of part (a).] 

38. Let F be a field and f:F 4 R a homomorphism of rings. 

(a) If there is a nonzero element c ofF such thatf(c) '= OR, prove thatfis 
the zero homorphism (that is,f(x) = OR for every x E F). [Hint: c- 1 exists 
(Why?). If x E F, consider f(xcc-l).] 

{b) Prove that [is either injective or the zero homomorphism. (Hint: If fis not 
the zero homomorphism andf(a) = f(b), thenf(a- b)= OR.] 

39. Let R be a ring without identity. Let T be the ring with identity of Exercise 32 
in Section 3.2. Show that R is isomorphic to the su bring R of T. Thus, if R is 
identified with R, then R is a subring of a ring with identity. 

C. 40. For each positive integer k, let liZ. denote the ring of all integer multiples of k (see 
Exercise 6 of Section 3.1). Prove that if m ¢ n, then mZis not isomorphic tonZ. 

41. Let m, n E Z with (m, 11) = I and letf: z_-+ Z,. X Z,. be the function given 
by /([a],.,) :=: ([a],, [a].). (Notation as in Exercise 12(e). Example 8 is the case 
m = 3, n = 4.) 

(a) Show that the map [is well defined, that is, show that if [al.., '= [b],. in 
z_, then [a], = [ b ], in Z, and [a]. '= [b]. in z •. 

{b) Prove that fis an isomorphism. [Hint: Adapt the proof in Example 8: the 
difference is that proving/is a bijection takes more work here.] 

42. If (m, n) ¢ 1, prove that Z,., is not isomorphic to Z,., X Z.,. 

•1dempotents are defin&d in EICercise 3 of Section 3.2. 





CHAPTER 4 

Arithmetic in F[x] 

In Chapter 1 we examined grade-school arithmetic from an advanced standpoint 
and developed some important properties of the ring Z of integers. In this chapter 
we follow a parallel path, but the starting point here is high-school algebra-­
specifically, polynomials with coefficients in the f1eld R of real numbers, such as 

ar - 3x2 + 7x + 4, 

Dealing with polynomials means dealing with the mysterious symbol "x", which 
is used in three different ways in high-school algebra First, x often "stands for" a 

number, as in the equation 12x - 8 = 0, where x is the number~· Second, x some­

times doesn't seem to stand for any particular number but is treated as ff it were a 
number in simplification exercises such as this one: 

x3 + x x(x2 + 1) --- -x x\!+1- x\!+1 - · 

Third, x is also used as the variable in the rules of functions such as ({x) = 3K + 5. 
Now that you know what rings and fields are, we shall consider polynomials 

with coefficients in any ring and attempt to dear up some of the mystery about 
the nature of x. In Sections 4.1-4.3, we shall see that when xis given a meaning 
similar to the second way it is used in high school, then the polynomials with coef­
fie ients in a f1el d F form a ring {denoted F[x]) whose structure is remarkably similar 
to that of the ring Z of integers. In many cases the proofs for Z given in Chapter 1 
carry over almost verbatim to F[x]. 

In Sect ions 4.4-4.6 we consider tests to determine whether a polynomial is irre­
ducible {the analogue of testing an integer for primal ity). Here the development is 
not an exact copy of what was done in the integers. The reason is that the polyno­
mial ring F[x] has features that have no analogues in the ring of integers, namely, 
the concepts of the root of a polynomial and of a polynomial function (which cor­
respond to the first and third uses of x in high school). 

85 
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II Polynomial Arithmetic and the Division Algorithm 

The underlying idea here is to define "polynomial" in a way that is the obvious exten­
sion of polynomials with real-number coefficients. Let R be any ring. A polynomial 
with coefficients ill R is an expression of the form 

ao + a1x + ~ + · · · + a,;t", 
where n is a nonnegative integer and a, E R. 

This informal definition raises ~ral questions: What is -Kl Is it an element of m 
If not, what does it mean to multiply x by a ring element? In mder to answer these 
questions, note that an expression of the form "o + ~x + ¥" + · · · + a.,x" makes 
sense, provided that the a, and x are allelementsof some larger ring. An analogy might 
be helpful here. The number 1T is not in the ringZ of integers, but expressions such as 
3 - 47T + 127Tz + ,(3 and 8 - 1fl + W make sense in the real numbers. Furthermore, 
it is not difficult to verify that the set of all numbers of the form 

with n ~ 0 and a,EZ 

is a subring of R that contains both Z and 1T (Exercise 2). 
For the present we shall think of polynomials with coefficients in a ring R in much 

the same way, as elements of a larger ring that contains both R and a special element 
x that is not in R. This is analogous to the situation in the preceding paragraph with 
R in place of Z and x in place of 71", except that here ~ don't know anything about 
the element x or even if such a larger ring exists. The following theorem provides the 
answer, as well as a definition of "polynomial"'. 

Theorem 4.1 
If R is a ring, then there exiSts a ring r containing an element x that is not in 
Rand has these propertes: 

(i) R Is a subring of r. 
(ii) xa =ax for every a ER. 

(iii) The set R{x] of all elements of r of the form 

a0 +a~+ a~+ · · · + a,px" (where n ~ 0 and a1ER) 

is a subring of r that contains R. 
(iv) The representation of elements of R[x] is unique: If n ~ m and 

at~ + a~ + a~ + · ' · + anA"' = ba + b1x + b.)(2 + · · · + bnX"', 

then 8J = b, for f = 1, 2, ..• , nand b, =~for each i > n. 

(v) ao + a1x + ~ + ···+a~=~ if and only if a,= (fiforevery i. 

Proof., See Appendix G. We shall assume Theorem 4.1 here. • 

The elements of the ring R(x] in Theorem 4.1 (iii) are called polynomials with 
coefficients in R and the elements a, are called coefficients. The special element x is 
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sometimes called an indeterminate.* To avoid any misunderstandings in Theorem 4.1, 
please note the following facts. 

I. Property (ii) of Theorem 4.1 does not imply that the ring Tis commutatiw, but 
only that the special element x commutes with each element of the subring R 
(wh05e elements may not necessarily commute with each other). 

2, Property (v) is the special case of property (iv) when each b, "= OJ!. 

3. The first ex:pression in property (v) is not an equation to be solved for x. In this 
context, asking what value of x makes ao + a1x + .a,;x} + · · · + a.,x" "= OR is as 
meaningless as asking what value of 1r makes 3 + 51T - 7w1 = 0 because x (like 
w) is a specific element of a ring, not a variable that can be assigned values.t 

EXAMPLE 1 

The rings Z[x], Q[x], and R[x] are the rings you are familiar with from high 
school. For instance, 3 + 5x - 7r is in all three of these rings, but 3 + 7 .5r is 
only in Q[x] and Ri[x] because the coefficient 7.5 is not an integer. Similarly, 
4.2 + 3x + v'5x4 is in R[x] but not in the other two rings since v'5 is not a 
rational number. Terms with .zero coefficents are usually omitted, as they were 
in the preceding sentence. 

EXAMPLE 2 

Let E be the ring of even integers. Then 4 - 6x + 4~ E E[x]. However, the 
polynomial xis not in E{x], because it cannot be written with even coefficients. 

Polynomial Arithmetic 
The rules for adding and multiplying polynomials follow directly from the fact that 
R[x] is a ring 

EXAMPLE 3 

If f(x) = 1 + 5x- x~ + 4x3 + 2:0 and g(x) = 4 + 2x + 3r + x 3 inZ{x], then 
the commutative, associative, and distributive laws show that 

f(x) + g(x) "= (l + 5x - x2 + 4xl + 2xi + (4 + 2x + 3x1 + x1 + Dxt) 

= (1 + 4) + (5 + 2)x + (-1 + 3)x2 + (4 + 1);2 + (2 + O)x4 

= 5 + Ox + U + 5x3 + 2x4 = 5 + 2J? + 5x1 + 2x4
• 

• Although in common use. the term "indeterminate" is misleading. As shown in Appendix. G, there 
is nothing undetermined or ambiguous about J. It is as pacific element of the larger ring T and is 
not an element of R. 

IVariabl es and equations will be dealt with in Section 4.4. 
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Definition 

EXAMPLE 4 

The product of 1 - 1x + x1 and 2 + Jx in O[x] is found by using the distribu­
tive law repeatedly: 

(1 - 1x + .il}(2 + 3x) "" 1(2 + 3x) - 7x(2 + 3x) + xl(2 + 3x) 

= 1(2) + 1(3x) - 7x(2) - 1x(3x) + .xl(2) + x2(3x) 

= 2 + 3x - 14x - 21x1 + 2x1 + 3xl 
= 2- llx- 19xl + 3x), 

The preceding examples are typical of the general case. You add polynomials by 
adding the corresponding coefficients, and you multiply pol)'tlomials by using the 
distributive laws and collecting like powers of x. Thus polynomial addition is given by 
the rule:* 

(ao + a1x + a~ + · · · + a.x") + (bo + h1x + b~ + · · · + b,.x} 

= (Cl(l + ho) + (al + ~)x + (az + ~ + · · · +(a,. + bJX' 
and polynomial multiplication is given by the rule: 

(ao + .a1x +.a,# + · · · + a,;(l)(bo + h1x + h1r + · · · + b,x"') 

= ¥o + (ar/JI + a1ho)x + (aJJz + a1h1 + a#Jx1 + · · · + a,b,KH""'. 

For each k ~ 0, the coefficient of ~in the product is 

k 

aJJ,. + albk-1 + ¥k-l + · · · + llsr:--A + ak-ibi + a,.bo = 'S'aAH• 
~ 

where a,= D.Rif f > n andh1 =DR. if J > m. 
It follows readily from this description of multiplication in R[x] that if R is com­

mutative, then so is R[x] (Exercise 7). Furthermore, if R has a multiplicative identity 
1R, then 1R is also the multiplicative identity of R[x] (Exe:rcise 8). 

Let f(x) =.:to+ a1x + ~ + · · · + an7!' be a polynomial in R(x] With a11 ¢ ~. 
Then ~:~"is called the leading c:oeffic:lent of f(x). The degree of f(x) is the 
integer n; it is denoted ~deg f(x)". In other words, deg f(x) is the largest 
exponent of x that appears with a nonzero coefficient, and this coeffie i€nt 
is the leading coefficient. 

EXAMPLE 5 

The degree of 3- x + 4x1 - 7x3 t=R.[x] is 3, and its leading coefficient is -7. 
Similarly, deg (3 + 5x) = 1 and deg (x11) = 12. The degree of 2 + x + 4r -
Or + Ox5 is 2 (the largest exponent of x with a nonzero col:fficient); its leading 
coefficient is 4. 

•we may <~nume that the Si!me powers of~ appear by insertin[J zero coefficients where necess<~ry. 
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The ring R that we start with is a subringof the polynomial ring R(x]. The elements 
of R, considered as polynomials in R(x], are called constant polynomials. The polyno­
mials of degree 0 in R[x] are precisely the nonzero constant polynomials. Note that 

the cunstant polynomial OR does not have a degree 

(because no power of x appears with nonzero coefficient). 

Theorem 4.2 
If R Is an integral domain and f(x), g(x) are nonzero polynomials In R[x], then 

deg[((xg(x)] = deg f(x) + deg g(x). 

Proof .. Supposef(x) =' "il + c;x +a,;?-+·-· + a.r" andg(x) =' b0 + btx + 
bzil + · · · + bm:t!' with C1Jo * OR and b, * OR, so that degf(x) =' 11 and 
degg(x) =< m. Then 

f(x)g(x) ""aJ>o + (Df~JJ + a,b6)x + (a/10 + a1b1 + ~ +- · · + <Jnb,:t'+•. 

The largest exponent of x that can possibly have a nonzero coefficient is 
11 + m. Buta..hm #OR because R is an integral domain and a,. * OR and 
bm *OR. Therefore,j(x)g(x) is nonzero and deg(f(x)g(x)] =< 11 + m =< 
degf(x) + deg g(x). • 

Corollary 4.3 
If R Is an Integral domain, then so Is R[x]. 

Proof .. Since R is a commutative ring with identity, ~o is R(x] (Exercises 7 and 8). 
The proof of Theorem 4.2 shows that the product of nonzero polynomials 
in R(x] is nonzero. Therefore, R(x] is an integral domain. • 

The first five lines of the proof of Theorem 4.2 are valid in any ring and lead to 
this conclusion. 

Corollary 4.4 
Let R be a r lng. If f(x), g(x), and f(x)g(x) are nonzero In R(x], then 

deg (f(x)g(x)] :5,'; deg f(x) + deg g(x). 

EXAMPLE fi 

ln~[x], letf(x) =<Uland g(x) =< Sx. Thenf(x)g(x) =< (U4)(5x) =< 4x5, 

so deg [f(x)g(x)] = degf(x) + degg(x). However, if g(x) =< 1 + Jr, then 

f(x)g(x) = 2x'\l + 1xl_) =' 2x4 + 2 • 3~ =- U + 0~ = 2x'\ 
which has degree 4. But degf(x) + deg g(x) =< 6. So deg [f(x)g(x)] < degf(x) + 
degg(x). 
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For information on the degree of the sum of polynomials, see Exercises 4 and 12. 

Corollary 4, 5 
Let R be an integral domain and f(x) ER[x]. Then 

f{x) is a unit in R[x] if and only lf f(x) is a constant po[ynomial that is a unit in R. 

In particular, ifF is a field, the units in F[x] are the nonzero constants in f. 

Rmumlber that the proof of an "if and only if" statement requires two separnte proofs. 

Proof of Corollary 4.5 ... First, assume thatf(x) is a unit in R[x]. Thenf(x)g(x) = lR 
for some g(x) in R[x]. By Theorem 4.2, 

deg/(x) + degg(x) = deg [flx)g(x)] = deg IR. = 0. 

Since the degrees of polynomials are nonnegative, we must have 
degf(x) = 0 and deg.tJ~x) = 0. Therefore,/(x) and g(x) are constant poly~ 
nomials, that is, oonstants in R. Sincef(x)g(x) = lR,j(x) is a unit in R. 

Conversely, assume that/(x) is a oonstant polynomial that is a unit in R. 
say f(x) = b, with b a unit in R. Leth(x) = b-1

• Thenf(x)h(x) = bb-1 = IR­
Therefore,J(x) is a unit in R[x]. 

The last statement of the corollary follows immediately since 
every nonzero element of a field is a unit in the field (see Example 6 in 
Section 3.2). • 

EXAMPLE 1 

The only units in Z[x] are 1 and ~ 1 , since these are the only units in Z. The units in 
R[x] (or in Q[x] or in QxD are all nonzero oonstants, since n, 0, and care fields. 

Corollary 4.5 may be false if R is not an integral domain (Exercise 11). 

EXAMPLE 8 

5x + 1 is a unit in Z25[x] that is not a constant because (as you should verify) 
(5x + l)(20x + I) = I. 

The Division Algorithm in F[x] 
Our principal interest in the rest of this chapter will be polynomials with coefficients in 
a field F (sucll. as Q or R or Z 5). As noted in the chapter introduction, the domain F[x] 
has many of the same properties as the domain Z of integers, including the Division 
Algorithm (Theorem 1.1), which states that for any integecs a and b with b positive, 
there exist unique integers q and r such that 

a=bq+r and 0$1 <b. 
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For polynomials. the only changes are to require the divisor to be nonzero and to 
repla.ce the statement "0 ~ r < b" by a statfmert involving degrea'l. Here is the furmalstate­
ment(withf(x)inplaceof a,g(x)inplaceofb,andq(x),r(x)inplace of q, rmpectively). 

Theorem 4.6 The Division Algorithm in f[x] 
Let F be a field and ((x), g.{x) Ef[x} with g(x) # O,n Then there exist unique 
polynomials q(x) and r(x) such that 

f(x) = g(x)q(x) + r(x) and either r(x) = o~ or deg r(x) < deg g(x). 

Example 9 shows how polynomial division works and why the Division Algorithm 
is valid in one particular case. 

EXAMPLE 9 

We shall divide/(x) = 3x5 + 2x .. + U + 4xl + x - 2 by g(x) = 2x3 + 1. The 
italic column on the right keep..'! track of what happens at each step.* 

~g(x) 1 i-:r + x + 1 +-quotient q(x) 

'2li + 1l3xi + ~ + 2X +4~ + x- 2 +-dMtkndf(x) 

J.xi + %r .... Gr )g(x) 
2_X4 + ~ + ~ + x- 2 +-f(x)- (~xl)g(x) 
2x4 + x +-xg(x) 

2x; +%xl - 2 +-f(x)- (ixz )r<x) - xg(x) 

2x3 + 1 +-1g(x) 

remamder r(x) ----+%x2 -3 +-f(x}- (ir ~z) - xg(x)- lg(x) = 

f(x) - g(x) (~x1 + x + 1) = 
f(x) - g(x)q(x) 

The last line on the left side aOO. the last three lines on the right side show that 

f(x) - g(x)q(x) = r(x) or equivalently, f(x) = g(x)q(x) + r(x). 

So the Division Algorithm holds for the polynomialsf(x) andg(x). 

"Division Re(esher.Tbe tirat term oftbe quotient T is obtained by dividing the leading term ofthe 

d i v iden d (3i') by the leading term of the divisor (2x'): 3¥!'/ b" = i.r". The proruct of this term and the 

divil<:lr ( (ix" )r<x)) is !ben sliltracted from the dividend resulting in 2r' + 2X' + ~ + x - 2, as 

shown. The precess is repeated, using this last expression as the di videndand the same divisor, and 
continues until you reach a polynomial with degreesmallerthan the degree of tbe divisor. 
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Of course, an example is not a proof, even though you canreadilyconvinceyour­
self that the same procedure works with other divisors and dividends (Exercise 5). 
Consequently, skipping the proof until you are familiar with mathematical induc­
tion, would be quite reasonable. That's why the proof of Theorem 4.6 is marked 
optional 

Proof of Theorem 4.6 Tha Division Algorithm (Optional)~ 
We first prove the existence of the polynomials q(x) and t(x). 

Case 1: If f(x) = Op or if degf(x) < deg g(x), then the theorem is true 
with q(x) = OF and l'(x) = f(x) because fix) = g(x)Op + f(x). 

Olse 2: If f(x) '#-OF and deg g(x) :$ degj(x), then the proof of exis­
tence is by induction on the degree of the dividendf(x).* If degf(x)"" 0, 
then deg g(x) = 0 also. Henoe,f(x) = a and g(x) = b for some nonzero 
a, bE F. Since F is a field, b is a unit and a = b(b-1a) +OF. Thus the 
theorem is true with q(x) = b-1a and t(x) = OF' 

Assume inductively that the theorem is true whenever the dividend 
has degree less than n. 1his part of the proof is presented in two columns. 
The left-hand column is the formal proof, while the right-hand column 
refers to Example 9. The example will help you understand what s being 
done in the proof. 

PROOF L"XAMPLE9 

we must show that the theorem is true whenever 
the dividend fix) has degree n, say n=S 

fix)= a,x"' + " · + a,x + ao 
with a,. '#- Op The divisor g(x) must have the 
form 

g(x) = b;.X" + · .. + b1x + b6 

with h"' * OF and m :$ n. we begin as we would 
in the long division of g(x) into f(x). Since F is a 
field and b,. *- OFO b,., is a unit. Multiply the divi­
sor g(x) by a,P,. _,X'_,., to obtain 

a.Pm -lX'--.g(x) 

= a,P,. - 1r"'(b,x" + · · · + b1x + b0) 

=a,::'+ a,/J,. -lb,._,x"-1 + ... + a,.b, -lv-m 

f(x) = JK + 2x4 t ~ + ~ + x- 2 __.._.., 
a,.x" 

m=3 

g(x) = 2X + 1 ,.............. 
b,.x"' 

jir.ft tenn of 
the quotient 

3 3 
~g{x) = ?2(~ +I) 

3 
= 3x5 + -x2 

2 

•we use the Pri neiple of Complete I nduetion; see Appendix c. 
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Since a,}:J,. - 1-f"'g(x) and f(x) have the same 
degree and the same leading coefficient, the 
difference 

f(x) - a)J, -1x"~g(x) 

is a polynomial of degree less thann (or possibly 
the .zero polynomial~ Now apply the induction 
hypothesis with g(x) as divisor and the poly­
nomialj(x) - a,b,_-1x:""""'g(x) as dividend (or 
use Case 1 if this dividend is zero). By induction 
there exist polynomials q1(x) and 1(x) such that 

f(x)- a,.b, -Jx"....,.g(x) = g(x)ql(x) + r(x) am 
r(x) = OF or deg 1(x) < deg g(x). 

Therefore, 

f(x) - !xzg(x) 
2 

=f{x)- (3~ + ~r) 
= 2x" + u +~r + x- 2 

2 

fourth line of long division 

5 
q1(x) = x + 1 r(x) = -XZ- 3 

2 
last part of remainder 
the quotient 

f(x) = g(x)[a,.bm -lrt-m + q1(x)] + r(x) and 

r(x) = Op or deg r(x) < deg g(x). 

Thus the theorem is true with q(x) = a,.b,.. -txr--+ q1(x)when deg.f(x) = n. This completes 
the induction and shows that q(x) and t{x) always exist for any divisor and dividend. 

To prove that q(x) and 1(x) are unique, suppose that q.J..x) and r.J._x) are polynomials 
such that 

f(x) = g(x)q.J._x) + r1(x) and r.J..x) = OF or deg r1(x) < deg g(x). 

Then 
g(x)q(x) + r(x) = f(x) = g(x)qix) + r1(x), 

so that 
g(x)[q(x) - q.J._x)] = r.J._x) - r(x), 

If i_x) - q1(x) is nonzero, then by Theorem 4.2 the d~ of the left side is deg g(x) + 
deg[q(x)- tll(x)1 a number greater than or equal to degg(x). Hcr.wwer; both r.J..x) and r(x) 
have degree strictly less than deg g(x), and so the right-hand side of the equation must also 
have degree strictly less than deg g{x) (Exercise 12). This is a contradiction. Therd'ore 
i_x) - fb.(x) = Op, or; «~.uivalen.tly, q{x) = qix}. Since the left side is zero, we must have 
r.J._x)- r(x) = Op, so thatr.J._x) = r(x). Thus thepolynomials4:x) andr(x) are unique. • 

• Exercises 

NOTE: R dmotesa rillgand Fafold 

A. I. Perform the indicated operation and simplify your answer: 

(a) (3:0 + U - 4XZ + x + 4) + (4xl + x1 + 4x + 3) in l';;[x] 

(b) (x + If in Z 1[x] 

(c) (x - 1)5 in Z 5[x] 

(d) (x1
- 3x + 2X2x3 

- 4x + 1) in Z7[x] 
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2. Show that the set of all real numbers of the form 

"o + a1'1T + l~IT + · · · + e;,'IJ"', with n ~ 0 and a1 E 7L 

is a subring of IIi! that contains both 7L and 'IT. 

3. (a) List all polynomials of degree 3 in 7L21:xJ. 

(b) List all polynomials of degree less than 3 in 7L3[x]. 

4. In each part, give an example of polynomialsf(x~ g(x) E Q[x] that satisfY the 
given condition: 

(a} The deg of f(x) + g(x) is less than the maximum of deg f(x) and deg g(x). 

(b) Deg [f(x) + g(x)] =max {degf(x), degg(x)}. 

5. Find polynomials q(x) and r(x) such thatf(x) = g(x)q(x) + l'(x), and r(x) = 0 
or deg r (x) < deg g(x): 

(a} f(x) = 3x4 
- 2x-; + 6Xl - x + 2 and g(x) = :;; + x + l in Q[x]. 

(b) /(x) = x4
- 1x + I and g(x) = ~ + I in Q[x]. 

(c) f(x) = 2x4 + ~ - x + I and g(x) = 2x - l in lls[x]. 

(d) /(x) = 4~ + 2x3 + fJil + 4x + 5 and g(x) = 3r + 2 in Z-;{x]. 

6. Which of the following subsets of R{x] are subrings of R[x]? Justify your answer: 

(a) All polynomials with constant term OR-

(b) All polynomials of degree 2. 

(c) All polynomials of degrees k, where k is a fixed positive integer. 

(d) All polynomials in which the odd powers of x have zero coefficients. 

(e) All polynomials in whil.':h the even powers of x have zero coefficients. 

7. If R is commutative, show that R( x] is also commutative. 

8. If R has multiplicative identity lR, show that lR is also the multiplicative 
identity of R(x]. 

9. If c E R is a zero divisor in a commutative ring R, then is c also a zero divisor 
in R[x]? 

I 0. If Fis a field, show that F[x] is not a field. (Hint: Is x a unit in F[x]?] 

B. II. Show that l + 3x is a unit in ~[x]. Hence, Corollary 4.5 may be false if R is 
not an integral domain. 

12. If f(x), g(x) E R[x] andf(x) + g(x) i= OR> show that 

delff(x) + g(x)],..; max {degf(x), degg(x)}. 

13. Let R be a commutative ring. If an 4: OR andf(x) = ao + a,x + azil + · · · + 
a,r' (with t;, i= 0~ is a zero divisor in R(x], prove that aH is a zero divisor in R. 

14. (a) Let R be an integral domain andf(x), g(x) E R[x]. Assume that the 
leading coefficient of g(x) is a unit in R. Verify that the Division Algorithm 
holds forf(x) as dividend andg(x) as divisor. [Hint: Adapt the proof of 
Theorem 4.6. Where is the hypothesis that Fis a field used there?] 
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{b} Give an example in .Z[x] to show that part (a) may be false if the leading 
ooeffi:::ient of g(x) is not a unit. [Hint: Exercise 5(b) with 1/_ in place of Q.] 

IS. Let R be a commutative ring with identity and a E R. 

(a) If d =OR, show that lR +ax is a unit in R[x]. [Hint: Consider 1 - ax+ 
a1x2.] 

{b} If a4 = OR, show that 1R +ax is a unit in R[x]. 

16. Let R be a commutative ring with identity and a E R. If 1 R + ax is a unit in 
R[x], show that d" =OR for some integer n > 0. [Hint: Suppose that the inverse 
of lR +ax ish0 + h,.x + ~::? + · · · + h~. Since their product is lR,ho""" lR 
(Why1) and the other coefficients are all OR.] 

17. Let R be an integral domain. Assmne that the Division Algorithm always 
holds in R[x]. Prove that R is a field. 

18. Let tp:R[x]-+ R be the function that maps each polynomial in R[x] onto its 
constant term (an element of R). Show that rp is a sUijective homomorphism 
of rings. 

19. Let q>:.Z[x]-+.Zft[x] be the function that maps the polynomial ao + a1x + · · · + 
~in .Z[x] onto the polynomial [ao] + [a1]x + · · · + [ak)x\ where [a] denotes 
the class of the integer a in .Z,.. Show that 'P is a surjective homomorphism of 
rmgs. 

20. Let D:R[x]-+ R[x] be the derivative map defined by 

D(ao + ~x + ¥" + · · · + ~ = a1 + ~x+ 3~x2 + ... +na,d'-1. 

Is D a homomorphism of rings? An isomorphism? 

C.21. Let h:R-+ Sbe ahomom01phismof rings and define afunctionh:R[x]-+.S,:x] 
by the rule 

h(ao + a1x + · · · + a.,xl') = hf..ao) + h(aJx + h(fl-t.)Xl +. · · + h(a,J:t'. 

Prove that 

(a) 1i is a homomoq:bism of rings. 

{b} 1i is injective if and only if h is injective. 

(c) 1i is surjective if and only if his sUijectiVe. 

(d) If R ~ S, then R[x] ~ .5lx]. 

22. Let R be a commutative ring and let k(x) be a fixed polynomial in R[x]. Prove 
that there exists a unique homomorphism q;>:R[x]-+ R[x] such that 

tp(r) = r for all r E R and tp(x) = k(x). 

II Divisibility in F[x] 

All the results of Section 1.2 on divisibility and greatest common divisors in 1/_ now 
carry over, with only minor modifications, to the ring of polynomials over a field. 
Throughout this section, Falways denotes afield. 
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Definition 

Definition 

Let F be a field and a(x), b(x) E fix] with b(x) nonzero. We say that b(x) 
divides a(x) [or that b(x) is a factor of a(x)], and write b(x) I·B(x) if a(x) = 
b(x)h(x)ior some h(x) E fix]. 

EXAMPLE 1 

{2x + 1) I (6xl- x - 2) in Q{x] because 6xl- x - 2 = (2x + l)(3x - 2). 
Furthermore, every constant multiple of 2x + 1 also divides 6x2 - x - 2. For 
instance, 5(2x + 1) = lOx+ 5 divides6xl- x- 2 because~- x- 2 = 

5(2x + l)[~.h;- 2) J. 

Example 1 illustrates the first part of the following result. 

Theorem 4.7 
Let F be a field and 8{x), b{x) E f[x] with b{x) nonzero. 

(1) If b(x) divides 8{x), then cb(x) divides a(x) for each nonzero c E F. 
(2) Every divisor of a(x) has degree less than or equal to deg a(x). 

Proof" (1) If b(x) la(x), then a(x) = h(x)h(x) for some h(x) E F[x]. Hence, 

a(x) = lF • b(x}h(x) = cc-1b(x)h(x) = cb(x)l<'h(x)l. 

Therefore, cb(x) I a(x). 

(2) Suppose b(x) I a(x), say a(x) = b(x)h(x). By Theorem 4.2, 
deg a(x) = deg b(x) + deg h(x). 

Since degx=s are nonnegative. we must have 0 :5: deg b(x) :5: deg a(x). • 

As we learned earlier, the greatest common divisor of two integers is the largest 
integer that divides both of them. By analogy, the greatest common divisor of two 
polynomialsa(x), b(x)EF[x] ought to be the polynomial of highestdegreethatdivides 
both of them. But such a greatest common divisor would not be unique because each 
constant multiple of it would have the same degree and would also divide both a(x) 
and b(x). In order to guarantee a UDique gcd, we modify this definition slightly by 
introducing a new concept. A polynomial in F[x] is said to be monic if its leading 
coefficient is lp For instance, x1 + x + 2 is monic in Q[x), but 2x + 1 is not. 

Let F be a 1leld and a(x), b(x) E fl:x], not both zero. The greatest common 
divisor (gcd) of a(x) and b(x) is the monic polynomial of highest degree 
that divides both a(x) and b(x). 

In otherwords,d(x)iSthegcd ofa(x)and b(x)proVidedthat~x) is monic and 

(1) d(x)l8{x) and d(x)lb(x); 

(2) tf c(x) [a(x) and c(x) {b(x), then deg c(x} :5: deg d(x). 
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Polynomialsa(x)and ~x) have at least one monic common divisor(namely lp)• Since 
the degree of a common divisor of a( x) and l:(x) cannot exceed either deg a(x) or deg H...x) 
by Theorem 4.7, there must be at least one monic common divisor of highest de~. In 
1beorem 4.8 below we shall show that there is only one monic common divisor of highest 
degree. thus justifYing the definition's reference to the greatest common divisor. 

EXAMPLE 2 

To find the gcd of 3x1 + x + 6 and 0 in O[x], we note that the common divisors 
of highest degree are just the divisors of 3r + x + 6 of degree 2. These include 
3x2 + x + 6 itself and all nonzero constant multiples of this polynomial-in 
particular, the monic polynomial 

l 1 
f<3x2 + x + 6) = x2 + 3x + 2. 

l . 
Hence,:il + 3x + 2Is a gcd of 3xl + x + 6 and 0. 

EXAMPLE 3 

You can easily verify these factorizations in O(x]: 

a(x) = 2xt + Sxl - Sx - 2 = (2x + l)(x + 2)(x + l)(x - l), 

b(x) = 2x3 - 3r - 2x = (2x + 1Xx - 2)x. 

It appealS that 2x + lis a common divisor of highest degree of a(x) and H...x). 

In this case, the constant multiple :k2x + l) = x + .!_is a monic common divi-
2 1 2 

sor of highest degree. For a proof that x +-actually is the greatest common 
divisor, see Exercise 5(g). 2 

The remainder of this section, which is referred to only a few times in the rest of 
the book, may be skimmed if time ~ short-read the theorems and corollaries, but 
skip the proofs. 

Theorem 4.8 
Let F be afield and a(x), b(x) e f!x ), not both zero. Then there is a unique great­
est common divisor d(x) of a(x) and b(x). Furthermore, there are (not neces­
sarily unique) polynomials u(x) and v(x) such that d(x) = a(x)u(x) + b(x)v(x). 

Steps 1 and 2 of the proof are patterned after the proof of Theorem 1~ 

Proof oflhaoram 4.8 .. Let s be the set of all linear combinations of ~x) and 
b(x), that is, 

S = {a(x)m(x) + b(x)n(x) lm(x), n(x) EF[x]}. 

Step I Find a monic polynomial of smalkst degree illS. 

Proof of Step 1: S contains nonzero polynomials (for instance, at least 
one of a(x) · 1F + b(x) · Opor a(x) · O.A + b(x) • lF). So the set of all 
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degrees of polynomials inS is a nonempty set of nonnegative integers. 
which has a smallest element by the Well-Ordering Axiom. Hence, there 
is a polynomial w(x) of smallest degree inS. If dis the leading coef­
ficient of w(x), then t(x) = d -lw(x) is a monic polynomial of smallest 
degree in S. By the definition of S, 

t(x) = a(x}u(x) + b(x)v(x) for some u(x), v(x) E F[x]. 

Step 2 Prove that t(x) is a gcd of a(x) a11d b(x). 

Proof qf Step 2: We must prove that t satisfies the two conditions in the 
definition of the gcd: 

(1) t(x) la(x) and t(x) lh(x); 

(2) If c(x) la(x) and c(x) lb(x), then deg c(x) :s; deg t(x). 

Proof of (1 ): In the proof of Step 2 of Theorem 1.2, replace a, b, 
c, t, q, '• u, v, k, and .rwith a(x), b(x), c(x), t(x), q(x), l{x), u(x), 
v(x), k(x), and..s(x), respectively, to show that t(x) is a common 
divisor of a(x) and b(x). 

Proof of {2): With the same replacements as in the proof of (1), 
repeat the proof of Step 2 of Theorem 1.2, until you reach this 
statement: 

t(x) = a(x)u(x) + b(x)v(x) = [c(x)k(x)]u(x) + [c(x)s(x)]v(x) 

= c(x)[k(x)u(x) + s(x)v(x)]. 

The fim and last terrru; of this equation show that t.'(x) l(x ). By 
Theorem 4.7, deg c(x) :s; deg t(x). 

This shows that t(x) is a greatest common divisor of f(x) andg(x). 

Step 3 Prove that t(x) is the unique gcd of a(x) and b(x} 

Proof of Step 3: Suppose that d(x) is any gcd of a(x) and b(x). To prove 
uniqueness, we must show that d(x) = t(x). Since d(x) is a common divi­
sor, we havea(x) = d(x)f(x) and b(x) = a{x)g(x) for somef(x), g(x) E F[x]. 
lherefore, 

t(x) = a(x)u(x) + b(x)v(x) = [a{x)f(x)]u(x) + [d(x)g(x)]v(x) 

= d(x)[f(x)u(x) + g(x)v(x)]. 

By Theorem 4.2, 

deg t(x) = deg d(x) + deg [f(x)u(x) + g(x)v(x)]. 

Since they are gcd's, t(x) and d(x) have the same degree. Hence, 

deg [f(x)u(x) + R(x}v(x)] = 0, 

so thatf(x)u(x) + g(x)t(x) = c for some constant CE F. lherefore, 
t(x) = a{x)c. Since both t(x) andd(x) are monic, the leading coefficient 
on the left side is 1 F and the leading coefficient on the right side is c. So 
we must have c = lp Therefore, a{x) = .t(x) = a(x)u(x) + b(x)t.(x) is the 
unique gcd of a(x) and b(x). • 
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Corollary 4.9 
Let F be a field and a(x)1 b{x) Ef[xJ, not both zero. A monic polynomial 
~x)Ef{xJ is the greatest common divisor of a{x) and b(x) if and only if ~x) 
satisf1es these conditions. 

(i} d{x) ]a(x) and ~x) ]b{x). 

(ii} if c(x) 1 a(x) and c(x) ]b{x), then c(x) ]d(x). 

Proof" Adapt the proof of Corollary 1.3 to F[xJ. • 

Polynomialsf(x) and g(x) are said to be rdatively prime if their greatest common 
divisor is lp 

Theorem 4.10 
Let F be a field and a(x), b(x), c(x) E f{x J, If a(x) ] b{x)c(x) and a(x) and b(x) are 
relatively prime, then a(x) ]c(x). 

Proof" Adapt the proof of Theorem l.4 to F[x]. • 

• Exercises 

NOTE: F denotes afield 

A. I. If f(x) eF[x], show that every nonzero constant :polynomial divides/(x). 

2. If f(x) = c,.r' + · · · + C1J with c,. * OF, what is the gcd ofj(x) and OF? 

3. ff a, b EFand a*- b, show that x +a and x + bare relatively prime in F[x]. 

4. (a} Letf(x), g(x)eF[x]. If f(x) ]g(x) and g(x) lf(x), showthatf(x) = cg(x) for 
some nonzero e E F. 

(b) If f{x) and g(x) in part (a) are monic, show thatf(x) = g(x). 

5. The Euclidean Algorilbm for finding gcd's is described for integers in Exercise 15 
of Section 1.2 The procc:ss given there also worb for polynomials over a 
field, with one minor adjustment For integers, the last nonzero remainder is 
the gcd. For polynomials the last nonzero remainder is a common divisor of 
highest degree. but it may not be monic. In that case, multiply it by the inverse 
of its leading roefficient to obtain the gcd. Use the Euclidean Algorithm to 
find the gal of the given polynomials: 

(a} x4
- ;x'- r +land :c'- I in Q[x] 

(b) x' + x" + zx3- XZ- x- 2and.¥4 + zx3 + 5xl+ 4x +4inQ[x] 

(c) .i' + 3r' + 2x + 4 and x1 - I in Zlx] 

(d) 4x" + zx3 + W+ 4x + 5 and U+ 5xl+ 6xinZ1[x] 
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{e) i' - ;:(1 + 4x - 4i and :r? + I in C[x] 

{f) x' + x + I and xl + x + 1 in Z2[x] 

{g) :zx4 + 5x' - 5x - 2 and 2xl- 3x2 - 2x in Q[x]. 

6. Express each of the gcd 'sin Exercise 5 as a linear combination of the two 
polynomials. 

B. 7. Letf(x)e.flx) and assume tbatftx) lg(x) for everynonconstantg(x) e.flx]. Show 
thatf(x) is a constant polynomial. [Hint: f(x) must divide both x + I andx.] 

8. Letf(x), g(x) EF[x], not both zero, and let d(x) be their gcd. If h(x) is a 
common divisor of f(x) and g(x) of highest possible degree, then prove that 
h(x)"" cd(x) for some nonzero c EF. 

9. If f(x) -:f:. OF andf(x) is relatively prime to !4-, what can be said aboutf(x)? 

I 0. Find the gcd of x + a + band x 3 - 3abx + a1 + b3 in O[x]. 

II. Fill in the details of the proof of Theorem 4.8. 

11:. Prove Corollary 4.9. 

13. Prove Theorem 4.10. 

14. Letf(x), g(x), h(x)e F[x], withf(x) andg(x) relatively prime. Iff(x) lh(x) and 
g(x) lh(x), prove tbatf(x)g(x) I h(x). 

15. Letf(x), g(x), h(x)e F[x], withf(x) and g(x) relatively prime. If h(x) lf(x), 
prove thath(x) andg(x) are relatively prime. 

16. Letf(x)1 g(x), h(x)E F[x], withf(x) and g(x) relatively prime. Prove that the 
gcdof f(x)h(x) and g(x) is the same as the gcd of h(x) and g(x). 

lllrreducibles and Unique Factorization 

Throughout th:is section F always denotes a field. Before carrying over the results of 
Section I. 3 on unique factorization in Z to the ring F[x], we must first examine an area 
in which Z differs signifi.cantly from F[x]. In Z there are only two units,* namely ±I, 
but a polynomial ring may have many more units {see Corollary 4.5). 

An element a in a commutative ring with identity R is said to be an associate of an 
element b of R if a = bu for some unit u. In this case b is also an associate of a because 
u-1 is a unit and b = uu-1• In the ring Z, the only associates of an integer n are nand 
- n because ± 1 are the only units. IfF is a field, then by Corollary 4.5, the units in F[x] 
are the nonzero constants. Therefore, 

f(x) is an associate of g(x) in F(xl if and only if f(x) = l!g(x) for some nonzero l! E F. 

Recall that a nonzero integer pis prime in Z if it is not ± 1 (that is, pis not a unit 
in Z) and its only divisors are ±I (the units) and ±p (the associates of p). In F[x] the 
units are the nonzero constants, which suggests the following definition. 

"''Unit" is defined just before Example 4 i1 Section 3.2. 
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Let F be a field. A nonconstant polynomial p(N) E f[x] is said to be 
I rreduclble" if its only divisors are its associates and the nonzero constant 
polynomials {units). A nonconstant polynomial that is not irreducible is 
said to be reducible. 

EXAMPLE 1 

The polynomial x + 2 is irreducible in O[x] because, by Theorem 4.2, all its 
divisors must have degree 0 or 1. Divisors of degree 0 are nonzero constants. 
If f(_x) I (x + 2), say x + 2 = f(x)g(x), and if degj(x) = 1, then g(x) has degree 
0, so that g(x) = c. Thus c-1(x + 2) = j(x), andf(x) is an associate of x + 2. A 
similar argument in the general case shows that 

every polynomial of degree 1 in Fix lis Irreducible In Flxl. 

The definition of irreducibility is a natural generalimtion of the concept of primal~ 
ity in Z. In most high-school texts, however, a polynomial is defined to be irreducible 
if it is not the product of polynomials of lower degree. The next theorem shows that 
these two definitions are equivalent. 

Theorem 4.11 
Let F be a field. A nonzero polynomial f(x) ls reducible in f{x] if and only if f(x) 
can be written as the product of two polynomials of lower degree. 

Proof., First, assume thatj(x) is reducible. Then it must have a divisor g(x) that 
is neither an associate nor a nonzero constant, say j(x) = g(x)h(x). If 
either g( x) or h(x) has the same degree as j(x ), then the other must have 
degree 0 by Theorem 4.2. Since a polynomial of degree 0 is a nonzero 
constant in F, this means that either g( x) is a constant or an associate 
of f{x), contrary to hypothesis. Therefore, both g(x) andh(x) have lower 
degree thanf(x). 

Now assume that/(x) can be written as th.e product of two polyno~ 
mials of lower degm:, and see Exercise B. • 

Various other tests for irreducibility are presented in Sections 4.4 to 4.6. For now, 
~ note that the concept of irreducibility is not an absolute one. For instance,. ;x2 + 1 
is reducible in qx] because x 2 + 1 = (x + i)(x - i) and neither factor is a constant or 
an associate of x?- + 1. But i'- + 1 i; irreducible in 0[ x] (Exerme 6). 

The following theorem shows that irreducibles in F[x] have essentially the same 
divisibility properties as do primes in Z. Condition (3) in the theorem is often used to 
prove that a polynomial is irreductble; in many books, (3) is given as the definition of 
"irreducible". 

•vou could j uat as well call such a polynomial "prime", but "irreducible" is the customary 1erm with 
polynomials. 
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Theorem 4.12 
Let F be a fteld and p(x) a nonconstant polynomial in F[x]. Then the following 
conditions are equivalent:* 

(1} p(x) is irreducible. 

(2) If b(x) and c(x) are any polynomials such that p(x) 1 b(x)c(x), then 
p(x) I b(x) or p(x) I c(x). 

(3) If r(x) and s(x} are any polynomials such that p(x) = r{x)s(x), then r(x} 
or s(x) is a nonzero constant polynomial. 

Proof ... (I) => (2) Adapt the proof of 1beorem 1.5 to F[x]. Replace statements 
about :k.p by statements about the associates of p(x); replace statements 
about ±I by statements about units (nonzero constant polynomials) in. 
F[x]; use Theorem 4.1 0 in place of Theorem 1.4. 

(2)=> (3) H p(x) = r(x)s(x), thenp(x) lr(x) or p(x) ls(x), by(2). If 
p(x) I r(x), say r(x) = p(x)v(x), then p(x) = r(x)9(x) = p(x)v(x).(x). Since 
F[x] is an integral domain, we can cancelp(x) by Theorem 3.7 and con­
clude that lF = v(x)s(x). Thus s(x) is a unit, and hence by Corollary 45, 
l{x) is a nonzero constant. A similar argument shows that if p(x) is(x), 
then r(x) is a nonzero constant. 

(3) => (1) Let c(x) be any divisor of p(x), say p(x) = c(x)l(x). Then 
by (3), either c(x) is a nonzero constant or d(x) is a nonzero constant. If 
d(x) = d '# 01'1 then multiplying both sides of p(x) = c(x)d(x) = dc(x) by 
a 1 shows that c(x) = a 1p(x). Thus in every case, c(x) is a nonzero con­
stant or an associate of p(x). Therefore,p(x) is irreducible. • 

Corollary 4.13 
LetF be a field and p(x) an irreducible polynomial in F[x]. If p(x}IBt(X}a:ix) • · ·an(x), 
then p(x) divides at least one of the a~x). 

Proof ... Adapt the proof of Corollary 1.6 to F[xJ. • 

Theorem 4.14 
Let F be a fteld. Every nonconstant polynomial f(x) in F[x] is a product of 
irreducible polynomials in f[x].t This factorization is unique in the following 
sense: If 

((x) = p1(x)p.j,x) • • • p~x) and 

•For the me 111 in g of "the following conditions are eq u ivai e nt" and what must be clone to prove 
Theorem 4.12, see page 508 of Appencli x A. Example 2 there is the integer analogue of Theorem 4.12. 

twe allow the possibility of a product wi1h just one factor in case ((1) is itself iiT9ducible. 
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with each p/.,x) and q/,.x} irreducible, then r = s (that is, the number of irre­
ducible factors is the same). After the qj.,x) are reordered and relabeled, if 
necessary, 

p,(x) is an associate of q,(x) (i = 1, 2, 3, ... , r). 

Proof~ To show that /(x) is a product of irreducibles, adapt the proof of 
Theorem 1.7 to F[x]: Let S be the set of all nonconstant polynomials 
that are 110t the product of irreducibles, and use a proof by contradiction 
to show that Sis empty. To prove that this factorization is unique up to 
associates, supposef(x) = .PI(x)h(x) · · • p 1(x) = q1(x)h(x)--- qj_x) 
with each pJCx) and qj_x) irreducible. Thenp1(xX'P2(x) · · · p,(x)] = 
q1(x)q:(x) · · · q.(x), so that p 1(x) divides q1(x)q:(x) · · · qJ..x). Corollary 
4.13 showsthatp1(x)l%(x) for some). After rearranging and relabel-
ing the q(x'js if necessary, we may assume that p 1(x) I q1(x). Sin:e q1(x) 
is irreducible,p1(x) must be either a constant or an associate of q1(x). 
HO\WWI',p1(x) is irreducible, and so it is not a constant Therefore,p1(x) 
is an associate of q1(x), withp1(x) = c1q1(x) for some constant c1• Thus 

q1(xXctP1(xA93(x) · · · p,.(x)] = .PI(x)pj.x) • · · p.{x) = IJI(X)q:(x) · · · qj_x). 

Canceling q1(x) on each end, we have 

.P2(xXcJP9(x) · · • p,(x)] = qjx)q3(x) · • · qJx). 

Complete the argument by adapting the proof of Theorem 1.8 to F[x], 
replacing statements about ;:t'h with statements about associates of 
!h(x). • 

• Exercises 

NOTE: F denotes a fold at1d pa positive prime Integer. 

A. 1. Find a monic associate of 

(a} 3x9 + 2xl + x + 5 in Q[x] 

(c) ;;? + x - I in Qx] 

(b) 3x5
- 4xl +I inZs[x] 

2. Prove that every nonzero f(x) E l'lx] has a unique monic associate in F[x]. 

3. List all associates of 

(a} i'- + x + I inZs[x] (b) 3x + 2 in Z,[x] 

4. Show that a nonzero polynomial in ZJx] has exactly p - I associates. 

5. Prove thatf(x) and g(x) are associates in F[x] if and only if f(x) lg(x) and 
g(x)lf(x). 

6. Show that i'- + I is irreducible in O[x]. [Hint: If not, it must factor as 
(ax + bXcx + d) with a, b, c, d E 0; show that this is impossible.] 

7. Prove that/(x) is irreducible in F[x] if and only if each of its associates is 
irreducible. 
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8. If f(x) E F(x] can be written as the product of two polynomials of lower 
degree, provethatf(x) is reducible in F(x]. (This is the second part of the 
proof of Theorem 4.11.) 

9. Find all irreducible polynomials of 

(a) degree 2 in Zlfx] 

(c) degree 2 in Z3(x] 

(b) degree 3 in Zlfx] 

I 0. Is the given polynomial irreducible: 

(a) :x?- 3 in O(x]? In IU![x]? 

(b) :x? + x- 2 in Z3(x]? In Z 7[x]? 

II. Show that~- 3 is irreducible in Z7(x]. 

12. Express x4 - 4 as a product of irred ucibles in O[x], in R[x], and in C[x]. 

13. Use unique factorization to find the gcd in C[x] of (x- 3)\x- 4f(x- rf 
and {~ - l)(x - 3)(x - 4)3• 

14. Show that .x? + x can be factored in two ways in ~[x] as the product of non­
constant polynomials that are not units and not associates of x or x + I. 

B. 15. (a) By counting products of the form (x + a)(x + b), show that there are 
exactly (# + p)/2 monic polynomials of degree 2 that are not irreducible in 
Zp[x]. 

(b) Show that there are exactly (#- p)/2 monic irreducible polynomials of 
degree 2 in Z,.(x]. 

16. Prove thatp(x) is irreducible in F[x] if and only if for every g(x) E F[x], either 
p(x) jg(x) or p(x) is relatively prime to g(x). 

17. Prove (l) '* (2) in Theorem 4.12 

18. Without using statement (2), prove directly that statement (1) is equivalent to 
statement (3) in Theorem 4.12. 

19. Prove Corollary 4.13. 

20. If p(x) and q(x) are nonassociate irreducibles in F[x], prove that p(x) and q(x) 
are relatively prime. 

21. (a) Find a polynomial of positive degree in Zg[x] that is a unit. 

(b) Show that every polynomial (except the constant polynomials 3 and 6) 
in ~[x] can be written as the product of two polynomials of positive 
degree. 

22. (a) Show that .x;1 + a is reducible in Z.l[x) for each Cl E z3. 

(b) Show that r + a is reducible in Zs(x] for each a E Zs· 
23. (a) Show that r + 2 is irreducible in ZlxJ. 

(b) Factor x" - 4 as a product of irreducibles in Z5[x]. 

24. Prove Theorem 4.14. 
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25. Prove that every nonconstantf(x) E F[x] can be written in the form 
cp1(x)P2(x) · • • pJ..x), with c E Fandeachp,.(x) monic irreducible in Fix]. 
Show further that if f(x) = dq1(x)q:!;(x) · · · q,.(x) with d E Fand each IQ(x) 
monic irreducible in F[x], then m = n, c = d, and after reordering and 
relabeling if necessary, p 1(x) = q1(x) for each i. 

II Polynomial Functions, Roots, and Reducibility 

In the parallel development of F[xJ and 7L, the next step is to consider criteria for 
irreducibility of polynomials (1he analogue of primality testing for integers). Unlike 
the situation in the integers, there are a number of such criteria for polynomials whose 
implementation does not depend on a computer. Most of them are based on the fact 
that every polynomial in F[x] induces a function from F to F. The properties of this 
function (in particular, the places where it is zero) are closely related to the reducibility 
or irreducibility of the polynomial. 

Throughout this section. R is a commutative ring: Associated with each polynomial 
a/ + · · · + 42r + a1x + tl(l in R(x] is a functionf:R-+ R whose rule is 

for each 1' E R, f(r) = a,.Y' + · · · + q + a )I' + 00. 

The function/induced by a polynomial in this way is called a polynomial function. 

EXAMPLE 1 

The polynomial x2 + 5x + 3 E R[x] induces the function fiR-+ 1R whose rule 
is f(r) = r1 + 5r + 3 for eaclt r E !R. 

EXAMPLE 2 

The polynomial x"' + x + I E 1L3(x] induces the functionf:Z3 -+ 7L3 whose rule 
isf(r) = r4 + r + I. Thus 

/(0) =a' + 0 + 1 = l, f(l) = 14 + 1 + 1 = 0, 

1(2) = 2" + 2 + 1 = l. 
The polynomial Jr! + x1 + 1 E 7L3[x] induces the function g:7L3-+ 7L 3 given by 

g(O) = 61 + 02 + 1 = I, g(I) = 13 + 12 + I = 0, 

g(2) = ~ + 22 + 1 = 1. 

Thus f and g are the same function on 7L3> even though they are induced by 
different polynomials in 7L3[xJ. * 

Although the distinction between a polynomial and the polynomial function it 
induces is clear, the customary notation is quite ambiguous. For exampe, )'JU will see a 

"Remember that 1 unctions {and g are equal if f{r) = g(n for every r in the domain. 
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Definition 

statement such asf(x) = f- 3x + 2. Depending on thecontex.t,f(x) might denote the 
polynomial X'- - 3x + 2 E ~x] or the rule of its induced functionf IR -+Ill. The sym­
bol X is being used in two different ways here. In the polynomial r - 3x + 2, X is an 
indeterminate (transcendental element) of the ring R[ x]. * But in the polynomial fum:­
tionfiR. ~R. the symbol xis used as a variable to describe the rule of the function. It 
might be better to use one symbol for an indeterminate and another for a variable, but 
the practice of using X fOr both is SO widespread you may as weB get used to it. 

The use of the same notation for both the polynomial and its induced function also 
affects the language that is used For instance, one says "evaluate the polynomial 
3x'-- 5x + 4 at x = 2" or "substitute x = 2 in 3~- 5x + 4" when what is really meant 
is "find/(2) when/is the function induced by the polynomial:»? - 5x + 4". 

The truth or falsity of certain statements depends on whether x is treated as an 
indeterminate or a variable. For instance, in the ring ~ x], where x is an indetermi­
nate (special element of the ring), the statement r- 3x + 2 = 0 is false because, by 
Theorem 4.1, a polynomial is zero if and only if all its coefficients are zero. When xis a 
variable, however, as in the rule of the polynomial function/(x) "" r - 3x + 2, things 
are different. Here it is perfectly reasonable to ask which elements of IR are mapped to 0 
by the function/, that is, for which values ofthevariablexis ittmethatxl- 3x + 2""' 0. It 
may help to remem her that statements about the variable x occur in the ring R, whereas 
statements about the indeterminate x occur in the polynomial ring R(x). 

Roots of Polynomials 
Questions about the reducibility of a polynomial can sometimes be answered by 
considering its induced polynomial function. The key to this analysis is the concept 
of a root. 

Let R be a commutative ring and f(x) E R[x ]. An element ll of R is said to 
be a root (or zero) of the polynom.laf f(i} if {(a) = O,q, that iS, if the induced 
function f:R -+R maps a to~ 

EXAMPLE J 

The roots of the polynomialj{x) ~ :x} - 3x + 2 E ~[x] are the values of the 
variablex for which/(x) = 0, that is, thesolutionsoftheequationX:- 3x + 2"" 0. 
It is easy to see that the roots are l and 2. 

EXAMPLE 4 

The polynomial :x1 + 1 E R[x] has no roots in IR because there are no real­
number solutions of the equation x2 + 1 = 0. However, if X! + 1 is considered 
as a polynomial in C(x), then it has i and - i as roots because these are the 
solutions inC of x2 + 1 = 0. 

•see page 550 in Appendix G for more information. 
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Theorem 4.15 The Remainder Theorem 
Letf be a field, f(x) E F[x], and a E f. The remainder when f(x) is divided by 
the polynomial x -a is ((a). 

EXAMPLE 5 

To find the remainder whenj(x) = x1'i + 3x24 + 5 is divided by x - 1, we apply 
the Remainder Theorem with a = l. The remainder is 

f(l) = 179 + 3 • 124 + 5 = l + 3 + 5 = 9. 

EXAMPLE 6 

To find the remainder whenj(x) = 3x'- g,x2 + llx + lis divided by x + 2, we 
apply the Remainder Theorem carefully. The divisor in the theorem is x - a, 
not x + a. So we rewrite x + 2 as x - ( -2) and apply the Remainder Theorem 
with a = -2. The remainder is 

f(-2) = 3(-2t- 8(-2)2 + ll(-2) + l = 48- 32-22 + l = -5. 

Proof oflheorem 4.15 ... By the Division Algorithm,f(x) = (x - a)q(x) + r(x), 
where the remainder r(x) either is Op or has smaller degree than the 
divisor x - a. Thus deg r(x) = 0 or r(x) = OF' In either case, r(x) = c for 
some c E F. Hence,.ftx) = (x- a)q(x) + c, so thatf(a) = (a - a)q(a) + 
c =OF+ c =c . • 

Theorem 4.16 The Factor Theorem 
Let F be a field, ((x) E F[x], and a E F. Then a is a root of the polynomial ((x) 
if and only if x- a is a factor of f(x) in F[x]. 

Proof., First assume that a is a root of f(x). Then we have 

f(x) = (x - a)q(x) + r(x) 

f(x) = (x - a)q(x) + fl.a) 

f(x) = (x - a)q(x) 

Therefore, x -a is a factor off(x). 

[Divisfon Algorithm] 

[Remainder 111eorem] 

[a Is a root of f(x), so f(a) = OF>] 

Conversely, assume that x -a is a factorof.ftx), say f(x) = (x - a)g(x). 
Then a is a rootoff(x) becausej(a) =(a- a)g(a) = O.f8'(a) =OF' • 
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EXAMPLE 1 

To show that i1 - :x:S + U - 3x1 - x + 2 is reducible in 0[ x], note that 1 is a 
root of this polynomial Therefore, x - 1 is a factor. 

Corollary 4.17 
Let F be a field and f{x) a nonzero polynomial of degree n in F[x]. Then f{x) has 
at most n roots in F. 

Pro or • If .f{x) has a root a1 inF, then by the Factor Theorem,.f(x) = (x - a 1)h1(x) 
for some h1(x) E F[ x]. If h1(x) bas a root a2 in F, then by the Factor 
Theorem 

f(x) = (x- aJ(x- aJhz(x) for some ~(x) E F[x]. 

If h~x) bas a root a1 in F, repeat this procedure and contiuue doing so 

until you reach one of these situations; 

(1) /(x) = (x - a1)(x - 02) • • • (x - a,.)h,.(x) 
(2) .f(x) = (x - a1Xx - a.J · · · (x - a,JhJx) and h,/.,x) bas no 

root in F. 

In Case {1), by Theorem 4.2, we have 

degf(x) = deg(x - a 1) + deg(x - "2) + · · · + deg(x - a,J + deg lr,(x) 
n = 1 + 1 + · · · + 1 + deg h,.(x) 
n = n + degh,.(x) 

Thus, deg h,(x) = 0, so hJ..x) = c for some constant c E F and f(x) 
factors as 

f(x) = c(x - a1Xx - aJ • · · (x - a...). 

Oearly, then numbers a1, ~ •••• ,an are the only roots of f(x). 
The argument in Case (2) is essentially the same Gust replace n by k) 

and leads to this conclusion: n = degf(x) = k + deg h,/.._x). So the num­
ber of roots is k and k s n. • 

Corollary 4.18 
Let F be a field and ff.x) E F[x], with deg f(x) ~ 2. If f(x) is irreducible in F[x], 
then ff.x} has no roots in F. 

Proof • If f(x) is irreducible. then it has no factor of the form x- a in Fix]. 
Therefore,f(x) has no roots in Fby the Factor Theorem. • 

•if 1'0'1 prefer a proof by i nduct ion. aee EitEl rc ise 29. 
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The converse of Corollary 4.18 is false in general. For example, x4 + 2:2 + 1 = 
(r + lXr + 1) has no roots in Q but is reducible in O[x]. However, the converse is 
truefordegrees 2and 3. 

Corollary 4.19 
letf be a field and let f(x} E F(x] be a polynomial of degree 2 or 3. Then f(x) is 
irreducible in F(x] if and only if f(x) has no roots in F. 

Proof"' Supposef(x)is irreducible. Tbcnj{x)has no roots in Fby Corollary4.18. 
Conversely, suppose thatf(x) has no roots in F. Then fix) has no first­
degree factor in Flx] booause ewry first-degree polynomial a: + din .flx) 
has a root in F, namely -c-14 Tbercl'ore, if f(x) = P'(x)s(x), neither P'(x) 
nor J(x) has degree 1. By Theorem4.2, degf(x) = deg P'(x) + deg .(x). 
Sincef(x) has degree 2 or 3, the only possibilities for (deg r(x), deg J(x)) 
are (2, 0) or (0, 2) and (3, 0) or {0, 3). So either r(x) or .i\x) must have 
degree O, that is, either l'{x) or s(x) is a nonzero constant. Hence,f(x) is 
irreducible by Theorem 4.12. • 

EXAMPLE 1 

To show that xl + x + 1 is irreducible in Zs [x], you need only verify that none 
of 0, 1, 2, 3, 4 E Zs is a root. 

We close this section by returning to its starting point, polynomial functions. 
Example 2 shows that two different polynomials in F[x] may induce the same function 
from Fto F. We now 3ee that this cannot occur if F is inlinite. 

Corollary 4.20 
let F be an infinite field and f(x), g(x) E f[x]. Then f(x) and g(x) induce the 
same function from F to F if and only if f(x) = g(x) in F[x), 

Proof"' Suppose that.f(x) and g(x) induce the same function from Fto F. Then 
f(a) = g(a), so thatf(a) - g(a) = o,., for every a E F. This means that 
every element ofF is a root of the polynomialf(x) - g(x). Since Fis 
infinite, this is impossible by Corollary 4.17 unless j{x) - g(x) is the 
zero polynomial, that is,f(x) = g(x). The converse is obvious. • 

• Exercises 

NOTE: Fcknotesajield 

A. I. (a) F"md a nonzero polynomial in Z:lx] that induces the zero function on Z2• 

(b) Do the same in Z3[x]. 
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2. Find the remainder v.hen.~x) is divided by g(x): 

(a) f(x) = x10 + x1 and g(x) = x - I in Q[x] 

(b) /(x) = 2x5 
- 3x" + i' - 2:.:2 + x - 8 and g(x) = x - 10 in Q[x] 

(c) f(x) = lOx15 - 8x65 + 6:05 + 4xl7 - 2x15 + 5 and g(x) "' x + I in Q[x] 

(d) f(x) = 2r - 3x" + Xl + 2x + 3 and g(x) = x - 3 in Zs[x] 

3. Determine if h(x) is a factor of j{x): 

(a) h(x) = x + 2 and/(x) = xl- 3r - 4x - 12 in R[x] 

(b) h(x) "' x - _!_ and/(x) "'1x4 + x~ + x- ~in Q[x] 
2 4 

(c) h(x) = x + 2 and/(x) = 3x' + 4.0 + 2x3 
- xl-+ 2x + I in Zs[x] 

(d) h(x) = x - 3 and/(x) = ~ -l? + x - 5 in Z7[x] 

4. (a) For what value of k is x - 2 a factor of :~l- 5Xl + 5r + 3x + kin Q[x]? 

(b) For what value of k is x + 1 a factor of x4:+ 1-Xl - 3Xl + kx + 1 in Z5[x]? 

5. Show that x - IF divides a,.x" + · · · + ¥ + CljX + ao in J1x] if and only if 
Go + "t + az + · · · + a,. = OF-

6, (a) VerifY that every element of z] is a root of i' - X E Z,[x]. 

(b) Verify that every element of z~ is a root of X'- X E Z.fx]. 

(c) Make a conjecture about the roots of ;II!- x E Zp[x] (p prime). 

7. Use the Factor Theorem to show thatx7 - x factors in Z,[x] as 
x(x -lXx - 2)(x - 3)(x - 4)(x - 5)(x - 6), without doing any polynomial 
multiplication. 

H. Determine if the given polynomial is irreducible: 

(a) 7?- 7 in R[x] (b) x1 - 7 in O[x] 

(c) r + 7 in C[x] (d) 2xl + 7? + 2x + 2 in Z5[x] 

(e) r - 9 in Z11[x] (f) x" + 7? + 1 in 1!:3[x] 

9. List all monic irreducible polynomials of degree 2 in Z3[x]. Do the same in Zs[x]. 

10. Find a prime p > 5 such that r + 1 is reducrble in Zp[x]. 

11. Find an odd prime p for which X - 2 is a divisor of x4 + f + U + X + l in 
.?Jx]. 

B. 12. If a E Fis a nonzero root of ctf.J!' + c.-1X'-1 + · · · + c1x + c0 E F[x], show 
that a-1 is a root of 4}1! + c1x"-1 + · · · + c,._1x + c,_. 

13. (a) If f(x) and g(x) are associates in J1x], show that they have the same roots 
in F. 

(b) If f(_x), g(x) E J1x] have the same roots in F, are they associates in F[x]? 

14. (a) Suppose r, s E Fare roots of d+ bx + c E F[x] (with a¢ Op). Use the 
Factor Theorem to show that r + s "' -a-1b and rs = a-1r:-. 
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(b) Suppose r, s, t E Fare roots of a.x1 + bx1 + ex+ d E F[x] (with a ¢OF)· 

Show that r + s + t = -a-1b and rs + $( + rt = a-1c and rst = -a-1d, 

15. Prove that X'-+ I is reducible in Z,.[x] if and only if there exist integers a and b 
such thatp =a+ band ab"" 1 (modp). 

16. Letf(x), g{x) E F[x] have degree ~nand let co, Ct, • •• , en be distinct elements 
of F. If f(cJ = g(cJ fori= 0, I, ... , n, prove thatf(x) = g(x) in F(x]. 

17. Find a polynomial of degree 2 in ZJx] that has four roots in Z6- Does this 
contradict Corollary 4.17? 

18. Let l{l:C-+ C be an isomorphism of rings such that rp(a) =a for each 
a E Q. Suppose r E Cis a root of f(x) E Q[x]. Prove that q;(r) is also a 
root ofj(x). 

19. We say that a E F is a multiple root of /(x) E F[x] if (x- a'f is a factor of 
f(x) for some k ~ 2. 

(a) Prove that a E IR! is a multiple root of f(x) E R[x] if and only if a is a 
root of bothf(x) andf'(x), wberef'(x) is the derivative of f(x). 

(b) If f(x) E R[x] and if f(x) is relatively prime to f'(x), prove thatf(x) has 
no multiple root in R. 

20. Let R be an integral domain. Then the Division Algorithm holds inR[x] 
whene\'er the divisor is monic, by Exercise 14 in Section 4.1. Use this fact to 
show that the Remainder and Factor Theorems hold in R[x]. 

21. If R is an integral domain andftx) is a nonzero polynomial of degreen in 
R[x], prove thatf(x) has at mostn roots in R. [Hint: Exercise20.] 

22. Show that Corollary4.20 holds if Fis an infinite integral domain. [Hint: See 
Exercise 21.] 

23. Letf(x), g(x),h(x) E F[x] and r E F. 

(a) If f(x) = g{x) + h(x) in F[x], show thatf(r) = g(r) + h(r) in F. 

(b) If f(x) = g(x)h(x) in F[x], show thatf(r) = g(r)h(r) in F. 

Where were these facts used in this section? 

24. Let a be a fixed element of Fand define a map !fia:F[x]-+ Fby !fid[f(x)] = f(a). 
Prove that !fl. is a surjective homomorphism of rings. The map ({14 is called an 
e\'aluation homomorphism; there is one for each a E F. 

25. Let O['IT] be the set of all real numbers of the form 

ro + r1'1T + r27fl- + · · · + a,.'lt', with n <2: 0 and r1 E Q. 

(a) Show that 0[1T] is a sub ring of R. 

(b) Show that the function 6:0[x]-+ Q['IT] defined by 9(/(x)) =/('IT) is an 
isomorphism. You may assume the following nontrivial fact: 1T is not 
the root of any nonzero po ly11omial with rational coefficients. Therefore, 
Theorem 4.1 is true with R = Q and 1f in place of x. However, see 
Exercise 26. 



112 Chapter 4 Arithmetic In F[x] 

26. Let 0['\12] be the set of all real numbers of the form 

ra + r1 V2 + rz(V'tP + · · · + r~(V'i)", with n <1:: 0 and r1 E Q. 

(a) Show that Q['\12] is a sub ring of R. 

(b) Show that the function 8:0[x]4 Cl{v'2] defined by 8(f(x)) = f( \12) is a 
swjective homomorphism, but not an isomorphism. Thus Theorem 4.1 is 
not true with R = Q and \12 in place of x. Compare this with Exercise 25. 

27. Let Tbe the set of all polynomial functions from Fto F. Show that Tis a 
commutative ring with identity, with operations defined as in calculus: For 
eachr E F, 

(f + gXr) = f{r) + g(r) and (fg)(t") = f(r)g(r). 

[Hint: To show that Tis closed under addition and multiplication, use 
Exercise 23 to verify that f + g and fg are the polynomial functions indoced 
by the sum and product polynomialsf(x) + g(x) and.f{x)g(x), respectively.} 

28. Let Tbe the ring of all polynomial functions from Z3 to Z3 (see Exercise 27). 

(a) Show that Tis a finite ring with zero divisors. [Hint: Consider f(_;c) = x + I 
and g(x) ""' :>! + 2x.] 

(b) Show that T cannot possibly be isomorphic to Zl x]. Then see Exercise 30. 

29. Use mathematical induction to prove Corollary 4.17. 

C 30. IfF is an infinite field, prove that the polynomial ring F[x] is isomorphic to 
the ring T of all polynomial functions from Fto F (Exercise 27). [Hint: Define 
a map iji>:FfxJ- Tby assigning to each polynomialf{x) E flx] its induced 
function in T; fP is injective by Corollary 4.20.] 

31. Let !p:F[x]-4 F[x] be an isomorphism such that fP(a) =a for every a E F. 
Prove thatf{x) is irreducible in F[x] if and only if ip{f{x)) is. 

32. (a) Show that the map !p:F[x] - F[x] given by rp(Jtx)) = f(x + IF) is an 
isomorphism such that rp(a) = a for every a E F. 

(b) Use Exercise 31 to show that f{x) is irreducible in F[ x] if and only if 
f(x+ IF) is. 

II Irreducibility in Q[x]* 

The central theme of this section is that factoring in Q[x] can be reduced to factoring 
in Z[x]. Then elementary number theory can be used ·to check polynomials with inte­
ger coefficients for irreducibility. We begin by noting a fact that will be used frequently: 

If f(x) E Qlxl, then ef(x) has integer 
coefficients for some nonzero integer ~. 

•This section is used only in Chapters 11, 12, and 15. It may be omitted unti I then, i1 desired. Section 4.6 
is indep enclenl t>f I his section. 
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2 3 1 
f(x) = xi + 7x4 + -:t! - -3 4 6' 

The least common denominator of the coefficients of /(x) is 12, and 12ftx) has integer 
coefficients: 

12nx) = 12 xi+ -xi + -r -- = 12K + s:t + 9X' - 2 [ 2 3 1] 
~~ . 3 4 6 . 

According to the Factor 1beorem, finding first-degree factors of a polynomial 
g(x) E C{x] is equivalent to finding the roots of g(x) in Q. Now, g(x) has the same 
roots as cg(x) for any nonzero constant c. When c i.s chosen so that cg(x) has integer 
coefficients, we can find the roots of g(x) by using 

Theorem 4.21 Rational Root Test 
Let f{x) =a/ + an-~1 + · · · + ~x + 8 0 be a polynomial with integer coef­
ficients. If r?: 0 and the rational number rjs (in lowest terms) iS a root of f(x), 
then rl~ and sja11 • 

Proof~ First consider the case when s = 1, that is, the case when the integer r 
is a root off(x), which means that a,.r" + 4.--tr"-t + · · · + a 1r + ao = 0. 
Hence, 

ao = -a,Y' - ~~,.---1 - • • • - 4!' 

ao =- 1(-d,/'-1 - ~-~r"~ - · · · -a,), 

which says that r divides ao. 
In the general case, we use essentially the same strategy. Since r / s i.s a 

root of j(x), we have 

a..(~) + 4a-{~:) + · · · + a.(~) + ao = o. 

We need an equation involving only integers (as in the case when s = 1). 
So multiply both sides by i', rearrange, and factor as before: 

(*) 

a,/' + a_r1 + ... + a,l'-1r + ¥ = 0 

¥' = -q- a,_J.,w&-1 - ••• - Dt,i'-1r 
aof' : r(- a,l'-1 _ ~~.I'J"""-l _ •.. _ a1J~-I], 

This last equation says that r divides a,/', which is not quite what we 
want. Hom=vcr, since r/ sis in lowest terms, we have {r, s) = 1. It follows 
that (r, I') = 1 (a prime that divides i' also divides s, by Corollary 1.6). 
Since r I aoi' and {r, I') = 1, Theorem 1.4 shows that r I~· A similar arguw 
ment proves that s J a, {just rearrange Equation (*)so that a,T' is on one 
side and everything else is on the other side). • 
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EXAMPLE 1 

The possible roots in Q of j(x) = 2.0 + :x:1 - 21x2 - 14x + 12 are of the form 
r/.J, where Tis one of ±1, ±2, ±3, ±4, ±6, or ±12 {the divisors of the constant 
term, 12) and 3 is ±1 or ±2 (the divisors of the leading coefficient, 2). Hence, 
the Rational Root Test reduces the search for roots of f(x) to this finite list of 
possibilities: 

1 1 3 3 
1 -1 2, -2,3 -3 4, -4 6, -6 I2 -12 - --- --
, ' ' ' • ' , '2' 2' 2' 2' 

It is tedious but straightfOrward to substitute each of these in/(x) to :find that -3 

and k are the only roots of /(x) in 0.* By the Factor Theorem, both x - ( -3) =:e­

x + 3 and x- ~are factors of j(x). Division shows that 

/(x) = (x + a{x - ~)c2r - 4x ~ 8). 
The quadratic formula shOWli that the roots of 2x'- - 4x - 8 are 1 ± VS, 
neither of which is in a. Therefore, 2r - 4x - 8 is irreducible in Q[x] by 
Corollary4.19. Hence, we havefactoredf(x) as a product of irreducible poly­
nomials in Q[x]. 

EXAMPLE 2 

'The only possible roots of g(x) = x1 + 4r + x - 1 in Q are 1 and -1 (Why?). 
Verify that neither 1 nor -1 is a root of g(x). Hence g(x) is irreducible in Q[x] 
by Corollary 4.19. 

If j(x) E O[x], then cf(x) has integer coefficients for some nonzero integer c. Any 
factorization of cf(x) in Z[x] leads to factorization of f{x) in Q[x]. So it appears that 
tests for irreducibility in O[x] can be restricted to polynomials with integer coefficients. 
However, we must :first rule out the possibility that a polynomial with integer coeffi­
cients could factor in Q[x] but not in Z[x]. In order to do this, we need 

Lemma 4.22 
Let f(x}, g(x), h(x} E Z[x] with f(x) = g(x)h(x). If p Is a prime that divides every 
coefficient of f(x), then either p divides every co effie ient of g(x) or p d ivldes 
every co eff1c lent of h(x~ 

•A graphi rg calculator will reduce the .,mount of computation signific.,ntly. Since the x-i ntercepts of 
the graph of y= f(x)arethe roots of ll:x), you can eliminate an~ numbers from the listthat aren't near 

1 3 
an intercept. In this [;liSe, the graph indicates that rou need onl~ check -3, 2' and -i 
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Proof"' Letfix) = ao + a1x + · · · + ¢, g(x) = h0-+ h1x +- · · + b,.x", and 
h(x) = c0 + c1x + · · · + c~x!'. We use a proof by contradiction. If the 
lemma is false, then p does not divide some coefficient of g(x) and some 
coefficient of h(x). Let b, be the .first coefficient of g(x) that is not divis­
ible by p, and let c1 be tbefoat coefficient of h(x) that is not divisible by 
p. Then p I b1 for i < 1' and p I c 1 for j < t. Consider the coefficient a,+t of 
f(x). Sincej(x) = g(x)h(x), 

a,... = hocr+r + • • ' + b,...,cf+ I + b,c, + br+lcl-1 + .. • + bM-.Cfl• 

Consequently, 

b.c, = 144-r - [hoc~-H + · · · + b,...lci+J - [.b,....JC.-J + · · · + b,.+Ail· 

Now, p f Or-+J by hypothesis. Also, p divides each term in the first pair of 
brackets because r was chosen so that p I b1 for each i < r. Similarly, p 
divides each term in the second pair of brackets because pI c1 for each 
j < t. Since p divides every term on the right side, we see that pI b,4 
Therefore,p I b, or p jc1 by Theorem l.S. 1his oontradicts the fact that 
neither b, nor Cr is divisible by p. • 

Theorem 4.23 
Let f(x) be a polynomial with integer coefficients. Then f{x) factors as a prod­
uct of polynomials of degrees m and n in Q[x] if and only if f(x) factors as a 
product of polynomials of degrees m and n in Ll[x]. 

Proof"' Obviously, if fix) factors in .tl[x], it factors in Q[x]. Conversely, suppose 
fix)= g(x)l(x) in Q[x]. Let c and dbe nonzero integers such that cg(x) 
and dJ(x) have integer coefficients. Then alf(x) = [r:g(x)Jclh(x)]in Ll[x] 
withdeg cg(x) = degg(x)anddegclh(x) = degh(x). Letp be any prime 
divisor of cd, say cd == pl. Then p divides every coefficient of the polyno­
mial c4f(x). By Lemma 4.22,p divides either~coefficientof cg(x) 
or every coefficient of clh(x), say the former. Then cg(x) = pk(x) with 
k(x) E Ll[x] anddeg k(x) = degg(x). Therefore,pif(x) = cdflx) = 
[cg(x)][dh(x)] = [pk(x)][dh(x)]. Cancelingp on each end, we have 
{f(x) = k(x)[clh(x)] in Ll[x]. 

Now repeat the same argument with any prime divisor of t and cancel 
that prime from both sides of the equation. Continue until every prime 
factor of cd has been canceled. Then the left side of the equation will be 
::!::f(x), and the right side will be a product of two polynomials in Ll[x], 
one with the same degree as g(x) and one with the same degree as h(x). • 

EXAMPLE3 

We claim that.f(x) = x4 - Sr + 1 is irreducible in Q[x]. The proof is by con· 
tradiction. If fix) is reducible, it can be factored as the product of two noncon­
stant polynomials in Q[x]. If either of these factors has degree 1, then fix) has 
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a root in Q. But the Rational Root Test shows that.f(x) has no roots in Q. (The 
only possibilities are ± 1, and neither is a root) Thus if f(x) is reducible, the 
only possible factorization is w; a product of two quadratics, by Theorem 4.2. 
In this case Theorem 4.23 shows that there is such a factorization in Z[x]. 
Furthermore, there is a factorization as a product of monic quadratics in Z[x] 
by Exercise 10, say 

(x1 +ax+ b)(XZ +ex +d)= x4
- sx'- + 1 

with a, b, c, d E Z. Multiplying out the left-hand side, we have 

x 4 + (a + c);ii + (ac + b + d}.:i'- + (he + ad)x + hd 
= xf + Oxl - 5Xl + Ox + 1. 

Equal polynomiak have equal ooeffi.cien1s; hence, 

a+c=O ac + b + d= -5 hc+ad=O bd= 1. 

Since a + c = 0, we have a= -c. so that 

~s = ac + b + d = -fil + h + d, 

m; equivalently, 

5 = c2 - h- d. 

Howevet, bd = 1 in Z implies that b = d = 1 or h = d = -1, and~ there are only 
these two possibilities: 

S=cl-1-1 

7 = c1 

or 

There is no integer whose square is 3 or 7, and so a factorization of f(x) as a 
product of quadratics in Z[x], and, hence in Q[xj, is impossible. Therefore,f(x} 
is irreducible in Q[x]. 

The brute-force methods of the pn:ceding example are less effective for polynomi­
als of high degree because the system of equations that must be solved is complicated 
and difficult to handle in a systematic way. However, the irreducibility of certain poly­
nomials of high degree is easily established by 

Theorem 4.24 Eisenstein's Criterion 
Let f{x) = anX" + · · · + fltX + ao be a nonconstant polynomial with Integer 
coefficients. If there is a prime p such that p divides each of aa. a,, · · · , ~n-1 
but p does not divide an and,; does not divide ao, then f(x) is irreducible in Q[x]. 

Proof • The proof is by contradiction. If f(x) is reducible, then by Theorem 4.23 
it can be factored in Z[x], say 

f(x) = (ho + h 1x + · · · + h.x')(c0 + c1x + · · · + C1 x"). 



4.5 Irreducibility in Q[x] 117 

where each b10 c1 E Z, r 2!: 1, and s 2!: 1. Note that a.o =< haeo· By hypothe­
sis, pI Ou and, hence, p I b0 or pI Co by Theorem 1. S, say pI ho· Since p 1 does 
not divide ao, we see that '11 is not divisible by p. We also have a, =< b,c .. 
Consequently, p does not divide br (otherwise a, would be divisible by p, 
contrary to hypothesis). There may be other~ not divisible by p as well. 
Let bk be the first of the b1 not divisible by p; then 0 < k s r < n and 

and 

By the rules of polynomial multiplication, 

ak =boCk+ ht4-1 +' '' + bk-tCI + b,Co, 

so that 

h!AJ = ak- ho~- htCJ,....i - • • · -hs-tllt; 

Since p 114 and p lb1 for j < k, we see that p divides every term on the 
right-hand side of this equation. Hence, p l~c0• By Theorem L S, p must 
divide b~c or co. This contradicts the fact that neither b~c nor Co is divisible 
by p. Therefore,f(x) is irreducible in Q[x]. • 

EXAMPLE4 

The polynomial x 17 + 6x13 - lsx• + :u2- 9x + 12 iJ; irreducible in O[x] by 
Esenstein's Criterion with p = J. 

EXAMPLES 

The po lynomiw :Jt + 5 is irreducible in Q[x] by Eisenstein's Criterion with 
p = 5. Similarly, X' + S is irreducible in Q[x] for each n <=!:: 1. Thus 

there are Irreducible polynomials of every degree m Qlxl· 

Although Eisenstein's Criterion is very efficient, there are many polynomials to 
which it cannot be applied. In such cases other techniques are necessary. One such 
method involves reducing a polynomial mod p, in the following sense. Let p be a posi­
tive prime. For each integer a, let [a] denote the congruence class of a in Zp. If Jl.x) =< 

~ + · · · + a1x + 0u is a polynomial with integer coefficient!!, let ](x) denote the 
polynomial{~+··· + [at]x -t [aJ in Zp[x]. For instance, if f(x) = 2x4

- 3XZ + 
5x + 7 in Z[x], then in Z3[x], 

](x) =< [2]x'- [3]x1 + [S]x + [7] 

=< [2]x• - [O]x1 + [2]x + [I] =< [2]rl + [2]x + [ 1]. 

Notice that f(x) and ](x) have the same degree. This will always be the case 
when the leading coefficient of f(x) is not divisible by p (so that the leading 
coefficient of ](x) will not be the zero class in~ 
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Theorem 4.25 
Let f(x) = a,/ + · · · + a,x + ao be a polynomial with integer coefficients, and 
fet p be a positive prime that does not divide a.t- ff f{x) is irreducible in ..lJ_x), 
then l(x) is irreducible in Q[x). 

Proof • Suppose, on the contrary, thatf(x) is reducible in Q[x). Then by 
Theorem 4.23,j(x) = g(x)h(x) with g(x), h(x) non constant polynomials 
in Z[x], Since p does not divide ~. the leading coefficient of f(x), it 
cannot divide the leading coefficients of ,g(x) or h(x) (whose product is 
at.)- Consequently, deg g(x) = degg(x) and deg h(x) = degh(x). In par­
ticular, neither g(x) nor h(x) is a constant polynomial in ~[x]. 

Verify that f(x) = g(x)h(x) in Z[x) implies that f(x) = g(x)ii(x) in 
Zp[xJ (Exercise 20). This contradicts the irreducibility of j(x) inZp[xJ. 
Therefore,f(x) must be irreducible in Q[x). • 

The usefulness of Theorem 4.25 depends on this fact: fur each nonnegative in­
teger k, there are only finitely many polynomials of degree kin Zp [x) (Exercise 17). 
Therefore, it is always possible, in theory, to determine whether a given polynomial in 
Zp(x) is irreducible by checking the finite number of possible factors. Depending on 
the size of p and on the degree of j(x), this can often be done in a reasonable amount 
of time. 

EXAMPLE 6 

To show thatf(x) = r + 8x4 + J.xl + 4x + 7 is irreducible in Q[x), "We reduce 
mod 2. In Z2[x], J(x) = x1 + :X! + 1. • It is easy to see that j(x) has no roots in 
Z2 and hence no first-degree facton~ in Z1[x). The only quadratic polynomials in 
Z2[x) are x?, :X!+ x, :X!+ 1, and x? +X+ 1. HoweYel; if r, r +X= x(x + 1), 
or X1 + 1 = (x + l)(x + 1) were a factor, then ](x) would have a first-degree 
factor, which it doesn't You can W!e division to show that the remaining qua­
dratic, r + x + 1, is not a factor of f(x). Finally, /(x) cannot have a factor 
of degree 3 or 4 (if it did, the other factor would have degree 2 or 1, which is 
impossible). Therefore, ](x) is irreducible in Z1 [x]. Hence,f(x) is irreducible 
in Q[x]. 

CAUTI 0 N: If a polynomial in Z[x] reduces mod p to a polynomial that 
is reducible in ZJx], then no conclusion can be drawn from 
Theorem 4.25. Unfortunately, there may be many p for 
which the raiuction of f(x) is raiucible in Z'p[x], even when 
f(x) is a.<ltualiy im:ducible in O[x). Consequently, it may 
take more time to apply Theorem 4.25 than is 6rst apparent. 

'"When no cornu sion is likely, we omit the brackets tor elements of Z;,. 
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• Exercises 

A. I. Use the Rational Root Test to write each polynomial as a product of irreduc­
ible polynomials in Q[x]: 

{a} -X"- +il + r +X+ 2 (b) XS + 4-,xA + ;il - r 
(c) 3x5 +2:0- 7x1 + 2xl 
(e) 2x4 + 7il + Sr + 7x + 3 

(d) 2x"- sxl + 3r + 4x- 6 

(f) 6xt - 31il + 25xl + 33x + 7 

2. Show that yp'is irrational for every positive prime integer p. (Hint: What are 
the roots of x2 - ]I? Do you prefer this proof to the one in Exercises 30 and 31 
of Section 1.31) 

3. If a monic polynomial with integer coefficients has a root in Q, show that this 
root must be an integer. 

4. Show that each polynomial is irreducible in O[x], as in Example 3. 

{a} x4 + 2x3 + x + 1 (b) x4 
- zx2 + 8x + 1 

S. Use Eisenstein's Criterion to show that each polynomial is irreducible in Q[x): 

(a) r - 4x + 22 (b) 10 - 15x + 25x2 - 7x4 

(c) 5xtt- 6x4 + 12X' + 36x- 6 

6. Show that there are infinitely many integers k such that ~ + 12x5 
- 21x + k 

is irreducible in Q[x]. 

7. Show that each polynomialj(x) is irreducible in Q[x] by finding a primep 
such thatf(x) is irreducible in l'Jx) 

{a} 7X' + 6r + 4x + 6 (b) 9x4 + 4X'- 3x + 7 

8. Give an example of a polynomialf(x) E Z(x] and a primep such thatf(x) 
is reducible in Q(x] but f(x) is irreducible in Zp[x]. Does this contradict 
Theorem 4.25? 

9. Give an example of a polynomial in Z(x] that is irreducible in Q[x] but factors 
when reduced mod 2, 3, 4, and 5. 

I 0. If a monic polynomial with integer coefficients factors in Z(x] as a product of 
polynomials of degrees m and n, prove that it can be factored as a product of 
monic polynomials of degrees m and n in Z[x]. 

B. 11. Prove that 30x" - 91 (where n E 1':, n > 1) has no roots in Q. 

12. Let F be a field andf(x) E l'TxJ. If c E F andf(x +c) is irreducible in F{x1 
prove thatf(x) is irreducible in F{x]. (Hint: Prove the contrapositive.) 

13. Prove thatf(x) "" :tt + 4x + 1 is irreducible in Q[x] by using Eisenstein's 
Criterion to show thatj{x + 1) is irreducible and applying Exen;ise 12. 

14. Prove thatf(x) === x4 + x 1 + :2- + x + I is irreducible in Q(xl (Hint: Use the 
hint for Exercise 21 withp"" 5.] 

IS. Letf(x) =a,;!'+ tr.-1x"-1 + · · · + a1x + ao be a polynomial with integer 
coefficients. lf p is a prime such that pI~. p) ~ ... ,pI a, but p ..t' 0.0 and 
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p 1
) a,., prove thatf(x) is irreducible in Q[x]. [Hint: Let y = lfx inf(x)/X'; the 

resulting polynomial is irreducible, by Theon:m 4.24.] 

16. Show by Cll:amplethat this statement is false: Ifj(x) E Z[x] and there is no 
prime p satistyingthebypothescs of Theorem 4.24, thenf(x) is reducible in Q[x]. 

17. Show that there are J:+l - ¥f polynomials of degreek in Z.Jx]. 

18. Which of these polynomials are irreducible in O[x]: 

(a) x'- x1 + 1 (b) x4 + x + 1 

(c) x + 4x4 + :al + 3r- x + s (d) r + sxl + 4x + 7 

19. Write each polynomial as a product of irreducible polynomials in Q[x). 

(a) r + 2x' - 6xl- 16x - 8 (b) x1 - u - 6x' - 15xl- 33x - 9 

20. If ftx) =a,.:(' + · · · + a1x + ao, g(x) = b,X + · · · + b1x + bo, and h(x) = 
c;r + · · · + c1x + '1) are polynomials in Z[x] such thatf(x) = g(x)h(x), show 
that inZ,[x],J(x) = g(x'1i(x). Also, see Exercise 19 in Section 4.1. 

C. 21, Prove that for p prime, f(x) = #-l + r 1 + · · · + x1 + X + 1 is irredu~;ible 
in Q[x]. [Hint: (x- l)f(x) =:If- 1, so thatf(x) =(X'- 1)/(x- 1) and 
j(x + 1) = [(x + 1)' -1Vx. Expand (x + 1)"by the Binomial Theorem 

(Appendix E) and note that p divides (:)when k > D. Use Eisenstein's 

Criterion to show thatj(x + 1) is im:ducible; apply Exercise 12.] 

EXCURSION: Geometrit:: Con&tructions (Chapter 15) may be lX>veted at 
this point if de,sired. 

II Irreducibility in R[x] and C[x]* 

Unlike the situation in Q[x], it is possible to give an explicit description of all the irre­
ducible polynomials in R[x] and Qx]. Con5equently, you can immediately tell if a poly­
nomial in R[x] or Qx] is irreducible without any elaborate tests or criteria. These facts 
are a oonsequence of the following theorem, which was first proved by Gauss in 1799: 

Theorem 4.26 The Fundamental Theorem of Algebra 
Every nonconstant polynomial in C[x] has a root in C. 

This theorem is sometimes expressed in other terminology by saying th.at the field 
IC is a1gebralcally closed. Every known proof of the theorem depends significantly on 
facts from analysis and/or the theory of functions of a complex variable.. For this rea­
son, we shall consider only some of the implications of the Fundamental Theorem on 
irreducibility in C[x] and R[x]. For a proof, see Hungerford [5]. 

•This section is used only in Chapters 1 1 and 12. It may b& omitted unti I then, if desired. 
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Corollary 4.27 
A polynomial is irreducible in C[x] if and only if It has degree 1, 

Proof•A polynomial fix) of degree ~ 2 in C(x] hu a root inC by Theorem 4.26 
and hence a first-degree factor by the Factor Theorem. Therefore f(x) is 
reducible in C[x], and every irreducible polynomial in C[x] must have 
degree 1. Conversely, every first-degree polynomial is irreducible 
(Example 1 in Section 4.3). • 

Corollary 4.28 
Every nonconstant polynomial t(x) of degree n in C[x] can be wrttten in the 
form c(x - a1Xx- a2) • • • (x -an) for some c, a1, a2, ••• , an E C. This factor­
ization is unique except for the order ofthe factors. 

Proof .. By Theorem4.14,f(x) is a product of im:duciblepolynomials in C[x]. 
Each of them has degree 1 by Corollacy 4.27, and there are exactly n of 
them by Theorem 4.2. Therefore, 

f(x) = (r1 x + s1)(r~ + siJ • • • (r ,x + s,.) 
= r1(x- (-r1- 1.tt}}r2(x- (-r2- 1si)) · · • rJ..x- (-r,.-1s..)) 

= c(x - a1)(x - aiJ • • • (x - a,.), 

where c = r1r2 • • • r,. and a1 = r1-1s~ Uniqueness followsliom Theorem 4.14; 
soo Exercise 25 in Section 4.3. • 

To obtain a de scription of all the irreducible polynomials in R[x], we need 

Lemma 4.29 
If f(x) is a polynomial in R[x] and a + bi is a root of ((x) inC, then a- bi is also 
a root of f(x}. 

Proof '" If c =a + hi E C (with a, h E R), let c denote a -hi. Verify that for 
any c, dEC, 

(c + d) "" c + d and 

Also note that c = c if and only if c is a real munber. Now, if .l{x) = a,.x" + 
· · • + a1x + 01) and cis a root of f(x), thenf(c) = 0, so that 

0 = 0 = j(c) = tJ,.C11 + "' + a1c + 0e 

=: ¥" + ... + ale + an 
= a,p + · · · + aic + ao (Becawe each a,ER.] 

=/{C). 

Therefore c = a - hi is also a root of J(x). • 
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Theorem 4.30 
A polynomial f(x) is irreducible in R[x] if and only If f(x) is a first-degree poly­
nomial or 

f(x) = ail- + bx + c with b2 - 4ac < 0. 

Proof'" The proof that the two kinds of polynomials mentioned in the theo­
rem are in fact irreducible is left to the reader (Exeroise 7). Convenely, 
suppose f(x) has degree ~ 2 and is irreducible in R[x]. Thenf(x) has a 
root win C by Theorem 4.26. Lemma 4.29 shows that w is also a root 
of f(x). Furthermore, w oF w (otherwise w would be a real root of f(x), 
contradicting the irreducib1lity off(x)). Consequently, by the Factor 
Theorem, x -wand x -ware factors of f(x) in C[x]; that is,Jl.x) = 
(x- w)(x- W)h(x) for some h(x) in C[x]. Let g{x) = (x- w)(x- W); 
thenJtx) = g(x)h(x) in C[x]. Furthermore, if w = r + si (with r, s E R), 
then 

g(x) = (x - wXx - W) = (x - (r + s1))(x - (r - s1)) 

= x1 - 2rx + (I + 1}. 

Hence, the coefficients of g(x) are real numbers. 
We now show that h(x) also has real coefficients. The Division 

Algorithm in A:[x] shows that there are polynomials q(x), r(.x) in ll[x] 
such thatf(x) = g(x)q(x) + r(x), with 1(x) = 0 or deg r(x) < deg g(x). In 
C[x], however, We havefl.x) = g(x)h(x) + 0. Since q(x) and r(x) can be 
considered as polynomials in C[x], the uniqueness part of the Division 
Algorithm in C[x] shows that q(x) = h(x) and r(x) = 0. Thus h(x) = 
q(x) E ll[x]. Sincef(x) = R(x)h.(x) and.f(x) is irreducible in A:[x] and 
deg g(x) = 2, h(x) must be a constant dE R. Consequently,j(x) = dg(x) 
is a quadratic polynomial in A:[x] and hence has the f= ax2 + hx + c 
for some a, h, c E R. Since f(x) has no roots in A:, the quadratic formula 
(Exercise 6) shows that~ - 4ac < 0. • 

Corollary 4.31 
Every polynomial f(x) of odd degree In A(x] has a root in R. 

Proof .. By Theorem 4.14,Jtx) = p1(x)pz(x) • • • p,t(x) with eachp,(x) irreduc­
ible in R[x]. Each p1(x) has degree 1 or 2 by Theorem 4.30. Theorem 4.2 
shows that 

degfl.x) = degPt(x) + deg.Pl(x) + · · · + degp,t(x). 

Sincef(x) has odd degree, at least one of the pJ(x) must have degree 1. 
Therefore,Jl.x) has a first-degree factor in A:[x] and, hence, a root in Ill. • 
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It may seem that the Fundamental Theorem and its corollaries settle all the basic 
questions about polynomial equations. UnfOrtunately, things aren't quite that simple. 
None of the known proofS of the Fundamental Theorem provides a constructive way 
to find the roots of a specific polynomial* Therefore, even though we know that every 
polynomial equation has a solution in C, we may not be able to solve a particular 
equation. 

Polynomial equations of degree less than 5 are no problem. The quadratic formula 
shows that the solutions of any second~ polynomial equation can be obtained 
from the coefficients of the polynomials by taking sums, differences, products, quotients, 
and square roots. There are analogous, but more complicated, formulas involving cube 
and fourth roots fur thitd~ and fourth-degree polynomial equations (see page 423 for one 
version of the cubic formula). However, there are no such formulas for finding the roots 
of all fifth~gree or higher~gree polynomials. This remarkable fact, which was proved 
nearly two centuries ago, is discussed in Section 12.3. 

• Exercises 

A. I. Find all the roots inC of each polynomial (one root is already given): 

(a) x4 
- 3r + x-1 + 1x - 30; root I - 2i 

(b) :t - 2r - x-1 + 6x - 6; root 1 + i 
(c) x' - 4XJ + 3xl + 14x + 26; root 3 + 2i 

2. Find a polynomial in ~x] that satisfies the given conditions: 

(a) Monic of degree 3 with 2 and 3 + i as roots 

(b) Monic of least possible degree with I - i and 2i as roots 

(c) Monic of least possible degree with 3 and 4i - I as roots 

3. Factor each polynomial as a product of irreducible polynomials in Q[x], in 
~x], and in C[x]: 

(a) 0 - 2 (b) x1 + 1 (c) r- >? - 5x + 5 

4. Factor xl + x + I + i in C[x]. 

B. 5. Show that a polynomial of odd degree in IR'[x] with no multiple roots must 
have an odd number of real roots. 

*It may seem strange that it is possible to prove that a root e~ists withollt actually ~hibiting one, 
but sliC h "e~ iste nc e theorems" are ~u ite common in mathematics. A very rough analogy is the 
situation that ott u rs when a person is ki II ed by a sniper's bu II et The po lie e know that there is a 
killer, but actually (indingthe killer may be difficult or impossible. 
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6. Letf(x) "' or + bx + c E ll{(x] with a '4: 0. Prove that the roots of f{x) in C 
are 

-b + VIJ - 4ac --b - Yb2 - 4ac 
2a and 2a • 

[Hint: Show that a:il + bx + c"' 0 is equivalent to x1 + (bfa)x"' -cja; then 
complete the square to find x.] 

7. Prove that every tv?+ bx + r: E R[x] with b1
- 4ar: < 0 is irreducible in. R[x]. 

[Hint: See Exercise 6]. 

8. If a + bf is a root of x1 - 3X2 + 2ix + i - l E C[x], then is it true that a - bi 
is also a root? 



CHAPTER 5 

Congruence in f[x] and Congruence-Class Arithmetic 

In this chapter we continue to explore the analogy between the ring Z of integers 
and the ring F[x] of polynomials with coefficients in a field F. We shall see that the 
concepts of congruence and congruence-class arithmetic carry over from Z to 
F[x] with practically no changes. Because of the additional features of the polyno­
mial ring F[x] (polynomial functions and roots), these new congruence-class rings 
have a much richer structure than do the rings Z,. This additional structure leads 
to a striking result: Given any polynomial over any field, we can find a root of that 
polynomial in some larger f1eld. 

m Congruence in F[x] and Congruence Classes 

Definition 

The conoopt of congruence of integers depends ontY on some basic facts abmi divisibility 
in Z. If F is a field, then the polynomial ring Fix] has esxntially the same divisibility 
properties as does Z. So it is not surprising that the concept of congruence in Z and its 
basic properties (Section 2.1) can be carried over to F[x] almost verbatim. 

Let F be a field and f(x), g(x), p(x) E l{x] wfth p(x) nonzero. Then f(x) is 
congruent to g(x) modulo p(x}---written f(x)"" g(x) (mod p(x)}-provided 
thatp(x) divides f(X)- g(x). 

EXAMPLE 1 

In O[x], XZ + x + 1 "" x + 2 (mod x + 1) because 

(~+X+ 1)- (x + 2) = r- 1 = (x + l)(x- 1). 

125 
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Definition 

EXAMPLE 2 

In R(x], 3.0 + 4x'- + 2x + 2 = ~ + 3xl + 3x + 4 (mod x 1 + 1) because 
division shows that 

(3.0 + 4r + 2x + 2) - (;cl + 3x1 + 3x + 4) "" 3_0 - r + r - X - 2 

"" (xl + 1)(3x1
- X - 2). 

Theorem 5.1 
Let F be a f1eld and p(x) a nonzero polynomial In f[x]. Then the relation of 
congruence modulop(x) Is 

(1) reflexive: f(x) = f(x) (mod p(x)) for all f(x)E F[x]; 

(2) symmetric: tf f(x) = g(x) (mod p(x)), then g(x) = f(x) (mod p(x)); 

(3) transitive: if f(x) .!!!!!! g(x) (mod p(x)) and g(x) = h(x) (mod p(x)), then 
f(x) = h(x) (mod p(x)). 

Proof .. Adapt the proof of Theorem 2.1 withp(x),flx), g(x), h(x) in place of 
n, a, b, c. • 

Theorem 5.2 
Let F be a field and p(x) a nonzero polynomial in F[x]. If f(x) = g(x) (mod p(x)) 
and h(x) = k(x) (mod p(x)), then 

(1) f(x) + h(x) = g(x) + lf{x) (mod p(x)), 

(2) f(x)h(x) = g(x)k(x) (mod p(x)). 

Proof .. Adapt the proof of Theorem 2.2 withp(x),flx), g(x),h(x), k(x) in. place 
of n, a, b, c, d. • 

let F be a fleld and /(x), p(x) E. F[x] with p(x) nonzero. The congruence class 
(or residue class) of f(x) modulo p(x) is denoted [f(x)] and consists of all 
polynomials In f[x] that are c.ongruent to f(x) modulop(x), that Is, 

(f(x)] = {g(x) lg(x) ef(x] and g(x).., f(x) (mod p(x))}. 

Since g(x) = j(x) (modp(x)) means thatg(x)- f(x) = k(x)p(x) for some k(x) eF[x] 
or, equivalently, that g(x) = f(x) + k(x)p(x), we see that 

[f(x)] "" {g(x) lg(x) = f(x) (modp(x))} 

""if(x) + k(x)p(x) lk(x) t.F[x]}. 
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EXAMPLE 3 

Consider congruence modulo :r? + I in Jl[x]. The congruence class of 2x + I is 
the set 

{(2x + 1) + l(x)(r + I) lk(x) E R[x]}. 

The Division Algorithm shows that the elements of this set are the polynomials in R[x] 
that leave remainder 2x + I -when divided by >?- + 1. 

EXAMPLE 4 

Consider congruence modulo :r? + x + I in Z2[x]. To find the congruence 
class of x'-, we note that r """X + I (mod x1 +X+ 1) because r- (x + 1) = 
r- x- 1 = (x2 + x + 1)1 (remember that I+ 1 = 0 inZ:z, so that I= -1). 
Therefore, x + I is a member of the congruence class [x2]. In fact, the next 
theorem shows that [x + 1] = [x2). 

Theorem 5.3 
f(x) = g(x/ (mod p(x)) if and only if [f{x)) = [g(x)). 

Proof,. Adapt the proof of Theorem 2.3 withf(x), g(x), p(x), and Theorem 5.1 
in place of a, c, n, and Theorem 2.1. • 

Corollary 5.4 
Two congruence classes modulo p(x) are either dis joint or identical. 

Proof ... Adapt the proof of Corollary 2A. • 

Under congruence modulo n in Z, there are exactly n distinct congruence classes 
(Corollary 2.5). These classes are [0], [1], ... , [n - 1l Note that there is a class for each 
possible remainderunder division by n. In J1:x] the possible reiiUUnders under di\'i­
sion by a polynomial of degree n are all the polynomials of degree less than n (and, of 
course, 0). So the analogue of Corollary 2.5 is 

Corollary 5.5 
Let F be a field and p(x) a polynomial of degree n in F[x], and consider congru­
ence modulo p(x). 

(1} If f(x) E F[x) and r(x) is the remainder when f(x) is divided by p(x), then 
[f(x)) = [r(x)]. 
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(2) LetS be the set consisting of the zero polynomial and all the poly­
nomials of degree less than n in ftx]. Then every congruerK:e class 
modulo p(x} is the class of some polynomial in S, and the congru­
ence classes of different polynomials inS are distinct 

Proof•(l) By the Division Algorithm, f(x) = p(x)q(x) + r(x), with r(x) = Op or 
deg r(x) < n. Thus,f(x) - r(x) = p(x)«_x), so that fix) = r(x) (mod p(x)). 
By Theorem 5.3, (f(x)] = [r(x)]. 

(2) Since r(x) = Op or deg r(x) < n. we see that r(x)E S. Hence, 'iNery 
congruence class is equal to the oongruence class of a polynomial inS. 
Two different polynomials in S cannot be congruent modulo p(x) because 
their difference has degree less than n. and hence is not divisible by p( x). 
Therefore, different polynomials in Smust be in distinct oongruence 
classes by Theorem 5.3. • 

The set of all congruence classes modulo p(x) is denoted 

F(x]/(p(x)), 

which is the notational analogue of Z,.. 

EXAMPLE5 

Consider congruence modulo :x? + 1 in U[x]. There is a congruence class for 
each possible remainder on division by :il + 1. Now, the possible remainders 
are polynomials of the form rx + s (with r, s E R.; one or both of r, s may 
possibly be 0). Therefore, A[x]/(x1 + 1) consists of infinitely many distinct 
congruence classes, including 

[0], [x1 [x + 1], [5x + 3], [? + 2l [x- 71 .... 

Corollary 5.5 states that [rx + s] = [ex + d] if and only if rx + sis equal (not 
just congruent) to ex +d. By the definition of polynomial equality, rx + s = 
ex + d if and only if r = c and s = d. Therefore, every element of R.[x]/(x1 + 1) 
can be written lllliquely in the fonn [rx + 8]. 

EXAMPLE 6 

Consider congruence modulo :x? + x + 1 in Z:;lx]. The possible remainders on 
division by .x1 + x + 1 are the polynomials of the form ax + b with a, bE '4. 
Thus there are only four possible remainders: 0, 1, x, and x + 1. Therefore, 
Z:l{xV(r + x + 1) consists of four congruence classes: [0], [1], [x], and (x + 1]. 

EXAMPLE1 

The pattern in Example 6 works in the general case. Let n be a prime integer, 
so that Z,. is a field and the Division Algorithm holds in ZJx]. If p(x)E Z,.(x] 
has degree k, then the possible remainders on division by p(x) are of the form 
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ao + a1x + · · · + 11\--~ 1, with Clj eZ,.. There are n possibilities for each of 
the k coefficients ao, • .. , ak-l• and so there are If< different polynomials of this 
form. Consequently, by Corollary 55, there are exactly tl distinct congruence 
classes modulo p(x) in Z,.[xJf(p(x)). 

• Exercises 

NOTE: F detl()tes afield andp(x) a non::ero polynomial in F[x]. 

A. I. Letf(x), g(x), p(x) EF[x], withp(x) nonzero. Determine whether f(x) == g(x) 
(modp(x)). Show your work. 

(a) f(x) -= r - 2x" + 4~ + X + I; g(x) -= 3x' + zil - Sr - 9; 
p(x)=r+ I;F=Q 

(b) f(x) = x4 + x'- + x + 1; g(x) = x4 + K + ~ + I; 
p(x) = r + x; F = Z2 

(c) f(x) = 3r + 4x' + sil - 6:2 + Sx - 7; 
g(x) = u + 6x4 + x3 + 2x2 + 2x - 5; p(x) = x3 

- r + X - 1; F = ~ 
2. If p(x) is a nonzero constant polynomial in F[x], show that any two 

polynomials in F[x] are congruent modulo p(x). 

3. How many distinct congruence classes are there modulo Jf + x + 1 in .Z2[x]? 
List them. 

4. Show that, under congruence modulo x.' + 2x + I in Z~ [x], there are exactly 
27 distinct congruence classes. 

5. Show that there are infinitely many distinct congruence classes modulo X'- - 2 
in Q[x]. Describe them. 

6. Letae.F. Describe the congruence classes in F[x] modulo the polynomial x- a. 

7. Describe the congruence classes in F[x] modulo the polynomial x. 

B. 8. Pro"\e or disprove: If p(x) is relatively prime to k(x) andfix)k(x) == g(x)k(x) 
(modp(x)), thenfix) == g(x) (modp(x)). 

9. Prove thatf(x) == g(x) (modp(x)) if and only if f(x) and g{x) leave the same 
remainder when divided by p(x). 

10. Prove or disprove: If p(x) is irreducible inF[x] andf(x)g(x) == Op(modp(x)), 
thenf(x) == OF(modp(x)) or g(x) == OF(modp(x)). 

II. If p(x) is reducible inF[x], prove that there existf(x), g(x) EF[x] such that 
fix) '#-OF (mod p(x)) and g(x) <F OF (mod p(x)) butf(x)g(x) == OF{ mod p(x)). 

12. If fix) is relatively prime to p(x), prove that there is a polynomial g(x) EF[x] 
such thatf(x)g(x) == lp (mod p(x)). 

13. Supposef(x), g(x)e R[x] andf(x) == g(x) (mod x). What can be said aboutthe 
grafhs of y =fix) andy = g(x)? 
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Ill Congruence-CI ass Arithmetic 

Definition 

Congruence in the integers led to the rings Z,. Similarly; oongruence in F[x) also pro­
duces new rings and fields. These turn out to be much richer in structure than the rings 
Z,. The develop:nent here closely parallels Section 2.2. 

Theorem 5.6 
Let f oo a field and p(x) a nonconstant polynomial in f[x]. If [f(x)] = [g(x)] and 
[h{x)] = [k{x)] in f[x)/(p(x)), then, 

[f{x) + h(x)] = [g(x) + k(x)] and [ftx)h(x)] = [g(x)k(x)). 

Proof., Copy the proof of Theorem 2.6, with Theorems 5.2 and 5.3 in place of 
Theorems 2.2 and 2.3. • 

Because of Theorem 5.6 we can now define addition and muhiplk:ation of con­
gruence classes just as we di.d in the integers and be certain that these operations are 
independent of the choice of representatives in each congruence class. 

Let F be a field and p(x) a ronconstant pofynomlal In f[x]. Addition and 
multiplication In F[x]/{p(x)) are defined by 

EXAMPLE 1 

[f(x)] + [g(x)] = [f(x) + g(x)), 

[f(x)][g(x)] = [f(x)g(x)]. 

Consider congruence modulo x1 + 1 in R[x]. The sum of the classes (2x + 1] 
and [3x + 5) is the class 

[(2x + 1) + (3x + 5)] = [5x + 6]. 

The product is 

[2x + 1][3x + S] = [(2x + l)(3x + 5)] = [6x1 + 13x + 5). 

As noted in Example 5 of Section 5.1, every congruence class in R[x]/(x'- + 1) 
can be written in the form [ax + h]. To express the class [6x'- + 13x + 5] in this 
fonn, 'We divide 6r + 13x + 5 by x1 + 1 and find that 

6r + nx + 5 = 6(r + 1) + (13x- 1). 

It folhw.;that W + 13x + 5"" 13x- 1 (modxl + 1), andhence[6.xl + 13x + 5) = 
(13x- 1]. 
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EXAMPLE 2 

In Example 6 of Section 5.1, we saw that Zix]f(x1 + x + 1) consists of four 
classes: [0], [1], [x], and [x + 1]. Using the definition of addition of classes, 
we see that [x + I] +[I]= [x + 1 + I]= [x] (remember that 1 + 1 = 0 
in ZiJ. Similar calculations produce the foBowing addition table for 
Z2[x]/(x1 + x + 1): 

+ [0] [I] [x] [x +I] 

[0] [0] [1] [x] [x + I] 
[1] __ J~] __________ ~l-------~ [x + 1] [x] 

----------
[x] [x] [x + I] [0] [I] 
[x + 1] [x + 1] [x] [1] [0] 

Most of the multiplication table for Z2[x]/(x2 + x + 1) is easily obtained from 
the definition: 

[0] [I] I [x] [x +I] 

[0] [0] [0] 1 [0] [0] 

_[_1]__ ______ J~J _____ J!L ______ j [x] [x + I] 
[x] [0] [x] 

[x + 1] [0] [x + I] 

To fill in the rest of the table, note, for example, that 

[x] • [x + 1] = [x(x + I)] = [x2 + x]. 

Now division or simple addition in Z1[x] shows that x1 + x = (r + x + 1) + 1. 
Therefore, J!l + x == 1 (mod r + x + 1), so that [r + x] = [I]. A similar calcu­
lation shows that [x] • [x] = [x2] = [x + I] (because x2 = (r + x + 1) + (x + 1) 
in Z2[xD. Verify that [x + I ][x + 1] = [x]. 

If you examine the tables in the preceding example, you will see that 
Z1[x]/(il + x + 1) is a commutative ring with identity (in fact, a field). In view 
of our experience with Z and llH, this is not too surprising. What is unexpected is the 
upper left-hand comers of the tYoO tables (the sums and products of [0] and [1D. It is 
easy to see that the subset F* = { [0], [I]} is actually a subring of Z2[x]/(x1 + x + 1) 
and that F* is isomorphic to 7l2 (the tables for tbe two systems are identical except for 
the brackets in F*). These facts illustrate the next theorem. 

Theorem 5.7 
Let F be a f1eld and p(x) a nonconstant polynomial in F[x]. Then the set 
f[x]f(p(x)) of congruence classes modulo p(x) is a commutative ring with 
identity. Furthermore, f[x]f(p(x)) contains a sub ring F* that is i_somorphic to F. 
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Proof~ To prove that F[x]/(p(x)) is a commutative ring with identity, adapt the 
proof of Theorem 2.7 to the present case. Let F* be the subset of 
F[x]/(p(x))consisting of the congruence classes of all the constant 
polynomials; that is, F* = {[a] I aEF}. Verify that F* is a subring of 
F[x]f(p(x)) (Exercise 10). Define a map tp:F-+ F* by tp(a) = [a]. This 
definition shows that tp is surjective. The definitions of addition and 
multiplication in F[x]/(p(x)) show that 

q;(a +b) = [a+ b] = [a] + [b] = q;(a) + q;(b) and 

({J(ab) = [ab] = [a] • [b] = ({J(a) • q;(b). 

Therefore, q; is a homomorphism. 
To see that q; is injective, suppose ({J(a) = rp(b). Then [a] = [b], so that 

a= b (modp(x)). Hence,p(x) divides a- b. However,p(x) has degree c::: 1, 
and a- bE F. This is impossible unless a - b = 0. Therefore, a = b and 
({J is injective. Thus ({J:F-+ F* is an isomorphism. • 

We began with a field F and a polynomial p(x) in F[x]. We have now constructed a 
ring F[x]f(p(x)) that contains an isomorphic copy of F. What we would really like is a 
ring that contains the field F itself. There are t'NO possible ways to accomplish this, as 
illustrated in the following example. 

EXAMPLE 3 

In Example 2, we used the polynomial x? + x + 1 in .Z2[x] to construct the ring 
Z,[x]f(x2 + x + 1), which contains a subset.F* = {[0], [1]} that is isomorphic to 
z2. Suppose we itkntify z2 with its isomorphic copy F* inside Z,[x]/(x2 +X+ 1) 
and write the elements of F* as if they were in ~· Then the tables in Example 2 
booome 

+ 0 [x] [x + 1] 

0 0 [x] [x + 1] 

1 1 0 [x + 1] [x] 

[x] [x] [x + 1] 0 

[x +1] [x +1] [x] 1 0 

0 [x] [x + 1] 

0 0 0 0 0 

1 0 1 [x] [x + 1] 

[x] 0 [x] [x + 1] 1 

[x + 1] 0 [x + 1] 1 [x] 

We now have a ring that has .Z2 as a subset. If this procedure makes you a bit 
uneasy (is Z2 really a subset?), you can use the following alternate route to the 
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same end. Let E be any four-element set that actually contains Z2 as a subset, 
say E = {0, 1, r, s}. Define addition and multiplication in E by 

+ 0 l T $ 0 l T $ 

0 0 l T $ 0 0 0 0 0 

1 l 0 3 T l 0 l T $ 

T T 3 0 T 0 T 3 1 

$ 3 T 1 0 s 0 s l T 

A comparison of the tables for Z2[xV(xl + x + 1) and those for E shows that 
these two ri~ are isomorphic (replacing [x] by rand [x + 1] by 3 changes 
one set of tables into the other). Therefore, E is essentially the same ring we 
obtained before. However, E does contain Z2 as an honest-to-goodness subset, 
without auy identification. 

What was done in the preceding example can be done in the general case. Given 
a field F and a polynomial p(x) in F(x], we can construct a ring that contains F as 
a subset. The customary way to do this is to identify F with its isomorphic copy F* 
inside F(x]j(p(x)) and to consider Fto be a subset of F[x]f(p(x)). If doing this 
makes you uncomfortable, keep in mind that you can always build a ring isomorphic 
to F[x]j(p(x)) that genuinely contains F as a subset, as in the preceding cocample. 
Because this latter approach tends to get cumbersome, we shall follow the usual 
custom and identify Fwi th F* hereafter. Consequently, when a, b E F, we shall write 
b[x]instead of [b][x] and a+ b[x]instead of [a] + [b][x] =[a+ bx]. Then Theorem 5.7 
can be reworded: 

Theorem 5.8 
Let F be a field and p{x) a nonconstant polynomial in F[x]. Then f{x]j(p(x)) is a 
commutative ring with identity that contains F. 

If a and 11 are integers such that (a, n) = l, then by Theorem 2.10, [a] is a unit in Z,.. 
Here is the analogue for polynomials. • 

Theorem 5.9 
Let F be a field and p(x) a nonconstant polynomial in F[x]. if f(x) E F[x] and f(x) 
is relatively prime to p(x), then [f{x)] Is a unit in F[x]f(p(x)~ 

Proof" By Theorem 4.8 there are pol)Domials u(x) and v(x) such thatf(x)l(x) + 
p(x)v(x) = l. Hence,j(x)u(x) - l = -p(x)«,x) = p(x)(-v(x)), which 
implies that (J{x )u(x )] = [1] by Theorem 5 .3. Therefon; [j(x )I u(x )] = 
[j(x)u(x)] = [1], so that [j(x)] is a unit in F[x]j(p(x)). • 
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EXAMPLE 4 

Since X'-- 2 is irreducible in Q[x], 2x + 5 and :il- ~ 2 are relatively prime in O[x]. 
(Why'!) Hence, [2x + 5] is a unit in the ringO[x]/(r - 2). The proof of Theorem 5.9 
shows that its inverse is [ u(x)], where (2x + 5)u(x) + (r - 2)l(x) ""' I. Using the 
Euclidean Algorithm as in Exercise 15 of Section 1.2, we find that 

(2x + s>( l~x + 157) + (r- 2)(~) = I. 

Therefore, [- ~ x + :
7

] is the inverse of [2x + 5] in Q[x]/(r - 2). 

• Exercises 

A. b1 Exercises 1-4, write out the addition and multiplicati:m tables for the oongriWIIce­
class ring F[x]j(p(x)).ln each case, is F[x]/(p(x)) afield? 

1. F = Z,.;p(x) =X~+ X+ l 

3. F = Z2;p(x) =X'-+ I 

2. F= Z~;p(x)= ::2 + I 
4. F= Z5;p(x) = r +I 

B.ln Exercises 5-8, each element of the given congrwmce-class ring can be written 
in the form [ax+ b] (Why?). Determine the rules for addition and multiplication 
of congruence classes. (In other words, if the product [ax + b][ c x + d] is the 
class[rx + s], describe how to .find rand sfrom a, b, c, d, andsimilarlyfor 
addition.) 

s. A[x]/(r + I) [Hint: See Example 1.] 

6. O[x]/(x2
- 2) 7. O[x]/(r- 3) s. O[x]/(r) 

9. Show that R[x]/(r + I) is a field by verifying that every nonzero congruence 
class fax + b] is a unit. [Hint: Show that the inverse of [ax+ b] is [ex+ d], 
where c = -aj(d- + Jl) and d = b/(ti'- + ll ).] 

10. LetFbe a field andp(x)EF[x]. Prove that F* ={[a] I ae.F} is a subring of 
F[x]/(p(x)). 

11. Show that the ring in Exercise 8 is not a field. 

12. Write out a complete proof of Theorem 5.6 (that is, carry over to F[x] the 
proof of the analogous facts for Z). 

13. Prove the first statement of Theorem 5.7. 

14. In each part explain why [.f{x)] is a unit in F[x]/(p(x)) and find its inverse. 
[Hint: To find the invene, let u(x) and 11( x) be as in the proof of Theorem 5.9. 
You may assume that u(x) = ax + b and \l(x) = ex + d. Expandingf(x)u(x) + 
p(x)\l(x) leads to a system of linear equations in a, b, c, d. Solve it.] 

(a) [f(x)] = [2x- 3] e Q[x]/(r- 2) 

(b) [/(x)] = [x2 + x + I] E Z3[x]/(r + I) 
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C. 15. Find a fourth-degree polynomial in ~[ x] whose roots are the four elements of 
the field .Z:JxV (r + x + 1), whose tables are given in Example 3. [Hmt: The 
Factor Theorem may be helpful.] 

16. Show that Q[ x]/ (r- 2) is a field. 

Ill The Structure of F[x]/(p(x)) When p(x) Is Irreducible 

When p is a prime integer, then Theorem 2.8 states, in effect, that Z, is a field (and, of 
course, an integral domain). Here is the analogous result for F[x] and an irreducible 
polynomial p(x). 

Theorem 5.10 
Let F be a field and p(x) a nonconstant polynomial in F[x]. Then the following 
statements are equivalent: 

(1) p(x) is irreducible in f[x]. 

(2) f[x]f(p(x)) is a fleld. 

(3) F[x]f(p(x)) is an integral domain. 

Theorem 5,10 and most of its proof are a copy of Theorem 2.8 and its proof, with 
Z replaoed by F[x] and Z, by F(~f(p(x)), and the necessary adjustments made for the 
differences between prime integers and irreducible polynomials. 

Proof ofTheoram 5.10 ... (l) => (2) By Theorem5.7, I<(~/(p(x)) is a commutative 
ring with identity, and thus satisfies Axioms 1-10. To prove that 
F(x)f(p(x)) is a field, we must verify that every nonzero element in 
F(x)f(p(x)) is a unit (Axiom 12, page 49). Suppose that [a(x)] ;: [0] in 
F(x)f(p(x)). Wemustfind [u(x)] such that [a(x)] [u(x)] = [1M. Since 
[a(x)] ::/= [01 we know that a(~ ~ 0 (mod p(x)) by Theorem 5.3. Hence, 
p(x) .t a(~ by the definition of congruence. Now the gcd of a(x) and 
p (x) is a monic polynomial that divides both a(~ and p(x). Since p(x) 
is irreducible, the gcd is either ly or a monic associate of p(x) (the only 
monic divisors of p(~). As explained on page 100, an associate of p(x) 
is a polynomial of the form q:~(~. with Op ::/= e EF. Consequently, a(x) 
is not divisible by any associate of p(x) (becausea(x) is not divisible by 
p(x)). Since the gcd also divides a(x) and p(x) ..r a(x), the gcd of a(x) and 
p(x)must be lp. By Theorem 4.8, there are polynomials u(x) and v(x) so 
that a(x)u(x) + p(x)v(x) = lpo Hence, a(x)u(x) - lp= p(~(-v(x)), so 
that a(x)u(x) os lp(modp(x)). Therefore, [a(x)u(~] = [lp) in Ff..x)f(p(x)) 
by Theorem 5.3. Thus, [a(x)][u(x)] = ~x)u(x)] = [l.,J, so that [a(x)] is a 
unit. Hena; Ff..x)/(p(x)) satisfies Axiom 12 and I<(x)/(p(~) is a field. 

(2) =>{3) This is an immediate consequence ofTheorem 3.8. 
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(3) q. (1) We shall verify statement (2) of Theorem 4.12 to show that 
p(x) is irreducible. Suppooe that b(x) and c(x) are any polynomials in J1x) 
andp(x") I b(x)c(x). Then b(x)c(x) '"'Op(modp(x)). So by Th.eo:rem 5.3, 

[b(x)][c(x)] = [b(x)c(x)] = [Or) in F(x)/(p(x)). 

Becausel'{x)/(p(x)) is an integral domain by (3), we have [a(x)) = [Op) 
or [b(x)] = [Op). Thus, b(x) = Op (mod p(x)) or c(x) = Or (mod p(x)) by 
Theorem5.3, which means thatp(x) I b(x) orp(x) I c(x) by the definition 
of congruence. Therefure,p(x) is irreducible by Theorem4.12 • 

Theorem 5.10 can be used to construct finite fields. If pis prime and.f{x) is irreduc­
ible in ~[x] of degroo k, then Z)._x)j(f{x)) is a field by Theorem 5.10. Example 7 in 
Section 5.1 shows that this field has I' elements. Finite fields are discussed further in 
Section 11.6, where it is shown that there are irreduCible polynomials of every positive 
degr= in Zp [x] and, herx:e. finite fields of all possible prime power orders.. See Exercise 9 
for an example. 

Let Fbe a field and p(x) an irreducible polynomial in F[x). Let K denote the field of 
congruence classes F{x]/(p(x)). By Theorems 5.8 and 5.10, F is a subfield of the field 
K. One also says that K is an extension field of F. Polynomials in F{x] can be consid­
ered to have coefficients in the larger field K, and we can ask about the roots of such 
polynomials inK. In particular, what can be said about the roots of the pofynomial 
p(x) that we started with? Even though p(x) is irreducible in F[x], it may have roots in 
the extension field K. 

EXAMPLE 1 

The polynomial p(x) = r + X + 1 has no roots in Z2 and is, then:fure, irreducible 
inZJx] by CoroBary4.19. Consequently, K= Z2[x]/(r + x+ 1)isan extension 
field of Z2 by Theorem 5.10. Using the tables forK in Example 3 of Section 5.2, 
we see that 

[xf + (x] + 1 = [x + l) + [x] + 1 = 1 + 1 = 0. 

This result may be a little easier to absorb if we use a different notation. Let 
a = [x]. Then the calculation above says that a'- + a + 1 = 0; that is, a is a root 
inK of p(x) = r + X+ 1. It's important to noteherethat you don't teally 
need the tooles forK to prove that a is a root of p(x) because we know that 
r + X+ 1 ""0 (mod r + X+ 1). Consequently, (0 + X+ 1] = 0 inK, aiXi 
by the definition of congruence-class arithmetic, 

a2 + a + 1 = fx)1 + [x] + 1 = (x1 + x + 1) = 0. 

fur the general ca~e we haw 

Theorem 5.11 
Let F be a field and p(x) an irreducible polynomial in F[x]. Then F[x]j(p(x)) is an 
extension f1eld of Fthat contains a root ofp(x). 
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Proof .. Let K = F[ xV(p(x)). Then K is an extension field of F by Theorems 5.8 
and 5.10. Letp(x) = a,.X' + · · · + a1x + ao, where each a1is in Fand, 
hence, inK. Let a = [x] inK. We shall show that a is a root of p(x). By 
the definition of congruence-class arithmetic inK, 

a, a"+ · · · + a1a + ao = aJxf + · · · + a1[x] + ao 
= [a,.x" + · · · + a1x + aol 
= [p(x)] =OF [Becamep(x) = Op(modp(x)H 

Therefore, a E Kis a root of p(x). • 

Corollary 5,12 
Let F be a field arx:J f{x) a nonconstant polynomial in f[x]. Then there is an 
extension Aeld K of F that contains a root of f(x). 

Proof .. By Theorem 4.14,/(x) has an irreducible factor p(x) in F[x]. By Theorem 
5.11, K = F [xV(p(x)) i.s an extemion field of F that contains a root of p(x). 
Since every root of p(x) is a root ofJ(x), K contains a root of f(x). • 

The implications of Theorem 5.ll run much deeper than might first appear. 
'Throughout the history of mathematics, the passage from a known number system to a 
new, larger system has often been greeted with doubt and distrust. In the Middle Ages, 
some mathematicians refused to acknowledge the existence of negative numbers. When 
complex numbers were introduced in the seventeenth century, thae was uneasiness-· 
which extended for nearly a CC!ltury-because some mathematicians would not awept 
the idea that there could be a number whose square is -1, that is, a root of :il + l. One 
cause for these difficulties was the lack of a suitable framework in which to view the 
situation, Abstract algebra provides !UCh a framework. Theorem 5.ll and its corollary, 
then, take care of the doubt and uncertainty. 

It is instructive to consider the complex numbers from this point of view. Instead 
of asking about a number whose square is -1, we ask, ''Is there a field containing 
R in which the polynomial xl + 1 has a root'!" Since :il + 1 is irreducible in R[x], 
Theorem 5.11 tells us that the answer is yes: K = R[x]f(r + 1) is an extension field of 
R that contains a root of xl + 1, namely a = [x]. In the field K, a is an element whose 
square is -1. But how is the field K related to the field of complex numbers introduced 
earlier in the book? 

As is noted in Example 5 of Section 5.1, every element of K = R[x]f(xl + 1) can 
be written uniquely in the form [ax + b] with a, b ER. Since we are identifying each 
element r E R with the element [r] in K, we see that every element of K can be written 
uniquely in the form 

[a+ bx] = [a] + [b][x] = a + ba. 

Addition in K is given by the rule 

(a+ ba) + (c + da) = [a.+ bx] + [c + dx] = ((a+ bx) + (c + dx)] 

=[(a+ c)+ (b + d)x] =[a+ c] + [b +dJ[x]. 
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so that 

(a + ba) + (c + da) = (a + c) + (b + d)a. 

Multiplication in K is given by the rule 

(a+ ba)(c + da) = [a + bx][c + dx] = [(a+ bx)(c + dx)] 

= [ac + (ad+ bc)x + bdx~ 

= ac +(ad+ bc)a + bdr:l-. 

However, a is a root of :X2 + I, and so a 2 = -I. Therefore, the rule for multiplication 
inK becomes 

(a+ baXc + da) = (ac - bd) +(ad+ bc)a. 

If the symbol a is replaced by the symbol i, then these rules become the usual rules for 
adding and multiplying complex numbers. In formal language, the field K is isomor­
phic to the field C, with the isomorphism }being given by }{a+ ba) =a+ hi. 

Up to now we have taken the position that the field C of complex numbers was 
affi=ady known. The field K constructed above then turns out to be isomorphic to the 
known field C. A good case can be made, however, for not assuming any previous 
knowledge of the complex numbers and using the preceding example as a tkfinition 
instead. In other words, we can define C to be the field il [xJ/(x2 + 1). Such a definition 
is obviously too sophisticated to use on high-school students, but for mature students 
it has the definite advantage of removing any lingering doubts about the validity of 
the complex numbers and their arithmetic.* Had this definition been available several 
centuries ago, the introduction of the complex numbers might have caused no stir 
whatsoever. 

• Exercises 

NOTE: Falwaysdenotesafield. 

A. 1. Determine whether the given congrueru::e-class ring is a field. Justify your 
answer. 

(a) .Z3[x]f(x3 + 2Jr?- + x + 1) 

(b) Z~[x]/(2.0 - 4x2 + 2x + 1) 

(c) Zt[xJ!(x~ + :X2 + I) 

B. 2. (a) Verify that 0(v'2) = {r + N21 r, sEQ} is a subfield of R. 

(b) Show that O(v2) is isomorphic to Q[x]f(x2 - 2). [Hint: Exercise 6 in 
Section 5.2 may be helpful.] 

•only a minor rearrangement of this book is needed to accommodate such a definition. A few 
exarq:>les in Chapter 3 would have to be omitted, and the discussion of irreducibility in C[x] 
and lll[x] (Section 4.6} would have to be postponed. All the intervening material in Chapter 5 is 
independent of any formal knowledge of the complex numbers. 
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3. If aEF, describethe fieldF[x]f(x- a). 

4. I.etp(x) be irreducible in F[x]. Without using Theorem 5.10, prow that if 
[f(x)][g(x)] = [OF] in F[x]f(p(x)), then (f(x)] = [Oy] or [g(x)] = [OJ>1. [Hint: 
Exercise 10 in Section 5 .1.] 

5. (a) Verify that 0('\/3) = {r + -'0"1 r, s E Ql} is a subfield of R.. 

(b) Show that O(v'3) is isomorphic to Q[x]/(r- 3). 

6. I.etp(x) be irreducible inF[x]. If [f(x)] #- [OF) in F[x]f(p(x)) and Jl(x) E 
F[x], prove that there exists g(x)E F[x] sw;:h that [f(x)][g(x)] = [h(x)] in 
F[x]/(p(x)). [Hint: Theorem 5.10 and Exercise 12(b) in Section 3.2.] 

7. Ifj(x)EF[x] has degree,, provethatthere exists an extension field E of 
F such thatf(x) = Co.(x ~ c1)(x ~ c;) • • · (x - cJ for some (not necessarily 
distinct) c; E E. In other words, E contains all the roots of f(x). 

8. If p(x) is an irreducible quadratic polynomial in F[x], show that F[x]J(p(x)) 
contains all the roots of p(x). 

9. (a) Show that Zax]/(xl + x + 1) is a field. 

(b) Sixlw that the field Z:z{x]/(.:2 + x + 1) oontains all three roots of ;t;~ + x + 1. 

10. Show that Q[x]/(r - 2) is not isomorphic to Q[x]/(xl ~ 3). [Hint: Exercises 2 
and 5 may be helpful.] 

ll. I.etKbearingthatoontains4 as asubring. Sixlw thatp(x) = ~ + 1 EZt;[x] has 
no roots in K. Thus, Corollary 5.12 may be false if F is not a field. [Hint: If u 
were a root, then 0 = 2 · 3 and 3u2 + 1 = 0. Derive a contradiction.] 

12. Show that 2x1 + 4r + 8x + 3 E z,6[x] has no roots in any ring Kthat contains 
zl6 as a subring. [See Exercise 11.] 

C. 13. Show that every polynomial of degree 1, 2, or 4 inZ2[x] has a root in 
Z 2[x]/(x" + x + 1). 





CHAPTER 8 

Ideals and Quotient Rings 

Congruence in the integers led us to the finite arithmetics Z, and helped moti­
vate the definition of a ring. Congruence in the polynomial ring l{x] resulted in a 
new class of rings consisting of the various F[x]/(p(x)). These rings enabled us to 
construct extension fields of F that contained roots of the po lynom ia I p(x). In this 
chapter the concept of congruence is extended to arbitrary rings, producing 
additional rings and a deeper understanding of algebraic structure. 

You wi II see that much of the discussion is an exact para lie I of the development 
of congruence in Z (Chapter 2) and in l{x] (Chapter 5). Nevertheless, the results 
here are considerably broader than the earlier ones. 

Ill Ideals and Congruence 

OUr goal is to develop a notion of congruenoe in arbitrary rings that includes as spe­
cial cases congruence modulo n in Z and congruence modulo p(x) inF[x]. \Ve begin by 
taking a second look at some examples of congruenoe in Z and Fl:x] from a somewhat 
different viewpoint than before. 

EXAMPLE 1 

In the ring Z, a ~ b (mod 3) means that a - b is a multiple of 3. Let I be the set 
of all muhiples of 3, so that 

I= {0, ±3, ±6, ... }. 

Then congruence modulo 3 may be characteriZted like this: 

a=- b (mod 3) means a-bEL 

141 
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Definition 

Observe that the subset lis actually a !lUhring of Z (sums and products of mul­
tiples of 3 are also multiples of 3). Furthermore, the product of any integer and 
a multiple of 3 is itself a multiple of 3. Thus the subring I has this property: 

Whenewr k E Z and i E I, then kl t= I. 

EXAMPLE 2* 

The notation f(x) ""' g(x) (mod ~ - 2) in the polynomial ring O[X) means that 
f(x) - g(x) is a multiple of x?- 2. Let I be the iki of all multiples of x? - 2 in Q[X), 
that is, I= {h(xXi'-- 2)! ll(x)E Q[x]}. Once again, it is not diffi:;ult to checl:. that lis 
asubringofQ[x] with this property: 

Whenever k(x) E O[x] and t(x)E I, then k(x)t(x) E/ 

(fu: product of any polynomial with a multiple of r- 2 is itself a multiple of;;?-- 2). 
Congruence modulo XZ - 2 may be d=ibed in terms of /: 

f(x) ""'g(x) (mod XJ-- 2) means j{x)- g(x)E I. 

These examples suggest that congruence in a ring R might be defined in terms 
of certain subrings. If I were such a subring. we might define a ""' b (mod I) to 
nrean a - bE I. The subring I might consist of all multiples of a fixed element, as in 
the preceding examples, but there is no reason for restricting to this situation. The 
examples indicate that the key property for su:;h a subring I is that it "absorbs prod­
ucts": Whenever you multiply an element of I by any element of the ring (either inside 
or outside 1), the resulting product is an element of I. The set of all multiples of a fixed 
element has this absorption property. We shall see that many other subrings have it as 
well. Because such subrings play a crucial role in what follows, we pause to give them 
a name and to consider their basic properties. 

A subrlng I of a ring R Is an Ideal provided: 

Whenever r E R and liE /, then ICI ~I and IN E /. 

The double absorption condition that raE I and arE I is necessary for non commutative rings. 
When R is commutative, as in the preceding examples, this condition reduces to raE I. 

EXAMPLE J 

The zero ideal in a ring R consists of the single element OR. This is a subring that absorbs all 
products since r<IR = OR "" Off for every rE R. The entire ring R is also an ideal. 

•sk i p this ex amp I e if you 1\a ve not read Chapter 5. 
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EXAMPLE4 

In the ring Z(x] of all polynomials with integer coefficients, let /be the set of 
polynomials whose constant terms are even integers. Thus xl + x + 6 is in /, 
but 4x1 + 3 is not. Verify that I is an ideal in Z(x] (Exercise 2). 

EXAMPLE 5 

Let The the ring of all functions from R toR, as described in Example 8 
of Section 3.L Let /be the subset consisting of those functions g such that 
g(2) :::: 0. Then I is a subring of T (Exercise 14 of Section 3.1 ). If /is any 
function in T and if g E /, then 

(fgX2) = f(2)g(2) = f(2) ·a= a. 

Therei>re,.fgt. I. Similarly, gft. 1, so that I is an ideal in T. 

EXAMPLE 6 

The subring Z of the rational numbers is not an ideal in Q because Z fails to 

have the absorption property. For instance, ±E Q and 5t.Z, but their product, 
5 . . 7J" l' Is not m L. 

EXAMPLE1 

Verify that the set! of all matrices ofthe form (: ~)with a, bE IR forms a 

subring of the ring M(R) of all 2 X 2 matrices over the reals. It is easy to see 
that I absorbs products on the left: 

G :)(~ ~) = (:: ~ ~)E/. 
But I is not an ideal in M{R) because it may not absorb products on the right-fur 
instarne, 

One sometimes says that I is a left iooal, but not a two-sided ideal, in M(R). 

The following generalization of Theorem 3.6 often simplifies the verification that a 
particular subset of a ring is an ideal. 
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Theorem 6.1 
A nonempty subset I of a ring R is an ideal if and only if it has these properties: 

(i) ifa, bE I, then a-b E /; 

(ii) if r E Rand a E I, then ra E I and ar E /. 

Proof ... Every ideal certainly has these two properties. Conversely, suppose I 
has properties (i) and (ii). Then I absorbs products by (ii), so \\e need 
only verify that I is a subring. Property (i) states that I is closed under 
subtraction. Since I is a subset of R, the product of any two elements 
of I must be in I by (ii). In other words, I is closed under multiplication. 
Therefore, I is a subring of R by Theorem 3.6. • 

Finitely Generated Ideals 
In the first example of this section we saw that the set I of all multiples of 3 is an ideal 
in Z. This fact is a special case of 

Theorem 6.2 
Let R be a commutative ring with identity, c ER, and I the set of all multiples 
of c in R, that is, I = {rc 1 r E R}. Then I is an ideal. 

Proof .. If,, r2, rER and r1c, ''JC EI, then 

and 

because r1 - r 2 and r r1 are elements of R. Similarly, since R is commuta­
tive, (r1c )r = (rr1)c E I. Therefore, I is an ideal by Theorem 6.1. • 

The ideal I in Theorem 6.2 is called the principal ideal generated by c and hereafter 
will be denoted by (c). In the ring Z, for example, (3) indicates the ideal of all multiples 
of 3. In any commutative ring R with identity, the principal ideal (1 JJ is the entire ring 
R because r = rlR for every r E R. It can be shown that every ideal in Z is a principal 
ideal (Exercise 40). However, there are ideals in other rings that are not principal, that 
is, ideals that do not consist of all the multiples of a particular element of the ring. 

EXAMPLE 8 

We have seen that the set I of all polynomials with even constant terms is an 
ideal in the ring Z[x]. We claim that I is not a principal ideal. To prove this, 
suppose, on the contrary, that I consists of all multiples of some polynomial 
p(x). Since the constant polynomial2 is in I, 2 must be a multiple of p(x). 
By Theorem 4.2, this is possible only if p(x) has degree 0, that is, if p(x) is a 
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ronstant, say p(x) =c. Sincep(x)El, the constant c must bean even integer. Since 
2 is a multiple of p(x) = c, the only poSSibility is c = ±2. On the other hand, x El 
because it has e\ell constant term 0. 'lberefure, x must be a multiple of p(x) = :!:2 
However, if ±2g(x) = x, then g(x) has degree 11:::1yTheomn 4.2, say g(x) =ax+ h. 
But ±2(ax + h) = x implies that ±2a = 1 because the coefficient of x must be the 
same on both sides. This is impa;sible because a is an integer. Thereitte, I does not 
consist of all multiples of p(x) and is not a princiJW ideal. 

In a commutative ring with identity, a principal ideal consists of all multiples of a 
fixed element. Here is a generalization of that idea. 

Theorem 6.3 
Let R be a commutative ring with identity and c1, ~ •... , c n E R. Then the set 
I= {r,c, + r2c2 + ... + rnen lr,, r2, ... I roeR} is an Ideal in R. 

Proof ... Exercise 14. • 

The ideal lin Theorem 6.3 is called the ideal geoerated by c., C;1, ••• , ~8 and is 
sometimes denoted by (c1, c:. ... , c,.). Such an ideal is said to be finitely generated. A 
principal ideal is the special case n = 1i that is, an ideal generated by a single element* 
The generators of a finitely generated ideal need not be unique, that i&, the ideal gener­
ated by Ctt c:!l ... , Cn might be the same set as the ideal generated by dh ~ •... , d"' even 
though no c1 is equal to any d1 (Exercise 16). 

EXAMPLE 9 

In the ring Z[x], the ideal generated by the polynomial x and the constant poly­
nomial2 consists of all polynomials of the form 

f(x)x+ g(x)2, with f(x), g(x)EZ[x]. 

It can be shown that this ideal is the ideal I of all polynomials with even 
constant term, which was discussed in Example 8 (Exercise 15). 

Congruence 
Now that you are fumiliar with ideal-;, we can define congruence in an arbitrary ring: 

Let/be an ideal in aringRand leta, b eR.Then a iscongruenttob modulo 
I [written a ~ b {mod /)] provided that a - b Ef. 

•when a commutative ring does not have 5"1 ictentity, the ideal generated by c1, Cr. ••• , c, is defined 
somewhat differently (see Exercise 33 ). 
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Example 1 shows that congruence modulo 3 in the integers is the same thing as 
congruence modulo the ideal I, wha:e I is the principal ideal (3) of all multiples of 3. 
Similarly, Example 2 shows that congruence modulox"- 2 in O[x] is the same as con­
gruence modulo the principal ideal (x2 - 2). Thus congruence modulo an ideal includes 
as a special case the concepts of congruence in Z and F[ x] u~>ed earlier in this book. 

EXAMPLE 10 

Let The the ring of all functions from Ill to Rand let I be the ideal of all func­
tions g such thatg(2) = 0. If f(x) = x1 + 6 and h(x) = 5x, then the function 
f- h is in I because 

(f- h)(2) = /(2) - 11(2) = ('P + 6) - (5 • 2) = 0. 

Therefore,/= h (mod I). 

Theorem 6.4 
Let I be an Ideal in a ring R. Then the relation of congruence modulo I Is 

(1) reflexive: a "" a (mod ~ for every a E R; 

(2) symmetric: tf a~ b (mod /},then b =a (mod I); 

(3) transitive: if a"" b (mod I) and b"" c (mod /),then a"" c (mod 1). 

This theorem generalizes Theorems 2.1 and 5.1. Observe that the proof is virtu.a.lly 
identical to that of Theorem 2.1-just replace statements like "k is divisible by n" or 
"n lk" or "k = nf' with the statement "k El". 

Proof of Theorem 6.4 .. (1) a - a = o.~~. E I; hence, a ... a (mod I). 

{2) a ""b (mod I) means that a - b = i fur some i E L 'Ih=fure, b - a = 
- (a - b) = -t. Since I is an ideal, the negative of an element of I is also 
in I, and sob- a= -iEI. Hence,b =a (modi). 

(3) If a "" b (mod I) and b "" c (mod I), then by the definition of con­
gruence, there are elements i and j in I such that a - b = i and b - c = j, 
Therefore, a - e =(a - b) + (b - c) = i + j. Since the ideal I is closed under 
addition, i + J E I and, hence, a ~ c (mod I). • 

Theorem 6.5 
Let I be an Ideal in a ring R. If a ""b (mod I) and c ""d (mod /},then 

(1) a + c = b + d (mod /); 

(2) ac"" bd (mod/). 
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This theorem generalizes ThOOTem.s 2.2 and 5.2. Its proof is quite similar to theirs 
once you make the change to the language of ideals. 

Proof of Theorem 6.5 .. (1) By the definition of congruence. there are i,JE I such 
that a - b = i and c - d = j. Therefore, (a + c) - (b + d) = (a - b) + 
(c - d) = i + j E I. Hence, a + c = b + d (mod I). 

(2) ae - bd = ae - be +be - bd = (a- b)e + b(e - d) = ie + bj. Since 
the ideal I absorbs products on both left and right. ie E I and bj E L Hence, 
ac - bd = ie + bj E I. Therefore, ae s bd (mod 1). • 

If I is an ideal in a ring Rand a E R, then the coogrumce c~ or a modulo lis the 
set of all elements of R that are congruent to a modulo I, that is, the set 

{bE Rib=' a (modi)}= {bERib- aEI} 

={bE Rib- a= i, with iEl} 

={bE Rib= a+ i, with iEl} 

={a+ iliEl}. 

Consequently, we shall denote the congruence class of a modulo I by the symbol a +I 
rather than the symbol (a] that was used in Z and F[x]. The plus sign in a+ !is just a 
formal symbol; we have not defined the sum of an element and an ideal. In this CODA 

text. the congruence class a + I is usually called a (left) coset of I in R. 

Theorem 6.6 
Let I be an ideal in a rirg Rand let a, c: E R. Then a = c (mod I} if and only 
ifa+l=c:+l. 

Proof • With only minor notational changes, the proof of Theorem 2.3 carries 
over almost verbatim to the present case. Simpy repace "mod n" by "mod 
l" and "[a]" by "'a + f'; use Theorem 6.4 in place of Theorem 2.1. • 

Corollary 6.7 
Let I be an ideal in a rirg R. Then two cosets of I are either disjoint or identica I. 

Proof • Copy the proof of Corollary 2.4 with the obvious notational changes. • 

If I i!. an ideal in a ring R. then the set of all cosets of I ( congrucm:e classes modulo I) 
is denoted R/ I. 

EXAMPLE 11 

Let I be the principal ideal (3) in the ring Z. Then the cosets of I are just the 
congruence classes modulo 3, and so there are three distinct cosets: 0 + I = [0], 
1 + I = [1 ], and 2 + I = (2]. The set Z /I of all cosets is precisely the set Z ~ in 
our previous notation. 
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EXAMPLE 12 

Let /be the ideal in .Z[x] consisting of all polynomials with even constant 
terms. \\e claim that .Z[xV I consists of exactly two distinct cosets, namely, 
0 + I and 1 + I. To see this. consider any cosetf(x) + I. The constant term of 
f(x) is either even or odd. If it is even, thenf(x) El, so thatJtx) ""0 (mod I). 
Therefore,/ (x) + I = 0 + I by Theorem 6.6. If f(x) has odd constant term, 
thenf(x) - I has even constant term, so thatf(x).., I (mod I). Thusf(x) + I"" 
I + I by Theorem 6.6. 

EXAMPLE 13 

Let Tbe the ring of functions from R toR and let I be the ideal of all functions 
g such that g(2) ""0. Note that for each real nmnber r, the constant functionj,. 
('Nhose rule isf/...x)"" r) is an element of T. Let h(x) be any element ofT. Then 
h(2) is some real nmnber, say h(2) ~ c, and 

(h - /J(2) "" h(2) - fJJ.) "" c - c "" 0. 

Thus h -f. El, so that h .., _t (mod I) and, hence_ h + I"" t + I. Consequently, 
every coset of I can be written in the form.t; +I for some real number r. 
Furthecmore, if c :P d, thenf..(2) #- / 4 (2), so that [J..- /41(2) 'I 0 and .f.,-f 4 ot. l. 
Hence,/. ,... f 1(mod 1) and{. + I:#' / 4 + I. Therefore, there are infinitely many dis­
tinct cosets of I, one fur each real number r. 

• Exercises 

NOTE: R denctes a ring. 

A. 1. Show that the set Kof all constant polynomials in .Z[x] is a subring but not an 
ideal in .Z[x]. 

2. Show that the set I of all polynomials with even constant terms is an ideal in 
Z[x]. 

3. (a) Show that the set!"" {(k, 0) IkE Z} is an idealin the ring .Z X .Z. 

(b) Show that the set T ~ {(k, k) IkE Z} is not an ideal in .Z X .Z. 

4. Is the set J = {(~ ~) I r e R} an ideal in the ring M( R) of 2 X 2 matrices 
over R? 

5. Show that the set K = { ( ~ ~) I a, b En} is a subring of M(R) that absorbs 

products on the right. Show that K is not an ideal because it may fail to 
absorb products on the left. Such a set K is sometimes called a right ldeal. 

6. (a) Show that the set of nonunits in .Z1 is an ideal 

(b) Do part (a) for .Z9• [Also, see Exercise 24.] 
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7. LetcERandletio:=: {rclrER}. 

(a) If R is commutative. prove that I is an ideal (that is, Theorem 6.2 is true 
even when R does not have an identity). 

(b) If R is commutative but has no identity, is c an element of the ideal /? 
[Hint: Consider the ideal {2k I k EE} in the ring E of even integers. Also see 
Exercise 33.) 

(c) Give an example to show that if R is not commutative, then I need not be 
an ideal. 

8. If I is an ideal in Rand J is an ideal in the ring S, prove that I X J is an ideal in 
the ring R X S. 

9. Let R be a ring with identity and let I be an ideal in R. 

(a) If lREI, prove that I= R. 

(b) If I contains a unit, prove that I= R. 

10. If /is an ideal in a field F, prove that/= (OF) or I= F. [Hint: Exercise 9.] 

11. List the distinct principal ideals in each ring: 

(a) Z~ (b) Zg (c) Z11 

12. List the distinct principal ideals in Z1 X Z3. 

13. If R is a commutative ring with identity and (a) and (b) are principal ideals 
such that (a) =(b), is it true that a= b? Justify your answet 

14. Prove Theorem 6.3. 

15. Show that the ideal generated by x and 2 in the ring Z[x] is the ideal I of all 
polynomials with even constant terms (see Example 9). 

16. (a) Show that (4, 6) = (2) in Z, where (4, 6) is the ideal generated by 4 and 6 
and (2) is the principal ideal generated by 2. 

(b) Show that (6, 9, 15) = (3) in Z. 

17. (a) If I and J are ideals in R, prove that In J is an ideal. 

(b) If [J.J is a (possibly infinite) family of ideals in R, prove that the 
intersection of all the Ik is an ideal. 

18. Give an e1ample in Z to show that the set theoretic union of two ideals may 
not be an ideal (in fact, it may not even be a subring). 

19. If 1 is an ideal in R and S is a subring of R, prove that In Sis an ideal in S. 

20. Let 1 and J be ideals in R. Prove that the set K = {a + b I a E /, b E J} is an 
ideal in R that contains both I and J. K is called the <.urn of I and J and is 
denoted I+ J. 

21. If dis the greatest common divisor of a and bin Z, show that (a) + (b) =(d). 
(The sum of ideals is defined in Exercise 20.) 

22. Let I and J be ideals in R. Is the set K = {ab Ja E /, bE J} an ideal in Kl 
Compare Exercise 20. 
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23. (a) Verify that 1 ~ {0, 3} is an ideal in Zt; and list all its distinct cosets. 

(b) Verify that 1 = {0, 3, 6, 9, 12} is an ideal in Z 15 and list all its distinct cosets. 

B. 24. Let R be a commutative ring with identity, and let N be the set of nonunits in 
R. Give an example to show that N need not be an ideal. 

25. Let J be an ideal in R. Prove that lis an ideal, where 

I= {rERJrt = ORforeverytEJ}. 

26. Let /be an ideal in R. Prove that K is an ideal, where 

K = {aE R JraEifor every rER}. 

27. Let f:R ~ S be a homomorphism of rings and let 

K= {rERlf(r) = Os}· 

Prove that K is an ideal in R. 

28. If I is an ideal in R, prove that /[x] (polynomials with coefficients in J) is an 
ideal in the polynomial ring R[x]. 

29. If (m, 11) = 1 in z, prove that (m) n (n) is the ideal (mn). 

30. Prove that the set of nilpotent elements in a commutative ring R is an ideal. 
[Hint: See Exercise 44 in Section 3.2.] 

31. Let R be an integral domain and a, hER. Show that (a)= (b) if and only if 
a ~ bu for some unit u E R. 

32. (a) Prove that the set J of all polynomials in Z[x] whose constant terms are 
divisible by 3 is an ideal. 

(b) Show that J is not a principal ideal. 

33. Let R be a commutative ring without identity and let a E R. Show that 
A = { ra + na I r E R, n E Z} is an ideal containing a and that every ideal 
containing a also contains A. A is called the principal ideal generated by a. 

34. If M is an ideal in a commutative ring R with identity and if a E R with a li! M, 
prove that the set 

J = {m + raJrE Rand m EM) 

is an ideal such that M ~ l 

35. Let I be an ideal in Z such that (3) ~ [c;;_ Z. Prove that either 1 = (3) or 1 = Z. 

36. Let land Jbe ideals in R. Let lJ denote the set of all possible finite sums of 
elements of the form ah (with a E J, bE J), that is, 

IJ = {atht + a·ffh + · · · + a,bN J n ~ 1, ak El, ~ EJ}. 

Prove that IJ is an ideal, IJ is called the product of I and J. 

37. Let R be a commutative ring with identity lR '¢ 0 R whose only ideals are 
(OR) and R. Prove that R is a -field. [Hint: If a + OR, use the ideal (a) to find a 
multiplicative inverse for a.] 

38. Let I be an ideal in a commutative ring R and let 

J = {r E R I r" E I for some positive integer n}. 



6.1 I deals and Congruence 151 

Prove that J is an ideal that contains I. [Hint: You will need the Binomial 
Theorem from Appendix E. Exercise 30 is the case when I ::o (OR)-] 

39. (a) Show that the ring M(IJ;q,) is not a division ring by exhibiting a matrix that 
has no multiplicative inverse. (Division rings are defined in Exercise 42 of 
Section 3.1.) 

(b) Show that M(R) has no ideals except the zero ideal and M(R) itself 
{Hint: If J is a nonzero ideal, show that J contains a matrix A with a 
nonzero en tty c in the upper left-hand comer. Verity that 

(1 0)· ·(c-1 0) ~ (1 
0 0 A 0 0 0 ~) and that this matrix is in J. Similarly, 

show that(~ ~)is in J. What is their sum? See Exercise 9.] 

40. Prove that every ideal in Z is principal. [Hint: If I is a nonzero ideal, show that 
I must contain positive elements and, hence, must contain a smallest positive 
element c (Why?). Since c El, every multiple of cis also in I; hence, (c).~ L 
To show that I!,;;;; (c), let a be any element of!. Then a "" cq + r with 0 ~ r < c 
(Why?). Show that r "" 0 so that a "" cq E (c).] 

41. (a) Prove that the set S of rational numbers (in lowest terms) with odd 
denominators is a subring of Q. 

(b) Let !be the set of elements of S with even numerators. Prove that I is an 
ideal ins. 

(c) Show that S/ I consists of exactly two distinct cosets. 

42. (a) Let p be a prime integer and let T be the set of rational numbers (io lowest 
terms) whose denominators are not divisible by p. Prove that Tis a ring. 

(b) Let !be the set of elements of Twhose numerators are divisible by p. 
Prove that I is an ideal in T. 

(c) Show that T /I consists of exactly p distinct cosets. 

43. Let Jbe the set of all pol)11omials with zero constant term in Z[x]. 

(a) Show that J is the principal ideal (x) in Z{x]. 

(b) Show that Z[x]/l consists of an infinite number of distinct cosets, one for 
eachnEZ. 

44. (a) Prove that the set Tof matrices of the form (a !) with a, bE R is a 
subring of M(R). 0 

(b) Prove that the set I of matrices of the form(~ ~) with bE IJ;q, is an ideal 
in the ring T. 

(c) Show that every coset in Tj I can be written in the form ( ~ ~) + I. 
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45. (a} Prove that the set S of matrices of the form (a ~) with a, b, c E R is a 
subringof M(R). 

0 

(b) Prove th!t the set I of matrices of the form (
0 ob) with bE R is an ideal 

. th . s 0 m enng . 

(c) Show that there are infinitely many distinct cooets in Sf I, one for each pa]r 
in!RtXR. 

C. 46. Let Fbe a field. Prove that tlYel)' ideal in F[x] is principal. [Hfnt: Use the 
Division Algorithm to show that the nonzero ideal/ in F[x] is (p(x)), where 
p(x) is a polynomial of smallest possible degree in I.] 

47. Prove that a subring S of Z.,. has an identity if and only if there is an element u 
inS such that u1 = u and Sis the ideal (u). 

Ill Quotient Rings and Homomorphisms 

We now show that the set of congmence classes modulo an ideal is itself a ring. As you 
might expect, this is a straightforwanl generalization of what we did with congruence 
classes in Z and F[x]. However. you may not have expected these rings of congruence 
classes to have close connections with some topics studied in Chapter 3, isomorphisms 
and homomo:rphisms.. These connections are explored in detail and provide new insight 
into the structure of rings. 

Let I be an ideal in a ring R. The elements of the set R/ I are the co sets of I (con­
gruence classes modulo I), that is, all sets of the form a +I= {a + fl fE 1}. In order 
to define addition and multiplication of cosets as we did with congruence classes in Z 
and F[x], we need 

Theorem 6.8 
Let I be an ideal in a ring R. Jf a + I = b + I and c + I = d + I in Rjf, then 

(11 +c)+ I = (b +d)+ I and ac +I = bd +I. 

Proof • This is a generalization of Theorem 2.6, in slightly different notation. 
Replace "[a]" by "a + f' and copy the proof of Theorem 2 .6, using 
Theorems 6.5 and 6.6 in place of Theorems 2.2 and 2.3. • 

We can now define addition and multiplication in R/ I just as we did in Z,. and 
F[x]f(p(x)): The sum of the coset a + I (congruence class of a) and the coset c + I 
(congruence cla5s of c) is the coset {a + c) + I (congruence class of a + c). In symbols, 

(a + I) + (c + J) = (a + e) + L 



6.2 Quotient Rings and Homomorphisms 153 

This statement may be a bit confusing because the plus sign is used with three entirely 
different meanings: 

llll a formal symbol to denote a coset: a + I; 
as an operation on elements of R: a + c; 

as the addition operation on cosets that is being defmed. * 
The important thing is that, because of Theorem 6.8, coset addition is independent 
of the choice of representative elements in each coset. Even if we replace a+ I by an 
equal coset b + I and replace c + I by an equal coset d +I, the resulting coset sum, 
namely (b + i) + I, is the same as (a + c) + I. 

Multiplication of cosets is defined similarly and is independent of the choice of 
representatives by Theorem 6.8: 

(a + l)(c + I) = 1U + L 

EXAMPLE 1 

If I is the principal ideal (3) in Z, then addition and muJtiplication of cosets is 
the same as addition and multiplication of congruence classes in Section 2.2. 
Thus Z/ lis just the ring Z3• 

EXAMPLE 2t 

If Fis a field, p(x) is a polynomial in F[x], and lis the principal ideal (l<x)), 
then cosets of I are precisely congruence classes modulo p(x), so that addition 
and multiplication of co sets are done exactly as they were in Section 5.2 Thus 
F[x]f lis the congruence-class ring F[x]f(p(x)). 

EXAMPLE 3 

Let I be the ideal of polynomials with even constant terms inZ[x]. As we saw 
in Example 12 of Section 6.1, Z[xV I consists of just two distinct cosets, 0 + I 
and I +I. We have (I + I) + (1 + I) ""(1 + I) +I"" 2 + I, but 2 E I, so that 
2 "" 0 (mod I) and, hence, 2 + I= 0 + I. Similar calcuJations produce the 
following 'tables for Z[x]/ I. It is easy to see that Z[x]/ lis a ring (in fact, a field) 
isomorphic to Z2: 

+ 
O+I 

1 + I 

O+J 1+1 

O+I 

l + I 
I+ I 
O+I 

O+I 

l + I 

0+/ 1+/ 
O+I O+I 

O+I 1+1 

•This ambiguity can be avoided by using a different notation for cosets, sue has [a], and a different 
symbol for coset addition, suc:h as EfJ, The notation above is customary, however, and once you're 
used to it, there should be no confusion. 

'skip this example if you have not read Chapter 5. 
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Definition 

These examples illustrate the following theon:m, which should not be very surpris­
ing in view of your previous experience with Z and F{x]. 

Theorem 6.9 
Let J be an ideal in a ring R. Then 

(1) R/1 i~ a ring, with addition and multiplication of cosets as defined 
previously. 

(2} If R is commutative, then Rjl is a commutative ring. 

{3) If R has an Identity, then so does the ring Rjl. 

Proof., (1) With the usual change of notation ("a+ I" instead of "{a]''), the 
proof of Theorem 2.7 carries over to the present situation since that 
proof depends only on the fact that Z is a ring. Don't take our v.t>rd for 
it, though; write out the proof in detail for younelf. 

{2) If R is commutative and a, c E R, then ac = ca. Consequently, in 
R/Iwebave(a + I)(c+ I)= ac+ I= ca +I= (c+ I)(a +I). Hence, 
R/ I is commutative. 

(3) The identity in R/ I is the coset lR + Ibecause(a + l)(lR + 1) "" 
alR +I= a+ I and similarly {lR +I)( a+ I) = a+ I. • 

The ring R/ I is called the quotient ring (or factor ring) of R by I. One sometimes 
speaks of factoring out the ideal/ to obtain the quotient ring R/ I. 

Homomorphisms 
Quotient rings are the natural generalization of congruence-class arithmetic in Z and 
F( x]. As is often the case in mathematics, however, a conoopt developed with one idea 
in mind may have unexpected linkages with other important mathematical concepts. 
That is precisely the situation here. We shall now see that the concept of homomor­
phism that arose in our study of isomorphism of rings in Chapter 3 is closely related 
to ideals and quotient rings. 

Let f:R -+ S be a homomorphism of rings. Then the ke mel off is the set 

K = (rERif{r) = Os}, 

Thus, the kernel of f is the subset of R consisting of those elements of R that 
/maps to Os in S. Note that OR is in the kernel since f(OR) = Os by Theorem 3.10. 
However, the kernel may also contain nonzero elements. 
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EXAMPLE 4 

In Example 6 of Section 3.3 we saw that the function f :Z 4 ~ defined by 
f(r) = [r] t Zt. 6 a homomorphism of rings. Its kernel K contains many nonzero 
integers. For instance, 12 tK becausef(12) = [12] = [0] in~· In fact every 
mu1tiple of 6 is in the kernel because 

K = {r tZ I f{r) = [0]} = {rEZ 1 [r] = [0]} [Definition of f1 
= {rt Z lr.., 0 (mod 6)} [Theorem 23] 

= {r tZ 161 r} [ Dliflnition of congruma! mod 6j 

= {all multiples of 6} [61 r means r is a multiple of6]. 

So the kernel K is the principal ideal (6} in Z. 

EXAMPLE 5 

1he function 8:1R[x] -4 R that sends each polynomial in IR[x] to its constant 
tenn in R is a ring homomorphism (Exercise 1). Its kernel consists of all 
polynomials with constant term 0. But every polynomial with 0 constant term 
is divisible by x. So the kernel is the principal ideal (x) in IR[x]. 

Examples 4 and 5 provide examples of the following theorem. 

Theorem 6.10 
Let f:R 4 S be a homomorphism of ri rgs. Then the kernel K of f is an ideal in 
the ring R. 

Proof~we shall use Theorem 6.1 to show that K = {r tR 1/(r) = 05 } is an ideal. 
We must verify that is a nonempty subset of R that is closed under sub­
traction and absorbs products. First, Xis nonempty because ORE K as 
noted before Example 4. To prove that K is closed under subtraction, we 
must show that for a, b tK, the element a - b is also inK. To show 
a- b tK, we must show thatf(a- b)= 05 • This follows from the fact 
that/is a homomorphism and thatf(a) = 05 andj{b) = Os (because a, 
hEK): 

f{a -b) = f(a) - f(b) = 05 - 05 = Os-

To prove that K absorbs products we must first verify that rn tK for any 
r t R and at K, that i1, tha tf(ra) = 05; here's the proof: 

f(rn) = f(r)/(a) = f(r) 05 = Os. 

A similar argument shows that ar tK. Therefore K is an ideal by 
Theorem 6.1. • 
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In Examples 4 and 5, the kernel of the homomorphism contained many nonzero 
elements. Sometimes. however, the kernel of a homomorphism contains only OR, in 
which case we have an interesting result. 

Theorem 6.11 
Let f:R---~> S be a homomorphism of rings with kernel K. Then K = (OR) if and 
only iff is injective. 

Proof• Suppose that K =(OR). We must show thatfis injective, so assume 
that a, b ER andf(a) = f(b). Becausefisahomomorphism, 
f(a- h)= f(a)- f(b) = 05 • Hence, a- b is in the kernel K =(OR), 
which means that a- b =OR and a= b. 'lbeteforefis injective. 

Conversely, suppose f is injectiw. If c E K, we must show that c = OR. 
By the definition of the kernel,f(c) = OS> By Theorem 3.10,/(0R) = 03 = 
f(c). Therefore, c =OR becausefis injective. Hence, the kernel consists 
of the single element OR, that is, K = (0 R). • 

EXAMPLE 6 

In Example 7 of Section 3.3 we saw that the function g:lll.-. M(R) given by 

g(r) = ( 
0 0

) is a ring homomorphism. Its kernel of g consists of all real 

-r r (0 Q} ( o 0) (0 0) numbers r such that g(r) = that is, such that = . 
0 0 -r r 0 0 

This can only occur when r = 0. So the kernel is the zero ideal (0). Hence, g is 
injective by Theorem 6.11. 

Theorem 6.10 states that every kernel is an ideal. Conversely, every ideal is the 
kernel of a homomotphism: 

Theorem 6.12 
Let I be an ideal in a ring R. Then the map 1r:R---~> R/ I given by 'lf(r) = r + I is 
a surjective homomorphism with kemel J. 

The map 11 is called the natural homomorpbh;m from R to R/ L 

Proof of Theorem 6.12. The map 71 is surjective because given any coset r +I in 
R/ I, 11(r) = r + I. The definition of addition and multiplication in R/ I 
shows that 'IT is a homomorphism; 

11(r + s) = (r + s) + I = (r + I) + (s + I) = 11(r) + 'lf(s); 

11(rs) = rs +I= (r + I)(s + I) = 'lf(r) 'IT(.I'). 
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The kernel of 'If is the set of elements r ER such that 'IT(r) =OR+ I 
(the zero element in R/ I). However, 'IT(r) = OR + I if and only if r + I= 
0 R + I, which occurs if and only if r "" OR (mod I), that is, if and only if 
r E I. Therefo n; I is the kernel of 11'. • 

The natural homomorphism 11' in Theorem 6.12is a special case of a more general 
situation. If f.R ~ Sis a surjective homomorphism of rings, we say that Sis a 
homomorphic image of R. If fis actually an isomorphism (so that Sis an isomorph£ 
image of R), then we know that Rand Shave identical structure. Whenever one 
of them has a particular algebraic property, the other one has it too. If fis not an 
isomorphism, then properties of one ring may not hold in the other. However, the 
properties of Sand the homomorphism f often give us some useful information 
about R. An analogy with sculpture and photography may be helpful: If fiR~ S 
is an isomorphism, then Sis an exact, three--dimensional replica of R. If /is only a 
surjective homomorphism, then Sis a two·dimensional photographic image of R in 
whK:h some features of R are accurately reflected but others are distorted or missing. 
The next theorem tells us precisely how R, S, and the kernel of fare related in these 
circumstances. 

Theorem 6,13 First I so morphism Theorem 
Let f:R-+ S be a surjective homomorphism of rings with kernel K. Then the 
quotient ring R/K is isomorphic to S. 

The theorem states that every homomorphic image of a ring R is isomorphic to a 
quotient ring R/ K for some ideal K. Thus if you know all the quotient rings of R, then 
you know all the possible homomorphic images of R. The ideal K measure~ how much 
information is lost in passing from the ring R to the homomorphic image R/ K. Whm 
K = (O.R), thenfis an isomorphism by Theorem 6.11J and no information is lost But 
when K is large, quite a bit may be lost. 

Proof ofThaoram 6.13 .. We shall define a function q;from R/K to sand then 
show that it is an isomorphism. To define q;, we must associate with 
each coset r + K of R/K an element of S. A natural choice for such an 
element would bef(r) ~ S; in other words, we would like to define 
q;:RfK-+ S by the rule q;(r + K) = fi.r). The only possible problem is that 
a coset can be labeled by many different elements of R. So we must show 
that the value of rp depends only on the ooset and not on the particular 
representative r chosen to name it. If r + K = t + K, then r "" t (mod 
K) by Theorem 6.6, which means that r - t ~ K by the definition of 
congruence. Consequently, since fis a homomorphism,f(r) - f(t) = 
f(r- t) = Os- Therefore, r + K = t + Kimplies thatf(r) = f(t). It 
follows that the map rp:RfK-+ S given by the rule cp(r + K) = f(r) is a 
well"defined function, independent of how the ooset is written. 
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If s E S, then s = f(r) for some rE R because jis ~Thus 
s = f(r) = ~r + .K), and fP is Sllljective. To show that tp is injective, we 
a~e that tp(r + K) = tp(c + K) and show that r + K = c + K, as follows: 

tp(r + K) = q(c + K) 

f(r) = f(c) [Definition of tp) 

f(r)- f(c) = Os 

f(r- c)= Os- [f is a homomorphf.rm.] 

Thus, r- cEKand hence, r = c (mod K). So r + K= c + Kby 
Theorem 6.6. Therefore, fP is injective. 

Finally, tp is a homomorphism because fis 

and 

fP[(c + K)(d + K)] = q(cd + K) = f(cd) = f(c)f(d) 

= ip(c + K}tp(d + K) 

lp[(c + K) + (d + K)] = q:((c +d)+ K} = f(c +d)= f(c) + j(d) 

= q(c + K) + tp(d + K). 

Therefore, tp:R/ K ~Sis an isomorphism. • 

The First Isomorphism Theorem is a meful tool for determining the structure of 
quotient rings, as illustrated in the following examples. 

EXAMPLE 1 

In the ring Z[x], the principal ideal (x) consists of all multiples of x, that is, 
all polynomials with constant term 0. What does the quotient ring Z[x]/(x) 
look like? We can answer the question by using the function 8:Z[x] ~ Z, 
which maps each polynomial to its constant term. lbe function 8 is certainly 
swjective because each k EZ is the image of the polynomial x +kin Z[x]. 
Furthermore, 8 is a homomorphism of rings (Exercise 1). The kernel of 8 
consists of all those polynomials that are mapped to 0, that is, all polynomials 
with constant term 0. 1bus the kernel of (}is the ideal (x). By Theorem 6.13 the 
quotient ring Z[x]/( x) is isrnnorphic to Z. 

EXAMPLE 8 

Let T be the ring of functions from ll to ll and I the ideal of all functions 
g such thatg{2) = 0. In Example 13 of Section 6.1 we saw that T/I con­
sists of the cosets /, + I, one for each n:al number r, where/,: R ~ R is the 
constant function given by /,(x) = r for every x. This suggests the possibility 
that the quotient ring T /I might be isomorphic to the field ll. We shall use 
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Theorem 6.13 to show that this is indeed the case by constructing a surjective 
homomorphism from T to ~ whose kernel is the ideal/. Let tp:T ~ n be the 
function defined by (j(f) ""!(2). Then tp is surjective because for every real 
number r, r = /1..2) = (j(j,). Furthermore, tp is a homomorphism of ring;;~: 

rp(f +h)= (f + h)(2) = /(2) + h(2) = tp(f) + tp(h) 

tp(j'h) e (jh)(2) e /(2)h(2) = {j(f)lf(h), 

By definition, the kernel of tp is the set 

{gE Tltp(g) = 0} = {gE Tlg(2) = 0}. 

Thus the kernel is precisely the ideal!. By Theorem 6.J3, Tj lis isomorphic toR 

EXAMPLE 9 

What do the homomorphic images of the ring Z look like? To answer this 
question, suppose thatf:Z ~Sis a surjective homomorphism. If/is actually 
an isomorphism, then S looks exactly like Z, of course (in terms of algebraic 
structure). If /is surjective, but not an isomorphism (that is. not injective), then 
the kernel K of /is a nonzero ideal in Z by Theorem 6.11. Since K ti an ideal 
in Z, K must be a principal ideal, say K = (n) for some n .P 0, by Exercise 40 
in Section 6.1, By Theorem 6.13, Sis isomorphic to Z/K = Zj(n)"" Zn. Thus 
every homomorphic image of l is isomorphic either to Z or to Zn for some n. 

• Exercises 

A. I. Show that the map 6:n[x]-+ n that sends each polynomialf(x) to its constant 
term is a surjective homomorphism.. 

2. Show that every homomorphic image of a field F is isomorphic either to F 
itself or to the zero ring. [Hint: See Exercise 1 0 in Section 6.1 and Exercise 7 
below.] 

3. IfF is a field, R a nonzero ring, and f.F 4 R a surjective homomorphism, 
prove that/ is an isomorphism. 

4. Let [a],. denote the congruence class of the integer a modulo n. 

{a) Show that the mapf:.Z12 -+Z. that sends [aJ12 to [a].. is a well--defined, 
surjective homomorphism. 

(b) Find the kernel of f. 
5. Let I be an ideal in an integral domain R. Is it true that Rj I is also an integral 

domain? 

6. The function tp: n[x] -4 n given by tp(f(x)) ""/(2) is a homomorphism of 
rings by Exercise 24 of Section 4.4 (with a = 2). Find the kernel of tp. [Hint: 
Theorem 4.16.] 
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7. If R is a ring, show that R/(0~ = R. 

8. Let R and S be rinp. Show that 1r:R X S --l> R given by 1f(r, .t) = r is a 
surjective homomorphism whose kernel is isomorphic to S. 

9. R = { (: ~)I a, b, c EZ} is a ring with identity by Example 19 

in Section 3.1. 

(a) Show that the map f:R --l> Z given by r(: ~) = a is a surjective 
homomorphism. 

(b) What is the kernel off? 

10. (a) Letf:R --l> S be a surjective homomorphism of rings and let I be an ideal 
in R. Prove that/(I) is an ideal in S, where jti) = {.t E SIs = f(a) for 
some aEI}. 

(b) Show by example that part (a) may be false if [is not surjective. 

II. ZJ:\1:2] is a ring by Exercise 13 of Section 3.1. Letf:Z(v'2] --l> Z[\12] be the 
function defined by !(a + b\12) = a - b'\12. 

(a} Show thatfis a surjective homomorphism of rings. 

(b) Use Theorem 6.11 to show thatfis also injective and hence is an 
isomorphism. [You may assume that v'2 is irrational.] 

12. Let I be an ideal in a noncommutative ring R such that ab - ba E I for all 
a, b E R. Prove that Rj I is commutative. 

13. Let I be an ideal in a ring R. Prove that every element in Rj I has a square root 
if and only if for every a E R, there exists bE R such that a - b1

E I. 

14. Let I be an ideal in a ring R. Prove that every element in Rj I is a solution of 
x 1 = x if and only if for every a E R, a1 - a E I. 

15. Let I be an ideal in a commutative ring R. Prove that Rj I has an identity if 
and only if there exists eE R such that ea - aE !for every aE R. 

16. Let I of. R be an ideal in a commutative ring R with identity. Prove that Rj I is 
an integral domain if and only if whenever abE I, either a E I or bE I. 

17. Suppose I and J are ideals in a ring R and let f :R --l> Rj I X Rj J be the 
function defined by f(a) = (a + I, a + J). 

(a) Prove thatfis a homomorphism of rings. 

(b) Isfsurjective'l[Hint: Consider the case when R = Z, I= (2), J = (4).} 

(c) What is the kernel off? 

18. Let R be a commutative ring with identity with the property that every ideal 
in R is principal. Prove that every homomorphic image of R has the same 
property. 

19. Let! and Kbe ideals in a ringR, with Ks;;; I. Prove that IJK ={a+ Kla EI} is 
an ideal in the quotient ring R/K. 
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20. Letf:R-+ Sbe a homomorphism of ringll with kernel K. Let fbe an ideal 
in R such that I.:;;; K. Show that f:Rfl-+ S given by f(r + I) = f(r) is a well­
defined homomorphism. 

21. Use the F"mt Isomorphism Theorem to show thatZ20f(5) ;:;z~. 

22. L::t f:R -+ S be a homomorphism of ringll. If J is an ideal in S and I = 
{r E R lflr)E J], prove that I is an ideal in R that contains the kernel off 

23. (a) Let R be a ring with identity. Show that the rna p f'Z -+ R given by 
f(k) = k lR is a homomorphism. 

(b) Show that the kernel of /is the ideal (n), where n is the characteristic of 
R. [Hint: "Characteriltic" is defined immediately before Exercise 41 of 
Section 3.2. Also see Exercise 40 in Section 6.L] 

24. Find at least three idempotents in the quotient ring Q[x]f(x4 + x2). 
[See Exercise 3 in Section 3.2.) 

25. Let R be a commutative ring and Jthe ideal of all nilpotent elements of R 
(as in Exercise 30 of Section 6.1 ). Prove that the quotient ring Rf J has no 
nonzero nilpotent elements. 

26. Let Sand !be as in E:~rercise 41 of Section 6.1. Prove that Sf I""=" Z1. 

27. Let T and I be as in Exercise 42 of Section 6.1. Prove that Tf I 3 Zp. 
28. Let T and I be as in Exercise 44 of Section 6.1. Prove that Tf I 3 R. 

29. LetS and /be as in Exercise 45 of Section 6.1. Prove that Sf!""=" IRl >< u;R, 

C. 30. {The Second Isomorphism Theorem) Let I and J be ideals in a ring R. Then 
In J is an ideal in I, and J is an ideal in I + Jby Exercises 19 and 20 of 

Section 6.1. Prove that 
1 
~ J 3 

1 ~ J. [Hint: Show thatf:l-+ (I+ J)f J given 

by JXa) = a + J is a surjective homomorphism with kernel I() J.] 

31. (The Third Isomorphism Theorem) L::t I and Kbe ideals in a ring R such that 
K.:;;; I. Then IfK is an ideal in RfK by Exacise 19. Prove that (RfK)/(1 / K) ""=" 
Rfl.[Hint: Showthatthemapf:RfK-+Rflgivenbyf(r + K) = r +lisa well· 
defined surjective homomorphism with kernell/K.] 

32. (a) Let Kbe an ideal in a ring R. Prove that every ideal in the quotient 
ring Rf K is of the form IfK for some ideal I in R. [Hint: Exercises 19 
and22.] 

(b) rr f:R-+ Sis a surjective homomorphism of ring11 with kernel K, prove 
that there is a bijective function from the set of all ideals of S to the set of 
all ideals of R that contain K. [Hint: Part (a)and Exercise 10.] 

EXCURSION: The Chinese Remainder Theorem for Rings 
(Section 14.3) may be covered at this point if desired. 
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Ill The Structure of R/IWhen lis Prime or Maximal* 

Quotient rings were developed as a natural generalization of the ringll Zp and F[ x}/(p(x )). 
Whenp is prime andp(x) irreducible, then Zp andF[x}/(p(x)) are fields. In this section 
we explore the analogue of this situation for quotient ringll of commutative rings. We 
shall determine the conditions necessary for a quotient ring to be either an integral 
domain or a field. 

Definition 

Primes in 71. and irreducibles in F[x] play essentially the same role in the structure 
of the congruence class rings. Our first task in arbitrary commutative rings is to find 
some reasonable way of describing this role in terms of ideals. According to Theorem 15, 
a nonzero integer p (other than ±1) is prime if and only if p has this property: 
Whenever pI be, then pI b or pI c. To say that p I a means that a is a multiple of p, that 
is, a is an element of the principal ideal (p) of all multiples of p. Thus this property of 
primes can be rephrased in terms of ideals: 

If p ¢ 0, ±1, then pis prime if and only if 
whenever be E (p), then bE (p) or c E (p). 

The condition p ¢ ±I guarantees that 1 is not a multiple of p and, hence, that the ideal 
(p) is not all of 71.. Using this situation as a model, we have this 

An idea I P ln a comm utatlve ring R is said to be prime if P ¢ Rand whenever 
beEP, then b EPorcEP. 

EXAMPLE 1 

As shown above, the principal ideal (p) is prime in 71. whenever pis a prime 
integer. On the other hand, the ideal P := (6) is not prime in 71. because 
2 • 3EPbut2¢:Pand3¢P. 

EXAMPLE 2 

The zero ideal in any integral domain R is prime because ab := OR impies 
a := OR or b := OR. 

EXAMPLE 3 

The implication (I)"'* (2) of Theorem 4.12 shows that if Fis a field and p(x) is 
irreducible in F[x], then the principal ideal (p(x)) is prime in F[x]. 

"This section is not used in the sequel and may be omitted if desired. 
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EXAMPLE 4 

Let I be the ideal of polynomials with even constant terms in Z[x]. Then. !is not 
principal (Example 8 of Section 6.1) and clearly l.P Z[x]. Letj{x) =a,.:>!'+···+ ao 
and g(x) = h,.X" + · · · + ho be polynomials inZ[x] INCh thatf(x)g(x)eL Then the 
cotl8tant term of j{x)g(x), namely~ must be even. Since the product of tM1 odd 
integers is odd, we conclude that either ao is even (that is,f(x) E 1) or ba is even (that 
1<1. g(x) el). Therefure, lis a prime ideal. 

The ideal! in Example 4 is prime, and the quotient ring Z[x]/! is a field {see 
Example 3 of Section 6.2). Similarly, Z/(p) = ZP is a :field whenp is prime. HoMWer, 
the next example shows that R/ P may 1101 always be a field when P is prime. 

EXAMPLE 5 

The principal ideal (x) in the ring Z[x) consists of polynomials that are mul­
tiples of x, that is, polynomials with zero constant terms. Hence, (x) ¢ Z[x]. If 
f(x) = tyr!' + · · · + au and g(x) = h,;x"' + · · · + ho and /(x)g(x) e l, then the 
constant term of j{x)g(x), namely aobo, must be 0. This can happen only if 
ao = 0 or h0 = 0, that is, only if f(x) E (x) or g(x) E (x). Therefore, (x) is a prime 
ideal. However, Example 7 of Section 6.2 shows that the quotient ring Z[x]/(x) 
is isomorphic to Z. Therefore, Z[x] /(x) is an integral domain but not a :field. 

In light of Example S, the next theorem is the best we can do with prime ideals. 

Theorem 6.14 
Let P be an ideal in a commutative ring R with identity. Then P Is a prime ideal 
if and only if the quotient ring R/P is an integral domain. 

Proof ~ If P is any ideal in R, then by Theorem 6.6, a + P = OR + P in R/ P if 
and only if a""' OR (mod P). Furthermore, a""' OR (mod P) if and only if 
a E P. So we have this useful fact 

(*) a + P = OR+ Pin R/ P if and only if aEP. 

Suppose P is prime. By Theorem 6 .9, R/ P is a commutative ring 
with identity. In order to prove that R/ P is an integral domain, we must 
show that its identity is not the zero element and that it has no zero 
divisors. Since Pis prime, P .P R. Consequently, IR~ P because any ideal 
containing 111 must be the whole ring. However, IR~p implies that 
1R + P +OR+ Pin R/P by(*). Now we show that R/Phas no zero 
divisors. If (h + PXc +F)= OR+ P, then he+ P =OR+ P and he eP 
by(*). HencehePoreeP Thush +P =OR+ P or c + P =OR+ P,so 
that R/ P has no zero divisors. Therefore R/ P is an integral domain. 
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Now assume that R/ Pis an integral domain. Then by definition 
lR + P '4: OR+ Pand henoo 1R~Pby (•). ThereforeP '4: R. To complete 
the proof that P is prime we assume that beE P and show that bE P or 
cEP. Now if beEP, theninR/ Pwehave (b + P)(c+ P) =be+ P = 
OR+ Pby(•). Thus b + P =OR+ Por c + P =OR+ Pbeca.use RiP has 
no zero divisors. Hence b EP or cE P by (•). Thm:fore Pis prime. • 

S inoo the quotient ring modulo a prime ideal is not neoossarily a field, it is natural 
to ask what conditions an ideal must satisfY in order for the quotient ring to be a field. 

EXAMPLE 6 

Consider the ideal (3) in Z. W: know that Z/(3) = Z1 is a field. Now consider 
the ideal (3). Suppose 1 is an ideal such that (3) I: 1 t:.Z. If 1 '# (3), then there 
exists a E J with a~ (3). In particular, 3 k a, so that 3 and a are relatively prime. 
Hence, there are integers u and v such that 3u + av = 1. Sinoo 3 and a are in 
the ideal 11 it follows that l E 1. Therdbre 1 = 1'._ by Exercise 9 of Section 6.1, 
and so there are no ideals strictly betweeh ( 3) and Z 

EXAMPLE 1 

The quotient ring Z[x]/(x) is not a field (Example 5). Furthermore, the ideal I 
of polynomials with even constant terms lies strictly between (x) and Z(x], that 
is. (x) ~ I~ Z[x]. 

Here is a fOrmal definition of the property suggested by these examples: 

An ideal M in a ring R is said to be maximal if M '4: R and whenever J is an 
ideal such that M ~;; J ~;; R, then M = J or J = R, 

Example 6 shows that the ideal (3) is maximal in 1'._ and Example 7 shows that the 
ideal (x) is not maximal in Z[x]. Note that a ring may have more1han one maximal 
ideal. The ideal {0, 2, 4} is maximal in 4 and so is the ideal {0, 3}. There are infinitely 
many maximal ideals in 1'._ (Exercise1). Maximal ideals provide the following answer 
to the question posed above: 

Theorem 6.15 
Let M be an ideal in a commutative ring R with identity. Then M is a maximal 
ideal if and only if the quotient ring R/ M iS a field, 

Proof ... We shall use the same fact that was used in the proof of Theorem 6.14: 

(•) a+ M= OR+ MinR/M if and only if a EM. 
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Suppose R/ M is a field. Then by definition 1 R + M :I- OR + M and 
hence IR~M by(~). Therefore M :I- R. To show that Mis maximal, we 
assume that J is an ideal with M ~ J ~ R and show that M = J or 
J = R. If M = J, there is nothing to prove. If M 'ft. J, then there exists 
aEJwith a~M. Hence a+ M :I- OR+ Min the field R/M, and a+ M 
has an inverse b + M such that (a+ MX.b + M) = ah + M = 1R + M. 
Then ah = IR(modM) by Theorem 6.6,sothatab -1R = m for some 
mE M. Thus IR = ah - m. Since a and mare in the ideal J, it follows 
that 1 R E J and J = R. Therefore M is a maximal ideal. 

Now assume M is a maximal ideal in R. By Theorem 6.9, R/Mis a com­
mutative ring with identity. In order to prove that R/ M is a field, we first 
show that its identity is not the zero element. Since M is maximal, M :I- R. 
Consequently, I R ~ M becauoo any ideal containing I R must be the whole 
ring. HO'MMJ; I R ~ M implies that 1R + M :f:. OR + Min R/Mby (• ). 

Next we show that every nonzero element of R/Mhas a multiplicative 
inverse. If a+ Misanonzeroelem:ntof R/M, thena~M(otherwisea + M 
would be the zero coset). The oot 

J= {m + ralrERandmEM} 

is an ideal in R that contains Mby Exercise 34 of Section 6.1. Furthermore, 
a = OR + IRa is in J, so that M :F- J. By maximality we must have J = R. 
Hence 1REJ, which implies that 1R = m + caforsomemEMand cER. 
Note that ca -IR = -m EM, so that ca"" 1R (mod M), and hence 
ca + M = 1 R + M by Theorem 6.6. Consequently, the coset 
c + M is the inverse of a + Min R/M: 

(c+ M)(a + M) = ca+ M= 1R+ M 

So every nonzero element of R/M is a unit (Axiom 12 is satisfied). 
TherefOre, R/M is a field. • 

Corollary 6.16 
In a commutative ring R with Identity, every maximal ideal is prime. 

Proof., If M is a maximal ideal, then RfM is a field by Theorem 6.15. Hence, 
R/Mis an integral domain by Theorem 3.8. Therefore, Mis prime by 
Theorem 6.14. • 

Theorem 6.15 can be used to show that several familiar ideals are maximal. 

EXAMPLE 8 

The ideal I of polynomials with even constant terms in Z[x-] is maximal because 
Z[x-]/Ii.s a field (see Example 3 of Section 6.2). 
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EXAMPLE 9 

Let The the ring of functions from ~ to R and let I be the ideal of all functions 
g such that g(2) = 0. In Example 8 of Section 6.2 we saw that T/ I is a field 
isomorphic to R. Therefore, I is a maximal ideal in T. 

• Exercises 

A. 1. If n is a composite integer, prove that (n) is not a prime ideal in Z. 

2. If R is a finite commutative ring with identity, prove that every prime ideal in 
R is maximal. (Hint: Theorem 3.9.) 

3. {a) Prove that a nonzero integer p is prime if and only if the ideal {p) is 
maximal in Z. 

(b) Let Fbe a field and p(x) E F(xl. Prove that p(x) is irreducible if and only if 
the ideal (p(x)) is maximal in F(x). 

4. Let R be a commutative ring with identity. Prove that R is an integral domain 
if and only if (OR) is a prime ideal. 

5. List all maximal ideals in Z6• Do the same in Z12• 

6. (a) Show that there is exactly one maximal ideal in Z8, Do the same for Z,. 
(Hint: Exercise 6 in Section 6.1.] 

(b) Show that Z 10 and Z 1 s have more than one maximal ideal. 

7. Let R be a commutative ring with identity. Prove that R is a field if and only if 
(OR) is a maximal ideal. 

8. Give an example to show that the intersection of two prime ideals need not be 
prime. (Hint: Consider (2) and (3) in Z.] 

9. Let R be an integral domain in which every ideal is principal. If (p) is a 
nonzero prime ideal in R, prove that p has this property: Whenm:er p factors, 
p ~ cd, then cor dis a unit in R. 

B. 10. Let p be a fixed prime and let J be the set of polynomials in Z( x] whose 
constant terms are divisible by p. Prove that J is a maximal ideal in Z{x]. 

11. Show that the principal ideal (x - 1) in Z( x] is prime but not maximal. 

12. If p is a prime integer, prove that M is a maximal ideal in Z X Z. where M = 
{(pa, b) )a, b EZ}. 

13. If I is an ideal in a ring R, then I X I is an ideal in R X R by Exercise 8 of 
Section 6.1. Prove that (R X R)/(I X I) is isomorphic to R/ I X R/ I. 
(Hint: Show that the functionf:R X R --toR/ I X R/ I given by f((a, b)) = 
(a + I, b + I) is a surjective homomorphism of rings with kernel I X 1:] 

14. If Pis a prime ideal in a commutative ring R, is the ideal P X P a prime ideal 
in R X K! (Hint: Exercise 13.] 
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15. (a) Let R be the set of integers equipped with the usual addition and 
multiplication given by ab = 0 for all a, b E R. Show that R is a 
commutative ring. 

(b) Show that M = {0, ±2, ±4, ±6, ... } is a maximal ideal in R that is not 
prirrw. Explain why this result does not contradict Corollary 6.16. 

16. Show that M "" {0, ±4, ±8, ... } is a maximal ideal in the ring E of even 
integers but Ej M is not a field. Explain why this result does not contradict 
Theorem 6.1S. 

17. Letf:R--+ S be a surjective homomorphism of commutative ring& If lis a 
prime ideal inS, and I= {r ER lf(r) E J}, prove that I is a prime ideal in R. 

18. Let P be an ideal in a commutative ring R with P ¢ R. Prove that Pis prime 
if and only if it has this property: Whenever A and B are ideals in R such that 
AB ~ P, then A-;; P orB~ P. [AB is defined in Exercise 36 of Section 6.1. This 
property is used as a definition of prime ideal in noncommutative rings.] 

19. Assume that when R is a nonzero ring with identity, then every ideal of 
R except R itself is contained in a maximal ideal (the proof of this fact is 
beyond the scope of this book). Prove that a commutative ring R with identity 
has a unique maximal ideal if and only if the set of nonunits in R is an ideal. 
Such a ring is called a local ring. (See Exercise 6 of Section 6.1 for examples of 
local ring&) 

20. Find an ideal in Z X Z that is prime but not maximal. 

C. 21. (a) Prove that R '=' {a +hila, b EZ} is a subring of C and that 

M==' {a+ bil3laand3lb} 

is a maximal ideal in R. [Hint: If r + si ~ M, then 3 A'r or 3 .r s. Show 
that 3 does not divide ,:2 + s1 '=' (r + sl)(r - sl). Then show that any ideal 
containing r + 9i and M also contains 1.] 

(b) Show that R/M is a field with nine elements. 

22. Let R be as in Exercise 21. Show that J is not a maximal ideal .iJ. R, where J = 
{a+ bi lSI a and Sib}. [Hint: Consider the principal ideal K"" (2 + i) in R.] 

23. If R and J are as in Exercise 22, show that RjJ = Z5 X Z5• 

24. If R and K are as in Exercise 22, show that R/K = Zs. 

25. Prove that T "" {a + b'\121 a, bE Z} is a subring of IR and M"" 
{a+ h'\121Sia and Sib} is a maximal ideal in T. 

A L TE R NATI VE RO UTES ; At this point there are three possibilities. 
You may explore a new algebraic concept, groups (Chapter7)--if )OU 

have not already done So--<JI' continue further with either integral 
domains (Chapter 10) or fields (Chapter 11). 





CHAPTER 7 

Groups 

The algebraic systems with which you are familiar, such as Z, Zn, the ratiOnal 
numbers, the real numbers, ard other rings all have two operations: addition and 
multiplication. In this chapter, we introduce ad tfferent kind of algebraic structure­
called a group-that uses a single operation. Groups arise naturally in the study of 
symmetry, geometric transformations, algebraic coding theory, and in the analysis 
of the solutions of polynomial equations. 

ALTERNATE ROUTE: If you h;m: not read Chapter 3 (Rings), you 
should repl.:e Section 7 .I with Section 7 .I.A, which begins on pa81J 183. 

Ill Definition and Examples of Groups 

A group is an algllhraic system with one operation. Some groups arise from rings by 
ignoring one of their operations and concentrating on the other. As we shall see, for 
example. the integers form a group under addition (but not multiplication) and the 
nonzero rational numbers form a group under multiplication (but not addition). But 
many groups do not arise from a system with two operations. The most important of 
these latter groups (the ones that were the historical starting point of group theory) 
developed from the study of permutations.* Consequently, we begin with a consider­
ation of permutations. 

Informally, a pennutation of a set Tis just an ordering of its elements. For exam. ph; 
there are six possible permutations of T = {I, 2, 3}; 

12 3 I 3 2 2 I 3 2 3 I 3 12 3 21. 

~1 n the early nineteenth cent~y. permutations played 11 key role in the attempt to lind formulas lor 
solving higher-degree pol ynomilll equations similar to the quadratic formula. For more information, 
see Chapter 1.2. 

169 
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Each such otdering determines a bijective function from T to T: map I to the first 
element of the ordering. 2 to the second, and 3 to the third.3 For instance, 2 3 1 
determines the functionfT-+ Twhose rule is/(1) = 2;j(2) = 3;j(3) = l. Conversely, 
every bijective function from T to T defines an ordering of the elements, namely, f(l), 
/(2), f(3). Consequently, we deft~ a permutation of a set T to be a bijective function 
from Tto T. This definition preserves the informal idea of ordering and has the advan­
tage of being applicable to infinite sets. For now, howeva-, -we shall concentrate on finite 
sets and develop a convenient notation for dealing with their permutations. 

EXAMPLE 1 

Let T = { 1, 2, 3}. The permutation! whose rule isf(l) = 2,j(2) = 3,j(3) = 1 

(1 2 3) . . . may be represented by the array 
2 3 1 

, m which the nnage under f of an 

element in the first row is listed immediately below it in the second row. Using 
this notation, the six permutations of Tare 

G 2 
2 

Since the composition of two bijective functions is itself bijective, the composi­
tion of any two of these permutations is one of the six permutations on the list 

above. For instance, if f = ( 1 2 3
) and g = ( 1 2 3

), then f o g is the func-
tion given by 3 2 1 2 1 3 

(f" g)(l) = f(g(l)) = f(2) = 2 

(fo gX2) = /(g(2)) = f(1) = J 

(f o gX 3) = f(g(3)) = f(3) = l. 

(1 2 3) Thus fog = 
2 3 1 

. It is usually easier to make computations like this 

by visually tracing an element's progress as we first apply g and then/; for 
example, 

)1. .... --- ..... , 

(1 2 3)'. (1 2 3) (1 2 31) 
~ 2 1 .. ~. 2 i 3 = 2 3 
~-••• ..., ............. ,4 

"'-........ ,.. ____ ._ __ .......... ---·"".,..-

•BijliCtiva functions are discussed in Appendix B. 
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If we denote the set of permutations of T by S3, then composition of functions 
( o ) is an operation on the set S3 with this property; 

If /E S1 and g E S3o then/ o g E S3. 

Since composition of functions is associative,* we ooe that 

(fog) o h = fo (go h) for all/, g, hE S3. 

Verify that the identity permutation I= G ~ !) has this property: 

[of= f and f•l = f for everyjeS3. 

Every bijection has an inverse function;* consequently, 

if /E sl> then there exists g E SJ such that 

fog=l au! gof=/. 

For instanc~ if f = G ~ !). then g = G ~ D because 

and 

(
1 2 
2 3 

3) 0 (1 2 
1 3 1 D=G 2 

2 

You sh.ould determine the inverses of the other permutations in S3 (Exen:ise 1). 
Finally, note thatfo g may not be equal togo j; for instance, 

G 2 D·G 2 D=G 2 

D 2 1 3 

but 

G 2 D·G 2 D=G 2 !} 2 

•S&e Appendix B. 
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By abstracting the key properties of ~ under the operation~, we obtain this 

A group ls a nonempty set G equipped with a binary operation • that satis­
fies the following axioms t; 

1. Closure: lfaEG and bEG, then a •bEG. 

2. Associativity: a • (b • c) ==(a • b) • t' for a II a, b, c: E G. 
3. There is an element eEG (called the Identity element) such that 

a • e == a == e • a for every a E G. 

4. For each aE G, there is an element dE G (called the Inverse of a) 
sue h that a • d = e imd d *a = e. 

A group is said to be abelian* if it also satisf1 es this axiom: 

5.. Commutativity: a * b == b •a for all a, b€ G. 

A group Gis said to be finite (or of finite order) if it has a finite number of elements. 
In this case, the number of elements in G is called the order of G and is denoted r G\· A 
group with infinitely many elements is said to have infinite onler. 

EXAMPLE 2 

The discussion preceding the definition shows that S3 is a nonabelian group of 
order 6, with the operation * being composition of functions. 

EXAMPLE 3 

The permutation group ~ is just a special case of a more general situation. Let 
n be a fixed positive integer and let T be the set {1, 2, 3, .• _, n}. LetS,. be the set 
of all permutations of T (that~ all bijections T- T). We shall use the same 

. ., hfun. did" s "'.,. (123456) notation 10r sue cbons as we m 3• In .. ,6• 10i 1nstance, l 
4 6 2 3 5 

denotes the permutation that takes 1 to 4, 2 to 6, 3 to 21 4 to 3, 5 to 5, and 6 to 
l. Since the composite of two bijective functions is bijective, IS,. is closed under 
the operation of composition. For example, in S6 

( 
1 2 ~_..,-~·-·;··-~-)\,9 ( 1 2 3 1 5 6) = (I 2 3 4 5 6) 

3 5 2 '•~ 1 6 \_ 6 4 1-· 3 5 1 6 4 ;_,;. 1 3 

....... _____ ...... ::::: ~:: ---------" -------· --. --····-
(Remember that in composition of functions, we apply the right-hand function 
first and then the left-hand one. In this case, for instance, 4-4 3 -4 2, as shown 

tBinary operations are defined in Appendix B. 

*In honor ol the Norwegian mathematician N. H. Absl (1802-1829). 

tseeAppendix B. 
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by the arrows.) We claim that S,. is a group under this operation. Composition 
of functions is known to be associative, and every bijection has an invene func­
tion under composition.t It is easy to verifY that the identity permutation 

(
1 2 3 n). . . 
1 2 3 

· · · 'h 1s the tdentity element of .S,. S,. IS called the S}mmetric 

group on n symbols. The order of S~ is nl """ r(n - lXn - 2) .•. 2.1 (Exercise 20). 

EXAMPLE 4 

The preceding example is easily generalized. Let T be any nonempty set, pOSSi· 
bly infinite. Let A(T) be the set of all permutations of T(all bijective functions 
T ~ T). The arguments given above for S~ carry over to A(T) and show that 
A(T) is a group under the operation of composition of functions (Exercise 12). 

EXAMPLE 5 

Think of the plane as a sheet of thin, rigid plastic. Suppose you cut out a square, 
pick it up, and move it around, t then replace it so that it fits exactly in the cut-out 
space. Eight ways of doing this are shown below (~ere the square is centered at 
the origin and its corners numbered for easy reference). We claim that any mo· 
tion of the square that ends with. the square fitting exactly in the cut-out space 
has the same result as one of these eight motions (Exercise 14 ). 

All Rotations Are TakRn Counterclodc:wise Around the Center. 

4 4 

3 3 

't """ rotation of 90"' 

3 4 2 

2 

'See Appendix B for detai Is. 
~Flip it, rotate it, turn it over, spin it, do whatever rou want, as long a$ rou don't bend, break, or distort it 
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r2 =rotation of 180" 

4 2 

~ 
3 3 

2 4 

r3 =rotation of 270" 

4 

~ 
3 2 4 

2 3 

d = reflection in the x-axis 

4 2 

d 

~ 

3 3 

2 4 

1 = reflection in they-axis 

4 4 

t 

~ 
3 3 

2 2 
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h = reflection in line y = x 

4 3 

3 2 4 

2 

u =reflection in line y = -x 

4 

11 

3 4 2 

2 3 

If you perform one of these motions and follow it by another, the result will be 
one of the eight listed above; for example, 

4 3 4 

3 2 

2 2 

I 

If you think of amotion as a function from the square to itself, then the idea of follow­
ing one motion by another is just oomposition of f=tions. In the illustration ab~ 
(h follov.al by r1 is t), we can write r1 o h = t (remember r1 o h means first apply h, then 
apply r)). Verify that tn: set 



176 Chapter 7 Groups 

equipped with the composition operation has this table: 

0 To I'] T I'] d h t 11 

'o 'o I'J '2 I'] d h v 

I'J I'] 'l Tl 'o h v d 

1'2. '2 1) ro I'] v d h 
I'] I) To Tt ,2 11 d h 
d d tl t h 'o T] ,2 TJ 

h h d v t I'] ro I'J '1 

h d v '1 I' I 'o I'] 

11 v h d 1'3 1'1 I'] To 

Clearly D4 is closed undero,and composition of functions is known to be associative. 
The table shows that r0 i5 the identity element and that ~element of D4 has an 
inverse. For instance, TJ or! ""To ""TJ c r; .TherefOre, D4 is a group. It is not abelian 
because, for example, h o d + do h. D4 is called the dihedral group of degree 4 or 
the group of symmetries of the square. 

EXAMPLE It 

The group of symmetries of the square is just one of many symmetry groups. 
An analogous procedure can be carried out with any regular polygon of n side5. 
The resulting group D,. is caJled the lihedral group of degree n. The group D3, for 
example, consists of the six symmetrifi5 of an equilateraJ triangle (counterdockwise 
rotations about the center of 00, 120°, and 240'"; and the three reflections shown 
hen:), with composition of fuo;;tions as the operation: 

~~~~ 
~~ 

3 2 

3~1 ~~ 
r , 11 

......--..... / ...----...... 
3 I / ' 2 

2 2 2 I 

Symmetry groups arise frequently in art, architecture, and science. 
Crystallography and crystal physics use groufti of symmetries of various 
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three-dimensional shap:s. The first awurate model of DNA (which led to the 
Nobel Prize for its creators) could not have been constructed without a recogni­
tion of the symmetry of the DNA molecule. Symmetry groups have been used by 
physicists to predict the existence of certain elementary particles that were later 
found experimentaJly. 

Groups and Rings 
A ring R has two associative operations, and it is natural to ask if R i.s a group under 
either one. For addition the answer is yes: 

Theorem 7.1 
Every ring is an abelian group under add it ion. 

Proof .. An examination of the tim five axioms for a ring (in Section 3.1) shows that 
they ai\l identral to the five axioms fOr an abelian group, with the opmrtion * 
being +,the identity element e being OR, and the inverse of a being -a. • 

EXAMPLE 1 

By Theorem 7.1, each of the following familiar rinss is an abelian group under 
addition: 

Z, Z,, Q, Ill, C; 

Matrix ring.s, such as M(IR) and M(Zz); 

Polynomial rinss such as Z[ x), R[x], and Z,.[x]. 

Hereafter, when we use the word "group" without any qualification in referring 
to these or other rings, it is understood that the operation is addition. 

Multiplication, however, is a different story: 

A nonzero ring R is never a group under multiplication. 

[f R has no identity, Axiom 3 fa.ils. [f R has an identity, then OR has no inverse and 
Axiom 4 fails. Nevertheless, oertain subsets of a ring with identity may be groups 
under multiplication. 

Theorem 7.2 
The non zero elements of afield F form an abel ian group under multi pi ication. 

Hereafter we shall denote the set of nonzero elements in a field F by F*. 

Proof ofTheorem 7.2 .. Multiplication in p satisfies the following ring axioms: 
6 and ll (closure), 1 (associativity), 10 (identity), 12 (mwrses), and 9 
(commutativity }---see pages 44, 48, and 49. SoP satisfies group axioms 
1-5 and, therefore, is an abelian group under multiplication. • 
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EXAMPLE 4 

Theorem 7.2 shows that each of the following is an abelian group under 
multiplication: 

0* the nonzero rational numbers; R* the nonzero real numbers; 

C* the nonzero complex numbers. 

EXAMPLE9 

If p is prime, then Zp is a field by Theorems 2. 7 and 2.8. Therefore, Zp* i> a 
group under multiplication by Theorem 7.2 

EXAMPLE 10 

The positive rational numbers 0** form an infinite abelian group under multi­
plication, because the product of positive numbers is positive, 1 is the identity 
element, and the inverse of a is If a. Similarly, the positive reals IR** form an 
abelian group under multiplication. 

EXAMPLE 11 

The subset { 1, -1, i, - •1 of the complex numbers forms an abelian group of 
order 4 under multiplication, You can easily verifY closure, and 1 is the identity 
element. Since (- i) = 1, i and - i are inverses of each other; -1 is its own 
inverse since (-1)(-1) "" 1, Hence, Axiom 4 holds. 

EXAMPLE 12 

Neither the nonzero integers nor the positive integers form a group under mul­
tipl£ation. Although 1 is the multiplicative identity for each system, no integers 
except for :t 1 b;n•e a multiplicative inverse, so Axiom 4 fails. For example, the 
equation 2:c = 1 has no integer solution, so 2 has no inverse under multiplica­
tion in the integers. 

EXAMPLE 13 

When n is composite, the nonzero elements of Z.. do not form a group under 
multiplication because (among other things) closure fails. In 4 for instanre,. 
2 • 3 = 0 and in Z'1h> 4 · 5 = 0. Similarly if n "" rs, then in Z,, rs = 0. 

A ring R with identity always has at least one subset that is a group under 
multiplication. Recall that a Wlit in R is an element a that has a multiplicative inverse, 
that is, an element -u such that au "" 111 = -ua. 
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Theorem 7.3 
If R is a ring with identity, then the set U of aU units in R is a group under 
multiplication. • 

Proof• The product of units is a unit (Emtrise 15 in Section 3.2). so Uis closed under 
multiplication (Axiom 1). Multiplication in R is associative, so Axiom 2 holds. 
Since 1R is obviously a lJilit, Uhas an identity element (Axiom 3). Axiom 4 
holds in Uby the <kfinition of unit. 'Therefore, U is a group. • 

EXAMPLE 14 

Denote the multiplica.tive group of units in ~ by U,.. Acconiiog to Theorem 2.10, 
U,. consists of all a E ~such that (a, n) = 1 (wb:n a is considered a5 an ordinary 
integer). Thus the group of units in Z8 is U8 = {1, 3, 5, 7}, and the group of units 
in Z 15 is U1s = {1, 2, 4, 7, 8, 11, 13, 14}. Here is the operation taNe foe Ug: 

1 3 5 7 

1 1 3 5 7 

3 3 1 7 5 

5 5 7 1 3 

7 7 5 3 1 

EXAMPLE 15 

Examples 7 and 10 of Section 3.2, and Exercise 17 of Section 3.2showthat the 
group of units in M(lll) is 

GL(2, Ill) = { (: ~)I where a, b, c, de Rand ad- be'# 0 }• 

which is caJled the general linear group of degree 2 over Ill. It is an infinite 
nonabelian group (Exercise 7), 

EXAMPLE 16 

Examples 8 and 10 of Section 3.2, and Exercise 17 of Section 3.2 show that the 
group of units in M(L~ is 

GL(2, Z2) = { (: ~)I where a, b, c, dE zl and ad- be'* 0 }. 

the general linear group of degree 2 over Z2• It is a nonabelian finite group of 
order 6 (Exercise 7). 

•rheorem7.2is a specialcaseofTheorem 7.3 bec!IUsethe ~nits in 11 field 11rethe nonzero elements. 
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NewGroupsfrom Old 
The Cartesian product, with operations defined ooordinatewise, allowed us to con­
struct new rings from known ones. The same is true for groups. 

Theorem 7.4 
Let G (with operation •) and H (with operation o) be groups. Define an cperatlon • 
onGXHby 

(g, h) •(g', h') = (g •g', h 0 h'). 

Then G x HIs a group. If G and Hare abelian, then so Is G x H. If G and H 
are finite, then so Is G X Hand IG X HI= IG IIH~ 

Proof ... Exercise 26. • 

EXAMPLE 1'1 

Both Z and~ are groups under addition. In Z X ~ we have (3, 5) • (7, 4) = 
(3 + 7, 5 + 4) = (10, 3). The identity is (0, 0), and the inverse of (7, 4) is ( ~ 7, 2). 

EXAMPLE 18 

Consider R* X D., where R* is the m~ltiplicative group of nonzero real num­
bers. The table in &ample 5 shows that 

(2, 1'1) • (9, t!) = (2 • 9, r1 o v) = (18, d). 

The identity element is (1 1 ro), and the inverse of (8, r3) is (1/8, rJ, 

• Exercises 

A. I. Find the inverse of each permutation in S3• 

2. Find the multiplicative inverse of each nonzero element in 

(a)~ (b)Zs (c)Z7 

3. What is the order of each group: 

(a} Zlll (b) D4 (c) ~ (d) Ss 

4. Determine whether the set G is a group under the operation *. 
(a) G = {2, 4, 6, 8} in Z 1oi a * b = ab 

(b) G = Z; a * b = a - b 

(c) G = {nEZin is odd}; a* b =a+ b 

(d) G={?lxEQ};a•b=ab 

(e) U11 
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5. Find the inverse of the given group element [Hint: Example 8 in Section 3.2-
or Example 16 in Section 7. LA--and Exercise 2.] 

(c) (! ~) in Z1 

6. Give an example of an abelian group of order 4 in whi:h every nonidentity 
element a satisfies a * a = e. [Hint: Consider Theorem 7 .4.] 

7. (a) Show that the group GL(2, ~) has order 6 by listing all its elements. 

(b) Show by example that the groups GL(2, R) and GL(2, Z2J are nonabelian. 

8. Use Theorem 2.10 to list the elements of each of these groups: U4, U6> U10> 

u]J), uJo-

9. Write out the operation table for the group D; described in Example 6. 

10. Show that G = { ( _: ~)I a, bE R, not both 0} is an abelian group under 

matrix multiplication. 

II. Consider the addit:i\le group Z2 and the multiplicative group L = { ± 1, ± i} of 
complex numbers. Write out the operation table for the group Z2 X L. 

12. Let T be a nonempty set and A (T) the set of all permutations of T. Show that 
A(T) is a group under the operation of composition of functions. 

13. Give examples of nonabelian groups of orders 12, 16, 30, and48. 
{Hint: Theorem 7.4 maybe helpful.] 

B. 14. Show that e\'ety rigid motion of the square (as described in the footnote at the 
beginning of Example 5) has the same result as an element of D4• {Hint: The 
position of the squan: after any motion is compl~ly determined by the lcx:.ation 
of comer 1 and by the orientation of the square--fa,;;e up or face down.] 

15. Write out the operation table for the symmetiy groups of the following 1igures: (a)D (b)\~\ (<) C><J 
16. Let 1, i, j, k be the following matrices with complex entries: 

(a) fuM,that 

jl = j1 = kl = -I ij = -jl = k 

jk = -kj = i ki = -ik = j. 
(b) Show that set Q = {1, i, -1, -1, j, k, -j, -k].is.a group under matrix 

multiplication by writing out its multiplication table. Q is called the 
q,uaternlon group. 
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17. If G is a group under the stated operation, prove it; if not, give a counterexample: 

(a) G = Q; a * b = a + b + 3 

(b) G = {rEOir + 0}; a •h= ab/3 

18. Let K= {rE ~lr + 0, r + 1}. Let G oonsistof these six functions from Kto K: 

I x- I I 
f(x) = -- g(x) = -x- h(x) = -x 

1-x 

r1x) = x j(x) = I- x 
X 

k(x) = --
1 x-

Is G a group under the operation of function composition? 

19. Do the nonzero real numbers form a group under the operation given by a * b = 
I a I b, where I a I is the absolute value of a? 

20. Prove that Sn has order 11!. [Hint: There are n possible im~es for 1; after one 
has been chosen, there are n - 1 possible images for 2; etc.] 

21. Suppose G is a group with operation *· Define a new operation # on G by 
a # b = b * a. Prove that G is a group under #. 

22. List the elements of the group D5 (the symmetries of a regular pentagon). 
[Hint: The group has order 10.] 

23. Let Sli.._2, lh!) be the set of a112 X 2 matrices (: ~)such that a, b, c, dE lri 

and ad - be = I. Prove that SI1,2, lh!) is a group under matrix multiplication. 
It is called the s~allinear group. 

24. Prove that the set of nonzero real numbers is a group under the operation * 
defined by 

if a> 0 

if a< 0. 

2S. Prove that R* X I!;! is a group under the operation* dclined by (a, b) * (c, d)= 
(ac,bc +d). 

26. Prove Theorem 7.4. 

27. If ab = ac in a group G, prove that b = c. 

28. Prove that each element of a finite group G appears exactly once in each row 
and exactly once in each column of the operation table. [Hint: Exercise 27.] 

29. Here is part of the operation table for a group G whose elements are a, b, c, d. 
Fill in the rest of the table. [Hint: Exercises27 and 28.] 

a b c d 

a a b c d 

b b a 

c c a 

d d 
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30. A partial operation table for a group G ~ {e, a, b, cl d,f} is shown below. 
Complete the table. [Hint: Exercises 27 and 28.] 

e a b c d f 
e e a b c d f 
a a b e d 

b b 

c c f a 

d d 

I f 

31. Let The a set with at least three elements. Show that the permutation group 
A(T} (Exercise 12) is nonabelian. 

32. Let T be an infinite set and let A(T) be the group of permutations ofT 
(Exercise 12). Let M"" {fEA(T) I f(t) + t for only a finite number of rET}. 
ProYe that M is a group. 

33. If a, bE~ with a¢. 0, let T<>I>:R -+IIUe the function given by TJ..x) =ax + b. 
Prove tbattbe set G"" {T.o,& Ia, bE~ with a :F 0} forms a nonabelian group 
under composition of functions. 

34. Let H"" {Tv I bE~} (notation as in Exercise 33). Prove that His an abelian 
group under composition of functions. 

C.35. If/E S,. prove thatfk= /for some p>sitive integer k, where/" means 
f of of o • • • of (k times) and I is the identity permutation. 

36. Let G "" {0, 1, 2, 3, 4, 5, 6, 7} and assume G is a group under an operation* 
with these properties: 

(i) a* b :5. a + b for all a, bEG; 

(ii) a * a "" 0 for all a E (], 

Write out the operation table for G. [Hint: Exercises 27 and 28 may help.] 

~~~~ Definition and Examples of Groups 

NOTE: H you have mod Sectiuo 7 .1, omit this 900tion and begin Section 7.2. 

A group is an algebraic system with one operation. Some groups arise from familiar 
systems, such as Z, Z.., the rational numbers., and the real numbers, by ignoring one 
of their operations and concentrating on the other. As we shall see, for example, the 
integers form a group under addition (but not multiplication) and the nonzero ratio~ 
nal numbers form a group under multiplication (but not addition). But many groups 
do not arise from a system with two operations. The most irnp>rtant of these latter 
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groups (the ones that were the historical starting point of group theory) developed 
from the study of permutations.* Consequently, we begin with a consideration of 
permutations. 

Informally, a permutation of a set Tis just an ordering of its elements. For a ample, 
there are six possible permutations of T = { 1. 2, 3}: 

123 132 21 3 2 3 I 3 1 2 321. 

Each such ordering determines a bijective function from T to T: map 1 to the first 
element of the ordering, 2 to the second, and 3 to the third.t Forinstance, 2 3 1 de­
termines the functionf:T ---1- Twhose rule is/(1) = 2;/(2) = 3;/(3) = 1. Conversely, 
every bijective function from T to T defines an ordering of the elements, namely, 
f(I), /(2), /(3). Consequently, we define a permutation of 11. set T to be a bijective 
function from T to T. This definition preserves the informal idea of ordering and 
has the advantage of being applicable to infinite sets. For now, however, we shall 
concentrate on finite sets and develop a convenient notation for dealing with their 
permutations. 

EXAMPLE 1 

LetT= { 1, 2, 3}. The permutation/whose rule isf(l) = 2,/(2) = 3,1{3) = 1 

may be represented by the array (; ~ ~ ). in which the image under f of an 

element in the first row is listed immediately below it in the second row. Using 
this notation, the six permutations of Tare 

G 
G ! 

2 

3 

2 

~) G ~ 
~) G ~ 

Since the composition of two bijective functions is itself bijectiVe, the composi­
tion of any two of these permutations is one of the six permutations on the list 

~ve: For instanet\ iff= (! ~ D and g = G ~ !). thetlfo g is the func-
tiOn grven by 

(f 0 g)(!) = f(g(l)) = /(2) = 2 

(f 0 g)(2) = f(g(2)) = /(1) = 3 

(f., g)(3) = f(g(3)) = /(3) = L 

'"In the early nineteenth century, permutations played a Key role in the attempt to find formulas for 
solving higher-degree polynomial equations similar to the quadratic formula. For more information, 
see Chapter t2. 

tBijeclive functions are discussed in Appendix B. 
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Thus fog= G ~ !} It is usually easier to make computations like this 

by visually tracing an element's progress as ......, first apply gam then/; for example, 

( t~-;---;-)-.,\o ( 1 r 3) = ( 1 2 31) 
321 ··.213 23 

·- . ..._ '"----- /~ 

If we denote the set of permutations of Tby S3, then composition of functions 
( 0 ) is an operation on the set s3 with this property: 

If fe sl and gE s3, then/ 0 gE s3. 

Since composition of functions is associative,"' we see that 

(fog) oh = fo (go h) for all/, g, heSl' 

(l 2 3) Verify that the identity permutation I = 
1 2 3 

has this property; 

Joj= f and fol= f foreveryfeS3• 

Every bijection has an inverse function; • consequently, 

iff E S3o then there exists g E S3 such that 

jog=] and goj= 1. 

For instanc~ if f = G : ~} then g = G ~ D OOaiuse 

G 2 ~). G 2 D=G 2 D 3 2 

and 

G 2 :)·G 2 ~)= G 2 :} 3 I 2 

You should determine the inverses of the other permutations in S3 (Exercise 1). 
Finally, note thatfo gmay not be equal to gof; forinstanc~ 

but 
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Definition 

By abstracting the key Jroperties of S1 under the operation o, we obtain this 

A group is a nonempty set G equipped with a binary operation " that 
satisfies the following axlomst: 

1. Closure: lfae G and beG, then a "be G. 

2. Associativity: a "(b "c) = {li "b)" c for all a. b, c~ G, 

3. There Is an el.:ment 9-eG (called the identity element) such that 
a " e = a = e " a for every a e G. 

4. For each ae G, there is an element de G (called the inverse of a) 
such that a "d :=:: e and d" a :=:: e. 

A group is said to be abelian~ if it also satisfies this axiom: 

·5, Commutativity: a "b = b *a for all a, be G. 

A group G is said to be finite (or of flnite order) if it has a finite number of elements. 
In this ~.:aSe, the number of elements in G is called the order of G and is denoted IG~ A 
group with infinitely many elements is said to have infinite onler. 

EXAMPLE 2 

The discussion preceding the definition shows that S3 is a nonabelian group of 
order 6, with the operation • being composition of functions. 

EXAMPLE 3 

The permutation group ~ is just a special case of a more general situation. Let 
n be a fixed positive integer and let T be the set { 1, 2, 3, ... , n}. Let S, be the set 
of all permutations of T (that is, all bijections T ~ T). We shall use the same 

. ~ . . ~. (123456) notation .or such functions as we did In S3. In~ 10r Instance, 
462351 

denotes the permutation that takes 1 to 4, 2 to 6, 3 to 2, 4 to 31 5 to S, and 6 to 
1. Since the composite of two bijective functions is bijective,.~ s}l is closed under 
the operation of composition. For example, in S6 

( 
1 2 

3 5 

l'~ 
, ... ---- ... ,_ 

' 
5 

6f, c 2 3 
4 5 

:) = c • 6 ~. 6 4 2 • 2 4 I 3 5 
-....... ',, )& ... 

""~-~-'fl'! .... 

lBinary operations are defined in Appendix B. 
*In honor ol the Norwegian mathematician N. H. A bel (1802-18211). 
'See Appendix B fer details. 

2 3 4 5 :) 4 s.;. 1 
-·· 
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(Remember that in composition of functions, we apply the right-hand function 
first and then the left-hand one. In this case, for instance, 4 ~ 3 ~ 2, as shown 
by the arrows.) \\k claim that S11 is a group under this operation. Composition 
of functions is known to be associative, and every bijection has an inverse func­
tion under composition. tIt is easy to verify that the identity permutation 

G ~ ~ · · · :) is the identity element of S11• SH is called the symmetric 

group on n symbols. The order of S11 is n! = n(n - l)(n - 2), .. 2.1 (Exercise 20). 

EXAMPLE 4 

The preceding example is easily generafued. Let T be any nonempty set, 
poosibly infinite. Let A(T) be the set of all permutations of T(all bijective 
functions T~ T). The arguments given above for S11 carry over to A(T) and 
show that A(T) is a group under the operation of compooition of functions 
(Exercise 12). 

EXAMPLE 5 

1bink of the plane as a sheet of thin, rigid plastic. Suppose you cut out a 
square, pick it up, and move it around,~ then replace it so that it fits exactly in 
the cut-out space. Eight ways of doing this are shown below (where the square 
is centered at the origin and its corners numbered for easy reference). We claim 
that any motion of the square that ends with the square fitting exactly in the 
cut-out space has the same result as one of these eight motions (Exercise 14). 

AU Rotations An> Taken Collliterclodcwise Around the Center. 

r~ = rotation of oa 

4 4 

..----------

3 3 

2 2 

tSee Appendix B for details. 
tflip it, rotate it, turn it over, spin it, do whatever you want, as long as you don't bend, break, or 
distort it 
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r1 ~ rotation cf 90° 

4 3 

rl 

--------------- 4 2 

2 

~=rotation of 180" 

4 2 

7) 

~ 
3 3 

z 4 

r3 = rotation of TJ(J' 

4 

~ 
3 2 4 

2 3 

d = reflection in the x-axis 

4 2 

d 

~ 

3 3 

4 
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t "" refioction in they-axis 

4 4 

I 

~ 
3 3 

2 2 

h "" reflection in line y '=' x 

• 3 

h ...---------... 
3 2 4 

2 

v "" reflection in line y "" -x 

• 
v 

3 4 2 

2 3 

If you perform one of these motions and follow it by another, the result will be 
one of the eight listed above; for example, 

4 3 4 

2 2 
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1f you think of a motion as a function from the :quare to itself, then the idea of foJ.. 
lowing one motion by another is just composition of functions. In the illustration 
above {h followed by T1 is t), we can write r1 o h = t (remember T1 o h means first apply 
h, then apply Tt). Verify that the set 

D4 "" {T~, I), 72, 1), h. v. d. t} 

equipped with the composition operation has this table: 

0 r. d h v 
To To I'] ,.2 TJ d h t 'V 

,., ,., ,.2 T) To h v d 

":!. T2 1) 'o Tl t v d h 

TJ TJ To Tj '2 v d h t 

d d v t h To T~ ,.2 T( 

h h d 'V t I'] To TJ T2 

t t h d 'I} T2 't To I) 

v v t h d 1) 1'1 T( To 

Clearly D4 is closed under o, andoomposition of functions is known to be associa­
tire The table shows that To is the identity element and that every element~ D4 has 
an inverse. For instanoe, 1'J o 1) =To= r 1 o r 3 .TherefOre, D4 is a group. It is not abelian 
ba:ause, for example, hod #- do h. D4 is called the diledral group of degree 4 or the 
group d symmebies of the sqllllre. 

EXAMPLE 6 

The group of symmetries of the square is just one of many symmetry groups. An 
analogous procedure can be carried out with any regular polygon of n sides. The 
resulting group D8 is called the dihedral group of degree n. The group D!:, for ex­
ample, consists of the six symmetries of an equilateral triangle (counterclockwise 
rotations about the center of 0", 120", and 240"; and the three reflections shown 
here and on the next page), with composition of functions as the operation; 
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l~ 4}l~3 t ' "II 

~ /~ 
} 1 :' / 2 

2 2 2 1 

Symmetry groups arise frequently in art, ;m;:hitectute, and science. Crystallography 
and crystal physics use groups of symmetries of various th~mensional shapes. 
The first accurate model of DNA (which led to the Nobel Prize for its creators) could 
not have been constructed without a recognition of the symmetry of the DNA mol­
ecule. Symmetry groups have been used by physicists to predrot the existence of certain 
elementary particles that were later found experimentally. 

Systems with Two Operations 

We now examine some familiar systems with two operations to see what groups ari:Je 
when only one of the operations is considered. 

EXAMPLE 7 

We now show that each of the following is an abelian group under addition, 
that is, with the operation * in the definition of a group being +: 

Z the integers; Z,. the integers mod n; 

0 the rational numbers; n the real numbers; C the complex numbers. 

That each system is closed under addition is a fact from basic arithmetic 
(Axiom 1 ). Likewise, addition in each of these systems is associative: fur any 
the= numbers a, b, c, 

a + (b + c) = (a + b) + c [Additive form of Axiom 2] 

In each system, the identity element is 0 because 

a+O=a=O+a [Additivefonnof Axiom 3] 

Similarly, the inverse of a is -a because 

a+ (-a)= 0 and -a+ a= 0 [AdditivefOJ'm of Axiom 4] 

Finally, each group is abelian because fur any two numbers a and b, 

a+b=b+a [Ad&"tive form of Axiom 5] 

Hereafter, when we use the word "group" without any qualification in refer­
ring to Z, Zn, Q, R, or C, it is understood that the operation is addition. When 
it comes to multiplication, we have this basic fact: 

None of Z, Zn, 0, IR, or C is a group under multiplication. 
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To be sure, each has I as its multiplicative identity element, but unfortunately 
0 has no inwrse---the equation Ox =: l has no solution~ Axiom 4 fails. 
Nevertheless, certain subsets of these systems may be groups under multiplication. 

EXAMPLE8 

Each of the following is an abelian group under multiplication: 

0* the nonzero rational numbers; !1;1* the nonzero real numbers; 

C* the nonzero complex numbers. 

Each system is closed under multiplication because the product of nonzero num­
bers is nonzero (Axiom I). Basic arithmetic tells us that multiplication is associa­
tive and commutative (Axioms 2 and 5), The identity element in each system is 1 
because a· 1 = a = I • a (Axiom 3). The inverse of a is 1Ja (Axiom 4). 

EXAMPLE 9 

Let p be a prime, and consider the nonzero elements of Zp under multiplica­
tion. If a¢ 0 and b ¢ 0, then ah ¢ 0 by condition (3) of Theorem2.8, so 
closure holds (Axiom 1). The identity element is I (Axiom 3) and inverses exist 
by condition (2) of Theorem 2.8 (Axiom 4). Multiplication is associative and 
commutative by Theorem 2. 7 (Axioms 2 and 5). So the nonzero elements of Zp 
form an abelian group under multiplication. 

EXAMPLE 10 

Each of 

0*" the positive rational numbers and ll' .. the positive real numbers 

is an abelian group under multiplication. Both systems are closed under multi­
plication since the product of positive numbers is positive. The identity element 
is I and the inverse of a is 1/ a, 

EXAMPLE 11 

The subset L = {I, -I, i, -;)of the complex numbers forms an abelian group 
under multiplication. You can easily verifY that closure holds and that I is the 
identity element. Since i( -i) = ---f!- =: +I) = I , we see that i and -i are inverses 
of each other;-i is its own inverse sin'-le (-IX-1) =I. Hence, Axiom4 holds. 

EXAMPLE 12 

:Neither the nonzero integers nor the positive integers form a group under multiplica­
tion. Although 1 is the multiplicative ilentity for each system, no inregers exL:ept !Or 
±I have a multiplicative invme, so Axiom 4 fails. For example, the equation 2x = I 
has no integer solution, so 2 has ID iiM:ne under multiplicrtion in the integem. 
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EXAMPLE 13 

When n is composite, the nonzero elements of Z,. do not fonn a group under 
multiplication because (among other things) closure fails. In 4 for instance, 
2 • 3 = 0 and in Z'Jilo 4 • 5 = 0. Similarly if n = rs, then in Z~, rs = 0. 

EXAMPLE 14 

Let U,. be the set of units in Z.,. * By Exercise 17 of Section 2.3, the product of 
two units is a unit, so U11 is closed under multiplication (which is known to be 
associative and commutative). The identity 1 is a unit since I • l """ l. So U~ 
is an abelian group under multiplication. By Theorem 2.10, U11 consists of all 
a EZ,. such that (a, n) = 1 (when a is considered as an ordinary integer). Thus, 
the group of units in Zs is U8 = {1, 3, 5, 7}, and the group of units in Z 15 is 
U1s ;; {1, 2, 4, 7, 8, ll, 13, 14}. Here is the multiplication table for U8; 

3 5 7 

3 5 7 

3 3 1 7 5 

5 5 7 1 3 

7 7 5 3 1 

The next example involves matrices.t A 2 X 2 matrix over the real numbers, is an 
array of the fonn 

where a, h, c, dare real numbers. 

Two matrices are equal provided that the entries in corresponding positions are 
equals, that is, 

if and only if a = r, h = s, c = t, d = u. 

ror example, 

0)=(2+2 
1 1 -4 

Matrix multiplication is defined by 

x) = (aw + by • ax + hz) 
z cw + dy ex + dz · 

~Reca II that an element a in Z., is a unit if the equation ax.= 1 has a solution (that i'l!, if a has an inverse 
under multiplication). 
fJf you have taken a course in linear algebra, you can skip thi$ paragraph. 
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For example, 

(~ ~!)(! --:5 ) ( 2 • l + 3 • 6 2( ~5') + 3 • 7) ( 20 
7 = 0·1+(~4)6 o(~5)+(~4)7 = ~24 ~). -.as 

Reversing the order of the factors in this product produces 

-5)(2 
7 0 

3) = (1 • 2 + ( -5 )0 l • 3 + ( -5 )( -4 )) = ( 2 
-4 6•2+7·0 6·3+7(-4) 12 

23) 
-10 . 

So matrix multiplication is not commutative. A straightforward (but tedious) compu­
tation shows that matrix muhiplication is associative. It's easy to verify that 

Hence, G ~)is the identity element. 

EXAMPLE 15 

We shall show that the set of matrices 

{ (: ~)I where a, b, c, dEJI and ad- be :f:. o} 
is a group under multiplication, called the general linear group of degree 2 over R! 
and denoted GIJ...2, R). The discussion before the example show; that GL(2, R!) 
has associative multiplication and an identity element (Axioms 2 and 3'). You can 
readily verify that when ad- be '# 0, 

(ac b) (ad~ be ad -_\c) = (1 0) and (ad~ be ad-..!: be )(a b'\ = (l 0) 
d .-..,c a 0 l ~ a -c d) 0 l · 

ad - be ad - be ad - be ad - be 

So every matrix in GL(2, R.) has an inverse (Axiom.4). 
To finish the proof, we need only show that GIJ...2, R) is closed under multiplication 

(Axiom l). Suppose that (; ~)and (; ; ) are in GIJ...2, lli), so that ad- be :#- 0 

and wz- xy ¥: 0, and hence, (ad- bc)(wz - xy) + 0. To prove that 

(
a b )(w ;c) = (aw + by ax + bz) 
c d y z aw+czy cx+dz 
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is in GL(2, R}, we must prove that (aw + by X ex + dz) - (ax + bz)(cw + dy) ¢ 0. 
Verify that 

(aw + by)(cx + dz) - (ax+ bz)(cw + dy) "" (ad- be)(wz - xy) -:F 0. 

So the product matrix is in GL(2, R). Therefore, GL(2, R) is closed under multi­
plication and is a group, which is nonabelian (Exercise 7). 

The discussion preceding Example 15 carries over to matrices whose entries are in 
systems other than the real numbers, such as Q, C, and z, (with p prime). 

EXAMPLE 16 

We shall show that 

GL(2,Z2)"" {(: ~)I where a, b, c,dEZ2 andad- be* o}. 

the general linear group of degree 2 over z'h is a group under multiplication. 
Matrix multiplication is associative, and the identity matrix is obviously in 
GL(2, Zz). The proof that GL(2, Z2) is closed under multiplication is identical 

to theonefor GL(2, R)inExampl! 15. If A""(: ~) EGL(2,Z2), tbenad-be¢0 

in Z,_, so ad - be has an inverse by Example 9. Verify that the inveiSe of A is 

( 
d(ad- ~)-1 -b(ad- bc}"l) hich . th . . . . 
-c(ad _ bc)-1 a( ad_ bc)-l ; w JS e same mverse matriX gtven m 

Example 15, with a change of notation: (ad·- bc-)-1 in place of ad~ be" Hence, 

G£(2, ZiJ is a group. It is a finite nonabelian group of order 6 (Exercise 7). 

New Groups from Old 
The Cartesian product G X H of sets G and His defined on page 512 of Appendix B. 
Theorem 7.4 on the next page shows that the Cartesian product can be used to pro· 
duce new groups from known ones.* 

"Theorems 7.1-7.3 appear in Section 7.1 and assume that you have read Chapter 3, so they are 
not included in Section 7.1.A. However, many of the preceding examples are special cases of 
these theorems: Example 1 is a special case of Theorem 7.1 ; Exam pies 8 and 9 are s pee ial cases 
ofTheorem 7.2; and Examples 14-16 are special ca!es ofTheorem 7.3. So you haven't missed 
anything crucial for this chapter. You may wish to read Theorems 7,1-7.3 at a later date, after you 
have read Chapter 3. 
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Theorem 7.4 
Let G (with operation •) and H (with operation -o) be groups. Define an opera­
tion•on G xHby 

(g, h). (g', h') = (g * g', h <> h'). 

Then G x His a group. If G and Hare abelian, then so is G X H. If G and H 
are finite, then so is G x H and jG X HI = ~ IHJ. 

Proof~ Exercise 26. • 

EXAMPLE 17 

Both Z and "4 are group under addition. In Z X "4 v.e have (3, 5) • (7, 4) = 
(3 + 7, 5 + 4) = (10, 3). The identity is (0, 0), and the inverse of (7, 4) is ( -7, 2~ 

EXAMPLE 18 

Consider R• X D, where~ is the multiplicatiw group of nonzero real num" 
ben. The table in Example 5 shows that 

(2, rJ • (9, v) = (2 • 9, r1 -o v) = (18, d). 

The identity element is (1, r0), and the inverse of (8, rJ is (1(8, r1). 

• Exercises 

The exercises for this section are the same as those for Section 7.1-see page 180. 

II Basic Properties of Groups 

Before exploring the deeper concepts of group theory, we must develop some additional 
terminology and establish some elementary facts. We begin with a change in notation. 

Now that you are comfortable with groups, we can switch to the standard multi­
plicative notation. Instead of a • b, we shall write ah when discussing abstract groups. 
However, particular groups in which the operation is addition (such as Z) will still be 
written additively. 

Although we haw spoken of the inverse of an element or the identity element of a 
group, the definition of a group says nothing about inverses or identities being unique. 
Our first theorem settles the question, however. 

Theorem 7.5 
Let G be a group and let a, b, c E G. Then 

(1) G has a unique identity element. 
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(2) Cancelation holds in G: 

If ab = ac, then b = c; if ba = ca, then b =c. 

(3) Each element of G has a unique inverse. 

Proof .. (1) The group G has at least one identity by the definition of a group. If 
e and e' are each identity elements of G, then 

ee' = e [Becau.l'e e' ia an identity element.] 
ee' = e' [Bect1UJ"e e is an identity element.] 

Therefore, 
e=ee'=e', 

so that there is exactly one identity element. 

(2) By the definition of a group, the element a has at least one inverse 
d such that da = e = ad. If ab = ac, then d(ab) = d(ac). By associativity 
and the properties of inverses and identities, 

(Ja)b = (Ja)c 
eb =ec 
b=c. 

The second statement is proved similarly. 

(3) Suppose that d and d' are both inverses of a E G. Then ad= e = ad', 
so that d = d' by (2). Therefore a has exactly one inverse. • 

Hereafter the unique inverse of an element a in a group will be denoted a-1• The 
uniqueness of a-1 means that 

whenel'er ay = e = ys, theny = ,-1. 

Corollary 7.6 
If G is a group and a, beG, then 

(1) (abr1 = b-1a-1; 

(2) (a-")-1 = a. 

Note the order of the elements in statement (1). A common mistake is to write the 
inverse of ab as a-1b-t, which may not be true in nonabelian groups. See Exercise 2 
for an example. 

Proof of Corollary 7.6 .. (1) we have 

(ab)(!J-1a-1) = a(bb-1)a-1 = aea-1 = aa-1 = e 

and, similarly, (b-1a-1Xab) = e. Since the inverse of ab is unique by 
Theorem 7.5, b-1a-1 must be this inverse., that is, (ab)-1 = b-1a-1. 

(2) By definition, a-1a = e and (a-1)(a-1)-1 = e, so that 
.o-1a = a-1(a-trt. Canceling a-1 by Theorem 7.5 shows that 
a= (a-1)1. • 



198 Chapter 7 Groups 

Let G be a group and let a E G. We define Ql = aa, ti = aaa, and for any positive 
integer 11, 

a• = a.atr. .. .... .a (n factors). 

We also define Jl = e and 

(n factors). 

These definitions are obviously motivated by the usual expomnt notation in IIi and 
other familiar rings. But be careful in the nonilhelian case WheDj for ins tan~, (ah} may 
not be equal to d'll'. Some exponent rules, howewr, ehJ hold in groups; 

Theorem 7.7 
Let G be a group and let a E G. Then for all m, n in l, 

and 

Proof .. The proof consists of a wr:ification of each statement in each possible 
case (m :2:!:: 0, 11 :2:!:: 0; m :2:!:: 0, 11 < 0; etc.) and is left to the reader 
(Exercise 21). • 

NOTE ON ADDITIVE NOTATION: To avoid confusion, the operation in cer­
tain groups must be written as addition (for example, the additive group of real 
numbers since multiplication there has a completely different meaning). Here is 
a dictional}' for translating multiplicative statements into additive ones: 

Operation: 

Identity: 

Iuvene: 

Exponents: 

Theorem 7.7: 

MuiHpllcaHve 
NotaHon 

ab 

e 
a-t 

d' = aa • • ·a (11 factol'll) 
a 41 = a-1 

• • • a-1 

d"ti' = tJ-+11 

(d"'/' = d*' 

Order of an Element 

AddiHve 
Notation 

a+b 

0 

-a 

11a =a + a + · · · +a (n summands) 
(-n)a= -a- a- ... -a 

(ma) + (na) = (m + 11)a 
11(ma) = (mn)a 

We return now to multiplicative notation for abstract groups. An element a in a group 
is said to have finite order if d' = e for some positive integer k. * In this case, the order 
of the element a is the smallest positive integer 11 such that d' = e. The order of a is 

*In additive no'llltion, the condition is b = 0. 
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denoted lal. An element a is said to have infinite order if tl '# e for every positive 
integer k. 

EXAMPLE 1 

In the multiplicative group of nonzero real numbers, 2 has infinite order 
because 2.t '# 1 for all k ~ 1. In the group L = { ± 1, ± r} under multiplication 
of complex numbers. the order of i is 4 b!:cause i 2 = -1, i3 = -i, and i 4 = 1. 

Similarly, 1- il = 4. The element G ~ ~) in s3 has order 3 because 

G 2 3). 2 = (1 2 
1 2 2 3 

and 

The identity element in a group has order 1. 

EXAMPLE 2 

G 

In the additive group Z12, the element 8 has order 3 because 8 + 8 = 4 and 
8+8+8=0. 

In the multiplicative group of nonzero real numbers, the element 2 has infinite 
order and all the powers of 2 (2--J, 2°, 2~, etc.) are distinct. On the other hand, in the 
multiplicative group L = { ± 1, ±i}, the element i has order 4 and its powers are not 
distinct; for instanoo, 

14 = 1 = ~ and 

Observe that t10 = P and 10 "" 2 (mod 4). These examples are illustrations of 

Theorem 7.8 
Let G be a group and let a ~G. 

(1} tf a has infinite order, then the elements il, with k ~Z, are all distinct. 

(2) tf {/ = <i with i '#],then a has finite order. 

Proof~ Note first that statement (1) is true if and only if statement (2) is true. 
because each statement is the contrapositive of the other, as explained 
on pages 503--504 of Appendix A. So VIe need only prove one of them. 
We shall prove statement (2): 

Suppose that a 1 = al, with i > j. Then multiplying both sides by a-1 
shows that <f-J = at-J = Jl = e. Since i - J > a, this says that a has finite 

order. • 
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Theorem 7.9 
Let G be a group and 11 E G an element of finite order n. Then: 

(1) tl = e if and only if n 1 k; 

(2) a!= al if and only if i ""j (mod n); 

(3) If n = td, with d :2: 1, then at has order d. 

Proof • (l) lf n divides k, say k = nt, then tl = d" = (r/')1 = t =e. Conversely, 
suppose that a* = e. By the Division Algorithm, k = nq + I' with 
0 s r < n. Consequently, 

e = J< = d'f+• = a""a' = (a")'d = t!'a = ea' = d. 

By the definition of order; n is the smallest positive integer with d' =e. 
Since r < n, d = e can occur only when r = 0. Thus, k = nq + 0 and n 
divid$k. 

(2) First, note that at = al if and only if d-1 = e. [Proof if d = al, 
then a1-1 = e by the proof of 1beorem 7 .8(2). Conversely, if ai-J = e, 
then multiplying both sides by al shows that d = al.] But by (l), with 
k = i - j, we have d-1 = e if and only if n I (i -f), that is, if and only 
if i ""j (mod n). Therefon; at = a! if and only if i ""j (mod n). 

(3) Since lal = n, we have (a'f = atj = d' = e. We must show that dis the 
smallest positive integer with this propercy If k is any positive integer such 
that(a~ =e., then a*= e. Therefore, n I tkby part (l), say tk= nr = (td)r. 
Hence, k= dr. Sincek and dare positive and dl k, we have ds k. • 

Corollary 7. 10 
Let G be an abelian group in which every element has finite order. If cEG is 
an element of largest order in G (that is, 1 ctl s 1 c 1 for all ~ E G), then the order 
of every element of G divides 1 c1. • 

For example, (l, 0) has order4 in the additive abelian group Z. X Z2and every other 
element has order l,_ 2, or 4 (Exercise l O(b )). Thus (l, 0) is an element of largest poSSible 
order, and the order of every element of the group divides 4, the order of (l, 0). 

Proof of Corollary 1.10. Suppose, on the contrary, that a E G and lal does not 
divide lei· Then there must be a primep in the prime factorization of the 
integer Ia! that appears to a higher power than it does in the prime fac­
torization of 14 By prime factorization we can write Ia! as the pro duct 
of a power of p and an integer that is not divisible by p and similarly for 
c. Thus there are integers m, 11, r, s such that Ia! = p'm and lei = p'n, with 
(p, m) = l = (p, n) and r > s. By part (3) of Theorem 7 .9, the element d" 
has order p' and cl' has order n. Exercise 33 shows that a"'c'' has order 
p'n. Hence;la"'cTI = p'n > p'n = lei, contradicting the fact thatc is an 
element of largest order. TherefOre, lal divides lei· • 
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• Exercises 

NOTE: Unless stated otlrenvise, G u a group with Ukntity element e. 

A. I. If r? = c in a group, prove that c = e. 

2. Leta= G ~ ~)and b = G ~ ~)in S3• Verify that (ab)-1 '1: a-1tr-l. 

3. If a, b, C.. dE G, then (tifxdj-1 = ? 

4. If a, b E G and ab = e, prove that ba = e. 

5. Letf.G-+ G be given by J{a)"" a-1• Provethatfis a bijection. 

6. Gm:anexampleofagroupin which theequationx 2 = ehasm~than two solution& 

7. Find the order of the given element. 

(a) 5 in U8 

(
1234567). 

(b) 2 3 7 5 1 4 6 tn ~ 

(c) e -~)inGL(2,R) 
(d) ( ~ -V in GIJ..2, IR) 

8. Give an ~ru~mple of a group that contains nonidentity elements of finite order 
and of infinite order. 

9. (a) Find the order of the groups U10, U11, and Uu. 

(b) List the order of each element of the group U711• 

10. Find the order of every element in each group: 

(a) '4 (c) S1 (e) .z 
II. Let G be an additive group. Write statement (2) of Theorem 7.8 and statements 

(1}-(3) of Theorem 7.9 in additive notation. 

12. If a, b E G and n is any integer, show that (aha -l'f = all'a-1• 

13. If G is a finite group of order nand a E G, prove that lal :s;; n. [Hint: Consider the 
n + 1 elements e = J! a, til, OJ, ••. , a". Are they all dfitinct?] Thus ~ element 
in a finite group has finite order. The converse, hiJ\\le\'Cr, is false; see Exercise 25 
in Section 8.3 for an infinite group in which every element has finite order. 

14. True or false: A group of order n contains an element of order n. Justify )'Our 
answer. 

15. (a) If a E G and a11 = e, what order can a possibly have? 

(b) If e '#: bE G and bP "" e for some prime p, what is lhl? 
16. {a) If aEGand lal = 12, find the orders of each of the elements a,al,QJ, •.• , d- 1• 

(b) Based on the evidence in part (a), make a conjectuce about the order of d' 
whenlaJ = n. 
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17. {a) Let a, b E G. Prove that the equations ax = b and ya = b each have a 
unique solution in G. [Hint: Two things must be done for each equation: 
First find a solution and then show that it is the only solution.] 

{b) Show by example that the solution of ax = b may not be the same as the 
solution of ya = b. [Hint: Consider S3.] 

18. Let G = {ah az, ••• , a,.} be a finite abelian group of order n. Let x = ota2 ···a..,. 
Prove that x? = e. 

19. If a, bEG, prove that jbab-11 = lal. 

20. {a) Show that a = (_ ~ _ ~) has order 3 in GI..(2, R) and b = (~ - ~) 
has order4. 

{b) Show that ab has infinite order. 

8.21. Prove Theorem 7.7. 

22. Let G = {41, a, b} be a group of order 3. Write out the operation table for G. 
[Hint: Exercise 28 in Section 7 .1.] 

23. Let G be a group with this property: If a, b, c E G and ab = ca, then b = c. 
Prove that G is abelian. 

24. If (ab)2 = ,?!? for all a, b, E G, prove that G is abelian. 

25. Prove that G is abelian if and only if (ab) 1 = cr 1b- 1 for all a, bE G. 

26. Prove that every nonabelian group G has order at least 6; hence, every group 
of order 2, 3, 4, or 5 is abelian. [Hint: If a, bEG and ab 'I= ba, show that the 
elements of the subset H = { e, a, b, ah, ba} are all distinct. Show that either 
til It H or,?= e; in the latter case, verify that aha It H.] 

27. If every nonidentity element of G has order 2, prove that G is abelian. 
[Hint: lal = 2 if and only if a ¢ e and a = a-1

• Wby1J 

28. If a E G, prOYe that lal = la-11· 
29. If a, b, c E G, prove that there is a unique element x E G such that axb = c. 

30. If a, b E G, prove that Ia~ = lbal. 
31. {a) If a, bE G and ab = ba, prove that (ab~lbl = e. 

{b) Show that part (a) may be false if ab 'I= ba. 

32. If IGI is even, prove that Gcontains an element of order 2. [Hint: The identity 
element is its own inverse. See the hint for Exercise 27.] 

33. Assume that a, bEG and ah = ba. If lal and lbl are relatively prime, prove that 
ab has order lallbl. [Hint.- See Exercise 31.] 

3 4. Suppose G has order 4, but contains no element of order 4. 

{a) Prove that no element of G has order 3. [Hint: If 18'1 = 31 then G consists 
of four distinct elements g, If, I = e, d. Now gri must be one of these four 
elements. Show that each possibility leads to a contradiction.] 

{b) Explain why every non identity element of G has order 2. 

{c) Denote theelements of G bye, a, b, c and write out the operation table for G. 
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35. If a, b E G, /} = e, and ab = b4a, prove that b1 = e and ab = ba. 

36. Suppose a, bEG with lal = S, b ¢ e, and aba- 1 = IJ. Find 1~-

37. If (abl = a1b1 and (ab)5 = a5b5 for all a, bEG, prove that G is abelian. 

C. 38. If (aW = dll for three consecutive integers t and all a, bE G, prove that G is 
abelian. 

39. (a) Let G be a nonempty finite set equipped with an associative operation 
such that for all a, b, c, dE G: 

if ab = ac, then b = c and if bd = cd, then b = c. 

Prove that G is a group. 

(b) Show that part (a) may be false if G is infinite. 

40. Let G be a nonempty set equipped with an associative operation with these 
properties: 

(i) There is an element e E G such that ea = a for every a E G. 

(ii) For each a E G, there exists dE G such that da = e. 

Prove that G is a group. 

41. Let G be a nonempty set equipped with an asso~;iative operation su~;h that, 
for all a, b E G, the equations ax = b and ya = b have solutions. Prove that G 
is a group. 

II Subgroups 

Definition 

We continue our discussion of the basic properties of groups, with special attention 
to subgroups. 

A subset H of a group G is a subgroup of G if H is itself a group under the 
operation in G. 

Every group G has two subgroups: G itself and the on<>element group { e}, which is 
called the trivial subgroup. All other subgroups are said to be proper subgroups. 

EXAMPLE 1 

The set IR* of nonzero real numbers is a group under multiplication. The group 
R** of positive real numbers is a proper subgroup of IR *. 

EXAMPLE 2 

The set l of integers is a group under addition and is a subgroup of the additive 
group Q of rational nwnbers. 
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EXAMPLE 3 

The subset L = {1, -1, i, -i} of the complex nwnbtmi is a group under multipli­
cation.* So it is a subgroup of C*, the multiplicative group of nonzero complex 
numbers.. 

EXAMPLE 4 

Recall that the multiplicative group of units in '4 is U! = {1, 3, 5, 7}. The 
upper-left quarter of its operation table in Example 14 of Section 7.1 or 
Section 7 J.A shows that the subset { 1, 3} is a subgroup of U1• 

EXAMPLE 5 

The upper-left quarter of the operation table for D4 in Example 5 of Section 7.1 
or 7.1.A shows that H = {ro.. r1, r2, r3} is a subgroup of D4-

EXAMPLE 6 

In the additive group "4, X 4let H = {(0, 0), (3, 0), (0, 2), (3, 2)}. Verify that 
His a subgroup by writing out its addition table. 

When proviDg that a subset of a group is a subgroup, it is never oecesRcy to check ii8So­

ciativity. Since the associative law hdds fur all elements of the group, it automatically holds 
when the el::ments are in some subset H. In fact, you need ooly verifY two group axioms: 

Theorem 7.11 
A nonempty subset H of a group G is a subgroup of G provided that 

(i) if a, bE H, then ab E H; and 

(ii) ift!EH, then 1J-1EH. 

Proof • Properties (i) and (ii) are the closure and inverse axioms for a group. 
Associativity holds in H, as noted above. Thus we need only verifY that 
e EH. Since His nonempty, there exists an element c EH. By (ii). c-'<1 EH, 
and by(i) cc-1 = e is in H. Therefore His a group. • 

EXAMPLE 1 

Let H consist of all 2 X 2 matrices of the form b = G ~) with bE R. Since 

1 · 1 - b • 0 = 1, His a nonempty subset of the group GL(2, Jll), which was 

•see Ell<lmple 11 of Sec.tion 7.1 or Section 7.1.A. 
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defined in Example 15 of Section 7.1 or 7.l.A. The product of two matrices in 
His in Hbecause 

The inverse of G ~) is G -~ ). ~ich isalso in H. Therefore, His a 

subgroup of G£(2., R) by Theorem 7 .II. 

When His finite, just one axiom is sufficient to guarantee that His a subgroup. 

Theorem 7.12 
Let H be a non empty f1 nite subset of a group G. If H is closed under the opera­
tion in G', then His a subgroup of G. 

Proof • By Theorem 7.11, ~ nood only verity that the inverse of each element 
of His also in H. If a E H, then closure implies that aleE H for ew:ry 
positive integer k, Since His finite, these powers cannot all be distinct 
So a has finite order 1l by Theorem 7.8 and d' = e, Since n - 1 "" -1 
(mod n), we have d'- 1 = a-1 by Theorem 7 .9. If n > I, then 11 - 1 is 
positive and 12-1 = d' -I is in H. If 11 = 1, then a = e and a-1 = e = a, so 
that a-1 is in H. • 

EXAMPLE B 

Let H consist of all permutations in S 5 that fix the element 1. In other lWrds, 
H= {fE S5 l.f(l) = 1}. His a finite set sinceS5 is a finite group. If g, hE H, 
then g(l) = 1 and h(l) = 1. Hence, (go hX I) = g(h( 1)) = g(l) = 1. Thus 
g • hE Hand His closed. Therefore, His a subgroup of S 5 by Theorem 7 .12. 

The Center of a Group 
If G is a group, then the ceoter of G is the subset denoted Z(G) and defined by 

Z(G) = {aE G I ag = ga for every gE G}. 

In other words, an element of G is in Z(G) if and only if it commutes with every 
element of G. If G is an abelian group, then Z(G) = G because all elements commute 
with each other. When G is non abelian, however, Z{ G) is not all of G 

EXAMPLE 9 

The center of S 3 consists of the Xientity element alone because this is the only 
element that commutes with every element of s3 (Exercise 25~ 
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EXAMPLE 10 

The operation table for D~in Example 5 of Section 7.1 or 7.1.Ashows that r1 
commutes with some elements of D~ (for instance, r 1 o r3 = r3 o r 1). However, 
it does not commute with every element of D~ because r1 • d .P d • r1• Hence, 
I) is not in Z(D~) nor is d. Careful examination of the table shows that 
Z(/)4) = {ru. r2} since these are the only elements that commute with every 
element of D 4• It is easy to verify that {r0, r:a} is a subgroup of D~. This is an 
example of the following result. 

Theorem 7.13 
The center l(G) of a group G is a subgroup of G. 

Proof • fur every gE G, we have eg = g = ge. Hence, e eZ(G) and Z(G) is non­
empty. If a, bE Z( G), then for any g E G we have Qg = ga and bg = gb, 
so that 

(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = &(ab). 

Therefore. abEZ(G). Finally, if aEZ(G) and gEG, then ag = ga. 
Multiplying both sides of this equation on the left and right by a-1 

sho'WS that 

a-1(ag)4- 1 = a-1(ga)a-1 

ga-t= a-'g 

Therefore. a- 1 E Z( G) and Z( G) is a subgroup by Theorem 7 .11. • 

Cyclic Groups 
An important type of subgroup can be constructed as follows. If G is a group and 
a E G, let (a} denote the set of all powers of a: 

(a}= { ... , a-.J, a~2, a-:--1, JJ, a\ Ql, ••• } = {a" InEZ}. 

Theorem 7.14 
If G is a group and a E G, then (a) ::: {a" [ n E Z} is a subgroup of G. 

Proof • The product of any two elements of (a} is also in (a} because a1al = d+f. 
The inverse of d' is a-~~', which is also in (a}. By Theorem 7 .11, (a) is a 
subgroup of G. • 

The group {a)is called the cyclic subgroup generated by a. If the subgroup (a) is the 
entin: group G, we say that G is a cycHc group. Note that every cyclic group is abelian 
since dal = a'+J = ala'. 
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EXAMPLE 11 

The multiplicative group of units in theringZ1sis U1s = {1,2, 4, 7, 8, 11, 13, 14} 
by Theorem 2.10. In order to determine the cyclic subgroup generated by 7, we 
compute 

Therefore, the element 7 has order 4 in UIS. We claim that the cyclic subgroup 
(7) consists of {7°, 7\72, 73} = {1, 7, 4, 13}. [Proof By definition, every ele­
ment of {7) is of the form 71 for some integer l. Since every integer is congrwmt 
modulo 4 to one of 0, 1, 1, 3, the element 71 must be one of 'fJ, 71

, 72 or 'fJ by 
Theorem 79(2).] Hence,(7) = {1, 7, 4, 13}. Thus, the cyclic subgroup(7) has 
order 4--the order of the element 7 that generates the group. 

EXAMPLE 12 

Different elements of a group may generate the same cyclic subgroup. For 
instance, verify that 13 has order 4 in U1s. Then the same argument used in 
Example 11 shows that the cyclic subgroup {13) = { 13", 131, 132, 133} = 
{1, 13, 4, 7} = {7). 

The argument used in Examples 11 and 12 works in general and provides the con­
nection between the two uses of the word "order". It states, in effect, that the order of 
an element a is the same as the order of the cyclic subgroup generated by a. 

Theorem 7.15 
Let G be a group and let a E G, 

(1) If a has infinite order, then {a) is an infinite subgroup consisting of 
the distinct elements ak, with Jr. EZ. 

(2) If a has finite order n, then {a} is a subgroup of order n and (a} = 
{e = aD, al, c/, a3, • , , , ,t'-1}. 

Proof ,. (1) This is an immediate consequence of part (1) of Theorem 7.8. 

(2) Let d be any element of~- Then i is congruent modulo 11 to one 
of 01 1, 2, ... , n - 1. Consequently, by part (2) of Theorem 7 .9, d must be 
equal to one of tfl, ti, d-, . , . • ttr1

. Furthermore, no two of these powers 
of a are equal since no two of the integers 0, 1, 2, ... , n- 1 are congruent 
modulo n. Theld'ore, {elf = {all, ti, Ql, •.• , ao-1} is a group of order 11. • 

NOTE ON ADDITIVE NOTATION: When the group operation is addi­
tion, then, as shown in the dictionary on page 198, we write ka in place 
of d<. So the cyclic subgroup (p) = {na J n E Z}. Theorem 7.15 in additive 
notation is shown on the next page. 
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Theorem 7.15 (Additive Version) 
Let G be an additive group and let a E G. 

(1) lf a has infinite order, then (a} is an infinite subgroup consisting of 
the distinct elements /t.a, with /t. EZ. 

(2) 1f a has finite order n, then (a) is a subgroup of order nand 

~) = {0, 1a, 2a, 38, 48, ... , (n - 1 )a}. 

EXAMPLE 13 

Since Z = {n1 InEZ}, we see that the additive group 7L is an infinite cyclic 
group with generator 1, that is 7L = {1~ 1be set E of even integers is a cyclic 
subgroup of the additive group Z because E = {n2 In ~Z}. 

EXAMPLE 14 

Each of the additive groups.Z,. is a cyclic group of order n generatOO by 1 because 
Z.. consists of the "powers" of 1, namely, 1, 2 = 1 + 11 3 = 1 + 1 + 1, etc. For 
instan:e, Z. = {1, 2, 3, 0}, that is, {1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1}. 

The subgroup {1, -1, i, -11 of the multiplicative group of nonzero elements of C 
is the cyclic subgroup (1) because i1 = -1, ,.J = -i, and i 4 = 1. Similarly, the multipli­
cative group of nonzero elements of Z7 is the cyclic group (3), as you can easily verify. 
These examples are special cases of the following theorem. 

Theorem 7.16 
Let F be any one of Q, R, C, or Zp (with p prime), and let f" be the multiplica­
tive group of nonzero elements of f.t 1f G is a f1nite subgroup ofF", then G is 
cyclie.t 

Proof ., Let c E Gbe an element of largest order (there must be one since G is 
finite), say lei = m. If a~ G, then lui divides m by Corollary 7 .10, so that 
d" = 1 by part (1) of Theonm 7.9. Thus every element of Gis a solu­
tion of the equation X" - 1 = 0. Since a polynomial equation of degree 
m has at most m solutions in F(py Corollary 4.171), we must have IGI s m. 
But (q is a subgroup of G of order m by Theorem 7 .15. Therefore, (c) 
must be all of G, that is, Gis cyclic. • 

tSee Examples Sand 9 of Section 7.1 a- 7.1. A. 
*For those who hi.'IVe read Chapter3: The theorem and its proof are ~a lid when F is any field. 
~f you haven't read Section 4.4, you'll have to take this on faith fa- now. 
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Now that we know what cyd.ic groups look like, the next step is to examine the 
poSliible subgroups of a cyclic group. 

Theorem 7.17 
E~Rry subgrCXJp of a cyclic group is itself cyclic, 

Proof,. Suppose G ={a) and His a subgroup of G. If H ={e), then His the 
cyclic subgroup generated bye (all of whose powers are just e), If H # 
(e), then H contains a nonidentity element of G, say d with i ¢ 0. Since 
His a subgroup, the inverse element a-r is also in H. One of i or -i is 
positive, and so H contains positive powers of a. Let k be the ~mallest 
positive integer such that a" EH. ~claim that His the cyclic subgroup 
generated byak. To prove this, we mwtshow thatewryelement of H 
is a power of tf. If h E H, then hE G, so that h = d" for some m. By the 
Division Algorithm, m = kq + rwith 0 s r < k. Consequently, r = m - kq 
and 

u = a"'-lcq = a"' a-it= d"(a1'r'. 
Both d" and d' are in H. Therefore, a' E H by closure. Since d' is the 
smallest positive power of a in Hand since r < k, we must have r = 0. 
Therefore, m = kq and h = a"' = akf = (al}f t.(at}. Hence, H = (d<}. • 

For additional information on the structure of cyclic groups and their subgroups, 
see Exercises 44--46. 

Generators of a Group 
Suppose G is a group and aE G, Think of the cyclic subgroup(a) as being constructed 
from the one-element setS= {a} in this way: Form all poSliibleprod-ucts of a anda-1 

in every possible order. Of course, each such product reduces to a single element of 
the form d'. We want to generalizethispnx:edureby beginning with a set Sthatmay 
contain more than one element. 

Theorem 7.18 
LetS be a nonempty subset of a grCXJp G. Let~ be the set of all possible 
products, In every order, of elements of Sand their inverses.~ Then 

( 1/ (S) Is a subgroup of G that contains set S, 

(2/ tf HIs a subgroup of G that contains the setS, then H contatns the 
entire subgroup (S). 

•we allow the possibility of a product with one element so that elements of swill be in (Si. 
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This theorem shows that(~ is the smallest subgroup of Gthat contains the setS. In 
the special case when S = {a}, the group (~is just the c~lic subgroup (a}, which is the 
smallest subgroup of G that contains a. The group (~ is called the subgroup generated 
by S. If (S) is the entire group G, we say that S generates G and refer to the elements of 
S as the generators of the group. 

Proof oflheorem 7.18· (1) (S) is nonempty because the sets is nonempty and 
every element of S (considered as a one-.element product) is an element of 
(S). If a, b E{S}, then a is of the form a1 C~J; • • • "k· where k ~ 1 and each a1 

is either an element of S or the inverse of an element of S. Similarly, 
b = b1b1 • · · h., with t ~ 1 and each b, either an· element of S or the in­
verse of an element of S. Therefore, the product ab = a 1~ • • • asft1~ • • • b, 
consists of elements of S or inverses of elements of S. Hence,. abE (S), 
and ~)is closed. The inverse of the element a = a 1~ • • • ak of ~)is 
a-1 = ~ -1 ••• ~ -tdJ -I by Corollary 7 .6. Since each a, is either an element 
of S or the inverse of an element of S, the same is true of Cit -I. Therefore, 
a-1 E (S). Hence, ~)is a subgroup of G by Theorem 7 .11. 

(2) Any subgroup that contains the set S must include the inverse 
of every element of S. By closure, this subgroup must also contain all 
possible products, in every order, of elements of Sand their inverses. 
Therefore, every subgroup that contains Smust also contain the entire 
group~). • 

EXAMPLE 15 

The group U15 = {1, 2, 4, 7, 8, 11, 13, 14} is generated by the setS= {7, 11} 
since 

71 =7 

11 1 =11 

~ = 13 

72
• 11 = 14 

Differeot sets of elements may gmerate the same group. R>rinstana; )UU can readily 
wrify that U15 is also generated by the set {2, 13} (Exercise 9). 

EXAMPLE 16 

Using the operation table in Example 5 of Section 7.1 or 7 .LA. we see that in 
the group D4, 

(rlf = '2 (r,)3 = '3 

r1 o h = t (1'.!) 2
o h = 'D 

(rl)" = ro 

(r,f~h=d. 

Therefore, D4 is generated by {rt> h}. Note that the representmion of group 
elements in terms of the generators is not unique; for instance, 



• Exercises 

A. I. List all the cyclic subgroups of 

(a) lf15 (b) lf30 

2. (a) List all the cyclic subgroups of D4• 

(b) List at least one subgroup of D4 that is not ~lie. 

3. Listthe elements of the subgroup (a), of S.,. where 

(
l 2 3 4 5 6 1\ 

a = 3 2 1 6 5 l 4)" 
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In Exercises 4~, list (if possibk) or describe the ek~nts if the given cyclic subgroup. 

4. (2) in the additive group Z1 ;~-

5. (2) in the additive group Z. 

6. (2) in the multiplicative group of nonzero elements of Z11• 

7. (2} in the multiplicative group 0* of nonzero rational numbers. 

8. {3) in the multiplicative group of nonzero elements of Z11• 

9. Show that U15 is generated by the set {2, 13}. 

10. Show that ( 1, 0) and (0, 2) generate the additive group Z X Z7• 

11. Show that the additive group Z, X Z3 is cyclic. 

12. Show thatthe additive group Z1 X ~ is not cyclic but is generated by rnu elements. 

13. Let H be a subgroup of a group G. If e0 is the identity element of G and eH is 
the identity element of H, prove that e0 = eH. 

14. LetH and Kbesubgroups of a group G. 

(a) Show byeKalllple that H U Kneed not be a subgroup of G. 

(b) Prove that H U K is a subgroup of G if and only if H ~;; K or K r; H. 

15. (a) Let Hand Kbe subgroups of a group G. Prove that H n K is a subgroup 
of G. 

(b) Let { H1} be any collection of subgroups of G. Prove that n H 1 is a 
subgroup of G. 

16. Let G1 be a subgroup of a group G and H1 a subgroup of a group H. Prove 
that G1 X H 1 is a subgroup of G X H. 

17. Show that the only generators of the additive oyclic group Z are I and -l. 

18. Show that (3, 1), ( -2, -1), and (4, 3) generate the additive group Z X Z. 

19. Let G be an abelian group and let T be the set of elements of Gwith finite 
order. Prove that Tis a subgroup of G; it is called the torsion sullgroup. (This 
wsult may not hold if G is nonabelian; see Exen:ise 20 of Section 7.2.) 

20. Let G be an abelian group, k a fixed positive integer, and H = 
{a E G[ lal divides k}. Prove that His a subgroup of G. 
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21. {a) If G is a groupandabEZ(G), is it true that a and bare in ZJ...Gfl [Hint: D4.] 

{b) If G is a group and abE Z( G), prove that ab = ba. 

22. If a is the only element of order 2 in a group G, prove that a E Z( G). 

23. Let G be a group and let a E G. Prove that V:z) = {a- 1~ 

24. Show that 0**, the multiplicative group of positive rational numbers, is not 
a cyclic group. [Hint: if 1 :1: r E 0**, then there must be a rational between r 
and,J.] 

25. Show that the center of S3 is the identity subgroup. 

26. {a) Let Hand Kbe subgroups of an abelian group G and let HK = {ab I a EH, 
b E K}. Prove that HK is a subgroup of G, 

{b) Show that part (a) may be false if G is not abelian. 

27. Let Hbea subgroup of a group Gand,for XEG, let.1'-1Hxdenote the set 
{x-1ax I a EH}. Prove that x-1Hxisa subgroup of G. 

28. Let G be an abelian group and n a fixed positive integer. 

{a) Prove that H = {a E G I a"= e} is a subgroup of G. 

{b) Show by example that part (a) may be false if G is nonabelian. [Hint: S3.] 

29. Prove that a nonempty subset H of a group G is a subgroup of G if and only if 
whenevera, hE H, thenab- 1 EH. 

30. Let A(T) be the group of permutations of the set Tandlet T1 be a nonempty 
subset of T. Prove that H = 1/EA(T) lftt) = t for every t E T1} is a subgroup 
of A.(T). 

31. Let Tand T1 be as in &ercise 30. Prove that K = 1/E A(T) lflT1) = T1} is a 
subgroup of A(T) that contains the subgroup H of Exercise 30. Verify that if 
T1 has more than one element, then K :1: H. 

32. Let Hbea subgroup of a group Gand assume that x-1Hx<;;,H for every XEG 
(notation as in Exercise 27). Prove that x -! Hx = H for each x E G. 

33. Let G be a group and a E G. The centralizer of a is the !if:t C(a) = {g EG I 
ga = ag}. Prove that C(a) is a subgroup of G. 

34. If G is a group, prove that Z( G) = .. 0a C(a) (notation as in &ercise 33). 

35. Prove that an element a is in the center of a group G if and only if C(a) = G 
(notation as in Exercise 33). 

36. True or false: If every proper subgroup of a group G is cyclic, then G is cyclic. 
Justify }Qur answer. 

37. Suppa;e that His a subgroup of a group G and that a E G has order n. If ak E H 
and (k, n) = 1, prove that a E H. 

B. 38. {a) Let p be prime and let b be a nonzero element of~- Show that bP- 1 = 1. 
[Hint: Theorem 7.16.] 

{b) Prove Fermat's Uttle Theorem: If p is a prime and a is any integer, then 
r.f ""a (mod p). [Hint: Let b be the congruence C-lass of a inJ;, and use 
part (a).] 
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39. If His a subgroup of a group G, then the normalizer of His the set N(H) = 
{x E G I x-1 Hx = H} (notation as in Exercise 2:1). Prove that N(H) is a 
subgroup of G that contains H. 

40. Prove that H = { (~ ~)I a = I or -I, b E .l:} is a subgroup of GL(2, 0). 

41. Let G be an abelian group and n a fixed positive in ... Prove that H = {aft I a E G} 
is a subgroup of G. 

42. Let k be a positive divisor of the~ integer n. Prove that Hit: = 
{aE v;, I a"" I (mod k)} is a subgroup of uft. 

43. List all the subgroups of Z12• Do the same for .Z20-

44. Let G = (a) be a cyclic group of order n. 

{a) Prove that the cycli:: subgroup generated by a"' is the same as the cyclic 
subgroup generated by a", where d = (m, 11). [Hint: It suffi~;;eS to show that 
a 4 is a power of am and vice versa. (Why?) Note that byTheorem 1.2, there 
are integers u and v such that d = mu + nv.] 

(II) Prove that d" is a generator of G if and only if (m, n) = l. 

45. Let G = (a) be a cyclic group of order n. If His a subgroup of G, show that IHI 
is a divisor of n. [Hint: Exercise 44 and Theorem 7.17.] 

46. Let G ={a) be a cyclic group of order n. If k is a positive divisor r:X n, prove 
that G has a un~ue subgroup of order k. [Hint: Consider the subgroup 
generated by a"' .] 

47. Let G be an abelian group r:X order mn where (m, n) = I. Assume that G 
contains an element a of order m and an element b of order n. Prove that G is 
cyclic with generator ab. 

48. Show that the multiplicative group R* of nonzero real numbers is not cyclic. 

49. If G is an infinite additive cyclic group with generator a. Prove that the 
equation x + x =a has no solution in G. 

50. Show that the additive group 0 is not cyclic. [Hint: Exercise 49.] 

51. Ld G and H be groups. If G X His a cyclic group. prove that G and Hare 
both cyclic. (Exercise 12 shows that the converse is false.) 

52. Prove that { (~ ~)In E z} is acyclic subgroup of GL(2, R). 

53. Prove that Z... X Z11 is cyclic if and only if (m, n) = I. 
54. If G #; (e) is a group that has no proper subgroups, prove that G is a cyclic 

group of prime order. 

55. Is the additive group G = {a+ Ml a, hEZ} cyclic? 

56. Show that the group U20 r:X units in .Z20 is not cyclic. 

57. Show .that the group U18 r:X units in Z 18 is cyclic. 

58. If Sis a nonempty subset r:X a group G, show that (S) is the intersection of the 
family of all subgroups H su:::h that S >;H. 
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II Isomorphisms and Homomorphisms* 

If you were unfamiliar with roman numerals and came across a discussion of integer 
arithmetic written solely with roman numerals, it might take you some time to realize 
that this arithmetic was essentially the same as the familiar arithmetic in 7L except for 
the labels on the elements. Here is a less obvious example of the same situation. 

EXAMPLE 1 

Recall the multiplicative subgroup L = {I, i, --J, -I} of the complex numbers 
and the multiplicative group Us = { 1, 2, 3, 4} of units in 7/_5> whose operation 
tables are shown below.f 

Us L 

2 3 4 1 i -i -1 
2 3 4 1 i -i -1 

2 2 4 1 3 i i -I -i 
3 3 1 4 2 -i -i 1 -1 i 
4 4 3 2 -1 -1 -i i 1 

At first glance, these groups don't seem the same. But we claim that they are 
"essentially the same", except for the lab leis on the elements. To see this clearly, 
relabel the elements of U5 according to this scheme: 

Relabel I as I; Relabel 2 as i; Relabel3 as -i; Relabel4 as - I. 

Now look what happens to the table for Us-it becomes the table for L! 

I i -i -1 
J 'J 1 if 

1 1 i -i -1 
1 )' :1. ~ if 

j j -I I ---i 
z z if 1 1 

-i -i I ~-I i 
1 1 J if 1 

-1 -] --i i I 
~ ~ 1 :l 1 

The rewritten table shows that the operations in U5 and L work in exactly the 
same way-the only difference is the way the elements are labeled. As far as 

•The first few pages of this section explain the concept of isomorphism for groups, which is 
essentiallythe same u the explanation for rings in Section 3.3. If you hllve read that section, feel 
free to beg in this one at the Defi rition on page 216. 
'To make the elements of the two groups !!a.Sily distinguishable, the elements of L are in boldface. 
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group structure goes Ls is just the group U5 with new labels on the elements. In 
more technical terms, U5 and L are said to be isonwrphic 

In general, isomorphic groups are groups that have the same strucJure, in the sense 
that the operation table for one is the operation table of the other with the elements 
suitably relabeled. Although this intuitive idea is adequate for small finite groups, we 
need to develop a rigorous mathematical definition of isomorphism that agrees with 
this intuitive idea and is readily applicable to large groups as well. 

There are ~ aspects to the intuitive idea that groups G and H are isomorphic: 
relabeling the elements of G, and comparing the new operation table with that of H. 
Relabeling means that every element of G is paired with a unique element of H (its new 
label), In other word>, there is a functionj:G--+Hthat assigns to each rEG its new label 
f(r) E H. In the prea:ding example, we used the relabeling function,(; U5-+K given by 

ftl) = I ft2) = i /(3) = -i /(4) = -L 

The functionfG-+H must have these properties: 

(1) Distinct elements of G get distinct labels in H: 

If r ¢ r' in G, thenf(r) ¢ f(r') in H. 

(2) Every element of His the label of some element of G:'* 

For each hE H, there is an rEG such thatf(r) = h. 

Properties (l) and (2) simply say that the function/ must be both injective and 5Uijec­
tive, that is,fis a bijection.t 

In order to be an isomorphism, however, the table of G must become the table of H 
when/is applied. If this is the case, then for two elements a and b of G, the situation 
must look like this: 

G 

¥ 
a I c 

As indicated in the two tables, 

H 

f(b) 

/(a) /(c) 

a • b = c in G and f(a) '* f(b) = f(c) in H 

Since a* b = c in G, we must havef(a • b)= f(c) in H. Combining this with the fact 
thatf(c) ""f(a) •/(b) in Hwe see that 

f(a * b)=f(a) * f(b). 

This is the condition that/ must satisfy in order for fto change the operation tables of 
G into those of H. We can now state a formal definition of isomorphism. 

• Otherwise we could not get the complete table of H from that of G. 
'lnjective, surjective, and bijective functions are discussed in Appendix B. 
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Definition Let G and H be groups witn the group operation denoted by ~. G is 
i somor pn ic to a group H (in sym bois, G '-= H) If there is a function f: G-+ H 
such that 

(i) fis injective; 

(li) f is surjective; 

(Iii) f(a *b)= ((a}• f(b) tor all a, bE G. 

In this case, the function f is called an I so morpn Ism. 

It can be shown that G""" H if and only if H = G (Exercise 53). 

NOTE: In the preceding discussion, we have temporarily :reverted to the* 
notation fo-r group operations to remind you that in a specific group, the 
operation might be addition, multiplication, or something else. In such 
cases., condition (ill) of the definition may take a different form; for instance, 

Condlttoa (Ill) f(a • b)= f(a) •/(b) 

G and H additive: f(a +b) = f(a) +/(b) 

G and H multiplicative: f(ab) :=o f(a)f(b) 

G additive, H multiplicative: f(a + b) = f(a )f(b) 

G multiplicative, H additive: ./( ab) = /(a) + f( b) 

EXAMPLE 2 

The multiplicative group Us = { 1, 3, 5, 7} of units in Zs is isomorphic to the 
additive group Z2 X Z1. To prove this, letf Us-+ Z2 X Z2 be defined by 

j(1) = (0, 0) ./(3) = (1, 0) ./(5) = (0, 1) /(7) = (1, 1). 

Clearly f is a bijection. Showing that f(ab) = f(a) + f(h) for a. b E U8 is equiva-
lent to showing that the operation table for Z 2 X Z 2 can be obtained from that 
of Us simply by replacing each a E Us by ./(a) EZ2X Z 2 .Use the tables below to 
verify that this is indeed the case. Therefore,/ is an isomorphism: 

Us Z 2 xz2 
0 1 3 5 7 + (0, 0) (1, 0) (0, 1) (1, I) 

1 1 3 5 7 (0,0) (0, 0) (1, 0) (0, 1) (1, 1) 

3 3 1 7 5 (1, 0) (1, 0) (0,0) (1, I) (0, I) 

5 5 1 1 3 (0, 1) (0, 1) (1, I) (0, 0) (1, 0) 
7 7 5 3 1 (1, 1) (1, 1) (0, 1) (1, 0) (0, 0) 
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EXAMPLE 3 

Let E be the additive group of even integers. We claim thatf Z -+ E given by 
f(a) = 2a is an isomorphism. Since Z and E are infinite, comparing tables is 
not an option. However, the formal definition of isomorphism will do the job. 
We begin by showing thatfis injective.* Suppose a, b EZ andf{b) = f(b) in E. 
Then 

f(b) = f(b) 

'Ja_:=.]h 

a=b 

[Dejlfrition off) 

[Divide both sides by 2.] 

Hence,/ is injective. Now suppose n E E. Sine en is an even integer, n = 2k for 
some integer k. Therefore,f(k) = 2k = n, and f is surjective. Finally, for all a, 
hEZ, 

f(a +b) = 2(a +b) = 2a + 2h = f(a) + f(b). 

Heoce,fis an isomorphism of additive groups. 

EXAMPLE 4 

The additive group lfR of real numbers is isomorphic to the multiplicative group 
R** of positive real numbers. To prove this,let.f:R4R** be given by f{r) = 10'. 
To show thatfis injective, suppose that 

Then 

f(r) = f(s). 

10' = ICY 
log 10' = log 10' 

r=s 

[Definition of f1 
[Take logarithms of both .sides.] 

[&sic property of logarithms] 

So fis injective. To prove thatfis surjective, let kE R.. Then r = log k is a real 
number, and by the definition of logarithm, 

f(r) = 10' = Jolo!:l: = k. 

Thus,fis also surjective. Finally, 

f(r + s) = lor+~ = 10'10' = f(r)f(s). 

Therefore,fisan isomorphism and lfR= IR!**. 

•Injective. surjective, Md bijective functions are discussed in Appendix B. 
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EXAMPLE S 

Two finite groups with different numbers of elements (such as Zs and Zt~} can· 
not be isomorphic, because no function from one to the other can be a bijection. 

Example I presented two groups with the same number of elements that were 
isomorphic. However, this is not always the case. 

EXAMPLE G 

sl and the additive group z6 each have order 6, but are not isomorphic. There is 
no way to relabel the addition table of z6 to obtain the table of s3 because the 
operation in S3 is not commutative, but addition in Z6 is. A similar argument in 
the general case (see Exercise 16) shows that for groups G and H, 

If G is abe6an and His nonabellan, then G and Hare nor isomorphic. 

EXAMPLE 7 

The additive groups Z.,. and Z2 X Z2 each have order 4 but are not isomorphic 
because every nonzero element of Z2 X Z2 has order 2, but 4 has two elements 
of order 4 (namely, I and 3). So relabeling the addition table of one cannot 
produce the table of the other. More generally by Exercise 29, 

Iff i!i an isomorphism, then a andf(a) have the same order. 

If Gisagroup, theD an isomorphism G-+ Giscalledan automorphism of the group G. 

EXAMPLE tl 

If G is a group, then the identity map l.(jG-+ G given by ~.o(r) ""r is an auto­
morphism of G. It is clear that ~.ois bijective, and for any a, bEG, 

~(a "' b) = a "' b = ~.a( a) • L0 (b). 

EXAMPLE 9 

Let c be a fixed element of a group G. Define f: G-+ G by f(g) = c-1gc, 
Then 

f(b)f(b) = (c-'llc)(r1hc) = c-1a(c[1)bc = c-1abc = f(ab). 

If gE G, then cgc- 1 E Gand 

f(cgt- 1
) = c-1(cgc-1)t; = {c- 1c)g(c-1c) = ege =g. 

Sofis surjective. To show thatfis injective, supposej(a) = f(b). 'Then c-1ac = 
c-1bc. Canceling con the right side and c-1 on the left side by Theorem 75, we 
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have a = b. Hence, [is injective. Therefore, [is an isomorphism, caned the inner 
automorphism of G induced by c. fur more about autommpbisms, see Exerrises 36, 
37,:58, and 59. 

The next theorem completely characterizes all cyclic groups. 

Theorem 7.19 
Let G be a cyclic group. 

(1) tt G is infinite. then G is Isomorphic to the additive group Z. 

(2) tf G is finite of order n, then G is isomorphic to the additive group Z,. 

Proof ~>- (1) Suppose that G =(a) is an infinite cyclic group. By Theorem 7.15 G 
consists of the elements a'< with kE 7l, all of which are distinct (meaning 
thatd = al if and only if i =}).The functionfa-z defined by !(a'}= k 
is easily seen to be a bijection (Exereise 17). Sinoe 

f(dal) =f(d+l) = i+ J=f(d) + f(al), 

f is an isomorphism. Therefore, G ii! Z. 

(2) Now suppose that G = (b) and b has order n. By Theorem 7 .1:5, 
G = {b0, b1, /?, ... , 11'- 1}, and by Corollary 2.:5, Z,. = {[0], [1], {2], .•• , 
[n - 1]}. Define g:G 4 Z,. by g(b') = [i]. Clearly g is a bijection. Finally, 

g(lfll) = g(ll+l) = fi + j] = [i] + UJ = g(b') + g(ll). 

Henoe, g is an isomorphism and G ii! Zn. • 

EXAMPLE 10 

In multiplicative group 0* of nonzero rational numbers, the cyclic subgroup 

. -{ 1 1 1 1 }* generated by 2lS (2}- ... , U' s' 4, z' 1, 2, 4, 8, 16, .... The 

group {2) is isomorphic to the additive group Z by Theorem 7 .19. 

EXAMPLE 11 

The upper left-hand quadrant of the operation 1able for D4 in Example 5 
of Section 7.1 or 7 .l.A and Theorem 7.12 show that G = {ro, r,, r:z, 1'1} is 
a subgroup of D4• Verify that both G and Us= {1, 2, 3, 4} are cyclic. By 
Theorem 7.19 each is isomorphic to the additive group 7..t. Hence, they are 
isomorphic to each other: G ii! U5 (Exercise 21). 

• Exercise 7 of Section 7 .3. 
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Definition 

Homomorphisms 
Many functions that are not injective or surjective satisfy condition (iii) of the defini­
tion of isomorphism. Such functions are given a special name and play an important 
role in later sections of this chapter. 

Let G and H be groups (with operation •)·. A function f:G-+ H is said to be 
a homomorphism if 

f(a •h) = f(a) * f{b) for all~. bE G. 

Every isomorphism is a homomorphism, but a homomorphism need not be an 
isomorphism. 

EXAMPLE 12 

The functionfR* -+IR* given by j(x) = r is a homomorphism of multiplica­
tive groups because 

j(ab) ""(abf = dllJl= f(b)/(b). 

However,/ is not injective becausef(l) =J(-1) and is not surjective because 
f(x) = r ~· 0 for all x, so no negative number is an image under f 

EXAMPLE 13 

The functionfZ-+ Zs given by f(a) = [a) is a homomorphism of additive 
groups because 

j(a +b)= [a + b] = [a)+ [b] =j(b) = j(b). 

The homomorphism/is surjective, but not injective (Why?). 

EXAMPLE 14 

If G and Hare groups, the function fiG X H-+ G given by f((x, y)) = xis a 
surjective homomorphism (Exercise 9). If His not the identity group, g is not 
injective. For instance, if en '# a E H, then (f!q, a) :1: (ea. en) in G X H, but 
f(( e(/1 a)) = ea and f((e(J! en)) = el1' 

Recall that the image of a function fG -+ H is a subset of H, name}J Im f = 
{hEHI h =f(a) for some aEG}. The function/can be considered as a surjective map 
from Gto Imf 
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Theorem 7.20 
Let G and H be groups with identity elements er; and f!H, respectively. tf 
f:G-+ His a homomorphism, then 

(1) f(ed = eH. 

(2) f(a-1) = f(at1 for every aEG, 

(3) lm f is a subgroup of H. 

(4) tf f is injective, then G !l: Jm f. 

Proof • (1) Since fis a homomorphism, e0 is the identity in G, and en is the 
identity in H, we have 

f(e~f(ea) = f(eqea) [/ i9 a homomorphism.] 

f(e~f(e~ = f(ea) [e0 is the Mentity in G.] 

f(e~f(ea) = enf(e~ [f(ea) E Hand en is the tdi!ntity In H.] 

Cancelingf(ea) on the right (by Theorem 7.5)producesf(ea) = eg 

(2) By (1) we have 

f(a- 1)/(a) = f(a- 1a) = f(e~ = en= f(a)-lj'(a). 

Cancelingf(a) on each end shows that/(orr~ = j(pr1• 

(3) The identity egE Imfby (1), and so Imfis nonempty. Since 
f(a)f(b) = f(ab); Imfis closed. The invel'lle of eachf(a)E Im/is also in 
1m/because f(ar1 = f(a- 1) by (2). Therefore, Imfis a subgroup of Hby 
Theorem 7.11. 

( 4) As noted before the theorem, f can be considered as a surjective 
function from G to lm.f If /is- also an injective homomorphism, then/is an 
isomorphism. • 

Group theory began with the study of permutations and groups of permutations. 
The abstract definition of a group came later and ma.y appear to be far more general 
than the concept of a group of permutations. The nex:t theorem shows that this is 
not the case, however. 

Theorem 7.21 Cayley's Theorem 
Every group G is isomorphic to a group of permutations. 

Proof ~ Consider the group A( G) of all permutations of the set G. IU:call that 
A( G) consists of all bijectivefimctiotta from G toG with composition as 
the group operation. These functions need not be homomorphisms. 
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To prove the theorem, we find a subgroup of A( G) that is iwmorphic to 
G.* We do this by constructing an injective homomorphism of groups 
f:G-+A(G);then Gil; isomorphic to the subgroup Im.Jof A(G} by 
Theorem 7 .2/J. 

If aE G, then we claim that the map rp,.:G-+ G defined by(J'..(x) =ax is 
a bijection of sets [that is, an element of A( G)]. This follows from the fuel: 
that if bEG, then rpJ.a~ 1 b) = a(a~1b) = b; herx;e, rp.,is surjective. If fPI,(h) = 
rpJ..c), then ab = ac. Canoeling a by Theorem 7.5, we conclude that b = c. 
Therefore, rp.isinjective and, henw, a bijection. Thus rp.EA(G). 

Now de6nefG-+A(G) byf(a) = I{Jd· Ibrany a, bEG,f(ab) = I{J.obi;. 

the map from G to G given by rpJ,,x) = abx. On the other hand,f(a) o f(b) = 
rpd "fh ~the map given by(cp. a rpb)(x) = rpj,_cp/.._x)) = rpJ...bx) = abx. Therefore, 
f(ab) = f(a)o f(b)andfis a homomorphism of groups. Fmally; suppose 
f(a) = f(c), so that 'J'J..x) = cpJ..x) for all x E G. Then a = ae = rpJ.e) = rpJe) = 
ce = c. Henw,f is injective. Therefore, G l2! 1m fby Theon:m 7 .20. • 

Corollary 7.22 
Every finite group G of order n is isomorphic to a subgroup of the symmetric 
groupS,. 

Proof "' The group G is isomorphic to a subgroup H of A( G) by the proof of 
Theorem 7 .21. Since G is a set of n elements, A( G) is isomorphic to S,. 
by Exercise 38. Consequently, His isomorphic to a subgroup K of S, by 
Exercise 22. Hmlly, by Exercise 21, G ~ H andH ~ Kim ply that G '= K. • 

Any homomorphism from a group G to a group of permutations is called a 
representation of G, and G i;. said to be represented by a group of permutations. The 
homomorphism G-+ A( G) in the proof of Theorem 7.21 is called the left regular repre­
sentation of G. By the use of such representations, group theory can be reduced to the 
study of permutation groups. This approach is sometimes very advantageous because 
permutations are concrete objects that are readily visualized. Calculations with per­
mutations are straightfOrward, which is not always the case in some groups. In certain 
situations, group representations are a very effective tool. 

On the other hand, representation by permutations has some drawbacks. For one 
thing, a given group can be represented as a group of permutations in many ways-the 
homomorphism G-+ A( G) of Theorem 7.21 is just one of the possibilities (see Exercil!a 
49, 51, and 54 for others). And many of the!!e representations may be quite inefficient. 
According to Corollary 7 .22, for example, every group of order 12 is isomorphic to a 
subgroup of SIZ> but s,1 has order 12! = 479,001,600. Determining usefulinformation 
about a subgroup of order 12 in a group that size is likely to be difficult at best. 

Except for some special situations, then, the study of elementary group theory via 
the abstract definition (as we have been doing) rather than via concrete permutation 
representations is lik:ely to be more effective. The abstract approach has the advantage 
of eliminating nonessential features and concentrating on the basic underlying struc­
ture. In the long run, this usually results in simpler proofs and better understanding. 

•The group A( G) itself is usually far too large to be isomorphic to G. For instance, if G has order n, 
then A(G) hu order n! by Ex.ercise 20 of Section 7.1. 
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• Exercises 

A. I. (a) Show tha the functionf:R ~ n given by f(x) = 3x is an isomorphism of 
additive groups. 

(b) Let n:e.** be the multiplicative group of positive real numbers. Show that 
fR** --+R** given byf(x) = 3x is not a homomorphism of groups. 

2. Show that the functiong:R** ~R** given by g(x) = Vx is an isomorphism. 

3. Show that Gli...2, ZJ) is isomorphic to S3 by writing out the operation tables 
for each group. fHiht: List the elements of Gli.,2, Zz) in this order: 

G ~). G !). (~ ~). e !). G ~). G ~)and the elements 

of S;in this order: G ~ D• G ~ ~). G ~ ~). G ~ ~). 

(1 2 3) (1 2 3) 
3 1 2 ' l 3 2 •1 

4. Prove that the function fill* --+ ~* defined by f(x) = r is an isomorphism . 

.5. Prove that the function g:Z~ --+ "4 defined by g (x) = 2x is an isomorphism. 

6. Prove that the function h:Z8 ~ Z1 defined by h (x) = 2x is a homomorphism 
that is neither injective nor surjective. 

7. Prove that the functionf:R*--+ R** defined by f(x) = lx1 is a surjective 
homomorphism that is not injective. 

8. Prove that the function g:R ~ ~* defined by g (x) = 2" is an injective 
homomorphism that is not surjective. 

9. If Gand Hare groups, prove that the functionfG X H--+ Ggiven byf((a, h))= 
a is a surjective homomorphism. 

10. Show that the functionflll ~ n defined byf(x) = r is not a homorphism. 

II. ~~.that the functio~g:R*--+ GL{2, R) defined by g(x) = (~ ~)is an 
IDJective homomorphism. 

12. Prove that the function h: J.l ~ GL{2, Iii) defined by h (x) = (
1 ~) is an 

injective homomorphism. x 

13. Show that U5 is isomorphic to U10• 

14. Prove that the additive group "4 is isomorphic to the multiplicative group of 
nonzero elements in z7. 

15. LetfG~ Hbe a homomorphism of groups. Prove that for each a E Gand 
each integern,f(a") = f(af. 

16. If f:G--+ His a surjective homomorphism of groups and G is abelian, prove 
that His abelian. 
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17. Prove that the function/in the proof of Theorem 7 .19(1) is a bijection. 

IS. Let G, H, Gh H 1 be groups such that G = G1 and H = H 1• Prove that 
GXH= G1 XH1• 

19. Prove that a group G is abelian if and only if the functionf:G-+ G given 
by f(x) = x-1 is a homomorphism of groups. In this case, show that fis an 
isomorphism. 

20. Let N be a subgroup of a group G and let a E G. 

{a) Prove that a-1Na = {a-1na In EN} is a subgroup of G. 

(b) Prove that Nis isomorphic to a-1Na. (Hint: Definej:N-+ a-1Na by 
f(n) = a- 1na.] 

21. Let G, H, and K be groups. If G = Hand H = K, then prove that G = K. 
(Hint: If}: G- Hand g:H-+ K are isomorphisms, prove that the composite 
function go f. G-+ K is also an isomorphism.] 

22. lf.f.G-+H is an isomorphism of groups and if Tis a subgroup of G, prove 
that Tis isomorphic to the subgroup f( 1) = {fl a) I a E T} of H. 

23. {a) If G is an abelian group, prove that the function.t:G- G given by 
f(x) = r is a homomorphism. 

(b) Prove that part (a) is false for every nonabelian group. (Hint: A counter­
~ple is insufficient here (Why?). So try Exercise 24 of Section 7 .2.] 

B. 24. let G be a multiplicative group. Let Gop be the set G equipped with a new 

operation • defined by a • b = ba. 

{a) Prove that G6
P is a group. 

(b) Prove that G = G4
P. {Hint: Corollary 7. 6 may be he! pful] 

25. Assume that a and b ;ue both generators of the cyclic group G, so that G = 
{a} and G = (b~ Prove thatthe functionf:G- G given by j(a') = b1 is an 
automorphism of G. 

26. If G = (dJ is a cyclic group and f. G-+ H is a surjective homomorphism of 
groups, show thatf(a) is a generator of H, that is, His the cyclic group (/(a)). 
(Hint: Exercise IS.] 

27. Let G be a multiplicative group and c a fixed element of G. Let H be the 11et G 
equipped with a new operation * defined by a * b = acb. 

{a) Prove that His a group. 

(b) Prove that the mapj:G- H given byf(x) = c-1-x is an isomorphism. 

2S. I..etfG-+ Hbe a homomorphism of groups and suppose that aE G has finite 
orderk. 

(a) Prove thatf(af = e. [Hiht: Exercise IS.] 

(b) Prove that 1/(a)l divides lal. [Hint: Theorem 7.9.] 

29. If fG-+ His an injective homomorphism of groups and a E G, prove that 
lf(a)l = lal-
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30. Letf.G~ Hbe a homomorphism of groups and letKbea subgroup of H. 
Prove that the set {aE G 1/(a) EK} is a subgroup of G. 

31. If f:CJ-+ G is a homomorphism of groups, prove that F = {a E G I f(a) = a} is 
a subgroup of G. 

32. If A= (: ~)is a matrix, the number ad- bci.s denoted det A and called 

the dctenninant of A. Prove that the function.f:GI(2, R)-+ R* given by 
f(A) = det A is a surjective homomorphism. 

33. LetfG~ Hbe a homomorphism of groups and let X,= {aEG lfla) = e8 }, 

that is, the .set of elements of G that are mapped by fto the identity element 
of H. Prove that ~is a subgroup of G. See Exercises 34 and 35 for examples. 

34. The functionfZ:-+ Z:5 given by f(x) = [x] i.s a homomorphism by Example 13. 
Find K1 (notation as in Exercise 33). 

35. The functionfUs-+ Usgivenbyf(x) =?-is a homomorphism by Exercise 23. 
Find K1 (notation a.s in Exercise 33). 

36. Let G be a group and let Aut Gbe the .set of all automorphism.s of G. Prove 
that Aut G i.s a group under the operation of composition of functions. 
[Hint: Exercise 21 may help.] 

37. Let G be a group and let Aut G be a.s in Exercise 36. Let Inn Gbe the .set of 
all inner automorphism.s of G (that is, isomorphisms of the formf(a) = c-1ac 
for .some cEG, a.s in Example 9.). Prove that Inn G is a .subgroup of Aut G. 
[Note: Two different elements of G may induce the .same inner automorphism, 
that i.s, we may have c-1ac = d-1ad for all a E G. Hence, linn G1 :S IGJ.] 

38. Let T be a .set n elements and let A(1) be the group of permutations of T 
Prove that A(T) ~ s;.. [Hint: If the elements of Tin some order are relabeled as 
1, 2, ..• , n, then every permutation of Tbecome.s a permutation of 1, 2, ... , n.] 

39. Show that the additive groups Z: and Q are not isomorphic. 

In Exercises 40-44, explain why the given groups are not isomorphic. (Exercises 16 
and 29 may be helpful.) 

40. Zr, and S3 

42. "Z..t X Z:2 and Z:2 X Z:2 X Z 2 

41. "Z..t X Z 2 and D4 

43. U8 and U10 

45. I.s Ug isomorphic to U12? JustifY your answer. 

46. Prove that the additive group n of all real numbers is not isomorphic to the 
multiplicative group R * of nonzero real numbers. [Hint: If there were an 
isomorphism fiR-+ R*, thenj{k) = ~I for .some k; use this fact to arrive at a 
contradiction.] 

47. Show that D 4 i.s not isomorphic to the quaternion group of Exercise 16 of 
Section 7.1. 

48. Prove that the additive group 0 i.s not isomorphic to the multiplicative group 
0** of positive rational numbers, even though ~and R** are isomorphic. 
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49. Let G be a group and let A( G) be the group of permutations of the set G. 
Define a function g from G to A( G) by assigning to ea:::h dE G the inner 
automorphism induced by d-1 (as in Example 9 with c "" J-1). Prove that g is 
a homomorphism of groups. 

50. Let G be a group and hE A(G). Assume that h o If~= cp. o h for all a E G 
(where cp. is as in the proof of Theorem 7.21 ). Prove that there exists b E G 
such that h(x) ""' xb-1 for all x E G. 

51. (a) Let G be a group and c E G. Prove that the map fJ,.:G-# G given by 
fJ.(x) = xc-1 is an element of A(C1). 

(b) Prove that h: G -Jo A(G) given by h(c) = Oc is an injective homomorphism 
of groups. Thus G is isomorphic to the subgroup Imhof A(G). This is the 
rigbt regular representation of G. 

52. Find the left regular representation of each group (that is, express each group 
as a permutation group as in the proof of Theorem 7.21): 

(b)Z. 

53. Letf:G-+ Hbe an isomorphism of groups. Letg:H-# G be the inverse 
function of fas defined in Appendix B. Prove that g is also an isomorphism of 
groups. [Hint: To show that g(oh) = g(a)g(b), consider the images of the left~ 
and right~hand sides under fand use the facts that/ is a homomorphism and 
f o g is the identity map.] 

54. (a) Show that~=: S3• [Hint: D3 is described in Example 6 of Section 7.1 
or 7 .l.A. Each motion in D3 permutes the vertices; use this to define a 
function from D3 to S3.] 

(b) Show that D4 is isomorphic to a subgroup of S4• [Hint: See the hint 
for part (a). This isomorphism represents D4, a group of order 8, as a 
subgroup of a permutation group of order 4! "" 24, whereas the left 
regular representation of Corollary 7.22 represents Gas a subgroup 
of S 1, a group of order 8! = 40,320.] 

55. (a) Prove that H = { C ~ n 
1 
-: n) I n E 7L} is a group under matrix 

multiplication. 

(b) Prove that H = ll.. 
56. (a) Prove that K= { C ~4~1l 1 

: ln) In E 7L} is a group under matrix 

multiplication. 

(b) Is K isomorphic to ll.? 

57. Prove that the additive group Z[x] is isomorphic to the multiplicative group 
0** of positive rationals. [Hint: Let Po. Pt. P1> •.. be the distinct positive 
primes in their usual order. Define rp:Z[x]-# 0** by 



7.5 The Symmetric and Alternating Groups 227 

58. Prove that G is an abelian group if and only if Inn G consists of a single 
element. (Hint: See Exercise 37 .) 

59. (a) VerifY that the group Inn D4 has order 4. (Hint: See Exercise 37.] 

{II) Prove that Inn D4 = Z2 X Z'l: 

60. Prove that Aut Z =: Z1• (Hint: Wbat are the possible generators of the cyclic 
group Z? See Exercises 25 and 26.) 

61. Prove that Aut Z,. =: U~. (Hint: See Exercise 25 above and Exercise 44 of 
Section 7 .3.) 

62. Prove that Aut (Z1 X Z.Jj =: S3. 

A P P Ll CATION: Linear Codes (Section 16.1) may be covered at this point 
if desired. 

II The Symmetric and Alternating Groups* 

The finite symmetric groups S~ are important because, as we saw in Corollary 7 .22, 
every finite group is isomorphic to a subgroup of some S11• In this section, we introduce 
a more convenient notation fur permutations, and some important subgroups of the 
groups S 11• We begin with the new notation. 

Consider the permutation G ~ ; : ~ ~) in s6. Note that 2 is mapped to 4, 4 

is mapped to 6, 6 is mapped to 5, 5 is mapped back to 2, and the other two elements, 
1 and 3, are mapped to themselves. All the essential information can be summarized 
by this diagram: 

2----....,.... ------6 -------s 
~.. // ,....,. --..,. ...... .. _ ... __ _ 

It isn't necessary to include the arrows here as long as we keep tbinp in the same order. 
A complete description of this permutation is given by the symbol (2465), with the 
understanding that 

each element is mapped to the element listed immediately to the right; 

the last element in the string is mapped to the first; 

elements not listed are mapped to themselves. 

5 Excepl: for a few well-marked examples and exercises, this section is needed only in Sections 8.5, 
9.3-t.S. and 12.3. 
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Definition 

lbis is an example of cycle notation. Here is a formal definition. 

Let~.~.~ .•• ,at(wlth k. ~ 1} be distinct elements oftoo set{1, 2, 3. .... \., n}. 
Then (a~ ••• aA) denotes the permutation in S;, that maps a, to ~. ~·to 
<%. ••• , a~1 to~ and t~,tfua1 , and maps every other element of {1, 2, 6, ••• , n} 
to Itself. (a1¥ 3 ••• ~) Is called a cycle of length k or a k-cycl e. 

EXAMPLE 1 

In s4, (143) is the 3-cycle that maps 1 to 4, 4 to 3, 3 to 1, and 2 to itself; it was 

. (1 2 3 4) . wntten .
4 2 1 3 

in the old notation. Note that (143) may also be denoted by 

(431) or (314) since each ofthese indicates the function that maps 1 to4, 4 to 3, 
3 to 1,and 2 to 2. 

EXAMPLE 2 

According to the definition above, the 1-cycle (3) in S,, is the permutation that 
maps 3 to 3 and maps every other element of {1, 2, , , • , n} to itself; in other 
word5, (3) is the identity permutation. Similarly, for any k in {1, 2, •.. , n}, the 
l-cycle {k) is the identity permutation. 

Strictly speakin& cycle notation is ambii!JloUs since, for example, (163) might de­
note a permutation in S6, in S7, or in any S, with n <?: 6. In context, however, this 
won't cause any probleJm. because it will always be made clear which group S~ is under 
discussion. 

Products in cycle notation can be visually calculated just as in the old notation. For 
example, we know that 

(
1 2 3 4) (1 2 3 4) (1 2 3 4) 
1423~2413 =4312' 

(Remember that the product in Sn is composition of functions, and so the right-hand 
permutation is perfOrmed first.) In cycle notation, this product* becomes 

&') 3) (() 4 3) = (1 4 2 3). 

~ 
The arrows indicate the process: 1 is mapped to 2 and 2 is mapped to 4, so that the 
product maps 1 to 4. Similarly, 4 is mapped to 3 and 3 is mapped to 2, so that the 
product maps 4 to 2. 

•Hereafter we shatlomitthecomposition symbol• and writethegrou p operation inS" muNipticativety. 
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EXAMPLE 3 

In the old notation S3 oonsists of 

In the new notation, the elements of S3 (in the same order) are 

(1), (23~ (13), (12), (123), and (132). 

Two cycles are said to be disjoint if they have no elements in common. For instance, 
(13) and (2546) are disjoint cycles inS&, but (13) and (345) are not since 3 appears in 
both cycles. 

EXAMPLE .f 

As shown before Example 3, (243X1243) = (1423). Verify that 

(1243X243) = (2341). 

Hem:e, the C}d.es (243) and (1234) do not oommute with each other. On the other 
hand, y:>u can ea5ily ..-erifythat the disjoint cycles (13) and (2546) do oommu.te: 

(
1 2 3 4 5 6) 

(13)(2546) = 3 5 1 6 4 2 = (2546)(13). 

This is an illustration of the following theorem. 

Theorem 7.23 
If u::: (a ,a~·· · aJ and T::: (b1b2 • • • b,) are disjoint cycles in Sn, then (J'T = w.* 

Proof"' Exercise lit • 

It is not true that every permutation is a cycle, but evei}' permutation can be 
eKpressed as. the product of disjoint cycles. Consider, for example, the permutation 

(
1 2 3 4 5 6 7) . "'· . d I th . ~~..........1 'tself. 1 d 
5 1 7 2 4 6 3 

ln "''· Ftn an e ement at lS not Lll«t'!""' to 1 , say , an trace 

where it is sent by the permutation: 

1 is mapped to 5, 5 is mapped to 4, 4 is mapped to 2, and 
2 is mapped to 1 (the elementwith which we started). 

5 Greek letters are often used to denote permutations. We shall generally use the letters alpha (a), 
beta {/3), delta (ll), sigma (u), and tau (r). For the entire Greek alphabet, see the inside back cover af 
this book. 
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Thus the given permutation has the same action as the cycle (1542) on these four 
elements. Now look at any element other than I, 5, 4, 2 that is not mapped onto itself, 
say 3. Note that 

3 is mapped to 7, and 7 is mapped to 3. 

Thus the 2-cycle (37) has the same action on 7 and 3 as the given permutation. The only 
element now unaccounted for is 6, which is mapped to itself. You can now easily verify 
that the original permutation is the product of the two ~les we have found, that 11, 

(
I 2 3 4 5 6 7) 
5 I 7 2 4 6 3 = ( 1542)(37 ). 

Although some care must be used and the notation is more cumbersome, essentially 
the same procedure works in the general case. 

Theorem 7.24 
Every permutation in Sn is the product of disjoint cydes.~ 

Proof~ Adapt the procedure in the preceding example; see Exercise 44. • 

Theorem 7.25 
The order of a permutation 1 in S, is the least common multiple of the lengths 
of the disjoint cycles whose product is 1.t 

Proof~ Exercise 19. • 

EXAMPLES 

The permutation 1 = (12)(34X567) is a product of disjoint cycles of lengths 2, 2, 
and 3. The least common multiple of 2, 2, and 3 is 6. Theorem 7.25 tells us that 
1 has order 6. You can verify this directly by computing the powers of 1: 

1 = (12)(34X567), 

.,-4 = (567), 

The Alternating Groups 

r = (576), 

Ts = (12X34)(576), 

rl = (12)(34), 

1" = (1). • 

A 2~1eis often called a traDsposition. Transpositions have some interesting properties. 

EXAMPLE 6 

If (ab) is a transposition, verify that (ab)(ab) = (I). Hence, 

Every transposition is its own inverse. 

•As usual, we allow the possibility of 11 product with just one cycle In lt. 

tn. least common multiple is defined In Exercise 31 ol Section 1.2. 
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EXAMPLE 7 

We claim that the inverse of the product (12)(34X14X13) is (13)(14)(34)(12) (the 
same transpositions in reverse ort:£!!r). To prove this claim, we use the fact that a 
transposition is its own invene: 

(12X34)(14Xl3) • (13)(14)(34)(12) = (12)(34)(14) · (14)(34)(12) 

= (12)(34) • (34)(12) = (12X12) = (1). 

A similar argument works in the general case and .shows that 

If u~o u 20 u 3, ••• , a • _ h and u • are transpositions, then 

(u,u1u3 · ·' u~_,uJ-1 = u,.u•-1 • · · fTJfTlfTt· 

You can easily verify that 

(1) = (12)(12), (123) = (12)(23), (1234) = (12)(23)(34). 

These are examples of the following theorem. 

Theorem 7.26 
Every permutation Jn Sn is a product of (not necessarily disjoint) trans positions. 

Proof ... Since every permutation is a product of cycles by Theorem 7 .24, we need 
only verify that every cycle (a1a2 • • • aiJ is a product of transpositions: 

(a1~ • • • a.J = (a 1a~a:t~J ···(a,._ 1a,0. • 

This corollary can also be proved directly by induction, without using Theorem 7.24 
(Exercise 33). 

A permutation in S11 is said to be even if it can be written as the product of an 
even number of transposition.s, and odd if it can be written as the product of an odd 
number of transpositions. 

EXAMPLE& 

(132) is wen and (1243X243) is odd because, as you can easily verify, 

(132) = (12)(13) and (1243X243) = (23)(34)(14). 

Since no integer is both even and odd, the even~ odd terminology for permutations 
mggests that no permutation is both even and odd. This is indeed the case, but it 
requires ptoof. The first step is to prove 

Lemma 7.27 
The identity permutation in Sn is even, but not odd. 

Proof • We write the identity permutation as (1). VerifY that (12XI2) = (1). 
Hence. the identity permutation is even. To show that it is not odd, we 
use a proof by contradiction. Suppose that (1) = Tk • • • T2T 1 with each T1 
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a transposition and k odd. Let c be a symbol that appears in at least one 
of these transpositions. LetT, be the first transposition (reading from 
right to lej~) in which c appears, say T, == (cd). Then c does not appear in 
'T,_ 1, • • • 11 and is, therefore, left fixed by these transp:~sitions. If r == k, 
then cis left fued by all the T's except 'Tk! so that the product-the iden­
tity permutation-maps c to d, a contradiction. Hence, r < k. 

Now considec the transposition 'T r+ 1• It must have one of the follow­
ing forms (where x, y, c, d denote dis tim elements of { 1, 2, · • · n} : 

L (xy) II. (xd) Ill (cy) IV. (cd). 

Consequently, there are four possibilities for the product'T,+t'T,: 

I. (xyXcd) II. (xd)(cd) III. (cyXcd) IY. (cd)(cd). 

In Case I, verify that (xyXcd) == (cJXxy). Rt:place (xyXcd) by (cdXxy) in 
the product; thismovesthe first appearance of cone 1.Tat18p:!Sition to the 
left. In Case II. wrify that (xdXcd) == (;¢Xxd); if we replace (xd)(cd) by 
(xcXxd), then once again the first appearance of cis one transposition far­
thee left Show that a similar conclusion holds in Case III by verifying that 
(cyXcd) = (cdXdy). 

Each Iepetition of the procedure in Cases I -III moves the first ap­
pearance of cone transposition farther left. Eventually case IV must 
occur, otherwise, we could keep moving c until it first appears in the last 
permutation at the left, 'Tk, which is impossible, as we SfNI in the fint para­
graph. In Case IV, however, we have 'T r+tTr == (cd)(cd) = (1). So we am 
delete these tWJ transpositions and write (1) as a product of tWJ fewer 
transpositions than before. Obviously, we can carry out the same ;ugu­
ment for any symbol that appears in a transp:~sition in the product. If the 
original product contains an odd number of transpositions, eliminating 
two at a time eventually reduces it to a single transposition (1) == (ab), 
which in contradiction. Therefore, the identity permutation (1) cannot 
be written as the product of an odd numba- of transp:~sitions. • 

Theorem 7.28 
No permutation in S11 is both even ~nd odd. 

Proof• Suppose a ES, can be written as a 1a2 • • • akand as T1'T2 • • • 1, with 
eacl:l a,. 'TJ a transposition, k odd, and r even. Since every transposition is 
its own inverse-, Corollary 7.6 shows that 

(1) == aa-1 == (at· • • ak} ('Tt · · · rJ-1 

"" at ' ' ' ak'Tr -l' ' 'Tt-t 

"" lTt ' ' ' lTk'Tr ' ' ' '1'1· 

Sinr;;e k is odd and r is even, k + ris odd, and we have written (1) as the 
product of an odd number of transpositions. This contradicts Lemma 7.27, 
and completes the proof of the theorem. • 
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The set of all even permutations in SH is denoted A,. and is called the alternating 
group of degree n; the word "group" is justified by the following theorem. 

Theorem 7.29 
An Is a subgroup of Sn of order nl/2. 

Proof ... If a andf3 an: in An, then a= 0'10'1'. ·uk and J3 = 'Tt'Tl' •• T, with each 
a,. 71a transposition ami k, reven. Thus,~= u 1ul· • • U.~:T1T2 • ·' 7,­

Since k + r is eveu, af:J E Alt' So A, is closed under multiplication. By 
Example 7~ a-1 = a,p,. _ 1 • • • u.p1• Since k is even, a-1 

E AJ&' There fen; 

Ah is a subgroup by Theorem 7.1 L Exercise 24 shows that jAJ = nl/2. • 

EXAMPLE 9 

The elements of S3 are listed in Example 3. Because JS3J = 31, we know that 

jA3j = ~I = 3. Since (12), (13), and (23) are obviously odd, A 3 must consist of 

(123), ( 132), and (1). 

• Exercises 

A. 1. Write each permutation in cycle notation: 

(a) (12 3 4 56 7 8 9) (b) (1 2 3 4 5 6 7 8 9) 
721456389 243576891 

(
1 2 3 4 5 6 7 8 9) 

(c) 4 8 1 7 5 2 6 3 9 

2. Compute each product: 

(a) (12)(23)(34) 

(c) (12)(53214)(23) 

(d) (1 2 3 4 5 6 7 8 9) 
125476938 

(b) (246)(147)(135) 

(d) (1234)(2345) 

3. Express as a product of disjoint cycles: 

(
1 2 3 4 5 6 7 8 9) (1 2 3 4 5 6 7 8 9) 

(a) 2 1 3 54 7 9 8 6 (b) 3 5 12 4 6 8 9 7 

(c) (1 2 3 4 5 6 7 8 9) 
351249876 

(e) (7236)(85)(571)(1531)(48 6) 

(d) (14)(27)(523)(34)(1472) 

4. Write each permutation in Exercise 3 as a product of transpositions. 
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5. Find the order of each permutation. 

(a) (12) (b) (123) (c) (1234) 

(d) What do you think the order of (123456789) is? 

6. Find the order of each permutation. 

(a) (13X24) (b) (123)(456) (c) (123)(435) 

(d) (1234)(4231) (e) (1234)(24X43215) 

7. Which of these permutations are even: 

(a) (2468) {b) (246)(134) (c) ( 12)( 123)( 1234) 

8. List the elements in each group: 

{b) A.. 
9. What is the order of each group: 

(a) A,. (b) As 

I 0. Is the set B" of odd permutations in S 11 a group? JustifY your answer. 

I I. List the order of each element of A4• 

12. Write (12)(34) as the product of two 3-cydes.. 

13. Show that a = (123X234)(.567)(78910) has order 10 in S11 (n ~ 10). 
(Hint: Write a as a product of disjoint cycles and use Theorem 7.25.] 

14. Show that fJ = (1236)(5910X465)(5678) has order 21 in Sn (n ~ 10). 

B. 15. Prove that the cycle (a,.~ · · · l~A:) is even if and only if k is odd. 

16. Show that the inverse of (al~ ... aJ in sll is (ak'lk- I ••. aJ¥1). 

17. Prove that a k-cycle in the group Sit has order k. 

18. Let u = (al~ ••• a~:) and 'T = (bi~ •.• b,) be disjoint cycles ins~. Prove that 
UT = 'T(J'. [Hint: You must show that U'T and TU agree as functions on each i 
in { 1, 2, • , • , n}. Consider three cases: i is one of the a's; i is one of the b's; i is 
neither.] 

19. Prove Theorem 7.25: The order of a permutation 'T inS~ is the least common 
multiple of the lengths of the disjoint cycles whose product is T. 

(Hint: Theorem 7.23 and Exercise 17 may be helpful] 

20. Let a and fJ be permutations in Sit. 

(a) Fill the blanks in the table. 

a {3 

even even 

even odd 

odd even 

odd odd 

afJa-1 af:3a-i{ri 

even 

(b) What conchtsions can you draw from the results in part (a). 
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ind h d f HOI h · th . (1 2 3 4 5 6 7 8 9) 21. F teo: ero a ,w ereCT~. ~permutation 3 78 9 4 52 1 6 
· 

[H'mt: Wnte a as a product of disjomt cycles..] 

22. Show that S 10 contains elements of orders 10, 20, and 30. Does it contain an 
element of order 40? 

23. Prove that {(1), (12)(34), (13)(24), (14)(23)} is a subgroup of A_.. 

24. Let Bn denote the set of odd permutations in S,. Define a functionf:An ~ B, 
by f(a) = (12):r. 

(a) Prove that/is injective. 

(b) Prove that /is surjective. (Hint: If {3 E Bn, then ( 12){3 EA,..} 
So /is bijective. Hence, An and B, have the same number of elements. 

(c) Show that IA,I = n!/2. (Hint: Every element of Sn is in A,. or B, (but not 
both) and ISnl = n!.] 

See Exercise 39(a) and (b) for a generalization of this exercise. 

25. Show that the subgroup G of S4 generated by the elements u = (1234) and 
T = (24) has order 8. 

26. Prove that the center of S, (n > 2) is the identity subgroup. 

27. If fJ is a k-cyde with k odd, prove that there is a ~le T such that r = 0'. 

28. Let a be a k~cle in Sn. 

(a) Prove that a 1 is a C)t:le if and only if k is odd. 

(b) If k = 2t, prove that there are t-cycles T and {j such that rr = T(3. 

29. Let a and T be transpositions in S, with n <;!: 3. Prove that fJT is a product of 
(not necessarily disjoint) 3-cycles. 

30. Prove that every element of A., is a product of 3-cycles. 

31. Let a be a product of disjoint cycles of the same length. Prove that a is a 
power of a cycle. 

32. Prove that the decomposition of a permutation as a product of disjoint cycles 
is unique except for the order in which the cycles are listed. 

33. Use induction on n to give an alternate proof of Theorem 7.26: Every 
element of S» is a product of transpositions.(Hint: If the statement is true 
for n = k - 1 and if T E Sh consider the transposition (kr), where r = T(k ). 
Note that (kr)T fixes k and hence may be considered as a permutation of 
{1, 2, ... ' k- 1}.] 

34. If n <;!: 3; prove that every element of Sn can be written as a product of at most 
n - 1 transpositions. 

35. LetT be a transposition and let a E Sn. Prove that 01'0'-l is a transposition 

36. If Tis the k-cycle (a,a.z • • • ak) and if CT ESn, prove that 01'0'-l = 
(u(a1)a(ai) • • • u(a.,)). 



236 Chapter 7 Groups 

37. Let H consist of all permutations in S, that fix 1 and n, that is, 

H"" {aE S, I a(l) = land a(n)-= n}. 

Prove that His a subgroup of S,. 

38. Show that D 4 is isomorphic to the group Gin Exercise 25. [Hint: Note that 
every element of D 4 produces a permutation of the vertices of the square 
(see Example 5 in Section 7,1 or 7 .l.A.). If the vertices are numbered 1, 2, 
3, 4, then this permutation can be considered as an element of S4• Define a 
functionfiD4 --+ S4 by mapping each element of D4 to its permutation of the 
vertices. VerifY thatfis an injective homomorphism with image G.] 

39. Let G be a subgroup of Sn that contains an odd permutation T. 

(a) Prove that the number of even permutations in G is the same as the 
number of odd permutations in G. 

(b) Ex.plain why 2 divides IGJ. 
(c) If K is a subgroup of Sn of odd order, prove that K is actually a subgroup 

of A.,.. 

C. 40. Prove that every element of A... is a product of n.cycles.. 

41. Prove thatthe transpositions (12), (13), (14), ... , ( 1n) generateS,. 

42. Prove that (12) and (123 • · · n) genemte S,. 

43. If jis an automorphism of S3, prove that there exists rT E S3 such that 
fir)= uru-1 for every rE ~. 

44. Use the following steps to prove Theorem 7.24: Every permutation TinS, is a 
product of disjoint cycles. 

(a) Let a1 be any element of {1, 2, ... , n} such that T(a1) + a1. Let a2 == r(aJ, 
a3 = T(az), a4 = r(a3), and so on. Let k be the first index such that T(aJ is 
one of a!> • , • , ak _ 1• Prove that r(ak) = a1• Conclude that 1 has the same 
effect on at. ..• , a,t. as the cycle (a1a2 • • • ak). 

(b) Let b1 be any element of {1, 2,, .. , n} other than at. •• . , "k that is not 
mapped to itself by r. Let b2 = r(b1), b3 = r(bZJ, and so on. Show that 
T( bJ is never one of a 1, ••• , ab Repeat the argument in part (a) to find a 
b, such that r(b,) == b1 and r agrees with the cycle (b1b2 • • • b,) on the b's. 

(c) Let c1 be any element of {1, 2, .. ,, n} other than the a's orb's above such 
that r(ct) + e1• Let c2 == r(c1), and so on. As above, find c, such that T 

agrees with the cycle (c1 c2 • • • c~) on the e's. 

(d) Continue in this fushion until the only elements 'llrnU.'COunted for are those 
that are mapped to themselves by r. Verify that Tis the product of the cycles 

(a1 • • • aJ(b1 • • • b,Xc1 • • • c~) · • • 

and that these cycles are disjoint. 

45. Prove that S, is isomorphic to a subgroup of .Aw.,2• 



CHAPTER 8 

Normal Subgroups and Quotient Groups 

Congruence in the integers led to the f1nite arithmettcs Z, which produced 
a number of interesting results. Now we shall extend the concept of congru­
ence to groups, producing new groups and a deeper understanding of algebraic 
structure. 

Ill Congruence and Lagrange's Theorem 

In this section we present the analogue for groups of the concept of congruence, 
which was introduced for integas in Chapter 2 and for rings in Chapter 6. • EJ~a:pt 
for some notational changes, the first three results of this !leCtion are virtually identica.l 
to those proved earlier for integers and rings. The following chart sho...w this parallel 
development. 

INTEGERS 

Theorem2.1 

Theorem2.3 

Corollary 2.4 

RINGS 

Theorem6.4 

Theorem6.6 

Corollary 6.7 

GROUPS 

Theorem8.1 

Theorem8.2 

Corollary 8.3 

We begin by looking at an example of congruence in Z from a somewhat different 
viewpoint. 

•chapter 6ls1'10h prerequisite for thlsseetion, but It will be mentioned oeeaslonally. Section 2.1 will 
be the model fort he presentation here. 

237 
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Definition 

EXAMPLE 1 

In the integers, a = b (mod 4) means that 4 divides a - b, that is, that a - b is a 
multiple of 4. Let Kbe the set of all multiples of 4, so that 

K = {0, :!:4, ::!::8, :!:: 12, ••• }. 

Thus, 

a= b(mod4) means a- bEK. 

Note that K is actually a subgroup of Z (the additive c}tlic subgroup generated 
by 4). Instead of thinking of congruence modulo the element 4, we can con­
sider this as congJUence modulo the subgroup K; 

a= b (modK) means a- bEK. 

Now let G be any group and K a subgroup of G. The last line of the preced­
ing example could be used as a definition of congruence modulo K However, we 
normally use multiplicative notation for groups. So we must translate the pro­
posed definition and results liom Section 2.1 into equivalent statements in multi­
plicative notation.* The following dictionary may be helpful for this translation. 

ADDITIVE NOTATION 

a+b 

0 

-c 

a- b =a+ (-b) 

MULTIPLICATIVE NOTATION 

Thus, the additive statement a - b E K is equivalent to the multiplicative state­
ment ab-1 EK, and we have the following definition of congruence. 

Let K be a subgroup of a group G and le-t a, b"' G. Then a is congruent to b 
modulo K [wrfttan 1'.1""' b (mod K)] provided that ab-1 t.K. 

EXAMPLE 2 

Let K be the subgroup {ro. r1, r'b r3} of D4• Then the operation table in Example S 
of Section 7.1 or 7.1.A shows that d-1 = d and h o d-1 = hod= r 1 E K. Thexcl'ore, 
h= d(modK). 

•There is a possibility of confusion here since integer multiplication is also defined. In carrying 
over congruence from integers tog~. we consider only the additive structure oft he integers 
and ignore integer multiplication be<:ause the integers form an additive group, but not a 
mtJtiplicative one. 
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Theorem 8.1 
Let K be a subgroup of a group G. Then the relation of congruence modulo 
Kis 

(1) reflexive: a"" a (mod K) for all aEG; 

(2) symmetric: if a"" b (mod K), then b"" a (mod K); 

(3) transitive: if a= b (mod K) and b ~ c (mod K), then a= c (mod K). 

The idea is to translate the proof of Theorem 2.1 to the present situation by chang­
ing congruence mod n to congruence mod K and replacing statements sud! as "x is 
divisible by n" or "nIx" or "x = nt"with the statement "xE r _We must also change 
additive notation to multiplicativenotation by using the dictionary above. It's straight­
forward for parts (1) and (3), but a bit trickier for part (2), since integer addition is 
commutative, but the multiplicative operation in G may not be. 

Proof oflhaorem 8.1· (1) aa-1 = f! and eEK. Hence, a"" a (mod K). 

(2) a ~ b (mod K) means ab-t = k for some kE K. Therefore, by 
Corollary 7 .6, 

k--l = (ab-1)-1 = (b-1)-ta-1 = ba-t. 

Since K is a group, the inverse of an element of K is also inK. Reading 
the preceding line from right to left, we see that ba-t = k-1 E K. Hence, 
b sa (modK). 

(3} If a"" b (mod K} and b"" c (mod K), then by the definition of 
congruence, there are r, SEK such that ob-1 =rand bc-1 = s. Therefore, 

(ob-1)(bc-t) = rs 

ac-t= rs 

Thus, ac-t E K (because rand s are in K). Hence, a "" c (mod K). • 

If K is a subgroup of a group G and if a E G, then the congruence class of a modulo 
K is the set of all elements of G that are congruent to a modulo K. that is, the set 

{bEG I b =a (mod K)} = {bEG lm-tEK} 

=-{bEG I ba-t= k, with kEK}. 

Right multiplication by a shows that the statement ba-1 = k is equivalent to b = ka. 
Therefore, the congruence class of a modulo K is the set 

{bEG I b = ka, withkEK} = {ka I kEK}, 

which is denoted KLJ. and called a rigbt coset of Kin G. In SUIDIIlal"y: 

The congruence class of 11 n~.odulo K is tbe rlgbt coset Ka = {k.rl with k E K}. 

When the operation in the group Gis addition, then a right coset is denoted K + a.• 
6 for those who have read Section 6.1: Cosets of an ideal I in a ring were denoted a + I instead of 
I+ a. It didn't make al"r{ difference there because addition in a ring is commutative, so a + i = i +a 
for eve'Y iEf. However, in Section 8.2 we shall see that when G is nonabelian, it is possible to have 
Ka '# aK, where aK= {Ilk I withk EK}. 
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Theorem 8.2 
Let K be a subgroup of a group G and let a, c E G. Then a ""' c (mod K) if and 
only if Ka = Kc. 

Proof~ With minor notational changes, the proof is essentially the same as that of 
Theorem 2.3. Just replace "mod 11" with ''mod K" and "[a)" with "Ka" and 
use Theorem 8.1 in pl~M:e of Theorem 21. • 

Corollary 8.3 
Let K be a subgroup of a group G. Then two right cosets of K are either 
disjoint or identical. 

Proof~ Copy the proof of Corollary 2.4 with the same notational changes as in 
the proof of Theorem 8.2. • 

Lagrange's Theorem 
At this point -we temporarily leave the parallel treatment of congruence in the integers 
and group; and use rightcosets to develop some facts about finite groups that have no 
counterpart in the integers. 

Theorem 8.4 
Let K be a subgroup of a group G. Then 

(1) G iS the union of the right cosets of K: G = U Ktt. 
4eG 

(2) For each a E G, there is a bijection t.K ~ Ka. Consequently, if K is 
finite, any two right cosets of K contain the same number of elements. 

Proof~ (1) Since every right coset consists of elements of G, we have Urn~:; G. 
tH!(J"-

lf bEG, thm b = eb EKh o;: U Ka, so tha1 G o;: U J(n Hence, G = U J(n 
se.G il.t:.rf- g.e.fi-

(2} Definej;K ~Ka byf(x) = xa. Then by the definition of KaJis 
surjective. If f(x) = f(y), thenxa = ya. so thatx = ybyTheorem 7.5. 
Therefore,/is injective and, hence, a bijection. Consequently, if K 
is finite, every cosetKa has the same number of elements asK, 
namely IKJ. • 

If His a subgroup of a group G, then the number of distinct right cosets of 
H in G is called the index of H In G and is denoted [G:H). If G is a finite group, 
then there can be only a finite number of distinct right cosets of H; hence, the 
index [ G:H] is finite. If G is an infinite group, then the index may be either finite 
or infinite. 
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EXAMPLEJ 

Let H be the cyclic subgroup (3) of the additive group Z. Then H consists of all 
multiples. of 3, and the cosets of Hare just the congruence classes modulo 3; 
for instance, 

H + 2 = {h + 21 hEH} = {3z + 21.zEZ} = (2). 

Since there are exactly three distinct congruence classes modulo 3 (cosets of H), 
we have (Z:H] = 3, 

EXAMPLE.f 

Under addition the group Z of integers is a subgroup of the group Q of ratio­
nal numbers. By the definition of congruence and Theorem 8.2, 

Z+a=Z+c if and only if a- cEZ. 

Consequently, if 0 < c < a < 1, then Z + a and Z + c are distinct cosets because 
0 <a - c < 1, whid:t means that a - c cannot be in Z. Since there are infinitely 
many rationals between 0 and 11 there are an infinite number of distinct cosets 
of Z in 0. Hence, [Q:ZJ is infinite. 

Theorem 8.5 Lagrange's Theorem 
tf K is a subgroup of a frnite group G, then the order of K divides the order of 
G. ln particular, I G I = (KI (G:K]. 

Proof• It is conwo.ient to adopt the following notation. If A is a finite set, then (A( 
denotes the number of elements in A. Observe that if A. and B are diijoint 
finite sets, then (AU B I = lA I + IBI. Now suppose that [G:K] = nand 
denote the n distinct cosets of Kin G by Keto Kc1, ••• , Kc,.. By 
Theorem8.4 

G = Kc1 U Kc2 U · · • U Kc/(' 

Sincetheo!ie casets are all distinct, they are mutuallydisjlint by Corollary 8.3. 
Consequently, 

IGI = IKCJI + 1Kc21 + · · · + IKc,J. 

For each c,. however, IKcJ = IKI by Theorem 8.4. Therefore, 

IGI = IKI + IKI + · · · + IKI = IKin = IKI[G:KJ. • 

IJ~ 

Lagrange's Theorem shows that there an: a limited number of possibilities for the 
subgroups of a finite group. For instance, a subgroup of a group of order 12 must 
have one of these orders: 1, 2, 3, 4, 6, or 12 (the only divisors of 12). Be careful, 
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however, for these are only the possibk orders of subgroups. Lagrange's Theorem does 
not say that a group G mll.'lt have a subgroup of order k for every k that divides IGI. 
For instance, the alternating group A4 has order 12 but has no subgroup of order 6 
(Exercise 44). Lagrange's Theorem also puts limitations on the possible orders of 
elements in a group: 

Corollary 8.6 
Let G be a finite group. 

(1) If a E G, then the order of a divides the order of G. 

(2} If 1 G 1 = k, then ~:l = e for every a E G. 

Proof., (1) If aE Ghas order n, then the cyclic subgroup (a) of Ghas order n 
by Theorem 7.15. Consequently, n divides IGI by Lagrange's Theorem. 

(2) If a E G has order n, then n I k by part (1), say k = nt. Therefore, 
d' = a'" = (a")1 = e1 = e. • 

The Structure of Finite Groups 
A major goal of group theory is the classification of all finite groups up to isomor­
phism; that is, we would like to produce a list of groups such that every finite group is 
isomorphic to exactly one group on the list. This is a problem of immense difficulty, 
but a number of partial results have already been obtained. Theorem 7.19, for exam­
ple, provides a classification of all cyclic groups; it says, in effect, that every nontrivial 
finite cyclic group is isomorphic to exactly one group on this list: Zz., Z3, Z..,., •••• All 
finite abelian groups will be classified in Section 9.2. 

We now use Lagrange's Theorem and its corollary to classify all groups of prime 
order and all groups of order less than 8. In the proofs below enough of the necessary 
calculations are included to show you how the argument goes, but you should take 
pencil and paper and supply all the missing computations. 

Theorem 8.7 
Let p be a positive prime integer. Every group of order p is cyclic and isomor­
phic to z,. 
Proof.,. If G is a group of order p and a is any nonidentity element of G, then 

the cyclic subgroup (a) is a group of order greater than 1. Since the 
order of the group {a) must divide p and since p is prime, (a) must be a 
group of order p. Thus (a) is all of G, and G is a cyclic group of order p. 
Therefore, G= Zp by Theorem 7.19. • 
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Theorem 8.8 
Every group of order 4 is isomorphic to either Z. or 7..,. X Z2. 

Proof ... Let G be a group of order 4. Either G oontains an element of order 4 or 
it does not. If it does, then the cyclic subgroup generated by this element 
has order 4 by Theorem 7.15 and, hence, must be all of G. Therefore, G 
is a cyclic group of order 4, and G = Z. by Theorem 7.19. 

Now suppose that G does not oontain an element of order 4. Let e, a, 
b, c be the distinct elements of G, with e the identity element. Since every 
element of G must have order dividing 4 by Corollary 8.6 and sinoe e is 
the only element of older 11 each of a, b, c must have order 2. Thus the 
operation table of G must look like this: 

e a b c 
e e a b c 
a a e 

b b e 

c c e 

In order to fill in the missing entries. we first consider the product ab. If 
ab '=' e, then ah '=' a a and, hence, a '=' b by cancelation. This is a contra­
diction, and so ah '¢ e. If ab = a, then ab = ae and b = e by cancelation, 
another contradiction. Similarly, ab = b implies the contradiction a = e. 
Therefore, the only possibility is ab '=' c. Similar arguments show that 
there is only one possible operation table for G, namely, 

e a b c 

e e a b c 
a a e c b 

b b c e a 

c c b a e 

Letf G....., Z2 X Z2 be given by j(e) '=' (0, O),fla) '=' (1, O),flb) '=' (0, 1), 
ii.Ildj(c) '=' (1, 1). Show that/is an isomorphism by comparing the 
operation tables of the two groups. • 

Theorem 8.9 
Every group G of order 6 is isomorphic to either "4 or S.Jo 

Proof ... If G contains an element of order 6, then G is a cyclic group of order 6 
and, hence, is isomorphic to Z 6 by Theorem 7.19. So suppose Gcontains 
no element of order 6. Then every nonidentity element of G has order 
2 or 3 by Corollary 8.6. If every nonidentity element of G has order 2, 
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G 

then G is an abelian group by Exercise 27 of Section 7 .2. ff c and dare 
nonidentity elements of G, then the setH= {e, c, d, cd} is closed under 
multiplication (because t'- = e = dl and cd = de). Hence, His a subgroup 
of G by Theorem 7.12. This is a contradiction since no group of order 6 
can have a subgroup of order 4 by Lagrange's Theorem. Therefore, the 
nonidentity elements of G cannot all have order 2, and G must contain 
an element a of order 3. Let N be the cyclic subgroup (a) = { e, a, a2

} and 
let b be any element of G that is not in N. The cosets Ne = { e, a, a2} and 
Nb = {b, ah, a2b} are not identicalsince bj!N = Ne and, hence, must be 
disjoint (Corollary 8.3). Therefore, G consists of the six elements e, a, d, 
b, ah, alb. 

we now show that there is only one possible operation table for G. 
What are the possibilities for ll1 we claim that I? cannot be any of a, a2, 

b, ah, or alb. Forinstance, if b2 = a, then b'4 = a2
• However, b either has 

order 2 (in which case if = b4 = b21J = ee = e, a contradiction) or order 3 
(in which case al = ~ = !Jlb = eb = b, another contradiction since b It N). 
Similar argwmmts show that the only possibility is fJ = e. 

Next we determine the product ba. It is easy to see that ba cannot 
be any of b, e, a, ore? (for instance, ba =a implies b =e). So the only 
possibilities are ba = ah or ba = lib. If ba = ah, then verify that ba has 
order 6 by computing its powers. This contradicts our assumption that 
G bas no element of order 6. Therefore, we must have ba = a1b. Using 
these two facts; 

and ba =lib, 

we can now compute every product in G. For example, bd'- = (ba)a = 
(a1b)a = al(ba) = lia1b = a4b = ab. 

Verify that the operation table for G must look like this; 

e a li b ah cl-b 

e e a Ql b ah a2b 

a a al e ah db b 

Ql cr e a tib b ab 

b b alb ah e ti a 

ah ah b lib a e al 

tflb t?b ab b Ql a e 

By comparing tables, show that G is isomorphic to S3 under the 
correspondence 

e a a1 b ah alb 

J. J. J. J. J. J,. 
2 

~)G 
2 ~)G 2 

~)G 
2 :)G 2 ~)G 2 ~). . 2 3 1 l 2 3 
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The last three theorems provide a complete classification of all groups of order less 
than 8, as summarized in this table; 

If G bas order then G is isomorphic to 

2 Z2 
3 z~ 

4 ,l4 or Z2 X Z2 

5 Zs 

6 ~orS3 
7 z7 

The classification of groups is discussed further in Chapter 9, particularly in Section 9.5 
where the preceding chart is extended to order 15. 

• Exercises 

A. I. Let K be a subgroup of a group G and let a E G. Prove that Ka = Kif and only 
if aEk. 

In .E.n!n:ises 2--6, G is a group and K is a mbgroup qf G List the distinct right cosets of Kin G. 

2. K: {r0, v}: G: D4 [fhe operation table for D4 is in Example 5 of Section 7.1 
or 7.1.A.] 

3. K = {r0, r" r2o r;}; a= D4• 

4. K = { G ~ ~). G ~ ~) }; G = ~. 
5. K: {1, 17}; G = Ul2· 

6. K= (3); G = U32. 

In Exercises '1-1 I, G is a group a11d H i3 a subgroup qf G. Find the index [G:H]. 

7. H = {ro, r2}; G = D4. 

H. H= (3); G = Z12· 

9. H=(3);G= Z20• 

I 0. His the subgroup generated by 12 and 20; G : Z40• 

II. His the cyclic sub group generated by (
1 2 3 4

); G = s4• 
2 3 4 1 

12."' (a) Let K = {(1), (12)(34), (13)(24), (14)(23)}. Show that Kis a subgroup of 
A., and hence, a subgroup of S4• [Hint: Theorem 7.12.] 

(b) State the number of cosets of Kin A4• Don't list them. 

(c) State the number of cosets of Kin S4• Don't list them. 

•Skip this exercise if you haven't read Section 7.5. 
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In Exercises 13-15, K is a subgroup of G Determine whether the gillen eosets are 
disjoint or identical 

13. G = Z; K = (7) 

(a) K+ 4andK + 3 (b)K=4andK+ 137 (c)K + (-4) and K +59 

14. * G = S,b K is the subgroup of Exercise 12. 

(a) K(l2)and.K(34) (b)K(l234)andK(1324) 

15. G = U]2;K = (9) 

(a) Kl7 and Kl9 (b) K9 and K25 

16. Suppose G is the cyclic group (a) and lal = 15. If K = (a~, list all the distinct 
cosets of Kin G. 

17. What are the possible orders of the subgroups of Gwhen G i!. 

(a) Z24 (b) S.., (c) D4 X Z1o 

18. Give examples, other than those in the text, of infinite groups G and H such that 

(a) [ G:H] is finite (b) [ G:H] is infinite 

19. Let G be a finite group that has elements of every order from 1 through 12. 
What is the smallest possible value of IGI? 

20. A group G has fewer than 100 elements and subgroups of orders I 0 and 25. 
What is the order of G! 

21. Let Hand K, each of prime order p, be subgroups of a group G. If H ~ K. 
prove that H (l K = (e). 

22. If Hand K are subgroups of a finite group G, prove that IH n Kl is a common 
divisor of IHJ and IKI· 

B. 23. If G is a group with more than one element and G has no proper subgroups, 
prove that G is isomorphic to ZP for some prime p. 

24. If G is a group of order 25, prove that either G is cyclic or else every 
nonidentity element of G has order 5. 

25. Let a be an element of order 30 in a group G. What is the index of (p4
) in the 

group (a}? 

26. Prove that a group of order 8 must contain an element of order 2. 

27. If n > 2, prove that n - 1 is an element of order 2 in U wo 

28. If n > 2, prove that the order of the group U8 is even. 

29. Let Hand Kbe subgroups of a finite group G such that K ~ H, [G:H] is finite, 
and [H:K] is finite. Prove that [G:K] = [G:H][H:K]. [Hint: Lagrange.] 

30. Let Hand Kbe subgroups of an infinite group Gsuch thatK ~ H, [G:H] is 
finite, and [ H:K] is finite, Prove that [ G:K] is finite and [ G:K] = [ G:H] [H:K]. 
[Hint: Let Ha b H az, ... , Han be the distinct cosets of H in G and let Kh1, 

~ •... , Kh, be the distinct cosets of Kin H. Show that KhtDj (with 1 :!5 i :!5 m 
and 1 :!5 j :!5 n) are the distinct cosets of Kin G.] 

•Skip this exercise it you haven't read Section 7.5. 



8.1 Congruence and Lagrange's Theorem 247 

31. If G is a group of even order, prove that G contains an element of order 2. 

32. If G is an abelian group of order 2n, with 11 odd, prove that G contains exactly 
one element of order 2. 

33. (a) If a and beach have order 3 in a group and a 2 = b1
, prove that a== b. 

[Hint: What are a-1 andb- 11j 

(b) If G is a finite group, prove that there is an even number of elements of 
order 3in G. 

34. Let G be an abelian group of odd order. If a"~ a3, • •• , a, are the distinct 
elements of G (one of which is the identity e), prove that a,a:za! • • • an = e. 

35. If p and q are primes, show that every proper subgroup of a group of order pq 
is cyclic. 

36. LetHandKbe subgroups of a finite group G such that [G:H] = p and [G:K] = q, 
with p and q distinct primes. Prove that pq divides [G:H n K]. 

37. Let Gbeanabelian group r1' order n andletkbeapositiYeinteger. If (k, n) = 1, 
prove that the function fiG-+ G given by f(a) = rJ is an isomorphism. 

38. If G is a group of order 11 and G has '1!' - 1 subgroups, prove that G = (e) or 
G::Z,_, 

C. 39. Let Gbe a nonabeliangroup of order 10. 

(a) Prove that Gcontains an element of order 5, [Hint: Exercise 27 of 
Section 7.2.] 

(b) Prove that G contains five elements of order 2. {Hint: Use techniques 
similar to those in the proof of Theorem 8.9.] 

40. If a prime p divides the order of a finite group G, prove that the number of 
elements of order p in G is a multiple of p - 1. 

41. Prove that a group of order 33 contains an element of order 3. 

42. Let G be a group generated by elements a and b such that Ia I = 4, !bl = 2, and 
ba = ~b. Show that G is a group of order 8 and that G is isomorphic to D,.. 

43. Let G be a group generated by elements a and b such that Ia I "" 4, b2 
"" dl, and 

ba = ~b. Show that G is a group of order 8 and that G is isomotphic to the 
quaternion group of Exercise 16 in Section 7.1. 

44.* (a) Show that A. (which has order 12 by Theorem 7.29) has exactly three 
elements of order 2. 

(b) Prove that the elements r1' order 2 and the identity element form a 
subgroup. 

(c) Prove that A. has no subgroup of order 6. Hence, the converse of 
Lagrange'sTheorem is false. [Hint: If Nis a subgroup of order 6, use 
Theorem 8.9 to determine the structure of Nand use part (b) to reach a 
contradiction.] 

~skip this exercise if you haven't read Section 7.5. 
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II Normal Subgroups 

Suppose G is a group and K is a subgroup. Our goal in this section and the next is 
to create a new group (if possible), whose elements are the right cosets of K (that is, 
congruence classes mod K)-much as we created Z,.. whose elements are congruence 
classes of integers. 

Recall that the definition of adiition of congruence classes of integers in Chaptex 2 
depended on part ( 1) of lheorem 22, which states 

If a"" b (modn) and c"" d(mod n), then a+ c = b + d(mod n).* 

If K is a subgroup of a multiplicative group G, then the translation of this statement 
to congruence mod K is 

If a "" b (mod K) and c = d (mod K), then ac = bd (mod K). 

Unfortunately, ho\WVer, statement ( *) is false for some subgroups. (see Exercise 2 for 
an eJGUnple). Nevertheless, there is a class of subgroups for which statement(*) is true. 
We shall identify these "special" subgroups in this section and define multiplication of 
their right co sets in Section 8.3. t 

Recall that if K is a subgroup of G, then the right coset Ka is the set Ka = 
{kalkE K}, Similarly, the left coset aK is defined to be the set 

aK ~ {akl k EK}. 

EXAMPLE 1 

Let K be the subgroup {r0, 'fl} of D4> whose operation table is shown below. The 
right coset Kd is the set { r0 o d, v o d} = {d, r1} and the left coset dK is the set 
{d• ro, de v} = {d,.,.,_}, So Kd # dK. 

D4 0 ro r1 rz r1 d h v 

ro ro ri r2 r1 d h 'fJ 

rl ri r2 1) ro h v d 

'I 'I r3 ro r1 v d h 

rJ rJ ro rl r2 v d h t 

d d v h ro r3 r2 rl 

h h d 'fJ ,1 ro r1 r2 

t t h d 'fJ r2 rl ro r1 

v v h d r1 'I r1 ro 

•We don't deal with integer multiplication here because the integers form a group under addition, but 
not under multiplication Similarly in Chapter 6, when develql ing the basic facts about congruence 
and eosets in rings, we dealt only with the additive group of a ring and ignored its multiplication. 

fEssentially the same thing was done in Chapter 6 when we needed to prove Theorem 6.5 (the 
analogue ofTheorem 22 for rings )--the d iseussion did not apply to every subring, but only to 
ideals, each of which is a special k ind of s u bring. 
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EXAMPLE 2 

Let N be the subgroup {To. TJ, 1'2, T3} of D4. Then the right coset Nv is the set 

Nv = {Too v, r1 o v, r1 o v, r3 o v} = {v, d, h, t} 

and the left coset vN is the same set: 

vN = { v o r0, v o ,.1, v o rz, v o ~} = {v, t, h, d}. 

So in this case, Nv = vN.* Similar calculations (Exercise 3) show that every right 
coset of N is also a left coset, that is, 

Nro =roN, NT1 = r1N, NT2 = r,.N, Nr3 = T~, 

Nd= dN, Nh = hN, Nt = tN, Nv = vN. 

Subgroups with this property have a special name. 

A subgroup N of a group G Is said to be normal if Na = aN for every a E G. 

EXAMPLE 3 

N = {r0, r(, r2, T3} is a normal subgroup of D4, but K = {To. v} is not, as shown 
in Examples 1 and 2. 

EXAMPLE 4 

If N is a subgroup of an abelian group G and a E G, then na = an for every 
n EN, so that the right coset Na is the same as the left coset aN. Hence, 

Every subgroup of an abelian group is normal 

EXAMPLE 5 

Let Mbe the subgroup {T0, r2} of D4• Then the operation table for D4 in 
Example 1 shows that To o a = a o To and T2 o a = a o r2 for every a ED 4• So it is 
certainly true that Ma = aM for every a E D4• Henoe, M is a normal subgroup 
ofD4• 

In Example 5, the subgroup Mis the center of D 4 (see Example 10 of Section 7.3), 
So the center of D 4 is a normal subgroup. The same thing is true in general. 

•Remember that the elements of a set may be listed in any order. 
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EXAMPLE 6 

The center Z(G} of a group G is the subgroup 

Z(G) = {cE G I cg = gc for every g E G} 

(Theorem 7.13). Since ca = ac for every cEZ(G) and aE G, we see that 
7J...(J)a = aZ( G) fur every a E G. Hence, Z(G) is a normal subgroup of G. 

Other examples of normal subgroups appear in Exercises 3-5, 7-IJ, 14, and 23. 
Examples 4-6, though important, are misleading in that the elements of the normal 
subgroup 1V commute with all the other elements of the group in each case. In the gen­
eral case, however, this is not na;essarily true. When N is a normal subgroup of G, then, 

The condition Na =aN does not imply that IUJ =an for every 11 EN. 

EXAMPLE1 

As we saw in the Example 2,. N = {ro. r1 r2, r~} is a normal subgroup of D,.. In 
particular, Nv = vN. However, v does not commute with all the elements of N, 
fur instance, r 3 o v E Nv and v o r~ E vN, but the operation table fQI' D4 shows that 

r3 o v = t and v ' r~ = d., 

even though Nv = vN. 

Thus, if N is a normal subgroup of G, the elements of N may not commute 
with every element of G. Nevertheless, you can think of the normal subgroup N 
as providing a weak version of commutativity in the following sense. 

If n E N, and a E G, then for !iome n1, n2 E N, 

na = an1 and an= nz«, 

because na E Na and Na = aN and similarly, an E aN and aN = Na. 

EXAMPLE fl 

Once again, consider the normal subgroup N = {ro, r1 , f'2, 1)) of D4• The 
operation table for D4 shows that r 1 o v = t and v o r 1 = t. Hence, 

'J 0 v = v 0 't· 
This is the first part of the preceding boldface statement, with n = r1, a = v, 
andn1 = r1• 

OUr goal at the beginning of this section was to find a class of subgroups for which 
statement (*)on page 248 (the group theory analogue of Theorem 2.2) is true. Normal 
subgroups are exactly what's needed. 
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Theorem 8.10 
Let N be a normal subgroup of a group G. 

If a == b (mod N) and c == d (mod N), then ac == bd (mod N). 

The proof is essentially a translation into multiplicative notation of the proof 
of part (1) of Theorem 2.2, with colll1Uiltativity of integers replaced by the weak 
commutativity in a provided by the normal subgroup N. 

Proof of Theorem 8.10 ... By the definition of congruence, there are elements 
m, nEKsuch thatab-l = m and ca1 = n. Then 

(ac)(bd)-l = acd-1b-1 [Corollary 7.6] 

= atriF1 [Ber:ause cd-1 = n.) 

Now an E aN and aN = Na by normality, so an = ¥ for some ~EN. Hence, 

(ac)(bd)-1 = alib-I 

= n.pb-1 

= n.p~ [Because ab-1 =mEN.) 

Therefore, (ac)(bd)--t = n,m EN, and ac == bd (mod N), • 

We close this section with a theorem that provides alternate descriptions of nor­
mality. Verifying condition (2) or (3) in the theorem is often the easiest way to prove 
that a given subgroup is normal. 

Theorem 8.11 
The fottowlng cond It tons on a subgroup N of a group G are equ ivatent: 

(1} N Is a normal subgroup of G. 

(2) a·Wa c.:Nforevery aE G, where a·Wa = {a-1na In EN}. 

(3) aNa-1 J;;; N for every a E G, where aNa-1 = {<tna-11n EN). 

(4) a·Wa = Nfor every aE G. 

(5) aNa-1 = N for every a E G. 

Note that in(4),a-1Na = Ndoes rwt mean thata-1na = n tor each nEN; 
all it means is that a-1na = n1 for some IIJ EN. Analogous remarks apply to {2), 
{3), and {5). 

Proof of Theorem 8.11 ... (1) ~ (2) Suppose n EN and a-1na E a-1 Na. We must 
show that a-1aa EN. Note that na is an element of the right coset Na. 
Since Nis normal by (1), Na =aN. Hen~ na = an1 for some n1 EN. 
Thus a-1na = a- 1an1 = en1 = n1 EN. Therefore, a-1Na c.: N. 
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(2) ~ (3) If (2) holds for every element of G, then it holds with a-1 in 
place of a, that is, 

But (a- t:~-t = a, so that ( **) is statement (3): aNa-1 ~ N. Similarly, if 
( 3) holds for every element of G, then it holds with a 1 in place of a, 
which implies statement (2). 

(3) ::::> (4) Sinoe (3) implies (2), we have a-iNa {; N. To prove 
N ~a-1 Na, suppose11 EN. Then 11 = a-1(ana-~a. By (3) ana-1 = 112 for 
some "zEN. Thus11 = a-111~Ea-1Na, which provesthatNr;;.a1Na. 
Therefore, a-1Na"" N. 

(4) <::- (5) If (4) holds for ~ry element of G, then it holds with a-1 in 
place of a, that is, 

N = (a-1)-t Na-1 = aNa-1• 

Similarly, if (5) holds for every element of G, then it holds witha-l in 
place of a, which implies statement (4). 

(5) ::::> (1) Suppose 11 EN and an E aN. Then cma-1 E aNa-1 = Nby (5), 
so that ana-• = 111 for some 113 EN. Multiplying this last equation on the 
right by a shows that an= .lt:JaENa. Therefore, aN~Na. Conversely, if 
11a ENa, then a-1naea-1Na = Nbecause (5) implies (4). Hence, a-111a = 
11( for some II( E N. Multiplying on the left by a shows that ntl = an4 E aN. 
Thus Na s; aN. Therefore, Na "" aN for every a E G and N is a normal 
subgroup of G. • 

EXAMPLE 9 

. {(1 2 3)(1 2 3)(1 2 3)} . Verify that A= 1 2 3 2 3 1 3 1 2 
IS a subgroup of S3• You 

could show that A is a normal subgroup by calculating the right and left cosets, 
but that is cumbersome and time consuming. It's easier to proceed as fo 1lows. If 
c E S3, then by Exercise 20 of Section 7 .4, c-1 A cis a subgroup of order 3. But 
A is the only subgroup of order 3 in~ (aU the other nonidentity elements of 
S1 have order 2, and hence, cannot be in a group of order 3 by Corollary 8.6). 
Therefore, we must have ~:-1 Ac = A. Thus, A is a normal subgroup by part (5) 
of Theorem 8.11. 

• Exercises 

A. 1. Let K be a subgroup of a group G and let a E G. Prove that aK = Kif and only 
ifaEK. 

:Z. Let Kbe the subgroup {ro. 1i} of D(. Show that r 1 == t (mod K) and r2 "" h 
(mod K), but r 1 o r2 .;. to h (mod K). 

3. Prove that N = {r0, r 11 r:z, r3} is a normal subgroup of D( by listing a1l its right 
and left cosets. 
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4. If G is a group, show that (e} and G are normal subgroups. 

5. (a) Prove that G = { (~ ~) I a, b, dE Rand :bad :F 0} is a group under 

matrix multiplication and that N = { G 1) I bE IR} is a subgroup of G. 

(b) Use Theorem8.ll to show that Nis normal in G. 

6. Prove that { G ~ :} G ~ !) } is a subgroup of S~ but not normal. 

7. Let G and H be groups. Prove that G* = {(a, e) Ia E G} is a normal subgroup 
of GXH. 

8. (a) List all the cyclic subgroups of the quaternion group (Exercise 16 of 
Sec1ion 7.1). 

(b) Show that each of the subgroups in part (a) is normal. 

9. Let N be a subgroup of a group G. Suppose that, for each a E G, there exists 
bE Gsuch thatNa = bN. Prove thatNis a normalsubgrouJl 

10. If G is a group, prove that every subgroup of Z( G) is normal in G. [Compare 
with Exercise 14.] 

II. A subgroup N of a group G is said to be ebaracteristie if j{NJ o;; N for every 
automorphism/ of G. Prove that every characteristic subgroup is normal. 
(The converse is false, but this is harder to prove.) 

12. Prove that for any group G, the center Z(G) is a characteristic subgroup. 

13. Let N be a subgroup of a group G. Prove that N is normal if and only if 
f(N) = N for every inner automorphism/ of G. 

14. Show by example that if Mis a normal subgroup of Nand if Nis a normal 
subgroup of a group G, then M need not be a normal subgroup of G; in 
other MJrdS, normality isn't transitive. [Hillt: Consider M := {v, r0} and 
N = {h, v, r2, r0} in D4.] 

15." Prove that A., is a normal subgroup of S11• [Hint: If u E S,. and 7' E A11, is 
u-1 ra even or odd? See Example 7 of Section 7.5.] 

H. 16. If K is a normal subgroup of order 2 in a group G, prove that K.:;; Z(K). 
[Hillt: If K = {e, k} and a E G, what are the possibilities for aka-11] 

17. Let f.G ~ H be a homomorphism of groups and let K = {a E Gl f(a) = eH}. 
Prove that K is a normal subgroup of G. 

18. If Kand Narenormal subgroups of a group G, prove thatK n Nis a normal 
subgroup of G. 

19. Let Nand Kbe subgroups of a group G. If Nis normalinG, prove that Nn K 
is a normal rob group of K. 

20. (a) Let Nand K be subgroups of a group G. If N is nonnal in G, prove that NK = 
{nkl n EN, kEK} is a subgroup of G. [Compare Exercise 26(b) of Section 7.3.] 

(b) If both Nand Kare normal subgroups of G, prove that NKis normal. 

~skip this exercise if you haven't read Section 7.5. 
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21. If K and N are normal subgroups of a group G such that K n N = (e), prove 
that 11k = kn for every n EN, k E K. 

22. If f. G~ H is a surjective homomorphism of groups and if N is a normal 
subgroup of G, prove thatf(N) is a normal subgroup of H. 

23. Let Nbe a subgroup of a group G of index 2. Prove that N is a normal 
subgroup as follows. 

(a) If a r;:. N, prove that the coset Na consists of all elements of Gthat are 
not inN. 

(b) For each ae G, prove that a-1Na r;;;;N and apply Theorem 8.11. [Hint: If 
a r;:. NandneN, a-1na is either in Nor in Naby part (a). Show that the 
latter possibility leads to a contradiction.] 

24. LetN= {AEGL(2, A)idetAeO}. ProvethatNisanormalsubgroup of 
GL(2, R). [Hint: Exercise 32 of Section 7 .4.] 

25. Prove that SL(2, R) is a normal subgroup of GL(2, R). [Hint: SL(2, IR!) is 
defined in Exercise 23 of Section 7.1 Use Exercise 17 above and Exercise 32 of 
Section 7.4.] 

26. Let H be a subgroup of order 11 in a group G. If H is the only subgroup of 
order n, prove that His normal. [Hint: Theorem 8 J 1 and Exercise 20 in 
Section 7 .4.] 

27. Prove that a subgroup N of a group G is normal if and only if it has this 
property: abE N if and only if ba EN, for all a, h E G. 

28. Prove that the cyclic subgroup (a) of a group G is normal if and only if for 
each g e G, ga = d'g for some k e Z. 

29. Let N be a cyclic normal subgroup of a group G, and H any subgroup of N. 
Prove that His a normal subgroup of G. [Compare Exercise 14.] 

30. LetA and B be normal subgroups of a group Gsuch that An B =(e) and 
AB = G(see Exercise 20). Prove that A X B:;:; G. [Hint: Definej:A X B 4 G 
by f(a, b)= ab and use Exercise 21.] 

31. Let H be a subgroup of a group G and let N(H) be its normalizer (see 
Exercise 39 in Section 7.3). Prove that 

(a) His a normal subgroup of N(H). 

(b) If His a normal subgroup of a subgroup K of G, then K r;;;_ N(H). 

32 Prove that Inn G is a normal subgroup of Aut G. [See Exercise 37 of Section 7.4.] 

33. Let T be a set mth three or more elements and let A(1) be the group of all 
permutations of T. If a e T, let H.,= {feA(1) ]fla) =a}. Prove that H~ is a 
subgroup of A(T) that is not normal. 

34. Let G be a group that oontains at least one subgroup of order n. Let N = nK, 
where the intersection is taken over all subgroups K of order n. Prove that Nis 
a normal subgroup of G. [Hint: For each ae G, verifY that a-1Na = na-1Ka, 
where the intersection is over all subgroups K of order n; use Exercise 20 of 
Section 7 .4.] 
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35. Let Hbe a subgroup of a group Gand let N = oa-1Ha. Prove that Nis a 
normal subgroup of G. <>e 

36. If M is a characteristic subgroup of Nand N is a normal subgroup of a group 
G, prove that M is a normal subgroup of G. [See Exercise ll.} 

37. Let G be a group all of whose subgroups are normal. If a, b E G, prove that 
there is an integer k such that ab = btl. 

Ill Quotient Groups 

Let Nbe a normal subgroup of a group G. Then 

GIN denotes the set of all rlgbt cosets of N In G. 

Our first goal is to define an operation on right co sets so that GfNbecomes a group. 
Since right cosetsare congruence classes, our experience with Z and other rings suggests 
that it would be reasonable to define such an operation as follows; The product of the 
coset Na (the congruence class of a) and the coset Nb (the congruence class of b) is the 
coset Nab (the congruence class of ab). In symbols, this definition reads 

(Na)(Nb) =Nab. 

As in the past, we must verify that the definition does not depend on the elements 
chosen to represent the various cosets, and so we must prove 

Theorem 8.12 
Let N be a normal subgroup of a group G. If Na = Nc and Nb = Nd in GjN, 
then Nab = Ned. 

Proof~ Na = Nc implies that a == c (mod N) by Theorem 8.2, similarly, Nb = Nd 
implies that b = d (mod N). TherefOre, ab ""' cd (mod N) by Theorem 8.10. 
Hence, Nab= Ned by Theorem 8.2. • 

Theorem 8.13 
Let N be a normal subgroup of a group G. Then 

(1) GjN is a group under the operation defined by(Na)(Nc} =Nee. 

(2) If G is finite, then the order of G/N iS IGI/t'V'~ 

(3) If G Is an abelian group, then so is GfN. 

The group G/N is called the quotient group or factor group of G by N, 
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Proof of Theorem 8.13 • (1) The operation in Gj N is well defined by Theorem 8.12. 
The coset N = Ne is the identity element in GjNsince (Na)(Ne) = 
Nae = Na and (Ne)(Na) = Nea = Na for every Na in GjN. The inverse 
of Na is the oosetNa-1 since(Na)(Na-1) = Naa -! = Ne and, similarly, 
(Na- 1)(Na) = Ne. Associativity in GjN follows from that in G: 

[(Na)(Nh)](Nc) = (Nab)(Nc) = N(ab)c = No(bc) = (Na)(Nbc) 

= (Na)[(Nb)(Nc)]. 

Therefore, Gj N is a group. 

(2) The order of Gj N is the number of distinct right cooots of N, that is, 
the index [G-.N]. By Lagrange's Theorem, [G.NJ = IGI/INI· 

(3) Exercise 11, • 

EXAMPLE 1 

In Example 2 of Section 8.2 we saw that N = (ro. r1 .• r2, r3} is a normal sub­
group of D4• The operation table for D 4 in Example 1 of Section 8.2 shows that 

N1J = {r0 o 1J, r1 o v, r2 o 1J, r3 ~ v} = {1J, d, h, t}. 

Since every element of D4 is in either Nr0 or N1J and since any two cosetsof Nare 
either disjoint or identical (Corollary 8.3), every coset of N must be equal to Nr0 

or Nv. In other words, DJN = {Nro. N1J}. Since r0 o 1J = 1J = v ~ r0 and v o v = r0, 

the operation table for the quotient group D~Nis 

Nr0 Nv 

By Theorem 8. 7, DJ N is isomorphic to the additive group Z,.. 

EXAMPLE 2 

In Example S of Section 8.2 we saw that M = {r01 r:z} is a normal subgroup of D4• 

Using the operation table for D4, "We find that DJM consists of these four co~: 

Mh = {h, v} = Mv Md = {d, t} = Mt. 

We shall choose one way of repn:sen ting each oosct: aud list the elements of D4; M 
as Mro. Mr1, Mh, and Md. When we compute products in D4/M, we express the 
answers in terms of these four cosets. For instance, since d ~ r1 = 1J in D,._ we have 
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(Md)(Mrt) = M(d o rt) = Mv; but Mv = Mh, so we write (Md)(Mrt) = Mh in the 
table below. You should fill in the missing entries: 

Mr0 Mr1 Mh Md 

Mr0 Mr0 Mr1 Mh Md 

Mr1 Mr1 Mr0 Md 

Mh Mh Md Mr0 

Md Md Mh 

lhe completed tabel mows that.DJM is an abelian group in which every non identity 
element has order 2 (Exercise 3). So DJMis not cyclic. Hence, D4/Misisomorphic 
toZ2 xZ2 byT~8.8. 

Examples 3-7 deal with abelian groups. So every subgroup is normaL 

EXAMPLE 3 

In the additive group 11:.. let Nbe the cyclic group (4} = {0, 4, 8}. 1hese four 
cosets of N contain every element of l'ti-

N + 0 = {0, 4, 8} = N 

N + 1 = {I, S, 9} 

N + 2 = {2, 6, 10} 

N + 3 = {3, 7, 11}. 

Hence, every coset is one of these four. For instance, 5 is inN+ 1 and 5 is also 
inN+ S (Why?). So the two cosets are not disjoint. Hence, N + I = N + 5 by 
Corollary 8.3. Similarly, 

N+4=N+O and N+6=N+2. 

Using these facts, we see that the addition table for 1'12/ N is 

N+O N+ I N+2 N+3 

N+O N+O N+1 N+2 N+3 

N+ I N+ 1 N+2 N+3 N+O 

N+2 N+2 N+3 N+O N+l 

N+3 N+3 N+O N+ I N+2 

Verify that N + 1 has order 4. So Z1,j N is a cyclic group of order 4 and hence, is 
isomorphic to Z. by Theorem 7.19. 
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EXAMPLE 4 

Let Nbe the cyclic subgroup ((1, 2)) of the additive group G = Z1 X "F_4• Since 
(1, 2) + (1, 2) = (0, 0), we 5ee that N"" {( 0, 0), ( 1, 2)}. Consequently, Gj N con­
sists of these four cosets 

N + (0, 0) "" {(0, 0), (1, 2)} "" N + (1, 2) 

N + (1, 0) "" {(1, 0), (0, 2)} = N+ (0, 2) 

N + (0, 1) "" {(0,1 ), (1, 3)} ~ N + (1, 3) 

N + (1, 1) = {(1, 1), (0, 3)} ""N + (0, 3) 

and has the following addition table: 

N+ (0, 0) N+ (1,0) N + (0,1) N+ (1, 1) 

N+ (0, 0) N + (0, 0) N+ (1,0) N + (0, l) N+ (1, 1) 

N+(1,0) N+(l,O) N+ (0,0) N+ (1, l) N + (0, 1) 

N + (0, 1) N + (0, 1) N + (1,1) N + (1,0) N + (0,0) 

N + (1, 1) N + (1, 1) N+ (0, 1) N+ (0, 0) N+ (1,0) 

Use the table to verify that GjN is a cyclic group of order 4 generated by N + (0, 1). 
Therefore, GjN= L. by Theorem 7.19. 

It is not always necessary (or even possible) to write out the operation table fur a 
quotient group G/ N in order to determine its structure, as was done in Examples 1-4. 

EXAMPLE 5 

By Theorem 2.10. the group U14 := {1, 3, S, 9, 11, 13} and thus has order 6. Let 

, I ..,1 IU14I 6 
M be the cychc subgroup (13) = { 1, 13}. Then ul4/ ·~..I. I ;= IMI ;= 2 ;= 3 by 

Theorem 8.13. Therefore, UwfMis isomorphic to~ by Theorem 8.7. 

EXAMPLE 6 

In the additive group F._, let K be the cyclic subgroup 

(4) ={0, ±4, ±8, ±12, ... }. 

As we saw in Example 1 of Section 8.1, a "" b (mod 4) means a - b E K. Hence, 

a = b (mod 4) if and only if a = b (mod K). 
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So the set of integers that are congruent to a modulo 4 (the congruence class 
[aD is exactly the same as the set of integers that are congruent to a modulo K 
(the coset K + a). In other 'WOrds, [a] = K + a. Arithmetic is the same in either 
notation: 

Ka + Kb = K(a + b) is the same as [a] + [b] = [a + b). 

Therefore, Z/ K is the group of congruence classes modulo 4, that is, Zj K = 7_,. The 
same argument works with any positive integer n in place of 4: 

If K is the cycllc subgroup (•) of Z, then Z/ K = Z.. 

EXAMPLE1 

The subgroup Z of integers in the additive group 0 of rational numbers is 
normal since 0 is abelian. Example 4 of Section 8.1 shows that there are infi­
nitely many distinct cosets of Z in 0. Consequently, the quotient group 0/Z is 
an infinite abelian group. Nevertheless, every element of 0/Z has finite order 
(Exercise 25). 

The Structure of Groups 
If N is a normal subgroup of a group G, then the structure of each of the groups N, 
G, and G/Nis related to the structure of the others. If we know enough information 
about two of these groups, we can often determine useful in!Ormation about the third, 
as illustrated in the following theorems. 

Theorem 8.14 
let N be a normal subgroup of a group G. Then G!N is abelian If and only If 
aba-11F1 EN for all a, bE G. 

Proof ... Gj N is abelian if and only if 

Nab = NaNb = NbNa = Nba for all a, bE G. 

But Nab = Nba if and only if (ab)(ba)- 1 EN by Theorem 8.21; and 
(ahXba)1 = aba-lb-1 by Corollary 7.6. Therefore, GfNis abelian if and 
only if afu-lb-1ENfor all a, bE G. • 

If G is a group. Example 6 of Section 8.2 shows that its center Z(G) is a normal 
subgroup of G. 
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Theorem 8.15 
If G Is a group Sl£h that the quotient group GjZ(G) is cyclic, then G is abelian. 

Proof .. For notational convenience, denote Z( G) by C. Since GjC is cyclic, it 
has a generator Cd, and every coset in GjC is of the form (Ctll = Cd'-' 
for some integer k. Let a and b be any elements of G. Since a = ea is in 
the coset Ca and since Ca = Cd1 for some i, we have a = c1d' for some 
c1 E C. Similarly, b = ct_di for some C:z E C and integer}. Now d'dl = 
d'+J = cJl+l = did', and c1 and '2 commute with every ele:nent of Gby the 
definition of the center. Consequently, 

Therefore, G is abelian. • 

• Exercises 

1. Let N be the subgroup (4) of Z71:1. Find the order of 13 + N in the group 
Z,_JN. 

2. Let G be the subgroup (3) of Z, and let N be the subgroup (15). Find the order 
of 6 + N in the group Gf N. 

3. Complete the table in Example 2 and verify that every nonidentity element of 
DJ M has order 2. 

A. 4. N = { (
1 2 3

), (
1 2 3

), ( 
1 2 3

)} is a normal subgroup of S3 by 
123 231 312 

Example 9 of Section 8.2. Show that ~ N = Z2• 

5. Show that Z 18/M = 4 where Mis the cyclic subgroup (6). 

6. Show that Zr./ N = Z3, where N is the subgroup { 0, 3 }. 

7. Show that U26/(5) is isomorphic to Z3, 

8. Let G = Z4 X Z4 and let N be the cyclic subgroup generated by {3, 2). Show 
that G/N= ~. 

9. Let G = Z., X Z2 and let Nbe the cyclic subgroup ({1, 1)). Describe the 
quotient group G/ N. 

10. (a) Let M be the cyclic subgroup ((0, 2)) of the additive group G = Z2 X ~ 
and let N be the cyclic subgroup ((1, 2)), as in Example 4. Verify that M is 
isomorphic N. 

(b) Write out the operation table of G/ M, using the four cosets M + (0, 0), 
M + (1, 0), M + (0, 1 ), M + (1, 1). 
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(c) Show that G /M is not isomorphic to GfN (the operation table for GfN is 
in Example 4}. lbus for normal subgroups Mand N, the fact that M= N 
does not imply that GjMis isomorphic to GfN. 

11. If N is a subgroup of an abelian group G, prove that GfN is abelian. 

12. If N is a normal subgroup of a group G and if :iA E: N for every x E: G, prove 
that every nonidentity element of the quotient group G fN has order 2. 

13. (a) Give an e~~:ample of a nonabelian group G such that G/Z(fJ) is abelian. 

(b) Give an example of a group G such that GfZ( fJ) is not abelian. 

14. (a) Showthat v~ {C ~! :).G ~! !).G! ~ ~).(: ~ ~ ~)} 
is a normal subgroup of s •. 

(b) Write out the operation table for the group SJV. 

B. In Exercises 15 and 16,jind an element of infinite ord£r and an element of forite 
order in the giVen qrwtient group. 1'here are many correct answers. Remember tlwt 7L. 
is an additive group. 

15. (7L. X Z)/((5, 5)) 

16. (Z. X ll)f{( 6, 9)) 

17. Let E be the group of even integers and N the subgroup of all multiples of 8. 

(a) Show that EfN has order 4. 

(b) To whatweUMknowngroup is EfN isomorphic? [Hint: Theorem 8.8.] 

18. Show that UJ"J.!N = U16 , where N is the subgroup {1, 17}. 

19. An element b of a group is said to be a square if there is an element c in the 
group such that b"""' t?. Let Nbe a subgroup of an abelian group G. If both 
Nand GfN have the property that every element is a square, prove that every 
element of G is a square. 

20. If G is a group and(G:G/Z(G)] = 4, prove that GfZ(G) = 7L.1 X 7L.1. 

21. Let G be an abelian group and Tits torsion subgroup (see E~rcise 19 of 
Section 7 .3). Prove that G f T has no nonidentity elements of finite order. 

22. Let R.* be the multiplicative group of nonzero real numbers and let N be the 
subgroup {1, -I}. Prove that R* fN is isomorphic to the multiplicative group 
R.** of positive real numbers. 

23. Describe the quotient group R*/W*, where R. *and R** are as in Exercise 22. 

24. If G is a cyclic group, prove that G fN is cyclic,. where N is any subgroup of G. 

25. (a) Find the order of %• 1
;, and : in the additive group 0/Z. 

(b) Prove that every element of 0/Z has finite order. 

(c) Prove that 0./Z contains elements of every possible finite order. 
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26. Prove that the set of elements of finite order in the group 'fl./Z is the subgroup 
0/Z. 

27. Let G and H be groups and let (J* be the subset of G X H oonsisting of all (a, e) 
with aEG. 

(a) Show that a* is isomorphic to G. 

(b) Show that (J* is a normal subgroup of G X H. 

(c:) Show that (G X H)jG• ~H. 

28. Let M andNbenormalsubgroups of a group Gsuch that M n N =(e). 
Prove that Gisisomorphic to a subgroup of G/M X G/N. 

29. If N is a normal subgroup of a group G and if every element of Nand of G/N 
has finite order, prove that every element of G has finite order. 

30. If N is a finite normal subgroup of a group G and if G/ N contains an element 
of order n, prove that G contains an element of order n. 

31. Let G be a group of order pq, with p and q (not necessarily distinct) primes. 
Prove that the center Z( G) is either (e) or G. 

32. A group His said to be fiuikly gt-~Wn~kd if there is a finite subset S of H such 
that H = (S) (see Theorem 7.18 ). If N is a normal subgroup of a group G 
such that the groups N and G/N are finitely generated, prove that G is finitely 
generated. 

33. Let Gbe a group and letS be the set of all elements of the formaha- 1b-1 with 
a, bEG. The subgroup G' generated by the setS (as in Theorem 7.18) is called 
the commutator subgroup of G. Prove 

(a) G' is normal in G. [Hillt: For any g, a, bEG, show thatg- 1(aha-1b- 1)g = 
(g-lag)(g-lbg)(g-la-lg)(g-lb-lg) is inS.] 

(b) G/G' is abelian. 

34. Let G be the additive group R X 'fl.. 

(a) Show that N = {(x, y) IY = -~} is a subgroup of G. 

(b) Describe the quotient group G/N. 

35. Let Nbe a normal subgroup of a group G and let G be the commutator 
subgroup defined in Exercise 33. If N n G = {e), prove that 

(a) Nt;;. Z(G) (b) The center of G/N is Z(G)/N. 

36. If G is a group, prove that Gj Z( G) is isomorphic to the group Inn G of all 
inner automorphisms of G (see Exercise 37 in Section 7.4). 

C. 37. Let A, B, N be normal subgroups of a group G such that N r;;. A, N r;;. B. If 
G = AB and A n B = N, prove that G/N ~ A/N X B/N. (The spe<;ial case 
N =(e) is Exercise 30 in Section 8.2.) 
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Ill Quotient Groups and Homomorphisms 

Definition 

There is a close connection between normal subgroups, quotient groups, and homo~ 
morphisms. * The following definition is crucial f(J£ developing this connection. 

Let f:G ~ H be a homomorphism of groups. Then the kernel of( Is the set 
{at: G I ((a)= efl}· 

Thus, the kernel is the set of elements in G that are mapped onto the identity element 
in Hby the homomorphism/ 

EXAMPLE 1 

Let R* be the multiplicative group of nonzero real number.; and R** the 
multiplicative group of positive real numbers. The functionf:R* 4 R** given 
byf(x) =,?-is a homomorphism becausef(ab) = (ahf = a2bz = f(a)f(b). Its 
kernel is the set of real numbers x such that x1 = i 1 namely, { 1, -1 }. 

EXAMPLE 2 

Verify that the functionf:R* X R*~ R* given by f(a, b)= b is a homomor~ 
phism of multiplicative groups. Its kernel is the set of all pairs (a, b) such that 
b =I, that is, {(a, I) laER*}. 

EXAMPLE3 

In Example 13 of Section 7.4, we saw that the functionf:Z 4 Z5 given by 
f(a) = [a] is a homomorphism of additive groups. Its kernel is the set 

K = {aEZ jf(a) = [0]} = {a E Z i[a] = [OJ}. 

But [a] = [0] if and only if a"" 0 (mod 5) by Theorem 2.3, and a"" 0 (mod 5) if 
and only if 51 a by the definition of congruence. Hence, K is the set of all integer 
multiples of 5, that is, the cyclic group (5}, 

You can easily verify that each of the kernels in Examples l-3 is actually a (normal) 
subgroup. The same thing is true in the general case. 

•if you have read Chapter 6, this should ~ot come as a surprise. The first part ofthi.s section simply 
carries over to grotf!s the facts about ideals, quotient rings, and ring homomorphisms that were 
developed at the end of Section 6.2. (pages154-158). 
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Theorem 8.16 
Let f:G -+ H be a homomorphism of groups with kernel K. Then K is a normal 
subgroup of G. 

Proof ~If c, dt. K. thenf(c) = ea andf(d) = ea by the definition of kernel. 
Hence,f(cd) = f(c)f(d) = eJII!a = ea, so that edt. K. If ct. K. then by 
Theorem 7.20/(c-1) =f(a)-1 =(ear'= e8 • Thusc-1 t.K. Therefore, X 
is a subgroup of GbyTheorem 7.11. To show that Kis normal, we must 
verity that for any at.G and ct.K, a - 1cat.K('Theonm 8.11). However, 

Therefore, a-1 ca E K and K is normal. • 

EXAMPLE .4* 

Define fS..,-+ Z2 as follows: f(u) = 0 if u is even andf(u) = 1 if u is odd. 
Then/ is a homomorphism (Exercise 7). aearty, the kernel of 1 consists of a11 
even permutations, that is, the kernel is A,. By Theorem 8.16, A,. is a normal 
subgroup of S,.. 

The kernel of a bomomorphismfmeasures how far fis from being injective. 

Theorem 8.17 
Let (.·G-+ H be a homomorphism of groups with kernel K. Then 

K = (e~ if and only if f is Injective. 

Prooft • Suppose K = (ea). If f(a) = f(h), then 

f(ah- 1) = f(a)f(h- 1) 

=f(a}f(hr1 

= f(a)f(ar1 = e0 

[f is a hlNtWmorphfsm.] 

[Part {2) of Theorem 7.20] 

[f(a) = f(h) by hypothesis.] 

Thus, ab-1 is in the kernel, so that ah-1 = e0 and hence, a = h. Therefore, 
fis injective. 

Conversely, supposefis i~ective. If cis any element in the kernel K, 
tbenf(c) =ea. By part (1) of Theorem 7.20,/(er}) =ea. Hence,f(c) = 
f(ed), which implies that c = efJ since/is injective. Therefore, e0 is the 
only element of K, !D K= (ecJ. • 

"Skip this example if you haVen't read Stc1ion 7.5. 

!The proofs of Theorems 8.17-8.20 are simply translations from rings to groups d the proofs ol 
Theorems & 11~.13. 
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Theorem 8.16 states that every kernel is a normal subgroup. Conversely, every 
normal subgroup is a kernel: 

Theorem 8.18 
lf N is a normal subgroup of a group G, then the map '!T!G -+ GIN given by 
'IT(a) == Na is a surjective homomorphism with kernel N. 

Proof ~ The map 1r is surjective because given any coset Na in GIN, v.e have 
'ii( a) == Na. The definition of the group operation in GIN shows that 1r is 
a homomorphism: 

'IT(ah) ==Nab == NaNb == 'ii(a)7T(b). 

The identity element of Gl N is Ne. So the kernel of 'IT is 

{aEG l1r(a) == Ne} == {aeGf Na == Ne} 

== {a E G I a • e (mod N)} 

== {aeGiae-1EN} 

== {aEGfaEN} ==N 

[Definition of-rr] 

['11u!orem 8.2] 

(Defmition of congruellce] 

(ae-t == ae ==a.) • 

In order to prove the Fin;t Isomorphism Theorem below, we need this lemma. 

Lemma 8.19 
let (:G -+ H be a group homomorphism with kernel K. let a, b E G. Then 

((a) == f(b) if and only if Ka == Kb. 

Proof~ If f(a) == f(b), thenf(a)f(b)-i ==en. By Theorem 7 .20, 

f(ab- 1
) == f(a)f(b-~ == f(a)f(hrt == ell" 

Henoe, ab-1 E K and a .!!! b (mod K). So Ka == Kh by Theorem 8.2. 

Conversely, SURJose Ka == Kb. By Theorem 8.2, a • b (mod .K), which 
means that ab-1 EK. Hence,f(ah- 1) == elb and by Theorem 7.20, 

Multiplying both ends on the right by f(b) shows thatf(a) == f(b). • 
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Theorem 8.20 First Isomorphism Theorem 
Let f:G -4 H be a surjective homomorphism of groups with kernel K. Then the 
quotient group GfK Is isomorphic to H. 

Proof ... We would like to define rp.'G/ K -4 Hby(jJ(Ka) = f(a). However, a coset 
can be labeled by many different elements. We need to know that the 
value of I{J depends only on the cosa, and not on the particular repre­
sentative element chosen to name it. So suppose that Ka = Kb. Then 
f(a) = j(b) by Lemma 8.19, which means that I{J(Ko) = I{J(Kb). Therefore, 
the map I{J.' G/ K -4 H given by (jJ(Ko) = f(a) is a well-defined function, 
independent of how cosets are written. 

To prove that I{J is surjective, suppose hE H. Then h = f(c) for some 
c E Gbe~:ausejis sUijective. Thus, I{J(Kc) = f(c) = h, and rp is surjective. 
To prove that cp is injective, suppose qi.,Ko) = tp(Kb). Thenf(a) = j(b), 
so that Ka = Kb by Lemma 8.19. Hence, cp is injective. Finally, I{J is a 
homomorphism because f is 

(jJ(KoKb) = I{J(Kab) = f(ah) = f(a)f(b) = I{J(Ka) (jJ(Kb). 

Therefore, cp: G/ K -4 His an isomorphism. • 

The First lsomorpbism Theorem makes it easier to identify certain quotient group;. 

EXAMPLE 5 

Let Gand Hbe groups anddefinej:G X H -4 Gbyf(a, b)= a. Thenfisa 
surjective homomorphism by Exercise 9 of Section 7 .4. The kernel of /is 

H = {(a, b) \/(a, b) = ea} = {(a, b)) a= eQ} = {(e<h b)) aE H}. 

By the First lsomorphism Theorem, ( G X H)/ H e G, and it is easy to show 
that His isomorphic to H (Exercise 15). 

EXAMPLE 6 

The functionf:C* -4 R** given by f(a + bi) = a'- + I? is a surjective homo­
morphism of multiplicative groups (Exercise 16). Since 1 is the identity in R**, 
the kernel offisH= {a +bijt? +!? = 1}. ThenNisanormalsubgroup by 
Theorem 8.16 and C*/N.._ R** by the First lsomorphism Theorem. 

EXAMPLE 1 

As we saw in Example 1, the functionf:R* -4 R** given by f(x) = XZ is a 
homomorpbil!m with kernel K = {1, -1}. Note that/is surjective because 
for any positive real number c,f(Vc) = (Vc)2 = c. By the First lsomorphism 
Theorem, Ill*/ K e R**. 
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Subgroups of Quotient Groups 
Let N be a normal subgroup of a group G. We now investigate the subgroups of the 
quotient group G/N. 

Theorem 8.21 
Let N be a normal subgroup of a group G and let K be any subgroup e>f G that 
contains N. Then K/N is a subgroup of GJN. 

Proof • N is obviously a subgroup of K. By normality, N a = aN for every a E G. 
In particular, N a = aN for every a E K. Hence, N is a normal subgroup 
of K and K/N is a group by Theorem 8.13. The elements of K/ N are the 
cosets Na with a EK. Since, every such coset is an element of GJ N, we 
conclude that K/Nis a subgroup of GJN. • 

When K is a nonnal subgroup of G, we get a stronger result. 

Theorem 8.22 Third Isomorphism Theorem* 
Let K and N be normal subgroups of a group G with N!;;; K!;;; G. Then K/ N is a 
normal subgroup of G/N, and the quotient group (G/N)/(K/N) is isomorphic 
to GJK. 

Proof • The basic idea of the proof is to define a surjective homomorphism 
from G/N to G/K whose kernel is K/N. Then the conclusion of the 
theorem will follow immediately from the First ]so morphism Theorem. 
First note that, if Na = Nc in G/N, then ac-1ENbyTheorem 8.2 
and the definition of congruence modulo N. Sinoe N._ K, this means 
thatac-1 EK. Consequently, Ka = Kc in GJKbyTheorem 8.2 again. 
TherefOre, the rrwpf:GJN-+ G/K given by j(Na) = Kais a well~ed 
function, that is, independent of the coset representatives in G J N. 
Clearly fis surjective since any Ka in G/Kis the image of Na in GJN. 
The definition of coset operation shows that 

f(NaNb) = f{Nab) = Kab = KnKb = f(Na}f(Nb). 

Henoe,fis a homomorphism. Since the identity element of GJK is Ke, 
a coset Na is in the kernel of I if and only if f(Na) = K£, that is, if and 
only if Ka = Ke. However, Ka = Keif and only if aEKby Theorem 8.2. 
Thus the kernel of I consists of all cosets Na with a E K; in other wvrds, 
KJN is the kernel of f. Therefore, K/ N is a normal subgroup of GJN 
(Theorem 8.16), and by the First Jsomorpbism 1'heamn. ( G /N)J(KJN) = 
(GJN)Jlrernell~ G/K. • 

*Yes, Virginia. there is a Second Isomorph ism Theorem; see Exercise W. For more aboutVirvinia, go 
to www.stormfax.eom/biol. htm 
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Corollary 8.23 
Let N be a norma I subgroup of a group G and let K be any subgroup of G that 
contains N Then K is normal in G if and only if KjN is normal in GjN. 

Proof • If K is normal in G, then Kf N is normal in Gf N by Theorem 8.22. 
Conversely, suppose that Kf N is normal in Gf N. Let a be any element of 
G and k any element of K. We first prove that a-1ka E K. Since Kf N 
is normal, 

Hence, Na- 1ka = Nt for some tEK, so that a-1ka = nt for some n EN. 
SinceN!:K, we have a-1ka = ntEK, as desired. Since a and k were 

arbitrary, this proves that a -IKa !: K. Therefore, K is normal in G by 
Theorem 8.1 1. • 

We now have complete information about subgroups of GfN that arise from 
subgroups of G that contain N. Are these the only subgroups of G/N? The next 
theorem answers this question in the affirmative. 

Theorem 8.24 
If Tis any subgroop of GjN, then T = HjN, where His a subgroup of G that 
containsN. 

Proof•LetH = {aE GINaE 1}. Exercise 23 shows that His a subgroup of G. 
If a EN, then ae-1 = ae = a EN, so a "" e (mod N). By Theorem 8 .2, 
Na = NeET. Hence, aEH. Therefon; Nr;;;.H. Finally, the quotient 
group H /N consists of all cosets Na with a E H, that is, all Na E T. Thus. 
H/N= T • • 

Simple Groups 
In Section 8.1 we considered the classification problem for finite groups-the attempt 
to prodllC(l a list of groups such that every finite group is isomorphic to exactly one 
group on the list. We now introduce the groups that apparently are the key to solving 
the classification problem. Recall that a group G always has two normal subgroups, 
the trivial group {e) and G itself (Exercise 4 in S«:tion 8.2). A group G is said to be 
simple if its only normal subgroups are (e) and G. 

EXAMPLE 8 

If p is prime, then any (normal) subgroup H of the additive group ZP must have 
order dividing p by Lagrange's Theorem. SoH must haw order 1 or p, so that 
H = (0) or H = Z1• Themore, Z11 is simple. 
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Theorem 8.25 
G is a simple abel ian group if and only if G is isomorphic to the additive group 
Zp for some prime p. 

Proof ... The preceding example shows that any group isomorphic to z, is 
simple. Converxl.y, suppose G is simple. Since every subgroup of an 
abelian group is normal, G has no subgroups at all, cru:ept (e) and G. 
So if a is any non identity element of G, then the cyclic subgroup (a) 
must beG itsel[ Since every infinite cyclic group is isomorphic to 7/_ by 
Theorem 7.19 and 7/_ has many proper subgroups, G = (a) must be a 
cyclic group of finite order n. We claim that n is prime. If n were com­
posite, say n = tdwith 1 < d < n, then {al) would be a subgroup of G 
of order dby part (3) of Theorem 7 .9, which is impossible since G is 
simple. Therefore, G is cyclic of prime order and, hence, is isomorphic 
to someZ, by Theorem 7.19. • 

N onabelian simple groups are relatively rare. There are only five of order less than 
1000 and only 56 of order less than 1,000,000. A large class of nonabelian simple 
groups, the alternating gro~ is considered in Section 8.5. 

We now show why simple groups are the basic building blocks for all groups. If G 
is a finite group, then it has only finitely many normal subgroups other than itself (and 
there is at least one such subgroup since (e) i5 normal). Let~ be a normal subgroup 
(other than G) that has the largest possible order. We claim that G/G1 is simple. If 
Gff1) had a proper normal subgroup, then by 1beorem 8.24 and Corollary 8.23 this 
subgroup would be of the form M/G1, where Mis a normal subgroup of G such that 
G1 ~ M ~ G. In this case, M would be a normal subgroup other than G with order 
larger than [G1 ~ a contradiction. Hence, G/G1 is simple. 

If G1 'f. (e), let G1 be a normal subgroup of G1 (other than G1) of largest possible 
order. (~is normal in Gt, but need not be normal in G.) The argument in the preced­
ing paragraph, with G1 in place of G and G1 in place of G11 shows that G.fG, is simple. 
Similarly, if G1 ¢-(e), there is a normal subgroup G3 of G1 such that G3 ¢ G1 and G:z/G3 
is simple. This process can be continued until we reach some G, that is the identity 
subgroup (and this must o=ur since the order of G1 gets smaller at e;u;h stage). Then 
we have a sequence of groups 

such that each G1 is a normal subgroup of its prerlea:ssor and each quotient group 
G1/G1+1 is simple. The simple groups Go/Gh GJ/ Gt. ... , G,._!/ G,. are called the 
composition facton;: of G. 

It can be shown that the composition factors of a £nite group G are independent 
of the choice of the subgroups G1• In other words, if you made different choioes of 
the G1, the simple quotient groups you would obtain would be isomorphic to the ones 
obtained in the previous paragraph. This means that the composition factors of G are 
completely determined by the structure of G and suggests a strategy for solving the 
classification JXOblem If we could £rst classify all simple groups and then show how 
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the composition factors of an arbitrary group determine the structure of the group. it 
would be possible to classify all groups. 

The good news is that the first half of this plan has already succeeded. For more 
than four decades, a number of group theorists around the world worked on various 
aspects of the problem and eventually obtained a list of simple groups such that every 
finite simple group is isomorphic to exactly one group on the list.* The complete proof 
of this spectacular result runs some 10,000 pages! fur a brief history of the search for 
simple groups, see Gallian [23] or Steen [25]. 

• Exercises 

NOTE: The r:o11gruence das3 of a in ll11 is denoted [aJn whenever nece3Sary to moid 
confusion. 

A. In Exercises 1-9, verify that the given function is a homomorphism and find its 
h!rnel. 

I. f:C--!> R, wheref(a + b1) =b. 

2. g: R.*--!> ll1, where g(x) = 0 if x > 0 and g(x) = 1 if x < 0. 

3. h: n* 4 IR*, where h(x) = x-1. 

4. f: 0*--!> Q**, where.f(x) = lx~ 

S. g:Q X ll-!>ll, wheref((x, Y)) = Y· 

6. h: C _. C, where h(x) = x4
• 

1.t f.S,.--!> ll2> where f(a) = 0 if a is even and /(a) = 1 if a is odd. 

8. f:7Lu-+7l12, whereflx) = 3x 

9. f: ll-+ ll1 X ll"' where [(a) = ((ah, [aJ..). 

10. tp:S,.-+ S11-~eb where for eachf E $11> lf(f) E S,.+l is given by 

~(f)(k) ;::=_ {f(k) 
11 + 1 

ifl~k~n 

ifk=11+l 

II. Suppose that k, 11, and r are positive integers such that kIn. Show that the 
functionf:lln-+ ll~c given by f([aJn) = [mlk is well defined (meaning that if 
[al, == (b]M then [m]~c = [rb]J:). 

•The proof was first announced in 1981, but a few years later a gap in the proof was discovered. It 
took un1i I 2004 forth is gap to be fixed. 

tSkip this exercise if you haven't read Section 7.5. 
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In ExerciSes 12-U. verify that the givenfimction is a surjective lwmomorphiSm of 
additive groups. The11jind its kernel and identify the r:yclic group to which the kemel 
is isomorphic. [Exercise II nwy be IN!lpful. j 

12. h:Zu-+ '4, where h([a]tiJ = [a]~· 

13. h:Z16 -+ L,, where h([a]t~) = [3a]~ 

14. h:Z18 -+ Z3, where h([xlt8) = [2x]3• 

15. If HandH are the groups in Example 5. ShowtbatHs H. 

16. Prove that the function f; C* -+ R** given by f (a + hi) = til + fil is a surjective 
homomorphism of groups. 

17. (a) Produce a list of groups such that ~Nery homomorphic image of Z11 is 
isomorphic to exactly one group on the list. [Hint: See Exercise 26 in 
Section 7.4.] 

{b) Do the same for Zw. 

18. Find all homomorphic images of D.-. 

19. Find all homomorphic images of~· 

20. (a) List all subgroups of Z 1J H, where H = {0, 6}, 

{b) List all subgroups of Z-d K, where K = {0, 4, 8, 12, 16}. 

21. Suppose that G is a simple group andf:G-+ His a surjective homomorphism 
of groups. Prove that either /is an isomorphism or H = (e). 

B. 22. Let G be an abelian group. 

(a) Show that K = {a E G I !a I :s:: 2} is a subgroup of G. 

{b) Show that H = {,;:I x E G} is a subgroup of G. 

(c) Prove that G/ K ~ H. [Hint: Define a surjective homomorphism from G to 
H with kernel K.] 

23. If N is a normal subgroup of a group G and Tis a subgroup of G / N, show 
that H = {a E Gl Na E T} is a subgroup of G. 

24. If k[n andf.U,.-+ Uk is given by f([x:L,) = [x]k> showtbatfis a homomorphism 
and find its kernel 

25. Prove that (Z X Z)/((1, I))~ Z. [Hint: Show thatf:Z X Z -+Z, given by 
f(( a, b)) = a - b, is a surjective homomorphism.] 

26. Prove that (Z X Z)/((2, 2)) ~ Z X Z1. [Hint: Show that h:Z X Z-+ Z X Z2, 

given by h((a, b))= (a- b, [b]i) is a surjective homomorphism.] 

27. Let Mbe a normal subgroup of a group Gand let N be a normal subgroup 
of a group H. Use the First Isomorphism Theorem to prove that M X N is a 
normal subgroup of G X Hand that (G X H)/(MX N) ~ G/M X HfN. 

28. SL(2, R) is a normal subgroup of GL(2, ~) by Exercise 25 of Section 8.2. 
Prove that GL(2, R)/SL(2, ~)is isomorphic to the multiplicative group W' of 
nonzero real numbers. 

29. If kin, prove that Z../(k) ~ z.. [Exercise 11 may be helpful.] 
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30. If f:G .-;.His a homomorphism of finite groups, prove that IImfldivides 1 G I 
and !Jll. [Imf was defined just before Theorem 7 .20.] 

31. Prove that zl2 ~ z1 X z.... [Considerf:Z 4 ZJ X 4 given by f(a) = Uah, (a1).] 
32. Let M be a normal subgroup of a group G and let N be a normal subgroup of 

a group H. If/:G.-,. His a homomorphism such thatf(M) ~;;N,prove that the 
map g:Gf M 4 H/ N given~ g(Ma) = Nf(a) is a well-defined homomorphism. 

33. Letf:G -;.Hbe asmjective homomorphism of groups with kernel K. Prove 
that there is a bijection between the set of all subgroups of Hand the set of 
subgroups of Gthat contain K. 

34. (An exercise for those who know how to multiply 3 X 3 matrices.) Let G be 
the set of all matrices of the form 

where a, b, cEQ. 

(H ;) 
(a) Show that G is a group under matrix multiplication. 

(b) Find the center C of G and show that Cis isomorphic to the additive 
group Q. 

(c:) Show that G/C is isomorphic to the additive group 0 X Q. 

35. Let G and Hbe the groups in Exercises 33 and34 of Section 7.1. Use the 
First Isomorphism Theorem to prove that His normal in G and that G/ His 
isomorphic to the muhiplicative group ~· of nonzero real numbers. 
(Hint: Consider the mapf:G-;. IR* given byf(T..,b) =a.] 

36. Let Nbe a normal subgroup of a group Gand letj:G.-,. Hbe a 
homomorphism of groups such that the restriction of fto N is an 
isomorphism N ~ H. Prove that G ~ N X K, where K is the kernel off 
(Hint: Exercise 30 in Section 8.2.] 

37. Prove that 0* ~ 0** X Z2• [Hint: Exercises 4 and 36.] 

38. Let Nbe a normal subgroup of a group G. Prove that G/ N is simple if and 
only if there is no normal subgroup K such that N ~ K ~ G. 
(Hint: Corollary 8.23 and Theorem 8.24.] 

39.* The additive group Z(x] contains Z (the set of constant polynomials) as a 
normal subgroup. Show that Z[ x]/Z is isomorphic to Z[ x]. This example 
shows that G/ N ~ G does not necessarily imply that N = (e). (Hint: Consider 
the map T:Z[x] 4 Z(:X]/Z given by 1(/(x)) = Z + xf(x).] 

C. 40. (Sec:ond homorpblsm Theorem) Let K and N be subgroups of a group G, with 
N normal in G. Then NK = {nk In EN, k E K} is a subgroup of Gthat contains 
both K and Nby Exercise 20 of Section 8.2 

(a) Prove that N is a normal subgroup of NK. 

•s kip th is exe rei ae if you have not read the I i rst part of Sec: t ion 4.1 . 
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(b) Prove that the functionf.K 4 NK/ N given by f(k) = Nk is a surjective 
homomorphism with kernel K n N. 

{c) Conclude tbatK/(N n K) ~ NK/N. 

41. Cayley's Theorem 7.21 represents a group Gas a subgroup of the permutation 
group A(G). A more efficient way of representing Gas a permutation group 
arises from the following generalized Cayley's Theorem. Let K be a subgroup 
of G and let T be the set of all distinct right cosets of K. 

{a) If a E G, show that the mapj,.:T4 Tgiven by.f,.(Kb) = Khais a 
permutation of the ~ T. 

{b) Prove that the function rp:G4 A(T) given 1:, (/)(a) =/.-.. is a 
homomorphism of groups whose kernel is contained inK. 

{c) If K is normal in G, prove that K =kernel(/)· 

{d) Prove Cayley's Theorem by applying parts (b) and (c) with K = (e). 

42. A group G is said to be meta bell an if it has a subgroup N such that N is 
abelian, N is normal in G, and G/ N is abelian. 

{a) Show that 8 3 is metabelian. 

(b) Prove that every homomorphic image of a met abelian group is met abelian. 

{c) Prove that every subgroup of a metabelian group is metabelian. 

A PP L I CAT I ON: Decoding Techniques (Section 16.2) may be covered at 
this point if desired. 

Ill The Simplicity of An* 

At$ we saw at the end of Section 8.4, simple groups appear to be the key to solving the 
classification problem for :finite groups. This fact and the following theorem are one 
reason that the alternating groups A, are important. 

Theorem 8.26 
For each n .P 4, the alternatIng group An Is a slm pie group. 

The group~ is not simple (Exercise 7). Although the entire proof of Theorem 8.26 
is rather long, it requires only basic facts about the ;;ymmetric groups and normal 
subgroups. There will be many instances in the proof where we will deal with permuta­
tions such as (abed) or (alb) or (ab)(cd). In all such cases, 

distinct letters represent dlstlnet elements (lf {1, 1, ••• , 11}. 

The proof of the theorem requires two lemmas. 

•Section 7 ..51! a prerequisite. This section Is not used in the se~l and may be omitted 11 desired. 
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Lemma 8.27 
Every element of A~ (with n ~ 3) is a product of 3-cycles. 

Proof • Every element of ..4.11 is by definition the product of pairs of transposi­
tions. But every sw::h pair must be of one of these forms: (dJ) (cd) or 
(ab) (ac) or (ah) (ah). In the first case verify that (ab) (cd) = (adb) (a de), 
in the second that (ah) (ac)"" (acb), and in the last that (ab) (ab) = (I)= 
(abc) (acb). Thus every pair of transpositions is either a 3-cycle or a 
product of two 3-cycles. Hence. every product of pairs of transpositions 
is a product of 3-cycles. • 

Lemma 8.28 
If N is a normal subgroup of A11 (with n :<!: 3) and N contains a 3-cycle, then 
N=Aw 

Proof • R:lr notational convenience, assume that ( 123) EN [the aJgUment when 
( ~t) EN is the same; just replace 1, 2, 3 by r, t, t, respectively]. Since 
( 123) EN, we see that ( 123 )( 123) = ( 132) is also in N. For k ~ 4, let 
x = (12)(3k) and verify that x-1 = (3k)(12). The normality of N implies 
that x(l32)x-1 EN by Theorem 8.11. But 

x(132)x-1 = (12)(3kXl32)(3k)(l2) = (12k). 

Therefore, 

( ") N conn. ins all 3-qdes of the form {12k) with k 01!" 3. 

Verify that every other 3-cyde can be written in one of these forms: 

Qa2), (1ah), (2ab), 

where a, b, c :<!: 3. By ( *) and closure inN, 

(la2) = (12a)(12tl) EN; 

(lab) = (12b)(12a)(12a) EN; 

(2ab) = (12b)(l2b)(12a) EN; 

(abc) 

(abc) = (12a)(l2a)(12c)(l2b)(l2b)(12a) EN. 

Thus N contains all 3-cycles, and, hence, N contains all products of 
3-cycles by closure. Therefore, N = A,. by Lemma 8.27. • 

We are now ready to prove Theorem 8.26. The following fact will be used frequently: 

(••) The inverse of the cycle (a1a1ll:J • • • a.J fi tbe cycle (ll11lA"*-t • • • a~:z). 

For example, (12345)-1 = ( 15432) and ( 6'78t 1 = (687), as you can easily verify. 
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Proof of Theorem 8.2G ~A,_ and A.3 are simple abelian groups (Exercise 2). So 
assume n ~ 5. We must prove that A 11 has no proper normal subgroups. 
Let Nbe aDY normal subgroup of A,., with N ¢.(I). We need only 
show that N == A11• When all the nonidentity elements of N are written 
as products of disjoint cycles. then there are three possibilities for the 
lengths of these cycles: 

I. Some cycle has length <!: 4. 

2. Every cycle has length :s 3, and some have length 3. 

3. Every cycle has length :s 2. 

We shall show that in each of these cases, N == A,.. 

Case I N contains an element a that is the product of disjoint cycles, at least 
one of which has length r <!: 4. For notational convenience we assume that 
a= (1234 · · • r)'T, where 1' is a product of disjoint cycles, none of which 
involve the symbols 1, 2, 3, 4, •.. , r.f Let fJ "" (123) EA.,. Since N is a 
normal subgroup and a EN, we have a-1(8m5-1

) EN by Theorem 8 .11. 
An easy computation shows that 

a-1(Baa-1) = [(1234 · · · r)T]-1 (123)[(1234 · · · r}r](l23)-1 

= 7'-1(1234 · · · r)-1(123)[(1234 · · · r)TK123r1 [Corollary 7.6] 

= ,.-~lr • • • 432)(123)(1234 • • • r)r(l32) (Statemetrt (**)] 

= 1'-11'(1r • • • 432)(123)(1234 • • • r)(l32) [111eorem 7.23) 

= (1)(13r) =: (13r). 

Therefon; (13r)E N,andhence, N""' AH by Lemma 8.28. 

Case 2A N contains an element r:J that is the product of disjoint cycles, at least 
two of which have length 3. For convenience we assume that r:J == 
(123)(456) 7', where 1' is a product of disjoint cycles, none of which in­
volve the symbols I, 2, ... , 6. Let fJ = ( 124) E A,. Then, as in Case I, 
N contains u-1(&ra-1

), and we have a similar calculation: 

a-1(aa8-1
) = [( t23X 456)'rr1

( t24)( 123)( 456)r(124t1 

= ,.-1(456t 1(123)-1(124 x t23)( 456)T(t24 r 1 

= ,.-1(465)(132)(124)(123)(456)1' (142) 

= 7'-11'( 465)(132)( 124)( 123)( 456)(142) 

"" (14263). 

Therefore,. (14263) EN, and N =: A,. by Case 1. 

[Corollary 7.6] 

[Statement ( ** )] 

[Theorem 7.23] 

Tfhe same argument works with an arbitrary r-eycle (11bcrJ • • • t) in place of (1234 • • • r); just replace 
1 l7j 11, 2 by b, etc. A nlllogous remeks 11pp/y in the other c11ses, where s pecllic cycles will also be 
used to make the argument easier to follow. 
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Case 28 N contains an element a that is the product of one 3-cyde and some 
2-cycles. We assume that a= (123)r, where 1 is a product of disjoint 
transpositions, none of which involve the symbols 1, 2, 3. Since a 
product of disjoint transpositions is its own inverse (Exercise 5), 
Theorem 7.23 shows that 

a 1 = (123)1"(123)1" = (123)(123)rr = (123)(123) = (132). 

But ~r1 EN sim:ea EN. Therefore, (132) EN, and N = .4.t by Lemma 8.28. 

Case 2C N contains a 3-cycle. Then N = A,. by Lemma 8.28. 

CB'il! 3 Every element of N is the product of an even number of disjoint 
2-Cycles. Then a typical element IT of Nhas the form (12)(34)1, where 
T is a product of disjoint transpositions, none of which involve the 
symbols I, 2, 3, 4. Let a = (123) E A11• Then, as above, u-1(8a8-1) EN. 
Using Corollary 7,6, Theorem 7.23, and statement (*•), we see that 

Since n ~ 5, there is an element kin {1, 2, ... , n} distinct from I, 2, 3, 4. 
Let a= (13k) EAJr Let J3 = (13)(24), which was just shown to be inN. 
Then by the normality of Nand closure, J3(a.{3a- 1

) EN. But 

p(apa-1
) = (13)(24)(13k)(13)(24)(1k3) = (13k). 

Therefore, (13k) EN, and N =A" by Lemma8.28. • 

Theorem 8.26 leads to an interesting fact about the normal subgroups of S11: 

Corollary 8.29 
If n ~ 5, then (1), A,, and S, are the only normal subgroups of S,. 

Sketch of proof .. Suppose that N is a normal subgroup of s,. Then N n A,. is 
a normal subgroup of .A.11 (Exercise 19 of Section 8.2). Theorem 8.26 
shows that N n Aa must either be A.t or (I). If N n A,. = A.t, then N = A,. 
or S11 (F.xertlise I 0). If N n A,. = (!), then all the nonidentity elements of 
N are odd. Since the product of two odd permutations is even, that is, an 
element of A,., and N n A,. = (I), the product of any two elements of N 
is (1). Thereim; N = (I) (Exercises 8 and 9). • 
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• Exercises 

A. I. (a) List all the 3~les in S4. 

(b) List all the elements of A4 and express each as a product of 3-cycles. 

2. (a) VerifY that A1 = (I). 

(b) Show that A 3 is a cyclic group of order 3 and hence simple t,rTheorem 8.25. 

3. Find the center of the group A4• 

4. If n 2: 5, what is the center of A.? 
B. 5. If a E S, ~a product of disjoint transpositions, prove that aZ = (1). 

6. Prove that As has no subgroup of order 30. [Hint: Exercise 23 of Section 8.2.] 

7. Prove thatN = {(l), (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4• 

Hence, A 4 is not simple. [Hint: Exe:rcise 23 of Section 7 .5. For normality, use 
Exercise I (a) and straightforward computations.] 

8. Prove that no subgroup of order 2 inS, (n 2: 3) is normal. [Hint: Exercises26 
of Section 7.5 and 16 of Section 8.2.] 

9. Let Nbe a subgroup of S, such that rrr = (1) for all nonidentity elements 
f7, TEN. Prove that N = (I) or N is cyclic of order 2. [Hint:lf N 4' (1\ let 
a be a nonidentity element of N. Show that a has order 2. If T is any other 
nonidentity element of N, show that a = r.] 

10. If Nis a normal subgroup of s~ and N n A11 = A~r, prove that N =A, or S,. 
[Hint: Why is A,~;; Nr;;;; S,? Use Theorem 7.29 and Lagrange's Theorem.] 

11. Prove that A1r is the only subgroup of index 2 in S"' [Hint: Exercise 23 of 
Section 8.2 and Corollary 8.29.] 

12. If f.S11 -+ S~ is a homomorphism, prove thatf(A...) r:; .411 • 
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CHAPTER 9 

Topics in Group Theory 

This chapter takes a deeper look at various aspects oft he classification problem 
for finite groups, which was introduced in Section 8.1. After the necessary pre­
liminaries are developed in Section 9.1, all finite abelian groups are classified up 
to isomorphism in Section 9.2. The basic tools for analyzing nonabelian groups are 
presented in Sections 9.3 and 9.4. Applications of these results and several other 
facts about the structure of finite groups are considered in Section 9.5, where 
groups of small order are classified. 

Sections 9.3 and 9.4 are independent of Sections 9.1 and 9.2 and may be read 
fl rst if desired. Sections 9.1-9.4 are prerequisites for Sect ion 9.5. 

IJI Direct Products 

If G and Hare groups. then their Cartesian product G X His also a group, with the 
operation defined coordinatewise (Theorem 7 .4). In this section we extend this notion 
to more than two groups. Then we examine the conditions under which a group is 
(isomorphic to) a direct product of certain of its subgroups. When these subgroups are 
of a particularly simple kind, then the structure of the group can be completely deter­
mined, as will be demonstrated in Section 9.2. Throughout the general discussion, all 
groups are written multiplicatively, but specific examples of familiar additive groups 
are written additively as usual. 

If~. G'b ••• , G,. are groups, we define a coordinatewise operation on the Cartesian 
product G1 X £;, X • • • X G,. as follows: 

(OJ.,~ ••• , a,J(h11 h2o ••. , b,J = (a1bt> ¥to ... , a,/J,J. 
It is easy to verify that Gt X G1 X • • • X G,. is a group under this operation: If e1 is the 
identity element of G, then (e:t, ~ ••• , e,J is the identity elancnt of G1 X G2 X · • • X G,. 
and (a1-1, ~ -t, ... ,a, -t)is the inverse of (at>~ ... , a,J. This group is called the dim:t 
product of ~. Gl> .. , , G,.. * 
5 When each G; is an additive abelian group, the direct pr011sct of G1, ••• , G. is sometimes called the 
direct sum and denoted G1 E!) GJ E!) • • • E!) G.. 2Bt 
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EXAMPLE 1 

Recall that U, is the multiplicative group of units in Z,. and that U_. = {1, 3} 
and U6 = {1, 5} (see Theorem 2.10). The direct product U_. X U6 X Z~ consists 
of the 12 triples 

(I, I, 0), 

(3, I, 0), 

(1, 1, 1), 

(3, I, 1), 

(l, 1, 2), 
(3, 1, 2), 

(1, 5, 0), 

(3, 5, 0), 

(1, 5, I), 

(3, 5, I~ 

(1, 5, 2), 

(3, 5, 2). 

Note that U4 has order 2, U6 has order 2, Z3 has order 3, and the direct product 
U_. X U6 X Z3 has order 2 • 2 • 3 = 12. Similarly, in the general case, 

if Gj, ~ •••• ,G. are rmite groups, then 

G1 X G:t X • • • x G. has order !Gli·IG:tl· • ·I G.~ 

In the preceding example it is important to note that the groups U4, U6, and 
Z3 are not contained in the direct product U_. X U6 X Z3. For instance, 5 is an 
element of U,, but 5 is not in ~X U6 X Z3 because the elements of U4 X U, X Z3 
are triples. In general, for 1 s is n 

G1 is not a subgroup of the direct product G1 x ~ X • • • x G,.. * 

This situation is not entirely satisfactory, but by changing our viewpoint slightly 
we can develop a notion of direct product in which the component groups may 
be considered as subgroups. 

EXAMPLE 2 

It is easy to verify that M = {0, 3} and N = {0, 2, 4} are normal sub groups of 
~ (Do it!), Observet hat every element of Z6ca n be written as a sum of an ele­
ment in M and an element in N in one and 011/y one way: 

0=0+0 

3=3+0 
1=3+4 
4=0+4 

2=0+2 
5 = 3 + 2. 

Verify that, when the elements of Z6are written as sums in this way, then the 
addition table for~ looks like this; 

O+O 3+4 0+2 3+0 0+4 3+2 
O+O O+O 3+4 0+2 3+0 0+4 3+2 
3+4 3+4 0+2 3+0 0+4 3+2 O+O 
0+2 0+2 3+0 0+4 3+2 O+O 3+4 
3+0 3+0 0+4 3+2 O+O 3+4 0+2 
0+4 0+4 3+2 O+O 3+4 0+2 3+0 
3+2 3+2 O+O 3+4 0+2 3+0 0+4 

•it is true. however, that an isomorphic cop~of G1 is a subgroup of G, X G1 X··· X Gn(see EKercise 12). 
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Compare the l 6 table with the operation table for the direct product M X N: 

(0, 0) (3, 4) (0, 2) (3, 0) (0, 4) (3, 2) 

(0, 0) (0, 0) (3, 4) (0, 2) (3, 0) (0, 4) (3, 2) 

(3, 4) (3, 4) (0, 2) (3, 0) (0, 4) (3,2) (0, 0) 

(0, 2) (0, 2) (3, 0) (0, 4) (3, 2) (0, 0) (3, 4) 

(3, 0) (3, 0) (0, 4) (3, 2) (0, 0) (3,4) (0, 2) 

(0, 4) (0, 4) (3, 2) (0, 0) (3, 4) (0, 2) (3, 0) 

(3, 2) (3,2) {0, 0) (3, 4) (0,2) (3, 0) (0, 4) 

The only difference in these two tables is that elements are written a + b in 
the first and (a, b) in the second. Among other things, the tables show that the 
direct product M X N is isomorphic to ~ under the isomorphism that assigns 
each pair (a, b) EM X Nto the sum of its coordinates a+ bE~. 

Consequently, we can expre'is ~as a direct product in a purely internal fashion, 
without looking at the set M X N, which is external to ~: Write each element uniquely 
as a sum a + b, with a EM and b EN. We now develop this same idea in the general 
case, with multiplicative notation in place of addition in ~. 

Theorem 9.1 
Let N1, N2 •• • , NA be normal subgroups of a group G such that every element 
in G can be written uniquely in the form a,a2 • · · ak, with a1 E N1• *Then G is 
isomorphic to the direct product N1 x N2 x · · · x NA. 

The pro of depends on this useful fact: 

Lemma 9.2 
Let M and N be normal subgroups of a group G sue h that M n N = (e) . If a eM 
and beN, then 11b = ba. 

Proof • Consider a-1b-1ab. Since Mis normal, b-1ab EMby Theorem !Ul. 
Closure in Mshows that a-lb-1ah = a-\b- 1ab) EM. Similarly, the 
normality of Nimplies that a-1b-1aENand, hence,a-1b-1ab = 
(a-1b-1a)b EN. Thus a-1b-1ab EM n N = (e). Multiplying both sides 
of a- 1b-1ab = eon the left by ba shows that ab = ba. • 

Proof of Theorem 9.1 ... Guided by the example preceding the theorem (but using 
multiplicative notation), we define a map 
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Since every element of G can be written in the form a 1 ~ • • • a,~,(with 
"t E NJ by hypothe!is,fis !Nrjective. If f(a~o ~ ••.. , aiJ = f{ ~, ~ •.•• , bk), 
then a1az · · · a,~, = b1 h1 · · · bot- By the uniqueness hypothesis. a1 = ht for 
each i(l :s:: i :s:: k). Therefore, 

{a., ~ •• · • , aJJ = (bl> ~ •.• , bJJ in N 1 X N2 X • • • X Nk> 

and f is injective. 
In order to prove that/ is a homomorphism we must first show that 

the N's are mutually disjoint subgroups. that is, N1 n ~ = (e) when i '* J. 
If a E N1 n NJ> then a can be written as a product of elements of the N's 
in two different ways: 

ee • • · eae • · · e • · ·· e = a = ee · • · e • • · eae • · · e. 
t t t t t t t t 

The uniqueness hypothesis implies that the components inN1 must be 
equal; a= e. Therefore, N 1 n ~={e) fori 1' j. In showing that/is a 
homomorphism, we shall make repeated use of this fact, which together 
with Lemma 9 .2, implies that ~ = bfJ1 for a1 E N1 and I} EN; 

f((a1, ••• , aJJ(bt. ..• , !\)] = f{a1b11 • , • , atfJJJ 

= a1~2 a.jJ3 • • • atft,~, 

= 0-J{Jt~J · · · ¥x 

= a1a2 b1a1 b,P3 • • • atft,~, 

= a1a1 ~~ bA • · · atft,~,. 
Continuing in this way we successively move a4, as, ... , a,~, to the left 
until we obtain 

f[(a1, ••• , aiJ(h1, ••• , b.t)] = (at~ · • ' ai)(hth1 • • • !\) 
=flat, ... , aJ}/(bJ> ... , hi). 

Tb:erefore. f is homomorphism and. hence, an isomorphism. • 

Whenever G is a group and N~o ... , N,~, are subgroups satisfYing the hypotheses 
of Theorem 9.1 we shall say that G Is the direct product of~ ..• , Nt and write 
G = N1 X · · · XN,.. Each~ i3 said to be a direct factor of G. Depending on the con­
text, we can think of Gas the external direct product of the N1 (each element a k-tuple 
(at.o ••• , aiJ EN1 X • · · X NJJ or as an internal direct product (each element written 
uniquely in the form a1az • • • ak E a,t, E G). 

The next theorem is often easier to use than Theorem 9.1 to prove that a group is 
the direct product of certain of its subgroups. The statement of the theorem uses the 
following notation. If Mand N are subgroups of a group G, then MN denotes the set 
of all products mn, with m EM and II EN. 
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Theorem 9.3 
If M and N are normal subgroups of a group G such that G = MN and M n N = lp~ 
then G = MXN. 

For the case of more than two subgroups, see Exercise 25. 

Proof of Theorem 9.3 .. By hypothesis every element of G is of the form mn, with 
m EM, n EN. Suppose that an element had two such representations, say 
mn = m1n1, with m, m1 EM and n, n1 EN. Then 

mn = m1n1 

m1-
1mn = m 1-

1m1n1 

m1-
1mn = n1 

m1-
1m1111- 1 = n,n-1 

m1-
1m = n1n-1 

[Liift multiply both sides by m,-1 .J 

[.RJ'ght multiply both sides by n-1.J 

But m1-
1m EM and n,n-1 EN and M n N = (e}. Thus m1- 1m = e and 

m = m1; similarly, 11 = n1• Therefon:, every element of Gcan be written 
uniquely in the form m11 (m EM,n EN), and, hence, G = M X Nby 
Theorem 9.1. • 

EXAMPLE 3 

By Theorem 2.10, the multiplicative group of units in Z 15 is Uu = 
{1,2,4, 7, 8, 11, 13, 14}. ThegroupsM= {1, 11} andN= {1,2,4, 8} are 
normal subgroups whose inten;ection is (1). Every element of N is in MN (for 
instance, 2 = 1 • 2), and similarly for M. Since 11 · 2 = 7, 11 • 8 = 13, and 
11 · 4 = 14, we see that Uu = MN. Therefore, U15 = M X Nby Theorem 9.3. 
Since N is cyclic of order 2 and M cyclic of order 4 (2 is a generator), we con­
clude that Uuis isomorphic to Zz X :Z,.(11eeExercise 10 and Theorem 7.19). 

• Exercises 

NOTE: Unless stated otherwise, Ot, •.. , G,. are groupJ. 

A. 1. Find the order of each element in the given group; 

(a) Zz X ~ (b) Z3 X Z1 X Zz (c) D4 X Zz 

:Z. What is the order of the group U5 X U, X U1 X Ua? 

3, (a) List all subgroups of Z2 X Zz. (There are more than two.) 

(b) Do the same for Zz X Zz X Zz. 

4. If G and Hare groups, prove that G X H ~ H X G. 
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5. Give an example to show that the direct product of cyclic groups need not be 
cyclic. 

6. {a) Write £":12 as a direct sum of two of its subgroups. 

(b) Do the same for Z15• 

(c) Write £":30 in three different W1l)'ll as a direct sum of two or more of its 
subgroups. [Hint: Theorem 9.3.) 

7. Let <IJ, •.. , G, be groups. Prove that G1 X • • · X G~ is abelian if and only if 
evel)' G1is abelian. 

8. Let i be an integer with 1 :s i :s n. Prove that the function 

'11'1:G1 X G 2 X · · • X G,.-+ G1 

given by 'II'Aah ~ "J, ... , ~) "" tljis a suljective homomorphism of groups. 

9. Is~ isomorphic to~ X.£': 2? 

B. 10. {a) If f:G1 -+ H1 andg:G2 -+ H2 are isomorphisms of groups, prove that 
the map O:G1 X G2 -+ H 1 X H 2 given by O(a, b) ""' (f(a), g{b)) is an 
isomorphism. 

(b) If G1 ::i H 1 for i ::= 1, 2, .. , , n, prove that 

Gl X ••• X G,. ::i HI X ' •• X H,. 

11. LetH, K, M,Nbegroupssuch thatK= MX N. ProvethatH X K= 
HXMXN. 

12. Let i be an integer with 1 :s f :s fl. Let G1 be the subset of G1 X · • · X G,. 
consisting of those elements whose ith coordinate is any element of G1 and 
whose other coordinates are each the identity element, that is, 

G1"" {(e1, ••• , e,_1, a,. e1+1! ••• , eh) I a1 E G1}. 

Prove that 

{a) G1 is a normal subgroup of G1 X · · · X GM. 

(b) G, = G,. 

(c) <1J X · · · X G,. is the (internal) direct product of its subgroups G~o ... , 
G,.. [Hint: Show that every element of G1 X · · · X G,. can be written 
uniquely in the form a1a,; • • ·a,., with a1 E G1; apply Theorem 9J.] 

13. Let G be a group and let D = {(a, a, a) I a E G}. 

{a) Prove that Dis a subgroup of G X G X G. 

(b) Prove that Dis norm a! in G X G X G if and only if G is abelian. 

14. If G., , .. , G,. are finite groups, prove that the order of (ah ~ ... , £1,) in 
~ X · ··X G, is the least common multiple of the orders la11, Ia~, ... , Ia..!· 

15. Let 4, it.. ••• , i,. be a permutation of the integers 1, 2, ... , fl. Prove that 

G1, X G12 X · · • X G~ 
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is isomorphic to 

[Exercise 4 is the case n = 2] 

16. If N, Kare subgroups of a group Gsuch that G = N X Kand Mis a normal 
subgroup of N, prove that M is a normal subgroup of G. [Compare this with 
Exercise 14 in Section 8.2.] 

17. Let 0* be the multiplicative group of nonzero rational numbers, 0** the 
subgroup of positive rationals, and Hthesubgroup {1, -1}. Prove that 
Q* = Q** XH, 

18. Prove that U16 is isomorphic to Z2 X Z.,. [Hint: Theorem 9.3 .] 

19. Let G be a group and fi:G ~ O..J2:G ~ G, ... ,j,r.G ~ G" homomorphisms. 
For i = 1, 2, .•. , n, let w, be the homomorphism of Exercise S. Let 

f*:G ~G1 X • • • X Gn be the map defined by f*(a) = (jj(aJ,f.J..aiJ, .•. ,/,(a,)). 

(a) Prove that/* is a homomorphism such that w1of'• =/,for each j, 

(b) Prove thatf* is the unique homomorphism from G to Gt X • • • X G" such 
that w1 o f* = J; for every i. 

20. LetN1 , ••• , Nk be subgroups of an abelian group G. Assume that every 
element of Gcan be written in the form a1• • • a, (with t2j ENJ and that 
whenever a1a2 ···a,= e, then t2j = e for every i. Prove that 
G = N 1 X N2 X • · · X Nk, 

21. Let G be an additive abelian group with subgroups Hand K. Prove that 
G = H X Kif and only if there are homomorphisms 

H~G~K 
.5, ~ 

such that.51(7T1(x)) + ~('1T£x)) = x for every xE Gand1r1 o.51 = ~H, w2 <> li, = ~x, 
1r1 <> .52 = 0, and 1r2 o .51 = 0, where ~xis the identity map on X, and 0 is the map 
that sends every element onto the zero (identity) element. [mnt: Let 7rt be as in 
Exercise 8.J 

22. Let G and H be finite cyclic groups. Prove that G X His cyclic if and only if 
OGI, IHD =I. 

23. (a) Show by example that Lemma 9.2 maybe false if Nis not normaL 

(b) Do the same for Theorem 9.3. 

24. Let N, Kbeiubgroupsof a group G, withNnormal in G. If Nand Kare 
abelian groups and G = NK, is G the direct product of Nand K'l 

25. Let Nh ..• , Nk be normal subgroups of a group G. Let Nf.N2 · · • N1,.denote 
the set of all elements of the form a1a1 • • • ak with a1 E Nr Assume that 
G = N 1N1 · · • Nkand that 

N,n CNt ·- · N,-INr+l' · · N~<) = {e} 

for each i (1 :s i :s n). Prove that G = N 1 X N 2 X · · · X Nk. 
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26. Let Nj_, •• , , N~c be noml subgroups of a finite group G. If G = N 1N 2 • • • N~c 
(notation as in Exercise 25) and IGI = IN1I·IN21• ··IN~, prove that G = 
N 1 X N2 X • • ' X Nl<' 

27. Let N, Hbe subgroups of a group G. Gis called the semidired product d' N 
and H if N is normal in G, G = NH, and N n H = {e). Show that each of the 
following groups is the semidirect product of two of its subgroups: 

28. A group G is said to be indecomposable if it is not the direct product of 
two of its proper normal subgroups. Prove that each of these groups is 
indecomposable: 

(a) S3 (b) D4 (c) Z 

29. If pis prime and PI is a positive integer, prove that Zy. is indecomposable. 

30. Prove that Q is an indecomposable group. 

3 I. Show by example that a homomorphic image of an indecomposable group 
need not be indecomposable. 

32. Prove that a group Gis indecomposable if and only if whenever Hand K are 
normal subgroups such that G = H X K, then H = (e) or K = (e). 

JJ. Let I be the set of positive integers and assume that for each i E /, G1 is a 
group.* The infinite direct product of the G1 is denoted II G1 and consists 

f~l 

of all sequences (ah Oz. , .. ) with a, E q. Prove that II G1is a group under the 
coord:inatewise operation 1 

et 

C. 34. With the notation as in fuercise 33, let ~ G1 denote the subset of II q 
tel tel 

consisting of all sequences (c~o C:z. •• • ) such that there are at most a finite 
number of coordinates with 9 '# ef' where~ is the identity element of Gr 
Prove that ~ G1 is a normal subgroup of ll G1• 2. G1 is called the idi.Dite 

let tel tel 
direct slim of the G,. 

35. Let G be a group and assume that for each positive integer I, N1 is a normal 
subgroup of G. If every element of G can be written uniquely in the form 
n,. • n1 • • • n~o, with i1 < i2 < · · · < i~c and n1 E Nu prove that G ~ '}: N 1 (see 

.. , ' J tel 
Exercise 34).t [Hint: Adapt the proof of Theorem 9.1 by defining/(llt, az, , .. ) 
to be the product of those a1 that are not the identity element.] 

36. If (m, PI) = 1, prove that U,., '= U101 X U11, 

•Any infinite index set fm~ be used here, but the restriction to the p05itive integers simplifies the 
notation. 

tu ni:j ueness means that if ill,,· · · a1, = b:J, · · · bit, with ~ < 4 < · · · < ik and j 1 < b < · · · < j,, then k. = I 
and for r = 1, 2, ... , k: i, = j,and !Jt,b~. 
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37. LetHbe a group and T1:H-+ ~. T'f}[-+ ~, •.. , T,.:H -+G, homomorphisms 
with this property: Whenever Gis agroupandg1:G-+ G1, gz:G....:;. ~ •••• , 
g~ G-+ ~ are homomorphismi, then there crusts a unque homomorphism 
g-:G-+ H such that 71 o g* = g1 for every i. Prove that H 8Si ~ X G2 X • • • X G,. 
[See Exercise 19.] 

Ill Finite Abelian Groups 

All finite abelian groups will now be classified. We shall prove that every finite abe· 
lian group G is a d.iRct sum of cyclic subgroups and that the orders of these cyclic 
subgroups are uniquely determined by G. The <mly pre!l!quisites for the proof other 
than Section 9.1 are basic number theory (Section 1.2) and elementary group theory 
(Chapters 7 and 8, omitting Sections 7.5 and 8.5). 

Following the usual rustom with abelian groups, all groops are written in additive 
notation in this section. The following dictionary may be helpful for translating from 
multiplicative to additive notation: 

MULTIPLICATIVE NOTATION 

ah 

e 

a" 
tl= e 

MN= {mnlmeM,neN} 
direct product M X N 

d.iRct factor M 

ADDITIVE NOTATION 

a+b 
0 

ka 

ka =0 
M+N= {m+nlmeM,neN} 

direct sum M Ee N 

direct summand M 

Here is a restatemm.t in additive notation of several earlier results that will be used 
frequently here: 

Theorem 7.9 
Let G be an additive group and let a E G. 

(1) tf a has order n, then ka = 0 if and only tf n 1 k. 

(3} li a has order td, with d > 0, then ta has order d. • 

Theorem 9.1 
If N1, ••• , Nk are normal subgroups of an additive group G such that every 
element of G can be written uniquely in the form a1 + a2 + · · · + ak with 
a1 E N1, then G 8Si N, EB N2 <£1· · · ffi N~;- • 
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Theorem 9.3 
If M and N are normal subgroups of an additive group G such that G = M + N 
and Mn N = (0), then G = Mf£]N, • 

Finally we note that Exercise 11 of Section 9.1 will be used without explicit mention 
at several points. 

If G is an abelian group and p is a prime, then G(p) denotes the set of elements in 
G whose order is some power of p; that is, 

G(p} = {11E G I Ia! = p' for some n ;e. 0}. 

It is easy to verify that G(p) is closed under addition and that the inverse of auyelement 
in G{p) is also in G(p) (Exercise 1). Therefore, G(p) is a subgroup of G. 

EXAMPLE 1 

If G = Z 12, then G(2) is the set of elements having ordeB 'fl, 21, 21, etc. Verify 
that G(2) is the subgroup {0, 3, 6, 9}; similarly, G(3) = {0, 4, 8}. If G = Z 3 ttl Z3, 

then G(3) = Gsince evr:ry nonzero element in G has order 3. 

The tim step in proving that a finite abelian group G is the direct sum of cyclic 
subgroups is to show that Gis the direct sum of its subgroups G(p), one for each of the 
distinct primes dividing the order of G. In order to do this, we need 

Lemma 9.4 
Let G be an abelian group and a E G an element of finite order. Then 
a = a1 + ~ + · · · + Bt, with a1 G G{p1), where P1, ..• , Pt are the d ist i net positive 
primes that divide the order of a. 

Proof~ The proof is by induction on the number of distinct primes that divide the 
order of a. If lal is divisible only by the single prime p1, then the order of 
a is a power of p1 and, henoo, a E G(p.). So the lemma is true in this case. 
Assume inductively that the lemma is true for all elements whose order 
is divisible by at most k - 1 di;tinct primes and that lal is divisible by the 
distinct primes Pt, ••. , h Then lal = p1 "~ • • • Pk \ with each r, > 0. Let 
m = Pl' · · 'P.tJ)andn = p{ ... , so thatlal = mn. Then (m,n) =land by 
Theorem 1.2 there are integers u, v such that 1 = mu + nv. Consequently, 

a= Ia = (mu + nv)a = 1m1Ll + nva. 

But mua E G(p1) because a has order mn, and, herux; p t• (mua) = (nm )tw = 
1j(mna) = uO = 0. Similarly, m(nva) = 0 so that by Theorem 7.9 the order of 
nva divides m, an integer with only k- l distinct prime divisors. Therefore, 
by the induction assumption noo = a2 + "J + · · · + "*' with a,E G(pJ. Let 
a1 = mua; then a = mua + tlva = a1 + a:z + · · · + ak, with <lJ E G(p~. • 
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Theorem 9.5 
If G is a finite abelian group, then 

G = G(P1) (±') G(~) (±') · • · (±') G(pfj, 

where Pt. ... , Pt are the di sti net positive primes that divide the order of G. 

Proof .. If a E G, then its order divides IGI by Corollary 8.6. Hence, a = 
a1 + · · · +a,, witha,E G(pJ by Lemma9.4 (where a,= 0 if the prime 
p1 does not divide lal). To prove that this expression is unique, suppose 
thata1 + cJ.2 +··-+a,= ht + h2 +···+btl with~ h1E G{pJ. Since G is 
abelian 

For each i, h1 - a, E G(pJ and, hence, has order a power of p, say p /•. If 
m = p{• · · · p/•, then m(h,- aiJ = 0 fori<=!: 2. so that 

m(a1 - ht) = m(h,_ - ai) + --· + m(h, - a,) = 0 + .. -+ 0 = 0. 

Consequently, the order of a1 - h1 mustdividemby Theorem 7.9. But 
a1 - h1 E G(p)), so its order is a power of p1• The only power of p1 that 
divides m = p{' · · · p t• is p 1° = I . Therefore, a1 - h1 = 0 and a1 = h1• 

Similar arguments for i = 2, ... , t show that Dt = h1 for every i. Therefore, 
every element of G can be written uniquely in the forma1 + · · · + a 11 with 
a, E G{p,) and, hence, G = G(pJ (±') • · · (±') G(pJ by Theorem 9.1, • 

If p is a prime, then a group in which every element has order a power of p is called 
a p-group. Each of the G(pJ in Theorem 9.5 is a p-group by its very definition. An 
element a of a p-group B is called an element of maxml order if lhl :s lal for every 
hE B. If lal = Jl' andhEB, then hhas orderywithJ :s n. Sincep" = pfT'we see that 
p"h = p>-i(plb) = 0. Hence, 

If a is an element of maxnal order p" in a p-group B, then Jib = 0 for every A EB. 

Note that elements of maximal order always exist in a finite p-group. 
The next step in classifying flnite abelian groups is to prove that every finite abelian 

p-group has a cyclic direct summand, after which we will be able to prove that every 
finite abelian p-group is a direct sum of cycli.; groups. 

Lemma 9.6 
Let G be a finite abelian p-group and a an element of maximal order in G. Then 
there is a subgroup K of G such that G = (a}@ K. 

The following proof is more intricate than most of the proofs earlier in the book. 
Nevertheless, it uses only elementary group theory, so if you read it carefully, you 
shouldn't have trouble following the argument. 
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Proof of Lemma 9.6 .. Consider those subgroups H of G such that (a) n H = (0). 
There is at least one (H = ~)), and since G is finite, there must be a largest 
subgroup K with this property. lhen (a) n K = (0), and by Theorem 9.3 
we need only show that G =(a)+ K.lf this is not the case, then there 
is a nonzero b such that b II! (a)+ K. Let k be the smallest positive inte­
ger such that .r/'b E (a) + K (there must be one since G is a p-group and, 
henoe, pfb = 0 = 0 + 0 E (a) + K for some positive/). Then 

(1) c = l'-1b is not in (a)+ K 

and pc = p*b is in (a) + x; say 

{2) pc= ta+k (tEZ, kEK). 

1f a has order p", thenJI'x. = 0 for all xE Gbeoause a has maximal order. 
Consequently, by (l) 

Therefore,p"-1ta = -r1kr:.'fl) n K= (O~andp"""'1 ta = o. Theorem 7.9 
shows that p" (the order of a) divides r r, and it follows that p 1 t, 
say t = pm. Therefore,pc = ta + k = prna + k, and consequently, 
k = pc - prna = p(c - rna). Let 

(3) d=c -ma. 

Thenpd= p(c- rna)= kEK, but d!i! K(since c- rna= k' EKwould 
imply that c =rna+ k' E (a)+ K, contradicting (1)). Use Theorem 7.12 
to verifY that H = {x + zd I xE K, zE Z} is a subgroup of Gwith 
K~ H. Sinced= 0 + ldEHand d!i! K,HislargerthanK ButKisthe 
largest group such that (a) n K = {0), so we must have (a) n H f. (0). If w 
is a nonzero element of (a) n H, then 

(4) w =sa= k1 + rd (k1 EK; r,.iEZ). 

'We claim that p .r r; for if r = py, then since pd E K, 0 '# w = 1Ja = k1 + 
ypd E (a) n K, a contradiction. Consequently, (p, r) = 1 1 and by 
Theorem 1.2 there are integers u, v withpu + ro = 1. Then 

c = lc = (pu + h.!)C = *) + v(rc) 

= u(til + k) + t.(r(d+ rna)) (by (2) and {3)] 

= u(ta + k) + t.(rd + rrna) 

= u(til + k) + v(sa- k1 + nna) (by ( 4 )] 

= (ut + 'US'+ rm)a + (uk -'lk-1) E (a)+ K 

This contradicts (I}. Therefore, G =(a)+ K. and, henoe, G = ~) EB Kby 
Theorem 9.3. • 
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Theorem 9.7 The Fundamental Theorem of Finite 
Abelian Groups 
Every finite abelian group G is the direct sum of cyclic groups, each of prime 
power order. 

Proof~ By Theorem 9.5, G is t:oo direct sum of its subgroups G(p), one for each 
prime p that divides IGI. Each G(p) is ap-group. So to complete the 
proof, we need only show that every finite abelian p-group His a di· 
rect sum of cyclic groups, each of order a power of p. We prove this by 
induction on the order of H. The assertion is true when H has order 2 
by Theorem 8.7. Assume inductively that it is true for all groups whose 
order is less than IHI and let a be an element of maximal order I' in H. 
Then H = (a) EEJ K by Lemma 9.6. By induction, K is a direct sum of 
cyclic groups, each with order a power of p. Therefore, the same is true 
of H = (a) EEl K. • 

EXAMPLE 2 

The 11UIDber 36 can be written as a product of prime powers in just four 
ways; 36 = 2 • 2 • 3 • 3 = 2 • 2 • 32 = 22 

• 3 • 3 = 22 
• 32

• Consequently, by 
Theorem 9.7 every abelian group of order 36 must be isomorphic to one oft he 
following groups: 

Z2 EE> Zz EE> Z1 EE> Z3, Z2 EE> Z2 EE> "4 Z. EE> Z3 EE> zJ, L. EE> ~. 

You can easily verifY that no two of these groups are isomorphic (the number 
of elements of order 2 or 3 is different fur each group). Thus we have a com. 
plete classification of all abelian groups of order 3 6 up to isomorphism. 

You probably noticed that a familiar group of order 36, namely Z», doesn't appear 
explicitly on the list in the preceding example. However, it is isomorphic to 4 EEJ ~ 
as we now prove. 

Lemma 9.8 
If (m, .k} = 1, then Z... EE> 4 =- 4 

Proof~ The order of ( 1,1) in Z.., EEJ "4 is the smallest positive integer t such that 
(01 0) = t(l, I)=(/,/). Thus t == 0 (mod m) and t == 0 (modk), so that 
m I t and k I t. But (m, k) = I implies that mk I t by Exercise 17 in 
Section 1.2. Hence, mk s t. Since mk( I, I) = (mk, mk) = (0, 0) and 
t is the smallest positive integer with this property, we must have mk = 
t = K 1, I )1. TherefOre, Z,.. EEJ 4 (a group of order mk) is the c)':lic group 

generated by (I, I) and, hence, is isomorphic to Z...rc by Theorem 7.19. • 
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Theorem 9.9 
If n = p,n•p{'• · · · p{'t, with Pto ... , p1 distinct primes, then 

Proof • The theorem is true for groups of order 2 Assume inductively that it 
is true for groups of order less than n. Apply Lemma 9.8 with m = p1"' 

and k = P:z"' • • • p~"·. Then Z, =: z,, .. {8 4 and the induction hypothesis 
shows that 4 =: Zp;• ffi · · · <f.l Zp~ • 

Combining Theorems 9.7 and 9.9 yields a second way of expressing a finite abelian 
group as a direct sum of cyclic group& 

EXAMPLE 3 

Consider the group 

Arrange the prime power orders of the cyclic factors by sm; with one row for 
each prime: 

2 2 
3 

Now rearrange the cyclic factors of G using the oolunm.r of this array as a guide 
(see Exercise 15 of Section 9.1) and apply Theorem 9.9: 

G =: (J.~ {f.! (Zzffi Z:J <±) (~ffi Z3 {8 ZS) {8 (Zs {f.! Z3 {f.! Z2il 

G=:Z1 {f.! ~ <£) 4 <£) z_. 

This last decomposition of Gas a sum of cyclic groups is sometimes more 
convenient than the original prime power decomposition: There are fewer 
cyclic facton~, and the order of each cyclic factor divide3 the order of the next 
one. Although the notation is a bit more involved, the same process works in 
the general case and proves the following Theorem. 

Theorem 9.10 
Every finite abelian group is the direct sum of cyclic groups of orders 
m1, ~.,., ,m1, wherem1 lm2,~]m3, m3 ]m4, ••• , and m1_ 1 ]mt. 

We pause briefly here to present an interesting corollary that will be used in 
Chapter 11. A veooon of it was proved earlier as Theorem 7.16. 
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Corollary 9.11 
If G is a finite subgroup of the multiplicative group of nonzero elements of a 
field F, then G is cyclic.• 

Proof• Since G is a finite abelian group, Theorem 9.10 implies that 
G ~ ~ EB • • • EB Z,.,, where each fftt divides m,. Every element b in 
z,., (£1 • • • EB z,., satisfies mp = 0 (Wby?). Consequently, every element 
g of the multiplicative group Gmust satisfy g"" = lF (that is, must be a 
solution of the equation :t!"'- lF = 0). Since Ghas order m1m1 · • · mt 
and X"•- lF = 0 has at most 1nt distinct solutions in Fby Corollary 4.17, 
we must have t = l and G ~ z_,. • 

If G is a finite abelian group, then the integers m11 ••• , m, in Theorem 9.10 are 
called the in variant factors of G. When G is written as a direct sum of cyclic groups 
of prime power orders, as in Theorem 9. 7, the prime powers are called the elementary 
divisors of G. Theorems 9.7 and 9.10 show that the order of G is the product of its 
elementary divisors and also the product of its invariant factors. 

EXAMPLE 4 

All abelian groups of order 36 can be classified up to isomorphism in terms 
of their elementary divisors (as in Example 2) or in terms of their im>ariant 
factors (using the procedure in Example 3); 

ELEMENTARY INVARIANT ISOMORPHIC 
GROUP DIVISORS FACTORS GROUP 

Zl@Zl@ZJ@ ZJ 2,2, 3, 3 6,6 Z6@Z6 

Zl@Z2@Z9 2, 2, 32 2,18 Z2@Zu 

Z,@Z3 @Z3 .i-,3,3 3,12 ZJ@ Z12 

~@~ ~.32 36 l36 

The Fundamental Theorem 9.7 can be med to obtain a list of all possible abelian 
groups of a given order. To complete the clwisification of such groups, we must show 
that no two groups on the list are isomorphic, that is, that the elementary divisors of a 
group are uniquely determined. t 

Theorem 9.12 
let G and H be finite abelian groups. Then G is isomorphic to H If and only if 
G and H have the same elementary divisors. 

•11 vou have not read Sect ions 3.1 and .u., skip this co ro llary u nti I you have. 

'!The remainder of this section is optional. Theorem U.12 is often considered to be part of the 
Fundamental Theorem of Finite Abelian Groups. 
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It is also true that G ~ Hif and only if G and Hhave the same invariant factors 
(Exercise 24). 

Proof oflheorem 9.12 .. If G and Hhave the same elementary divisors, then both G 
and Hare isomorphic to the same direct sum of cyclic groups and, hence, 
are isomorphic to each other. Conversely, if f.G-+ His an isomorphism, 
then a and/(a) have the same order for each a E G. It follows that for 
each prime p,/(G(p)) = H(p) and, hence, G(p) ~ H(p). The elementary 
divisors of G that are powers of the prime p are precisely the elementary 
divisors of G(p), and similarly for H. So we need only prove that isomor­
phic p-groups have the same elementary divisors. In other words, we need 
to prove this half of the theorem only when G and Hare p-groups. 

Assume G and Hare isomorphicp-groups. We use induction on the 
order of G to prove that G and Hhave the same elementary divisors. 
All groups of order 2 obviously have the same elementary divisor, 2, by 
Theorem 8.7. So assume that the statement is true for all groups of order 
less than IG~ Suppose that the elementary divisors of G are 

Ji", [1", • .•• Jl"', p,p, ••• 'p 

1 r:opU.S 

and that the elementary divisors of Hare 

JI"',JI'"", ... , fl"•, p, p, . •• , p with fnt ii!: m2 ii!: • • • ii!: mk > 1. 

$ r:opies 

Verify that pG = {px I x E G} is a subgroup of G(Exetcise 2). If G is the 
direct sum of groups C,., verify that pG is the direct sum of the groups pC1 

(Exercise 4). If C, is cyclic with generator a of order P', then pC1 is the cycliz 
group generated by pa. Since pa has order p""1 by part {3) of Theorem 7 .9, 
pC1iscydc oforderp"""1

• Note that wt.m n = 1 (that is, when <;is cyclic of 
order p), then pC1 = {0). Consequent~ the elementary divisors of pG are 

,..111-l .,11,.-I .Jir t p .,p- , ••. ,, .. 

A similar argument shows that the elementary divisors of pH are 

p--r•,~-1 •... ,y-..-•. 
If/:G-+His an isomoiphism, verify thatf(pG) =pH so that pG ~pH. 

Furthermore, pG :/= G (Exercise 9), so that JpGI < IG~ Hence pG and pH 
have the same elementary divisors by the induction hypothesis; that ~ 
t=kand 

p-r1 = Jl"'-1, so that fit - 1 = m, - 1 for { = 1, 2, ... , t. 

Therefore, fit = m1 for each i So the only possible difference in elemen­
tary divisors of G and His the number of copies of p that appear on 
each list. Since IGI is the product of its elementary divisors, and similarly 
for IHJ, and since G ~ H, we have 

P"Jf" · • • Jl''fl = IGI = IHJ = P"'P"' · · · Jl"'•p'. 
Since m1 = n1 for each i, we must have p 1 = p' and, hence, r = s. Thus G 
and H have the same elementary divisors. • 
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• Exercises 

NOTE: All groups are written additiVely, and p a/)M'ys denotes a positive prime; Ullless 
noted otherWise. 

A. l. If G is an abelian group, prove that G(p) is a subgroup. 

2. If G is an abelian group, prove that pG = {px I x E G} is a subgroup of G. 

3. List all abelian groups (up to isomorphism) of the given order: 

(a) 12 

(e) 90 

(b) 15 

(f) 144 

(c) 30 

(g) 600 

(d) 72 

(h) 1160 

4. If G and Gf(I ~ i ~ n) are abelian groups such that G = G,. ® · • • ~ Gn, 
show that pG = pG1 ® · · · ® pG,.. 

5. Find the elementary divisors of the given group: 

(a) z~ (b) Z6 ® Z1z ® Z,, 

(c) .zl6 ® .z20 ® .ZJO Bj zl,(j (d) Zr,_ (fJ .Z3o (£) Zu1o (i;l Z'JAO 
6. Find the invariant factors of each of the groups in Exen:ise 5. 

B. 7. Find the elementary divisors and the invariant factors of the given group. Note 
that the group operation is multiplicati:m in the first three and addition in the lru;t. 

(a) Ua {b) U11 (c) Uts (d) M(.Z2) 

8. If G is the additive group Q(L, what are the elements of the subgroup G(2)'1 
Of G(p) for any positive prime p? 

9. (a) If Gis a finite abelianp-group, prove thatpG :F G. 

(b) Show that part (a) may be false if G is infinite. [Hint: Consider the group 
G(2) in Exercise 8.] 

I 0. If G is an abelian p-group and (11, p) = I prove that the map f. G ..,I. G given by 
f(a) = na is an isomorphism. 

11. If G is a finite abelian p-group such that pG = {0), prO\'e that G = ~ £B · · · (£) Z.P 
for some finite number of copies of Zy. 

12. (Cauchy's Theorem for Abdla• Groups) If G is a finite abelian group and pis 
a prime that divides IGI, prove that G contains an element of order p. 
[Hint: Use the Fundamental Theorem to show that G hru; a cyclic subgroup 
of order p'<; use Theorem 7.9 to find an element of order p .] 

13. Prove that a finite abelian p-group has order a power of p. 

14. If G is an abelian group of order p1m, with (p, m) = 1, prove that G(p) has 
order Jl. 

15. If G is a finite abelian group and p is a prime such that p" divides 161, then 
prove that G has a subgroup of order p". 

16. For which positive integers n is there exactly one abelian group of order 11 (up 
to isomorphism)? 
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17. Let G, H, Kbe finite abelian groups. 

(a) If G EEl G~ H® H, prove that G~H. 

(b) If G ffi H ~ G Ei3 K, prove that H ~ K. 

18. If G is an abelian group of order n and k I n, prove that there exist a group H 
of order k and a surjective homomorphism G ~H. 

19. Let G be an abelian group and Tthe set of elements of finite order in G. Prove 
that 

(a) Tis a subgroup of G (called the torsion subgroup). 

(b) Every nonzero element of the quotient group GfThas infinite order. 

20. If G is an abelian group, do the elements of infinite order in G (together with 
0) form a subgroup? (Hint: Consider Z EEl Zj.] 

C. 21. If G is an abelian group and f:G ~ Z a surjective homomorphism with kernel 
K, prove that G has a subgroup H such that H == Z and G = K ® H. 

22. Let G and Hbe finite abelian groups with this property: For each positive 
integer m the number of elements of order m in G is the same as the number 
of elements of order m in H. Prove that G ~ H. 

23. Let G be finite abelian group with this property: For each positive integer 
m such that m IIGI, there are exactly m elements in G with order dividing m. 
Prove that G is cyclic. 

24. Let G and Hbe finite abelian groups. Prove that G ~ H if and only if G and H 
have the same invariant factors. 

25. If G is an infinite abelian torsion group (meaning that every element in G has 
finite order), prove that G is the infinite direct sum}; G(p), where the sum is 
taken over all positive primes p. (Hint: See Exercises 34 and 35 in Section 9.1 
and adapt the proof of Theorem 9.5.] 

Ill The Sylow Theorems 

Nonabelian finite groups are vastly more complicated than finite abelian groups, 
which were classified in the last section. The Sylow Theorems are the first basic step 
in understanding the structure of nonabelian finite groups. Since the proofs of these 
theorems are largely unrelated to the way the theorems are actually used to analyze 
groups, the proofs will be postponed to the next section.* In this section we shall try 
to give you a sound understanding of the meaning of the Sylow Theorems and some 
examples of their applications. 

Throughout the general discussion in this section all groups are Written multiplica­
tiVely and all integers are assumed to be nonnegative. 

•Puritans who believe that the work must come before the fun should read Section 9.4 before 
proceeding further. 
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Once again the major theme is the close connection between the structure of 
a group G and the arithmetical properties of the integer IGI. One of the most im­
portant results of this sort is Lagrange's Theorem, which states that if G has a 
subgroup H, then the integer IHJ dividesiGI. The First Sylow Theorem provides a 
partial converse: 

Theorem 9.13 First Sylow Theorem 
let G be a finite group. If p is a prime and ,I divides 1 G 1, then G has a 
subgroup of order (i. • 

EXAMPLE 1 

The symmetric group S6 has order 6! = 720 = 24 • 32 
• 5. The First Sylow 

Theorem (with p = 2) guarantees that 56 has subgroups of orders 2, 4, 8, and 
16. There may V«:B be more than one subgroup of each of these orders. For 
instance, there are at least 60 subgroups of order 4 (Exercise 1). Applying the 
theorem witbp = 3 shows that S6 has subgroups of orders 3 and 9. Similarly, 
S6 has at least one subgroup of order 5. 

If p is a prime that divides the order of a group G, then G contains a subgroup K 
of order p by the First Sylow lbeorem. Since Xis cyclic by Theorem 8.7, its generator 
is an element of order p in G. This proves 

Corollary 9.14 Cauchy's Theorem 
If G is a f1 nite group whose order is divisible by a prime p, then G contains an 
element of order p. • 

Let G be a finite group and p a prime. If p" is the largest power of p that divides IG I, 
then a subgroup of G of order p" is ca11ed a Sylow p..subgroop. The existence of Sylow 
p-subgroups is an immediate consequence of the First Sylow Theorem. 

EXAMPLE 2 

Since s4 has order 4! = 24 = 23 • 3, evecy subgroup of order 8 is a Sylow 
2-subgroup. You can readily verify that 

{(1), (1234), (13)(24), (1432), (24), (12)(34), (13), (14X32)} 

is a subgroup of order 8 and, hence, a Sylow 2,.-subgroup. There are two other 
Sylow 2-subgroups (Exmcise 2). Any subgroup of S4 of order 3 is a Sylow 
3-subgroup. Two of the four Sylow 3-subgroups are {(123), ( 132), (I)} and 
{(134), (143), (1)}. 
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EXAMPLE 3-111 

Let p be a prime and G a finite abelian group of order p"m, where p .r m. Then 

G{p) = {aE Glial= .I for some k ~ 0} 

is a Sylow p·subgroup of Gsince G(p)hasorderprbyExercise 14 ofSection9.2. 
AJi we shall see, G(p) is the unique Sylow p-subgroup of G. Theorem 9.5 shows 
that G is the direct sum of all its Sylow subgroups (one for each of the distinct 
primes that dlvide IGD. 

Let Gbe a group and xEG. Example 9 of Section 7.4showsthatthe mapf:G---+G 
given byf(a) = x-1axis an isomorphism. If Kisa subgroup of G, then the image of K 
under /is x- 1Kx = {x- 1kx IkE K}. Hence, x- 1 Kx Is a subgroup of G that is isomorphic 
to K In particular, x- 1 Kx has the same order as K Consequently, 

i.f K is a Sylow p-&lbgroup of G., tben so i.s x-1Kx. 

The next theorem shows that every Sylow p-subgroup of G can be obtained from Kin 
this fashion. 

Theorem 9.15 Second Sy I ow Theorem 
If P and K are Sylow p-subgroups of a group G, then there exists x E G such 
that P = x- 1Kx. • 

Theorem 9.15, together with the italicized statement in the preceding paragraph, 
shows that 

any two Sylow p...w.bgroops of G are Isomorphic. 

Corollary 9.16 
Let G be a finite group and K a Sylow p-subgroup for some prime p. Then K is 
normal in G if and only If K is the only Sylow p-subgroup in G. 

Proof~ We know that x-1Kx is a Sylow p-subgroup for every x E G. If K is the 
only Sylow p.subgroup of G, then we must have x- 1AX = Kfor every 
x E G. Therefore, K is normal by Titeorem 8.11. Conversely, suppose 
K is normal and let P be any Sylow p.subgroup. By the Second Sylow 
Theorem there exists XE Gsuch that P = x-1Kx. SinceKis normal, 
P = x-1Kx = K. Therefo~ Kisthe unique Sylow p·subgroup. • 

•skip this example if you haven't reao Section 11.2. 
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The preceding theorems establish the existence of Sylow p-subgroups and the rela­
tionship between any two such subgroups. The next theorem tells us how many Sylow 
p-subgrou ps a given group may have. 

Theorem 9.17 Third Sylow Th eo rem 
The number of Sylow p-su bgroups of a frnite group G divides 1 G 1 and is of the 
form 1 + pk for some nonnegative integer k. 

Applications of the Sylow Theorems 
Simple groups (those with no proper normal subgroups) are the basic building bloc;ks 
for all groups. So it is useful to be able to tell if there are ;my simple groups of a partic­
ular order. The Third Sylow Theorem, together with appropriate counting arguments 
and Corollary 9.16, can often be used to establish the existence of a proper normal 
subgroup of a group G, thus showing that G is not simple. 

EXAMPLE 4. 

H Gis a group of order 63 = 31 • 7, then each Sylow 7-subgroup has order 7 and 
the number of such subgroups is a divisor of 63 of the form 1 + 1k by the Thiid 
Sylow Theon:m. The divisors of 63 an: 1, 3, 71 9,21,63 and the numbers of the 
form 1 + 7k (with k ~ 0) are 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, etc. Since 1 is the 
only number on both lists, Ghas exactly one Sylow 7-subgroup. This sub group is 
normal by Corollary 9.16. Consequently, no group of order 63 is simple. 

EXAMPLE 5 

We shall show that there is no simple group of order 56 = 'i · 7. The only 
divisors of 56 of the form 1 + 7k are 1 and 8. So G has either one or eight 
Sylow 7 -subgroups, each of order 7. If there is just one Sylow 7Mgroup, it 
has to be normal by Corollary 9.16. So Gis not simple in that case. If Ghas 
eight Sylow 7 -groups, then each of them has six nonidentity elements, and 
each non identity element has order 7 by Corollacy 8.6. Furthermore, the 
intersection of any two of these subgroups is (e) by Exercise 21 of Section 8.1. 
Conl!equently, there are 8 • 6 = 48 elements of order 7 in G. Every Sylow 
2-subgroup of Ghas order 8. Each element of a Sylow 2-subgroup must have 
order dividing 8 by Corollary 8.6 and, therefore, cannot be in the set of 48 
elements of order 7. Thus there is room in G for only one group of order 8. 
In this case, therefore, the single Sylow 2-subgroup of order 8 is normal by 
Corollary 9.16, and G is not simple. 

In the preceding examples, the Sylow Theorems were used to reach a negative conM 
elusion (the group is not simple). But the same techniques can also lead to positive 
results. In particula~; they allow us to classifY certain finite groups. 
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Corollary 9,18 
Let G be a group of order pq, where p and q are primes such that p > q. If 
q .t (p - 1), then G ~ 4, 

Proof., By the Third Sylow Theotmn, the r:wmber of Sylow p-subgroups must divide 
IGI = pq,andhence, must be one of l,p, q,or pq. Howe\lel', the number 
must also be of the form 1 + pkfor some integer k. Since p > q, we cannot 
have q = 1 + pk. Furthermore, bothp = 1 + pk andpq = 1 + pk imply that 
p 11, which is impossible. Therefore, there is exactly one Sylow p-subgroup 
H of order p, which is normal by Corollary 9.16. A similar argument (using 
the fact that q .r (p - 1 )) shows that there is a unique Sylow q-subgroup K 
of order q, which is also normal. Since H n K is a subgroup of both Hand 
K, its order must divide both 1H1 = p and IKI = q by Lagrange's Theorem. 
Hence, H n K = (e). Exercise 15 shows that G = HK. Therefore, 
G = H x KbyTheorem.9.3. But H~ 'Zp andK~Z, byTheorem8.7. 
Consequently, by Lemma 9.8, G = H X K ~ Z, X Z, ~ 7..,. * • 

EXAMPLE 6 

It is now easy to classify all groups of order 15 = 5 • 3. Apply Corollary 9.18 
with p = 5, q = 3 to conclude that every group of order 15 is isomorphic to Z1s. 
Similarly, there is a single group (up to isomorphism) for each of these orders: 
33 = 11 · 3, 35 = 7 · 5, 65 = 13 • 5, 77 = 11· 7, and 91 = 13 • 7. 

Other applications of the Sylow Theorems are given in Section 9 .5. 

• Exercises 

NOTE: Unless stated otherwise, G fs a finite group and p is a positi'le prime. 

A. 1. Show that 5;; has at least 60 subgroups of order 4. [Hint: Consider cyclic 
subgroups generated by a 4-cycle (such as (( 1234))) or by the product of 
a 4-cycle and a disjoint transposition (such as ((1234)(56))); also look at 
noncyclic subgroups, such as {(1), (12), (34), (12)(34)}.J 

2. {a) List three Sylow 2-subgroups of S4• 

(b) List fourSylow3-subgroups of S4• 

3. List the Sylow 2-subgroups and Sylow 3-subgroups of ~-

4. List the Sylow 2-subgroups, Sylow J.subgroups, and Sylow 5-subgroups of 
Z12 X Z11 X Zll. [Section 9.2 is a prerequisite for thisexercise.J 

•The proof of Lemmaii.Blslndependent of the rest of Section 11.2 and may be read now if you skipped 
that section. 
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5. How many Sylow p-subgroups can G possibly have when 

(a) p = 3 and IGI =72 (b) p = 5 andiGI = 60 

6. Classify all groups of the given order: 

(a) 115 {b) 143 (c) 391 

7. Prove that there are no simple groups of the given order: 

(a) 42 (b) 200 (c) 231 (d) 255 

8. 8. Use Cauchy's Theorem to prove that a finite p-group has order P' for some n ~ 0. 

9. If N is a normal subgroup of a (not necessarily finite) group G and both N 
and GIN are p-groups, then prove that G is a p-group. 

10. If His a normal subgroup of Gand IHI =If, show that His contained in 
every Sylow p-subgroup of G. [You may assume Exercise 24 in Section 9 .4.] 

II. If /is an automorphism of G and K is a Sylow p-subgroup of G, is it true that 
f(K) = K:! 

12. Let K be a Sylow p-subgroup of G and H any subgroup of G. Is K n H a 
Sylow p-subgroup of H! [Hint: Consider S4 .] 

13. If every Sylow subgroup of G is normal, prove that G is the direct product of 
its Sylow subgroups (one for each prime that divides IGD. A group with this 
property is said to be nilpotent. 

14. If p is prime, prove that there are no simple groups of order 2p. 

15. (a) If Hand K are subgroups of G, then HK denotes the set 
{hk E G I hE H, k E K}. If Hn K = (e), prove that IHKI = IHI · IKI. 
(Hillt: If hk = h1kl> then h1- 1h = k1k-1.] 

{b) If Hand Kare any subgroups of G, prove that 

IHKI = IHI·IKI 
IHnKI" 

16. If G is a group of order 60 that has a normal Sylow 3-subgroup, prove that 
G also has a normal Sylow 5-subgroup. 

17. If G is a noncyclic group of order 21, how many Sylow 3-subgroups does 
Ghave? 

18. If G is a simple group of order 168, how many Sylow 7-subgroups does 
Ghave? 

19. If p and q are distinct primes, prove that there are no simple groups of order pq. 

20. If G has order Ifm with m < p, prove that G is not simple. 

21. Prove that there are no simple groups of order 30. 

22. If p and q are distinct primes, prove that there is no simple group of order rq. 
23. (a) If IG1 = 105, prove that G has a subgroup of order 35. 

{b) If IG1 = 375, prove that G has a subgroup of order 15. 
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14. Let K be a Sylow p-subgroup of G and N a nonnal subgroup of G. Prow that 
K n N is a Sylow p-subgroup of N. 

C 25. If p, q, r are primes with p < q < r, prove that a group of order pqr has a 
normal Sylow r-subgroup and, henoo, is not simple. 

IZI Conjugacy and the Proof of the Sylow Theorems 

Appendix D (Equivalence Relations) is a prerequisite for this section. The proofs of the 
Sylow Theorems depend heavily on the concept of conjugacy, which we now develop. 

Let G be a group and a, bE G. We say that a is conJugate to b if there exists x E G 
such that b = x-1 ax. For example, (12) is conjugate to (13) in S1 because 

(123)- 1(12)(123) = (132X12)(123) = (13). 

The key fact about conjugation is 

Theorem 9,19 
Conjugacy Is an equivalence relation on G. 

Proof• We write a- b if a is conjugate to b. Rejkxive.· a- a since a= eae = e- 1ae. 
Symmetric: If a- b, then b = x-1ax for some x in. G. Multiplying on the 
left by x and on the right by x-1 shO'wsthata = xbx- 1 = (x- 1t 1bx-1• 

Hence, b -a. TTD11Sitive: If a - b and b - c, then b = x-1 ax and c = .,-• by 
for some x,y eG. Hence, c= y-1(x-1ax)y = ()r1:t1)a(xy) = (xyr1a(xy). 
Thus a - c; therefore, - is an equivalence relation. • 

The equivalence classes in Gunder the relation of conjugacy are called conJugacy 
classes. The discussion of equivalence relations in Appendix D shows that 

The conjugacy class of an element a consists of all the elements in G that are 
conjugate to a. 

Two conjugacy classes are either di~oint or identical. 

The group G is the union of its distinct conjugacy classes. 

EXAMPLE 1 

The conjugacy class of (12) in S3 consists of all elements x-~12)x, with x E ~­
A straightfOrward computation shows that for any x e S3, x- 1(12)x is one of 
(12), (13), or (23); for instance, 

(23)- 1(12)(23) = (23)(12X23) = (13) 

(132)-'(12X132) = (123X12)(132) = (23). 

Thus the conjugacy class of (12) is {(12), (13), (23)}. Similar computations show 
that there are three distinct conjugacy classes in ~: 

{(1)} {(123), (132)} {(12), (13), (23)}. 
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Although these conjugacy classes are of different sizes. note that the number of 
elements in any conjugacy class (1, 2, or 3) is a divisor of 6, the order of S3• We 
shall see that this phenomenon occurs in the general case as well. 

Let G be a group and a E G. The centralizer of a is denoted C(a) and consists of all 
elements in G that commute with a. that is, 

C(a) = {gEG I ga = ag}. 

If G = S3 and a = (123), for example, you can readily verify that C(a) = 
{(1}, (123), (132)} and that C(a) is a subgroup of S:;. If a is a nonzero rational number 
in the multiplicative group 0*, every element of~ commutes with a, oo C(a) is the 
entire group 0*. 1bese examples are illustrations of 

Theorem 9.20 
If G Is a group and a E G, then C(a) is a subgroup of G. 

Proof• Since ea = ae, we have e E C(a), so that C(a) isnonempty. If g, hE C(a), 
then 

(gh)a = g(ha) = g(ah) = (ga)h = (ag)h = a(gh). 

So gh E C(a), and C(a) is closed Multiplying ga = ag on both the left 
and right by g- 1 shows that ag-1 = g-1a. Hence, gE C(a) implies that 
g~lE C(a). Therefore, C(a) is a subgroup by Theorem 7.11. • 

The centralizer leads to a very useful fact about the size of conjugacy classes: 

Theorem 9.21 
Let G be a t1 nlte group and a E G. The number of elements In the conjugacy 
class of a Is the index [G:C(a)] and this number divides JG J. 

Proof• For notational convenience, we shall sometimes denote C(a) by C in this 
proof: Let S be the set of distinct right cosets of C in G, and let T be the 
conjugacy class of a in G (which consists of the distinct conjugates of a). 
Define afunctionfS~ Tbythe rule:f(Cx) = x-1ox. We shall show 
below that/is a well-defined bijection of sets, which means that Sand 
Thave the same number of elements. The number of elements inS is 
the number of distinct right cosets of C(a), namcly[G:C(a)], and the 
number of elements in Tis the number of distinct conjugates of a. This 
proves the first part of the theorem. As fOr the final part, the aumber 
[ G:C( a)] divides JG1 by Lagrange's Theorem 8.5 . 
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Now for the details: P&ading each of the following "if and only if" 
statements in the direction=> shows that/is well defined (meaning that 
Cx = Cy impliesj(Cx) = f( {))): 

Cx = Cy <:>xy-1EC 

<::> (xy-1)a = a(xy-~ 
~a= (xy'""'~-,1a(xy~ 
<=>a = yx-la:xy-1 

<::> y-1ay = x-lax 

~ f(Cy) = f(Cx) 

[.Theorem 8. 2] 

[Definition of q 
[Left multiply by (xy-1t 1.] 

[COrollary 7.6] 
[.Uft multiply by y- 1 and 
right multiply by y.] 

[Definition off] 

Reading these same statementli in the direction .... from bottom to top 
shows thatf(Cx) = /(Cy)implies Cx = Cy, sothatjis injective.* Finally, 
fis surjective because, given any conjugate u- 1au of a, it is the image of 
the coset Cu. Therefore, /is bijective and the proof is complete. • 

Let G be a finite group and let q, C:z, ... , C. be the distinct conjugacy classes of G. 
Then G = Ci U ~ U · · · U C~.- Since distinct conjugacy classes are mutually disjoint, 

(I) IGI = ICt U Cz U • · • U G1 = ICtl + ICzl + · · · + IC,I, 
where ICd denotes the number of elements in the class £:;.Now choose one element, 
say a, in each class Cj. Then G consists of all the conjugates of a,. By Theorem 9.21, 
ICJ is precisely I G:C(aJ], a divisor of IG1· So equation (I) becomes 

(l) IGI = JG:C(a1)J + JG:C(~)I + · · · + JG:C{a,)J. 
This equation (in eithervenion (I) or (l)) is called the class equation of the group G. It 
will be the basic tool for proving the Sylow Theorems. Other applications of the class 
equation are discussed in Section 9.5. 

EXAMPLE 2 

In Example 1 we saw that S 1 has three distinct conjugacy classes of sizes 1, 2, 
and 3. Since IS31 = 6, the class equation of Sl is 6 = 1 + 2 + 3. 

If c and x are elements of a group G, then ex = xc if and ollly if x-1cx = c. Thus cis 
in the center of G [ex = xc for every x E G] if and oDly if c has exactly one conjugate, i1self 
[x- 1cx: = cfor every XE G]. Therefore, the oonter Z(G) of Gis the union of all the one­
element conjugacy classes of G, so that the class equation can be written in a third form: 

(3) IGI = IZ(G)I + ICil + IGI + · · · + ICA, 
where CJ, ... , C,. are the distinct conjugacy classes of G that contain more than one 
element each and each ICd divides I Gl. 

In addition to the class equation, one more result is needed for the proof of the 
Sylow Theorems. 

•Tha reasons in the right-hand column above must be adjusted when reading from bottom to top 
(Exe n:ise 4), 
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Lemma 9.22 Cauchy's Theorem for Abelian Groups 
tf G is a f1 nite abel ian group and p is a prime that divides the order of G, then 
G contains an element of order p. 

The lemma is an immediate consequence of the Fundamental Theorem of Abelian 
Groups (Exercise 12 in Section 9.2). The following proof1 ho'\WVet, depends only on 
Chapters 7 and 8. 

Proof of lemma 9.22 .. The proof is by induction on the order of G, using the 
Principle of Complete Induction.* To do this, we must :first show that 
the theorem is true when IGI = 2 In this case, if p divides I Gl, then p = 2. 
The nonidentity element of G must have order 2 by part (1) of 
Corollaiy 8.6, and so the theorem is true. 

Now assume that the theorem is true for all abelian groups of order 
less than nand suppose 161 = n. Let a be any nonidentityelement of 
G. Then the order of a is a positive .integer and is therefore divisible by 
some prime q (Theorem 1.8), say Ia! = qt. The element b = d has order 
q by Theorem 7 .9. If q = p, the theorem is proved. If q ¢ p, let N be the 
cyclic subgroup (h). N is normal sinre G is abelian and Nhas order q by 
Theorem 7.1 S. By Theorem 8. 13 the quotient group Gj Nhas order 
IGVI-M = njq < n. Consequently, by the induction hypothesis, the theorem 
ia tmefor GjN. The primep divides IGI, andiGI = INIIGJNJ = qiGJN]. 
Sinreq is a prime other thanp,p must divide IG/1\01 by Theorem 15. 
Therefore, GjN contains an element of order p, say Nc. Since Nc has 
order p in Gj N, we have N cP = ( Ncf = Ne and, hence, c' E N. Sinre N 
has order q, c"' = ( c"f = e by part (2) of Corollary 8. 6. 

Therefore, c must have order dividingpq by Theorem 7.9. However, 
c cannot have order 1 because then Nc would have order 1 instead of p 
in GJN. Nor can c have orderq because then (Nc'f = Nd' = Ne in GjN, 
so that p (the order of Nc) would divide q by Theorem 7 .9. The only 
possibility is that c has order p or pq; in the latter case, c' has order p by 
Theorem 7 .9. In either case, G contains an element of order p. Therefore, 
the theorem is true for abelian groups of order n and, hence, by induc­
tion for all finite abelian groups. • 

Proofs of the Sylow Theorems 
We now have all the tools needed to prove the Sylow Theorems. 

Proof of the F1 rst S~ow Theorem 9.13 .. The proof is by induction on the order 
of G. If 161 = 1, then p 0 is the only prime power that divides IGI, and G 
itself is a subgroup of order p0

• Suppose 161 > 1 and assume inductively 
that the theorem is true for all groups of order less than IGI· Comhining 
the second and third forms of the class equation of Gshows that 

IGI = IZ(G)I + [G:C(aJJ + [G:C(Il;!)] + · · · + [G:C(a,.)J, 
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where for each i, ( G:C(aJ] > 1. Furthermore, IZ( G) I ~ 1 (since e E Z( G)), 
andiQ:aJI < 161 (otherwise, [G:C(aJ = 1). 

Suppose there is an index} such thatp does not divide (G:C(a1)]. Then 
by Theorem l.SJI' must divide I cta,)l because rl divides 161 by hypothesis 
and IGJ = IC(~) • (G:C(aj)] by Lagrange's Theorem. Since the subgroup 
C{"J) has order less than 101, the induction hypothesis implies that C(a1), 
and, hence, G has a subgroup of order/'. 

On the other hand, if p divides ( G:C(~)] for every i, then since p 
divides IGI,p must also divide 161- (G:C(a1)]- • • ·- [G:C(~)] = 
IZ(G)I. SinoeZ(G) is abclian,Z(G) contains an element c of order pby 
Lemma 9.22. LetNbe the cyt;lic subgroup generated by c. Then Nhas 
order pand is normal in G (E~ise 8). Consequently, the order of the 
quotient group Gj N, namely IGJ!p, is less than I GJ and divisible by .;-I. 
By the induction hypothesis GjNhas a subgroup Tof order pr1. There 
is a subgroup H of G sUt;h that N k: Hand T = H jN by Theorem 8.24. 
Lagrange's Theorem shows that 

IHJ = INI • IH!Nl = INI· ITI = p[l'-1 = P<. 
So G has a subgroup of order~ in this case, too. • 

The basic tools needed to prove the last two Sylow Theorems are very similar to those 
used above, ewept that we will now deal with conjugate subgroups rather than conjugate 
elements. More precisely, letHbe a fixed subgroup of a ~up Gandlet A and Bbe any 
subgroups of G. We say that A is H-oonjugate to B if there exists an x E H such that 

B = x-1Ax = {x-1ax I aE A}. 

In the special case when His the group G itself, we simply say that A is conjugate to B, 
or that B is a conjugate of A. 

Theorem 9.23 
Let H be a subgroup of a group G. Then H-conjugacy is an equivalence rela­
tion on the set of all subgroups of G. 

Proof~ Copy the proof of Theorem 9.19, using subgroups A, B, Cinplace of 
elements a, b, c. • 

Let A be a subgroup of a group G. The normalizer of A is the set N(A) 
defined by 

N(A) = {g EG lg-1Ag =A}. 

Theorem 9.24 
If A is a subgroup of a group G, then N(A) is a subgroup of G and A is a normal 
subgroup of N(A). 
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Proof ... Exercise 7 shows that A ~ N(A) and that g E N(A) if and only if Ag = gA. 
Using this fact, the proof of Theorem 9.20 can be readily adapted to prove 
that N(A) is a subgroup. The definition of N(A) shows that A is normal 
inN(A). • 

Theorem 9.25 
Let H and A be subgroups of a flnite group G. The number of distinct 
H-conjugates of A (that Is, the number of elements tn the equivalence class 
of Au nder H-conjugacy) is [H: H n N(A)J and, therefore, divides IHJ. 

Proof.,. The proof of Theorem 9.21 carries over to the present situation if you 
replace G by H, a by A, and C by H n N(A). • 

Lemma 9.26 
Let 0 be a Sylow p-.subgroup of a finite group G. If x E G has order a power of 
p and x_,Qx = 0, then xe 0. 

Proof ... Since Q is normal in N(Q) by Theorem 9.24, the quotient group N(Q)/Q is 
defined. By hypothesis, x E N(Q). Since Jxl is some power of p, the coset 
Qx in N(Q)/Q also has order a power of p. Now Qx generates a cyclic 
subgroup T of N(Q)/Q whose order is a power of p. By Theorem 8.24, 
T = HfQ, where His a subgroup of G that contains Q. Since the 
orders of the groups Q and Tare each powers of p and JHJ = 1Q1 • JTI 
by Lagrange's Theorem, JHJ must be a power of p. But Q ~ H, and 1Q1 
is the largest power of p that divides JGJ by the definition of a Sylow 
p-subgroup. Therefore, Q = H, and, hence, T= HfQ is the identity 
subgroup. So the generator Qx of Tmust be the identity coset Qe. The 
equality Qx = Qe implies that x E Q. • 

Proof of the Senond Sylow Theorem 9.15 ... Since K is a Sylow p-subgroup, X has 
orderp", where 1GJ =]I'm and p .f m. Let K = K1oK2 , ••• , K, be the dis­
tinct conjugates of Kin G. By Theorem 9.25 (with H = G and K = A), 
t = [G:N(K)]. Note that p does not divide t (reason: If'm = IGJ = 
JN(K)J· (G:N(K)] = JN(.Kl · t and p" divides JN(K)J because K is a subgroup 
of N(K)l We must prove that the Sylow p-subgroup Pis oonjugate 1o K, 
that is, that Pis one of the Kr To do so we use the relation of P-conjugacy. 

Since each K1 is a conjugate of K 1 and conjugacy is transitive, every 
conjugate of K1 in G is also a conjugate of K1. In other words, every con­
jugate of K1 is some Xr Consequently, the equivalence class of ~ under 
P-conjugacy contains only various Xr So the setS= {K~o K2, ••• 1 K;} 
of all conjugates of K is a union of distinct equivalence classes under 
P-conjugacy. The number of subgroups in each of these equivalence 
classes is a power of p because by Theorem 9.25 the number of sub­
groups that are P-conjugate to K1 is [P: P n N(K1)], which is a divisor of 
JPJ = P' by Lagrange's Theorem. Therefore, t (the number of subgroups 
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in the set S) is the sum of various powers of p (each being the n-..mbe:r of 
subgroups in one of the distinct equiw.lence classes whose union is S). 
Since p doesn't divide r, at least one of these powers of p must be ,11 = 1. 
Thus some ~ is in an equivalence class by itself, meaning that 
x-1KJX = K,forevery xEP. Lemma 9.26 (with Q = KJ implies that 
x EK; for every such x, so that P ~ K,.. Since both P and K 1 are Sylow 
p-subg:roups, they have the same order. Hence, P = K;. • 

Proof of the Third Sylow Theorem 9.17 ~Lets= {Kh ... 'K,} be the set of all 
Sylow p-subgroups of G. By the Second Sylow Theorem, they are all the 
distinct oonjugates of K,. The proof of the Second Sylow Theorem shows 
that t = [ G: N ( K1)], which divXies the order of G by Lagrange's Theorem. 

LetP be one of the K1 and consider the relation of P-<ODjugacy. The 
only P -oonjugate of P is P itself by closure. The proof of the Second Sylow 
Theorem shows that the only equivalence class consisting of a sn.gle sub­
group is the class wnsisting of P itself. The proof also shows that S j, the 
union of distind equivalence classes and that the number of subgroups in 
each class is a power of p. Just one of these classes contains P, so the num­
ber of subgroups in each of the others is a p!Mitil!e power of p.HerKx:, the 
n-..mber t of Sylow p-subgroups is the sum of 1 and various positiw powers 
of p and, therefore, can be written in the form 1 + kp for some integer k. • 

• Exercises 

NOTE: Unless stated othwwise, G is a finite group andp is a positive prime. 

A. 1. List the distind conjugacy classes of the given group. 

(c) A4 

2. If a E G, then show by example that C(a) may not be abelian. [Hint: If 
a = (12) in Ss, then (34) and (345) are in C(a ).] 

3. If His a subgroup of Gand a EH, show by example that the co~ugacy class 
of a in H may not be the same as the conjugacy class of a in G. 

4. Write out the part of the proof of Theorem 9.21 showing that/is injective, 
including the reasons for each step. Your answer should begin like this: 

f(Cy) = f(C x)~ y-1ay = x-1ax [Definition -off] 

~a = yx-1axy:"'1• [£¢multiply by y and right multiply by y-1.] 

5. List all conjugates of the Sylow 3-subgroup ((123)) in S4• 

6. If Hand K are subgroups of G and His normal in K, prove that K is a 
subgroup of N(H). In other words, N(H) is the largest subgroup of G in which 
His a normal subgroup. 

7. If A is a subgroup of G, prove that 

(a} A.: N(A); 

(b) g E N(A) if and only if Ag = gA. 
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8. ff N is a subgroup of Z( G), prove that N is a normal subgroup of G. 

B. 9. If Cis a conjugacyclas<~ in G andfis an automorphism of G, prove thatf(C) is 
also a conjugacy class of G. 

10. Let G be an infinite group and H the subset of all elements of G that have only 
a finite number of distinct conjugates in G. Prove that His a subgroup of G. 

11. If G is a nilpotent group (see Exercise 13 of Section 9.3), prove that G has 
this property: If m divides IGI, then G has a subgroup of order m. [You may 
assume Exercise 22.] 

12. Let K be a Sylow p-subgroup of G and N a normal subgroup of G. ff K is a 
normal subgroup of N, prove that K is normal in G. 

13. Prove Theorem 9.23. 

14. LetNbea normal subgroup of G, aE G, and Cthe conjugacy class of a in G. 

{a) Prove that a EN if and only if C~N. 

{b} ff C1is any conjugacy classinG, prove that C1 ,;;_ Nor C1n N= 0. 

(c) Use the class equation to show that IN] = IC\1 + · · · + !C.J, where C~o , .. , 
Ck are an the conjugacy classes of G that are contained in N. 

15. ff N :I- {e) is a normal subgroup of G and IGl = Jl', prove that N n Z( G) "¢ {e). 
[Hint: Exercise 14(c) may be helpful] 

16. Complete the proof of Theorem 9.24. 

17. ProveTheorem9.25. 

18. If Kis a Sylow p-subgroup of Gand His a subgroup that contains N(K), 
prove that [G:H) == I (mod p). 

19. If Kis a Sylow p-subgroup of G, prove that N(N(K)) = N(K). 

20. ff His a proper subgroup of G, prove that G is not the union of all the 
conjugates of H. [Hint: Remember that His a normal subgroup of N(H); 
Theorem 9.25 may be helpful.] 

21. ff His a normal subgroup of G and His a subgroup of G with rm "" ~' 
prove that His contained in every Sylow p-subgroup of G. [You may assume 
Exercise 24.] 

C. 22. If IGI = pt, prove that G has a normal subgroup of order Jl'-1
• [Hint: You may 

assume Theorem 9.27 below. Use induction on 11. Let N == (a) , where a E Z( G) 
has order p (Why is there such an dl); then GJ N has a subgroup of order po-2:, 
use Theorem 8.24.] 

23. If IGI = ]1', prove that every subgroup of G of order po-1 is normal 

24. ff H is a subgroup of G and H has order some power of p, prove that 
His contained in a Sylow p-subgroup of G. [Hint: Proceed as in the 
proofs of the Second and Third Sylow Theorems but use the relation of 
H-conjugacy instead of P-conjugacy on the set {K1, ... , K1} of all Sylow 
p-su bgroups.] 
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Ill The Structure of Finite Groups 

The tools developed in Sectiom 9.1-9.4 are applied here to various aspects of the 
dassification problem. ln particular, all groups of orders :5:15 are classified. We begin 
with some useful facts about p-groups. 

Theorem 9.27 
If G is a group of order pfl, with p prime and n ~ 1, then the center Z(G) 
contains more than one element. In particular.IZ(G)I = p" with 1 :so k. ;::;; n. 

Proof~ By Lagrange's Theorem, JZ( ~ = p., with 0 :5: k :5: ". We now show that 
k 2!: 1, that is, that IZ( G) 2!: p. Form (3) of the class equation (page 306) 
shows that 

IZ(G)I = IGI -lq -IC~ - ... - JC~ 

where each 1q is a number larger than 1 that divides IG~ SinceiiJI = jl', 
the divisors of IGIIarger than 1 are positive powers of p. Therefore, each 
1q is divisible by p. Since IGI is also divisible by p, it follows that p divides 
IZ( ~and, hence, IZC G~ 2!: p. • 

Corollary 9.28 
If pis a prime and n > 1, then there is no simple group of order p". 

Proof~ If Gis a group of orderj/', then Z(G) is a normal subgroup. 1f Z(G) * 
G, then G is not simple. H Z( G) = G, then G is abelian and not snnple by 
Theorem 8.25. • 

Corollary 9.29 
If G is a group of order p2, with p prime, then G is abelian, Hence, G is 
isomorphic to Z; or Z, X Zp. 

EXAMPLE 1 

By Corollary 9.29, every group of order 9 is tiomorphic to z, or z3 )( z3. 
Similarly, the only groups of order 169 = 132 (up to isomorphism) are Z169 and 
Z13 X Z13• 
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Proof of Cor~lary 9.29 .. Z( G) has order p or p 1 by Lagrange's Theorem and 
Theorem9.27. If Z(G) has orderp2, then G = Z(G), which means that 
G is abelian. If Z( G) has order p, then the quotient group Gj Z( G) has 
orderiGIJIZ(G)I = p 2jp = p by Theorem 8.13. Hence, GJZ(G) is cyclic by 
Theorem 8.7. Therefore, Gis abelian by Theorem 8.15. The last state­
ment of the theorem now follows immediately from the Fundamental 
Theorem of Finite Abelian Groups. • 

In Corollary 9.18 certain groups of order pq (with p, q prime) were characterized. 
We can now extend that argument to some groups of order p 2q. 

Theorem 9.30 
Let p and q be distinct primes such that q '#- 1 (mod p) and ,l.f:. 1 (mOd q), If G 
is a group of order p2q, then G is is crn CX"phic to Zpo~ or Zr, x Zr, x Zq. 

EXAMPLE 2 

Theorem 9.30 allows us to classify all groups of order 45. Note that 45 = 32 
• 5, 

and that 5 _. 1 (mod 3) and 31 _. 1 (mod 5). So if G is a group of order 45, 
then by Theorem 9.30 (withp = 3 and q = 5), G is isomorphic to~ or to 
Z3 X Z3 X Z5• Similar arguments may be used to classify groups of many differ­
ent orders, including 

99 = 9. 11, 153 = 9. 17, 

325 = 25 ·13, 

175 = 25. 7, 

539 = 49. 11. 

245 = 49. 5, 

Proof ofTheorem 9.30 .. By the Third Sylow Theorem, the number of Sylow 
p-subgroups of G is congruent to 1 modulo p and divides 1GJ. Since the 
divisors of IGI are 1. p, r, q, pq, and p 1q, the on1y possibilities are 1 and 
q. There cannot be q of them becallse q $ 1 (mod p). Hence, there is a 
unique Sylow p-subgroup H, which is normal by Corollary 9.16. Similarly, 
G has 1,p, or y Sylow q-subgroups, and neither p nor y is possible since 
.i • 1 (mod q). Hence, there is a unique normal Sylow q-:robgroup K. 
The order of the subgroup H n K must divide both l£:l1 = p1 and ~ = q by 
Lagrange's Theorem. Hence, H n K = {E!). Furthermore, HK = G 
by Exercise 15 in Section 9.3. Th~:refore, G = H X K by Theorem 9.3. 
Now His isomorphic to Zy. or z, X ~by Corollary 9.29 and K = z, 
by Theorem 8.7. Consequently, by L~ 9.8, G = H X K e 
Zr X "Z,_ e; Z1'9or G = HX Ke Z1 X Z1 X Z.,. • 

Corollary 9.31 
If p and q are distinct primes, then there is no simple group of order p2q. 
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Proof .. Suppose G is a group of order p'-q. If either; • 1 (mod q) or q.;. 1 
(mod p), then the proof of Theorem 9.30 shows that G has a normal 
Sylow subgroup and, hence, is not simple. If both p~ ,.... 1 (mod q) and 
q = 1 (modp), then q l(p1 -1) andp l(q- 1), which implies thatp:S 
q- 1 or, equivalently, q :<!: p + 1. Since _I - 1 = (p- 1)(p + 1), we 
know that q I (p - 1) or q I (p + 1) by Theorem 1.5. The former is impos­
sible because q :l!: p + 1, and the latter implies that q :S p + 1, so that 
q = p + 1. Since p and q are primes, the only possibility is p = 2 and 
q = 3. Exercise 2 shows that no group of order 21 • 3 = 12 is simple. • 

Dihedral Groups 
We now introduce a family of groups that play a crucial role in the classification of 
groups of order 2p. RecaJl that the group D4 consists of various rotations and reflections 
of the square (see Section 7.1 or 7 .l.A). This idea can be genenilized as follows. Let P 
be a regular polygon of n sides (n :?.: 3). * For convenient referenoo, assume that P has its 
center" at the origin and a w:rtex on the negative x-axis, with the other w:rtices =ben:d 
counterclockwise from this one, as illustrated here in the casesn = Sand n = 6. 

Think of the plane as a thin sheet of hard plastic. CUt out P, pick it up, and replace it, not 
oea:ssarily in the same position, but so that it fits 8'taCtly in the cut-out space. SUch amotion 
is called a symmetry of p,t By considering a symmetry as a function from P to itself and 
using composition of functions as the opentDn (g( means motion f follei\Wd by motion g), 
the set D, of all symmetries of P forms a group, caJled the dWedral group of deg:nle n. 

Theorem 9.32 
The dihedral group Dn is a group of order 2n generated by elements rand d 
such that 

lrl= n, ldl=2, and dr = r-1d. 

Proof .. The proof that D~ is a group is left to the reader. let r be the counter­
clockwise rotation of 360jn degrees about the center of P;r sends 
vertex 1 to vertex 2, vertex 2 to vertex 3, and so on. Note that r has 

• "Rep~hr" meansthatallsides of P have the same length and all its vertex angles (each formed by 
two adjacentsides) arethesa mesize.lt can beshownthatthe J!erpendicular bisectors of then sides 
a II intersect at a single point, which is called the center of P. 

tAll motions th11t result in the same fin11l position for P ~~reconsidered to be the same. 
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order n because r' is a 360., rotation that returns P to its initial position 
(the identity symmetiy). Let d be the reflection in the x-axi& As shown in 
the following figure, d "reverses the orientation" of P: vertices that were 
formerly numbered counterclockwise from vertex I are now numbered 
clockwise: 

)' )' 

6 5 d 2 .----...... 
4 X 

6 5 

The element dhas order 2 because reftecting twice in the x-axis also 
returns P to its initial position. 

Since adjacent vertices of P remain adjacent under any symmetiy, 
the final position of P is completely determined by two factors: the 
new orientation of P (whether the vertices are numbered clockwise 
or counterclockwise from vertex 1) and the newlocationofvertex 1. 
Consequently, every symmetry is the same as either 

or 

r'd 

Therefore 

(0 s i < n) 

(0 s i < n) 

[Cownterclockw~ rotation ofi(360jn) 
degrees that preserves ommtatwn and 11Wl'es 

Vertex 1 to the po!ition origihally occupi£d by 
Vertex i + 1] 

[Reflection ill the x-axis tJwt reverses 
orientation folio wed by a counterclockwise 
rotatinh tJwt moves Vertex 1 to the position 
originally occupied by vertex i + 1] 

D,. = {e = P, r, "'· ••. , r 1
; d = ,Jld, rd, ?-d, . .. ' .... -1d}. 

Furthermore, the 2n elements listed here are all distinct (1" and ,I move 
vertex 1 to different positions and r = rid is impossible since r preserves 
the vertex orientation, but rid reverses it). Hence, D,. is a group of order 2n. 

Finally, verity that drd moves vertex 1 to the position originally 
occupied by vertex n and leaves the vertices in counterclockwise order. 
In other words, drd is the rotation that moves vertex 1 to vertex n, that 
is, drd = t"-1, Since r has order n, r-1 = ,....-1 and, hence, drri = r~1 • 
Multiplying on the right by d shows that dr = r-Id. • 

We can now classifY another family of groups. 

Theorem 9.33 
lf G is a group of order 2p, where pis an odd prime, then G is isomorphic to 
the cyclic group "Lq, or the dihedral group DP' 
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EXAMPLE 3 

Theorem 9.33 can be used to classify all groups of orders 6, 10, 14, 22, 26, 34, 
etc. For instance, every group of order 22 is isomorphic either to ZZ2 or Dll, 
and every group of order 38 is isomorphic either to Zjl or D 19' Theorem 9. 33 
also Jrovides a second proof that there are exactly two nonisomorphic groups 
of order 6. (See Theorem 8.9 for the first proo£) 

Proof of Theorem 9.33 ... G contains an element a of order p and an element b of 
ruder 2 byCauclty's Theorem(Corollary9.14). Note that b1 = eimplies 
h-1 = b. Let Hbe the cyclic group (a). Since IGI = 2p, the subgroup 
Hbas index 2 and is, therefOre, normal by Exercise 23 of Section 8.2. 
Consequently, bah= bah-! EH. Since His cyclic, bah= d for some t. 
Using this and the fact that I? = e, we see that 

a''= (cl)t =(bah)'= (bab)(bab)(hah) ···(bah) = ba'b = b(bah)b =a 

Hence, r-,.. 1 (mod p) by part (2) of Theorem 7.9. Consequently, 
p divides r- 1 = (t- l)(t + 1), which implies that PI (t- 1) or p l(t + 1) 
by Theorem 1.5. Thus t = 1 (mod p) or t = -1 (mod p). 

If t = 1 (modp), thenbab = a1 =a by Theorem 7.9. Multiplying 
both sides by b shows that ba = ab. It follows that ab has order '1p = I Gl 
(Exercise 33 of Section 7.2). Therefore, Gis cyclic and isomorphic to Z2p 
by Theorem 7.19. 

If t = -1 (mod p), then bah = a.-1
• Exercise 9 shows that the map 

f:D,4 G given by f(-,ld'} = dbl is a homomorphism. LetKbethe 
subgroup (b). Since ~ = p (with p odd) and IKI = 2, H n K = (e) by 
Lagrange's Theorem and G = HK by Exercise 15 in Section 9.3. Thus 
every element of G can be written in the form dbi, which implies thatf 
is stuj ective. Since D P and G have the same order,f must be injective and, 
hence, an isomorphism. • 

Groups of Small Order 

We are now in a position to complete the classification of groups of small order that 
was begun in Section 8.1, where groups of orders s 1 were classified. We already 
know three abelian groups of order 8 (Z2 X Z2 X Z2, ~ X Z2, and ZiJ and one nona­
belian one (D4). Another nonabelian group of order 8, the quaternion group Q, was 
introduced in Exercise 16 of Section 7.1. It is not isomorphic to D4 by Exercise 47 of 
Section 7 .4. These five groups are the only ones: 

Theorem 9.34 
If G is a group of order 8, then G is isomorphic to one of the following groups: 
Za, ~X Z2, ~X Z~ X Z'1o the dihedral group D4, or the quaternion group Q, 
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Proof .. If G is abelian, then G is il!omorphic to 4 ~ X Za. or z1 X z2 X z1 by the 
Fundamental Theorem of Finite Abelian Groups. So suppose G is a nona­
belian group of order 8. The nonilentity elements of G must have order 2, 
4, or 8 by Lagrange's Theorem. However, G cannot contain an element of 
order 8 (because then G would be cyclic and abelian), nor can all the non­
identity elements of Ghave order 2 (see Exercise 27 of Section 7.2). Hence, 
G contains an element a of order 4. Let b be any element of G such that 
b f1. (a) = { e, a, ti, d}. Then the eight elements e, a, ti, a 3, b, ah, db, db 
are all distinct because lal = 4 and d = alb implies b = ,J-1 E (d), rontrary 
to the choice of b. Thus G= {e,a,cf,d, b, ab,dlb,db}. 

Thesubgroup(a) has order4and iniex 2 in G. Hem; (dj is normal by 
Exercise 23 of Section 82. Now the element bah-t has order 4 by Exercise 19 
of Section72andbab-1 E{a) by normality. TherefOre, bah-t is eitheraord 
{beciuse e has order 1 and QL has order 2). If balr1 = a, however, then 
ha = ab, wbiW imp lie:> that G is iibelian. "''m:rettre, bah -I = J '="' a -I ~ that 
ha = a-1b. 1bis fact can be used to construct most of the multiplntion table 
of G. Forinstance,(ab)rr = dfta)a = a._a-1b}a = fxl = a-1b = ctb. You can 
use similar arguments to wrifythat the taHe Il1l.IS1: look like this: 

e a a2 d b ah a2b alb 

e e a a1 d b ab a2b db 

a a t1 a3 e ab tib a3b b 

t1 Ql d e a tib a1b b ab 

d til e a a1 tfb b ab tlb 

b b db Qlb ah 

ab ah b a3b d-b 
a2b tl-b ab b alb 

a1b db dlb ah b 

In order to complete the table, we must find~. Since~= a1b implies b 
= dE (a), which is a contradi;tion, I? must be one of e, a, al, or d. If I? 
= a, however, then ab = b1b = bb1 = ba, which implies that G is abelian. 
Similarly,~ = til implies that G is abelian (Exercise 15). Therefore, b1 = 
e or ~ = til. Each of these possibilities leads to a different table for G. 
Completing the table when ~ = e and comparing it to the table for D4 in 
Example I of Section 8.2 shows that G e D4 under the coro:spondence 

d~r11 b----+-d, ab-h, db---+ t, alb- u 

(Exercise 4). Similarly, completing the table when~ = .Ql and comparing it 
to the table for the quaternion group Q shows that G • Q (Exercise 5). • 

According to the Fundamental Theorem of Finite Abelian Groupi there are two 
abelian groups of order 12: ~ X Z3 e Zu and Z1 X Z1 X Z,. We have also seen two 
nonabelian groups of order 12: the alternating group ..4.._ and the dihedral group n,. It 
can be shown that there is a third nonabelian group T of order 12, which is generated 
by elements a and b such thatlal = 6, ~ = d, and ba = a-1h and that no two of these 
three nonabelian groups are isomorphic (Exercise 16). 
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Theorem 9.35 
If G is a group of order 12, then G is isomorphic to one of the following groups: 
Z,2, Z2 X Z2 X ~. the alternating group~ the dihedral group 06, Or the 
group T described in the preceding paragraph. 

Proof ... An argument similar to the proof of Theorem 9.34 can be used to prove 
the theorem. See Theorem 11.6.4 in Hungerford [5]. • 

The pxeooding results provide a complete classification of all groups of order:~ :S 15, 
that is, a list of groups such that every group of order :S 15 is isomorphic to exactly one 
group on the list 

ORDER GROUPS REFERENCE 
2 Z2 Theorem 8.7 

3 z] Theorem 8.7 

4 z.. Z:J. x Z2 Theorem 8.8 

5 Zs Theorem 8.7 

6 "4,, s3 Theorem 8.9 

7 Z-t Theorem 8.7 

8 z,, z. x z2. Z:J. x Z2 x z2. n.., Q Theorem 9.34 

9 ~.zlxz] Corollary 9.29 

10 Zto,Ds Theorem 9.33 

ll Zu Theorem 8.7 

12 Zu, Z2 X Z2 X Z1, A.., D~, T Theorem 9.35 

13 z,] Theorem 8.7 

14 Z1,..n1 Theorem 9.33 

15 Zu Corollary 9.18 

This list could be continued to order 100 and beyond. For more than half of the 
orders between 2 and 100, the techniques presented above provide a complete clas­
sifk:ation of groups of that order (Exercise 6). For other orders, however, a great deal 
of additional work would be necessary. For instance, there are 14 different groups of 
order 16 and 267 of order 64. There is no known formula giving the number of distinct 
groups of order n. 

• Exercises 

A. 1. If pand q are primes withp < qand q.;: l (modp) and Gisa group of order 
p1q, prove that G is abelian. 

2. Prove that there is no simple group of order 12. [Hint: Show that one of the 
Sylow subgroups mmt be normal.] 

3. Prove that~ is isomorphic to ~. 
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4. (a) In the proof of Theorem 9.34, complete the operation table for the group 
Gin the case when b2 =e. 

(b) Show that G = D4 underthecorrespondence 

a1---+ r1, b ---+ d, ah ---+ h, a2b ---+ t, a3b ---+ v 

by comparing the table in part (a) with the table for D4 in Example 1 of 
Section 8.2. 

5. (a) In the proof of Theorem 9.34, complete the operation table for the group 
Gin the case when b2 = al. 

(b) Show that G = Q under the correspondence 

a'IT---+ i'j• (0 :s; r ~ 3, 0 :s; s ~ 1) 

by comparing the table in part (a) with the table for Q (see Exercise 16 in 
Section 7.1). 

6. Theorems 8.7, 9.7, 9.30, and 9.33, and Corollaries 9.18 and 9.29 are sufficient 
to classify groups of many orders. List all such orders from 16 to 100. 

B. 7. If G is a group such that ewry one of its Sylow subgroups (for every prime p) is 
cyclic and normal, prove that G is a cyclic group. 

8. Let ll ~ 3 be a positive integer and let G be the set of all matrices of the forms 

G ~) or withaeZ,. 

(a) Prove that G is a group of order 2n under matrix multiplication. 

(b) Prove that G is isomorphic to D,.. 

9. Complete the proof of Theorem 9.33 by showing that when bah : a -I, the 
mapfiDp-+ G given by f(rdl) = dbl is a homomorphism. [Hint: bah= a-1 is 
equivalent to ba = a-1b. Use this fact and Theorem 9.32 to compute products 
in GandDp-] 

tO. Prove that the dihedral group D6 is isomorphic to S3 X Z2. 

It. (a) If ll = 2k, show that ,.tis in the center of D~. 

(b) If ll is even, show that Z(DJ = {e, ,.l}. 
(c) If ll is odd. show that Z(DJ = {e}. 

12. ln Theorem 9.32, r is used to denote a rotation. To avoid confusion here, r will 
denote the 60° rotation in D~ and r will denote the 120° rotation in D]. The 
proof of Theorem 9.32 shows that the elements of D6 can be written in the 
form "dl, and the elements of D3 in the form r1d/. 

(a) Show that the function rp:D6 .....:,. ~given by tp(ridl) = ?dlis a surjecti-ve 
homomorphism, with kernel {,.0, r3

}, 

(b) Prove that D6 /Z(D6) is isomorphic to D3, [Hillt: Exercise 11.] 

13. What is the center of the quatemion group Q'1 

14. Show that every subgroup of the quaternion group Q is normal. 
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15. If G is a group of order 8 generated by clements a and b such that [a[ "" 4, 
b fl. (a), and I?=~. then G is abelian. [This fact is used in the proof of 
Theorem 9.34, so don't use Theorem 9.34 to prove it.] 

16. Let G be the group~ X~ and let a= ((123), 2) and b = ((12), 1). 

(a) Showthat rl = 6, b2 = dl, and ba = a-1 b. 

(b) Verify that the set T= {e = tf, d, a2, ~. a4, tf, b,db, a'Zf>, a3b, a4b, trb} 
consists of 12 distinct elements. 

(c) Show that Tis a nonabelian subgroup of G. (Hmt: Use part (a) and 
Theorem 7.12] 

(d) Show that Tis not isomorphic to D6 or to A 4• 

17. Let n be a composite positiw integer and p a prime that divides n. Assume 
that 1 is the only divisor of 11 that is congruent to 1 modulo p. If G is a group 
of order n, prove that G is not simple. 

18. If G is a sim pie group that has a subgroup K of index n, prove that IGI 
divides n!. (Hmt: Let T be the set of distinct right co sets of K and consider 
the homomorphism ~p:G---. A(1) of Exercise 41 in Section 8.4. Show that rp is 
injectiw and note that A(1) s S11 (Why?).] 

C. 19. Classify all groups of order 21 up to isomorphism. 

20. Gassify all groups of onier 66 up to isomorphi51I1. 

21. Prove that there is no simple nonabelian group of onier less than 60. 
[Hint: Exercise 18 may be helpful.] 
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Arithmetic in Integral Domains 

In Chapters 1 and 4 we saw that the ring Z of integers and the ring F[x] of polynomi­
als over a field F have very similar structures: both ha'.e division algorithms, great­
est common divisors, and unque factorization into primes (irreducibles). In this 
chapter we find conditions under which these properties carry over to arbitrary 
integral domains, with particular emphasis on unique factorization. 

Unique factorization turns out to be closely related to the ideals of a domain. On 
the one hand, unique factorization is not possible unless the principal ideals of the 
domain satisfy certain conditions (Section 10.2). On the other hand, ideals can be 
used to restore a kind of unique factorization to some domains that lack it. Indeed, 
ideals wereoriginally invented just for this purpose, as we shall see in Section 10.3. 

Section 10.4 (The Field of Quotients of an Integral Domain) is independent of 
the rest of the chapter and may be read at any point after Chapter 3. Sections 10.2 
and 10.3 depend on Chapter 6, but the rest of the chapter may be read after 
Chapter4. 

The interdependence of the sections of this chapter is shown below. The 
dashed arrows indicate that Sections 10.2, 10.3, and 10.5 depend only on the f1rst 
part of Section 10.1 (pages 322-324) and that Section 10.5 uses only three results 
in Section 1 0.2, all of which can be read independently of the rest of that sect ion . 

.,..10.2_ 
,,'' ----... 

10.1<:' O.S ...... 
........... 10.3 

10.4 

A shortened version of Sections 10.1 and 10.2 that contains all the basic informa­
tion may be obtained by omitting the last parts of each of these sections (see the 
notes on pages 32> and 337). 

321 
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1111 Euclidean Domains 

In early chapters we analyzed the structure of Z and the polynomial ring F[x] by using 
divisibility, units, associates, and primes (irreducibles). We begin by defining these con­
cepts in the more general setting of an integral domain.* 

Throughout this chapter, R is an integral domtlin. 

Let a, br= R, with a nonzero. We say that a dh'ides h (or o:1 is a factor of h) and write 
a I b if b = ac for some c E R. Recall that an element u in R is a unit provided that 
uv = IR for some v E R. Thus the units in R are precisely the divisors of ~-

EXAMPLE 1 

The only unit-:> in Z are I and -1. IfF is a field, then the units in the polyno­
mial ring F[x] are the nonzero constant polynomials (Corollary 4.5). 

EXAMPLE 2 

The setZ[\12] == {r + sVllr, s-r=Z} is a subringof the real numbers (Exercise 1). 
The element 1 + \12 is a unit in Z[v'zi because 

(1 + V2)(-1 + '\1'2) '""' 1. 

The ring in the ~g example is one of many similar rings that will frequen1lybe 
used as examples later. If dis a fixed integer, then it is easy to verifY tha the !let Z["\\d] 
= {r + sv'd I r, s r=Z} is an integral domain that is contained in the complex numbers. If 
d <2: 0, then Z[\ld] is a subring of the real numbers (Exercise 1 ). When d = -1, then the 
ringZ['\f'=T] is usually denoted Z[1} and is called the ring of Ga~an integers. 

Remark Let u E R be a unit with inverse v, so that uv = 1R. For any b E R we 
haveu(vb) = (uv)b = I~= b. Therefore. 

a tmit divides every element of R 

An element a E R is an associ ate of bE R provided a == bu fOr some unit u. Now, u 

has an inverse, say uv = lR> and vis also a unit. Multiplying both sides of a= bu by v 
shows that cro = buv = blR =b. Use these facts to verifY that 

a is an a~iate of b if and only if his an associate of a 

and 

a nonzero element of R is dh·isible by each of its ~ociates. 

•The basic d ef initio ns apply in any commutative r i ng with identity. We restrict our attention to 
integral domains bocause most ofthetheoremsfail in nondomains. 
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EXAMPLE 3 

Every nonzero integer n has exactly two associates in z; nand -n. If Fis a 
field, the associates of f(x) EF[x] are the nonzero oonstant multiples of f(x). 
In the ring Z[v'2], the elements v'2 and 2 - v'2 are associates because 
V2 = (2 - V2)(1 + Vi) and 1 + V2 is a unit by Example 2. 

A nonzero element pER is said to be irreducible provided that p is not a unit and 
the only divisors of p are its associates and the units of R. 

EXAMPLE .f 

The irreducible elements in Z are just the prime integers because the only divi~ 
sors of a prime pare ±p (its associates) and ±1 (the units in Z). The definition 
of irreducible given above is identical to the definition of an irreducible polyn~ 
mial in the integral domain Fix], when Fis a field (see Section 4.3). In Section 10.3 
we shall see that 1 + i is irreducible in the ringZ[I]. 

The next theorem is usually the easiest way to prove that an element is irreducible 
and issometimesusedas a definition. Theorem 4.12 is the special case when R = F[x]. 

Theorem 10.1 
Letp be a nonzero, non unit element in an integral domain R.Trenp is irreducible 
if and on I y if 

whenever p :=:: rs, then r or s is a unit. 

Proof~ If pis irreducible and p = rs, then r is a divisor of p. So r must be either 
a unit or an associate of p. If r is a unit, there is nothing to prove. If r is 
an associate of p, say r :=:: pv, then p = rs = pvs. Cancelingp on the two 
ends (Theorem 3. 7) shows that lR :=:: vs. Therefore, s is a unit 

To prove the oonverse, suppose p has the stated property. Let c be any 
divisor of p, say p = cd. Then by hypothesis either c or dis a unit. If d 
is a unit, then so is a 1

• Multiplying both sides of p = cdby a 1 shows 
that c = tilp. Thus in every case cis either a unit or an associate of p. 
Therefore, p is irreducible. • 

Euclidean Domains 
The Division Algorithm was a key tool in analyzing the arithmetic of both Z and 
F{x]. So we now look at domains that have some kind of analogue of the Division 
Algorithm. To sec how to describe such an analogue, note that the degree of a poly~ 
nomial in F[x] can be thought of as defining a function from the noo.zero polynomials 
in F{x] to the nonnegative integers. By identifying the key properties of this function 
we obtain this 
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Definition An integral domain R is a Euclidean domaln if there is a function 8 from 
the nonzero elements of R to the nonnegative integers with these properties: 

(i) If Ci and bare nonzero elements of R, then 8(a) :5: a{ab). 

(i i} tf a, b eR and b * oR> then there exist q, r e R such that a == bq + r 
and either r ==On or"(r) <IJ{b). 

EXAMPLE 5 

IfF is a field, then the polynomial domain F[x] is a Euclidean domain with 
the function 8 given by 8 (f(x)) = degree of f(x). Property (i) follows from 
Theorem 4.2 because 

B(f(x)g(x)) = degf(x)g(x) = deg.f(x) + deg g(x) 

~ degf(x) = B(f(x)), 

and property (ii) is just the Division Algorithm (Theorem 4. 6). 

EXAMPLE 6 

Z is a Euclidean domain with the function 8 given by B(a) = lal· Property (i) 
hokls because fabl =tal fbi ~ lal for all nonzero a and b. If a, b eZ, with b > 0, 
then by the Division Algorithm (Theorem 1.1) there are integers q and r such that 
a = bq + rand 0 :5: r < b. Either r = 0, or rand b are both positive::, in which 
case, B(r) = lrl ""r < b = lhl = B(b). Therefore, property (ii) holds when b > 0. 
Fbr the case when b < 0, see Exercise 9. 

EXAMPLE 7 

We shall prove that the ring of Gaussian integers Z[i] = i.f + ti f s, teZ} is a 
Euclidean domain with the function .5 given by 8(9 + tJ) = s + fl. Since s + ti = 0 if 
and only if both s and tare 0, we sw that B(s + 11) ~ l when s + ti ¢: 0. Verify 
thatfor any a= s + ti andb = -u +vi in Z[i], 8(ab) = li(a) B(b) (Exercise 11). 
Then when b -:# 0 we have -

B(a) = B(a) • 1 :5: 8(a)8(b) = B(ab), 

so that property (i) holds. If b oF 0, verify that afb is a complex number that can 
be written in the form c + di, where c, de 0! (Exercise 11). Since cE 0!, it lies 
between two consecutive integers; and similarly for d. Hence, there are integers 
m and n such that 1m - cl :5: 1/2 and In - df :5: 1/2. Since afb = c + di, 

a= b[c + di] = b((e- m + m) + (d -11 + n)i] 

= b[(m + ni) + ((c - m) + (d- n)xJ] 

= b[m + ni] + b[(c - m) + (d- n)i] 

= bq + r, 
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where q = m + ni EZ[i] and r = h[(c- m) + (d- n)l]. Since r =a- bq and a, 
b, q E Z[i], we see that r EZ[i]. Property (iQ holds because 

S(r) = S(b)S[(c- m) + (d- n)i] = J:i(b)[(c- m)2 + (d- n):l:_j 
:s B(b)[(l/2f + (1/2)~ = (1/2) · B(b) < lJ(b). 

NOTE: The remaindero f this section is optionaL The development here is 
elementary and assumes only the basic facts about ring"i in Section 3.1. A 
more sophisticated approach is presented in Section 10.2, where ideals are 
used to develop the key facts about a wider class of domains that includes 
Euclidean domains as a special case. Thus this section develops some re­
markably strong results with a minimum of mathematical tools, whereas 
Section 10.2 obtains the same results more efficiently in a wider setting. 

1t is possible that a given integral domain may be made into a Euclidean domain 
in more than one way by defining the function 8 differently (see Exercises 12 and 13). 
Whenever the Euclidean domains in the preceding cx.amples are mentioned, ho'WeYer, 
you may assume that the function B is the one defined above. 

ln F(x], the units are the polynomials of degree 0 (Coro1lary 4.5), that is, the poly­
nomials that have the same degree as the identity polynomial IF' Furthermore, if k is 
a constant (unit in F[x]), thenf(x) and k/(x) have the same degree. Analogous facts 
hold in any Euclidean domain. 

Theorem 10.2 
Let R be a Euclidean domain and u a nonzero element of R. Then the following 
conditions are equivalent: 

(1) u is a unit 

(2} lJ(u) = B(1R)• 

(3) B(c) = 8(uc} for some nonzero CE R. 

Proof .. (1) ~ (2) Exercise 15. 

(2) ~ (3) Statement (3) holds with c = IR because B(I.Rl = IJ(u) = B(u • 1~. 

(3) ~ (1) According to (ii) in the definition of a Euclidean domain (with c 
and uc in place of a and h), there cx.ist q, r E R such that 

c = (uc)q + r and either r =OR or lJ(r) < 8(uc). 

If B(c) :s 8(uc), then by part (i) of the definition (with c and IR- uq in 
place of a and b) and statement {3), 

B(c) :s lJ(c(J..R- 1MJ)) = 8(c- ucq) = IJ(t) < lJ(uc) = IJ(c), 

so that o( c) < IJ( c), a contradiction. Hence, we must have r = 0 R· Thus 
c = (uc)q, which implies that lR = uq. Therefore, u is a unit. • 
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Definition 

In the remainder of this section we shall develop the basic facts about greatest com­
mon divison~, irreducibles, and unique factorization in Euclidean domains. The devel­
opment here parallels the ones given in Chapter I for l and in Chapter 4 for F[x] and 
most of the arguments are the same ones used there, with appropriate modifications. 
Alternatively, the major results in Sections 1.2-1.3 and 4.2--4.3 may be considered as 
special cases of the theorems proved here. 

Greatest Common Divisors 
The integers are ordered by s: and polynomials in F[x] are partially ordered by their 
degrees. This made it natural to define greatest common divisors in these domains in 
terms of size ordegr=. The same idea carries over to Euclidean domains, where "size" 
is measured by the function 8. 

Let R be a Euclidean domain and a, b ~R (not both zero}. A greatest 
common divisor of a and b is an element d such that 

{I) d I a and d I b; 

(li) ff r; I .a and r; 1 b, then ll(~) s B(d). 

Any two elements of a Euclidean domain R have at least one common divisor, 
namely lR. If c j a, say a = ct, then B(c) s 8(ct) = 8(a), Consequently, every common 
divisor c of a and b satisfies 8(c) s max {8(a), B(b)}, which implies that there is a 
common divisor of largest possible 8 value. In other words, greatest common divisors 
always exist. 

When gcd's were defined in Z and F[x], an extra condition was included in each 
case: The gcd of two integers is the positive common divisor of largest absolute value 
and the gcd of t'M> polynomials is the monic common divisor of highest degree. These 
extra conditions guarantee that greatest common divisors in Z and F[x] are unique. 
In arbitrary Euclidean domains there are no such extra conditions and greatest com­
mon divisors are not unique. Thus the preceding definition is consistent with, but not 
identical to, what was done in Z and F[x]. 

EXAMPLE 8 

Z is a Euclidean domain with 8(a) = lal. Under the preceding definition, 2 :is 
the gcd of 10 and 18 just as before. However, -2 also satisfies this definition 
because -2 divides both 10 and 18 and any common divisor of 10 and 18 has 
absolute value s: ]-2]. Note that the greatest common divisors 2 and - 2 are 
associates in L 
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Theorem 10.3 
let R be a Euclidean domain and a, b ER (not both zero), 

{1} tf dis a greatest common divisor of a and b, then every associate of 
d is also a greatest com man divisor of a and h. 

(2) Any two greatest com man divisors of a and b are associates. 

{3} Jf dIs a greatest common divisor of a and b, then there exit u, VER 

such that d =au+ bv. 

Proof ... Ct) Exercise 16. 

We now find a particular greatest common divisor of a and b that will 
then be used to prove statemln.tS (2) and (3). Let 

S = {il(w) I OR :F wER and w = cu + bt for someJ, tER}. 

Since at least one of a= aiR+ bOR and b = aOR + biR ill nonzero by 
hypothesis. Sis a nonempty set of nonnegatiw integers. By the Well­
Ordering Axiom, S contains a smallest element, thai is, there are 
elements d*, u*, u* of R su:h that d* = au* + bu* and 

(A) fur every nonzero w of the form aJ + br (with s, t ER), iJ(d*) s il(w). 

We claim that d* is a greatest common divisor of a and b. To prove 
this we first show that d* I a. By the definition of Euclidean domain, 
there are elements q, r such that a = d*q + rand either r =OR or 
iJ(r) < iJ(d*). Note that 

r = a - d*q = a - (au* + bv*)q 

= a- aqu* - btJ*q =a(~ - qu*) + b(-vtq). 

Thus r is a linear combination of a and b, and, hence, we cannot have 
il(r) < iJ(d*) by (A). Therefon; r = OR, so that a = d*q and d* I a. A similar 
argument shows that d* I b and. hence, d* is a common divisor of a and b. 

Let c be any other common divisor of a and b. Then a = cs and b = ct 
for somes, IE R and hence 

(B) d* = au* + bV* = (cs)u* + (ct)v* = c(.ru* + tv*). 

Thus by part (i) of the definition of Euclidean domain il(c) s 
il(c(su* + tv*)) = iJ(d*). Therefore, d* is a greatest common divisor of 
a and b. Note that (B) also shows that 

(C) every common divisor c of a and b divides d*. 

This completes the preliminaries. We now prove the rest of the theorem. 

(2) Let d be any greatest common divisor of a and b. Sinoe d divides 
both a and band d* is a greatest common divisor, we must have iJ(d) s il( d*) 
by part (ii) of the definition. The same definition with the roles of d and 
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d* reversed shows that B(d*) s B(d). Hence, lJ(d) = B(d*). By (C) we 
know that dId*, say d* = dk. Therefore, B(d) = B(d*) = B(Jk). Hence. k 
is a unit by Theo1m1 1 0.2 and dis an associate of J-. Since every gcd is 
an associate r.X d*, any two of them must be associates r.X each other by 
Exercise 6. 

(3) If dis a greatest common divisor of a and b, then as we saw in the 
previous paragraph d* = dk, with k a unit. Since d* = au* + bv*, we have 

d = d*k-1 = (au* + bv*)k-1 = o(u*k-1) + b(v*k-1). 

Hence, d = au+ bv, with u = u*lc-1and v = v*k-1• • 

Corollary 10.4 
Let R be a Euclidean domain and a, b t.R (not both zero). Then dis a greatest 
common divisor of a and b if and only if d satisfies these conditions: 

(i) d I a and d I b; 

(ii) if c I a and c I b, then c I d. 

Proof.,. If dis a greatest common divisor of a and b, then d satisfies (i) by defini­
tion. Suppose cis a common divisor of a and b. Let d* be as in ( **,.) in 
the proof of Theorem 10. 3. Then c I d*, say d* = ct. Furthermore, d" is 
an associate of d byTheon::m 10.3 so that d* = dk, with k a unit. Hence. 
d = d*lc-1 = (ct)lc-1 = c(tlc-1), so that c I d. Therefore. condition (ii) holds. 
The proof of the converse is Exercise 18. • 

The Euclidean Algorithm (Exercise 15 of Section 1.2) provides the most efficient 
way of calculating the greatest common divisor of two integers. With minor modifica­
tion its proof carries over to Euclidean domains and provides a con.structive method 
of finding both greatest common divisors and the coefficients needed to write the gcd 
of a and b as a linear combination r.X a and b. See Exercise 31. 

Unique Factorization 
Elements a and b of a Euclidean domain are said to be rellltlvely prime if one of their 
greatest common divisors is 1.~- In any domain the units are the associates of ~- Thus 
by Theorem 10.3, a and b are relatively prime if and only if one of their greatest 
common divisors is a unit. 

Theorem 1 0. 5 
Let R be a Euc! ide an domain and a, b, c E R. If a 1 be and a and b are relatively 
prime, then a I c. 

Proof ... Copy the proof of Theorem lA, using Theorem 10.3 in pla.ce of 
Theorem 1.2. • 
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Corollary 10.6 
Let p be an irreducible element in a Euclidean domain R. 

(1) lfp I be, thenp I b or pIc;. 

(2) If p 1 a1a2 • • • a111 then p divides at least one of the 1:11• 

Proof"' (1) Let d be a greatest common divisor of p and b. Since d divides p, we 
know that dis either an associate of p or a unit. If dis an associate of 
p, thenp is also a greatest common divisor of p and b by Theorem 10.3; 
in particular, pI b. If dis a unit, thenp and b are relatively prime and, 
hence, p I c by Theorem 10.5. 

(2) Copy the proof of Corollary 1.6, using (1) in place of 
Theorem1.5. • 

Theorem 10.7 
Let R be a Euclidean domain. Every nonzero, non unit element of R is the prod­
uct of irreducible elements, • and this factorization is unique up to associates; 
that is, if 

P..P2 ' · · Pr = q1q2 · · · qs 

with each p1 and q1 i rred ucibl e, then r = s and, after reordering and rei a bel­
ing if necessary, 

p1 is an associate of q1 for i = 1, 2, .•. , r. 

Proof"' Let S be the set of all nonzero nonunit elements of R that are 11ot the 
product of irreducibles. We shall show that Sis empty, which proves that 
every nonzero nonunit element has at least one fuctorization as a prod­
uct of irreducibles. Suppose, on the contrary, that Sis nonempty. Then 
the set { .5(-f) I of E S} is a nonempty set of nonnegative integers, which 
contains a smallest element by the \\t:ll.Ordering Axiom. That is, there 
exists a E S such that 

B(a) s 8(-f) for every ses. 

Since a E S, a is not itself irreducible. By the definition of irreducibility, 
a= bcwi1h both band cnonunits. Now o(b) s B(fx:) by the definition of 
Euclidean domain. If /J(b) = B(bc), thenbvrould beaunitbyTheo= 10.2, 
which is a contradiction. Hence, B(b) < .5(bc) = .5(a), so that b¢. S by (•). A 
similar argument shows that c ¢. S. By the definition of S, both b and c are 
the product of irreducibles and, hence, so is a= be. This contradicts the fuct 

5 We allow the possibility of a product with just one factor in case the original element is itself 
irred.Jcible. 
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that a E S. Therefore, S is empty, and every nonzero nonunit element rf R 
is the product of in:educibles. To show that this factorization is unique up 
to associates, copy the proof of Theorem 4.14, replacing constant by unit 
and Corollary 4.13 by Corollary 10.6. • 

• Exercises 

NOTE: Unless stated otherwise, R is an integral domain. 

A. I. Show that Z[Vd] is a subring of C. If d ~ 0, show that Z[Vd] is a subr.ing of R. 

2. Let d # ± l be a &quare-free integer (that is, dhas no integer divisors of the 
form<? except (±If). Prove that in Z[Vd], r + sW = r1 + .r1 W if and only 
if r = r 1 and s = s1 • Give an example to show that this result may be false if d 
is not square-free. 

3. If the statement is true, prove it; if it is false, give a counterexample: 

{a) If a I band c I din R, then acl bd. 

{b) If a I band c I din R, then (a+ c) I (b + d). 

4. Prove that c and dare associates in R if and only if c I d and d I c. 

S. If a = be with a :# 0 and b and cnonunits, show that a is not an associate of b. 

6. Denote the statement "a is an associate of b" by a -b. Prove that- is an 
equivalence relation; that is, for all r, s, t ER: (i) r- r. (ii) If r- s, then s- r. 
(iii) If r-s and s- t, then r- t. 

7. Prove that every associate of an irreducible element is irreducible. 

8. If -u and v are units, prove that u and t1 are associates. 

9. Show that the function (j in Example 6 has property (ii) in the definition 
of a Euclidean domain in the case when b < 0. [Hint: Apply the Division 
Algorithm with a as dividend and lbl as divisor. Then modify the result.} 

I 0. Is 2x + 2 irreducible in Z[x} 1 Why not? 

II. If a = s + ti and b = u + vi are in .l[1l and b 'F O, show that a/ b = c + di, where 

su +tv tu- sv 
c = ,; + ,; and d = ,; + ,;· 

I 2. {a) Show that Z is a Euclidean domain with the function (j given by /J(n) = n1
• 

(b) Is 0 a Euclidean domain when (j is defined by .5(r) = h 
13. Let R be a Euclidean domain with function (j and let k be a positive integer. 

(a) Show that R is also a Euclidean domain under the function 8 given by 
8(r) = .S(r) + k. 

{b) Show that R is also a Euclidean domain under the function f3 given by 
f3{r) = klJ(r). 
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14. Let Fbe a field. Prove that F is a Euclidean domain with the function 8 given 
by 8(a) "" 0 for each nonzero a E F. 

15. Let R be a Euclidean domain and u E R. Prove that u is a unit if and only if 
S(u) = 8(1R). 

16. ff dis the greatest common divisor of a and bin a Euclidean domain, prove 
that every associate of dis also a greatest common divisor of a and b. 

17. (a) If a = s + ti and b = u + vi are nonzero elements of Z(i], show that 
8(ab) = 8(a)8(b), where S(r + sf) = r + ?-. 

(b) If R is a Euclidean domain, is it true that 8(ab) = 8(a)8(b) for all nonzero 
a,bER? 

18. Complete the proof of Corollary I 0.4 by showing that an element d satisfying 
conditions (i) and (ii) is a greatest common divisor of a and b. 

19. Show that the elements q and r in the definition of a Euclidean domain are 
not necessarily unique. [Hint: In Z(i], let a = -4 + i and b = 5 + 3i; consider 
q = -1 and q =-I+ i.) 

B. 20. ff any two nonzero elements of R are associates, prove that R is a field. 

21. ff ~ery nonzero element of R is either irreducible or a unit, prove that R is a 
field 

22. (a) Show that! + i is not a unit inZ(i]. (Hint: What is the inverse of 1 + i inC?] 

(b) Show that 2 is not irreducible in Z(i]. 

23. Let p be a nonzero, nonunit element of R such that whenever pI cdj thenp I c 
or p I d. Prove that p is irreducible. 

24. If fR-+ Sis a surjective homomorphism of integral domains, p is irreducible 
in R, and/(p) + Os, isf(p) irreducible inS? 

25. Let R be a Euclidean domain. Prove that 

(a) 8(1.n) s 8(a) for all nonzero a E R. 

(b) If a and bare associates, then 8(a) = 8(b). 

(c) If a I band 8(a) = 8(b), then a and bare associates. 

26. Show that.Z[v-=2] is a Euclidean domain with S(r + sV"=l) = ,-z + U. 
27. Let w = (-I + ¥='3)/2 and Z(w] = {r + sw I r, s E Z}. Prove that Z[w] is 

a Euclidean domain with S(r + sw) = (r + sw)(r +sal')=,.'-- rs + s1
. 

(Hint: Note that wl = 1 and td + w + I = 0 (Why?).] 

28. Prove or dispnwe: Let R be a Euclidean domain; then 
1 = {aE R 18(a) > 8(1R)} is an ideal in R. 

29. Let R be a Euclidean domain. ff the function B is a constant function, prove 
that R is a field. 

30. (a) Prove that 1 - i is ineducible in Z(i]. (Hint: If a I (I - i ), then I - i = ab; 
see Exercises 17(a) and 25.] 

(b) Write 2 as a product of irreducibles in Z[i]. [Hint: Try I - i as a factor,] 
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C. 31. State and prove the Euclidean Algorithm for finding the gcd of two elements 
of a Euclidean domain. 

32. Let R be a Euclidean domain such that .5(a + b) s max{8(a), 8(b)} for all 
nonzero a, be R. Prove that q and r in the definition of Euclidean domain are 
umque. 

Ill Principal Ideal Domains and Unique Factorization 
Domains 

Definition 

A Euclidean domain is, in effect, a domain that has an analogue of the Division 
A]gorithm. Consequently, all the proofs used for the integers and polynomial rings, 
most of which ultimately depended on the Division Algorithm, can be readily carried 
over to Euclidean domains. We now consider domains that may not have an analogue 
of the Division Algorithm but do have the other important arithmetic properties of ~ 
such as unique factorization and greatest common divisors. 

A principal ideal domain (PID) is an integral domain in which every ideal 
is principal, 

The next theorem shows, for example, that~ O{x], and Z(_il are all principal ideal 
domains because all of them are Euclidean domains (see Examples S-7 of Section 111.1). 
Example 8 of Section 6.1 shows that the polynomial ring Z[x) is not a PID. 

Theorem 10.8 
Every Euclidean domain Is a principal ideal domain. 

Proof .. Suppose I is a nonzero ideal in a Euclidean domain R. Then the set 
{.5{i) I i E I} is a nonempty set of nonnegative integers, which contains a 
smallest element by the Well-Onlering Axiom. That is, then: exists be I 
such that 

B(b) s 5(1) for every iel. 

We claim that I is the principal ideal (b) = {rb I r e R}. Since bE I and I 
is an ideal, rbe/for every re R; hen~ (b)~!. Conversely, suppose eel. 
Then there exist q, r e R such that 

r:=bq+r and or B(r) < .5(b). 

Since r == c - bq and both c and b are in I, we must haver e L Hence, it is 
impossible to have B(r) < 8(b) by (•). Consequently, r == OR and c == bq + 
r == bq e (b). Thus I~ (b) and, hen~ I == (b). Then:fore, R is a PID. • 
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The converse of Theorem 10.8 is false: There are principal ideal domains that are 
not Euclidean domains (see Wilson and Williams [21]). Thus the class of Euclidean 
domains is strictly contained in the class of principal ideal domains. 

In our development of the inte3lrs. polynomial rings, and Euclidean domains 'o'lle 

first considered greatest common divison; and used them to prove unique factoriza­
tion. Although this approach could also be used with principal ideal domains, it is 
just as easy to proceed directly to unique factorization.* We begin by developing the 
connection betvr.een divisibility and principal ideals in any integral domain. 

Lemma 10.9 
Leta and b be elements of an integral domain R. Then 

(1) (a} s: (b) If and only if b I a. 

(2) (a)= (b) If and only If b I a and a I b. 

(3) (a) S: (b) If and only if b 1 a and b IS not an associate of a. 

Proof., (1) Note first that the principal ideal (b) consists of all multiples of b, 
that is, all elements divisible by b. Hence, 

at=(b) if and only if b Ia. 
Now if (a) >;(b), then a is in the ideal(b), so thatb I a. Conversely, if 
b J a, then a t=(b), which implies that every multiple of a is also in the 
ideal (b). Hence, (a)>;;;; (b). 

(2) (a) =(b) if and only if (a)>;;;; (b) and (b)>;;;; (a). By (1), (a)>;;;; (b) and 
(b) >;(a) if and only if b I a and a I b. 

(3) To prove this, use (1), (2), and Exen::ise 4 in Section 10.1, which 
shows that a I b and b I a if and only if b is an associate of a. • 

To understand the origin of the next definition, it may help to recall the typical 
process for factoring an integer a 1 as a product of primes. Find a prime divisor p 1 of 
a 1 and factor. a. = Pt~· Next find a prime divisor p2 of a2 and factor: a2 = p.p3, so 
that a1 = p 1p 2fl?.. Now find a prime divisor Pl of a1 and fOl[;tor again: a1 = Pl04 and 
a 1 = Pli'2PJ~· Continue in this manner. Since a1 has only a finite number of prime 
divisors, 'YI'Il must eventually have some ~ prime so that ~ = A • 1 and llJ = 
PlP'lPic • • · Pic • 1. The only way to continue factoring (with positive factors and with­
out changing the p's) is to use the fact that 1 = 1 • 1 repeatedly to write a1 as 

al = P1PlPJ • • • P1c • 1 · 1 • 1 · · · 1. 

Now look at the same procedure from the point of view of ideals. We have "21 au a3 1 ~ 
a4 1 ~ •... , 1 I a~:o 111, 1 11, and so on. Consequently, by Lemma 10.9 this factorization 
process leads to a chain of ideals 

(ai) s: ("2) s: (":!) s: · · · s: (~) s: (1) s: (1) s: (1) s: · · · 

~Greatest common divisors are discussed at the end of this section: also see Exercises :zo..z?. 
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in which all the ideals are equal after some point This suggests that factorization as 
a product of irnrlucibles is somehow related to chains of principal ideals in which all 
the ideals are equal after some point and motivates the following definition. 

An integral domain R satisfies the ascending chain condition (ACC) on 
principal Ideals provided that whenever (a1)!;;;; (8:1)!;;;; (aa)!;;;; • • ·, then there 
exists a positive integer n such that (a1) = (a11 ) for all i ~ n. 

Note that in this definition the identical ideals beginning with (a,) may not be the 
ideal (l..J. Nevertheless. the preceding discussion suggests the possibility that Z has the 
ACC on principal ideals. This is indeed the case as we now prove. 

Lemma 10.10 
Every principal ideal domain R satisfies the ascending chain condition on 
principal ideals. 

Proof•lf (a1)!;;;; (ai)!;;;; • • ·is an ascending chain of ideals in R, let A be the setM 

theoretic union U (a,). We claim that A is an ideal. Suppose a, b EA; 
t~l 

thenaE("f)andhE(al:) forsomej, k <2!:: 1. Either} :S kork :S.j, say j :S k. 
Then (a1)!;;;; (a,0, so that a, bE(~). Since (ak) is an idea~ we know that 
a - hE (a,J !;;;; A and raE (a~:-) !;;;; A for any r ER. Therefore, A is an ideal by 

Theorem 6.1. Since Ris a PID, A= (c) for some cER. Since A= U (a,), 
"''' we know that c E(a,.) for some n. Consequently, (c)!;;;; (a,) and for each 

i ;z; n 

Therefore, (Clt) = (a .. ) for each i ;z; n. • 

A5 we shall see, Lemma 10.10 is the key to showing that every nonzero nonunit 
element in a PID can be factored as a product of irreducibles. The fact that this fac­
toriwion is essentially unique is a consequence of the next lemma. 

Lemma 10.11 
Let R be a principal ideal domain. tf pis irreducible in Rand pI be, then pI b or 
PIC. 

Pro or • If p I be, then he is in the ideal (p). If (p) were known to be a prime 
ideal, we could conclude that h E(p) or cE (p), that is. that pI b or pI c. 
Since evt:ry maximal ideal is prime by Corollary 6.16, we need only show 

5 For an alternate proof using greatest common diviso!S in place of Corollary 6.16. see Exer<: ise 2l. 
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that (p) is a maximal ideal. Su~oseJ is any ideal with (p) t;:]t;: R. Since 
R is a PID, I= (d) for some dER. Then (p)t:;;.(d) =!implies that dip. 
Since p is irreducible, d must be either a unit or an associate of p. If d 
is a unit, then I = (d) = R by Exercise 9 of Section 6.1. If dis an 
associate of p, say d = pu, then p I d and, hence, (d)>;; (p). In this case, 
(p) >;; (d) r;;; (p), so that {p) = (d) = I. Therefore, (p) is maximal, and 
the proof is complete. • 

Theorem 10.12 
Let R be a principal ideal domain. Every nonzero, nonunit element of R is 
the product of irreducible elements,* and this factorization is unique up to 
associates; that iS, if 

P1P2 · · · Pr = qtq2 · · · qs 

with each p1 and q1 irreducible, then r =sand, after reordering and relabeling 
if necessary, 

p1 is an associate of q1 fori= 11 2, .•. , r. 

Proof~ Let a be a nonzero, nonunit element in R. We must show that a bas at 
least one factorization. Suppose, on the contrary, that a is not a product 
of irreducibles. Then a is not itself irreducible. So a = a1hi for some 
nonunits ai and hi (otherwise every factorization of a would include a 
unit and a would be irreducible by Theorem 10.1). If both a1 and h1 are 
products of irreducible!;, then so is a. Thus at least one of them, say ai, is 
not a product of irreducibles. Since hi is not a unit, ai is not an associate 
of a (Exercise 5 in Section 10.1). Consequently, (a) ~ (aJ by part (3) of 
Lemma 10.9. 

Now repeat the preceding argument with a1 in place of a. This leads 
to a nonzero nonunit 0:1 such that (aJ ~ (ll2) and a1 is not a product of 
irreducibles. Continuing this process indefinitely would lead to a strictly 
ascending chain of prill_cipal ideals (aJ ~(ail£ (aJ ~ · · ·,contradict­
ing Lemma 10.10. Therefon; a must have at least one factorization as a 
product of irreducibles. 

Now we must show that this factorization is unique up to associates. 
To dothis,adaptthe proof of Theorem 4.14 (the case when R = F[xD 
to the general situation by replacing the word constant by unit and using 
Lemma 10.11 and EJWrcise 2 in place of Corollary 4.13. • 

To a~reciate the importance of Theon:m 10.12, it may be beneficial to examine a 
domain in which unique factorization fails. 

5 We allow the possl bi lity of a product w1th just one factor In case the original element is itself 
ir reducible. 
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EXAMPLE 1 

Let Qz{x] denote the set of polynomials with rational coefficients and integer 

constant terms. For instance, x, ix, and 2 are in Qz[ x], rut x2 + i and i are 

not Verify that Qz[ x] is an integral domain and that the constant polynomial2 
is irreducible in Qz[x] (Exercise 16). The irreducible element 2 is a factor of 

x E Oz[X] because x = 2 · ( ~x} Similarly, 2 is an irreducible factor of ix 
because ~x = 2 · (~x} Hence_ x = 2 · 2 · (±x} In fact, the process of 

factoring out irreducible 2's never ends because 

(*) x = 2· (ix) = 2·2· (~x) = 2·2·2· (~x) = • · • 

= 2 · 2 · · · 2 · (~x) = .. ·• 

In view of this, it should not be surprising that x cannot be factored as a prod­
uct of irreducibles of Oz[x] (Exercise 17). 

Compare this situation with the prime factorization of at in Z as described on 
P¥ 333. In Z the factorization becomes trivial after a finite number of steps (the 
only nmaining factors are l 's), and all the ideals in the corresponding chain are equal 
after that point In the factorization (•) in Qz[x], howewr, thin~ are different The 
remaining factors each time a 2 is factored from x are the elernen1s 

1 1 1 1 
x, 2x, 4x, ix ... , 'l!'x . ... 

No two of these elements are associates (Exemise 3) and each element is 2 times 
the following one, that is. each element is divisible'!:¥ the following one. Therefore, 
by part (3) of Lemma 10.9 

Hence, the ACC for principal ideals does not hold in Oz[x]. 

Unique Factorization Domains 
In our study of Euclidean domains and principal ideal domains, the main result was 
that unique factorization held. Now we reverse the process and consider domains in 
which unique factorization always holds to see what other properties from ordinary 
arithmetic they may have. 
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An integral domain R is a unIque factorization domain (U FD) provided 
that every nonzero, nonunit element of R is the product of irreducible 
etements, * and this factorLzation is unique up to assoc ia:tes; that is, if 

P1P2' '' Pr = q1q'l'' ·~qs 

with each p1 and q1 irreducible, then r =sand, after reordering and relabel­
ing if necessary, 

p1 is an associate of q1 fori = 1, 2, •.• , r. 

EXAMPLE2 

Theorem 10.12 show.. that every PID is a unique factorization domain. In 
particular, the ring Z[i] of Gaussian integers is a UFD. 

EXAMPLE 3 

As noted in Example 1, 0 2[x] is not a unique factorization domain because the 
element X has no factorization as a product of a finite number of irreducibies. In 
Section 10.3 we shall see that Z [ v=5] fails to be a UFD for a different reason: 
Every element is a product of irreducibles, but this factorization is not unique. 

EXAMPLE 4 

A proof that the polynomial ring Z[x] is a UFD is given in Section 10.5. Since 
Z[x] is not a principal ideal domain (see Example 8 of Section 6.1), we see that 
the class of all unique factorization domains is strictly larger than the class of 
all principal ideal domains. 

I NOTE: The remaillder-of this section is optional and is not needed fot the sequel I 

When working with two integers, you can always arrange things so that the same 
primes appear in the factorizations of both elements. For instance, consider the prime 
factorizations -18 = 2 · 3 • {-3) and 40 = 2 • (-2) · ( -2) • 5. The list of ail primes that 
appear in both factorizations is 2, 3, -3, 2, -2, -2, 5, but several of these primes are 
associates of each other. By eliminating any prime on the list that is an associate of an 
earlier number on the list we obtain the list 2, 3, 5 in which no two numbers are associ~ 
ates. We can write both 18 and 40 as products of these three primes and the units ± 1: 

-18 =2·3 ·(-3)= ( -1)·2· 3· 3 =(-1)·2°·31 ·S' 
40 = 2 . ( -2) • ( -2) ' 5 = ( -1 )( -1) . 2 . 2 . 2 ' 5 = (1) • v . 31) . 5 J 

Essentially the same procedure works in any UFD. 

•we allow the possibility of a product with just one factor in case the original element is ~se If irreducible. 
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Theorem 10.13 
If c and dare nonzero elements in a unique factorization domain R, then 
there exist units u and v and irreducibles p1, P?_, ••• , p~, no two of which are 
associates, such that 

c = up{"'P2""' .. P~tm• and d = vp,n'P2n. . .. pl•, 

where each m1and n1 is a nonnegative integer. Furthermore, 

cld if and only if for each i = 1, 2, o o • I/{, 

In the example prea:ding the theorem, with c = -11! and d = 40, we had u = -1, v = 1, 
PI= 2,p2 = 3, andp3 = S. 

Proof ofTheorem 1 L 13. Since R is a UFD, both c and d can be factored, say 
c = qlq2 • • • ru andd = r1r2 • • • r1 with eat;h q1 and 'i irreducible. In the list 
q1, q2, ••• , fb• r~o r11 ••• , r, delete any element that has an as&Jciate appear­
ing earlier on the list and denote the remaining elements by p, P1, , •• , 
Pk· Then each p1 i.s irreducible, no two of them are associates of each oth=; 
and each one of the q's and r'll is an associate of some p,. Consequently, in 
the factorization c = q1q2 • • • q8 each q1 is of the form wp1 with w a unit. 
By rearranging terms, c cau be written (product of units) (product of p's). 
The product of these units is itself a unit, call it u. By n:a.rranging the p's 
in this product and inserting other p's with zmo exponents if Jle(;essary, 
we can write c = up{"'P2'"' • • • Pt-., with each m1 ~ 0. A similar procedure 
works for d and proves the first part of the theorem. 

To prove the first half of the last statement of the theorem, suppose 
c I d. Then d = cb for some b E R. Since the irreducible p, appears tru~ctly 
fit times in the factorization of d, it must also appear exactly n1 times in the 
factorization of cb. But p1 already appears "It times in the factorization of c 
and may possibly appear in the factori~on of b, so we must have fflt s n.,. 
Conversely, suppose that m1 ;:;:; n., for every i. Verify that d = ca, where 

a = (u-1v)(pf'''"'"'JJ2Hrlllz. • • Pt bo-"'*). 

Therefore, c I d. • 

Corollary 1 0.14 
Every unique factorization domain satisfies the ascending chain condition on 
principal ideals. 

Proof•First, suppose (c) and (d) are principal ideals in a UFD R such that 
(d)~ (c). Then cl d and cis not an associate of d by~ 10.9. If c and 
dare written in the form given by Theorem 10.13, then each fflJ s fit. If 
m1 = n1 for every i, then c = uv -lrJ, which means that c is an associate of 

d, a contradiction. Hence, there must be some index} for whichm.t < 111 
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Suppose (a1) ~ (Dz) ~ ("!) ~ · · • is a chain of principal ideals in R. 
Lemma 10.9 shows that each a, divides CIJ· By Theorem 10.13 we 
may asswne that a1 = vp{''p1.., • • • Pk"" and that each a, is of the form 
a, = upt''J11"" • • • P~e""'• where the p1 are non associate irreducibles. If 
there are just a tinite number of strict inclusions (<i} in the chain of 
ideals, then there are only equalities after a certain point and the ACC 
holds. There cannot be an infinite number of strict inclusions because 
the first paragraph shows that each time a strict inclusion occurs, one 
of the exponents on one of the p's must decrease. Consequently, after 
a finite number of strict inclusions, there would be an a,. of the form 
a, = uPJ0 

• • • = Pk0 = u. Thus a, is a unit, which implies that (a,.) = R by 
Exercise 9 of Section 6.1. For each i ~ 1.1 we have (a,)>;;; (aJ >;;; R = (a,.), so 
that (a,.) = (a..). Therefore, R satisfies the ACC on principal ideals. • 

Irreducibles in a unique factorization domain have a property that we have 
used frequently in the special cases of Euclidean domains and principal ideal 
domains. 

Theorem 10.15 
Let p be an Irreducible element in a unique factorization domain R. If PI be, 
then p Jb or pI c. 

Proof • If b or cis OR> then there is nothing to prove because p I OR. If cis a unit 
and p I be, then pt = be for some t E R and pur1 = b. Hence, p I b; simi­
larly, if b is a unit, then p I c. If both b and care nonzero no nun its, then 
b = q1 • • • qk and c = qk-+1 • • • q~ with the q1 (not necessarily distinct) 
irreducibles. Since p I be, we have pr =be= q1 • • • q~ for some r ER. The 
irreducible p must be an associate of some q1 by unique factorization. 
Therefore, p divides q1 and, hence, divides b or c. • 

we are now in a position to characterize unique factorization domains. 

Theorem 10.16 
An integral domain R is a unique factorization domain if and only if 

( 1) R has the ascending chain condition on principal ideals; and 

(2) whenever p is irreducible in Rand PI cd, then p 1c or pI d. 

As the proof of the theorem shows, condition (1) corresponds to the existence of 
an irreducible factorization for each nonzero nonunit element and condition (2), to 
the uniqueness of this factorization. The two conditions are independent: (1) fails and 
(2) holds in Oz[X] (see Example 1 and Exercise 33), whereas (1) holds and (2) fails in 
Z[ V::S] (as we shall see in Example 4 and Exercise 21 of Section 10.3). 
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Proof of Theorem 10.18 ~If Ris a UFD, tlren.R satisfies (1) and (2) by Corollary 10.14 
and Theorem 10.15. Conversely, assume R satisfies (I) and (2) and let a 
be a nonzero nonunit element of R. The argument used in the proof of 
Theorem 10.12, which depends only on the ACC, is valid here and shows 
that a can be factored as a product ofirreducibles. To show that this 
factorization is unique, adapt the proof of Theorem 4J4 (the case when 
R = F[xD to the general situation by replacing the word coiJStant by unit 
and using (2) and Exercise 2 in place of Corollacy 4.13. • 

Greatest Common Divisors 
Greatest common divisors wae a useful tool in our study of 7l, F[x], and other Euclidean 
domains. In each case the gcd of two elements was defined to be a common divi110r of 
"largest size," where siz<: was mea&lred by absolute value in Z, by polynomial degree 
in F[x], and by the function Bin an arbitral)' Euclidean domain. Unfortunately, there 
may be no similar way to measure "size" in an arbitrary integral domain, so greatest 
common divisors must be defined in terms of divisibility properties alone; 

Let 1:11, 1:1:! 1 ••• I 1:11) be elements (not all zero) of an integral domain R. A 
greatest common divisor of Bt1 1:1:1 ••• 1 11, is an eiE:ment d of R such that 

(i) d divides each of the l;f1; 

(ii) if c eR and c divides each ofthe a1, then cJ d. 

Corollaries 1.3, 4.9, and 10.4 show that this definition is equivalent to the definitions 
used previously in 7l, F[x], and other Euclidean domains. The only difference is that great­
est common divisors in 7l and F[x], are no longer unique (see the discussion on page 326). 

Theorem 10.17 
Let d be a greatest common divisor of 1:111 a21 ••• 1 l;fJl in an integral domain R. 
Then 

(1) Eo.ery associate of dis also 1:1 gcd of 1:111 ••• 1 !:In· 

(2)Any two greatest common divisors of a1, ••• 1 a11 are associates. 

Proof ~(t) Exercise 7. 

(2) Suppose both d and tare gcd's of a~o .•. , a,.. Then t divides each 
a,. and, therefore, t I d by [.ll) in the definition of the greatest common 
divisor d. But d also divides each aa and, hence, d I t by (ii) in the defini­
tion of the gcd t. Since t I d and d It, we know that d and tare associates 
by Exercise 4 of Section 10.1. • 

WARNING: In some integral domains a finite set of elements may not 
have a greatest common divisor (we Elrercise Bin Section 10.1). 



10.2 P rlnc I pal Ideal De mains and Unlq ue Factcrlzatlcn DomaIns 341 

Theorem 10.18 
l.eta:11 ~ •••• , «n (not all zero) be elements in a unique factorization domain R. 
Then lft 1 ••• , «n have a greatest common divisor In R. 

Proof ... The gcd of any set of elements is the gcd of the nonzero members of the 
set, so we may assume that each l1t is nonzero. By Theorem 10.13 there are 
irreduciblesp1, ••• ,p, (no nvo of which are associates), units UJ,.,., ~. 
and nonnegative integers mgsuch that 

a, = UIPt"'''h,."Pl,.IJ · · · p, "'" 

~ = UzPt""'JJ2-P3""'· • ·p,""' 

~ = u,.pt'""'P2~P3,._, . .. p,"'*. 

Let k1 be the smallest exponent that appeaiS on p 1; that ia, k1 is the 
minimum of mw m21 , nl-Jl! ••• , m,1. Similarly, let k1 be the smallest 
exponent that appeaiS on J12, and so on. Use Theorem 10.13 to verify 
that d = p/"'Pl"' ••• p, ki is a gcd of 4J, ••• , ah. • 

In an arbitrary unique factorization domain, it may not be possible to write the 
gcd of elements a and h as a linear combination of a and h as it was in Z and F[ x]. In 
Section 10.5, for example, we shall see that lis a gcd of the polynomials x and 2 in 
the UFD Z[x], but 1 is not a linear combination of x and 2 inZ[x] (Exercise 6). In a 
principal ideal domain, however; the gcd of a and b can always be written as a linear 
combination of a and b (Exercise 20). 

• Exercises 

A. 1. If a, b are nonzero elements of an integral domain and a is a nonunit, prove 
that (ab) ~ (b). 

2. Suppose pis an irreducible clement in an integral domain R such that whenever 
p I be, thenp I h or pI c. If pI a 1"2 • • ·a, prove that p divides at least one ar 

3. (a) Prove that the only units in Qz[x] are l and -l. [Hint: Theorem 4.2.] 

(b) If f(x) E Qz[ x], show that its only associates are f(x) and -f(x). 

4. Is a field a UFD? 

5. Give an example to show that a subdomain of a unique factorization domain 
need not be a UFD. 

6. Prove that 1 is not a linear combination of the polynomials 2 and x in Z[x], that 
is, prove it is impossible to:findj(x),g(x)EZ[x] such that 2f(x) + xg(x) = l. 
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7. Let d be a gcd of ah •.• , ak in an integral domain. Prove that every associate 
of dis also a gal of f!:J,.,., ak. 

8. Let p be an irreducible element in an integral domain. Prove that ~ is a gcd of 
p and a if and only if p ;t a. 

B. 9. Let R be a PID. If (c) is a nonzero ideal in R, then show that there are only 
finitely many ideals in R that contain (c), [Hint: Consider the divisors of c.] 

I 0. Prove that an ideal (p) in a PID is maximal if and only if p is irreducible. 

11. Prove that every ideal in a principal ideal domain R (except R itself) is 
contained in a maximal ideal [Hint: Exercise 10.] 

12. Prove that an ideal in a PID is prime if and only if it is maximal. 
[Hint: Exercise 10.) 

13. LetfR-+ S be a surjective homomorphism of rings with identity. 

(a) If R is a PID, prove that every ideal in Sis principal. 

(b) Show by example that Sneed not be an integral domain. 

14. Let p be a fixed prime integer and let R be the set of all rational num hers that 
can be written in the form ajb with b not divisible by p. Prove that 

(a) R is an integral domain containing Z. [Note 11 = n/ 1). 

(b) If ajb E Rand p .1" a, then a/b is a unit in R. 

(c) If I is a nonzero ideal in R and I :1: R, then I contains p' for some t > 0. 

(d) R is a PI D. (IT I is an ideal, show that I= (I}), where I' is the smallest 
power of p in I.) 

15. Let I be a nonzero ideal in Z [i]. Show that the quotient ring Z[i)/ I is finite. 

16. (a) If pis primeinZ, prove that the constant polynomialp is irreducible in 
Oz[x]. [Hint: Theorem 4.2 and Exercise 3.] 

(b) If p and q are positive primes in Z with p + q, prove that p and q are not 
associates in 0 2[x]. 

17. (a) Show that the only divisors of x in Oz[x] are the integers (constant poly­

nomials) and first-degree polynomials of the form! x with 0 -::F 11 EZ. 
11 

(b) For each nonzero 11 EZ, show that the polynomial !x i3 not irreducible 
in Oz[x]. [Hint: Theorem 10.1.) n 

(c) Show that x cannot be written as a finite product of irreducible elements 
in Oz[x]. 

18. A ring R is said to satisfy the ascending chain eondltlon (ACC) on ideals if 
whenever 11 ~ !2 s;;; I~ s;;; • • • is a chain of ideals in R (not necessarily principal 
ideals), then there is an integer 11 such that 11 = 1. for allj :2: n. Prove that if 
every ideal in a commutative ring R is finitely generated, then R satisfies the 
ACC. [Hint: See Theorem 6.3 and adapt the proof of Lemma 10.10.] 
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19. A ring R is said to satisfy the descending chain condition (Dcq on ideals if 
whenever I1 ;;:2 I 2 ;;:2 I3 ;;:2 • • • is a chain of ideals in R, then there is an integer n 
such that lj =I,. for allj ~ n. 

(a) Show that Z does not satisfy the DCC. 

(b) Show that an integral domain R is a field if and only if R satisfies the 
DCC. [Hint: If 0 oF- a E R is not a unit, what can be said about the chain 
of ideals (a) ;;:2 (a) ;;:2 (J) ;;:2 • • ·?] 

20. Let R be a PID and a, bE R, not both zero. Prove that a, b have a greatest 
common divisor that can be written as a linear combination of a and b. 
[Hint: Let I be the ideal generated by a and b (see Theorem 6.3); then 1 = (d) 
for some d E R. Show that dis a gcd of a and b.] 

21. Let R be a PID and San integral domain that contains R. Let a, b, dE R. 
If d i1> a gcd of a and b in R, prove that dis a gcd of a and bin S. 
[Hint: See Exercise 20.] 

22. Extend Exercise 20 to any finite number of elements. 

23. Give an alternative proof of Lemma 10.11 as follows. If p I b, there is nothing to 
prove. If p k b, then lR is a gcd of p and b by Exercise 8. Now show that p I c by 
copying the proof of Theorem 1.4 with pin place of a and Exercise 20 in place 
of Theorem 1.2. 

24. Let R be an integral domain. Prove that R is a PID if and only if (i) every 
ideal of R is finitely generated (Theorem 6.3) and (ii) whenever a, bE R, the 
sum ideal (a)+ (b) is principal. [Sum is defined in Exercise 20 of Section 6.1.] 

25. Let R be an integral domain in which any two elements (not both 0 R) have 
a gcd. Let (r, s) denote any gcd of r and .J. Use - to denote associates as in 
Exercise 6 of Section 1 0.1. Prove that for all r, .J, t E R:. 

(a) If .J- t, then r.J- rt. 

(b) If .J- t, then (r, s)- (r, t). 

(c) r(s, t)- (rs, rt). 

(d) (r, (s, t))- ((r,s), t). [Hint: Show that both are gcd'sof r, s, t.} 

26. Let R be an integral domain in which any two elements (not both OJJ have a 
gcd. With the notation of Exercise 25, prove that if (b, c)- iR and (b, d)- ~ 
then (b, cd)- 1R- [Hint: By Exercise 25(a) and (c), d- (bd, cd), so that 
1R- (b, d)- (b, (bd, cd)). Apply parts (d), (c), and (a) of Exercise 25 to show 
that (b, (bd, cd)) - (b, cd), 

27. Let R be an integral domain in which any two elements (not both zero) have a 
gcd. Let p be an irreducible element of R. Prove that whenever p I cd, then p I c 
or p I d. [Hint: Exercises 8 and 26.] 

28. If R is a UFO, if a, b, and c are elements such that a I c and b I c, and if IRis a 
gcd of a and b, prove that ab I c. 

29. Let R be a UFD. If a I be and if lR is a gcd of a and b, prove that a I c. 
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30. A least common multiple (lcm) of the nonzero elements ab •• • , ak is an 
element b such that (i) each ilj divides b and ( ii) if each a1 divides an element c, 
then b I c. Prove that any finite set of nonzero elements in a UFD has a least 
common multiple. 

31. Prow that nonzero elements a and b in R have a least common multiple if and 
only if the intersection of the principal ideals (a) and (b) is also a principal ideal. 

C, 32 Prove that every ideal/ in ZrvdJ is finitely generated (Theorem 6.3) as 

follows. Let I0 = I n £: and let 11 = { b E Z I a + bVd E If or some a EZ}. 

(a) Prove that I 0 and I 1 are ideals in£:. Therefore, I 0 = (ro) and I 1 = (r1) for 
some r1E7L 

(b) Prove that10 r;;; I 1• 

(c) By the definition of 11 there exists a1 E.l such that a1 + r!'Vd is in/. Prove 

that I is the ideal generated by r0 and a1 + r 1Vd. [Hint: If r + sVd E I, 

then seJ1 so that s = r1s1• Show that (r + Nd)- s1(a1 + r1\ld) EI0; use 

this to writer + sVd as a linear combination of r0 and a1 + r1Vd.] 
33. Prove that p(x) is irreducible in Oz[X] if and only if p(x) is either a prime 

integer or an irreducible polynomial in Q[ x] with constant term ± I. 
Conclude that every irreducible p(x) in Oz[x] has the property that 
whenever p(x) I c(x)d(x), thenp(x) I c(x) or p(x) I d(x). 

34. Show that every nonzero f(x) in flz[x] can be written in the form 
cx"p1(x) · · • pt!.._x), with cEQ, n ~ 0, and eachp1(x) nonconstant irreducible 
in Oz[ x] and that this factorization is unique in the following sense: Iff( x) = 
d.X"ql(x) '' • ql,.x) With dE Q, m ~ 0, and each q1(x) non constant irreducible 
in flz[x], then c = ±d, m = n, k = t, and, after relabeling if necessary, each 
Pt(X) = ±q1(x). 

35. Prove that any two nonzero polynomials in Qz[ x] have a gOO. 

36. (a) Prove that f(x) is irreducible in £:[ x] if and only if f(x) is either a prime 
integer or an irreducible polynomial in Q{x] such that the goo in£: of the 
coefficients of f(x) is I. 

(b) Prove that .l[x] is a UFD. [Hint: See Theorems 4.14 and 4.23.] 

IIJ Factorization of Quadratic Integers* 

In this section v.e take a closer look at the domains .l[W]. Because unique factoriza­
tion frequently fails in these domains, they provide a simplifi.ed model of the kinds of 
difficulties that played a crucial role in the historical origin of the concept of an ideal. 
These domains also illustrnte how ideals can be used to "restore" unique factorization 
in some domains that lack it. We begin with a brief sketch of the relevant history. 

•The prurequisites for this section are p39E!S 322-J24 of Section 10.1 and the definition of Lr~ique 
factorization dam ai 1'1 (page 337).. 
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Early in the last century, Gauss proved the "Law of Biquadratic Reciprocity," 
which provides a fast way of determining whether or not a congruence of the form 
x4 = e (mod n) has a solution. Although the statement of this theorem involves only 
integers, Gauss s proof was set in the larger domain Z[i]. He proved and used the fact 
that Z[i] is a unique factorization domain. 

Since Gauss s proof involved Z[i] and i is a complex fourth root of 1, the German 
mathematician E. Kummer thought that analogous theorems for congruences of 
degree p might involve unique factorization in the domain. 

Z[w] == {llo + a1w + Q,j!JJ
1 + · · · + llp..-.t'C!.Ir-1 1 a1EZ}, 

where {tl = oos(21rfp) + i sin (27r/p) is a complexpth root of 1. He was unable to 
develop higher-order reciprocity theorems because he discovered that Z[w] may not 
be a UFD.* 

Later in the century questions about unique factorization arose in connection 
with the following problem. It is easy to find many nonzero integer solutions of the 
equation r + y = r, such as 3, 4, S, or 5, 12, 13. But no one has ever found nonzero 
integer solutions for X + y3 = zl or x4 + ~ ~ z4, which suggests that 

x 11 + y" = :z" has no nonzero integer solutions when n > 2, 

This statement is known as Fermat's Last lleorern because in the late 1630s Fermat 
wrote it in the margin of his copy of Diophantus' Arithmetico. and added "I have 
discovered a truly remarkable proof, but the margin is too small to contain it." Fermat's 
"proof"has never been found. Most mathematicians today doubt that he actually had 
a valid one. 

In 1847 the French mathematician G. Lame thought he had found a proof of 
Fermat's Last Theorem in the case when n is prime.t His proof used the fact that for 
any odd positive prime p, x' + yP can be factored in the domain Z[ w] described above: 

x 1 + y' = (x + yXx + ldJ')(x + ru1y) · · · (x + ldr-
1y). 

Lame's purported proof depended on the assumption that Z[w] is a unique factoriza­
tion domain. When he became aware of Kummer's work, he realized that his proof 
could not be carried through. 

Kummer had already found a way to avoid the difficulty. He invented what he 
called "ideal numbers" and proved that unique factorization does hold for these ideal 
numbers. This work eventually led to a proof that Fermat's Theorem is true for a large 
class of primes, including almost all the primes less than I 00. 1bis was a remark­
able breakthrough and deeply influenced later work on the problem.l But it had even 
greater significance in the development of modem algebra. For Kummer's "ideal num­
bers" were what we now call ideals. 

We shall return to ideals at the end of the section. Now we consider factorization 
in the domains Z[W]. These domains are similar to the ones that Kummer used and 

5 The domain Z[w] is a UFO for IM!ry primep less than Zl and fails to be a UFO for IMirY larger prime. 

tlf the theorem is true for prime exponents, then it is true for all exponents; see E mrcis e 1. 

I fermat's Last Theorem was finally proved in 1994 by Andrew Wiles. His proof uses results and 
techniques not available unti I relatively recently. 
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Definition 

illustrate in simplified form the problems he faced and his method of solution. we 
shall assume that the integer dis square-free, meaning that d '4: 1 and dhas no integer 
factors of the form c1 ~t (:tl)2• The following function is the key to factorization 
inZ[v'd]. 

The function N: 2[W]--+Z gi'ien by 

N(s + t"'!d) = (s + tv'd)(s-- tW) = s2- df­

is called the norm. 

For example, in Z[v'J], 

N(5 + 2'\13) =51
- 3. 21 = 13 and N(2- 4'\13) = 'P- 3(-4f = -44. 

Note that 

when d < 0, lhe norm of every element is nonnegatil'l!.. 

Fbr instance, in Z[¥=5], 

N(s + tv'=S) = r-- (-5)f =,; + :'ir :=: o. 

In Example 7 of Section 10J, we saw that the norm makes Z[i] = Z[v=TJ into a 
Euclidean dmrurin. This is not true in general, but we do have 

Theorem 10.19 
tf dis a square-free integer, then for all a, b E Z[W] 

{1) N(a) = o if and only if li = 0. 

(2) N(ab) = N(a)N(b). 

Proof .. (1) If a = s + t\/d, then N{a) = .r - dr so that N(a) = o if and only if 
r = dr. If d = -1, then}= -r can occurinZif and only if s = 0 = t, 
that is, if and only if a = 0. So suppose d -1. Every prime in the 
factorization of? and fl must occur an even number of times. But the 
prime factors of d do not repeat because dis sqwue-free.. So if pis a prime 
factor of d, it must oOJUI an odd number of times in the factorization 
of dr. By unique factorization in Z, the equation r = dr is impossible 
unless 3 = 0 = t, that is, unless a = 0. 

{2) Let a = r + sV(I and b = m + n"'/il. The proof is a straightfor­
watd computation (Exercise 3). • 
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Theorem 10.20 
Let d be a square-free integer. Then u EZ["Vd] is a unit if and only if N(u) = ±1. 

Proof .. If u is a unit, then uv = 1 for somev EZ[W]. By Theorem 10.19, 
N(u)N(v) = N(uv) = N(l) = 12 - d • 02 = 1. Since N(u) and N(v) 
are integers, the only possibilities are N(u) = ±1 and .N(v) = ± 1. 
Conversely, if u = s + tW and N(u) = ± 1, let u = s - tW e Z[ W]. 
Then by the definition of the norm, u1i = N(u) = ±1. Hence, 
u(::!::ti) = 1 and u is a unit. • 

EXAMPLE 1 

In Z(v'2] the element 3 + 2'\12 is a unit because N(3 + 2\12) = 
J2 - 2 • 22 = 1. Verify that the inverse of 3 + 2 v'i is 3 - 2'\12. Every 
power of a unit is also a unit, so Z[v2] has infinitely many units, including 
(3 + 2v2),(3 + 2\12)2,(3 + 2v2)l,,,, 

According to Theorem 10.20 we can determine every unit s + tW in Z[WJ by 
finding all the integer solutions (fort and t) of the ~:quationsr- JrZ = ±1. When 
d > 1. these ~:quat ions have infinitely many solutions (see the preceding example and 
Burton [12)). When d = -1, the equations redure to s'- + P. = 1.* The only integer 
solutions ares= ±1, t = 0, ands = 0, t = ±1. So the onlyunitsinZ[i] = Z{v'=I] are 
±1 and ±i. If d< -1, sayd = -kwithk > 1, then the~:quations:reduceto ?- + kf- = 1.* 
Since k > 1J the only integer solutions ares= ±1, t = 0. Thus we have 

Corollary 1 0.21 
Let d be a square-free integer. If d > 1, then Z[ W] has inti n itely many units. 
The units in Z[\.-'-T] are ±1 and ±i. lfd < -1, then the units in Z(W] are ±1. 

Corollary 10.22 
Let d be a square-free integer. If pEZ[Vd] and M.P) is a prime integer in Z, 
then p is irreducible in Z[v'O']. 

Proof • Since N(p) is prime, N(p) '# ± 1, sop is not a unit in Z[v'a] by 
Theorem 10.20. If p = ab in Z[WJ, then by Theorem 10.19, N(p) = 
N(a)N(b) inZ. Since N(a), N(b), N(p) are integers and N(p) is prime, 
we must have N(a) = ± 1 or N(b) = ± 1. So a or b is a unit by Theorem 
1 0.20. Therefore, p is irredu::ible by Theorem 10 .1. • 

•since the left side of the equation is always nonnegative, ~t cannot be on the right side. 
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EXAMPLE 2 

The element 1 - i is irreducible in Z[i] beca.l.I9C N(l - v=l) = 2. Similarly, 1 + i 
is also irreducible. Therefore, a factorization of 2 as a pnxiuct of irreducibles in 
Z[i] is given by 2 =(I + i)Q- 1}. 

The converse of Corollary 10.22 is false. For instance, in Z[v=s] the norm of 
I + v'=5 is 6, which is not prime in Z. But the next example shows that 1 + v'=5 is 

irreducible in Z[v'=-5}. 

EXAMPLE 3 

To show that 1 + v-5 is irreducible in Z[yCS], suppose I + v'=S = ah. By 
Theorem 10.1 we need only show that a orb is a unit. By Theorem 10.19, 
N(a)N(b) = N(ab) = N(1 + '\1=5) = 6. SinceN(a) and N{b) are nonnegative 
integers, the only possibilities are N(a) = I, 2, 3, or 6. If a = s + t"\1=5 and 
N(a) = 2, then r + Sf = 2. It is easy to see that this equation has no integer 
solutions for s and t; so N(a) = 2 is impossible. A similar argument shows 
that N(a) = 3 is impossible. If N(a) = I, then a is a unit by Theorem 10.20. If 
N(a) = 6, thenN(b) = 1 and b is a unit. Therefore, 1 + V-5 is irreducible. 

We have seen an eK:ample of an integral domain in which a nonzero, non unit element 
could not be factored as a product of irreducibles (Exercise 17 in Section 10.2). We shall 
now see that Z{Vd] may fail to be a UFO for a different reason: Although factorization 
as a product of irreducibles is always possible in Z[v'd], it may not be unique. 

Theorem 10.23 
Let d be a square-free integer. Then every nonzero, non unit element in Z[ W] 
is a product of irreducible elements.* 

Proof~ Lets be the set of all nonzero, nonunits in Z[v'd] that are Mtthe product 
of irreducibles. We must show that Sis empty. So suppose, on the oon­
t:rary, that Sis nonempty. Then the set W = {IN( t) II t E S} is a nonempty 
set of positive integers. By the Well-Ordering Axiom, W contains a small­
est integer. Thus there is an element aE S such that IN( a) I:S I.N(t) I for 
every t E S. Since a E S """ know that a is not itself irreducible. So there 
exist nonunits b, r:: E Z[W] such that a = be. At least one of b, r:: must 
be in S (otherwise a would be a product of irreducibles and, hence, not 
in S), say bE S. Since band r:: are nonuuits, IN( b) I> I and IN( c) I> 1 by 
Theorem 10.20. ButiN(a) I= IN(b)IIN(c)jbyTheorem 10.19, so we must 
have 1 <IN( b) I< I N(a) ~But bE S, so IN(a) I:S IN( b) I by the choice of a. 
This is a contraction. Therefore, Sis empty, and the theorem is proved. • 

• Aa uaua ~ w~ allow a "product" with just on& faetor. 
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EXAMPLE 4 

The domain Z[v=5] is not a unique factorization domain. The element 6 in 
Z[v=5] has two factorizations: 

6 = 2 · 3 and 6 = (1 + v'=5)(1 - v'=S). 

The proof that 1 + V=5 is irreducible \WS given in Example 3. The proofs that 2, 3, 
and 1 - v'=5 areim:ducible are sirrular. fur instano; if 2 = cib, then N(a)N(b) = 
N(ab) = N(2) = 4 so that N(a) = 1, 2, or 4. ButN(a) = 2 is imposstble because the 
equation; + Sr = 2 has no integer solutions. So either N(a) = 1 ani a is a unit, 
or N(a) = 4. In the latter case M.,b) = 1 and b is a unit. Therefore. 2.i<;irreducible by 
Theorem 10.1. Since the only units in Z[v=5} are ±1, it is clear that neither 2 nor 3 
io; an a!&X:iate of I + ...;=3 or 1 ~ v=5. Tirus the factorization of 6 as a product of 
im:ducibles is not unique up to aswciates ani Z(v'=S} is not a UFD. 

The preceding example demonstrates that the irreducible 2 divides the product 
(1 + v=s)O - v=5) in Z[v=5) but does not divide either 1 + Y-5 or 1 - -v'=5. 
So when unique factorization fails, an irreducible element p may not have the property 
that when p ~ cd, then p J c or p J d. • Another consequence of the failure of unique fac­
torization is the possible absence of greatest common divisors (Exercise 13). 

Unique Factorization of Ideals 
We are now in the position that Kummer was in a century arrl a half ago and the 
question is: How can some kind of unique factorization be restored in domains such 
as Z[v'=SJ? Kummer's answer was to change the focus from elements to ideals.t The 
product IJ of ideals I and J is defined to be the set of all sums of elements of the form 
ah, with a eland be J; that is, 

IJ = {a1ht + ¥2 + • · · + aAI n ~ 1, ak el, h.tE J}. 

Exercise 36 in Section 6.1 shows that U is an ideal. Instead of factoring an element a 
as a product of irreducibles, Kummer factored the principal ideal (a) as a product of 
prime ideals. 

EXAMPLES 

We shall express the principal ileal (6) in Z[v'=S] as a product of prime ideals. 
The irreducible factorization of elements 6 = 2 · 3 seems a natural place to start, 
and it is easy to prove that the ideal (6) is the product ideal (2X3) (Exercise 16). 
But (2) is not a prime ideal (for instance, the product ( 1 + v'=5) (1 - v=5) = 6 
is in (2) but neither of the factors is in {2)). So we must look elsewhere. Let P be 
the ideal in Z[y'=5] generated by 2 and 1 + v'=S, that is, 

P = {2a + (1 + v=5)b I a, be Z[v=s]}. 

~This is not particularly surprising in view of Theorem 10. 16. 

tKummer used different terminology, but the ideas here are essentially his. We use the modern 
terminology ol ideals that was introduced by R. Dedekind, who generalized Kummer's theory. 
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Then P is an ideal by Theorem 6.3. Exercise 17 shows that r + ~ E P if and 
only if rand 3 are both even or both odd. This implies that the only distinct 
cosets in Z[v'=5J/ Pare 0 + P and 1 + P, as we now see: If m + n'V"=S 
has m odd and n even, then (m + nV-5)- 1 = (m- 1) + n'V"=S EP because 
m - 1 and n are even. Hence, (m + nV-5} + P = 1 + P. Similarly, if m is 
even and n is odd, then (m- 1) + nv=5t: P because m- 1 and n are odd. It 
follows that the quotient ring Z[v=5]/ Pis isomorphic to Z2• Therefore, Pis 
a prime ideal in Z[v'=5] by Theorem 6.14. A similar argument (Exewise 19) 
shows that Q1 and Q2 are prime ideals, where 

Q1 = {3a + (1 + v=5)b I a, hE Z[¥=5]}, 

Q2 = {3a + (1- v==-S)b I a, h t:Z[V::S]}. 

Exercises 18 and 19 show that the product ideal P2 = P Pis precisely the 
ideal (2) and that ~ Q2 = (3). Therefore, the ideal ( 6) is a product of four 
prime ideals: (6) = (2X3) = P 2QtQ1· 

Kummer went on to show that in the domains he was considering, the factorization 
of an ideal as a product of prime ideals is unique except for the order of the factors. 
This result was later generalized by R. Dedekind. In order to state this generalization 
precise~ we need to fill in some background. 

An algebraic number is a complex number that is the root of some monic polyno­
mial with rational coefficients. If tis an algebraic number and tis the root of a poly­
nomialdegreen in O[x], then 

O(t) = {~+ a1t + a1P+ • • • + a,....1r--1 la1t:0} 

is a subfield of C and every element in O(t) is an algebraic number.• An algebraic 
integer is a complex number that is the root of some monic polynomial with inreger 
coefficients It can be shown that the set of all algebraic integers in O(t) is an integral 
domain. If w is a complex root of xP - 1, then the domain Z[w] that Kummer used 
is in fact the domain of all algebraic integers in Q(w) (see Ireland and Rosen [13; 
page 199]). So Kummer's results are a special case of 

Theorem 10.24 
Let t be an algebraic number and R the domain of all algebraic integers in 
Q(t). Then every ideal in R (except o and R) is the product of prime ideals 
and this factorization is unique up to the order of the factors. 

For a proof see Ireland and Rosen [13; page 174 ]. 
Most of the rings Z[Yd]are also special cases of Theorem 1 0.24. For if dis a square­

free integer, then t"" v'ii is an algebraic number (because it is a root of r- d) and 
O(Yd) = {ao + a1Vd I a1t:O}. The algebraic integers in the field Q(Vd) are called 

•for 11 proof sea Theorems 11. 7and 11.9. 
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quadratic lnmgers. Every element r + sVd of Z(WI is a quadratic integer in O(Vd) 
because it is a root of this monic polynolilial in Z[x}: 

>!- - 2rx + (r - ti?) = (x - (r + Nd))(x - (r - sW}). 

When d"" 2 or 3 (mod 4), then Z(W] is the domain R of all quadratic integers in 
O(W), but when d = 1 (mod 4), there are quadratic integers in R that are not in 
Z(W] (see EJ~ercise 22). * 

Theorem 1014 has proved very useful in algebraic number theory. But it does not 
answer many questions about unique factorization of elements, such as: If R is the 
domain of all quadratic integers in. .U(Va), for what values of dis R a UFD? When 
d < 0, R isaUFD if and only if d= -I, -2, -3, -7,-11,-19,-43,-67, or -163 
(see Stark [19}). When d> 0, R is known to be a UFD ford= 2, 3, 5, 6, 7, 11, 13, 17, 
19, 21, 22, 23, 29, and many other values. But there is no complete list as there is when 
dis negative. It is conjectured that R is a UFD for infinitely many values of d. 

• Exercises 

A. 1. If i' + I' = .:/has no nonzero integer solutions and k I n, then show that 
:t' + y = t' has no nonzero integer solutions. 

2. Let w be a complex number such that rJI' = l. Show that 

Z(w] = {Do+ a1w + apr+ · · · + a,-1r.r-1 1 a1EZ} 

is an integral domain. [Hint: til= 1 implies a/+1 = w, a/+2 = w1, etc.} 

3. If a= r + sv'il and b: m + nWinZ(VJ], show thatN(ab) = N(a)N(b). 

4. Explain why Z(v=s] is not a Euclidean domain for any function B. 

5. If a E Q is an algebraic integer, as defined on page 350, show that a E Z. 
(Hint: Theorem 4.21.} 

B. 6. In which of these domains is 5 an irreducible element? 

(a) Z (b) .Z(i] 

7. In Z(v=7], factor 8 as a product of two irreducible elements and as a product 
of three irreducible elements. [Hint: Consider ( 1 + v=7)(1- v'=7).] 

8. Factor each of the elements below as a product of irreducibles in Z(i}, [Hint: 
Any factor of a must have norm dividing N(a).} 

(a) 3 (b) 7 (c) 4 + 31 (d) 1l + 7i 

9. (a) Verifythat each of 5 +Vi, 2 - v'2, 11 - 7Vl, and 2 + v'2 is irreducible 
inZ(Vl]. 

•since dis square-free, d,.. o (mod 4), 
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{b) Explain why the fact that 

(5 + -v'iX2 '"""' '\12) ~ (11 ~ 7v'2)(2 + V2) 

does 110 t contradict unique factorization in Z[vl]. 

10. Find two different factorizations of 9 as a product of irreducibles in Z[v=s]. 

11. Show that Z[ v'=6] is not a UFD. [Hillt; Factor 1 0 in two ways.] 

12. Show that Z[VIO] is not a UFD. [Hint: Factor 6 in two ways.] 

13. Show that 6 and 2 + 2v'=S have no greatest common divisor in Z(v=s]. 
(Hint: A common divisor a of 6 and 2 + 2 v'=5 must have norm dividing 
both N(6) = 36 and N(J. + 2'\,1-5) = 24; 'bea:e, a = r + N:s with Jl + 
5s2 = N(a) ""' 1, 2, 3, 4, 6, or 12. Use this to find the common divisors. Verity 
that none of them is divisible by all the others. as required of a gcd. Also see 
Example4.] 

14. Show that 1 is a gcdof 2and I + v'=5 inZ(yCSJ, but 1 cannot be written in 
the form 2a + (1 + v'=S)bwitha, bEZ[V-5], 

15. Prove that every principal ideal in a UFD is a product of prime ideals 
uniquely except for the order of the factors. 

16. Show that(6) = (2)(3) in Z(v=s]. (The product of ideals is defined on page 349.) 

17. LetP be the ideal {2a + (1 + y=-S)b Ia, b EZ[v'=S]} inZ(v'=S]. Prove that 
r + svt=S E P if and only if r "" s (mod 2) (that is, r and s are both even or 
both odd). 

18. Let P be as in Exercise 17. Prove that p1 is the principal ideal (2). 

19. Let Q1 be the ideal { 3a + (1 + v'=S)h I a, bE Z[v'=S]} and Q2 the ideal 
{3a+ (1- v'=S)hla, bEZ[v=5]} inZ[v=5). 

(a) Prow that r + sVCS E Q1 if and only if r"" s (mod 3). 

(b) Show that Z(v'=S]/QI has exactly three distinct cosets. 

(c) Prove that Z(v'=S]/Q1 is isomorphic to Z3; conclude that Q1 is a prime ideal. 

(d) Prow that Q2 is a prime ideal. (Hint; Adapt (a)-(c).] 

(e) Prove that QtQ2 = (3). 

20. If r + t\1'=5 E Z(v'-5] with s 'F 0. then prove that 2 is not in the principal 
ideal {r + sv:=l). 

21. If dis a square-free integer, prove that Z(W] satisfies the ascending chain 
condition on principal ideals. 

C. 22. Let dbe a square-free integer and let Q( Vd) be as defined on page 350. ~ 
know that Z[Vd] c;;;: Q(V'd) and every element of Z[v'd] is a quadratic integer. 
Determine all the quadratic integers in Q(VtJ) as follows. 

(a) Show that every element of Q(Vd)is of the form(r + s Vd)jt, where 
r, s, t EZ and the gcd (r, s, t) of r, s, tis I. Hereafter, let a = (r + 11Vd)jt 
denote such an arbitrary element of Q(Vd'). 
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{b) Show that a is a root of 

p(x) = x2- (~)x + (,2 ~ ttrl)eQ[x). 

[Hi'llt: Show thatp(x) = (x - a)(x- a), where a= (r- sVd)lt.J 
(c) If s * 0, show that p(x) is irreducible in Q[x]. 

(d) Prove that a is a quadratic integer if and only if p(x) has integer 
coefficients. [Hilit: If s ¢ 0, use Exercise S; if s * 0 and a is a root of a 
monic polynomialf(x) E Z[x], use Theorem 4.23 to show that a is a root 
of some monic g(x) E Z[x], with g(x) irreducible in Q[x]. Apply (c) and 
Theorem 4.14 to show g(x) = p(x).] 

(e) If a is a quadratic intege~; show that t 11r and rli4dr-. Use this fact to prove 
that t must be I or 2. [Hint· dis square-free, (r, s. t) = I; use (b) and (d).] 

(f) If d == 2 or 3 (mod 4), show that a is a quadratic integer if and only if 
t = I. [Hint: If t = 2, then r == di'- (mod 4) by (b) and (d). If sis even, 
reach a contradiction to the fact that (r, s, t) = 1; if sis odd, use Exercise 7 
of Section 2.1 to get a contradiction.] 

(g) If d == I (mod 4) and a E (]I(VJ), show that a is a quadratic integer if and 
only if t = l, or t = 2 and both rand sare odd. [Hint: Use (d).] 

(h) Use (f) and (g) to show that the set of all quadratic integers in Q( v'd) is ZI_W] 

if d~ 2or 3 (mod 4) and {m \nVilim, n,eZ a~~dm == H(mod 2)} 

if d == I (mod 4). 

II The Field of Quotients of an Integral Domain* 

For any integral domain R we shall construct a field Fthat contains Rand consists of 
"quotients" of elements of R. When the domain R is Z, then F will be the field Q of 
rational numbers. So you may view these proceedings either as a rigorous formaliza­
tion of the construction of 0! from Z or as a generalization of this construction to 
arbitrary integral domains. The fieki Fwill be the essential tool for studying factoriza­
tion in R[x] in Section 10.5. 

Our past experience with rational numbers will serve as a guide for the formal 
development. But all the proofs will be independent of any prior knowledge of the 
rationals. 

A rational number ajb is determined by the pair of integers a, b (with b ¢ 0). But 

.>:a • de · h · al be fi · l 3 4 d ~1uerent parrs may tetmlne t e same ration num r; or mstance, 2 = 6 = S' an 
m general 

a c 
= if and only if ad= be. 

b d 

•This section Is Independent of the rest ol Chapter 10. Its prerequisites are Chapter 3 and Appendix D. 
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This suggests that the rationals come from some kind of equivalence relation on pairs 
of integers (equivalent pairs determine the same rational number). We now formalize 
this idea. 

Let R be an integral domain and let S be this set of pairs: 

Define a relation - on the set S by 

(a, b)-(c, d) means ad= be inR. 

Theorem 10.25 
The relation- Is an equivalence relation on S. 

Proof .. Reflexive: Since r is commutative ab = ba, so that (a, b)- (a, b) for m:cy 
pair (a, b) in S. Symmetric: If (a, b) - ( c, d), then ad = be. By oommutativ­
itycb = th,so that(c, d) -(a, b). Tiansitive: Suppose that (a, b)- (c, d) 
and (c, d) - (r, s). Then ad= be and cs = dr. Multiplying ad = be by s and 
using cs = dr we have ath = (bc)s = b(cs) = bdr. Since d OR by the dd'ini­
tion cf Sand R is an integral domain we can cancel d from ads = bdr and 
conclude that as = br. Therefore, (a, b) -(r, s). • 

1hl ~ivalence relation- partitions Sinto disjoint ~valence dasses by Corollary D.2 
in Appendix D. For COIM:Dicno:we shall denote the equivalence c:la55of (a, b) by fa, b] rather 
than the more cumbersome ((a, b)]. Let F denote the set of all equiva1ence c:lasses under-. 
Note that by Theorem DJ, 

[a, b] = (c, d] in F if and only if (a, b)- (c, d) in S. 

Therefore, by the definition of -, 

£•, t.l = r~. dl m F if and only if ad= he in R. 

We want to make the set F into a field. Addition and multiplication of equivalence 
classes are defined by 

(a, b] + [c, d] = (ad+ be, bd] 

(a, b](c, d] = (ac, bd].* 

In order for this definition to make sense, we must firs.t show that the quantities on 
the right side of the equal sign are actually elements of the set F. Now [a, b] ~the 

..,ese definitions are motivated by the e r ith metical ru I es 1 or rat i on a I n u m bers (just rep le ce the 
frection r/s: by the equivelenceclass [r, s]): 

a c iJJd +be a c iiC 

b+d=-~ li"ri= bd 
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equivalence class of the pair (a, b) in S. By the definition of S we have b '# OR; simi­
larly, d ::1 OR. Sinoo R is an integral domain, bd '# OR. Thus (ad+ be, bd) and (ac, bd) 
an: in the set S, so that the equivalence classes (ad+ be, bdJ and (ac, bd] are elements 
of F. But more is required in order to guarantee that addition and multiplication in 
Fare well defined. 

rdin 'thmeti I 3 3 d lac. 1 b 4 d h Ino aryan c,-•- :=-an rep mg- y-pro uoost esameanswer 
2 5 lO 2 8 

4 3 12 3 . 
because- • - = - = -. The answer doesn't depend on how the fractlons are repre-

8 s 40 10 
sen ted. Similarly, in F we must show that arithmetic does not depend on the way the 
equivalenced asses are written: 

Lemma 10.26 
Addition and multiplication in F- are independent of the choice of equivalence 
class representatives. In other words, if [a, b] =< [a', b '] e:.1d [c, d) =< [c', d], then 

[ad+ be, bd] =< (a'd' + b'c', b'd'] 
and 

Iac, bd] =< [a' c', b' d']. 

Praof .. As noted ab ave [ad+ be, bd] =< (a' d' + b' c', b 'd'] in F if and only if 
(ad+ bc)b 'd' =< b4,.a' d' + b' c') in R. So we shall prove this last state­
ment. Sinoo (a, b] =' (a', b'] and (c, d] =' (e', d'] we know that 

(*) oh' =< ba' and cd' =' de'. 

Multiplying the first equation by dd' and the second by bb' and adding 
the results show that 

oh'dd' = ba'dd' 

cd'bb' = de' bb' 

oh'dd' + cd'bb' := ba'dd' + dc'bb' 

(ad+ bc)b'd' = bd(a'd' + b'e'). 

Therefore, [ad+ be, bd] = [a' d' + b' c', b' d']. 
For the second part of the proof multiply the first equation in ( *) by 

cd' and the second by ba' so that 

oh'cd' =' ba'cd' and a! ba' =< dc'W. 

By commutativity the right side of the first equation is the same as the 
left side of the second equation so that the other sides of the two equa­
tions are equal: oh' cd' =' de' ba'. Consequently, 

(ac)(b'd') =' ab'cd' =< dc'ba' =< (bd)(a'c'). 

The two ends of this equation show that [ac, bd] =' [a'c', b' d']. • 
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Lemma 10.27 
If R is an integral do rna in and F- ls as above, then for all nonzero a, b, c, d, k ER: 

(1) [OR, b] =[OR, d]; 

(2) [a, b] = [ak, bk]; 

(3) [a, a]= [c, c]. 

Proof~ Exercise L • 

Lemma 10.28 
With the addition and multiplication defined above, F is a field. 

Proof~ Closure of addition and multiplication follows from Lemma lO.:U and 
the remarks preceding it. Addition is commutative in Fbecause addition 
and multiplication in R are commutative: 

[a, b] + [c, d] = [ad+ be, bdJ = [cb + da, db] = [c, dJ + [a, b]. 

Let Op be the equivalence class [OR, b] for any nonzero bE R (by ( 1) .in 
Lemma 10.27 all pairs of the form (OR, b) with b :I OR are in the same 
equivalence cla!S). If [a, b] EF, then by (2) in Lemma 10.27 (withk =b): 

[a, b] + Op= (a, b] +[OR, b] = (ab + bOR,bb] = (ab, bb] =[a, b]. 

Therefore, Op is the zero element ofF The negative of [a, b] in Fis [-a, b] 
bel;;ause 

[a, b] +[-a, b] =(ab-ba, P] = [OR, ll:J =OF-

The proofs that addition is associative and that multiplication is associa­
tive and commutative are left to the reader (Exercise 2), as is the verifica­
tion that [~ W is the multiplicative identity clement in F. If [a, b] is a 
nonzero element ofF, then a+ OR· Hence. [b, a] is a weB-defined element 
of F and by (3) in Lemma 10.27 

[a, b][b, a] = [ab, ba] = [1_p:th, l~b] = [lR> l.R]. 

Therefore, [b, a] is the multiplicatiw inverse of [a, b]. To see that the dis­
tributive law holds in F, note that 

[a, b]([c, d] + [r, sD =[a, b][c.1 + dr, th] 

= [a(C3 + dr), b(ds)] 

= [acs + adr, bth]. 
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On the other hand, by (2) in Lemma 10.27 (with k = b) 

[a, b][c, d] + [a, b][r, 9] = [ac, bd] + [ar, bs] 

= [(acXbs) + (hdXar). (hd)(bs)] 

= [(acs + adr)b, (hd9)b] 

= [ac9 + adr, /xh]. 

Therefore, [a, b]([c, d] + [r, sD = [a, b][c, dJ +[a, b][r, 9]. • 

We usually identity the integers with rational numbers of the form ajl. The same 
idea works in the general case: 

Lemma 10~29 
Let R be an integral domain and F the field of Lemma 10 .28. Then the subset 
R"' = {[a 1 1 Rl I a E R} of F iS an Integral domain that is isomorphic toR. 

Proof~ Verify that R* is a subring ofF (Exercise 3). Clearly [IR, IRJ, the identity 
element of F, is in R*, so R* is an integral domain. Define a map 
f:R-+ R* by f(a) = [a, :r.J. Then/is a homomorphism: 

f(a) + f(c) = [a, lRJ + [c, lRI = [aiR+ 1~, IRlRl 

= [a+ c, lRJ = f(a +c) 

f(a)f(c) =[a, lRI[c, lRI = [ac, l.a] = f(ac). 

If fla) =!(c), then [a, l.a] = [c, l.R], which ttnplies that aiR= IRe by the 
boldface statement following Theorem 10.25. Thus a= c andfis injec­
tive. Sinoo f is obviously surjed:ive,f is an isomorphism. • 

The equivalence class notation for elements of Pis awkward and doesn't convey the 
promised idea of "quotients". This is easily remedied by a change of notation, Instead 
of denoting the equivalence class of (a, b) by [a, b ], 

denote the equivalence da~ of (11, b) by 11./A. 

If we translate various statements above from the brackets notation to the new quotient 
notation, things begin to look quite familiar: 

Theorem 10~30 
Let R be an integral domain. Then there exists a field Fwhose elements are of 
the form afb with a 1 bE R and b ¢ ~~ sub jed to the equality condition 

!= £inf 
b d 

if and only if ad = be in R. 

Addition and multiplication in Fare given by 

a c ad+bc a c ac 
b + d ~ bd ; b . d ~ bd' 

The set of elements in f of the form a/i R(a E R) is an integral domain iSomor· 
phic toR. 
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Proof .. Lemmas 10.28 and 10.29 and the notation change preceding the 
theorem."' • 

Itisnowclearthatif R = Z, then the field Fis precisely Q. So Theorem 10.30 may 
be taken as a formal construction of Q from Z. In the general case, we shall follow the 
same custom we use with Q: The ring R will be identifod with its isomorphic copy in 
F. 1ben we can say that R is the subset of F consisting of elements of the form afl.r 
The fieki F is called the lield of quotients of R. 

EXAMPLE 1 

Let F be a field. The field of quotients of the polynomial domain F[x] is 
denoted by F(x) and consists of allf(x)fg(x), wheref(x), g(x) EF[x] and g(x) * 
Ox. The field F(x) is called the lield of rational ftmctions over F. 

The field of quotients of an integral domain R is the smallest field that contains R 
in the following sense.1 

Theorem 10.31 
Let R be an integral domain and Fits field of quotients. If K is a f1eld containing 
R, then K contains a subfield E such that R!:: E!:: K and E is isomorphic to F. 

Proof'" If afb E F, then a, b E R and b is nonzero. Since R !:: K, b -I exists. Define a 
mapf:F4Kbyf(afh) = ab-1• Exercise 9 shows thatfis well defined, that 
is, afb = cfdin Fimpliesf(a(h} = f(cfd) inK. Exercise 10 shows thatfis 
an injeaive homomorphism. If E is the image of F under f, then F = E. 
For each a ER, a= aJ..s -I= j(afiR)EE, so R r;;.Er;;.K • 

• Exercises 

NOTE: Unless noted otherwise, R ts .:m Integral domain and Fits field of quatlents. 

A. 1. Prove Lemma 10.27. 

2. Complete the proof of Lemma l 0.28 by showing that 

(a) Addition of equivalence classes is associative. 

(b) Multiplication of equivalence classes is associative. 

(c) Multiplication of equivalence classes is commutative. 

3. Show that R* = {[a, IRJ I a E R} is a subring of F. 

•At this point you ITl!IY well ask, "Wtrt didn't we adopt the quotient notation sooner?" The reason is 
psychological rather than ITl!llhematical. The quotient notal ion makes things look so much like the 
familiar rationals that there is a tendency to assumeeverythi ng works like italways did, instead of 

actually carrying out the formal (and tiresome) details ofthe rigorous development. 

I Theorem 10.31 is not used in the sequel. 
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B. 4. If R is itself a field, show that R =F. 

5. If R = Z(i], then show that F= {r + si I r, SEQ}. 

6. If R = Z[Vd], then show that F = {r + sv'd I r, s E Q). 

7. Show that there are infinitely many integral domains R such that Z ~;; R ~;; 0, 
each of which has Q as its field of quotients. [Hint: Exercise 28 in 
Section 3.1.] 

8. Letf:R 4R1 be an isomorphism of integral domains. Let Fbe the field of 
quotients of Rand F1 the field of quotients of Rp Prove that the map 
f*:F ~ F1 given by f*(ajb) = f(a)lf(b) is an isomorphism. 

9. If Ris contained ina field Kand ajb = cjdin F, show that ah-1 = cd- 1 inK. 
[Hint: ajb = cjd implies ad= be inK.] 

10. (a) Prove that the map fin the proof of Theorem 10.31 is injective. 
[Hint:f(ajb) = f(cjd) implies ab-1 = ccr1: show that ad= be.] 

(b) Use a straightforward calculation to show that f is a homomorphism. 

II. Leta, bE R. Assume there are positive integers m, n such that am = ll", d" = 
11', and (m, 11) = 1. Prove that a= b. [Remember that negative powers of a and 
bare not ne~ssarily defined in R, but they do make sense in the field F; for 
instance, a-1 = lRfal.] 

12. Let R be an integral domain of characteristic 0 (see Exercises 41--43 in 
Section 3.2). 

(a) Prove that R has a subring isomorphic to Z [Hint: Consider {11lR InEZ}.] 

(b) Prove that a field of characteristic 0 contains a sub field isomorphic to Q. 
[Hint: Theorem 10.31.] 

13. Prove that Theorem 10.30 is valid when R is a commutative ring with no 
zero divisors (not necessarily an integral domain). [Hint: Show that for any 
nonzero a E R, the class [a, a] acts as a muhiplicative identity for F and the set 
{[ra, a] I rER} isasubringof Fthat is isomorphic toR. The even integers are 
a good model of this situation.] 

~~ Unique Factorization in Polynomial Domains* 

Throughout this section R is a WJique foctorization domain. We shall prove that the 
polynomial ring R[x] is also a UFD. The basic idea of the proof is quite simple: Given 
a polynomial f(x), factor it repeatedly as a product of polynomials of lower degree 
untilf(x) is written as a product of irreducibles. To prove uniqueness, consider f(x) as 

5 The prerequisites fort his section are pages J22..324 ofSI!ction 10.1, the definition of unique 
factorization domain (to get her with Theorems 1 0.13, 10.15, and 1 0.18), anti Section 10.4. Theorems 10.13, 
10.15, and 10.18 depend only on the definition of UFO and may be read independently oft he rest of 
Section 10.2. 
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a polynomial in F[x], where F is the neld of quotients of R. Use the fact that F[x] is 
a UFD (Theorem 4.14) to show that factorization in R[x] is unique. 1bere are some 
difficulties, however, in canying out this program. 

EXAMPLE 1 

The polynomial 3i!" + 6 cannot be factored as a product of two polynomials of 
lower degree in Z[xJ and is irreducible in O[x]. But 3.:i? + 6 is reducible in Z [x] 
because 3r + 6 = 3(x2 + 2) and neither 3 nor x 2 + 2 is a unit in Z[x]. 

So the nrst step is to examine the role of constant polynomials in R[x]. By 
Corollary 4.5 and Exercise I 

and 

the units in .Rixl are tbe units in R 

the irreducible constflnt polynomials in .Rixl are 
the irreducible elements of R. 

For example, the units of Z[x] are± 1. The constant polynomial3 is irreducible in Z[x] 
even though it is a unit in O[x]. 

The constant irreducible factors of a polynomial in R[~J may be found by factoring 
out any constants and expnssing them as products of irreducible elements in R. 

EXAMPLE 2 

InZ[x], 

6i!" + l8x + 12 = 6(x2 + 3x + 2) = 2 · 3(r + 3x + 2). 

Note that :il + 3x + 2 is a polynomial whose only constant divisors in Z[x] are 
the units :t I. This example suggests a strategy for the general case. 

Let R be a unique factorization domain. A nonzero polynomial in R[x] is said to be 
primitive if the only constants that divide it are the units in R. For instance, il + 3x + 
2 and 3x"- 5x~ + 2x are primitive in Z[x]. Primitive polynomials of degree 0 are units. 
Every primitive polynomial of degree 1 must be irreducible by Theorem I 0.1 (because 
every factorization includes a constant (Theorem 4.2) and every such constant must be 
a unit). However, primitive polynomials of higher degree need not be irreducible (such 
as xi + 3x + 2 = (x + I Xx + 2) in Z[x ]. On the other hand, an irreducible polynomial 
of positive degree has no constant divisors except units by Theorems 4.2 and 10. I. So 

an irreducible polynomial of positive degree is primitive. 

Furthermore, as the example illustrates, 

every nonzero polynomialf(x)ERixl 
factorsasf(.r) = cg(x)withg(x) primithe. 
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To prove this claim, let c be a grearest common divisor of the coefficients of f(x).* Then 
f(x) = "8(x) for some g(x). Now m: show that g(x) is primitive. If dER divides g(x), 
then g(x) = dh{x) so that.ftx) = cdh(x). Since cd is a constant divisor of f(x), it most 
divide the coefficients of f(x) and, hence, must divide the gcd c, Thus cdu = c for some 
u ER. Since c '#- OR we see that du = ~and dis a unit. Therefore., g(x) is primitive. 

Using these farts about primitive polynomials, we can now modifY the argument 
given at the beginning of the section and prove the first of the two conditions neces­
sary for R[x] to be a UFO. 

Theorem 10.32 
Let R be a unique factorization domain. Then every nonzero, nonunit f(x) in 
R[x] is a product of irreducible polynomials.t 

Proof • Letf(x) = cg(x) with g(x) primitive. Since R is a UFO c is either a unit 
or a product of irreducible elements in R (and, hence, in R[x]). So we 
need to prove onlytbat g(x) is either a unit or a product of irreducibles 
in R[ x]. If g(x) is a unit or is itself irreducible, there is nothing to prove. 
ff not, then by Theorem 10.1 g(x) = h(x)k(x) with neither h(x) or k(x) 
a unit Since g(x) is primitive, its only divisors of degree 0 are units, so 
we must have 0 < deg h(x) < deg g(x) and 0 < deg k(x) < deg g(x). 
Furthermore, h(x) and k(x) are primitive (any constant that divides one 
of them must divide g(x) and hence be a unit). If they are irreducible, 
we're done. ff not, we can repeat the preceding argwnent and factor 
them as products of primitive polynomials of lower degree, and ln on. 
This process must stop after a finite number of steps because the degrees 
of the factors get smaller at each stage and every primitive polynomial 
of degree I is irreducible. So g(x) is a product of irreducibles in R[x]. • 

The proof that factorization in R[x] is unique depends on several technical facts 
that will be developed next. But to get an idea of how all the pieces fit together, you 
may want to read the proof of Theorem 10.38 now, referring to the inrermediate re­
sults as needed and accepting them without proof. Then you can return to this point 
and read the proofs. knowing where the argument is headed. 

Lemma 10.33 
Let R be a unique factorization domain and g(x), h (x) E R[x]. It p is an irreduc­
ible element of R that divides g{x)h(x), then p divides g(x) or p divides h(x). 

Proof~ Copy the proof of Lemma 4.22, which is the special case R = Z. Just 
replace Z by Rand prime by irrwlucible and use Theorem 10.15 in place 
of Theorem 1.5. • 

•The gcd c exists by Theorem 10.18. 

tAs usual we allow a "product'' with just one faetor. 
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Corollary 1 0.34 Gauss's Lemma 
Let R be a unique factorization domain. Then the product of primitive 
polynomials in R[x] is primitive, 

Proof~ If g(x) and h(x) are primitive andg(x)h(x) is not, theng(x)h(x) is 
divisible by some non unit c E R. Consequently, each im::ducible factor p 
of c dividesg(x)h(x). By Lemma 10.33, p divides g(x) or h(x), contradict­
ing the fact that they are primiti-re. Therefore, g(x)h(x) is primitive. • 

Theorem 10.35 
Let R be a unlque factorization domain and r, s nonzero elements of R. Let f(x) 
and g(x) be primitive polynomials in R[x] such that rf{x) = sg(x). Then rands 
are associates in Rand f(x) and g(x) are associates in R[x]. 

Proof~ If r is a unit, thenf(x) = ,-1sg(x). Since ,-ts divides the primitive 
polynomialf(x), it must be a unit, say (r-1-9tt = ~- Hence,.f(x) and g(x) 
are associates in R[x]. Furthermore, -u is a unit in Rand su = r so that r 
and 3 are associates in R. 

If r is a nonunit, then r = PtP'l ••• Pit with each p1 irreducible. Then 
PtPz · • • Pt/(X) = sg(x), so Pt divides sg(x). By Lemma 10.33 p1 divides 
s or g(x). Sinoe p 1 is a nonunit andg(x) is primitive, f1J must divide 3, say 
s =Pit. ThenpJP2 • • • pif(x) = sg(x) = P1tg(x). Canoelingp1 shows 
that P2 ••• p,J'(x) = tg(x). Repeating the argument with pz shows that 
p3 • • • ptJ(x) = zg(x), where pzz = t and, henoe, PtPlZ = p1 t = s. After 
k such steps we havef(x) = wg(x) and s = P!Pl • •• p,w for some wE R. 
Since w divides the primitive polynomialf(x), w is a unit. Therefore, 
f(x) and g(x) are associates in R[x]. Since s = p 1 · · • p~cw = I"W, rands 
are associates in R. • 

Corollary 10.36 
Let R be a unique factorization domain and F-its field of quotients. Let f(x), 
g(x) be primitive polynomials in R[x]. tf f(x) and g(x) are associates in f[x], 
then they are associates in R[x]. 

Proof~ If /(x) andg(x) are associates in F[x], then g(x) = !_f(x) for some 
r s 

nonzero -eFby Corollary 4.5. Consequently, sg(x) = rf(x) in R(x]. 
s 

Therefon;J(x) and g(x) are associates in R(x] by Theorem 10.35. • 

Corollary 10.37 
Let R be a unique factorization domain and Fits field of quotients. If f(x) E R[x] 
has positive degree and is irreducible in R[x], then f{x) is irreducible in f[x), 



10.5 Unique Factorization In Polynomial Domains 363 

Proof • If f(x) is not irreducible in F(x), thenf(x) = g(x)l(x) for some g(x), h(x) 
E F(x} with positive degree. Let h be a least common denominator of the 

coefficients of g(x). Then hg(x) has coefficients in R. So hg(x) = og1 (x) with 

aE Rand g1(x) primitive of positive degree in R(x). Hence, g(x) = i.KJ(i). 

Similarlyh(x) = ~h1(x)with c, dERandh1(x) primitive of positive degree 
a c tu: 

inR(x}. Therefore,f(x) = g(x)h(x) = bgl(x) -;~ht(x) = bdgt(x)ht(x), 

so that bdf(x) = acg 1 (x )h1 (x) in R(x]. Now f(x) is primitive because it is 
irreducible and g1(x)h1(x) is primitive by Corollary 10.34. So hd is an as­
sociate of ac by Theorem 10.35, say lxb.J = ac for some unit u ER. 

(J£ . 

Therefore,f(x) = bdgl(x)ht(X) = ug1(x)h1(x). Smceug1(x) and lt1(x) are 

polynomials of positive degree in R(x), this contradicts the irreducibility 
of f(x). Tbe£efore,f(x) must be irreducible in F[x). • 

Theorem 10.38 
tf R Is a unique factorization domain, then so fs R[x]. 

Proof • Every nonzero nonunit f(x) in R(x] is a product of irreducibles by 
Theorem I 0.32. Any such factorization consists of irreducible constants 
(that is, irreducibles in R) and irreducible polynomials of positive degm:. 
Suppose 

Ct • • • C,.Pt(x) · · · Pi(x) = d1 • • • dnql(x) • • • ql.,x) 

with each c, ~irreducible in Rand eachp~x), qj_x) irreducible of posi­
tive degree in R(x) (and, hence, primitive).* Thenp1(x) • • • p.(x) and 
q1(x) · · · q!._x) are primitive by Corollary10.34. So Theorem 10.35 shows 
that c1 • • • c,., is an associate of d1 • • • d,. in R and p 1(x) • • • p,.(x) is an 
associate of q1 (x) • • • q,(x) in R(x]. Hence, c1 • • • c,. = ud1d2 • • • d, for 
some unit u E R. Associates of irreducibles are irreducible (Exercise 7 of 
Sectionl0.1), so vJ1 is irreducible. Since R is a UFO, we must have m = n 
and (after relabeling if necessary) c1 is an associate of ud1 (and hence of 
d1), and c1 is an associate of d1 for i ~ 2 Let F be the field of quotients 
of R. Each ofthep.{x),qj{x) is irreducible inF[x)byCoro1lary 10.37. 
Unique factorization in F[x] (Theorem 4.14) and an argument simi-
lar to the one just given for R show that k = t and (after relabeling if 
necessary) each p/..x) is lUI associate of q/.x) in F(x). Consequently, pl..x) 
and qt(x) are usociates in R(x) by Corollary 10.36. Therefore, R[x] is a 
UFO. • 

~It m11y be that neither factorization contains constants, but this doesn'taffectthe IIJ'gument ft is not 
possible to have i rred uc b le constants in one factorization but not in the other (Exercise 5 ). 
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An immediate consequence of Theorems 1.8 and 10.38 and Example 8 of 
Section 6.1 is 

Corollary 1 0.39 
Z[x] is a unique factorization domain that is not a prlnc ipal ideal domain. 

As illustrated in the preceding discussion, theorems about Z[x] and G[x] are quite 
likely to carry over 1D an arbitrary UFD and its field of quotients. Among sucll results 
are the Rational Root Test and Eisenstein's Criterion (Exercises 9--11). 

• Exercises 

NaTE: Unless stated otherwise R is a UFD 011d Fits fold of quotient~. 

A. l. Let R be any integral domain and p E R. Prove that p is irreducible in R if and 
only if the constant polynomial pis irreducible in R[x]. [Hint: Corollary 4.5 
may be helpful.] 

2. Give an example of polynomialsf(x), g(x)ER[x] such thatf(x) and g(x) are 
associates in F[x] but not in R[x]. Does this contradict Corollaryl0.36? 

3. If c1 • • • c..f(x) = g(x) with ct ER and g(x) primitive in R[x], prove that each 
c1is a unit. 

4. If g(x) is primitive in R[x], prove that everynonconstant polynomial in R[x] 
that divides g(x) is also primitive. 

B. 5. Prove that a polynomial is primitive if and only if lR is a greatest common 
divisor of its coefficients. This property is often taken as the definition of 
primitive. 

6. If f(x) is primitive in R[x] and irreducible in F[x], prove thatf(x) is irreducible 
in R[x]. 

7. If R is a ring such that R[x] is a UFD, prove that R is a UFO. 

8. If R is a ring such that R[x] is a principal ideal domain, prove that R is a field. 

9. Verify that the Rational Root Test (Theoran 4.21) is valid with Z and 0 
replaced by R and F. 

I 0. Verify that Theorem 4.23 is valid with Z and Q replaced by Rand F. 

ll. Verify that Eisenstein's Criterion (Theorem 4.24) is valid with Z and 0 
replaced by R and F and prime replaced by irreducible. 

12. Show that r - 6XZ + 4ix + 1 + 3i is irreducible in (Z[i D[x). 
[Hint: Exercise 11.] 
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Field Extensions 

High-school algebra dea Is primarily with the three fields Q, R, and C and plane 
geometry, with the set n X R. Calculus is concerned with functions from In! to IR. 
Indeed, most classical mathematics is set in the field C and its subfields. Other 
fields play an equally important role in more recent mathematics. They are used in 
analysis, algebraic geometry, and parts of number theory, for example, and have 
numerous applications, including .coding theory and algebraic cryptography. 

In this chapter we develop the basic facts about fields that are needed to prove 
some famous results in the theory of equations (Chapter 12) and to study some of 
the topics listed above. The principal theme is the relationship of a field with its 
various s ubfiel ds, 

1111 Vector Spaces 

An essential tool for the study of fields is the concept of a vector space, which is 
introduced in this section. Vector spaces are treated in detail in books and courses 
on linear algebra. Here we present only those topics that are needed for our study of 
fields. If you have had a course in linear algebra, you can probably skip most of this 
section_ Nevertheless, it would be a good idea to review the main results, particularly 
Theorems 11.4and 11.5. 

Consider the additive abelian group* M(R) of all 2 X 2 matrices over the field n 

of real numbers. If ris a real number and A = (: :) is an element of M(R), then the 

•Except for the last two resuHs in the chapter, group theory is not a prerequisite for this chapter. In 
this section you need only know that an additive abelian group is a set with an addition operation 
that sati sfiesA Kioms1-5 in the definition of a ring (page 44). 

365 
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Definition 

product of the number r and the matrix A i3 defined to be the matrix r A = G: :). 
This operation, which is called scalar multiplication, takes a real number (field ele­
ment) and a matrix (group element) and produces another matrix (group element). 
This is an example of a more general concept. Let F be a field and G an additive abe­
lian group.* Then a scalar muJtiplication is an operation such that for each a E F and 
each v E G there is a unique element avE G. 

Let F be a field. A vector space over F is an additive abelian group* V 
equipped with a scalar multiplicatron such that tor all a, a,, .3.1 E F and v, 
Vf, Vt E V: 

(i) a(v1 + Y2) = av1 + av2; 

(ii) (a1 + ~)v = a1v + lft1V: 
(ifi) a1(a2v) = (a~&.!) v: 

(tv) 1FV = v. 

EXAMPLE 1 

Scalar multi plication in M(R), as defined above. makes M(R) into a vector 
space over R (Exercise 1 ). 

EXAMPLE 2 

Consider the set OZ = 0 X Q, where Q is the field of rational numbers. Then 
fil is a group under addition (Theorem 3.1 or 7.4 ); its zero element is (0, 0) and 
the negative of (s, t) is (-s, - t). For a E IQI and (a, t) E 0 2, scalar multiplication 
is defined by a(s, t) = (as, at). Under these operations Q2 is a vector space over 
Q (Exercise 2}. 

EXAMPLE 3 

The preceding example can be generalized as follows. If Pis any field and n :a: 1 
an integer, let F' = F X F X ···X F(n summands). ThenF~ is a vector space 
over F, with addition defined coordinatewise: 

and scalar multiplication defined by: 

(see Exercise 5). 

•see the preceding footnote. 
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EXAMPLE4 

The complex numbers C form a vector space over the real numbers R, with 
addition of complex numbers (vectors) defined as usual and with scalar mul­
tiplication being ordinary multiplication (the product of a real number and a 
complex number is a complex number). 

Special terminology is used in situations like the preceding example. If F and K are 
fields with Fr;;. K, we say that Kis an extension field of F. For instance, the complex 
numbers C are an extension field of the field u;J! of real numbers. As the preceding 
example shows, the extension field C can be considered as a vector space over n. The 
same thing is true in the general case. 

If K is an extemion fleld of F, then K is a vector space m·er F, with 
addition of vectors being ordinary addition inK and scalar 

multiplication being ordinary multiplication inK 

(the product of an element the subfield F and an element of K is an element of K). 
For the purposes of this chapter, extension fields are the most important examples of 
vector spaces. 

If Vis a vector space over a field F, then the following properties hold for any v E V 
and a E F (Exercise 21 ): 

O,FV = 0111 aOv = Ov, -(av) = ( -JJ)v. = d.. -v). 

Spanning Sets 
Suppose Y is a vector space over a field F and that w and fit, v:z, •.. , v, are elements 
of V. We say that w is a linear combination of vi> vz, ... , v11 if w can be written in 
the form 

for somea;EF. 

If every element of a vector space V over a field F is a linear combination of 
v1, Vtr • •• , v11, we say that the set {v1, v~, ... , v,J spans Vover F. 

EXAMPLES 

The set {(1, 0, 0), (0, 1, 0), (0, 0, I)} spans the vector space (j over Q because 
every element (a, h, c) of (j is a linear combination of these three vectors: 

(a, b, c) =a (1, 0, 0) + b (0, 1, 0) + e (0, 0, 1). 

EXAMPLES 

Every element of C (considered as a vector space over u;J!) is a linear combina­
tion of 1 and /because every element can be written in the formal + bl, with 
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a, bE R.. Thus the set { 1, f} spans C over IR. The set { 1 + i, Si, 2 + 3i} also 
spans C because any a + bi E C is a linear combination of these three elements 
with coeffuients in R: 

b 
a+ bi-= Ja(l + i) + S(St) + (-a)(2 + 3t). 

Linear Independence and Bases 
The set { 1, i} not only spans the extension field C of R but it also has this property; If 
al + bi = 0, then a = 0 and b = 0. In other words, when a linear combination of 1 and 
i is 0, then all the coefficients are 0. On the other hand, the set {1 + i, Si, 2 + 31} does 
not have this property because some linear combinations of these elements are 0 even 
though the coefficients are not; for instance, 

1 
2(1 + i) + S (Si)- 1(2 + 3i) = 0. 

The distinction between these two situations will be crucial in our study of field 
extensions. 

A subset {v1, v2, ••• , Vn} of a vector space V over a field F is said to be 
I inearly independent over f providoo that whenever 

c,v, + C2V2 + · · · + CnVn = Ov 

with each c IE F r then r;,_ = of for every ;, A set that is not Hnearl y indepen­
dent is said to be I i nearly dependent 

~ a set {u.h l'2> •.• , u,.} is linearly depeOOent over F if there exist elements 
bt, b,., . .. , bm ofF, at least one of \\hich is nonzero, such that ~UJ + ~ + · · · + bm'U.m = Ov. 

EXAMPLE 7 

The remarks preceding the definition show that the subset { 1, i} of C is linearly 
independent over ~and that the set {1 + i, Si, 2 + 3i} is linearly dependent. 
Note, however, that both of these sets span C. 

EXAMPLE 8 

Consider the subset { (3, 0, 0), (0, 0, 4)} of the vector space 0 3 over Q and sup­
pose CJ. !1 t= 10 are such that Ct (3, 0, 0) + C:!(O, 0, 4) = (0, 0, 0). Then 

(0, 0, 0) = c!C3, 0, 0) + c:!(O, 0, 4) = (3c1, 0, 4c:z), 

which implies that c1 = 0 = c1. Hence, {(3, 0, 0), (0, 0, 4)} is linearly indepen­
dent over Q. However, the set {(3, 0, 0), (0, 0, 4)} does not span Oj because 
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there is no way to write the vector (0, 5, 0), for example, in the fonn a1(3, 0, O) 
+ a1(0, 0, 4) = (3a1, 0, 4a2) with !ltE 0. 

Let V be a vector space over a field F. The preceding examples show that linear 
independence and spanning do not imply each other; a subset of V may have one, 
both, or neither of these properties. A subset that has both properties is given a special 
nama 

A subset {v1, V:z, •• , , Vn} of a vector space V over a field F is said to be a 
bas Is of V If it spans V and is linearly Independent over f. 

EXAMPLE 9 

Example 5 shows that the subset {(1, 0, 0), (0, I, 0), (0, 0, I)} spans the vector 
space 0 3 over 0. This set is also linearly independent over 0 (Exercise 8) and, 
hence, is a basis. 

EXAMPLE 10 

Examples 6 and 7 show that the set {I, i} is a basis of C over JR. We claim that 
the set {l + i, 21} is also a basis of Cover JR. If c1Q + I) + c1(21) "" 0, with e1, 

c1 E R, then c11 + (c1 + lc:z)i = 0. This can happen only if c1 "" 0 and c1 + 2"1 = 0. 
But this implies that 2c1 = 0 and, hence, !:'1 = 0. Therefore, {I + I, 2i} is linearly 
independent. In order to see that {I + I, 21} spans C, note that the element 

a+ biEC can be written as a(l + i) + e; a)2i. 

One situation always leads to linear dependence. Let Vbe a vector space over a field 
F and S a subset of V. Suppose that v, uh u:~o ••. , -u1 are some of the elements of S and 
that vis a linear combination of uh u 2, ••• , u 6 say v = a1u 1 + ~ · · + a,u,, with each 
a; E F. If w1, • , • , w, are the rest of the elements of S, then 

and, hence, 

-l_,m + a1u1 + · · · + ~u, + OPJ + · · · + OJW, = Ov. 

Since at least one of these coefficients is nonzero (namely -lp), Sis linearly dependent. 
We have proved this useful fact: 

If v E r is a linear combination of u1, u20 • , , , u1 E V, then any !let 
containing v and aU the U; is linearly dependent. 

In fact, somewhat more is true. 



370 Chapter 11 Field Extensions 

Lemma 11.1 
Let V be a vector space over a f1eld F. The subset {u1, u2 , ••• , u11} of Vis linearly 
dependent over F if and on I y if some u1:. is a I inear combination of the preced­
ing ones, ul, u2, .. ,, U~:._1 . 

Proof .. If !orne 'tlk is a linear combination of the preoxling ones, then the 5et 
is linearly depeodent by the remarks ~ding the lemma. Conwrsely, 
suppose {u~o ... , u~} is linearly dependent Then there must exist elements 
c., •. ~, c, E F, not all zero, such that c1ut + '2~ + · · · + c,u, = Oy. Let k 
be the largest index such that egis nonzero. Then c1 = Op for i > k and 

c1u1 + C2~ + · · · + CkUk = Ov 

ckuk = -c,u, - OJUz - • • • - ck-JUk-1· 

Since Fis a field and ck :¢ 0, ~ -t exists; multiplying the preceding equa­
tion by eg -t shows that uk is a linear combination of the preceding u's: 

The next lemma gives an upper limit on the size of a linearly independent set. It 
says, in effect, that if V can be spanned by n elements over F, then every linearly inde­
pendent subset of V contains at most 1'1 elements. 

Lemma 11.2 
Let V be a vector space over the field F that is spanned by the set 
{v1, v2, ••• , v,J. If {u1, u2, ••• , urn} is any linearly independent subset of V, then 
msn. 

Proof .. By the definition of spanning, every element of V (in particular ui) is a 
linear combination of f..\ 1 ••• , "tt• So the set { u,., Vto l-'2, ••• , 1J8 } is linearly 
dependent. Therefore, one of its elements is a linear combination of the 
preceding ones by Lemma 11.1, say -v1 = a1u1 + b1v1 + · · · + hf-1vt-1• 

If v1 .is deleted, then the remaining set 

still spans V since every element of Vis a linear combination of the v's 
and any appearance of tlj can be replac:ed by a1u 1 + b1v1 + · · · + 
b1,..1 u1-1. [n particular, u1 is a linear combination of the elements of the 
set (* ). Consequently, the set 

{uh uz, tlto • • • , tlt-1> vf+h · • • , v,} 

is linearly dependent. By Lemma 11.1 one of its elements is a linear 
combination of the preceding ones. This element can't be one of the u's 
because this would imply that the u's were linearly dependent So some 
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v1 is a linear combination of UJ, ~ and the tis that precede it. Deleting v1 
produces the set 

{u11 U:z, Vto, , , 1 Vt-)1 Vf+h , , • , VJ-l• VJ+b. , , , t~,.}. 

This set still spans V since every element of Vis a linear combination of 
the v's and v, v1 can be replaced by linear combinations of uh 1.1:!• and the 
other tis. In particular, ~ is a linear combination of the elements in this 
new set. We can continue this prooess, at each stage adding a u, deleting 
a v, and producing a set that spans V. If m > n, we will run out of v's be­
fore all the u's are inserted, resulting in a set of the form {u1, u,_, ••• , u,} 
that spans V. But this would mean that u, would be a linear combination 
of u1, ••• , u, contradicting the linear independenoe of {ul:l ••. , u,}. 
Therefore, m s 11. • 

Theorem 11.3 
Let V be a vector space over a field f. Then any two finite bases of V over F 
have the same number of elements. 

Proof~ Suppose {UJ, •.• , -u,} and {tit, ... , v8 ) are bases of V over F. lben the 
v's span V and the u's are linearly independent, so m s n by Lemma 11.2. 
N aw reverse the roles: The u's span V and the v's are linearly indepen· 
dent, son s m by Lemma 11.2 again. Therefore, m = n. • 

According to Theorem 11.3, the number of elements in a basis of V over Fdoes not 
depend on which basis is chosen. So this number is a property of V. 

If a vector space V over a field f has a fin iteb as is, then V iss aid to be finite 
d i men 5 ional over F, The d imen 5 ion of V over F is the number of elements 
fn any bas is of V and is denoted [V:f]. If V does not have a finite basis, then 
V is said to be infinite dimensional over F. 

EXAMPLE 11 

The dimension of Q3 over Q is 3 because {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis. 
More generally, if Fis a field, then P' is an n.dimensional vector space over F 
(Exe:rdse 21). 

EXAMPLE12 

[C:Ill] = 2 sinoe { 1, i} is a basis of C over R. On the other hand, the extension 
field R of Q is an infinite--dimensional vector space over Q. The proof of this fact 
is omitted here because it requires some nontrivial fa.cts about the cardinality of 
infinite sets. 
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Applications to Extension Fields 
In the remainder of this section, K is an extension field of a field F. We say that K is 
a finite-dimensional extenskJn of F if K. considered as a vector space over F, is £nite 
dimensional over F. 

Remark If [K:F] = 1 and { u} is a basis, then every element of K is of the form 
cu fur some l'E F. In particular, lp = cu, and, hence, u = c4 is in F. Thus, K =F. On 
the other hand, if K = F, it is easy to see that {lp} is a basis and, hence, [K:FJ = 1. 
Therefore, 

(K:F( = 1 If and only If K=F. 

IfF, K, and L are fiekls with F!:: K!:: L, then bothK and L can be considered as 
vector spaces over F, and L can be considered as a vector space over K. It is reason­
able to ask how the dimensions [K: F), [L:K], and [L:F] are related. Here is the answer. 

Theorem 11.4 
Let f, K, and L be fields with F!:: K .:L. If [K:f] and [L:K] are finite, then L is a 
finite-dimensional extension of.F and [L:F] = [L:K][K:f]. 

Proof~ Suppose [K:F] = m and [L:K] = n. Then there is a basis {uh .•. , u,.} of 
Kover F and a basis {v1, ••• , v,.} of L over K. Each u 1 and v1 is nonzero 
by Exercise 19; hence, all the products U(!!f are nonzero. The set of all 
products {u,v1 11 :s;; i :s;; m, 1 :s;; j :s;; n} has exactly mn elements (no two 
of them can be equal because u(fJ1 = ukv, implies that u(fJ1 - Ukt!t = Ox 
with u~ uk E K, contradicting the linear independence of the v's over K). 
We need to show only that this set of mn elements is a basis of L over F 
because in that case[L:K][K:FJ = nm = [L:F]. 

If w is any element of L, then w is a linear combination of the basis 
elements Vto, •• , vH, say 

(•) with each b1 E K. 

Each b1 6 K is a linear oom bination of the basis elements u 1, ••• , um so 
there are a11 E F such that 

bt = auu1 + a11u2 + · ' · + a,.lum 

~ = a11u 1 + UzzU:z + · • · + a,au, 

Substituting the right side of each of these expressions in(*) shows that 
w is a sum of terms of the furm aqu~1 with aq E F. Therefore, the set of 
all products up1 spans L over F. 
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To show linear independence, suppose c11E F and 

(**) ~¥1'-'r"" cnu,.v 1 + c12U<Jv:z + · ·- + c,.,.u,v,. = OF. 
H 

By collecting all the tenns involvingv1, then all those ill'lolving 112! and 
so on, we can rewrite(**) as 

(c11u 1 + c21U:z + · · - + ~t\ 
+ ( C1 :zUt + CztU:z + · · · + c..au.Jva 

+ ' ' ' + (C...,t1.1 + C711'U2 + • • • + c,.,u,J V, = 01'­

The ooefficients of the v's are elements of K, so the linear independence 
of the v's implies that for each}= 1, 2. ... , n 

¥1 + CJjU:z + · · · + c_..,.u, = Op 

Since each CgEFand the u's are linearly independent over F, we must 
have eq = Op for all i, j. This completes the proof of linear independence; 
and the theorem is proved. • 

The following result will be needed for the proof of Theorem 11.15 in Section 11.4. 

Theorem 11.5 
Let K and L be finite dimensional extension fields ofF and let f:K ~ L be an 
isomorphism such that f(c) = c for every c E F. Then [K:F] = [L:F]. 

Proof ... Suppose [K.:.F} = n and {u1, ••• , u,} is a basis of Kover F. In order to 
prove that [L:F} = n also, we need only show that {/( u1), ••• ,f( tt,)} ]s 
a basis of L over F. Let vEL; then since f is an isomorphism, v = f( u) 
for some uE K. By the definition of basis, u = c1u1 + · · · + c,p.,. with 
each c1E F. Hence, v = f( u) = f(c1u1 + · · · + c11u,J = j( c1)f( u1) + · · · + 
f(c,Jf(u,). Butj{cJ = c1 for every~ so that v = cJ(u1) + · · · + c,f(u,J. 
Therefore, {j{u1), ••• ,f(u,,)} spans L. To show linear independence, 
suppose that 

dlf(uJ + · · · + d,[(u,J = o, 

with each d1E F. Then sincej(dJ =~we have 

f(d,ut + · · · + d,u,J = /(diJ/(u,) + · · · + j(d,Jf(u,.) 

= dd(ut) + · · · + J,J(u..) = OF-

Since the isom.Oiphismfis ~ d1UJ + · · · + 4,u, = o, by Theorem. 6.11. 
But the u's are inearly independent inK, and, henol; (M!()' d; = Op Thus 
{/(ut), .•. ,f(u..)} is linearly indeprodent and, tberefure, a basis. • 
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• Exercises 

NOTE: V denotes a vector space over a field F; and K denotes 011 extension field of F. 

A. I. Show that M(R) is a vector space over R. 

2. Show that Q2 is a vector space over Q. 

3. Show that the polynomial ring R[x] (with the usual addition of polynomials 
and product of a constant and a polynomial) is a vector space over R. 

4. If n ~ 1 is an integer, let ll!,,[x] denote the set consisting of the constant 
polynomial 0 and all polynomials in R[x] of degree~ 11. Show that R,.[x] 
(with the usual addition of polynomials and product of a constant and a 
polynomial) is a vector spaoe over R. 

5. If n ~ 1 is an integer, show that F" is a vector space over F. 

6. If {v,., v1, •• , , v,.} spans Kover F and w is any element of K, show that 
{w, vt. Vz, ••• , q,} also spans K. 

7. Show that {I, l + 2i, l + 3i} spans Cover R. 

8. Show that the subset {(l, 0, 0), (0, l, 0), (0, O, l)} of Ql is linearly independent 
over C. 

9. Show that {Vi, Vi+ i,V3- i} is linearly dependent over R. 

10, If vis a nonzero element of V, prove that {v} is linearly independent over F. 

II. Prove that any subset of V that contains 0 vis linearly dependent over F. 

12. If the subset {u, v, w} of Vis linearly independent over F, prove that 
{u, u + q u + v + w} is linearly independent. 

13. If S = { VJ., ••• , v,.} is a linearly dependent subset of V, then prove that any 
subset of V that contains S is also linearly dependent over F. 

14. If the subset T ={ut. ... , ~} of Vis linearly independent over F, then prove 
that any nonempty subset of Tis also linearly independent. 

IS. Let b and d be distinct nonzero real numbers and c any real number. Prove that 
{h. c + di} is a basis of Cover~. 

16. If K is an n-dimensional ex:tension field of Zpo what is the maximum possible 
number of elements in K? 

17. Let {VJ., .•• , v,J be a basis of V over F and let G'J.> ••• , c~ be nonzero elements 
of F. Prove that { c1v 11 c2v:c ••• , c,.v~} is also a basis of V over F. 

18. Show that {1' [x]} is a basis of Zl[x]t(xl + X + 1) over z2. 
19. If {v~o '01· .. , v,} is a basis of v, prove that v 1 'I' Ov for every i. 

20. Let F, K, and L be fields such that F r;;;. K r;;;. L. If S = {VJ., VJ.-, ••• , v,} spans L 
over F, explain why S also spans L over K. 

B. 21. For atzy vector v E V and any element a E F, prove that 

(a) O.fV = 0,_ [Hint: Adapt the proof of Theorem 3.5.] 

(b) 40y= Op--

(c) -(av) = (-a) v = a( -v}. 
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22. (a) Prove that the subset {1, v'2} of~ is linearly independent over Q. 

(b) Prove that V3 is not a linear combination of 1 and v2 with coefficients in 
Q, Conclude that {1, Vl} does not span Rover Q. 

23. (a) Show that {l, Vi, \;1} is linearly independent over Q. 

(b) Show that {1, Vi, v3, v'6) is linearly independent over Q. 

24. Letv be a nonzero real number. Prove that {1, v) is linearly independent over 
Q if and only if vis irrational 

25. (a) Let k ~ 1 be an integer. Show that the subset {l, x, r, x!, .. . , xk} of R[x] 
is linearly independent over n (see Exercise 3). 

(b) Show that li[x] is infinite dimensional over lit 

26. Show that the vector space R,[x] of Exercise 4 has dimension n + 1 over ~. 

27. If Fis a field, show that the vector space Fn has dimension n owr F. 

28. Prove that Khas exactly one basis over F if and only if K = F ~ 7l2• 

29. Assume IF+ IF+ OF• If {u, v, w} is a basis of V over F, prove that the set 
{u + v, v + w, u + w} is also a basis. 

30. Prove that {vi> ..• , v,.} is a basis of V over Fif and only if every element of V 
can be written in a unique way as a linear combination of vl> ••• , v, (''unique" 
means that if w = c1v1 + · · · + c,v, and w = dtv1 + • • • + d.rv,, then Ct = d, 
for every z). 

31. Let p(x) = ao + a1x + · · · + a,.x" be irr«iucible in F(x] and let L be the 
extension field F[x]/(p(x)) of F. Prove that L has dimension n over F. 
JHint: Corollary 5.5, Theorems 5.8 and 5.10, and Exercise 30 may be helpful] 

32. lf S = {VJ, .•. , v,} spans V over F, prove that some subset of Sis a basis of K 
over F. (Hint: Use Lemma 11.1 repeatedly to eliminate v's until you reduce to a 
set that still spans V and is linearly independent.} 

33. If the subset {u1, ••• , uJ of Vis linearly independent over F and wE Vis not a 
linear combination of the u's, prove that {u1, ••• , tlt> w} is linearly independent 

34. If Vis infinite-dimensional over F, then prove that !Or any positive integer k, 
V contains a set of k vectors that is linearly independent over F. (Hint: Use 
induction; Exercise 10 is the case k = l, and Exercise 33 can be used to prove 
the inductive step.] 

35. Assume that the subset {vL> ... , v,} of Vis linearly independent over F and that 
w :=: Cfi"J + · · · + c,v,., with c1 EF. Prove that the set {w 4.'). w- "'2> ••• , w- v,J 
is linearly independent over F if and only if C] + · · · + c, ::P lF• 

36. Assume that Vis finite-dimensional over F and Sis a linearly independent 
subset of V. Prove that Sis contained in a basis of V. (Hint: Let [ V:F] = n 
and S = {ub ... , u,.,}; then m ~ n by Lemma 11.2. If S does not span V, 
then there must be some w that is not a linear combination of the u's. Apply 
Exercise 33 to obtain a huger independent set; if it doesn't span, repeat the 
rugument. Use Lemma 11.2 to show that the process must end with a basis that 
contains S.] 
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37. Assume that [V:F] "" n and prove that the following oonditions are equivalent: 

(i) tv" ... , v.,} spans V over F. 

(ii) { t.b .•. , v.,} is linearly independent over F. 

(iii) { vu ... , v,} is a basis of V over F. 

38. Let F, K, and L be fields such that Fr;; K!;;;; L. If [L:F] is finite, then prove that 
[L:K] and [K:F] are also finite and both are $ [L:F]. [Hint: Use Exercises 20 
and 32 to show that [L:K] is finite. To show that [K:F] is finite, suppose 
[L:F] = n. The set {lx} is linearly independent by Exercise 10; if it doesn't 
span K, proceed as in the hint to Exercise 36 to build larger and larger linearly 
independent subsets of K. Use Lemma 11.2 and the fact that [L:F] "" 11 

to show that the process must end with a basis of K oontaining at most n 
elements.] 

39. If [K:F] = p, withpprime, prove that there is no field £such thatF~ E~ K. 
[Hint: Exercise 38 and Theorem 11.4.] 

1111 Simple Extensions 

Definition 

Field extensions can be considered from two points of view. You can look upward from 
a field to its extensions or downward to its subfields. Chapte£ 5 provided an example 
of the upward point of view We took a field F and an irreducible polynomial p(x) in 
F[x] and formed the field of oongruenoe classes (that is, the quotient field) F[x]f(p(x)). 
Theorem 5.11 shows that F[x]f(p(x)) is an extension field of Fthat contains a root 
of _Ax). 

In this section we take the downward view, starting with a field K and a subfield F. 
If u E K, what can be said about the subfields of K that contain both u and F? Is there 
a smallest such subfield? If u is the root of some irreducible p(x) in F[x], how is this 
smallest subfield related to the extension field F[x]f(p(x)), M:tich also contains a root 
ofp(x)? 

The theoretical answer to the first two questions is quite easy. Let K be an extension 
field of Fand u EK. LetF(u) denote the intersection of all subfields of Kthat contain 
both F and u (this family of subfields is nonempty since Kat least is in it). Since the 
intersection of any family of subfields of Kis itself a field (Exercise 1), F(u) is a field. 
By its definition, F(u) is contained in every subfield of K that contains Fand u, and, 
hence, Ji{u) is the smallest subfield of K containing F and u. I{ u) is said to be a simple 
extension of F. 

As a practical matter, this answer is not entirely satisfactory. A more explicit 
description of the simple eJdension field F(u) is needed. It turns out that the structure 
of F(u) depends on whether or not u is the root of some polynomial in F[x]. So we 
pause to introduce some te£minology. 

An element u of an extension field K ofF is said to be algebraic over F if v is 
the root of some nonzero polynomial in F{x}. An element of K that ~ notthe 
root of any nonzero polynom!alln fix] Is satd to be transcendental over F. 
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EXAMPLE 1 

In the extension field C of R, tis algebraic over !Ill. because i is the root of :1! + 1 E 

R[x]. You can easily verify that element 2 + i of Cis a root of J2 - J?-- 7x + 15 E 

Q[x]. Thus 2 + i is algebraic over 0. Similarly, "V3 is algebraic over 0 since it 
is a root of ~ - 3. 

EXAMPLE 2 

Every element c in a field Fis algebraic over FbecaW!e cis the root of x- c EF[x]. 

EXAMPLE 3 

The real numbers 7T and e are transcendental over Q (proof omitted). Hereafter 
we shall concentrate on algebraic elements. For more information on transcen­
dental elements, see Exercises 10 and 24-26. 

If u is an algebraic element of an extension field K of F, then there may be many 
polynomials in. F[x] that have u as a root. The next theorem shows that all of them 
are multiples of a single polynomial; this polynomial will enable us to give a precise 
description of the simple extension field F(u), 

Theorem 11.6 
let K be a11 ext ens ion field of f and u eK an algebraic element over f. Then 
there exists a unique manic i rreduc ibl e polynomial p(x) in F[x] that has u as a 
root Furthermore, if u is a root of g(x)Ef[X], the11 p(x) divides g(x). 

Proof ,. Let S be the set of all nonzero polynomials in F[x] that have u as a root. 
Then Sis nonempty because u is algebraic over F. The degrees of poly­
nomials in S form a non empty set of nonnegative integers, which must 
contain a smallest element by the Well-Ordering Axiom. Let p(x) be a 
polynomial of smallest degree in S. Every nonzero constant multiple 
of p(x) is a polynomial of the same degree with u as a root. So we can 
choose p(x) to be monic (tf it isn't, multiply by the inverse of its leading 
coefficient). 

If p(x) were not irreducible in F(x1 there would be polynomials k(x) 
and t(x) such that p(x) = k(x)t(x), with deg h(x) < degp(x) and deg t(x) < 
degp(x). Conseqwntly, k(u)t(u) = p(u) = O,.inK. SinreKisafieldeither 
k(u) = OF or t(u) = O.A that is, either k(x) or l(x) is in S. This is impossible 
since p(x) is a polynomial of smallest degn3l inS. Hence,p(x) is irreducible. 

Next we show thatp(x) divides every g(x) inS. By the Division 
Algorithm, g(x) = p(x)q(x) + r(x), where r(x) = 0 For deg r(x) < deg p(x). 
Since u is a root of both g(x) and p(x), 

r(u) = g(u) - p(u)q(u) = OF + O~(u) = 01" 
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Sou is a root of r{x). If r(x) were nonzero, then r(x) would be in S, 
contradicting the fact that p(x) is a polynomial of smallest degree in S. 
Therefore, r(x) "" o.A so that g(x) ""p(x)q(x). Hence,p(x) divides every 
polynomial in S. 

To show that p(x) is unique, suppose t(x) is a monic irreducible 
polynomial inS. Thenp(x) I t(x). Sincep(x) is irreducible (and, hence, 
nonconstant) and t(x) is irreducible, we must have t(x) = cp(x) for some 
ce F. But p(x) is monic, so cis the leading coefficient of cp(x) and, 
hence, of t(x). Since t(x) is monic, we must have c = lp Therefore,p(x) = 
t(x) and p(x) is unique. • 

If K is an extension field of F and u E K is algebraic over F, then the monic, irre­
ducible polynomial p(x) in Theorem 11.6 is called the minnal polynomial of u over F. 
The uniqueness statement in Theorem 11.6 means that once we have found any monic, 
irreducible polynomial in F[x] that has u as a root, it must be the minimal polynomial 
of u over F. 

EXAMPLE 4 

X:- 3 is a monic, irreducible polynomial in Q[x] that has \1'3e Rasa root. 
11terdbre,r- 3 is the minimal polynomial of \1'3 overO. Note thatr- 3 is 
reducible over ~since it factors as (x -v3)(x + \1'3) in Jl[x). So the minimal 
polynomial of V3 over R is x- \13, which is tmnic and im:dw;ible in R[x} 

EXAMPLE 5 

Let u = \13 + VS E R. Then u 1 = 3 + 2'\13'\15 + 5 = 8 + 2V15. Hence, 
11?- 8 = 2vTS so that (u1 - 8)2 = 60, or, equivalently, (u1 - 8)1 - 60 = 0. 
Therefore, u = v'3 + v'5 is a root of (xl- 8?- 60 = :0- 16r + 4e O[x). 
Verify that this polynomial is irreducible in Q[x] (Exercise 14). Hence, it must 
be the minimal polynomial of "v'3 + V5 over a. 

The minimal polynomial of u provides the connection between the upward and 
downward views of simple field extensions and allows us to give a useful description 
of .F(u). 

Theorem 11.7 
Let K be an extension field of F and u E K an algebraic element over F with 
minimal polynomial p{x) of degree n. Then 

('I) F(u) = F[x]/(p{x)). 

{2) {1 F• u, u2
, ••• , u" -1} Is a basis of the vector space F{u) over F. 

{3) [F(u); f] = n. 
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Theorem 11.7 shows that when uis algebraic over F, then F( u) does not depend on K 
but is completely d~ermined by F[x] and the minimal polynomial p(x). Consequently, 
lW som~imes say that F( u) is the field obtained by adjoining u to F. 

Proof oflheorem 11.7 .. {1) Since F(u) is a field containing u, it must contain 
every positive power of u. Since F(u) also contains F, F(u) must 
contain every element of the form bo + b(u + bz.t? + · · · + b,u1 

with b1E F, that is, Ji(u) contains the elementf(u) for every j(x) EF[x]. 
Verify that the map ~p:F[x]-+ F(u) given by q;(f(x)) = f(u) is a 
homomorphism of rin~. A polynomial in F[x] is in the kernel of q; 
precisely when it has u as a root. By Theorem 11.6 the kernel of 1p 

is the principal ideal (p(x)). The First Isomorphism Theorem 6.13 
shows that F[x]j(p(x)) is isomo:rphic to 1m 1p under the map that sends 
congruence class (coset) lf(x)] to f(u). Furthermore, since p(x) is 
irreducible, the quotient ring F[x]f(p(x)), and, hence, Im rp, are fields 
by TheoremS .10. Every constant polynomial is mapped to itself by 1p 

and rp(x) = u, So Im tp is a subfield of Ji(u) that contains both P and 
u. Since .F(u) is the smallest subfield of K containing F and u, we must 
have F(u) = Im rp ;;;;; F[x]f(p(x)). 

(2) and {3) Since F(u) = Im rp, every nonzero element of F(u) is 
of the lormf(u) for somef(x) E F[x]. If degp(x) = 11, then by the 
DivisionAlgorithmf(x) = p(x)q(x) + r(x), where r(x) = b6 + b1x + 
· · · + h.A-1Xt-1 E F [x]. Consequently,.f(u) = p(u)q(u) + r(u) = O~u) + 
r(u} = r(u) = boiF + btu + · · · + b._,Ui- 1

• Therefore, the set 
{lF, u, u1, ... , uA-1} spans F(u). To show that this set is linearly 
independent, suppose GJ + c1u + · · · + c_1u•-t = OF with each 
c1 E F. Then u is a root of c0 + c1x + · · · + c-1.xf'-1, so this poly­
nomial (which has degree s 11-l) must be divisible by p(x) (which 
has degree 11). This can happen only when co + c1x + · · · + 4-1X""1 

is the zero polynomial; that is, each c1 = 0,.. Thus {1171 u, .,;, •.• , ~1} 
is linearly independent over F and, therefore, a basis of F(u). 
Hence, [F(u): F] = 11. • 

EXAMPLE 6 

The minimal polynomial of v'3 aver 0 is r - 3. Applying Theorem ll. 7 with 11 = 2 
we see that { 1, v3} is a basis of o( '\13) over 0, ~ce [ o( '\1'3) : Q] = 2. Similarly, 
Example 5 shows that v3 + Vs has minimal polynmnial :1- l6XI + 4 over Q so 
that [0( v'3 + '\IS) : 0] = 4 and {1, v'3 + V5, ( v'3 + VS)'-, ( v'3 + \15Y} is a 
basis. 

An immediate consequence of Theorem 11.7 is that 

if" and v have lhe same minimal polynomial p(.r) 
in F(.rJ, lhen 1'{11) is isomorphic to F(v). 
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The reason is that both .F(u) and F(v) are isomorphic to F[x]j(J(x)) and, hence, to 
each other. Note that this resuh holds even when u and v are not in the same extension 
field of F. The remainder of this section, which is not needed until Section 11.4, deals 
with generalizations of this idea We shall consider not only simple extensions of the 
same field, but also simple extensions of two different, but isomorphic, fields. 

Suppose F and E are fields and that r:T:F-+ E is an isomorphism. Verify that the 
map from F[x] to E[x] that mapsf(x) = ao + a 1x + ~:z. + · · · + a,.X' to the polyno­
mial uf(x) = CT(ao) + 0'(4J)x + CT(ai)xl + · · · + CT(a,)X' is an isomorphism of rings 
(Exercise 21 in Section 4.1). Note that if f(x) = c is a constant polynomial in F[x] 
(that is, an element of F), then thisisomorphismmaps it onto CT(c) EE. Consequently, 
we say that the isomorphism F[x] -+ E[x] extends the isomorphism u:F-+ E, and we 
denote the extended isomorphism by u as well. 

Corollary 11.8 
Let u:F-+ E be an isomorphism of fields. Let u be an algebraic element in 
some extension freld ofF with minimal polynomial p(x)EF(x]. Let v be an 
algebraic element in some extension f1eld of E, with minimal polynomial 
up(x) E E{x]. Then u extends to an Isomorphism of f1elds iT:F(u) -+ E(v) such 
that u(u) = v and a'( c) = u(c) for every c E F. 

The special case when CT is the identity map F-+ Fstates whenever u and v have 
the same minimal polynomial, then F(u) ~ F(v) uooer a function that maps 11. to v and 
every element of Fto itself. 

Proof of Corollary 11.8 .. The isomorphism CT extends to an isomorphism (also 
denoted u) F~]--P E[x] by the remarks preceding the corollary. The proof 
of Theorem 11.7 shows that there is an isomotphism T':E[x]j(up(x)) -+ E(v) 
given by T([&(x)D = g( v). Let 1r be the surjective homomorphism 

E[x] __. E[x]J(up(x)) 

that mapsg(x) to (g(x)] and consider the composition 

F[x]......!!.....). E[x] ~ E[x]j(up(x)) ~E(v) 

f(x) ~ u/(x) ---+ [of(x)] ~ af(v). 

Since all three maps are surjective, so is the composite function. The 
kernel of the composite function consists of all h(x) EF[x] such that 
u.h( v) = OE. Since Tis an isomorphism, uh( v) = 0£ if and only if [u h(x)] 
is the zero class in E[x]j(up(x)), that is, if and only if uh(x) is a mul­
tiple of up(x). But if uh(x) = k(x) • up(x), then applying the inverse of 
the isomorphism u shows that h(x) = u-1 (k(x))p(x). Thus the kernel of 
the composite function is the principal ideal (p(x)) in F[x]. Therefore, 
F[x]j(p(x)) .iE E(v) by the First Isomorphism Theorem 6.13; the proof 
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of that theorem shOWli that this isomorphism (call it 6) is given by 
6([/(x)D = crf(v). Note that O([xD = v and that for each c E F, ll([ cl) = 
a( c). So we have the following situation, where~ is the isomorphism of 
Theorem 11. 7; 

7j5 6· 
F [ u] <E--'-- FIx ]/(p{ x)) ----"--'1- E( v) 

flu]~-. [f(x)] ~uj{v) 

c+---(c] a(c) cEF. 

The composite function 9 o (j- 1 : F( u) ~ E(v) is an isomorphism that ex­
tends cr and maps u to v, • 

EXAMPLE 1 

The polynomial X: - 2 is irreducible in O(x] by Eisenstein's Criterion. It has a 
root in R, namely V'2. ~IY that ...y-2ru is also a root of r - 2 in C, where 

-1 + V3i. . 
ru = 

2 
IS a complex cube root of 1. Applymg Corollary 11.8 to the 

identity map Q ~ Q we see that the real subfield Q( -3'2) is isomorphic to 
the complex subfield Q(-v-2c..1) under a map that sends --3'2 to -v-2c..1 and each 
element of Q to itself. 

• Exercises 

NOTE: Unless stated otherwiSe, K is an extension field of the fold F. 

A. I. Let { E1li E 1} be a family of subfields of K. Prove that ()E, is a subfield of K. 
:h ld 

2. If u E K, prove that F( u J o; F( u). 

3. If u t: K and c E.F, prove that F(u +c)= F(u) = Ji{cu). 

4. Prove that 0(3 + J) = 0(1 - 1). 

S. Prove that the given element is algebraic over Q: 

(a) 3 + Si (b) Vt- V2 (c) 1 + --3'2 
6. If u t: K and u 1 is algebraic over F, prove that u is algebraic over R 

7. If L is a field such that F,.;;;. K o; L and u E L is algebraic over F, show that u is 
algebraic over K. 

8. If u, 1! EK and u +vis algebraic over F, prove that u is algebraic over Ji{v). 

9. Prove that Vi is algebraic over Q( 'II'). 

10. If u E K is transcendental over F and Op "# c E F, prove that each of u + l.A cu. 
and u 1 is transcendental over F. 

II. Find (o(~: Q]. 
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12. If a + hiE C and b + 0. prove that C = Jl(a + h1). 

13. If [K:F] is prime and u EKis algebmic over F, show that either l'{u) = K or 
l'{u) =F. 

14. Prove that x4- 16x1 + 4 is irreducible in O[x]. 

B. 15. Show that every element of C is algebraic over IR [Hint: See Lemma 4.29.] 

16. If u EK is algebraic over F tmd c E F, prove that u + 1 F and cu are algebmic 
over F. 

17. Find the minimal polynomial of the given element over Q: 

(a) Vl +\IS (b) v'3i + v'2 
18. Find the minimal polynomial of V2 + i over Q and over lit 

19. Let u be an algebraic element of K whose minimal polynomiru in F [x] has prime 
degree. If Ei:; afield such that F<a E<aJi{u), show that E =ForE= F(u~ 

20. Let u be an algebraic element of K whose minimal polynomial in F[x] has odd 
degree. Prove that 1'{ u) = li(u2). 

21. Let F= 0(7T4)andK= 0(7T). Show that'lTisalgebraicover Fand find a basis 
of Kover F. 

22. If rand s are nonzero, prove that Q('Vr) = Q('\l.f) if and only if r = rs for 
some tEO. 

23. If Kis an extension field of Q such that [K:Q] = 2, prove that K = Q (Vd) for 
some square-free integer d. [Square-free means dis not divisible by I for any 
primep.] 

24. If u EKis transcendental over F, provethatF(u) = F(x), wherel'{x) is the 
field of quotients of F[x], as in Example 1 of Section 10.4. [Hint: Consider the 
map from F{x) to l'{u) that sendsf(x)jg(x) toj(u)g(ur'.] 

25. If u EK is transcendental over F, prove that rul elements of l'{u), except those 
in F, are transcendental over F. 

26. Let F(x) be as in Exercise 24. Show that .....i:___l E F(x) is transcendental 
x+ 

over F. 

IIIJ Algebraic Extensions 

Definition 

The emphasis in the last ~on~ on a single algebrai': element. Now we consider 
extensions that consist entirely of algebraic elements. 

An ex tens ion field K of a field F Is said to be an algebraic extension off if 
every element of K is algebraic over f, 
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EXAMPLE 1 

If a + hi E C, then a + bi is a root of 

(x - (a+ bt))(x- (a - bt)) = JC- 2ax + (d- + I?) E R[x]. 

Therefore, a+ bi is algebraic over R, and, hence, Cis an algebraic extension 
of n. On the other hand, neither c nor n is an algebraic extension of 0 since 
there are real numbers (such as 1f and e) that are not algebraic over Q. 

Every algebraic element u over Flies in some finite-dimensional extension field 
ofF, namely l'(u), by Theorem 11.7. On the other hand, if we begin with a finite­
dimensional ooension of Fwe h!l\l'e 

Theorem 11.9 
If K is a finite-dimensional extension fleld ofF, then K is an algebraic exten­
sion ofF. 

Proof~ By hypothesis, Khas a finite basis over F, say {v11 v 21 ••• , vJ. Since 
these n elements span K, Lemma 11.2 implies that every linearly inde­
pendent set inK must have n or fewer elements. 

If u E K, there are two possibilities: (1) ti = ul with 0 :5'; i < j; and 
(2) all nonnegative powers of u are distinct. In Case (1), u is a root of 
the polynomial X - x1 E F[x] and hence, is algebraic over F. In Case (2), 
{lp, u, u 1, ••• , u•} is a set of n + 1 elements in Kandmust, therefon; be 
linearly dependent over F. Consequently, there are elements~ in F, not 
all zero, such that cQlp + c1u + Oztl- + · · · + c,.u" = 0 p. Therefore, u is 
the mot of the nonzero polynomial G! + c1x + c2r + · · · + c,.x!' in F[x] 
and, hence, algebraic over F. • 

If an extension field K of F contains a transcendental element u, then K must 
be infinite dimensional over F (otherwise u would be algebraic by Theorem 11.9). 
Nevertheless, the converse of Theorem 11.9 is false since there do exist infinite­
dimensional algebraic extensions (Exercise 16). 

Simple extensions hiMl a nice property. You need only verify that the single ele­
ment u is algebraic over Fto conclude that the entire field F(u) is an algebraic 
extension (because F(u) is finite dimensional by Theorem 11.7 and, hence, algebraic 
by Theorem 11.9). This suggests that generalizing the notion of simple extension 
might lead to fields whose algebraicity could be determined by checking just a finite 
number of elements. 

If ub ... , u,. are elements of an extension field K of F, let 

F(uh "2> • • ·, uJ 
denote the intersection of all the subfields of Kthat contain Fand every tJr. As in the case 
of simple extensions, F('U], ••. , 1>1,J is the smallestsubfield of Kthat contains Fand all the 
tit• F(u10 ••• , u,J is said to be a fillitely genen~ted extem:ion ofF, generated by"'~> •.• , u,.. 
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EXAMPLE 2 

The field 0( \1'3, i) is the smallest subfield of C that contains both the field 0 
and the elements 'V3 and i. 

EXAMPLE 3 

A finitely generated extension may actually be a simple extension. For instance, 
the field Q(i) contains both i and- i, so Q(i,- 0 = Q(z). 

EXAMPLE 4 

Every finite-dimensional extension is also finitely generated. If {UJ., ... , u,J is 
a basis of Kover F, then all linear combinations of the Uj (coefficients in FJ are 
in Ft u~o ••• , u,J. Therefore, K = 1'1' u 1, ••• , u,). 

The key to dealing with finitely generated extensions is to note that they can be 
obtained by taking successive simple extensions. For instance, if K is an extension 
field of F and u, v E K, then F( u, v) is a sub field of K that contains both F and u 
and, hence, must contain ll:u). Since vis in F(u, v), this latter field must contain 
ll:u)(v), the smallest subfield containing both ll:u) and v. But ll:u)(v) is a field 
containing F, tt, and v and, hence, must contain F(u, 1!). Therefore, .F(u, v) "" }{u)(v). 
Thus the finitely generated extension }{_ u, v) can be obtained from a chain of simple 
extensions: 

F>;;, Jt:u) r= F(u)(v) ~ ll:u, v). 

EXAMPLE 5 

The extension field a(V3, i) can be obtained by this sequence of simple 
extensions: 

As we saw in Example 4 of Section 11.2,.:? - 3 is the minimal polynomial 
of V3 over Q, so that [ Q( v'J}: 0] "" 2 by Theorem 11.7. Similarly, r + 1 
[whose coefficients are in 0( V3)] is the minimal polynomial of i over Q( V3) 
because its roots ± i are not in 0{ v'3), so r + I is irreducible over 0( v'3) by 
Corollary 4.19. By Theorem 11.7 again, [a( \13)(r):Q( V3)] ~ 2. Consequently, 
by Theorem 11.4, 

[a( V3, i):O] = [O( V3)(0:0( V3)][o( V3):o] = 2. 2 = 4. 

Thus, the finitely generated extension a(VJ, i) is finite dimensional and, hence, 
algebraic over Q by Theorem 11.9. 
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Essentially the same argument works in the general case and provides a useful WW:f 

to determine that an extension is algebraic: 

Theorem 11.10 
If K = F{u1, • •• , Un) is a finitely generated extension field ofF and each u1 is 
algebraic over F, then K is a fl nite-d imensional algebraic extension of f. 

Proof,. The field K can be obtained from this chain of extensions: 

Fl:F(ut) l:F(u,, -ui) ~ F(ub 'Uz> U]) ~ · · · 

~F(u1 , ••• , -u,..-..1) ~ F(u,, . , . , uJ = K. 

Furthermore, F(UJ, U:z) = F(u,X-ui). F(ul, u21 ~) = F(-u,, Uz)(u]), and in 
general F(u10 ••• , u,) is the simple extension F(u1, ••• , uHXuc). Each ut 
is algebraic over Fand, hence, algebraic over F(u~o ... , u,_1) by Exercise 
7 of Section 11.2. But every simple extension by an algebraic element is 
finitedimensional by Theorem 11.7. Ther-efore, 

(F(ul, •.. , u,):F(u,, . • . , u,_t)] 

is finite for each i == 2, ... , n. Consequently, by repeated application of 
Theorem 11.4, we see that [K:F] is the product 

[K:.f{"'f, ••• , ~1)] • • • [F(~ "2> U]}:F(uh 1b.z)][F(u" ui):F(u.)][F(u1):F]. 

Thus [K:F] is finite, and, hence, K is algebraic over F by Theorem 11.9. • 

EXAMPLE 6 

Both v'3 and V5 are algebraic over 0, so a(\1'3, v'3) is a finite-dimensional 
algebraic extension field of 0 by Theorem 11.10. We can calculate the dimen­
sion of a( V'3, v'3) over 0 by considering this chain of simple extensions: 

0 ~ 0( V3) ;;; 0( v'3X V5) = 0( v'3, \15). 

We know that [a{ \1'3):0] = 2. To determine [a( '\13)( 'V'S):a( v'3)] we shall 
find the minimal polynomial of v'5 over O(v'3).The obvious candidate is 
r- 5; it is irreducible in Q{x], but we must show that it is irreducible over 
0( v'3), in order to conclude that it is the minimal polynomial. If VS or -VS 
is in 0(v'3), then ±'\15 =a+ h'\13, with a, bEQ. Squaring both sides shows 

5- ri- 3/} 
that 5 = d- + .2ahVJ + 3/l-, whence V3 = 2ah 1 contradicting 

the fact that '\13 is irrational; a similar contradiction results if a = 0 or b = 0. 

Therefore, ± vs are not in o( v'3), and, hence, r - 5 is irreducible over q( v'3) 
by Corollary4.19. Soil- 5 is the minimal polynomial of V5 over 0('\13), and 

[ o( \1'3)( vs) : 0( \1'3)] = 2 by Theorem 11.7. Consequently, by Theorem 11.4 

{0(¥3, v'S):O] = {o(v'3)(v5):a(v'3)][o(v'3):0] ""2 · 2 = 4. 
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The remainder of this section is not used in the sequel. Theorem 11.4 tells us that 
the top field in a chain of finite-dimensional extensions ~ finite dimensional over the 
ground field Here is an analogous result for algebraic extensions that may not be finite 
dimensional. 

Corollary 11.11 
If L is an algebraic extension f1eld of K and K is an algebraic extension f1eld of 
F, then LIs an algebraic extension of F. 

Proof~ Let u E L. Since u is algebraic over K, there exist a1 E K su:h that 
C\1 + a 1u + a-g.i + · · · + a,,J'" = OK. Since each of the a, is in the field 
}\a,, ... ,..,), u is actually algebraic over F{a,, ... , a,.). Consequently, 
in the extension chain 

F(a, ... , a.J( u) is finite dimensional over F{a1, ••• , a,.) by Theorem 11.7. 
Furthermore, [.F(ah ••• , a,.):F] is finite by Theorem 11.10 since each a, i.s 
algebraic over F. Therefore, F(ah •.. , a,, u) is finite dimensional over F 
by Theorem 11.4 and, hence, is algebraic over Fby Theorem 11.9. Thus 
u is algebraic over F. Since u was an arbitrary element of L, L is an alge­
lxaic extension of F. • 

Corollary 11.12 
Let K be an extension field of F and let E be the set of all elements of K that 
are algebraic over F. Then Eisa subfield of K and an algebraic extension field 
of F. 

Proof .. Every element of Fis algebraic over F, so Fr;;.E. If u, v r;:;.E, then u and v 
are algebraic over Fby definition. The subfield F(u, v) is an algebraic exM 
tension of F by Theorem 11.1 0, and, hence, F(u, 11) !:; E. Since F( u, 1J) is 
a field, u + v, uv, -u, -v r;;.F(u, v) r;;;.E. Similarly, if u is nonz.ero, then 
u-1 E..F(u, v) r;;;.E, Therefore, E is closed under addition and multiplica­
tion; negatives and inverses of elements of E are also in E. Hence, E is a 
field. • 

EXAMPLE 1 

If K = C and F = 0 in Corollary 11.12, then the field E is called the field of 
algebraic numbers. The field E is an infinite-dimensional algebraic extension 
of Q (Exercise 16). Algebraic numbers were discu~d in a somewhat different 
context on page 350. 
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• Exercises 

NOTE: Unless stated otlwwiie, K is an exti!IISion field of tiN! field F. 

A. I. If '11, -vE K, verify that F(u)(v) = F(vXTJ:). 

2. If K is a finite field, show that K is an algebraic extension of F. 

3. Find a basis of the given extension field of Q. 

(a) o(\1'5, i) (b) o(\1'5, v'7) (c) o(v2, V3, V5) (d) o(-.Yl, v1) 
4. Find a basis of 0("\12, + i/3) over o(V3). 
5. Show that[Q(\1'3, l):Q] = 4. 

6. Verify that [O(V2. VS, vTO):OJ = 4. 

7. If [K:F] is :finite and u is algebraic over K, prove that [K( u):K] ~ [F( u ):F]. 

8. If [.K:F] is finite and u is algebraic over K, prove that [K(u):F(u)] ~ [K:F]. 
[Hint: Show that any basis of Kover Fspans K(u) over F(u).] 

9. If [K:F] is finite and u is algebraic over K, prole that [F(u):F] divides [K(u):F]. 

B. 10. Prove that [K:F] is :finite if and only if K = R: U], ••• , v,), with each ut 
algebraic over F. [This is a stronger version of Theorem 11.10.] 

II. Assume thatu, vEKare algebraic over F, with minimal polynomials p(x) and 
q(x),respec6ve~ 

(a) If degp(x) = m and deg q(x) =nand (m, n) = 1, prove that [F(u, 1!):F] = mn. 

(b) Show by example that the conclusion of part (a) may be false if m and n 
are not relatively prime. 

(c) What is [a( V2, ~:0!]? 
12. Let D be a ring such that F<:::. D!;; K. If K is algebraic over F, prove that D is a 

:field. [Hint: To find the inverse of a nonzero u ED, use Theorem 11.7 to show 
that F(u) s;: D.] 

13. Letp(x) and q(x) be irreducible in F[xj and assume that degp(x) is relatively 
prime to degq(x). Let u be a root of p(x) and v a root of q(x) in some 
extension :field of F. Prove that q(x) is irreducible over F(u). 

14. (a) LetF1 >; F2 ~;; F3 >; • • ·be a chain of :fields, Prove that the union of all the F1 
is also a field. 

(b) If each F1 is algebraic over F" show that the union of the F1 is an algebraic 
extension of F1• 

15. Let Ebe the :field of all elements of Kthat are algebraic over F, as in Corol~ 
lary 11.12. Prove that everyelemen t of the set K- E is transcendental over E. 

16. Let Ebe the field of algebraic numbers(see Example 7). Prove that Eis an 
infinite dimensional algebraic extension of Q. [Hint: It suffices to show that 
[E:Q] ~ n for every positive integer n. Consider roots of the polynomial 
X' - 2 and Eisenstein's Criterion.] 
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17. Assume that lp + lp :FOp If u E F, let Vu denote a root of XI-·- u 
in K. Prove that F{ Vu + vu) = F( Vu, Vii). [Hint: 1, (Vu + Vv), 
{Vu + \lti'f, (Vu + Vii)l, etc., must spanF{Vu + Vv) by Theorem 11.7. 
Use this to show that Vu and Vii are in F(Vu + Vv).] 

18. If n1, ••• , 11, are distinct positive integers, show that 

[O(Ynt> ... , Vi;}. OJ :s; 21
• 

C. 19. If each n1 is prime in Exercise 18, show that :s; may be replaced by=. 

1111 Splitting Fields 

Definition 

Let F be a field and f(x) a polynomial in F[x]. Previously we considered extension 
fields of F that contained a root of f(x). Now we investigate extension fields that 
contain Oil the roots of f(x). 

The word "all" in this context needs some clarification. Supposef(x) has degree n. 
Then by Corollary 4.17 ,j(x) has at most n roots in any field. So if an extension field 
K of F contains n distinct roots of f(x), one can reasonably say that K contains "all" 
the roots of f(x ), even though there may be another extension of Fthat also contains 
n roots of f(x). On the other hand, suppose that K contains fewer than n roots of f(x). 
It might be possible to find an extension field of K that contains additional roots of 
f(x). But if no such extension of K exists, it is reasonable to say that K contains "all" 
the roots. We can express this condition in a usable form as follows. 

Let Kbe an extension field ofF aoof(x) a nonconstant polynomial of degree n in 
F[x]. If f(x) factors in K[x] as 

f(x) ~ c(x - -u!)(x - u2) • • • (x - -u,) 

then we say thatf(x) splits over the field K. In this case, the (not necessarily distinct) 
elementstt~o ... , -u, are the only roots ofj(x) inK or in any extension field of K. For 
if vis in some extension of Kandj(v)= o.Ao then c(v -u1X'I.I-tiJ · · · (v --uJ= Op 
Now cis nonzero sinoof(x) is nonconstant. Henoe one of the v- ~must be zero, that 
is, v = -ur So if f(x) splits over K, we can reasonably say that K contains all the roots 
of f(x). The next step is to consider the smallest extension field that contains all the 
roots off(x). 

If F is a field and f{x) E f[x ], then an extension f1eld K of F is said to be a 
spll tt lng f1 e I d (or root field) of f(x) over F provkled that 

{I) ~x) splits over K, say ~x) = c(x- u;Jj.,x ·- u2) • • • (x- u11}; 

(H) K = F{u,, U2o ••• , Vii)· 

EXAMPLE 1 

If r + 1 is considered as a pol}'llomial in R[xl then C 111 a splitting field since 
X'-+ 1 = (x + rXx - i) in Qx] and C = R(i) = R(i, ~,).Similarly, Q( V2) is a splitting 
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field of the polynomial x2 - 2 in Q[ x] since xl - 2 = ( x + v':i)(x - v'2) and 
o(Vi) = o (Vi, - vz). 

EXAMPLE 2 

The polynomial.f(x) = x4
- X: - 2 in Q(x] factors as (r- 2Xx'- + 1), so its 

roots inC are ±\12 and ± i. Therefore, 0( V2, i) is a splitting field of f(x) 
overQ. 

EXAMPLE 3 

Every first-degree polynomial ex + din F[x] splits over F since ex + d = 
c(x - (-c-1d)) with -c-1dE F. Obviously, F is the smallest field containing both 
F and c-1d, that is,. F = Ji(c-1d). So Fitself is the splitting field of ex+ dover F. 

EXAMPLE 4 

The concept of splitting field depends on the polynomial and the base field. For 
instance, Cis a splitting field of x2 + I over IR but not over Q because Cis not 
the extension Q(i, -i) = Q(i). See Exercise l for a proof. 

At this point we need to answer two major questions about splitting fields: Does 
every polynomial in F[x] have a splitting field over F! If it has more than one splitting 
field over F, how are they related? 

The informal answer to the first question is easy. Givenf(x) E F[.x], we can find an 
extension F(1J) that contains a root 1J of j(x) by Corollacy 5.12. By the Factor Theorem 
in .Ft1JlX], we know thatf(x) = (x -1J)g(x). By Corollary 5.12 again there is an exten­
sion F(1J)(v) of F(1J) that contains a root v of g(x). Continuing this, we eventually get a 
splitting field of fix). We can formalize this argument via induction and prove slightly 
more: 

Theorem 11.13 
Let F be a field and f(x) a nc:nconstant polynomial of degree n in f{x). Then 
there exists a splitting field K of f(x) over F such that [K:F] ~ fll. 

Proof,. The proof is by induction on the degree of f(x). If f(x) has degree 1, 
then Fitself is a splitting field of f(x) and [F.F] = I ~ 1!. Suppose 
the theorem is true for all polynomials of degree n - I and that .f(x) 
has degrw n. By Theorem 4.14/(x) has an irreducible factor in F[x] 
Multiplying this polynomial by the inverse of its leading coefficient 
produces a monic irreducible factor p(x) of f(x). By Theorem 5.11 
there is an extension field that contains a root 1J of p(x) (and, hence, 



390 Chapter 11 Field Extensions 

ofj(x)). Furthermore, p(x) is necessarily the minimal polynomial of u. 
Consequm.tly, by Theorem 11.7 [F{u): F] == degp(x) :5'; degfl:x) == n. 
The Factor Theorem 4.16 shows that ft x) == (x - u )g{ x) for some g(x) 
E Jitu)[x]. Since g(x) has degree n - l, the induction hypothesis guar­
antees the wstence of a splitting field K of g(x) over F(u) such that 
[K:J{u)] :5'; (n- 1)!. InK[x], 

g(x) == c(x - u 1)(x - 'U2) • • • (x - u,._J 

and, hence.f(x)"" c(x - u)(x - uJ • • • (x- u,._J. Since 

K == F{u)(u" ... , u.-J == F(u, UJ1 ••• , -u,._i) 

we see that Xis a splitting field of j(x) over Fsuch that [K:l'] == [K:Jitu)] 
[F{u):Ji] 5 ((n - l~)n == n!. This completes the inductive step and the 
proof of the theorem. • 

The relationship bet..wen two splitting fields of the same polynomial is quite easy 
to state: 

Any two splitting fields of a polynomial In Ffxf are tsomorpbtc. 

Surprisingly, the easiest way to prove this fact is to prove a stronger result of which 
this is a special case. 

Theorem 11.14 
Let u:F -+ f be an isomorphism of fields, f(x) a non constant polynomial in 
f(x], and uf{x) the corresponding polynomial in E[x]. If K is a splitting field of 
f(x) over F and L is a splitting field of uf(x) over E, then u extends to an 
isomorphism K ~ L. 

If F = E and u is the identity map F-+ F, then the theorem states that any two 
splitting fields of j( x) are isomorphic. 

Proof of Theorem 11.14 ~The proof is by induction on the degree of f{x). If 
degf(x) == l, then by the definition of splitting fieldf(x) == c(x - u) in 
K[x] andK == F{u). Butf(x) ==ex- cu is inF[x], so we must have c 
and cu in F. Heno; 'U == c- 1cu is also in F. Therefore, K == Ji{u) == F. On 
page 380 we saw that q ~tends to an isomorphism Jilx] s E[x]; hence, 
uf(x) also has degree l, and a similar argument shows that E == L. In 
this case, q itself is an isomorphism with the required properties. 

Suppose the theorem is true for polynomials of degreen --1 and that 
f(x) has degree 11. As in the proof of Theon:m 11.13, f(x) has a monic 
irreducible factor p(x) in .F(x] by Theon:m4.14. Since q extends to an 
isomorphism F[x] ~ ET_x], (page 380),up(x) is a moni::: irreducible factor 
of uf(x) in E[x]. Every root of p(x) is also a root of f(x), so K contains 
all the roots of p(x), and similarly L contains all the roots of up(x). Let 
u be a root of p(x) inK and v a root of up(x) in L. Then u ~tends to an 
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isotllorphism.F(u) ~ .E(v) that maps u to v by Corollary 11.8, and the 
situation looks like this: 

K L 
Ul Ul 
.ftu) a, E(v) 
Ul Ul 
F ~E. 

The Factor Theorem 4.16 shows thatflx) = (x- u)g(x) in l'(u)[x] and, 
hence, in E(vlx] 

af(x) = a(x- u)ug(x) = (x- au)ug(x) = (x- v)ug(x). 

Now f(x) splits over K, my f(x) = c{x- uXx- Uz) • • • (x - u,), 
Since/(x) = (x - u)g(x), we have g(x) = c(x - vi) • · · (x - u,). The 
smallest subfieldcontaining all the roots of g(x) and the fieldF{u) is 
F(u, ~ ... , u,) = K, so Kis a splitting field of g(x) over F(u). Similarly, 
L is a splitting field of ag(x) over E( v). Since g(x) has degree n - 1, the 
induction hypothesis implies that the isomorphism F(u) s E(v) can be 
extended to an isomorphism K s L. This completes the inductive step 
and the proof of the theorem. • 

A splitting field of some polynomial over F contains all the roots of that poly­
nomial by definition. Surprisingly, ho~, splitting fields have a much stronger 
property, which we now define. 

An algebraic extension fleld K.of F Is normal provid!ld that whenever an 
Irreducible polynomial In f(x] has one root In K, then It splits over K (that 
Is., has all Its roots In K). 

Theorem 11.15 
The field K Is a splitting field over the field F of some polynomial in f(x] tf and 
only If K Is a finite-dimensional, normal extension of F. 

Proof~ If Kis a splitting field of f(x) eF[x], then K = F(ul> •.• , uJ, where the 
u1are all the roots ofj(x). Consequently, [K:F] is finite by Theorem 11.10. 
Let p(x) be an irreducible polynomial in F[x] that has a root v in K. 
Consider p(x) as a polynomial in Jqx] and let L be a splitting field of 
p(x) over K, so that F!:: K!:: L. To prove thatp(x) splits over K, we need 
only show that every root of p(x) in L is actually in K. 

Let wE L be any root of p(x) other than v. By Corollary 11.8 (with 
E = F and a the identity map), there is an isomotphism F(v) s F(w) that 
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maps v to wand maps every element of F to itself. Consider the su bfield 
K{w) of L; the situation looks like this: 

Since 

K K(w) 
Ul Ul 

.F(v) ~ Ftw) 
Ul Ul 
F = E 

we see that K(w) is a splitting field of j(x) over .F(w). Furthermore, since 
v E K and K is a splitting field of j(x) over F, K is also a splitting field 
of f(x) over the subfield F(v). Consequently, by Theorem 11.14 the iso­
morphism.F(v) ~ F(w) extends to an isomorphism K ~ K(w) that maps 
v tow and every element of Fto itself. Therefore, [.K:F] = [K(w):F] by 
Theorem 115. In the extension chain F.: K.:K(w), [K(w)~ is finite by 
Theorem 11.7 and [K:F] is finite by the remarks in the first paragraph of 
the proof. So Theorem II .4 implies that 

[K:F] = (K(w):F] = [K(w):K][K:F]. 

Canceling [K:F] on each end shows that [K( w):K] = I, and, therefore, 
K{ w) = K. But this means that w is inK Thus every root of p(x) in L is 
inK., and p(x) splits over K. Therefore, K is normal over F. 

Conversely, assume K is a finite-dimensiona~ normal extension of F 
with basis fu.h ... , ~}. Thm. K = J( UJ, .•• , 1J,). Each u, is algebraic 
over F by Theorem 11.9 with minimal polynomial pJ(x). Since each plx) 
splits over Kby normality,f(x) = .PJ.(X) • • • p,(x) also splits over K. 
Therefore, K is the splitting field of f(x). • 

EXAMPLE 5 

The field o( \iii) contains the real root ~of the irreducible polynomial 
X! - 2 E Q[ x] but does not contain the complex root ~ro (as described in 
Example 7 of Section 11.2). Therefore, 0( ~is not a normal extension of Q 
and, hence, cannot be the splitting field of any polynomial in Q( X). 

At this point it is natural to ask if a field F has an extension field over which 
every polynomial in .F{x] splits. In other words, is there an extension field that 
contains all the roots of all the polynomials in F[x)? The answer is "yes," but the 
proof is beyond the scope of this book. A field over which every nonconstant 
polynomial splits is said to be alge braicaJly closed. For example, the Fundamental 
Theorem of Algebra and Corollary 4.28 show that the field C of complex numbers 
is algebraically closed. 
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If Kisan algebraic extension of FandKisalgebraicallyclosed, then Kiscalled the 
algebraic closure of F. The word "the" is justified by a theorem analogous to Theorem 
11.14 that says any two algebraic closures of Fare isomorphic. For example, Cis the 
algebraic closure of lffi since C = R(i) is an algebraic extension of n that is algebraically 
closed. The field C is not the algebraic closure of Q, however, since C is not alge­
braic over Q, The subfield E of algebraic numbers (see Example 7 of Section IL3) 
is the algebraic closure of Q (Exercise 20). 

• Exercises 

NafE: F is afield 

A. I. Show that V2 is not in Q(i) and, hence, C =F Q( 1).(H"rnt: Show that v2 = a + bi, 
with a, b EO, leads to a contradiction.] 

2. Show that r - 3 and :x;'l - 2x - 2 are irreducible in O:[x] and have the same 
splitting field, namely a( \13). 

3. Find a splitting field of x4 
- 4r - 5 over Q and show that it has dimension 

4 over 0:. 

4. If f(x) E R[x], prove that ~or Cis a splitting field of f(x) over R. 

5. Let K be a splitting field of f(x) over F. If Eisa field such that Fr;;;;. Er;;;. K, 
show that K is a splitting field of f(x) over E. 

6. Let K be a splitting field of f(x) over F. If (A:F] is prime, u EK is a root of 
f(x), and u f£ F, show that K = ftu). 

7. If u is algebraic over Fand K = F(u) is a normal extension ofF, prove that K 
is a splitting field over Fof the minimal polynomial of u. 

8. Which of the following are normal extensions of Q? 

(a) a(\13) (b) a(V'3) (c) a( '\1'5, i) 
9. Prove that no finite field is algebraically closed.(H/nt: If the elements of the 

field Fare a~o ... , an, with a 1 nonzero, consider 
a1 + (x - a1Xx - a:J · · · (x - a,J E F[x).) 

B. 10. By finding quadratic factors, show that 0( \1'2, v'3) is a splitting field of 
x4 + 2.:2 - sr - 6x - 1 over Q. 

II. Find and describe a splitting field of x4 + I over 0:. 

12. Find a splitting field of x4 
- 2 

(a) over Q. {b) over n. 
13. Find a splitting field of:/' + x5 + I over Q. 

14. Show that a( Vi, i) is a splitting field of ;(l - 2V2x + 3 over a(V.2). 
15. Find a splitting field of r + 1 over Z1. 

16. Find a splitting field of X' + X + I over z2. 
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17. If Kis an extension field of Fsuch that (K:F] = 2, prove that Kis normal. 

18. Let F, E, Kbefieldssuch thatF>;E r;-K and E= F(u., ... , uJ, where theu, 
are some of the roots of f(x) E F{x]. Prove that K is a splitting field of f(x) 
over F if and only if K is a splitting field of f(x) over E. 

19. Prove that the following conditions on a field K are equivalent: 

(i) Every nonconstant polynomial in K(x] has a root inK. 

(ii) Evezy nonconstant polynomial in K(x] splits over K (that is, K is 
algebraically closed), 

(iii) Every irreducible polynomial in K(x] has degree 1. 

(iv) lbere is no algebraic extension field of K except K itself. 

20. Let K be an extension field of F and E the sub field of all elements of K that 
are algebraic over F, as in Corollary 11.12. If K is algebraically closed, prove 
that E is an algebraic closure of F. [fhe special case when F = Q and K = C 
shows that the field E of algebraic numbers is an algebraic closure of Q.] 

21. Let K be an algebraic extension field ofF such that every polynomial in F(x) 
splits over K. Prove that K is an algebraic closure of F. 

C. 22. If K is a finite--dimensional extension field ofF and rJ :F- K is a homomorphism 
of fie!~ prove that there exists an extension field L of Kanda homomorphism 
r:K- L such that T(a) = u(a) for every a E F. 

23. Prove that a finiti>dimensional atension field K ofF is normal if and only if 
it has this property: Whenever L is an extension field of K and u:K-L an 
injective homomorphism such that u(c) = c for every c E F, then u(K) !:;;; K. 

1111 Separability 

Every polynomial has a splitting field that contains all its roots. These roots may all be 
distinct, or there may be repeated roots.* In this section we consider the case when the 
roots are distim:t and use the information obtained to prove a very useful fact about 
finitooimensional extensions. 

Let F be a field A polynomialf(x) EF(x] of degree n is said to be separable if it 
has n distinct roots in some splitting field.t Equivalently,f(x) is separable if it has no 
repeated roots in any splitting field. If K is an extension field ofF, then an element 
uE K is said to be separable over Fif u is algebraic over Fand its minimal polynomial 
p(x) E F(x] is separable. The extension field K is said to be a separable extension (or to 
be separable o'•er F) if every element of K is separable over F. Thus a separable exten­
sion is necessarily algebraic. 

•A repeated root occurs when ((r) = (r- u1 ) • • • (r- uh) in the splitting field and some u1 = u1 
with i-J<j. 
tsince any two splitting fields are isomorphic, this means that f(x) has n distinct roots in every 
sp I itt in g field. 



11.5 Sep11r11bllity 395 

EXAMPLE 1 

The polynomial x" + l ~ O[x] is separ.Wle since it has distinct roots i and -r 
in C. But/(x) = x'- x1- x + 1 is not separable because it factors as 
( x - lf(xl + x + 1). Hence,f(x) has one repeated root and a total of three 
distinct roots in C. 

There are several tests for separability that make use of the following concept. The 
derivative of 

f(x) =Co+ c1x + c,.x1 + · · · + c,x"EF(x) 

is defined to be the polynomial 

f'(x) = Ct + ~ + 3c3x" + · · · + lfc,.r1 EF[x]•. 

You should use Exercises 4 and 5 to verify that derivatives defined in this algebraic 
fashion have these familiar properties. 

(f + g)'(x) = f(x) + g'(x) 

(fg)'(x) = f(x)g' (x) + f(x)g(x). 

Lemma 11.16 
Let F be a fmld and f{x) ~F[x], If f{x) and f'{x) are relatively prime in F[x], then 
f(x) is separable. 

Note that the lemma operates entirely in F[x] and does not require any knowl· 
edge of the splitting field to determine separability. For other separability criteria, see 
Exercises 8-10. 

Proof of lemma 11.16 .. We shan prove the contrapositive: If Jcx> is not separable, 
thenf(x) and/'(x) are not relatively prime (which is logically atuivalent 
to the statement of the theorem).f Let Kbe a splitting field of f(x) and 
suppose thatf(x) is not separable. Thenf(x) must have a repeated root u 
inK. Hence,f(x) = (x - u):!g(x) for some g(x) ~K(x) and 

/'(x) = (x - u'fg'(x) + 2(x - u)g(x). 

Therefore,/'(u) = OJ'8"'(u) + OJ8(u) = Op and u is also a root of f'(x). If 
P._x) EF[x] is the minimal polynomial of u, theuP._x) is nonoonstant and 
divides botbf(x) andf'(x). Therefore,f(x) andf'(x) an: not relatively 
prime. • 

~when F"' R, this is the usual derivative ofelementarycalculus. But our definition is purelyalgebraic 
and applies to polynomials over any field, whereas the limits used in calculus may not be defined in 
some fields. 

tsee Appendix A (pages 503,504 and SOEi)forthedefinition and use of the contraposilive in proofs. 
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Recall that for a positive integer n and c E F, 

nc is the element c + c + · · • + c (n summands). 

A field Fis said to have cbaractel'islic 0 if n1F"' OF fcc every positive n. For truLtnplc, 
0, II, and Call have characteristic 0, but Z3 does not (since 3 • 1 = 0 in Zi). Every 
field of characteristic 0 is infinite (Exercise 3). If Fhas characteristic 0, then for every 
positive n and c E F, 

So nc =OF if and only if c = Op This fact is the key to separability in fields of char­
acteristic 0: 

Th eo rem 11.17 
Let F be a field of characteristic o. Then every irreducible polynomial in F[K] is 
separable, and every algebraic ex tens ion f1eld K of F is a separable ext ens ion, 

The theorem may be false if F does not have characteristic 0 (Exercise 15). 

Proof of Theorem 11.1? "'An irreducible p(x) EF[x] is nonconstant and, hence, 

p(x) = C7!' +(lower-degree terms), 

Then 

with c"' OF and n ~ 1. 

p'(x) = (nc)f""1 + (lower-degree terms), with nc"' OF. 

Therefore,p'(x) is a nonzero polynomial of lower degree than the 
irreducible p(x). So p(x) andp'(x) must be relatively prime. Hence, p(x) 
is separable by Lemma 11.16.1n particular, the minimal polynomial of 
each u EK is separable. So K is a separable extension. • 

Separable extensions are particularly nice because every finitely generated (in 
particular, every finite-dimensional) separable extension is actually simple: 

Theorem 11. 18* 
If K is a finitely generated separable extension field ofF, then K = F(u) for 
some uEK, 

Proof"' By hypothesis K = F( u 1, ••• , u,). The proof is by induction on n. There 
is nothing to prove when n = 1 and K = F(:u 1). In the next paragraph we 
shall show that the theorem is true for n = 2. Assume inductively that it 
is true for n = k - l and suppose n = k. By induction and the case n = 2. 
there exist t, u E K such that 

•This theorem will be used only in S&ction 12.2. 
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To complete the proof, we assume K= F(v, w) and show that Kis 
a simple extension of F. As5UID.e first that Fis infinite (which is always 
the case in characteristic 0 by Exercise 3). Let p(x) E F( x] be the minimal 
polynomial of v and q(x) E F(x] the minimal polynomial of w. Let L be a 
splitting :field of p(x)q(x) over F. Let w = w,, Wz, ••• , w, be the roots of 
q(x) in L. By the definit:Dn of separability, all thew, are distinct. Let 
v = v 11 v 2, ••• , v ... be the roots of p(x) in L. Since Fis infinite, there exists 
c E F such that 

for all 1 .s i .s m, 1 <J :s; n. 

Let u = 11 + cw. We claim that K = F{u). To show that w EF(u), let 
.h(x) = p(u -ax) EF{u)[x] and note that w is a root of h(x): 

h(w) = p(~- cw) = p(v) = Op 

Suppose some w_, (withj '1: 1) is also a root of h(x). Then p(u - cw) = 
0, so that u - C'flj is one of the roots of p(x ), say u - cw1 = v,. Since 
u = v + cw, we would have 

-vi- v 
v + cw - cw1 = v1 or, equivalently, c = -- . 

w- w1 

This contradicts (•). Therefore., w is the only common root of q(x) and /(x). 
Let r(x) be the minimal polynomial of w over F{u). Thenr(x) 

divides q(x), so that every root of r(x) is a root of q(x). But r(x) also 
dividesh(x), so all its roots are roots of h(x). By the preceding para­
graph, r(x) has a single root win L. Therefore, r(x) E.F(u)[x] must have 
degree 1, and, hence, its root w is in ftu). Since v = u - cw, with u, 
w Ei'(u), we see that vE.F(u) and, hence, K= F(v, w) !:F{u). But 
u = t1 + cw E K, so ftu) !.:: K, whence K = ftu ). This completes the 
proof when Fis in:finite. For the case of finite F, see Theorem 11.28 in 
the next section. • 

EXAMPLE 2 

Applyingtheproofofthetheoremto o(V3, '\IS), we"hlM:v= '\f3.v2 = -V3, 
w = VS, ·tv:: = -\15, so we can choose c = 1. Then u = V3 + V5 and 
o( \1'3, v'S) is the simple extension o( v3 + VS). 

• Exercises 

NOTE: K is an ex temionfield of the field F. 

A. 1. If Kis separable over Fand Eisa field with Fr;;;. E!.:: K, show that Kis 
separable over E. 

:Z. If Fhas characteristic O, show that K has characteristic 0. 
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3. Prove that every field of characteristic 0 is infinite. [Hint: Consider the elements 
nlFwithn EZ, n > 0.] 

B. 4. If f(x), g(x) E F[x], prove 

(a) (f + g)'(x) :o f'(x) + g '(x). 

(b) If c E F, then (cj) '(x) = cf (x). 

5. (a) If Jrx) = d' EF[x] and g(x) = bo + htx + · · · + b~oxt E F(x], prove that 
(fg)'(x) = f(x)g(x) + f'(x)g(x). 

(b) If Jrx), g(x) are any polynomials in F[x], prove that lfg)'(x) = f(x)g '(x) + 
f'(x)g(x). [Hint: If f(x) = ao + a1x + · · · + q, then (fgXx) = <Juctx) + 
a1xg(x) + · · · + a,.x"g(x); we part (a) and Exercise 4.] 

6. If f(x) E F[x] and n is a positive integer, prove that the derivative of f(x'j' is 
nf(xF'f'(x). [Hint: U.se induction on n and Exercise 5.] 

7. {a) If Fhas characteristic O,f(x) EF[x], andf'(x) = Op, prove thatf(x) = cfor 
somecEF. 

(b) Give an example in Z2[x] to show that part (a) may be false if F does not 
have characteristic 0. 

8. Prove that u E K is a repeated root off( x) E F(x] if and only if u is a root of 
bothf(x) and/'(x). [Hint:f(x) = (x- u_r'g(x) with m 2: 1, g(x) E K[x], and 
g(u) -:F Op, 1l is a repeated root of f(x) if and only if m > 1. Use Exercises 5 and 
6 to computef'(x).] 

9. Prove thatf(x)E F[x] is separable if and only if f(x) and/'(x) are relatively 
prime. [Hint: See Lemma 11.16 and Exercise 8.] 

10. Let Ji..x) be irreducible in F[x]. Prove that p(x) is separable -if and only if 
p'(x) ;' Op. 

II. Assume F has characteristic 0 and K is a splitting field of f(x) E F[x]. If l'(x) 
is the greatest common divisor of f(x) andf'(x) and ll(x) = f(x)/d{x) E F[x], 
prove 

(a) f(x) and h(x) have the same roots inK. 

(b) ll(x) is separable. 

12. Use the proof of Theorem 11.18 to express each of these as simple extensions 
ofQ: 

{a) o("v'2, V3) (b) 0( v'3, i) (c:) 0( Vi, v'3, Vs) 

13. If p and q are distinct primes, prove that 0( yp, yq) = o( Vi + vq). 
14. Assume that Fis infinite, that 11, wE K are algebraic over F, and that w is the 

root of a .separable polynomial in F[x]. Prove that F(v, w) is a simple extension 
of F. [Hint: Adapt the proof of Theorem 11.18.] 

15. Here is an example of an irreducible polynomial that is not separable. Let 
F = Z1(t) be the quotient field of Z2[t] (the ring of polynomials in 
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the indeterminate t with coefficients in Z2J, as in Example 1 of 
Section 10.4. 

(a) Prove that X'- tis an iriWucible polynomial in F[x]. [Hint: If :x?- t 
has a root in F, then there are polynomialsg(t), h(t) in Z:ItJ such that 
fg(t)fh(t)f == t; this leads to a contradiction; apply Corollacy 4.19.] 

(b) Prove that :x?- - t EF[x] is not separable. [Hint: Show that its derivative is 
zero and use EJWICise 10.] 

IIIJ Finite Fields 

Finite fields have applications in many areas, including projective geometry, combina­
tories, experimental design, and cryptography. In this ~~ection, finite fields are charac­
terized in terms of field extensions and splitting fields, and their structure is completely 
determined up to isomorphism. 

We begin with some definitions and results that apply to rio~ that need not be 
fields or even finite. But our primary interest will be in their implications for finite 
fields. 

Let R be a ring with identity. Ra:all that for a positive integer m and r: E R, me is 
the element r: + r: + · · · + c (m summands). The ring R is said to have characteristic 0 if 
m1R #:OR for every positive m. On the other hand, if mlR = OR for some positive m, 
then there is a smallest such m by the Well-Ordering Axiom. Then R is said to have 
characteristic II if n is the smallest positive integer such that nlR "" OR.* ror example, Q 
has characteristic 0 and z3 has characteristic 3. 

Lemma 11.19 
If R is an integral domain, then the characteristic of R is either 0 or a positive 
prime. 

Proof"' If R has characteristic 0, there is nothing to prove. So assume R has 
characteristic n > 0. If n were not prime, then there would exist positive 
integers k, t such that n == kt, with k < n and t < n. The distributive laws 
show that 

k summands t si.IIIllllaild s 

"" 1R1R + .. • + 1R1R"" 1R + • . ' + 1R 

== (kt)1R == n1R"" OR-

[kt summands] 

•if you have read C h11pter 7, you will recognize th11t when the char aeteristie ol R is positive, it is 
simply the order of the element tR in the 11dditive group ol R. 



400 Chapter 11 Field Extensions 

Since R is an integral domain either kiR = OR or tiR = OR, contradict­
ing the fact that n is the smallest positive integer such that n I R = OR. 
Therefore. n is prime. • 

Lemma 11.20 
Let R be a ring with Identity of characteristic n > 0. Then k1R = ~ if and only 
if n lk.* 

Proof•lf n lk, say k = nd, thenklR = ndiR = (niJJ(dl.R) =oR (di.R) =oR. 
Conversely, suppose k IR = OR- By the Division Algorithm, k = nq + r 
with 0 :S r < n. Now nl R = OR> so that 

Since r <nand n is the smallest positive integer such that niR = OR by 
the definition of characteristic, we must haver = 0. Therefore, k = nq 
andnlk. • 

Theorem 11.21 
Let R be a ring with i dentlty. Then 

(1) The set P = {k1R IkE Z} is a sub ring of R. 

(2) tf R has characteristic 0, then P = Z. 

(3) tf R has characteristic n > 0, then P = Zn. 

Proof•Detinef:Z~ Rbyf(k) = klR. Then 

j(k + t) = (k + t)lR = kiR + IIR = f(k) + f(t). 

The distributive laws (as in the proof of Lemma 11.19) show that 

f{kf) = (kt)lR = (ki.R)(ti.R) = f(k)f(t). 

Therefore,! is a homomorphism. The image of Jif.!. precisely the set P, 
and, tha-efore. Pis a ring by Corollaxy 3.11. Consequently, f can be con­
sidered as a surjective homomorphism from Z onto P. Then P = Z/{Ki:r f) 
by the First Isomorphism Theorem 6. 13. If R has characteristic O, then 
the only integer k such that klR =OR is k = 0. So the kernel of /is the 
ideal (0) in Z, and P = Zj(O) = Z. If R has characteristic n > 0, then 
Lemma 11.20 shows that the kernel of /is the principal ideal (n) consist-
ing of all multiples of n. Hence, P = Z/(n) = Z11• • 

•This lemma is just a specii!ll case (in ~dditive notation) of part (1) DfTheorem 7.9, with a= tR and 
e=OR. 
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According to Theorem 11.21 a field of clmracteristic 0 contains a copy of Z and, 
hence, must be infinite. Therefoce, by Lemma 11.19 we have 

Corollary 11.22 
Every finite field has characteristic p for some prime p. 

The converse of Corollary 11.22 is false, however, since there are infinite fields of 
characteristic p (Exercise 8). 

If K is a field of prime characteristic p (m particuhu; if K is finite), then Theorem 11.21 
shows that K coo.tains a subfield P isomorphic to~- This field Pis called the prime 
subfieJd of K and is contained in every subfield of K (because every mbfield contains 
1Kand, hence, contains tlK for fNf:fJ integer t). • See Exercise 4 for another deMption 
of P. We shall identify the prime subfield P with its isomorphic copy Z;, then 

eYery field of characteristic p contains zl'. 
The number of elements in a finite field K is called the order of K. To determine the 

order of a finite field K of characteristic p, we consider K as an extension field of its 
prime subfield z; 

Theorem 11.23 
A finite field Khas orderpn, where pis the characteristic of Kand n = [K: ZJ. 

Proof~ There is oert:alnly a finite set of elements that spans Kover Zp (the set K 
itself, for exa10ple). Consequently, by Exercise 32 of Section 1 1.1, Khas 
a finite basis { u,., ~ ••.• , u,.} over z,. Every element of K can be written 
uniquely in the form 

with each CtE zl' by Exercise 30 of Section 11.1. Since there are exactly p 
possibilities for each c1, there are precisely p" distinct linear combinations 
of the form (•). So Khas order Jl', with n =number of elements in the 
basis = [K:Z.J. • 

Theorem 11.23 limits the possible size of a finite field. For instance, there can­
not be a field of order 6 since 6 is not a power of any prime. It also suggests several 
questions; [s there a field of order P' for every prime p and every positive integer n'l 

•if K has characteristic 0, then K contains an isomorphic copy P of Z. Since K contains the 
multi pi icative inverse of every nonzero element of P, it follows that K contains a copy of the field 
Q. As in the case of characteristic p, this field (called the prime subtield) is contained in every 
subfield of K. See Theorem 10.31 (with R = P "" Z and F"" Q) for a more precise statement and proof. 
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How are two fields of order p" related? The answers to these questions are given in 
Theorem 11.25 and its corollaries. In order to prove that theorem 1 we need a techni­
callemma. 

Lemma 11.24 The Freshman's Dream* 
Let p be a prime and R a commutative ring wtth identity of characteristic p. 
Then for every i!, b G R and every positive integer n , 

(a + b)tt' = att' + b~~'. 

Proof~ The proof is by induction on n. If n = l, then the Binomial Theorem in 
Appendix E shows that 

(a+ b)P = (/ + et'1
b + · · · + (~)o---w 

+ ... + ( P \...u-t '1- ,, 
p-1/ 

Each of the middle coefficients e)=· rl(p!A_ r)t is an integer by 

Exercise 6 in Appendix E. Sinoo every term in the denominator is strictly 
less than the prime p, the factor of pin the numerator does not cancel, and, 

therefore, e) is divisible by p, say(~)= tp. SinooR has characteristicp, 

Thus allthe middle terms are zero and (a + lif = d' + U. So the theo­
rem is true when n = 1. Assume the theorem is true when n. = k. Using 
this assumption and the case when n = l shows that 

(a+ b)~"= ((a+ b),.)P 

= (aP' + t/'f = (aP'y + (~)P = ar· + v·'. 
Therefore, the theorem is true when n = k + 1 and, hence, for an n by 
induction. • 

•Terminology due to Vincent 0. McBrien. 
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Theorem 11.25 
let K be an extension field of?., and n a positive integer. Then K has order 
pn if and :only if K is a splitting field of x"'- x over z,. 
Proof" Assume K is a splitting field of /(x) = :xi" - x E Z,(x). Since 

J'(x) = pt;£-l - 1 = ox"'-' - 1 = -1,f(x) is separable by 
Lemma 11.16. Let E be the subset of K consisting of the rJ' distinct roots 
of/ - x. Note that c E E if and only if cP" = c. We shall show that the 
set E is actually a subfield of K. If a, bE E, then by Lemma 11.24. 

(a + b)i' = tf' + II" = a + h. 

Therefore, a + bE E, and E is closed under addition. The set E is closed 
under multiplication since (ah )'" = tTl!" = ah. Obviously, OK aod 1Kare 
in E. If a is a nODZeio element of E, then -a and -a-1 are in E because, 
for example, 

(a-l)P" =a-Il'= (d"')-1 = a-1. 

The argument for -a is similar (Exercise 7). Therefore, E is a subfield of 
K. Since the splitting field K is the smallest subfield containing the set E 
of roots, we must have K = E. Therefore, Khas order rJ'. 

Conversely, suppose K has order pt. We need only show that every ele­
ment of K is a root of >f" - x, for in that case, the rJ' distioct elements of 
K are all the possible roots and K is a splitting field of f - x. • Clearly 0 K 

is a root, so let c be any nonzero element of K. Let .:1, c2, ••• , c,., be all the 
nonzero elements of K (where k = rJ' - 1 and cis one of the cJ aod let u be 
the product u = c1c2c3 • • • c;r The k elements ccb cc2, ••• , cck are all dis­
tinct (since cc1 = Ctj implies Cf = c1), so they are just the nonzero elements 
of Kin some other order, and their product is the element u. Therefore, 

u = (ccJ(cc0 · · · (ccr) = d'(c1c~c1 • • • ciJ = d'u. 
Canceling u shows that t! = 1 rand, hence, t!+J = c, or equivalent 
ck+l- c = OK. Since k + 1 = Jl', cis a root of ;K!" - x. • 

Theorem 11.25 has several important consequences; together with the theorem 
they provide a complete characterization of all finite fields. 

Corollary 11.26 
For each positive prime p and positive integer n, there exists a field of order fl'. 

Proof" A splitting field of ::r!' - x over z, exists by Theorem 11.13; it has order 
pn by Theorem 11.25 • 

• A 9 hort proof, U9 in g group theory, i 9 given in Exer<; In 22. 
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Corollary 11.27 
Two t1 nite tie Ids of the same order are isomorphiC. 

Proof .. If K and L are fields of order ]1', then both are splitting fields of:/ - x 
over Z; by Theorem 11.25 and, hence, are isomorphic by Theorem 11.14 
(with fJ' the identity map on Zp)· • 

According to Coto1lary 11.27, there is (up to isomorphism) a unique field of order 
P'. This field is called the Galois field of order]/'. We complete our study of finite fields 
with two results whose proofs depend on group theory. 

Theorem 11.28 
Let K be a finite field and F a subfi eld. Then K is a s i m~e extension of F. 

Proof .,. By Theorem 7.16 the multiplicative group of nonzero elements of 
Kis cyclic. If u is a generator of this group, then the subfieldF(u) 
contains OF and all powers of u and, hence, contains every element of K. 
Therefore, K= F(u). • 

Corollary 11.29 
Let p be a positive prime. For each positive integer n, them exists an 
irreducible polynomial of degree n in Zp[x]. 

Proof .. There is an extension field K of Z1 of order.?' by Corollary 11.26. By 
Theorem 11.28, K = z;,. u) for some u E K. The minimal polynomial of u 
in Z, [x] is irreducible of degree [K:Z,] by Theorem II. 7. Theorem 11.23 
shows that [K:Zp] = n. • 

• Exercises 

A. I. If R is a ring with identity ar:rl m, n EZ, prove that (ml-RXnl.R) = (mn)111• 

[The case of positive m, n was done in the proof of Lemma 11.19.] 

2. What is the characteristic of 

(a) Q (c) Z3!:x] 

(d) M(R) 

3. Let R be a ring with identity of characteristic n ~ 0. Prove that na = 011 for 
everyaER. 

4. If K is a field of pr-ime characteristic p, prove that its prime subfield is the 
intersection of all the subfields of K. 
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5. Let Fbe a subfield of a finite field K. If Fhas order q, show that Khas order 
fj', where n = [KF]. 

6. Show that a field K of order p" contains all kth roots of lx, where k = p" - l. 

7. Let E be the set of roots of x"·- x EZ,.[x] in some splitting field. If a E £, 
prove that -a E £. 

B. 8. Letp be prime and let Zp(x) be the field of quotients of the polynomial ring 
Zp[x] (as in Example 1 of Section 10.4 ). Show that Zp(x) is an infinite field of 
characteristic p. 

9. Let R be a commutative ring with identity of prime characteristic p. If a, 
hER and n 2: l, prove that (a - h Y' = aP'- bl"'. 

I 0. Let K be a finite field of characteristic p. Prove that the map f;K-+ K given by 
f(a) = d' is an isomorphism. Conclude that every element of Khas apth root 
inK. 

II. Show that the Freshman's Dream (Lemma 11.24) may be false if the 
characteristic p is not prime or if R is noncommutative. [Hint: Consider J4 
and M(Zi).] 

12. If cis a root of f(x) E Zp[x], prove that d' is also a root. 

13. Prove Fermat's Uttle Theorem; If pis a prime and a E Z, then d' ==a (mod p). If 
a is relatively prime top, then r 1 == l (mod p). [Hint: Translate congruence 
statements in Z into equality statements in Z, and use Theorem 1 1.25.] 

14. Let Fbe a field and f(x) a monic polynomial in F[x], whose roots are all 
distinct in any splitting field K. Let E be the set of roots of f(x) in K. If the set 
E is actually a subfield of K, prove that Fhas characteristic p for some prime p 
and that f(x) = f- x for some n ~ L 

15. (a) Show that .il + x + 1 is irreducible inZ2[x] and construct a field of 
orderS. 

(b) Show that XJ - x + I is irreducible in Z3[ x] and construct a field of order 27, 

(c) Show that x 4 + x + 1 is irreducible in Z1[x] and construct a field of 
order 16. 

16. Let K be a finite field of characteristic p, Fa su bfield of K, and m a positive 
integer. If L = {a E Kl.:r" .. EF}, prove that 

(a) Lis a subfi.eld of K that contains F. 

(b) L = F. [Hint: Use Exercise I 0 to show thatthe map g:K-+ K given by 
g (a) = cf is an isomorphism such that g( F) = F. What is [ 1 (F)?] 

17. If E and Fare subfields of a finite field K and E is isomorphic to F, prove that 
E=F. 

18. Let Kbe a field and k, n positive integers. 

(a) Prove that.xl'- lxdivides x" -lxinK[x] if and only if kIn in Z. 
[Hint: n = kq + r by the Division Algorithm; show that X'- lx = 
(xk -l.Jit(x) + (x" - l.J, where h(x) = ;t>-k + r11c + ... + x"-fk.] 
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Application I 

{b) If p ~ 2 is an intege~; prove that (II<- I) I (p"- 1) if and only if kIn. 
(Hint: Copy the proof of part (a) with p in place of x.] 

19. Let K be a finite field of order Jl'. 
(a) If Fis a subfield of K, prove that Fhas order p 4for some d such that dIn. 

(Hint: Exercise 18 may be helpful.] 

{b} If dIn, prove that K has a unique subfield of order pl. (Hint: See Exercise 17 
and Corollary 11.27 for the uniqueness part.] 

20. Letp be prime andf(x) an irreducible polynomial of degree 2 in Z,J:x]. If Kis 
an extension field of Zp of order p', prove thatf(x) is irreducible in K[xJ. 

21. Prove that every element in a finite field can be written as the sum of two 
squares. 

22. Use part (2) of Corollary 8.6 to prove that every nonzero element c of a finite 
field K of order p" satisfies cP" -I = lr. Conclude that c is a root of x"" - x 
and use this fact to prove Theorem 11.25. 

BCH codes (Section 16.3) may be covered at this point If desired. 
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Galois Theory 

A major question in classical algebra was whether or not there were formulas for 
the solution of higher-degree polynomial equations (analogous to the quadratic 
formula for second-degree equations). Although formulas for third- and fourth­
degree equations were found in the sixteenth century, no further progress was 
made for almost 300 years. Then Ruffini and Abel provided the surprising answer: 
There is no formula for the solution of lJfl polynomial equations of degree n when 
n ~ 5. This result did not rule out the possibility that the solutions of special types 
of equations might be obtainable from a formula. Nor did it give any clue as to 
which equations might be solvable by formula. 

It was the amazing I y orig ina I work of Galois that provided the full explanation, 
including a criterion for determining which polynomial equations can be solved 
by a formula Galois' ideas had a profound influence on the development of later 
mathematics, far beyond the scope of the original solvab i I ity problem. 

The solutions of the equation f(x) = 0 I ie in some extension of the coefficient 
field of f(x). Galois' remarkable discovery was the close connect ion between such 
field extensions and groups (Section 12.1). A detailed description of the connec­
tion is given by the Fundamental Theorem of Galois Theory in Section 12.2. This 
theorem is the principal tool for proving Galois' Criterion for the solvability of 
equations by formula (Section 12.3). 

Ill The Galois Group 

The key to studying field roensions is to associate with each eUension a certain group. 
called its Galois group. The properties of the Galois group and theorems of group 
theory can then be used to establish important facts about the field extension. In this 
section we define the Galois group and develop its basic properties. Throughout this 
sec/ion F is afield 

407 
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Definition Let K be an eJ<tension field of F. An F-automorphlsm of K is an isomor­
phism u:K-+ K that fixes F elementwise (that is, u(c) = c for every c E-f). 
The set Of all F--automorphlsms of K is denoted Gal ,X and is called the 
Galois group of Kover f. 

The use of the word "group" in the definition is juatified by; 

Theorem 12.1 
If K is an extension field off, then Gal~ is a group under the operation of 
composition of functions. 

Proof• GalpKis nonemptysince the identity map ~:.K -+Kis an automor­
phism.* If a, 7EGalFKthen a oris an isomorphismfromKto K 
by Exercise 27 of Section 3.3. For each cEF, (a o7Xc) = u(r(c)) = 
a(c) =c. Hence, ao TE Gal;}{, and GalpKis closed. Composition of 
functions is associative, and the identity map t is the identity element of 
Gal;]{. Evecy bijective function has an inverse function by Theorem B.l 
in Appendix R If a E GalyK, then a-1 is an isomorphism from K to K 
by Exercise 29 of Section 3.3. Verify that a-1(c) = c for every c E F 
(Exercise 1). Therefore, cr-1 E Gal_,K, and GalpK is a group. • 

EXAMPLE 1.At 

The complex conjugation map a:C-+ICgiven by a(a + bQ =a- biisan auto­
morphis:n of C, as shown in Example 3 of Section 3.3, For every real number a, 

u(a) = a(a + 01) = a - Oi = a. 

So u is in GafeiC. Note that i and -I are the roots of i1' + 1 E ~ and that a maps 
these roots onto each other; u{1) = -i and a( -1) = i. This is an example of the 
next Theorem. 

Theorem 12.2 
Let K be an extension field ofF and f(x) ef{x]. If u E K is a root of f(x) and 
u E Gai,K, then u(u) is also a root of f(x). 

*Through out this du1.pter, • de notes the identity map on th e field under discussion. 

trhroughoutthis section and the next, three basic examplesappear repeatedly.The first appearance 
of Example 1 is labeled 1.A, its second appearance 1.B, etc.: the first appearance al Example 2 is 
labeled 2.A, and so on. 
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Proof .. lf/(x) = c0 + c1x + c.z:¢ + · · · + c.f!(', then 

c0 + CfU + C2JJ
2 + · · · + c,.u" = Op 

Since u is a homomorphism and u(cJ = CJ for each c, E F, 

OF= O'(Op) = u(co + cru + c,u2 + • · · + c,.u•) 

= O'(cG) + u(c1)u(u) + u(ci)cl(u'f + · · · + u(c,Ju(uY' 

= ca + •w(u) + c2u(u)2 + · · · + cp(u'f = f(u(u)). 

Therefore, u(u) is a root of f(x). • 

Let u E K be algebraic over F with minimal polynomial p(x) E Ftx]. Theorem 12.2 
states that every image of u under an automorphism of the Galois group must also be 
a root of p(x). Conversely, is every root of p(x) in K the image of u under some auto­
morphism of GalpK? Here is one case where the answer is yes. 

Theorem 12.3 
Let K be the splitting field of some polynomial over F and let u, vEK. Then 
there exists u E GaiFK such that u{ u) = v if and only If u and v have the same 
minimal polynomial in f[x]. 

Proof .. If u and v have the same minimal polynomial, then by Corollary 11.8 
there is an isomorphism u:F(u) ~ F(v) such thatO'(u) = v, and u fixes 
F elementwise. Since K is a splitting field of some polynomial over F, 
it is a splitting field of the same polynomial over both F(u) and F(11), 
Therefore, u extends to an F-automorphism of K (also denoted u) by 
Theorem 11.14. In other lmrds, u E GalpK and u( u) = v. The converse is 
an immediate consequence of Theorem 12. 2. • 

EXAMPLE 1.B 

Example LA shows that G~C has at least two elements, the identity map L and 
the complex conjugation map u. We now prove that these all: the only elements 
in GalwzC. Let 'T be any automorphism in GalgC. Since i is a root of x2 + 1, 
'T({) = ±I by Theorem 12.2. If 'T(Q = I. then since 'T fixes every element of Ill, 

'T(a + hr) = 'I(a) + 'T(h)T(I) = a + hi, 

and, hence, 'T =~.Similarly, if 'T(Q = -i, then 

'T(a +hi) = 'T(a) + 'T(h)'r(r) =a+ h(-1) =a- hi, 

and, therefore, 'T = u. Thus Ga~C = {1., u} is a group of order 2 and, hence. 
isomorphic toZ2 by Theorem 8.7. 
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The preceding example shows that an Ill-automorphism of C = R(l) is completely 
determined by its action on i. The same thing is true in the general case: 

Theorem 12.4 
Let K = R. u11 ••• 1 Un) be an algebraic extension field off. tf u 1 'T E GaiFK and 
u(u1) = T(u1)foreach i = 112,.,. , n, then u = 'T. In other words, an auto­
morphism in Gai,.K is completely determined by its action on u11 ••• , un. 

Proof • Let {3 = T-1 o u E GalpK. We shall show that {3 is the identity map~. 
Since 17( uJ = 'T(ud for evety i, 

f3(uJ = (T-l 0 q)(uJ = 'T-1(17(UJ) = 'T-\'T(uJ) = (T-l 0 'T)(uj) = ~cuJ= UJ. 

Let vEF{u.). By Theorem 11.7 there exist c1EFsuch that v = c0 + c1u1 + C:tU1
1 + 

· · · + e,._1ut,._\ where m is the degree of the minimal polynomial of UJ· Since JHs a 
homomorphism that fixes u1 and every element of F, 

{J(v) = {3(co + CtUI + C'JJ1l + ' ' ' + C,.-lul'._t:l 

= {3(cOJ + {3(c1)p(u.) + f3(c2){3(ut'J + · · · + fX_c,._1)fJ(u{..-1
) 

=Co+ c1u1 + C<J.UJ'J. + ' ' ' + c,_1UJ11t-l = V 

Therefore, J3(v) = v for everyv EF(ut). Repeating this argument withF(uJ) in place of 
Fand t4in place of u1 shows thatf3(v) = v for everyv E F(ut)(uz) = F(u~o uj). Another 
repetition, with F( UJ, !h) in place of F and U] in place of ul> shows that /3( v) = v for 
every v E F( UJ, % "U:J). After a finite number of repetitions we have f3(v) = v for every 
v E F{uh ~ ... , -u,) = K, that is, ~ = {3 = ,.-I ~ u. Therefore, 

.,. = 1' o ~ = 7 o {7-1 o 17) = (7 o ,.-1) o 17 = ~ o a = a. • 

EXAMPLE 2.A 

By Theorem 12.2 any automorphism in the Galois group of o{ '\13, V5) over 0 
takes v'3 to v'3 or -'\1'3, the roots of~- 3. Similarly, it must take v'5 to 
±VS, the roots of r - 5. Since an automorphism is oompletely determined by 
its action on v'3 and v's by Theorem 12A, there are at most four automorphisms 
in Galc:JO( v'3, V5), corresponding to the four possible ;actions on V3 and v'5: 

We now show that GaJuO( 'V3, V5) is a group of order 4 by constructing non~ 
identity automorphisms 'T, a, {3 with these actions. To construct T, note that x1 - 3 
is the minimal polynomial of both '\13 am - '\13 over 0. By Corollary 11.8, 
there is an isomorphism u:a( '\13) = Q(- '\13) such that u( v'3) = - '\13, and 17 
fixes 0 elementwlse. Example 6 of Section 11.3 shows that :x1- 5 is the mini~ 
mal polynomial of V5 over o{V3). By Corollary 11.8 again, u extends to 
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a 0-automorphism T of o( v'3)(VS) = 0( v'3, y'5) such that T( v'5) = V5. 
Therefore, 1 E Ga1q0( v'3, V5) and T( v'3) = a{v'3) = - v'3 and T( v'5) = \15. 
A similar two-step argument produces automorphisms a and fJ with the actions 
listed above. Furthermore, each d T, a, fJ has order 2 in GaJoO( '\13, v'S); for 
instance, 

(1' 0 't)(v'J) = T(T(v'J)) = 1'(-v'3) = -T(Vl) = -(-v'3) = V3 = ~('\13) 
and (r o T)(VS) = V5 = {V5). Therefore, T o T = ~ by Theorem 124. 
Use Theorem 8.8 to conclude that ~0(v'3,VS) s Z1 X Z2 or compute 
the operation table directly (Exercise 4). For instance, you can readily verify 
that (To a)(V3) = ,B(v'3) and (To a)(VS) = ,B(V5) and, hence, To a= ,B by 
Theorem 12.4. 

]n the preceding example, o(V3,VS) is the splitting field of f(x) = 
(r - 3Xx2 - 5), and every automorphism in the Galois group permutes the four roots 
V3, -0, '\15, - V5 of f(x ). This is an illustration of 

Corollary 12.5 
Jf K isthe.splittingfield of a separable polynomial f(x)of degree n in f(x], then 
Gai,-K is isomorphic to a subgroup of S,.. 

Proof• By separability f(x) has 11 distinct roots inK, say u~o ... , u,. Consider 
s~ to be the group of permutations of the set R = { Ut> ••• ' uft}. 1f u E 
Galpl(, then u(u1), u(ui), .•. , u(u,) are roots ofj(x) by Theorem 12.2 
Furthermore, since u is injective, they are all distinct and, hence, must be 
'-'h '-'2, ••• , u, in some order. In other words, the restriction of a to the 
set R (denoted u I R) is a permutation of R. Define a map 8:Ga1pK ~ S, 
by e(u) = 0' IR. Since the operation in both groups is composition of 
functions, it is easy to verify that 8 is a homomorphism of groups. 
K = F(u1, •• , , 1;.} by the definition of splitting field. If u IR = T I R, then 
u(ui) = T(~ for every i, and, hence, u = T by Theorem 124. Therefore, 
9 is an injective homomorphism, and thus Gal~ is isomorphic to Im 8, a 
subgroup of sft, by Theorem 7.20. • 

1f K is the splitting field of f(x), we sha11 usually 

identify Gai,K with Us isomorphic subgroup in S~ 

by identifYing each automorphism with the permutation it induces on the roots of 
f(x). 

EXAMPLE 3.A 

Let K be the splitting field of il - 2 over 0. Verify that the roots of xl - 2 are 

"\o/2, x.r2w, x.r2w2, where w = ( -1 + '\13i )/2 is a complex cube root of 1. Then 
GaloK is a subgroup of S3• By 'lbemem 123, there is at lea<~t one automorphism 
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rr that maps the first root ..zli to the second "\¥2ru; it must take the third root 
V'2w2 to itself or to the first root~ by Theorem 12.2. So rr is either the permu­
tation (12) or {123) in ~· 

CAUTION: When Kistbe splitting field of apo:tynomialJtx)EF[x], then by 
Corollary 125 every element of GalpK produces a permuta­
tion of the roots ofj(x), but not vice versa: A permutation 
of the roots need not come from an F-automorphism of K. 
For example, a( v'J, V5) is a splitting field of Jtx) = 
(il- 3Xr - 5), but by E.lcamPe 2A there is no a-automotpbism 
of '( '\1'3, VS) that gives this permutation of the roots 

v'3 -v:J vs -vs 
J. J. J. J. 
vs -vs v'3 -'\1'3 

Let Kbe an extension field of F. A field E such that Fr:;. E r:;. Kis called an interme­
diate field of the extension. In this case, we can consider K as an extension of E. The 
Galois group GalEK consists of all automorphisms of K that fixE element wise. Every 
such automorphism automatically fixes each element of F since F r:;. E. Hence, every 
automorphism in GalEK is in GalpK, that is, 

if E is an intermediate fteld, Gal.J!( is a subgroup of GalpK. 

EXAMPLE 2.8 

a("\13) is an intermediate field of the extension a(v3,v'5) of a. Example2.A 
shows that GaluO( '\1'3, v'5) = { t, T, a, fi}. The automorphisms that fix eve:ry 
element of a{ V3) are exactly the ones that map V3 to itself by Theorem 12.4. 
Therefore, 

GalQ(vl>O( V3, V5) 
is the subgroup {t, a} of {h T, a, ,B}. 

We now have a natural way of associating a subgroup of the Galois group with 
each intermediate field of the extension. Conversely, if His a subgroup of the Galois 
group, we can associate an intermediate field with H by using 

Theorem 12.6 
Let K be an extension field of f. If His a subgroup of Gai.J{, let 

EH = {k E K 1 u(k) = k for every u E H}. 

Then EH is an intermediate field of the extension. 

The field E 8 is called the fixed field of the subgroup H. 
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Proof of Theorem 12.6 .. If c, dE EH and a E H, then 

a(c + d)= a( c) + a(d) = c + d and a(cd) = a(c)a(d) = cd. 

Therefore, EH is closed under addition and multiplication. Since 
u(Op) = Opand a(lp) = lp for every automorphism, Oyand lp are in EH. 
Theorem 3.10 shows thatfor any nonzero c in EHandany a in H, 

a(-c) = -a(c) = -c and a(c-1
) = a(cr1 = c-1

• 

Therefore, -cEEH and c-i EEy. Hence, En is a subfieldof K. Since 
His a subgroup of GalpK, a( c)= c for every cE Fandevery IT EH. 
Therefim; F s; Ell' • 

EXAMPLE 2.C 

Consider the subgroup H = {~o, a} of the Galois group {6, 'T, a, J3} of Q( VJ, v'S) 
over Q, Since a( v'i) = v'3, the subfield a{ V3) is contained in the fixed field 
E Hof H. To prow that EH = 0( '\13), )U1 must show that the elements of 0( V'J) 
are the only ones that are fixed by t and a; see Exercise 14. 

EXAMPLE 1.C 

As we saw in Example LB, GalRC = {,, a}, where a is the complex conjuga­
tion map. Obviously, the fixed field of the identity subgroup is the entire field 
C. Since a fixes every real number and moves wery nonreal one, the fixed field 
of GaltrC is the field R. 

Unlike the situation in the preceding example, the ground field Fneed not always 
be the fixed field of the group GalpK. 

EXAMPLE l.B 

Every automorphism in the Galois group of o( ~ over 0 must map ~to 
a root of xl - 2 by Theorem 12.2. Example 3.A shows that V'2 is the only 

real root of this polynomial. Since 0( V'2) consists entirely of real num hers 

by Theorem 11. 7, every automorphism in G~C!( \}'2) must map ~to itself. 

Therefore, Ga10 o{ ~)consists of the ideritity automorphism alone by 

Theorem 12.4. So the fixed field of Galqo( "-Y2) is the entire field 0( ¥2}. 

• Exercises 

NOTE: Unless stated otherwise, K is an extensitmfold of the field F. 

A. 1. If u is an F-automorphism of K, show that u-1 is also an F-automorphism of K. 

2. Assume [K:F] is finite. Is it true that every F-'all to morphism of Kis completely 
determined by its action on a basis of Kover Fl 
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3. If [K:F] is finite, aEGalpK; and uEKissuch that u(u) = u, show that 
a E GalF(u/{· 

4. Write out the operation table for the group 

[See Example 2.A .] 

5. Letf(x) E F(x] be separable of degree nand K a splitting field of f(x). Show 
that the order of Gal~ divides 11!. 

6. If K is an extension field of Ill and q is an automorphism of K, prove that a is 
a 0-automorphism. [Hint: a(l) = I implies that u(n) = n for all n E L] 

B. 7. (a) Show that GaiQO( Vi) has order 2 and, hence, is isomorphic to Z2• 

[Hint: The minimal pol)Tiomial is :x? - 2; see Theorem 11.7 .] 

(b) If dE Ill and Vii lji!O Q, show that GaloO( W) is isomorphic to z2. 
11. Show that GaJoQ I ( -¢'2) =F (~ ). 

9. (a) Let (I) = ( -1 + VJi)/2 be a complex cube root of l. Find the minimal 
pol)Tiomial p(x) of w over Ill and show that w1 is also a root of p(x). 
[Hint: w is a root of ::2 ~ 1.] 

(b) What is GaJoQ(w)? 

I 0. (a) Find ~Q( Vl, '\13). [Hln t: See Example 2A.] 

(b) If p, q are distinct positive primes, find Ga10 Q( Vfl, Vq). 
II. Find GaloO( V2, i). [Hint: Consider Q ~ Q ( V2) ~ 0( Vi, i) and proceed as 

in Example 2A.] 

12. Show that GaJo0(v'2, V3, v'S) =-Z2 X Z2 X Z2' 

13. If Fhascharacteristic 0 and Kis the splitting field of f(x)EF[x], prove that 
the order of Gal~ is [A':F). [Hillt: K = F(u) by Theorems 11.17 and 11.18.] 

14. LetHbethesubgroup {,,a} ofGaJo0('\13, v'5) = {,, T,a,J3}. Show that 
the fixed field of His 0( v'3). [Hint: Verify that a( V3) !;; EH!.: 0( '\13, '\15); 
what is [Ill( '\13, v's):O ( v'J)J'1) 

15. (a) Show that every automorphism of R maps positive elements to positive 
elements. [Hint: Every positive element of R is a square.] 

(b) If a, bE R, a< b, and a E GalQR, prove that u(a) <a( b). 
[Hint: a < b if and only if b - a > 0.] 

(c) Prove that GaJoR = <£~ [Hillt: If c < r < d, with c, d EO, then c < o(r) < d; 
show that this implies a(r) = r.] 

C. 16. Suppose (,.(2, ••• , r = l are n distinct roots of X'- 1 in some extension field 
of Q. Prove that GaJoO(O is abelian. 

17. Let Ebe an intermediate field that is normal over Fand a EGal_r;K. Prove that 
a(E) =E. 
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1111 The Fundamental Theorem of Galois Theory 

The essential idea of Galois theory is to relate properties of an ex:tension field with 
properties of its Galois group. The key to doing this is the Fundamental Theon=m of 
Galois Theory, which will be proved in this section. 

Throughout this section, K is a.finite-dinu!nsional extension field ofF. Let S be the 
set of all intermediate fields and Tthe set of all subgroups of the Galois group GalFK. 
Define a function ~p:S-+ Tby this rule: 

For each intermediate field E, ~(E) = GalgK. 

The function rp is caJled the Ga1ois correspondence. Note that K (considered as a 
subfield of itself) corresponds to the identity subgroup of GaJFK. and the subfield F 
conesponds to the entire group Gal~ (considered as a subgroup of itself). 

EXAMPLE 2.0* 

Consider the Galois correspondence for the extension o(Y3, '\IS) of Q and the 
intermediate field a( '\13). By the preceding remarks and Example 2 .B on 
page 412, 'Ml have 

o(W:,v's) ___,. Galq:vj,ysp(v3,VS) = M. 
o( v'3) ~ ~(v1JO( Vi, "15) = {~.o a}. 

Q ___, Ga~Q( V3, v'S) = {t, r, a, fJ}. 

&ample 2.C shows that E = a( '\13) is the fixed fuili of the subgroup H = (1., a} = 
GalocVDO( v'3, '\IS). Furthermore, K = a( v'J, v'5) = Q( \13)( '\IS) is a normal, 
separable extension of the fuwd field E =a( v'3) because it's the splitting field of 
r- 5 (Theorem 1 LIS) and has characteristic 0 (Theorem 11.17). 

We now construct the tools nece!iiary to show that, under appropriate assmnp­
tions, the Galois conespondence is a bijective map from the set of intermediate fields 
to the set of subgroups of GaJ~. 

Lemma 12.7 
Let K be a finite-dimensional extension field of F-. If His a subgroup of the 
Galois group Gai,X and E is the fixed field of H, then K is a simple, normal, 
separable extension of£. 

Example 2.D above (with K = a('V'3,VS), E = 0('\13), and H = {~, a}) is an 
illustration of Lemma 12. 7. 

•The numbering scheme for examples in Sections 12.1 and 12.2 is eXplained on page 40B. 
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Proof oflemma 12.7 ... Each tiE K is algebraic over F by Theorem 11.9 and, hence, 
algebraic over E by Exercise 7 in Section 11.2. Every automorphism in 
H must map u to some root of its minimal polynomial p(x) E E(x] by 
Theorem 12.2. Therefore, u has ajihite number of distinct images under 
automorphism.s in H, say u = ut, ~ •.. , u, EK. 

If (J' EHandu, = T(u) (with 'TEH), thena(uJ = a(1(u)). SinceaoTEH, 
"YAl see that a( uJ is also an image of u and, hence, must be in the set 
{ut, ull ... , ur}. Since a is injective, the elements a(ut), ... , a(u,) are t 
distinct images of u and, hence, mwt be the elements u 1, 1J:b ••• , u1 in some 
order. In other words, every automorphism in H permutes u 1, 1J:!, ••• , u~'" Let 

f(x) = (x- uJ(x- uJ · · · (x- uJ. 

Since the u 1 are distinct,.f(x) is separable. We claim that.f(x) is actually 
in E[x}. To prove this, let a E Hand recall that rr induces an isomor­
phism K(x] E!;! K(x] (also denoted a), as described on page 380. Then 

af(x) = (x - a(ut)Xx - a('"2)) • • • (x - a(ur)). 

Since u permutes the U;, it simply rearranges the factors of f(x), and, henre,. 
af(x) = f(x). Therefure, every automorphism of H maps the coefficients 
of the separable polynomial.f(x) to themselves, and,hence, these coeffi­
cients are in E, the fixed field of H. Since u = u 1 is a root of f(x) E E [x}, 
u is separable over E. Hence, K is a separable extension of E. 

The field K is finitely generated over F (since [ K:F] is finite; see 
Example 4 in Section 11.3). Consequently, K is finitely generated over E, 
and, hence, K = E(u) for someuEKbyTheorem11.18. Let.f(x) be as in 
the preceding paragraph. Then f(x) splits in K[x}, and, hence, K = E( u) 
is the splitting field of f(x) over E. Therefore, K is normal over E by 
Theorem 11.15. • 

Theorem 12.8 
Let K be a finite-dimensional extension field of F. If H is a subgroup of the 
Galois group Ga/FK and E is the f1xed f1eld of H, then H = Ga/EK and 1 H 1 = 
[K:E]. Therefore, the Galois correspondence is surjective. 

Proof • Lemma 12.7 shows that K = E( u) for some u E K. If p(x), the minimal 
polynomial of u over E, has degree n, then [K:E} = n by Theorem 11.7. 
Distinct automorphisms of GalEK map u onto distinct roots of p(x) by 
Theorems 12.2 and 12.4. So the number of distinct automorphisms in 
Gal~ is at most 11, the number of roots of p(x). Now H ~ Ga111K by the 
definition of the fixed field E. Consequently, 

IHJ :S IGaiEKI :S n = [K:E}. 

Letf(x) be as in the proof of Lemma 12.7. Then H contains at least t 
automorphisms (the number of distinct images of u under H). Since 
u = u1 is a root of f(x), p(x) dividesf(x). Hence, 

1H1 <=!: t = deg/(x) <=!: deg p(x) = n = [K:E]. 
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Combining these inequalities, we have 

IHI s 1Gal£KI s [X:E] s IHI. 

Therefore, IHI = IGalEKI = [K:E], and, hence, H = GalEK. • 

EXAMPLE 3.C 

The Galois group GaJoa( -Y2) "" {t) by Example 3.B, 50 both of the intermedi· 
ate fields 0( -?12} and Q are associated with{!.) under the Galois correspondence. 
Note that C( "{12) is not a normal extension of Q [it doesn't contain the com· 
plex roots of r - 2, so this polynomial has a root but doesn't split in 0( ~· 

Galois Extensions 
Although the Galois correspondence is surjective by Theorem 12.8, the preceding 
example shows that it nny not be injective. In order to guarantee injectivi ty; additional 
hypotheses on the extension are necessal}'. The preceding proofs and example suggest 
that normality and separability are likely candidates. 

If K is a fl nite -dimensional, normal, separable extension f1eld of the field F, 
we say that K is a Gala is ext ens ion ofF or that K is Gala is over F. 

A Galois extension of characteristic 0 is Simply a splitting field by Theorems 11.15 
and 11.17. 

Theorem 12.9 
Let K be a Galois extension of F and E an intermediate f1eld. Then E is the f1xed 
f1eld of the subgroup GaiEK. 

If E and L are intermediate fields with Gal~ = Galr.K, then Theorem 12.9 shows 
that both E and L are the fixed field of the same group, and, hence, E "" L. Therefore, 
the Galois corresponde11ce is injectiVe for Galois extensions. 

Proof oflillorern 12.9 .. The fur.ed field ~of Gal£K contains E by definition. To show 
that~ ~;;E, we prove the contrapositive: If u rF.E, then u is moved by some 
automorphism in Gal~, and, hence, u rF.Eo. Since K is a Galois extension 
of the intermediate field E(norma.l. by Theorem 11.15 and Exercise 5 of 
Section 11.4; 9epamble by Exercise 1 of Section 11.5), it is an algebraic 
extension of E. Consequently, u is a~c over Ewith minimal polyno· 
mialJ(x) EE[x] of degree ~ 2 (if degp(x)"" 1, then u would be in E). The 
roots of p(x) are distinct by ooparability, and all of them are in Kby normal. 
ity. Let v be a root of p(x) other than u. Then there emts U E Gal ,t/[ such 
that 17(u) = v by Theorem 12.3. 'I'herefore, u rF. ~ and, hence, Eo = E. • 
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Corollary 12.1 0 
Let K be a finite-dimensional extension field ofF. Then K is Galois over f if and 
only ifF is the fixed field of the Galois group Gal,}{. 

Proof~ If Xis Galois over F, then Theorem 12.9 (withE= F) shows that Fis 
the fixed field of GalpK. Conversely, if F is the fixed field of GalpK, then 
Lemma 12.7 (with E = F) shows that K is Galois over F. • 

In view of Corollary 12.10. a Galois extension is often defined to be a finite­
dimensional one in which F is the fixed field of GalpK. When reading other books on 
Galois theory, it's a good idea to check which definition is being used so that you don't 
make unwarranted assumptions. 

EXAMPLE 2.E 

The field o{ V3, "{5) is a Galois extension of 0 because it is the splitting 
field of f(x.) = (.xl- 3)(x2 - 5). So the Galois correspondence is bijective by 
Theorem 12.8 and the remarks after Theorem 12.9. The Galois group 
GalaO( '\13, v'5) = {t, T, a, /3} by Example 2.A. Verify the accuracy of the 
chart below; in which subfields and subgroups in the same relative position cor­
respond to each other under the Galois correspondence. Forinstance, 0( Vi} 
corresponds to {6, a} by Example 2.B. 

Intermediate Fields Subgroups 

Note that all the intermediate fields are themselves Galois extensions of 0 
(for instance, 0( vs) is the splitting field of r - 5). Furthermore, the corre­
sponding subgroup5 of the Galois group are normal. A similar situation holds 
in the general case, as we now see. 

Theorem 12.11 The Fundamental Theorem of Galois Theory 
If K is a Galors extension field ofF, then 

(1) There is bijection between the setS of all intermediate fields of the 
extension and the set T of all subgroups of the Galois group GaiFK, 
given by assigning each intermediate field E to the subgroup 
GaiEK. Furthermore, 

(K:E] = IGaiEKI and (E:F] = (Gal,cK:GaiEKl· 
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(2) An intermediate field E is a normal extension of F if and only if the 
correspondirg group GaiEK is a normal subgroup of GalfK, and in 
this case Galp£ ~ GaiFKfGaiEK. 

Proof • Theorem 12.8 and the remarks after Theorem 12.9 prove the first state­
ment in part (1). Each intermediate field E is the fixed field of Gal.t/( 
by Theorem 12.9. Consequently, [K:E] = IGalEK] by Theorem 12.8. In 
particular. ifF= E, then [K:l'1 = IGaiFKI. Therefore, by Lagrange's 
Theorem 8.5 and Theorem 11.4, 

[K:E](E:F] = [K:F] = IGai_,KI = IGai~I [GalpK:Gal~. 

Dividing the first and last terms of this equation by [K:E] = IGai~I 
shows that 

[E:F] = (GalpK:GalEKJ· 

To prtMl part (2), assume tim that GalliK is a normal subgroup of 
GalpK. If Ax) is an irreducible polynomial in F[x] with a root u in E, we 
must show that p(x) splits in E[x]. Since K is normal <Mll' F, we know that 
p(x) splits in K[x]. So we need toshowonlythat each root vofp(x) in Kis 
actually in E. 1'here is anautomorphismu in GalpKsuch thata(u) = t1 by 
Theorem 12.3. If 1 is any element of GalliK, then normality implies 
T 0 CT = ao Ta for some T1 E Gal~. SinceuEE, we have T(v) = 7{u(u)) = 
a(T 1 (u)) = u{u) = v. Hence, v is fixed by f:V'i:r'J element 'I' in Gal~ and, 
thtrefore, must be in the fucd field of GalE~ namely E (see Theorem 129). 

COI1\'ellld.y, assume that E is a normal extension of F. Then E is finite 
dimensional over Fby part (1). By Lemma 12.12, which is proved below, 
there is a surjective homomorphism of groups 6:GalpK-+ Gal_,£ whose ker­
nel is Gal~. Then GaiEK is a normal subgroup of Gal_,.,Kby Theorem 8.16, 
and GalpKfGalEK .8i! Gal,£ by the First Isomorphism Theorem 8.20. • 

EXAMPLE 3. D 

The splitting field K of J? - 2 is a Galois extension of Q whose Galois group is 
a subgroup of S 3 by Example 3A. * Note that Q ~ 0 V'l) ~ K. Since r - 2 
istheminimalpolynomialof ~. [0(~}.0] = 3byTheorem 11.7. Neither 
of the other roots ( ~Ct.l and V'iwl) is a real cumber, and, hence, neither is in 
0(~. So [K:Q] > 3. Since [K:Q] s 6 (.Theorems 11.13, 11.14) and [K:IO] is 
divisible by 3 (Theorem 11.4), v.e must have [K:O] = 6. Thus GaJoKhas order 
6 by Theorem 12.11 and is S3• 

The only proper subgroups of 53 are the cyclic group ( ( 123)} of order 3 
and three qt::lic groups of order 2: ({ 12) ), ({ 13)}, ((23)}. VerifY that the Galois 
correspondence is as follows, where subgroups and subfields in the same rela­
tive position correspond to each other. The integer by the line connecting two 

•we consider Sa as the group of permutations of the roots~.~ .... ~ in this order. For instance. 
(12) interchanges V!and ~and fixes~. 
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subfields is the dimension of the larger over the smaller. The integer by the line 
connecting two subgroups is the index of the smaller in the larger. 

Intermediate Fields 

Subgroups 

<(\~ 
<(23)> <(13)> <(12)> 

<(123)> 3 

~ s3 

The field Q(ru) is an intermediate field because w =: G)N12)2(Viru) E K, 

0( (d) is the splitting fieki of r + X + I (Exercise 3) and, hence, Galois over Q. 
1be corresponding subgroup is the normal subgroup { ( 123) ). On the other 
hand, Example 3.C shows that 0(~ is not Galois over 0; the corresponding 
subgroup {(23)) is not normal in S3, 

The preceding example illustrates an important fact: 

The Galois cocrespomlence is incluston·reversing. 

For instance, Q ~ Q( w), but the corresponding subgroups satisfy the reverse inclusion: 
S3 ~ {( 123 )). 
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Finally, we complete the proof of the Fundamental Theorem by proving 

Lemma 12.12 
Let K be a finite-dimensional nonnal extension fleld ofF andEan intermedi­
ate field, which is normal over F, Then there is a surjective homomorphism 
of groups O:GaiFK-+ Galrf whose kernel is Gal~. 

proof .. Let f7 E GalpK and u EE. Then u is algebraic over Fwith minimal 
polynomial p{x). Since Eisa normal extension of F,p(x) splits in E{x], 
that is, aU the roots of p(x) are in E. Sincea(u) must be some root of 
p(x) by Theorem 12.2, W\: see that f7(u) EE. Therefore, a( E) r;;E for 
every f7 E GalpK. Thus the restriction of a toE (denoted f7 I E) is an 
F-isomorphismE ~ a(E). Hence, [E:.F] = [a(E}:F] by Theorem 11.5. 
Since F~ a (E) r;; E, we have [E:F] = [E:a(E)] [a(E):F] by Theorem 11.4, 
which fon:es [E:a(E)] = 1. Therefore, E = a( E), and a IE is actually an 
automorphism in Galp£. 

Define a function 9:Gal~-+ GalpE by 9(a) =a I E. It is easy to 
verify that (}is a homomorphism of groups. Its kernel consists of the au­
tomorphisms of K whose restriction to E is the identity map, that is, the 
subgroup GalEK. 

To show that(} is surjective, note that K is a splitting field over F 
by Theorem 11.15, and, hence, K i; a splitting field of the same poly­
nomial over E. Consequently, ~ery T E GalFE can be extended to an 
F-automorphisma in GalFKby Theorem 11.14. This means that 
a IE= T, that is, 9(a) = T. Therefore, 9 is surjective. • 

In the preceding proof, the normality of K was not used until the last paragraph. 
So the first paragraph proves this useful fact: 

Corollary 12.13 
Let K be an extension field ofF and E an intermediate field that is normal over 
F. If aEGai~K, then a IE EGalrf. 

• Exercises 

NOTE: K iJ a11 et temionfield of the field F. 

A. I. If K is Galois over F, show that there are only finitely many intermediate fields.. 

2. If Kis a normal extension of Q and [K:Q] = p, withp prime, show that 
GaloK~Z,-

3. (a) Show that w = ( -1 + VJi}/2 is a root of xl - 1. 

{b) Show that wand w1 are roots of .x2 + x + 1. Hence, Q(w) is the splitting 
field of r + X + 1. 



422 Cht~pt&r 12 Gt~lois Theory 

4. Exhibit the Galois correspondence of intermediate fields and subgroups for 
the given extension of Q: 

(a) Q(\fd), wheredEQ, but VJ ~ Q. 

(b) Q(w), whereto is as in Exercise 3. 

5. If Kis Galois over Fand GalFKis an abelian group of order 10, how many 
intermediate fields does the extension have and what are their dimensions 
overF1 

6. Give an example of extension fields Kand Lof Fsuch that both Kand L are 
Galois over F, K ¢ L, and Gal~= Ga1FL 

B. 7. Exhibit the Galois correspondence for the given extension of Q: 

(a) O(V2,V3) (b) O(t;V2) 
8. If K is Galois over F, Ga1FK is abelian, and E is an intermediate field that is 

normal over F, prove that Gal~ and Ga!FE are abelian. 

9. Let Kbe Galois over F and assume GalFK ~ z,.. 
(a) If E is an intermediate field that is normal over F, prove that Gal,gK" and 

Gal~ are cyclic. 

(b) Show that there is exw::tly one intermediatefleld for each positive divisor 
of nand that these are the only intermediate fields. 

10. Two intermediate fields E and L are said to be conjugate if there exists 
a E GalFK such that u(E) "" L. Prove that E and L are conjugate if and 
only if GalEK and Galu{ are conjugate subgroups of GalFK (as defined on 
page 308). 

II. (a) Show that K"" o({l2, i) is a splitting field of x4 - 2 over Q. 

(b) Prove that (K:Q] = 8 and conclude from Theorem 12.11 that Ga)oKhas 
oroer 8. (Hint: Q r;;Q(~) f;;Q('\Yl, i).] 

(c) Prove that there exists a E GaJoK such that a({/i)= ({/i)i and a(J) = i 
and thatahasorder4. 

(d) By Corollary 12.13 restriction of the complex conjugation map to K is an 
element T of GalctK. Show that 

[Hint: Use Theorem 12.4 to show these elements are distinct.] 

(e) Prove that Ga~K = D4• [Hi11t: Map a to r1 toT to v.) 

12. Let K be as in Exercise 11. Prove that ~;f[ = "4. 
C. 13. Let K be as in Exercise 11. Exhibit the Galois correspondence for this extension. 

(Among the intermediate fields are 0( ( 1 + i) -¢'2) and Q( (1 - i) ~-] 

14. Exhibit the Galois correspondence for the extension a( V2, v1, v'S) of Q. 
[The Galois group has seven subgroups of order 2 and seven of order 4.] 
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Ill Solvability by Radicals 

The solutions of the quadmtic equation a:x1 + bx + c "" 0 are given by the well-known 
formula 

-b ± Vh'- - 4ac x=. . . 
2a 

This fact was known in ancient times. In the sixteenth century, formulas for the solu­
tion of cubic and quartic equations were discovered. For instance, the solutions of 
xl + bx + c"" 0 are given by 

X= Yf( -c/2) + Yd + Yf( -c/2) - VJ 
X= w('\Y( -c/2) + W) + w'('\Y( -c/2) - Vd) 
x = w'(Yf( -c/2) + Vd) + w(Yf( -c/2) - Vd), 

where d ~ (/} /27) + ( ?-/ 4), ro ~ ( -1 + y'j; )/2 is a complex cube root d' 1, and the 
other cube roots are chosen so that 

N'< -c/2) + Vd)(~( -c/2)- VJ) = -b/3.* 

In the early 1800s Ruffini and Abel independently proved that, for n <'!: 51 there 
is no formula for solving all equations of degree n. But the complete analysis of the 
problem is due to Galois, who provided a criterion for determining which polynomial 
equations are solvable by formula. This criterion, which is presented here, will enable 
us to exhibit a :fifth-degree polynomial equation that cannot be solved by a formula. To 
simplify the discussion, we shall assume that all folds llave charac teristl c 0. 

As illustmted above, a "formula" is a specific procedure that starts with the coefficients 
of the polynomialf(x) EF[x) and arrives at the solutions of the equationf(x) ~ Op by 
using only the field operations (addition, subtraction, multiplication, division) and the 
extraction of roots (square root:;, cube roots, fourth root:;, etc.), In this oontext, an nth 
root of an element cinFis a.ny root ofthepolynomialx"- c in some extension field of F. 

If f(x) E F(x), then performing field operations does not get )OU out of the coef­
ficient field F(closureQ. But taking an nth root may land )OU in an extension field. 
Taking an mth root after that may move you up to still another extension field. Thus 
the existence of a formula for the solutions of f(x) = Opimplies that these solutions lie 
in a special kind of extension field of F. 

EXAMPLE 1 

Applying the cubic formula above to the polynomial x1 + 3x + 2 shows that 
the solutions of x1 + 3x + 2 = 0 are 

'V-I +-V2 + Y/-1- V2, 
ro'V -I + v'2 + (ro2)"¢'-1 - '\12, 

(nr)-Q'-1 + v2 + ro~-I- vl. 

•ne fonnulfts for the general cubic and the quartic are !-imilar but more C0111Jiicated. 



424 Chaptar 12 Galois Thaory 

Definition 

AD tMse solutions lie in the extension chain: 

Q r;;;Q(w) r;;;Q(w. v'i)!;;Q(w, v'2, V/-1 +V2) r;;;Q(w,v'2, ~-1 + V2, "(/ -1- V2) 
II II II II II 
F0 s;F1 >;;; F1 s:; F3 ~;;;; Ji4. 

Each field in this chain is a simple extension of the preceding one and is of the fa:m Ff u), 
where tl' E.fjfor some n (that is, u is an 1Ith root of some element of Fp: 
F1 = F0 (w ), where w; = I EFo-

F, =F1 (v2J wbere(V2l =2EF0>::F1• 

F3 =F,(\V-1 + Vl), wbere(\V-1 + V2)l= -1 + VlEF2. 

F4 = 1'3 ("9' -1 - V21 where (V/ -1 - V2):t = -1 .... v2 EF2 r;;; ]<]. 

Since F4 contains all the solutions of ~ + 3x + 2 = 0, it also contains a splitting 
field of r + 3x + 2. 

The preceding example is an illustration of the next definition. 

A field K is said to be a radical extension of a Held F if there is a cha1n of 
fields 

F = F0 r;;;F1~f2 r;;; • • ·r;;.Fl = K 

such that for each i = 1, 2, , , , , t, 

F, = Fr-t(U~ and some power of ul is in fj...,. 

Letf(x) E F[x]. The equationf(x) = OF is said to be wlvable by radkal!i if there is a 
radical extension of Fthat contains a splitting field of f(x). The example above shows 
that xl + 3x + 2 = 0 is solvable by radicals. 

The preceding discussion shows that if there is a formula for its solutions, then the 
equationf(x)"" OF is solvable by radicals. Contrapositively, if f(x) =OF is not solvable 
by radical, then there cannot be a fonnula (in the sense discussed above) for finding its 
solutions. 

Solvable Groups 

Before stating Galois' Criterion for an equation to be solvable cyradicals, we need to intro~ 
duce a new class of groups. A group G is said to be soh-able if it has a chain of subgroups 

G = G0 2 G1 2 Gz 2 • • • 2 G,._1 2 G,. = (e) 
such that each G1 is a normal subgroup of the preceding group G1_ 1 and the quotient 
group Gt--dG1 is abelian. 

EXAMPLE 2 

Every abelian group G is solvable because evecy quotient group of G is abelian, 
so the sequence G 2 {e} fulfills the conditions in the definition. 
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EXAMPLE 3 

Let ((123)) be the cyclic subgroup of order 3 in S3o The chain S3;;J ((123)) ;;J ((1)} 
shows that 83 is solvable. But for other symmetric groups we have 

Theorem 12.14 
For n ~ 5 the group Sfl is not solvable. 

Proof• Suppose, on the contrary, that S.. is solvable and that 

is the chain of subgroups required by the definition. Let (rst) be any 
3-cyele in S_,. and let u, v be any elements of { 1, 2, ... , "} other than 
r, s, t (u and -v ellist because n <l!: 5). Since S8/ G1 is abelian, Theo:nm1 8.14 
(with a= (ttL!'). b = (srv)) shows that G1 must contain 

Therefore, G1 contains all the 3-cycles. Since Glf fh. is abelian, we can 
repeat the argument with G1 in place of Sn and G2 in place of G1 and 
conclude that G,; contains all the 3 -cycles. The fact that each G,_Lf G, is 
abelian and continued repetition lead to the conclusion that the iden­
tity subgroup G, contains all the 3-cycles, which is a contradiction. 
TherefOre, S" is not solvable. • 

Theorem 12.15 
Every homomorphic image of a solvable group G is solvable. 

Proof• Suppose thatf:G-+ His a surjective homomorphism and that G = 
Go ;~ G1 .;2 G,; .;2 • • • ;;:;! G1 = (ea} is the chain of subgroups in the defini­
tion of solvability. For each i1 let H 1 = f(GIJ and consider this chain of 
subgroups: 

H = H 0 ;;J H 1 ;;J H2 ;;J • • • ;;J H, = j((ea)} = (eH}· 
Exercise 22 of Section 8..2 shows that H, is a normal subgroup of Ht--~ 
for each i = I, 2, .•. , t. Let a, b E n,_1• Then there exist c, dE G1_ 1 such 
thatflc) = aandf(d) =b. Since GJ_ 1fqis abelian by solvability, 
cdc-ld-1 EG1 by Theorem 8.14. Consequently, 

.alkr 1b-1 = f(c) f(d) f( c-1) f(d- 1) = f( cdc1 d-1) E /( G1) = Hr­

Therefure, HH/H1is abelian by Theorem 8.14, and His solvable. • 
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Galois' Criterion 
lfj(x) EF[x), then the Galois group of tbe polymmialf(x) is Gal~ whereK is a splitting 
field of f(x) over F.* Galois' Criterion states that 

f(x) = OF is .rolvable by radicals if and only if the Galois 
group of f(x) is a.rolvabk group 

In order to prove Galois' solvability criterion, we need more information about 
radical extensions and nth roots. IfF is a field and ( is a root of X' - lF in some 
extension field of F(so that(!'= 1,), then (is called an ntb root of unity. The deriva­
tivenx-1 of Jtl - 1,is nonzero (since Fhas characteristic 0) and relatively prime to 
X' -1,. TherefOre, x" - lpis separable by Lemma 11.16. So the£eare exactly n distinct 
nth roots of unity in any splitting field K of x!" - 1p If ( and T are nth roots of unity 
inK, then 

({T)11 = t'1" = 1F lF = lFI 

so that (T is also an nth root of unity. Since the set of nth roots of unity is closed under 
multiplication, it is a subgroup of order n of the multiplicative group of the field K 
(Theorem 7 .12) and is, therefore, cyclic by Theorem 7.16 or Corollary 9.11. A genera­
tor of this cyclic group of nth roots of unity in K is called a primith'e ntb root of unity. 
Thus (is a primitive nth root of unity if and only if(, ( 2, (), ••• , (" = lp are then 
distinct nth roots of unity. 

EXAMPLE .f 

The fourth roots of unity inC are 1, -1,i, -i. Since r = -1,1-1 = -i, and i 4 = 1, 
i is a primitive fourth root of unity. Similarly, -i is abo a primitive fourth root of 
unity. DeMoivre's Theorem shows that for any positive n, 

cos(21T J n) + i sin(21T jn) is a primitive nth root of unity in C. 

Wbenn = 3, this states that 

w = cos(2w/3} + isin(2'1'1'/3} = (-1/2) + (VJ/2}i 

is a primitive cube root of unity. 

Lemma 12.16 
Let f be a field and (a primitive nth root of unity in f. Then F contains a 
primitive dth root of unity for every positive divisor d of n. 

Proof .. By hypothesis (has order n in the multiplicative group of F. If 11 = dt, 
then(' has order dby Theorem 7.9. So r generates a subgroup of order 
d, each of whose elements must have order dividing d by Corollary 8.6. 
Inotherwords, ((f!"f't = lpfor every k. Thustheddistinctpowers (', 

•Since any two splitting fields at ((l) N& isomorphic by Theorem 11.14, it follows that the corre­
sponding Galois groups are isomorphic. So the Galois group of f(x) is indepen::lent of I he choice at K. 
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err .... ,(()a1,{ff = 1Farerootsof xt -l.r Sincext -1Fhas at most 
d roots and every dth root of unity is a root of xt- 1_, (' is a primitive dth 
root of unity. • 

We can now tie together the pmceding themes and prove two theorems that are 
special cases of Galois' Criterion as well as essential tools for proving the general case. 

Theorem 12.17 
Let F be a fl eld of characteristic 0 and ( a primitive nth root of unity in some 
extension field off, Then K = F(() is a normal extension of F, and GaiFK is 
abelian. 

Proof• The field K = FW contains all the powers of C and is, therefore, a split­
ting field of X' - lF. • Herx:e, K is normal over F by Theorem 11.15. 
Every automorphism in the Galois group must map ( onto a root of 
:t' - lF by Theorem 12.2. So if a, T E GalFK, then a(() = (k and 
'T(() =('for some positive integers k, t. Consequently, 

(a o T)(i;) = u(r(£)) =a(£')= u(£)' = (fr = (". 

(r au)((.) = T(a(()) = T(l'k) = r((f = (l~k = (Ia. 

Therefore, u a r = r o a by Theorem 12.4, and Gal_pl( is abelian. • 

Theorem 12.18 
Let F be a field of characteristic 0 that contains a primitive nth root of unity. 
If u is a root of x" - <.: E f{x] in some extension field ofF, then K = f(u) is a 
normal extension ofF, and Gai,K is abelian. 

prooft • By hypothesis, ti' = c. If Cis a primitive 11th root of unity in F, then for 
anyk, 

(tu'f = (tfu• = (t"/u" = lpe = c. 

Consequently, since(, f,, , . , (' = 1Fare distinct elements ofF, the ele­
ments (u, ('Z.u, (3u, ... , ('u = u are then distinct roots of X'- c. Hence, 
K = F(u) is a splitting field of :x!' - cover F and is, therefore, normal 
over FbyTheorem 11.15.1 If a, r, EGalpK, then a(u) = (.u and 7(u) = 
('u for some k, t by Theorem 12.2. Consequently; since ( and (' are in F, 

•The field K = F(() is a radical extension of F since(' = 1 ~Thus 1!' - 1, = O,i s solvable by radicals. 
So the theorem, which says that Gai,.K ('the Galois group of 1!' - 1,), i sabelian (and hence, solvable), 
is a special case of Galois' Criterion. 

i"for an alternate proof showing that Gai,.K is actually cyclic, see Exercise 22. 

'The field K = F(u) is also a radical extension ofF since II' = tEF, so r'- c = 0, is solvable by 
radicals. Hence. the theorem is another special case of Galois' Criterion. 
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(u o TXu) = u(T(u)) = u(tu) = CT(l')u{u) = C'(CCu) = (l+iru. 

(T 0 uXu) = T(u(u)) = T({!u) = T(CJT(u) = r/'{(1u) = rau. 
Therefore, u c T = T "u by Theorem 12.4, and GalpK is abelian. • 

Theorem 12.19 Galois' Criterion 
Let F be a A eld of characteristic 0 and ( (x) E F(x ]. Then ((x) = Or is solvable by 
radicals if and only if the Galois group of ( (x) is solvable. 

Weshallproveonlythehalf ofthetheoremthatisneeded below; seeSection V.9 of 
Hungerford [5] for the other half. 

Proof oflheorem 12.19 .. Assume thatf(x) = Op is solvable by radicals. The proof, 
whose details are on pages 429-431, is in three steps; 

1. Theom:n 12.21: There is a normal radical extension K of Fthat con­
tains a splitting field E of f(x).* 

2. The field E is normal over Fby Theorem 11.15. 

3. Theorem 12.22: Any intermediate field of K that is normal over F has 
a solvable Galois group; in particular, Gal pi? (the Galois group of 
f(x)) is solwble. • 

Before completing the proof of Theorem 12.19, we use it to demonstrate the insol­
vability of the quintic. 

EXAMPLE 5 

We claim that the Galois group of the polynomialf(x) = ~ - lOx + 5 E Q[x] 
is Ss, which is not solvable by Theorem 12.14. Consequently, the equation 
~ - lOx + 5 = 0 is not solvable by radicals by Theorem 1219. So, as 
e1plained on page 424, 

there is no fonnuJa (involving only fwld operations and 
extraction of roots) for the solution of all fifth-degree 

polynomial equatiom. 

To prove our claim, note that the derivative of f(x) is 10x4
- 10, whose only 

real roots are ±1 (the other.; being ±i}. Thenr(x) = 40~, and the second­
derivative test of elementary calculus shows that f(x) has ~y one relative 
maximum at x = -1, one relative minimum at x = 1, and one point of inflec­
tion at x = 0. So its graph must have the general shape shown on the next page. 
In particular,f(x) has exactly three real root& 

•This is a crucial technical detail. The definition of solvability by radicals guarantees only a radical 
extension of Fcontaining E. But a radical extension need not be normal over F (Emrcise 19), and if 
it is not, the FundamentaiTheorem 12.11 can't be Ysed. 
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Note thatft:x) is irredua.ble in Q[x] by Eisenstein's Criterion (withp = 5). If K 
is a splitting field of f(x) in C, then Ga.laK has order (K:O] by the Fundamental 
Theorem. If r is any root ofj(x), then [K:Q] = (K:O(r)] [0(1'):0] by Theorem 11.4 
and [O(r):O] = 5 by Theorem 11. 7. So the ordfl' of GaloK is divisible by 5. It 
follows that GalctK contains an element of order 5. • 

The group GaluK, considered as a group of permutations of the roots of 
f(x), is a subgroup of S 5 (Corollary 125). But the only elements of order 5 in 
S! are the 5-cydes (see Exercise 19 in Section 7.5). So GalctK contains a 5-cycle. 
Complex conjugation induces an automorphism on K(Corollary 12.13). This 
automorphism interchanges the two nonreal roots of f(x) and fixes the three 
real ones. Thus Gal0 K contains a transposition. Exercise 8 shows that the .only 
subgroup of S! that contains both a 5-cycle and a tnwsposition is S5 itsel£ 
Therefore, GaloK = s! as claimed. 

We now complete the proof of Galois' Criterion, beginning with a technical lemma 
whose import will become dear in the next theorem. 

Lemma 12.20 
Let F, £, L be fields of characteristic 0 with 

Fr;;;.£r;;;.L=E(v) and 

tf L is finite dimensional over F and£ is normal over F, then there exists 
an extension field M of L, which is a radical extension of£ and a normal 
extension of F. 

Proof., By Theorem 11.15, E is the splitting field over Fof some g(x) E F[x]. 
Letp(x) EF[x] be the minimal polynomial of v over Fand let Mbe a 
splitting field of g(x),ti.,x)over F. Then Mis normal~ Fby Theon:m 11.15. 
Furthermore, F~ E~ L ~ M (since L = E(v) and E is generated over 
Fby the roots of g(x)). Let v = v11 '"'2. ••• , v, be all the roots of 
p(x) in M. For each i there exists CT1 E GalpM such that CT1 ( v) = v1 by 

•if vou have read Chapter 9 use Corollary 9.14; otherwise, use Exerdse 9 in this section. 
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Theorem 123. Corollary 12.13 shoW5 that u,(E) ~E. By hypothesis,.,}= 
bEE; so for each i, 

Consequently, 

E ~ L = E(vJ !;; El: vt. 1.'2) !;; E (VJ., 'f'2, vJ >: • · · >: E ( vt• vz, ... , v,.) = M 
is a radical extension of E. • 

Theorem 12.21 
Let F be a field of characteristic o and f(x) £f[x]. If f(x) =a, is solvable by 
radicals, then there is a normal radical extension field of F that contains 
a splitting field of f(x). 

Proof~ By definition some splitting field K of f(x) is contained in a radical 
extension 

F= Fo>=Ft>=F2>:F3 >= ···>:F., 

where F1 = FH (uJ and ( t~y)"' is in F,_.1 for each i = I, 2,., . , t. Applying 
Lemma 1220 with E = F, L = Fh and v = u1 produces a normal radical 
extension field M 1 of Fthat contains l'j. By hypothesis ( ~Ji)"" E F1 1: M1• 

Applying Lemma 12.20 withE= Mb v =~.and L = M 1(u..]J produces 
a normal extension field Mz of Fthat is a radical extension of Mt and, 
hence, a radical extension of F. Furthermore, M 2 contains F2 = F1(v.iJ. 
Continued repetition of this argument leads to a normal radical exten~ 
sion field M, of F that contains F, and, hence, contains K. • 

Theorem 12.22 
Let K be a normal radical extension field of F and £an intermediate fteld, all 
of characteristic 0. If£ is normal over F, then Gal~ is a solvable group. 

Proof~ By hypothesis there is a chain of subfields 

F = F0 !;; F1 1: F2 !;; F3 1: • • • 1: F, = K, 

where F, = F1_ 1(uJ and {u1)"' is in F,_.1 for each i = I, 2, .•• , t. Let n be 
the least common multiple of n1, ~ •••• , n: and let ( be a primitive nth 
root of unity. For each i <'!: 0, let E1 = F /.{,). Then for each i :2: l 

Since (u,)"•E.fj_1 !;E1_ 1 fori '2!:: 1 and(' EF, 
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is aradiml extension of Fthat containsK (and, hence, E).* The normal 
extension K = F, is the splitting field of some polynomialp{x) E F[x] 
by Theorem 11.15, and, hence, L = E, = Fl() is the splitting field of 
p(x) (::t' - lp) over F. Therefore, L is Galois over Fby Theorems 11.15 
and 11.17. 

Consider the following chain of subgroups of GalpL: 

We shall show that each mbgroup is normal in the preceding one and 
that each quotient is abelian. Since each n1 divides 11, Eo contains a primi­
tive lltth root of unity by Lemma 12.16. Consequently, by Theorem 12.18 
each E1 (with i ::2: 1) is a normal extension of Ei-1 , and the Galois group 
GalA;.,E, is abelian. Since Lis Galois over F, it is Galois over every Er 
Applying the Fundamental Theorem 12.11 to the extension L of Ei--h we 
see that Gal~ is a normal subgroup of Gal,&.,L and that the quotient 
group GalE,_,L/GalE;L is isomorphic to the abelian group GalA\_ ,E~ 
Similarly by Theorems 12.11 and 12.17, E0 is normal over F, GalEoL is 
normal in GalF4 and GalpL/Gal.EoL is isomorphic to the abelian group 
Gal~. Therefore, GalpL is a solvable group. 

Since E is normal over F, the Fun dam en tal Theorem shows that 
Gain£ is normal in GalpL and Galpl./GalEL is isomorphic to GalpE. 
So Gal,E is the homomorphic image of the solvable group GalpL 
(see Theorem 8.18) and is, therefore, solvable by Theorem 12.15. • 

• Exercises 

NOTE: F denotes afield, and all folds have characteristic 0. 

A. I. Find a radical extension of 0 containing the given number: 

(a) \¥1 + '\If - \1'2 + VS 

(b)(~}/(~) 

(c) ("¢'3 - '\12)/(4 + '\12) 
2. Show that r- 3 andx1- 2x- 2EQ(x] have the same Galois group. 

[Hint: What is the splitting field of each?] 

3. lf K is a radical extension of F, prove that {K:F] is finite. 
[Hint: Theorems 11.7 and 11 .4.] 

• The construction of L does not use the hypothesis that K Is normal over F, and. as we shal J see 
below, every field In the chain Is a normal extension otthe Immediately preceding one. But this Is not 
enough to guarantee that L Is normal (hence Salois) over F (Exercise 1 ij. We need the hypothesis 
that K Is normal over F to guarantee this, so that we can use the Fundamental Theorem on L 
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4. Prove that for n ~ 5, A,. is not solvable. [Hill t: Adapt the proof of 
Theorem 12.14.] 

5. (a) Show that S4 is a solvable group. [Hint: Consider the subgroup H = 
{( 12)(34), (13)(24), (14)(23), (1)} of~.] 

(b) Show that D4 is a solvable group. 

6. If Gis a simple nonabelian group, prove that G is not solvable. [fhis fact and 
Theorem 8.26 provide another proof that A,. is not solvable for n <l': 5.) 

7. List all the nth roots of unity in C when n = 

(a) 2 (b) 3 (c) 4 (d) 5 (e) 6 

B. 8. Let G be a subgroup of S5 that contains a transposition u = (rs) and a 5-cycle a. 
Prove that G = S s as follows. 

(a) Show that for some k, ak is of the form (rsxyz). Let 1 = a* E G; by 
relabeling we may assume that f7 = (12) and 1 = ( 12345). 

(b) Show that ( 12), (23), (34), ( 45) E G. [Hint: Consider .fO"T-Jt for k .::=!: 1]. 

(c) Show that (13), ( 14), (15) E G. [Hint: (12)(23)(12) ""'!] 

(d) Show that every transposition is in G. Therefore, G = S 5 by Theorem 7 .26. 

9. Let G be a group of order n. If Sjn, prove that G contains an element of order 
5 as follows. LetS be the set of all ordered 5-tuples (r, s, t, u, t1) with r, s, t, u, 
J>E G and rstuv =e. 

(a) Show that S contains exactly n4 5-tuples. [Hint: If r, s, t, u, E G and v = 
(ntur•, then {r, s, r, u, v) E S.] 

(b) Two 5-tuples inS are said to be equiValent if one is a ~:yclK: permutation of 
the other.* Prove that this relation is an equivalence relation on S. 

(e) Prove that an equivalence class inS either has exactly five 5-tuples in it or 
consists of a single 5-tuple of the form(r, r, r, r, r). 

(d) Prove that there are at least two equivalence classes in S that contain 
a single 5-tuple. [Hint: One is {(e, e, e, e, e)}. If this is the only one, 
showthatn4 == I (mod 5). But Sin, soli'== 0 (mod 5), which is a 
contradiction.] 

(e) If { (c, c, c, c, c)}, with c "#. e, is a single-element equivalence class, prove 
that c has order 5. 

I 0. If N is a normal subgroup of G, N is solvable, and G / N is solvable, prove that 
Gis solvable. 

II. Prove that a subgroup H of a solvable group G is solvable. [Hint: If G = G0 ;.2 

Gt ;;o • • ·;;;;! Gn = {e) is the solvable series for G, consider the groups H1 = H n G,. 
To show that Ht-dH1 is abelian, verify that the map Ht-dH14 G1-1/G1 g).ven 
by Hr -4 G1x is a well-defined injective homomorphism.] 

•for instance, (1, s, t, u, v) is equivalent to each of (s, t, u, v, r), (!, u, V.t,s), (u, v,r, s, t), (v, 1, s, t, u), 
(1, s, ~ u, v) and to no other 5-tuples inS. 
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12. Prove that the Galois group of an irreducible quadratic polynomial is 
isomorphic to z'l. 

13. Prove that the Galois group of an irreducible cubic polynomial is isomorphic 
to z3 or s]. 

14. Prove that the Galois group of an irreducible quartic polynomial is solvable. 
[Hint: Corollary 12.5 and Exercises 5 and 11.] 

15. Letp(x), q(x) be irreducible quadratics. ProvethattheGalois groupof/(x) :=: 

p(x )q(x) is isomorphic to Z2 X Z2 or Z2• [Hint: If u is a root of p(x) and v a 
root of q(x), then there are two cases: v fi_F(u) and v EF(u).] 

16. Use Galois' Criterion to prove that every polynomial of degree .s 4 is solvable 
by radicals. [Him: Exercises 12-15.] 

17. Find the Galois group G of the given polynomial in Q[x]: 

(a) :/>- 4X' + 4 [Hint: Factor.] 

(b) x" - 5~ + 6 

(c) X:+ 6r + 9x 

(d) .0 + 3il - 2x - 6 

(e) £- - lOx - 5 [Hint: See Example 5J 

18. Determine whether the given equation over Q is solvable by radicals: 

(a) X> + 2il + I = 0 (b) 3x' - 15x + 5 = 0 

(c) 2x5 - 5x" + 5 = 0 (d) x 5 - x" - 16x + 16 = 0 

19. (a) Prove that 0(\12i) is normal over Q by showing it is the splitting field of 
~+2 

(b) Prove that 0(~( 1 - i)) is normal over 0(\/2i) by showing that it is the 
splitting field of x2 + 2v'2i. 

(c) Show that Q f;; O(v'2i),;;; 0(~( 1 - I)) is a radical extension of 0 with 
[0("\Y2( 1 - i) ):0] :=: 4 and note that Q contains all second roots of unity 
(namely ± 1). 

(d) Let L = 0('¢2( 1 - i) ). Show that v = ~( 1 + i) is not in L 
[Hint: If v ELand u :=: ~( l - i) E L, show that v/u :=: i and (v - u)/2i: 
~ EL, which implies that [L:O] 2: 0(~, i):O],contradicting (c) and 
Exercise 12(b) in Section 12.2.] 

(e) Prove that L = 0( '(12(1 - i)) is not nor mal over Q [Hint: u and v (as in 
(d)) are roots of the irreducible polynomial x 4 + S.] 

20. Let C be a primitive fifth root of unity. Assume Exercise 21 in Section 4.5 and 
prove that GaloO(C), the Galois group of r - 1, is cyclic of order 4. 

21. What is the Galois group of r + 32 over Q? [Hint: Show that O(C) is a 
splitting field, where Cis a primitive fifth root of unity; see Exercise 20.] 

22. Prove that the group GalpK in Thoorem 12.18 is cyclic. [Hint: Define a map 
/from Gal,.K to the additive group Z,. by f(u) : k, where O'(u) : {!u. Show 
that/is a well-defined injective homomorphism and use Thoorem 7.17.] 
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C. 23. If p is prime and G is a subgroup of SP that contains a transposition and a 
p-cycle, prove that G = Sr [Exercise 8 is the case p = 5.] 

24. If f(x) E Q[x] is irreducible of prime degree p andf{x) has exactly two 
nomeal roots, prove that the Galois group of f(x) is Sr [Example 5 is 
essentially the case p = 5.] 

25. Construct a polynomial in O[x] of degree 7whose Galois group is s7• 
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Public-Key Cryptography 

Prerequisites: Section 2.3 

Codes have been used for renturies by merchants, spies, armies, and diplomats to trans­
mit secret messages. In rooent times, the large volume of sensitive material in ~ 
and corporate computeril.ed data baoks (much of which is tr.msmitted by satellite or 
over telephone lines) has increased the need for efficient, high-security codes. 

It is easy to construct unbreakable codes for one-time use. Consider this "code pad": 

Actual Word· 
Code Word· 

morning 
bat 

evening 
glxt 

Monday 
king 

Tuesday 
button 

attack 
figle 

If I send you the message FlGLE BUTTON BAT, there is no way an enemy can know 
for certain that it means "attack on Tuesday morning" unless he or she has a copy of 
the pad. Of course, if the same code is used again, the enemy might well be able to 
break it by analyzing the events that occur after each message. 

Although one-time code pads are unbreakable, they are cumbersome and inef­
ficient when many long messages must be routinely sent Even if the encoding and 
decoding are done by a computer, it is still necessary to design and supply a new pad 
(at least as long as the message) to each participant for every message and to make all 
copies of these pads secure from unauthorized persons. This is expensive and imprac­
tical when hundreds of thousands of words must be encoded and decoded every day. 

fur frequent computer -based communication among several parties, the ideal code 
sy.;tem would be one in which 

1. Each person has efficient, reusal:ic, computer algorithms for encoding and 
decoding messages. 

2. Each person's decoding algorithm is rwt obtainable from his or her encoding 
algorithm in any reasonable amount oftime. 

437 
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A code system with these properties is called a publlc-key system. Although it may not 
be clear how condition 2 could be satisfied, it is easy to see the advantages of a public­
key system. 

The mcodJng algorithm of each participant could be publicly announced-perhap5 
published in a book (like a telephone directory )-thus eliminating the need for couriers 
and the security problems associated with the distribution of code pads. This would not 
compromise secrecy because of condition 2: Knowing a person's encoding algorithm 
would not enable you to determine his or her tkcodJng algorithm. So you would have no 
way of deooding messages sent to another person in his or her code, even though you 
could send coded messages to that person. 

Since the encoding algorithms for a public-key system are available to everyone, forgery 
appears to be a possibility. Suppose, for example, that a bank receives a codecl message 
claiming to be trom Anne and ruquesting the bank to transfer money from Anne's account 
into Tom's account. How can the bank be sure the IneS.5age was actually sent by Anne? 

The answer is as simple as it is foolproof. Coding and decoding algorithms are in­
verses of each other: Applying one after the other (in either order) produces the word 
you started with. So Anne first uses her secret decoding algorithm to write her name; 
say it becomes Gybx. She then applies the bank's public encoding algorithm to Gybx 
and sends the result (her "signature") along with her message. The bank uses its secret 
decoding algorithm on this "signature" and obtains Gybx. It then applies Anne's pub­
lic enroding algorithm to Gybx, which turns it into Anne. The bank can then be sure 
the message is from Anne, because no one else could use her decoding algorithm to 
produce the word Gybx that is encoded as Anne. 

One public-lrey system was developed by R. Rivest, A. Shamir, and L. Adleman 
in 1977. Their system, now called the RSA system, is based on elementary number 
theory. Its security depends on the difficulty of factoring large integers. Here are the 
mathematical preliminaries needed to understand the RSA system. 

Lemma 13.1 
Letp, r, s, CEZ with p prime. lfp .r c and rc = sc (mod p), then r = s (modp). 

Proof• Since rc =~ (modp),p divides rc-~ = (r --s)c. By Theorem t.s 
Pl(r- s) or pI c. Sim:ep .r t; "We haYcp I (r- s), and, hence, r = s(modp). • 

Lemma 13.2 Fermat1S Little Theorem 
If p is prime, a EZ, and p .!' a, then £1>'""1 = 1 (mod p). 

Proof*• None of the numbers a, 2a, 3a, .•• , {p -l)a is congruent to 0 modulo 
p by Exercise 1. Consequently, each of them must be congruent to one 
of 1, 2, 3, .•. , p - 1 by Corollary 25 and Theorem 23. If two of them 
were congruent to the same one, say ra = i =sa (modp) with 

1 .s i, r, .t .s p - 1, 

•A proof based on group theory is outlined in Exercise 38of Section7.3,and one based on field theory 
is in Exercise 13 ol Section 11.6. 
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then we would have r "" s (mod p) by Lemma 13.1 (with c = a). This is 
impossible because no two of the numbers 1, 2, 3, ••• , p - 1 are con~ 
gruent modulo p (the difference of any two is less than p and, hence, 
not divisible by p). 1berefon; in some order .a, 2a, 3a, ••• , (p- l}D are 
congruent to 1, 2, 3, ... ,p - 1, By repeated use of 1beorem 2.2, 

a • 2a • 3a ••• (p - l)a "" 1 • 2 · 3 •.• (p - 1) (mod p). 

Rearranging the left side shows that 

a•a•a ••• a• I· 2 • 3 ••• (p-1)"" 1· 2 • 3. • .(p- 1) (modp) 

a 1(1· 2 • 3 ..• (p - 1)) "" 1(1 • 2 • 3 ... (p- 1)) (mod p). 

Now p ,t (1 · 2 · 3 ... (p - 1)) (If it did,p would divide one of the fac­
tors by Corollary 1.6. Therefore, tr1 == 1 (mod p) by Lemma 13.1 (with 
c = 1 • 2 . 3 ..• (p - 1)). • 

Throughout the rest of this discussion p and q are distinct positive primes. Let 
n = pq and k = (p - l)(q - 1). Choose d such that (d, k) = 1. Then the equation 
dx = 1 has a solution in zk by Theorem 2.9 (with n = k). Therefore, the congruence 
dx "" 1 (mod k) has a solution in Z. call it e. 

Theorem 13.3 
Let p, q, n, k, e, d be as in the preceding paragraph. Then bed"" b (mod n) for 
every bEZ. 

Proof • Since e is a solution of dx == 1 (mod k), de - 1 = kt for some t. Hence, 
ed = kt + 1, so that 

fr = /J<'+I = ffthl = b'J'-1)(/j-l)lh = (fiP-ty.t-ll'!J. 

If p .f h, then by Lemma 13.2, 

IF= w-l>(r-l)h == ct)&-1): h == h (modp). 

If p 1 h, then h and evety one of its powers are congruent to 0 modulo p. 
Therefore, in every case, lr "" h (mod p ). A similar rugument shows that 
lr"" h (mod q). By the definition of congruence, 

pI (b"- b) and 

Therefore, pq 1 (JJM - h) by Exercise 2. Since pq = n, this means that n 
divides (lJM- h), and, hence,lr"" h (mod n). • 

The least residue modulo n of an integer cis the remainder r when cis divided 
by n. By the Division Algorithm, c = nq + 1', so that c- r = nq, and, hence, c ==I' 

(mod 11). Since two numbers strictly between 0 and n cannot be congruent modulo 
n, the least residue of cis the only integer between 0 and n that is congruent to c 
modulon. 
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We can now describe the mechanics of the RSA system, after which we shall show 
how it satisfies the conditions for a public-key system. The message to be sent is first 
converted to numerical form by replacing each letter or space by a two-digit num her:* 

space= 00, A= 01, B = 02, ... , Y = 25, Z = 26. 

Ibr insta~ the word GO is written as the number 0715 and WEST is written 
23051920, so that the message "GO WEST" becomes the number 07150023051920, 
which we shall denote by B. 

Let p, q, n, k, d, e, be as in Theorem 13.3, with p and q chosen so that B < pq = n. 
To encode message B, compute the least residue of B'modulon; denote it by C. Then 
Cis the coded form of B. Send C in any convenient way. 

The person who receives C decodes it by computing the least residue of C" modulo 
n. This produces the original message for the following reasons. Since B', is congruent 
modulo n to its least residue C, Theorem 13.3 shows that 

cJ = (JP/ = B~ = B (mod 11). 

The least residue of dis the only number between 0 and n that is congruent to cJ 
modulo nand 0 < B < n. So the original message B is the least residue of c'. 

Before presenting a numerical eMillple, we show that the RSA system satisfies the 
conditions for a public-key system: 

1. When the RSA system is used ill practice,p and q are large primes (several hun­
dred digits each). Such primes can be quickly identified by a computer. Even 
though B, e, C, d are large numbers., there are fast algorithms for finding the 
least residues of B' and ~modulo n. They are based on binary representation 
of the exponent and do not require direct computation of B' or C"(which would 
be gigantic num hers). See Knuth [31] for details. So the encoding and decoding 
algorithms of the RSA system are computationally efficient 

2. To use the RSA system, each person in the network uses a computer to choose 
appropriate p, q, d and then determines n, k, e. The numbers e and n for the 
encoding algorithm are publicly announced, but the prime factors p, q of n and 
the numbers d and k are kept secret Anyone with a computer can encode mes­
sages by using e and n. But there is no practical way for outsiders to determine 
d (and, hence, the decoding algorithm) without first :findingp and q by factoring 
n. t With present technology this would take thousands of years! So the RSA 
system appears secure, as long as new and very fast methods of factoring are 
not developed. 

Even when n is chosen as above, there may be some messages that in numerical 
form are larger than n. In such cases the original message is broken into several blocks, 
each of which is less than n. Here is an example, due to Rivest-Shamir-Adleman. 

"More numbers could be used for punctuation marks, numerals, special symbols, etc. But this will be 
s uff ic ient for iII ust rating the basic cone epts. 

1 A lternati vel y, one might try to find k and then solve the c ongru enc e ex == 1 (mod k) to get d. But this 
can be shoWn to be computationally equivalent to factoring n. so no time is saved. 
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EXAMPLE 1 

Letp = 47 andq =59. Thenn = pq = 47· 59= 2773 andk = (p -I)(q -I)= 
46 · 58 = 2668. * Let d = 157. A graphing calculator or computer quickly veri­
fies that ( 157, 2668) = I and that the solution of 157x """ 1 (mod 2668) is e = 17 .t 
We shall encode the message "IT'S ALL GREEK TO ME." We can encode only 
numbers less thann = 2773. So we write the message in two--letter blocks (and 
denotes paces by #): 

IT 
0920 

EE 
0505 

S# 
1900 

K# 
1100 

AL 
0112 

TO 
2015 

L# 
1200 

#M 
0013 

GR 
0718 

E# 
0500. 

Then each block is a numberless than 2773. The first block, 0920, is encoded by 
usinge = 17 and a computer to calculate the least residue of 92011 modulo 2773: 

92017 == 948 (mod 2773). 

The other blocks are encoded similarly, so the coded form of the message is 

0948 

2390 

2342 

0778 

1084 

0774 

1444 

0219 

2663 

1655. 

A person reoeiving this message would used= 157 to decode each block. For 
instance, to decode 0948, the computer calculates 

948m'""" 920 (mod 2773). 

This is the original first block 0920 = IT. 

For more information on cryptography and the RSA system, see Hoff stein, Pipher, 
and Silveman [33], Rivest~hamir-Adleman [34], Simmons [35], and Trappe and 
Washington [36]. 

• Exercises 

A. I. Let p be a prime and k, a E Z such that p .r a and 0 < k < p. Prove that ka '*- 0 
(mod p). [Hint: Theorem 1.5.] 

2. If p and q are distinct primes such that p I c and q I c, prove that pq I c. [Hint: 
If c = pk, then q I pk; use Theorem 1.5.] 

"These numbers will illl strate the concepts. But they are too sma II to provide a secure code si nee 
2n3 can be factored by hand. 

fTo solve the congruence on a calculator, use theTechnologyTip on page12to find uand v such that 
157u + 2S6Sv = 1. Then 157u - 1 = 2668v, l'ttlich means that 157u == 1 (mod 2668). 
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3. Use a calculator and the RSA encoding algorithm with e "" 3, n = 2773 to 
encode these messages: 

(a) GO HOME (b) COME BACK (c) DROPDEAD 

[Hint: Use 2-letter blocks and don't omit spaces.] 

4. Prove this version of Fermat's Little Theorem: If p is a prime and a E Z, then 
d' == a (mod p). [Hint: Consider two cases, p I a and p .f a; use Lemma 13.2 in 
the second case.] 

B. 5. Find the decoding algoritlnn for the code in Exercise 3. 

6. Let C be the coded form of a message that was encoded by using the RSA 
algorithm. Suppose that you discover that C and the encoding modulus n 
are not relatively prime. Explain how you could factor nand thus find the 
decoding algorithm. [fhe probability of such a c occurring is less than w-9!1 
when the prime factors p, q, of ll have more than I 00 digits.] 
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The Chinese Remainder Theorem 

Prerequisites: Section 2.1 and Appendix C for Section 14.1; Section 3,1 
for Section 14.2; Section 6.2 for Section 14.3. 

TheCh inese Remainder Theorem (Sect ion 14.1) is a famous result in number theory 
that was known to Chinese mathematicians in the first century. It also has practical 
applications in computer arithmetic (Section 14.2). An extension of the theorem 
to rings other than Z has interesting consequences in ring theory (Section 14.3). 
Although obviously motivated by Section 14.1, Section 14.3 is independent of the 
rest of the chapter and may be read at anytime after you have read Sect ion 6. '2. 

~~ Proof of the Chinese Remainder Theorem 

A congruence is an equation with integer coefficients in which "="is replaced by 
"'"' (mod n}." The same equation can lead to different congruenoes, such as 

6x + 5 "" 7 (mod 3) or 6x + 5"" 7 (modS). 

Only integers make sense as solutions of congruences, so the techniques of solving 
equations are not always applicable to congruences. For instance, the equation 6x + 5 = 7 
has x = 1;3 as a solution, but the congruenoe 6x + 5 = 7 (mod 3) has no solutions 
(&ercise 3), and 6x + 5 "" 7 (mod 5) has infinitely many solutions (Exercise 4). 

A nwnber of theoretical problems and practical applications require the solving of 
a system of linear congruences, such as 

xs 2 (mod4) 

x = 5 (mod 7) 
x"" O(mod 11) 
x"" 8 (mod 15) 

443 
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A solution of the system is an integer that is a solution of every congruence in the sys­
tem. We shaH examine some cases in which a system oflinear congruences must have 
a solution. 

Lemma 14.1 
If m and n are relatively prime positive integers and a, b FZ. then the system 

x • a (modm) 

x • b (mod n) 

has a solution. 

Proof .. Since (m, n) = 1, there exist integers u and v such that mu + nv = 1 by 
Theorem 1.2 This equation and the definition of congruence lead to 
four conclusions: 

(i) mu,. 0 (mod m) (n) nv s 1 (mod m) (Becaufe 1 - Ji'U = mu.] 

(iii) nv • 0 (mod n) (iv) mu =1 (mod n) (Because 1 - mu = fW.} 

Let t = bmu + anv. Then by (i), (ii), m~d Theorem 2.2. 

t = bmu + anv • b • 0 + a • l = a (mod m), 

so that t =:a (mod m). Similarly, by (Iii}, (iv), and Theorem2.2, 

t = bmu + anv • b ·1 +a· 0 = b (mod n), 

so that t • b (mod n). Therefore, tis a solution of the system. • 

The proof of Lemma 14.1, provides the 

Solution AlgOI"itbm fOI" the System in Lemma 14.1 

1. Find u and v such that mu + nv = 1.* 

2. Then t = bmu + anv is a solution of the system 

EXAMPLE 1 

To solve the system 

x • 2 (mod4) 

x • 5 (mod 7), 

apply the algorithm withm = 4,11 = 7, a= 2, b = 5: 

1. It is easy to see that u = 2, v = -1satisfy 4u + 1v = 1. 

2. Therefore, a solution of the system is 

t = bmu + anv = 5 • 4 • 2 + 2 • 7 • ( -1) = 26. 

•This can be done by hand by Uling the Euclidean Algorithm; lee Exercise 15 in Section 1.:2. It can 
also be done on 11 computer or graphing calculator; lee theTechnologylip on page 12. 
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Theorem 14.2 The Ghinese Remainder Theorem* 
Let m1, m2, ••• , m, be pairwise relatively prime positive integers (meaning 
that (m1, m1) = 1 whenever i + j). Let a1, a2, ••• , a, be any integers. 

(1) The system 

has a solution. 

x ""a1 (mod m1) 

X "" a2 (mod mz) 

x ""~(mod mJ) 

x = a, {mod m,} 

(2) If t is one solution oft he system, then an integer z is also a solution 
Hand only if z = t (mod m1 mz mJ · · · m,). 

For reasons that will become apparent below, we shall use induction to prove the 
first part of the theorem. For a proof that does not use induction, see Exercise 21 

Proof of Theorem 14.2 ... (1) The proof is by induction on the number T of congru­
en;es in the system. If r = 2, then there is a solution by Lemma 14.1 
(with m = m 1, n =~.a= III• b =a;). So-suppose inductively that there 
is a solution when r = k and consider the syste.m 

x = a1 (modmJ 

X "" Dz (mod mz) 

x "" U] (mod m,) 

x "" ak (mod mk) 

x "" ~+I (mod nlt-+t) 

By the induction hypothesis, the system consisting of the first k congru­
eoces in(*) has a solutions. Furthermore, m1~ • • • m1 and mk+1 are 
relatively prim.e (Exercise 5). Consequently, by Lemma 14.1, the system 

X"" 9 (modm1~· • • m,J 
x!!! a1+1 (mod m.t+t) 

•so named b&eaus& it was known to Chines& mathematicians in the first century. 
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has a solution t. The number t necessarily satisfies 

Consequently, for each i = 1, 2, 3, ... , k, 

f""' s(modmJ. 

(Reason: If t - s is divisible by m1~ • • • m~~:, then it is divisible by each 
m;). Now s is a solution of the first k congruences in ( ** ), so for each i :S k 

t ""'s(modmJ and S""' Cl!(modm,). 

By transitivity (Theorem 2.1), 

t ""' lit (mod m:J for i ""' 1, 2, . , . , k. 

Since tis a solution of(**), it must also satisfy r ""'ak+i (mod m~:-u)· 
Hence, t is a solution of the system ( "), so that there is a solution 
when r = k + 1. Therefore, by induction, every such system has a 
solution. 

(2) If z many other solution of the system, then for each j = 1, 2, ' . ' ' r, 

z ""'Dt(mod mJ and t""' a1 (mod m.J. 

By transitivity (Theorem 2.l),z""' t (mod mJ. Thus 

m1 I (z - t), ~ I (z - t), "'11 (z - t), •..• tn,.l (z - t). 

Therefore, m1m'J!HJ • • • ~I (z - t) by Exewise 7. Hence, 

z ""' t (mod m1mp~J · · · m,). 

Conversely, if z iE t(mod m1m:zmJ • • • m,.), then, as above, z = t (mod mJ 
for each i = 1, 2, ... , r. Since t ""' ~(mod mJ, transitivity shows that z ""~ 
(mod m,) for each i. Therefore, z is a solution of the system. • 

The proof of Theorem 14.2 actually provides an effective computational algorithm 
for solving large systems: Solve the first two by Lemma 14.1, then repeat the inductive 
step as often as needed to determine a solution of the entire system. 

EXAMPLE 2 

We shan solve the system 

x""' 2 (mod4) 

x""' 5 (mod 7) 

x""' 0 (mod 11) 

x ""' 8 (mod 15). 
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Example 1 shows that x "" 26 is a solution of the system CODSisting of the first tM:l 

congruences: 

Next we solve the system 

x == 2 (mod 4) 

x == 5 (mod 7). 

x == 26 (mod 4 • 7) 

x == 0 (mod 11). 

First, note that u = 2 and tJ = -5 satisfy 28u + 11v = 1.* Then the Solution 
Algorithm preceding Example 1 (with a = 26, m ~ 4 · 7 ~ 28, b ~ 0, n ~ 11) shows 
that a solution is 

bmu + anv = 0 • 28 • 2 + 26 ·II· (-5) = -1430. 

You can readily verify that x = -1430 is also a solution of the system consisting of the 
first three congruences: 

FinaiJy, we solve this system! 

x == 2 (mod 4) 

x == 5 (mod 7) 

x == 0 (mod II). 

x == -1430 (mod4 • 7 • 11) 

x == 8 (mod 15). 

Note that u = 2 and v "" -41 satisfY 308u + ISv ""1. * So by the Solution Algorithm 
(with a= -1430,m = 4· 7 • 11 = 308, b = 8,11 = 15), a solutionis 

bmu + anv = 8 • 308 • 2 + ( -1430) • 15 • ( -41) = 884,378. 

You can verify thai: x: 884,378 is a solution of the entire system 

x == 2 (mod4) 

x == 5 (mod 7) 

x == 0 (mod II) 

x == 8 (mod 15). 

Since 4 • 7 • 11 • IS = 4620 and 884,378 == 1958 (mod 4620), as you can easily 
verify, x = 1958 is also a solution of the system by Theorem 14.2. When work­
ing by hand, the smaller solution is easier to use. So we say that the solutions 
of the system are all numbers that are congruent to 1958 modulo 4620. 

5 The values for u and v were found with a graphing calculator program; see the Technology Tip on 
page 12. 
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Tedmology Tip: Systems such as the one in Example 2 can be solved by the 
Chinese Remainder Theorem program for TI graphing calculators that can be 
downloaded from our website (ADDRESS TBA). In Example 2, when asked, 
you enter the list of constants {2, 5, 0, 8} and the corresponding list of moduli 
{4, 7, 11, 15}, The program then produces the solution, as shown in Figure 1. 

SOLUTIW 
1'3:58 

MOOUL~0 
Done 

RGURE1 

To solve the same system with Maple, use the command 
chrem (12, 5, 0, 81 [4, 7, 11, 15]); . 

• Exercises 

A. I. If u '=' v (mod n) and u is a solution of 6x + 5 '=' 7 (mod n), then show that v is 
also a solution. [Hint: Theorem 2.2.] 

1. If 6x + 5 '=' 7 (mod n) has a solution, show that one of the numbers 1, 2, 3, ••• , 
n - 1 is also a solution. [Hint: Exen:ise 1 and Corollary 2.5.] 

3. Show that 6x + 5 '=' 7 (mod 3) has no solutions. (Hint: Exen:ise 2.] 

4. Show that 6x + 5 '= 7 (mod 5) has infinitely many solutions. 
[Hint: Exetcises 1 and 2.] 

5. If ml> mz, .. . 'mtc mk+l are pairwise relatively prime positive integers (that is, 
(Int. m) = 1 when i '# /), prove that m1mz • • • m,. and mk+l are relatively prime. 
[Hint: If they aren't, then some prime p divides both of them (Why?). Use 
Corollary 1.6 to reach a contradiction.] 

6. If (m, n) = 1 and m 1 d and n 1 d, prove that mn 1 d. (Hint: If d = mk, then 
n I mk; use Theorem 1.4.] 

7. Let m1, m2, ••• , m, be pairwise relatively prime positive integers (that is, 
(nynj) = 1 when i '#/).Assume that 7nt 1 d for eachi. Prove that 
m1mtnJ · · · m..l d. [Hint: Use Exercises 5 and 6 repeatedly.] 

In Exercises S--13, solve the system of congruences. 

8. X'=' 5 (mod 6) 
X'=' 7 (mod 11) 

10. X S: 1 (mod 2) 
X '=' 2 (mod 3) 
X'=' 3 (mod 5) 

9. x '=' 3 (mod 11) 
x '=' 4 (mod 17) 

II. x '=' 2 (mod 5) 
x '=' 0 (mod 6) 
x '=' 3 (mod 7) 
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X"" 3 (mod 6) 
x= 5(mod 11) 
x == 10 (mod 13) 
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13. x == 1 (mod 7) 
x == 6 (mod 11) 
x == 0 (mod 12) 
x == 9 (mod 13) 
x == 0 (mod 17) 

B. 14. (Ancient Chinese Problem) A gang of 17 bandits stole a chest of gold coins. 
When they tried to divide the coins equany among themselves., there were 
three left over. This caused a fight in which one bandit was kined. When the 
remaining bandits tried to divide the ooins again, there were ten left over. 
Another fight started, and five of the bandits were killed. When the survivoB 
divided the coins., there were four left over. Another fight ensued in which 
four bandits were killed. The survivors then divided the coins equally among 
themselves,. with none left over. What is the smallest possible number of coins 
in the chest? 

15. If (a, n) = d and d 1 b, show that ax.., b (mod n) has a solution. [Hint: b = de 
for some c, and au + nv = d for some u, v (Why?). Multiply the last equation 
by c; what is auc congruent to modulo n1] 

16. If (a, n) = d and d ~ b, show that ax= b (mod n) has no solutions. 

17. If (a, n) = 1 and a, tare solutions of ax = b (mod n), prove that s = t (mod n ). 
[Hmt: Show that n 1 (as- at) and use Theorem 1.4.] 

18. If (a, n) = d ands, tare solutions of ax== b (mod 11). prove that s == t (mod njd~ 

19. If (m, n) = d, prove that the system 

x =a (modm) 

x= b(modn) 

has a solution if and only if a = b (mod d). 

20. If s, t are solutions of the system in Exercise 19, prove that s = t (mod r). 
where r is the least common multiple of m and n. 

21. (Alternate Proof of part ( 1) of the Chinese Remainder Theorem) For each 
i = 1, 2, • , • , r, let N 1 be the product of all the m1 except m,, that is, 

Nr"" m11nz • • • nlj-Jnlt+l • • • m,. 
(a) For each i, show that (N~> nit) = 1, and that there are integers u 1 and v, such 

that NfU.t + ln(Vr = 1. 

(b) For each i and j such that i =f;.}, show that N PJi = 0 (mod m1). 

{c) fur each i, show that N Pt = 1 (mod mJ. 

(d) Show that r = a,.N"1u 1 + a,JV1u, + a1N 1u3 + · · · + a,.JV,u, is a solution of 
the system 



450 Chapter 14 The Chinese Remainder Theorem 

Ill Applications of the Chinese Remainder Theorem 

Every computer has a limit on the size of integers that can be used in machine arith­
metic, called the word size. In a large computer this might bet~. Computer arithmetic 
with integers larger than the word size requires time-consuming multiprecision tech­
niques. In such cases an alternate method of addition and multiplication, based on the 
Chinese Remainder Theorem, is often faster. 

For any numbers r, s, r, nless than the word size, a large computer can quickly 
calculate 

r + sand r · s (even when the answer is larger than the word size); 

the least residue of r modulo n" (including the case when r exceeds the word size.----­
see Exercise 2); 

sums and products in Z.,. 

Finally, a computer can use a slight variation of the Chinese Remainder Theorem 
solution algorithm (Theorem 14.2) to solve systems of congruem.:es. But this may 
involve numbers larger than the word size and, hence, require slower multiprecision 
techniques. 

To get an idea of how the alternate method works, imagine that the word size of 
our computer is 100, so that multiprecision techniques must be used for larger num­
bers. The following example shows how to multiply two four-digit numbers on such a 
computer, with minimal use of multipRcision techniques. 

EXAMPLE 1 

We shall multi ply 3456 by 7982 by considering various systems of congruences 
and using the Chinese Remainder Theorem. We begin by choosing several 
numbers as moduli and finding the least residues of 3456 and 7982 for each 
modulus:t 

3456 "" 74 (mod 89) 
3456 "" 36 (mod 95) 
3456"" 61 (mod 97) 
3456 === 26 (mod 98) 
3456 "" 90 (mod 99) 

7982"" 61 (mod 89) 
7982 "" 2 (mod 95) 
7982 "" 28 (mod 97) 
7982 === 44 (mod 98) 
7982 "" 62 (mod 99). 

Then by Theorem 2.2 we know that 3456 · 7982 ""74 · 61 (mod 89). Taking the 
blst re!cidue of 74 · 61 modulo 89 and proceeding in similar fashion for the other 
congruences, 'M! have 

*The least·re si due modulo n of a number tis the remainder r when tis divided by n. By the Division 
Algorithm, t = nq + r so ttut t- r = nq and t == r (mod n). 

I The reason why89, 115,97, 98, and 911 were chosen as moduli will be explained below. 
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3456 • 7982 = 74 · 61 = 64 (mod 89) 
3456 • 7982 = 36 · 2 = 72 (mod 95) 
3456 · 7982 == 6l · 28 ==59 (mod 97) 
3456 • 7982 == 26 • 44 == 66 (mod 98) 
3456 · 7982 == 90 • 62 == 36 (mod 99). 

Therefore, 3456 • 7982 is a solution of this system: 

x == 64 (mod 89) 
x == 72 (mod 95) 

(***) x ==59 (mod 97) 
x = 66 (mod 98) 
x "" 36 (mod 99). 

The Chinese Remainder Theomn* shows that one solution of (**•) is 27,585,792 
and that every solution (including 3456 • 7982) is congruent to tl::is one modulo 
89 • 95 • 97 • 98 · 99 ""' 7,956,949,770 (which ...w denote hereafter by M). Since no t'.w 
numbers between 0 and M can be congruent modulo M, IT ,585,792 is the only soJu. 
tion bet\wen 0 and M. We kn(JW that 0 < 3456 · 7982 < tO" • tO" ""' lOR < M. Since 
3456 · 7982 is a iiUiution, we ID.lst have 3456 · 7982""' IT ,585,792. 

Now look at this example from a dilferent perspective. If you think of the least 
residue of a number modulo n as an element of z,. then the congruences in (•) say 
that the integer 3456 may be represented by the element (74, 36, 61, 26, 90) in the ring 
~9 X "4s X ~7 X ~ X ~· Similarly, 7982 is represented by ( 61, 2, 28, 44, 62). Saying 
that 74 · 61 == 64 (mod 89) in(**) is the same as saying 74 · 61 ""' 64 in Zw. So the 
congruences in ( **) are equivalent to multiplication in 1'..89 X "4s X Z<JJ X ~~ X 4: 

(74, 36, 61, 26, 90) • (61, 2, 28, 44, 62)""' (74. 61, 36 . 2, 61 . 28, 26. 44, 90 • 62) 
= (64, 72, 59, 66, 36). 

The solution of (***) shows that the element (64, 72, 59, 66, 36) of the ring 
1!.89 X "4s X ~7 X ~ X 1!.'» represents the integer 27,585,792 

The procedure in the case of a realistic word size is now clear. Let m 1, ••• , m, be 
pairwise relatively prime positive integers: 

I. Represent each integer t as an element of Z., X • • • X z..., by taking the congru­
ence class of t modulo each m~ 

2. Do the arithmetic in z..., X • • • X Z....· 
3. Use the Chinese Remainder Theorem to convert the answer into integer form. 

The m1 must be chosen so that their product M is lar~r than any number that will 
result from the computations. Otherwise, the conversion process in Step 3 may fail 
(Ex~:m:ises 3-S). This is sometimes done, as in the example, by taking the m1 to be as 

•up to this point, all computations have been quicklypertormed by our imqinaryoomputer.This is 
the first place where slower muHiprecision calculations may be needed because of numbers that 
exceed the word size. 
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large as possible without exceeding the word size of the oomputer. If smaller moduli 
are chosen, more of them may be necessary to ensure that M is large enough. 

The conversion process from integer to modular representation and back (Steps I 
and 3) requires time that is not needed in conventional integer multiplication (espe­
cially Step 3, which may involvemultiprecision techniques). But this need be done only 
once for each number, at input and output. The modular representation may be used 
for all intermediate calculations. It is much faster than direct computation with large 
integers, espo;;ially in a computer with parallel processing capability, which can work 
simultaneously in each z,.. Uriler appropriate conditions the speed advantage in Step 2 
outweighs the disadvantage of the extra time required for Steps I and 3. fur more 
details, see Knuth [31]. 

It is sometimes necessary to find an exact solution (not a decimal approximation) 
of a system of linear equations. When there are hundreds of equations or unknowns 
in the system and the coefficients are large integers, the usual computer methods will 
produce only approximate solutions because they round off very large numbers dur­
ing the intermediate calculations. The Chinese Remainder Theorem is the basis of a 
method of finding exact solutions of such systems. 

Very roughly, the idea is this. Let m~o . , , , m, be distinct primes (and, hence, 
pairwise relatively prime).* fur each""' translate the given system of equations into 
a system over z, by replacing the integer coefficients by their congruence classes 
modulo m1- Then solve each of these new systems by the usual methods (Gauss­
.hrdan elimination works equally well over the field Z..., as over R, and round-off is 
not a problem with the smaller numbers in Z...). Finally, use the Chinese Remainder 
Theorem and matrix algebra to convert these solutions modulo mtinto a solution of 
the original system.t 

• Exercises 

A. I. Assume that your computer has word size 100. Use the method outlined in 
the text to find the sum 123,684 + 413,456, using mt = 95, "'1 = 97, m3 = 98, 
m4 = 99. 

2. (a) Find the least residue of 64,397 modulo 12, using only arithmetic in Z1z. 
[Hint: Use Theorems 2.2 and 2.3 and the fact that 64,397 = 

(((6. 10 + 4)10 + 3)10 + 9)10 + 7.] 

(b) Let ll be a positive integer less than the word size of your computer and 
t any integer (possibly larger than the word size). Explain how you might 
find the least residue of t modulo n, using only arithmetic in Z,. (and thus 
avoiding the need for multiprecision methods). 

•considerations of size similar to those discussed above play a role in the selection crlthe m;. 
~This conversion is a bit trickier than may first appear. For instance, the system 

Bx + Sy = 12 becomes x + 51 = 5 over l1. 
4x + Sy = 10 4x + Sy = 3 

You can verily that x = 4 ,y = 3 is a solution of the Z 7 system. I tis not immediately clear how to get 
from this to the solution of the original system, which is x = 1(.1, y = &JS. 
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3. Use the method outlined in the text to represent 7 and 8 as elements of 71_~ X 7L5• 

Show that the product of these reptaentatives in 7L1 X 7L5 is (2, 1). If you use the 
Chinese Remainder Theorem as in the text to convert (2, I) to integer form, do 
you get 56? Why not? This example shows why the method won't work when the 
product of the "'-tis l~s than the answer to the arithmetic problem in question. 
Also see Exercise S. 

B. 4. Letf;7L--7L1 X ~ X 7L 5 be given by ftt) = ([t]], [t1, [t]s), where [t]. is the 
congruence class oft in 71,,. The function/ may be thought of as representing t 
as an element of 7L3 X ~ X 7L 5 by taking its least residues. 

(a) If 0 .:5 r, s < 60, prove thatf(r) = f(s) if and only if r = s. 
[Hint: Theorem 14.2] 

(b) Give an example to show that if r or s is greater than 60, then part (a) may 
be false. 

5. Let m1, m2, ••• , m, be pairwise relatively prime positive integers and 
f:lL--+ 71,.,, X z,., X • • • X lL,.,,, the function given by 

f(t) = ([t1..,,[iJ,., ... ,[tJ.,), 

where [ t 1., is the congruence class of t in z..,,. Let M = m 1m2 • • • m,. If 
0 .:51', s < M, prove thatf(r) = j{s) if and only if r = s. [Exercise 4 is a special 
case.] 

6. Assume Exercise 7(c ). If your computer has word size P5, what m1 might you 
choose in order to do arithmetic with integers as large as 2 114 (approximately 
2.45 X. I ass)? 

C. 7. (a) If a and bare positive integers, prove that the least residue of Z'- I 
modulo 'i' - l is 2' - 1, where r is the least residue of a modulo b. 

(h) If a and bare positive integers, prove that the greatest common divisor of 
'? - 1 and 2b - 1 is 2' - 1, where t is the gcd of a and b. [Hint: Use the 
Euclidean Algorithm and part (a).] 

(c) Let a and b be positive integers. Prove that 2"- 1 and 2b - 1 are relatively 
prime if and only if a and b are relatively prime. 

IIJ The Chinese Remainder Theorem for Rings 

1be Chinese Remainder Theorem for two congruences can be extended from 7L to 
other rings by expressing it in terms of ideals. The key to doing this is the definition of 
congruence modulo an ideal (Section 6.1) and the following fact: When A and Bare 
ideals in a ring R, the set of sums {a + b I a E A, b E B} is denoted A + Band is itself 
an ideal (Exercise 20 of Section 6. 1). 

Let m and n be integers. Let I be the ideal of all multiples of m in 7L and J the ideal 
of all multiples of n. Then congrus~ce modulo m iJ the same as congruence modulo the 
iJeaJ I. If (m, n) = 1, then mu + nv = 1 for some u, tJ E 7L. Multiplying this equation by 
any integer r shows that m(ur) + n(vr) = r. Thus every integer is the sum of a multiple 
of m and a multiple of n, that is, the sum of an element of the ideal/ and an element 
of the ideal J. Therefon:, I+ lis theentirering7L. So the condition (m,n) = 1 amowlts 
to saying I+ J = 7L. 
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When (m, t1) =< 1 , the intersection of the ideals I and J is the ideal consisting of all 
multiples of mn (Exercise 6 of Sc:ction 14.1). So two Integers are congruent modulo mn 
preci9ely when they an? congruent modulo the irkall n J. 

The italicized statements in the preceding paragraphs tell us how to translate the 
Chinese Remainder Theorem for two congruenoos into the language of ideals. By 
replacing the ideals in that discussion by ideals in any ring R. we obtain 

Theorem 14.3 Chinese Remainder Theorem for Rings 
Let I and J be ideals in a ring R sue h that I + J =< R. Then for any 11, b E R, the 
system 

.x sa (mod/) 

x '!!' b (mod J) 

has a solution. Any two solutions of the system are congruent modulo I n J. 

When R has an identity, the theorem can be extended 1o the case of r ideals It. Ib , .• , 
I, and congruences x s Cit: (mod lkJ, under the hypYthescs that I, + ~ =< R whenever i * 1 
(see Exmcise 6 and Hungerford [5; p. 131D. 

Proof of Theorem 14.3 .. Since I+ J = R and b - a E R, there exist j E l,j E J 
such that i + 1 =< b - a. Hence, a + i =< b - j. Let t =< a + i; then 

t -a =<(a+ {) -a =< iEl, 

so that t s a (mod 1). Similarly, sim:e a + t = b - j 

t- b ='(a+ IJ- b =' (b- j)- b =' -1EJ, 

Hence, t s b (mod J), and tis a solution of the system. If z is also a 
solution, then 

z sa (mod I) and t sa (modi) imply that z s r(mod I) 

by Theorem 6.4. Similarly, z s t (mod J). This means that z - t E I and 
z- tE J. Therefore,z- tEl n Jand z '!!' t (modi n J). • 

One consequence of the Chinese Remainder Theorem is a useful isomorphism of 
rinp. 

Theorem 14.4 
If I and J are ideals in a ring Rand I + J =< R, then there is an isomorphism 
of rings 

R/{1 n J) = R/1 X R/J. 
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Proof .. Define amapf:R~ R/I X RfJbyf(r)"" (r +I, r +f). Then/is a 
homomorphism because 

and 

f(r) + f(s) "" (r + I, r + J) + (a + I, a + f) 

"" ((r + s) + I, (r + s) + f) ""f(r + s) 

f(r)f(s) "" (r + I, r + J)(s + I, s + J) 

"" (ra + I, rs + J) ""f(ra). 

To show thatfis surjective, let (a+ I, b + J) ER/ I X RfJ. We must find 
an element of R whose image under/is (a+ I, b +f). By Theorem 14.3 
there is a solution t ER for this system: 

x;;::; a(modJ) 

x '= b (mod J). 

Butt= a (mod f) implies that t +I"" a+ !by Theorem 6.6. Similarly, 
t ;;::; h (mod J) implies t + J"" b + J, so that 

f(t)"" (t +I,t +J)"" (a+ I, b+ J). 

Therefore, /is surjective. 
Let Kbethe kernel off. By the First Isomorphism Theorem 6.13, R/K 

is isomorphic to R/ I X R/ J. Now K consists of all elements r E R such 
thatf(r) is the zero element in R/I X RfJ, that is, all r such that 

(r +I, r + J) ""(OR+ 1, OR+ J), 

or equivalently, 

r+I==OR+I and 

But r + I "" 0 R + I means that r = 0 R (mod I), and, hence, r ~ I. 
Similarly, r + J"" 0 R + J implies r E J. TherefOre, rEIn J. So I n J is 
the kernel off, and R/(I n f) "" RfK.er f ~ Rf I X R/ J. • 

Corollary 14.5 
If (m, n) "" 1, then there Is an Isomorph Ism of r lngs Zmn ~ Zm X Zn. 

Proof .. In the ring Z, the ideal (m) consists of all multiples of m and the ideal 
(n) of all multiples of n. The first three paragraphs of this section show 
that {m) + (n)"" Z and that {m) n (n) is the ideal (mn) of all multiples 
of mn. Furthermore, the quotient rings Z/(mn), Z/(m), and Z/(/1) are, 
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respectively, Zlflll' Z,., and Z,.. Therefore, by Theorem 14.4 (with R = Z, 
I= (m), J = (n)) there is an isomorphism 

Z,.,. = Z/(mn) = Z/((m) n (n)) 5:l Z/(m) x Z/(n) = z... x Z.,. • 

Corollary 14.6 
If n = p,11'P•l'P3f!o • • • p{'', where the p1 are distinct positive primes and each 
n1 > a, then there is an isomorphism of rings 

Z, e Zv-,., X Zp,_., X 4-. X · · · X z,_..,. 

Proof .. Since the p1 are distinct primes, p1"' and the product ir:l · · ·p,~~, are rela­
tively prime for each i. So repeated use of Corollary 14.5 shows that 

Z, 5:l 'Zp,_~ X 'Z,t,..~ . , . p.• 5:l z,.~ X ~ ... X Zp."' .. , p,~ 5:l • • • 

e Z,,-. X Z,,-. X Zp,., X · · · X Z,,... • 

• Exercises 

A. 1. (a) Show that Z5 X Z 12 is isomorphic to Z3 X Z'J/,'yo 

(b) Is~ X Z35 isomorphic to Z5 X Z2s'l 

2. If I and J are ideals in a ring Rand a EI, bE J, show thatab EI n J. 

B. 3. If (m, n) ¢ 1, show that Z""' is not isomorphic to Z,. X~· (H'mt: If (m, n) = d, 

then '; is an integer (Why?). If there were an isomorphism, then 1 E Z,.,. 

would be mapped to (1, l) EZ,. X Z,.. Reach a contradiction by showing that 

"; • 1 #- Oin.z_ but';· (1, 1) = (0, 0) inZ,. X Z..,.] 

4. Which of the following rings ace isomo:rphic: z2 X ~ X z1, ZJ X ~ X z1, 
Zs"' z, x Z 12, Z 2 x Z1 x Z14, 4 x Z 21'1 

5. If Ib I,_, 13 are ideals in a ring R with identity such that / 1 + 11 = R and I,. + /3 = 
R, prove that (I1 n I0 + /3 = R. [Hint: If re R, then r = i1 + ~and lR = t2 + t3 

fonome f1 EI" t2 EI:~. and f3, t3 EI3. Then r = (f1 + (j)(t2 + tJ); multiply this out 
to show that r is in (I1 n I 2) + I3• Rwrcise 2 may be helpful.] 

6. Let I~o 12, / 3 be ideals in a ring R with identity such that I1 + ~ = R whenever 
i ¢ j. If G.t E R, prove that the system 

x .,. a1 (mod /1) 

x"" ":!(modi]) 

x.,. a3 (modi~ 



14.3 The Chinese Remainder Theorem for Rings 457 

has a solution and that any two solutions are congruent modulo 11 n 12 n 11• 

[Hint: If sis a solution of the first two congruences, use Exercise 5 and 
Theorem 14.3 to show that the system 

X"" s(modil n I,) 
x "" <2J (mod 13) 

has a solution, and it is a solution of the original system.] 
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Geometric Constructions 

Prerequisites: Sections 4.1, 4.4, and 4.5. 

Since the sixth century B.C., mathematicians have studied geometric construc­
tions with straghtedge (unmarked ruler) and compass. Despite their prowess in 
geometry, the ancient Greeks were never able to perform certain constructions 
using only straightedge and compass, such as 

Duplication of the Cube: Construct the edge of a cube having twice the 
volume of a given cube!' 

Trisection of the Angle: Construct an angleone third the size of a given angle. 

Squaring the Cirele: Construct a square whose area is equal to the area of 
a given circle. 

Fin ally in the last century it was proved that each of these constructions is impos­
sible. This chapter presents an elementary proof of the impossibility of the frrst 
two constructions I isted above (the third is discussed in Exercise 21 ). 

Many people remain fascinated by these problems. particularly angle trisection, 
and continue to publish what they say are "solutions," even though it has been proved 
that there are none (see, for example Dudley [37]). Consequently, it is important to 
understand just what we claim is impossible here and what constitutes a proof. 

The ancient Greeks knew that all the ooDStructions listed above could readily be car­
ried out provided that additional tools \WR: permitted. For instant<; any angle can be 
trisected using a compass and straightedge with just one mark on it. The Gn:eb also 

~his problem supposedly had its origin in an ancient legend: Athens was afflicted by a plague and 
its people were told by the oracle at Delos that the plague would end when they built a new altar 
to Apollo in the shape of a cube that had twice the volume of the old a liar, which was also a cube. 

459 
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knew that some angles, such as 90", can be trisected by strnightedge and compass alone 
~rcise 3). So the issue is not whether these constructions can ever be performed, but 
whether they can be perlbrmed in every possible case using Dnly an (unmarked) strnight­
edge and a compass. Furthermore, phyl;ical measurement alone is not sufficient to jus­
tifY such constructions because no measuring device is absolutely acrurnte. Justification 
requires a valid mathematical proof based on accepted principles and the rules of logic. 

The key to the impossibility proofs presented here (and to every other known proof 
of these facts) is to translate the geometric problem into an equivalent algebraic one. 
Under this translation process, as we shall see, constructions with a straightedge cor­
respond to solving linear equations and constructions with a compass to solving qua­
dratic equations. Before we can begin this translation process, we present a typical 
straightedge-and-compass construction to give you a feel for what we are dealing with. 

EXAMPLE 1 

Given points 0 and P, construct a line perpendicular to line OP through 0 as 
follows. Construct the circle with center 0 and radius OP; it intersects line 0 P 
at points Rand P, as shown on the left side of Figure 1. Segments OR and OP 
are radii of the circle and thus have the same length. Now construct the circle 
with center Rand radius RP and the circle with center P and radius RP. These 
circles intersect in points A and Bas shown in the center of Figure I. Segments 
RP, RA, and PA have the same length. (Why?) 

. . . 
' R' • 0 ~p I 

' ' ' ' '. / . . 

... -- ........ .. .............. , . 
' . . 
' 0 •p 

FIGURE 1 

......... , .. 
' ' ' . . . 

R 0 p 

Draw the line AO. In triangle RAP, shown on the right of Figure I, the sides 
RA and PA are congruent, as are the sides 0 Rand 0 P. Side OA is congruent to 
itseJJ: Therefore, triangles 0 RA and 0 PA are congruent by side-side-side. Since 
angles ROA and POA are congruent and supplementary, each of them must 
be a right angle. Therefore, line AO is perpendicular to line OP at 0. 

0 utli ne of the Argument 
Now we begin the translation from geometry to algebra. The following outline should 
help you to see where we're headed and to keep things straight as we w:> along. The 
capitalized headings here correspond to the headings on the subsections below. 

CONSTRUCTIBLE POl N TS ~ begin with any two points and determine 
what additional points can be constructed from them by straightedge-and-compass 
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constructions; these are the constructible points. Next we use the distance between the 
original two points as the unit length and coordinatize the plane. 

CONSTRUCTIBLE NUMBERS A number ris said to be consrrucrihle if the 
point (r, 0) is a constructible point. We then examine the equations of lines and circles 
determined by constructible points and the coordinates of their intersection points. 
This leads to a characterization of constructible numbers in terms of certain subfields 
of R and square roots of positive elements of n.. 

ROOTS OF POLYNOMIALS Thecharru::teriz.ationofconstructiblenumbers 
is then used to show that certain cubic polynomials have no constructible numbers as 
roots. 

IMPOSSIBILITY PROOFS Finally, we demonstrate the impossibility of the 
constructions in question by using proof by contradiction: If the construction were 
possible, then one of the cubic polynomials mentioned in the preceding paragraph 
would have a constructible num her as a root, which is a contradiction. 

Constructible Points 
We first give a formal mathematical description of straightedge-and-compass con­
structions, such as those in Example 1, that begin with two points 0 and P. LetS be 
the set { 0, P}. Form the line determined by the two points of S. Form the two citdes 
with centers 0 and P and radius OP. Let S1 be the set of all points of intersection of 
this line and these circles, together with the points a, p in the original set s. Repeat 
this process with S1. Form every line determined by pairs of points in S1. rorm every 
circle whose radius is the distance between some pair of points in S1 and whose center 
is a point in St. Let S2 be the set of all points of intersection of these lines and circles, 
together with the points in S1, Repeat the process with S1:- Continuing in this wzry pro­
duces a sequence of sets 

Sr;;;.S1 r;;;.S2r;;;S~r;;;··· 

A cormructlble point is any point that lies in some S1• A constructible line is a line that 
contains at least two constructible points. A constructible circle is one whose center is 
a constructible point and whose radius has length equal to the distance between some 
pair of constructible points. For example, all the labeled points and all the lines and 
circles in Figure 1 are constructible. Note that points of intersection of constructible 
lines and circles are constructible points. 

Now we coordinatize the plane by taking 0 as the origin, the distance from 0 to 
Pas the unit length, and the line OP as the x--axis, and P having coordinates (1, 0). 
Figure 1 shows that they-axis (the line AO) is a constructible line. The point (0, 1) is 
constructible since it is the intersection of they-axis and the constructible circle with 
center 0 and radius OP. A similar argument shows that 

(r, 0) is constructible If and only If (0, r) is constructible. 

Constructible Numbers 
A real number r is said to be a constructible number if the- point (r, 0) is a constructible 
point. Every integer is a constructible num her (Exercise 4). If r is the distance between 
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two constructible points A and B, then r is a constructible number because (r, 0) is the 
intersection of the constructible x-axis and the constructible circle with center 0 and 
radius r. Exercise 18 shows that 

a point is constructible If and only if its coordinates are 
constructible numbers. 

Theorem 15.1 
Let a, b, c, d be constructible numbers with c '!; 0 and d > 0. Then each of 
a + b, B - b, ab, ajc, and Vd is a constructible number. 

Proof~ We first asswne a and c are positive and show that af c is a constructible 
number. Since a and c are constructible numben, the points (a, 0) and 
(0, .:) are constructible and so is the line L they determine. The line 
through the constructible point (0, 1) parallel to L is constructible 
(Exercise 19). It intersects the x-axis at the constructible point (x, 0), as 
shown on the left side of Figure 2. Hence, xis a constructible number. 

Use similar triangles to show that_!_= ~.which implies that x == afc. 
c a 

When a == 0 or when a or cis negative, Exercise 13 shows that af c is a 
constructible. 

a 

FIGURE2 

If b == O, then ab == 0 is certainly constructible. If b '¢ O, then 1/h is 
constructible by the previous paragraph, and hence af()./b) == ab is also 
constructible. Exercise 2 shows that a + b and a - b are constructible. 

The number d + 1 is constructible by Exercise 2. So the midpoint A 
of the line segment joining the constructible points (0, 0) and (d + 1, 0) 
is constructible (Exercise 20). Hence, the circle with center A and radius 
(d + 1)/2 is constructible. The constructible line that is perpendicular 
to the x-axti at the point (1, 0) intersects this circle at the constructible 
point B == (1, y). as shown on the right of Figure 2. A theorem in plane 
geometry states that an angle that is inscribed in a semi-circle (such as 
OBD) is a right angle. Use the three right triangles on the right side 
of Figure 2 and the Pythagorean Theorem to show that y == d and, 
therefore, y == Yd. It follows that y = W is a constructible nwnber. • 
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Corollary 15.2 
Every rational number is constructible. 

Proof .. Every integer is constructible (Exercise 4). Therefore, evt:ry quotient of a 
pair of integers (rational number) is constructible by Theon::m 15.1. • 

In order to determine eKa.Ctly which real numbel":i are constructible. we must examine 
the equations of constructible lines and ciides. 

Lemma 15.3 
let F be a subfield of the field R of real numbers. 

( 1} li a I ine contains two points whose coordinates are in F, then the I ine 
has an equation of the form 

ax +by+ c = o, where a, b, c Ef. 

(2) li the center of a circle is a point whose coordinates are in F and the 
radius of the circle is a number whose square is in F, then the circle 
has an equation of the form 

r + y' + rx + sy + t = 0, wrere r, s, teF. 

Proof"' (1) Suppose (xh y1) and (x1, y~ are points on the line with x,. y1E F. If 
x1 '# Xz, the two-point formula for the equation of a line shows that the 
line has equation 

(
Y:t - Y1) l [ (Yz - Y1) ] --- x- y + -x1 --- + y 1 = 0 
X% - X1 ~ Xz - Xt 

· c~+by+ c =0 

Since F is a field and XJ, y1 E F, each of a, h, c is in F. The case when x1 = x1 
is left to the reader. 

(2) If (xl, y1) is the center and k the radius, with XJ, Ylo JCl E F, then 
the equation of the circle is 

(x - xJ2 + ( Y - Y1f = k?­
x1 + T + (-h;)x + (-2yl)y + (x12 + Y11

- ~ = 0. 

The coefficients are in F. • 
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Lemma 15.4 
Let F be a subfleld of ~ and k a positive element of F such that v'fi:~ F. Let 
F(vK) be the set {a + bvK I a, b E F}. Then 

(1) F(v'ii:) is a subfleld of R that contains F. 

(2) Every element ofF(YK) can be written uniquely In the form a+ bVk, 
with a,b E F. 

Proof .. (1) Exercise 15. 

{2) If a + bVk = a1 + b1 ViC, with a, b, a~o b1 EF, then a - a1 = 
(b1 -b) vk. If b - ht ¥:- 0, then vk =(a -at) (ht - br1

, which a an 
element of F. This contradicts the fact that VTi ~F. Hence, h1 - b1 = D, 
and, therefore, a -a.= (O)V'k = 0. Thus a= a1 and b = ht· • 

The field F('V'iC) is called a quadratic exteasloa lil'ld of F. Quadratic extension fields 
play a crucial role in determining which numbers are constructible. 

Lemma 15.5 
Let F be a subfleld of H. Let L1 and L2 be lines whose equatIons have coefflc Ients 
In f. Let C1 and C~ be circles whose equations have coefflclents In F. Then 

(1) If L1 intersects L2, then the point of intersection has coordinates in f. 

(2) If t 1 intersects C2, then the points of Intersection have coordinates 
In For in some quadratic extension field f(Yk). 

(3} If L1 intersects C1, then the points of intersection have coordinates 
In For in some quadratic extension field f(\/k). 

Proof .. (1) Suppose L 1 and L 1 have equations 

Lj:a1x + hJ)I = c1 

L,.:~x + hzy = c1 

with ap b1, c1 EF. Since L1 intersects L,, these equations have a simulta­
neous solution. By using elimination or determinants, we see that this 
solution is 

and 

Sinre a, b10 c1EF, the point of inter5ection (x, y) has coordinates in the 
field F. 

(2) Suppose C1 and C1 have equations 

q ;;r;' + Y + rtX + SJY + ft = 0 

C,.:xl + 1 + "1X + $1)1 + t1 = 0 
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with r 1, s1, t1 E F. The coordinates of the intersection points satisfy both 
equations and, hence, must satisfy the equation obtained by subtracting 
the second equation from the first; 

(r1 - r~ + (s1 - -':z)y + (t1 - t,) = 0. 

This is the equation of aline, and its coefficients are in F. Since the inter­
section points of C1 and C1 lie on this line and on the circle C1, we need 
only prove (3) to complete the proof of the theorem. 

(3) Let L1 and C1 have the equations given above. At least one of 
a1, b1 must be nonzero, say b1 "f- 0. Solve the equation of L 1 for y and 
substitute this result in the equation for C1• Verify that this leads to an 
equation of the form a~+ bx + c = 0, with a, b, cEF. The solutions of 
this equation are 

-b + VIi- - 4ac 
x = · = A ± Bvk, 

2a 

-where A= -bj2a, B = lj'kl, and k = 1l-- 4ac are elements of F. Since 
L1 and C1 intersect, we know that k 2!: 0. Using the equation for Lt, we 
see that the coordinates of the points of intersection of L1 and C1 are 

x = A + BVk and y = c1 - t~tA - atB Vk 
b, ht 

x =.A.- BVk and 

If k = 0, these reduce to a single point of intersection. Since b1 '* 0, all 
these coordinates lie either in F (tf v'k E F) or in the quadratic extension 
F(Vk) (if Vk~F). • 

Theorem 15.6 
If a real number r is constructible, then there is a finite chain of fields 
0 = F0r;;F1 r;;.F2 ,;. • • ·t;;.F,,;. R such that rEF11 and each F1is a quadratic exten­
sion of the preceding field, that is, 

ft = 0('\I'GJ, F2 = Ft("\.IC;) F:1 = F2( Vc2l, ... , F11 = Fn-1(~), 
where c1 E F1 but '\10 Iii': F1 fort' = 0, 1, 2, ... , n - 1. 

A finite chain of fields as in the theorem is ca.1led a quadratic extension chain. 

Proof oflheorem 15.6 ... LetT be a constructible number. Then the point (r, O) can 
be constrt"K::ted from the points 0 = (0, 0) and P = (1, 0) by a finite 
sequence of operations of the following types: 

(i) Form the line determined by A and B, where A, Bare previously 
constrt"K::ted points or clements d' { 0, P}; 

(ii) Form the circle with =ter A and radius the distance from B to C, 
where A, B, C are previously constructed points or elements of { O, P}; 

(iii) Determine the points of intersection of lines and circles formed in 
(i) and (ii). 
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This process begins with the points 0 and P whose coordinates are in Q. 
Lines or circles determined by them will have equations with rational 
coefficients by Lemma 15.3. The intersections of such lines and circles 
will be points whose coordinates are either in 0 or in some quadratic 
extension Q(\fCo) by Lemma 15.5. The lines and circles determined by 
these points will have equations with coefficients in the field F1 = Q("v'4) 
by Lemma 153. The intersections of such lines and circles will have 
coefficients either in F1 or in some quadratic extension F1( v'C;) by 
Lemma 15.5. Continuing in this fashion. we see that at each stage of the 
construction of (r, 0) the points in question have coordinates in some 
field F1 and at the next stage the newly created points have coordinates in 
F1 or in a quadratic extension FI._'\ICJ. Mter a finite number of su;h steps 
we reach the point (r, 0), which necessarily has coordinates in the last 
field of the quadratic extension chain 0 = F0 >:;; F1 ~,; F2 >:;; • • • >:;; FM. • 

Roots of Polynomials 
There are two ways to show that some real numbers are not constructible. The method 
presented here is elementary and depends only on Chapter 4. But if you've covered 
Sections 11.1 and 11.2,. skip to Theorem 15.9 and use the footnote below in place of 
the proof given there.* 

Lemma 15.7 
Let F be a subfield of n. and f{x)EF(x]. Suppose that kEF but '\If f{:f. 

Jf a+ b-.../f. is a root of f(x), then ~:r - b-.../f. is also a root ot f(x). 

Proof .. If u = r + rv'k E F( VIC), let ii denote r - S'\IIC. This operation is well 
defined because every element of F(v'k) can be written uniquely in the 
form r + s""(r, IE F) by Lemma 15.4. Verify that for any u, v E F( VIC), 
(u + v) = u + :Vand uv = u · :V. Also note that u = iiif and only if .s = O, 
that is, if and only if u E F. The rest of the proof is identical to the 
proof of Lemma 4.29, which is the special case when F = R, k = -1, 

and Vk= i. • 

Lemma 15.8 
Let F be a subf1eld of a field K. Let f(x), g(x)Ef[x] and h(x)EK[xJ, Jf f(x) = 
g(x)h(x), then h(x) is actually in f[x]. 

•If kEF lind Viii! F, then r- k el[x] is the minimlll polynomilll Dl Vii over F, lind, hence, 

[F( Vk):FJ = 2 by Theorem 11.7. If Q !;;: • • • !;; F n is 11 qulldrlltic extension ch11in, then [F ~: I!J!] must be 
11 power Dl2 by Theorem 11.4.Therefore, the mini mill polynomi11l of 11 constructible number u hilS 
degree t for some k. (since this degree is the dimension [Q(u): Q], which must divide [Fn: Q.]). 
Consequently, no constructible number can be the root of 11n irreducible cubic in Q(x]. Since 11 
cubic polynomillll in Q(x] with no r11tion11l roots is irreducible by Coroll11ry 4.19, no such polynomi11l 
c11n hll ve 11 construct i ble number 11s 11 root. 
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Proof .. By the Division Algorithm in F[x], there are polynomials k{x) and r(x) 
in F[x] such thatf(x) = g(x)k(x) + r(x), with r(x) = 0 or 
degt{x) < deu(x). Since Ft;;.K,all these polynomials are inK[x]. Now 
consider the Division Algorithm in K(x], which says that there is a unique 
quotient and remainder. We have.f(x) = g(x)k(x) + t{x), and by hypoth­
esis we also have f(x) = g(x )h(x) + 0. By uniqueness, \W must have 
l{x) = 0 and h(x) = k(x). Sin(."e k(x) eF(x], the lemma is proved. • 

Theorem 15.9 
Let f(x) be a cubic polynomial in Q{x]. tf f(x) has no roots in 0, then f(x) has no 
constructible numbers as roots. 

The theorem implies, for example, that V'2 is nor a constructible number because it is 
a root of :X:- 2. which has no rational roots by the Rational RootTest(fheorem4.21). 

Proof ofT heorem 15.9 .. Suppose on the contrary that f(x) has real roots that are 

constructible. Each such root lies in a quadratic extension chaln of 0 by 
Theorem 15.6. Among all the quadratic extension chains conta:inlng a 
root of j(x), choose one of the smallest possible length, say Q = F0 !.:" 

.ft ~ • • • ~ FH. This means thatf(x) has a root r in F11 and that no qua­
dratic extension chain of length n - 1 or less contains aey root of 
f(x). Note that F~ #- 0 since f(x) has no rational roots. By the Factor 
Theorem 4.16/(x) = (x- r)l(x) for some t(x)e.F,[x]. Now reF,., and 
by the definition of a quadratic extension chain F, = F,.-1( V'k) for some 
k.eFJt-1 with Vk~F._1 • Therefa-e r =a+ b"'//i with~ beF~_1 • We 
must have b #- 0; otherwise, r would be in the chain F0 ~ F1 !.:" • • • ~F,- 1, 
contradicting the fact thatftx) has no roots in a chain of length n- 1. 
By Lemma 15.7 r =a- bv'kis also a root offtx) = (x- r)l(x).Since 
r #- r (because b #- 0) r must be a root of t(x). By the Factor Theorem 

f(x) = (x- rXx - T)h(x) for some li(x) eF,[x]. 

Let g(x) = (x - rXx - T) and observe that the coefficients of g(x) are in 
Fn-1: 

g(x) = (x- (a+ bv'k))(x - (a- bVk)) = XZ- 2ax + (01- kil). 

Therefore,j(x) = g(x)h(x) withf(x), g(x) eF,_1[x]. Consequently, 
h(x)eF..,_1[x] by Lemma 15.8. Now fix) has degree 3 and g(x) has 
degree 2, so h(x) must have degree 1 by Theorem 4.2. Since every first 
degree polynomial over a field has a root in that field, h(x}-and, hence, 

f(x}--has a root in F ... 1• This contradicts the choice of F0 !.:"F1 !.:" • • • t;;.F, 
as a quadratic extension chaln of minimal length containing a root of fix). 
Therefore,fix) has no constructible numbers as roots. • 

Impossibility Proofs 
Finally, we are in a position to prove the impossibility of the constructions discussed 
at the beginning of the chapter. In what follows, it is assumed that whenever a point, 
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line radius, ew., may be chosen arbitrarily, a constructible point, line, radius, etc., will 
be chosen. This guarantees that all points, lines, eW., produced by the construction 
process will be constructible ones. 

DUPLICATION OF THE CUBE Label the endpoints of one edge of the 
given cube as 0 and P and use this edge OP as the unit segment for coordinatizing 
the plane. Since the given cube has side length 1, its volume is also I. If there were 
some way to construct with straightedge and compass the side of a cube of volume 2, 
then the length c of this side would be a constructible number such that t!' = 2. 
Thus c would be a root of :JC ~ 2 But this polynomial has no rational roots by 
the Rational Root Test and, hence,. no constructible ones by Theorem 15.9. This 
contradiction shows that duplication of the cube by straightedge and compass is 
impossible. 

TRISECTION OF THE ANGLE It suffices to prove that an angle of 60" 
cannot be trisected by straightedge and compass. Choose two points 0, P and 
coordinatize the plane with 0 as origin and P = (1, 0). The point Q""" (1/2, W/2) 
is constructible since its coordinates are constructible numbers by Theorem 15.1 and 
Corollary 15.2. Furthermore, Q lies on the unit circle X" + .y1 = 1. Therefore, angle 
PDQ has cosine 1/2 (the first coordinate of Q) and, hence, has measure 60°. If it were 
possible to trisect this angle with straightedge and compass, there would be a 
finite sequence of constructions that would result in a constructible point R such that 
the angle ROP has measure 20", as shown in Figure 3. 

FIGUREl 

The point T where the constructible line 0 R meets the constructible unit circle is 
a constructible point. Hence, its first coordinate, which is cos 20°, is a constructible 
number. Therefore, 2 cos 20" is a constructible number by Theorem 15.1. But for any 
angle of t degrees, elementary trigonometry (Exercise 5) shows that 

cos 3t = 4 c;osl t - 3 cos t, 

If t = 20", then this identity becomes 

cos 60" = 4 cos3 2{)g - 3 cos 20g 

1 . 
2 = 4 cos3 200- 3 cos 20". 
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Multiplying by 2 and rearranging, we have 

(2 cos 20~) 1 ~ 3(2 cos 20") ~ 1 = 0. 

Thus the supposedly constructible number 2 cos 20" is a root of x1 ~ 3x ~ 1. The 
Rational Root Test shows that his polynomial has no rational roots and, hence; no 
constructible ones by Theorem 15.9. This is a contradiction. Therefore, an angle of 60° 
cannot be trisected by straightedge and compass. 

• Exercises 

A. I. Prove that r is a constructible number if and only if -r is constructible. 

2. Let a, b be constructible numbers. Prove that a + b and a - b are 
constructible. 

3. Use straightedge and compass to construct an angle of 

(c) Show that angles of 90° and 45" can be trisected with straightedge and 
compass. 

4. Prove that every integer is a constructible number. [Hint: 1 is constructible 
(Why?); construct a circle with center {1, 0) and radius 1 to show 2 is 
constructible.] 

5. Prove that cos 3t = 4 cos1 t- 3 cost. [Hint: These identities may be helpful: 
(l) cos(t1 + tJ ==cos t 1 cos t1 -sin t 1 sin t1; (2) cos 2t = 2 cos1 t- I and 
sin 2t "" 2 sin t cos t; (3) sin1 t + cos1 t "" 1.] 

6. Is it possible to trisect an angle of 3t degrees if cos 3t = 1/3? What if 
cos 3t = 11/16? 

B. 7. Consider a rectangular box with a square bottom of edge x and height y. 
Assume the volume of the box is 3 cubic units and its surface area is 7 square 
units. Can the edges of such a box be constructed with straightedge and 
compass? 

8. Use straightedge and compass to construct a line segment of length 1 + v3, 
beginning with the unit segment. 

9. Is it possible to construct with straightedge and compass an isosceles triangle 
of perimeter 8 and area 1? 

10. {a) Prove that the sum of two constructible angles is constructible. 
[A constructible angle is an angle whose sides are constructible lines.] 

(b) Prove that it is impossible to construct an angle of lo with straightedge 
and compass, starting with the unit segment. [Hint: If it were possible, 
what could be said about an angle of 20°'?] 

11. Prove that an angle oft degrees is constructible if and only if cos tis a 
constructible number. 
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12. Prove that r is a constructible number if and only if a line segment of length 
lrf can be constructed by straightedge and compass, beginning with a segment 
of length 1. 

13. Let a, c be constructible numbers with c ¢ 0. Prove that afc is constructible. 
[Hint: The case when a > 0, i: > 0 was done in the proof of Theorem 15.1.] 

14. Prove that the set of all constructible numbers is a field. 

15. Let F be a subfield of IR and kEF. Prove that F(vk) = {a + bvkja, b E F} is 
a subfield of C that contains F. If k > 0, show that F is a sub field of R. 
[Hint: Adapt the hint for Exercise 39 in Section 3.1.] 

16. Prove the converse of Theorem 15.6: If r is in some quadratic extension chain, 
then r is a constructible number. [Hint: Theorem 15.1 and Corollary 15.2.] 

17. Let C be a constructible point and L a constructible line. Prove that the line 
through C petpendicular to L is constructible. [Hint: The case when Cis on 
L was done in Example L If Cis not on Land Dis a constructible point on 
L, the circle with center C and radius CD is constructible and meets L at the 
constructible points D and E. The cin:les with oenter D, radius CD and oenter 
E, radius CE intersect at constructive points C and Q. Show that line CQ is 
perpendicular to L.] 

18. Prove that (r, s) is a constructible point if ;md only if rands are constructible 
numbers. [Hint: The lines through (r, s) perpendicular to the axes are 
constructible by Exexcise 17 .] 

19. Let A be a constructible point not on the constructible line L Prove that the 
line through A parallel to Lis constructible [Hint: Use Exexcise 17 to find a 
constructible line Mthrough A, perpendicular to L. Then construct a line 
through A perpendicular to M.] 

20. Prove that the midpoint of the line segment between two constructible points 
is a constructible point. [Hint: Adapt the hint to Exexcise 17.] 

C. 21. Squaring the Circle Given a cin:le of radius r, show that it is impossible to 
construct by straightedge ;md compass the side of a square whose area is the 
same as that of the given circle. You may assume the nontrivial fact that 1T is 
not the root of any polynomial in Q[x]. 
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Algebraic Coding Theory 

Prerequisites: Section 7.4 and Appendix F for Section 16.1; Section 8.4 
for Section 16.2; Section 11.6 for Section 16.3. 

Coding theory deals with the fast and accurate transmission of messages over 
an electronic "channel" (telephone, telegraph, radio, TV, sate I lite, computer relay, 
etc.) that is subject to "noise" (atmospheric conditions, interference from nearby 
electronic devices, equipment failures, etc.). The noise may cause errors so 
that the message received is not the same as the one that was sent The aim of 
coding theory is to enable the receiver to detect such errors and, if possible, to 
correct them.,. 

The use of abstract algebra to solve coding problems was pioneered by 
Richard W. Hamming, whose name appears several times in this chapter. In 1950 
he developed a large class of error-correcting codes, some ofwh ich are presented 
here. 

~~~ Linear Codes 

Ver hal messages are normally converted to numerical form for electronic transmis­
sion. When computers are involved, this is usually done by means of a binary code; 
in which messages are expressed as strings of O's and l's. Such messages are easily 

"Thus coding theory has virtually no connection with the secret codes discussed in Chapter 13. 
The purpose of the latter was to conceal the message, whereas the purpose here is to guarantee 
its clarity. 

471 
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handled because the internal processing units on most computers represent letters, 
numerals, and symbols in this way, The discussion here deals only with such binary 
codes.* 

Throughout this chapter we assume that we have a binary symmetric channel, 
meaning that: 

1. The probability of a 0 being incorrectly received as a I is the same as the 
probability of a I being incorrectly received as a 0; 

2. The probability of a transmission error in a single digit is less than .5; and 

J. Multiple transmission errors occur independently.t 

Here is a simple example that gives a flavor of the subject. 

EXAMPLE 1 

Suppose that the message to be sent is a sing]e digit, either I or 0. The mes· 
sage might be, for example, a signal to ten a satellite whether or not to orbit a 
distant planet. With a single-digit message, the receiver has no way to tell if an 
error has occurred, But suppose instead that a four-digit message is sent 1111 
for I or 0000 for 0, Then this code can correct single errors. For instance, if 
1101 is received, then it seems likely that a single error has been made and that 
1111 is the correct message. It's possible, of course, that thn:e errors were made 
and the correct message is 0000. But this is much less likely than a single error. i 
The code can detect double errors, but not correct them. For instance, if 1100 
is received, then two errors probably have been made, but the intended message 
isn't clear, 

Example 1 illustrates in simplified form the basic components of coding theory. 
The numerical message words (0 and 1) are translated into codewords (()()()() and 1111 ). 
Only codewords are transmitted, but in the example any four .digit string of D's and l's 
is a possible received wOTd. By comparing received words with codewords and decid· 
ing the most likely error, a decoder detects errors and, when possible, corrects them.** 
Finally, the corrected codewords are translated back to message words, or an error is 
signaled for received words that can't be corrected. 

Now consider Example I from a different viewpoint. Think of the message words 0 
and I as elements of Z2o and the received words as the additive group Z2 X Z2 X Z2 XZ2 
(with its elements written as 4-digit strings of O's and 1 's). Using Theorem 7 .12, you 

~'Binary" refers to the fact that these codes are based on Z1. Although binary codes are the most 
common, other codes can be constructed by using any finite field in place of~-

'The accuracy rate of message transmission depends on these probabfl ities. Si nee elementary 
probability is not a prerequisite for this book, our discussion of such questions will be mini mal; see 
Exercises :U-31. 

lift he probability of receiving a wrong digit is D1, then three or four errors occur In a message word 
less than .0004% ofthetime (once in 250,000transmissions); see Exercise 27. 

-This is sometimes called maximum-likelihood decoding. 



Definition 

16.1 Linear Codes 473 

can easily verifY that the set of codewords {0000, I Ill} is a subgroup of order 2 of the 
received words, as shown schematically here: 

Message Words 

Zz 

0 

l 

Codewords 

()()()() 

1111 

Received Words 

ZzXZzXZzXZz 

Next, we extend these ideas to the general case. For each positive integer n, 

B(n) denotes .l:! X Z2 X Z2 X • • • X Z:z (11 copies). 

With coordinatewise addition, B(n) is an additive group of order 2n (Exercise 10). The 
elements of B(n) will be written as strings of O's and 1 's of length 11. 

If 0 < k < n, then an (n, h) binary linear code consists of a subgroup C of 
B(n) of order~-

For convenience, Cis often called an (n, k) code, a linear code, or just a code.* The 
elements of Care called codewords. Only codewords are transmitted, but any element 
of B(n) can be a received word. 

The code in Example I is C = {0000, II II}, a subgroup of order 21 of the group 
B(4) = Z2 X Z2 X Z2 X Z2 of order zt. So this is a (4, I) code, in which the set of 
message words is B(l) = Z2. Similarly, in the general case of an (11, k) code, we shall 
consider B(k) = Z2 X Z2 X Z2 X • • • X Z2 (k copies of Zl), which has order i< to be 
the set of message words. 

Although any method of assigning each message woro to a unique code word can 
be used, the assignment made in Example I is convenient because the first digit in each 
code word is the oonesponding message word: 0-+ OCJOO and I -+ 1111 The (n, k) codes 
discussed below have the same feature: The first k digits of an n-digit codeword fOrm 
the corres pondingmessage word. 

EXAMPLE 2 

We shall construct the (6, 5) parity-dteck code. The message \Wrds are the ele­
ments of B(S), that is, all five-digit strings of O's and 1 's. A message \Wrd is con­
verted to a codeword (element of B(6)) by adding a sixth digit to the string; the 
extra digit is the sum (in Zll of the digits in the message word For instance, if 
the message \Wrd is 11011, then l + I + 0 + l + l = 0, so the corresponding 
codeword in B(6) is IlOilO. Similarly, the message word 10101 E ~5) has 
I + 0 + l + 0 + I = 1, so the corresponding codeword is 10 1011 E B(6). 

An element of B(6) is a codeword if and only if the sum of its digits is 
0, [Reason: If the sum of the message-word digits is 0, a 0 is added to make 
the codeword; if the sum of the message-word digits is l, a I is added for the 

"Linear codes are also called block codes or !JfOIIp cott.s. 
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codeword and 1 + 1 = 0; see Exercise 12 for the oonven;e.] Using this property, it 
is easy to showthat the set C of codewords is a subgroup of .8(6) (Exercise 13). 

This code can detect single transmission errors (1 is received as 0 or 0 as 1) 
because the sum of the digits in the received 'WOrd is 1 instead of 0. The same 
is true for any odd number of errors. But it cannot detect an even number of 
errors. nor can it correct any errors. For each n ~ 2, an (n, n - 1) parity-check 
code can be constructed in the same way. 

When retransmission of messages is easy, a parity-check code can be very useful. 
Such codes are frequently used in banking and in the internal arithmetic of computers. 
But when retransmission is expensive. difficult, or impossible, an error-correcting code 
is more desirable. We now develop the mathematical tools for determining the number 
of errors a code can detect or correct. 

The Hamming weight of an .element u of ~n) Is the number of nonzero 
coordinates in u; it is denoted Wt(u). 

EXAMPLE 3 

If u = llOll in .8(5), then Wt(u) = 4. Similarly, u = 1010010 E .8(7) has weight 
3, and 0000000 has weight 0. 

Letu, VEB(n). The Hamming distance between u and v,denoted d(u, v), is 
the number of coordinates rn which u and v differ.4 

EXAMPLE 4 

If u = 00101 and v = 10111 in .8(5), then r.{u, u) = 2 because u and u differ in 
the lint and fourth coordinates. In B(4) the distance between 0000 and 1111 is 4. 

Lemma 16.1 
If u, v, WE B(n), then 

(1} d(u, v) = wt(u - v); 

(2) d(u, v) :S. d(u, w) + d(w, v). 

Proof~ (1) A coordinate of u- vis nonzero if and only if u and u differ in that 
coordinate. So the number of nonzero coordinates in u - :u, namely 
Wt(u - v), is the same as the number of coordinates in which u and v 
differ, namely d(u, v). 

•1 n Cll:her words, if u = u1u1 • • • u~ and v = v, v1 • • • r~ (with each u;. Y1either 1 or 0), then a{u, V} is the 
number of indices i such that u1 'F r~ 
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(2) It suffices by (1) to prove that Wt(u- v) s Wt(u- w) + Wt(w- v). 
The left side of this inequality is the number of nonzero coordinates of 
u - v; and the right side is the 1otal nwnber of nonzero coordinates in 
u - w and w - v. So we need to verify only that whenever u - v ba5 non· 
zero ith coordinate, at lea:~t one of u - w and w - v also has nonzero ith 
coordinate. Using the subscript ito denote ilh coordinates, suppose the r'th 
coordinate u, - v1 of u - v is nonzero. If the ilh coordinate u, - w1 of 
u - w is nonzero, then there is nothing to prove. If tit - tq = 0. then 
u, = w" and, hence, w 1 - v1 = ~ - v, 'I; 0. Therefore, the ith coordinate 
Wt- v1 of w - vis nonzero. • 

If a codeword u is transmitted and the word w is received, then the number of 
errors in the transmission is the number of coordinates in which u and w differ., that 
is, the Hamming distance from u to w. Since a large number of transmission errors is 
less likely than a small number (Exercise 2 7), the nearest codeword to a received word 
is most likely to be the codeword that was transmitted. Therefore. a received word is 
decoded as the codeword that is nearest to it in Hamming distance. If there is moR: 
than one codeword nearest to it, the decoder signals an error.*lbis process is called 
nearest-neighbor decodiog.t 

A linear code is said to correct t errors if every codeword that is trans­
mitted with tor fewer errors Is correctly decoded by nearest-neighbor 
decoding. 

Theorem 16.2 
A linear code corrects terrors it and only if the Hamming distance between 
any two codewords is at least 2t + 1. 

Proof.,. Assume that the distance between any two codewords is at least 2t + 1. 
If the codeword u is transmitted with tor fewer errors and received 
as w, then d(u, w) s r. If vis aoy other codeword, then d{u, v) <1!:: 2t + 1 
hypothesis. Hence, by Lemma 16.1, 

2t + 1 s d{u, v) s d(u, w) + d(w, v) s t + d(w, v). 

Subtracting t from both sides of 2t + 1 s t + .:( w, v) shows that 
d(w, v) <1!::: t + 1. Sinoe r("u, w) s t, u is the closest codeword to w, so 
nearest-neighbor decoding co:m:ctly decodes w as u. Hence, the code 
corrects terrors. The proof of the converse is Exercise 15. • 

• A lter1111tively, the decoder can be programmed to choose one of the nearest cDdewords arbitrarily. 
This is usually done when retran sm issi on is difficult or i m pass i bl e. 

Iunder our assumptions in this chapter, nearest-neighbor decoding coincides with maximum­
likelihood decooing. 
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Sinre only codewords are transmitted, errors are detected whenever a received 
word is not a codeword. 

A linear code is said to detect terrors if the received word in any trans· 
missiOn with at least one, but no more than t errors, is not a codeword. 

Theorem 16.3 
A linear code detects terrors if and only if the Hamming distance between 
any two codewords is at least t + 1. 

Proof • Assume that the distance between any two codewordsis at least t + 1. If 
the codewonl u is transmitted with at least one, but not more than t error.;, 
and reoeived as w, then 

0 < t(u,w) s t, andhenre d(u., w) < t + L 

So w cannot be a codeword. Therefure, the code detects terrors. The 
proof of the converse is Exercise 16. • 

If u and -v are distinct codewo:rds, then d(u, v) is the 'YI'ei.ght of the nonzero rode­
'YI'OI'd u - v by Lemma 16.1. Conversely, the 'YI'ei.ght of any nonze£o codeword w is 
the distan~;X: between the distinct codewords w and 0 = 000 · · · 0 E B(n) because 
Wt( w) = Wt( w - 0) = t( w, 0). Therefore, the minimum HQtnlTiing distance between any 
two codewords is the same as the smallest Hamming weight of all the nonzero co&kwords. 
Combining this fact with Theorems 16.2 and 16.3 yields. 

Corollary 16.4 
A linear code detects 2t errors and corrects terrors if and only if the Hamming 
weight of every nonzero codeword is at least 2t + 1, 

EXAMPLE 5 

Let the message 'YI'OI'ds be 00, 10, 01, 11 E-B(2) and construct a {10, 2) rode 
by assigning to each message word the codeword (element of B(IO)) obtained 
by repeating the message word five times: 

0000000000, 1010101010, 0101010101, 1111111111. 

The set C of codewords is closed \IDder addition and, hence, a subgroup of 
order 2! (Theorem 7.12 ). So C is a (10, 2) code. Every nonzero codeword has 
Hamming weight at least 5 = 2 • 2 + 1. By Corollary 16.4 (with t = 2 ), the 
rode C corrects two errors and detects four errors. 
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Systematic Codes 

By constructing codes that repeat the message words a large number of times (five 
in the last example), you can always guarantee a high dey= of error detection and 
correction. The disadvantage to such repetition codes is their inefficiency when long 
messages must be sent. It is time consuming and expensive to transmit a large number 
of digits for each message word. So the goal is to construct codes that achieve an ac­
ceptable accuracy rate without unnecessarily reducing the transmission rate. 

One efficient technique for constructing linear codes is based on matrix multipli­
cation. Codes constructed in this way are automatically equipped with an encoding 
algorithm that assigns each message word to a unique codeword. 

EXAMPLE 6 

We shall construct a (7, 4) code. The message words will be the elements of 
B(4), and the codewords elements of B(7). Message words are considered as 
row vectors and converted to codewords by right multiplying by the following 
matrix, whose entries are in Z2: 

(

l 0 0 0 0 1 1) 
0 1 0 0 1 0 1 

G= . 
0 0 1 0 l 1 0 

0001111 

ror instan:e, the message word 1101 is converted to the codeword II 01 00 l because 

(

I 0 0 0 0 I I) 

( 1 l 0 I) ~ ~ ~ ~ : ~ ~ = ( 1 I 0 I 0 0 1 ). 

0001111 

The complete set C of codewords may be found similarly: 

Message Word Codeword Message Word Codeword 

0000 0000000 1000 1000011 

0001 0001111 1001 1001100 

0010 0010110 1010 1010101 

0011 0011001 lOll 1011010 

0100 0100101 llOO 1100110 

0101 0101010 1101 1101001 

0110 0110011 1110 1110000 

0111 0111100 1111 1111111 

Theorem 16.6 below shaM that Cis actually a subgroup of B(7). So Cis a (7, 4) 
code, called the (1, 4) Hamming code. The pm11ding table shows that every nonzero 
codeword has Hamming weight at least 3 = 2 • I + 1. Hence, by Corollary 16.4 
(with t "" 1) this code corrects single errors and detects double errors. 
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The table in Example 6 shows that code:words in the Hamming (7, 4) rode h~n~e a 
special form: The first four digits of each codeword form the corresponding message 
word. For instance.llOJOOl is the codeword for 1101." An (n.k) rode in which the first 
k digits of each codeword form the corresponding message word is called a systematic 
code. All the examples above are systematic codes. Systematic codes are convenient 
because codewords are easily translated back to message words: Just take the first k 
digits. 

We can construct other systematic codes by following a procedure similar to that 
in the last example. A k X n standard geDe[lltO£ matrix is a k X n matrix G with entries 
in z2 of the form 

1 0 0 0 0 au "tft-1: 

0 1 0 0 0 ~~ ~-k 

= (Ik I A), 
0 0 0 1 0 a(k-1)1 

0 0 0 0 1 ~I llj,ll-k 

where Ik is the k X k identity matrix and A is a k X (n - k) matrix. For instance. the 
matrix Gin Example 6 is a 4 X 7 standanl generator matrix. It has the form (14 ] A), 
where A is a 4 X 3 matrix. 

A standard generator matrix can be used as an encoding algorithm to convert ele­
ments of JJ(k) into rodewords (elements of B(n)) by right multiplication. Each u EJJ(k) 
is considered as a row vector of length k. The matrix product uG is then a row vector 
of length n, that is, an element of B(n). Because the first k columns of G form the 
identity matrix Ikl the first k coordinates of the codeword uG form the com!.1ponding 
message word uE B(k) (Exercise 23). In order to justifY calling uG a "codeword." we 
must show that the set of all such elements is a subgroup of JJ(n). 

Lemma 16.5 
If f:B(k}-+ B{n) is an injective homomorphism of groups, then the image off 
is an (n, k) code, 

Proof ... lmfis a subgroup of B(n) that is isomorphic to B(k) by Theorem 7.20. 
TherefOre, Im/ has order 2'' and. hence. is an (n, k) code. • 

Theorem 16.6 
If G is a k X f1 standard generator matrix, then {uG 1 u EB(k)} is a systematic 
(n, k) code. 

Proof.,. Define a functionf:JJ(k) -+JJ(n) byj(u) = uG. The image of /is 
{f(u) 1 u EJJ(k)} = {uG 11J E JJ(k)}. By Lemma 16.5 and the italicized 

•The last three digits of eMOh codeword are check digits tl'li11t CiS'~ be used to determine if 11. 

received word is a e.odeword; see Exercise :!2. 
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remarks preceding it, we need to show only thatfis an injective homo­
morphism of groups. Since matrix multiplication is distributive, 

f(u + 11) = (u + v)G = uG + vG = f(u) + f(v). 

Hence,./ is a homomorphimt of groups. 
If u = u1u 2 • • • uk EB(k), then the first k coordinates of uG are 

u 1 u2 • • • uk because G is a standard generator matrix, and similarly for 
tJ = Vfl-'2. • • "tq, E B(k). 'We use this fact to show that fis injective. If 
f{.u) = f(v), then in B(n) 

u1u.z • • • ut***** = uG = /(u) = f(v) = vG = v1v1 • • • vk *****• 

where the •'s indicate the remaining coordinates of uG and vG. Since 
these elements of B{n) are equal, they must be equal in every coordinate. 
In particular, u1 = v1, u 1 = t'2> •• , , uk = vk. Therefore, u = 1! in B(k), 
andfis injective. • 

EXAMPLE 7 

By Theorem 16.6, the standard generator matrix 

(

1 0 0 0 1 
G= 0 1 0 1 0 

0 0 1 1 1 

generates the (6, 3) code {uG J u EB(3)}. VerifY that the encoding algorithm 
u -+ uG produces the,e codev.ords: 

Mess112e Word Codeword Mess112e Word Codeword 
000 000000 100 100011 

001 001110 101 101101 

010 010101 110 110110 

011 011011 111 111000 

Since the Hamming weight of every nonzero codeword is at least 3, this code 
corrects single errors and detects double errors by Corollaty 16.4 (with t = 1). 

Describing a large code by means by a standard generator matrix is much more 
efficient than listing all the codewords. For instance, in a (50, 30) code there are only 
1500 entries in the 30 X 50 generator matrix, but more than a billion codewords. 

Linear algebra can be used to show that every systematic linear code is given by 
a standard generator matrix. The standard generator matrices for the codes in the 
examples above are in Exercises 7-9. 



480 Chapter 16 Algebraic Coding Theory 

• Exercises 

A. 1. Show that C = {0000, 0101, 1010, 1111} is a (4, 2) code. 

2. Find the Hamming weight of 

{a) 0110110 E .8(7) (b) 11110011 E .8(8) 

{c) 000001 EB(6) (d) 101101101101 EB(l2) 

3. Find the Hamming distance between 

{a) 0010101 and 1010101 

(b) 110010101 and 100110010 

{c) 111111 and 000011 

(d) 00001000 and 10001000 

4. Use nearest-neighbor decoding in the Hamming (7, 4) code to detect errors 
and, if possible, decode these received words: 

{a) 0111000 

{c) 1011100 

(b) 1101001 

(d) 0010010 

5. List all codewords generated by the standard generator matrix: 

6. 

7. 

{a) G 0 0 ~) (b) (~ 0 ~) 1 1 1 0 

(<) G 0 0 

D (d) G 0 0 1 

D 1 0 1 0 0 

0 1 0 1 1 

Determine the number of errors that each of the codes in Exm::ise 5 will 
detect and the number of errors each will correct. 

Show that the standard generator matrix 

0 0 0 0 
0 1 0 0 0 1 

G- 0 0 1 0 0 1 

0 0 0 1 0 1 
0 0 0 0 1 1 

generates the (6, 5) parity-check code in Example 2. [Hint: List all the 
codewords generated by G; then list all the codewords in the parity-check 
code; compan: the two lists.] 

8. Show that the standard generator matrix 

G= (1 0 1 0 1 0 0 0
1
) 

\o 1 o 1 o 1 o 1 o 
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generates the (10, 2) repetition code in Example 5. (Hint: See the hint for 
Exercise 7 .] 

9. Show that 1 X 4 standard generator matrix (I I 1 I) generates the code in 
Example l. 

10. Prove that B(n) "" Z2 X Z2 X Z2 X • • • X Z2 (n factors) with coordinatewise 
addition is an abelian group of order 2h. 

8.11. Prove that foranyu, v, wE B(n), 

(a) ~ u, v) "" aX v, u). 

(b) ~u, v) ~ 0 if and only if u. ~ v. 

(c) ~u, v) = aXu. + w, v + w). 

12. Prove that an element of B(6) is a codeword in the (6, 5) parity-check code 
(Example 2) if the sum of its digits is 0. [Hint: Compare the sum of the first 
five digits with the sixth digit.] 

13. Prove that the set of all codev.urds in the (6, 5} parity-clrck code (Example 2) 
is a subgroup of 8(6). (Hint: Use Exercise 12.] 

14. If u and v are distinct codewords of a code that corrects terrors, explain why 
aXu.,v) ~ t. 

15. Complete the proof of Theorem 16.2 by showing that if a code corre.;ts t 
errors, then the Hamming distan~:e between any two codewords is at least 
2 t + 1. (Hint: If u, v are codewords with aXu, v) s 2t, obtain a contradiction 
by constructing a word w that differs from u in exactly t coordinates and from 
v in tor fewer coordinates; see Exercise 14.] 

16. Complete the proof of Theorem 16.3 by showing that if a code detects terrors, 
then the Hamming distance between any two codewords is at least t + l, 

17. Construct a (5, 2) code that corrects single errors. 

18. Show that no (6, 3) code corrects double errors. 

19. Construct a (7, 3) code in which every nonzero codeword has Hamming 
weight at least 4. 

20. Is there a (6, 2) code in which every nonzero codeword has Hamming weight 
at least 4? 

21. Suppose only three messages are needed (for instance, "go," "slow down," 
"stop''). Find the smaJlest possible n so that these messages may be 
transmitted in an (n, k) code that corrects single errors. 

22. Let G be the standard generator matrix for the ( 7, 4) Hamming code in 
Example6. 

(a) If u "" (u., '1'2> u1, ~) is a message word, show that the corresponding 
codeword u.G is 
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(b) If v = (VJ., '-'2> VJ> v~ v~, -tl<» '?) E B(7), show that vis a codeword if and 
only if its last three coordinates (the check digits) satisfy these equations: 

v5 "" v2 + ~ + v4 

v~ = ~ + v3 + v4 

f)1 = 11[ + 112 + t'4 

23. If G is a k X n standard generating matrix and u. = ul~~ • • • uk is a message 
word, show that the first k digits of the codeword uG are U!> uz, ... , t,ik• 

24. If Cis a linear code, prove that either every codeword has even Hamming 
weight or exactly half of the codewords have even Hamming weight 

25. Prove that the elements of even Hamming weight in B(n) form an (n, n - I) 
code. 

26. If k < n andf:B(k) ...:,.B(n) is a homomorphism of groups, is !mfa linear 
code? Is Imfan (n, k) linear code? 

NOTE: A knowledge of elementary probability and a calculator are needed for 
Exercises 27-31. 

27. Assume that the probability of transmitting a. single digit incorrectly is .01 
and that a four-digit codeword is transmitted. Construct a suitable probability 
tree and compute the probability that the codeword is transmitted with 

(a) no errors; (b) one error; 

(c) two errors: (d) three errors; 

(e) four errors; (f) at leastthree errors. 

28. Do Exeocise 27 for a five-digit codeword. 

29. Suppose the probability of transmitting a single digit incorrectly is greater 
than .S. Explain why ''inverse decoding'' (decoding 1 as 0 and 0 as 1) should 
be employed. 

30. Assume that the probability of transmitting a single digit incorrectly is .01 
and that M is a 500-digit message.. 

(a} What is the probability that M will be transmitted with no errors? 

(b) Suppose each digit is transmitted three times (Ill for each I, 000 for 
each 0) and that each received digit is decoded by "majority rule" (111, 
110, 101, 0 II are decoded as I and 000, 001, 0 10, 100 as 0). What is 
the probability that the message received when M is transmitted will be 
correctly decoded? [Hint: Find the probability that a single digit will be 
correctly decoded after transmission.] 

31. (a) Show that the number of -ways that k errors can occur in an n-digit 

message is(=} where(;) is the binomial coefficient. 

(b) If pis the probability that a single digit is transmitted incorrectly and q is 
the probability that it is transmitted conectly, show that the probability 

that k errors occur in ann-digit message is(~) ~rk. 
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Ill Decoding Techniques 

Nearest-neighbor decoding for an (n, k) code was implemented in ~tion 16.1 by 
comparing each received word with all i' oodewords in order to decode it. But when k 
is very large, this bi'Ute-force technique may be impractical or impossible. So we now 
develop decoding techniques that are sometimes more efficient. One of them is based 
on groups and cosets. 

EXAMPLE 1 

Let Cbe the (5, 2) code {00000, lOllO, OllOl, llOll}.From the elements of 
B(S) not inC, choose one of smallest weight (which in this case is weight 1), say 
e1 "" 10000. Formitscosete1 + Cby addinge1 successively to the elements of 
C and list the coset elements, with e1 + c directly below<: for each c E C: 

C; 00000 110ll0 01101 !lOll 
e1 + C: 10000 OOllO 11101 010ll 

Thus, for eKatnple, Ill 0 l is dinxJtly below 0110 l E Cbecause e1 + 0 ll 0 1 == 10000 + 
OliO 1 = 1110 L Among the elements not listed above, choose one of smallest weight, 
say e2 = 01000, and list its coset in the same way (with e1 + c below c E C); 

00000 10110 01101 

10000 OOllO 11101 

01000 llllO 00101 

llOll 

OlOll 

lOOll 

Among the elements not yet listed, choose one of smallest weight and list its coset, 
and cattinue in this way until every element of B(S) is on the table. Verify that this is 
a complete table: 

00000 10110 01101 llOll Cockwords 

10000 00110 lllOl OlOll 

01000 11110 00101 10011 

00100 10010 01001 lll11 REceived Words 

00010 10100 01111 llOOl 

00001 10111 01100 11010 

llOOO 01110 10101 00011 

10001 00111 11100 01010 

The decoding rule (wh£h will be justified bdow) is: Decode a received won:J w a.r the 
codem:Jrd at the top of the column in which w appems. Foe instance, 0 l 001 (fourth row) 
is decoded asO ll 0 l; and 0 1010 (last row) is dew;oded as 110 ll. Similar~ 11000 
(seventh row) is decoded asOOOOO. 

The deooding table in the example is called a standard array, and the decoding rule 
standard-array decoding or coset decoding. The same procedure can be used to con­
struct a standard array foc any code C. Its rows are the cosets of C, with C itself as the 
first row. Each is of the form e + C, when: e is the coset leader (an element of smallest 
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weight in the coset and listed first in the row). The element e + c (with c E C) is listed 
in the column below c and is decoded as c. 

Theorem 16.7 
Let C be an (n, k) code. Standard-array decoding for C is nearest-neighbor 
decoding. 

Proof ... If w eB(!J), then w = e + v E e + C, where e is a coset leader and v is 
the codeword at the top of the column containing w. Standard-array 
decoding decodes w as v. 'We must show that v is a nearest codeword to 
w. If -uECis any other codeword, thenw-u is an element of w +C. 
But w + Cis the coset of e (because e = w - v E w + C) •. By construc­
tion, the coset leader e has smallest weight in its coset, so Wt( w - u) ~ 
Wt(e). Therefore, by Lemma 16.1, 

d(w,-u) = Wt(w -u) ~ Wt(e) = Wt(w-v) = l(w,v). 

Thus vis a nearest codeword tow. • 

When nearest-neighbor decoding is implernetrted by a 'iotandard array, a codeword is 
automatically chosen whenever there is more than one codeword that is nearest to are­
ceiwd word w (rather than an enor being signaled). So incorn:d: deooding may occur in 
such cases. The code in the last example corrects :ringle errors (every codeword has Might 
at least 3; see Corollary 16.4). Since two or mon: errors are much less likely than a single 
one, standard-array decoding for this code has a high rate of accuracy (Exercise 18). 

Once a standard array has been constructed, it's much more efficient for decoding 
than brute-force comparison with all codewords. Unfortunately, constructing a stan­
dard array for a large code may require as much computer time and memory as brute 
force. But when a code is given by a generator matrix, a much shorter decoding array 
is possible, as we now see. 

Consider an (n, k) code with k )( n standard generator matrix G = (Ik t A). The 

parlty-dleck m atrlx of the code is the n x (11- k) matrix H = (:r~J.• 

EXAMPLE 2 

Verify that the standard generator matrix for the (5, 2) code {00000, 10110, 
01101, 11011} of Example 1 is 

G=G 0 
1 

1 
1 

1 
0 

~)=(IliA). 

"Si nee the generator ITlDbix can Dlways be obtai ned from the parily-<:heck ITlDtrix, many books on coding 
theory deli ne a code in terms of its par ity..cheek matrix rather than its ge neratcr matrix. In most books, 
the parily-<:heck matrix is defined to b&the transpose ofot.r m11lrixH, that is, the (k- n) X n matrix 

whose ith row is the same as the ith column of H. The ITlDirix His more converient here, and, in any case, 
all the res u Its are easily tr ansl11ted from one notation to the other. 
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Here k = 2, n = 5, n - k = 3, and A is 2 x 3. So the parity-checlc matrix is the 
5 x 3matrix 

=(t} 

Verify that the product matrix GH is the 2 x 3 zero matrix. The phenomenon 
oa:urs in the general case as well. 

Lemma 16.8 
tf G = (/~1 A) is the standard generator matrix for a linear code and 

H = (,n~J is its parity-check matrtx, then GH is the zero matrix. 

Proof • The entry in row i and column} of GH is the product of the ith row of G 
(see page 478) and thejth column of H:* 

8(11-k)t 

= 811a11 + Ba.~ + · · · + B1Aj + ' ' · + ¥19 

+ ~Itt61J + atAt + · · · + ay8u + · ' · + llr.,h-k'fif!t.-klt 

Since B, = 0 whenever r ,.,. ;sand since addition is in l,. this sum reduces to 

Baa, + a,p11 = la!f + aql = ag + a9 = 0. • 

In an (n, k) code with k x n standard generator matrix G, every received 'WOrd 
w EB{n) is a row vector of length n. Since the parity-check matrix His n x (n- k), 

•The Kronecker delta syni:Jolll,. is defined as follows: when r = s, 8,. = 1 and when r 'I' s, li,. = D. 
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the product wH is a row ved:or of length n - k, that is, an element of B(n - k). Let 0 
denote 000 • · · OE;B(n- k). 

EXAMPLE 3 

Let H be the 5 x 3 parity-check matrix for the ( 5, 2) code in Example 2. Then 
llOOOH = 011 and 10110H = 0: 

1 1 0 
1 0 1 

(1 1 0 0 0) 1 0 0 = (0 1 1) and 

0 1 0 
0 0 1 

1 1 0 
1 0 1 

(1 o 1 1 o) 1 o o = (o o o). 
0 1 0 

0 0 1 

The fact that 10110 is a codeword in this code and 1011 OH : 0 is an example of 
the following Theorem. 

Theorem 16.9 
Let C be an (n, k) code with standard generahJr matrix G and parity-check 
matrix H. Then an element win B(n) is a codeword if and only if wH = 0. 

Proof~ Define a functionfB(n) 4 B(n- k) by f(w) : wH. Thenfis a homo-
morphism of groups (same argument as in the proof of Theorem 16.6). 
Now w is a codeword if and only if wE C. Also, wEK(the kernel off) 
if and only if wH = 0. So we must prove that wE C if and only if w EK, 
that is, that C : K. By the definition of generator matrix, every element 
of Cis of the form uG for some u E B(k). But (u G)H: v( GH) : 0 
because GH is the zero matrix (Lemma 16.8). Therefore, C ~ K. Since 
Cis a subgroup of order ~. we need to show only that K has order ~in 
order to conclude that C = K. 

Exercise 14 shows thatfis surjective. By the F'lrst Isomorphism 
Theorem 8.20,B(n- k) 8i! B(n)/K, and, hence, byLagnmge'sTheon:m 8.5, 

'1!* = jB(n)l = iKI [B(n):K] 

= iKI • IB(n)/ Ki = iKI • IB(n - k)j = iKI• r. 
Dividing the first and last terms of this equation by 21t-k shows that 

iKI:r. • 
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Corollary 16.10 
let C be a linear code with parity-check matrix Hand let u, vEB(n). Then u 
and v are in the same coset of C if and only if uH = vH. 

Proof • To say that u and v are in the same coset means u + C = v + C. 
Theorem 8.2 in additive notation shows that 

u + C = v + C if and only if u- vEC. 

By Theorem 16.9, 

u-vEC if and only if (u- v)H= 0. 

Since matrix multiplication is distributive. (u- v)H= uH- vH. Also, 
uH - vH = 0 is equivalent to uH = vH. Hence, 

(u- v)H = 0 if and only if uH = vH. 

Combining the tluee centered statements above proves the theorem. • 

If wE B(n) and His the parity-check matrix, then wH is called the syndrome of w. 
By Corollary 16.10, w and its coset leader e have the same syndrome. If w = e + v with 
v E C, the standard array decodes w, as v = w - e. Therefore. standard·array (nearest· 
neighbor) decoding can be implemented as follows: 

l. If w is a receiwd word, compute the syndrome of w (that is, wH). 
2. Find the coset leader e with the same syndrome (that is, eH = wH). 
3. Decode was w - e. 

Since this procedUie (called syndrome decodlag) requires only that you know the syn­
dromes of the coset leaders, the standard array can be replaced by a much shorter table. 

EXAMPLE 4 

The coset leaders for the (5, 2) code {00000, 10110, 01101, 11011}, as shown in 
Example 1, are 

00000, 10000,01000,00100, 00010,00001, 11000, 10001. 

Multiplying each rX them by the parity-check matrix H given in Example 2 produces 
i1s synlrome: 

Syndrome I 000 110 101 100 010 001 011 111 

Coset Leader 00000 10000 01000 00100 00010 000001 11000 10001 

To decode w = 01001, for example, we compute DlOOlH = 100. The table shows 
that the coset leader with this syndrome is e = 00100. So we decode w as w- e = 
01001 - 00100 = 01101. 

Depending on the size of the code and whether or not coset leaders can be 
determined without constructing the entire standard array, syndrome decoding may 
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be more efficient than brute-force nearest-neighbor decoding. For example, a (56, 48) 
code has :tS (approximately 2.8 X 1014

) codewords but only 28 = 256 cosets. 
Standard-array and syndrome decoding are complete decoding schemes, meaning 

that they always find a neares.t codeword for each received word. When retransmission 
of the message is impractical, complete deooding is a necessity. But when retrans.mis­
sion is feasible, it may be better to use an incomplete decoding scheme that corrects 
terrors and requests retransmission when more than terrors are detected. We now 
describe one such scheme. 

Let e1EB{1'1) denote the row vector with I in coordinate i and 0 in every other 
coordinate. In B(3), for instance, e1 == 100, e1 ~ 010, and e3 = 001. Each e1 has weight 1; 
in fact 

'" e2, ••• , e. are the only elements of weight 1 in B(n). 

Consider the product of e2 EB(3) and this matrix H: 

e#= (0 I 0) (~ ~ ~) = (0 1 1) = row2ofH. 
I 1 1 

Exercise 10 shows that the same thing happens in the general case. If e1EB(1'1) and H 
is a matrix with n rows, then 

e;H h the 1lh row of the matrix H. 

Now assume that C is a linear code with parity-check matrix Hand that the rows 
of H are nonzero and no two of them are the same. Then e1H = ith row of H ;t. 0 by 
hypothesis; hence, by Theorem 16.9, 

e1 is not a codeword. 

Furthermore, if i ¢ j, then e1 and e1 cannot be in the same coset of C (otherwise row i 
of H = e/f =elf= row j of Hby Corollary 16.10). Thug 

e1 is the only element of weight l in Us cO!iet. 

So every other element in the coset of e1 has weight at least 2. * Consequently, 

e; is alwuys the coset leader in its eoset. 

Finally, if the syndrome of a received v.urd w is the ith row of H, then wH = el/, so 
wander are in the same coset by Corollary 16.10. 

•The only element of weight 0 is 000 • • • 0, whose coset is C. Cis not the coset ofe,because e; is 
not a codeword. 
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The preceding paragraph suggests a convenient way to implement (possibly incom-
plete) syndrome deooding when the rows of Hare nonzero and distinct: 

1. If w is received, compute its syndrome wH. 
2. If wH = O,decode was w (because w is a codeword by Theorem 16.9). 

3. If wH ~ 0 and wH is 1he tth row of H, decode w by changing its ith coordinate 
(that is, decode was w - e, because e1 is w's coset leader). 

4. If wH ~ 0 and wH is not a row of H, do not decode and request a retransmission. 

This scheme (called parity-deck matrix decoding) can be easily impemented with large 
codes because there is no need to compute cosets or find coset leader.;. Furthermore, 

Theorem 16.11 
Let C be a linear code with parity-check matrix H. If every row of His 
ncnzero and no two are the same, then parity-check matrix decoding 
corrects all single errors. 

Proof ., When a codeword u is transmitted with exactly one error in coordinate 
i and received asw, then w -u = e,. By Theorem 16.9, wH = (e,_+ti)H= 
ell+ uH = e1H + 0 = e,H, which is the ith row of H. TherefOre, w is 
correctly decoded as w - e, = 1.1. • 

EXAMPLE 5 

Let Cbe the {5, 2) code whose parity-check. matrix His give in Exampe 2. If 
10011 is received, its syndrome is 

0 

0 1 

(1 0 0 1 l)H = (1 0 0 1 1) 0 0 

0 1 0 

0 1 

= (1 0 1) =row 2of H. 

Therefore, 10011 is decoded as 10011 - e1 = 10011 - 01000 = 11011. If 11000 
is received, verify that its syndrome is 011, which is not a row of H. Therefore, 
11000 is not decoded, and a retransmission is requested. 

In one importiUlt class of codes, parity--check. matrix decoding is actually complete 
syndrome (nearest-neighbor) decoding. 
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EXAMPLE 6 

The standard generator matrix G for the Hamming (7, 4) code was given in 
Example 6 of Section 16.1. Its parity-check matrix H has distinct, nonzero 

The ~ssible syndromes of a received word w in this code are 000 and the seven 
nonzero elements of .8{3). But all the nonzero elements of B(3) appear as rows 
of H. So every syndrome either is 000 (decode w as itself) or is the ith row of H 
for some i (decode w by changing its ith coordinate). Therefore, every received 
word is decoded. 

Example 6 is one of an infinite class of codes that can be described by using the 
fact that a linear code is completely determined by its parity-check matrix (from which 
a standard generator matrix is easily found). Let r ~ 2 be an integer and let n = 2' - I 
and k = 2' - 1 - r. Then n - k = r. The preceding example is the case r = 3. Let H 
be the n X (n - k) matrix whose last r rows are the identity matrix I, and whose n rows 
consist of all the nonzero elements of B(r). Since the number of nonzero elements in 
B(r) is Z- 1 = n, each nonzero element appears exactly once as a row of H. So the 
rows of Hare distinct and nonzero. The code with this parity-check matrix iB called a 
Hamming code. 

In every Hamming code, all possible syndromes are mws of H. So parity-check 
matrix decoding is complete syndrome.decoding that corrects all single errors.. 

• Exercises 

A. 1. Find the parity-check matrix of each standard generator matrix in Exercise 5 
of Section 16.1. 

2. Find the parity-check matrix for the code in Example 7 of Section 16.1. 

3. Find the parity-check matrix for the parity-check code in Example 2 of 
Section 16.1. [See Exercise 7 in Section 16.1.] 

4. Find the parity-check matrix for the (I 0, 2) repetition code in Example 5 of 
Section 16.1. [See EJa::rcise 8 in Section 16.1.] 

5. Find a parity-check matrix for the (15, II) Hamming code. 
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0 
0 I 
I 0 

6. Show that the linear code C with parity-check matrix 0 I cannot correct 
I 0 
0 I 

every single error. 

h . h . (I 0 1 I) 7. Let C bet e (4, 2) code wit standard generator matrix G = 
0 1 0 

I , 

Construct a standard array for C and find the syndrome of each coset leader. 
8. Construct a standard array for the (6, 3) code in Example in 7 of Section 16.1 

and find the syndrome of each coset leader. 
9. Choose new coset leaders (when p:>ssible) for the (5, 2) code in Example I and 

use them to construct a standard array. How does this array compare with the 
one in Example l? 

I 0. Let e1 -= 00 • • · 0 I 0 · · · 00 E B(n) have I in coordinate i and 0 elsewhere. If His 
a matrix with n rows, show that e1H is the ith row of H. 

H. 11. Suppose a codeword u is transmitted and w is received. Show that standard­
array decoding will decode was u if and only if w - u is a coset leader. 

12. If every element of weight :s. l is a coset leader in a standard array for a code 
C, show that C corrects t errors. 

13. If a codeword u is transmitted and w is received, then e -= w - u is called 
an error pattern. Prove that an error will be detected if and only if the 
corresponding error pattern is not a codeword 

14. Prove that the functionfB(n)--+ B{n- k) in the proof of Theorem 16.9 is 
surjective. [Hint: If v = v 1v2 • • • v,-k EB(n - k), show that v ""f{u), where 
u"" 000 · · · ~V:z • • • vn-kE B(n).] 

15. Let C be a linear code with parity-check matrix H. Prove that C corrects single 
errors if and only if the rows of Hare distinct and nonzero. 

16. Show by example that parity-check matrix decoding with the Hamming (J, 4) 
code cannot detect two or more errors. 

17. Show that in any Hamming code. every nonzero codeword has weight at least 3. 
18. [Probability required.] In the (5, 2) code in Example I, suppose that the 

probability of a transmission error in a single digit is .01. 
{a) Show that the probability of a single codeword being transmitted without 

error is .95099. 
(b) Show that the probability of a 100-word message being transmitted 

without error is less than .0 1. 
(c) Show that the probability of a single codeword being transmitted with 

exactly one error is .04803. 
(d) Show that the probability that a single codeword is correctly decoded by 

the standard array in Example I is at least .99921. 
{e) Show that the probability of a I 00-word message being conectly decoded 

by the standard array is at least .92 [Hint: Compare with part (b).] 
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Ill BCH Codes 

The Hamming codes in the last section have efficient decoding algorithms that correct 
all single errors. The same is true of the BCH codes* presented here. But these codes 
are even more useful because they correct muhiple errors. 

The construction of a BCH code u~ a finite ring whose additive group is (isomor • 
pbic to) some B(n). Each ideal in such a ring is a linear code because its additive group 
i'l (isomorphic to) a subgroup of B(n ). The additional algebraic structure of the ring 
provides efficient error-correcting decoding algorithms for the code. 

The finite rings in que.<~tion are constructoo as follows. Let n be a positive integer 
and (x" - 1) the principal ideal in Z2[x] consisting of all multiples of x" - 1. 
The elements of the quotient ring Z2{x]/(x" - 1) are the congruence classes (cosets) 
modulo x"- 1. By Corollary 5.5, the distinct congruenoo classes in Z 2 [x]/(x" - 1) are 
in one-to-one correspondence with the polynomials of the fcnm 

( •) Qo + DtX + ¥' + ' • ' + IJ,-1 :Jt-l, with a,EZz• 

Each such polynomial has n coefficients, and there are two possibilities for each coef­
ficient. Hence, Z2{x]/(x"- 1) is a ring with 2"elements. Furthermore, then coefficients 
(ao, Dt. az, •. • , a,....J of the polynomial (•) may be considered as an element of the 
group B(n) = Z2 x · · · x Z2• 

Theorem 16.12 
The function f~ {x]j(X'- 1}-+ B(n) given by 

f((a() + a,x +a~+ · · · a0 _1.r""1]) = (ao, a,, a2, ••• , a0 _ 1) 

is an isomorphism of additive groups. 

Proof .. Exercise 7. • 

Theorem 16.12 shows that every ideal of ~x]/(x" - 1) can be considered as 
a linear code sinoo it is (up to isomorphism) a subgroup of B(n). In particular, if 
g(x)EZ:[x], then the congruenoo class (coset) of g(x) generates a principal ideal lin 
Z:z[x]f(x" - 1). The ideal I consists of all congruenoo classes of the form [h(x)g(x)] with 
h(x) EZz[x]. BCH codes are of this type. 

In order to define a BCH code that corrects terrors, choose a positive integer r such 
that t < z-1• Let n = 'Z - L Then g(x) is determined by considering a finite field of 
order 2', as explained below. 

EXAMPLE 1 

We let t = 2 and r = 4, so that n = 24 
- 1 = 15. We shall construct a code in 

Z2[x]/(x15 
- 1) that corrects all double errors ~ finding an appropriate g{x). To 

do this, we need a field of order T = 16. 

•The initials BCH stand for Bose, Chaud huri, and Hocquengh&m, v.tlo invented these codes in 
1959-1960. 
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The polynomial 1 + x + x" is irreducible in Z2[x] (Exercise 3). Hence, 
K = Z:fxl/( 1 + x + x") is a field of order 16 by Theorem 5.10 (and the remarks 
after it). By Theorem 5.11, K contains a root a of l + x + :0. Using the fact that 

1 +a+ a 4 = 0 and, hence, 

we =compute the powers of a. Forexample,tl = a 2a 4 = a 2 (1 +a)= a 2 + ri. 
Similarly, we obtain 

a 1 =a a6 =~+ci a 11 =a +a2 +ci 

a 2 =rr a
1 = 1 +a+ ci a 12 = 1 + a + a 2 + a 3 

aJ = (} a 8 =l+a2 a 13 = l + a 2 + at 
a 4 = l +a a9 =a +a3 a 14 = 1 +at 

ri=a+a2 a 10 = l +a +a2 al5 = l 

1bese elements are distinct and nonzero by statements (1) and (2) of Theorem 11.7 
(with u = a and p(x) = 1 + x + x"). Therefore, they are all the nonzero ele­
ments of K, and a is a generator of the multiplicative group of K. 

To construct the polynomial g(x), we first find the minimum polynomials of 
a, ~, ci, a 4 over Z2• By the construction of K, the minimal polynomial of a is 
m1(x) = l + x + x". This polynomialm1(x) is also the minimal polynomial of 
a 2 and a4

, for instance, by the Freshman's Dream (Lemma 11.24), 

mt(a~ = 1 + {at) + (r?f 

= 12 +(a)2 +(a4
)

2 =(1 +a +a4l=D2 =0. 

Verify 1hat the minimum polynomial of ci is m~x) = l + x + r + :i3 + x" 
(Exercise 5). The polynomial g(x) is defined as the product m1(x)m3(x), so that 

g(x) = (1 +X+ x4)(1 +X+ r+ i' + x4) 
= 1 + x" + x' + x7+ ;I EZ2[x]. 

Let C be the ideal generated by [g(x)] in Z2[x]j(x1s - 1 ). Then Cis a code by 
lheorem 16.12. We shan see that Cis a (15, 7) code that corrects all single and 
oouble erro:rs. 

Just whatdothe co&:.wrds of Cbok like? By Corollary 5.5, each co~ da55 
in,Zix]/(xu- 1) is the class of a unique polynomial of the fOrm 

So we shan denote the class by this polynomiaL t When convenient, this poly­
nomial will be identified (as in Theorem 16.12) with the element~ a 1 e1:2 • • • a14 = 
(ao, a1, a2, ••• , a 14) of 11(15). The codeword; consist of the classes of polyno­
mial muhiples of g(x). For example, 

5 Remember, 1 = -1 in Z2• 

lThis is analogous to what was done in Section 2.3, when we oogan writing elements (classes) in 
Zn in the form k rather than [k]. 
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Codeword in Polynomial Form 

g(x) = 1 + x4 + XI + x + xi 

xg(x) = x(l + :X'< + x 6 + x1 + .xfl) 
= x+r+x'+x'l+x'l 

(1 + x6)g(x) = (1 + r)(l + x" + x6 + x1 + x') 
= 1 + x4 + x' + r + x10 + x12+ x13 + xl4 

In.B(15) Form 

100010111000000 

0 10001011100000 

1000100 11 010111 

If g(x) is multiplied by a polynomial h(x) of degree ~ 7, then the codeword 
h(x)g(x)has degree«!: 15 and is not of the form (••). Forexiiiilple,if h(x) = x!, 
then 

h(x)g(x) = xig(x) = xi(l + X' + :>!' + x 1 + xi) 
= xi + r2 + :>(4 + xu + xl6. 

The polynomial of the form ( **) that is in the same class as h(x)g(x) is the :re­
mainder when h(x)g(x) is divided by ;;s - 1 (see Corollary 5.5). Ve:rify that 

h(x)q(x) = (1 + x)(xl 5 - 1) + (1 + x +xi+ xl2 + x~. 

Hence, (f(x)g(x)] is the codeword 1 + x + xi + x12 + x14 or, equivalently, 
110000001000101. 

The procedure in Example 1 is readily generalized. If tis the number of errors the 
code should correct, let n = 2~ - 1, where r is chosen so that l < 2,...1 (in the example, 
t = 2, r = 4). By CoroBary 11.26, there is a finite field K of order 2'. By Theorem 11.28, 
K = Z£.a), where a is a generator of the multiplicative group of nonzero elements of 
K(and so has multiplicative order '1! - 1 = n). Let 

mt(x), mi_x), mi._x), .•• , mu(x) E Z2[x] 

be the minimal polynomials of the elements 

Let g(x) be the product in Z:lx] of the distinct polynomials on the list m1(x), 
mi_x), •.• ,n12!(X). 

The ideal C generated by fg(x)] in Z:z[x]/(x"- 1) is called the (primitive narrow­
sense) BCH code of length nand designed distance :lt + 1 with generator polynomial 
g(x). So the code in Exiiiilple 1 is a BCH code of length 15 and designed distan01: 
5 (= 2 • 2 + 1). If g(x) has degree m, then Exercise 14 shows that the code Cis an 
(n, k) code, where k = n - m. 

Theorem 16.13 
A BCH code of lerqth nand designed distance 2t + 1 corrects terrors. 

Proof ... The proof requires a k:novJ.edge of determinants; see Lidl-Pilz [32; 
page 230]. • 
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Theorem 16.13 shows that there are BCH codes that will correct any desired num~ 
ber of errors. More importantly, from a practical viewpoint, there are efficient algo~ 
rithms for decoding large BCH codes." A complete description of them would take 
us too far afield. But here, in simplified form, is the underlying idea of the error~ 
com::cting procedure. 

Let C be a BCH code of designed distance 2t + 1 and generator polynomial g(x). 
By the definition of g(x), each minimal polynomial m1(.x) dividesg(x). Hence, g(rt) = 0 
for each i"" 1, 2, •.. , 2t. If [f(x)] is a codeword in C, thenf(x) = h(x)g(x) for some 
h(x), and, therefore, 

f(lt) = Jl(a1)g(a1
) = h(a1) • 0 = 0. 

Conversely, if f(x)EZ:z[.x] has every d as a root, then every ~nt(x) divides f(x) by 
Theorem 11.6. This implies that g(x) Jf(x) (Exercise 8). Therefore, 

l.f{x)l is a codeword if and only if f(ti) = 0 for Isis 2r 

The decoder receives the v.urd aoa1 • • • OJ., which represents the (class of) the 
polynomial 

r(x) = ao + a,x + ¥ + .. · + a,.f. 

The decoder computes these elements of the field K = Z2(a): 

r(a), r(a2), r(al), ... , r(a2~. 

If all of them are 0, then r(x) is a codeword by the remarks above. If certain ones are 
nonzero, the decoder uses them (according to a specified procedure) to construct a 
polynomial D(x) EK[x],called the error~locator polynomial. Since Kis finite, the non~ 
zero roots of D(x) in Kcan be found by substituting e;wh a' E Kin D(x)]. 

If no more than terrors have been made, the nonzero roots of D(x) give the 
location of the transmission errors. For instance, if a 7 is a root, then a1 is incor~ 
rect in the received word r(x); similarly if cJl = lis a root, then an error occured in 
transmitting ao. 

If .D(x) has no roots in K or if certain of the r(a') are 0, so that D(x) cannot be 
constructed, then more than t errors have been made. So the decoder follows set pro~ 
cedures (omitted here) to choose arbitrarily a nearest codeword to r(x). 

EXAMPLE 2 

In the (15, 7) BCH code of Example 11 suppose this word is re.eived: 

r(x) = x + x1 +:} = 010000011000000. 

•Th is is one reason B CH codes are wide I y used . For ex ample. the Europe an and tr an s- Atlantic 
communication system used a BCH code with t = 6 and r = II. It is a (255, 231) code tha1 corrects six 
errors with a failure probability of on I y 1 in 16 million. 
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Using the table at the beginning of Example I and the fact that u + u = 0 for 
every element u in K (Exercise 1), we have 

r(a) = a + d' + a 8 = a + (1 + a + ~) + (1 + ~) = cr + a'l = a6
• 

r(a'l) = ~ + (a17 + (dl)' 

=~+~+?=al+a6+c? 
= a3 +(a'-+ fi) +(a+~= a+~+ a3 = a 11

• 

Exercise 6 shows that 

r{a) = r(a'f = (drf = a1~ 
r{a<~) = r(a)4 = (a't = a:w = a'l. 

The error-locator polynomial is given by this formula (which is justified in 
Exercise 15): 

D(x) =X:+ r(a)x + (r(al) + :~:;). 
Using the table at the beginning of Example 1, we see that 

D(x) =X:+ a6x + (a12 +::)=X:+ a6x + (a12 +aS) 

= x2 + a6x + a 14
• 

By substituting each of the nonzero elements of Kin D(x), we discover that 

D(c/) "" (cij2 + a6~ + at4 = alo + an + fi• 
= (1 +a+ dl) + (a+ az + al) + (1 + a'l) = 0; 

D(a'J) = (a!'f + a6cP + al4 = all + au + a14 = a3 + I + a14 

= a'l + 1 +(I + a~ = 0. 

Therefore, a 5 and a'1 are the roots of D(x), so errors occurred in the coefficients 
of ;.; and Jr?. The received word 

r(x) = x + x1 + x' = OIOOOQOllQOOOOO 

is corrected as 

c(x) = x + x' + x1 + x' + :K? = 01000101 l_lOOOOO, 

which is a codeword (see page 494). 
Similarly, if r{x) = x2 + :/' + ~ + r 0 = OOIOOOIOOIIOIX)) is received, thm 

r(a) = a1
, r(~ = a, r\a1 = c?, and 

D(x) = x2 + r(a)x + [r(~) + :~:n = x2 + a 8x + (a + ~) 
= >? + a1x + (a +a) = >? + a'x = x(x +a'). 

The only nonzero root of D(x) is a', so a single error oo;:urred in the coefficient 
of ~, and the cor~t word is 

c(x) = J? + x6 + x' + r + x10 = 001000101110000. 
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Finally, if 1 + x + x' is received, then 

r{a) = I +a +a" = 0 and 

So D(x) cannot be constructed, and we conclude that more than two errors have 
occurred. Similarly, if I + x +~is received, then verity that D(x) = XZ + a1x + c} 
and thatD(x) has no roots inK. Once again, more than two errors have occurred 

• Exercises 

NOTE: Unkss stared otherwiSe, K is the fold Z:2fx]/(1 + x + x4
) of orrkr 16 and a is a 

root of! + x + :0, as in Example 1. 

A. I. (a) Provethatf(x) + /(x) = Oforeveryf(x)G:Z::{x]. 

(b) Prove thatu + u = 0 for every -uin the field K. 

2. Show that the only irreducible quadratic in Z:2(x] is r + x + 1. 
[Hint: List all the quadratics and use Corollary 4.19.] 

3. Prove that I + x + x4 is irreducible in Z2[x]. [Hint: Exercise 2 and Theorem 4.16.] 

4. Prove that the minimal polynomial of(!~ over z:2 is I +X+ r. 
[Hint: Use the table in Example 1.] 

5. (a) Prove that the minimal polynomial of a1 over Z:z is I +X + r + x! + x'. 
[Hint: Exercise 2, Theorem 4.16, and the table in Example 1.] 

(b) Show that a4 is also a root of 1 + x + x4
• 

B. 6. If f(x) EZ2[x] and a is an clement in some extension field of z,_, prove that for 
every k ~ l,j(a~ = f(rfl [Hint: Lemma 11.24.] 

7. (a) Show that the functionf. Z:J[x]/(l!' ~ 1)-+ B(n) given by 

f([ao + a1x + ¥ + · ' ' + Dto-tx"-1D = (ao, ah az, · . ·,a,_,) 
is surjective. 

(b) Prove thatfis a homomorphism of additive groups. 

(c) Prove thatfis injective. [Hint: Theorem 8.17 in additive notation.] 

8. (a) Let F be a field andf(x) G: F[x], If p(x) and q(x) are distinct monic 
irreducibles in F[x] such that p(x) lf(x) and q(x) lf(x), prove that 
p(x)q(x) lf(x). [Hint: If f(x) = q(x)h(x), thenp(x) I q(x)h(x); use part (2) 
of Theorem 4.12.] 

(b) If m1(x), mJ...x), ••• , mk(x) are distinct monic irreducibles in F[x] such that 
each m,{x)dividesf(x), prove thatg(x) = mJ(x)nl:!(x) · · · md,x) dividesf(x). 

9. Let C be the ( 15, 7) BCH code of Examples 1 and 2. Use the error-correction 
technique presented there to correct these received words or to determine that 
three or more errors have been made. 

(a) 1 + x = II()()()()()()()(. 

(b) 1 + x 3 + x4 + K = 1001110()()()()()(1()(. 
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(c) 1 + x1 + ~ + x1 = 101010010000000. 

(d) 1 + XS+ x1 +xi +:P = 100000111100000. 

10. Show that the generator polynomial for the BCH code with t = 3, r = 4, 
n = 15 is g(x) = 1 +X+ r + x4 + x 5 + x' + x 10

• [Hint: Exercises 3-5 may 
be helpful.] 

II. Let K = Z1(a.) be a finite field of order 2', whose multiplicative group is 
generated by a.. fbr each i,.let ml(x) be the minimal polynomial of a.1 over z1. 
If n = 2'- I, prove that each m1(x) divides x~ - 1. [Hint: ~ ~ 1 (Why'!); use 
Theorem 1 1.6.] 

12. If g(x) is the generator polynomial of a BCH code in Z:z[x]/(x" - 1), prove that 
g(x) divides x" - L [Hint: Exercises II and 8(b).] 

13. Let g(x) EZ1[x] be a divisor of x" - I ani let C be the principal ideal generated 
by (g(x)] in Z2[x]/(x" - 1 ). Then Cis a code. Prove that Cis cyclic, meaning 
that C (with codewords written as elements of B(n)) has this property; If 
(co. c1, ••• , c-J E C, then (c11_" eo. cl> ... , c11_J E C. [Hint: c11_ 1 + CoX + · · · + 
c .. 1~-l = x(co + c1x + · · · + c,._)X"-~- c_l(xM- 1).] 

C 14. Let Cbethecode in Exercise 13. Asswneg(x)hasdegreem and let k = n- m. 
Let Jbe the set of all polynomials in Z1[x] of the for mao+ a1x + ¥ 1 + · · · + 
ag_,x~=~t. 

(a) Prove that every element in Cis of the form [s(x)g(x)] with .(x) E J. [Hint: 
Let [h(x)g(x) E C. By the Division Algorithm, h(x)g(x) = ~(x)(x" - 1) + 
r(x), with deg 1(x) <nand [h(x)g(x)] = [1(x)]. Show that 1(x) = s(x)g(x), 
where s(x) = h(x) - e(x)f(x) and g(x}f(x) = .x' - 1. Use Theorem 4.2 to 
show .r(x)EJ.] 

(b) Prove that Chas order i', and, hence, Cis an (ll, k) code. (Hint: Use 
Corollary 5.5 to show that if s(x) ¢ t(x) in J, then [s(x)g(x)] ¢ [t(x)g(x)] in 
C. How many elements are in n) 

15. Let C be the ( 15, 7) BCH code of Examples I and 2, with code\mrds written 
as polynomials of degrees; 14. Suppose the codC'Mlrd c(x) is transmitted 
with errors in the coefficients of X and::/ and 1(x) is received. ThenD(x) = 
(x + «)(x + ol) E.K[x], whose roots are d and d, is the error-locator polynomial. 
Express the coefficients of D(x) in terms of 1(a.), 1(a.1), r(a.3) as follows. 

(a) Show that 1(x) - c(x) = x1 + xl. 

(b) Show that r{a.k) = r:/d + a.kJ fork= 1, 2, 3. [See the boldface statement on 
page495.] 

(c) Showthat.D(x) = i! + (d + a.l)x + a.1+1 = x:Z + r(a.)x + a.i+l, 

. 1 r(a.]) 
(d) Show that a'+J = r(a _) + r(a.). [Hint: Show that r(a.)3 = (a.1 + a.1)3 = 

a.31 + a.V + a.1+J(a.1 + a.l) = r(a.3) + 1(a.)a.1+f and solve for cf+J; note that 
r(a.)1 = 1( a.2).] 

16. Show that a BCH code with t ~ 1 is actually a Hamming code (see page 490). 
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APPENDIX A 

Logic and Proof 
This Appendix summarizes the basic facts about logic and proof that are needed to 
read this book. For a complete discussion of these topics see Galovich [7], Smith­
Eggen-St. Andre [10], or Solow [II]. 

Logic 
A statement is a declarative sentence that is either true or false. For instance, each of 
these sentences is a statement 

1r is a real number. 

Every triangle is isosceles. 

103 bald eagles were born in the United States last year. 

Note that the last sentence is a statement even though we may not be able to verify its 
truth or falsity. Neither of the following sentences is a statement: 

What time is it? Wowl 

Compound Statements 
We frequently deal with compound statements that are formed from other statements 
by using the connectives "and" and "or". The truth of the compound statement wiU 
depend on the truth of its components. If P and Q are statements, then 

For example, 

"P and Q" is a I rue statement when botA 
P and Q are hue, and flllse otherwise. 

1r is a real number and 9 < I 0 

is a true statement because both of its components are true. But 

1r is a real number and 7 - 5 = 18 

is a false statement since one of its components is false. 
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In ordinary English the word "or" is most often used in eKCJ.usive sense, meaning 
"one or the other but not both," as in 

He is at least 21 years old or he is younger than 21. 

But "or" can also be used in an inclusive sense; meaning "one or the other, or possibly 
both," as in the sentence 

They will win the first game or they will win the second. 

Thus the inclusive "or" has the same meaning as "and/or'' in everyday language. In math­
emati:s, "OT" is always used in the incl119iVe sense, which allows the possibility that both com­
ponents might be true but does not require it. Consequently, if P and Q are statements. then 

"P or Q" is a true statement when at least one of P or Q 
is true and false when both P and Q are false. 

For example, both 

7>5 or 3+8=11 

and 

7>5 or 3+8=23 

are true statements because at least one component is true in each case, but 

4.<2 or 5 + 3 = 12 

is false since both components are false. 

Negation 
The negation of a statement Pis the statement "it is not the case that P'', which we can 
conveniently abbreviate as "not-P''. Thus the negation of 

1 is a positive integer 

is the statement "it is not the case that 7 is a positive integer'', which we would normally 
write in the less awkward form "7 is not a positive integer". If Pis a statement, then 

The negation flf Pis true exartly ldJen Pis false, and 
the negation of Pis false ex~U:Oy when Pis true. 

The negation of the statement "P and Q" is the statement ''it is not the case that P and 
Q''. Now "P and(!' is true exactly when both P and Q are true, so to say that this is 
not the case means that at least one of P or Qis false. But this occurs exactly when at 
least one of not-P or not-Q is true. Thus 

The negation of the statement "P and Q" is the statement 
"oot-P or not-Q". 

For example, the negation of 

f is continuous andfis differentiable at x = 5 

is the statement 

fis not continuous orfis not differentiable at x = 5. 

The negation of the statement "P or Q" is the statement "it is not the case that P 
or Q''. Now "P or Q" is true exactly when at least one of P or Q is true. To say that this 
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is not the ca.se means that both P and Q are false. But P and Q are both false exactly 
when not-P and not-Q are both true. Hence, 

The negatioo of the statement "P or Q" is the statement 
"'not-P andnot-Q". 

For instance, the negation of 

119 is prime or v'3 is a rational number 

is the statement 

119 is not prime and -v3 is not a rational number. 

Quantifiers 
Many mathematical statements involve quantifiers. The universal quantifier states that 
a property is true for all the items under discussion. There are several grammatical 
variations of the universal quantifier, such as 

For all real numbers c, <f- >· - 1. 

Every integer is a real number. 

All integerS are rational numbers. 

For each real number a, the number tl. + 1 is positive. 

The exbtential quantifier asserts that there exists at least one object with certain 
properties. For example, 

There exist positive rational numbers. 

There exists a number x such that x2 - 5x + 6 = 0. 

There is an even prime number. 

In mathematics, the word "some" means "at least one" and is, in effect, an existential 
quantifier. For instance, 

Some integers are prime 

is equivalent to saying "at least one integer is prime", that is, 

There exists a prime integer. 

Care must be used when forming the negation of statements involving quantifiers. 
For example, the negation of 

All real numbers are rational 

is "it is not the case that all real numbers are rational", which means that there is at 
least one real number that is irrational (= not rational). So the negation is 

There exists an irrational real number. 

In particular, the statements "all real numbers are not rational" and "all real num­
bers are irrational" are not negations of ''all real numbers are rational". This example 
illustrates the general principle: 

The negation of a statement with a universal quantifier 
is a statement with an existential quantifier. 
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The negation of the statement 

There exists a positive integer 

is "it is not the case that there is a positive integer", which means that "every integer is 
nonpositive" or, equivalently, "no integer is positive". Thus 

The negation of a statement with an existential quantili.er 
is a statement with a universal quantifier. 

Conditional and Biconditional Statements 
In mathematical proofs ~ deal primarily with conditional statements of the form 

If P. then Q 

which is written symbolically as P ~ Q. The statement P is called the hypothesis or 
premise, and Q is called the c:onclusion. Here are some examples: 

If c and dare integers, then cd is an integer. 

If [is continuous at x = 3, then [is differentiable there. 

a¢ o~d-> 0. 

There are several grammatical variations, all of which mean the same thing as "if P, 
then Q": 

Pimplies Q. 
P is sufficient for Q. 
Q provided that P. 

Qwhenever P. 

In ordinary usage the statement "if P, then Q" means that the truth of P guarantees 
the truth of Q. Consequently, 

"P ~ Q" is a true statement when both P and Q are 
true and false ldten Pis true and Q is false. 

Although the situation rarely occurs., m: must sometimes deal with the statement 
"P ~ IL' when Pis false. For example, consider this campaign promise: "If I am elected, 
then taxes will be reduced". If the candidate is elected (Pis true), the truth or falsity of 
this statement depends on whether or not taxes are reduced. But what if the candidate 
is not elected (Pis false)? Regardless of what happens to taxes, you can't fairly call 
the campaign promise a lie. Consequently, it is customary in symboli:: logic to adopt 
this rule: 

When Pis false, the statement "P ~ Q" is true. 

The contrapositive of the conditional statement "P ~ Q" is the statement "not-Q 
~ not-P". For instance, the contrapositive of this statement about integers 

If cis a multiple of 6, then cis even 

is the statement 

If cis not even, then cis not a multiple of 6. 
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Notice that both the original statement and its contrapositive are true. T'WO statements 
are said to be equivalent if one is true exactly when the other is. We claim that 

The conditional statement "P => Q" is equivalent 
to its contraposltive "not-Q=> not-P'". 

To prove this equivalence., suppose P => Q is true and consider the statement not-Q => 
not-P. Suppose not-Q is true. Then Q is false. Now if P were true, then Q would neces­
sarily be true, which is not the case. So P must be false, and, hence, not-P is true. Thus 
not-Q=> not-Pis true. A similar argument shows that when not-Q =>not-Pis true, then 
P => Q is also true. 

The convene of the conditional statement "P => Q" is the statement "Q => P''. For 
example, the converse of the statement 

If b is a positive real number, then Jil is positive 

is the statement 

If!? is positive, then b is a positive real number. 

This last statement is false since, for example, (-3f is the positive number 9, but -3 
is not positive. Thus 

The corm!rsc of a true statement may be false. 

There are some situations in which a conditional statement and its converse are 
both true. For example, 

If the integer k is odd, then the integer k + 1 is even 

is true, as is its converse 

If the integer k + I is even, then the integer k is odd 

We can state this fact in succinct form by saying that "kis odd if and only if k + 1 is 
even". More generally, the statement 

P if and only if Q, 

which is abbreviated as "P iff Q" or "P ~ Q'', means 

P~Q and Q=:-P. 

"P if and only if Q" is called a biconditional statement. The rules for compound state­
ments show that "P if and only if Q'' is true exactly when both P => Q and Q =>Pare 
true. In this case, the truth of P implies the truth of Q and vice versa, so that Pis true 
exactly when Q is true. In other words, "P if and only if Q" means that P and Q are 
equivalent statements. 

Theorems and Proof 
The formal development of a mathematical topic begins with certain undefined terms 
and axioms (statements about the undefined terms that are assumed to be true). These 
undefined terms and axioms are used to define new terms and to construct theorems 
(true statements about these objects). The proof of a theorem is a complete justifica­
tion of the truth of the statement. 
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Most theorems are conditional statements. A theorem that is not stated in condi­
tional form is often equivalent to a conditional statement. For instance, the statement 

Every integer greater than I is a product of primes 

is equivalent to 

If n is an integer and n > I, then n is a product of primes. 

The first step in proving a theorem that can be phrased in conditional form is 
to identify the lzypothesis P and the conclusion Q. In order to prove the theorem 
"P::::? Q", one assumes that the hypothesis Pis true and then uses it, together with 
axioms, definitions, and previously proved theorems, to argue that the conclusion Q is 
necessarily true. 

Methods of Proof 
Some common proof techniques are described below. While such summaries are help­
ful, there are no hard and fast rules that give a precise procedure for proving every 
possible mathematical statement. The methods of proof to be discussed here are in 
the nature of maps to guide you in analyzing and constructing proofs. A map may not 
reveal all the difficulties of the terrain, but it usually makes the route clearer and the 
journey easier. 

DIRECT METHOD This method of proof depends on the basic rule of logic 
called modus ponens: If R is a true statement and "R ::::? S" is a true conditional 
statement, then Sis a true statement. To prove the theorem "P::::? Q" by the direct 
method, you find a series of statements P~o P, , .. , Pn and then verify that each of 
the implicationsP =?Ph P1 =?Pz, P1 =? P'!l> .•. , P,_1 =?Pw; andP11 ::::? Q is true. Then 
the assumption that P is true and repeated use of modus ponem show that Q is true. 

The direct method is the most widely used method of proof. In actual practice, it 
may be quite difficult to figure out the various intermediate statements that allow you 
to proceed from P to Q. In order to find them, most mathematicians use a thought 
process that is sometimes called the forward-backward technique. You begin by work­
ing forward and asking yourself, What do I know about the hypothesis P? What facts 
does it imply? What statements follow from these facts? And so on. At this point you 
may have a list of statements implied by P whose connection with the conclusion Q, 
I any, is not yet clear. 

Now work backward from Q by asking, What facts would guarantee that Q is 
true? What statements would imply these facts? And so on. You now have a list of 
statements that imply Q. Compare it with the first list. If :J-UU are fortunate some state­
ment will be on both lists, or more likely, there wi11 be a statement Son the first list and 
a statement Ton the second, and you may be able to show that S::::? T. Then you have 
P::::? SandS::::? Tand T=? Q, so that P::::? Q. 

When you have used the forward-backward technique successfully to find a proof 
that P ::::? Q, you should write the proof in finished form. This finished form may look 
quite different from the thought processes that led you to the proof. Your thought 
process jumped forward and backward, but the finished proof normally should begin 
with P and proceed in step-by-step logical order from P to S to T to Q. The fin. 
ished proof should contain only those facts that are needed in the proof. Many state­
ments that arise in the forwani- backward process turn out to be irrelevant to the final 
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argument, and they should not be included in the finished proof. As illustrated in most 
of the proofs in this book, the finished proof is usually written as a narrative rather 
than a series of conditional statements. 

CONTRAPOSITIVE METHOD Since every conditional statement is equiv­
alent to its contra positive, you may prove "not-Q ""* not-P' in order to conclude that 
"P ""* Q" is true. For example, instead of proving that for a a:rtain function/, 

If a .P b, thenfta) :F f(b) 

you can prove the contrapositive 

If [(a) = f(b), then a == b. 

PROOF BY CONTRADICTION Suppose that you assume the truth of a 
statement R and that you make a valid argument that R ~ S (that is, R ~ Sis a true 
statement). If the statement S is in fact a false statement, there is only one possible 
conclusion: The original statement R must have been false, because a true premise R 
and a true statement R ""* S lead to the truth of S by modus pcmens. 

In order to usethisfuctto prove the theorem "P""* Q", assume as usual that Pis a 
true statement. Then apply the argument in the preu:ding paragraph with R = not-Q. 
In other words, assume that nol-Q is true and find an argument (presumably using P 
and previously proved results) that shows not-Q ~ S, where Sis a statement known to 
be false. Conclude that not-Q must be false. But not-Q is fulse exactly when Q is true. 
Therefore, Q is true, and we have proved that P ""* Q. Once again. the hard part wl11 
usually be finding the statement Sand proving that not- Q implies S. 

EXAMPLE 1 

Recall that an integer is even if it is a multiple of 2 and that an integer that is 
not even is said to be odd. We shall use proof by contradiction to prove this 
statement 

Ifni'- is even, then m is even. 

Here Pis the statement "m2 is even" and Q is the statement "m is even". We 
assume "m is not even" or equivalently "m is odd" (statement not-Q). But every 
odd integer is 1 more than some even integer. Since every even integer is a mul­
tiple of 2, we must have m = 2k + 1 for some integer k. Then the basic laws of 
arithmetic show that 

n? = (2/c + If = ~ + 4k + I = 2(~ + 2/c) + I. 

This last statement says that m2 is 1 more than a multiple of 2, that is, m2 is odd. 
But we are given that m2 is even (statement P), and, hence, "wfl is both odd and 
even" (statement S). This statement is false since no integer is both odd and even. 
Therefore, our original assumption (not-Q) has led to a contradiction (the fulse 
statement S). Consequently, not- Q must be fulse, and, hence,. the statement ''m is 
even" (statement Q) is true. 
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In Example 1 various statements were labeled by letters so that you could easily 
relate the example to the general discussion. This is not usually done in proofs by 
contradiction, and such proofs may not be given in as much detail as in this example. 

The choice of a method of proof is partly a matter of taste and partly a question of ef· 
ficiency. Although any of those listed above may be used, one method may lead to a much 
shorter or easier..to.follow proof than anothe~; depending on the circumstances. In addi. 
tion there are methods of prod' that can be applied only to cxrtain types of statements. 

PROOF BY INDUCTION This method is discussed in detail in Appendix C. 

C 0 N ST R UCT 10 N ME TH 0 D This method is appropriate for theorems that 
include a statement of the type "There exists a such.and·such with property so--and· 
so". fur instance, 

There is an integer d such that Jl - 4d - 5 = 0. 

If rand s are distinct rational numbers, then there is a rational number between r 
ands. 

If r is a positive real number, then there is a positive integer m such that_!_< r. 
m 

To prove such a statement, you must construct (find, build, guess, etc:.) an object with 
the desired property. When you are reading the proof of such a statement, you need 
only verify that the ol!ject presented in the proof does in fact have the stated property. 
An existence proof may amount to nothing more than presenting an example (for 
instance, the integer 2 provides a proof of "there exists a positive integer"), But more 
often a nontrivial argument will be needed to produce the required object. 

Ca utlo n Although an example is sufficient to prove an existence state. 
ment, examples can never prove a statement that directly or indirectly 
involves a universal quantifier. fur instance, even if you have a million 
examples for which this statement is true: 

If c is an integer, then ? - c + 11 is prime, 

you will not have proved it. For the statement says, in effi:ct, that for t<W!ry 
integer c, a certain other integer is prime. This is not the case when c "" 
12 since 122 - 12 + 11 ~ 143 ~ 13 • 11. So the statement is false. lbis 
example demonstrates that 

A counterexample is sufficient to disprove a statement. 

The moral of the story is that when you are uncertain if a statement is true, try to 
fiud some examples where it holds or fails. If you find just one example where it fails, 
you have disproved the statement. If you can find only examples where the statement 
holds, you haven't proved it, but you do have encouraging evidence that it may be true. 

Proofs of Multiconditional Statements 

In order to prove the biconditional statement "P if and only if Q", you must prove 
both "P ~ (!' and "Q ~ P'. Proving one of these statements and failing to prove the 
other is a common student mistake. For example, the proof of 

A triangle with sides a, b, e is a right triangle with 
hypotenuse c if and only if e = Ql + b2 
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cons1;ts of two separate parts. First you must assume that you have a right triangle 
with sides a, band hypotenuse c and prove that C = if + 1?. Then you must give a 
second argument: Assume that the sides of a triangle satisfy c1 = a2 + f? and prove 
that this is a right triangle with hypotenuse c. 

A statement of the form 

The following conditions are equivalent: P, Q, R, S, T 

is called a mu lticond itiooal statement and means that any one of the statements P, Q, 
R, S, or T implies ~:Very other one. Thus a multiconditional statement is just shorthand 
for a list of biconditional statements; P <::> Q and P <::> R and P «> Sand P <::> T and 
Q <::> R and Q <::> S, etc. To prove this multiconditional statement you need only prove 

P~ Qand Q~RandR:::-Sand S~ Tand T~ P. 

All the other required implications then follow immediately; for instance, from T-==} P 
and P -;;;;} Q, we know that T ~ Q, and similarly in the other cases. 

EXAMPLE 2 

In order to prove this theorem about integers: 

T'he following conditions on a positive integer pare equiValent: 

(1} pis prime. 

(1) If p ts a factor (Jf ab, then pis a factor of a or pis a factor of b 

(3) Jfp = rs, then r = :!:1 or s = :tL 

you must make three separate arguments. First, assume (1) and prove (2), so 
that (1) ~ (2) is true. Second, you assume (2) and prove (3), so that (2) ~ (3) 
is true. Fmally, you must assume (3) and prove (1), so that (3) ~ (1) is true. Be 
careful· At each stage you assume ooly one of the three statements and use it 
to prove another; the third statement does not play a role in that part of the 
argument. 
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Sets and Functions 
For our purposes, a set is any collection of objects; for example, 

The set Z of integers. 

The set of right triangle~~ with area 24. 
The set of positive irrational numbers. 

The objects in a set are called clements or members of the set. If B is a set, the 
statement "b is an element of If' is abbreviated as "bE If'. Similarly, "b ~ B" means 
"b is not an element of If'. For example, if Z is the set of integers, then 

2EZ and 1r~Z. 

There are several methods of describing sets. A set may be defined by verbal 
description as in the example~~ above. A small finite set can be described by listing all 
its elements. Such a list is customarily placed between curly braclrets; for instance, 

{3, 7, -4, 9} or {a, b, c, r, s, t}. 

Listing notation is sometimes used for illfinite sets as well. fur example, {2, 4, 6, 8, ... } 
indicates the set of pallitive even integers. Strictly speaking, this notation is ambiguous in 
the infinite case since it relies on everyone's seeing the same pattern and understanding 
that it is to continue forever. But when the oontext is clear, no conl'u&on will remit. 

Fmally, a set can be de:!cribed in terms of prop:rties that are satisfied by its elements, 
and by these elements only. This is usually done with set-builder notation. For eumPt; 

{xI xis an integer and x > 9} 

denotes the set of all elements x such thatx is an integer greater than 9. In general, the 
vertical line is shorthand for "such that" and "{y I P}" is read "the set of all elements 
y such that P''. Thus each of the following is the set of even integers; 

{ x I x is an even integer}. 

{t I tEZand tis even}. 

{rl rEZand ris a multiple of 2}. 

{y I y E Z andy = 2k for s001e integer k}. 

509 
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The Empty Set 

Some special cases of set-builder notation lead to an unusual set. For instance, the set 

{xI xis an integer and 0 < x < 1} 

has no elements since there is no integer between 0 and 1. 1be set with no elements is 
called the empty set or null set and is denoted 0. For every element c, 

c E 0 is false and c It 0 is true. 

The empty set is a very convenient concept to have around, but some care must be 
taken when dealing with theorems that are true only for nonempty sets (that is, sets that 
have at least one element). 

Subsets 
A set B is said to be a subset of a set C (written B ~;;; C) provided that every element of 
B is also an element of C. In other words, B ~ C exactly when this statement is true; 

XEB*XEC. 

For example, the set of even integers is a subset of the set 1'_ of all inte~rs, and the set 
of rational numbers is a subset of the set of realllUIIlbets. 

The definition of "B s;: C" allows the possibility that B = C (since it is certamly 
true in this case that evety element of B is also an element of C). In other words, 

B ~ B for every set B. 

If B is a subset of C and B '+ C Wle say that B is a proper subset of C and write B c: C. 
The subset relation is easily seen to be transitive, that is, '#. 

If Br;; Cand Cr;; D, then B<.;;; D. 

Two sets B and Care equal when they have exactly the same elements. In this case 
every element of B is an element of C and every element of C is an element of B. Thus, 

B= C if and only if Br;; C and Cr;; B. 

This fact is the most commonly used method of proving that two sets are equal; Prove 
that each is a subset of the other. 

Basic logic leads to a surprising fact about the empty set. Since the statement 
x E 0 is always false, the implication 

xE0*xEC 

is always true (see Appendix A). But this is precisely the definition of "0 is a subset 
of C". So 

the empty set 0 is a subset of every set. 
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Operations on Sets 
We now review the standaro ways of constructing new sets from given ones. If B and 
Care sets, then the relative complement of C in B is denoted B - C and consists of the 
elements of B that are not in C. Thus 

B - C = {xI x e Band x t. C}. 

For example, if E is the set of even integers, then 7L. - E is the set of odd integers. 
The intersection of sets B and C consists of all the elements that are in both Band 

C and is denoted B n C. Thus 

Bn C= lxlx e Band x e C}. 

For example, if B = { -2, 1, \12, S, 'IT} and Cis the set of positive rational numbers, 
then B n C = { l, S} since 1 and S are the only elements in both sets. If B is the set of 
positive integers and C the set of negative integers, then B n C = 0 since there are no 
elements in both sets. When Band Care sets such that B n C = 0, we say that Band 
Care disjoint. 

The union of sets B and C consists of all elements that are in at least one of B or 
C and is denoted B U C. Thus, 

BU C= {xlx eBorxe C}. 

For example, the union of B = {1, 3, S, 7} and C = {-1, 1, 4, 9} is B U C = 
{ -1, 1, 3, 4, S, 7, 9}. If B is the set of rational numbers and Cis the set of irrational 
numbers, then B U Cis the set of all real numbers. 

You should verify that union and intersection have the following properties. For 
any sets B, C, and D, 

BUB=B 

BU0=B 

BUC=CUB 

BnB=B 

nn0=0 
Bn C= CnB 

Br;;.BUC BnC<;;.B 

Br;;.C ifandonlyif BUC=C 

B r;;; C if and only if B n C = B 

B U ( C U D) = (B U C) U D B n ( C n D) = (B n C) n D 

B n (C U D) = (B n C) U (B n D) 

B U ( C n D) = (B U C) n (B U D). 

The concepts of union and intersection extend readily to large, possibly infinite, 
coBections of sets. Suppose that lis some nonempty set (called an index set) and that 
for each i E I, we are given a set A,. Then the intersection of this family of sets (denoted 
n A1) is the set of elements that are in all the sets A1, that is, 
lei 

n At = lx I X E At for every i E J}. 
iel 

Similarly, the union of this family of sets (denoted U AJ is the set of elements that 
are in at least one of the sets A1, that is, i..t 

.U A1 = {x lx e A1 for somej e 1}. 
lEI 
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The Cartesian product of sets Band CisdenotedB X C and consists of all ordered 
pairs (x,)') with .x E Bandy E C. Equality of ordered pairs is defined by this rule: 

(x,y) = (u.t~) if and only if x = u in B andy = v in C. 

For example, if B = {I', s, t} and C = {5, 7}, then B X Cis the set 

{(r, 5), (r, 7), (s, 5), (a, 7), (t, 5), (t, 7)}. 

The set R of real numbers is sometimes identified with the number line. When this is 
done, the Cartesian product ~ X ~ is just the ordinary coordinate plane, the set of all 
points with coordinates (x,y) where x, y E R. 

The Cartesian product of any finite number of sets B 1, B'b ... , B,. is defined in a 
similar fashion. B1 X B2 X · · · X Bn is the set of all ordered n-tuples (x., x2, •• • , xJ 
where XtE B1 for each i = 1, 2, ... , n. For example, if B = {0, I}, 7L is the set of integers, 
and [J;l the set of real numbers, then B X 7L X ~is the set of all ordered triples of the 
form (0, k, r) and (1, k, r) with k E 7L and r E ~- The product B X 7L X ~ is an infinite 
set; among its elements are (0, -S, 3), (1, 24, 'IT), and (1, 1,-v'3). 

Functions 
A function (or map or mapping)/from a set B to a set C (denoted fiB- C) is a rule 
that assigns to each element b of B exactly one element c of C; c is called the image of 
b or the wlue of the function fat b and is usually denotedf(b). The set B is called the 
domain and the set Cthe range of the function}: 

Your previous mathematics courses dealt with a wide variety of functions. For 
instance, if ~is the set of real numbers, then each of the folbwing rules defines a ftmction 
fromiRto R: 

f(x) =cos x, g(x) = i" + 1, h(x) = x1 - 5x + 2. 

The rule of a function need not be given by an algebraic formula. For instance, consider 
the functionf:7L ~ {0, 1}, whose rule is 

f(x) = 0 if xis even andf(x) = 1 if xis odd. 

If B is a set, then the function from B to B defined by the rule "map every element to 
itself" is called the identit~' rna p on B and is denoted tB. Thus ~B:B- B is defined by 

~s(x) = x for every xE B. 

Composition of Functions 
Letf and g be functions such that the range of fis the same as the domain of g, say 
f:B ---Jo C and g: c-D. Then the composite off and g is the function h:B - D whose 
rule is 

h(x) = g(f(x)). 
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In other words, the composite function is obtained by first applying f and then 
applyingg: 

f ~ 
B----+C -n 
x ---+ f(x) ---+ g(f(x)). 

Instead of h, the usual notation for the composite function off and g is g ~/(note the 
order). Thus, g ~ f:B-+ D is defined by (g ~ f)(x) = g(j(x)). 

EXAMPLE1 

Let E be the set of even integers and N the set of nonnegative integers. Let 
f:E -+Z be defined by f(x) = x/2 (since xis even, x/2 is an integer). Let g-Z-+ N 
be given by g(n) = n2

• Then the composite function g ~ f:.E --4- N has this rule: 

(g 0 f)(x) = g (f(x)) = g(x/2) = (x/2'f = r/4. 

The composite function in the opposite order.,[ o g (first apply g, then/), is not 
de~d since the range of g is not the same as the domain of f. For instance, 
g{3) = 9, but the domain of/is the set of even integers; even though the rule of 
f makes sense for odd integers, f(g(3)) = /(9) = 9/2, which is not in Z. 

EXAMPLE 2 

Letf:Z-+ Z and g:Z-+ Z be given by f(x) = x - 1 and g(x) = :?-. Then the 
composite function[ o g:Z-+ Z is given by the rule 

(f o g)(x) = f(g{x)) = f(il) = :?- - 1. 

In this case the composite function in the opposite order go [is also defined; its 
rule is 

(go f)(x) = g(f(x)) = g(x- 1) = (x -1l = :?-- 2x + 1. 

Thus we have, for instance, 

but (g 0 /)(3) = 9 - 6 + 1 = 4. 

So even though both are defined,/ o g is not th.t samej101ction as go f. 

Two functions h:B -+ C and k:B--+ Care said to be equal provided that 
h(b) = k(b) for every bE B. 

EXAMPLE3 

Letf.B--4- Cbeany function and,6C-+ Cthe identity map on C. Then 
~of:B-+C, and for every bEB 

('c ~ f)(h) = J.c(f(b)) =/(b). 
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Therefore ~c" f= f. Similarly, if ~B is the identity map on B, then f o , 8 :B ---1> C, 
and for every bE B 

( f" ta)(b) = f("tl (b)) = f(b). 

Consequently, 

If f:B -----? C, then 'co f= f and fo 'B =f. 

Ifj:B-+- C, g:C-+- D, and h:D -+E are functions, then each of the com­
posite functions (f o g) o h and f"' (go h) is a map from B to E. We claim that 

(fog) o h = fo (go h). 

The proof of this statement is simply an exercise in using the definition of 
composite function. For each bEB 

IU o g) .. h](b) = (f" g)(h(b)) = f[g(h(b))J 

and 

IJo (g 0 h))(b) = JI(g oh)(b)] = J(g(h(b))]. 

Since the right sides of the two equalities are identical, the composite functions 
(f o g) " h and f " (g o h) have the same effect on each bE B, which proves the 
claim. 

Binary Operations 
Informally we can think of a binary operation on the integers, for example, as a rule 
for producing a new integer from two given ones. Ordinary addition and multiplica­
tion are operations in this sense: Given a and b we get a + b and ab. Producing a new 
integer from a pair of given ones also suggests the idea of a function. Addition of 
integers may be thought of as the function/from 7L X 7L to 7L whose rule is 

f(a, b) = a + b. 

Similarly, multiplication can be thought of as the function g:lL X 7L ---1> 7L given by 
g(a,b) = ab. 

With the preceding examples in mind we make this formal definition. A binary 
operation on a nonempty set B (usually called simply an operation on B) is a function 
f:B X B --7 B. The familiar examples suggest a new notation for the general case. We 
use some symbol, say •, to denote the operation and write a • b instead off( a, b). 

EXAMPLE 4 

As we saw above, ordinary addition and multiplication are operations on 71.. 
Another operation on 7L is defined by the function/ :7L X 7L-+ 7L whose rule is 
f(a, b)= ab - I. If we denote this operation by •, then 3 • 5 = 15 - I = 14, 
and, similarly, 

12 * 4 = 47 -7.4 = -29 
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Note that a * b = ab - I = ba - 1 = b * a, so that the order of the elements 
doesn't matter when applying *• as is the case with ordinary addition and 
multiplication (the technical term for this property is commutativity). On the 
other hand, 

(I " 2) " 3 = 1 " 3 = 2 but 

so that (a* b) * c * a" (b" c) in general. Thus* is not associatiVe as are addition 
and multiplication (meaning that (a +b) + c = a+ (b + c) and (ab)c =a( be) 
always). 

EXAMPLE 5 

Let S be a nonempty set. If f:S-+ S and g:S -+ S are functions, then their 
composite f o g is also a function from S to S. So if B is the set of all functions 
from S to S, then composition of functions is an operation on the set B. In 
other words, the map that sends U; g) to f o g is a function from B X B to B. 
The discussion of composite functions above shows that the operation o on B 
is associative (that is,(/<> g)<> h = f <>(go h) always) but not commutative 
(f 0 g need not equal g 0 n. 

Let * be an operation on a set Band C >;B. The subset Cis said to be closed under 
the operation * provided that 

Whenever a, b ~ C, then a * b ~C. 

Consider, for examp}G the operation of ordinary multiplication on the set B of posi­
tive real numbers. Let C be the subset of positive integers. Then Cis closed under the 
operation since ab is a positive integer whenever a and b are. But when the operation 
on B is ordinary division, then Cis not closed: If a and b are integers, a + b need not 
be an integer (for instance; 3 -+ 1 = 3/7¢.C). 

If *is an operation on a set B, then B (considered as a subset of itself) is closed 
under * by the definition of an operation. Nevertheless many texts, including this 
one, routinely list the closure of B under * as one of the properties of the operation. 
Although this isn't logically necessary, it calls your attention to the importance of 
closure and reminds you that closure cannot be taken for granted for subsets other 
than B. 

Injective and Surjective Functions 
A functionf;B-+ Cis said to be infective (or one-to-one) providedfmaps distinct 
elements of B to distinct elements of C, or in functional notation: If a :#! bin B, then 
f(a) :f:. f(b) in C. This rather awkward statement is equivalent to its contrapositive, so 
that we have this useful description: 

f:B ~ Cis infedive prorlded that 

whenever /{a)= /{b) in C, then a= bin B. 
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EXAMPLE 6 

Let In! be the set of real numberS. In order to show that the functionf:R -+IR 
given byf(x) = 2x + 3 is injective, we assume thatf(a) = f(b), that is, 

2a + 3 = 2h + 3. 

Subtracting 3 from each side shows that 2a = 2h; dividing both sides by 2 we 
conclude that a = b. Therefure,/is injective 

EXAMPLE 7 

The map f:lL -+7L given by f(x) :=: xl is not injective because we have f (-3) = 9 :=: 

/(3), but -3 -4- 3. Alternatively, the distinct elements 3 and -3 have the same image. 

A functionf:B--+ Cis said to be surjective (or onto) provided that every 
element of C is the image under f of at least one element of B, that is, 

For each c E C there exists bE B such that/( b) = c. 

EXAMPLE a 

Let N be the set of nonnegative integers andf:lL--+ N the function given by 
f(x) = Jxj. Then/is surjective since every element of N is the image under f of 
at least one element of 7L (namely itselt). Note, however, that /is not injective 
since, for example, /(1 ) ""f ( -1 ). 

EXAMPLE 9 

Let E be the set of even integers and consider the map g:lL--+ E given by g(x) = 
4x. We claim that the element 2 in E is not the image under .g of any element 
of lL. If 2 = g(b) for some bE 7L, then 2 = 4b, so that 1 = 2h. This is impos­
sible since 1 is not an integer multiple of 2. TherefOre, g is not surjective. Note, 
however, that g is injective since 4a = 4b (that is, g(a) = g(b)) implies that a =b. 

EXAMPLE 10 

Let n be the set of real numbers and f: In!- n the function given by 
f(x) = 2x + 3. To prove that fis surjective, let c E R; we must find b E R! such 
that fib)= c. In other words, we must find a number b such that 2h + 3 ""c. 

To do so, we solve this last equation fur band find b = c ; 
3

. Then 

f(b) = \ c ; 
3

) + 3 = c - 3 + 3 = c. Therefure,/is surjective. The mapfiS 

also injective (see Example 6). 

The preceding examples demonstrate that injectivity and surjectivity are ihdepen­
dent conei!pts. One does not imply the othe~; and a particular map might have one, both, 
or neither of these properties. 



Functions 517 

If f:B -!> Cis a function, then the image of fis this subset of C: 

Imf= {c lc = f(b) for somebEB} = {f(b)l bEB}. 

fur example, if f:Z-l> Z is given by f(x) = 2x, then Imfisthe set of even integers since 
Imf= {f(x) [x E.Z} = {2x lxEZ}. Similarly, if g:Z -l>Z is given by g(x) = lxb then 
Im g is the set of nonnegative integers. A map fiB-!> Cis surjective exactly when every 
element of Cis the image of an element of B. Thus 

f.B-!> Cis surjectiw if and only if lmf= C. 

If f:B ~Cis a function and Sis a subset of B, then the image of 1h~ subsetS is 
the set 

f(S) = {c I c =f(b) for some bES} = {f(b) I bES}. 

If f:Z-l> Z is given by f(x) = 2x, for example, and Sis the set of odd integers, then 
f(S) = {2x lx is odd} is the set of even integers that are not multiples of 4. If the subset 
Sis the entire set B, thenj{B) is precisely Imj. 

Bijective Functions 
A functionf:B-!> Cis bijective (or a bijection or one-to-one correspondence) provided 
that/ is both injective and surjective. 

EXAMPLE 11 

Examples 6 and lO show that the mapf:R.-!> IR given by f(x) = 2x + 3 is 
bijective. 

EXAMPLE 12 

The map/from the set {1, 2, 3, 4, 5} to the set {v, w, x, y, z} given by 

f(l) = 1J /{2) = w /(3) =X f{4) =y [(5) = z 

is easily seen to be bijective. 

The last example illustrates the fact that for any finite sets B and C, there is a bijec~ 
tion from B to C if and only if B and C have the same number of elements. In par~ 
ticular, if B is finite and C ~ B, then there cannot be a bijection from B to C. But the 
situation is quite different with infinite sets. 

EXAMPLE 13 

Let E be the set of even integers and consider the map f: Z ~ E given by 
f(x) = 2x. By definition every even integer is 2 times some integer, so [11. surjec~ 
tive. Furthermore, 2a = 2b implies that a ""b, so [is injective. Therefore,! is a 
bijection. In this case, a bit more is true. Define a map g:E-!> Z by g( u) = ufl; 
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this makes sense since u/2 is an integer when u is even. Consider the composite 
function g ~ f:Z-+ Z: 

(g 0 /) = g(j{x)) = g(2x) = 2x/2 = x. 

Thus (go fXx) = x = ~oz:(x) for every x, and the composite map go fis just the 
identity map~ozon Z. Now look at the othercomposite,fo g:E -4£: 

(f 0 g)(u) = f(g(u)) = f(u/2) = 2(u/2) = u. 

Therefore, the composite mapf ~ g is the identity map t.E. 

Example 13 illustrates a property that all bijective functions have, as we now prove. 

Theorem 8.1 
A functloo f:B -+ C Is bl ject I ve if and ooly If there exists a functioo {}: C -+ 8 
such that 

gaf=~B and fag=~~· 

Proof., Assume first thatfis bijective. Define g:C--.. Bas follows. If c E C, then 
there exists bEBsuch thatf(b) = t: beca.usefis surjective. Furthermore, 
since/is also injective, there is only one element h such thatf(b) = c (for 
if /(b') = c, thenf(b) = f(b') implies b = h'). So we can define a function 
g: C-+ B by this rule: 

g(c) = b, where b is the unique element of Bsuch thatf(b) =c. 

Then g(c) = h exaetzy- whenf(h) = c. Thus for any t:E C 

(f o gXc) = f(g(c)) = f(b) = c, 

from which we conclude thatfo g =~c. Similarly, for eachuEB,f(u) is 
an element of C, say f(u) = v, and, hence, by the definition of g, we have 
g(v) = u. Therefore, 

(g "/)(u) = g(f(u)) = g( v) = u 

and g of= ~:a- This proves the first half of our biconditional theorem. 
To JrOVe the other half, we assume that a map g: C-+ B with the 

stated properties is given. We must show that f is bijective. Suppose f(a) = 
f(b). Then 

g(f(a)) = g(f(b)) 

(g o fXa) = (g of)( b) 

~B(a) = ~.J..b) 
a=b. 
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Therefore, f(a) == f(b) implies a == b, and /is injective. To show that f is 
surjective, let c be any element of C. Then g(c) E B andj{g(c)) = 
(fog)( c)== I.({ c) == c. So we have found an element of B thatfmaps 
onto c (namely g(c)); henoe,fis surjective. Therefore,/ is bijective, and 
the theorem is proved. • 

If f:B ~ C is a bijection, then the map g in Theorem B.1 is called the 
inveJ"Se off and is sometimes denoted l:!f /-1. Reversing the roles off 
and gin Theorem B.1 shows that the inverse map g of a bijection/is 
itself a bijection. 

• Exercises 

NOTE: Z is the set of integers, Q the set of rational number$, and R. the set of real 
nwnher3. 

A. I. Describe each set by listing: 

(a) The integers strictly between -3 and 9. 

(b) The negative integers greater than -10. 

(c) The positive integers whose square roots are less than or equal to 4. 

2. Describe each set in set-builder notation: 

(a) All positive real numbers. 

(b) All negative irrational numbers. 

(c) All points in the coordinate plane with rational first coordinate. 

(d) All negative even integers greater than -:SO. 

3. Which of the foBowing sets are nonempty1 

(a) {rEO f ,.:Z"" 2} 

(b) {r E IR I ,.:Z + 5r - 7 "" 0} 

(c) {tEZI6r-t-1==0} 

4. IsBa subset of Cwhen 

(a) B == ZandC == Q? 

(b) B == all solutions of r + 2x - 5 == 0 and C == Z? 

(c) B == {a, b, 1, 9, 11, -6} and C == Q? 

5. If A >; Band B s; C, prove that A s; C. 

6. IneachpartfindB- C,B n C, andB U C: 

(a) B == Z, C == Q. (b) B == R., C == Q, 

(c) B == {a, b, c, 1, 2, 3, 4, :5}, C == {a, c, e, 2, 4, 6, 8}. 

7. list the elements of B X Cwhen B =={a, b, c} and C == {0, 1, c}. 
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8. List the elements of A X B X Cwhen A "" {0, 1} and B, Care as in Exercise 7. 

9. Let A"" {1, 2, 3, 4}. Exhibit fum:tionsfandgfrom A to A such thatf<> g ¢- K" f. 
I 0. Do Exercise 9 when A "" 7L. 

11. Is the subset B closed under the given operation? 

(a) B =even integers; operation: m.dtiplication in 7L. 

(b) B = odd integers; operation: addition in 7L. 

(c) B = nonzero rational numbers; operation: division in the set of nonzero 
real numbers. 

(d) B = odd integers; operation * on 7L, where a * b is defined to be the 
number ab- (a+ b)+ 2. 

12. Find the image of the function/ when 

(a) fiR-+ R;f(x) = r. 
(b) flL-+O.;f(x) = x- 1. 

(c) fill-+ R;f(x) = -r + 1. 

13. Let B = {1, 2, 3, 4} and C = {a, b, c}. 

(a) List four different surjective functions from B to C. 

(b) List four different injective functions from C to B. 

(c) List all bijective functions from C to C. 

14. (a) Give an example of a function/that is injective but not surjective. 

(b) Give an example of a function g that is surjective but not injective. 

IS. Let B and C be nonempty sets. Prove that the function 

f:B X C ----+ C X B 

given by f(x, y) = (y, x) is a bijection. 

B. 16. List all the subsets of {1, 2}. Do the same for {1, 2, 3} and {1, 2, 3, 4}. Make 
a conjecture as to the number of subsets of an n-element set. [Don't forget the 
empty set.] 

17. Verify each of the properties of sets listed on page 511. 

18. If a, b ER with a< b, then the set {rEIR Ia s r < b} is denoted [a, b). LetN 
denote the nonnegative integers and P the positive integers. Find these unions 
and intersections: 

(a) U[n,n+ 1) 
liEN 

(c) n [-.!., o) 
10d' n 

(b) u [.!.. 2 + !) 
n•P n n 

(d) n [.!.. 2 + .!.) ,..p n n 

19. Prove that for any sets A, B, C: 

A X (B U C) = (A X B) U (A X C) 



20. Let A, B be subsets of U. Prove De Morgan's laws: 

(a) U- (A n B) == ( U- A) U ( U- B) 

(b) U-(AUB)=(U-A)n(U-B) 

21. Prove that for any sets A, B, C: 

(A- B) U (B- A)= (AU B)- (An B) 
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22. If C is a finite set, then [C[ denotes the number of elements in C. If A am 
B are finite sets, is it true that [A U Bl = [A [ + lEt? 

23. Let R** denote the positive real m.unbers. Does the following rule define a 
function from R** to R: assign to each positive real number c the real number 
whose square is t!! 

24. Determine whether the given operation on R is commutative (that is, a * b = 
b *a for all a, b) or associative (that is, a* (b * e) = (a* b) * c for all a, b, c). 

(a) a * b = 2"b (b) a* b = a/:1 

(c) a * b = 0 (d) a* b = (a + by2 

(e) a* b = l (t) a* b = b 

(g)a•b=cr+!J 

25. Prove that the given function is injective. 

(a) fZ-+Z;f(x) = 2x 

(b) f:R-.+R;f(x) = r 
(c) f:Z-+O;f(x) = :x/1 

(d) fR-+ R;/(x) = -3x + 5 

26. Prove that the given function is surjective. 

(a) f:IR-.+R;f(x) = x1 

(b) j.Z-.+Z;f(x) = x- 4 

(c) j:R-+ R;f(x) = -lx + 5 

(d) j:Z X Z-+ Q;J(a. b) = alb when b # 0 and 0 when b = 0. 

27. Letf:B-+ C andg:C-+D be functions. Prove: 

(a) Iff and g are injective, then go f:B -1> Dis injective. 

(b) Iff and g are surjective, then g o [is surjective. 

28. (a) Letf:B-+ C and g:C-+ D be functions such that go fis injective. Prove 
that f is injective. 

(b) Give an example of the situation in part (a) in which g is not injective. 

21J. (a) Letf:B-+ Cand g:C-+D be functions such that gofis surjective. Prove 
that g is surjective. 

(b) Give an example of the situation in part (a) in which/is not surjective. 
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30. Let g:B X C ~ C (with B ¢ 0) be the function given by g (x,y) = y. 

(a) Prove that g is surjective. 

(b) Under what conditions, if any, is g injective? 

31. If f:B ~ C is a function, then f can be considered as a map from B to lttt f 
since f(b) E Imffor every bE B. Show that the map f:B ~ lmf is suljective. 

32. Let B be a finite set and f:B ~ B is a function. Prove that f is injective if and 
only if /is surjective. 

33. Let fB ~ C be a function and let S, The subsets of B. 

(a) Provethatf(S U T) = f(S) Uf(T). 

(b) Prove thatf(S n T) r:.f(S) nf{T). 

(c) Giveanexamplewheref(S n T) ¢ f(S) n.f{T). 

34. Prove thatf:B ~ Cis injective if and only if f{S n T) = f(S) n f(T) for every 
pair of subsets S, T of B. 

35. Letf:B ~ C and g: C ~ D be bijective functions. Then the composite function 
g" f:B~ Dis bijective by Exercise 27. Provethat(g" f)-1 = r'o g-1, 



APPENDIX C 

Well Ordering and Induction 
We assume that you are familiar with ordiruuy arithmetic in the set Z of integers and 
with the usual order relation(<) on Z. The subset of nonnegative integer.; will be 
denoted by N. Thus 

N = {0, 1, 2, 3, .•• }. 

Finally, we assume this fundamental axiom: 

WELL-ORDERING AXIOM Every non empty mhset of N contains a smallest 
element. 

Most people find this axiom quite plausible, but it is important to note that it 
may not hold if N is replaced by some other set of numbers; see page 3 of the text for 
examples. 

An important consequence of the Well-Ordering Axiom is the method of proof 
known as mathematical induction. It can be used to prove statements such as 

A set of n elements has 2" subsets. 

Denote this statement by the symbol P(n) and observe that there are really infinitely 
many statements, one tor each possible value of n: 

P(O): A set of 0 elements has 2() = I subset 

P(l): A set of I element has 21 = 2 subsets. 

P(2): A set of 2 elements has 21 = 4 subsets. 

P(3): A set of 3 elements has 23 = 8 subsets. 

And so on. To prove the original proposition we must prove that 

P(n) is a true statement for every n eN. 

Here's how it can be done. 

523 
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Theorem C. 1 The Principle of Mathematical Induction 
Assume that for each nonnegative integer n, a statement P(n) is given. If 

(i) P(O) is a true statement; and 

(ii) Whenever P(k) is a true statement, then P(k + 1) is also true-, 

then P(n) is a true statement for every n eN. 

The example of the number of subsets of a set of n elements is continued after the 
proof of the theorem. You may want to read that example now to see how Theorem C.1 
is applied, which is quite different from the manner in which it is proved. 

Proof of Theorem C. I· LetS be the subset of N consisting of those integers j 
for which P(/) is false. To prove the theorem we need only show that 
S is empty; we shall use proof by contradiction to do this. Suppose S 
is non empty. Then by the Well-Ordering Axiom, S contains a smallest 
element, say d. SinceP(d) is false by the definition of Sand P(O) is true 
by property (i), we must have d '(:. 0. Consequently, d :e: 1 (because dis a 
nonnegative integer), and, hence, d- 1 :e: 0, that is, d- 1 eN. Since 
d - 1 < d and dis the smallest element in S, d- 1 cannot be in S. 
Therefore, P( d - 1) must be true (otherwise d - 1 would be in $), 
Property (ii) (with k = d- 1) implies that P((d- 1) + 1) = P(d) is also 
a true statement. This is a contradiction since deS. Therefore, Sis the 
empty set, and the theorem is proved. • 

In order to apply the Principle of Mathematical Induction to a series of state­
ments, you must wrify that these statements satisfy both propmies (i) and (ii). Note 
that property (ii) does not assert that any particular P(k) is actwilly true, but only that 
a conditional relationship holds: If P(k) is true, then P(k + 1) must also be true. So to 
verify property (ii), you assume the truth of P(k) and use this assumption to prove that 
P(k + 1) is true. As we shall see in the examples below, it is often possible to prove this 
conditional statement even though you may not be able to prove directly that a particu­
lar P(}) is true. The assumption that P(k) is true is called the induction a&Wmption or 
the induction bypotbesis. 

You may have seen induction used to prove statements such as "the sum 

f he 
..,__ . . . n(n + 1)" . the 

o t nnt n nonnegative Integers IS ; here P(n) lS statement: 
n( + 1)" 2 

"0 + 1 + 2 + 3 + -·- + n = n 
2 

. Although such examples m.akf: nice exercises 

for beginners, they are not typical of the way induction is used in advanced math­
ematics. The examples below will give you a more comprehensive picture of inductive 
proof. They are a bit more complicated than the usual elementary examples but are 
well within your reach. 
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EXAMPLE 1 

We shall use the Principle of Mathematicalllduction to prove that for each n ~ 0, 

A set of n elements has 1!' subsets. 

ff n = 0, then the set must be the empty set(the only setwithno ~s). Its one and 
only subset is itself (since 0 is a subset of every set). So the statement 

P(O): A set of 0 elements has '2fl = 1 subset 

is true~ (i)holds). 
In order to ~ property (1~ of Theort::m C. 1, we assume the truth of 

P(k): A set of k elements has 2k subsets 

and use this induction hypothesjs to ~ 

P(k + 1): A set of k + 1 elements has zhl subsets. 

To do this, let Tbe aey set of k + 1 derm:ots and choose some element c of T. Every 
subset of Teither contains cor does not oontain c. lbe subsc:ts of Tthat do not 
contain care precisdy the subsets of T- {c}. Since the set T- {c} has one fewer 
element than T, it is a set of k elements and, tlwrefore, has exact:l.y i'- subsets (b«:ause 
the Uduction eypo~ P(k) is il5<SUIIled true). Now ew:ry subset of T that contains 
cmust be of the fonn {c} U D, when: Dis a subset ofT- {c}. ~ ilRi :t"po!ISible 
choices fur D and, hewc, i'- subsets of Tthat contain c. C~tly, the total num­
ber of subsets of Tis 

(Number of subsets) (Number of subsets that) _ 1c i'-
\ that contain c + do not contain c -

2 + 
=2(21 

= 2f<+l. 

Thus any set Tof k + 1 elements has 2~<-~- 1 subsets, that is, P(k + 1) is a 
true statement. We have now verified property (li.) and can, therefore, apply 
Theorem C.l to conclude that P(n) is tcue for every n =: 1\1; that is, every set of n 
elements has 2h subsets. 

The Principle of Mathematical Induction cannot be conveniently used on certain 
propositions, even though they appear to be suitable for inductive proof. In such cases 
a variation on the procedure is needed: 

Theorem C.2 The Principle of Complete Induction 
Assume that for each nonnegative integer n, a statement P(n) is given. If 

(i) P(O) is a true statement; and 

( i i) Whenever PU) is a true statement for all j such that 0 s j < t, then 
P(t) is also true, 

then P(n) is a true statement for every n =: 1\1, 
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Although commonly used, the title "complete induction" is a bit of a misnomer 
since, as we shall see, this form of induction is equivalent to the previous one. 

Proof of Theorem C.2 ... For each n EN, let Q(n) be the statement 

P(j) is true for allj such that 0 s j s n. 

Note carefully that the last inequality sign in thi!: statement i!: s and not <. 
we shall use the Principle of Mathematical Induction (Theorem C.!) to show 
that Q(n) is troofor every n EN. This willm=, in particular, thatl'(n)is true 
for every n eN. Now Q(O) is the statement 

P(j) is true for all j such that 0 s j s 0. 

ln other words, Q(O) is just the statement "P(O) is true''. But we know 
that this is the case by hypothesis (i) in the theorem. Suppose that Q(k) is 
true, that is, 

P(j) is true for all j such that 0 s j s k. 

By hypothesis (ii) (with t = k + 1), we conclude the P(k + 1) is also true. 
Therefore, P(J) is true for alljsuch that 0 sjs k + 1, that is, Q(k + 1) 
is a true statement. Thus we have shown that whenever Q(k) is true, then 
Q(k + 1) is also true. By the Principle of Mathematical lnduction, Q(n) 
is true for every n eN, and the proof is complete. • 

In the formal description of induction (either principle), the notation P(n) is quite 
convenient. But it is rarely used in actual proofs by induction. The next example is 
more typical of the way indlX:tive p.-oofs are usually phrased But even here we include 
more detail than is customary in such proofs. 

EXAMPLE 2 

We shall use the Principle of Complete lnduction to prove: 

lf n, beN and b > 0, then there exist q, re N such that 

(•) n = bq + r and 0 s r <b. 

This slatenlent (called the Division Algorithm for nmmegatM: integers) is just a 
fonnaliza.tion of grade-s:hoollong division: When n i!: divided by b, then: is a quotient 
q and remainder r (smaller than the divisor b) sudJ. that n = bq + r; see the diBcussion 
on page 4 of the text. 

Statement ( •) is true for n = 0 ard any positive b (let q = 0 and r = 0). So property 
(i) of Theorem C2 holds. Suppose that(*) is true fur all n such that 0 s n < t (this is the 
induction hypothesis). we lllUSt show that ( •) i!: true for n = t. ff t < b, then t = bO + t, 
so (•) i!: true with q = 0 and r = t. If b s t, then 0 s t- b < t, and by the induction 
bypothes.is, ( •) is true for n = t - b. Therefore, there elcist integers fJ1 and r1 ruch that 

and 0 S TJ <b. 
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Cow;equently, 

t = b + q1h + r1 = (1 + q,)b + r, and 

Therefore, (•) is true for 11 = t (with q = 1 + q1 and 7 = r1). Hence, property 
(u) of Theorem C.2 is satisfied. By the Principle of Complete Induction, (•) is 
true for every n eN. 

Some mathematical statements are false (or undefined) for n = 0 or other small 
values of n but are true for n =rand all subsequent integers. For instance, it can be 
shown that 

311 > n + 1 fur every integer n ~ 1. 

2" > r?- + 2 for every integer n ~ 5. 

Such statements can often be proved by using a variation of mathematical induction 
(either principle): 

In onler to prove that statemeot P(n) is true for each integer n ~ r, 
follow the same basic ]ll'ocedure as before, 

starting with P(r) instead of P(O). 

The validity of this procedure is a consequence of 

Theorem G.3 
let r be a positive integer and assume that for each n ~ r a statement P(n) 
isgiven. If 

(i) P(r) is a true statement; 

and either 

or 

(ii) Whenever k~ rand P(k) is true, then P(k + 1) is true: 

(ii'} Whenever P{J) is true for all 1 such that r s 1 < t, then P(t) is true, 
then P(n) is true for every n ~ r. 

Proof ... Conditions (i) and (ii) are the analogue of Theorem C.l. Verify that 
the proof of Theorem Cl. carries over to the present case verbatim if 
0 is replaoed by r, l by r + 1, and N by the set N, = {n In eN andn ~ r}. 
Conditions (i) and (Ii~ are the analogue of Theorem C.2; its proof 
carries over similarly. I 

The final theorem to be proved here is not necessary in order to read the rest of 
the book. But it is a result that every serious mathematics student ought to know. 
It is also a good illustration of the fact that intuition can sometimes be misleading. 
Most people feel that the Well-Ordering Axiom is obvious, whereas the Principle of 
Complete Induction seems deeper and in need of some proof. But as we shall now see, 
these two statements are actually equivalent. Among other things, this suggests that 
the Well·Ordering Axiom is a .good deal deeper than it first appears. 
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Theorem C.4 
The following statements are equivalent: 

(1) The WeU-Ordering Axiom. 

(2) The Principle of Mathematical Induction. 

{3) The Principle of Complete Induction. 

Proof • The proof of Theorem C.! shows that (1) :::? (2), and the proof of 
Theorem C.2 shows that (2) :::? (3). To prow (3) :::? (1 ), we assume the 
Principle of Complete Induction and let S be any subset of N. To prove 
that the Well-Ordering Axiom holds, we must show 

If Sis nonempty, then S has a smallest element. 

To do so, we shall prove the equivalent oontrapositive statement 

If S has no smallest element, then Sis empty. 

Assume S has no smallest element; to prove that Sis empty we need only 
show that the following statement is true for every 11 eN: 

(u) n is not an element of S. 

Since 0 is the smallest element of N, it is also the smallest element of any 
subset of N containing 0. Since S has no smallest element, 0 cannot be 
in S, and, hence, ( **) is true when n = 0 (property (~ of Theorem c.2 
holds). Suppose(**) is true for alljsuch that 0 :S. j < t. Then none of 
the integers 0, 1, 2, ••• , t- 1 is. inS, or equivalen1ly, every element in 
S must be greamr than or equal to t. If t were in S, then t would be the 
smallest element in Ssince s ~ t for all s e S. Since S has no smallest 
element, tis not in S. In other words, (**)is true when n = t. Thus 
the truth of ( **) when j < t implies its truth for t (property (ii) of 
Theorem C.2 holds). By the Principle of Complete Induction, ( **) is 
true for all 11 e N. Therefore, Sis empty, and the proof is complete. • 

• Exercises 

A. 1. Prove that the sum of the first 11 nonnegative integers is-11(11 + l)j2. 
[Hint: let P(k) be the statement: -

0 + 1 + 2 + ..• + k = k(k + l)f2.) 

:Z. Prove that for each nonnegative integer 11,1!' > 11. 

3. Prove that 2"-1 :S. n! for every nonnegative integer 11. [Recall that 0! = 1 and 
fur n > 0, n! = 1 • 2 • 3 · • · (n - l)n.] 

4. Let r be a real aw:nber, r :f. 1. Prove that fur every integer 11 <2: 1, 
r"- 1 

I + r + r2 + r3+ · · · + t"-1 = --. 
r- 1 
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B. 5. Prove that 4 is a factor of 7" - 3" for every positive integer n. 
[Hint: 1k+l_ 3k+l = r+l - 1. 3k + 1. 3k- 3k+l = 7(J'<- Ji + (7 - 3)3k.J 

6. Prove that 3 is a factor of 4"- 1 for every positive integer n. 

7. Prove that 3 is a factor of 2211+1 + 1 for every positive integer n. 

8. Prove that 5 is a factor of 2411
-

2 + 1 for every positive integer n. 

9. Prove that 64 is a factor of 9" - 8n - 1 for every nonnegative integer n. 

10. Use the Principle of Complete Induction to show that every integer greater 
than 1 is a product of primes. [Recall that a positive integer pis prime 
provided that p > 1 and that the only positive integer factors of p are 1 
andp.] 

I 1. Let B be a set of n elements. Prove that the number of different injective 
functions from B to B is nl. [n! was defined in Exercise 3.] 

12. True or false; n2 - n + 11 is prime for every nonnegative integer n. Justify 
your answer. [Primes were defined in Exercise 10.] 

13. Let B be a set of n elements. 

(a) If n ~ 2, prove that the number of two-element subsets of B is n(n -l)j2. 

(b) If n ~ 3, ~ that the number of tlJree.ekment subsets of B is n(n - lXn - 2)/3L 

(c) Make a conjecture as to the number of k-element subsets of B when n ~ k. 
Prove your conjecture. 

14. At a social bridge party every couple plays every other couple exactly once. 
Assume there are no ties. 

(a) If n couples participate, prove that there is a "best couple" in the following 
sense: A couple u is ''best" provided that for every couple v, u beats 11 or u 
beats a couple that beats 11. 

(b) Show by example that there may be more than one best couple, 

15. What is wrong with the following "proof" that all roses are the same color. 
It suffices to prove the statement: In every set of n roses, all the roses in 
the set are the same color. If n = 1, the statement is certainly true. Assume 
the statement is true for n = k. Let S be a set of k + 1 roses. Remove one 
rose (call it rose A) from S; there are k roses remaining, and they must all 
be the same color by the induction hypothesis. Replace rose A and remove 
a different rose (call it rose B). Once again there are k roses remaining that 
must all be the same color by the induction hypothesis. Since the remaining 
roses in elude rose A, all the roses in Shave the same color. This proves that 
the statement is true when n =: k + l. Therefore, the statement is true for all 
n by induction. 
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16. Let n be a positive integer. Suppose that there are three pegs and on one of 
them n rings are stacb:d, with each ring being smaller in diameter than the 
one below it, as shown here for n = 5: 

The game is to transfer all the rings to another peg according to these rules: 
(i) only one ring may be moved at a time; (n) a ring 1Illl}' be moved to any 
peg but may never be placed on top of a smaller ring; (iii) the final order of 
the rings on the new peg must be the same as their original order on the first 
peg. Prove that the game can be completed in 2n- 1 moves and cannot be 
completed in fewer moves. 

17. Let x be a real number greater than -1. Prove that for every positive integer n, 
(1 + xr 2!. 1 + nx. 

C. 18. Consider maps in the plane formed by drawing a finite number of straight lines 
(entire lines, not line segments). Use induction to prove that every such map 
may be colored with just two colors in such a way that any two regions with 
the same line segment as a common border have different colors. 1\vo regions 
that have only a single point on their common border may have the same color. 
[This problem is a special case of the so-called Four-Color Theorem, which 
states that e~ry map in the plane (with any continuous curves or segments of 
curves as boundarie3) can be colored with at most four colors in such a way 
that any two regions that share a common border have different oolors.] 



APPENDIX D 

Equivalence Relations 
This appendix: may be read anytime after you've finished Appendix: B, but it is not 
needed in the text until Section 10.4. If you read it before that point, you should 
have no trouble with &amples 1-3 but may have to skip some of the later examples. 
Chapter 2 is a prerequisite for the exampes labeled "integers", Chapter 6 for those 
labeled "rings", and Section 8.1 for those labeled "groups". 

If A is a set, then any subset of A X A is called a relation on A. A relation Ton A 
is called an equivalence relation provided that the subset Tis 

(i) Reflexive: (a, a) e::: Tfor every a e:::A. 
(ii) Symmetric: If (a, b) e::: T, then (b, a) e::: T. 
(iii) Transitive: If (a, b) E Tand (b, c) E T, then (a, c) E T. 

If Tis an equivalence relation on A and (a, b) E T, we say that a is equivalent to b and 
write a- b instead of (a, b) E T. In this notation, the conditions defining an equiva­
lence relation become 

(i) Reflexive: a - a for every a EA. 
(ii) Symmetric: If a - b, then b -a. 

(ill) Traru.ilive:: If a- bandb- r:, then a- c. 

When this notation is used, the relation is usually defined without explicit reference to 
a subset of A X A. 

EXAMPLE 1 

Let A be a set and define a- b to mean a= b. In other words, the equivalence 
relation on A is the subset T = {(a, b) Ia = b} of A X _A. Then it is easy to see 
that - is an equivalence relation. 

EXAMPLE2 

The relation on the set R of real numbers defined by 

r - s means lrl = lsi 
is an equivalence relation, as you can readily verify. 

S31 
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EXAMPLE 3* 

Define a relation on the set 7L of integers by 

a~ b means a- b is a multiple of 3. 

For example, 17 - 5 since 17- 5 = 12, a multiple of 3. Clearly a - a for !:Very 
a since a- a = 0 = 3 • 0. To prove property (ii), suppose a - b. Then a-b is 
a multiple of 3. Hence,- (a -b) is also a multiple of 3. But- (a -b) = b -a. 
Therefore, b- a. To prove property (iii), wppose a- band b- c. Then a- b 
and b- care multiples of 3 and w is their difference (a--b)- (b -e) = a- c, 
so that a - c. Thus - is an equivalence relation (usually called congruence 
modulo 3 and denoted a = b (mod 3)). 

EXAMPLE 4 (INTEGERS) 

If n is a fixed positive integer, the relation of congruence modulo n on the set Z, 
defined by 

a = b (mod n) if and only if a- b is a multiple of n, 

is an equivalence relation by Theorem 21. 

EXAMPLE 5 (RINGS) 

If I is an ideal in the ring R, then the relation of congruence modulo I, defined 
by 

a = b (mod I) if and only if a- b E I, 

is an equivalence relation on R by Theorem 6.4. 

EXAMPLE 6 (GROUPS) 

If K is a subgroup of a group G, then the relation defined by 

a"" bif and only if ah_-l EK 

is an equivalence relation on G by Theocem 8.1. 

Caution It is quite possible to have a relation on a set that satisfies one or two. but 
not all three, of the properties that define an equivalence relation. For instance, the 
order relation 5'; on the set R of real numbers is reflexive and transitive but not sym­
metric; for other examples, see Exen:ises 8 and 9. Therefore, you must verify all three 
properties in order to prove that a particular relation is actually an equivalence relation. 

•If you've alret~dy reitCISection U, skip Examples 3 and 8:; it'8 ju8tcongruence modulo n when 11 = 3. 
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Let - be an equivalence relation on a set A. If a E A, then the equivalence c• of 
a (denoted (a]) is the set of all elements in A. that are equivalent to a, that is, 

[a]= {b lh E A. andb- a}. 

In Example 2, for instance, the equivalence class [9] of the number 9 consists of all real 
numbers b such that b- 9, that is, all numbers bsuch that lbl = 19~ Thus (9] = {9,- 9}. 

EXAMPLE 1 (RINGS, GROUPS) 

If I is an ideal in a ring R, then an equivalence class under the relation of con­
gruence modulo I is a coset a + I = {a + i I iE 1}. Similarly, if K is a subgroup 
of a group G, then an equivalence class of the relation congruence modulo K is 
a right coset Ka = {ka I k E K}. 

EXAMPLE 8 

In Example 3, the equivalence clas8 of the integer 2 consists of all integers b 
such that b - 2, that is, all b such that b - 2 is a multiple of 3. But b - 2 is 
a multiple of 3 exactly when b is of the form b = 2 + 3k for some integer k. 
Therefore, 

[2] = {2 + 3k I kEZ} = {2 + 0, 2 ::t 3, 2 ± 6, 2 ± 9, ... } 
= { •.• '-7, -4, -1, 2, 5, 8, 11, •.. }. 

A similar argument shows that the equivalence class [8] consists of all integers 
of the form 8 + 3k(kEZ); consequently, 

[8] = { ... ' -7, -4, -1, 2, 5, 8, 11, 14,17, ... }. 

Thus (2] and [8] are the same set. Note that 2 - 8. This is an example of 

Theorem D.1 
Let- be an equivalence relation on a setA and a, b EA. Then 

a- c if and only if [a)= [c]. 

Pro or ,. Assume a - c. To prove that [a] = [c], 'We first show that [a] s:; (c]. To do 
this, let bE [a]. Then b - a by definition. Since a - c, 'We have b - c by 
transitivity. Therefore, hE (c] and [a] s:;(c]. Reversing the roles of a 
and c in this argument and using the fact that c- a by symmetry, show 
that [c) s:; [a]. Therefore, [a] = [c]. Conversely, assume that [a] = [c]. Since 
a- a by reflexivity, we have a E [a], and, hence, aE [c]. The definition of 
[c] shows that a- c. • 

5 lf you've read Sect ion 2.1, note that thIs ~oof and the proof of Corollary 0.2 are vi rt ua lly identical to 
the proofs MTheorem 2.3a nd Corollary 2.4: just replace "' by-". 
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Generally when one has two sets, there are three possibiliti~: The sets are equal, 
the sets are disjoint, or the sets have some (rut not all) elements in common. With 
equivalence classes, the third possibility cannot occur: 

Corollary 0.2 
Let ~ be an equivalence relation on a set A. Then any two equivalence 
classes are either disjoint or identical. 

Proof.,. Let [aJ and [cJ be equivalence classes. If they are disjoint, then there is 
nothing to prove. If they are not disjoint, then [a] n [cJ is nonempty, and 
by definition there is an element b such that b E (a] and bE [cJ. By the 
definition of equivalence class, b~ a and b ~c. Consequently, by transi­
tivity and s)'IIIIIIltry, a- c. Therefore, (a]= (c] by Theorem 0.1. • 

A partition of a set A is a collection of nonempty, mutually disjoint* subsets of A 
whose union is A. Every equivalence relation -on A leads to a partition as follows. 
Since a E(a] for each a EA, every equivalence class is non empty, and every element of 
A is in one. Distinct equivalence classes are disjoint by Corollary 0.2. Therefore, 

The di!!tinct equivalence cia~ of au equivalence 
relation on a !fllt A form a partition of A. 

Conversely, every partition of A leads to an equivalence relation whose equivalence 
classes are precisely the subsets of the partition (Exercise 21). 

• Exercises 

A. I. Let P be a plane. If p, q are points in P, then p ~ q means p and q are the same 
distance from the origin. Prove that- is an equivalence relation on P. 

2. Define a relation on the set Q of rational numbers by: r - s if and only if 
r- sEZ. Prove that- is an equivalence relation. 

3. (a) Prove that the following relation on the set R of real numbers is an 
equivalence relation: a - b if and only if cos a = cos b. 

(b) Describe the equivalence class of 0 and the equivalence class of 1r j2. 

4. If m and n are lines in a plane P, define m- 1'1 to mean that m and n are 
parallel. Is ~ an equivalence relation on P'! 

5. (a) Let- be the relation on the ordinary coordinate plane defined by 
( x, y) ~ (u. t~) if and only if x = u. Prove that -is an equivalence relation. 

(b) Describe the equivalence classes of this relation. 

•Tha1 is, any two of the subsets are disjoint 
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6. Prove that the following relation on the coordinate plane is an equivalence 
relation: (x, y)- (u, v) if and only if x-u is an integer. 

7. Letf:A-+ Bbea function. Prove that the following relation is an equivalence 
relation of A; u- v if and only ifj(u) = j(v). 

B. Let A = {I, 2, 3}. Use the ordered-pair definition of a relation to exhibit a 
relation on A with the stated properties. 

(a) Reflexive, not symmetric, not transitive. 

(b) Symmetric, not reflexive, not transitive. 

(c) Transitive, not reflexive, not symmetric. 

(d) Reflexive and symmetric, not transitive. 

(e) Reflexive and transitive, not symmetric. 

(f) Symmetric and transitive, not reflexive. 

9. Which of the properties (re:Oex.i ve, symmetric, transitive) does the given 
relation have? 

(a) a< bon the set~ of real numbers. 

(b) A k; Bon the set of all subsets of a set S. 

(c) a * b on the set IR! of real numbers. 

(d) ( -1)" = (-If on the set Z of integers. 

B. 10. If r is a real number, then [rll denotes the la:rg~ integer that is,.;; r; for 
instance (1r] = 3, (7) = 7 and l-1.5) = -2 Prove that the following relation is 
an equivalence relation on IR: r- s if and only if ~rll = Is). 

II. Let - be defined on the set IR* of nonzero real numbers by: a - b if and only 
if ajb E Q. Prove that - is an equivalence relation. 

IZ. Is the following relation an equivalence relation on IR!: a- b if and only if 
there exists k EZ such that a = 1 o'<b. 

13. In the set IR![x] of an polynomials with real coefficients., definef(x)- g(x) if 
and only if f'(x) = g'(x), where' denotes the derivative. Prove that- is an 
equivalence relation on Ill[ x ]. 

14. Let T be the set of all continuous functions from ~ to IR and define f- g if 
and only if /(2) = g{2). Prove that - is an equivalence relation. 

15. Prove that the relation on Z defined by a- b if and only if Ql ""' l? (mod 6) is 
an equivalence relation. 

16. LetS= {(a, b) Ia, bEZ andb * 0} and define (a,b)- (c., d) if and only if 
ad = be. Prove that - is an equivalence relation on S. 

17. Let - be a symmetric and transitive relation on a set A. What is wrong 
with the following "proof" that- is reflexive: a ~ b implies b - a by 
symmetry; then a-band b- a imply a- a by transitivity. [Also see 
Exercise 8(f).] 
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18. * Let G be a group and define a - b if and only if there exists c IS G such that 
b = c- 1a~;. Prove that- is an equivalence relation on G. 

19.* (a) Let K be a subgroup of a group G and define a - h if and only if 
(l1b EK. Prove that- is an equivalence relation on G. 

(b) Give an ex.ample to show that the equivalence relation in part (a) need 
not be the same as the relation in Example 6. 

20.* Let G be a subgroup of S,.. Define. a relation on the set {1, 2, .•• , 1'1} by 
a- h if and only if a= a(b) for some t.T in G. Prove that- is an equivalence 
relation. -

21. Let A be a set and {Arll lSI} a partition of A. Define a relation on A by: 
a- h if and only if a and bare in the same subset of the partition (that is, 
there exists k El such that a IS Ax and b IS AJ. 

(a) Prove that - is an equiw.lence relation on A. 

(b) Prove that the equivalence classes of- are precisely the subsets A1 of the 
partition. 

•sections 7 2 and 7.3 are prerequisites tor Exercises 18--20. 
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The Binomial Theorem 
Appendix C and Section 3.2 are the prerequisites fur this appendix. The material 
presented here is used in Section 11.6 and in occasional exercises elsewhere. 

As 'He saw in Example 3 of Section 3.2, 

(a+ b'f= .T + 2ab +I? 

for any elements a, b in a commutative ring R. Similar calculations using distributivity 
and commutative nrultiplication show that 

(a + b'f = rt + 3.Tb + 3al? + b3 

(a + bf = a4 + 4<i'b + 6crl? + 4ol} + b4
• 

There is a pattern emerging here, but it may not be obvious unless certain facts are 
pointed out first 

Recall that 01 is defined to be 1 and that for each positive integer n, the symbol n1 
denotes the number n(n- 1)(n- 2) · • · 3 • 2 • 1. fur each k, with 0 s k s n, the binomial 

coefficient (:) is defined to be the number kl(n n~ k)!" This number may appear to 

be a fraction, but every binomial coefficient is actually an integer (Exercise 6). fur ' (4) 41 4 . 3 . 2 . 1 . . (4) 4! 
umtance, I '=" 1!(

4 
_ I)! '=" 1 • 3 • 2

:. 1 '=" 4, and gjmilar!y, 2 '=" 2121 '=" 6. Note 

that these numbers appear as coefficients in the preceding expansion of (a+ bf; in 
fact, you can readily verit)r that 

This is an example of 

537 
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Theorem E.1 The Binomial Theorem 
Let R be a commutative ring and a, bE R. Then for each positive integer n, 

<a +bY'= tl' + (~r-'b + (;)r~ + ... + (n ~ ,r-~ + b". 

Proof ~ The proof is by induction on n. If " = l, the theorem states that 
(a + b/ = a1 + b1

, which is certainly true. Assume that the theorem is 
truewbenn = k,thatis, that 

(a+ b)k = Jr + (~y-lb + ... + C)t~-tU + ... + (k ~ l)ool--1 + II. 

We must use this assumption to prove that the theorem is true when" = k + 1. By the 
definition of exponents (a + b'f+l =(a + b)(a + b'f .. Applying the induction hypoth­
esis to (a + b)" and using distributivity and commutative multiplication, we have 

(a+ b)t+l = (a+ b)(a + b)k 

=(a+ b)[Jr + (~y-•b + .. · + C)at-w +. ·. + (k ~ 1}v-1 + ll] 
= a[Jr + (~y-tb + .. ·+ (!y-•e + ... + (k: 1}v-1 +If J 

+ b[ Jr + (~y-lo + ... + er-'u + ... + (k : l),H-1 + I}] 

= [cf+l + G~ + .. ·+ (!}r~w + .. ·+ (k ~ tYI£-' + a/}J 
+ [ tf'b + (~y-1b2 + · · · + (!)J:-•lf+ I + · · · + (k ~ 1)attt + dH] 

= akU + [ (0 + 1 ]t~b + [ (~) + (~) Jr 'd + ... 

+ [ c : 1) + e) y~,;rt + -.. + [ 1 + (k ~ ~) JH + fl+ ~-
&elcise 5 (which you should do) shows that for r = 0, 1, ... , k 

Apply this fact to each of the coefficients in the last part of the equation above. 

Ru instanc~ G)+ 1 =G)+(~)= e7 1
}ande) +G)= (k; 1

). and 

so on. Then, from the fust and last parts of the equation above we have 

(a+ b)lr-l-1 = fl+l + e; 1)J=b + e; lr-1" + .. . 

+ (~; ~y·-~u+t + ... + (k; 1}v + h*+'. 
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Therefore, the theorem is true when n = k + 1, and, hence, by induction it is true for 
every positive integer n. • 

• Exercises 

A. 1. Let x and y be real numbers. Find the coefficient of ~yl in the expansion of 
(2x- y'19• [Hint: ApplyThooremE.l with a= 2x, b = y.] 

2. If x andy are real mmbers, what is the coefficient of x 11l in the expansion of 
(~ - 3y)'0., 

B. 3. Let r and n be integers with 0 < r < n. Prove that G) = (n : r). 

4. Prove that for any positive integer n, 'Z' = (n) + (") + (n) + ... + (n). 
[Hint: 2" = (l + l)".] \o l 2 n 

5. Let rand k be integers such that 0 :s r :s k - 1. Prove that ( k 
1
) + (k) = 

(k+1) r+ r 
r + 

1 
, [Hint: Use the fact that 

(k- r)(k- (r + 1))1 = (k- r)l = ((k + I)- (r + l))l] 

to~ each term on the left as a fraction with denominator (k + l)!(k - r)L Add 

the fractions, simplify the numerator, and compare the result with (;: ~ ).1 
6. Let n be a positive integer. Use mathematical induction to prove this 

statement: For each integer r such that 0 :s r :s n, ( 
11

) is an integer [Hint: For 

. . (1) (1) T • ~ n = 11 tIS easy to calculate 
0 

= l = 
1 

; assume the statement IS true .or 

n = k and use Exercise 5 to show that the statement is true for n = k + 1.] 

7. Here are the first five rows of Pascal's triangle: 

RowO: 
Row 1: 
Row2: 
Row3: 
Row4: 

I 
l I 

I 2 1 
l 3 3 l 

l 4 6 4 1 

Note that each entry in a given row (except the 1 's on the erd) is the rum of the 
two numbers above it in the precOO:ing row. For instance, the first 4 in row 4 is 
the sum of l and 3 in row 3; similarly, 6 in row 4 is the sum of the two 3's in 
row3. 
(a) Write out the next three rows of Pascal's triangle. 
(b) Prove that the entries in row n of Pascal's triangle are precisely the 

coefficients in the expansion of (a+ b)", that is, (
11
), (

11
), (;) ••.. , ("). 

[Hint: Exercise 5 may be helpful] 0 I 11 
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APPENDIX F 

Matrix Algebra 
This appendix may be read at any tiim after Section 3.1 but is needed only in Chapter 16. 
Throughout this appendix, R is a ring with identity, 

Rings of 2 X 2 matrices with entries inZ, 0, R, and C were introduced in Section 3.1. 
These matrices are special cases of this definition: Ann X m matrix over R is an array 
of n horizontal rows and m vertical columns 

1\J rl2 rl3 

rz:~ T:u r:!3 r:a. 

r11 rn r33 

rod rnl rill ,_ 
with each ryE R. For example, 

A~(~ 
-6 4 10 

j) ·~G n 4 

C= (~ ~). 0 5 -2 
1 

0 1 
3 4 12 1 1 

2 
5 2 0 

4 X 5overZ 3X3overl1; 2 X 4over Z2 

Matrices are usually denoted by capital letters and their entries by lowercase 
letters with double subscripts indicating the row and column the entry appears in. For 
instance, in the matrix A = ( ari) above, the entry in row 4 and column 2 is a42 = 5. In 
matrix C, c12 = 0 and c21 = 1. Thus, for example, row i of ann X m matrix (rf) is 

Then X m zero matrix is then X m matrix with !kin every entry. The Identity matrix I. 
is the n X n matrix with 1R in positions 1-1, 2-2, 3-3, ..• , n-n, and OR in aJI other posi­
tions. For example, over the ring Ill. 
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'· ~ (~ ~) 
1 0 0 0 

~~o n 
0 0 

1 0 0 0 0 
1 0 

Is= 0 1 0 0 1 0 
0 1 

0 0 0 0 1 
0 0 

0 0 0 0 1 

The identity matrixJM can besuccinctlydescribed by In= (Bq), where By is the Kronecker 
delta symbol, defined by 

{
1Rif i =j. 

~ii = OR if i '# j. 

It is sometimes convenient to think of a large matrix as being made up of two 
smaller ones. R>r example, if A is the 3 X 2 matrix 

over Z, then (13 1 A) denotes the 3 X 5 matrix 

0 0 4 2) 
~ ~ ! ~ . 

Sllniluey, (~) dmot« th< motrix (~ 3) 6 . 

If A = (~and B = fPiJ are n X m matri~ then their matrix sum A + B is 
the n X m matrix with ag + bq in position i-j. In other words, just add the entries in 
corresponding positions, as in this example over Z5; 

(1 3 4)+(3 2 
0 2 1 1 4 ~) = e 0 4) 

1 3 . 

If A and Bare of different sizes, their sum is not defined. But if A, B, Care n X m 
matrices, then Exercise 3showsthatmatrix addition iscommutative(A + B = B +A] and 
associative (A + (B + C) = (A + B) + CJ. The n X m zero matrix acts as an identity 
for addition (Exercise4). 

For reasons that are made clear in a linear algebra course, the product of matrices 
A and B is defined only when the number of columns of A is the same as the number of 
rows of B. The simplest case is the product of a 1 X m matrix A consisting of a single 

ww (a, a, a,. · . a,) "'d m m X I matrix B <on•i"ing of a •iogle '"'-(V • 
5 A matrix with only one row is called a row vector and a matrix with only one column a coiiJIJin 
vector. Single subscript& are adequate to describe the entries ol row and column vectors. 
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The product is defined to be the 1 x 1 matrix whose single entry is the element 

For example, over Z 

(·) (2 3 l) (D ~ 2 •• + 3 • 0+ , • 2 ~ ,,_ 

If A is ann x m matrix and B is an m x k matrix, then the matrix product AB is 
the n X k matrix (cy), where the entry in position i-j is the product of the ith row of A 
and thejth column of B: 

"' c11 = aabv + a~ + ~h31 + aub41 + · · · + att/J"" = ~a,.brt 
r:1 

EXAMPLE 1 

The product of 

A~ G ~ ~) ... B ~ G 2 6 3) 
2 1 
0 2 6 

is a 2 X 4 matrix whose entry in posifun 1-1 is 10 (the product of row 1 of A and 
column l of Bas shown in(*) above). In pcmtion 2-3theentry inABis the product of 
row 2 of A and oolumn 3 of B: 

1 • 6 + s . 2 + 0 . 0 = 16. 

Similar calculations show that 

(
2 3 

AB = 1 S 

2 

l 
6 

6 

2 
0 
D~c~ 13 

7 

18 

16 
11) 8 . 

The product BA is not defihed because B has four columns, but A has only two 
rows. 

If A, B, Care matrices of appropriate sizes so that each of the products AB and 
BC is defined, then matrix multiplication is associative: A (Bq = (AB)C (fuen::ise 7). 
Similarly, if E, F, G are matrices such that the productsEG and FGare defined, then the 
dstributive law holds: (E + F)G = EG + FG (Exercise 5). The identity matri:es act as 
identity elements for multiplication in this sense: If A is ann x m matrix, then IR • A = A 
and A • 4, = A (Exercise 6). Even when both products AB and BA are defined, matrix 
multiplication may not be commutative (see Example 6 in Section 3.1). 

Let M,/,R) denote the set of all n x n matrices over the ring R. Since all the matri­
ces in Mn(R) havethesamenumber of columns and row~ both A+ Band AB andBA 
are defined for all A, BE M,/..R). The properties of matrix addition and multiplication 
listed above provide the proof of 
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Theorem F.1 
If R is a ring with identity, then the set Mn(R) of all n x n matrices over R is a 
noncommutative ring with identity ln. 

• Exercises 

NOTE: Unles3 stated otherWi3e, all matrices are over a ring R With identity. 

A. I. Assume A and Bare matrices over Z. Find A + B. 

(a) A= G 2 -2 0) B= e -8 2 4) 
5 7 11 6 0 4 1 

~)A= (~ 0 2) (' 
-2 

-~) I 6 B = 3 0 

I 0 0 7 
-5 7 1 6 

2. Assume A and Bare matrices over "4,. Find AB and BA whenever the 
products are defined. 

(a) A = G D B = G ~ ~) 
(b) A = G ~) B = (~ ~ D 

(c) A = (3 2 I 0) B -_ (ooii ooii ~~) 
B. 3. Let A = (a1), B = (by), and C = (cfJ ben X m matrices. Prove that 

(a) A+ B = B +A (b) A+ (B +C)= (A+ B)+ C 

4. If A = (aq) is an n x m matrix and Z is the n x m zero matrix. prove that 
A+Z=A. 

S. (a) Let E and Fbe I X m row vectors and G = (g1~ an m X k matrix. Prove 
that (E + F)G = EG + FG. 

(b) Let E = (ev) and F = (f;j) ben X m matrices and G = (g1j) an m X k 
matrix. Prove that (E + F)G = EG + FG. 
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6. If A is ann X m matrix, prove that 111 • A= A and A· J;, =A. 

C. 7. Let A =(at) be ann x m matrix, B = (bfJ) an m x k matrix. and C = (cr}> a 
k x p matrix. Prove that A(BG} = (AB)C. (Hint: BC = (dtJ), where 

t M 

d1j = ~b,..cq, and AB = (e,.), where e,. = ~a1,b,,.. The i-f entry of A(BC) is 

~a;,~
1

= ~tlft(~bu-cq) = ~ ~~bu~ .. Show that the i-j entry of (AB)Cis 

this same double sum.] 
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Polynomials 
In high school there is some ambiguity about the "x" in polynomials. Sometimes x 
stands for a specific number (as in the equation 5x- 6 = 17). Other times x doesn't 
seem to stand for any number-it's just a symbol that is algebraically manipulated 
(as in exercises such as (x + 3)(x - 5) = ::t?- 2x - 15). * OUr goal here is to develop a 
rigorous definition of "polynomial" that removes this iiiii.biguity. The prerequisites for 
this discussion are high-school algebra and Chapter 3. 

As a prelude to the formal development, note that the polynomials from high 
school can be described without ever mentioning x. For instance, 5 + 6x - 2xl is com­
pletely determined by its coefficients ( 5, 6, 0, -2). t But 5 + 6x - 2x3 can also be written 
5 + 6x - :2;(1 + Q.x4 + fuS + Ox'. To allow for such additional "zero terms", we list the 
coefficients as an infinite sequenoe (5, 6, 0, -2, 0, 0, 0, 0, ..• ) that ends in zeros. 

Adding polynomials in this new notation is pretty much the same as before: Add 
the coefficients of corresponding powers of x, that is, add sequenoes coordinatewise: 

5 + 6x -2x-" 
3 - 2x + 5r - 4r 

8 + 4x + 5xl - 6x1 

(5, 6, 0, -:z. 0, 0, 0, ... ) 
(3, -2, 5, -4, 0, 0, 0, .•. ) 

(8, 4, 5, -6, 0, 0, 0,- .. }. 

Multiplication can also be described in terms of sequenoes, as we shall see. If you keep 
this model in mind, you will see clearly where the formal definitions and theorems 
come from. 

&apt in Theorem 4.1 at the f!lld of this appendix, R is a ring with identity (not 
neoessarily commutative). A polynomial with coeflicienls in the ring R is defined to be 
an infinite sequence 

(CJo, au ~ a3, ••• ) 

such that each a,ER and only finitely many of the a, are nonzero; that is, for some 
index k, t2j = OR for all i > k. The elements a,ER are called the coefficients of the 
polynomial. 

•sometimes xis also used as a variable that can take infinitely many values (as in the function 
Jtx) = x' - x). This usage is disc us sed in Section 4. 4. 
to is the coefficient of x.'. 

545 
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The polynomials (~Jo, a" a:z, ... ) and (ho, bh b1, ••. ) are equal if they are equal as 
sequences, that is, if <11J = ho, a1 = 1i1, and in general, "t = b1 for every i ~ 0. Addition of 
polynomials is denoted by @and defined by the rule 

(ao. a~oaz •. .. ) @ (ho, bh b:!> .• • ) = (ao + ho. "t + bl, ":! + ht •... ' a,+ b~ .• • ). 

You should verify that the sequence on the right is actually a polynomia~ that is, that 
after some point all its coordinates are zero (Exercise 2). 

Multiplication of polynomials is denoted 0 and defined by the rule• 

(~, a" a:z, • •• ) 0 (ho. b~o hz, .•.. ) = (co, c1 , c2, .•• ), where 
Gl = fJ(jJo 
C1 = fJ(jJ, + ~/Jo 
c2 = ~ + albl + a/Jo 

" =2:~~A-,. 
1=0 

To show that the product defined here is actually a polynomial you must verify that 
after some point all the coordinates of (co, Ct, ••• ) are zero (Exercise 2). 

Theorem G.1 
Let R be a ring with identity and P the set of polynomials with coefficients in 
R. Then Pis a ring with identity. It R is commutative, then so is P. 

Proof '" Exercise 2 shows that Pis closed under addition and multiplication. To 
show that addition in P is commutative, we note that a, + IJ. = b1 + a1 

for all a, b1 E R because R is a ring; therefore, in P 

(t\1, a1, az, •• • ) @ (ho, b1, bz, • •. ) 
= (ao + ho, at + h1, ... ) = (ho + ao. b,. +a, ... ) 
= Cho. b" b, ... ) (£l (ao, "'' ":!. ... ). 

Associativity of addition and the distributive laws are proved similarly. You 
can readily check that the multiplicative-identity in Pis the polynomial 
(Ilb OR> OR> OR> .. .), the zero element e the polynomial (OR> OR> OR> ... ), 
and the solution of the equation (ag, al> az, •.• ) +X= (OR> OR> OR> ••• ) is 
X= (-ao, -a"-"::!:, .• ). 

To complete the proof that P is a ring with identity, we must show 
that multiplication is associative. Let A, B, CE P, where 

B = (b0, b~o b,_, ••. ) 

•To understand the fonnal definition, clo the following multiplication problem and look at the 
coefficients of each power of x in the answer. (6o + a,x + a,.xl>~ + bjX + M. 



Appendix G Polynomi11.l11 547 

Then the nth coordinate of (A 0 B) 0 Cis 

ft ft [ I .] " t 
~{ab)~~-1 = ~ ~api-1 c11-i= .l:}:¥1-f,r-~· 
1=0 1=0 1~ pOJ=O 

Exercise 6 shows that the last sum on the right is the same as 

where the sum is taken over all integers u, v, w such that u + v + w == n 
and u ~ 0, v ~ 0, w ~ 0. On the other hand, the nth coordinate of 
A 0 (B0 C) is 

(•••) fa,.(bc)IJ'-~ = ±o..['2b.c.._-~-&] = ±~a.hA.-.-~ 
P"'ll ,=;0 1=11 ,=01=0 

Exercise 6 shows that the last sum on the right is also equal to ( "* ). Since 
the nth coordinates of (A 0 B) 0 C and A 0 (B 0 C) are equal for each 
11 ~ 0, (A 0 HJ 0 C == A 0 (B 0 C). The proof of the final statement of 
the theorem is left to the reader (Exercise 3). • 

In the old notation, constant polynomials behave like ordinary numbers. In the 
new notation, constant polynomials an: of the form (r, 0, 0, 0, .•.. ), and essentially 
the same thing is true; 

Theorem 8.2 
Let P be the ring of polynomials with coefficients in the ring R. Let R* be the 
set of all polynomials in P of the form (r, OR, ~. OR, .•• ), with rER. Then R* is 
a subr ing of P and is isomorphic to R. 

Proof .. Consider the functionf:R-+ R* given by 

f(r) == (r, OR, OR, OR, ••• }. 

You can readily verify tbatfis bijectiw. Furthermore, 

f(r + s) = (r + s, OR, OR, oR ••• ,) 

== (r, OR, OR, OR, •• • ) (f) (s, OR, OR> OR) ""'f(r) + f(s) 

and 

f(rs) = (rs, OR, OR, OR, ••• ) 

= (r, OR, OR, OR, ••• ) 0 (s, OR, OR, OR> • •• ) = f(r) 0 f(s). 

Therefore, f is an isomorphism, and, hence, ~ is a subring. • 

Now that the basic facts have been established, it's time to recover the "old" nota­
tion for polynomials. First, we want polynomials in R* to look more like "constants" 
(elements of R), so 

(a, OR, OR> OR, .•• ) wiU be denoted by the boldface letter a. 
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Next, reverting to the original source of our sequence notation, 

(ORo 1.., o.., o.., OR, • •• ) will be denoted by x. 

There is no ambiguity about what xis here--it is a specific seql.lellC<l in P; it is not an 
element of R orR*, and it does not "stand for" any element of R or R*. 

This notation makes things look a bit more familiar. For instance, 

(a, 0.& OR, OR. ••. ) + (b, OR, OR, •. . )(OR, lR, 0.& OR, •.• ) 

becomes a + bx. Similarly, we would expect cx3 (the "constant" c times x:J_) to be the 
sequence (OR, OR, OR, c, OR, OR, ••• ) with c in position 3.* But we can't just Msume that 
everything works as it did in the old notation. The required proof is given in the next 
two results. 

Lemma G.3 
Let P be the r irg of pol yrom ials with coefficients in the ring R and x the 
polynomial j~, 1n, On, On, ... ), Then for each element a = (a, On. On, ... ) of 
R* and each integer n ~ 1: -

(1) X' = (O~~o On, ••• , On, 1n, On, ••• ), where 1n is in position n. 

{2) a:/' = (O~~o On, . , ., On. a, On, ... ~ where a is in position n. 

Proof ., The polynomial x can be described like this: 

X = (~1 e., ea. ••• ), 

Statement (1) will be proved by induction on n.t It is true for n = 1 by 
the definition of x 1 = x. Suppose that it is true for n = k, that is, suppose 
that 

where d, =OR for I :f: k, and d~c = lR. 

Then 

xf+t = A = ( c4, d11 tk, . , ,)(~, e~o e.z, .•• ) = (ro. r1, r2, •.• ), 

where for each}~ O, 

Since e1 =OR fori :f: 1 and~= OR fori :f: k, we have 

~'k+l = doetr+l + ''' + 4-lt':l + dJI!t + 4+teo = d,.e1 = 1R1R = lR ........_.... 
0 0 

•Remember that in the polynomial (r, s, t, ... )the element r is in position 0, sis in pos~ion !, tis in 
position 2, etc. 

tSee Appendix c. 
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and, for} 4 k + 1, 

'J = t¥1 + dteJ-1 + · · · + ~-111!:2 + ~-111!1 +~eo 
'-.-

0 0 

= ~-1e1 = 4-11R = t4---l· 

But}- 1 ¢ k si=J '1- k + 1. Therefore,')= 4-1 =OR for allj '1- k + 1. 
Henoe,_x':+l = (r0 , r 11 r2 , ••• ) = (OR, OR, ... , OR, 1R, OR, • •• ), with lR in 
position k + 1. So (1) is true for n = k + 1 and, therefore, true for all n 
by induction. 

A similar inductive argument proves (2); see Exen:.ise 7. • 

Theorem G.4 
let P be the ring of polynomials with coefficients in the ring R. Then P 
contains an isomorphic copy R* of R and an element x such that 

( 1} ax= xa for every a E R*. 

(2) Every element of P can be written in the form ao + ar + a#2 + 
... + a,t'. 

(3) If a0 + a1x + • · • + a/ = bo + b,x + · · · + bmtf" with n :S m, then 
a1 = b1 for i :S n and b1 = ~fori> n; in p~rticular, 

(4) a0 + a.x + ~ + · · · + a,x!' =OR if and only if a,= OR for every i ~ 0. 

Proof • Let x be as in Lemma G.3. The proof of (1) is left to the reader (Exercise 5). 

(2) If (Do. a11 a11 ••• ) E P, then there is an index n such that a;= OR for 
all i > n. By Lemma G.3 

(ao. ~. ~ • • ·, a, oR, oR, •.. ) 
=(&roo OR, OR,'' .) +(OR, at, OR,' • .) +(OR, OR,~ OR,''.) 

+ · · · + (OR, ... , OR, a,., OR. ••• ) 

= a. + a,x + a~:¢- + • • · + a,;/'. 

(3) Reversing the argument in (2) shows that a. + a1x + • · · + a.;r!' 
is the sequence (Do. a11 ~ •••• , a,, OR, OR, ... ) and that bo + b1x + • · • + 
b.,x!" = (bo, b11 b,_,., . , b,., OR, OR, ..• ). If these two sequences are equal, 
then we must have ai = hi for i s n and OR = hi for n < i :S m. 

(4) is a special case of (3): Just let bi =OR- • 

When polynomials are written in the form ao + a1x + • • • + a,;l', addition and 
multiplication look as they did in high school, except for the use of boldface print in 
certain symbols. 
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EXAMPLE 1 

In the ring of polynomials with real-number coefficients, the distributive laws 
and Theorems G.2 and G.4 show that 

(Jx + 1)(2x + 5) = (Jx + 1)2x + (3x + 1)5 

=3x2x +I· 2x + 3x5+ I· 5 

= 3 · 2xx + 1 · 2x + 3 • 5x + I • 5 

=6r+ 17x +5. 

In terms of elements, the distinction betwem boldface and regular print is 
important because II is a sequence, while a is an element of R. But in terms r:f algebraic 
structure, there is no nood for distinction 'because R* (consisting of all the boldface d's) 
is isomorphic toR (consisting of all the a's). Consequently, there is no harm in identi­
fying R with its isomorphic copy R* and writing the clements of R = R* in ordinary 
print. • Then polynomials look and behave as they did before. For this reason, the 
standard notation for the p;>lynomial ring is R(x], which we shall u.se hereafter instead 
of P. 

We have now come full circle in terms of notation, with the added benefits of 
a rigorous justification of our past work with polynomials, a generalization of these 
concepts to rings. and a new viewpoint on polynomials. Beginning with a ring R with 
identity we have constructed an extension ring R(x] of R (that is. a ring in which R is a 
subring). This troension ring contains an element x that commutes with every clement 
of R. The element xis not in Rand does not stand for an element of R. Every clement 
of the extension ring can be written in an essentially unique way in terms of elements of 
Rand powers of x. Because x has the property that~+ a1x + • • • + o.,;r:" = OR if and 
only if every a; = OR> x is said to be tramcendental over R or an lndetermlna te over R. f 

We are now in position to prove Theorem 4.1, in which the ring R need not have 
an identity. 

Theorem 4.1 
If R is a ri rg, then there exists a ring T containing an element x that is not in 
Rand has these properties: 

(i) R is a subring of T. 

(ii) xa = ax for every a E R. 

*You've been rna ki n g this id ant if icatio n for years when, for example, yo 11 treat the constant 
polynomial4 as if it were the real number 4. The identification question can be avoided by 
rewriting the definition of polynomial to say that a polynomial is either an element of R or a sequence 
(IJ, 1t. ••• ) with at least one 1 1 * OR for ; ;;,: 1 and all a1 eventually zero. Then the polynomials actually 
contain R as 11. subset The definitions of add ilion and multiplication, as well as the proofs Dl the 
th eore rns, then have to d ea I with several eases. Proceed in the obvious (but tiring) way unti I yo 11 

have provedTheorem G.4again. 

tThe latter terminology is a bit misleading since xis a well-defined element of R[x]. 
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(iii} The set R[x] of all elements of T of the form 

(where n ~ 0 and ~JtER} 

is asubring of Tthat contains R. 

(iv) The representation of elements of R[x] is unique: tf n s m and 

a0 + a1x + a~ + · · · + a,x" = 41 + b,x + b~ + • • • + h~, 

then a, = b1 for f = i, 2, .•• , n and b1 = OR for each f > n. 
(v} a0 +a~+ a,.f + · · · + a,:D =OR If and only if a1 =OR for every f. 

Proof" There are two cases: (1) R has an identity; and (2) R does not have an 
identity. 

Case 1: Use Theorems G.l and G.4, with T = P = R[x] and R* identified 
withR. 

Case 2: Let S be a ring with identity that contains R as a subring. With 
many familiar rings, an Sis easy to find. For example, ring of even inte­
gers has no identity; but is a subring of Z, which does have an identity. 
For the general case, use Exercise 39 of Section 3.3. 

Apply Case 1 with Sin place of R, to construct 5lx] = T.. The poly~ 
nomials in S[XJ whose coefficients are actually in R form a subring of 
S[x] = Tthat contains R, as you can readily verify (Exen::ise 10); this 
subring is R[x]. Henoe, property (i) of the theorem is satisfied. Since 
properties (ii}{v) hold for all elements of .5lx], they necessarily hold for 
all elements of R[x]. • 

Finally, note that 

When R does not have an identity, the polynomial :t is not itself in R[:tl. 

For instance, the ring of polynomials over the ring R of even integers consists of all 
polynomials with even coefficients. So it does not contain x = lx or any polynomial 
kxwith kodd. 

• Exercises 

A. 1. Express each polynomial as a sequence and express each sequence as a 
polynomial. 

(a) (0, 1, O, 1, 0, 1, 0, 0, 0,, .. ) 

(b) (0, 1, 2, 3, 4, s, 6, 6, 8, 9, 0, o, 0, ... ) 

(c) 3.x6- srt + IU- 3x1 + 7.Sx- II 

(d) (x -l)(xl- :r?- + 1) 

2. (a) If (a" a2o •.. ) and (b1, ~ ••• ) are polynomials, show that their sum is a 
polynomial (that is, after some point all coordinates of the sum are zero). 
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{b) Show that (ab ~ ... ) 8 (bb b,., . .• ) is a polynomial. [Hint: If tlj = OR for 
i > k and~= OR for i > t, examine the ith coordinate of the product for 
i>k + t.] 

3. Prove these parts of Theorem G. I: 

(a) addition in Pis associative; 

(b) both distributive laws hold in P; 

(c) Pis commutative if R is. 

4. Complete the proof of Theorem G2 by proving that 

(a) Jis injective; (b) fis surjective 

5.. Prove{1)in TheoremG.4. 

B. 6. (a) In the proof of Theorem G.l (associative multiplication in P}show that 
H I 

}: }:ap1-_,c,._1 = ~ «.P.Cw where the last sum is taken over all 
I=Of=O 

nonnegative integers u, v, w such that u + 11 + w "' n. [Hint: Compare the two 
sums term by term; the sum of the subscripts of a.j1_1c,__1 is n; to show that 
aJvw is in the other sum, letj "' u and i = u + v and verify that n - i = w.] 

fl. ,_, 

(b) Show that 2: ~¥,c,._,_1 = ~a.b.c .. [last sum as in part (a)J. 
i=~b=O 

7. Prove (2) in Lemma G.3. [Hint: 11 = (ot~, al> a2, ••• ), where a, = 0 R for i > 1, and 
by (1), xn "' (~. dl! dz, ... ), where d., = IR and d1 = OR for i ':¢ n; use induction 
onn.] 

8. Let R be an integral domain. Using sequence notation, prove that the 
polynomial ring R[x] is also an integral domain. 

9. Let R be a field. Using sequence notation, prove that the polynomial ring R[x] 
is not a fieki. [Hint: Is (010 110 OR, 010 , •• ) a unit7J 

I 0. In the proof of Case (2) of Theorem 4.1, show that R[x] is a subring of S[x] 
that contains R. 

C. II. (a) Let (J('IT] be the set of all real numbers of the form To + TJ'1T + Tf1T2 + 
· · · + Tn'lT", where n ~ 0 and each T1E 0. Show that Q(7T] is a subring 
of IR. 

(b) Assume that To + Tf1T + · · · + T~'ll" = 0 if and only if each T1 = 0. (This 
fact was first proved in 1882; the proof is beyond the scope of this book.) 
Prove that Q('lT] is isomorphic to the polynomial ringO[x]. 
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ANSWERS AND SUGGESTIONS 
FOR SELECTED ODD­
NUMBERED EXERCISES 

For exercises that ask for proofs, there may be a. slretch of the full proof (you fill in minor 
details), a. key part of the proof (you fill in the rest), or a. comment that should enable you to 
find a. proof: 

Chapter 1 

Se<:tion 1.1 (pagd) 

1. (a) q = 4; r = 1 

3. (a) q = 6; r = 19 

(b) q = 0; r = 0 

(b) q = -9; r = 54 

(c)q=-.S.r=3 

(c) q = 62,720; r = 92 

5. Multiply the equation and the inequality by c. Apply the Division Algorithm 
appropriately. 

7. If a= 3q + 1, then al = (3q +If= 9ql + 6q + 1 = 3(3f+ 2q) + 1, which is 
m the form 3k + 1 with k = Jq'-+ 2q. Use similar arguments when a = 3q or 
a =3q+ 2. 

9. By the Division Algorithm, every integer a is a the form 31J or 31J + 1 or 3q + 2. 
Compute ti in each case and proceed as in Exercise 7. 

Sa<: ti on 1.2 ( pagg 14) 

L (a) 8 (c) I (e) 9 (g) 592. 

3. ajb mea.ns b =au for some integer u. Similarly, b J c means c = bvfor some 
integer v. Combine these two equations to show that c =a • (something), which 
proves that a I c. 

5. alb means b =au for some integer "• a.ndb ja means a= bu for some integer v. 
Combine the equations to show that a= auv, which implies that 1 = uv. Since u 
and v an: integers, what arc the only possibilities? 

7. Ia!-~ 
9. Advice: Before tryi.ng·to prove a. simple statement, check to sec if there arc any 

obvious countcrcuunples. 

11. (a) 1 or2 

13. (c) By parts (a.) and (b), the set of common divisors of a a.ndb is identical to the 
set of common divisors of b and r. What is the largest integer in this set? 
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19. Supposediaanddlb, so that a= duandb = dv. Since a l(b+ c), b + c = aw. 
Hence, c = aw - b = dutw - dv = d(uw - v), so that dl c. Since (b, c) = 1, what 
can you conclude about d and (a, b)? 

21. Every common divisor of a and (b, c) is also a common divisor of (a, h) and c. 
(Proof.' If dl (b, c), then dl b and d I c by the definition of (b, c). If dl a also, then d 
is a common divisor of a and b, and, hence, dl (a, b) by Corollary 1.3 .J A similar 
argument shows that the common divisors of (a, b) and care also common 
divisors of a and (b, e). 

25. (a) (a, b) divides both a and b by definition. What does this say about (a, b) and 1? 

27. d = cu + av for some u, t1 (Why?). lknoc, db = elm + abv. Use the fud: that 
ab = cw for some w (Why?) to show that c I Jb. 

29. First show tbatevay integer nis the sum of a multiple of 9and the sum of its digits. 
(Exunple: 7842 = 7 ·1000 + 8 ·100+4·10+ 2 = 7(999 +I)+ 8(99 +I)+ 
4(9+ 1)+ 2= (7· 999 + 8 ·99+4·9)+(7+8 +4+ 2) =9(7 ·Ill+ 8•11 +4) 
+ (7 + 8 + 4 + 2).] Thus, every n is of the form 9k + r, when: r is the sum of the 
digits of n. Hence, n is divisible by 9 if and only if 9 divides r . 

.31, (a) 30; 60; 420; 72 

33. Let d = (a, b). Then a = du and b = dv for some integers -u and v. Let m = ub/d. 
Show that m is a common multiple of a and b. If cis any other common multiple 
of a andb, use Exercise 26 to show that m,.;; c. What does this tell you? 

Section 1.3 (page22) 

1. (a) 5040 = 2" • ]1. 5 · 7 

3. All of them. 

(c) 45,670 = 2 · 5 • 4567 

5. (a) 3, ]1, 3\ ... ' 3"; 3 • 5, 31 • 5, 33 • 5, ... ' 31
• 5; 3 • S:, ]1. S:, 33 • sl, •.• ' 

Y .s:;3. 53, ... ; 3· s•, 31 ·5',33 • s•, .. . , 3•. s•; s,S:, .. . , s•. 
7. :Because p divides a, there is an integer k such that a = pk. Smilarly, a + be = pd 

for some inU:ger d. lknce be = pd- a = pd- pk = p{d- k). Apply Thcnem 1.5. 

9. (•) Suppose p has the given property and let dbe a divisor of p, say p = dt. By 
the property, d = ±1 (in which case t = ±p) or t = ±I (in which cased= ±p). 
Thus the only divisors of pare .:!::1 and ±p, and pis prime. 

ll. a- b = pr1 and c- d = pw fur some 11, w (Wby?). Add the two equations and 
rewrite each side of the sum equation to obtain the fact that p divides 
(a+ c)- (b +d). 

17. E~prime divisor of d-is also a divisor of a by Thc:on:m 1.5, and similarly fer If. 
b .P{'· --pt b 

19. - = ~ !It = Pl'"' · •.• pt-"'. Since a! b, we know that- is an integer. Since 
a Pi'·· ·pk a 
the p1 are distinct primct, each of the exponents on the right side of the pm;'Cding 
equation must be nonnegative (Why'))--that is, .!'1 - r 1 ~ 0, s1 - r1 ~ 0, ... , 
.rk- rk~ 0. 

21. If c has primcdecompositionpJP1 • • • Jli, thenab = r = PJI'Jl'-;/'1_ • • 'PlPk· Now Pt 
must divide a or b byTlu:orem 1.5, say a. Since (a, b) = 1, Pt cannot divide b. Hence, 
(pi'fJa. By relabeling and rcinooing if ncx:cssary, show that a = PtPIPlPl · · • PJPJ = 
(pJPz • • • pjandb = PJ+lPJ+l • • 'PicPk = fiJ+lPJ+l' · • p,;t. 
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23. Suppose a and bare positive and cf Jfil. Suppose that a = Pl'P~ · · · p~ and 
b = Pr Jll· · · p't, where PI• Pz, ... , p,_ arc distinct positive primes with each 
rll s1 ;:;o, O(scc: Exerdse 13). Thenal = pt"'Ff" · · ·pt'"andfrl = p~~ ···Pi'" and 
becausecrjfilwehave 2r1 :s 2s, and hence r, :s.ri' for each i= 1, 2, ••. , kby 
Exercise 19. lbus, there are nonnegative integers uh .•. , uksuch that .r1 = r; + u1 
for each i. Use this fact and the prime decompositions of a and b to show that 
a [b. The converse is easy. 

25. Exercise 6 in Appendix E shows that (~)is an integer. ~) = p, and fork> I, the 

denominator of(~) is the product of integers that are each strictly less thanp. 

27. If p > 3 is prime, thenp = 6k + I or 6k + 5 (Why can the other cases be 
eliminated?). If p = 6k + 1, thenp'- + 2 = (6k+ Q1 + 2 = 36fl + 12k + 3 = 
3(12k'- + 4k + 1). The other case is handled similarly. 

29. Ld k be the highest power of 2 that divides n. Then n = ?mfor some integer m, 
which must be odd bewuse otherwise 2"+1 would divide n, contradicting the 
fa.ct that kis the highest power of 2 that divides n. Uniqucnc:ssfollows from the 
Fundamental Theorem of Arithmetic. 

33. "VerifY that ;A/' ~ 1 = (x ~ I )(X'""1 + r 1 + ... + x2 +X + 1). Conclude that 
}"" ~ 1 = {y"')" ~ I has Jl" ~ I as a factor. Apply this fact withy = 2 and p = mn 
to show that 1!' ~ I is composite whenever pis. 

Chapter Z 

Sedi on 2.1 (page 30) 

I. (a) 24 = 16 "" 1 (mod 5) 

3. (a) and (c) 

5. {a) 5 == I (mod4), so 52000
.., fOOD== 1 (mod4) byTheor=~. 22 ApplyTheorem2.3. 

(b) First, find a negative number that's congruent to 4(mod 5). 

7. By Corollary 2.5, a"" 0 or a "" I or a "" 2 or a "" 3 (mod 4). Hence, cf is 
congruent to cfl or 11 or '}}-or 31 (mod 4) by Theorem 2.2. 

9, (a) (If~ af = t? ~ 2na + al. Hence, (If~ af ~ li- is divisible by n. 

13. (~) By the Division Algorithm, a = qn + rand b = pn + s with the rc:mainders r 
and s satisfYing 0 .:s r < n and 0 .:s s < n. If a "" b (mod n), then a ~ b = kn (Why?), 
and, her=, kn = (qn + r) ~ (pn + .r), which implies that r ~ s = (k ~ q + p)n, that 
is, n[ (r ~ s). Since rands are strictly less than n, this is impossible unless r- .r = 0. 
To prove the converse, assumer =sand show that n[ (a- b). 

15. Use Theorem 1.2 and the definition of congruence. 

17. Note that 10 "" ~ 1 (mod 11) and use Theorem 2.2. 

19. a ~ b = rik for some k (Why?). Show that any common divisor of a and n also 
divides b, and that any common divisor of band n also divides a. What does this 
say about (a, n) and(b, n)? 

21. 10 == I (mod 9); hence 10" == 1~ == I (mod 9) by Theorem 22. 
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Section 2..2 (page36) 

1. (a) -+ (0] (I] (0] (I] 

[OJ [OJ (I] (0] [OJ (0] 

[I] [I] (0] (I] [0] (I) 

(c} + [0] (I) (2] [3] [4] (5] (6] 

(0] [0] (I] (2] [3] [4] [S] (6] 
[I) [I] (2] (3] (4] IS] (6] (0] 

(2] [2] (3] (4] (5] [6] (0] (I] 

(3] [3] (4] (5] (6] [OJ (I] (2] 

(4] [4] (5] (6] (0] [I] (2] (3] 

(5] [5] (6] (OJ (I] [2] (3] (4] 

(6] [6] (OJ (I] [2] [3] (4] (5] 

[0] (I] (2] 3] [4] (5] (6] 

(OJ [0] (OJ (OJ (0] [OJ (0] (0] 

(I] [0] (I] (2] (3] [4] (5] (6] 

(2] [OJ (2] (4] (6] [I] (3] (5] 

(3] [OJ (3] (6] (2] [5] (I] (4] 

(4] [OJ (4] (I] (5] [2] (6] (3] 

(5] [OJ (5] (3] (I] [6] (4] (2] 

[6] [0] (6] (5] [4] (3] (2] (I] 

3. x = (1], [3], [5], or (7] 

5. x = (1], [2], [4], or (5] 
7. x = (3] or [7J 

9. {a) (a] = [3] or (5] (c) No 

11. (a) x = [0], [1], or (2] (c) x = [01 [11(2], (3], or (4] 

13. look io ~or~. 

15. (a) [af + [bf (c) [aJ' + [b 1' 

Section2.3 (page41) 

1. {a) a = 1, 2, 3, 4, 5, aod 6 (c) a = 1, 2, 4, 5, 1, aod 8. 

3. Several possibilities, including Exen:ise 10. 

5. Since b is a zero divillor, be = 0 with b "#- 0 aod 1: oF- 0. Hence, (ab)c = 0. Use the 
fact that a is a uoi t to lhow that ab * 0. What do you conclude? 

7. ab = 0 io Z., means p lab io Z. Apply Theorem 1.5 aod translate the result into Z.,. 
9. {a) Since a is a unit, ab = 1 for some b. If a were also a zero divisor, then we would 

haveac = Ofor some c i= 0. Consider the product abc aodreach a contradiction. 
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11. Exi3tence of a solution: au = 1 for some u (Why?). Multiply both sides of 
ax = b by u. Unhjueness: Assume that r and s are solutions of ax = band use 
the fact that a is a unit to show that r = 11. 

15. (a) 3, 9, IS. 

17, If a and care units, then ab = I and cd = I for some b, d. Use this to show that 
acisa unit. 

Chapter 3 

Section 3.1 (page 53) 

L (a) Closure for addition. 

5. (a) Subring without identity (every product is the zero matrix) (c) Not a subring 

(e) Commutative subring with identity. 

7. Aliolll.'l 1-5 are easy to verify. Is Kclosed under multiplication'! 

11. (a) Partial proof: aosure under addition holds since(: :) + e ~) = 

(: : ~ ; ~ ~) E S. The zero matrix is in S. Use Theorem 3.2 

(e) J fails to be a left identity for any RES whose bottom row is nOIJzero­
check it out. 

13. Usc Theorem 3.2 Closure under addition: (a + b v'2) + ( c + dY2} = . 
{a+ c)+ (b + d)Vl EZ (v'2) since a+ cEZand b + dEZ. Oosure under 
multiplication: See Example 20. Also, 0 = 0 + OvZEZ ( V2). You do the rest. 

15. (a) + (0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(0,0) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(1,1) (1,1) (0,2) (1,0) (0,1) (1,2) (0,0) 

(0,2) (0,2) (1,0) (0,1) (1,2) (0,0) (I, I) 

(1,0) (1,0) (0,1) (1,2) (0,0) (1,1) (0,2) 

(0,1) (0,1) (1,2) (0,0) (1,1) (0,2) (1,0) 

(1,2) (1,2) (0,0) (1,1) (0,2) (1,0) (0,1) 

(0,0) (1,1) (0,2) (1,0) (0,1) (1,2) 

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

(1,1) (0,0) (1,1) (0,2) (1,0) (0,1) (I ,2) 

(0,2) (0,0) (0,2) (0,1) (0,0) (0,2) (0,1) 

(1,0) (0,0) (1,0) (0,0) (1,0) (0,0) (1,0) 

(0,1) (0,0) (0,1) (0,2) (0,0) (0,1) (0,2) 

(1,2) (0,0) (1,2) (0,1) (1,0) (0,2) (1,1) 



19. + 0 S A B 

0 0 S A B 

S S 0 F E 

A A F 0 D 

B B E D 0 

C C D E F 

D D C B A 

E E B C S 

F F A S C 

0 S A B 

0 0 0 0 0 

S 0 S A B 

A 0 A A 0 

B 0 B 0 B 

c 0 c 0 0 

D 0 D A B 

E 0 E A 0 

F 0 F 0 B 

C D E F 

C D E F 
D C B A 

E B C S 

F A S C 

0 S A B 

S 0 F E 

A F 0 D 

B E D 0 

C D E F 
0 0 0 0 

C D E F 
0 A A 0 

0 B 0 B 

c 0 c c 
0 D A B 

C A E C 
C B C F 
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21. The multiplicative identity is 6. 

23. To prove that E is closed under •, you must verify that when a and b are even 
integers, so is a • b = ab/2. To prove that • is a.'!SOCiative, verify that( a • b) • c = 

. . (ab(2)c 
a • (b • c) as foBows. By defimtion, {a • b) • c = (ab/2) • c = --

2
-. Express 

a • ( b • c) in terms of multiplication in l and verify that the two expressions are 
equal. Commutativity of • is proved similarly. To prove the distributive law, you 
must verify that a • (b + c) = a • b + a • c, that is, that a(b + c)/2 = ab/2 + 
ac/2. If there is a multiplicative idemty e, then it must satisfye • a= a for every 
a E £, which is equivalent to ea/2 = a in Z. But ea/2 = a implies that e = 2. 

25. Partial proof" Axiom 4: The ll:ro clement is - 1 because r (f) (-I) = r + ( -1) + 
1 = r. Axiom S: Since -1 is the zero element, we must show that the equation 
a (f) X= -1 has a solution. The solution is X= -2- a because a (f) (-2 -a)= 
a + (-2 - a) + 1 = -I. To prove that this ring is an integral domain, you must 
assume that a 0 b = -1 and show that a = -I or b = -1. Now a 0 b = -I 
means that ab +a + b = -1 in 0, that is, that dJ + a + b + I = 0. Factor the 
ldt side and use the fact that 0 is an integral domain. 

. a c ad+bc 
27. Partial proof.: If c and d are odd, then so IS cd. Hence; b + d = ----,;;;--- E S, and 

Sis closed under addition. 0 ESsince, for example, 0 = 0/S. Use Theorem 3.2. 
As to S being a field, what is the solution of (Z/7)x = 1? 
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31. (b) rc K = (~ ~)and A=(: ~).then 

KA = (k O)(a b) = (ka kb) = (ak '*) = (a b)(k 0) = AK. 
0 k c d kc kd ck r1k c d 0 k 

35. Consider R = Zl> S = Z3 and examine the table in the answer to furen:ise 1 S(a). 

31. (a) Copy the proof used for M(!Rl) in Example 6. 

39. The proof that O(Vl) is a ring is essentially the same as in Exercise 13. The hint 

shows how to verify that the solution of (r + sV'i)x = I is actually in 0( v'l}. 

41. (b) Partial proof rc c ;) is a right identity, then 

(: :)C ;) = (: :) 

(
ax + ay ax + ay) (a 
bx + by bx + by - b 

(
a(x + y) 
b(x + y) 

a(x + y)) =(a 
b(x+y) b 

This last equation holds only when x + y = I . 

~) 

:). 

43. (b) Since Hill contained in the ring M(C), its addition is commutative and 
associative, its multiplication isassociatiw, and the distributive law holds. So you 
need to verify only that Hill closed under addition and multiplication, that the 
zero and identity matrices are in H, and that the negative of every matrix in Hill 
also in H. 

Section 3.2 (page66} 

1. (a) tf - ab + ba - b1. 

3. (b) 0, 1, 4, 9 

5. (c) No. Suppose u is a llllit in R with inverse u-1 and 11 is another inverse ofu. 
Then uv = IR> so that u-1uv = u-11 ... which implies that v = u-1• Hence, there is 
only one inverse. 

9. Closureundermultiplication:(: ~)(~ :)= e:c:: ~::)= 
(

ac + 4bd 4(ad +be)) 
ad+ be ac + 4bd E S. Verify that Sis closed under subtraction and 

apply Theorem 3.6. 

11. Sis nonempty siucc ORES (Wt!y?). rf r, sES, then by detluition mr = OR and 
ms =OR- Hence, m(r- .s) = mr- ms =OR- 011 = OR- So r- s ES. Similarly, 
by Exercise 23, m(rs) = (mr)s = 0# = OR. So rs E S. Therefon; Sis a sub ring by 
Theorem 3.6. 

15. (b) Many possible examples. Ahnost any pair of invertible matrices in M(~ will 
provide an example. 
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17. If ub = OR and u is a unit with inverse: v, left multiply both sides of ub =OR by v 
to conclude: that b = OR. If cu = OR. a similar argument (with right multiplication 
by v) shows that c = OR. Thus, there: is no nonzero c:lc:mc:nt whose: product with u 
is OR and, hence, u is not a zc:ro divisor. 

19. If (a, b)( c, d) = (IR. 1$), what can be said about ac and bd'1 

21. ab = ac is c:quivalc:nt to a(b - c) = OR. 

25. (a) Sec: Exercise 21 a Sc:ctio n 3.1 (to which the: answc:r is "yc:s"). 

(b) Consider Is IR and Isis-and usc: Exercise 21. 

27. No. For a countcrc:xample, lc:t b be: almost any matrix in M(R). 

31. (a) (a+ a"f = a+ a bc:causc .i'- = x for every X. But (a + af = (a+ a)(a +a)= 
02 + ti + rr + ti =a+ a+ a+ a. 

39. (b) No. You should be: ablc:1o find a counten::mmple. 

41. (b) 12 

Section 3.3 (page 80) 

t The: tables for Z1 X 1.1 are in the: answc:r to Exc:rcisc: IS (a) of Section 3.1, 

3. If /(a)= f(b), then (a, a) = (b, b), and, hence, a = b by the: equality rules for ordc:red 
pains. Therc:foJe, fisinjootivc:.f(a +b)= (a +b, a +b)= (a, a)+ (b,b) =f(a) +/(b). 
Complc:tc: the: proof by showing lhat/(ab) = f(a)f(b) and thatfissuljc:ctive. 

11. Many correct answcn, including the: following. 

(a) f doc:s not preserve: addition; loc aample f ( 4 + 9) = v'4"+'9 = Vi3 = 3 .6, 
but/(4) + /(9) = V4 + "\1'9 = 2 + 3 = S.Sof(4 + 9) # /(4) + f(9). 

(b) /does not preserve: multiplication; for CX!Ullplc:/(2 • S) = /(10) = 30, but 
/(2). f(S) = (6)(15) = 90. So/(2. S) of. /(2). /(5). 

13. Partial proofs: (a) To provc:fis suljectivc; ld r E R. Then (r, 0~ E R X Sand 
/((r, o .. )) = r. Henoe,fis surjective. 

(c) If a is a nonzero dc:mc:nt of S, thc:n/((OR> a)) = OR= /((OR> Os)), but 
(OR> a) of. (OR. Os). Hc:ncc:,fis not injective:. 

17. Surjective: If a+ hi is acomplanumbc:r, thc:n/(a - bi) =a- (-bi) =a+ hi. 
lnjective: If/( a + hi) = f(c + rh), use the: definition off and the: definition of equality 
fur oompkx.numbers (Example II of Section 3.1) to show that a + hi = c + di. 

21. The: multiplicative: identity in Z .. is 0. If there: is an isomorphismf:Z ~ z-, 
Thc:orc:m 3.1 0 shows that f must satisfy /(1) = 0. Hc:nce,/(2) = /(1 + I) = 
/(1) <f.l/(1) = 0 (f) 0 = 0 + 0 -I= -1. Similarly,/(3) = f(l + 2) = 
/(1) <f.l/(2) = 0 (f) (-I)= 0 + (-I) -I = -2. What is/(4)?/(S)? j(-1)? Find a 
formula loc f. Thc:n use this lonnula to show that /is injective, surjective, and a 
homomorphism. 

25. f is not an isomorphism bc:causc: it is not injective:. For instance, 

1(1 o) = 1 = jl o) but (I o) ,;. (1 o). 
2 3 J \o o ' 2 3 o o 

27. (a) Because/and g arc: homomorphisms,(/" g)(a +b)= f(g(a +h)) = 
/(g(a) + g(b)) = /(g(a)) + f(g(b)) = (f"" g)( a)+ (/<> g)(b). A similar argument 
shows that (/" g)(ab) = (f" g)(a) • (/" g)(b). (continues on lieU page) 
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(b) You must show two things: (I) If fandg are injective; so is[• g; and (2) if/ 
andg are swjcl;tive, so is[• g. To prove (I), assume (f• g)( a)=(/" g)(b), that is, 
fig( a)) = f(g(b)). Then use the injcctivity of [and g to show a= b. 

31. Since [(OM) = 05 E T, we sec that 08 E P; soP is nonempty. Let a, b EP; then 
f(a)E Tandf(b)E T. Hence,f(a -b)= f(a) - f(h)E T. Thus, a- bEP. A 
similar argument shows that abE P. Therefon; Pis a subring by Theorem 3.6. 

35. (a) Z has an identity and Edoesn't. (c) The rings have different numbers of 
elements, and so no injective function is possiblelrom Z4 >< Z14 to Z16• (e)The 
equation X +X= OR has a nonzero solution in z X zl (What is if!) but not in Z. 

37. (b) Since[is nom:ero, there exists aES such thatf(u) #-Or- Hencc,j(l 5lf(u) = 

f(isa) = f(a) #- 0.., which implies thatf(ls) #-Or- Show thatj(ls) i.s an 
idempotent and apply part (a). 

Chapter 4 

Section 4.1 (page93) 

1. (a) 3x"+r+~+2 (c) x5- I. 

3. (a) r; r+r;.r + x;.t! + x1 +x;x' + l;.x3 +~+I;~ +x +l;.x3 +x" +x +I. 
5. (a) q(x) =:ttl- 5x + &; r(x) = -4x - 6. 

(c) q(x) = Jt? + 3.~? + 2x + 3; r(x) = 4. 

9. Yes (read the definition of zero divisor and remember that R is a subset of R(x]). 

1 l. The fact that (r + s:)(r - .1) = ? - r may be helpful. 

13. There exists g(x)ER(x] such thatj(x)g(x) =~(Why?). Supposeg(x) = bo + b1x + 
· · · + b~(with ~#-OR)· Multiply outf(x)g(x) and hx>k at the coefficient of 
.x""'*". What must this coefficient be? And what does that say about a,.. 

15. (b) Add one term to the polynomial in the hint for part (a). 

17. If 0 "#bE R, then bER(x] and IR = bq(x) + r(x). Use thefact that deg b = 0 
to show that r(x) = 0 and q(x) E R Hence, every nonzero element of R has an 
inverse. 

Section 4.2 (page 99) 

1. If 0,. '(;. c E F, then c has an inverse; hence,j(x) = L(c-1[(x)) 

5. (a) x - I {c) ~ - 1 (e) x - i. 

7. Sin~ f(x) I (x + I) and f(x) I x,f(x) must divide (x + I) - x = I. Heno;c, 
degf(x) = 0; sof(x) is a constant. 

9. lFis a linear combination ofj(x) and OF(Why?). What does this imply? 

15. Every divisor of lt(x) is also a divisor of f(x). 

Section 4.3 (page 103) 

2 I 5 
1. (a) x~+¥+""ix+3 (c) xl-ix+i 

3. (a} r+ x +I; lr + 2x + 2; 3xl-+ 3x +3; 4x2 + 4x +4. 



Section 4.4 565 

7. (~)Supposcf(x)isim:ducible andg(x)= cf(x), with OF* cEF. lfg(x) = l(xp(x), 
thenf(l.J = (c-1r(x)).!(x), and, hence, either c-11(x) or .l'(x) is a nonzero constant by 
Theorem 4.11.. If c -lr(x) is a constant, show that l{x) is also a constant. Hence, g(x) 
is ir=Jucible by Theon:m 4.12. 

9. (a) :~~.3. +x+ I {c} r + l;r +x+2;r+2x+2;1xl+2;2xl+x + 1; 
2x1 +2x +I. 

II. H it were reducible, it would have a monic factor of degree 1 (Why?), that is, a 
factoc of the form X+ a with a E z7. Verify that none of the sc:ven possibilities is 
a factor. 

13. (x- 3)(x- 4)3
. 

15. (a) ff f(x) E l,.(xJ is a moo ic reducible quadratic, then it must factor 88 J(x) = 
(~ + dXc-1x +e) for SDme c, d,eE.l,(Why?). Hena;.j(x) = c(x + dc-')c-1 ~ + ec) = 
(x + axx +b) Mha =lk-1 andb = ec. Whmwuntingthe po85iblepairs cf fiwtcn, 
mntmberthaE_ for GXlWiplc; (x + 2'j_x + 3) is the MmC factorization 88 (x + 3Xx + 2~ 
t\00 consider factori1lltions such 88 (x + 2Xx + 2). 

23. (a) Proceed as in the answer to Exercise II' with z3 in place of ZT. 

Section 4.4 (page 109) 

I. {a) Many cocrect answers, includingf(x) = r + x. 

3. {a) No;j(-:Z) :f. 0. (c) Yes. 

5. The Factor Theorem may be helpful. 

7. Show that every element of z7 is a root of x7 - X. 

9, InZ3(x]:r+ l;r+x+2;x1 +2x+2. 

13. {a) If f(x) = cg(x) with \l 4= oF. then g(x) = c-~x). Hence, g(u) =OF implies 
f(v.) =OF and vice versa. 

15. H r + I is reducible, thenxl + I = (x + aXx +b) for some a, bE Zp(see the 
answer to Exercise 21( a.) of Section 4.3). Expand the right side:. 

19. (a) If f(x) = (x- afg(x) with g(a) 4= 0, thenf'(x) = lc(x- at-'1g(x) + 
(x- a)1g'(X). If a is a multiple root of f(x), then k ~ 2 andk- 1 ~ 1. If a is a 
root of bothf(x) and f'(x), show that k ~ 2. 

23. {a) Let n be the maximum of the degrees of f(x), g(x), and h(x). Using zero 
coefficients as ncw;:e:s&acy, we havef(x) = a0 + a1x + • • • +a,\", g(x) = b0 + b1x + 
· · • + b~, and h(x) = Co + c1x + • • • + c_.lJ>. Then in F(xJ, g(x) + h(x) = (bo + 
bJX + • • • + b,.x') + (co + c1X + " • + c,X") = (b0 + co) + (b1 + cJx + • • • + 
(b.+ c.J>!'. Sincef(x) = g(x) + l(x) inF(xJ, we must have "o = bo +eo, a1 = ~ + ch 
a. = b, + c,. Therefore, in F, g(r) + h(r) = (~ + c0) + (b1 + c1)r + · · · + 
(b. + c,.)r• = Uo + a,r+ · · · + a,r" = f(r). 

2.9. The proof is by induction on the degree n of f(x).If n = 0, thcnf(x) is a nonzero 
constant polynomial and thc:n:Iorr: has no roots. So the corollary is true fur 
n = 0. Now assume that the corollary is true for all polynomElsof degree k - 1 and 
suppose that degf(x) = k. Prove that the corollary is true forf(x) (that i.!., when 
n = k). [You supply the work here.] Conclude that the corollary is true for every 
degrecn. 
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Section 4.5 (page 119) 

1. (a) (-IXx + l)(x- 2X>!"+ I) <~> .xx(x +2Xx-1X3x-I) 

(e) (l; + 3)(2x + IXxl + 1). 

3. Use the Rational Root Test. 

S. (a) Letp = 2. (c) Letp = 2 ocp =·l 

7. {a) Letp = 5 and use Corollary 4.I9. 

II. Apply Eisenstein's Criterion and Corollary 4.I8. 

I 7. A polyoomial of degree k has k + I coefficients. There ace 11 choices for each 
coefficient except the coefficient ak of J!'. How many choices ace there foe a{l 

19. {a) {.x + 2Xx- "Z)(~ + 2x1 + 4x + 2) 

Section 4.6 (page 123) 

I, (a) 1 - 2i; I + 2i; 3; -2 (c) J + 2i; 3- 2i; -I + i; -1 - i. 

3. (a) .x'- 2 in Q(xJ; (r+ VZ)(.x + {'2)(x- {12) in Di[x): 

(x- ~)(.x + {'u)(,x + ~(.x- ~in C[x]. (c) (x- l)(r- 5)in O(x); 
(.x - I )(.x + v'S)(x - V5) in lli(xJ and C(xJ. 

S. Nonreal roots of f(x) occur in pairs by Lemma 4.29. 

Chapter 5 

+ 

[1l] 

[I] 

[x] 

[x+l] 

Ix'l 

[x'+ I] 

[x'+x] 

[r+x+IJ 

Section 5.1 (page 129) 

1. {a} f(.x) == g(x) (mod p{x)) (b} f(x) == s(x) (modp(x)) 
(c) j(.x) .;. g(x)(mod p{x)) 

3. There ace eight congruence classes. 

5. Use Corollacy S.S. 

7. Each congruence class can be written in the form [a), with aE F. 

9. See the answer to Exercise 13 of Section 2.I withf(x) and g(.x) in place of <i and b. 

Section 5.2 (page 134) 

I. 

[OJ [I] [x] [x+ IJ (>;'J (>;'+I] [x"+ x] [x1 +x +I] 

[0] [11 [x] lx +I] [x'J [xl+ I] [x1 +x] [x1 +x +I] 

[I] [1l] [:o:+l] (>:] (>;"+I] [;f) [x"+x+l] [x"+x] 

[x] [x+ I) [Ill PI [x' +x) [x"+x+l] [x'J Ir+IJ 

[x+l] [x] Pl M [x'+x +I] (>;'+x] [x'+ I] [:<'] 

[..!] [r+ I] [>"1 + x1 Jx1 +x+l] PI [I] [x] [x+l] 

[x'+l] [x"] [i'+ x+ I] !o:'+x] [l] [OJ [x+l] [x] 

[r+x] [x'+x+ l] [x'J Jr+IJ (>;] [x+l] [llJ [I] 

[x"+x+l] [x1 +x] {i"+l] (>;'] (>;+I] (>:] [I] [1l] 
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[OJ [l] [x] [x+ I] [x'J [.¥'+ l] [x'+ x] lx'+x+ I] 

[OJ [OJ [OJ [OJ [OJ [OJ [OJ [ll] [OJ 

[l] [OJ [l] [x] [x+ I] [X'] [x'+l] [x2 +x] [r+x+lJ 

[x] [OJ [x] r~'l [x'+x) [:o:+l] [1] rr+:o:+LJ r.r+ 11 

[:o:+l] [ll] [x+l) [x'+x] [.-.'+I] r~•+x+l] [x'} [l] [x] 

[x'J [ll] [x'} [x+ I] [i'+x+ I] [r+xJ [x] [r+IJ [l] 

[r+IJ [OJ [i'+ I] [1) [x'} [x) [,?-+ x+ I] [x+ I] [x'+x) 

[r+xJ [OJ [i'+ x) [i'+:o:+l] [1] rr+IJ [x-+ I] [x] [X') 

[x'+x+l) [ll] [x'+x+l) [r+IJ [x) [l] [x'+x) [x'} [x+ I] 

3. + (OJ [I] [x] [x+l] 

[OJ (0] [I] [x] [x+ I] 

[I] (1] [OJ (x +I] [x] 

[x] (x] [x+l] (0] [I] 

[x+l] [x+1] [x] (!] [OJ 

(OJ [I] (x] [X+ I] 

[OJ (OJ [OJ [OJ [OJ 
[I] (OJ [I] (x] [x +I] 

[x] (OJ [x] (!] [x+ I] 

[x+l] (OJ [x+ 1] (x + 1] [OJ 

7. [ax+ b] +(ex+ d] =[(a+ ~)x + (h +d)]; 
[ax + b}cx + d] =[(ad+ bc)x + (3ac + bd)]. 

11. Consider the produ<:t of [x] with itself. 

Section 5.3 (pii!Je 138) 

l. {a) Field (Use Corollary 4-.19 and Theorem 5.1 0.) 
(e) Not a field. (Show that :tlo + ~ + 1 is reducible.) 

3. By Coro!Wy 5.5, the distinct elements of F[;>;}'(x- a) are the classes of the form 
[c] with ce F. Use this to show that F(x]l(x - a) is isomorphic to F. 

5. (a) Verify that the multiplicati\'e inva:se of r + J\1'3 is!: - :.0, where t = r - 3?. 
t t 

7. By Corollary 5.12, there is an extension field K of Fthat oontains a root c1 of 
f(x). Hmce,f(x) = (X - c1)g(x) in KJ.x]. Use Corollary 5.12 again to find an 
extension field Lof Kthat contains a root c2 of g(x). Continue 

9. (a) Use Corollary 4.19 and Theorem 5.10. 
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Chapter 6 

Section 6.1 (page 148) 

l. To see that K is not an ideal, consider what happens when you multiply a 
constant polynomial by a polynomial of positive degr=. 

9. (a) If rE Rand IRE I, then r = r ·IRE/. Hence, R~ I and thus R =I. 

11. (a) (0) =(0) and (I)= (2) = (3) = (4) = z, (c) (0) = (0}; (I)= (5) = (1) = 
(11) = Z 1a; (2) = (6) = (10) = (0. 2, 4, 6, 8, 10}; (4) = (8) = {0, 4, 8}; (3) = (9) = 
{0, 3, 6, 9}; (6) = {0, 6}. 

13. No; see the answer for Exercise ll. 

17. (a) In J contains OR {Why?) and be~ is noncmpty. If a, bel n J, then a, be I, 
so that a- b is in /by Theorem 6.1. SimHarlya- b eJ. Hence, a- bel n J. 
Now show that if r E R, then ra El n J and raE In /. Apply Theorem 6.1. 

27. Use Theorem 6.1. K is nonempty becausef(O.R) = Os by Theon::m 3.10, and, 
hence, OR EK. If a, b eK, thenf(a) = Os andf(b) = O,s by the definition of K. To 
show that a- be K, you must prove tbatf(a- b)= Os. If rE R, you must prove 
thatf(ra) = Os in order to sbow that ra EK 

29. An element of (m) n (n) is divisible by both m and II; hence, it is in (mn) (sec 
Exercise 17 of Section 1. 2). 

31. (=>)If (a)= (b) =(OR), show that a= OR= band, hence, a= bu with 11 = lR- If 
(a) =(b) of- (O_d, then both a and ban: nonzero and a= a • IRE (a). TherefOR, 
a E(b), so that a= bu for some ue R. Similarly, b = av foe some vE R. Hen~ 
a= bu = avu, which implies that uv = lR (Theorem 3.7), so that u is a unit. 

35. If I#- (3), show that I contains an clement b such that (3. b) = I. Use Theon::m 1.3 
to sbow that I e/ and, hence, by ExerciM: 9(a), I= l. 

41. (a) See Exercise 27 in S..ction 3.1. 

43. (b) If f(x) eZ[x] bas constant teem c, then x dividcsf(x)- c, so tbatf(x) -
c (mod J) by part(a). Hence,f(x) + J = c +/by Theorem 6.6. If b, can: 
distinct integers, then b - c mnnot be divisible by x (Why7). Hena:, b - c fi. J 
and b ¥= c (mod J). Tben::foce, b + J of- c +/by Theorem 6.6. 

47. Half proof Suppose that uES. If,}= u and S = (u), then Sis a subring since it 
is an ideaL If s E S, then s = ru for some rE Z, Hence, ru = (ro)u = ,; = "' = J. 

Sou is the identity element in S. 

Section 6.2 (page 159) 

3. By Exercise 10 in Section 6.1, the kernel ofjiseither (OF) or F. Explain 
why it cannot be F. Hence, fis injective by Theorem 6.11 and, therefore, an 
isomorphism. 

5. Consider the case when R = 1'. and I is the principal ideal (n). Tbeo 1'.// is just 
l,.ls Z., always an integral domain? 

7. Apply the Fiest Liomorpbiolm Theorem to the idcn tity map from R to R. 

9. ~) The ideal consisting of aD matrices inR of theform G ~} witb b, c 
integers. 
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13. Half proof Let a + 1 E R/ L If there is an element bE R such that a - b1 E I, 
1hen a == tr (mod 1). So a + I= tr + I= (b + l)(b + 1) by Theorem 6.6. Hence, 
b +/is a square root of a+ /in R/ I. 

17. {a) f(a +b) =((a +b) +I, (a +b)+ J) =((a+ I) + (b +I), (a+ J) + (b + J)) = 
(a + I, a + J) + (b + I, b + J) = f(a) + f(b). A similar argument shows that 
f(ab) = f(a)f(b). (c) In J 

21. Letf'Zm ~z5 be given by .fl[ab) =[a],, where [al, denotes an element of 
Z,.. First, show that /is a wtll-delined function (independent of the choice: 
of representative in the congruewc: class). Then show that/is a surjective 
homomorphism of rings with kernel (S). Apply the First Isomorphism Theorem. 

25. Ifr +Jisanilpotentelement~f R/J,thenfor.wmen, wthaveOR + J = (r +.Ff = 

r"" + J. Hence,r" El (Why?), which means that r" is nilpotent in R. Hence, (f"j = 

OR 10£ some m. But this says r EJ, and, heno:, r + J is the zero coset OR + J. 

29. Define a functionfiS ~ IR X IR byj(~ ~) = (a,;:.). Show thatfis a surjective 

homomorphism of rings with kernel L Apply the First Isomorphism Theorem. 

Section 6.3 (page 166) 

1. By 1he definition of composite, n = cdwith I <lei< In I and I <~I< In I· He1101; 
c andd cannot be multiple.s of n. Thuscd = n E (n), but c ft. (n) and d ~ (n~ 
Therefore, (n) is not a prime ideal. 

3. (a} Use Theorem 2.R to show that p is prime 1r and only if z, it a field But 
z, = Z/(p); apply Theorem 6.15. 

5. The maximal ideals in~ are {0, 3} and {0, 2, 4}. 

7. ]f R is a field, use Exercise 10 of Section 6.1. If (O.J is a maximal idea~ use 
Theorem 6.1 S and Exercise 7 of Section 6.2. 

9. If p = cd, then rdE (p). Since (p) is prime, either c E (p) or dE (p), say cE (p). 
Hence, c = pv for some 1J E R. Use this and the fact that p = cd to show that d is 
a unit. 

15. (b) M is not prime because, for example, 3· 7 = 0 EM, but 3ft. M and 7ft. M. 

17. lis an ideal by Exercise22 ofSection6.2. Use thefactthatJ;f; S(Why?) and 
surjectivity to show that I =I= R. IfrsEI; thenf(rs) EJ. Hence,.f(r}f(s) EJ(Wby'!), so 
thatf(r) EJ orf(s) EJ by primality. Therefore,r El or SEI, and, hence, lis prime. 

19. (~)Suppose R has a unique maximal ideal M. Then M =I= R by detinitioo, and 
>a M is contained in the set of nonunits by Exercise 9 of Section 6.1. 1f c is a 
nonunit, then the ideal (c) * R (Why?). So (c) is contained in a maximal ideal by 
hypothesis. But Mis the only maximal ideal. So c E(c) ~M. Since every nonunit 
is in M, the set of nonuni ts is the ideal M. 

Chapter 7 

Section 7.1 (page.180) 

(1 2 3)-l = (1 2 
L 2 3 I 3 1 

permutations is its own inverse. 
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3. (a) 18 (c) 24 (e) 6. 

5. (a) G ~) {c) G ~} 
9. 0 ru rt rz r u 

ro ru rt rz r u 

r1 rl rz ro u r 

r~ rz ro rt u s 

s s "U ro rl rz 

t.l ~ rz ro rl 

il u s Tt rz ru 

13. S3 X Z2 is nonabelian of order 12 and D4 X Z2 is nonabelian of order 16. 

17. (a) G is a group. Closure: If a, b eO, then a • b = a+ b + 3 eO. Associativity: 
(a • b) -c = (a + b + 3) • c = (a + b + 3) + c + 3 = a + b + c + 6 = 
a + (b + c + 3) + 3 = a • (b + c + 3) = a • (b • c). Verify that -3 is the 
identity clement and that the inverse of a is -6- a because a • (-6- a) = 
a+ (-6- a)+ 3 = -3 and, similarly, {-6- a) • a= -3. (c) G is a group 
with identity 0. The inverse of a is -a/(1 + a). 

19. No; there is no identity e satisfying both a • e = a and e • a = a for every a. 

23. Mo~t of the argument in Example 15 of Section 7.l.A can be carried over to this 
situation by replacing"¢ O"by "= I" throughout. To show that the inverse: of a 
matrix in SL(2, Ill.) is also in SL(2, Ill.), use the formula for the inverse of a matrix 
(in Example 7 of Section 3.2 and in Example 15 of Section 7.1.A). 

27. If ab = ac, then b = eb = (a- 1a)b = a-1(ab) = a-1(ac) = (a- 1a)c = re =c. 

31. Leta, b,c be distinct ckments ofT. Letu eA(1) be given by o{a) = b, o"(b) =a, and 
rT(i) = t lOr every other element of T.lctTeA{1) be given byT(a) = b,T(b) = c, 
T(c) = a, and T(t) = t for eveiY ether element ofT. Verify that (rT • T)(a) =a and 
(T 0 rT)(a) = c; hence, fT" T "f. T 0 fT, 

Sect ion 7.2 (piJfJe 20r) 

I. e = e-1c = c-l,J = (c- 1c)c = ec = c. 

5. Iff( a)= f(b), thena-1 = b-1• Hence; (a-1f 1 = (b-1)-1• Therefore, by CorollaJ:Y 7.6, 
a= (a-1)-1 = (b-1)-1 =b. Thus/is injective. Corolbry 7.6 can also be used to 
prove that f is s uljective. 

7. (a) 2 (c) 6. 

9. (a) U10 has order 4; U111. has order R. 

13. If G is a finite group of order nand a e G, then then + I elements a', a, d-, 
a', ... , tf' cannot all be distinct. Hence, d = d for some i and j with n ;;, i > j, 
which implies that a/-J = e with 0 ,;:;; t'- j,;:;; n (Why1). What docs this IID.Y about Ia p. 

17. (a) x = a-1b is a solution of ax= b because a(a-1b) = (aa- 1)b = eb = b. If cis 
also a wlution, then ac = b = a(a-1b). Hence, c = a-1b by Theorem. 7.5(2). 

27. If a, b e G, then by hypothesis, aa = e, bb = e, and abab = e. Left multiply both 
sides of the last equation by ba and simplify. 
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29. Let x = a-lcb-1 and show that axb = c. To prove uniqueness, assume ayb = c 
and showthaty = a-1cb-1• 

3 t. (b) In s,. let a = G ~ !) and b = G ~ ~). VerifY that Ia\ = 2, lbl = 2, 

ab = G : ~).and (ab)' = ab. 

33. Let Ia I = m and lb I = n, with (m, n) = I. If (ab 'f = e and ab = ba, then d'b~ = 
(ab'f = e, so that d' = b_.., Hence. J- = (b~" =(liT"= e. TherefOre, m lkn 
by Theorem 7.9 and, hence, m I k by Theorem 1.4. Similarly, n I k. So mnl k (sec 
Exercise 17 of Section 1.2). 

35. ab = b•a='>-oba-1 = b•='>- afJa-1 = (oba-1Xoba-1(oba-1) = (b)1 = bu = e 
(because If = e) "'*a!Jl = a'* OJ = e. 'Ikrefon:, ab = lfa = blba = eba = ba. 

Section 7.3 (pi!lJe 211) 

I. (•) {I)= U1~ {2) = (8) = {I, 2, 4, 8}; {4) = {I, 4}; {7) = {13) = {I, 4, 7, 13}; 
(II)= {1, II}; {14) = {1, 14}. 

5. {2) = { •..• -8, -6. -4, -2, 0, 2, 4, 6, 8, .•. } 

{ 
1111 } 

7. {2) = ... 'M' 8'4' 2' I, 2, 4, 8, 16. ... 

9. I = 2'; 2 = 21:4 = 2'-; 7 = IJ!; 8 = 23; II= 2 · 13; 13 = 131; 14 = 23 • 13. 

11. Using additive notation, we ~c that the group is cyclicwithgcncrator (I, I): 
1(1, I) = ( 1, I); 2(1, I) = (0, 2~ 3( I, I) = (1, 0); 4(1, I) = (0, I); 5(1, I) = 
(I, 2); 6(1, I)= (0, 0). 

13. Sinceeg is the identity in H, enen = eg. Apply Exercise I of Section 7.2 with c = eg. 

15. (a) If a. bE H n K, then a, bE Hand a, bE K. Since His a subgroup, abE H 
and a-1EH. Similarly,abEKanda-1EK. Hence_abEH n Kanda-1EHn K. 
Therefore, H n K is a subgroup by Theorem 7.11. 

29. Since His noncmpty, there is some cEH. By hypothesis, e = cr1 EH. If d EH 
then since e EH, we have J-1 = err1 EH. Use this and the fact that d = (a1f 1 to 
showthatc, dEHimplies. cdEH. Apply Theorem 7.11. 

31. If x-1ax and x·1bx Ex-1Hx with a. bE H, thcnab E H, lllld, hence, (x-1ax)(x-1m) = 
x-1(ab)xEx-1Hx. Show that (x-laxf1 = :41a-lxEx-1Hx. Apply Theorem 7.11. 

33. Theorem 1.2 may be helpful. 

J5, (-=*)If a is in the center of G, then ag = ga for~ g E G. Hence; C(a) = 
{gEGiag=ga} =G. 

41. If d', b" EH, then since G is abelian, d'l/' = (tiJ)" EH. Also (d')-t =a'""= 
(a-1rEH. ApplyThcorent 7.11. 

43. The subgroups of Zuarc {0}, {0, 6}, (0, 3, 6. 9}, {0, 4,8}, (0, 2, 4, 6, 8, 10}, and Zu-

47. Sec Exercise 33 of Section 7.2. 

49. G ={a)= {na lnEZ}.Assumc tbatgE Gisa solution ofx +x = a.Tlnmg= ka 
for some integer k. Hence, lea+ lea= a, which implies that a has finite order 
(Why7). This is a contradiction, sox+ x =a has no solution in G. 

53. If(m, n) =I, usc Excn:isc 47. To prove that if Z.... X l,. is cyclic, then (m, n) = I, 
we prove the equivalent contrapositivc statement: If (m, n) * I, then Z.... X Z.. is not 
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cyclic. If(m, n) = d> 1, thenm = dr, n = dJ,and drs< mn. If(a, b) E7_ X z., 
then drs(a, b)= (drsa,Jnb) = (Jma, mb) = (0, 0). Therefore, the order of 
(a, b) is a divisor-~ drs (by lbeomn 7.9 in additivenotatioiJ.)and, hen;c, strictly 1cs& 
1han 1m. So (a, b) doeli not ~e Z... X 1', (a group of or&! mn) by Tbcon:m. 7.15. 

57. (a) Show that Ulll = {1, S, 7, II, 13, 17} i; generated by S. 

Section 7.4 (page 223) 

1. (a) Hommnorphism:f(X + y) = 3(x + y) = 3x + 3y = f(x) + f(y). Surjective:. 
If tER, thcmf(t/3) = 3(t/3) = t. Inje£1tve:. Iff(x).= f(y), then 3x = 3y, and, 
hence;, x = y. 

5. gis a homomorpbis.m since fur any a, b, g(a +b)= 2(a +b)= 2a + 2b = g(a) + g(b). 
You can ea.si~ compute/(0), f(l), , .. ,f(J,) to see tbatfis injective and ~urje.ctive. 

7. /is a homomorphism since for any a, b,f(ab) = labl = lallbl = f(a)f(b). Whyisf 
suijective? 

It. gis a homomorphism since for any a, b, g(a)g(b) = (~ ~)(~ ~) = (~ :b)= 

~(ab). If g(a) = g(b), then (~ ~) = (~ ~). v.bicb implies that a= b. Hence g 
15 Injective. 

13. Show that both groups are eye& of order 4 and use Theon:m 7.19. 

15. f(a~ = f(e0 ) = eg = f(af For positive integers, use induction:f(a1) = f(a) = 
f(ai. Ifj(a') = f(a'f, tbenf(a~ 1) = f(a~a 1) = /(aty"(a) = f(aff(a) = f(af+ 1. 

Hence,/( a") = f(affur all n ~ 0. What about negative rf! 

19. (=>)If G is abelian, thenfis a homomorphism becausef{ah) = (abf1 
= b·'a-1 = 

a-lb-l = f(a)f(b). In tbis casc;fis an isomorphism by &ercise 5 of Section 7.2. 

21. liCC!IUBC f and g an: homomorphisms, (g • f)(ab) = g(f(ab)] = g[f(alf(b)] = 
g(f{a))g(f(b)) = (g 0 f)( a) (g • fXb). Hence, g 0 fis a homomorphism. If 
cEK, then since g is suijective, there exists b EH such thatg(b) =c. Sincefis 
suijective, there exists a E Gsuch thatf(a) =b. Th115, (g •f)(a) = g(f(a)) = 

g(b) = c andg • fis surjectiv:. To complete tbe proof, showthatfis injective. 

29. If a" =ea. then by Exercise IS and Theorm:t 7.1JJ,f(at = f(a") = f(e0 ) = eH. 
Similarly, if /(a)"= egthcnf(a") = f(a)" = eg = f(e0 ). Hence, d' = e0 sinoc:fis 
i~ective. Sod' = e0 if and only if f(af = eg. 

31. If a, bE F, then because fis a bomomorphism,f(ab) = f(a)f(b) = ab. So ab E F, 
and Fis closed under the group operation. Use Theorem 7.20 to show that the 
inverse of every element of F is also in F. Then use Theorem 7.11. 

35. ~= {1,4}. 

37. If/,gEinn G, thenf(a) = c-1acandg(a) = a-1adfor somec, d. Show that 
(f • g )(a) = (dcr1a(dc) and, bence,f • g E Inn G. Show tbat the inverse f\lnction 
h of fis given h(a) = cac-1 = (c-1)-1ac-1 E Inn G. Use Theorem 7.1 I. 

41. SeeE.xampk6. 

43. Verify that every nonidentityelement of U1 has order 2 but that this is not true 
for Uu>· Hence, theR: is no isomorphism/by Exercise 29. 
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51. {a) IfR(x) = O.{y), then.XC~ 1 = y£1.Hence,X=ybfTheorem 7.5. Therefon; 80 

l!i injective. If xe G, then xce G and 8/...:xc) = (xc)t--t = x. Hence, 8. is suij~ 

59. (a) Show that hand t1 both induce the same inner automorphism (that~ h-lah = 
v-lav for every a E D4). Do the same 10!- lb and 1},. for r 1 and r1, and ford and t. 
Then sho.v that the inner automorphisms induced by h, r~~o rb and dare all 
distinct (that it, no two of them have the same action on every element of D4). 

Se<:tion 7.5 (page !233) 

1. (a) (I 73) (c) (14 76283). 

3. (a) ( 12)( 45)(679) (c) (13 )(254)( 69)(78). 

5. (a) 2 (c) 4. 

7. {a) odd (c) even. 

9. (a) 3 (c) 60. 

11, There are eight 3-<:ycles (list them), each of order 3. Each of (12)(34), ( 13)(24), 
and ( 14)(23) has order2. The identity (1) has order I. 

15. (a1a2 ···a.,)= (a111,\,}(al<lk-l) • • • (a1a.)(a1a;)(a1Q.!). There are k -I tnmspositioru~ 

(one for each of a2, ~ •••• , a,). k - 1 is even if and only if k is odd. 

19. Suppose 'I"= u 1u2 • • • 'U ~where the u1 are disjoint cycles, with u 1 having order 
.k1, u2 having order k,;, . .. , and u, having order k,. Show that-r" = (1) if and 
only if u1" = (1) for every i. Usc Theorem 7.9 to show that k1l 11 for every i. 

23. Use Theorem 7.12. 

25. Verity that 'f'U = u-1T; ~this to show that any product of powers of q and 
po.versof'l" is one of: (1', tr, rr, rf' = (1), 'f', U'T, ulT, or rr'f'. 

29. There are three possible cases (where a, b, c, dare distinct symbols): (ab)(ab), 
(ab)(ac), and (ab)(cd). But (ab)(ab) = (1) = (abc'f; (abXac) = (acb~ and (ab)(cd) = 
(acb)(acd). 

35. LetT= (ab) and express q as a product of disjointc)des. Since disjoint cycles 
commute by E::tercisc 18, all cydcs inuTu-1 not involving a or b will cancel and 
UTU""' will reduce to the formK(ab)K-1, where K has ooe of the following form& (in 
which a, b, x. y, u, t1 are distinct symbols): (• · · xaby • • •); (• • • xbay • · •); 
(• · ·xay· · ·1lhv • · ·); (· • ·xay• • ·); (· · "UfJv ···);or (• · ·xay· ··X··· ubv • • ·). 
Verify that K(ab)K""' is a transpositioo in each case. 

39. (a) The mgument used in Exercise 24(a) and (b) can be used here if s~ is 
replaced by G, ( 12) is replaced by 1', B~ is replaocd by the set of odd permutations 
in G, and A,. is replaocd by the set of even permutations in G. In the Hint for 
Exercise 24(b), replace (12) by '('1, which is odd (Why?). 

(b) See Exerdse 24(c) and replace IS~ by IGI. 

(<:) Use part (b). 

45, The idea is to find an injecti\e homomorphismS,. --?..4,...1 and then apply part (4) 
of Theorem 7.20. First, note that any permutation in s.can also be considered 11.1 

a permutation in S>t+l·l.et a be the transposition (11 + 1,11 + 2) inSo+2· 
Deti.nefS.--1- A,+1 as follo.vs. If u is odd, thenf(u) = ua. If u is even, then 



574 Answers and Suggestions ior Select&d Odd-Numbered Exercises 

f(u) = u. To showthatfua homomorphism, suppose that u and7 are :iJ. S~. 
Comider four cases: (I) u and 1' are both even; (2) q is even and Tis odd; (3) q is 
odd and Tis even; (4) q and 1' are both odd Show thatf(u-r) = f(u)f(r) in each 
case. To show thatfis injective,. you must show that/(17) = [(7) implies that 17 =-r. 
Prove it in cases I and 4 and .showthatf(u) =/('!')cannot occw: inca.!!e~ 2and 3. 

Chapter 8 

Section 8. t (page 245) 

1. (~)If Ka = K, then a= eaE:Ka = K. So aEK. 

3. Kr0 = { rO> r1, rz, r1); Kd = {d, lr, t, v} 

7, 4 9. I II. 6. 

17. (a) I, 2, 3, 4, 6, 8, I2, 24 (c) I, 2, 4, 5, 8, I 0, I6, 20, 40, 80. 

19. '1:1, 720. 

21. H ('I K is a subgroup of H and of K, and so its order must divide p by Lagrange's 
Theorem. Hence, IH () XI is either I (in which ~:aSe H () K = (e)) or p (in which 
case H = H f"' X= X). 

23. If e + aE G, then (a) is a nonidentity subgroup of G.Hence, G =(a). IfiG1 = lal 
ha.!! composite order, say~~ = td, then ¥/) is a subgroup of order d by Theorem 7.9. 
Use Theorem 8.7. 

25. 2. 

31. List the element of Gin pairs: a, a-1; b, b-1; c, c-1, etc. with a "f- a-1: b "f- b-1; 

c #< c-1; etc. for as long as possible. Use the fact that there is an odd number of 
nonidentityelements to show that at some point you must reach a nonidentity 
element k such that k = k-1

• 'What is the order of k!l 

35. A proper subgroup bas order It, with I < 11 < pqand 11 a divisor of pq. Use 'Theorem 8. 7. 

41. If Gcontains no clement of order 3, show that every nonidentity clement has 
order II. Apply Exercise 40, with p = II. What do you conclude? 

Section 8.2 (page 252) 

5. (b) If (~ ;) EN and(~ !) E G, then 

(~ !YIG ~)(~ !) = C~a -~:::X~ ;)(~ !) 
= c~a -~:;)(~ b ~) = (~ ia) E N. 

7, G"' = G X (e) is a subgroup by Exercise 16 of Section 7.3. It is normal by 
Theorem8.1I since for any (c,d)EG X Hand (a, e)E G'", (c,dr1:a. e)(c, d)= 
(c-1, a 1)(a, e)(c, d) = (c- 1ac, a 1ed) = (c- 1ac, e) E G". 

11. If c E G, let/be the inner automorphism given by f(x) = c-1xc (see Example 9 
of Section 7.4). Since N is characteristic,f(N) -;;;;,N, that is c-1 Nc!: N. Hence, N 
is normal by Theorem 8.ll. 
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13. See Example 9 of Section 7.4 and Theorem 8.I I. 

17. First, prove that K is a subgroup of G. To show that K is normal, we show that 
for any a e Gand k eK, a-1kae K; 

f(a- 1ka) = f(a- 1)f(k)f(a) 

= f(af1(k)f(a) 

= f(a)- 1eaf(a) 

= f(af1{a) = ea. 

Lfu a homomaphism.] 

{Theorem 7.20] 

{kEK) 

Therefore, a-1kaeKand Kisnormal byThcorem8.11. 

19. Usc Exel'ci&c 15 of Section 7.3 to show that N n K is a subgroup of K. If geK 
and n eN n K, then gE G, n eN, and, hence, g- 1nge Nby the normality of 
Nin G. ButneN n Kimplics thatn eK, and, hence,g-1ngeKby dosurcin 
K. Thcrd"on;g-1ngeNn K, sothatg-1(N n K)g'{;.Nn K. Hence, N n Kis 
normal in K by Theorem 8. I 1. 

21. If n eN and ke K, us.e normality to show that k-1(n-1kn) = (k- 1n- 1k)n is in 
Kn N=(e). 

23. (a) If a f;N, then Ne = Nand Na arc disjoint cosets (Why?). Since I G:NJ = 2, 
the&: two coscls contain all the clement of G. Therefore, any clement that is not 
inN must be in Na. 

27. Partial proof If Nisnormal andab = neN, thenba = babb-1 = bnb-1 and 
bnb-1 eN by normality. 

29. Let N ={a). Then H =~for some k by Theorem 7.17. If ge G, then 
g-1ageNbynormality; hencc.,g- 1ag =a' for somcl. Consequently, for any 
cJ'I eH, g-1tf'g = (g- 1ag)lrl = (a'j'i = (r/<feH. 

JS. N .is a subgroup by EErciscs IS and 27 of Section 73. Show that Nis normalin G. 

J7. Ily hypothesis, the cyclic @Jl>Up{a) is normal Hence, b-1abe{a), that is, b-1ab = a" 
for somck. 

S9ction 8.3 (page260) 

3. Partia!Answer:(MhXMr!J = M(hor 1) = Md;(Mr1)(Mh) = M(r 1oh) = Mt = Md. 

S. Show that Z 1J M is cyclic with generator 1 + M; then show that 1 + Mhas 
order 6 in Zu/ M. 

7. Find the orders of the groups U26, (5), and U~(S) (sec Example 14 of Section 7.1 
or 7.l.A). Usc Theorem 8.I3 and 8.7. 

9. G/N ~ Zl. 

11. Since ab = ba in G, NaNb = Nab = Nba = NbNa in G/ N. 

IS. The identity clement of the quoti:nt goup is the c~t (0, 0) + ((5, S)) = ((5, 5)). 
(l, 0) + ((5, S)} has infinite order since for anypositivcintcger k, k(l, 0) = (k, 0),: 
((S, 5)). On the other hand, (1, 1) + ((5, S)) has orderS, as you can easily verify. 

19. If be 4 then Nb is a square in G/N, say Nb = (Nc)1 = Ntf. Slliceb eNb,b = nt? 
for some n eN. What do you know about clements of Nl 

21. If Tg has finite order n, then TEf' = (Tgt = Th=T, so f!e T. What does this tell you 
about the order of j'? And wbat, in turn, docs that teD you about the order of If/ 

23. IR'" /R'"'" ;;;; Zl. 
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25. (a) 9, 5, 7 (b) Ifm, n EZ, then n(m/n + Z) = m + Z = 0 + Z in 0/Z. 

31. What are the po.ssible orders of Z( G)? Then, what are the possible orders of 
G/Z(G"f. Use Theorems 8.7 and 8.15. 

31. Him: Show that the fuDctionf:A./NX B/N --<;G/N given byf(Na.,Nb) =Nab is 
well defined. Then show that if a EA. and b E B, then Nab = Nba. Use this fact 
to prove thatfis a homomorphism. 

Section 8.4 (pi!Jfle 170) 

1. f((a + bz) + (c +di)) = f((a +c)+ (b + d)1) = b + d = f(a + b1) + f(c + di); 
the kernel is Z. 

3. You provide the proof that his a homomorphism. The kernel is (I) (soh is 
injective by Theorem 8.17). 

5. f((x, y) + (u, v)) = f((x + u, y + v) = y + v = f(x, y) + f(u, v); so [is a 
homomorphism. You find the kernel. 

11. If [aL = (b]., then n I( a-b) by Theorem2.3. Since k 1 n, it follows that kl (a- b). 
Use this fact to show that [ ra]. = [rb]~t-

13. f is well-defined by Exercise II. f is a homomorphism because f([a1 6 + [h)1.) = 
[([a+ b)t6) =[a+ b]4 = [a)4 + (b]4 = f([a]u) + f([b) 16). Find the kernel and 
explain why it is isomorphic to 7.,.. 

t 7. (a) (0), z.., z, "4 Z6, Zu. 

19. (e), s, and zl. 
21. Kernelfis a normal subgroup of G, so what can it be? What does that imply? 

25. Showthatfis a homomorphism. If cis any integer, thenf(O, -c)= 0- (-c) = c; 
hence [is swjectivc. If (a, b) is in the kernel off, then a - b = 0 and, hen~ 
a= b. So (a, b)= (a, a) = a(l, I)E((I, 1)). Show that any element of ((I, !)} is in 
the kerncl; henoe the kernel is ((I, I)). Apply the First Isomorphism Theorem 8.20. 

27. ''erif}' that f: G X H __,. G/ M X H/ N given by /(a, b) = (Ma, Nb) is a surjective 
homomorphi5m with kernel M X N. Apply Theorem 8.16 and the First 
Isomorphism Theorem 8 20. 

31. ''erif}' thatf: l--'; Z3 X Z4, given by f(a) = ([db, [a:k), is a homomorphism. Use 
Exercise 17 of Section 1.2 to show that the kernelis (12). Use brute force to show 
thatfis SUijective: VerifY thatf(I)JC!), ... ,[(12) are all the elements of Z3 X 7.,.. 

33. Since H "" G/ Kby the First Isomorphism Theorem, it suffices to construct a 
bijection from the set S of all subgroups of Gthat contain K and the set Tof 
all subgroups of G/ K. If B is a subgroup of G that contains K, then B / K is a 
subgroup of G/ K, so define 8: S--<; T by B(Il} = B/ K. Then II is surjective by 
Theorem 8.24. Show that II is injective. 

Section 8.5 (pi!Jfle 277) 

1. (a) (123), (132), (124), (142), (134), (143), (234), (243). 

3. (1). 

5. Theorem 7.23 and Example 6 of Section 7.5. 

9. If N *"(I), then N contains a nonidentity element u. If T *" (l) is inN, then 
uu = (I ) = uT implies that 0" = T by Theon::m 7.5. Hence, N = { (1), u}; and N 
is cyclic of order 2. 
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Chapter 9 

Section 9.1 (page 285) 

J. (a) l(O, O)}; {(0, o), (1, 0)}; {(O, O), co, I)}; ((O, O), (1, 1)}; Z1 x zl. 
S. ~X lz. 
9. No. 

13. {b) If Dis nonm~ then for any a, bEG, (a, e,e)(b, b, bXa, e, t)-1 ED. But 
(a, e, e)(b, b, bXa,e,ef1 = (aba- 1

, b,b). Since this is in D, we must havel.lba-1 = 

b, which ~lies that ab = ba. 

23. (a) Let M = ((123)) and N = ((12)) in S1• 

25. First, vcrifythatN, n (N1 • · · ~-INH-1 ···Nil)= (e} implies that when i ~ j, then 
N1 n N1 = {e) because N1 r;;;,N1 .. ·Nt-tN,..1 - • -N •. Usethehomomorphic!mfinthe 
proof of 1beomn 9.1. If ftal> ... , 14) = e, then tli =(at · · ·tfj..t)-1e(tll+t · · · aA)-1

• 

Use Lemma 9.2 and Corollary 7.6 repeatedly to show that 
~EN, n N1 · · · NHNI+l · · · N1 = (e).Hro.ce,/isinjc:ctive by Theorem 8.17. 

1.7, (a) What are the normal subgroups of S1? 

Section 9.2 (page 297) 

1. If [I' a= 0 andp"'b = 0, thenp"( -a)= -(p"a} = 0 andp'"+"(a +b)= Jl'p"'(a + b) = 
p"'(Jf'a) + p"(JJ"b) = 0. Hence, a+ bEG(p) and -aE G(p). Use Theorem 7.1 1. 

3. (a) ~EEJ.lg;ZlEf>Z1Ef>Z! (c) Z:2Ef)lgE£)Zs (e) ZlE£)Z3EElZ3@Zs; 
z~ EE> 4 EE> Zs (g) Zz EE> zl EE> zl EE> zl EE> z~ EE> Z.,; zl EE> z.. EE> z3 EE> Zs EE> z~ 
~Ef)~Ef)~Ef>4~Ef>~Ef)~Ef)~Ef)~~Ef)~Ef)~Ef)~~Ef)~E£)~ 

S. (a) 2, 9 (c) 2, 2, P, 'P, 3, S, S, S, S. 

7. {a) 2, 2 and 2, 2 (c) 2, 'l? and 2, '1?. 
9. (a) G must contain an element of order p (Why?). If a has order p, then pa = 0. 

13. If q is a prime other than p and if q divides IGJ, use Exercise 12 to reach a 
contradiction. 

19. {a) Exercise 1 is the spc:cial case when every element of finite order has order a 
power of p. Essentially the same proof works here. 

Section 9.3 (page 302) 

3. {(12)(34), (13)(24), (14)(23), (I)} is the only Sylow 2-subgroup. The four Sylow 
3-subgl'oups are ((123)), ((124)), ((134 )), ((234)). 

S. (a) 1 or4. 

7. (a) Show that G has a normal Sylow 7..)iubgroup. (c) Show that G has a 
normal Sylow-11 subgroup. 

9. If aE G, then (NaY= Nin G/N, so that tf EN. 

13. fur each prime that divides IGJ, then: isexactlyoneSylowsubgroup by the 
Seoond Sylow Theorem. IJ:tpl>p., ... , Pk be the distinct primes that 
divide IGI, and let N~> Nl> ... , N"' be the corresponding Sylow groups.. Define 
jN1 X N1 X .. • X N"'~Gbyj{ai>tlJ, ... ,aiJ = a1az .. · 'll- The proof of 
Theorem 9.1 slnws that fie! ahomomotphiSill. Then Jm.f= N1N1- · · Nk = 

{atll2 · · · ak l~~tEN1) is a subgl'oup of G by Theorem 7 .20. The Sylow subgroups 
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of Imfalso are N~, N:l> .•. , N~r(Why'!). By the definition of Sylow subgroups, 
llmfl = INII•IN~ · · ·IN.J = IGI· Hence, lm.f = G, andjis surjective. By the 
definition of the direct product, IN1 X N, X • • • X N.J = INII·IN~ · · ·IN !I = IGl· 
Since N1 X N1 X··· X Nkand Ghave the same number of ekm:nts the 
surjective mapfmust also be injeCtive (Why?). Therefore,fis an 
isomorphism. 

21. Show that there is a normal Sylow l- or 5-subgroup. Note that if there are six 
Sylow 5-subgroups, Ghas 24 distinctelemenbof ordc:r 5 (Why?). Similarly, if 
there are ten Sylow 3-subgroups, G has 20distinct elements of order 3. 

Section 9.4 (page310) 

l. (a) {ro}, {rl}, {rb r~}, {h, t1}, {d, t). 

3. Look at H = { ro. r~o r2. r1} in D4• 

5. {(123)), {( 124)), {( 134)), {(234)). 

9. If Cis the conjugacy class of a E G, show thatf(C) is the conjugacy class ofj(a). 

15, !n the equation of Exer!O.ise 14( c), vc:rify that each I C41 is ci thc:r I or a positive 
powc:r of p. At least one ICJ is I bcacuse {e} is a conjugacy class. Since IN! is 
divisible by p, there must be more than one ICJ = 1 and, hence, some nonidcntity 
element of Z( G) in N. 

19. If bE N(N(K)), thenb-1N(K)b = N(K). Hence., b- 1Kb!:;;; N(K), since X!:;; N(K). 
Verify that both K and b-1Kb are Sylow p-subgroups of N(K) and, henoe, 
conjugate in N(K). But Kis nonnal in N(K), and so b-1Kb = K. Hence, bE N(K). 

21. If Sis a Sylow p-subgroupcontaining H(Exercise 24), then every Sylow 
p·subgroup is of the from a-1Sa for some a E G and, therefore, contains a-1Ha. 

Sect ion 9.5 (page 318) 

I. Firntshowthatpl.,.._ I (modq). pr p'-== 1 (modq), then q dividesp + 1 or 
p- 1 (Why7). Use the facts thatp< qandq .,.._I (modp)to show that both 
possibilities kad to a conlradictioa] Then use Theorem 9.30. 

5. (a) 

(I' a a2 al b ab a2b lib 

fl e a a2 d b ab a2b db 

a a if- a1 e ab a'-b trb b 
Ql rr- ri' e a alb a~b b ab 

d' til e a ,;. a1h b ab alb 
b b db tfb ab a2 a e d 

ab tJb b a1b db .; a1 a e 

a'-b tf2b ab b db e a~ a1 a 

a3b ri'b tf2b ab b a ~ ri' ,? 

7. Usc: Exercise 13 of Section 9.3 and Theorem 9.9. 

13. {1, -I}. 

17. How many Sylow p-subgroups does G have? Use Corollary 9.16. 
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Chapter 10 

Section 10.1 (page 330) 

3. (•) True. Proof: a I b means b =au and cl d meansd = ell. Hence, bd = aucv = 
ac(uv). 

5. Tf a is an associate of b, then a = bu. for some unit u. Het¥:e, 1m. = a = be, and, 
therefore, u = c, a contradiction. 

1. Suppose q = pu, where pis irreducible and u. is a unit. Suppose q = n; then rs = 
pu, and, hence,p = (p!J)u-1 = (f's)u-1 = r(.rq-1). Sim:e pis irreducible. ris a unit 
or au-1 is a unit by Theorem 10.1. But if .ru-1 is a unit, say ;v1.C1w = 1, then sis a 
unit. Therefore, q is irreducible by Tix:orem 10.1. 

17. {a) jj(ab) = jj((su- tv)+ (sv + m)l) = (su- ruf + (st~ + mf = N- 2stu.v + 
N + N + 2stu.v + N = ru2 + f,} + N + fV = (r + tl}(u .. + ,f) = 
6(a)o5(b). 

21. Tf OR '#a ER, use Theorem 10.1 to show that rJl can't be irreducible and, hence, 
must be a unit. Hence, a is a unit. 

23. Supposep = n. Thenp I r or pIs. Show that r or$ must be a unit and apply 
Theorem 10.1. 

29. Assume that 6(a) = k for all nonzero a E R. IT b #- 01!. then there exist q, r such 
that 1 R = bq + r, with r = OR or jj(r) < 6(b). The latter condition is impossible 
becall5e 6(r) = k = 6(b). Thus r = o.lb and, hence, q is a multiplicative iim:ne of b. 

Section 10.2 (page 341) 

1. (ab) !:; (b) since b I ab. IT (ab) = (b), then ab I b, say abu = b. Hence, uu = 1 RJ 

contradicting the fact that a is a nonunit. 

5. See Example 3. 

II. If (a) a an ideal other than R, then a is not a unit (Why?) and, hence, must be 
divisible by an irreducible element p (Theorem 10.12). Hence:, (a),;; (p), with (p) 
maximal by Exel'(;ise 10. 

13. (b) Verify thatf.Z....., Z., given by f(a) =(a], is a surjective homomorphism. 

15. By Theorem 10.8, I= (b) for some nonzero b. If a E Z[l], then a = bq + r with 
r = 0 or jj(r) < jj(b), and, hence, a - r (mod I). By Theorem 6.6, the number 
of distinct cosets of 1 (congruence classes mod I) is at most the number 
of possible r's under division by b. Show that there are only finitely many 
possible r's. 

21. By Exercise 20, d =au+ 1m for some u, vER. If e ESis a common divisor of 
a and b, then e m:a:ssarily divides d. Hence, dis a ~d of a and binS. 

29. For some.:t: be= ad. If a= r 1r2 • • • rh d = ZJZJ. • • • z,.. b = J1Jp1 • • • p.., and 
c = q1q1 · · · q, with eachp, q, r, z, irreducible, thenpJP1' · · PA1q1 · · · q, = 
r1r2 • • • r,;zy:2 • • • z,. So each r1 is an associate of p1 or {/j- But r1 cannot be an 
associate of any p1 ( othenvise r, would divide the gcd I R of a and b, which implies 
that the irreducible r1 is a unit). 
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Section 10.3 (pag~351) 

I. If x =a, y = b, z =cis a solution of X"+ y" = t' and n = kt, show that x =a', 
y = fl, .:: = d is a solution of J! + y = z*, contradicting the hypothesis. 

3. N(ab) = N((rm + sn.d) + (m + sm)Vd) = (rm + md'f- d(rn + sm'f = nn" + 
2mnrsd + Md2 - diY- - '2mlvrd - rJi1m2 = ,)-nt- + rn1~ - d?t?- - Jilm1 = 

(? - d.l)(rti - dJi'-) = N(a)N(b). 

9. (a) Use Corollary 10.22. 

17. (-=~>)Leta= u+ v V::S andb = w+z\1'=5. Ifr +~eP, thenr + .s V::S = 
2a+(l + v=5}b =2(u + vV=S}+ (1 + V'=5)(w+z.v=s) = (2u+w -Sz)+ 
(2!! +w +z) vCS.Hence, r- s= {21.1 + w- Sz) -(2v +w + z) = 2(u- v- 3i), 
so thatr == s (mod 2~ 

Section 10.4 (pag~35B) 

1. (2) [a, b] = [ak, bk] because a(bk) = b(ak~ 

3. [a, IRJ + [b,l.rJ = [aiR+ 1~, I Rim =[a+ b,IR] eR• and [a, l.n][b, IRI = 
[ab, lRlR] = [ab, I .a] eR•; hence, R• is closed under addition and multiplication. 
The zero element [OR, I .a] of Fisin R•. The negative of [a, 1~ is [-a, IR] eR•. 

5. '(1:~~~f:F-;. lr + silr, seQ) given byf({a + bi, c+ diD=(~::~)+ 
r? + -;p /is an isomoqhism. 

II. mu + nv = 1 for some integers u and v by Theorem 1.2; u and v may be negative. 
Negative powers of a are defined in F and, hence, in F, a = ,; = d""_, = rr"d'"' = 
( d")"( tt''l = (b"')"(ll'f = /!"- = fY = b. 

Section 10.5 (pag~364) 

1. (=~>-) Ifj(x) is a unit in R[x], thcnf(x)g(x) = 1Rfor some g(x). By Thcon:m 4.2, 
degf(x) + deg g(x) = deg 1R = 0. Hence, degf(x) = 0 = deg g(x), so that f(x), 
g(x) e R. Henoc,f(x) is a unit in R. 

3. (=>)Assume pis irreducible in R[x]. If p = rs in R, then either r or .fis a unit in 
R[ x]. Hence, r or G is a unit in R by Exercise 1. Thm:fore, p is irreducible in R by 
Theorem 10.1. 

5. Since c1c2 • • • c,.f(x) = g(x), each c1 divides g(x). Therefore, tj i.i a unit in R 
because g( x) is primitive. 

9. Firnt use the fact that R[x] is a UFDto show that R i:! an integral domain. If c i.o 
a nonzero, nonunit element of R. tb:::n cis a nonzero, nonunit element a R[x] by 
Exercise 1. Hcoo; c = Puh · · · p., with eachPJineducible in R[x]. Theorem 4.2 .tOOws 
lhal eachp1eR. Heno; p; is irreducible inR by Exercise 3. Use the fact that R[x] is a 
UFD to show that this factorization is unique up to order and associates in R. 

Chapter 11 

Sed ion 11. 1 (pag~ 374) 

7. a+ bi = (b- 'la)i + D{l + 21) + 0(1 + 31). Also, a+ bi = (-2a)i+ 
(a - b)(l + ll) + b(l + 31). 



Section 11.3 581 

9. Verify that ((-3/VTJ - V3)v'2 + v'3( v'2 + i) + Vi( v'3 - 1) = 0. 

11. H the subset is {~ ~ ~ •... , U,}, then IF0v + 0~ + Ot1'3 + · · · + OFu, = Oy, 
with the first coefficient nonzero. 

13. There exist c1eF, not all zero, such that c1v 1 + · · · + ckvk = Ovsince the v1 are 
linearly dependent. The !let {v~o ... , v1 , WJ, ••• , w,) is linearly dependent because 
c1v 1 + · · · + ckv.t + OFW1 + · · · + OFUJ, = Of" and not all the coefficients are zero. 

(r cs) 1 
15. For any r + steC. r + si = b- bd b + d(c + di). Hence, {b, c + dl) spans C 

over R. Prove that it is also linearlyindcpc:ndent over~-

23. {a) H a+ b....ti + cv'3 = 0, then a+ bV2 = -c¥3. Squaring both sides and 
R~~Irangillg, show that 2ahVi = 3~ - ti-- W.lf ab '(:. 0, then v'2 = 

(3~- tf- 21J)/1ob e Q, which oontradicts the fact that Vl is irrational. Hence, 
a= 0 orb = 0. If a= 0, then b....ti + cv'3 = 0. Square both sides and make a 
similar argument to show that be = 0. Heno; b = 0 or c = 0. But a = 0 and b = 0 
imply that c-../3 = 0, when::e, c = 0. Similarly, a = 0 and c = 0 imply that b = 0. 

33. Suppose Cti.!t + ... + CJV.o + dw =of". ff d * OFI then w = -a1
CtUt- a1~­

· · · -d -lc,u., a contradiction. Hence, d = OJ" Then all the c1 =OF booause 
{u1, ••• , U.} is linearly independent. 

J7. ((!) "*(iii)) Suppose S = {v~o ... , v~} spans V over F. Then some subset Tof Sis 
a basis of V over Fby Exerci.->e 32. Since [V:F] = n, Tmust have 11 elements, and, 
hence, T= S. Use Exercise 36 to prove (ii) ~(iii). (iii) implies (i) and (li) by the 
definition of basis. 

Sect ion 11.2 (page 381) 

3. Both F(u. +c) and F(u) containFby definition. Since c e Fand u e F(u), 
u + c e F(u.). Therefore, F(u.)::l F(u +c), since F(u. +c) is the smallest subfield 
containingF and u. + c. Conversely, u = (u + c) - c e F(u. + c), so that 
F(u) ~ F(u. +c), since F(u) is the smallest subfield containing Fand u. 
The more, F(u + c) = F( u.). 

5. (a) Verify that 3 + Si is a root of r - 6x + 34. (c) Verify that 1 + Vl is a 
root of ~ - 3xl + 3x - 3. 

7. By hypothesis, u. is a root of somep(x)e F[x]. But F[x]!;;;; K[x], so that u. is a root 
of p(x) e K[~']. 

9. Vi is a root of r- 'II' E O(n]x]. 

11. 6. 

15. By the Factor Theorem, a+ bi is a root of[(x) = (x- (a+ h1)Xx -(a-m)). 
Verify thatf(x) has real coefficients. 

17. (a) :0-llf-4. 
21. 71' is a root of x4 - '11'

4 eQ(1T4XxJ and, hence, is algebraic over Q(1T~. Therefore, 
{ 1, 'IT,??,~} is a basis by Theorem 11.7. 

Section 11.3 (page 387) 

3. Many correct answer10, including (a) {1, V'S. 4 VSI} 
(c) {1, v'2. v'i. V'S. v'6. ~ViS. VJO}. 
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5. Usc Corollary 4.19 to s.bow tbat -,..J. +I is im:ducible over O(VJ) and tbus is 
the minimal polynomial of i over O(v'3). Hence, [Q(v'3, 1) : Q(v'l)] = 2 and 
[Q(v'J, i):OJ = (Q(v'3, l):Q(Vl)] (O(Vl):O] = 2 · 2 = 4. 

7. [K(u):F] is finite by Theorems 11.7 and 11.4. Hence, u is algelxaic over Fby 
Theorem 11.9. If p(x) E F[x] is the minimal polynomial of u over F and 
q(x) eK[:\1 is the minimal polynomial of u over K, then q(x) lp(x) by Theorem 11.6. 
Hence., by Theorem 11.7, [K(u):K] = deg q(x) :s dcgp(x) = (l'tu):F]. 

9. [fl.:u):F] and (K(u):F(u)] arc finite by Theorems 11.4, 11.7, and 11.9 and 
&ere~ 8. Apply Theorem 11.4 toF<;;;ftu) <;;;A'l;u} 

ll. {a) Tboorem ll.4applicd to F<;;;ftu) <;;;ftu, v) s.bowsthat rn = degp(x) = 

[l'{u):F] divides (l'{u, 'IJ):F]. Similarly, n I (ftu, 'IJ):F]. Hence, ""'I (F(u, v):F] by 
Exercise 17 of Section 1 .2. Usc Tboorem 11.4 and Excn:ise 7 to sbow that 
[l'{u, v):F],;; rntl. Therefore, [l'tu, 'IJ):FJ = rntl. 

13. Lcth(x) EJ'tu)(x] be the minimal polynomial of v over ftu); then h(x) I q(x} By 
.&ercise ll(a) and Theorems 11.4and 11.7, (degp(x)) (deg q(x)) = (F(u, v):F] = 
[l'{u, v):f'{u)] (ftu):F] = (deg h(x))(degp(x)). Therefore, degh(x) = deg q(x), 
and,hence,q(x) = kh(X) lbrsomek eK. Sincch(x) in irreducible over F{u), so is 
.q(x). 

15. lf u is algctraicuvcr E, then it is algelxaic over F by Theorem 11.10 and 
Corollary 11.11. 

Section 11.4 (pitge 393) 

3. 0( VS, i) is a splitting field; it has dimension 4 by Exercise 3 of Section 11.3. 

7. The minimal polynomial p(x) of u is im:du01ble in F[x] and bas a root in K. 
Tb:refo~ p(x) splits over K = F(u). 

ll. The fourth roots of -1 am (±v'2/2) ± (v'2/2)t, so tbat Q( Vl, i) is a !!plitting 
field. 

15. xl + I is im:ducible in.Z;{.\] byCorollary4.19. Hence, byTheoremS.II, .Z1[x]/(r + 1) 
is a ~ld of nine dc:ments that wntains the roots [x] and [2x] of .\J. + 1. 

21. If p(x) E K(xJ is irreducible and u is a root of p(x), tben A'l;u) is algebraic over K 
by Theorem 11.10. Therefore, uisalgelxaic over Fby Corollary 11.11. Its minimal 
polynomial q(x) over F splits over K and divides the irreducible p(x) in K[x] by 
Tboon::m 11.6.Sbow thatp(x) bas degree 1 and apply Exercise 19. 

Section 11.5 (ptlge397) 

1. Every polynomial in F[x] is also in E(x]. 

1. (a) If .f{x) = a,;t" + · · · + avandf'(x) =OJ> tbenfor coohk > 0, (kly) ak = ka~o =Oil' 
Sin<.:<: Fbas cbaracterislicO, kly~ o.., and bencc, ak = O.'Ibc:rdo~Jtx) = Qo. 

9. 1f At") andf'(x) are not relatively prime, then tbeir gcd bas a root u in some 
splitting field. Hence, u is a repeated root of f(x) by Exercise 8, so thatj(x) is not 
separable. 

l3. Usc tbe proof of Theorem ll.lS, as in Example 2. 
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Section 11.6 (pi!ge404) 

3, na =a+ a+··· +a= IJtU+ IJtU+ · · · + l.RO=(IR+ · · · + IR)a = (lllila = 
O_Rll =OR. 

5. Let p = chamcteristic F = chamcteristic K. Fhas order jl", where m = [F:.l,.], by 
Theorem, 11.23, and, hence, q = jl". Since [K:.l,.] = [K:F] [F:Z-p) = nm, 
Theorem 11.23 shows that K has order p""' = tf. 

13. E~ element a of~ is a root of !>! - X by the proof of Theorem 11.25. Hence, 
a~ = a in z,. which means that ~ "" a (mod p) in Z. If a is relatively prime top in 
l, then a is a nonzero element of the field 7l11 and, hence, has an inverse. 

17. Since E,;;;;; F, each has ordttr p" for some prime p. By lheorem 11.25, 
E = ljtil> , .• , -uJ = F, where the u, are all the roots of J!'- X inK. 

Chapter 12 

Section 12.1 (pi!ge413) 

l. If !T(c) = c for every ceF, then u-1(c) = u-1 (IT( c))= c. 

3. Use lheorem 11.7 to show that IT( c)= c for all cEl'{u). 

5. Use Corollary 12.5 and Lagrange's Theorem 8..5. 

9, (a) p(x) = .Jc2 + X+ I (b} Ga!QQ{<t~) ""'Z1. 

tl. Ga1aCJ( Vi, 1)""' Zz X 1l2. 

Section 12.2 (pi!ge421} 

l. The number of intermediate fields is the same as the number of subgroups of 
GalpK, which is finite by Theorem 12.11. 

5. Four, of dimensions 10, 5, 2, and 1. 

9. (a) Every subgroup of z.,;;;;; Gai1K (m particular, GalEK) is cyclic and normal 
byTheorem7.17. ByTheorem12.11,Gal_rE",;;;;; Gal,K/Gal~ applyExercise24 
of Section 8.3. 

ll. (b) [Q( {12):0] = 4 since J.A- 2 is irreducible in Q[x] by Eisenstein's Criterion. 

:2- + I is the minimal polynomial of iover Q({/i) by Corollary4.19. 

Section 12.3 (pi!ge431) 

1. (a) Many correct allS\VerS, including Q !;;;; 0( VS) ~ 0( VS, V7) !;;;; 
a(vs, V?, -¢'2 + VS}!;;; O(vs, V?, -¢'2 + vs, '¢"• + v'7). 

5. (a) A.. consists of the subgroup Hand the eight 3-cycles (123), (132), (124), (142), 
(134), (143), (234), (243). Show that His normal in~· Use the fact that all 
groups of order s4 are abelian to show that the series~~~~ H~(I) satisfies 
the definition of solvability. 

7. (a) ±1 (c) ±1, ± i (e) ±1, 1/2 ± 1"0/2, -1/2 ± IYJ/2 
13. If Kis the splitting field of a cubic polynomial, then[K:F] is divisible by 3 

(Why?) and s6 by Theorem 11.13. Hence, the Galois group is a subgroup of S3 

(CoroDary 12.5) of order 3 or 6. 
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17. (a) x6 - 4r + 4 = (xl- 2 f. Q( V'2, m) is a splitting field, wherew is a complex 
"ube root of 1. G;;;; ~· (c) r + ~ + 9x = x(lf + 3'f. O(iv'J) is a splitting 
field. G;;;; l 2• (e) G;;;; S3• 

Chapter 13 

Chapter 13 (page441) 

l. If ka == 0 (modp ), then p [ ka. But (p, k) ·= I (Why1). Hawe, p I a by Theorem 1.5, 
which i$ a contradiction. 

3, (a) 0107 0512 2421 1479. 

Chapter 14 

Section 14.1 (page.US) 

3. If there is a solution, then 0, I, or 2 is a solution by Exc:rcise 2. Verify that this is 
not the case. 

9. X • -30 (mod 11!7). 

11. x • -18 (mod 210). 

13. X == 204 (mod 204,204). 

19. (-to) If b- a= cf.:; and mu + nv = d, then muk + nvk = b- a. Proceed as in the 
proof of Lemma I 4.1. 

Section 14.2 (page452) 

3. 7is(l, 2) and 8 is (2, 3) in 'k X l"J.- So the product is (I· 2~2 • 3) = (2, 1). 

5. ( ~) If f(r) = f(s), then both rand s are solutions of the system x == r (mod m 1), 

x • r (modm:z), ... , x • r (modm,). 

Section 14.3 (page456) 

l. (a) Repeated use of Corollary 14.6 shows that both are isomorphic to 
Z3 X ~ X Zs a.o.d, hence, to ~h othe£. 

Chapter H 

Chapter 15 (page469) 

3. (a) Begin as in the construction of the coordinate plane. Place the rom pass 
point on (1, 0) and make a circle whrnK: radius is the segment from (I, 0) to 
(3, 0). It intersects the vertical axis at Q. The right triangle with vertices (0, 0), Q, 
(I, 0) has hypotenuse of length 2 and one side of length I. Hence the angle at Q 

(opposite the side of length I) is a 30" angle, because sin-{i) = 30". 

(c) Part (a) shows that a 90" angle can be trise<:tt:d. Since. a 30" angle can be 
bisected, a 45° angle can be trisectod. 

5. cos 3t = cos(t + 2t) = cos t cos 2t - sin t sin 2t = cos t(2 co~ - I)­
sin i(2 sin tcos I)= 2 cos~/ -cost- 2 sin2tcos t = 2 cos.3t- cost-
2(1 - coslt)"os t = 4cos3r- 3 cost. 
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7. No. To prove this, show that x must be the root of a cubic polynomial in ll{x] 
that has no rational roots. 

9. No. 

15. If Vk E F, then F( \/'f) = F. If Vk ¢ F, then the multiplicative inverse of a 
nonzero element a + bVk of F( \/'f) is c + M, where c = a/(rr- k1lJ and 
d = -JJ/(ti- Jchl). 

Chapter 1G 

Section 16.1 (page480) 

1. Verify that Cis closed under addition and, hence, is a subgro.., by lbeorem 7.12. 

3. (a) I (~} 4. 

5. (a) 0000. 1000,0111,1111 (~) 0000,0010,0101,0111, 1001, 1011, 1100, 1110. 

11, (c) If the ith coordinate is denoted by a subscript, then (u + w), = tij + w1and 
(v + w)1 = v1 + Wt Hence, (tt + t1)1 = (t1 + w)1if and only if u1 = Vj. 

17. Many correct answers, including 00000, Ill 00, 00111, 11 0 11. 

21. 11 = s. 
25. Vericythatan element of B(n)has even Hamming weight if and only if it is the 

sum of an even number of elements of Hamming weight 1 (for instance, 110 = 
100 + 010). Use this to show that the set of elements of even Hamming weight is 
closed under addition. 

13. An error is detected if and only if w is not a oodeword. Note that w = u + e and 
that the set of oodewords is da;ed under addition. 
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Section 16.3 (page497) 

1. (a) If f(x) = a.,x" + · · · + ~; + -· · + -., the~f(x) + j(x) = (a, + a,.)x'" + · · · + 
(a,+ a/p!+ · ·- + (ao+ ao) = fu:" +···+Ox'+·-·+ Obecause a,+ a1 = 0 for 
every a. Ell. 

3. Verify that 1 + X + x' has no roots in Zl and, hen a:, no first- or third-degree 
factors. If there is a quadmticf1Wtot, it is either the product of two lincar factors 
or irreducible. Use long division to show that the only irreducible quadratic 
(Exen:ise 2) is not a factor. 

5. (a) Use the table to show that tl is a rootofj(x) = 1 + x + xl+ x3 + x4.lt 
then suffices to show thatj(x) is irn-:ducible. Use lhe method of Exercise 3.. 

7. (c) If /a:~+ a~+···+ o..-1-~1D = (0, 0, ... , 0), then[ao +a1x+ · · · + 0,..~~ 
= (0), so that the kernel of Jis the identity subgro1ip: Apply Theorem 8.17. 

9. (a} .D(x) = J?- + a4x + a has roots 1 = cP and a = a 1
• Hen a:, the correct word 

is 000000000000000. (c) D(x) = r + aax +a' has roots «g anda10• Henct, 
the correct word is 101010010110000. 

Appendix 8 

Appendix B (page519) 

I. {a) {-2.- 1,0, 1, 2, 3, 4, S, 6, 7, 8} (c) {1, 2}. 

3. (a) Empty since v'2 is irrational (c) Empty. 

7. (a, 0), (a, 1), (a, c), (b, 0), (b, 1), (b, c), (c. 0), (c, 1), (c, c). 

11. (a} yes (c) yes. 

13. (a) ~correct answers, including the functions/, g, Jt, k given by /(I) =a, 
/~) = b, /(3) = c,f(4) = a; g(l) = c, g(2) = b, g(3) = a, g(4) = b; h(Q = b, 
h(2) =a, h(3) = c, h(4) = c; k{l) = c, k(2) =a, k(3) =a, k(4) =b. (c) There 
are six bijections from Cto C. 

19. If(a,d)EA X (B U C), then aEA anddEBordEC. Therdore,(a,d)EA X B 
or (a, d) E A X C, and, henoc, (a, d) E(A X B) U (A X C). Thus A X (B U C) S 

(A X H) U (A X C). Conversdy, suppose (r, s) E(A X B) U (A X C). Then (r, s) E 
A X B or (r, s)EA X C. If (r, s)EA X B, then rEA and sE B(and, henoe, 
s EB U C), so that (r, s) EA X (B U C). Similarly, if (r,s) EA X C, then (r, s) E 
A X (B U C). Therefore, (A X H) U (A X C) sA X (B U C), and, hence., the two 
sets an: equal. 

23. No; why not? 

25. (a) If [(a) = f (b), then 2a = 2b. Dividing both sides by 2 shows that a = b. 
Therefore, }is injective. (c) Ifj(a) = f(b), then a/7 = b/7, which implies 
thata =b. 

21. (a) If (go fXa) = (go f)( b), then g(f(a)) = g(f(b)). Since g is injective, f(a) = 
f(b). This implies that a = b because /is injective. Therefore, g 0 /is inject~ 

29. (a) Let dE D. Since g" [is surjective, then-: exists b EB such that (g 0 f)( b) =d. 
Let c = f(b) E C. Then g(c) = g(f(b)) =(go j)(b) =d. Hence, g is swjcctive. 
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Appendix C 

Appendix C (page528) 

1. P(O) is truesinceO = 0(0 + 1)/2. If P(k) is true, then I + 2 + · · · + k = k{k + 1)/2. 
Addk + I to both sides and sbow that the right side is (k + IXk + 2)/2. This 
says that P(k + I) is true. 

3. Let P(n) be the statement 2"-1 :s: n!. Verify that P(O) and P(l) are true. If P(k) is 
true and k ~ 1, then 2"-1 :s k! and 2 :s k + I. Hence, ~1)2,.,;; k!(Jc + 1), that is, 
2~ :s (k + l)i. Tbu~ P(k + I) is true. 

7. Verity that the statement ill truewhenn = I.Supposethestatemc:nt is true fork, that 
is, tbat 3 is a factor of~~ + l. Thenz»1 + I = 3t, and, hcttcc, 22l+l = 3t - 1. To 
show that the statement is true fork+ 1 note that :zl!~l)+l = p-w-2+! = :fk+122 = 

(3t- 1)4 = 12t- 4 = 3(4t- I)- I, an~ hence, 2~J:+I}H + 1 = 3(4t- 1). 

1 1. "CrifY that the statement ill true when n = I. Let B = {~, b2, ... , b,}. ln defining 
an injective function from B to B, there ace n possible choices for the image of b1, 

n - I choices for the image of~ (because b1 can't have the same image as~. 
n - 3 choices for the image of ~ and so on. 

13. (11) Verity that the statement ill true when n = 2. Assume that a set of k elements 
bas k(k- 1)/2 two-element subsets and that Bhas k + I elements. Choose bEB 
and let C = B- {b}. E-vtcy two-clement subset of B consists either of two 
elements of Cor of band one dement of C. There ace k(k- 1)/2 subsets of the 
first type by the induction hypothesis. 

Appendix D 

Appendix D (page534) 

3. (11) a '"" a since cos a = cos a. If a '"" b, then cos a = cos b and, by the symmetric 
property of =, cos b = cos a; hence, b "' a. If a - b and b ~ C, then cos a = cos b 
and cos b =cos e. Henr::e, cos a =cos c, and, therefore, a'"" c. 

5. (b) The equMllence class of (r, s) is the vcrticd line through (r, ~). 

9. (11) Tcansiti-vt {c) Symmetric. 

19. (b) Consider the subgroup K = {ro, v} of D4-

Appendix E 

Appendix E (page 539) 

1. 4032. 

3. t) = r!(n11~ r)! = (n- (n -
11

:))1(n- r)! = (,, ~ r). 
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Appendix F 

Appendix F (page 543) 

1. (a) A+ B- (
1 

--6 ° 4
). 

9 5 11 12 

3. (a} The entry in position 1-j of .A.+ B is aq +bit But a~+ b~= b1 +ali' which is 
the entry in position i-J of B + A. Hence, A + B = B + A. 

Appendix G 

Appendix G (page 551) 

1. (a) X+ r + _x1 (c) (-11, 7.5, -3, 12, -5, 0, 3, 0, 0, 0, ... ). 

3. (a}((ao,a1, ... )@ (bo,bJ> .. . )] @(c,, cb ... ) 

=(a,+ ho. a1 + bl> .. . ) @(co. C), ... ) 

= ((ao +l'cl) + 'b. (at + b1) + c., ..• ) 

= (ao + (be, + co), a1 + (b1 + C]), ... ) 

= (ao, a~> ... ) @ (b0 + co, b1 + CJ, ... ) 

= (a,, ah . .. ) @ ((bo, b1, . .. ) @(ca. c., •. . )]. 
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