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Preface

This textbook introduces a new approach to teaching an introductory course
in abstract algebra. This text can be used for either an undergraduate-level
course, or a graduate-level sequence. The undergraduate students would only
cover the the basic material on groups and rings given in Chapters 0–4 and
9–12. A graduate-level sequence can be implemented by covering group the-
ory in one semester (Chapters 1–8), and covering rings and fields the second
semester (Chapters 9–15). (Graduate students should already know the con-
tents of Chapter 0.) Alternatively, one semester could cover part of the group
theory chapters and part of ring theory, while the second semester covers the
remainder of the book.

This text covers many graduate-level topics that are not in most standard
introductory abstract algebra courses. Some examples are semi-direct prod-
ucts (§6.4), polycyclic groups (§8.3), solving Rubik’s Cube©R-like puzzles (§8.4),
and Wedderburn’s theorem (§13.4). There are also some problem sequences
that allow students to explore interesting topics in depth. For example, one
sequence of problems outlines Fermat’s two-square theorem, while another
finds a principal ideal domain that is not a Euclidean domain. Hopefully,
these extra titbits of information will satisfy the curiosity of the more ad-
vanced students.

What makes this book unique is the incorporation of technology into an
abstract algebra course. Either Mathematica©

R
or Sage can be used to give

the students a hands-on experience with groups and rings. It is recommended
that the instructor use at least one of these in the classroom to allow students
to visualize the group and ring concepts. (Sage is totally free. See the section
“Sage vs. Mathematica” for more information about both of these programs.)
Every section includes many non-software exercises, so the students are not
forced into using software. However, each section also has several interactive
problems, so students can choose to use these programs to explore groups and
rings. By doing these experiments, students can get a better grasp of the
topic.

But in spite of the additional technology, this text is not short on rigor.
There are still all of the classical proofs, although some of the harder proofs
can be shortened with the added technology. For example, Abel’s theorem is
much easier to prove if we first assume that the groups A5 and A6 are simple,
which Mathematica or Sage can verify in the classroom in a few seconds. In
fact, the added technology allows students to study larger groups, such as
some of the Chevalley groups.

xv



xvi Preface

This text has many tools that will aid the students. There is a symbols ta-
ble, so if a student sees an unfamiliar symbol, he can look up the description
in this table, and see where this symbol is first defined. The text is sprinkled
with “Historical Diversions,” one-page biographies of famous algebraic math-
ematicians and their contributions to abstract algebra. The answers to the
odd-numbered problems are in the back, although the proofs are abbreviated.
There is an extensive index that not only lists the relevant pages for a partic-
ular terminology, but also highlights the page where the term is first defined.
A list of tables and figures allows students to find a multiplication table for a
particular group or ring.

There have been many changes since the first edition. The biggest change
is replacing GAP with Sage, which is very similar to Mathematica, so the
text does not require as much software support. This allows for more non-
computerized examples to be added. Also, there are more than twice the
number of homework problems than in the first edition. The “Historical
Diversions” have been added to reveal some of the tragic stories behind many
of the mathematicians who contributed to abstract algebra. The preliminary
chapter 0 has been added, along with discussion of new topics such as straight
edge and compass constructions, and wreath products.



Acknowledgments

I am very grateful to Alexander Hulpke from Colorado State University for
developing the GAP package “newrings.g” specifically for the first edition of
my book. This package is currently incorporated into GAP, which in turn is
included in Sage. Without this package, Sage would not be able to work with
the examples that grace chapters 9–13. Other suggestions of his have proved
to be invaluable.

I also must express my thanks to Shashi Kumar at the LATEX help desk,
who helped me with several different formatting issues throughout the text.

I also would like to express my appreciation to my wife Cynthia and my
son Trevor for putting up with me during this past year, since this project
ended up taking much more of my time than I first realized. They have been
very patient with me and are looking forward to my finally being done.

xvii



This page intentionally left blankThis page intentionally left blank



About the Author

William Paulsen is a professor of mathematics at Arkansas State University.
He has taught abstract algebra at both the undergraduate and graduate levels
since 1997. He received his B.S. (summa cum laude), M.S., and Ph.D. degrees
in mathematics at Washington University in St. Louis. He was on the winning
team for the 45th William Lowell Putnam Mathematical Competition.

Dr. Paulsen has authored over 17 papers in abstract algebra and applied
mathematics. Most of these papers make use of Mathematica

©R
, including one

which proves that Penrose tiles can be 3-colored, thus resolving a 30-year-old
open problem posed by John H. Conway. He has also authored an applied
mathematics textbook, “Asymptotic Analysis and Perturbation Theory,” also
published by CRC Press.

Dr. Paulsen has also programmed several new games and puzzles in Java-
script and C++. One of these puzzles, Duelling Dimensions, has been syn-
dicated through Knight Features. Other puzzles and games are available on
the Internet.

Dr. Paulsen lives in Harrisburg, Arkansas with his wife Cynthia, his son
Trevor, two pugs, and a dachshund.

xix



This page intentionally left blankThis page intentionally left blank



Symbol Description
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f−1(x) The inverse function of f(x) 17, 131
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(mod n) Modular equivalence in base n 43
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or the ring of the same elements 319
Z∗
n Numbers < n coprime to n, with multiplication mod n 53

Q The group or field of rational numbers (fractions) 53
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R The group or field of real numbers 53
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xn x operated on itself n times 54
D4 The group of symmetries of a square 42, 124
φ(n) Euler totient function 64
{. . . | . . .} The set of elements . . . such that . . . 81
H ∩K The intersection of H and K 76⋂

H∈L
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[x] Smallest subgroup containing the element x 78
Rk(G) Number of solutions to xk = e in the group G 85
xH A left coset of the subgroup H 91
Hx A right coset of the subgroup H 91
H\G The collection of right cosets of H in the group G 91
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xxii Symbol Description

G/H The collection of left cosets of H in the group G, 91
or the quotient group of G with respect to H 115

G ≈M The group G is isomorphic to M 120
Q The quaternion group 124
Im(f) The image (range) of the function f 131
f−1(H) The set of elements that map to an element of H 131
Ker(f) The kernel of the homomorphism f , which is f−1(e) 132
(
1 2 3 4
2 3 4 1

)
Permutation notation 150

Sn The symmetric group on n objects 151
n! n factorial = 1 · 2 · 3 · · ·n 152
(1 2 4 6 3) Cycle notation 157
( ) The 0-cycle, the identity element of Sn 159
σ(x) The signature function of the permutation x 161
An The alternating group of permutations on n objects 162
H ×K The direct product of the groups H and K 181
P (n) The number of partitions of m 198
Aut(G) The group of automorphisms of the group G 203
Inn(G) The inner automorphisms of the group G 206
Out(G) The outer automorphisms of the group G 209
N⋊

φ
H The semi-direct product of N with H through φ 213

Dn The dihedral group with 2n elements 219
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Introduction

Most people use technology made possible by abstract algebra without real-
izing it. They go through checkout lines quickly via the UPC barcode, listen
to music on a CD, and order items online through a secure website. Such
actions are only possible due to error detection codes, error correction codes,
and modern cryptography, which in turn rely on finite groups and finite fields.

Abstract algebra can also be used to prove that something is impossible.
One of the classical problems from Greek geometry is to trisect an angle using
only a straight edge and compass. For centuries, mathematicians have tried to
produce such a construction to no avail. However, with a branch of abstract
algebra called Galois theory, we can prove that such a trisection is impossible.

Another centuries-old problem proven impossible by Galois theory is solving
a fifth-degree polynomial equation such as x5 + x − 1 = 0 in terms of square
roots, cube roots, and fifth roots. What makes the impossibility so surprising
is that any fourth-degree polynomial equation can be solved in terms of roots.
The change of behavior between the fourth-degree polynomials and the fifth-
degree polynomials was proven by Galois in 1828, but he did not receive credit
for his work until after his untimely death at the age of 20.

Because of the many applications to abstract algebra, there is an increased
demand for students to learn this material. This book is devised to be a self-
contained exposition of the structures of groups, rings, and fields that make up
abstract algebra. It is designed to be used for a two-semester undergraduate
course, but there is enough advanced material included to be used in a two-
semester graduate sequence. It also is ideal for self-study, since it focuses on
exploration of examples to find a general pattern, and then proves the patten
persists. This is the interactive approach to learning.

Since undergraduate students are usually not accustomed to abstract think-
ing, there is a preliminary Chapter 0 that goes over the elementary properties
of integers, functions, and real numbers. In the process, students are intro-
duced to the technique of proofs, such as induction and reductio ad absurdum.
Graduate students, on the other hand, would be able to begin with Chapter 1.

Although calculus is only needed for a handful of problems, it is recom-
mended that students have had Calculus II, since a small amount of mathe-
matical maturity is required. In fact, one of the goals of this textbook is to
develop the mathematical maturity of the reader by introducing techniques
for proofs, providing a bridge for higher-level mathematics courses.

One of the features unique to this textbook is the interactive approach.
Often the book will focus on an example or two, and guide the reader into

xxv
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finding patterns in these examples. As the student looks into why these
patterns appear, a proof is formulated. This interaction is made possible by
the use of either Sage workbooks or Mathematica notebooks. There is both
a workbook and a notebook corresponding to each chapter. These software
packages allow students to experiment with different groups, rings, and fields,
and allow the reader to visualize many of the important concepts. In order
to use the bonus material, either Mathematica or Sage must be installed on a
computer. There are several options for both of these programs, explained in
detail in the appendix Sage vs. Mathematica. Since Sage is open source, and
hence totally free, the examples in the text only refer to the Sage commands,
but the corresponding Mathematica commands are usually similar, and are
explained in the notebooks.

Another feature in this book are sequences of homework problems that to-
gether formulate new results not found in the text. For example, there is a
sequence that outlines a proof of Fermat’s two-square theorem, and another
that finds an example of a PID that is not a Euclidean domain. These se-
quences are ideal for use as special projects for students taking the course
with an honors option.
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This textbook is also designed to work with a variety of different syllabi. A
dependency diagram for the different sections is given above. To clarify this
chart, here is a summary of each chapter with an explanation of some of the
dependencies.

Chapter 0: Preliminaries. This chapter can be considered as a primer of
the mathematics required to study abstract algebra. Undergraduate students
should go over this material, although many sections will be familiar. The
last section covers Cantor’s diagonal theorem, which is actually not needed
until an example in §14.1. Advanced students would have seen this material
in other courses.

Chapter 1: Understanding the Group Concept. This chapter defines
the group abstractly by first looking at several key examples, and observing
the properties in common between the examples. The cyclic groups Zn and
the group of units Z∗

n are defined in terms of modular arithmetic. The non-
abelian group D3 is also introduced using the featured software. This chapter
assumes the student is familar with integer factorization and modular arith-
metic, which is covered in the preliminary chapter.

Chapter 2: The Structure within a Group. The basic properties
of groups are developed in this chapter, including subgroups and generators.
Also included in this section is a way to describe a group using generators and
relations, giving us many more key examples of groups.

Chapter 3: Patterns within the Cosets of Groups. In this chapter,
the notations of left and right cosets, normal groups, and quotient groups are
developed. Section 3.2, which covers RSA encryption, is optional, but with
the enhancement of the software packages it is a fun section to teach.

Chapter 4: Mappings between Groups. This chapter discusses group
isomorphisms, and then generalizes the mappings to form group homomor-
phisms. This in turn leads to the three isomorphism theorems. Students
are expected to understand abstract mappings, covered in the preliminary
chapter.

Chapter 5: Permutation Groups. This chapter introduces another
important class of groups, the symmetric groups Sn. The first two sections
only require knowledge of §2.2, so these sections could in fact be taught earlier.
But Cayley’s theorem requires the concept of isomorphisms, requiring §4.1.
The last section is optional, but introduces a notation for large subgroups of
Sn, which comes in very handy for a number of examples.

Chapter 6: Building Larger Groups from Smaller Groups. As the
name suggests, this chapter focuses on new ways to form groups, such as the
direct product, the automorphism group, and the semi-direct product. Section
6.2, on the fundamental theorem of finite abelian groups, is not needed in the
remaining sections on groups, but is referred to in a key exercise in §9.2 as we
consider the additive group structure of a finite ring. The optional section on
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semi-direct products is more advanced, and would probably only be taught in a
graduate-level course, even though it does provide some interesting examples.

Chapter 7: The Search for Normal Subgroups. This chapter ex-
plores the center of a group, the normalizer, and the conjugacy classes of a
group. This leads to the class equation, which in turn leads to the three Sylow
theorems. In this chapter we prove that the symmetric groups Sn from §5.2
are simple when n ≥ 5, along with the group L2(3) with 168 elements, using
the notation from §5.4. The last section on the Sylow theorems is optional,
since it is only required for §13.4, which is also optional.

Chapter 8: Solvable and Insoluble Groups. This chapter looks at the
subnormal series of a group, categorizing a group as either solvable or insoluble
based on whether the composition factors are all cyclic. This is required for
§15.4, which uses Galois theory to prove that fifth-degree polynomial equations
cannot, in general, be solved in terms of radicals. The last two sections
of Chapter 8 are optional, and rely heavily on Sage. Section 8.3 explains
how Sage can do operations on a group much more efficiently if the group is
entered into Sage using a polycylic subnormal series. The last section uses a
special feature of Sage, which finds a way to express any element of a group
in terms of a set of elements that generate the group. With this feature, we
can solve Rubik’s CubeTM-like puzzles, giving an entertaining application of
group theory.

Chapter 9: Introduction to Rings. This chapter introducing rings only
requires §4.1, so one has the option of making a one-semester course covering
half of the material on group theory, and half of the material on rings and
fields. One exercise uses the fundamental theorem of finite abelian groups,
but this can be avoided if that section was not covered.

Chapter 10: The Structure within Rings. This chapter focuses on the
parallels between groups and rings, namely the similarities between normal
groups and ideals. The chapter culminates with the first isomorphism theorem
for rings, requiring only the counterpart in §4.3 from group theory.

Chapter 11: Integral Domains and Fields. This chapter appears in
the dependency diagram horizontally instead of vertically, since each section
is independent of the others. Nonetheless, these four sections are referred to in
later chapters. The first section on polynomial rings is needed for Chapter 12,
and the section on the field of quotients, §11.2, is also referred to in one
of the corollaries of Chapter 12. Section 11.3 gives an overview of complex
numbers, which is needed in §13.3 for cyclotomic polynomials. The last section
on ordered commutative rings is optional, since this topic is not referred to
elsewhere in the book. However, ring automorphisms are introduced in this
section as a way to explain multiple ways of ordering certain rings, and these
automorphisms are the key to Galois theory in Chapter 15.

Chapter 12: Unique Factorization. This chapter is dedicated to dis-
covering which integral domains possess the unique factorization property.
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The last two sections, on principal ideal domains and Euclidean domains, are
not needed elsewhere in the book, but these topics are considered to be an
important aspect of abstract algebra. On the other hand, §12.2 proves that a
polynomial ring over a field is a unique factorization domain, and this result
is needed to do any work in Galois theory.

Chapter 13: Finite Division Rings. Unlike most textbooks, this chap-
ter covers finite fields before taking on infinite fields. Part of the reason is
that finite fields are easy to visualize, but also finite fields can be completely
classified. Section 13.3 takes a minor detour to discuss cyclotomic polynomi-
als, a topic needed later in §15.2. The last section on Wedderburn’s theorem
is optional, but it gives a good example on how the class equation from §7.4
can be applied to finite fields.

Chapter 14: The Theory of Fields. The goal of this chapter is to
explain the splitting fields of a polynomial, so it begins with a study of vector
spaces, and then defines an extension field in terms of a vector space. A
key example of an infinite dimensional vector space utilizes Cantor’s diagonal
theorem from §0.4. Other examples involve the finite fields of §13.2, but
otherwise the chapter is self-contained.

Chapter 15: Galois Theory. The book comes to a climax with the
discussion of Galois theory, along with its applications. For every polynomial
there is a permutation group from §5.2 that describes the automorphism group
hinted at in §11.4. By finding this permutation group for the cyclotomic
polynomials of §13.3, we learn properties of the permutation group for the
cases where the polynomial equation is solvable by radicals. Finally, using
the composition series of §8.2, we prove that most fifth-degree polynomial
equations cannot be solved in term of radicals. As a bonus, we also can
prove the impossibility of two of the three famous construction problems of
antiquity, trisecting an angle and duplicating the cube.

From the chapter summaries, it is clear that the textbook can be used to
support a variety of different syllabi. For example, a junior-level one-semester
course could consist of Chapters 0–5, only including the first isomorphism
theorem in §4.3, then jumping to Chapters 9–10, finishing with selections
from Chapter 11. On the other hand, there is enough material to cover a two-
semester graduate-level sequence. Since there are both easy and challenging
exercises, the textbook adapts well to both extremes, as well as a spectra of
possible syllabi between these two.
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Chapter 0

Preliminaries

This chapter gives the background material for studying abstract algebra. It
introduces the concepts of sets and mappings, which are the foundations of
all of modern mathematics. It also introduces some important strategies for
writing proofs, such as induction and reductio ad absurdum. It is preferable to
introduce this material here, since introducing this information at the point
where it is needed interrupts the flow of the text.

Undergraduate students and those using the book for self-study are encour-
aged to go through this chapter, since it introduces concepts and notation that
are used throughout the book. However, for most graduate students this ma-
terial will be familiar, so such students could skip ahead to Chapter 1, referring
back to this chapter whenever necessary.

0.1 Integer Factorization

Even in prehistoric times, there is evidence that societies developed a ter-
minology for the counting numbers 1, 2, 3, etc. In fact, the Ishango bone
suggests that prime numbers were contemplated as early as twenty thousand
years ago. It is known that the early Egyptians understood prime numbers,
but the Greeks of the fifth century B.C. get the credit for being the first to
explore prime numbers for their own sake.

In this section we will explore the basic properties of integers stemming
from the prime factorizations. We will prove an important theorem known
to the Greeks, that all positive integers can be uniquely factored into prime
numbers. In the process, we will learn some important techniques for proofs,
which will be used throughout the book.

We begin by denoting the set of all integers,

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

by the stylized letter Z. This notation comes from the German word for
number, Zahl. Many of the properties of factorizations refer only to positive
integers, which are denoted Z+. Thus, we can write n ∈ Z+ to say that n is
a positive integer.

1
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We begin by defining a divisor of a number.

DEFINITION 0.1 We say that an integer a is a divisor of an integer
b, denoted by a|b, if there is some integer c such that b = ac. Other ways of
saying this is that a divides b, or a is a factor of b, or b is a multiple of a.

Example 0.1

Find the divisors of 30.
SOLUTION: Note that the definition allows for both negative and positive
integers. Clearly if 30 = ac for integers a and c, |a| ≤ 30. With a little trial
and error, we find the divisors to be

±1,±2,±3,±5,±6,±10,±15, and ± 30.

We can extend the idea of integer divisors to that of finding the quotient q
and remainder r of integer division.

THEOREM 0.1: The Division Algorithm

Given any x ∈ Z, and any y ∈ Z+, there are unique integers q and r such
that

x = qy + r and 0 ≤ r < y.

PROOF: Since y > 0, we can consider the rational number x/y. Let q be
the largest integer that is less than or equal to x/y. That is, we will pick the
integer q so that

q ≤ x

y
< q + 1.

Multiplying by y, we have

yq ≤ x < yq + y.

If we let r = x− yq, we have 0 ≤ r < y, and also x = yq+ r, so we have found
integers q and r that satisfy the required properties.

In order to show that q and r are unique, let us suppose that q and r are
two other integers that satisfy the required conditions. Then qy+ r = qy+ r,
so

(q − q)y = r − r.

Since both r and r are between 0 and y− 1, the right-hand side is less than y
in absolute value. But the left-hand side is at least y in absolute value unless
q = q. This in turn will force r = r, so we see that the solution is unique.

This is a constructive proof, since it gives an algorithm for finding q and
r. This proof also demonstrates how to prove that a solution is unique. We
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assume there is another solution, and prove that the two solutions are in fact
the same.

Example 0.2

Find integers q and r such that 849 = 31q + r, with 0 ≤ r < 31.
SOLUTION: We can use Sage as a calculator. To find the numerical approx-
imation of 849/31, enter

N(849/31)

27.3870967741935

Note that the function N( ) gives the numerical approximation. The largest
integer less than this value is q = 27. Then we can compute r to be

849 - 27*31

12

The notation for finding the greatest integer function used in this algorithm
is

⌊x⌋ = the greatest integer less than or equal to x.

Example 0.3

Find integers q and r such that −925 = 28q + r.
SOLUTION: Note that −925/28 ≈ −33.0357142857143. But to find an inte-
ger less than this, we round down, so in the case of a negative number, it will
increase in magnitude. Thus, q = −34, and r = −925− (−34)28 = 27.

We define a prime as an integer that has only two positive factors: 1 and
itself. This definition actually allows negative numbers, such as −5, to be
prime. Although this may seem to be a non-standard definition, it agrees
with the generalized definition of primes defined in Chapters 10 and 12. The
numbers 1 and −1 are not considered to be prime. The goal of this section
is to prove that any integer greater than 1 can be uniquely factored into a
product of positive primes.

We will begin by proving that every large number has at least one prime
factor. This requires an assumption about the set of positive numbers, known
as the well-ordering axiom.

The Well-Ordering Axiom:

Every non-empty subset of Z+ contains a smallest element.

The reason why this is considered to be an axiom is that it cannot be proven
using only arithmetic operations. (Note that this statement is not true for
rational numbers, which have the same arithmetic operations.) So this self-
evident statement is assumed to be true, and is used to prove other properties
of the integers.
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LEMMA 0.1

Every number greater than 1 has a prime factor.

PROOF: Suppose that some number greater than 1 does not have a prime
factor. Then we consider the set of all integers greater than 1 that do not
have a prime factor, and using the well-ordering axiom, we find the smallest
such number, called n. Then n is not prime, otherwise n would have a prime
factor. Then by definition, n must have a positive divisor besides 1 and n, say
m. Since 1 < m < n, and n was the smallest number greater than 1 without
a prime factor, m must have a prime factor, say p. Then p is also a prime
factor of n, so we have a contradiction. Therefore, every number greater than
1 has a prime factor.

Not only does the proof of Lemma 0.1 demonstrate how the well-ordering
axiom is used, it also introduces an important strategy in proofs. Notice that
to prove that every number greater than 1 had a prime factor, we assumed
just the opposite. It was as if we admitted defeat from the very beginning!
Yet from this we were able to reach a conclusion that was absurd—a number
without a prime factor that did have a prime factor. This strategy is known as
reductio ad absurdum, which is Latin for “reduce to the absurd.” We assume
what we are trying to prove is actually false, and proceed logically until we
reach a contradiction. The only explanation would be that the assumption
was wrong, which proves the original statement.

The prime factors lead to an important question. Is there a largest prime
number? The Greek mathematician Euclid answered this question using re-
ductio ad absurdum in the third century B.C. [11, p. 183]

THEOREM 0.2: Euclid’s Prime Number Theorem

There are an infinite number of primes.

PROOF: Suppose there are only a finite number of prime numbers. Label
these prime numbers

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . , pn.

Now consider the number

m = (2 · 3 · 5 · 7 · 11 · 13 · · · pn) + 1.

This number is odd, so it cannot be divisible by 2. Likewise, m is one more
than a multiple of 3, so it is not divisible by 3. In this way we see that m
is not divisible by any of the prime numbers. But this is ridiculous, since m
must have a prime factor by Lemma 0.1. Thus, the original assumption that
there is a largest prime number is false, so there are an infinite number of
prime numbers.
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Historical Diversion

Euclid of Alexandria (c. 300 BC)
Euclid of Alexandria is known as the

“Father of Geometry,” because of one great
work that he wrote, The Elements. Euclid
lived during the time of Ptolemy I (323–
283 B.C.). Alexandria was the intellectual
hub of its day, not only with the Great Li-
brary but also the Museum (meaning seat
of the muses), which was their equivalent
to a university. Although little is known
about the life of Euclid, we can infer from
his writings that he was a brilliant mathe-
matician, being able to compile all known
mathematical knowledge into a sequence of
small steps, each proposition building on the previous in a well-defined order.
Although the Elements is primarily a treatise on geometry, books VII, VIII,

and IX deal with number theory. Euclid was particularly interested in primes
and divisibility. He proved that there were an infinite number of primes, and
proved what is known as Euclid’s lemma, that if a prime divides the product
of two numbers, it must divide at least one of those numbers. This lemma
then leads the the fundamental theorem of arithmetic, which says that any
number greater than 1 can be uniquely factored into a product of primes.
Euclid also considered the greatest common divisor of two numbers, and gave
a constructive algorithm for finding the GCD of two numbers.
Euclid also defined a number as perfect if it equals the sum of its divisors

other than itself. He proved that if 2p−1 is prime, then 2p−1(2p−1) is perfect.
In book X Euclid worked with irrational numbers, or incommensurables

proving that
√
2 is irrational. This result was known to the school of Pythago-

ras, but was a closely guarded secret. The distinction between rational num-
bers and real numbers will play a vital role in future mathematics.
Euclid would have been aware of the three great construction problems of

antiquity: trisecting an angle, duplicating the cube, and squaring the circle.
The first problem is to divide any angle into 3 equal parts. The duplication of
the cube involved constructing a line segment 3

√
2 times another line segment.

Finally, squaring the circle required construction of a square with the same
area as a given circle. Euclid’s Elements laid down the ground rules for a
valid straight edge and compass constructions. Previous “solutions” done
over a century earlier violated these rules. Although these seem like geometry
problems, they were only proven to be impossible using algebraic methods
in the nineteenth century. The first two were proven to be impossible using
Galois theory. The last construction was proven impossible by Lindemann in
1882 when he proved π is transcendental.

Image source: Wikimedia Commons
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In order to prove that every integer greater than 1 has a unique prime fac-
torization, we must first prove that every such number can be expressed as
a product of primes. This is easiest to do using the principle of mathemat-
ical induction. This principle stems from the well-ordering axiom, and is a
powerful tool for proving statements about integers.

THEOREM 0.3: Principle of Mathematical Induction

Let S be a set of integers containing a starting value a. Suppose that S has
the property that the integer n will be in S whenever all integers between a
and n are in S. Then S contains all integers greater than or equal to a.

PROOF: Suppose there is some integer greater than a that is not in S. Let
T be the set of integers greater than a but not in S. Since T is non-empty,
by the well-ordering axiom we can let n be the smallest member of T . Note
that n 6= a, since a is in S. Also, all integers between a and n would have
to be in S, lest there be a smaller value in T . But by the property of S, n
would have to be in S, hence not in T . This contradiction shows that there
is no integer greater than a that is not in S, which is equivalent to saying all
integers greater than or equal to a are in S.

To use the principle of induction, we first prove a statement is true for a
starting point a. Then we assume that the statement is true for all integers
a ≤ k < n. (Often we will be able to get by with just the previous case
k = n− 1.) This gives us extra leverage to prove the statement is true for n.
Here is an example of this principle in action.

LEMMA 0.2

Every integer n ≥ 2 can be written as a product of one or more positive primes.

PROOF: In this case, our starting point is 2, so let us prove that state-
ment is true for n = 2. Since 2 is prime, we can consider 2 to be the product
of one prime, so we are done.

Let us now assume the statement is true for all integers 2 ≤ k < n, and
work to prove the statement is true for the case n. If n is prime, we have n as
the product of one prime. If n is not prime, then we can express n = ab, where
both a and b are between 1 and n. By our assumption, a and b can both be
expressed as a product of positive primes, and so n can also be expressed as
a product of primes. Thus, by mathematical induction, the statement is true
for all n ≥ 2.

In order to prove that the prime factorization is unique, we will first have
to develop the concept of the greatest common divisor.
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DEFINITION 0.2 We define the greatest common divisor (GCD) of
two numbers to be the largest integer that divides both of the numbers. If
the greatest common divisor is 1, this means that there are no prime factors
in common. We say the numbers are coprime in this case. We denote the
greatest common divisor of x and y by gcd(x, y).

We can use Sage’s gcd function to quickly test whether two numbers are
coprime without having to factor them.

gcd(138153809229555633320199029, 14573040781012789119612213)

1

There is an important property of the greatest common divisor, given in the
following theorem.

THEOREM 0.4: The Greatest Common Divisor Theorem

Given two non-zero integers x and y, the greatest common divisor of x and y
is the smallest positive integer that can be expressed in the form

ux+ vy

with u and v being integers.

PROOF: Let A denote the set of all positive numbers that can be expressed
in the form ux + vy. Note that both |x| and |y| can be written in the form
ux+ vy, so by the well-ordering axiom we can consider the smallest positive
number n in A. Note that gcd(x, y) is a factor of both x and y, so gcd(x, y)
must be a factor of n.

By the division algorithm (Theorem 0.1), we can find q and r, with 0 ≤ r <
n, such that x = qn+ r. Then

r = x− qn = x− q(ux+ vy) = (1− qu)x+ (−v)y,

which is in the set A. If r 6= 0, then r would be a smaller positive number in
A than n, which contradicts the way we chose n. Thus, r = 0, and n|x. By
a similar reasoning, n is also a divisor of y. Thus, n is a common divisor of
x and y, and since the gcd(x, y) is in turn a divisor of n, n must be equal to
gcd(x, y).

Unfortunately, this is a non-constructive proof. Although this theorem
proves the existence of the integers u and v, it does not explain how to compute
them. Fortunately, there is an algorithm, known as the Euclidean Algorithm,
which does compute u and v.

We start by assuming that x > y > 0, since we can consider absolute values
if x or y are negative. We then repeatedly use the division algorithm to find
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qi and ri such that

x = q1y + r1, 0 ≤ r1 < y,

y = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,

r2 = q4r3 + r4, 0 ≤ r4 < r3, . . .

Because the integer sequence {r1, r2, r3, . . .} is decreasing, this will reach 0
in a finite number of steps, say rm = 0. Then rm−1 will be gcd(x, y). We
can find the values for u and v by solving the second-to-the-last equation for
rm−1 in terms of the previous two remainders rm−2 and rm−3, and then using
the previous equations recursively to express rm−1 in terms of the previous
remainders. This will eventually lead to rm−1 expressed in terms of x and y,
which is what we want. It helps to put the remainders ri in parenthesis, as
well as x and y, since these numbers are treated as variables.

Example 0.4

Find integers u and v such that 144u+ 100v = gcd(144, 100).
SOLUTION: Using the division algorithm repeatedly, we have

(144) = 1 · (100) + (44)

(100) = 2 · (44) + (12)

(44) = 3 · (12) + (8)

(12) = 1 · (8) + (4)

(8) = 2 · (4) + (0).

Thus, we see that gcd(144, 100) = 4. Starting from the second-to-the-last
equation, we have

(4) = (12)− (8)

= (12)− [(44)− 3 · (12)] = 4 · (12)− (44)

= 4 · [(100)− 2 · (44)]− (44) = 4 · (100)− 9 · (44)
= 4 · (100)− 9 · [(144)− (100)] = 13 · (100)− 9 · (144).

Thus, we have u = −9 and v = 13.

Computational Example 0.5

Use Sage to find the numbers u and v such that

138153809229555633320199029 u+ 14573040781012789119612213 v = 1.

SOLUTION: The command xgcd not only finds the gcd of the numbers, but
also the values of u and v.
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xgcd(138153809229555633320199029, 14573040781012789119612213)

(1, -3653212340535639877557154, 34632799588881923050263359)

So the gcd is 1, and also

u = −3653212340535639877557154 and

v = 34632799588881923050263359.

Note that these values were computed very quickly using the algorithm.

We can now start to prove some familiar properties of prime numbers.

LEMMA 0.3: Euclid’s Lemma

If a prime p divides a product ab, then either p|a or p|b.

PROOF: Suppose that p does not divide a, so that p and a are coprime.
By the greatest common divisor theorem (0.4), there exist integers u and v
such that ua+ vp = 1. Then

uab+ vpb = b.

Since p divides both terms on the left-hand side, we see that p|b. Thus, p
must divide either a or b.

This lemma quickly generalizes using the principle of induction.

LEMMA 0.4

If a prime p divides a product a1a2a3 · · ·an, then p divides ai for some i.

PROOF: We will use induction on n. The starting case n = 2 is covered
by Euclid’s Lemma (0.3). Let us suppose the theorem is true for the case
n− 1. That is, if p divides a1a2a3 · · ·an−1, then p divides ai for some i. If we
let b = a1a2a3 · · · an−1, then a1a2a3 · · ·an = ban. By Euclid’s Lemma (0.3),
if p divides ban, then p divides either b or an. But if p divides b, then by
induction p divides ai for some 1 ≤ i ≤ n− 1. So in either case, p divides ai
for some 1 ≤ i ≤ n.

With this lemma, we can finally prove that integer factorization is unique.

THEOREM 0.5: The Fundamental Theorem of Arithmetic

Every integer greater than 1 can be factored into a product of one or more posi-
tive primes. Furthermore, this factorization is unique up to the rearrangement
of the factors.

PROOF: Lemma 0.2 shows that all integers greater than 1 can be expressed
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as a product of positive primes. So we only have to show uniqueness. That
is, we must show that if

p1p2p3 · · · pn = q1q2q3 · · · qm,

where p1, p2, . . . pn, q1, q2, . . . qm are all positive primes, then n = m, and the
qi are a rearrangement of the pi. We will use induction on n, the number of
prime factors in the first factorization.

If n = 1, then p1 = q1q2q3 · · · qm, and since p1 is prime and cannot have
more than one factor, we must have m = 1, and so p1 = q1.

By Lemma 0.4, since pn|q1q2q3 · · · qm, pn must divide one of the qi’s. Since
pn and qi are both positive primes, we find that pn = qi. By rearranging the
remaining q’s, we can write

p1p2p3 · · · pn = q1q2q3 · · · qm−1pn.

Thus,

p1p2p3 · · · pn−1 = q1q2q3 · · · qm−1.

By induction we can assume that the statement is true for the case n− 1, and
so n− 1 = m− 1, hence n = m, and the qi are a rearrangement of the pi.

The Sage command for finding the prime factorization of an integer is

factor(420)

2^2 * 3 * 5 * 7

Note that Sage puts the primes in increasing order, and repeated prime factors
are expressed using exponents. This is known as the standard form of the
factorization. As long as the integers are less than about 60 digits long, Sage
should not have any trouble factoring them. However, integer factorization
is a difficult problem even with modern technology. The amount of time
required is proportional to the square root of the second largest prime in the
factorization. [14, p. 133]

On the other hand, determining whether or not a number is prime can be
done quickly in Sage, even if the number has over 200 digits!

is prime(10^200 + 357)

True

How can Sage know for certain that this number is prime when it cannot begin
to test for all possible factors? The answer lies in abstract algebra. Using the
properties we will discover in this book, it is possible to prove whether or not
a number is prime without knowing the factorization. This in turn will have
many applications in Internet security and cryptology.



Preliminaries 11

Problems for §0.1

For Problems 1 through 9: Find integers q and r that satisfy x = qy+ r with
0 ≤ r < y.

1 x = 815, y = 32
2 x = 627, y = 41
3 x = −415, y = 23

4 x = −634, y = 31
5 x = 4827, y = 29
6 x = 9376, y = 107

7 x = 35, y = 215
8 x = −39, y = 254
9 x = 0, y = 7

10 Use mathematical induction to show that 1 + n < n2 for all integers
n ≥ 2.

11 Use mathematical induction to show that 2n < n! for all integers n ≥ 4.
(Recall that n! = 1 · 2 · 3 · · ·n.)

12 Use mathematical induction to show that n2 + 3n+ 4 is a multiple of 2
for all n ≥ 1.

13 Use mathematical induction to show that n3 + 2n is a multiple of 3 for
all n ≥ 1.

14 Use mathematical induction to show that 4n− 1 is a multiple of 3 for all
n ≥ 1.

15 Use mathematical induction to show that 6n + 4 is a multiple of 20 for
all n ≥ 2.

16 Use mathematical induction to show that x is a positive real number,
then (1 + x)n ≥ 1 + xn for all positive integers n.

17 Use mathematical induction to prove that for all positive integers n,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

18 Use mathematical induction to prove that for all positive integers n,

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

19 Use mathematical induction to prove that for all positive integers n,

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

20 Use mathematical induction to prove that for all positive integers n,

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.
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21 Use mathematical induction to prove that for all positive integers n,

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

22 Use mathematical induction to prove that for all positive integers n,

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

For Problems 23 through 31: Find integers u and v that satisfy ux + vy =
gcd(x, y). Note that there could be more than one solution.

23 x = 24, y = 42
24 x = 100, y = 36
25 x = 102, y = 66

26 x = 464, y = 560
27 x = 1999, y = 29
28 x = 465, y = 105

29 x = −602, y = 252
30 x = 487, y = −119
31 x = 0, y = 7

32 Show that if d is a positive integer, then gcd(da, db) = d · gcd(a, b).

33 Define the least common multiple of two positive integers x and y, denoted
by lcm(x, y), to be the smallest integer that is a multiple of both x and y.
Prove that the least common multiple will exist, and that lcm(x, y)|x · y

34 Prove that lcm(x, y) = (x · y)/gcd(x, y). See Problem 33.

For Problems 35 through 40: Find the prime factorizations of the following
numbers, and put the factorization into standard form.

35 32000
36 4002

37 5700
38 6293

39 26411
40 51207

Interactive Problems

41 Use Sage to find integers u and v such that

876543212345678 u+ 123456787654321 v = 1.

42 Use Sage to find integers u and v such that

98765432123456789 u+ 12345678987654321 v = 1.

43 Use Sage to find the factorization of 987654321.

44 Use Sage to find the factorization of 12345678987654321.

45 Use Sage to find the factorization of 98765432123456789.
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0.2 Functions

The concept of a function is central to virtually every branch of mathe-
matics. There are in fact various ways to define a function, but the concept
remains the same. Standard functions in calculus map real numbers to real
numbers, but we want to consider a more abstract definition for which the
input and output can come from any set. We will then use this definition to
introduce the concepts of a one-to-one and onto mapping. This in turn will
lead to an important tool for proofs: the pigeonhole principle.

DEFINITION 0.3 Let A and B be two non-empty sets. A function, or
mapping, from A to B is a rule that assigns to every element of A exactly one
element of B. The set A is called the domain of the function, and the set B is
called the target. If a function f assigns to a the element b, we write f(a) = b,
and say that b is the image of a under f .

We will use the notation f : A → B to indicate that f is a function from
the set A to the set B. The range of f , or the image of f , is the set of all
y such that y = f(x) for some x in A. This set is denoted by either f(A) or
Im(f), and is a subset of B.

Example 0.6

Let A be the set of integers from 0 to 99, and let B be the set of English
letters from a to z. Let φ map each integer to the first letter of the English
word for that number. For example, φ(4) = f . Then the range of φ is the set

{e, f, n, o, s, t, z}.

There are often different ways to denote the same element of the set A, so
we must be careful that the rule for the function does not depend on the way
the element is expressed. Had we extended the last example to include 100,
this could be called either “a hundred” or “one hundred.” Another example
of an ambiguous definition is if we assign to each rational number a/b the
value 1/b. But by this rule, f(1/2) 6= f(2/4), even though 1/2 = 2/4. In
order to show that a function is well-defined , we must show that if x1 = x2,
then f(x1) = f(x2).

Example 0.7

Consider the function from the set of rational functions (denoted by Q) to
itself, given by

f
(a

b

)

=
gcd(a, b)

b
.
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Show that this function is well-defined.

SOLUTION: We need to show that if x1 = x2, then f(x1) = f(x2). That is,
if we have two ways of expressing the rational function a/b = c/d, then we
must show that

gcd(a, b)

b
=

gcd(c, d)

d
.

This is equivalent to showing d · gcd(a, b) = b · gcd(c, d). Using the result
of Problem 32 from §0.1, this is equivalent to gcd(ad, bd) = gcd(bc, bd). But
since a/b = c/d, we have ad = bc, so this function is well-defined.

Many functions possess special properties that we want to explore.

DEFINITION 0.4 We say that a function f : A → B is injective, or
one-to-one, if the only way in which f(x) = f(y) is if x = y.

The function in Example 0.7 is not one-to-one, since f(1/3) = f(2/3). In
order to prove that a function is one-to-one, we assume that f(x) = f(y), and
work to prove that x = y.

Example 0.8

Consider the function f : Z → Z defined by

f(x) =
{
x+ 3 if x is even,
2x if x is odd.

Show that f(x) is one-to-one.

SOLUTION: We assume that f(x) = f(y), and work to show that x = y.
Because of the way that f(x) is defined, there are several cases to consider.

Case 1) Both x and y are even. Then since f(x) = f(y), x+3 = y+3, which
implies that x = y.

Case 2) Both x and y are odd. Then since f(x) = f(y), 2x = 2y, so again
x = y.

Case 3) x is even, and y is odd. Then f(x) = f(y) implies that x + 3 = 2y,
or x = 2y − 3. But this implies that x is odd, and we started out assuming
that x is even. Thus, this case can never happen.

Case 4) x is odd, and y is even. This is a mirror image of case 3, so we find
that this case also can never happen.

Thus, we have shown in all cases for which f(x) could equal f(y), then
x = y. Hence f is one-to-one.

We can also ask whether the range and the target of a given function are
the same set.
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DEFINITION 0.5 We say that a function f : A → B is surjective, or
onto, if for every b ∈ B there is at least one a ∈ A such that f(a) = b. If a
function is both one-to-one and onto, it is called a bijection.

Example 0.9

Determine whether the function in Example 0.8 is onto.
SOLUTION: Listing the first few values of f(x),

f(0) = 3, f(1) = 2, f(2) = 5, f(3) = 6, f(4) = 7, f(5) = 10, . . . ,

it seems that f(x) is never 4. Let us suppose that f(x) = 4 and reach a
contradiction.
Case 1) x is even. Then x + 3 = 4, so x = 1. But this contradicts that x is
even.
Case 2) x is odd. Then 2x = 4, so x = 2. But this contradicts that x is odd.

Since all cases reach a contradiction, we see that f(x) 6= 4, and so the
function is not onto.

Note that one counterexample is sufficient to prove that the function is not
onto. The standard strategy for proving that a function f : A → B is onto
is to show that for an arbitrary y ∈ B, there is some kind of formula for an
element x ∈ A such that f(x) = y.

Example 0.10

Let f : Q → Q be defined by f(x) = 3x+ 5. Show that f is onto.
SOLUTION: If f(x) = y, we can solve for x to get x = (y − 5)/3. Note that
this is defined for all rational numbers y, and produces a rational number.
Then f((y − 5)/3) = y for any y ∈ Q, so f is onto.

Often our functions will be defined on finite sets. In these cases, it is easy
to determine whether or not a function is onto if we have already proven that
it is one-to-one.

DEFINITION 0.6 For a finite set A, we denote the number of elements
in the set by |A|. If A is infinite, we write |A| = ∞.

LEMMA 0.5

Let f : A → B be a function that is both one-to-one and onto, and suppose
that A is a finite set. Then |A| = |B|.

PROOF: We will use induction on the size n = |A|. If A has only one ele-
ment, a1, then f(a1) = b1, and B = {b1}. Let us suppose that the statement
is true for n− 1.
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If A = {a1, a2, a3, . . . an}, then f(an) = b for some b ∈ B. If we let A =
A−{an}, that is, we remove the element an from the set A, and B = B−{b},
then we can define the function f : A → B by f(x) = f(x) for x ∈ A. Since
f is a bijection, so is f , since no other element of A could map to b. By
induction, we see that |A| = |B|, and so |A| = |B|.

We can now prove an important principle that will help us to show whether
a function is onto.

THEOREM 0.6: The Pigeonhole Principle

Let f : A→ B be a function from a finite set A to a finite set B. If |A| = |B|
and f is one-to-one, then it is also onto.

PROOF: Let B be the range of f . Then the function f : A → B would
be both one-to-one and onto, so by Lemma 0.5 we have |A| = |B|. Since we
also have that |A| = |B|, then B = B, so the function is onto.

We will often need to apply two functions in succession, creating a new
function.

DEFINITION 0.7 Let f : B → C and g : A → B be two functions.
Then the mapping (f ◦ g) : A→ C is defined by

(f ◦ g)(x) = f(g(x)) for all x ∈ A.

Note that in f ◦g, we apply the g function first, and then f . Some textbooks
have f ◦ g = g(f(x)), so care must be taken when referring to other texts.

Example 0.11

Let

f(x) =

{
x+ 3 if x is even,
2x if x is odd,

and g(x) =
{
3x if x is even,
x− 1 if x is odd.

Compute f ◦ g and g ◦ f .
SOLUTION: For each computation, we need to consider the case x even and
x odd separately. To find (f ◦ g)(x) = f(g(x)):
Case 1) x is even. Then g(x) = 3x, which will also be even. Thus, f(g(x)) =
3x+ 3.
Case 2) x is odd. Then g(x) = x− 1, which will be even, so f(g(x)) = x+ 2.
Thus,

f ◦ g =
{
3x+ 3 if x is even,
x+ 2 if x is odd.

To compute (g ◦ f)(x) = g(f(x)), we also have to consider two cases.
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Case 1) x is even. Then f(x) = x+3, which will be odd. So g(f(x)) = x+2.
Case 2) x is odd. Then f(x) = 2x, which will be even. So g(f(x)) = 6x.
Thus,

g ◦ f =
{
x+ 2 if x is even,
6x if x is odd.

Note that in this case, f ◦ g 6= g ◦ f . However, if we have three functions,
with f : C → D, g : B → C, and h : A → B, then (f ◦ g) ◦ h = f ◦ (g ◦ h),
since both of these expressions represent f(g(h(x))).

If f(x) is both one-to-one and onto, then we will be able to define the
inverse function of f .

PROPOSITION 0.1

Let f : A → B be both one-to-one and onto. Then there exists a unique
function g : B → A such that g(f(x)) = x for all x in A, and f(g(y)) = y for
all y ∈ B.

PROOF: Because f is both one-to-one and onto, for every y ∈ B there is
a unique x ∈ A such that f(x) = y. Thus, we can define g(y) to be that value
x such that f(x) = y. By the way g(y) is defined, we see that f(g(y)) = y for
all y ∈ B. If we apply the function g to both sides of this equation, we have
g(f(g(y))) = g(y). Since every element x ∈ A can be written as g(y) for some
y ∈ B, we can replace g(y) with x to get g(f(x)) = x for all x ∈ A.

To show that the function is unique, suppose there is another function
h(x) : B → A. Then

h(y) = h(f(g(y))) = (h ◦ f)(g(y)) = g(y) for all y ∈ B.

Thus, h = g, showing that the function is unique.

DEFINITION 0.8 The unique function in Proposition 0.1 is called the
inverse function of f(x), and is denoted by f−1(y).

Example 0.12

Consider the function f : Z → Z given by

f(x) =
{
x+ 3 if x is even,
x− 1 if x is odd.

Show that this is both one-to-one and onto, and find f−1(y).
SOLUTION: If f(x) = f(y), the only interesting case is if x is even, and y
is odd. Then x + 3 = y − 1, or y = x + 4, which would be even, not odd.
Likewise, the case where x is odd and y is even leads to a contradiction. Thus,
x = y, and f is one-to-one.
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To show that f is onto, we must show that for every y, there is an x so that
f(x) = y. We break this into two cases.
Case 1) y is even. Then y + 1 will be odd, so f(y + 1) = (y + 1)− 1 = y.
Case 2) y is odd. Then y − 3 is even, so f(y − 3) = (y − 3) + 3 = y.

In both cases, we found an x so that f(x) = y. In the process of determining
that f is onto, we computed the inverse.

f−1(y) =

{
y + 1 if y is even,
y − 3 if y is odd.

So far we have only considered functions with one input variable. But we
could also consider functions with two input variables, f(x, y). For simplicity
we will only consider the cases where x and y come from the same set, which
is also the target set.

DEFINITION 0.9 Let A be a non-empty set. A binary operation is a
function that assigns to every x and y in A an element z in A.

Although we could denote a binary operation as z = f(x, y), we will typ-
ically denote the operation by the infix notation z = x ∗ y. The symbol ∗
does not always mean multiplication, but its definition depends on the binary
operation. Often we will use a dot (·) instead of the asterisk, depending on
the context.

Example 0.13

Define the binary operation x ∗ y defined on the set Z by

x ∗ y = x+ y + xy.

Show that (x ∗ y) ∗ z = x ∗ (y ∗ z).
SOLUTION: Note that

(x ∗ y) ∗ z = (x+ y + xy) ∗ z = x+ y + xy + z + (x + y + xy)z

= x+ y + z + xy + xz + yz + xyz.

x ∗ (y ∗ z) = x ∗ (y + z + yz) = x+ y + z + yz + x(y + z + yz)

= x+ y + z + xy + xz + yz + xyz.

Thus, we see that (x ∗ y) ∗ z = x ∗ (y ∗ z).

DEFINITION 0.10 Let ∗ be a binary operation defined on a set A. We
say that a subset B of A is closed with respect to ∗ if whenever both x and y
are in B, then x ∗ y is in B.
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Example 0.14

Let ∗ be the binary operation of Example 0.13. Show that the subset of odd
integers is closed with respect to ∗.
SOLUTION: Let x and y be odd integers. Then we can express x = 2m+ 1
and y = 2n+ 1 for some integers m and n. Then

x ∗ y = (2m+ 1) ∗ (2n+ 1)

= (2m+ 1) + (2n+ 1) + (2m+ 1)(2n+ 1)

= 2m+ 1+ 2n+ 1 + 4mn+ 2m+ 2n+ 1

= 4m+ 4n+ 4mn+ 3

= 2(2m+ 2n+ 2mn+ 1) + 1.

Thus, we see that x ∗ y is an odd integer, so the subset is closed.

Problems for §0.2

1 Let φ be the mapping that sends every number from 0 to 99 to the last
letter of the English word for that number. What would be the range of φ?

2 Show that the function f : Q → Q given by f(a/b) = ab/(a2 + b2) is
well-defined.

For Problems 3 through 8: Part a) For the given f : R → R, determine if
the function is one-to-one. Part b) Determine if the function is onto. In both
cases, prove your answer is correct.

3 f(x) = |x|
4 f(x) = 3x+ 5

5 f(x) = x3

6 f(x) = x/3− 2/5
7 x2 − 4x
8 f(x) = 2x+ |x|

For Problems 9 through 14: Part a) For the given f : Z → Z, determine if
the function is one-to-one. Part b) Determine if the function is onto. In both
cases, prove your answer is correct.

9 f(x) =
{
2x+ 1 if x is even,
2x if x is odd.

10 f(x) =

{
x− 1 if x is even,
(x+ 1)/2 if x is odd.

11 f(x) =
{
x+ 1 if x is even
2x if x is odd.

12 f(x) =
{
2x+ 4 if x is even,
x− 2 if x is odd.

13 f(x) =

{
(x+ 2)/2 if x is even,
(x− 1)/2 if x is odd.

14 f(x) =
{
3x if x is even,
5x− 1 if x is odd.

15 Show that the function f : Z → Z given by f(x) = 2x2 + x is one-to-one.
Hint: Use the quadratic equation to solve 2x2 + x = c, and show that the

two solutions cannot both be integers.

16 Let f : A → B be a function from a finite set A to a finite set B. If
|B| < |A|, use Lemma 0.5 to show that f cannot be one-to-one.
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17 Let f : A → B be a function from a finite set A to a finite set B. If
|B| > |A|, show that f cannot be onto.

18 Let f : A → B be a function from a finite set A to a finite set B. If
|B| = |A|, and f is onto, use Problem 17 to show that f is also one-to-one.
Note that Problems 16 through 18 are three alternative ways to state the
pigeonhole principle.

19 Use Problem 16 to show that there are two people in London with exactly
the same number of hairs on their head. (Since the average number of hairs
is about 150,000, assume no one can have more than 1,000,000 hairs.)

For Problems 20 through 25: For the given f : Z → Z and g : Z → Z,
determine (f ◦ g)(x).
20 f(x) = x2 − 1 g(x) = x2 + 1
21 f(x) = x2 g(x) = x− |x|
22 f(x) = x3 + 3x2 g(x) = x− 1

23 f(x) =
{
2x+ 5 if x is even,
x+ 2 if x is odd.

g(x) =
{
2x+ 1 if x is even,
x− 1 if x is odd.

24 f(x) =

{
3x+ 2 if x is even,
x+ |x| if x is odd.

g(x) =
{
x+ 4 if x is even,
2x if x is odd.

25 f(x) =

{
x+ 3 if x is even,
(x− 1)/2 if x is odd.

g(x) =
{
2x− 1 if x is even,
x+ 4 if x is odd.

26 Let f : B → C and g : A → B both be one-to-one functions. Show that
f ◦ g : A→ C is one-to-one.

27 Let f : B → C and g : A → B both be onto functions. Show that
f ◦ g : A→ C is onto.

28 Let f : B → C and g : A → B be functions, and suppose that f is not
onto. Show that f ◦ g : A→ C is not onto.

29 Let f : B → C and g : A → B be functions, and suppose that g is not
one-to-one. Show that f ◦ g : A→ C is not one-to-one.

30 Show that the function f : Z → Z, f(x) =
{
x+ 5 if x is even,
x− 3 if x is odd

is a

bijection, and find f−1(x).

31 Show that the function f : R → R, f(x) =

{

x2 if x ≥ 0,
x if x < 0

is a bijection,

and find f−1(x).
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For Problems 32 through 35: Determine if the binary operation defined on
the set R satisfies the condition a ∗ (b ∗ c) = (a ∗ b) ∗ c. If so the operation is
called associative.

32 x ∗ y = x+ y − 1
33 x ∗ y = 2x+ y

34 x ∗ y = x− y
35 x ∗ y = 2− x− y + xy

For Problems 36 through 41: Determine if the subset S is closed with respect
to the binary operation.

36 x ∗ y = x− y S = set of even integers.
37 x ∗ y = x− y S = set of odd integers.
38 x ∗ y = xy S = set of even integers.
39 x ∗ y = xy S = set of odd integers.
40 f ∗ g = f ◦ g S = set of all polynomial functions.
41 x ∗ y = x/y S = non-zero integers.

Interactive Problems

42 Consider the function

f(x) = 2⌊x⌋ − x.

Sage uses the function floor to denote ⌊x⌋. Thus, we can have Sage plot
this function with the commands

f(x) = 2*floor(x) - x

plot(f(x), [x, 0, 5])

Judging by the graph, is this function one-to-one? Is it onto? (Ignore the
vertical lines in the graph.)

43 Define a function g(x) in Sage such that f(g(x)) = x for all x, using the
function from Problem 42. Note that the formula must work for both integers
and non-integers. Is g(f(x)) always equal to x?

0.3 Modular Arithmetic

There is an important operation on the set of integers Z that we will use
throughout the book, based on the division algorithm. It is an abstraction of
a counting method often used in every day life. For example, using standard
12-hour time, if it is 7:00 now, what time will it be 8 hours from now? The
answer is not 15:00, since clock time “wraps around” every 12 hours, so the
correct answer is 3:00. This type of arithmetic that “wraps around” is called
modular arithmetic.
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We formally define modular arithmetic as follows.

DEFINITION 0.11 Let x, y ∈ Z, with y > 0. We define the operator

x mod y,

pronounced “x modulo y,” to be the unique value r from the division algo-
rithm, which selects q and 0 ≤ r < y such that x = qy + r. The number y is
called the modulus.

The mod operation is almost, but not quite, a binary operation on Z, since
it is not defined if y = 0. Since there is a difference of opinion as to how the
operator should be defined for y < 0, we will only use the operator for y > 0.

Example 0.15

Compute 8348 mod 43.
SOLUTION: Since 8342 = 194 · 43 + 6, we see that 8348 mod 43 = 6.

Computational Example 0.16

Compute 743532645703453453463 mod 257275073624623.
SOLUTION: For numbers this large, we will use Sage to help. We use the %
symbol for the mod operator.

743532645703453453463 % 257275073624623

221951157869396

Sometimes the modulo operation is very easy to compute. For any positive
x, x mod 10 will be the last digit in the decimal representation of the number.
There are other tricks for small values of y. See Problem 13.

A familiar property of standard arithmetic is that the last digit of the sum
and product of two positive numbers x and y can be computed using only the
last digits of x and y. This can be generalized in the following proposition.

PROPOSITION 0.2

If x, y, and n are integers with n > 0, then

(x+ y) mod n = ((x mod n) + (y mod n)) mod n, (0.1)

and

(xy) mod n = ((x mod n) · (y mod n)) mod n. (0.2)

PROOF: In both equations, the two sides are between 0 and n − 1, so it
is sufficient to show that the difference of the two sides is a multiple of n. Let
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a = x mod n, b = y mod n, c = (x + y) mod n, and d = (xy) mod n. Then
there are integers q1, q2, q3, and q4 such that

x = q1n+ a, y = q2n+ b, x+ y = q3n+ c, xy = q4n+ d.

For equation 0.1, we note that

c− (a+ b) = (x+ y − q3n)− ((x − q1n) + (y − q2n))

= q1n+ q2n− q3n = (q1 + q2 − q3)n.

Thus, the two sides of equation 0.1 differ by a multiple of n. Likewise, for
equation 0.2, we see

d− ab = (xy − q4n)− (x− q1n) · (y − q2n)

= q1q2n
2 − yq1n− xq2n− q4n = (q1q2n− yq1 − xq2 − q4)n.

So again, the two sides of equation 0.2 differ by a multiple of n.

We can use Proposition 0.2 to compute powers modulo n. Since raising a
number to an integer power is equivalent to repeated multiplication, we see
that

(xy) mod n = (x mod n)y mod n.

Example 0.17

Compute 2345 mod 29.
SOLUTION: Since 234 mod 29 = 2, the answer is the same as 25 mod 29, and
32 mod 29 = 3.

WARNING: It is not true that

(xy) mod n = (x mod n)(y mod n) mod n.

That is, we cannot apply the modulus to an exponent. However, there is a
trick for simplifying a power in the case that the exponent is large—using the
binary representation of the exponent y. The procedure is best explained by
an example.

Example 0.18

Compute 2535 mod 29.
SOLUTION: The number 2535 is 49 digits long, and the base is already smaller
than the modulus, so there is no obvious way of simplifying the expression.
By looking at the binary representation of 35, we find that 35 = 32 + 2 + 1.
Thus,

2535 = 2532 · 252 · 25.



24 Abstract Algebra: An Interactive Approach

In order to compute 2532 mod 29, we can square the number 5 times.

252 mod 29 = 625 mod 29 = 16,

254 mod 29 = 162 mod 29 = 256 mod 29 = 24,

258 mod 29 = 242 mod 29 = 576 mod 29 = 25,

2516 mod 29 = 252 mod 29 = 625 mod 29 = 16,

2532 mod 29 = 162 mod 29 = 256 mod 29 = 24.

Finally, we see that

2535 mod 29 = 2532 · 252 · 251 mod 29 = 24 · 16 · 25 mod 29 = 9600 mod 29 = 1.

Note that we never had to deal with numbers more than 4 digits long.

The Sage command PowerMod(x, y, n) uses this algorithm to compute
xy mod n.

Computational Example 0.19

Use Sage to find

74353264570345345346342364872163462467234 mod 2572750736246233264872.

SOLUTION:

PowerMod(743532645703453453463, 42364872163462467234,

2572750736246233264872)

1270976212484154802393

Note that Sage was able to do this computation fast. We will see that the
ability for computers to quickly compute large powers modulo n has applica-
tions in Internet security.

There is another property of modular arithmetic involving coprime numbers
that will be used often throughout the book, known to the ancient Chinese
since before 240 C.E.

THEOREM 0.7: The Chinese Remainder Theorem

If x and y in Z+ are coprime, then given any a and b in Z, there is a unique
k in Z such that
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0 ≤ k < xy,

k mod x = a mod x,

and
k mod y = b mod y.

PROOF: We will begin by showing that there cannot be more than one such
number. Suppose we have two different numbers, k and m, which satisfy the
above conditions. Then

(k −m) mod x = 0 and (k −m) mod y = 0.

Thus, k − m must be a multiple of both x and y. But since x and y are
coprime, the least common multiple of x and y is xy. (See Problem 34 from
§0.1.) Thus, k −m is a multiple of xy.

However, both k and m are less then xy. So the only way this is possible is
for k −m = 0, which contradicts our assumption that k and m were distinct
solutions.

To show that there is a solution, we first note that since x and y are coprime,
by the greatest common divisor theorem (0.4), there are integers u and v such
that ux+ vy = 1. Then we can consider the number

k = (avy + bux) mod (xy).

Clearly 0 ≤ k < xy, so we only have to show that k mod x = a mod x and
k mod y = b mod y. Since vy = 1− ux,

k mod x = (avy + bux) mod x

= (a(1 − ux) + bux) mod x

= (a+ ux(b− a)) mod x = a mod x.

Likewise, since ux = 1− vy,

k mod y = (avy + bux) mod y

= (avy + b(1− vy)) mod y

= (b + vy(a− b)) mod y = b mod y.

This is a constructive proof, since it gives us a formula for finding the value
of k.

Example 0.20

Find a non-negative number k less than 210 such that

k mod 14 = 3, and

k mod 15 = 7.
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SOLUTION: Since 14 and 15 are coprime, we begin by finding u and v such
that 14u+ 15v = 1. But there is the obvious solution

14(−1) + 15(1) = 1.

Then we compute k to be avy+ bux = 3 · 15+7 · (−14) = −53. But since this
is negative, we can add 14 · 15 to get another solution, 157.

There is a Sage command crt(a, b, x, y) that finds k given the 2 sets
{a, b} and {x, y}.

Computational Example 0.21

Use Sage to find a number k such that

k mod 771234712398742343 = 573457203572345239 and

k mod 642374682348623642 = 568134658235924534.

SOLUTION:

crt(573457203572345239, 568134658235924534,

771234712398742343, 642374682348623642)

155720011750587503187230769057470234

We can verify that this solution is correct.

155720011750587503187230769057470234 % 7712347123987423437

573457203572345239

155720011750587503187230769057470234 % 642374682348623642

568134658235924534

The Chinese remainder theorem has many applications. One of these is in
the distribution of classified information among two or more people in such
a way that no one person can see the information. Each would receive one
of the two (or more) modulus conditions, which is not enough information
to determine the number k. Only when all of the pieces of the problem are
assembled can k be determined, which can be decoded.

Another application is in solving linear congruence equations of the form

(ax) mod n = b.

This can be solved by letting k = ax. Then

k mod a = 0, and

k mod n = b.

Since k is known, we can find x.
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Example 0.22

Solve the linear congruence equation

12x mod 19 = 3.

SOLUTION: We need to solve k mod 12 = 0 and k mod 19 = 3. Thus, we must
first find u and v such that 12u + 19v = 1. Using the Euclidean algorithm,
we find that

8 · 12 + (−5) · 19 = 1.

Using these values of u and v, we have that

k = avy + bux = 0 · (−5) · 19 + 3 · 8 · 12 = 192.

Finally, x = 12k, so x = 24. Note that we can add or subtract multiples of 19
to get other solutions, so x = 5 also works.

Problems for §0.3

For Problems 1 through 12: Evaluate the following modular arithmetic prob-
lems.

1 297 mod 31
2 5643 mod 127
3 953 · 823 mod 38
4 1432 · 234 mod 47

5 2797 mod 23
6 3026 mod 37
7 2149 mod 31
8 3343 mod 37

9 89357 mod 23
10 104529 mod 47
11 892331 mod 103
12 592761 mod 113

13 A trick for computing x mod 9 for any positive x is to add the digits of
the number x. If this number is greater than 9, add the digits of the new
number. Eventually the number will be between 1 and 9. If the result is 9,
x mod 9 = 0, otherwise x mod 9 is the final number produced. Prove that this
method will always work.

For Problems 14 through 25: Use the Chinese remainder theorem to find the
smallest non-negative number that satisfies the system of modular equations.

14
{
k mod 12 = 7,
k mod 13 = 4.

15
{
k mod 17 = 4,
k mod 11 = 8.

16
{
k mod 18 = 7,
k mod 13 = 2.

17
{
k mod 23 = 5,
k mod 12 = 7.

18
{
k mod 21 = 10,
k mod 16 = 9.

19
{
k mod 34 = 13,
k mod 27 = 10.

20
{
k mod 51 = 19,
k mod 49 = 28.

21
{
k mod 61 = 37,
k mod 73 = 58.

22
{
k mod 83 = 48,
k mod 79 = 62.

23
{
k mod 103 = 78,
k mod 97 = 48.

24
{
k mod 107 = 23,
k mod 128 = 35.

25
{
k mod 113 = 47,
k mod 142 = 84.
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26 Let u, v, and w be three positive integers that are mutually coprime.
That is, each is coprime to the other two. Given any x, y, and z in Z, prove
that there is a unique number k such that

0 ≤ k < u · v · w,

k ≡ x (mod u),

k ≡ y (mod v),

and
k ≡ z (mod w).

Hint: Use the Chinese remainder theorem (0.7).

For Problems 27 through 38: Solve the following linear congruence equa-
tions.

27 8x mod 11 = 7
28 4x mod 13 = 9
29 7x mod 18 = 11
30 9x mod 23 = 13

31 7x mod 31 = 10
32 12x mod 37 = 13
33 18x mod 29 = 7
34 27x mod 41 = 8

35 32x+ 20 mod 51 = 17
36 16x+ 37 mod 61 = 29
37 14x+ 71 mod 83 = 48
38 23x+ 49 mod 91 = 39

Interactive Problems

39 Use Sage’s PowerMod function to compute

23515579235792394752975289347972935390234 mod 4623452735792375925234.

40 Use Sage’s PowerMod function to compute

938457289347272352345224523523452345216644 mod 8376258362352836587697.

41 Use Sage’s crt function to find the solution to the system

k mod 9243798374502516137 = 237521646243353626 and

k mod 1978654573572351516 = 26325673245684223.

42 Use Sage’s crt function to find the solution to the system

k mod 8675612376265160933543 = 152352352346254753548, and

k mod 6226345262345235236201 = 526352346234573523464.

43 Use Sage to solve the linear congruence equation

7289475362034522153x mod 915156238625161124 = 210982524590982446.

44 Use Sage to solve the linear congruence equation

9357298518686215025x mod 1965156273498612512 = 1871551633523628256.
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FIGURE 0.1: Plot depicting the rational numbers

0.4 Rational and Real Numbers

In this section, we will explore some properties of rational numbers and
real numbers. In the process we will find an Earth-shattering result: The set
of real numbers is “more infinite” than the set of rational numbers. When
Georg Cantor first proved this theorem, it was met with fierce opposition (see
the Historical Diversion on page 33.) We will later utilize Cantor’s result to
create some counter-examples in Chapter 14. Because of the importance of
Cantor’s theorem to almost every field of modern mathematics, it is included
in this preliminary chapter.

The set of rational numbers Q can be described as the numbers of the form
p/q, where p is an integer and q is a positive integer.

Although the set of rationals Q is easy to define, it is often hard to visual-
ize. One way to illustrate the rationals graphically can be seen by the Sage
command

ShowRationals(-5, 5)

which draws Figure 0.1. This figure helps to visualize the rational numbers
from −5 to 5 using a sequence of rows. The nth row represents the rational
numbers with denominator n when expressed in simplest form. In principle
there would be an infinite number of rows, getting closer and closer to each
other as they get close to the axis.

Figure 0.1 suggests the following.
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PROPOSITION 0.3

If a and b are any two different real numbers, then there is a rational number
between a and b.

PROOF: Let x = |a− b|. Since x is not zero, we let q be any number that is
greater than 1/x. Then |a · q − b · q| = q · x > 1, so there must be an integer
between a · q and b · q, which we will call p. But then p/q will be between a
and b, and the proposition is proved.

From this proposition, we can keep dividing the interval up into smaller and
smaller pieces to show that there are in fact an infinite number of rational
numbers between any two real numbers. This would make it seem that the
number of rational numbers is “doubly infinite,” since there are an infinite
number of integers, and an infinite number of rational numbers between each
pair of integers. But surprisingly, the set of rational numbers is no larger than
the set of the integers. To understand what is meant by this statement, let
us first show how we can compare the sizes of two infinite sets.

DEFINITION 0.12 A set S is called countable if there is an infinite
sequence of elements from the set that includes every member of the set.

What do sequences have to do with comparing the sizes of two sets? A
sequence can be considered as a function between the set of positive integers
and the set S. If a sequence manages to include every member of the set S,
then it stands to reason that there are at least as “many” positive integers
as there are elements of S. The shocking fact is that even though it would
first appear that there must be infinitely many more rational numbers than
integers, in fact the two sets have the same size.

PROPOSITION 0.4

The set of rationals forms a countable set.

PROOF: In order to show that the rationals are countable, we need a se-
quence that will eventually contain every rational somewhere in the sequence.
Equivalently, we can connect the dots of Figure 0.1 using a pattern that would,
in principle, reach every dot of Figure 0.1 extended to infinity. There are of
course many ways to do this, but one way is given in Figure 0.2. This path
starts at 0, and swings back and forth, each time hitting the rationals on
the next row. Since there are an infinite number of rows, we can extend this
pattern indefinitely, and every rational number will eventually be hit by this
path. This path gives rise to the sequence

{0, 1, 1
2
,
−1

2
,−1,−2,

−3

2
,
−2

3
,
−1

3
,
1

3
,
2

3
,
3

2
, 2, 3, . . .},
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FIGURE 0.2: Sample path going through every rational

which contains every rational number, so we have shown that the rationals
form a countable set.

There of course are many other ways of creating a sequence of rational num-
bers that includes every rational. Problems 1 through 8 explore a recursively
defined sequence that contains all of the positive rational numbers.

Even though we have shown that there are an infinite number of rational
numbers between any two numbers, the natural question to ask is whether
there are numbers that are not rational. The first discovery of a number that
was not rational was

√
2, proven by the Greeks [12, p. 82].

PROPOSITION 0.5

There is no rational number p/q such that (p/q)2 = 2.

PROOF: Suppose that there was such a rational number, p/q. Let us further
suppose that p/q is in simplest form, so that p and q are integers with no
common factors. We could rewrite the equation (p/q)2 = 2 as

p2 = 2q2.

This would indicate that p2 is an even number, which implies that p is even.

Next, we make the substitution p = 2r, where r is an integer. This produces
the equation

(2r)2 = 2q2, or 2r2 = q2.
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This would indicate that q2, and hence q, is even. But this contradicts the
fact that p/q was written in simplest form. Thus, there is no rational number
whose square is 2.

The real numbers that are not rational are called irrational numbers. Irra-
tional numbers are characterized by the fact that their decimal representation
never repeats. See Problems 9 and 10.

We will denote the set of real numbers, both rational and irrational, by R.
We have already proven that there is, in essence, the same number of rational
numbers as integers. This may not come as too much of a shock, since both
sets are infinite, so logically two infinite sets ought to be the same size. But
the set of real numbers is also infinite, so one might be tempted to think that
there is the same number of real numbers as integers. However, the number
of reals is “more infinite” than the number of integers. In other words, we
cannot construct a sequence of real numbers that contains every real number,
as we did for rational numbers. This surprising fact was proved by Georg
Cantor using a classic argument [11, p. 670].

THEOREM 0.8: Cantor’s Diagonalization Theorem

The set of all real numbers between 0 and 1 is uncountable. That is, there
cannot be a sequence of numbers that contains every real number between 0
and 1.

PROOF: We begin by assuming that we can form such a sequence

{a1, a2, a3, . . .}

and work to find a contradiction. The plan is to find a number b that cannot
be in this list. We can do this by forcing b to have a different first digit than
a1, a different second digit than a2, a different third digit than a3, and so on.
The only technical problem with this is that some numbers have two decimal
representations, such as

0.348600000000000000 . . .= 0.3485999999999999999 . . . .

For these numbers, all we need to do is require that both representations are
in the list. (That is, some rational numbers will appear twice on the list with
different decimal representations.)

We now can find a number b using any number of procedures, such as letting
the nth digit of b be one more than the nth digit of an, mod 10. For example,
if the list of numbers is

a1 = 0.94837490123798570 . . .

a2 = 0.83840000000000000 . . .

a3 = 0.83839999999999999 . . .

a4 = 0.34281655343424444 . . .
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Historical Diversion

Georg Cantor (1845–1918)
Georg Cantor was born in St. Peters-

burg, Russia. When he was eleven, his fa-
ther became ill, so his family moved to Ger-
many to escape the cold climate. He grad-
uated with distinction from the Realschule
in Darmstadt. In 1862, he entered the Uni-
versity of Zürich, but shifted his studies
to the University of Berlin after the death
of his father. Cantor attended lectures by
Leopold Kronecker and Ernst Kummer.
Cantor completed his dissertation on

number theory in 1867, and took up a po-
sition at the University of Halle. He be-
gan his work on set theory in 1874, being
the first mathematician to consider infinite
sets. He was able to prove that the set of
real numbers is “more numerous” than the set of integers. He was also the
first mathematician to appreciate the importance of a one-to-one mapping.
However, his work was met with opposition, particularly from Kronecker.

Cantor often proved the existence of sets which had certain properties, with-
out giving any examples of such sets. He assumed that one is allowed to make
an infinite number of decisions in the construction of a set, an assumption
we currently call the Axiom of Choice. Kronecker, a well-established mathe-
matician, had a constructive viewpoint of mathematics, and called Cantor a
“scientific charlatan,” and a “renegade.” While Cantor tried to publish one
of his papers in Acta Mathematica , the publisher Mittag-Leffler asked Cantor
to withdraw the paper, since it was “about one hundred years too soon.”
In 1884, Cantor suffered his first bout with depression, and spent some

time in a sanitarium. Cantor soon recovered, and returned to his research,
producing his famous diagonal argument and Cantor’s theorem. Cantor also
tried to prove, in vain, the Continuum Hypothesis, which states that there is
no set that is both strictly larger than the set of integers, but strictly smaller
than the set of reals. Today we know that the Continuum Hypothesis, like the
Axiom of Choice, is undecidable, that is, it can be neither proven or disproven.
In 1899, Cantor returned to the sanatorium. Soon afterwards, Cantor’s

youngest son died suddenly. Cantor’s passion for mathematics was completely
drained, and he suffered from chronic depression for the rest of his life, going
in and out of sanatoriums. Although he still made mathematical lectures, he
retired in 1913, and died in poverty on January 6, 1918 in a sanatorium.

Image source: Wikimedia Commons
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then b = 0.0499 . . .. Certainly b is missing from the list, since it differs from
each member of the list by at least one digit. This contradiction proves the
theorem.

We will use the sets Q and R throughout this book, so knowing the prop-
erties of these two sets will be important in many of the examples.

Problems for §0.4

1 Although we exhibited a sequence that contains every element of Q, there
are other ways to accomplish this. One way is to consider the sequence defined
recursively by

a0 = 0, and an+1 =
1

1 + 2⌊an⌋ − an
for n ≥ 0.

(Recall ⌊an⌋ means the largest integer that is less than or equal to an.) Write
out the first 17 terms of this sequence. (Problems 2 through 7 show this
sequence contains all of the non-negative elements of Q.)

2 Show that in the sequence defined by Problem 1, the numerator of an+1

is the denominator of an, when the fractions are expressed in lowest terms.
(Assume integers have a denominator of 1.)

3 Define the integer sequence bn to be the numerator of an in Problem 1.
Show that this sequence satisfies

b0 = 0, b1 = 1, and bn+2 = bn + bn+1 − 2(bn mod bn+1) for n ≥ 0.

This sequence is known as Stern’s diatomic sequence. (Hint: by Problem 2,
an = bn/bn+1.)

4 Use induction to show that the sequence in Problem 3 satisfies

b2n = bn, and b2n+1 = bn + bn+1

for all integers n > 0.

5 Use Problem 4 to show that the sequence in Problem 1 satisfies

a2n =
an

1 + an

for integers n > 0. Note that an = bn/bn+1.

6 Use Problem 4 to show that the sequence in Problem 1 satisfies

a2n+1 = an + 1

for integers n > 0. Note that an = bn/bn+1.
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7 Use Problems 5 and 6 to show that the sequence in Problem 1 contains
every non-negative rational number.

Hint: If x = p/q, let n = p + q, and assume true for previous n. Either
x− 1 or x/(1− x) will have a smaller n.

8 Use Problem 7 to show that no rational number is mentioned twice in the
sequence given by Problem 1.

Hint: if ai = aj for i > j, what is a2i−j?

9 For a given rational number p/q, consider the sequence that begins a0 = p,
and

an+1 = (10an) mod q.

Show that this sequence will eventually repeat. See the hint for Problem 8.

10 Use Problem 9 to show that the decimal expansion of a rational number
p/q will eventually repeat. (1/2 can be considered as .500000000000 · · ·)

11 Show that if the decimal expansion of a number eventually repeats,

x = n.d1d2d3 . . . didi+1di+2 . . . di+j ,

the number is rational. Here, d1, d2, . . . are the digits, and the overlined digits
will repeat.

Hint: Sum a geometric series.

For Problems 12 through 17: Prove that the following numbers are irrational.

12 3
√
2

13
√
3

14
√
5

15
√
6

16 3
√
3

17 3
√
4

18 Prove that if a is irrational, then 1/a is irrational.

19 Prove that if a is rational and b is irrational, then a+ b is irrational.

20 Prove that between any two distinct real numbers, there is an irrational
number.

Hint: Use Problem 19 along with Proposition 0.3.

21 Prove that if a is rational and nonzero, and b is irrational, then a · b is
irrational.

22 Prove that y =
√
2 +

√
3 is irrational.

Hint: First show that y2 is irrational.
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23 The number e ≈ 2.718281828 . . . can be expressed by the series

e =

∞∑

n=0

1

n!
= 1 + 1 +

1

2
+

1

6
+

1

24
+

1

120
+ · · · .

Show that e is irrational.
Hint: If e = p/q, put an upper bound on the sum of the non-integral terms

of q! · e.

24 Is the sum of two irrational numbers always irrational? If not, find a
counter-example.

Interactive Problems

25 Notice that in Sage, the plot of rational numbers between 0.03 and 0.1,

S = ShowRationals(0.03, 0.1); S

shows most of the points lying on a curve. Try to find the equation of this
curve, using the fact that each dot is three fourths closer to the x-axis than
the previous dot. Verify your answer by plotting the curve with the points,
using the following command:

var("x")

P = plot(function goes in here, [x, 0.03, 0.1]); P + S

Hint: Scale the function so that f(0.1) = 1.

26 If we begin the sequence in Problem 1 with an irrational number, all
terms of the sequence will be irrational. Explore what happens if we consider
the same formula, but start with a0 =

√
2.

a = sqrt(2); a

sqrt(2)

a = Together(1/(1 + 2*floor(a) - a)); a

1/7*sqrt(2) + 3/7

Here, floor(a) calculates ⌊a⌋, and Together rationalizes the denominator.
By repeatedly evaluating the last statement, we can compute the sequence
{a0, a1, a2, a3, . . .}. Note that a6 is

√
2 plus an integer. When is the next time

in the sequence that an is an integer plus
√
2?



Chapter 1

Understanding the Group Concept

The goal of this chapter is to formulate the definition of a group. This is
done by first exploring many different examples for which there is a binary
operator defined on a set, for which some interesting patterns seem to persist.
By observing the minimum requirements for these patterns to appear, we can
create the simplest definition of a group that will apply to all of the examples
we encountered, plus many other new examples. This will produce an abstract
definition of a group.

1.1 Introduction to Groups

This section focuses on one particular group, and then explores this group
to find different patterns within the structure of the group. As we strive to
determine why these patterns exist, we begin to find proofs that will later
be valid for all groups. This example also introduces the concept of non-
commutativity, since x · y is not always equal to y · x. For students not
exposed to linear algebra, non-commutativity takes some time to get used to,
hence it is important to introduce it early.

To help introduce us to the concept of groups, let us meet a triangle whose
dance steps give us an unusual kind of arithmetic. Terry the triangle is a
simple looking three-colored triangle that appears by the Sage command

ShowTerry()
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TABLE 1.1: Terry the triangle’s dance steps

RotRt rotate clockwise 120 degrees.
RotLft rotate counterclockwise 120 degrees.
Spin spins in three dimensions, keeping the top fixed.
FlipRt flips over the right shoulder.
FlipLft flips over the left shoulder.
Stay does nothing.
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FIGURE 1.1: Scenes from Terry’s animated dance steps

Terry can perform the dance steps listed in Table 1.1. Although Sage animates
these dance steps, one can understand the six steps without Sage by observing
scenes in Figure 1.1, taken from the animation close to the completion of each
step.

Terry can combine these dance steps to form a dance routine. But in any
routine, the ending position of the triangle is the same as that of performing
just one dance step. Thus, when the triangle gets “lazy,” it can perform just
one dance step instead of several. The Sage command

InitTerry()

{Stay, FlipRt, RotRt, FlipLft, RotLft, Spin}

allows these dance steps to be combined, using a * between the dance steps.
So we find that:

FlipRt * Spin

RotLft

That is, a flip over the left shoulder followed by a spin puts the triangle in
the same orientation as a counter-clockwise rotation.

In order to keep track of the way these dance steps are multiplied together,
we can form a “multiplication table” of the dance steps. The Sage command
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TABLE 1.2: Multiplication table for Terry’s dance steps

Stay FlipRt RotRt FlipLft RotLft Spin

Stay Stay FlipRt RotRt FlipLft RotLft Spin

FlipRt FlipRt Stay FlipLft RotRt Spin RotLft

RotRt RotRt Spin RotLft FlipRt Stay FlipLft

FlipLft FlipLft RotLft Spin Stay FlipRt RotRt

RotLft RotLft FlipLft Stay Spin RotRt FlipRt

Spin Spin RotRt FlipRt RotLft FlipLft Stay

MultTable([Stay, FlipRt, RotRt, FlipLft, RotLft, Spin])

forms the table shown in Table 1.2.
To read this table, the first of the dance steps is located on the left side of

the table, and the second dance step is found on the top. This table is called
the Cayley table of the dance steps. Thus, one can use the Cayley table to see
that FlipRt · Spin = RotLft. This table allows us to combine dance steps
without the help of Sage.

We can notice several things from the multiplication table of the dance
steps:

1. The order in which the dance steps are performed are important. For
example, Spin · FlipRt 6= FlipRt · Spin.

2. The combination of any two dance steps is equivalent to one of the six
dance steps. In other words, there are no “holes” in Table 1.2.

3. The order in which a dance routine is simplified does not matter. That
is,

x · (y · z) = (x · y) · z
where x, y, and z represent three dance steps.

4. Any dance step combined with Stay yields the same dance step. This
is apparent by looking at the row and column corresponding to Stay in
Table 1.2.

5. Every dance step has another dance step that “undoes” it. That is, for
every x there is a y such that x · y = Stay. For example, the step that
undoes RotRt is RotLft.

We will introduce the following mathematical terminology to express each of
these properties:

1. The dance steps are not commutative.

2. The dance steps are closed under multiplication.
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3. The dance steps are associative.

4. There is an identity dance step.

5. Every dance step has an inverse.

With just these properties, we are able to prove the following.

PROPOSITION 1.1

If y is an inverse of x, then x is an inverse of y. Furthermore, x will be the
only inverse of y.

PROOF: Let z be any inverse of y. Our job is to show that z is in fact equal
to x. Consider the product x · y · z. According to the associative property,

x · (y · z) = (x · y) · z.

On the left side, we see that y · z is an identity element, so x · (y · z) = x. But
on the right side, we find that x · y is an identity element, so (x · y) · z = z.
Thus, x = z, and so x is an inverse of y. Therefore, the inverse of an inverse
gives us back the original element.

But as a bonus, we see that inverses are unique! We let z be any inverse
of y, and found that it had to equal x. Thus, y has only one inverse, namely
x. But if we apply the argument again, reversing the roles of x and y, we see
that x has only one inverse, namely y. Thus, all inverses are unique.

Notice that we did not yet assume that there is only one identity element.
However, this fact immediately follows from Proposition 1.1. (See Problems 3
and 4.)

DEFINITION 1.1 We use the notation x−1 for the unique inverse of the
element x.

Proposition 1.1 can now be expressed simply as (x−1)−1 = x. This raises
the question as to whether other familiar exponential properties hold. For
example, does (x · y)−1 always equal x−1 · y−1?

(FlipRt * Spin)^-1

RotRt

FlipRt^-1 * Spin^-1

RotLft

These results can be verified by looking at Table 1.2. Apparently (x · y)−1 is
not always equal to x−1 · y−1. Yet it is not hard to determine the correct way
to simplify (x · y)−1.



Understanding the Group Concept 41

PROPOSITION 1.2

(x · y)−1 = y−1 · x−1.

PROOF: Since the inverse (x · y)−1 is the unique dance step z such that

(x · y) · z = Stay,

it suffices to show that y−1 · x−1 has this property. We see that

(x · y) · (y−1 · x−1) = x · (y · y−1) · x−1 = x · Stay · x−1 = x · x−1 = Stay.

So (x · y)−1 = y−1 · x−1.

Another pattern of the multiplication table of the dance steps is that each
row and each column in the interior part of the table contain all six dance
steps. For example, RotRt appears only once in the row beginning with Spin.
That is, there is only one solution to Spin · x = RotRt. We can show why
this pattern holds in general using inverses.

PROPOSITION 1.3

If a and b are given, then there exists a unique x such that

a · x = b.

PROOF: Suppose that there is an x such that a · x = b. We can multiply
both sides of the equation on the left by a−1 to give us

a−1 · (a · x) = a−1 · b.

Then

(a−1 · a) · x = a−1 · b.

Stay · x = a−1 · b.
So

x = a−1 · b.
Thus, if there is a solution, this must be the unique solution x = a−1 · b. Let
us check that this is indeed a solution.

a · (a−1 · b) = (a · a−1) · b = Stay · b = b.

Thus, there is only one solution to the equation, namely a−1 · b.

This last proposition, when combined with Problem 6, shows that the in-
terior of the multiplication table forms a Latin square. A Latin square is a
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formation in which every row and every column contain each item once and
only once. The Latin square property is easy to check visually.

Even though there are very few of Terry’s dance steps, we already can see
some of the patterns that can appear when we consider the multiplication of
these dance steps. In the next section, we will consider another operation that
has many of the same patterns.

Problems for §1.1

1 Suppose that Terry the Triangle has a friend who is a square. (Most of
us have had such a friend from time to time.) How many dance steps would
the square have? Construct a multiplication table of all of the square’s dance
steps. This set of dance steps is referred to as D4.

2 Suppose that Terry has a friend who is a regular tetrahedron. (A tetrahe-
dron is a triangular pyramid.) How many dance steps would this tetrahedron
have?

3 Using only the four basic properties of Terry’s dance steps, prove that
there can be only one identity element. That is, there cannot be two elements
e and e′ for which x · e = e · x = x and x · e′ = e′ · x = x for all x ∈ G.

4 Using only the four basic properties of Terry’s dance steps, prove that an
element cannot have two different inverses. That is, show that there cannot
be two elements y and y′ such that both x · y = e and x · y′ = e.

5 Prove the cancellation law holds for Terry’s dance steps. That is, if a · b =
a · c for dance steps a, b, and c, then b = c.

6 Prove that if a and b are two of Terry’s dance steps, then there is a unique
dance step x such that

x · a = b.

This shows that every column in the multiplication table contains one and
only one of each element.

7 If two of Terry’s dance steps are chosen at random, what are the chances
that these two dance steps will commute?

Hint: There are 36 ways of choosing two dance steps. Count the number
of combinations that satisfy the equation x · y = y · x.

8 Three of Terry’s dance steps are types of flips, FlipRt, FlipLft, and Spin.
Does the product of two different flips always produce a rotation? Explain
why this is so.

9 Is the product of a flip and a rotation always a flip? Explain why this is
so. See Problem 8.
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10 Find dance steps a, b, and c such that a · b = b · c, but a 6= c.

11 Find dance steps a, b such that (a · b)−1 6= a−1 · b−1.

12 Find dance steps a, b such that (a · b)2 6= a2 · b2.

Interactive Problems

13 If Terry was only allowed to do the dance steps FlipRt or FlipLft, could
it get itself into all six possible positions? If possible, express the other four
dance steps in terms of these two. The command

InitTerry()

reloads Terry’s group.

14 Repeat Problem 13, only allow Terry to do only the steps RotRt and
RotLft.

15 Can you find a dance routine that includes each of Terry’s 6 dance steps
once, and only once, and that puts Terry back into the initial position?

1.2 Modular Congruence

We have already seen that one operation, namely the combination of Terry’s
dance steps, produces some interesting properties such as the Latin square
property. In this section we will find some other operations that have this
same property, using ordinary integers and modulo arithmetic.

We have already introduced modular arithmetic in §0.3. We defined x mod n
as the remainder r when x is divided by n, using the division algorithm. But
we can also say that two integers x and y are equivalent if

x mod n = y mod n.

We will introduce another notation for this relation.

DEFINITION 1.2 Let x, y, and n be integers. We say x and y are
equivalent modulo n, written

x ≡ y (mod n)

if, and only if, there is an integer k such that

(x− y) = k n.
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Note the slight difference in notation between the operator mod (expressed
in boldface) and the above notation (where mod is not in boldface). The two
notations are clearly related, since x ≡ y (mod n) means that x mod n =
y mod n.

The new notation also satisfies three very important properties for equiva-
lence (mod n).

1. (Reflexive) Every integer x is equivalent to itself.

2. (Symmetric) If x is equivalent to y, then y is equivalent to x.

3. (Transitive) If x is equivalent to y, and y in turn is equivalent to z, then
x is equivalent to z.

DEFINITION 1.3 Any relation that satisfies these three properties is
called an equivalence relation. We will use the notation x ∼ y to say that x
is equivalent to y for a generic equivalence relation.

Let us prove that equivalence (mod n) forms an equivalence relation.

PROPOSITION 1.4

Let n be a positive integer. Then the definition of

x ≡ y (mod n)

forms an equivalence relation on the set of integers.

PROOF: To show that this definition is reflexive, we need to show that
x ≡ x (mod n), which is clear since x− x = 0 · n.

To show that this definition is symmetric, suppose that x ≡ y (mod n).
Then x − y = kn for some integer k, hence y − x = −kn for the integer −k.
Thus, y ≡ x (mod n).

Finally, to show this definition is transitive, suppose both x ≡ y (mod n)
and y ≡ z (mod n). Then x− y = k1n and y − z = k2n, so

x− z = (x− y) + (y − z) = k1n+ k2n = (k1 + k2)n.

Hence, we find that x ≡ z (mod n).

Whenever an equivalence relation is defined on a set, the set can be broken
up into disjoint equivalence classes, where each equivalence class is the set of
elements related to one element in the class.

DEFINITION 1.4 Let x ∼ y be an equivalence relation defined on a set
S. Then the equivalence class [a] is the set of elements of S related to a. That
is,

[a] = {s ∈ S | s ∼ a}.



Understanding the Group Concept 45

Example 1.1

In the relation x ≡ y (mod 10), the set [3] will be the set of integers equivalent
to 3 (mod 10), giving the set

[3] = {. . .− 37,−27,−17,−7, 3, 13, 23, 33, 43, . . .}
Other equivalence classes in this relation are similar.

It is not hard to show that the set of integers can be broken up into disjoint
sets using the equivalence classes.

PROPOSITION 1.5

If x ∼ y is an equivalence relation on a set S, then S is the disjoint union of
equivalence classes.

PROOF: For any a ∈ S, we have by the reflexive property that a ∈ [a],
so [a] is non-empty, and the union of all equivalence classes will be all of S.
Next, let us show that if there is an element c in common with two equivalence
classes [a] and [b], then these classes are the same. Since c ∼ a and c ∼ b,
we have by the symmetric and transitive properties that a ∼ b. Hence, for
every x ∈ [a], x ∼ a, so x ∈ [b] as well, indicating [a] ⊆ [b]. By similar logic,
[b] ⊆ [a], so [a] = [b].

Many of the properties of modular arithmetic found in §0.3 can be trans-
lated in terms of equivalence relations. For example, Proposition 0.2 can be
restated by saying that if

x ≡ a (mod n) and y ≡ b (mod n),

then x+ y ≡ a+ b (mod n) and xy ≡ ab (mod n).
These statements make it clear that to add or multiply two numbers modulo

n, we can choose any representative element from the equivalence class.

Computational Example 1.2

Consider the set of numbers from 0 to 9, with the binary operation being
x ∗ y = (x + y) mod 10. We can have Sage define this binary operation with
the command

Z = AddMod(10); Z

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Although the elements of Z are displayed as integers, we will soon see that
they have different properties than ordinary integers. We will continue to
use the star to indicate the operation, as we did for Terry’s dance steps. In
order to access the elements in the set Z, we will put a number in brackets to
indicate the location of the element in the set. So here is how we can combine
the fourth and seventh elements in Z:
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TABLE 1.3: Addition (mod 10)

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

Z[4] * Z[7]

1

So with the dot meaning “addition modulo 10”, we find that 4 · 7 = 1. Al-
though it seems strange to use the dot instead of the plus sign, for consistency
we always uses the dot for the binary operation, whatever that operator is.
So the one thing we must remember is that the dot does not always mean mul-
tiplication. Rather, the dot represents the operation in the current context.
For Terry’s group, the dot represented combining two dance steps. Here, it
represents addition modulo 10.

We will still use the command MultTable to give the Cayley table of the
set, even though the operation is more like addition. Thus the command

MultTable(Z)

produces Table 1.3.

By looking at the table for addition modulo 10, we are able to establish the
following properties:

1. For any two numbers x and y in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, x·y is in the set.
(Recall that we are using the dot to indicate the operation, regardless
of what that operation is. In this example, the operation is addition
modulo 10.)

2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 0 = x and 0 · x = x for all x.

4. For any x, there is a y such that x · y = 0.

5. For any x and y, x · y = y · x.
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FIGURE 1.2: Circle graphs for modulo 10 operations

This operation can also be pictured by means of circular graphs. The Sage
command

CircleGraph(Z, Add(1))

gives us the first picture in Figure 1.2, which draws an arrow from each point
to the point given by “adding 1 modulo 10.” Figure 1.2 also shows what
happens if we replace the 1 with 3 or 4. We get different-looking graphs, but
all with the same amount of symmetry. The Sage command

CircleGraph(Z, Add(1), Add(2), Add(3), Add(4), Add(5))

combines several of these circular graphs together, each drawn in a different
color. The last picture in Figure 1.2 shows the additive inverse of each digit.
This graph was created with the command

CircleGraph(Z, Inv)

Of course, we could do these same experiments by considering addition
modulo n with any other base as well as n = 10. The patterns formed by the
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TABLE 1.4: x ∗ y = xy mod 7

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

circular graphs are very similar. But we can also consider the operation of
multiplying modulo n.

Example 1.3

Consider the set of elements {0, 1, 2, 3, 4, 5, 6}, with the binary operation

x ∗ y = xy mod 7.

Form a multiplication table of this operator. Does this table have the Latin
square properties that we have been observing?
SOLUTION: This set is small enough that we can compute the table by hand,
producing Table 1.4. Although the first row and first column are all zeros, we
notice that if we removed the 0 and only considered the digits {1, 2, 3, 4, 5, 6},
we would get a Latin square. The identity element is 1, and each of the
numbers has an inverse.

If we try Example 1.3 with a different base, we get a surprise. To display the
multiplication table for (mod 10) arithmetic, we can use the Sage command

Z = MultMod(10)

MultTable(Z)

to produce a table similar to Table 1.5. We find several rows that do not
contain any 1’s. These rows indicate the numbers without inverses modulo
10. Only 1, 3, 7, and 9 have inverses. If we try this using 15 instead of 10, we
find only 1, 2, 4, 7, 8, 11, 13, and 14 have inverses.

Computational Example 1.4

What if we consider the multiplication table of just those numbers that have
inverses modulo 15? We can use the Sage commands

Z = MultMod(15)

L = [Z[1], Z[2], Z[4], Z[7], Z[8], Z[11], Z[13]]

MultTable(L)
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TABLE 1.5: Multiplication (mod 10)

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

to produce Table 1.6. Once again, many of the same patterns are found that
were in Terry’s multiplication, namely:

1. For any two numbers x and y in {1, 2, 4, 7, 8, 11, 13, 14}, x · y is in that
set.

2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 1 = x and 1 · x = x for all x.

4. For any x, there is a y such that x · y = 1.

5. For any x and y, x · y = y · x.

We can generalize these patterns to multiplication modulo n for any n.

TABLE 1.6: Invertible elements (mod 15)

1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1
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PROPOSITION 1.6

For n a positive integer greater than 1, let the dot (·) denote multiplication
modulo n. Let G be the set of all non-negative numbers less than n that have
inverses modulo n. Then the set G has the following properties:

1. For any two numbers x and y in G, x · y is in G.

2. (x · y) · z = x · (y · z) for any x, y, and z.

3. x · 1 = 1 · x = x for all x.

4. For any x that is in G, there is a y in G such that x · y = 1.

5. For any x and y, x · y = y · x.

PROOF: Properties 2, 3, and 5 come from the properties of standard multi-
plication.

Property 1 comes from Proposition 1.2. If x and y are both invertible, then
y−1 · x−1 is an inverse of x · y, and so x · y is invertible modulo n.

Property 4 seems obvious, since if x is invertible modulo n, we let y = x−1

making x ·y = 1. But we must check that y is also invertible, which it is since
y−1 = x.

Of course, this does not tell us which of the numbers less than n have
inverses modulo n. The following proposition will help us out.

PROPOSITION 1.7

Let n be in Z+. Then for x between 0 and n−1, x has a multiplicative inverse
modulo n if, and only if, x is coprime to n.

PROOF: If x and n are not coprime, then there is a common prime fac-
tor p. In order for x to have a multiplicative inverse, there must be a y such
that

x · y ≡ 1 (mod n).

But this means that xy = 1 + wn for some w. This is impossible, since xy is
a multiple of p, but 1 + wn is one more than a multiple of p.

Now suppose that x and n are coprime. By the greatest common divisor
theorem (0.4), there are u and v in Z such that

ux+ vn = gcd(x, n) = 1.

But then
ux = 1 + (−v)n,

and so u · x ≡ 1 (mod n). Hence, u is a multiplicative inverse of x.

We now have seen several binary operations, such as Terry’s dance steps,
addition modulo n, and multiplication modulo n, which have many properties
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in common. In the next section we will generalize these examples to produce
many more interesting examples, but in such a way that they will all have the
important properties that we have seen.

Problems for §1.2

For Problems 1 through 6: Construct a Cayley table for the set of numbers
using addition modulo n.

1 {0, 1, 2, 3, 4}, n = 5
2 {0, 1, 2, 3, 4, 5}, n = 6
3 {0, 1, 2, 3, 4, 5, 6, 7}, n = 8

4 {0, 2, 4, 6}, n = 8
5 {0, 2, 4, 6, 8, 10}, n = 12
6 {0, 3, 6, 9, 12, 15, 18, 21}, n = 24

For Problems 7 through 12: Construct a Cayley table for the set of numbers
using multiplication modulo n.

Hint: Since these are the numbers that have multiplicative inverses modulo
n, Proposition 1.6 shows that the multiplication table has the same properties
as Terry’s dance steps, in particular, the Latin square property.

7 {1, 3, 5, 7}, n = 8
8 {1, 2, 4, 5, 7, 8}, n = 9
9 {1, 5, 7, 11}, n = 12

10 {1, 3, 5, 9, 11, 13}, n = 14
11 {1, 5, 7, 11, 13, 17}, n = 18
12 {1, 5, 7, 11, 13, 17, 19, 23}, n = 24

13 Let S be a set, and suppose S can be described as the union of a collection
of non-empty, disjoint subsets. Show that there is an equivalence relation
such that the equivalence classes are precisely the given collection of disjoint
subsets.

14 Let f : S → T be a function defined on a set S. Define x ∼ y if
f(x) = f(y). Show that this defines an equivalence relation on S.

For Problems 15 through 20: Find the multiplicative inverse for the element
in the following group.

15 7 ∈ Z∗
16

16 8 ∈ Z∗
17

17 10 ∈ Z∗
21

18 5 ∈ Z∗
18

19 7 ∈ Z∗
20

20 9 ∈ Z∗
22

Interactive Problems

For Problems 21 through 26: Proposition 1.7 explains how to use xgcd to
find the multiplicative inverse modulo n. Use Sage to find the multiplicative
inverse of a modulo n.
21 a = 3, n = 100
22 a = 5, n = 121
23 a = 7, n = 360

24 a = 11, n = 900
25 a = 13, n = 1200
26 a = 17, n = 1500

27 We saw that there were exactly four numbers less than 10 that were in-
vertible modulo 10. For what other values of n are there exactly four numbers
less than n that are invertible modulo n? Use Sage’s circle graph to graph
the inverse functions.
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1.3 The Definition of a Group

In this chapter, we have seen several different ways of combining numbers
or dance steps. Yet, all of the different “products” had many properties in
common. We are now ready to try to generalize these examples. Our strategy
is to define a group abstractly by requiring the same patterns we observed to
continue. Thus, we make the following definition based upon the first four
properties we saw in all of our examples.

DEFINITION 1.5 A group is a set G together with a binary operation
(·) such that the following four properties hold:

1. (closure) For any x and y in G, x · y is in G.

2. (identity) There exists a member e in G which has the property that,
for all x in G, e · x = x · e = x.

3. (inverse) For every x in G, there exists a y in G, called the inverse of x,
such that x · y = e.

4. (associative law) For any x, y, and z in G, then (x · y) · z = x · (y · z).

Terry’s dance steps give us the first example of a group, more commonly
referred to as the group of symmetries of a triangle, D3.

The members of the group, whether they are numbers, dance steps, or
even ordered pairs, are called the elements of the group. The element e that
satisfies property 2 is called the identity element of the group.

The mathematical notation for an element x to be in a group G is

x ∈ G.

Since Propositions 1.1, 1.2, and 1.3 used only these four properties, the proofs
are valid for all groups, using the identity element e in place of the dance step
Stay.

Other examples of groups come from modular arithmetic. For n in Z+, we
considered the elements

{0, 1, 2, ..., n− 1},

with the operator (·) being the sum modulo n. This group will be denoted
Zn. In fact, the Sage command ZGroup will load the group Zn.

G = ZGroup(10); G

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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We also considered having the operator (·) denote the product modulo n,
and considered only the set of numbers less than n that are coprime to n.
Proposition 1.6 shows that this set also has the four properties of groups.
We will refer to this group by Z∗

n. This group can be loaded in Sage by the
command ZStar.

G = ZStar(15); G

{1, 2, 4, 7, 8, 11, 13, 14}
The groups Zn and Z∗

n had a fifth property—the multiplication tables were
symmetric about the northwest-to-southeast diagonal. Not all groups have
this property, but those that do are important enough to give this property a
special name.

DEFINITION 1.6 A group G is abelian (or commutative) if x · y = y · x
for all x, y ∈ G.

Although these definitions appear to be ad hoc, in fact the four properties
of groups have been carefully chosen so that they will apply to many different
aspects of mathematics. Here are some important examples of groups that
appear on other contexts besides group theory:

Example 1.5

The set of integers Z, with the binary operation being the sum of two numbers.
The identity element is 0, and −x is the inverse of x. This forms an abelian
group.

Example 1.6

Consider the set of rational numbers, denoted by Q. We will still use addition
for our binary operation. This is also an abelian group.

Example 1.7

Consider the set of all rational numbers except for 0. This time we will
use multiplication instead of addition for our group operation. The identity
element is now 1, and the inverse of an element is the reciprocal. This abelian
group will be denoted by Q∗.

Example 1.8

Consider the set of all linear functions of the form f(x) = mx + b, with
m, b ∈ R, m 6= 0. (The R represents the real numbers.) We multiply two
linear functions together by function composition. That is, if f(x) = mx+ b
and g(x) = nx+ c, then

f · g = f(g(x)) = m(nx+ c) + b = (mn)x+ (mc+ b).
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Note that in f · g, we do g first, then f , so we apply the functions from right
to left. We can find the inverse of f(x) as well:

f−1(x) =
1

m
x− b

m
,

which is also a linear function. This group satisfies all of the group properties,
but is not abelian. For example, if f(x) = 2x + 3 and g(x) = 3x + 2, then
f · g = f(g(x)) = 6x+ 7, whereas g · f = g(f(x)) = 6x+ 11.

DEFINITION 1.7 The number of elements in a group G is called the
order of the group, and is denoted |G|. If G is has an infinite number of
elements, we say that |G| = ∞.

Examples 1.5 though 1.8 have infinite order, and hence we cannot form
Cayley tables for these groups. On the other hand, the smallest possible
group is given by the following example.

Example 1.9

Consider the group containing just the identity element, {e}. We can have
Sage give a Cayley table of this group by the following commands:

InitGroup("e")

MultTable([e])

· e

e e

We call this group the trivial group. The first of these Sage commands in-
troduces a new command—InitGroup. This command designates the new
identity element, and sets the stage for entering a new group.

Note that sometimes the operator (·) means addition, sometimes it means
multiplication, and sometimes it means neither. Nonetheless, we can define
xn to mean x operated on itself n times. Thus,

x = x1,

x · x = x2,

x · x · x = x3,

etc.

We want to formally define xn for any integer n. We let x0 = e, the identity
element. We then define, for n > 0,

xn = xn−1 · x.
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By defining the nth power in terms of the previous power, we have defined
xn whenever n is a positive integer.

Finally, we can define negative powers by letting

x−n = (xn)−1 if n > 0.

This is an inductive definition, since it defines each power in terms of a pre-
vious power. This type of definition works well for proving simple propositions
about xn.

PROPOSITION 1.8

If x is an element in a group G, and m and n are integers, then

xm+n = xm · xn.

PROOF: If m or n are 0, this proposition is very easy to verify:

xm+0 = xm = xm · e = xm · x0, x0+n = xn = e · xn = x0 · xn.

We will now prove the statement when m and n are positive integers. If n is
1, then we have

xm+1 = x(m+1)−1 · x = xm · x1,
using the inductive definition of the power of x.

We will now proceed by means of induction. That is, we will assume that
the statement is true for n = k − 1, and then prove that it is then true for
n = k. Then we will have that, since the statement is true for n = 1, and it
is true for each number that follows, it must be true for all positive n.

Thus, we will assume that

xm+(k−1) = xm · xk−1.

But then
xm+k = xm+k−1 · x = xm · xk−1 · x = xm · xk.

Thus, by assuming the statement is true for n = k − 1, we found that it was
also true for n = k. By induction, this proves that xm+n = xm · xn for all
positive n.

Once we have the statement true for positive m and n, we can take the
inverse of both sides to give us

(xm+n)−1 = (xn)−1 · (xm)−1.

But by the definition of negative exponents, this is

x(−n)+(−m) = x−n · x−m

which, by letting M = −n and N = −m, proves the proposition for the case
of both exponents being negative.
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Finally, if m and n have different signs, then (m + n) will either have the
same sign as −n, or the same sign as −m. If (m + n) has the same sign as
−n, then we have already shown that

xm = x(m+n)+(−n) = xm+n · x−n.

So we have xm · (x−n)−1 = xm+n · x−n · (x−n)−1, and hence xm+n = xm · xn.
If (m+ n) has the same sign as −m, then we have already shown that

xn = x(−m)+(m+n) = x−m · xm+n.

So we have (x−m)−1 · xn = (x−m) · x−m · xm+n, and hence xm+n = xm · xn.
Thus we have proven the proposition for all integers m and n.

This last proof utilizes an important method of proving theorems called
induction, which was introduced in §0.1. Induction is based on the well-
ordering axiom, which states that any non-empty subset of positive integers
contains a smallest element.

Although this last proof introduced the variable k, this really was not nec-
essary. To prove a statement for all positive integers n, we can first prove the
statement is true for n = 1, and then we can assume that the statement is
true for the previous case n − 1. This extra information often gives us the
leverage we need to be able to prove the statement is true for n. Here is
another example of the use of induction.

PROPOSITION 1.9

If x is an element in a group G, and m and n are in Z, then

(xm)n = x(mn).

PROOF: Notice that this statement is trivial if n = 0 and n = 1:

(xm)0 = e = xm·0, (xm)1 = xm = x(m·1).

We will again proceed by means of induction, which means we can assume
that the statement is true for the previous case, with n replaced by n − 1.
That is, we can assume that

(xm)n−1 = xm·(n−1).

Note that
(xm)n = (xm)n−1 · xm = xm·(n−1) · xm.

By Proposition 1.8, this is equal to xm·(n−1)+m = xmn.
So by induction, the proposition holds for positive n. To see that it holds

for negative n as well, simply note that

(xm)n = ((xm)−n)−1 = (x−mn)−1 = xmn.
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If n is negative, then −n is positive, so the second step is valid.

Propositions 1.8 and 1.9 show that the common laws of exponents hold for
elements of a group. In the next section, we will use the powers of elements
to explore the properties of a group.

Problems for §1.3

1 Consider the following multiplication table:

· e a b c d

e e a b c d

a a e c d b

b b d e a c

c c b d e a

d d c a b e

Notice that this multiplication table satisfies the “Latin square” property,
hence this multiplication satisfies Proposition 1.3. Does this set form a group?
Why or why not?

2 Consider the following multiplication table:

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Notice that this multiplication table satisfies the “Latin square” property,
hence this multiplication satisfies Proposition 1.3. Does this set form a group?
Why or why not?

For Problems 3 through 14: Decide whether each set forms a group using the
given binary operation. If it is not a group, state which parts of Definition 1.5
fails to hold.
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3 G = rational numbers, x ∗ y = x+ y.
4 G = irrational numbers, x ∗ y = x+ y.
5 G = non-negative real numbers, x ∗ y = xy.
6 G = positive rational numbers, x ∗ y = xy.
7 G = positive irrational numbers, x ∗ y = xy.
8 G = non-negative integers, x ∗ y = x+ y.
9 G = even integers, x ∗ y = x+ y.
10 G = odd integers, x ∗ y = x+ y.
11 G = odd integers, x ∗ y = xy.
12 G = all integers, x ∗ y = xy.
13 G = {1,−1}, x ∗ y = xy.
14 G = all integers, x ∗ y = x+ y + 3.

15 Note that in Definition 1.5, we only required the inverse of x to have the
property that x · y = e. Show that this element will also satisfy y · x = e.

16 Show that a group can have at most one identity element.

17 Show that the inverse of an element must be unique.

18 Show that in any group, (x · y)−1 = y−1 · x−1.

19 Show that if a · x = a · y in a group, then x = y.

20 Suppose that S is a finite set (not necessarily a group) that is closed
under the operator (·). Suppose also that the equation

a · x = a · y

holds if, and only if, x = y. Prove Proposition 1.3 holds for the set S, even if
S is not a group.

Hint: Use the pigeonhole principle.

21 Let G be a group. Show that G is commutative if, and only if, (a · b)2 =
a2 · b2 for all a and b in G.

22 If G is a group such that x2 = e for all elements x in G, prove that G is
commutative.

23 Let G be a finite group that contains an even number of elements. Show
that there is at least one element besides the identity such that a2 = e.

Hint: Show that there are an even number of elements for which a2 6= e.

24 Let G be a finite group. Show that there are an odd number of elements
that satisfy the equation a3 = e.
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For Problems 25 through 27: Fill in the remaining spaces in this multiplica-
tion table so that the resulting set forms a group.

Hint: Determine what the identity element must be. Once the row and
column of the identity element are filled in, the remaining table can be finished
using only the Latin square property.

Problem 25

· a b c d

a b

b

c b

d

Problem 26

· a b c d

a

b

c d

d b

Problem 27

a b c d e f g h

a b d c

b g e h

c e d g

d h b f

e c

f e b a

g e a g b

h a c

Interactive Problems

28 Use Sage’s ZStar command to find the size of Z∗
n for n = 9, 27, 81, 243,

5, 25, 125. Make a conjecture about the size of Z∗
n when n is a power of an

odd prime. Note that you can use the len( ) command to have Sage count
the elements for you.

29 Use Sage’s ZStar command to find the size of Z∗
n for n = 18, 54, 162,

486, 50, 250, 98, 686. Make a conjecture about the size of Z∗
n when n is twice

the power of an odd prime.

30 Use Sage’s ZStar command to make a conjecture about the size of Z∗
mn,

where m and n are coprime, in terms of the sizes of Z∗
m and Z∗

n.
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Chapter 2

The Structure within a Group

We have already seen some patterns within a group, such as the Latin square
property. However, in order to determine more patterns, we need to consider
the possibility of a smaller group sitting inside of a larger group. For exam-
ple, the group of integers is inside of the group of real numbers. Whenever
this happens, we say the smaller group is a subgroup of the larger group.
Subgroups will lead to even more important properties of groups. But be-
fore we determine the subgroups of a given group, we need to understand the
generators of a group.

2.1 Generators of Groups

In this section we will explore the set of elements within the group. We will
find that some elements may possess an important property, allowing every
element to be expressible in terms of that one element. We can then define a
group as cyclic if it possesses such an element.

Cyclic groups turn out to be very important in the study of groups. In fact,
we will discover that every finite abelian group can be expressed using the
cyclic groups as building blocks.

Knowing about cyclic groups will also help us to define other groups in
programs such as Sage. Many of these groups will be fairly large, and so
rather than giving Sage the entire group, we will define a group using a very
small number of elements. From these few elements, Sage will be able to
reconstruct the entire group.

We begin by studying finite groups, such as Terry’s group, Zn, and Z∗
n.

By observing the properties of a single element within such a group, we gain
insight on how to program Sage to work with finite groups.

Computational Example 2.1

Study the powers of the elements 3 and 4 in the group Z10.

This group is loaded into Sage with the command

61
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FIGURE 2.1: Circle graph of adding 3 mod 10

G = ZGroup(10); G

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

We can map each element x to the element x · 3 with a circle graph

CircleGraph(G, Add(3) )

which produces Figure 2.1
This graph allows us to visualize powers of 3 in the group Z10. If we follow

the arrows starting with 0, we have the sequence {0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0 . . .}.
This tells us that

30 = 0, 31 = 3, 32 = 6, 33 = 9, 34 = 2, etc.

Recall that for this group the dot represents addition modulo 10, so an expo-
nent would represent repeated addition. Note that every element in the group
can be expressed as a power of 3.

This property does not hold for all elements, since the powers of 4 are seen
to be {0, 4, 8, 2, 6, 0, 4, 8, . . .}, which does not include all of the elements.

DEFINITION 2.1 We’ll say that the element g ∈ G is a generator of
the group G if every element of G can be expressed as a power of g.

We can have Sage list all of the generators of a group for us. In the case of
G = Z10, the generators are:

Generators(G)

[1, 3, 7, 9]
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So there are 4 generators to the group Z10.

Example 2.2

Find all of the generators of the group Z∗
7 .

SOLUTION: This group is small enough to do by hand. For each of the
elements in Z∗

7 = {1, 2, 3, 4, 5, 6}, we raise the element to different powers
until we reach the identity.

12 = 1.

22 = 4, 23 = 1.

32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.

42 = 2, 43 = 1.

52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1.

62 = 1.

Thus we see that 3 and 5 are generators.

The natural question that arises is whether a given element is a generator of
a group. There isn’t an obvious pattern for the group Z∗

7 , but is not difficult
for the group Zn.

PROPOSITION 2.1

The generators of Zn are precisely the integers between 0 and n that are co-
prime to n.

PROOF: Suppose that g is a generator of Zn. Then 1 is able to be expressed
as a power of g, so we have that

gv = 1 in Zn

for some v. Since the group action of Zn is addition, raising to a power is
equivalent to repeated addition, or standard multiplication. Thus, we have
that

gv ≡ 1 (mod n).

By Proposition 1.7, there is such a v if, and only if, g is coprime to n.
Now suppose that g is coprime to n. By Proposition 1.7, there is a v such

that

gv ≡ 1 (mod n), hence gv = 1 in Zn.

So 1 can be expressed as a power of g. But 1 is a generator of Zn, and so every
element of Zn can be expressed as a power of 1, say 1w. Then that element
can be written as g(vw) = (gv)w = 1w. So every element can be expressed as
a power of g, hence g is a generator of Zn.
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TABLE 2.1: Table of Euler’s totient function φ(n)

n φ(n) n φ(n) n φ(n) n φ(n)
1 1 10 4 19 18 28 12
2 1 11 10 20 8 29 28
3 2 12 4 21 12 30 8
4 2 13 12 22 10 31 30
5 4 14 6 23 22 32 16
6 2 15 8 24 8 33 20
7 6 16 8 25 20 34 16
8 4 17 16 26 12 35 24
9 6 18 6 27 18 36 12

The count of numbers less than n that are coprime to n is called the Euler
totient function of n, and is denoted φ(n). Thus, the number of generators of
Zn is precisely φ(n). A small table of this function up to n = 36 is given in
Table 2.1.

For larger values of n, we can use the Sage command EulerPhi.

EulerPhi(60)

16

Hence, there are 16 generators of Z60. Sage uses the following formula for the
totient function based on the prime factorization of the number.

THEOREM 2.1: The Totient Function Theorem

If the prime factorization of n is given by

n = pr11 · pr22 · · · prkk ,

where p1, p2, p3, . . . , pk are distinct primes, and r1, r2, r3, . . . , rk are positive
integers, then the count of numbers less than n that are coprime to n is

φ(n) = (p1 − 1) · p(r1−1)
1 · (p2 − 1) · p(r2−1)

2 · · · · · (pk − 1) · p(rk−1)
k .

PROOF: To begin, let us show that if p is a prime, then φ(pr) = (p− 1)pr−1.
Note that the only numbers that are not coprime to pr will be multiples of

p. So of the numbers between 1 and pr, exactly 1/p of them will be multiples
of p. The remaining (1− 1/p) · pr will be coprime, and this can be simplified
to (p− 1)pr−1.

Next we want to show that if n andm are coprime, then φ(nm) = φ(n)φ(m).
Let A denote the set of numbers that are less than n, but coprime to n. Let
B denote the set of numbers that are less than m, but coprime to m.

Then for any number x coprime to nm, x mod n must be in the set A,
while x mod m must be in B. Yet for every a in A and b in B, there is, by
the Chinese remainder theorem (0.7), a unique number less than nm that is
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equivalent to a (mod n) and b (mod m). This number will be coprime to both
n and m, and hence will be coprime to nm.

Therefore, we have a one-to-one correspondence between ordered pairs
(a, b), where a is in A, and b is in B, and numbers coprime to nm. Thus, we
have

φ(n ·m) = φ(n) · φ(m).

Finally, we can combine these results together. By simply noting that if

n = pr11 · pr22 · · · prkk ,

then pr11 , pr22 , pr33 , . . . , p
rk
k will all be coprime. Hence, we can find φ for each

of these terms, and multiply them together, giving us our formula.

We can also consider finding generators for the groups of the form Z∗
n.

Example 2.3

The group Z∗
10 has four elements, {1, 3, 7, 9}, and looking at the powers of the

elements, we see that

12 = 1.

32 = 9, 33 = 7, 34 = 1.

72 = 9, 73 = 3, 74 = 1.

92 = 1.

so 3 and 7 are generators.

Example 2.4

Z∗
8 also has four elements, {1, 3, 5, 7}, but

12 = 1.

32 = 1.

52 = 1.

72 = 1.

so none of these elements are generators of the group! This becomes apparent
as we look at the multiplication table for Z∗

8 .
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G = ZStar(8)

MultTable(G)
· 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

Notice that the square of every element is equal to 1. Hence no element of
Z∗
8 can generate the whole group. We can see this by asking Sage to list all

of the generators.

Generators(G)

[ ]

From these examples, we see that some groups have generators, while others
do not. This leads us to the following definition.

DEFINITION 2.2 We say a group is cyclic if there is one element that
can generate the entire group.

Although we have seen an example of a finite group that is not cyclic, we
will later see that the structure of any finite abelian group can be expressed
in terms of the cyclic groups.

Even when a group is not cyclic, we sometimes can find two elements by
which every element of the group can be expressed. For example, consider
the two elements 3 and 5 from the group Z∗

8 . Since 1 = 3 · 3 and 7 = 3 · 5, we
find that all four elements of the group can be written as some combination
of 3 and 5. We say that the set {3, 5} generates the group.

Finally, consider the group of the dancing triangle, whose multiplication
table is given in Table 1.2. By experimenting, we find that no single element
can generate the entire group. However, there are many ways in which we can
have two elements generating the entire group. For example, if we pick the
two elements RotRt and Spin, we find that the other four elements can be
expressed in terms of these two: Stay = Spin · Spin, FlipRt = Spin · RotRt
FlipLft = RotRt · Spin, and RotLft = RotRt · RotRt.

One of the keys for entering a group into Sage is finding one or two elements
(or sometimes even three are needed) that will generate the entire group. This
information begins to reveal the structure of the group itself.

Problems for §2.1

For Problems 1 through 12: Find all of the generators of the following groups.
How many generators are there? (Note some groups will not have genera-
tors.)
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1 Z12

2 Z14

3 Z16

4 Z24

5 Z∗
9

6 Z∗
11

7 Z∗
12

8 Z∗
14

9 Z∗
15

10 Z∗
16

11 Z∗
18

12 Z∗
20

For Problems 13 through 20: Use the totient function theorem (2.1) to find
the size of the following groups:

13 Z∗
100

14 Z∗
360

15 Z∗
490

16 Z∗
1200

17 Z∗
1260

18 Z∗
1331

19 Z∗
2100

20 Z∗
3675

21 Prove that φ(n) is even for n > 2.

22 Using the totient function theorem (2.1), prove that there is no value of
n for which φ(n) = 14.

Interactive Problems

23 Use Sages’s circle graph to find all of the generators of the group Z21.

24 Use Sage’s circle graph to see if there is an element of Z∗
25 that generates

Z∗
25. If so, how many such elements are there?

25 By using Sage’s Generators() command, determine whether Z∗
n is cyclic

for n = 9, 27, 81, 243, 5, 25, 125. Make a conjecture about when Z∗
n is cyclic if

n is a power of an odd prime.

26 By using Sage’s Generators() command, determine whether Z∗
n is cyclic

for n = 18, 54, 162, 486, 50, 250, 98, 686. Make a conjecture about when Z∗
n is

cyclic if n is twice the power of an odd prime.

27 By using Sage’s Generators() command, see if you can find an n for
which Z∗

n is cyclic, and n doesn’t fit into the categories of Problems 25 or 26.

2.2 Defining Finite Groups in Sage

For some groups there is a single element that generates the entire group,
whereas in other groups two or more elements are required. In this section we
will show how a finite group can be entered into Sage using a set of elements
that generates the group. This in turn will give us a host of new groups to
study, some of which will be very important as we explore the properties of
groups.

We will begin with a cyclic group Zn, which has a single generator that we
will call x. From the circle graphs of Zn, we could see that the sequence of n
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elements

e = x0,

x = x1,

x · x = x2,

x · x · x = x3,

· · · · · ·
x · x · x · · · · · x = x(n−1),

must mention every element of Zn exactly once. This gives us a way to label
the elements of Zn in terms of the generator x. We also find that xn = e.
Thus, we can define the group Zn merely by saying “x is a generator of the
group, and n is the smallest number such that xn is the identity.”

Computational Example 2.5

Define the group Z5 in Sage.
This group is cyclic, so we can use a single generator x to describe the

group. First we define e to be the identity element with the command

InitGroup("e")

Next, we define the symbol x to be the group variable.

AddGroupVar("x")

Finally, we define x5 to be e.

Define(x^5, e)

This is all we need to define the group Z5.

To view this group, we use the command

Z5 = ListGroup(); Z5

{e, x, x^2, x^3, x^4}
which gives a list of all of the elements in the group, and assigns this list to
the identifier Z5. The multiplication table for this group produced by the
MultTable command is shown in Table 2.2.

Although the notation {0, 1, 2, 3, 4} is more concise for this particular ex-
ample, the use of generators is more versatile, since almost all finite groups
can be expressed easily using generators.

Computational Example 2.6

Define the group Z∗
8 in Sage.

This is not cyclic, but the group can be generated by a = 3 and b = 5. This
group can be entered into Sage with the commands:
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TABLE 2.2: Table of Z5

· e x xˆ2 xˆ3 xˆ4

e e x xˆ2 xˆ3 xˆ4

x x xˆ2 xˆ3 xˆ4 e

xˆ2 xˆ2 xˆ3 xˆ4 e x

xˆ3 xˆ3 xˆ4 e x xˆ2

xˆ4 xˆ4 e x xˆ2 xˆ3

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^2, e)

Define(b*a, a*b)

Note that we needed an extra Define statement to let Sage know that a
and b commute with each other. To list the elements of the group, we could
either use the ListGroup command as we did for Z5, or we can find the group
generated by the elements a and b with the Group command.

G = Group(a, b); G

{e, a, b, a*b}

We can define several groups in Sage at the same time, and by listing the
generators with the Group command, Sage will know which group we are
refering to. In contrast, ListGroup() will only list the most recently defined
group.

We can now display the multiplication table for this group.

MultTable(G)

· e a b a*b

e e a b a*b

a a e a*b b

b b a*b e a

a*b a*b b a e

Computational Example 2.7

Suppose we have three different books on a shelf, and we consider rearrange-
ments of the books. Enter this group into Sage.

Such a group of arrangements can be illustrated with the command

InitBooks(3)
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FIGURE 2.2: Visualizing arrangements of three books

which begins by showing three differently colored books, as in Figure 2.2. Two
ways we could rearrange the books are to swap the first two books, or move
the first book to the other end, sliding the other two books to the left. These
two operations can be animated in Sage by

MoveBooks(First)
MoveBooks(Left)

By letting e be the identity element, a be the first rearrangement, and b be
the rearrangement moving the books to the left, we find that all possible
permutations of the books are generated by a and b. Since we clearly have
a2 = b3 = e, we can use this to help define the group. As in Z∗

8 , the plan is to
express b · a in terms of a and b in alphabetical order. Since the combination
b · a essentially switches the first and last books, we see that (b · a)2 = e, or

b · a = (b · a)−1 = a−1 · b−1 = a · b2.

Thus, we can define this group by

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^3, e)

Define(b*a, a*b^2)

If we use the Group command to find the list of elements,

Group(a, b)

{e, a, a*b, b, a*b*a, b*a}

we find that the last two elements are not written in standard order. In fact,
if we compare this list to the ListGroup output,

G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2}
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TABLE 2.3: Multiplication table for S3

· e a b a*b bˆ2 a*bˆ2

e e a b a*b bˆ2 a*bˆ2

a a e a*b b a*bˆ2 bˆ2

b b a*bˆ2 bˆ2 a e a*b

a*b a*b bˆ2 a*bˆ2 e a b

bˆ2 bˆ2 a*b e a*bˆ2 b a

a*bˆ2 a*bˆ2 b a bˆ2 a*b e

we find that a · b · a is really b2. Sage is able to tell that these are the same
element,

a*b*a == b^2

True

but will not immediately simplify an expression involving group elements.

b^7

b^7

Sage will, however, simplify expressions when putting them in a multiplication
table. The output of

MultTable(G)

is shown in Table 2.3.
Is this really a group? We can tell from the multiplication table that G is

closed with respect to multiplication, and that there is an identity element, e.
We also recognize the familiar Latin square property that we have seen in all
of the other multiplication tables. Since every row and every column contains
exactly one e, every element has a unique inverse. The only property that
we cannot check directly using the multiplication table is the associativity
property. But this property is guaranteed by the way Sage defines groups.
This group is called S3, the permutation group on three objects. (Obviously it
makes no difference what the three objects are. Books are just one possibility.)

Can Sage determine the inverse of an element?

(a*b)^-1

b^-1*a^-1

Apparently, Sage is using Proposition 1.2, (u · v)−1 = v−1 · u−1, but is not
reducing it any further. However, there is a command, SetReducedMult,
which will force all group operations to simplify.

SetReducedMult()

(a*b)^-1

b^-1*a



72 Abstract Algebra: An Interactive Approach


.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.....

.
.

.
.

.
.

.
.

.
.

.
.

.....................

.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

FIGURE 2.3: Octahedron with eight equilateral triangles

This may not seem like much of a simplification, but let us look at the whole
group.

Group(a, b)

{e, a, b^-1*a, b, b^-1, b*a}

It is clear that Sage is preferring to express b2 as b−1, and seems to prefer
having the b’s before the a’s. The advantage of using SetReducedMult is that
all group operations will be reduced to one of the six forms given above.

b^7

b

b*a*b

a

The multiplication tables for Terry’s group and S3 are very similar. By color
coding the elements in the table, we see that the color patterns of the two
multiplication tables are identical. Thus, these two groups behave in exactly
the same way, even though the elements have different names. We say that
these groups are isomorphic. We will cover isomorphic groups in Chapter 4.

Group have many applications. For example, the shape of an uncut dia-
mond, as well as many other gemstones, is shown in Figure 2.3. This figure
is reproduced by the Sage command

InitOctahedron()

One problem a gem cutter often faces is determining the orientation into which
he should put the gemstone before he starts to cut. In such a case, he needs
to know all of the possible ways the octahedron can be rotated. The set of
rotations would form a group, similar to Terry’s dance steps.
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Computational Example 2.8

Consider the group of rotations on the octahedron, and enter this group into
Sage.

There are eight triangles forming this solid. Three ways of rotating this
figure are given by

RotateOctahedron(a)

RotateOctahedron(b)

RotateOctahedron(c)

The first of these flips the front horizontal edge, turning it upside down. The
second rotates the closest face counter-clockwise, while the third rotates the
closest vertex clockwise. If we let e be the identity element of this group, it
is easy to see that

a2 = e, b3 = e, c4 = e.

After some experimenting, we find that b · a · b · a = e, c · b · c · c · a = e, and
c · a · c3 · a · b = e. From these identities, we can come up with the identities

b · a = (b · a)−1 = a−1 · b−1 = a · b2.

c · b = (c · c · a)−1 = a−1 · c−1 · c−1 = a · c3 · c3 = a · c2 · c4 = a · c2.
c · a = (c−1 · a · b)−1 = b−1 · a−1 · c = b2 · a · c = b · a · b2 · c = a · b4 · c = a · b · c.
This allows us to define b · a, c · a, and c · b in terms of operations that are
performed in alphabetical order. Although this is not mandatory, it is a good
strategy to ensure each element will have a natural representation.

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e)

Define(b^3, e)

Define(c^4, e)

Define(b*a, a*b^2)

Define(c*a, a*b*c)

Define(c*b, a*c^2)

G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c, b^2*c,

a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2, a*b^2*c^2,

c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3}

Since we told Sage how to express each combination of two generators out of
order in terms of a combination in alphabetical order, Sage can express every
element as a combination of generators in alphabetical order.

We call this group the octahedral group, which will be an important example
later on. The command
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len(G)

24

shows this group has 24 elements. (We could also have found this number
using geometry on the octahedron. See Problem 7 of §2.3.) This group is too
large to print a complete multiplication table, but Sage is able to produce a
color-coded table for groups of up to 27 elements.

With Sage, we are able to create new groups to study. These examples help
us to find pattens in the structure of all groups. In the next section we will
study the substructure of a group, by finding smaller groups within a group.

Problems for §2.2

1 Show that if a2 = b2 = e, then saying that b · a = a · b is equivalent to
saying that a · b · a · b = e.

2 In defining S3, we used three facts about the group: a2 = e, b3 = e, and
b · a = a · b2. Using just these facts without Sage, prove that b2 · a = a · b.

3 The group defined in Problem 18 has elements a and b such that a5 = e,
b4 = e, and b · a = a2 · b. Using just these facts without Sage, prove that
b3 · a = a3 · b3.

4 Write down the multiplication table for the group of rotations of a regular
tetrahedron.

Hint: Consider an octahedron with four of the faces (colored by sage as
red, yellow, orange, and cyan) extended so as to cover the other four faces.
This gives us a tetrahedron, so the symmetries of a tetrahedron must be a
subgroup of the octahedral group. Number the elements 1, 2, 3, . . . , 9, T, E,W,
with 1 as the identity element. Then fill in the rest of the table. Once several
elements are put in, use the Latin square property to speed up the process.

For Problems 5 through 16: Recall the octahedral group was defined with 3
generators such that a2 = b3 = c4 = e, b·a = a·b2, c·a = a·b·c, and c·b = a·c2.
Using just these facts without Sage, simplify the following expressions into a
product that is in the form ai · bj · ck, with i < 2, j < 3, and k < 4.

5 b2 · a
6 c2 · b
7 c2 · a

8 c · b · a
9 c · b2
10 b · c · b

11 c2 · b · a
12 c2 · b2
13 c · b2 · a

14 c · b · a · b
15 b · c2 · a
16 b · c2 · b

17 Suppose we considered rearranging four books on a shelf instead of three.
How many ways could we rearrange the books?
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Interactive Problems

18 Use Sage to define a group that has two elements, a and b, such that
a5 = b4 = e, and b · a = a2 · b. How many elements does this group have?

19 Since the elements b and c could generate the octahedral group, define this
group in Sage using only b and c. (Note: This will not work in Mathematica.)

Hint: Besides b3 = e and c4 = e, Sage will need one more equation. What
is the order of b2 · c?

20 Define a group in Sage that is generated by two elements a and b, with
a3 = b5 = (a · b)2 = e. How big is the group? (Note: This will not work in
Mathematica.)

2.3 Subgroups

A natural question to ask is whether we can have a smaller group inside of a
particular group. If so, then this smaller group will yield additional structure
to the overall group. In fact, we will learn how to find all smaller groups
within a larger group, provided that the size of the group is not too large.

We begin by saying that H is a subset of a group G, denoted H ⊆ G, if H
consists only of the elements of G. The empty set { } is always considered to
be a subset, but we will restrict our attention to non-empty subsets.

DEFINITION 2.3 We say that H is a subgroup of G if H is a non-empty
subset of G and H is a group with respect to the operation (·) of G.

It should be noted that all non-trivial groups have at least two subgroups.
One subgroup contains just the identity element {e}, while another contains
all of the elements of G. These two subgroups are called the trivial subgroups.

To see if a subset H is a group, we must test all four of the group properties.
But the associative property of H is guaranteed because the original group G
is associative. The remaining three properties,

1. H is closed under multiplication. That is, x · y ∈ H whenever x and
y ∈ H.

2. The identity element of G is in H.

3. Every element of H has its inverse in H. That is, x−1 ∈ H whenever
x ∈ H.
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can be combined into one simple test.

PROPOSITION 2.2

Let H ⊆ G and H 6= { }. Then H is a subgroup of G if, and only if, we have

x · y−1 ∈ H for all x, y ∈ H.

PROOF: First of all, we need to see that if H is a subgroup, then x · y−1 is
in H whenever x and y are in H. By property (3), y−1 is in H, and so by
property (1), x · y−1 is in H.

Conversely, let us suppose that H ⊆ G, H 6= { }, and whenever x, y ∈ H,
then x ·y−1 ∈ H. We need to see that properties (1) through (3) are satisfied.

Since H is not the empty set, there is an element x in H, and so x ·x−1 = e
is in H. Thus, property (2) holds.

Next, we have that if y is in H, then e · y−1 = y−1 is in H, and so property
(3) holds.

Finally, if x and y are in H, then y−1 is in H, and so x · (y−1)−1 = x · y is
in H. Thus, property (1) also holds.

Example 2.9

Let us find a subgroup of S3, defined in Sage by the commands:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^3, e)

Define(b*a, a*b^2)

G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2}

We can find smaller groups within this one, such as

H = {e, b, b2}.

It is easy to see that if x and y are in H, then x · y−1 is in H. Therefore, this
is a subgroup. There are other subgroups within this group, such as {e, a}.

One of the main tools we will use to find subgroups of a group is the inter-
section. Given two subsets H and K of G, the Sage command Intersection

finds the set of elements that are in both subsets, denoted H ∩K.

H = [e, b, b^2]

K = [e, a]

Intersection(H, K)

[e]
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Note that sets are entered in Sage using square brackets, even though they
are often displayed using curly braces. (Technically, using square brackets
produce a list of elements, which acts similar to a set. But the Sage routines
know to treat a list as if it were a set.) Moreover, we can consider taking the
intersection of a collection of many sets. If we let

L = [[e, a, b], [e, a*b, b], [e, a, b, b^2]]

then L represents a “set of sets.” We can take the intersection of all of the
sets in this collection with the command

Intersection(L)

[e, b]

The mathematical notation for this intersection is
⋂

H∈L
H.

We could ask whether the intersection of two subgroups of G forms a sub-
group of G. The next proposition shows us that indeed, the intersection of
subgroups forms a new subgroup.

PROPOSITION 2.3

Given a group G and a non-empty collection of subgroups, donated by L, then
the intersection of all of the subgroups in the collection

H∗ =
⋂

H∈L
H

is a subgroup of G.

PROOF: First of all, note that H∗ is not the empty set, since the identity
element is in each H in the collection. We now can apply Proposition 2.2.
Let x and y be two elements in H∗. Then, for every H ∈ L we have x, y ∈ H.
Since each H is a subgroup of G, we have

x · y−1 ∈ H.

Therefore, x · y−1 is in H∗, and so H∗ is a subgroup of G.

This proposition allows us to generate a subgroup of G from any subset of
G.

DEFINITION 2.4 Given a subset S of a group G, we define the subgroup
generated by S to be

[S] =
⋂

H∈L
H
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where L denotes the collection of subgroups of G that contain the set S.

Actually, [S] is the smallest subgroup of G that contains S. For if H is a
subgroup of G containing S, then H ∈ L, so that [S] ⊆ H.

We can determine [S] another way. It is clear that [S] contains all of the
products of the form

x1 · x2 · x3 · · · · · xn,
where either

xk ∈ S or x−1
k ∈ S (1 ≤ k ≤ n).

But the set of all such products forms a subgroup H of G that contains S.
Thus, H = [S].

The command Group finds [S] for any set S. Thus, we can find the subgroup
of S3 generated by the element b by the Sage command

SetReducedMult()

Group(b)

{e, b, b^-1}

Note that we use the SetReducedMult command, so that the elements will
appear in a consistant, albeit non-standard, format. Notice that this produces
the same subgroup {e, b, b2} we observed before.

The subgroup generated by the set {b, a · b} is

Group(b, a*b)

{e, a, b^-1, b, b^-1*a, b*a}

which produces the entire group. Had we not used the SetReducedMult

command, the elements would have appeared in unusual combinations, yet
we could still see that we had all 6 elements.

In order to find all of the subgroups of a given group G, we will begin by
finding all of the cyclic subgroups. Notice that if we pick any element x of
G, then [{x}] will always be a cyclic subgroup of G, since x is the generator.
This subgroup is usually denoted by [x].

Example 2.10

Find all of the cyclic subgroups of S3.
SOLUTION: The process of finding all of the cyclic subgroups is similar to
finding the generators of a group. For each element, we consider raising that
element to higher and higher powers until we produce the identity element.
By referring to Table 2.3, we see that:

(e)2 = e.

(a)2 = e.

(b)2 = b2, (b)3 = e.
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(a · b)2 = e.

(b2)2 = b, (b2)3 = e.

(a · b2)2 = e.

Thus, there are 5 cyclic subgroups, {e}, {e, a}, {e, b, b2}, {e, a·b}, and {e, a·b2}.
Notice that none of the elements were generators, so the group itself is not
cyclic.

The easiest way to keep track of the cyclic subgroups is to note the size of
the subgroup generated by each element.

DEFINITION 2.5 Let G be a group and let x be an element in G. We
define the order of x to be |[x]|. That is, if [x] is finite, the order of x is the
number of elements in [x]. If [x] is an infinite group we define the order of x
to be infinity.

For each element in Example 2.10, the power of the element eventually
reached the identity element, indicating that we have finished finding the
cyclic subgroup. Here is a proof that shows this will always happen for a
finite subgroup.

PROPOSITION 2.4

Suppose that the element x has finite order n. Then n is the smallest positive
integer such that xn = e. Furthermore,

[x] = {e, x, x2, x3, . . . , xn−1}.

PROOF: Since [x] is finite, not all of the elements {x0, x1, x2, x3, x4, . . .} can
be distinct. Suppose that xa = xb for two integers a and b, with b > a. Then
xb−a = e and b− a > 0. So there exists a positive integer c such that xc = e.
We can let n be the smallest such integer. We want to prove that

[x] = {e = x0, x1, x2, x3, . . . , xn−1}

with these elements distinct. Indeed, if xa = xb with 0 ≤ a < b ≤ n− 1, then
xb−a = e and 0 < b− a < n, which contradicts the definition of n. Therefore,
the elements in

{e = x0, x1, x2, x3, . . . , xn−1}
are all distinct.

Finally, we need to show that if y is in [x], then there exists an r such that
xr = y, with 0 ≤ r ≤ n − 1. But y = xk for some k ∈ Z. We can define
r = k mod n. Then 0 ≤ r ≤ n− 1 and furthermore, there is an integer q such
that k − r = nq. Thus,

y = xk = x(nq+r) = (xn)q · xr = eq · xr = xr.
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So every element of [x] is of the form xr, with 0 ≤ r ≤ n− 1.

Example 2.11

Find the cyclic subgroups of the group Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}, showing

the orders of the elements.
SOLUTION: We compute powers of each element until we reach the identity.

12 = 1.

22 = 4, 23 = 8, 24 = 1.

42 = 1.

72 = 4, 73 = 13, 74 = 1.

82 = 4, 83 = 2, 84 = 1.

112 = 1.

132 = 4, 133 = 7, 134 = 1.

142 = 1.

Thus, we see that the cyclic subgroups are [1] = {1}, [2] = [8] = {1, 2, 4, 8},
[4] = {1, 4}, [7] = [13] = {1, 4, 7, 13}, [11] = {1, 11}, [14] = {1, 14}. We
also see that 1 has order 1, the elements 4, 11, and 14 have order 2, and the
elements 2, 7, 8, and 13 have order 4. Note this group lacks a generator.

We can make a similar observation if we have an infinite cyclic subgroup.

PROPOSITION 2.5

Suppose that x has infinite order. Then xn is not the identity element for all
nonzero integers n. Furthermore,

[x] = {. . . , x−3, x−2, x−1, x0 = e, x1, x2, x3, . . .},

where the powers of x are all distinct.

PROOF: Suppose that xn = e for some nonzero n. It suffices to consider
the case n > 0, for if xn = e, then x−n = e.

By exactly the same reasoning as was used to prove Proposition 2.4, we see
that

[x] = {e = x0, x1, x2, x3, . . . , xn−1}.
But this contradicts the fact that [x] was infinite. Therefore, xn = e only if
n = 0.

Moreover, if xa = xb, then xb−a = e and so b− a = 0 by what we have just
proved. Thus, the powers of x are all distinct.

Even though the group in Proposition 2.5 is infinite, we can still define it
in Sage. In fact, we defined an infinite group in the process of defining all of
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the other groups. If we have x as the generator of an infinite group, then the
group is defined by the following:

InitGroup("e")

AddGroupVar("x")

At this point, we have an infinite group defined.

x^4 * x^-7

x^-3

Order(x)

+Infinity

Granted, we cannot display all of the elements as we did for the other groups
(Group(x) would require interrupting Sage), but we can still multiply ele-
ments of this group.

Because of Propositions 2.4 and 2.5, we know that any cyclic group G is
either a finite group

G = {e, x, x2, x3, . . . , xn−1}
that resembles the group Zn, or is an infinite group

G = {. . . , x−3, x−2, x−1, x0 = e, x1, x2, x3, . . .},

which resembles the group Z. From this, we can quickly determine the nature
of a subgroup of a cyclic group.

PROPOSITION 2.6

A subgroup of a cyclic group must be cyclic.

PROOF: Let g be a generator of the cyclic group G. The trivial subgroup {e}
is considered cyclic, so let S be a non-trivial subgroup. Then every element
of S can be written as gi for some i. Since both gi and g−i would then be in
S, we see that gi is in S for some positive i. Let k be the smallest positive
integer such that gk is in S. Then gmk is in S for all integers m.

If there were some other element in S not in [gk], then this element is gy for
some integer y. Then y = qk+r for some 0 < r < k. Then gr = gy ·(gk)−q ∈ S,
but we chose k to be the smallest positive integer for which gk ∈ S. Thus,
S = [gk], and so S is cyclic.

Example 2.12

Find all the subgroups of the group Z.
SOLUTION: Since Z is cyclic, we know that all subgroups are cyclic, hence
can be expressed as [k] for some integer k. But [k] would be the multiples of
k,

[k] = {k · x | x ∈ Z}.
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We will denote the subgroup of the multiples of k by kZ. Note that 0Z = {0},
and 1Z = Z, so even the trivial subgroups are of this form.

Finding all of the subgroups of a non-cyclic group is trickier, since we have
to consider subgroups generated by two or more elements. Sage can speed up
the process.

Computational Example 2.13

Find all of the subgroups of the group S3.
SOLUTION: We found all of the cyclic subgroups in Example 2.10: {e},
{e, a}, {e, b, b2}, {e, a · b}, and {e, a · b2}. Note that any subgroup containing
b must also contain b2, and vice-versa. Also all subgroups will contain e. So
to find subgroups that require two elements, we have 6 combinations to try:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^3, e)

Define(b*a, a*b^2)

SetReducedMult()

Group(a, b)

{e, a, b^-1, b, b^-1*a, b*a}
Group(a, a*b)

{e, a, b^-1, b, b^-1*a, b*a}
Group(a, a*b^2)

{e, a, b^-1, b, b^-1*a, b*a}
Group(b, a*b)

{e, a, b^-1, b, b^-1*a, b*a}
Group(b, a*b^2)

{e, a, b^-1, b, b^-1*a, b*a}
Group(a*b, a*b^2)

{e, a, b^-1, b, b^-1*a, b*a}

In each case, we produced the entire group. This shows that the only non-
cyclic subgroup of S3 is S3 itself. Thus, we have found a total of 6 subgroups
of S3.

Computational Example 2.14

Find the orders of the elements of the octahedral group.
SOLUTION: If we reload the octahedral group,

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^4, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)
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G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c, b^2*c,

a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2, a*b^2*c^2,

c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3}

we can find the order of the element a · c by typing

Order(a*c)

3

to see that the order of this element is 3. There is a trick for finding the orders
of all of the elements of the group at the same time.

[ Order(x) for x in G ]

[1, 2, 3, 2, 3, 2, 4, 3, 4, 3, 2, 2, 2, 4, 3, 4, 3, 2, 4, 3, 2,

3, 4, 2]

We find that every element of this group besides the identity has order 2, 3,
or 4. In fact, there are 9 elements of order 2, 8 elements of order 3, and 6
elements of order 4. In Problem 7, you are asked to derive these values purely
by considering the geometry of the octahedron.

Let us now consider the orders of the elements of a cyclic group, such as
Z12.

G = ZGroup(12); G

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
[ Order(x) for x in G ]

[1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12]

We see that there is only one element of order 2, two elements each of order
3, 4, and 6, and four elements of order 12.

It is apparent that finding the number of elements of order k involves finding
the number of solutions to the equation xk = e. To help us find the number of
solutions for a cyclic group, let us first prove the following proposition about
modular multiplication.

PROPOSITION 2.7

Let n and k be two positive integers. Then

x · k ≡ 0 (mod n)

if, and only if,

x =
a · n

gcd(n, k)

for some integer a.
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PROOF: First of all, notice that if

x =
a · n

gcd(n, k)
,

then

x · k =
a · n · k
gcd(n, k)

= a · n · k

gcd(n, k)
.

and since gcd(n, k) is a divisor of k, we see that x · k is a multiple of n. Thus,

x · k ≡ 0 (mod n).

Now suppose that x · k is a multiple of n. We want to show that

a =
x · gcd(n, k)

n

is in fact an integer. By the greatest common divisor theorem (0.4), there
exist integers u and v such that gcd(n, k) = u · n+ v · k. Then

a =
x · (u · n+ v · k)

n
= x · u+

x · k · v
n

.

Since x · k is a multiple of n, we see that a is an integer. Thus,

x =
a · n

gcd(n, k)

for some integer a.

We can now find the number of elements in a cyclic group that satisfies the
equation xk = e.

COROLLARY 2.1

Let G be a cyclic group of order n. Then there are precisely gcd(n, k) elements
of G such that xk = e.

PROOF: Let g be a generator of G, and let x = gy be an element of G.
Then xk = (gy)k = gy·k, which is equal to the identity if and only if

y · k ≡ 0 (mod n).

By Proposition 2.7, this is true if and only if

y =
a · n

gcd(n, k)

for some integer a. Hence, the number of possible values of y between 0 and
n− 1 for which zy·k = e is

n

n/gcd(n, k)
= gcd(n, k).
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Each such value of y between 0 and n−1 produces a different solution x = zy,
so there are exactly gcd(n, k) solutions.

Finding the number of solutions to the equation xk = e in a group will
become important as we classify the different groups. We will give a notation
to this count.

DEFINITION 2.6 Let G be a group, and k a positive integer. Then the
number of elements of G for which xk = e is called the kth root count of G,
and is denoted by

Rk(G) =
∣
∣{x ∈ G | xk = e}

∣
∣.

Corollary 2.1 can now be expressed in the new notation. If G is a cyclic
group, then

Rk(G) = gcd(|G|, k).
Sage has a command RootCount(G, k) that will compute Rk(G). For

example, to find the number of solutions to the equation x8 = e in Z12, we
can enter:

G = ZGroup(12)

RootCount(G, 8)

4

We are now ready to consider a more complicated group. One of the puz-
zles that is related to the Rubik’s Cube©

R
is called the PyraminxTM. The

PyraminxTM consists of a triangular pyramid, with each of the four triangu-
lar sides partitioned into nine smaller triangles. The four “tips” can rotate,
but this does not affect the puzzle. The command

InitPuzzle()

shows a simplified puzzle with the four tips chopped off, as in Figure 2.4. In
fact, removing the four tips gives us the advantage of being able to see the
faces on the back side of the puzzle through the hole created. Now the four
corners of this puzzle can rotate clockwise, using the commands

RotatePuzzle(f)

RotatePuzzle(b)

RotatePuzzle(l)

RotatePuzzle(r)

We can always put the puzzle back into its original form with the command

InitPuzzle()

The set of all actions on the puzzle forms a group, called the PyraminxTM

group. This group is generated by the elements {t, b, r, l}, and has over 900,000
elements! We can animate a sequence of moves as we did for the octahedron:
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FIGURE 2.4: The PyraminxTM puzzle without tips

RotatePuzzle(b, f)

We can find the order of this element by repeatedly executing this command
until the puzzle is back in order. In this particular case, the order of the
element b · f is 15, meaning that we have to execute this procedure 15 times
before we are back where we started.

Throughout this course, we will develop tools to work with groups that
will help us to solve this puzzle, and others like it. The solution to the
PyraminxTM, for example, is covered in §8.4.

Problems for §2.3

For Problems 1 through 6: Find all of the subgroups of the following groups.

1 Z12

2 Z20

3 Z21

4 Z∗
9

5 Z∗
8

6 Z∗
15 (see Table 1.6 on page 49)

7 Use geometry to figure out how many elements of the octahedral group
are of order 4 (rotations by 90 degrees). How many elements are of order 3?
Of order 2? Check these figures by adding up these numbers, and adding one
for the identity element, and show that this gives 24.

8 Using either the result of Problem 7 or the results of Example 2.14, find
R2(G), R3(G), R4(G), and R6(G) for the octahedral group. Is Rk(G) always
a multiple of k?

9 Prove that no element of the PyraminxTM group can have order greater
than 30.

Hint: Consider corners and edges separately. See the hint for Problem 25.
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10 Use Corollary 2.1 to find the number of solutions to the equation x9 = e
in the group Z18. How many solutions are there to the equation x3 = e in
this group? How many elements of order 9 are in this group?

Hint: For an element to be of order 9, it must solve x9 = e, and not solve
xn = e for any lower value of n.

11 Using only Corollary 2.1, determine the number of elements of Z42 that
are of order 6. (See the hint for Problem 10.)

12 Prove that if k is a divisor of n, then there are exactly φ(k) elements of
the group Zn that are of order k.

Hint: First do the case when n = k. Then use Corollary 2.1 to show that
the number of elements of order k for the groups Zn and Zk is the same.

13 Use Problem 12 to show that

n =
∑

k|n
φ(k)

where the sum has one term for each positive divisor k of n.

14 If a cyclic group has an element of infinite order, how many elements of
finite order does it have? Prove your answer.

15 Let p be a prime number. If a group G has more than p− 1 elements of
order p, prove that G cannot be a cyclic group.

16 Let G be an abelian group. Show that the set of elements of G that
has finite order forms a subgroup of G. This subgroup is called the torsion
subgroup of G.

17 Let G be an arbitrary group, with a and b two elements of G. Show that
a · b and b · a have the same order.

Hint: First show by induction that (a · b)n = a · (b · a)(n−1) · b.

18 Suppose that G is a group with exactly one element of order 2, say x.
Prove that x · y = y · x for all y in G.

19 Let p be an odd prime number, and let G = Z∗
p . Show that the set

H = {x2 | x ∈ Z∗
p}

forms a subgroup of G of order (p−1)/2. This subgroup H is called the group
of quadratic residues modulo p.

Hint: Once you have shown that H is a subgroup, show that

x2 ≡ 1 (mod p)

has exactly two solutions. Finally show that every element of H is derived
from exactly two elements of Z∗

p .
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20 Let G be a group with an even number of elements. Prove that R2(G) is
even. See the hint for Problem 23 in §1.3.

Interactive Problems

21 Use Problem 18 from §2.2 to find the subgroup generated by the set
{a, b2}. How many elements does this subgroup have?

22 Use Sage to investigate the relationship between the order of an element,
and the order of its inverse. First we pick a large group:

G = ZStar(360)

len(G)

96

The following command selects a random element from the group.

a = G[randint(1, len(G)) - 1]; a

Then compare the results of the following operations.

Order(a)

Order(a^-1)

What do you observe? Try this with several random elements. Can you make
a conjecture?

23 Repeat Problem 22, only using the octahedral group.

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^4, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

24 Use Sage to find the order of the elements b · f , b · f · r · f · f , and f · b · r
in the PyraminxTM group.

25 Can you use Sage to find an element of the PyraminxTM group that has
order 30?

Hint: Exactly five of the six edges must be moved out of place. The sixth
edge must flip as well.



Chapter 3

Patterns within the Cosets of
Groups

We introduced subgroups in the last chapter, but left many questions unan-
swered. For example, is there any relationship between the size of the group
and the size of one of its subgroups?

In this chapter we will introduce the tool of cosets to determine many of
the properties of subgroups, including what possible sizes the subgroups could
be. This in turn will allow us to create an encryption scheme that is virtually
impossible to crack. The cosets will also reveal that some subgroups have a
special property, which we will call normal subgroups . Normal subgroups will
become an important tool for many important theorems, such as proving that
a fifth-degree polynomial cannot be solved in terms of radicals.

3.1 Left and Right Cosets

In this section we will use cosets to prove Lagrange’s theorem, which states
that the order of the subgroup must divide the order of the group. This has
some important ramifications in many fields such as Internet security.

To understand cosets, let us begin by looking at some cases where an ele-
ment does not generate the group, in hopes of finding some patterns in the
circle graphs. For example, consider the element 4 from the group Z10. This
element does not generate the entire group, as evident from the two types of
arrows in the circle graph. The commands

ZGroup(10)

CircleGraph(Z, Add(4))

generate the graph in Figure 3.1. The solid arrows connect the set of points
{0, 2, 4, 6, 8}, while the dotted arrows connect the points {1, 3, 5, 7, 9}. Thus,
the group is partitioned into two sets, and no arrow connects these two.

One of the two sets is actually a subgroup of Z10, the subgroup generated
by the element 4. The other set is obtained by adding 1 to each element of
the subgroup. Similar patterns arise when we use different elements of Z10

instead of 4.
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FIGURE 3.1: Circle graph of adding 4 (mod 10)

We can try a similar partitioning on non-abelian groups, such as Terry’s
group. If we consider forming a circle graph that sends each element to that
element multiplied by Spin, we find we have a choice as to whether we have x
map to x ·Spin or to Spin ·x. The circle graph for the first option is shown in
the left half of Figure 3.2. This leads to a partition of the group into the sets
{Stay, Spin}, {RotRt, FlipLft}, and {RotLft, FlipRt}. The latter option,
shown on the right side of Figure 3.2, is to multiply on the right instead of
the left, giving the partition {Stay, Spin}, {RotRt, FlipRt}, and {RotLft,
FlipLft}. In both cases, one of the sets in the partition is the subgroup
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FIGURE 3.2: Circle graphs revealing cosets of Terry’s group
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G = InitTerry()

H = Group(Spin); H

{Stay, Spin}

but the other sets are different.

DEFINITION 3.1 Let G be a group, and let H be a subgroup of G. If
x is an element of G, we define the set

xH = {x · y | y ∈ H}.

The set xH is called a left coset of H. Likewise,

Hx = {y · x | y ∈ H}

is a right coset of H.

Sage mimics this notation. Thus,

H * RotRt

{RotRt, FlipRt}

forms a right coset by multiplying every element in H by RotRt. Likewise

RotRt * H

{RotRt, FlipLft}

forms a left coset.
We will denote the set of all left cosets of the subgroup H of G by G/H ,

and will denote the set of all right cosets of this subgroup by H\G. Notice
that the notation for right cosets uses a backward slash. In both cases, the
subgroup can be considered to be on the “bottom,” but since a right coset
Hx has the subgroup on the left, we use H\G, which also has H on the left,
to list all such right cosets.

Sage finds all left and right cosets of G with H with the commands

LftCoset(G, H)

{{Stay, Spin}, {RotLft, FlipRt}, {RotRt, FlipLft}}
RtCoset(G, H)

{{Stay, Spin}, {RotRt, FlipRt}, {RotLft, FlipLft}}

Each coset is displayed as a list of elements, so we end up with a “list of
lists,” giving all of the cosets. These are exactly the partitions we observed
in the circle graphs of LeftMult(Spin) and RightMult(Spin). In fact, we
begin to see some patterns in the cosets. First of all, all of the cosets are
the same size. Also, every element of the group appears once, and only once,
in each of the two coset lists. We will prove that these patterns are true in
general with two lemmas.



92 Abstract Algebra: An Interactive Approach

LEMMA 3.1

Let G be a group and H be a finite subgroup of G. Then all left and right
cosets of G with respect to H contain |H | elements.

PROOF: It is clear from the definitions that Hu and uH each contains at
most |H | elements. In order to prove that the number is exactly |H | we need
to show that two distinct elements of H produce two different elements in the
cosets. Suppose that this were not the case in a right coset. We would have
two different elements x and y in H, for which

x · u = y · u,

but multiplying on the right by u−1 gives x = y, a contradiction. Similar
reasoning works for left cosets. If

u · x = u · y,

multiplying on the left by u−1 shows that x = y.

Next we must show that every element of G is in exactly one left coset and
one right coset. This can be worded as follows:

LEMMA 3.2

If two left or two right cosets have an element in common, they are in fact
the same coset. That is,

Hx ∩Hy 6= { } implies that Hx = Hy,

and
xH ∩ yH 6= { } implies that xH = yH.

PROOF: We begin with right cosets. Suppose there is an element

g ∈ Hx ∩Hy.

Then there are elements h and k in H such that

g = h · x = k · y.

Therefore,
x = h−1 · k · y,

and so

(∗) Hx = Hh−1 · k · y.

Since H is a subgroup, h−1 · k ∈ H, so that Hh−1 · k ⊆ H. Moreover, if u
is in H, then

u = (u · k−1 · h)(h−1 · k) ∈ Hh−1 · k.
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Therefore

H ⊆ Hh−1 · k,
and we have shown that H = Hh−1 · k. Combining this with (∗) gives us
Hx = Hy.

We can do left cosets in the same way. If there is an element g ∈ xH ∩ yH,
then there are elements h and k in H such that

g = x · h = y · k.

Therefore,

x = y · k · h−1,

and so

xH = y · k · h−1H = yH.

Example 3.1

Find all of the left and right cosets of the subgroup {1, 11} of the group Z∗
15.

SOLUTION: Since Z∗
15 is abelian, the left and right cosets are the same. By

Lemmas 3.1 and 3.2, the cosets will be disjoint, and all have 2 elements. One
of the cosets will be the subgroup {1, 11}. We pick an element not in the
subgroup, say 2, and multiply each element of the subgroup by 2, producing
the coset {2, 7}. We pick another element not yet in a coset, and repeat the
process. To find the coset containing 4, we multiply the subgroup by 4, to
produce the coset {4, 14}. At this point, only 2 elements are unaccounted for,
so they must be in their own coset, {8, 13}. So the list of cosets are

{{1, 11}, {2, 7}, {4, 14}, {8, 13}}.

With these two lemmas, we can show that the size of any subgroup is related
to the size of the original group.

THEOREM 3.1: Lagrange’s Theorem

Let G be a finite group, and H a subgroup of G. Then the order of H divides
the order of G. That is, |G| = k · |H | for some positive integer k.

PROOF: We can use either left cosets or right cosets to prove this, so let
us use right cosets. Every element of x in G is contained in at least one right
coset. For example, x is contained in Hx. Let k be the number of distinct
right cosets. Then, if the right cosets are

Hx1, Hx2, Hx3, . . . , Hxk,

we can write

G = Hx1 ∪Hx2 ∪Hx3 ∪ · · · ∪Hxk.
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The ∪’s represent the union of the cosets. But by Lemma 3.2, there are no
elements in common among these sets, and so this union defines a partition
of G. By Lemma 3.1, each coset contains |H | elements. So |G| = k · |H |.

Lagrange’s theorem (3.1), which seems apparent when looking at the cosets
of a subgroup, turns out to have some far-reaching consequences. Let us look
at some of the results that can be obtained using Lagrange’s theorem.

COROLLARY 3.1

Let G be a finite group, and let x be an element of G. Then the order of x
divides |G|.

PROOF: The order of x equals the order of the subgroup [x] of G. Therefore,
by Lagrange’s theorem (3.1), the assertion follows.

COROLLARY 3.2

Let G be a finite group of order n and let x be an element of G. Then

xn = e.

PROOF: Let m denote the order of x. By Corollary 3.1, n = mk for some
integer k. Then we have xn = xmk = (xm)k = ek = e.

COROLLARY 3.3

A group of prime order is cyclic.

PROOF: Suppose G is of order p, which is prime. Then the only positive
divisors of p are 1 and p, so by Lagrange’s theorem (3.1) any subgroup must
be of order 1 or p. If x is any element of G besides the identity, then [x]
contains x as well as the identity. Thus, G = [x] so G is cyclic.

COROLLARY 3.4

Let n be a positive integer, and x a number coprime to n. Then

xφ(n) ≡ 1 (mod n),

where φ(n) is Euler’s totient function.

PROOF: We simply apply Corollary 3.2 to the group Z∗
n. This group has

φ(n) elements, and if x is coprime to n then x is a generator of Zn, so x is in
Z∗
n.

In particular, when n = p is prime, we have

xp−1 ≡ 1 (mod p).
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This result is known as Fermat’s little theorem. (See Historical Diversion on
page 96.)

DEFINITION 3.2 If H is a subgroup of G, we define the index of H in
G, denoted [G:H ], to be the number of right cosets in H\G. Of course this
is the same as the number of left cosets in G/H.

Notice that when G is a finite group we have by the argument in Lagrange’s
theorem (3.1) that |G| = |H | · [G:H ].

Problems for §3.1

For Problems 1 through 8: Find all of the cosets of the subgroup H of the
group G. Since these groups are abelian, the left and right cosets are the
same.

1 G = Z10, H = {0, 5}.
2 G = Z12, H = {0, 4, 8}.
3 G = Z15, H = {0, 5, 10}.
4 G = Z∗

15, H = {1, 4}

5 G = Z∗
15, H = {1, 14}

6 G = Z∗
16, H = {1, 7}

7 G = Z∗
16, H = {1, 9}

8 G = Z∗
24, H = {1, 5}

9 List all of the left and right cosets of the subgroup { Stay, FlipRt } of
Terry’s group. Are the left and right cosets the same?

10 List all of the left and right cosets of the subgroup {e, a · b} of S3. Are
the left and right cosets the same? See Table 2.3 for the Cayley table of S3.

For Problems 11 through 22: Without using Sage, but rather by taking
advantage of Corollary 3.4, compute the following modular powers.

11 5157 mod 7.
12 7185 mod 13.
13 13247 mod 15.
14 177203 mod 14

15 213317 mod 16
16 249343 mod 20.
17 323407 mod 21.
18 483479 mod 24

19 527429 mod 29
20 617579 mod 31
21 739629 mod 37
22 823729 mod 41

23 Prove that the order of Z∗
n is even whenever n > 2.

Hint: Find a subgroup of order 2.

24 Show that ifH is a subgroup ofG, and the left coset xH is also a subgroup
of G, then x is in H.

25 Show that if an element y of a group G is in the right coset Hx, where
H is a subgroup of G, then Hy = Hx.

26 Let |G| = 33. What are the possible orders for the elements of G? Show
that G must have an element of order 3.
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Historical Diversion

Pierre de Fermat (1601–1665)
Pierre de Fermat was a French lawyer

and amateur mathematician. Although
mathematics was only a hobby for him,
he made several important contributions
to the field. He came up with a method,
which he called adequality, to find the max-
ima and minima of functions, and then
adapted this method to find the tangent
lines to curves. This would later be devel-
oped into differentiable calculus. He also
made notable contributions in analytic ge-
ometry, probability and optics.
Fermat also did significant research in

number theory. He studied perfect num-
bers (numbers equal to the sum of their
positive divisors excluding the number it-
self), and amicable numbers, which would
later be called Fermat numbers. While researching perfect numbers, he dis-
covered Fermat’s little theorem, which states that if p is a prime number, then
ap − a is a multiple of p for all integers a.
But perhaps his greatest contribution to mathematics was accidental. He

had a translation of Arithmetica, written by the Greek Diophantus, which in
one section explained how to find solutions to the equation x2+y2 = z2 where
x, y, and z are integers. Fermat wrote in the margin of his book, in Latin,

It is impossible to write a cube as a sum of two cubes, a fourth power
as a sum of two fourth powers, and, in general, any power beyond the
second as a sum of two similar powers. For this, I have discovered a
truly remarkable proof, but this margin is too small to contain it.

This note, discovered 30 years after Fermat’s death by his son, claims that
there is no positive integer solution to the equation xn + yn = zn for n >
2. Historians figure that his proof of “Fermat’s last theorem” was probably
flawed, as was the proof of countless mathematicians after him who tried
to prove the statement. Yet, because of Fermat’s “mistake,” several new
developments in mathematics occurred in attempt to find a proof. Countless
advances in number theory were found in order to prove the theorem for
small values of n. Ernst Kummer discovered rings and ideals in an attempt
to correct a proof using unique factorization. (See Historical Diversion on
page 432.) Finally, in 1994, Andrew Wiles produced the first successful proof,
using the concepts of elliptic curves and modular forms, both of which would
have been unknown to Fermat.

Image source: Wikimedia Commons
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27 Suppose G is a group of order pq, where p and q are prime. Show that
every non-trivial subgroup is cyclic.

28 Suppose G is a group of order pq, where p and q are prime. Suppose
there is only one subgroup of order p, and one subgroup of order q. Prove
that G is cyclic.

29 Find all subgroups of the group Z∗
16.

Hint: What does Lagrange’s theorem say about a non-trivial, non-cyclic
subgroup?

30 If G is a finite group, and p is prime, show that the number of elements
of G of order p is a multiple of p− 1.

Interactive Problems

31 Find the left and right cosets of the subgroup {e, c, c2, c3} of the octahe-
dral group, given by:

InitGroup("e"); AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^4, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

Are the left and right cosets the same?

32 Find the left and right cosets of the subgroup {e, c2, a · b2 · c, a · b2 · c3} of
the octahedral group, given by:

InitGroup("e"); AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^4, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

Are the left and right cosets the same?

3.2 Writing Secret Messages

It was mentioned in the last section that Lagrange’s theorem (3.1) has some
far-reaching implications. One of these implications is the ability to write a
message that no one can read except for the person to whom the message is
sent, even if the whole world knows the code! This code has applications in
Internet security and secure data transmissions.



98 Abstract Algebra: An Interactive Approach

...................................
.......
.......
..........

...........................
.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

...................................
.......
.......
..........

...........................

...................................
.......
.......
.........

............................

...................................
.......
.......
.........

............................

...................................
.......
.......
.........

............................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
.........

............................

................
........
.......
.......
.....

................
........
.......
.......
..... 1 2

4

5

7

8

10

13

14

16
17

19

20

23

25

26

28

29

31

32 ..........................
.........

.........
....................................

......................................................................................................................................................................................................................................................................................................................................................................

........
.......
.......................................

.................................................................................................................................................................................................................................................................................................................................................................................................................
.........................

.......
......................

...................................................................................................................................................................................................................................................................................

.........
..........
...................................

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
........

...........................
............
...............

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.

..............................
............
............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

.......................................
........
.......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......

...............................
............
...........

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
.........

...........................
..............
.............

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.
............................

..............
............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

.......................................
........
.......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......

.........................................
.......
......

........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.

.........................................
.......
......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

........................................

.......

.......

.................................................................................................................................................................................................................................................................................................................................
........
........
......................................

................................................

..............................

.......
.......
........................................

.................................................................................................................................................................................................................................................................................................................................................................................................
.......
.......
........................................

............................................................................................................................................................................................................................. ..................
..................................

..

..........................
...............................................
.......

FIGURE 3.3: Circle graph for squaring in Z∗
33

Motavational Example 3.2

To introduce this code, we begin by considering the group Z∗
33, whose order

is φ(33) = 20. The elements of Z∗
33 are

{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}.

Consider the mapping that sends every element to its square. In essence we
are defining a function f(x) = x2 on this group. We can make a circle graph
in Sage that maps each element to its square by the command

G = ZStar(33)

CircleGraph(G, Pow(2))

which produces Figure 3.3.
This graph is rather perplexing. The squares of 2, 13, 20, and 31 are all 4.

The elements having “square roots” have four of them, while the majority of
the elements do not have square roots.

If we try cubing each element instead, using the command

CircleGraph(G, Pow(3))

we get Figure 3.4. This graph has a very different behavior: no two elements
have the same cube. We see from Figure 3.4 that the cube function is both
one-to-one and onto. Thus, every element has a unique cube root.

To understand this example, we notice that the cube root of any element
in this group can be found by taking the seventh power of the element! This
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FIGURE 3.4: Circle graph for cubing in Z∗
33

is because φ(33) = 20, so using Corollary 3.4,

(x3)7 = x21 = x20 · x = e · x = x.

The key difference between the squaring function and the cubing function
stems from the fact that 3 is coprime to φ(33) = 20, whereas 2 is not.

PROPOSITION 3.1

Suppose G is a finite group of order m, and that r is some integer that is
coprime to m. Then the function f(x) = xr is one-to-one and onto. In other
words, we can always find the unique rth root of any element in G.

PROOF: Since G is of order m, we have by Corollary 3.2 that xm = e for all
x in G. If r and m are coprime, then r is a generator in the additive group
Zm. But this means that r is an element of the group Z∗

m, and so there is an
inverse element s = r−1. Thus, s · r = 1 in Z∗

m. Another way we could say
this is

sr = km+ 1

for some integer k.
Now we are ready to take the rth root of an element. If y is an element of

G, then the rth root of y in G is merely ys. To see this, note that

(ys)r = ysr = y(km+1) = (ym)k · y = ek · y = y.

So ys is one rth root of y. But ys must be a different element for every y in
G, since the rth power of ys is different. Since the rth root of every element of



100 Abstract Algebra: An Interactive Approach

.......
...........

............................................................
.......
. .......

..........
.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
.

.......
..........

.............................................................
.......
....................................

.......
.......
.........

............................
...................................

.......
.......
.........

............................

...................................
.......
.......
.........

............................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
.........

............................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
.........

............................
...................................

.......
.......
..........

...........................

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

................
.......
.......
.......
......

................
.......
.......
.......
......

................
........
.......
.......
.....

............
........
.......
.......

................
.......
.......
.......
......

.....

........

.......

........

................
.......
.......
.......
......

................
.......
.......
.......
......

................
........
.......
.......
.....

............
........
.......
.......

................
.......
.......
.......
......

.....

........

.......

........

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
15161718

19

20

21

22

23

24

25

26

27

28

29

30
31

32
........................................................................................................................................................................................................

.......
.......
........................................

....................................................................................................................................................................................................................................................................................................................................
...........................

.................................
..................................

.................................
..................................

.................................
.................................

...........................
...........................

.........................................................................................................................................................................................................................................................................................................................................................................................................
...........................

..............................................................................................................................................................................................................................................................................................................................................................................
.............
............
.............................

........................................................................................................................................................................................................

........
........
................

......................

.........................................................................................................................................................................................................................................................................................................
................

...........
...........................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

...................................
.........

.........
.

..................................................................................................................................................................................................................................
......
......................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.........................................
.......
......

.........
........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.........
.....

.........................................
.......
......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.........................................

......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.....................................
........
........
.

.........
........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.........
.....

..............................
.............
...........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

......................................
........
........

........................................................................................................................................................................................................ ..............
........................................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.........................................

.......

......

.........................................................................................................................................................................................................................................................................................................
.......
.......
........................................

........................................................................................................................................................................................................

......

.......

......

...................................

..............................................................................................................................................................................................................................................................................................................................................................................
.......
.......
........................................

.............................................................................................................................................................................................................................................................................................................................................................................. ............
..........................................

.................................
..................................

.................................
..................................

.................................
.................................

..............................................
........

......................................................................................................................................................................................................................................................................................................... ...........
...........................................

........................................................................................................................................................................................................
...........
............
...............................

FIGURE 3.5: Circle graph for cubing modulo 33

G is accounted for, by the pigeonhole principle there cannot be two rth roots
to any element. Thus, ys gives the unique rth root of y in G.

Motivational Example 3.3

Let us now consider the cubes of all numbers from 0 to 32. This will no
longer be a group, since we have included non-invertible elements. But with
the circle graph shown in Figure 3.5, we find that the mapping x → x3 is
still one-to-one and onto. Thus, we can still find the cube root of a number
modulo 33 by taking the seventh power modulo 33.

The reason is given in the next proposition.

PROPOSITION 3.2

Suppose n is a product of two distinct primes and

r · s ≡ 1 (mod φ(n)).

Then for all values of x less than n,

(xr)s ≡ x (mod n).

PROOF: The proposition is trivial if x = 0, so we will assume that x > 0.
If x is coprime to n, then the proposition is true by Proposition 3.1. Suppose

x is not coprime to n = p · q, where p and q are the two distinct primes. By
the totient function theorem (2.1), φ(n) = (p − 1) · (q − 1). The number x
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TABLE 3.1: Standard code sending
letters to numbers

A = 1 J = 10 S = 19
B = 2 K = 11 T = 20
C = 3 L = 12 U = 21
D = 4 M = 13 V = 22
E = 5 N = 14 W = 23
F = 6 O = 15 X = 24
G = 7 P = 16 Y = 25
H = 8 Q = 17 Z = 26
I = 9 R = 18 Space = 0

would be a multiple of either p or q, say p. Then

xr·s = (p · a)r·s = pr·s · ar·s

will be a multiple of p. Also, x is not a multiple of q since x is less than
n. Since r · s ≡ 1 (mod (p − 1)(q − 1)), r · s ≡ 1 (mod (q − 1)). Thus, by
Proposition 3.1 again, we have

xrs ≡ x (mod q).

Since we also have xrs ≡ x (mod p), by the Chinese remainder theorem
(0.7), we have, since p and q are coprime,

xrs ≡ x (mod pq = n).

Example 3.4

The function x → x3 is not only one-to-one and onto, but also mixes up the
numbers 0 through 32 fairly well. This suggests an encryption scheme. We
can first convert a message to a sequence of numbers using Table 3.1. For
example,

CAN YOU READ THIS

becomes
3, 1, 14, 0, 25, 15, 21, 0, 18, 5, 1, 4, 0, 20, 8, 9, 19.

The encryption scheme is to replace each number with its cube, modulo 33.
This gives us

27, 1, 5, 0, 16, 9, 21, 0, 24, 26, 1, 31, 0, 14, 17, 3, 28.

To decipher this, one would take the seventh power of each number in the
sequence modulo 33, and convert back to letters in the alphabet.

The main drawback with this code is that, for longer messages, the letter
E which encodes to 26 would appear most frequently in the encoded string.
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Someone who didn’t know the code might deduce that 26 stands for E without
knowing anything about algebra. But also anyone who knew how to encrypt
the message could use Proposition 3.2 to decipher the message, for they could
deduce that 7 is the inverse of 3 modulo 20. What we need is a code in which
everyone would know how to encrypt a message, but only the person who
originated the code could decipher.

We can solve both of these problems just by picking n to be the product of
two huge prime numbers p and q, say 80 digits each. Then φ(n) = (p − 1) ·
(q − 1). We then pick r to be a number of at least four digits that is coprime
to φ(n). The encryption scheme is then

x→ y = xr mod n.

We decode this by finding s = r−1 in the group Z∗
φ(n). By Proposition 3.2,

the operation
y → x = ys mod n

“undoes” the encryption, since

(xr)s ≡ x (mod n).

One big advantage of using huge numbers for the code is that we can encrypt
an entire line at a time. For example,

CAN YOU READ THIS

can be encrypted by the single number

0301140025152100180501040020080919

by having every two digits represent one letter (still using Table 3.1). This
prevents cracking the code using the frequencies of the letters. But the unusual
advantage of this code is that only the originator of the code can decipher a
message, even if the encryption scheme and the values of n and r were made
public.

In order to decode a message, one must know the value of s, which is given
by the inverse of r (mod φ(n)). This is easy to do with Sage once φ(n)
is known, but how difficult it is to find φ(n)! One needs to know the prime
factorization of n, which would be about 160 digits long. Even Sage could not
factor this in a reasonable amount of time. In fact, adding two digits to p and
q makes the factorization 10 times harder. So by making the prime numbers
larger, we can be assured that the factorization cannot be done within one’s
lifetime [6, p. 21]. Thus, without knowing the original primes p and q that
were multiplied together, it is virtually impossible to determine s.

This encryption scheme is called the Rivest-Shamir-Adleman encryption
[6, p. 374]. Sage has built in routines that allow us to experiment with RSA
encryption.
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Computational Example 3.5

The function

p = NextPrime(123456789012345678901234567890123456789012345678

90123456789012345678901234567890); p

123456789012345678901234567890123456789012345678901234567\
89012345678901234567997

finds the next prime number larger than that 80 digit number. Since we want
n to be the product of two large primes, we will find another large prime q,
and multiply these primes together.

q = NextPrime(987654321098765432109876543210987654321098765432

10987654321098765432109876543210); q

987654321098765432109876543210987654321098765432109876543\
21098765432109876543391

Although the input lines shown here are broken up to allow it to be printed,
in Sage the input would be all on one line. The output uses a backslash to
show that the output continues to the next line.

Sage uses a variation of the Agrawal, Kayal, and Saxena primality test to
find the next prime number. This test can definitely determine whether a
number is prime, in a time that is a polynomial function of the number of
digits in p and q. Hence, we can quickly know for certain that the numbers p
and q are prime.

Next, we multiply the two numbers together, and broadcast this number,
n.

n = p*q; n

121932631137021795226185032733866788594511507391563633592\
367611644557885992989178890411066640755785539247046441441\
8514328958998221647614501039932917991510457827

The number n can be made public, along with any four-digit number r that
is coprime to both p − 1 and q − 1. For simplicity, we will use a four-digit
prime number.

r = NextPrime(1234); r

1237

We can verify that this is coprime to (p− 1)(q − 1) by computing

gcd((p-1)*(q-1), r)

1

which returns 1.
To encrypt a message, the command

x = MessageToNumber("HERE IS A MESSAGE"); x

805180500091900010013051919010705
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converts any sentence into a number. Note we put the message in quotation
marks. This number can now be encrypted by the command

y = PowerMod(x, r, n); y

147247305009975975061020323443960820217332118235485301293\
328137910666009784174590387960261013714614520688073075781\
586039000476825576155377145604282754058969344

Deciphering a message is very similar, only we will use the secret number s
instead of r.

Computational Example 3.6

Suppose a friend, knowing the above values of n and r, gives the message

y = 6955740514702440687061142665742560438277560654407470323877

00788446830783525388331288538827113160595765080505966693143199

918635215093570816224139063616551830794

Use Sage to decipher the message.
SOLUTION: To decode the message, we first need to know the value of s,
which is the inverse of r modulo (p− 1)(q− 1). Thus, the command to find s
is given by

s = PowerMod(r, -1, (p-1)*(q-1) ); s

116609783860223754044120366793989014476400253228956975375\
724239753849619344952453906961891044114511747360397424479\
6004951506912258362719087686981566416986602133

Next, compute ys (mod n) by the command

x = PowerMod(y, s, n); x

135555700063550051700037403330006693639300525558596454007\
05855006958555493

Finally, the command

NumberToMessage(x)

’Meet me at 7:30 p.m. behind the shed.’

puts the message into readable form.

You may notice that the encryption in Table 3.1 has been expanded to allow
lower case letters and punctuation. There are many other applications to this
code besides sending secret messages. For example, suppose to get an account
at the Electronic Bank, you pick two large random prime numbers, p and q.
The bank then gives you the account number n = p · q, and a number r, and
makes these public. The bank also gives you the secret number

s = r−1 (mod (p− 1)(q − 1)).
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You use the number s to decode messages such as

y = MessageToNumber(

"Check 1034: Pay to the order of John Brown $43.50"); y

358555361003130333440001651750070650070585500656854556800\
6556001065586400026865736400833433933530

x = PowerMod(y, s, n); x

582856389557555731159430339514715251572029961076124346556\
829718227800157027543664564994630786322333669442864481876\
983813804537827731483093504482242861001933825

This number, along with your account number and the number r, is sent to
John Brown. His bank can verify that this number is in fact a check as follows:

y = PowerMod(x, r, n)

NumberToMessage(y)

’Check 1034: Pay to the order of John Brown $43.50’

This proves that the only person knowing s sent this message. Hence, the
encryption acts as a signature to the check. Using this method, one can send
an “electronic check” (even through e-mail) that is virtually impossible to
forge.

Problems for §3.2

For Problems 1 through 4: Use the code in Example 3.4 to encript the fol-
lowing messages.

1 RSA WORKS
2 TRUST NO ONE

3 NO PROBLEM
4 DONT PANIC

For Problems 5 through 8: Use the code in Example 3.4 to decipher the
following messages.

5 14, 17, 3, 28, 0, 3, 28, 26, 1, 20, 16.
6 1, 12, 12, 0, 28, 16, 28, 14, 26, 19, 28, 0, 13, 9.
7 19, 1, 11, 26, 0, 3, 14, 0, 28, 9.
8 24, 26, 22, 26, 24, 28, 26, 0, 4, 9, 12, 1, 24, 3, 14, 16.

9 Show that Proposition 3.2 is still true if n is the product of three distinct
primes. In fact, many applications of the RSA code use three large primes
instead of two.

10 Show that Proposition 3.2 is no longer true if we let n = p2 for some
prime p.

For Problems 11 through 18: Find the inverse of the following functions.
Note that some of these require the result of Problem 9.
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11 f(x) = x3 mod 51
12 f(x) = x7 mod 55
13 f(x) = x5 mod 91
14 f(x) = x7 mod 143

15 f(x) = x11 mod 221
16 f(x) = x13 mod 437
17 f(x) = x7 mod 1001
18 f(x) = x11 mod 2717

19 Use the public key n = 2773 and r = 17 to encript “PASCAL” two letters
at a time, using Table 3.1. How would you decipher this message?

20 Figure 3.3 shows that whenever an element of Z∗
33 has a square root, it

has 4 of them. Generalize this to any abelian group. If Rk(G) = n for an
abelian group G, and yk = b for some element b, then there are precisely n
solutions to the equation xk = b.

Interactive Problems

21 This exercise is required in order to do the RSA encryption Problems 22
or 23. Using Sage’s NextPrime command, find two large prime numbers p
and q, at least 80 digits each. The digits should be random enough so that
no one can spot a pattern. This is done by the two commands

p = NextPrime( large number goes here ); p

q = NextPrime( another large number goes here ); q

We will use the value r = 10007. Verify that this number is coprime to p− 1
and q − 1 by executing the following:

gcd( (p - 1)*(q - 1), 10007)

If this yields 10007 instead of 1, go back and find new values for p and q. Once
the GCD is 1, compute n = p · q, and save this to a file. To do this, enter

n = p*q;

print ’n =’, n

If the output is continued over several lines using backslashes, clicking on the
left side of the output will convert it to a single line output. This line can then
be copied and pasted into a text file, using a text editor such as Notepad or
TextEditor. If you are using VirtualBox, make sure that the shared clipboard
is set to “Bidirectional” in the Settings → General → Advanced tab. Note: In
Mathematica, the commands are different. See the Mathematica notebooks
for the correct commands.

Next, find the secret number s, which deciphers a message:

s = PowerMod(10007, -1, (p - 1)*(q - 1))

You will need to save this number for future reference. Enter

print ’s =’, s
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and copy and paste the single line version output to the same text file. Save
this file with a name of your choice.

Finally, copy and paste just the n number into the body of an e-mail mes-
sage, sent to the professor. Do not send the value of the secret number s, but
save it for a future exercise.

22 Using the values of n and s from Problem 21, send an “electronic check”
to your favorite professor for $100.00. This check will be in the form of a huge
number, x. Once this number is found, enter

print ’x =’, x

then copy and paste the single line version of the output into the body of a
letter.

23 After doing Problem 21, your instructor will send you a response with a
value of y. Copy and paste this line into an input cell of Sage and evaluate
it. Also copy and paste the n and s lines from the text file you created in
Problem 21, and execute these as well.

Using these values of n and s, decode the message y and hand in (on paper)
what it says.

24 B. L. User tried creating his encryption number with the two primes

p = NextPrime(715870273457197548734156715678567821637415615197

37155752525673649286739584756092); p

q = NextPrime( p + 1 ); q

When he publicized the product n = pq, along with the value r = 6367, he
received a message from a friend:

y = 3092722521993064335403878476414515883199432204869058005976

1407250735465231068482494915312824566404543856784721076165212

42043590910817888839981759972041752306977

What did this message say?

3.3 Normal Subgroups

In this section we will discover that some subgroups are special, for they
have a property that other subgroups do not have. Such subgroups will be
called normal subgroups . We will find that general subgroups do not always
behave like we expect them to for certain operations, but normal subgroups
will allow more operations to be done on the subgroups. As a result, normal
subgroups become the cornerstone for most group theory results.
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When we defined left cosets and right cosets, we were in essence defining
how we could take an element of a group G and multiply it with a subgroup of
G. But this definition can apply to any subset of G. We can define a product
of any subset of a group G by an element of G in the same way that we defined
a product of a subgroup and an element. That is, if X is any subset of G, we
can define

Xu = {x · u | x ∈ X}, and

uX = {u · x | x ∈ X}.

We can also, using the same idea, multiply two subsets of G together.

DEFINITION 3.3 If X and Y are two subsets of a group G, we can
define

X · Y = {x · y | x ∈ X and y ∈ Y }.

By defining the product of subsets in this way, we find that {u} ·X = uX .
We also discover that

X · (Y · Z) = (X · Y ) · Z.

This raises some interesting questions. If X and Y are subgroups of G, will
X · Y be a subgroup? Suppose X and Y are cosets of G with respect to a
subgroup H. Will X · Y be a coset of G?

Exploratory Example 3.7

We will use the octahedral group of order 24 to experiment. In Sage, this can
be reloaded with the commands

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e)

Define(b^3, e)

Define(c^4, e)

Define(b*a, a*b^2)

Define(c*a, a*b*c)

Define(c*b, a*c^2)

G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c, b^2*c,

a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2, a*b^2*c^2,

c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3}

Two sample subgroups of order 4 are given by

H = Group(c); H

{e, c^2, c, c^3}
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K = Group(b*c); K

{e, (b*c)^2, b*c, (b*c)^3}

which, unfortunately, are not displayed in their standard form because the
command SetReducedMult was not enabled. Alternatively, we can conform
the list of elements to appear as they do in the group G by using the Conform
command.

Conform(K, G)

{e, a*b^2*c^3, b*c, a*b*c^2}

We can now explore what happens when we multiply two subgroups together.

Conform(H*K, G)

{e, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, b^2, a*b^2*c^3, a*b,

c^3, a*c, b^2*c^2, b*c, a*b*c^2, a*c^3, b*c^3}

We can count the number of elements in the set by the command:

len( )

16

So H · K has 16 elements. Apparently, each element of H, when multiplied
by an element in K, produces a unique element. This cannot be a subgroup
by Lagrange’s theorem (3.1), since 16 is not a factor of 24.

Let us try again using the cosets of a subgroup instead of two subgroups.

Exploratory Example 3.8

The right cosets of H are given by

RtCoset(G, H)

{{e, c^2, c, c^3}, {a, a*b*c, b*c^2, b^2*c^3}, {b, b^2*c,

a*c^2, a*b*c^3}, {a*b, b^2*c^2, b*c, a*c^3}, {b^2, a*c,

a*b*c^2, b*c^3}, {a*b^2, a*b^2*c, a*b^2*c^2, a*b^2*c^3}}

Let us try multiplying two right cosets of H, say the third and the fifth.

X = Conform(H*b, G); X

{b, b^2*c, a*c^2, a*b*c^3}
Y = Conform(H*a*c, G); Y

{b^2, a*c, a*b*c^2, b*c^3}
Conform(X * Y, G)

{e, a*b^2, b, a*b^2*c, c^2, a, c, a*b^2*c^2, a*b*c, b*c^2,

a*b^2*c^3, b^2*c, a*c^2, c^3, a*b*c^3, b^2*c^3}

This also produces something with 16 elements, so this cannot be a subgroup.
However, a left coset multiplied by a right coset produces a glimmer of hope:
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W = Conform(b*H, G); W

{b, b*c^2, b*c, b*c^3}
Conform(W * Y, G)

{e, a*b^2*c, a*c^2, b^2*c^3}
This, in fact, turns out to be a subgroup! In fact, any left coset times a right
coset will produce a set with 4 elements.

So what happens if we find a subgroup for which the right cosets and the
left cosets are the same? Then the product of a left coset and a right coset
would merely be the product of two cosets.

Motivational Example 3.9

An example of a subgroup for which the left and right cosets are the same is

M = Group(a*b*c^2, c^2); M

{e, a*b^2*c, c^2, a*b^2*c^3}
which we can verify in Sage by the commands

RtCoset(G, M)

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a, b^2*c, a*c^2, b^2*c^3},
{b, a*b*c, b*c^2, a*b*c^3}, {a*b, b*c, a*b*c^2, b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}

LftCoset(G, M)

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a, b^2*c, a*c^2, b^2*c^3},
{b, a*b*c, b*c^2, a*b*c^3}, {a*b, b*c, a*b*c^2, b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}

Two of these cosets are

H = a*M; H

{a, a^2*b^2*c, a*c^2, a^2*b^2*c^3}
K = Conform(b*M, G); K

{b, a*b*c, b*c^2, a*b*c^3}
and the product

Conform(H * K, G)

{a*b, b*c, a*b*c^2, b*c^3}
turns out to be another coset. In fact, the product of any two cosets of the
subgroup M will yield a coset of M .

First, let us give some terminology for this special type of subgroup.

DEFINITION 3.4 A subgroup H of the group G is said to be normal
if all left cosets are also right cosets, and conversely, all right cosets are also
left cosets. That is, H is normal if G/H = H\G.



Patterns within the Cosets of Groups 111

Next, we need a way to test whether a subgroup is normal.

PROPOSITION 3.3

A subgroup H is a normal subgroup of G if, and only if, gHg−1 = H for all
elements g in G.

PROOF: First of all, suppose H is normal, and let g be an element of G.
Then gH and Hg both contain the element g. Since the left and right cosets
are the same, we have

gH = Hg.

Multiplying both sides on the right by g−1 gives

gHg−1 = Hg · g−1 = H.

Now, suppose that gHg−1 = H for all elements g in G. Then

Hg = (gHg−1) · g = gHe = gH.

Thus, every left coset is also a right coset, and vice versa.

This gives us a way to determine if a subgroup is normal, but we can improve
on this test.

PROPOSITION 3.4

Let H be a subgroup of G. Then H is normal if, and only if,

g · h · g−1 ∈ H

for all elements g ∈ G, and h ∈ H.

PROOF: If H is a normal subgroup of G, then g · h · g−1 ∈ gHg−1, which is
H by Proposition 3.3.

Let us suppose that for all g in G and h in H, g · h · g−1 ∈ H. Then

gHg−1 ⊆ H.

In particular, if we replace every g with g−1, we get

g−1H(g−1)−1 ⊆ H.

Multiplying both sides of the equation by g on the left gives us Hg ⊆ gH, and
multiplying on the right by g−1 gives us H ⊆ gHg−1. Since we also have that
gHg−1 ⊆ H, we can conclude that gHg−1 = H. Then from Proposition 3.3,
H is normal.

There are many other examples of normal subgroups. For example, if G is
any group, then the subgroups {e} and G are automatically normal. These
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normal subgroups are said to be trivial. If G is commutative, then any sub-
group will be a normal subgroup. Here is another way to tell a subgroup is
normal.

PROPOSITION 3.5

If H is a subgroup of G with index 2, then H is a normal subgroup.

PROOF: Since H is a subgroup of G with index 2, there are two left cosets
and two right cosets. One of the left cosets is eH, which is the set of elements
in H. The other left coset must then be the set of elements not in H. But
the same thing is true for the right cosets, so the left and right cosets are the
same. Thus, H is normal.

When we have a normal subgroup, the set of cosets will possess more prop-
erties than for standard subgroups. We will explore these in the next section.

Problems for §3.3

1 Show that if H is a subgroup of a group G, then H · H = H, where the
product of two sets is defined in Definition 3.3.

2 Find all of the normal subgroups of D3. (This is Terry’s group.)

3 Let H be a subgroup of G such that every left coset a ·H is also a right
coset H · b. Prove that H is a normal subgroup of G.

4 Prove that the intersection of two normal subgroups of G is a normal
subgroup of G.

5 Let N be a normal subgroup of G, and let H be a subgroup of G that
contains the subgroup N. Prove that N is a normal subgroup of H.

6 Show that if G is an abelian group, and X and Y are two subgroups of G,
then X · Y is a subgroup of G.

7 We saw in Example 3.9 that M was a normal subgroup of the octahedral
group. Find a normal subgroup of M that is not a normal subgroup of the
octahedral group.

8 Let G be a group, and let Z be the set of elements in G that commute
with all the elements of G. That is,

Z = {x ∈ G | g · x = x · g for all g ∈ G}.

Show that Z is a subgroup of G.
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9 Let Z be the subgroup of Problem 8. Show that Z is in fact a normal
subgroup of G.

10 Suppose a group G has a normal subgroup H with only two elements.
Show that H is contained in the subgroup Z from Problem 8.

11 Let H be a normal cyclic subgroup of a finite group G, and let K be a
subgroup of H. Show that K is a normal subgroup of G. (This would not be
true if the word cyclic was left out. See Problem 7.)

12 LetG be the group from Example 1.8 in §1.3, the group of linear functions
of the form f(x) = mx + b, with m, b ∈ R, m 6= 0. Let N be the subset of G
for which m = 1, that is,

N = {φ(x) = x+ b | b ∈ R}.

Show that N is a normal subgroup of G.

13 Let G be the group of linear functions as in Problem 12. Let T be the
subset of G for which b = 0, that is,

T = {φ(x) = mx | m ∈ R, m 6= 0}.

Show that T is a subgroup of G, but not a normal subgroup. If f(x) = 2x+3,
describe both the left and right cosets f · T and T · f .

14 If H is a subgroup of G, and K is a normal subgroup of G, show that
H ·K = K ·H.

15 Use Problem 14 to show that H ·K is a subgroup of G.

16 Let H be a subgroup of G, and K a normal subgroup of G. Show that
H ∩K is a normal subgroup of H.

17 Use Problem 15 to show that if both H and K are normal subgroups of
G, then H ·K is a normal subgroup of G.

18 Let G be a group of order 2p, where p is prime. Show that if H is a
subgroup that is not normal, then H has precisely two elements.

Interactive Problems

19 Show that there is a group Q which is generated by two elements a and
b, for which

a4 = e, b2 = a2, b · a = a3 · b, a2 6= e.

This can be entered into Sage with the command
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InitGroup("e")

AddGroupVar("a", "b")

Define(a^4, e)

Define(b^2, a^2)

Define(b*a, a^3*b)

Q = Group(a, b); Q

Find all subgroups of this group, and show that all subgroups are normal,
even though the group is non-abelian. (Write down the list of left cosets and
right cosets for each subgroup found.)

20 Use Sage, along with a bit of trial and error, to find a subgroup of order
12 of the octahedral group. Show that this subgroup is a normal subgroup.
The following reloads the octahedral group:

InitGroup("e"); AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^4, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

3.4 Quotient Groups

In this section, we will take advantage of the special properties that normal
subgroups have. In fact, we will be able to create a new group from the normal
subgroup, which in many aspects acts like a division of two groups. Hence we
will call these new groups quotient groups.

In the last section we observed a case where H was a normal subgroup of G,
and the product of two cosets yielded another coset. Let us begin by proving
that this will always happen for normal subgroups.

LEMMA 3.3

If N is a normal subgroup of G, then the product of two cosets of N produces
a coset of N. In fact,

aN · bN = (a · b)N.

PROOF: We simply observe that

aN · bN = a · (Nb) ·N = a · (bN) ·N = (a · b) · (N ·N) = (a · b)N.
Note that Nb = bN because N is a normal subgroup.

This proposition is very suggestive. Since we can multiply two cosets to-
gether, can the set of all cosets form another group? This is, in fact, exactly
what happens.
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THEOREM 3.2: The Quotient Group Theorem

Let N be a normal subgroup of G. Then the set of all cosets is a group, which
is denoted by G/N , called the quotient group of G with respect to N.

PROOF: We simply have to check that G/N satisfies the four requirements
in Definition 1.5. The closure property is given by Lemma 3.3. To check
associativity,

aN · (bN · cN) = aN · (b · c)N = (a · (b · c))N
= ((a · b) · c)N = (a · b)N · cN = (aN · bN) · cN.

The identity element is eN = N, and we can check that

eN · aN = (e · a)N = aN, and

aN · eN = (a · e)N = aN.

Finally, the inverse of aN is a−1N, since

aN · a−1N = (a · a−1)N = eN = N, and

a−1N · aN = (a−1 · a)N = eN = N.

Thus, the set of all cosets forms a group.

Example 3.10

One of the easiest groups to consider is the group of integers Z under addition.
A subgroup of Z would consist of all multiples of k, with k ≥ 0. (k = 0 and
k = 1 produce the two trivial subgroups.) We denoted this normal subgroup
of Z by kZ. All elements in each coset would be equivalent modulo k. Thus,
there would be k cosets of kZ (except when k = 0). Hence, Z/kZ is essentially
the same group as Zk. That is, x and y will be in the same coset if, and only
if,

x ≡ y (mod k).

We can extend this notation to any normal subgroup. We say that

x ≡ y (mod N)

to indicate x and y belong in the same coset of G with respect to N. In fact,
if x ≡ y (mod N), then N ·x = N ·y, so N ·x ·y−1 = N, giving us x ·y−1 ∈ N.
Thus, we have

x ≡ y (mod N) if, and only if, x · y−1 ∈ N.

In §1.2, we defined an equivalence relation as a relation satisfying the three
properties
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1. (Reflexive) Every element x is equivalent to itself.

2. (Symmetric) If x is equivalent to y, then y is equivalent to x.

3. (Transitive) If x is equivalent to y, and y in turn is equivalent to z, then
x is equivalent to z.

Because of the fact that the two elements are equivalent if they are in the
same coset, it is clear that x ≡ y (mod N) is an equivalence relation. The
equivalence classes would be the cosets of N for which the relation is defined.

Computational Example 3.11

In the last section we found a normal subgroup of the octahedral group,
namely

M = Group(a*b*c^2, c^2); M

{e, a*b^2*c, c^2, a*b^2*c^3}

The cosets, or equivalence classes, with respect to this subgroup are given by
the command

Q = LftCoset(G, M); Q

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a, b^2*c, a*c^2, b^2*c^3},
{b, a*b*c, b*c^2, a*b*c^3}, {a*b, b*c, a*b*c^2, b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}

We can use the Sage command MultTable(Q) to give us a multiplication
table of the quotient group Q, shown in Figure 3.6. Since the names of the
elements are so long, Sage uses a color code for the elements, which is shown
here as shading.

Notice that this table is very similar to the table for the group S3. This
group is already defined in as a subset of the octahedral group, so we can look
at its multiplication table.

H = Conform(Group(a, b), G); H

{e, a*b^2, b, a, b^2, a*b}
MultTable(H)

This produces the table in Table 3.2. With this particular arrangement of
the elements, we see that the color patterns for Q and H match. In Chap-
ter 4, we will define two groups that have the same color pattern as being
isomorphic.
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{e,a*bˆ2*c,cˆ2,a*bˆ2*cˆ3}

{a,bˆ2*c,a*cˆ2,bˆ2*cˆ3}

{b,a*b*c,b*cˆ2,a*b*cˆ3}

{a*b,b*c,a*b*cˆ2,b*cˆ3}

{bˆ2,a*c,bˆ2*cˆ2,a*cˆ3}

{a*bˆ2,c,a*bˆ2*cˆ2,cˆ3}
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FIGURE 3.6: Multiplication table for the quotient group

Problems for §3.4

For Problems 1 through 9, write the multiplication table for the following
quotient groups:

1 Z10/{0, 5}
2 Z12/{0, 4, 8}
3 Z15/{0, 5, 10}

4 Z12/{0, 6}
5 Z∗

15/{1, 4}
6 Z∗

15/{1, 14}

7 Z∗
16/{1, 7}

8 Z∗
13/{1, 3, 9}

9 Z∗
24/{1, 5}

10 Write the multiplication table for the quotent group created by the sub-
group {Stay, RotRt, RotLft} of Terry’s group.

TABLE 3.2: Another multiplication table for S3

· e a*bˆ2 b a bˆ2 a*b

e e a*bˆ2 b a bˆ2 a*b

a*bˆ2 a*bˆ2 e a b a*b bˆ2

b b a*b bˆ2 a*bˆ2 e a

a a bˆ2 a*b e a*bˆ2 b

bˆ2 bˆ2 a e a*b b a*bˆ2

a*b a*b b a*bˆ2 bˆ2 a e
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11 Write the multiplication table for the quotent group created by the sub-
group {e, b, b2} of S3.

12 Let Q be the additive group of rational numbers. Show that the group
of integers Z is a normal subgroup of Q. Show that Q/Z is an infinite group
in which every element has finite order.

13 Describe the quotient group G/N of Problem 12 of §3.3.

14 Prove that the quotient group of a cyclic group is cyclic.

15 Prove that the quotient group of an abelian group is abelian.

16 Let G be a finite group, and H a normal subgroup of G. Prove that the
order of the element gH in the group G/H divides the order of g in the group
G.

17 Let N and H be two normal subgroups of G, with N contained inside of
H. Prove that H/N is a subgroup of G/N. See Problem 5 of §3.3.

18 Let N and H be two normal subgroups of G, with N contained inside of
H. Show that H/N is a normal subgroup of G/N. See Problem 17.

Interactive Problems

19 Define in Sage the group G = Z∗
105. How many elements does this group

have? Consider the subgroup H generated by the element 11. A circle graph
demonstrating the cosets G/H can be obtained by the command

CircleGraph(G, Mult(11))

By looking at the circle graph, determine the cosets of G with respect to H.
What is the order of the element 2 ·H in the quotient group G/H?

20 Here is a group of order 20 from Problem 18 of §2.2:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^5, e); Define(b^4, e); Define(b*a, a^2*b)

G = ListGroup()

Find a normal subgroup H of order 5, and form the quotient group G/H.



Chapter 4

Mappings between Groups

So far we have not considered the possibility of a function defined on a group.
This chapter explores the idea of a function, or mapping, which sends elements
of one group to another. With such mappings, we will find a way to determine
whether two groups are essentially the same. We also will find a connection
between group functions and normal subgroups. Finally, we will use function
composition to prove three very important theorems in group theory.

4.1 Isomorphisms

The quotient groupG/M we saw at the end of the last chapter turned out to
be very similar to the group S3. They are technically distinct, since the names
for their elements are totally different. In this section we will demonstrate the
relationship between these two groups, using the concept of a mapping from
one group to the other.

We begin by finding a correlation between the elements of the two groups
so that the corresponding multiplication tables would have identical color
patterns.

Motivational Example 4.1

Here is one such possible correlation between the two groups:

e ↔ {e, a · b2 · c, c2, a · b2 · c3}
a · b2 ↔ {a, b2 · c, a · c2, b2 · c3}

b ↔ {b, a · b · c, b · c2, a · b · c3}
a ↔ {a · b, b · c, a · b · c2, b · c3}
b2 ↔ {b2, a · c, b2 · c2, a · c3}

a · b ↔ {a · b2, c, a · b2 · c2, c3}

Suppose we use this correlation to define a function f(x) sending each element
of S3 to an element of G/M . Thus,

119
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f(e) = {e, a · b2 · c, c2, a · b2 · c3}
f(a · b2) = {a, b2 · c, a · c2, b2 · c3}

f(b) = {b, a · b · c, b · c2, a · b · c3}
f(a) = {a · b, b · c, a · b · c2, b · c3}
f(b2) = {b2, a · c, b2 · c2, a · c3}

f(a · b) = {a · b2, c, a · b2 · c2, c3}

The fact that the corresponding multiplication tables have the same color
patterns can now be expressed simply by

f(x · y) = f(x) · f(y).

Also, the function f(x) maps different elements of S3 to different elements of
G/M . That is, f(x) is one-to-one, or injective. Finally, every element of G/M
appears as f(x) for some element x. This is expressed by saying that f(x) is
onto, or surjective.

DEFINITION 4.1 Let G1 and G2 be two groups. An isomorphism from
G1 to G2 is a one-to-one function sending elements of G1 to elements of G2

such that
f(x · y) = f(x) · f(y) for all x, y ∈ G1.

If there exists an isomorphism from G1 to G2 that is also onto, then we say
that G1 and G2 are isomorphic, denoted by

G1 ≈ G2.

For example,
S3 ≈ G/M

because of the existence of the function f(x), which we saw was both one-to-
one and onto.

It should be noted that ≈ is an equivalence relation on groups. (Reflexive
property is obvious, symmetric and transitive properties are covered in Prob-
lems 1 and 2.) One of the important yet extremely hard problems in group
theory is to find all of the non-isomorphic groups of a given order. Although
this is still an unsolved problem, we have the following upper bound for the
number of groups.

PROPOSITION 4.1

There are at most n(n2) non-isomorphic groups of order n.
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PROOF: If two groups have the same multiplication table, they are isomor-
phic, so a group is completely determined by its multiplication table. Notice
that each element of this table must be one of n elements, and there are n2

entries in the table. So there are n(n2) ways of creating such a table.

Of course, not very many of these tables will actually form a group. In
fact, in some cases we can show that there is only one non-isomorphic group
of order n.

PROPOSITION 4.2

For n a positive integer, every cyclic group of order n is isomorphic to Zn.

PROOF: Let G be a group of order n, and let g be a generator of G. For
clarity, we will let · denote the group operation of G, and ∗ denote the group
operation of Zn. Since g

n = e, we have

G = {e = g0, g1, g2, g3, . . . , gn−1}.

Define f : Zn → G by

f(x) = gx (0 ≤ x ≤ n− 1).

That is, f will map the elements of Zn to elements of G. Clearly f is one-to-
one and onto, and we would like to show that it is an isomorphism. Suppose
x and y satisfy

0 ≤ x, y ≤ n− 1.

We let z = x ∗ y = (x + y) mod n. Then we can find an m such that
x+ y = mn+ z. Now, f(x ∗ y) = f(z) = gz by the definition of f . Thus,

f(x ∗ y) = gz = g(x+y−mn) = gx · gy · (gn)−m = gx · gy = f(x) · f(y).

Since f is an isomorphism of Zn onto G, we have Zn ≈ G.

In particular if p is prime, Corollary 3.3 indicates all groups of order p are
cyclic. Thus all groups of order p are isomorphic to Zp.

For example, there is only one group each, up to isomorphism, of sizes 2,
3, 5, and 7, namely Z2, Z3, Z5, and Z7. Our goal for this section is to find all
of the possible groups, up to isomorphism, up to order 8. To help us in this
endeavor we have the following lemma.

LEMMA 4.1

Suppose a group G whose order is greater than 2 has all non-identity elements
being of order 2. Then G has a subgroup isomorphic to Z∗

8 .

PROOF: Since the order of G is greater than 2, there are two elements a
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and b besides the identity element e. Since these will have order 2, we have
a2 = b2 = e. Consider the product a · b. It can be neither a nor b since this
would imply the other was the identity. On the other hand, a · b = e implies

a = a · e = a · (b · b) = (a · b) · b = e · b = b.

So a · b is not the identity either. So there must be a fourth element in G,
which we will call c, such that a · b = c. This element will also be of order 2,
so we have c2 = e.

Finally, note that

b · a = e · b · a · e = a · a · b · a · b · b = a · (a · b)2 · b = a · c2 · b = a · e · b = a · b = c.

With this we can quickly find the remaining products involving a, b, and c.

c·a = b·a·a = b, c·b = a·b·b = a, a·c = a·a·b = b, b·c = b·b·a = a.

Hence, the set H = {e, a, b, c} is closed under multiplication, contains the
identity, and also contains the inverses of every element in the set. Hence, H
is a subgroup of G. The multiplication table for H

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

shows that this is isomorphic to Z∗
8 using the mapping

f(e) = 1,

f(a) = 3,

f(b) = 5,

f(c) = 7.

We can now find all non-isomorphic groups of order up to 8. For example,
if we have a group of order 6, any element of order 6 would imply that it is
isomorphic to Z6. We cannot have all non-identity elements be of order 2, or
else Lemma 4.1 would give a subgroup of order 4, violating Lagrange’s theorem
(3.1). Thus, there must be an element a of order 3. Then H = {e, a, a2} is a
normal subgroup of order 3 by Proposition 3.5. If b be any element not in H,
then the two cosets of H are

{{e, a, a2}, {b, a · b, a2 · b}}.
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TABLE 4.1: Multiplication table for Z∗
24

· 1 5 7 11 13 17 19 23

1 1 5 7 11 13 17 19 23

5 5 1 11 7 17 13 23 19

7 7 11 1 5 19 23 13 17

11 11 7 5 1 23 19 17 13

13 13 17 19 23 1 5 7 11

17 17 13 23 19 5 1 11 7

19 19 23 13 17 7 11 1 5

23 23 19 17 13 11 7 5 1

We see that b2 is in H, and if b2 is a or a2, then b is of order 6, so to get
something different b2 must be e. Then since H is normal b ·a is either b, a · b,
or a2 · b.

If b ·a = b, then clearly we have the contradiction a = e. If b ·a = a · b, then
we find that a · b has order 6. Only the final possibility b · a = a2 · b gives a
non-cyclic group. Since we know of a non-cyclic group of order 6, namely S3,
this must be it. Hence, there are two non-isomorphic groups of order 6, Z6

and S3.
A similar exhaustive search can be used to find all groups of order 8. If such

a group has all non-identity elements of order 2, then by Lemma 4.1 there is
a subgroup {e, a, b, a · b}. By Problem 22, the group is commutative, so if we
pick c to be any other element, then c2 = e, c · a = a · c, and c · b = b · c.

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e)

Define(b^2, e)

Define(c^2, e)

Define(b*a, a*b)

Define(c*a, a*c)

Define(c*b, b*c)

G = ListGroup(); G

{e, a, b, a*b, c, a*c, b*c, a*b*c}

So there is only one group of order 8 for which all non-identity elements are of
order 2. But we can find such a group—Z∗

24, whose table is given in Table 4.1.
If |G| = 8 and G is not isomorphic to either Z8 or Z∗

24, then there must be
an element a of order 4. Then H = {e, a, a2, a3} is a normal subgroup, and
we can let b be any element not in H. Since G/H has order 2, b2 must be in
H, but if either b2 = a or b2 = a3, then b will have order 8. Hence, b2 is either
e or a2. Also, b · a 6∈ S, but b · a 6= b, since this would force a = e. So b · a is
either a · b, a2 · b, or a3 · b. These six possibilities can be tried out in Sage.
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TABLE 4.2: Multiplication table for D4

· e a a2 a3 b a · b a2 · b a3 · b
e e a a2 a3 b a · b a2 · b a3 · b
a a a2 a3 e a · b a2 · b a3 · b b

a2 a2 a3 e a a2 · b a3 · b b a · b
a3 a3 e a a2 a3 · b b a · b a2 · b
b b a3 · b a2 · b a · b e a3 a2 a

a · b a · b b a3 · b a2 · b a e a3 a2

a2 · b a2 · b a · b b a3 · b a2 a e a3

a3 · b a3 · b a2 · b a · b b a3 a2 a e

If b · a = a · b, and b2 is either e or a2, the group become isomorphic to Z∗
15,

which we have seen before. Also, both combinations for which b · a = a2 · b
fail to produce a group. If b · a = a3 · b and b2 = e, we get the group

InitGroup("e")

AddGroupVar("a", "b")

Define(a^4, e)

Define(b^2, e)

Define(b*a, a^3*b)

G = ListGroup()

{e, a, a^2, a^3, b, a*b, a^2*b, a^3*b}
This gives rise to the group D4, the symmetry group of the square studied in
Problem 1 of §1.1. The multiplication table is shown in Table 4.2.

The final possibility is that b · a = a3 · b, and b2 = a2. This produces a new
group called the quaternion group Q, described by the following:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^4, e)

Define(b^2, a^2)

Define(b*a, a^3*b)

Q = ListGroup(); Q

{e, a, a^2, a^3, b, a*b, a^2*b, a^3*b}
Although the group can be defined in terms of only two generators, it is more
natural to use the notation that appears in Table 4.3. Note that i, j, and k
sometimes behave like the vector cross product:

i · j = k, j · k = i, and k · i = j,

and sometimes act like complex numbers:

i2 = −1, j2 = −1, and k2 = −1.

In summary, we have the following groups up to order 8:
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TABLE 4.3: Multiplication table for Q

· 1 i j k −1 −i −j −k
1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j

j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1

−1 −1 −i −j −k 1 i j k

−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i

−k −k −j i 1 k j −i −1

n = 1: The one element must be the identity, so we have just
the trivial group, {e}.

n = 2: Since 2 is prime, all groups are isomorphic to Z2.

n = 3: Since 3 is prime, all groups are isomorphic to Z3.

n = 4: By Lemma 4.1, the only two non-isomorphic groups are Z4 and Z∗
8 .

n = 5: Since 5 is prime, all groups are isomorphic to Z5.

n = 6: There are only two non-isomorphic groups: Z6 and the
non-abelian group S3.

n = 7: Since 7 is prime, all groups are isomorphic to Z7.

n = 8: There are three abelian groups, Z8, Z
∗
15, and Z

∗
24 and two

non-abelian groups, D4 and Q.

Finally, Table 4.4 gives the number of non-isomorphic groups of order n,
when n is not prime.

Problems for §4.1

1 Prove that if f is a surjective isomorphism from a group G to a group M ,
then f−1 is a surjective isomorphism from M to G.

2 If G1, G2, and G3 are three groups, and f is an isomorphism from G1

to G2, and φ is an isomorphism from G2 to G3, prove that φ(f(x)) is an
isomorphism from G1 to G3.

3 Find an isomorphism between D3 (Terry’s group) and S3.
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TABLE 4.4: Number of groups of order n for composite n

n groups n groups n groups n groups n groups
4 2 26 2 46 2 65 1 85 1
6 2 27 5 48 52 66 4 86 2
8 5 28 4 49 2 68 5 87 1
9 2 30 4 50 5 69 1 88 12
10 2 32 51 51 1 70 4 90 10
12 5 33 1 52 5 72 50 91 1
14 2 34 2 54 15 74 2 92 4
15 1 35 1 55 2 75 3 93 2
16 14 36 14 56 13 76 4 94 2
18 5 38 2 57 2 77 1 95 1
20 5 39 2 58 2 78 6 96 230
21 2 40 14 60 13 80 52 98 5
22 2 42 6 62 2 81 15 99 2
24 15 44 4 63 4 82 2 100 16
25 2 45 2 64 267 84 15 102 4

4 Find an isomorphism between the group consisting of the four complex
numbers

{1,−1, i,−i}
and the group Z4.

For Problems 5 through 13: Find an isomorphism between the two groups.

5 Z6 and Z∗
7

6 Z6 and Z∗
9

7 Z6 and Z∗
14

8 Z6 and Z∗
18

9 Z10 and Z∗
11

10 Z10 and Z∗
22

11 Z12 and Z∗
13

12 Z12 and Z∗
26

13 Z∗
8 and Z∗

12

14 Let G be an arbitrary group. Prove or disprove that f(x) = x−1 is an
isomorphism from G to G.

15 Prove that any infinite cyclic group is isomorphic to Z.

16 Let R be the group of real numbers under addition, and let G be the
group of positive real numbers under multiplication. Prove that R ≈ G, with
φ(x) = ex.

17 Let φ be an isomorphism from a group G to a group M . Prove that a
and φ(a) have the same order.

Interactive Problems

18 Prove that there are exactly two non-isomorphic groups of order 10. Find
these two groups, and have Sage produce the multiplication tables.

Hint: Follow the logic for n = 6.
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For Problems 19 through 21: Each of the following groups is of order 8. Which
of the known five groups (Z8, Z

∗
24, Z

∗
15, D4, or Q) is each of these isomorphic

to? First have Sage display a table of the new group, and then rearrange the
elements of one of the five known groups so that the color patterns in the two
tables are identical.

19 Z∗
16 20 Z∗

20 21 Z∗
30

4.2 Homomorphisms

It is easy to see the application of isomorphisms, since these functions show
how two groups are essentially the same. But suppose we have a function
between two groups for which f(x · y) = f(x) · f(y), but this function may
not be one-to-one or onto. Can we still glean some information about the
groups from this function? In this section we will find that functions with
this property are very special indeed.

DEFINITION 4.2 Let G and M be two groups. A function

f : G→M

mapping elements of G to elements of M is called a homomorphism if it
satisfies

f(x · y) = f(x) · f(y) for all x, y ∈ G.

The group G is called the domain of the homomorphism, and the group M
is called the target of the homomorphism. Note that a homomorphism need
not be either one-to-one or onto.

Of course, all isomorphisms are also homomorphisms. But we can have
many other homomorphisms, as the following examples show.

Example 4.2

Let G be any group, and let M be a group with identity e. If we let

f(x) = e for all x ∈ G

then f will obviously be a homomorphism, since

f(x · y) = e = e · e = f(x) · f(y).

This is called the trivial homomorphism.
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Example 4.3

Let R∗ = R−{0} be the group of nonzero real numbers under multiplication,
and let f(x) = x2. This forms a homomorphism

f : R∗ → R∗,

so this gives an example of a homomorphism that maps a group onto itself.
Note that this homomorphism is neither one-to-one nor onto since f(−2) =
f(2) = 4, yet there is no real number such that f(x) = −1.

Example 4.4

We can generalize Example 4.3 as follows: Let G be any commutative group,
and let n be any integer. We can define f(x) = xn. Then f(x) is a homomor-
phism from G to itself, since

f(x · y) = (x · y)n = xn · yn = f(x) · f(y).

We can prove a few properties that must be true of all homomorphisms.

PROPOSITION 4.3

Let f : G → M be a homomorphism. Let e denote the identity of G. Then
f(e) is the identity element of M .

PROOF: Since e · e = e in the group G, we have

f(e) = f(e · e) = f(e) · f(e).

Multiplying both sides by [f(e)]−1 gives us that f(e) is the identity element
of M .

PROPOSITION 4.4

If f : G→M is a homomorphism, then f(a−1) = [f(a)]−1.

PROOF: We merely need to show that f(a) · f(a−1) is the identity element
of M . If e represents the identity element of G, then

f(a) · f(a−1) = f(a · a−1) = f(e).

By Proposition 4.3 this is the identity element of M . So

f(a−1) = [f(a)]−1.

Example 4.5

Find a homomorphism from Z∗
15 to Z4 such that f(2) = f(7) = 1.
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SOLUTION: We know from Proposition 4.3 that the identity must map to
the identity, so f(1) = 0. Also, f(4) = f(2)2 = 12 = 2. (Recall the operation
of Z4 is addition mod 4.) Likewise, f(8) = f(2)3 = 3, f(13) = f(7)3 = 3,
f(14) = f(7) · f(2) = 2, and f(11) = f(13) · f(2) = 0.

To define homomorphisms using Sage, we must first define the two groups
G and M simultaneously, using different sets of letters for the generators.

Computational Example 4.6

Let us create a homomorphism from the octahedral group to the quaternion
group.

We first load the octahedral group with the following commands:

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^2, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

Oct = ListGroup(); Oct

{e, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c, b^2*c,

a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2, a*b^2*c^2,

c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3}
Next let us define the quaternion group Q from the last section. The easiest
way to load this group is with the command

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}
Let us define a homomorphism F from Q to Oct. First we tell Sage that F

will be a homomorphism.

F = Homomorph(Q, Oct)

We need only define the homomorphism on the generators of where the gen-
erators are sent, since Sage would then be able to use the properties of the
homomorphism to determine where the other elements map to. Thus, to
define the mapping

1 → e,

i → c2,

−1 → e,

−i → c2,

j → a · b2 · c,
k → a · b2 · c3,

−j → a · b2 · c,
−k → a · b2 · c3;
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FIGURE 4.1: Diagram of a typical homomorphism

we have only to define F (i) and F (j). This is done with the HomoDef com-
mand.

HomoDef(F, i, c^2)

HomoDef(F, j, a*b^2*c)

Sage can check whether this function can be expanded to form a homomor-
phism by the command

FinishHomo(F)

’Homomorphism defined’

This shows that the function F is indeed a homomorphism. The command

GraphHomo(F)

will draw a picture of this homomorphism as shown in Figure 4.1.

We can apply a homomorphism f to a set of elements by applying the
homomorphism to each element in the set, and consider the set of all possible
results. For example, consider the set of real numbers S = {−2,−1, 1, 2, 3, 4}.
Let f(x) be the homomorphism in Example 4.3 above, f(x) = x2. Then

f(S) = {1, 4, 9, 16}.

The set f(S) is smaller than the set S, since the homomorphism mapped two
elements to both 1 and 4.

To apply the homomorphism to a set of elements in Sage, we can use the
Image command using a list for the second argument.
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Image(F, [i, k, -i, -k])

{c^2, a*b^2*c^3}
Image(F, [1, i, -1, -i])

{e, c^2}

In the last example, we see the image of a subgroup of Q being a subgroup
of the octahedral group. It is not hard to prove that this will be the case in
general.

PROPOSITION 4.5

If f : G→M is a homomorphism and H is a subgroup of G, then f(H) is a
subgroup of M .

PROOF: We want to show that f(H) is a subgroup using Proposition 2.2. If
u and v are elements in f(H), there must be elements x and y in H such that
f(x) = u, and f(y) = v.

Then x · y−1 is in H, and so

f(x · y−1) = f(x) · f(y−1) = f(x) · [f(y)]−1 = u · v−1

is in f(H). So by Proposition 2.2, f(H) is a subgroup of M .

DEFINITION 4.3 If
f : G→M

is a homomorphism, then the group f(G) is called the range, or image of the
homomorphism f . We denote this set by

Im(f).

We can also consider taking the inverse homomorphism f−1 of an element
or a set of elements. Because homomorphisms are not always one-to-one,
f−1(x) may not represent a single element. Thus, we will define f−1(x) to be
the set of numbers such that f(y) = x. Likewise, we define

f−1(S) = {y | f(y) ∈ S}.

We can use Sage’s HomoInv command to take the inverse homomorphism
of an element or set of elements.

HomoInv(F, c^2)

{-i, i}

finds F−1(c2), whereas

HomoInv(F, [a, b, a*b^2*c])

{-j, j}
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finds the inverse of a set of elements. Note that not all of the elements in
the set have to be in the image of F . There is one inverse image that is very
important.

DEFINITION 4.4 If f is a homomorphism from G to M and e is the
identity element of M , then we define the kernel of f to be the set

Ker(f) = f−1(e).

The command

Kernel(F)

{-1, 1}
can be used to find the kernel of a homomorphism.

PROPOSITION 4.6

If f is a homomorphism from G to M , then the kernel of f is a normal
subgroup of the domain G.

PROOF: First we need to show that the kernel of f is a subgroup of G.
If e is the identity element of M , and if a and b are two elements of Ker(f),
then

f(a · b−1) = f(a) · f(b)−1 = e · e−1 = e,

so a · b−1 is also in the kernel of f . Thus, by Proposition 2.2, Ker(f) is a
subgroup.

Now let us show that Ker(f) is a normal subgroup of G. Let a be an element
in Ker(f), and g be any element in G. Then by Proposition 3.4, since

f(g · a · g−1) = f(g) · f(a) · f(g−1) = f(g) · e · [f(g)]−1 = e,

g · a · g−1 is in Ker(f), and so Ker(f) is a normal subgroup.

Figure 4.1 is very suggestive. The inverse image of any element is a coset
of {−1, 1}. The next proposition explains why this is so.

PROPOSITION 4.7

Let f be a homomorphism from the group G to the group M . Suppose that y
is in the image of f , and that f(x) = y. Then

f−1(y) = x ·Ker(f).

PROOF: First let us consider an element z ∈ x · Ker(f). Then z = x · k
for some element k in the kernel of f . Therefore,

f(z) = f(x · k) = f(x) · f(k) = f(x) · e = f(x)
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since k is in Ker(f). Here, e is the identity element of M . But f(x) = y, and
so z ∈ f−1(y). Thus we have proved that

f−1(y) ⊆ x ·Ker(f).

To prove the inclusion the other way, note that if z ∈ f−1(y), then f(z) = y,
and so we have

f(x−1 · z) = f(x)−1 · f(z) = y−1 · y = e.

Thus, x−1 · z is in the kernel of f , and since z = x · (x−1 · z) ∈ x ·Ker(f), we
have

x ·Ker(f) ⊆ f−1(y).

We now have a quick way to determine if a homomorphism is an isomor-
phism.

COROLLARY 4.1

Let f : G → M be a homomorphism. Then f is an injection (one-to-one) if,
and only if, the kernel of f is the identity element of G.

PROOF: If f is an injection, clearly the kernel would just be the identity
element. Suppose that the kernel is just the identity. Then Proposition 4.7
states that if h is in the image of f , then f−1(h) consists of exactly one
element. Therefore, f is one-to-one.

In particular, if the image of a homomorphism f : G→M is all of M , and
the kernel is {e}, then G ≈M .

We can also consider what happens if we take the inverse image of a sub-
group.

COROLLARY 4.2

Let f : G → M be a homomorphism. Let H be a subgroup of M . Then
f−1(H) is a subgroup of G. Furthermore, if H is a normal subgroup of M ,
then f−1(H) is a normal subgroup of G.

PROOF: Let x and y be in f−1(H). Then since f(x · y−1) = f(x) · f(y)−1,
which is in H, we have that x · y−1 is in f−1(H). Thus, by Proposition 2.2,
f−1(H) is a subgroup of G.

Now suppose that H is a normal subgroup of M . Then if y is in f−1(H),
and g is in G, then f(g · y · g−1) = f(g) · f(y) · f(g)−1. Since f(y) is in H,
which is normal inM , we have that f(g) ·f(y) ·f(g)−1 is in H. Thus, g ·y ·g−1

is in f−1(H), and so by Proposition 3.4, f−1(H) is normal in G.

We are now in a position to show how homomorphisms can be used to reveal
relationships between different groups. There are three such relationships to
be revealed, and these are covered in the next section.
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Problems for §4.2

1 If φ is a homomorphism from an abelian group G to a groupM , show that
Im(φ) is abelian.

2 If φ is a homomorphism from a cyclic group G to a group M , show that
Im(φ) is a cyclic group.

3 Let Z be the group of integers using addition. Show that the function
φ(x) = 2x is a homomorphism from Z to itself. What is the image of this
homomorphism? What is the kernel?

4 Let Z be the group of integers using addition. Show that the function
φ(x) = −x is a homomorphism from Z to itself. Show that this mapping is in
fact one-to-one and onto.

5 Let Z be the group of integers using addition. Show that the function
φ(x) = x+ 3 is not a homomorphism from Z to itself.

6 Let R∗ denote the group of nonzero real numbers, using multiplication as
the operation. Let φ(x) = x6. Show that φ is a homomorphism from R∗ to
R∗. What is the kernel of this homomorphism? What is the image of the
homomorphism?

7 Let R∗ denote the group of nonzero real numbers, using multiplication as
the operation. Let φ(x) = 2x. Show that φ is not a homomorphism from R∗

to R∗.

8 Let R∗ denote the group of nonzero real numbers, using multiplication as
the operation. Recall that R is the group of real numbers using addition for
the operation. Let φ(x) = ln |x|. Show that φ is a homomorphism from R∗ to
R. What is the kernel of this homomorphism?

9 Let R∗ denote the group of nonzero real numbers, using multiplication as
the operation. Recall that R is the group of real numbers using addition for
the operation. Let φ(x) = ex. Show that φ is a homomorphism from R to R∗.
What is the image of this homomorphism?

10 Let R[t] denote the group of all polynomials in t with real coefficients
under addition, and let φ denote the mapping φ(f) = f ′, which sends each
polynomial to its derivative. Show that φ is a homomorphism from R[t] to
R[t]. What is the kernel of φ?

11 Let R[t] denote the group of all polynomials in t with real coefficients
under addition. Prove that the mapping from R[t] into R given by f(t) → f(3)
is a homomorphism. Give a description of the kernel of this homomorphism.
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12 Find a homomorphism φ from Z∗
15 to Z∗

15 with kernel {1, 11} and with
φ(2) = 7.

13 Find a homomorphism φ from Z∗
30 to Z∗

30 with kernel {1, 11} and with
φ(7) = 13.

14 Find a homomorphism φ from Z∗
32 to Z∗

32 with φ(7) = 1 and φ(11) = 9.

15 Find a homomorphism from the quaternion group Q onto Z∗
8 .

Hint: The kernel must be a normal subgroup of order 2. See Table 4.3 for
a multiplication table of Q.

16 Let k be a divisor of n. Show that the mapping φ(x) = x (mod k) is a
homomorphism from Z∗

n to Z∗
k . Find a formula for the number of elements in

the kernel.

17 Let f : G→M be a homomorphism from a finite group G onto M , and
let f−1(H) be the subgroup from Corollary 4.2. Show that the size of this
subgroup is |H | · |Kerf |.
18 Let f : G → M be a homomorphism from G onto M , and let H be a
normal subgroup of G. Prove that f(H) is a normal subgroup of M .

Interactive Problems

19 Define Terry’s group in Sage with the command

Terry = InitTerry()

and then define the group S3.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^3, e)

Define(b*a, a*b^2)

S3 = ListGroup()

Now define an isomorphism F from S3 to Terry’s group. Use Sage’s Finish-
Homo to verify that your function is a homomorphism. Finally, find the kernel
of F to prove that F is an isomorphism.

20 Use Sage to find all of the homomorphisms from S3 to itself. Label these
homomorphisms F1, F2, F3, etc. How many of these are isomorphisms? The
following reloads S3 into Sage:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^3, e)

Define(b*a, a*b^2)

S3 = ListGroup()



136 Abstract Algebra: An Interactive Approach

4.3 The Three Isomorphism Theorems

We have seen in the last section that the kernel K of a homomorphism is
always a normal subgroup of the domain G. Furthermore, Proposition 4.7
proves what is suggested by Figure 4.1, that the inverse image of any element
is essentially a coset of K. Hence, the inverse image f−1(y) can be considered
as an element of the quotient group G/K. This leads us to the first of three
very useful theorems for finding isomorphisms between groups.

THEOREM 4.1: The First Isomorphism Theorem

Let f : G→ M be a homomorphism with Ker(f) = K, and Im(f) = I. Then
there is a natural isomorphism

φ : I → G/K

which is onto. Thus, I ≈ G/K.

PROOF: Note that this theorem states more than just I ≈ G/K, but also
that there is a natural isomorphism between these two groups. This isomor-
phism is given by

φ(h) = f−1(h).

Proposition 4.7 states that whenever h is in the image of f , f−1(h) is a
member of the quotient group G/Ker(f). Thus, φ : I → G/K is properly
defined.

Let us show that the mapping φ is one-to-one. Suppose φ(x) = φ(y) for two
different elements of I. Then f(φ(x)) = f(φ(y)). But f(φ(x)) = f(f−1(x)) is
the set containing just the element x, and also f(φ(y)) is the set containing
just the element y. Thus, x = y, and we have shown that φ is one-to-one.

Now let us show that φ is onto. If xK is an element of G/K, then f(x) ∈ I.
Thus,

x ∈ f−1(f(x)) = φ(f(x)) ∈ G/K.

So we have that x is an element of both cosets xK and φ(f(x)). Since two
different cosets have no elements in common, we must have φ(f(x)) = xK.
We therefore have that any coset in G/K is mapped by φ from an element in
I, so φ is onto.

Finally, we want to show that φ is a homomorphism. That is, we wish to
show that

f−1(v) · f−1(w) = f−1(v · w).

Let x ∈ f−1(v) and y ∈ f−1(w). Then f(x) = v and f(y) = w, so we have

f(x · y) = f(x) · f(y) = v · w.
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Hence,
x · y ∈ f−1(v · w).

Since f−1(v) ·f−1(w) and f−1(v ·w) are two cosets in G/K, and both contain
the element x · y, they must be the same coset. So we have that

φ(v) · φ(w) = φ(v · w).

This theorem says that whenever we have a homomorphism f from G toM
with an image I, then we get a natural isomorphism φ from I to G/Ker(f).

This suggests that there ought to be a mapping that goes directly from G
to G/Ker(f) without involving the homomorphism f . The next proposition
shows how this can be done.

PROPOSITION 4.8

Let G be a group, and N be a normal subgroup of G. Then there is a natural
homomorphism

iN : G→ G/N

given by iN (a) = a ·N. This homomorphism is surjective, and Ker(iN ) = N.

PROOF: To show that iN is a homomorphism, we note that if a and b are
elements of G, then

iN(a · b) = a · b ·N = a ·N · b ·N = iN(a) · iN (b).

Also, iN is clearly surjective. To find the kernel of iN , we note that the
identity element of G/N is eN = N, and so x is in the kernel if, and only if,

iN (x) = N ⇐⇒ x ·N = N ⇐⇒ x ∈ N.

Therefore, the kernel of iN is N.

We call the homomorphism iN the canonical homomorphism associated with
N. We can make a diagram of this homomorphism, along with the homomor-
phisms f and φ, to produce Figure 4.2.

Notice that we now have two ways of getting from G to G/Ker(f), one
route though the canonical homomorphism, and the other route through f
and φ. Yet we have drawn this diagram to indicate that φ(f(x)) = iN(x) for
all elements in G. Thus, the two routes from G to G/Ker(f) produce the same
function. We express this fact by saying that the diagram is commutative.
In other words, for a commuting diagram, the functions defined by two paths
with the same beginning and ending points produce the same composition
function. In this diagram there are arrows going in both directions for the
function φ to indicate that this is an isomorphism, hence invertible. Hence, by
the commuting diagram, we also have the result φ−1(iN(x)) = f(x). We will
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FIGURE 4.2: Commuting diagram for first isomorphism theorem

later be able to visualize many theorems about homomorphisms by means of
commuting diagrams.

We observed in §3.3 that the product of two subgroups H and K was not
necessarily a subgroup. However, it is possible that if one of the groups is
normal, then indeed the product H ·K would be a subgroup. (In fact, this
was proven in Problem 15 of §3.3.) Let us try it on the octahedral group.

Motivational Example 4.7

Explore the product of two subgroups of the octahedral group, one of which
is normal.

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^2, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

M = Group(a*b^2*c, c^2)

{e, a*b^2*c, c^2, a*b^2*c^3}
H = Group(c); H

{e, c^2, c, c^3}
L = Conform(H * M, G); L

{e, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3, c^3}

The purpose of the Conform in the last statement is to put all of the elements
of H ·M in the form in which they appear in the group G. Sage can verify
that these 8 elements form a subgroup. What happens if we try multiplying
H and M in the other order?

Conform(M * H, G)

{e, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3, c^3}

We discovered that not only is H ·M a subgroup, but also M ·H is exactly
the same as H ·M .
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It is not hard to see the connection between these two facts.

LEMMA 4.2

Suppose H and K are two subgroups of G. Then H ·K is a subgroup if, and
only if,

H ·K = K ·H.

PROOF: First suppose that H ·K is a subgroup. Let h ∈ H and k ∈ K. We
wish to show that the element h · k in H ·K is also in K · H. Since H ·K
is a subgroup, (h · k)−1 is in H ·K. Thus, (h · k)−1 = x · y for some x ∈ H
and y ∈ K. But then, h · k = (x · y)−1 = y−1 · x−1, and y−1 · x−1 is in K ·H.
Thus,

H ·K ⊆ K ·H.

By a similar argument, the inverse of any element in K ·H must be in H ·K,
and so K ·H ⊆ H ·K. Therefore, we have H ·K = K ·H.

Now, let us suppose that H ·K = K ·H. We want to show that H ·K is a
subgroup. Let h1, h2 ∈ H and k1, k2 ∈ K so both h1 ·k1 and h2·k2 are elements
of H ·K. By Proposition 2.2, it is enough to show that (h1 · k1) · (h2 · k2)−1

is in H ·K. But (k1 · k−1
2 ) · h−1

2 is in K · H = H ·K, and so there must be
two elements h3 ∈ H and k3 ∈ K such that (k1 · k−1

2 ) · h−1
2 = h3 · k3. Then

we have

(h1 · k1) · (h2 · k2)−1 = h1 · k1 · k−1
2 · h−1

2 = (h1 · h3) · k3

which is in H ·K. Thus, H ·K is a subgroup if, and only if, H ·K = K ·H.

We are now in a position to show that H · K is a subgroup if one of the
subgroups H or K is normal.

LEMMA 4.3

If H is a subgroup of G, and N is a normal subgroup of G, then H · N is a
subgroup of G.

PROOF: If h ∈ H and n ∈ N, then h · n · h−1 is in N, since N is normal.
Then

h · n = (h · n · h−1) · h

is in N ·H. Thus, H ·N ⊆ N ·H.
By a similar argument N ·H ⊆ H ·N, so H ·N = N ·H. Therefore, H ·N

is a group by Lemma 4.2.

Since we have found a new subgroup ofG that contains the normal subgroup
M , the natural question is whether it is a normal subgroup. We can try to
find the left and right cosets of H ·M from Example 4.7.
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LftCoset(G, H * M)

{{e, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3, c^3},
{a, b^2, b^2*c, a*c^2, a*c, b^2*c^2, b^2*c^3, a*c^3},
{b, a*b*c, b*c^2, a*b, a*b*c^3, b*c, a*b*c^2, b*c^3}}

RtCoset(G, H * M)

{{e, a*b^2, a*b^2*c, c^2, c, a*b^2*c^2, a*b^2*c^3, c^3},
{b, a, a*b*c, b*c^2, b^2*c, a*c^2, a*b*c^3, b^2*c^3},
{b^2, a*b, a*c, b^2*c^2, b*c, a*b*c^2, a*c^3, b*c^3}}

We see that these are not the same, so in general, H · N is not a normal
subgroup if only N is normal. (Note that if both H and N were normal, then
Problem 17 of §3.3 shows that H ·N is normal.)

But would M be a normal subgroup of H ·M?

LftCoset(L, M)

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}
RtCoset(L, M)

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}
We can quickly see in this case it is normal, since M contains half of the
elements of H ·M . But we can prove that this will happen in general, using
the fact that H ·M is a subgroup of G.

LEMMA 4.4

Let N be a normal subgroup of G, and suppose that H is a subgroup of G
which contains N. Then N is a normal subgroup of H.

PROOF: Since N is a group, and is contained in H, N is a subgroup of
H. For any x in H, we have that

x ·N · x−1 = N

since x is also in G. Therefore, by Proposition 3.4, N is a normal subgroup
of H.

Given two subgroups of a group G, there is another way of forming a new
subgroup. Proposition 2.3 tells us that the intersection of two subgroups will
again be a subgroup. Recall that the Sage command

R = Intersection(H, M); R

{e, c^2}
finds the intersection of two subgroups. If, as in Lemma 4.3, one of the two
subgroups is normal, we have the following.

LEMMA 4.5

If N is a normal subgroup of G, and H is a subgroup of G, then

H ∩N



Mappings between Groups 141

is a normal subgroup of H.

PROOF: Given elements h ∈ H and x ∈ H ∩ N, we note that since x is
in N, which is a normal subgroup of G, h · x · h−1 is in N. Also, x is in H, so
h · x · h−1 is in H. Thus,

h · x · h−1 ∈ H ∩N,

and so by Proposition 3.4, the intersection is a normal subgroup of H.

We can ask whether there is a relationship between the two quotient groups
H/(H ∩N) and (H ·N)/N. We can calculate both quotient groups in Sage.

LftCoset(H, R)

{{e, c^2}, {c, c^3}}
LftCoset(L, M)

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}

Notice that each coset in (H ·M)/M contains one of the cosets from H/R. In
fact, if we threw out all elements in a coset of (H ·M)/M that were not an
element of H, we would get a coset of H/R. This provides us the mechanism
to prove the isomorphism.

THEOREM 4.2: The Second Isomorphism Theorem

Suppose that N is a normal subgroup of G, and that H is a subgroup of G.
Then

H/(H ∩N) ≈ (H ·N)/N.

PROOF: By Lemma 4.3, H · N is a subgroup, and by Lemma 4.4, N is a
normal subgroup of H ·N. Also, by Lemma 4.5, H ∩N is a normal subgroup
of H, and so both of the quotient groups are defined.

We will use the two homomorphisms

i : H → H ·N

f : H ·N → (H ·N)/N

where i is the identity mapping i(h) = h, and f is the canonical homomor-
phism.

We can now consider the combination of the two,

f(i(h)) : H → (H ·N)/N.

Let us call the composition function ψ(h) = f(i(h)). We want to find the
kernel of ψ, for then we can use the first isomorphism theorem (4.1). If we let
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FIGURE 4.3: Commuting diagram for second isomorphism theorem

e denote the identity element of (H ·N)/N, then

h ∈ Ker(ψ) ⇐⇒ f(i(h)) = e

⇐⇒ i(h) ∈ Ker(f) = N

⇐⇒ h ∈ N and h ∈ H

⇐⇒ h ∈ H ∩N.

So by the first isomorphism theorem (4.1), we have

(H ·N)/N ≈ H/(H ∩N).

We can describe the second isomorphism theorem (4.2) pictorially through
the diagram in Figure 4.3, which is commutative according to the first iso-
morphism theorem (4.1): Note that this diagram demonstrates that

|H |/|H ∩N | = |H ·N |/|N |.

In fact, we can show that |H |/|H ∩N | = |H ·N |/|N | even when neither of
the groups H nor N is a normal subgroup.

PROPOSITION 4.9

Let H and K be two subgroups of a finite group G. Then the number of
elements in the product H ·K is given by

|H ·K| = |H | |K|
|H ∩K| .

PROOF: Even though H · K may not be a group, it still makes sense to
consider the set of left cosets (H · K)/K. A typical left coset belonging to
(H ·K)/K would be h · k ·K, where h is an element of H, and k is an element
of K. By Lemma 3.1, all cosets contain |K| elements, and by Lemma 3.2 two
cosets would intersect if, and only if, they are equal. Thus the elements of
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H ·K are distributed into non-overlapping cosets, each having |K| elements.
Thus, the number of cosets in (H ·K)/K is

|(H ·K)/K| = |H ·K|
|K| .

Likewise, we have

|H/(H ∩K)| = |H |
|H ∩K| .

Thus, if we can show that |H/(H ∩K)| = |(H ·K)/K|, we will have proven
the proposition. Let us define a mapping (not a homomorphism) that will
relate the elements of these two sets. Let

φ : (H ·K)/K → H/(H ∩K)

be defined by

φ(h ·K) = h · (H ∩K).

To see that this is well defined, note that if h1 ·K = h2 ·K for two elements
h1 and h2 in H, then h−1

2 ·h1 ·K = K, so h−1
2 ·h1 must be in K. But h−1

2 ·h1
is also in H, hence in the intersection. Thus,

h2 · (H ∩K) = h2 · (h−1
2 · h1) · (H ∩K) = h1 · (H ∩K).

So we see that if h1 ·K = h2 ·K, then φ(h1 ·K) = φ(h2 ·K), and the function
φ is well defined.

On the other hand, if h1 · (H ∩K) = h2 · (H ∩K), then h−1
2 ·h1 would have

to be in the intersection of H and K. So then, h1 ·K = h2 ·K. Hence the
mapping is one-to-one. It is clear that the mapping is also surjective, so φ is
a bijection, and the proposition is proved.

If we consider a group with two normal subgroups, one of which is a sub-
group of the other, we begin to see more patterns. Let us reload the octahedral
group, and look at two normal subgroups.

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^2, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

G = ListGroup()

Motivational Example 4.8

The octahedral group has two non-trivial normal subgroups, one being the
subgroup of the other. Explore the possible quotient groups.

The two normal subgroups this is referring to are
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M = Group(a*b^2*c, c^2); M

{e, a*b^2*c, c^2, a*b^2*c^3}
H = Group(b, c^2)

H = Conform(H, G); H

{e, b, a*b^2*c, c^2, b^2, a*b*c, b*c^2, a*b^2*c^3, a*c,

b^2*c^2, a*b*c^3, a*c^3}

The first normal subgroup we have seen before. The latter subgroup H has
12 elements, so by Proposition 3.5, H is a normal subgroup.

Since both H and M are normal subgroups, we can consider two different
quotient groups.

Q1 = RtCoset(G, H); Q1

{{e, b, a*b^2*c, c^2, b^2, a*b*c, b*c^2, a*b^2*c^3, a*c,

b^2*c^2, a*b*c^3, a*c^3}, {a*b^2, a, c, a*b^2*c^2, a*b,

b^2*c, a*c^2, c^3, b*c, a*b*c^2, b^2*c^3, b*c^3}}
Q2 = RtCoset(G, M); Q2

{{e, a*b^2*c, c^2, a*b^2*c^3}, {a, b^2*c, a*c^2, b^2*c^3},
{b, a*b*c, b*c^2, a*b*c^3}, {a*b, b*c, a*b*c^2, b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}, {a*b^2, c, a*b^2*c^2, c^3}}

At this point there doesn’t seem to be much connection between these. But
notice that M is also a subgroup of H. By Lemma 4.4, M will be a normal
subgroup of H. This gives us a third quotient group to consider:

Q3 = RtCoset(H, M); Q3

{{e, a*b^2*c, c^2, a*b^2*c^3}, {b, a*b*c, b*c^2, a*b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}}

Note thatH/M will be a subgroup of G/M . Could this be a normal subgroup?
In the case we are looking at, Q3 = H/M contains half of the elements of Q2
= G/M , so it is normal, giving us a fourth quotient group:

Q4 = LftCoset(Q2, Q3)

Q4 = Conform(Q4, G); Q4

{{{e, a*b^2*c, c^2, a*b^2*c^3}, {b, a*b*c, b*c^2, a*b*c^3},
{b^2, a*c, b^2*c^2, a*c^3}}, {{a*b^2, c, a*b^2*c^2, c^3},
{a, b^2*c, a*c^2, b^2*c^3}, {a*b, b*c, a*b*c^2, b*c^3}}}

Before we try to interpret this mess, let us first see why H/N will be a
normal subgroup of G/N in general.

LEMMA 4.6

If H and N are normal subgroups of G, and if N is a subgroup of H, then
H/N is a normal subgroup of G/N.
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PROOF: From Lemma 4.4, N is a normal subgroup of H. A typical ele-
ment of G/N is gN, where g is an element of G. A typical element of H/N
is hN, where h is an element of H. Thus, H/N is contained in G/N, and so
H/N is a subgroup of G/N.

To show that H/N is in fact a normal subgroup of G/N, we will use Propo-
sition 3.4. That is, we will see if

(gN) · (hN) · (gN)−1

will always be in H/N. But this simplifies to (g · h · g−1) ·N, and g · h · g−1

is in H since H is a normal subgroup of G. Therefore, (g · h · g−1) · N is in
H/N, and hence H/N is a normal subgroup of G/N.

The “quotient group of quotient groups” Q4 = (G/N)/(H/N) is a list con-
taining two lists, each of which contains several lists of elements. If this is
too many nested lists for you to handle, imagine what would happen if we
removed the innermost curly brackets. This would simplify the output to
just a list of two lists, each of which contains 12 elements. But by looking
carefully, we can see that we would get exactly Q1. We can use the canonical
homomorphisms as a tool to strip away these inside-level brackets.

THEOREM 4.3: The Third Isomorphism Theorem

Let H and N be normal subgroups of G, and let N be a subgroup of H. Then

(G/N)/(H/N) ≈ G/H.

PROOF: We will use the example to guide us in finding a mapping from
(G/N)/(H/N) to a set of elements in G. We have a canonical mapping from
G to G/N, and another canonical mapping from G/N to (G/N)/(H/N). Let
us call these mappings φ and f , respectively.

For an element x in G, the composition homomorphism f(φ(x)) gives the
element of (G/N)/(H/N) that contains x somewhere inside of it. Let us call
this composition homomorphism ψ. Since f and φ are both surjective, the
composition ψ(x) = f(φ(x)) is surjective. Thus, the inverse of this homo-
morphism, ψ−1(y), gives a list of elements of G that are somewhere inside of
the element y. This inverse is the mapping that removes the interior curly
brackets. We only need to check that this is in fact a coset of G/H. Let us
determine the kernel of the composition homomorphism ψ(x).

Note that if x is in G, and e is the identity element of (G/N)/(H/N), then

x ∈ Ker(ψ) ⇐⇒ f(φ(x)) = e

⇐⇒ φ(x) ∈ Ker(f) = H/N

⇐⇒ x ∈ φ−1(H/N) = H.

Therefore, the kernel of the composition ψ is H, and so from the first isomor-
phism theorem (4.1),

(G/N)/(H/N) ≈ G/H.
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FIGURE 4.4: Commuting diagram for third isomorphism theorem

We can describe the third isomorphism theorem visually by the diagram in
Figure 4.4. Since H is the kernel of the composition homomorphism

f(φ) : G→ (G/N)/(H/N)

we have by the first isomorphism theorem that this diagram commutes.
The three isomorphism theorems work not only for groups, but many other

objects as well, such as the rings we will study in Chapter 9. Because the
same theorems apply to many different types of objects, an abstraction of
these theorems can be made that would apply to any object for which there
are natural mappings defined, called morphisms. This introduces a rich field
called category theory. Although category theory is another level of abstrac-
tion beyond group theory, there are applications in physics and computer
languages.

Problems for §4.3

For Problems 1 through 8: Find, up to isomorphism, the possible homomor-
phic images of the following groups. That is, for all possible homomorphisms
from G to G′, what possible images could the homomorphism have?

1 Z10.
2 Z12.
3 Z∗

15.
4 D4

5 Q
6 S3

7 Z∗
24

8 The octahedral group (See Example 4.8.)

9 Prove that the homomorphic image of a cyclic group is cyclic.

10 Find all of the homomorphisms from Z4 to Z∗
8 .

11 Find all of the homomorphisms from Z∗
8 to S3.

12 Prove that there can be no nontrivial homomorphisms from S3 to Z3.
Hint: What are the normal subgroups of S3?
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13 Suppose that there is a homomorphism from a finite group G onto Z6.
Prove that there are normal subgroups of G with index 2 and 3.

14 Let X , Y , and Z be three subgroups of a finite group G, with Y normal.
Use Proposition 4.9 to find a formula for the number of elements in X · Y ·Z.

15 Suppose that H and K are distinct subgroups of G of index 2. Prove
that H ∩K is a normal subgroup of G of index 4 and that G/(H ∩K) ≈ Z∗

8 .
Hint: Use the second isomorphism theorem.

16 Demonstrate the third isomorphism theorem using the subgroups {e, a2}
and {e, a, a2, a3} from D4.

17 Demonstrate the third isomorphism theorem using the subgroups {1, 4}
and {1, 2, 4, 8} from Z∗

15.

18 Prove or disprove: If H and N are two normal subgroups of G, with N
a subgroup of H, then

(G/N)/(G/H) ≈ H/N.

Interactive Problems

19 Use Sage to find a non-trivial homomorphism from the octahedral group
to Q. (Hint: According to the first isomorphism theorem, what could the
image be?)

20 Use Sage to find a homomorphism from the octahedral group onto S3.
(Hint: Use the first isomorphism theorem to determine what the kernel must
be.)
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Chapter 5

Permutation Groups

Although we have defined a group abstractly, they were not always defined in
this way. When Galois introduced the term groupe, he only referred to a subset
of permutations that was closed under multiplication. Hence, he only was
considering the subgroups of a special type of group, known as permutation
groups . However, with these permutation groups, he was able to prove that
most fifth-degree polynomials cannot be solved in terms of roots. Hence,
permutation groups have historically been at the core of abstract algebra.

5.1 Symmetric Groups

This section will introduce the notation for an important class of groups,
known as the permutation groups or the symmetric groups,. Although at first
they seem like a small number of examples of groups, in fact we will see that
every finite group is isomorphic to a subgroup of these symmetric groups. So
by studying these groups, by proxy we are studying all finite groups.

We have already seen one example of a symmetric group, S3. We can easily
generalize this group, and consider the group of all permutations of n objects.
For example, with four books the beginning position would be
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There are six Sage operations that rearrange these books.

MoveBooks(First) swap the first two books.
MoveBooks(Last) swap the last two books.

149
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MoveBooks(Left) move the first book to the end,
sliding the other books to the left.

MoveBooks(Right) move the last book to the beginning,
sliding the other books to the right.

MoveBooks(Rev) reverse the order of the books.
MoveBooks(Stay) leave the books as they are.

For three books, any permutation can be obtained by just one of these six
commands. But with four books it is a bit tricky to arrange the books in a
particular order. With even more books, it becomes very cumbersome. Let us
introduce a notation for a permutation of books that explicitly states where
each book ends up.

One natural way to do this is to number the books in consecutive order,
and determine the numbers in the final position. For example, if we put
the books in their original order, and then shift the books to the left with
MoveBooks(Left), we find that if the books started in 1, 2, 3, 4 order, the
final position will be 2, 3, 4, 1. We write the ending position below the starting
position, as follows.

(
1 2 3 4
2 3 4 1

)

.

We can multiply the permutations using the new notation. For example, to
calculate Left·Last, we have

(
1 2 3 4
2 3 4 1

)

·
(
1 2 3 4
1 2 4 3

)

=

(
1 2 3 4
2 3 1 4

)

.

On the other hand, Last·Left is given by
(
1 2 3 4
1 2 4 3

)

·
(
1 2 3 4
2 3 4 1

)

=

(
1 2 3 4
2 4 3 1

)

.

Obviously, Left·Last does not equal Last·Left.
We can also interpret each permutation as a function whose domain is a

subset of the integers. For example, the permutations f(x) =

(
1 2 3 4
2 3 1 4

)

and φ(x) =

(
1 2 3 4
2 3 4 1

)

can be thought of as two functions for which

f(1) = 2 φ(1) = 2

f(2) = 3 φ(2) = 3

f(3) = 1 φ(3) = 4

f(4) = 4 φ(4) = 1.

Note that f(x) appears directly below x in the permutation

(
1 2 3 4
2 3 1 4

)

.

The product of the permutations is the same as the composition of the two
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functions. Thus, f · φ would be

f(φ(1)) = f(2) = 3

f(φ(2)) = f(3) = 1

f(φ(3)) = f(4) = 4

f(φ(4)) = f(1) = 2.

Thus, the composition function f(φ(x)), that is, of doing φ first, and then f ,

is f · φ = f(φ(x)) =

(
1 2 3 4
3 1 4 2

)

.

There is something curious here. When we view permutations as ways to
rearrange a set of objects, such as books, the permutations are multiplied from
left to right, which is the natural order. But when we view permutations as
functions, the permutations are multiplied from right to left, which is again
the natural order for function composition.

DEFINITION 5.1 For the set {1, 2, 3, . . .n}, we define the group of per-
mutations on the set by Sn. That is, Sn is the set of functions that are
one-to-one and onto on the set {1, 2, 3, . . .n}. The group operation is function
composition.

To enter a permutation into Sage, only the bottom line is needed. A per-
mutation in Sn can be entered as

P (x1, x2, x3, . . . , xn),

where x1, x2, x3, . . . xn are distinct integers ranging from 1 to n. This permu-
tation corresponds to the function

f(1) = x1

f(2) = x2

f(3) = x3

. . .

f(n) = xn.

Thus the product

P(5,4,1,2,3) * P(4,3,5,1,2)

P(2, 1, 3, 5, 4)

yields P (2, 1, 3, 5, 4). On the other hand, multiplying these permutations in
the other order

P(4,3,5,1,2) * P(5,4,1,2,3)

P(2, 1, 4, 3)
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yields a different result.
Since the composition function maps 5 to itself, Sage drops the 5, treating

this as a permutation on four objects instead. Since all permutations in S4

can be expressed in terms of some combinations of the Left and Last book
rearrangements, we can find all of the elements of S4.

S4 = Group(P(2, 3, 4, 1), P(1, 2, 4, 3)); S4

{P(), P(2, 1), P(1, 3, 2), P(3, 1, 2), P(2, 3, 1), P(3, 2, 1),

P(1, 2, 4, 3), P(2, 1, 4, 3), P(1, 4, 2, 3), P(4, 1, 2, 3),

P(2, 4, 1, 3), P(4, 2, 1, 3), P(1, 3, 4, 2), P(3, 1, 4, 2),

P(1, 4, 3, 2), P(4, 1, 3, 2), P(3, 4, 1, 2), P(4, 3, 1, 2),

P(2, 3, 4, 1), P(3, 2, 4, 1), P(2, 4, 3, 1), P(4, 2, 3, 1),

P(3, 4, 2, 1), P(4, 3, 2, 1)}
len(S4)

24

Note that the identity element of S4 is denoted by P(), since the corresponding
function leaves all objects fixed. We can determine the size of the group Sn
in general, by counting the number of one-to-one and onto functions from the
set {1, 2, 3, . . . n} to itself. We have n choices for f(1), but then there will be
only n− 1 choices for f(2), n− 2 choices for f(3), and so on. Thus, the size
of the group Sn is given by

n · (n− 1) · (n− 2) · (n− 3) · · · 2 · 1.

This product is denoted by n!, read as “n factorial.” Table 5.1 gives a short
table for n!.

Both S4 and the octahedral group have 24 elements, so we could ask if
these two groups are isomorphic. The octahedral group can be reloaded by
the commands

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^3, e); Define(c^2, e)

Define(b*a, a*b^2); Define(c*a, a*b*c); Define(c*b, a*c^2)

Oct = ListGroup(); Oct

{e, a, b, a*b, b^2, a*b^2, c, a*c, b*c, a*b*c, b^2*c,

a*b^2*c, c^2, a*c^2, b*c^2, a*b*c^2, b^2*c^2, a*b^2*c^2,

c^3, a*c^3, b*c^3, a*b*c^3, b^2*c^3, a*b^2*c^3}

TABLE 5.1: n! for n ≤ 10

1! = 1 6! = 720
2! = 2 7! = 5040
3! = 6 8! = 40320
4! = 24 9! = 362880
5! = 120 10! = 3628800
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Let us begin by defining a homomorphism from the subgroup generated by
a and b to S3, since we know that this is an isomorphism.

F = Homomorph(Oct, S4)

HomoDef(F, a, P(2,1) )

HomoDef(F, b, P(2,3,1) )

FinishHomo(F)

’Homomorphism consistent, but not defined for the whole

domain.’

This shows that so far, the homomorphism is consistent. To finish this homo-
morphism we only need to define F (c). Since c must map to an element of
order 4, there are six possibilities. (See Problem 10.) A little trial and error
finds the right combination.

HomoDef(F, c, P(2,3,4,1) )

FinishHomo(F)

’Homomorphism defined.’

Next we want to see that F is an isomorphism by showing that the kernel of
F ,

Kernel(F)

{e}

is just the identity. Then by the pigeonhole principle, the image of F must
be all of S4, so G ≈ S4.

Sage can use the circle graphs on the set {1, 2, . . . , n} to visualize permu-
tations. For example,

CircleGraph([1,2,3,4,5], P(5,4,1,2,3))

produces the circle graph on the left side of Figure 5.1. The solid arrows
form a triangle that connects 1, 5, and 3, while the dotted “double arrow”
connects 2 and 4. So this circle graph reveals some additional structure to
the permutation that we will study later.

We can graph two or more permutations simultaneously. The command

CircleGraph([1,2,3,4,5], P(5,4,1,2,3), P(4,3,5,1,2))

produces the circle graph on the right of Figure 5.1. Here, the solid arrows
represent the permutation P (5, 4, 1, 2, 3), while the dotted arrows represent
P (4, 3, 5, 1, 2). If one imagines a permutation formed by traveling first through
a dotted arrow, and then through a solid arrow, one obtains the permutation
P (2, 1, 3, 5, 4), which is P (5, 4, 1, 2, 3) · P (4, 3, 5, 1, 2). Note that the arrows
are like functions, in that we apply the arrow of the second permutation first,
and then the arrow for the first permutation.

The inverse of a permutation can be found using Sage.
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FIGURE 5.1: Circle graphs for typical permutations

P(5,4,1,2,3)^-1

P(3, 4, 5, 2, 1)

The circle graph of the inverse permutation is similar to the circle graph
of P (5, 4, 1, 2, 3) except that all arrows are going in the opposite direction.
The product of a permutation and its inverse of course will yield the identity
element, denoted by P ( ) in Sage.

P(5,4,1,2,3) * P(3,4,5,2,1)

P()

Sage can also treat a permutation as a function,

P(5,4,1,2,3)(2)

4

showing that f(2) = 4. In spite of the simplicity of the notations for a
permutation, we will find that there is yet another notation that is even more
concise. We will study this in the next section.

Problems for §5.1

For Problems 1 through 8: Compute the following permutation products.

1

(
1 2 3 4 5
3 1 4 5 2

)

·
(
1 2 3 4 5
4 2 5 3 1

)

2

(
1 2 3 4 5
4 2 5 3 1

)

·
(
1 2 3 4 5
3 1 4 5 2

)

3

(
1 2 3 4 5 6
4 2 1 6 3 5

)

·
(
1 2 3 4 5 6
5 1 6 3 2 4

)

4

(
1 2 3 4 5 6
5 1 6 3 2 4

)

·
(
1 2 3 4 5 6
4 2 1 6 3 5

)
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5

(
1 2 3 4 5 6 7
2 6 3 7 1 4 5

)

·
(
1 2 3 4 5 6 7
6 1 7 2 4 3 5

)

6

(
1 2 3 4 5 6 7
6 1 7 2 4 3 5

)

·
(
1 2 3 4 5 6 7
2 6 3 7 1 4 5

)

7

(
1 2 3 4 5 6 7 8
7 3 8 1 4 6 5 2

)

·
(
1 2 3 4 5 6 7 8
3 7 4 2 8 1 5 6

)

8

(
1 2 3 4 5 6 7 8
3 7 4 2 8 1 5 6

)

·
(
1 2 3 4 5 6 7 8
7 3 8 1 4 6 5 2

)

9 Form a multiplication table of S3 using the permutation notation for the
elements. That is, use the elements

S3 =

{(
1 2 3
1 2 3

)

,

(
1 2 3
1 3 2

)

,

(
1 2 3
2 1 3

)

,

(
1 2 3
2 3 1

)

,

(
1 2 3
3 1 2

)

,

(
1 2 3
3 2 1

)}

.

10 Find the six elements of S4 that are of order 4.
Hint: All four of the numbers must move.

11 Find the eight elements of S4 that are of order 3.
Hint: One number must map to itself.

12 Find the nine elements of S4 that are of order 2.

13 Find a nontrivial element of S5 that commutes with the permutation

x =

(
1 2 3 4 5
4 2 3 5 1

)

.

14 Find a permutation x in S4 that solves the equation

x ·
(
1 2 3 4
1 3 4 2

)

=

(
1 2 3 4
4 1 3 2

)

· x.

(There are in fact three different answers.)

15 Find a permutation x in S5 that solves the equation

x ·
(
1 2 3 4 5
4 2 5 3 1

)

=

(
1 2 3 4 5
3 1 5 4 2

)

· x.

(There are in fact four different answers.)

16 Sage views the permutations
(
1 2 3 4 5
2 1 4 3 5

)

and

(
1 2 3 4
2 1 4 3

)

as being the same permutation, P (2, 1, 4, 3). But are these really the same?
If not, why can Sage use the same notation for these two elements?
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Interactive Problems

For Problems 17 through 20: Determine how the following permutations can
be expressed in terms of the book rearrangements First, Last, Left, Right,
and Rev.

17

(
1 2 3 4
1 3 2 4

)

18

(
1 2 3 4
4 2 3 1

)

19

(
1 2 3 4
3 1 4 2

)

20

(
1 2 3 4
2 4 1 3

)

5.2 Cycles

Although we have a notation for the elements of a permutation, it is not
very convenient. We would like a way to express the permutations in a way
that is easy to use, and more concise. The key to the new notation is to study
the cycle structure of a permutation.

In the circle graph for the permutation P (5, 4, 1, 2, 3), we saw that the
arrows connecting 1, 5, and 3 were of one color, while a different colored
arrow connected 2 and 4. By experimenting, we find that other permutations
such as P (4, 5, 2, 3, 1) have circle graphs with arrows of only one color, as in
Figure 5.2.

These arrows indicate that the permutation can be expressed by a single
chain

1 → 4 → 3 → 2 → 5 → 1.

Other permutations, such as P (2, 4, 1, 6, 5, 3), have every straight arrow of the
same color, even though there is one point (5) that maps to itself. We can
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FIGURE 5.2: Circle graph of a typical cycle
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still express this permutation as a single chain

1 → 2 → 4 → 6 → 3 → 1,

if we stipulate that all numbers that are not mentioned in the chain map to
themselves.

DEFINITION 5.2 Any permutation that can be expressed as a single
chain is called a cycle. A cycle that moves exactly r of the numbers is called
an r-cycle.

Let us introduce a concise notation for cycles. We can abbreviate a chain
such as

1 → 2 → 4 → 6 → 3 → 1,

to simply
(1 2 4 6 3).

This is called the cycle notation for the permutation. Each number in the
cycle is mapped to the next number. The last number in the cycle is mapped
to the first number. In general, the r-cycle

(i1 i2 i3 . . . ir)

represents the permutation that maps i1 to i2 , i2 to i3, etc., and finally ir
back to i1. Notice that

(i1 i2 i3 . . . ir)
−1 = (ir ir−1 . . . i3 i2 i1),

so the inverse of an r-cycle will always be an r-cycle. The identity element
can be written as the 0-cycle ( ).

A 1-cycle is actually impossible, since if one number is not fixed by a permu-
tation, then the number that it maps to cannot be fixed. Thus, a non-identity
permutation must move at least two numbers. We say that an r-cycle is a
nontrivial cycle if r > 1.

Most permutations cannot be written as a single chain. This is evident from
looking at the circle graph for the permutation P (5, 4, 1, 2, 3). However, the
two different types of arrows suggest that this permutation could be expressed
as two cycles, one that represents the triangle from 1 to 5 to 3, and back
to 1, and the other that exchanges 2 and 4. These two permutations are
P (5, 2, 1, 4, 3) and P (1, 4, 3, 2, 5). These two cycles multiply together to give
P (5, 4, 1, 2, 3). In fact, this product can be done in either order. If we write
these two permutations in cycle notation,

P (5, 2, 1, 4, 3) = (1 5 3), P (1, 4, 3, 2, 5) = (2 4),

we notice that there are no numbers in common between these two cycles.
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DEFINITION 5.3 Two cycles

(i1 i2 i3 . . . ir) and (j1 j2 j3 . . . js)

are disjoint if im 6= jn for any m and n. That is, there are no integers in
common between the two cycles.

LEMMA 5.1

Let x be an element of Sn that is not the identity. Then x can be written as
a product of nontrivial disjoint cycles. This representation of x is unique up
to the rearrangement of the cycles.

PROOF: Let us say that x fixes the integer i if x(i) = i. We will use in-
duction on the number of integers not left fixed by x, denoted by m. Because
x is not the identity, there is at least one integer not fixed by x. In fact, m
must be at least 2, for the first integer must have somewhere to go.

If m = 2, then only two numbers i1 and i2 are moved. Since these are the
only two integers not fixed, x must be a 2-cycle (i1 i2).

We now will assume by induction that the lemma is true whenever the
number of integers not left fixed by x is fewer than m. Let i1 be one integer
that is not fixed, and let i2 = x(i1). Then x(i2) cannot be i2 for x is one-
to-one, and if x(i2) is not i1, we define i3 = x(i2). Likewise, x(i3) cannot be
either i2 or i3, since x is one-to-one. If x(i3) is not i1, we define i4 = x(i3).

Eventually this process must stop, for there are only m elements that are
not fixed by x. Thus, there must be some value k such that x(ik) = i1. Define
the permutation y to be the k-cycle (i1 i2 i3 . . . ik). Then x · y−1 fixes all of
the integers fixed by x, along with i1, i2, i3, . . . , ik. By induction, x · y−1 can
be expressed by a series of nontrivial disjoint cycles c1 · c2 · c3 · · · ct. Moreover,
the integers appearing in c1 · c2 · c3 · · · ct are just those that are not fixed by
x · y−1. Thus, c1 · c2 · c3 · · · ct are disjoint from y. Finally, we have

x = y · c1 · c2 · c3 · · · ct.

Therefore, x can be written as a product of disjoint nontrivial cycles. By
induction, every permutation besides the identity can be written as a product
of nontrivial disjoint cycles.

For the uniqueness, suppose that a permutation x has two ways of being
written in terms of nontrivial disjoint cycles:

x = c1 · c2 · c3 · · · cr = d1 · d2 · d3 · · · ds.

For any integer i1 not fixed by x, one and only one cycle must contain i1.
Suppose that cycle is cj = (i1 i2 i3 . . . iq). But by the way we constructed
the cycles above, this cycle must also be one of the dk’s. Thus, each cycle
cj is equal to dk for some k. By symmetry, each dk is equal to cj for some
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j. Thus, the two ways of writing x in terms of nontrivial disjoint cycles are
merely rearrangements of the cycles.

Lemma 5.1 gives us a succinct way to express permutations. Sage uses the
notation

C(2,3,4,5)

to denote the cycle (2 3 4 5). We can multiply two cycles together,

C(2,3,4,5) * C(1,2,4)

(1, 3, 4)(2, 5)

forming the answer as a product of two disjoint cycles, expressed using only
parentheses. Note that when two cycles are disjoint, they are displayed with-
out the times sign between them. We call this the cycle decomposition of the
permutation. We can convert from the cycle notation to the permutation and
vice versa in Sage with the commands

CycleToPerm( C(1,3,4) * C(2,5) )

P(3, 5, 4, 1, 2)

PermToCycle( P(4,6,1,8,2,5,7,3) )

(1, 4, 8, 3)(2, 6, 5)

We may even mix the two notations in Sage within an expression, such as:

C(1,2,3) * P(3,1,2,5,4) * C(4,5)

()

Whenever Sage encounters a mixture like this, it puts the answer in terms of
cycles. In this case the result is the identity permutation, so Sage returns the
0-cycle ( ).

In Sage, we can create a circle graph of a cycle, or product of cycles, just
as we did for permutations. We can even treat a cycle as a function, as we
did for permutations. For example,

C(1,4,8,3)(3)

1

determines where the cycle (1 4 8 3) sends the number 3. However, to evaluate
a product of cycles at a given number, an extra pair of parentheses is needed:

(C(1,4,8,3)*C(2,6,5))(2)

6

We mentioned that there are no permutations that move just one element,
but the permutations that move exactly 2 elements will be important. We
will give these 2-cycles a special name.
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DEFINITION 5.4 A transposition is a 2-cycle (i1 i2), where i1 6= i2.

Observe that i1 can be any of the n numbers, and i2 can be any of the
remaining n − 1 numbers, but this counts each transposition twice, since
(i1 i2) = (i2 i1). Thus, there are

n(n− 1)

2
=
n2 − n

2

transpositions of Sn.

LEMMA 5.2

For n > 1, the set of transpositions in Sn generates Sn.

PROOF: We need to show that every element of Sn can be written as a
product of transpositions. The identity element can be written as (1 2)(1 2),
so we let x be a permutation that is not the identity. By Lemma 5.1, we can
express x as a product of nontrivial disjoint cycles:

x = (i1 i2 i3 . . . ir) · (j1 j2 . . . js) · (k1 k2 . . . kt) · · · · .

Now, consider the product of transpositions

(i1 i2) · (i2 i3) · · · (ir−1 ir) · (j1 j2) · (j2 j3) · · · (js−1 js) · (k1 k2) · · · (kt−1 kt) · · · · .

Note that this product is equal to x. (Recall that we are working from right
to left.) Therefore, we have expressed every element of Sn as a product of
transpositions.

Of course, a particular permutation can be expressed as a product of trans-
positions in more than one way. But an important property of the symmetric
groups is that the number of transpositions used to represent a given permu-
tation will always have the same parity; that is, even or odd. To show this,
we will first prove the following lemma.

LEMMA 5.3

The product of an odd number of transpositions in Sn cannot equal the identity
element.

PROOF: Since S2 only contains one transposition, (1 2), raising this to an
odd power will not be the identity element, so the lemma is true for the case
n = 2. So by induction we can assume that the lemma is true for Sn−1.
Suppose that there is an odd number of transpositions producing the iden-
tity in Sn. Then we can find such a product that uses the fewest number of
transpositions, say k transpositions, with k odd. At least one transposition
will involve moving n, since the lemma is true for Sn−1. Suppose that the
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mth transposition is the last one that moves n. If m = 1, then only the first
transposition moves n, so the product cannot be the identity. We will now use
induction on m. That is, we will assume that no product of k transpositions
can be the identity for a smaller m. But then the (m − 1)st and the mth

transpositions are one of the four possibilities

(nx)(nx), (nx)(n y), (x y)(nx), or (y z)(nx)

for some x, y, and z. In the first case, the two transpositions cancel, so we
can form a product using a fewer number of transpositions. In the other three
cases, we can replace the pair with another pair,

(nx)(n y) = (n y)(x y); (x y)(nx) = (n y)(x y); (y z)(nx) = (nx)(y z);

for which m is smaller. Thus, there is no odd product of transpositions in Sn
equaling the identity.

We can use this lemma to prove the following theorem.

THEOREM 5.1: The Signature Theorem

For the symmetric group Sn, define the function

σ : Sn → Z

by
σ(x) = (−1)N(x),

where N(x) is the minimum number of transpositions needed to express x as
a product of transpositions. Then this function, called the signature function,
is a homomorphism from Sn to the set of integers {−1, 1}.

PROOF: By Lemma 5.2, every element of Sn can be written as a product of
transpositions, so σ(x) is well defined. Obviously this maps Sn to {−1, 1},
so we only need to establish that this is a homomorphism. Suppose that
σ(x ·y) 6= σ(x) ·σ(y). Then N(x ·y)−(N(x)+N(y)) would be an odd number.
Since N(x−1) = N(x), we would also have N(x · y)+N(y−1)+N(x−1) being
an odd number. But then we would have three sets of transpositions, totaling
an odd number, which when strung together produce x · y · y−1 · x−1 = ( ).
This contradicts Lemma 5.3, so in fact σ(x · y) = σ(x) · σ(y) for all x and y
in Sn.

We can compute the signature function on both permutations and products
of cycles, using the Signature command.

Signature( P(4,3,5,1,2) )

-1

Signature( C(1,4,2,7)*C(6,7,3) )

-1
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The signature of an r-cycle will be −1 if r is even, and 1 if r is odd.

DEFINITION 5.5 A permutation is an alternating permutation or an
even permutation if the signature of the permutation is 1. A permutation is
an odd permutation if it is not even, that is, if the signature is −1. The set of
all alternating permutations of order n is written An.

COROLLARY 5.1

The set of all alternating permutations An is a normal subgroup of Sn. If
n > 1, then Sn/An is isomorphic to Z2.

PROOF: Clearly An is a normal subgroup of Sn, since An is the kernel of the
signature homomorphism. Also if n > 1, then Sn contains at least one trans-
position whose signature would be −1. Thus, the image of the homomorphism
is {−1, 1}. This group is isomorphic to Z2. Then by the first isomorphism
theorem (4.1), Sn/An is isomorphic to Z2.

PROPOSITION 5.1

For n > 2, the alternating group An is generated by the set of 3-cycles.

PROOF: Since every 3-cycle is a product of two transpositions, every 3-cycle
is in An. Thus, it is sufficient to show that every element in An can be ex-
pressed in terms of 3-cycles. We have already seen that any element can be
expressed as a product of an even number of transpositions. Suppose we group
these in pairs as follows:

x = [(i1 j1) · (k1 l1)] · [(i2 j2) · (k2 l2)] · · · · · [(in jn) · (kn ln)].

If we could convert each pair of transpositions into 3-cycles, we would have
the permutation x expressed as a product of 3-cycles. There are three cases
to consider:

Case 1:

The integers im, jm, km, lm are all distinct. In this case,

(im jm) · (km lm) = (im km lm) · (im jm lm).
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Case 2:
Three of the four integers im, jm, km, lm are distinct. The four combinations

that would produce this situation are im = km, im = lm, jm = km, or jm = lm.
However, these four possibilities are essentially the same, so we only have to
check one of these four combinations: im = km. Then we have

(im jm) · (im lm) = (im lm jm).

Case 3:
Only two of the four integers im, jm, km, and lm are distinct. Then we must

either have im = km and jm = lm, or im = lm and jm = km. In either case,
we have

(im jm) · (km lm) = ( ) = (1 2 3)(1 3 2).

In all three cases, we were able to express a pair of transpositions in terms
of a product of one or two 3-cycles. Therefore, the permutation x can be
written as a product of 3-cycles.

Let us use this proposition to find the elements of A4. We know that this
is generated by 3-cycles, and has 4!/2 = 12 elements. Since

Group( C(1,2,3), C(1,2,4) )

{(), (1, 3, 2), (1, 2, 3), (1, 2)(3, 4), (2, 4, 3), (1, 4, 3),

(2, 3, 4), (1, 4, 2), (1, 3)(2, 4), (1, 3, 4), (1, 2, 4),

(1, 4)(2, 3)}

has 12 elements, this must be A4. Eight of the twelve elements are 3-cycles.
The other four elements form a subgroup that we have seen before.

Problems for §5.2

For Problems 1 through 4: Find the product of the cycles without using Sage.

1 (1 5 6) · (3 5 2 4) · (1 4 3 5)
2 (2 4 7) · (1 3 6 4) · (1 7 5 3 6)

3 (1 7 2 3 8 4) · (1 3 5 2 4 6) · (2 4 3 5 8)
4 (1 9 3 5 2 4 8) · (2 7 3 9 5 4) · (4 7 6 8)

5 Simplify the product of the cycles

(1 2 3)(2 3 4)(3 4 5) · · · (n− 1 n n+ 1)(n n+ 1 n+ 2)

for n > 1.
Hint: Try it with n = 2, n = 3, and n = 4 to see a pattern. Then prove

using induction that the pattern persists.

6 Find the order of the permutations

(1 2 5)(3 4) and (1 2 5)(3 4 6 7).
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7 Prove that the order of a permutation written in disjoint cycles is the least
common multiple of the orders of the cycles.

8 Show that A8 contains an element of order 15.
Hint: See Problem 7.

9 Show that if H is a subgroup of Sn, then either every member of H is an
even permutation or exactly half of them are even.

10 Let SΩ be the collection of all one-to-one and onto functions from Z+ to
Z+ that only move a finite number of elements. Prove that SΩ is a group.
Show that we can write

SΩ =

∞⋃

n=1

Sn.

How should we interpret this union?

11 Let S∞ be the collection of all one-to-one and onto functions from Z+ to
Z+. Prove that S∞ is a group. Find an element of this group that is not in
SΩ. (See Problem 10.)

12 Consider the set G of all one-to-one and onto functions f(x) from Z+ to
Z+ such that there is some integer M for which

|f(x)− x| < M ∀x ∈ Z+.

(The value of M is different for different elements of the group.) Prove that
G is a group containing SΩ. Find an element of G that is not in SΩ. Find an
element of S∞ that is not in G. (See Problems 10 and 11.)

13 How many elements of order 5 are there in S6?

14 A card-shuffling machine will always shuffle cards in the same way relative
to the order in which they were given. All of the spades arranged in order
from ace to king are put into the machine, and then the shuffled cards are
re-entered into the machine again. If the cards after the second shuffle are in
the order 10, 9, 4, Q, 6, J, 5, 3, K, 7, 8, 2, A, what order were the cards in
after the first shuffle?

15 A subgroup H of the group Sn is called transitive on B = {1, 2, . . . , n} if
for each pair i, j of elements of B, there exists an element f in H such that
f(i) = j. Show that there exists a cyclic subgroup H of Sn that is transitive
on B.

16 Let φ denote an r-cycle in Sn, and let x be any permutation in Sn. Show
that x · φ · x−1 is an r-cycle.



Permutation Groups 165

17 Let φ and f denote two disjoint cycles in Sn, and let x be any permutation
in Sn. Show that x ·φ ·x−1 and x ·f ·x−1 are disjoint cycles. (See Problem 16.)

Interactive Problems

18 Use Sage to find a pair of 3-cycles whose product is a 3-cycle. Can there
be a product of two 4-cycles that yields a 4-cycle?

19 The cycle structure of a permutation is the number of 2-cycles, 3-cycles,
etc. it contains when written as a product of disjoint cycles. For example,
(1 2 3)(4 5) and (3 4 5)(1 2) have the same cycle structure. Consider the ele-
ments

a = C(1, 2, 3); a

(1, 2, 3)

b = C(1, 4, 2, 5, 6, 7); b

(1, 4, 2, 5, 6, 7)

Predict the cycle structure of a2, a3, b2, b3, and b6. Check your answers with
Sage.

20 Calculate a · b from Problem 19. Predict the cycle structure of (a · b)2,
(a · b)3, and (a · b)4, and verify your predictions with Sage.

21 Calculate a · b · a−1 from Problem 19. Notice that it has the same cycle
structure as b. Try this with other random permutations. Does a·b·a−1 always
have the same cycle structure as b? How do Problems 16 and 17 explain what
is happening?

5.3 Cayley’s Theorem

It was mentioned earlier that Galois originally defined a group as a subgroup
of a permutation group. When Cayley created an abstract definition of a
group, he showed that his definition was equivalent to Galois’ definition. (He
still only considered finite groups. See the Historical Diversion on page 169.)
Today we refer to his result as Cayley’s theorem, that every finite group is
isomorphic to a subgroup of a permutation group.

To visualize Cayley’s theorem, consider the circle graphs produced in §5.1.
These demonstrate the property that every permutation is one-to-one and
onto. In fact, every one-to-one and onto function on a finite set can be seen
as a permutation on that set. But we also saw one-to-one and onto circle
graphs in §3.1 while working with cosets. Is there a connection between these
circle graphs? To demonstrate, let us work with the group Q of order 8:
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FIGURE 5.3: Circle graphs for multiplying elements of Q by i

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}

To find the left and right cosets of a subgroup generated by i, we use the
commands

CircleGraph(Q, LeftMult(i))

CircleGraph(Q, RightMult(i))

which produce the two circle graphs in Figure 5.3.

If we number the elements of Q from 1 to 8, starting with 1 and going clock-
wise around the circles of Figure 5.3, we find that the left circle graph mim-
ics the permutation P (2, 5, 8, 3, 6, 1, 4, 7) = (1 2 5 6)(3 8 7 4), while the second
graph is similar to the permutation P (2, 5, 4, 7, 6, 1, 8, 3) = (1 2 5 6)(3 4 7 8). If
we used different elements of Q in place of the i, we would have a different
set of permutations. Thus, we can define two functions, f(x) and φ(x), which
map elements of Q to S8. Table 5.2 shows both of these two functions.

Motivational Example 5.1

Let us use Sage to see if either of these is a homomorphism. Normally, in
defining a homomorphism, we first determine the domain group and the target
group. But in this case the target group is S8, which has 40320 elements.
Rather than having Sage construct all of the elements of this group, which
would take an unreasonable amount of time, we can find the range of the
homomorphism by determining which group is generated by f(i) and f(j).
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TABLE 5.2: Ways to assign permutations to Q

f(x) φ(x)

x LeftMult(x) RightMult(x)

1 ( ) ( )

i (1 2 5 6)(3 8 7 4) (1 2 5 6)(3 4 7 8)

j (1 3 5 7)(2 4 6 8) (1 3 5 7)(2 8 6 4)

k (1 4 5 8)(2 7 6 3) (1 4 5 8)(2 3 6 7)

−1 (1 5)(2 6)(3 7)(4 8) (1 5)(2 6)(3 7)(4 8)

−i (1 6 5 2)(3 4 7 8) (1 6 5 2)(3 8 7 4)

−j (1 7 5 3)(2 8 6 4) (1 7 5 3)(2 4 6 8)

−k (1 8 5 4)(2 3 6 7) (1 8 5 4)(2 7 6 3)

T = Group( C(1,2,5,6)*C(3,8,7,4), C(1,3,5,7)*C(2,4,6,8) ); T

{(), (1, 2, 5, 6)(3, 8, 7, 4), (1, 7, 5, 3)(2, 8, 6, 4),

(1, 8, 5, 4)(2, 3, 6, 7), (1, 5)(2, 6)(3, 7)(4, 8),

(1, 6, 5, 2)(3, 4, 7, 8), (1, 3, 5, 7)(2, 4, 6, 8),

(1, 4, 5, 8)(2, 7, 6, 3)}

We are now ready for the homomorphism.

F = Homomorph(Q, T)

HomoDef(F, i, C(1,2,5,6)*C(3,8,7,4) )

HomoDef(F, j, C(1,3,5,7)*C(2,4,6,8) )

HomoDef(F, k, C(1,4,5,8)*C(2,7,6,3) )

FinishHomo(F)

(1, 2, 5, 6)(3, 8, 7, 4) * (1, 3, 5, 7)(2, 4, 6, 8) is not

(1, 4, 5, 8)(2, 7, 6, 3)

’Homomorphism failed’

So f must not be a homomorphism. Let us try seeing if φ is a homomorphism.

T = Group( C(1,2,5,6)*C(3,4,7,8), C(1,3,5,7)*C(2,8,6,4) ); T

{(), (1, 6, 5, 2)(3, 8, 7, 4), (1, 3, 5, 7)(2, 8, 6, 4),

(1, 8, 5, 4)(2, 7, 6, 3), (1, 5)(2, 6)(3, 7)(4, 8),

(1, 2, 5, 6)(3, 4, 7, 8), (1, 7, 5, 3)(2, 4, 6, 8),

(1, 4, 5, 8)(2, 3, 6, 7)}
phi = Homomorph(Q, T)

HomoDef(phi, i, C(1,2,5,6)*C(3,8,7,4) )

HomoDef(phi, j, C(1,3,5,7)*C(2,4,6,8) )

HomoDef(phi, k, C(1,4,5,8)*C(2,7,6,3) )

FinishHomo(phi)

’Homomorphism defined’
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This time, Sage found that φ is a homomorphism, generated by RightMult

permutations.

We can easily generalize this example to prove the following.

THEOREM 5.2: Cayley’s Theorem

Every finite group of order n is isomorphic to a subgroup of Sn.

PROOF: Let G be a group of order n. For each g in G, define the map-
ping

pg : G→ G

by pg(x) = g · x. For a given g, if pg(x) = pg(y), then g · x = g · y, so x = y.
Hence, pg is a one-to-one mapping. Since G is a finite group, we can use the
pigeonhole principle to show that pg is also onto, and hence is a permutation
of the elements of G.

We now can consider the mapping φ from G to the symmetric group S|G|
on the elements of G, given by

φ(g) = pg

Now, consider two elements φ(g) and φ(h). The product of these is the
mapping

x→ (pg · ph)(x) = pg(ph(x)) = pg(h · x) = g · (h · x) = (g · h) · x.

Since this is the same as φ(g · h), φ is a homomorphism.
The element g will be in the kernel of the homomorphism φ only if φg(x)

is the identity permutation. This means that g · x = x for all elements x in
G. Thus, the kernel consists just of the identity element of G, and hence φ is
an isomorphism. Therefore, G is isomorphic to a subgroup of S|G|.

Although this theorem shows that all finite groups can be considered as
a subgroup of a symmetric group, the theorem can apply to infinite groups
as well. Of course we then must consider infinite symmetric groups, whose
elements would be permutations on an infinite collection of objects. We might
have a difficult time expressing some of the permutations! For example, if we
had a library of an infinite number of books, we could not begin to express how
one could rearrange the books. Some of the permutations could be expressed
as one-to-one and onto functions. However, most of the permutations in an
infinite symmetric group are not expressible using a finite number of words or
symbols. Problems 10 through 12 of §5.2 reveal some of the unusual properties
of infinite symmetric groups. Fortunately, we will mainly work with finite
symmetric groups.

Although Cayley’s theorem (5.2) shows that any finite group G is a sub-
group of Sn, where n is the size of the group G, we often can find a smaller
symmetric group that contains an isomorphic copy of G.
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Historical Diversion

Arthur Cayley (1821–1895)
Author Cayley was a British mathemati-

cian, born in Richmond. He started at
Trinity College at the early age of 17. By
the time he was 20, he had already pub-
lished 3 papers in the Cambridge Mathe-
matical Journal. A few years later, Cayley
introduced the concept of n-dimensional
geometry. He graduated from Trinity win-
ning the Senior Wrangler (top mathemati-
cian). In a competition he won a fellowship
to Cambridge University for four years.
After his fellowship was over, at age 25

Cayley chose to be a lawyer. Yet he con-
tinued to work on mathematics in his spare
time. Over the course of 14 years, Cayley
would publish between 200 and 300 papers.
In 1863, a new position was established

at Cambridge University, the Sadleirian.
Cayley was elected to this position, and remained there the rest of his life.
Cayley played a major role in allowing women to be admitted to Cambridge.
Although matrices have been around since antiquity, Cayley is considered

to be the creator of matrix algebra, since he was the first to define the product
of matrices. He showed that a square matrix satisfied its own characteristic
equation, and made other huge developments in linear algebra.
One of Cayley’s major contributions is the first step towards the modern

definition of a group. Galois had originally defined a group as a set of per-
mutations that is closed under multiplication. (See Historical Diversion on
page 525.) In 1854 Cayley instead defined the group abstractly as a finite
set, containing the identity (which he called 1), which was closed under an
associative multiplication. He also insisted that the cancellation laws hold,
that is, a · b = a · c or b · a = c · a implies that b = c. (From this rule, and the
fact that the set is finite, one can prove that inverses exist. See Problem 19.)
Cayley went on to prove that the two definitions are equivalent, the result
currently called Cayley’s theorem.
Cayley proceeded to make multiplication tables for the groups (now called

Cayley tables) and showed how the tables revealed many important structures
within the group, such as the inverse of the elements.
Unfortunately, Cayley’s abstraction of the group definition went virtually

unnoticed, and groups continued to mean only permutation groups for 26
more years. The idea of an infinite group did not occur until 1882.

Image source: Smithsonian Library, used by permission
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Motivational Example 5.2

Consider the group D4, whose multiplication table is given in Table 4.2.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^4, e)

Define(b^2, e)

Define(b*a, a^3*b)

D4 = ListGroup(); D4

{e, a, a^2, a^3, b, a*b, a^2*b, a^3*b}

Let us consider a non-normal subgroup of D4:

H = Group(b)

{e, b}

We saw in Cayley’s theorem (5.2) that RightMult applied to the elements
of the group derived a homomorphism. What if we applied RightMult to
the cosets of the group? Recall that RightMult(x) can be thought of as
a function pg(x) = g · x, that is, it multiplies the argument of the function
to the right of g. If we apply this function to a left coset of H, we have
pg(xH) = g · xH, which yields another left coset. (Right cosets won’t work
here, since pg(Hx) = g ·Hx, which is neither a left nor right coset.) The list
of left cosets is given by

L = LftCoset(D4, H); L

{{e, b}, {a, a*b}, {a^2, a^2*b}, {a^3, a^3*b}}

If we multiply each coset to the right of a fixed element of the group, say a or
a · b, we get the circle graphs in Figure 5.4.

We see that each coset is mapped to another coset, so once again we can
treat each circle graph as a permutation. By numbering the cosets in the
order that they appear in L, we see that RightMult(a) acts as the permuta-
tion P(2,3,4,1) = (1 2 3 4), whereas RightMult(b) acts as the permutation
P(1,4,3,2) = (2 4). Sage can check that this extends to a homomorphism.

S4 = Group( C(1,2), C(1,2,3), C(1,2,3,4) )

F = Homomorph(D4, S4)

HomoDef(F, a, C(1,2,3,4) )

HomoDef(F, b, C(2,4) )

FinishHomo(F)

’Homomorphism defined’

Kernel(F)

{e}

Since the kernel is just the identity element, we see that there is a subgroup
of S4 isomorphic to D4.



Permutation Groups 171

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

{e, b}

{a, ab}

{a2, a2b}

{a3, a3b}

CircleGraph(L, RightMult(a))

........................................................................................................................................................
.......
........................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

...............................
.......

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

........
.......................

............... ........................................................................................................................................................
...............
........

...............

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

...........................................................................................................................
.........
........
.......
.......
.......
.......
........
..........

...................

{e, b}

{a, ab}

{a2, a2b}

{a3, a3b}

CircleGraph(L, RightMult(a*b))

....................................................................................

.........
.........

..........
..........

..........
..........

...........
..

................................
......

.........
.........
.........

.........
.........
.........
........
........
........
......

.......................................................................
.................

.....................

....................................................................................

.........
.........
.........

.........
.........
.........
........
........
.

.........................
...........

..

.........
.........

..........
..........

..........
..........

...........
...........

....

.......................................................................
.......
...............................

FIGURE 5.4: Circle graphs for multiplying cosets of D4

Note that this is a much stronger result than Cayley’s theorem (5.2), which
only says that D4 is isomorphic to a subgroup of the larger group S8. We can
follow this procedure to produce the following result:

THEOREM 5.3: Generalized Cayley’s Theorem

Let G be a finite group of order n, and H a subgroup of order m. Then there
is a homomorphism from G to Sk, with k = n/m, and whose kernel is a
subgroup of H.

PROOF: Let Q be the set of left cosets G/H. For each g in G, define the
mapping

pg : Q→ Q

by pg(xH) = g · xH. Note that this is well defined, since if xH = y H, then
g · xH = g · y H.

For a given g, if pg(xH) = pg(y H), then g · xH = g · y H, so xH = y H.
Hence, pg is a one-to-one mapping. Since Q is a finite set, by the pigeonhole
principle, pg must also be onto, and hence is a permutation of the elements
of Q.

We now can consider the mapping φ from G to the symmetric group S|Q|
on the elements of Q, given by

φ(g) = pg.

Now, consider two elements φ(g) and φ(h). The product of these is the
mapping

xH → (pg ·ph)(xH) = pg(ph(xH)) = pg(h ·xH) = g · (h ·xH) = (g ·h) ·xH.
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Since this is the same as φ(g · h), φ is a homomorphism.

Finally, we must show that the kernel of φ is a subgroup of H. The element
g will be in the kernel of the homomorphism φ only if pg(xH) is the identity
permutation. This means that g · xH = xH for all left cosets xH in Q.
In particular, the left coset eH = H is in Q, so g · H = H. This can only
happen if g is in H. Thus, the kernel is a subgroup of H. We have found a
homomorphism φ from the group G to the group S|Q| = Sk, whose kernel is

a subgroup of H.

We see one application of this proposition in the case of D4. Since H was
a subgroup of order 2 that was not normal, the only normal subgroup of G
that is contained in H is the trivial subgroup. Thus, the homomorphism is
an isomorphism, and we find a copy of D4 inside of S4 instead of having to
look in the larger group S8. This idea can be applied whenever we can find a
subgroup of G that does not contain any nontrivial normal subgroups of G.

But there is another important ramification from this proposition. We can
prove the existence of a normal subgroup of a group, knowing only the order
of the group!

COROLLARY 5.2

Let G be a finite group, and H any subgroup of G. Then H contains a subgroup
N, which is a normal subgroup of G, such that |G| divides (|G|/|H |)! · |N |.

PROOF: By the generalized Cayley’s theorem (5.3), there exists a homo-
morphism φ from G to Sk, where k = |G|/|H |. Furthermore, the kernel is
a subgroup of H. If we let N be the kernel, and let I be the image of the
homomorphism, we have by the first isomorphism theorem (4.1) that

G/N ≈ I.

In particular, |G|/|N | = |I|, and |I| is a factor of |Sk| = k!. This means that
|G| is a factor of k! · |N |.

Here is an example of how we can prove the existence of a nontrivial normal
subgroup, using just the order of the group. Suppose we have a group G of
order 108. Suppose that G has a subgroup of order 27. (We will find in
§7.4 that all groups of order 108 must have a subgroup of order 27.) Using
|G| = 108 and |H | = 27, we find that G must contain a subgroup N such
that 108 divides (108/27)! · |N | = 24 · |N |. But this means that |N | must be a
multiple of 9. Since N is a subgroup of H, which has order 27, we see that N
is of order 9 or 27. Hence, we have proven that G contains a normal subgroup
of either order 9 or 27. This will go a long way in finding the possible group
structures of G, using only the size of the group G.
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Problems for §5.3

1 Find a subgroup of S4 that is isomorphic to Z∗
8 .

Hint: Look at the proof of Cayley’s theorem (5.2).

2 Find a subgroup of S5 that is isomorphic to Z5. (Do you really need
Cayley’s theorem (5.2) for this one?)

3 Follow the proof of Cayley’s theorem (5.2) to find a subgroup of S8 iso-
morphic to D4 = {e, a, a2, a3, b, a · b, a2 · b, a3 · b}, using this ordering of the
elements.

4 Follow the proof of Cayley’s theorem (5.2) to find a subgroup of S8 iso-
morphic to Z∗

15 = {1, 2, 4, 7, 8, 11, 13, 14}, using this ordering of the elements.

5 Follow the proof of Cayley’s theorem (5.2) to find a subgroup of S8 isomor-
phic to Z∗

24 = {1, 5, 7, 11, 13, 17, 19, 23}, using this ordering of the elements.

6 According to Cayley’s theorem (5.2), the quaternion groupQ is isomorphic
to a subgroup of S8. Show that Q is not isomorphic to a subgroup of S7.

Hint: Assume that a subgroup is isomorphic to Q. Is the permutation
corresponding to −1 = i2 odd or even? How many disjoint cycles can it
contain? What possible permutations can i, j, k, −i, −j, and −k be mapped
to? From this, produce a contradiction.

7 In the text we found a group isomorphic to D4 actually contained in S4,
which is a much smaller group than S8 used by Cayley’s theorem (5.2). What
is the smallest symmetric group that contains a subgroup isomorphic to Z∗

24?

8 The function f(x), which used LeftMult instead of RightMult, was seen
not to be a homomorphism. Show that

f(x · y) = f(y) · f(x).

A function with this property is called an anti-homomorphism.

9 Show that if G is a group of order 35, and H is a subgroup of order 7, then
H is normal.

Hint: Use Corollary 5.2.

10 Show that if G is a group of order 36, and H is a subgroup of order 9,
then either H is normal, or H contains a subgroup of order 3 that is normal
in G.

11 Show that if G is a group of order 200, and H is a subgroup of order 25,
then either H is normal, or H contains a subgroup of order 5 that is normal
in G.
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12 Show that if G is a group of order 60, and H is a subgroup of order 15,
then either H is normal, or H contains a subgroup of order 5 that is normal
in G.

13 Show that if G is a group of order 189, and H is a subgroup of order
27, then either H is normal, or H contains a subgroup of order 3 or 9 that is
normal in G.

14 Use Corollary 5.2 to show that if G is a group of order p ·m, where p is
prime and p > m, then any subgroup of order p is normal.

15 Let G be a finite group, and H be a subgroup containing exactly 1/3
of the elements of G. Use Corollary 5.2 to show that either H is normal, or
exactly half the elements of H form a normal subgroup of G.

16 Suppose G is a finite group, and let p be the smallest prime that divides
|G|. Show that a subgroup H with order |G|/p must be normal.

17 Suppose G has order p2, where p is prime. Show that all subgroups are
normal.

18 Show that in Cayley’s theorem, the subgroup of Sn created is transitive
in Sn. See Problem 15 from §5.2 for the definition of transitive.

19 Show that Cayley’s definition of a finite group agrees with the current
definition. (See Historical Diversion on page 169.) That is, show that if the
cancellation laws hold for a finite set, a · b = a · c or b · a = c · a implies a = c,
then inverses exist.

Interactive Problems

20 Use Cayley’s theorem (5.2) to find a subgroup of S12 that is isomorphic
to Z∗

21.

21 Use Cayley’s theorem (5.2) to find a subgroup of S12 that is isomorphic
to the following group:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^3, e)

Define(b^4, e)

Define(b*a, a^2*b)

G = ListGroup(); G

{e, a, a^2, b, a*b, a^2*b, b^2, a*b^2, a^2*b^2, b^3, a*b^3,

a^2*b^3}
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22 Use the generalized Cayley’s theorem (5.3) to find a subgroup of S8 that
is isomorphic to the following group:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^2, e)

Define(b^8, e)

Define(b*a, a*b^5)

G = ListGroup(); G

{e, a, b, a*b, b^2, a*b^2, b^3, a*b^3, b^4, a*b^4, b^5,

a*b^5, b^6, a*b^6, b^7, a*b^7}

Hint: Find a subgroup of order 2 that is not normal.

5.4 Numbering the Permutations

Although using cycles to denote permutations is in most cases more succinct
and more readable, Sage works much faster using the permutation notation.
Thus, for large time-consuming operations, such as checking that a function
is a homomorphism, it will actually be faster using the P (. . .) notation than
the C(. . .) notation. For example, we saw using Cayley’s theorem that there
was a copy of Q inside of S8. It was generated by the elements

φ(i) = (1 2 5 6)(3 4 7 8) and φ(j) = (1 3 5 7)(2 8 6 4).

These two elements can be converted to the permutation notation, and we
can use these to generate a subgroup of S8. Thus, we could form a group
isomorphic to Q by the command

Q = Group({P(2,5,4,7,6,1,8,3), P(3,8,5,2,7,4,1,6)}); Q

{P(), P(6, 1, 8, 3, 2, 5, 4, 7), P(3, 8, 5, 2, 7, 4, 1, 6),

P(8, 7, 2, 1, 4, 3, 6, 5), P(5, 6, 7, 8, 1, 2, 3, 4),

P(2, 5, 4, 7, 6, 1, 8, 3), P(7, 4, 1, 6, 3, 8, 5, 2),

P(4, 3, 6, 5, 8, 7, 2, 1)}

Alternatively, we could have used the cycle notation.

[ PermToCycle(x) for x in Q ]

[(), (1, 6, 5, 2)(3, 8, 7, 4), (1, 3, 5, 7)(2, 8, 6, 4),

(1, 8, 5, 4)(2, 7, 6, 3), (1, 5)(2, 6)(3, 7)(4, 8),

(1, 2, 5, 6)(3, 4, 7, 8), (1, 7, 5, 3)(2, 4, 6, 8),

(1, 4, 5, 8)(2, 3, 6, 7)]
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Which method is best? For small groups, using cycles would be a good choice,
because the results are easy to read. But for larger groups (say, over 100
elements, and yes, we will be working with groups that large in the next
chapter), having Sage write out all of the elements in terms of cycles would
be time-consuming and messy. It would be convenient to have a succinct way
to describe each permutation using some type of abbreviation.

This section introduces a way to work with permutations that combines
succinctness and speed. Sage has a preset order in which it lists the permu-
tations.

1st permutation = P ( )

2nd permutation = P (2, 1)

3rd permutation = P (1, 3, 2)

4th permutation = P (3, 1, 2)

5th permutation = P (2, 3, 1)

6th permutation = P (3, 2, 1)

7th permutation = P (1, 2, 4, 3)

· · · · · ·
24th permutation = P (4, 3, 2, 1)

Notice that the first 2 permutations give the group S2, the first 6 give S3, and
the first 24 elements give S4. This pattern can be extended to higher-order
permutations, so that the first n! permutations gives the group Sn.

The order of the permutations are designed so that Sage can quickly find
the nth permutation on the list. For example, to find out what the 2000th
permutation would be on this list, we use the NthPerm command.

NthPerm(2000)

P(4, 1, 7, 6, 3, 2, 5)

We can also quickly determine the position of a given permutation on this
list. The command

PermToInt( P(4,1,7,6,3,2,5) )

2000

converts the permutation back to the number 2000.
Rather than spelling out each permutation, we can now give a single number

that describes where the permutation is on the list of permutations. This
will be called the integer representation of the permutation. Although this
representation hides most of the information about the permutation, Sage can
quickly recover the needed information to do group operations.

For example, we can multiply the 3rd permutation with the 21st on the list
with the command
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NthPerm(3) * NthPerm(21)

P(3, 4, 2, 1)

If we wanted this converted back to a number, we would type

PermToInt(NthPerm(3) * NthPerm(21))

23

Hence the 3rd permutation times the 21st permutation gives the 23rd per-
mutation. If we had multiplied in the other order, we would get 19 instead,
indicating that the group is non-abelian.

Sage provides an abbreviation to the permutations. By setting the vari-
able DisplayPermInt to true, permutations will be displayed as their integer
counterpart.

DisplayPermInt = true

Now, every permutation will be displayed as an integer.

P(4,1,7,6,3,2,5)

2000

This integer representation of the permutations allows us to find other
groups within the permutations easily. For example, the quaternion group
was generated by the elements

(1 2 5 6)(3 4 7 8) and (1 3 5 7)(2 8 6 4).

Converting these to permutations will reveal their integer representation.

CycleToPerm( C(1,2,5,6)*C(3,4,7,8) )

25827

CycleToPerm( C(1,3,5,7)*C(2,8,6,4) )

14805

So we find that the quaternion group contains the 25827th and 14805th per-
mutations. Now we can form the group using these two permutations as
generators.

Q = Group(NthPerm(25827), NthPerm(14805)); Q

{1, 7526, 14805, 16992, 23617, 25827, 32484, 39728}

This gives the whole group on a single line that encodes the entire structure
of the group. Finally, the command MultTable(Q) produces Table 5.3.

This integer representation of the permutations allows us to form such a
table, and has many other advantages over cyclic permutations, especially
when we are working with extremely large subgroups of a symmetric group.

There are simple algorithms to convert from the permutation representation
to the integer representation and back without a computer. We begin by
presenting a method of converting from a permutation to an integer.
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TABLE 5.3: Multiplication table for Q using integer representation

· 1 7526 14805 16992 23617 25827 32484 39728

1 1 7526 14805 16992 23617 25827 32484 39728

7526 7526 23617 16992 32484 25827 1 39728 14805

14805 14805 39728 23617 7526 32484 16992 1 25827

16992 16992 14805 25827 23617 39728 32484 7526 1

23617 23617 25827 32484 39728 1 7526 14805 16992

25827 25827 1 39728 14805 7526 23617 16992 32484

32484 32484 16992 1 25827 14805 39728 23617 7526

39728 39728 32484 7526 1 16992 14805 25827 23617

Example 5.3

Demonstrate without Sage that P (4, 1, 7, 6, 3, 2, 5) is the 2000th permutation.

SOLUTION: For each number in the permutation, we count how many num-
bers further left are larger than that number. For example, the 4 has no
numbers further left, so the count would be 0. The 3, however, has three
numbers to the left of it that are larger, namely 4, 7, and 6. Here are the
results of these counts.

P (4, 1, 7, 6, 3, 2, 5)

0 1 0 1 3 4 2

Next, we multiply the mth count by (m− 1)!, and add the products together,
and finally add 1. Thus,

0 · 0! + 1 · 1! + 0 · 2! + 1 · 3! + 3 · 4! + 4 · 5! + 2 · 6! + 1 = 2000.

A similar algorithm reverses the procedure, and determines the nth permu-
tation.

Example 5.4

Determine the 4000th permutation without Sage.

SOLUTION: We begin by subtracting 1, then using the division algorithm to
successively divide by 2, 3, 4, etc., until the quotient is 0.

3999 = 2 · 1999 + 1

1999 = 3 · 666 + 1

666 = 4 · 166 + 2

166 = 5 · 33 + 1

33 = 6 · 5 + 3

5 = 7 · 0 + 5
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Since the last division was by n = 7, the permutation is in S7. We will use the
remainders to determine the permutation, starting from the last remainder,
and working towards the first. We start with a list of numbers from 1 to n:

{1, 2, 3, 4, 5, 6, 7}

For each remainder m, we consider the (m+1)st largest number that has not
been crossed out from the list. Since the last remainder is 5, we take the 6th

largest number, which is 2. This eliminates 2 from the list. Here is the result
after processing two more remainders.

3999 = 2 · 1999 + 1

1999 = 3 · 666 + 1

666 = 4 · 166 + 2

166 = 5 · 33 + 1 ⇒ 6

33 = 6 · 5 + 3 ⇒ 4

5 = 7 · 0 + 5 ⇒ 2

{1, 2/, 3, 4/, 5, 6/, 7}

The next remainder is 2, so we take the 3rd largest number that is not crossed
out, which is 3. Continuing, we get the following.

3999 = 2 · 1999 + 1 ⇒ 1

1999 = 3 · 666 + 1 ⇒ 5

666 = 4 · 166 + 2 ⇒ 3

166 = 5 · 33 + 1 ⇒ 6

33 = 6 · 5 + 3 ⇒ 4

5 = 7 · 0 + 5 ⇒ 2

{1/, 2/, 3/, 4/, 5/, 6/, 7}

The only number not crossed out is 7, which becomes the first number in the
permutation. The rest of the permutation can be read from the new numbers
from top to bottom, producing P (7, 1, 5, 3, 6, 4, 2).

The simple algorithms for converting permutations to integers and back
make this association more natural. It also explains why Sage is able to
convert permutations so quickly.

Problems for §5.4

For Problems 1 through 8: Convert the following permutations to integers.
Note that cycle notations must first be converted to a permutation.
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1 P (5, 1, 3, 6, 4, 2)
2 P (3, 6, 2, 1, 5, 4)
3 P (2, 6, 1, 3, 5, 7, 4)

4 P (4, 5, 3, 7, 1, 6, 2)
5 (1 7 2)(3 6 5)
6 (1 5 6 2)(4 7)

7 (1 4 3 8)(2 7 6)
8 (1 6 8)(2 5 7 4)
9 (1 5)(2 6 7)(3 8)

For Problems 10 through 17: Determine the nth permutation for the following
values of n,

10 506
11 629

12 927
13 2593

14 3816
15 4207

16 6923
17 8510

18 Show that the set of elements in SΩ is countable. See Problem 10 from
§5.2, and Definition 0.12.

Interactive Problems

19 Find the elements of A4 converted to the integer representation. Is there
a pattern as to which positive integers correspond to the even permutations,
and which correspond to odd? Does the pattern continue to A5?

20 Use Sage to find all elements of S7 whose square is P (3, 5, 1, 7, 6, 2, 4).
Hint: Use a “for” loop to test all of the elements of S7:

for i in range(5040):

if NthPerm(i)^2 == P(3,5,1,7,6,2,4):

print(NthPerm(i))

21 Use Sage to find all elements of S6 whose cube is P (3, 5, 6, 1, 2, 4). (See
the hint for Problem 20.)



Chapter 6

Building Larger Groups from
Smaller Groups

In this chapter, we will use the smaller groups that we have previously studied
as building blocks to form larger groups. We will discover that all finite
abelian groups can be constructed using just the cyclic groups Zn. In fact, we
will find that all small groups of order 15 or less can be expressed in terms of
the groups we have studied.

6.1 The Direct Product

In this section we will consider the easiest way to combine two groups to
form a larger group. In spite of its simplicity, we will find that all finite abelian
groups can be constructed from this operation.

One way in which we can create a larger group from two smaller groups is
to consider ordered pairs (g1, g2), in which the first component g1 is a member
of one group, and the second component g2 is an element of a second group.
We then can multiply these ordered pairs component-wise.

DEFINITION 6.1 Given two groups H and K, the direct product of H
and K, denoted H ×K, is the group of ordered pairs (h, k) such that h ∈ H
and k ∈ K, with multiplication defined by

(h1, k1) · (h2, k2) = (h1 · h2, k1 · k2).

The four group properties for the direct product are easy to verify. Certainly
H × K is closed under multiplication, since the component-wise product of
two ordered pairs is again an ordered pair. If e1 is the identity element for H,
and e2 the identity element for K, then (e1, e2) would be the identity element
of the direct product. Also, the inverse of an ordered pair (h, k) is (h−1, k−1).
Finally, the associative law would hold for H ×K, since it holds for both H
and K.

181
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TABLE 6.1: Cayley table of Z4 × Z2

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

(0,0) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

(0,1) (0,1) (0,0) (1,1) (1,0) (2,1) (2,0) (3,1) (3,0)

(1,0) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1) (0,0) (0,1)

(1,1) (1,1) (1,0) (2,1) (2,0) (3,1) (3,0) (0,1) (0,0)

(2,0) (2,0) (2,1) (3,0) (3,1) (0,0) (0,1) (1,0) (1,1)

(2,1) (2,1) (2,0) (3,1) (3,0) (0,1) (0,0) (1,1) (1,0)

(3,0) (3,0) (3,1) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(3,1) (3,1) (3,0) (0,1) (0,0) (1,1) (1,0) (2,1) (2,0)

Example 6.1

Let H = Z4 and K = Z2. Consider the direct product G = Z4 × Z2. Since
Z4 consists of the elements {0, 1, 2, 3} and Z2 consists of {0, 1}, the set of all
ordered pairs (h, k) with h ∈ Z4 and k ∈ Z2 is

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}.

Thus, we will have a group of order 8. Multiplication is performed component-
wise in the two groups.

In order to define this group in Sage, we first define the groups Z4 and Z2.

Z4 = ZGroup(4)

Z2 = ZGroup(2)

G = DirectProduct(Z4, Z2); G

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}

The Cayley table produced by Sage is given in Table 6.1.
We notice from the table that Z4 × Z2 is commutative, has an element of

order 4, yet has no element of order 8. Since we found all groups of order 8
in Chapter 4, we can use process of elimination to determine that this group
must be isomorphic to Z∗

15.
It is not hard to show that the direct product of two abelian groups will be

abelian.

PROPOSITION 6.1

Let H and K be two groups. Then H×K is commutative if, and only if, both
H and K are commutative.

PROOF: First, suppose that H and K are both abelian. Then for two ele-
ments (h1, k1) and (h2, k2) in H ×K, we have

(h1, k1) · (h2, k2) = (h1 · h2, k1 · k2) = (h2 · h1, k2 · k1) = (h2, k2) · (h1, k1).
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So the two elements in H ×K commute. Hence, H ×K is abelian.
Now suppose that H ×K is commutative. We then have

(h1 · h2, k1 · k2) = (h1, k1) · (h2, k2) = (h2, k2) · (h1, k1) = (h2 · h1, k2 · k1).

Comparing components, we see that h1 · h2 = h2 · h1 and k1 · k2 = k2 · k1.
Since this is true for all h1 and h2 in H, and all k1 and k2 in K, both H and
K are abelian.

It is easy to find the number of elements in a direct product. If H has order
n, and K has orderm, then the number of ordered pairs (h, k) would be n ·m.

We can generalize the direct product to a set of more than two groups. Let

G1, G2, G3, . . . , Gn

be a collection of n groups. Then we define G1 × G2 × G3 × · · · × Gn to be
the set of ordered n-tuples (g1, g2, g3, . . . , gn) with multiplication defined by

(g1, g2, . . . , gn) · (h1, h2, . . . , hn) = (g1 · h1, g2 · h2, . . . , gn · hn).

The direct product of more than two groups can also be defined by taking the
direct product of direct products. That is, given three groups G, H, and K,
we could define both (G×H)×K and G× (H ×K). But it is trivial to see
that the mappings

f : (G×H)×K → G×H ×K

φ : G× (H ×K) → G×H ×K

given by

f(((g, h), k)) = (g, h, k) and φ((g, (h, k))) = (g, h, k)

are both surjective isomorphisms. Thus,

(G×H)×K ≈ G×H ×K ≈ G× (H ×K).

It also should be noted that there is the natural mapping

φ : H ×K → K ×H

given by φ((h, k)) = (k, h). Thus, H ×K ≈ K ×H.
This shows that the direct product between groups is a commutative op-

eration, as well as associative. This suggests that some groups may be able
to be expressed as a direct product of two or more smaller groups. If this is
the case, then the order in which the smaller groups are combined would be
irrelevant.
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DEFINITION 6.2 Let G be a group. We say that G has a decomposition
if G ≈ H ×K, where neither H nor K is the trivial group.

For example, the group Z∗
15 has a decomposition, since we saw in Exam-

ple 6.1 that this group is isomorphic to Z4 ×Z2. We would like to find a way
of testing whether a general group can be decomposed into smaller groups. In
the case of S3, we could use the fact that all smaller groups are abelian, along
with Proposition 6.1 to show that S3 cannot have a decomposition. But for
other groups, the problem is more difficult. The following theorem gives us a
way to determine whether a given group has a decomposition.

THEOREM 6.1: The Direct Product Theorem

Let G be a group with identity e, and let H and K be two subgroups of G.
Suppose the following two statements are true:

1. H ∩K = {e}.

2. h · k = k · h for all h ∈ H and k ∈ K.

Then H ·K ≈ H ×K.

PROOF: First, we show that every element in H ·K can be uniquely written
in the form h · k, where h ∈ H and k ∈ K. Suppose that

h1 · k1 = h2 · k2.

Then h−1
2 ·h1 = k2 · k−1

1 . Since this element must be in both H and K, and
the intersection of H and K is the identity element, we have that

h−1
2 · h1 = k2 · k−1

1 = e.

Thus, h1 = h2 and k1 = k2. Therefore, every element of H ·K can be written
uniquely as h · k, where h is in H, and k is in K.

Next, we need to show that H · K is a group. Since h · k = k · h for all
h ∈ H and k ∈ K, we have that H ·K = K ·H. Thus, by Lemma 4.2, H ·K
is a subgroup of G.

We can now define a mapping

φ : H ·K → H ×K

by φ(x) = (h, k), where h and k are the unique elements such that h ∈ H,
k ∈ K, and x = h · k. It is clear that φ is one-to-one, since the element (h, k)
can only have come from h · k. Also, φ is onto, for the element h · k maps to
(h, k). All that remains to show is that φ(x · y) = φ(x) · φ(y). Let x = h1 · k1,
and y = h2 · k2. Then
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φ(x · y) = φ(h1 · k1 · h2 · k2)
= φ(h1 · h2 · k1 · k2)
= (h1 · h2, k1 · k2)
= (h1, k1) · (h2, k2)
= φ(x) · φ(y).

Thus, φ is an isomorphism, and so H ·K ≈ H ×K.

We can use this theorem to define the direct product of two groups in Sage.

Computational Example 6.2

Suppose we wish to generate the direct product S3×Z∗
8 . We first must define

the two groups in Sage using the same identity element and different letters
for the generators. The group S3 is defined by the commands

InitGroup("e")

AddGroupVar("a", "b")

Define(a^3, e); Define(b^2, e); Define(b*a, a^2*b)

H = Group(a, b); H

{e, b, a^2*b, a, a^2, a*b}

Now let us define Z∗
8 , using c and d for the two generators.

AddGroupVar("c", "d")

Define(c^2, e); Define(d^2, e); Define(d*c, c*d)

K = Group(c, d); K

{e, c, d, c*d}

Of course we did not use the InitGroup command before defining the second
group, otherwise we would have cleared the first group. Notice that

Intersection(H, K)

{e}

is just the identity element, so the first condition of the direct product theorem
is satisfied.

In order for the second condition of the direct product theorem to be satis-
fied, every element of H must commute with every element of K. This will be
true as long as all of the generators of H commute with all of the generators
of K. Since there are 2 generators of H and 2 of K, we can tell Sage that the
generators commute using 2 · 2 = 4 definitions:

Define(c*a, a*c); Define(c*b, b*c)

Define(d*a, a*d); Define(d*b, b*d)
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H = Group(a, b); H

{e, b, a^2*b, a, a^2, a*b}
K = Group(c, d); K

{e, c, d, c*d}

Note that we were consistent in the direction of these definitions. That is, we
defined an element of the form k · h to h · k, where h is in H, and k is in K.
Also, we recalculated the groups H and K so that the new rules will apply to
the elements in this set.

According to the direct product theorem, H ·K is now the same as H ×K.
Here, then, is the direct product:

H * K

{e, b, a^2*b, a, a^2, a*b, c, b*c, d, b*d, a^2*b*c, a*c,

a^2*b*d, a*d, a^2*c, a*b*c, a^2*d, a*b*d, c*d, b*c*d,

a^2*b*c*d, a*c*d, a^2*c*d, a*b*c*d}

We would get the same result by finding the smallest group that contains all
of the generators.

G = Group(a, b, c, d)

len(G)

24

This gives us a group of 24 elements.

Since S4 also has 24 elements, we could ask if the group in Example 6.2
is isomorphic to S4. But recall that S4 had exactly 9 elements of order 2,
whereas the computation

RootCount(G, 2)

16

reveals that G has 16 solutions to x2 = e, with one being the identity. Thus,
there are 15 elements of order 2, so S4 is not isomorphic to S3 × Z∗

8 .
This technique of counting elements of a certain order is an efficient way

of showing that two groups are not isomorphic. Recall in §2.3 we denoted
the number of solutions to xn = e by Rn(G). In particular, if G is cyclic,
Rn(G) = gcd(|G|, n). It is also rather easy to calculate Rn(G) for direct
products.

PROPOSITION 6.2

Let H and K be finite groups, and let n be a positive integer. Then

Rn(H ×K) = Rn(H) · Rn(K).
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PROOF: Let e1 denote the identity element of H, and e2 denote the iden-
tity element of K. An element x = (h, k) in H × K solves the equation
xn = (e1, e2) if and only if

hn = e1 and kn = e2.

Since there are Rn(H) solutions to the former, and Rn(K) solutions to the
latter, there are Rn(H) · Rn(K) ordered pairs (h, k) that solve both of these
equations. Thus, there are Rn(H) · Rn(K) elements of H × K for which
xn = (e1, e2).

For example, R2(S3) = 4, since there are 3 elements of order 2 in S3, plus
the identity. Also, all 4 elements of Z∗

8 satisfy x2 = e, so R2(Z
∗
8 ) = 4. Thus,

there are 16 elements of S3 × Z∗
8 that satisfy x2 = e, one of which is the

identity. Thus, we quickly see that there are 15 elements of order 2.

As powerful as the direct product theorem (6.1) is, it is often difficult to
check that h · k = k · h for all h ∈ H and k ∈ K. Here is a more convenient
way of showing that a group can be expressed as a direct product of two
subgroups.

COROLLARY 6.1

Let G be a group with identity e, and let H and K be two normal subgroups
of G. Then if H ∩K = {e}, H ·K ≈ H ×K.

PROOF: The first condition of the direct product theorem (6.1) is given,
so we only need to show that the second condition holds. That is, we need to
show that h · k = k · h for all h in H, and k in K. Let h ∈ H and k ∈ K.

Since K is a normal subgroup of G, h ·k ·h−1 is in K. Thus, h ·k ·h−1 ·k−1

is also in K.

But H is also a normal subgroup of G, so k · h−1 · k−1 is in H. Hence,
h · k · h−1 · k−1 is also in H.

We now use the fact that the only element in both H and K is e. Thus,
h · k · h−1 · k−1 = e, which implies h · k = k · h. Therefore, the second
condition of the direct product theorem (6.1) holds, and so by this theorem,
H ·K ≈ H ×K.

This corollary is sometimes more useful than the direct product theorem,
even though for abelian groups the two are equivalent, since all subgroups of
abelian groups are normal. In the next section we will continue to study the
decomposition of abelian groups, and find that all finite abelian groups can
be decomposed uniquely into a certain form.



188 Abstract Algebra: An Interactive Approach

Problems for §6.1

1 We have shown by process of elimination that Z4 × Z2 is isomorphic to
Z∗
15. Demonstrate the isomorphism by giving multiplication tables for the two

groups with the same pattern.

2 Demonstrate that Z3 × Z2 is isomorphic to Z6.

3 Construct a multiplication table for Z2 × Z∗
8 .

4 Construct a multiplication table for Z3 × Z∗
8 .

5 Let G = H ×K, and define

H = {(h, e) | h ∈ H}

and
K = {(e, k) | k ∈ K}.

Prove that G/H ≈ K and G/K ≈ H.
Hint: Use the first isomorphism theorem on an appropriate homomorphism.

For Problems 6 through 13: Use Proposition 6.2 to find the number of ele-
ments of orders 2, 3, and 4 for the following groups.

Hint: First calculate R2(G), R3(G), and R4(G).

6 Z2 × Z6

7 Z3 × Z4

8 Z6 × Z∗
8

9 S3 × Z3

10 S3 × Z4

11 A4 × Z2

12 Z2 × Z3 × Z4

13 Z3 × S3 × Z4

14 Z4 ×A4 × Z6

15 Show that Z2 × Z6 is not isomorphic to Z12.

16 Show that S3 × Z2 is not isomorphic to A4.

17 Using only the fact that R2(S4) = 10, prove that S4 is not the decompo-
sition of two smaller groups. You can use the result of Problem 20 in §2.3.

18 Using the fact that R3(A5) = 21 and R5(A5) = 25, prove that A5 is not
the decomposition of two smaller groups.

Interactive Problems

19 Use Sage to define the group Z2 × Z6, and display the multiplication
table. Then have Sage find the multiplication table for Z∗

21, and rearrange
the elements to show that these groups are isomorphic.

20 Use Sage to define the group Z3 × Z∗
8 , and display the multiplication

table. Then have Sage find the multiplication table for Z∗
36, and rearrange

the elements to show that these groups are isomorphic.
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6.2 The Fundamental Theorem of Finite Abelian Groups

In the last section we promised that we will be able to construct any fi-
nite abelian group using as building blocks the groups that we have already
learned. In this section, we will use the direct product to show that all finite
abelian groups can be expressed in terms of the cyclic groups Zn. We will
even be able to find all abelian groups of a given order.

Example 6.3

Can we express the group Z6 as the direct product of two smaller groups?
SOLUTION: By the direct product theorem, we must find two subgroups of
Z6 whose intersection is just the identity element, and whose product is the
whole group. It is not hard to see that the subgroups

H = {0, 3} and K = {0, 2, 4}

satisfy these two conditions. Thus, Z6 ≈ Z2×Z3. This is easily verified using
Sage.

Z2 = ZGroup(2); Z2

{0, 1}
Z3 = ZGroup(2); Z3

{0, 1, 2}
G = DirectProduct(Z2, Z3); G

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}
RootCount(G, 2)

2

RootCount(G, 3)

3

Since we only have one element of order 2, and 2 elements of order 3, there
must be an element of order 6, so the product Z2×Z3 must be isomorphic to
Z6.

Observe the groups H = {0, 3} and K = {0, 2, 4} in this example. Notice
that H consists of all of the elements such that h2 = 0, and K consists of all
the elements such that k3 = 0. These two subgroups had only the identity
element in common. We can extend this observation to general abelian groups.

LEMMA 6.1

Let G be an abelian group of order mn, where m and n are coprime. Then

H = {h ∈ G | hm = e}
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and
K = {k ∈ G | kn = e}

are both subgroups of G, and G ≈ H ×K.

PROOF: To check that H and K are indeed subgroups simply observe that
since G is commutative the functions φ(x) = xm and f(x) = xn are both
homomorphisms of G. Then H and K are the kernels of the mappings φ and
f .

To show that H and K have only the identity element in common, we
consider an element x in the intersection. By the Chinese remainder theorem
(0.7), there exists a non-negative number k < m · n such that

k mod m = 1 and k mod n = 0.

Then k = 1 +mb for some number b. Thus,

xk = x(1+mb) = x · (xm)b = x · eb = x

since x is in H. Yet k = nc for some number c, so

xk = xnc = (xn)c = ec = e

since x is in K. Thus, x = e, and so H ∩K = {e}. Since G is abelian, the
direct product theorem (6.1) proves that

H ·K ≈ H ×K.

All that is left to prove is that G = H ·K. Let g be an element in G. Since
m and n are coprime, by the greatest common divisor theorem (0.4) there
exists a and b such that

an+ bm = gcd(m,n) = 1.

Then
g = g1 = g(an+bm) = gan · gbm.

Now, (gan)m = (ga)nm = e, so gan is in H. Likewise, gbm is in K. Thus,
every element of G is in H ·K, and so

G ≈ H ×K.

This lemma tells us that if an abelian group has an order that is a product
of two coprime numbers, this group can be written as a direct product of
two groups. Unfortunately, the lemma does not tell us that H and K are
proper subgroups. It is conceivable that either H or K from Lemma 6.1 is
the whole group, and the other is just the identity element. We would still
have G = H ×K, but this would not give a decomposition of G.
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Here is an example to illustrate the possible problem that could occur.
Suppose we know G is an abelian group of order 24. Since 24 = 8 ·3, we could
let m = 8, and n = 3 in Lemma 6.1. Then H would consist of all elements
of order 1, 2, 4, or 8, while K would consist of the elements of order 1 or 3.
Then we would have G ≈ H ×K.

But what if G had no elements of order 3? Then K would be just the
identity element, andH would have to be all of G. Lemma 6.1 would hold, but
since H and K are not proper subgroups, this would not give a decomposition
of G. The next lemma uses induction to show that, in fact, G must have an
element of order 3.

LEMMA 6.2

If G is a finite abelian group and p is a prime that divides the order of G,
then G has an element of order p.

PROOF: We will proceed using induction on the order of G. If |G| is a
prime number, then p must be |G|, and G must be isomorphic to Zp. So there
would be an element of order p in G.

Suppose that the assumption is true for all groups of order less than |G|.
If G does not have any proper subgroups, then G would be a cyclic group of
prime order (which we have already covered). Thus, we may assume that G
has a subgroup N that is neither G nor {e}.

Since G is abelian all subgroups are normal. Thus we could consider the
quotient group G/N./ / Since |G| = |N | · |G/N |, p must divide either |N | or
|G/N |. If p divides N, then because N is a smaller group than G, by induction
N must have an element of order p, which would be in G.

If p does not divide |N | it must divide |G/N |. Since G/N is a smaller group
than G, by induction G/N must have an element of order p. This element
can be written aN for some a in G.

Since aN is of order p, a cannot be in N, yet ap must be in N. If we let
q = |N |, we would have by Corollary 3.2 that (ap)q = e.

If b = aq is not the identity, then bp = e, and so b would be the required
element. But if b = e, then (aN)q = N. But aN was of order p, and so p
must divide q. But we assumed that p did not divide q = |N |. Hence, b is not
the identity, and so G has an element of order p.

This lemma is known as Cauchy’s theorem for abelian groups. (See Histori-
cal Diversion on page 192.) Later on we will see that Cauchy’s theorem is true
for all groups, not just abelian groups. However, the result for abelian groups
is sufficient for this chapter. This lemma guarantees that the subgroups H
and K generated by Lemma 6.1 must be proper subgroups. In fact, there are
times when it is possible to predict the size of the subgroups H and K.
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Historical Diversion

Augustin Cauchy (1789–1857)
Augustin Cauchy was born in Paris, and

by the time he was 11, both Laplace and
Lagrange had recognized his potential. La-
grange told Laplace, “You see that little
young man? He will supplant all of us in
so far as we are mathematicians.” On La-
grange’s advice, Cauchy was enrolled in the
best secondary school in Paris at the time,
the École Centrale du Panthéon. In spite
of his many awards in Latin and Humani-
ties, Cauchy chose an engineering career.
At 21, he was given a commission as a

civil engineer in Napolean’s army. But dur-
ing this job, Cauchy was doing mathemat-
ics on the side, submitting three manus-
cipts to the Première Classe. In 1812, he became ill from overwork, and
returned to Paris to find a mathematical position.
By 1815 Cauchy was recognized as the leading mathematician in France,

and was given an appointment at the École Polytechnique. Cauchy, along with
Gauss, are considered to be the last two mathematicians to know all known
mathematics as of their lifetime. Cauchy made contributions to almost every
branch of mathematics. He was the first to prove Taylor’s theorem using a
remainder term. He was the first to define a function of a complex variable.
He also worked with permutation groups, proving that if a prime p divides the
order of a group, then some element is of order p. He introduced a new level
of rigor in his proofs, which served as a model for future mathematicians.
During the French revolution of 1830, when Louis-Philippe succeeded

Charles X, Cauchy fled to Fribourg, Switzerland, leaving his family behind.
Because he refused to swear an oath of allegiance to the new regime, he lost
almost all of his positions in Paris. In 1831, the King of Sardinia offered him
a chair of theoretical physics in Turin. In 1833 he left Turin to go to Prague,
to become a science tutor of the grandson of Charles X, the thirteen-year old
Duke Henri d’Artois. Unfortunately, the Duke acquired a dislike of mathe-
matics, and Cauchy did very little mathematics during these years. In 1834,
his wife and two daughters joined Cauchy in Prague, reuniting his family.
Cauchy returned to Paris in 1838, but could not secure a position because

he still refused to take an oath. In 1848,the oath of allegiance was abolished,
allowing Cauchy to have an academic appointment. In 1849, he was reinstated
as a professor of mathematical astronomy at the Faculté de Sciences. During
these final years, until his death in 1857, Cauchy wrote over 500 research
papers.

Image source: Smithsonian Library, used by permission
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LEMMA 6.3

Let G be an abelian group of order pn ·k where p is prime, k is not divisible by
p, and n > 0. Then there are subgroups P and K of G such that G ≈ P ×K,
where |P | = pn, and |K| = k.

PROOF: Since pn and k are coprime, we can use Lemma 6.1 to form the
subgroups

P = {x ∈ G | x(pn) = e}

and

K = {x ∈ G | xk = e}.

By Lemma 6.1 these two subgroups have only the identity in common, and
G ≈ P×K. If p divided |K|, then by Lemma 6.2, K would contain an element
of order p. But this element would then be in P as well, which contradicts
the fact that only the identity element is in common between P and K. So p
does not divide the order of K.

Also note that the order of every element of P is a power of p. Thus,
Lemma 6.2 tells us that no other prime other than p divides |P |.

Finally, note that |G| = pn · k = |P | · |K|. Since p does not divide |K|, we
have that pn must divide |P |. But no other primes can divide |P |, and so
|P | = pn. Hence, |K| = k.

Lemma 6.3 is a tremendous help in finding the decomposition of abelian
groups. To illustrate, suppose we have an abelian group G of order 24. Since
24 = 23 · 3, Lemma 6.3 states that G is isomorphic to a direct product of a
group of order 8 and a group of order 3. Thus, G must be one of the groups

Z8 × Z3, Z∗
15 × Z3, or Z∗

24 × Z3.

If we can find all abelian groups of order pn for p a prime number, then we
will in a similar manner be able to find all finite abelian groups.

Hence, our next line of attack is abelian groups of order pn, where p is
prime. If this is not a cyclic group, we can find a decomposition for this group
as well.

LEMMA 6.4

Suppose P is an abelian group of order pn, where p is a prime. Let x be an
element in P that has the maximal order of all of the elements of P . Then
P ≈ X × T , where X is the cyclic group generated by x, T is a subgroup of
P , and X ∩ T = {e}.

PROOF: We will use induction on n. If n = 1, then P is a cyclic group
of order p, and hence is generated by non-identity element x in P . We then
have X = P , so we can let T = {e}, and P ≈ X × T , with X ∩ T = {e}.
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Now suppose that the assertion is true for all powers of p less than n. Notice
that the order of every element of P is a power of p. Thus, if we let x be
an element with the largest order, say m, then the order of all elements in P
must divide m. Hence, gm = e for all elements g in P .

We now let X be the subgroup generated by x. If X = P , then we can
again let T = {e} and we are done. If X is not P , we let y be an element of
P not in X that has the smallest possible order. Then since the order of yp is
less than the order of y, yp must be in X . This means that yp = xq for some
0 ≤ q < m.

Since y is in P , ym = e. But

ym = (yp)(m/p) = (xq)(m/p) = x(mq/p).

Because x is of order m, this can be the identity only if mq/p is a multiple
of m. Hence, q is a multiple of p.

If we let k = x−(q/p) · y, then k is not in X because y is not, and

kp =
(

x−(q/p)
)p

· yp = x−q · yp = x−q · xq = e.

Therefore, we have found an element k of order p that is not in X . If we let
K be the group generated by the element k, then X ∩K = {e}.

Consider the quotient group P/K. What is the order of xK in P/K? We
see that

(xK)j = K ⇐⇒ xj ∈ K ⇐⇒ xj ∈ X ∩K ⇐⇒ xj = e.

Therefore, the order of xK is the same as the order of x, which is m. Also
note that no element of P/K can have an element of higher order since gm = e
for all elements g in P .

Now we use the induction. Since the order of P/K is less than the order of
P , and xK is an element of maximal order, we have by induction that

P/K ≈ Y ×B,

where Y is the subgroup of P/K generated by xK, and B is a subgroup of
P/K such that only the identity element K is in the intersection of Y and B.

Let φ be the canonical homomorphism from P to P/K given by φ(g) = gK.
Let T = φ−1(B). Then T is a subgroup of P .

If g is in both X and T , then φ(g) is in both Y and B. Since the intersection
of Y and B is the identity element, we have φ(g) = g ·K = K. Thus, g is in
the subgroup K. But X ∩K = {e}, so we have

X ∩ T = {e}.

Thus, by the direct product theorem (6.1), we find that X · T ≈ X × T .
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We finally need to show that P = X · T . Let u be an element in P , and
since P/K ≈ Y × B, we can write φ(u) as (xcK) · (kK) for some number c,
and some kK in B. Then

u ∈ xc · k ·K ⊆ X · T.

Thus, P = X · T , and so P ≈ X × T .

To illustrate the application of Lemma 6.4, consider the group Z∗
24. All non-

identity elements of Z∗
24 are of order 2, so this is the maximal order. Thus,

Lemma 6.4 states that Z∗
24 can be decomposed into Z2 and a group of order

4. Since we have seen that Z4 × Z2 ≈ Z∗
15, the only other choice is Z2 × Z∗

8 .
Now we apply Lemma 6.4 to Z∗

8 . This is of order 4, and all elements besides
the identity are of order 2, so Z∗

8 can be decomposed into Z2 and a group of
order 2, which must be Z2. Thus, Z

∗
8 ≈ Z2 × Z2, and so

Z∗
24 ≈ Z2 × Z2 × Z2.

We have found a way to decompose any abelian group, to the point where
each factor is a cyclic group whose order is a power of a prime. But now we
want to address the issue as to whether a decomposition is unique. Can two
different decompositions be isomorphic?

The main tool for testing whether two groups are isomorphic is to count
elements of a given order. This can be accomplished by computing Rn(G) for
various values of n. It is natural to compute Rn(G) for a decomposition of
cyclic groups.

LEMMA 6.5

Let p be a prime number, and G be the direct product of cyclic groups

Z(ph1 ) × Z(ph2) × · · · × Z(phn ) × Zk1 × Zk2 × · · · × Zkm ,

where h1, h2, . . . , hn are positive integers, and k1, k2, . . . , km are coprime to p.
Then if q = px,

Rq(G) = p(
∑

n
i=1 Min(hi,x)),

where Min(hi, x) denotes the minimum of hi and x.

PROOF: Since G is expressed as a direct product we can use Proposition 6.2
and find Rq(H) for each factor H in the product, and multiply these numbers
together. Since each factor is cyclic, we can use Corollary 2.1. For all of the
factors Zk1 , Zk2 , . . .Zkm , since gcd(ki, q) = gcd(ki, p

x) = 1, Rq(H) would be
1. On the other hand, Rq(Z(phi )) is

gcd(phi , q) = gcd(phi , px) = pMin(hi,x).
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Thus, Rq(G) is the product of the above for factors 1 through n of G, which
gives us a grand total of

p(
∑

n
i=1 Min(hi,x)).

We are now ready to show that all finite abelian groups can be represented
as the direct product of cyclic groups. However, we would like to show at the
same time that such a representation is unique. To this end we will use the
previous lemma in conjunction with the following.

LEMMA 6.6

Let h1, h2, h3, . . . , hn be a set of positive integers, and define f(x) as

f(x) =

n∑

i=1

Min(hi, x)

where Min(hi, x) denotes the minimum of hi and x. Then the number of times
that the integer x appears in the set of integers h1, h2, h3, . . . , hn is given by

2f(x)− f(x− 1)− f(x+ 1).

PROOF: Let us begin by observing the value of the expression

2 Min(hi, x)−Min(hi, x− 1)−Min(hi, x+ 1).

When hi < x, then Min(hi, x) = Min(hi, x − 1) = Min(hi, x + 1) = hi, and
so the above evaluates to 0. On the other hand, if hi > x, then the above
expression simplifies to be

2x− (x− 1)− (x + 1) = 0.

However, if hi = x, then Min(hi, x) = x, Min(hi, x−1) = x−1, and Min(hi, x+
1) = x. Hence, we have

2 Min(hi, x)−Min(hi, x− 1)−Min(hi, x+ 1) = 2x− (x− 1)− x = 1.

Thus, we see that

2 Min(hi, x)−Min(hi, x− 1)−Min(hi, x+ 1) =

{
1 if hi = x
0 if hi 6= x

.

Thus, if we sum the above expression for i going from 1 to n, we will count
the number of terms hi that are equal to x. Hence this count will be

n∑

i=1

2 Min(hi, x)−Min(hi, x−1)−Min(hi, x+1) = 2f(x)−f(x−1)−f(x+1).
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We can now use Lemmas 6.3 through 6.6 to prove the following.

THEOREM 6.2 : The Fundamental Theorem of Finite Abelian

Groups

A nontrivial finite abelian group is isomorphic to

Z
(p

h1
1 )

× Z
(p

h2
2 )

× Z
(p

h3
3 )

× · · ·Z(phn
n ),

where p1, p2, p3, . . . , pn are prime numbers (not necessarily distinct). Further-
more, this decomposition is unique up to the rearrangement of the factors.

PROOF: We will proceed on induction on the order of the group. If the
order of the group is 2, then the theorem is true since the group would be
isomorphic to Z2. Let G be a finite abelian group and suppose the theorem
is true for all groups of order less than G. Let p be a prime that divides
the order of G. By Lemma 6.3, G ≈ P ×K, where P is the subgroup of G
containing the elements of order pm for some m.

Furthermore, if x is an element of maximal order in P , and X is the group
generated by x, then by Lemma 6.4, G ≈ X × T × K. Since X will be a
nontrivial cyclic group, the orders of T and K will be less than |G|. Thus, by
induction, T and K can be written as a direct product of cyclic groups whose
orders are powers of primes. Since X is also a cyclic group of order pr for
some r, G can be written as a direct product of cyclic groups whose orders
are powers of primes.

We next have to show that this decomposition is unique. We will do this by
showing that the number of times Z(px) appears in the decomposition, where
p is a prime, is completely determined by Rq(G) for various values of q. From
Lemma 6.5,

Rpx(G) = p(
∑

Min(hi,x))

where the sum is taken over all i such that pi = p. Thus, we see that

fp(x) =
∑

pi=p

Min(hi, x) = logp(Rpx(G))

will be completely determined by the orders of the elements of G. But then
by Lemma 6.6 the number of times that Z(px) appears in the decomposition
is given by

2fp(x) − fp(x− 1)− fp(x+ 1).

Hence, the decomposition of G as a direct product of cyclic groups of the form
Z(px) is unique.

From this theorem, we can easily find all non-isomorphic abelian groups of
a given order. For example, to find all non-isomorphic abelian groups of order
16, we note that all such groups are direct products of the cyclic groups of
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orders 2, 4, 8, or 16. We want to find all possible combinations of 2, 4, 8, and
16 that will multiply to give 16. With a little experimenting, we find that
there are five such combinations:

2 · 2 · 2 · 2, 2 · 2 · 4, 4 · 4, 2 · 8, and 16.

Thus, there are 5 possible abelian groups of order 16:

Z2 ×Z2 ×Z2 ×Z2, Z2 ×Z2 ×Z4, Z4 ×Z4, Z2 ×Z8, and Z16.

Since the fundamental theorem (6.2) also states that the representation is
unique, these five groups must be non-isomorphic to each other. Notice that
there is a correlation between these five groups, and the five ways we can
express the number 4 as a sum of positive integers:

1 + 1 + 1 + 1 = 4

1 + 1 + 2 = 4

2 + 2 = 4

1 + 3 = 4

4 = 4

This leads us to a way of finding the number of non-isomorphic groups of
order pm for any m.

COROLLARY 6.2

Let P (m) denote the number of ways in which m can be expressed as a sum of
positive integers, without regard to order. Then if p is a prime number, there
are exactly P (m) non-isomorphic abelian groups of order pm.

PROOF: By the fundamental theorem of abelian groups (6.2), every abelian
group of order pm must be isomorphic to

Z(ph1 ) × Z(ph2) × Z(ph3 ) × · · · × Z(phn ).

Also,
ph1 · ph2 · ph3 · · · phn = pm.

Hence h1 + h2 + h3 + · · · + hn = m. Furthermore, the decomposition of the
abelian group is unique up to rearrangement of the factors. Thus, there is
a one-to-one correspondence between non-isomorphic abelian groups of order
pm and ways m can be written as a sum of positive integers without regard
to order.

We call P (m) the number of partitions of m. We can have Sage count the
number of partitions for us. For example, to find the number of partitions of
the number 4, we can enter
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PartitionsP(4)

5

to find that there are five groups of order 24. The number of partitions
increases exponentially with m; in fact a Sage plot reveals that it grows ap-
proximately like the function ec

√
m for some c. See Problem 21.

We can now find the number of non-isomorphic abelian groups of any order.

COROLLARY 6.3

Let m > 1 be an integer with prime factorization

ph1
1 · ph2

2 · ph3
3 · · · phn

n ,

where p1, p2, p3, . . . , pn are distinct primes. Then the number of non-isomor-
phic abelian groups of order m is given by

P (h1) · P (h2) · P (h3) · · ·P (hn).

PROOF: We know from the fundamental theorem of abelian groups (6.2)
that each such group is isomorphic to a direct product of cyclic groups whose
order is a power of a prime. If we collect all factors involving the same primes
together, we find that such a group is isomorphic to a direct product of a
series of groups of orders ph1

1 , ph2
2 , ph3

3 , · · ·, and phn
n .

We know from Corollary 6.2 that there are exactly P (x) non-isomorphic
abelian groups of order px. Thus, there are P (hi) possible groups for the ith

factor in this decomposition. Therefore, there are

P (h1) · P (h2) · P (h3) · · ·P (hn)

possible ways of forming a product of groups with orders

ph1
1 , ph2

2 , ph3
3 , . . . , and phn

n .

Since the fundamental theorem of abelian groups (6.2) also states that the
decomposition is unique up to the rearrangement of the factors, every group
thus formed is isomorphically different. So we have exactly P (h1) · P (h2) ·
P (h3) · · ·P (hn) non-isomorphic abelian groups of order m.

Computational Example 6.4

Suppose we wish to find the number of non-isomorphic abelian groups of order
180 billion. Since 180,000,000,000 = 211 · 32 · 510, we have that the number of
groups is

PartitionsP(11) * PartitionsP(2) * PartitionsP(10)

4704
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giving us 4704 abelian groups of order 180 billion.

From these two corollaries, we see that all finite abelian groups have been
classified. One of the outstanding problems in group theory is to classify all
finite groups. This is as yet an unsolved problem although much progress has
been made through the use of computers. In the next two sections we will
show some other ways of generating larger groups, which have become a key
to some of the recent work that has been done in group theory.

Problems for §6.2

1 Let n be any integer greater than 1. Prove that Zn×Zn is not isomorphic
to Zn2 .

2 Let G be an abelian group with order mn, where m and n are coprime.
Prove that Rm(G) = m and Rn(G) = n.

Hint: Use Lemma 6.1 and the strategy of Lemma 6.3.

For Problems 3 through 11: Find, up to isomorphism, all abelian groups of
the following orders:

3 |G| = 32
4 |G| = 200
5 |G| = 210

6 |G| = 300
7 |G| = 450
8 |G| = 500

9 |G| = 600
10 |G| = 675
11 |G| = 900

12 What is the smallest positive integer n for which there are exactly four
non-isomorphic abelian groups of order n?

13 Calculate the number of elements of order 4 in the groups

Z16, Z8 × Z2, Z4 × Z4, and Z4 × Z2 × Z2.

14 How many elements of order 25 are in Z5×Z25? (Do not do this exercise
by brute force.)

15 An abelian group G of order 256 has 1 element of order 1, 7 elements of
order 2, 24 elements of order 4, 96 elements of order 8, and 128 elements of
order 16. Determine up to isomorphism the group G as a direct product of
cyclic groups.

Hint: Use Lemma 6.5 to determine the value of the function

f(x) =

n∑

i=1

Min(hi, x)

for x = 1, 2, 3, and 4. Then use Lemma 6.6 to determine how many times
Z2, Z4, Z8, and Z16 appear in the decomposition.
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16 An abelian group G of order 512 has 1 element of order 1, 15 elements
of order 2, 112 elements of order 4, 128 elements of order 8, and 256 elements
of order 16. Determine up to isomorphism the group G as a direct product of
cyclic groups. See the hint for Problem 15.

17 If an abelian group G of order 40 has exactly three elements of order 2,
determine up to isomorphism the group G.

18 Classify the integers n for which the only abelian groups of order n are
cyclic.

19 Recall from Problem 19 that the cycle structure of a permutation is the
number of 2-cycles, 3-cycles, etc. it contains when written as a product of
disjoint cycles. Show that the number of possible cycle structures in Sn is
P (n).

Interactive Problems

20 Use Sage’s PartitionsP command to find the number of abelian groups
of order 120,000,000.

21 Notice that the logarithm of the PartitionsP function looks like a side-
ways parabola.

S = list plot(ln(PartitionsP(i)) for i in range(999)]); S

This indicates that the PartitionsP function grows like ec
√
m for some con-

stant c. Here is a way we can plot a sideways parabola on top of the above
graph.

var("x")

P = plot(1.0 * sqrt(x), [x, 1, 999]); P + S

Try varying the constant 1.0 until the curves seem to run parallel to each
other. Approximately what is this constant?

6.3 Automorphisms

There is another way to combine groups together other than the direct
product. But before we can understand how this is defined, we must first
consider a new group created from a single group. Many times, but not
always, this new group will be larger that the original group. In fact, some
very important examples stem from the groups created in this section.



202 Abstract Algebra: An Interactive Approach

...................................
.......
.......
..........

...........................

...................................
.......
.......
.........

............................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

...................................
.......
.......
..........

...........................

.......
..........

.............................................................
.......
.

.......
...........

............................................................
.......
.

.......
..........

.............................................................
.......
.

0

1

2

3

4

5

6

7

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

................
........
.......
.......
.....

..................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......
.......
.

........
........
......................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

....................................................................................................................................................

.........................................
.......
......

.............
......................................... ..........................

.......

............................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

....................................................................................................................................................

.........................................
.......
......

..................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......
.......
.

........
........
......................................

...............................................
................................................................................


....................................................

.........

FIGURE 6.1: Circle graph for x→ x3 in Z8

We have already studied several examples of homomorphisms and isomor-
phisms between two groups, but suppose we considered a mapping from a
group to itself.

Motivational Example 6.5

Find an isomorphism from Z8 onto itself.

We can consider the following mapping:

Z8 = ZGroup(8)

CircleGraph(Z8, Pow(3))

which produces Figure 6.1. This mapping could be considered as the permu-
tation (1 3)(2 6)(5 7) since the element 0 is left fixed. However, to make this
into a homomorphism in Sage, we have to define a mapping that sends Z8[1]
to Z8[3].

F = Homomorph(Z8, Z8)

HomoDef(F, Z8[1], Z8[3])

FinishHomo(F)

’Homomorphism defined’

The circle graph of F will be the same as Figure 6.1, which shows that in fact
the homomorphism is one-to-one and onto.

We give such a homomorphism a special name.
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DEFINITION 6.3 An automorphism of the group G is a homomorphism
from G to G that is one-to-one and onto.

If we study the above automorphism f on Z8, we discover why this works.
Recall that the operation of this group is addition modulo 8. Hence the
mapping x→ x3 in Z8 will send each number x to (3x) mod 8. Therefore,

f(x ·y) = f((x+y) mod 8) = (3(x+y)) mod 8 = (3x+3y) mod 8 = f(x) ·f(y).

By observing this pattern, we can find another automorphism of Z8 by sending
x to x5 instead of x3. In fact, it is possible to define the product of two
automorphisms as follows: If f and φ are both automorphisms of G, then f ·φ
is the mapping x→ f(φ(x)). This leads us to the proof of the following.

PROPOSITION 6.3

Given a group G, the set of all automorphisms on G forms a group, denoted
Aut(G). In fact, Aut(G) is a subgroup of the group of permutations on the
elements of G.

PROOF: The mapping i(x) = x for all x in G is obviously an automor-
phism on G, so the set of all automorphisms on G is non-empty. Also, each
automorphism is a permutation on the elements of G. Suppose φ and f are
two automorphisms on G. Then φ(f(x)) is a one-to-one and onto mapping
from G to G.

Furthermore,

φ(f(x · y)) = φ(f(x) · f(y)) = φ(f(x)) · φ(f(y)).

So φ(f(x)) is a homomorphism on G, so φ · f is an automorphism of G.
Also, since f is one-to-one and onto, f−1 exists on G, and

f
(
f−1(x) · f−1(y)

)
= f

(
f−1(x)

)
· f
(
f−1(y)

)
= x · y.

Taking f−1 of both sides of the equation gives us

f−1(x) · f−1(y) = f−1(x · y).

So f−1 is a homomorphism. Hence both f−1 and φ · f−1 are automorphisms
of G. Therefore by Proposition 2.2, Aut(G) is a subgroup of the group of
permutations on the elements of G.

Example 6.6

Find the automorphism group for Z8.
SOLUTION: The element 1 must be mapped by an automorphism to an el-
ement of order 8. Thus, 1 is mapped to either 1, 3, 5, or 7. But since 1 is a
generator of Z8, this would completely define the automorphism. Thus, there
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are at most four elements of Aut(Z8). But besides the identity mapping, we
can easily find three other automorphisms:

x→ x3, x→ x5, and x→ x7.

So we have exactly four automorphisms of Z8. By converting these map-
pings to permutations on the non-zero elements of Z8, we can express the
automorphism group as

{P (), P (3, 6, 1, 4, 7, 2, 5), P (5, 2, 7, 4, 1, 6, 3), P (7, 6, 5, 4, 3, 2, 1)}.

This automorphism group can quickly be seen to be isomorphic to Z∗
8 .

It is not hard to generalize this result.

PROPOSITION 6.4

Aut(Zn) ≈ Z∗
n.

PROOF: Consider the mapping

ψ : Z∗
n → Aut(Zn)

given by ψ(j) = fj, where fj(x) = (jx) mod n. Then given two elements j
and k in Z∗

n, we have that

fj(fk(x)) = (j · (k · x)) mod n = ((j · k) · x) mod n = fj·k(x).

So
ψ(j) · ψ(k) = fj(fk) = fj·k = ψ(j · k).

Hence, ψ is a homomorphism from Z∗
n to Aut(Zn). To see that ψ is one-

to-one, we note that fj(1) = j, and so fj = fk only if j = k.
To see that ψ is onto, we can use the pigeon-hole principle. If we consider a

general automorphism f of Zn, then f(1) must be a generator of Zn, since 1 is
a generator. But f will be completely determined by knowing f(1). Thus, the
number of automorphisms is at most the number of generators of Zn, which
is φ(n). Since |Z∗

n| = φ(n), we know the function is one-to-one, so it must
also be onto.

So far, the automorphism group is smaller than the original group, but the
goal of this chapter is to form larger groups. Let us consider a non-cyclic
group.

Example 6.7

Find the automorphism group of the group Z∗
8 , which has the following Cayley

table.
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· 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

SOLUTION: A good strategy for finding all of the automorphisms is to first
determine an upper bound for the number of automorphisms. Suppose f is
an automorphism. Then f(1) = 1, but all other elements are of order 2.
Hence, any of the other elements might map to each other in any way. For
example, f(3) might be 3, 5, or 7. Once we know where 3 is mapped, f(5)
might be either of the other two elements. However, once we know f(3) and
f(5), then f(7) must be f(3) ·f(5). Thus, there are at most 3 ·2 = 6 elements
of Aut(Z∗

8 ). If we find that there are indeed this many automorphisms, then
Aut(Z∗

8 ) would be larger than Z∗
8 .

Here is one possible automorphism.

f(1) = 1

f(3) = 5

f(5) = 3

f(7) = 7

This can be represented as a transposition (3 5). Note that here, we are using
the cycle notation with elements in place of numbers. We can test to see if this
is an automorphism by constructing the Cayley table with the new ordering,
and see if it has the same “color pattern.” The new table is on the left side.

· 1 5 3 7

1 1 5 3 7

5 5 1 7 3

3 3 7 1 5

7 7 3 5 1

· 1 3 7 5

1 1 3 7 5

3 3 1 5 7

7 7 5 1 3

5 5 7 3 1

We can also ask whether there is an automorphism that sends 3 to 3, but
exchanges 5 to 7, giving us the transposition (5 7). The new Cayley table is
shown above on the right. Both of these tables preserve the color pattern of the
original Cayley table, so both are automorphisms. These two automorphism
will generate a copy of S3, which gives 6 automorphisms. Since we established
that this is the maximum number of automorphisms for Z∗

8 , we have found
the entire automorphism group. Hence Aut(Z∗

8 ) ≈ S3.

For non-commutative groups, there is a quick way to find many of the
automorphisms. Let G be a non-commutative group, and let x be any element
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in G. The mapping fx : G→ G defined by

fx(y) = x · y · x−1

will always be an automorphism, for

fx(y · z) = x · y · z · x−1 = (x · y · x−1) · (x · z · x−1) = fx(y) · fx(z).

So fx(y) is a homomorphism. Since the inverse homomorphism can easily be
found,

y ∈ f−1
x (v) ⇐⇒ x · y · x−1 = v ⇐⇒ y = x−1 · v · x⇐⇒ y = fx−1(v),

we have that fx(y) is one-to-one and onto, therefore fx(y) is an automorphism.

DEFINITION 6.4 An automorphism φ(y) of a groupG is called an inner
automorphism if there is an element x in G such that

φ(y) = x · y · x−1 for all y ∈ G.

The set of inner automorphisms of G is denoted Inn(G).

Example 6.8

Find the inner automorphisms of the quaternion group

Q = {1, i, j, k,−1,−i,−j,−k}.

SOLUTION: Let us begin by determining an upper bound for the number of
automorphisms. If f is an automorphism of Q, then f(1) = 1, but also f(−1)
must be −1, since this is the only element of order 2. All of the other elements
are of order 4, so f(i) could be any one of the remaining six elements. Once
f(i) is determined, we have that f(−i) = f(i)3. Then f(j) could be one of the
remaining four elements. Since i and j generate Q, f will be determined by
knowing f(i) and f(j). Thus, there is a maximum of 6·4 = 24 automorphisms.

It is fairly easy to find the inner automorphisms on Q. If we choose x = i,
we have the mapping

f(1) = i · 1 · (−i) = 1 f(−1) = i · (−1) · (−i) = −1
f(i) = i · i · (−i) = i f(−i) = i · (−i) · (−i) = −i
f(j) = i · j · (−i) = −j f(−j) = i · (−j) · (−i) = j
f(k) = i · k · (−i) = −k f(−k) = i · (−k) · (−i) = k

We can express this automorphism in terms of cycles: (j,−j)(k,−k). If we
use x = j or x = k instead of x = i, we get the automorphisms (i,−i)(k,−k)
and (i,−i)(j,−j). These three automorphisms, along with the identity auto-
morphism, form a group. These are the only 4 inner automorphisms.
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Although we were able to find the inner automorphisms by hand, we will
need Sage’s help to find the rest of the automorphisms.

Computational Example 6.9

Determine the automorphism group of Q.
With a bit of trial and error, we can come up with a new automorphism.

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}
X = Homomorph(Q, Q)

HomoDef(X, i, i)

HomoDef(X, j, k)

FinishHomo(X)

’Homomorphism defined’

This homomorphism from Q to itself can be shown to be one-to-one and onto.
In fact, it can be represented by the cycle (j, k, −j, −k). Also, the commands

Y = Homomorph(Q, Q)

HomoDef(Y, i, k)

HomoDef(Y, j, j)

FinishHomo(Y)

’Homomorphism defined’

show that there is yet another automorphism on Q, which can be represented
by (i, k, −i, −k). These two automorphisms, along with the group of 4 inner
automorphisms, generate a total of 24 automorphisms.

A = Group( C(j, -j)*C(k, -k), C(i, -i)*C(k, -k), C(j, k, -j, -k),

C(i, k, -i, -k) ); A

{(), (-i, -j)(-k, k)(j, i), (-i, -j, -k)(k, i, j),

(-i, -j, k)(-k, i, j), (-i, -j, i, j), (-i, -k)(-j, j)(k, i),

(-i, -k, -j)(k, j, i), (-i, -k, j)(-j, i, k), (-i, -k, i, k),

(-i, k)(-j, j)(-k, i), (-i, k, -j)(-k, j, i),

(-i, k, j)(-j, i, -k), (-i, k, i, -k), (-i, j)(-j, i)(-k, k),

(-i, j, -k)(-j, k, i), (-i, j, k)(-j, -k, i), (-i, j, i, -j),

(-i, i)(-j, -k)(k, j), (-i, i)(-j, k)(-k, j), (-i, i)(-j, j),

(-i, i)(-k, k), (-j, -k, j, k), (-j, k, j, -k),

(-j, j)(-k, k)}
Notice that Sage allows group elements inside of cycles. We can see that the
inner automorphisms are embedded in this list. What is this group isomorphic
to?

In fact, Aut(Q) ≈ S4, as can be seen by Figure 6.2. Each rotation of the
octahedron represents an automorphism of Q. For example, rotating the front
face 120◦ clockwise corresponds to the automorphism

(i, j, k)(−i, −j, −k).



208 Abstract Algebra: An Interactive Approach

k

−k

i

−i

j

−j


.........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
.........
.........
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.....

...........................
......
..............................................................................................................................................

.
.

.
.

.
.

.
.

.
.

.
.

.....................

.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

FIGURE 6.2: Labeling the octahedron to show Aut(Q) ≈ S4

So the automorphism group is isomorphic to the octahedral group, which we
saw was isomorphic to S4.

Although the inner automorphisms did not produce the full automorphism
group, this set of inner automorphisms turns out to be a very important
subgroup of the automorphism group. Let us discover the first main property
of this subgroup.

PROPOSITION 6.5

Let G be a group. Then Inn(G) is a normal subgroup of Aut(G).

PROOF: First we need to show that Inn(G) is a subgroup. Let

fx(y) = x · y · x−1

be an inner automorphism. The inverse can be easily found by observing

y ∈ f−1
x (v) ⇐⇒ x · y · x−1 = v ⇐⇒ y = x−1 · v · x⇐⇒ y = f(x−1)(v),

so the inverse of fx is also an inner automorphism.
If we consider two inner automorphisms fx and fy, then

(fx · fy)(v) = fx(fy(v)) = x · (y · v ·x−1) · y−1 = (x · y) · v · (x · y)−1 = f(x·y)(v).

Thus the product of two inner automorphisms is also an inner automorphism.
So by Proposition 2.2, Inn(G) is a subgroup of Aut(G).
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Finally, we need to show that Inn(G) is normal in Aut(G). Let φ be any
automorphism and let fx = x · y · x−1 be an inner automorphism. Then

(φ · fx · φ−1)(v) = φ(fx(φ
−1(v))) = φ(x · (φ−1(v)) · x−1).

Since φ is a homomorphism, this will simplify.

φ(x · (φ−1(v)) · x−1) = φ(x) · φ(φ−1(v)) · φ(x−1)

= φ(x) · v · [φ(x)]−1 = fφ(x)(v).

So φ · fx · φ−1 is an inner automorphism of G. Therefore, by Proposition 3.4,
Inn(G) is a normal subgroup of Aut(G).

For example, we found four inner automorphisms of Q. All of them but the
identity were of order 2. Thus, we see that Inn(Q) ≈ Z∗

8 .
Because the inner automorphism group is always a normal subgroup, we

could consider the quotient group.

DEFINITION 6.5 We define the outer automorphism group to be the
quotient group

Out(G) = Aut(G)/Inn(G).

The outer automorphism group of Q must contain six elements, and with
some experimenting in Sage, one finds that Out(Q) is non-abelian. Therefore,
Out(Q) ≈ S3.

If G is an abelian group, then the only inner automorphism is the identity
automorphism. Thus, for abelian groups,

Inn(G) ≈ {e} and Out(G) ≈ Aut(G).

Let us look at one last example, which will create a huge group.

Computational Example 6.10

Find the automorphism group of Z∗
24.

SOLUTION: Rather than using ZStar(24), we will consider this group as
Z2 ×Z2 ×Z2 so we can see the relationship with the generators. We can load
this group into Sage with the following commands:

InitGroup("e")

AddGroupVar("a", "b", "c")

Define(a^2, e); Define(b^2, e); Define(c^2, e)

Define(b*a, a*b); Define(c*a, a*c); Define(c*b, b*c)

Y = ListGroup(); Y

{e, a, b, a*b, c, a*c, b*c, a*b*c}
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Once again, we will begin by determining an upper bound for the number of
automorphisms. Suppose φ(x) is an automorphism of Z∗

24. Naturally φ(e) = e,
but φ(a) could be any of the seven remaining elements of order 2. Also,
φ(b) could be any one of the remaining six elements. Then we would have
φ(a · b) = φ(a) · φ(b), so four elements will be accounted for. But φ(c) could
be any of the four elements left over. Since the group is generated by {a, b, c},
there are at most 7 · 6 · 4 = 168 possible automorphisms.

One possible automorphism would be to send a to b, b to c, and c back to
a.

F = Homomorph(Y, Y)

HomoDef(F, a, b)

HomoDef(F, b, c)

HomoDef(F, c, a)

FinishHomo(F)

’Homomorphism defined’

which Sage verifies is an automorphism. Another automorphism, given by

G = Homomorph(Y, Y)

HomoDef(G, a, a)

HomoDef(G, b, a*b)

HomoDef(G, c, c)

FinishHomo(G)

’Homomorphism defined’

indicates that there may indeed be many automorphisms.
It would be more concise if we could use permutations for a group this

large. If we number the non-identity elements in the order they appear in
ListGroup, we have a = 1, b = 2, a · b = 3, c = 4, a · c = 5, b · c = 6,
and a · b · c = 7. With this ordering we can convert F and G to standard
permutations (1 2 4)(3 5 6) and (2 3)(6 7). That is, F maps element 1 (a) to
element 2 (b), which is mapped to element 4 (c), etc. Likewise, G exchanges
the 2nd and 3rd elements, and exchanges the 6th and 7th elements of Z∗

24.
Once we have all of the elements as permutations, we can use the integer
notation feature to list them.

f = CycleToPerm( C(1,2,4)*C(3,6,5) ); f

P(2, 4, 6, 1, 3, 5)

g = CycleToPerm( C(2,3)*C(6,7) ); g

P(1, 3, 2, 4, 5, 7, 6)

DisplayPermInt = true

A = Group(f, g); A

{1, 27, 61, 87, 122, 149, 187, 231, 244, 270, 331, 357, 374,

404, 437, 467, 496, 548, 558, 593, 640, 670, 684, 714, 723,

745, 783, 805, 844, 870, 931, 957, 962, 989, 1027, 1071,

1096, 1148, 1158, 1193, 1214, 1244, 1277, 1307, 1366, 1384,
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1410, 1428, 1445, 1466, 1509, 1549, 1566, 1588, 1653, 1675,

1681, 1707, 1741, 1767, 1822, 1862, 1889, 1902, 1966, 1984,

2010, 2028, 2054, 2084, 2117, 2147, 2166, 2188, 2253, 2275,

2285, 2306, 2349, 2389, 2403, 2425, 2463, 2485, 2566, 2584,

2610, 2628, 2662, 2702, 2729, 2742, 2780, 2798, 2843, 2861,

2897, 2927, 2954, 2984, 3018, 3071, 3076, 3110, 3144, 3185,

3206, 3220, 3288, 3306, 3328, 3346, 3361, 3387, 3421, 3447,

3487, 3517, 3531, 3561, 3618, 3671, 3676, 3710, 3737, 3767,

3794, 3824, 3888, 3906, 3928, 3946, 3984, 4025, 4046, 4060,

4083, 4105, 4143, 4165, 4213, 4231, 4257, 4275, 4362, 4392,

4402, 4432, 4488, 4506, 4528, 4546, 4577, 4607, 4634, 4664,

4703, 4721, 4760, 4778, 4809, 4839, 4849, 4879, 4935, 4953,

4975, 4993}
len(A)

168

Since this gives us 168 elements, we know we have all of the automorphisms.
Notice that Sage orders the numbers, making it easier to find a particular
element. In particular, the elements f and g are found to be

f

187

g

723

So the group Aut(Z∗
24) is generated by the 187th and 723rd permutations.

This group has special properties we will explore in the next chapter.

We have now seen several examples where the group of automorphisms is
larger than the original group. But this group of automorphisms can also be
used as a tool for connecting two groups to form an even larger group, in much
the same way that two groups formed the direct product. The next section
will explore this methodology.

Problems for §6.3

For Problems 1 through 6: Determine an upper bound for the size of the
automorphism group for the following groups. It helps to first determine how
many elements there are of each order.

1 S3

2 D4

3 Z∗
15

4 Z6 × Z2

5 Z3 × Z3

6 Z2 × Z2 × Z2 × Z2

7 Prove that if G is a finite group of order n, then Aut(G) is isomorphic to
a subgroup of Sn−1.

8 Prove that if G is non-abelian, then there is an inner automorphism that
is not trivial.
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9 Prove that if G is abelian, and there is an element of G with an order
greater than 2, then φ(x) = x−1 is a non-trivial automorphism.

10 Prove that any finite group of order greater than 2 has at least two
automorphisms.

Hint: The only groups not covered by Problems 8 and 9 are isomorphic to
Z2 × Z2 × · · · × Z2.

11 Prove that if G is not abelian, then Aut(G) is not cyclic.

12 Find all of the inner automorphisms of S3. Use cycle notation for the
automorphisms, as we did for Example 6.8. The multiplication table for S3

is on page 71.

13 Find all of the inner automorphisms of D4. Use cycle notation for the
automorphisms, as we did for Example 6.8. The multiplication table for D4

is on page 124.

14 Show that for the group D4, there is an automorphism with φ(a) = a
and φ(b) = a · b. Show that the multiplication table with the new ordering of
elements created by the automorphism has the same “color pattern” as the
table on page 124.

15 Find the automorphism group of S3. See Problem 12.

16 Find the automorphism group of D4. See Problems 13 and 14.

17 Find Aut(Z).

18 Find two non-isomorphic groups G and M for which Aut(G) ≈ Aut(M).

Interactive Problems

For Problems 19 through 21: Find all of the automorphisms of the following
groups.

19 Z∗
15 20 Z∗

21 21 D5

22 Find all of the automorphisms of the group Z3×Z3. Because of the large
number of automorphisms, it is useful to number the non-identity elements of
the group as we did for Aut(Z∗

24) in Example 6.10.
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6.4 Semi-Direct Products

We have already seen one way to combine two groups H and K to form the
direct product H ×K. In this section we will see another way to combine to
groups H and K, very similar to the direct product, but with a twist. Once
again the larger group will have isomorphic copies of H and K as subgroups,
but only one of the two subgroups will be a normal subgroup.

Note that this section is more advanced than previous sections. Although
some examples will later refer to this section, particularly in §7.4, many read-
ers may want to skip this section and go on to the next chapter.

Suppose that H and K are any two groups, and suppose that we have a
homomorphism φ : H → Aut(K). Because the function φ returns another
function, we will write φh instead of φ(h). The expression φh(k) represents
the automorphism φh evaluated at the element k. That is, if h1 and h2 are
two elements of H, then φh1(k) and φh2(k) will be two automorphisms of K,
and also φh1·h2(k) = (φh1 ·φh2)(k) = φh1(φh2(k)). (Recall that φh1 ·φh2 means
we do φh2 first, then do φh1 .)

There will always be at least one homomorphism from H to Aut(K), the
trivial homomorphism. However, there will often be several nontrivial homo-
morphisms from H to Aut(K). For each such homomorphism, we can define
a product of H and K.

DEFINITION 6.6 Let K and H be two groups, and let G be the set of
all ordered pairs (k, h), where k is in K and h is in H. Let φ be a nontrivial
homomorphism from H to Aut(K). Then the semi-direct product of K with
H through φ, denoted K⋊

φ
H , is the set G with multiplication defined by

(k1, h1) · (k2, h2) = (k1 · φh1(k2), h1 · h2).

PROPOSITION 6.6

The semi-direct product of K with H through φ is a group.

PROOF: It is clear that the product of two ordered pairs in G is an or-
dered pair in G. If we let e1 denote the identity element of K, and e2 denote
the identity element of H, then

φe2 (k) = k,

since φ must map e2 to the identity automorphism of K. Thus

(k1, h1) · (e1, e2) = (k1 · φh1(e1), h1 · e2) = (k1, h1),

and
(e1, e2) · (k2, h2) = (e1 · φe2(k2), e2 · h2) = (k2, h2).
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So (e1, e2) acts as the identity element of G.

Next we note that the element (k, h) has an inverse (φh−1(k−1), h−1), since

(φh−1(k−1), h−1) · (k, h) = (φh−1(k−1) · φh−1(k), h−1 · h)
= (φh−1(k−1 · k), e2) = (φh−1(e1), e2) = (e1, e2),

and

(k, h) · (φh−1 (k−1), h−1) = (k · φh(φh−1(k−1)), h · h−1)

= (k · φe2(k−1), e2) = (k · k−1, e2) = (e1, e2).

The final thing we need to check is that the multiplication on G is associa-
tive. Note that

[(k1, h1) · (k2, h2)] · (h3, k3) = (k1 · φh1(k2), h1 · h2) · (k3, h3)
= (k1 · φh1(k2) · φh1·h2(k3), (h1 · h2) · h3),

while

(k1, h1) · [(k2, h2) · (k3, h3)] = (k1, h1) · (k2 · φh2(k3), h2 · h3)
= (k1 · φh1(k2 · φh2(k3)), h1 · (h2 · h3))
= (k1 · φh1(k2) · φh1(φh2(k3)), (h1 · h2) · h3)
= (k1 · φh1(k2) · φh1·h2(k3), (h1 · h2) · h3).

Hence the multiplication on G is associative and so G forms a group.

Example 6.11

Find a semi-direct product Z3⋊φZ2.

SOLUTION: First we find Aut(Z3) ≈ Z∗
3 ≈ Z2. Hence, there is only one

non-trivial automorphism on Z3, which is x → x−1. To get a non-trivial
automorphism from Z2 to Aut(Z3), we must have 0 map to the identity au-
tomorphism, and 1 map to the other automorphism. That is, φ0(x) = x and
φ1(x) = x−1. Thus,

(2, 1) · (1, 0) = (2 · φ1(1), 1 · 0) = (2 · 2, 1 · 0) = (1, 1).

The multiplication table is given in Table 6.2. This is a non-abelian group of
order 6, so this is isomorphic to S3.

A semi-direct product of two groups acts in many ways like the direct
product. One property that is in common is that there are copies of the two
original groups within the product. In fact, we have the following:
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TABLE 6.2: Cayley table of Z3⋊φZ2

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(0,0) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(0,1) (0,1) (0,0) (2,1) (2,0) (1,1) (1,0)

(1,0) (1,0) (1,1) (2,0) (2,1) (0,0) (0,1)

(1,1) (1,1) (1,0) (0,1) (0,0) (2,1) (2,0)

(2,0) (2,0) (2,1) (0,0) (0,1) (1,0) (1,1)

(2,1) (2,1) (2,0) (1,1) (1,0) (0,1) (0,0)

LEMMA 6.7

Let G = K⋊
φ
H be the semi-direct product of K with H through the homomor-

phism φ. Suppose that e1 is the identity element of K, and e2 is the identity
element of H. Then

H = {(e1, h) | h ∈ H}

is a subgroup of G, and

K = {(k, e2) | k ∈ K}

is a normal subgroup of G. Furthermore, H ≈ H, K ≈ K, and H ∩K is the
identity element of G.

PROOF: We will use Proposition 2.2 and observe that

(e1, h)
−1 = (φh−1(e−1

1 ), h−1) = (e1, h
−1),

so

(e1, h1)·(e1, h2)−1 = (e1, h1)·(e1, h−1
2 ) = (e1 ·φh1(e1), h1 ·h−1

2 ) = (e1, h1 ·h−1
2 ).

Thus, whenever a and b are in H , a · b−1 is in H . So H is a subgroup.
The mapping f : G→ H given by

f((k, h)) = h

is a homomorphism, since

f((k1, h1)·(k2, h2)) = f((k1·φh1 (k2), h1·h2)) = h1·h2 = f((k1, h1))·f((k2, h2)).

The kernel of this homomorphism is K, so K is a normal subgroup of G. By
restricting the function f to the set H , we find that it is one-to-one and onto.
Thus, H ≈ H. A similar function g : K → K, given by

g(k) = (k, e2)
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can show that K ≈ K. This function is clearly one-to-one and onto, and

g(k1) · g(k2) = (k1, e2) · (k2, e2) = (k1 · φe2 (k2), e2) = (k1 · k2, e2) = g(k1 · k2).

Finally, it is clear that the intersections of the two groups give {(e1, e2)}.

Since the semi-direct product contains copies of the two smaller groups
within itself, the natural question is whether an arbitrary group G can be
expressed as a semi-direct product of two of its subgroups. The conditions for
when this happens is set forth in the following theorem.

THEOREM 6.3: The Semi-Direct Product Theorem

Suppose that a group G has two subgroups N and H whose intersection is the
identity element. Then if N is a normal subgroup of G and H is not a normal
subgroup of N ·H, then there exists a nontrivial homomorphism φ from H to
Aut(N) such that

N ·H ≈ N⋊
φ
H.

PROOF: Note that since H is a subgroup of G, and N is a normal sub-
group, we have by Lemma 4.3 that N ·H is a subgroup of G. We next want
to define the homomorphism φ. For each h in H, we define

φh(k) = h · k · h−1

for all k ∈ N. We first need to show that φh is an automorphism on N for each
h in H, and then we need to show that φ itself is a nontrivial homomorphism.
Note that

φh(k1 · k2) = h · k1 · k2 · h−1 = (h · k1 · h−1) · (h · k2 · h−1) = φh(k1) · φh(k2).

So φh is a homomorphism from N to N. Since

y ∈ φ−1
h (k) ⇐⇒ h · y · h−1 = k ⇐⇒ y = h−1 · k · h

we see that φh is a one-to-one and onto function. Thus, φh is an automorphism
of N.

Next, we need to see that φ itself is a homomorphism from H to Aut(N).
Note that

(φh1 · φh2)(k) = φh1(φh2(k))

= φh1(h2 · k · h−1
2 )

= h1 · h2 · k · h−1
2 · h−1

1

= (h1 · h2) · k · (h1 · h2)−1 = φh1·h2(k).

So φh1 · φh2 = φ(h1·h2) and we see that φ is a homomorphism. In fact, the
homomorphism must be nontrivial, because if φh(k) = k for all h and k, then
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since φh(k) = h · k · h−1 = k we have that k · h = h · k for all h in H, and
k in N. This would indicate that H is a normal subgroup of N · H, which
contradicts our original assumption. Thus, φ is a nontrivial homomorphism.

We can now proceed in a way similar to how we proved the direct product
theorem (6.1). As before, we will begin by showing that every element in
N ·H can be uniquely written in the form k · h, where k ∈ N and h ∈ H.

Suppose that we have
k1 · h1 = k2 · h2.

Then k−1
2 · k1 = h2 · h−1

1 . Since this element is in both N and H, which has
just the identity element in the intersection, we must have

k−1
2 · k1 = h2 · h−1

1 = e.

Therefore, k1 = k2 and h1 = h2. Thus, we have shown that every element of
N ·H is written uniquely as k · h, where k is in N, and h is in H.

We now want to create a mapping

f : N ·H → N⋊
φ
H

defined by
f(x) = (k, h),

where k and h are the unique elements such that k ∈ N, h ∈ H, and x = k ·h.
The function f is one-to-one since the element (k, h) can only come from k ·h.
Also, the element k · h maps to (k, h) so f is onto.

The final step is to show that f is a homomorphism. Let x = k1 · h1, and
y = k2 · h2. Then

x · y = k1 · h1 · k2 · h2 = (k1 · h1 · k2 · h−1
1 ) · (h1 · h2).

Since N is a normal subgroup, h1 · k2 · h−1
1 is in N, and so k1 · h1 · k2 · h−1

1 is
in N while h1 · h2 is in H. Thus,

f(x · y) = f((k1 · h1 · k2 · h−1
1 ) · (h1 · h2))

= (k1 · h1 · k2 · h−1
1 , h1 · h2)

= (k1 · φh1(k2), h1 · h2)
= (k1, h1) · (k2, h2) = f(x) · f(y).

So f is an isomorphism, and we have N ·H ≈ N⋊
φ
H.

Note that if both H and N are normal subgroups of H · N, we have by
Corollary 6.1 that H ·N ≈ H ×N.

We will use the semi-direct product theorem to define this product in Sage.
After defining the two groups H and N using the same identity element, we
must find the homomorphism φ from H to Aut(N). As in the case of the
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direct product, we will want to express every element of the form k · h, where
k is in N, and h is in H. From the definition, we see that

(k, e2) · (e1, h) = (k · φe2(e1), e2 · h) = (k, h),

Thus, we see that k · h can represent the ordered pair (k, h). We need to
tell Sage how to handle expressions of the form h · k.

For each generator a of N, and each generator b of H, we can calculate how
b * a should be defined by evaluating (e1, b) · (a, e2) = (φb(a), b). Thus we
make a definition in Sage of the form

Define(b*a, φb(a) * b)

where we replace the expression φb(a) with its element of N.

Computational Example 6.12

Use Sage to find a semi-direct product of Z5 with Z2.

SOLUTION: We first must define Z5 and Z2 into Sage using the same identity
but different generators.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^5, e)

Define(b^2, e)

Z5 = Group(a); Z5

{e, a^4, a, a^3, a^2}
Z2 = Group(b); Z2

{e, b}

After loading the groups Z5 and Z2, we want to find a nontrivial homomor-
phism φ from Z2 to Aut(Z5). But Aut(Z5) ≈ Z∗

5 ≈ Z4. Since the element b
is of order 2, φb must be of order 2 to keep the homomorphism from being
trivial. But it is easy to find the one element of Aut(Z5) of order 2:

φ(k) = k−1.

In fact, this will always be an automorphism whenever N is an abelian group.
As long as N has an element that is not its own inverse, this automorphism
will be of order 2. If we let φb(k) = k−1, then φb(a) = a−1 = a4. Thus, the
definition

Define(b*a, a^4*b)

completes the definition of the semi-direct product.

G = ListGroup(); G

{e, a, a^2, a^3, a^4, b, a*b, a^2*b, a^3*b, a^4*b}
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TABLE 6.3: Multiplication table for D5

· e a a2 a3 a4 b a·b a2 ·b a3 ·b a4 ·b
e e a a2 a3 a4 b a·b a2 ·b a3 ·b a4 ·b
a a a2 a3 a4 e a·b a2 ·b a3 ·b a4 ·b b

a2 a2 a3 a4 e a a2 ·b a3 ·b a4 ·b b a·b
a3 a3 a4 e a a2 a3 ·b a4 ·b b a·b a2 ·b
a4 a4 e a a2 a3 a4 ·b b a·b a2 ·b a3 ·b
b b a4 ·b a3 ·b a2 ·b a·b e a4 a3 a2 a

a·b a·b b a4 ·b a3 ·b a2 ·b a e a4 a3 a2

a2 ·b a2 ·b a·b b a4 ·b a3 ·b a2 a e a4 a3

a3 ·b a3 ·b a2 ·b a·b b a4 ·b a3 a2 a e a4

a4 ·b a4 ·b a3 ·b a2 ·b a·b b a4 a3 a2 a e

The multiplication table is given in Table 6.3, which shows that this is a
non-abelian group of order 10.

We can ask Sage what this group is, using the StructureDescription()
command. This command analyzes the last group which was defined using
the InitGroup and Define commands.

StructureDescription()

D5

This shows that the group is the dihedral group D5. We can generalize this
example as follows:

DEFINITION 6.7 Let n > 2, and let φ be the homomorphism from
Z2 = {e, b} to Aut(Zn) given by

φe(k) = k, φb(k) = k−1.

Then the semi-direct product Zn⋊φZ2 is called the dihedral group of order 2n.

It is denoted Dn, and is a non-abelian group of order 2n.

The commands

InitGroup("e")

AddGroupVar("a", "b")

Define(a^n, e)

Define(b^2, e)

Define(b*a, a^-1*b)

Dn = Group(a, b)
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define the group Dn. The symbol n must be replaced with an integer before
executing these commands. When n = 3, we get a non-abelian group of order
6, so D3 ≈ S3. We also have already seen D4, since this was one of the 5
groups of order 8 that we found in Chapter 4.

Note that the semi-direct product may greatly depend on the choice of the
homomorphism φ.

Computational Example 6.13

Consider finding the semi-direct products of Z8 with Z2. Since Aut(Z8) ≈ Z∗
8

has three elements of order 2, there are three nontrivial homomorphisms from
Z2 to Aut(Z8). One of these produces the dihedral group D8 above, but the
other two homomorphisms produce different groups. If we let φb(a) = a3, we
get the following.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^8, e)

Define(b^2, e)

Define(b*a, a^3*b)

G = ListGroup(); G

{e, a, a^2, a^3, a^4, a^5, a^6, a^7, b, a*b, a^2*b, a^3*b,

a^4*b, a^5*b, a^6*b, a^7*b}
StructureDescription()

QD16

Sage calls this group “QD16”, since it is the quasidihedral group of order 16,
written QD16. If we let φb(a) = a5 instead, we get

InitGroup("e")

AddGroupVar("a", "b")

Define(a^8, e)

Define(b^2, e)

Define(b*a, a^5*b)

M = ListGroup(); M

{e, a, a^2, a^3, a^4, a^5, a^6, a^7, b, a*b, a^2*b, a^3*b,

a^4*b, a^5*b, a^6*b, a^7*b}
StructureDescription()

Z8 : Z2

Even though the list of elements look the same for the two groups, the struc-
ture description is different. Sage uses a colon for the semi-direct product
symbol ⋊, so Sage recognized that the last group was of the form Z8⋊Z2, but
otherwise there is no special name for this group.

Another way of showing that the three groups are different is by having
Sage display the multiplication tables, and counting the number of times the
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identity element appears along the diagonals. We find that R2(D8) = 10,
R2(QD16) = 6, and R2(M) = 4, where M is the last group of the form
Z8⋊Z2.

We see that the semi-direct product Z8⋊φZ2 depends on the choice of the

homomorphism φ. In fact, even though the three elements of Aut(Z8) of
order 2 are essentially equivalent (since the automorphisms of Z∗

8 included
all permutations of these three elements), we see that the three elements
produced three different semi-direct products.

This example is really more of an exception rather than a rule. Part of what
makes this example unusual is that the automorphism group Z∗

8 is abelian,
and hence does not have any nontrivial inner automorphisms. If two homo-
morphisms φ and f from H to Aut(N) are related through an inner automor-
phism of Aut(N), then the corresponding semi-direct products will if fact be
isomorphic.

PROPOSITION 6.7

Let φ be a homomorphism from a group H to the group Aut(N). Suppose that
f is another homomorphism such that

fh(k) = w(φh(w
−1(k))),

where w(k) is an automorphism of N. Then N⋊
f
H ≈ N⋊

φ
H.

PROOF: Let us write G = N⋊
φ
H, and M = N⋊

f
H. These are two dif-

ferent groups, even though they are both written using ordered pairs. Let us
define a mapping

v : G→M

defined by
v((k, h)) = (w(k), h).

Because w(k) is one-to-one and onto, certainly v is one-to-one and onto. All
we would have to check is that

v((k1, h1)) · v((k2, h2)) = v((k1, h1) · (k2, h2)).
We have that

v((k1, h1)) · v((k2, h2)) = (w(k1), h1) · (w(k2), h2)
= (w(k1) · fh1(w(k2)), h1 · h2)
= (w(k1) · w(φh1 (w

−1(w(k2)))), h1 · h2)
= (w(k1) · w(φh1 (k2)), h1 · h2).

On the other hand,

v((k1, h1) · (k2, h2)) = v((k1 · φh1(k2), h1 · h2))
= (w(k1 · φh1(k2)), h1 · h2)
= (w(k1) · w(φh1 (k2)), h1 · h2).
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Since these are equal, we have an isomorphism.

It is also clear that whenever two homomorphisms φ and f are related
through an automorphism of H, the semi-direct products must be isomorphic
since we are merely relabeling the elements of H. As a result there will be
many instances in which there will be only one non-isomorphic semi-direct
product of N by H. In this case, we can denote the semi-direct product as
N⋊H, without having to specify the homomorphism φ.

We will find that we can describe many groups in terms of semi-direct
products that would be hard to describe in any other way. With Sage, the
structure of these semi-direct products can easily be studied.

Problems for §6.4

For Problems 1 through 6: Let φ : Z∗
8 → Aut(Z∗

8 ) be defined as follows:
φ1 = φ3 = (), φ5 = φ7 = (3 5), where we used the cycle notation for the
automorphisms. Compute the following in Z∗

8⋊φZ
∗
8 :

1 (5, 3) · (3, 5)
2 (3, 5) · (5, 3)

3 (7, 5)−1

4 (5, 7)−1
5 (1, 5) · (3, 7) · (5, 3)
6 (5, 3) · (3, 7) · (1, 5)

7 Show that there is only one semi-direct product Z∗
8⋊Z2, and form a Cayley

table. Which of the five groups of order 8 is this isomorphic to?
Hint: Use Proposition 6.7.

8 Show that there is only one semi-direct product of the form Z∗
8⋊Z3. Form a

Cayley table of this group. You have seen this group before. Do you recognize
it?

9 Form a Cayley table of the only semi-direct product of the form Z3⋊Z4.

10 Show that there is only one semi-direct product of the form Z⋊Z2. De-
scribe this group.

11 Show that there is only one semi-direct product of the form Z⋊Z. De-
scribe this group.

12 Let G be any group, and let i be the identity mapping from Aut(G) to
itself. We can define the semi-direct product H = G⋊

i
Aut(G). The group

H is called the holomorph of G. Show that every automorphism of G is the
restriction of some inner automorphism of the holomorph H.

13 Let G be a group, and n a positive integer. We will let Gn denote the
direct product of G with itself n times, or the set of n-tuples in G. If σ ∈ Sn,
we can define

ψσ : Gn → Gn by ψσ(g1, g2, . . . gn) = (gσ−1(1), gσ−1(2), . . . gσ−1(n)).

Show that ψσ is an automorphism of Gn.
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14 Let Gn and ψ be defined as in Problem 13. Show that if σ and τ are two
elements of Sn, then ψτ (ψσ(x)) = ψτ ·σ(x).

Hint: Think of an n-tuple as a function f from the set 1 ≤ i ≤ n to G,
with f(i) being the ith component of the n-tuple. Then φσ(f) sends f(i) to
f(σ−1(i)).

15 Let G be a group, and H a subgroup of Sn. We define the wreath product

G Wr H

as the semi-direct product Gn⋊
ψ
H, where Gn and ψ are defined as in Prob-

lem 13. Show that if G is a finite group, the wreath product is a finite group
of size |G|n · |H |.

16 Form the multiplication table of Z2 Wr S2. See Problem 15.

Interactive Problems

17 Use Sage to find the only semi-direct product Z∗
8⋊Z

∗
8 . Is this group iso-

morphic to any of the three groups of order 16 found by considering Z8⋊φZ2?

18 From Problems 16, and 19 from §6.1, Problem 9, and Definition 6.7,
we have found six groups of order 12: Z12, Z2 × Z6, A4, D6, S3 × Z2, and
Z3⋊Z4. Yet Table 4.4 indicates that there are only five non-isomorphic groups
of order 12. Which two of these groups are isomorphic? Use Sage to show
the isomorphism.

19 Use Sage to define the wreath product Z3 Wr S2. Then use Structure-
Description() to determine what group this is. See Problem 15.

20 Use Sage to define the wreath product Z2 Wr A3. Then use Structure-
Description() to determine what group this is. See Problem 15.

21 Use Sage to define the wreath product Z2 Wr S3. Then use Structure-
Description() to determine what group this is. See Problem 15.
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Chapter 7

The Search for Normal Subgroups

7.1 The Center of a Group

We saw several instances in the last chapter in which the structure of a group
hinges on its normal subgroups. Thus, we will want to develop techniques for
finding all of the normal subgroups of a given group G. We will discover in
the process that some of the normal groups have additional properties. We
will naturally concentrate our attention on non-abelian groups, since every
subgroup of an abelian group is normal.

In this section we will consider a simple way of constructing a normal sub-
group from a given group. In fact, the definition was suggested in Problem 8
of § 3.3. However, we will find that this particular normal subgroup, called
the center of the group, has some very important properties.

Motivational Example 7.1

Let us begin by considering the dihedral group D4. Table 7.1 gives us the
Cayley table of this group.

There are five elements of order 2 in this group, but one of these, a2, has
another important property. Notice that the locations of the a2 in Table 7.1
form a symmetrical pattern reflected along the main diagonal, even though
the entire table is not symmetric. This indicates that whenever x · y = a2,

TABLE 7.1: Sage’s multiplication table for D4

· e a a2 a3 b a · b a2 · b a3 · b
e e a a2 a3 b a · b a2 · b a3 · b
a a a2 a3 e a · b a2 · b a3 · b b

a2 a2 a3 e a a2 · b a3 · b b a · b
a3 a3 e a a2 a3 · b b a · b a2 · b
b b a3 · b a2 · b a · b e a3 a2 a

a · b a · b b a3 · b a2 · b a e a3 a2

a2 · b a2 · b a · b b a3 · b a2 a e a3

a3 · b a3 · b a2 · b a · b b a3 a2 a e

225
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then y · x = a2 in D4. Hence y = x−1 · a2 = a2 · x−1 for all elements x. In
order for this to happen, a2 must commute with all of the elements of D4.

DEFINITION 7.1 Given a group G, the center of G is defined to be the
set of elements x for which x · y = y · x for all elements y ∈ G. The center
of a group G is customarily denoted Z(G) because of the German word for
center, zentrum. [1, p. 150]

From this definition, we see that a2 ∈ Z(D4). It is also clear that e ∈ Z(G)
for all groups, since e · y = y · e. By examining Table 7.1 we find that there
are no other elements of D4 in Z(D4), so Z(D4) = {e, a2}. This is obviously
a subgroup, but it turns out to be a normal subgroup because of the following
proposition.

PROPOSITION 7.1

Given a group G, then Z(G) is a normal subgroup of G.

PROOF: First, we need to show that Z(G) is a subgroup of G. If x and
y are in Z(G), and a is any element in G, then

x · y · a = x · a · y = a · x · y.

So x · y commutes with all of the elements of G. Thus, x · y is in Z(G).
Also, we have

x−1 · a = (a−1 · x)−1 = (x · a−1)−1 = a · x−1.

So x−1 must also be in Z(G). Thus, by Proposition 2.2, Z(G) is a subgroup
of G.

Next, we can see that

a · x · a−1 = x · a · a−1 = x.

So a · x · a−1 is in Z(G) whenever x is in Z(G) and a is in G. Thus, by
Proposition 3.4, Z(G) is a normal subgroup of G.

We use the command GroupCenter to find the center of a group in Sage.
For example, the command

Z = GroupCenter(D4); Z

{e, a^2}

verifies our earlier observation that Z(D4) = {e, a2}.
Although the center always produces a normal subgroup, this subgroup is

not always interesting.
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Example 7.2

Show that the center of the group S3 = {(), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} is
just the identity element.
SOLUTION: Since (1 2) · (2 3) = (1 2 3) 6= (2 3) · (1 2) = (1 3 2), neither (1 2)
nor (2 3) are in the center. Also, (1 3) · (1 2 3) = (1 2) 6= (1 2 3) · (1 3) = (2 3),
so neither (1 3) nor (1 2 3) are in the center. Finally, (1 3 2) cannot be in the
center, since we have established that (1 3 2)2 = (1 2 3) is not in the center.
Thus, only () is in the center.

Whenever the center is just the identity element, we say the group is center-
less. In fact, all of the permutation groups Sn bigger than S3 are centerless.
Since the proof involves an even permutation, we will find the center of An at
the same time.

PROPOSITION 7.2

If n > 3, then the groups Sn and An are centerless.

PROOF: Suppose that φ is an element of Sn or An which is not the identity.
We need to show that φ cannot be in the center of either Sn or An, which
amounts to finding an element of An that does not commute with φ.

Since φ is not the identity, there is some number x that is not fixed by φ,
say x is mapped to y. Since n > 3, there is at least one number not in the
list {x, y, φ(y)}. Let z be one of these remaining numbers. Finally, we let f
be the 3-cycle (x y z).

Since f is an even permutation, f is in An. Then f · φ sends x to z, but
φ · f sends x to φ(y) 6= z. Thus, f · φ 6= φ · f , and φ is not in the center of
either An or Sn.

The other extreme is if Z(G) is the entire group G. This happens if, and
only if, the group G is abelian.

Since Z(G) is a normal subgroup of G, what is the quotient group? The
answer is rather interesting.

PROPOSITION 7.3

If G is a group, then G/Z(G) ≈ Inn(G).

PROOF: We begin by observing that the mapping

φ : G→ Inn(G)

given by
φx(y) = x · y · x−1

is a homomorphism, as we saw in the proof of the semi-direct product theorem
(6.3). By the definition of the inner automorphisms, this mapping is surjective.
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However, this mapping is not necessarily injective. Let us determine the kernel
of φ.

Suppose that φx is the identity homomorphism. Then φx(y) = y for all y
in G. This means that x · y · x−1 = y, or x · y = y · x, for all y in G. Thus, x
is in the center of G.

Now, suppose x is in Z(G). Then φx(y) = x · y ·x−1 = y ·x ·x−1 = y, so φx
is the identity homomorphism. Thus the kernel of φ is precisely the center of
G. Therefore, by the first isomorphism theorem (4.1), we have

G/Z(G) ≈ Inn(G).

The center of a group possesses a characteristic that is even stronger than
that of a normal subgroup. To illustrate this characteristic, consider the next
proposition.

PROPOSITION 7.4

Let N be a normal subgroup of a group G. Then Z(N) is a normal subgroup
not only of N, but also of G.

PROOF: Let g be an element of G, and z an element of Z(N). We need
to show that g · z · g−1 is in Z(N). Since N is a normal subgroup of G, we
certainly know that g · z · g−1 is in N, so the way to test that it is in Z(N) is
to show that it commutes with every element of N.

Let n be an element of N. We want to show that g ·z ·g−1 ·n = n ·g ·z ·g−1.
Let h = g−1 ·n ·g. Then h is in N, since N is normal in G. Also, n = g ·h ·g−1,
so

g · z · g−1 · n = (g · z · g−1) · (g · h · g−1) = g · z · h · g−1 = g · h · z · g−1

= (g · h · g−1) · (g · z · g−1) = n · g · z · g−1.

Hence, g ·z ·g−1 commutes with every element n in N, so g ·z ·g−1 is in Z(N).
By Proposition 3.4, we have that Z(N) is a normal subgroup of G.

This proposition demonstrates a rather unusual property of a center of a
group. In general, the normal subgroup of a normal subgroup is not necessarily
a normal subgroup. Consider M = {( ), (12)(34), (13)(24), (14)(23)}, which is
a normal subgroup of S4, and H = {( ), (12)(34)}, which is a normal subgroup
of M .

S4 = Group( C(1,2), C(1,2,3), C(1,2,3,4) )

M = Group( C(1,2)*C(3,4), C(1,3)*C(2,4) ); M

{(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
H = Group( C(1,2)*C(3,4) ); H

{(), (1, 2)(3, 4)}

We find that H is not a normal subgroup of S4.
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LftCoset(S4, H)

{{(), (1, 2)(3, 4)}, {(1, 2), (3, 4)}, {(2, 3), (1, 3, 4, 2)},
{(1, 3, 2), (2, 3, 4)}, {(1, 2, 3), (1, 3, 4)},
{(1, 3), (1, 2, 3, 4)}, {(2, 4, 3), (1, 4, 2)},
{(1, 4, 3, 2), (2, 4)}, {(1, 2, 4, 3), (1, 4)},
{(1, 4, 3), (1, 2, 4)}, {(1, 3)(2, 4), (1, 4)(2, 3)},
{(1, 4, 2, 3), (1, 3, 2, 4)}}

RtCoset(S4, H)

{{(), (1, 2)(3, 4)}, {(1, 2), (3, 4)}, {(2, 3), (1, 2, 4, 3)},
{(1, 3, 2), (1, 4, 3)}, {(1, 2, 3), (2, 4, 3)}
{(1, 3), (1, 4, 3, 2)}, {(2, 3, 4), (1, 2, 4)},
{(1, 3, 4, 2), (1, 4)}, {(2, 4), (1, 2, 3, 4)},
{(1, 4, 2), (1, 3, 4)}, {(1, 3)(2, 4), (1, 4)(2, 3)},
{(1, 4, 2, 3), (1, 3, 2, 4)}}

Contrast this situation to the center of a group. We found that the center
of a group Z(N) is a normal subgroup of G, even though Z(N) contains
no information about the larger group G. Any group that contains N as a
normal subgroup, such as a semi-direct product of N by another group, will
have Z(N) as a normal subgroup.

Problems for §7.1

1 Find the center of the group Q.

2 Find the center of the group D5.

3 Find the center of the group Z3⋊Z4. See Problem 9 from §6.4.

4 Find the center of the group Z∗
8⋊Z

∗
8 from Problems 1 through 6 of §6.4.

5 Must the center of a group be abelian?

6 Let G be a group and Z(G) the center of G. Prove that G is abelian if,
and only if, G/Z(G) is cyclic.

Hint: Use Proposition 7.3.

7 Show that if A and B are two groups, then Z(A×B) ≈ Z(A)× Z(B).

8 Prove that if a group only has one element of order 2, then that element
must be in the center.

9 Prove that if H is a normal subgroup of G, and |H | = 2, then H ∈ Z(G).

10 Let G be a group, and H be a transitive subgroup of Sn. (See Problem 15
of §5.2.) Show that Z(G Wr H) ≈ Z(G). See Problem 15 of §6.4 for the
definition of G Wr H.
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11 Let φ be an automorphism on the group G, and let z ∈ Z(G). Prove that
φ(z) ∈ Z(G).

12 A characteristic subgroup of G is a subgroup H such that φ(h) ∈ H for
all h ∈ H and all automorphisms φ of G. Problem 11 shows that Z(G) is a
characteristic subgroup of G. Prove that all characteristic subgroups are also
normal subgroups.

13 Let H be the only subgroup of G of size |H |. Prove that H is a charac-
teristic subgroup of G. See Problem 12.

14 Let G be an abelian group, and let H be the subgroup of size Rk(G)
given by

{x ∈ G | xk = e}.
Prove that H is a characteristic subgroup of G. See Problem 12.

15 Prove that all subgroups of a cyclic group are characteristic.
Hint: See Problems 12 and 13.

16 Prove that ifN is a characteristic subgroup of G, andH is a characteristic
subgroup of N, then H is a characteristic subgroup of G. Note this statement
is not true if “characteristic” is replaced with “normal.” See Problem 12.

17 Prove that if N is a normal subgroup of G, and H is a characteristic
subgroup of N, then H is a normal subgroup of G. This generalizes Proposi-
tion 7.4, since the center is a characteristic subgroup. See Problem 12.

Interactive Problems

18 Use Sage to find the center of the group D6. This can be loaded by the
commands:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^6, e); Define(b^2, e); Define(b*a, a^5*b)

D6 = ListGroup(); D6

{e, a, a^2, a^3, a^4, a^5, b, a*b, a^2*b, a^3*b, a^4*b, a^5*b}

What familiar group is the quotient group D6/Z(D6) isomorphic to?

19 In Problem 22 of §6.3, we computed the group G = Aut(Z3 × Z3). Find
the center of this group. What familiar group is G/Z(G) isomorphic to?

20 Find the centers of the groups D3, D4, D5, D6, D7, and D8. Do you see
any patterns?
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7.2 The Normalizer and Normal Closure Subgroups

In the last section, we found a subgroup of N that was not only normal,
but also was normal in any group G for which N was a normal subgroup. In
this section, we will essentially turn the question around: Given a subgroup
H of G, can we find a subgroup N of G for which H lies inside of N as a
normal subgroup? In the process of answering this question, we will produce
a powerful tool that can be used to identify the possible normal subgroups.
In addition, we will consider a related question, finding the smallest normal
subgroup of G that contains the subgroup H.

DEFINITION 7.2 Let S be a subset of a group G. We define the
normalizer of S by G, denoted NG(S), to be the set

NG(S) = {g ∈ G | g · S · g−1 = S}.

Notice that this definition allows for S to be merely a subset of G, not
necessarily a subgroup. We will later find uses for having a more generalized
definition. For now, let us show that the normalizer has some of the properties
that we are looking for.

PROPOSITION 7.5

Let S be a subset of the group G. Then NG(S) is a subgroup of G.

PROOF: Suppose x and y are in NG(S). Then both x · S · x−1 = S, and
y · S · y−1 = S. Thus, S = y−1 · S · y, and so

(x · y−1) · S · (x · y−1)−1 = x · (y−1 · S · y) · x−1 = x · S · x−1 = S.

Thus, x · y−1 is in NG(S), and so by Proposition 2.2, NG(S) is a subgroup of
G.

Example 7.3

Consider the group Q = {1, i, j, k,−1,−i,−j,−k}. Find the normalizer of the
single element {i}.
SOLUTION: We want to find the elements such that g · i · g−1 = i, which
clearly contains i. Since we know from Proposition 7.5 that the normalizer is
a subgroup, {1, i,−1,−i} is in the normalizer. But j is not in the normalizer,
so NG({i}) = {1, i,−1,−i}.

If, in addition, S is a subgroup of G, then the normalizer lives up to its
name.



232 Abstract Algebra: An Interactive Approach

PROPOSITION 7.6

Let H be a subgroup of the group G. Then NG(H) is the largest subgroup of
G that contains H as a normal subgroup.

PROOF: First, we must check that H is a normal subgroup of NG(H). But
this is obvious, since g ·H · g−1 = H for all g in NG(H).

Next, we must see that NG(H) is the largest such group. Suppose that
Y is another subgroup of G that contained H as a normal subgroup. Then
y ·H · y−1 = H for all y ∈ Y . Thus, Y ⊆ NG(H).

Since any subgroup of G that contains H as a normal subgroup is itself
contained in NG(H), we have that NG(H) is the largest such group.

Example 7.4

Find the normalizer of the subgroup [i] = {1, i,−1,−i} of Q.
SOLUTION: Since this is a normal subgroup of Q, the normalizer is all of Q,
since it is the largest group for which [i] is normal. In general, the normalizer
of a normal subgroup by G will produce the whole group G.

The Sage command Normalizer(G, H) finds the normalizer NG(H) of the
set H in G. We can verify the last two examples.

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}
H = Normalizer(Q, i)

{1, i, -1, -i}
Normalizer(Q, H)

{1, i, j, k, -1, -i, -j, -k}

Note that if the set is a single element, we do not have to enclose the element
in brackets. We can find the normalizer of any subset, even one that is not a
subgroup. For example, the normalizer of the subset {i, j} is

Normalizer(Q, [i, j])

{1, -1}

which contains neither i nor j. In general though, all we can say is that the
normalizer will be a subgroup, which this example illustrates.

There is one other case in which we can say that the normalizer will con-
tain H. Notice that in the example we did where H was a single element,
the normalizer contained that element. In fact, NG({g}) will consist of all
elements of G that commute with g. It should be noted that NG({g}) is not
the same thing as NG([g]), the normalizer of the group generated by g. The
former is the set of elements that commute with g, and the latter is the largest
subgroup that contains [g] as a normal subgroup.

We have seen that the normalizer of a subgroup H by G finds the largest
subgroup of G that contains H as a normal subgroup. What if we asked for
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the smallest subgroup containingH that is a normal subgroup of G? Whether
H is a subgroup or a subset, we can use the following proposition.

PROPOSITION 7.7

Let S be a subset of a group G. Then the smallest group containing S that is
a normal subgroup of G is given by

N∗ =
⋂

N∈L
N,

where L denotes the collection of normal subgroups of G that contain S.

PROOF: The group G itself is in the collection L, so this collection is not
empty. Thus, by Proposition 2.3, N∗ is a subgroup of G.

Also, since each N in the collection contained the set S, the intersection
will also contain S. All that needs to be shown is that N∗ is normal.

If n is an element of N∗, and g is an element of G, then since each N is a
normal subgroup of G, and n would be in all of the groups N,

g · n · g−1 ∈ N for all N ∈ L.

Thus, g · n · g−1 is in the intersection of all of the N ’s, which is N∗. Hence,
by Proposition 3.4, N∗ is a normal subgroup of G.

We will call this subgroup the normal closure of S. The Sage command
NormalClosure(G, S) computes this subgroup. With this command, we can
systematically find all of the normal subgroups of a given group. Note that if
S contains a single element, we can use the element instead of a set.

Computational Example 7.5

Find all of the normal subgroups of S3, using the generators a and b.
SOLUTION: We would like to see if there are any other normal subgroups
besides the two trivial groups. Since a proper subgroup must contain one of
the elements {a, b, a · b, b2, a · b2}, we have five groups to try.

InitGroup("e")
AddGroupVar("a", "b")

Define(a^2, e); Define(b^b, e); Define(b*a, a*b^2)

S3 = ListGroup(); S3

{e, a, b, a*b, b^2, a*b^2}
NormalClosure(S3, a)

{e, a, b, a*b, b^2, a*b^2}
NormalClosure(S3, b)

{e, b, b^2}
NormalClosure(S3, a*b)
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{e, a, b, a*b, b^2, a*b^2}
NormalClosure(S3, b^2)

{e, b, b^2}
NormalClosure(S3, a*b^2)

{e, a, b, a*b, b^2, a*b^2}
We see that using b and b2 produces the normal subgroup of order 3, A3. The
other elements produced the whole group. In fact, if we considered a normal
subgroup generated by two elements, it is obvious that this would have to
contain a normal subgroup already found. But the smallest found was A3,
and no larger subgroup could still be proper. Thus, we have used Sage to
prove that the only proper normal subgroup of S3 is A3.

This method of exhaustion works well for small groups, but one can imagine
that this method would be time consuming for larger groups. In the next
section, we will find a short-cut so that we will not have to try every element
of the group, but rather just a handful of elements.

Problems for §7.2

1 For each element g in D4, find the normalizer ND4({g}).

2 For each element g in D5, find the normalizer ND5({g}).

3 There are five subgroups ofD4 of order 2: {e, a2}, {e, b}, {e, a·b}, {e, a2 ·b},
and {e, a3 · b}. For each subgroup, find ND4(H).

4 There are five subgroups of D5 of order 2: {e, b}, {e, a · b}, {e, a2 · b},
{e, a3 · b}, and {e, a4 · b}. For each subgroup, find ND5(H).

5 Must the normalizer of an element NG({g}) be abelian?

6 Let G be any group. Prove that

Z(G) =
⋂

g∈G
NG({g}).

7 Let G be a group, and let g be an element of G. Prove that

NG({g}) = NG({g−1}).

8 Let G be a group, and let g be an element of G, and k be any integer.
Prove that

NG({g}) ⊆ NG({gk}).

9 Let G be a group. Prove that for any subset S,

Z(G) ⊆ NG(S).

10 Let G be a group. Prove that NG({g}) = G if, and only if, g ∈ Z(G).



The Search for Normal Subgroups 235

For Problems 11 through 16: Find the normal closure of the following sets in
D4.

11 {a}
12 {a2}

13 {b}
14 {a · b}

15 {a2, b}
16 {b, a · b}

For Problems 17 through 20: Find the normal closure of the following sets in
D5.

17 {a} 18 {a2} 19 {b} 20 {a · b}

Interactive Problems

21 Use Sage to find the normalizer ND6({x}) for each of the 12 elements
of the group D6 listed in Problem 18 of §7.1. For which elements is the
normalizer the same subgroup?

22 Use Sage’s NormalClosure command to find all of the normal subgroups
of the group D6 given in Problem 18 of §7.1.

7.3 Conjugacy Classes and Simple Groups

We have already seen how the cosets of a subgroup can be used to partition
the group into disjoint sets. As a result we proved Lagrange’s theorem, which
had far-reaching consequences. In this section, we will find another way to
partition the group into disjoint sets, and as a result we will find a much faster
way of determining all of the normal subgroups. In fact, we will find some
groups that do not have any non-trivial normal subgroups at all.

In the last section, we used the Sage command NormalClosure(G, S) to
find the smallest group containing the subset S that was a normal group of G.
Let us look closely at how this command works. We know that if the element
a is in this normal subgroup, then g · a · g−1 must also be in the group for all
g in G. Many of the elements that must be in the normal subgroup can be
found in this way.

DEFINITION 7.3 Let G be a group. We say that the element u is
conjugate to the element v if there exists an element g in G such that u =
g · v · g−1.

Note that every element is conjugate to itself, for we can let g be the identity
element. Also note that if u is conjugate to v, then v is also conjugate to u,
since

v = (g−1) · u · (g−1)−1.
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Finally, if u is conjugate to v, and v in turn is conjugate to w, we can see that
u is conjugate to w. This is easy to see, since there is a g and h such that
u = g · v · g−1 and v = h · w · h−1. Then

u = g · v · g−1 = g · (h · w · h−1) · g−1 = (g · h) · w · (g · h)−1.

Recall that in Definition 1.3, we defined an equivalence relationship as any
relationship having three properties:

1. Every element u is equivalent to itself.

2. If u is equivalent to v, then v is equivalent to u.

3. If u is equivalent to v, and v in turn is equivalent to w, then u is
equivalent to w.

These were called the reflexive, symmetric, and transitive properties. We
used the equivalence relationships of cosets in §3.4 to form a partition of
the group, which gave us the quotient groups. In the same way, we can use
the equivalence relationship of conjugates to form a different partition of the
group, called conjugacy classes. Unlike cosets, though, the conjugacy classes
will not be all the same size. The conjugacy class containing the element u is
given by

{g · u · g−1 | g ∈ G}

Computational Example 7.6

Find all of the conjugacy classes of S4.
SOLUTION: The Sage command for finding all of the conjugacy classes of a
group G is ConjugacyClasses(G). Let us find the conjugacy classes of S4,
which are generated by the cycles (1 2) and (2 3 4).

S4 = Group( C(1,2), C(2,3,4) ); S4

{(), (1, 2), (2, 3), (1, 3, 2), (1, 2, 3), (1, 3), (3, 4),

(1, 2)(3, 4), (2, 4, 3), (1, 4, 3, 2), (1, 2, 4, 3), (1, 4, 3),

(2, 3, 4), (1, 3, 4, 2), (2, 4), (1, 4, 2), (1, 3)(2, 4),

(1, 4, 2, 3), (1, 2, 3, 4), (1, 3, 4), (1, 2, 4), (1, 4),

(1, 3, 2, 4), (1, 4)(2, 3)}
ConjugacyClasses(S4)

{{()}, {(1, 2), (2, 3), (1, 3), (3, 4), (2, 4), (1, 4)},
{(1, 3, 2), (1, 2, 3), (2, 4, 3), (1, 4, 3), (2, 3, 4),

(1, 4, 2), (1, 3, 4), (1, 2, 4)}, {(1, 2)(3, 4), (1, 3)(2, 4),

(1, 4)(2, 3)}, {(1, 4, 3, 2), (1, 2, 4, 3), (1, 3, 4, 2),

(1, 4, 2, 3), (1, 2, 3, 4), (1, 3, 2, 4)}}

The identity element is in a class by itself since g·e·g−1 will always produce e.
But the cycle notation reveals an interesting fact about the other four classes:
one contains all of the transpositions, one contains all of the 3-cycles, one
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contains all of the 4-cycles, and one conjugacy class contains the products of
two disjoint transpositions. Problems 16 and 17 of §5.2 may help shed some
light on why this happens.

The conjugacy classes are very useful for finding normal subgroups, since
whenever one element of a conjugacy class is in a normal subgroup of G, the
entire conjugacy class must be in the normal subgroup. Thus, in order to
find all normal subgroups of S4 we only have to try the unions of different
combinations of the conjugacy classes. Furthermore, the identity element is
guaranteed to be in every subgroup.

Example 7.7

Use Example 7.6 to find all of the normal subgroups of S4.
SOLUTION: It would be helpful if we label the conjugacy classes.

A = {(12), (13), (14), (23), (24), (34)}
B = {(12)(34), (13)(24), (14)(23)}
C = {(123), (124), (132), (134), (142), (143), (234), (243)}
D = {(1234), (1243), (1324), (1342), (1423), (1432)}
E = {()}

Then a non-trivial normal subgroup would have to be one of the following
unions of conjugacy classes.

E ∪ A 7 elements

E ∪B 4 elements

E ∪ C 9 elements

E ∪D 7 elements

E ∪A ∪B 10 elements

E ∪ A ∪ C 15 elements

E ∪A ∪D 13 elements

E ∪B ∪ C 12 elements

E ∪B ∪D 10 elements

E ∪C ∪D 15 elements

E ∪ A ∪B ∪ C 18 elements

E ∪ A ∪B ∪D 16 elements

E ∪ A ∪C ∪D 21 elements

E ∪B ∪C ∪D 18 elements

Of course, the last combination E ∪ A ∪ B ∪ C ∪D would give us the whole
group. We actually can test all of these combinations without the help of
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Sage. This table also includes the number of elements in the subsets, and we
can eliminate almost all of these combinations with Lagrange’s theorem (3.1).
Only the second and eighth combinations have the number of elements divide
24. The combination

E ∪B = {(), (12)(34), (13)(24), (14)(23)}

we have seen before, so we recognize this is the normal subgroup which is
isomorphic to Z∗

8 . The other combination, E ∪ B ∪ C, contains the even
permutations of S4, so this is the normal subgroup A4. Hence, we can use
conjugacy classes to prove that there are precisely two non-trivial normal
subgroups of S4.

Computational Example 7.8

Use Sage to find all of the normal subgroups of A5.
SOLUTION: This group is generated by the cycles (1 2 3) and (3 4 5), so the
conjugacy classes are as follows:

A5 = Group( C(1,2,3), C(3,4,5) )

ConjugacyClasses(A5)

{{()}, {(1, 3, 2), (1, 2, 3), (2, 4, 3), (1, 4, 3), (2, 3, 4),

(1, 4, 2), (1, 3, 4), (1, 2, 4), (3, 5, 4), (2, 5, 4),

(1, 5, 4), (3, 4, 5), (2, 5, 3), (1, 5, 3), (2, 4, 5),

(2, 3, 5), (1, 5, 2), (1, 4, 5), (1, 3, 5), (1, 2, 5)},
{(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(4, 5),

(2, 3)(4, 5), (1, 3)(4, 5), (1, 2)(3, 5), (2, 4)(3, 5),

(1, 4)(3, 5), (1, 3)(2, 5), (2, 5)(3, 4), (1, 4)(2, 5),

(1, 5)(2, 3), (1, 5)(3, 4), (1, 5)(2, 4)}, {(1, 5, 4, 3, 2),

(1, 3, 5, 4, 2), (1, 3, 2, 5, 4), (1, 2, 4, 5, 3),

(1, 2, 5, 3, 4), (1, 5, 3, 2, 4), (1, 4, 5, 2, 3),

(1, 4, 3, 5, 2), (1, 5, 2, 4, 3), (1, 2, 3, 4, 5),

(1, 4, 2, 3, 5), (1, 3, 4, 2, 5)}, {(1, 2, 5, 4, 3),

(1, 5, 4, 2, 3), (1, 2, 3, 5, 4), (1, 4, 5, 3, 2),

(1, 5, 3, 4, 2), (1, 4, 2, 5, 3), (1, 3, 4, 5, 2),

(1, 3, 5, 2, 4), (1, 5, 2, 3, 4), (1, 3, 2, 4, 5),

(1, 2, 4, 3, 5), (1, 4, 3, 2, 5)}}

This group also has only five conjugacy classes, so it should be no more difficult
to find the normal subgroups than S4. We can pick a representative element
from each of the non-trivial conjugacy classes: (1 2 3), (1 2)(3 4), (1 2 3 4 5),
and (1 2 3 5 4). From this point we can proceed as in the S4 example to show
that there are no normal subgroups of A5. (See Problem 9.) However, we can
use Sage to speed up the process.

len(NormalClosure(A5, C(1,2,3) ))

60
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len(NormalClosure(A5, C(1,2)*C(3,4) ))

60

len(NormalClosure(A5, C(1,2,3,4,5) ))

60

len(NormalClosure(A5, C(1,2,3,5,4) ))

60

This shows that if any of the 4 representative elements are in a non-trivial
normal subgroup of A5, the subgroup would have to be all 60 elements of A5.
Hence, there can be no nontrivial normal subgroups of A5.

We will see that this is a rather unusual property for a group to have, so
we will give this a special name.

DEFINITION 7.4 A group is said to be simple if it contains no normal
subgroups besides itself and the identity subgroup.

The groups Zp, for p a prime number, are the first examples we have seen
of simple groups. We now have seen an example of a non-cyclic simple group,
A5. In fact this is the smallest non-cyclic simple group! (See Problem 19 of
§7.4.)

Let us find other simple groups. The natural place to look is higher order
alternating groups. Let us use Sage’s help to find the sizes of the conjugacy
classes of A6. This group is generated by the cycles (1 2 3) and (2 3 4 5 6).

A6 = Group(C(1, 2, 3), C(2, 3, 4, 5, 6))

len(A6)

360

S = ConjugacyClasses(A6)

[ len(x) for x in S ]

[1, 40, 45, 72, 72, 90, 40]

Thus, we see that there are 7 conjugacy classes of A6, one of size 1 (the
identity), two of size 40, two of size 72, one of size 45, and one of size 90.

Example 7.9

Use the above result to show that A6 is simple.
SOLUTION: If there were a non-trivial subgroup N, its size would be a factor
of 360, hence |N | = 180, 120, 90, 72, 60, or 45. Note it cannot be 40 or smaller,
since it must contain the identity and at least one other conjugacy class.
Clearly |N | 6= 45, since there is no conjugacy class of size 44. Thus, |N | is
even, so we must include both odd conjugacy classes, 1 and 45, plus at least
one other. Hence, |N | ≥ 86. At this point we see that |N | is a multiple of 5,
so both conjugacy classes of size 72 must be included to get the sum to be a
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multiple of 5. At this point |N | ≥ 190, which is impossible. So A6 is a simple
group.

Our goal is to show that An is simple for all n > 4. We begin by showing
that all 3-cycles are in one conjugacy class.

LEMMA 7.1

If n > 4, any two 3-cycles are conjugate in An. Furthermore, the conjugate
of a 3-cycle is again a 3-cycle.

PROOF: We begin by showing that the conjugate of a 3-cycle is again a
3-cycle. Let (a b c) be a 3-cycle, and let φ be any permutation in An. Suppose
that x = φ(a), y = φ(b), and z = φ(c). Then we can compute

φ · (a b c) · φ−1 = (x y z).

Thus the conjugate of a 3-cycle is another 3-cycle.
Next we will show that any 3-cycle is conjugate to the element (1 2 3) in

An. Let (u v w) be a 3-cycle. Since n > 4 there must be at least two numbers
not mentioned in this 3-cycle, so we will call two of them x and y. Consider
the permutation

φ =

(
1 2 3 4 5 · · ·
u v w x y · · ·

)

.

Here, the dots indicate that when n > 5, we can complete the permutation in
any way so that the numbers on the bottom row will be a permutation of the
numbers 1 through n.

Now φ will either be an even permutation or an odd permutation. If φ is
an odd permutation, we can consider instead the permutation

φ =

(
1 2 3 4 5 · · ·
u v w y x · · ·

)

.

So we may assume that φ is an even permutation. Thus φ is in An, and we
can compute

φ · (1 2 3) · φ−1 = (u v w).

Therefore, any 3-cycle is conjugate to (1 2 3), and so any two 3-cycles are
conjugate to each other in An whenever n > 4.

With this lemma, we can show that An will be a simple group whenever
n > 4. This was originally proved by Abel using a long case-by-case argument.
Since Sage helped us show that A5 and A6 are simple, the argument is greatly
simplified.

THEOREM 7.1: Abel’s Theorem

The alternating group An is simple for all n > 4.
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Historical Diversion

Niels Abel (1802–1829)
Niels Abel was born in Norway at a

time when the country was experiencing
extreme poverty and hunger due to the
Napoleonic wars. His father, Sören Georg
Abel, had degrees in philosophy and the-
ology, and served as a Protestant minister
at Gjerstad. Abel was the second of seven
children, and was taught by his father until
he was 13 years old. The family’s poverty
was intensified since Abel’s father was of-
ten drunk, and his mother was accused of
lacking morals.
In 1815 Abel was sent to the Cathedral

School in Christiania. Abel started out
uninspired, but in 1817, a new mathematics teacher, Bernt Holmboë, joined
the school, and took an interest in Abel. Within a year, Abel was reading the
works of Euler, Newton, d’Alembert, Lagrange, and Laplace.
But in 1820, Abel’s father died, and it was up to Abel to support his mother

and family. Holmboë worked to raise money from his colleagues to allow Abel
to enter the University of Christiania in 1821. During Abel’s final year in
school, he worked on the quintic equation, unsolved for 250 years.

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

Abel believed he had solved the equation by radicals, and submitted a paper
to the Danish mathematician Ferdinand Degen. Degen asked Abel to provide
an example, and as Abel worked out the example, he found an error in his
paper. Degen advised Abel to work instead on elliptic integrals, a new field
that had promising consequences for both analysis and mechanics.
Abel took Degen’s advise, and wrote several papers on functional equations

and integrals. On a visit to see Degen, Abel met Christine Kemp, who later
became his fiancée. Returning to Christiania, he again worked on the quintic
equation, and in 1824 he proved the impossibility of solving the general equa-
tion in radicals. He send his proof to Gauss, who dismissed him as a crank,
and never read the proof. Abel continued to work on elliptic functions in com-
petition with Carl Jacobi. By this time Abel had become famous among the
mathematical centers, and efforts were made to secure him a suitable position.
In 1828, Abel became seriously ill from tuberculosis, and his condition in-

tensified due to Abel’s sled trip to visit his fiancée. In spite of a reprieve
long enough for the couple to spend Christmas together, he died soon after
on April 6, 1829, just 2 days before word arrived that he was appointed as a
professor at the University of Berlin.

Image source: Wikimedia Commons
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PROOF: Suppose that N is a proper normal subgroup of An, and let φ be an
element of N besides the identity. By Proposition 7.2, An is centerless. Since
Proposition 5.1 tells us that An is generated by 3-cycles, there must be at
least one 3-cycle that does not commute with φ, say (a b c). Thus, φ · (a b c) is
not equal to (a b c) ·φ, or equivalently, (a b c) ·φ · (a c b) ·φ−1 is not the identity
element.

Since N is a normal subgroup, (a b c) · φ · (a c b) must be in N. Therefore,
(a b c) ·φ · (a c b) ·φ−1 must also be in N. But φ · (a c b) ·φ−1 is the conjugate of
a 3-cycle, so by Lemma 7.1 this is also a 3-cycle, say (x y z). Thus, N contains
a product of two 3-cycles, (a b c) · (x y z), which is not the identity. In essence
we can say that there is a non-identity element of N that moves at most six
numbers, labeled a, b, c, x, y, and z. If there are duplicates in this list, we
can add arbitrary numbers so that we have six different numbers.

Here’s where we can take advantage of the fact that A6 is known to be
simple. Consider the subgroup H of An consisting of all even permutations
of the six numbers a, b, c, x, y, and z. We have just showed that there is a
nontrivial intersection of N and H. Let this intersection be M . Whenever x
is in M and h is in H, then h · x · h−1 is in both H and N. Thus h · x · h−1 is
in M. Hence M is a nontrivial normal subgroup of H.

But H is isomorphic to A6, which we have proven to be a simple group.
Thus M must be all of H. In particular M contains a 3-cycle, and so N
contains a 3-cycle. By Lemma 7.1 all 3-cycles of An are conjugate, so N
contains all 3-cycles of An. Finally, by Proposition 5.1 the 3-cycles generate
An, so N must be all of An. Therefore, An is simple whenever n > 4.

This theorem has an immediate application to the permutation groups Sn.

COROLLARY 7.1

If n > 4 then the only proper normal subgroup of Sn is An.

PROOF: Suppose that there were another normal subgroup, N. Then the
intersection of N with An would be another normal subgroup of Sn, and
so would be a normal subgroup of An. Since An is simple for n > 4, this
intersection must either be the identity or all of An.

Suppose that the intersection is all of An. Then N contains An, and if N is
not equal to An, N would contain more than half of the elements of Sn. But
this would contradict Lagrange’s theorem (3.1) unless N = Sn.

Suppose that the intersection of N and An is just the identity element.
Then since both N and An are normal subgroups, we have by Corollary 6.1,

N · An ≈ N ×An.

If N is not just the identity element, this quickly leads to a contradiction,
for N could have order of at most 2, telling us that Sn was isomorphic to
Z2 × An. But this is ridiculous, for we saw in Proposition 7.2 that Sn was
centerless, whereas Z2 ×An clearly has both (0, ( )) and (1, ( )) in its center.
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Therefore, the only normal subgroups of Sn for n > 4 are Sn itself, An, and
the identity element.

We now have found two sequences of simple groups, namely Zp for p being
a prime number, and An for all n > 4. Are any of the other groups that we
have looked at simple groups?

Computational Example 7.10

Find the normal subgroups of the group Aut(Z∗
24), the group of order 168

generated by the 187th and 723rd permutation elements.

DisplayPermInt = true

A = Group( NthPerm(187), NthPerm(723) ); A

{1, 27, 61, 87, 122, 149, 187, 231, 244, 270, 331, 357, 374,

404, 437, 467, 496, 548, 558, 593, 640, 670, 684, 714, 723,

745, 783, 805, 844, 870, 931, 957, 962, 989, 1027, 1071,

1096, 1148, 1158, 1193, 1214, 1244, 1277, 1307, 1366, 1384,

1410, 1428, 1445, 1466, 1509, 1549, 1566, 1588, 1653, 1675,

1681, 1707, 1741, 1767, 1822, 1862, 1889, 1902, 1966, 1984,

2010, 2028, 2054, 2084, 2117, 2147, 2166, 2188, 2253, 2275,

2285, 2306, 2349, 2389, 2403, 2425, 2463, 2485, 2566, 2584,

2610, 2628, 2662, 2702, 2729, 2742, 2780, 2798, 2843, 2861,

2897, 2927, 2954, 2984, 3018, 3071, 3076, 3110, 3144, 3185,

3206, 3220, 3288, 3306, 3328, 3346, 3361, 3387, 3421, 3447,

3487, 3517, 3531, 3561, 3618, 3671, 3676, 3710, 3737, 3767,

3794, 3824, 3888, 3906, 3928, 3946, 3984, 4025, 4046, 4060,

4083, 4105, 4143, 4165, 4213, 4231, 4257, 4275, 4362, 4392,

4402, 4432, 4488, 4506, 4528, 4546, 4577, 4607, 4634, 4664,

4703, 4721, 4760, 4778, 4809, 4839, 4849, 4879, 4935, 4953,

4975, 4993}

SOLUTION: As large as this group is, Sage can still quickly find the conjugacy
classes.

ConjugacyClasses(A)

{{1}, {27, 61, 87, 122, 270, 404, 593, 640, 714, 723, 745,

1566, 1681, 2306, 2425, 3110, 3421, 3767, 4143, 4488, 4528},
{149, 187, 244, 357, 374, 467, 548, 558, 844, 989, 1148,

1307, 1366, 1384, 1410, 1428, 1445, 1588, 1653, 1741, 1767,

1889, 2028, 2147, 2188, 2285, 2389, 2463, 2485, 2566, 2702,

2798, 2984, 3071, 3076, 3220, 3306, 3361, 3387, 3531, 3671,

3737, 3824, 3928, 3984, 4083, 4105, 4213, 4362, 4392, 4402,

4432, 4634, 4703, 4839, 4975}, {231, 331, 437, 496, 670, 684,

783, 805, 870, 962, 1193, 1244, 1466, 1675, 1707, 1822, 2010,
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2054, 2166, 2349, 2403, 2584, 2742, 2861, 2927, 3018, 3206,

3346, 3447, 3517, 3710, 3794, 3888, 4025, 4165, 4257, 4506,

4546, 4607, 4760, 4849, 4935}, {931, 1071, 1096, 1277, 1509,

1902, 1984, 2084, 2275, 2610, 2662, 2843, 2954, 3185, 3288,

3487, 3618, 3946, 4046, 4275, 4577, 4778, 4879, 4953},
{957, 1027, 1158, 1214, 1549, 1862, 1966, 2117, 2253, 2628,

2729, 2780, 2897, 3144, 3328, 3561, 3676, 3906, 4060, 4231,

4664, 4721, 4809, 4993}}

So we have six conjugacy classes of this group, one of which is just the
identity. The other five classes can be represented by the first element in each
list, which are the 27th, 149th, 231st, 931st, and 957th permutations. This
list alone can be used to show that A is simple (see Problem 10), but we can
also verify that the normal closure of each of these five elements yields the
whole group.

len(NormalClosure(A, NthPerm(27) ))

168

len(NormalClosure(A, NthPerm(149) ))

168

len(NormalClosure(A, NthPerm(231) ))

168

len(NormalClosure(A, NthPerm(931) ))

168

len(NormalClosure(A, NthPerm(957) ))

168

Thus, any proper normal subgroup cannot contain any of these five elements;
we have shown that there are no proper normal subgroups, so Aut(Z∗

24) is a
simple group.

This is the second largest non-cyclic simple group. (A5 is the smallest and
A6 is the third smallest.) See Problems 11 through 17 for more examples of
simple groups.

We can have Sage give us a structure description of a permutation group by
including the integer representation of a set of generators for the arguments.

StructureDescription(187, 723)

PSL(3,2)

So one of the official names for the group Aut(Z∗
24) is L3(2). This group is the

beginning of yet another infinite family of simple groups, called the Chevalley
groups. We will not go into all of the ways this group can be generalized to
produce these other groups, but we will mention an important result that has
taken place during the 20th century. It was once thought that all finite simple
groups were either the cyclic groups of prime order, the alternating groups,
or one of the Chevalley or twisted Chevalley groups. (One of these groups
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turns out to be not quite simple. Yet taking half of the elements forms a new
simple group, just as we took half of the elements of Sn to form the simple
groups An.) But there were several other simple groups that were discovered,
called sporadic groups. In the 1960s and 1970s it was proved that there are
exactly 26 sporadic groups, ranging in size from a mere 7,920 elements to the
monstrous
808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000

elements! These 26 sporadic groups are listed in [13]. Because these have
been proven to be the only sporadic groups, all finite simple groups are now
known.

Problems for §7.3

1 Find all of the conjugacy classes of the group D4.

2 Find all of the conjugacy classes of the quaternion group Q. (See Table 4.3
in Chapter 4 for the multiplication table of Q.)

3 Find all of the conjugacy classes of the group D5.

4 Find the conjugacy classes of the group Z3⋊Z4. See Problem 9 from §6.4.

5 Find the conjugacy classes of the group Z∗
8⋊Z

∗
8 from Problems 1 through 6

of §6.4.

6 Show that the conjugacy class for an element x has only one element if,
and only if, x is in the center of the group.

7 Show that if G is a finite group of odd order, and x ∈ G is not the identity,
then x−1 is not in the conjugacy class of x.

8 Show that if G is a finite group, and x and y are in the same conjugacy
class, then |NG({x})| = |NG({y})|.

9 Sage showed that the group A5 had conjugacy classes of orders 1, 12, 12,
15, and 20. Using just this information, without using Abel’s theorem (7.1),
prove that A5 is simple. Use Example 7.9 as a guide.

10 Sage showed that the group Aut(Z∗
24) had conjugacy classes of orders 1,

21, 24, 24, 42, and 56. Using just this information, prove that Aut(Z∗
24) is

simple.

11 The group L2(8) has 504 elements, and has nine conjugacy classes of
orders 1, 56, 56, 56, 56, 63, 72, 72, and 72. Prove that L2(8) is simple. This
is another example of a Chevalley group.
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12 The group L2(11) has 660 elements, and has eight conjugacy classes of
orders 1, 55, 60, 60, 110, 110, 132, and 132. Prove this group is simple. This
group is related to the group Aut(Z11 × Z11).

13 The group L2(13) has 1092 elements, and has nine conjugacy classes of
orders 1, 84, 84, 91, 156, 156, 156, 182, and 182. Prove this group is simple.
This group is related to the group Aut(Z13 × Z13).

14 The group L2(17) has 2448 elements, and has eleven conjugacy classes
of orders 1, 144, 144, 153, 272, 272, 272, 272, 306, 306, and 306. Prove this
group is simple. This group, the seventh smallest non-cyclic simple group, is
related to the group Aut(Z17 × Z17).

15 Looking at the pattern of the last 3 problems, determine the eighth small-
est non-cyclic simple group.

16 The group M11 has order 7920, and has 10 conjugacy classes of orders 1,
165, 440, 720, 720, 990, 990, 990, 1320, and 1584. Prove that M11 is simple.
This is the smallest of the 26 sporadic simple groups.

17 The group L3(4) has 20160 elements, and has 10 conjugacy classes of
orders 1, 315, 1260, 1260, 1260, 2240, 2880, 2880, 4032, and 4032. Prove that
this group is simple. Show that even though A8 is a simple group with the
same order, these two groups are not isomorphic.

Hint: How many 3-cycles are in A8? What does Lemma 7.1 say about the
3-cycles?

18 Find a representative element for each of the seven conjugacy classes of
the group A6. The number of elements in each conjugacy class is given in
Example 7.9.

Hint: Are (1 2 3 4 5) and (1 2 3 5 4) in the same conjugacy class? Why are
(1 2)(3 4 5 6) and (1 2)(3 4 6 5) in the same conjugacy class?

19 Using the counting methods that were used to estimate the 168 elements
of Aut(Z∗

24), find the maximum number of elements of Aut(Z2×Z2×Z2×Z2).
This group is in fact simple, and contains the number of elements predicted
by this estimate. Are there any other simple groups that we have seen of this
order?

Interactive Problems

20 The following commands load a group of order 20 into Sage.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^5, e); Define(b^4, e); Define(b*a, a^2*b)

M = ListGroup()
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Find the conjugacy classes of this group, and use this to find all of the normal
subgroups of M .

21 The following commands load a group of order 24 into Sage.

DisplayPermInt = true

G = Group(NthPerm(2374), NthPerm(6212)); G

{1, 2374, 4517, 6212, 6841, 9929, 11637, 13016, 13698, 15367,

18454, 19853, 21239, 21896, 24132, 25315, 28226, 28986,

30928, 31590, 33108, 37381, 38807, 39487}
StructureDescription(2374, 6212)

SL(2,3)

Find the conjugacy classes of this group, and use this to find all of the normal
subgroups of G.

7.4 The Class Equation and Sylow’s Theorems

Just as Lagrange’s theorem had far-reaching implications, the partition of
a group into conjugacy classes also has important consequences if we consider
the size of these classes. As a result, we will be able to prove three important
theorems first discovered by Peter Sylow. (See the Historical Diversion on
page 252.) Using these three theorems, we will be able to classify all groups
up to order 15. This shows just how powerful these theorems can be.

In working with the conjugacy classes from the last section, we may have
noticed a pattern in the size of each of the conjugacy classes. For example,
the conjugacy classes of S4 are given by

S4 = Group( C(1,2), C(2,3,4) )

ConjugacyClasses(S4)

{{()}, {(1, 2), (2, 3), (1, 3), (3, 4), (2, 4), (1, 4)},
{(1, 3, 2), (1, 2, 3), (2, 4, 3), (1, 4, 3), (2, 3, 4),

(1, 4, 2), (1, 3, 4), (1, 2, 4)}, {(1, 2)(3, 4), (1, 3)(2, 4),

(1, 4)(2, 3)}, {(1, 4, 3, 2), (1, 2, 4, 3), (1, 3, 4, 2),

(1, 4, 2, 3), (1, 2, 3, 4), (1, 3, 2, 4)}}
The first class has only the identity element, the class with the transpositions
has exactly 6 elements, while the other classes are of orders 8, 3, and 6. Im-
mediately we see that the number of elements in the classes may be different.
We have the obvious relationship

1 + 6 + 8 + 3 + 6 = 24,

the order of the group, since every element in the group belongs to one and
only one conjugacy class. Is there another pattern? Let us compare this with
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the conjugacy classes of Aut(Z∗
24). There were six conjugacy classes of size 1,

21, 42, 56, 24, and 24. We can check that

1 + 21 + 56 + 42 + 24 + 24 = 168.

But another pattern is becoming clear that is akin to Lagrange’s theorem
(3.1). Notice that the number of elements in each class is always a divisor of
the order of the group. Let’s see if we can discover why this pattern exists.

LEMMA 7.2

Let G be a finite group, and let g be an element of G. Then the number of
elements of G that are conjugate to g is given by

|G|
|NG({g})|

,

where NG({g}) denotes the normalizer of the single element {g}.

PROOF: We saw in Proposition 7.5 that NG({g}) is a subgroup of G. We
want to determine all possible conjugates of the element g. Note that if u and
v are two elements of G, then u · g · u−1 and v · g · v−1 will represent the same
element if, and only if,

u · g · u−1 = v · g · v−1 ⇐⇒ v−1 · u · g · u−1 · v = g

⇐⇒ (v−1 · u) · g · (v−1 · u)−1 = g

⇐⇒ v−1 · u ∈ NG({g})
⇐⇒ u ∈ v ·NG({g})
⇐⇒ u ·NG({g}) = v ·NG({g}).

Thus u · g · u−1 and v · g · v−1 represent the same element if, and only if,
u and v belong to the same left coset of NG({g}). Therefore, to count all
of the possible conjugates of g, we merely count the number of left cosets of
NG({g}), which is

|G|
|NG({g})|

.

We have already observed that the sum of the number of elements in each
of the conjugacy classes must give the number of elements in the group. Since
we now know how many elements are in each conjugacy class, we can derive
what is called the class equation.

THEOREM 7.2: The Class Equation Theorem

Let G be a finite group. Then

|G| =
∑

g

|G|
|NG({g})|

,
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where the sum runs over one g from each conjugacy class.

PROOF: We simply observe that every element of G appears in exactly one
of the conjugacy classes. Thus, |G| is the sum of the sizes of all of the con-
jugacy classes. We have by Lemma 7.2 that the size of each conjugacy class
is

|G|
|NG({g})|

where g is a representative element of the conjugacy class. Thus we get the
class equation.

It is helpful to give an example of the class equation, to understand the
notation. The group Aut(Z∗

24) had 6 conjugacy classes, represented by the
1st, 27th, 149th, 231st, 931st, and 957th permutations. We can find the size
of the normalizers for each of these elements.

A = Group( NthPerm(187), NthPerm(723) )

len(Normalizer(A, NthPerm(1) ))

168

len(Normalizer(A, NthPerm(27) ))

8

len(Normalizer(A, NthPerm(149) ))

3

len(Normalizer(A, NthPerm(231) ))

4

len(Normalizer(A, NthPerm(931) ))

7

len(Normalizer(A, NthPerm(957) ))

7

Finally, we form the sum

∑

g

|G|
|NG({g})|

=
168

168
+

168

8
+

168

3
+

168

4
+

168

7
+

168

7
= 168.

We will see many very important applications of this equation, but let us
begin by learning what this has to say about groups whose order is a power
of a prime.

COROLLARY 7.2

If G is a group of order pn where p is a prime and n is a positive integer,
then G is not centerless.
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PROOF: First we observe that an element g is in the center of G if, and
only if, y · g · y−1 = g for all y in G, which would happen if, and only if, the
conjugacy class of g consists of just g by itself.

Now suppose G is centerless. Then the only conjugacy class that contains
just one element would be the class {e}. All other conjugacy classes would
have a size that is a divisor of pn, so the number of elements in the other
conjugacy classes would be a power of p. But this is impossible since the
sum on the right-hand side of the class equation (7.2) would be congruent to
1 (mod p), while the left-hand side of the class equation would be pn, which
is congruent to 0 (mod p). Therefore, G is not centerless.

This corollary is useful in finding all non-isomorphic groups of order pn,
where p is a prime. For example, we can easily find all non-isomorphic groups
of order p2.

COROLLARY 7.3

If p is a prime then there are exactly two non-isomorphic groups of order p2,
namely Zp2 and Zp × Zp.

PROOF: If G is a group of order p2, then by Corollary 7.2, G has a nontrivial
center. Since the number of elements of Z(G) must divide p2, so |Z(G)| is
either equal to p or p2.

Suppose that |Z(G)| = p. Then there exists an element g not in Z(G).
Then NG({g}) denotes the set of elements that commute with g. Certainly

Z(G) ⊆ NG({g}),

and also

g ∈ NG({g}),

so NG({g}) contains at least p+ 1 elements. But this is a subgroup of G, so
the number of elements must divide p2. Hence, NG({g}) contains all of G, but
this would say that g is in the center Z(G), which contradicts our assumption.
Thus, there are p2 elements in Z(G) and hence G is an abelian group.

Finally, we can use the fundamental theorem of finite abelian groups (6.2)
to say that G must be isomorphic to the direct product of cyclic groups. It is
easy to see that there are exactly two possibilities for such a product to have
p2 elements, namely Zp2 and Zp × Zp.

In particular we can use Corollary 7.3 to see that there are only two non-
isomorphic groups of order 9, Z9 and Z3 × Z3.

One of the keys for finding all groups of a certain order is knowing whether
there is a normal subgroup of a certain order. The next proposition will allow
us to know that there will be a normal subgroup without knowing the structure
of the group.
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PROPOSITION 7.8

Let G be a group of order pn. Then G contains a normal subgroup of order
pn−1.

PROOF: We will proceed by using induction on n. Note that if n = 1,
then there is obviously a normal subgroup of order p1−1 = p0 = 1, namely
the trivial subgroup {e}.

Suppose that we know that every group of order pn−1 has a normal subgroup
of order pn−2. Let G be a group of order pn. Then by Corollary 7.2, the center
of G is not just the identity element. Since p would then divide the order of
Z(G), by Lemma 6.2 there is an element of Z(G) of order p, say x. Then
the group generated by x would be of order p, and since x is in the center,
all elements of G would commute with x. Thus, X = [x] would be a normal
subgroup of G.

We then can consider the quotient group G/X . This would have order
pn−1, and we would have the canonical homomorphism

φ : G→ G/X

whose kernel is the subgroup X . By the induction hypothesis, G/X is a group
of order pn−1, and so has a normal subgroup of order pn−2, say Y .

We will now “lift” the subgroup Y back to the original group. Since φ−1(Y )
is the inverse image of a normal subgroup, by Corollary 4.2, this is a normal
subgroup of G. Note Y is a set of cosets, and that g ∈ φ−1(Y ) if, and only if,
g is contained in one of the cosets of Y . Since each of the cosets of Y contains
p elements, it is clear that the size of φ−1(Y ) is p · pn−2 = pn−1. Therefore,
we have proved by induction that there is a normal subgroup of G of order
pn−1.

We now are ready to start finding normal subgroups of a more general
group, knowing only the group’s order. The most important set of theorems
that tackle this problem are by a Norwegian high school teacher named Ludwig
Sylow (1832–1918) [1, p. 324]. Before we work on finding normal subgroups
let us see if we can find a subgroup of a given order within a group.

THEOREM 7.3: The First Sylow Theorem

Suppose that G is a group of order pn · m, where p is a prime, and m is
coprime to p. Then G has a subgroup of order pn.

PROOF: We will proceed by using induction on the size of G. That is, we
will assume that the theorem is true for all groups smaller than G.

If pn divided |H | for some proper subgroup H of G, then by our induction
hypothesis, H would have a subgroup of order pn, which would be a subgroup
of G for which we are searching. So we may assume that pn does not divide
the order of any proper subgroup of G.
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Historical Diversion

Peter Ludwig Sylow (1832–1918)
Peter Sylow (SEE-loh) was born in

Christiania, Norway, which is now Oslo.
He was raised to be modest and be
hard-working, but this later would re-
sult in him settling for a lowly position
rather that aspiring to the position he de-
served. Sylow attended Christiania Cathe-
dral School, graduating in 1850. He then
attended Christiania University, and won
a gold medal in a mathamatics contest in
1853. In 1855 he became a high school
teacher, because there was no university
post available for him at the time. This
was unfortunate for both Sylow and the high school, because Sylow would
have made an outstanding university professor, but he was not a particularly
good high school teacher.
In spite of the long hours required by his teaching duties, Sylow found time

to study the papers of Niels Abel. (See Historical Diversion on page 241.) He
soon found that Abel discovered many more results in the theory of equations
than his published papers indicated. He tried to publish some of Abel’s unpub-
lished results, but the journal’s editor, Leopold Kronecker, had derived these
results himself, and had no wish to admit that his results were in fact proven
by Abel long before him. Since Abel’s unpublished works were eventually
published, these results are indeed credited to Abel rather than Kronecker.
In 1862 Sylow received a temporary appointment at Chistiania University,

and taught Galois theory and permutation groups. It was during this year
that Sylow proposed questions about p-groups. After demonstrating Cauchy’s
theorem to the class (a group of order divisible by a prime p has a subgroup
of order p), Sylow conjectured whether this can be generalized to a power
of p. One of his students was Sophus Lie, who would later assist Sylow in
publishing Abel’s unpublished papers.
Ten years after his conjecture, Sylow proved his famous theorems in a 10-

page paper, Théorèmes sur les groupes de substitutions. Almost all work done
on finite groups uses these three Sylow’s theorems.
In 1898, Lie had a special position created for Sylow at Christiania Univer-

sity. Even though he was 65 years old when he finally became a university
professor, he held on to the position for 20 years until his death in 1918.

Image source: Wikimedia Commons
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In particular, if g is not in the center of G, then NG({g}) will not be all
of G. Hence, pn does not divide |NG({g})|. But since pn does divide |G|, we
have from Lemma 7.2 that the number of conjugates of g is |G|/|NG({g})|,
which must be a multiple of p.

Now we can use the argument that we used in Corollary 7.2. The class
equation theorem (7.2) states that

|G| =
∑

g

|G|
|NG({g})|

,

where the sum runs over one g from each conjugacy class. For those g in the
center of G, |G|/|NG({g})| will be 1, while for all other terms, |G|/|NG({g})|
will be a multiple of p. Since the sum is pn ·m, which is a multiple of p, the
number of elements in Z(G) must be a multiple of p.

Since Z(G) is an abelian group and p divides Z(G), we have by Lemma 6.2
that there is an element of Z(G) of order p, say x. We now can proceed in the
same way as we did in Proposition 7.8. Since x is in the center, all elements
of G would commute with x, and so X = [x] would be a normal subgroup of
order p.

The quotient group G/X would then have order pn−1 · m, and we would
have the canonical homomorphism

φ : G→ G/X

whose kernel is the subgroup X . By the induction hypothesis, G/X is smaller
than G, and so has a subgroup of order pn−1, say Y . We can then lift Y back
to the original group. Since φ−1(Y ) is the inverse image of a subgroup, by
Corollary 4.2, this is a subgroup of G. But the kernel of the homomorphism
is of order p, so the size of φ−1(Y ) is p ·pn−1 = pn. Therefore, we have proved
by induction that there is a subgroup of G of order pn.

The first Sylow theorem generalizes Cauchy’s theorem, which states that if
p divides |G|, then G has a subgroup of order p. See Problem 8.

Since the first Sylow theorem guarantees the existance of at least one sub-
group of order pn for a group of size pn · m, we will give a name to these
subgroups.

DEFINITION 7.5 If G is a group of order pn ·m, where m is coprime
to the prime p, then a subgroup of order pn is called a p-Sylow subgroup.

Let us give a quick application of the first Sylow theorem (7.3). Suppose we
have a group G of order 10. There is guaranteed to be a 5-Sylow subgroup,
say K, and a 2-Sylow subgroup, say H. Obviously,

K ≈ Z5 and H ≈ Z2.
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Furthermore, the intersection of K and H must just be the identity element,
since Z5 does not have any elements of order 2. Also, K is a subgroup of G
with index 2, so by Proposition 3.5, K is a normal subgroup of G. If H is
also normal, we have by the direct product theorem (6.1) that

K ·H ≈ K ×H ≈ Z5 × Z2 ≈ Z10.

On the other hand, if H is not a normal subgroup, then by the semi-direct
product theorem (6.3)

K ·H ≈ K⋊
φ
H

for some nontrivial homomorphism φ fromH to Aut(K). But in Chapter 6, we
found that there was only one nontrivial homomorphism, yielding the dihedral
group D5. In either case, K · H is of order 10, so G is either isomorphic to
Z10 or D5.

Even though Sylow’s first theorem (7.3) guarantees that there will be at
least one p-Sylow subgroup, there may be more than one. The next of Sylow’s
theorems shows that any two p-Sylow subgroups are related.

THEOREM 7.4: The Second Sylow Theorem

If H and K are two p-Sylow subgroups of G, then there exists an element u
in G such that H = u ·K · u−1.

PROOF: Let G be a group of order pn ·m, where m is coprime to the prime
p. We begin by showing that whenever K is a p-Sylow subgroup of G then
u ·K ·u−1 will also be a p-Sylow subgroup for all u in G. Note that the number
of elements in u ·K · u−1 is also pn, and if u · k1 · u−1 and u · k2 · u−1 are two
elements of u ·K · u−1, then

(u · k1 · u−1) · (u · k2 · u−1)−1 = u · k1 · u−1 · (u · k−1
2 · u−1) = u · (k1 · k−1

2 ) · u−1,

which is in u ·K ·u−1. So by Proposition 2.2, u ·K ·u−1 is a p-Sylow subgroup
of G.

If there is only one p-Sylow subgroup ofG there is nothing to prove. Suppose
H and K are two subgroups of order pn. Let us call two elements u and v of
G to be “related” if u = h · v · k for some h in H and k in K. Note that every
element is related to itself, for u = e · u · e, and e is in both H and K. Also,
if u is related to v, then v is related to u, for

u = h · v · k ⇐⇒ v = h−1 · u · k−1.

Finally, if u is related to v, and v is related to w, then u = h1 · v · k1 and
v = h2 · w · k2, and so

u = h1 · (h2 · w · k2) · k1 = (h1 · h2) · w · (k2 · k1),

so u and w are related. Therefore, we can partition the group G into “fami-
lies,” where each family consists of all elements related to one element.
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Now suppose that there are j families, and we select one element ui from
each family. Each of the families can be described as H · ui ·K. Hence, we
can write

G = (H · u1 ·K) ∪ (H · u2 ·K) ∪ · · · ∪ (H · uj ·K).

Since each of the families have no elements in common, we have

|G| = |H · u1 ·K|+ |H · u2 ·K|+ · · ·+ |H · uj ·K|.

How many elements are in each family? We note that H · ui · K has the
same number of elements as H · ui ·K · u−1

i . We saw that u1 ·K · u−1
i is a

group, and so even though the product of two groups was not always a group,
Proposition 4.9 gave us the number of elements in the set to be

|H · ui ·K| = |H · ui ·K · u−1
i | = |H | · |ui ·K · u−1

i |
|H ∩ (ui ·K · u−1

i )|
=

pn · pn
|H ∩ (ui ·K · u−1

i )|
.

If we plug this formula into the equation above it, we have that |G| =

pn ·m =
pn · pn

|H ∩ (u1 ·K · u−1
1 )|

+
pn · pn

|H ∩ (u2 ·K · u−1
2 )|

+· · ·+ pn · pn
|H ∩ (uj ·K · u−1

j )|
.

Note that the intersection of two groups is a subgroup of both the groups,
and so the denominators will all be powers of p. Dividing both sides of the
equation by pn, we have

m =
pn

|H ∩ (u1 ·K · u−1
1 )|

+
pn

|H ∩ (u2 ·K · u−1
2 )|

+ · · ·+ pn

|H ∩ (uj ·K · u−1
j )|

.

Since m is not a multiple of p, there must be some term on the right-hand
side of this equation that is not a multiple of p. But this can happen only if
one of the denominators is pn, that is,

|H ∩ (ui ·K · u−1
i )| = |H |

for some i. Since H and ui · K · u−1
i both have pn elements, we must have

H = ui ·K · u−1
i . Therefore, for any two p-Sylow subgroups of G, there is a

u such that H = u ·K · u−1.

The second Sylow theorem (7.4) allows us to know exactly when a p-Sylow
subgroup is normal.

COROLLARY 7.4

The group G has only one p-Sylow subgroup for a given prime p if, and only
if, G has a p-Sylow subgroup that is normal.
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PROOF: Suppose that H is the only p-Sylow subgroup of G. Then for any
element u in G, u ·H · u−1 will be a p-Sylow subgroup of G. But since there
is only one p-Sylow subgroup, we have u ·H · u−1 = H for all u in G. Hence,
H is a normal subgroup.

Now suppose that H is a normal p-Sylow subgroup of G. By the second
Sylow theorem (7.4) every other p-Sylow subgroup is of the form u ·H · u−1.
But since H is normal, u · H · u−1 = H. Therefore, H is the only p-Sylow
subgroup.

The natural question that Corollary 7.4 raises is, “How do we know if there
is only one p-Sylow subgroup?” The next lemma allows us to find the number
of p-Sylow subgroups in terms of the size of the normalizer. In fact it allows
us to find the number of p-Sylow subgroups of a certain type.

LEMMA 7.3

Let G be a group of order pn ·m, and let P be a p-Sylow subgroup of G. Let
H be any other subgroup of G. Then the number of p-Sylow subgroups that
can be written as u · P · u−1 with u an element of H is given by

|H |
|NG(P ) ∩H | .

PROOF: Since P is a subgroup of G, NG(P ) is a subgroup of G, so the
intersection of NG(P ) and H will be a subgroup of H. We can use the same
argument as Lemma 7.2, and note that if u and v are two elements of H, then
u · P · u−1 and v · P · v−1 will represent the same p-Sylow subgroup if, and
only if,

u · P · u−1 = v · P · v−1 ⇐⇒ v−1 · u · P · u−1 · v = P

⇐⇒ (v−1 · u) · P · (v−1 · u)−1 = P

⇐⇒ v−1 · u ∈ NG(P ) ∩H
⇐⇒ u ∈ v · (NG(P ) ∩H)

⇐⇒ u · (NG(P ) ∩H) = v · (NG(P ) ∩H).

Thus, u·P ·u−1 and v ·P ·v−1 represent the same p-Sylow subgroup if, and only
if, u · (NG(P )∩H) and v · (NG(P )∩H) are the same left cosets of NG(P )∩H
over H. Therefore, the number of p-Sylow subgroups that can be expressed
as u · P · u−1, with u an element of H, is

|H |
|NG(P ) ∩H | .

We now are ready to prove the last of Sylow’s theorems, which in many
cases will tell us the number of p-Sylow subgroups of a group.
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THEOREM 7.5: The Third Sylow Theorem

Suppose that the number of p-Sylow subgroups of G is k. Then k divides |G|,
and k ≡ 1 (mod p).

PROOF: Suppose that we label the p-Sylow subgroups of G as P0, P1, P2, . . .,
Pk−1. Let us partition all of the p-Sylow subgroups of G into different cat-
egories where two p-Sylow subgroups Pi and Pj are in the same category if
there is an element u in P0 such that

Pj = u · Pi · u−1.

Note that P0 would be in its own category while the number of p-Sylow
subgroups in the other categories would be, according to Lemma 7.3,

|P0|
|NG(Pi) ∩ P0|

where Pi is one p-Sylow subgroup in the category.
Recall that the normalizer of each Pi contains Pi as a normal subgroup,

so NG(Pi) is divisible by pn, and hence by Corollary 7.4 the only p-Sylow
subgroup of NG(Pi) is Pi. Thus, NG(Pi) cannot contain P0, lest there would
be 2 p-Sylow subgroups of NG(Pi). This makes |NG(Pi)∩P0| < pn, so we have
that the number of p-Sylow subgroups in each category, besides the category
containing just P0, is a power of p, and hence is a multiple of p.

Therefore, the total number of p-Sylow subgroups is one more than a mul-
tiple of p, so k ≡ 1 (mod p).

Finally, if we let H = G in Lemma 7.3, we find that the number of conju-
gates of P0 is

|G|
|NG(P0)|

.

By the second Sylow theorem (7.4), this would give us all of the p-Sylow
subgroups. Therefore, k is also a divisor of the order of the group G.

These three theorems of Sylow provide a means of finding normal subgroups
of a group G just from knowing the order of G. For example, suppose that a
group is of order 45. Since 32 divides 45, there is a 3-Sylow subgroup of order
9. We also know that the number of 3-Sylow subgroups divides 45, so this
number must be 1, 3, 5, 9, 15, or 45. However, the number must be congruent
to 1 (mod 3). Thus, the only possibility is that there is only one subgroup of
order 9, say H. But then this subgroup is normal.

We can use the same argument to find a normal subgroup of order 5. Again,
the number of 5-Sylow subgroups must be 1, 3, 5, 9, 15, or 45. But this number
must also be congruent to 1 (mod 5), so there is only one subgroup of order
5, and this group must also be normal.

Although the Sylow theorems are powerful tools, when combined with the
tools of semi-direct products and the computational power of Sage, we can
determine most of the groups of a given order.
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Example 7.11

Find all of the groups of order 12.

SOLUTION: The divisors of 12 are 1, 2, 3, 4, 6, and 12, so by the third Sylow
theorem there are either one or four 3-Sylow subgroups and there are either
one or three 2-Sylow subgroups. Let H be a 3-Sylow subgroup, and let K be
a 2-Sylow subgroup (which will be of order 4). Certainly the intersection of
H and K is just the identity element since K cannot contain an element of
order 3.

Let us show that either H or K is normal. Suppose that H is not normal.
Then there must be four 3-Sylow subgroups of G. Each of these 3-Sylow
groups contains two different elements of order 3, so G would have eight
elements of order 3. But that would leave only four elements left over, and so
K must be composed of all of those four elements. Then there would be only
one 2-Sylow subgroup, which would be normal.

By the direct product theorem (6.1) and the semi-direct product theorem
(6.3), H ·K would have to be of one of the following forms:

1. H ·K ≈ Z3 × Z4 ≈ Z12,

2. H ·K ≈ Z3 × Z∗
8 ≈ Z3 × Z2 × Z2,

3. H ·K ≈ Z4⋊φZ3,

4. H ·K ≈ Z∗
8⋊φZ3,

5. H ·K ≈ Z3⋊φZ4,

6. H ·K ≈ Z3⋊φZ
∗
8 .

In all six cases H ·K contains 12 elements, and so G = H ·K. Let us work
these six cases separately. The first two give the two possible abelian groups
of order 12. Case 3 is actually impossible, since Aut(Z4) ≈ Z∗

4 has only two
elements, and therefore has no elements of order 3. Therefore, there is no
nontrivial homomorphism from Z3 to Aut(Z4). The other three cases are as
follows:

Case 4

An element of order 3 in Z3 must map to an element of order 3 in Aut(Z∗
8 ),

which is isomorphic to S3. There are two elements of order 3 in S3, and these
two elements are conjugates. By Proposition 6.7, it does not matter which
element of Z3 maps to which elements in Aut(Z∗

8 ), so the semi-direct product
Z3⋊φZ

∗
8 is unique up to isomorphisms. But A4 is a group of order 12, has a

normal subgroup isomorphic to Z∗
8 , and does not have a normal subgroup of

order 3. Thus, A4 must be this unique semi-direct product Z3⋊Z
∗
8 .
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Case 5
The homomorphism φ must map a generator of Z4 to a nontrivial element

of Aut(Z3). But Aut(Z3) has only two elements, so this homomorphism is
uniquely determined. The group is generated by following the Sage com-
mands.

InitGroup("e")

AddGroupVar("a", "b")

Define(a^3, e); Define(b^4, e); Define(b*a, a^2*b)

M = ListGroup(); M

{e, a, a^2, b, a*b, a^2*b, b^2, a*b^2, a^2*b^2, b^3, a*b^3,

a^2*b^3}
RootCount(M, 2)

2

This non-abelian group has only one element of order 2. Thus, it is not
isomorphic to any group we have seen before. If we ask Sage for the description
of the structure,

StructureDescription()

Z3 : Z4

we find that this is considered to be the group Z3⋊Z4. This is how we will
identify this group.

Case 6
The homomorphism φ maps Z∗

8 to Aut(Z3). Since Aut(Z3) contains only
two elements, the homomorphism φ is completely determined by its kernel.
The kernel of φ cannot be just the identity, since there is not an isomorphic
copy of Z∗

8 in Aut(Z3). On the other hand, the kernel of a nontrivial homo-
morphism cannot be all of Z∗

8 . Thus, the kernel contains exactly two elements,
and because there are automorphisms of Z∗

8 mapping one subgroup of order
2 to any other, it will not matter which subgroup of order 2 we pick. Thus,
there is a unique semi-direct product z3⋊Z

∗
8 .

The obvious group of order 12 that we have yet to consider is Z2 × S3.
This has a normal subgroup of order 3, so by process of elimination must be
Z3⋊Z

∗
8 . In summary, we have found five possible groups of order 12:

Z12, A4 Z2 × Z2 × Z3 Z2 × S3 and Z4⋊Z3.

Let us summarize our findings formally with a proposition.

PROPOSITION 7.9

There are exactly 28 non-isomorphic groups of order less than 16.

PROOF: The trivial group is the only group of order 1, and since 2, 3, 5,
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7, 11, and 13 are prime, we have only one non-isomorphic group of each of
these orders.

In Chapter 4 we found that the only non-isomorphic groups of order 4 were

Z4 and Z∗
8 ,

the only non-isomorphic groups of order 6 were

Z6 and S3,

and the only non-isomorphic groups of order 8 were

Z8, Z∗
15, Z∗

24, Q, and D4.

By Corollary 7.3 the only two non-isomorphic groups of order 9 are

Z9 and Z3 × Z3.

We have already used the first Sylow theorem (7.3) to find all of the non-
isomorphic groups of order 10:

Z10 and D5.

We just found all of the groups of order 12:

Z12, A4, Z2 × Z2 × Z3, Z2 × S3, and Z4⋊Z3.

We can use the same argument to find all of the non-isomorphic groups of
order 14. If |G| = 14, there must be a 7-Sylow subgroup of G, say K. Since
K contains half the elements, by Proposition 3.5, K is normal. We also must
have a 2-Sylow subgroup, H. Since K cannot have an element of order 2,
H and K have only the identity element in common. If H is normal, then
K · H ≈ K × H ≈ Z7 × Z2 ≈ Z14. If H is not normal, by the semi-direct
product theorem (6.3),

K ·H ≈ K⋊
φ
H

for some homomorphism φ from H to Aut(K). In either case K · H has 14
elements, and so G = K ·H. Also, φ is determined by where the non-identity
element of H is mapped. Since this must be an element of Aut(K) of order
2, and since

Aut(K) ≈ Aut(Z7) ≈ Z∗
7 ≈ Z6

has only one element of order 2, there can only be one such homomorphism.
Since D7 is a non-abelian group of order 14, this must be the one semi-direct
product that we found. Thus, the only two groups of order 14 are

Z14 and D7.

Let us move on to find all groups of order 15. Suppose |G| = 15. Then
the number of 3-Sylow subgroups and the number of 5-Sylow subgroups must
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both divide 15, so both of these numbers must be one of 1, 3, 5, or 15. But
1 is the only number in this set that is congruent to 1 (mod 5). So there is
only one 5-Sylow subgroup, K. Likewise, 1 is the only number in the set that
is congruent to 1 (mod 3). So there is only one 3-Sylow subgroup, H. By
Corollary 7.4, both K and H are normal subgroups of G, and the intersection
must be just the identity element. Thus, by Corollary 6.1,

K ·H ≈ K ×H ≈ Z5 × Z3 ≈ Z15.

Since this has all 15 elements, this must be all of G, and so there is only one
non-isomorphic group of order 15, namely Z15.

Therefore, counting all of the groups of order less than 16, we find that
there are exactly 28 of them.

Unfortunately, finding all the groups of order 16 is a difficult problem. Even
though Proposition 7.8 tells us that there must be a normal subgroup K of
order 8, there is no guarantee that there would be a subgroup H of order 2
such that H · K gives the whole group. Thus, we would not be able to use
the semi-direct product theorem (6.3) to find all of the groups of order 16
(although we can find many of them, as we did in the last chapter).

Problems for §7.4

For Problems 1 through 6: Determine whether or not the following lists could
represent the sizes of the conjugacy classes for some finite group.

Hint: Add up the numbers to determine the size of the group.

1 {2, 2, 4, 4, 4}
2 {1, 3, 6, 8}
3 {1, 2, 2, 5}

4 {1, 1, 3, 3, 3, 11, 11}
5 {1, 1, 1, 1, 1, 5, 5, 5, 5}
6 {1, 3, 6, 6, 8}

7 If G has order pn for some prime p, show that every subgroup of order
pn−1 is a normal subgroup of G.

8 Use the class equation to prove Cauchy’s theorem: if p is a prime that
divides |G|, then G has a subgroup of order p.

Hint: Use induction on |G|. You can use the fact that we proved it for the
abelian groups in Lemma 6.2.

9 If H is a subgroup of G, and H has order pi for some prime p, show that
H is contained in a p-Sylow subgroup of G.

Hint: Mimic the proof of the second Sylow theorem (7.4).

10 Use Sylow’s theorem to show that all groups of order 33 are cyclic.

11 Prove that no group of order 56 is simple.
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12 Show that if p is an odd prime, then any group with 2p elements is
isomorphic to either Z2p or Dp.

13 Determine all non-isomorphic groups of order 99.

14 Show that there are exactly four non-isomorphic groups of order 66:

Z66, D33, D11 × Z3, and D3 × Z11.

Hint: Use Sylow’s theorems along with Problem 10.

15 Show that all groups of order 255 are cyclic.
Hint: Use Lemma 4.3.

16 Let |G| = p · q, where p > q are both primes. Show that G has a normal
subgroup of order p.

17 If |G| = p2 · q, where p and q are different primes, show that G must
contain a normal subgroup of either size p2 or q.

Hint: Generalize the case |G| = 12 done in the text.

18 Show that a group of order p3 · q, where p and q are different primes,
cannot be simple.

Hint: Use Corollary 5.2 for the case |G| = 24. Then do the case q < p.
With these out of the way, you can assume that q > p+ 1.

19 Use the results of Problems 16 through 18 to show that no non-cyclic
group of order less than 60 is simple.

Interactive Problems

20 Use Sage to find all of the 2-Sylow and 5-Sylow subgroups of the group
M defined in Problem 20 of §7.3. How many of the subgroups are there? Does
this agree with the prediction given by the third Sylow theorem?

21 Using Sage, find all non-isomorphic groups of order 21.
Hint: What can you determine from Sylow’s theorems? Which semi-direct

products are possible?



Chapter 8

Solvable and Insoluble Groups

In this chapter we will study the concept of solvable groups. Every group will
be classified either as solvable or insoluble, and in fact most of the groups we
have looked at so far turn out to be solvable.

Solvable groups play a key role in studying polynomial equations. Whether
or not a given polynomial can be solved in terms of radicals (square roots,
cube roots, etc.) depends on whether a certain group corresponding to that
polynomial is a solvable group. In fact this application is the origin of the
term “solvable group.”

8.1 Subnormal Series and the Jordan-Hölder Theorem

We will eventually define a solvable group as one that can be broken down
into smaller, cyclic pieces. But before we can formally define a solvable group,
we must first show that if we break the group down in two different ways, the
pieces will essentially be the same. This is not at all obvious, and involves a
result known as the Jordan-Hölder theorem.

We must first make some preliminary definitions. We have already encoun-
tered situations in which we had a normal subgroup of a normal subgroup,
such as in the third isomorphism theorem. But suppose we have a whole
series of subgroups of a group G, each one fitting inside of the previous one
like Russian dolls.

DEFINITION 8.1 A subnormal series for a group G is a sequence
G0, G1, G2, . . .Gn of subgroups of G such that

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e},

where each Gi is a normal subgroup of Gi−1 for i = 1, 2, · · ·n.

A subnormal series is called a normal series if it satisfies the stronger con-
dition that all of the groups Gi are normal subgroups of the original group G.
We will be mainly interested in subnormal series, but there are a few of the
exercises regarding normal series.

263
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Motivational Example 8.1

The group S4, has a normal subgroup of order 4, namely

K = {( ), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

The identity element is of course a normal subgroup of K, so we can write

S4 ⊇ K ⊇ {( )}

which would be a subnormal series of length n = 2. Is there a way that we can
make a longer series out of this one? Because A4 is also a normal subgroup of
S4, and K is a normal subgroup of A4, we can slip this group into our series.
Also, the group K contains the subgroup

H = {( ), (1 2)(3 4)},

which is a normal subgroup of K since K is abelian. Therefore, we have a
longer subnormal series of length 4:

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}.

We say that this new subnormal series is a refinement of the first subnormal
series.

DEFINITION 8.2 We say that a subnormal (or normal) series

G = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hk = {e}

is a refinement of the subnormal (or normal) series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

if each subgroup Gi appears as Hj for some j.

Is there a way that we can refine our subnormal series to produce an even
longer chain? Our definition did not exclude the possibility of two groups in
the series being the same, so we could consider

S4 ⊇ A4 ⊇ A4 ⊇ K ⊇ H ⊇ H ⊇ H ⊇ {( )}.

Although this is a longer subnormal series, it is usually pointless to repeat the
same subgroup in the series.

DEFINITION 8.3 A composition series of a group G is a subnormal
series

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}
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for which each subgroup is smaller than the proceeding subgroup, and for
which there is no refinement that includes additional subgroups.

Using this definition, we see that

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}

is a composition series. Clearly no subgroups are repeated, and there simply is
not enough room between two of these subgroups to slip in another subgroup.
For example, A4 is half of S4, so any subgroup containing more than A4 must
be all of S4. In fact, we can easily test to see whether a subnormal series is a
composition series.

PROPOSITION 8.1

The subnormal series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

is a composition series if, and only if, all of the quotient groups Gk−1/Gk are
nontrivial simple groups.

PROOF: Note that if there are no repeated subgroups in the subnormal se-
ries, then Gi−1/Gi must contain at least two elements. Likewise, if Gi−1/Gi is
nontrivial, then Gi−1 is not equal to Gi. So the quotient groups are nontrivial
if, and only if, there are no repeated subgroups in the subnormal series.

Suppose that the subnormal series is not a composition series yet does not
repeat any subgroups. Then there must be an additional group H that we
can add between Gk−1 and Gk, so that

Gk−1 ⊇ H ⊇ Gk,

where H is a normal subgroup of Gk−1 and Gk is a normal subgroup of H.
Then by Lemma 4.6, H/Gk will be a normal subgroup of Gk−1/Gk, and since
H is neither Gk−1 nor Gk, we have a proper normal subgroup of Gk−1/Gk.

Now suppose that there is a proper normal subgroup N of Gk−1/Gk. Can
we then lift N to find a suitable subgroup H to fit between Gk−1 and Gk? If
we consider the canonical homomorphism φ from Gk−1 to the quotient group
Gk−1/Gk we can take H = φ−1(N). Then since N is a normal subgroup of
Gk−1/Gk, by Corollary 4.2, H will be a normal subgroup of Gk−1. Also, Gk
will be a normal subgroup of H, for H is in Gk−1. Because N has at least
two elements, H will be strictly larger than the kernel of φ, yet since N is
not the entire image of φ, H will be strictly smaller than Gk. Therefore, the
subnormal series is not a composition series.

Thus, a subnormal series is a composition series if, and only if, the quotient
groups Gk−1/Gk are nontrivial simple groups.
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The quotient groups Gk−1/Gk in a composition series for G are called the
composition factors of the composition series.

For example, the composition factors for the composition series

S4 ⊇ A4 ⊇ K ⊇ H ⊇ {( )}

are

S4/A4 ≈ Z2, A4/K ≈ Z3, K/H ≈ Z2, and H/{( )} ≈ Z2.

It is certainly possible for a group to have more than one composition series.
For example, we could have picked the subgroup B = {( ), (1, 4)(2, 3)} instead
of H, producing the composition series

S4 ⊇ A4 ⊇ K ⊇ B ⊇ {( )}.

Even though this is a different composition series, the composition factors
are isomorphically the same. Our goal for this section is to prove that this
happens all of the time. However, we have yet to see why two composition
series must have the same length. Even if we can prove that the composition
series are the same length, the composition factors may not appear in the
same order. For example, the group Z12 has the following two subnormal
series:

Z12 ⊇ {0, 3, 6, 9} ⊇ {0}.

Z12 ⊇ {0, 2, 4, 6, 8, 10} ⊇ {0, 4, 8} ⊇ {0}.

No matter how we refine these series, the quotient group isomorphic to Z3 in
the first series will come before any other non-trivial quotient groups, yet any
refinement of the second series will have the last non-trivial quotient group
isomorphic to Z3.

It helps if we use a diagram to demonstrate the strategy that we will be
using. Suppose that we have a group G with two subnormal series, one of
length 2, and one of length 3, as pictured in Figure 8.1.

G = A0 ⊇ A1 ⊇ A2 = {e}, G = B0 ⊇ B1 ⊇ B2 ⊇ B3 = {e}.

It is immediately clear that A0 = B0 and A2 = B3, but A1 does not have to
be either B1 or B2.

The goal is to refine both of the subnormal series by adding two subgroups
within each gap of the A series, and one subgroup within each gap in the
B series. Here, we will allow the possibility of duplicate subgroups in the
refinements. Nonetheless, both series will have length 6, which we can express
as follows:
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FIGURE 8.1: Example of two subnormal series of different lengths
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FIGURE 8.2: Diagram showing the strategy of the refinement theorem

G = A0 ⊇ A1,1 ⊇ A1,2 ⊇ A1 ⊇ A2,1 ⊇ A2,2 ⊇ A0 = {e},

G = B0 ⊇ B1,1 ⊇ B1 ⊇ B1,2 ⊇ B2 ⊇ B1,3 ⊇ B0 = {e}.

Figure 8.2 shows these set inclusions, and also gives a hint on how we are to
define these intermediate subgroups.

The next step will be to show that the quotient groups for each interval of
the A series is isomorphic to a quotient group for an interval of the B series,
as shown by the arrows in Figure 8.2. Note that this scrambles the order of
the quotient groups, so that the ith subinterval of the jth interval in the A
series corresponds to the jth subinterval of the ith interval of the B series.

Although it is clear that

G ⊇ A1 · B1 ⊇ A1 ·B2 ⊇ A1 ⊇ A1 ∩B1 ⊇ A1 ∩B2 ⊇ {e}, and

G ⊇ A1 · B1 ⊇ B1 ⊇ (B1 ∩ A1) ·B2 ⊇ B2 ⊇ A1 ∩B2 ⊇ {e},

it is not at all clear that each is a normal subgroup of the previous group, or
even that all of these sets are subgroups of G. Before we show this, we will
need the following lemma.
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LEMMA 8.1

Let X, Y , and Z be three subgroups of the group G, with Y being a subgroup
of X, and Y · Z = Z · Y . Then

X ∩ (Y · Z) = Y · (X ∩ Z) = (X ∩ Z) · Y.

PROOF: Note that (X ∩ Z) ⊆ X , and since Y ⊆ X , Y · (X ∩ Z) ⊆ X .
Also, (X ∩ Z) ⊆ Z, so Y · (X ∩ Z) ⊆ Y · Z. Hence,

Y · (X ∩ Z) ⊆ X ∩ (Y · Z).

All we need to do is prove the inclusion in the other direction. Suppose
that x ∈ X ∩ (Y · Z). Then x is in X , and can also be written as x = y · z,
where y is in Y , and z is in Z. But then z = y−1 · x would be in both X and
Z. Thus,

x = y · (y−1 · x) ∈ Y · (X ∩ Z).
Therefore, we have inclusions in both directions, so

Y · (X ∩ Z) = X ∩ (Y · Z).

So far, we haven’t used the fact that Y · Z = Z · Y . By Lemma 4.2, Y · Z
is a subgroup of G, and so the intersection of X with Y · Z is a subgroup of
G. So by Lemma 4.2 again, we have

Y · (X ∩ Z) = (X ∩ Z) · Y.

We will need one more lemma that will help us to show the isomorphisms
indicated by the arrows in Figure 8.2.

LEMMA 8.2

Let X, Y , and Z be three subgroups of the group G, with Y being a normal
subgroup of X, and Z a normal subgroup of G. Then Y · Z is a normal
subgroup of X · Z, and

(X · Z)/(Y · Z) ≈ X/(X ∩ (Y · Z)).

PROOF: Since Z is a normal subgroup of G, both Y · Z and X · Z are
subgroups of G by Lemma 4.3. If we let y · z be in Y ·Z, and x ·w be in X ·Z,
then

(x · w) · (y · z) · (x · w)−1 = x · (y · x−1 · x · y−1) · w · y · z · w−1 · x−1

= (x · y · x−1) · (x · (y−1 · w · y) · z · w−1 · x−1).

Now, x ·y ·x−1 is in Y , since Y is a normal subgroup of X . Likewise, y−1 ·w ·y
is in Z, since y is in G. Then (y−1 ·w · y) · z ·w−1 is in Z, and so x · (y−1 ·w ·
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y) · z · w−1 · x−1 is in Z, since x is in G. Therefore, (x · w) · (y · z) · (x · w)−1

is in Y · Z, and so Y · Z is a normal subgroup of X · Z.
We now can use the second isomorphism theorem (4.2), using K = Y · Z.

We have that X ·K = X · Y · Z = X · Z since Y is a subgroup of X . So

(X · Z)/(Y · Z) = (X ·K)/K ≈ X/(X ∩K) = X/(X ∩ (Y · Z)).

We are now ready to put the pieces together, and show any two subnormal
series can be refined in such a way that the quotient groups are isomorphic.

THEOREM 8.1: The Refinement Theorem

Suppose that there are two subnormal series for a group G. That is, there are
subgroups Ai and Bj such that

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e},

and

G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e},

where each Ai is a normal subgroup of Ai−1, and each Bj is a normal subgroup
of Bj−1. Then it is possible to refine both series by inserting the subgroups

Ai−1 = Ai,0 ⊇ Ai,1 ⊇ Ai,2 ⊇ · · · ⊇ Ai,m = Ai, i = 1, 2, . . . n,

Bj−1 = Bj,0 ⊇ Bj,1 ⊇ Bj,2 ⊇ · · · ⊇ Bj,n = Bj , j = 1, 2, . . .m

in such a way that

Ai,j−1/Ai,j ≈ Bj,i−1/Bj,i.

PROOF: We let

Ai,j = (Ai−1 ∩Bj) ·Ai and Bj,i = (Bj−1 ∩ Ai) · Bj .

To see that these fit the conditions we need, we first want to show that
these are groups. Note that both

X = (Ai−1 ∩Bj−1) and Y = (Ai−1 ∩Bj)

are subgroups of Ai−1, Y is a subgroup ofX , and Z = Ai is a normal subgroup
of Ai−1.

So by Lemma 4.3, both Ai,j−1 = X · Z and Ai,j = Y · Z are subgroups of
Ai−1. We can now use Lemma 8.2, using G = Ai−1. Since Bj is a normal
subgroup of Bj−1, Y is a normal subgroup of X , so by Lemma 8.2, Y · Z is a
normal subgroup of X · Z, and

Ai,j−1/Ai,j = (X · Z)/(Y · Z) ≈ X/(X ∩ (Y · Z)).
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Now Lemma 8.1 comes into use. Since Y is a subgroup of X ,

X ∩ (Y · Z) = Y · (X ∩ Z) = (Ai−1 ∩Bj) · (Ai−1 ∩Bj−1 ∩ Ai)
= (Ai−1 ∩Bj) · (Ai ∩Bj−1)

= (Ai ∩Bj−1) · (Ai−1 ∩Bj).

Thus,

Ai,j−1/Ai,j ≈ (Ai−1 ∩Bj−1)/[(Ai−1 ∩Bj) · (Ai ∩Bj−1)].

By switching the roles of the two series we find by the exact same argument
that

Bj,i−1/Bj,i ≈ (Bj−1 ∩Ai−1)/[Bj−1 ∩Ai) · (Bj ∩ Ai−1)].

Notice that these are exactly the same thing, so

Ai,j−1/Ai,j ≈ Bj,i−1/Bj,i.

If we now apply the refinement theorem to two composition series we find
that the composition factors will be the same.

THEOREM 8.2: The Jordan-Hölder Theorem

Let G be a finite group, and let

G = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An = {e}

and
G = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm = {e}

be two composition series for G. Then n = m, and the composition factors
Ai−1/Ai are isomorphic to the composition factors Bj−1/Bj in some order.

PROOF: By the refinement theorem (8.1), there is a refinement of both com-
position series such that the quotient groups of the two subnormal series are
isomorphic to each other in some order. In particular, the nontrivial quo-
tient groups of one subnormal series are isomorphic to the nontrivial quotient
groups of the other. But these are composition series, so any refinements
merely repeat a subgroup a number of times. Thus, by eliminating these rep-
etitions, we eliminate the trivial quotient groups and produce the original two
composition series. Thus, the quotient groups Ai−1/Ai are isomorphic to the
quotient groups Bj−1/Bj in some order. The fact that n = m merely comes

from the one-to-one correspondence of the nontrivial quotient groups.

The Jordan-Hölder theorem (8.2) shows that the composition factors do
not depend on the composition series, but rather the finite group G. This is
reminiscent of the unique factorization of integers, where every integer greater
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than one can be written as a unique product of prime numbers. Since the
composition factors are always nontrivial simple groups, in a sense the simple
groups play the same role in group theory that prime numbers play in number
theory. The correspondence is heightened by the fact that Zp is a nontrivial
simple group if, and only if, p is a prime number. However, we have seen
that there are other simple groups, such as Aut(Z∗

24) and An for n > 4. Since
these groups are rather large (at least 60 elements), they will only show up as
composition factors for very large groups.

For example, a composition series for S5 is given by

S5 ⊃ A5 ⊃ {( )}, S5/A5 ≈ Z2, and A5/{( )} ≈ A5.

Since Z2 and A5 are both simple groups, this is a composition series, and so
the composition factors of S5 are Z2 and A5.

The composition series will play a vital role in determining whether groups
are solvable or not. However, we will hold off on the definition of a solvable
group until we have defined another tool in group theory, the derived group.

Problems for §8.1

1 Let
G = Z12 ⊇ A1 = {0, 3, 6, 9} ⊇ {0}

and
G = Z12 ⊇ B1 = {0, 2, 4, 6, 8, 10} ⊇ B2 = {0, 4, 8} ⊇ {0}

be two subnormal series for Z12. Find all of the subgroups shown in Fig-
ure 8.2, and show that the quotient groups indicated by the arrows are indeed
isomorphic.

For Problems 2 through 10: Write out a composition series for the group.

2 Z∗
15

3 Z∗
24

4 Z∗
21

5 Z12 × Z18

6 The quaternion group Q
7 D4

8 D5

9 D6

10 S6

11 Show that there are exactly three possible composition series for A4.

12 Find an example of two non-isomorphic groups for which the composition
factors are isomorphic.

13 Find two groups of the same order with composition series of different
lengths.

14 Find a non-simple group for which all of the composition factors are
non-cyclic.

15 Find a simple group for which all of the composition factors are cyclic.
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16 Find a non-abelian group with cyclic composition factors for which there
is only one composition series.

17 Prove that if the refinement theorem (8.1) is applied to two normal series,
the resulting series will be normal. That is, if Au and Bv are such that

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e},

and

G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e},

where each Ai and Bj is a normal subgroup of G (not just the previous
group), then the Ai,j and Bj,i given by the refinement theorem will all be
normal subgroups of G.

Hint: Use the result of Problem 17 from §4.3.

18 A chief series is a normal series for which no refinements produce normal
series. Show that the Jordan-Hölder theorem (8.2) applies to chief series as
well as to composition series. That is, show that if

G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An = {e}

and

G = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bm = {e}

are two chief series, then n = m, and the quotient groups of the first series
are isomorphic to the quotient groups of the second in some order. (Use the
result from Problem 17.)

Interactive Problems

19 Use Sage to find a composition series for the following group of order 20:

InitGroup("e")

AddGroupVar("a", "b")

Define(a^5, e); Define(b^4, e); Define(b*a, a^2*b)

M = ListGroup()

20 Use Sage to find a composition series for the following group:

DisplayPermInt = true

G = Group(NthPerm(2374), NthPerm(6212)); G

{1, 2374, 4517, 6212, 6841, 9929, 11637, 13016, 13698, 15367,

18454, 19853, 21239, 21896, 24132, 25315, 28226, 28986,

30928, 31590, 33108, 37381, 38807, 39487}
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8.2 Derived Group Series

Although we could define a finite solvable group in terms of the composition
factors, we will instead use a definition that will apply for both finite and
infinite groups. This definition of solubility hinges on the concept of the
derived group. Hence, we must first define the derived group, and then we
can formulate a general definition of a solvable group.

In the process, we will find a method for producing a composition series
that is easily implemented using Sage. This method hinges on the concept of
a “commutator.”

DEFINITION 8.4 Given two elements x and y of a group G, the com-
mutator of x and y is the element x−1 · y−1 · x · y, and is written [x, y].

Notice that if G is an abelian group the commutator will always give the
identity element. We can also consider the commutator of two subgroups of
G. If H and K are two subgroups, then consider the set

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}.

Unfortunately, this set will not always form a group.

Example 8.2

Consider the two subgroups of S4:

H = {( ), (1 2)}, K = {( ), (2 3 4), (2 4 3)}.

Then the set

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}

can be found by making a table for possible values of x and y.

x−1 · y−1 · x · y ( ) (2 3 4) (2 4 3)

( ) ( ) ( ) ( )

(1 2) ( ) (1 4 2) (1 3 2)

So we get {( ), (1 3 2), (1 4 2)}, which is not a subgroup. However, we can
consider the subgroup generated by all of the commutators, which of course
will make a subgroup.

DEFINITION 8.5 Given two subgroups H and K of a group G, we
define the mutual commutator subgroup of H and K, denoted [H,K], to be
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the subgroup generated by the elements

{x−1 · y−1 · x · y | x ∈ H and y ∈ K}.

We can find the mutual commutator with the Sage command MutualCom-

mutator.

H = Group( C(1,2) ); H

{(), (1, 2)}
K = Group( C(2,3,4) ); K

{(), (2, 4, 3), (2, 3, 4)}
MutualCommutator(H, K)

{(), (1, 3, 2), (1, 2, 3), (1, 2)(3, 4), (2, 4, 3), (1, 4, 3),

(2, 3, 4), (1, 4, 2), (1, 3)(2, 4), (1, 3, 4), (1, 2, 4),

(1, 4)(2, 3)}

So the commutator [H,K] in this case is A4. Note that whenever an element
u is in [H,K], we cannot say that u = x−1 · y−1 · x · y for some x ∈ H and
y ∈ K. Rather, we must write

u = u1 · u2 · · · · · un,

where either ui or u
−1
i is x−1

i · y−1
1 · xi · yi. In spite of this difficulty, we will

be able to discover some important properties with the mutual commutator
groups.

PROPOSITION 8.2

If H and K are normal subgroups of G, then [H,K] is a normal subgroup of
G.

PROOF: Let u be an element of [H,K], and g an element of G. Then
u = u1 · u2 · · ·un, where either ui or u

−1
i is x−1

i · y−1
i · xi · yi. Then

g · u · g−1 = (g · u1 · g−1) · (g · u2 · g−1) · · · (g · un · g−1),

and

g · x−1
i · y−1

i · xi · yi · g−1 =

(g · x−1
i · g−1) · (g · y−1

i · g−1) · (g · xi · g−1) · (g · yi · g−1)

=
[
g · xi · g−1, g · yi · g−1

]
.

If H and K are both normal subgroups of G, then g · xi · g−1 is in H,
and g · yi · g−1 is in K. Thus, [g · xi · g−1, g · yi · g−1] is in [H,K]. Since
(g ·ui ·g−1)−1 = (g ·u−1

i ·g−1), if one of these is in [H,K], they both are. Hence
g ·ui ·g−1 is in [H,K] for every ui, and g ·u ·g−1 ∈ [H,K]. By proposition 3.4,
[H,K] is a normal subgroup of G.
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Many times one of the two groups H or K will be the whole group G. We
call the subgroup [G,H ] the commutator subgroup of H in G. In this case
Sage can find the commutator subgroup faster with the simplified command
Commutator(G, H), which takes advantage of the fact that H is a subgroup
of G. In fact, Sage will correctly find the commutator subgroup if only the
generators of H are specified. For example, suppose we wish to find the
commutator [S4, A4]. By using only the generators of A4, we get

S4 = Group( C(1,2), C(1,2,3,4) )

A4 = Group( C(1,2,3), C(2,3,4) )

Commutator(S4, [C(1,2,3), C(2,3,4)])

{(), (1, 3, 2), (1, 2, 3), (1, 2)(3, 4), (2, 4, 3), (1, 4, 3),

(2, 3, 4), (1, 4, 2), (1, 3)(2, 4), (1, 3, 4), (1, 2, 4),

(1, 4)(2, 3)}

which gives us A4 again. The commutator [S4, S4] is given by

Commutator(S4, [C(1,2), C(1,2,3,4)])

{(), (1, 3, 2), (1, 2, 3), (1, 2)(3, 4), (2, 4, 3), (1, 4, 3),

(2, 3, 4), (1, 4, 2), (1, 3)(2, 4), (1, 3, 4), (1, 2, 4),

(1, 4)(2, 3)}

which is also A4. However, the commutator [A4, A4] is

K = Commutator(A4, [C(1,2,3), C(2,3,4)]); K

{(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

which gives a subgroup with only four elements. This is exactly the subgroup
K from the last section.

DEFINITION 8.6 We define the commutator subgroup of G with itself,
[G,G], to be the derived group of G, denoted G′.

Since G is a normal subgroup of itself, Proposition 8.2 states that the de-
rived group will be a normal subgroup of G. Since the commutator of any two
elements in an abelian group is e, [G,G] will be the trivial group whenever G
is abelian.

We can denote the derived group of the derived group G′ as G′′. Likewise,
the derived group of G′′ will be denoted G′′′, and so on. Because each of these
groups is a normal subgroup of the previous one, we have the series

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · · .

This is called the derived series for the group G. The derived series is in fact a
subnormal series as long as the groups keep getting smaller and smaller until
they finally get to the trivial subgroup.
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From our experiments in Sage, we can find the derived series of the group
S4. Since [S4, S4] = A4 and [A4, A4] = K, we have that G′ = A4, G

′′ = K,
and G′′′ = {( )}, since K is abelian. So we produce the series

S4 ⊇ A4 ⊇ K ⊇ {( )}.

However, if we start with the group A5, then [A5, A5] must be a normal
subgroup of the simple group A5. Since the derived group is not the identity
element, we see that the derived group must be all of A5.

Thus, the derived series for A5 is

A5 ⊇ A5 ⊇ A5 ⊇ A5 ⊇ · · ·

which never gets to the trivial subgroup.

DEFINITION 8.7 A group G is called solvable if the derived series

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · ·

includes the trivial group in a finite number of steps. If the derived series
never reaches the trivial group, G is said to be insoluble.

By our experiments, we see that S4 is a solvable group, whereas A5 is not.
Whenever we have a solvable group G, the derived series is in fact a subnormal
series for G. So it is natural that the derived series would shed some light
as to what the composition factors of G are. First we will need the following
lemma, which characterizes the derived group.

LEMMA 8.3

Let G be a group. Then the derived group G′ is the smallest normal subgroup
for which the quotient group is abelian.

PROOF: First we need to show that G/G′ is abelian. Consider the canonical
homomorphism φ from G onto G/G′. Then for x and y in G, x−1 · y−1 · x · y
is in G′, and so φ(x−1 · y−1 · x · y) is the identity element in G/G′. But then

φ(x−1 · y−1 · x · y) = φ(x)−1 · φ(y)−1 · φ(x) · φ(y) = e,

so φ(x) · φ(y) = φ(y) ·φ(x). Since φ is surjective, we see that G/G′ is abelian.
Now suppose that N is another normal subgroup of G for which G/N is

abelian. To show that G′ is a smaller group, we will show that N contains
G′.

For any x and y in G, note that x−1 · y−1 · x · y is certainly contained in
x−1 ·N · y−1 ·N · x ·N · y ·N. But since the quotient group G/N is abelian,
we have

x−1 ·N · y−1 ·N · x ·N · y ·N = x−1 ·N · x ·N · y−1 ·N · y ·N = N ·N = N.
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Thus, x−1 · y−1 · x · y is in N for all x and y in G. Since G′ is generated by
all such elements, G′ is contained in N.

We now can express a relationship between the composition factors of a
group and the derived series of a group.

THEOREM 8.3: The Solvability Theorem

Let G be a finite group. Then G is solvable if, and only if, the composition
factors of G are cyclic groups of prime order.

PROOF: Suppose that the composition factors of G are all cyclic groups
of prime order. Then there exists a composition series for G:

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}.
Since G0/G1 is an abelian group, we have from Lemma 8.3 thatG′ is contained
in G1. But since G1/G2 is also abelian, by Lemma 8.2 we have G′

1 is in G2,
and so

G′′ ⊆ G′
1 ⊆ G2.

Proceeding in this way we find that the nth derived group, G(n), must be
contained in Gn = {e}. Thus, the derived series produced the trivial group
in at most n steps, so G is solvable.

Now suppose that G is solvable and finite, and so the derived series can be
written

G ⊇ G′ ⊇ G′′ ⊇ G′′′ ⊇ · · · ⊇ G(n) = {e}.
If G(n) is the first term in the derived series equal to {e}, then this subnormal
series can never repeat any two subgroups. Because this is a finite group,
there are only a finite number of ways this series could be refined without
repeating subgroups. Thus, by the refinement theorem, we can refine this
to produce a composition series. Because each of the quotient groups of the
derived series is abelian, the quotient groups of the refinement must also be
abelian. But by Proposition 8.1, the quotient groups of the composition series
must be nontrivial simple groups. The only nontrivial simple groups that are
abelian are the cyclic groups of prime order. Thus, the quotient groups for
this composition series are cyclic groups of prime order. By the Jordan-Hölder
theorem (8.2), all composition series have the same composition factors, so all
composition series have quotient groups that are cyclic of prime order.

Historically, solvability was defined in terms of the composition factors. But
this definition could only be used on finite groups, since infinite groups do not
have a composition series. By defining solvability in terms of the derived
series, we allow for infinite groups to be solvable.

For example, the group of integers Z is abelian, so the derived group is the
trivial group. Hence, Z is solvable, yet there are no composition series for Z.
This is because every proper subgroup of Z is isomorphic to Z.
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From the solvability theorem we see that for finite groups, solvability can
be defined in terms of the composition factors. Does this hold true for infinite
groups as well? That is, is an infinite group solvable as long as there is
no non-abelian simple group (finite or infinite) lurking somewhere within its
structure, either as a subgroup or as a quotient group? To shed some light on
this problem, we will first need the following lemma.

LEMMA 8.4

If N is a normal subgroup of G, and H is a subgroup of G, then

(H ·N/N)′ = (H ′ ·N)/N.

PROOF: We first note that since N is a normal subgroup of G, H · N is
a subgroup of G, and so N is a normal subgroup of H ·N. Two typical ele-
ments of H ·N/N are h · n ·N and k ·m ·N, where h and k are in H, and n
and m are in N. Then (H ·N/N)′ is generated from the elements of the form

(h · n ·N)−1 · (k ·m ·N)−1 · (h · n ·N) · (k ·m ·N) = h−1 · k−1 · h · k ·N.

But these elements are also in (H ′ ·N)/N. In fact, (H ′ ·N)/N is generated by
the elements of the form h−1 ·k−1 ·h ·k ·N. Therefore, the groups (H ·N/N)′

and (H ′ ·N)/N are equal.

With this lemma we will be able to show the relationship with a solvable
group to its subgroups and quotient groups.

PROPOSITION 8.3

Suppose that G is a group and H is a normal subgroup of G. Then G is
solvable if, and only if, both H and G/H are solvable.

PROOF: We begin by showing that if G is solvable, and H is a subgroup
of G, normal or not, then H is solvable. Since H is contained in G, we have

H ′ ⊆ G′ =⇒ H ′′ ⊆ G′′ =⇒ H ′′′ ⊆ G′′′ · · · .

Thus, since G(n) = {e} for some n, H(n) = {e}, and H is solvable.
Next we want to show that if H is normal, then G/H is solvable. Since

G = G · H we can use Lemma 8.4 to find (G/H)′ = (G′ · H)/H. But since
G′ is a subgroup, we can continue to use Lemma 8.4 to find

(G/H)′′ = (G′ ·H/H)′ = (G′′ ·H)/H,

(G/H)′′′ = (G′′ ·H/H)′ = (G′′′ ·H)/H, · · · .
Since G is a solvable group, G(n) = {e} for some n. Thus

(G/H)(n) = (G(n) ·H)/H
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would be the identity group H/H. Therefore, G/H is a solvable group.
Now suppose that both H and G/H are solvable. Then (G/H)n is the

identity for some n, so (G(n) ·H)/H is the identity. Thus, G(n) is a subgroup
of H, and since H is solvable, G(n) must be solvable. Therefore, G(n+m) is
the identity for some m, and so G is a solvable group.

From this proposition, we see that for an infinite solvable group there cannot
be any non-abelian simple groups within its structure whether as a subgroup,
a quotient group, a subgroup of a quotient group, etc. Thus the current
definition of solvability for infinite groups agrees with the historical notion of
a group that does not contain non-abelian simple groups in the composition
factors.

Why do we want to know whether a group is solvable or not? Notice that
most of the solvable groups could be entered into Sage using the InitGroup
and Define commands, whereas the insoluble groups, such as Aut(Z∗

24), had
to be considered as a subgroup of a symmetric group. In the next section, we
will show why the solvable groups were the only groups that could be entered
into Sage using the Define commands.

Problems for §8.2

1 Show that any group of order pn, where p is prime, is solvable.
Hint: See Corollary 7.2.

2 Show that Sn is solvable for n < 5, but is insoluble for n > 4.

3 Show that [z · x · z−1, z · y · z−1] = z · [x, y] · z−1.

4 Let G be the group from Example 1.8 in §1.3, the group of linear functions
of the form f(x) = mx + b, with m, b ∈ R, m 6= 0. By finding the derived
group G′, show that this group is solvable.

5 Show that if G is a non-cyclic simple group, then G′ = G. Is it true that
if G′ = G, then G must be simple?

6 Let H and K be two subgroups of G. Prove that the mutual commutator
[H,K] is a normal subgroup of the group generated by the elements of H and
K.

For Problems 7 through 10, find the derived series of the group.

7 S3 8 D4 9 D5 10 Q

11 Find the derived series for the group G = Z3⋊Z4. See Problem 9 from
§6.4.

12 Show that the group G′ is a characteristic subgroup of G. See Problem 12
of §7.1 for the definition of a characteristic subgroup.
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13 Show that if a group G is solvable, then the derived series is in fact a
normal series for G.

Hint: Use Problem 12 and the key property of characteristic subgroups
found in Problem 16 of §7.1.

14 If G is a group, define the sequence G1 = [G,G], G2 = [G,G1], G3 =
[G,G2], . . .. G is said to be nilpotent if |Gn| = 1 for some n. Prove that if G
is nilpotent, then G is solvable.

Hint: Prove that Gn contains the nth derived group of G.

15 Find a solvable group that is not nilpotent. (See Problem 14.)

16 Show that a group of order pn, where p is prime, is nilpotent. (See
Problem 14 and Corollary 7.2.)

17 A group is called supersolvable if there is a chief series with cyclic factors.
Show that if G is supersolvable, then G′ is nilpotent. (See Problem 18 from
§8.1 and Problem 14.)

Interactive Problems

18 Use Sage to find the derived series of the group Q:

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}

Add any subgroups necessary to make this series a composition series.

19 Use Sage’s Commutator command as an alternative way to show that
Aut(Z∗

24) is insoluble. Load this group with the commands

DisplayPermInt = true

A = Group( NthPerm(187), NthPerm(723) ); A

{1, 27, 61, 87, 122, 149, 187, 231, 244, 270, 331, 357, 374,

404, 437, 467, 496, 548, 558, 593, 640, 670, 684, 714, 723,

745, 783, 805, 844, 870, 931, 957, 962, 989, 1027, 1071,

1096, 1148, 1158, 1193, 1214, 1244, 1277, 1307, 1366, 1384,

1410, 1428, 1445, 1466, 1509, 1549, 1566, 1588, 1653, 1675,

1681, 1707, 1741, 1767, 1822, 1862, 1889, 1902, 1966, 1984,

2010, 2028, 2054, 2084, 2117, 2147, 2166, 2188, 2253, 2275,

2285, 2306, 2349, 2389, 2403, 2425, 2463, 2485, 2566, 2584,

2610, 2628, 2662, 2702, 2729, 2742, 2780, 2798, 2843, 2861,

2897, 2927, 2954, 2984, 3018, 3071, 3076, 3110, 3144, 3185,

3206, 3220, 3288, 3306, 3328, 3346, 3361, 3387, 3421, 3447,

3487, 3517, 3531, 3561, 3618, 3671, 3676, 3710, 3737, 3767,

3794, 3824, 3888, 3906, 3928, 3946, 3984, 4025, 4046, 4060,

4083, 4105, 4143, 4165, 4213, 4231, 4257, 4275, 4362, 4392,
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4402, 4432, 4488, 4506, 4528, 4546, 4577, 4607, 4634, 4664,

4703, 4721, 4760, 4778, 4809, 4839, 4849, 4879, 4935, 4953,

4975, 4993}

and find A′. Note that Sage can find the derived group fairly quickly.

20 Find the derived group series of the following group:

DisplayPermInt = true

G = Group(NthPerm(2374), NthPerm(6212)); G

{1, 2374, 4517, 6212, 6841, 9929, 11637, 13016, 13698, 15367,

18454, 19853, 21239, 21896, 24132, 25315, 28226, 28986,

30928, 31590, 33108, 37381, 38807, 39487}

What group is G′ isomorphic to? Is G a semi-direct product of two familiar
groups?

8.3 Polycyclic Groups

In this section we will find an efficient method for constructing any finite
solvable group. We will find that the composition series is usually overkill,
since there is often a shorter subnormal series that will do the job. In the end,
we will have a method of entering even large finite groups into Sage using a
polycyclic format that will take advantage of Sage’s ability.

Throughout this book, we used Sage’s InitGroup and Define commands
to produce many of the groups we have been studying. Only occasionally
did we have to use permutations to represent groups, such as the groups A5

and Aut(Z∗
24). However, the method for converting a finite group into a set of

Sage commands has never been fully explained. We know that the groups can
be represented by a small number of generators. Why was S4 defined in Sage
with three generators when only two generators would generate the group?

The method for defining a group G in Sage using a set of generators stems
from the composition series for a solvable group G. However, a composition
series is actually more than we need. We will still insist that the factors of a
series be cyclic, but not necessarily of prime order.

DEFINITION 8.8 A subnormal series

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}

is a polycyclic series if the quotient groups Gi−1/Gi are all cyclic groups. The
number n is called the length of the polycyclic series.



282 Abstract Algebra: An Interactive Approach

It is obvious that a group with a polycyclic series must be solvable, since the
cyclic quotient groups would be solvable. Although any finite solvable group
has a polycyclic series, it should be noted that an infinite solvable group may
not always have a polycyclic series. The groups that have a polycyclic series
are called polycyclic groups.

The first step in expressing a finite group in Sage is to find a polycyclic series
for the group, preferably with the smallest possible length. For example, the
quaternion group Q has a normal subgroup of order 4: {1, i,−1,−i}. This
is of course cyclic, and the quotient group is isomorphic to Z2, which is also
cyclic. Thus, there is a polycyclic series of Q of length 2. The length of the
polycyclic series will be the number of generators required for expressing the
group in Sage, so naturally the shorter the polycyclic series, the less work the
definition entails.

Our strategy will be to work inductively on the length of the series. That
is, given a polycyclic series for a polycyclic group,

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e},

we will begin by defining Gn, the trivial group, and then define Gi−1 in terms
of Gi. Thus, after n steps, we will have defined the group G into Sage.

Defining Gn is easy, since this is the trivial group. This group is defined by
the single command

InitGroup("e")

where e is the name of the identity element. Next we add the variables for
the group, in the order of the polycyclic series.

AddGroupVar("g1", "g2", . . . "gn")

We will suppose that the group Gi is defined inductively by Sage in terms of
the elements gi+1, gi+2, . . . , gn. Since Gi−1/Gi is cyclic, there is a generator
of this quotient group, which we will call gi · Gi, where gi is in the subgroup
Gi−1. If this quotient group is of ordermi, then (gi ·Gi)mi = Gi, so g

mi

i ∈ Gi.
So Sage can represent gmi

i in terms of the elements gi+1, gi+2, . . . , gn. Thus,
we can make the definition

Define(gi^mi, b)

where b is the Sage representation of gmi

i in terms of the previously defined
elements gi+1, gi+2, . . . , gn.

Our goal will be to have Sage express every element in terms of gener-
ators that are multiplied in increasing order. We consider the generators
g1, g2, g3, . . . as “letters,” going in alphabetical order, then we need definitions
that would find a way of expressing any element of the group as a product
of generators such that the generators are in alphabetical order. That is, the
expression g2 ·g3 ·g1 will need to be reduced, whereas g1 ·g2 ·g3 ·g3 does not. As
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such, we have to program Sage to unravel expressions that are “in the wrong
order.” Any expression in the wrong order will contain a sequence gk · gi,
where k > i. Since Gi is a normal subgroup of Gi−1, g

−1
i · gk · gi = yk is in Gi,

and hence can be expressed in Sage in terms of the elements gi+1, gi+2, . . . , gn.
We can perform the following sequence of commands to force Sage to always
put the generators in the proper order.

Define(gi^-1*gi+1*gi, yi+1)

Define(gi^-1*gi+2*gi, yi+2)

· · · · · · · · ·
Define(gi^-1*gn*gi, yn)

With these definitions, Sage will continue to process a given element until
the generators are arranged in order. Although it is not clear right now
that a given element can be expressed as a product of generators arranged in
order, we will see that the group generated by the elements {gi, gi+1, . . . gn}
will be isomorphic to Gi−1. Thus, we will be able to construct the group
G inductively. Note that Mathematica uses a different format for entering
polycyclic groups. See the Mathematica notebook for details.

Computational Example 8.3

Use a polycyclic series to define the group Q in Sage.
We could use the series

G0 = Q ⊇ G1 = {1, i,−1,−i} ⊇ G2 = {1}.

Since this is a series of length 2, we will need 2 generators. To find g2, we
need to find a generator of the group G1/G2. Certainly {i} or {−i} would
work, so we let g2 be one of these elements. We might as well pick g2 = i.

We then observe that G0/G1 is of order 2, and a generator is {j, k,−j,−k}.
We pick g1 to be any one of these elements, say j. To make this a true
polycyclic group, it is important that we add the generator names in the
left-to-right order of the polycyclic series.

InitGroup("e")

AddGroupVar("j", "i")

We are now ready to define G1. Since G1/G2 is cyclic of order 4, we have
that i4 is in G2, which is the identity. So we can define

Define(i^4, e)

This defines G1. We now observe that G0/G1 is of order 2, so j2 must be in
G1, and in fact j2 = −1 = i2. So we can define

Define(j^2, i^2)
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Finally, we note that j−1 · i · j must be in G1. In fact, j−1 · i · j = −i = i3. We
will use a rather unusual Define command this time to enter this information
into Sage. This will allow us to display the group.

Define(j^-1*i*j, i^3)

Group(j, i)

{e, j, j^3, i, j^2*i, j^2, j*i, j^3*i}

This puts the elements in “alphabetical” order because g1 = j is considered
to be before g2 = i. To create a more conventional ordering, we could have
planned ahead and chosen G1 = {1, j,−1,−j}. See Problem 16.

The purpose of defining the group the way we did in Sage is that we can
convert the group to a polycyclic format. This is done with the command
ToPolycyclic().

Q = ToPolycyclic()

Group converted to the Polycyclic format.

Q

{e, i, i^2, i^3, j, j*i, j*i^2, j*i^3}

Now all products are simplified to a standardized form.

j^4 * i^2 * j

j*i^2

This is like having the best parts of ReducedMultiplication and ListGroup
at the same time. This makes working with polycyclic groups much easier and
faster than groups defined the standard way.

Computational Example 8.4

Use the polycyclic series for S4,

G0 = S4 ⊇ G1 = A4 ⊇ G2 = K ⊇ G3 = H ⊇ G4 = {( )}

to enter this group into Sage as a polycyclic group.
SOLUTION: Since there are four cyclic quotient groups, we will need four
generators g1, g2, g3, g4 such that giGi is a generator ofGi−1/Gi. Some natural
choices are g1 = (1 2), g2 = (1 2 3), g3 = (1 3)(2 4), and g4 = (1 2)(3 4).

Next, gmi

i ∈ Gi, wheremi is the order ofGi−1/Gi. Looking at the polycyclic
series for S4, we find that m1 = 2, m2 = 3, m3 = 2, and m4 = 2. Hence we
calculate g21 = ( ), g32 = ( ), g23 = ( ), and g24 = ( ). In this case, all of these
turned out to be the identity element, but we are only promised that gmi

i will
be in Gi, and hence expressible in terms of gi+1, . . . gn.

Finally, we calculate g−1
i ·gj ·g1 ∈ Gi for each combination j > i, and express

each of these in terms of gi+1, . . . gn. We find that g−1
1 · g2 · g1 = (1 3 2) = g22 ,
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g−1
1 · g3 · g1 = (1 4)(2 3) = g3 · g4, g−1

1 · g4 · g1 = (1 2)(3 4) = g4, g
−1
2 · g3 · g2 =

(1 4)(2 3) = g3·g4, g−1
2 ·g4·g2 = (1 3)(2 4) = g3, and g

−1
3 ·g4·g3 = (1 2)(3 4) = g4.

We are now ready to enter this into Sage as a polycyclic group. We can use
a, b, c, and d as the four generators.

InitGroup("e")

AddGroupVar("a", "b", "c", "d")

Define(a^2, e); Define(b^3, e); Define(c^2, e); Define(d^2, e)

Define(a^-1*b*a, b^2); Define(a^-1*c*a, c*d)

Define(a^-1*d*a, d); Define(b^-1*c*b, c*d)

Define(b^-1*d*b, c); Define(c^-1*d*c, d)

Group(a,b,c,d)

{e, b*a, a*b, a*b*a, b, a, b*a*c, c, b*c, a*c, a*b*c,

a*b*a*c, b*a*c*a*b, c*a*b, b*c*a*b, a*c*a*b, a*b*c*a*b,

a*b*a*c*a*b, c*a, b*a*c*a, a*b*c*a, a*b*a*c*a, b*c*a, a*c*a}
Sage is expressing each element as a product of generators, but not always

in alphabetical order. But since we used a polycyclic series to define this
group, we can convert it to a polycyclic form.

S4 = ToPolycyclic()

Group converted to the Polycyclic format.

S4

{e, d, c, c*d, b, b*d, b*c, b*c*d, b^2, b^2*d, b^2*c,

b^2*c*d, a, a*d, a*c, a*c*d, a*b, a*b*d, a*b*c, a*b*c*d,

a*b^2, a*b^2*d, a*b^2*c, a*b^2*c*d}
We now see every element in a form where the generators are in alphabetical
order. We can verify that we have indeed defined S4.

StructureDescription()

S4

Computational Example 8.5

Table 8.1 shows a multiplication table for a non-abelian group that we will
simply call A. Enter this group into Sage as a polycyclic group.

Because there are no elements of order 8, this cannot be one of the groups
of the form Z8⋊φZ2 studied in §6.4.

Finding a polycyclic series is not hard, but finding a short series of length 2
is a little trickier. We find that {1, Z, Y,X} is a normal subgroup isomorphic
to Z4, and the quotient group is also cyclic. Thus, the series

G0 = A ⊃ G1 = {1, Z, Y,X} ⊃ G2 = {1}
is a polycyclic series of length 2. By using this series, we need only two
generators, a and b. Since G1/G2 has two generators, {Z} and {X}, we can
let b represent either element, say b = Z. Then b4 = Z4 must be in G2 = {1},
so
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TABLE 8.1: Multiplication table for the mystery group A

· 1 Z Y X W V U T S R Q P O N M L

1 1 Z Y X W V U T S R Q P O N M L

Z Z Y X 1 T W V U R Q P S L O N M

Y Y X 1 Z U T W V Q P S R M L O N

X X 1 Z Y V U T W P S R Q N M L O

W W V U T S R Q P O N M L 1 Z Y X

V V U T W P S R Q N M L O X 1 Z Y

U U T W V Q P S R M L O N Y X 1 Z

T T W V U R Q P S L O N M Z Y X 1

S S R Q P O N M L 1 Z Y X W V U T

R R Q P S L O N M Z Y X 1 T W V U

Q Q P S R M L O N Y X 1 Z U T W V

P P S R Q N M L O X 1 Z Y V U T W

O O N M L 1 Z Y X W V U T S R Q P

N N M L O X 1 Z Y V U T W P S R Q

M M L O N Y X 1 Z U T W V Q P S R

L L O N M Z Y X 1 T W V U R Q P S

InitGroup("e")

AddGroupVar("a", "b")

Define(b^4, e)

defines b = Z in Sage. Next, we note that both {W,V, U, T} and {O,N,M,L}
are generators of G0/G1. Thus, we can let a be any of these eight elements,
say a = W . Then a4 = W 4 must be in G1, and in fact the table shows that
a4 = e.

Define(a^4, e)

Finally, we need to let Sage know how to handle the combination b · a. Using
the multiplication table, we have that a−1 · b · a =W−1 ·Z ·W = X = b3. So
a−1 · b · a = b3. Let us add this fact into Sage.

Define(a^-1*b*a, b^3)

We now have the group entered into Sage.

A = ListGroup(); A

{e, a, a^2, a^3, b, a*b, a^2*b, a^3*b, b^2, a*b^2, a^2*b^2,

a^3*b^2, b^3, a*b^3, a^2*b^3, a^3*b^3}

Because we used a polycyclic series to define the group, we can convert it to
a polycyclic group.
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A = ToPolycyclic()

Group converted to the Polycyclic format.

A

{e, b, b^2, b^3, a, a*b, a*b^2, a*b^3, a^2, a^2*b, a^2*b^2,

a^2*b^3, a^3, a^3*b, a^3*b^2, a^3*b^3}
We see that each element is denoted in the same way as the command List-

Group(), although they are listed in a different order.

We still have not identified this group in terms of the groups that we are
familiar with. We can have Sage determine what the group is:

StructureDescription()

Z4 : Z4

We see that this group is a semi-direct product of Z4 with itself. In fact, it
is the only such semi-direct product, so we can refer to this group as Z4⋊Z4.

Problems for §8.3

For Problems 1 through 9: Find the shortest possible polycyclic series for the
following solvable groups. (There may be more than one solution.)

1 D4

2 D5

3 Z∗
15

4 Z∗
24

5 Z∗
26

6 Z3⋊Z4

7 Z2 × Z3 × Z4

8 Z2 × Z4 × Z8

9 Z2 × Z2 × Z2 × Z3 × Z3

10 We saw that S4’s shortest polycyclic series was of length 4. What other
group has its shortest polycyclic series being of length 4?

11 Suppose a group has two polycyclic series of minimum length. Must the
quotient groups of the series be isomorphic?

12 Suppose a group has two polycyclic series of maximum length. Must the
quotient groups of the series be isomorphic?

13 Throughout this course, we have encountered a number of groups of order
16. Here is a list of some of these groups:

Z16, Z8 × Z2, Z4 × Z4, Z4 × Z2 × Z2, Z2 × Z2 × Z2 × Z2,

three groups of the form Z2⋊φZ8 in §6.4 (one is D8),

Z2 ×Q, Z2 ×D4, Z4⋊Z4 studied in this section,

and three mystery groups B, C, and D found in Problems 18, 19, and 20.
Show that these 14 groups are all non-isomorphic. (In fact, these are all of
the non-isomorphic groups of order 16.)

Hint: Find R2(G) by counting the number of identity elements along the
diagonals. Note that group B has only 1’s and L’s along its diagonal, whereas
group C has three different elements along its diagonal.
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TABLE 8.2: Mystery group B used in Problem 18

· 1 I J K L M N O P Q R S T U V W

1 1 I J K L M N O P Q R S T U V W

I I L K N M 1 O J Q T S V U P W R

J J O L I N K 1 M R W T Q V S P U

K K J M L O N I 1 S R U T W V Q P

L L M N O 1 I J K T U V W P Q R S

M M 1 O J I L K N U P W R Q T S V

N N K 1 M J O L I V S P U R W T Q

O O N I 1 K J M L W V Q P S R U T

P P Q R S T U V W L M N O 1 I J K

Q Q T S V U P W R M 1 O J I L K N

R R W T Q V S P U N K 1 M J O L I

S S R U T W V Q P O N I 1 K J M L

T T U V W P Q R S 1 I J K L M N O

U U P W R Q T S V I L K N M 1 O J

V V S P U R W T Q J O L I N K 1 M

W W V Q P S R U T K J M L O N I 1

14 Show that there is a group of order 24 for which there are two elements
x and y that generate the group such that x3 = y6 = e, and y · x = x2 · y2.
This problem is referred to in the Mathematica notebook.

Hint: What are the orders of the elements x · y and y · x? Determine the
subgroup generated by these two elements.

15 Let G be an infinite group such that every element besides the identity
has order 2. Show that G is solvable, yet G does not have a polycyclic series.

Interactive Problems

16 Redo Example 8.3 with the subgroup {1, j,−1,−j}. How does Sage re-
name the elements of the group?

17 Use a polycyclic series of A4 to enter this group into Sage. Then use
ToPolycyclic to convert the group to a polycyclic form.

18 Find a polycyclic series of group B of order 16 given in Table 8.2, and
use this to enter the group into Sage. Then use ToPolycyclic to convert the
group to a polycyclic form.

19 Find a polycyclic series of group C of order 16 given in Table 8.3, and
use this to enter the group into Sage. Then use ToPolycyclic to convert the
group to a polycyclic form.
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TABLE 8.3: Mystery group C used in Problem 19

· 1 F G H I J K L M N O P Q R S T

1 1 F G H I J K L M N O P Q R S T

F F 1 H G J I L K N M P O R Q T S

G G H 1 F K L I J O P M N S T Q R

H H G F 1 L K J I P O N M T S R Q

I I K J L M O N P Q S R T 1 G F H

J J L I K N P M O R T Q S F H 1 G

K K I L J O M P N S Q T R G 1 H F

L L J K I P N O M T R S Q H F G 1

M M N O P Q R S T 1 F G H I J K L

N N M P O R Q T S F 1 H G J I L K

O O P M N S T Q R G H 1 F K L I J

P P O N M T S R Q H G F 1 L K J I

Q Q S R T 1 G F H I K J L M O N P

R R T Q S F H 1 G J L I K N P M O

S S Q T R G 1 H F K I L J O M P N

T T R S Q H F G 1 L J K I P N O M

20 Find a polycyclic series of group D of order 16 given in Table 8.4, and
use this to enter the group into Sage. Then use ToPolycyclic to convert the
group to a polycyclic form.

8.4 Solving the PyraminxTM

We will close this chapter by returning to a problem introduced in §2.3—
the Rubik’s PyraminxTM. This example is included because it is a perfect
illustration of how several of the many techniques that we have learned apply
to an actual problem. Although the Rubik’s Pyraminx is just a toy, there are
important applications to the complex groups produced, such as cryptography.
Thus, this example acts as a springboard into applying the principles of group
theory to real-world applications.

The PyraminxTM group was described by four generators, r, l, b, and f ,
which rotated the right, left, back, or front corners 120◦ clockwise. The size
of the group (933120 elements) makes it infeasible to list the elements in Sage,
but we still can use the tools we have learned to analyze this group.

Does the group have a nontrivial center? Notice that the four corner pieces
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TABLE 8.4: Mystery group D used in Problem 20

· 1 L M N O P Q R S T U V W X Y Z

1 1 L M N O P Q R S T U V W X Y Z

L L M N O P Q R 1 T U V W X Y Z S

M M N O P Q R 1 L U V W X Y Z S T

N N O P Q R 1 L M V W X Y Z S T U

O O P Q R 1 L M N W X Y Z S T U V

P P Q R 1 L M N O X Y Z S T U V W

Q Q R 1 L M N O P Y Z S T U V W X

R R 1 L M N O P Q Z S T U V W X Y

S S Z Y X W V U T O N M L 1 R Q P

T T S Z Y X W V U P O N M L 1 R Q

U U T S Z Y X W V Q P O N M L 1 R

V V U T S Z Y X W R Q P O N M L 1

W W V U T S Z Y X 1 R Q P O N M L

X X W V U T S Z Y L 1 R Q P O N M

Y Y X W V U T S Z M L 1 R Q P O N

Z Z Y X W V U T S N M L 1 R Q P O

will never change location in the puzzle. The sequence of moves

InitPuzzle()

RotatePuzzle(f,r,f,r,r,f,r,f,r,r)

rotates one of these corner pieces, returning all other pieces to their original
positions. It is clear that this sequence would commute with all other se-
quences performed on the puzzle. Since the four corners act independently,
we would find at least 34 = 81 elements in the center of the group. Let us call
this subgroup K.

Are there elements in the center besides those in K? The sequence

InitPuzzle()

RotatePuzzle(l,l,b,f,l,l,b,f,l,l,b,f)

returns the four corner pieces to their place, while putting all the edge pieces in
the right position, but reversed. If a further sequence of moves was performed
from this position rather than the original position, the difference in the end
positions would be that all six edges would be reversed. Thus, the above
sequence of order 2 will commute with all other elements of the group. It is
clear that there can be no more elements in the center, for such an element
would have to keep the edge pieces in place. Hence, the center is a normal
subgroup isomorphic to the group Z2 × Z3 × Z3 × Z3 × Z3.
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FIGURE 8.3: The PyraminxTM without the corners

Suppose we consider the subgroup E of actions that return all of the corners
to their original place. If x is an element of E, and y is a general element, say
y rotates the front corner n degrees. Then y · x · y−1 rotates the front corner
n + 0 + (−n) = 0 degrees, so the front corner would return to its original
position. Since the same is true for the other three corners, we see that E is
a normal subgroup.

The intersection of E and K would be the only element that leaves both
the edges and the corners fixed, the identity element. Since both E and K
are normal (since K is in the center), by the direct product theorem, E ·K is
isomorphic to E×K. Yet any action on the PyraminxTM can be performed by
first moving all of the edge pieces, and then moving all of the corners. Thus,
the entire group is in E ·K, and so the PyraminxTM group is isomorphic to

E ×K ≈ E × Z3 × Z3 × Z3 × Z3.

To find the structure of the subgroup E, we analyze the puzzle without the
corners, as in Figure 8.3 created by Sage’s HideCorners command.

Since there are only 12 triangles remaining, it is clear that each action could
be described as a permutation of the 12 triangles. In fact, notice that turning
one corner 120◦ moves 6 triangles—two sets of 3 triangles rotate places. Thus,
each turn produces an even permutation of the 12 triangles, so E is a subgroup
of A12.

Let us now try to find a normal subgroup of E. What if we considered
the subgroup of actions that returns the edge pieces to their place, but may
reverse some of them? Let us call this subgroup H./ / Let x be an element
of H, and y an element of E. The action y−1 · x · y may temporarily move an
edge piece out of position, but will return it to its proper place after possibly
flipping it. Therefore, H will be a normal subgroup of E.

Let us determine the structure ofH. At first one might think that each edge
piece can be reversed independently of all of the others, but this is not true.
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An action that reverses only one edge piece would be an odd permutation of
the triangles. So every element of H must reverse an even number of edge
pieces. The sequence of moves

InitPuzzle()

RotatePuzzle(l,f,l,b,l,b,f,b,f)

reverses the two front edge pieces, hence it is possible to reverse two edge
pieces when they are touching. Using routines like this one, we can reverse
any combination of edges as long as the number of edges reversed is even.

How many elements ofH will there be? If we had considered the edge pieces
to be reversed independently, there would have been 2× 2× 2× 2×2× 2 = 64
elements. Of these 64 possibilities, half of them reverse an even number of
edges. By noticing that all elements of H besides the identity are of order 2,
we find that the 32 elements ofH are isomorphic to Z2×Z2×Z2×Z2×Z2. The
quotient group E/H can now be visualized by ignoring whether the six edge
pieces are reversed. Certainly this would be a subgroup of the permutations of
the six edges. But again we can only consider even permutations, for the edges
are moved three at a time. Thus E/H must be isomorphic to a subgroup of
A6. It is fairly clear that we can position four of the six edges in any position,
so E/H ≈ A6.

Is E isomorphic to a semi-direct product of H with A6? To see that it is, we
need to find a copy of A6 inside of E that contains no elements of H besides
the identity. Such a subgroup is generated by the three actions

RotatePuzzle(f)

RotatePuzzle(b)

RotatePuzzle(r,f,f,r,r,f)

so the groupM generated by these three sequences is isomorphic to A6. Since
it is impossible to reverse any edges with the elements of M , the intersection
of M and H is the identity. Every arrangement of the edges can be obtained
by first putting all of the edges into position, and then reversing several edges.
Thus, E = M ·H. Therefore by the semi-direct product theorem (6.3), E is
isomorphic to a semi-direct product of H with M . If we let φ represent the
homomorphism from M to Aut(H), we have that

E ≈ (Z2 × Z2 × Z2 × Z2 × Z2)⋊φA6.

Unfortunately, this representation of E depends on the homomorphism φ
from A6 to Aut(Z2 ×Z2 ×Z2 × Z2 ×Z2). Let us try to find a representation
of E that does not require additional knowledge. So instead, we will express
E in terms of the wreath product.

DEFINITION 8.9 Let G be a group, and H a subgroup of Sn. We define
the wreath product

G Wr H
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as the semi-direct product Gn⋊
ψ
H, where Gn denotes the direct product of G

with itself n times, and for σ ∈ H, we define ψσ : Gn → Gn by

ψσ(g1, g2, . . . gn) = (gσ−1(1), gσ−1(2), . . . gσ−1(n)).

We explored the wreath product in Problems 13 through 16 of §6.4. In these
problems, we demonstrated that ψ is a homomorphism from H to Aut(Gn),
so the wreath product is a group of size |G|n · |H |.

Consider the wreath product Z2 Wr A6. This would be a semi-direct prod-
uct

(Z2 × Z2 × Z2 × Z2 × Z2 × Z2)⋊φA6,

which is similar to, but twice as large, as E. In fact, it is not too hard to
see the correlation. If we considered the 6 edges of the puzzle being able
to be flipped independently, then the group of all edge flips would be (Z2)

6.
But then we can permute the edges with any even permutation. The wreath
product combines the actions of the edge permutations with the edge flips.
Thus, E is isomorphic to a subgroup of Z2 Wr A6. In fact, it is a normal
subgroup, since it contains half of the elements.

How can we specify this subgroup? Consider the derived subgroup of
Z2 Wr A6. This subgroup is generated by elements of the form x−1 ·y−1 ·x ·y,
which clearly would flip an even number of edges. There is a natural subgroup
of Z2 Wr A6 that is isomorphic to A6, and since (A6)

′ = A6, this subgroup
would be in the derived subgroup. Also, if x flips two of the six edges, and
y permutes three edges without flipping any, moving only one of the two
edges flipped by x, then x−1 · y−1 · x · y will flip two edges, returning them
to their original position. Thus, we see that E ≈ (Z2 Wr A6)

′, and hence the
Pyraminx group is isomorphic to

(Z2 Wr A6)
′ × Z3 × Z3 × Z3 × Z3.

We can use Sage to analyze this group, by analyzing (Z2 Wr A6)
′. First we

consider the subgroup H, which is the subgroup of flipping an even number
of edges. We can represent the edges by disjoint transpositions.

H = Group( C(1,2)*C(3,4), C(3,4)*C(5,6), C(5,6)*C(7,8),

C(7,8)*C(9,10), C(9,10)*C(11,12) )

len(H)

32

Next, we consider the subgroup generated from even permutations of the
cycles, without flipping them. This subgroup is generated by a 3-cycle and
5-cycle of edges.

M = Group( C(1,3,5)*C(2,4,6), C(3,5,7,9,11)*C(4,6,8,10,12) )

len(M)

360
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TABLE 8.5: Orders of the
elements for (Z2 Wr A6)

′

1 element of order 1,
391 elements of order 2,
800 elements of order 3,

2520 elements of order 4,
2304 elements of order 5,
1760 elements of order 6,
1440 elements of order 8,
2304 elements of order 10,
11520 elements total.

We now can combine these subgroups, to form the whole group.

G = H * M

len(G)

11520

This group is far too large to display, even with integer representation. How-
ever, we can determine how many elements there are of a given order, by
computing Rk(G) for various k.

RootCount(G, 2)

392

This shows the group has 391 elements of order 2. By changing the value
of k, we can find the number of elements of any given order, summarized in
Table 8.5. This table, along with the fact that the Pyraminx group is

(Z2 Wr A6)
′ × Z3 × Z3 × Z3 × Z3,

allows us to analyze the Pyraminx group.
Knowing the structure of the group allows us to solve the puzzle! Here is

the strategy based on this decomposition of the group.

1. First put all of the edge pieces in place. We can begin with the bottom,
then rotate the front and back corners until the back two edges are in
the right place (they may be reversed). Finally, rotate the front corner
until all six edges are in place.

2. At this point, an even number of edges will be reversed. We can find
routines that will flip two, four, or six of the edges. These may rotate
corners in the process.

3. Now only the four corner pieces are out of position. We can find routines
to rotate these into position.
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FIGURE 8.4: The PyraminxTM with numbered faces

To find a combination of the four moves f , b, r, and l that will accom-
plish these goals, we can have Sage help us. First we can number the 24
triangles, as in Figure 8.4. Since we consider the product of several rotations
to be done from left to right, we need to convert the rotations to permu-
tations the way that we converted book rearrangements. That is, for each
number, we consider what new number will be in that position after the ro-
tation. Thus the permutation (4 14 23)(5 15 24)(6 16 19) can represent r,
l = (8 21 16)(9 22 17)(10 23 18), f = (1 7 13)(2 8 14)(6 12 18), and finally
b = (2 19 10)(3 20 11)(4 21 12). We can then enter the PyraminxTM group
as a subgroup of S24.

r = C(4,14,23)*C(5,15,24)*C(6,16,19)

l = C(8,21,16)*C(9,22,17)*C(10,23,18)

f = C(1,7,13)*C(2,8,14)*C(6,12,18)

b = C(2,19,10)*C(3,20,11)*C(4,21,12)

Now that these rotations are entered into Sage as permutations, the natural
question is how to express any given permutation in the group generated by
these elements in terms of f , b, r, and l in the most efficient way. For example,
suppose we want to find an efficient way to rotate just the right corner piece
clockwise, which is the permutation (5 15 24). Sage can do this with the
ExpressAsWord command.

ExpressAsWord(["r", "l", "f", "b"], C(5,15,24) )

’r*b*r^-2*b^-1*r*b*r*b^-1’

This returns a string that describes one of the fastest ways to reach the target
permutation from the permutations given. If we evaluate the contents of the
string,
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r*b*r^-2*b^-1*r*b*r*b^-1

(5, 15, 24)

we see that indeed this gives us the permutation that we are looking for.
Notice that the first argument in ExpressAsWord is a list of strings that
represent the generating permutations, whose variables have been previously
set up. Note that ExpressAsWord is not guaranteed to produce the short-
est solution, merely the first solution it finds. Rearranging the generating
permutations may give a different solution.

In flipping edges, we have the advantage that we do not care if corners are
rotated in the process. So we can enter versions of r, l, f , and b that ignore
the corner pieces.

r = C(4,14,23)*C(6,16,19)

l = C(8,21,16)*C(10,23,18)

f = C(2,8,14)*C(6,12,18)

b = C(2,19,10)*C(4,21,12)

By ignoring corners, we reduce the number of puzzle positions down to
11520, so it should be easy to find combinations that produce the right flips.
For example, to flip the top and front left edges, we need the permutation
(2 12)(8 18).

ExpressAsWord(["r", "l", "f", "b"], C(2,12)*C(8,18) )

’r*l^-1*b^-1*l*r^-1*f^-1’

r*l^-1*b^-1*l*r^-1*f^-1

(2, 12)(8, 18)

We summarize the necessary moves in Tables 8.6 and 8.7.
By applying these four routines once or twice, we can get all four corners

into position, and solve the puzzle!
Notice that our three steps can be expressed in terms of a subnormal series

for the PyraminxTM group:

((Z2 Wr A6)
′ × Z3 × Z3 × Z3 × Z3) ⊃

(Z2 × Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z3 × Z3) ⊃
(Z3 × Z3 × Z3 × Z3) ⊃ {e}.

This same type of analysis can be used to solve other puzzles, such as the
Rubik’s Cube

©R
. Several problems in the homework relate to this puzzle. Thus,

we can see a practical application of the properties of groups that we have
studied throughout the course.

But not all applications of groups are fun and games. Group theory has also
become the backbone of modern mathematics, and many important proofs,
such as the impossibility of finding solutions to fifth-degree polynomials, hinge
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TABLE 8.6: Flipping the edges of the PyraminxTM

l−1 · b · f · l−1 · b · f · l−1 · b · f flip all six edges
f · b · r−1 · l · r · b−1 flip two front edges
b · l · b · r · l · r−1 · l−1 · b flip top & bottom edges
f · r · l−1 · b · l · r−1 flip top & front left edges
r · l−1 · b · l · r−1 · f flip top & front right edges
r · b · r · l · b · l−1 · b−1 · r flip left rear & front right edges
l · r · l · b · r · b−1 · r−1 · l flip right rear & front left edges
r · b · l−1 · f · l · b−1 flip bottom & front right edges
l · b · f−1 · r · f · b−1 flip bottom & front left edges
b · r · f−1 · l · f · r−1 flip top & left rear edges
b · l · r−1 · f · r · l−1 flip top & right rear edges
b · f · l−1 · r · l · f−1 flip rear two edges
l · f · r−1 · b · r · f−1 flip bottom & left rear edges
r · f · b−1 · l · b · f−1 flip bottom & right rear edges
l · r · b−1 · f · b · r−1 flip two left hand edges
r · l · f−1 · b · f · l−1 flip two right hand edges

TABLE 8.7: Rotating the corners of the PyraminxTM

f · r · f · r−1 · f · r · f · r−1 rotate front corner 120◦ clockwise
l · r · l · r−1 · l · r · l · r−1 rotate left corner 120◦ clockwise
r · b · r · b−1 · r · b · r · b−1 rotate right corner 120◦ clockwise
b · r · b · r−1 · b · r · b · r−1 rotate back corner 120◦ clockwise

entirely on finite groups. The theory of finite groups also has applications in
quantum physics and inorganic chemistry and crystallography. Therefore, the
material presented in this course has many applications beyond mathematics.

Problems for §8.4

For Problems 1 through 8: Compute the following products in Z2 Wr A6.

1 (0, 0, 0, 0, 0, 0, P (2, 4, 3, 1, 5, 6)) · (1, 0, 1, 0, 0, 1, P (1, 2, 3, 4, 5, 6))
2 (1, 1, 1, 1, 1, 1, P (2, 3, 6, 4, 1, 5)) · (0, 1, 1, 0, 0, 1, P (5, 1, 3, 2, 6, 4))
3 (0, 1, 1, 0, 0, 1, P (1, 6, 3, 5, 4, 2)) · (1, 0, 0, 1, 1, 0, P (6, 4, 3, 2, 5, 1))
4 (1, 1, 0, 1, 1, 0, P (5, 2, 1, 3, 6, 4)) · (1, 1, 0, 0, 0, 1, P (6, 2, 4, 1, 3, 5))
5 (0, 0, 1, 0, 1, 1, (1 2 4)) · (1, 1, 1, 0, 0, 0, (1 3)(5 6))
6 (0, 1, 0, 1, 0, 1, (1 6 3 2 5)) · (0, 1, 1, 0, 0, 1, (2 5 3))
7 (1, 0, 1, 0, 1, 1, (2 4 5)) · (0, 1, 0, 0, 1, 0, (1 5 3 4)(2 6))
8 (0, 0, 0, 1, 0, 1, (1 4 3)(2 5 6)) · (1, 1, 1, 0, 0, 1, (1 4)(2 5))

9 Using the orders of the subgroup E of the PyraminxTM group given in
Table 8.5, determine the number of elements of the PyraminxTM group that
are of order 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 24, and 30. Verify that the sum of
these numbers totals 933,120.
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10 Using Problem 10 in §7.1, we see that the center Z of Z2 Wr A6 is iso-
morphic to Z2. Is (Z2 Wr A6)/Z isomorphic to (Z2 Wr A6)

′?

11 Using Table 8.5, determine how many 5-Sylow subgroups there are in
(Z2 Wr A6)

′.

12 Using Table 8.5, determine how many 2-Sylow subgroups there are in
(Z2 Wr A6)

′. Note that from Problem 9 in §7.4, every element of order 2k is
contained in a 2-Sylow subgroup.

13 Using Table 8.5, determine how many 3-Sylow subgroups there are in
(Z2 Wr A6)

′.
Hint: The normalizer of the group generated by (0, 0, 0, 0, 0, 0, (1 2 3)) and

(0, 0, 0, 0, 0, 0, (4 5 6)) has a subgroup of order 4, generated by (1, 1, 1, 0, 0, 0, ( ))
and (0, 0, 0, 1, 1, 1, ( )).

14 Consider a 2×2×2 Rubik’s Cube
©R
, consisting of just eight corner pieces.

Determine the size of the group of actions on this cube. Express the group of
actions in terms of a wreath product.

Hint: It is impossible to rotate just one corner, and leave the others in
place. Is it possible to move just two of the corners?

15 Consider a standard Rubik’s Cube
©R
. What is the size of the group of

actions? What is the center of this group?

16 Let a = (1 2 3 4 5) and b = (1 2 4) be two elements of A5. Find a way to
express the element (1 2)(4 5) in terms of a and b. There is more than one
correct answer.

Hint: Try different combinations of a and b to find another 3-cycle.

17 Let a = (1 2 3 4 5) and b = (1 2 4) be two elements of A5. Find a way to
express the element (1 4)(2 5) in terms of a and b. There is more than one
correct answer.

Interactive Problems

18 First show that S7 is generated by the elements a = (2 6 3 7 4) and b =
(1 5 4 2). Then use ExpressAsWord to find a way to express (1 2) in terms of
a and b. This problem is not available in Mathematica.

19 First show that A7 is generated by the elements a = (1 6 7)(2 5 4) and
b = (1 3 7 2)(4 6). Then use ExpressAsWord to find a way to express (1 2 3)
in terms of a and b. This problem is not available in Mathematica.
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FIGURE 8.5: Simple puzzle with two wheels, used for Problem 20

20 Consider the puzzle in Figure 8.5, with 7 disks on 2 wheels. The action
L turns the left wheel 90◦ clockwise, taking the disks with it. The action R
turns the right wheel 72◦ clockwise, again taking the disks with it. The goal
is to swap disks 5 and 6, so the disks are in consecutive order. Use Sage’s
ExpressAsWord to solve this puzzle. A few brave souls might try to solve this
puzzle without Sage’s help. This problem is not available in Mathematica.
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Chapter 9

Introduction to Rings

This section presents the concept of a ring, which is a generalization of the
addition and multiplication operations of standard numbers. The term ring
was first coined by David Hilbert in 1892, although he only referred to a par-
ticular type of ring. It wasn’t until 1920 that Emmy Noether gave an abstract
definition of a ring, which would apply to the “hyper-complex” number sys-
tems developed earlier by William Hamilton and Hermann Grassmann. (See
the Historical Diversion on page 306.) This abstraction can apply to poly-
nomials, infinite series, matrices, and even functions. Hence, ring theory has
become a valuable tool for almost every other branch of mathematics.

9.1 The Definition of a Ring

While studying the previous chapters on groups, we discovered different
patterns in the group’s structure by which we could project and prove many
useful properties. However, many of the examples of groups we studied possess
some additional structure that we have yet to take advantage of. Some of
the groups had not just one, but two operations that we could define on
the elements. Our goal for this section is to study these examples, and like
Noether did, determine the simplest definition that would apply to all of the
examples.

The simplest example to consider is the group of integers, Z. This is a
group under the operation of addition, in fact an abelian group with the
identity element being 0. However, we can also multiply two integers together,
always forming another integer. Is Z a group using multiplication instead of
addition? No, because most elements do not have an inverse. However, this
extra operation gives Z a much richer structure than standard groups.

Subgroups of Z can also be considered. A typical example would be the
set of even integers. Once again, we have both addition and multiplication
defined on this set, since both the sum and the product of two even integers
yield even integers.

Likewise, the group of rationals Q and real numbers R have two opera-
tions. Although these are both abelian groups under addition, they are al-
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TABLE 9.1: (·) mod 6

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

most groups under multiplication as well. The multiplicative inverse exists
for all elements except 0. If we considered the remaining elements Q−{0} or
R− {0}, we have the multiplicative groups denoted Q∗ and R∗.

Not only do Z, Q, and R allow for an additional operation to be defined
on them, but also some groups from Chapter 1. Take for example the groups
formed by modular arithmetic, such as Z6 = {0, 1, 2, 3, 4, 5}. The group op-
eration on Z6 is addition modulo 6. A natural second operation would be
multiplication modulo 6, shown in Table 9.1. Note that this table does not
possess the “Latin square” property we have seen in the group tables. How-
ever, there is no reason for the second operation to have this familiar property.

Motivational Example 9.1

The following command produces the quaternion group Q of order 8, which
we studied in Chapter 4:

Q = InitQuaternions(); Q

{1, i, j, k, -1, -i, -j, -k}

We have seen the multiplication table before, in Table 4.3. The quaternion
elements are reminiscent of the cross product between two three-dimensional
vectors. That is,

i · j = k j · k = i, and k · i = j.

This suggests that we can also add multiples of these elements together like
vectors, forming such elements as

i - 2*j - k

i - 2*j - k

which would represent the vector 〈1, 2,−1〉. Two vectors can be added to-
gether in the standard way.

(i - 2*j - k) + (3*i + j - 2*k)

4*i - j - 3*k
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producing the vector 〈4,−1,−3〉. Unfortunately, as we multiply these “vec-
tors” together using the distributive laws, we find elements of the form

(i - 2*j - k) * (3*i + j - 2*k)

-3 + 5*i - j + 7*k

which would represent the four -dimensional vector 〈−3, 5,−1, 7〉. (This extra
dimension could represent time.) However, we find that the product of any two
four-dimensional vectors would give us a product in the form a+bi+cj+dk =
〈a, b, c, d〉. In fact, we are able to find the inverse of a four-dimensional vector.

(i - 2*j - k)^-1

(-1/6)*i + 1/3*j + 1/6*k

This suggests we should explore the special properties of these vectors.

PROPOSITION 9.1

The set of nonzero four-dimensional vectors forms a non-abelian group using
the multiplication table for the quaternion group Q.

PROOF: If
x = a+ bi+ cj + dk

is nonzero, then

x−1 =
a

a2 + b2 + c2 + d2
+

−b
a2 + b2 + c2 + d2

i

+
−c

a2 + b2 + c2 + d2
j +

−d
a2 + b2 + c2 + d2

k

forms a multiplicative inverse, since it is a simple exercise to show that x·x−1 =
x−1 · x = 1, the multiplicative identity. (See Problem 10.) Note that since
x 6= 0, the common denominator a2 + b2 + c2 + d2 > 0. It is easy to see that
multiplication is closed. The only hard part is to show that the associative law
holds, which is best done in Sage. See Problem 21. Given that the associative
law holds, it is easy to see that the product of two nonzero vectors must be
nonzero. If x · y = 0, and x 6= 0, then

y = (x−1 · x) · y = x−1 · (x · y) = x−1 · 0 = 0.

Thus, if both x 6= 0 and y 6= 0, then x · y 6= 0.

We call the group of four-dimensional vectors of the form a+ bi+ cj + dk
the quaternions , denoted by H after their discoverer, William Hamilton.

We have seen many examples of groups that exhibit not one but two oper-
ations defined on them. One of these operations is represented with the plus
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sign, and the other is usually denoted with a dot. Our goal will be to come up
with a definition that unites these examples. Let us consider which properties
these examples have in common. Table 9.2 organizes our findings, indicating
which of the 6 groups that we looked at satisfy various properties.

We want to pay special attention to the properties that hold for all of the
above examples. In fact, let us define a ring as a group possessing all of these
properties. In this way, we allow all six of the above examples to be rings.

DEFINITION 9.1 A ring is an abelian group with the operation (+) on
which a second associative operation (·) is defined such that the following two
distributive laws hold for all a, b, and c in the ring:

(a+ b) · c = (a · c) + (b · c) and

a · (b+ c) = (a · b) + (a · c).

For any ring we will use the symbol 0 to denote the additive identity of a
ring, and the notation −x for the additive inverse of x.

Even though we defined a ring such that all six of the groups in Table 9.2
are rings, many of these rings possessed additional properties. We will give
names to rings with some of these extra properties.

DEFINITION 9.2 A ring for which x · y = y · x for all elements x and y
is called a commutative ring.

DEFINITION 9.3 A ring for which there is an element e such that

x · e = e · x = x

for all elements x in the ring is called a unity ring or ring with identity. The
element e is called the unity ormultiplicative identity of the ring, to distinguish
it from the additive identity 0.

The next definition will deal with rings for which x · y = 0 implies that
either x or y must be 0. However, it is reasonable to first prove the following
lemma:

LEMMA 9.1

If x is any element in a ring, then 0 · x = x · 0 = 0, where 0 is the additive
identity.

PROOF: This proof is just a little tricky because there are no other proposi-
tions to rely on. Thus, every step must directly use one of the nine properties
of rings. (The temptation is to rely on some property we suspect is true, but
haven’t yet proven.)
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TABLE 9.2: Property checklist for several groups

Property Z Even
Integers Q Reals Z6 Quaternions

Closed under
√ √ √ √ √ √

Addition

Closed under
√ √ √ √ √ √

Multiplication

(a+ b) + c =
√ √ √ √ √ √

a+ (b+ c)

(a · b) · c = √ √ √ √ √ √

a · (b · c)
Additive

√ √ √ √ √ √

Identity (0)

Multiplicative
√ × √ √ √ √

Identity (1)

Additive
√ √ √ √ √ √

Inverses Exist

Multiplicative × × √ √ × √

Inverses Exist

Except for 0

a+ b = b+ a
√ √ √ √ √ √

a · b = b · a √ √ √ √ √ ×
a · b = 0 only

√ √ √ √ × √

if a or b = 0

(a+ b) · c = √ √ √ √ √ √

a · c+ b · c
a · (b + c) =

√ √ √ √ √ √

a · b+ a · c
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Historical Diversion

Emmy Noether (1882–1935)
Emmy Noether was a Jewish woman

from a mathematically talented family.
Her father, Max Noether, was a promi-
nent mathematics professor at the Univer-
sity of Erlangen, and played a large part
in founding the field of algebraic geome-
try. Her brother Fritz would also become
a mathematics professor at Breslau. How-
ever, nothing in her early years would in-
dicate her true mathematical genius.
From 1900 to 1902, she attended the

University of Erlangen, studying mathe-
matics and languages. But because she
was a woman, she could not formally en-
roll in the courses, but only audit the lec-
tures with the permission of the instructor,
which was often denied. She was, however,
allowed to take and pass the final university exams that led to a degree.
Noether moved to Göttingen to audit classes from the mathematical giants

of her day, Felix Klein and David Hilbert. Hilbert specialized in an axiomatic
approach to number theory. But in 1904 she returned to Erlangen, since they
relaxed the rules and allowed women to register for classes. She completed
her dissertation in 1907, and continued to teach, without pay, at Erlangen. In
1915, Klein and Hilbert tried to get Noether a faculty position at Göttingen,
but their efforts were blocked since she was a woman. Finally, in 1919, she
obtained formal admission as an academic lecturer.
Noether revealed her true genius in 1920, when she published a paper on

the theory of ideals, in which she defined the left and right ideals of a ring.
Noether incorporated Hilbert’s axiomatic approach to abstract algebra to be
the first person to give a modern definition of the ring, although her work
focused on commutative rings. The following year she published Idealtheorie
in Ringbereichen, which analyzed the ascending chain conditions among ideals.
Today, we refer to a ring as a Noetherian ring if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · ·
must eventually stop increasing in size, that is, there is some Ik such that
Im = Ik for all m > k.
When Hilter rose to power in 1933, Noether and other Jewish professors at

Göttingen were dismissed. Noether fled to the United States, to Bryn Mawr
College, to be a visiting professor of mathematics. In 1935 she died at age 53
from an infection resulting from an operation to remove a uterine tumor.

Image source: Wikimedia Commons
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Note that
(0 · x+ 0 · x) = (0 + 0) · x = 0 · x,

so
(0 · x+ 0 · x) + (−(0 · x)) = 0 · x+ (−(0 · x)) = 0.

Hence
0 · x+ (0 · x+ (−(0 · x))) = 0,

so
0 · x+ 0 = 0 · x = 0.

Similarly,
(x · 0 + x · 0) = x · (0 + 0) = x · 0,

so
(x · 0 + x · 0) + (−(x · 0)) = x · 0 + (−(x · 0)) = 0.

Hence
x · 0 + (x · 0 + (−(x · 0))) = 0,

so
x · 0 + 0 = x · 0 = 0.

This proof shows that we can get the equivalent of subtraction by adding the
additive inverse. But although we can add, subtract, and multiply elements in
a ring, we cannot, in general, divide elements. In fact, we can find some rings
for which the product of two nonzero elements produces 0, such as 3 · 2 = 0
in the ring Z6.

DEFINITION 9.4 If x is a nonzero element of a ring such that either
x · y = 0 or y ·x = 0 for a nonzero element y, then x is called a zero divisor of
the ring. If a ring has no zero divisors, it is called a ring without zero divisors.

We see from this definition that 2 and 3 are zero divisors of the ring Z6,
since 3 · 2 = 0 in this ring. A related definition stems from the product of two
elements equaling the multiplicative identity.

DEFINITION 9.5 If, for the element x in a unity ring, there is an
element y such that

x · y = y · x = e,

we say that x has a multiplicative inverse, or is invertible.

Just because an element is not a zero divisor does not mean that it is
invertible. For example, 2 is not a zero divisor of the ring Z, yet 2 is not
invertible in this ring.

The smallest possible ring is the trivial ring, which is defined by the Sage
commands
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G = ZRing(1); G

{0}
AddTable(G)

MultTable(G)

+ 0

0 0

· 0

0 0

This ring is rather unusual because the multiplicative identity is 0. Also, 0 is
actually invertible in this ring, because 0−1 = 0. These two facts are true for
no other ring.

DEFINITION 9.6 A ring for which every nonzero element has a multi-
plicative inverse is called a division ring.

PROPOSITION 9.2

A division ring always has a unity and has no zero divisors.

PROOF: We just saw that the trivial ring has a unity and has no zero divi-
sors, so we may assume that the ring has a nonzero element y. Then y has a
multiplicative inverse z, so we have y · z = e, the unity. Thus, every division
ring must have a unity.

Now suppose that x · y = 0 in a division ring, with both x and y nonzero.
Then y has a multiplicative inverse z, so that y · z = e. But then

x = x · e = x · (y · z) = (x · y) · z = 0 · z = 0,

which contradicts the fact that x is nonzero. Thus, a division ring has no zero
divisors.

DEFINITION 9.7 A non-trivial division ring for which x · y = y · x for
all x and y is called a field. A division ring for which multiplication is not
commutative is called a skew field.

We can now classify each possible type of ring. For example, the ring Z

is a commutative unity ring without zero divisors. The ring of even integers,
however, has no unity element, so we would call this a commutative ring
without zero divisors. Both Q and R satisfied all 13 properties, so these
two rings are fields. The ring Z6 has zero divisors, so we would call this a
commutative unity ring. The quaternions H have all the properties of a field
except that multiplication is not commutative, so this is an example of a skew
field.
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Problems for §9.1

For Problems 1 through 6: Prove the following statements for arbitrary x, y,
and z in a ring R, using the properties of rings, and Lemma 9.1. You can use
the result of a previous problem. Note that x − y is defined to be x + (−y),
and x2 = x · x.
1 (−x) · y = −(x · y)
2 x · (−y) = −(x · y)
3 (−x) · (−y) = x · y

4 x · (y − z) = x · y − x · z
5 (x− y) · z = x · z − y · z
6 (x+ y) · (x− y) = (x2 − y2) + (y · x− x · y)

7 If a and b are elements of a ring R, and a · b is a zero divisor, prove that
either a or b is a zero divisor.

8 For the quaternions, H, we define the conjugate of an element x = a+ bi+
cj + dk to be x = a − bi − cj − dk. Prove that x1 + x2 = x1 + x2 for all x1
and x2 in H.

9 Prove or disprove: x1 ·x2 = x1 · x2 for all x1 and x2 in H. (See Problem 8.)

10 Prove that for x in H, x · x = x · x = a2 + b2 + c2 + d2. (See Problem 8.)

11 For all x in H, we define the absolute value of x to be |x| =
√
x · x. Prove

that |x1 · x2| = |x1| |x2|. (See Problem 8.)

12 Prove or disprove: For all x in the quaternions H, (x+1)·(x−1) = x2−1.

13 Prove or disprove: For all x in the quaternions H, (x+ i) ·(x− i) = x2+1.

14 Let
Z[
√
2] = {x+ y

√
2 | x, y ∈ Z}.

Prove that Z[
√
2] is a ring under the ordinary addition and multiplication of

real numbers.

15 Consider the set
{x+ y

3
√
2 | x, y ∈ Z}.

Is this set a ring under the ordinary addition and multiplication of real num-
bers?

16 Prove that a ring can have at most one multiplicative identity.

17 Suppose that G is an abelian group with respect to addition. Define a
multiplication on G by x · y = 0 for all x and y in G. Show that G forms a
ring.

18 Define new operations of addition and multiplication in Z by x ⊕ y =
x+ y − 1 and x⊗ y = x+ y − xy. Verify that Z forms a ring with respect to
these new operations.
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19 Fill in the remaining spaces in these addition and multiplication tables
so that the resulting set forms a ring.

Hint: Use the Latin square property to fill in the addition table. Then use
the distributive laws to determine the multiplication table.

+ 0 a b c

0

a

b c

c

· 0 a b c

0

a

b c

c

Interactive Problems

20 We saw that the the ring Z6 had zero divisors. We can enter this ring in
Sage with the command

R = ZRing(6); R

{0, 1, 2, 3, 4, 5}

Try this with Z5, Z7, Z8, Z9, Z10, Z11, and Z12, and form the multiplication
tables of these rings. Which ones have zero divisors? Which ones are fields?

21 Use Sage to show that quaternion multiplication is associative. That is,
if we define

Q = InitQuaternions()

var("a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3")

x = a1 + b1*i + c1*j + d1*k

y = a2 + b2*i + c2*j + d2*k

z = a3 + b3*i + c3*j + d3*k

then show that (x · y) · z = x · (y · z).

9.2 Entering Finite Rings into Sage

Although we have seen a few examples of rings, we would like to expand
our repertoire so that we can study properties which would be true for all
rings. In particular, we want to find more examples of finite rings. It turns
out that there are many more finite rings than groups of the same size. (There
are 52 rings of order 8, as opposed to only 5 groups of this order.) Verifying
the associate and distributive laws for even a small ring can be a cumbersome
task, so we will let a computer do the hard part for us.
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In the first eight chapters, we entered finite groups into Sage by using the
generators of the group. If we consider a finite ring simply as an abelian group
under addition, we can find a set of generators B for this group (ignoring the
multiplicative structure). For each element in B we determine the additive
order of the element. That is, for each generator x we want to find the smallest
number n such that

x+ x+ · · ·+ x+ x
︸ ︷︷ ︸

n times

= 0.

DEFINITION 9.8 If n is a positive integer, and x is any element in a
ring, we define nx inductively by letting 1x = x, and

nx = (n− 1)x+ x.

We also define (−n)x to be −(nx) for n a positive integer. Finally, we define
0x = 0.

Because “multiplication by an integer” is merely a shorthand for repeated
addition, we immediately see that

(m+ n)x = mx+ nx and (mn)x = m(nx)

for any element x and any integers n and m. See Problems 13, 14, and 15.

LEMMA 9.2

Let x and y be any two elements in a ring, and let n be an integer. Then

(nx) · y = n(x · y) = x · (ny).

PROOF: We will proceed by induction. The statement is certainly true for
n = 0 or n = 1. Suppose that the statement is true for the previous case
n− 1. But then

((n− 1)x) · y + x · y = (n− 1)(x · y) + x · y = x · ((n− 1)y) + x · y.

Hence, by the distributive law,

((n− 1)x+ x) · y = ((n− 1) + 1)(x · y) = x · ((n− 1)y + y),

and so
(nx) · y = n(x · y) = x · (ny).

Hence, the statement is true for all positive integers.
For negative integers, we can merely show that

(nx) · y + ((−n)x) · y = (nx+ (−n)x) · y = ((n− n)x) · y = 0 · y = 0.
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n(x · y) + (−n)(x · y) = (n− n)(x · y) = 0(x · y) = 0.

x · (ny) + x · ((−n)y) = x · (ny + (−n)y) = x · ((n− n)y) = x · 0 = 0.

Thus,((−n)x) · y, (−n)(x · y), and x · ((−n)y) are the additive inverses of
(nx) · y, n(x · y), and x · (ny), respectively. But since these latter three are
equal for positive n, we have

((−n)x) · y = (−n)(x · y) = x · ((−n)y).

Hence the lemma is proven for all integers n.

We can now use this notation within Sage to generate a finite ring. To
define a ring whose additive group is isomorphic to

Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14},

we find two elements that generate this group, such as a = 2 and b = 14.
Since

24 ≡ 1 (mod 15) and 142 ≡ 1 (mod 15),

we see that a4 = 1 and b2 = 1 in the group Z∗
15. But using ring notation, we

write 4a = 0 and 2b = 0, since 0 is the additive identity of the ring.
To define this group in Sage, we begin by declaring that a and b will be

the variables. We do this as we initialize the ring, putting the variables in
quotations, just as we did with AddGroupVar for groups.

InitRing("a", "b")

Next, we need to tell Sage what the additive order of these elements would
be, expressed as a list. Since a is of order 4, and b is of order 2, this could
be writen as the list [4, 2]. The following command gives us the additive
group that we want.

DefineRing([4, 2], [[0,0],[0,0]])

We will explain the meaning of the second parameter [[0,0],[0,0]] later.
For now, this is sufficient to define the group structure of the ring. The eight
elements of the group are denoted as follows:

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}
We notice several things from this list. First of all, the zero element is listed
as 0*a, not just 0. Sage interprets 0 to mean only the integer 0, so the zero
element of a ring needs a different notation. Of course 0 · a would give us the
zero element for any generator a, so Sage picks the first generator mentioned.
Also, we see that 3*a is simplified to -a. Sage tries to find the simplest way
to express the elements of the ring. We combine two elements of this group
with a plus sign rather than the dot that we used for groups. For example,
here is the sum of two elements:
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TABLE 9.3: Addition table for a particular ring R

+ 0a a 2a −a b a+b 2a+b −a+b
0a 0a a 2a −a b a+b 2a+b −a+b
a a 2a −a 0a a+b 2a+b −a+b b

2a 2a −a 0a a 2a+b −a+b b a+b

−a −a 0a a 2a −a+b b a+b 2a+b

b b a+b 2a+b −a+b 0a a 2a −a
a+b a+b 2a+b −a+b b a 2a −a 0a

2a+b 2a+b −a+b b a+b 2a −a 0a a

−a+b −a+b b a+b 2a+b −a 0a a 2a

(-a+b) + (2*a)

a+b

The addition table can be displayed using AddTable(R), producing Table 9.3.

Notice that there are several differences between defining a group and defin-
ing the group structure of a ring. The obvious difference is that we use the
plus sign instead of the dot for our operation. Also, when we defined a group,
we began by telling Sage the identity element. But for a ring, the additive
identity is always denoted 0*a, and the multiplicative identity may not exist.
So the first statement tells Sage the generators for the ring. Finally, all of the
Define commands are combined into a single DefineRing command, which
gives all of the necessary information about the ring.

Note that in Mathematica, rings are defined differently. See the Mathemat-
ica notebook for details.

Although this defines the additive group very quickly, we must be selective
in choosing the generators. Suppose we had instead chosen the generators
a = 2 and b = 7. These two elements generate the group Z∗

15, but both are of
order 4. So the Sage commands for entering these two generators would be

InitRing("a", "b")

DefineRing([4, 4], [[0,0],[0,0]]

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b, 2*b, a+2*b, 2*a+2*b,

-a+2*b, -b, a-b, 2*a-b, -a-b}

This gives 16 elements instead of 8. The problem is that Sage is not using
the identity 2a = 2b, which is true since 22 ≡ 72 (mod 15). Trying to add
an additional Sage command defining 2a = 2b woul produce some potential
problems later on. A better solution is simply to make the following restriction
on the set of generators.
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DEFINITION 9.9 Let G be an abelian group. A basis is a set B =
{x1, x2, x3, . . . xk} that generates the group such that the only way in which

n1x1 + n2x2 + n3x3 + · · ·+ nkxk = 0

for integers n1, n2, n3, . . . nk is if

n1x1 = n2x2 = n3x3 = · · · = nkxk = 0.

For a finite group, it is clear that if we have a basis, then every combination
of the form

n1x1 + n2x2 + n3x3 + · · ·+ nkxk,

where each ni is non-negative and less than the order of xi, forms a distinct
element. Also, every element of G could be put in that form. Thus, the
product of the orders of all the elements of B equals the order of the group.

It should be noted that any finite abelian group has a basis, using the
fundemental theorem of finite abelian groups (6.2). See Problem 17.

Once we have found a basis for the additive group, and have defined the
additive structure into Sage, we are ready to consider the multiplicative def-
initions. If we have two generators {a, b}, we will need to define 22 = 4
multiplications: a · a, a · b, b · a, and b · b. These four products could be de-
fined to be any of the elements of the ring. Thus, for ring with the additive
structure of Z∗

15, there are up to 84 = 4096 ways to finish defining the ring!
However, very few of these ways of defining the products will satisfy both the
distributive laws and the associative law. For example, b · b cannot be defined
to be a, otherwise we have the contradiction

2a = a+ a = b · b+ b · b = (b + b) · b = (2b) · b = 0 · b = 0.

An example of a ring definition that does not produce such a contradiction
comes from defining a2 = a, b2 = b, and a · b = b ·a = 0. All other products in
the ring can be determined from these using the distributive law. For example,

(2a+ b) · (a+ b) = 2a2 + b · a+ 2a · b+ b2 = 2a+ 0 + 0 + b = 2a+ b.

The second argument of the DefineRing command allows us to tell Sage
all of the possible products of two generators. These are entered as an array,
using the same ordering as the original basis elements were ordered. For
example, if a and b are the two generators, then the array would consist of

[[a · a, a · b], [b · a, b · b]].

To define the ring described in the above paragraph, we can use

InitRing("a", "b")

DefineRing([4, 2], [[a, 0],[0, b]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}
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TABLE 9.4: Multiplication table for a particular ring R

· 0a a 2a −a b a+ b 2a+ b −a+ b

0a 0a 0a 0a 0a 0a 0a 0a 0a

a 0a a 2a −a 0a a 2a −a
2a 0a 2a 0a 2a 0a 2a 0a 2a

−a 0a −a 2a a 0a −a 2a a

b 0a 0a 0a 0a b b b b

a+ b 0a a 2a −a b a+ b 2a+ b −a+ b

2a+ b 0a 2a 0a 2a b 2a+ b b 2a+ b

−a+ b 0a −a 2a a b −a+ b 2a+ b a+ b

The addition table was given above in Table 9.3, while the multiplication table
is given by

MultTable(R)

producing Table 9.4.
We still have not proven that this is a ring, since we have not verified the

distributive laws and the associativity law for multiplication. The tedious
task of verifying these laws can be handled by the Sage command

CheckRing()

This is a ring.

Sage checks the ring most recently defined, and finds that both the distributive
and associative laws hold, so this is a ring. Since R is obviously commutative
from the multiplication table, the next question is whether R has a unity.
Sage can search the ring for a unity element with the command

FindUnity(R)

a+b

Even though we did not use the unity to construct the ring, Sage found one.
The multiplication table shows that many elements of R do not have in-

verses. Hence, this is not a division ring. Nonetheless, Sage can try to take
inverses of some of the elements.

(-a+b)^-1

-a+b

(2*a+b)^-1

fail

Example 9.2

Try to define a non-commutative ring using Z∗
15 as the additive group.

SOLUTION: If a · b = b, yet b ·a = 2a, then the ring will not be commutative.
Here is one attempt to define such a ring.
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InitRing("a", "b")

DefineRing([4, 2],[[0, b],[2*a, 0]])

CheckRing()

Associative law does not hold.

This attempt failed, so we must replace the two 0’s with other elements of
the ring.

It would seem as though there would be 64 possibilities to check, but we
can narrow the search by using the associative property. For example, (a ·b) ·a
must be a · (b · a), so 2a = 2a2. This forces a2 to be either a or −a. Also,
(b · a) · b must be b · (a · b), so 0 = b2.

We now have enough information to try the ring again.

InitRing("a", "b")

DefineRing([4, 2],[[a, b],[2*a, 0]])

CheckRing()

This is a ring.

In this case, there is no unity element.

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}
FindUnity(R)

No identity element found.

In fact, every nonzero element turns out to be a zero divisor.

Since we have seen an example of a non-communitive ring without unity,
can we find a non-communitive unity ring? The following proposition shows
that we will not be able to use Z∗

15 for the additive group.

PROPOSITION 9.3

If a ring with unity has an additive structure that can be generated with less
than three elements, then the ring is commutative.

PROOF: Suppose that x and y are two elements of the ring that generate the
group under addition. That is, every element can be expressed as mx + ny
for integers m and n. In particular, the unity

e = mx+ ny

for some integers m and n. Since e commutes with both x and y, we have

mx · x+ ny · x = (mx+ ny) · x = e · x = x · e = mx · x+ nx · y,

so ny · x = nx · y.
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Likewise,

mx · y + ny · y = (mx+ ny) · y = e · y = y · e = my · x+ ny · y,
so mx · y = my · x.

By the greatest common divisor theorem (0.4), there are integers u and v
such that

um+ vn = gcd(m,n).

If we let c denote the greatest common divisor of m and n, then

c(x·y−y ·x) = (um+vn)(x·y−y ·x) = u(mx·y−my ·x)+v(nx·y−ny ·x) = 0.

What we need to show is that (x · y− y · x) = 0. The tempting thing to do is
divide by c, but this operation is not allowed in rings. Instead, we will again
utilize the unity. Since c = gcd(m,n) there are integers a and b such that
m = ac and n = bc. Then

x · y − y · x = e · (x · y − y · x) = (acx+ bcy) · (x · y − y · x)
= (ax+ by) · (c(x · y − y · x)) = (ax+ by) · 0 = 0.

So x · y = y · x, and the ring is commutative.

If we were to find a non-commutative unity ring, we need an additive group
that requires more than two generators to define. The smallest such group
is Z∗

24. We may suppose that the additive group is generated by the unity
e, along with two other elements a and b. Suppose that a · b = a, while
b ·a = b. This would make the ring non-commutative. We still need to discern
what a2 and b2 should be. But a2 = (a · b) · a = a · (b · a) = a · b = a, and
b2 = (b · a) · b = b · (a · b) = b · a = b. So the Sage command for defining this
ring would be

InitRing("e", "a", "b")

DefineRing([2, 2, 2], [[e, a, b], [a, a, a], [b, b, b]])

CheckRing()

This is a ring.

T8 = ListRing(); T8

{0*e, e, a, e+a, b, e+b, a+b, e+a+b}
FindUnity(T8)

e

The multiplication table is given in Table 9.5. Because we will refer back
to this ring often we will call this ring T8.

It is easy to see that any finite ring can be quickly entered into Sage. In
fact many infinite rings, such as the quaternions, can also be explored with
Sage. This will allow us to experiment with many different rings, and find
properties that are common to all rings. In the next section we will look at
some of the basic relationships between rings.
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TABLE 9.5: Multiplication for a non-commutative unity ring

· 0 ∗ e e a e+a b e+b a+b e+a+b

0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e 0 ∗ e
e 0 ∗ e e a e+a b e+b a+b e+a+b

a 0 ∗ e a a 0 ∗ e a 0 ∗ e 0 ∗ e a

e+a 0 ∗ e e+a 0 ∗ e e+a a+b e+b a+b e+b

b 0 ∗ e b b 0 ∗ e b 0 ∗ e 0 ∗ e b

e+b 0 ∗ e e+b a+b e+a 0 ∗ e e+b a+b e+a

a+b 0 ∗ e a+b a+b 0 ∗ a a+b 0 ∗ e 0 ∗ e a+b

e+a+b 0 ∗ e e+a+b b e+a a e+b a+b e

Problems for §9.2

For Problems 1 through 10: Given the few properties of the generators of a
ring, determine the array of products [[a2, a · b], [b · a, b2]] that would be used
to define the ring in Sage.

Hint: Use the associate law to fill in the missing information.

1 a · b = b, b · a = a
2 a · b = a, b · a = 0, b2 = b
3 a2 = b, a · b = a
4 a2 = a+ b, b · a = 0
5 a · b = a, b2 = a+ b

6 a · b = a+ b, b2 = a+ b
7 a · b = a, b2 = a
8 a · b = 2b, b · a = a, 3b = 0
9 a · b = b, b · a = 3a, 4a = 0
10 a2 = b, b2 = a, 2a = 2b = 0

11 If a2 = a + b + c, a · b = c, b · c = a, and c · a = a · c = b, determine b2,
c2, b · a, and c · b.

12 Prove that a ring with a cyclic additive group must be commutative.

13 Prove that for m a positive integer, and x and y elements of a ring, then
m(x+ y) = mx+my.

14 Prove that for m and n positive integers, and x an element of a ring, then
(m+ n)x = mx+ nx.

15 Prove that for m and n positive integers, and x an element of a ring, then
(mn)x = m(nx).

16 Prove that if n is an integer, and x is an element of a ring, then n(−x) =
−(nx).

17 Use the fundamental theorem of abelian groups (6.2) to show that every
finite abelian group has a basis.
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Interactive Problems

18 Use Sage to define a ring of order 2 that has no identity element. Show
both the addition table and the multiplication table.

19 Use Sage to find a non-commutative ring of order 8, for which the additive
group is isomorphic to Z∗

24, formed from the basis {a, b, c}, and for which
a · b = a, b · a = b, a · c = c, and c · a = a.

Hint: Using the associative law, determine what a2, b2, and c2 must be.
Then show that c · b must commute with a. Use trial and error to determine
b · c.

20 Use Sage to find a non-commutative ring of order 8, for which the additive
group is isomorphic to Z∗

24, formed from the basis {a, b, c}, and for which
a2 = a+ c, a · b = b+ c, b · a = b, and c · b = c.

21 Define in Sage a non-commutative ring of order 4.
Hint: By Problem 12, the additive group must by isomorphic to Z∗

8 .

9.3 Some Properties of Rings

In this section, we will explore some basic properties that are true for all
rings. In particular, we want to study in what circumstances a multiplicative
inverse will exist. We can use the finite rings created in Sage to help us
determine a pattern between zero divisors and invertible elements.

One of the simplest rings to study are the rings Zn for n > 1. We have
already learned how to define the additive structure in Sage with a ZGroup
command, and the multiplication can be defined using a ZStar command.
We actually can define both of these at once with the command

Z15 = ZRing(15)

This defines both the addition and multiplication operations at the same time.
The elements of Z15 are

Z15

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
We can perform simple operations in Z15 such as

Z15[9] + Z15[7]

1

Z15[9] * Z15[7]

3

Z15[9] / Z15[7]

12
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This last operation shows that we can take multiplicative inverses of some of
the elements. Even though multiplicative inverses are not guaranteed to exist
for rings, some elements may be invertible.

LEMMA 9.3

Let x be an element in a ring with identity. Then if x has a multiplicative
inverse, the inverse is unique. We denote the multiplicative inverse of x by
x−1.

PROOF: Suppose that y and z are two inverses of x. Then

y = y · e = y · (x · z) = (y · x) · z = e · z = z,

which is a contradiction.

PROPOSITION 9.4

If R is a unity ring, then the invertible elements of R form a group under
multiplication. This group is denoted R∗.

PROOF: Since the unity element is invertible, R∗ is non-empty. Also, if
x is invertible, then (x−1)−1 = x, so x−1 is also in R∗. Finally, if x and y are
both invertible, then since

(x · y) · (y−1 · x−1) = x · x−1 = e,

we see that x · y is invertible. The associative law comes from the associative
multiplication of the ring. So the set of invertible elements forms a group.

From this, we can find out when Zn is in fact a field. The first step is to
determine when Zn will have zero divisors.

PROPOSITION 9.5

For n > 1, the ring Zn has no zero divisors if, and only if, n is prime.

PROOF: First suppose that n is not prime. Then we can express n = ab,
where a and b are less then n. If e represents the identity element of Zn, we
would then have

(ae) · (be) = (ab)(e · e) = (ab)e = ne = 0.

But since a and b are both less than n, ae and be are both nonzero. Hence,
these would both be zero divisors in Zn.

Now suppose that n is prime, and that there are two nonzero elements ae
and be such that (ae) · (be) = 0. Then

(ae) · (be) = (ab)(e · e) = (ab)e = 0.
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This would imply that ab is a multiple of n. But since n is prime, we would
have to conclude that either a or b is a multiple of n. But this contradicts the
fact that both ae and be are nonzero. Thus, if n is prime, there are no zero
divisors in Zn.

Even if n is not prime, one of the observations that can be made while
studying Zn is that the zero divisors were precisely the nonzero elements that
did not have an inverse. This is true for many of the rings we have studied.

LEMMA 9.4

Let a, b, and c be elements of a ring. If a is nonzero, and is not a zero divisor,
and

a · b = a · c,
then b = c. Likewise, if

b · a = c · a
for a nonzero and not a zero divisor, then b = c. This is called the cancellation
law for multiplication.

PROOF: The tempting thing to do is to multiply both sides of the equation
by a−1. But the inverse of a may not exist, so we have to use the properties
of rings instead.

If a · b = a · c then we have

0 = a · b− a · c = a · (b − c).

But since a is not a zero-divisor and is nonzero, we must have that b− c = 0.
Hence b = c.

Likewise, if b · a = c · a, then

0 = b · a− c · a = (b− c) · a

and since a is nonzero and not a zero divisor, b− c = 0, and so b = c.

We are now ready to show a relationship between zero divisors and in-
vertable elements. Notice that in the ring Z, the element 2 is not invertible,
but neither is it a zero divisor. This example seems to break the pattern that
we have been observing, but also notice that Z is an infinite ring. Perhaps if
we consider only finite rings we will be able to prove a relationship between
zero divisors and invertible elements.

PROPOSITION 9.6

Let R be a finite ring. If b is a nonzero element of R which is not a zero
divisor, then R has a unity element and b has a multiplicative inverse in R.
Hence, every nonzero element in R is either a zero divisor or is invertible.
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PROOF: To utilize the fact that R is finite, let us construct a sequence of
powers of b:

{b1, b2, b3, b4, . . .}.
Since R is finite, two elements of this sequence must be equal, say bm = bn

for m < n. Using the law of cancellation, we have bm−1 = bn−1. Continuing
this way, we eventually get b = bn−m+1. (It is tempting to use Lemma 9.4
one more time to get e = bn−m, but unfortunately we have yet to prove that
R has a unity.)

If we now let a = n−m+ 1, we have that a > 1 and ba = b.
Next, let us show that ba−1 is a unity element in R. For any element x in

R, we have
x · ba = x · b,

and since b is nonzero and not a zero divisor, we can use the law of cancellation
to get

x · ba−1 = x.

Likewise, since ba · x = b · x, we have that ba−1 · x = x. Hence, there is a
unity element in R, namely ba−1.

Finally, we need to construct an inverse for the element b. If a = 2, then we
have just shown that b = e, and hence b is its own inverse. If a > 2, consider
the element ba−2. We have that

ba−2 · b = ba−1 = e and b · ba−2 = ba−1 = e.

So ba−2 is the multiplicative inverse of b.

COROLLARY 9.1

Every finite ring without zero divisors is a division ring.

PROOF: The trivial ring is already considered to be a division ring, so we
may assume that the ring is nontrivial. Then there exists a nonzero element
that is not a zero divisor, so by Proposition 9.6, the ring has a unity. Also by
Proposition 9.6, every nonzero element will have a multiplicative inverse, so
the ring is a division ring.

We finally can determine which Zn are fields.

COROLLARY 9.2

The ring Zn is a field if, and only if, n is prime.

PROOF: If n = 1, then the ring Zn = Z1 is the trivial ring, which we did
not consider to be a field. We may suppose that n > 1. If n is prime, then
by Proposition 9.5 Zn has no zero divisors, and so by Corollary 9.1 Zn is a
division ring. Since Zn is obviously commutative, this tells us that Zn is a
field.
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TABLE 9.6: The non-commutative ring T4

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

· 0 a b c

0 0 0 0 0

a 0 a a 0

b 0 b b 0

c 0 c c 0

TABLE 9.7: The smallest non-commutative unity ring T8

+ 0 e a b c d f g

0 0 e a b c d f g

e e 0 d f g a b c

a a d 0 c b e g f

b b f c 0 a g e d

c c g b a 0 f d e

d d a e g f 0 c b

f f b g e d c 0 a

g g c f d e b a 0

· 0 e a b c d f g

0 0 0 0 0 0 0 0 0

e 0 e a b c d f g

a 0 a a a 0 0 0 a

b 0 b b b 0 0 0 b

c 0 c c c 0 0 0 c

d 0 d 0 c c d f f

f 0 f c 0 c d f d

g 0 g b a c d f e

Now suppose that n > 1 and n is not prime. By Proposition 9.5, Zn has zero
divisors, which cannot exist in a field according to Proposition 9.2. Therefore
Zn is a field if, and only if, n is prime.

To conclude this chapter, let us find an example of each of the 11 different
types of rings that could exist. First we define the rings T4 in Table 9.6, and
we will rewrite the elements of T8 into a more compact form in Table 9.7.
Then every ring will fall into one of the categories given in Table 9.8.

Problems for §9.3

1 Show that the non-commutative ring T4 given by Table 9.6 has two ele-
ments r such that x · r = x for all x in the ring, yet has no element for which
r · x = x for all x in the ring.

2 Let x be an element of a commutative ring R that has an inverse x−1. Let
y be another element of R such that y2 = 0. Prove that x+ y has an inverse
in R.

3 Let x be an element of a commutative ring R that has an inverse x−1. Let
y be another element of R such that y3 = 0. Prove that x+ y has an inverse
in R.
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TABLE 9.8: Examples for the 11 possible types of rings

Type Name Example(s)

I The trivial ring Only one such ring, {0}.
II Fields R, Q, Zp with p prime.

III Skew fields H = the quaternions.

Commutative unity rings Z, polynomials.
IV w/o zero divisors, but that These rings are called

are not fields integral domains .

Non-commutative unity rings Integer quaternions:
V w/o zero divisors, but that a+ bi+ cj + dk,

are not skew fields with a, b, c, d ∈ Z.

VI
Commutative rings w/o Even integers,
unity and w/o zero divisors multiples of n, n > 1.

VII
Non-commutative rings w/o

Even quaternions.
unity and w/o zero divisors

VIII
Commutative unity rings Zn whenever n > 1
w/ zero divisors and n is not prime.

IX
Non-commutative unity rings

T8 in table 9.7.w/ zero divisors

X
Commutative rings w/o The subset {0, 2, 4, 6}
unity and w/ zero divisors of Z8.

XI
Non-commutative rings w/o

T4 in table 9.6.unity and w/ zero divisors
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4 Find a specific example of two elements x and y in a ring R such that
x · y = 0, but y · x is nonzero.

Hint: Which of the 11 types of rings would R have to be?

5 Consider the subset {0, 2, 4, 6, 8} of Z10. Form addition and multiplication
tables of this set. Is this a ring? Which of the 11 types of ring is this?

6 Let R be a ring for which x2 = x for all x in the ring. Prove that −x = x
for all elements x. Such rings are called Boolean rings.

7 Let R be a ring for which x2 = x for all x in the ring. Prove that the ring
R is commutative. (See Problem 6.)

8 Let R be a ring for which x3 = x for all x in the ring. Prove that 6x = 0
for all x in the ring.

9 An element a in a ring R is idempotent if a2 = a. Prove that a nontrivial
division ring must contain exactly two idempotent elements.

10 Let a be an idempotent element in a ring with unity. Show that e− a is
also an idempotent element. See Problem 9.

11 Show that if R is a commutative ring, and x and y are elements of R,
then

(x+ y)2 = x2 + 2xy + y2

and
(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

12 Let R be a commutative ring. Define the binomial coefficient
(
n

k

)

=
n · (n− 1) · (n− 2) · · · (n− k + 1)

1 · 2 · 3 · · ·k , (0 ≤ k ≤ n).

Using induction, prove the binomial theorem in R:

(x+ y)n = xn +

(
n

1

)

xn−1y +

(
n

2

)

xn−2y2 + · · ·+
(
n

n

)

yn.

13 Determine all elements of T8 in Table 9.7 that have a multiplicative in-
verse.

14 Determine all elements of the ring defined by Tables 9.3 and 9.4 in Chap-
ter 9 that have a multiplicative inverse.

15 An irreducible element p of a ring R is a non-invertible element for which
the only way for p = a · b is for either a or b to have a multiplicative inverse.
Determine the irreducible elements of the ring defined by Tables 9.3 and 9.4.

Hint: Cross out the rows and columns corresponding to the invertible ele-
ments. Which elements are no longer in the interior of the table?



326 Abstract Algebra: An Interactive Approach

16 Does T4 or T8 in Tables 9.6 and 9.7 have any irreducible elements? (See
Problem 15.)

17 A prime element p 6= 0 of a ring R is a non-invertible element such that,
whenever a · b is a multiple of p, either a or b is a multiple of p. (A multiple
of p would be any element that can be expressed as either x · p or p · x.) Find
a prime element of the ring T8 in Table 9.7.

Hint: To determine if p is prime, first find all the multiples of p. Then cross
out the rows and columns of the multiplication table corresponding to those
elements. If there are no more multiples of p remaining, then p is prime.

18 Find a prime element of the ring defined by Tables 9.3 and 9.4 that is
not irreducible. (See Problems 15 and 17.)

Interactive Problems

19 Define in Sage the smallest non-commutative ring, T4 defined by Ta-
ble 9.6. Use a and c and the generators.

20 Define in Sage the smallest non-commutative unity ring T8 defined by
Table 9.7.

Hint: The basis can be chosen to be e, a, and b.



Chapter 10

The Structure within Rings

Just as we can have subgroups, normal subgroup, quotient groups, and ho-
momorphisms between groups, we can have similar structures within rings.
In fact, ring theory runs almost parallel with the study of groups. In this
chapter we will demonstrate the similarities between the two theories. These
similarities are startling, since a “normal subring” is defined totally differently
than a normal subgroup.

10.1 Subrings

It is natural to ask whether we can have smaller rings within a larger ring,
just as we saw smaller groups inside of a larger group. This suggests the
following definition.

DEFINITION 10.1 Let R be a ring. A non-empty subset S is a subring
if S is a ring with respect to the addition (+) and multiplication (·) of R.

We have already seen some examples of subrings. For example, the set of
even integers is a ring contained in the ring of integers, which is contained in
the ring of rational numbers, which in turn is contained in the ring of real
numbers. The next proposition gives us a quick way to determine if a subset
is indeed a subring.

PROPOSITION 10.1

A non-empty subset S is a subring of a ring R if, and only if, whenever x and
y are in S, x− y and x · y are in S.

PROOF: Certainly if S is a subring, then x − y and x · y would be in S
whenever x and y are in S. So let us suppose that S is non-empty, and is
closed with respect to subtraction and multiplication. If x is any element in
S, then x−x = 0 is in S, so S contains an additive identity. Also, 0−x = −x
would also be in S, so S contains additive inverses of all of its elements. Then

327
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whenever x and y are in S, x − (−y) = x + y is in S, so S is closed with
respect to addition. The commutative and associative properties of addition,
as well as the associative and two distributive laws for multiplication, come
from the original ring R. Finally, S is closed with respect to multiplication,
so S is a subring.

Notice that from the definition every nontrivial ring R will contain at least
two subrings: the trivial ring {0} will be a subring, as well as the entire ring
R. These two subrings are called the trivial subrings.

Example 10.1

Consider the subset of real numbers of the form

S = {x+ y
√
2 | x, y ∈ Z}.

Determine whether or not this is a subring of R.
SOLUTION: Two typical elements of S are a = x1+y1

√
2 and b = x2+y2

√
2.

Then

a− b = (x1 − x2) + (y1 − y2)
√
2,

and

a · b = (x1x2 + 2y1y2) + (x1y2 + x2y1)
√
2.

Since all expressions in parenthesis are integers, these elements are in S. Thus,
by Proposition 10.1, S is a subring of R.

Computational Example 10.2

Here is the ring of order 8 we defined by Tables 9.3 and 9.4:

InitRing("a", "b")

DefineRing([4, 2],[[a, 0], [0, b]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

The set

S = [0*a, a, 2*a, -a]; S

[0*a, a, 2*a, -a]

can be seen to be a subring from the addition and multiplication tables in
Table 10.1.

One can see that S is closed with respect to both addition and multiplica-
tion. Furthermore, additive inverses exist for all elements, so S is also closed
with respect to subtraction. Thus, by Proposition 10.1, this is a subring.

Ironically, the subring S has a unity element,
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TABLE 10.1: Tables for a particular subring S

+ 0a a 2a −a
0a 0a a 2a −a
a a 2a −a 0a

2a 2a −a 0a a

−a −a 0a a 2a

· 0a a 2a −a
0a 0a 0a 0a 0a

a 0a a 2a −a
2a 0a 2a 0a 2a

−a 0 −a 2a a

FindUnity(S)

a

which is different than the unity of R. In general the existence of a subring’s
unity is totally independent of the unity of R.

Recall that the intersection of a number of subgroups was again a subgroup.
We could ask whether the same is true for subrings.

PROPOSITION 10.2

Given any non-empty collection of subrings of the group R, denoted by L, then
the intersection of all of the subrings in the collection

H∗ =
⋂

H∈L
H

is a subring of R.

PROOF: First of all, note that H∗ is not the empty set, since 0 is in each H
in the collection. We now can apply Proposition 10.1. Let x and y be two
elements in H∗. Then, for every H ∈ L, we have x, y ∈ H.

Since each H is a subring of R, we have x − y ∈ H and x · y ∈ H for all
H ∈ L. Therefore, x− y and x · y are in H∗, and so H∗ is a subring of R.

As with subgroups, we now have a general method of producing subrings
of a ring R. Let S be any subset of R. We can consider the collection L of
all subrings of R that contain the set S. This collection is non-empty since it
contains the subring R itself. So by Proposition 10.2,

[S] = H∗ =
⋂

H∈L
H

is a subring of R. By the way that the collection was defined, [S] contains S.
Actually, [S] is the smallest subring of R containing the subset S. For if H is
a subring of R that contains S, then H ∈ L, so that [S] ⊆ H.

DEFINITION 10.2 We call [S] the subring of R generated by the set S.
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Example 10.3

Find the subring of T8 from Table 9.7 generated by the element g.
SOLUTION: Clearly 0 is in the subring, and since g + g = 0, the set {0, g}
is closed under subtraction. But g2 = e, so this element is in the subring.
This causes g + e = c to be in the subring as well. The set {0, c, e, g} can
be seen to be closed under addition, multiplication, and additive inverses. So
[g] = {0, c, e, g}.

Just as in the case for the Group command, the command Ring finds [S]
for any set S in Sage. For example, we can find some subrings for the non-
commutative group of order 8,

InitRing("a", "b")

DefineRing([4, 2], [[a, b], [2*a, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

with the commands

Ring(0*a)

{0*a}
Ring(a)

{0*a, a, 2*a, -a}
Ring(2*a)

{0*a, 2*a}
Ring(2*a, b)

{0*a, b, 2*a, 2*a+b}

In this way, we can find all subrings of the ring R. It turns out that there
are six nontrivial subrings for this ring, corresponding to the six nontrivial
subgroups of Z∗

15.
We can also find all of the subrings for the infinite ring Z.

PROPOSITION 10.3

A subring of the ring of integers Z consists of all multiples of some non-
negative number n. This subring is denoted nZ.

PROOF: First of all, the trivial subring {0} can be considered the set of
all multiples of 0. Also, the entire ring Z could be considered all of the mul-
tiples of 1. Let S be a nontrivial subring, and let x 6= 0 be in S. Then −x
is also in S, so S must contain some positive integers. Let n be the smallest
positive integer contained in S. Certainly all multiples of n would be in S,
but suppose that some element m in S is not a multiple of n. Then by the
greatest common divisor theorem (0.4), there exist two integers u and v such
that

un+ vm = gcd(n,m).
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Since S is closed under addition, this implies that gcd(n,m) is in S. But
m is not a multiple of n, so gcd(n,m) < n. But this contradicts the fact that
n is the smallest positive integer in S. Thus, S consists exactly of all of the
multiples of n, and so S = nZ.

Although the subrings of Z are easily classified, this is not the case with
the ring of real numbers. Example 10.1 gives just one of countless subrings of
R:

S = {x+ y
√
2 | x, y ∈ Z}.

It is actually possible to define this subring in Sage. We can let e represent 1,
and a represent

√
2. These two elements are both of infinite additive order.

We can convey this to Sage by entering “0” for the order of each of the
elements. Then a2 = 2e, so the ring can be entered by the commands

InitRing("e", "a")

DefineRing([0, 0], [[e, a], [a, 2*e]])

ListRing()

’Ring is infinite.’

Of course we cannot list the elements, since there are an infinite number of
elements. But we can still do operations in this ring.

(e + 2*a) * (4*e - 3*a)

-8*e+5*a

This last statement demonstrates that

(1 + 2
√
2) · (4− 3

√
2) = −8 + 5

√
2.

Clearly, the subrings of the real numbers can be much more complicated
than the subrings of integers.

Problems for §10.1

For Problems 1 through 10: Use Proposition 10.1 to determine if the following
subsets are subrings of R.

1 {x+ y
√
5 | x, y ∈ Z}

2 {x+ y
√
2 | x, y ∈ Q}

3 {x | x ∈ R, x > 0}
4 {x/y | x is an even integer, y is an odd integer}
5 {x/(2y) | x, y ∈ Z, y ≥ 0}
6 {x+ y 3

√
2 | x, y ∈ Z}

7 {x+ y 3
√
2 + z 3

√
4 | x, y, z ∈ Z}

8 {x+ y
√
2 | y ∈ Z, x is an even integer}

9 {x+ y
√
2 | x, y ∈ Z, x + y is even}

10 {x+ y
√
3 | x, y ∈ Z, x + y is even}
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11 Let y be an element of a ring R. Let

A = {x ∈ R | x · y = 0}.

Show that A is a subring of R.

12 Let y be an element of a ring R. Let

B = {x · y | x ∈ R}.

Show that B is a subring of R.

13 Let R be a ring, and let

Z = {x ∈ R | x · y = y · x for all y ∈ R}.

Show that Z is a subring of R. This subring is called the center of R.

14 An element x of a ring R is called nilpotent if xn = 0 for some positive
number n. Show that the set of all nilpotent elements in a commutative ring
R forms an subring of R.

Hint: See Problem 12 of §9.3.

15 Show that 2Z ∪ 3Z is not a subring of Z. (The symbol ∪ denotes the
union of the two sets.)

16 Find all of the subrings of the commutative ring of order 8 defined by
Tables 9.3 and 9.4 in Chapter 9.

Hint: There are eight subgroups of the additive group Z∗
15. Find the eight

subgroups, and determine which subgroups are in fact subrings.

17 Find all of the subrings of T4 in Table 9.6.

18 Find all of the subrings of T8 in Table 9.7.
Hint: First find all 16 subgroups of the additive group, Z∗

24.

Interactive Problems

19 Find all of the subrings of the ring of order 8:

InitRing("a", "b")

DefineRing([4, 2], [[a, b], [0, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

20 Find all of the subrings of the ring of order 8:

InitRing("a", "b")

DefineRing([4, 2], [[2*a, 0], [2*a, 2*a]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}
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10.2 Quotient Rings and Ideals

When we studied group theory, one of the most important concepts we
discovered was being able to form a quotient group out of the cosets of certain
subgroups—namely the normal subgroups. A natural question is whether it
is possible to form quotient rings out of the cosets of a subring. In this section
we will explore the possibility of forming a quotient ring, and in the process
we will define the ideal , which roughly corresponds to a normal subgroup. We
begin by looking at some examples.

Motivating Example 10.4

Here is the non-commutative ring of order 8 from the last section.

InitRing("a", "b")

DefineRing([4, 2], [[a, b], [2*a, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

Can we form a quotient ring out of this ring, the way that we constructed a
quotient group?
SOLUTION: We found this ring has six nontrivial subrings.

S1 = {0, a, 2a, 3a}, S2 = {0, 2a}, S3 = {0, b},
S4 = {0, a+ b, 2a, 3a+ b}, S5 = {0, 2a+ b}, S6 = {0, 2a, b, 2a+ b}.

We would expect the additive structure of the quotient ring to be the additive
quotient group R/S. We can use Sage to find the cosets of S under the
operation of addition. Since left and right cosets are the same when working
with rings, we will simply use the Coset command.

S1 = Ring(a); S1

{0*a, a, 2*a, -a}
Q = Coset(R, S1); Q

{{0*a, a, 2*a, -a}, {b, a+b, 2*a+b, -a+b}}

We can add two cosets together using the following definition:

X + Y = {x+ y | x ∈ X and y ∈ Y }.

This gives us a natural way to add the elements of the quotient Q, which is
shown in Table 10.2, produced by the command AddTable(Q).

The natural way to define the product of two sets is the way we defined
such a product for groups:

X · Y = {x · y | x ∈ X and y ∈ Y }.
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TABLE 10.2: Addition table for the quotient ring Q

+ {0, a, 2a, 3a} {b, a+ b, 2a+ b, 3a+ b}
{0, a, 2a, 3a} {0, a, 2a, 3a} {b, a+ b, 2a+ b, 3a+ b}

{b, a+ b, 2a+ b, 3a+ b} {b, a+ b, 2a+ b, 3a+ b} {0, a, 2a, 3a}

Will such a product of two cosets in Q yield another coset?
Unfortunately no! The multiplication tables in Sage reveal black squares—

which indicate that the product of two cosets is not a coset. The problem lies
in the following two cosets:

Q1 = S1; Q1

{0*a, a, 2*a, -a}
Q2 = b + S1; Q2

{b, a+b, 2*a+b, -a+b}
Q1 * Q2

{0*a, b, a+b, 2*a, 2*a+b, -a+b}

which produces extra elements. To ensure that S acts as the zero element in
the product of cosets, we need to have S times any element of R to produce
only elements in S.

Suppose we found a subring S for which S ·x always was a subset of S. By
the same argument we would also require that x · S be a subset of S. Using
Sage, we can test the other subrings.

S2 = Ring(2*a); S2

{0*a, 2*a}
S2 * R

{0*a, 2*a}
R * S2

{0*a, 2*a}

We see that both R · S2 and S2 ·R are subsets of S2, so this ensures that the
additive identity of the quotient group {0, 2a} will behave as the zero element
in the product of cosets. The multiplication table for the quotient group is as
given by the commands

Q = Coset(R, S2); Q

{{0*a, 2*a}, {a, -a}, {b, 2*a+b}, {a+b, -a+b}}
MultTable(Q)

which produce Table 10.3.

This multiplication table is non-commutative, even though all of the sub-
rings of R are commutative. So this quotient is unlike any of the subrings of
R.
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TABLE 10.3: Multiplying cosets of the subring S2

· {0a, 2a} {a,−a} {b, 2a+ b} {a+ b,−a+ b}
{0a, 2a} {0a} {0a, 2a} {0a} {0a, 2a}
{a,−a} {0a, 2a} {a,−a} {b, 2a+ b} {a+ b,−a+ b}

{b, 2a+ b} {0a} {0a, 2a} {0a} {0, 2a}
{a+ b,−a+ b} {0a, 2a} {a,−a} {b, 2a+ b} {a+ b,−a+ b}

However, not every product yields a coset—sometimes it yields only a subset
of a coset. One way to rectify this slight blemish in our multiplication table
is to add the identity coset to each entry in the table. That is, instead of
defining the product of the cosets X and Y to be X ·Y , we define the product
of two cosets to be

X ∗ Y = X · Y + S.

The command

QuotientRing = true

creates a multiplication table using this new definition of the product of two
cosets. Thus, MultTable(Q) produces a table similar to Table 10.3, only
every {0a} is replaced by {0a, 2a}.

The key to getting the quotient ring to work lies in the fact that S2 ·R and
R · S2 were subsets of S2. Let us first define the special type of subring that
will allow quotient rings.

DEFINITION 10.3 A subring I of a ring R is called an ideal of R if
both I ·R and R · I are contained in the subring I.

We already observed that if a subring is not an ideal, then the quotient
ring cannot be defined. Let us now show that a quotient ring can be defined
provided that I is an ideal.

PROPOSITION 10.4

Let R be a ring, and let I be an ideal of R. Then the additive quotient group
R/I forms a ring, with the product of two cosets X and Y being X ∗ Y =
X · Y + I. This ring is called the quotient ring R/I.

PROOF: The quotient group R/I is an abelian group, so we need only to
check that the multiplication is closed, and that the associativity and two
distributive laws hold.

Let X and Y be two cosets of R/I. Let x be an element in X , and y an
element in Y . Then the product of the cosets X and Y is

X ∗ Y = X · Y + I = (x+ I) · (y + I) + I = x · y + I · y + x · I + I · I + I.
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Historical Diversion

Richard Dedekind (1831–1916)
Dedekind was born Julius Wilhelm

Richard Dedekind in Braunschweig, Ger-
many, but he never used his first two names
as an adult. He attending Collegium Car-
olinum in 1848, and then moved to the Uni-
versity of Göttingen in 1950. He attended
lectures under Carl Gauss, but he was
teaching mainly elementary-level mathe-
matics at the time. Dedekind is consid-
ered to be Gauss’ last student. Dedekind
received his doctorate in 1852.
Since the University of Berlin was con-

sidered the leading center for mathemat-
ics, Dedekind went to Berlin for two years.
There he met a contemporary, Bernhard Riemann, and together in 1854 they
were awarded the habilitation, which is the highest academic award a scholar
could achieve. Dedekind returned to Göttingen to teach as a Privatdozent,
and was the first at Göttingen to lecture on Galois theory. Dedekind under-
stood the importance of group theory for algebra and arithmetic.
In 1858, he began to teach at the Polytechnic in Zürich. While teaching

calculus for the first time, he came up with the idea we now call the Dedekind
cut. He associated every real number a with a set of rational numbers less
than a. Limits can then be expressed in terms of set theory. With this
idea Dedekind could show that there were no gaps, or discontinuities, on the
number line. This put the real number system on a firm foundation.
Dedekind also worked with infinite sets, defining two sets as “similar” if

there is a one-to-one and onto mapping between the two sets. This led to the
first precise definition of an infinite set. In 1872, he met Georg Cantor while
on holiday in Interlaken. Dedekind became a close ally of Cantor during his
philosophical battles with Kronecker. (See Historical Diversion on page 33.)
In 1879, Dedekind gereralized Kummer’s ideal numbers to formulate a def-

inition of an ideal. (See Historical Diversion on page 432.) His definition was
a subset of a set of numbers, all of which were algebraic integers , that is,
they satisfied a polynomial equation with integer coefficients, and a leading
coefficient of 1. Dedekind’s definition of an ideal would later be generalized
by Emmy Noether. (See Historical Diversion on page 306.)
Dedekind is also known for the Dedekind domain, which is an integral do-

main for which every non-trivial ideal factors into a product of prime ideals.
Kummer showed that Z[ωn] has this property for all n, but Dedekind gener-
alized this for all domains of algebraic integers.

Image source: Wikimedia Commons
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Because I is an ideal, I · y, x · I, and I · I are all subsets of I. Hence, the
sum I · y + x · I + I · I + I will be a subset of I. But since the last term of
this expression is I, I · y + x · I + I · I + I contains the ideal I, so this sum
equals I. Thus,

(x + I) ∗ (y + I) = X ∗ Y = X · Y + I = x · y + I,

which is a coset of R/I.
Now suppose that X , Y , and Z are three cosets of R/I with x, y, and z

being representative elements, respectively. Then

(X ∗ Y ) ∗ Z = ((x + I) ∗ (y + I)) ∗ (z + I)

= (x · y + I) ∗ (z + I)

= ((x · y) · z + I)

= (x · (y · z) + I)

= (x+ I) ∗ (y · z + I)

= (x+ I) ∗ ((y + I) ∗ (z + I))

= X ∗ (Y ∗ Z).

So multiplication is associative. Also,

X ∗ (Y + Z) = (x+ I) ∗ (y + z + I)

= (x · (y + z) + I)

= x · y + x · z + I

= (x · y + I) + (x · z + I)

= X ∗ Y +X ∗ Z,

and

(X + Y ) ∗ Z = (x+ y + I) ∗ (z + I)

= ((x + y) · z + I)

= x · z + y · z + I

= (x · z + I) + (y · z + I)

= X ∗ Z + Y ∗ Z.

Thus, the two distributive laws hold, so R/I is a ring.

This shows that the ideals play the same role for rings that normal sub-
groups did for groups, namely that subsets with an additional property allow
for quotients to be defined.

Example 10.5

Find the ideals of the ring Z, and determine the quotient rings.
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SOLUTION: By Proposition 10.3, all subrings are of the form S = nZ for
some n. Yet any multiple of n times an integer yields a multiple of n, so
S · Z = Z · S = S. Therefore, every subring of Z is an ideal.

The cosets of the quotient ring Z/(nZ) can be expressed in the form

a+ nZ,

where a = 0, 1, 2, . . . n− 1. Clearly the quotient ring behaves exactly like the
ring Zn. We say that the quotient ring is isomorphic to Zn.

In contrast, let us consider a ring like the rational numbers Q. Even though
there are a host of subrings of Q, the only ideals are the trivial subrings. This
can be generalized by the following proposition.

PROPOSITION 10.5

Any field or skew field can only have trivial ideals.

PROOF: Let K be a field or skew field, and suppose that there is a non-
trivial ideal I of K. Then there is a nonzero element x in I, and hence x−1

exists in K. Thus
e = x · x−1 ∈ I ·K ⊆ I.

So the multiplicative identity e is contained in I. But then,

K = e ·K ⊆ I ·K ⊆ I.

Hence, I = K, so the only ideals of K are the trivial ideals.

We have already observed that the intersection of two subrings is again a
subring. The natural question is whether the intersection of two ideals gives
an ideal. This will help us to find all of the ideals of a given ring.

PROPOSITION 10.6

If L is a non-empty collection of ideals of a ring R, then the intersection of
all of these ideals

I∗ =
⋂

I∈L
I

is an ideal of R.

PROOF: Since I∗ is an intersection of subrings of R, by Proposition 10.2
I∗ is a subring of R. Thus, we only need to check that I∗ · R and R · I∗ are
contained in I∗.

Suppose that x is an element of I∗. Then x is in each I ∈ L, and so x · R
and R · x are subsets of each I in the collection. Thus, x · R and R · x will
both be subsets of I∗. Since this result is true for every x in I∗, we have that
I∗ ·R and R · I∗ are both subsets of I∗. Therefore, I∗ is an ideal.
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We can now define the smallest ideal of R that contains a subset S. We
proceed as we did for subrings, and consider the collection L of all ideals of
R containing S. Then the smallest ideal of R containing S would be

〈S〉 =
⋂

I∈L
I.

We call 〈S〉 the ideal generated by S. Notice the distinction between this
notation and the notation [S] of the subring generated by S. If S contains only
one element, say a, we will use the notation 〈a〉 rather than the cumbersome
〈{a}〉 to denote the ideal generated by a.

This proposition allows us to quickly find all ideals of a ring.

Computational Example 10.6

Find the ideals in the non-commutative ring R of order 8,

InitRing("a", "b")

DefineRing([4, 2], [[a, b], [2*a, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

SOLUTION: We can have Sage find 〈S〉 using the command Ideal(R, S) for
different subsets S. For example, when S = {a},

Ideal(R, a)

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

we find that this command produces the whole ring, so a cannot be contained
in any nontrivial ideal. Likewise, −a, a + b, and −a + b cannot be in a
nontrivial ideal. The three remaining nonzero elements, 2a, b, and 2a + b,
generate different ideals.

Ideal(R, 2*a)

{0*a, 2*a}
Ideal(R, b)

{0*a, b, 2*a, 2*a+b}
Ideal(R, 2*a+b)

{0*a, 2*a+b}

These three ideals will be denoted by 〈2a〉, 〈b〉, and 〈2a+ b〉. It is clear that
any ideal containing two out of three of these elements must contain b, and
therefore must be 〈b〉. Hence, there are exactly five ideals in this ring: the
two trivial ideals that can be denoted 〈0〉 and 〈a〉, and the three ideals 〈2a〉,
〈b〉, and 〈2a+ b〉.

Notice that all five ideals can be generated with only one element. We will
give a special name for these ideals.
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DEFINITION 10.4 An ideal of R that is generated by only one element
of R is called a principal ideal . If all of the ideals of R are principal ideals,
then the ring is called a principal ideal ring.

The ring of integers Z is a principal ideal ring, since all ideals (in fact all
subrings) are of the form nZ, which is generated by the single element n.
Since Z is also an integral domain, we will combine the two terms and call Z
a principal ideal domain, or PID. We will talk more about PIDs in §12.3.

Problems for §10.2

1 If X and Y are ideals of a ring, show that the sum of X and Y ,

X + Y = {x+ y | x ∈ X and y ∈ Y }

is an ideal.

2 In the ring of integers, find a positive integer n such that

〈n〉 = 〈12〉+ 〈16〉.

(See Problem 1.)

3 If X and Y are ideals of a ring, show that the product of X and Y ,

X · Y = {x1 · y1 + x2 · y2 + · · ·+ xn · yn | xi ∈ X and yi ∈ Y, n > 0},

is an ideal.

4 In the ring of integers, find a positive integer n such that

〈n〉 = 〈12〉 · 〈16〉.

(See Problem 3.)

5 Let X and Y be ideals of a ring. Prove that X · Y ⊆ X ∩ Y . (See
Problem 3.)

6 Let R be a ring and let p be a fixed prime. Define Ip to be the set of
elements for which the additive order of the element is a power of p. Show
that Ip is an ideal.

7 Find all of the ideals of the commutative ring of order 8 defined by Ta-
bles 9.3 and 9.4 in Chapter 9. (See Problem 16.)

8 Find all of the ideals of T4 in Table 9.6.

9 Find all of the ideals of T8 in Table 9.7. (See Problem 18 from §10.1.)
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10 Verify that {0, c} is an ideal of the ring T4 in Table 9.6. Construct
addition and multiplication tables for the quotient ring T4/{0, c}.

11 Verify that {0, 2a} is an ideal of the commutative ring R of order 8
that is defined by Tables 9.3 and 9.4 in Chapter 9. Construct addition and
multiplication tables for the quotient ring R/{0, 2a}.

12 Verify that {0, b} is an ideal of the commutative ring R of order 8 that
is defined by Tables 9.3 and 9.4 in Chapter 9. Construct addition and multi-
plication tables for the quotient ring R/{0, b}.

13 A left ideal I of a ring R is a subring for which r ·x ∈ I when r ∈ R, and
x ∈ I. Find a left ideal of T8 that is not a standard ideal.

14 Verify that {0, c} is an ideal of the ring T8 in Table 9.7. Construct
addition and multiplication tables for the quotient ring T8/{0, c}.

15 Let A = 〈6〉 be an ideal of the ring Z. Construct addition and multi-
plication tables of the quotient ring Z/〈6〉. What does this ring remind you
of?

16 Let A = 〈2〉 and B = 〈6〉 be two ideals of the ring Z. Construct addition
and multiplication tables of the quotient ring A/B.

17 If R is a commutative ring and y is a fixed element of R, prove that the
set

A = {x ∈ R | x · y = 0}
is an ideal in R. (See Problem 11 in §10.1.)

18 If R is a commutative ring and y is a fixed element of R, prove that the
set

B = {x · y | x ∈ R}
is an ideal of R.

Hint: Note that if there is no multiplicative identity, y may not be in I.

19 An element x of a ring R is called nilpotent if xn = 0 for some positive
number n. Show that the set of all nilpotent elements in a commutative ring
R forms an ideal of R. See Problem 14 of §10.1.

20 Let R be a unity ring, and I an ideal of R. Show that R/I is a unity
ring.

Interactive Problems

21 Which of the subrings of the ring of order 8 found in Problem 19 of §10.1
are ideals? The ring is given as follows:
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InitRing("a", "b")

DefineRing([4, 2], [[a, b], [0, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

22 Which of the subrings of the ring of order 8 found in Problem 20 of §10.1
are ideals? The ring is given as follows:

InitRing("a", "b")

DefineRing([4, 2], [[2*a, 0], [2*a, 2*a]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

10.3 Ring Isomorphisms

As we work with different rings, it is natural to ask whether we can consider
two rings to be “equivalent” if the elements of one ring can be renamed to
form the other ring. We have already seen that the quotient ring Z/(nZ) was
essentially the same ring as Zn. We will proceed the same way we defined
isomorphisms with groups.

DEFINITION 10.5 Let A and B be two rings. A ring isomorphism from
A to B is a one-to-one mapping f : A→ B such that

f(x+ y) = f(x) + f(y) and

f(x · y) = f(x) · f(y)

for all x, y,∈ A. If there exists a ring isomorphism from A to B that is
surjective, then we say that the rings A and B are isomorphic, denoted by
A ≈ B.

Example 10.7

Find an isomorphism from the quotient ring Z/(nZ) to Zn.
SOLUTION: The natural mapping would be as follows:

f(a+ nZ) = a mod n,

which we can verify is well defined by noting that if a + nZ = b + nZ, then
a − b is a multiple of n, so a mod n = b mod n. Also, f is an injective and
surjective function from Z/(nZ) to Zn. Furthermore, f(a+ b) = f(a) + f(b),
and f(a · b) = f(a) · f(b). So we have that Z/(nZ) ≈ Zn.
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Computational Example 10.8

Two very similar-looking rings of order 10 can be defined in Sage as follows:

InitRing("a")

DefineRing([10], [[2*a]])

CheckRing()

This is a ring.

A = ListRing(); A

{0*a, a, 2*a, 3*a, 4*a, 5*a, 6*a, 7*a, 8*a, -a}
InitRing("b")

DefineRing([10], [[6*b]])

CheckRing()

This is a ring.

B = ListRing(); B

{0*b, a, 2*b, 3*b, 4*b, 5*b, 6*b, 7*b, 8*b, -b}

Show that these rings are isomorphic.

SOLUTION: The addition and multiplication tables of A are shown in Ta-
ble 10.4. Note that the multiplicative structure is different than Z10, since
there is no multiplicative identity. The addition table for B is similar, but the
multiplication table is shown in Table 10.5.

In spite of the similarities between the two tables, they are not the same
“color pattern”. If they are isomorphic, it is not immediately clear what the
isomorphism should be.

Since a is an additive generator of A, we know that it should map to one of
the additive generators of B, {b, 3b, 7b, 9b}. In Sage, the command RingHomo

defines a ring homomorphism, similar to the way that Homomorph defined a
group homomorphism. So let us see if we can create an isomorphism.

TABLE 10.4: Addition and multiplication in the ring A of order 10

+ 0a a 2a 3a 4a 5a 6a 7a 8a −a
0a 0a a 2a 3a 4a 5a 6a 7a 8a −a
a a 2a 3a 4a 5a 6a 7a 8a −a 0a

2a 2a 3a 4a 5a 6a 7a 8a −a 0a a

3a 3a 4a 5a 6a 7a 8a −a 0a a 2a

4a 4a 5a 6a 7a 8a −a 0a a 2a 3a

5a 5a 6a 7a 8a −a 0a a 2a 3a 4a

6a 6a 7a 8a −a 0a a 2a 3a 4a 5a

7a 7a 8a −a 0a a 2a 3a 4a 5a 6a

8a 8a −a 0a a 2a 3a 4a 5a 6a 7a

−a −a 0a a 2a 3a 4a 5a 6a 7a 8a

· 0a a 2a 3a 4a 5a 6a 7a 8a −a
0a 0a 0a 0 0a 0a 0a 0a 0a 0a 0a

a 0a 2a 4a 6a 8a 0a 2a 4a 6a 8a

2a 0a 4a 8a 2a 6a 0a 4a 8a 2a 6a

3a 0a 6a 2a 8a 4a 0a 6a 2a 8a 4a

4a 0a 8a 6a 4a 2a 0a 8a 6a 4a 2a

5a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a

6a 0a 2a 4a 6a 8a 0a 2a 4a 6a 8a

7a 0a 4a 8a 2a 6a 0a 4a 8a 2a 6a

8a 0a 6a 2a 8a 4a 0a 6a 2a 8a 4a

−a 0a 8a 6a 4a 2a 0a 8a 6a 4a 2a
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TABLE 10.5: The ring B

· 0b b 2b 3b 4b 5b 6b 7b 8b −b
0b 0b 0b 0 0b 0b 0b 0b 0b 0b 0b

b 0b 6b 2b 8b 4b 0b 6b 2b 8b 4b

2b 0b 2b 4b 6b 8b 0b 2b 4b 6b 8b

3b 0b 8b 6b 4b 2b 0b 8b 6b 4b 2b

4b 0b 4b 8b 2b 6b 0b 4b 8b 2b 6b

5b 0b 0b 0b 0b 0b 0b 0b 0b 0b 0b

6b 0b 6b 2b 8b 4b 0b 6b 2b 8b 4b

7b 0b 2b 4b 6b 8b 0b 2b 4b 6b 8b

8b 0b 8b 6b 4b 2b 0b 8b 6b 4b 2b

−b 0b 4b 8b 2b 6b 0b 4b 8b 2b 6b

F = RingHomo(A, B)

HomoDef(F, a, b)

FinishHomo(F)

b + b is not 6*b

’Homomorphism failed’

F = RingHomo(A, B)

HomoDef(F, a, 3*b)

FinishHomo(F)

3*b + 3*b is not 4*b

’Homomorphism failed’

F = RingHomo(A, B)

HomoDef(F, a, 7*b)

FinishHomo(F)

’Homomorphism defined’

Kernel(F)

{0*a}

Because the last mapping has a kernel of the additive identity, we know from
group homomorphisms that this mapping must be one-to-one. So we have
found an isomorphism from A to B, but it was far from obvious.

In this example, we found an isomorphism, but we had to use trial and
error. It is not at all clear why we would have to have a map to 7b.

We would like a way to generalize this example so we can determine if two
similar rings are isomorphic.

One way to help find an isomorphism between A and B is to show that
both of these are isomorphic to a subring of the Zn for some n. For example,
consider 2Z20, the even elements of Z20.
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TABLE 10.6: Multiplication for the ring 2Z20

· 0 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0

2 0 4 8 12 16 0 4 8 12 16

4 0 8 16 4 12 0 8 16 4 12

6 0 12 4 16 8 0 12 4 16 8

8 0 16 12 8 4 0 16 12 8 4

10 0 0 0 0 0 0 0 0 0 0

12 0 4 8 12 16 0 4 8 12 16

14 0 8 16 4 12 0 8 16 4 12

16 0 12 4 16 8 0 12 4 16 8

18 0 16 12 8 4 0 16 12 8 4

Z20 = ZRing(20); Z20

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19}
R = Ring(Z20[2]); R

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18}
MultTable(R)

which produces Table 10.6. One can see that the color patterns for A and R
are the same, so that A ≈ 2Z20.

We can now generalize this example as follows.

PROPOSITION 10.7

Let R be a finite ring whose additive structure is a cyclic group of order n.
Let x be a generator of the additive group. Then x2 = kx for some positive
integer k ≤ n, and

A ≈ kZkn.

PROOF: If x2 = 0, we can let k = n, so that k will be positive and
kx = 0 = x2. If x2 is not zero, then since x generates the additive group,
there is a k such that x2 = kx with 0 < k < n.

Now the natural mapping is one that sends f(a · x) = k · a mod (kn). This
is obviously one-to-one and onto, since the value of a ranges from 0 to n− 1.
To check that this is an isomorphism, note that

f(a · x+ b · x) = f((a+ b) · x) = k · (a+ b) mod (kn)

= (k · a mod (kn) + k · b mod (kn)) mod (kn)

= f(a · x) + f(b · x).
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Also,

f((a · x) · (b · x)) = f(a · b · x2)
= f(a · b · k · x)
= k · a · b · k mod (kn)

= ((k · a mod (kn)) · (k · b mod (kn))) mod (kn)

= f(a · x) · f(b · x).

Therefore, f is an isomorphism, and R ≈ kZkn.

This proposition shows not only that A ≈ 2Z20, but also that B ≈ 6A60,
since b2 = 6b in this ring.

DEFINITION 10.6 A cyclic ring is a ring whose additive group is cyclic.

Note that this definition of cyclic rings also includes the infinite rings Z and
its subrings kZ.

In order to prove that in fact A ≈ B, we will need a few lemmas about
number theory. Once these are proven, we will be able to determine all non-
isomorphic rings of order 10.

LEMMA 10.1

Let d be a positive divisor of n, and let f be the largest divisor of d that is
coprime to (n/d). Then if q is coprime to both f and (n/d), then q is coprime
to n.

PROOF: Suppose that gcd(q, n) is not 1. Then there is a prime number
p that divides neither f nor (n/d), yet divides n. Thus, p must divide d.

Now f · p will be coprime to (n/d) since both f and p are. Also, since f is
not a multiple of p while d is, f · p will be a divisor of d. But we defined f
to be the largest factor of d coprime to (n/d). This contradiction shows that
gcd(q, n) = 1.

LEMMA 10.2

Given two positive numbers x and y, there exist u and v in Z such that

ux+ vy = gcd(x, y),

where u is coprime to y.

PROOF: The greatest common divisor theorem (0.4) would give us values
for u and v, but there would be no way to guarantee that u would be coprime
to y.
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Let k = gcd(x, y). Then (x/k) and (y/k) are coprime, so (x/k) has an
multiplicative inverse in Z(y/k), say n. That is,

x

k
· n ≡ 1

(

mod
y

k

)

.

Let f be the largest divisor of k that is coprime to (y/k). By the Chinese
remainder theorem (0.7), there is a number u such that

u ≡ n
(

mod
y

k

)

and
u ≡ 1 (mod f).

Since n is coprime to (y/k), u is coprime to (y/k). Also, u is coprime to f ,
so by Lemma 10.1 u is coprime to y. Also,

u · x
k
≡ 1

(

mod
y

k

)

so there is a v such that u · xk + v · yk = 1. Multiplying both sides by k gives us

u · x+ v · y = k = gcd(x, y).

THEOREM 10.1: The Cyclic Ring Theorem

If x and n are positive integers, then

xZx·n ≈ kZk·n,

where k = gcd(x, n).

PROOF: Since k = gcd(x, n) by Lemma 10.2 we can find integers u and
v such that u · x + v · n = k, where u is coprime to n. We now define a
mapping f from kZkn to xZxn as follows:

f(k · w mod (kn)) = uxw mod (xn).

Note that this is well defined, since if k ·w is equivalent to k ·p (mod kn) then

w ≡ p (mod n) =⇒ xw ≡ xp (mod xn)

=⇒ uxw ≡ uxp (mod xn).

Next we need to show that f is a homomorphism from kZkn to xZxn. If
a ≡ k · w (mod kn) and b ≡ k · z (mod kn), then

f(a+ b) = f((k · w + k · z) mod (kn)) = u · (x · w + x · z) mod (xn)

= (u · x · w + u · x · z) mod (xn) = f(a) + f(b).
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f(a · b) = f((k · w · k · z) mod (kn)) = (u · x · w · k · z) mod (xn)

= (u · x · w · (u · x+ v · n) · z) mod (xn)

= (u · x · w · u · x · z + u · x · w · v · n · z) mod (xn)

= ((u · x · w) · (u · x · z)) mod (xn) = f(a) · f(b).

So f is indeed a homomorphism from kZkn to xZxn.
Since u is coprime to n, u has an inverse, u−1 (mod n). Then we see that f

is onto, since any element x · a (mod xn) in xZxn can be obtained by taking

f(k · a · u−1 mod (kn)) = (u · x · a · u−1) mod (xn) = x · a mod (xn).

Finally, both xZxn and kZkn contain n elements, so by the pigeonhole
principle f must be a one-to-one function. Thus, f is an isomorphism, and
xZxn ≈ kZkn.

Because 2 = gcd(6, 10), we see that A ≈ 2Z20 is isomorphic to B ≈ 6Z60.
In fact, since the only rings of order 10 are cyclic rings, there are four

possible non-isomorphic rings of order 10:

Z10, 2Z20, 5Z50, and 10Z100.

It is easy to see that these rings are all distinct by looking at the multiplication
tables.

COROLLARY 10.1

The number of non-isomorphic cyclic rings of order n is precisely the number
of divisors of n (including 1 and n).

PROOF: By Proposition 10.7 every cyclic ring of order n is isomorphic to
kZkn for some value of k. By the cyclic ring theorem, we see that this is
isomorphic to dZdn, where d = gcd(k, n). Hence d is a divisor of n. We need
to show that two different rings of this form are non-isomorphic. Consider
the rings A = dZdn and B = fZfn, where d and f are different divisors of
n. Perhaps the easiest way to show that these are different is to count the
number of elements in A and B that can appear in the multiplication tables.
The elements that can appear in the table for A are

d2, 2d2, 3d2, . . . , nd = 0

while the elements appearing in the multiplication table of B are

f2, 2f2, 3f2, . . . , nf = 0.

Thus, there are n/d such elements of A, and n/f elements of B. Since d and
f are different, we see that the rings A and B are not isomorphic. Therefore,
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there is a one-to-one correspondence between the factors of n and the cyclic
rings of order n.

Although this corollary seems to be a big help in finding all finite rings, there
are, in fact, many non-cyclic rings. For example, there are 8 non-cyclic rings
of order 4, which when combined with the 3 cyclic rings from Corollary 10.1
gives a total of 11 rings of order 4. There are 52 rings of order 8 (4 cyclic, 20
with additive group Z∗

15, and 28 with an additive group Z∗
24).

Table 10.7 shows the number of rings of a given order. There are at least
18,590 known rings of order 32, but it has not been proven that these are all
of them.

In Sage, we can load any of the rings of order 15 or less. The command
NumberSmallRings will produce the number of rings of a given order, up to
order 15.

NumberSmallRings(8)

52

Now we can load any of these 52 rings.

R = SmallRing(8, 51); R

{0*a, a, b, a+b, c, a+c, b+c, a+b+c}
MultTable(R)

The multiplication table for this ring is shown in Table 10.8.

Problems for §10.3

1 Suppose φ is an isomorphism between R and S. Show that if S is commu-
tative, then so is R.

2 Suppose φ is a surjective isomorphism between R and S. Show that if S
has a unity element, then so does R.

3 Suppose φ is an isomorphism between R and S. Show that if R has a zero
divisor, then so does S.

TABLE 10.7: Number of rings of order n

n rings n rings n rings n rings
1 1 9 11 17 2 25 11
2 2 10 4 18 22 26 4
3 2 11 2 19 2 27 59
4 11 12 22 20 22 28 22
5 2 13 2 21 4 29 2
6 4 14 4 22 4 30 8
7 2 15 4 23 2 31 2
8 52 16 390 24 104 32 ???
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TABLE 10.8: Ring number 51 of order 8

· 0 · a a b a+b c a+c b+c a+b+c

0 · a 0 · a 0 · a 0 · a 0 · a 0 · a 0 · a 0 · a 0 · a
a 0 · a a b a+b c a+c b+c a+b+c

b 0 · a b b+c c b 0 · a c b+c

a+b 0 · a a+b c a+b+c b+c a+c b a

c 0 · a c b b+c c 0 · a b+c b

a+c 0 · a a+c 0 · a a+c 0 · a a+c 0 · a a+c

b+c 0 · a b+c c b b+c 0 · a b c

a+b+c 0 · a a+b+c b+c a b a+c c a+b

4 Suppose φ is an isomorphism between R and S. Show that if R has a
non-zero idempotent element, then so does S. See Problem 9 of §9.3.

5 Find a subring of the ring T8 in Table 9.7 that is isomorphic to the ring
T4 in Table 9.6.

6 Let R be a non-commutative ring. Define the operation x∗y = y ·x. Show
that the set R forms a ring using the operations ∗ and + instead of · and +.
This new ring is called the opposite ring of R, and is denoted Rop.

7 Show that the ring T4 in Table 9.6 is not isomorphic to its opposite. (See
Problem 6.)

8 Show that the quotient ring R/S2 in Table 10.3 is isomorphic to T op
4 . (See

Problem 6.)

9 Show that the ring T8 in Table 9.7 is isomorphic to its opposite. (See
Problem 6.)

Hint: First construct the multiplication table for T op
8 , then determine how

to rearrange the elements of T8 so that the patterns match.

10 Prove that a non-commutative ring of order 4 or less must be isomorphic
to either T4 from Table 9.6 or T op

4 . (See Problem 6.)
Hint: Use Problem 12 from §9.2.

11 Is the ring 2Z isomorphic to the ring 3Z? Why or why not?

12 Let A = 〈2〉 and B = 〈8〉 be two ideals of the ring Z. Show that the
group A/B is isomorphic to Z4, but the ring A/B is not isomorphic to the
ring Z4.

13 Is the ring R isomorphic the the ring of complex numbers C?
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For Problems 14 through 17, find all non-isomorphic rings of the following
order.

14 6 15 21 16 30 17 210

18 Let R be a ring with unity e, and let S be the subring [e] generated from
the unity element. Show that S is isomorphic to either Z or Zn for some n.

Interactive Problems

19 Load the rings Z12 and Z6 into Sage simultaneously with the commands:

Z12 = ZRing(12)

Z6 = ZRing(6)

Show that I = {0, 6} is an ideal of Z12, and display addition and multiplication
tables of the quotient ring Z12/I, showing that Z12/I is isomorphic to Z6.

20 Use Sage to find the eight non-isomorphic non-cyclic rings of order 4.
Hint: The additive group must be isomorphic to Z∗

8 , so the ring is defined
by:

InitRing(" a", " b")

DefineRing([2, 2], [[???, ???], [???, ???]])

CheckRing()

Fill in each ??? with a member of {0, a, b, a + b} to see whether a ring is
formed. Is there a faster way than trying all 44 = 256 combinations?

21 Use Sage to display the multiplication tables of all rings of order 6.

10.4 Homomorphisms and Kernels

We found in Chapter 4 that mappings between two groups proved to be
an invaluable tool. Group homomorphisms allowed us to prove the three
isomorphism theorems, and eventually led us to the group of automorphisms
of a group. In this section we will carry over most of these results to rings.
We will find that all three of the isomorphism theorems have a corresponding
version for rings and ideals. The automorphisms of a ring or field will later
lead to Galois theory, which we will study in a later chapter.

Since we defined a ring isomorphism in a similar fashion as group isomor-
phisms, we naturally will define ring homomorphisms by mimicking group
homomorphisms.
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DEFINITION 10.7 If A and B are two rings, then a mapping f : A→ B
such that

f(x+ y) = f(x) + f(y), and

f(x · y) = f(x) · f(y),

for all x and y in A is called a ring homomorphism.

Notice that a ring homomorphism preserves both of the ring operations. In
particular, a ring homomorphism will also be a group homomorphism from
the additive group of A to the additive group of B. Thus, we can immedi-
ately apply the results of group homomorphisms to see two properties of ring
homomorphisms.

If f is a ring homomorphism from A to B, then

f(0) = 0 and

f(−x) = −f(x) for all x ∈ A.

Any isomorphism is certainly a homomorphism. But let us see how to define
a homomorphism between two non-isomorphic rings.

Example 10.9

Let n be a positive integer. Find a homomorphism between Z and Zn.
SOLUTION: The natural mapping is

f(x) = x mod n.

Proposition 0.2 can be restated as f(x + y) = f(x) + f(y), and f(x · y) =
f(x) · f(y). Thus, this is a homomorphism.

Computational Example 10.10

Use Sage to find a homomorphism from Z3 to Z6.
SOLUTION: First we define Z3 and Z6 simultaneously.

Z3 = ZRing(3); Z3

{0, 1, 2}
Z6 = ZRing(6); Z6

{0, 1, 2, 3, 4, 5}
a = Z3[1]

b = Z6[1]

Here, we defined a and b to be the additive generators of Z3 and Z6. The
homomorphism is determined completely by the value of f(1). A natural
choice would be to let f(1) = 2 mod 6. To define a ring homomorphism, we
use the command RingHomo instead of Homomorph.
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F = RingHomo(Z3, Z6)

HomoDef(F, 1, 2)

Even though 1 and 2 are technically elements of Z, not Z3 or Z6, Sage makes
the natural translations, knowing the arguments are expected to be in the
rings Z3 and Z6. We can now use the command FinishHomo to check if F is
a ring homomorphism.

FinishHomo(F)

2 * 2 is not 2

’Homomorphism failed’

Sage shows that this would not produce a homomorphism. One way to correct
this problem would be to send f(a) to the zero element of Z6.

F = RingHomo(Z3, Z6)

HomoDef(F, 1, 0)

FinishHomo(F)

’Homomorphism defined’

Although this works, this is a rather trivial example, since it sends all elements
to 0. After some experimenting, we can find a more interesting example.

F = RingHomo(Z3, Z6)

HomoDef(F, 1, 4)

FinishHomo(F)

’Homomorphism defined’

Thus, f(1) = 4, so f(2) = 2, and of course f(0) = 0.

There will always be at least one homomorphism between two rings, the
one which sends all elements to zero.

DEFINITION 10.8 If A and B are any two rings, then the mapping
f : A→ B

f(x) = 0 for all x ∈ A

is called the zero homomorphism from A to B.

As with groups, we define f(S), where S is a set of elements in the domain
of f , to be the set of all values f(x), where x is in S. We can also define
the inverse image of an element y to be f−1(y), the set of elements such that
f(x) = y. In fact, we can define the inverse image of a set of elements in the
same way: f−1(T ) is the set of elements such that f(x) is in T . We can find
images and inverse images of ring homomorphisms the same way we did for
group homomorphisms. Here is a new homomorphism going from Z6 to Z3.
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G = RingHomo(Z6, Z3)

HomoDef(G, 1, 1)

FinishHomo(G)

’Homomorphism defined’

G(4)

1

Image(G, Z6)

{0, 1, 2}
HomoInv(G, 2)

{2, 5}
HomoInv(G, [0, 1])

{0, 1, 3, 4}

We can ask whether the image or inverse image of a subring will again be a
subring. This is actually very easy to prove, as seen in the next proposition.

PROPOSITION 10.8

Suppose f is a homomorphism from the ring A to the ring B. Then if S is a
subring of A, f(S) is a subring of B. Likewise, if T is a subring of B, then
f−1(T ) will be a subring of A.

PROOF: Suppose S is a subring of A. We will use Proposition 10.1 to show
that f(S) is a subring of B. The element f(0) = 0 is in f(S), so f(S) is
non-empty. If u and v are two elements of f(S), then there exist elements x
and y in S such that

f(x) = u

and

f(y) = v.

But x · y and x− y are also in S, and so

f(x · y) = f(x) · f(y) = u · v

and

f(x− y) = f(x)− f(y) = u− v

must be in f(S). Thus, by Proposition 10.1, f(S) is a subring of B.
Now suppose that T is a subring of B. Since 0 is contained in f−1(T ), we

have that f−1(T ) is non-empty. If x and y are two elements of f−1(T ), then
f(x) and f(y) will be two elements of T . Thus,

f(x · y) = f(x) · f(y)

and

f(x− y) = f(x)− f(y)
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would be elements of T . Hence, x · y and x − y are in f−1(T ). Thus, by
Proposition 10.1, f−1(T ) is a subring of A.

We can define the kernel and the image of a homomorphism in the same
way that we did for group homomorphisms.

DEFINITION 10.9 Given a homomorphism f from the ring A to the
ring B, the kernel of f is f−1(0), denoted Ker(f). The image of f is f(A),
denoted Im(f).

In Sage, we can use the HomoInv command to find the kernel of a homo-
morphism, or we can use the command

Kernel(G)

{0, 3}

as we did for group homomorphisms.

When we have a homomorphism from A to B, we have by Proposition 10.8
that the image will be a subring of B. Likewise, the kernel of a homomorphism
will be a subring of A. However, we can say even more about the kernel.

PROPOSITION 10.9

If f is a homomorphism from the ring A to the ring B, then the kernel of f
is an ideal of A. Furthermore, f is injective if, and only if, Ker(f) = {0}.

PROOF: Suppose that x is in the kernel of f , and y is any other element
of A. Then

f(x · y) = f(x) · f(y) = 0 · f(y) = 0,

and

f(y · x) = f(y) · f(x) = f(y) · 0 = 0.

Hence, x · y and y · x are in the kernel of f , so the kernel is an ideal of A.

If f is injective, then f−1(0) can only contain one element, which must be
0. On the other hand, if f−1(0) = {0}, then

f(x) = f(y) =⇒ f(x)− f(y) = 0

=⇒ f(x− y) = 0

=⇒ x− y = 0

=⇒ x = y.

Therefore, f is injective if, and only if, Ker(f) = {0}.
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Motivational Example 10.11

Find a non-zero homomorphism from the non-commutative ring R of order 8
used throughout §10.2, to some other ring.
SOLUTION: The kernel would have to be an ideal of R. But R has only three
nontrivial ideals:

InitRing("a", "b")

DefineRing([4, 2], [[a, b], [2*a, 0]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

I1 = Ideal(R, 2*a); I1

{0*a, 2*a}
I2 = Ideal(R, 2*a + b); I2

{0*a, 2*a+b}
I3 = Ideal(R, b); I3

{0*a, b, 2*a, 2*a+b}

To produce an interesting homomorphism, we would use one of these ideals
as the kernel. To which ring should we map R?

The natural answer would be the quotient ring. Since there is a natural
group homomorphism from R to R/I, we can ask whether this group homo-
morphism extends to become a ring homomorphism.

Let us define Q = R/I1.

Q = Coset(R, I1); Q

{{0*a, 2*a}, {a, -a}, {b, 2*a+b}, {a+b, -a+b}}

We wish to define a homomorphism i(x) that maps an element in R to the
coset of Q containing that element. We only need to define i(a) and i(b) to
complete the definition.

i = RingHomo(R, Q)

HomoDef(i, a, a + I1)

HomoDef(i, b, b + I1)

FinishHomo(i)

’Homomorphism defined’

The kernel of this homomorphism,

Kernel(i)

{0*a, 2*a}

which is of course I1.

In general, we can form a homomorphism from a ring R to a quotient ring
R/I using the same technique. We will state this as a lemma:
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LEMMA 10.3

If I is an ideal of the ring R, then the natural mapping i : R → R/I defined
by i(x) = x + I is a surjective ring homomorphism from R to R/I with the
kernel being I.

PROOF: It is clear that the rule i(x) = x + I defines a surjective mapping
i from R to R/I, and that Ker(i) = I. We need only to check that i(x) is a
homomorphism.

Since

i(x+ y) = (x+ y) + I

= (x+ I) + (y + I)

= i(x) + i(y)

and

i(x · y) = x · y + I

= (x+ I) · (y + I)

= i(x) · i(y),

we see that i(x) is indeed a surjective homomorphism.

In the homomorphisms produced by Lemma 10.3, the image of the homo-
morphism is isomorphic to R/Ker(f). The first isomorphism theorem studied
in Chapter 4 shows that the additive group on Im(f) would be group isomor-
phic to the additive structure of R/Ker(f). It is easy to show that the ring
Im(f) is isomorphic to the ring R/Ker(f) as well, giving us an isomorphism
theorem for rings.

THEOREM 10.2: The First Ring Isomorphism Theorem

Let f be a ring homomorphism from a ring R to a ring S, whose image is
H. If the kernel of f is I, then there is a natural surjective isomorphism
φ : R/I → H that causes the diagram in Figure 10.1 to commute. (Here, i(x)
is the homomorphism defined in Lemma 10.3.) Thus, H ≈ R/I.

PROOF: Figure 10.1 actually helps us determine how φ must be defined.
For each coset (x+ I) in R/I, we need to have

φ(x + I) = f(x)

in order for the diagram to commute. To prove that this rule defines a map-
ping, we need to show that this is well defined. That is, if x + I = y + I it
needs to be true that f(x) = f(y), or else there would be a contradiction in



358 Abstract Algebra: An Interactive Approach

R R/I
i

φf

H
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FIGURE 10.1: Commuting diagram for the first ring isomorphism theorem

the definition of φ. But

x+ I = y + I ⇐⇒ x− y ∈ I

⇐⇒ f(x− y) = 0

⇐⇒ f(x) = f(y)

⇐⇒ φ(x + I) = φ(y + I).

So we see that the definition of φ will not produce any such contradictions.
To show that φ is a homomorphism, we have that

φ((x + I) + (y + I)) = φ(x + y + I)

= f(x+ y)

= f(x) + f(y)

= φ(x + I) + φ(y + I),

and

φ((x + I) · (y + I)) = φ(x · y + I)

= f(x · y)
= f(x) · f(y)
= φ(x + I) · φ(y + I).

So φ is a homomorphism from R/I to H. It is apparent that this homomor-
phism is onto, and

φ(x+ I) = 0 ⇐⇒ f(x) = 0
⇐⇒ x ∈ I
⇐⇒ x+ I = I.

So the kernel of φ is {I}, the zero element of R/I. Thus, φ is an isomorphism
from R/I onto H, so R/I ≈ H. Since the mapping φ was defined so that the
diagram in Figure 10.1 commutes, the theorem is proved.

It should be noted that there are second and third ring isomorphism theo-
rems. These are considered in Problems 15 and 16.
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Problems for §10.4

1 Find all ring homomorphisms from Z6 to Z6.

2 Find all ring homomorphisms from Z10 to Z10.

3 Show that if φ(x) = 2x, then φ is not a ring homomorphism from R to R.

4 Is the mapping φ from Z5 to Z30 given by φ(x) = 6x a ring homomorphism?

5 Is the mapping φ from Z5 to Z20 given by φ(x) = 4x a ring homomorphism?

6 Is the mapping φ from Z30 to Z5 given by φ(x) = x mod 5 a ring homo-
morphism?

7 Is the mapping φ from Z20 to Z5 given by φ(x) = x mod 5 a ring homo-
morphism?

8 Is the mapping φ from Z20 to Z10 given by φ(x) = 6x mod 10 a ring
homomorphism?

9 Is the mapping φ from Z2 to Z4 given by φ(x) = x a ring homomorphism?

10 Determine all ring homomorphisms from the rationals Q to Q.
Hint: What are the possible kernels? If φ(1) = 1, show that φ(x) = x.

11 Let C denote the set of numbers of the form a + bi, where i =
√
−1

and a and b are real. (C is in fact a subring of the quaternions H.) Let
φ(a + bi) = a− bi. Show that φ is a ring homomorphism from the ring C to
itself.

Hint: Let x = a+ bi, and y = c+ di.

12 Show that if φ is a homomorphism from a ring R to a ring S, then an
idempotent element of R must be sent to an idempotent element of S. See
Problem 9 of §9.3.

13 Show that if φ is a homomorphism from a ring R to a ring S, then
a nilpotent element of R must be sent to a nilpotent element of S. See
Problem 14 of §10.1.

14 Show that if φ is a homomorphism from a ring R to a ring S, and R is a
principle ideal ring, then Im(φ) is also a principle ideal ring.

15 Prove the second ring isomorphism theorem: If K and I are two ideals
of a ring R, then

K/(K ∩ I) ≈ (K + I)/I.

(See Problem 1 of §10.2 for the definition of K + I.)
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16 Prove the third ring isomorphism theorem: If K and I are two ideals of
a ring R, where K ⊆ I, then K is an ideal of I, I/K is an ideal of R/K, and

(R/K)/(I/K) ≈ R/I.

17 Find all the non-trivial homomorphisms from T8 to T4.
Hint: Consider Problems 9 and 20 from §10.2.

Interactive Problems

18 The ring of Example 10.11 also has an ideal I2 = {0, 2a+ b}. Define a
homomorphism from the ring R to R/I2.

19 The ring of Example 10.11 also has an ideal I3 = {0, b, 2a, 2a+b}. Define
a homomorphism from the ring R to R/I3.

20 Use Sage to find a non-trivial homomorphism from the ring of Exam-
ple 10.11 to itself, which is not an automorphism.



Chapter 11

Integral Domains and Fields

Although we have already defined integral domains and fields, this chapter
focuses on particular cases of integral domains and fields. For example, one
can construct a larger integral domain from a field or integral domain by
considering polynomials over the original ring. Likewise, one can expand any
integral domain into a field by forcing division to be possible. These provide
us with useful examples for experimentation in hopes of finding properties of
general integral domains and fields. We will also study what may be the most
important field of all, the field of complex numbers.

11.1 Polynomial Rings

The study of polynomials is the oldest topic of algebra. The Babylonians
were able to solve the quadratic equation around 1600 B.C., and the cubic
equations were being solved in Arabia in 825 A.D., even before the modern
algebraic notation. (Polynomials were written out with words.) In 1535,
Tartaglia demonstrated how to solve the general cubic equation, and shortly
thereafter Ferrari found the solution to the general fourth-degree equation.
This led to a great surge of interest in the theory of equations , as mathemati-
cians raced to find a general formula for the quintic, or fifth-degree equation.
Finally, Abel and Galois independently proved in the 1820’s that it was in
fact impossible to find such a formula for the quintic equation, utilizing group
theory.

The reader is obviously familiar with polynomials for which the coeffients
are real numbers. However, we can construct polynomials from any ring, and
the set of all such polynomials will be a new ring, called a polynomial ring.
But only the polynomial rings formed either from fields or integral domains
will have the properties that we are used to.

DEFINITION 11.1 Let K be a commutative ring. We define the set of
polynomials in x over K, denoted K[x], to be the set of all expressions of the
form

k0 + k1x+ k2x
2 + k3x

3 + · · ·

361
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where the coefficients kn are elements of K, and only a finite number of the
coefficients are nonzero. If kd is the last nonzero coefficient, then d is called
the degree of the polynomial.

Notice that if d = 0, we essentially obtain the nonzero elements ofK. These
polynomials are referred to as constant polynomials. The degree for the zero
polynomial

0 + 0x+ 0x2 + 0x3 + 0x4 + · · ·
is not defined.

By convention, the terms with zero coefficients are omitted when writing
polynomials. Thus, the second degree polynomial in Z[x]

1 + 0x+ 3x2 + 0x3 + · · ·

would be written 1 + 3x2. The one exception to this convention is the zero
polynomial, which is written as 0.

We can define the sum and product of polynomials in the familiar way. If

A = a0 + a1x+ a2x
2 + a3x

3 + · · · and

B = b0 + b1x+ b2x
2 + b3x

3 + · · ·

then

A+B = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + (a3 + b3)x

3 + · · ·

and

A ·B =

∞∑

i=0

∞∑

j=0

(ai · bj)xi+j .

Although this looks like a double infinite sum, only a finite number of the
terms will be nonzero. In fact, this product could be written as

A ·B = a0 · b0
+(a0 · b1 + a1 · b0)x
+(a0 · b2 + a1 · b1 + a2 · b0)x2

+(a0 · b3 + a1 · b2 + a2 · b1 + a3 · b0)x3 + · · ·

so each coefficient is determined by a finite sum.

LEMMA 11.1

Let A and B be two nonzero polynomials in x over K of degree m and n
respectively, where K has no zero divisors. Then A · B is a polynomial of
degree m+ n, and A+B is a polynomial of degree no greater than the larger
of m or n.
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PROOF: Let A be a polynomial of degree m,

A = a0 + a1x+ a2x
2 + a3x

3 + · · · amxm

and B be a polynomial of degree n,

B = b0 + b1x+ b2x
2 + b3x

3 + · · · bnxn.

Here, am and bn are nonzero elements of K. The product is determined by

A ·B =
∞∑

i=0

∞∑

j=0

(ai · bj)xi+j .

Note that ai and bj are zero for i > m and j > n. If i + j > m + n, either
i > m or j > n, and in either case ai · bj = 0. Thus, there are no nonzero
terms in A ·B with coefficients larger than m+ n. However, if i+ j = m+ n,
the only nonzero term would be the one coming from i = m and j = n, giving

am · bn xm+n.

Since there are no zero divisors inK, am ·bn is nonzero, so A·B is a polynomial
of degree m+ n.

Next we turn our attention to A + B. We may assume without loss of
generality that m is no more than n. Then the sum of A and B can be
expressed as

(a0 + b0)+ (a1+ b1)x+ (a2 + b2)x
2 + · · · (am+ bm)x

m+ bm+1x
m+1 + · · · bnxn.

If m < n, this clearly is a polynomial with degree n. Even if m = n, this still
gives a polynomial whose degree cannot be more than n.

We still have to show that K[x] will be a ring. But if K is an integral
domain or field, we will be able to say more about K[x].

PROPOSITION 11.1

Let K be an integral domain or a field. Then the set of polynomials in x over
K forms an integral domain.

PROOF: We have seen that K[x] is closed under addition and multiplica-
tion. By the commutativity of K, addition and multiplication are obviously
commutative. It is also clear that the zero polynomial acts as the additive
identity in K[x]. Also, the additive inverse of

A = a0 + a1x+ a2x
2 + a3x

3 + · · ·

is given by

−A = (−a0) + (−a1)x+ (−a2)x2 + (−a3)x3 + · · · ,
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since the sum of these two polynomials is

A+ (−A) = 0 + 0x+ 0x2 + 0x3 + · · · = 0.

The polynomial with b0 = 1, and bj = 0 for all positive j,

I = 1 + 0x+ 0x2 + 0x3 + · · · ,

acts as the multiplicative identity, since

I · A = A · I =
∞∑

i=0

∞∑

j=0

ai · bj xi+j =
∞∑

i=0

ai · 1 xi = A.

To check associativity of addition and multiplication, we need three polyno-
mials

A = a0 + a1x+ a2x
2 + a3x

3 + · · · ,
B = b0 + b1x+ b2x

2 + b3x
3 + · · · , and

C = c0 + c1x+ c2x
2 + c3x

3 + · · · .

Then

(A+ B) + C = (a0 + b0) + c0 + ((a1 + b1) + c1)x+ ((a2 + b2) + c2)x
2 + · · ·

= a0 + (b0 + c0) + (a1 + (b1 + c1))x+ (a2 + (b2 + c2))x
2 + · · ·

= A+ (B + C).

Also,

A · (B · C) = A ·





∞∑

j=0

∞∑

k=0

bj · ck xj+k




=

∞∑

i=0

∞∑

j=0

∞∑

k=0

ai · (bj · ck)xi+j+k

=

∞∑

i=0

∞∑

j=0

∞∑

k=0

(ai · bj) · ck xi+j+k = (A · B) · C.

The two distributive laws are also easy to verify using the summation notation.

A · (B + C) = A ·





∞∑

j=0

(bj + cj)x
j



 =

∞∑

i=0

∞∑

j=0

ai · (bj + cj)x
i+j

=

∞∑

i=0

∞∑

j=0

(ai · bj + aicj)x
i+j

=

∞∑

i=0

∞∑

j=0

ai · bj xi+j +
∞∑

i=0

∞∑

j=0

ai · cj xi+j = A · B +A · C.
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We can use the fact that multiplication is commutative to show that

(A+B) · C = A · C +B · C.

Thus, K[x] is a commutative ring with identity.
Next, let us show that K[x] has no zero divisors. Suppose that A · B = 0,

with both A and B being nonzero polynomials. Say that A has degree m
and B has degree n. Then by Lemma 11.1, A · B has degree m + n, which
is impossible if either m or n were positive. But if A and B are constant
polynomials, then a0 · b0 = 0, which would indicate that either a0 or b0 is 0,
since K has no zero divisors. Thus, either A or B would have to be 0, so we
have that K[x] has no zero divisors.

Finally, let us show that K[x] is not a field, by showing that the polynomial
(1 + x) is not invertible. Suppose that there was a polynomial A such that
A·(1+x) = 1. Then A 6= 0, so suppose A has degreem. Then by Lemma 11.1,
we have m+1 = 0, telling us m = −1, which is impossible. Thus, (1+ x) has
no inverse in K[x], and therefore K[x] is an integral domain.

Although this proposition holds for polynomials defined over an integral
domain, there is no reason why we cannot have Sage work with polynomials
defined over any commutative ring. However, we will discover that the familiar
properties of polynomials radically change.

Let us consider the commutative ring of order 8 from Tables 9.3 and 9.4 in
Chapter 9.

InitRing("a", "b")

Define([4, 2], [[a, 0], [0, b]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}

We form a polynomial ring over R by defining a new symbol x.

AddRingVar("x")

A typical polynomial would be

Y = a*x + b; Y

a*x+b

If we consider raising this polynomial to a power,

Y^4

a*x^4+b

we find that this polynomial ring has rather bizarre properties. In fact, some-
times the square of a first-degree polynomial is not a second degree polynomial!
Consider
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(2*a*x + a + b)^2

a+b

which yields the identity element in R. Thus, 2ax+a+b is its own multiplica-
tive inverse. To further complicate matters, polynomials may be “factored”
in more than one way. The two products

(2*a*x + b)*(a*x + b)

2*a*x^2+b

(2*a*x + b)*(a*x + 2*a + b)

2*a*x^2+b

yield the same quadratic polynomial. Because of the bizarre properties of
polynomials over general rings, we mainly will focus our attention on polyno-
mial rings K[x], where K is an integral domain or field.

In order to find new integral domains and fields, we will use a simple prop-
erty that will classify all rings.

DEFINITION 11.2 Let R be a ring. We define the characteristic of R
to be the smallest positive number n such that nx = 0 for all elements x of
R. If no such positive number exists, we say the ring has characteristic 0.

For integral domains or fields, the characteristic plays an extremely impor-
tant role, as the next proposition illustrates.

PROPOSITION 11.2

Let R be a nontrivial ring without zero-divisors. If the characteristic is 0,
then for n an integer and x a nonzero element of R, nx = 0 only if n = 0. If
the characteristic is positive then it is a prime number p, and for nonzero x,
nx = 0 if, and only if, n is a multiple of p.

PROOF: Suppose that nx = 0 for some nonzero x ∈ R. Then for another
nonzero element y of R,

0 = (nx) · y = n(x · y) = x · (ny).

But x is nonzero, and the ring has no zero divisors, so we have ny = 0.
This argument works in both ways, so

(∗) nx = 0 ⇐⇒ ny = 0 if x 6= 0 and y 6= 0.

If n was not zero, then |n| would be a positive number such that nx = 0 for
all x in the ring. Hence, if the ring has characteristic 0, then nx = 0 implies
that either x = 0 or n = 0.

Now suppose that the ring has positive characteristic, and let x be any
nonzero element of R. Let p be the smallest positive integer for which p·x = 0.
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If p is not prime, then p = ab with 0 < a < p and 0 < b < p. But then

(ax) · (bx) = (ab)
(
x2
)
= p(x2) = 0.

Since the ring has no zero divisors, either ax = 0 or bx = 0. But this con-
tradicts the fact that p was the smallest number such that px = 0. Thus, p
is prime. By (∗) we have that py = 0 for every element in R, and since this
cannot be true for any smaller integer, we have that the characteristic of the
ring is the prime number p.

It is easy to see that if n is a multiple of p, then n = cp for some integer c.
Thus, for any element x in R,

nx = (cp)x = c(px) = c0 = 0.

Suppose that nx = 0 for some n that is not a multiple of p. Then gcd(n, p)
must be 1, and so by the greatest common divisor theorem (0.4), there are
integers u and v such that un+ vp = 1. But then

x = 1 · x = (un+ vp)x = u(nx) + v(px) = u · 0 + v · 0 = 0.

So for nonzero x, nx = 0 if, and only if, n is a multiple of p.

Characteristics are important because they provide a new way of defining
integral domains and fields in Sage. We begin by telling Sage the characteristic
p of the ring we want to define with the command InitDomain(p). For
example, to define a ring with characteristic 3, we enter

InitDomain(3)

This actually defines the field Z3, as we can see with the command

Z3 = ListField(); Z3

{0, 1, 2}

We can create polynomials over this new domain by the AddFieldVar com-
mand.

AddFieldVar("i")

Now we can do computations in the polynomial ring Z3[i].

2*i + 5*i

i

(2*i + 1)^2

i^2 + i + 1

Let us try imitating the complex numbers, and tell Sage that i2 = −1.
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TABLE 11.1: Addition of “complex numbers modulo 3”

+ 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

0 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

1 1 2 0 1 + i 1 + 2i 2 + i i 2 + 2i 2i

2 2 0 1 2 + i 2 + 2i i 1 + i 2i 1 + 2i

i i 1 + i 2 + i 2i 0 1 + 2i 2 + 2i 1 2

2i 2i 1 + 2i 2 + 2i 0 i 1 2 1 + i 2 + i

1 + i 1 + i 2 + i i 1 + 2i 1 2 + 2i 2i 2 0

2 + i 2 + i i 1 + i 2 + 2i 2 2i 1 + 2i 0 1

1 + 2i 1 + 2i 2 + 2i 2i 1 1 + i 2 0 2 + i i

2 + 2i 2 + 2i 2i 1 + 2i 2 2 + i 0 1 i 1 + i

TABLE 11.2: Multiplication for “complex numbers modulo 3”

· 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

0 0 0 0 0 0 0 0 0 0

1 0 1 2 i 2i 1 + i 2 + i 1 + 2i 2 + 2i

2 0 2 1 2i i 2 + 2i 1 + 2i 2 + i 1 + i

i 0 i 2i 2 1 2 + i 2 + 2i 1 + i 1 + 2i

2i 0 2i i 1 2 1 + 2i 1 + i 2 + 2i 2 + i

1 + i 0 1 + i 2 + 2i 2 + i 1 + 2i 2i 1 2 i

2 + i 0 2 + i 1 + 2i 2 + 2i 1 + i 1 i 2i 2

1 + 2i 0 1 + 2i 2 + i 1 + i 2 + 2i 2 2i i 1

2 + 2i 0 2 + 2i 1 + i 1 + 2i 2 + i i 2 1 2i

Define(i^2, -1)

K = ListField(); K

{0, 1, 2, i, i + 1, i + 2, 2*i, 2*i + 1, 2*i + 2}
AddTable(K)

MultTable(K)

This produces Tables 11.1 and 11.2.

We can see that this ring has nine elements and has no zero divisors. By
Corollary 9.1, K is a field. We could call K the field of “complex numbers
modulo 3.”

Sage offers a shortcut for working with polynomials over an integral domain.
We can add an additional parameter for the InitDomain command that will
tell Sage the name of the polynomial variable, usually “x”. For example, the
command

InitDomain(3, "x")
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defines the integral domain Z3[x] in one step. We can now do operations in
Z3[x].

(x + 2)^2

x^2 + x + 1

factor(x^2 + 2)

(x + 1) * (x + 2)

factor(x^2 + 1)

x^2 + 1

If we continue to expand the field to the “complex numbers modulo 3,”

AddFieldVar("i")

Define(i^2, -1)

the variable x automatically promotes to a variable of the larger field. Thus,
we can form polynomials like

y = (1 + i)*x + 2; y

(i + 1)*x + 2

z = (2 + i)*x^2 + 2*i*x + 1 + 2*i; z

(i + 2)*x^2 + 2*i*x + 2*i + 1

y^2

2*i*x^2 + (i + 1)*x + 1

y*z

x^3 + (i + 2)*x^2 + (i + 2)*x + i + 2

Sage can factor polynomials defined over any finite field. In Chapter 12, we
will prove that such factorizations are unique. (We will also see an example
of an integral domain, not a field, for which factorizations are not unique.) If
Sage tries to factor x2 + 1 in the standard way (using the ring Z),

var("X")

factor(X^2 + 1)

X^2 + 1

it finds the polynomial is irreducible. But if we factor the polynomial over
the field of “complex numbers modulo 3,”

factor(x^2 + 1)

(x + i) * (x + 2*i)

we find that it does factor. Hence, whether a polynomial factors or not de-
pends largely on which integral domain we are using.

The polynomial rings defined over integral domains give us some good ex-
amples of integral domains. In the next chapter we will find other ways of
forming integral domains, some of which have some unusual properties. But
even these are based on polynomial rings. So polynomials are the basic build-
ing blocks that are used for forming new integral domains and fields.
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Problems for §11.1

For Problems 1 through 6: Expand the following polynomials using the ring
defined by Tables 9.3 and 9.4.

1 (2ax+ b)2

2 (bx+ a)(bx− a)
3 (2ax+ a+ b)(ax+ b)

4 (2ax2 + ax+ b)(bx+ a)
5 (ax2 + (a+ b)x+ 2a)(2ax+ b)
6 (bx2 + (2a+ b)x+ a)(bx2 + 2ax− a)

7 Find the characteristic of the ring defined by Tables 9.3 and 9.4.

8 Find the characteristic of the ring T8 in Table 9.7.

9 Prove that if n > 1, the characteristic of Zn is n.

10 Let R be a unity ring. If the identity element has a finite order in the
additive group, show that this order is the characteristic of the ring.

11 A Boolean ring is a nontrivial ring in which all elements x satisfy x2 = x.
Prove that every Boolean ring has characteristic 2.

12 Prove that if a ring R has a finite number of elements, then the charac-
teristic of R is a positive integer.

13 Let D be an integral domain with positive characteristic. Prove that all
nonzero elements of D have the same additive order.

14 Show an example for which Problem 13 is not true for arbitrary rings.

15 Let {0, e, a, b} be a field of order 4, with e as the unity. Construct addition
and multiplication tables for the field.

16 Let R be a commutative ring of characteristic 2. Prove that (x + y)2 =
x2 + y2 for all x and y in R. This property is often referred to as “freshman’s
dream.”

17 Let R be a commutative ring of characteristic 2. Prove that (x + y)4 =
x4 + y4 for all x and y in R. You can use the result of Problem 16.

18 Find an example of a commutative ring of characteristic 4 for which there
are elements x and y such that (x + y)4 6= x4 + y4.

19 Find an example of a non-commutative ring of characteristic 4 for which
there are elements x and y such that (x+ y)4 6= x4 + y4.

20 List all polynomials in Z3[x] that have degree 2.

21 Of the second degree polynomials in Z3[x] listed in Problem 20, which
ones cannot be factored?

Hint: A quadratic polynomial in Z3[x] cannot be factored if neither 0, 1,
nor 2 are roots.
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22 List all polynomials in Z2[x] that have degree 3.

23 Of the third-degree polynomials in Z2[x] listed in Problem 20, which ones
cannot be factored?

Hint: A cubic polynomial in Z2[x] cannot be factored if neither 0 nor 1 are
roots.

Interactive Problems

24 In the field of “complex numbers modulo 3”:

InitDomain(3, "x")

AddFieldVar("i")

Define(i^2, -1)

K = ListField(); K

{0, 1, 2, i, i + 1, i + 2, 2*i, 2*i + 1, 2*i + 2}

Factor the polynomials x3 + 1, x3 + 2, x3 + i, x3 + 2i. What do you notice
about the factorizations? Knowing how real polynomials factor, explain what
is happening.

25 Explain why the ring “complex numbers modulo 5”:

InitDomain(5)

AddFieldVar("i")

Define(i^2, -1)

does not form a field. Can you determine a pattern as to which integers
“complex numbers modulo n” form a field?

11.2 The Field of Quotients

In the last section, we found a way to form integral domains by imitating
the familiar polynomials from high school algebra. In this section we will
show how we can form a field from an integral domain, imitating grade school
fractions.

We view a standard fraction as one integer divided by another. We want
to extend this idea, and form fractions out of any integral domain. However,
even with standard fractions there is a complication, since we consider

2

4
=

3

6
,
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even though both the numerators and denominators are different. What we
mean to say is that these two fractions are equivalent , where we define

x

y
≡ u

v
if, and only if, x · v = y · u.

This forms an equivalence relation on the set of fractions x/y. We have already
seen equivalence relations while working with cosets of a group. What we call
a rational number is really a set of fractions of the form x/y that are all
equivalent.

DEFINITION 11.3 Let K be an integral domain, and let P denote the
set of all ordered pairs (x, y) of elements of K, with y nonzero:

P = {(x, y) | x, y ∈ K and y 6= 0}.

We define a relation on P by

(x, y) ≡ (u, v) if x · v = y · u.

LEMMA 11.2

The above relation is an equivalence relation on P .

PROOF: We need to show that the relation is reflexive, symmetric, and tran-
sitive. Let(x, y), (u, v), and (s, t) be arbitrary elements of P .

Reflexive:
(x, y) ≡ (x, y)

is equivalent to saying x · y = x · y which is, of course, true. So this relation
is reflexive.

Symmetric:

(x, y) = (u, v) =⇒ x · v = y · u =⇒ u · y = v · x =⇒ (u, v) ≡ (x, y),

so this relation is also symmetric.
Transitive:

If (x, y) ≡ (u, v) and (u, v) ≡ (s, t), then

(x, y) ≡ (u, v) =⇒ x · v = y · u =⇒ x · v · t = y · u · t,

(u, v) ≡ (s, t) =⇒ u · t = v · s =⇒ u · t · y = v · s · y.
These two statements imply that x · v · t = v · s · y. Notice that in the last
step we had to use the commutativity of multiplication. Using commutativity
again, we have x · t · v = y · s · v, and since K has no zero divisors and v is
nonzero, we can use Lemma 9.4 to say that x · t = y · s. Then

x · t = y · s =⇒ (x, y) ≡ (s, t),
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so we have the transitive law holding. Therefore, this relation is an equivalence
relation.

DEFINITION 11.4 Let K be an integral domain, let P denote the set

P = {(x, y) | x, y ∈ K and y 6= 0},

and let the equivalence relation on P be

(x, y) ≡ (u, v) if x · v = y · u.

For each (x, y) in P , let
(
x
y

)
denote the equivalence class of P that contains

(x, y). Let Q denote the set of all equivalence classes
(
a
b

)
. The set Q is called

the set of quotients for K.

This definition allows us to replace an equivalence of two expressions with
an equality. We now have that

(x

y

)

=
(u

v

)

if, and only if, x · v = u · y.

The next step is to define addition and multiplication on our set of quotients
Q. Once again, we will use the rational numbers to guide us in the definition.

LEMMA 11.3

Let K be an integral domain, and let Q be the set of quotients for K. The
addition and multiplication of two equivalence classes in Q, defined by

(x

y

)

+
(u

v

)

=
(x · v + u · y

y · v
)

and (x

y

)

·
(u

v

)

=
(x · u
y · v

)

,

are both well-defined operations on Q. That is, the sum and product do not
depend on the choice of the representative elements (x, y) and (u, v) of the
equivalence classes.

PROOF: The first observation we need to make is that the formulas for the
sum and product both form valid elements of Q, since y · v is nonzero as long
as y and v are both nonzero.

Next let us work to show that addition does not depend on the choice of
representative elements (x, y) and (u, v). That is, if

(
x
y

)
=
(
a
b

)
, and

(
u
v

)
=

(
c
d

)
, we need to show that

(x

y

)

+
(u

v

)

=
(a

b

)

+
( c

d

)

.
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That is, we have to prove that

(x · v + u · y
y · v

)

=
(a · d+ c · b

b · d
)

.

Since
(
x
y

)
=
(
a
b

)
and

(
u
v

)
=
(
c
d

)
, we have x · b = a · y and u · d = c · v.

Multiplying the first equation by v · d and the second by y · b, we get

x · b · v · d = a · y · v · d

and
u · d · y · b = c · v · y · b.

Adding these two equations together and factoring, we get

(x · v + u · y) · b · d = (a · d+ c · b) · y · v.

This gives us
(x · v + u · y

y · v
)

=
(a · d+ c · b

b · d
)

,

which is what we wanted.
We also need to show that multiplication is well defined, that is

(x

y

)

·
(u

v

)

=
(a

b

)

·
( c

d

)

.

But since x · b = a · y and u · d = c · v, we can multiply these two equations
together to get

x · b · u · d = a · y · c · v,
or

(x · u) · (b · d) = (a · c) · (y · v).
Therefore, (x · u

y · v
)

=
(a · c
b · d

)

,

so multiplication also is well defined.

THEOREM 11.1: The Field of Quotients Theorem

Let K be an integral domain, and let Q be the set of quotients for K. Then Q
forms a field using the above definitions of addition and multiplication. The
field Q is called the field of quotients for K.

PROOF: We have already noted that addition and multiplication are closed
in Q.

We next want to look at the properties of addition. From the definition,

(x

y

)

+
(u

v

)

=
(x · v + u · y

y · v
)

=
(u

v

)

+
(x

y

)

,
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we see that addition is commutative. Let z be any nonzero element of K.
Then

(
0
z

)
acts as the additive identity:

(u

v

)

+
(0

z

)

=
(0

z

)

+
(u

v

)

=
(0 · v + u · z

z · v
)

=
(u · z
v · z

)

=
(u

v

)

.

Likewise,
(−u
v

)
is the additive inverse of

(
u
v

)
:

(u

v

)

+
(−u
v

)

=
(−u
v

)

+
(u

v

)

=
(−u · v + u · v

v · v
)

=
( 0

v · v
)

=
(0

z

)

.

The associativity of addition is straightforward:

((x

y

)

+
(u

v

))

+
(a

b

)

=
(x · v + u · y

y · v
)

+
(a

b

)

=
(x · v · b+ u · y · b+ a · y · v

y · v · b
)

,

while

(x

y

)

+

((u

v

)

+
(a

b

))

=
(x

y

)

+
(u · b+ a · v

v · b
)

=
(x · v · b+ u · y · b+ a · y · v

y · v · b
)

.

So Q forms a group with respect to addition.
Next we look at the properties of multiplication. Multiplication is obviously

commutative, since

(x

y

)

·
(u

v

)

=
(x · u
y · v

)

=
(u · x
v · y

)

=
(u

v

)

·
(x

y

)

.

We also have associativity for multiplication:

((x

y

)

·
(u

v

))

·
(a

b

)

=
(x · u
y · v

)

·
(a

b

)

=
(x · u · a
y · v · b

)

=
(x

y

)

·
(u · a
v · b

)

=
(x

y

)

·
((u

v

)

·
(a

b

))

.

The element
(
z
z

)
acts as the multiplicative identity for any z 6= 0.

(z

z

)

·
(x

y

)

=
(x

y

)

·
(z

z

)

=
(x · z
y · z

)

=
(x

y

)

.

If x = 0, then
(
x
y

)
=
(
0
z

)
. Otherwise, the multiplicative inverse of

(
x
y

)
is

(
y
x

)
, since

(x

y

)

·
(y

x

)

=
(x · y
y · x

)

=
(z

z

)

.
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Thus, every nonzero element ofQ has a multiplicative inverse. Finally, we have
the two distribution laws. Because of the commutativity of multiplication, we
only need to check one. Since

((u

v

)

+
(a

b

))

·
(x

y

)

=
(u · b+ a · v

v · b
)

·
(x

y

)

=
(u · b · x+ a · v · x

v · b · y
)

,

while

(u

v

)

·
(x

y

)

+
(a

b

)

·
(x

y

)

=
(u · x
v · y

)

+
(a · x
b · y

)

=
(u · x · b · y + a · x · v · y

v · y · b · y
)

=
(u · x · b+ a · x · v

v · y · b
)

,

we have the distributive laws holding, and therefore Q is a field.

In the construction of the field Q, we never used the identity element of K.
Hence, if we started with a commutative ring without zero divisors instead
of an integral domain, the construction would still produce a field. We can
mention this as a corollary.

COROLLARY 11.1

Let K be any commutative ring without zero divisors. Then the set of quotients
Q defined above forms a field.

Although the field of quotients was designed from the way we formed ra-
tional numbers from the set of integers, we can apply the field of quotients to
any other integral domain. What happens if we form a field of quotients for
the polynomial ring K[x]?

Let us first consider the most familiar polynomial ring Z[x]—the polyno-
mials with integer coefficients. An element in the field of quotients would
be of the form p(x)/q(x), where p(x) and q(x) are polynomials with integer
coefficients. But we consider two such fractions p(x)/q(x) and r(x)/s(x) to
be equivalent if p(x) · s(x) = r(x) · q(x). For example, the two fractions

var("x")

A = (3*x^2 + 5*x - 2)/(2*x^2 + 7*x + 6); A

(3*x^2 + 5*x - 2)/(2*x^2 + 7*x + 6)

B = (3*x^2 - 4*x + 1)/(2*x^2 + x - 3); B

(3*x^2 - 4*x + 1)/(2*x^2 + x - 3)

can be seen to be equivalent, since
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expand((3*x^2 + 5*x - 2) * (2*x^2 + x - 3))

6*x^4 + 13*x^3 - 8*x^2 - 17*x + 6

expand((3*x^2 - 4*x + 1) * (2*x^2 + 7*x + 6))

6*x^4 + 13*x^3 - 8*x^2 - 17*x + 6

yield the same result. Other ways of showing that A and B are equivalent is
by computing either of these two commands:

Together(A - B)

0

Together(A/B)

1

We call the field of quotients for the polynomials Z[x] the field of rational
functions in x, denoted Z(x).

It should be mentioned that a rational function, in this context, is not
a function! The rational functions A and B are merely elements of Z(x),
which may in turn be arguments for some homomorphism. To say that “A is
undefined when x = −2” or “B is undefined at x = 1” is meaningless, since x
is not a variable for which numbers can be plugged in. Rather, x is merely a
symbol that is used as a place holder. This is why we can say that A and B
are truly equal, even though their “graphs” would disagree at two points.

We can form rational functions from any integral domain K. This produces
the field K(x), the rational functions in x over K.

Computational Example 11.1

Simplify the rational function

(1 + i)x2 + (2 + 2i)x+ 2

x2 + ix+ 1

defined over the field of order 9 that was defined by Tables 11.1 and 11.2.
SOLUTION: First we set up the field.

InitDomain(3, "x")

AddFieldVar("i")

Define(i^2, -1)

Sage will automatically simplify the rational function for us.

A = ((1 + i)*x^2 + (2 + 2*i)*x + 2)/(x^2 + i*x + 1); A

((i + 1)*x + i + 2)/(x + 2*i + 1)

However, if we consider the simpler looking rational function

B = (2*x - i)/(x - i*x + i); B

(2*x + 2*i)/((2*i + 1)*x + i)
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we find that they are equal.

A - B

0

As you can see from this example, the definition of the quotient field does
not depend on whether elements in the integral domain can be factored
uniquely. However, unique factorization is an important property that we
will study in depth in Chapter 12. We will learn that the polynomial ring
K[x] used in the above example really does have a type of unique factoriza-
tion, after we have studied the true definition of what a unique factorization
is. But before we go into this, let us look closely at some of the more familiar
fields: the rational numbers, the real numbers, and the complex numbers.
These fields will be the basis for defining many other fields, so it is natural to
learn the properties of these fields before going on to study more complicated
fields.

Problems for §11.2

1 If Q is the field of quotients of an integral domain, show that
(−a
b

)
is the

additive inverse of
(
a
b

)
in Q.

2 If Q is the field of quotients of an integral domain, show that the left
distributive property holds for Q:

(u

v

)

·
((x

y

)

+
( z

w

))

=
(u

v

)

·
(x

y

)

+
(u

v

)

·
( z

w

)

.

3 If Q is the field of quotients of an integral domain, show that the multi-
plication in Q is associative.

4 Investigate what happens if we compute the field of quotients of a ring
that is already a field. Let K = Z3, and let P be the set of ordered pairs

P = {(x, y) | x, y ∈ Z3 and y 6= 0}.

Write a list of all ordered pairs in P , and determine which pairs are equivalent
under the relation

(x, y) ≡ (u, v) if x · v ≡ y · u (mod 3).

If Q is the set of equivalence classes, construct addition and multiplication
tables for Q and show that Q is isomorphic to Z3.

5 Repeat Problem 4, using Z5 instead of Z3.

6 Prove that if K is a field, then the field of quotients of K is isomorphic to
K.
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7 Show that if we apply Corollary 11.1 to the ring of even integers, we obtain
a field isomorphic to Q.

8 What is the quotient field for the ring given by

{x+ y
√
2 | x, y ∈ Z}?

9 Show by cross multiplying that the two rational functions A and B from
Example 11.1 are indeed equal.

For Problems 10 through 17: Perform the following operations in Z2(x), the
rational functions over Z2.

10
x2 + x+ 1

x+ 1
+
x+ 1

x

11
x+ 1

x2 + x+ 1
+

1

x2 + x

12
x2 + 1

x
+
x2 + x+ 1

x+ 1

13
x2 + x

x2 + x+ 1
+

x

x+ 1

14
x2 + x+ 1

x+ 1
· x

x+ 1

15
x2 + 1

x2 + x+ 1
· x2

x+ 1

16
x2 + x+ 1

x2 + x
· x

2 + 1

x

17
x2

x2 + x+ 1
· x+ 1

x2 + x+ 1

Interactive Problems

18 Have Sage simplify the rational function over Z2(x):

x4 + x3 + x+ 1

x3 + x2 + x+ 1
.

19 Try squaring different elements of Z2(x). What do you observe? Any
explanations?

20 Have Sage compute the following operation in the rational function field
of Example 11.1.

(1 + i)x+ 2

x2 + 2ix+ 2 + i
+

2x+ 1 + i

x2 + (2 + i)x+ 2
.

21 It was mentioned that the definition of the quotient field does not depend
on whether elements in the integral domain have unique factorization. An
example of such a domain is Z[

√
−5], which we can enter in Sage as follows:

InitDomain(0, "x")

AddFieldVar("a")

Define(a^2, -5)

Show that the two fractions

3x+ 3a

(1 + a)x
and

(1 − a)x+ 5 + a

2x

are in fact equal, even though neither can simplify.
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11.3 Complex Numbers

The field of complex numbers may be the most important field of math-
ematics. Although the real numbers are used more often, the set of real
numbers has deficiencies in that not every polynomial equation can be solved
with real numbers; for example, x2 + 1 = 0. On the other hand, every poly-
nomial equation can be solved using complex numbers, even if the coefficients
are complex. This result is called the Fundemental theorem of algebra, even
though Carl Gauss’s first proof of the theorem was geometric.

Because of the importance of complex numbers, we give a brief summary
of complex number theory in this section, since many of these results, in
particular DeMoivre’s theorem, are needed in later sections. Readers who
have had a course in complex numbers will find this section to be mainly
review.

We have already seen some examples of complex numbers in the form a+bi,
where i represents the “square root of negative one.” Sage uses a capital I to
enter and display the imaginary number. This allows us to perform standard
arithmetic on complex numbers.

(2 + 3*I) + (4 - I)

2*I + 6

(2 + 3*I)*(4 - I)

10*I + 11

(2 + 3*I)/(4 - I)

14/17*I + 5/17

You may have noticed that Sage puts the complex part of the number first.
In this presentation, it is not at all clear where the “I” came from. This gives
the complex numbers a rather mysterious quality that is compounded by their
common misnomer, “imaginary numbers.”

We would like to show how complex numbers are a natural extension of
the real numbers. Instead of considering quantities of the form a + bi, we
will consider ordered pairs (a, b). We will declare the following properties for
ordered pairs of real numbers:

1. (a, b) = (c, d) if, and only if, a = c and b = d.

2. (a, b) + (c, d) = (a+ c, b+ d).

3. (a, b) · (c, d) = (a · c− b · d, a · d+ b · c).

We define C to be the set of all ordered pairs of real numbers.



Integral Domains and Fields 381

PROPOSITION 11.3

The set C forms a field called the field of complex numbers. This field contains
a subfield isomorphic to the real numbers.

PROOF: Because the real numbers are closed with respect to both addition
and multiplication, it is clear that both (a+c, b+d) and (a ·c−b ·d, a ·d+b ·c)
would be defined for all real numbers a, b, c, and d. Thus, C is closed with
respect to both addition and multiplication. Furthermore, since

(c, d) + (a, b) = (c+ a, d+ b) = (a+ c, b+ d) = (a, b) + (c, d)

and

(c, d) · (a, b) = (c · a− d · b, c · b+ d · a) = (a · c− b · d, a · d+ b · c) = (a, b) · (c, d),
we see that both addition and multiplication are commutative. The element
(0, 0) acts as the zero element, since

(0, 0) + (a, b) = (a, b).

The addition inverse of (a, b) is (−a,−b), since
(a, b) + (−a,−b) = (0, 0).

Note that the order on the last two sums is irrelevant, since addition has
already been shown to be commutative.

To show that addition is associative, we note that

(a, b) +
[
(c, d) + (e, f)

]
= (a, b) + (c+ e, d+ f) = (a+ c+ e, b+ d+ f)

= (a+ c, b+ d) + (e, f) =
[
(a, b) + (c, d)

]
+ (e, f).

To show that multiplication is associative is a little more complicated. We
have

(a, b) ·
[
(c, d) · (e, f)

]
= (a, b) · (c · e− d · f, c · f + d · e) =

(a · c · e− a · d · f − b · c · f − b · d · e, a · c · f + a · d · e+ b · c · e− b · d · f),
and
[
(a, b) · (c, d)

]
· (e, f) = (a · c− b · d, a · d+ b · c) · (e, f) =

(a · c · e− b · d · e− a · d · f − b · c · f, a · c · f − b · d · f + a · d · e+ b · c · e).
By comparing these two, we see that they are equal, so multiplication is
associative.

We need to test the distributive laws next. The left distributive law we can
get by expanding:

(a, b) ·
[
(c, d) + (e, f)

]
= (a, b) · (c+ e, d+ f)

= (a · c+ a · e− b · d− b · f, a · d+ a · f + b · c+ b · e)
= (a · c− b · d, a · d+ b · c) + (a · e− b · f, a · f + b · e)
= (a, b) · (c, d) + (a, b) · (e, f).
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Thus, the left distributive law is satisfied. However, the right distributive law
follows from the left distributive law, and using the commutative multiplica-
tion:

[
(a, b) + (c, d)

]
· (e, f) = (e, f) ·

[
(a, b) + (c, d)

]

= (e, f) · (a, b) + (e, f) · (c, d)
= (a, b) · (e, f) + (c, d) · (e, f).

We have now shown that the set C forms a commutative ring. To show that
this ring has a multiplicative identity, we consider the element (1, 0). Since
the ring is commutative, we only need to check

(1, 0) · (a, b) = (1 · a− 0 · b, 1 · b+ 0 · a) = (a, b).

Finally, we need to show that every nonzero element has an inverse. If (a, b)
is nonzero, then a2 + b2 will be a positive number. Hence

(
a

a2 + b2
,

−b
a2 + b2

)

is an element of C. The product

(a, b) ·
(

a

a2 + b2
,

−b
a2 + b2

)

=

(
a2 + b2

a2 + b2
,
−a · b+ a · b
a2 + b2

)

= (1, 0)

verifies that

(a, b)−1 =

(
a

a2 + b2
,

−b
a2 + b2

)

since multiplication is commutative. Therefore, the set C forms a field.
The second part of this proposition is to show that C contains a copy of

the real numbers as a subfield. Consider the mapping f , which maps real
numbers to C, given by

f(x) = (x, 0).

To check that f is a homomorphism, we check that

f(x) + f(y) = (x, 0) + (y, 0) = (x+ y, 0) = f(x+ y)

and

f(x) · f(y) = (x, 0) · (y, 0) = (x · y + 0, 0 + 0) = (x · y, 0) = f(x · y).

Thus, f is a homomorphism from the reals to C. It is clear that f is one-to-
one, since (x, 0) = (y, 0) if, and only if, x = y. Thus the image of f :

{(x, 0) | x ∈ R}

is isomorphic to the real numbers. Hence, we have found a subring of C

isomorphic to R.
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The purpose of constructing the complex numbers was to produce a field
for which we can take the square root of negative one. We can now show that
we have succeeded in doing this.

LEMMA 11.4

There are exactly two solutions to the equation x2 = (−1, 0) in the field C,
given by (0,±1).

PROOF: If (a, b) solves the equation x2 = (−1, 0), we have that

(a, b)2 = (a2 − b2, 2ab) = (−1, 0).

Thus, a and b must satisfy the two equations

a2 − b2 = −1

and
2ab = 0.

The second equation implies that either a or b must be 0. But if b = 0, then
the first equation becomes a2 = −1, which has no real solutions. Thus, a = 0,
and −b2 = −1. There are two real solutions for b, ±1. Thus, (0, 1) and (0,−1)
both solve the equations for a and b, and so

(0, 1)2 = (0,−1)2 = (−1, 0).

By defining the complex numbers as ordered pairs, we have taken some of
the mystery out of the complex numbers. Lemma 11.4 shows that the square
root of negative one comes as a natural consequence of the way we defined
the product.

We can now convert ordered pairs to the customary notation by defining
i = (0, 1), and identifying the identity element (1, 0) with 1. Then any complex
number (a, b) can be written

(a, b) = (a, 0) + (0, b) = a · (1, 0) + b · (0, 1) = a+ bi.

We can rewrite the rules for addition and multiplication in C as follows:

(a+ bi) + (c+ di) = (a+ c) + (b + d)i.

(a+ bi) · (c+ di) = (a · c− b · d) + (b · c+ a · d)i.
In working with groups, we found that the group automorphisms revealed

many of the important properties of the group. This will also be true for
rings. Let us extend the group automorphisms to apply to rings.

DEFINITION 11.5 A ring automorphism is a one-to-one and onto ring
homomorphism that maps a ring to itself.
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LEMMA 11.5

The set of all ring automorphisms of a given ring forms a group.

PROOF: We first note that if f(x) is an automorphism of a ring R, then
f−1(x) is well defined, since f(x) is both one-to-one and onto. We see that

f(f−1(x) + f−1(y)) = f(f−1(x)) + f(f−1(y)) = x+ y,

so f−1(x+ y) = f−1(x) + f−1(y). Also,

f(f−1(x) · f−1(y)) = f(f−1(x)) · f(f−1(y)) = x · y,

so f−1(x · y) = f−1(x) · f−1(y). Thus, f−1 is a ring homomorphism. Since f
was both one-to-one and onto, f−1 is both one-to-one and onto. Therefore,
f−1 is a ring automorphism.

If f and φ are two ring automorphisms, then

f(φ(x + y)) = f(φ(x) + φ(y)) = f(φ(x)) + f(φ(y))

and
f(φ(x · y)) = f(φ(x) · φ(y)) = f(φ(x)) · f(φ(y)).

The combination f(φ(x)) is also one-to-one and onto, so this product, which
we can denote f · φ, is a ring automorphism. Since the set of all ring auto-
morphisms is closed with respect to multiplication and inverses, and the set
of all ring automorphisms is a subgroup of the set of all group automorphisms
with respect to addition, we see that this set is a group.

The natural question that arises is determining the group of ring auto-
morphisms of C. This is in fact a difficult question to answer, but if we only
consider the automorphisms that send each real number to itself, the question
becomes easy to answer.

PROPOSITION 11.4

Besides the identity automorphism, there is another ring automorphism on C,
given by

φ(a+ bi) = a− bi.

In fact, these are the only automorphisms for which φ(x) = x for all real
numbers x.

PROOF: We check that

φ(a+ bi) + φ(c+ di) = (a− bi) + (c− di) = a+ c− (b + d)i

= φ
(
a+ c+ (b+ d)i

)
= φ

(
(a+ bi) + (c+ di)

)
.

φ(a+ bi) · φ(c+ di) = (a− bi) · (c− di) = (a · c− b · d)− (a · d+ b · c)i
= φ

(
(a · c− b · d) + (a · d+ b · c)i

)
= φ

(
(a+ bi) · (c+ di)

)
.
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Thus, φ is a homomorphism. Since a− bi = 0 if, and only if, a and b are both
0, the kernel of φ is just {0}, and so φ is one-to-one. Also, φ is onto, since
φ(a− bi) = a+ bi. Therefore, φ is an automorphism.

To show that there are exactly two such automorphisms, suppose that f(x)
is an automorphism of C for which f(x) = x for all real numbers x. Then
f(i)2 = f(i2) = f(−1) = −1, so by Lemma 11.4, f(i) = ±i. If f(i) = i, then
f(x) = x for all x ∈ C, and if f(i) = −i, then f(x) = φ(x) for all x.

The ring automorphism found in Proposition 11.4 is called the conjugate.
The conjugate of z is generally denoted by z. That is, if z = a + bi, then
z = φ(z) = a− bi. The conjugate automorphism is defined in Sage as

conjugate(3 + 4*I)

-4*I + 3

It is an easy computation to see that

z · z = (a+ bi) · (a− bi) = a2 + b2.

Thus, z · z is always a non-negative real number.

DEFINITION 11.6 We say the absolute value of a complex number
z = a+ bi is

|z| =
√
z · z.

The geometric interpretation of |z| is the distance from (a, b) to the ori-
gin. In Sage, the function abs(z) gives the absolute value for both real and
complex numbers.

abs(3 + 4*I)

5

The familiar property for the absolute value of real numbers holds for all
complex numbers as well.

PROPOSITION 11.5

For any two elements x and y in C,

|x · y| = |x| · |y|.

PROOF: We have

|x·y| =
√

x · y · x · y =
√

x · y · x · y =
√

x · x · y · y =
√
x · x·

√

y · y = |x|·|y|.

Thus, |x · y| = |x| · |y|.
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FIGURE 11.1: Polar coordinates for a complex number

Since there is a geometric interpretation of the absolute value, this propo-
sition suggests that there is also a geometric interpretation for the product of
two complex numbers.

From polar coordinates it is known that any point in the plane can be
located by knowing its distance r from the origin, and its angle θ from the
positive x-axis.

Since r is the absolute value of (x+yi), perhaps the angle θ is also significant
with respect to the complex number. By using trigonometry in Figure 11.1,
we have that

x+ yi = r(cos θ + i sin θ).

This form is called the polar form of the complex number x+ yi. The angle
θ is called the argument of x+ yi. We can find the approximate argument of
a complex number (in radians) with the Sage command

N(arg(3 + 4*I))

0.927295218001612

Sage always finds an angle θ between −π and π, but we can also consider the
angles

. . . , θ − 6π, θ − 4π, θ − 2π, θ, θ + 2π, θ + 4π, θ + 6π, . . . .

All of these angles have the same sine and cosine, and hence are interchange-
able in the polar coordinate system. We call these angles co-terminal . The
set of angles co-terminal to θ can be written

{θ + 2πn | n ∈ Z}.

For example, the polar form of −
√
3− i is given by

2

(

cos

(−5π

6

)

+ i sin

(−5π

6

))

,

as seen from the commands
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simplify(abs( -sqrt(3) - I))

2

simplify(arg( -sqrt(3) - I))

-5/6*pi

However, we could have used any co-terminal angle instead of the one Sage
gave us. Thus,

2

(

cos

(
7π

6

)

+ i sin

(
7π

6

))

, 2

(

cos

(
19π

6

)

+ i sin

(
19π

6

))

, . . .

are also polar forms of −
√
3− i. The usefulness of the polar form of a complex

number is hinted at by the next lemma, which makes use of the trigonometric
identities

cos(A+B) = cos(A) cos(B)− sin(A) sin(B), and

sin(A+B) = sin(A) cos(B) + cos(A) sin(B).

LEMMA 11.6

If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then

z1 · z2 = r1 · r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

So the argument of the product is the sum of the arguments.

PROOF: We note that

z1 · z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2) =

r1 · r2((cos θ1 · cos θ2 − sin θ1 · sin θ2) + i · (cos θ1 · sin θ2 + sin θ1 · cos θ2)).

Using the trigonometric identities, this simplifies to

z1 · z2 = r1 · r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.

We can now use induction to prove the following important theorem:

THEOREM 11.2: De Moivre’s Theorem

If n is an integer, and z = r(cos θ + i sin θ) is a nonzero complex number in
polar form, then

zn = rn
(
cos(nθ) + i sin(nθ)

)
.

PROOF: Let us first prove the theorem for positive values of n. For n = 1,
the statement is obvious. Let us assume that the statement is true for the
previous case. That is,

zn−1 = rn−1
(
cos((n− 1)θ) + i sin((n− 1)θ)

)
.
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We want to prove that the theorem holds for n as well. Using Lemma 11.6,
we have

zn = zn−1 · z
= rn−1

(
cos((n− 1)θ) + i sin((n− 1)θ)

)
·
(
r(cos θ + i sin θ)

)

= rn(cos((n− 1)θ + θ) + i sin((n− 1)θ + θ))

= rn(cos(nθ) + i sin(nθ)).

Thus, the theorem is true for n, and hence by induction it is true whenever n
is positive.

If z is nonzero, then letting n = 0 gives

r0(cos(0 θ) + i sin(0 θ)) = 1(1 + i · 0) = 1 = z0.

So the theorem holds for n = 0. If z is nonzero, then r > 0, and so
(
r−n

(
cos(−nθ) + i sin(−nθ)

) )
·
(
rn
(
cos(nθ) + i sin(nθ)

) )
=

r−n+n
(
cos(−nθ + nθ) + i sin(−nθ + nθ)

)
= r0(cos 0 + i sin 0) = 1.

Now, if n < 0, then the theorem holds for −n, and so

z−n
(
rn(cos(nθ) + i sin(nθ))

)
= 1,

hence
rn(cos(nθ) + i sin(nθ)) = zn

even when n < 0.

De Moivre’s theorem (11.2) allows us to quickly raise a complex number to
an integer power.

Example 11.2

Compute (−
√
3− i)5.

SOLUTION: Since r =
√

(−
√
3)2 + (−1)2 = 2, and

θ = tan−1

( −1

−
√
3

)

− π = −5π/6,

then (−
√
3− i)5 is

25
(

cos

(−25π

6

)

+ i sin

(−25π

6

))

= 32

(√
3

2
− i

2

)

= 16
√
3− 16i.

We can also use De Moivre’s theorem (11.2) to find the nth root of 1. We
first define

ωn = cos

(
2π

n

)

+ i sin

(
2π

n

)

.
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FIGURE 11.2: The eight roots of unity

For example, ω1 = 1, ω2 = −1, ω3 = (−1 + i
√
3)/2, and ω4 = i, etc. Then

(ωn)
n = cos(2π) + i sin(2π) = 1,

so ωn is indeed one nth root of unity. In fact, all nth roots of 1 are given by
the numbers ωn, ω

2
n, ω

3
n, . . . up to (ωn)

n = 1.

Computational Example 11.3

The eighth root of unity, ω8, can be entered into Sage using the commands

w8 = (1/2 + I/2)*sqrt(2); w8

(1/2*I + 1/2)*sqrt(2)

This allows us to consider the group generated by ω8:

G = Group(w8); G

{(1/2*I + 1/2)*sqrt(2), I, (1/2*I - 1/2)*sqrt(2), -1,

-(1/2*I + 1/2)*sqrt(2), -I, -(1/2*I - 1/2)*sqrt(2), 1}

This gives the eight roots of unity, and shows that these elements form a
group. In fact, the nth roots of unity will form a cyclic group isomorphic to
Zn.

By rearranging the elements of G, we can create a circle graph as in Fig-
ure 11.2, with the elements in the proper positions in the complex plane.

G = [I, (1/2+I/2)*sqrt(2), 1 ,(1/2-I/2)*sqrt(2), -I,

(-1/2-I/2)*sqrt(2), -1, (-1/2+I/2)*sqrt(2)]

CircleGraph(G, Mult(w8))
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We are mainly interested in those elements of this subgroup that are gen-
erators.

DEFINITION 11.7 A complex number z is called a primitive nth root
of unity if the powers of z produce all n solutions to the equation xn = 1.

It is clear that ωn is a primitive nth root of unity, but also (ωn)
k is a

primitive nth root of unity if k and n are coprime.
We have seen that we can use De Moivre’s theorem (11.2) to raise a complex

number to an integer power, or even a rational power. Is it possible to use
this formula to raise a complex number to any real number, or even raise a
number to a complex power?

In most fields, raising an element to the power of an element is absurd.
Even in the real number system we will discover that we must utilize the

exponential function ex to compute quantities such as 2
√
2. We use that fact

that 2 = eln 2, and so

2
√
2 =

(
eln 2

)
√
2
= e((ln 2)

√
2).

The key algebraic property of the exponential function is that

ex+y = ex · ey for all x, y ∈ R.

This indicates that the exponential function is a group homomorphism map-
ping the additive group of real numbers to the multiplicative group of real
numbers. This homomorphism enables us to consider raising an element of
the real numbers to the power of an element.

Can we extend the exponential function into a group homomorphism from
the additive structure of C (denoted C+), to the multiplicative structure C∗?
If such a group homomorphism exists, then

ea+bi = ea · ebi = ea · (ei)b.

Sage indicates that the value of ei is (cos 1 + i sin 1). Problems 1 through 3
show three ways of proving this, all involving calculus. There is in fact no
way to prove that ei = cos 1 + i sin 1 without calculus. But given that this is
true, we then have by De Moivre’s theorem (11.2) that

ea+bi = ea · (ei)b = ea · (cos b+ i sin b)

whenever b is an integer. We will define this as the exponential function for all
complex numbers. Notice that radian measure must be used in this formula.

PROPOSITION 11.6

For z = a+ bi, the function

f(z) = ea · (cos b+ i sin b)
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defines a group homomorphism from C+ to C∗, which is an extension of the
standard exponential function. This function is called the complex exponential
function, and is also denoted ez.

PROOF: If z1 = a1 + b1i, and z2 = a2 + b2i, we observe that

f(z1 + z2) = ea1+a2(cos(b1 + b2) + i sin(b1 + b2)).

By Lemma 11.6, this equals

ea1(cos(b1) + i sin(b1)) · ea2(cos(b2) + i sin(b2)) = f(z1) · f(z2).

Thus, f is a group homomorphism from C+ to C∗.

This allows us another way of expressing ωn. Notice that

e2πi/n = cos

(
2π

n

)

+ i sin

(
2π

n

)

= ωn.

So we now have a more succinct way of defining the nth root of 1.
The real exponential function is one-to-one, but it is not onto since there

is no number for which ex = −1. However, the complex exponential function
is onto, since for every nonzero complex number in polar form, z = r(cos θ +
i sin θ), there is a complex number whose exponential is z, namely ln(r) + iθ.
The drawback of the complex exponential function is that it is not one-to-one!
The kernel of this homomorphism is the set

N = f−1(1) = {2kπi | k ∈ Z}.

DEFINITION 11.8 For any nonzero complex number z, we define the
complex logarithm of z, denoted log(z), to be the set of elements x such that
ex = z.

Notice that we use the function ln(x) to denote the real logarithm, while
we use log(z) to denote the complex logarithm. We have already observed
that when z is written in polar form, z = r(cos θ + i sin θ), that one value of
x that satisfies the equation is x = ln(r) + θi. We also know that f−1(z) will
be a coset of the kernel of f . Thus, we have log(z) = ln(r) + θi+N.

For example, log(−1) is the set

{πi+ 2kπi | k ∈ Z} = {. . . , −5πi, −3πi, −πi, πi, 3πi, 5πi, . . .}.

The Sage log function works for complex numbers, but only gives one element
of the set. Thus, we must add the kernel N to this result to obtain the set
given by log(z).

To help visualize the complex logarithm, we can graph the complex part of
log(x+ iy), but since this gives multiple values for each input value, we get a
surface that resembles a parking garage or a spiral staircase. See Figure 11.3.
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FIGURE 11.3: Imaginary portion of the complex logarithm function
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We can now define a complex number raised to a complex power, by saying

xz = (elog(x))z = ez·log(x).

Notice that this gives a set of numbers, not just a single number. Although
there will at times be an infinite number of elements in the set xz , this will
not always be the case.

PROPOSITION 11.7

For each integer n > 0, and any nonzero complex number z, there are exactly
n values for z(1/n). Thus, there are exactly n solutions for x to the equation
xn = z.

PROOF: Let z have the polar form

z = r(cos θ + i sin θ).

Then log(z) is the set

{ln(r) + θi+ 2kπi | k ∈ Z}.

Thus, log(z)/n is given by the set
{
ln(r)

n
+

(θ + 2kπ)i

n

∣
∣
∣
∣
k ∈ Z

}

.

Thus, the exponential function of the elements of this set is given by
{

e(ln(r)/n ·
(

cos

(
(θ + 2kπ)

n

)

+ i sin

(
(θ + 2kπ)

n

)) ∣
∣
∣
∣
k ∈ Z

}

=

{

r(1/n) ·
(

cos

(
(θ + 2kπ)

n

)

+ i sin

(
(θ + 2kπ)

n

)) ∣
∣
∣
∣
k ∈ Z

}

.

Notice that for two different values of k that differ by n, the arguments of the
cosine and sine will differ by 2π. Hence, we only have to consider the values
of k from 0 to (n− 1). This gives us the set
{

r(1/n) ·
(

cos

(
(θ + 2kπ)

n

)

+ i sin

(
(θ + 2kπ)

n

)) ∣
∣
∣
∣
k = 0, 1, 2, . . . , n− 1

}

.

However, these n solutions will have arguments that differ by less than 2π, so
these n solutions are distinct.

Finally, we must show that x is an element of z(1/n) if, and only if, x solves
the equation xn = z. But for any element in the above expression, we have
that

xn = rn(1/n) ·
(

cos

(
n(θ + 2kπ)

n

)

+ i sin

(
n(θ + 2kπ)

n

))

= r(cos θ + i sin θ) = z.
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Likewise, if xn = z, we can raise both sides to the (1/n)th power to get that
the two sets (xn)(1/n) and z(1/n) are equal. Since the element x is certainly
in the first set, it must also be in the set z(1/n) that we have just computed.

This last proposition is very useful for finding square roots and cube roots
of complex numbers. This turns out to have some important applications
in finding the roots of real polynomials! In fact, complex numbers and the
functions we have defined in this section have many applications in the real
world. The complex exponential function was fundamental to the invention of
the shortwave radio. The complex logarithm can be used in solving real valued
differential equations. So even though these numbers are labeled “imaginary,”
they are by no means just a figment of someone’s imagination.

Problems for §11.3

1 Assume that the Taylor series for the exponential function

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

is valid for complex numbers as well as for real numbers. Prove that ei =
(cos 1 + i sin 1).

Hint: Recall the Taylor series for sin(x) and cos(x).

2 Suppose we can write eix = u(x) + iv(x), where u(x) and v(x) are real
functions of a real variable x. If we assume that

d

dx
eix = u′(x) + iv′(x) = ieix,

use differential equations to prove that u(x) = cos(x) and v(x) = sin(x).
Hint: Since e0 = 1, we know that u(0) = 1 and v(0) = 0.

3 Assume that the limit from calculus

ex = lim
n→∞

(

1 +
x

n

)n

is valid for complex values of x as well as real values. Prove that ei = (cos 1+
i sin 1).

Hint: Convert (1 + i/n) into polar form using an arctangent.

4 Find all possible values of log(−1).

5 Find all possible values of log(
√
3− i).

6 Find all possible values of 11/6.

7 Find all complex solutions to the equation z4 + 1 = 0.
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8 Find all complex solutions to the equation z3 + 8 = 0.

9 Find all possible values of (8i)1/3.

10 Find five values of the expression ii.

11 Find five values of the expression (−i)(i/2).
12 Show that when x and y are both complex, the set of all values of the
expression xy forms a geometric sequence:

{. . . , a · r−3, a · r−2, a · r−1, a, a · r, a · r2, a · r3, . . .}.
13 Find complex numbers x and y such that the set of values for xy are the
powers of 2:

{. . . , 1

16
,
1

8
,
1

4
,
1

2
, 1, 2, 4, 8, 16, . . .}.

(See Problem 12. There will be more than one solution to this problem.)

14 Show that for a fixed n, the set of all nth roots of 1 forms a group with
respect to multiplication.

15 Prove that the group in exercise 14 is cyclic, with

ωn = cos

(
2π

n

)

+ i sin

(
2π

n

)

as a generator. Show that any generator of this group is a primitive nth root
of unity.

16 Prove or disprove: For all complex numbers x, y, and z,

(xz) · (yz) = (x · y)z.
Note: xz and yz may both represent sets of complex numbers, so the left-

hand side of this equation is the set of all possible products formed.

17 Prove or disprove: For all complex numbers x, y, and z,

(zx)y = z(x·y).

(See the note on Problem 16.)

18 Prove or disprove: For all complex numbers x, y, and z,

(zx) · (zy) = z(x+y).

(See the note on Problem 16.)

Interactive Problems

19 Find the twelfth roots of unity, and arrange them in such a way that the
circle graph puts the elements in the correct place in the complex plane, as
was done in Example 11.3.

20 Use Sage to plot the real part of log(x+iy), the companion of Figure 11.3.
Would this surface be multi-valued, as was Figure 11.3?



396 Abstract Algebra: An Interactive Approach

11.4 Ordered Commutative Rings

The integers, the rational numbers, and the real numbers all have one prop-
erty that most rings do not have. Given two different elements in the ring, we
can say that one of them is greater than the other. Most rings do not have
such an ordering, but we will find that some rings can be ordered in more than
one way! The orderings of a ring can give us new insight into the structure of
the ring.

Although this section is not referred to elsewhere in the book, it does intro-
duce the concept of an automorphism of a field. These automorphisms will
become central to the study of Galois theory in Chapter 15.

We begin by making a formal definition of an ordered ring R. If there is
a way to tell whether one element is greater than another, we should be able
to distinguish those elements that are greater than zero, called the positive
elements P .

DEFINITION 11.9 A commutative ring R is ordered if there exists a
set P such that the three properties hold:

1. P is closed under addition.

2. P is closed under multiplication.

3. For each x in R, one and only one of the following statements is true:

x ∈ P, x = 0, −x ∈ P.

The third property is sometimes called the law of trichotomy. With this
law, we can define what it means for one element to be greater than another.

DEFINITION 11.10 We say that x is greater than y, denoted x > y,
if x − y ∈ P . Likewise, we say that x is smaller than y, denoted x < y, if
y − x ∈ P . By the law of trichotomy, either

x > y, x < y, or x = y.

This notation keeps us from having to constantly refer to the set P . Instead
of writing x ∈ P , we can merely write x > 0.

We begin by proving some simple properties of the “greater than” sign.

LEMMA 11.7

If x, y, and z are elements in an ordered ring, then we have the following
three properties:
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1. If x > y, then x+ z > y + z.

2. If x > y and z > 0, then x · z > y · z.

3. If x > y and y > z, then x > z.

PROOF: To prove the first statement, note that since x > y, we have that

x− y ∈ P.

But then

(x+ z)− (y + z) ∈ P

and so x+ z > y + z.
For the second statement, we have that x > y and z > 0, and so (x−y) ∈ P

and z ∈ P . Since P is closed under multiplication, we have that

(x − y) · z = x · z − y · z ∈ P,

and so x · z > y · z.
Finally, if x > y and y > z, then both x− y ∈ P and y− z ∈ P . Since P is

closed under addition, we have that

(x− y) + (y − z) = x− z ∈ P,

and so x > z.

Given a ring that has an ordering, one of the great challenges is determining
the set of positive elements P . There are at least some elements that must be
in P .

PROPOSITION 11.8

For any nonzero element x in an ordered ring, x2 is in P .

PROOF: Since x 6= 0, by the law of trichotomy either x > 0, or −x > 0.
If x > 0 then

x2 = x · x > 0.

On the other hand, if −x > 0, then

x2 = (−x) · (−x) > 0.

Thus, in either case x2 is in P .

An immediate consequence of this is that if the ring has an identity e, then
e > 0, since e = e2. An additional statement can be proved if the ring is an
integral domain.
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COROLLARY 11.2

If R is an ordered integral domain with multiplicative identity 1, and n is any
positive integer, then n · 1 is in P . In particular, the characteristic of R must
be 0.

PROOF: Since 12 = 1 we have from Proposition 11.8 that 1 > 0. Proceeding
by induction, let us assume that (n− 1) · 1 > 0, and show that n · 1 > 0. But
this is easy, since

n · 1 = (n− 1) · 1 + 1 · 1 = (n− 1) · 1 + 1 > 0.

Thus, we have that n · 1 > 0 for every positive number n. This immediately
implies that the characteristic is zero, for if R had a positive characteristic p,
then p · 1 = 0, and we would have 0 > 0, a contradiction.

The standard examples of ordered rings are the integers, the rationals, and
the real numbers. It should be noted that the complex numbers do not form
an ordered ring, since i2 = −1 < 0, and by Proposition 11.8, any square must
be positive.

Example 11.4

Consider the subring of R from Example 10.1.

S = {x+ y
√
2 | x, y ∈ Z}.

We will call this ring Z[
√
2], the ring formed by adjoining

√
2 to Z. Find a

non-standard ordering on this ring.
SOLUTION: By Proposition 0.5, this ring has no zero divisors, so this is an
integral domain.

The standard ordering of Z[
√
2] would be to let P consist of all numbers that

are positive when viewed as a real number. By Corollary 11.2, the positive
integers must be in P , but there is no way of proving that

√
2 is in P . Thus,

we can consider an ordering where −
√
2 ∈ P . We can determine whether any

other element was in P or not in P . For example, 1 +
√
2 would be negative,

since
(1 +

√
2) · (1−

√
2) = −1 < 0,

and 1−
√
2 is the sum of two numbers in P , so this term is in P .

To see what is really going on in this example, it is helpful to look at the ring
automorphisms, which were introduced in the last section. The automorphism
of particular interest is as follows:

f : Z[
√
2] → Z[

√
2],

f(x+ y
√
2) = x− y

√
2.
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This automorphism can be defined in Sage. Since Sage already knows that
sqrt(2) · sqrt(2) is 2, we do not need to tell Sage anything to define the
ring Z[

√
2]. We now can define the homomorphism. For a homomorphism on

an infinite set of objects, the format is slightly different.

InitDomain(0)

F = FieldHomo()

HomoDef(F, sqrt(2), -sqrt(2))

CheckHomo(F)

True

F(2 + 3*sqrt(2))

-3*sqrt(2) + 2

We do not have to indicate the domain and target, since the domain will be
the currently defined field, which in this case is a subset of the real numbers.
The command InitDomain(0) merely clears out any previous fields that have
been defined, such as the “complex numbers modulo 3.”

If we let P denote the set of positive elements using the “standard” ordering,
and let P ′ be the set of positive elements under the unusual ordering we saw
above, then P ′ = f(P ). In fact, for any automorphism φ on an ordered ring,
we can construct an alternative way to order the ring by using φ(P ) instead
of P for the set of positive elements.

While we are working with the integral domain Z[
√
2] we might mention

what happens if we consider the field of quotients of this ring. Certainly this
must include all numbers of the form

x+ y
√
2, x, y ∈ Q,

but could there be other elements? We need to check that all non-zero ele-
ments of this form have a multiplicative inverse. For example,

Together(1/(2 + sqrt(2)))

-1/2*sqrt(2) + 1

produces a number in the correct form. In fact, we can learn how to take the
inverse of a+ b

√
2 by multiplying by a− b

√
2.

var("a b")

expand((a + b*sqrt(2))*(a - b*sqrt(2)))

a^2 - 2*b^2

Since this will be rational whenever a and b are rational, we see that

1

a+ b
√
2
=
a− b

√
2

a2 − 2b2
.

By Proposition 0.5, the denominator will not be zero for rational a and b, so
this is a field. We will call this field Q[

√
2].
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As one might guess from the FieldHomo command, we were really defining
a homomorphism on Q(

√
2). Hence, the automorphism f that we discovered

earlier on Z[
√
2] extends to an automorphism on Q[

√
2]. Thus, the unusual

ordering that we gave to Z[
√
2] extends to the field of quotients. In fact this

generally happens, as seen in the next proposition.

PROPOSITION 11.9

Let R be an ordered integral domain, with P the set of positive elements. Then
if Q is the field of quotients on R, then the ordering on R can be extended
in a unique way to an ordering on Q. That is, there is a unique set P ′ that
forms an ordering on Q, with

p ∈ P ⇒
(p

1

)

∈ P ′.

PROOF: We will begin by showing that the ordering is uniquely determined.
Since for any p in P , we have

(1

p

)

·
(p

1

)

=
(p

p

)

=
(1

1

)

= 1 ∈ P,

so
(
1
p

)
must be considered to be positive in the new ordering. But then

(
n
p

)

must be positive whenever n and p are in P . Thus P ′ contains at least those
elements of the form

(
n
p

)
, where n and p are in P . Note that every nonzero

element in the field of quotients Q must be of one of the four forms

(n

p

)

,
(−n
p

)

,
( n

−p
)

,
(−n
−p
)

,

where n and p are in P . But the first and the last expressions are equivalent,
and the middle two are also equivalent. Thus, for every nonzero element of
Q, either that element or its negative is of the form

(
n
p

)
, with n and p in P .

Thus, P ′ cannot contain any more elements besides those of the form
(
n
p

)
,

and hence P ′ is uniquely determined.
Now, suppose we consider the set of elements P ′ that can be expressed in

the form
(
n
p

)
, where n and p are in P . Does this form an ordering on Q? We

have already seen that the law of trichotomy has already been demonstrated.
All we need to show is that P ′ is closed under addition and multiplication.
But this is clear by looking at the formulas

(x

y

)

+
(u

v

)

=
(x · v + u · y

y · v
)

and (x

y

)

·
(u

v

)

=
(x · u
y · v

)

.

Thus, P ′ forms an ordering on Q, and is an extension of the ordering P .
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Example 11.5

What possible orderings can be put on the field

{x+ y
3
√
2 + z

3
√
4 | x, y, z ∈ Q}?

SOLUTION: First, we need to verify that this is indeed a field. We can try
some calculations in Sage.

Together(1/(1 + 2^(1/3))

1/3*2^(2/3) - 1/3*2^(1/3) + 1/3

It seems that Sage is always able to rationalize the denominator, but it is
harder to prove that this is always possible. However, if we compute

var("a b c")

expand((a + b*2^(1/3) + c*2^(2/3)) *

(a^2 - 2*b*c + (2*c^2 - a*b)*2^(1/3) + (b^2 - a*c)*2^(2/3)))

a^3 + 2*b^3 - 6*a*b*c + 4*c^3

we find that this product will always produce a rational number. Thus,

1

a+ b 3
√
2 + c 3

√
4
=
a2 − 2bc+ (2c2 − ab) 3

√
2 + (b2 − ac) 3

√
4

a3 + 2b3 + 4c3 − 6abc
.

It takes a bit more work to show that the denominator will never be zero
when a, b, and c are rational (see Problem 15). Once this has been proven,
we see that Q[ 3

√
2] is a field.

Does this field have an unusual ordering, as the field Q[
√
2] did? In this

field,

2
3
√
2 = (

3
√
4)2 > 0,

so both 3
√
2 and 3

√
4 must be positive. Also note that this field does not have a

nontrivial automorphism, since the only element in the field for which x3 = 2
is 3

√
2. Thus, an automorphism f on this field sends 3

√
2 to itself, and hence

f(x) = x for all x in this field. It is not surprising, then, that this field does
not have an unusual ordering, as the field Z[

√
2] did.

Computational Example 11.6

Find several possible ways of defining an ordering on the field

S =

{

x+ y cos
(π

9

)

+ z cos

(
2π

9

)

| x, y, z ∈ Q

}

.

SOLUTION: Using trigonometric identities we can multiply two such numbers
together to get a number in the same form. This can be verified by the
command
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var("x1 x2 y1 y2 z1 z2")

TrigReduce( (x1 + y1*cos(pi/9) + z1*cos(2*pi/9) ) *

(x2 + y2*cos(pi/9) + z2*cos(2*pi/9) ) )

1/2*y1*y2*cos(2/9*pi) + x2*z1*cos(2/9*pi) +

x1*z2*cos(2/9*pi) - 1/2*z1*z2*cos(2/9*pi) +

x2*y1*cos(1/9*pi) + x1*y2*cos(1/9*pi) +

1/2*y2*z1*cos(1/9*pi) + 1/2*y1*z2*cos(1/9*pi) +

1/2*z1*z2*cos(1/9*pi) + x1*x2 + 1/2*y1*y2 + 1/4*y2*z1 +

1/4*y1*z2 + 1/2*z1*z2

As messy as this is, one can see that it is an element of S, so S is closed under
multiplication. In fact, S is a field, but it is very difficult to show this.

Since the elements of this field are all real, there is a natural ordering of
the elements of S. Are there other ways to order this field? We want to look
for automorphisms on the field S. Consider a mapping sending cos(π/9) to
− cos(2π/9), and sending cos(2π/9) to cos(4π/9) = cos(π/9)− cos(2π/9).

InitDomain(0)

F = FieldHomo()

HomoDef(F, cos(pi/9), - cos(2*pi/9) )

HomoDef(F, cos(2*pi/9), cos(pi/9) - cos(2*pi/9) )

CheckHomo(F)

True

Apparently, this is an automorphism. Furthermore, we could consider the
homomorphism f2(x) = f(f(x)):

F(F(cos(pi/9)))

cos(2/9*pi) - cos(1/9*pi)

F(F(cos(2*pi/9)))

-cos(1/9*pi)

Are there any other automorphisms on the field S? We can show that
this is all of them. We will take advantage of the trig identity cos(3x) =
4 cos3 x− 3 cosx.

Thus,
1

2
= cos

(
3π

9

)

= 4 cos3
(π

9

)

− 3 cos
(π

9

)

.

Thus, cos(π/9) satisfies the polynomial equation 4x3 − 3x = 1/2. Because
f is an automorphism, we have to have f(cos(π/9)) satisfying the same poly-
nomial equation. But there are only three roots to a cubic equation, and so
there are only three possible values for f(cos(π/9)). Each of these three so-
lutions produces a unique automorphism on S. By Lemma 11.5, we see that
the group of automorphisms of this ring is isomorphic to Z3. In fact, we can
compute
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F(F(F(cos(pi/9))))

cos(1/9*pi)

F(F(F(cos(2*pi/9))))

cos(2/9*pi)

and see that f(f(f(x))) = x for all x.
The three automorphisms give us three ways to define an ordering on the

field S:

1. a >1 b if a is larger than b as real numbers.

2. a >2 b if f(a) >1 f(b).

3. a >3 b if f(f(a)) >1 f(f(b)).

We can actually use the automorphisms to prove that S is a field. If we let

var("a b c")

x = a + b*cos(pi/9) + c*cos(2*pi/9); x

c*cos(2/9*pi) + b*cos(1/9*pi) + a

we can consider what happens if we multiply the three automorphisms to-
gether.

TrigReduce(x * F(x) * F(F(x)))

a^3 - 3/4*a*b^2 + 1/8*b^3 - 3/4*a*b*c + 3/4*b^2*c

- 3/4*a*c^2 + 3/8*b*c^2 - 1/8*c^3

We discover that this product will be a rational number! See Problem 17 for
an explanation. With this, we can see that

1

x
=

8f(x) · f(f(x))
8a3 − 6ab2 + b3 − 6abc+ 6b2c− 6ac2 + 3bc2 − c3

.

Since we can compute

TrigReduce(8 * F(x) * F(F(x)))

4*b^2*cos(2/9*pi) - 8*a*c*cos(2/9*pi) - 4*c^2*cos(2/9*pi) -

8*a*b*cos(1/9*pi) + 8*b*c*cos(1/9*pi) + 4*c^2*cos(1/9*pi) +

8*a^2 - 2*b^2 - 2*b*c - 2*c^2

we find that
1

a+ b cos(π/9) + c cos(2π/9)
=

(8a2−2b2−2bc−2c2)+(8ab+8bc+4c2) cos
(
π
9

)
+(4b2−8ac−4c2) cos

(
2π
9

)

8a3 − 6ab2 + b3 − 6abc+ 6b2c− 6ac2 + 3bc2 − c3
.

We have seen that some fields may have many ways of assigning an order
to the elements, while others have only 1. The key is the number of ring
automorphisms. These ring automorphisms will play a major role in the
following chapters.
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Problems for §11.4

1 Show that the equation x2 + e = 0 has no solutions in an ordered ring.

2 Prove that if a is an element in a nontrivial ordered ring, then there exists
an element b such that b > a.

3 Show that if 0 < x < y in an ordered ring, then x2 < y2.

4 Show that if 0 < a < b and 0 < c < d in an ordered ring, then ac < bd.

5 Show that if a and b are invertible elements in an ordered ring, and 0 <
a < b, then a−1 > b−1.

6 Prove that if x and y are two elements in an ordered ring,

x2 + y2 ≥ 2xy.

7 Prove that if x and y are two elements in an ordered ring,

x2 + y2 ≥ −2xy.

8 In the integral domain Z[x], let (Z[x])+ denote the set of all polynomials
whose leading coefficient is positive. Prove that Z[x] is an ordered integral
domain by proving that (Z[x])+ is a set of positive elements for Z[x].

9 Show that in the integral domain Z[x], there is a ring automorphism that
sends x to −x. Hence, there is a second way to order the integral domain Z[x].
Describe the set of positive elements in this new ordering. (See Problem 8.)

10 Show that the ring of real numbers R does not have a nontrivial ring
automorphism.

Hint: First show that there is no nonstandard ordering on R.

11 Although the definition of an ordered ring assumed that the ring R is
commutative, there is no reason why we cannot use Definition 11.9 on a non-
commutative ring. Consider the set W of all linear differential operators with
polynomial coefficients. Each member of this set sends the function y(x) to

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p2(x)y
′′ + p1(x)y

′ + p0(x)y,

where each pi(x) is a polynomial in Z[x], and y(n) represents the nth derivative
of y. Addition can be defined on this set in the standard way, and multipli-
cation is done by composition, using implicit differentiation. For example, if
D is the element sending y to y′, and X is the element sending y to xy, then
D ·X sends y to (xy)′ = xy′ + y. Show that W is a ring. This ring is called
the Weyl algebra (of one variable).
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12 In the ringW from Problem 11, let T1 map y to xy′′+y, and T2 map y to
(x2+1)y′−2xy. Find T1 ·T2 and T2 ·T1, and show the ring is non-commutative.

13 Let φ :W → Z[x] be the mapping that maps every non-zero element of w
from Problem 11 to the coefficient polynomial pn(x) of the highest derivative
of the linear operator. For example, if T maps y to (3x2 + 5x+ 2)y′′ + (4x+
3)y′ − 5x2y, φ(T ) = 3x2 + 5x+ 2. Show that φ(T · S) = φ(T ) · φ(S).

14 Show that the Weyl algebraW from Problem 11 has an ordering accord-
ing to Definition 11.9.

Hint: Let P be the set of non-zero elements for which the leading coefficient
of φ(T ) is positive, using φ from Problem 13. You can use the result of
Problem 8.

15 Prove that a3 +2b3+4c3− 6abc is never zero for rational a, b, and c, not
all 0. This result was used in Example 11.5.

Hint: If there were a rational solution, we could multiply by the common
denominator to get an integer solution. Furthermore, we could assume that
no prime divides all three numbers.

16 Find the multiplicative inverse of 3
√
4− 3

√
2− 3 in Q( 3

√
2).

17 Show that for the automorphism from Example 11.6, y = x·f(x)·f(f(x))
will always be a rational number.

Hint: What is f(y)?

18 Show that in Example 11.6, the denominator

8a3 − 6ab2 + b3 − 6abc+ 6b2c− 6ac2 + 3bc2 − c3 6= 0

for rational a, b, and c, not all 0. See the hint for Problem 15.

Interactive Problems

19 Follow the example of Z[ 3
√
2] to define the integral domain Z[

√
5] in Sage.

Then define F to be a nontrivial ring automorphism for this domain.

20 Use Sage to show that numbers of the form

x+ y cos(π/7) + z cos(2π/7)

are closed under multiplication, using TrigReduce. Assuming that this forms
a field, find a non-trivial ring automorphism on this field. This problem will
not work in Mathematica.
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Chapter 12

Unique Factorization

We have already proven the unique factorization for the set of integers, namely,
that all numbers greater than one can be factored uniquely into one or more
positive primes. In this chapter we will focus on integral domains for which
a similar property holds. These will be referred to as unique factorization
domains, or UFD’s.

The study of unique factorization may well be considered the origin of mod-
ern abstract algebra. When Gabriel Lamé announced his proof of Fermat’s
last theorem, it was quickly pointed out that he assumed certain integral
domains were UFD’s, which in fact were not. Ernst Kummer partially re-
paired the proof by introducing ideal numbers . (See Historical Diversion on
page 432.) Later, Kummer’s ideal numbers were developed into ideals , and
Dedekind would later classify those integral domains for which ideals can be
expressed uniquely as a product of prime ideals.

12.1 Factorization of Polynomials

In the last chapter, we defined the integral domain F [x] of all polynomials
with coefficients in a field F . In this section we will investigate how such
polynomials factor. Most of the statements in this section are very familiar
from the properties of polynomials Q[x] studied in a standard algebra course.

We say that f(x) factors if there are two non-constant polynomials g(x) and
h(x) such that f(x) = g(x) ·h(x). We also say that both g(x) and h(x) divide
the polynomial f(x). But g(x) and h(x) may also factor into non-constant
polynomials. We want to show that we can factor f(x) into polynomials
that cannot be factored further. We also want to lay down the groundwork
for showing that the polynomials produced by this factorization are in some
sense uniquely determined.

One of the techniques from a standard algebra course is doing “long divi-
sion” on polynomials.

Example 12.1

Find the quotient and remainder when the polynomial x3 − 3x2 + 4x − 5 is

407
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x/2 − 3/2

2x2 − 5
)

x3 − 3x2 + 4x − 5
x3 − 5/2x

− 3x2 + 13/2x− 5
− 3x2 + 15/2

13/2x− 25/2

FIGURE 12.1: Sample long division problem

divided by 2x2 − 5.
SOLUTION: The work is done in Figure 12.1. This shows that x3−3x2+4x−5
divided by 2x2 − 5 yields x/2 − 3/2, with a remainder of 13/2x− 25/2. We
can write this as

x3 − 3x2 + 4x− 5 = (2x2 − 5) · (x/2− 3/2) + (13/2x− 25/2).

Fortunately, Sage can do this tedious long division for you.

var("x")

PolynomialQuotient(x^3 - 3*x^2 + 4*x - 5, 2*x^2 - 5)

1/2*x - 3/2

PolynomialRemainder(x^3 - 3*x^2 + 4*x - 5, 2*x^2 - 5)

13/2*x - 25/2

This “long division” algorithm works for any field, not just the rational
numbers Q. We can prove this by induction on the degree of the dividend.

THEOREM 12.1: The Division Algorithm Theorem

Let F be a field, and let F [x] be the set of polynomials in x over F . Let f(x)
and g(x) be two elements of F [x], with g nonzero. Then there exist unique
polynomials q(x) and r(x) in F [x] such that

f(x) = g(x) · q(x) + r(x)

and either r(x) = 0 or the degree of r(x) is less than the degree of g(x).

PROOF: We begin by showing that q(x) and r(x) exist, and then prove that
they are unique. If f(x) = 0, or if the degree of f(x) is less than the degree
of g(x), we can simply let q(x) = 0, and r(x) = f(x). So we may suppose
that the degree of f(x) is at least as large as the degree of g(x). Let n be the
degree of f(x) and let m be the degree of g(x).

If n = m = 0, then f(x) and g(x) are both nonzero constants in the field F ,
so we may pick q(x) to be the constant polynomial f · g−1, and pick r(x) = 0.
Thus, we can find a suitable q(x) and r(x) when n = 0.



Unique Factorization 409

Now let us proceed by induction on n. That is, we will assume that we can
find a suitable q(x) and r(x) whenever the degree of f(x) is less than n. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and
g(x) = bmx

m + bm−1x
m−1 + · · ·+ b0.

Since n is at least as large as m, we can consider the polynomial

p(x) = anb
−1
m xn−m

of degree n−m. By Lemma 11.1, p(x) · g(x) has degree n, and in fact, since

p(x) · g(x) = anx
n + anb

−1
m bm−1x

n−1 + · · ·+ anb
−1
m b0x

n−m,

the coefficient of the xn term would be an. Thus, f(x)−p(x) ·g(x) is of degree
less than n. So by the induction hypothesis, there exist polynomials z(x) and
r(x) such that

f(x)− p(x) · g(x) = z(x) · g(x) + r(x)

with the degree of r(x), less than the degree of g(x). Thus,

f(x) = (p(x) + z(x)) · g(x) + r(x).

By letting q(x) = p(x)+z(x) we have proved that suitable q(x) and r(x) exist.
Next, let us prove that q(x) and r(x) are unique. Suppose that there is a

second pair q(x) and r(x) such that f(x) = q(x) · g(x) + r(x). Then

q(x) · g(x) + r(x) = q(x) · g(x) + r(x),

or
(q(x)− q(x)) · g(x) = r(x) − r(x).

The left-hand side is either 0 (when q(x) = q(x)), or has degree at least m,
since g(x) is of degree m. The right-hand side is either 0, or has a degree less
than m. This is a contradiction unless both sides of the equation are 0. Thus,
q(x) = q(x) and r(x) = r(x), and the uniqueness has been proven.

This theorem not only shows that the quotient q(x) and remainder r(x)
are unique, but the proof basically follows the procedure that is used in Fig-
ure 12.1. This means that the familiar long division algorithm used for real
polynomials will in fact work for polynomials over any field. In many circum-
stances, we can do this algorithm on polynomials over any integral domain.

COROLLARY 12.1

Let R be an integral domain, and let f(x) and g(x) be two polynomials in R[x].
If there is a field F containing R such that g(x) divides f(x) as polynomials
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in F [x], and if the leading coefficient of g(x) is 1, then g(x) divides f(x) in
R[x].

PROOF: The only time that we needed to use a division in the proof of
the division algorithm theorem (12.1) is when we divided by the leading coef-
ficient of g(x). Thus, if the leading coefficient of g(x) is 1, we can do all of the
operations in R[x] instead of F [x]. The result is that there are polynomials
q(x) and r(x) such that

f(x) = g(x) · q(x) + r(x)

in R[x]. But g(x) divides f(x) in the ring F [x]. So there is an h(x) in F [x]
such that

f(x) = g(x) · h(x).
But q(x) and r(x) can also be viewed as polynomials in F [x], and the division
algorithm shows that these are uniquely defined, even in F [x]. Thus, q(x) =
h(x) and r(x) = 0. Therefore, g(x) divides f(x) in R[x].

We are used to thinking of polynomials as functions, rather than as elements
in a domain. If we want to “evaluate” a polynomial f(x) at a particular value
y, we run into a technical problem, since f(x) is not a function. The division
algorithm comes to our rescue on the occasion when we do need to evaluate
polynomials at a particular value.

DEFINITION 12.1 Let K be a field or integral domain, and let K[x]
be the set of polynomials in x over K. For a fixed element y in K, define the
mapping φy : K[x] → K by

φy(f(x)) = the remainder r(x) when f(x) is divided by (x− y).

Since the polynomial (x− y) is first degree, either r(x) is 0 or is of degree 0,
so r(x) is in fact in K.

PROPOSITION 12.1

The mapping φy : K[x] → K is a homomorphism, called the evaluation ho-
momorphism at y.

PROOF: Let f1(x) and f2(x) be two polynomials in K[x]. By the division
algorithm theorem (12.1) there exists q1(x), q2(x), φy(f1(x)) = r1(x), and
φy(f2(x)) = r2(x) such that

f1(x) = (x− y) · q1(x) + r1(x),

and
f2(x) = (x− y) · q2(x) + r2(x).
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Then
f1(x) + f2(x) = (x − y)(q1(x) + q2(x)) + r1(x) + r2(x),

and

f1(x) · f2(x) = ((x − y) · q1(x) + r1(x)) · ((x− y) · q2(x) + r2(x))

= (x − y) · ((x− y) · q1(x)q2(x) + q1(x)r2(x) + q2(x)r1(x)) + r1(x) · r2(x).
By the uniqueness of the division algorithm, we have that

φy(f1(x) + f2(x)) = r1(x) + r2(x) = φy(f1(x)) + φy(f2(x)),

and
φy(f1(x) · f2(x)) = r1(x) · r2(x) = φy(f1(x)) · φy(f2(x)).

Thus, φy is a homomorphism.

We will often denote φy(f(x)) by the conventional notation, f(y). However,
whenever we want to emphasize the homomorphism property, we will use the
notation φy(f(x)) for the evaluation homomorphism.

In Sage, one can use the .subs function to find the value of a polynomial
in one variable at a particular number. To evaluate the polynomial x3+5x2+
4x− 4 at x = 3, enter

var("x")

(x^3 + 5*x^2 + 4*x - 4).subs(x == 3)

80

Notice that we had to use a “double equal sign” inside of the .subs command.
Sage also can use the standard functional notation:

f(x) = x^3 + 5*x^2 + 4*x - 4

f(3)

80

The difference here is that Sage is actually defining a simple function, and
evaluating the function at x = 3

The .subs commands suggest a way to determine what it means for a
polynomial to have a root.

DEFINITION 12.2 Let f(x) be a polynomial over the field or integral
domain F . If r is an element of F such that φr(f(x)) = 0, then r is called a
zero, or a root , of f(x). Of course this is equivalent to saying that (x− r) is
a factor of f(x).

Example 12.2

Consider the polynomial x2 + 1 in Z5[x]. We can visually evaluate this poly-
nomial at x = 2 to see that

φ2(x
2 + 1) = 22 + 1 = 0
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in the field Z5. Thus, 2 is a root, or zero, of x2 + 1.

As one can imagine, the factorization of a polynomial over an arbitrary
field can be more cumbersome than the customary factorization. For a finite
field (such as Z5), almost the only way to find roots is by trial and error.
Fortunately, Sage can do this very quickly. However, the good news is that if
we have found enough roots to a polynomial, we already have the factorization.

PROPOSITION 12.2

Let f(x) be a polynomial over the field F that has positive degree n and leading
coefficient an. If r1, r2, r3, . . . rn are n distinct zeros of f(x), then

f(x) = an · (x− r1) · (x− r2) · (x− r3) · · · (x− rn).

PROOF: Again, we will proceed by induction on the degree of f(x), which we
will call n. If n = 1, then f(x) = a1x+a0, and since r1 is a root, a1r1+a0 = 0.
Thus, a0 = −a1r1, and hence

f(x) = a1x− a1r1 = a1(x − r1).

So the proposition is true when n = 1.
Now we will apply the induction hypothesis on n. Since rn is a root of f(x),

we have that
f(x) = (x− rn)g(x)

for some g(x), which by Lemma 11.1 is of degree n − 1. Furthermore, g(x)
and f(x) have the same leading coefficient, an. For m = 1, 2, . . . , n − 1, we
have

0 = φrm(f(x)) = (rm − rn) · φrm(g(x)).

Since (rm − rn) is not 0, we have that g(x) has n − 1 distinct roots, namely
r1, r2, r3, . . . , rn−1. Thus, by induction,

g(x) = an(x− r1)(x − r2)(x− r3) · · · (x− rn−1).

Thus,
f(x) = an(x− r1)(x − r2)(x− r3) · · · (x− rn).

COROLLARY 12.2

A polynomial of positive degree n over the field F has at most n distinct zeros
in F .

PROOF: Suppose that f(x) has at least n+1 roots, r1, r2, . . . , rn, rn+1. From
Proposition 12.2,

f(x) = an(x− r1)(x − r2)(x− r3) · · · (x− rn).



Unique Factorization 413

Since rn+1 is also a root, we have

0 = φrn+1(f(x)) = an(rn+1 − r1)(rn+1 − r2)(rn+1 − r3) · · · (rn+1 − rn).

But all of the factors on the right-hand side are nonzero, which is a contra-
diction. Thus, there can be at most n distinct zeros of f(x).

We can use Proposition 12.2 to do some factorizations in different fields.

Example 12.3

Find the factorization of x2 + 1 in Z5[x].
SOLUTION: We can verify that both 2 and 3 are roots of the polynomial
x2 + 1. Thus

x2 + 1 = (x− 2)(x− 3) in Z5.

Here is an application of Corollary 12.2 that has many applications even
using the real number field.

COROLLARY 12.3

Let F be a field, let x0, x1, x2, x3, . . . xn be n+ 1 distinct elements of F , and
let y0, y1, y2, y3, · · · yn be n + 1 values in F (not necessarily distinct). Then
there is a unique polynomial f(x) with degree at most n such that

f(x0) = y0, f(x1) = y1, f(x2) = y2, . . . f(xn) = yn.

PROOF: To prove uniqueness, suppose that f(x) and g(x) are two such poly-
nomials. Then h(x) = f(x)−g(x) will have roots at x0, x1, x2, x3, . . . , xn. But
h(x) would have degree at most n, which contradicts Corollary 12.2. Thus,
the polynomial f(x) is unique.

To show that this polynomial exists, we will first construct the nth degree
polynomial

f0(x) =
(x− x1) · (x− x2) · (x− x3) · · · (x− xn)

(x0 − x1) · (x0 − x2) · (x0 − x3) · · · (x0 − xn)

for which f0(x0) = 1 but x1, x2, x3, . . . xn are roots of f0(x). (Note that since
all of the xi are distinct, the denominator is not 0.)

We can likewise define f1(x), f2(x), f3(x), . . . , fn(x) such that

f1(x1) = f2(x2) = f3(x3) = · · · fn(xn) = 1,

yet the remaining n xi’s are roots for each polynomial. Finally, we construct
the polynomial

g(x) = y0f0(x) + y1f1(x) + y2f2(x) + y3f3(x) + · · ·+ ynfn(x).



414 Abstract Algebra: An Interactive Approach

Clearly g(x) will be a polynomial of degree at most n, and also g(x0) = y0,
g(x1) = y1, g(x2) = y2, g(x3) = y3, . . . g(xn) = yn. Thus, we have constructed
the required polynomial.

This corollary shows, for example, that knowing just three points of a
quadratic function is sufficient to determine the quadratic function. Sage has
the built-in function InterpolatingPolynomial that finds this polynomial
from a list of points.

InitDomain(0)

InterpolatingPolynomial([[1,2], [2,4], [3,8]], "x")

x^2 - x + 2

This finds the polynomial in x such that f(1) = 2, f(2) = 4, and f(3) = 8.
The first command InitDomain(0) defines the field to be rational numbers.
The InterpolatingPolynomial command works for other fields as well, such
as the “complex numbers modulo 3.” Later, we will see how this interpolating
polynomial, applied to a different field, is used to store information on a CD
or DVD.

We are now ready to define the polynomials that in many ways act as the
prime numbers of number theory.

DEFINITION 12.3 A polynomial f(x) in F [x] is said to be reducible
over F if f(x) has positive degree, and f(x) can be expressed as a product
f(x) = g(x) ·h(x) where both g(x) and h(x) have positive degree. If f(x) has
positive degree and is not reducible, it is called irreducible.

We saw above that x2 +1 was reducible over Z5. However, Sage will claim
that this polynomial is irreducible.

var("x")

factor(x^2 + 1)

x^2 + 1

The reason of course is that Sage is viewing this polynomial as an element
of Q[x], not Z5[x]. Yet this polynomial would have a factorization if we were
allowed to work with complex numbers:

expand( (x + I)*(x - I) )

x^2 + 1

Thus, x2+1 is reducible over C, the field of complex numbers. Thus, whether
a polynomial is reducible or irreducible over F greatly depends on the field
F .

It should be noted that if g(x) and h(x) both have positive degree, then
g(x) · h(x) has degree at least 2. Thus, all polynomials of degree 1 must be
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irreducible. Constant polynomials, however, are not considered to be irre-
ducible.

Although it can be tricky to decide whether a polynomial is reducible or
irreducible, there is a way to test polynomials of low degree.

PROPOSITION 12.3

If f(x) is a polynomial of degree 2 or 3 over the field F , then f(x) is reducible
over F if, and only if, f(x) has a zero in F .

PROOF: Suppose that f(x) has a zero in F , say r. Then

f(x) = (x− r)q(x)

where q(x) has degree one less than f(x). This shows that f(x) is reducible.
Now suppose that f(x) is reducible. Then f(x) = g(x) · h(x), where the

degree of g(x) plus the degree of h(x) is 2 or 3. Thus, either g(x) or h(x) has
degree 1. We may suppose g(x) has degree 1, and so

f(x) = (a1x+ a0)h(x).

Then −a0a−1
1 is a root of f(x), and the proof is complete.

We can use this proposition to determine whether polynomials of degree
less than 4 are irreducible over a finite field. Simply plug in all elements of
the field, and see if any of them produce 0 in that field.

Example 12.4

Determine whether the polynomial x3 + 2x2 − 3x+ 4 is reducible in Z5.
SOLUTION: If we let f(x) = x3 + 2x2 − 3x + 4, we find that f(0) = 4,
f(1) = 4. f(2) = 14, f(3) = 40, and f(4) = 88. One of these, namely when x
was replaced by 3, produced a multiple of 5, which is equivalent to 0 in the
field Z5. Thus, this polynomial is reducible.

PROPOSITION 12.4

If F is a field, then all polynomials in F [x] of positive degree are either irre-
ducible, or can be expressed as a product of irreducible polynomials.

PROOF: If f(x) has degree 1, then we have seen that it is irreducible. Let
us proceed by induction on the degree n of f(x). If f(x) is not irreducible,
then we can express f(x) = g(x) · h(x), where g(x) and h(x) are polynomials
of degree at least 1. But g(x) and h(x) must have degree less than n. Thus,
by induction, g(x) and h(x) are either irreducible, or can be written as a
product of irreducible polynomials. Thus, f(x) can be written as a product
of irreducible polynomials.
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One last tool we have to help us find irreducible polynomials is the Greatest
Common Divisor (GCD) of two polynomials. The proof of the next theorem
mimics the proof of the greatest common divisor theorem for integers (0.4).

THEOREM 12.2 : The Greatest Common Divisor Theorem for

Polynomials

Let F be a field, and let F [x] be the polynomials in x over the field F . Given
two nonzero polynomials f(x) and g(x) in F [x], there exists a nonzero poly-
nomial h(x) such that

1. h(x) divides both f(x) and g(x).

2. There exist polynomials s(x) and t(x) such that

f(x) · s(x) + g(x) · t(x) = h(x).

Furthermore, the polynomial h(x) is unique except for multiplication by a
constant.

PROOF: Let us consider the set of all polynomials that can be produced
by

f(x) · s(x) + g(x) · t(x)

where s(x) and t(x) are in F [x]. Call this set A. Both f(x) and g(x) are in
A, so A contains nonzero polynomials. Consider a nonzero polynomial h(x)
in A of the lowest degree. By the division algorithm theorem (12.1), we can
find polynomials q(x) and r(x) such that

f(x) = q(x) · h(x) + r(x),

where r(x) is either 0, or has lower degree than h(x). But then

r(x) = f(x)− q(x) · h(x) = (1 − q(x) · s(x)) · f(x)− q(x) · g(x) · t(x),

which is in A. But if r(x) is not zero, the degree of r(x) would be less than the
degree of h(x), and we picked h(x) to be of the lowest degree. Thus, r(x) = 0,
and h(x) divides f(x). By a similar argument, h(x) divides g(x).

To prove that h(x) is unique, note that since h(x) divides f(x) and g(x),
then h(x) divides all polynomials in A. So if there is another polynomial d(x)
in A that divides both f(x) and g(x), then h(x) would divide d(x). But d(x)
would also divide h(x). Thus, h(x) and d(x) would have to have the same
degree, and

d(x) = u · h(x)

where u is a constant polynomial. Thus, h(x) is unique up to multiplication
by a constant.
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DEFINITION 12.4 Given two polynomials in F [x], the greatest common
divisor is the polynomial given in the above theorem whose leading coefficient
is 1.

The Sage command gcd will find the greatest common divisor of two poly-
nomials as well as integers. For example, gcd(x4 − 1, x3 − 1) is found by the
commands

var("x")

gcd(x^3 - 1, x^4 - 1)

x - 1

Thus, there are two polynomials s(x) and t(x) such that

(x3 − 1) · s(x) + (x4 − 1) · t(x) = x− 1.

See Problem 20.

COROLLARY 12.4

Let F be a field, and let f(x), g(x), and h(x) be polynomials in F [x]. If f(x)
is an irreducible divisor of g(x) · h(x), then either g(x) or h(x) is a multiple
of f(x).

PROOF: Suppose that f(x) divides neither g(x) nor h(x). Then the greatest
common divisor of f(x) and g(x) must have degree less than the degree of
f(x). But gcd(f(x), g(x)) must divide f(x), and f(x) is irreducible. Thus, the
greatest common divisor of f(x) and g(x) must be 1. Likewise gcd(f(x), h(x))
must also be 1. By the greatest common divisor theorem (12.2), there exist
polynomials r(x), s(x), t(x), and u(x) such that

f(x) · r(x) + g(x) · s(x) = 1,

and

f(x) · t(x) + h(x) · u(x) = 1.

By multiplying these two together, we have

1 = (f(x) · r(x) + g(x) · s(x)) · (f(x) · t(x) + h(x) · u(x))
= f(x)2 · r(x) · t(x) + f(x) · r(x) · h(x) · u(x)

+ f(x) · g(x) · s(x) · t(x) + g(x) · h(x) · s(x) · u(x).

Note that all of the terms on the right-hand side are multiples of f(x) (includ-
ing the last term, since g(x) · h(x) is a multiple of f(x)). But the left-hand
side is 1, which cannot be a multiple of f(x). Thus, we have a contradiction,
and so either g(x) or h(x) is a multiple of f(x).
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The irreducible polynomials will play the same role in the domain F [x] as
prime numbers play in the domain Z. The key property of integer factoriza-
tions is that every positive number greater than one can be factored uniquely
into a product of primes. We would like to prove something similar for poly-
nomials in F [x], but find we will have to modify our definition of unique
factorization. In the next section, we will explain what it means for a general
ring to have a unique factorization, and apply this to both polynomial rings
and integers.

Problems for §12.1

For Problems 1 through 6: Use the division algorithm to determine polyno-
mials q(x) and r(x) in F [x] such that f(x) = q(x) · g(x) + r(x), where the
degree of r(x) is less than the degree of g(x).

1 f(x) = 2x3 + 3x2 − 5x+ 4, g(x) = 2x2 − x+ 1, F = Q.
2 f(x) = x3 + 4x2 + 2x− 1, g(x) = 2x2 + x− 1, F = Q.
3 f(x) = x5 + x3 + x2 + x, g(x) = x3 + x2 + 1, F = Z2.
4 f(x) = x6 + x5 + x2 + 1, g(x) = x3 + x+ 1, F = Z2

5 f(x) = x4 + 2x2 + x+ 1, g(x) = x2 + x+ 2, F = Z3

6 f(x) = x3 + 4x2 + 3x+ 2, g(x) = 2x2 + 3x+ 1, F = Z5

7 Find a quadratic polynomial f(x) such that f(−1) = 6, f(1) = 2, and
f(2) = 9.

Hint: Either solve three equations for three unknowns, or use the proof of
Corollary 12.3.

8 Find a quadratic polynomial in Z3[x] such that f(0) = f(1) = 2, and
f(2) = 0.

9 Prove that x2 + 5 is irreducible over the field R of real numbers.

10 Determine whether x3 + 2x2 + 3x+ 2 is irreducible over Z5.

11 Determine whether x3 + 2x2 + 3x+ 5 is irreducible over Z7.

12 Show that x3 − 9 is irreducible over the field Z13.

13 Let F be a field that is contained in a larger field K. Let f(x) and g(x)
be two polynomials in F [x] that are coprime in F [x]. Show that f(x) and
g(x) are also coprime in K[x].

For Problems 14 through 19: Find the greatest common divisors of the poly-
nomials over the field F . Hint: Mimic the Euclidean algorithm.

14 f(x) = x3 + 2x2 − 2x− 3, g(x) = x3 − x2 − 5x+ 6, F = Q.
15 f(x) = 2x4 − 3x3 + 7x2 + 7x− 5, g(x) = x3 − 3x2 + 7x− 5, F = Q.
16 f(x) = x5 + x4 + 1, g(x) = x5 + x+ 1, F = Z2.
17 f(x) = x3 + 2, g(x) = x2 + 1, F = Z5.
18 f(x) = x4 + 2x2 + 2x+ 2, g(x) = x4 + 2x3 + x2 + 2, F = Z3.
19 f(x) = x3 + 2x2 + 4x+ 1, g(x) = x3 + 3x2 + 5x+ 3, F = Z7.
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20 Find s(x) and t(x) such that

(x3 − 1) · s(x) + (x4 − 1) · t(x) = x− 1.

Interactive Problems

21 Use the Sage command InterpolatingPolynomial to find a third-
degree polynomial such that f(n) = n! for n = 1, 2, 3, and 4. How close
is f(5) to 120?

22 Use Sage to find polynomials s(x) and t(x) in Q[x] such that

(x2 + 2x− 3) · s(x) + (x2 − x+ 4) · t(x) = 1.

Hint: xgcd does not work for polynomials. Imitate the Euclidean algorithm
with PolynomialQuotient and PolynomialRemainder.

12.2 Unique Factorization Domains

In this section we wish to determine a general definition of unique factor-
ization that would apply not only to F [x], but for any ring. We will mainly
be interested in integral domains for which factorizations are unique.

DEFINITION 12.5 Let R be a commutative ring. We say that an
element x in R is a unit if x has a multiplicative inverse.

In Proposition 9.4 we defined the set of invertible elements of R as R∗, and
showed that they formed a group under multiplication. The units of R will
play the same role as the constant polynomials do in the ring F [x]. In fact,
we can model the definition of reducible and irreducible elements of a ring on
the definition of irreducible polynomials in F [x].

DEFINITION 12.6 Let R be a commutative ring. If a nonzero element
x in R is not a unit, and can be expressed as a product x = y · z, where
neither y nor z are units, then we say that x is reducible. If a nonzero element
is neither a unit nor reducible, we say it is irreducible.

Although this definition is mainly applied to integral domains, we can apply
the definition to any ring with an identity.

Example 12.5

Find an irreducible element in the ring defined by Tables 9.3 and 9.4 in Chap-
ter 9.
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SOLUTION: We see from Table 9.4 that the units of this ring are a + b and
−a + b. We observe that a, 2a, 3a, and b can be expressed as a product of
two non-units, so these would be reducible. But the only way that 2a+ b can
be expressed as a product is if a + b or −a + b is one of the factors, so this
element is irreducible.

Let us consider the more familiar ring, Z. The only two elements with
multiplicative inverses are ±1. The irreducible elements are of course the
prime numbers 2, 3, 5, 7, 11, 13, . . .. But by this definition, the negative of a
prime number is also irreducible. But by introducing negative primes, we find
that numbers can be written as a product of primes in more than one way:

12 = 2 · 2 · 3 = 2 · (−2) · (−3) = (−2) · (−2) · 3.

Because we now are including negative primes, we also have to redefine what is
meant by unique factorization. The first step is to understand the relationship
between these different factorizations.

DEFINITION 12.7 Let R be a commutative unity ring. We say that
the element x is an associate of an element y if there is a unit z such that
y = x · z.

Note that if x is an associate of y, then x = y ·z−1, so that y is an associate
of x. Even though we saw three different factorizations of 12, note that these
are related via associates. We now can explain what unique factorization
means for a general ring.

DEFINITION 12.8 A ring R has unique factorization if the following
two conditions are satisfied:

1. If x is nonzero, and is not a unit of R, then x can be written as a product
of irreducible elements of R.

2. If
x = y1 · y2 · y3 · · · ym = z1 · z2 · z3 · · · zn

are two expressions of x as a product of irreducible elements, thenm = n
and there is a permutation σ ∈ Sn such that yi and zσ(i) are associates.
In other words, each yi is an associate of some zj , and vice versa.

Furthermore, if R is an integral domain, then R is a unique factorization
domain, abbreviated as UFD.

We would like to find a quick way to determine whether an integral do-
main is a UFD. The needed tool will be the definition of the prime elements.
Although we have already defined a prime element in the integers Z, for a
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general ring we wish to define a prime element as one that satisfies a different
property.

DEFINITION 12.9 A nonzero element x of a commutative ring is prime
if x is not a unit, and whenever y · z is a multiple of x, then either y or z must
be a multiple of x.

Although primes and irreducible elements are the same in Z, for many other
rings they are totally different.

Example 12.6

Show that a is a prime element of the ring of Example 12.5.
SOLUTION: We need to show that whenever y ·z is a multiple of a, then either
y or z is a multiple of a. Another way of saying this is that whenever y and z
are not multiples of a, then y · z is not a multiple of a. The multiples of a are
{0, a, 2a, 3a}, so the non-multiples of a are {b, a+ b, 2a+ b,−a+ b}. Table 9.4
shows that multiplication is closed under this latter set, so a is prime, even
though it is not irreducible.

Although this ring has prime elements that are not irreducible, we can show
that this can only happen when the ring has zero divisors.

LEMMA 12.1

If K is an integral domain, and x is a prime element of K, then x is irre-
ducible.

PROOF: Since x is prime, it is neither 0 nor a unit. Suppose that x = y · z,
where neither y nor z are units. Since x is prime, we have that either y or z
is a multiple of x. Suppose that y is a multiple of x. Then y = x ·w for some
number w. Then

x = y · z = x · w · z.

Since K is an integral domain, we know that x is not a zero divisor, so we
can use Lemma 9.4 and say that

1 = w · z.

But this indicates that z is a unit, which contradicts the original assumption
that neither y nor z were units. Thus, x is irreducible.

Even though a prime element is irreducible in an integral domain, it is
not true that an irreducible element is prime! Consider for example the ring
Z[
√
−5], whose elements are the numbers of the form x+ y

√
−5, where x and

y are integers. To determine the irreducible elements of this ring, let us define
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the following function on Z[
√
−5]:

N(x+ y
√
−5) = (x+ y

√
−5)(x− y

√
−5) = x2 + 5y2.

Notice that N(z) is the product of the number z with its complex conjugate.
We can observe that if a and b are in Z[

√
−5], N(a · b) = N(a) · N(b). This

function will help us to determine the irreducible elements of Z[
√
−5].

Let us begin by finding the units of Z[
√
−5]. If a = x+ y

√
−5 is invertible,

then N(a) must be invertible. Hence x2 + 5y2 = 1. The only integer solution
to this equation is when y = 0 and x = ±1. Thus, ±1 are the two units of
this ring.

Next, let us find an irreducible element. Since N(2) = 4, the only way
a product of non-units a and b could equal 2 is if N(a) = N(b) = 2. But
the equation x2 + 5y2 = 2 clearly has no integer solutions. Thus, 2 is an
irreducible element in this ring. By the same reasoning, 3 is also irreducible.

However, neither 2 nor 3 is a prime element of this ring! Consider the
product

(1 +
√
−5)(1−

√
−5) = 1 + 5 = 6.

This product is a multiple of 2 and 3, but neither factor is a multiple of 2 or
3. Thus, 2 and 3 are not prime in this ring.

This example shows a domain that is not a unique factorization domain.
We have seen two ways of factoring the number 6 that are not equivalent in
terms of associates.

The ring Z[
√
−5] can be generalized to produce similar rings, some of which

are UFD’s, and some are not.

DEFINITION 12.10 Let n be an integer that is not divisible by the
square of any integer other than 1. Then the ring Z[

√
n] is called a quadratic

domain.

We have already worked with some examples of quadratic domains. For
example, we found two possible ways to order the ring Z[

√
2], using ring

homomorphisms. In §12.4, we will generalize the N(z) function to determine
whether or not many of these quadratic domains are UFD’s.

The fact that neither 2 nor 3 was prime in the quadratic domain Z[
√
−5] is

a clue as to why this ring is not a UFD.

PROPOSITION 12.5

An integral domain is a UFD if, and only if, all nonzero non-units can be
written as a product of primes.
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PROOF: We begin by showing that if K is a UFD, then all irreducible ele-
ments are prime. Suppose w is irreducible, and x · w = y · z is a multiple of
w. Then x, y, and z have factorizations into irreducible elements:

x = x1 · x2 · · ·xn,

y = y1 · y2 · · · ym,
z = z1 · z2 · · · zk.

Thus,
x1 · x2 · · ·xn · w = y1 · y2 · · · ym · z1 · z2 · · · zk.

Since a factorization is unique, and all terms in this product are irreducible,
we have that w is an associate to one of the terms on the right-hand side. Thus,
either y or z is a multiple of w, and hence w is prime.

Since a nonzero element that is not a unit in a UFD can be expressed as a
product of irreducible elements, we have shown that all such elements can be
expressed as a product of primes.

Now let us suppose that all nonzero, non-unit elements in an integral domain
can be expressed as a product of primes. The first part of the definition of a
UFD is obviously fulfilled since the prime elements are irreducible. Suppose
we have another factorization in terms of irreducible elements.

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm.

Here, the pi are prime elements, while the zj are merely irreducible elements.
We need to prove that n = m, and that, after a rearrangement of the zj ’s, we
have that pi and zi are associates. We will proceed by induction on n, the
number of primes in the factorization. If n = 1, then m = 1; otherwise we
would have a prime number (which is irreducible) expressed as a product of
two or more irreducible elements. Also, p1 = z1, and so trivially the p’s are
associates of the z’s.

Next, we will consider the general case. Since the right-hand side of

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm

is a multiple of pn, one of the z’s must be a multiple of pn. Suppose that

zk = pn · u.

Since zk is irreducible, we find that u is a unit, hence zk and pn are associates.
We now can write

p1 · p2 · p3 · · · pn−1 · pn = z1 · z2 · · · zk−1 · pn · u · zk+1 · · · zm.

Since the ring is an integral domain, we can use Lemma 9.4 and cancel out
the pn.

p1 · p2 · p3 · · · pn−1 = z1 · z2 · · · zk−1 · (u · zk+1) · · · zm.
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The unit u may be multiplied by any of the irreducible elements z to produce
another irreducible element. We now can apply the induction hypothesis,
which says that there are n − 1 z’s left, and that a rearrangement of the z’s
would make pi and zi associates. Therefore, m = n, and some rearrangement
of the z’s in

p1 · p2 · p3 · · · pn = z1 · z2 · z3 · · · zm
will allow pi and zi to be associates, proving that the ring is a UFD.

This proposition will help us greatly in determining whether an integral
domain is a UFD. We usually will proceed in two steps: proving that any
element can be written as a product of irreducible elements, and then proving
that any irreducible element is prime.

COROLLARY 12.5

If F is a field, then the ring F [x] is a UFD.

PROOF: From Proposition 12.4, every polynomial of positive degree is ei-
ther irreducible, or can be expressed as a product of irreducible polynomials.
By Corollary 12.4, all irreducible polynomials are prime. Thus, by Proposi-
tion 12.5, F [x] is a UFD.

Although this corollary proves that polynomials over the rational numbers
have a unique factorization, we still have not proven that Z[x], the polynomials
over the integers, is a unique factorization domain. Corollary 12.5 will not
help us, since Z is not a field. Yet it seems plausible that we could prove that
Z[x] is a UFD, merely by using the fact that Q[x] is a UFD. In the process,
let us prove that R[x] is a UFD whenever R is a UFD. First, we will need
to prove a few lemmas. This next lemma, commonly referred to as Gauss’s
lemma, uses the formula for the product of two polynomials.

LEMMA 12.2: Gauss’s Lemma

If R is an integral domain, then a prime element of R is also a prime element
of R[x].

PROOF: We need to show that if p is a prime of R that divides h(x) =
f(x) · g(x), then p must divide either f(x) or g(x). Suppose that p does not
divide all of the coefficients of f(x) nor does p divide all of the coefficients of
g(x). Let

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · ,
g(x) = b0 + b1x+ b2x

2 + b3x
3 + · · · ,

h(x) = f(x) · g(x) = c0 + c1x+ c2x
2 + c3x

3 + · · · .
Let ai be the first coefficient of f(x) that is not divisible by p, and let bj be
the first coefficient of g(x) that is not divisible by p.
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Since h(x) is divisible by p, we know that the coefficient ci+j must be
divisible by p. But

ci+j = a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1 + aibj + ai+1bj−1 + · · · ai+jb0.

Note that all terms on the right-hand side except aibj are divisible by p
(since a0, a1, . . . ai−1 and b0, b1, . . . bj−1 are all multiples of p). So aibj is also
a multiple of p. But this contradicts the fact that p is a prime element of R,
and neither ai nor bj is a multiple of p. Thus, p is prime in R[x].

With Gauss’s lemma (12.2), we can see that whenever a product of several
polynomials in R[x] is divisible by a p, a prime number of R, then one of those
polynomials must have been divisible by p. We can use induction to extend
this argument to any element of R.

LEMMA 12.3

Let R be a unique factorization domain, and let

g1(x), g2(x), g3(x), . . . , gn(x)

be polynomials in R[x] that are not divisible by any prime element of R. Let
f(x) be a polynomial in R[x], and let c and d be two elements in R such that

c · f(x) = d · g1(x) · g2(x) · g3(x) · · · gn(x).

Then d is divisible by c in R.

PROOF: If c is a unit in R, then obviously d is a multiple of c. We will
now use induction on the number of prime factors of c in the ring R. If c
contains a prime p, then by Lemma 12.2, one of the terms on the right-hand
side must be a multiple of p. But none of the gi(x) are divisible by a prime,
so we find that d is a multiple of p. Then we have

c

p
· f(x) = d

p
· g1(x) · g2(x) · g3(x) · · · gn(x),

where c/p and d/p are both in R. Since c/p contains one less prime factor
than c, we can use induction to say that d/p is a multiple of c/p. Then d
would be divisible by c in R.

The next step in proving that R[x] is a UFD is to find the irreducible ele-
ments of R[x]. If there is a field F that contains R, we can use the irreducible
elements of F [x] to find the irreducible elements of R[x].

LEMMA 12.4

Let R be a unique factorization domain, and let F be a field containing R.
Then if f(x) is a polynomial in R[x] that is irreducible in F [x], then f(x) can
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be written
f(x) = c · g(x),

where c is an element of R, and g(x) is irreducible in R[x].

PROOF: We want to first show that we can express

f(x) = c · g(x),

where the only elements of R that divide g(x) are units. Let an be the leading
coefficient of f(x). Notice that if an element of R divides f(x), then that
element must divide an. Since R is a UFD, there are only a finite number of
primes in the factorization of an. Let us proceed by induction on the number
of primes in this factorization.

If there are no prime elements of R that divide f(x) we can let c = 1 and
g(x) = f(x). If there is a prime element of R that divides f(x), we can write

f(x) = p · h(x),

where p is a prime in R, and h(x) is in R[x]. But then the leading coefficient
of h(x) will contain one less prime in its prime factorization, so by induction
we have

h(x) = d · g(x),
where the only elements of R that divide g(x) are units. Then we let c = p ·d,
and

f(x) = c · g(x).
All that is left to show is that g(x) is irreducible in R[x]. Suppose that

g(x) = r(x) · s(x),

where r(x) and s(x) are in R[x]. We then have

f(x) = c · r(x) · s(x).

But there is a field F containing R such that f(x) is irreducible in F [x]. Thus,
either r(x) or s(x) are units in F [x], which are constant polynomials. But we
designed g(x) so that the only constants in R[x] that divide g(x) are units of
R. Thus, g(x) is irreducible in R[x].

Although this lemma refers to some field F that contains R, there is a
natural field to use—the field of quotients in R. We can use this field to show
that, in fact, the irreducible elements of R that we found in Lemma 12.4 are
in fact prime elements of R[x].

LEMMA 12.5

Let R be a unique factorization domain, and let F be the field of quotients for
R. Then if g(x) is irreducible over R[x] and F [x], then g(x) is prime in R[x].
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PROOF: Suppose that r(x) · s(x) is divisible by g(x) in R[x]. We need to
show that either r(x) or s(x) is divisible by g(x) in R[x]. Yet g(x) is irre-
ducible in F [x], which is a UFD since F is a field. Thus, either r(x) or s(x)
is divisible by g(x) in F [x]. Suppose that r(x) is divisible. Then we have

r(x) = g(x) · k(x),

where k(x) is in F [x]. The coefficients of k(x) are in the quotient field of R,
so we may write

k(x) =
a0
b0

+
a1
b1
x+

a2
b2
x2 +

a3
b3
x3 + · · · an

bn
xn.

Let c be the product of b0 ·b1 ·b2 ·b3 · · · bn. Then j(x) = c ·k(x) is a polynomial
in R[x]. Thus we have

c · r(x) = g(x) · (c · k(x)) = g(x) · j(x),

where g(x) and j(x) are in R[x]. As in Lemma 12.4, there will only be a finite
number of primes in R that divide all of the coefficients of j(x), so we can
factor out these primes and write

j(x) = d · q(x),

where q(x) is not divisible by any prime in R. Then

c · r(x) = d · g(x) · q(x),

so we can apply Lemma 12.3, since neither g(x) nor q(x) is divisible by a
prime of R. Hence, d is divisible by c, and

r(x) =
d

c
· g(x) · q(x).

Therefore, r(x) is divisible by g(x), and hence g(x) is prime in R[x].

At this point all of the major battles have been fought. All that is left to
do is put the pieces together to show that R[x] is UFD.

THEOREM 12.3: The Unique Factorization Domain Theorem

R[x] is a unique factorization domain if, and only if, R is a unique factoriza-
tion domain.

PROOF: First of all, if R is not a UFD, then there is some element c of
R that is not expressible as a product of primes. But then c cannot be ex-
pressed as a product of primes in R[x], since such a product must consist of
constant polynomials, and this would contradict the fact that c cannot be
expressed as a product of primes in R. Thus, R[x] would not be a UFD.



428 Abstract Algebra: An Interactive Approach

Now suppose that R is a UFD. We need to show that any nonzero poly-
nomial f(x) in R[x] is either a unit, or is expressible as a product of prime
polynomials. If f(x) has degree 0, and is not a unit of R, then since R is a
UFD, the constant f(x) can be expressed as a product of primes in R. By
Lemma 12.2, any prime in R is also a prime in R[x]. Thus, if the degree of
f(x) is zero, f(x) is either a unit, or can be expressed as a product of primes
in R[x].

Now suppose f(x) has positive degree. Let F be the field of quotients over
R. Then F [x] is a unique factorization domain by Corollary 12.5. Thus, we
can write

f(x) = g1(x) · g2(x) · g3(x) · · · · · gn(x),

where each gi(x) is irreducible in F [x]. For each gi(x), let ci be the product
of the denominators of all of the coefficients. Then hi(x) = ci · gi(x) will be
in R[x], and we have

c1 · c2 · c3 · · · · · cn · f(x) = c1g1(x) · c2g2(x) · c3g3(x) · · · · · cngn(x)
= h1(x) · h2(x) · h3(x) · · · · · hn(x).

Since ci is a unit in F [x], the hi(x) will still all be irreducible in F [x]. We can
now apply Lemma 12.4 on each of the hi(x) and find an element di in R such
that

hi(x) = di · ji(x),

where the ji(x) are irreducible in R[x]. By Lemma 12.5, the ji(x) are prime
in R[x]. We now can express

c1 · c2 · c3 · · · · · cn · f(x) = d1j1(x) · d2j2(x) · d3j3(x) · · · · · dnjn(x).

Let C = c1 · c2 · c3 · · · cn and D = d1 · d2 · d3 · · · dn. We can then write

C · f(x) = D · j1(x) · j2(x) · j3(x) · · · jn(x),

where C and D are in R, and the ji(x) are prime polynomials in R[x]. We
can now apply Lemma 12.3, which states that D must be a multiple of C in
R. Thus

f(x) =
D

C
· j1(x) · j2(x) · j3(x) · · · jn(x),

where D/C is in R. Since R is a UFD, D/C can be expressed as a product
of primes in R, which by Lemma 12.2 are primes in R[x]. Thus, f(x) can be
expressed as a product of primes in R[x] and so by Proposition 12.5, R[x] is
a UFD.

Not only does this theorem determine when we can consider polynomial fac-
torization to be unique, but this theorem also applies to factoring polynomials
in more than one variable.
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Since R[x] is an integral domain, we can consider another variable y, and
consider the polynomial ring R[x][y]. A typical element of R[x][y] would be

c0(x) + c1(x)y + c2(x)y
2 + c3(x)y

3 + · · · cn(x)yn,

where each ci(x) is a polynomial in R[x]. If each ci(x) is written

ci(x) = d0 + d1x+ d2x
2 + d3x

3 + · · ·

we find that the polynomial in R[x][y] could be written

d0 0 + d1 0x+ d0 1y + d2 0x
2 + d1 1x · y + d0 2y

2 + · · · .

If we make the convention that x · y = y · x, we see that R[x][y] = R[y][x].

DEFINITION 12.11 We will denote the polynomial ring of two vari-
ables by R[x, y] = R[x][y]. The variables x and y are called indeterminates .
Likewise, we denote the polynomial ring of n indeterminates by

R[x1, x2, x3, . . . , xn].

COROLLARY 12.6

Let R be a unique factorization domain and let x1, x2, x3, . . . xn be indetermi-
nates over R. Then R[x1, x2, x3, . . . xn] is a unique factorization domain.

PROOF: We will use induction on n. If n = 1, the unique factorization
domain theorem (12.3) shows that R[x] is a UFD. Otherwise, we write

R[x1, x2, x3, . . . , xn] = R[x1, x2, x3, . . . , xn−1][xn].

By the induction hypothesis, R[x1, x2, x3, . . . , xn−1] is a UFD. So by the
unique factorization domain theorem (12.3), R[x1, x2, x3, . . . , xn] is a UFD.

Polynomials in several variables are of considerable importance in geome-
try, since curves and surfaces are described by equations in several variables.
Although Sage’s factor command will be able to factor polynomials in many
variables, its ability is limited to when R is either Z or Q. For example, Sage
can factor

var("x y")

factor(x^3*y^2 + x^2*y - x*y^2 - 2*x + y)

(x^2*y + 2*x - y)*(x*y - 1)

over the integers, but cannot factor this over any other ring, even a finite
field. Fortunately, we will not have a need for factoring polynomials in two
variables over any other field.



430 Abstract Algebra: An Interactive Approach

Problems for §12.2

1 Prove that x3 − 3x+ 3 is irreducible over the field Q of rational numbers.
Hint: Assume p/q is a root, and show both p and q are multiples of 3.

2 Find the factorization of x3 + 2x2 + 2 over the field Z3.

3 Find the factorization of x3 + 2x2 + 2 over the field Z5.

4 Find the factorization of x3 + 2x2 + 2 over the field Z7.

5 Find the factorization of x4 + 2x2 + 2 over the field Z5.

6 Find the factorization of x4 + 2x3 + 2 over the field Z5.

7 Find the factorization of x5 + x+ 1 over the field Z2.
Hint: If there were an irreducible quadratic factor, what would it be?

8 Find the factorization of x4 + 2x3 + 2x+ 2 over the field Z3.
Hint: First do Problem 21 of §11.1.

9 Find all of the irreducible elements of Z12.
Hint: First find all of the units. Construct a multiplication table of the

non-units. Which elements do not appear in the interior of the table?

10 Find all of the irreducible elements of Z18. (See the hint for Problem 9.)

11 Show that the ring Z8 has unique factorization, even though it is not an
integral domain.

12 Is the ring Z9 a unique factorization ring?

13 Let f(x) be a polynomial in Z[x], and let p be a prime that does not
divide the leading term. If the polynomial f(x) mod p ∈ Zp[x] is irreducible
in Zp[x], show that f(x) is irreducible in Z[x].

14 Show that x3 − x+ 2 is irreducible in Z[x].
Hint: Use Problem 13.

15 Show that if f(x) = g(x) ·h(x) in Q[x], with g(x) and h(x) non-constant,
and f(x) ∈ Z[x], then f(x) is also reducible over Z[x].

Hint: Find the common denominator of g(x) and h(x), and use Gauss’s
Lemma (12.2).

16 Let f(x) ∈ Z[x] be of degree d, and suppose there are 2d+ 1 integers ai
for which f(ai) is prime. Show that f(x) is irreducible in Z[x].

Hint: If f(x) = g(x) · h(x), how many times can g(x) or h(x) be ±1?

17 Use Problem 16 to show that x4 + x2 + 41 is irreducible in Z[x].
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18 Show that x4 + 10x2 + 2 is irreducible in Q[x].
Hint: Use Problems 15 and 16.

19 Consider the subring of the elements of Q[x] for which the constant term
is an integer. Show that this subring is not a UFD.

Hint: Show that the only units are ±1, and that 2 is irreducible. Consider
the sequence x, x/2, x/4, x/8, . . . x/(2n), . . . .

Interactive Problems

20 Define the domain Z[
√
6] in Sage as follows:

InitDomain(0)

AddFieldVar("a")

Define(a^2, 6)

Show that the element u = 5 + 2a is a unit by finding its inverse. Use the
element u to find yet another unit of Z[

√
6].

21 We can have Sage explore the domain Z[ 3
√
2]:

InitDomain(0)

AddFieldVar("a")

Define(a^3, 2)

factor(2 + 0*a)

a^3

Try factoring other standard prime numbers, to see if they factor in the new
domain. Which standard primes are still primes in this new domain? Try
factoring other elements in the domain to see if you always get a factorization.
Note that trying this experiment on a non-UFD produces an error message.
This exercise is not available in Mathematica.

12.3 Principal Ideal Domains

Although we have found that polynomial rings created from unique factor-
ization domains produce more unique factorization domains, there still is the
question of how to tell whether a given ring is a unique factorization domain.
The answer lies in the ideals of the ring. In this section we will explore the
interconnection between the ideals of a ring, and the prime and irreducible
elements of the ring.

We begin by recalling that many ideals can be generated with only one
element. In fact, many rings, such as the integers Z, are such that every ideal
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Historical Diversion

Ernst Kummer (1810–1893)
Kummer was a German mathematician,

although he was born in what was then
Prussia. He started out teaching for 10
years at a gymnasium, which is the Ger-
man equivalent to high school. During
these years, he inspired the future math-
ematician Leopold Kronecker.
Kummer made significant contributions

to several areas of mathematics. He
worked with Gauss’s hypergeometric func-
tions, and used the Maclaurin series of
these functions to prove that any three
such functions, whose parameters differ
by integers, are linearly related. This is
known as the contiguous relations of the
hypergeometric series.
Kummer’s greatest accomplishment came in an attempt to prove Fermat’s

last theorem. (See the Historical Diversion on page 96.) Several years earlier,
Gabrial Lamé had a flawed proof of the theorem, based on the assumption
that Z[ωn] had unique factorization. In the cases where Z[ωn] is a UFD, such
as n = 3 and n = 4, one can prove Fermat’s last theorem from

zn = xn + yn = (x + y)(x+ ωny)(x+ ω2
ny) · · · (x+ ωn−1

n y).

However, Kummer had shown three years before Lamé’s proof that Z[ωn] is
not a UFD for n = 23. (It is now known that there are only a finite set of
integers for which Z[ωn] is a UFD.)
Kummer had an idea of replacing elements in a domain with “ideal inte-

gers,” which represented a special subring of the domain. This would later
lead to the terminology of “ideals” of a ring. Kummer’s plan, expressed in
modern terminology, was to first prove that every non-trivial ideal can be
uniquely expressed as a product of prime ideals, even if the domain was not
a UFD. Since some of the ideals were not principle ideals, some of the prime
ideals did not correspond to an element in the original domain. By using this
“extension” of the domain, Kummer was able to prove Fermat’s last theorem
for most prime numbers, in particular for all primes less than 100 except 37,
59, and 67.
Because of Kummer’s attempt, and partial success, in proving Fermat’s last

theorem, he paved the way for modern ring theory. Richard Dedekind and
Emmy Noether would later use Kummer’s ideal numbers to formulate the
definition of the “ideal” and “prime ideal” that we use today. (See Historical
Diversions on pages 336 and 306.)

Image source: Wikimedia Commons
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is generated by only one element. We called such rings principal ideal rings,
or PIRs. When the ring is also a domain, we call it a principal ideal domain,
or PID. In fact, PIDs are so common that it is somewhat tricky to find an
example of a UFD that is not a PID.

Example 12.7

Show that the ring R = Z[x, y] is not a PID, even though it is a UFD.

SOLUTION: By Corollary 12.6 this is a UFD. Consider the ideal of elements
without a constant term. This ideal can be expressed as 〈{x, y}〉, that is, the
ideal generated by x and y. But since both x and y are in this ideal, we cannot
express this ideal as the multiples of a single polynomial. Thus, it requires at
least two elements to generate this ideal in Z[x, y]. Thus, this ideal is not a
principal ideal, so Z[x, y] is not a PID, even though it is a UFD.

DEFINITION 12.12 Let R be a commutative ring, and let P be a
nontrivial ideal of R. (Thus, P is neither {0} nor R.) We say that P is a
prime ideal if, whenever x and y are in R, and x · y is in P , then either x or
y is in P .

When we first defined a prime element of a ring, we were careful to mention
that the ring did not have to be an integral domain. By defining prime
elements for all commutative rings, we open the door to showing a connection
between prime ideals and prime elements.

PROPOSITION 12.6

Let R be a commutative unity ring. Then p is a prime element of R if, and
only if, the principal ideal 〈p〉 is a prime ideal.

PROOF: Suppose that p is prime. Then p is neither 0 nor a unit, so 〈p〉
cannot be the zero ring. If 〈p〉 = R, then there must be some element x of
R that makes p · x = 1. But this is impossible, since p is not a unit. Thus,
〈p〉 would be a nontrivial ideal of R. Now suppose that x · y is in 〈p〉. Then
there must be some z such that x · y = p · z. Since p is prime, either x or y is
a multiple of p. So either x or y is in 〈p〉, making 〈p〉 a prime ideal.

Now suppose that 〈p〉 is a prime ideal. Then 〈p〉 is neither {0} nor R, so p
is neither 0 nor a unit. If x · y is a multiple of p, then x · y would be in 〈p〉.
Since 〈p〉 is a prime ideal, either x or y would then be in 〈p〉. But this would
indicate that x or y is a multiple of p. Thus, p is a prime element of R.

Although this proposition refers to principal ideals, it is certainly possible
for an ideal to be a prime ideal without being a principal ideal.
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Example 12.8

Show that the ideal of Example 12.7 is a prime ideal.
SOLUTION: Note that we can characterize the ideal 〈{x, y}〉 as

〈{x, y}〉 = {f(x, y) ∈ Z[x, y] | f(0, 0) = 0}.
Thus, if f(x, y) · g(x, y) is in 〈{x, y}〉, we have f(0, 0) · g(0, 0) = 0, so either

f(0, 0) = 0 or g(0, 0) = 0. So 〈{x, y}〉 is a prime ideal, even though it is not a
principal ideal.

Although Proposition 12.6 gives us a test for determining whether an ele-
ment is prime, to implement this we need a way to see whether an ideal is a
prime ideal.

PROPOSITION 12.7

Let R be a commutative unity ring, and let P be a nontrivial ideal of R. Then
P is a prime ideal if, and only if, the quotient ring R/P has no zero divisors.

PROOF: Assume that P is a prime ideal. Let us suppose that the prod-
uct of two elements of R/P , a + P and b + P , is the zero element. That
is,

(a+ P ) · (b+ P ) = a · b+ P = 0 + P.

This implies that a · b is in P . Since P is a prime ideal, either a or b is in P .
Thus, either

a+ P = 0 + P or b+ P = 0 + P.

Thus, we have shown that R/P has no zero divisors.
Now suppose that R/P has no zero divisors. If a · b is in P , then we have

the following holding in R/P :

(a+ P ) · (b+ P ) = a · b+ P = 0 + P.

Since R/P has no zero divisors, either a+P or b+P must be equal to 0+P .
Thus, either a or b is in P , and since P is a nontrivial ideal, P is a prime
ideal.

Let us try to use this proposition to find the prime elements of a ring.

Computational Example 12.9

Determine whether 2a+ b is a prime element of the ring from Example 12.5.
SOLUTION: We begin by loading the ring.

InitRing("a", "b")

DefineRing([4, 2], [[a, 0], [0, b]])

R = ListRing(); R

{0*a, a, 2*a, -a, b, a+b, 2*a+b, -a+b}
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To determine whether 2a+ b is prime, we compute the quotient R/〈2a+ b〉.
First, we find the principal ideal generated by 2a+ b:

S = Ideal(R, 2*a + b); S

{0*a, b, 2*a, 2*a+b}

This forms a non-trivial ideal, so we can now consider the quotient ring.

Q = Coset(R, S); Q

{{0*a, b, 2*a, 2*a+b}, {a, a+b, -a, -a+b}}
Q[1]*Q[1]

{a, a+b, -a, -a+b}

The quotient ring has only two elements, and in fact is isomorphic to Z2.
So 2a+ b is a prime element of R.

We are mainly interested in finding the prime elements of an infinite ring.
Sage can still often help us out, since the quotient ring R/〈p〉 will usually be
finite.

Computational Example 12.10

Determine whether 3 is prime in the ring Z[
√
−5].

SOLUTION:
We saw in the last section that 3 was an irreducible element of this ring.

First we define the ring Z[
√
−5] by letting a =

√
−5.

InitDomain(0)

AddFieldVar("a")

Define(a^2, -5)

We can now try to factor in this new ring.

factor(3 + 2*a)

2*a + 3

This shows that 3 + 2
√
−5 is a prime number in this domain. But when we

try to factor 3,

factor(3 + 0*a)

ValueError: Non-principal ideal in factorization

we get an error message, complaining about a non-principal ideal. Thus, we
see that 3 is not prime in Z[

√
−5], even though it is irreducible.

To really see what is going on, let us construct the ring Z[
√
−5]/〈3〉. We

have to plan ahead to see that this ring has nine elements. We can let e
represent the identity element 1 + 〈3〉, and a represent

√
−5 + 〈3〉. Both of

these will have additive order of 3, so we can define the ring by
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InitRing("e", "a")

DefineRing([3, 3], [[e, a], [a, -5*e]])

R = ListRing(); R

{0*e, e, -e, a, e+a, -e+a, -a, e-a, -e-a}
(e + a)*(e - a)

0*e

We find that this ring has zero divisors, so by Proposition 12.7, the element
3 is not prime in this domain.

We have seen that Proposition 12.7 is a useful way of determining whether
an element is prime. Let us use this proposition to show that in a principal
ideal domain, irreducible elements are also prime elements. This amounts to
showing that R/〈p〉 has no zero divisors whenever p is irreducible. However,
we can actually prove more, which will be very useful later on.

LEMMA 12.6

Let R be a principal ideal domain, and let p be an irreducible element of R.
Then the quotient ring R/〈p〉 is a field.

PROOF: Since R is an integral domain, it is clear that R/〈p〉 is a commuta-
tive ring, and contains the identity element 1 + 〈p〉. Thus, we have to show
that all nonzero elements of R/〈p〉 have an inverse. Let x+ 〈p〉 be a nonzero
element of R/〈p〉. We immediately have that x is not a multiple of p. Thus,
we can consider the ideal generated by both x and p, that is, 〈{x, p}〉.

Since R is a PID, there is some element d in R such that 〈{x, p}〉 = 〈d〉.
Then both x and p would be multiples of d. But we already observed that x
is not a multiple of p, so d cannot be a multiple of p. But p is irreducible, so
d must be a unit. Then 〈d〉 = R, and so 〈{x, p}〉 = R. This means that there
are elements u and v in R such that

x · u+ p · v = 1.

We now claim that u+ 〈p〉 is our sought-after inverse. Note that

(x+ 〈p〉) · (u+ 〈p〉) = x · u+ 〈p〉 = x · u+ p · v + 〈p〉 = 1 + 〈p〉.

Since every nonzero element of R/〈p〉 is invertible, we have that R/〈p〉 is a
field.

From this lemma, it is easy to see that an irreducible element of a PID
must also be a prime element. Thus, we are on our way to showing that a
PID is a unique factorization domain. By Proposition 12.5, we only need
to show that every non-invertible element can be expressed as a product of
irreducible factors. In order to eliminate the possibility of an “infinite chain”



Unique Factorization 437

of irreducible elements, each one dividing the previous element, we will use
the following lemma.

LEMMA 12.7

Let R be a principal ideal ring. If there is an infinite sequence of larger and
larger ideals of R satisfying

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ In+1 ⊆ · · · ,

then there exists an integer m such that In = Im for all n > m.

PROOF: Since we have an infinite sequence of ideals, we can consider taking
the union of all of them:

I =

∞⋃

n=1

In.

Let us show that I is an ideal of R. Note that any element of I is in Ik for
some integer k. In fact, if x and y are two elements of I, we can pick the larger
of the two values of k to show that x and y are both in Ik. Then x ± y is in
Ik, since Ik is an ideal. Thus x ± y is in I. This shows that I is a subgroup
of R under addition. Now let z be in R. Then x · z and z · x are both in Ik,
so x · z and z · x are in I. Therefore, I · R = R · I = I. This shows that I is
an ideal.

Since R is a principal ideal ring, there is some element a in I such that
I = 〈a〉. Then a is in Im for some m. But Im is contained in I, so we must
have that I = Im. Thus, In = Im for all n > m.

We now have all we need to show that a PID is in fact a UFD.

THEOREM 12.4: The Principal Ideal Domain Theorem

Every principal ideal domain is a unique factorization domain.

PROOF: Our strategy is to first show that an irreducible element is a prime
element, and then show that every element is a finite product of irreducible el-
ements. Let p be an irreducible element of R, which is a PID. By Lemma 12.6
R/〈p〉 is a field, so it certainly has no zero divisors. Thus, by Proposition 12.7,
〈p〉 is a prime ideal, so by Proposition 12.6, p is prime. Let us now show that
every non-invertible element of R can be written as a product of irreducible
elements. Suppose this is not true for some element x0. Then x0 is not irre-
ducible, so we can find elements x1 and y1 in R such that x1 · y1 = x0. But
x1 and y1 cannot both be irreducible, so we can assume x1 is reducible. By
induction we can continue this process to form a sequence

{x0, x1, x2, x3, · · ·}
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for which each term in the sequence divides the previous term. Then we have
an infinite chain of strictly increasing ideals,

〈x0〉 ⊂ 〈x1〉 ⊂ 〈x2〉 ⊂ 〈x3〉 ⊂ · · · .

By Lemma 12.7, such an infinite chain of ideals is impossible in a PID. This
contradiction shows that every element of R can be expressed as a product
of irreducible elements, which in turn are prime. By Proposition 12.5, R is a
unique factorization domain.

This theorem reveals the most important use of principal ideal domains—it
enables us to find unique factorization domains. For example, Z was proven
to be a PID from Proposition 10.3, so we now can see that Z is a UFD, a
result that was proven in §0.1.

It should be noted that not all unique factorization domains are PIDs—in
fact we discovered that Z[x, y] is not a PID, even though it is a UFD. However,
many of the important unique factorization domains are also principal ideal
domains.

Of course, there still is the problem of how to determine whether an integral
domain is a PID. In the next section, we will find the main way of determining
whether a certain domain is in fact a PID, which would then prove that it is
a UFD.

Problems for §12.3

1 Show that Z[
√
−5] is not a principal ideal domain by finding an ideal of

this ring that is not a principal ideal.
Hint: Consider the ideal 〈{2, 1 +

√
−5}〉.

2 Find all of the prime ideals of Z12. (Note that this ring has zero divisors.)

3 Find all of the prime elements of Z12. (Note that this ring has zero divisors.
See Problem 2.)

4 Find all of the prime ideals of Z18.

5 Find all of the prime elements of Z18. (See Problem 4.)

6 Can a field have irreducible or prime elements? Explain.

7 We say that an ideal I of a ring R is a maximal ideal if I 6= R, and the
only ideals containing I are I and R. Show that the prime ideals of Z are also
maximal ideals.

8 Let R be a commutative unity ring. Show that if I is a maximal ideal,
then R/I is a field. See Problem 7.

Hint: For b ∈ R, consider the ideal {br + a | r ∈ R, a ∈ I}.
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9 Let R be a commutative unity ring, and I an ideal of R. Show that if R/I
is a field, then I is a maximal ideal. See Problem 7.

10 Let R be a commutative ring with identity. Show that if I is a maximal
ideal, then I is a prime ideal. See Problems 7 and 8.

11 Let R = Z[x], and let I be the ideal of polynomials for which f(0) is
even. Show that I is a maximal ideal. See Problems 7 and 9.

12 Let R = Z[x], and let I be the ideal of polynomials for which f(0) = 0.
Show that I is a prime ideal, but not a maximal ideal. See Problems 7 and 11.

13 Show that for a finite commutative unity ring, every prime ideal is a
maximal ideal. See Problems 7 and 9.

14 Show that for a PID, every prime ideal is a maximal ideal. See Problems 7
and 9.

15 Find a ring with exactly two maximal ideals. See Problem 7.

16 Let R be a non-trivial commutative unity ring with no zero divisors.
Prove that if every nontrivial ideal of R is a prime ideal, then R is a field.

Hint: If x is an element of R, show that x is contained in x2R.

17 Let R be a commutative ring, and let I be an ideal of R. If P is a prime
ideal of I, prove that P is an ideal of R.

18 Let R be a PID. Prove that every element that is neither 0 nor a unit is
divisible by some prime element.

Interactive Problems

19 Use Sage to show that the ring Z[
√
6]/〈11〉 has no zero divisors. Use this

to prove that 11 is a prime element of Z[
√
6].

20 We saw in Example 12.10 that 3 is not a prime number in Z[
√
−5]. Find

a prime in the ordinary sense that is also prime in this ring, showing that
there are prime elements. What other primes can you find?

12.4 Euclidean Domains

We have already seen the importance of principal ideal domains to deter-
mine whether a ring is a unique factorization domain. However, we still have
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the problem of determining whether a given integral domain is a principal
ideal domain. In this section we will develop the standard method for proving
that a ring is a principal ideal domain, using the idea of a division algorithm.

Example 12.11

Show that F [x] is a PID for any field F .
SOLUTION: We examine what the ideals could be. If I is a nontrivial ideal
of F [x], we can find a nonzero element f(x) in I with the lowest degree. If
g(x) is also in I, then by the division algorithm

g(x) = f(x) · q(x) + r(x),

with the degree of r(x) less than f(x). But r(x) would also be in I, and since
f(x) has least degree of all the nonzero elements in I, we must have r(x) = 0.
Therefore all elements of I are multiples of f(x), so I = 〈f(x)〉.

Rather than making this a formal proposition, we want to study this exam-
ple, since we can prove that many different domains are PIDs the same way.
There were two keys to the proof that F [x] was a PID: the fact that every
polynomial had a degree, and the division algorithm. Whenever we have an
integral domain that has a property like a division algorithm, there is a good
chance that we can use this division algorithm to prove that the ring is a PID.
Let us formulate what we mean by a “division algorithm.”

DEFINITION 12.13 An integral domain R is called a Euclidean domain
if there is a function µ(x) defined on the nonzero elements of R such that the
following three properties hold:

1. µ(x) is a non-negative integer for every nonzero x in R.

2. Whenever both x and y are nonzero, µ(x · y) ≥ µ(x).

3. For any x and y in R, with y nonzero, there exist elements q and r in
R such that

x = q · y + r,

where either r = 0 or µ(r) < µ(y).

The function µ(x) is called the Euclidean valuation on R.

Let us first look at some examples of Euclidean domains.

Example 12.12

Since this definition was modeled after the ring F [x], it is expected that F [x]
is a Euclidean domain. The function µ(f(x)) would be the degree of the
polynomial f(x). Properties 1 and 2 come from the definition of the degree,
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and Lemma 11.1. Property 3 we observed in the division algorithm theorem
(12.1). Thus, F [x] is a Euclidean domain whenever F is a field.

However, there are many other examples of Euclidean domains.

Example 12.13

Consider the set of integers, Z. We can use the absolute value for the valu-
ation: µ(x) = |x|. Clearly properties 1 and 2 hold, and the third property
comes from Theorem 0.1. Thus, Z is also a Euclidean domain.

Whenever we have a Euclidean domain, we can prove that the domain is a
PID, using the exact same argument as we did for F [x].

THEOREM 12.5: The Euclidean Domain Theorem

Every Euclidean domain is a principal ideal domain.

PROOF: Let R be a Euclidean domain, and let µ(x) be the valuation. If
I is an ideal, we consider the set

P = {µ(x) | x ∈ I, x 6= 0}.

The set P consists of non-negative integers, so there is a smallest number in
P . Pick an element y in I so that µ(y) is the minimal number in P . Then for
any other x in I, we have

x = y · q + r

for some q and r in R, with µ(r) < µ(y) or r = 0. Then r is in I, but if r were
nonzero, then this would contradict the minimality of µ(y). Thus, r = 0, and
so x is a multiple of y. Since this is true for all x in I, we see that I = 〈y〉.
Thus, every ideal of R is a principal ideal, so R is a PID.

We started this section by showing that F [x] is a principal ideal ring when-
ever F is a field, but let us formally make this a corollary of the Euclidean
domain theorem.

COROLLARY 12.7

Let F be a field. Then the ring of polynomials F [x] is a principal ideal domain.

PROOF: We have already seen in Example 12.12 that F [x] is a Euclidean
domain whenever F is a field. By the Euclidean domain theorem (12.5), F [x]
is a PID.

The only problem with this definition of the Euclidean domain is that it
gives no help in determining what the valuation function µ(x) should be.
In fact, there may be many possible valuation functions for a given integral
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domain. See Problem 1 for an alternative definition of a Euclidean domain
that does not involve a valuation function.

For the remainder of this chapter, we will consider the problem of deter-
mining whether some quadratic domains are Euclidean domains. This class
of domains will help us to see some general techniques for finding a valuation
function for a domain. We have already seen that Z[

√
−5] is not a UFD, so

this clearly is not a Euclidean domain.
We saw before that Z[

√
2] had two automorphisms, and in general the

quadratic domain Z[
√
n] will have two automorphisms, the identity mapping,

and the automorphism

f(x+ y
√
n) = x− y

√
n.

We define the function N as the product of the two automorphisms:

N(x+ y
√
n) = (x+ y

√
n) · (x− y

√
n) = x2 − y2n.

Note that N(a) will always be an integer.
At first glance it may be difficult to see what the N(a) has to do with the

Euclidean domains. Our goal is to construct a valuation function from N(a).
We first need to verify some elementary properties of this function. In the
process, we will notice that these properties are still valid if we extend N(a)
to be defined on Q[

√
n].

LEMMA 12.8

Let Z[
√
n] be a quadratic domain, and let N(x+ y

√
n) = x2 − y2n. Then for

the rings Z[
√
n] and Q[

√
n],

1. N(a) = 0 if, and only if, a = 0.

2. N(a · b) = N(a) ·N(b).

3. N(±1) = 1.

PROOF:

1. It is easy to see that N(0) = 0 by definition. If N(x+ y
√
n) = 0, then

(x+ y
√
n) · (x − y

√
n) = x2 − y2n = 0.

If y is nonzero, then we find that
√
n = |xy |, which is ridiculous since n

is not a perfect square, and so
√
n is irrational. Thus, y = 0, and hence

x is also 0. So N(a) = 0 if, and only if, a = 0.

2. A quick computation shows that if a = x1 + y1
√
n, and b = x2 + y2

√
n,

then

a·b =
(
x1 + y1

√
n
)
·
(
x2 + y2

√
n
)
= (x1 ·x2+y1·y2·n)+(x1·y2+y1·x2)

√
n.
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So

N(a · b) = (x1 · x2 + y1 · y2 · n)2 − (x1 · y2 + y1 · x2)2 · n
= x21x

2
2 + 2x1x2y1y2n+ y21y

2
2n

2 − x21y
2
2n− 2x1x2y1y2n− y21x

2
2n

= x21x
2
2 + y21y

2
2n

2 − x21y
2
2n− y21x

2
2n

= (x21 − y21n) · (x22 − y22n) = N(a) ·N(b).

3. This is easy, since ±1 = ±1 + 0
√
n. So N(±1) = (±1)2 − 0 · n = 1.

We can use the N(a) function to prove that Q[
√
n] is a field.

COROLLARY 12.8

Let n be an integer that is not divisible by the square of any integer greater
than 1. Then the ring Q[

√
n] is a field.

PROOF: Since Q[
√
n] is obviously a commutative ring with an identity, all

we need to show is that every nonzero element has an inverse. Let b = x+y
√
n

be a nonzero element. Then N(b) is nonzero by Lemma 12.8. Consider the
element

c = (x− y
√
n)/N(b).

Then

b · c = (x+ y
√
n) · (x− y

√
n)/N(b) = N(b)/N(b) = 1.

So every nonzero element has an inverse. Thus, Q[
√
n] is a field.

Using the three properties of the norm function N(a), we are able to de-
termine at least some of the irreducible elements of the ring Z[

√
n].

PROPOSITION 12.8

Let Z[
√
n] be a quadratic domain, and let N(x+ y

√
n) = x2 − y2n. Then

1. N(a) = ±1 if, and only if, a is a unit in Z[
√
n].

2. If N(a) is a prime number in Z, then a is an irreducible element of
Z[
√
n].

PROOF: Suppose that N(a) = N(x+ y
√
n) = ±1. Consider the element

b = (x− y
√
n)/N(a).

Then

a · b = (x+ y
√
n) · (x− y

√
n)/N(a) = N(a)/N(a) = 1.

So a has an inverse, and therefore is a unit in Z[
√
n].
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Now suppose that a is a unit in Z[
√
n]. Then a has an inverse, a−1. Then

1 = N(1) = N(a · a−1) = N(a) ·N(a−1),

which shows that N(a) must be ±1.
Now suppose that N(a) = p, a prime number in Z, and that a = b · c. Then

p = N(a) = N(b · c) = N(b) ·N(c).

Since p is prime, either N(b) or N(c) is ±1. So either b or c must be a unit
in Z[

√
n], so a is irreducible in Z[

√
n].

We can now use the Euclidean valuation function µ(x) = |N(x)| to prove
the following.

PROPOSITION 12.9

The integral domains Z[
√
−2], Z[

√
−1], Z[

√
2], and Z[

√
3] are Euclidean do-

mains.

PROOF: Let us work with all four domains at the same time by considering
Z[
√
n], where n = −2,−1, 2, or 3.

If we let µ(x) = |N(x)|, then clearly µ(x) is a non-negative integer. Fur-
thermore, µ(x) = 0 only when x = 0. Thus, if u and v are two non-zero
elements of Z[

√
n], then

µ(u · v) = |N(u · v)| = |N(u)| · |N(v)| = µ(u) · µ(v) ≥ µ(u) · 1 = µ(u).

So the first two conditions for the valuation function are easily satisfied. The
last condition is harder to prove. We need to show that for any x and y in
Z[
√
n], with y nonzero, there are elements q and r such that

x = q · y + r,

with either r = 0, or µ(r) < µ(y). We can consider x and y to be in Q[
√
n],

which is a field from Corollary 12.8, so we can compute

t = x · y−1 = u+ v
√
n.

Of course, t will be in Q[
√
n] instead of Z[

√
n], so we cannot use this for our

q. However, we can find an element “closest” to t in Z[
√
n] by finding the

integers p and k nearest to u and v. That is, we will select integers p and k
such that

(∗) |p− u| ≤ 1

2
and |k − v| ≤ 1

2
.

We now let q = p+ k
√
n, which is in Z[

√
n]. The remainder r would be given

by q · y − x. All we need to do is show that r = 0, or µ(r) < µ(y).
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Now, the norm N(x) is valid on Q[
√
n], so we can compute

N(q − t) = N
(
(p− u) + (k − v)

√
n
)
= (p− u)2 − n(k − v)2.

By (∗) we see that if n > 0,

−n/4 ≤ (p− u)2 − n(k − v)2 ≤ 1/4.

On the other hand, if n < 0, then

0 ≤ (p− u)2 − n(k − v)2 ≤ (1− n)/4.

Thus, as long as −2 ≤ n ≤ 3 we have that

|N(q − t)| = |(p− u)2 − n(k − v)2| ≤ 3/4 < 1.

Thus,

µ(r) = |N(r)| = |N(q · y − x)|
= |N((q − x · y−1) · y)|
= |N(q − t)| · |N(y)|
< |N(y)| = µ(y).

Therefore, the function µ(x) serves as a valuation function on Z[
√
n], and so

Z[
√
n] is a Euclidean domain for n = −2,−1, 2, or 3.

One of these four domains has special applications. The ring Z[
√
−1] = Z[i]

is called the domain of Gaussian integers. Sage’s factor command can find
the prime factorization over the Gaussian integers by first defining the field
of complex rational numbers.

InitDomain(0)

AddFieldVar("i")

Define(i^2, -1)

For example, we can factor the number 5 as follows:

factor(5 + 0*i)

(-i - 2) * (i - 2)

Notice that we added 0 · i to the integer so that Sage will interpret it as an
element of Z[i], and not just an integer. The two factors −i − 2 and i − 2
are both prime in Z[i]. By investigating further the divisibility properties of
Z[i], one can prove the classic “two squares theorem” of Fermat: Every prime
number of the form 4n + 1 is the sum of two squares. (See Problem 10 of
§13.2.) It is interesting that the study of domains other than the familiar
integers yields new information about the integers.

We can also explore factorizations in the other Euclidean domains found in
Proposition 12.9. For example, the domain Z[

√
−2] can be set up with the

commands:
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InitDomain(0)

AddFieldVar("a")

Define(a^2, -2)

Then we can factor numbers such as

factor(3 + 0*a)

(-1) * (a - 1) * (a + 1)

So 3 is not prime in Z[
√
−2]. Note that this time, a unit was included in the

factorization.
The domain Z[

√
2] is even stranger, for there is an infinite number of units.

InitDomain(0)

AddFieldVar("a")

Define(a^2, 2)

Although a is not a unit (it is prime), we find that 1 + a is.

1/(1+a)

a - 1

Thus, the sequence

(1+a)^2

2*a + 3

(1+a)^3

5*a + 7

(1+a)^4

12*a + 17

produces an infinite number of units. In this domain, 3 is prime, but 2 is not,
since 2 = a2.

Since every Euclidean domain is a PID, the natural question to ask is
whether there is a PID that is not a Euclidean domain. There actually are
such domains, although known examples are rare. The simplest example is
Z[(1 +

√
−19)/2], but it is tricky to prove that this example works, for two

reasons. First of all, to show that this ring is not a Euclidean domain, we must
show that no valuation function µ(x) can be defined whatsoever. Problem 1
gives an alternative way to define a Euclidean domain that does not depend
on a valuation function, and hence helps in showing that Z[(1 +

√
−19)/2]

is not a Euclidean domain. But then we must show that this ring is still a
PID, which is especially hard since the main tool for proving that a domain
is a PID is the Euclidean domain theorem (12.5). For a sketch of how this
is proven, see Problems 15 to 22. A similar proof can be used to show that
Z[(1 +

√
−43)/2], Z[(1 +

√
−67)/2], and Z[(1 +

√
−163)/2] are PIDs, but not

Euclidean domains.
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Problems for §12.4

1 Suppose that R is an integral domain. Let S0 be the set containing all
units of R, along with the zero element. Let S1 be the set of all elements x
such that either x = 0 or

〈x〉 + S0 = R.

(That is, every element of R can be written as a multiple of x plus an element
of S0.) Define Si inductively as the set of elements x such that either x = 0
or

〈x〉+ Si−1 = R.

Prove that R is a Euclidean domain if, and only if, every element of R is in
Sn for some n. This result is sometimes referred to as Motzkin’s lemma.

Hint: Let µ(x) be the smallest value of n for which x is in Sn.

2 Show that the elements q and r in part 3 of the definition of a Euclidean
domain are not necessarily unique.

Hint: In Z[i], let x = −4 + i, y = 5 + 3i. Consider q = −1 + i and q = −1.

3 Let D be a Euclidean domain, and let µ be the valuation function. Show
that u 6= 0 is a unit in D if, and only if, µ(u) = µ(1).

4 Let D be a Euclidean domain, and let µ be the valuation function. Show
that if a and b are associates, then µ(a) = µ(b).

5 Show that Z[
√
−6] is not a unique factorization domain.

Hint: Factor 10 in two ways.

6 Prove that 7 is prime in Z[
√
6].

Hint: First show that x2 − 6y2 ≡ 0 (mod 7) only when x and y are both
0 (mod 7).

7 Show that if n ≡ 3 (mod 4), then n cannot be expressed as the sum of
two square integers.

8 If a2 + b2 is a prime number in the ordinary sense, prove that a+ bi is a
prime number in the domain Z[i].

Hint: Use Proposition 12.8.

9 If p = a2 + b2 is a prime number in the ordinary sense, find the prime
factorization of p in the domain Z[i]. (See Problem 8.)

10 Let p > 0 be a prime number in the ordinary sense. Show that p factors
in the larger domain Z[i] if, and only if, there are two integers a and b for
which p = a2 + b2. (See Problem 9.)
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11 Suppose that n is an integer for which
√
4n+ 1 is irrational. Let

q =
1 +

√
4n+ 1

2
,

and consider the domain Z[q] = {x+ yq | x, y ∈ Z}. Define the function N(a)
on Z[q] by

N(x+ yq) =

(

x+ y

(
1 +

√
4n+ 1

2

))

·
(

x+ y

(
1−

√
4n+ 1

2

))

= x2 + xy − ny2.

Show that N(x) satisfies the properties of Lemma 12.8, that is, N(a) = 0 if,
and only if, a = 0, N(a · b) = N(a) · N(b), and N(±1) = 1. These domains
are called semi-quadratic domains.

12 Prove Proposition 12.8 for the semi-quadratic domains Z[q] of Prob-
lem 11.

13 Show that Z[(1 +
√
−3)/2] is a Euclidean domain. This is the ring of

Eulerian integers. (See Problems 11 and 12.)
Hint: Use the same trick used in Proposition 12.9. Since Q[q] = Q[

√
−3] is

a field by Corollary 12.8, we can find t = x · y−1 = u + vq in Q[q], and then
round u and v to the nearest integer to find an element in Z[q].

14 Show that Z[(1 +
√
5)/2] is a Euclidean domain. This ring is called the

Golden ratio domain. (See the hint for Problem 13.)

15 Show that the only units of Z[(1 +
√
−19)/2] are ±1.

Hint: Use Problems 11 and 12 with n = −5.

16 Show that 2 and 3 are prime numbers in Z[(1 +
√
−19)/2].

Hint: Use Problems 11 and 12. When can x2 + xy + 5y2 be even or a
multiple of 3?

17 Use Problem 1 to show that Z[(1+
√
−19)/2] is not a Euclidean domain.

Hint: Use Problems 15 and 16 to show that S1 = S0, and hence Si = S0

for all i.

18 For every complex number z, show that there is a x ∈ Z[(1 +
√
−19)/2]

such that |Re(z − x)| ≤ 1/2 and 0 ≤ Im(z − x) ≤
√
19/2.

Hint: First find an x for which 0 ≤ Im(z−x) ≤
√
19/2, then add an integer

to x to get |Re(z − x)| ≤ 1/2.

19 For every complex number z, show that there is a y ∈ Z[(1 +
√
−19)/2]

such that either |z − y| < 1 or |2z − y| < 1.
Hint: First pick a y using Problem 18, and draw a picture in the complex

plane to show where y could be. Show that three circles of radius 1 centered
at (1±

√
−19)/2 and 0, and two circles of radius 1/2 centered at (1±

√
−19)/4

cover this region.
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20 Let I be an ideal of R = Z[(1+
√
−19)/2], and letm be a nonzero element

of I for which N(m) is as small as possible. (See Problems 11 and 12 for the
definition of N(m).) Show that if x ∈ I, then there is a y ∈ R such that
2x = my.

Hint: Let z = m−1x ∈ Q[
√
−19]. We can extend the N(x) function to

Q[
√
−19], so Problem 19 shows that there is a y ∈ R for which N(m−1x−y) <

1 or N(2m−1x− y) < 1.

21 Let I be an ideal of R = Z[(1 +
√
−19)/2], and let m ∈ I, m 6= 0 have

minimum N(m) as in Problem 20. Show that if x ∈ I, but x 6∈ 〈m〉, then m
is a multiple of 2, and that x = (m/2)y for some y ∈ R that is not a multiple
of 2.

Hint: Problem 16 shows that 2 is prime in R.

22 Show that Z[(1 +
√
−19)/2] is a PID.

Hint: Use Problem 21 to show that if I is an ideal that is not a principal
ideal, and m is the element of I with the least nonzero N(m), then (m/2)yy ∈
I, and hence m/2 ∈ I, but N(m/2) < N(m).

Interactive Problems

23 Use the Sage command

InitDomain(0)

AddFieldVar("i")

Define(i^2, -1)

factor(2 + 0*i)

to determine whether 2 is prime in the domain Z[i]. Try this using the numbers
3, 5, 7, 11, 13, 17, 19, 23, 29, and 31 in place of 2. Which of these numbers
are prime in the domain Z[i]? Can you find a pattern?

24 We saw that Z[
√
2] is a Euclidean domain, and that 3 is prime. What

other primes in the ordinary sense are prime in this ring? Can you find a
pattern?
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Chapter 13

Finite Division Rings

As we begin to study the properties of fields, it is reasonable to start by
looking at finite fields. Finite fields are much easier to visualize, since we can
display the addition and multiplication tables to find patterns. Also, finite
fields are completely understood. We can classify all finite fields in terms of
their size. Finally, finite fields have many applications, playing a key role in
the classification of finite simple groups, and also in error corrections codes
such as the ones used for compact disks.

13.1 Entering Finite Fields in Sage

In order to experiment with finite fields to discover patterns, we need to
understand how to describe a finite field in terms that a computer program
could understand. This process will later be generalized to infinite fields, as
we explore field extensions in the next chapter. In fact, fields have special
properties that allow for shortcuts in the process of entering them into Sage.

We have already seen several examples of finite fields. The first example
was the discovery that whenever p is prime, the ring Zp forms a field with p
elements. In §11.1 we found another example of a finite field—the “complex
numbers modulo 3.” This ring was defined in Sage with the commands

InitDomain(3)

AddFieldVar("i")

Define(i^2, -1)

K = ListField(); K

{0, 1, 2, i, i + 1, i + 2, 2*i, 2*i + 1, 2*i + 2}

Motivational Example 13.1

Find a connection between the field K and the polynomials in Z3[x].
SOLUTION: Notice that the polynomial x2 + 1 is irreducible in Z3[x].

InitDomain(3, "x")

factor(x^2 + 1)

x^2 + 1

451
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Each element of the field K can be thought of as evaluating some polynomial
in Z3[x] at x = i. Even though i is not an element of Z3, we can consider any
polynomial in Z3[x] as being also a polynomial in K[x]. This suggests that
we should use the evaluation homomorphism

φi : K[x] → K.

However, we can restrict this homomorphism to apply only to polynomials in
Z3[x].

φ′i : Z3[x] → K.

The image will still be all of K, since φ′i sends the polynomial x to i. The
kernel of this homomorphism will consist of all polynomials in Z3[x] that
yield 0 when evaluated at x = i. For example, x2 + 1 is in the kernel, as
are all multiples of x2 + 1. In fact, if f(x) is an element of the kernel, then
gcd(f(x), x2 + 1) must be in the kernel, and x2 + 1 is irreducible in Z3[x].
Thus, the kernel must be precisely the multiples of x2 + 1. This ideal can be
described as 〈x2 + 1〉, the ideal generated by x2 + 1.

By the first ring isomorphism theorem (10.2), we now have that

K ≈ Z3[x]/〈x2 + 1〉

since the field K is the image of the homomorphism φ′i.

We can try a similar process to produce other fields.

Computational Example 13.2

Find a field of order 25.
SOLUTION: Recall that we tried to form a field by extending Z5 by an ele-
ment i, where i2 = −1. However, we failed to produce a field, since the ring
had zero divisors. We succeeded in producing the ring

K ≈ Z5[x]/〈x2 + 1〉

but x2 + 1 factors in Z5: (x+ 2)(x+ 3). This factorization apparently causes
the zero divisors to appear in the quotient ring. Perhaps we should try using
a polynomial that is irreducible in Z5.

We first define Z5 in Sage:

InitDomain(5, "x")

Z5 = ListField(); Z5

{0, 1, 2, 3, 4}

Next, we find a polynomial that is irreducible in Z5.

factor(x^2 + 2*x + 3)

x^2 + 2*x + 3
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So x2+2x+3 is irreducible over Z5. To find a new field for which x2+2x+3
has a zero, we will denote one of the zeros by the letter w. Then it is clear
that w2 = −2w − 3, so we can enter this into Sage.

AddFieldVar("w")

Define(w^2, -2*w - 3)

Sage can now generate the ring containing w.

H = ListField(); H

{0, 1, 2, 3, 4, w, w + 1, w + 2, w + 3, w + 4, 2*w, 2*w + 1,

2*w + 2, 2*w + 3, 2*w + 4, 3*w, 3*w + 1, 3*w + 2, 3*w + 3,

3*w + 4, 4*w, 4*w + 1, 4*w + 2, 4*w + 3, 4*w + 4}
The ring formed has 25 elements, and the fact that Sage was able to form

the ring this way proves that it is a field.

As in the case of Z3[x]/〈x2 + 1〉, we can describe this field as

Z5[x]/〈x2 + 2x+ 3〉.

Thus we have found a way to form fields out of polynomial rings.

PROPOSITION 13.1

Let F be a field, and let f(x) be an irreducible polynomial of F [x]. Then
F [x]/〈f(x)〉 is a field that contains F as a subfield.

PROOF: Since F is a field, by Corollary 12.7, F [x] is a principal ideal do-
main. Since f(x) is an irreducible element of F [x], we have by Lemma 12.6
that the quotient H = F [x]/〈f(x)〉 is a field.

Finally, we need to show that the field H contains F as a subfield. Consider
the mapping φ : F → H given by

φ(y) = y + 〈f(x)〉.

This is certainly a homomorphism, since it is a restriction of the natural
homomorphism from F [x] to F [x]/〈f(x)〉. The kernel of φ is just 0, so the
image is isomorphic to F . Thus, F [x]/〈f(x)〉 contains F as a subfield.

DEFINITION 13.1 The field formed in Proposition 13.1 is called the
extension field of K through the irreducible polynomial f(x).

The next step is to determine the size of this new field.

PROPOSITION 13.2

Let p be a prime number, and let A(x) be an irreducible polynomial in Zp[x]
of degree d. Then the field K = Zp[x]/〈A(x)〉 has order pd.
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PROOF: By the division algorithm theorem (12.1), every element f(x) of
Zp[x] can be written

f(x) = q(x) · A(x) + r(x),

where either r(x) is 0, or the degree of r(x) is less than d. Thus, the typical
element of K,

f(x) + 〈A(x)〉,

could be written as r(x) + 〈A(x)〉. Furthermore, the r(x) is uniquely deter-
mined from the division algorithm. Thus, there are as many elements in K
as there are polynomials in Zp[x] with degree less than d, counting the zero
polynomial. All such polynomials can be written

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ ad−1x
d−1,

with each ai between 0 and p−1, inclusively. Since there are d coefficients, each
of which can be p different numbers, there are exactly pd possible polynomials
of degree less than d. Thus, |K| = pd.

Whenever a finite field is defined by an extension through an irreducible
polynomial, the order of the field will be a power of a prime. We would like to
show that all finite fields are produced in this way. So naturally we begin by
showing that all finite fields have an order that is a power of a prime number.

PROPOSITION 13.3

Suppose K is a finite division ring. Then |K| = pn for some prime p and
some integer n.

PROOF: Let q be the order of K. From the additive structure of the ring,
we see that q · x = 0 for all x in K. Thus, the characteristic is positive, and
by Proposition 11.2, the characteristic is a prime number, p.

Suppose that q has a prime factor r other than p. Then the additive group
ofK must have a subgroup of order r, according to Lemma 6.2. Hence r·x = 0
for some element x in K. But this contradicts Proposition 11.2, since r is not
divisible by p. Therefore, q has no prime factors other than p, so q = pn for
some integer n.

According to this proposition, it is impossible to find a field of order 6.
However, it is still possible to find a field of order 4. An irreducible polynomial
of degree 2 in Z2[x] is x

2 + x+ 1. Thus the commands

InitDomain(2)

AddFieldVar("a")

Define(a^2, -a - 1)

F = ListField(); F

{0, 1, a, a + 1}
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TABLE 13.1: Tables for a field of order 4

+ 0 1 a 1+a

0 0 1 a 1+a

1 1 0 1+a a

a a 1+a 0 1

1+a 1+a a 1 0

· 0 1 a 1+a

0 0 0 0 0

1 0 1 a 1+a

a 0 a 1+a 1

1+a 0 1+a 1 a

find a field of order 4 shown in Table 13.1.
As we see from this example, it is fairly easy to enter finite fields into Sage,

as long as they can be expressed as an extension field of Zp through some
irreducible polynomial of Zp[x]. In the next section, we will show that all
finite fields can be obtained in this way. In fact, our goal will be to classify
all finite fields, which will give us a more natural way of defining the fields in
Sage.

Problems for §13.1

For Problems 1 through 9: Perform the following computations in the field
of order 25 from Example 13.2.

1 (w + 2) · (w + 4)
2 (2w + 3) · (3w + 2)
3 (4w + 2) · (3w + 2)

4 (3w + 1)2

5 (w + 2)3

6 (2w + 3)3

7 (3w + 2)4

8 (w + 3)−1

9 (3w + 4)−1

10 The polynomial x2 + x + 1 is irreducible in the field Z2. Write out by
hand the addition and multiplication tables of the field Z2[x]/〈x2 + x+ 1〉.

11 The polynomial x3 + x + 1 is irreducible in the field Z2. Write out by
hand the addition and multiplication tables of the field Z2[x]/〈x3 + x+ 1〉.

12 The polynomial x2 + x + 2 is irreducible in the field Z3. Write out by
hand the addition and multiplication tables of the field Z3[x]/〈x2 + x+ 2〉.

13 Construct addition and multiplication tables for a field with 16 elements.

14 Find a field with 27 elements.

15 Show that the field C is isomorphic to R[x]/〈x2 + 1〉.

16 Show that the field Q(
√
2) is isomorphic to Q[x]/〈x2 − 2〉.

17 Prove that every element in a finite field can be written as the sum of
two squares.
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Interactive Problems

18 The polynomial x4 + x + 1 is irreducible in the field Z2. Use this poly-
nomial to define a field of order 16 in Sage. Show that there is a subfield of
order 4 in this field. Is there a subfield of order 8 in this field?

19 The polynomial x6 + x + 1 is irreducible in the field Z2. Use this poly-
nomial to define a field of order 64 in Sage. Show that there is a subfield of
order 4 in this field. Is there a subfield of order 8 in this field?

20 The polynomial x4 + x + 2 is irreducible in the field Z3. Use this poly-
nomial to define a field of order 81 in Sage. Show that there is a subfield of
order 9 in this field. Is there a subfield of order 27 in this field?

13.2 Properties of Finite Fields

In the last example we starting looking at examples of finite fields. In this
section we want to explore the properties that all finite fields have in common.
In the process, we will begin to classify all finite fields.

We begin by observing that if F is a finite field, then the multiplicative
group F ∗ must be a finite abelian group. If the field is of order pn, the group
F ∗ has order pn − 1. For example, the field of order 4 has a multiplicative
group of order 3, so this group must be isomorphic to Z3.

Example 13.3

Determine the group F ∗ for the “complex numbers modulo 3.”
SOLUTION: Since this group has 8 elements, there are several possibilities
for an abelian group of order 8. However, observing Table 11.2 shows that
1 + i is a generator. Thus, F ∗ ≈ Z8.

This example is not a coincidence. Let us show that in general, there is a
generator of the multiplicative group.

PROPOSITION 13.4

If F is a finite field, then the multiplicative group F ∗ is a cyclic group.

PROOF: F ∗ is abelian, and so by the fundamental theorem of abelian groups
(6.2),

F ∗ ≈ Zd1 × Zd2 × Zd3 × · · · × Zdn ,

where the di are all powers of prime numbers. Let d be the least common
multiple of the set {d1, d2, d3, . . . , dn}. Then for all x in F ∗, we have that
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xd = 1. Thus, the polynomial xd − 1 has |F ∗| solutions. By Corollary 12.2, d
must be at least |F ∗|. But we also have

|F ∗| = d1 · d2 · d3 · · · dn,

so d is at most |F ∗|. Thus, d = |F ∗|, and so d1, d2, d3, · · · , dn are coprime.
Therefore, the group F ∗ is cyclic.

Now that the multiplicative group is completely understood for a finite field,
let us turn our attention to the group of automorphisms on the field. We have
previously seen examples where the group of automorphisms gave us insight
into the structure of a ring, and finite fields are no exception. We begin by
proving some basic lemmas in number theory.

LEMMA 13.1

If p is a prime, then
np ≡ n (mod p)

for all integers n.

PROOF: Since Z∗
p is of order p− 1, we have by Corollary 3.2 that

np−1 = 1

for all elements n in Z∗
p . (This result is commonly called Fermat’s little

theorem.) If we multiply both sides by n,

np = n,

we have a statement that is true for n = 0 as well. Thus, np = n for all n in
the ring Zp. This statement, when converted into modular notation, becomes

np ≡ n (mod p) for all integers n.

LEMMA 13.2

If F is a field of characteristic p, then for all g ∈ F , the polynomial

f(x) = (x+ g)p − xp − gp

is the zero polynomial in F [x].

PROOF: If g = 0, f(x) = xp − xp = 0, so the result is trivial. Let us
suppose that g is nonzero.

Note that the leading term of (x+g)p is xp, which will cancel in f(x). Thus,
f(x) has degree at most p− 1. We will show that for every n, n · g is a root.
Observe that

f(n · g) = (n · g + g)p − (n · g)p − gp = ((n+ 1)p − np − 1) · gp.
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By Lemma 13.1,
(n+ 1)p ≡ (n+ 1) (mod p)

and
np ≡ n (mod p).

Thus,
(n+ 1)p − np − 1 ≡ (n+ 1)− n− 1 ≡ 0 (mod p).

So because F has characteristic p, we have f(n · g) = 0. Since g is nonzero,
the values

{0, g, 2g, 3g, · · · , (p− 1)g}
are all distinct in F . Thus, f(x) has p distinct roots. But Corollary 12.2
shows us that if f(x) were nonzero, there would be at most p− 1 roots. Thus,
f(x) must be the zero polynomial.

We are now ready to produce one automorphism on a finite field, which we
will use to generate all other automorphisms.

THEOREM 13.1: The Frobenius Automorphism Theorem

If F is a finite field of characteristic p, then the mapping

f : x→ xp

forms an automorphism of F to itself. Furthermore, f(y) = y if, and only if,
y is in the subfield Zp. This automorphism is called the Frobenius automor-
phism on F .

PROOF: We first need to show that f is a homomorphism. If F is a field of
characteristic p, then by Lemma 13.2 we have that

(x+ g)p − xp − gp = 0

for all g in F . Thus, we have the identity

f(x+ y) = (x+ y)p = xp + yp = f(x) + f(y).

It is also obvious that

f(x · y) = (x · y)p = xp · yp = f(x) · f(y).

So f is a homomorphism. The kernel of f is obviously just 0, since xp = 0
implies that x = 0, since F has no zero divisors. Therefore, the mapping is
one-to-one. Since F is a finite field, we can use the pigeonhole principle to
show that the mapping is also onto. Therefore, f is an automorphism.

Finally, we need to show that f(y) = y if, and only if, y is in the subfield
Zp. Note that this subfield is generated by the multiplicative identity, 1:

Zp = {0, 1, 2, 3, · · · , p− 1}.
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Historical Diversion

Georg Frobenius (1849–1917)
Georg Frobenius was born in a suburb

of Berlin, and went to the Joachimsthal
Gymnasium when he was almost 11. After
he graduated, he went to the University of
Göttingen for a semester, then moved back
to Berlin to study under the mathematical
giants of Kummer, Weierstrass, and Kro-
necker. His doctorate was awarded, with
distinction, in 1870. After this he started
out teaching at the Joachimsthal Gymna-
sium, and then at the Sophienrealschule.
In 1874 he was appointed as an ex-

traordinary professor at the University of
Berlin. One year later, he took up an ap-
pointment at Zürich, where he did most
of his important work in mathematics. In
1891, Frobenius was appointed chair at the University of Berlin.
Frobenius started his career working with differential equations and elliptic

functions. In 1873 he demonstrated a way to find an infinite series solution
to a second order differential equation in the vicinity of a regular singular
point. He also made many advancements in the theory of elliptic and Jacobi
functions.
In the second half of his career, Frobenius concentrated on group theory.

He reproved Sylow’s theorems using Cayley’s abstract definition of a group,
which is the proof most often used today. (Previous proofs had only been
for permutation groups. See Historical Diversion on page 169.) Frobenius
also proved that if n > 0 divides the order of a finite group G, then the
number of solutions to xn = e, denoted by Rn(G), is also divisible by n.
Frobenius conjectured that if Rn(G) = n, then the set of solutions to xn = e
forms a subgroup of G. This conjecture was finally proven in 1991, using the
classification of finite simple groups.
In 1895, Frobenius called a subgroup N of a group G characteristic if

φ(N) = N for all automorphisms φ of G. He was able to prove several
important properties of characteristic subgroups. More importantly, he cre-
ated the theory of group characters and group representations. These tools
are fundamental in studying finite groups, particularly simple groups.
Frobenius also worked with rings of characteristic p, and is known for the

Frobenius endomorphism that sends every element x to xp. Only in certain
contexts, such as a finite field, is this mapping an automorphism.
Image source: Oberwolfach Photo Collection—Archives of the Mathematisches
Forschungsinstitut Oberwolfach. Hermann Noack, photographer. Used by permission. For
licence information, see http://creativecommons.org/licenses/by-sa/2.0/de/deed.en.

http://creativecommons.org/licenses/by-sa/2.0/de/deed.en
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By Lemma 13.1, for any element in this subfield, f(x) = xp = x. On the
other hand, by Corollary 12.2, the polynomial xp − x in F [x] cannot have
more than p roots in F . We have already found p solutions, so there cannot
be any more. Therefore, f(y) = y if, and only if, y is in Zp.

Once we have one automorphism f(x), we can consider creating other au-
tomorphisms such as f(f(x)) and f(f(f(x))). It is not hard to determine the
order of f(x).

COROLLARY 13.1

Let F be a finite field of order pn. Then the Frobenius automorphism f is of
order n in the group of automorphisms.

PROOF: Note that the multiplicative group F ∗ has order pn − 1. Thus,
by Corollary 3.2, for every element x in F ∗, we have

x(p
n−1) = 1.

Multiplying both sides by x gives us xp
n

= x for all x in F ∗, and also x = 0.
Thus, this statement is true for all x in F .

We now note that

fn(x) = f(f(f(· · · (f(x)) · · ·)))
︸ ︷︷ ︸

n times

= xp
n

= x

for all x in F , so fn yields the identity automorphism.
To show that the order of f is not less than n, suppose that the order was

i < n. Then f i(x) = xp
i

would be x for all x. But then the polynomial

xp
i − x

would have pn solutions. This contradicts Corollary 12.2, since n > i. There-
fore, the order of the Frobenius automorphism is n.

We next need to show a simple lemma to indicate how to apply the Frobe-
nius automorphism to the set of polynomials over the field.

LEMMA 13.3

Any isomorphism f that maps an integral domain K to an integral domain
M extends to an isomorphism mapping K[x] to M [x], with f sending the
polynomial x in K[x] to the polynomial x in M [x].

PROOF: Suppose f is an isomorphism mapping K to M . If w(x) is in K[x],
with coefficients ai, we can define f(w(x)) by

f(w(x)) = f

( ∞∑

i=0

aix
i

)

=
∞∑

i=0

f(ai)x
i.



Finite Division Rings 461

If v(x) is another polynomial in K[x] with coefficients bi, then

f(w(x) + v(x)) = f

( ∞∑

i=0

(ai + bi)x
i

)

=

∞∑

i=0

f(ai + bi)x
i.

=
∞∑

i=0

f(ai)x
i +

∞∑

i=0

f(bi)x
i = f(w(x)) + f(v(x)).

Likewise, we have

f(w(x) · v(x)) = f





∞∑

i=0

∞∑

j=0

(ai · bj)xi+j




=

∞∑

i=0

∞∑

j=0

f(ai · bj)xi+j =
∞∑

i=0

∞∑

j=0

f(ai) · f(bj)xi+j

= f(w(x)) · f(v(x)).

Thus, f extends to a homomorphism mapping K[x] to M [x]. But the kernel
of f is just the identity element, since f preserves the degree of any nonzero
polynomial. Thus, f extends to an isomorphism from K[x] to M [x], and f
maps x to x.

We can apply Lemma 13.3 to the case where f is an automorphism on K[x],
such as the Frobenius automorphism. By extending the Frobenius automor-
phism to a polynomial, we can generate irreducible polynomials in Zp[x].
These irreducible polynomials are important, since we can define the field in
terms of these polynomials.

PROPOSITION 13.5

Let F be a finite field of characteristic p. For any y in F , let n be the smallest
number such that yp

n

= y. If f(x) is the Frobenius automorphism, then

g(x) = (x− y) · (x− f(y)) · (x− f(f(y))) · · · (x− fn−1(y))

is an irreducible polynomial of degree n in Zp[x]. Here fn−1 means f applied
to itself n− 1 times.

PROOF: Consider the extension of the Frobenius automorphism onto F [x],
as given in Lemma 13.3. If we apply this mapping to the polynomial g(x), we
get

f(g(x)) = (x − f(y)) · (x− f(f(y))) · (x− f(f(f(y)))) · · · · · (x− fn(y)).

Recall we picked n to be the smallest number such that fn(y) = y. Thus,

f(g(x)) = (x−f(y))·(x−f(f(y)))·(x−f(f(f(y))))· · · · ·(x−fn−1(y))·(x−y),
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which after rearranging the factors gives us g(x) again.
Since g(x) is fixed by the Frobenius automorphism, each coefficient of g(x)

must be fixed by f(x). But the only elements fixed by f(x) are those in Zp.
Thus, g(x) must have all of its coefficients in Zp, and so is a polynomial in
Zp[x].

To show that g(x) is irreducible, suppose that

g(x) = h(x) · j(x),

where both h(x) and j(x) are polynomials in Zp[x] of positive degree. Then
f(h(x)) = h(x) and f(j(x)) = j(x) since the Frobenius automorphism fixes x
and the elements in Zp. By the unique factorization in F [x], (x − y) has to
be a factor of h(x) or j(x), but not both, since (x− y) is a factor of g(x) but
(x−y)2 is not. Let us suppose that h(x) has (x−y) as a factor. Any factor of
j(x) would have to be a factor of g(x), so such a factor would have the form

(x− fm(y))

for some m > 0. Thus, fm(y) is a root of j(x), but y is not. But this is im-
possible, since fm(j(x)) = j(x), and so fm(j(y)) = j(fm(y)) = 0. Therefore,
g(x) is an irreducible polynomial in Zp[x].

DEFINITION 13.2 The polynomial produced by Proposition 13.5 is
called the irreducible polynomial of y over Zp. If y is in Zp, this polynomial
is simply x− y.

We can now use Proposition 13.5 to show us that every finite field can be
produced as an extension of Zp over an irreducible polynomial. While we are
at it, we will prove a statement that is true for all fields, not just finite fields.

PROPOSITION 13.6

Let K be any field, and F be a subfield of K. Suppose there is an element y
of K such that there are no proper subfields of K containing both F and y.
Suppose that there is a polynomial f(x) in K[x] with coefficients in F such
that f(y) = 0. Suppose further that f(x) is an irreducible polynomial when
treated as a polynomial in F [x]. Then K is isomorphic to F [x]/〈f(x)〉.

PROOF: Consider the evaluation homomorphism

φy : K[x] → K.

We can consider the homomorphism φ′y as the restriction of φy on F [x]. Let us
consider the kernel of this homomorphism. Because f(y) = 0, f(x) is certainly
in the kernel of φ′y. But the kernel cannot be all of F [x], since the constant
polynomials are not in the kernel. We know that the kernel is an ideal, and
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by Corollary 12.7, F [x] is a PID, so the kernel can be written as 〈g(x)〉 for
some g(x) in F [x]. Yet f(x) is in the kernel, so g(x) divides f(x). But f(x) is
irreducible in F [x], and g(x) cannot be a unit, since we have already observed
that 〈g(x)〉 is not all of F [x]. Therefore, the kernel of φ′y is 〈f(x)〉.

From the first ring isomorphism theorem (10.2), the image of φ′y is isomor-
phic to

F [x]/〈f(x)〉.
We have already mentioned that F [x] is a PID, so by Lemma 12.6 the image
is a field. But the field must contain F , since this is the image of the constant
polynomials, and also must contain y, the image of the polynomial x. The
only subfield of K that contains both y and F is K itself, so F [x]/〈f(x)〉 is
isomorphic to K.

One immediate application of Proposition 13.6 is to show us that every finite
field can be produced as an extension of Zp over an irreducible polynomial.
We will use the polynomial derived in Proposition 13.5.

COROLLARY 13.2

For every finite field K of characteristic p, there is an irreducible polynomial
f(x) of Zp[x] such that K is isomorphic to Zp[x]/〈f(x)〉.

PROOF: If K is a finite field, by Proposition 13.4, the multiplicative group of
K∗ is cyclic. Thus, there must be an element y that generates K∗ as a group.
Since K must have finite characteristic p, we will let F be the subfield Zp. Let
f(x) be the irreducible polynomial of y over Zp given by Proposition 13.5.

Even though f(x) is irreducible in Zp[x], f(x) has (x− y) as a factor when
viewed as a polynomial in K[x]. Note that since y generates all of K, we
see that the conditions for Proposition 13.6 are satisfied. Therefore K is
isomorphic to Zp[x]/〈f(x)〉.

We have already seen one field of order 9, produced by the polynomial
x2+1. But there are two other irreducible second degree polynomials in Z3[x],
x2+x+2 and x2+2x+2. What if we formed fields using these polynomials?
Note that both of these polynomials factor in the field Z3[x]/〈x2 + 1〉:

InitDomain(3, "x")

AddFieldVar("i")

Define(i^2, -1)

factor[x^2 + x + 2)

(x + i + 2) * (x + 2*i + 2)

factor[x^2 + 2*x + 2)

(x + i + 1) * (x + 2*i + 1)

Proposition 13.6 hints at what must be happening. The field Z3[x]/〈x2 + 1〉
is the smallest field of characteristic 3 for which x2 + 1 factors. But this field



464 Abstract Algebra: An Interactive Approach

also happens to be the smallest field of characteristic 3 for which x2 + x + 2
and x2+2x+2 factor. This suggests that Z3[x]/〈x2 + 1〉, Z3[x]/〈x2 + x+ 2〉,
and Z3[x]/〈x2 + 2x+ 2〉 are in fact the same field. Could this be so?

The first step in proving this is to find a large field containing both fields.

LEMMA 13.4

Let F and K be two finite fields with the same characteristic p. Then there is
a field that contains isomorphic copies of both F and K.

PROOF: Since F is a finite field, by Corollary 13.2 there is a polynomial
f(x) in Zp[x] such that F is isomorphic to Zp[x]/〈f(x)〉.

Since F and K have the same characteristic, we can consider f(x) to be a
polynomial in K[x] as well. Let g(x) be an irreducible factor of f(x) over the
domain K[x]. Of course, f(x) may already be irreducible in K[x], in which
case we let g(x) = f(x).

Now consider E = K[x]/〈g(x)〉. Since K[x] is a PID, by Lemma 12.6 E is
a field. In fact, E contains an element that is a root of the polynomial g(x),
namely

y = x+ 〈g(x)〉,
since

g(y) = g(x+ 〈g(x)〉) = g(x) + 〈g(x)〉 = 0 + 〈g(x)〉.
We can now consider the evaluation homomorphism

φy : E[x] → E.

Let us first consider the restriction of this homomorphism to the ring Zp[x],
which we will call ψ. Thus ψ is the homomorphism

ψ : Zp[x] → E : ψ(w(x)) = w(y).

Since y is a root of g(x) in the field E, and g(x) in turn is a factor of f(x),
we see that y is a root of f(x) in the field E. Thus, f(x) is in the kernel
of the homomorphism ψ. Since Zp[x] is a PID, the kernel can be written as
〈h(x)〉 for some polynomial h(x) in Zp[x]. But since f(x) is in the kernel,
h(x) must divide f(x). But f(x) is irreducible, and h(x) cannot be a unit, or
else the kernel would be all of Zp[x], which is impossible since the constant
polynomials are not in the kernel. Therefore, the kernel must be 〈f(x)〉, and
so by the first ring isomorphism theorem (10.2), the image of ψ is isomorphic
to

Zp[x]/〈f(x)〉,
which is in turn isomorphic to F . Thus, there is a subfield of E isomorphic
to F .

All we have to do is show that there is a copy of the field K inside of

E = K[x]/〈g(x)〉.
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But we can consider the natural homomorphism

i : K[x] → E

given by
i(p(x)) = p(x) + 〈g(x)〉.

If we restrict this homomorphism onto the constant polynomials, we get

i′ : K → E.

Since g(x) is not a unit, it is clear that the kernel of this homomorphism
is just 0. Thus, there is a subfield of E isomorphic to K. Therefore, we
have constructed a field that contains isomorphic copies of both F and K as
subfields.

We can now use this lemma to show that there is only one non-isomorphic
field of a given order.

COROLLARY 13.3

Any two finite fields of the same order are isomorphic to each other.

PROOF: If two fields F and K have the same order, by Proposition 13.3,
both must have order pn for some prime number p, and some positive integer
n. Thus, both F and K have characteristic p, so by Lemma 13.4 there exists a
field E that contains isomorphic copies of both F and K as subfields. Let F ′

and K ′ be the subfields of E isomorphic to F and K, respectively. Consider
the polynomial

f(x) = xp
n − x

in E[x]. Since F ′ is a subfield of E, the Frobenius automorphism is of order n
on this subfield. Thus, every element of F ′ is a root of f(x). Likewise, every
element of K ′ is also a root of f(x). But by Corollary 12.2, f(x) can have at
most pn roots. Thus, the subfields F ′ and K ′ must coincide, so certainly they
are isomorphic. Hence F and K must be isomorphic.

This proposition explains the strange behavior of fields that we discovered
in our experiment. Whenever a finite field F is extended through an irre-
ducible polynomial, all irreducible polynomials in F [x] of the same degree
factor completely in the new field. The reason is now clear: The field

F [x]/〈f(x)〉

only depends on the degree of the irreducible polynomial f(x).
We have already seen fields of order 4, 9, and 27 in this chapter. We in

fact can refer to them as the fields of order 4, 9, or 27. However, there is one
question we have yet to answer. Given a prime number p and an integer n, is
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there a field of order pn? It seems like all we would need to construct such a
field is an irreducible polynomial f(x) in Zp[x] of degree n, and then the field

Zp[x]/〈f(x)〉

would have order pn. The only problem with this argument is that we have not
shown that there is an irreducible polynomial of degree n in Zp[x]. In order to
construct such irreducible polynomials, we will need to utilize a special class
of polynomials—the cyclotomic polynomials. These polynomials have many
different uses that crop up in unexpected places.

Problems for §13.2

1 Using Table 11.2 of the field of “complex numbers modulo 3,” find all the
generators of the multiplicative group of this field.

For Problems 2 through 5, by Proposition 13.4, the nonzero elements of Zp
form a cyclic group under multiplication. Any generator of this group is called
a primitive root of p. Find the primitive roots of the following primes.

2 17 3 23 4 31 5 37

6 For a given prime, determine a formula for the number of primitive roots
there will be.

7 Show that if F is a finite field of characteristic p, and x is a generator
of the multiplicative group, then xp is also a generator of the multiplicative
group.

8 If p is a prime number of the form 4n+1, show that there is a solution to
the equation

x2 ≡ −1 (mod p).

Hint: By Proposition 13.4, Z∗
p is isomorphic to Zp−1. A solution to the

equation would have order 4.

9 Use Problem 8 to show that a prime of the form 4n+1 is not prime in the
domain Z[i].

Hint: What is (x+i)(x−i), if x is the solution to the equation in Problem 8?

10 Use Problem 9 to prove the two-square theorem of Fermat: Every prime
number of the form 4n+ 1 can be expressed as the sum of two squares.

Hint: Since p is not prime in the domain Z[i], and Z[i] is a UFD, p is
reducible in Z[i]. If a+ bi is one factor, what is the other factor?

11 Let F be a field of prime characteristic p. Show that the intersection of
all of the non-trivial subfields of F is a field of order p.
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12 Let F be a finite field of characteristic p. Show that F (x), the field of
quotients of the polynomial ring F [x], is an infinite field of characteristic p.

13 Let F be any field. Show that no two finite subfields of F can have the
same number of elements.

Hint: See the proof for Corollary 13.3.

14 Let F be a field of order pn. Show that if K is a subfield of F then K
has order pd for some number d that divides n.

15 Let F be a field of order pn. Show that if d divides n, then there is a
unique subfield of order pd.

Hint: See Problem 13 for the uniqueness part.

16 Let p be prime and f(x) an irreducible polynomial of degree 2 in Zp[x].
If K is a finite field of order p3, show that f(x) is also irreducible in K[x].

17 Prove that the group of automorphisms of a field of order pn is isomorphic
to Zn. That is, prove that there are no other automorphisms other than the
ones generated by the Frobenius automorphism.

18 Let p be a prime number. Show that every irreducible polynomial with a
leading term of xn in the field Zp is found in the factorization of the polynomial
xp

n − x.
Hint: If f(x) is a degree n irreducible polynomial, then F = Zp[x]/〈f(x)〉

is field of order pn. Show that every element in this field is a root of the
polynomial xp

n − x. Therefore, the roots of f(x) in the field F are also roots
of xp

n − x.

19 Suppose 2n + 1 = p is a prime number. Show that n is a power of 2.
Such primes are called Fermat primes.

Hint: What is the order of 2 in the field Z∗
p?

Interactive Problems

20 First define Z3[x] as follows:

InitDomain(3, "x")

Then find the factorization of the polynomial x3
3 − x. Show that all irre-

ducible polynomials with leading term of x3 are in this factorization. For an
explanation see Problem 18.

21 First define Z2[x] as follows:

InitDomain(2, "x")

Then find the factorization of the polynomial x2
5−x. Show that all irreducible

polynomials of degree 5 are in this factorization.
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13.3 Cyclotomic Polynomials

At the end of the last section, we had almost classified all finite fields. We
have shown that a finite field must have order pn for some prime p, and that
there is at most one field of that order, up to isomorphism. However, we have
yet to prove that there will be a finite field of order pn for every prime p and
every n > 0.

In order to demonstrate this, we will need to take a detour. We need to
discuss a special class of polynomials in Z[x]. These polynomials occur in the
factorizations of the simple polynomial xn − 1. Although these polynomials
are constructed easily, they have a tendency to appear in many different ap-
plications. Not only will they help us to classify all finite fields, but they will
be used in the demonstration that fifth-degree polynomial equations cannot
be solved in terms of roots.

To introduce the cyclotomic polynomials, we will begin by noticing a pattern
in the following factorizations:

var("x")

factor(x - 1)

x - 1

factor(x^2 - 1)

(x + 1)*(x - 1)

factor(x^3 - 1)

(x^2 + x + 1)*(x - 1)

factor(x^4 - 1)

(x^2 + 1)*(x + 1)*(x - 1)

factor(x^5 - 1)

(x^4 + x^3 + x^2 + x + 1)*(x - 1)

factor(x^6 - 1)

(x^2 + x + 1)*(x^2 - x + 1)*(x + 1)*(x - 1)

In each factorization there is exactly one new polynomial appearing that
has not appeared in any previous factorization. Our plan is to find a formula
for the irreducible polynomials produced in these factorizations. A natural
starting place would be to find all of the complex roots of the polynomial
xn − 1. But we have already seen that the primitive nth roots of unity are of
the form ωkn, where k is coprime to n, and ωn = e2πi/n.

How are the primitive roots of unity related to the factorizations of xn− 1?
It is clear that the primitive roots are precisely the complex zeros of xn − 1
that are not zeros of xm − 1 for m < n. Thus, if we wish to find the factor of
xn− 1 that does not appear in any previous factorizations, we should look for
a polynomial whose only complex roots are the primitive nth roots of unity.
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Motivational Example 13.4

Find a factor of x8 − 1 that does not appear in any previous factorizations of
xn − 1.
SOLUTION: The primitive eighth roots of unity were found to be

ω8, ω8
3, ω8

5, and ω8
7.

Thus, the simplest polynomial that has these four complex roots would be:

w8 = (1 + I)/sqrt(2); w8

(1/2*I + 1/2)*sqrt(2)

expand((x - w8)*(x - w8^3)*(x - w8^5)*(x - w8^7))

x^4 + 1

Apparently not only did the imaginary part cancel, but also the square roots
simplified. We can check that x4 + 1 is a factor of x8 − 1.

factor(x^8 - 1)

(x^4 + 1)*(x^2 + 1)*(x + 1)*(x - 1)

We can use this example for our definition.

DEFINITION 13.3 For n > 0, we define the nth cyclotomic polynomial
to be the product

Φn(x) = (x− ωn
k1) · (x− ωn

k2) · (x− ωn
k3) · · · (x− ωn

ki),

where k1, k2, k3, . . . , ki are the integers between 0 and n that are coprime to
n.

It is sometimes convenient to use a special notation for a product of many
factors. Just as the sigma Σ can be used to denote the sum of many terms, a
large Π (the upper case π) is used to denote such a product. Thus, we could
write

Φn(x) =

n∏

k=1
gcd(k,n)=1

(x− ωn
k).

In this product, the index k ranges from 1 to n, but we only consider the
values of k for which gcd(k, n) = 1. It is apparent from the definition that
the degree of the nth cyclotomic polynomial is φ(n), where φ is Euler’s totient
function.

Although this definition uses complex numbers, we observed that the poly-
nomials always produced integer coefficients. The next proposition shows us
how to find the cyclotomic polynomials without having to work with complex
numbers.
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PROPOSITION 13.7

For any positive integer n, we have

xn − 1 =
∏

k|n
Φk(x).

Here, the product is taken over all values of k that divide n.

PROOF: We will first show that each nth root of unity is a primitive kth

root of unity for exactly one positive divisor k of n. If z = ωn
s is an nth

root of unity, we can let k = n/gcd(n, s). Then k · s = n · (s/gcd(n, s)) is
a multiple of n, so zk = 1. Yet if zm = 1, then s · m must be a multiple
of n, so (s/gcd(n, s)) ·m is a multiple of n/gcd(n, s). But (s/gcd(n, s)) and
(n/gcd(n, s)) are coprime, so m would be a multiple of k. Thus, ωn

s is a
primitive kth root of unity, with k = n/gcd(n, s).

Since

xn − 1 = (x− ωn) · (x− ωn
2) · (x− ωn

3) · · · · · (x− ωn
n),

we can collect those factors (x− ωn
s) for which ωn

s is a primitive kth root of
unity. The result is the formula

xn − 1 =
∏

k|n
Φk(x).

To help understand this notation, let us look at the case where n = 12.
Then Proposition 13.7 states that

x12 − 1 =
∏

k|12
Φk(x) = Φ1(x) · Φ2(x) · Φ3(x) · Φ4(x) · Φ6(x) · Φ12(x).

We can observe this factorization using Sage.

var("x")

factor(x^12 - 1)

(x^4 - x^2 + 1)*(x^2 + x + 1)*(x^2 - x + 1)*(x^2 + 1)*(x + 1)*

(x - 1)

Proposition 13.7 at least explains our observation that the factorization of
xn − 1 always produces a new factor. However, we have not proven that the
cyclotomic polynomials are irreducible in Z[x]. We have to begin by showing
that Φn(x) is indeed in Z[x].

COROLLARY 13.4

The nth cyclotomic polynomial Φn(x) has integer coefficients for all n > 0.



Finite Division Rings 471

PROOF: We will prove this using induction on n. Obviously the first cy-
clotomic polynomial is x − 1, which has integer coefficients. Let n > 1, and
suppose the claim is valid for all previous cyclotomic polynomials. By Propo-
sition 13.7, we can find the nth cyclotomic polynomial as

Φn(x) = (xn − 1)/f(x)

where
f(x) =

∏

k|n
k<n

Φk(x).

Since all previous cyclotomic polynomials have integer coefficients, we see by
induction that f(x) has integer coefficients. Furthermore, from the definition
of the cyclotomic polynomials, we see that the leading coefficients must be 1,
hence the leading coefficient of f(x) is 1. So by Corollary 12.1 the quotient
(xn− 1)/f(x) must in fact have integer coefficients. Therefore, all cyclotomic
polynomials have integer coefficients.

It is actually very easy to generate the nth cyclotomic polynomial in Sage.
The commands

Cyclotomic(3, "x")

x^2 + x + 1

Cyclotomic(6, "x")

x^2 - x + 1

find the third and sixth cyclotomic polynomial. Notice that the coefficients for
these cyclotomic polynomials are either 0 or ±1. This is the case for n ≤ 100,
but for larger values of n, the coefficients of Φn(x) can be larger. For example,
there are two coefficients of −2 in Φ105(x).

Cyclotomic(105, "x")

x^48 + x^47 + x^46 - x^43 - x^42 - 2*x^41 - x^40 - x^39 +

x^36 + x^35 + x^34 + x^33 + x^32 + x^31 - x^28 - x^26 - x^24 -

x^22 - x^20 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 - x^9 -

x^8 - 2*x^7 - x^6 - x^5 + x^2 + x + 1

The next corollary is another easy consequence of Corollary 13.4.

COROLLARY 13.5

If n is divisible by m, with n > m, then the polynomial xn − 1 is divisible by
xm − 1 in Z[x]. Furthermore, Φn(x) divides

xn − 1

xm − 1

in Z[x].
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PROOF: Since n is divisible by m, whenever m is divisible by k, then n
is divisible by k. Thus, every factor appearing in

xm − 1 =
∏

k|m
Φk(x)

also appears in

xn − 1 =
∏

k|n
Φk(x).

In fact, the quotient would be the product of the cyclotomic polynomials
Φk(x) for which k is a divisor of n, but not of m. Since the cyclotomic
polynomials have integer coefficients,

xn − 1

xm − 1

would have integer coefficients. Furthermore, Φn(x) is one of the cyclotomic
polynomials in the factorization of xn − 1 that is not in xm − 1. Thus, the
nth cyclotomic polynomial divides (xn − 1)/(xm − 1) in Z[x].

We now want to find some properties of the cyclotomic polynomials, such
as showing that Φn(x) is irreducible in Z[x]. One of the most important
properties is that two different cyclotomic polynomials cannot share a root in
the complex numbers. (This is obvious from the definition.) However, we will
be working with other fields besides the complex numbers, so we could ask
whether a cyclotomic polynomial could have multiple roots in any field.

DEFINITION 13.4 If r is a root of a polynomial f(x), and (x − r)2

divides f(x), we say r is a multiple root of f(x).

We would like to determine when xn − 1 has multiple roots. Our strategy
is to discover the form of the quotient

xn − 1

x− 1
.

For example, (x4 − 1)/(x− 1) and (x5 − 1)/(x− 1) is given by

var("x")

Together((x^4 - 1)/(x - 1))

x^3 + x^2 + x + 1

Together((x^5 - 1)/(x - 1))

x^4 + x^3 + x^2 + x + 1

We can start to see the general pattern. Using this pattern, we can prove the
following lemma.
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LEMMA 13.5

If F is any field, then the polynomial xn − 1 has a multiple root if, and only
if, n is a multiple of the characteristic of F .

PROOF: We first will ask whether 1 is a multiple root of xn − 1. Since
1 is clearly a root,

xn − 1 = (x− 1) · f(x)
for some polynomial f(x). But we can use the division algorithm to produce
f(x). We claim that

f(x) =

n−1∑

k=0

xk = 1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1.

To see this, note that

(x− 1) · f(x) = x · f(x) − f(x)

= (x+ x2 + x3 + · · ·xn−1 + xn)

− (1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1)

= xn − 1.

To see whether 1 is a double root, we observe that

f(1) =

n−1∑

k=0

1k = 10 + 11 + 12 + 13 + · · ·+ 1n−2 + 1n−1 = n.

Thus, f(1) is zero if, and only if, n is a multiple of the characteristic of
F . Therefore, 1 is a double root of f(x) precisely when the characteristic is
positive and divides n.

Now suppose that n is not a multiple of the characteristic, and that r is a
double root of xn − 1. Then

xn − 1

(x− r)2

is a polynomial in F [x]. If we replace x with x · r we get

(x · r)n − 1

(x · r − r)2
=

xnrn − 1

(x− 1)2 · r2 =
xn − 1

(x− 1)2 · r2

since rn = 1. However, we have already shown that 1 is not a double root of
xn− 1, so the right-hand side of this equation cannot be a polynomial. Thus,
r is not a double root whenever n is not a multiple of the characteristic.

We are finally ready to show the irreducibility of Φn(x).

THEOREM 13.2: Gauss’s Theorem on Cyclotomic Polynomials

For all n > 0, Φn(x) is an irreducible polynomial in Z[x].
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PROOF: We see from Corollary 13.4 that Φn(x) has integer coefficients.
Let f(x) be an irreducible factor of Φn(x), with leading coefficient xn. Our
goal is to show that f(x) = Φn(x). Since Φn(x) divides xn − 1, we have
xn − 1 = f(x) · g(x) for some g(x) ∈ Z[x]. Suppose y = ωsn is a complex root
of f(x), which is a primitive nth root of unity since it is also a root of Φn(x),
so s will be coprime to n. Let p be a prime that does not divide n. We want
to show that yp is also a root of f(x).

Suppose yp = ωspn is not a root of f(x). Since yp is also a primitive nth

root of unity, Φn(y
p) = 0, so f(yp) · g(yp) = 0. Since we are assuming that

f(yp) 6= 0, we see that g(yp) = 0. In particular, this means that y is a root of
g(xp).

Since y is a root of the irreducible polynomial f(x), and also a root of
g(xp), we see that f(x) is a factor of g(xp) in Z[x]. Hence, we can write
g(xp) = f(x) · h(x) for some h(x) in Z[x].

We now consider the polynomials F (x), G(x), and H(x) to be the poly-
nomials f(x), g(x), and h(x) modulo p in Zp[x]. Because of the Frobenius
automorphism, [G(x)]p = G(xp) = F (x) · H(x) in Zp[x]. Since Zp[x] is a
UFD, F (x) and G(x) have a common irreducible factor, say m(x), in Zp[x].
This would indicate that m(x) is a repeated factor of xn − 1 in Zp[x]. But
then xn − 1 would have a multiple root in Zp[x]/〈m(x)〉, which contradicts
Lemma 13.5. Thus, we find that ωspn = yp is a root of f(x).

At this point, we have shown that whenever ωsn is a root of f(x), and the
prime p is coprime to n, then ωspn is a root of f(x). By repeating this process,
we see that ωskn is a root of f(x) whenever k is coprime to n. But this means
that all primitive nth roots of unity are roots of f(x), so f(x) = Φn(x). Hence
Φn(x) is irreducible.

Lemma 13.5 can also be used to generate irreducible polynomials in Zp[x]
of any degree. In fact, these irreducible polynomials are the key to proving
that a field of order pn exists.

PROPOSITION 13.8

Let p be a prime integer, and let n > 1. Consider the cyclotomic polynomial

Φ(pn−1)(x)

of order φ(pn − 1). Let us consider g(x) to be this polynomial modulo p in
Zp[x]. Then g(x) factors into irreducible polynomials in Zp[x], all of which
have degree n.

PROOF: Let h(x) be an irreducible factor of g(x), and let K be the field
Zp[x]/〈h(x)〉. We wish to show that the order of K is pn, since by Propo-
sition 13.2 this would indicate that the degree of h(x) is n. Let y be the
element

y = x+ 〈h(x)〉
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in the field K. Then h(y) = 0, and hence g(y) = 0 in the field K. In fact,
g(x) would be a factor of

x(p
n−1) − 1,

and so yp
n

= y. In other words, if f(x) is the Frobenius automorphism on K,
then fn(y) = y. In fact, fn(1) = 1, and Zp[x] is generated by x and 1, so we
find that fn(x) = x for all x in K. Thus, the polynomial

xp
n − x

has at least |K| roots. By Corollary 12.2, |K| can have at most pn elements.
To show that |K| = pn, let us suppose that |K| = pi, where i < n. Then i

is the smallest number for which f i(x) = x for all x in K. It is clear that i
would have to divide n, since fn(x) is also x for all x in K.

Since f i(y) = y, we see that y is a root of the polynomial

x(p
i−1) − 1.

By Corollary 13.5, Φ(pn−1)(x) divides

j(x) =
x(p

n−1) − 1

x(pi−1) − 1

in Z[x], since (pi − 1) divides (pn − 1). Thus, in Zp[x], g(x) divides j(x).

Since g(y) = 0, and also y(p
i−1) = 1, we see that y would be a multiple root

of x(p
n−1) − 1. But by Lemma 13.5, this polynomial can only have a multiple

root if (pn − 1) is a multiple of p, which it clearly is not. Thus, i = n, and so
|K| = pn. By Proposition 13.2, the irreducible factors of g(x) over Zp[x] all

have degree n.

We can now prove what we had suspected was true from the experiments:
that there is precisely one field of order pn, where n > 0 and p is a prime
number.

COROLLARY 13.6

If p is a prime number, and n is a positive integer, there exists a unique field
(up to isomorphism) of order pn.

PROOF: We have already shown in Corollary 13.3 that finite fields of the
same order are isomorphic, so all we have to show is that there is a field of
order pn. By Proposition 13.8, the cyclotomic polynomial

Φ(pn−1)(x)

factors in the domain Zp[x] into irreducible factors of degree n. If we let A(x)
be one of those irreducible factors, then by Proposition 13.2, the field

K = Zp[x]/〈A(x)〉



476 Abstract Algebra: An Interactive Approach

has order pn.

DEFINITION 13.5 If q = pn, where p is prime and n > 0, then the
Galois field of order q, denoted GF(q), is the unique field of order q given in
Corollary 13.6.

For example, the official name for the “complex numbers modulo 3” we
have been working with is GF(9). Whenever p is prime, we can write GF(p)
for the field Zp.

When we first defined GF(9), we used the irreducible polynomial x2 + 1 in
Z3[x] to make the definition. But there are two other second-degree irreducible
polynomials with a leading coefficient of 1 in Z3[x], namely, x2 + x + 2 and
x2 + 2x+ 2. We could have used either of these to define GF(9):

InitDomain(3)

AddFieldVar("a")

Define(a^2, -a - 2)

K = ListField(); K

{0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
or

InitDomain(3)

AddFieldVar("b")

Define(b^2, -2*b - 2)

K = ListField(); K

{0, 1, 2, b, b + 1, b + 2, 2*b, 2*b + 1, 2*b + 2}
The addition tables are similar, but the multiplication tables are very different.
We know from Corollary 13.3 that these are both isomorphic to GF(9), but
this is not obvious from the multiplication tables. This begs the question as
to whether there is an official way to describe the elements of GF(pn).

It is clear that we must first pick an irreducible polynomial f(x) of degree
n over Zp[x], and then we let a = x + 〈f(x)〉 be a root of this polynomial
in Zp[x]/〈f(x)〉. This will allow every element of GF(pn) to be expressible in
terms of a.

But we also know from Proposition 13.4 that the group GF(pn)∗ is a cyclic
group, and so we can choose the polynomial f(x) so that a root a will be
a generator of this group. Using that fact that GF(pn)∗ is cyclic, we can
determine the following definition.

DEFINITION 13.6 The Conway polynomial of degree n over Zp is the
polynomial f(x) of degree n in Zp[x] with the following characteristics:

1. Primitive: The polynomial f(x) is irreducible, has a leading coefficient
of 1, and x + 〈f(x)〉 is a multiplicative generator of the finite field
Zp[x]/〈f(x)〉. Such polynomials are called primitive polynomials.
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2. Compatibility: The polynomial is compatible with the way that the
subfields of GF(pn) are defined. To be compatible, for all divisors d of

n less than n, the
(
pn−1
pd−1

)th
power of the zeros of the polynomial must

be zeros of the Conway polynomial of degree d over Zp.

3. Tie breaker: If two or more primitive polynomials satisfy the compatibil-
ity condition, let m be the highest power of x for which the coefficients
differ. If n−m is even, pick the one with the smallest coefficient from
the set {0, 1, . . . p− 1}. If n−m is odd, pick the largest, unless there is
one with a coefficient of 0.

The tie-breaker at first seems counter-intuitive. Logically, a zero coefficient
is always preferred over a nonzero term, but sometimes we pick the polynomial
with the largest coefficient, and sometimes use the one with the smallest. But
to understand why this is so, consider the first degree Conway polynomials.
Since all of the primitive polynomials are of the form x+ c, with c 6= 0, they
differ only in the constant term. Hence m = 0, so n−m will be odd, and we
should select the primitive polynomial with the largest c. This in turn will
make the root of this polynomial be as small as possible. So for p prime, the
root of the Conway polynomial will represent the smallest generator of the
group Z∗

p . In general, the Conway polynomial is designed so that the roots
will be minimized.

Example 13.5

Let us use this definition to find the Conway polynomial of degree 2 over Z3.

SOLUTION: There are three irreducible polynomials of degree 2 in Z3[x] with
a leading coefficient of 1: x2 + 1, x2 + x + 2, and x2 + 2x + 2. The roots of
x2 + 1 in Z3[x]/〈x2 + 1〉 have order 4, not 8. Since the multiplicative group
is isomorphic to Z8, which has 4 generators, we know that there will be 2
primitive polynomials. So x2 + x+ 2 and x2 + 2x+ 2 pass the first test.

In order to understand the compatibility condition, we must first find the
Conway polynomial of degree 1 over Z3. Since there is only one multiplicative
generator of Z3, namely 2, there is only one primitive polynomial of degree 1,
x− 2 = x+ 1.

Now in order for a primitive polynomial of degree 2 to be compatible, the
4th power of the roots must be a root of x + 1 ((32 − 1)/(31 − 1) = 4). But
the 4th power of all four generators in GF(9) produces 2, so both x2 + x+ 2
and x2 +2x+2 satisfy the compatibility condition, but x2 +1 does not, since
i4 = 1 6= 2.

Of the two possible primitive polynomials remaining, we look for the largest
power of x for which these differ, (x1), and since n−m = 1 is odd, and neither
x1 coefficient is 0, we pick the larger of the two possible coefficients. So the
Conway polynomial is x2 + 2x+ 2.
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We can use Sage to verify this.

ConwayPolynomial(3, 2)

x^2 + 2*x + 2

Hence, the official notation for GF(9) is

InitDomain(3)

AddFieldVar("a")

Define(a^2, -2*a - 2)

F = ListField(); F

{0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}

Computational Example 13.6

Find the Conway polynomial of degree 4 over Z3.

SOLUTION: We can find all of the primitive polynomials of degree n = 4 by
factoring Φ(pn−1)(x) in Z3[x]. (See Problem 15.)

Cyclotomic(80, "x")

x^32 - x^24 + x^16 - x^8 + 1

InitDomain(3, "x")

factor(x^32 - x^24 + x^16 - x^8 + 1)

(x^4 + x + 2) * (x^4 + 2*x + 2) * (x^4 + x^3 + 2) *

(x^4 + x^3 + x^2 + 2*x + 2) *

(x^4 + x^3 + 2*x^2 + 2*x + 2) * (x^4 + 2*x^3 + 2) *

(x^4 + 2*x^3 + x^2 + x + 2) * (x^4 + 2*x^3 + 2*x^2 + x + 2)

So we have 8 primitive polynomials of degree 4 over Z3, each having 4 roots
that are generators of GF(81). But we need the compatibility condition to
be satisfied. That is, for a root r in one of these polynomials, we need the
(34 − 1)/(31 − 1) = 40th power of r to satisfy x + 1 = 0, while the (34 −
1)/(32 − 1) = 10th power of r must satisfy x2 + 2x+2 = 0. In other words, r
will satisfy r40 + 1 = 0 and r20 + 2r10 + 2 = 0.

factor(x^40 + 1)

(x^4 + x + 2) * (x^4 + 2*x + 2) * (x^4 + x^2 + 2) *

(x^4 + 2*x^2 + 2) * (x^4 + x^3 + 2) *

(x^4 + x^3 + x^2 + 2*x + 2) * (x^4 + x^3 + 2*x^2 + 2*x + 2) *

(x^4 + 2*x^3 + 2) * (x^4 + 2*x^3 + x^2 + x + 2) *

(x^4 + 2*x^3 + 2*x^2 + x + 2)

factor(x^20 + 2*x^10 + 2)

(x^4 + x^2 + 2) * (x^4 + x^3 + 2) *

(x^4 + x^3 + 2*x^2 + 2*x + 2) * (x^4 + 2*x^3 + 2) *

(x^4 + 2*x^3 + 2*x^2 + x + 2)
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Four polynomials are in common with all three factorizations, so these four
pass the compatibility test:

x4+x3+2 x4+x3+2x2+2x+2 x4+2x3+2 x4+2x3+2x2+x+2.

Since they differ in the x3 power, and none of them are missing the x3 term,
we pick the one with the largest coefficient. (Again, n −m = 4 − 3 is odd.)
Of the 2, we pick the one with the smallest x2 coefficient (n −m = 4 − 2 is
even), giving us x4 + 2x3 + 2. We can verify this with Sage.

ConwayPolynomial(3, 4)

x^4 + 2*x^3 + 2

The Galois fields have many applications. A code very similar to the RSA
code studied in Chapter 3 was developed using Galois fields of characteristic
2. For a long time the field of order 2127 was used, since the multiplicative
group is of order 2127−1, which happens to be prime. (Primes of this form are
called Mersenne primes.) This code had the advantage that the key was much
shorter than the RSA key, and multiplication in this field could be quickly
implemented in binary hardware. However, due to the special properties
of finite fields, this code was recently cracked. In order to ensure safety of
the encryption, the size of the field had to be upped to order 22201, which
diminished the advantage over the RSA code.

But there is another type of code based on Galois fields, called the Reed-
Solomon code, which is not used for security but rather for the storage or
transfer of digital data. All digital information, such as the storage of a file in
a computer or a song on a compact disc, is stored as a string of “bits” that are
either 0 or 1. We will let K denote a finite field of characteristic 2. For exam-
ple, if K = GF(256), then each element of K would correspond to a computer
“byte.” (Each byte is eight bits.) A string of n bytes (a0, a1, a2, a3, . . . , an−1)
is encoded as a polynomial in K:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · an−1x
n−1.

The encryption of this list of elements is simply the evaluation of this polyno-
mial at the 256 elements of K. That is, if g is a generator of the multiplicative
group K∗, then

f(0), f(g), f(g2), f(g3), . . . , f(g255)

is transmitted in place of the numbers a0, a1, a2, . . . an−1. We know from
Corollary 12.3 that we can reconstruct the original list of elements from any n
of the numbers transmitted. Thus, if there are some errors in the transmission,
the original list can still be determined. Using combinatorial reasoning, Reed
and Solomon showed that as many as (255−n)/2 errors could occur, and yet
the original list of elements can be decoded.

For example, if n = 251, then every 251 bytes is converted to a 250-degree
polynomial, which is evaluated at the 256 elements of K. Even if two of
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these bytes are transmitted incorrectly, the 251 original bytes can be correctly
reconstructed. This is an example of what is called an error-correcting code.
This code was used by the Voyager II spacecraft to transmit pictures of
Uranus and Neptune back to Earth [16]. A version of this code (using a
larger field K) is used to store the digital music on a compact disc. Current
CD players can cope with errors as long as 4000 consecutive bits on the CD,
typically caused by a scratch on the CD surface. The Reed-Solomon code also
allows over 500 channels of digital television.

The ironic part of this code is that, when Reed and Solomon first discov-
ered the code in 1960 [15], it was described as “interesting, but probably not
practical.” It wasn’t until hardware technology advanced to the point that
the code could be implemented that the real value of this code was evident.
As with most mathematics, the usefulness of a particular result is not seen
until long after the result is published.

One final application of finite fields arises from the study of simple groups.
Almost all of the simple groups besides the alternating groups are the Cheval-
ley groups, which are defined in terms of finite fields. For example, the simple
group Aut(Z∗

24) can be expressed as the 3-by-3 matrices in the field Z2 with
determinant 1. This example can be generalized to a group G of m-by-m ma-
trices over any finite field of order pn. When pn > 2, there may be a nontrivial
center Z formed by diagonal matrices. However, we can form the quotient
group G/Z. The group generated, denoted Lm(pn), will be simple if m > 2,
or if m = 2 and pn > 3 [9, p. 223].

There are several other ways of forming simple groups using finite fields. In
fact, besides the alternating groups, there are only 26 finite simple groups that
are not expressed using finite fields. Thus, finite fields are of key importance
in the classification of all finite simple groups.

Problems for §13.3

For Problems 1 through 4: Find the cyclotomic polynomial.

1 Φ6(x) 2 Φ9(x) 3 Φ10(x) 4 Φ13(x)

5 For n > 1, prove that the sum of all the nth roots of unity is 0.
Hint: Look at the proof of Lemma 13.5.

6 For n > 1, prove that the product of all the nth roots of unity is (−1)n+1.

7 Find the smallest field of characteristic 2 that has an element with a mul-
tiplicative order of 11.

8 Find the smallest field of characteristic 3 that has an element with a mul-
tiplicative order of 11.

9 Prove that the constant coefficient of the nth cyclotomic polynomial Φn(x)
is equal to −1 when n = 1, and is 1 when n > 1.

Hint: Use induction along with Proposition 13.7.
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10 Prove that the nth cyclotomic polynomial Φn(x) is a “palindrome poly-
nomial” when n > 1. That is, the list of coefficients read the same going
forward or backward.

Hint: Whenever x is a primitive nth root of unity, x−1 will also be a primi-
tive nth root. What happens if we replace x with 1/y in the polynomial? You
may use the result of Problem 9.

11 Prove that if n is odd, and n > 1, then Φ2n(x) = Φn(−x).

12 Prove that if p is a prime, and n > 0, then

Φpn(x) = Φp(x
pn−1

).

13 Use Problems 11 and 12 to find Φ54(x).

14 Prove that φ(pn−1) is divisible by n, where φ is Euler’s totient function.
Hint: See Proposition 13.8.

15 Prove that the primitive polynomials of degree n over Zp are precisely
the factors of Φpn−1(x) over the field Zp.

Interactive Problems

16 First define Z2[x] in Sage,

InitDomain(2, "x")

and then show that the cyclotomic polynomial Φ(23−1)(x) factors in the field
Z2 into irreducible polynomials of degree 3. Show by process of elimination
that the only irreducible polynomials of degree 3 are the ones given in this
factorization.

17 First define Z2[x] in Sage as in Problem 16. Then show that the cyclo-
tomic polynomial Φ(24−1)(x) factors in the field Z2 into irreducible polynomi-
als of degree 4. Find one more irreducible polynomial of degree 4 besides the
ones given in this factorization.

Hint: Factor the polynomial x2
4 − x.

18 First define Z2[x] in Sage as in Problem 16. Then show that the cyclo-
tomic polynomial Φ25−1(x) factors in the field Z2 into irreducible polynomials
of degree 5. Does this factorization give all of the irreducible polynomials of
degree 5 over Z2?

19 First define Z3[x] in Sage:

InitDomain(3, "x")
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and then show that the cyclotomic polynomial Φ32−1(x) factors in the field
Z3 into irreducible polynomials of degree 2. What irreducible quadratic poly-
nomial in Z3 have we seen that is not in the list of factors?

20 Use Sage to find the Conway polynomial of degree 6 over Z2. Show
that raising a root of this polynomial to the 9th power produces a zero of
the Conway polynomial of degree 3 over Z2, and raising this root to the 21st

power produces a zero of the Conway polynomial of degree 2 over Z2. Hence,
the compatibility condition is satisfied.

13.4 Finite Skew Fields

Since we have completely classified all finite fields, a natural question is
whether we can classify all finite skew fields, and whether these can be easily
entered into Sage. At first this seems like it would be a harder problem,
since there are many non-abelian groups, and many non-commutative rings.
However, a surprising result is that there are no finite skew fields. In this
section we will prove this remarkable result, known as Wedderburn’s theorem.

We begin by carrying over some ideas from group theory. One of the ways
we studied non-abelian groups was to find the center of the group, since this
was always a normal subgroup. We can ask whether the set of elements of a
skew field that commute with all of the elements forms a special set.

DEFINITION 13.7 Let K be a skew field. Then the set of all elements
x of K such that x · y = y · x for all y ∈ K is called the center of K.

Example 13.7

Find the center of the quaternions, H. Although we might guess at the answer,
we can prove what the center is with Sage’s help.

InitQuaternions()

{1,i,j,k,-1,-i,-j,-k}
To find the center, let us first define two typical elements in H.

var("u0 u1 u2 u3 v0 v1 v2 v3")

A = u0 + u1*i + u2*j + u3*k; A

u0 + u1*i + u2*j + u3*k

B = v0 + v1*i + v2*j + v3*k; B

v0 + v1*i + v2*j + v3*k

These will commute as long as A · B −B · A = 0.
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D = A*B - B*A

Together(D)

(-2*u3*v2 + 2*u2*v3)*i + (2*u3*v1 - 2*u1*v3)*j +

(-2*u2*v1 + 2*u1*v2)*k

The only way that this could be zero for all v1, v2, and v3 is for u1 = u2 =
u3 = 0. Thus, the center of H is basically the field of real numbers.

LEMMA 13.6

The center of a skew field forms a field.

PROOF: Let K be a skew field, and let Z be its center. We first will show
that Z is a subring. If x and y are two elements in Z, and k is any element
in K, then

(x− y) · k = x · k − y · k = k · x− k · y = k · (x− y)

and

(x · y) · k = x · (y · k) = x · (k · y) = (x · k) · y = (k · x) · y = k · (x · y).

Thus, both x− y and x · y are in Z. By Proposition 10.1, Z is a subring of K.
Both 0 and the identity element are obviously in Z, so Z is nontrivial. Since

Z is commutative, all we have left to prove is that every nonzero element of
Z is invertible. If x 6= 0 is an element in Z and k is in K, then x · k = k · x.
The inverse of x exists in K, so we can multiply both sides of the equation on
both the left and the right by x−1:

x−1 · (x · k) · x−1 = x−1 · (k · x) · x−1.

Thus,
k · x−1 = x−1 · k

for all k in K, and so x−1 is in the center Z. Thus, Z is a field.

Another concept from group theory that carries over into the study of fields
is the normalizer. Recall the definition of a normalizer of a subset S of a group
G. We defined

NG(S) = {g ∈ G | g · S · g−1 = S}.
We would like to apply the normalizer to the multiplicative group of a field.
In particular, we would like to consider the normalizer of a particular element,
that is, when S = {y}.

Example 13.8

Let us find the normalizer of the element i in the nonzero quaternions. This
consists of all elements A such that A · i ·A−1 = i. The Sage command
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Together(A*i*A^-1 - i)

(-2*(u2^2 + u3^2)/(u0^2 + u1^2 + u2^2 + u3^2))*i +

(2*(u1*u2 + u0*u3)/(u0^2 + u1^2 + u2^2 + u3^2))*j +

(-2*(u0*u2 - u1*u3)/(u0^2 + u1^2 + u2^2 + u3^2))*k

shows that A · i ·A−1 = i whenever

2((u1u2 + u0u3)j + (−u0u2 + u1u3)k − i(u22 + u33))

u20 + u21 + u22 + u23

is zero, which can only happen if u2 = u3 = 0. In fact, if A is nonzero, this is
sufficient, so we see that the normalizer of i is the set of nonzero elements of
the form u0 + u1i.

The normalizer does not quite form a field, since it does not include the
zero element. Yet if we added the zero element to NH∗({i}), we get a field
equivalent to the complex numbers. It is not hard to show that for any skew
field, whenever we add the zero element to the normalizer, we will either get
a field or a skew field.

LEMMA 13.7

Let K be a skew field, and let k be an element of K. Then if we let

Yk = {0} ∪NK∗({k}),

then Yk is a division ring containing the center of K.

PROOF: Let us begin by rewriting the set Yk. Because

NK∗({k}) = {x ∈ K∗ | x · k · x−1 = k},

we can simply sayNK∗({k}) consists of all elements ofK∗ such that x·k = k·x.
Of course 0 satisfies this equation as well, so we can write

Yk = {x ∈ K | x · k = k · x}.

When written in this form, it is obvious that the center is in Yk. Further-
more, if x and y are in Yk, then

(x− y) · k = x · k − y · k = k · x− k · y = k · (x− y)

and

(x · y) · k = x · (y · k) = x · (k · y) = (x · k) · y = (k · x) · y = k · (x · y).

Thus, by Proposition 10.1, Yk is a subring of K.



Finite Division Rings 485

Finally, if x is a nonzero element in Yk, then x · k = k · x. Thus,

x−1 · (x · k) · x−1 = x−1 · (k · x) · x−1,

so
k · x−1 = x−1 · k.

Thus, every nonzero element of Yk has its inverse in Yk, so Yk is a division
ring.

We now can apply the center and normalizer to finite division rings. We
first need a lemma that will help us out regarding the divisibility of the orders
of finite fields.

LEMMA 13.8

Let y, n, and m be positive integers, with y > 1. Then

yn − 1

ym − 1

is an integer if, and only if, n is divisible by m. Furthermore, if n is divisible
by m, with n > m, then

yn − 1

ym − 1

is divisible by the number Φn(y).

PROOF: First suppose that n is divisible by m. Then by Corollary 13.5,
xm − 1 divides xn − 1, and in fact Φn(x) divides

xn − 1

xm − 1
.

Note that since y > 1, ym > 1, so ym − 1 > 0. Thus, y is not a root of
xm − 1, so we can apply the evaluation homomorphism φy and find that

yn − 1

ym − 1

is divisible by Φn(y).
Now suppose that n is not divisible by m. Then n = m · k + p for some

0 < p < m. But note that

yn − 1 = y(m·k+p) − 1 = ym·k · yp − 1 = yp(ym·k − 1) + yp − 1.

Thus,
yn − 1

ym − 1
= yp · y

m·k − 1

ym − 1
+
yp − 1

ym − 1
.
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We have already seen that y(m·k − 1)/(ym − 1) is an integer, but yp < ym, so
the last term cannot possibly be an integer. Therefore, (yn − 1)/(ym − 1) is
an integer if, and only if, n is a multiple of m.

This lemma reveals the possible orders of division rings within a finite di-
vision ring.

COROLLARY 13.7

Let K be a finite division ring of order pn, and let F be a subring that is a
division ring of order pm. Then n is a multiple of m.

PROOF: Consider the multiplicative groups K∗ and F ∗. Certainly F ∗ is
a subgroup of K∗, since F is a subring of K. Notice that K∗ contains pn − 1
elements, while |F ∗| = pm − 1. By Lagrange’s theorem (3.1), pm − 1 must be
a factor of pn − 1. So by Lemma 13.8, n must be a multiple of m.

Note that this corollary has applications in finite fields. For example, it
shows that the field of order 16 cannot have a subfield of order 8.

There is one more tool that we need from group theory, which stems from
the normalizer. We discovered in §7.4 that the class equation was a powerful
tool in analyzing groups. In fact, all three Sylow theorems hinge on the class
equation. So let us observe how this tool applies to skew fields. Recall that
the class equation theorem (7.2) stated that when G is a finite group, then

|G| =
∑

g

|G|
|NG({g})|

where the sum runs over one g from each conjugacy class.

If K is a finite skew field, we can apply the class equation theorem to the
multiplicative group K∗, and find that

|K∗| =
∑

k

|K∗|
|NK∗({k})| .

We can make the obvious substitutions |K∗| = |K| − 1, and |NK∗({k})| =
|Yk| − 1. The equation now looks like

|K| − 1 =
∑

k

|K| − 1

|Yk| − 1

where the sum runs from one k from each conjugacy class of K∗.
We are almost ready to use the class equation to prove that finite skew

fields cannot exist. But first we need to prove a simple inequality about the
evaluation of a cyclotomic polynomial at a positive integer.
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LEMMA 13.9

If n > 1, then the cyclotomic polynomial evaluated at y ≥ 2, Φn(y), is greater
than y − 1.

PROOF: From the definition,

Φn(x) =

n∏

k=1
gcd(k,n)=1

(x− ωn
k).

Plugging in x = y, and taking the absolute value of both sides, we get

|Φn(y)| =
n∏

k=1
gcd(k,n)=1

|y − ωn
k|

>

n∏

k=1
gcd(k,n)=1

(y − 1) ≥ y − 1.

Here, the inequality |y − (ωn)
k| > (y − 1) comes from the fact that the real

part of ωn
k is less than 1 when n > 1.

The final step is to use Lemma 13.9 to prove a contradiction in the class
equation for finite skew fields.

THEOREM 13.3: Wedderburn’s Theorem

There are no finite skew fields.

PROOF: Suppose that K is a finite skew field. By Proposition 13.3 K is
of order pm for some prime p and some m > 0. Let Z be the center of K.
Since Z is a subring of K, which is a field by Corollary 13.7, Z is of order
y = pa, where m = n · a for some n > 0. Thus, |K| = pn·a = yn. Note that
since K is a skew field, n must be greater than 1. We have from the class
equation theorem (7.2)

|K| − 1 =
∑

k

|K| − 1

|Yk| − 1
,

where the sum runs from one k from each conjugacy class of K∗. Note that
when k is in Z∗, k is in its own conjugacy class, and Yk = K. Thus, the
terms in the sum corresponding to elements in Z∗ are equal to 1. There are
of course |Z∗| = y − 1 such terms. For the other terms in the sum, Yk is a
proper subring of K that contains Z. By Lemma 13.7, Yk is a division ring,
and so by Corollary 13.7, |Yk| = yr for some r which is a factor of n. If we let
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w = Φn(y) we see by Lemma 13.8 that w divides the term

|K| − 1

|Yk| − 1
=
yn − 1

yr − 1
.

Furthermore, w divides the left-hand side of the class equation, |K| − 1. In
fact, the only terms in the class equation that are not divisible by w are the
y − 1 terms that are equal to 1, coming from the non-zero elements of the
center Z. Thus, y − 1 must be divisible by w. But this is impossible, since
y − 1 < w by Lemma 13.9, for n > 1. This contradiction proves that finite
skew fields cannot exist.

In a sense, the non-existence of finite skew fields is sad, since there would
have been plenty of applications for finite skew fields in cryptography and
group theory had they existed. On the other hand, this result, when combined
with the classification of all finite fields, means that we have found all finite
division rings.

Problems for §13.4

1 Use Wedderburn’s theorem (13.3) to show that for any prime p, there exist
integers 0 ≤ a, b, c, d < p such that

a2 + b2 + c2 + d2 = mp

for some positive integer m.
Hint: Consider the ring of “integer quaternions modulo p”.

2 Suppose that for p prime, there exist integers 0 ≤ a, b, c, d < p such that

a2 + b2 + c2 + d2 = mp

for some even integer m. Show that mp/2 can be expressed as the sum of 4
square integers.

Hint: What is
(
a+ b

2

)2

+

(
a− b

2

)2(
c+ d

2

)2

+

(
c− d

2

)2

?

3 Use quaternions to prove Euler’s four-square identity:

(a21 + a22 + a33 + a44)(b
2
1 + b22 + b23 + b44) = (a1b1 − a2b2 − a3b3 − a4b4)

2 +

(a1b2 + a2b1 + a3b4 − a4b3)
2 +

(a1b3 − a2b4 + a3b1 + a4b2)
2 +

(a1b4 + a2b3 − a3b2 + a4b1)
2.

Hint: Use the result of Problem 11 of §9.1.
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4 Let x be an integer quaternion such that |x|2 = mp for some prime p.
Show that if y = x +mz for an integer quaternion z, then x · y is a multiple
of m. See Problem 8 of §9.1 for the definition of y.

5 Let x be an integer quaternion such that |x|2 = mp for some prime p and
some odd number m. Show that we can find an y = x +mz, where z is an
integer quaternion, such that |y|2 < m2.

Hint: Get each component of y to be smaller than m/2 in absolute value.

6 Show that every prime number p can be expressed as the sum of four
squares, a2 + b2 + c2 + d2 = p.

Hint: start with the result of Problem 1, and consider the smallest value of
m for which a2 + b2 + c2 + d2 = mp. Using Problems 2 through 5, show that
m must be 1.

7 Use Problems 3 and 6 to prove Lagrange’s four-square theorem: Every
positive integer can be expressed as the sum of four squares.

8 Define a Hurwitz integer as a quaternion x = a + bi + cj + dk for which
a, b, c, and d are either all integers, or are all half-integers (integer + 1/2).
Show that the Hurwitz integers form a subring of H.

Hint: Let z = (1 + i + j + k)/2. Then either x or x − z is an integer
quaternion.

9 Define the norm on the quaternions H by N(x) = x · x = |x|2. Show that
the norm of a Hurwitz integer is always a non-negative integer. See Problem 8.
Note that Problem 11 of §9.1 shows that N(x · y) = N(x)N(y).

10 Show that the Hurwitz integers form a skew Euclidean domain, using
N(x) as a valuation function. That is, for x and y with y 6= 0, there are q
and r with N(r) < N(y) such that

x = q · y + r.

See Problem 9.
Hint: Use the same strategy as Proposition 12.9. Let t = a+ bi+ cj+ dk =

x · y−1, and pick q = e + fi + gj + hk so that |a − e| ≤ 1/4, |b − f | ≤ 1/2,
|c− g| ≤ 1/2, and |d− h| ≤ 1/2.

11 Show that u is a unit in the ring of Hurwitz integers if, and only if,
N(u) = 1. Find all of the units in the ring of Hurwitz integers. See Problem 9.

12 Use Problem 11 to show that ifN(x) = p, which is a prime in the ordinary
sense, then x is an irreducible Hurwitz integer. See Problem 9. (This turns
out to be an if and only if condition.)

13 Use Problem 6 to show that if p is a prime in the ordinary sense, then p
factors in the Hurwitz integers into two irreducible elements. See Problem 12.
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14 We say that two Hurwitz integers x and y are associates if there exist
units u1 and u2 such that x = u1 · y · u2. Show that associates form an
equivalence relation on the ring of Hurwitz integers.

15 A right ideal I of a ring R is a subset such that I · R ⊆ I. Show that
every right ideal of the Hurwitz integers is a principal right ideal. That is,
I = x ·R for some x in I.

Hint: Follow the proof of the Euclidean domain theorem (12.5). It should
be noted that the Hurwitz integers do not have unique factorization in the
usual sense, because of the non-commutative multiplication.

Interactive Problems

16 Sage can be used to explore skew fields besides H. Consider the following
ring of characteristic 0:

InitSkew9()

{a, b}

The ring is defined in terms of 2 generators a and b, such that a3 = 3a+1, b3 =
2, and b·a = (2−a2)·b. This produces a ring that is a 9-dimensional extension
of Q. A basis for this ring would be {1, a, a2, b, a · b, a2 · b, b2, a · b2, a2 · b2}. If

var("c1 c2 c3 c4 c5 c6 c7 c8 c9")

w1 = c1 + c2*a + c3*a^2

w2 = c4 + c5*a + c6*a^2

w3 = c7 + c8*a + c9*a^2

w = w1 + w2*b + w3*b^2; w

c1 + c2*a + c3*a^2 + c4*b + c5*a*b + c6*a^2*b + c7*b^2 +

c8*a*b^2 + c9*a^2*b^2

then w is the general element of this ring. To show that this ring is in fact a
skew field for rational values of c1, c2, . . . c9, perform the following operations:

v1 = b*w1*b*w1*b - 2*b*w2*b*w3*b

v2 = 2*w3*b^2*w3*b - w2*b^2*w1*b

v3 = w2*b*w2*b^2 - w3*b*w1*b^2

v = v1 + v2*b + v3*b^2

R = v*w

Notice that R does not depend on a or b, hence is an element of Q. To simplify
it, evaluate

expand(R.vector()[0])

Using this value of R, find a formula for w−1. Can you prove that R is never
zero if c1, c2, c3, . . . c9 are rational?
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Hint: If R = 0 for rational values of c1, . . . c9, we can multiply by the
common denominator to find a solution to R = 0 for integer values. In fact,
we may assume that c1, c2, c3, . . . c9 have no common factors. Show that the
first three constants must be even. After a substitution, show that c4, c5,
c6 must be even. After yet another substitution, show that the remaining
constants are even, leading to a contradiction.

17 Find the center of the skew field from Problem 16.

18 Find the normalizer of the element a ·b in the skew field from Problem 16.
Hint: Use the simplified form of the normalizer from Lemma 13.7.

19 Load the unit Hurwitz integers into Sage as follows:

InitQuaternions()

{1, i, j, k, -1, -i, -j, -k}
U = Group(i, (1 + i + j + k)/2)

What is the center of this group? What group is U/Z(U) isomorphic to?

20 Since 13 can be expressed as the sum of 4 squares in 2 different ways,
show that there are two ways of factoring 13 in Hurwitz integers. See Prob-
lem 13. Show that these factorizations are not related by associates in the
sense of Problem 14. The easiest way to show that the primes p and q are
not associates is with a nested for loop.

for x in U:

for y in U:

if(x*p*y == q):

print x, y
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Chapter 14

The Theory of Fields

As we learn the laws of arithmetic in school, we start out with the simple
counting numbers 1, 2, 3, . . . in kindergarten, and expand into more compli-
cated number systems as the need arises. When we learn about subtraction,
we find there are problems that can’t be solved with counting numbers, so
we learn about 0 and negative numbers. As we master division, we find that
most problems require rational numbers to solve. When important applica-
tions required numbers like π and

√
2, we considered the set of real numbers.

Finally, as we studied quadratic equations, we found that some polynomials
required complex numbers to be solved.

The pattern is clear. Each time we had a number system that had a prob-
lem that couldn’t be solved, we expanded the number system to allow for a
solution. This idea of expanding a number system plays a key role in field
theory. We have already seen that every finite field can be thought of as an
extension of a cyclic prime order field Zp for which a polynomial admits a so-
lution. In this chapter we apply this process to infinite fields, creating larger
fields for which a given polynomial will have a root.

14.1 Vector Spaces

In order to study fields in depth, we will first need a few results from a first-
year linear algebra course about vector spaces. However, most linear algebra
courses work with vectors and matrices with real numbers for entries, whereas
we will generalize the notations to allow arbitrary fields. Nonetheless, most
of the proofs will follow the same way for arbitrary fields as for real numbers.

DEFINITION 14.1 Let F be a field. We say that V is a vector space
over F if V is an abelian group under addition (+), and for which there is
defined a multiplication a · v for all a ∈ F and v ∈ V such that:

1. Whenever a ∈ F and v ∈ V , a · v ∈ V .

2. When a ∈ F , and v, w ∈ V , then a · (v + w) = a · v + a · w.

493
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3. When a, b ∈ F , and v ∈ V , then (a+ b) · v = a · v + b · v.

4. When a, b ∈ F , and v ∈ V , then (a · b) · v = a · (b · v).

5. If e is the identity of F , then e · v = v for all v ∈ V .

The members of V are called vectors. The best way to understand vector
spaces is to give some examples.

Example 14.1

Consider the set of 3-tuples 〈u1, u2, u3〉 where u1, u2, and u3 ∈ R. Addition
of two vectors is done component-wise, and k · 〈u1, u2, u3〉 = 〈ku1, ku2, ku3〉
when k ∈ R. This is a vector space over R, and can be denoted by R3.

Example 14.2

We can generalize the previous example using any field F in place of R, and
consider n-tuples 〈u1, u2, . . . , un〉. Addition is still defined component-wise,
and k · 〈u1, u2, . . . , un〉 = 〈k · u1, k · u2, . . . , k · un〉. This will give us a vector
space over F , which we can denote by Fn.

Example 14.3

Let K be a field, and F any subfield of K. Then K is a vector space over F ,
defining a · v as a product in the field K. Property 5 follows from the fact
that the identity of F must also be the identity of K. The other properties
follow from the distributive and associative properties of K.

This last example demonstrates the usefulness in studying vector spaces
over a field F . In fact, this is the example that we will concentrate on for the
remainder of the chapter.

The next definition is the key to understanding the properties of a vector
space.

DEFINITION 14.2 Let V be a vector space over a field F . We say that
a finite set B = {x1, x2, x3, . . . xn} of vectors in V are linearly dependent if
there are elements a1, a2, . . . an ∈ F , not all zero, for which

a1x1 + a2x2 + · · ·+ anxn = 0.

We say that the vectors are linearly independent if they are not linearly de-
pendent, that is, if the only way for c1x1 + c2x2 + · · · + cnxn = 0 is for
c1 = c2 = · · · = cn = 0.
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Example 14.4

The vectors 〈1, 4,−1〉, 〈2,−3, 1〉, 〈4, 5,−1〉 are linearly dependent, since there
is a nonzero solution to c1〈1, 4,−1〉+ c2〈2,−3, 1〉+ c3〈4, 5,−1〉 = 0, namely
c1 = 2, c2 = 1, and c3 = −1. On the other hand, 〈2, 0, 1〉, 〈0, 0, 3〉, and
〈1, 4, 0〉 are linearly independent, since in order to get c1〈2, 0, 1〉+ c2〈0, 0, 3〉+
c3〈1, 4, 0〉 = 0, we need 4c3 = 0, 2c1 + c3 = 0, and c1 + 3c2 = 0. This forces
c3 = 0, c1 = 0, and c2 = 0, so there are no nonzero solutions.

DEFINITION 14.3 Let V be a vector space over a field F . A finite set
of vectors {x1, x2, x3, . . . xn} in V is called a basis of V over F if the set is
linearly independent, and every element of V can be expressed in the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn

with a1, a2, a3, . . . , an in F .

Here are some examples, all of which are fairly routine to check:

1. The complex numbers C have a basis {1, i} over the real numbers R.

2. The quaternions H have a basis {1, i, j, k} over R.

3. The field Q[
√
2] has a basis {1,

√
2} over the rational numbers Q.

4. From Example 14.3, the set of real numbers R is a vector space over the
rationals. However, there can be no finite basis {x1, x2, x3, . . . xn} in R

for which every real number could be expressed as a1x1+a2x2+a3x3+
· · · + anxn, with a1, a2, . . . an ∈ Q, lest the set of reals be countable,
which contradicts Cantor’s diagonalization theorem (0.8). See Prob-
lem 19.

There is an easy way to determine if a particular set of vectors is a basis.

LEMMA 14.1

B = {x1, x2, x3, . . . xn} is a basis of a vector space V over F if, and only if,
every element of V can be expressed uniquely in the form

v = c1x1 + c2x2 + c3x3 + · · ·+ cnxn.

The ordered n-tuple 〈c1, c2, c3, . . . , cn〉 is called the coefficients of v with respect
to B.

PROOF: If B is a basis, then every element v ∈ V can be expressed in
the form c1x1 + c2x2 + c3x3 + · · · + cnxn. Suppose that v = a1x1 + a2x2 +
a3x3 + · · ·+ anxn is another such expression. Then

(a1 − c1)x1 + (a2 − c2)x2 + (a3 − c3)x3 + · · ·+ (an − cn)xn = v − v = 0.
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But the vectors in B are linearly independent, so the only way that the com-
bination of vectors could be 0 is for ai − ci = 0 for all 1 ≤ i ≤ n. Hence,
ai = ci for all i, and the representation is unique.

On the other hand, if every v ∈ V can be uniquely represented as c1x1 +
c2x2 + c3x3 + · · · + cnxn, then in particular 0 has only one representation,
namely 0 = 0x1 + 0x2 + 0x3 + · · ·+ 0xn. Thus, the vectors in B are linearly
independent, and so B is a basis.

We can define a basis in Sage with the command ToBasis.

B = ToBasis([[1, 4, -1], [2, -3, 1], [4, 5, -1]])

Error: linearly dependent.

Notice that we entered a list of lists, which Sage interprets as a list of vectors.
This failed because, as we saw before, the set of vectors 〈1, 4,−1〉, 〈2,−3, 1〉,
and 〈4, 5,−1〉 were linearly dependent.

B = ToBasis([[2, 0, 1], [0, 0, 3], [1, 4, 0]])

Successful mapping constructed.

Once we have defined the basis, we can find the coefficients c1, c2, . . . cn for
any element of the vector space.

Coefficients(B, [2, 3, 4])

[5/8, 9/8, 3/4]

This shows that

〈2, 3, 4〉 = 5

8
〈2, 0, 1〉+ 9

8
〈0, 0, 3〉+ 3

4
〈1, 4, 0〉.

LEMMA 14.2

Suppose that V is a vector space over F , and B = {x1, x2, x3, . . . xn} is a
basis of V over F . Then any set {y1, y2, y3, . . . yn, yn+1} of n+ 1 elements of
V is linearly dependent.

PROOF: Suppose that Y = {y1, y2, y3, . . . , yn, yn+1} are linearly indepen-
dent, so that all of these vectors are nonzero.

Our goal is to show, with a suitable rearrangement of the vectors in B,
that {y1, y2, . . . yk−1, yk, xk+1, . . . , xn} is a basis for every 0 ≤ k ≤ n. If
k = 0, then this set is the original set B, which is a basis. So let us
use induction to assume that it is true for the previous case, that is, that
{y1, y2, . . . yk−1, xk, xk+1, . . . , xn} is a basis.

We then can express

yk = a1y1 + a2y2 + · · · ak−1yk−1 + akxk + ak+1xk+1 + · · ·+ anxn.
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Since the vectors in Y are linearly independent, we see that at least one of ak,
ak+1 . . . an is nonzero. By rearranging the remaining elements of B, we can
suppose that ak 6= 0. Then

xk = ak
−1(yk − a1y1 − a2y2 − · · · − ak−1yk−1 − ak+1xk+1 − · · · − anxn).

Any element v ∈ V can be expressed as v = c1y1 + c2y2 + · · ·+ ck−1yk−1 +
ckxk + · · · + cnxn. By substituting for the value of xk, we see that v can
be expressed as a linear combination of {y1, y2, . . . , yk−1, yk, xk+1, . . . , xn}. If
this set were linearly dependent, there would be a nonzero solution to

c1y1 + c2y2 + · · ·+ ck−1yk−1 + ckyk + · · ·+ cnxn = 0.

Then ck 6= 0, lest there also be a nonzero solution to

c1y1 + c2y2 + · · ·+ ck−1yk−1 + ckxk + · · ·+ cnxn = 0,

but we are assuming that {y1, y2, . . . yk−1, xk, xk+1, . . . , xn} is a basis. But
substituting the value for yk gives

ck (a1y1 + a2y2 + · · ·ak−1yk−1 + akxk + · · ·anxn)
+ c1y1 + c2y2 + · · · ck−1yk−1 + ck+1xk+1 + · · · cnxn = 0.

This is a nonzero solution to

b1y1 + b2y2 + · · ·+ bk−1yk−1 + bkxk + · · · bnxn = 0,

since bk = ckak 6= 0. Thus, the set {y1, y2, . . . yk−1, yk, xk+1, . . . , xn} is lin-
early independent, and hence is a basis of V .

Now we can use the induction to say that {y1, y2, . . . , yn} is a basis of V ,
but then yn+1 can be expressed in terms of {y1, y2, . . . , yn}, which shows that
Y is in fact linearly dependent.

We can now use this lemma to show that any two bases must have the same
number of elements.

PROPOSITION 14.1

Let V be a vector space over F . If the sets X = {x1, x2, x3, . . . xn} and
Y = {y1, y2, y3, . . . ym} are both bases of V over F , then n = m.

PROOF: Suppose that n is not equal to m. By exchanging the roles of X
and Y if necessary, we can assume that n < m. Then we can use Lemma 14.2
to show that {y1, y2, y3, . . . yn+1} is linearly dependent, hence Y is not a basis
of V . So we must have n = m.

This proposition allows us to make the following definition.
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DEFINITION 14.4 Let V be a vector space over F . If there is a basis
{x1, x2, x3, . . . xn} of V over F , we define the dimension of V over F to be the
size n of the basis. If there does not exist a finite basis, we say the dimension
of V over F is infinite.

Looking back at our examples, we see that R3 is a 3-dimensional vector
space over R, C is a 2-dimensional vector space over R, H is a 4-dimensional
vector space over R, and R is an infinite-dimensional vector space over Q.

Computational Example 14.5

Since Z3 is a subfield of GF(9), we can view GF(9) as a vector space over Z3.
Determine a basis for this vector space.

SOLUTION: In Sage we need to know that the Conway polynomial of degree
2 over Z3 is x2 + 2x + 2, so if we let a be a root of this polynomial, we can
define GF(9) with the commands:

InitDomain(3)

AddFieldVar("a")

Define(a^2, a + 1)

ListField()

{0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}

To find a basis, we can observe that every element of GF(9) can be written
as x+ ya, where x and y are in Z3. Thus, one possible basis would be the set
{1, a}.

B = ToBasis([1, a])

Successful mapping constructed.

Coefficients(B, a^3)

[1, 2]

This shows that indeed {1, a} is a basis of GF(9) over Z3. It is logical that
GF(9) will be a 2-dimensional vector space over Z3, since there are 32 ele-
ments.

Computational Example 14.6

It is apparent that GF(81) is a 4-dimensional vector space over Z3. But can
we also can consider GF(81) as a 2-dimensional vector space over GF(9)? If
so, find a basis.

SOLUTION: The Conway polynomial of degree 4 over Z3 is

ConwayPolynomial(3, 4)

x^4 + 2*x^3 + 2
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so we could define GF(81) by telling Sage that the generator q raised to the
4th power is q3 + 1. However, we ought to be able to define GF(81) as an
extension of GF(9). This means that we need an irreducible polynomial in
GF(9) for which the generator of GF(81) will satisfy. Let us factor the above
Conway polynomial in the field GF(9).

AddFieldVar("x")

factor(x^4 + 2*x^3 + 2)

(x^2 + (a + 2)*x + a) * (x^2 + 2*a*x + 2*a + 1)

This gives us two polynomials. But we also have the compatibility condition,
which says that the (34 − 1)/(32 − 1) = 10th power of the new generator b
will be the standard generator a of GF(9). Hence, we can also factor

factor(x^10 - a)

(x^2 + a) * (x^2 + x + a) * (x^2 + 2*x + a) *

(x^2 + (a + 2)*x + a) * (x^2 + (2*a + 1)*x + a)

The only polynomial that is in both factorizations is x2 +(2+ a)x+ a. So we
know that b satisfies this polynomial, so we can define b2 to be (1+2a)b+2a.

AddFieldVar("b")

Define(b^2, (1 + 2*a)*b + 2*a)

We can now define a basis of GF(81) over GF(9).

B = ToBasis([1, a], [b, 2])

Successful mapping constructed.

Note that we included two lists for arguments of the ToBasis command. The
first list gives a basis for the root field F , which in this case is GF(9). We can
now find components for elements in GF(81).

Coefficients(B, b^2)

[2*a + 1, a]

This tells us that b2 = (2a+ 1)b+ 2a, which is indeed how we define b2.

This last example shows that it is possible to have a vector space over a
vector space, if the latter vector space happens to be a field. What can we
say about the dimension of a vector space over a vector space?

PROPOSITION 14.2

If E is a vector space over F of dimension m, which also happens to be a field,
and V is a vector space over E of dimension n, then V is a vector space over
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F of dimension mn. Furthermore, if {x1, x2, x3, . . . xm} is a basis of E over
F , and {y1, y2, y3, . . . yn} is a basis of V over E, then the set

S = { x1y1, x2y1, x3y1, . . . xmy1,
x1y2, x2y2, x3y2, . . . xmy2,

x1y3, x2y3, x3y3, . . . xmy3,

· · · · · · · · ·
x1yn, x2yn, x3yn, . . . xmyn}

is a basis of V over F .

PROOF: Since {y1, y2, y3, . . . , yn} is a basis for V over E, we can write any
element of V in the form

c1y1 + c2y2 + c3y3 + · · ·+ cnyn,

where c1, c2, c3, . . . , cn are in E.
Since {x1, x2, x3, . . . xm} is a basis of E over F , we can in turn write

c1 = a1,1x1 + a2,1x2 + a3,1x3 + · · · am,1xm,
c2 = a1,2x1 + a2,2x2 + a3,2x3 + · · · am,2xm,
c3 = a1,3x1 + a2,3x2 + a3,3x3 + · · · am,3xm,

· · · · · · · · ·
cn = a1,nx1 + a2,nx2 + a3,nx3 + · · · am,nxm,

where each ai,j is in F . Combining these, we see that every element of V can
be expressed in the form

a1,1x1y1 + a2,1x2y1 + a3,1x3y1 + · · ·+ am,1xmy1

+ a1,2x1y2 + a2,2x2y2 + a3,2x3y2 + · · ·+ am,2xmy2

+ a1,3x1y3 + a2,3x2y3 + a3,3x3y3 + · · ·+ am,3xmy3

· · · · · · · · ·
+ a1,nx1yn + a2,nx2yn + a3,nx3yn + · · ·+ am,nxmyn.

Thus, to show that the set S is a basis of V over F , we merely have to show
that these vectors are linearly independent. Let us switch to a summation
notation for the remainder of the proof. Suppose that there is a nonzero
linear combination of these vectors that produces 0, that is

m∑

i=1

n∑

j=1

ai,jxiyj = 0

for ai,j in F . Then we have

0 =

m∑

i=1

n∑

j=1

ai,jxiyj =

n∑

j=1

(
m∑

i=1

ai,jxi

)

yj .
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Since {y1, y2, y3, . . . , yn} is a basis of V over E, the only way that the right-
hand expression could be zero is if

m∑

i=1

ai,jxi = 0

for all j = 1, 2, 3, . . . n. Now {x1, x2, x3, . . . xm} is a basis of E over F , so the
only way that each of these sums could be 0 is if ai,j = 0 for all values of i
and j. Since all of the coefficients must be 0, the vectors in S are linearly
independent, and therefore the S is a basis of V over F of dimension mn.

The main use of vector spaces in abstract algebra is in the case where the
vector space happens to be a field. We will explore this possibility in the next
section.

Problems for §14.1

For Problems 1 through 9: Find a basis for the following fields over Q.

1 Q(
√
2)

2 Q(
√
5)

3 Q(
√
2,
√
3)

4 Q(
√
2,
√
3,
√
5)

5 Q( 3
√
2)

6 Q(ω9)

7 Q(ω8)
8 Q(ω9, ω6)
9 Q( 3

√
2, ω3)

10 Find a basis for the field Q(
√
2,
√
3) over the field Q(

√
2).

11 Let {x1, x2, x3, . . . xn} be a set of vectors in a vector space V over F ,
such that every element of V can be expressed in the form

a1x1 + a2x2 + a3x3 + · · ·anxn

with a1, a2, a3, . . . an in F . Show there is a subset of the xi’s that is a basis
for V .

12 Let {x1, x2, x3, . . . xn} be a set of linearly independent vectors in a fi-
nite dimensional vector space V over F . Show that we can add vectors
{z1, z2, . . . zm} so that {x1, x2, x3, . . . xn, z1, z2, . . . zm} is a basis for V .

13 We can generalize Definition 14.1 by replacing the field F with a unity
ring R. The resulting space M is called a left R-module. Show that any unity
ring R can be considered to be a left R-module.

14 Show that any ring can be considered a left Z-module. See Problem 13.

15 Let M be a left R-module. A subset N is an R-submodule of M if the
N is a subgroup under addition, and rn is in N whenever r ∈ R and n ∈ N.
Show that the R-submodules of the module of Problem 13 are precisely the
left ideals of R. See Problem 13 from §10.2.



502 Abstract Algebra: An Interactive Approach

16 Let R be a unity ring, and I an ideal of R. Show that R/I is a left
R-module, where we define r(a+ I) = r · a+ I.

17 Given two R-submodules A and B of a left R-module M , we define

A+B = {a+ b | a ∈ A, b ∈ B}.

Show that A+B is a R-submodule of M .

18 Let M be a left R-module, and let A, B, and C be three R-submodules,
such that A ⊆ C. Prove the modular law: (A + B) ∩ C = A + (B ∩ C). See
Problem 17.

19 Show that any finite dimensional vector space of Q is countable.
Hint: First show that the direct product of two countable sets is countable.

Interactive Problems

20 Use Sage to find the coefficients of the vector 〈3,−2, 5〉 in R3 using the
basis {〈2,−1, 4〉, 〈5, 2, 1〉, 〈4,−3, 2〉}.

21 Use Sage to find the coefficients of the element a5 in GF(27) over Z3 using
the basis {1, a, a2}. Here, a is a root of the Conway polynomial of degree 3
over Z3, which is x3 + 2x+ 1.

14.2 Extension Fields

In the last chapter, we saw that given an irreducible polynomial in Zp[x],
we could find a larger finite field for which that polynomial has a root. In
this section we imitate this process for infinite fields. The result will be a new
field that will contain the old field as a subfield. As a result, the new field will
also be a vector space over the old field. We will give a special name to this
situation.

DEFINITION 14.5 If F is a nontrivial subfield of the field K, and K is
a finite-dimensional vector space over F , we say that K is a finite extension
of F . We say the degree of the extension, or dimension of the extension, is
the size of a basis {x1, x2, x3, . . . xn} of K over F .

For example, the complex numbers C are a 2-dimensional extension of R.
The field GF(27) is a 3-dimensional extension of Z3, regardless of which basis
we use.
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It seems as though isomorphic fields should have the same dimension over
some field F contained in both of the fields. Yet this is only true if the
isomorphism φ maps the base field F to itself.

PROPOSITION 14.3

If K and E are two finite extensions of F , and supposing that there is an
isomorphism φ from K onto E such that φ(x) = x for all x in F , then K and
E have the same dimension over F .

PROOF: Suppose that {x1, x2, x3, . . . xn} is a basis of K over F . We want
to show that {φ(x1), φ(x2), φ(x3), . . . , φ(xn)} is a basis of E over F . If v is in
E, then φ(u) = v for some u in K. Since K is generated by the elements in
the basis, we have

u = c1x1 + c2x2 + c3x3 + · · · cnxn
for some c1, c2, c3, . . . , cn in F . Then

v = φ(u) = φ(c1)φ(x1) + φ(c2)φ(x2) + φ(c3)φ(x3) + · · ·+ φ(cn)φ(xn)

= c1φ(x1) + c2φ(x2) + c3φ(x3) + · · ·+ cnφ(xn).

Thus, {φ(x1), φ(x2), φ(x3), . . . , φ(xn)} generates the field E. Also, if

c1φ(x1) + c2φ(x2) + c3φ(x3) + · · ·+ cnφ(xn) = 0,

then φ(c1x1 + c2x2 + c3x3 + · · · cnxn) = 0, which implies that

c1x1 + c2x2 + c3x3 + · · · cnxn = 0

since K and E are isomorphic. But since {x1, x2, x3, . . . xn} is a basis for K,
this can only happen if c1 = c2 = c3 = · · · cn = 0. So

{φ(x1), φ(x2), φ(x3), . . . , φ(xn)}
is a basis for E over F , and hence K and E have the same dimension over
the field F .

If K is a finite extension of a field F , then F is a subfield of K. Of course
there will probably be many other subfields ofK, and we need a way to identify
these subfields. We have already seen how to find the smallest subgroup or a
subring that contains certain elements, and we can follow the same logic for
subfields.

DEFINITION 14.6 Let K be a field, and let E be a field containing the
field K. Let S be a set of elements in E. Let L denote the collection of all
subfields of E that contain the field K, along with the set S. Then we define

K(S) =
⋂

H∈L
H.
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That is, K(S) is the intersection of all subfields of E that contain both K
and S. If S = {a1, a2, a3, . . . an}, we will write K(a1, a2, a3, . . . an) for K(S).
Thus, if S consists of a single element a, we can write K(a) for K(S).

LEMMA 14.3

Let K be a subfield of E, and let S be a collection of elements of E. Then
K(S) is the smallest field that contains both K and the elements S.

PROOF: First, we must show that K(S) is a subfield of E. If x and y
are in K(S), y 6= 0, then x and y are in each of the subfields in the collection
L. Then x− y and x · y−1 are also in each of the subfields in this collection.
Thus, x− y and x · y−1 are in K(S), and so K(S) is a subfield of E.

To show that K(S) is the smallest field containing both K and the elements
S, note thatK(S) is one of the subfields in the collection L. Thus, any subfield
containing both K and the elements of S must also contain K(S).

For example, if K is the real numbers, and i =
√
−1, then R(i) gives us the

complex numbers C. The field Q(
√
2) is the smallest field containing Q and√

2, which happens to be the same as the ring Q[
√
2].

The strategy for defining a field extension in Sage is very similar to that of
defining a finite field. We begin by finding an irreducible polynomial f(x) in
the field F , and creating the field K = F [x]/〈f(x)〉.

PROPOSITION 14.4

Let F be a field, and let f(x) be an irreducible polynomial in F [x] of degree
n. Then the field K = F [x]/〈f(x)〉 is a finite extension of F of dimension n.

PROOF: From Proposition 13.1, K = F [x]/〈f(x)〉 is a field that contains
F as a subfield. Let y = x+ 〈f(x)〉 in K. If we treat f(x) as a polynomial in
K[x], we find that f(y) = 0. Consider the set {1, y, y2, y3, · · · yn−1}. We wish
to show that this set is a basis for K. That is, we wish to show that every
element of K can be expressed uniquely as

k = a11 + a2y + a3y
2 + · · ·+ any

n−1,

where the a1, a2, a3, . . . , an are in F . Any element k ∈ K can be expressed as
k = g(x)+〈f(x)〉 for some polynomial g(x) in F [x]. By the division algorithm
theorem (12.1), there exist unique polynomials q(x) and r(x) such that

g(x) = f(x) · q(x) + r(x),

where either r(x) = 0, or the degree of r(x) is less than n. Then

r(x) = a1 + a2x+ a3x
2 + · · ·+ anx

n−1
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for some a1, a2, a3, . . . , an in F . Note that we can now write

k = g(x) + 〈f(x)〉 = r(x) + 〈f(x)〉 = a1 + a2y + a3y
2 + · · ·+ any

n−1.

Since r(x) is unique, k is uniquely determined as a linear combination of
{1, y, y2, . . . , yn−1}. Thus, by Lemma 14.1, {1, y, y2, . . . , yn−1} is a basis.

Computational Example 14.7

Let F be the field of rational numbers, and let f(x) = x3 − 2. Form the field
extension Q[x]/〈x3 − 2〉 in Sage.
SOLUTION: Since the characteristic of Q is 0, we begin the definition by the
command

InitDomain(0)

Next, we let a be a root to the equation x3 − 2. That is, we define a3 to be 2.

AddFieldVar("a")

Define(a^3, 2)

That’s all there is to it! The basis of this extension field is {1, a, a2}. We can
verify this with Sage.

B = ToBasis([1, a, a^2])

Successful mapping constructed.

We can also do divisions in this field.

1/(a + a^2)

1/6*a^2 + 1/3*a - 1/3

This shows that 1/( 3
√
2 + 3

√
4) = (2 3

√
2 + 3

√
4− 2)/6.

Although this example demonstrates that any extension field of the form
F [x]/〈f(x)〉 can be entered into Sage, we would like to show that any extension
field can be entered into Sage in the same way. That is, we must show that
any finite extension of F is isomorphic to F [x]/〈f(x)〉 for some polynomial
f(x).

PROPOSITION 14.5

Suppose a field K is a finite extension of F of dimension n. Let y be an
element of K. Then there is an irreducible polynomial f(x) in F [x] of degree
at most n such that f(y) = 0. That is, when f(x) is treated as a polynomial in
K[x], y is a root of f(x). Furthermore, there is a unique polynomial of lowest
degree that satisfies these conditions and for which the leading coefficient is
equal to 1.
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PROOF: Consider the set {1, y, y2, y3, . . . , yn}. Since there are n + 1 ele-
ments in this set, and K has dimension n over F , by Lemma 14.2 these are
linearly dependent, so there is a nonzero solution to

a0 + a1y + a2y
2 + a3y

3 + · · ·+ any
n = 0

with a0, a1, a2, · · · , an in F . Thus, there is a nonzero polynomial

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

in F [x] for which y is a root when treated as a polynomial in K[x].
Let us now show uniqueness. Let f(x) be a polynomial of lowest possible

degree in F [x] such that f(y) = 0. Since F is a field, we can divide this
polynomial by its leading coefficient to obtain a polynomial with a leading
coefficient of 1. Now, if there were two such polynomials, f(x) and g(x), then
by the division algorithm theorem (12.1), there exist polynomials q(x) and
r(x) such that f(x) = g(x) · q(x) + r(x), where either r(x) = 0 or the degree
of r(x) is strictly less than the degree of g(x). But note that

0 = f(y) = g(y) · q(y) + r(y) = 0 + r(y) = 0.

Thus, y is a root of the polynomial r(x). But the degree of f(x) and g(x) was
chosen to be minimal. So r(x) = 0, and f(x) is a multiple of g(x). Finally,
since both f(x) and g(x) have the same degree and have the same leading
term of 1, we have f(x) = g(x). Therefore, there is a unique polynomial in
F [x] of minimal degree and leading coefficient of 1 such that f(y) = 0.

The unique polynomial in Proposition 14.5 will be given a special name.

DEFINITION 14.7 If a field K is a finite extension of F , and a is an
element of K, we define the polynomial f(x) given by Proposition 14.5 that
has a leading coefficient of 1 to be the irreducible polynomial of a over F ,
denoted IrrF (a, x).

For example, IrrQ(
√
2, x) = x2 − 2, since x2 − 2 is the simplest polynomial

with rational coefficients for which
√
2 is a root. Note that if we were to allow

real coefficients, we could come up with a simpler polynomial: IrrR(
√
2, x) =

x −
√
2. Finally, consider the number cos(π/9). We found in §11.4 that this

number is a root of the polynomial 4x3−3x− 1
2 . However, we want the leading

coefficient of the polynomial to be 1, so we write

IrrQ(cos(π/9), x) = x3 − 3x

4
− 1

8
.

Once we find the irreducible polynomial for an element a, it is not hard
to program Sage to mimic the field Q(a). For example, let us enter the field
Q(cos(π/9)) into Sage. If we let a = cos(π/9), we can enter the field by the
commands
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InitDomain(0)

AddFieldVar("a")

Define[a^3, 3*a/4 + 1/8]

The first command tells Sage that we are working with a field of character-
istic 0, and the second command introduces the variable a. Finally, the last
command identifies a as one solution to the equation x3 − 3x/4 − 1/8. We
can now do operations in this field.

a^5

1/8*a^2 + 9/16*a + 3/32

1/a

8*a^2 - 6

Have we really defined the field Q(cos(π/9))? Actually, we have defined the
field

Q[x]/〈x3 − 3x/4− 1/8〉
in Sage, but we can prove that these two fields are isomorphic.

PROPOSITION 14.6

Let F be a subfield of K, and suppose f(x) is an irreducible polynomial in
F [x] that has a root w in the larger field K. Then

F (w) ≈ F [x]/〈f(x)〉.

PROOF: Let us consider the evaluation homomorphism φw that maps poly-
nomials in F [x] to elements in F (w):

φw(g(x)) = g(w).

By Proposition 12.1, φw is a ring homomorphism. The image of this ho-
momorphism contains both F and w, and since F (w) is the smallest field
containing both F and w, the image is all of F (w). The kernel of φw is the
set of polynomials in F [x] that have w as a root. But f(x) is an irreducible
polynomial in F [x] containing w as a root. Thus, any polynomial in the kernel
is a multiple of f(x). Hence, the kernel of φw is 〈f(x)〉. Finally, by the first
ring isomorphism theorem (10.2), we have that F (w) ≈ F [x]/〈f(x)〉.

It is now easy to see that the dimension of the field extension F (u) will be
the degree of the irreducible polynomial f(x) = IrrF (u, x).

COROLLARY 14.1

Let K be a finite extension of a field F , and let u be an element in K. If
f(x) = IrrF (u, x) has degree n, then F (u) has dimension n over F .

PROOF: By Proposition 14.5, f(x) = IrrF (u, x) exists. By Proposition 14.6,
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F (u) is isomorphic to the field F [x]/〈f(x)〉. By Proposition 14.4, F [x]/〈f(x)〉
has dimension n over F . Finally, by Proposition 14.3, two isomorphic exten-
sions of F must have the same dimension over F provided that the isomor-
phism fixes the elements of F , which the isomorphism in Proposition 14.6
clearly does. Thus, the dimension of F (u) over F is n.

Notice that we never had to tell Sage that a = cos(π/9) in our definition of
Q(cos(π/9)). Rather, we merely entered the information that a satisfies the
equation a3 − 3a/4− 1/8 = 0.

But there are two other solutions to this equation, namely − cos(2π/9)
and cos(4π/9). How does Sage know that the field is not Q(− cos(2π/9)) or
Q(cos(4π/9))?

The answer of course is that these fields are both isomorphic to Q(cos(π/9)),
so Sage did not need to know the exact value of a. In fact, we can prove that if
we start with isomorphic fields, and extend both of them by two elements for
which the irreducible polynomials correspond, then the two field extensions
will be isomorphic.

PROPOSITION 14.7

Let f be an isomorphism between a field K and a field E. Let M be a finite
extension of K, and let u be in M . Let

p(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n

be IrrK(u, x). Define

h(x) = f(c0) + f(c1)x+ f(c2)x
2 + f(c3)x

3 + · · ·+ f(cn)x
n

which is in E[x]. Suppose there is a finite extension of E for which there is
a root of h(x), called v. Then there is an isomorphism µ from K(u) to E(v)
for which µ(u) = v, and µ(t) = f(t) for all t in K.

PROOF: By Lemma 13.3, we can extend f to an isomorphism from K[x]
to E[x]. By Proposition 12.1, φv is a ring homomorphism from E[x] to E(v).
We can combine these homomorphisms to produce the homomorphism

φv · f : K[x] → E[x] → E(v).

Since the isomorphism in Lemma 13.3 sends x to x, we have that (φv ·f)(x) =
φv(f(x)) = φv(x) = v. So v is in the image of this combination of homomor-
phisms, as well as the subfield E. Thus, the image of φv · f is E(v). The
kernel of φv is the set of polynomials in E[x] with v as a root. But h(x) is
an irreducible polynomial in E[x] for which h(v) = 0. Thus, the kernel of φv
is the ideal 〈h(x)〉. Since h(x) = f(p(x)), we have that the kernel of f · φv is
〈p(x)〉. Thus, by the first ring isomorphism theorem (10.2),

K[x]/〈p(x)〉 ≈ E(v).
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By Proposition 14.6, we also have

K(u) ≈ K[x]/〈p(x)〉,

and in this isomorphism, u mapped to the coset x+ 〈p(x)〉. If we let µ be the
combination of these two isomorphisms,

µ : K(u) → K[x]/〈p(x)〉 → E(v),

then µ(u) = φv(f(x)) = v, and µ(t) = f(t) for all t in K.

The usual application of this proposition is when K and E are the same
field, as in the case Q(cos(π/9)) and Q(− cos(2π/9)), in which case we not
only can prove that Q(cos(π/9)) and Q(− cos(2π/9)) are isomorphic, but we
can impose further conditions on the isomorphism.

COROLLARY 14.2

If K is a finite extension of a field F , and u and v are two elements in K such
that IrrF (u, x) = IrrF (v, x), then there is an isomorphism µ between F (u) and
F (v) such that µ(u) = v, and µ(t) = t for all t in F .

PROOF: We simply let f be the identity mapping from F to itself, and
use Proposition 14.7. Then p(x) and h(x) are both equal to IrrF (u, x). Since
v is another root of h(x), the conclusion follows from the conclusion of Propo-
sition 14.7.

We discovered in §13.2 that every finite field could be expressed in the form
Zp[x]/〈f(x)〉, with f(x) an irreducible polynomial in Zp[x]. It is natural to
ask whether any finite extension of a field can be represented in the form
F [x]/〈f(x)〉 for some polynomial f(x) in F [x]. Although there are some fields
that are exceptions, Q and R are not among them. Once we have proven this,
we will be able to enter any finite extension of Q or R into Sage using the
same technique that was used for finite fields.

Problems for §14.2

For Problems 1 through 8: Find the following polynomials IrrQ(a, x).

Hint: Set x = a, and work to eliminate the roots.

1 IrrQ(
√
5, x)

2 IrrQ(
3
√
5, x)

3 IrrQ(
√
2 +

√
3, x)

4 IrrQ(
3
√
2 +

√
2, x)

5 IrrQ
(√√

2− 1, x
)

6 IrrQ
(

3
√√

5− 1, x
)

7 IrrQ
(√

4
√
3 + 1, x

)

8 IrrQ

(√√√
2− 1 + 1, x

)
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For Problems 9 through 12: Find all of the roots of the polynomial.

9 IrrQ(
√
2 +

√
3, x). (See Problem 3.)

10 IrrQ(
3
√
2 +

√
2, x). (See Problem 4.)

11 IrrQ
(√√

2− 1, x
)
. (See Problem 5.)

12 IrrQ
(

3
√√

5− 1, x
)
. (See Problem 6.)

13 IrrQ

(√
4
√
3 + 1, x

)

. (See Problem 7.)

14 IrrQ

(√√√
2− 1 + 1, x

)

. (See Problem 8.)

15 Let a be a root of the equation

x5 +
√
2x3 +

√
3x2 +

√
5x+

√
7.

Show that Q(a) is a finite extension of Q with dimension at most 80.

16 Let K be a finite extension of a field F . If u and v are in K, prove that
F (u)(v) = F (v)(u).

17 Prove that Q(
√
2) is not isomorphic to Q(

√
3).

18 Find all of the automorphisms of Q(
√
2,
√
3).

Interactive Problems

19 Define the field Q(
√
−3) in Sage, then find 1/(5 +

√
−3).

20 Define the field Q(
√
5) in Sage. Does the polynomial x2 + 4x− 1 factor

in this field?

14.3 Splitting Fields

We have already seen that given an irreducible polynomial f(x) in F [x], we
can construct a field F [x]/〈f(x)〉 for which f(x) has a root in this new field.
This raises an interesting question: Can we construct a field for which f(x)
factors completely in the new field? In this section, we will learn how this can
be done. Let us demonstrate with some examples.

Motivational Example 14.8

Find a field for which f(x) = x3 + x2 − 2x− 1 factors completely.
SOLUTION: We begin by showing that this polynomial is irreducible over the
rationals.
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InitDomain(0, "x")

factor(x^3 + x^2 - 2*x - 1)

x^3 + x^2 - 2*x - 1

The InitDomain(0, "x") command defines Q[x], so we see that the polyno-
mial is irreducible over Q[x].

If a is defined to be one root of this polynomial, we can define Q(a) in Sage
as follows, and find the new factorization over Q(a).

AddFieldVar("a")

Define(a^3, - a^2 + 2*a + 1)

factor(x^3 + x^2 - 2*x - 1)

(x - a) * (x - a^2 + 2) * (x + a^2 + a - 1)

This shows that the polynomial x3 + x2 − 2x− 1 factors completely as

(x− a)(x − a2 + 2)(x+ a2 + a− 1)

in the field Q(a).

In this case, creating an extension field allowed the polynomial to factor
completely in the new field. In fact, this is very similar to what we discovered
for finite fields. However, this will not always be the case.

Motivational Example 14.9

Find a field for which x3 − 2 factors completely.
The factorization of this polynomial in Q( 3

√
2) is

(x− 3
√
2)(x2 +

3
√
2x+

3
√
4).

Since the other two roots are complex, the quadratic term must be irreducible
over Q( 3

√
2), since it is irreducible over the real numbers.

InitDomain(0, "x")

AddFieldVar("a")

Define(a^3, 2)

factor(x^3 - 2)

(x - a) * (x^2 + a*x + a^2)

How can we get the polynomial x3 − 2 to factor completely into linear terms?
We can define a new element, b, to be a root of the irreducible quadratic.
That is, we use an “extension of an extension” Q( 3

√
2, b), where b satisfies

a2 + ab+ b2 = 0, that is, b2 = − 3
√
4− b 3

√
2.

Define(b^2, -a^2 - a*b)

factor(x^3 - 2)

(x + b + a) * (x - b) * (x - a)
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Notice that Q( 3
√
2) is a 3-dimensional extension of Q, and Q( 3

√
2, b) is a

2-dimensional extension of Q( 3
√
2). Thus, by Proposition 14.2, Q( 3

√
2, b) is a

6-dimensional extension of Q.

Example 14.10

A longer example of this process is the polynomial x4 − x + 1. Find a field
extension for which this factors.
SOLUTION:

InitDomain(0, "x")

factor(x^4 - x + 1)

x^4 - x + 1

We define a to be a root of the irreducible polynomial.

AddFieldVar("a")

Define(a^4, a - 1)

factor(x^4 - x + 1)

(x - a) * (x^3 + a*x^2 + a^2*x + a^3 - 1)

This leaves a third-degree polynomial still unfactored, so we will define b to
be a root of this polynomial.

AddFieldVar("b")

Define(b^3, 1 - a^3 - a^2*b - a*b^2)

factor(x^4 - x + 1)

(x - a) * (x - b) * (x^2 + (b + a)*x + b^2 + a*b + a^2)

This still leaves an unfactored quadratic. Let c be a root of this quadratic

AddFieldVar("c")

Define(c^2, - a^2 - a*b - b^2 - a*c - b*c)

factor(x^4 - x + 1)

(x + c + b + a) * (x - a) * (x - b) * (x - c)

We finally did it! Each time we create an extension in Sage that forces another
root to the equation, the remaining polynomial refuses to factor in the new
field extension. Thus, it requires three field extensions before it finally factors
completely. By this time, the final extension is a 4 · 3 · 2 = 24 dimensional
over the rational numbers Q.

From this example it is easy to see that this procedure could be carried out
over any polynomial.

LEMMA 14.4

Let F be a field, and let f(x) be a polynomial in F [x] of degree n whose leading
coefficient is cn. Then there is a finite extension K of F such that

f(x) = cn · (x − u1) · (x− u2) · (x− u3) · · · (x− un),
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where u1, u2, u3, . . . un are elements in K. Furthermore, the dimension of K
over F is at most n!.

PROOF: The proof is by induction on n. If n = 1, then f(x) is a linear
function, so its only root is in F . Thus K = F , and the degree of K over F
is 1 = 1!.

Suppose that this is true for polynomials of degree less than n. Let p(x)
be an irreducible factor of f(x), and consider the field E = F [x]/〈p(x)〉. By
Proposition 14.4, E is a finite extension of F whose dimension over F is the
degree of p(x), which is at most n. Then un = x + 〈p(x)〉 is a root of p(x)
in the field E, and since p(x) is a factor of f(x), (x − un) is a factor of f(x)
in the field E. Thus, we can write f(x) = g(x) · (x − un) for some g(x) in
E[x]. Note that g(x) has degree (n− 1), and has the same leading coefficient
as f(x). Thus, we can use the induction hypothesis to show that there is a
field K that is a finite extension of E with dimension at most (n − 1)! such
that g(x) factors completely as

g(x) = cn · (x − u1) · (x− u2) · (x− u3) · · · · · (x− un−1).

Thus,

f(x) = cn · (x− u1) · (x− u2) · (x− u3) · · · · · (x− un−1) · (x − un).

By Proposition 14.2, the dimension of K over F is the product of the dimen-
sion of E over F times the dimension of K over E. Thus, the dimension of K
over F is at most n · (n− 1)! = n!.

DEFINITION 14.8 If K is a field for which the polynomial f(x) in F [x]
factors as

f(x) = cn · (x − u1) · (x− u2) · (x− u3) · · · (x− un),

then the field F (u1, u2, u3, . . . un) is called the splitting field for the polynomial
f(x).

For example, the splitting field of x3+x2−2x−1 was found to beQ(a), where
a is one root of the polynomial. Thus, the splitting field is a 3-dimensional
extension of Q. The splitting field of x3 − 2 turned out to be a 6-dimensional
extension of Q. The splitting field of x4 − x + 1 turned out to be a 24-
dimensional extension of Q. Lemma 14.4 points out that this is the largest
possible dimension of a fourth-degree polynomial.

Computational Example 14.11

Find the splitting field for the polynomial x5 − 5x+ 12.
SOLUTION: When we factor this over the field Q(a), where a is a root of the
polynomial,
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InitDomain(0, "x")

factor(x^5 - 5*x + 12)

x^5 - 5*x + 12

AddFieldVar("a")

Define(a^5, 5*a - 12)

factor(x^5 - 5*x + 12)

(x - a) * (x^2 + (-1/4*a^4 - 1/4*a^3 - 1/4*a^2 + 3/4*a + 1)*x

- 1/4*a^4 - 1/4*a^3 - 1/4*a^2 - 5/4*a + 2)

* (x^2 + (1/4*a^4 + 1/4*a^3 + 1/4*a^2 + 1/4*a - 1)*x

- 1/2*a^3 - 1/2*a - 1)

we find it does not split completely. We can let b be a root to the last
polynomial, and try again.

AddFieldVar("b")

Define(b^2, 1 + a/2 + a^3/2 + b - (a + a^2 + a^3 + a^4)*b/4)

factor(x^5 - 5*x + 12)

(x - b) * (x - a) * (x + (1/2*a + 1/2)*b + 1/2*a - 1/2) *

(x + b + 1/4*a^4 + 1/4*a^3 + 1/4*a^2 + 1/4*a - 1) *

(x + (-1/2*a - 1/2)*b - 1/4*a^4 - 1/4*a^3 - 1/4*a^2 + 1/4*a +

3/2)

This time, the polynomial factors completely in Q(a, b). Hence the splitting
field is 10-dimensional over Q.

If we had let b be a root of the other quadratic, would we get the same
splitting field? The answer is yes, since the splitting fields are uniquely de-
termined up to isomorphism. In order to prove this by induction, we actually
have to prove slightly more.

PROPOSITION 14.8

Let φ be an isomorphism from the field F to a field E. Let

f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n

be a polynomial in F [x]. Then

g(x) = φ(c0) + φ(c1)x + φ(c2)x
2 + φ(c3)x

3 + · · ·+ φ(cn)x
n

is a polynomial in E[x]. Suppose that K is a splitting field of f(x) over F ,
and L is a splitting field of g(x) over E. Then there is an isomorphism µ
from K to L, such that µ(t) = φ(t) for all t in F .

PROOF: If f(x) has degree 1, then the roots of f(x) are in F , and the roots
of g(x) are in E. Thus, K = E, and L = F , and so the function µ(t) = φ(t)
satisfies the necessary conditions.
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Let us use induction on the degree of the polynomial f(x). That is, we
will assume that the proposition is true for all polynomials of degree (n− 1).
By Lemma 13.3, the isomorphism φ extends to an isomorphism from F [x] to
E[x] in such a way that φ(x) = x. Thus, if p(x) is an irreducible factor of
the polynomial f(x), then φ(p(x)) is an irreducible factor of the polynomial
g(x) = φ(f(x)). Note that every root of p(x) is also a root of f(x), so that
p(x) factors completely in the field K. Likewise, φ(p(x)) factors completely
in the field L.

Let u be a root of p(x) in K, and let v be a root of φ(p(x)) in L. By
Proposition 14.7, there is an isomorphism θ mapping F (u) to E(v), such that
θ(u) = v, and θ(t) = φ(t) for all t in F .

Since u is a root of f(x), we can write f(x) = (x − u) · h(x), with h(x) in
F (u)[x]. Then

g(x) = φ(f(x)) = θ(f(x)) = θ(x− u) · θ(h(x)) = (x− v) · θ(h(x)).

Since h(x) has degree (n−1), we can use the induction hypothesis. Obviously
K is the splitting field of h(x) over F (u), and L is the splitting field of θ(h(x))
over E(v). Thus, by the induction hypothesis, the proposition is true for the
polynomial h(x), so there is an isomorphism µ such that µ(t) = θ(t) for all t
in F (u). Since θ(t) = φ(t) for all t in F , we have found an isomorphism with
the necessary properties.

COROLLARY 14.3

If f(x) is a polynomial in F [x], then all splitting fields of f(x) are isomorphic.

PROOF: Simply let F = E, and let φ(t) = t for all t in F . Then by Propo-
sition 14.8, any two splitting fields of f(x) = g(x) will be isomorphic.

In §13.3, we studied the properties of cyclotomic polynomials. It will be
important later on to determine the splitting fields of these polynomials. For
example, the ninth cyclotomic polynomial is given as

Cyclotomic(9, "x")

x^6 + x^3 + 1

The splitting field found by defining a6 to be −1− a3.

InitDomain(0, "x")

AddFieldVar("a")

Define(a^6, - 1 - a^3)

factor(x^6 + x^3 + 1)

(x - a) * (x - a^2) * (x - a^4) * (x + a^4 + a) * (x - a^5) *

(x + a^5 + a^2)

This shows us that the splitting field is simply Q(a), where a is one root of
the polynomial.
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We can quickly generalize this result to apply to all cyclotomic polynomials.

PROPOSITION 14.9

The splitting field of the nth cyclotomic polynomial has dimension φ(n) over
Q, where φ(n) is Euler’s totient function. In fact, the splitting field is given
as Q(ωn), where ωn is a primitive nth root of unity.

PROOF: The generator

ωn = e(2πi/n) = cos

(
2π

n

)

+ i sin

(
2π

n

)

is a root of the nth cyclotomic polynomial

Φn(x) = (x− (ωn)
k1) · (x− (ωn)

k2) · (x− (ωn)
k3) · · · · · (x− (ωn)

ki),

where k1, k2, k3, . . . ki are the integers from 1 to n that are coprime to n. Thus,
the splitting field contains Q(ωn). Note that all powers of ωn are in this field,
and so the nth cyclotomic polynomial factors completely in Q(ωn).

Since Φn(x) is irreducible by Gauss’s theorem on cyclotomic polynomials
(13.2), and the dimension of Φn(x) is φ(n), the dimension of the splitting field
Q(ωn) is φ(n).

We now will show that splitting fields have special properties that most
field extensions do not have. For example, we can define the splitting field of
x3 − 2 as follows:

InitDomain(0, "x")

AddFieldVar("a")

Define(a^3, 2)

AddFieldVar("b")

Define(b^2, - a^2 - a*b)

Note that x2 + 3 factors in the splitting field, as does x6 + 108. In fact, both
polynomials factor completely in this field Q(a, b).

factor(x^2 + 3)

(x - a^2*b - 1) * (x + a^2*b + 1)

factor(x^6 + 108)

(x - b + a) * (x + b - a) * (x + b + 2*a) * (x + 2*b + a) *

(x - 2*b - a) * (x - b - 2*a)

This last example suggests a startling fact: Whenever an irreducible poly-
nomial in Q[x] has just one root in a splitting field, then the polynomial factors
completely in the splitting field. This property characterizes splitting fields
from other extensions of Q.
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LEMMA 14.5

Let K be the splitting field of a polynomial f(x) in F [x]. Then if p(x) is
an irreducible polynomial in F [x] for which there is one root in K, then p(x)
factors completely in K.

PROOF: Let u1, u2, u3, . . . , un be the roots of f(x) in K. Then

K = F (u1, u2, u3, . . . , un).

Suppose that p(x) has one root v in K. Consider p(x) as a polynomial in K,
and let L be the splitting field of p(x) over K. Let w be any other root of
p(x) in L besides v. To show that K = L, we need to show that w is in K,
which would show that all roots of p(x) are in K.

By Proposition 14.7, there is an isomorphism φ from F (v) to F (w) such
that φ(v) = w, and φ(t) = t for all t in F . (We let f(t) = t, the identity map,
and let E and K both be the field F .) By Lemma 13.3 we can extend φ to
an isomorphism from F (v)[x] to F (w)[x], and φ(f(x)) = f(x).

We now want to consider the field K(w). We have

K(w) = F (u1, u2, u3, . . . , un, w) = F (w, u1, u2, u3, . . . , un).

Thus, K(w) is the splitting field of f(x) over the field F (w). Since v is in K,

K = K(v) = F (u1, u2, u3, . . . , un, v) = F (v, u1, u2, u3, . . . , un),

so K is the splitting field of f(x) over the field F (v).
Consequently, Proposition 14.8 shows us that the isomorphism φ from F (v)

to F (w) extends to an isomorphism µ from K to K(w), and µ(v) = w. Also,
µ(t) = t for all t in F . Thus, we can use Corollary 14.3 to show that K and
K(w) have the same dimension over F . By Proposition 14.2, the dimension
of K(w) over F equals the dimension of K(w) over K times the dimension of
K over F . Therefore, the dimension of K(w) over K must be 1, so w is in K.
Therefore, every root of p(x) is in K, so p(x) factors completely in K.

The fact that the splitting field of x6 + 108 is the same as the splitting
field of x3−2 reveals another curious property of splitting fields. Rather than
having to make an “extension of an extension” to define the splitting field
Q(a, b), we could have defined the same field using a single extension of the
element w = 6

√
−108.

DEFINITION 14.9 We say that a finite extension of a field K is called
a simple extension if it can be expressed as K(a) for some element a.

The splitting field of x3 − 2, even though it was originally described as an
extension of an extension, is in fact a simple extension of Q of dimension 6.
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Let us show, using the splitting fields, that an extension of an extension
will usually form a simple extension.

PROPOSITION 14.10

Let F be a field, and let K be a finite-dimensional extension of F . Suppose
that K = F (u, v) with u, v in K. Let L be the splitting field of the polynomial
g(x) = IrrF (v, x), and suppose that there are no multiple roots of g(x) in the
field L. Then there is an element w of K such that K = F (w).

PROOF: If F is a finite field, thenK will also be a finite field, and we can sim-
ply let w be a generator of the multiplicative groupK∗, using Proposition 13.4.
Thus, we will assume that F is an infinite field. Let f(x) = IrrF (u, x) and
g(x) = IrrF (v, x). Let E be the splitting field of g(x) over the field F (u).
Since g(x) factors completely in L without double roots, g(x) will also fac-
tor completely in E without double roots. Let v = v1, v2, v3, . . . , vn be the
distinct roots of g(x) in E.

Since u is in E, there is at least one root of f(x) in the field E. Even though
f(x) may not factor completely in the field E we can let u = u1, u2, u3, . . . , um
be the roots of f(x) over E.

Since F is an infinite field, we can pick some element y of F , such that

y 6= uh − u

v − vk
for all 1 ≤ h ≤ m, 1 < k ≤ n.

Finally, we let w = u+ yv. Let us show that K = F (w). To show that v is
in F (w), let p(x) = f(w−yx), and note that p(v) = f(u+yv−yv) = f(u) = 0
so v is a root of p(x). If one of the other roots of g(x) is a root of h(x), then
w − yvk = uh for some h and k, so u+ yv − yvj = uh, giving us

y =
uh − u

v − vk
,

and we specifically chose y so that it would avoid these values. Thus, there is
only one root in common between g(x) and p(x) in the field E.

Let r(x) = IrrF (w)(v, x). Then r(x) divides the polynomials g(x) and p(x),
since both polynomials have v as a root. In fact, we have seen that g(x) and
p(x) have no other roots in common, so r(x) has only one root in the field E.
But g(x) splits completely in E, and has no multiple roots in E. Thus, r(x)
has degree 1, and in fact r(x) = x− v. This proves that v is in F (w). To see
that u is in F (w), we note that u = yv−w. Thus, F (u, v) is contained in F (w)
while F (w) is obviously contained in F (u, v). Therefore, F (u, v) = F (w).

COROLLARY 14.4

Let K be a finite-dimensional extension of F , with K = F (u1, u2, u3, . . . un)
and suppose that none of the polynomials IrrF (ui, x) have multiple roots in
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each of their splitting fields. Then there exists an element w in K such that
K = F (w).

PROOF: We will proceed by induction on n. If n = 1, we can let w = u1, and
there is nothing to prove. Suppose that the corollary is true for the previous
case, so that we found a u in K such that F (u) = F (u1, u2, u3, . . . , un−1).
Let v = un, and since g(x) = IrrF (un, x) does not have a multiple root in
its splitting field L, we can use Proposition 14.10 to find a w in K such that
F (w) = F (u, v). But then F (w) = F (u1, u2, u3, . . . , un−1, un). Thus, the
corollary is true for all positive values of n.

Sage has a function SimpleExtension that finds one of the many elements
w for which the field Q(a, b, . . .) = Q(w).

Computational Example 14.12

We have seen the splitting field of x3 − 2 is Q( 3
√
2, ω3

3
√
2). Find a single

element w such that the splitting field is Q(w).
SOLUTION: First we set up the splitting field as Q(a, b), where a3 = 2 and
b2 = −a2 − a · b.
InitDomain(0, "x")

AddFieldVar("a")

Define(a^3, 2)

AddFieldVar("b")

Define(b^2, - a^2 - a*b)

We then can find an element w by the command

SimpleExtension(a, b)

2*b + a

Thus, Q(a, b) = Q(a + 2b), which is a simple extension. This element turns
out to be a sixth root of −108.

How does this command work? The key is in the proof of Proposition 14.10.
Within the proof, we found that F (u, v) = F (u+ yv), where y is any number
such that

y 6= uh − u

v − vk

whenever uh is a root of IrrF (u, x), and vk is a root of IrrF (v, x).

Example 14.13

Consider Q( 3
√
2,
√
2). This is not a splitting field, but it is contained in the

splitting field of f(x) = (x3 − 2)(x2 − 2), which does not have multiple roots,
so we can still apply Proposition 14.10 to show that Q( 3

√
2,
√
2) = Q(w) for

some element w. But what is that element?
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SOLUTION: Note that IrrQ(
3
√
2, x) = x3 − 2, which has roots of 3

√
2, ω3

3
√
2,

and ω2
3

3
√
2. Likewise, IrrQ(

√
2, x) = x2 − 2, which has roots of ±

√
2. Hence,

we must pick a rational value of y that is not equal to

ωi3
3
√
2− 3

√
2√

2±
√
2
.

That is, y cannot equal 0, (ω3 − 1) 3
√
2/(2

√
2), or (ω2

3 − 1) 3
√
2/(2

√
2). Any

other rational value of y will do, so for convenience we can take y = 1. Then
w = u+ yv = 3

√
2 +

√
2.

We can also have Sage find an element for us.

InitDomain(0)

AddFieldVar("a")

Define(a^3, 2)

AddFieldVar("b")

Define(b^2, 2)

SimpleExtension(a, b)

b + a

There is in fact an easier way to find a simple extension in this case. Merely

note that 6
√
2 ∈ Q( 3

√
2,
√
2), since 6

√
2 =

√
2/ 3

√
2. Yet

√
2 = 6

√
2
3
, and 3

√
2 =

6
√
2
2
. So Q( 3

√
2,
√
2) = Q( 6

√
2).

The fact that we can convert an extension of an extension to a simple exten-
sion will simplify many of the proofs involving splitting fields. In particular,
it will allow us to explore the automorphisms of the splitting fields. In the
next chapter we will discover that the automorphisms of the splitting fields
determine much of the information about the roots of the polynomial, and
whether they can be expressed in terms of square roots and cube roots. This
beautiful correlation is referred to as Galois theory.

Problems for §14.3

For Problems 1 through 6: Find a single number w such that the following
field can be written as Q(w).

1 Q(
√
2, 5

√
2)

2 Q(
√
2,
√
5)

3 Q(
√
2,
√
3,
√
5)

4 Q( 3
√
2, i)

5 Q( 3
√
2, ω3)

6 Q(ω3, ω5)

7 Show by direct computation that if a and b are two distinct roots of x3−2,
then (a+ 2b)6 = −108.

Hint: Use the fact that b2 = −ab− a2 to simplify as you go along.

8 Use either a calculator’s Solve function or De Moivre’s theorem (11.2) to
find decimal approximations of the three roots of x3 − 2 = 0. Verify that
a2 + ab+ b2 = 0 whenever a and b are two of the three roots.
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9 The polynomial x3 + x − 1 has one real root a ≈ 0.6823278038 . . .. Show
that the splitting field of this polynomial is 6-dimensional over Q.

Hint: If (x−a) is one factor, what is the other? Show that this other factor
is irreducible in R, and hence is irreducible in Q(a).

10 Find the splitting field of x4 − 6x2 − 7.

11 Find the splitting field of x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

12 Find the splitting field of x4 − 2x2 − 1.

13 Find the splitting field of x4 − x2 + 1.

14 Let F = Z2(t) be the rational functions of t modulo 2. Let K be the
splitting field of x2 − t (that is, K = F (

√
t)). Show that K is isomorphic to

F , even though K is an extension of F of order 2.
Hint: Let φ be a homomorphism that sends

√
t to t.

15 Suppose f(x) and g(x) are two polynomials in Q[x]. Suppose that the
splitting field of f(x) is of dimension n over Q, and the splitting field of g(x)
is of dimension m over Q. Prove that the splitting field of f(x) · g(x) has
dimension no more than n ·m.

16 Let m and n be distinct integers. Show directly that Q(
√
m,

√
n) =

Q(
√
m+

√
n).

Hint: (
√
m+

√
n), (

√
m+

√
n)2, and (

√
m+

√
n)3 are all in Q(

√
m+

√
n).

Find a way of obtaining
√
m and

√
n from these three expressions.

Interactive Problems

For Problems 17 through 20: Define the splitting field of the polynomial in
Sage. Determine the dimension of the splitting field over Q.

17 x3 + x2 − 4x+ 1
18 x5 + x4 − 4x3 − 3x2 + 3x+ 1

19 x5 − 2
20 x5 + 3x3 + 5x+ 10
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Chapter 15

Galois Theory

This chapter covers the beautiful topic of Galois theory, whose origins lie in the
theory of equations. Although methods of solving the quadratic equation were
known to the ancient mathematicians, interest in the theory of equations was
sparked in the 1540s when the cubic equation was solved by Scipione del Ferro
and Niccoló Tartaglia, and a method for solving the fourth-degree equation
was discovered soon after by Lodovico Ferrari. This raised the question on
whether fifth-degree equations, or even higher-order equations, might have
similar solutions. Mathematicians tried for centuries, but were unable to find
such a formula, raising some doubts about whether such a formula could exist.
An important step was taken in 1770 by Lagrange, who pointed out that the
formulas for the quadratic, cubic, and quartic equations hinged on finding
a combination of the roots of the polynomial that would remain unchanged
whenever the roots were permutated. Finally, in 1824, Niels Abel proved
that no such formula could exist. (See the Historical Diversion on page 241.)
Independently, Évariste Galois gave a sharper result of determining which
fifth-degree polynomials, or even higher-order polynomials, could be solved
in terms of square roots, cube roots, or higher-order roots. Unfortunately,
Galois did not live to see himself get the credit for his work (see the Historical
Diversion on page 525.)

15.1 The Galois Group of an Extension Field

In the last chapter, we explored the extensions of a field, and found that
any finite extension could be entered into Sage fairly easily. In particular,
we explored the splitting fields of several polynomials. In this section, we
will explore the automorphisms on the field extensions, and discover that the
group of automorphisms contains much information about the polynomial. In
particular, it will tell us whether the roots of the polynomial can be expressed
in terms of square roots and cube roots.

DEFINITION 15.1 Let K be a finite extension of the field F . An F -
automorphism of K is a ring automorphism φ on the field K that fixes every

523
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element of F . That is, φ(x) = x whenever x is in F .

Note that there is at least one F -automorphism of K, the identity automor-
phism. Since we have seen that the set of group automorphisms of a group
forms another group, it is not surprising that the same thing happens for
F -automorphisms of a field.

PROPOSITION 15.1

If K is a finite extension of a field F , then the set of all F -automorphisms of
K forms a group under the operation of composition of functions.

PROOF: By Lemma 11.5, the set of all ring automorphisms of a ring forms
a group. So we only need to show that the set of F -automorphisms of K
is a subgroup of the group of all automorphisms. If φ1 and φ2 are two
F -automorphisms of K, then φ1(x) = φ2(x) = x for all x in F . Thus,
(φ1 ·φ2)(x) = φ1(φ2(x)) = x for all x in F . Thus, φ1 ·φ2 is an F -automorphism
of K. Note also that φ−1

1 (x) = x for all x in F , so φ−1
1 is also an F -

automorphism of K. Since the set of all F -automorphisms of K is closed
under multiplications and inverses, this set is a subgroup of the group of
automorphisms of K. Thus, the set of F -automorphisms of K is a group.

DEFINITION 15.2 The set of all F -automorphisms of K is denoted
GalF (K), and is called the Galois group of K over F .

Example 15.1

Find the Galois group of the set of complex numbers C over the real numbers.
SOLUTION: According to Proposition 11.4, C has two automorphisms that
fix the real numbers: the identity automorphism, and the automorphism that
sends each number to its complex conjugate. So there are exactly two elements
of GalR(C). In other words, GalR(C) is isomorphic to Z2.

We want to find a way to compute the Galois group of any finite extension
of a field F . Since we can define finite extensions in terms of polynomials, it
is natural to ask what must happen to the roots of a polynomial.

LEMMA 15.1

Let K be a finite extension of F , and let f(x) be a polynomial in F [x]. If u
is a root of f(x), and φ is in GalF (K), then φ(u) is also a root of f(x).

PROOF: Let f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n. Since u is a root of

f(x) we have that

c0 + c1u+ c2u
2 + c3u

3 + · · ·+ cnu
n = 0.
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Historical Diversion

Évariste Galois (1811–1832)
Évariste Galois was born near Paris, and

was home schooled until he was 12 years
old, when he entered the Lycée Louis-le-
Grand. Galois performed well for the first
two years, obtaining the first-place prize in
Latin, but soon became bored, and turned
his attention to mathematics.
He obtained a copy of Legendre’s

Éléments de Géométrie, and mastered the
material on the first reading. At 15 he was
reading Legrange’s original papers, such as
the “Reflections on the algebraic solutions
of equations,” which probably motivated
him into the theory of equations. However,
his classwork lagged as a result of his mathematical ambition.
In 1828, he applied for the prestigious École Polytechnique, but failed due

to lack of explanations in the oral examination. He had to settle for the
inferior École Normale, where he found some professors that understood his
situation. The following year, Galois published a paper on continued fractions,
and began working with the theory of polynomial equations, submitting two
papers to the Academy of Sciences. Augustin Cauchy, the referee, refused to
accept these papers, but recognized their importance, suggesting that they
be combined into one paper and entered into the Academy’s Grand Prize in
Mathematics. He submitted his combined paper to the Academy’s secretary
Joseph Fourier, but unfortunately Fourier died shortly thereafter, and his
submission was lost. Galois did publish three papers that year, one that laid
the foundations of Galois theory, and another that introduced the concept of
a finite field. He was the first person to use the word group (groupe) to refer
to a group of permutations.
In the July Revolution of 1830, the last Bourbon king, Charles X, was sent

into exile. But his successor, Louis-Philippe, was also disappointing. Galois
proposed a toast to king Louis-Philippe with a dagger above his cup, which
was interpreted as a death threat. He was arrested, but soon acquitted. In
1832 his rebellious nature caused him to be challenged to a duel. Although
the details of the duel are still unclear, what is known is that the night before
the duel, anticipating his own death, he spent the night writing a letter to
Auguste Chevalier, outlining the connection between group theory and the
solutions of polynomial equations by radicals. The next morning he was shot
in the abdomen, and died the following day, at the age of 20.

Image source: Wikimedia Commons
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Since φ is a ring homomorphism, we have that

0 = φ(0) = φ(c0 + c1u+ c2u
2 + c3u

3 + · · ·+ cnu
n)

= φ(c0) + φ(c1)φ(u) + φ(c2)φ(u
2) + φ(c3)φ(u

3) + · · ·+ φ(cn)φ(u
n).

Since c0, c1, c2, . . . cn are in F , we have

0 = c0 + c1φ(u) + c2φ(u)
2 + c3φ(u)

3 + · · ·+ cnφ(u)
n.

Therefore, φ(u) is also a root of f(x).

Computational Example 15.2

Let us use this lemma to find the Galois group of the splitting field of x3 − 2.
SOLUTION: The splitting field is defined in Sage by letting a3 = 2, and
b2 = −a2 − ab.

InitDomain(0, "x")

AddFieldVar("a")

Define(a^3, 2)

AddFieldVar("b")

Define(b^2, - a^2 - a*b)

factor(x^3 - 2)

(x + b + a) * (x - b) * (x - a)

The three roots of x3 − 2 are a, b, and −a− b. Thus, Lemma 15.1 tells us
that if F (x) is an automorphism on Q(a, b), then F (a) is either a, b, or −a−b,
while F (b) is either a, b, or −a− b. Let us try to find an automorphism such
that F (a) = b and F (b) = a.

F = FieldHomo()

HomoDef(F, a, b)

HomoDef(F, b, a)

CheckHomo(F)

True

We have successfully defined one automorphism of the Galois group. (Any
nonzero homomorphism on a field must be an automorphism in light of
Proposition 10.5, and the fact that the kernel is always an ideal.) We can
similarly define an automorphism G(x) on Q(a, b) such that G(a) = b, and
G(b) = −a− b.

G = FieldHomo()

HomoDef(G, a, b)

HomoDef(G, b, - a - b)

CheckHomo(G)

True
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With these two automorphisms we can actually produce three more:

G(G(x)), F (G(x)), and G(F (x)).

Sage can show us that all five of these automorphisms are different, and if
we include the identity automorphism, we have found six automorphisms on
Q(a, b). Note that the Galois group is not abelian, since F (G(x)) 6= G(F (x)).

F(G(a))

a

G(F(a))

-b - a

It seems as though we must have found all of the automorphisms at this
point, but this still needs to be proved. We begin by showing that there will
always be an automorphism that moves one root of an irreducible polynomial
to another.

PROPOSITION 15.2

Let K be the splitting field of some polynomial f(x) over F , and let u and
v be two elements of K. Then there exists an F -automorphism φ such that
φ(u) = v if, and only if, IrrF (u, x) = IrrF (v, x).

PROOF: If there is some φ such that φ(u) = v, we can let g(x) = IrrF (u, x)
and h(x) = IrrF (v, x). Then u is a root of g(x), and v is a root of h(x). By
Lemma 15.1, u is a root of h(x) and v is a root of g(x), since u = φ−1(v). So
g(x) is a multiple of h(x), and vice versa. Since both have a leading coefficient
of 1, we have that g(x) = h(x).

Now suppose that IrrF (u, x) = IrrF (v, x). Then by Corollary 14.2 there is
an isomorphism φ from F (u) to F (v) such that φ(u) = v, and φ(x) = x for
all x in F . Since K is a splitting field of f(x) over F , it is a splitting field of
f(x) over both F (u) and F (v). Therefore φ extends to an F -automorphism
of K (which we will also denote φ) by Proposition 14.8. Therefore, φ is in
GalF (K), and φ(u) = v.

The next lemma will be important in determining the subgroups of the
Galois group.

LEMMA 15.2

Let K be a finite extension of F , and let φ be an F -automorphism of K. Then
the set of all elements x such that φ(x) = x forms a subfield of K containing
F .
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PROOF: Let E be the set of all elements x such that φ(x) = x. Since φ
is an F -automorphism, by definition E must contain the elements of F . If x
and y are in E, note that

φ(x+ y) = φ(x) + φ(y) = x+ y,

φ(x · y) = φ(x) · φ(y) = x · y,
φ(−x) = −φ(x) = −x,

φ(x−1) = φ(x)−1 = x−1, if x 6= 0.

Thus, x + y, x · y, and −x are in E whenever x and y are, and x−1 is in E
whenever x 6= 0 is in E. Thus, E is a subfield of K.

Next we want to work on finding an upper bound on the number of elements
in GalF (K).

PROPOSITION 15.3

Let K = F (u1, u2, u3, . . . , un) be a finite extension field of F . If φ1 and φ2
are two F -automorphisms in GalF (K), and

φ1(u1) = φ2(u1), φ1(u2) = φ2(u2), . . . φ1(un) = φ2(un),

then φ1(x) = φ2(x) for all x in K. In other words, an F -automorphism in
GalF (K) is completely determined by its action on u1, u2, u3, . . . , un.

PROOF: Consider the F -automorphism φ−1
2 (φ1(x)). It is clear that this auto-

morphism fixes u1, u2, u3, . . . un, as well as the elements of F . By Lemma 15.2,
the set E of all elements x such that φ−1

2 (φ1(x)) = x forms a subfield of K.
But K is by Lemma 14.3 the smallest field containing u1, u2,u3, . . . , un, and
F . Thus, K = E, and so φ1(x) = φ2(x) for all x in K.

We can now apply this proposition to the field Q(a, b) of Example 15.2.
Any Q-automorphism is determined by where it sends the elements a and b.
By Lemma 15.1, these elements can only be sent to a, b, or −a − b. Yet an
automorphism cannot send two elements to the same element. Thus, there
are at most six Q-automorphisms on the field Q(a, b). Yet we have found
precisely six Q-automorphisms of Q(a, b). Thus, we have found all of the Q-
automorphisms, and the Galois group of Q(a, b) contains exactly six elements.
Furthermore, we observed that GalQ(Q(a, b)) was non-commutative, so we find
that GalQ(Q(a, b)) must be isomorphic to S3.

We can find an upper bound for the number of F -automorphisms in any
splitting field using a similar argument.

COROLLARY 15.1

If K is the splitting field of a polynomial f(x) of degree n in F [x], then
GalF (K) is isomorphic to a subgroup of Sn.
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PROOF: Since f(x) has degree n in F [x], there are at most n roots of f(x)
in K. Call these roots u1, u2, . . . , um. Since K is the splitting field of f(x)
over F , we can write K = F (u1, u2, u3, . . . , um). If φ is in GalF (K), then
φ(u1), φ(u2), φ(u3), . . . , φ(um) will be distinct roots of f(x) by Lemma 15.1.
Hence, φ will act as a permutation on the roots of f(x). By Proposition 15.3,
φ is completely determined by this permutation on the roots of f(x). Thus,
GalF (K) is isomorphic to a subgroup of Sm, and since m is not larger than
n, GalF (K) is isomorphic to a subgroup of Sn.

We immediately see from this corollary that the Galois group of a finite
extension must be a finite group.

Let us look at one more example of a Galois group of a field. Consider the
field Q( 3

√
2), which is a subfield of the field Q(a, b). Note that in this subfield

all of the elements are real . Thus, in this field Q( 3
√
2) there is only one root

to the polynomial x3−2. Hence, if φ(x) is a Q-automorphism of Q( 3
√
2), then

φ( 3
√
2) must be 3

√
2. By Proposition 15.3, the Q-automorphism is completely

determined by where φ sends 3
√
2. Thus, GalQ(Q( 3

√
2)) is merely the trivial

group.

In order to find the Galois group of a field, it is very helpful to know ahead
of time the exact size of the Galois group. The next proposition allows us to
compute the size of the Galois group for an important class of field extensions.

PROPOSITION 15.4

Suppose K is the splitting field of a polynomial f(x) in F [x], and that K can
be expressed as a simple extension K = F (w). If IrrF (w, x) has no double
roots in K, then the number of F -automorphisms in GalF (K) is precisely the
dimension of K over F .

PROOF: Let d be the dimension of K over F . Then if g(x) = IrrF (w, x),
g(x) has degree d. Since K is a splitting field and contains one root of g(x),
by Lemma 14.5, g(x) splits completely in K. Since there are no double roots
of g(x) in K, then there are d roots w = w1, w2, w3 · · ·wd. Since g(x) is ir-
reducible, IrrF (wi, x) = IrrF (w, x) so Proposition 15.2 states that there is an
F -automorphism that sends w to wi for 1 ≤ i ≤ d. Hence, there are at least
d F -automorphisms. But by Proposition 15.3, the F -automorphism of F (w)
is determined by where it sends w, which must be one of the d roots. So
|GalF (K)| = d.

We are ready to try a more complicated example.

Computational Example 15.3

Find the Galois group for the splitting field of the polynomial x4−2x3+x2+1.

SOLUTION: First we verify that this polynomial is irreducible.
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InitDomain(), "x")

factor(x^4 - 2*x^3 + x^2 + 1)

x^4 - 2*x^3 + x^2 + 1

Sage shows this polynomial is irreducible over Q. Let us define a to be one
root of this polynomial, and see how this polynomial factors over Q(a).

AddFieldVar("a")

Define(a^4, 2*a^3 - a^2 - 1)

factor(x^4 - 2*x^3 + x^2 + 1)

(x - a) * (x + a - 1) * (x^2 - x + a^2 - a)

This tells us that if a is a root, then 1 − a is another root. However, it did
not factor completely, so we have to define b to be a root of the irreducible
quadratic.

AddFieldVar("b")

Define(b^2, b + a - a^2)

factor(x^4 - 2*x^3 + x^2 + 1)

(x - b) * (x - a) * (x + a - 1) * (x + b - 1)

So the four roots are a, 1 − a, b, and 1 − b. Any Q-automorphism will map
each of these roots to another root, and so the Galois group will be a subgroup
of S4. But which permutations will give rise to a Q-automorphism? A little
trial and error will help.

Proposition 15.2 says that there will be some Q-automorphism that sends
any one of these four roots to any other of the four roots. So there is a Q-
automorphism that sends a to 1− a. But where would it send the other three
roots? Note that if f(a) = 1 − a, then f(1 − a) = f(1) − f(a) = a. So we
only have to determine if f(b) is b or 1− b. Sage can show that both of these
work, and can draw a picture of how these two Q-automorphisms act on the
four roots of the polynomial.

F = FieldHomo()

HomoDef(F, a, 1 - a)

HomoDef(F, b, b)

CheckHomo(F)

True

G = FieldHomo()

HomoDef(G, a, 1 - a)

HomoDef(G, b, 1 - b)

CheckHomo(G)

True

CircleGraph([a, 1 - a, b, 1 - b], F)

CircleGraph([a, 1 - a, b, 1 - b], G)
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FIGURE 15.1: Automorphisms of splitting field for x4 − 2x3 + x2 + 1

The circle graphs of these two automorphisms are depicted in Figure 15.1.
If we number the four roots

1) a 2) 1− a 3) b 4) 1− b

we can view these two Q-automorphisms as P (2, 1) and P (2, 1, 4, 3). But
Proposition 15.4 indicates that we must have eight Q-automorphisms, so let
us try mapping a to b. Then 1 − a would have to map to 1 − b, but b could
map to either a or 1 − a. Sage shows that mapping b to a yields another
Q-automorphism, which would correspond to the permutation P (3, 4, 1, 2). If
we find the subgroup generated by these three Q-automorphisms

M = Group(P(2, 1), P(2, 1, 4, 3), P(3, 4, 1, 2)); M

{P(), P(2, 1), P(1, 2, 4, 3), P(2, 1, 4, 3), P(3, 4, 1, 2),

P(4, 3, 1, 2), P(3, 4, 2, 1), P(4, 3, 2, 1)}

we see that we have at least eight Q-automorphisms. Since this is the number
predicted by Proposition 15.4, we are done. Hence, we found the Galois group
as a subgroup of S4 of order 8. The command

RootCount(M, 2)

6

shows that this group has six solutions to x2 = e. Thus, the Galois group is
isomorphic to D4.

This example shows the usefulness of Proposition 15.4 in finding the Galois
group. In fact, sometimes the Galois group can be determined using only
Corollary 15.1 and Proposition 15.4.

One of the tools we will use for finding the Q-automorphisms is the close
connection between the subgroups of the Galois group, and the subfields of
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the field extension. We begin by showing a way to produce subfields of a field
extension using the subgroups of the Galois group.

PROPOSITION 15.5

Let K be a finite extension of F , and let H be a subgroup of GalF (K). Let

fix(H) = {k ∈ K | φ(k) = k for all φ ∈ H}.

Then fix(H) is a subfield of K containing the field F .

PROOF: For each φ in H, let Eφ be the set of elements that are fixed by
φ. By Lemma 15.2, Eφ is a subfield of K containing F . By taking the inter-
section of all of the Eφ with φ in H, we obtain a subfield of K containing the

field F .

DEFINITION 15.3 The field fix(H) is called the fixed field of the sub-
group H.

Let us go back to Example 15.2, where we considered the Galois group of
Q(a, b), where a and b were two roots of x3 − 2.

The Galois group was described as

{I(x), F (x), G(x), G(G(x)), F (G(x)), G(F (x))},

where I(x) represents the identity automorphism that sends every element to
itself. The subgroups of GalQ(Q(a, b)) are as follows:

H1 = {I(x)}, H2 = {I(x), F (x)}, H3 = {I(x), F (G(x))},

H4 = {I(x), G(F (x))}, H5 = {I(x), G(x), G(G(x))},
H6 = {I(x), F (x), G(x), G(G(x)), F (G(x)), G(F (x))}.

Example 15.4

Let us find the six fixed fields of Q(a, b) = Q( 3
√
2, ω3

3
√
2).

SOLUTION: The field fix(H1) is the set of elements fixed by the identity
mapping, which is of course all of Q(a, b). The field fix(H2) contains the
elements fixed by the mapping F (x), which maps a to b, and b to a. Notice
that the third root, −a− b, is fixed by the automorphism F . Thus, fix(H2) =
Q(−a−b). By a similar argument, we see that fix(H3) = Q(a), and fix(H4) =
Q(b). The field fix(H5) is a little bit trickier, since G(x) moves a, b, and
−a− b. With a little bit of experimenting, we notice that

G(a2b) = b2(−a− b) = (−a2 − ab)(−a− b) = a3 + a2b+ a2b + ab2

= 2 + 2a2b+ a(−a2 − ab) = a2b.



Galois Theory 533

If we substitute two of the roots of x3 − 2 for a and b, that is, let a = 3
√
2 and

b = ω3
3
√
2, we find that a2b is 2ω3 = −1+

√
−3. This agrees with our previous

observation that
√
−3 is in the field Q(a, b). Since −1 is already rational, we

can write the fixed field fix(H5) as Q(
√
−3).

Finally, the only elements of Q(a, b) that are fixed by all Q-automorphisms
are the elements of Q. Hence fix(H6) = Q.

Notice that we have found six different subfields of Q(a, b) by using the six
subgroups of the Galois group. We will discover in the next section that this
is all of the subfields of Q(a, b). Thus, we have found a convenient way of
finding all of the subfields of a given field.

Here is another example, although a bit easier.

Example 15.5

Find the fixed fields for the field Q( 3
√
2).

SOLUTION: Since the only Q-automorphism is the identity automorphism,
which fixes the whole group, the only fixed field of Q( 3

√
2) is Q( 3

√
2), even

though there is the obvious subfield Q within this field.

We were hoping to be able to find all subfields of a field by looking at the
fixed fields, but in this example we failed. We will understand why the field
Q( 3

√
2) is not as well behaved as Q( 3

√
2, ω3

3
√
2) in the next section.

Problems for §15.1

1 The Galois group GalQ(Q(
√
2,
√
3)) is given by {φ0, φ1, φ2, φ3}, where

φ0(
√
2) =

√
2 and φ0(

√
3) =

√
3,

φ1(
√
2) =

√
2 and φ1(

√
3) = −

√
3,

φ2(
√
2) = −

√
2 and φ2(

√
3) =

√
3,

φ3(
√
2) = −

√
2 and φ3(

√
3) = −

√
3.

Give the multiplication table for GalQ(Q(
√
2,
√
3)).

2 For each of the automorphisms in Problem 1, find the fixed field of the
automorphism.

3 Find the automorphisms of the field Q( 6
√
2).

4 Find the fixed field of each of the automorphisms in Problem 3.

5 The four solutions of x4 − 2 = 0 are r1 = 4
√
2, r2 = i 4

√
2, r3 = − 4

√
2, and

r4 = −i 4
√
2. Thus, K = Q( 4

√
2, i) is the splitting field of x4 − 2. Determine

the eight automorphisms of the field K, by finding where each automorphism
maps the four roots.

Hint: If φ(r1) = r2, then φ(−r1) = −r2. It helps to use permutations to
represent the automorphisms.
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6 Determine what familiar group the automorphism group of Problem 5 is
isomorphic to?

7 Label the three solutions of x3 − 3 = 0 as 3
√
3, r2, and r3. Determine

the six automorphisms of the splitting field of x3 − 3 by finding where each
automorphism maps the three roots.

8 Find the Galois group of the field Q(
√
2,
√
5) over Q.

Hint: Use Problem 1 as a model.

9 If E is a finite extension of Q, and φ is an automorphism on E, show that
φ is a Q-automorphism of E.

Hint: φ(1) = 1 implies that φ(n) = n for all integers n.

10 Find the Galois Group for GF(4), over Z2.

11 Find the Galois Group for GF(9), that is, the “complex numbers modulo
3,” over Z3.

12 Find the Galois Group for GF(81), over Z3.

13 The irreducible polynomial x3 +x− 1 has one real root and two complex
roots. Using just this information, show that the Galois group of the splitting
field is isomorphic to S3.

Hint: The complex conjugate, which switches the two complex roots, is one
of the Q-automorphisms in the Galois group.

14 The irreducible polynomial x5 − 5x + 2 has three real roots and two
complex roots. Using just this information, show that the Galois group of the
splitting field is isomorphic to S5. (See the hint for Problem 13.)

15 Find, up to isomorphism, all possible Galois groups of the splitting field
of a cubic polynomial ax3 + bx2 + cx+ d.

16 Find, up to isomorphism, all possible Galois groups of the splitting field
of a fourth degree polynomial ax4 + bx3 + cx2 + dx+ e.

Hint: By the second Sylow theorem (7.4), all subgroups of S4 of order 8 are
isomorphic to each other, hence isomorphic to D4.

Interactive Problems

For Problems 17 through 22: Find the set of Q-automorphisms for the split-
ting fields of the following polynomials.

17 x3 − 3x− 1
18 x3 − 3x+ 3
19 x4 − 5x2 + 5

20 x4 − x2 + 1
21 x4 + x2 − 1
22 x5 − x4 − 4x3 + 3x2 + 3x− 1
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15.2 The Galois Group of a Polynomial in Q

In this section, we will concentrate on polynomials with rational coefficients,
which will give us some concrete examples of Galois groups. In fact, many of
the applications of Galois theory involve extensions of the rational numbers,
such as proving that a fifth-degree equation cannot be solved in terms of roots.
By working with rational numbers, we will avoid the problem of a splitting
field having multiple roots. (In fields of finite characteristic, this can cause a
problem.) We want to show that this situation will never happen if we work
with extension fields of the field of rational numbers.

One advantage of working with a familiar field is that we can borrow a tool
from calculus, namely the derivative. It is not often that we will use a calculus
result in algebra, but in this case it greatly simplifies the proof.

LEMMA 15.3

If f(x) is an irreducible polynomial on Q[x], then f(x) does not have multiple
roots in the splitting field of f(x).

PROOF: Since we are working in Q[x], we can use the familiar tools of cal-
culus. Suppose that K is the splitting field of f(x), and u is a multiple root
of f(x) in K. Then

f(x) = (x− u)2 · g(x).

Since we are working in a field extension of Q, we can take the derivative
of both sides to get

f ′(x) = 2(x− u) · g(x) + (x − u)2g′(x).

Thus, u is a root of f ′(x), which has lower degree than f(x). Note that
f ′(x) is not 0, since it has degree of at least one.

Since f ′(x) is also in Q[x], we see that IrrQ(u, x) has degree less than the
degree of f(x), and so IrrQ(u, x) is a divisor of f(x). But this contradicts the
fact that f(x) is irreducible. Therefore, f(x) cannot have multiple roots in
its splitting field.

Because of this lemma, we know from Proposition 14.10 that any splitting
field can be expressed as a simple extension Q(w), and also we will be able
to use Proposition 15.4 to predict the size of the Galois group of the splitting
field. We can relate the Galois group of the splitting field directly to the
polynomial.

DEFINITION 15.4 Let f(x) be a polynomial in Q. The Galois group
of f(x) is the Galois group of the splitting field of f(x) over Q.
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We have already seen some examples of Galois groups of splitting fields.
The Galois group of the splitting field of x3 − 2 over Q was isomorphic to S3.
We also computed the Galois group of the splitting field of x4 − 2x3 + x2 +1,
and found that the Galois group is isomorphic to D4. Let us compute the
Galois groups of some other polynomials.

Example 15.6

Find, up to isomorphism, the Galois group for the polynomial x3+x2−2x−1.
SOLUTION: This polynomial is irreducible, as Sage can verify:

InitDomain(0, "x")

factor(x^3 + x^2 - 2*x - 1)

x^3 + x^2 - 2*x - 1

Thus, we can let a denote one of the roots, and try to factor this in Q(a).

AddFieldVar("x")

Define(a^3, -a^2 + 2*a + 1)

factor(x^3 + x^2 - 2*x - 1)

(x - a) * (x - a^2 + 2) * (x + a^2 + a - 1)

Since this factors completely, we see that the splitting field of x3+x2− 2x− 1
is Q(a). This is a 3-dimensional extension of Q, so by Proposition 15.4, the
Galois group has three elements, hence is isomorphic to Z3.

Computational Example 15.7

Find, up to isomorphism, the Galois group of the polynomial x5 − 5x+ 12.
SOLUTION: In the last chapter, we were able to find a splitting field by
making two extensions, one of dimension 5, and one of dimension 2.

InitDomain(0, "x")

factor(x^5 - 5*x + 12)

x^5 - 5*x + 12

AddFieldVar("a")

Define(a^5, 5*a - 12)

factor(x^5 - 5*x + 12)

(x - a) * (x^2 + (-1/4*a^4 - 1/4*a^3 - 1/4*a^2 + 3/4*a + 1)*x

- 1/4*a^4 - 1/4*a^3 - 1/4*a^2 - 5/4*a + 2)

* (x^2 + (1/4*a^4 + 1/4*a^3 + 1/4*a^2 + 1/4*a - 1)*x

- 1/2*a^3 - 1/2*a - 1)

AddFieldVar("b")

Define(b^2, 1 + a/2 + a^3/2 + b - (a + a^2 + a^3 + a^4)*b/4)

factor(x^5 - 5*x + 12)

(x - b) * (x - a) * (x + (1/2*a + 1/2)*b + 1/2*a - 1/2) *

(x + b + 1/4*a^4 + 1/4*a^3 + 1/4*a^2 + 1/4*a - 1) *

(x + (-1/2*a - 1/2)*b - 1/4*a^4 - 1/4*a^3 - 1/4*a^2 + 1/4*a +

3/2)
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If we define

c = (a^4 + a^3 + a^2 - 3*a - 4*b - 4)/4

d = (a - 4 - a^2 + a^3 - a^4 - 4*b - a*b + a^2*b - a^3*b + a^4*b)/8

e = (12 - 3*a - a^2 - 3*a^3 - a^4 + 4*b + a*b

- a^2*b + a^3*b - a^4*b)/8

we see that the following product simplifies to the original polynomial.

(x - a)*(x - b)*(x - c)*(x - d)*(x - e)

x^5 - 5*x + 12

Thus, the five roots are a, b, c, d, and e. Any Q-automorphism on the splitting
field must send a and b to one of these five roots. Let us try to define a
homomorphism f that sends f(a) = b, and f(b) = a.

F = FieldHomo()

HomoDef(F, a, b)

HomoDef(F, b, a)

CheckHomo(F)

True

Not only does Sage verify that this is a homomorphism, but it can also draw
a circle graph describing how this homomorphism acts on the five roots. The
left side of Figure 15.2 is produced by the command

CircleGraph([a, b, "c", "d", "e"], F)

Note that we put the elements c, d, and e in quotes. This way, the single
letter notations for these elements appear in the circle graph. Not every
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FIGURE 15.2: Automorphisms of splitting field for x5 − 5x+ 12
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possible way of mapping a and b to the roots a, b, c, d, and e will produce a
homomorphism. However, there is a homomorphism that maps f(a) = a and
f(b) = c. The commands

G = FieldHomo()

HomoDef(G, a, a)

HomoDef(G, b, c)

CheckHomo(G)

True

CircleGraph([a, b, "c", "d", "e"], G)

produce the right side of Figure 15.2.
Once we have found twoQ-automorphisms, we can find more by considering

the group generated by these two elements. By Corollary 15.1, the Galois
group is a subgroup of S5. We already have a natural ordering of the five
roots, so the first permutation can be written P(2,1,4,3), or (1 2)(3 4), while
the above permutation can be described as P(1,3,2,5,4), or (2 3)(4 5). Since
the Galois group is a subgroup of S5, we can ask Sage to find the subgroup
generated by these two permutations.

G = Group(P(2,1,4,3), P(1,3,2,5,4)); G

{P(), P(2, 1, 4, 3), P(1, 3, 2, 5, 4), P(3, 1, 5, 2, 4),

P(2, 4, 1, 5, 3), P(4, 2, 5, 1, 3), P(3, 5, 1, 4, 2),

P(5, 3, 4, 1, 2), P(4, 5, 2, 3, 1), P(5, 4, 3, 2, 1)}

This produces exactly 10 permutations. Proposition 15.4 states that the size
of the Galois group is equal to the dimension of the splitting field. Since
the splitting field is a 2-dimensional extension of a 5-dimensional extension,
the Galois group contains exactly 10 elements. Thus, we have found all of
the Q-automorphisms of the splitting field. The multiplication table of the
Galois group reveals that the group is non-abelian. Since there is only one
non-abelian group of order 10, the Galois group of x5 − 5x+12 is isomorphic
to D5.

Here is another example that illustrates the variety of groups that can be
produced by a Galois group of a polynomial.

Computational Example 15.8

Find, up to isomorphism, the Galois group for the eighth-degree polynomial
x8 − 12x6 + 36x4 − 36x2 + 9.
SOLUTION: This is an irreducible polynomial, as Sage can quickly verify.
Thus, we can define a to be one root of this equation. Sage can then factor
the polynomial in the field Q(a).

InitDomain(0, "x")

AddFieldVar("a")
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Define(a^8, 12*a^6 - 36*a^4 + 36*a^2 - 9)

factor(x^8 - 12*x^6 + 36*x^4 - 36*x^2 + 9)

(x - a) * (x + a) * (x - 1/3*a^5 + 3*a^3 - 3*a) *

(x + 1/3*a^5 - 3*a^3 + 3*a) *

(x - 2/3*a^7 + 22/3*a^5 - 17*a^3 + 10*a) *

(x - 1/3*a^7 + 10/3*a^5 - 5*a^3 - a) *

(x + 1/3*a^7 - 10/3*a^5 + 5*a^3 + a) *

(x + 2/3*a^7 - 22/3*a^5 + 17*a^3 - 10*a)

The factorization can also be found by evaluating the following:

b = a^5/3 - 3*a^3 + 3*a

c = a^7/3 - 10*a^5/3 + 5*a^3 + a

d = 2*a^7/3 - 22*a^5/3 + 17*a^3 - 10*a

(x - a)*(x + a)*(x - b)*(x + b)*(x - c)*(x + c)*(x - d)*(x + d)

x^8 - 12*x^6 + 36*x^4 - 36*x^2 + 9

This shows that the roots are ±a, ±b, ±c, and ±d, which are all expressed
in terms of a. Hence, the splitting field for this polynomial is simply Q(a).
Since this is an eighth-dimensional extension of Q, the Galois group will have
eight elements. But which group is this isomorphic to? Let us find a couple
of Q-automorphisms to find out.

By Proposition 15.2, there is a Q-automorphism f for which f(a) = b. Let
us find this Q-automorphism.

F = FieldHomo()

HomoDef(F, a, b)

CheckHomo(F)

True

We can have Sage draw a circle graph to find where the other seven roots
are mapped to,

CircleGraph([a, "b", "c", "d", -a, "-b", "-c", "-d"], F)

producing the left-hand side of Figure 15.3.
We can express this element of the Galois group as P(2,5,8,3,6,1,4,7),

or (1 2 5 6)(3 8 7 4).
By Proposition 15.2, we can also find a Q-automorphism that sends a to c.

G = FieldHomo()

HomoDef(G, a, c)

CheckHomo(G)

True

CircleGraph([a, "b", "c", "d", -a, "-b", "-c", "-d"], G)

This produces the circle graph on the right side of Figure 15.3. This ele-
ment of the Galois group acts like the permutation P(3,4,5,6,7,8,1,2), or
(1 3 5 7)(2 4 6 8). With these two permutations, we can see if we can generate
the whole Galois group.
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FIGURE 15.3: Two automorphisms for x8 − 12x6 + 36x4 − 36x2 + 9

G = Group( P(2,5,8,3,6,1,4,7), P(3,4,5,6,7,8,1,2) ); G

{P(), P(2, 5, 8, 3, 6, 1, 4, 7), P(7, 8, 1, 2, 3, 4, 5, 6),

P(8, 3, 6, 1, 4, 7, 2, 5), P(5, 6, 7, 8, 1, 2, 3, 4),

P(6, 1, 4, 7, 2, 5, 8, 3), P(3, 4, 5, 6, 7, 8, 1, 2),

P(4, 7, 2, 5, 8, 3, 6, 1)}
RootCount(G, 2)

2

Sage produces eight elements, so this is the entire Galois group. Since there
is only one element of order 2, this must be the quaternion group Q.

Here is one more example that at first seems difficult because the splitting
field is so large, but it is in fact easy to find the Galois group.

Example 15.9

Find, up to isomorphism, the Galois group of the polynomial x4 − x+ 1.

SOLUTION: In the last chapter we saw that the splitting field was 24 di-
mensional over Q. We know from Corollary 15.1 that the Galois group is a
subgroup of S4. But S4 has 24 elements, so the Galois group of x4 − x + 1
must be isomorphic to S4.

Sage has a way of determining the Galois group, up to isomorphism, for
irreducible polynomials up to degree around 15 (although some polynomials of
degree 14 or 15 take an unreasonable amount of time). Applying GaloisType
to a polynomial gives the name of the Galois group.
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InitDomain(0, "x")

GaloisType(x^8 - 12*x^6 + 36*x^4 - 36*x^2 + 9)

Q8

GaloisType(x^5 - 5*x + 12)

D5

GaloisType(x^5 - x + 1)

S5

In this way, we quickly redid the last two examples. However, this only gives
an isomorphic group to the Galois group, instead of explicitly showing the
elements of the group. The last example shows that the Galois group for the
polynomial x5 − x+ 1 is S5.

Finally, we wish to explore a whole class of polynomials at one time. In the
last chapter, we computed the splitting field of the cyclotomic polynomials,
and determined that K = Q(ωn), where

ωn = e(2πi/n) = cos

(
2π

n

)

+ i sin

(
2π

n

)

.

We can use Proposition 14.9, along with some of the facts observed from §13.3,
to find the Galois group of the nth cyclotomic polynomial Φn(x).

PROPOSITION 15.6

Let ωn be the nth root of unity, and let K = Q(ωn). Then

GalQ(K) ≈ Z∗
n.

PROOF: Let g(x) = Φn(x), which by Gauss’ theorem on cyclotomic poly-
nomials (13.2), is irreducible. The roots of g(x) are of the form (ωn)

k, where
k is coprime to n. Hence, K is the splitting field of g(x). Since the degree
of Φn(x) is φ(n), we know from Proposition 15.4 that the size of GalQ(K) is
φ(n).

To show that GalQ(K) is isomorphic to Z∗
n, note that every φ in GalQ(K)

is determined by where it sends ωn, and that it must send it to one of the
roots (ωn)

k for some k coprime to n. Thus, there is a natural mapping

f : GalQ(K) → Z∗
n

defined by f(φ) = (the value k for which φ(ωn) = (ωn)
k). This mapping

is well defined since (ωn)
n = 1. This mapping is a homomorphism, for if

f(φ) = k and f(µ) = m, then

(φ · µ)(ωn) = φ(µ(ωn)) = φ((ωn)
m) = (φ(ωn))

m = (ωn)
k·m,

so
f(φ · µ) = k ·m = f(φ) · f(µ).
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Finally, an element in the kernel of this homomorphism sends ωn to ωn, so
Ker(f) is just the identity element of GalQ(K). Thus, f is an isomorphism
from GalQ(K) to Z∗

n. Since we know that both GalQ(K) and Z∗
n have φ(n)

elements, the mapping is onto, so GalQ(K) ≈ Z∗
n.

From all of these examples, we have seen a host of different groups produced
as Galois groups of polynomials: S3, Z3, D5, Z5, Q, D4, S4, and all groups of
the form Z∗

n. It is natural to ask whether all finite groups can be expressed
as a Galois group of some polynomial in Q[x]. This is still an open problem,
known as the inverse Galois problem. There has been much progress made
on this problem, and it is very likely to be solved soon.

While we are working with cyclotomic polynomials and nth roots of unity,
let us prove one more proposition that will be useful later on.

PROPOSITION 15.7

Let F be a finite extension of Q that contains the nth roots of unity. Then if u
is a root of the polynomial f(x) = xn− c for some c 6= 0 in F , then K = F (u)
is the splitting field of f(x), and GalF (K) is abelian.

PROOF: Since u is a root of xn − c, we have that un = c. But (ωn)
k · u

is also a root of this polynomial for all integers k = 0, 1, 2, . . . , n− 1, since
(
(ωn)

k · u
)n

= (ωn)
k·n · un = 1 · c = c.

Since there are n distinct roots of the polynomial xn−c inK, the polynomial
factors completely in K[x]. Thus, K is the splitting field of f(x).

To show that GalF (K) is abelian, note that any F -automorphism is de-
termined by where u is sent, which must be of the form (ωn)

k · u. Thus,
if φ1 and φ2 are two F -automorphisms of K, where φ1(u) = (ωn)

k · u and
φ2(u) = (ωn)

m · u, then

(φ1 ·φ2)(u) = φ1(φ2(u)) = φ1((ωn)
m ·u) = (φ1(ωn))

mφ1(u) = (ωn)
m ·(ωn)k ·u.

while

(φ2 ·φ1)(u) = φ2(φ1(u)) = φ2((ωn)
k ·u) = (φ2(ωn))

kφ2(u) = (ωn)
k · (ωn)m ·u.

Thus, φ1 · φ2 = φ2 · φ1, and so the Galois group is abelian.

To introduce the problem of whether a fifth-degree polynomial can, in gen-
eral, be solved in terms of square roots, cube roots, or fifth roots, we will
have Sage try to solve some polynomial equations for us. Sage can solve
polynomials with the command

var("x")

Solve(x^2 - x + 2, x)

[x == -1/2*I*sqrt(7) + 1/2, x == 1/2*I*sqrt(7) + 1/2]
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which obviously uses the quadratic equation. Note that the “double equals”
== is Sage’s way of expressing an equation. Let’s try changing the x2 to an
x3:

Solve(x^3 - x + 2, x)

[x == -1/2*(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)*(I*sqrt(3) + 1)

- 1/6*(-I*sqrt(3) + 1)/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3),

x == 1/2*(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)*(-I*sqrt(3) + 1)

- 1/6*(I*sqrt(3) + 1)/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3),

x == (1/9*sqrt(26)*sqrt(3) - 1)^(1/3) +

1/3/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)]

Sage was still able to solve this, but what a mess! The answer involves
√
26 ·√

3 =
√
78. Apparently Sage is using a formula that finds the roots of any

cubic equation.
Let us try a forth-degree equation:

Solve(x^4 - x + 2, x)

Sage’s answer is particularly long, but it can be expressed as

[

x == −1

2

√

−A− 2√
A

−
√
A

2
, x ==

1

2

√

−A− 2√
A

−
√
A

2
,

x ==

√
A

2
− 1

2

√

2√
A

−A, x ==
1

2

√

2√
A

−A+

√
A

2

]

where

A =

3

√
1
2

(
9 + i

√
6063

)

32/3
+

8

3

√
3
2

(
9 + i

√
6063

)
.

Once again, Sage was able to express the answer in terms of square roots and
cube roots, yet this seems even more of a mess.

The equations for the cubic equation and the fourth-degree equation were
discovered in 1539 and 1545 [4, p. 2]. The natural question is whether there is
a similar formula for fifth-degree polynomials. Let us try to solve a fifth-degree
polynomial in Sage.

Solve(x^5 - x + 2, x)

[0 == x^5 - x + 2]

We see that Sage does not know of any formula for the fifth-degree polynomial,
so Sage keeps the equation intact. Here is the way we can get a list of
approximate roots:
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(x^5 - x + 2 == 0).roots(x, ring = CC, multiplicities = false)

[-1.26716830454212,

-0.260963880386455 - 1.17722615339419*I,

-0.260963880386455 + 1.17722615339419*I,

0.894548032657517 - 0.534148546174733*I,

0.894548032657517 + 0.534148546174733*I]

Here, CC is Sage’s way of expressing the complex numbers C. Is Sage not smart
enough to solve the equation exactly? No, because it is impossible to find a
formula for the roots of a fifth-degree polynomial in terms of square roots,
cube roots, or any other roots. The reason why is based on the properties
of the Galois groups. The next section will reveal how the Galois groups are
related to the splitting field.

Problems for §15.2

1 Find a polynomial whose Galois group is Z6.

Hint: See Proposition 15.6.

2 Prove that if a fourth-degree polynomial in Q[x] has a Galois group iso-
morphic to Z4, then the roots of the polynomial can be rearranged as r1, r2,
r3, and r4 such that

r21r2 + r22r3 + r23r4 + r24r1

yields a real rational number.

Hint: There is a Q-automorphism such that the roots map in a four-cycle:
r1 → r2 → r3 → r4 → r1. Note that the Q-automorphisms fix the above
expression, so the result must be in the fixed field of the Galois group.

3 Prove that if a fifth-degree polynomial in Q[x] has a Galois group isomor-
phic to D5, then the roots of the polynomial can be rearranged as r1, r2, r3,
r4, and r5 such that

r1r2 + r2r3 + r3r4 + r4r5 + r5r1

yields a real rational number.

Hint: See the hint for Problem 2. Note that here we must also consider a
“flip” that exchanges r1 ↔ r4 and r2 ↔ r3.

4 Find a way similar to Problem 2 to test whether a Galois group of a fifth-
degree polynomial is isomorphic to Z5.

5 Find a way similar to Problem 3 to test whether a Galois group of a
fourth-degree polynomial is D4.
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6 The roots of x4 − x3 − 4x2 + 4x + 1 are approximately 1.827090915,
1.338261213, −1.956295201, and −0.209056927. Use trial and error to find an
arrangement of these four roots such that

r21r2 + r22r3 + r23r4 + r24r1

yields an integer. (See Problem 2.)

7 The roots of the equation x5 − 5x − 12 are approximately 1.842085966,
0.351854083 ± 1.709561043i, and −1.272897224 ± 0.7197986815i. Use trial
and error to find an arrangement of these five roots such that

r1r2 + r2r3 + r3r4 + r4r5 + r5r1

yields a real integer. (See Problem 3.)

8 The roots of x4 − x3 − 4x2 + 4x + 1 are approximately 1.827090915,
1.338261213, −1.956295201, and −0.209056927. Show that whenever a is
a root, then a2− 2 is also a root. Show that, in fact, the operation a 7→ a2− 2
permutes the four roots in a 4-cycle. Using this, prove that the Galois group
must be isomorphic to Z4.

Hint: If a is one of the roots, the splitting field is Q(a).

For Problems 9 through 14: Find a group isomorphic to the Galois group of
the polynomial

9 x2 − 3
10 x3 − 3
11 x2 − 4

12 x3 − 8
13 (x2 − 2)(x2 − 3)
14 (x− 1)2(x− 3)3(x2 − 5)

15 Prove that if G is a group of order n that is isomorphic to a Galois group
of some polynomial in Q[x], then G is isomorphic to a Galois group of an
nth-degree polynomial in Q[x].

Hint: Use Corollary 14.4.

Interactive Problems

For Problems 16 through 21: Use Sage to find the Galois group of the poly-
nomial. Determine the number of elements in the Galois group, and display
a multiplication table of the subgroup of Sn isomorphic to the Galois group.

16 x4 − 2
17 x5 − 2
18 x5 + 15x+ 12

19 x5 + x4 − 4x3 − 3x2 + 3x+ 1
20 x4 − 10x2 + 1
21 x8 − 108x6 + 1548x4 − 3888x2 + 1296

22 Use Sage to find the Galois group of x5 +20x+ 16. How many elements
are in the Galois group? (This may take longer than the above problems.)
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15.3 The Fundamental Theorem of Galois Theory

In this section we will clarify the relationship between subgroups of the
Galois group, and the subfields of the extension field. Often there is a beautiful
correspondence between these two, which is at the heart of Galois theory. The
natural correlation is to map to each subgroup of GalF (K) the fixed field of the
subgroup. However, we ended §15.1 with what seemed to be a bad example—
Q( 3

√
2). The only fixed field was Q( 3

√
2), even though there was the obvious

subfield. The way we will deal with exceptions like this one is to consider only
field extensions for which the original field appears as one of the fixed fields.

DEFINITION 15.5 Let K be a finite extension of F . We say that K is
a Galois extension if the fixed field of GalF (K) is the field F .

Although this definition successfully rules out Q( 3
√
2) from being a Galois

extension, we need to find a simple test for determining whether a finite
extension is a Galois extension. The following proposition takes us one step
in that direction.

PROPOSITION 15.8

Let F be a field, and K a Galois extension of F . If f(x) is an irreducible
polynomial in F [x] that has at least one root in K, then f(x) factors completely
in K. Furthermore, f(x) has no multiple roots in the field K.

PROOF: Since f(x) has at least one root in the field K, let u1, u2, u3, . . . , un
be the set of all roots of f(x) in K. Consider the polynomial

g(x) = (x − u1) · (x− u2) · (x− u3) · · · (x− un).

By Lemma 13.3, any automorphism in GalF (K) extends to an automorphism
on K[x] with φ(x) = x. Thus,

φ(g(x)) = (x − φ(u1)) · (x− φ(u2)) · (x− φ(u3)) · · · (x− φ(un)).

By Lemma 15.1, φ(u1), φ(u2), φ(u3), . . . , φ(un) will all be roots of f(x) and so
this list is a permutation of the list u1, u2, u3, . . . , un. Therefore, φ(g(x)) =
g(x) for all φ in GalF (K).

Now, since K is a Galois extension of F , the fixed field of GalF (K) is the
field F . Thus, g(x) is a polynomial in F [x]. Since g(x) certainly divides the
polynomial f(x), and f(x) is irreducible in F [x], we have that f(x) and g(x)
have the same degree. Thus, n is the degree of f(x), and so f(x) factors
completely in the field K. Furthermore, f(x) has no multiple roots in the
field K.
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This proposition allows us to immediately rule out certain field extensions
from being a Galois extension. Clearly Q( 3

√
2) is ruled out because Q( 3

√
2)

is not a splitting field. But there are even some splitting fields that are not
Galois extensions, according to this proposition.

Motivational Example 15.10

Let Z2(t) be the field of rational functions in t, with coefficients in Z2. This
field can be defined in Sage by the command

InitDomain(2)

RationalFunctions("t")

Note this is different that the AddFieldVar command, which only defined the
polynomial ring Z2[t]. Here are some examples of elements in Z2(t):

(t^3 + t + 1)/t

(t^3 + t + 1)/t

1/(t^2 + 1) + (t^3 + t + 1)/t

(t^5 + t^2 + 1)/(t^3 + t)

We can now consider polynomials over this field.

AddFieldVar("x")

x^2 + t

x^2 + t

Note that there is no element whose square is equal to −t, since this polyno-
mial is irreducible.

factor(x^2 + t)

x^2 + t

Suppose we define a new element a that solves this equation.

AddFieldVar("a")

Define(a^2 + t, 0)

a^2

t

(x + a)*(x + a)

x^2 + t

Now x2 + t factors in Z2(t)(a) as (x+ a)(x+ a). Note, however, that there is
a double root in this factorization! Thus, by Proposition 15.8, Z2(t)(a) is not
a Galois extension of Z2(t).

One immediate consequence from Proposition 15.8 is that a Galois extension
can be written as a simple extension.
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FIGURE 15.4: Subfield diagram for splitting field of x3 − 2

COROLLARY 15.2

Let F be a field, and let K be a Galois extension of F . Then there exists an
element w of K such that K = F (w).

PROOF: Since K is a Galois extension of F , K is finite dimensional over
F . Thus, K = F (u1, u2, u3, . . . , un) for elements u1, u2, u3, . . . , un in K. But
the polynomials IrrF (ui, x) all have a root in K, and so factor completely in
the field K without multiple roots. Then we can use Corollary 14.4 to show
that there is an element w in K such that F (w) = K.

In order to introduce the correlation between the subgroups of the Galois
group and the subfields of the Galois extension, let us consider the familiar
splitting field of x3−2. Since 3

√
2 and ω3

3
√
2 are two roots, we can express the

splitting field as Q( 3
√
2, ω3

3
√
2). The subfields of this Galois extension are Q,

Q( 3
√
2), Q(ω3

3
√
2), Q(ω2

3
3
√
2), Q(

√
−3), and the whole field Q( 3

√
2, ω3

3
√
2). We

can draw a diagram of these subfields, showing which subfields are subfields
of other subfields. This is shown in Figure 15.4.

The dotted lines in this diagram indicate which subfields are Galois exten-
sions of the subfield above it. Also, whenever we have a Galois extension, the
corresponding Galois group is shown in boldface. For example, this diagram
indicates that the splitting field of x3 − 2 is a Galois extension of Q(

√
−3).

This is true by Proposition 15.7, since Q(
√
−3) contains the cube roots of

unity.
Now let us compare this figure with the subgroups of the Galois group S3,

shown in Figure 15.5. Once again, we draw lines connecting two subgroups
if one subgroup is contained in the other subgroup. We draw a dotted line
to indicate that the smaller subgroup is a normal subgroup of the larger.
Whenever the subgroup is a normal subgroup, the quotient group is indicated



Galois Theory 549

S3

{( ), (1 2)} {( ), (1 3)} {( ), (2 3)} A3

{( )}

Z2S3

Z2 Z2 Z2 Z3

...............................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................

..........................................................................................................................................................................

.............................................................

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

FIGURE 15.5: Subgroup diagram for Galois group of x3 − 2

in boldface.
The pattern is now obvious. The two pictures are the same, except that the

subfields are replaced by a subgroup of S3. This feature of Galois extensions
is the heart of Galois theory. In fact, there is a natural way that the subfields
of K and the subgroups of GalF (K) are related: For each subfield E of K, we
can consider GalE(K), the set of automorphisms of K that fix E. This is a
subgroup of GalF (K). On the other hand, given a subgroup H of GalF (K),
we can consider the fixed field fix(H), which is a subfield of K. To show that,
indeed, the two pictures will be essentially the same, we need four steps.

1. Show that if we start with a subfield E, then form the Galois group
GalE(K), and find the fixed field of this subgroup, we get back E.

2. Show that if we start with a subgroupH of GalF (K), find the fixed field,
then find the Galois group of the fixed field, we get back H. These first
two steps establish a one-to-one correspondence between the subfields
and the subgroups of the Galois group.

3. Show that if a subgroup N is a normal subgroup of another subgroup
H, then the corresponding subfields form a Galois extension. Thus, a
dotted line on the second picture corresponds to a dotted line on the
first.

4. Show that if one subfield E is a Galois extension of another, L, then
the corresponding Galois groups will have a normal subgroup relation.
Furthermore, the quotient group of the Galois groups will be isomorphic
to the Galois group of the Galois extension. Thus, a dotted line on the
first picture corresponds to a dotted line on the second, and the boldface
groups in the pictures will be isomorphic.
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Let us begin by proving the first step.

LEMMA 15.4

Let K be a Galois extension of F , and let E be a subfield of K containing F .
Then K is a Galois extension of E. That is, the fixed field of GalE(K) is E.

PROOF: Let H = GalE(K), which is a subgroup of GalF (K). Let E0 be
the field fixed by H. Certainly E0 contains the field E, since every automor-
phism in H fixes E. Suppose that u is an element of K which is not in E.
Let f(x) = IrrE(u, x). Since u is not in E, f(x) has degree at least 2. Note
that g(x) = IrrF (u, x) is a polynomial in F [x] for which f(x) is a factor in the
domain E[x]. Since K is a Galois extension over F , g(x) factors completely in
K with no repeated factors. Thus, f(x) also factors completely in K with no
repeated factors, so there are at least two solutions to the equation f(x) = 0
in K. One solution is of course u, so let v be another solution. By Proposi-
tion 15.2, there is an E-automorphism in H such that φ(u) = v. Thus, u is
not in E0. Therefore, E0 = E, and so K is a Galois extension of E.

We are now ready to proceed to the second step.

LEMMA 15.5

Let K be a Galois extension of F . If H is a subgroup of the Galois group
GalF (K), and E is the fixed field of H, then H = GalE(K).

PROOF: Let n be the dimension of the field K over E. By Lemma 15.4,
K is a Galois extension of E. Thus, by Corollary 15.2, there exists an element
w in K such that K = E(w). If f(x) = IrrE(w, x), then the degree of f(x) is
n by Corollary 14.1. Since K is a Galois extension of E, by Proposition 15.8,
the polynomial f(x) factors completely in the field K, and there are no mul-
tiple roots. Thus, by Proposition 15.4, the number of E-automorphisms of K
is the dimension of K over E, which is n.

Suppose that H contains m E-automorphisms. Let v1, v2, v3, . . . , vm be the
images of w under the automorphisms in the subgroup H. That is, for each
vi there is an h in H such that vi = h(w).

Consider the polynomial

g(x) = (x− v1) · (x− v2) · (x− v3) · · · (x − vm).

If φ is an automorphism in H, then φ(vi) = φ(h(w)) = vj for some j. Also,
since φ is one-to-one, the images of φ(v1), φ(v2), φ(v3), . . . , φ(vm) must all be
distinct. Thus, each φ in H is a permutation on the elements v1, v2, · · · vm.
Hence, φ(g(x)) = g(x). Since E is the fixed field fix(H) of the subgroup H,
we see that g(x) is in E[x]. Thus, f(x) = IrrE(w, x) divides g(x) so m is at
least n. Thus,

|H | ≤ |GalE(K)| = n ≤ m = |H |.
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Therefore, H = GalE(K).

Lemmas 15.4 and 15.5 show that there is a one-to-one correspondence be-
tween the subgroups of GalF (K) and the subfields of K containing F . We
now consider the special significance of the normal subgroups of GalF (K).

LEMMA 15.6

Let K be a Galois extension of F , and let E be a subfield of K containing
another subfield L. Suppose that GalE(K) is a normal subgroup of GalL(K).
Then every L-automorphism of K maps elements of E to elements of E.
Furthermore, E is a Galois extension of L.

PROOF: First, we want to show that if u is in E, and φ is in GalL(K),
then v = φ(u) is in E. Since GalE(K) is a normal subgroup of GalL(K),
for any f in GalE(K) we have that ψ = φ−1 · f · φ is in GalE(K). Then
f · φ = φ · ψ, or f(φ(u)) = φ(ψ(u)).

Since u is in E, ψ(u) = u, so

f(v) = f(φ(u)) = φ(ψ(u)) = φ(u) = v.

Thus, v is fixed by every automorphism f in GalE(K). By Lemma 15.4, K is
a Galois extension of E, so the fixed field of GalE(K) is E. Thus, v is in E.

To show that the fixed field of GalL(E) is L, consider an element u in E that
is not in L. By Lemma 15.4, K is a Galois extension of L. Since u is not in the
fixed field of GalL(K), there is an L-automorphism φ that moves u to another
element, v. But φmoves all elements of E to elements of E, so we can consider
the restriction of φ on the field E, denoted φ′. This is an automorphism of
E, since the inverse is (φ−1)′. Thus, there is an L-automorphism of E that
moves the element u, so the fixed field of GalL(E) is only L. Therefore, E is
a Galois extension of L.

There is only one step left to show why Figures 15.4 and 15.5 are so similar.

LEMMA 15.7

Suppose that K is a Galois extension of F , and let E be a subfield of K that
is also a Galois extension of a smaller subfield L, which contains F . Then
there exists a surjective homomorphism f from GalL(K) to GalL(E) whose
kernel is GalE(K).

PROOF: By Lemma 15.4, K is a Galois extension of L. We begin by showing
that if φ is an L-automorphism of K, and u is in E, then φ(u) is in E. Let
g(x) = IrrL(u, x). Since E is a Galois extension of L, by Proposition 15.8,
g(x) factors completely in E[x], which is of course the same factorization in
K[x]. By Lemma 15.1, φ(u) is a root of g(x) in K, but all of the roots are
also in E. Thus, φ(u) is in E.
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Next, we define the mapping f that sends an L-automorphism of K to its
restriction on the field E. We denote the restriction of φ on the field E by
φ′. Since φ maps elements of E to elements of E, we see that φ′ is an L-
automorphism of E. However, (φ−1)′ is also an L-automorphism of E, and
(φ−1)′ · φ′ is clearly the identity mapping on E. Thus, φ′ is an element of
GalL(E).

To show that f is a homomorphism, note that

f(φ1 · φ2) = (φ1 · φ2)′ = φ′1 · φ′2 = f(φ1) · f(φ2).

The kernel of this homomorphism is simply the L-automorphisms of K that
fix the elements of E, which is of course GalE(K).

Finally, to show that this homomorphism is surjective, let ψ be an L-
automorphism of E. Since K is a splitting field of E, we can use Propo-
sition 14.8 to extend ψ to an L-automorphism of K, which we will call φ.
Then f(φ) = ψ, and we have shown that f is surjective.

Lemmas 15.4 through 15.7 explain the amazing similarity in the diagrams
of the subfields, and the subgroups of the Galois group. By putting these four
pieces together, we get the fundamental theorem of Galois theory.

THEOREM 15.1: The Fundamental Theorem of Galois Theory

Let K be a Galois extension of the field F . Then there is a one-to-one cor-
respondence between the subfields of K containing F and the subgroups of
GalF (K), given by mapping E to the subgroup GalE(K). The dimension of
K over the subfield E is |GalE(K)|. Furthermore, a subfield E is a Galois
extension of L if, and only if, GalE(K) is a normal subgroup of GalL(K), in
which case GalL(E) is isomorphic to GalL(K)/GalE(K).

PROOF: If GalE(K) = GalL(K) for two subfields E and L of K, then by
Lemma 15.4, both E and L are the fixed field of the subgroup GalE(K) =
GalL(K), so E = L. Thus, the mapping E → GalE(K) is one-to-one. But if
H is any subgroup of GalF (K), then we can consider E to be the fixed field
fix(H), and by Lemma 15.5 GalE(K) = H. Thus, the correspondence is also
onto. Also by Proposition 15.4, the dimension of K over E is |GalE(K)|, since
K is a Galois extension of E.

If E is also a Galois extension of another subfield L, then by Lemma 15.7
there is a surjective homomorphism from GalL(K) to GalL(E), whose kernel
is GalE(K). Thus, GalE(K) is a normal subgroup of GalL(K), and by the first
isomorphism theorem (4.1), GalL(E) is isomorphic to GalL(K)/GalE(K).

Finally, suppose that GalE(K) is a normal subgroup of GalL(K). By
Lemma 15.6, E is a Galois extension of L.

The fundamental theorem of Galois theory has many applications. With
this theorem one can prove that it is impossible to trisect an angle with only
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a straightedge and a compass, and also that it is impossible to construct a
line 3

√
2 times the length of a given line [6, p. 433]. This finally puts to rest

two of the three famous unsolved problems introduced by the ancient Greeks
[12, p. 109]. (The last problem involves showing that π is not in an algebraic
extension of Q.) Both of these problems require a field extension of order
3, while any straightedge and compass construction involves a series of field
extensions of order 2. Of course 3 does not divide any power of 2, so a field
extension of dimension 3 cannot be a subfield of a field created by a sequence
of extensions of order 2. Another important application shows that a fifth-
degree equation cannot be solved in terms of radicals. We will explore both
of these applications in the next section.

Problems for §15.3

1 The Galois group GalQ(Q(
√
2,
√
3)) is given in Problem 1 of §15.1. Find

the five subgroups of the Galois group, and for each subgroup H find the fixed
field fix(H) of that subgroup.

2 Find all of the subfields of the field Q(
√
2,
√
5).

Hint: First do Problem 8 of §15.1, and use the fundamental theorem of
Galois theory, as was done in Problem 1.

3 There are 10 subfields of the field K = Q( 4
√
2, i): Q, Q( 4

√
2, i), Q( 4

√
2),

Q(i), Q(i 4
√
2), Q(

√
2), Q(i

√
2), Q(

√
2, i), Q((1 + i) 4

√
2), and Q((1 − i) 4

√
2).

Match each of the 10 subfields with the 10 subgroups of GalQ(K) so that each
subfield is the fixed field fix(H) of the corresponding subgroup of GalQ(K).

Hint: See Problem 5 of §15.1 to find GalQ(K), which is isomorphic to D4.
Next find the 10 subgroups of this group. Finding the fixed field for some of
the subgroups is obvious. Can the fundamental theorem of Galois theory help
with the remaining subgroups?

4 Let F be the splitting field of Φ5(x) = x4 + x3 + x2 + x+ 1 over Q. Show
that there is only one nontrivial subfield besides Q of F , and find this subfield.

Hint: Use Proposition 15.6 to find GalQ(F ), and find that there is only one
nontrivial subgroup of this group.

5 Let F be the splitting field of Φ6(x) over Q. Show that the only nontrivial
subfield of F is Q.

6 Let F be the splitting field of Φ15(x) over Q. Find 3 elements of GalQ(F )
that have order 2.

7 Let F be the splitting field of Φ7(x) over Q. Find an element of GalQ(F )
that has order 2, and another element of order 3.

8 Show that ω7+ω
6
7 is in the fixed field of the automorphism of order 2 from

Problem 7, and that ω3
7 +ω5

7 +ω6
7 is in the fixed field of the automorphism of

order 3.
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9 Let E be a finite extension of a field F with dimension n. Show that
|GalF (E)| = n if, and only if, E is a Galois extension of F .

10 Let E be a finite extension of a field F , and let φ(x) be an F -automor-
phism in GalF (E). Suppose that φ(u) = u for some element u in E. Show
that φ is in GalF (u)(E).

11 If E is a Galois extension of F , show that there can only be a finite
number of subfields of E that contain F .

12 Show that if E is a Galois extension of F with dimension p, where p is a
prime, prove that GalF (E) is isomorphic to Zp.

13 Suppose E is a Galois extension of F such that GalF (E) ≈ D5. Deter-
mine the number of subfields of E that contains F .

14 Give an example for which F ⊆ K ⊆ E are three different fields, and E
is a Galois extension of F , and E is a Galois extension of K, but K is not a
Galois extension of F .

15 Give an example for which F ⊆ K ⊆ E are three different fields, and K
is a Galois extension of F , and E is a Galois extension of K, but E is not a
Galois extension of F .

Interactive Problems

16 Let f(x) = Φ8(x) = x4 + 1, and let F be the splitting field of f(x) over
Q. Use Sage to find the fixed fields for the 3 elements of GalQ(F ) of order 2.
Express these fields in the form Q(

√
a), where a is rational.

17 Let f(x) = Φ12(x) = x4 − x2 + 1, and let F be the splitting field of f(x)
over Q. Use Sage to find the fixed fields for the 3 elements of GalQ(F ) of
order 2. Express these fields in the form Q(

√
a), where a is rational.

18 Let f(x) = Φ16(x) = x8 + 1, and let F be the splitting field of f(x) over
Q. Use Sage to find the fixed fields for the 4 elements of GalQ(F ) of order 4.
Express these fields in the form Q(

√
a), where a is rational.

19 Let f(x) = Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1, and let F be
the splitting field of f(x) over Q. Use Sage to find the fixed fields for the
4 elements of GalQ(F ) of order 4. Express these fields in the form Q(

√
a),

where a is rational.

20 Let f(x) = Φ20(x) = x8−x6+x4−x2+1, and let F be the splitting field
of f(x) over Q. Use Sage to find the fixed fields for the 4 elements of GalQ(F )
of order 4. Express these fields in the form Q(

√
a), where a is rational.
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15.4 Applications of Galois Theory

There are two main results of Galois theory. One result is that one can
demonstrate that it is impossible to find a formula for the solutions to a fifth-
degree polynomial in terms of square roots, cube roots, or fifth roots. This
finally closed the door on a centuries-old problem, ever since the solutions
for a third- and fourth-degree equations were discovered in the 16th century.
But the other application of Galois theory applies to problems thousands of
years old. The three great construction problems of antiquity are trisecting an
angle, duplicating the cube, and squaring the circle. (See Historical Diversion
on page 5.) Galois theory proved once and for all that these problems are
impossible to construct with only a straight edge and compass.

We will begin with the problem of determining whether or not a polynomial
can be solved in terms of radicals. The first step is to show that, in Q, a Galois
extension is the same thing as a splitting field.

PROPOSITION 15.9

Let E be a finite extension of Q. If f(x) is a polynomial in E[x], then the
splitting field of f(x) is a Galois extension of E.

PROOF: Let K be the splitting field of f(x) in E[x]. If u is an element
of K not in E, then g(x) = IrrE(u, x) has degree > 1. By Lemma 14.5, g(x)
factors completely in the field K. Thus, the splitting field of g(x) is contained
in the field K. However, g(x) is a factor of IrrQ(u, x), which by Lemma 15.3
does not have multiple roots in K. Therefore, g(x) cannot have multiple roots
in K, so there exist at least two roots of g(x) in K. Let v be a root of g(x)
different from u. Then g(x) = IrrE(v, x), and so by Proposition 15.2 there
exists a φ in GalE(K) such that φ(u) = v. Thus, u is not in the fixed field
of GalE(K). Since E is obviously contained in the fixed field of GalE(K), we
find that the fixed field is E, so K is a Galois extension of E.

The next step is to give a clear definition of what it means for a polynomial
to be solvable by radicals.

DEFINITION 15.6 A field K is called a radical extension of F if K =
F (u1, u2, . . . , un), where a power of each ui is contained in F (u1, u2, . . . , ui−1).

Example 15.11

Express the splitting field of x4 − 8x2 − 8x− 2 as a radical extension.

SOLUTION: We can have Sage solve for the roots explicitly.
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var("x")

solve(x^4 - 8*x^2 - 8*x - 2, x)

[x == -sqrt(2) - 1/2*sqrt(-4*sqrt(2) + 8),

x == -sqrt(2) + 1/2*sqrt(-4*sqrt(2) + 8),

x == sqrt(2) - 1/2*sqrt(4*sqrt(2) + 8),

x == sqrt(2) + 1/2*sqrt(4*sqrt(2) + 8)]

We see that the solutions are

x = −
√
2±

√

2−
√
2, or x =

√
2±

√

2 +
√
2.

How would we express the splitting field as a radical extension? It is apparent
that we first must include

√
2 in this field. But then it seems we need to include√

2 +
√
2 and

√

2−
√
2 in our field. Note, however, that the product of these

two numbers is
√
2. Thus, all four roots are in the field Q(

√
2,
√

2 +
√
2).

This is a radical extension of Q of dimension 4, and the splitting field of
x4 − 8x2 − 8x− 2 must be at least 4. Hence, we have found that the splitting
field is a radical extension of Q.

DEFINITION 15.7 The polynomial equation f(x) = 0 is said to be solv-
able by radicals if there is a radical extension of Q that contains the splitting
field of f(x).

This definition agrees with our intuitive understanding of what it means for
a polynomial to be solved in terms of radicals.

Computational Example 15.12

Use Sage to find a radical extension that contains the splitting field of the
polynomial x3 − x+ 3.

SOLUTION: We can have Sage find the exact roots of the equation.

var("x")

Solve(x^3 - x + 2, x)

[x == -1/2*(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)*(I*sqrt(3) + 1)

- 1/6*(-I*sqrt(3) + 1)/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3),

x == 1/2*(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)*(-I*sqrt(3) + 1)

- 1/6*(I*sqrt(3) + 1)/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3),

x == (1/9*sqrt(26)*sqrt(3) - 1)^(1/3) +

1/3/(1/9*sqrt(26)*sqrt(3) - 1)^(1/3)]

This result reveals that the splitting field is contained in radical extension

Q

(√
26 · 3, 3

√

1−
√
26 · 3/9,

√
−3

)

.
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This is in fact overkill, since the splitting field is at most a 6-dimensional ex-
tension of Q, while the above radical extension may be up to a 12-dimensional
extension of Q. Yet the point is that there is some radical extension of Q that
contains the roots of x3 − x + 2, because the roots can be solved in terms of
square roots and cube roots.

Not all radical extensions of Q are Galois extensions. For example, Q( 3
√
2)

is not a Galois extension, since this extension is not the splitting field of a
polynomial. In order to utilize Galois theory, we need to show that a radical
extension is contained in some extension that is both a radical extension and
a Galois extension.

LEMMA 15.8

Let E be a radical extension of Q. Then E is contained in a radical extension
K of Q such that K is a Galois extension of Q.

PROOF: Let E = Q(u1, u2, u3, . . . , un) be a radical extension of Q. Then
for every i = 1, 2, 3, . . . , n, there is a ki for which

(ui)
ki = v, for which v ∈ Q(u1, u2, u3, . . . , ui−1).

Note that if n = 0, then E = Q, and the lemma is obviously true. We will
prove this by induction on n. That is, we will assume that the lemma is true
for the field

Q(u1, u2, u3, . . . , un−1).

That is, this field is contained in a radical extension L of Q that is also a
Galois extension of Q.

By Corollary 15.2, there exists an element w of L such that L = Q(w).
Let g(x) = IrrQ(w, x) and p(x) = IrrQ(un, x). Let K be the splitting field

of g(x) ·p(x) over Q. By Proposition 15.9, K is a Galois extension of Q. Since
w is in K, L is a subfield of K. The only thing left to show is that K is a
radical extension of L.

Let v1, v2, v3, . . . , vm be all of the roots of p(x) in K. Since p(x) is irre-
ducible, by Proposition 15.2 there is a Q-automorphism φi that sends un to
vi. Since (un)

kn = b is in L, we have

(vi)
kn = (φi(un))

kn = φi((un)
kn) = φi(b).

Now, L is a Galois extension of Q, so by the fundamental theorem of Galois
theory (15.1), GalL(K) is a normal subgroup of GalQ(K). So by Lemma 15.6
Q-automorphisms of K map elements of L to elements of L. Thus, φi(b) is in
L, and so K = L(v1, v2, v3, . . . vm) is a radical extension of L.

Lemma 15.8, when combined with the definition of a polynomial solvable by
radicals, tells us that if a polynomial is solvable by radicals, then the splitting
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field of the polynomial is contained in a field extension of Q that is both a
radical extension and a Galois extension. What can we say about such an
extension? Surprisingly, the answer has a connection with the Jordan-Hölder
theorem (8.2).

LEMMA 15.9

Let K be a Galois extension of Q that is also a radical extension, and let E be
a subfield of K. If E is a Galois extension of Q, then GalQ(E) is a solvable
group.

PROOF: Since K is a radical extension of Q, we can write

K = Q(u1, u2, u3, . . . , un)

where some power of each ui, (ui)
ki , is in Q(u1, u2, u3, . . . , ui−1).

Let m be the least common multiple of all of the ki, and let u0 = ωm, the
mth root of unity. We would like to add u0 in the front of the sequence of u’s
to get a larger field

M = Q(u0, u1, u2, u3, . . . , un).

Since (u0)
m = 1, we see thatM is still a radical extension of Q. To show that

M = K(u0) is a Galois extension of Q, note that by Corollary 15.2, K = Q(w)
for some element w in K. If f(x) = IrrQ(w, x), then M is the splitting field
of the polynomial f(x) · (xm − 1). Thus, by Proposition 15.9, M is a Galois
extension of Q.

Consider the sequence of subfields

E0 = Q(u0),

E1 = Q(u0, u1),

E2 = Q(u0, u1, u2),

E3 = Q(u0, u1, u2, u3),

· · · · · · · · ·
En = Q(u0, u1, u2, u3, . . . , un) =M.

By Proposition 15.7, each of these fields is a Galois extension of the previous
field, since the mth roots of unity were designed to be in all of these fields.
Also, by Proposition 15.6, E0 is a Galois extension of Q.

We can now apply the fundamental theorem of Galois theory (15.1). We
find that GalEk

(M) is a normal subgroup of GalEk−1
(M), and the quotient

group

GalEk−1
(M)/GalEk

(M)

is isomorphic to GalEk−1
(Ek).
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By Proposition 15.7, each of these quotient groups are abelian. Also, by
Proposition 15.6, GalQ(E0) is isomorphic to Z∗

m, which is abelian. Thus, the
sequence of subgroups

GalQ(M) ⊇ GalE0(M) ⊇ GalE1(M) ⊇ · · · ⊇ GalEn
(M) = {e}

is a subnormal series for which all of the quotient groups are abelian. There-
fore, the composition series of GalQ(M) will consists of only prime, cyclic
factors. By the solvability theorem (8.3), GalQ(M) is a solvable group.

To finish the theorem, we note that E is a Galois extension of Q, so by
the fundamental theorem of Galois theory (15.1), GalE(M) is a normal sub-
group of GalQ(M), and GalQ(E) is isomorphic to GalQ(M)/GalE(M). Using

Proposition 8.3 we see that GalQ(E) is solvable.

The light is beginning to appear at the end of the tunnel. We know that
any subgroup of a solvable group must be solvable. Thus, we can immediately
tell whether a polynomial is solvable by radicals from its Galois group.

THEOREM 15.2: Galois’ Criterion Theorem

Let f(x) be a polynomial with rational coefficients. Then the equation f(x) = 0
is solvable by radicals only if the Galois group of f(x) is a solvable group.

PROOF: Suppose that f(x) is a polynomial that is solvable by radicals. Let
E be the splitting field of f(x). By Lemma 15.8, there is a field K containing
E which is a Galois extension of Q, and also is a radical extension of Q. By
Proposition 15.9, E is a Galois extension of Q. Thus, we can use Lemma 15.9
to show that the Galois group of f(x), GalQ(E), is a solvable group.

Galois’ criterion theorem is able to show us that there are some polynomials
whose roots cannot be expressed in terms of square roots, cube roots, and
other roots. In fact we found one of them using Sage, namely x5 − x+ 1.

InitDomain(0, "x")

GaloisType(x^5 - x + 1)

S5

COROLLARY 15.3

There is no formula, using only the field operations and extraction of roots,
for the zeros of all fifth-degree polynomial equations.

PROOF: We have already shown that the Galois group of x5 − x + 1 is
isomorphic to S5. But S5 is not solvable, since it contains the non-cyclic sim-
ple subgroup A5. Thus, by Galois’ criterion theorem (15.2) this particular
equation cannot be solved with a formula involving only field operations and
extraction of roots, so certainly there can be no general formula.
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This corollary was actually first proven by Abel, but Galois was unaware
of Abel’s proof when he proved the Galois’ criterion theorem. Abel and Ga-
lois’s theorems ended the long search for a formula that finds the roots of a
fifth-degree polynomial. In fact, Galois’ criterion theorem works in the other
direction as well—if the Galois group is solvable, then the polynomial is solv-
able by radicals [2, p. 558]. Since a fourth-degree equation is a subgroup of
S4, which is solvable, there must be a formula for the roots of a fourth-degree
polynomial. The change of the structure between S4 and S5 is what changes
the behavior of fifth-degree polynomials from fourth-degree polynomials.

Galois theory also can be used to analyze construction problems. The an-
cient Greeks had a very rigorous definition of what it meant for a certain
geometrical object to be constructed using an unmarked straightedge and
compass.

• Given two points that have already been constructed, we can construct
the straight line going through the points.

• Given two points that have already been constructed, we can construct
a circle with a center at one point and passing through the other.

• Given two lines that have been constructed, the point of intersection
becomes a constructed point.

• Given a circle and a line, or two circles, that have been constructed, the
points of intersection, if they exist, become constructed points.

Starting with a unit segment, what other lengths can be constructed?

DEFINITION 15.8 We say that a real number x is constructible if
we can create a line segment whose length is |x| times the length of the unit
segment in a finite number of steps, using only the allowed procedures using
the straightedge and compass.

Using plane geometry, it is not hard to see that if x and y 6= 0 are con-
structible numbers, then x + y, x − y, x · y, and x/y are constructible. (See
Problems 9 through 11.) Thus, the set of constructible numbers forms a
subfield F of R. We can characterize the field F by the following theorem.

THEOREM 15.3: The Constructible Criterion Theorem

If x is a constructible number, then x is contained in an extension of Q of
dimension 2n for some n.

PROOF: Since it is possible to construct a line perpendicular to a given
line and going through a particular point, we can use Cartesian coordinates
to describe the constructible numbers. By first constructing two perpendic-
ular lines, the x- and y-axes, given two constructible numbers a and b, we
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can construct the point (a, b) using two perpendicular lines. Likewise, if some
point is constructible, we can drop perpendiculars to construct the numbers
of the coordinates. Thus, we see that the point (a, b) is constructible if, and
only if, a and b are constructible numbers.

We can likewise characterize the lines and circles that are constructible.
A line is clearly constructible if and only if the x and y intercepts are con-
structible numbers. Thus, the line ax + by + c = 0 is constructible if, and
only if, a, b, and c can be made to be constructible numbers. Likewise, the
circle x2 + y2 + ax + by + c = 0 is constructible if and only if a, b, and c are
constructible numbers.

Now, the intersection of two lines can be found using only field opera-
tions. But the intersection of a line and a circle, or two circles, will involve
a quadratic equation. The solution of a quadratic equation involves taking a
square root of an element in F . This means that a number x is a constructible
number if, and only if, there is a sequence of fields Q = F1, F2, F3, . . . Fn with
x ∈ Fn such that each Fk+1 = Fk(

√
ak), where ak > 0 is in Fk.

Thus, we see that whenever x is a constructible number, it is contained in
a radical extension of Q. Furthermore, since only square roots are involved
in the field extensions, the dimension of the radical extension will be 2n for
some n.

We can now show that two of the three great construction problems of
antiquity are impossible.

COROLLARY 15.4

It is impossible, using only an unmarked straightedge and compass, to trisect
an angle or duplicate the cube.

PROOF: Suppose it were possible to trisect any angle. Then in particular it
would be possible to trisect a 60◦ angle, hence we would be able to construct
a 20◦ angle, so x = cos(20◦) would be a constructible number. But we saw
from Example 11.6 that x is a root of the irreducible polynomial 8x3−6x−1.
Hence, x cannot be in an field extension of Q of dimension 2n. So we cannot
trisect a 60◦ angle with a straightedge and compass, let alone the general
angle.

Likewise, we can show that duplicating the cube is impossible. This would
involve constructing a line of length 3

√
2, which is a root of x3 − 2. Again,

since Q( 3
√
2) is a three-dimensional extension of Q, this cannot be contained

in a field of dimension 2n, so 3
√
2 is not a constructible number.

The last construction problem involves knowledge that π is transcendental,
so it requires a more difficult proof to show that π is not a constructible
number.

There are many other applications of Galois theory. For example, one can
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FIGURE 15.6: Geometric constructions used for Problems 10 through 13

use the fundamental theorem of Galois theory to prove that any polynomial
in the complex numbers has a root in the complex numbers. This is known
as the fundamental theorem of algebra.

Problems for §15.4

For Problems 1 through 8: Express the splitting field of the following poly-
nomials as a radical extension of Q.

1 x3 − 2
2 x4 − 3
3 x4 + 5
4 x5 + 6

5 x4 − 5x2 + 6
6 x4 + 2x2 − 2
7 x6 + x3 − 6
8 x6 + 3x3 − 5

9 Show that if a and b are positive constructible numbers, and a > b, then
a+ b and a− b are constructible.

10 Show that if a and b are positive constructible numbers, and b > 1, then
a · b is constructible.

Hint: In Figure 15.6, let BC = a, and AD = b. What is DE?

11 Show that if a and b are positive constructible numbers, and b > 1, then
a/b is constructible.

Hint: In Figure 15.6, let DE = a, and AD = b. What is BC?

12 Explain how we could redraw Figure 15.6 so that we can construct a · b
and a/b for the case where b < 1 in Problems 10 and 11.

13 Show that if a is a positive constructible number, then
√
a is constructible.

Hint: In Figure 15.6, let HJ = a. Note that since a triangle inscribed in a
semi-circle is always a right triangle, ∠FGH is a right angle.
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14 Although constructible numbers are defined to be real numbers, we can
consider extensions involving square roots of complex numbers as well. That
is, we can consider the complex number x to be constructible if there is a
sequence of fields Q = F1, F2, F3, . . . Fn with x ∈ Fn such that each Fi+1 =
Fi(

√
ai), where ai is in Fi. Show that a+ bi is constructible in the new sense

if, and only if, a and b are real constructible numbers by Definition 15.8.
Hint: First show that

√
a+ bi =

√√
a2 + b2 + a√

2
+

bi
√
2
√√

a2 + b2 + a
.

15 The converse of the Constructible Criterion Theorem (15.3) is not always
true. That is, just because a complex number z is contained in a field extension
F of Q of dimension 2n does not mean that z is constructible in the sense of
Problem 14. However, by adding the condition that F is a Galois extension
of Q, show that z is constructible.

Hint: Use Proposition 7.8 to show GalQ(F ) is solvable, with all composition
factors isomorphic to Z2.

16 Use Problem 15 to show that a pentagon is constructible.

17 Use Problem 15 to show that a 17-gon is constructible. This was first
discovered by Gauss.

18 Use Problem 15 to show that a 257-gon is constructible. Note that 257
is prime.

Interactive Problems

19 Express Q(ω5) as a radical extension using only square roots. This, along
with Problem 14, can be used to show how to construct a regular pentagon.

Hint: Find a subnormal sequence for the Galois group, and then find gen-
erators for the fixed fields for each subgroup.

20 ExpressQ(ω17) as a radical extension using only square roots. This, along
with Problem 14, can be used to show how to construct a regular 17-gon. See
the hint for Problem 19.
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Appendix: Sage vs. Mathematica
©R

This textbook incorporates either Sage or Mathematica to help students
visualize the important concepts of abstract algebra. It is recommended that
one of the two programs be used with the book, but it is not necessary to
have both. This section compares the two programs, and gives instructions
for how to use these programs with the files on the included CD.

Mathematica is a symbolic manipulator package published by Wolfram Re-
search, Inc. That is, it is a general purpose mathematical program used by
scientists, engineers, and analysts. Its main feature that sets it apart from
other symbolic manipulators is the graphics capabilities. InMathematica 10.0,
one can plot a 3-dimensional object, then use the mouse to rotate the object
in three dimensions to see it from all possible angles.

Sage is also a symbolic manipulator, but has the advantage of being open
source. This means that it is totally free. It has slightly less graphic capabil-
ities than Mathematica, but it can still graph three dimensional objects, and
rotate them. Sage is also capable of interfacing with GAP, which stands for
“Groups, Algorithms, and Programming.” Hence Sage is particularly suited
for abstract algebra. Mathematica, however, was never designed to work prob-
lems involving abstract algebra. The reason whyMathematica is able to do the
abstract algebra calculations is because of the supporting software provided
with the textbook.

IMPORTANT: In order to use either Sage or Mathematica for this text-
book, you will also need to install the supporting files into your computer.
Simply put the CD provided into the computer, and the installation program
should start running. If this program does not start automatically in any of
the Windows versions, click on the “Start” icon, and select “Run.” At this
menu, select “Browse.” Next, find the drive for the CD, and select the file
“AbstractAlgebraSetup.exe.” Hit “OK” to start the setup program running.
Follow the instructions to install either the Mathematica or Sage supporting
files, or both, onto the computer. Another option would be to copy the math
and/or sage folders directly from the CD to the computer. The latter method
will work for any operating system. Note that this only loads the supporting
files, so you will also have to install Mathematica or Sage programs as well.

Included in the supporting files are two Mathematica packages, “group.m”
and “ring.m.” The first of these is used for chapters 0-8 of the text, while the
other is used in the remaining chapters. Both files are in the math folder on
the CD provided with this book. These two files allow Mathematica to work
with groups as fluently as Sage. There are, however, a few things that Sage
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can do that Mathematica cannot, due to the algorithms.
Sage also has a package “absalgtext.sage” in the sage directory, which

causes the interface with GAP to be seamless. Because of this file, the com-
mands for Sage are nearly the same as the commands for Mathematica.

Also in the supporting files are Mathematica and Sage files for each chapter
of the textbook. Mathematica calls these files notebooks , and the file names are
“group00.nb” through “group08.nb,” and “ring09.nb” through “ring15.nb” in
the math directory. Sage calls these files worksheets , but they do the same
thing. The files “group00.sws” through “group08.sws,” and “ring09.sws”
through “ring15.sws” are the corresponding Sage files in the sage folder.
These notebooks/worksheets allow a student to walk through the examples
in the book, along with other similar examples. Included in these note-
books/worksheets are all the theorems and proofs in the textbook.

Once the supporting files have been installed, then one of the packages can
be loaded into Mathematica with either of the two commands:

<< c:\math\group.m

<< c:\math\ring.m
This will only have to be done once in each Mathematica session. Likewise,
each Sage session must begin with the command that loads the file absal-

gtext.sage, but unlike Mathematica, this file will automatically be loaded
when any worksheet is loaded. Sage will even search two possible locations
for this file.

Because of the similarities of the two systems, this book only shows the
input and output for Sage. The main reason for this is that switching back
and forth between two systems proved to be distracting, as seen in the first
edition of this book. Those using Mathematica can open the notebooks to see
the corresponding Mathematica commands, and still follow along closely with
the book.

Mathematica is not free, but price information can be obtained from

http://www.wolfram.com

However, one can obtain a 30-day Mathematica product trial.
There is also a free Mathematica Player available from Wolfram, which will

be able to open the notebooks provided with this textbook. However, one
cannot execute any of the Mathematica commands with Mathematica Player .

To load one of the supporting files in Mathematica, click on “File” and then
slide down to “Open.” One can locate one of the 16 notebooks with the .nb
extension in the C:\math directory.

Although Sage is a totally free program, it takes some effort to install. This
is because it runs on Linux, not Windows. As a result, one has three options.

1. Run Sage in VirtualBox, which is a free Windows program. This will
make Sage particularly slow, especially if you have less than 6 GB of
RAM on your computer. (4 GB is minimum.)

http://www.wolfram.com
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2. Create a hard drive partition that can boot to a Linux operating system,
such as Ubuntu. The computer will then be able to boot to either
Windows or Linux. This is actually the preferred method, and is easier
than it might first appear.

3. Run Sage on a cloud, using a web browser. This would be ideal in a
university setting, since the professor can upload the software to the
cloud, as explained below, and give students access to it.

Each of the three options requires some instructions to set up.

Using VirtualBox

After installing the software from the CD, the VirtualBox installer will be
in the C:\InterAbstAlg directory. One can also download the most recent
version from www.virtualbox.org. Double click on the file to start installing
VirtualBox, and follow the standard installation instructions.

Start VirtualBox, select the File menu, and select the Import Appliance

option. At this point you can either click on the right file icon, and browse
for the Sage package, or type in C:\InterAbstAlg\sage-5.12.ova. This is
the version supplied with this book, but you may want to first replace this
file with the most recent version at

http://www.sagemath.org/download-windows.html.

Finally, hit Next, and then Import.
Before Sage will be able to read the worksheet files supplied with the

textbook, we will need to set up a shared directory between Windows and
Linux. This is accomplished by selecting the Settings menu, and selecting
the Shared Folders option. This brings up a short form to fill out. Under
“Folder path”, type C:\sage, and click on the “Auto-mount” box. Finally hit
“OK” twice to set up the shared directory. Now every time that VirtualBox
is run, the directory C:\sage will appear on the Linux side as the directory
/media/sf sage.

While we are in the settings menu, click on the “General” menu, and select
the “Advanced” tab. Change the “Shared Clipboard” option to “Bidirec-
tional.” This will allow you to cut and paste text to and from Sage.

We are now ready to click on the big blue Sage button. It will take some
time to load, but will finally display the Sage banner. Click on “Upload,”
and on the menu select “Browse.” Navigate through “Filesystem,” then the
“media” directory, and finally the “sf sage” subdirectory. Select one of the
worksheets, such as “group00.sws”. Finally, click on “Open” and then “Up-
load Worksheet.”

Using Linux
This assumes that you have installed a Linux system on your computer.

For Ubuntu-based Linux distributions (Linux Mint, *buntu, etc.), we can use
a PPA. To install Sage, open a Terminal window, and type

http://www.sagemath.org/download-windows.html
http://www.virtualbox.org


568 Sage vs. Mathematica©
R

sudo apt-add-repository -y ppa:aims/sagemath

sudo apt-get update

sudo apt-get install sagemath-upstream-binary

For other Linux distributions, a tarball can be downloaded from the main
website www.sagemath.org.

There is also a database file to be installed that allows GAP to perform ad-
vanced group operations, which are only needed for the StructureDescrip-
tion and GaloisType commands.

sudo sage -i database gap

In order to view animations in Sage, you will also have to install either
ImageMagick or FFmpeg. The following installs ImageMagick, along with
other recommended programs.

sudo apt-get install gfortran

sudo apt-get install imagemagick texlive dvipng

You will have to manually copy the files in the sage directory on the CD
to a directory named sage in your home directory. However, the worksheets
are expecting these files to be in the media/sf sage directory because of
VirtualBox. Rather than constantly change the Sage commands, we can add
a symbolic link to make these directories the same.

cd /media

sudo ln -s /sage sf sage

You can now exit the terminal window with exit. It is important at this
point to run the Software Update on the computer. This final step links the
Sage and ImageMagick programs, so they can interact.

At this point the big blue Sagemath button should appear in the Appli-
cations menu. Clicking on this will cause Sage to appear in a web browser.
Click on “Upload,” and on the menu select “Browse.” One can either navigate
through “Filesystem” then the “media” directory, and finally the ”sf sage”
subdirectory, or find the “sage” directory inside your home directory. Select
one of the worksheets, such as “group00.sws.” Finally, click on “Open” and
then “Upload Worksheet.”

Using SageMathCloud

At the time this book was published, SageMathCloud had some trouble
displaying some of the more complicated math formulas, so it was harder to
read. Nonetheless, it gives another option for running Sage under Windows
or Mac OS.

To begin, sign up at

https://cloud.sagemath.com

https://cloud.sagemath.com
http://www.sagemath.org
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Once signed up, click on “Projects,” and then “Create New Project.” After
creating and opening the new project, you can download the .sws files that
are in the C:\sage directory one at a time, along with the “absalgtext.sage”
file. Select one of the worksheets, such as “group00.sws”.

Once the Notebook/Worksheet is Loaded

The first cell of every Mathematica notebook or Sage worksheet is the Ini-
tialization cell. This must be executed first before any other commands in
the notebook will work, since it loads either the “group.m,” “ring.m,” or
“absalgtext.sage” file. Note that in Sage, the initialization cell is executed
automatically when the worksheet is loaded. The very first time that the
initialization is done in Sage, there may also be additional databases that are
automatically downloaded from the Internet.

For Mathematica, click on this cell, and hit Shift and Enter at the same
time. When done, the message

Initialization Done

will appear. It will always prompt you if you want to run the initialization
cell first.

Both of the programs are interactive systems. Every expression that one
types into the computer is immediately evaluated, and the result is shown.
This is known as a read-evaluate-print loop. To create a new cell in Sage,
move the cursor to a point between two cells, and a long blue strip will appear.
Clicking on this strip inserts a new input cell. In Mathematica, click between
two cells and start typing, and a new cell will be created.

In either system, try computing 390, using the Shift-Enter combination.

3^90

8727963568087712425891397479476727340041449

If Sage is not running under SageMathCloud, there is an ”Evaluate” button
that appears when the cell is selected. Clicking on this button is an alternative
to the Shift-Enter combination.

Mathematica adds In[] and Out[] numbers.

In[2] := 3ˆ90
Out[2]:= 8 727 963 568 087 712 425 891 397 479 476 727 340 041 449

Mathematica will number all of the input and output statements, but the
prompt does not appear until after some expression is entered. Note that
the numbers correspond to the cells evaluated in the current session, not the
current notebook. So when the notebooks are first opened, none of the “In[n]
:=” or “Out[n] :=” will be present. Likewise, if a second notebook is opened
and a cell is evaluated, it might start with a value other than “In[1]”. It is
suggested that the cells be evaluated in the order that they appear, but there
is nothing to prevent executing the statements in any order, or executing a
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statement more than once. The “In[n] :=” and ”Out[n] :=” will show which
commands have been run and in what order. Any cell that does not have
a “In[n] :=” has not been evaluated yet, even through it appears to have a
corresponding output.

Had we put a semi-colon before pressing the Shift-Enter, we would get a
different effect. It computes the expression, but does not display the answer.
For example, entering

a = 3^300;

will assign the variable a a 144-digit number, but will not display this number.
Actually, Sage would not display the number even without the semi-colon,
because the value is assigned to the variable. To see the value of a, one can
enter

a

1368914790585883759913260273820883159664636956253374364\
7148019007836899717749907659380020615568894138825048444\
0597994042813512732765695774566001

Note that both Sage and Mathematica use the backslash to show that the
number is continued on the next line.

In both programs, a variable is a sequence of letters and/or digits, but must
begin with a letter. Variables are case sensitive, so a is a different variable
than A. Keywords, such as if or quit, are not allowed as variables, but the
list of keywords is too long to give here. None of the lower-case letters are
keywords, so we can safely use the 26 variables a through z.

Mathematica does not automatically expand an expression, although it
might rearrange the factors and terms.

(yˆ2 + 3y – 1)(yˆ2 – 2y + 4)
(4− 2y + y2)(−1 + 3y + y2)

Because we have not yet assigned a value to y, Mathematica assumes that
it is an indeterminate, so that it expresses the answer in terms of y. Also
note that Mathematica assumes that a number and letter next to each other
are to be multiplied together. In Sage, we must explicitly use the * for every
multiplication.

(y^2 + 3*y - 1)*(y^2 - 2*y + 4)

Traceback (click to the left of this block for traceback)

...

NameError: name ’y’ is not defined

This time, we get an error message, since Sage has not been told what y is.
Unlike with Mathematica, we must declare y to be a variable in Sage before
we can use it as a variable. The simplest way to do this is with the command:
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var("y")

y

We can try the expression again.

(y^2 + 3*y - 1)*(y^2 - 2*y + 4)

(y^2 + 3*y - 1)*(y^2 - 2*y + 4)

If we want to expand this, we can use the expand function.

expand( )

y^4 + y^3 - 3*y^2 + 14*y - 4

factor( )

(y^2 + 3*y - 1)*(y^2 - 2*y + 4)

Note that the underscore ( ) is a Sage abbreviation for the last output. The
corresponding symbol in Mathematica is the percent sign (%).

Expand[%]
−4 + 14y − 3y2 + y3 + y4

Factor[%]
(4− 2y + y2)(−1 + 3y + y2)

There are other syntax differences between Sage and Mathematica: Sage uses
parentheses for functions, as the standard notation, but Mathematica uses
square brackets for functions. Also, every function name in Mathematica is
capitalized.

Most calculations in Mathematica and Sage are also exact, but you do
have the option of finding a decimal approximation using the N function. For
example, the first 50 digits of

√
2 are computed in Mathematica as

N[Sqrt[2], 50]
1.4142135623730950488016887242096980785696718753769

The same command in Sage requires a bit more syntax.

N(sqrt(2), digits=50)

1.4142135623730950488016887242096980785696718753769

Both Sage and Mathematica will point out any mistakes in the input line.
For example, if one types

(4 = 3)*2

Traceback (click to the left of this block for traceback)

...

SyntaxError: invalid syntax

To find out more information, click on the left side of the error message, and
it will expand. The last few lines are as follows:
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(4 = 3)*2

( sage const 4 = sage const 3 )* sage const 2

^

SyntaxError: invalid syntax

Sage points to the error with a caret (ˆ). The same typo also produces an
error in Mathematica, but for a different reason.

(4 = 3)*2
6

Mathematica returns an answer, but also displays a strange message,

“Set::setraw : Cannot assign to raw object 4. ≫”

in a separate Messages window. Because the equal sign in Mathematica is
used to assign a value to a variable, Mathematica thinks we are trying to
assign the value 3 to the number 4, which of course cannot be done. But
besides this, this value of 3 is multiplied by 2 to get the answer displayed.

Ironically, had we used a double equal sign, neither Mathematica nor Sage
command would have produced an error.

(4 == 3)*2
2 False

The double equal sign is used to test if two expressions are equal. Mathematica
sees no problem in symbolically multiplying False with an integer. Sage
produces a different answer.

(4 == 3)*2

0

Sage converts False to 0, and True to 1 if needed. Other features of Sage
will be introduced in the textbook as the need arises. With a little practice,
you will find both programs are relatively easy to use.



Answers to Odd-Numbered
Problems

Section 0.1
1) q = 25, r = 15
3) q = −19, r = 22
5) q = 166, r = 13
7) q = 0, r = 35
9) q = 0, r = 0
11) 2n = 2 · 2n−1 < 2(n− 1)! < n(n− 1)! = n!
13) If (n− 1)3 + 2(n− 1) = 3k, then n2 + 2n = 3(k + n2 + n+ 1).
15) If 6n−1 + 4 = 20k, then 6n + 4 = 20(6k − 1).
17) (n− 1)((n− 1) + 1)/2 + n = n(n+ 1)/2.
19) (n− 1)((n− 1) + 1)(2(n− 1) + 1)/6 + n2 = n(n+ 1)(2n+ 1)/6.
21) (n− 1)((n− 1) + 1)((n− 1) + 2)/3 + n(n+ 1) = n(n+ 1)(n+ 2)/3.
23) 2 · 24 + (−1) · 42 = 6.
25) 2 · 102 + (−3) · 66 = 6.
27) 14 · 1999 + (−965) · 29 = 1.
29) 5 · (−602) + 12 · 252 = 14.
31) 0 · 0 + 1 · 7 = 7.
33) Since xy is a common multiple, by the well-ordering axiom there is a least
common multiple, say z = ax = by. Note that gcd(a, b) = 1, else we can divide
by gcd(a, b) to produce an even smaller common multiple. Then there is a u
and v such that ua+ vb = 1, so uaxy + vbxy = xy, hence z(uy + vx) = xy.
35) 28 · 53.
37) 22 · 3 · 52 · 19.
39) 74 · 11.
41) u = −13717445541839, v = 97393865569283.
43) 32 · 172 · 379721.
45) 449 · 494927 · 444444443.

Section 0.2
1) {e, n, o, r, t, x, y}.
3) a) Not one-to-one, f(−1) = f(1) = 1. b) Not onto, f(x) 6= −1.
5) a) One-to-one, x3 = y3 ⇒ x = y. b) Onto, f( 3

√
y) = y.

7) a) Not one-to-one, f(0) = f(4) = 0. b) Not onto, f(x) 6= −5, since
x2 − 4x+ 5 has complex roots.
9) a) One-to-one, if x even, y odd, then y = x+ 1/2. b) Not onto, f(x) 6= 3.
11) a) One-to-one, if x even, y odd, then x = 2y − 1 is odd. b) Not onto,
f(x) 6= 4.
13) a) Not one-to-one f(0) = f(3) = 1. b) Onto, either f(2y − 2) = y or
f(2y + 1) = y.

573
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15) If 2x2 + x = 2y2 + y = c, then x and y = (−1 ±
√
1 + 8c)/4. If x 6= y,

then |x− y| =
√
1 + 8c/2, which is never an integer when c is an integer.

17) Suppose f were onto. Although f might not be one-to-one, if f(a1) =
f(a2), we could remove a1 from the set A and still have the function be onto.
In this way we can create the set Ã such that f̃ : Ã → B is a bijection. By
lemma 0.5, |Ã| = |B|, but |B| > |A| ≥ |Ã|.
19) There are more than a million people in London, so if we let A be the set
of people in London, and B be the set of numbers from 0 to 1,000,000, we
have a mapping f : A → B, with |A| > |B|, so this cannot be onto. Thus,
two people in London have the same number of hairs. (Alternative solution:
find two bald men in London.)
21) 2x(x− |x|).
23) 2x+ 3.

25) f(x) =

{
x− 1 if x is even,
(x+ 3)/2 if x is odd.

27) Given c ∈ C, there is a b ∈ B such that f(b) = c. Then there is an a ∈ A
such that g(a) = b. Then f(g(a)) = c.
29) There are two different elements x and y in A such that g(x) = g(y) = z.
Then f(g(x)) = f(z) = f(g(y)).
31) If x ≥ 0 and y < 0, f(x) = f(y) means y = x2 ≥ 0. Onto is proven by

finding the inverse: f−1(x) =

{√
x if x ≥ 0,

x if x < 0.
33) Not associative, (x ∗ y) ∗ z = 4x+ 2y + z, x ∗ (y ∗ z) = 2x+ 2y + z.
35) Associative, (x ∗ y) ∗ z = x ∗ (y ∗ z) = xyz − xy − xz − yz + x+ y + z.
37) No. 1− 1 = 0 /∈ S.
39) Yes.
41) No. 1/2 = .5 /∈ S.
43) g(x) = - x - 2*floor(-x)

Since g(x) = f−1(x), both f(g(x)) and g(f(x)) is x.

Section 0.3
1) 18
3) 37
5) 2
7) 13
9) 7
11) 86
13) Since 10n mod 9 = 1n mod 9 = 1, we find that

a0+10a1+102a2+103a3+ · · ·+10mam mod 9 = a0+a1+a2+ · · ·+am mod 9.

15) 140
17) 235
19) 523
21) 3270
23) 9554
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25) 3776
27) 5
29) 17
31) 28
33) 2
35) 27
37) 28
39) 3589981174162646211769
41) 8570104178046812602269593145496421011
43) 862056187088917362

Section 0.4
1) {0, 1, 12 , 2, 13 , 32 , 23 , 3, 14 , 43 , 35 , 52 , 25 , 53 , 34 , 4}.
3) If an = bn/bn+1, then ⌊an⌋ = (bn − (bn mod bn+1))/bn+1. Then 1/an+1 =
(bn+1 + 2(bn − (bn mod bn+1)) − bn)/bn+1. This simplifies to give an+1 =
bn+1/(bn+bn+1−2(bn mod bn+1)). Hence, bn+2 = bn+bn+1−2(bn mod bn+1).
5) a2n = b2n/b2n+1 = bn/(bn+bn+1) = (bn/bn+1)/((bn/bn+1)+1) = an/(an+
1).
7) Let x = p/q be a rational number, and assume the statement is true for
smaller p+ q. If x ≥ 1, then am = x−1 for some m, and a2m+1 = x. If x < 1,
then am = x/(1− x) for some m, and a2m = x.
9) Because ai can only be one of q possible integers for i > 0, at some point
we must have ai = aj. Because an+1 is determined solely on an, a2i−j = ai,
and the sequence will repeat from this point on.
11) x = n.d1d2 . . . d1+10−i ·0.di+1di+2 . . . di+j +10−i−j ·0.di+1di+2 . . . di+j +
10−i−2j · 0.di+1di+2 . . . di+j + · · · . The series is geometric after the first term,
so the sum is n.d1d2 . . . d1 + 10−i · 0.di+1di+2 . . . di+j/(1 − 10−j), which is
rational.
13) If p2/q2 = 3 with p and q coprime, then 3|p, but replacing p = 3r shows
3|q too.
15) If p2/q2 = 6 with p and q coprime, then 2|p, but replacing p = 2r shows
2|q too.
17) If p3/q3 = 4 with p and q coprime, then 2|p, but replacing p = 2r shows
2|q too.
19) If a+ b were rational, and a was rational, then b = (a+ b)− a would be
rational.
21) If a · b were rational, and a was rational and nonzero, then b = (a · b)/a
would be rational.
23) If e = p/q, then q!e will be an integer. But the series for q!e is

q!

0!
+
q!

1!
+
q!

2!
+ · · · q!

q!
+

q!

(q + 1)!
+

q!

(q + 2)!
+ · · · .

The terms up to q!/q! will be integers, but the remaining terms simplify to

1

q + 1
+

1

(q + 1)(q + 2)
+

1

(q + 1)(q + 2)(q + 3)
+ · · · .
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This sum is clearly less than 1/2+ 1/6+ 1/24+ · · ·, which sums to 2− e < 1.
Thus, the sum is not an integer.

25) y = (4/3)10(3/4)(1/x).

Section 1.1

1) 8 steps: Stay, RotLft, RotRt, Rot180, Flip (along horizontal axis), Spin
(along vertical axis), FlipLft (exchanges NE and SW corners), and FlipRt.

Stay RotLft Rot180 RotRt Flip Spin FlipLft FlipRt
Stay Stay RotLft Rot180 RotRt Flip Spin FlipLft FlipRt
RotLft RotLft Rot180 RotRt Stay FlipLft FlipRt Spin Flip
Rot180 Rot180 RotRt Stay RotLft Spin Flip FlipRt FlipLft
RotRt RotRt Stay RotLft Rot180 FlipRt FlipLft Flip Spin
Flip Flip FlipRt Spin FlipLft Stay Rot180 RotRt RotLft
Spin Spin FlipLft Flip FlipRt Rot180 Stay RotLft RotRt
FlipLft FlipLft Flip FlipRt Spin RotLft RotRt Stay Rot180
FlipRt FlipRt Spin FlipLft Flip RotRt RotLft Rot180 Stay

3) e = e · e′ = e′, so e = e′.
5) If a · b = a · c, then a−1 · (a · b) = a−1 · (a · c), so b = c.

7) 50% (18 of 36).

9) After a flip and a rotation, Terry will be facing the opposite direction, so
it would be a flip.

11) (FlipRt·Spin)−1 6= FlipRt·Spin. Other answers are possible.

13) Stay = FlipRt·FlipRt, RotRt = FlipRt·FlipLft, RotLft = FlipLft·FlipRt,
Spin = FlipRt·FlipLft·FlipRt. Other answers are possible.

15) Such a routine is impossible, since it involves three flips. See Problem 8.

Section 1.2

1)
0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

3)
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

5)
0 2 4 6 8 10

0 0 2 4 6 8 10
2 2 4 6 8 10 0
4 4 6 8 10 0 2
6 6 8 10 0 2 4
8 8 10 0 2 4 6
10 10 0 2 4 6 8

7)
1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1
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9)
1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

11)
1 5 7 11 13 17

1 1 5 7 11 13 17
5 5 7 17 1 11 13
7 7 17 13 5 1 11
11 11 1 5 13 17 7
13 13 11 1 17 7 5
17 17 13 11 7 5 1

13) Simply define x ∼ y if x and y belong to the same subset.

15) 7.

17) 19.

19) 3.

21) 67.

23) 103.

25) 277.

27) n = 5, 8, or 12.

Section 1.3

1) (a · a) · b 6= a · (a · b).
3) Yes, this is a group.

5) 0 has no inverse.

7) Not closed, no identity, hence no inverses.

9) Yes, this is a group.

11) 3 has no inverse.

13) Yes, this is a group.

15) Note that y has an inverse, z, so that y · z = e. But then x = x · (y · z) =
(x · y) · z = z, so y · x = e.

17) If both x · y1 and x · y2 = e, then by Problem 15, y2 · x = e, so y2 =
y2 · (x · y1) = (y2 · x) · y1 = y1.

19) a−1 · (a · x) = a−1 · (a · y), so x = y.

21) If (a · b)2 = a2 · b2, then a · b · a · b = a · a · b · b.
23) a2 6= e if, and only if, a−1 6= a, so these elements pair off, leaving an even
number of elements. Since the identity is one of the remaining elements, there
must be another.
25)

· a b c d

a b d a c

b d c b a

c a b c d

d c a d b
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27)
a b c d e f g h

b b g d f a h e c
g g e f h b c a d
h h f b a c e d g
c c h g b d a f e
a a b c d e f g h
d d c e g f b h a
e e a h c g d b f
f f d a e h g c b

29) 18 → 6, 54 → 18, 162 → 54, 486 → 162, 50 → 20, 250 → 100, 98 → 42,
686 → 294. Conjecture (p− 1)n/(2p).

Section 2.1

1) 1, 5, 7, and 11.

3) 1, 3, 5, 7, 9, 11, 13, and 15.

5) 2 and 5.

7) No generators

9) No generators

11) 5 and 11.

13) 40.

15) 168.

17) 288.

19) 480.

21) If n has an odd prime factor p, then p− 1 will be even. If n is 2q for some
q > 1, then 2q−1 is even. In all cases, there is an even factor in the formula
for φ(n).

23) 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

25) Z∗
n is cyclic if n is a power of an odd prime.

27) The only other cases where Z∗
n is cyclic is n = 2 and n = 4.

Section 2.2

1) If b · a = a · b, then e = b2 · a2 = b · (b · a) · a = b · a · b · a. If b · a · b · a = e,
then b · a = b · (b · a · b · a) · a = b2 · (a · b) · a2 = a · b.
3) b3 ·a = b2 ·(a2 ·b) = b ·(a2 ·b) ·a ·b = (a2 ·b) ·a ·(a2 ·b) ·b = a2 ·(a2 ·b) ·a2 ·b2 =
a4 · (a2 · b) · a · b2 = a6 · (a2 · b) · b2 = a5 · a3 · b3 = a3 · b3.
5) a · b.
7) b2 · c3.
9) b · c3.
11) a · b2 · c2.
13) b2 · c2.
15) c3.

17) There are 24 ways of rearranging four books.
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19)

InitGroup("e")

AddGroupVar("b", "c")

Define(b^3, e)

Define(c^4, e)

Define((b^2*c)^2, e)

Group(b, c)

{e, b^2*c*b^2, c, c^2, b^2*c, b, b*(b*c)^2, c*b,

b^2, b^2*c*b, c*b^2, b*(b*c)^2*b, b^2*c^2, b*c,

b*(b*c)^2*c, c*b*c, b*c*b^2, (b*c)^2*b, b*c^2, c*b*c^2,

(b*c)^2, b*c*b, (b*c)^2*c, (c*b)^2}

Section 2.3
1) {0}, {0, 2, 4, 6, 8, 10}, {0, 3, 6, 9}, {0, 4, 8}, {0, 6}, and the whole group.
3) {0}, {0, 3, 6, 9, 12, 15, 18}, {0, 7, 14}, and the whole group.
5) {1}, {1, 3}, {1, 5}, {1, 7}, and the whole group.
7) Six elements of order 4, eight elements of order 3, and nine elements of
order 2.
9) Because the corners can only rotate, every third repetition will bring the
corners back to the initial state. If all 6 of the edges move, then after 6
repetitions the edges will be back in the right place, but possibly flipped. But
then after 12 repetitions the edges will also be back to normal, making the
order at most 12. If 5 of the edges move, then it will take 5 repetitions to
get the edges into place, possibly flipped, so 10 repetitions to get the edge
pieces into the right position, but then the corners may be twisted, so the
order could be at most 30.
11) R6(G) = 6, R3(G) = 3, R2(G) = 2, so two elements of order 6. (6− 3− 2
subtracts the identity element twice.)
13) Every element of Zn will have an order that divides n. Counting the
number of elements of order k for each divisor and summing over all divisors
will give the number of elements of Zn.
15) If G were cyclic, Corollary 2.1 shows that there are at most p solutions to
xp = e.
17) (a · b)n = a · b · (a · b)n−1 = a · b · a · (b · a)n−2 · b = a · (b · a)n−1 · b;
(a · b)n = e⇔ a · (b · a)n−1 · b = e⇔ (b · a)n−1 = a−1b−1 ⇔ (b · a)n = e.
19) If x, y ∈ H, then x = a2, y = b2, so (a · b−1)2 = x · y−1 ∈ H. If a2 = 1,
then a2 − 1 = (a + 1)(a − 1) is a multiple of p, so a = 1 or a = p − 1. If
x = a2 = b2, then (a · b−1)2 = 1 so b = a or b = a(p− 1). Since x 7→ x2 is two
to one, H contains half the elements of Z∗

p .
21) The subgroup has 10 elements: {e, a, a2, a3, a4, b2, a·b2, a2·b2, a3 ·b2, a4 ·b2}.
23) Even for a non-abelian group, the order of the inverse element is the same
as the order of the element.
25) f ·r ·b flips the top edge efficiently, and in the process cycles the remaining
5 edges, so this has order 30.
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Section 3.1
1) {{0, 5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}}.
3) {{0, 5, 10}, {1, 6, 11}, {2, 7, 12}, {3, 8, 13}, {4, 9, 14}}.
5) {{1, 14}, {2, 13}, {4, 11}, {7, 8}}.
7) {{1, 9}, {3, 11}, {5, 13}, {7, 15}}.
9) Left cosets: {Stay, Spin}, {FlipRt, RotLft}, {RotRt, FlipLft}. Right cosets:
{Stay, Spin}, {FlipRt, RotRt}, {RotLft, FlipLft}.
11) 5.
13) 7.
15) 5.
17) 8.
19) 4.
21) 36.
23) Since (n − 1)2 = 1 in Z∗

n, {1, n − 1} is a subgroup of order 2, so |Z∗
n| is

even for n > 3.
25) Since y ∈ Hx, y = hx for some h ∈ H, so Hy = H · (hx) = (H ·h)x = Hx.
27) Possible orders are 1, p, q, and pq, so a non-trivial subgroup either has
order p or q. But any group of prime order is cyclic.
29) {1}, {1, 3, 9, 11}, {1, 5, 9, 13}, {1, 7}, {1, 9}, {1, 15}, {1, 7, 9, 15}, and the
whole group.
31) Left cosets: {{e, c2, c, c3}, {a, a ·c2, a ·c, a ·c3}, {b, b ·c2, b ·c, b ·c3}, {a ·b ·c, a ·
b, a · b · c3, a · b · c2}, {b2, b2 · c, b2 · c2, b2 · c3}, {a · b2, a · b2 · c, a · b2 · c2, a · b2 · c3}}.
Right cosets: {{e, c2, c, c3}, {a, a · b · c, b · c2, b2 · c3}, {b, b2 · c, a · c2, a · b · c3}, {a ·
b, b2 · c2, b · c, a · c3}, {b2, a · c, a · b · c2, b · c3}, {a · b2, a · b2 · c, a · b2 · c2, a · b2 · c3}}.

Section 3.2
1) 24, 28, 1, 0, 23, 9, 24, 11, 28
3) 5, 9, 0, 4, 24, 9, 8, 12, 26, 19
5) THIS IS EASY
7) MAKE IT SO
9) If n = pqr, φ(n) = (p − 1)(q − 1)(r − 1). If x is coprime to n, use
Proposition 3.1, otherwise suppose x is a multiple of p, but not a multiple of qr.
Then xrs ≡ x (mod p), and since rs ≡ 1 (mod (q− 1)(r− 1)), Proposition 3.2
shows that xrs ≡ x (mod qr) as well. Finish with the Chinese remainder
theorem (0.7).
11) f−1(x) = x11 mod 51.
13) f−1(x) = x29 mod 91.
15) f−1(x) = x35 mod 221.
17) f−1(x) = x103 mod 1001.
19) 1835, 1628, 1084. Inverse = x157 mod 2773.
21) Answers will vary.
23) Answers will vary.

Section 3.3
1) Since e ∈ H, H = e · H ⊆ H · H. But H is closed with respect to
multiplication, so H ·H ⊆ H.
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3) Since e ∈ H, a ∈ a ·H, so a ∈ H · b. But a ∈ H · a as well, so H · b = H · a,
hence a ·H = H · a.
5) Any element of h ∈ H is also in G, so h · n · h−1 ∈ N.

7) Three possible answers: {e, c2}, {e, a · b2 · c}, or {e, a · b2 · c3}.
9) If g ∈ G and h ∈ Z, then g · h · g−1 = h · g · g−1 = h ∈ Z.

11) Let a be a generator of H, and let m be the smallest positive integer for
which am ∈ K. For a given g ∈ G, g · a · g−1 ∈ H, so g · a · g−1 = an for some
n. Then for asm ∈ K, g · asm · g−1 = (g · a · g−1)sm = (an)sm = (am)sn ∈ K.

13) Let f(x) = mx+ b ∈ G, and t(x) = qx ∈ T , so f−1(x) = (x− b)/m. Then
(f · t · f−1)(x) = f(t(f−1(x))) = qx − bq + b /∈ T . If f(x) = 2x+ 3, then Tf
is the set of functions k(2x+ 3), whereas fT is the set of functions kx+ 3.

15) If g1 = h1 · k1 and g2 = h2 · k2, then g1 · g−1
2 = h1 · k1 · k−1

2 · h−1
2 =

(h1 · h−1
2 ) · (h2 · k1 · k−1

2 · h−1
2 ) ∈ H ·K, since K is normal.

17) g ·H ·K · g−1 = (g ·H · g−1) · (g ·K · g−1) = H ·K.
19) Subgroups are {e}, with cosets {e}, {a}, {a2}, {a3}, {b}, {a · b}, {a2 · b},
and {a3 · b}; {e, a2}, with cosets {e, a2}, {a, a3}, {b, a2 · b}, and {a · b, a3 · b};
{e, a, a2, a3}, with cosets {e, a, a2, a3} and {b, a · b, a2 · b, a3 · b}; {e, b, a2, a2 · b},
with cosets {e, b, a2, a2 ·b} and {a, a ·b, a3, a3 ·b}; {e, a ·b, a2, a3 ·b}, with cosets
{e, a · b, a2, a3 · b} and {a, b, a2 · b, a3}; and the whole group, with one coset
containing the whole group.

Section 3.4
1)

{0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{0, 5} {0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{1, 6} {1, 6} {2, 7} {3, 8} {4, 9} {0, 5}
{2, 7} {2, 7} {3, 8} {4, 9} {0, 5} {1, 6}
{3, 8} {3, 8} {4, 9} {0, 5} {1, 6} {2, 7}
{4, 9} {4, 9} {0, 5} {1, 6} {2, 7} {3, 8}

3)
{0, 5, 10} {1, 6, 11} {2, 7, 12} {3, 8, 13} {4, 9, 14}

{0, 5, 10} {0, 5, 10} {1, 6, 11} {2, 7, 12} {3, 8, 13} {4, 9, 14}
{1, 6, 11} {1, 6, 11} {2, 7, 12} {3, 8, 13} {4, 9, 14} {0, 5, 10}
{2, 7, 12} {2, 7, 12} {3, 8, 13} {4, 9, 14} {0, 5, 10} {1, 6, 11}
{3, 8, 13} {3, 8, 13} {4, 9, 14} {0, 5, 10} {1, 6, 11} {2, 7, 12}
{4, 9, 14} {4, 9, 14} {0, 5, 10} {1, 6, 11} {2, 7, 12} {3, 8, 13}

5)
{1, 4} {2, 8} {7, 13} {11, 14}

{1, 4} {1, 4} {2, 8} {7, 13} {11, 14}
{2, 8} {2, 8} {1, 4} {11, 14} {7, 13}
{7, 13} {7, 13} {11, 14} {1, 4} {2, 8}
{11, 14} {11, 14} {7, 13} {2, 8} {1, 4}
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7)
{1, 7} {3, 5} {9, 15} {11, 13}

{1, 7} {1, 7} {3, 5} {9, 15} {11, 13}
{3, 5} {3, 5} {9, 15} {11, 13} {1, 7}
{9, 15} {9, 15} {11, 13} {1, 7} {3, 5}
{11, 13} {11, 13} {1, 7} {3, 5} {9, 15}

9)
{1, 5} {7, 11} {13, 17} {19, 23}

{1, 5} {1, 5} {7, 11} {13, 17} {19, 23}
{7, 11} {7, 11} {1, 5} {19, 23} {13, 17}
{13, 17} {13, 17} {19, 23} {1, 5} {7, 11}
{19, 23} {19, 23} {13, 17} {7, 11} {1, 5}

11)
{e, b, b2} {a, a · b, a · b2}

{e, b, b2} {e, b, b2} {a, a · b, a · b2}
{a, a · b, a · b2} {a, a · b, a · b2} {e, b, b2}

13) Each element of G/N is a set of functions f(x) = px+ k for which the p
is the same for all functions in the coset.

15) If xN and yN are two elements in G/N, then (xN) · (yN) = x · y · N =
y · x ·N = (yN) · (xN).

17) If h1N and h2N are two elements of H/N, then h1 and h2 are in H, and
(h1N) · (h2N)−1 = (h1 · h−1

2 ) ·N ∈ H/N. So H/N is a subgroup of G/N.

19) |Z∗
105| = 48, H = {1, 11, 16, 46, 71, 86}, coset {2, 22, 36, 37, 67, 92} has

order 4.

Section 4.1

1) If f(x) = a and f(y) = b, then f−1(a · b) = x · y = f−1(a) · f−1(b).

3) Stay → e, RotRt → b, RotLft → b2, Spin → a, FlipRt → a · b, FlipLft
→ a · b2.
5) Z6 = {0, 1, 2, 3, 4, 5} ≈ Z∗

7 with order {1, 3, 2, 6, 4, 5}.
7) Z6 = {0, 1, 2, 3, 4, 5} ≈ Z∗

14 with order {1, 3, 9, 13, 11, 5}.
9) Z10 = {0, 1, 2, 3, . . . , 9} ≈ Z∗

11 with order {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}.
11) Z12 = {0, 1, 2, . . . , 11} ≈ Z∗

13 with order {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}.
13) Z∗

12 = {1, 5, 7, 11} ≈ Z∗
8 with order {1, 3, 5, 7}.

15) Let g be a generator, and consider the function f(x) : Z → G defined by
f(x) = gx.

17) am = e1 if and only if φ(am) = φ(e1) = e2 if and only if φ(a)m = e2.

19) Z∗
16 = {1, 3, 5, 7, 9, 11, 13, 15} ≈ Z∗

15 with order {1, 2, 7, 11, 4, 8, 13, 14}.
21) Z∗

30 = {1, 7, 11, 13, 17, 19, 23, 29} ≈ Z∗
15 with order {1, 7, 11, 13, 2, 4, 8, 14}.

Section 4.2

1) If a, b ∈ Im(φ), then a = φ(x), b = φ(y) for some x, y ∈ G. Then a · b =
φ(x · y) = φ(y · x) = b · a.
3) φ(x · y) = φ(x+ y) = 2(x+ y) = 2x+2y = φ(x) + φ(y) = φ(x) · φ(y), since
· is addition in this group.



Answers to Odd-Numbered Problems 583

5) φ(x · y) = φ(x + y) = x+ y + 3, but φ(x) · φ(y) = φ(x) + φ(y) = (x+ 3) +
(y + 3) = x+ y + 6.

7) φ(x · y) = 2(x · y) = 2xy, but φ(x) · φ(y) = (2x) · (2y) = 4xy.

9) φ(x · y) = φ(x + y) = ex+y = ex × ex = φ(x) · φ(y). Image is the positive
real numbers.

11) φ(f · g) = φ(f(t) + g(t)) = f(3) + g(3) = φ(f) + φ(g) = φ(f) · φ(g). The
kernel is the set of polynomials with 3 as a root, hence t− 3 is a factor.

13) φ(1) = 1, φ(7) = 13, φ(11) = 1, φ(13) = 7, φ(17) = 13, φ(19) = 19,
φ(23) = 7, φ(29) = 19.

15) φ(±1) = 1, φ(±i) = 3, φ(±j) = 5, φ(±k) = 7. The 3, 5, and 7 can be
permuted.

17) For each element h ∈ H, f−1(h) is a coset of K, where K = Kerf . Hence
|f−1(h)| = |K|. Since each element in H produces a different coset of K, the
size of f−1(H) is |H | · |K|.
19) Many solutions, since b can map to either RotLft or RotRt, and a can
map to FlipLft, FlipRt, or Spin. Any of these combinations will work.

Section 4.3

1) Z10, Z5, Z2, and the trivial group.

3) Z∗
15, Z4, Z

∗
8 , Z2, and the trivial group.

5) Q, Z∗
8 , Z2, and the trivial group.

7) Z∗
24, Z

∗
8 , Z2, and the trivial group.

9) If K is the kernel, it is sufficient to show that G/K is cyclic. If g is a
generator of G, then gK is a generator of G/K, since every element can be
expressed as gm ·K = (gK)m.

11) Ten homomorphisms, one sending all elements to e, three sending {1, 3}
to e, {5, 7} to a, a · b, or a · b2, respectively, three sending {1, 5} to e, {3, 7} to
a, a · b, or a · b2, respectively, and three sending {1, 7} to e, {3, 5} to a, a · b,
or a · b2, respectively.
13) Since {0, 2, 4} and {0, 3} are normal subgroups of Z6, φ

−1({0, 2, 4}) and
φ−1({0, 3}) are normal subgroups of G.

15) H and K must be normal, since they have index 2. Then H · K is a
subgroup with more than half the elements, so H · K = G. By the second
isomorphism theorem, G/K ≈ K/(H ∩K) ≈ Z2. So H ∩K contains half the
elements of K, hence a fourth of the elements of G, so G/(H ∩K) contains 4
elements. For every element a ∈ G, a2 is in both H and K, so every element
in the quotient group is of order 1 or 2. Thus, G/(H ∩K) ≈ Z∗

8 .

17) {{{1, 4}, {2, 8}}, {{7, 13}, {14, 11}}} ≈ {{1, 2, 4, 8}, {7, 11, 13, 14}}.
19) Let φ(a) = φ(c) = −1, and φ(b) = 1.

Section 5.1

1)
(
1 2 3 4 5
5 1 2 4 3

)
.

3)
(
1 2 3 4 5 6
3 4 5 1 2 6

)
.

5)
(
1 2 3 4 5 6 7
4 2 5 6 7 3 1

)
.
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7)
(
1 2 3 4 5 6 7 8
8 5 1 3 2 7 4 6

)
.

9)
(
1 2 3
1 2 3

) (
1 2 3
1 3 2

) (
1 2 3
2 1 3

) (
1 2 3
2 3 1

) (
1 2 3
3 1 2

) (
1 2 3
3 2 1

)

(
1 2 3
1 2 3

) (
1 2 3
1 2 3

) (
1 2 3
1 3 2

) (
1 2 3
2 1 3

) (
1 2 3
2 3 1

) (
1 2 3
3 1 2

) (
1 2 3
3 2 1

)

(
1 2 3
1 3 2

) (
1 2 3
1 3 2

) (
1 2 3
1 2 3

) (
1 2 3
3 1 2

) (
1 2 3
3 2 1

) (
1 2 3
2 1 3

) (
1 2 3
2 3 1

)

(
1 2 3
2 1 3

) (
1 2 3
2 1 3

) (
1 2 3
2 3 1

) (
1 2 3
1 2 3

) (
1 2 3
1 3 2

) (
1 2 3
3 2 1

) (
1 2 3
3 1 2

)

(
1 2 3
2 3 1

) (
1 2 3
2 3 1

) (
1 2 3
2 1 3

) (
1 2 3
3 2 1

) (
1 2 3
3 1 2

) (
1 2 3
1 2 3

) (
1 2 3
1 3 2

)

(
1 2 3
3 1 2

) (
1 2 3
3 1 2

) (
1 2 3
3 2 1

) (
1 2 3
1 3 2

) (
1 2 3
1 2 3

) (
1 2 3
2 3 1

) (
1 2 3
2 1 3

)

(
1 2 3
3 2 1

) (
1 2 3
3 2 1

) (
1 2 3
3 1 2

) (
1 2 3
2 3 1

) (
1 2 3
2 1 3

) (
1 2 3
1 3 2

) (
1 2 3
1 2 3

)

11)
(
1 2 3 4
1 3 4 2

)
,
(
1 2 3 4
1 4 2 3

)
,
(
1 2 3 4
3 2 4 1

)
,
(
1 2 3 4
4 2 1 3

)
,
(
1 2 3 4
2 4 3 1

)
,
(
1 2 3 4
4 1 3 2

)
,
(
1 2 3 4
2 3 1 4

)
,
(
1 2 3 4
3 1 2 4

)
.

13)
(
1 2 3 4 5
1 3 2 4 5

)
.

15) x =
(
1 2 3 4 5
2 4 3 1 5

)
,
(
1 2 3 4 5
5 4 1 2 3

)
,
(
1 2 3 4 5
1 4 5 3 2

)
, or

(
1 2 3 4 5
3 4 2 5 1

)
.

17) Right·Last·Left.
19) Right·First·Right.

Section 5.2
1) (1 3 2 4 6).
3) (1 8)(2 6 7)(4 5).
5) Product is (1 2)(n + 1 n + 2). When n = 2, we easily get (1 2)(3 4), so
assume that product is correct for n − 1. Then by induction, the product is
(1 2)(n n+ 1)(n n+ 1 n+ 2) = (1 2)(n+ 1 n+ 2).
7) If f = φ1 · φ2, where φ1 and φ2 are disjoint, then fn = e if and only if
φn1 = e and φn2 = e.
9) Consider σH : H 7→ R as the signature function restricted to the elements
of H. The kernel is H ∩ An. If the image is {1}, then all permutations in H
are even, otherwise the image is {1,−1}, and the first isomorphism theorem
shows |H/(H ∩ An)| = 2.

11) If φ1, φ2 ∈ S∞, then φ2 is one-to-one and onto, so φ−1
2 is too. Thus,

φ1 · φ−1
2 ∈ S∞. Example: (1 2)(3 4)(5 6) . . . (2n− 1 2n) . . . ∈ S∞, but /∈ SΩ.

13) 144.
15) Let H be the subgroup generated by the n-cycle φ = (1 2 3 . . . n). Then
φj−i will map i to j.
17) If φ = (i1 i2 i3 . . . ir) and f = (j1 j2 j3 . . . js), then x · φ · x−1 =
(x(i1) x(i2) x(i3) . . . x(ir)), and x · f · x−1 = (x(j1) x(j2) x(j3) . . . x(js)).
19) a2 is a 3-cycle, a3 = (), b2 is a product of two 3-cycles, b3 is a product of
three 2-cycles, b6 = ().
21) a · b · a−1 = (2 4 3 5 6 7). In general, a · b · a−1 will have the same cycle
structure as b.

Section 5.3
1)
{(

1 2 3 4
1 2 3 4

)
,
(
1 2 3 4
2 1 4 3

)
,
(
1 2 3 4
3 4 1 2

)
,
(
1 2 3 4
4 3 2 1

)}
.
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3) (), (1 2 3 4)(5 6 7 8), (1 3)(2 4)(5 7)(6 8), (1 4 3 2)(5 8 7 6), (1 5)(2 8)(3 7)(4 6),
(1 6)(2 5)(3 8)(4 7), (1 7)(2 6)(3 5)(4 8), (1 8)(2 7)(3 6)(4 5).

5) (), (1 2)(3 4)(5 6)(7 8), (1 3)(2 4)(5 7)(6 8), (1 4)(2 3)(5 8)(6 7),

(1 5)(2 6)(3 7)(4 8),(1 6)(2 5)(3 8)(4 7), (1 7)(2 8)(3 5)(4 6), (1 8)(2 7)(3 6)(4 5).

7) S6 contains a subgroup generated by (12), (34), and (56).

9) Applying Corollary 5.2: 35 divides 5! · |N |, so 7 divides |N |, hence H = N,
and H is normal.

11) Applying Corollary 5.2: 200 divides 8! · |N |, so 5 divides |N |, hence either
H = N, or |N | = 5.

13) Applying Corollary 5.2: 189 divides 7! · |N |, so 3 divides |N |, hence either
H = N, |N | = 3, or |N | = 9.

15) Applying Corollary 5.2: 3|H | divides 3! · |N |, so H = N or |N | = |H |/2.
17) Any non-trivial subgroup would have order p. Applying Corollary 5.2
gives p2 dividing p! · |N |, so N must be a multiple of p, giving H = N.

19) Since the set is finite, for a given element a, the set {a, a2, a3, · · ·} must
repeat, so am = an for somem < n. Then by the cancellation laws, an−m = 1,
so an−m−1 · a = 1. Thus, a has an inverse, an−m−1.

21) (), (1 2 3)(4 5 6)(7 8 9)(10 11 12), (1 3 2)(4 6 5)(7 9 8)(10 12 11),

(1 4 7 10)(2 6 8 12)(3 5 9 11), (1 5 7 11)(2 4 8 10)(3 6 9 12),

(1 6 7 12)(2 5 8 11)(3 4 9 10), (1 7)(2 8)(3 9)(4 10)(5 11)(6 12),

(1 8 3 7 2 9)(4 11 6 10 5 12), (1 9 2 7 3 8)(4 12 5 10 6 11),

(1 10 7 4)(2 12 8 6)(3 11 9 5), (1 11 7 5)(2 10 8 4)(3 12 9 6),

(1 12 7 6)(2 11 8 5)(3 10 9 4)

Section 5.4

1) 532.

3) 2195.

5) 3928.

7) 37387.

9) 29035.

11) P (3, 4, 2, 6, 5, 1).

13) P (1, 5, 6, 7, 2, 3, 4).

15) P (3, 4, 6, 5, 7, 1, 2).

17) P (6, 4, 8, 5, 1, 2, 3, 7).

19) A4 = {1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24}, the numbers congruent to 0 or
1 (mod 4). But NthPerm(25) is not in A5.

21) P [4, 5, 1, 6, 2, 3] = (1463)(25) is the only solution.

Section 6.1

1) {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} corresponds to the or-
der {1, 11, 2, 7, 4, 14, 8, 13}.
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3)
(0, 1) (0, 3) (0, 5) (0, 7) (1, 1) (1, 3) (1, 5) (1, 7)

(0, 1) (0, 1) (0, 3) (0, 5) (0, 7) (1, 1) (1, 3) (1, 5) (1, 7)
(0, 3) (0, 3) (0, 1) (0, 7) (0, 5) (1, 3) (1, 1) (1, 7) (1, 5)
(0, 5) (0, 5) (0, 7) (0, 1) (0, 3) (1, 5) (1, 7) (1, 1) (1, 3)
(0, 7) (0, 7) (0, 5) (0, 3) (0, 1) (1, 7) (1, 5) (1, 3) (1, 1)
(1, 1) (1, 1) (1, 3) (1, 5) (1, 7) (0, 1) (0, 3) (0, 5) (0, 7)
(1, 3) (1, 3) (1, 1) (1, 7) (1, 5) (0, 3) (0, 1) (0, 7) (0, 5)
(1, 5) (1, 5) (1, 7) (1, 1) (1, 3) (0, 5) (0, 7) (0, 1) (0, 3)
(1, 7) (1, 7) (1, 5) (1, 3) (1, 1) (0, 7) (0, 5) (0, 3) (0, 1)

5) Consider the natural homomorphism φ : G → K defined by φ(h, k) = k.
The kernel is H, so by the 1st isomorphism theorem, G/H ≈ K. Similarly,
G/K ≈ H.

7) 1 element of order 2, 2 elements of order 3, 2 elements of order 4.

9) 3 elements of order 2, 8 elements of order 3, no elements of order 4.

11) 7 elements of order 2, 8 elements of order 3, no elements of order 4.

13) 7 elements of order 2, 8 elements of order 3, 8 elements of order 4.

15) R2(Z2 × Z6) = 2 · 2 = 4, whereas R2(Z12) = 2.

17) Suppose R2(A × B) = R2(A) · R2(B) = 10, with R2(A) ≥ R2(B). If
R2(A) = 5, A would have an even number of elements, but by Problem 20
R2(A) would be even. Thus, R2(A) = 10, meaning that A has at least 10
elements, so B would have at most 2. Then B ≈ Z2, and R2(B) 6= 1.

19) Put elements of Z∗
21 in the order {1, 2, 4, 8, 16, 11, 13, 5, 10, 20, 19, 17}.

Section 6.2

1) Since xn = e for all x ∈ Zn × Zn, we see that Zn × Zn is not cyclic.

3) Z32, Z16 × Z2, Z8 × Z4, Z8 × Z2 × Z2, Z4 × Z4 × Z2, Z4 × Z2 × Z2 × Z2,
and Z2 × Z2 × Z2 × Z2 × Z2.

5) Only Z210.

7) Z450 ≈ Z2 × Z9 × Z25, Z2 × Z9 × Z5 × Z5, Z2 × Z3 × Z3 × Z25, Z2 × Z3 ×
Z3 × Z5 × Z5.

9) Z600 ≈ Z8 × Z3 × Z25, Z2 × Z4 × Z3 × Z25, Z2 × Z2 × Z2 × Z3 × Z25,
Z8 × Z3 × Z5 × Z5, Z2 × Z4 × Z3 × Z5 × Z5, Z2 × Z2 × Z2 × Z3 × Z5 × Z5.

11) Z900 ≈ Z4 ×Z9 ×Z25, Z2×Z2 ×Z9 ×Z25, Z4 ×Z3 ×Z3×Z25, Z2 ×Z2 ×
Z3×Z3×Z25, Z4×Z9×Z5×Z5, Z2×Z2×Z9×Z5×Z5, Z4×Z3×Z3×Z5×Z5,
Z2 × Z2 × Z3 × Z3 × Z5 × Z5.

13) Two for Z16, four for Z8 ×Z2, 12 for Z4 ×Z4, and eight for Z4 ×Z2×Z2.

15) Z16 × Z8 × Z2.

17) Z4 × Z2 × Z5.

19) For each permutation written in terms of disjoint cycles, we can add “1-
cycles” so that every number from 1 to n is mentioned. Then the sum of the
sizes of the sycles will add to n. Thus, there is a one-to-one correspondence
between cycle structures and partitions of n.

21) The exact value is c = π
√

2/3 ≈ 2.5651.
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Section 6.3
1) 6: φ(b) = b or b2 (order 3), φ(a) = a, a · b, or a · b2 (order 2).
3) 8: φ(2) = 2, 7, 8, or 13 (order 4), forcing φ(4) = 4. φ(11) = 11 or 14 (order
2).
5) 48: φ(a) = one of the 8 elements of order 3, which determines φ(a2). φ(b) =
one of the six remaining elements of order 3.
7) Note that any automorphism must fix the identity element, leaving n − 1
elements.
9) φ(x) = x−1 is clearly one-to-one and onto, and φ(x · y) = y−1 · x−1 =
x−1 · y−1 = φ(x) · φ(y) since the group is abelian. If a has order greater than
2, φ(a) 6= a, so this is non-trivial.
11) If Aut(G) is cyclic, then so is Inn(G) with a generator x 7→ g−1xg. For
each y ∈ G, y−1xy = g−nxgn for some n, plugging in x = g yields y−1gy = g,
or gy = yg. Since gy = gy for all y, Inn(G) ≈ {e}, and G is abelian.
13) (), (b, a2 · b)(a · b, a3 · b), (a, a3)(a · b, a3 · b), (a, a3)(b, a2 · b).
15) All automorphism are inner: (), (b, b2)(a · b, a · b2), (a, a · b, a · b2), (a, a ·
b2)(b, b2), (a, a · b2, a · b), (a, a · b)(b, b2).
17) Aut(Z) ≈ Z2, with φ0(x) = x, φ1(x) = −x.
19) Eight automorphisms: (), (2, 7)(8, 13), (2, 8)(7, 13), (2, 13)(7, 8),
(2, 8)(11, 14), (2, 13, 8, 7)(11, 14), (7, 13)(11, 14), (2, 7, 8, 13)(11, 14).
21) There are 20 automorphisms, generated by f(a) = a, f(b) = b2, and
g(a) = a · b, g(b) = b.

Section 6.4
1) (7, 7).
3) (7, 5).
5) (1, 1).
7) A nontrivial homomorphism from Z2 to Aut(Z∗

8 ) ≈ S3 must send 1 to a
2-cycle. But Proposition 6.7 shows such homomorphisms are equivalent, so
we may assume φ1 = (3 5). Z∗

8⋊Z2 ≈ D4.

(1,0) (1,1) (3,0) (3,1) (5,0) (5,1) (7,0) (7,1)

(1,0) (1,0) (1,1) (3,0) (3,1) (5,0) (5,1) (7,0) (7,1)

(1,1) (1,1) (1,0) (5,1) (5,0) (3,1) (3,0) (7,1) (7,0)

(3,0) (3,0) (3,1) (1,0) (1,1) (7,0) (7,1) (5,0) (5,1)

(3,1) (3,1) (3,0) (7,1) (7,0) (1,1) (1,0) (5,1) (5,0)

(5,0) (5,0) (5,1) (7,0) (7,1) (1,0) (1,1) (3,0) (3,1)

(5,1) (5,1) (5,0) (1,1) (1,0) (7,1) (7,0) (3,1) (3,0)

(7,0) (7,0) (7,1) (5,0) (5,1) (3,0) (3,1) (1,0) (1,1)

(7,1) (7,1) (7,0) (3,1) (3,0) (5,1) (5,0) (1,1) (1,0)

9) A nontrivial homomorphism from Z4 to Aut(Z3) ≈ Z2 must send 1 and 3
to the 2-cycle (1 2). There will only be one element of order 2.
11) Since Aut(Z) ≈ Z2, we see that φ1(x) = −x. So (x, a)·(y, b) = (x+y, a+b)
when a is even, but (x, a) · (y, b) = (x− y, a+ b) when a is odd.
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13) ψσ((g1, g2, . . . gn) · (h1, h2, . . . hn)) = ψσ(g1 · h1, g2 · h2, . . . gn · hn) =
(gσ−1(1) · hσ−1(1), gσ−1(2) · hσ−1(2), . . . gσ−1(n) · hσ−1(n)) = ψσ(g1, g2, . . . gn) ·
ψσ(h1, h2, . . . hn). Since φσ−1 is an inverse function, we see it is an automor-
phism.
15) By Problems 13 and 14, ψ is a homomorphism from H to Aut(Gn). Thus,
the semi-direct product would have size |Gn| · |H | = |G|n · |H |.
17) A nontrivial homomorphism from Z∗

8 to Aut(Z∗
8 ) ≈ S3 must be two-to-

one, and send two of the elements to a 2-cycle. Proposition 6.7 shows that it
does not matter which 2-cycle, and since the non-identity elements of Z∗

8 are
essentially equivalent, there is isomorphically only one Z∗

8⋊Z
∗
8 ≈ Z2 ×D4.

19) Z3 Wr S2 ≈ Z3 × S3.
21) Z2 Wr S3 ≈ Z2 × S4.

Section 7.1
1) {1,−1}.
3) {e, b2}.
5) Yes, if x and y are in the center, then x · y = y · x.
7) Clearly if a ∈ Z(a) and b ∈ Z(b), then (a, b) will commute with all elements
in A×B. But if either a or b are not in the center, then there is an element
of A×B that would not commute with (a, b). Thus,

Z(A×B) = {(a, b) | a ∈ Z(a) and b ∈ Z(B)}.

9) Let H = {e, a}. Since H is normal, g · a · g−1 is in H for all g. But
g · a · g−1 6= e since a 6= e. So g · a · g−1 = a, so g · a = a · g.
11) For any g ∈ G, let b = φ−1(g). Then φ(z) · g = φ(z) · φ(b) = φ(z · b) =
φ(b · z) = φ(b) · φ(z) = g · φ(z).
13) Clearly φ(H) will have the same size as H, since φ is one-to-one. But
φ(H) must also be a subgroup of G. Since there is only one subgroup of size
|H |, we have φ(H) = H.
15) For a cyclic group of order n, for each d that divides n there is only
one subgroup of order d, which by Problem 13 is characteristic. For infinite
cyclic groups, which would be isomorphic to Z, there is only one non-trivial
automorphism, φ(x) = −x, and clearly φ(h) ∈ H for any subgroup.
17) Let φ(x) = g · x · g−1 be an inner automorphism of G. Since N is normal,
φ(n) ∈ N for all n ∈ N, so φ can be restricted to form an automorphism on
N. Then φ(h) ∈ H for all h ∈ H, since H is a characteristic subgroup of N.
Hence, H is a normal subgroup of G.
19) The non-trivial element in the center is φ(x) = x2. The group G/Z(G) ≈
S4.

Section 7.2
1) ND4({e}) = ND4({a2}) = D4, ND4({a}) = ND4({a3}) = {e, a, a2, a3},
ND4({b}) = ND4({a2 · b}) = {e, a2, b, a2 · b}, ND4({a · b}) = ND4({a3 · b}) =
{e, a2, a · b, a3 · b}.
3) ND4({e, a2}) = D4, ND4({e, b}) = ND4({e, a2 · b}) = {e, a2, b, a2 · b},
ND4({e, a · b}) = ND4({e, a3 · b}) = {e, a2, a · b, a3 · b}.
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5) No, since NG({e}) = G for all groups.
7) x ∈ NG({g}) ⇔ x · g = g · x⇔ x · g−1 = g−1 · x⇔ x ∈ NG({g−1}).
9) If z ∈ Z(G) and g ∈ S, then z · g · z−1 = g · z · z−1 = g ∈ S.
11) {e, a, a2, a3}.
13) {e, a2, b, a2 · b}.
15) {e, a2, b, a2 · b}.
17) {e, a, a2, a3, a4}.
19) D5.
21) ND6({e}) = ND6({a3}) = D6, ND6({a}) = ND6({a2}) = ND6({a4}) =
ND6({a5}) = {e, a, a2, a3, a4, a5}, ND6({b}) = ND6({a3 · b}) = {e, a3, b, a3 · b},
ND6({a·b}) = ND6({a4·b}) = {e, a·b, a3, a4·b}, ND6({a2·b}) = ND6({a5·b}) =
{e, a2 · b, a3, a5 · b}.

Section 7.3
1) {e}, {b2}, {b, b3}, {a, a · b2}, and {a · b, a · b3}.
3) {e}, {a, a · b, a · b2, a · b3, a · b4}, {b, b4}, and {b2, b3}.
5) {(1, 1)}, {(1, 3)}, {(7, 1)}, {(7, 3)}, {(3, 3), (5, 3)}, {(3, 1), (5, 1)},

{(1, 5), (7, 5)}, {(3, 5), (5, 5)}, {(1, 7), (7, 7)}, {(3, 7), (5, 7)}.
7) If g · x · g−1 = x−1 for some g, then g2 · x = x · g2, and since g has odd
order, (g2)k = g for some k. Thus, g · x = x · g, and so g · x · g−1 = x.
9) If N is a nontrivial normal subgroup, |N | ≥ 13, so |N | = 30, 20, or 15
(divisors of 60). |N | 6= 15, so |N | is even, hence classes of size 1 and 15 are in
N. Since |N | ≥ 28, |N | = 30, but there is no class of size 14.
11) |N | ≥ 57, so |N | = 252, 168, 126, 84, 72, or 63 (divisors of 504). |N | 6= 63,
so |N | is even, hence classes of size 1 and 63 are in N, making |N | ≥ 120.
Seven divides |N |, so all classes of order 72 are in N, making |N | ≥ 280.
13) |N | ≥ 85, so |N | = 546, 364, 273, 182, 156, or 91 (divisors of 1092). 13
divides |N |, hence both classes of size 84 are in N, making |N | ≥ 260. Seven
divides |N |, so all three classes of order 156 are in N, making |N | ≥ 728.
15) The next largest group would be A7, with 2520 elements. (Only 72 more
elements then L2(17).) The next largest group L2(19) has 3420 elements.
17) |N | ≥ 316, so |N | = 10080, 6720, 5040, 4032, 3360, 2880, 2520, 2240, 2016,
1680, 1440, 1344, 1260, 1120, 1008, 960, 840, 720, 672, 630, 576, 560, 504, 480,
448, 420, 360, 336, or 320 (divisors of 20160). |N | is even, so classes of size
1 and 315 are in N, making |N | ≥ 1576. |N | 6= 2240, so |N | is a multiple of
3, so the class of size 2240 is in N, making |N | ≥ 3816. Seven divides |N |, so
both classes of size 2880 are in N, making |N | ≥ 9576. Five divides |N |, so
both classes of size 4032 are in N, making |N | ≥ 16380. A8 has a conjugacy
class of size 112 (all 3-cycles).
19) 20160 elements, same as A8 and L3(4) from Problem 17. This group is in
fact isomorphic to A8.
21) Nontrivial normal subgroups are {1, 13016} and {1, 6212, 13016, 19853,
24132, 25315, 33108, 38807}.

Section 7.4
1) Not possible, for the identity will be in a conjugacy class of size 1.
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3) This is possible. In fact, it is the sizes of the conjugacy classes of D5.

5) Not possible, for the size of the group, 25, is the square of a prime, and so
by Corollary 7.3 the group would be abelian.

7) Applying Corollary 5.2 yields pn divides p ! |N |, but since p2 does not divide
p !, H = N.

9) Let K be any p-Sylow subgroup of size pn, and divide G into families,
where u and v are related if u = h · v · k for h ∈ H and k ∈ K. Then
|G| = pn ·m =

∑
pi · pn/|H ∩ (uj ·K · u−1

j )|, so |H ∩ (uj ·K · u−1
j )| = pi for

some j, meaning that H is completely contained in a p-Sylow subgroup.

11) There are either one or eight 7-Sylow subgroups. If not unique, there are
48 elements of order 7, leaving 8 elements for a unique 2-Sylow subgroup.

13) There is only one 3-Sylow subgroup H, and only one 11-Sylow subgroup
N, so both are normal, and G ≈ H ×N. Thus, G ≈ Z99 or Z3 × Z3 × Z11.

15) There is only one 17-Sylow subgroup N, 1 or 51 5-Sylow subgroups, and 1
or 85 3-Sylow subgroups. Either a 3-Sylow subgroup H or 5-Sylow subgroup
K is normal, so H ·K is a subgroup of order 15 ≈ Z15. Then G ≈ Z15×Z17 ≈
Z255, or G ≈ Z17⋊φZ15. But there is no nontrivial homomorphism between

Z15 and Z∗
17.

17) Factors of |G| are 1, p, p2, q, pq, p2q. There are either 1 or q p-Sylow
subgroups, and either 1, p, or p2 q-Sylow subgroups. If neither are unique,
q ≡ 1 (mod p), implying p < q, so p2 ≡ 1 (mod q). Then we have p2(q − 1)
elements of order q, leaving only p2 elements for a normal p-Sylow subgroup.

19) Only cases not covered by Problems 16 through 18 or Proposition 7.8
are 30, 36, 42, and 48. If G = 30, there aren’t enough elements for both 10
3-Sylow subgroups and 6 5-Sylow subgroups. If G = 36, there is a 3-Sylow
subgroup of order 9, and applying Corollary 5.2 gives a normal subgroup of
size 3 or 9. If G = 42, there is only one 7-Sylow subgroup. If G = 48, there
is a 2-Sylow subgroup of order 16, and applying Corollary 5.2 gives a normal
subgroup of size 8 or 16.

21) There must be one 7-Sylow subgroup N, which must be normal, and at
least one 3-Sylow subgroup H, and since N ·H must be the whole group, we
see that it is either the direct product, giving Z21, or a semi-direct product
Z7⋊φZ3. Since Aut(Z7) ≈ Z∗

7 ≈ Z6, we have two elements of order 3 that Z3

can map to. But these two choices are equivalent through an automorphism
of Z3. So there is only one possible semi-direct product Z7⋊Z3, which can be
defined by a7 = e, b3 = e, b · a = a2 · b.

Section 8.1

1) A1,1 = A1,2 = B1,1 = Z12, A2,1 = {0, 6}, A2,2 = B1,3 = {0}, B1,2 =
{0, 2, 4, 6, 8, 10}. The arrows show the isomorphisms Z12/Z12 ≈ Z12/Z12,
Z12/Z12 ≈ {0, 2, 4, 6, 8, 10}/{0, 2, 4, 6, 8, 10}, Z12/{0, 3, 6, 9} ≈ {0, 4, 8}/{0},
{0, 3, 6, 9}/{0, 6} ≈ Z12/{0, 2, 4, 6, 8, 10}, {0, 6}/{0} ≈ {0, 2, 4, 6, 8}/{0, 4, 8},
{0}/{0} ≈ {0}/{0}.
3) Z∗

24 ⊇ {1, 5, 7, 11} ⊇ {1, 5} ⊇ {1}.
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5) Z12 × Z18 ⊇ {0, 3, 6, 9} × Z18 ⊇ {0, 6} × Z18 ⊆ {0} × Z18 ⊇ {0} ×
{0, 3, 6, 9, 12, 15} ⊇ {0} × {0, 9} ⊇ {0} × {0}.
7) D4 ⊆ {e, b, b2, b3} ⊆ {e, b2} ⊆ {e}.
9) D6 ⊆ {e, b, b2, b3, b4, b5} ⊆ {e, b3} ⊆ {e}.
11) A4 and {(), (12)(34), (13)(24), (14)(23)} must be in the series, and then
we have three choices, {(), (12)(34)}, {(), (13)(24)}, or {(), (14)(23)} for the
next term in the series.
13) S5 and Z120.
15) Pick a cyclic group of prime order.
17) Since all of the Ai and Bj are normal subgroups of G, then Ai,j = (Ai−1∩
Bj)·Ai and Bj,i = (Bj−1∩Ai)·Bj are normal subgroups ofG using Problem 17
from §4.3.
19)M ⊇ {e, a, a2, a3, a4, b2, a·b2, a2 ·b2, a3 ·b2, a4 ·b2} ⊇ {e, a, a2, a3, a4} ⊇ {e}.

Section 8.2
1) Use induction on n. If G is abelian, it is obviously soluble. Otherwise, Z(G)
is nontrivial by Corollary 7.2, and so by induction both Z(G) and G/Z(G)
are soluble.
3) [z ·x ·z−1, z ·y ·z−1] = (z ·x ·z−1)−1 · (z ·y ·z−1)−1 · (z ·x ·z−1) · (z ·y ·z−1) =
z · x−1 · y−1 · x · y · z−1 = z · [x, y] · z−1.
5) Since G′ is a normal subgroup of G, either G′ = G or G′ = {e}. But
G′ 6= {e} since G is not abelian. Note that if G = A5 ×A5, then G

′ = G.
7) (S3)

′ = A3, (S3)
′′ = {( )}.

9) (D5)
′ = {e, b, b2, b3, b4}, (D5)

′′ = {e}.
11) G′ = {e, a, a2}, G′′ = {e}.
13) By Problem 12, G′ is a characteristic subgroup of G, and G′′ is a charac-
teristic subgroup of G′, and so on. By Problem 16 of §7.1, the characteristic
subgroup of a characteristic subgroup is characteristic, so all of G′, G′′, etc.
will be characteristic subgroups of G. Finally, by Problem 12 of §7.1, all of
the subgroups in the series will be normal subgroups of G.
15) If G = S4, then G1 = [S4, S4] = A4, but G2 = [S4, A4] = A4, so Gn will
never go to {e}.
17) If G = N0 ⊇ N1 ⊇ · · · ⊇ Nk = {e} is a chief series, then G′ ⊆ N1 by
lemma 8.3. Define G1 = G′, G2 = [G′, G1], G3 = [G′, G2], . . . , and suppose by
induction that Gi ⊆ Ni. We must show that [G′, Ni] ⊆ Ni+1, since this would
indicate that Gk = {e}. Since Ni/Ni+1 is cyclic, there is a generator nNi+1.
For x, y ∈ G, we have x·n·x−1Ni+1 = nqNi+1 for some q, and y ·n·y−1Ni+1 =
nrNi+1 for some r. Then y−1 ·x−1 · y ·x ·n−1 ·x−1 · y−1 ·x · y ·nNi+1 = Ni+1,
so [x−1 · y−1 · x · y, n] ∈ Ni+1. Thus, [G

′, Ni] ⊆ Ni+1.
19) Since A′ = A, the derived series never goes to {e}.

Section 8.3
1) D4 ⊇ {e, a, a2, a3} ⊆ {e}.
3) Z∗

15 ⊇ {1, 2, 4, 8} ⊇ {1}.
5) Z∗

26 ⊇ {1}. (Group is cyclic.)
7) Z2 × Z3 × Z4 ⊇ Z2 × Z3 × {0} ⊇ {e}.
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9) Z2×Z2×Z2×Z3×Z3 ⊇ Z2×Z2×{0}×Z3×{0} ⊇ Z2×{0}×{0}×{0}×{0} ⊇
{e}.
11) No. Z2 ×Z12 ≈ Z4 ×Z6, so one polycyclic series of length 2 has quotient
groups isomorphic to Z2 and Z12, while another polycyclic series has quotient
groups isomorphic to Z4 and Z6.
13) Z16, Z8 ×Z2, Z4 ×Z4, Z4 ×Z2 ×Z2, and Z2 ×Z2 ×Z2 ×Z2 are the only
groups that are abelian, and by the fundamental theorem of finite abelian
groups (6.2) these are all non-isomorphic. R2(Z2 ×D8) = 12, R2(D16) = 10,
R2(G) = 6 from section 6.4, and R2(D) = 2. R2(B) = R2(C) = 8, but B
has only 2 elements along the diagonal, whereas C has 3. Finally, R2(M) =
R2(Z2 × Q) = R2(Z4⋊Z4) = 4, but Z2 × Q has only 2 elements along the
diagonal, M has 4 elements along the diagonal, and Z4⋊Z4 has 3 elements
along the diagonal.
15) By Problem 22, G is abelian, hence solvable. But for G/N to be cyclic,
then G/N would be of order 2, and N would have the same properties. Thus,
a polycyclic series would not reach {e} in a finite number of steps.
17) If a = (1 2 3), b = (1 2)(3 4), and c = (1 3)(2 4), then a3 = b2 = c2 = e,
a−1 · b · a = c, a−1 · c · a = b · c, b−1 · c · b = c.
19) C ⊇ {1, F,G,H} ⊇ {1, F} ⊇ {1}; if a = I, b = G, and c = F , then
a4 = b2 = c2 = e, a−1 · b · a = c, a−1 · c · a = b, b−1 · c · b = c.

Section 8.4
1) (0, 1, 1, 0, 0, 1, P (2, 4, 3, 1, 5, 6)).
3) (1, 1, 1, 1, 1, 1, P (2, 5, 3, 6, 4, 1)).
5) (0, 1, 0, 1, 1, 1, (1 3 2 4)(5 6)).
7) (1, 1, 1, 1, 1, 1, (1 2 6 4)(3 5)).
9) 1 element of order 1, 391 of order 2, 64880 of order 3, 2520 of order 4,
2304 of order 5, 173840 of order 6, 1440 of order 8, 2304 of order 10, 201600
of order 12, 184320 of order 15, 115200 of order 24, and 184320 elements of
order 30.
11) Since each 5-Sylow subgroup contains 4 different elements of order 5, there
are 2304/4 = 576 5-Sylow subgroups.
13) Each 3-Sylow subgoup has 8 elements besides the identity, so there must
be at least 100 3-Sylow subgroups. The divisors of 11520 that are congruent
to 1 (mod 3) are 640, 256, and 160. But by Lemma 7.3 with H = G, the
number of 3-Sylow subgroups is a divisor of 2880. Thus, there are 160 3-Sylow
subgroups.
15) The size of group is 8! · (12!/2) · 37 · 211 = 432520023274489856000. The
only nontrivial element in the center flips all 12 edges. (Rotating all 8 corners
clockwise can’t be done, since 8 is not a multiple of 3.)
17) a−1 · b · a · b · a.
19) b−2 · a · b−1 · a−1 · b−1 · a2 · b · a−1 · b · a−1 · b−1

Section 9.1
1) (−x) · y = (−x) · y + [x · y + −(x · y)] = [(−x) · y + x · y] + −(x · y) =
[(−x) + x] · y +−(x · y) = 0 · y +−(x · y) = −(x · y).
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3) (−x) · (−y) = −((−x) · y) = −(−(x · y)) = x · y.
5) (x− y) · z = (x+ (−y)) · z = x · z + (−y) · z = x · z+−(y · z) = x · z − y · z.
7) Either (a · b) · x = 0 or x · (a · b) = 0 for some non-zero x. In the first case,
a · (b ·x) = 0, so either a is a zero divisor, or b ·x = 0, making b a zero divisor.
The second case is similar.

9) i · j = (−i) · (−j) = k, yet i · j = k = −k. What is true is that x1 · x2 =
x2 · x1.
11) |x1 · x2| =

√
x1 · x2 · x1 · x2 =

√
x1 · x2 · x2 · x1 =

√
x1 · x1 · x2 · x2 =√

x1 · x1
√·x2 · x2 = |x1||x2|.

13) (x+ i) · (x− i) = x2 + i · x− x · i+ 1 6= x2 + 1. (For example, if x = j.)

15) This set is not closed under multiplication. For example, 3
√
2 · 3

√
2 = 3

√
4.

17) Since G is an abelian group, we only need to check the associate law and
the two distributive laws. But these are both trivial, since both sides would
evaluate to 0.
19)
+ 0 a b c
0 0 a b c
a a c 0 b
b b 0 c a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 c c 0
b 0 c c 0
c 0 0 0 0

21)

u = x*y

v = y*z

u*z - x*v

0

Section 9.2

1) [[a, b], [a, b]].

3) [[b, a], [a, b]].

5) [[0, a], [a, a+ b]].

7) [[a, a], [a, a]].

9) [[a, b], [3 · a, 3 · b]].
11) b2 = c2 = a+ b+ c, b · a = c, c · b = a.

13) By induction in m: m(x + y) = (m − 1)(x + y) + (x + y) = (m − 1)x +
(m− 1)y + x+ y = mx+my.

15) By induction in m: (mn)x = ((m − 1)n + n)x = ((m − 1)n)x + nx =
(m− 1)(nx) + nx = m(nx).

17) Since the additive group is abelian, it can be written as Zn1 × Zn2 ×
· · · × Znr

. Then the r elements (1, 0, . . . 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) form
a basis.

19)
InitRing("a", "b", "c")
DefineRing([2, 2, 2],[[a, a, c] [b, b, a + b + c], [a, a, c]])
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21) Here is one way:
InitRing("a", "b")
DefineRing([2, 2],[[a, a],[b, b]])

Section 9.3
1) Both x ·a = x and x · b = x for all x in the ring, but there is no r for which
r · c = c, since r · c = 0.
3) (x+ y) · (x−1 − x−2 · y+ x−3 · y2) = e+ x−1 · y− x−1 · y − x−2 · y2 + x−2 ·
y2 + x−3 · y3 = e.
5) This is actually a field, with 6 as the unity.
7) Since (x+ y)2 = x2 +x · y+ y ·x+ y2 = x+ y, we have that x · y+ y ·x = 0.
By Problem 6, x · y = −x · y, and so x · y = y · x.
9) Obviously 0 and e satisfy a2 = a. If a 6= 0, then a−1 exists, and a =
a2 · a−1 = a · a−1 = e.
11) (x+ y)2 = x2 + x · y+ y · x+ y2 = x2 +2xy+ y2. (x+ y)3 = (x+ y)(x2 +
2xy+ y2) = x3+ y ·x2+2x2 ·y+2y ·x ·y+x ·y2+ y3 = x3+3x2y+3xy2+ y3.
13) e and g.
15) 2a+ b is the only irreducible element.
17) a, b, d, and f are prime.
19)
InitRing("a", "c")
T4 = DefineRing([2,2], [[a,c],[0,0]]

Section 10.1
1) Subring. (x1 − x2) + (y1 − y2)

√
5 and (x1x2 + 5y1y2) + (x1y2 + x2y1)

√
5

are in the set.
3) Not a subring, since not closed under subtraction.
5) Subring. (x12

y1 − x22
y1)/2(y1+y2) and (x1x2)/2

(y1+y2) are in the set.
7) Subring. (x1−x2)+(y1−y2) 3

√
2+(z1−z2) 3

√
4 and (x1x2+2y1z2+2y2z1)+

(x1y2 + x2y1 + 2z1z2)
3
√
2 + (x1z2 + y1y2 + z1x2)

3
√
4 are in the set.

9) Not a subring, since not closed under multiplication. (1+
√
2)(1−

√
2) = −1.

11) If a, b ∈ A, then a · y = b · y = 0, so (a − b) · y = 0 and (a · b) · y = 0, so
a− b and a · b are in A.
13) If a, b ∈ Z, and x ∈ R, then (a−b) ·x = a ·x−b ·x = x ·a−x ·b = x ·(a−b)
and (a · b) · x = a · (x · b) = x · (a · b), so a− b and a · b are in Z.
15) 2 and 3 are in 2Z ∪ 3Z, but 2 + 3 = 5 6∈ 2Z ∪ 3Z.
17) {0}, {0, a}, {0, b}, {0, c}, and the whole ring.
19) {0}, {0, a, 2a,−a}, {0, b}, {0, 2a}, {0, b, 2a, 2a + b}, {0, 2a + b}, {0, a +
b, 2a,−a+ b}, and the whole ring.

Section 10.2
1) If a ∈ X + Y and z ∈ R, then a = x+ y for some x ∈ X and y ∈ Y . Then
a · z = (x · z) + (y · z) ∈ X + Y . Likewise, z · a ∈ X + Y .
3) If a ∈ X · Y , and z ∈ R, then a = x1 · y1 + x2 · y2 + · · · + xn · yn, so
a · z = x1 · (y1 · z)+x2 · (y2 · z)+ · · ·xn · (yn · z) ∈ X ·Y. Likewise, z ·a ∈ X ·Y .
5) If a ∈ X · Y , then a = x1 · y1 + x2 · y2 + · · ·+ xn · yn ∈ X . Likewise, a ∈ Y ,
so a ∈ X ∩ Y .
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7) {0}, {0, a, 2a, 3a}, {0, 2a}, {0, b}, {0, 2a+ b, b, 2a}, and the whole ring.

9) {0}, {0, c}, {0, a, b, c}, {0, c, d, f}, and the whole ring.
11)

+ {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}
{0, 2a} {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}
{a, 3a} {a, 3a} {0, 2a} {a+ b, 3a+ b} {b, 2a+ b}

{b, 2a+ b} {b, 2a+ b} {a+ b, 3a+ b} {0, 2a} {a, 3a}
{a+ b, 3a+ b} {a+ b, 3a+ b} {b, 2a+ b} {a, 3a} {0, 2a}

· {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}
{0, 2a} {0, 2a} {0, 2a} {0, 2a} {0, 2a}
{a, 3a} {0, 2a} {a, 3a} {0, 2a} {a, 3a}

{b, 2a+ b} {0, 2a} {0, 2a} {b, 2a+ b} {b, 2a+ b}
{a+ b, 3a+ b} {0, 2a} {a, 3a} {b, 2a+ b} {a+ b, 3a+ b}

13) {0, d} and {0, f} are left ideals.
15)

+ A 1 +A 2 +A 3 +A 4 +A 5 +A
A A 1 +A 2 +A 3 +A 4 +A 5 +A

1 +A 1 +A 2 +A 3 +A 4 +A 5 +A A
2 +A 2 +A 3 +A 4 +A 5 +A A 1 +A
3 +A 3 +A 4 +A 5 +A A 1 +A 2 +A
4 +A 4 +A 5 +A A 1 +A 2 +A 3 +A
5 +A 5 +A A 1 +A 2 +A 3 +A 4 +A

· A 1 +A 2 +A 3 +A 4 +A 5 +A
A A A A A A A

1 +A A 1 +A 2 +A 3 +A 4 +A 5 +A
2 +A A 2 +A 4 +A A 2 +A 4 +A
3 +A A 3 +A A 3 +A A 3 +A
4 +A A 4 +A 2 +A A 4 +A 2 +A
5 +A A 5 +A 4 +A 3 +A 2 +A 1 +A

17) If a, b ∈ A, then a · y = b · y = 0, so (a − b) · y = 0, hence a − b ∈ A. If
z ∈ R, then (a · z) · y = z · (a · y) = 0, so A is an ideal.

19) Problem 14 of §10.1 shows it is a subring, so suppose a is nilpotient, so
that am = 0. If x ∈ R, (a · x)m = am · xm = 0, so a · x is nilpotient.

21) Nontrivial ideals: {0, b}, {0, 2a}, and {0, b, 2a, 2a+ b}.
Section 10.3

1) φ(x · y) = φ(x) · φ(y) = φ(y) · φ(x) = φ(y · x). Since φ is one-to-one,
x · y = y · x.
3) If x · y = 0 with non-zero x and y, then 0 = φ(0) = φ(x · y) = φ(x) · φ(y).
Since φ is one-to-one, φ(x) and φ(y) are non-zero.

5) {0, a, b, c} gives a copy of T4 inside of T8.

7) T op
4 has an element c for which c · x = 0 for all x, T4 has no such element.

9) {0, e, a, b, c, d, f, g} 7→ {0, e, d, f, c, a, b, g} or {0, e, f, d, c, b, a, g}.
11) No, 2Z has an element x for which x+ x = x2, 3Z has no such element.
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13) No, R has no element for which x2 + e = 0.
15) Z21, 3Z63, 7Z147, and 21Z441.
17) Z210, 2Z420, 3Z630, 5Z1050, 6Z1260, 7Z1470, 10Z2100, 14Z2940, 15Z3150,
21Z4410, 30Z6300, 35Z7350, 42Z8820 70Z14700 105Z22050 and 210Z44100.
19) {{0, 6a}, {a, 7a}, {2a, 8a}, {3a, 9a}, {4a, 10a}, {5a, 11a}} ↔
{0, b, 2b, 3b, 4b, 5b}.
21) 4 rings: Z6, 2Z12, 3Z18 and 6Z36.

Section 10.4
1) {0, 1, 2, 3, 4, 5} 7→ {0, 0, 0, 0, 0, 0}, {0, 1, 2, 3, 4, 5}, {0, 3, 0, 3, 0, 3}, or
{0, 4, 2, 0, 4, 2}.
3) 2 = φ(1 · 1) 6= φ(1) · φ(1) = 4.
5) No. 4 = φ(1 · 1) 6= φ(1) · φ(1) = 16.
7) Yes, since clearly φ(x + y) = (x + y) mod 5 = φ(x) + φ(y), and φ(x · y) =
(x · y) mod 5 = φ(x) · φ(y).
9) No. 0 = φ(0) = φ(1 + 1) 6= φ(1) + φ(1) = 2.
11) φ(x) + φ(y) = a+ c− (b+ d)i = φ(x+ y), φ(x) · φ(y) = (a− bi)(c− di) =
ac− bd− (bc+ ad)i = φ(x · y).
13) If xn = 0, then φ(xn) = φ(0) = 0, so φ(x) is nilpotent.
15) The homomorphism φ : R 7→ R/I, given by φ(x) = x + I, restricted to
the ideal K, produces φ′ : K 7→ (K + I)/I. The kernel of φ′ is K ∩ I, and so
by the first isomorphism theorem for rings (10.2), K/(K ∩ I) ≈ (K + I)/I.
17) The kernel cannot be {0, c}, otherwise the image of 4 elements would have
a unity. So the two possible kernels are {0, a, b, c} and {0, c, d, f}. The image
would be isomorphic to Z2, so it is either {0, a} or {0, b}. So
{0, e, a, b, c, d, f, g} 7→ {0, a, 0, 0, 0, a, a, a}, {0, b, 0, 0, 0, b, b, b},
{0, a, a, a, 0, 0, 0, a}, or {0, b, b, b, 0, 0, 0, b}.
19)

I3 = Ideal(R, b)

Q = Coset(R, I3)

i = RingHomo(R, Q)

HomoDef(i, a, a + I3)

HomoDef(i, b, I3)

FinishHomo(i)

’Homomorphism defined’

Section 11.1
1) b.
3) 2ax2 + ax+ b.
5) 2ax3 + 2ax2 + bx.
7) 4.
9) Since the additive group is of order n, nx = 0 for all x. But m · 1 6= 0 for
all m < n.
11) (−x)2 = −x, but also (−x)2 = x2 = x. So −x = x for all x, hence 2x = 0.
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13) D would have no zero divisors, so we can use Proposition 11.2, and the
characteristic is a prime number p. Then the additive order of all non-zero
elements is p.
15)
+ 0 e a b
0 0 e a b
e e 0 b a
a a b 0 e
b b a e 0

· 0 e a b
0 0 0 0 0
e 0 e a b
a 0 a b e
b 0 b e a

17) (x+ y)4 = ((x + y)2)2 = (x2 + y2)2 = (x2)2 + (y2)2 = x4 + y4.
19) For the ring of Example 10.6, x = a, y = b.
21) x2 + 1, x2 + x+ 2, x2 + 2x+ 2, 2x2 + 2, 2x2 + x+ 1, 2x2 + 2x+ 1.

23) x3 + x+ 1, x3 + x2 + 1.
25) (i+2)(i+3) = 0 in this ring, so it is not a field. Primes that are one more
than a multiple of 4 will fail to form a field, but primes that are one less than
a multiple of 4 will form a field.

Section 11.2
1)
(−a
b

)
+
(
a
b

)
=
(−a·b+a·b

b2

)
=
(

0
b2

)
=
(
0
z

)
.

3)
(
u
v

)
·
((

x
y

)

·
(
z
w

))

=
(
u
v

)
·
(
xz
yw

)

=
(
uxz
vyw

)

=
(
ux
vy

)

·
(
z
w

)
=
((

u
v

)
·
(
x
y

))

·
(
z
w

)
.

5) Isomorphism given by 0 7→ {(0, 1), (0, 2), (0, 3), (0, 4},
1 7→ {(1, 1), (2, 2), (3, 3), (4, 4)}, 2 7→ {(2, 1), (4, 2), (1, 3), (3, 4)},
3 7→ {(3, 1), (1, 2), (4, 3), (2, 4)}, 4 7→ {(4, 1), (3, 2), (2, 3), (1, 4)}.
7) Every rational number p/q can be put in the form (2p)/(2q), so there is a
natural mapping from Q to the quotient field.

9) ((1 + i)x+ i+2)((1 + 2i)x+ i) = (x+1+ 2i)(2x+2i) = 2x2 +2x+2+ 2i.
11) (x3 + x2 + 1)/(x4 + x).

13) x2/(x3 + 1).
15) (x3 + x2)/(x2 + x+ 1).
17) (x3 + x2)/(x4 + x2 + 1).

19) The square of every element is the same as replacing every x with x2.
Reason: because of Problem 16 of §11.1, φ(x) = x2 is a ring homomorphism.

21) Cross multiplying, (3x+3a)(2x) = ((a+1)x)((1−a)x+5+a) = 6x2+6ax.

Section 11.3

1)

ei = 1 +
i

1!
+

−1

2!
+

−i
3!

+
1

4!
+

i

5!
+ · · ·

=

(

1− 1

2!
+

1

4!
− · · ·

)

+ i

(
1

1!
− 1

3!
+

1

5!
− · · ·

)

= cos 1 + i sin 1.

3)

1 +
i

n
=

√

1 +
1

n2

(
cos(tan−1(1/n)) + i sin(tan−1(1/n))

)
,
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so

(

1 +
i

n

)n

=

(

1 +
1

n2

)n/2
(
cos(n tan−1(1/n)) + i sin(n tan−1(1/n))

)
.

But

lim
n→∞

(

1 +
1

n2

)n/2

= 1 and lim
n→∞

n tan−1(1/n) = 1

by L’Hôpital’s rule.
5) ln 2− π/6 + 2kπi, where k ∈ Z.
7)

√
2/2± i

√
2/2, −

√
2/2± i

√
2/2.

9) −2i, ±
√
3 + i.

11) . . . , e−7π/4, e−3π/4, eπ/4, e5π/4, e9π/4, . . . .
13) (1)i ln 2/(2π).
15) From DeMoivre’s theorem, all solutions zn = 1 are of the form z =
cos(2kπ/n) + i sin(2kπ/n) = (cos(2π/n) + i sin(2π/n))k. Thus, ωn generates
the group. A generator of this group would be ωkn, where k is coprime to n,
hence a primitive n-th root of unity.
17) False: (22)1/2 = 41/2 = ±2, yet 2(2·1/2) = 21 = 2.
19)

H = [I, 1/2 + I*sqrt(3)/2, I/2 + sqrt(3)/2,

1, -I/2 + sqrt(3)/2, 1/2 - I*sqrt(3)/2,

-I, -1/2 - I*sqrt(3)/2, -I/2 - sqrt(3)/2,

-1, I/2 - sqrt(3)/2, -1/2 + I*sqrt(3)/2]

CircleGraph(H, Mult(sqrt(3) + I/2))

Section 11.4
1) Since x2 ≥ 0 and e > 0, then x2 + e > 0.
3) Since x < y, y − x > 0, and x+ y > 0, so y2 − x2 = (y − x) · (x + y) > 0.
5) Note that a−1 > 0, since a · a−1 = e > 0. If a−1 < b−1, then by Problem 4
we have e < e, a contradiction. Since a−1 6= b−1, a−1 > b−1.
7) Since (x + y)2 ≥ 0, x2 + 2xy + y2 ≥ 0, so x2 + y2 ≥ −2xy.
9) If φ(f(x)) = f(−x), then φ(f(x) + g(x)) = f(−x) + g(−x) = φ(f(x)) +
φ(g(x)), and φ(f(x) ·g(x)) = f(−x) ·g(−x) = φ(f(x) ·φ(g(x)). Clearly, this is
one-to-one and onto, since φ−1 = φ. Hence P ′ = φ(P ) gives another ordering
of Z[x]. The positive elements would be polynomials of even degree with a
positive leading coefficient, and polynomials of odd degree with a negative
leading coefficient.
11) It is clear that addition forms an abelian group under addition, since the
derivatives only act as a place holder. A linear operator of a linear operator
is linear, so multiplication is closed. Since linear differential operators are
functions from Z[x] to Z[x], multiplication is associative. The property of
linear operators is that T (y1 + y2) = T (y1) + T (y2), so the distributive law
holds.
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13) By the product rule, (pn(x)y
(n)(x))′ = p′n(x)y

(n)(x)+pn(x)y
(n+1)(x). By

keeping only the highest derivative of y, we see that the coefficient polynomial
is unaffected. By induction this is true for higher derivatives as well, so
φ(T · S) = φ(T ) · φ(S).
15) If a3 + 2b3 + 4c4 − 6abc = 0, we can assume a, b and c are integers with
no prime factors in common. Then a3 is even, so we can replace a = 2x, and
find that b is even. Replacing b = 2y shows c is even, a contradiction.
17) Since f is an automorphism, f(y) = f(x · f(x) · f(f(x))) = f(x) · f(f(x)) ·
f(f(f(x))) = f(x) · f(f(x)) · x = y. Since f sends y to itself, y must be
rational.
19)

InitDomain(0)

FieldHomo(F)

HomoDef(F, sqrt(5), - sqrt(5))

CheckHomo(F)

True

Section 12.1
1) q(x) = x+ 2, r(x) = −4x+ 2.
3) q(x) = x2 + x, r(x) = 0.
5) q(x) = x2 + 2x+ 1, r(x) = 2x+ 2.
7) f(x) = 3x2 − 2x+ 1.
9) If x2 + 5 has a root a in R, then a2 + 5 = 0. But a2 ≥ 0, so a2 + 5 ≥ 5.
Finally, apply Proposition 12.3.
11) Irreducible.
13) Since f(x) and g(x) are coprime in F [x], by Theorem 12.2 there are s(x)
and t(x) in F [x] such that f(x) · s(x) + g(x) · t(x) = 1. Then s(x) and t(x)
are in the larger ring K[x], hence f(x) and g(x) are coprime in K[x], too.
15) x2 − 2x+ 5.
17) x+ 3.
19) 1.
21) f(x) = 11x3/6− 19x2/2 + 50x/3− 8, f(5) = 67.

Section 12.2
1) If x = p/q is a root in lowest terms, p3− 3pq2+3q3 = 0, so q = 3r for some
r. Then 9r3 − 3rq2 + q3 = 0, so q is a multiple of 3, a contradiction.
3) (x+ 4)(x2 + 3x+ 3).
5) (x+ 1)(x+ 4)(x2 + 3).
7) (x2 + x+ 1)(x3 + x2 + 1).
9) 2 and 10 are irreducible.
11) {1, 3, 5, 7} are units, and all other elements are multiples of 2. This forces
2 to be irreducible, with 2 and 6 associates. The only factorizations of 4 are
2 · 2, 2 · 6, 6 · 2, 6 · 6, all equivalent to 2 · 2.
13) If f(x) = g(x) ·h(x), then f(x) mod p = (g(x) mod p) · (h(x) mod p). Since
p does not divide the leading coefficient, g(x) mod p and h(x) mod p will have
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the same degree as g(x) and h(x). But we know that f(x) mod p is irreducible,
so we have a contradiction.
15) If f(x) = g(x) · h(x) in Q[x], let a be the common denominator of g(x),
and b be the common denominator of h(x), so that ag(x) = G(x) and bh(x) =
H(x) are in Z[x]. Then abf(x) = G(x) ·H(x), and by Gauss’ Lemma, each
prime factor of ab divides either G(x) or H(x), so we can eliminate prime
factors of ab one at a time, to produce a factorization of f(x) in Z[x].
17) f(0) = 41, f(±1) = 43, f(±2) = 61, f(±3) = 131, f(±4) = 313. This
gives 9 values for which f(a) is prime.
19) In order for f(x) to be a unit, it must be a constant, but since fractional
constants are not allowed, the only units are ±1. Likewise, for 2 to factor,
one of the factors would be ±1, so 2 is irreducible. But x factors as 2 · x/2 =
2 · 2 · x/4 = · · · so 2 is a factor of x an unlimited number of times.
21) 7, 13, 19, and 37 are prime in Z[ 3

√
2]. Since random elements have a

factorization, this ring is apparently a UFD.

Section 12.3
1) 〈{2, 1 +

√
−5}〉 = {a + b

√
−5 | (a + b) mod 2 = 0}, so this is not all of

Z[
√
−5]. If 〈{2, 1 +

√
−5}〉 = 〈c〉 for some c, then c can’t be a unit, but both

2 and 1 +
√
−5 must be multiples of c. This is impossible, since both 2 and

1 +
√
−5 are irreducible.

3) 2, 3, 9, and 10 are prime.
5) 2, 3, 4, 8, 10, 14, 15, 16 are prime.
7) A prime ideal P is 〈p〉 for some prime p. If there were an ideal B containing
P , and b ∈ B but b /∈ P , then 〈{p, b}〉 would be in B. But gcd(p, b) = 1, so
〈{p, b}〉 would be all of Z.
9) Let B be an ideal that properly contains I, and let b ∈ B, b /∈ I. Since
R/I is a field, b+ I has an inverse c+ I, and bc+ I = e+ I, so e− bc ∈ I ∈ B.
Since bc ∈ B, this means e ∈ B, hence B = R.
11) The quotient ring Z[x]/I would have only 2 elements, I, and 1+ I. Thus,
the quotient ring is isomorphic to Z2, which is a field.
13) If I is a prime ideal, by Proposition 12.7, R/I has no zero divisors. But
R/I will be finite, so R/I will be a field. Then by Problem 9, I is a maximal
ideal.
15) Z6 has 2 non-trivial ideals, 〈2〉 and 〈3〉, so both are maximal.
17) Let x ∈ P , and y ∈ R. Since P is not all of I, there is a z ∈ I with z 6∈ P .
Then x · (y · z) ∈ P , since y · z ∈ I. So (x · y) · z ∈ P , forcing x · y ∈ P since
z 6∈ P . Hence, P is an ideal of R.
19)

InitDomain(11)

AddFieldVar("a")

Define(a^2, 6)

R = Ring(a)

Since Z[
√
6]/〈11〉 is a field, 〈11〉 is a prime ideal, hence 11 is prime.
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Section 12.4

1) By letting µ(x) be the smallest n for which x ∈ Sn, then µ(x) ≥ 0 for
all x. If µ(x · y) = n, then 〈x · y〉 + Sn−1 = R, so 〈x〉 + Sn−1 = R, hence
µ(x) ≤ n = µ(x · y). If y is a unit, pick q = x · y−1 and r = 0. Otherwise,
let n = µ(y), so that x ∈ 〈y〉 + Sn−1, that is, there is an r ∈ Sn−1 for which
x = y · q + r. Then µ(r) < n = µ(y), so µ is a Euclidean valuation on R.

Now suppose R is a Euclidean domain with a valuation µ(x), and we want
to show that Sn contains all nonzero elements for which µ(x) ≤ n. Clearly if
µ(y) = 0, then y is a unit, so y ∈ S0. Suppose that it is true for all smaller
values of n. If µ(y) = n, then every x can be written as y ·q+r, with µ(r) < n,
so r ∈ Sn−1. Thus R = 〈y〉+ Sn−1, so y ∈ Sn. Since Sn contains all nonzero
elements for which µ(x) ≤ n, then every element of R is in some Sn.

3) µ(u) = µ(u · 1) ≥ µ(1). But if u is a unit, µ(1) = µ(u · u−1) ≥ µ(u), too.

5) 10 = 2 · 5 = (2 +
√
−6) · (2 −

√
−6). Note that 2 is irreducible, since

N(2) = 4, but N(x) 6= 2 for any x. Yet neither 2±
√
−6 are multiples of 2.

7) (2n)2 = 4n2, and (2n + 1)2 = 4n2 + 4n + 1, so a square is either 0 or 1
(mod 4). So the sum of two squares cannot be 3 (mod 4).

9) Since a2 + b2 = (a+ bi) · (a− bi), which are both prime by Problem 8, this
is the prime factorization of p.

11) Let q = (1 −
√
4n+ 1)/2, and x+ yq = x + yq. If x2 + xy − ny2 = 0

for integers x and y 6= 0, then x/y = (−1 ±
√
1 + 4n)/2, which is irrational.

Thus y = 0, and this forces x = 0. N((x1 + y1q)(x2 + y2q)) = (x1 + y1q)(x2 +
y2q)(x1 + y1q)(x2 + y2q) = (x1+y1q)(x1+y1q)(x2+y2q)(x2+y2q) = N(x1+
y1q) ·N(x2 + y1q).

13) Let t = x · y−1 = u + vq ∈ Q(
√
−3), and round u and v to the nearest

integers i and j. If p = i+ jq, then N(p− t) = a2+ ab+ b2, where a and b are
both less than 1/2, so N(p− t) ≤ 3/4. Hence µ(r) = |N(r)| = |N(p ·y−x)| =
|N(p− t) ·N(y)| < |N(y)| = µ(y).

15) x + yq is a unit if and only if x2 + xy + 5y2 = 1. If y 6= 0, then the left
side is at least 5, while y = 0 gives x2 = 1.

17) By Problem 15, the only units are ±1, so S0 = {−1, 0, 1}. If m ∈ S1 but
m 6∈ S0, then 2 ∈ 〈m〉+S0, so either 1, 2, or 3 is in 〈m〉. By Problem 16 both
2 and 3 are prime, so m would have to be ±2 or ±3. But then (1+

√
−19)/2 6∈

〈m〉+ S0, so Si = S0 for all i.

19) We can pick x by Problem 18, so that z−x is in the rectangle, hence is in
one of the 5 circles in the diagram below. If z − x is within one unit of 0, q,
or −q, we can let y = x, x+ q or x− q respectively, and |z − y| < 1. If z − x
is within a half unit of q/2 or −q/2, then letting y = 2x+ q or 2x− q makes
|2z − y| < 1. This argument extends to Z[(1 +

√
−43)/2], Z[(1 +

√
−67)/2],
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and Z[(1 +
√
−163)/2], except that one must include more circles of radius

1/3, 1/4, etc. to completely cover the rectangle, so that either |z−y|, |2z−y|,
|3z − y|, |4z − y|, |5z − y|, |6z − y|, or |7z − y| is less than 1.

21) From Problem 20, we can find y such that 2x = my. Since 2 is prime
in R, either m or y is even. But if y is a multiple of 2, then x is a multiple
of m, and we are assuming x 6∈ 〈m〉. Hence, m is a multiple of 2, and y
is not, so x = (m/2) · y. This result can be extended to Z[(1 +

√
−43)/2],

Z[(1 +
√
−67)/2], and Z[(1 +

√
−163)/2], except that one must also use that

3 is prime, and prove that either m is a multiple of 2 or a multiple of 3. In
the last ring, one even has to include the primes 5 and 7.

23) 3, 7, 11, 19, 23, and 31 are prime in Z[i]. In general, primes for which
p ≡ 3 (mod 4).

Section 13.1

1) 4w. 3) 3. 5) w + 1. 7) 4w + 1. 9) 3w + 2.

11) Each element can be written as ay2+by+c, where y is the root of x3+x+1
in the extension field. To save space, every such element is written as abc.

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

· 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011
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13) The simplest irreducible polynomial of degree 4 in Z2[x] is x4 + x +
1, which also happens to be the Conway polynomial. Every element of
Z2[x]/〈x4 + x+ 1〉 is of the form ay3 + by2 + cy + d, where y is the root
of x4+x+1 in the extension field. To save space, denote each element by the
integer obtained by replacing y with 2, for example y3 + y + 1 is denoted by
11.
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 9 8 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
5 0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6
6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11
8 0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
12 0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
13 0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5
15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

15) By Proposition 13.1, R[x]/〈x2 + 1〉 is a field with a root to the equation
x2 = −1. Thus, there is an isomorphism sending R[x]/〈x2 + 1〉 to C, which
sends this root to i.

17) For a given a, there are at most two solutions to x2 = a, and when a = 0
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there is only one solution. Hence, more than half of the elements are squares.
For a fixed k, the sets {x2 | x ∈ F} and {k − y2 | y ∈ F} both contain
more than half the elements, so there must be an element in the intersection,
yielding a solution to x2 + y2 = k.
19) {0, 1, y5+ y4 + y3 + y, y5 + y4 + y3 + y+1} is a subfield of order 4, where
y is the root of x6 + x+ 1 in the field extension. {0, 1, y3 + y2 + y, y3 + y2 +
y+1, y4 + y2 + y, y4 + y2 + y+1, y4 + y3, y4 + y3 +1} is a subfield of order 8.

Section 13.2
1) The generators are 1 + i, 1 + 2i, 2 + i, 2 + 2i.
3) {5, 7, 10, 11, 14, 15, 17, 19, 20, 21}.
5) {2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35}.
7) The Frobenius automorphism f : x → xp must send a generator to a
generator.
9) We can let x be the solution given from Problem 8. Then (x+ i)(x− i) =
x2+1 would be a multiple of p, and clearly neither x+ i nor x− i is a multiple
of p. Therefore, p is not prime in Z[i].
11) All subfields contain the multiplicative identity, and this element generates
a subfield of order p. So this subfield is in all of the subfields of F , and since
it is one of the subfields, there are no other elements in the intersection.
13) The subfields would have to have order pn for some prime p. Consider
the polynomial x(p

n) − x. There are at most pn roots, but all elements from
both subfields would be roots.
15) If n is a multiple of d, then by Corollary 13.5, pn − 1 is a multiple of

pd − 1, and so x(p
n−1) − 1 is divisible by x(p

d−1) − 1, and so x(p
n) − x is

divisible by x(p
d) − x in Z[x]. Since x(p

n) − x factors completely in F with

no double roots, so does x(p
d) − x, and these pd elements will form a subfield

since these elements are fixed by the automorphism x → xp
d

. Problem 13
gives uniqueness.
17) A field of order pn can be described by Zp[x]/〈f(x)〉, where f(x) is an
irreducible polynomial in Zp[x] of degree n. An automorphism would be
determined by where it sends one of the roots of f(x), and there are n possible
roots. Thus, there are at most n automorphisms, and we found n Frobenius
automorphisms.
19) 2 ∈ Z∗

p , and 2n = −1 in Zp, and 22n = 1. So the order of the element 2 is
2n. Since Z∗

p has order p− 1 = 2n, by Lagrange’s theorem 2n divides 2n, so
n is a power of 2.
21) x32 − x = x(x + 1)(x5 + x2 + 1)(x5 + x3 + 1)(x5 + x3 + x2 + x+ 1)(x5 +
x4 + x2 + x + 1)(x5 + x4 + x3 + x + 1)(x5 + x4 + x3 + x2 + 1), giving the 6
irreducible polynomials of degree 5.

Section 13.3
1) x2 − x+ 1.
3) x4 − x3 + x2 − x+ 1.
5) ωn is a root of xn − 1 = (x − 1) · (1 + x + x2 + x3 + · · ·xn−1), so ωn is a
root of the latter factor, which produces the sum of the nth roots of unity.
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7) GF(1024).

9) Φ1(x) = x − 1 and Φ2(x) = x + 1, so assume that it is true for previous
n. Plugging in x = 0 into Proposition 13.7 gives 0n − 1 = −1 · 1 · · ·Φn(0), so
Φn(0) = 1.

11) If ωkn is a root of φn(−x), then −ωkn has order n. Since n is odd, this
means that ωkn has order 2n, so it is a root of Φ2n(x). Since every root of
Φn(−x) is a root of Φ2n(x), we only need to show that these polynomials have
the same degree, which is easy since φ(2n) = φ(n).

13) Since Φ3(x) = x2 + x+ 1, Φ54(x) = x18 − x9 + 1.

15) Let f(x) be an irreducible polynomial of degree n over Zp, and let r be
a root of f(x) in GF (pn). If rm = 1 for some m < pn − 1, then f(x) cannot
be a factor of Φ(pn−1)(x), lest r be a double root of x(p

n−1) − 1, and then it
would contradict Lemma 13.5. However, if rm 6= 1 for any m < pn − 1, then
f(x) is a factor of x(p

n−1) − 1, yet not a factor of any xm − 1 for m < pn − 1,
so f(x) must be a factor of Φ(pn−1)(x).

17) Φ15(x) = (x4 + x+ 1)(x4 + x3 + 1). But Φ5(x) = x4 + x3 + x2 + x+ 1 is
also irreducible.

19) Φ8(x) = (x2 + x+ 2)(x2 + 2x+ 2). But x2 + 1 is also irreducible.

Section 13.4

1) If there were a p that did not have such values of a, b, c, d, then in the ring
of integer quaternions modulo p, every non-zero element a+bi+cj+dk would
have an inverse, (a− bi− cj − dk)/(a2 + b2 + c2 + d2). But this would make
the ring a finite skew field, which is impossible.

3) Pick x1 = a1 + a2i+ a3j + a4k and x2 = b1 + b2i+ b3j + b4k. The identity
follows from expanding out |x1|2|x2|2 = |x1x2|2.
5) If x = a1 + a2i+ a3j + a4k, pick b1 so that b1 ≡ a1(mod m) and −m/2 <
b1 < m/2. Likewise pick b2, b3, and b4. Then y = b1 + b2i + b3j + b4k will
differ from x by a multiple of m, and |y|2 < 4(m/2)2 = m2.

7) Since 1 = 02+02+02+12, the theorem is true for n = 1. Problem 3 shows
the set of integers for which the theorem is true is closed under multiplication,
and Problem 6 proves the theorem for prime numbers. Since all integers > 1
can be factored into a product of primes, the theorem is true for all positive
integers.

9) If x is an integer quaternion, then clearly N(x) will be a non-negative
integer. Also, if x = [(2a + 1) + (2b + 1)i + (2c + 1)j + (2d + 1)k]/2, then
|x|2 = a2 + a+ b2 + b+ c2 + c+ d2 + d+ 1.

11) Clearly N(1) = 1. If u is a unit, then there is an inverse u−1, so N(u ·
u−1) = 1, so N(u) must be 1. If N(u) = 1, then there are q and r such that
1 = uq + r, with N(r) < N(u) = 1, which forces r = 0, so u is a unit. There
are 24 units: ±1, ±i, ±j, ±k, and (±1± i ± j ± k)/2, where in the last case
each ± is independent.

13) Since p = a2 + b2 + c2 + d2, p = (a + bi + cj + dk) · (a − bi − cj − dk).
Note that both factors have N(x) = p, so by Problem 12 both factors are
irreducible.
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15) Given a right ideal I, pick an element with the smallest positive norm, y.
For any other element x, x = y · q + r for some q and r, with N(r) < N(y).
But r = x − y · q would be in the right ideal, so r = 0. Then x ∈ y · R, so
I ⊆ y · R ⊆ I. Thus, I = y · R.
17) For w to be in the center, c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = 0, so
we get a field isomorphic to Q.
19) The center is {1,−1}, and the group U/{1,−1} ≈ A4.

Section 14.1
1) {1,

√
2}.

3) {1,
√
2,
√
3,
√
6}.

5) {1, 3
√
2, 3

√
4}.

7) Since ω8 satisfies a polynomial equation of degree 4, Q(ω8) is a 4-dimension-
al extension of Q. Hence, {1, ω8, ω

2
8 = i, ω3

8} is a basis.
9) {1, 3

√
2, 3

√
4, ω3, ω3

3
√
2, ω3

3
√
4}.

11) If the set is linearly independent, it is a basis. Otherwise, one vector will
be a linear combination of the others, so we can delete that vector. Repeat
the process until we have a linearly independent set.
13) If M = R, then M is an abelian group under addition, and r ·m ∈ M ,
since m ∈ R. The distributive and associate laws come from the ring R.
15) If N is an R-submodule, then N is a subgroup of R under addition, and
rn ∈ N whenever r ∈ R and n ∈ N. Since N ⊆ R, we see that N is closed
under multiplication, so N is a subring, and hence a left ideal of R, Clearly a
left ideal of R would be an R-submodule.
17) Since (a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2) ∈ A+B, we see A+B
is a subgroup under addition. Also, r(a + b) = r · a+ r · b ∈ A+B whenever
r ∈ R, so A+B is an R-submodule.
19) Given two countable sets A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .},
we can show A×B is countable by forming a list containing every (ai, bj) in
increasing order of i+ j:

{(a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), (a3, b1), (a1, b4), · · ·}.

To show that an n-dimensional vector space V of Q is countable, assume by
induction that an (n− 1)-dimensional vector space U is. There is the obvious
one-to-one correspondence between V and U ×Q.
21) 〈2, 1, 2〉.

Section 14.2
1) x2 − 5.
3) x4 − 10x2 + 1.
5) x4 + 2x2 − 1.
7) x8 − 4x6 + 6x4 − 4x2 − 2.
9)

√
2 +

√
3, −

√
2−

√
3, −

√
2 +

√
3,

√
2−

√
3.

11)
√√

2− 1, −
√√

2− 1,
√

−
√
2− 1, −

√

−
√
2− 1.

13) Eight roots: ±
√

1 + 4
√
3, ±

√

1− 4
√
3, ±

√

1 + i 4
√
3, ±

√

1− i 4
√
3.
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15) Q(a) is a subfield of a 5-dimensional extension of Q(
√
2,
√
3,
√
5,
√
7),

which is at most a 16-dimensional extension of Q.
17) Q(

√
2) contains a root to the polynomial x2−2, whereas Q(

√
3) does not.

19) 1/(5 +
√
−3) = 5/28−

√
−3/28.

Section 14.3
1) 10

√
2, or

√
2 + 5

√
2.

3)
√
2 +

√
3 +

√
5.

5) Since Q( 3
√
2, ω3) = Q( 3

√
2, ω3

3
√
2), we have already seen that this can be

expressed as Q( 3
√
2 + 2ω3

3
√
2).

7) (a+2b)3 = a3+6a2b+12ab2+8b3 = 18+6a2b+12a(−ab−a2) = −6−6a2b.
(a+2b)6 = (−6−6a2b)2 = 36(a4b2+2a2b+1) = 36(2a(−ab−a2)+2a2b+1) =
36(−4 + 1) = −108.
9) x3 + x − 1 = (x − a)(x2 + ax + (a2 + 1)). Using quadratic equation on
second factor produces

√
−3a2 − 4, so other 2 roots are complex. Thus, Q(a)

is not the splitting field, hence a 2-dimensional extension of the 3-dimensional
extension is needed.
11) Both quadratics factor in Q(

√
−3).

13) This happens to be Φ12(x), so the splitting field is Q(ω12) = Q((
√
3+i)/2).

15) The splitting field of f(x) is a simple extension Q(w), and the splitting
field of g(x) is a simple extension Q(y). Then f(x) · g(x) splits in Q(w, y),
which has dimension at most n ·m.
17) Splitting field = Q(a), where a3 = −a2+4a− 1; 3-dimensional extension.
19) Splitting field = Q(a, b), where a5 = 2 and b4 = −ab3 − a2b2 − a3b − a4;
20-dimensional extension.

Section 15.1
1)
· φ0 φ1 φ2 φ3
φ0 φ0 φ1 φ2 φ3
φ1 φ1 φ0 φ3 φ2
φ2 φ2 φ3 φ0 φ1
φ3 φ3 φ2 φ1 φ0

3) Besides the identity automorphism, there is the automorphism sending
6
√
2 7→ − 6

√
2.

5) φ0(x) = x for all x; φ1 fixes ± 4
√
2, i 4

√
2 ↔ −i 4

√
2; φ2 fixes ±i 4

√
2, 4

√
2 ↔

− 4
√
2; φ3:

4
√
2 ↔ − 4

√
2, i 4

√
2 ↔ −i 4

√
2; φ4:

4
√
2 → i 4

√
2 → − 4

√
2 → −i 4

√
2 →

4
√
2; φ5:

4
√
2 → −i 4

√
2 → − 4

√
2 → i 4

√
2 → 4

√
2; φ6:

4
√
2 ↔ i 4

√
2, − 4

√
2 ↔ −i 4

√
2;

φ7:
4
√
2 ↔ −i 4

√
2, − 4

√
2 ↔ i 4

√
2.

7) φ0(x) = x for all x; φ1 fixes 3
√
3, r2 ↔ r3; φ2 fixes r2,

3
√
3 ↔ r3; φ3 fixes r3,

3
√
3 ↔ r2; φ4:

3
√
3 → r2 → r3 → 3

√
3; φ5:

3
√
3 → r3 → r2 → 3

√
3.

9) φ(1) = 1, since 1 is the multiplicative identity. φ(2) = φ(1 + 1) = φ(1) +
φ(1) = 2, and likewise φ(n) = n for all integers n. Then φ(p/q) = φ(p)/φ(q) =
p/q, so φ fixes the rationals, hence φ ∈ GalQ(E).
11) The only non-trivial automorphism is the Frobenius automorphism f(x) =
x3.
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13) Since x3 + x + 1 is irreducible, Q(a) has dimension 3, where a is the
real root. But the complex roots are not in Q(a), since they are complex, so
there must be another extension of dimension 2 to produce the splitting field,
forcing the Galois group to have order 6, hence isomorphic to S3.

15) Z1, Z2, Z3, or S3. (Possible subgroups of S3.)

17) 3 automorphisms, sending a to a, 2− a2, or a2 − a− 2, where a is a root.

19) 4 automorphisms, sending a to a, −a, 3a − a3, or a3 − 3a, where a is a
root. Group is isomorphic to Z4.

21) 8 automorphisms, sending {a, b} to {a, b}, {−a, b}, {a,−b}, {−a,−b},
{b, a}, {−b, a}, {b,−a}, or {−b,−a} where a is a root, and b is a root of
x2 + a2 + 1. Group is isomorphic to D4.

Section 15.2

1) Since Z∗
7 ≈ Z6, we can consider Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

3) Since D5 has an element of order 5, there must be an element in the Galois
group with order 5, that is, a 5-cycle of the roots φ1 : r1 → r2 → r3 →
r4 → r5 → r1. But D5 also contains an element of order 2, which must
fix one of the roots, say r5, which forces φ2 : r1 ↔ r4, r2 ↔ r3. (Any
other element of order 2 generates with φ1 more than 10 elements.) Letting
k = r1r2+r2r3+r3r4+r4r5+r5r1, we see that both φ1(k) = k, and φ2(k) = k,
and since φ1 and φ2 generate the Galois group, k is in the fixed field, so k ∈ Q.

5) If the Galois group is D4, the roots of the polynomial can be rearranged
such that r1r2 + r2r3 + r3r4 + r4r1 is rational.

7) One solution: r1 = 1.842085966, r2 = 0.351854083− 1.709561043i, r3 =
−1.272897224 + 0.7197986815i, r4 = −1.272897224 − 0.7197986815i, r5 =
0.351854083+ 1.709561043i, r1r2 + r2r3 + r3r4 + r4r5 + r5r1 = 5.

9) Z2.

11) Trivial group (polynomial factors).

13) Z2 × Z2.

15) If some polynomial f(x) in Q[x] has Galois group G, then the splitting
field of f(x) can be written as Q(w) for some w (Corollary 14.4). Then
g(x) = IrrQ(w, x) will have the degree n, and will have the same splitting
field. Thus, the Galois group of g(x) will also be G.

17) GalQ(K) ≈ Z5⋊Z4, with 20 elements.

19) GalQ(K) ≈ Z5, with 5 elements.

21) GalQ(K) ≈ Z2 × Z2 × Z2, with 8 elements.

Section 15.3

1) fix({φ0}) = Q(
√
2,
√
3), fix({φ0, φ1}) = Q(

√
2), fix({φ0, φ2}) = Q(

√
3),

fix({φ0, φ3}) = Q(
√
6), fix({φ0, φ1, φ2, φ3}) = Q.

3) Using Problem 5 of §15.1 notation, {φ0} ↔ Q( 4
√
2, i), {φ0, φ1} ↔ Q( 4

√
2),

{φ0, φ2} ↔ Q(i 4
√
2), {φ0, φ3} ↔ Q(

√
2, i), {φ0, φ1, φ2, φ3} ↔ Q(

√
2),

{φ0, φ4, φ3, φ5} ↔ Q(i), {φ0, φ6} ↔ Q((1 + i) 4
√
2), {φ0, φ7} ↔ Q((1 − i) 4

√
2),

{φ0, φ3, φ6, φ7} ↔ Q(1
√
2), {φ0, φ1, φ2, φ3, φ4, φ5, φ6, φ7} ↔ Q.

5) Since Z∗
6 ≈ Z2, there is no non-trivial subgroups of GalQ(F ).
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7) Since Z∗
7 ≈ Z6, there is an element of order 2, namely 6, and two elements

of order 3, namely 2 and 4. So the automorphism sending ω7 to ω6
7 has order

2, and the automorphisms sending ω7 to ω2
7 or ω4

7 have order 3.
9) If E is a Galois extension of F , then by Corollary 15.2 E = F (w) for some
w, hence by Proposition 15.4 |GalF (E)| = n. If E is not a Galois extension,
then the fixed field of GalF (E) is K, strictly larger than F . Then E is a Galois
extension of K, so |GalK(E)| is the dimension of E over K, which is < n.
11) GalF (E) is a finite group, so it can only have a finite number of sub-
groups. Since the fundamental theorem of Galois theory shows a one-to-one
correspondence between the subgroups of GalF (E) and the subfields of E
containing F , there are only a finite number of such subfields.
13) Since D5 has 8 subgroups. there are 8 subfields of E containing F .
15) F = Q, K = Q(

√
2), E = Q( 4

√
2).

17) For φ(ω12) = ω5
12, fix(φ) = Q(ω3

12) = Q(
√
−1). For φ(ω12) = ω7

12, fix(φ) =
Q(ω2

12) = Q(
√
−3). For φ(ω12) = ω11

12 , fix(φ) = Q(ω12 + ω11
12) = Q(

√
3).

19) For φ(ω15) = ω2
15 or ω8

15, fix(φ) = Q(ω15 + ω2
15 + ω4

15 + ω8
15) = Q(

√
−15).

For φ(ω15) = ω7
15 or ω13

15 , fix(φ) = Q(ω15 + ω4
15 + ω7

15 + ω13
15) = Q(

√
−3).

Section 15.4
1) Q(ω3,

3
√
2). 3) Q(

√
−1, 4

√
−5).

5) Q(
√
2,
√
3). 7) Q(ω3,

3
√
2, 3

√
3).

9) Draw a circle of radius b at the end of a segment of length a. The points
where the circle intersects the line extending from the segment mark off a− b
and a+ b.
11) Since △ABC is similar to △ADE, BC/AB = DE/AD Thus, BC = a/b.
13) △FJG is similar to △FGH , which is in turn similar to △GJH . Thus,

GJ/FJ = HJ/GJ . Hence, GJ
2
= a, so GJ =

√
a.

15) Since GalQ(F ) is a group of order 2n, by Proposition 7.8 we can form
a composition series with each subgroup half the size of the previous. By
finding the fixed fields of the subgroups, we can find fields Q = F0 ⊆ F1 ⊆
F2 ⊆ · · · ⊆ Fn = F , each being a second-degree extension of the previous.
By the quadratic equation, any second-degree extension can be expressed in
terms of a (possibly complex) square root. So every element of F will be
constructible.
17) The 17-gon can be constructed if ω17 is a constructible complex number.
But Q(ω17) is a Galois extension of Q of dimension 16 = 24, so by Problem 15,
ω17 is constructible.
19) Q(ω5 + ω4

5 , ω5) = Q(a = (−1 +
√
5)/2, (a+

√
a2 − 4)/2).
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