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NOTATIONS

The number after each entry refers to a page where the symbol is explained in the text.
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Sets and Functions

¢18 an element of the set B, 509

¢ 1s not an element of the set B, 509

Empty set [or null set], 510

Bis asubsetof C, 510

Relative complement of set Cinset B, 511
Intersection of sets B and C, 511
Intersection of the sets A, with ie I, 511
Union of sets B and C, 511

Union of the sets 4, with i1, 511

Cartesian product of sets B and C, 512
Function [or mapping] from set B toset C, 512
Image of b under the function f: B C, or the value of fat b, 512

Identity map on the set B, 512
Composite function of f:E—C and g:C=D, 512-513
Image of the function f:B—=C, which is a subset of C, 517

Important Sets

Nonnegative integers, 523

Integers, 3

Rational Numbers, 49, 191

Real Numbers, 45, 191

Complex numbers, 49, 191

Nonzero elements of @, R, C respectively, 178, 192
Positive elements of (&, R respectively, 178, 192

Integers

b divides a [or b is a factor of 4], 9

Greatest common divisor (ged) of aand b, 10
Greatest common divisor (ged) of a;, ay, . . . , a,, 16
Least common multiple (Icm) of a and b, 16
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Least common multiple (lem) of ay, a5, . .. , &, 16
ais congruent to & modulon, 25
Congruence dass of a modulon, 27, 28

Set of congruence classes modulo #, 30

Rings and Ideals

Multiplicative identiiy element in a ring with identity, 44
Ring of 2 X 2 matrices over the real numbers R, 46
Ring of 2 X 2 matrices over Z, O, C, Z, respectively, 48

Zero matrix in M(R), 47

Ringof 2 X 2 matrices over a commutative ring R with identity, 48
Ring R is isomorphic to ring &, 72

Principal ideal generated by ¢, 144

Ideal generated by ¢, ¢y, ..., &y 145

@ is congruent to b modulo the ideal I, 145

Coset [congruence class] of 2 modulo the ideal J, 147

Qotient ring [or factor ring] of the ring R by the ideal I, 147, 154
Sum of ideals I and J (which is also an ideal), 149

Product of ideals T and J (which is also an ideal), 150

The subring {r + sVd | d,r, s€Z} of C,322

Ring of Gaussian integers, 322

Ring of polynomials in €} x] whose constant term is an integer, 336
Norm function, 346

Field of quotients [or field of rational functions] of the polynomial ring

F[x] over the Geld F, 358

Polynomials

Ring of polynomials with coefficients jn the ring R, 86
Degree of the polynomial f{x), 88

J(x) divides [or is a factor of ] g(x), 96

S{x) is congruent to g{x) modulo p(x), 125

Congruence class [or residue class] of f{x) modulo p(x), 126
Ring of congruoence classes modulo p(x), 128, 131
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PREFAGE

This book is intended for a first undergraduate course in modern abstract algebra.
Linear algebra is not a prerequisite. The flexible design makes the text suitable for
courses of various lengths and different levels of mathematical sophistication, in-
cluding (but not limited to) a traditional abstract algebra course, or one with a more
applied flavor, or a course for prospective secondary school teachers. As in previous
editions, the emphasis is on clarity of expositionand the goal is to produce a book that
an average student can read with minimal cutside assistance.

New in the Third Edition

Groups First Option Those who believe (as I do) that covering rings before groups
is the better pedagogical approach to abstract algebra can use this edition exactly as
they used the previous ones.

Nevertheless, anecdotal evidence indicates that some instructors have used the sec-
ond edition for a “groups first”” course, which presumably means that they liked other
aspects of the book enough that they were willing to take on the burden of adapting it to
their needs. To make life easier for them (and for anyone else who prefers “groups first™)

It is now possible (though not necessary) to use this text for
a cotirse that covers groups before vings.

See the TO THE INSTRUCT OR section for details.

Much of the rewriting needed to make this option feasible also benefits the “rings
first” users. A mumber of them have suggested that complete proofs were needed in
parts of the group theory chapters instead of directions that said in effect “adapt the
proof of theanalogous theorem for rings”. The full proofs are now there.

Proofs for Beginners Many students entering a first abstract algebra course have
had little (or no) experience in reading and writing proofs. Toassist such students (and
better prepared students as well), a mumber of proofs (especially in Chapters 1 and 2)
have been rewritten and expanded. They are broken into several steps, each of which
is carefully explained and proved in detail. Such proofs take up more space, but I think
it’s worth it if they provide better understanding.

So that students can better concentrate on the essential topics, various items from
number theory that play no role in the remainder of the book have been eliminated
from Chapters 1 and 2 (though some remain as exercises).

ixe
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Preface

More Examples and Exercises In the core course (Chapters 1-8), there are 35%
more examples than in the previous edition and 13% more exercises Some older exer-
cises have been replaced, so 18% of the exercises are new. The entire text has about 350
examples and 1600 exercises. For easier reference, the examples are now numbered.

Coverage The breadth of coverage in this edition is substantially the same as in
the preceding ones, with one minor éxception. The chapter on Lattices and Boolean
Algebra (which apparently was rarely used) has been eliminated. However, 1t is avail-
able at our website (www.CengageBrain.com) for those who want to use it.

The coverage of groups is much the same as before, but the first group theory chapter
in the second edition (the longest one in the book by far) has been divided into two chap-
ters of more manageable size. This arrangement has the added advantage of making the
parallel development of integers, polynomials, groups, and rings more apparent,

Endpapers The endpapers now provide a useful catalog of symbols and notations.

Website The website (www.CengageBrain.com) provides several downloadable
programs for TI graphing calculators that make otherwise lengthy calculations in
Chapters 1 and [4 quite easy. It also contains a chapter on Lattices and Boolean
Algebra, whose prerequisites are Chapter 3 and Appendices A and B.

Continuing Features

Thematic Development The Core Course (Chapters 1-8) is organized around two
themes: Arithmetic and Congruence. The thetnes are developed for integers (Chapters 1
and 2), polynomialg (Chapters 4and §), rings (Chapters 3 and 6), and groups {Chapters 7
and 8). See the Thematic Tablk of Contents in the TO THE STUDENT section for a
fuller picture.

Congruence The Congruence theme is strongly emphasized hi the development of
guotient rings and guotient groups. Consequently, students can see more clearly that
ideals, normal subgroups, quotient rings, and guotient groups are simply an extension
of familiar concepts in the integers, rather than an unmotivated mystery.

Useful Appendices These contain prerequisite material {e.g., logic, proof, sets,
functions, and induction) and optional material that some instructors may wish to
introduce {e.g., equivalence relations and the Binomial Theorem).

Acknowledgments
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TO THE INSTRUGTOR

Here are some items that will assist you in making up your syllabus.

Course Planning

Using the chart on the opposite page, the Table of Contents (in which optional sections
are marked}, and the chapter introductions, you can easily plan courses of varyinglength,
emphasis, and order of topics. If you plan to cover groups before rings, please note that
Section 7.1should be replaced by Section 7.1. A (which appears immediately after 7.1).

Appendices

Appendix A (Logic and Proof) is a prerequisite for the entire text. Prerequisites for
various parts of the text are in Appendices B-F. Depending on the preparation of
your students and your syllabus, you may want to incorporate some of this material
into your course. Note the following,
- Appendix B (Sefs and Functions): Themiddle part (Cartesian
products and binary operations) is first used in Section 3.1 [7.1.A].* The last
five pages (injective and surjective functions) are first used in Section 3.3 [7.4].
= Appendix C (Induction): Ordinary induction (Theorem C.1) is first used
in Section 4.4. Complete Induction (Theorem C2} is first used in Section 4.1
[92]. The equivalence of induction and well-ordering (Theorem C.4} is not
needed in the body of the text.

« Appendix D (Equivalence Relations): Important examples of
equivalence relations are presented in Sections 2.1, 5.1, 6.1, and 8.1, but the
formal definition is not needed until Section 10.4 [9.4].

- Appendix E (The Binomial Theorem): Thisis used only in Section
11.6 and occasional exercises earlier.

= Appendix F (Matrix Algebra): Thisis a prerequisite for Chapter 16 but
is not needed by students who have had a linear algebra course.

Finally, Appendix G presents a formal development of polynomials and indetermi-
nates. I personally think it’s a bit much for beginners, but some people like it.

Exercises

The exercises in Group A involve routine calculations or short straightforward proofs.
Those in Group B require a reasonable amount of thought, but the vast majority
should be accessible to most students. Group C consists of difficult exercises.

Answers (or hints) for more than half of the odd-numbered exercises are given
at the end of the book. Answers for the remaining exercises are in the Instructor’s
Manual available to adopters of the text.

*The section numbers in brackets are for groups-firgt courses.



To the Instructor x

CHAPTER INTERDEPENDENCE"

1.
Arithmetic
in#
14.1 2. 13
Chinese Remainder [€~———————-—==-— Congruence » Public-Key
Theorem (CRT) inZ Cryptography
- - /\ .
Applications [«-——~-——— Rings Groups
of the CRT
r L
1s. ry (S« Noie below)
Geometyic | ————- Arithruetic
Comttructions in Fix]
r
5.
in F[x]
l ,

143 6 8. 16.1, 162
The CRT < Ideals & Normal Algebraic
for ngs Quotient Suhmpg ________ » Coding

Rings & Quotient The
Groups
4 y
10. 9.
in Integral Group
Domains Theory
11 16.3
Field » BCH
Extensions Codes
A )
12.
Galois
Theory

INOTE: To go quickly from Chapter 3 to Chapter 5, first cover Section 4.1 (except the

proof of the Division Algorithm), then proceed to Chapter 6. If you plan to cover
Chapter 11, however, you will need to cover Chapter 4 first.

*& solid arrow A—»8 means that A is a prerequisite for B; a dashed arrow A->8 means that Edepends
only on parts of A (see theTable of Contents for specifics), For the dotted arrow 3+, see the Note

at the botiom of the chart.
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TO THE STUDENT

Overview

This book begins with grade-school arithmetic and the algebra of polynomials from
high school (from a more advanced viewpoint, of course). In later chapters of the
book, you will see how these familiar topics fit into a larger framework of abstract
algebraic systems. This presentation is organized around these two themes:

Arithmetic You will see how the familiar properties of division, remainders, factor-
ization, and primes in the integers carry over to polynomials, and then to more general
algebraikc systems.

Congruence You may be familiar with “clock arithmetic”.* This is an example of
congruence and leads to new finite arithmetic systems that provide a model for what
can be done for polynomials and other algebraic systetns. Congruence and the related
concept of a quotient object are the keys to understanding abstract algebra.

Proofs

The etnphasis in this course, much more than in high-school algebra, is on the rigor-
ous logical development of the subject. If you have had little experience with reading
or writing proofs, you would dowell to read Appendix A, which summarizes the basic
rules of logic and the proof techniques that are used throughout the book.

You should first concentrate on understanding the proofs in the text (which is quite
different from constructing a proof yourself). Just as you can appreciate a new build-
ing without being an architect or a contractor, you can verify the validity of proofs
presented by others, even §f you can't see how anyone ever thought of doing it this way
in the first place.

Begin by skimming through the proof to get an idea of its general outline before
worrying about the details in each step. It’s easier to understand an argument if you
know approximately where it’s headed. Then go back to the beginning and read the
proof carefully, line by line. If it says “such and such is true by Theorem 5.18”, check
to see just what Theorem 5.18 says and be sure you understand why it applies here. If
you get stuck, take that part on faith and finish the rest of the proof. Then go back and

see if you can figure out the sticky point.

“When the hour hand of a clotk moves 3 hours of 15 hours fram 12, it ends in the same pasition, so
3 = 15 on the clock. If the hour hand starts at 12 and moves 8 hours, then moves an additional
Bhours, it finishes at5; 508 + § =5 on the clotk



To the Student xv

When you're really stuck, ask your instructor. He or she will welcome questions that
arise from a serious effort on your part.

Exercises

Mathematics is not a spectator sport. You can’t expect to leamn mathematics without
doing mathematics, any more than you could learn to swim without getting in the
water. That’s why there are so many exercises in this book.

The exercises in group A are usually straightforward. If you can’tdo almost all of
them, you don’t really understand the matenial. The exercises in group B often require
a reasonable amount of thought—and for most of us, some trial and error as well. But
the vast majority of them are within your grasp. The exercises in group C are usually
difficult . . . a good test for strong students.

Many exercises will ask you to prove something. As you build up your skill in un-
derstanding the proofs of others (as discussed above), you will find it easier to make
proofs of your own. The proofs that you will be asked to provide will usually be much
simpler than proofs in the text (which can, nevertheless, serve as models).

Answers (ot hints) for more than half of the odd-numbered exercises are given at
the back of the book.

Keeping It All Straight

In the Core Course (Chapters 1-8), students often have trouble seeing how the various
topics tie together, or even if they do. The Thematic Table of Contents on the next two
pages is arranged according to the themes of arithmetic and congruence, so you can
see how things fit together.
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you will see in Chapter 10 (Arithmetic in Integral Domains).






PART 1

THE GORE COURSE







CHAPTER |

Arithmetic in Z Revisited

Algebra grew out of arithmetic and depends heavily on it. So we begin our study of
abstract algebra with a review of those facts from arithmetic that are used frequentty
in the rest of this book and provide a model for much of the work we do. We stress
primarily the underlying pattern and properties rather than methods of computation.
Nevertheless, the fundamental concepts are ores that you have seen before.

m The Division Algorithm

Our starting point is the set of all integers 7 = {0, £1, +2, . . .}. We assume that you
are familiar with the arithmetic of integers and with the usual order relation (<) on
the set 7. We also assume the

WELL-ORDERING AXIOM Every nonempty subset of the set of nonnegative
integers contains a smallest element,

If you think of the nonnegative integers laid out on the usual number line, it is
intuitively plausible that gach subset contains an element that lies to the left of all the
other elements in the subset—that is the smallest element. On the other hand, the Well-
Ordering Axiom does not hold in the set Z of all integers (there is no smallest negative
integer). Nor does it hold in the set of all nonnegative rational numbers (the subset of
all positive rationals does notcontain a smallest element because, forany positive ratio-
nal number r, there is always a smaller positive rational—for instance, r/2).

NOTE: The rest of this chapter and the next require Theorem 1.1, which
is stated below. Unfortunately, its proof is a bit more complicated than
is desirable at the beginning of the course, since some readers may not
have seen many (or any) formal mathematical proofs. To alleviate this
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Chapter 1 Arithmetic in Z Revisited

situation, we shall first look at the origins of Theorem 1.1 and explain the
idea of its proof. Unless you have a strong mathematical background, we
suggest that you read this additional material carefully before beginning
the proof.

To ease the beginner’s way, the proof itself will be broken into several
steps and given in more detail than is customary in most books. However,
because the proof does not show how the theorem & actually used in prac-
tice, some instructors may wish to postpone the proof until the class has
more experience in proving results. In any case, all students should at least
read the outline of the proof (its first threc lines and the statements of
Steps 1-4).

8o here we go. Consider the following grade-school division problemm:

Quotient — 11 Check: 11 ~— Quotient
Divisor — 782 X7 «— Divisor
Dividend 7 77
12 +5 «— Remainder
17 82 «— Dividend
Remainder —> S

The division process stops when we reach a remainder that is less than the divisor.
All the essential facts are contained in the checking procedure, which may be verbally
summarized like this:

dividend = (divisor) {quotient) <+ (remainder).

Here is a formal statement of this idea, in which the dividend is denoted by a, the
divisor by b, the quotient by g, and the remainder by r:

Theorem 1.1 The Division Algorithm

Let &, b be integers with b > 0, Then there exist unique Integers ¢ and r such
that

a=bg+r and 0=r<bh.

Theorem 1.1 allows the possibility that the dividend a might be negative but re-
quires that the remainder r must not only be less than the divisor & but also must be
nonnegative. To sec why this last requirement is necessary, suppose a = —14 is divided
by b = 3, s0 that —14 = 3¢ + r. If we only require that the remainder be less than
the divisor 3, then there are many possibilities for the quotient ¢ and remainder r,
including these three:

=14 =3(-3) + (-5), with-$<3 [Hereq= —3 andr = 5]
—14 =3(-4) + {-2), with-2<3 [Hereq= —4andr = -2.]
=14 =3(-5) + 1, with 1 <3 [Hereq = —Sandr = 1].
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When the remainder is also required to be nonnegative as in Theorem 1.1, then there
is exactly one quotient 4 and one remainder r, namely, § = —5and r = 1, as will be
shown in the proof.

The fundamental idea underlying the proof of Theoretn 1.1 is that division is just
repeated subtraction. For example, the division of 82 by 7 is just a shorthand method
for repeatedly subtracting 7:

82
-7

75 «——82—7-1 40

-7 -7

68 «—B82-7:2 Be—8§2-7-7
-7 -7

6l «—82—~7+3 26 «—82—7-8
-7 -7

54 82— 74 19 «—82-7-9
-7 -7

47 «—82—-7-5 12¢——82-7-10
-7 -7

40 «—82—-7:6 TS e—382-7-11

The subtractions continue until you reach a nonnegative number less than 7 (in this
case 5). The number 5 is the remainder, and the manber of multiples of 7 that were
subtracted (namely, 11, as shown at the right of the subtractions) is the quotient.

In the preceding example we looked at the numbers

82—~7-1, 82—~7-2, 82—~7-3,andsoon.

In other words, we looked at numbers of the form 82 — 7xforx =1, 2, 3, ... and
found the smallest nonnegative one (namely, 3). In the proof of Theorem 1.1 we shall
do something very similar.

Proof of Theorem 1.1* » Let 4 and b be fixed integers with & > 0. Consider the set §
of all integers of the form

a—bx,  where xisaninteger anda — bx =0,
Note that x may be any integer—positive, negative, or 0—but a — dx must
be nonnegative. There are four main steps in the proof, as indicated below.
Step 1 Show that Sis nonempty by finding a value for x such that a — bx = 0.

Progf of Step 1: We first show that @ + &|a| = 0. Since & is a positive
integer by hypothesis, we must have

b=1
bla] = |a] [Multiply both sides of the preceding inequality by |a|.]
bla| = —a  [Because |a| = —a by the definition of absolute value.]
a+blal=0.

*For an alternate proof by induction of part of the theorem, sue Example 2in Appendix C,
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Step 2

Step 3

Step 4

Now let x = —|a]. Then
a—bx=a—b(—lal) =a + bla[=0.

Hence, 2 — bx is in § when x = —|a], which means that § is nonempty.

Find qand r such thata = bq + randr = 0.

Proof of Step 2: By the Well-Ordering Axiom, S contains a smallest
element—call it r. Since r € S, we know thatr = 0andr = a — bxfor
some X, say x = q. Thus,

r=a—bgand r=0, orequivalently az=5bg+rand r=0.

Show thatr < b.

Proof of Step 3: Weshall wse a “proof by contradiction” (which is
explained on page 506 of Appendix A). We want to show that r << 5.
So suppose, on thecontrary, that r = b. Then r — b = 0, so that

0=r—b=(a-bg)—-b=a~-blg+1)

Since 2 — b{g + 1) is nonnegative, it is an element of S by definition. But
since b is positive, it is certainly true that » — b << r. Thus
a—-g+1)=r—-b<r

The last inequality states that @ — &g + 1)—which is an element of
S—is less than r, the smeallest element of 8. This is a contradiction.
So our assumption that r = b is false, and we conclude that r < .
Therefore, we have found integers ¢ and r such that

a=bg+r and 0=r<bh.

Show that r and q are the only numbers with these properties (that's what
“unique” means in the statement of the theorem).

Proof of Step 4: To prove uniqueness, we suppose that there are integers
qgrand r) such thate = bq) + ryand 0= r) << b, and provethat ¢, = ¢
and ry = r.

Since a = bg + rand a = bg + r|, we have

bg+r=bg+r
so that
(# Hg—-q)=n-—-r
Furthermore,

0=r<b
OSrI{b.
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Multiplying the first inequality by —1 (and reversing the direction of the
inequality), we obtain
—b< -r=<0
D=r <k

Adding these two inequalities produces

=bh<rn—r<b

—b<Mg—q)<b [By Eguation ()]
—I<g—q <1 [Divide ecich term by b]

But ¢ = ¢, is an infeger (because g and ¢, are integers) and the only
inte ger strictly between —1 and 1 is 0. Therefore ¢ ~ g, = Oand g = gqy.
Substituting ¢ — ¢; = 0 in Equation {+) shows that r; — 7 = 0 and
hence r = r,. Thus the quotient and remainder are unique, and the
proof is complete. W*

When both the dividend a and the divisor »in a division problem are positive, then

the quotient and remainder are easily found either by long division (as on page 4) or
with a calculator when the integers involved are larger.

EXAMPLE 1

Suppose a = 4327 is divided by b = 281. Entering 4/b in a calculator produces
15.39857 - - « . The integer to the left of the decimal point (15 here)is the quo-
tient g and the remainder is

r=a—bqg=4327 —281.15 = 112.

These calculations are shown on the graphing calculator screen in Figure 1.

4327281
15. 39857651
4327-281%15

FIGURE1"

When the dividend a is negative, a slightly different prooedure is needed so that the
remainder will be nonnegative.

*The symbol M indicates the end of a proot.
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EXAMPLE 2

Suppose a = —7432 is divided by & = 453. Eatering a/b in a calculator pro-
duces -16.40618 - - - . In this case the quotient g is nof — 16; instead,

g = (the integer to the lefi of the decimal point) —1 = —-16 -1 =—-17.

(Without this adjustment, you will end vp with a negative remainder,) Now, as
usual,
r=a— bg= ~7432 — 453 - (—17) = 269.

The preceding calculations are surnmarized in the calculator screen in Figare 2.

rasai ALY

FIGURE 2

B Exercises

A. In Exercises I and 2, find the quotient q and remainder r when a is divided by b,
without using technology. Check your answers.

1. (@) a=17;b=4 ba=05b=19 (€ga=—-17;b=4
2. @) a= —-55;b=6 (b) a= 302 b= 19 () a=2000;b=17
In Exercises 3 and 4, use a calculator to find the quotient q and remainder r when
a is divided by b.
3. @) a=517;6=83 (b) a= —612;b=74
(€) a=7965532; b= 127
4. (a) a=8,126493; b = 541 (b) a = —-9.217,645; b= 617

© a=171,819,920; b = 4321

5. Let a be any integer and let b and ¢ be positive integers. Suppose that when
a is divided by b, the quotient is g and the remainderis r, so that

a=bg+r and 0=sr<bh
If ac is divided by be, show that the quotient is g and the remainder s re.

B. 6. Leta, b, ¢, and g be as in Exercise 5. Suppose that when g is divided by ¢, the
quotient is k. Prove that when a 1s divided by be, then the quotient is also k.

7. Prowe that the square of any integer a is either of the form 3% or of the
form 3k + 1 for some integer k. [Hint: By the Division Algorithm, @ must
be of the form3gor3g + 1 or 3¢ + 2]
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8. Use the Division Algorithm to prove that every odd integer is either of the
form 4% + 1 or of the form 4k + 3 for some integer k.

9. Prove that the cube of any integer a has to be exactly one of these forms: 9%
or 9% + 1 or 9% + B for some integer k. [Hint: Adapt the hint in Exercise 7,
and cube g in each case.)

10. Let # be a positive integer. Prove that ¢ and ¢ leave the same remainder when
divided by n if and only if @ = ¢ = nk for some integer k.

11. Prove the following version of the Division Algerithm, which holds for both
positive and negative divisors.
Extended Division Algorithun: Let a and b be integers with b # 0. Then there
exist whique integers q and rsuch that a = bg ¥ rand 0 = r < (b|.

(Hint: Apply Theorem 1,1 when ¢ is divided by |b|. Then consider two cases
(b > 0and b < 0).]

m Divisibility

An impoertant case of division occurs when the remainder is 0, that is, when the divisor
is a factor of the dividend. Here is a formal definition:

Definition | | ot and b beintegers with b # 0. We saythat b divides a (or that b is a divi-
sor of a, or that b is a factor of a) if a = be for some integer c. In symbols, "b
divides 2" is written b[a and *b does not divide a" Is written b fa.

EXAWPLE 1

3|24 because 24 = 3-8, but 3} 17. Negative divisors are allowed: —6 | 54
because 54 = (—6)(—9), but —6 ¥ (—13).

EXAMPLE 2

Every nonzero integer b divides 0 because 0 = b - 0. For every integer @, we
have 1|abecause a = 1 - a.

Remark If b divides a, then a = bc for some c. Hence —a = b{—~¢), so that
b |(~a). An analogous argument shows that every divisor of —a is also a divisor of a.
Therefore
a and —z have the same divisors.

Remark Supposea+0andb|a. Theng = be,sothat |al= |b|jel. Consequently,
0 = |b| =< |a|. Thislast mequality is equivalent te ~ |a| = b = |a|. Therefore

{i) every divisor of the nonzero integer 4 is less than or equalto |#|;

(il) a nonzero integer has only finitely many divisors.
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Definition

All the divisors of the integer 12 are
,-1,2,~-2,3 ~3,4, ~4,6, 6,12, ~12.
Similarly, all the divisors of 30 are
1, -1,2,-2,3, 3,5, -5, 6, =6, 10, —10, 15, —15, 30, —30.

The common divisors of 12 and 30 are the numbers that divide both 12 and 30, that
is, the numbers that appear on both of the preceding lists:

1, -1,2, -2,3, -3,6, —6.

The largest of these common divisors, namely 6, is called the “greatest common
divisor” of 12 and 30. This is an example of the following definition.

Leta and b be integers, not both 0. The greatest common divisor {ged) of
a and b is the largest integer o that divides both a and b. In other words,
dis the ged ofaand b provided that

(1)d|mand d|b;
(2) fr]aand c|b, thenc =d.

The greatest common divisor of a and b is usually denoted (&, b).

If 2 and b are not both 0, then their ged exists and is unique. The reason is that
a nonzero integer has only finitely many divisors, and so there are only a finite num-
ber of common divisors. Hence there must be a unique largest one. Forthermore, the
preatest common divisor of 2 and b satisfies the inequality

(@, 5)=1

becavse 1 is 4 common divisor of a and &.

EXAMPLE 3

(12, 30) = 6, as shown above. The only common divisors of 10and Z1 are 1 and
—1. Hence (10, 21) = 1. Two integers whose greatest common divisor is 1, such
as 10 and 21, are said to be relatively prime.

EXAMPLE 4

The common divisors of an integer 2 and 0 are just the divisors of a. If a >0,
then the largest divisor of ais clearly a itself. Hence, if @ >0, then (2, 0) = a.
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Listing all the divisors of two integers in order to find their gcd can be quite tirae
consaming. However, the Euclidean Algorithm (Exercize 15} is a relatively quick
method for finding god’s by hand. You can also use technology

Technology Tip: To find a gcd on a TI-graphing caloulator, select “god” in the
NUM submenu of the MATH menu.

We have seen that 6 = (12, 30). A little arithmetic shows that something else is true
here: 6 is a lirear combination of 12 and 30. For instance,

6=12(=2)+30()) and 6= 12(8) + 30(=3).

You can readily find other integers « and v such that 6 = 12z + 30v. The following
theorem shows that the same thing is possible for any greatest common divisor.

Theorem 1.2

let 2 and b be integers, not both 0, and let d be their greatest common divi-
sor. Then there exist (not necessarily unique) integers v and v such that
d=auv+ by

CAUTION: Read the theorem carefully. The fact that d = gu + bv does
not imply that & = (a, b). See Exercise 25.

For the benefit of inexperienced readers, the proofs of Theorem 1.2 and
Corollary 1.3 will be broken into several steps. The basic idea of the proof of
Theorem 1.2 is to look at all possible linear corabinations of @ and # and find one
thatis equal to d.

Proofof Theorem 12 » Let Sbethe set of all linear combinations of ¢ and b, that is
S={am+bn|lmn e ?j.

Step | Find the smallest positive element of S.

Proof of Step 1: Note that & + b* = aa + bbisin Sand & + 5 = 0.
Since @ and & are not both 0, &* + 5? must be positive. Therefore §
contains positive integers and hence must contain a smallest positive
integer by the Well-Oxdering Axiom. Let ¢ denote this smallest positive
element of S. By the definition of S, we know that ? = au + bv for
some integers u and v.
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Step 2 Prove that t is the gedof a and b, that is, t = d.
Progf of Step 2: We must prove that ¢ satisfies the two conditions in the
definition of the ged:
(1) t|aand ¢[&;
(2) If ¢|aand ¢|b, then ¢ < £,
Proof of {1): By the Division Algorithm, there are integers g and »
such that ¢ = #g + r, with 0 == r < £, Consequently,
r=a-—ig,
r=a=-{(au + bv)g =a =~ agqu — bug,
r=a(l — qu) + b(—uvg}
Thus r 15 a linear combination of ¢ and b, and hence r € S. Since
# < t (the smallest positive element of §), we know that r is not
positive. Since r = 0, theonly possibility is that » = 0. Therefore,

a = tg+ r=tg + 0 = tg,so that ¢|a. A similar argument shows
that ¢| 5. Hence, tis a common divisor of ¢ and &

Proof of {2): Let ¢ be any other common divisor of @ and b, so that

c|a and ¢|b. Then @ = ck and b = ¢s for some integers k and .
Consequently,

t =au+ bv = (ck)u + (v
= elku + sv).

The first and last terms of this equation show that ¢|#. Hence,
¢ = |¢| by the second Remark on page 9. But £is positive,so|¢| = &
Thuse=t,

This shows that ¢ is the greatest common divisor d and completes
the proof of the theorem. m

Technology Tip: To find the ged of @ and b and expressit in the form au + v on
a TI cakulator, download the GCD program on our website (www.CengageBrain
,com). Figure 1 shows the result when you enter a = 2579 and 5 = 4321: The gcd
is 1 and you can easily verify that 2579 » 826 + 432] «(—493) = 1.

RU+BY=GCD= 1
U=
826

U
=493
Done

FIGURE 1

To do the same thing with Maple, use the command igedex(a, b, ‘s, €);.
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Gorollary 1.3

Letaand & be integers, not both 0, and let d be a positive integer. Then d is the
greatast common divisor of a and & if and only if J satisfies these conditions:

(iyd|aand d|b;
(iiYifclaandc|b, thenc |d.
Proof» The proof of an “if and only if” statement requires two steps
(see page 507 in Appendix A).
Step 1 Prove If d= {a, b), then dsatigfies conditions (i) and (ii).

Proof of Step I: I d = (a, b), then by the definition of the ged, d divides
both @ and b. So d satisfies condition (3).

To verify that d satisfies condition (i), suppose that ¢ s an integer such
that ¢|@and ¢ |4, Then a = & and b = es for somie integers rand », by the
definition of “divides”. By Theorem 1.2 there are integers » and » such that

d=au+ by
d=(ou+ (c)u [Because a = o andb = cs.]
d = e(ru + sv) [Facter ¢ out af both terms.]

But this last equation says that ¢|d. Therefore, d satisfies condition (ii).

Step 2 Prove: If d is a positive integer that satisfies conditions (i) and (i), then
d=(ab)
Proof of Step 2: To prove that d = (4, b), we must show that d satisfies
the requirements of the definition of the ged, namely,

(1) d|aand d|b;
(2) If c|a and ¢ |5, then ¢ = d.

Obviously d satisfies (1) since requirement (1) and condition (i) are
identical. To prove that d satisfies requirement (2), suppose ¢ is an inte-
ger that divides both a and b, then ¢| d by condition (i1). Consequently,
by the second Remark on page 9, ¢ =< |d|. But dis positive, so |d| = d.
Thus, ¢ = d Therefore, d satisfies requirement (2) and, hence, d is the
gcdofagand b. N

The answer to the following question will be needed on several occasions. If a|be,
then under what conditions is it true that @ |& or a|<7 It is certainly not always true, as
this example shows:

6l3-4, but 6}3 and 614

Note that & has a nontrivial factor in common with 3 and another in common with 4.
When a divisor of b¢ has no common factors (except 3 1) with either & or ¢, then there
1s a useful answer to the question.
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Theorem 1.4

If a|bc and {a, b) = 1, then alc.

Proof » Since(a, ) = 1, Theorem 1.2 shows that au + bv = 1 for some integers
w and ». Multiplying this equation by ¢ shows that acu + bcv = ¢, But
a|be, so that be = ar for some r. Therefore

c = aeu+ bev = acu + {ar)o = alcu + rv).

The first and last parts of this equation show that z|c. W

B Exercises

1. Find the greatest common divisors. You should be able to do parts (a)—{c) by
hand, but technology is OK for the rest.

(a) (56, 72) (b) (24, 138) (c) (112, 57)
(dy (143, 231) (&) (306, 657) N (272, 1479)
(g) (4144, 7696) (hy (12378, 3054)

2. Provethat b|aif and only if (—&) |a.

3. If a|band b|c, prove thata |ec.

(2} If ¢|b and a| &, prove thata|(& + o).

{(b) f 2|band a|c, prove thata |(br + cf) forany r, 1 € Z.

F S

If @ and & are nonzero integers such that @ | and &) a, prove that a = +b.
If a |band ¢|d, prove that ac | bd.

If @ < 0, find {a, 0).

Prove that (s, # + 1) = 1 for every integer .

© PN e W

If @ | ¢ and &| ¢, must ab divide ¢? Justify your answer.
10. If {a, 0) = 1, what can a possibly be?

11. If n € £, what are the possible values of

@ mwn+2) O (a,n+0)

12. Suppose that (a,5) = 1 and (a, €) = 1. Are any of the following statements
false? Justify your answers.

(@ @.a=1 MmGo=1 () @=1

13. Suppose that a, &, g, and r are integers such that a = bg + 7. Prove each of the
following statements.

(a) Every common divisor ¢ of a and & i also a common divisor of b and 7.

[Hint: For some integers s and f, we havea = csand & = ¢f. Substitute
these results into @ = bg + 7, and show that ¢|7.]
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(b} Every common divisor of & and r is also a commen diviser of 2 and b.
©) (& b)=(br)

Find the smallest positive integer in the given set. [Hint: Thecrem 1.2.]

(a) {6u + 15v|u,v € Z} () {12r + 17s|r, s € Z}

The Euclidean Algorithm is an efficient way to find (a, b) for any positive
integers & and &. It only requires you to apply the Division Algorithm
several times until you reach the ged, as illustrated here for (524, 148).

{a) Verify that the following statements are correct.

524 = 148-3+ 80 0 <80 <148

Lt [The divisor in each line becomes
148 = 80-1 + 68 0 =68 <80 the dividend in the next fne,
.’ -’ and the remainder in each line

80=,68:3+12 0=<12<68  becomes the divisor in the next line]

’
P 4
. »

68= 12548 0=8<I2

12= ,81+4 0=4<8 [4s shown in part (b), the last
L ’ nronzero remainder, namely 4,
§= 42+0 is the god (a, b).]

(b} Use part () and Exercises 13 and Example 4 to prove that

(524, 148) = (148, 80) = (80, 68) = (68, 12) = (12, 8) =(8,4) = (4,0) = 4.
Use the Euclidean Algorithm te find
{c) (1003, 456) ) (322, 148) (€) (5858, 1436)

The equations in part {a) can be used to express the ged 4 as a linear
combination of 524 and 148 as follows. First, rearrange the first 5 equations in
part {a), as shown below.

80 = 524 — 148-3 (1)
68 = 148 — 80 @)
12 = 80 — 68-3 3)
8 = 68 — 12-5 )
4=12-8 (5)

{f) Equation (1) expresses 80 as a linear combination of 524 and 148. Use this
fact and Equation (2) to write 68 as alinear combination of 524 and 148.

(g) Use Equation (1), part {f), and Equaticn (3) to write 12 as a linear
combination of 524 and 1483,

(b} Use parts (f) and (g) to write 8 as alinear combination of 524 and 148.

() Use parts {g) and (h) to writethe god 4 as a linear combination of 524 and
148, as desired.

{i) Use the method described in parts (f)~(i) t0 express the ged in part (¢) as a
linear combination of 1003 and 456.
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If {a, b) = d, prove that (%, g)-"- L. [Hint: a = dr and & = dy for some
integers r and s (Why?). Sc a/d = rand b/d = s and you must prove that

(r,5) = 1. Apply Thecrem 1.2 to (g, b) and divide the resulting equation by d.]
Suppose (@, b)) = 1. If a|c and b | ¢, prove that ab | e. [Hint: ¢ = bt (Why?), so
a|bt. Use Theorem 1.4.]

If ¢ > 0, prove that (ca, cb) = c{a, b). [Hint: Let (a, b) = d and (cq, cb) = k.
Show that ¢d)k and k| ¢cd. See Exercise 5.]

Ifaj(b + c)yand (b, ¢) = 1, prove that (g, ) = 1 = (g, c).

Provethat (g, b) = (a, b+ at) foreveryt € 2.

Prove that (g, (8, ¢)) = ((a, &), ©).

. If (@, ¢) = Land (&, €) = 1, prove that (ab, ¢) = 1.
. Use induction to show that if (¢, 5) = |, then (g, ") = L foralln = 1.*

Let a, b, ¢ € Z. Prove that the equation ax + by = ¢ has integer solutions if
and onlyif (g, &)|e.

(a) If a, b, u, v € Z aresuch that au + bv = 1, prove that (@, &) = 1.
(b) Show by example that if au + bv = d > 1, then (g, b)may not be d.
If a|cand &| cand (g, b) = d, prove that ab|cd.

If ¢|ab and (¢, @) =-d, prove that ¢|db.

Prove that a positive integer is divisible by 3 if and only if the sum of its digits
isdivisible by 3. [Hint: 10° = 999 + | and similarly for other powers of 10.]
Prove that a positive integer is divisible by 9 if and cnly if the sum of its digits
is divisible by 9. [See Exercise 28.]

If ay, aa, . . . , Gy are integers, not all zerc, then their greatest common
divisor {gcd) is the largest integer d such that d|a, for every i. Prove that
there exist integers w,such that d = ayu; + ayu, + - * < + g,u, [Hint: Adapt
the proof of Theorem 1.2.]

The least common multiple (lem) of nonzero integers a;, @, . . . , @i is the
smallest positive integer msuch that g, |mfori=1,2,. .., kand is denoted

@1, .. ).

(a) Find each of the following [6, 10}, [4, 5, 6, 10], [20, 42], and [2, 3, 14, 36, 42].

(b) If #is an integer such that ;| tfori =1, 2, ..., k, prove that
[#1, da, « . ., ]| t. [Hint: Denote [a;, a3, - . . , 4] by m. By the Division
Algorithm, ¢ = mg + r,with 0 =< r <m. Showthat g |rfori=1,2,.. .,k
Since m is the smallest positive integer with this property, what can you
conclude about r?)

*Induction is discussed in Appendix C.
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32. Let aand b be integers, not both 0, and let f be a positive integer. Prove that ¢ is
the least common multiple of a and & if and only if f satisfies these conditions:

(i) ajtand &|¢;
{ii) If ajcand b}c, then t{c.
C.33. If a>0and & > 0, prove that [a, 4] = (:’b;b). ([a, &] is defined in Exercise 31.)
34, Prove that
@) (@ )|@+ba- by
(b} if ais odd and b is even, then(a,b) =(a + b, a — b);
(c) if a and b are odd, then 2a, b) = (a + b, a — &).

n Primes and Unique Factorization

Every nonzero integer 1 except 1 has at least four distinct divisors, namely 1, ~1, #, —n.
Integersthat have only these four divisors play a crucial role,

Definition An integer p is said to be prime. ifp # 0, &1 and the only divisers 4f p are

+1and xp.

EXAMPLE 1

3,—5,7, —11, 13,and —17 are prime, but 15 is not (because 15 has divisors
other than *1 and *15, such as 3 and 5). The integer 4567 is prime, but prov-
ing this fact from the definition requires a tedious check of all its possible divi-
sors. Fortunately, there are more efficient methods for determining whether an
integer is prime, one of which is discussed at the end of this section.

It is not difficult to show that there are infinitely many distinct primes (Exercise 32).
Because an integer p has the same divisors as —p, we see that

p is prime if and only if —p is prime.

If p and g are both prime and p |¢, then p must be one of 1, —1, g, —¢. But since pis
prime, p # *1. Hence,

if p and ¢ are prime and p|g, then p = xgq.

Under what conditions does a divisor of a product b¢ necessarily divide & or ?
Theorem 1.4 gave one answer to this question. Here is another.
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Theorem 1.5

Let p be an integer with p # 0, 1. Then p is prime if and only if p has this
property:
whenever p|bc, thenp |b or p|c.

Proof» Since thisisan “if and only if” statement, there are two patts to the proof.

Step 1 Assume that p is prime and prove that p has the properiy stated in the theorem.
Progf of Step 1. If p is prime and divides bg, consider the god of p and b.
Now (p, ) must be a positive divisor of the prime p. So the only possibilities
are {p, b) = 1 and {p, b} = *p (whichever is positive). If (p, 8} = p, then
|5 I (p, b) = 1, since p|be, we must have p| ¢ by Theorem 1.4. In every
case, therefore, p|bor p| c. Hence, phas the property stated in the theorem.

Step 2 Assume that p is an integer that has the property siated in the theorem and
prove that p is prime.
Proof of Step 2: This proof is left to the reader (Exercise 14). ®

Corollary 1.6

If p is prime and p|aa,« « « an, then p divides at least one of the &,

Proof» If pla; (thay - - a,), then p|a; of p|ayas - - - 4, by Theorem1.5. If p|ay,
we are finished. If p|a, (@say - - - a), then pl|a,orplayay - - - a, by
Theorem 1.5 again. If p| a;, we are finished; if not, contimue this process,
using Theotem L5 repeatedly. After at most # steps, thete must be an &,
thatis divisible by p. H

Choose an integer other than 0, *1. If you factor it “as much as possible,” you will

find that it is a product of one or motre ptimes. For example,

12=4-3=2-2.3,
60=12.5=2-2:3.5,
113 = 113 (prime).

In this context, we allow the possibility of a "'product’’ with fust ohe factor n case the oumber
we begin with is actually a ptime. What was done in these examples can always be done:

Theorem 1.7

Every integer n except 0, +1 is a product of primes.

Proof» First note that if » isa product of primes, say # = g p; - * - Pp, then —n =
p
{—ppz * * * Py is also a product of primes. Consequently, we need prove
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the theorem only when # > L Theidea of the proof can be summarized
like this:
Let § be the set of all integers greater than 1 that are not « product of
primes. Show that S is the emply set. Then, since there are no inlegers

in 8 it must be the case that every integer grealer than I is a product of
primes (otherwise, it would be in S).

Proof that § is empty: The proof is by contradiction: We assume that S'is
not empty and use that assumption to reach a contradiction. So assume that
S is not empty. Then S contains a smallest integer m by the Well-Ordering
Axiom. Since m € S, #is not itself prime. Hence m must have positive divi-
sors other than 1 orm,saym = abwith1 < a<<mand 1 <{b <Im. Since
both a and b are less than m (the smallest element of § ), neither @ nor & is in
S. By the definition of S, both aand b are the product of primes, say

a=ppy-p, and  b=gyq,---q,

with r = 1, 5= 1, and each p,, ¢ prime. Therefore

m=ab=plpz--.p'qlqz...q’

is a product of primes, so that m & §. We have reached a contradiction:
m € S and m ¢ S. Therefore, Smust beempty. &

Technology Tip: To find the prime factorization of integers as large as 1012 dig-
its on a TT graphing cakulator, download the FACTOR program on our website
(www.CengageBrain.com). The program uses Theorem 1.10, which is proved on
page 21, to do the factorization. Maple and Mathematica can find the ptime fac-
torization of these and much larger integers very quickly.

An integer other than 0, *1 that is not prime is called composite. Although acom-
posite integer may have several different prime factorizations, such as

45=3-3-5,
45 =(-3)- 5- (-3),
45=5-3-3,
45=(=9)- (-3 -3,

these factorizations are essentially the same. The only differences are the order of the
factors and the insertion of minus signs. You canreadily convince yourself' thatevery
prime factorization of 45 has exactly three prime factors, say gy¢:q;. Furthermore,
by rearranging and relabeling the ¢'s, you will always have 3 = gy, 3 = *g,, and
5 = gy This is an exampke of the following theorem.
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Theorem 1.8  The Fundamental Theorem of Arithmetic

Every integer n except 0, 21 is a product of primes. This prime factorization
is unigue in the following sense: If

n=ppe---p  and N=qGz-+-Gs

with each p;, g; prime, then r = & (that is, the number of factors is the same)
and after reordering and relabeling the ¢'s,

Py = Equ P = %4y Pa= 2 . 5= 2q,.

Proof» Every integer # except 0, £1 has at least one ptime factorization by
Theorem 1.7. Suppose that # has two prime factorizations, as listed in
the statement of the theorem. Then

F 2162 TRRRY A gV IV Ny W

so that py|qgz - - - ¢, By Corollary 1.8, p, must divide one of the g. By
reordering and relabeling the ¢'s if necessary, we may assume that p, |¢;.
Since p, and ¢, are prime, we must have p;, = *¢,. Conszquently,

Eqaps o pr= 0 4
Dividing both sides by g, shows that

PAEPspa- - -P) = Gtsds -+ G

so that p;|¢,4; + * * q,- By Corollary 1.6, p, must divide one of the g;; as
before, we may assume p; |¢2. Henee, ps = g, and

E@lPs P = ity Qe
Dividing both sides by g, shows that

PEpy - P) =gy q,

We continue in this manner, repeatedly using Corollary 1.6 and elimi-
nating one prime on each side at every step. If r = #, then this process
leads to the desired conclusion: p; = *g, p; = *¢p,...,p, = *4,. S50
to completethe proof of the theorem, we must show that # = &, The
proof that = sis a proof by contradiction: We assume thatr # ¢
(which means that # > s or that # < 5), and show that this assumption
leads to a contradiction.

First, suppose that r > ¢ Then after s steps of the preceding process, all
the g's will have been eliminated and the equation will read

TPirt Prrz- = L.

This equation says (among other things) that p,| 1. Since the only divi-
sors of 1 are 21, we have p, = *1. However, since p, is prime, we know
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that p, #*1 by the definition of “prime”. We have reached a contradic-

tion (p, = *1 and p, # *1}. So r > s cannot oceur. A similar argument
shows that the assumption r < s also leads to a contraction and, hence,
cannot occur. Therefore, r = s is the only possibility, and the theorem is
proved. W

Techaology Tipx The FACTOR program for TI calculators on our website
(www.CengageBrain.com) factors an integer # as a product of primes relatively

quickly, For example, if # = 94,017, thenzn = 3 -7 - 11*- 37, as shown in Figure 1.

N=?940617

st

FIGURE1

On Magle, the command ifactor(n); will produce the prime factorization of a.

If consideration is restricted to positive integers, then there is a stronger version of
unique factorization:

Corollary 1.9

Every integer n > 1 can be written in one and only one way in the form
n = ppsPa- - » Pn where the p, are positive primes such that p, = p, =

Pa=--Sp.

Proof» Exercise 12 m

Primality Testing

In theory it is easy to determine if a positive integer n is prime. Just divide n by every
integer between 1 and 1 to see if nhasa factor other than 1 or 7. Actually, youneed only
check pritne divisors because any factor of n (except 1) is divisible by at least one pritne.
The following primality test greatly reduces the number of divisions that are necessary.

Theorem 1.10

Let n > 1, If n has no positive prime factor less than or equal to 4/n, then n
is prime.

Before proving this theorem, it may be helpful to see how it is used.
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EXAMPLE 2

To prove that 137 is prime, the theorem says that we must verify that 137 has no

positive prime factors less than or equalto %/137 = 11.7; that is, we need only
show that 2, 3, 5, 7, and 11 are not factors of 137. You can easily verify that
none of them divide 137. Hence, 137 is prime by Theorem 1.10.

The proof of Theorem1.10 (like several earlier in this chapter) is somewhat more
detailed than is necessary. In particular, the underlined parts of the proof are normally
omitted.

Proof of Theorem 110s The proof is by contradiction. Suppose that # is not
prime. Then 1 has at least two positive prime factors, say pq and p,,
so that n = p,p.k for some positive integer £. By hypothesis, n has no

iti ime divisors less than or equal to /7. Hence, p, = V/n and
P2 > Vn, Therefore,

" =p1prk Zp1ps > Vava = n,

which says that # > n, a contradiction. Since the assumption that 1 is not
primehas led to a contradiction, weconclude that i is prime. W

Theorem 1.10 is useful when working by hand with relatively small numbers.
Testing very large integers for primality, however, requires a computer and techniques
that are beyond the scope of this book.

B Exercises

A. 1. Express each number as a product of primes:

(a) 5040 ) —2345
(©) 45,670 (@) 2,042,040

2. (a) Verify that 2° — 1 and 27 — 1 are prime.
(b) Show that 2'' — 1 is not prime.

3. Which of the following numbers are prime:
(a) 701 (b) 1009
(c) 1945 @ 1951

4. Promes p and g are said to be swin prinies if ¢ = p + 2. Forexample, 3 and 5 are
twin primes; so are 11 and 13. Find all pairs of positive twin primes less than 200.

5. (@) List all the positive integer divisors of 35, where s, f € Zand 5, £ > 0.
(b) i r, 5, t € 7 are positive, how many positive divisors does 27375' have?
6. If p> 5 is prime and p is divided by 10, show that the remainderis 1,3, 7, or 9.
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. If a, b, ¢ are integers and p is a prime that divides both aand a + bc, prove

that p|bor ple.

. (a) Verify thatx — | is a factorof x" — 1.

(b} If #is a positive integer, prove that the prime factorization of 2* - 3" — 1
includes 11 as one of the prime factors. [Hint: (2% - 3% = (2% - 3]

. Let p be an integer other than b, * 1. Prove that p is prime if and only if it

has this property: Whenever r and s are integers such that p = rs, then r =
+lors= *1.

Let p be an integer other than 0, £ 1. Prove that p is prime if and only if for
each a € 2 either (a, p) = 1 or p|a.

If a, b, ¢, d areintegers and pis a prime factor of both a — b and ¢ — 4, prove
that p isa prime factor of (g + ¢} — (b + d).

Prove Corollary 1.9.

Prove that every integer # > | can be writtenin the form p{1pJ - - - pi, with the
p, distinct positive primes and every r, > 0.

Let p be an integer other than 0, *1 with this property: Whenever § and ¢
are integers such that p|be, then p|b or p |e. Prove that p is prime.

[Him: If disa divisor of p, say p = dt, then p|d or p|t. Show that this
impliesd = *pord = *1.]

If pis prime and p|a", isit true that p")&*? Justify your answer.
[Hint: Corollary 1.6]

Prove that (@, &) = 1 if and only if there is no prime p such that p|a and p|b.
If pis prime and {a, b) = p, then (a*, ) =1

Prove or disprove each of the following statements;

&) If pis primeand p|(«* + ¥)and p |(c* + &), then p | (& — &)

) If pis primeand p|(a® + ¥?) and p |(® + &), thenp| (@ + A).

(¢) If pis prime and p|aand p |(a®* + &), then p|b.

Suppose thata = pp p7 - - - pfand b = piip¥ - -- pf, where p, ps, . ., prare
distinct positive primes and each r, s, = 0. Prove that g|b if and only if
ry< s for every i.

If a = pppypy - pFand b = pipipp- -+ pp,wherepy, ps, . . ., pi are distinct
positive primes and each r;, 8; = 0, then prove that

@) (a, b) = pPptps - - - pp, where for each i, #, = minimum of r,, s;.

®) [a, b) = A psp - - - pt, where {; = maximum of r, ;. [See Exercise 31in
Section 1.2.]

If ¢ = aband (a, b) = 1, prove that ¢ and b are perfect squares.

Let # = pj'p% - - - pi, where py, B, . . ., Pi are distinct primes and each r, = 0.
Prove that # is a perfect square if and only if each r;is even.

. Prove that | b if and only if &? | &%, [Hint: Exercise 19.]
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Prove that a|b if and only if &*| 5"
Let p be prime and 1 < k < p. Prove that p divides the binomial coefficient (‘:)

[Reca]l that (i) = #ik)l.]

If # is a positive integer, prove that there exist # consecutive composite
integers. [Hint: Consider (n + N+ 2, (s + I+ 3, (n + 1)1+ 4,... ]

If p>> 3 is prime, prove that p* + 2 iscomposite, [Hint: Consider the possible
remainders when p ig divided by 3]

Prove or disprove: The sums
14244, 14+2+448, 1+24+44+8+16,...
are alternately prime and composite.

Ifn € Z andn # 0, prove thats can be written uniquely in the form n = 2*m,
wherek = 0 andm is odd.

. {a) Prove that there are no nonzero integers a, b such that & = 282,

[Hint: Use the Fundamental Theorem of Arithmetic.]
{b) Prove that v is irrational. [ Hint: Use proof by contradiction {Appendix A).
Assume that +/2 = a/b (with a, b € Z) anduse part (a) toreach a contradiction.)
If p is a positive prime, prove that +/7 is irrational. [See Exercise 30))
{Euclid) Prove that there are infinitely many primes, [Hirt: Use proof by
contradiction (Appendix A). Assume there are only finitely many pritnes

P, Pas - <+ » Prs and reach a contradiction by showing that the number
PPy Pt lisnot divisible by any of py, P2, - - - s Pi]

. Let p> 1. If 2f — 1 is prime, prove that p is prime, [Hint: Prove the

contrapositive: If p is composite, so is 2¢ — 1.
Note: The converse is false by Exercise 2(b).

Prove or disprove: If #is an integer and 1 > 2, then there exists a prime p such
that n << p << ml.

{(a) Leta be a positive integer. If +/a is rational, prove that +/a is an integer.

{b) Let rbe a rational number and g an integer such that #* = a. Prove thatr
is an integer. [Part (a) is the case whenn = 2.]

Let p, ¢ be primes with p = 5, ¢ = 5. Prove that 24 |(p* — ¢9).



CHAPTER 2

Gongruence in Z and Modular Arithmetic

Basic concepts of integer arithmetic are extended here to include the idea of
"congruence modulo n." Congruence leads to the construction of the set 2, of all
congruence classes of integers modulo n. This construction will serve as a model
for many similar constructions in the rest of this book. It also provides our first
example of a system of arithmetic that shares many fundamental properties with
ordinary arithmetic and yet differs significantly from it.

m Congruence and Congruence Classes

The concept of “congruence” may be thought of as a generalization of the equality
relation. Two integers 4 and b are equal if their difference is 0 or, equivalently, if their
difference is a multiple of 0. If # is a positive integer, we say that two integers are coi-
gruent modulo u if their difference is a multiple of x. To say that a — b = #k forsome
integer k means that # divides a4 — b. So we have this formal definition:
Definition Let a, b, n be integers with n > 0. Then a is congruent to 5 modulo n
[written "a = b (mad n)"), provided that n divides a — b.

EXAMPLE 1

17 = 5 (mod 6) because 6 divides 17 = 5 = 12. Similarly, 4 = 25 (mod 7)
because 7 divides 4 — 25 = =21, and 6 = —4 (mod 5) because 5 divides
6—(—4) = 10.

Remark In the notation “@¢ = b (mod n),” the symbols “=" and “(mod n)"
are really parts of a single symbol; “a = »” by itself is meaningless. Some texts write
“a =, b* instead of “a = b(mod n).” Although this single-symbol notation is advanta-
geous, we shall stick with the traditional “{(mod #)” notation here.
25
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The symbol used to denote congruence looks very much like an equal sign. This is
10 accident since the relation of congruence has many of the same properties as the
relation of equality. For example, we know that equality is

reflexive: @ = a for every integer a;

symumelric: if a = b,then & = a;

trapsitive: f g = band b = ¢, thena = c.

We now see that congruence modulo & is also reflexive, symmetric, and transitive.

Theorem 2.1

Let n be a positive integer. For all a, b, ce Z,
{1} a=a{mod n);
(2} ifa = b{mod n), then b = a {mod n);
{3) ifa =b{mod n)and & = c {mod n), then a = ¢ {mod n).

Proof » (1) To provethat a = a {mod n), we must show that # | {a — ). But
a —a = ( and n | U {(see Example 2 on page 9). Hence, #|{a — a) and
a = a {mod n).

{2) a= b (mod r) means that a — b = nk for some integer k. Therefore,
b — a=—(a— b) = —nk = n(—k). The first and last parts of this
equation say that » | (b —a). Hence, b = @ (mod n).

{3) If a = b (mod 1) and b= c{mod r), then by the definition of
congruence, there are integers k and f such that ¢ — & = nk and
& — ¢ = nt. Therefore,

{fa—bH+d~)=nk+nt
a—c=nlk+1).

Thus # |{a — ¢) and, hence, e = c(mod ). W
Several essential arithmetic and algebraic manipulations depend on this key fact:
Ifa=bandec=d,thena+ c = b+ dand ac = bd.

We now show that the same thing is true for congruence.

Theorem 2.2

Ifa = b {mod n) and c = d {mod n}, then

() a+c=b+d{modn)
(2} ac = bd {mod n).
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Proof » (1) To prove that a + ¢ = b + d (mod n), we must show that » divides
(a+ &) = (b + d). Since a = b (mod #) and ¢ = 4 (mod n), we know that
n|(a=— byand n |(b — d). Hence, there are integets & and ¢ such that

(*) a=b=nk and c=-d=nt

Weuse these facts to show thatndivides (a + ¢) = (b + d):

(a+o)=-(b+dy=a+ec—b—d [Arithmetic]
=(a=5)+{c—d [Rearrange terms.]
= nk + nt la—b=nkandc—d=nt]
@+ =(b+d=nlk+t) [Factor right side]

The last equation says that » divides (a + ¢) = (b + d). Hence, a + ¢ =
b + d (mod n).

(2) We must prove that » divides ac — bd.*
ac— bd =ac+ 0—bd
=ac—be+be—bd [=be+ bec=0]
=(a=b)c+ b(c = d) [Factor first two terms and last two terms)]
= (nk)c + b(nd) [a=b=nk and ¢ — d = ni by (+) above]
ac = bd = nlke + bi) [Factor n from each term.)

The last equation says that # | (ac = bd). Therefore, ac = bd (mod ). W

With the equality relation, it’s easy to see what numbers are equal to a given
number a—just a itself. With congruence, however, the story is different and leads to
some interesting conseguences.

Definition Let & and n be integers with 7 > 0. The congruence class of a modulo n
(denoted [a]} is the set of all those integers that are congruent to a modulo
n,thatis,

[a]={b}be& and b=a(modnl}

To say that & = a(mod n) means that & — a = kn for some integet & o1, equivalently,
that b = a + kn. Thus

la] = $6|5=a(mod n)} = {b|b = a+ knwith ke Z}
= {a +kn | kcZ}.

“The first tweo lines of this proof are a standard algebraic technique: Rewrite 0 in ths form —X + X
for asuitable axprassion X.
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EXAMPLE 2

In congruence modulo 5, we have

9] = §9 + Sk|keZ} = 9,9+ 5,9+ 10,9+ 15, ., .}
=4{..,=11,=6,-1,4,9 14,15, 24, .. }

EXAMPLE 3

The meaning of the symbol “[ ]* depends on the context. In congruence
modulo 3, for instanoe,

Rl=2+3%|kef}={...,-7, -4 -1,2,5,8,...},
but in congruence modulo 5 the congreence dass [2] is the set
{2 + SklkEZ} ={"‘-s_13s _'81 _3327’ 123' "}'

This ambiguity will not cause any difficulty when only one modulus is
under discussion. On the few occasions when several moduli are discussed

simultaneously, we avoid confusion by denoting the congruence class of a
modulo # by [a],.

EXAMPLE 4

In congruence modulo 3, the congruence class
Rl=4{..,-7,-4-12538,. ..\
Notice, however, that [—1]is the same class because
[ll=§{-1+3%|keZ}={..,=7,-4,-1,2,5,...}.

Furthermore, 2 = —1 (mod 3). This is an example of the following theorem.

Theorem 2.3

a =c (mod n) if and only if [a] = [c].

Sinoe Theorern 2.3 is au “if and only if” statement, we must prove two different
things:

1. If a = ¢ (mod »), then [a] = [].

2. If [g] = [¢], then a = ¢ {(mod 7).

Neither of these proofs will use the definition of congruence. Instead, the proofs will
use onlythe fact that congruence is reflexive, symmetric, and transitive (Theorern 2.1).
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Proof of Theorem 2.3 » First, assume thata = ¢ mod #). To prove that [a] = [¢], we first
ghow that [a] Sfe]. To do this, let b [a]. Then by definition b= a(mod n). Since
a =¢(mod n), we have b = ¢ (mod #) by transitivity. Therefore, b= [¢] and
{8] = [¢]. Reversing the roles of @ and ¢ in this argument and using the fact that
¢ = a by symmetry, show that [c] <[] Therefore, [a] = [¢].

Conversely, assume that [¢] = [c]. Sioce @ = a (mod #) by reflexivity,

we have a £[a] and, hence, a £[c]. By the definition of [c], we see that
a=c(modn). N

If A and C are two sets, there are usually three possibilities: Either A and C are dis-
joimt, or A = C, or A N C'is nonempty but A # C. With congruence classes, however,
there are only two possibilities:

Corollary 2.4

Two congruence classes maodulo n are either disjoint or identical.

Proofs 3¢ (] and [c] are disjoint, there is nothing to prove. Suppose that
[a] N [£] is nonempty. Then thereis an integer b with b = [¢] and b =(c].
By the definition of congruence class, b = @ (mod #) and b = ¢ (mod »).
Therefore, by symmetry and transitivity, @ = ¢ (mod n). Hence, [¢] = [¢]
by Theorem 2.3. W

Corollary 2.5

Let 7 > 1 be an integer and consider congruence madulo 7.

{1} Haisany integer and r is the remainder when a is divided by n, then
(el = [1].

(2} There are exactly n distinct congruences classes, namely, [0] [1],
(2h....[n—1]

Pl'ﬂﬂf"(l) Let a ££. By the Division Algonithm, g = ng+ r,with0 < r <n.
Thus a = r = gn, so that @ = r (mod n). By Theorem 2.3, [a] = [r].

(2) If [2] is any congruence class, then (1) shows that [a] = [r] with

0 =< r < 1. Hence, [2] must be one of [0], [11,[2], . ... [n — 1].
Tocomplete the proof, we must show that these n classes are all distinct.

To do this, we first show that no twoof G, 1, 2, ..., #n — 1 are congruent

modulo s. Suppose that s and 1 are distinct integersin thelist 0,1, 2, ...,

n — 1. Then one is larger than the other, say f,so that 0 = s <t <{n.

Consequently, ¢ — 5 is a positive integer that is less than ». Hence, # does

not divide t — s, which mears that ¢ # 5. Thus, notwoof 0, 1,2, .. .,

# — 1 are congruent modulo s. Therefore, by Theorem 2.3, the classes [0],

(1. (3 ..., [n— 1] are all distinct. m
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Definition

The set of ali congruence classes modulo n is denoted Z, (which is read
“Z mod n").

There are several points to be careful about here. The elements of £, are classes,
not single integers. 50 the statement [5] €£,, is true, but the statement 5 € Z,, is not.

Furthermore, every element of Z,, can be denoted in many different ways. For example,
we know that

2 = 5(mod3) 2 = —1 (mod 3) 2 = 14 (mod 3).
Therefore, by Theorem 2.3, [2] = [5] = [—1] = [14] in Z3. Even though each element
of &, (thatis, each congruence class) has infinitely many different labels, there are only
finitely many distinct classes by Corollary 2.5, which says in effect that

The set 2, has exactly s elements.

For example, the set £5 consists of the three elements [0], 1], [2]-

B Exercises

A. 1. Show that @~ ! = 1 (mod p) for the given p and a:
@ a=2,p=5 ) a=4,p=7 ©a=3p=11
2. (a) ¥ k=1 (mod 4), then what is 6k + 5 congruent to modulo 4?7

{b) ¥ r = 3 (mod 10) and s = —7 (mod 10), then whatis 2r 4+ 3s congruent to
modulo 107

3. Every published book has a ten-digjt ISBN-10 number (on the back cover
or the copyright page) that is usually of the form x,—xxsxs—X3XeX7XaXgX10
(where each x; is a single digit).* The first 9 digits identify the book. The last
digit xy, is a cheek digit; it is chosen s0 that

10x) 4+ 9y 4+ Bxs + Txy + 6x5 + 5%+ 4% + 3x3 + 2xp + x39= 0 (mod 11).

If an error is made when scanning or keying an ISBN number into a computer,
the left side of the congruence will not be congruent to 0 modulo 11, and the
number will be rejected as invalid.! Which of the following are apparently valid
ISBN numbers?

(a) 3-540-90518-9 (b) 0-031-10559-5 () 0-385-49596-X

*Sometimes the last digit of an ISBN number is the letter X. In such cases, treat X as if it were the
number 10,

tThe procedures in Exercises 3 and 4 will detect every single digit substitution error (for instance,
1is entered as & and no cther error is made). T hey will detect about B0% oftransposition srrors (for
instance, 74 is entered as 47 and no other error is made). However, they may not detect muRiple errors.
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4. Virtually every item sold in a store has a 12.digit UPC barcode which is scanned

at the checkout counter. The first 11 digits of a UPC number d\dyd;- - - - d),d),
identify the manufacturer and product. The last digit d,, is a check digit which
1s chosen so that

3d1+d2+3d3+d4+3d5+d6+3d7+dg+3d9+d]o+3dn+dl2=0(m0d10).

If the congruence does not hold, an error has been made and the item must
be scanned again, or the UPC code entered by hand. Which of the following
UPC numbers were scanned incorrectly?

{a) 037000356691 (b) 833732000625 {£) 040293673034

Theorems 2.2 and 2.3

5. (a) Which of [0], [1), [2]. [3] is equal to [$™™) in Z,7 [Hint: 5 = 1 (mod 4); use
1

(b) Which of (0}, [1], 2, [3], 4] is equal to (471 in Z;?

6. If @ = b(mod #) and k | #, is it true that ¢ = b (mod k)? Justify your answer.
7. If 2 € Z, prove that & is not congruent to 2 modulo 4 or to 3 modulo 4.
8. Prove that every odd integer is congruent to 1 modulo 4 or to 3 modulo 4.
9. Prove that
(a) (n — af = &* (mod n) (b) (21 — af* = &® (mod 4#)
10. If 2 is a nonnegative integer, prove that « is congruent to its last digit mod 10
[for example, 27 = 7 (mod 10)].
B. 11. If a, b are integers such that ¢ = b (mod p) for every positive prime p, prove
thata = 4.
12. If p = 5 and pis prime, prove that [p] = [1] or [p] = [5]in &
[Hint: Theorem 2.3 and Corollary 2.5.]
13. Prove thata = b (mod #) if and only if g and b leave the same remainder when
divided by n.
14. (a)Prove or disprove: If @b = 0 (mod &), then @ = 0 (mod #) or & = 0 (mod #).
(b} Do part (a) when n is prime.
15. If {a,n} = 1, prove that there is an integer & such that ab = | (mod #).
16. If [2] = [1] in Z,, prove that (g, n) = 1. Show by example that the converse
may be false
17. Prove that 10" = (=I)" (mod 11) for every positive a.
18. Use congruences (not a calculator) to show that
(125698) (23797) # 2891235306, [Hint: See Exercise 21.]
19. Prove or disprove: If [2] = [b] in Z,,then (a, #) = (b, n).
20. (a} Prove or disprove: If ¢* = b* (mod n), then @ = & (mod #) or

@ = —b(mod n).
(b} Do part (a) when n is prime.
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21. (a) Show that 10" = 1 (mod 9) for every positive #.

(b} Prove that every positive integer is congruent to the sum of its digits mod
9 [for example, 38 = 11 (mod 9)].

22, (a) Give an example to show that the following statemtent is false: If ab = ac
{tod #) and a ¥ 0 (mod #), then b = ¢ (mod n).

(b) Prove that the statement in part {a} is true whenever (a,n) = 1,

EXCURSION: The Chinese Remainder Theorem (Section 14.1) may be
covered gt this point if desired.

m Modular Arithmetic

The finite set Z, is closely related to the infinite set Z. So it is natural to ask if it is
possible to define addition and multiplication in £, and do some reasonable kind of
arithmetic there, To define addition in Z,, we must have some way of taking two classes
in Z, and producing another class—their sum. Because addition of integers 7s defined,
the following tentative definition seems worth irvestigating:

The sum of the classes [a] and [¢] is the class containing a + ¢ or, in symbols,

[a) @® [c] = [a + <],
where addition of classes is denoted by @ to distinguish it from ordinary addition of

integers.
We can try a similar tentative definition for multiplication:

The product of [4] and [c] is the class containing ac:
ld] @[] = [ac),
where @ denotes multiplication of classes.

EXAMPLE 1

InZwehave 3] PU =B +4)=[7]=Rand B 2)=[3- 2 =[6] =[1]

Everything seems to work so far, but there is a possible difficulty. Every element of
2, can be written in many different ways. In Z;, for instance, [3] = [13] and [4] = [9]. In
the preceding example, we saw that [3] @0 [4] = [2] in &;. Do we get the same answer if
weuse [13]in place of [3] and [9] in place of [4]? In this case the answer is “yes” because

(13) @D 8] = (13 + 9] = [22] = [2].

But how do we know that the answer will be the same no matter which way we write
the classes?
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To get some ea of the kind of thing that might go wrong, consider these five
classes of integers:

cee, —14,-8,-2,0,6,12,18,...}
e, =11, -7, -3,1,5,9,13,...}

4={

B={

C=4{..,-9,-5-1,3,7,11,15,.. }

D=1{..,-16,-10, —4,2,8,14,20,.. .}
{

..., —18, —12, —6,4,10,16,22,. . }.

These classes, like the classes in £, have the following basic properties; Every integer
1s in one of them, and any two of them are either disjoint or identical. Since 1 is in B
and 7 i in C, we could define B + C as the class containing 1 + 7 = 8, thatis, B+ C=
D. But Bis also the class containing —3 and C the class containing 15, and so B+ C
ought to be the class containing =3 + 15 =12, But 12is in 4, so that B + C' = 4. Thus
you get different answers, depending on which “reptesentatives” you choose from the
classes B and C. Obvicusly you can’t have any meaningful concept of addition if the
answer is one thing this time and something else another time.

In order to remove the word “tentative” from our definition of addition and mul-
tiplication in Z,, we must first prove that these operations do not depend on the
choice of representatives from the various classes. Here is what’s needed:

Theorem 2.6
if [a] = [£]and [c] = [d] in &,, then
[a+cl=[b+d] and [ac] = [bd].
Proof » since (o] = [5], we know that a = b (mod #) by Theorem 2.3. Similarly,
€] = [d] implies that ¢ = d (mod r). Therefore, by Theorem 2.2,
a+c=b+d(modn) and ac = bd (mod n).
Hence, by Theorem 2.3 again,
[a+e=[F+d and [ac]l=[bd]. W

Because of Theorem 2.6, we know that the following formal definition of addition
and multiplication of classes is independent of the choxe of representatives from each
class:

Definition | Addition and multiplication in Z, are defined by
@®cl=la+e] and [2]1O[c)=[acl
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EXAMPLE 2

Here are the complete addition and multiplication tables for Z; (verify that

these calculations are correct):*

@0 M 2 B M © 0 M 2 ¢k M
O (© 11 @2 Bl @ or|mo [ [0 [ [0
(e @m|m Bl B mimo 1 r.r np M
21 (21 B M o 0 (2101 2 1@ 0D Bl
Bl (B [ ©F M 2 Bl B M B2
M| B © M @ B¢l M0 B BRI
Axnd here are the tables for Z:

@ [0] [1] [2] 131 4 [5]

[0] [0] (11 [2] B3] 4 [51

1] ] [2] (3] 4 [51 [0l

2 2 131 [4] [5]1 O M

31 ]| 4 [5]1 [0 1] [2

4] [4) [5] [0] 1] [2] [31

[51 [51 [0 [t] [2] K]| [4]

© [0] 1] [2] K| [4 [5]

[0 [0] [0 [% [0l [0 [0]

[1] [0] 1] [2] K| [4 [51

[2] [0] 2 41 [0l 2 4

131 [0] K] [0 K] [0] [3]

4 [0] 4 2] [0 [4] 2

[51 [0] [51 4] 3 2 [1]

Properties of Modular Arithmetic

Now that addition and multiplication are definred in Z, ;we want to compare the properties
of these “miniature arithmetics” with the well-known propetties of Z The key facts about
arithmetic in Z (and the usual titles for these properties) are as follows. Foralla, b, ce Z:

1. Ifg, beZ thena + bef

2Zoad+(to=(a+ b +ec
Ja+b=b+a
4 a+0=ag=0+a.

[Closure for addition]
[Associative addition)
[Comnutative addition)

[Additive identity)

*Thesetables are raad like this: If [a] appears in the lefi-hand vertical column and [c] in the top
horizontal row of the addition table, for example, then the sum [a] @ [c] appears at the intersection
of the horizontal row containing [a] and the vertical column containing [c].
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5. For each ae Z, the equation
a<+ x =0 has asolutionin Z.

6. Ifa, beZ, then abeZ. [Closure for multiplication)
7. a(be) = (@b)e (Associative multiplication)
8. b+ ) =ab+ acand
(a+ Bje=ac + be. [Distributive laws]
9. ab=ba [Conmutative multiplication)
10. a-1=a=1-a [Multiplicative identity)

11. If ab =0,thena=0or & =0.

By using the tables in the preceding example, you can verify that the first ten of
these properties hold in Z5 and Z and that Property 11 holds in Z; and fails in
Z;. But using tables is not a very efficient method of proof (especially for verify-
ing associativity or distributivity}. So the proof that Properties 1—10 hold for
any Z, is based on the definition of the operations in £, and on the fact that
these properties are known to be validin £.

Theorem 2.7

For any classes (a], (b] [¢]in Z,,

9,
10.

N AWM -

. If(ale Z,and (b] € Z,, then (a] D (b€ Z,.

. [al@ (8] @ [c]) = ([a] ® (6]) B [c].

. [al@® (8] = [b]1 @ [a).

. [ @[0] = [a] = [0) @ (a].

. For each [a] in Z,, the equation [a] ® X = (0] has a solution in Z,.
. f(a]le£,and (b]eZ, then (a] O (b]leZ,.

[a] @ (6] © [c]) = ([a] @ (6]) @ [¢].

. [2]Q (D] ® (c]) = (a] © [b]1 @ [a] © [¢] and

(] ® (6] © (€] = (2] O [c] B (6] © [c].
(2] @ (6] = (6] © (a).
@ © ] =(al=[1]O(al

Proof » Properties 1 and 6 are an immediate consequence of the definition of @
and @in Z,.

To prove Property 2, note that by the definition of addition,

AO@E R =dDBE+d=[a+@E+c).

In Z we know that a + (& + ¢) = (a + &) + c. So the classes of these
integers must be the same in &,; thatis, [a + (b 4+ )] = [(a + b) + d]. By
the definition of additionin Z,, we have

(a+b)+c]=[a+8]D(d=([a)DBEDD [c]-

35
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This proves Property 2. The proofs of Properties 3, 7, B,and 9 are
analogous (Exercise 10).

Properties 4 and 10 are proved by a direct calculation; for instance,

@O =[a-1]=

For Property 5, it is easy to see that X = [—4] is a solution of the

equation since[a] D [—a]l=[a + (—a)] =[0]. W

Exponents and Equations

The same exponent notation used in ordinary arithmetic is also used in Z,. If [4] Z,,,
and k is a positive integer, then [a]* denotes the product

[AO[aOa®:---Ofa] & factors).

EXAMPLE 3

InZ,[3F = [3]OB] =[4 and [3F=[1OBIOBIOB]=(1}

As noted on page 9, the set Z,, has exactly # elements. Consequently, any equation
m Z, can be solved by substituting each of these % elements in the equation to see
which ones are solutions.

EXAMPLE 4

To solve x2 @ [5] ® x = [0] in Zs, substitute each of [0), [1), [2], [3], [4], zod [5]

in the equation to see if it 13 a solution:

x *X®0x s @[50 x= [0
[0] [0]OP] D I51O[0] = [0] ®[0] =[0] Yes; solution

[ Men®sen=[maers = Yes; solution

2l RIOR®EIOR =MD H =2 No

31 [BOB®ISION=[E® B =0 Yes; solution

4 [BIOHDISIOHN =4 @2 =[0] Yes; solution

5 BOB®EIen=[1®I1]=I2] No

So the equation has four solutions: [0], [1], [3], and [4].

Example 4 shows that solving equations in Z, may be quite different from solving
equations in Z. A quadratic equation in Z has at most two solutions, whereas the
quadratic equation %® @ [5)@x = [0] has four solutions in Z,

B Exercises

A. 1. Write out the addition and multiplication tables for

(2) Z,

o) 4 © % ) £,

In Exercises 2-8, solve the equation.
2 X@x=[0]inZ,
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x2=[1]inZ,

. =[l]inZ

@B Ox®[2]=[0inZ,
PDE Ox=[0]ind
FPRRDxD[]=[0]inZ
X+ 2 =[2]inZ,

. (a) Find an element [4] in &, such that every nonzero element of Z, is a power
of [4].

(b) Do part (a)in£;. {¢)} Can you do part(a) in Z4?
10. Prove parts 3,7, B, and 9 of Theorem 2.7.

ok W

° @ 2o

11. Solve the following equations.
@ x®xPDx=[0]inZ,
b)) xDxDxDx=[0]inZ,
©xPxDxDxDx =[0]inZ;
12. Prove or disprove: If [4] @ [5] = [0] in Z,, then [«] = [0] or [5] = [Q].
13. Prove or disprove: If [2] @ [5] = [a] @ [c] and [¢] # [0] in Z,, then [6] = [¢].
B. 14. Solve the following equations.
(a) x*+ x =[0]in Z;
(b) 5+ x =[0]in Z,
{© {; P islprime, prove that the only solutions of x* + x = [0] in £, are [0] and
- 1].
15. Compute the following products.
@ (D PN inZ,
) (@[] inZ;  [Hint: Exercise 11(a) may be helpful.]
(© (el DB nZ; [Hine See Exercise 11(c).]
(d) Based onthe results of parts (a)—(c), what do you think {[«] @ [5]) is

equal to in Z,?
16. (a) Findall [a] in Z; for which the equation [¢] @ x = [1] has a solution. Then
do the same thing for
) Z, © Z ) Z

m The Structure of Z, (p Prime) and Z,,

We now present some facts about the structure of Z, (particularly when »n is prime)
that will provide 2 model for our future work. First, however, we make a change of
notation.
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New Notation

We have been very careful to distinguish integers in £ and classes in Z, and have
even used different symbols for the operations in the two systems. By now, however,
you should be reasonably comfortable with the fundamental ideas and familiar with
arithmetic in Z,. So we shall adopt a new notation that is widely used in mathemat-
ics, even though it has the flaw that the same symbol represents two totally different
entities.

Whenever the context makes clear that we are dealing with Z,, we shall abbrevi-
ate the class notation “[4]” and write simply “a.” In &, for instance, we might say
6 = 0, which is certainly true for classes in Z; even though it is nonsense if 6 and
0 are ordinary integers. We shall use an ordinary plus sign for addition in £, and
either a small dot or juxtaposition for multiplication. For example, in #; we may
write things like

4+1=0 or 3-4=2 or 4+4=3

On those few occasions where this usage might cause confusion, we will return to the
brackets notation for classes.

EXAMPLE 1

In this new notation, the addition and multiplication tables for Z; are

No= o |4

] 2 0 1 2
] 2 ] 0 ] ]
1 0 0 1 2
2 1 0 2 1

=T & e

CAUTION; Exponents are ordinary integers—not elements of Z,. In Z,,
forinstance, 2 = 2+2-2+2 = 1 and 2! = 2, so that 2* # 2!
eventhough 4 = | in &,

The Structure of Z, When p Is Prime

Some of the Z, do not share all the nice properties of £, For instance, the product
of nonzero integers in £ is always nonzero, but in Z; we have 2 - 3 = 0 even though
2 # 0and 3 # 0. On the other hand, the multiplication table on page 34 shows that the
product of nonzero elements in Z; is always nonzera. Indeed, #; has a much stronger
property than £. When @ # 0, the equation ax = 1 has a solution in Z if and only if
@ = 1. But the multiplication table for #; shows that, for any a # 0, the equation
ax = 1 has a solution in &; for example,

x = 315 a solution of 2x = |

x = 4is a solution of 4x = 1.



2.2 The Structure of Z, {p Prime) and 2, 39

More generally, whenever n is prime, Z, has special properties:

Theorem 2.8

if p = 1 is an integer, then the following conditions are equivalent:®
{1} p is prime.
(2} Forany a # 0in &, the equation ax = 1 has a solution in Z,,.
(3) Whenever be=0in Z, thenb =0orc =0,

The proof of this theorem illustrates the two basic techniques for proving state-
ments that mvolve Z,:

(i) Traoslate equationsin Z, into equivalent congruence statements in Z. Then
the properties of congruence and anithmetic in Z can be used. The brackets
notation for ekements of Z, may be necessary to avoid confusion.

(i) Use the anthmetic properties of Z,, directly, without imvolving arithmetic m Z.
In this case, the brackets notation in £, isn’t needed.

Proof of Theorem 2.8 » (1) = (2) We use the first technique. Suppose p is prime
and [a] # [0] in Z,. Then in Z, a # 0 (mod p) by Theorem 2.3. Hence,
p+ aby the definition of congruence. Now the ged of #aand p is a posi-
tive divisor of p and thus must be either p or 1. Since {a, p) also divides
aand p + a, we must have{a, p) = 1. By Theorem 1.2, au + pv =1 for
some integers  and v. Hence, ey — 1 = p(—v), so that au = 1 {(mod p).
Therefore [au] = [1] in Z, by Theorem 2.3. Thus [a][u] = [au] = [1], 50
that x = [u] is a solution of [a]x = [1].

(2) = (3) We use the second technique. Suppose ab = 0in £, If
a = 0, there is nothing to prove. If & # 0, then by (2) there exists u e Z,
such that au = 1. Then

O=u-0=ulab)= (w)po=(au)b=1-6=5

In every case, therefore, we havea = 0or & = 0.

(3) = (1) Back to the first technique. Suppose that b and ¢ are any
integers and that p | ¢. Then b¢ = 0 (mod p). So by Theorem 2.3,

(6]lc] = [be] = [0] in Z,.

Hence, by (3), we have [§] = [0] or [¢] = [0]. Thus, 5= 0 {mod plorc =0
{mod p) by Theorem 2.3, which means that p| b or p| ¢ by the definition
of congruence. Therefore, p is prime by Theorem 1.5. W

The Structure of Z,

When n is not prime, the equation ax = 1 need not have a solution in Z,,. For instance,
the equation 2x = 1 has no solution in Z,, as you can easily verify. The next result tells
us exactly when ax = 1 does have a solution in Z,. For clarity, we use brackets notation.

*See page 508 in Appendix A tor the meaning of "the following conditions are equivalent” and what
must be done to prove such a statement.
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Theorem 2.9

Let a and n be integers with n > 1. Then
The equation [alx = [1] has a solution in Z, Fand only if (8, n) = 1 in Z.

Proof» Since this is an “if and only if” statement, the proof has two parts.
First we assume that the equation has a sclution and show that (a, n) = 1.
If [w] is a sclution of [a]x = [1], then

lal[=] = [1]

[aw] = [1] [Multiplication in Z,)
aw =1 (mod n) in Z [Theorem 2.3]
aw — | = kn for some integer k' [Definition of congruence]
aw+n(—=k)=1 [Rearrange terms]

Denote (a, #) by d. Since dis a common divisor of a and n, there are inte-
gers rand 5 such that dr = aand dr = n. 5o we have

aw + n(—k) =1
drw + ds(—k) = 1
drw — 5K) = 1.

So d| 1. Since d is positive by definition, we must have d = 1, that is, (a,n) = 1.
Now we assume that (a, n) = | and showthat [a]x = [1] has a solu-

tion in Z,. Actually, we've already done this. In the proef of (1) = (2)

of Theorem 2.8, the primeness of p is used only to show that (a, )= 1.

From there on, the proof is valid in any Z, when (g, #) = 1, and shows

that [a]x = [I]] has a solutionin Z,. W

Units and Zero Divisors

Some special terminclogy is often used when dealing with certam equations, An de-
ment a in £, is called a unit if the equation ex = 1 has a sclution. In other words, a is
a unit if there is an element b in £, such that @b = 1. In this case, we say that b is the
inverse of . Note that ab = 1 also says that b is a unit (with mverse a).

EXAMPLE 2

Both 2 and 8 are units in Z,; because 2 - 8 = 1. 8 is the inverse of 2 and 2 is the
inverse of 8. Similarly, 3is a unit in Z, because 3 - 3 = 1. So 3 is its own inverse.

EXAMPLE 1

Part (2) of Theorem 2.8 says that when pis prime, every nonzero dement of Z,
is a unit.

Here is a restatement of Theorem 2.9 in the terminoclegy of units,



2.2 The Structure of Z, {p Prime) and Z, 41

Theorem 2.10

Let a and i be integers with n > 1. Then

{alis aunitin Z, if and only if (8, ) = 1in Z,

A nonzero element a of Z, is called a zero divisor if the equation ax = Chas a
nonzero solution (that is, if there is a nonzero element ¢ in Z, such that ac = 0).

EXAMPLE 4

Both 3 and 5 are zero divisors in £3; because 3 - 5 = 0. Similarly, 2 is a zero
divisor in &, because 2-2 = 0.

EXAMPLE §

Part (3) of Theorem 2.8 says that when pis prime, there are no zero divisors in £,

B Exercises

A L

Find all the units in
@) Z, WA © Zy ) Z.

. Find all the zero divisors in

@ Z ) Z (©) Z, @) &y

. Based on Exercises 1 and 2, make a conjecture about units and zero divisors

inZ,.

. How many solutions does the equation 6x = 4 have in

(@) Z;? (b) &7 ©) &2 (d) Z,p?

5. If a 15 a unit and b is a zero divisor in &,, show that ab is a zero divisor,

. If niscomposite, prove that there is at least one zero divisor in Z,. (See

Exercise2.)

. Without using Theorem 2.8, prove that if pis prime and ab = 0 in Z,, then

a = 0orb = 0. [Hint: Theorem 1.8]

. (a) Give three examples of equations of the form ax = b in &, that have no

nonzero solutions.

{b) For each of the equations in patt (a), does theequationax = Ohavea
nonzero solution?

. (a) If ais a unitin #,, prove that @ is not a zero divisor.

(b) If ais a zeto divisot in Z,, prove that a is not a unit. [&inf: Think
contrapositive in part (a).]
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10. Prove that every nonzero element of Z, is either a unit or a zero divisor, but

11.

12.

13,

14.

15.

16.

17.
18.

not both. [Hint: Exercise 9 provides the proof of “not both”.]

Without using Exercises 13 and 14, prove: If a, b € Z, and a is a unit, then the
equation ax = b has a tnique solution in £, [Nofe: You must find a solution
for the equation and show that this solution is the only one]

Leta, b,n beintegers with n = 1 and let d = (&, #). If the equation [a]x = [&]
has a solution in Z,, prove that & | b, [Hint: If x = [r]is a solution, then [ar] =
(%] so that ar — b = kn for some integer k.]

Let a, b,  beintegers with »n > 1. Let d = (a, #) and assume J | b. Prove that
the equation [a]x = (&) has a solution in Z, as follows.

{a) Explain why there are integers u, v, 4,, &, #1; such that au + av = d,
a =m1,b= dblgﬁ = dnl.

(b) Show that each of
(ubi], [uby + my), [uby + 2my], [uby, + 3n(),. . ., [udy + (d — Dn/]
is a solution of [a]x = [&].

Let a, b, n beintegers with n > 1. Let d = (a, #) and assume J | b. Prove that
the equation [a]x = (5] has d distinct solutions in Z, as follows,
(a) Show that the solutions listed in Exercise 13 (b) are all distinct.

(Hint: [r] = [5]if and onlyif 2 | (r — £).]

(b} If x = [r] is any solution of [alx = [b), show that [r] = [ub, + k»;] for some
integer k with0 < k = d — 1. [Hint: [ar] — [aub(] = [0] (Why?), so that
n | (alr — uby)). Show that »y | (a;(r — ub,)) and use Theorem .4 to show
that a | (r — uby).)

Use Exercise 13 to solve the following equations.s
(a) 15x=9%ind;z (b} 25x = 10 in Zgs.

If a # Oand b are elements of Z, and ax = b has no solutions in Z,,, prove that
ais a zero divisor.

Prove that the product of two units in Z,,is also a unit.

The usual ordering of # by < is transitive and behaves nicely with respect to
addition. Show that there is #0 ordering of Z, such that

() Ya<bandb<gthena<c
(ii) if @ <b,thena+ ¢ <b+ cforeveryciné,,.

[Hine: ¥ thereis such an ordering with 0 < 1, then adding 1 repeatedly to both
sides shows that 0 < 1 <2 <« - < p — 1 by (ii). Thus 0 < »n-— 1 by (i). Add 1
to each side and get a contradiction. Make a similar argument when 1 < 0.]

APPLICATION: Public Key Cryptography (Chapter 13) may be covered
at this point if desired.




CHAPTER 3

Rings

ALTERNATE ROUTE: If you want to cover groups before studying rings,
you should read Chapters 7 and 8 now.

We have seen that many rules of ordinary arithmetic hold not only in Z but also in
the miniature arithmetics Z,. You know other mathematical systems, such as the
real numbers, in which many of these same rules hold. Your high-school algebra
courses dealt with the arithmetic of polynomials.

The fact that similar rules of arithmetic hold in different systems suggests
that it might be worthwhile to consider the common features of such systems.
In the long run, this might save a lot of work: If we can prove a theorem about one
system using only the properties that it has in common with a second system,
then the theorem is alsc valid in the second system. By "abstracting" the com-
mon core of essential features, we can develop a general theory that includes
as special cases Z, Z,, and the other familiar systems. Results proved for this
general theory will apply simultanecusly to all the systems covered by the theory.
This process ofabstraction will allow us to discover the real reasons a particular
statement is true {or false, for that matter) without getting bogged down in non-
essential details. In this way a deeper understanding of all the systems involved
should result.

So we now begin the development of abstract algebra. This chapter is just
the first step and consists primarily of definitions, examples, and terminclogy.
Systems that share a minimal number of fundamental properties with Z and Z,
are called rings. Other names are applied to rings that may have additional prop-
erties, as you will see in Section 3.1, The elementary facts about arithmetic and
algebrain arbitrary rings are developed in Section 3.2. In Section 3.3 we consider
rings that appear to be different from one ancther but actually are "essentially the
same" except for the labels on their elements.

a3
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m Definition and Examples of Rings

We begin the process of abstracting the common features of familiar systems with this

definition:
Definition A ring is a nonempty set R equipped with twooperations* (usually written
as addition and multiplication) that satisfy the following axioms. For all &,
b ceR.
1. facRand beR,then a + beR. [Closure for addition)
2. at+b+ci={a+d)+c. [Associative addition)
3.a+b=b+a. [Commutative addition)
4, There isan element Oz in R such [Additive identity
thata 4+ 0y =a = 03 + aforevery or zero efernent)
aeRn.
b. For each ae R, the equation
& 4+ ¥ = Op has a solution inR.}
6. ifaeRand beR, then abeR. (Closure for multiptication)
1. &bc) = (ab)e. [Associative muftiplication)
8. alb+c)=ab +acand (Distributive laws)
(& + & = ac + be,
These axioms are the bare minimum needed for a system to resemble Z and Z,,. But
Z and Z, have several additional properties that are worth special mention:
Definition A commutative ring is a ring R that satisfies this axiom:
9. ab=baforalla beR. [Commtstative muttiplication)
Definition A ring with identity is a ring R that contains an element 1, satisfying this
axiom!
10. alg=a = 1zaforallach. [(Multiplicative idenlity]

*“Operation" and “closure™ are defined in Appendix B.

tThose who have already read Chapter 7 should note that Axioms 1-5 simply say that aring is an
abelian group under addition.



3.1 Definition and Exampies of Rings 45

In the following examples, the verification of most of the axioms is left to the
reader.

EXAMPLE 1

With the usual addition and multiplication,
Z (the integers) and R (the real numbers)

are commutative rings with identity.

EXAMPLE 2

The set £, with the usual addition and multiplication of classes, is a commuta-
tive ring with identity by Theorem 2.7.

EXAMPLE 3

Let E be the set of even integers with the usual addition and multiplication,
Since the sum or product of two even integers is also even, the closure

axioms (1 and 6) hold. Since 0 & an even integer, E has an additive identity
element (Axiom 4). If & is even, then the solution of a + x = 0 (namely - a) is
also even, and so Axiom 5 holds. The remaining axioms (2, 3, 7, 8, and %)
hold for ail integers and, therefore, are true whenever a, 5, ¢ are even.
Consequently, £ is a commutative ring. E does #ot have an identity, however,
because no even integer ¢ has the property that ae = a = ea for every even
integer a.

EXAMPLE 4

The set of odd integers with the usual addition and multiplication is nof a
ring. Among other things, Axiom | fails: The sum of two odd integers is
not odd.

Although the definition of ring was constructed with Z and 2, as models, there
are many rings that aren’tat all like these models. In these rings, the elements may not
be numbers or classes of numbers, and their operations may have nothing to do with
“ordinary™ addition and multiplication.
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EXAMPLE 5

The set T = {r, 5, t, z} equipped with the addition and multiplication defined
by the following tablesis a ring:

+ |z r ! | =z r s t
-4 z r 3 ! -4 z z z -4
r r -4 t 5 r z z r r
3 5 t z r s z z by by
t t 5 r z t z z t t

You may take our word for it that associativity and distributivity hold
(Axioms 2, 7, and 8). The remaining axioms can be easily verified from the
operation tables above. In particular, they show that T is closed under both
addition and multiplication (Axioms | and 6) and that addition is commuta-
tive (Axiom 3).

The element z is the additive identity—the element denoted Og in Axiom 4. It be-
havesin the same way the number 0 does in Z (thats why the notation Og is used in the
axiom), but 2 is not the integer 0—in fact, it not any kind of number. Nevertheless,
we shall call z the “zero element” of the ring T.

In order to verify Axiom 5, you must show that each of the equations

r+x=2 s+ x=2z t +x =z 2+ x=2

has a solution in 7, Thisis easily seen to be the case from the addition table; for
example, X = ris the solutionof r + x = zbecauser +r = z.

Finally, note that T'is not a commutativering; for instance, rs = r and
sr = z, so that rs # sr.

EXAMPLE ¢

Let M{[R) be the set of all 2 X 2 matrices over the real numbers, that is, M{R)
consists of all arrays

(‘: Z), where &, b, ¢, d are real numbers.

Two matrices are equal provided that the entries in corresponding positions ate equal;

that s,
r 5 . .
(: d):(f u) if and only if a=rb=s5ce=t,d=u
For exarmple,

(5 =G5 ) e G 2)02)
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Addition of matrices s defined by

(a b ¢ ¥\ _fa+a b+ b')
¢ d ¢ d'] \e+e d+d')
For example,

3—)+47_3+4—2+7_75
5 1 6 0/ \5+6 1+0/ \11 L}

Multiplication of matrices is defined by
(a b)('w x)_ aw + by ax+bz)
e d]\y z/ \ew+dy cx+dz)
For example,

GG DG H3
(239

Reversing the order of the factars in matrix multiplication sy produce a different
answer, as is the case here:

(D@ 2)-(2ie L)
=(1§ —fg)

So this myltiplication is not commutative. With a bit of work, you can verify that
M{R) is a ting with identity. The zero element is the zero matrix

G o)

which is denoted O and X = (:: :Z) is a solution of

a b 0 0
(¢ 2)+x=( o)
Weclaim that the multiplicative lentity element (Axiom 1 0)is thematrix I = (1 0).

0 1
To prove this claim, we first multiply a typical matrix in M{R) on the right by F

a b\{l1 0)_ @ 1+5-0 a-0+b-1\ fa b
e dj\o 1} \e-14+d-0 c-0+d-1} \e d)

a7
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Definition

Since rmltiplication is not commutative here, we also need to check left multiplication
by [as well;

1 O0\fa &Y_{1va+0:c 1:6+0d\_fa b
0 1/\¢ 4 bea+le 0-&+1: ¢ df
This proves that £ safisfies Axiom 10.* Coasequently, /is called the identity matrix.

Note that the product of nonzero elements of M) may be the zero element; for
example,

PO G S DO S D R ()

EXAMPLE 1

If Ris a commutative ring with identity, then M{R) denotes the set of all

2 X 2 matrices with entties in R. With addition and multiplication defined as

in Example 6, M{ R) is a noncommutative ring with identity, as you can read-

ily verify. For instance, M(Z) is the ring of 2 X 2 matrices with integer enitries,
M(Q) the ring of 2 X 2 matrices with rational number entries, and M(Z,) the

ring of 2 X 2 matrices with entries from Z,.

EXAMPLE 3

Let Tbe the set of all functions from R to R, where R is the set of real
numbers. As i calculus, -+ g and fg are the functions defined by

(f+eXx)=fx) +glx) and  (fg)x) = flx)g(x).

You can readily verify that T'is a commutative ring with identity. The zero ele-
ment is the function / given by #{x) = 0for all x€ R. The identity element is the
function ¢ given by #(x) = 1 for all x€R. Once again the product of nonzero
elements of T may turn out to be the zero element; see Exercise 36.

We have seen that some tings do #of have the property that the product of two

nonzero elements is always nonzero. But some of the rings that do have this property,

such as Z, occur frequently enough to merit a title.

An integral domain is a commutative ring R with identity 153 # O that
satisfies this axiom:

11, Whenever a, beR and ab = Oy, then a = Dgor b = 0.

*C hecking a possible identity element under both right and |eft multiplication is essential. There
are fings in which an slement acts like an identity when you multiply on the right, but not when you
multiply onthe left See Exercise 11.
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The condition 15 # D is needed to exclude the zero ring (that is, the single-element
ring {0g}) from the class of integral domains. Note that Axiom 11 is logically equiva-
lent Yo its contrapositive. *

Whenever a # Ogand b # 0, then ab # 0p.

EXAMPLE Y

The ring Z of integers is an integral domain. If p is prime, then Z, is an integral
domain by Theorem 2.8. On the other hand, #, is not an integral domain because
4-3=0,eventhough4 # Cand 3 +# 0.

You should be familiar with the set Q of rational numbers, which consists of all
fractions a/b with a, b= # and & # 0. Equality of fractions, addition, and multiplica-
tion are given by the usual rules:

a_ ¥ . .

3=3 if and only if as = br
a,¢e_ad+tbe a.c_a
b d bd b d bd

1t is easy to verify that Q0 is an integral domain. But {0 has an additional property that
does not hold in Z: Every equation of the form ax = | (with a # 0) has a solution in
Q. Therefore, QJ is an example of the next definition.
Definition A field is-a commutative ring R with identity 14 # Oy that satisfles this
axiom:

12. For each & # Ogin R, the eguation ax = 1;hasa sohution in R

Once again the condition 15 # 0y is needed to exclude the zero ring. Note that
Axiom 11 is not mentioned explicitly in the definition of 2 field. However, Axiom 11
does hold in fields, as we shall see in Theorem 3.8 below.

EXAMPLE 10

The set R of real numbers, with the usual addition and multiplication, is a field.
If p isa prime, then Z, is a field by Theorem 2.8.

EXAMPLE 11

The set € of complex numbers consists of all numbers of the form a + &i,
where a, b =R and £ = —1, Bquality in C is defined by

e+ bi=r+si ifandonlyif o=randb=3s.

*See Appendix A for a discussion of contrapositives.



80

Chapter 2 Rings

The set C is a field with addition and multiplication given by

a+b)+(c+d)y=(a+ )+ B+ du
(6 + b)(c + d) = (ac — bd) + (ad + be)i.

The field R of real mumbers is contained in € because R consists of all complex
numbers of the form @ + 0i. If @ + bi # 0in €, then the solution of the equation
(a+ b)x= 115 x = ¢ + di, where

e=af@+M)eR and d= —bjd+ )R (verifyl).
EXAMPLE 12

Let X be the set of all 2 X 2 matrices of the form

(%)

where @ and b are real mumbers, We claim that Kis a field, For any two matrices in X,
a b AL _f a+tc b+
-b a -d ¢] \~b-d a+c
a by [ ¢ _f ac—bd ad + ¥
-b a -4 ¢/ \—ad—bc ac—bd}

In each case the matrix on the right is in X because the entries along the main
diagonal (upper left to lower right) are the same and the entries on the opposite

diagonal (upper right to lower left) are negatives of each other, Therefore, Kis
closed under addition and multiplication. Kis commutative because

(o N O (oot w1 (e 9

Clearly, the zero matnx and the identity matnix I are in £, If

a b
= (4 %)
is not the zero matrix, then verify that the solution of AX = Iis

e (a!d ~bid

- 2
bid al'd)e'& where d =a* + b

Whenever the rings in the preceding examples are mentioned, you may assume
that addition and multiplication are the operations defined above, unless there is some
specific statement to the contrary. You should be aware, however, that a given set (such
as &) may be made into a ring in many different ways by defining different addition

and multiplication operations on it. See Exercises 17 and 22-26 for examples.
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Now that we know a variety of different kinds of rings, we can use them to produce
new rings in the following way.

EXAMPLE 13

Let Tbe the Cartesian product Z; X Z, as defined in Appendix B. Define
addition in T'by the rule

(@.2)+ (@ 2f=(a+a',2+2)

The plus sign is being usedin thres ways here: In the first coordinate on the tight-hand
side of the eqqual sign, + denotes addition in Zg; in the second ccondindte, + denotes
addition in Z; the + onthe left of the equal sign 1s the addition in T"that s being defined.
Since Z, s aring and o, @' € Z g, the first coordinate on the right,a + &', i8 in Z, Similarly
2+ 2 eZ. Therefore, addition m T'is chosed. Multiplication is defined similarly:

(a, 2)(d, 2') = (ad', 22).
For example, (3, 5) + (4,9) = 3+ 4,5 +9) = (1, 14) and (3, 5)(4,9) =
(3-4,5+9) = (0,45). You can readily verify that T"isa commutative ring with

identity. The zero element is (0, 0), and the multiplicative identity is (1, 1). What
was done here can be done for any two rings,

Theorem 3.1

Let R and S be rings. Define addition and multiplication on the Cartesian
product R X S by

(nsy+(r',s)=(r+r,s+s') and (1, s)¢, 5) = (', s8"),

ThenR X Sisa ring. f R and S are both commutative, then sois R X . If both
Rand § have an identity, then so does R X 5.

Proofr Exercise 33. m

Subrings

If Ris a nng and Sis a subset of R, then § may or may not itself be a ring under the
operations in R. In the ring Z of integers, for example, the subset E of even integers is
a ring, but the subset O of odd integers is not, as we saw in Examples 3 and 4. When
a subset § of a ning R is itself a nng under the addition and multiplication in R, then
we say that § is a subring of R.

EXAMPLE 14

Z is a subring of the ring O of rational numbers and Q is a subring of the field
R of all real numbers. Since O is itself a field, we say that ) is a subfield of R.
Similarly, R is a subfield of the field C of complex numbers.
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EXAMPLE 15

The matrix rings M(Z) and M(Q) in Example 7 are subrings of M{(R).

EXAMPLE 16

The ring X in Example 12 is a subring of M(R).

EXAMPLE 17

Let T be the ring of all functions from R to R in Example 8. Then the subset S
consisting of all contiruous functions from R to R is a subring of T. To prove
this, you need one fact proved in calculus: The sum and product of continuous
functions are also continuous. So Sis closed under addition and multiplication
(Axioms 1 and 6). You can readily verify the other axioms.

Proving that a subset S of a ring R is actually a subning is easier than proving directly
that S'is a ring. For instance, sincez + & = b + a for all elements of R, thisfact is also true
when a, 5 happen to bein thesubset 5. Thus Axiom 3 (commutative addition) automati-
cally holds in any subset S of a ring. In fact, to prove that a subset of a ring is actually a
subring, you need only verify a few of the axioms for a ring, as the next theorem shows.

Theorem 3.2

Suppose that A is a ring and that S is a subset of R such that

(i) S is closed under addition (if 4, e S, then a + be S);
{ii) 3 is closed under multiptication (if a, b€ §, then abe 5);
{iii) Oy e35;
(iv) if a8, then the solution of the equationa + x = 0zisin S,
Then S is a subring of A.

Note condition (iv) carefully. To verify it, you need not show that the equation
a + x = Op has a solution—we already know that it does hecause Risa ring, You need
only show that this solution is an element of S (which implies that Axiom 5 holds for S).

Proof of Theorem 3.2 » As noted before the theorem, Axioms 2, 3, 7, and 8 hold
for aii elements of R, and so they necessarily hold for the elements of the
subset S. Axioms 1,6, 4, and 5 hold by (i}~(iv). m

EXAMPLE 18

The subset § = {0, 3} of & is closed under addition and multiplication
(04+0=0,0+3=33+3=0;simiarly, 0-0=0=0-3;3- 3 =3). Bythe
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definition of 5 we have 0 € 5. Finally, the equation D + x = 0 has solution
x =0¢€3§5, and the equation 3 + x = 0 has solution x = 3€ §. Therefore, Sis a
subring of Z; by Theorem 3.2,

EXAMPLE 19

Let 5 be the subset of M(R) consisting of all matrices of the form (: D).
Then S is closed under addition and muitiplicatiori because ¢

a 0 r M\ fa+r 0+0\_ fa+tr 0

(b c)+(s t)_(b+s c+t)_(b+s c+t)ES and
a O\fr O ar o)
(b c)(.s r)_(bm+c3 ct)es‘

The identity matrix isin S (let e = 1,5 =0, ¢ = 1) and the solution of

G o= ) m =G 2es

Hence 5 is a subring by Theorem 3 2.

EXAMPLE 20

The set Z[\/i] = {a+ "2 |@,b € Z}isa subring of R. You can easily verify
that

(a+b’\/£)(c+ d\/i)“—‘ac+ad\/-2_-l'-bc\_/2-+bd‘\/£-\/§
= (ac + 2bd) + (ad + be)\V/2) e Z[V2),

So Z[V/2)is dosed under multiplication. See Exercise 13 for therest of the proof.

B Exercises

A. L. The following subsets of Z (with ordmary addition and multiplication) satisfy
all but one of the axioms for a ring. In each case, which axiom fails?

{a) The set 5 of all 0odd integers and 0.
{b} The set of nomegative integers.

2, Let R= {0, e, b, ¢} with additiori and muitiplication defined by the tables on
page 54. Assume associativity and distributivity and show that R is a ning with
identity. Is R commmtative? Is R a field?
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+ 10 e b C e b ¢
0 0 e b € 0 0 0 0 0
e|l e O ¢ b e | 0 e b ¢
b | b ¢ e b0 b b 0
cl|lc b e O c |0 ¢ 0 ¢

3. Let F=

{0, e, a, b} with operations given by the following tables. Assume

associativity and distributivity and show that Fisa field,

T h o O
u-n«:c:
H T o 6 |le
s @ « &b |n

(=T T T R

o o o al|lQ
T h s O|a
& T Hh aln
H o T ol

b 6 O

4. Find matrices A4 and Cin M(R) such that AC = 0, but CA # 0, where 0 is the

zero matrix. [Hins: Example 6.]

5. Which of the following six sets are subrings of M(R)? Which ones have an identity?

{a) All matrices of the form (0

4]

(») All matrices of the form 0

)w1th rc(d

[

)mtha,b ceL.

]

(c) All matrices of the form ( z) witha, b, ccR.
(d) All matrices of the form (: g) withacR.
(e} All matrices of the form (: g) withacR.
{f) All matrices of the form (0 D) with acR.

6. {a) Show that the set R of all multiples of 3 is a subring of Z.

{b) Let k be a fixed integer. Show that the set of all multiples of & is asubringof Z.

. Let X be the set of all integer multiples of ’\/i, that ig, all real numbers of the

form #V/2 with € Z. Show that X satisfies Axioms 1 -5, but is not a ring.

8. Isthesubset{1,—1,i —} asubring of €7
, Let R be aring and consider the subset R* of R X R defined by R* = {{r,r) |r ER}.

{a) If R = Z, list the elements of R*.
(b) For any ring R, show that R* is a subringof R % R,
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Is § = {(a, )| a + b = 0} a subring of Z X Z? Justify your answer.

Let S be the subset of M(R) consisting of all matrices of the form (g a).

{a} Prove that Sis a ring.

{b) Show thatJ = (l :}) is a right identity in § (neaning that 4AJ = A for
every Ain 5).

(¢) Show that Jis not a lgft identity in S by finding a matrix B in § such that
JB + B.

For more information about S, see Exercise 41.

Let Z[i] denote the set {a + bi | a, bc Z}. Show that Z[i] is a subring of C.

Let Z[\/E] denote the set {a + 52 | a, b €Z}. Show that Z[\/E] is asubring
of R. [See Example 20.]

Let T be the ring in Example 8. Let § = {fe T| f{2) = 0}. Prove that Sisa
subring of T,

Write out the addition and multiplication tables for

(a) Z, X Z ) Z, X2, (e} Zy3 X 24

Let 4 = G :)and 0= (g g) in M(R). Let S be the set of all matrices B
such that AB = 0.

{a) List three matrices in S. [Many correct answers are possible.]

{b} Prove that S is a subring of M{R). [Hint: If Band C are in S, show that
B + Cand BC arein S by computing A(B + C}and 4(BC}.]

Define a new multiplication in Z by the rule: ab = 0 for all a, b, e Z. Show that
with ordinary addition and this new multiplication, Z is a commutative ring.

Define a new multiplication in Z by the rule: ab = 1 forall a, b, & Z. With
ordinary addition and this new multiplication, is Z is a ring?

Let S = {a, b, c} and let P(S) be the set of all subsets of S; denote the
elements of F(S) as follows:

S={a,bch; D={abdy E=A{ac} F=i{bc}
A={a}; B={b}; C={c; 0=
Define addition and multiplication in P{S) by these rules:
M+N=(M-NUN—-M and MN=MON
Write out the addition and multiplication tables for P(S). Also, see Exercise 44,

. Show that the subset R = {0, 3, 6,9, 12, 15} of Zy3is a subring. Does R have

an identity?
Show that the subset § = {0, 2, 4, 6, 8} of Zyis a subring. Does Shave an
identity?
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22.

23.

24,

26.

27.

28,

29,
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Define a new addition (P and multiplication © on Z by
a@b=a+b-1 and aBb=a+b—ab,
where the operations on the right-hand side of the equal signs are ordinary

addition, subtraction, and multiplication. Prove that, with the new operations
@©and ©, Z is an integral domain.

Let E be the set of even integers with ordinary addition. Define a new
multiplication + on E by the rule “a + & = ab/2” (where the product on the
right is ordinary multiplication). Prove that with these operations Eis a
commutative ring with identity.
Define a new addition and muttiplication on Z by

a@b=a+b-1 and aGb=ab—-(a+ 85+ 2
Prove that with these new operations Z is an integral domain.

. Define a new addition and multiplicationon Q by

rs=r+s+1 and rOs=rm+r+s
Prove that withthese new operations Q is a commutative ring with identity. Is
it an integral domain?
Let L be the set of positive real numbers. Define a new addition and
multiplication on L by

a@®b=ab and a&Xb=d"

{a) Is L a ring under these operations?
(b) Is L a commutative ring?
(c) Is Lafield?

Let S be the set of rational numbers that can be written with an odd
detiominator. Prove that S is a subring of Q but is not a field.

Let p be a positive prime and let R be the set of all rational numbers that can
be written in the form r/p’ with r, i€ Z, and i = 0. Note that Z C R because
each n €Z can be written as n/p®. Show that R is a subring of Q.

The addition table and part of the multiplication table for a three-element ring
are given below. Use the distributive laws to complete the multiplication table.
¥ g t
rl|lr r r
5 ¥ t
{ r
. Do Exercise 29 for this four-element ring;
+|lw x ¥y =z w x Yy zZ
w|lw x y =z w | w W ow
x|x y z w x| w y
yly z w =x y | w w
z|lz w x y z | w woy
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A scalar matrix in M(R) is a matrix of the form k D) for some real
0 &
number k.

{a) Prove that the set of scalar matrices is a subring of M{HR).
(b) If Kis a scalar matrix, show that K4 = 4K for every 4 in M(R).
{©) If Kis a matrix in M{R) such that K4 = 4K for every 4 in M(R), show

that Kis a scalar matrix. [Hirt: If K = (j Z), let 4 = ([1) g) Use.the

fact that K4 = AK to show that b = 0 and ¢ = 0. Then make a similar
argument with 4 — (g (l)) to show that @ = d.]

Let R be aring and let Z{R) = {ac R | ar = ratorevery re R}. In other
words, Z(R) consists of all elements of R that commmute with every other
element of R. Prove that Z(R) is a subring of R. Z(R) is called the center of
the ring R. [Exercise 31 shows that the center of M{R} is the subring of scalar
matrices.]

. Prove Theorem 3.1.

. Show that M(Z,) (all 2 % 2 matrices with entries in £,) is a 16-element

nonconumutative ring with identity.

. Prove or disprove:

{a) If Rand Sareintegral domains, then R X Sis an integral domain.
{b) If R and S are fields, then R X Sisa field.

Let T be the ring in Example 8 and let [, g be given by
_ o ifx =2 _J2-x fx=2
f(x)'{x—z ifx>2 ()_{0 if x > 2.

Show that £, g T and that fg = 04 Therefore T'is not an integral domain.

(@) If Risaring, show that the ring M(R) of all 2 X 2 matrices with entries in
Risaring.

(b} If R has anidentity, show that M{R) also has an identity.

. If Rsaringandac R, let A = {rc R |ar = 0g}, Provethat 4y is a subring

of R. 4 is called the right annihilator of a. [For an example, see Exercise 16 in
which the ring Sis the right annihilator of the matrix 4.]

Let @(V2) = (r + sV2 |r, s€ Q}. Show that Q(V/2) is a subfield of R,
[Hint: To show that the solution of (r + .\‘\/_\})x = 1is actually in Q(V2),
multiply 1/(r + 5V/2) by (r — sV2)/(r — sV2)]

Let d be an integer that is not a perfect square. Show that Q(\/:i) =

fa+ b’\/g|a, be @} is a subfield of C. [Hini: See Exercise 39.]
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Let 5 be the ring in Exercise 11.
{a) Verify that each of these matrices is a right identity in §:

g 7 2 2
’(.3 .3)' and (—1 —1)'

{b} Prowe that the matrix C x) is a right identity in 5 if and only if
x+y=1 Y

B = BT |

©Ifx+y= l,showthatc ") is ot a left identity in S.

A division ring is a {not necessarily commutative) ring R with identity

1, # Og that satisfies Axioms 11 and 12 (pages 48 and 49). Thus a field is a
commutative division ring, See Exercise 43 for a noncommutative example.
Suppose R is a division ring and 4, b are nonzero elements of R.

(a) If bb = b, prove that b = 1. [Hint: Let v be the solution of bx = 1, and
note that b = b

{b} If wisthe solution of the equation ax = 1, prove that « is also a solution
of the equation xa = lp. (Remember that R may not be commutative.)

[Hint: Use part {(a) with b = ua.]
In the ring M{(C), let
_fi 0 {01 {0
_(u —-i) _(—1 o) k_(i 0)

()

The product of areal mumber and a matrix is the matrix given by this rule:

{ D-C n)

The set H of real quaternions consists of all matrices of the form

al+b]+q'+dk=a([l) 2)+b(; _0)+c(_$ :))+d((i ;)
a 0 bi 0 0 e 0 di
=(o a)+(0 —bi)+(—c D)+(di u)
=( a+ b c+di)
—e+d a-bif
where a, b, ¢, and d are real numbers.
{a)} Prowe that
P=f=ki=-] ij=-fi=k

k=-kj=i ki = -ik =j.
{b) Show that H is a noncommutative ring with identity.
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(c) Show that H is a division ring (defitied in Exercise 42). [Hint: ¥ M =al +
bi + ¢j + dk, then verify that the solution of the equation Mx = 1 is the
matrix fal — thi — cj — tdk, where t = 1/{a* + ¥ + 2 + d3)]

(d) Show that the equation x* = —1 has infinitely many solutions in H.

[Hint: Consider quatemnions of the form 01 + bi 4 ¢ — dk, where
P+l +dr=1]
44. Let § be aset and let P(S) be the set of all subsets of . Define addition and
multiplication in P(S) by the rules

M+N=(M-—NU(N—M and MN=MNN

(a) Prove that P(S)is a commutative ring with identity. [The verification of
additive associativity and distributivity is a bit messy, but an informal
discussion using Venn diagramsis adequate for appreciating this example,
See Exercise 19 for a special case.)

(b} Show that every element of P(S) satisfies the equations ¥2 = x and
x+x= 01’(&‘

C.45. Let Cbetheset B X R with the usual coordinatewise addition (as in
Theorem 3.1) and a new multiplication given by
(a, b)(¢, d) = (ac — bd, ad + be)
Show that with these operations Cis a field.
46. Let r and 5 be positive integers such that r divides ks + 1 for some k& with
1= k¥ r.Prove that the subset {0, r, 2r, 37, ..., (s — 1)r} of Z,, is a ring with

identity ks + | under the usual addition and multiplication in Z,,. Exercise 21
is a special case of this result.

APPLICATION: Applications of the Chinese Remainder Theorem
{Section 14.2) may be covered at this point if desired.

m Basic Properties of Rings

When you do arithmetic in Z, you often use far more than the axioms for an integral
domain. For instance, subtraction appearsregularly, as do cancelation and the various
rules for multiplying negative numbers. We begin by showing that many of these same
properties hold in every ring.

Arithmetic in Rings

Subtraction is not mentioned in the axioms for a ring, and we cannot just assume
that such an operation exists in an arbitrary ring. If we want to defitie a subtraction
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operation in a ring, we must do so in terms of addition, multiplication, and the ring
axioms. The first step is

Theorem 3.3

For any element a in aring A, the equation a + x = 0, has a unique solution.

Proof » we know thata + x = 0g has at least one solution « by Axiom 5. If vis
also a solution, then @ + u = 0z and @ + v = Op, so that
v=0g+v=(@a+u)+v=(u+@d+v=ut+{g+v)=u+0g=un
Therefore, wis the only solution. R

We can now define negatives and subtraction in any ring by copying what happens
in familiar rings such as Z. Let R be a ring and ¢ € R. By Theorem 3.3 the equa-
tion a + x = 0y has a uniquesolution, Using notation adapted from #, we denote this
unique solution by the symbol “—«.” Since addition is commutative,

—a is the unique element of R such that
a+{—a) =0 =(—a) +a.

In familiar rings, this definition coincides with the known concept of the negative of
an element. More importantly, it provides a meaning for “negative” in any ring.

EXAMPLE 1

In the ring Z;, the solution of the equation 2 + x = 0 is 4, and so in this ring
—2 = 4_Similarly, —9 = 5 in #,, because 5 is the solution of 9 + x = 0.

Subtraction in a ring is now defined by the rule
b — a means b + (—a).

In # and other familiar rings, this is just ordinary subtraction. In other rings we have
a new operation.

EXAMPLE 2

InFgwehavel —2=1+4+(-2)=1+4=5.

In junior high school you learned many computational and algebraic rules for deal-
ing with negatives and subtraction. The next two theorems show that these rules are
valid in any ring. Although these facts are not particularly interesting in themselves, it
is essential to establish their validity so that we may do arithmetic in arbitrary rings.

Theorem 3.4

fa+b=a+cinaringf then b=c
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PI‘f*Adding — a to both sides of ¢ + b = @ + ¢ and then using associativity
and negatives show that

—at(at+d)=—-a+(a+c)
(—a+a)+db=(—at+a)+tr
Og+b=0g+¢

b=c N1

Theorem 3.5

forany elements aand b of a ring R,
(1) 8 * 05 = 0 = 0g - &, In particular, 0z - Oy = Og.
{2y a(—h)=—ab amd (—a)p = —ab.
8) ~(-a)=a.
(4} —(a+b)=(—a) +(-b).
{(5) —(@a=h)=—a+h
(6) (—a)}(—b) = ab.
[f & has an identity, then
(M (—1g)a = —a.
Proof » (1) Since 0 + 0 = 0p, the distributive law shows that
a- UR"'G'UR:a(UR"'OR):a' 0R=a.0R+ UR-
Applying Theorem 3.4 to the first and last parts of this equation shows
thata » 0g = 0g. The proof that 0z - 2 = 0 is similar.
(2) By definition, =—ab is the unigue solution of the equation
ab + x = 0, and so any other solution of this equation must be equal

to —ab. But x = a{—b)is a solution because, by the distribution law
and (1),

ab + a(=b) = a[b + (—b)] = a[0z] = 0;.

Therefore, a(—b) = —ab. The other part is proved similarly.

(3} By definition, —(—a) is the unigue solution of (—a) + x = 0. But
a is a solution of this equation since (—a) + ¢ = 0z Hence, =(—a) =a
by uniqueness.

(4) By definition, —{a 4 J) is the unique solution of (@ + b)) + x =
0g, but (—a) + (— ) is also a solution, because addition is commutative,
5o that

(a+B) +[(—a)+ (B =a+(-a)+ b+ (-b)
= D R + UR = OR‘
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Therefore, —(a + b) = (—a) + (—b) by uniqueness.
(5) By the definition of subtraction and (4) and (3),
~@@=b)=—(a+(=b) =(~a) H~(-B) = —a + b
(6) (—a)(—b) = —(a (—b)) [By the second eguation in (2 ), with —b in

place of b]
= ~{—ab) [By the first equation in (2 )]
=ab [By (3), with ab in place of g

(7 By (2),
{(-lpa=—-(lg)=—-@=-a m

When deing ordinary arithmetic, exponent notation is a definite convenience, as is
its additive analogue (for instance, ¢ + ¢ + a = 3a). We now carry these concepts over
to arbitrary rings. If R is a ring, ¢ € R, and # is a positive integer, then we define

a"=aaa+:a (r Tactors).
Tt is easy to verify that for any & € R and positive integers m and n,
ad =" and @) = a™.

If R has an identity and a # Oy, then we define a° to be the eletnent 1 5. In this case, the
exponent rules are valid for all me, n = 0.
If Risaring,acR, and n is a positive integer, then we define

na=a+a+a+--+a (#summands)
—na =(—a)+ (—a) + (—a) + -+ + (—a). (wsummands)

Finally, we define Oa = D In familiar rings this is nothing new, but in other rings it
[Eives a meaning to the “product” of an integer # and a ring element a.

EXAMPLE 3

Let Rbearingand a, be R. Then
(a+bP=(a+ Ba+ b =ala+ b +bla+b)
=aa+ah+ bat bb =2 +ab+ ba+ b

Be careful here. i ab # ba, then you aaw't combine the middle termas. If R is a com-
nmutative ring, however, then ab = ba and we have the familiar pattem

(@a+di=a+ab+ba+b=a+ab+ab+b=a+ 2ab+

For a cakulation of (a + b)"in a commutative ring, with # > 2, see the Binomial
Theorem in Appendix E.

It’s worth noting that subtraction provides a faster method than Theorem 3.2 for
showing that a subset of a ting is actually a subring.
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Theorem 3.6

Let S be a nonempty subset of a ring K such that
(1} S is closed under subtraction (if a, b€ S, thena — be 8}
(2) S is closed under multiplication (if 2, be 8, then abe S).

Then S is a subring of R.

Proof» We show that S satisfies conditions {i)—(iv) of Theorem 3.2 and hence

is a subring. The conditions will be proved in this order: (ii), (iii), (iv),
and (i).

(ii) Hypothesis (2) hereis identical with condition (ii) of Theorem 3.2.
Hence, § satisfies condition (ii).

(iii) Since Sis nonempty, there is some element ¢ with ¢ € S. Applying (1)
(witha = c and b = ¢), we see that ¢ — ¢ = Oy is in §. Therefore, §
satisfies condition (iit) of Theorem 3.2.

(iv) If ais any element of S, then by (1), 0 — @ = —aisalso in S. Since
—ais the solution of a + x = Oy, condition (iv) of Theorem 3.2 is
satisfied.

(i) If a, be S, then ~b is in S by the proof of (iv). By (1),a = (=b) =
a + bisin §. So § satisfies condition {i) of Theorem 3.2.

Therefore, S is a subring of R by Theorem 3.2. W

Units and Zero Divisors

Units and zero divisors in £, were introduced in Section 2.3. We now carry these con-
cepts over to arbitrary rings.

Definition

An element a in aring R with identity is called a unit if there exists v eR
such thatau = 15 = va.Inthis case the elemerit v is calied the (multiplica-
tive} inverse of a and is denoted 27",

EXAMPLE 4

The only units in £ are 1 and —1.

EXAMPLE 5

By Theorem 2.10, the units in £, are 1, 2,4, 7, 8, 11, 13, and 14. For instance,
2-8=1,s02'=8and81=2.
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EXAMPLE &

Every nonzero element of the field Ris a unit: If 2 # 0, thend * a 1. The same
thing is true for every field F. By definition, Fsatisfies Axiom 12: If a # 0, then
the equation ax = 1phas a solution in F. Hence,

Every nonzcro element of a field is a unit.

EXAMPLE 7
A matrix (: Z)inM(R) such that ad — be # 0Ois a unit because, 2s you can
easily verify,
d —b d —b
(a b) ad —be ad — bc _(l U) d ad —be ad— be (a b)_(l 0
¢ d —c a “\o ™ —¢ a ¢ d) \o 1f
ad — bc ad— be ad — be ad — be
In particular, each of these matrices is a unit:
(3 2 (4 3 130
S SR (e R )
Units in a matrix ring are called invertible matrices.
EXAMPLE 8
Let Fbea fieldand M(F)thering of 2 X 2 matrices with entriesin F. If
Az(“ Z)eM(F)andad—bc#Onthmad—bcisaunitianyExampleﬁ.
Theoom;x:tationsh]:‘-xmn;ieT,withﬁreﬁacadby(ad*bc)",showthatAis
— oc
i e
an st in AE)] with irverse —~clad — be)™'  alad — b))
Definition An elementain a ring A is & zero divisor provided that

(1) a # 0s
{2) Thero exists anonzero elfementc in R such thatac = G; orca = Op,

Note that in requirement (2), the element ¢ is not unique: Many elements in the ring
may satisfy the equation ax = Og of the equation xa = Ug (Exercise 6). Furthermore,
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in a noncommutative ring, it is possible to have ac = 0Ug and ca # 0y (Exercise 4 in
Section 3.1).

EXAMPLE 9

Both 2 and 3 are zero divisors in Z4 because 2~ 3 = 0. Similarly, 4 and 9 are
zero divisors in &3 because 4 - 9 = 0,

For a zero divisor A in a matrix ring, it is possible to find a matrix Csuch that
AC = Dand C4 =0.

EXAMPLE 10

Let F be a field. A nonzero matrix (: b) in M(F)such thatad — be = Ozis a

d
zero divisor because, as you can easily verify,

G o= ) o) =e (2 E -G o)

In particular, each of these matrices is a zero divisor in the givenring:

4= (; 2) in M(R), B= (“_/;’ I:) in M(Q), and C= (: ;) in M(Z,).

EXAMPLE 11

Every integral R domain satisfies Axiom 11: If af = Og, thena = 0gor b = 0.
In other words, the product of two nonzero elements cannot be 0. Therefore,

An integral domain contains no zero dlvisors.

Finally, we present some useful facts about integral domains and fields,

Theorem 3.7

Cancelation is valid in any integral domain R: i & #+ Gy and ab = ac in R, then
b=c

Cancelation may fail in rings that are not integral domains. In £,,, for instance,
2-4=2-10,but4 # 10.

Proof of Theorsm 3.7 » 1f ab = ¢, then ab — e = 0g, so that a(b — ¢) = O, Since
a # Og, we must have b — ¢ = Oy (if not, then ais a zero divisor, contra-
dicting Axiom 11). Therefore,b=c. W
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Theorem 3.8

Every field F is an integral domain,

Proof » Since a field is a commutative ring with identity by definition, we need
only show that Fsatisfies Axiom 11: If ab = 0p, thena = Opor b = O
So suppose that ab = Qp, If & = 0, there is nothing to prove. If 5 # 0,
then b is a unit (Exatmple 6). Consequently, by the definition of unit and
part (1) of Theorem 3.5,

a=aly=abbt= 0,61 = 0p

So in evety case, @ = Oy or b = 0z Hence, Axiom 11 holds and Fis an
integral domiain. W

The converse of Theorem 3.8 is false in general (£ is an integral domain that is not
a field), but true in the finite case.

Theorem 3.9

Every fintte integral domain A is a field.

Proofs Since R isa commutative ring with identity, we need only show that for
each a # O, the equation ax = 15 has a solution. Leta;, @y, ..., g, be
the distinct elements of R and suppose a, # O, To show thate,x = 15
has a solution, consider the products a,ay, @@, @, . . . ,aan. If a1 # ay,
then we mmust have a,q; # a4, (becavse a,a; = a,q, would imply that a, = q,
by cancelation). Therefore, a,a(, a,@,, . . . , a,a, are n distinct elements of
R.However, R has exactly n elements all together, and so these must be
all the elements of Rinsome order. In particular, for some f,a,a; = 1.
Therefore, the equation e = 15 has a solution and Risafield. N

# Exercises

A. 1L LetRbearngande, bcR.
{(a) (a+ B)a-8 =1 (b) @+ b? =17
(¢) What are the answers in parts (a) and (b) if R is commutative?
2. Find the inverse of mattices A, B, and Cin Example 7.
3. An element ¢ of a ring R is said to be idempotent if ¢ = e.
(a) Find four idempotent elements in the ring M{R).
() Find all idempotentsin £ ;.
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11.

12.

13.
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. For each matrix A4 find a matrix C such that AC = 0or CA = 0:

A_(s 9), A_(s —10)_ A_(llz 1:4)
“\2 3/, T\ 4f T\ 3 3i2)

. {a)} Show that a ring has only one zero element. [Hint: If there were more

than one, how many solutions would the equation 0 + x = 05 have?]
(b} Show that a ring R with identity has only one identity element.
{€) Can aunit in a ing R with identity have more than one inverse? Why?

. {a) Suppose 4 and C are nonzero matrices in M(R) such that AC= 0. If

is any real number, show that A(kC) = 0, where kCis the matrix Cwith
every entry multiplied by k. Hence the equation AX = 0 has infinitely
many solutions.

(by IfA = (; 2), find four solutions of the equation AX = 0.

. Let R bearing with identity and let $ = {nlz | n€Z}. Provethat Sisa

subring of R. [The definition of sa withirc Z, a € Ris on page 62. Also see
Exercise 27.]

. Let Rbea ring and b a fixed element of &, Let T= {rb| r€ R}. Prove that T

is a subring of R.

. Show that the set S of matrices of the form Z 4:), with g and & real

numbers is a subring of M{(R).

Let R and S berings and consider these subsets of R X S:
R={(r,039)|reR} and S= {0 5 |seS}

(a) If R = Zyand S = Zs. What are the sets R and 57

(b} For any rings R and S, show that Ris a subring of & X S.

(¢) For anyrings R and S, show that Sis a subring of R X S.

Let R bea ring and m a fixed integer. Let S = {#r € R | mr = 0z}. Prove that §
is a subring of R.

Let ¢ and b be elements of a dng R.

(a) Prove that the equation ¢ + x = & has a unique solution in R. (You
must prove that there is a solution end that this solution is the only
one.)

(b} If Risaringwithidentity and ais a unit, provethat theequation ax = &
has a unique solution in R.

Let Sand T be subrings of aring R. In(a) and (b), if the answeris “yes,”
prove it. If the answer is “no,” give a counterexample.

{(a) Is SN T asubring of R?
(b} Is SU Ta subring of R?
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14.

15.

16.

17.

18.

19.
20.

21.

Prove that the only idempotents in an integral domain R are Og and 1. (See
Exercise 3.}

(a) If aand bare units in a ring R with identity, prove that ab is a unit whose
inverse is (ab) ! = b-la~t

(b} Give an example to show that if aand & are units, then a~'4~! neednot be
the multiplicative inverse of ab.

Prove or disprove: The set of units in a ring R with identity is a subring of R.

If uis a unitin a Ang R with identity, prove that « is not a zero divisor.

Let a be a nonzeroelement of aring R with identity. If the equation ax = lg
has a solution « and the equation ya = lg has asolution v, prove that u = v.

Let R and § be rings with identity. What are the units in the ring 8 X S7

Let R and § be nonzero rings (meaning that each of them contains at least
one nonzero element). Show that 8 X § contains zero divisors.

Let R be a ring and let a be a nonzero element of R that is not a zero divisor.
Prove that cancelation holds for a; that is, prove that

(a) fab=acin R, thend = ¢,
(b) If ba=cain R, then b = ¢.

. (a) If abis a zero divisor in aring R, prove that a or b is a zero divisor.

(b) If a or b is a zero divisor in a commutative ring R and ab # 0y, prove that
ab is a zero divisor.

23.(a) Let R bearingand a, b€ R. Let i and s be nonnegative integers and

24,

25,

prove that
(i) (m + n)a = ma -+ na.

(i) m{a + b) = ma + mb.

(i) m{ab) = (ma)b = almb).

{iv) (ma)(nb) = mn(ab).
(b) Do part (a) when m and » are any integers.
Let R be a ring and a, b€ R. Let m and » be positive integers.
(a) Show that a™a"” = @™ and (@™)" = a™.
(b} Under what conditions is it true that (ab)" = a"b"?
Let S be a subring of a ring R with identity.
(a) If S has an identity, show by example that | ; may not be the same as 1.
(b) If both Rand S are integral domains, prove that lg = lg.

. Let Sbe a subring of a ring R. Prove that Os = Og. [Hist: Forae S, consider

the equation a + x = a.]

. Let R be aring with identity and b a fixed element of R andlet S = {nb |neZ}.

Is § necessarily a subring of R? [Exercise 7 is the case when b = 1g.]
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32,

33.

36.

37.
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. Assume that R = {0g 1g, a, b} is a ring and that # and b are units. Write out

the multiplication table of R.

Let R be a commutative ring with identity. Prove that R is an integral domain
if and only if cancelation holds in R (that is, @ # 0z and ab = «¢ in Rimply
b=1)

. Let R be a commutative ring with ientity and & € R. Let T be the subring of all

muyhiples of & (as in Exercise 8), If v is a unit in R and u& T, prove that T = R.

A Boolean ring is a ring R with identity in whichx* = x for every x € R. For
examples, see Exercises 19 and 44 in Section 3.1. If Ris a Boolean ring, prove that

{a) a + a = 0g for every a2 € R, which means that « = —a. [Hint: Expand
(a+ a)’)

(b} R is commutative. [Hins: Expand (a + 5)%]

Let R be a ring without identity. Let Tbe the set R X £, Define addition and
multiplication in T by these rules:

r,)+ 5 R)=(+s5m+n.
(r, m)(s, B) = (rs + ms + nr, mn).
{a) Prove that Tis a ring with identity.

(b) Let R consist of all elements of the form (r, 0) in 7. Prove that Risa
subring of T.

Let R be a ring with identity. If ab and a are units in R, prove that & is a unit.

P
. Let Fbea field and 4 = (: d) a matrix in M(F).

{a) Prove that A is invertible if and only if ad — be # O [Hint: Examples 7,
8, and 10 and Exercise 17.]

{b) Prove that A is a zero divisot if and only if ad — be = Op

. LetA = (z 3) be a matrix with integet entties.

(a) If ad — be = %1, show that A is invertible in M(Z). [Hin{: Example 7.]

(b} If ad — bc # 0, 1, ot —1, show that 4 is neither a unit not a zero divisor in
M(Z). [Hint: Show that A has an inverse in M{E) that is not in M{Z); see
Exercise 5(c). For zero divisors, see Exercise 34(b) and Example 10.]

Let B be a commutative ring with identity. Then the set M{R)of 2 X 2
matrices with entties in R) is a ring with identity by Exercise 37 of Section 3.1.

Ifd = (: b) € M(R) atd ad — bec is a unit in B, show that A is invertible in

d
M(R). [Hint: Replace by (ad — bc)~! in Example 7]

ad — be
Let R be a ring with identity and a, b& B. Assume that a is not a zero divisor.

Prove that ab = 1, if and only if da = 15 [Hint: Note that both ab = lyand
ba = |gimply aba = a (why?); use Exercise 21.]
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38. Let R be aring with identity and &, b € R. Assume that neitheranor bisa
zero divisor. If ab is a unit, prove that a and b are units. [Hint- Exercise 21.]

39. (a) If Risa finite commutative ring with identity and a€ R, prove thatais
either a zero divisor or a unit. [Hint: If ais not a 2ero divisor, adapt the
proof of Theorem 3.8, using Exercise 21.]

{b) Is part (a) true if R is infinite? Justify your answer.

40. An element g of a ring is nilpotent if " = 0, for some positive integer .
Prove that R has no nonzero nilpotent elements if and only if 04 is the unique
solution of the equation x2.= O,

The following definition is needed for Exercises 41 —43. Let R be a ring with identity.
If there is a smallest positive inleger n svuch that nl 5 = 0y, then R is said to have
characteristic n. If ho such nexisis, R is said to have characteristic Zero.

41. (a) Show that Z has characteristic zero and Z,, has characteristic n.

{b) What is the characteristicof &, X Z4?
42, Prove that a finite ring with identity has characteristic n for somen > 0.
43, Let R be a ring with identity of characteristic n>> 0.

(a) Prove that na = 0y foreverya € R.

{b) If Ris an integral domain, prove that n is prime.

C.44. (a) Let a and & be nilpotent elements in a commutative ring R (see
Exercise 40). Provethat a + b and ab are also nilpotent. [You will need the
Binomial Theorem from Appendix E|]

{b) Let N bethe set of all nilpotent elements of R. Show that N is a subring
of R.

45, Let R be a ring such that x* = x for every x € R. Prove that R is commutative,

46. Let R be a nonzero finite commutative ning with no zero divisors. Prove that
Risa field.

H Isomorphisms and Homomorphisms

If you were unfamiliar with roman mumerals and came across a discussion of integer
arithmetic written solely with roman numerals, it might take you some time to realize
that this arithmetic was essentially the same as the familiar arithmetic in Z except for
the labels on the elements. Here is a less trivial example.

EXAMPLE 1

Consider the subset § = {0, 2, 4, 6, 8} of &y, With the addition and multiplica-
tion of Z)g, S is actually a comrmutative ring, as can be seen from these tables:¥*

*The reason the elements of § arelisted in this order will bac ome clear in a momeant.
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+ ] 6 2 8 4 0 6 2 8 4
0 0 6 2 8 4 0 0 ] 0 0 ]
6 6 2 8 4 0 6 0 6 2 8 4
2 2 8 4 0 6 2 0 2 4 6 8
8 8 4 0 6 2 8 0 8 6 4 2
4 4 ] 6 2 8 4 0 4 8 2 6

A careful examination of the tablesshowsthat 5 is a field with five elements and that
the multiplicative identity of this field is the element 6.

We claim that S & “essentially the same” as the field Z; except for the labels on the
elements. You can see this as follows. Write out addition and multiplication tablkes

Z:by0, 1,2, 3, 4. Then relabel the entries in the Z ; tables acoording to this scheme:

Relabel D as 0, relabel Tas6,  relabel 2 as 2,
relabel3as 8,  relabel 4 as 4.

Look what happens to the addition and multiplication tables for 7

_0 6_2_8_4 _0_6_2_8_4
vig |7 |1Z |2 |# ‘|8 |X |Z |7 |
_0_0_6_2H8_4 0 _of_of o0 _0_0o
g |8 (X |7 | |# g | |B |F |F |B
6| 6 21 8 4| 0 6| _0|_6[_2/_38_ 4
¥ |[¥ |Z (2 |[A |B I |¢ |¥ |Z |2 |4
_2_2_8_4_0_6 _ 2| _0|_2|_4|_96]_8
Z |Z |B |A B |¥ Z B |Z |£A |¥ |3
_8_8_4_0_6_2 _ 8| _0)_ 8|_ 6| 4] 2
2 |7 A g |7 |Z Z A |Z |7 |A |Z
_4_4 0 6 2 8 4 0 4 ] 2 6
A | B |X¥ |Z |3 £ |7 |F |1Z |Z |X

By relabeling the elements of #5, you obtain the addition and mmltiplication
tables for S. Thus the operations in Z, and § work in exactly the same way—the
only difference is the way the elements are labeled. As far as ring structure goes,
S is just the ring Z; with new labels on the elements. In more technical terms, 7
and § are said to be ssomorphic.

In general, isomorphic rings are rings that have the same structure, in the sense that
the addition and multiplication tables of one are the tables of the other with the ele-
ments suitably relabeled, as in Example 1. Although this intuitive idea is adequate for
small finite systems, we need a rigorous mathematical definition of isomorphism that
agrees with this intuitive idea and is readily applicable to large rings as well.

There are two aspects to the intuitive idea that rings R and § are isomorphic:
relabeling the elements of R and comparing the resulting tables with those of § to
verify that they arethe same. Relabeling means that every element of R is paired with
a unique element of § (its new label). In other words, there is a function R — § that

*The Z;tables fin congruence class notation) are shown in Example 2 of Section 2.2,
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assigns to each r € R its new label f{r) = 8. In the preceding example, we used the rela-
beling function £ Z; — 8, given by

=0 fMH=6 f@=2 sfB)=8 f@=4
Such a function must have these additional properties:
(i) Distinct elements of R must get distinct new labels:
Ifr# ¢ inR, thenf(¥) # f{r') in 5.

(i) Every element of § must be the label of some element in R:*
For each s£ 5, there is an r £ R such that f{r) = ».

Statements (i) and (ii) simply say that the function f must be both injective and surjec-
tive, that is, f must be a bijection.!

In order for a bijection (relabeling scheme) f to be an isomorphism, applying f to
the addition and multiplication tables of R must produce the addition and mukiplica-
tion tables of 8. So if @ + & = ¢ in the R-table, we must have f(a) + f{) = f{c) in the
S-table, as indicated in the diagram:

R +| & s + )

a ¢ ) §((3)
/

Th———

However, since a + & = ¢, we must also have f{a + &) = f{e). Combining this with the
fact that f{a) + f(b) = f(c), we see that

fla+b)=fla) + fib).

This is the condition that f must satisfy in order for f to change the addition tables
of R into those of S. The analogous condition on £ for the multiplication tables is
f(ab) = fla) f(]). We now can state a formal definition of isomorphism:

Definition Aring R is Isomorphlctoa ring S (in symbois, R = S} if there is a function

f:R — S such that

{ij fisinjective
(i) fis surjective;
(iily fla+ by =f(a)+ f(b) and f(ab}=f(8}f(b)foralia beR.

In this case the function fis called an Isomorphlsm,

*Otherwise, we couldn't possibly get the complete tables of 5 from those of R.
1'Irtiot':ti\iro, surjective, and bijective functions are discussed in Appendix B,
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CAUTION: Inotder to be an isomorphism, a function must satisfy a¥/
three of the conditions in the definition. It is quite possible
for a function to satisfy any two of these conditions but not
the third; see Exercises 4, 25, and 32.

EXAMPLE 2

In Example 12 on page 50, we considered the field X of all 2 x 2 matrices of

the form
( )
_b a ’

where a and b are real numbers. We claim that K is isomorphic to the field
C of complex numbers. To prove this, define a function f*K — C by the

rule
a b .
f(—b a) =a+ bi.

To show that f'is injective, suppose

(s =)

Then by the definition of £ @ + bi = r + si in C. By the rules of equality in C,
we must havea = rand & = 5. Hence, in K

a b\ _[r s
-b a - r)
so that f'is injective. The function f'is surjective because any complex number
a + bi is the image under fof the matrix

(5 <)
-b a
in X. Finally, for any matrices A and B in K, we must show that f{4 + B) =
F(4) + f(B) and f(4B) = f(£) f(B). We have

ACe D+ H=r(a o9

={la+e)+ (b+ )i
=(a+bi)+ [c+ &)

oy e )
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and
4(69 ) Comvalioie
= (ac — bd) + {ad + bc)i
= (a + bid(c + &)

- a )

Therefore, f is an isomorphistn,

Itis quite possible to relabel the elements of asingle ring in such a way that the ring
is isomorphic to itself.

EXAMPLE 3

Let f*C = C be the complex conjugation map given by fla + bi) = a— bi.* The
function f satisfies
flla+ ) + (e + @] = fl{a+c) + (5+ i
=fa+e)—(b+di=(a—bi)+ (c— &)
=f(a+bi) +fle+ &)

and

fla + bi)e + @)) = fllac — bd} + (ad + be)i]
= (ac — bd) — (ad + be)i = (a — bi)(c — di)
=fla + b)) flc+ &).
You can readily verify that f'is both mjective and surjective {Exercise 17).
Therefore f is an isomorphism.

EXAMPLE 4

If R is any ring and 1z:R — R is the identity map given by iz(r) = 7, then for
anya,bER

tpla+ b)) =a+b=a) + txd) and ta(ab) = ab = i {a)(b).
Since ip is obviously bijective, it is an isomorphism.

Our intuitive notion of isomorphism is symmeitric: “R is isomorphic to §” means
the same thing as “§ is isomorphic to R”. The formal definition of isomorphism is not

*The function fhas a geomefric interpretation in the complex plane, whore a + bfis identified with
the point {a, b): It reflects the plane in the s-axis.
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symmetric, however, since it requires a function from R onto § but no function from
§ onto R. This apparent asymmetry is easily remedied. If £R — §'is an isomorphism,
then fis a bijective function of sets. Therefore, fhas an inverse function g:5 — R such
that g o f = ¢y (the identity function on R) and fe g = 1o ® Tt is not hard to verify that
the function g is actually an isomorphism (Exercise 29). Thus R = S implies that
S = R, and symmetry is restored.

Homomorphisms

Many functions that are not injective or surjective satisfy condition (iii) of the definition
of isomorphism. Such functions are given a special name.

Definition Let A and S be rings. A function fiR— § is said to be a homomorphism if

fla +b) =fla) + fb) and flab) = fla)f(b) foralla beR.

Thus every isomorphism is a homomorphism, but as the following examples show,
a homomorphism need not be an isomorphism because a homomorphism may fail to
be injective or sutjective.

EXAMPLE §

For any rings R and S the zero map z:R — S given by 2(r) = O for every re R is
a homomorphism because for any a, be R

2(a+b)=03=05+ 05=Z(a)+2(b)

and
#(ab) = Og = Os* 05 = 2(a)z(b).

When both R and § contain nonzero elements, then the zero map is neither
injective nor surjective.

EXAMPLE &

The function 2.2 — Z; given by f(a) = [4] is a bomomorphism because of the
way that addition and subtraction are definedin Z; for any a, be Z

fa+d)=la+b]=[a+[b]=fla) + f(b)
and
fab) = [ab] = [a]b] = f(a)f(B).
The homomorphism fis surjective, but not injective (Why?).

*See Appendix B for detaits.
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EXAMPLE 1

The map g:R — M(R) given by

a=(_2 9

is a homomorphism because for any r, s€R

ero-(2 Y+ (2 9-(2, )

- (—(r0+ 5 r -(: s) ~glr+ )

sg = (0 N 9=(5, 2)=etm

The homomorphism g is injective but not surjective (Exercise 26).

CAUTION: Not all functions are homomorphisms. The properties
fla+B)=fl@+f® and flab) = fla)f(d)
fail for many functions. For example, if /'R — R given by
fix)=x + 2, then
JG+H)=fT)=9 but AH+AH=5+6=11

so that £(3 + 4) # f(3) + f(4). Similarly, f(3 - 4) # f(3) f(4)
because

S H=/U2)=14, but f3)f@)=5-6=30.

Theorem 3.10

Let f:R = 3 be a homomorphism of rings. Then

{1} 7(0g} = 0s.
{2} f(—a} = —f(a) for everya €R.
(3} f{a = b) = f(a) = f(b) for ail a, beR.
If R is a ring with identity and f is surjective, then
(4) Sis a ring with identity f{14).
(6) Whenever ¢ is a unit In R, then f(u)is a unitin S and f(t)~" = f(g™".
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Proofe (1) 7(0g) + £(0R) = F(0 + 0R) [f is a homomerphism.)

F(0r) + f(0z) = f(0) [0z + O = Ogin R)
S(Op) + f(0g) = AOp) + 05 [f(Op) + 05 = f(Og) in 5]
f(0p) = 0Og [Subtract f(0g) from both sides.).

(2) First, note that
f@+f—a)=fla+(—a) [fisahkomomorphism.]
= 0n [a+(—a) =04
= 0s [Part (1)),
Therefore, f(—a) is a solution of the equation f{a) + x = 05 But the
unique solution of this equation is —f(a) by Theorem 3.3. Hence

f(—a) = —f(a) by uniqueness.

(3) fla—8) =fla+(-8) [Definition af subtractian)
= fla) + f{-5)) {fis @ homomorphimm.]
= fla) + (1)) [Part (2)]
= (&) — f(b) [Definition af subtraction).

{4) We shall show that f{1;)€ 5 is the identity element of 5. Let s
be any element of . Then since fis surjective, £ = f(r) for some rc R,
Hence,

- 1R =W l) = fr- 19 =f() =
and, similarly, f{1g) - s = . Therefore, 5 has f(15) as its identity element.

(5) Sincew is a unit in R, there is an element v in R such that
ww = 1y = vu. Hence, by (4)

S@)) = fluo) = f(10 = 15

Similatly, vu = Lgimplies that f{o)f(x) = ;. Therefore, f{x) is a unit in
S, with inverse f(v). In other words, f{u) ' = f(v). Since v = «~?, we see
that f{w) ' = fle) = fx™). &

If £ R — 5is a function, then the imape of fis this subsat of 5:
Inf=lse5|s=f(r) for some re R} = {f{(r) | rER}.
If fis surjective, then m f = 5 by the definition of surjective. In any case we have:

Corollary 3.11

1f iR — & is & homomorphism of rings, then the image of f is & subring of 5.

Proof» Denote fin f by I {is nonempty because 05 = f{0;) € Iby (1) of Theorem 3.10.
The definition of hornomorphism shows that fis closed under multiplica-
tion: If f(a), f(B) € 1, then f(a) f15) = f(ab) € 1. Similarly, 7 is closed under
subtraction because f(z) — f(b) = f(a — b) € ['by Theorem 3.10. Therefore, I
is a subring of § by Theorem 3.6. W
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Existence of Isomorphisms

If you suspect that two rings are isomorphic, there are no hard and fast rules for
finding a function that is an isomorphism between them. However the properties of
homomorphisms in Theorem 3.10 can sometimes be helpful.

EXAMPLE 8

If there is an isomorphism f from Z;, to the ring Z; X Z,, then f{1} = (1, 1) by
part (4) of Theorem 3.10. Since f is a homomorphism, it has to satisfy
JA=fA+D=fM+fM=0L1D+1,1)=(2,2
A =2+ D) =f@A+fM) =22+ (1,1)=(0,3)
JA=fB+D) =73+ =03+ (1 1)=(1,0).

Continuing in this fashion shows that iff'is an isomorphism, then it must be
this bijective function:
=01 FM@=10 AD=(1,3) f10)=(1,2)
=22 =210 =020 fl)=(2,3
fB)=03 fO=02) JfO=(0O1) J0) = (0, 0).

All we have shown up to here is that this bijective function fis the only possible
isomorphism. To show that this factually is an isomorphism, we must verify
that it is a homomorphism. This can be done either by writing out the tables
(tedious) or by observing that the rule of f can be described this way:

S((dh2) = (labs, [aly):

where [a];, denotes the congruence class of the integer ain Z,,, [d]y denotes the
class of a in Z3, and [a], the class of a in Z,. (Verify that this last statement is
correct.) Then

faln + [Blip) = (e + 812 [Definition of addition in £ ;)
= ([a + b5, [a + B]y) [Definition of f)
= ([als + [b], [a]s + [Ble)  [Definition of addition in £; and £,
= ([als, [al) + (Bls, [Bly)  [Definition of addition in £3 X £
= flah) + f([Bh2) [Definition of f]-

An identical argument using multiplication in place of addition shows that
fUalualdliz) = f([ali) ([B]12). Therefore, fis anisomorphism and £;; = #3 X Z,.

Up to now we have concentrated on showing that various rings are isomorphic,
but sometimes it is equally important to demonstrate that two rings are 7ot isomorphic.
To do this, you must show that there is #o possible function from one to the other
satisfying the three conditions of the definition.



3.3 Isomorphisms and Homomorphisms 79

EXAMPLE 9

Z; is not isomorphic to Z,»or to Z because it is not possible to have a surjective func-
tion from asix-clement set to a larger set (or an injective one from a larger set to Z3).

To show that two infinite rings or two finite rings with the same number of elements
are not isomorphic, it is usually best to proceed indirectly.

EXAMPLE 10

Therings Z; and Z, X Z, are not isomorphic. To show this, suppose on the

contraty that /22, —» Z, X Z, is an isomorphism. Then f{0) = (0,0) and

J(1) = (1, 1) by Theorem 3.10. Consequently,
JFO=fA+D=/BH+AAD=(1,1+11)=(0,0

Since f is injective and f{0) = f(2), we have a contradiction. Therefore, no
isomorphism is possible.

Suppose that /*R — S is an somorphism and theelementsa, b, ¢, . . . of R have a par-
ticalar property. If the elements f{a), f(#), f(c), - - . of S have the same property, then we
say that the property is preserved by somorphism. According to parts (1), {4), and (5) of
Theorem 3.10, for exampls, the propetty of being the zero element or the identity element
or a unit is preserved by isomorphism. A property that is preserved by isomorphism can
sometimes be used to prove that two rings are kot isomorphic, as in the following examples.

EXAMPLE 11

In the ring Z; the elements 1, 3, $, and 7 are units by Theorem 2.10. Since
being a unit is preserved by isomorphism, any isomorphism from Z; to another
ring with identity will map these four units to four units in the other ring.
Consequently, ¢ is not isomor phic to any ring with less than four units. In
particular, Z; is not isomorphic to Z, % Z, because there are only two units in
this latter ring, namely (1, 1) and (3, 1) as you can readily verify.

EXAMPLE 12

None of @, R, or € is isomorphic to Z because every nonzero element in the
fields (3, R, and C is a unit, whereas Z has only two units (1 and —1).

EXAMPLE 13

Suppose R is a commutative ring and £ R — §is an isomorphism. Then for any
a,bc R, wehave ab = bain R. Therefore,in §

(@) (b) = flab) = f(ba) = f(b)f(a).
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Rings

Hence, S is also commutative because any two elements of S are of the form f{a),

F(B) (since f 18 surjective). In other words, the property of being a commutative
ring is preserved by isomorphism. Therefore, no commutative ring can be iso-
morphic to a noncommutative ring.

B Exercises

A. L

7.

10.

Let f:2,—#, X Z, be the bijection given by

0—{0,0), 1=(11), 2 —(0,2), 3—(1,0),

4 (0,13, 5(1,2).

Use the addition and multiplication tables of Z, and Z, X Z; to show that f is
an isomorphism.

., Use tables to show that Z, X #, is isomorphic to the ring R of Exercise 2 in

Section 3.1.

. Let R be a ring and let R* be the subring of R X R consisting of all elements

of the form (g, «). Show that the function £ R — R* given by f{a) = (¢, &) isan
isomorphism.

as in Example 1}. Show that the following bijection from Z;to Sis #ot an
isomotphism:

0 »0 1—>2 2 y4 3 —2 6 44— 8.

. Prove that the field R of real numbers is isomorphicto the ring of all 2 X 2

matrices of the form (g 2 ), with a € R. [Hir¢: Consider the function fgiven

by st = (g )

. Let R and 5 be rings and let R be the subring of R X S consisting of ali

elements of the form (&, 0g). Show that the function iR — R given by
f(@ = (a, 04} is an isomorphism,

Prove that R is isomorphic to the ring S of all 2 X 2 matrices of the form

(g 2),whereaER.

Let Q(\/ﬁ) be as in Exercise 39 of Section 3.1. Prove that the function
f:Q(\/Z_) - Q(\/Z_) given by fla + b\/Z_) = a— $V2isan isomorphism.

. If f:Z — £ isan isomorphism, prove that f is the identity map. [Hint: What

are f(1), f(1 +1),...7]

If R is a ring with identity and f:R — Sisa homomorphism from Rto a
ring S, prove that f{1;) is an idempotent in S. [Idempotents were defined in
Exercise 3 of Section 3.2.)



11.

12.

13.

14.

B. 16.

17.

18.

19.

20.

21.
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State at least one reason why the given function is #ef a hormomorphism.
@) R Randf(x) = V.
(b} g£:E— E, where Eis the ring of even integers and f{x) = 3x.
(¢) RR =R and f(x) = 2~
a

(dy k:@ — O, where k(0) = Dandk(z) = ‘b—lifa # 0.

Which of the following functions are homotmorphisms?

(@) fiZ = 2, defined by f(x) = —x.

(b} fi#x — #,, defined by f{x) = —x.

(¢) 22Q - @, defined by g(x) = ﬁ

(d) 2:R — M(R), defined by A(a) = [ g :

(&) f1Z; — Z,, defined by f([x];;) = (x]i, where [«], denotes the class of the
integer « in Z,,.

Let R and 5 be rings.

(a) Prove that /iR X 5 — R given by f{(r, 8)) = ris a surjective hormomorphism.

{b) Provethat g:R X 5§ —» 5 given by g((r, 5)) = 5 is a surjective homomorphism.

{c) If both .R.anc.l S are nonzero rings, prove that the homomorphisms f and g
are not injective.

Let fiZ — Z be the homomorphist in Example 6. Let K = facZ | a) = [0]}.

Prove that K isa subring of Z.

. Let /1R — § be a homomorphism of rings. If r is azero divisor in R,is f{r)a

zero divisor in 57

Let T, R, and Fbe the four-element rings whose tables are given in Example 5
of Section 3.1 and in Exercises 2 and 3 of Section: 3.1. Show that no two of
these rings are isomorphic.

Show that the complex conjugation function f:C — C (whose rule is
fla + bi) = a- bi)is a bijection.

Show that the isomorphism of Zgand Sin Example | is given by the function
whose rule is f{[x]s) = [6x])o (notation as in Exercise 12(e)). Give a direct
proof (without using tables) that this map is a homomorphism.

Show that § = {0, 4, 8, 12, 15, 20, 24} is a subring of Z,. Then prove that the
map fiZ, — 5 given by f([x];) = [8x]y is an isomorphist.

Let E be the ring of even integers with the + multiplication defined in
Exercise 23 of Section 3.1. Show that themap f:E — Z given by f(x) = x/2 is

an isomorphism.

Let Z* denote thering of integers with the @ and © operations defined in
Exercise 22 of Section 3.1. Prove that £ is isomorphic to £%.
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12

13

24,

26.
27

28,

19.

30.

31.

32,

Let 7 denote the ring of integers with the @ and © operations defined in
Exercise 24 of Section 3.1. Prove that £ is isomorphic to Z,

Let C be the field of Exercise 45 of SBection 3.1, Show that C s isomorphic to
the field € of complex numbers.

(a) Let R be the set R X R with the usual coordinatewise addition, as in
Theorem 3.1. Define a new multiplication by the rule (g, ¢, d) =
(ac, be). Show that R is a ring.

(b) Show that the ring of part (a) is isomorphic to the ring of all matrices in

M(R) of the form (: o)

. Let L be the ring of all matrices in M(#) of the form (z 2) Show that the

function f:L — £ given by f(: 0) = a i a surjective homomorphism but
not an isomorphism. €

Show that the homomorphism g in Example 7 is injective but not surjective.

(a) If 2:R — Sand \.:§ — T are homomorphisms, show that fe :R —» Tisa
homomorphism.

(b) If f and g are isomorphisms, show that f° g is also an iscmorphism.

(a) Give an example of a homomorphism f:R — § such that R has an identity
but S doesnot. Does this contradict part (4) of Theorem 3.107

(b) Give an example of a homomorphism f:R — § such that § has an identity
but Rdoesnot.

Let f:R — § be an isomorphism of rings and let £:5 — R be the inverse
function of f(as defined in Appendix B). Show that gis also an isomorphism.
[Hint: To show gla + &) = g{a) + gb), consider the images of the left- and
right-handside under f and use the facts that fis a homomorphism and f~ g is
the identity map.]

Let f:R — S be a homomorphism of rings and let X = {re R | f(r) = 0g}.
Prove that X is a subring of R,

Let f: R — 5 be a homomorphism of rings and 7'a subring of S.

Let P = {reR |f(r)eT)}. Prove that P is a subring of R.

Assume A = | (mod m). Show that the function f:Z,, — Z,., given by

JU[x]) = [12x] is an injective homomorphism but not an isomorphism when
# = 2 (notation as in Exercise 12(e)).

. (a) Let T"be the ring of functions from R to R, as in Example 8 of Secticn 3.1.

Let 6:T — R be the function defined by &(f) = f(5). Prove thatf isa
surjective homomorphism, Is § an isomorphism?

(b) Is part (a) true if 5 is replaced by any constant ¢ € R?

. If f:R — S is an iscmomorphism of rings, which of the following properties

are preserved by this isomorphism? Justify your answers.

(a) a= R isazerodivisor.
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39,

C. 40.

41.

42,
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(b} aER is idempotent.*

(c) Risan integral domain.

. Show that the first ring is not isomorphic to the second.

(@) Fand 7 ® R XR X R X R and M(R)
(€) Z4 X £y and Zy5 (d) Qand R
© Z X Z,and Z () Z, X Z, and 7y

. {a) If /1R — 5 is a homomorphism of rings, show that for any r € R and

ned,f(nr) = nf(r).
{b)} Provethat isomorphic rings with identity have the same characteristic.
[See Exercises 4143 of Section 3.2.]

(c) If f:R—» 5 is a homomorphism of rings with identity, is it true that R and
S have the same characteristic?

(a) Assume that ¢ is a nonzero idempotent in a ring R and that ¢ is not a zero
divisor.* Prove that ¢is the identity element of R. [Hint: ¢ = ¢ (Why?). If
a € R, multiply both sides of 2 = ¢ by a.]

(b} Let S be a ring with identity and T a ring with no zero divisors. Assume
that /5 — T is a nonzero homomorphism of rings (meaning that at least
one element of 5 is not mapped to (7). Prove that (1) is the identity
element of T. [Hint: Show that f{1g) satisfies the hypotheses of part (a).]

. Let Fbe a field and /:F — R a homomorphism of rings.

(a) If there is a nonzero element ¢ of F such that f{c) = 0, prove that fis
the zero homorphism (that is, f{x} = O for every x € F). [Hinz: ¢~" exists
(Why?). If x € F, consider f{xec™1).]
(b} Prove that fis either injective or the zero homomorphism. [Hin¢: If fis not
the zero homomorphism and f(a)} = f(b), then f(a — &) = 0g.]
Let R be aring without identity. Let T be the ring with identity of Exercise 32
in Section 3.2. Show that R is isomorphic to the subring R of T. Thus, if R is
identified with R, then R is a subring of a ring with identity.
For each positive integer k, let kZ denote the ring of all imteger multiples of & (see
Exercise 6 of Section 3.1). Prove that if m # n, then mZ is not isomorphic to nZ.
Let m, ne Z with (m, n) = 1 and ket 3 Z,,, — Z,, < Z, bethe function given
by f([@lmn) = ([@],n, [8]s)- (Notation as in Exercise [2(e). Example 8 is the case
m=3,n=4)
(a} Show that the map fis well defined, that is, show that if [a},,, = [8],,, in
%, .. then [d],, =[], in Z,, and [4], = [}],in Z,.
{b)} Provethat fis an isomorphism. [Hint: Adapt the proof in Example 8: the
difference is that proving fis a bijection takes more work here.]

If (m, n) # 1, prove that Z,,, is not isomorphic to Z,, X Z,.

*|ldempotents are defined in Exercise 3 of Saction 3.2






CHAPTER 4

Arithmetic in Fx]

In Chapter 1 we examined grade-school arithmetic from an advanced standpoint
and developed some important properties of the ring Z of integers. In this chapter
we follow a parallel path, but the starting point here is high-school algebra—-
specifically, polynomials with coefficients in the field R of real numbers, such as

-3 -5 67—+ +4,  x7-1
Dealing with polynomials means dealing with the mysterious symbol “x", which

is used in three different ways in high-school algebra. First, x often “stands for® a

number, as in the equation 12x — B = 0, where x is the number —, Second, x some-
times doesn't seem tostand for any particular number but is treated as if it were a
number in simplification exercises such as this one:

X+x _ xx+1)
2+1 2+t

Third, x is also used as the variable in the rules of functions such as f{x) = 3x + 5.

Now that you know what rings and fields are, we shall consider polynomials
with coefficients in any ring and attempt to clear up some of the mystery about
the nature of x. In Sections 4.1-4.3, we shall see that when x is given a meaning
similar to the second way it is used in high school, then the polynomials with coef-
ficientsin a field F form a ring {denoted F[x]) whose structure is remarkably similar
tothat of the ring £ of integers. In many cases the proofs for  given in Chapter 1
carry over almost verbatim to F[x].

In Sections 4.4-4.6 we consider tests to determine whether a polynomial is irre-
ducible {the analogue of testing an integer for primality). Here the development is
not an exact copy of what was done in the integers. The reason is that the polyno-
mial ring FLx]has features that have no analogues in the ring of integers, namely,
the concepts of the root of a polynomial and of a polynomial function (which cor-
respond to the first and third uses of x in high school).

85
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m Polynomial Arithmetic and the Division Algorithm

The undetlying idea here is to define *polynomial” in a way that is the obvious exten-
sion of polynomials with real-number coefficients. Let R be any ring. A polyromial
with coefficients in R is an expression of the form

ap + ax + e + < - + ax",

where # is a nonnegative integer and o, R.

This informal definition raises several questions: What is x? Is it an element of R?
If not, what does it mean to multiply x by a ring element? In order to answer these
guestions, note that an expression of the form a, + a;x + ay® + - - + + a,x* makes
sense, provided thatthe ¢,and x are allelements of somelargerring. An analogy might
be helpful here. The number 7 is not in the ring Z of integers, but expressions such as
3 — 47 + 127° + 7° and 8 — #* + &7° make sense in the real numbers. Furthermore,
it is not difficult to verify that the set of all numbers of the form

Gt am+am+--+an”, withn=0andgeZ

is a subting of R that contains both Z and 7 (Exercise 2).

For the present we shall think of polynomials with coefficients in a ring R in much
the same way, as elements of a larger ring that contains both R and a spevial elernent
x that is not in R. This is analogous to the situation in the preceding paragraph with
I in place of Z and x in place of 7, except that hete we don’t know anything about
the element x or even if such a larger ring exists. The following theorem provides the
answer, as well as a definition of “polynomial”.

Theorem 4.1

If Risaring, then there exists a ring T cantaining an element x that is not in
R and has these properties:
(D A is asubring of T,
(it xa = ax foreveryacR.
(iii} The set R{x] of all elements of T of the form
G tax+al+. . +ax" (wheren=0and &R
is a subring of 7 that contains A
(iv) The representation of elements of Alx] is unique: i n < mand
Botax+axit - tax" =b+bx+bx?+ - +by",
thena;=bfori=1,2,...,nand b, = Ogforeach i > n.
(V) dg + asx + awx® + 1+ + ax" = Opifand only if & = Gg forevery /.

Proofs see Appendix G. We shall assume Theorem 4.1 here.

The elements of the ring R[x] in Theorem 4.1 (ii) are called polynomials with
coefficients in R and the elements g, are called coefficients, The special element x is
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sometimes called an indeterminate.* To avoid any misunderstandings in Theorem 4.1,
please note the following facts.

1. Propetty (ii} of Theorem 4.1 does not imply that the ring T is commutative, but
only that the special element x commutes with each element of the subring R
{whose elements may not necessarily commute with each other).

2, Property (v} is the special case of property (iv) when each b, = Dp.

3. The first expression in propetty (v}is not an equation to be solved for x. In this
context, asking what value of x makes a; + a;x + &,x* + <+« + a,x" = Dy is as
meaningless as asking what value of 7 makes 3 + S — 7@’ = 0 because x (like
) is a specific element of a ring, not a variable that can be assigned values.

EXAMPLE 1

The rings Z[x], Q[x], and R[x] are the rings you are familiar with from high
school. For instance, 3 + 5x — 72 is in all three of these rings, but 3 + 7.5:2is
only in Qfx] and B[x] because the coefficient 7.5 is not an integer. Similatly,
4.2 + 3x 4+ V5x*is in R{x] but not in the other two rings since V5 is nota
rational number. Terms with zeto coefficents are usually omitted, as they were
in the preceding sentence.

EXAMPLE 2

Let E be the ring of even integers. Then 4 — 6x + 4x° = E[x]. However, the
polynomial x is not in E]x], because it cannot be written with even coefficients.

Polynomial Arithmetic

The rules for adding and multiplying polynomials follow ditectly from the fact that
Rfx] is ating

EXAMPLE 3

ffix)=1+35x—x*+4x* + 2x* and g(x) = 4 + 2x + 322 + x% in Z[3], then
the commutative, associative, and distributive laws show that
O +el)=Q+5x =2+ 43+ DAY+ (4 + 20 + 3+ X+ 0F)
=(14+D+E+Dx+ (1 4+ + @+ 1)+ (2 +0)x*
=54+ 0x+ 27 +52° + 2t =5+ 2% + 52 + 2t

*Although in common use, the term “indeterminate’ is misleading. As shown in Appendix G, there
i% nothing undetermined or ambiguous about x. It it a specific element of the larger ring F and is
not an element of R.

fvariables and equations will be dealt with in Section 4.4.
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Definition

EXAMPLE 4

The product of 1 — 7x + x*and 2 4 3x in Q[x] is found by using the distribu-
tive law repeatedly:

(1= 7x + xB(2 + 3x) = 1(2 + 3x) — Tx(2 + 3x) + x(2 + 3x)
= [{2) + 1(3x) — 7x(2) — Tx(3x) + x%2) + ¥*(3x)
=2+ 3x = ldx — 21x? + 2x2 + 3%°

=2~ 1lx — 192 4 3x%,

It

The preceding examples are typical of the general case. You add polynomials by
adding the corresponding coefficients, and you multiply polynomials by using the
distributive laws and collecting like powers of x. Thus polyoomial addition is given by
the rule:*

(@ +ax +ap® 4 + X" + (by + byx + Bpd + -« + bpx")
={ay+ Bg) + (& + by + (@ + B + -« + (a, + b
and polynomial multiplication is given by the rule:
{ap +ax +as2+ -+ a Kby + byx + byx® + « -+ + b_x™)
= aghy + (aphy + aybo)x + (aghy + by + addx® + - - - + @b, 3",
For each k = 0, the coefficient of ¥* in the product is

K
abrt alby gt adit o o hh by by = %albk—a
=

whema, = O‘Rif i>n a.ndb,: ORifj >m.

It follows readily from this description of multiplication in R[x] that if R is com-
mutative, then so is R[x] (Exercise 7). Furthermore, if R has a multiplicative identity
1z, then 14 is also the multiplicative identity of R[x] (Bxercise 8).

Let f(x) = a5 + 8ux + aw® + - « + 8,x" be a polynemial in Rlx] with a, # .
Then a, is called the leading coefficlent of f(x). The degree of f(x) is the
integer 7; it is denoted “deg f(x)". In other words, deg f(x} is the largest
exponent of x that appears with a nonzeto coefficient, and this coefficient
is the leading coefficient.

EXAMPLES

The degree of 3 — x + 4x> — 7x% €R[x] is 3, and its leading coefficient is ~7.
Similarly, deg (3 + 5x) = 1 and deg (x'2) = 12. The degree of 2 + x + 4x* —
0x® + Ox* is 2 (the largest exponent of x with a sonzers coefficient); its [eading
coefficient is 4.

*We may assume that the same pawers of x appear by inserting zero coefficients where necessary.
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Thering R that we start with is a subring of the polynomial ring Rfx]. The elements
of R, considered as polynomials in R{x], are called constant polynomials. The polyno-
mials of degree D in R[x] are precisely the nonzero constant polynomials. Note that

the constant polynomial Op does not have a degree
(because no power of x appears with sonzere coefficient).

Theorem 4.2

i R i an integral domain and #(x), g{x} are nonzerc polynomials in Alx], then
deglf(x)g(x)] = deg f(x) + deg gix).

Pl‘[l[lf’Supposef(x) =ay+ ax +axf + - + ax"and g(x) = by + bx +
bax?® + - -+ + b,x® with a, # 0g and b,, # Op, so that deg f(x) = n and
deg g(x) = m. Then

S(x)g(x) = aghy + (aody + abp)x + (Gaby + arby + ahplx® + -+ + a b x" ™.

The largest exponent of x that can possibly have a nonzero coefficient is
n + m. Buta.h, # Op because R is an integral domain anda, # Ogand
b,, #* 0. Therefore, f(x)g(x) isnonzero and deg[f(x)g(x)] =n + m =
deg f(x) + deg g(x). W

Corollary 4.3

i R is an integral domain, then so is R[x]

Proof» Since Ris a commutative ring with identity, so is R[x] (Exercises 7 and 8).
The proof of Theorem 4.2 shows that the product of nonzero polynomials
in R[x] is nonzero, Therefore, R(x]is an integral domain. m

The first five lines of the proof of Theorem 4.2 are valid in any fing and lead to
this conclusion.

Corollary 4.4
Let 7 be aring. K f(x), g(x), and f(x)g{x) are nonzero in Alx], then
deg [f(x)g(x)] = deg f(x} + deg glx).

EXAMPLE &

In Z[x], let f(x) = 2¢* and g(x) = 5x. Then f(x)g(x) = (2x*)(5x) = 4x°,
so deg [f(x)e(x)] = deg f(x) + deg g(x). However, if g(x) = 1 + 3x%, then

S =21+ M) = 2 + 2+ 3% = 24 + 0xF = 2%,

which has degree 4. But deg f{x) + deg g(x) = 6. So deg [f(x)g(x)] < deg f(x) +
deg g(x).
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For information on the degree of the sum of polynomials, see Exercises 4 and 12.

Corollary 4.5

Let R be an integral domain and f(x) cR{x]. Then
f{x)is aunitin Alx] if and only I {(x) is a constant polynomial that is a unitin A,
In particular, if F is a field, the units in Fx] are the nonzero constants in F.

Remember that the proof of an *if and only if * staternent requires two separate proofs.

Proof of Grllary 45 First, assume that #{x) isa unit in R[x]. Then f(x)g(x) = 1,
for some g(x) in Rfx). By Theorem 4.2,

deg f(x) + deg g{x) = deg [f{x)g(x)] = deg 1z = 0.

Since the degrees of polynomials are nonnegative, we must have
deg f(x) = 0 and deg g{x) = 0. Therefore, f(x) and g(x) are constant poly-
nomials, that is, constantsin R. Since f(x)g(x) = 1,, f(x) is aunit in R,
Conversely, assume that f{x) is a constant polynomial that is a unitin R,
say f(x) = b, with b aunitin R. Let &(x) = »~. Then f(x)(x) = bb' = 1,
Therefore, f(x) is a unit in R[x].
The last statement of the cotollary follows immediately since
every nonzero element of a field is a unit in the field (see Example 6 in
Section 3.2). W

EXAMPLE 1

The only units in Z[x] are 1 and ~1, since these are the only units in Z. The units in
RIx] (ot in Qfx] or in (Jx]) are all nonzero constants, since R, @, and C are fields

Corollary 4.5 may be false if Ris not an integral domain (Exercise 11).

EXAMPLE 3

5x + 1 is a unit in Z54[x] that is not a constant because (as you should vexfy)
Gx +D20x + ) =L

The Division Algorithm in F[x]

Onr principal interest in the rest of this chapter will be polynomials with coefficients in
a field F (such as @ or B or Z;). As noted in the chapter introduction, the domain F[x]
has many of the same properties as the domain Z of integers, including the Division
Algorithm (Theorem 1.1), which states that for any integers @ and b with b positive,
there exist unique integers g and r such that

a=bg+r and O=sr<bh.
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For polynomials, the only changes are to require the divisor to be nonzero and to
replace the staternent “0 < r < 5" by a statement involving degrees, Hereis the formalstate-
rment (with f(x) in place of 4, g{x)in place of &, and g(x), Hx) in place of g, r respectively).

Theorem4.6  The Division Algorithm in F[x]

Let £ be a field and f(x}, g{x) eF[x] with g{x) # 0. Then there exist unique
polynomials g{x) and r(x) such that

Fley = g00qx) + rix) and either r(x) =0 or degnrx) < deg g(x).
Example 9 shows how polynomial division works and why the Division Algorithm
is valid in one particalar case.

EXAMPLE 9§

We shall divide f(x) = 3x° + 2x* + 227 + 4x* + x — 2 by g(x) = 2x° + 1. The
italic column on the right keeps track of what happens at each step.*

dhvisor g(x)

%:;—1+ x+ 1 — quotient g(x)
22+ 135+ 2 + 27 + 47 + 5= 2« dividend (%)
1+ 2 - ze)g(x)
2x‘+2x’+—x2+x 2‘-f(x)—(%xz)g(x)
2 + x « %g(x)
42 -2 efto)- (%xz)g{x) ~ xg()
2 41 1@
remainder (%) —»%xz —3 —fl)— Gf ) — xg(x) — Lg(x) =

ﬂx)—g(x)(%x’ +x+ 1)=
Jx) — glx)a(x)
The last line on the left side ard the last three lines on the right side show that

(=) — glx)gx) = r(x) or equivalently, f{x) = g(x)q(x) + ().
So the Division Algorithm holds for the polynormials f{x) and g(x).

*Division Refesher:The tirst term of the quotient(%a‘) is obtained by dividing the leading term ofthe

dividend (3x®) by the leading term of the divisar {2x*): 3x%/2x" = ~x’ The product uths term and the
divisar ((ﬂ‘)ﬂ{x)) is then subtracted from the dividend resuﬂlrg in2r* + 22 + 21" +x-2as

shown. The process is repeated, using this last expression as the dividendand the same divisar, and
catitinues until you reach a polynomial with degreesmallerthan the degreeof the divisor.
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Of course, anexample is #of a proof, even though you can readily convince your-
self that the same procedure works with other divisors and dividends (Exercise 5).
Consequently, skipping the proof until you are familiar with mathematical indue-
tion, would be quite reasonable. That’s why the proof of Theorem 4.6 is marked

optional.

Proofof Theorem 4.6 The Division Algorithm

(Optional) »

We first prove the existence of the polynomials ¢(x) and /(x).

Case 1: If f(x) = Op or if deg f(x) < deg g(x), then the theorem is true
with ¢{x) = Opand H{x) = f(x) because f{x) = g{x)0p + f(x).

Case 2: If f(x) # Op and deg g(x) = deg f{x), then the proef of exis-
tenice is by induction on the degree of the dividend f{x).* If deg f(x) = 0,
then deg g(x) = 0 also. Hence, f{x) = aand g{x) = & for some nonzeto
a, b€ F. Since Fis a field, b is a unit and a = 5(5~'a) + 0. Thus the

theorem is true with g(x) =

#'aand H{x) = Op

Assume inductively that the theorem is true whenever the dividend
has degree less than #. This part of the proof is presented in two columns.
The left-hand column is the formal proof, while the right-hand column
refers to Example 9. The example will help you understand what’ being

done in the proof.

PROOF EXAMPLE ¢
We must show that the theorem is true whenever
the dividend f{x) has degree n, say n=35
_a 4 _
)= ap + -+ ax + g =3+ + 23 + 4P+ x— 2
with 4, # Op The divisor g(x) must have the nal
form m=3
X =bp™+ -+ hx+ by gx)=2"+1
—t—,
with b, # 0pand m= #. We begin as we would B X"
in the long division of g(x) inte f{x). Since Fis a
field and &,, + Og, b, is a unit. Multiply the divi- lnem — . y=1u8$=3 — 3
sor g(x) by a,b,”"'x"™ to obtain by T =30 27000 = 2"2
1 Jirst term of
Gbm X TE(x) the guotiett
= B + -+ byx + by) 2g(x) = 2642 + 1)

= g0 + by B+ - 4 aphy T B

3
=3x8 + =x?

*We use the Principle of Camplete Induction; see Appendix C,
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Since ay, ¥ ™g(x) and f(x) have the same
degree and the same leading coefficient, the

nomial f{x) — ab, ' X" ®g(x) as dividend (or

. 3
F5) = @by~ 2gl) 1) = 24%¢(x)
is a polynomial of degree fess thann (or possibly = f(x) - (Sx’ + éxz)
the zero polynomial). Now apply the induction 2
hypathesis with g(x) as divisor and the poly- = 2t + 2 +-£x2 +x—2
2

use Case 1 if this dividend is zero). By induction Jourth line of long division
there exist polynomials ¢,(x) and r{x) such that
_ 5
) —ab, X g(x)=g(X)()+r(x)  and g(x) =x+1 Hx)= ?‘2 -3
Hx) =0 or  degr(x) < deg g(x). Tast part of e nder

the quotient

Therefore,

S0 = g()ab, X" + gy(x)] + r(x)  and

HX)=0, o degr(x)< deg gx).
Thus thetbeoream is true with g(x) = @b, %™+ ¢,(¥) when deg f{x) =n. This completes
the induction and shows that ¢{x) and #{x) always exist for any divisor and dividend.

To prove that g{x) and r(x) are unique, suppose that g;(x) and r{x) are polynomials
such that
JUx) = g(x)gdx) + ry(x) and rfx) = O or deg ry(x) < deg g(x).
Then
8(x)g(x) + H(x) = flx) = g(x)q(x) + ra(x),
so that
8(9g(x) = ghx)] = rLx) = r(x).

If {x) — g4(x) is nonzexo, then by Theoretn 4.2 the degree of the left side is deg g(x) +
deglg(x) = ¢{x)], a number greater than or equal to deg g(x). However, both £{x) and r{x)
have degree strictly less than deg g(x), and so the right-hand side of the equation must also
have degree strictly less than deg g{x) (Exercise 12). This is a contradiction. Therefore
#x) = ga(x) = O, or, equivalently, ¢(x) = gu(x). Since the left side is zero, we must have
rfx) = r(x) = Op, 50 that ry(x) = r(x). Thus the polynomials g(x) and r{x) are unique. W

B Exercises

NOTE: R denotes a ring and F a field

A. 1. Perform the indicated operation and simplify your answer:
@ +22 -4+ x + )+ @2 + x2+ 4x + 3) in Z4[x]
) (x + 1 in Zy[x]
(© (x =1 in Zx]
@) (2= 3x +2X2x% — 4x + 1) in Z4[x]
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r

Show that the set of all real numbers of the form
atramtam+ - +amr”, withn=0anda, e Z
is a subring of R that contains both Z and 7.

. (a) List all polynomials of degree 3 in Z]x].

(b) List all polynomials of degree less than 3 in Z;[x].

. Ineach part, give an example of polynomials f{x), g(x) £ Q[x] that satisfy the

given condition:
(a) The deg of f{x) + g{x) is less than the maximum of deg f{x) and deg g(x).
{(b) Deg [/(x) + g(x)] = max {deg f(x), deg &(x)}.

. Find polynomials g{x) and r(x) such that f{x) = g(x)g(x) + r{x), and r(x) =0

or deg r(x) < deg g{x):

@) f() =3 -2 + 6x? — x + 2and gx) = 2* + x + 1in Q[x].
() f(x)=x*—7x + land g(x) = 2 + 1 in Q[x].

© fly=2x*+ x* — x + 1 and g(x) =2x ~ 1 in Z4[x].

() f(x) = 4x* +2x° + 67 + 4x + Sand g(x) = 3x% + 2 in Z{x].

. 'Which of the following subsets of R]x] are subrings of R[x]? Justify your answer:

{a) All polynomials with constant term Op.

(b) All polynomials of degree 2.
{¢) All polynomials of degres < k, where k is a fixed positive integer.
{d) All polynomials in which the odd powers of x have zero coefficients.

{(¢) All polynomials in which the even powers of x have zero coefficients.

7. If R is commutative, show that R[x] is also commutative.
B. If R has multiplicative identity 1z, show that 15 is also the multiplicative

10.
B.11.

12,

13.

14.

identity of R[x].

. If ¢ £ Risa zero divisor in a commutative ring R, then is ¢ also a zero divisor

in Rx]?
If Fis a field, show that F[x] is not a field. [Hixt: Is x a unit in F[x]7]

Show that | + 3xis a unit in Z[x]. Hence, Corollary 4.5 may be false if Ris
not an integral domain,

If f(x), g(x) € R[x]and f{x) + g(x) # O, show that

deg f(x) + g(x)] = max {deg f(x), deg g(x)}-
Let R be a commutative ring. If a, # Og and f(x) = gq + eyx + @ + -+ +
a,x" (with a, # 0g) is a zero divisor in R[x), prove that a, is a zero divisor in R.
{a} Let R be an integral domain and f{x), g(x) € R[x]. Assumethat the
leading coefficient of g(x)is a unit in R Verfy that the Division Algorithm
holds for f{x) as dividend and g{x) as divisor. [Hint: Adapt the proof of
Theorem4.6. Where is the hypothesis that Fis a field used there?)



15,

16.

17.

18.

19.

0.

C.21.

12,

4.2 Divisibility in F[x] 956

(b} Give an example in Z[x] to show that part (a) may be false if the leading
coefficient of g{x)is not a unit. [Hint: Exercise 5(b) with Z in place of 4.

Let R be a commustative ring with identity anda € R.

(@) If @ = Og, show that 1, + ax is a unit in R[x]. [Hint: Consider 1 — ax +
a?xt]

(b} If a* = Og, show that 1z + ax is a unit in R{x].

Let R be a commutative ring with identity anda € R.If 15+ axis aunit in

R[x], show that &* = O for some integern > 0. [Hint: Suppose that the inverse

of 1g+ axis by + byx + Byx* + - - - + byx®. Since their product is 1, by = 1
(Why?) and the other coefficients are all 0.]

Let R be an integral domain. Assume that the Division Algorithm always
holds in R[x]. Prove that R is a field.

Let (: R[x] = R be the function that maps each polynomial in R[x] onto its
constant term {an element of R). Show that ¢ is a sujective homomotphism
of rings.

Let ¢:Z[x] - Z,[x] be the function that maps the polynomial gy + ayx 4+ - < - +
agx® in Z[x] onto the polynomial [ag] + [a]x + - - - + [a]x*, where [4] denotes
the class of the integer  in Z,. Show that ¢ is a sutjective homomorphism of
rings.
Let D-R[x] — Rfx] bethe derivative map defined by

Dl + ax+apd + -+ ax)=ay + 2a,x + 3a> + - - - + na ¥ L.
Is D a homomorphism of rings? Anisomorphism?

Let #:R—s S be a homomorphism of rings and define a function A:R[x] -+ S1x]
by therule

Alag + ayx + < -« + a,X) = Kag) + Ma)x + k(@) + - -« + hla)x"
Prove that
(a) 4 is a homomorphism of rings.
(b} % is injectiveif and only if / is injective.
(€) 4 is suzjective if and only if & is surjective.
{d) If R= S, then Rfx] = 5[x].

Let R be a commutative ring and let &(x) be a fixed polynomial in R[x]. Prove
that there exists a unique homomotphism ¢: R{x] —» R[x] such that

¢(ry=rforallr € R and  @(x) = &(x).

m Divisibility in F[x]

All the results of Section 1.2 on divisibility and greatest common divisots in Z now
carry over, with only minor modifications, to the ring of polynomials over a field.
Throughout this section, Falways denotes a field.
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Definition

Definition

Let F be a field and a(x), b(x} ‘& Fx] with b(x} nonzero. We say that b(x)
divides a(x) [or that b(x} is a factor of a{x}], and write b(x} | a(x} if a{x} =
b(x}h({x)tor some h(x} & fAx)

EXAMPLE 1

(2x + 1) |(6x* — x — 2) in Qfx] because 6x% — x — 2 = (2x + D(3x — 2).
Furthermore, every constant multiple of 2x + 1 also divides 6x* — x — 2. For
instance, 5(2x + 1) = 10x + 5 divides6x® — x — 2 because 6 — x — 2 =

sx + 1)[%(.31_, - 2)].

Example 1 illustrates the first part of the following result.

Theorem 4.7
Let £ be 3 field and alx), bix})  Ax] with bx} nonzero.

{1} If b{x} divides a{x}, then cb{x} divides a(x) for each nonzeroc € £,
(2) Every divisor of a{x) has degree less than or squal to deg a(x).

Proof » (1) If B} | a(x), then a(x) = Bx)h(x) for some h(x) € Flx]. Hence,

a(x) = 1+ B(x() = cc B M(x) = ch(xNe  h(x).
Therefore, eb(x) | a(x).

(2) Suppose 5(x)|a(x), say a(x) = b(x)(x). By Theorem 4.2,
deg a(x) = deg b(x) + deg k(x).

Since degrees are nonnegative, we must have 0 =< deg b(x) < dega(x). N

As we learned eatlier, the preatest common divisor of two integers is the largest
integer that divides both of them. By analogy, the greatest common divisor of two
pelynomials a(x), b(x) € Fx] ought to be the polynomial of highestdegreethat divides
both of them. But such a greatest commmon divisor would not be unique because each
constant multiple of it would have the same degree and would also divide both a(x)
and 5(x). In order to guarantee a unmique pod, we modify this definition slightly by
introducing a new concept. A polynomial in F[x] is said to be menic if its leading
coefficient is 15 For instance, x® + x + 2 is monic in Q[x), but 2x + 1 is not.

Let £ be a field and a{x}, &(x) € Ax], not both zero. The greatest common
divisor (gcd) of a(x} and b{x) is the monic polyniomiial of highest degree
that divides both a(x} and b{x).

In ctherwords, d{x}is the ged of a{x}and b(x)provided that d{x} is monic and

(1) dlx}|a(x} and dix} |b{x};
) Ifc(x}|a(x) and c{x}|b(x), then deg ¢(x} = deg d(x}.
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Polynomials a(x) and &(x) have at least one monic common divisor (namely 1z). Since
the degree of a common divisor of 4(x) and (x) cannot exceed either deg a(x) or deg &(x)
by Theorem 4.7, there must be at least one monic common divisor of highest degree. In
Theorem 4.8 below we shall show that there is only one monic common divisor of highest

degree, thus justifying the definition’s reference to the greatest common divisor.
EXAMPLE 2

To find the ged of 3x* 4 x + 6 and 0 in Qx], we note that the common divisors
of highest degree are just the divisors of 3x* + x + & of degree 2. These include
3x2 4+ x + Gitself and @/l nonzere consiant nudtiples of this polynomial—in
particular, the monic polynomial

%(3x2+x+6)=xz+%x+ 2.

1
Hence,xa+§x+2isagcdof3x2+x+6and D.

EXAMPLE ]

You can easily verify these factonzations in Qfx]:
ax)=2x%+50 - Sx = 2=(2x + Dlx + (x + D(x — 1),
bx)=2x% — 3x% — 2x = (2x + D)(x — 2.
It appears that 2x 4 1 is a commeon divisor of highest degree of a(x) and &x).
In this case, the constant multiple %(Zx +D=x++ ;is a mohic common divi-

sor of highest degree. For a proof that x +% actually is the greatest common
divisor, see Exercise 5(g).

The remainder of this section, which is referred to only a few times in the rest of

the book, may be skimmed i time is short—read the theorems and corollaries, but
skip the proofs.

Theorem 4.8

Let £ be a field and a(x), &(x} € fx], not both zero. Then there isa unigue great-
est common divisor o{x} of a{x} and b{x}. Furthermore, there are (not neces-
sarily unigue) polynomials ¢x} and w(x} such that d{x} = a(x)u(x} + bxWw{x).

Steps 1 and 2 of the proof are patterned after the proof of Theorem 1.2

Proof of Theorsm 4.8 » Let s be the set of all linear combinations of «x) and
H(x), that is,

§ = {a(x)m(x) + Hx)n(x) |n(x), n(x)€ Fx]}.
Step 1 Find amonic polynomial of smallest degree in S.

Progf of Step 1. 8 contains nonzero polynomials (for instance, at least
one of a(x) - 1z + b(x) - Cpor alx) - Op + b(x) ~ 15). So the set of all
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Step 2

Step 3

degrees of polynomials in S is a nonempty set of nonnegative integers,
which has a smallest element by the Well-Ordering Axiom. Hence, there
is a polynomial u{x) of smallest degree in S. If d is the leading coef-
ficient of w(x), then #(x) = d ~uxx) is a monic polynomial of smallest
degree in S. By the definition of S,
2(x) = a(x)u(x) + b(x)u{x) for some u(x), v(x) € Flx].
Prove that ((x) is a ged of a(x) and b(x).
Proof of Step 2: We must prove that £ satisfies the two conditions in the
definition of the ged:
(1) 1)) ax) and £2) J5G);
(2) If e(x) |a(x) and &(x) | #(x), then deg c(x) < deg ().
Proof of (1) Inthe proof of Step 2 of Theorem 1.2, replace g, b,
&1, 4,7, u v, k and s with a(x), b(x), ¢(x), 4x), 9(x), (x), w(),
v(x), ¥ x), and s(x), respectively, to show that #x) is a common
divisor of a(x)and Kx).

Proof of (2): With the same replacements as in the proof of (1),
repeat the proof of Step 2 of Theorem 1.2, until you reach this
statement:

1(x) = a(x)u(x) + b()u(x) = [Ck(x)ulx) + [dx)s(x)]v(x)
= Ax)k(xYu(x) + s(e)dx)].
The first and last terms of this equation show that o(x) |{x). By
Theotem 4.7, deg ¢(x) =< deg «(x).
This shows that £x) is a greatest common divisor of f(x) and g{x).
Prove that x) is the unigue ged of &x) and Kx).

Proof of Step 3: Suppose that d(x) is any ged of a(x) and b(x). To prove
uniqueness, we must show that &x) = #(x). Since &x) is a common divi-
sor, we have a(x) = d(x)f(x) and Kx) = Kx)g(x) for some f(x), 2(x) € F[x.
Therefore,

#(x) = a(xYu(x) + be)u(x) = [Ax)Y(X)]eulx) + [dx)z(x)]w(x)

= d(@)[f(x)yu(x) + g(x}u(x)].

By Theorem 4.2,

deg 1(x) = deg d(x) + deg [f(x)u(x) + 2(x)u(x)].
Since they are ged’s, #(x) and d(x) have the same degree. Hence,

deg [f(x)u(x) + g(xp(x)] =0,

so that fTx)u(x) + g(x){x) = ¢ for some constant ¢ € F. Thetefore,

Hx) = dx). Since both Ax) and d{x) are monic, the leading coefficient
on the left side is 1 and the leading coefficient on the right side is ¢, So
we must have ¢ = 1 Therefore, Ax) = #(x) = a(x)u(x) + b(x)u(x) is the
unique ged of a(x)and b(x). W
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Corollary 4.9

Let F be a field ard a(x), b{x)cHx], not both zerc, A monic polynomial
d(x} € Ax] is the greatest common divisor of alx) and b(x) if and only if d(x)
satisfies these conditions.

() cr) | ax) and dlx} ] 6x).
(it} if c{x) | a(x) and c(x) | béx), then cfx) |d(x).

Proof» Adapt the proof of Corollary 1.3 to F[x. ®

Polynomials f{x) and g{x) are said to be rdatively prime if their greatest common

Theorem 4.10

Let £ be a field and a(x), b(x}, c(x)e Ax]. If alx) | &{x)c{x) and a(x} and b(x) are
relatively prime, then a(x) | c(x).

Proof» Adapt the proof of Theorem L4to F[x]. B

B Exercises

NOTE: F denotes a field

A L
2,

3
4

If f{x) € Fx], show that every nonzero constant polynomial divides f{x).

If f(x) = cx® + + + + + ¢y with ¢, ¥ Op, what is the ged of f{(x) and 0g7

If a, b€ Fand a # b, show that x + g and x + b are relatively prime in F[x).
(a) Let f(x), g(x)e F[x]. If £(x) |g(x) and g(x) | f{x), show that f{x) = cg(x) for

some nonzerc cc F.
(b} If f{x) and g(x) in part (a) are monic, show that f{x) = g(x).

. The Euclidean Algorithm for finding ged is described for integers in Exercise 15

of Section 1.2. The process given there also works for polynomials over a
field, with one minor adjustment. For integers, the last nonzeto remainder is
the ged. For polynomials the last nonzero remainder is a common divisor of
highest degree, but it may not be monic. In that case, multiply it by the inverse
of its leading coefficient to obtain the ged. Use the Euclidean Algorithm to
find the god of the given polynomials:

(@) x* = * -+ land £* - 1in Q[x]

M) F 4+ +2% - — x—2andx* + 2% + 52+ 4x + 4in Q[

() & +3x+2x +4and x? — 1 in Zdx]

@) 4x* + 2% + 6x2 + 4x + Sand 3% + 5x2 + 6x in Z,[x]
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(&) ¥ — ix* + 4x — diand »* + 1 in C[x]
N x*+x+1ands® + x + 1in Z5[x]
(g) 2x* + 52 — 5x — 2and 2x® — 3x7 — 2x in Q[x].

6. Expresseach of thegcd’sin Exercise 5 as a linear combination of the two
polynomials,

B. 7. Letf(x)e Fx] and assume that f{x)|g(x) for every nonconstant g{x) € Flx]. Show

that f(x) is a constant polynomial. [Hins: f(x) must divide both x + 1 and x)

8. Let f(x), g(x) € F[x], not both zero, and let d{(x) be their ged. If A(x) is a
common divisor of f{x) and g(x) of highest possible degree, then prove that
h(x) = cd{x) for some nonzero c= F.

9. If f(x) # Dy and f(x) is relatively prime to Or, what can be said about f{x)?
10. Find the god of x + a + band x* — 3abx + & + b* in Q[x].
11. Fill in the details of the proof of Theorem 4.8.
12. Prove Corollary 4.9.
13, Prove Theorem 4.10.

14. Let f(x), g(x), k(x)€ F[x], with f(x) and g(x) relatively prime. If f(x) |A(x) and
#(x) | A(x), prove that f(x)g(x) | A(x).

15, Let f(x), g(x), A(x) € F[x], with f(x) and g(x) relatively prime. If A(x} | f(x),
prove that A(x) and g(x) are relatively prima

16. Let f(x), g(x), k(x) € F[x], with f(x) and g(x) relatively pritne. Prove that the
gedof f{x)(x) and g(x) is the same as the ged of A(x) and g(x).

m Irreducibles and Unique Factorization

Throughout this section F always denotes a field. Before carrying over the results of
Section 1.3 on unique factorization in Z to the ring F[x], we must first examine an area
in which Z differs significantly from F[x]. In Z there are only two units,* namely =1,
but a polynomial ring may have many more units {see Corollary 4.5).

An element 2 in a commutative ring with identity R is said to be an associate of an
element bof R if & = bu for some unit 2 In thiscase b is also an associate of a because
4 !is a unit and b = gu~'. In the ring Z, the only associates of an integer » are # and
—# because £ 1 are the only units, If Fis a field, then by Corollary 4.5, the units in FTx]

are the nonzero constants Therefore,
J(x) is an associate of gfx)in F{x| if and only if f{x) = £g(x) for some nonzero ¢ € F.
Recall that a nonzero integer p is prime in Z if it is not 1 (thatis, pis not a unit

in Z) and its only divisors are = 1 (the vnits) and *p (the associates of p). In F[x] the
units are the nonzero constants, which suggests the following definition.

*Unit” ts defined just before Example 4 11 Section 3.2.
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Let £ be a field. A nornconstant polynomial 2(¥)  Fx] is said to be
Irreduclble® if its only divisors are its associates and the nonzero constant
polynomials {units). A nonconstant polynomial that is not irreducible is
said to be reduclble.

EXAMPLE 1

The polynomial x + 2 is irreducible in Q[x] because, by Theorem 4.2, all its
divisors must have degree 0 or 1. Divisors of degree [ are nonzero constants.
If f{x)[(x + 2), say x + 2 = f{x)g(x), and if deg f(x) = 1, then g{x) has degree
0, so that g{x) = ¢. Thus ¢ X(x + 2) = f{x), and f(x) is an assodate of x + 2. A
similar argument in the general case shows that

every polynomial of degree 1 in F|x]|is irreducible in F|x]|.

The definition of irreducibility is a natural generalization of the concept of primal-
ity in Z. In most high-school texts, however, a polynomial is defined to be ireducible
if it is not the product of polynomials of lower degree. The next theorem shows that
these two definitions are equivalent.

Theorem 4,11

Let £ be a field. A nonzero polynomial f{x) Is reducible in Ax] if and only if f(x)
can be written as the product of two polynomials of lower degree.

Proof» First, assume that f(x) is reducible. Then it must have a divisor g(x) that
is nefther an associate nor a nonzero constant, say f(x) = g{x¥(x). If
either g{x) or k{x) has the same degree as f{x), then the other must have
degree 0 by Theorem 4.2, Since a polynomial of degree 0 is a nonzero
constant in F, this means thateither g{x) is a constant or an associate
of f{x)}, contrary to hypothesis. Therefore, both g{x) and A(x) have lower
degree than f(x).

Now assume that f(x) can be written as the product of two polyno-
mials of lower degree, and see Exercise 8. W

Various other tests for irreducibility are presented in Sections 4.4 to 4.6. For now,
we note that the concept of irreducibility is not an absolute one. For instance, »* + 1
is reducible in €] because x* + 1 = (x + )(x — i) and neither factor is a constant or
an associate of x* + 1. But % + 1 i ireducible in Q[x] (Exercise 6).

The following theorem shows that irreducibles in F[x] have essentially the same
divisibility properties as do primes in Z. Condition (3) in the theorem is often used to
prove that a polynomial is irreducible; in many books, (3) is given as the definition of
“irreducible”,

*You could just as well call such a polynomial “prime™, but "irred ucible” is the customary term with
palynomials.
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Theorem 4.12

Let F be a fleld and p{x}a nonconstant polynomial in Alx]. Then the following
conditions are equivalent:®*

(1} p(x) is irreducible.

(2) i b(x) and c{x) are any polynomials such that p{x) | &{x)c(x}, then
px) | b{x} o plx}) c(x).

(3) i r{x) and s{x} are any polynomials such that p{x} = r{x}s(x), then r{x}
or s(x} is a nonzero constant polynomial.

Proofs (1) = (2) Adapt the proof of Theorem 1.5 to F[x]. Replace statements
about *p by statements about the associates of p(x); replace statements
about *1 by statements about units (nonzero constant polynomials) in
F[x]; use Theorem 4.10 in place of Theorem 1.4.

(2)= (3) i p(x) = r{(x)5(x), then p(x) | r(x) or p(x) |s(x), by (2). if
P(x) |r(x), say i(x) = p(x}o(x), then p(x) = r(x}(x) = p(x)}n(x)s(x). Since
F[x] is an integral domain, we can cancel p(x) by Theorem 3.7 and con-
clude that 1z = v(x)s(x). Thus s(x)is a unit, and hence by Corollary 4.5,
#(x) is a nonzero constant. A similar argument shows that if p(x)|s(x),
then A(x) is a nonzero constant.

(3)=> (1) Let o(x) be any divisor of p(x), say p(x) = c(x)d(x). Then
by (3), either c(X) is a nonzero constant or 4&(x) is a nonzero constant. If
d(x) = d # Op then multiplying both sides of p(x) = o(x)dx) = de(x) by
d~! shows that e(x) = d~'p(x). Thusin every case, c(x) is a nonzero con-
stant or an associate of p(x). Therefore, p(x)is itreducible m

Gorollary 4.13

LetF beafieldand p{x) an irreducible polynomial in Flx]. F p{x}|ay(x}aslx) - - - a,(x),
then p{x} divides at least one of the afx).

Proof» Adapt the proof of Cercllary 1.6 to Flx]. =

Theorem 4,14

Let £ be a field. Every nonconstant polynomial f(x) in F[x] is a product of

irreducible polynomials in Alx).! This factorization is unique in the following
sense: If

fO)y = ps()px) - - - pAxy  and  f(x) = qu{x)qolX) « - - s}

*For the meaning of "the following conditions are equivalent” and what must be done to prove
Theorem 4.12, ses page 508 of Appendix A. Example 2 thers is the integer analogue of Theorem 4.12.

tya allow the possibility of a product with just one factor in case f{x)is itself irreducible.
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with each pfx) and g{x} irreducible, then r = s (that is, the number of irre-
ducible factors is the same). After the g{x) are reordered and relabeled, if
necessary,

pAx) is an associate of g{x) (i=123%...,0n.

Proof» To show that f{x) is a product of irreducibles, adapt the proof of
Theorem 1.7 to F]x]: Let S be the set of all nonconstant polynomials
that are not the product of irreducibles, and use a proof by contradiction
to show that § is empty. To prove that this factorization is unique up to
associates, suppose f(x) = p(x)pa(x) - - - p1(X) = @(x)ga(x) - - - glx)
with each p(x) and g{x) irreducible. Then p,(x)px(x) - - - pAx)] =
qi{x)qAx) - - - g{x), so that p,(x) divides g1(x)gx) - - - g{x). Corollary
4.13 showsthat p)(x}| g(x) for some j. After rearranging and relabel-
ing the g(x)’s if necessary, we may assumne that pi(x)|g,(x). Since ¢;(x)
is irreducible, py(x) must be either a constant or an associate of g;(x).
However, py(x) is irreducible, and so it is not a constant. Therefore, p,(x)
is an associate of gy(x), with py(x) = e14,(x) for some constant ¢;. Thus

GiONerpax)py(x) < - - )] = pX)pAx) » + « phx) = qu(x)gphx) - - - g hx)-
Canceling gy(x) on each end, we have
PAONeps(x) - -+ p()] = gLx)gs(x) - - - g ).

Complete the argument by adapting the proof of Theorem 1.8 to F[x],
replacing statements about ¢ with statements about associates of

g(x). ®m

B Exercises

NOTE: F denotes a field and p a positive prime integer.
A. 1. Find a monic associate of
(@) 3+ 22 4+ x + 5in Qfx] (b} 3x°— 4 + 1in ZJx]
© ix*+x—1mCx]
2. Prove that every nonzero f(x) £ F[x] has a unique monic associate in F{].
3. List all associates of
(a) X+ x+1inZJx (b) 3x + 2in Z,[x|
4. Show that a nonzero polynomial in Z {x] has exactly p — 1 associates.

5. Prove that f{x) and g(x) are assodiates in Fx]if and only if f{x)|g(x) and
2(x) [f(x).

6. Show that x* + 1 is irreducible in Q[x]. [Hint: If not, it must factor as
(ax + bXex + d) with a, b, ¢, d £ ; show that this is impossible.]

7. Prove that f{x)isirreducible in F{x] if and only if each of its associates is
irreducible.
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10.

11.
12.
13.

14.

16.

17.
18.

19.
20.

21.

22,

24,

If f(x) € F[x] can be written as the product of two polynomials of lower
degree, provethat f{x)is reducible in F[x]. (This is the second part of the
proof of Theorem 4.11.)

., Find all irreducible polynomials of

{a} degree 2 in Z,[x] (b) degree 3 in Zy[x]

{c) degree 2 in Z,[x]

Is the given polynomial irreducible:

(a) ¥* — 3 in Qfx]? In R[x]?

®) X* + x — 2in Z5[x]? In Z,[x]?

Show that x* — 3 is irreducible in Z,{x].

Express x* — 4asa product of irreducibles in Q[x], in R[x], and in €[x].
Use unique factorization to find the ged in C[x] of {x — 3)(x — 4)'(x — i)
and (x — (x — 3)(x — 4)°.

Show that x> + x can be factored in two ways in Z4[x] as the product of non-
constant polynomials that are not units and not associates of xor x + 1,

. {a) By counting productsof the form (x + @)(x + 5), show that there are

exactly (p* + p)/2 monic polynomials of degree 2 that are ne? irreducible in
Z [x].

(b) Show that there are exactly (p* — p)/2 monic irreducible polynomials of
degree 2 in Z,[x].

Prove that p(x) is ireducible in F[x] if and only if for every g(x) € F[x], either

P(x)jg(x) or p(x) is relatively prime to g(x).

Prove (1) =+ (2) in Theorem 4,12,

Without using statement (2), prove directly that statement (1) is equivalent to
statement (3) in Theorem 4.12.

Prove Corollary 4.13.

If p(x) and ¢(x) are nonassociate irreducibles in F[x], prove that p(x) and g(x)
are relatively prime.

{a) Find a polynomial of positive degree in Z,[x] that is a unit.

{b) Show that every polynomial (except the constant polynomials 3 and &)
in Z5[x] can be written as the product of two polynomials of positive
degree.

(a) Show that »® + a is reducible in Z,[x] for eacha € Z,.
(b) Show that x* + a is reducible in ZJx] for eacha € Z;.

. (a) Showthat 22 + 2 isirreducible in ZJx].

(b) Factor ¥* — 4 asa product of irreducibles in Z[x].
Prove Theorem 4.14,
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25. Prove that every nonconstant f(x} € F[x] can be written in the form
cp(x)pLx) - - - pfx), with ¢ € F and each p(x) monic irreducible in #Tx].
Show further that if f{x) = dgi(x)gs(x) - - - g.(x) with 4 € Fand each g;(x)
monic irreducible in F[x], then m = 5, ¢ = d, and after reordering and
relabeling if necessary, p,(x) = g,(x) for each i.

m Polynomial Functions, Roots, and Reducibility

In the parallel development of F[x] and Z, the next step is to consider criteria for
irreducibility of polynomials (the analogue of primality testing for integers). Unlike
the situation in the integers, there are a number of such criteria for polynomials whose
implementation does not depend on a computer. Most of them are based on the fact
that every polynomial in F[x] induces a function from F to F. The properties of this
function (in particular, the places where it is zero) are closely related to the reducibility
or irreducibility of the polynomial.

Throughout this section, R is a convmutative ring. Associated with each polynomial
ax" + - -« +ap® + ayx + @y in R[x]is a function R — R whose rule is

foreachr € R, ﬂ’)=an'”+"'+ﬂzf2+ar+a@
The function finduced by a polynomial in this way is called a polynomial function.

EXAMPLE 1

The polynomial ¥* + 5x + 3 € R[x] induces the function R — R whose rule
isfir) =¢*+ 5r+ 3foreach r € R.

EXAMPLE 2

The polynomial x* + x + 1 € Z,[x] induces the function fZ; — 7, whose rule
isf() =+ +r+ L. Thus

JO=0+0+1=1, AD=P+1+1=0,
A=2+2+1=1
The polynomial x#* + x% + 1 € Z;[x] induces the function g:7s — 7, given by
g =0"+0*+1<=1, gD=P+2+1=0,
D=2 +22+1=1,

Thus f and g are the same function on Z,, even though they are induced by
different polynomials in Z,[x].*

Although the distinction between a polynomial and the polynomial function it
induces is clear, the customary notation is quite ambiguous. For example, you will seea

“Remember that Junctions fand g are equal if fr) = g(#) far every r in the domain,
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statement such as f{x) = x* — 3x + 2. Depending on the context, f(x) might denote the
polynomial x* — 3x + 2 € R[x] or the rule of itsinduced function f: R —+R. The sym-
bol x is being used in two different ways here. In the polynomial x? — 3x + 2, xisan
indeterminate (transcendental element) of the ring B[x].* But in the polynomial func-
tion £iR — 8, the symbol x is used as a variable to describe the rule of the function. It
might be better to use one symbol for an indeterminate and another for a variable, but
the practice of using x for both is so widespread you may as well get used to it.

The use of the same notation for both the polynomial and its induced function also
affects the language that is used. For instance, one says “evaluate the polynomial
3x? — 5x + datx = 2” or “substitute x = 2in 3x* — 5x + 4” when what is really meant
is “find f(2) when f'is the function induced by the polynomiat 3x* — 5x + 4”.

The truth or falsity of certain statements depends on whether x is treated as an
indeterminate or a variable. For instance, in the ring R{x], where x is an indetermi-
nate (special element of the ring), the statement x> — 3x + 2 = 0 is filve because, by
Theorem 4.1, a polynomial is zero if and only if all its coefficients are zero. When xis a
vatiable, however, as in the rule of the polynomial function f(x) = x* — 3x + 2, things
are different. Here it is perfectly reasonable to ask which elements of R are mapped to 0
by the function £, that is, for which values of the variable xis it true that 3* — 3x + 2= 0. It
may help to remember that statements about the variable x oocur in the ring R, whereas
statements about the indeterminate x oocur it the polynomial ring B[x].

Roots of Polynomials

Questions about the reducibility of a polynomial can sometimes be answered by
considering its induced polynomial function. The key to this analysis is the concept
of a root.

Definition Let R be a commutative ring and f{x) € Rix]. An clement & of R is said to
be aroot (or zero) of the polynomial fx} f fa) = Op, that is, if the induced

function f.R — R maps ate Og,

EXAMPLE )

The roots of the polynomial f{x) = x* — 3x + 2 € R[x] are the values of the
variable x for which f{x) = 0, that is, the solutions of the equation »* — 3x + 2 = 0.
It is easy to see that the roots are | and 2.

EXAMPLE 4

The polynomial i + 1 € R[x] has no rootsin R because there are no real-
number sotutions of the equation 3% + 1 = 0. However, if xt + 1 is considered
as a polynomial in C[x], then it has 7 and —# as roots because these are the
solutions in € of x* + 1 = 0.

*See page 550 in Appendlx G for more information.
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Theorem 4,15 The Remainder Theorem

Let F be a field, f(x) € Ax], and a € £. The remainder when f(x) is divided by
the polynomial x — a is f(a).

EXAMPLE S

To find the remainder when f{x) = x™ + 3x® + § is divided by x — 1, we apply
the Remainder Theorem with a = 1. The remainder is

M=1%+3:12+5=1+3+5=09.

EXAMPLE &

To find the remainder when f{x) = 3x* — 85" + 11x + 1is divided by x + 2, we
apply the Remainder Theorem carefilfy. The divisor in the theotem is x —a,

not x + a. S0 we rewrite x + 2 as x — (—2) and apply the Remainder Theorem
witha = —2. The remainder is

=) =3-2)-8(-2 +11(-2) + 1 =48 —-32-22+ 1= -5

Proof of Theorem 415 » By the Division Algorithm, f(x) = (x — a)q() + r(x),
where the remainder #(x) either is 0y or has smaller degree than the
divisor x — a. Thus deg r(x) = 0 or #{x) = Op It either case, r(x) = ¢ for
some ¢ € F. Hence, f{x) = (x — a)g(x) *+ ¢, so that f{a) = (a — a)g(a) +
c=0gt+te=¢ N

Theorem 416 The Factor Theorem

Let F be a field, fix) € flx], and a € F. Then a is a root of the polynornial f{x)
if and only if x — a is a factor of f{x) in FIx].

Proof» First assumethata is a root of f{x). Then we have
S(x) = (x — a)g(x) +r(x)  [Division Algorithm)]
Sx) =(x —a)g(x) + fla)  [Remainder Theorem)
J(x) = (x — a)q(x) [ is a root of f(x), so f{a) = Dg]

Therefore, x — ais a factor of f(x).
Conversely, assume that x — a is a factor of f{x), say f{x) = (x — a)g(x).
Then ais a root of f{x) because fla) = (a — a)g(a) =0sg(a) = 0 W
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EXAMPLE 1

To show that x* — x° + 2x¢* — 3x* — x + 2is reducible in O[], note that lis a
root of this polynomial. Therefore, x — 1is a factor.

Gorollary 4.17

Let F be a field and f{x) a nonzero polynomial of degree a in F[x]. Then f{x) has
at most nroots in F.

Proof* » 1f () has a root a; in F, then by the Factor Theorem, f(x) = (x — aj)(%)
for some A(x) € F[x]. If h(x) has a root a, in F, then by the Factor
Theorem

Jx) = (x — ap(x — aphix) for some b(x) € F[x].

If A;(x) has a root ay in F, repeat this procedure and contimue doing so
until you reach one of these situations:

(1) f(x) = (x — ar)(x — @) -+ {x — a)h(x)
2 f(x) = (x — a}fx ~ ay) - - - (x — a)h{x) and hy(x) has no

rootin F.
In Case (1), by Theorem 4.2, we have

deg f(x) = deg(x — a,} + deg(x — ax) + - - - + deg(x — a,) + deg kfx)
n=l31+ - F 1+ degh(n

n=n+deghfx)
Thus, deg A,(x) = 0, so hy(x) = ¢ for some constant ¢ € Fand f(x)
factors as

Mxy=dx—a)x —~a)-+-(x —ay.
Clearly, the n nambers a,, a, . - . , 4, are the only roots of f(x).
The argiment in Case (2) is essentially the same (just replace n by &)
and leads to this conclusion: » = deg f(x} = & -+ deg hx). So the num-
berof rootsiskandic<n. W

Gorollary 4.18

Let £ be a field and flx) € Flx], with deg f{x) = 2. If f{x) is irreducible in Ax],
then fix} has no roots in F.

Proofw 1 f(x)is irreducible, then it has no factor of the form x — ain F[x].
Therefore, f{x) has no roots in ¥ by the Factor Theorem. W

*If you prafaer & praat by induction, see Exarcise 29.
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The converse of Corollary 4.18 is false in general. For example, x* + 25* + 1 =
{x? + I{x* + 1) has no roots in < but is reducible in Q[x]. However, the converse is
true for degrees 2 and 3.

Corollary 4,19

Let £ be a field and let fix} = F{x] be a polynomial of degree 2 or 3, Then f{x) is
irreducible in Alx] if and only if f{x) has no roots in £,

Proof » Suppose f{x)is irreducible. Then f{x) has no roots in Fby Corollary 4.18.
Conversely, suppose that f{x) has no roots in F. Then f{x) has no first-
degree factor in Flx] because every first-degres polynoinial ex + din Fx]
has a root in F, namely —¢d Therefore, if f(x) = r(x)s(x), neither r(x)
nor ¢(x) has degree 1. By Theorem 4.2, deg f{x) = deg r(x) + deg s(x).
Since f{x) has degree 2 or 3, the only possibilities for (deg n(x), deg #(x))
are (2,0} or (0, 2) and (3, 0) or (0, 3). So either /{x) or s{x) must have
degree 0, that is, either #(x) or 5(x)is a nonzero constant. Hence, f(x)is
irreducible by Theorem 4.12. W

EXAMPLE 7

To show that X* + x + 1is irreducible in Z; [x], you need only verify that none
of 0,1,2,3,4 € Z;isaroot.

We close this section by returning to its starting point, polynomial functions.
Example 2 shows that two different polynomials in F[x] may induce the same function
from Fto ¥, We now see that this cannot occur if Fis infinite.

Corollary 4.20

Let £ be an infinite field and fx), gix)  Ax]. Then fx) and g(x) induce the
same function from Fto F if and only if fix) = g{x) in Ax).

Proof » Suppose that f{x) and g{x) induce the same fanction from Fto F. Then
fla) = gla), so that f{a) — gla) = O, for every @ & F. This means that
every element of Fis a root of the polynomial f(x) — g(x). Since Fis
infinite, this is impossible by Corollary 4.17 unless f{x) — g(x)is the
zero polynomial, that s, f{x) = g(x). The converse is obvious. W

B Exercises

NOTE: F denotes a field.
A. 1. (a) Find a nonzero polynomial in #y{x] that induces the zero function on £,.
{b} Do the same in #4[x].
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2.

13.

14.

Find the remainder when f{x) is divided by g{x):

@ f)=x"+Fand g(x)=x— 1 in Qx]

® ) =2x" -3+ x* — 223+ x —8and g(x) = x — 10in Q[x]

(©) F{x) = 10x" — 8x5 + 6x% + 4 ~2x1° + Sand p{x) = x + 1 in Qfx]
@ =2 -3+ +2x+ 3and g(x) = x — 3 ZJx]

. Determine if #(x) is a factor of Ax):

@) A(x) = x + 2and f(x) = x* — 3x% — 4x — 12in R[]
) Alx) = x —%andf(x) =2x* 4 x? +x—%'m0[x]

© A(x)=x+2and f{x) = 3 + dx* +2x" — 2+ 2x + 1in Zx]
() A() = x - 3and f{x) = ¥ — x* + x — 5in Z4[x]

. {a) Forwhatvalue of k is.x — 2 a factor of x* ~ 5x° + 5x% + 3x + kin Q[x]?

(b) Forwhat value of k is.x + 1 a factor of x*+ 2x° — 3x® + kx + 1 in Zs[]?

Show that x — lpdivides a,x" + * * « + a® + ax + ayin Flx] if and only if
Gy tatay+ o t+a, =0

. (a) Verify that every element of Z, is a rootof x* — x € Z4[x].

(b} Verify that every element of Z, is a root of X* — x € Z Jx].
{(c) Make aconjecture about the roots of »* — x € Z[x] (p prime).

. Use the Factor Theorem to show thatx? — x factors in Zfx] as

x(x —D{x — 2(x — 3(x —4)(x — 5)x — 6), without doing any polynomial
multiplication.

. Determine if the given polynomial is irreducible:

@ X*—7inRx] (b) x*— 7in Qfx]
(© #+7mClx] (@) 2¢° + ¥ + 2x +2in Z4fx]
(@ X —9mZyfx] (f) * + 2+ 1inZs[x]

. List all monic irreducible polynomialks of degree 2 in Z;[x]. Do the same in Zx].
10.
11.

Find a prime p > 5 such that x* + 1is reducible in Z,[x].
Find an odd prime p for which x — 2 isa divisorof x* + x* + 32> + x + 1in

Z [x].

. fa € Fis anonzero rootof ¢ + (' ++ <« + ox + ¢ € F[x], show

that ¢ lis arootof g + ¥ T+ -+ gux + g

{a) If f{x) and g(x) are associates in Flx], show that they have the same roots
m F.

(b} If fix), g(x) € Flx] have the same roots in F, are they associates in F[x]?

(a) Suppose r,s € Fareroots of ax*+ bx + ¢ € F[x] (with a # 0z). Use the

Factor Theoremto showthat r + s = —ga b andrs = a e



15.

16.

17.

18.

19.

20.

21,

22,

23,

25,
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(b} Supposer,s, f € Fareroots of ax®+ bx* + ex + d € F[x] (with a # 0g).
Showthatr + s+ £t = —a '"hand rs + st + rt = a 'cand rst = —ald,

Prove that x + 1 is reducible in Z [x] if and only if there exist integers aand b
such that p = @ + band ab = 1 (mod p).

Let f{x), g(x) € F[x] have degree < s and let cq, ¢1, . . . , €, be distinct elements
of £ If fle) = gledfori=0,1,...,n, prove that f{x) = g{x) in F[x].

Find a polynomial of degree 2 in 2 {x] that has four roots in £ Does this
contradict Corollary 4.17?

Let ¢;€ — C be an isomorphism of rings such that p(a) = « for each
a € Q. Suppose r € € isa root of f{x) € Q[x]. Prove that g(r)isalso a
root of f(x).

We say that a € F is a multiple root of f(x) € F[x]if (x — a)* is a factor of
fix) for some & = 2.

(a) Provethata € Ris a multiple root of f{x) € R[x]if and onlyif aisa
root of both f{x) and f7(x), where f"(x) is the derivative of f{x).

(b} If f{x) € R[x] and if f{x)is relatively prime to f*(x), prove that f{x) has
no multiple root in R.

Let R be an integral domain. Then the Division Algoritht holds in R[x]
whenever the divisor is monic, by Exercise 14 in Section 4.1. Use this fact to
show that the Remnainder and Factor Theorems hold in Rfx].

If Ris an integral domain and f{x) is a nonzero polynotnial of degree s in
R[x], prove that f{x) has at most n roots in R. [Hint: Bxercise 20.]

Show that Corellary 4.20 holds if Fisan infinite integral domain. [Hint: See
Exercise 21.]

Let f{x), g{x), #{x) € Flx]and r € F.
(a) If f{x) = g(x) + h(x) in F[x], show that f{r) = g(r) + h{) in F.
(b) If f(x) = g(x)H{x) in F[x], show that f(r) = g(r)h(r) in F.

Where were thesefacts used in this section?

. Let a be a fixed elernent of F and define a map ¢ F[x] — Fby ¢ [ fIx)] = fla).

Prove that ¢, is a surjective homotnorphism of rings. The map ¢, is called an
evaluation homomorphism; there is one for eacha € F.

Let (7] be the set of all real numbers of the form
roruwT+amtt o ag”, withnz0and v, e Q.
(a) Show that Q[#] is a subring of R.

(b} Show that the function 8:Q[x] = Q7] defined by B( f(x)) = f(7) is an
isomorphism. You may assume the followingnontrivial fact: 7 is not
the root of any nonzero polynomial with rational coefficients. Therefore,
Theorem 4.1 is true with R = Qand 7 in place of x. However, see
Exercise 26.
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26. Let Q[V2Z] be the set of all real numbers of the form
et V2 + eV + - + (VD" withaz0and r, € Q.
(a) Showthat Q[V/2]is a subring of R.

{b) Show that the function §:Q[x] - Q[ V2] defined by 8( f{x)) = (V) isa
surjective homomorphism, but not an isomorphism. Thus Theorem 4.1 is
nottrue with R = @ and V2 in place of x. Compare this with Bxercise 25.

27. Let Tbe the set of all polynomial functions from Fto F. Show that Tisa
commutative ring with identity, with operations defined as in calculus: For
eachr € F,

(fHeXn=An+el} and  (fg(r)=f(rglr)
[Hint: To show that Tis closed under addition and multiplication, use
Exercise 23 to verify that / + g and f¢ are the polynomial functions induced
by the sum and product polynomials f{x) + g(x) and f{x)g(x), respectively.]

28. Let Tbe the ring of all polynomial functions from Z; to Z; (see Exercise 27).
(a} Show that T is a finite ring with zero divisors, [ Hini. Consider f(x) = x + 1
and g(x) = x* + 2x.]
{b) Show that T cannot possibly be isomorphic to Z;[x]. Then see Exercise 30.
29. Use mathematical induction to prove Corollary 4.17.

C.30. If Fis an infinite field, prove that the polynomial ring F[x] is isomorphic to
the ring T of all polynomial functions from Fto F (Exercise 27). [Hint: Define
a map {p:Flx] — T by assigning to each polynomial f{x) € F[x] its induced
function in T, ¢ is injective by Corollary 4.20.]
31. Let ¢:F[x] = F]x] be an isomorphism such that g¢(a) = a for every a € F.
Prove that f{x) is irreducible in F[x] if and only if ¢{ f{x)) is.
32. (a) Show that the map ¢:F[x] — F[x] given by ¢( f(x)) = f{x + ) is an
isomorphism such that p{a) = a foreverya € F.
{b) Use Exercise 31 to show that f{x) is irreducible in F[x] if and only if
fix+1pis.

m Irreducibility in Q[x]*

The central theme of this section is that factoring in {)[x] can be reduced to factoring
in Z[x]. Then elementary number theory can be used to check polynomials with inte-
ger coefficients for irreducibility. We begin by noting a fact that will be used frequently:

If f(x) & Qx|, then ¢f{x) has integer
coefficients for some nonzero integer ¢.

*This section is used only in Chapters 11, 12, and 15. It may be omitted untilthen, if desited. Section 4.6
is independent of this section.
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For example, consider
2 3 1
fx=x5+ Ex‘ + 413 3

The least common denominator of the coefficients of f{x)is 12, and 12f{x) hasinteger
coefficients:

12f{x)=1_2[x’+%£‘-+%r’-%]=12}?+8x‘+9x"‘—2.

According to the Factor Theorem, finding first-degree factors of a polynomial
g(x) € Qfx] is equivalent to finding the roots of g(x) in Q. Now, g(x) has the same
roots as cg{x) for any nonzero constant ¢. When ¢ is chosen so that ¢g(x) has integer
coefficients, we can find the roots of g{x) by using

Theorem 4,21  Rational Root Test

Let fix) = aX" + a,_x™ ' + ++ - + ax + &, bea polynomial with integer coef-
ficients. If r # 0 and the rational number r/s (in lowest terms) is a root of f{x),
then rja; and sja,.

Proof» First consider the case when s = 1, that is, the case when the integer r
is a root of f(x), which means that ay® + g, o™ 1+ +ay + a5 = 0.

Henoce,
G =—a — gt — - —ay
&= Ha™ — Gt = — ),
which says that r divides a,.

In the general case, we use essentially the same strategy. Since r/sisa
toot of f{x), we have

’ -
) ) oo ame

‘We need an equation involving only integers (as in the case when s = 1.
So multiply both sides by £”, rearrange, and factor as before:

arf ta - taflrt g =0
* G = —ap — ay gl — - = g @Yy
tot = - o — @R = o - Y,

This tast equation says that r divides ays®, which is not quite what we
want. However, since #/s is inlowest terms, we have (r, 5) = 1. It follows
that (r,#") = 1(a prime that divides s"also divides s, by Corollaty 1.6).
Since r|aps” and {r, &) = 1, Theorem 1.4 shows that r|gy. A similar argu-
ment proves that s |a, {just rearrange Equation () so that g#” is on one
side and everything else is on the other side). B
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EXAMPLE 1

The possible roots in @ of f/{x) = 2x* + x* — 21x* — 14x+ 12 are of the form

r/s, where risoneof 1, £2, £3, +4 +6, or +12 (the divisors of the constant

term, 12) and s is 1 or *2 (the divisors of the leading coefficient, 2). Hence,

the Rational Root Test reduces the search for roots of f(x) to this finite list of

possibilities:

113 3

' 22 2

It is tedious but straightforward to substituie each of these in f{) to find that —3
1

and S e the only roots of f{x) in €.* By the Factor Theorem, both x — (—~3} =

1,—1,2, —2,3, ~3,4, —4,6 —6, 12, —12,

x+3and x — % are factors of f{x). Division shows that

Fx) = (x + 3)(x ——i—)(z;’ - 4x ~ 8).

The guadratic formula shows that the roots of 2x* — 4x — 8 are 1 + V5,
neither of which is in Q. Therefore, 2x* — 4x — 8is irreducible in Q[x] by
Corollary 4. 19. Hence, we have factored f{x) as a product of irreducible poly-
nomials in Gx].

EXAMPLE 2

The only possible roots of g(x) = x* + 4x* + x — 1in @ are 1 and —1 (Why?).
Verify that neither 1 nor —1 is a root of g(x). Hence g{x) is irreducible in Q]
by Corollary 4.19.

If fTx) & Qfx], then ¢f(x) has integer coeflicients for some nonzero integer ¢. Any
factorization of ¢f(x) in Z[x] leads to factorization of f{x) in Q[x]. So it appears that
tests for irreducibility in Qfx]can be restricted to polynomials with integer coefficients.
However, we must first rule out the possibility that a polynomial with integer coeffi-
cients could factor in Gfx but not in Z[x). In order to de this, we need

Lemma 4,22

Let fix} g(x), hix} e Z[x]with f{x} = glx)h(x). If p is a prime that divides every
coefficient of f(x), then elther p divides every coefficient of g(x) or p divides
every coefficlent of h(x}

*A graphing cakculator will reduce the amount of computation significantly. Since the x-intercepts of
the graph of y = fix) are the roots of f{x), you can eliminate any numbers from the list that aren't near

1 3
an intercept. In this case, the graph indicates that you need anly check —3,5. and -7
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Proof » Let f(x) = 2y + ax + ++ - + @, g(x) = by box + - -+ + by, and
A(x) = gy + cyx + + < * + g, x*. We use a proof by contradiction. If the
lemma is false, then p does not divide some coefficient of g(x) and some
coefficient of A(x). Let b, be the first coefficient of g{x) that is nof divis-
ible by p, and let ¢, be the first coefficient of k(x) that is nof divisible by
P Then p|b,for i <rand p|c,for j < ¢. Consider the coefficient a,,, of
J(x). Since f{x) = g(x)h(x),

gy =bgGrit  Fh g T Dt B T By
Consequentily,
be, =y — [botyy, + - F br—lcﬂ-ll - [bﬁucr—l + -+ el

Now, p| a4 by hypothesis. Also, p divides each term in the first pair of
brackets because r was chosen so that p | b, for each i < r. Similarly, p
divides each term in the second pair of brackets because p | c, for each

J < t. Since pdivides every term on the right side, we see that p|b,c,.
Therefore, p | b, or p|c; by Theorem 1.5. This contradicts the fact that
neither b, nor ¢, isdivisible by p. W

Theorem 4.23

Let f(x) be a polynamial with integer coefficients. Then f{x) factorsas a prod-
uct of polynomials of degrees m and n in Q[x] if and anly if f{x) factors asa
praduct of polynamials of degrees mand nin Z[x].

Proof » Obviously, if f{x) factors in Z[x], it factors in Q[x]. Conversely, suppose
Fx) = p(x)ix)in Q[x]. Let ¢ and d be nonzerc integers such that cg(x)
and dh(x) baveinteger coefficients. Then cdf(x) = [cg(x)fdh{x)]in Z[x]
with deg cg(x) = deg g(x) and deg dh{x) = deg A{x). Let p be any prime
divisor of ¢d, say ed = pi. Then p divides every coefficient of the polyno-
mial edf(x). By Lemma 4.22, p divides either every coefficient of cg(x)
or every coefficient of dh(x), say the former. Then cg(x) = pk(x) with
k(x) € Z[x] anddeg k(x) = deg g(x). Therefore, pgf(x) = cdfix) =
[e£O)N[dh{x)] = [ph{x)][dh(x)). Canceling 7 on each end, we have
tf(x) = k(x)dh(x)] in Z[x].

Now repeat the same argument with any prime divisor of ¢ and cancel
that prime from both sides of the equation. Continue until every pritme
factor of cd has been canceled. Then the left side of the equation will be
+ f{x), and the right side will be a productof two polynomials in Z[x],
one with the same degree as g(x) and one with the same degree as A(x). W

EXAMPLE 3

We claim that f{x) = x* — 5x® + 1 s irreducible in Q[x]. The proof is by con-
tradiction. If f{x) is reducible, it can be factored as the product of two noncon-
stant polynomials in Q[x]). I either of these factors has degree 1, then f{x) has
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aroot in Q. But the Rational Root Test shows that f{x) has no roots in ©. (The
only possibilitiesare 1, and neither is a root.) Thus if f{x)is reducible, the
only possible factorization i as a product of two quadratics, by Theorem 4.2,
In this case Theorem 4.23 shows that there is such a factorization in Z[x].
Furthermore, there is a factorization as a product of moenic quadratics in Z[x]
by Exercise 10, say

Frax +H)(P+ex +d =252+ 1
with g, b, ¢, d € Z. Multiplying out the lefi-hand side, we have

X +@+ed + (ac + b + dyd + (be + ad)x + bd
= +00 -5+ 0x+ 1.

Equal polynomials have equal coefficients; bence,
ate=0 a+btd=-5  berad=0 bd=1,
Sincea + ¢ =0, we havea = —¢, 5o that
~S=zage+b+d=—0+b+d,

or, equivalently,
s5=—-b—d
However, bd =1 in Z implies that 5 = d= 1or b = d= —1, and so there are only
these two possibilities:
5=2-1—-1 o S=c+1+1
7=¢ 3=2

There is no integer whose square is 3 or 7, and so a factorization of f{x)as a
product of quadratics in Z[x], and, hence in C[x], is impossible. Therefore, f{x)
is irreducible in Q[x].

The brute-force methods of the preceding example are less effective for polynomii-
als of high degree because the system of equations that must be solved is complicated
and difficult to handle in a systematic way. However, the irreducibility of certain poly-
nomials of high degree is easily established by

Theorem4.24  Eisenstein's Criterion

et fx} = ax" + - - - + 8% + a; be a nonconstant polynomial with Integer
coefficients. If there is a prime p such that p divides each of ag, a1, - - - | 81
hut p does not divide a, and p? does not divide &, then £x) is irreducible in Qlx].

Praaf» The proof is by contradiction. If f{x) is reducible, then by Theorem 4.23
it can be factored in Z[x], say

)=y +bx+---+bxNeg texx+-- -+ ,x9),
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where each b, ¢, € Z,r = 1, and 5 = 1. Note that ay = byco. By hypothe-
sis, p|agand, hence, p |4, or p| ¢ by Theorem 1.5, say p|&;. Since p? does
not divide gy, we see that £y is not divisible by p. We also have 4, = &,
Consequently, p does not divide &, {otherwise a, would be divisible by p,
contrary to hypothesis). There may be other & not divisible by p as well.
Let &, be the first of the & not divisible by p; then 0 < k = r < nand

plhfori<k and plb.
By the rules of polynomial multiplication,
@ = bty T bty + 000 T by T by,
so that
by =ar— by — ey — < - —bp ey

Since p |ay. and p |b, for § < k, we see that p divides every term on the
right-hand side of thisequation. Hence, p |b.¢q. By Theorem 1.5, p must
divide &;, or ¢p. This contradicts the fact that neither & nor ¢y is divisible
by p. Therefore, f{x) is irreducible in Q[x]. W

EXAMPLE 4

The polynomial x17 + 6x!% — 15x* + 3x — 9x + 12 is irreducible in @[x] by
Fisemnstein's Criterion with p = 3.

EXAMPLE §

The polynomial x* + 5 is irreducible in Q[x] by Eisenstein’s Criterion with
p = 5. Similarly, " + 5 is irreducible in Q[x] for each » == 1. Thus

there are irreducible polynomiaks of every degree in Qjx].

Although Eisenstein’s Crterion is very efficient, there are many polynomials to
which it cannot be applied. In such cases other techniques are necessary. One such
method involves reducing a polynomial mod p, in the following sense. Let p be a posi-
tive prime. For each integer 4, let [a] denote the congruence class of ain Z,. If f{x) =
a* + <« + + ax + ayis a polynomial with integer coefficients, let j_r(x) denote the
polynomial [a,}x* + - - - + [ax + [ag] in Z,[x]. For instance, if f{x) = 2x* — 3:* +
5x + 7in Z[x], then in Z4[x],

JO) = [2%* ~ [3%° + [Sk +[7]
= [2pr* - [0 + [2]x + [1] = [2]* + [2]x + [1),

Notice that f{x) and f(x) have the same degree. This will always be the case
when the leading coefficient of f{x) is not divisible by p (so that the leading
coefficient of f(x) will not be the zero classin Z,).
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Theorem 4,25

Let f(x) = ax* + - - - + apx + a, be a polynornial with integer coefficients, and
let p be a positive prime that does not divide a,. If f{x) is irreducible in Z]x],
then f{x} is irreducible in Ofx).

Proof» Suppose, on the contrary, that f{x) is reducible in Q[x]. Then by
Theorem 4.23, f{x) = g{x)h{x) with g(x), (x) nonconstant polynomials
in Z[x]. Since p does not divide 4, the leading coefficient of f{x), it
cannot divide the leading coefficients of g(x) or #(x) (whose product is
&,). Consequently, deg g(x) = deg g(x) and deg &(x) = deg A(x). In par-
ticular, neither g(x) nor f(x)is a constant polynomial in Z,[.

Verify that f(x) = g(x)#(x)in Z[x] implies that f(x) = g(x)k(x) in
Z [x] (Exercise 20). This contradicts the irreducibility of f{x)in Z,[x).
Therefore, f{x) must be irreducible in Qfx]. ®

The usefulness of Theorem 4.25 depends on this fact: For each nonnegative in-
teger k, there are only finitely many polynomials of degree k in Z,[x] (Exercise 17).
Therefore, it is always possible, in theory, to determine whether a given polynomial in
# [x] is irreducible by checking the finite number of possible factors. Depending on
the size of p and on the degree of f{x), this can often be done in a reasonable amount
of time.

EXAMPLE 6

To show that f(x) = x* + 8% + 322 + 4x + 7is irreducible in Q[x], we reduce
mod 2. In Zy[x, f{x) = x* + x* + 1.* It is easy to see that f(x) hasno roots in
Z,and hence no first-degree factors in Z,[x]. The only quadratic polynomials in
Z,x] are 2% x* + x, x> + 1, and ¥ + x + 1. Howeves, if X%, 22 + x = x{x + I},
or x% + 1 = {x + D(x + 1) were a factor, then f{x) would have a first-degree
factor, which it doesn't. You can wse division to show that the remaining qua-
dratic, 22 + x + 1,is not a factor of f{(x). Finally, f(x)cannot have a factor
of degree 3 or 4 (if it did, the other factor would have degree 2 or 1, which is
impossible). Therefore, £(x) is irreduciblein Z,[x]. Hence, f{x) is irreducible

in Q[x].

CAUTION: If a polynomial in Z[x] reduces mod p to a polynomial that
is reducible in Z [x], then no conclusion can be drawn from
Theorem 4.25. Unfortunately, there may be many p for
which the reduction of f{x) is reducible in Z,[x], even when
f(x) is actually irreducible in Qx). Consequently, it may
take more time to apply Theorem 4.25 than is first apparent.

*When no confusion is likely, we omit the brackets for elements of Z,.
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B Exercises

A L

10.

B.11.

12,

13.

14.

Use the Rational Root Test to write each polynomial as a product of irreduc-
ible polynomials in Q[x};

(@ —t+ X+ +x+2 (b) =5+ 4+ — 2
© 35 + 22 — 73 + 227 @ 2x*~ 55 +32+4x— 6
(e ¢+ 1+ 52 +7x+3 (M) 6x* — 3+ 25+ 33x +7

. Show that /p is irrational for every positive prime integer p. [Hint: What are

the roots of x® — p? Do you prefer this proof to the one in Exercises 30 and 31
of Section 1.37]

. If a monic polynomial with integer coefficients has a root in (3, show that this

root must be an integer.

. Show that each polynomialis irreducible in ©[x], as in Example 3.

(2 *+22%+x+1 (b) **— 2% +8x+1

. Use Eisenstein’s Criterion to show that each polynomial is irreducible in Q[x]:

(a) ¥ —4x +22 (b) 10 — 15x + 25x* — 7x*
©) 5xM" —6x* + 1223 + 36x — 6

. Show that there are infinitely many integers & such that 2® + 12x° — 21x + &

is irreducible in Q[x].

. Show that each polynomial f{x) is irreducible in Q[x] by finding a prime p

such that f(x) is irreducible in Z,{x]
(@ 75+ 67 t4x+ 6 (b) 9x*+ 4> —3x+ 7

. Give an example of a polynormial f(x) € Z[x] and a prime p such that f(x)

is reducible in Q[x] but f(x)is irreducible in Z,[x]. Does this contradict
Theorem 4.25?

, Give an example of a polynomial in Z[x] that is irreducible in ([x] but factors

when reduced mod 2, 3, 4, and 5.

If a monicpolynomial with integer coefficients factors in Z[x] as a product of
polynomials of degrees m and n, prove that it can be factored as a product of
monic polynomials of degrees » and # in Z[x].

Prove that 30x" — 91 (where # € Z, 1 > 1) has no roots in Q.

Let Fbeafield and f(x) € F[x]. If ¢ € Fand f{x + ¢) is irreducible in F[x],
prove that f(x) is irreducible in Fx]. [Hirt: Prove the contrapositive.)

Prove that f(x) = ¥* + 4x + 1is ireduciblein Q[x] by using Eisenstein’s
Criterion to show that f{x + 1) is irreducible and applying Exercise 12

Prove that f(x) = x* + x* + 2@ + x + lisirreducible in Q[x]. [Hin:: Use the
hint for Exercise 21 with p = 5.]

. Let f{x) = ayx" + g4_1x"1 + «+ + + ayx + aq be a polynomial with integer

coefficients. If p is a prime such thatp|a;, play, . . ., p|a, but p} oy and
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16.

17.
18.

19.

p* 4 a,, prove that f(x) is irreducible in Qfx]. [Hint: Let y = 1/x inf(x)/"; the
tesulting polynomial is irreducible, by Theorem 4.24.)

Show by example that this statement is false: If f(x) & Z[x] and there is no
ptime p satisfying the lypotheses of Theotem 4.24, then f{x) is reducible in Ofx].

Show that there are #**' — #* polynomials of degree & in Z,[x].

Which of these polynomials are irreducible in € x):

(a) ¥*—x*+1 M) x*+x+1
©XF+at+27+3%3—-x+5 WAL +522+4x+7

Write each polynomial as a product of irteducible polynomials in €@[x).
(@) X +2x* — 6x* — 16x — 8 M) x? — 28 —6x* — 1522 — 33x — 5

20 fflx)=a"+ «« - +ax +ag, g(x) =5+ « <+ + bx+ by, and x) =

C.21.

e’ + -+~ + ¢1x + ¢ aze polynomials in Z[x] such that f{x) = g(x)4(x), show
that in Z,[], F(x) = g{x){x). Also, see Exercise 19 in Section 4.1.

Prove that for p prime, f(x) = 21 + 2+ - -« + x2 + x + lisirreducible
in Qx). [Hne: (x — [)f(x) = ¥ — 1,50 that f(x) = (F — 1)/(x — 1) and
flx +1)=](x + 1) —1)/x. Expand (x + 1)? by the Binomial Theorem

P
(Appendix E) and note that p divides (k) when &k > 0. Use Eisenstein’s
Criterion to show that f{x + 1) is itredweible; apply Exetcise 12]

EXCURSION: Geometric Censtructions (Chapter 15) may be epvered at
this point if dagired.

m Irreducibility in R[x] and C[x]*

Unlike the situation in &fx], it is possible to give an explicit description of all the irre-
ducible polynomials in R[x] and Cfx]. Consequently, you can immmediately tell if a poly-
nomial in 8x] or €[] is irreducible without any elaborate tests ot ctitetia. These facts
are a oconsequence of the following theoretm, which was first ptoved by Gauss in 1799:

Theorem 4.26 The Fundamental Theorem of Algebra

Every nonconstant polynomial in €x] has aroot in C.

This theorem is sometimes expressed in other terminology by saying that the field
C is algebralcally closed. Every known proof of the theorem depends significantly on
facts from analysis and/or the theory of functions of a complex vatiable, For this rea-
son, we shall considet only some of the implications of the Fundamental Theorem on
irreducibility in C[x] and R[x]. For a proof, see Hungerford [5].

*This section is used anly in Chaptars 11and 12. It may be amitted until then, if desired.
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Gorollary 4.27

A polynomial is irreducibie in C[x] if and only if & has degree 1.

ProofsA polynoial f{x) of degree = 2 in Cfx] has a root in € by Theorem 4.26
and henge a first-degree factor by the Factor Theorem. Therefore f(x} is
reducible in C[x], and every irreducible polynomial in C[x] must have
degree 1. Conversely, every first-degree polynomial is irreducible
(Example 1 in Section4.3). B

Corollary 4.28

Every nonconstant polynomial f{x) of degree n in Cix] can be written in the
form c(x — a,{x — &)« « - (x — a,) for somec, a;, a,, . ..,a, € C.This factor-
ization is unigue except for the order of the factors.

*By Theorem 4.14, f{x) 1s a product o iclble polynormals in Cfx).

Proof» By Theorem 4.14, £(:) duct of irreducible polynomials in C
Each of them has degree 1 by Corollary 4.27, and there are exactly # of
them by Theorem 4.2. Therefore,

SOy =(nx + s)rx + 59 - - - (rx + 5
= ri(x ~ (ry e ~ (') - onlx ~ (7))
=dx ~a)(x —ay - (x —ay,
where ¢ = ry#y - « - v, and g, = r; 15, Uniqueness follows from Theorem 4.14;

see Exercise 25 In Section 4.3. H

To obtain a description of all the irreducible polynomials in R[x], we need

Lemma 4.29

If f{x) is a polymomial in RixJand a 4+ b/ is a root of f{x) inC, then a — biis also
a root of fix}.

Prosf » 1f ¢ = a + bi € C(with a, b € R), let €denote a — bi. Verify that for
anye, d e C,

ctd)=c+d ad d=rcd

Also note that € = ¢ if and only if ¢ is a real member. Now, I f{x) = ax® +
«» + ayx + a5 and ¢ is a oot of f{x), then f{c) = 0, so that
0=0=J(c) =ae"+ -+ ax + 4
=GE -+ T+ G

=ag*+ -~ +ag+ a [Because each a,cR]
= f(e).

Therefore ¢ = a ~ bi isalso a oot of f(x). W
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Theorem 4.30

A polynomial f{x) is irreducible in R{x] if and only If fx) is a first-degree poly-
nomial or

fiy=ax®+ bx+c  with b2~ dac <O0.

Proof» The proof that the two kinds of polynomials mentioned in the theo-
rem are in fact irreducible is left to the reader (Exercise 7). Conversely,
suppose f{x) has degree = 2 and is irreducible in R[x]. Then f(x) has a
root win C by Theorem 4.26. Lemma 4.29 shows that w isalso a root
of f{x). Furthermore, w # w (otherwise w would be a real oot of f{x},
contradicting the irreducibility of f{x)). Consequently, by the Factor
Theorem, x — wand x — w arefactors of f{x) in C[x]; that is, f{x) =
(x — w)(x — wHh(x) for some A(x) in Cx]. Let g{x} = (x — w)x — w);
then f{x} = g(x)}h(x) in C[x). Furthermore, if w = r + si (withr,s & R),
then

g = (x~wlx —wW)=(x — ¢ +x— ¢ — sD)
=x*— 2x+ {1+ ).

Hence, the coefficients of g{x) are real numbers.

We now show that A(x) also has real coefficients. The Division
Algorithm in R[x] shows that there are polynomials g{x), A(x) in R[x]
such that f{x) = g(x)g{x) + Hx), with s(x} = 0 or deg r(x) < deg g(x). In
C[x], however, we have f{x) = g(x)h(x) + 0. Since ¢(x) and #(x) can be
considered as polynomials in C[x], the uniqueness part of the Division
Algorithm in C[x] shows that g(x} = A(x) and r{x) = 0. Thus Ax) =
g(x) & R[x]. Sinxce f{x) = g(x}h(x) and f{x) is irreducible in R[x] and
deg g(x) = 2, A(x) st be a constant 4 € R. Consequently, f{x) = deg(x)
isa guadratic polynomial in R[x] and hence has the form ax® + bx + ¢
for some 4, b, c & R. Since f{x) has no roots in R, the quadratic formula
(Exercise 6) showsthat b — dge < 0. W

Gorollary 4.31

Every polynomial f{x) of odd degree In R{x] has aroot in R.

Proofe By Theorem 4.14, 1(x) = py(x)p,(x) - «  pu(x) with each px) irreduc-
ible in R[x]. Each p(x) has degree 1 or 2 by Theorem 4.30. Theorem 4.2
shows that

deg flx) = deg pr(x} + deg po(x) + - - * + deg pu(x).

Since f{x) has odd degree, at least one of the p,(x) must have degree 1.
Therefore, f{x) hasa first-degree factor in R[x] and, hence,a roct in R. B
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It may scem that the Fundamental Theorem and its corollaries settle all the basic
guestions about polynomial equations. Unfortunately, things aren’t quite that simple.
None of the known proofs of the Fundamental Theorem provides a constructive way
to find the roots of a specific polynomial* Therefore, even though we know that every
polynomial equation has a solution in C, we may not be able to solve a particular
equation.

Polynomial equations of degree less than 5 are no problem. The quadratic formula
shows that the solutions of any second-degree polynomial equation can be obtained
from the coefficients of the polynomials by taking sums, differences, products, guotients,
and square roots. There are analogous, but more complicated, formulas involving cube
and fourth roots for third- and fourth-degree polynomial equations (see page 423 for one
version of the cubic formula). However, there are no such formulas for finding the roots
of all fifth-degree or higher-degree polynomials. This remarkable fact, which was proved
nearly two centurnes ago, is discussed in Section 12.3.

B Exercises

A. 1. Find all the roots in € of each polynomial {one root is already given):

(@ x* — 3" + x>+ Tx — 30; root | — 2i
) x*—2x" —x*+6x - 6;ro0t 1 + i
© %' — 4 + 3% + 14x + 26; root 3 + 2i

2. Find a polynomial in fx] that satisfies the given conditions:
{a) Monic of degree 3 with 2 and 3 + { as roots
(b) Monic of least possible degree with 1 — i and 2i as roots
(¢) Monic of least possible degree with 3 and 4i — 1 asroots

3. Factor each polynomial as a product of irreducible polynomials in @x], in
Rx], and in Clx]:

(@) ¥*—2 M 2+ 1 © F¥—x—5x+5
4. Factor ¥ + x + 1 + iin Clx].

B. 5. Show that a polynomial of odd degree in ®[x] with no multiple roots must
have an odd number of real roots.

*|t may seem strange that it is possible to prove that a root exists without actually exhibiting one,
but such “existence theorems" are guite common in mathematics. A very rough analogy is the
situation that occurs when a person is killed by a sniper's bullet. The police know that there is a
killer, but actually finding the killer may be difficult or impossible.
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6. Let f{x) = ax* + bx + ¢ € R[x] with g # 0. Prove that the roots of f{x)in C

are
—b+ V¥ — dac and b — V¥ — dac
2a 2a :
[Hint: Show that ax® + bx + ¢ = 0 is equivalent to x* + (b/a)x = —¢/a; then
complete the square to find x.)
7. Prove that every ax® + bx + ¢ € R[x] with & ~ 4ar < 0is irreducible in R[x].
[Hint: See Exercise 6].
B. fa+ Misarootof ¥ — 3¢+ 2ix +i— 1 € C[x], then is it true that a — bi
is also aroot?



CHAPTER |

Congruence in F[x] and Congruence-Class Arithmetic

In this chapter we continue to explore the analogy between the ring Z of integers
and the ring F[x] of polynomials with coefficients in a field £, We shall see that the
concepts of congruence and congruence-class arithmetic carry over from Z to
F[x] with practically no changes. Because of the additional features of the polyno-
mial ring F[x] {polynomial functions and roots), these new congruence-class rings
have a much richer structure than do the rings Z,. This additional structure leads
to a striking result: Given any polynomial over any field, we can find a root of that
poclynomial in some larger field.

m Congruence in F[x] and Congruence Classes

Definition

The concept of congruence of iniegers depends only on some basic facts about divisibility
in Z. If Fis a field, then the polynomial ring FTx] has essentially the same divisibility
properties as does Z. So it is not surprising that the concept of congruencein Z and its
basic properties {(Section 2.1) can be carried over to F[x] almost verbatim.

Let F be a field and f{x), g{x), p{x) & Ax] with p(x) nonzero. Then Rx) is
congruent to g{x) modulo p{x}—written f{x) = g(x) {mod p(x))}—provided
that p(x) divides f(x) — g(x).

EXAMPLE 1

InQd, 2%+ x + 1 = x + 2 (mod x + 1) because
(P+x+D-(x+D=X-1=(x+Dx-1).

1256
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EXAMPLE 2

In R, 3o 4+ 40 + 2x + 2 =X 4 357 + 3x + 4 (mod x* + 1) because
division shows that

G +dxd +2x+2) - (P + x4+ 3x+h=3"-xX +xF-x-2
=3+ Ex2— x - 2).

Theorem 5.1
Let F be a field and p{x} a nonzero polynomial in Flx]. Then the relation of
congruence modulo p{x} is
(1) reflexive: flx} = f(x} (mod p{x}} for all fix}e Flx];
(2} symmetric: if fix} = g{x} {(mod p(x}}, then g{x} = fix} (mod p{x));
(3) transitive: f f{x} = g{x} {mod p{x)} and g{x} = h(x} {mod p(x}}, then
fix} = h{x} (mod pix)).

Proof» Adapt the proof of Theorem 2.1 with p(x), Ax), g0x), A(x) in place of
nabe. A

Theorem 5.2

Let F be a field and p(x} a nonzero polynomial in Fx]. if fix} = g{x} (mod px))
and h(x) = k{x)} (mod p(x)}, then

(1) flx} + hix} = glx} + &x} (mod px)),
(2) fh(x) = glapkx} (mod p(x}).

Proaf» Adapt the proof of Theorem 2.2 with p(xd), f{x), g(x), A(x), k(x) in place
ofma,be,d W

Definition Let Fbea fiald and f{x), p(x} & Flx) with p{x) nonzero. The congruence class

(or residue class) of f{x}) medulo p{x) is denoted [fx)] and conslists of all
polynomials in Ax] that are congruent to f{x) modulo p(x}, that is,

(Ax)] = {g(x} )g(x) € Alx] and g(x) = fix} (mod p(x)}.
Since g(x) = (x) (modp(x)) means that g (x) = 7 (x) = k{x)p(x) for some k(x) € F[x]
or, equivalently, that g(x) = f(x) + k{x)p(x), we see that

)] = {£() g (x) = f(x) (mod p(x))}
= {f(x) + Kx)p(x) | k(x) € F[x]}.
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EXAMPLE 3

Consider congruence modulo x* + 1 in R[x]. The congruence class of 2x + 1is
the set

f2x + 1) + k) + 1) [A{x) W]},

The Division Algorithm shows that the eletnents of this set are the polynomials in #x]
that leave remainder 2x + 1 when divided by 22 + 1.

EXAMPLE 4

Consider congruence modulo »* + x + 1in Z5{x]. To ind the congruence
class of %2, wenotethat x2 =x + 1 (mod x® + x + 1) because x> — (x + 1) =
x? = x~1=(+x+ 1)1 (remember that 1 + 1 = 0inZ,, so that 1 = —1).
Therefore, x + 1 is a member of the congruence class [%]. In fact, the next
theorem showsthat[x + 1] = [xz]

Theorem 5.3
fix) = g{x} {mod p(x}) if and only if [fx)) = [g(x)).

Proof» Adapt the proof of Theorem 2.3 with £(x), g(x), p(x), and Theorem 5.1
in place of @, c, #, and Theorem 2.1. W

Corollary 5.4

Two congruence classes madulo p{x) are either disjoint or identical.

Proof» Adapt the proof of Corollary 24. N

Under congruence modulo # in Z, there are exactly # distinct congruence classes
(Corollary 2.5). These classes are [0], (1], . .., [z — 1). Note that there isa class foreach
possible remainderunder division by n. In Flx] the possible remainders under divi-
sion by a polynomial of degree n are all the polynomials of degree less than » (and, of
course, 0). So theanalogue of Corollary 2.5 is

Corollary 5.5

Let F be a field and p(x) a polynomial of degree n in F[x], and consider congru-
ence modulo plx).
{1} i fix)eAxland rix}isthe remainder when fix} is divided by p{(x}, then
() = [rixn).
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(2} Let S be the set consisting of the zero polynomial and all the poly-
namials of degree less than n in Flx], Then every congruence class
modulo p(x} is the class of some polynomial in &, and the congru-
ence classes of different polynomials in 5§ are distinct

Proofs(1) By the Division Algorithm, f{x) = p(x)g(x) + r(x), with (x) = Oz or
deg 7(x) < n. Thus, f(x) — r(x) = p(x)g(x), so that f{x) = (x) (mod p(x)).
By Theorem 5.3, [ f(x)] = [+{(x)].

(2) Since 1{x) = 0p or deg H{x) < n, we see that { x)c 8. Hence, every
congruence class is equal to the congruence class of a polynomial in 5.
Two different polynomials in 5cannot be congruent modulo p(x) because
their difference has degree less than #, and hence isnot divisible by p(x).
Therefore, differenit polynomials in 5 must be in distinct congruence
classes by Theorem 5.3. W

The set of all congruence classes modulo p(x) is denoted

Fx)/(p(x)),
which s the notational analogue of Z,,

EXAMPLE 5

Consider congruence modulo x? + 1in R[x]. There is a congruence class for
each possible remainder on division by x* + 1. Now, the possible remainders
are polynomials of the form rx + s (with r, s €R; one or both of 7, s may
possibly be 0). Therefore, R[x]/(x + 1) consists of infinitely many distinct
congruence classes, including

(0], el [ + 1], [ + 3], [gx + z], e=1]....

Corollary 5.5 states that [rx + §] = [cx + d] if and only if rx + s is equal (not
just congruent) to cx + 4. By the definition of polynomial equality, rx + s =
ex + dif and only if # = ¢ and 5 = d. Therefore, every element of R[x]/{(x* + 1)
can be written wriguely in the form [rx + 4.

EXAMPLE 6

Consider congruence modulo %% + x + 1 in Zfx]. The possible remainders on
division by x2 + x + 1 are the polynomials of the form ax + b with a, be Z,.
Thus there are only four possible remainders: 0, 1, x, and x + 1. Therefore,
Z4x)/(>x* + x + 1) consists of four congruence classes: [0], [1], [x], and [x + 1].

EXAMPLE 1

The pattern in Example 6 works in the general case. Let n be a prime integer,
so that Z, is a field and the Division Algorithm holds in Z,[x]. If p(x)e 2,(x]
has degree k, then the possible remainders on division by p(x) are of the form
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ay +apx +++ + gg_* !, with ¢,€Z,. There are n possibilities for each of
the k coefficients ay, . . . , @1, and so there are »* different polynomials of this
form. Consequently, by Corollary 5.5, there are exactly #* distinct con gruence
classesmodulo p{x) in Z,[x]/(p(x)).

B Exercises

NOTE: Fdenotes a field and p(x) a nonzero polynomial in Flx).

A, L

10.

11.

12

13.

Let f{x), g(x), p(x) € F[x], with p{x) nonzero. Determine whether f(x) = g(x)
{mod p{x)). Show your work.
@ )= -2¢+43 +x+ Lgx) =3 + 22 - 52— 9;
)=+, F=Q
M fE) =P+ +x+hgx) =+ +2+ |
x)=x2+x; F=%,
(€ flix)=" +4x* + 52 — 62+ 5x — T
=2 +6+ X+ 22+ 2k - 5;p) =} - +x - LF=R

. If p(x) is a nonzero constant polynomial in F[x], show that any two

polynomials in F[x] are congruent modulo p(x).

. How many distinct congruence classes are there modulo %* + x + 1 in Z,[x]?

List them.

. Show that, under congruence modulo x* + 2x + | in ;[x], there are exactly

27 distinct congruence classes.

. Show that there are infinitely many distinct congruence classes modulo x* — 2

in Q[x]. Describe them.
Leta € F. Describe the congruence classes in F[] modulo the polynomial x — a.

. Describe the congruence classes in F[x] modulo the polynomial x.

Prove or disprove: If p(x) is relatively prime to k(x) and f{x)k{x) = g(x)k{x)
(mod p(x)), then fix) = g(x) (mod p(x).

. Prove that f{x) = g(x) (mod p(x)) if and only if f{x) and g{x) leave the same

remainder when divided by p(x).

Prove or disprove: If p(x) is irreducible in F[x] and f{x)g{x) = 0r(mod p(x)),
then f1x) = 0p (mod p{x)) or g{x) = 0p (mod p{x)).

If p{x) is reducible in F[x], prove that there exist f{x), g{x) € F[x] such that
Six) # 0z (mod p(x)) and g(x) # 0 (mod p(x)) but f{x)g(x) = Ox(mod p(x)).
If f{x) is relatively prime to p(x), prove that there is a polynomial g(x) € F[x]
such that f{x)g(x) = 17 (mod p(x)).

Suppose f{x), g{x) € B[x] and f{x) = g{x) (mod x). What can be said about the
graphs of y = fix)and y = g(x)?
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m Congruence-Class Arithmetic

Congruence in the integets led to the rings Z,. Similarly, congruence in F[x] also pro-
duces new rings and fiekls. These turn out to be much richer in structure than the rings
Z,. The development hereclosely parallel Section 2.2.

Theorem 5.6

Let £ be a field and p(x) a nonconstant polynomial in Flx]. H[fx)] = [g(x)] ard
[h(n)] = [k{(x)]in Fx)/(p(x}}, then,

[fxy+ A)=[g(x) + &x)] and  [fx)A(x)] = [g(x)k{x}]
Proof» Copy the proof of Theorem 2.6, with Theorems 5.2 and 5.3 in place of
Theorems 2.2 and 2.3. ®

Because of Theorem 5.6 we can now define addition and multiplication of con-
gruence classes just as we did in the integers and be certain that these operations are
independent of the choice of representatives in each congruence class.

Definition Let £ be a field and p{x) a nonconstant polynomial In Ax]. Addition and
multiplication in F[x]/{p{x)) are defined by

()] + [g(x)] = [fix) + g(x)),
[f)1lg(x)] = [fxda(x)).

EXAMPLE 1

Consider congruence modulo x* + 1in R[x]. The sum of the classes [2x + 1)
and [3x 4+ 5]is the class

[2x + 1) + (3x + 5)] = [5x + 6].
The preduct is
[2x 4 1][3x + 5] = [(2x + D3x + 5)] = [6x*+ 13x + 5].

As noted in Example 5 of Section 5.1, every congruence dass in R[x]/(>* + 1)
can be written in the form [ax 4 £). To express the class [6x* 4+ 13x 4+ 5] in this
form, we divide 6x% + 13x + 5 by ¥ + 1 and find that

62+ 13x + 5 =6(x"+ 1) +(13x — 1).

It follows that 6:% 4+ 13x 4+ 5= 13x— 1 (mod »* + 1), and hence [6o® + 13x+ 5] =
(13x — 1).
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EXAMPLE 2

In Example 6 of Section 5.1, we saw that ZJx]/(x? + x + 1) consists of four
dasses: [0], [1], [x], and [x + 1]. Using the definition of addition of classes,
we see that [x + 1] + [1] =[x + 1 + 1] =[x] (remember that1 + 1 =10

in Z). Similar calculations produce the following addition table for
L)/t + x+ 1):

+ [0} 0 L[] [x + 1]
[0} o 1 D[] [x + 1
ar oo pmo I P+l I
[+ [x] x+1 [0 [
+1 | &+ A [1] [

Most of the multiplication table for Z;[x]/(>2 + x + 1} is easily obtained from
the definition:

@ M W x+n
(¥ [a (0] 1[0 [a
W | m  m_ W e+
[x] [a [x]

To fill in the rest of the table, note, for example, that
[ [x + 1] =[x + 1)] = [x* + x].

Now division or simple addition in Zy[x]showsthat ¥ + x = (2 + x + 1) + 1.
Therefore, ¥ + x = 1 (mod % + x + 1), so that [x* + x] = [1]. A similar calcu-
lation shows that [x] « [¥] = [x%] =[x + 1] (because = (2 +x+ D+ (x+ 1)
in Z,[x]). Verify that [x + 1][x + 1] = [x].

If you examine the tables in the preceding example, you will see that
L/ + x + 1) is a commutative ring with identity (in fact, a field). In view
of our experience with Z and Z,, this is not too surprising. What is unexpected is the
upper left-hand corners of the two tables (the sums and products of [0] and [1]). It is
easy to see that the subset F* = {[0],[1]} is actually a subring of Z[x}/(x*+ x + 1)
and that F* is iscmorphic to Z, (the tables for the two systems are identical except for
the brackets in F*}. These facts illustrate the next theorem.

Theorem 5.7

Let £ be a field and p(x) a nonconstant polynomlal in #flx]. Then the set
Ax1/{p(x)) of congruence classes modulo p{x} is a commutative ring with
identity. Furthermore, Ax1/{p{x)) contains a subring F* that is isomorphic to F.
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Proof» o prove that F[x]/(p(x)) is a commutative ring with identity, adapt the
proof of Theorem 2.7 to the present case. Let #* be the subset of
F[x]/(p(x)) consisting of the congruence classes of all the constant
polynomials; that is, F* = {[d] |ac F}. Verify that F* is a subring of
F[x]/(p(x)) (Exercise 10). Define a map ¢:F — F* by ¢(a) = [a]. This
definition shows that ¢ is surjective. The definitions of addition and
multiplication in F[x]/(p(x)) show that

Ga+b)=[a+b=[d+[b]=¢@+g®) and
p(ab) = [ab] = [a] - [b] = ¢(a) * @(b).
Therefore, @ is a homomorphism.
To see that ¢ is injective, suppose ¢(@) = @(b). Then [q] = [b], so that
a = b (mod p(x)). Hence, p(x) divides a — b. However, p(x) has degree = 1,

and a — be F. This is impossible unless ¢ — b = 0. Therefore, a = b and
¢ is injective. Thus ¢:F— F* is an isomorphism. M

We began with a field F and a polynomial p(x) in F[x]. We have now constructed a
ring F[x]/(p(x)) that contains an isomorphic copy of F. What we would really likeis a
ring that contains the field F itself. There are two possible ways to accomplish this, as
illustrated in the following example.

EXAMPLE 3

In Example 2, we used the polynomial x* + x + 1 in Z,[x] to construct the ring
Z4{x/(x* + x + 1), which contains a subset F* = {[0], [1]} that is isomorphic to

Z,. Suppose we identify Z, with its isomorphic copy F* inside Zfx]/(x* + x + 1)
and write the elements of F* as if they were in Z,. Then the tables in Example 2

become

+ o 1 [x] [x+1]
0 0 1 [ [x+1)
1 1 0 +1 [
[x] [x] [x+1] o 1
[x +1] [x+1] [x] 1 0

| o 1 x] [x + 1]
0 0 0 0 0
1 0 1 [ [x + 1)
[ 0 [ x+1 1
[x+ 1) 0 [x+1 1 [x]

We now have a ring that has Z, as a subset. If this procedure makes you a bit
uneasy (is Z, really a subset?), you can use the following alternate route to the
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same end. Let E be any four-element set that actually contains Z, asa subset,
say E = {U, 1, , 5}. Define addition and multiplication in E by

+|l0 1 r v« 4 60 1 r v
H H 1 ro¢ 0 0 H 0 0
111 0 s r 1[0 1 r &
r|lr 5 0 1 r| o r s 1
f£ls r 1 0 K] 0 5 1 r

A comparison of the tables for Z,[x]/(x* + x + 1) and those for E shows that
these two tings are isomorphic (replacing [x] by r and [x + 1] by s changes
one set of tables into the other). Therefore, E is essentially the same ring we
obtained before. However, E dees contain Z, as an honest-to-goodness subset,
without any identification.

What was done in the preceding example can be done in the general case. Given
a field F and a polynomial p(x) in F[x], we can construct a ring that contains F as
a subset. The customary wayto do thisis to identify F withits isomorphic copy F*
inside F[x)/(p(x)) and to consider F to be a subset of F[x]/(p(x)). If doing this
makes you uncomfortable, keep in mind that you can always build a ring isomorphic
to F[x]/(p(x)) that genuinely contains F as a subset, as in the preceding example.
Because this latter approach tends to get cumbersome, we shall follow the usual
custom and identify Fwith F* hereafter. Consequently, when a, & € F, we shall write
b[x]instead of [#][x] and a + &[x]instead of [a] + [5][x] = [a + bx]. Then Theorem 5.7
can be reworded:

Theorem 5.8

Let £ be a field and p{x) a nonconstant polynomial in F{x]. Then Ax]/{p(x)} is a
commutative ring with identity that contains F.

If a and » are integers such that (a, 7y = 1, then by Theorem 2.10, [a] is a unitin Z,,.
Hereis the analogue for polynomials. B

Theorem 5.9

Let £ be a fleld and p{x) a nonconstant polynomial in Flx]. if fix) e Fx] and fix)
is relatively prime to p{x), then [fx)] is a unit in F[x]/{p{(x).

Proof » By Theorem 4.8 there are polynomials #(x) and «(x) such that f(x)u(x) +
P(x)(x) = 1. Hence, flx)u(x) — 1 = —p{x)fx) = p(x)—{x)), which
implies that [f(x)u(x)] = [1] by Theorem 5.3. Therefore, [ f(x)#(x)] =
[A(x)x)] = [1], so that [f{x)]is a unit in Flx)/(p(x)). B
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EXAMPLE 4

Since x* — 2 is irreducible in Q[x], 2x + 5 and x* — 2 are relatively prime in G{x].
(Why?) Hence, [2x + 5] is a unit in the ring [x]/(>* — 2). The proof of Theorem 5.9
shows that its inverse is [1{x)], where (2x 4+ 5)(x) + (x* — 2r{¥) = 1., Using the
Buclidean Algorithm as in Exercise 15 of Section 1.2, we find that

(2x+5)(——x+ ) + (& — (4_!)=1.

Therefore, [—3x + 37 | 5 the imverse of [2x + 5] in Q[x/(x* - 2).

B Exercises

A. In Exercises 1-4, write out the addition and multiplication tables for the congruence-
class ring F[x1/(p(x)). In each case, is F[x]/(p(x)) a field?
1. F=Zgpx)=x*+x41 2 F=Zypx)=x+1
LF=Z;p(x)=x>+1 4 F=Zgpx)=x+1
B. In Exercises 5-8, each element of the given congruence-class ring can be written
in the form [ax + b) (Why?). Determine the rules for addition and multiplication

of congruence classes. (In other words, if the product lax + bllcx + d)] is the
class[rx + 5), describe how to find r and s from a, b, ¢, d, and similarly for

addition.)
5. R[x)/(x* + 1) [Hins: See Example 1.)
6. Qx)/(x* ~2) 7. Qx)/( - 3) 8. Qx/(xH

9. Show that B[x]/(x* + 1) is afield by verifying that every nonzero congruence
class [ax + &) is a unit. [Hint: Show that the inverse of [ax + &]is [cx + d],
where ¢ = —a/(@ + V) andd = bf(a® + 1*)]

10. Let Fbe a field and p(x) € F[x]. Prove that F* = {[4]| a € F} is a subring of
Flx/(p(x)).
11. Show that the ring in Exercise 8 is not a field.

12. Write out a complete proof of Theorem 5.6 (that is, carry over to F[x] the
proof of the analogous facts for Z).

13. Prove the first statement of Theorem 5.7.

14. In each part explain why [ Ax)] is a unit in F[x)/(p(x)) and find its inverse.
[Hint: To find the inverse, let #(x) and vf x) be as in the proof of Theorem 5.9,
You may assume that #(x) = ax + & and w(x) = c¢x + 4. Expanding f (x)(x) +
B(xn(x) leads to a system of linear equations in g4, &, ¢, d. Solve it.]

@ [f(x)]= 2x - AeQx)/(x* - 2)
(b) [f ()] = [* +x + 1 eZx/(x" + 1)
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C.15. Find a fourth-degree polynomial in Z,[x] whose roots are the four elements of
the field Z [}/ (x* + x ++ 1), whose tables are given in Example 3. [Hint: The
Factor Theorem may be helpful.]

16. Show that Q[x/ (2 — 2) is a fleld.

E The Structure of F[x]/(p{x)) When p(x) Is Irreducible

When p is a prime integer, then Theorem 2.8 states, in effect, that Z, is a field (and, of
coutse, an integral domain). Here is the analogous result for F[x] and an irreducible
polynomial p(x).

Theorem 5,10

let F be a field and p(x} a nonconstant polynomial in £f[x]. Then the following
statements are equivalent:

(1} plx) is irreducible in Ax).
{2} Fx)/{p(x) is a field.
(3) Flx1/(p{x)) is an integral domain.

Theotem 5.10 and most of its proof are a copy of Theotem 2.8 and its proof, with
£ replaced by Flx] and Z, by A(x)/(p(x)), and the necessary adjustments made for the
differences between prime integers and irreducible polynomials.

Proof of Theorem 840+ (1) = (2) By Theorem 5.7, F(x)/(p(x)) is a commutative
ring with identity, and thus satisfies Axtoms 1-10. To prove that
Ax)/(p(x)) is a field, we must verify that every nonzeto element in
Ax)/(p(x)) is a unit (Axiom 12, page 49). Suppose that [a{x)] # [0]in
Ax)/ (p(x)). Wemust find [e{x)] suchthat [a{x)] [#(x)] = [14. Since
[a(x)] # [0], we know that a(x) % 0 (mod p(x)) by Theorem 5.3. Hence,
P(x) t a(x) by the definition of congruence. Now the ged of a(x) and
p{(x)is a monic polynomial that divides both a(x) and p(x). Since p(x)
isirreducible, the ged is either 1por a monic associate of p(x) (the only
monic divisots of p(x)) As explained on page 100, an associate of p(x)
is a polynomial of the form gp(x), with Op # ¢ £ F. Consequently, a(x)
is not divisible by any associate of p(x) (because a(x) is not divisible by
p(x)). Since theged also divides a(x) and p(x) ¥ a(x), theged of a(x) and
p(x)must be 1p. By Theorem 4.8, thete are polynomials #(x) and ¥(x) so
that a(x){x) + p(x)v(x) = 15 Hence, a(x)u(x) — 1p= p(x)(—v(x)) so
that a(x){x) = 1g{mod p(x)). Therefore, [a(xp(x)] = [14 in Fx)/(p(x))
by Theorem 5.3. Thus, [a(x)][#(x)] = [a{x)u(x)] = [17, so that [a(x)]is a
unit. Hence, F(x)/(p(x)) satisfies Axiom 12 and F(x)/(p(x)) is a field.

(2) = (3) This is an immediate consequence of Theorem 3.8.



136 Chapter 5 Congruence in F[x] and Congruence-Class Arithmetic

(3) = (1) Weshall verify staternent (2) of Theorem 4.12 to show that
Ax)is irreducible. Suppose that b(x) and «(x) are any polynomials in F{x]
and p(x) | H(x)e(x). Then b(x)e(x) = O (mod p{(x)). So by Theorem 3.3,

[H®Ne(x)] = b(x)e(x)] = [05) in Fx)/(p(x)).

Because F(x) /(p(x)) is an integral domain by {3}, we have [a(x)]) = [05)
or [b(x)] = [0f). Thus, Hx) = 0p (mod p(x)) or &(x) = 05 (mod p(x)) by
Theorem 5.3, which means that p(x) | 5(x) or p(x) | e(x) by the definition
of congruence. Therefore, p(x) is irreducible by Theorem4.12. m

Theorem 5.10 can be used to construct finite fields. If pis prime and f{x)is irreduc.
ible in Z,[x] of degree k, then Z,[x])/(f{x)) is a field by Theorem 5.10. Example 7 in
Section 5.1 shows that this field has p* elements. Finite fields are discussed further in
Section 11.6, where it is shown that there are irreducible polynomials of every positive
degree in Z,[x] and, henc, finite fields of all possible prime power orders. See Exercise 9
for an example.

Let Fbe a field and p(x) an irreducible polynomial in F{x]. Let K denote thefield of
congruence classes F[x]/(p(x)). By Theorems 5.8 and 5.10, F is a subfield of the field
K. Onealso says that X is an extension field of F. Polynomials in F[x] can be consid-
ared to have coefficients in the larger field X, and we can ask about the roots of such
polynomials in K. In particular, what can be said about the roots of the polynomial
Ax) that we started with? Even though p(x) is irreducible in F[x], it may have roots in
the extension field X.

EXAMPLE 1

The polynomial p{x) = % + x + 1 has no roots in Z, and is, therefore, irreducible
in Z,[x] by Corollary 4.19. Consequently, K = Z,[x]/(x* + x+ 1)is an extension
field of Z, by Theorem 5.10. Using the tables for X in Example 3 of Section 5.2,
we see that

[x]2+[x]+1=[x+l]+[x]+1=1+1=0.

This result may be a little easier to absorb if we use a different notation. Let

a = [x]. Then thecalculation above says that o® + a + 1 = 0; that is, a is a root
in Kof p{x) = x® + x+ 1. It’s important to note here that you don’t really
need the tables for X to prove that o is a root of p(x) because we know that
2+ x+ 1=0 (mod »% + x + 1). Consequently, [x* + x + 1] = 0in X, and

by the definition of congmence-class arithmetic,

ra+l=pP+[+1=Kx*+x+1)=0.

For the general case we have

Theorem 5,11

Let F be a field and p{x) an irreducible polynomial in Fx]. Then Ax]/(p{x)) is an
extension field of F that contains a root of p{x).
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Proof» Let & = F [x)/(p{x)). Then K is an extension field of F by Theorems 5.8
and 5.10. Let p(x) = a,x" + - - - 4 a,x + a,, where each 4,is in Fand,
hence, in K. Let & = [x] in X. We shall show that e is a root of p(x). By
the definition of congruence-class arithmeticin X,

gat - daota=aldl 4+ ax]+a
=[a,,r"+“-+alx+anl
= [p(x)] = D.F [Becmep(x) = OF(mOdP(x))']'

Therefore, r € Kisarootof p(x). W

Gorollary 5,12

Let F be a field and f{x) a nonconstant polynomial in Flx]. Then there is an
extensicn field K of F that contains a root of f(x}.

Proof » By Theorem 4.14, f(x) has an itreducible factor p{x) in F[x]. By Theorem
5.11, K = F[x)/(p{x)) 1s an extension field of F that contains a root of p{x).
Since every root of p{x) is a root of f(x), Kcontainsarootof f(x). W

The implications of Theorem 5.11 run much deeper thaa might first appear.
Throughout the history of mathematics, the passage from a known mumber system to a
new, larger system has often been greeted with doubt and distrust. In the Middle Ages,
some mathematicians refused to acknowledge the existence of negative numbers. When
complex mimbers were introduced in the seventeenth century, there was uneasiness—-
which extended for nearly a century—becaunse some mathematicians would not accept
the idea that there could bea mumber whose square is — 1, that is, a root of 22 + 1. One
cause for these difficulties was the lack of a suitable framework in which to view the
situation, Abstract algebra provides such a framework. Theorem 5.11 and its corollary,
then, take care of the doubt and uncertainty.

Itis instructive to consider the complex numbers from this point of view. Instead
of asking about a number whose square is —1, we ask, “Is there a field containing
R in which the polynomial x2 + 1 has a root?” Since 2% + 1 is irreducible in R[x],
Theorem 5.11 tells us that the answer is yes: K = R[x] J(* + 1) is an extension field of
I that contains a root of x* + 1, namely o = [x]. In the field X, o is an element whose
square is ~1. But how is the field X related to the field of complex numbers introduced
earlier in the book?

As is noted in Example 5 of Section 5.1, every element of X = R[x]/(>* + 1) can
be written uniquely in the form [ax + 5] with a, b €R. Since we are identifying each
element r c{§ with the element [r] in K, we see that every element of X can be written
uniquely in the form

[a+ bx]=[a] +[6][x] = a + b
Addition in X is given by the rule
{a+ ba) + (¢ + da) = [a + bx] + [c + dx] = [(2 + bx) + (¢ + )]
=[{a4+c}+ b+ dx]=[a+d+[b+dx.
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so that
at+tba)+c+dy=(a+c)+ @+ )
Moultiplication in X is given by the rule

(a + ba)(c + da) = [a + bx][c + dx] = [(a + bx)(¢c + dx)]
= [ac + (ad + b)x + bdx?
= ac + (ad + be)a + bde?.

However, @ is a root of x* + 1, and so @2 = —1. Therefore, the rule for multiplication
in X becomes

(a+ ba)c + da) = (ac — bd) + (ad + bc)o.

I the symbol o2 is replaced by the symbol i, then these rules become the usual rules for
adding and multiplying complex numbers. In formal language, the fidd X is isomor-
phic to the field C, with the isomorphism fbeing given by fla + ba) = a + &i.

Up to now we have taken the position that the field € of complex numbers was
already known. The field X constructed above then turns out to be isomorphic to the
known field C. A good case can be made, however, for not assuming any previous
knowledge of the complex numbers and using the preceding example as a definition
instead. In other words, wecan define C to be the field R [x]/(x* + 1). Such a definition
is obviously too sophisticated to use on high-school students, but for mature students
it has the definite advantage of removing any lingering doubts about the validity of
the complex numbers and their arithmetic.* Had this definition been available several
centuries ago, the introduction of the complex numbers might have caused no stir
whatsoever.

B Exercises

NOTE: Falways denoles a field,

A. 1. Determine whether the given congruence-class ring is a field. Justify your
answer.

@ Zix/+ 22+ x4+ 1)
M) Z5x]/(2° —4x2 +2¢ + 1)
(©) ZLd/ M+ 2 + 1)
B. 2. {(a) Verify that Q(V2) = {r + sV2 |, s€ Q} is a subfield of R.

(b) Show that Q(v2) is isomorphic to O[x]/(x? — 2). [Hint: Exercise 6 in
Section 5.2 may be helpful]

*Only a minor rearrangement of this book is needed to accommadate such a definition. A few
examples in Chapter 3 would have to be omitted, and the discussion of irreducibility in C[x]
and RIx] (Section 4.6} would have to be postponed. All the intervening material in Chapter 5 is
independent of any formal knowlecige of the complex numbers.



5.3 The Structure of F[x]/{p{x)) When p{x) |s Irreducible

3. If ac F, describerthe field F[x]/(x — a).
4. Let p(x) be irreducible in F[x]. Without using Theorem 5.10, prove that if

10.

11.

12.

[/()[e(x)] = [04 in F [x]/(p(x)): then [f(x)] = [0f] or [8(x)] = [O). [Hint:
Exercise 10 in Section 5.1.]

. (a) Verify that @(V3) = {r + 53 | r, s O} isa subfield of R.

{b) Show that Q(V/3) is isomorphic to Q[x]/(x* — 3).

. Let p(x) be irreducible in F[x]. If [ f(x)] # [04 in F[x]/(p(x)) and h(x) &

F[x], prove that there exists g(x)e F[x] such that [ f(x)][g{x)] = [#(x)] in
F[x]/(xx)). [Hins: Theorem 5.10 and Exercise 12(b) in Section 3.2.]

. If f(x) € F[x] has degree n, prove that there exists an extension field E of

Fsuchthat f(x) = ey{x — ¢,)(x — ¢;) < < - (x — ¢,) for some (not necessarily
distinct) ¢; € E. In other words, E contains all the roots of f(x).

contains all the roots of p{x).

. (a) Show that Z;x]/(x* + x + 1) is a field.
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. If p(x) is an irreducible quadratic polynomial in F[x], show that F[x]/(p(x))

(b) Show that the field Z,[x]/(x" + x + 1) contains all three roots of x* + x + 1.
Show that Q[x]/(>* — 2) is not isomorphic to Qfx]/(x* — 3). [Hint: Exercises 2

and 5 may be helpful.]

Let K be a ring that contains Z as a subring. Show that p(x) = 3x* + 1 £ Z[x] has
no roots in X, Thus, Corollary 5.12 may be false if Fis not a field. [Hint: If u

were a root, then 0 = 2 - 3 and 3%* + 1 = (. Derive a contradiction,]

Show that 2x* 4 4% + 8x + 3& Z,4[x] has no roots in any ring X that contains

Z,4 as asubring. [See Exercise 11.]

. Show that every polynomial of degree 1, 2, or 4 in Z;{x] has a root in

Z[x]/(x* + x + 1)






CHAPTER §

|deals and Quotient Rings

Congruence in the integers led us to the finite arithmetics £, and helped moti-
vate the definition of a ring. Congruence in the polynomial ring fAx] resulted in a
new class of rings consisting of the various Flx]/{p{x)). These rings enabled us to
construct extension fields of F that contained roots of the polynomial p(x}. In this
chapter the concept of congruence is extended to arbitrary rings, producing
additional rings and a deeper understanding of aigebraic structure.

You will see that much of the discussion is an exact parailel of the development
of congruence in Z (Chapter 2) and in Ax] (Chapter 5). Nevertheless, the results
here are considerably broader than the earlier ones.

m Ideals and Congruence

Our goal is to develop a notion of congruence in arbitrary rings that includes as spe-
cial cases congruence modulo # in £ and congruence modulo p(x) in F{x]. We begin by
taking a second look at some examples of congruence in £ and F[x] from a somewhat
different viewpoint than before

EXAMPLE 1

In the ring £, 2 = b (mod 3) means that 4 — b is a multiple of 3. Let I be the set
of all multiples of 3, so that

I=40,+3,6,... }
Then congruence modulo 3 may be characterized like this:

a=b(mod 3) means a—bel

141
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Observe that the subset Iis actually a subring of Z (sums and products of mul-
tiples of 3 are also multiples of 3). Furthermore, the product of any integer and
a multiple of 3 is itself a multiple of 3. Thus the subring I has this property:

Whenever ke Z and ie [, then Xi& L

EXAMPLE 2*

The notation f{x) = g(x) (mod »* — 2) in the polynomial ring Q[»] means that
Fx) — g(x) is a multiple of x> — 2. Let 7 be the set of all multiples of * — 2 in Q[x],
that is, F = {#x)(>® — 2)[ ()€ Q[x]}. Once again, it is not difficult to check that £ is
a subring of €3[x] with this property:

Whenever &(x) e {[x] and #{x)€ I then k{x}t(x)el

(the product of any polynomial with a multiple of a* — 2 is itself a multiple of %* — 2).
Congruence moculo x> — 2 may be described in terms of £

F(x) = g(x) (mod x* — 2) means flx) — g(x)el

These examples suggest that congruence in a ring R might be defined in terms
of certain subrings. If F were such a subring, we might define @ = b (mod I) to
mean @ — be I The subring Fmight consist of all multiples of a fixed element, as in
the preceding examples, but there is no reason for restricting to this situation. The
examples indicate that the key property for such a subring ! is that it “absorbs prod-
ucts”; Whenever you multiply an element of I by any element of thering (either inside
or outside J), the resulting product is an element of 1. The set of all multiples of a fixed
element has this absorption property. We shall see that many other subrings have it as
well. Because such subrings play a crucial role in what follows, we pause to give them
a name and to consider thar basic properties.

Definition A subring / of aring R is an ideal provided:

Whenever re Rand ac/, thenrac/andare!.

The double absorption condition that rae€ Fand ar e[ is necessary for noncommutative rings.
When R is commutative, as in the preceding examples, this condition reduces to rae L

EXAMPLE 1

The zero ideal in a ring R consists of the single element 0g. This is a subring that absorbs all
products since rlly = Oy = Ogr for every r € R. The entire ring R is also an ideal.

*Skip this example if you have not read Chapter 5,
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EXAMPLE 4

In the ring Z[x] of all polynomials with integer coefficients, let I be the set of
polynomials whose constant terms are even integers. Thus x* 4 x + 6 isin J,
but 4x? + 3 is not. Verify that I is an ideal in Z[x] (Exercise 2).

EXAMPLE &

Let T be the ring of all functions from R to R, as described in Example 8
of Section 3.1. Let I'be the subset consisting of those functions g such that
£2) = 0, Then 7'is a subring of T (Exercise 14 of Section 3.1). If fis any
functionin T and if g1, then

{(feX2) = f(Dg2) =f(9) - 0 =D,
‘Thereibre, fge I Similarly, ¢ fe 1, so that Tis anideal in T

EXAMPLE 6

The subring Z of the rational numbers is 7ot an ideal in @ because Z fails to
have the absorption property. For instance, %E @ and 5€Z,but their product,

%, isnotinZ.

EXAMPLE 7

: g) with &, bR forms a
subring of the ring M{R) of all 2 X 2 matrices over the reals. I is easy to ses
that 1 absorbs products on the ft:

(r s)(a 0)=(ra+sb O)EI
t w/\b 0 tatub 0 )

But 7 is not an ideal in M{R) because it may not absorb products on the right—for

9 9 Y

One sometimes says that Iis a left ideal, but not a two-siled ideal, in M({R).

Verify that the set I of all matrices of the form (

The following generalization of Theorem 3.6 often simplifies the verification thata
particular subset of a ring is an ideal.
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Theorem 6,1

A nonempty subset/ of aring R is an ideal if and only if it has these properties:

(i ifa, b € I,thena-b € f;
(i ifre Randa e /,thenra € /Jand ar € /.

Proof » Every ideal certainly has these two properties. Conversely, suppose I
has properties (i) and (ii). Then I absorbs products by (ii), so we need
only verify that Iis a subring. Property (i) states that [ is closed under
subtraction. Since I is a subset of R, the product of any two elements
of I'must bein I by (ii). In other words, I is closed under multiplication.
Therefore, I'is a subring of R by Theorem 3.6. W

Finitely Generated ldeals

In the first example of this section we saw that the set I of all multiples of 3 is an ideal
in Z. This fact is a special case of

Theorem 6,2

Let R be a commutative ring with identity, c €R, and / the set of all multiples
ofcinR, thatis, / = {rc|reR). Then/is an ideal.

Proofs 1 1, r, rER and ric, rye €1, then
re—re={n—r)el and Hre) =(rmkel

because r, — r, and rr, are elements of R. Similarly, since R is commuta-
tive, (re)r = (rn)c € I Therefore, I is an ideal by Theorem 6.1. m

The ideal I in Theorem 6.2 is called the principal ideal generated by ¢ and hereafter
will be denoted by (¢). In the ring Z, for example, (3) indicates the ideal of all multiples
of 3. In any commutative ring R with identity, the principal ideal (1) is the entire ring
R because r = rlg for every r € R. It can be shown that every ideal in Z is a principal
ideal (Exercise 40). However, there are ideals in other rings that are not principal, that
is, ideals that do not consist of all the multiples of a particular element of the ring.

EXAMPLE 8

We hawe seen that the set I of all polynomials with even constant terms is an
ideal in the ring Z[x]. We claim that I is not a principal ideal. To prove this,
suppose, on the contrary, that I consists of all multiples of some polynomial
p(x). Since the constant polynomial 2 is in 7, 2 must be a multiple of p(x).
By Theorem 4.2, this is possible only if p(x) has degree 0, that is, if p(x) is a
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constant, say p{x) = ¢. Since p{x) € I, the constant ¢ must be an even integer. Since
2 is amultiple of p{(x) = ¢, the only possibility is £ = *2. On the other hand, x €f
because it has even constant term 0. Therefore, x must be a multiple of p(x) = 2.
However, if *+2g(x) = x, then g(x) has degree 1 by Theorem 4.2, say g(x) = ax + b.
But +2(ax + b) = x implies that =24 = 1 because the coefficient of x must be the
same on both sides. This is impossible because a is an integer. Therefore, I does not
consist of all mmitiples of p{x) and is not a principal ideal.

In a commutative ring with identity, a principal ideal consists of all multiples of a
fixed element. Hereis a generalization of that idea.

Theorem 6.3

Let A be a commutative ring with identity and ¢y, ¢, . . ., ¢, €R. Then the set
I ={ney+ e+ +rcy|mi 2.0, mER}IS an ideal in A.

Proof» Exercise 14. m

The ideal Iin Theorem 6.3 is called the ideal peperated by ¢y, ¢, . . . , &y and is
sometimes denoted by ¢y, €3, . . . , €,). Such anideal is said to be finitely generated. A
principal ideal is the special case # = 1, that is, anideal generated by a single element.*
The generators of a finitely generated ideal need not be unique, that is, the ideal gener-
ated by ¢y, ¢ ... , ¢, might be the same set as theideal generated by dy, e, . . . , dy, even
though no ¢ is equal to any d; (Exercise 16).

EXAMPLE 9

In the ring Z[x], the ideal generated by the polynomial x and the constant poly-
nomial 2 consists of all polynomials of the form

fOox +g(0)2,  with f(x), g(x)eZ[x]}

It can be shown that this ideal is theideal I of all polynomials with even
constant term, which was discussed in Example 8 (Exercise 15).

Congruence
Now that you are familiar with ideals, we can define congruence in an arbitrary ring:

Let/be anideal in aringRand leta, » €R. Then ais congruentto b moduto
{ [written & = b {mod /)] provided thata — bel.

*When a commutative ring does not have an identity, the ideal generated by ¢y, ¢, . .., &, is defined
somewhat differently {see Exercise 33).
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Example 1 shows that congruence modulo 3 in the integers is the same thing as
congruence modulo the ideal f, where Iis the principal ideal (3) of all multiples of 3.
Similarly, Example 2 shows that congruence modulo x? — 2 in Qfx] is the same as con-
gruence modulo the principal ideal (:‘:2 — Z). Thus congruence modulo an ideal includes
as a special case the concepts of congruence in £ and F[x] used eatlier in this book.

EXAMPLE 10

Let T'be the ring of all functions from B to R and let I be the ideal of all func-
tions g such that g(2) = 0. If £(x) = »* + 6 and A(x) = 5x, then the function
f—hisin I because

(f-PR) =12 - hQ) =@ +6) - (5-2) =0.

Therefore, f = A (mod I).

Theorem 6.4

Let f be an ideai in a ring A. Then the relation of congruence modulo / is

(1} reflexive:a = a (mod /) for everya € R,
(@ symmetric: if a= b {mod f}, then b = a (med {);
{3) transitive: ifa= 25 (mod fjand & = ¢ (mod /), then a = c (mod /).

This theorem generalizes Theorems 2.1 and 5.1. Observe that the proof is virtually
identical to that of Theorem 2.1—just replace statements like “% is divisible by n” ot
“n|k” or “*k = ng” with the statement “k 1.

Proof of Theorem 8.4 » (1) 2 — o = 0ee f; hence, a= a (mod 1).

(2) a = b(mod J) means that g — b = i for some i€ L Therefore, b—a=
~ (@ = b) = —{, Since Iis an ideal, the negative of an element of [ isalso
in f, and so b — ¢ = —iel. Hence, b =a (mod I).

(3) If a =4 (mod I) and b = c (mod 1), then by the definition of con-
pruence, there are elements iand fin fsuchthatga — b= iand b — ¢ =,
Therefore, a — ¢ ={a — &) + (b — &) = i + /. Since the ideal [is closed under
addition, i + jeFand, hence, ¢ = ¢(mod I). W

Theorem 6.5

let fbean idealinaring R ifa =56 (mod /) and ¢ = d (mod f}, then

(Mhatc=5b+d(med I
(2} ac = bd (mod f).
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This theorem generalizes Theorems 2.2 and 3.2, Its proof is quite similar to theirs
once you make the change to the langunage of ideals.

Proof of Theorem 6.9 » (1) By the definition of congruence, there are i, je I such
thata— b =iand¢ —d = j. Therefore, @+ c)— (b +d)=(a—b) +
(c—d)=i+jel Hencea+e=b +d(modl).

(Dac—bd=ac —be +bc— bd= {a— b)e + bc = d) = ic + }. Since
the ideal I absorbs products on both left and right, ice  and b€ I. Hence,
ac — bd = ic + bfe L Therefore,ac = bd(mod ). H

If fis an ideal in a ring R and a € R, then the congruence class of @ modulo [is the
set of all ekements of R that are congruent to a modulo i, that is, the set

{(beR|b=amod N} = {beR|b - acl}
= {beR|b— a= i withic ]}
={beR|b=a+i withicl}
= {a+i|ieh.

Consequently, we shall denote the congruence class of a modulo I by the symbola +
rather than the symbol [4] that was used in Z and F[x]. The plus signin @ + fisjusta
formal symbol; we have not defined the sum of an element and an ideal. In this con-~
text, the congruence class a + I'is usually called a (left) coset of Iin R.

Theorem 6.6

Let/ be an ideal in a ring Rand leta ¢ € R Then a = ¢ (mod 7} if and only
ifa+/i=c+1/

Proof » with only minor notational changes, the proof of Theorem 2.3 carties
over almost verbatim to the present case. Simply replace “mod #” by “mod
I’ and “[4]” by “a + I"’; use Theorem 6.4 in place of Theorem 2.1, W

Corollary 6.7

Let / bean ideal in a ring R. Then two cosets of / are either disjoint or identical.

Proof » Copy the proof of Corollary 2.4 with the obvious notational changes. W

If I'is anideal in a ring R, then the set of all cosets of I (congruence classes modulo I)
is denoted R/ 1.

EXAMPLE 11

Let I be the principal ideal (3) in the ring Z. Then the cosets of [ ate just the
congruenceclasses modulo 3, and so there are three distinct cosets: 0 + I = [0],
1 + I'=[1],and 2 + I =[2]. The set Z/F of all cosets is precisely the set #, in
our previous notation.
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EXAMPLE 12

Let I'be the ideal in Z[x] consisting of all polynomials with even constant
terms. We claim that Z[x]/ T consists of exactly two distinct cosets, namely,

0 + Iand 1 + I.To see this, consider any coset f{x) + I. The constant term of
F(x)is either even or odd. If it is even, then f{x) €1, so that f{x) = 0(mod I).
Therefore, f (x) + I = 0 + I by Theorem 6.6. If £(x) has odd constant term,
then f(x) ~— 1 haseven constant term, so that f{x) = 1 (mod f). Thus f{(x) + I =
1 + I'ty Theorem 6.6.

EXAMPLE 13

Let T be the ring of functions from R to R and let I be the ideal of all functions
£ such that g(2) = 0. Note that for each real number r, the constant function f,
(whose rule is f{x)} = r) is an element of T Let #(x) be any element of T. Then
#(2) is some real number, say A(2) = ¢, and

=)D =M) - fl2) = ¢~ c=0.

Thus h — f, €1, so that & =, (mod I) and, hence, & + I = f, + 1. Consequently,
every coset of Ican be written in the form £, + I for some real number r.
Furthermore, if ¢ # d, then £,(2) # fo(2), 50 that [f, — fJ(2) # O and f, — fr & L
Hence,f, = fy{mod D and f, + I # f;+ L Therefore, there are infinitely many dis-
tinet cosets of 1, one for each real number r.

B Exercises

NOTE: R denotes a ring.

A. 1. Show that the set Xof all constant polynomials in Z[x] is a subring but not an
ideal in Z[x].

2. Show that the set I of all polynomials with even constant terms is an ideal in
Z[x].

3. (a) Showthat the setf = {(k,0) |Jk&Z} is anidealin thering Z X Z.
(b} Show that the set T'= {(k,k)|kcZ}isnotanidealinZ X Z.

4, IsthesetJ = {(g 0) Ire R} anideal in thering M(R) of 2 X 2 matrices
over R? r
5. Show that the set X = {(:; 3) |a, & ER} is a subring of M{[R) that absorbs

products on theright. Show that X'is not an ideal because it may fail to
absorb products on the left. Such a set X is sometimes called a right ideal.

6. (a) Show that the set of nonunits in 74 is an ideal.
(b} Do part (a) for Z,. [Also, see Exercise 24.]
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Letce Rand let 7 = {refreR}.

{a) If Riscommutative, prove that 7 is an ideal (that is, Thecrem 6.2 is true
even when R does not have an identity).

(b) If Riscommutative but has no identity, is ¢ an element of the ideal F?
[Hint: Consider the ideal {2k |k € E} in the ring E of even integers. Also see
Exercise 33.)

{¢} Give an example to show that if R is not commutative, then f need not be
an ideal.

If Jis an ideal in R and Jis an ideal in the ring S, prove that 7 X Jis an ideal in
thering R X S.

Let R be a ring with identity and let I'be an ideal in R.

(a) If 1z, prove that I = R,

(b) If 7 contains a unit, prove that I= R.

. If Fis anideal in a field F, prove that f= {0) or f = F. [Hint: Exercise 9.
. List the distinct principal ideals in each ring:

@Zs (h)Zy ()€

List the distinct principal ideals in £y X Z3.

If R is a commutative ring with identity and {a) and (5) are principal ideals
such that (@) = (8), is it true that a = 57 Justify your answer.

Prove Theorem 6.3.

Show that the ideal generated by x and 2 in the ring Z[x] is the ideal § of all
polynomials with even constant terms (see Example 9).

{8} Show that (4, 6) = {2)in Z, where (4, 6) isthe ideal generated by 4 and 6
and {2) is the principal ideal generated by 2.

{b) Show that (6,9, 15) = (3)in Z.

{a) If fand J are ideals in R, prove that " Jisan ideal.

{b) If [f] is a (possibly infinite} family of ideals in R, prove that the
intersection of all the %, is an ideal.

Give an example in Z to show that the set theoretic union of two ideals may
not be an ideal (in fact, it may not even be a subring).

If Iis an ideal in R and S is a subring of R, provethat 7 Sis anideal in S.

Let fand J beidealsin R. Provethattheset X = {a+ &|acl, beJ} isan
ideal in R that contains both fand J. Xiscalled the sum of fand Jand is
denoted I+ J,

If dis the greatest commeon divisor of @ and b in Z, show that {a) + (&) = (d).
(The sum of idealsis defined in Exercise 20.)

Let fand J be idealsin R. Is theset X = {ablac ], b= J} an idealin R?
Compare Exercise 20.
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23. (a) Verify that f = {0, 3} is an ideal in Z and list all its distinct cosets.
(b) Verify that 7= {0, 3,6, 9, 12} isan ideal in Z ;; and listall its distinct cosets.

B.24. Let R be a commutative ring with identity, and let ¥ be the set of nonunits in
R. Give an example to show that ¥ need not be an ideal.

25, Let J be anideal in R. Prove that fis an ideal, where
I'= {reR|rt = 0y for every teJ}.
26. Let Ibe an ideal in R. Prove that Kis an ideal, where
K = {aec R|rac Ifor every re R}.
27. Let £:R — S be a homomorphism of rings and let
K= {reR|f(r) = 0g.
Prove that K is an ideal in R.

28. If Jis an ideal in R, prove that I[x] (polynomials with coefficients in J) is an
ideal in the polynomial ring R[x].

29. If (m,n) = 1in &, prove that {m) N {r) is the ideal (mn).

30. Prove that the set of nilpotent elements in a commutative ring R is an ideal.
[Hint: See Exercise 44 in Section 3.2]

31. Let R be an integral domain and a, < R. Show that (a) = (&) if and only if
a = bufor some unit ue R.

32. (a) Prove that the set .J of all polynomials in Z[x] whose constant terms are
divisible by 3 is an ideal.
{b) Show that Jisnota principal ideal.
33. Let R be a commutative ring without identity and let a € R. Show that

A= {ra+ na|re R,neZ} is an ideal containing a and that every ideal
containing a also contains 4. A is called the principal ideal generated by a.

34. If Misanideal in a commutative ring R with identity and if ac R with « € M,
prove that the set
J={m + ra|re Rand m € M}
is an ideal such that M & J
. Let J bean ideal in Z such that (3} < J< Z. Prove that either = (3 or F=2Z.

. Let Fand Jbe ideals in R. Let I7 denote the set of all possible fnite sums of
elements of the form ab {(with ac f, be J), that is,

H={ah +ahy+---+ab|n=l,qycl, bt}
Prove that I7is an ideal, IF is called the product of fand J.

37. Let R be a commutative ring with identity 1, # Oz whose only ideals are
{0g) and R. Prove that R is afield. [Hint: If a # Og, use theideal (a) to find a

multiplicative inverse for a.]

38. Let Ibe an ideal ina commutative ring R and let
J = {re R|r" I for some positive integer n}.

8 H
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Prove that J is an ideal that contains I. [Hint: You will need the Binomial
Theorem from Appendix E. Exercise 30 is the case when 7= (D).]

39, (a) Show that the ring M{(R) is not a division ring by exhibiting a matrix that

41,

42,

has no multiplicative inverse. (Division rings are defined in Exercise 42 of
Secticn 3.1.)

{b) Show that M(R) has no ideals except the zero ideal and M(ER) itself.

[Hint If Jis a nonzero ideal, show that J contains a matrix 4 witha
nenzere entry ¢ in the upper left-hand corner. Verify that

(o )4

show that (g (1)) s in J. What is their sum? See Exercise 9.]

L7 O oY O Lo that this matrixis in J, Similac]
0 0 0 0 a S mMatrix 1s 11 J. ary,

. Prove that every ideal in Z is principal. [Hint: If I is a nonzero ideal, show that

I must contain positive elements and, hence, must contain a smallest positive
element ¢ (Why?). Since ¢ €I, every multiple of ¢ is also in [; hence, (¢) € I.
To show that J C {c), let a be any clement of I, Thena = eq + rwith 0 =<¢ << ¢
{Why?). Show that r = 0 so that a = eg (¢).]

(a) Prove that the set S of rational numbers (in lowest terms) with odd
denominatoers is a subring of Cb.

(b) Let I be the set of elements of § with even numerators. Prove that [ is an
ideal in S.
(c) Show that S/Iconsists of exactly two distinct cosets.

(a) Let p be a prime integer and let T be the set of rational numbers (in lowest
terms) whose denominators are not divisible by p. Prove that Tis aring.

(b} Let I be the set of elements of T who se numerators are divisible by p.
Prove that Fisan ideal in T.

(c) Show that T/Fconsists of exactly p distinct cosets.

. Let Jbe the set of all pelynomials with zere constant term in Z[x].

(a) Show that J is the principal ideal (x) in Z[x].

{b) Show that Z[x]/f consists of an infinite number of distinct cosets, one for
cachnefZ

44. (a) Prove that the set T of matrices of the form (: b) witha,bcRisa
a

subring of M),

(b} Prove that the set Jof matrices of the form (g f;) with bR is an ideal
in thering 7.

(c) Show that everycoset in T/ can be written in the form (; 2) <+ I
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45. (a) Prove that the set S of matrices of the form (: b) witha, b, ceRisa
subring of M{R). €

(b} Prove that the set I of matrices of the form (g ::) with 5= R is an ideal
in the ring S.

(¢) Show that there are infinitely many distinct cosets in S/, one for each pair
nRXR

C.46. Let Fbe a field. Prove that every ideal in F[x] is principal. [Hint: Use the
Division Algorithm to show that the nonzeroideal fin F[x] is (p(x)), where
p(x) is a polynomial of smallest possible degree in I.]
47. Prove that a subring S of Z, has an ideatity if and only if there is an element u
in § such that «* = 4 and S'is the ideal (x).

m Quotient Rings and Homomorphisms

We now show that the set of congruence classes modulo an ideal isitself aring. As you
might expect, this is a straightforward generalization of what we did with congruence
classes in £ and F[x]. However, you may not have expected these rings of congruence
classes to have close connections with some topics studied in Chapter 3, isomorphisms
and homomorphisms. These connections are explored in detail and provide new insight
into the structure of rings.

Let I be an ideal in a ring R. The elements of the set R/ [ are the cosets of I{con-
gruence classes modulo 1), thatis, all sets of the form a4 + I = {a + i}/ f}. In order
to define addition and multiplication of cosets as we did with congruence classesin &
and F[x], we need

Theorem 6.8

Let/beanidealinaringR. Ife+/=b+/andc+ /=d+ {in A/ then

(a+)+/={b+d)+! and ac+/=bd+/

Proof» Thisisa gexeralization of Theorem 2.6, in slightly different notation.
Replace “[a])” by “a + I’ and copy the proof of Theorem 2.6, using
Theorems 6.5 and 6.6 in place of Theorems 2.2 and 2.3. W

We can now define addition and multiplication in R/I just as we did in Z, and
F[x]/(Z(x)): The sum of the coset a + I{congruence class of a) and the coset ¢ + I
{congruence class of ¢)is the coset (@ + ¢) + I (congruenceclassof a + ¢). Insymbols,

@+D+e+D=@+d+1
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This staternent may be a bit confusing because the plus sign is used with three entirely
different meanings:

as a formal symbol to denote a coset: @ + I;

as an operation on elementsof R:a + o

as the addition operation on cosets that is being defined.*
The important thing is that, because of Theorem 6.8, coset addition is independent
of the choice of representative elements in each coset. Even if we replace a + I'by an
equal coset 5 + Iand replace ¢ + I by an equal coset ¢ + 1, the resulting coset sum,
namely (b +d) + I isthesameas (a + ¢) + I

Multiplication of cosets is defined similarly and is independent of the choice of
representatives by Theorem 6.8:

(a+ e+ D=ac+ L

EXAMPLE 1

If I is the principal ideal (3) in Z, then addition and multiplication of cosets is
the same as addition and multiplication of congruence classes in Section 2.2.
Thus Z/[is just the ring Z,.

EXAMPLE 2!

If Fis a field, p(x) is a polynomial in F[x], and [is the principal ideal (p(x)),
then cosets of I are precisely congruence classes modulo g(x), so that addition
and multiplication of cosets are done exactly as they were in Section 5.2. Thus
F[x]/Iis the congruence-class ring F[x]/(p(x)).

EXAMPLE 3

Let 7 be the ideal of polynomials with even constant terms in Z[x]. As we saw
mm Example 12 of Section 6.1, Z[x]/I consists of just two distinct cosets, 0 + I
and1l + LWehave(1 + D+ (1+ D=0+ 14+ I=2+ Lbut2c] sothat
2=0(mod I) and, hence, 2 4 I = 0 + I Similar calculations produce the
following tables for Z[x]/I. It is easy to see that Z[x]/Iis a ring (in fact, a field)
isomorphic to Z.:

+ |0+ 1+1 s | 0+1 1+1
O+17 0+1 1+ 7 O+7I | 0+ O0+1
1+7 l+7 0+7F l+7r | o+7 1+17

*This ambiguity can be avoided by using a different notation for cosets, suchas [2],and a different
symbaol for coset addition, such &), The notation above is customary, however, and once you're
used to it, there should be no confusion,

tSkip this example if you have not read Chapter 5.
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These examples illustrate the following theorem, which should not be very surpris-
ing in view of your previous experience with £ and F[x].

Theorem 6.9

Let { be an ideal in a ring R. Then

(1) R}/ is a ring, with addition and multiplication of cosets as defined
previously.

{2} i R is commutative, then R// is a commutative ring.
(3) If A has an Identity, then soc does the ring R//.

Proof» (1) With the usnal change of notation (“a + I” instead of “[a]”), the
pmoof of Theorem 2.7 carries over to the present situation since that
proof depends only on the fact that £ is a ring. Don' take our word for
it, though; write out the proof in detail for yourself.

{2) If R is commutative and a, ¢ € R, then ac = ca. Consequently, in
RiIwehave(a + N(c+ N=ac+ I=ca+ I=(c+ N(a+ I). Hence,
R/Iis commmutative.

(3) The identity in R/ is the coset 1 + I'because(a + H(lp+ 0 =
alg+I=a+ landsimilarly (1, + D(a+ N=a+ 1 N

The ring R/I is called the quetient ring (or factor ring) of R by I. One sometimes
speaks of factoring out the ideal I to obtain the quotient ring R/ L.

Homomorphisms

Quotient rings are the natural generalization of congruence-class arithmetic in £ and
F[x). Asis often the case in mathematics, however, a concept developed with one idea
in mind may have unexpected linkages with other important mathematical concepts.
That is precisely the situation here. We shall now see that the concept of homomor-
phism that arose in our study of isomorphism of rings in Chapter 3 is closely related
to ideals and quotient rings.

Definition Let f:R — $ bea homomorphism of rings. Then the kernel of { is the set
K={reR|fr) =05

Thus, the kernel of f is the subset of R consisting of those elements of R that
fmaps to Og in 5. Note that 0z is in the kernel since f(0z) = 0y by Theorem 3.10.
However, the kernel may also contain nonzero elements.
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EXAMPLE 4

In Example 6 of Section 3.3 we saw that the function f:# — Z defined by

J(r) = [F] €4, s a homomorphism of rings. Its kernel X contains many nonzero
integers. For instance, 12 € X because f(12) = [12] = [0] in Z,. In fact every
multiple of 6 is in the kernel because

K={cZ|fir)=[0} = {reZ|[] =0} [Definition of f]
={re Z|r=0(mod6)} [Theorem 2.3]
= {reZ|6|n [Definition of congruence mod 6)

= {all muliples of 6} [6 | r means r is a mulitiple of 6).
So the kernel X is the principal ideal (6} in Z.

EXAMPLE S

The function #:R[x] — R that sends each polynomial in R[] to its constant
term in R is a ring homomorphism (Exercise 1). Its kernel consists of all
polynomials with constant term 0. But every polynomial with 0 constant term
is divisible by x. So the kernel s the principal ideal (x) in R[x].

Examples 4 and 5 provide examples of the following theorem.

Theorem 6.10

Let iR — § be a homomorphism of rings, Then the kernel K of fis an ideal in
the ring R.

Proof» we shall use Theorem 6.1 to show that K = {r€ R| f(r) = O} is an ideal.
We must verify that is a nonempty subset of R that is dosed under sub-
traction and absorbs products. First, Xis nonempty because 0 £ K as
noted before Example 4. To prove that X is closed under subtraction, we
must show that for g, b €K, the element g — b is also in K. To show
a — b €K, we must show that f{a — b) = Q. This follows from the fact
that fis a homomorphism and that f{a) = 05 and f{5) = Og (because 4,
beK):

Ha —b) = fla) — f(b) = 05 — 05 = 0g.

To prove that K absorbs products we must first verify that e €X for any
r€ R and ac K, that is, that f{ra) = Og here’s the proof:

Slra) = f(r)fla) = f{r) 05 = 0.

A similar argument shows that ar K. Therefore K is an ideal by
Theorem 6.1. W
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In Examples 4 and S, the kernel of the homomotphism contained many nonzero
elements. Sometimes, however, the kernel of a homomorphism contains only Dg, in
which case we have an interesting result.

Theorem 6.11

Let f1f — 3 be a homomorphism of rings with kernel K, Then K = (0g) if and
only if fisinjective,

Proofs Suppose that X = (05). We must show that fis injective, so assume
that a, b € R and f(a) = f(b). Because f'is a homomorphism,
Jla — & = f{a) — f(5) = 05 Hence, a — b isin the kemel X = (0p),
which means that @ — & = Og and @ = b. Therefore f'is injective.

Conversely, suppose f'is injective. If ¢ € K, we must show that ¢ = Q0.

By the definition of the kernel, f{c) = 05 By Theorem 3.10, f{0g) = 05 =
J(e). Therefore, ¢ = 0 because f'is injective. Hence, the kernel consists
of the single element Oy, thatis, K=(0g). W

EXAMPLE &

In Example 7 of Section 3.3 we saw that the function g:& —» M{R) given by
glr) = ( [: 0) is a ring homomorphism. Its kernel of g consists of all real
-t r

numbers r such that g(r) = (0 ﬂ) that is, such that ( 0 0) _ (U 0).
0 0 —r r 0 0
This can only occur when r = 0. So the kernel is the zero ideal (0). Hence, g is

injective by Theotem 6.11.

Theorsm 6.10 states that every kernel is an ideal. Conversely, every ideal is the
kernel of a homomorphism:

Theorem 6.12

Let / be anideal in a ring R. Then the map mR = R/l given by w(ry =r + lis
a surjective homomorphism with kemel /.

The map 17 is called the natural homomorphism from R to R/1.

Proof of Theorem 6.12» The map 7 is surjective because given any coset r + Iin
RfI 7(r) = r + L Thedefinition of addition and multiplication in R/
shows that 7 is a homomorphism:

ar+ D=0+ +I=(+D++D=a0)+ sk
alrs)=rs + I=(r + Dis + ) = wlr) w($).



6.2 Quotient Ringe and Homomorphisms 157

The kernel of 1 is the set of elements r € R such that () = 0 + [
(the zero element in R/ J). However, m(¥) = 0z + [if andonlyif ¥ + I =
Og + 1, which occurs if and only if r = 0p (mod ), that is, if and only if
rel Therefore, Iis the kernel of 7. W

The natural homomorphism 7 in Theorem 6.12is a special case of a more general
situation. If iR — § is a surjective homomorphism of rings, we say that Sis a
homomorphic image of R. If fis actually an isomorphism (so that § is an isomorphic
image of R), then we know that R and § have identical structure. Whenever one
of them has a particular algebraic property, the other one has it too. If fis not an
isomorphism, then properties of one ring may not hokd in the other. However, the
properties of § and the homomorphism f often give us some useful information
about R. An analogy with sculpture and photography may be helpful: If R = §
is an isomorphism, then S is an exact, three-dimensional replica of R If fis only a
surjective homomorphism, then 5 is a two-dimensional photographic image of R in
which some features of R are accurately reflected but others are distorted or missing.
The next theorem tells us precisely how R, §, and the kernel of f are related in these
circumstances.

Theorem 6,13  First [somorphism Theorem

Let iR — S be a surjective homomeorphism of rings with kernel K. Then the
quotient ring A/K is isomerphicto S,

The theorem states that every homomorphic image of aring R is isomorphic to a
quotient ring B/ K for some ideal K. Thusif you know all the quotient rings of R, then
you know all the possible homomorphicimages of R. Theideal X measures how much
information is lost in passing from the ring R to the homomorphic image B/ K. When
K =(0yp), then fis an isomorphism by Theorem 6.11, and no information is lost. But
when K is large, quite a bit may be lost.

Proof of Theorsm6.13» we shall define a function @ from R/K to § and then
show that it is an isomorphism. To define ¢, we must associate with
each coset ¥ + K of /K an element of S. A natural choice for such an
element would be f(r) €S, in other words, we would like to define
¢:R/K — S by therule ¢(r + K) = f{r). The only possible problem is that
a coset can be labeled by many different elements of R. So we must show
that the value of @ depends only on the coset and not on the particular
representative ¥ chosen to nameit. If r + K= £ 4+ K, then r = ¢ (mod
K) by Theorem 6.6, which means that r — ¢ € X by the definition of
congruence. Consequently, since fis a homomorphism, f{r) = f{i) =
f(r— 8) = D¢ Therefore, r + K = 1 + Kimplies that f{r) = f{z). It
follows that the map @:R/K — S given by therule p(r + K) = f(#)isa
well-defined function, independent of how the coset is written.
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If s € S, then s = f{7) for sotne r€ R because fis sunective. Thus
s = f{r) = ¢{r + K), and ¢is surjective. To show that ¢ is injective, we
assume that ¢(r + X) = ¢{c + K) and show that r + K = ¢ + K as follows:

ol + K) = ple + K)
fG) =f(©) [Definition of ¢)
fir)—fle)=0s
flr—a)=0g [fis a homomorphism.]

Thus, 7 ~c€ Kand hence, r=c(tnod K). Sor+ K=c+ Kby
Theorern 6.6. Therefore, ¢ is injective.
Finally, @ is a hotnomoerphism because fis

#lc + KXd + K)] = ¢lcd + K) = fled) = f(c)f(d)

= ¢lc + K)p(d + K)
and
ollc+ K)+ (d+ K)] = dl(c+ d) + K] = flc + d) = fle) + fld)
= @lc + K) + o(d + K).

Therefore, ¢: R/K = 8 is an isomorphism. B

The First Isomorphistn Thecretn is a useful teol for determining the structure of
quotient tings, as illustrated in the following examples,

EXAMPLE 1

In the ring #[x], the principal ideal (x) consists of all multiples of x, thatis,

all polynomials with constant tertm 0. What does the quotient ring £[x]/(x)
look like? We can answer the question by using the function 8:7[x] — £,

which tmaps each polynomial te its constant term. The function # is certainly
surjective because each k €7 is the itmage of the polynomial x + & in #[x].
Furthermore, § is a homomeoerphism of rings (Exercise 1). The kernel of §
consists of all these pelynomials that are mapped to 0, that is, all polynomials
with constant term 0. Thus the kernel of #is the ideal (x). By Theorem 6.13 the
quetient ring £[x]/(x) is isomorphicto Z.

EXAMPLE 8

Let T be the ring of functions from R to R and 7 the ideal of all functions

g such that g(2) = 0. In Examnple 13 of Section 6.1 we saw that T/fcon-
sists of the cosets f, + I, one for each real mumber r, where f,:R — Ris the
comnstant function given by f,(x) = r for every x. This suggests the possibility
that the quotient ting T/J might be isomorphic to the field R. We shall use
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Theotrem 6.13 to show that this is indeed the case by constructing a sutjective
homomorphism from T to R whose kernel is the ideal I. Let ¢:7— R be the
function defined by ¢(f) = f{2). Then ¢ is surjective becanse for every real
number r, r = f(2) = ¢(f,). Furthermore, ¢ is a homomorphism of rings:
of + B)=(f + I2) =f@) + H2) = o(f) + o(B)
P(fB) = (fIN2) = f(2) = ¢ e(h).
By definition, the kernel of ¢ is the set
{8€T|p(g) = 0} = {gcT[g(2) = 0}.
Thus the kernel is precisely the ideal 1. By Theorem 6.13, T/7 is isomotphic to R.

EXAMPLE 9

What do the homomorphic images of the ring Z look like? To answer this
question, suppose that £:Z — S'is a surjective homomorphism. If £ is actually
an isomorphism, then § looks exactly like Z, of course (in terms of algebraic
structure). If fis surjective, but hot an isomorphism (that is, not injective), then
the kernel K of fis a nonzero ideal in Z by Theorem 6.11, Since K i an ideal

in Z, K must be a principal ideal, say K = (#) for some n # 0, by Exercise 40

in Section 6.1, By Theotem 6.13, S is isomotphic to Z/K = Z/(n) = Z,. Thus
every homomorphic image of Z is isomorphiceither to Z or to Z, for some .

B Exercises

A. 1. Show that the map #:F[x] — R that sends each polynomial f{x) to its constant
term is a sutjective homomorphist,

2. Show that every homomorphic image of a field F is isomorphic either to F
ttself or to the zero ring. [Hint: See Exercise 10 in Section 6.1 and Exercise 7
below.]

3, If Fis afield, R a nonzero ting, and £.F=» R a sutjective homomorphism,
prove that fis an isomorphism.
4. Let [a], denote the congruence class of the integer 2 modulo #.
(a} Show that the map fiZ;, - Z, that sends [4],, to [a]4 is a well-defined,
surjective homomorphism.
(b) Find the kernel of £

5. Let I'be an ideal in an integral domain R. Is it true that R/f is also an integral
domain?

6. The function ¢:R[x] — R given by ¢(f(x)) = f(2) is a homomorphism of
rings by Exercise 24 of Section 4.4 (with 4 = 2). Find the kernel of ¢. [Hins:
Theorem 4.16.]
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7. If Ris aring, show that R/(0g) = R.
8. Let R and S be rings. Showthat R X S—> Rgiven by m(r, 8) = risa

10.

11.

12.

13.

14.

16.

17.

18.

19.

surjective homomorphism whose kernel is isomorphic to S.

 R= {(“ 0)|a,b,cel}isaringwithidentitybyExample 19
C,

[/
m Section 3.1.

(a) Show that the map /R — Z given by f(: 2) = ais a surjective
homomorphistn,
{b} What is the kernel of 7

{a) Let /R — S be a surjective homomorphism of rings and let I be an ideal
in R. Prove that f(I) is an ideal in S, where f{I) = {s€S|s = f(a) for
some a & I},

(b) Show by exatnple that part (a) may be false if fis not surjective.

Z[VZ] 5 a ring by Exercise 13 of Section 3.1. Let f:Z] V2] — Z[ V2] be the

function defined by fla + dV2) = a — bVI.

{a} Show that fis a surjective homomorphism of rings.

{b} Use Theorem 6.11 to show that fis also injective and hence is an
isomorphism. [You may assume that /2 is irrational ]

Let I be an ideal in a noncommutative ring R such that ab — ba €1 for all
a, b€ R. Prove that R/I is commutative,

Let I be an ideal in a ring R. Prove that every element in R/ has a square root
if and only if for every a € R, there exists € R such that a — b%c I.

Let T be an ideal in a ring R, Prove that every element in R/J is a solution of
x? = xif and only if for every a€ R, a® — ac I.

. Let fbe an ideal in a commutative ring R. Prove that R/I has anidentity if

and only if there exists ¢ € R such that ex — ac I for everyae R.

Let I ¥ R be an ideal in a commutative ring R with identity. Prove that R/7 is
an integral domain if and only if whenever ab & I, eitherac for be L

Suppose I and J are ideals in a ring R and let /1R — R/J X R/Jbe the
function defined by f{a) = {a + La + 1.

(a) Prove thatfisa hotnomorphism of rings.

(b} Is fsurjective? [Hint: Consider thecasewhen R =2, I'= (2), 7 = (4}]
() What is the kernel of f7

Let R be a commutative ring with identity with the property that every ideal
in R is principal. Prove that every homomotphic image of R has the same
property.

Let fand X be ideals in a ring R, with K& I Prove that f/K ={a + K|ael} is
an ideal in the gquotient ring R/K.



20.

21.
22,

25,

26.
27.
. Let T'and I be asin Exercise 44 of Section 6.1. Prove that T/7 = R.
29.
. {The Second Isomorphism Theorem) Let I and f be ideals in a ring R. Then

31.

32,
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Let f:R — S be a homomorphism of rings with kernel X. Let I'be an ideal
in R such that I < K. Show that 2R/l — S given by f(r + I} = f(r}is awell
defined homomorphism.

Use the First Isomorphism Theorem to show that Z,,/(5) = Z..

Let iR — § be a homomorphism of rings.  fis an idealin S and I =
{re R|f(r)ye 7], prove that I is an ideal in R that contains the kernel of £.

. (a) Let R bea ring with identity. Show that the map /*# — R given by

Jtk} = klg is a homomorphism.

{b) Show that the kernel of f'is the ideal (), where n is the characteristic of
R. [Hint: “Characterigtic” is defined immediately before Exercise 41 of
Section 3.2. Also see Exercise 40 in Section 6.1.]

. Find at least three idempotents in the quotient ring Q[x]/(x* + x%).

[See Exercise 3 in Section 3.2.)

Let R be a commutative ring and J the ideal of all nilpotent elements of R
(as in Exercise 30 of Section 6.1). Prove that the quotient ring R/J has no
nonzero nilpotent elements.

Let Sand Ibe as in Exercise 41 of Section 6. 1. Prove that §/I=Z,,
Let Tand I beas in Exercise 42 of Section 6.1. Prove that T/ = Z,,.

Let S and Ibe as in Exercise 45 of Section 6.1. Prove that §5/T=R X R.

IN Jisanideal in I, and Jis an ideal in I + J by Exercises 19 and 20 of
Section 6.1. Prove that %} = I%! [Hine: Show that f:F — (I + J}/J given
by f{a} = a + Jisa surjective homomorphism with kernel I N J]

{The Third Isomorphism Theorem) Let I and K be idealsin a ring R such that
K< I Then IfK isan ideal in R/K by Exercise 19. Prove that (R/K)/(I/K) =
R/I (Hint: Show that the map/:R/K— R/Igivenby fir + K) = r + Iisa well-
defined surjective homomorphism with kernel I/X(]

(a) Lét X bean ideal in a ring R. Prove that every ideal in the quotient
ring R/KX is of the form IfK for some ideal I in R. [Hin:.: Exercises 19
and 22.]

{b) If f:R — S is a surjective homomorphism of rings with kernel X, prove
that there isa bijective function from the set of all ideals of S to the set of
allideals of R thatcontain X. [Hint: Part (a}and Exercise 10.]

EXCURSION: The Chinese Remainder Theorem for Rings
(Section 14.3) may be covered at this point if desired.
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m The Structure of R/ When /ls Prime or Maximal*

Quotient rings were developed asa natural generalization of therings Z, and F[x]/(p(x)).
When p is prime and p(x) irreducible, then Z, and F[x]/(p(x)) are fields. In this section
we explore the analogue of this situation for quotient rings of commutative tings. We
shall determine the conditions necessary for a quotient ring to be either an integral
domain or a field.

Primes in Z and itreducibles in F[x] play essentially the same role in the structure
of the congruence class rings. Our first task in arbitrary commutative rings is to find
some reasonable way of describing this role interms of ideals. According to Theorem 1.5,
a nonzero integer p (other than *1) is prime if and only if p has this property:
Whenever p|bc, then p| b ot p|¢. To say that p |4 means that a is a multiple of p, that
is, a is an element of the principal ideal (p) of all multiples of p. Thus this propetty of
primes can be rephrased in tetms of ideals:

If p # 0, X1, then pis prime if and only if
whenever be & (p), then b (p) or e (p).

The condition p # *1 guarantees that 1 is not a multiple of p and, hence, that the ideal
(p) is not all of Z. Using this situation as a model, we have this

Definition An ideal P inacommutative ring R issaid to be prime if P # Rand whenever
boceP thenbePorcel.

EXAMPLE 1

Asshown abowe, the principal ideal (p) is prime in Z whenever pis a ptime
integer. On the other hand, the ideal P = (6) is not pritne in Z because
2+3cPbut2¢Pand3¢P.

EXAMPLE 2

The zero ideal in any integral domain R is pritne because ab = 0 implies
a= OR or b = OR-

EXAMPLE 3

The implication (1) = (2) of Theorem 4.12 shows that if Fis afield and p(x) is
itreducible in F[x], then the principal ideal (p(x)) is prime in F[x].

*This section is not used in the sequel snd may be omitted if desired.
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EXAMPLE 4

Let I be the ideal of polynomials with even constant terms in Z]x]. Then Fisnot
principal (Example 8 of Section 6.1) and clearly I+ Z[x]. Let f{x) = aa® + - - - + a
and g(x) = b,x™ + - - - + b be polynomials in Z[x] such that f(x)g(x)€ L. Then the
constant term of f{x)g(x), namely apby, must be even. Since the product of twe odd
integers is odd, we conchade that either a, is even (that is, f{x) € I) or &, is even (that
18, g(x) e I}. Therefore, Jis a prime ideal.

The ideal [ in Example 4 is prime, and the quotient ring £[x]/[ is a field (see
Example 3 of Section 6.2). Similarly, Z/(p) = Z, is a field when p is prime. However,
the next example shows that R/F may not always be a field when P is prime.

EXAMPLE 5

The principal ideal (x) in the ring Z[x] consists of polynomials that are mul-
tiples of x, that is, polynomials with zero constant terms. Hence, (x) # Z[x]. If
f(xX) =ax"+ - -+ ggand g(x) = b x™+ - - + §; and f{x)g(x) € L, then the
constant term of f{x)g(x), namely agby, must be 0. This can happen only if

ay = O or by = 0, that is, only if f(x) €(x) or g(x) € (x). Therefore, (x) is a prime
ideal. However, Example 7 of Section 6.2 shows that the quotientring Z[x]/(x)
is isomorphic to Z. Therefore, Z[x] /(x) is an integral domain but not a feld.

In light of Example 5, the next theorem is the best we can do with prime ideals,

Theorem 6,14

Let P be an ideal in a commutative ring R with identity. Then P is a prime ideal
if and only if the guotient ring R/F is an integral domain.

Proof » 11 P is any ideal in R, then by Theorem 6.6, a + P = 0y + Pin R/P if
and only if @ =03 (mod P). Furthermore, a = 0z (mod P} if and only if
ae P. So we have this useful fact:

{*) a+P=0z+PinR/P ifandonlyif aePr.

Suppose P is prime. By Theorem 6.9, R/ P is a commutative ring
with identity. In order to prove that R/P is an integral domain, we must
show that its identity is not the zero element and that it has no zero
divisors. Since P is prime, P # R. Consequently, 1, & P because any ideal
containing 1; must be the whole ring. However, 1, P implies that
1g+ P %0, + Pin R/F by (%). Now we show that R/ P has no zero
divisors. ¥ (b + PXc+ Py =0z + P,thenbc + P=0y + Pand bcc F
by (+). Hencebe Porce P Thushb+P=0y + Porc+ P =0z + P, 50
that R/P has no zero divisors. Therefore R/ P is an integral domain.
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Now assume that R/P is an integral domain. Then by definition
1z + P +# Dg + Pand hence 1, P by (+). Therefore P # R. To complete
the proof that P is prime we assume that bc€ Pand show that bEP or
ccP. Nowif bec P,thenin RfPwehave (b + PY(c+ P)=bc + P =
Op+ Pby(#). Thusb+ P =0+ Porc+P=0R+PbBcauseR/Phas
no zero divisors, Hence b € P or ¢€ P by (+). Therefore Pisprime. W

Since the quotient ring modulo a prime ideal is not necessarily a field, it 1s natural
to ask what conditions an ideal must satisfy in order for the quotient ring to bea field.

EXAMPLE &

Consider the ideal (3) in Z. We know that Z/(3) = Z; is a field. Now consider
theideal (3). Suppose Jis an ideal such that (3) =S Z. K J # (3), then there
exists ac J with a¢ (3). In particular, 3 £ a, so that 3 and a are relatively prime.
Hence, there are integers u and v such that 3u + av = 1. Since 3 and g are in
theideal J, it follows that 1 € J, Therefore J = Z by Exercise 9 of Section 6.1,
and so there are no ideals strietly between (3) and Z.

EXAMPLE 1

The quotient ring Z[x]/(x) is not a field (Example 5). Furthermore, the ideal f
of polynomials with even constant terms lies strictly between (x) and Z[x], that
is,(0) G 15 2Z[x).

Here is a formal definition of the property suggested by these examples:

Definition An ideal Min a ring R is said to be maximal ifM # R and whenever J is an
ideal such thatMcJc R then M=JorJ =R,

Example 6 shows that the ideal (3) is maximal in Z and Example 7 shows that the
ideal (x) is not maximal in Z[x]. Note that a ring may have more than one maximal
ideal. Theideal {0, 2, 4} is maximal in Zg, and so is theideal {0, 3}. There are infinitely
many maximal ideals in Z (Exexcise 3). Maximal ideals provide the following answer
to the question posed above:

Theorem 6,15

Let M be an ideal in a commutative ring A with identity. Then M is a maximal
ideal if and only if the quotient ring R/M is a field.

Proof » We shall use the same fact that was used in the proof of Theorem 6.14:

{» at M=0z+ MmR/M ifandonlyif acM.
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Suppose R/ M is a field. Then by definition 1, + M # 0z + M and
hence 15 ¢ M by (+). Therefore M # R.Toshow that M is maximal, we
assume that J is an ideal with A S J< R and show that M = Jor
J=R.If M = J, there & nothing to prove. If M # J, then there exists
acJSwithag¢ M. Hence a4+ M # 0z + Min the field R/M,anda+ M
has an inverse b + M suchthat (a+ MY b+ M) =ab+ M= 1+ M.
Then ab = 15 (mod M) by Theorem 6.6,sothatab — 1, = m for some
me M. Thus | = ab — m. Since a and m are in the ideal J, it follows
that 1,€JJand J = R. Therefore M is a maximal ideal.

Now assume M is a maximal ideal in R. By Theorem 6.9, R/M s a com-
mutative ring with identity. In order to prove that R/ M is a field, we first
show that its identity is not the zero element. Since M is maximal, M # R
Consequently, 1, & M because any ideal containing 1, foust be the whole
ning. However, 1, ¢ M implies that 1, + M # 0y + M in B/M by (»).

Next we show that every nonzero element of R/M has a muitiplicative
mverse. If @ + M s a nonzero element of R/M, then a & M (otherwisea + M
would be the zero coset). The set

J={m+ rajre Rand me M)}

is an ideal in R that contains M by Exercise 34 of Section 6.1. Furthermore,
a = 0y +1zaisin J, so that M # J. By maximality we must have J = R.

Hence 1€ J, which implies that 1, = m + caforsome me M and ccR.
Notethat ca — 15 = —m € M, so that ca = 1, (mod M), and hence

ca+ M = 15+ M by Theorem 6.6. Consequently, the coset

¢+ M is the inverse of a + M in RfM:

e+ Ma+ My=ca+ M=1+ M

So every nonzero element of R/M is a unit (Axiom 12 is satisfied).
Therefore, R/Mis a field. W

Corollary 6.16

In a commutative ring R with identity, every maximal ideal is prime.

Proof» 1f Af is a maximal ideal, then R/Mis a field by Theorem 6.15. Hence,
R/M is an integral domain by Theorem 3.8. Therefore, M is prime by
Theorem 6.14. W

Theorem 6.15 can be used to show that several familiar ideals are maximal.

EXAMPLE 8

The ideal I of polynomials with even constant terms in Z[x] is maximal because
Z[x]/I'is a field (see Example 3 of Section 6.2).
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EXAMPLE ¢

Let

Tbe the ring of functions from R to R and let I'be the ideal of all functions

g such that g(2} = 0. In Example 8 of Section 6.2 we saw that T/Iis a field
isomorphic to R. Therefore, I is a maximal idealin T,

B Exercises

A1,
2.

3]

If #is a composite integer, prove that {#)is not a prime ideal in 2.

If Ris a finite cormmutative ring with identity, prove that every prime ideal in
R is maximal. [Hirt: Theorem 3.9.)

. {a) Prove that a nonzero integer p is prime if and only if the ideal {p) is

maximal in Z.

(b) Let F be a field and p(x} & F[x1. Prove that p(x} is irreducible if and only if
the ideal (p(x)} is maximal in F[x).

. Let R be a commutative ring with identity. Prove that R is an integral domain

if and only if (0g)} is a prime ideal.

. List all maximal ideals in Z;. Do the samein 2,;.

6. (a) Show that there is exactly one maximal idealin £; Do the same for Z,.

7'

11.
12.

13.

14,

[Hint: Exercise 6 in Section 6.1.]
(b) Show that £,,and Z,; have more than one maximal ideal.

Let R be a commutative ring with identity. Prove that Ris a field if and only if
(Og) is a maximal ideal.

. Give an example to show that the intersection of two prime ideals need not be

prime. [ Hini: Consider (2} and (3} in Z.]

. Let Rbe an integral domain in which every ideal is principal. If (p}isa

nonzero prime ideal in R, prove that p has this property: Whenever p factors,
p=cd,thencordisaunitin R.

., Let p be a fixed prime and let J be the set of polynomials in Z[x] whose

constant terms are divisible by p. Prove that J is a maximal ideal in Z[x].
Show that the principal ideal (x — 1}in Z[x] is prime but not maximal,

If p is a prime integer, prove that M is a maximal ideal in Z X Z, where M =
{(pa, b))a, b2},

If I'is an ideal in a ring R, then f X Iis anideal in B X R by Exercise § of
Section 6.1. Prove that (R X R}/(I X I)isisomorphicto BR/I X R/IL.
[Hint: Show that the function ;R X R-—» R/I X R/I given by f((a, b)) =
(a + L b + Ilis a surjective homomorphism of rings with kernel 7 X I

If Pis a prime ideal in a commutative ring R, is the ideal P X P a prime ideal
in R X R7[Hint Exercise 13.]



16.

17.

18.

19.

20.
.21,
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. (a} Let R be the set of integers equipped with the usual addition and

multiplication given by ab = O for all g, b € R. Show that Ris a
commutative ring.

(b) Show that M = {0, 2, ¥4, 6, ...} is a maximal ideal in R that is not
Prime. Explain why this result does not contradict Corollary 6.16.

Show that M = {0, 4, =8, ...} is a maximal ideal in the ring £ of even
integers but EfM is not a field. Explain why this result does not contradict
Theorem 6.15.

Let f:R — § be a surjective homomorphism of commutative rings. If Jis a
prime ideal in §, and I = {r € R| f(r) € J}, prove that [ is a prime ideal in R.
Let P be an ideal in a commutative ring R with P # R. Prove that P is prime
if and only if it has this property: Whenever 4 and B are ideals in R such that
ABg P,then A < Por B < P.[AB is defined in Exercise 36 of Section 6.1. This
property is used as a definition of prime ideal in noncommuiative rings.]

Assume that when R is a nonzero ring with identity, then every ideal of
Rexcept R itself is contained in 2 maximal ideal (the proof of this fact is
beyond the scope of this book). Prove that a commutative ring R with identity
has a unique maximal ideal if and only if the set of nonunits in R is an ideal.
Such a ring is called a Joca) ring. (See Exercise 6 of Section 6.1 for examples of
local rings.}

Find an ideal in Z X # that is prime but not maximal.
(a) Prove that R = {a + bija, b €Z} is a subring of C and that
M = {a + bi}3|aand 3}b}

is a maximal ideal in R. [Hint: If ¥ + si¢¢ M, then 3 £ror 3 ts. Show
that 3 does not divide »* + 52 = (¢ + s)(r — #{). Then show that any ideal
containing * + 5 and M also contains 1.]

(b) Show that R/M is a field with nine elements.

. Let R be as in Exercise 21. Show that J is not a maximal ideal n R, where J =

{a + bi| 5| a and 5| b}. [Hint: Consider the principal ideal X = (2 + i) in R]

. If R and J are as in Exercise 22, show that RAJ = #5 X Zs.
. If R and X are as in Exercise 22, show that R/K = Z5.
. Prove that T = {a + bV2|a,beZ} is a subring of R and M =

{a+ bV2|5}aand 5[b} is a maximal ideal in 7.

ALTERNATIVE ROUTES: At this point there are three possibilities.
You may explore a new algebraic concept, groups (Chapter7)—if you
have not already done so—or continue further with either integral
domains (Chapter 10) or fields (Chapter 11).







CHAPTER |

Groups

The algebraic systems with which you are familiar, swch as Z, Z,, the rational
numbers, the real numbers, and other rings all have two operations: addition and
multiplication, in this chapter, we introduce a different kind of algebraic structure—
called a group—that uses a single operation. Groups arise raturally in the study of
symmetry, geometric transformations, algebraic coding theory, and in the analysis

of the solutions of polynomial equations.

ALTERNATE ROUTE: If you have not read Chapter 3 (Rings), you
should replace Section 7.1 with Section 7.1.A, which begins on page 183.

m Definition and Examples of Groups

A group is an algebraic system with one operation. Some groups arise from rings by
ignoring one of their operations and concentrating on the other. As we shall see, for
example, the integers form a group under addition (but not multiplication} and the
nonzero rational numbers form a group under multiplication (but not addition). But
many groups do not arise from a system with two operations. The most important of
these latter groups (the ones that were the historical starting point of group theory)
developed from the study of permutations.* Consequently, we begin with a consider-

ation of permutations.

Informally, a permutation of a set T'is just an ordering of its elements. For example,

there are six possible permutations of T = {1, 2, 3}:
123 132 213 231 312 321.

*In the early nineteenth century, permutations played a key role in the attempt to find formulas for
solving higher-degree polynomial equations similar to the quadratic formula. For more irformation,

sea Chapter 12.
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Each such otdering determines a bijective function ftom Tto % map 1 to the first
element of the ordering, 2 to the second, and 3 to the third.* For instance, 2 3 1
determines the function f: T— Twhose rule is /(1) = 2; f(2) = 3; f(3) = 1. Conversely,
every bijective function from T to T defines an ordering of the elements, namely, f{1),
F(2), f(3). Cotisequently, we define a permutation of a set T to be a bijective function
from T'to T. This definition preserves the informal idea of ordering and has the advan-
tage of being applicable to infinite sets. For now, however, we shall concentrate on finite
sets and develop a convenient notation for dealing with their permutations.

EXAMPLE 1

Let T= {1, 2, 3}. The permutation f whosemleis f{l) = 2, f()= 3, /() =1

123
may be represented by the array (2 4 1), mn which the image under fof an

element in the first row is listed immediately below it in the second row. Using
this notation, the six permutations of T are

(1 2 3)(1 2 3)(1 2 3)
1 2 3/\1 3 2/\2 1 3
(1 2 3)(1 2 3)(1 2 3)

3 y\s 1 2/\3 2 )

Since the composition of two bijective functions is itself bijective, the composi-
tion of any two of these permutations is one of the six permutations on the list

. . 123 1
above, For instance, if f= (3 5 l)andg =( :f 3),thenf°gisthef\mc-
tion given by 213

%]

(fo) =fe) =f2)=2
(fogX2) =fle@) =f(1) =3
(foeX3) =fg(3 =/B) =1

123
Thus feg = (2 3 1). It is usually easier to make computations like this

by visually tracing an element’s progress as we first apply £ and then f: for
example,

~ o
~a -
A —— o a--

*Bijective functions are discussed in Appendix B.
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If we denote the set of permutations of T by S;, then composition of functions
{ 2 ) is an operation on the set S, with this property:

If feS;and g€ S, then foge S;.
Since composition of functions is associative,* we see that

(feg)oh=fe(goh) forallf, g, hE S,

123
Verify that the identity permutation I = (1 2 3) has this property:
Ief=f and  felI=f  foreveryfeS;
Every bijection has an inverse function;* comsequently,
if =S, then there exists g € .5, such that

feg=1 and gof=1

For instance, if f = (; f 2), then g = (; i ::) because

TN
[ VI
Ll
N W
S’
o
N
w N
—
S’
I
TN
—
[ % ¥
W W
S’

and

—
%]

(1230123_123

2 3 1/°\3 2/ 3)

You should determine the inverses of the other permutations in S, (Exercise 1).
Finally, note that f'» g may not be equal to g < f; for instance,

1 2 3y /1 2 3\_(1 23
3 21 2 1 3/ \2 3 1

but

*See Appendix B.
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By abstracting the key properties of S; under the operation ¢, we obtain this

Definition A group is a nonempty set G equipped with a binary operation = that satis-

fies the following axioms':
1. Closure:lfaeGand bets, thenaxbe G,
2. Associativity:a=(bx¢)y=(a@=b)=cforalla b, ceb.

3. There is an element ee G (called the identity element} such that
axe=a=e=xaforeveryaeG,

4, Foreach a€ G, there isan element de G (called the inverse of a)
suchthataxd=candd=a=a

A group is said to be abelian® if italso satisfies this axiom:
5. Commutativity:a =b = b xaforall g b 6.

A group Gis said to be finite (or of finite order) if ithas a finite number of elements.
In this case, the number of elements in Gis called the order of & and is denoted [G]. A
group with infinitely many elements is said to have infinite order.

EXAMPLE 2

The discussion preceding the definition shows that .55 is a nonabelian group of
order 6, with the operation # being composition of functions.

EXAMPLE 3

The permutation group S, is just a special case of a more general situation. Let
n be afixed positive integer and let T be the set {1, 2, 3,.. _, #}. Let S, be the set
of all permutations of T (that is, all bijegtions T'— T). We shall use the same
notation for such functions as we did in 85. In S, for instance, C‘ 2 ; l; Z tl;)
denotes the permutation that takes 1to4,2to 6,3t02,4t0 3,5t0 5, and 6 to
1. Since the composite of two bijective functions is bijective,J S, is closed under
the operation of composition. For example, in S

56)_(123456)
51 \6435213

e

........
-~ ~
Ny

»
(123456)\ (123
: '
35241 6/ 2
\ﬁ~"; \~‘ ------ A‘

~
Sy e
rewe i
R L. L e

(Remember that in composition of functions, we apply the right-hand function
first and then the lefi-hand one. In this case, for instance, 4 — 3 — 2, as shown

tBinary operations are defined in Appendix B.
In hanor of the Norwegian mathematician N. H. Abel (18021329},
§See Appendix B.
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by the arrows.) We claim that S, is a group under this operaticn, Compeosition
of functions is known to be asscciative, and every bijection has an inverse func-
tion under composition.t It is easy to verify that the identity permutation

123 .
( 123 :‘) 1s the identity element of S,. S, is called the symmetric
group on # symbols, The order of &, iss! = n{n — 1X(n — 2) ... 2.1 {Exervise 20).

EXAMPLE 4

The preceding example is easily generalized. Let T be any nonempty set, possi-
bly infinite. Let A(T") be the set of all permutations of T (all bijective functions
T— T). The arguments given above for S, carry over to 4(T) and show that

A(T) is a group under the operaticn of compesition of functions (Exercise 12).

EXAMPLE §

Think of the plane as a sheet of thin, rigid plastic. Suppose you cut out a square,
pick it up, and move it around, ® then replace it so that it fits exactly in the cut-cut
space. Eight ways of doing this are shown below (where the square is centered at
the origin and its corners numbered for easy reference). We claim that any mo-
tion of the square that ends with the square fitting exactly in the cut-out space
has the same result as one of these eight motions (Exercise 14).

All Rotations Are Taken Counterclodowise Aroad the Conter:

7 = rotation of 0°

tSee Appendix B for details.
Rlip it, rotate it, turn it over, spin it, do whatever you want, aslong as you don't bend, break, or distort it
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r; = rotation of [30°
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1 = reflecticn in the y-axis
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i = reflection in line y = x

k
TN

N

IX

2

<
N

v = reflection in line y = ~x

}

N
AN

N

<
.
.
.
.
l\:

2

If you perform one of these motions and follow it by another, the result will be
one of the eight listed above; for example,

PN
NN

2 1 2
¢

N

If you think of amotion as a function from the square to itself, then the idea of follow-
ing one motion by another is just composition of functions. In the illustration above
(h followed by r, is £), We can write r| ot = ¢ (remember r; © h means first apply &, then
apply ry). Verify that the set

Dy={rp,r,r,r,hvd 1}
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equipped with the composition operation has this table:

o |r n rn rn d h t w
|l n ra o no d B t v
nilmnm n s n A t » d
|l o n t v d k
rn|n o rn v d h ¢
d |d v t h 1 r, rp n
h h d v i n L] r L)
t t h d v rp o1 oK B
] v t h d rnn non r

Clearly D, is closed under o, and cornposition of functions is known o be associative,
The table shows that r, is the identity element and that every element of D, has an
imverse, For instance, r; 0ry = ry = ry ¢ ry .Therefore, Dy is a group. It isnot abelian
because, for example, # o d # & ¢ i D, is called the dihedral group of degree 4 or
the group of symmetries of the square.

EXAMPLE &

The group of symmetries of the square is just one of many symmetry groups.

An analogous procedure can be carried out with any regulat polygon of # sides,
The resulting group D, is called the dihedral group of degree a. The group Ds, for
example, consists of the six syrnmetries of an equilatetal triangle (counterclockwise
rotations about the center of (°, 120°, and 240°%; and the three reflections shown
here), with composition of functions as the operation:

2 2 X ;
L1 n L~ L1 n d
/“‘\/ ™
1 1 \ 1 3 /

™ ™ ™ ™~

3 1 3 2

v L] e s L~
™ ™

N N » .

2 3 2214752 Instructor Instructor

Ry r

\2 \\ SN

2 2

™~

Symmetry groups arse frequently in art, atchitecture, and science.
Crystallography and crystal physics use groups of symmetries of vatious
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three-dimensional shapes. The first accurate model of DNA (which led to the
Nobel Prize for its creators) could not have been constructed without a recogni-
tion of the symmetry of the DNA molecule. Symmetry groups have been used by
physicists to predict the existence of certain eletnentary particles that were later
found experimentally.

Groups and Rings

A ring R has two associative operations, and it is natural to ask if R is a group under
either one. For addition the answer is yes:

Theorem 7.1

Every ring is an abelian group under addition.
Proofr An examination of the first five axioms for a ting {in Section 3.1) shows that

they are identical to the five axioms for an abelian group, with the operation *
being +, the identity element e being 04, and the inverse of a being —a. W

EXAMPLE 7

By Theoretn 7.1, each of the following familiar rings is an abelian group under
addition:
Z’ l’l’ Q§ R’ C;
Matrix rings, such as M(R) and M(£;);
Polynomial rings such as Z[x], R[x], and Z,[x].

Hereafter, when we use the word “group” without any qualification in referring
to these or otherrings, it is understood that the operation is addition.

Multiplication, however, is a different story:
A nonzero ring R is sever a group under multiplication.

If R has no identity, Axiom 3 fails. If R has an identity, then Og has no inverse and
Axiom 4 fails. Nevertheless, certain subsets of a ring with identity may be groups
under multiplication.

Theorem 7.2

The nonzerec elements of a field  form an abelian group under multiplication.

Hereafter we shall denote the set of nonzero elements in a field F by F*.

Proof of Thearem 72» Multiplication in F* satisfies the following ring axiotns:
6 and 11 (closure), 7 (associativity), 10 (identity), 12 (inverses), and 3
(commutativity}—see pages 44, 48, and 49, So F* satisfies group axioms
1-5 and, therefore, is an abelian group under mltiplication. W
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EXAMPLE &

Theorem 7 2 shows that each of the following is an abelian group under
multiplication:

Q* the nonzero rational numbers; R* the nonzero real numbers;

C* the nonzero complex numbers.

EXAMPLE S

If pis prime, then Z, is a field by Theorems 2.7 and 2.8. Therefore, Z,* s a
group under multiplication by Theorem 7.2.

EXAMPLE 10

The positive rational numbers (}** form an infinite abelian group under multi-
plication, because the product of positive numbers is positive, | is the identity
element, and the inverse of ais 1/a. Similarly, the positive reals R** form an
abelian group under multiplication.

EXAMPLE 11

The subset {1, —1, i, —#& of the complex numbers forms an abelian group of
order 4 under multiplication, You can easily verify closure, and 1 is the identity
element. Since {— #) = 1, i and ~{ are inverses of each other; —1 is its own
inverse since (-1)(~1) = 1, Hence, Axiom 4 holds.

EXAMPLE 12

Naether the nonzero integers nor the positive integers form a group under mul-
tiplication. Although 1 is the multiplicative identity for each system, no integers
except for +1 have a multiplicative inverse, so Axiom 4 fails. For example, the
equation 2x = 1 has no infeger solution, so 2 has no inverse under multiplica-
tion in the integers.

EXAMPLE 13

When  is composite, the nonzero elements of Z, do not form a group under
multiplication because (among other things) closure fails. In Z, for instance,
2-3=0and in &3, 4+ 5= 0. Similarly if # = s, thenin Z,,, r2 = 0.

A ring R with identity always has at least one subset that is a group under
multiplication. Recall that a uniz in R is an element « that has a multiplicative inverse,
that is, an element« such thatau = 1; = ua.
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Theorem 7.3

if R is a ring with identity, then the set U of all units in R is & group under
multiplication.®

Proofs The product of units is 2 unit (Exercise 15 in Section 3.2), so Uis closed under
multiplication (Axiom 1). Multiphcation in R is associative, so Axiom 2 holds.
Since 1 is obviously a unit, &7 has anidentity element (Axiom 3). Axiom 4
holds in 7 by the definition of unit. Therefore, Fisagroup. B

EXAMPLE 14

Denote the multiplicative group of units in Z, by U,. According to Theorem 2.10,
U, consists of all e Z, such that (@, #) = 1 (when a isconsidered as an ordinary
mteger). Thus the group of units in Zgis Ug = {1, 3, 5, 7}, and the group of units
inZ5is U = {1,2,4,7,8, 11, 13, 14}. Here is the operation table for T%:

L BV Tl e
o= = | W
W= =) a | L
LT LY TS T L |

1
3
5
7

EXAMPLE 15

Examples 7 and 10 of Section 3.2, and Exercise 17 of Section 3.2 show that the
group of unitsin M([R)is

GL(2,R) = {(j b)|wherea,b, c,de Randad — bec # D},

d

which is called the general linear group of degree 2 over [R. It is an infinite
nonabelian group (Exercise 7).,

EXAMPLE 16

Examples £ and 10 of Section 3.2, and Exercise 17 of Section 3.2 show that the

group of units in M{(Z,) is
GL(2,7,) = {(: 3)|wherea,b,c,d e Zyandad — be # o},

the general linear group of degree 2 over #5. It is 2 nonabelian finite group of
order & (Exercise 7).

*TheoremT.2is a specialcaseci Theorem 7.3 becausethe unitsin a field arethe nonzero slements.
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New Groups from Old

The Cartesian product, with operations defined coordinatewise, allowed us to con-
struct new 1ings from known ones. The same is true for groups.

Theorem 7.4

Let G {with oporation %) and H (with operation ¢} be groups. Define an cperation»
on G X H by

(g hy=(g' W)= (g=g' h o).

Then G X H isa group. If G and H are abellan, thenscis G X H. f Gand H
are finite, then so is G X Hand |G X H|= |G ||H}

Proof » Exercise 26. m

EXAMPLE 17

Both Z and Z, are groups under addition. In Z X Z; we have (3, 5)u(7,4) =
3+ 7,5 + 4) = (10, 3). The identity is (0, 0), and the inverse of (7,4)is ( -7, 2).

EXAMPLE 18

Consider B* X Dy, where R* is the mmItiplicative group of nonzero real num-
bers. The table in Example 5 shows that

()G, =029, n°v)= (18, 4d).
The identity element is (1, ry), and the inverse of (8, ry) is (1/8, ).

H Exercises

A. 1. Find the inverse of each permutation in §5.

2. Find the multiplicative inverse of each nonzero element in

(a) Z ) Z, © 4
3. What is the order of each group:
(@) Zy ) D, © S (@) §; ) Uy

4. Determine whether the set G is a group under the operation +.
@) G={2,4,6,8}inZg;axb=ab
M G=Zatb=a-~d
© G={nc|nsodd};asdb=a+d
) G={F|xeQ}iaxdb=ab



10.

11.

12.

13.

B. 14.

15.

16.
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. Find the inverse of the given group element. [Hint: Example 8 in Section 3.2—

or Example 16 in Section 7.1.A—-and Exercise 2.]

. 1 . .
@( Doz of Doz o oz

. Give an example of an abelian group of order 4 in which every nonidentity

element a satisfies &t + a = o. [Hint: Consider Theorem 7.4.]

. {a) Show thatthe group GL(2, ;) has order 6 by listing all its elements.

{b) Show by example that the groups GIL(2, R) and GL(2, Z,) are nonabelian.

. Use Theorem 2.10 to list the elements of each of these groups: U, Uy, Ulg,

Uﬂ)s UJG-

., Write out the operation table for the group D; described in Example 6.

Show that G = {( 4 b)
~b a

matrix multiplication.

a, b R, not both 0} is an abelian group nnder

Consider the additive group Z, and the multiplicative group L = {%1, £ i} of
complex numbers. Write out the operation table for the group Z, X L.

Let T be a nonempty set and A(T) the set of all permutations of 7. Show that
A(T) 1s a group under the operation of composition of functions.

Give examples of nonabelian groups of orders 12, 16, 30, and 48.
[Hint: Theorem 7.4 may be helpful.]

Show that every rigid motion of the square (as described in the footnote at the
beginmng of Example 5) has the same result as an element of Dy, [Hint: The
position of the square afier any motion is completely determined by the location
of corner 1 and by the orientation of the square—{ace up or face down,]

Write out the operation table for the symmetry groups of the following figures:

Let 1, i, j, k be the following matrices with complex entries:

A R O

{a) Provethat
f=f=K=-1 j=—ji=k
jk=—kj =i i= =ik =}.
{1 Showthatset @ = {1,i, —1, =, j, k, —j, =k} is a group nnder matnx

rmultiplication by writing out its multiplication table. 0 is called the
quaternlon group.
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17.

18,

19.

20,

21.

12,

23,

24,

25,

16.
27.
28,

19.

If Gis a group under the stated operation, prove it; if not, give a counterexarnple:
(a) G=Q,axb=a+b+13

(b) G=treQir# 0};asb=ab/3

Let K= {reR|r # 0, r # 1}. Let G consist of these six functions from X to X

x—1

M) = g =5 b =

x

i{x) =x fix)=1—-x k(x):x—l

Is G a group under the operation of function composition?

Do the nonzero real numbers form a group under the operation given by g « b =
| @ | &, where | a| is the absolute value of a?

Prove that S, has order #!. [Hint: There are n possible images for 1; after one
has been chosen, there are n — | possible images for 2; etc.]

Suppose G is a group with operation +. Define a new operation # on G by
a#t b= 15 +a Prove that Gis a group under #.

List the elements of the group D (the symmetries of a regular pentagon).
[Hint: The group has order 10.]

Let SL(2, R) be the set of all 2 X 2 matrices (: Z) such that a, b, ¢, de R

and ad — bec = 1. Prove that SI(2, R)is a group under matrix multiplication.
It is called the speeial linear group.

Prove that the set of nonzero real numbers is a group under the operation #
defined by

ath = ab ifa>"0
a’b fa<0.

Prove that f* X R is a group under the operation * defined by (@, ) « (c, ) =
(ac, be + d).

Prove Theorem 7.4.
If ab = ac in a group G, prove thath = ¢,

Prove that each element of a finite group G appears exactly once in each row
and exactly once ineach column of the operation table. [Hins: Exercise 27.]

Here is part of the operation table for a group G whose elements are a, b, ¢, d.
Fill in the rest of the table. [Hin:: Exercises27 and 28.]

‘abcd
a |la b ¢ d
b | b a

t | ¢ a
d
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30. A partial operation table for a group G = {e, a, b, ¢, d, f} is shown below.
Complete the table. [Hint: Bxercises 27 and 28.]

e b d f
el e a b ¢ d f
ala b e d
b | b
cl|l e f a
d| d
I\ f

31. Let T be a set with at least three elements. Show that the permutation group
A(T) {BExercise 12) is nonabelian.

32. Let T be an infinite set and let A(T") be the group of permutations of T
{Exercise 12). Let M = {fe AT)| f(t) # tfor only a finite number of te T}.
Prove that M isa group.

33, If g, bR with a # 0, ket T, -1 — R be the function given by T, (x) = ax + b.
Prove that the set G = {T,,|a, b R with g # 0} forms a nonabelian group
under composition of functions.

34, Let H = {T},| be R} (notation as in Exercise 33). Prove that H is an abelian
group under composition of functions.

C.35. If £ S,, prove that f*= I for some positive integer &, where f** means
fofofo. . of (ktimes)and is theidentity permutation.

36. Let G={0,1,2,3,4,5, 6, 7} and assume G is a group under an opetation
with these properties:

(i axb=a +biforalla,beG;
(i) axa=Dforallae .
Write out the operation table for G. [Hins: Exercises 27 and 28 may help]

m Definition and Examples of Groups

NOTE: If you have read Section 7.1, omit this section and begin Section 7.2,

A group is an algebraic system with one operation. Some groups arise from familiar
systems, such as Z, Z,, the rational numbers, and the real numbers, by ignoring one
of their operations and concentrating on the other. As we shall see, for example, the
integers form a group under addition {but not multiplication) and the nonzero ratio-
nal numbers form a group under multiplication {but not addition). But many groups
do not arise from a system with two operations. The most important of these latter
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groups (the ones that were the historical starting point of group theory) developed
from the study of permutations.® Consequently, we begin with a consideration of
permutations.

Informally, a permutation of a set T'is just an ordering of its elements. For example,
there are six possible permutations of T'= {1,2, 3}:

123 132 213 231 312 321.

Each such ordering determines a bijective function from T to T map 1 to the first
element of the ordering, 2 to the second, and 3 to the third.t Forinstance, 2 3 1 de-
terrnines the function f: T— T whose rule is /(1) = 2; f(2) = 3;f(3) = 1. Conversely,
every bijective function from T to T defines an ordering of the elements, namely,
F), £(2), £(3). Consequently, we define a permutation of a set T to be a bijective
function from T to T. This definition preserves the informal idea of ordering and
has the advantage of being applicable to infinite sets. For now, however, we shall
concentrate on finite sets and develop a convenient notation for dealing with their
permutations.

EXAMPLE 1

Let T= {1, 2, 3}, The permutation f'whose rule is /(1) = 2, f(2) = 3,f(3) = |
may be represented by the array (; i ?), in which the image under # of an

element in the first row is listed immediately below it in the second row. Using
this notation, the six permutations of T are

(1 2 3) (1 2 3) (1 2 3)
i 2 3/)\0 3 2/\2 1 3
(1 2 3) (1 2 3) (1 2 3)
2 3 1J\s 1 2/\3 2 J

Since the composition of two bijective functions is itself bijective, the composi-
tion of any two of these permutations is one of the six permutations on the list

above. For instance, if f = 123 and g = 12 3), then fo g is the func.
- . 321 213
tion given by

(feo)D =flg) =rf(2)=2
(fog)?) =re() =f(1) =3
(fo)B3) =fB3) =/ =L

*In the early nineteanth century, permutations played a key role in the attempt to find formulas for
solving higher-degree palynomial equations similar ta the quadrati¢ farmula. For more information,
see Chapter 12.

tBilective functions are discussed in Appendix B.
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Thus fog= (; i i) It is usually easier to make computations like this

by visually tracing an element’s progress as we first apply g and then /; for example,

PSRN

1 2 3%, 1 % 3 1 2 3
l "0 =

321 ~\2 I 3 2 31
N 4

L.

If we denote the set of permutations of T by Sj, then composition of functions
( o )is an operation on the set §, with this property:

If fe S, and ge 8, then f= ge S;,
Since composition of functions is associative,® we see that
(fog)ok=fo(goh) forallfig keSy

Verify that the identity permutation I = G i :) has this property;

Iof=f and foI=f foreveryfeSl,
Every bijection has an inverse function;* consequently,
if f& 8§, then there exists g € §; such that
feg=I and gof=1I

For instance, if f = (:1; f ;), theng = (; 3 i) because

(123)0(123)_(123)
31 2/ \2 3 1/J7\u 2 3
12 3\ /1 2 3\_/1 23
2 3 131 2/ 2 3}

You should determine the inverses of the other permutations in §; (Exercise 1).
Finally, note that fo g may not be equal to g < f: for instance,

G2dGi3)G3)
G 1 )Ga )6l

and

—

but

N

*SeeAppendix B,
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By abstracting the key properties of §, under the operation ¢, we obtain this

Definition A group is-a nonampty set G equipped with a binary operation = that
satisfies the following axiomst:

1. Closure: IfaeGand be G, thenaxbeG.

2, Assoriativity:a = (b xc) = (axb)=cforalla, b, c&G,

3. Therd is an element ee & (called the identity element) such that
are=a=c¢=xaforeveryact.

4. For each ae G, there is an element d € & (called the inverse of a)
suchthataxd =eandd=a=e

A group is said to beabelian® if it also satisfies this axiom:

8, Commutativity:a=b =b vaforalla, beG.

A group Gis said to be finite (or of finite erder) if it has a finite number of elements.
In this case, the number of elements in G is called the order of Gand is denoted |G}, A
group with infinitely many elements is said to have infinite order.

EXAMPLE 2

The discussion preceding the definition shows that S; is a nonabelian group of
order 6, with the operation * being composition of functions,

EXAMPLE 3

The permutation group S; is just a special case of a more general situation. Let
n be a fixed positive integer and let T'be the set {1, 2, 3,...,n}. Let S, be the set
of all permutations of T (that is, all bijections T = T'). We shall use the same

12345 6)
462351
denotes the permutation that takes 1t0 4,210 6,3t0 2,4t0 3,510 5,and 6 to
1. Since the composite of two bijective functions is bijective,’ 8, is closed under
the operation of composition. For example, in Sg

notation forsuch functions as we did in §;. In S, for instance, (

_________

(] p 3)4 5 6) (1 2 3 4 5 6) (l 2 3 4 5 6)
3 5 2 4 1 6 6 4 2 3 51 6 4 5’2 1 3
e .u“-’““;x e

fBinary operaticns are detined in Appendix B.
#In honor of the Norwegian mathematician N. H. Abel (1802-1829).
$Saa Appendix B for dotails.



7.1.A Definition and Examples of Groups 187

(Remember that in composition of functions, we apply the right-hand function
first and then the left-hand one. In this case, for instance, 4 — 3 — 2, as shown
by the arrows.) We claim that S, is a group under this operation. Composition
of functions is known to be associative, and every bijection has an inverse func-
tion under composition.? It is easy to verify that the identity permutation

(} ; ; e :) is the identity element of S,. S, is called the symmetric

group on x symbols. The order of S, is nt = n(n — L)(n —2) ... 2.1 (Exercise 20).

EXAMPLE 4

The preceding example is easily generalized. Let T be any nonempty set,
possibly infinite. Let A(T) be the set of all permutations of T (all bijective
functions T'— T'). The arguments given above for 5, carry over to A(T) and
show that A(T") is a group under the operation of composition of functions
(Exercise 12).

EXAMPLE 5

Think of the plane as a sheet of thin, rigid plastic. Suppose you cut out a
square, pick it up, and move it around,} then replace it so that it fits exactly in
the cut-out space. Eight ways of doing this are shown below (where the square
is centered at the origin and its corners numbered for easy reference). We claim
that any motion of the square that ends with the square fitting exactly in the
cut-out space has the same result as one of these eight motions (Exercise 14).

All Rotations Are Tokeen Cowntercipckwise Around the Center
ry = rotation of 0°

4 4

A AN
NZAAN

2 2

tSee Appendix B for details.
£Flip it, rotate it, turn it over, spin it, do whatever you want, as long as you don’t band, break, or
distortit.
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= ion of 90°
4 3
/ : /\

<

r = rotation of 180°

<P

AN AN

<

N N
NZ

d = reflection in the x-axis

<

<

VANV

<
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t = reflection in the y-axis

L

AN

h = reflection in line y = x

w

\/ -
\\
N

._
4
.
.
“/\

v = reflection inline y = —x

\;/‘L
LFS ¥

...
.
.
.
[ -

N
)N

W

N

),

N

[ *]

>e

N

N

F

N

N

If you perform one of these motions and follow it by anocther, the result will be

one of the eight listed above; for example,

w
N

N

N

L

/
N

3

3

N

AN
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If you think of a motion as a function from the square to itself, then the idea of fol-
lowing one motion by another is just composition of functions. In the illustration
above (7 followed by ry is 1), wecan write ry @ i = f {remember | © # means first apply
h,then apply r|). Venfy that the set

Dy={rpn,mr,hvdt}
equipped with the composition operation has this table:

o ro H t, . d h t v
o |t 1 B nn d Rk 1w
n|n o rp kb ot v d
n|lrm o o t v d kR
|l rp K o v d h 1

d d v t h v rn n n
h A d v 1 rn n n
t t h d v n 1 nyon
v » t h d mn nn rn ry

Clearly D, is closed under ¢, and composition of functions is known to be associa-
tive. The table shows that r, is the identity element and that every elernent of D, has
an mverse. For instance, r3 ¢ 1y == 1y = ry 2 73 Therefore, Dy is a group. It 1s not abelian
because, for example, /s od # d+ k. D, is called the dihedral group of degree 4 orthe
group of syrrunetries of the square.

EXAMPLE &

The group of symmetries of the square b just one of many symmetry groups. An
analogous proocedure can be carried out with any regular polygon of # sides. The
resulting group D, is called the dihedral group of degree n. The group D;, for ex-
ample, consists of the six symmetries of an equilateral triangle (counterclockwise
rotations about the center of 0°, 120°, and 240°; and the three reflections shown
here and on the next page), with composition of functions as the operation:

A At
1 1 1 3
IENEENY NERNS
K 1 3 2
1w s -]
1/ /V i *f—;\/
NI N
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3 1 3 3

) g #u
1l AT
2 2 2 1

Symmetry groups arise frequently in art, architecture, and science. Crystallography
and crystal physics use groups of symmetries of various three-dimensional shapes.
The first accurate model of DNA (which led to the Nobel Prize for its creators) could
not have been constructed without a recognition of the symmetry of the DINA mol-
ecule. Symmetry groups have been used by physicists to predict the existence of certain
elementary particles that were later found experimentally.

Systems with Two Operations

We now examine some familiar systems with two operations to see what groups arise
when only one of the operations is considered.

EXAMPLE 7

We now show that each of the following is an abelian group under addition,
that is, with the operation « in the definition of a group being +:

Z theintegers; Z, the integers mod &;
Q the rational numbers; R the real numbers; C the complex numbers.

That each system is closed under addition is a fact from basic arithmetic
(Axiom 1). Likewise, addition in each of these systems is associative: For any
three numbers 4, b, ¢,

atbtcy=(at+tbh)tc [Additive form of Axiom 2]
In each system, the identity element is 0 because
atO0=a=0+a  [Additive formof Axiom 3]
Similarly, the inverse of ais —a because
a+t{-a)=0 and —~a4+a=0 [Additive form of Axiom 4]
Finally, each group is abelian because for any two numbers a and b,
at+b=b+a [Additive form of Axiom 3]

Hereafier, when we use the word “group™ without any qualification in refer-
ring to Z, Z,,, 0, R, or T, it is understood that the operation is addition. When
it comes to multiplication, we have this basic fact:

Noneof Z, Z,, Q, R, or C is a group under multiplication.
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To be sure, each has 1 as its multiplicative identity element, but unfortunately
0 has no inverse——the equation Ox = [ has no solutions—so0 Axiom 4 fails.

Nevertheless, certain subsets of these sy stems may be groups under multiplication.

EXAMPLE §

Each of the following is an abelian group under multiplication:
€* the nonzero rational numbers; R* the nonzero real numbers;

€* the nonzero complex numbers.

Each system is closed under multiplication because the product of nonzero num-
bers is nonzero (Axiom 1). Basic arithmetic tells us that multiplication is associa-
tive and commutative (Axioms 2 and 5). The identity element in each system is 1
becausea- | = @ =1 - ¢ (Axiom 3}. The inverse of « is 1/a (Axiom 4},

EXAMPLE $

Let p be a prime, and consider the nonzero elements of Z, under multiplica-
tion. If @ # D and b # 0, then @b # 0 by condition (3} of Theorem 2.8, so
closure holds (Axiom 1). The identity element is 1 (Axiom 3) and inverses exist
by condition (2) of Theorem 2.8 (Axiom 4). Multiplication is associative and
commutative by Theorem 2.7 (Axioms 2 and 5). So the nonzero elements of Z,
form an abelian group under multiplication.

EXAMPLE 10

Each of
Q" the positive rational numbers and R* the positive real numbers

is an abelian group under multiplication. Both systems are closed under multi-
plication since the product of positive numbers is positive. The identity element
is 1 and the inverse of ais 1/a.

EXAMPLE 11

The subset L = {1,-1, i —i) of the complex numbers forms an abelian group
under multiplication. You can easily verify that closure holds and that 1 is the
identity element. Since i{—)} = —# = —{~1) = 1, we see that i and —i are inverses
of each other;—1 is its own inverse since (—1¥=1} = 1. Hence, Axiom 4 holds.

EXAMPLE 12

Neither the nonzero integers nior the positive integers form a group under multiplica-
tion. Although | is the multiplicative entity for each system, no integers except for
+.1 have a multiplicative inverse, so Axiom 4 fails. For example, the equation 2x = 1
has no integer solution, so 2 has no inverse under multiplication in the mtegers.
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EXAMPLE 13

When » is composite, the nonzero elements of £, do not form a group under
multiplication because (among other things) closure fails. In #, for instance,
2-3=0andinfy 4 -5 = 0. Similarly if » = s, thenin Z,, rs = 0.

EXAMPLE 14

Let U, be the set of units in Z,.* By Exercise 17 of Section 2.3, the product of
two units is a unit, so U, is closed under multiplication (which is known to be
associative and commutative). The identity 1 isaunitsince 1 - 1 = 1. So U,

is an abelian group under multiplication. By Theorem 2.10, U, consistsof all
ac, such that (a, n) = 1 (when 4 is considered as an ordinary integer). Thus,
the group of units in £ is Uy = {1, 3, 5, 7}, and the group of units in #,,is
ths = {1,2,4,7, 8,11, 13, 14}, Here is the nmltiplication table for U:

o= o=~ Lalw
L T N A

1
1
3
5
7

=} L R =

The next example involves matrices.! A 2 X 2 matrix over the real numbers, is an
array of the form

¢c d

Two matrices are equal provided that the entries in corresponding positions are
equals, that is,

(a Z)=(r s) ifandonlyif a=rb=s5,¢=1d=u.

(a b), where a, b, ¢, 4 are real numbers.

(4 t u
For example,
4 0 242 0 1 3 3 5
(—3 1)_(1—4 1)' but (5 2)*(1 2)'
Matrix multiplication is defined by

(a b)(w )_(aw+by ax+bz)
¢c d)\y z) \ew+dy ox+dz}

£Recall that an element ain Z,, is a unit if the equation ax = 1 has a solution (that is, if @ has an inverse
under multiplication).
1 you have taken a course in linear algebra, you can skip this paragraph.
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For example,
(2 3)(1 —.5)_( 21436 2(—5')+3-7)_( 20 11)
0 —-4\6 7 0.1+ (—~4)6 O(—5)+ (—4)7) \-24 —~%&/
Reversing the order of the factors in this product produces
1 —5)2 3):(1o2+(—5)0 1-3+(—5)(—4))_(2 23)
6 7/M0 -4 6+2+7-0 6-3+7(—4)) \12 -10/

So matrix multiplication is not commutative. A straightforward (but tedious) compu-
tation shows that matrix mmitiplication is associative. It’s easy to verify that

(o DC 9-C =€ 96 )

Hence, ((l) (l)) is the identity element.

2

EXAMPLE 15

We shall show that the set of matrices

{(: Z)Iwherea, b, e, deR and ad — br # 0}

is a group under multiplication, called the general linear group of degree 2 over R
and denoted G1(2, R). The discussion before the example shows that GL(2, R)
has associative multiplication and an identity element {Axioms 2 and 3). You can
readily verify that when ad — be # 0,

d -b d -b

(a Nl ad —bc ad - be :l 0 and ad —be ad —be Y\fa b :'l 0
¢ d —e a 0 1 ~ a \¢ d 0 1)

ad — be  ad — be ad — be ad— be

So every matrix in GL(2, R) has an inverse (Axziom 4).
To finish the proof, we need only show that GL(2, R) is closed under multiplication
b
(Axiom 1). Suppose that (j d)and (‘; ’:)amin GL2, ), s0 thatad — be # 0
and wz — xy # 0, and hence, (ad — be)(mz — xy) # 0. To prove that

(a b)(w x :(aw-!-by ax+bz)
¢ d/\y =z ew+dy ex+dz
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is in GL(2, R), we must prove that (@w + byXex + dz) — (ax + bz)(cw + dy) # 0,
Verify that

(@ + b)ex + dz) — (ax + b2)(cw + dy) = {ad — be)(wz — xp) # 0.

So the product matrix is in GL(2, R). Therefore, GL(2, R) is closed under multi-
plication and is a group, which is nonabelian (Exercise 7).

The discussion preceding Example 15 carries over to matrices whose entries are in
systems other than the real mumbers, such as {3, C, and Z,, (with p prime).

EXAMPLE 16

‘We shall show that

GL(2,Z,) = {(: 3) ’ where @, b, ¢, d€Z, andad — be # 0},

the general linear group of degree 2 over Z,, is a group under multiplication.
Matrix multiplication is associative, and the identity matrix is obviously in
GL(2, Z;). The proof that GI(2, Z;) is closed under multiplication is identical
to theone for GL(2, R)in Exampk 15.If 4 = (: 3) €GL(2,7;), thenad— bc#0
in #,, so ad — bc has an inverse by Example 9. Verify that the inverse of A is
dad — b} —blad — be)!
—clad - be) ™' alad - be)™*
Example 15, with a change of notation: {ad'— b¢) in place of

), which is the same ittverse matrix givent in

1
T b Hence,
GL(2, Z,) is a group. It is a finite nonabelian group of order 6 (Exercise 7).

New Groups from Old

The Cartesian product G X H of sets Gand H is defined on page 512 of Appendix B.
Theorem 7.4 on the next page shows that the Cartesian product can be used to pro-
duce new groups from known ones.*

*Theorems 7.1-1.3 appear in Section 7.1 and assume that you have read Chapter 3, so they are
not included in Section 7.1.A. However, many of the preceding examples are special cases of
these theorems: Example 1 is a special case of Theorem 7.1; Examples 8 and 9 are special cases
of Theorem 7.2 and Examples 14=16 are special cases of Theorem 7.3. So you haven't missed
anything crucial for this chapter. You may wish to read Theorems 7,1=7.3 at a later date, after you
have read Chapter 3.
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Theorem 7.4

Let G (with operation ») and H (with operation <) be groups. Define an opera-
tion®aon G X H by

(@M (g W) =(g=g', hoh).
Then G X Hisagroup. f G and H are abelian, thenscis G X H.HGand H
are finite, then sc is G X H and |G X H| = [G]|H}

Proof » Exercise 26. =

EXAMPLE 17

Both Z and Z ate groups under addition. In Z X Z; we have (3, 5)* (7,4) =
(3 + 7,5+ 4) = (10, 3). The identity is (0, 0), and the inverse of (7,4} is (=7, 2)

EXAMPLE 18

Consider R* X D,, where R* is the multiplicative group of nonzero real num-
bers. The table in Example 5 shows that

(2,r)2(9,2) =29, ryov)= (18, d).
The identity element is (1, ry), and the inverse of (8, r;)is (1/8, r).

@ Exercises

The exercises for this section are the same as those for Section 7.1—see page 180.

m Basic Properties of Groups

Before exploring the deeper concepts of group theory, we must develop some additional
terminology and establish some elementary facts. We begin with 2 change in notation.

Now that you are comfortable with groups, we can switch to the standard multi-
plicative notation. Instead of a « &, we shall write ab when discussing abstract groups.
However, particular groups in which the operation is addition (such as Z) will still be
wiitten additively.

Although we have spoken of the inverse of an element or the identity element of a
group, the definition of a group says nothing about inverses or identities being unique.
Our first theorem settles the question, however.

Theorem 7.5

Let G bea group and let a, &, € € G, Then

{1} G has a unique identity element.
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{2) Cancelation holds in Gi
if ab = ac, then b =¢; ifba =ca, thenb =c.
(3} Each element of G has a unigue inverse.

Proof» (1) The group G has at least one identity by the definition of a group. If
e and ¢’ are each identity elements of G, then

ee' = e [Becausee' is an identity element.)

ee' = ¢ [Because e is an identity element.)
Therefore,

e=e =¢,
so that there is exactly one identity eletnent.
(2) By the definition of a group, the element & has at least one inverse

dsuch that da = e = ad. If ab = ac, then d(ab) = d(ac). By associativity
and the propetties of inverses and identities,

(da)p = (da)e
eb = ec
b=g¢

The second statement is proved similatly.
(3) Suppose that  and 4" are both inverses of € G. Then ad = e = ad’,
so that d = 4" by (2). Therefore ahas exactly one inverse. N
Hereafter the unique inverse of an element ¢ in a group will be denoted . The
uniqueness of a~* means that

whenever ay = ¢ = ya, theny = a™ 1,

Corollary 7.6
if Gisa group and a, be G, then
(1) @) =b"a%
@) @' =a
Note the order of the elements in statement {1). A common mistake is to write the

inverse of ab as @ 5!, which may not be true in nonabelian groups. See Exercise 2
for an example.

Proof of Corollary 2.6~ (1) we have

@) 'a™) = app ™) =aea =aa' =

and, similarly, (5"'a")Xab) = e. Since the inverse of ab is unique by

Theorem 7.5, 5 'a~! must be this inverse, that is, (@b)~! = b oL
(2) By definition, a—'a = e and (@ })(a™')~" = ¢, so that

@ 'a=a (a1 Canceling o ! by Theoremn 7.5 shows that

a=@y'. &
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Let G be a group and let e G. We define @ = aa, &* = aaa, and for any positive
integer n,
a*=aaa+-+a  (nfactors).
We also define a® = e and
a*=a"a"a" ---a (» factors).

These definitions are obviously motivated by the usual exponent notation in R and
other familiar rings. But be careful in the nonabelian case when, forinstancs, (abY" may
not be equal to a*¥”". Somme exponent rules, however, de holdin groups:

Theorem 7.7

Let G beagroup and letacG. Thenforall m, nin Z,
ava" = g™+ and @™y = a™.

Proofs The proof consists of a verification of each statement in each possible
case (i = 0,n = 0; m = 0, n < 0; ete.) and is left to the reader

(Exercise 21). W
NOTE ON ADDITIVE NOTATION: To avoid confusion, the operation in cer-
tain groups must be written as addition (for example, the additive group of real
numbers since multiplication there has a completely different meaning). Here is
a dictionary for trandating multiplicative statements into additive ones:
Multiplicative Additive
Notation Notation
Operation: ab a+ b
Identity: e o
Ioverse: a?l -a
Exponents: 4= aa. . -a(nfactors) na=a+a+.-.+ansunrnands)
aP=gl...q! (-pla=—-a—-a~-...-qa
Theorem 7.7: aa" = g (ma) + (sa) = {m + na
@y =a" n(ma) = (mn)a

Order of an Element

We return now to multiplicative notation for abstract proups. Ap element ¢ in a group
is said to have finite order if &* = e for some positive integer k.* In this case, the order
of the element a is the smallest positive integer » such that a* = e. The order of a is

*In aditive notation, the condition is k2 = D.
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denoted |a|. An element a is said to have infinite order if & # ¢ for every positive
integer k.

EXAMPLE 1

In the multiplicative group of nonzero real numbers, 2 has infinite order
because 2% ¥ 1 forall k = 1. In the group L = {*1, * # under multiplication
of complex mumbers, the order of iis 4 because 2 = —1, # = —j,and i* = 1,

123y,
3 1 2)111.5'3 has order 3 because

(123)2=(123 d 1233_123)
3 1 2 2 3 1) * 31 2/ U 2 3f)

The identity element in a group has order 1.

Similarly, |~{] = 4. The element

EXAMPLE 2

In the additive group #),, the element 8 has order 3 because 8 4+ 8 = 4 and
E+84+E8=0.

In the multiplicative group of nonzero real numbers, the element 2 has infinite
order and all the powers of 2 (273, 2°, 25, etc.) are distinct. On the other hand, in the
multiplicative group L = {*1, *i{}, the element ¢ has order 4 and its powers are not
distinct; for instance,

#=1=£ and M=@H4=4

Observe that £ = and 10 = 2 (mod 4). These examples are illustrations of

Theorem 7.8

Let G beagroupand letacG.

{1} ¥ & has infinite order, then the elements &, with A €Z, are all distinct.
(2} ¥ &' = & with i # J, then & has finite order.

Proof » Note first that statement (1) is true if and only if statement (2) is true,
because each statemnent is the contrapositive of the other, as explained
on pages 503-504 of Appendix A. So we need only prove one of them.
We shall prove statement (2):

Suppose that a' = &/, with ¢ > . Then multiplying both sides by 4~
shows that 4~ = o~ = 4% = ¢, Since { — J > C, this says that 4 has finite
order. W
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Theorem 7.9

Let G be a group and a e G an element of finite crder n. Then:

() é*=eifandonlyifn | k
(2) & = &’ if and only if i = f (mod n);
{3} 1f n = td, with d = 1, then &' has order d.

Proof » (1) 1f # divides &, say k = at, then o = & = (@) = & = e. Conversely,
suppose that &* = e. By the Division Algorithm, k = rg + # with
0 = r < #. Consequently,

e=d"=d" =a" = @Vo=fd =ed" = 4.

By the definition of order, # is the smallest positive integer with a" = .
Smce r < n,a’ = e can occur only whenr = 0. Thus, X = ng + Oand »
divides k.

(2) First, note that a’ = &/if and only if &7 = e. [Proof: if & = &,
then a' = e by the proof of Theorem 7.8(2). Conversely, if &'~ = ¢,
then multiplying both sides by ashows that o/ = /] But by (1), with
k=i—jwehave d = eif and only if n{ (i — f), thatis, if and only
if i = j(mod a). Therefore, a’ = &/ if and only if { = f (mod x).

(3) Since la] = #, wehave (@)’ = a% = " = . We must show that dis the
smallest positive integer with this property. If & is any positive integer such
that {a¥* = e, then & = e. Therefore, 1 | tk by part (1), say tk = nr = (td)r.
Hence, k = dr. Since k and d are positive and d| k, wehave ds k. B

Gorollary 7.10

Let G be an abelian group in which every element has finite order. If c€G is
an element of largestorder in G (that is, |a| = }c| for all ae G), then the order
of every element of G divides |c|.

For example, (1, 0) has order 4 in the additive abelian group £, X Z,and every other
element has order 1, 2, or 4 (Exercise 10(b)). Thus (1, 0) is an elernent of largest possible
order, and the order of every element of the group divides 4, the order of (1, 0).

Proof of BUI‘U"&PY 110> Suppose, on the contrary, that a € G and |a does not
divide |¢|. Then there must be a prime p in the prime factotization of the
integer |4| that appears to a higher power than it does in the prime fac-
torization of [¢|. By prime factorization we can write |4 as the praduct
of a power of pand an integer that is not divisible by p and similarly for
¢. Thus thete are integers m, , r, £ such that |¢] = p'mand |¢] = p'n, with
(p,m)=1=(p, n) and r > s By part (3) of Theorem 7.9, the element o
has order p* and e”” has order . Exercise 33 shows that a®c?" has order
p'n. Hence, [@™eF| = p'n > p'n = |, contradicting the fact that ¢ is an
element of largest order, Therefore, la| divides |. W
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B Exercises

NOTE: Unless stated otherwise, G is a group with identity element e.

AL

2.

= U B W

10,

12.
13.

14,

15,

16.

If ¢! = ¢ in a group, prove that ¢ = e,

_f123 {123y, . 1 151
Leta-—(s 1 2)andb~(l 5 2)1nS3.Veufythat(ab) Fab.

. Ifa, b, & d€G, then {abedy™! = ¢

. If @, be Gand ab = e, prove that ba = e.

. Let f£G — G be given by f{a) = al. Prove that fis a bijection.

. Give an esample of a groupin which theequation x * = ¢ has more than two solutions,
. Find the order of the given element.

(a) 5in Uy

1234567\,
(")(2375146)‘“87

(© G _D in GL(2, R)

@ (jfg _i) inGL(2, R)

. Give an example of a group that contains nonidentity elements of finite order

and of infinite order.

. {a) Find the order of the groups Ujp, Un, and Uy,

{b) List the order of each element of the group Uy,
Find the order of every element in each group:
Wl MLxEL @©s WD @

Let G be an additive group. Wtite statement {2) of Theorem 7.8 and staterents
{1}+3) of Theorem 7.9 in addtive notation.

If a, b€ G and » is any integer, show that {(aba )" = ab"a™.

If G is a finite group of order » and a € G, prove that |a| =< . [Hint: Consider the
n+1elementse=aq, &%, 4 ..., 4" Are they all distinct?] Thus every element
in a finite group has finite order. The convetse, howevet, is false; see Exetcise 25
in Section 8.3 for an infinite group in which every element has finite ordet.

True or false: A group of order # contains an element of order #. Justify your
answet.

(a) If 2€ G and @' = e, what order can a possibly have?
(b) If e # be Gand b? = ¢ for some prime p, what is [b|?
(8) ff aeGand jg| = 12, find the orders of each of the elements a, %, &, .. ., a'l.

{(b) Based on the evidence in part (a), make a conjecture about the order of &
when Jg| = a.
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17. (a) Leta, b € G. Prove that the equations ax = b and ya = b each have a
unique selution in G. [Hini: Two things must be done for each equation:
First find a soluticn and then show that it is the only solution)]

(b) Show by example that the solution of ax = » may not be the same as the
solution of ya = b. [Hint: Consider 53]

18. Let G = {ay, ay ..., a,} beafinite abelian group of ordern. Let x = g, - - - 4,
Prove that 2* = e,

19. If a, b€ G, prove that |bab™!| = |4l
20. (a) Show thata = (_(i _D has order 3in GL(2, R) and b = (‘: _é)
has order 4.
{b) Show that @b has infinite order.

B.21. Prove Theorem 7.7.

22, Let G = {, a, b} be a group of order 3. Write out the operaticn table for G.
[Hint: Exercise 28 inSection 7.1.]

23. Let G be a group with this property: If a, b, c€ G and ab = ca,then b = ¢.
Prove that G is abelian.

24, If (ab)® = @*B* for all a, b, € G, prove that G is abelian.
28, Prove that G is abelian if and only if (@)Y ! = a6 or all @, bEG.

26. Prove thatevery nenabelian group G has order at least 6; hence, every group
of order 2, 3, 4, or 5is abelian. [Hin¢: If a, b€ G and ab # ba, show that the
elements of the subset H = {e,qa, b, ab, ba} are all distinct. Showthat either
2* € Hor & = ¢ in the latter case, verify that aba & H.]

27. If every nonidentity elernent of G has order 2, prove that G is abelian.
[Hint:|a| = 2 if and only if a # eand a = &', Why7)

28. If ac G, prove that |a] = ja~ Y.
29, If a, b, c € G, prove that there is a unique element x € G such that axb = ¢,
30. If a, b € G, prove that jaf| = |ba|.
31. (a) If a, bc Gand ab = ba, prove that (@b} = e
(b) Show that part (a) may be false if ab +# ba.

32. If |G]is even, prove that G contains an element of order 2, [Hint: The identity
element is its own inverse. See the hint for Exercise 27.]

33. Assume that a, b G and ab = ba. If ja] and || are relatively prime, prove that
ab has order |a||b|. [Hin¢; See Exercise 31.)

34. Suppose G has order 4, but contains no element of order 4.

(a) Prove that no element of G has order 3. [Hint: If |g] = 3, then G consists
of four distinct elkements g, g2 g* = ¢, d. Now g must be one of these four
elements. Show that each possibility leads to a contradiction.]

(t) Explain why every nonidentity element of G has order 2.
{¢) Denote theelements of G by e, a, b, ¢ and write out the operation table for G.
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35 If a,beG, ° = ¢, and ab = b*g, prove that b* = e and ab = ba.
36. Suppose a, b€ Gwith|a| = 5,5 # ¢, and aba~! = ¥ Find |}
37. If (ab)® = &*b’ and (ab)’ = &%’ for all @, b € G, prove that G is abelian.

C. 38. If (ab) = &F for three consecutive integers # and all g, b G, prove that G is
abelian.

39. (a) Let G be a nonempty finite set equipped with an associative cperation
suchthat forallg, b, ¢, de G

if ab = ac,thend = cand if bd = ¢d, then b = .
Prove that Gisa group.
(b} Show that part (a) may be false if G isinfinite.
40. Let G be a nonempty set equipped with an associative operation with these

properties:

(i) There isan element ¢ € G suchthat ea = a foreverya e G.

(ii) For each a€ G, there exists € G such that da = e.
Provethat Gis a group.

41. Let G be a nonempty set equipped with an associative operatien such that,
forall a, » € G, the equations ax = b and ya = b have solutions, Prove that G
isa group.

m Subgroups

We continue cur discussion of the basic properties of groups, with special attention
to subgroups.

Definition A subset H ofa group G is a subgroup of G if H is itself a group underthe

operation in G.

Every group G has two subgroups: Gitself and the one-element group {e}, which is
called the trivial subgroap. All other subgroups are said to be proper subgroups.

EXAMPLE 1

The set B* of nonzere real numbers is a group under multiplication. The group
R** of positive real numbers is a proper subgroup of R¥.

EXAMPLE 2

The set £ of integers is a group under addition and is a subgroup of the additive
group Q of rational mmbers.
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EXAMPLE 3

The subset L = {1, -1, 4, =i} of the complex numbers is a group under multipli-
cation.* S it is a subgroup of €¥, the multiplicative group of nonzero complex
numbers

EXAMPLE 4

Recall that the multiplicative group of units in Zy is Uy = {1, 3, 5, 7}. The
upper-left quarter of its operation table in Example 14 of Section 7.1 or
Section 7..A shows that the subset {1, 3} is a subgroup of Us.

EXAMPLE 5

The upper-left quarter of the operation table for D, in Example 5 of Section 7.1
or 7.1.A shows that H = {ry, ry, ry, ry} is a subgroup of D,

EXAMPLE 6

In the additive group £ X Z4, let H = {(0, 0), (3, 0),(0, 2), (3, 2)}- Verify that
H is a subgroup by writing out its addition table.

When proving that a subset of a groupis a subgroup, it is never necessary to check asso-
wativity, Since the associative law holds for aff elements of the group, itautomatically holds
when the eletnents are in some subset H. Infact, you need only verify two group axioms:

Theorem 7,11

A nonempty subset H of a group G is a subgroup of G provided that

(i) ifa, beH, then abeH; and
(i) ifacH, then aleH,
Proof » Properties (i) and (ii) are the closure and inverse axioms for a group.
Agsociativity holds in H, as noted above. Thus we need only verify that

e € H. Since H is nonempty, there exists an element ¢ € H. By (i), ¢ € H,
and by(i) e¢™! = e is in H. Therefore His a group. B

EXAMPLE 1

Let H consist of all 2 X 2 matrices of the form 5 = G) flj) with & R. Since
11— &-0=1, His a nonempty subset of the group GL(2, R), which was

*Se6 Example 11 of Section 7.1 or Section 7.1.A,
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defined in Example 15 of Section 7.1 or 7.1.A. The product of two matrices in

His in H because
(1 a) (1 c) _ (1 a+ c)
0 1/\0 1 0 1

The inverse of ([1} ’l’) is (:} ”‘;’),which is also in H. Therefore, His a

subgroup of GL(2, R) by Theorem 7.11.

When H is finite, just one axiom is sufficient to guarantee that I is a subgroup.

Theorem 7.12

Let H be a nonempty finite subset of a group G. if H is closed underthe opera-
tion in G, then H is a subgroup of G.

Proof » By Theorem 7.11, we need only verify that the inverse of each element
of Hisalsoin H. If a€ H, then closure implies that a* € H for every
positive integer k. Since His finite, these powers cannot all be distinct
80 a has finite order n by Theorem 7.8 and 4" = e. Sincen — 1 = —1
(mod #), we have o ~! = o~ by Theorem 7.9. ¥ n > 1, then n — 1 is
positiveande ' = 4" 'isin H. If n =1, thena = eanda™ = e =aq, so
thatetisin . m

EXAMPLE §

Let H consist of all permmutations in S; that fix the element 1. In other words,
H= {fe5;|f1)= 1}. His a finite set since S, 15 a finite group. If g, Fec O,
then g() = | and A1) = 1. Hence, (g o 8 1) = g(#( 1)) = g(1) = 1. Thus

go ke Hand Hisclosed Therefore, His a subgroup of S; by Theorem 7.12.

The Center of a Group
If Gisa group, then the center of G is the subset denoted Z({G) and defined by

Z(G) = fac G| ag = ga for every ge G}.

In other words, an element of G is in Z(G) if and only if it commutes with every
element of G. If G is an abelian group, then Z(G) = @ because all elements commute
with each other. When G is nonabelian, however, Z{G) is notall of G

EXAMPLE S

The center of S consists of the dentity element alone because this is the only
element that commutes with every element of S; (Exercise 25).
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EXAMPLE 10

The operation table for D, in Example 5 of Section 7.1 or 7.1.A shows that ry
commutes with some elements of Dy (for instance, ry © r; = r5 0 ry). However,
it does not comnmute with every element of Dy because r; o d # d ° r;. Hence,
r is not in Z(D) noris d. Careful examination of the table shows that

Z(D) = {ry, ry} since these are the only elements that commute with every
element of Dy, It is easy to venfy that {ry, 3} is a subgroup of D,. Thisis an
example of the following result.

Theorem7.13

The center Z{G) of a group G is a subgroup of G.

Proof » For every g € G, we have eg = g = ge. Hence, e € Z(() and Z( @) is non-
empty. If a, b€ Z(G), then for any g € ¢ we have ag = ga and bg = gb,
so that

(ab)g = a(bg) = algh) = (ag)b = (ga)b = g(ad)-

Therefore, abe Z(G). Finally, if a € Z{G) and g€ G, then ag = ga.
Multiplying both sides of this equation on the left and right by 2™
shows that

a Hag)a! = a':(za)a"

gl=ay
Therefore, a~! € Z(G) and Z(G) is a subgroup by Theorem 7.11. W

Cyclic Groups

An important type of subgroup can be constructed as follows. f G is a group and
a € G, let {g}denote the set of all powers of a:

@={....,a%atalda, d...}={a|neck}

Theorem 7.14

if G is a group and ae G, then () = {2"|n € £} is a subgroup of G,

Proof » The product of any two elements of {g}is also in {a) because a'a’ = o*¥.
The inverse of ¢ is a~*, which is also in {g). By Theorem 7.11, {g)is a
subgroupof G. W

The group (a}is called the cyclic subgroup generated by . If the subgroup {a)is the
entire group &, we say that G'is a cyclic group. Note that every cyclic group is abelian
since &a’ = &' = a’d’.
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EXAMPLE 11

The multiplicative group of units in thering #y5is Uy = {1,2, 4, 7,8, 11, 13, 14}
by Theorem 2.10. In order to determine the cyclic subgroup generated by 7, we
compute

=7 T=4 P=13 T=1=7
Therefore, the slement 7 has order 4 in Uj5. We claim that the cyclic subgroup
{7} comsists of {7°, 7', 7%, 7*} = {1, 7, 4, 13}. [Proof* By definition, every ele-
ment of {7} is of the form 7' for some integer i. Since every integer is congruent
modulo 4 to one of 0, 1, 2, 3, the element 7' must be one of 7°, 7%, 7 or 7 by
Theorem 7.9(2).] Hence, {7) = {1, 7, 4, 13}. Thus, the cyclic subgroup (7} has
order 4—the order of the element 7 that generates the group

EXAMPLE 12

Different elements of a group may generate the same cyclic subgroup. For
instance, verify that 13 has order 4 in ¥js. Then the same argument used in
Example 11 shows that the cyclic subgroup {13} = {13 13!, 13%,13% =
{1,13,4,7} = (M.

The argument used in Examples 11 and 12 works in general and provides the con-
nection between the two uses of the word “order®. It states, in effect, that the order of
an element a is the same as the order of the cyclic subgroup generated by a.

Theorem 7.15

let Gbheagroupand letae G,

{1} i a has infinite order, then (@) is an infinite subgroup consisting of
the distinct elements &, with keZ.

{2} If a has finite order n, then {8} is a subgroup of order n and (&) =
e=da &4 . .,

Proof » (1) This is an immediate consequence of part (1) of Theorem 7.8.

{2) Let o' be any clement of {). Then i is congruent modulo 1 to one
of 0, 1,2,...,n1~ 1. Consequently, by part (2) of Theorem 7.9, 4’ must be
equalmoneofan,al,az,. .., & . Furthermore, no two of these powers
of a are equal since no two of theintegers 6, 1,2, ...,n — 1 are congruent
modulo #. Therefore, {6} = P a,a...,& isagroupof ordern. B

NOTE ON ADDITIVE NOTATION: When the group operation is addi-
tion, then, as shown in the dictionary on page 198, we write ka in place
of &*. 8o the cyclic subgroup {g) = {na | neZ}. Theorem 7.15 in additive
notation is shown on the next page.
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Theorem 7.15  (Additive Version)

Let G be an additive group and let ae G.

(1} If @ has infinite order, then (@} is an infinite subgroup consisting of
the distinct elements 4a, with k2.

{2} If a has finite order n, then {g) is a subgroup of order nand

@>={0l1al2‘3|3&! 46» ey (n - 1}&}.

EXAMPLE 13

Sitice Z = {nl | n €2}, we see that the additive group Z is an infinite cyclic
group with generator 1, that is Z = (1}. The set E of evenintegers is a cyclic
subgroup of the additive group £ because £ = {n2 |nc¥}.

EXAMPLE 14

Each of the additive groups 2, is a cyclic group of order # generated by 1 becauss
Z_ consists of the “powers” of 1, pamely, 1,2=14+1,3=1+1+ 1, etc. For
instance, £y = §1,2,3,0}, thatis, {L1+ 1, 1+1+1,1+1+1+1}

The subgroup {1, ~1, i, —i} of the multiplicative group of nonzero elements of C
is the cyclic subgroup (#} because 2 = -1, # = —i, and i* = 1. Similarly, the multipli-
cative group of nonzero elements of Z; is the cyclic group (3}, as you can easily verify.
These examples are special cases of the following theorem.

Theorem 7,16

Let F be any one of @, R, C, or Z, (with p prime}, and let £ be the multiplica-
tive group of nonzero elements of £ If G is a finite subgroup of £, then G is
cyclict

Proof » Let - Gbe an element of largest order (there must be one since G is
finite), say [¢] = m. I a € G, then |a] divides m by Corollary 7.10, so that
d” = 1 by part (1) of Theorem 7.9. Thus every element of Gis a solu-
tion of the equation x™ — 1 = 0. Since a polynomial equation of degree
m has at most m solutions in F(by Corollary 4.17%), we must have |G| < m.
But {¢} isa subgroup of & of order m by Theorem 7.13. Therefore, (c)
must beall of G, thatis, Gis cyclic. ®

tSee Examples 8 and B of Section 7.1 or 7.1, A,
*For those who have read Chapter 3: The theorem and its proof are valid when F is any field.
9%f you haven't read Section 4.4, you'll have to take this on faith for now.
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Now that we know what cydic groups look like, the next step is to examine the
possible subgroups of a cyclic group.

Theorem 7.17

Every subgroup of a cyelic group is itself cyclic,

Proof » Suppose G = (@)and H is asubgroup of G. i H = (¢, then H is the
oyclic subgroup generated by e (all of whose powers are just €), f H #
{¢), then H contains a nonidentity element of G, say &’ with i # 0. Since
H is asubgroup, the inverse element a~'is also in H. One of i or —iis
positive, and so H contains positive powers of a. Let k be the smallest
positive integer such that a®* € H. We claim that H is the cyclic subgroup
generated by a*. To prove this, we must show that every element of &
is a power of a*. If ke H, then k€ G, so that A = g" for some m. By the
Division Algorithm, m = kg + rwith 0 = r < k. Consequently, r = m — kg
and

a =a"M=gmg M = g™ah)

Both g™ and & are in H. Therefore, a* €H by closure. Since &* is the
smallest positive power of a in H and since r < &, we must have 7 = 0.
Therefore, m = kg and £ = a™ = a™ = (&*)? €{¢*}. Hence, H = (&). m

For additional information on the structure of cyclic groups and their subgroups,
see Exercises 44-46.

Generators of a Group

Suppose G is a group and a & 6. Think of the cyclic subgroup{a} as being constructed
from the one-element set S = {a} in this way: Form all possible products of a and 27!
in every possible order. Of course, each such product reduces to a single element of
the form o". We want to generalize this procedure by beginning with a set S that may
contain more than one element.

Theorem 7.18

Let S be a nonetnpty subset of a group 6. Let (5} be the set of all pussible
products, In every order, of elements of 5 and their inverses.* Then

(1} (S} is a subgroup of G that contains set S,
(2) 1 H is a subgroup of G that contains the set S, then H contains the
entire subgroup {5).

*We allow the possibility of a product with one slament so that alements of § will be in {5}
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This theorem shows that (S} is the smallest subgroup of G that contains theset §. In
the special case when § = {a}, the group (S}is just the cyclic subgroup (@}, which is the
smallest subgroup of G that contains a. The group (S} is called the subgroup generated
by S. If (5)is the entire group G, we say that § penerates G and refer to the elements of
§ as the generators of the group.

Proof of Thearem 718+ (1) (5)is nonempty because the set § is nonempty and
every element of §(considered as a one-element product) is an element of
(S}. If a, b (S}, then a is of the form aya - - - 4, wherek = 1 and each a;
is either an element of & or the inverse of an element of §. Similarly,
b=bhby--- b, with t = 1 and each b, either an element of § or the in-
verse of an element of 8. Therefore, the product ab = a,a;- - - @by, - - b,
consists of elements of S or inverses of elements of 8. Henoce, ab (5},
and (S}is closed. The inverse of the element @ = @\, - - - gy of ($)is
al=g...a, """ by Corollary 7.6. Since each &, is either an element
of 5orthe inverse of an element of S, the same is true of a,~. Therefore,
a~! €(8). Hence, (8)is a subgroup of Gby Theorem 7.11.

(2) Any subgroup that contains the set S must include theinverse
of every element of S. By closure, this subgroup must also contain all

possible products, in every order, of elements of S and their inverses.
Therefore, every subgroup that contains S must also contain the entire

group(S). ®

EXAMPLE 15

The group U5 = {1,2,4,7,8, 11, 13, 14} is generated by the set § = {7, 11}
since

=7 =4 P=13 =1
m=1 7-11=2 PF-11=14 P.1l=8.

Different sets of elements may generate the same group. For instance, you can readily
verify that U is also generated by the set {2, 13} (Exercise 9).

EXAMPLE 16

Using the operation table in Example 5 of Section 7.1 or 7.1.A, we seethat in
the group Dy,

) =n (rP=r )P=n (r) =r
B=h nebh=r (Weh=v ([@Yoh=4d

Therefore, D, is generated by {ry, h}. Notethat the representation of group
elements in terms of the generators is not unique; for instance,

{(rPohi=d and roho(r)i=4d
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B Exercises

AL

2.

3.

List all the cyclic subgroups of

(@) U &) Uy

{a) Listall the cyclic subgroups of D,.

{b) Listatleast one subgroup of D, that is not cyclic.
List the elements of the subgroup {a), of 5y where

_(123456
= 3276514/

In Exercises 4-8, list (if possible) or describe the elements of the given cyclic subgroup.

4.

14.

15.

16.

17.
18.
19.

20.

{2} in the additive group Z,,

5. (2 in the additive group Z

6. (2 in the multiplicative group of nonzero elements of #y;.
7.
8
9

{2} in the multiplicative group {* of nonzero rational numbers.

. {3} in the multiplicative group of nonzero elements of Zy;.
., Show that Ul is generated by the set {2, 13}.

10.
11.
12.
13.

Show that (1, 0)and (0, 2) generate the additive group £ X Z,,
Show that the additive group Z, X Z, is cyclic.
Show that the additive group £, X £, is not cyclic but is generated by two elements.

Let H be a subgroup of a group G. If &, is the identity element of  and eyis
the identity element of H, prove that e; = e4.

Let H and K be subgroups of a group 6.
{a) Show by example that H U K need not be a subgroup of G.
(b) Prove that ¥ U Kis a subgroupof G if and onlyif Ho Kor K< H.

{a) Let H and K be subgroups of a group G. Prove that H M K is a subgroup
of G

{b) Let {H,;} be any collection of subgroups of . Prove that N Hyis a
subgroup of G.

Let G, be asubgroup of a group  and H, a subgroup of a group H. Prove
that G; X H, is asubgroup of G X H.

Show that the only generators of the additive cyclic group Zare 1 and —1.
Show that (3, 1), (—2, —1), and (4, 3) generate the additive group £ % Z.

Let G be an abelian group and let T be the set of elements of Gwith finite
order. Prove that T is a subgroup of G; it is called the torsion subgroup. (This
result may not hold if G is nonabelian; see Exercise 20 of Section 7.2.)

Let 7 be an abelian group, & a fixed positive integer, and H =
{a € G| |4 divides k}. Prove that H is a subgroup of G.
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21,

22
23,
24,

28,
26.

27,

28.

29,

31.

32.

33.

37

B. 38.

Groups

{a) If G'isa group and abe Z(G), is it true that a and & are in Z{G)? [Hint: D]
{b) X G'isa group and ab e Z(G), prove that ob = ba.

If ais the only element of order 2 in a group G, prove that a € Z{G).

Let Gbea groupand let ac G. Prove that {g} = {&~1)

Show that Q#*, the multiplicative group of positive rational numbers, is not
a cyclic group. [Hint: if 1 # r € Q**, then there must be a rational between
and ]

Show that the center of §; is the identity subgroup

{a) Let Hand K be subgroups of an abelian group Gandlet HKX = {ab|acH,
& € K}, Prove that HK is a subgroup of G,

(b) Show that part {(a) may be false if G is not abelian.

Let H bea subgroup of a group G and, for x € G, let x *Hx denote the set
{x~'ax | a € H}. Prove that x~'Hx is a subgroup of G.

Let G be an abelian group and # a fixed positive integer.
{a) Prove that H = {fac G| a" = ¢} isasubgroup of G.
{b) Show by example that part (a) may be false if G is nonabelian. [Hint: S;.]

Prove that a nonempty subset H of a group G is a subgroup of G if and only if
whenevera, be H,thenab~'c H.

. Let A(T) be the group of permutations of the set Tandlet T} be a nonempty

subset of T, Provethat H = { fe A(T) | f{t) = ¢ for everyf £ T} is a subgroup
of 4(T).
Let Tand T be as in Exercise 30. Provethat X = { fe A(T) | AT =T} isa

subgroup of A(T) that contains the subgroup H of Exercise 30. Verify that if
T, has more than one element, then K # H.

Let H bea subgroup of a group G and assumethat x "'Hx< H for every xe G
(notation as in Exercise 27). Prove that x \Hx = H for each xe G.

Let G be a groupand a = G. The centralizer of 2 is the set ({a) = {g =G|
ga = ag}. Prove that C(a) is a subgroup of G.

. If G isa group, prove that Z(G) = [}, C(a) (notation as in Exercise 33).
. Prove that an element a is in the center of a group G if and only if ({g) =G

{(notation as in Exercise 33).

. True or false: If every proper subgroup of a group G is cyclic, then G is cyclic.

Justify your answer.

Suppaose that H is a subgroup of a group & and that ¢ €& has order #. If a* e H

and (%, n) = 1, prove that ac H.

( a) Let p be prime and let 4 be a nonzero element of Z,. Show that ”~ =1
[Hint: Theorem 7.16.]

(b) Prove Ferma¢'s Little Theorem: If p is a prime and a is any integer, then
@ = a(mod p). [Hint: Let b be the congruence class of @ in £, and use

part (a)]



39,

40,

41,

42,

43,
44,

486,

47,

48.
49,

2D

2424

o (1)

. Prove that #,, X Z, is cyclicif and only if (m,n) = 1.
. If G # {¢}is a group that has no proper subgroups, prove that Gis a cyclic
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If H is a subgroup of a group G, then the normalizer of H is the set MH) =
{x =G| x'Hx = H) (notation as in Exercise 27). Prove that MH)is a
subgroup of G that contains H.

ab
Prove that i = {(0 1)

Let G be an abelian group and n a fixedpositive integer. Prove that H = {¢"|a c G}
is a subgroup of G.

Let & be a positive divisor of the positive integer n. Prove that i, =
{ac Uy)a=1(mod &)} is a subgroup of T,

e=lor—1l,be Z}is asubgrovp of GL(2, Q).

List all the subgroups of Z)5. Do the same for Z5q.
Let G = {g}be a cyclic group of order n.

{a) Prove that the cyclic subgroup generated by o™ is the same as the cyclic
subgroup generated by a”, where d = (m, n). [Hint: Tt suffices to show that
a’is a power of @™ and vice versa. (Why?) Note that by Theorem 1.2, there
are integers u and v such that = mu + nv.]

(b) Prove that a™ is a generator of G if and only if (m, n) = L

. Let G = {g}be a cyclic group of order #. If His a subgroup of G, show that |H]

is a divisor of n. [Hint: Exercise 44 and Theorem 7.17.]
Let G = {g) bea cydic group of order . If & is a positive divisor of », prove

that Ghasa m:u?ue subgroup of order k. [Hint: Consider the snbgroup
generated by g™ ]

Let G be an abelian group of order mn where (i, n) = 1. Assumne that G
contains an element @ of order 7 and an element b of order #. Prove that G is
cyclic with generator ab.

Show that the multiplicative group R* of nonzero real numbers is not cyclic.

If G is an infinite additive cyclic group with generator ¢. Prove that the
equation x + x = g has no solution in G.

50. Show that the additive group Q is not cyclic. [Hinz: Exercise 49.]
. Lat Gand H be groups. If G X H is a ¢yclic group, prove that G and H are

both cyclic, (Exemcise 12 shows that the converse is false.)

ne Z} is a cyclic subgroup of GL(2, R).

group of prime order.

. Is the additive group G = {a + MV?2 | a, b Z} cyclic?

. Show that the group Uy, of units in Zy is not oyclic.

. Show that the group Ug of units in Z 4 is cyclic.

. If § is a nonempty subset of a group G, show that {S) is the intersection of the

family of all subgroups X such that § = H.
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m Isomorphisms and Homomorphisms*

I you were unfamiliar with roman numerals and came across a discussion of integer
arithmetic written solely with toman numerals, it might take you some time to realize
that this arithmetic was essetitially the same as the familiar arithmetic in Z except for
the labels on the elements. Here is a less obvious example of the same situation.

EXAMPLE 1

Recall the multiplicative subgroup L = {1,{, 4, -1} of the complex numbers
and the multiplicative group Us = {1,2, 3, 4} of units in Z,, whose operation

tables are shown below.!
U I
1 2 3 4 1 & =i -1
Ipr 2 3 4 1|1 i =i -
2,12 4 1 3 il i -1 1 =i
3/ 3 1 4 2 - |- 1 -1
414 3 2 1 -1|-1 =i i 1

Atfirst glance, these groups don’t seem the same. But we claim that they are
“gssentially the same”, except for the lablels on the elements. To see this clearly,
relabel the elements of {/; according to this scheme:

Relabel 1 as 1; Relabel 2 as & Relabel 3 as —§ Relabel 4 as —1.
Now look what happens to the table for Ts—it becomes the table for L!

1 4 -
3 |4

i| - -1

X

-1

2
y A
#
1
X

—f - H4 1
£ | |12 |12 X

The rewritten table shows that the operations in U and L work in exactly the
same way—the only difference is the way the elements are labeled. As far as

*The first few pages of this section explain the contept of isomorphism for groups, which is
essentiallythe same as the explanation for rings in Section 3.3, [f you have read that section, feel
free to bagin this one at the Definition on page 216.

To make the elements of the two groups easily distinguishable, the elements of L arein boldface.
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group structure goes L is just the group IZ; with new labels on the elements. In
more technical terms, U and L are said to be isomorphic

In general, isomorphic grovups are groups that have the same striicture, in the sense
that the operation table for one is the operation table of the other with the elements
suitably relabeled. Although this intuitive idea is adequate for small finite groups, we
need to develop a rigorous mathematical definition of isomorphism that agrees with
this intuitive idea etid is readily applicable to large groups as well.

There are two aspects to the intuitive idea that groups G and H are isomorphic:
relabeling the elements of G, and comparing the new operation table with that of H.
Relabeling means that every element of Gis paired with a unique element of H (its new
label). In other words, there is a function f:G—H that assigns to each r € G its new label
f(r) € H. Inthe preceding example, we used the relabeling function f: Uy — X given by

M=1 =i JfA=~ fA4H=-L
The function f: G—H must have these properties:
(1) Distinct elements of G get distinct labels in A:
Hr#r'inG, thenf{r) # f{rYimn H.
(2) Every element of H is the label of some element of G:*
For each & € H, there is an r & G such that f(r) = A.

Properties (1) and (2) simply say that the function f must be both injective and surjec-
tive, that is, £is a bijection.!
In order to be an isomorphism, however, the table of G must become the table of H

when fis applied. If this is the case, then for two elements g and b of G, the situation
must look like this:

G H
.
@) o)

As indicated in the two tables,
deb=cinG and fl@)*+f)=flc)inH
Since a * b = ¢ in G, we must have f(a + #) = f(¢) in H. Combining this with the fact
that f{c) = f{a) « f(b) in H we see that
fla » b)=f(a) «f1B).
This is the condition that f must satisfy in order for f'to change the operation tables of
G into those of H. We can now state a formal definition of isomorphism.

“Otherwise we could not get the complete table of H from thatof G.
fnjective, surjective, and bijective functions are discussed in Appendix B.
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Definition

Let G and H be groups with the group operation denoted by = & is
isomorphic to a group H (in symbols, G = H) if there isafunction G - H

such that

(i) fisinjective;
(li) 7issurjective;
(ii} flaxbd}= fla)»flbytoralla, be G.

In this case, the function { is called an isomorphism,

It can be shown that G = H if and only if H = & (Exercise 53).

Condition (iit)

NOTE: In the preceding discussion, we have temporarily reverted to the &
notation for group operations to remind you that in a specific group, the
operation might be addition, multiplication, or something else. In such
cases, condition (ii)) of the definition may take a different form; for instance,

Sla«b)=fla) « f(®)

¢ and H additive:

G and H multiplicative:

G additive, H multiplicative:
G multiplicative, i additive;

fla + b) = fla) + f1b)
J(ab) = fl&)f(b)

fla + B) = fla)(b)
Rab) = fla) + f(b)

EXAMPLE 2

The multiplicative group U = {1, 3, 5, 7} of units in Z, is isomorphic to the
additive group Z; X Z,. To prove this, let £ Uy — Z; X Z, be defined by

=00 A3=L0 AH=01 fMH=011D.

Clearly fis a bijection. Showing that f{ab) = f{a) + f(b) for a, b € U is equiva-
lent to showing that the operation table for Z, X Z, can be obtained from that
of Uy simply by replacing each @ € Up by fla) € ZX Z, .Use the tables below to

verify that this is indeed the case. Therefore, fis an isomorphism:

U, Zy X Fy
o | 1 3 5 7 + 0,0 (L0 O 1,1
1 (1 3 5 7 ©0 (©00 1,0 @O (1D
3131 7 5 (1,0 | (L0 ©0 (L1 {©1)
5 (5 7 1 3 o1 [ (L1 ©0 (1,0
7175 3 1 (D | D ©D (10 ©0
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EXAMPLE 3

Let E be the additive group of even integers. We claim that £:Z — E given by
f(a) = 2ais an isomorphism. Since £ and E are infinite, comparing tables is
not an option. However, the formal definition of isomorphism will do the job.
We begin by showing that fis injective.* Suppose a, b €Z and f{b) = f(d) in E.
Then

1) = 1)
2a=2b [Definition of ]
a=b [Divide both sides by 2.]

Hence, f is injective. Now suppose # € E. Since # is an even integer, # = 2k for
some integer k. Therefore, (&) = 2k = s, and f is surjective. Finally, for all a,
bel,

fla +b) = 2(a +) = 2a + 2b = f(a) + f(b).

Hence, fis an isomorphism of additive groups.

EXAMPLE 4

The additive group R of real numbers is isomerphic to the multiplicative group
R** of positive real numbers. To prove this, let fR—+R** be given by f{r) = iU,
To show that fis injective, suppose that

Fir) = f(9).
Then
1r = 10° [Definition of [
log 10" = log 10* [Take lfogarithms of both sides.]
r=g [Basic property of logarithms)

So fisigjective. To prove that f'is surjective, let x€R. Then r = log k is a real
nutnber, and by the definition of logarithm,

fr) =10 = 10%8% =
Thus, fis also surjective. Finally,
Sflr +8) = 107 = 10°10° = f(Af(s).

Therefore, fis an isomorphism and R = [*%,

*Injactive, surjective, and bljective functions are discussed in Appandix B.
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EXAMPLE 5

Two finite groups with different numbers of elements (such as Z; and Z;;) can-
not be isomorphic, because no function from one to the other can be a bijection.

Example 1 presented two groups with the same number of elements that were
isomorphic. However, this is not always the case.

EXAMPLE §

S, and the additive group Z,; each have order 6, but are not isomorphic. There is
no way to relabel the addition table of Z; to obtain the table of S because the
operation in Sy is not commutative, but addition in Z is. A similar argument in
the general case (see Exercise 16) shows that for groups G and H,

If Gis abelian and Ff is nonabellan, then G and H are norisomorphic.

EXAMPLE 7

The additive groups £, and Z; X Z, each have order 4 but are not isomorphic
because every nonzero element of Z, X Z; has order 2, but 4 has two elements
of order 4 (namely, 1 and 3). So relabeling the addition table of one cannot
produce the table of the other. More generally by Exercise 29,

If f is an isomorphism, then 4 and f{4) have the same order.

If Gis agroup, then an isomorphism G— G'is called an automorphism of the group G.

EXAMPLE 8

If G is a group, then the identity map 143G — G given by 15(r} = r is an auto-
morphism of G. It is clear that 15 is bijective, and for any a, be G,

wia* B) = awb = 15(a) » 1g(b).

EXAMPLE ¢

Let ¢ be a fixed element of a group G. Define £:G— Gby f(2) = ¢7'ge,
Then

FB ) = (¢ lac)(c7be) = ¢~la(ec e = ¢ lube = fab).
If g€ G, then ¢ge~' e G and
flege™) = 7 ege e = {e7')g(c7Me) = ege = 2.

So fis surjective. To show that [ is injective, suppose fla) = f(8). Then ¢ 'ac =
¢ *he. Canceling ¢ on the right side and ¢™* on the left side by Theorem 7.5, we
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have a = b. Hence, fis injective. Therefore, fis an isomorphism, called the inner
automorphism of & induced by ¢. For more about automorphisms, see Exercises 36,
37,58, and 59.

The next theorem completely characterizes all cyclic groups.

Theorem 7.19

Let & be acyclic group.

(1} I G is infinite, then & is Isomorphic to the additive group Z.
{2) H G is finite of order n, then G is isomorphic to the additive group £,

Proof » (1) Suppose that G = {a}is an infinite cyclic group. By Theorem 7.15 @
consists of the elements o* with k € Z, all of which are distinct (meaning
that & = a/ if and only if { = f). The function £.G—Z defined by ") = &k
is easily seen to be a bijection (Exercise 17). Since

fldd)=1@*) =i+ 1=f@) + fla),
fis an isormor phism. Therefore, G = 7,

(2) Now suppose that G = (b} and b has order #. By Theorem7.15,
G =% b, ¥, .., ¢ 1}, and by Corollary 25, Z, = {[0],[1], 2], .- .,
[# — 1]}. Define g:G — Z, by g(b") = [i]. Clearly g is a bijection. Finally,
gy =gW ) =li+ 1 =[]+ ) =g®) + g®).

Hence, g is anisomorphismand G= Z,. W

EXAMPLE 10
In multiplicative group @* of nonzero rational numbers, the cyclic subgroup
. _ 1 111 +
generatedby215{2) = {. v ey ﬁ’ *8—, 4, E, 1-, 2, 4, 8, 16, a . .}. The

group (2}is isomorphic to the additive group Z by Theorem 7.19.

EXAMPLE N

The upper left-hand quadrant of the operation table for D, in Example 5
of Section 7.1 or 7.1.A and Theorem 7.12 show that G = {ry, ry, ra, 3} is
a subgroup of D,. Verify that both G and U = {1, 2, 3, 4} are cyclic. By
Theorem 7.19 each is isomorphic to the additivegroup Z,,. Hence, they are
isomorphic to each other: G = Us(Bxercisz 21).

*Exarcise 7 of Section 1.3.
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Homomorphisms

Many functions that are not injective or surjective satisfy condition (iii) of the defini-
tion of isomorphism. Such functions are given a special name and play an important
role in later sections of this chapter.

Definition Let G and H be groups (with operation #). A function .G — H is said to be
a homomorphism if

flaxd) = fla) x fib)foralla, be 6.

Every isomorphistm is a homomorphism, but a homomorphism need not be an
isomorphism.

EXAMPLE 12

The function f:R* — R* given by f(x) = »* is a homomorphism of multiplica-
tive groups because

f(ab) = {ab* = @ = £ () (D).

However, fis not injective because f(1} = f(—1) and is not surjective because
f(x) = x* = 0 for all x, so no negative number is an image under f.

EXAMPLE 13

The function fiZ — Z¢ given by f(4) = [g] is a homomorphism of additive
groups becatse

fla+by=[a+b =[a]+[b] =f(b) =f(B).
The homomorphism fis surjective, but not injective (Why?).

EXAMPLE 14

If G and H are groups, the function £G X H — Ggivenby f((x, §)) = xisa
surjective homomorphist {Exercise 9). If H is not the identity group, g is not

mjective. For instance, if ey # ac H, then {eg a) # {eg ex)in G X H, but
S (e @) = egand f((eg, en)) = e

Recall that the image of a function G — H is a subset of H, namely Im f =
{hc H| h = f(a) for some a € G}. The function fcan be considered as a surjective map

from G to Tm f;
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Theorem 7.20

Let G and H be groups with identity elements e; and e, respectively.
fiG = H is a homomorphism, then

(1) Keg)= &y

2) A& = fa)™ for every acG.
{3) Im {is a subgroup of H.

(4} Hfisinjective, then G = Im .

Proof » (1) Since fis a homomorphism, &g is the identity in G, and ey is the
identity in H, we have

Jlea)f(ea) = fleata)  [fis @ homomorphism]
Jeaf(ed) = fleq) leq is the identity in G]
Sfleddfleg) = exfleq [f(eq €H and ex is the identity in H\]

Canceling f(e,) on the right (by Theorem 7.5) produces f(g,) = ez
(2) By(1) we have

F@ Y@ =rla'a)=fled = ex = f(@)'f(a)-
Canceling f(a) on each end shows that f{&™ 1 = /(@) %,

(3) The identity egc Im f'by (1), and so Im fis nonempty. Since
J(@f(®) = f(ab), Im fis closed. The inverse of each f(a)c Im fis alsoin
Im f because f(@)~! = f(a~Y) by (2). Therefore, Im fis a subgroup of H by
Theorem 7.11.

(4) As noted before the theorem, f'can be considered as a surjective
function from G'to Im f. If fis also an injective homomorphism, then fis an
isomorphism. m

Group theory began with the study of petmutations and groups of permutations.
The abstract definition of a group came later and may appear to be far more general

than the concept of a group of permutatiops. The next theorem shows that this is
not the case, however.

Theorem 7.21  Cayley's Theorem

Every group G is isomorphic fo a group of permutations.

* Consk e group 4 all permutations of the sef G. Recall that

Proof ider th of all ions of the set G. Recall th
A( D) consists of all bijective fumctions from G to G with composition as
the group operation. These functions need not be homomorphisms.
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To prove the theorem, we find a subgroup of A{G) that is somorphic to
G.* We do this by constructing an mjective homomorphistn of groups
JiG— A(G); then G is isomorphic to the subgroup Im fof 4(G) by
Theorem 7.20.
If a€ G, then we claim that the map .G — G defined by g(x) = axis
a bijection of sets [that is, an element of A(G))]. This follows from the fact
that if € G, then ¢ (a™'5) = a{a™'b) = b; hence, @, is surjective. If @,(b) =
ipc), then ab = ae. Canceling @ by Theoremn 7.5, we conclude that & = «.
Therefore, @, is injective and, hence, a bijection. Thus ¢, € A(G).
Now define £.G — A(G) by f(a) = ¢, For any 2, be G, f(abh) = gu s
the map from Gto Ggiven by ¢ 4(x) = abx. On the otherhand, f(a) < f(5) =
%4 ° %5 is the map given by @, © ¢)(x) = ¢Lei(x)) = p,(bx) = abx. Therefore,
flab) = f(a)= f(b)and fis a homomorphism of groups. Finally, suppose
fa) = f(e),so that g (x) = p{x)forall x€ G. Thena = ae = pfe) = &) =
ce = ¢. Henoe, f is injective, Therefore, G== Iin f by Theorem 7.20. W

Gorollary 7.22

Every Tinite group G of order n Is isomorphic to a subgroup of the symmetric
group Sp.

Proof » The group Gis isomorphic to a subgroup H of A(G) by the proof of
Theotem 7.21. Since G is a set of # elements, A(G) is isomorphic to §,
by Exercise 38, Consequently, i is isomorphic to a subgroup K of S, by
Exercise 22. Finally, by Exercise 21, G= Hand H= Kimply that G= K. W

Any homomorphism from a group @ to a group of permutations is called a
representation of G, and Gk said to be represented by a proup of permutations. The
homomorphism G =+ A(G) in the proof of Theoretm 7.21 is called the left regular repre-
sentation of G. By the use of such representations, group theory can be reduced to the
study of permutation groups. This approach is sometimes very advantageous because
permutations are concrete objects that are readily visualized. Calculations with per-
mutations are straightforward, which is not always the case in some groups. In certain
situations, group representations are a very effective tool.

On the other hand, representation by permutations has some drawbacks. For one
thing, a given group can be represented as a group of permutations in marny ways—the
homomorphism G— A(G)of Theorem 7.21is just one of the possibilities {see Exercises
49, 51, and 54 for others). And many of these representations may be quite inefficient.
According to Corollary 7.22, for example, every group of order 12 is isomorphic to a
subgroup of §;,, but §}; has order 12! = 479,001,600. Determining useful information
about a subgroup of order 12in a group that size is likely to be difficult at best.

Except for some special situations, then, the study of elementary group theory via
the abstract definition (as we have been doing) rather than via concrete permutation
representations is likely to be more effective. The abstract approach has the advantage
of eliminating nonessential features and concentrating on the basic underlying struc-
ture. In the long run, this usually results in simpler proofs and better understanding.

*The group A(G) itself is usually far too large to be isomorphic to G. For instance, if G has order n,
then A{G) has ordar n! by Exarcise 20 of Section T.1.
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B Exercises

A

{a) Show that the function f:R — R given by f{x) = 3xis an isomorphism of
additive groups.

(b) Let R** be the multiplicative group of positive real mumbers, Show that
[FR** 5 R** given by f(x) = 3x is not a homomorphism of groups.

2. Show that the function g:R** — R** given by g{x) = VX is an isomorphism.

. Show that GI(2, Z,) is isomorphic to 5; by writing out the operation tables

for each group. [Hint: List the elements of GL{2, Z;) in this order:

1Oy /1 1N /0 1Y /70 1\ f1 1Y /1 ©
0],01,10,11,10,11andtheelements
L 123Y/123Y/123\/123

°fs3mth‘s°rd“‘(1 2 3)’ (2 1 3)’ (3 2 1)’(2 3 1)’
123)(123)]

3122032,

4. Prove that the function £R* — R* defined by f(x) = »” is an isomorphism.
5. Prove that the function g:7, —+ Z, defined by g(x) = 2x is an isomorphism.
6. Prove that the function 4.7, — Z, defined by #(x) = Zx isa homomorphism

10.

12.

13.
14,

18.

16.

that is neither injective nor surjective.

. Prove that the function fi¥* — R** defined by f(x) = | is a surjective

homomorphism that is not injective.

. Prove that the function gR — R* defined by g(x) = 2" is an injective

homomorphism that is not surjective.

. If Gand H are groups, prove that the function £:G X H — G given by f{(a, £)) =

a is a surjective homomorphism.
Show that the function iR — R defined by f{x) = x%is not a homorphism.

Prove that the function g:R* — GL(2, R) defined by g(x) = (1 0) isan
injective homomorphism, *

0
Prove that the function #:R — GI(2, ) defined by h(x) = (1 l)isan

injective homomorphism.

Show that U, is isomorphic to T,
Prove that the additive group Z; is isomorphic to the multiplicative group of
nonzero elements in Z.,.

Let f:G = H be a homomorphism of groups. Prove that for each a £ Gand
each integern, f{a") = f(a)".

If £G — H is a surjective homomorphism of groups and G is abelian, prove
that H is abelian.
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17.
18.

19.

20.

21.

22.

23,

26.

27,

28

29,

Prove that the function fin the proof of Theorem 7.19(1) is a bijection.
Let G, H, G, H| be groups such that & = G, and H = H|. Prove that
GXH=G X H,.

Prove that a group G is abelian if and only if the function ;G — G given

by f{x) = x~'isa homomorphism of groups. In this case, show that fis an

isomorphism.

Let N be a subgroup of a group G and let a € G.

(a) Prove that a'Na = {a 'na | ne N} is a subgroup of G.

(b} Prove that Nis isomorphic to a~'\Na. [Hint: Define f:N — a"'Va by
Sfin)=a"nal)

Let G, H, and X be groups. If G = H and H = X, then prove that G= X,

[Hint: If G — H and g:H — K are isomorphisms, prove that the composite
function g » fiG — K is also an isomorphism_]

If G — H is an isomotphism of groups and if T is a subgroup of G, prove
that T is isomorphic to the subgroup f(T) ={fa) | ac T} of H.

(a) If Gisan abelian group, prove that the function /:G — G given by
f{x) = x* is a homomorphism.

(b} Prove that part () is false for every nonabelian group. [Hint: A counter-
example is insufficient here (Why?). So try Exercise 24 of Section 7.2.]

. Let Gbe a multiplicative group. Let G% be the set G equipped with a new

operation s defined by a « b = ba.
{a)} Prowe that G is a group.
(b) Prove that G = G*. [Hint: Corollary 7.6 may be helpful]

. Assume that 2 and b are both generators of the cyclic group G, so that G =

{#and G = (). Prove that the function G — G given by f(2') = b'is an
automorphism of G.

If G = (a4} is a cyclic group and £G — H is a surjective homomorphism of
groups, show that f(a) is a generator of H, that is, H is the cyclic group {f{a).
[Hint: Exercise 15.]

Let & be a multiplicative group and ¢ a fixed element of G. Let H be the set &
equipped with a new operation * defined by a + b = arh.

{a} Prove that H is a group.
(b) Prove that the map /:G — H given by f(x) = ¢~'¥ is an isomorphism,

Let f:G-» H be a homomorphism of groups and suppose that 4 € G has finite
orderk.

{a) Prove that f{a)* = e. [Hint: Exercise 15.]
(b) Prove that | f(a)| divides |a|. [Hint: Theorem 7.9.]
If £G— H is an injective homomorphism of groups and a € G, prove that

lf@)| = |d-
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. Let £G — H be a homomorphism of groups and let X be a subgroup of H.
Prove that the set {ac G| f(a) €K} is a subgroup of G.

If fiG— G is a homomorphism of groups, prove that F= {ac G| f(a) = a} is
asubgroup of G.

32.If A= (: 3) is a matrix, the number ad ~ bc is detioted det 4 and called

33.

39

the determinant of 4. Prove that the function £/GL(2, R)— R* given by

f{4) = det A is a sutjective homomerphism.

Let f:G — H be a homomorphism of groups and let K= {a€ G| f(a) = ex},
that is, the set of elements of G that are mapped by fto the identity element
of H. Prove that K} is a subgroup of G. See Exercises 34 and 35 for examples.

. The function £.Z — Z,; given by f{x) = [x] is a homomorphism by Example 13.
Find K (notation as in Exercise 33).

. The function f:U; — U, given by f(x) = »*is a homomorphism by Exercise 23.
Find K (notation as in Exercise 33).

. Let G be a group and let Aut G be the set of all automorphisms of G. Prove
that Aut G is a group under the operation of composition of functions.
[Hint: Exercise 21 may help.]

. Let Gbe a group and let Aut Gbe as in Exercise 36. Let Inn Gbe the set of
all inner antomorphisms of  (that is, isomorphisms of the form f{a) = ¢ ae
for some ¢€ G, as in Example 9.). Prove that Inn G is a subgroup of Aut G.

[Vofe: Two different elements of G may induce the same intier automotphism,
that is, we may have ¢"'ac = d~lad for all ac G. Hence, |Inn G| = |G].]

. Let Tbe a set 1 elements and let A(T) be the group of permutations of T’
Prove that A(T) = §,. [Hint: If the elements of T in some order are relabeled as
1,2,...,n, then every permutation of T becomes a permutation of 1, 2,. .., ]

. Show that the additive groups Z and ( are not isomorphic.

In Exercises 40-44, explain why the given groups are not isomorphic (Exercises 16
and 20 may be helpful )

40. Z; and 8y 41. 7, < Z;and D,

2. Z, X Z,and 2, X 2, % Z, 43. Usand Uy, 4. Uyand Uy
45, Is Uy isomorphic to ¥/,,7 Justify your answer.

46.

Prove that the additive group R of all real numbers is not isomorphic to the
multiplicative group R* of nonzero real numbers. [Hint: If there were an

isomorphism £:R — R*, then fik) = —1 for some k; use this fact to arrive at a
contradiction.]
. Show that D, is not isomorphic to the quaternion group of Exercise 16 of

Section 7.1.

. Prove that the additive group @ is mot isomorphic to the multiplicative group
@** of positive rational numbers, even though R and R** are isomorphic.
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49. Let G be a group and let 4(G) be the group of permutations of the set G.
Define a function g from G to A(G) by assigning to each & €  the inner
automorphism induced by 4~ (as in Example % with ¢ = d~Y). Prove that gis
a homomorphism of groups

50. Let Gbe a group and k€ A(G). AssumethathAco g, = @, fiforallaeG
(where @, is as in the proof of Theorem 7.21). Prove that there exists b€ G
such that 4(x) = xb forall x € G.

51. {a) Let Gbea group and ¢ € G. Prove that the map 6:G — & given by
6.(x) = xc7'is an element of A(G).
(b} Prove that #: G — A(G) given by #c) = 0. is an injective homomorphism
of groups. Thus G is isomorphic to the subgroup Im % of A(G). This is the
right regular representation of G,

52. Find the left regular representation of each group (that is, express each group
as a permutation group as in the proof of Theorem 7.21):

(a) 4, by Z, ©) S3

53. Let f:G— H be an isomorphism of groups. Let g:H — G be the inverse
function of fas defined in Appendix B. Prove that g is also an isomorphism of
groups. [Hint: To show that g(ab) = g(a)g(b), consider the images of the lefi-
and right-hand sides under fand use the facts that f is a homomorphism and
feg isthe identity map.]

54. {(a) Show that D, = 8;. [Hint: D, is described in Example 6 of Section 7.1
or 7,1 A, Each motion in [}y permutes the vertices; use this to define a
function from D to &3]

{b) Show that D, is isomorphic to a subgroup of S,. [Hint: See the hint
for part (a). This isomorphism represents [J,, a group of order 8, asa
subgroup of a permutation group of order 4! = 24, whereas the left
regular representation of Corollary 7.22 represents G as a subgroup
of S}, a group of order B! = 40,320.]

. (a) Prove that H = {(1 —n )

n
[r.]

n 1 +n

ne Z} is a group under matrix
multiplication.

{b) Prove that H=Z.

1 —2n b
56. {(a) Prove that X = {( 4n 1 +2n)

= Z} is a group under matrix
multiplication.
(b} Is K isomorphic to 27

57. Prove that the additive group 2[x] is isomorphic to the multiplicative group
0** of positive rationals. [Hint: Let py, p(, 3, . - - be the distinct positive
primes in their usuval order. Define ¢:Z[x] — (F** by

Plao+ ax + ap + < -+ ax) = pipt - pir]
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58. Prove that Gis an abelian group if and only if Inn G consists of a single
element. [Hint: See Exercise 37.)

59, {a) Verify that the group Inn D), has order 4. [Hint: See Exercise 37.]
(b} Provethat Inn Dy = F, X £,.

60. Prove that At Z = Z,. [Hint: What are the possible geperators of the cyclic
group #7 See Exercises 25 and 26.)

61. Prove that Aut Z, = U,. [Hint: See Exercise 25 above and Exercise 44 of
Section 7.3.]

62. Prove that At (Z; X Z,) = 5.

APPLICATION: Linear Codes (Section 16.1) may be covered at this point
if desired.

m The Symmetric and Alternating Groups*

The finite symmetric groups 5, are important because, as we saw in Corollary 7.22,
every finite group is isomorphic to a subgroup of some 5,. In this section, we introduce
a more convenient notation for permutations, and some important subgroups of the
groups 5,. We begin with the new notation.
123456
143625
is mapped to 6, 6 is mapped to 5, 5 is mapped back to 2, and the other two elements,
1 and 3, are mapped to themselves. All the essential information can be summarized
by this diagram:

Consider the permutation ( ) in §4. Note that 2 is mapped to 4, 4

2;—*——'-—»4»————-»6 ————— -»$

- -
‘»\ e

-~
" L
e ——— - - 7

It isn’t necessary to include the arrows here as long as we keep things in the same order.
A complete description of this permutation is given by the symbol (2465), with the
understanding that

each element ismapped to the element listed immediately to the right;
the last element in the siring is mapped to the first;
elements not listed are mapped to themselves.

*“Except for a few well-marked examples and exercises, this section is needed only in Sections 85,
9.3-0.5 and 123,
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Definition

This is an example of cycle notation. Here is a formal definition.

Let &y, @ 8y, .. ., a5 (With k = 1) be distinct elements of the set {1, 2,3, ..., n}.
Then @ - . . 8 denotes the permutation in S, that maps a, to &, & to
8 . » 4 Bz_1 t0 8y, and ay to a;, and maps every other elementof {1,2,3, ..., n}
to itself. (ay2,2,. . . 8y) Is called a cycle of length A or a k-cycle.

EXAMPLE 1

In Sy, (143) is the 3-cycle that maps 1 to 4, 4t0 3, 3to 1, and 2 to itself; it was

1234
titen ( 421 3) in the old notation. Note that (143) may also be denoted by
(431) or (314) since each of these indicates the function that maps 1to4,4 10 3,

3tol,and2to02.

EXAMPLE 2

According to the definition above, the l-.cycle (3) in §,, is the permutation that
maps 3 to 3 and maps every other element of {1, 2,, .., #} to itself; in other
words, (3) is the identity permutation. Similarly, for any & in {1, 2, ..., n}, the
1-cycle (&) is the identity permutation.

Strctly speaking, cycle notation is ambignous since, for example, (163) might de-
note a permutation in Sg, in §4, or in any §, with # = 6. In context, however, this
won't cause any problems because it will always be made clear which group S, is under
discussion.

Products in cycle notation can be visually calculated just as in the old notation. For
example, we know that

123401234_1234

1 4 2 3 2 41 3 4 312/
(Remember that the product in 8, is composition of functions, and so the right-hand
permutation is performed first.) In cycle notation, this product® becomes

ﬂ 3)((\3 4 3)=(1 4 2 3
e

The arrows indicate the process: 1 is mapped to 2 and 2 is mapped to 4, so that the
product maps 1 to 4. Similarly, 4 is mapped to 3 and 3 is mapped to 2, so that the
product maps 4 to 2.

*Heraafter we shallomitthecomposition symbol- and writethegroupoperation inS, muttiplicatively.
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EXAMPLE 3

In the old notation 55 consists of

(123)(123)(123)(123)(123)and(123)
1 2 3/°\1 3 2/°\3 2 1/\213,\231) 312,

In the new notation, the elements of S; (in the same order) are

(1), (23), (13), (12), (123), and (132).

Two cycles are said to be disjuint if they have no elements in common. For instance,
(13) and (2546) are disjoint cycles in Sg, but (13) and (345) are not since 3 appears in
both cycles.

EXAMPLE 4

As shown before Example 3, (243)(1243) = (1423). Verify that
(1243)(243) = (2341).

Hence, the cydes (243) and (1234) do not commute with each other