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Preface 

In the fall of 1990, I taught Math 581 at New Mexico State University 
for the first time. This course on field theory is the first semester of the 
year-long graduate algebra course here at NMSU. In the back of my mind, 
I thought it would be nice someday to write a book on field theory, one 
of my favorite mathematical subjects, and I wrote a crude form of lecture 
notes that semester. Those notes sat undisturbed for three years until late 
in 1993 when I finally made the decision to turn the notes into a book. 
The notes were greatly expanded and rewritten, and they were in a form 
sufficient to be used as the text for Math 581 when I taught it again in the 
fall of 1994 .  

Part of my desire to write a textbook was due to the nonstandard format 
of our graduate algebra sequence. The first semester of our sequence is field 
theory. Our graduate students generally pick up group and ring theory in 

a senior-level course prior to taking field theory. Since we start with field 
theory, we would have to jump into the middle of most graduate algebra 
textbooks. This can make reading the text difficult by not knowing what 
the author did before the field theory chapters. Therefore, a book devoted 
to field theory is desirable for us as a text. While there are a number of 
field theory books around, most of these were less complete than I wanted. 
For example, Artin's wonderful book [1] barely addresses separability and 
does not deal with infinite extensions. I wanted to have a book containing 

most everything I learned and enjoyed about field theory. 
This leads to another reason why I wanted to write this book. There are a 

number of topics I wanted to have in a single reference source. For instance, 
most books do not go into the interesting details about discriminants and 
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fields of algebra. I wanted to address a number of notions of discriminant 
and give relations between them. For another example, I wanted to discuss 
both the calculation of the Galois group of a polynomial of degree 3 or 
4, which is usually done in Galois theory books, and discuss in detail the 
calculation of the roots of the polynomial, which is usually not done. I feel it 
is instructive to exhibit the splitting field of a quartic as the top of a tower 
of simple radical extensions to stress the connection with solvability of the 
Galois group. Finally, I wanted a book that does not stop at Galois theory 
but discusses non-algebraic extensions, especially the extensions that arise 
in algebraic geometry. The theory of finitely generated extensions makes 
use of Galois theory and at the same time leads to connections between 
algebra, analysis, and topology. Such connections are becoming increasingly 
important in mathematical research, so students should see them early. 

The approach I take to Galois theory is roughly that of Artin. This 
approach is how I first learned the subject, and so it is natural that I feel it 
is the best way to teach Galois theory. While I agree that the fundamental 
theorem is the highlight of Galois theory, I feel strongly that the concepts of 
normality and separability are vital in their own right and not just technical 
details needed to prove the fundamental theorem. it is due to this feeling 
that I have followed Artin in discussing normality and separability before 
the fundamental theorem, and why the sections on these topics are quite 
long. To help justify this, I point out that results in these sections are cited 
in subsequent chapters more than is the fundamental theorem. 

This book is divided into five chapters, along with five appendices for 
background material. The first chapter develops the machinery of Galois 
theory, ending with the fundamental theorem and some of its most imme-
diate consequences. One of these consequences, a proof of the fundamental 
theorem of algebra, is a beautiful application of Galois theory and the Sy-
low theorems of group theory. This proof made a big impression on me 
when I first saw it, and it helped me appreciate the Sylow theorems. 

Chapter II applies Galois theory to the study of certain field extensions, 
including those Galois extensions with a cyclic or Abelian Galois group. 
This chapter takes a diversion in Section 10. The classical proof of the 
Hilbert theorem 90 leads naturally into group cohomology. While I believe 
in giving students glimpses into more advanced topics, perhaps this section 

appears in this book more because of my appreciation for cohomology. As 
someone who does research in division algebras, I have seen cohomology 

used to prove many important theorems, so I felt it was a topic worth 
having in this book. 

In Chapter III, some of the most famous mathematical problems of antiq-
uity are presented and answered by using Galois theory. The main questions 
of ruler and compass constructions left unanswered by the ancient Greeks, 
such as whether an arbitrary angle can be trisected, are resolved. We com-
bine analytic and algebraic arguments to prove the transcendence of 7r and 
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the sixteenth century, are given, and we prove that no algebraic formula 

exists for the roots of an arbitrary polynomial of degree 5 or larger. The 
question of solvability of polynomials led Galois to develop what we now 
call Galois theory and in so doing also developed group theory. This work 
of Galois can be thought of as the birth of abstract algebra and opened the 
door to many beautiful theories. 

The theory of algebraic extensions does not end with finite extensions. 
Chapter IV discusses infinite Galois extensions and presents some impor-
tant examples. In order to prove an analog of the fundamental theorem 
for infinite extensions, we need to put a topology on the Galois group. 
It is through this topology that we can determine which subgroups show 
up in the correspondence between subextensions of a Galois extension and 
subgroups of the Galois group. This marks just one of the many places in 
algebra where use of topology leads to new insights. 

The final chapter of this book discusses nonalgebraic extensions. The 
first two sections develop the main tools for working with transcendental 
extensions: the notion of a transcendence basis and the concept of linear 
clisjointness. The latter topic, among other things, allows us to extend to 
arbitrary extensions the idea of separability. The remaining sections of 
this chapter introduce some of the most basic ideas of algebraic geometry 
and show the connections between algebraic geometry and field theory, 
notably the theory of finitely generated nonalgebraic extensions. It is the 
aim of these sections to show how field theory can be used to give geometric 
information, and vice versa. In particular, we show how the dimension of an 
algebraic variety can be calculated from knowledge of the field of rational 
functions on the variety. 

The five appendices give what I hope is the necessary background in set 
theory, group theory, ring theory, vector space theory, and topology that 
readers of this book need but in which they may be partially deficient. These 
appendices are occasionally sketchy in details. Some results are proven and 

others are quoted as references. Their purpose is not to serve as a text 
for these topics but rather to help students fill holes in their background. 
Exercises are given to help to deepen the understanding of these ideas. 

Two things I wanted this book to have were lots of examples and lots 

of exercises. f hope I have succeeded in both. One complaint I have with 

some field theory books is a dearth of examples. Galois theory is not an 
easy subject to learn. I have found that students often finish a course in 

Galois theory without having a good feel for what a Galois extension is. 
They need to see many examples in order to really understand the theory. 

Some of the examples in this book are quite simple, while others are fairly 

complicated. I see no use in giving only trivial examples when some of the 
interesting mathematics can only be gleaned from looking at more intricate 
examples. For this reason, I put into this book a few fairly complicated and 
nonstandard examples. The time involved in understanding these examples 

s.  
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will be time well spent. The same can be said about working the exercises. 
It is impossible to learn any mathematical subject merely by reading text. 
Field theory is no exception. The exercises vary in difficulty from quite 

simple to very difficult. I have not given any indication of which are the 
hardest problems since people can disagree on whether a problem is difficult 
or not. Nor have I ordered the problems in any way, other than trying to 
place a problem in a section whose ideas are needed to work the problem. 
Occasionally, I have given a series of problems on a certain theme, and 
these naturally are in order. I have tried not to place crucial theorems 
as exercises, although there are a number of times that a step in a proof 
is given as an exercise. I hope this does not decrease the clarity of  the  
exposition but instead improves it by eliminating some simple but tedious 
steps. 

Thanks to many people need to be given. Certainly, authors of previously 
written field theory books need to be thanked; my exposition has been in-
fluenced by reading these books. Adrian Wadsworth taught me field theory, 
and his teaching influenced both the style and content of this book. I hope 
this book is worthy of that teaching. I would also like to thank the colleagues 
with whom I have discussed matters concerning this book. Al Sethuraman 
read preliminary versions of this book and put up with my asking too many 
questions, Irena Swanson taught Math 581 in fall 1995 using it, and David 
Leep gave me some good suggestions. I must also thank the students of 
NMSU who put up with mistake-riddled early versions of this book while 
trying to learn field theory. Finally, I would like to thank the employees at 
TCI Software, the creators of Scientific Workplace. They gave me help on 
various aspects of the preparation of this book, which was typed in urEx 
using Scientific Workplace. 

April 1996 	 Pat Morandi 
Las Cruces, New Mexico 



otes to the Reader 

The prerequisites for this book are a working knowledge of ring theory, in-
cluding polynomial rings, unique factorization domains, and maximal ide-
als; some group theory, especially finite group theory; vector space theory 
over an arbitrary field, primarily existence of bases for finite dimensional 
vector spaces, and dimension. Some point set topology is used in Sections 
17 and 21. However, these sections can be read without worrying about the 
topological notions. Profinite groups arise in Section 18 and tensor products 
arise in Section 20. If the reader is unfamiliar with any of these topics, as 
mentioned in the Preface there are five appendices at the end of the book 
that cover these concepts to the depth that is needed. Especially important 
is Appendix A. Facts about polynomial rings are assumed right away in 
Section 1, so the reader should peruse Appendix A to see if the material is 
familiar. 

The numbering scheme in this book is relatively simple. Sections are 
numbered independently of the chapters. A theorem number of 3.5 means 
that the theorem appears in Section 3. Propositions, definitions, etc., are 
numbered similarly and in sequence with each other. Equation numbering 
follows the same scheme. A problem referred to in the section that it ap-
pears will be labeled such as Problem 4. A problem from another section 
will be numbered as are theorems; Problem 13.3 is Problem 3 of Section 13. 
This numbering scheme starts over in each appendix. For instance, Theo-
rem 2.3 in Appendix A is the third numbered item in the second section of 
Appendix A. 

Definitions in this book are given in two ways. Many definitions, including 
all of the most important ones, are spelled out formally and assigned a 
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the text and are emphasized by italic text. If this makes it hard for a reader 

to find a definition, the index at the end of the book will solve this problem. 
There are a number of references at the end of the book, and these are 

cited occasionally throughout the book. These other works are given mainly 
to allow the reader the opportunity to see another approach to parts of field 

theory or a more in-depth exposition of a topic. In an attempt to make this 
book mostly self-contained, substantial results are not left to be found in 
another source. Some of the theorems are attributed to a person or persons, 
although most are not. Apologies are made to anyone, living or dead, whose 
contribution to field theory has not been acknowledged. 

Notation in this book is mostly standard. For example, the subset relation 
is denoted by C and proper subset by C.  If B is a subset of A, then the 
set difference Ix : x E A, x B} is denoted by A — B. If I is an ideal in a 
ring R, the coset r + I is often denoted by r . Most of the notation used is 
given in the List of Symbols section. In that section, each symbol is given 

a page reference where the symbol can be found, often with definition. 
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Galois Theory 

In this chapter, we develop the machinery of Galois theory. The first four 
sections constitute the technical heart of Galois theory, and Section 5 
presents the fundamental theorem and some consequences. As an appli-
cation, we give a proof of the fundamental theorem of algebra using Galois 
theory and the Sylow theorems of group theory. 

The main idea of Galois theory is to associate a group, the Galois group, 
to a field extension. We can then turn field theory problems into group the-
ory problems. Since the Galois group of a finite dimensional extension is 
finite, we can utilize the numerical information about finite groups to help 
investigate such field extensions. It turns out that field theory is the right 
context for solving some of the famous classical problems that stumped 
mathematicians for centuries. As an application of field theory, in Chapter 
Ill we give proofs of the famous impossibilities of certain ruler and com-

pass constructions, arid we determine why roots of polynomials of degree 
5 or greater need not be given by formulas involving field operations and 
extraction of roots. 

1 Field Extensions 

In this section, we begin the study of field theory. Consequently, there are a 
number of definitions in this section, although there are also a large number 
of examples intended to help the reader with the concepts. We point out 
now that we take a basic knowledge of ring theory and vector space theory 
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vector space frequently, and we use the theory of polynomial rings in one 
variable over a field equally often. Any reader who is un familiar with a fact, 
used in this book is recommended to peruse the appendices; they contain 
most of the background a reader will need but may not have. 

While field theory is of course concerned with the study of fields, the 
study of field theory primarily investigates field extensions. In fact, the 
classical problems of ruler and compass constructions and the solvability 
of polynomial equations were answered by analyzing appropriate field ex-
tensions, and we answer these problems in Chapter III in this way. While 
it may seem unusual to some readers to consider pairs of fields, we point 
out that much of group theory and ring theory is concerned with group 
extensions and ring extensions, respectively. 

Recall that a field is a commutative ring with identity such that the 
nonzero elements form a group under multiplication. If F C K are fields, 
then K is called a field extension of F. We will refer to the pair F C K 
as the field extension K I F and to F as the base field. We make K into an 
F-vector space by defining scalar multiplication for a E F and a E K as 
a • a = aa, the multiplication of a and a in  K.  We write [K : F] for the 
dimension of K as an F-vector space. This dimension is called the degree of 
K/F. If  [K :  <  oc,  then K is called a finite extension of F. Otherwise K 
is an infinite extension of F. Most of this chapter will deal with finite field 
extensions, although in a few places we will need to work with extensions 
of any degree. 

Example 1.1 In order to give examples of field extensions, we first need 
examples of fields. In this book, the fields of rational numbers, real numbers, 
and complex numbers will be denoted Q, 111, and C, respectively. The field 
Z/pZ of integers mod p will be denoted Fp . The fields Q and Fp will appear 
often as the base field of examples. Finite field extensions of Q are called 
algebraic number fields and are one of the objects of study in algebraic 
number theory. 

Example 1.2 Let k be a field and let x be a variable. The rational func- 

tion field k(x) is the quotient field of the polynomial ring k[x]; that is, 

k(x) consists of all quotients f (x)I g(x) of polynomials with g(x) 	O. Sim- 

ilarly, if x l , 	, x 7_,, are independent variables, then the field k(x i , 	, x n ) 
of rational functions in the xi  is the quotient field of the polynomial ring 

x n ] of polynomials in n variables, so it consists of all quotients 
f(x i ,...,x,)1g(x l ,...,x,) of polynomials in the xi with g O. Field ex-

tensions of a rational function field arise frequently in algebraic geometry 
and in the theory of division rings. We will work with rational function 
fields frequently. 



Example 1.3 Let k be a field and let, k((x)) LL Lite set of all founal gen- 
eralized power series in x with coefficients in k; that is, the elements of 

k((x)) are formal in fi nite sums Ec° 	an ' 1: 1 ` with 'no E Z and each a„ G k. n=no   
We define addition and multiplication on k((x)) by 

anxn  + 	bnx n  = Yi (an  + bn)xn 
ri 	 ri 	 ri  

and 

	

anxn • 	bnxn = 	 an bn —k) 

oo 	 Do 	 Do 	(m—ml  

rb=Tbo 	 Tb= n 	n=no ±n1  \k=7)0 

A straightforward calculation shows that k((x)) is a commutative ring with 
identity. Moreover, we can show that k((x)) is a field. If f = Enc.° , anxn is 
a nonzero element of k((x)), we need to produce an inverse for  f.  Suppose 
that we have written the series so that ano  is the first nonzero coefficient. 
By multiplying by an—ol x — n°, to find an inverse for f it suffices to assume 
that no  = 0 and ano  = 1. We can find the coefficients bn  of the inverse 
EnDt 0  bnxn to f by recursion. To have EnD°_,3  ax  n • EnD° 0  bnxn = 1, we 
need bo = 1 since ao = 1. For n > 0, the coefficient of xn is 

bn ao + b 1 a 1  + • • • + boa = 0, 

so if we have determined b0 ,...,  bn_i, then we determine bn  from the equa-
tion bn  = Enk 1 bn _kak. By setting g to be the series with coefficients 
bn  determined by this information, our computations yield  fg  = 1. Thus, 
k((x)) is a field. The rational function field k(x) is naturally isomorphic to 
a subfield of k((x)). In algebra, t,he field k((x)) is often called the field of 
Laurent series over k,  although this terminology is different from that used 
in complex analysis. 

We now give some examples of field extensions. 

Example 1.4 The extension C/R is a finite extension since [C : R] = 2. 
A basis for C as an R-vector space is {1, 0. As an extension of Q, both C 
and R are infinite extensions. If a E C, let 

	

Q(a) = 	 cti, 	E 	̀22,{3ia i 	0  • 

We shall see in Proposition 1.8 that Q(a) is a field extension of Q. The de-
gree of Q(a)/Q can be either finite or infinite depending on a. For instance, 
if a = \/--] or a = exp(27ri/3), then [Q(a) : = 2. These equalities are 
consequences of Proposition 1.15. On the other hand, we prove in Section 
14 that [4:2(7) : 4:2] = co. 



Example 1.5 If k is a field, let K = k(t) be the field of rational functions 
in t over k. 1ff is a nonzero element of K, then we can use the construction 
of Q(a) in the previous example. Let F = k(f) be the set of all rational 
functions in f; that is, 

aif  F = 	 : ai , E k and 	fi 0 
Ern b • f 

If f (t) =  t2 ,  then K I F is an extension of degree 2; a basis for K is {1,  t}.  
In Example 1.17, we shall see that K/F is a finite extension provided that 
f is not a constant, and in Chapter V we shall prove Liiroth's theorem, 
which states that every field L with k CLCK is of the form L = k(f) for 
some f E K. 

Example 1.6 Let p(t) = t3  — 2 E Q[t]. Then p(t) is irreducible over Q by 
the rational root test. Then the ideal (p(t)) generated by p(t) in Q[t] is max-
imal; hence, K = Q[t]l (p(t)) is a field. The set of cosets {a (p(t)) : a E Q} 

can be seen to be a field isomorphic to Q under the map a 1-4- a -I- (7)(0). 
We view the field Q[/.f/(p(t)) ',is an extension field of (U by thinking of Q 
as this isomorphic subfield. If f (t) E Q[t], then by the division algorithm, 
f (t) = q(t)p(t) + r(t) with r (t) = 0 or deg(r) < deg(p) = 3. Moreover, f (t) 
and r(t) generate the same coset in ((NW (p(t)). What this means is that any 
element of K has a unique representation in the form a+ bt+ct2  +(p(t)) for 
some a, b, c E Q. Therefore, the cosets 1+ (p(t)), t + (p(t)), and t2  (p(t)) 
form a basis for K over Q, so [K : 	= 3. Let a = t + (p(t)). Then 

a3  — 2 = t 3  (p(t)) — (2 ± (p(t)) = t3  — 2 ± (p(t))  = 0.  

The element a is then a root of x 3  - 2 in K. Note that we used the identi-
fication of Q as a subfield in this calculation. 

If instead of t 3  — 2 we had started with any irreducible polynomial of 
degree n over Q, we would obtain a field extension of Q of degree n that 
contains a root of the polynomial. We will use this idea in Section 3 to 
prove the existence of fields that, contain roots of polynomials. 

Generators of fields 

In order to study the roots of a polynomial over a field F, we will consider 
a minimal field extension of F that contains all the roots of the polynomial. 
In intuitive terms, we want this field to be generated by F and the roots. 
We need to make this more precise. 

Definition 1.7 Let K be a field extension of F. If X is a subset of  K,  
then the ring F[X] generated by F and X is the intersection of all subrings 
of K that contain F and X , The field F(X) generated by F and X is the 
intersection of all subfields of K that contain F and X. If X --= [al, • • , an} 



1 Field Extensions 	5 

is finite, we will write F[X1 	, an l and F(X) = F(ai ,... , an). If 
X is finite, we call the field F(X) a finitely generated extension of F, 

It is a simple exercise to show that an intersection of subfields or subrings 
of a field is again a subfield or subring, respectively. From this definition, 
it follows that F(X) is the smallest subfield with respect to inclusion of K 
that contains F and X. We can give more concrete descriptions of  F[X] 
and F(X). Let K be a field extension of F and let a E K. The evaluation 
h,omomorphism ev„ is the map eva  : F[x] K defined by eva (E i  ai x i ) 

Ei  a id'. We denote ev a (f (x)) by f (a). It is straightforward (see Problem 
3) to show that eva  is both a ring and an F-vector space homomorphism. 
We use this notion to see what it means for a field to be generated by a 
set of elements. We start with the easiest case, when K is generated over 
F by a single element. 

Proposition 1.8 Let K be a field extension of F and let a E  K. Then 

F[a] = {f (a) : f (x) E F[x]1 

(17 Lei 

(a) = {f (a)I g (a) : f g E F[x], g (a) 	O}.  

Moreover, F(a) is the quotient field of F[a]. 

Proof. The evaluation map eva  : F[x] 	K has image { f (a) : f  E  F[x]}, 
so this set is a subring of K. If R is a subring of K that contains F 
and a, then f (a) E R for any f(x) E F[x] by closure of addition and 
multiplication. Therefore, { f (a) : f (x) E F[x]1 is contained in all subrings 
of K that contain F and a. Therefore, Fta] = { f (a) : f (x) E F[x]}. The 
quotient field of F[a] is then the set {f (a)Ig(a) : f , g E F{xj, g(a) 0}. It 
clearly is contained in any subfield of K that contains F[a]; hence, it is 
equal to F(a). 

The notation Fta] and F(a) is consistent with the notation F[x] and 
F(x) for the ring of polynomials and field of rational functions over F, as 
the description of F[a] and F(a) shows. 

By similar arguments, we can describe the ring F[ai,... , an ] and field 
F(a i , , an ) generated by F and a l , , an,. The proof of the following 
proposition is not much different from the proof of Proposition 1.8, so it is 
left to Problem 4. 

Proposition 1.9 Let K be a field extension of F and let a 1 ,... ,a,,. E  K.  
Then 

F[al, • • • ,an] = ff (al, • • • ,an) : f E 	>xni} 
and 

J'  f(al,• • >an)  

g(ai,• 	, 0-n) 
F(al, • • • , an) — 

}

: f,g E F[xl,...,x,„], g(ad ,...,an ) 	0 , 



sO F(ai,...,(l„) is the quotient fi eld of  

For arbitrary subsets X of K we can describe the field F(X) in terms of 
finite subsets of X. This description is often convenient for turning ques-
tions about field extensions into questions about finitely generated fi eld 
extensions. 

Proposition 1.10 Let K be a field extension of F and let X be a subset 
of  K.  If a E F(X), then a E F(ai,..• , an) for some al, an  E X. 
Therefore, 

F(X) = UfF(al ,... , an ) : a l , .. • , an  E X},  

where the union is over all finite subsets of  X.  

Proof. Each field F(al, 	, an ) with the ai  E X is contained in F(X); 
hence, U CF(ai, • • • , an) : ai E XI C F(X). This union contains F and 
X,  so if it is a field, then it is equal to F(X), since F(X) is the small-
est subfield of K containing F and X. To show that this union is a 
field, let c/03 E U {F(ai, • • .,an) : a i  E X}. Then there are ai, b i  E X 
with a E F(ai,... ,a„) and E F(5 1 , b 7 1 ). Then both a and fi  
are contained in F(ai, , an, bi b rn ), so a ± ctO, and  c/13  (if 

0) all lie in U {F(ai • • . an) : ai  E X}. This union is then a field, 
so F(X) = U {F(ai ,... , an ) : ai E X}. 

In this chapter, our interest will be in those field extensions K/F for 
which any a E K satisfies a polynomial equation over F. We give this idea 
a formal definition. 

Definition 1.11 If K is a fi eld extension of F, then an element a E K is 
algebraic over F if there is a nonzero polynomial f (x) E F[x] with  f(c) --= O. 
If a is not algebraic over F, then a is said to be transcendental over F. If 
every element of K is algebraic over F, then K is said to be algebraic over 
F, and K I F is called an algebraic extension. 

Definition 1.12 If a is algebraic over a field F, the minimal polynomial 

of a over F is the monic polynomial p(x) of least degree in F[x] for which 
p(ci) = 0; it is denoted min(F, a). Equivalently, min(F, a) is the monic 
generator p(x) of the kernel of the evaluation homomorphism ev a . 

Example 1.13 The complex number i ---= -\/-1 is algebraic over Q, since 
i2  ± 1 = O. If r E Q, then a = 	is algebraic over Q, since a is a root 
of xn — r. If co --= e 27r i /n cos(27r/n) i sin(27r/n), then con — 1 = 0, 
so w is algebraic over Q. Note that min(Q, i) = X 2  ± 1 = min(Ri) but 
min(C, i) --= x — i. Therefore, the minimal polynomial of an element depends 
on the base field, as does whether the element is algebraic or transcendental. 
The determination of min(Q,w) is nontrivial and will be done in Section 7. 



Example 1.14 In (673, Herniae proved that e is transcendental over Q, 
and 9 years later, Lindemann proved that 7 is transcendental over Q. 
However, 7F is algebraic over Q(7), since 7F is a root of the polynomial 
x - 7F E Q(7)[X]. It is unknown if e is transcendental over Q(7r). We will 
prove in Section 14 that 7r and e are transcendental over Q. 

To work with algebraic extensions, we need some tools at our disposal. 
The minimal polynomial of an element and the degree of a field extension 
are two of the most basic tools we shall use. The following proposition gives 
a relation between these objects. 

Proposition 1.15 Let K be a field extension of F and let a E K be alge-
braic over F. 

1. The polynomial min(F, a) is irreducible over F. 

2. If g(x) E F[x], then g(a) = 0 if and only if min(F, a) divides g(x). 

3. If n deg(min(F, a)), then the elements 1,a, 	form a basis 
for F(a) over F, so [F(u) : F] 	deg(min(F, a)) <  oc.  Moreover, 
F(a) = F[a]. 

Proof. If p(x) 	min(F, a), then F[x]l(p(x)) 	F[a] is an integral domain. 
Therefore, (p(x)) is a prime ideal, so p(x) is irreducible. To prove statement 
2, if g(x) E F[x] with g(a) = 0, then g(x) E ker(ev a ). But this kernel is 
the ideal generated by p(x), so p(x) divides g(x). For statement 3, we first 
prove that F[a] = F(u). To see this, note that 1-P[a] is the image of the 
evaluation map ev,. The kernel of eva  is a prime ideal since ev a  maps 
F[x] into an integral domain. However, F[x] is a principal ideal domain, so 
every nonzero prime ideal of F[x] is maximal. Thus, ker(ev a ) is maximal, 
so F[a] F[x]/ ker(ev a ) is a field. Consequently, F[a] = F(u). To finish 
the proof of statement 3, let n = deg(p(x)). If b E F(u), then b = g(a) for 
some g(x) E F[x]. By the division algorithm, g(x) = q(x)p(x) -+ r(x), where 
r(x) = 0 or deg(r) < n. Thus, b = g(a) = r(a). Since r(a) is an F-linear 
combination of 1, a, , an -1 , we see that 1, a, , a" -1  span F(a) as an 

F-vector space. If > i ' 
 

= 0, then f (x) =  tn-ol  a i xi is divisible by 
p(x), so f(x) = 0, or else f is divisible by a polynomial of larger degree 
than itself. Thus, 1, a, , a" -1  is a basis for F(a) over F. 

Example 1.16 The element 2 satisfies the polynomial X 3  - 2 over Q, 
which is irreducible by the Eisenstein criterion, so X 3  - 2 is the minimal 
polynomial of ;/-2-  over Q. Thus, [Q(-V2- ) : Q] --= 3. If p is a prime, then 
xn - p is irreducible over Q, again by Eisenstein, so [Q( 05) : Q] n. The 
complex number w = cos(27V/3) + j sin(27r/3) satisfies x 3  - 1 over Q. This 
factors as X 3  - 1 = (x - 1)(x 2  x 1). The second factor has w as a root 
and is irreducible since it has no rational root; hence, it is the minimal 
polynomial of w over Q. Consequently, [Q(w) : Q ]  = 2. 
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Let p be a prime and let p = exp(27i/p) = cos (27/p) ± sin(27/p). Then 
p satisfies the polynomial X P  - 1 = (X - 1)(X P-1  X P-2  • + X + 1). 
Since p 1, it satisfies the polynomial xP-1  X P-2  ± • ' ± X ± 1. Moreover, 

this polynomial is irreducible over Q (see Problem 22b); hence, it is the 
minimal polynomial of p over Q. 

Example 1.17 Here is a very nice, nontrivial example of a finite field 
extension. Let k be a field and let K = k(t) be the field of rational functions 
in t over k. Let u E K with u k. Write u = f(t)/g(t) with f , g E k[t] and 
gcd(f (t), g(t)) = 1, and let F= k(u). We claim that 

[K: F] = max {deg( f (t), deg(g(t))} , 

which will show that K/F is a finite extension. To see this, first note that 
K = F (t). By using Proposition 1.15, we need to determine the minimal 
polynomial of t over F to determine [K : F]. Consider the polynomial 
p(x) = ug(x)— f (x) E F[x]. Then t is a root of p(x). Therefore, t is algebraic 
over F,  and so [K : < oo as K F (t). Say f(t) --= E n  at  and 
g(t) --= E:10  bi ti . First note that deg(p(x)) = max {deg( f (t), deg(g(t))}. If 
this were false, then the only way this could happen would be if m --= n 
and the coefficient of xn in p(x) were zero. But this coefficient is ub,, — an 
which is nonzero since u k. We now show that p(x) is irreducible over F, 
which will verify that [K: F] = max{n,m}. We do this by viewing p(x) in 
two ways. The element u is not algebraic over k, otherwise [K k] = [K: 
F] [F : k] < oo , which is false. Therefore, u is transcendental over k, so 
k[u] k[x]. Viewing p as a polynomial in u, we have p E k[x][u] C k(x)[u], 
and p has degree 1 in u. Therefore, p is irreducible over k (x) . Moreover, since 
gcd(f (t),g(t)) = 1, the polynomial p is primitive in k[x][u]. Therefore, p is 
irreducible over k[x]. We have p E k[u][x] = k[x][u] (think about this!), so p 
is irreducible over k[u], as a polynomial in x. Therefore, p is irreducible over 
k(u) = F,  which shows that p is the minimal polynomial of u over F,  by 
Proposition 1.15. Therefore, we have [K : F] = max{deg(f (t), deg(g(t))}, 
as desired. 

Example 1.18 Let K be a finitely generated extension of  F,  and suppose 
that K = F(a i , a„). We can break up the extension K/F into a col-
lection of subextensions that are easier to analyze. Let L i  = F(ai,  
and set L o  =  F.  Then we have a chain of fields 

F = Lo  C L i  C L2 C C L„ = K 

with Li+/  = Li  (ai+i ). Therefore, we can break up the extension K/F into a 
series of subextensions Li fi /Li, each generated by a single element. Results 
such as Proposition 1.15 will help to study the extensions Lif i /Li. To 
make this idea of decomposing K/F into these subextensions useful, we will 
need to have transitivity results that tell us how to translate information 
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about subextensions to the full extension KIF. We will prove a number 
of transitivity results in this book. We prove two below, one dealing with 
field degrees and the other about the property of being algebraic. 

Recall that the field K is finitely generated as a field over F if K = 
F(ai ,...,an ) for some ai E K. This is not the same as being finitely 

generated as a vector space or as a ring. The field K is finitely generated as 
an F-vector space if and only if  [K:  F]  < oc,  and K is finitely generated 
as a ring over F if K = F[ai  , an ] for some ai  E  K.  

Lemma 1.19 If K is a finite extension of F, then K is algebraic and 
finitely generated over F. 

Proof. Suppose that al , . . . , a, is a basis for K over F.  Then every el-
ement of K is of the form Ei  ai ai with ai E F, so certainly we have 
K = F(ai ,..., an ); thus, K is finitely generated over F. If a E K, then 
{1, a, ... a"} is dependent over F, since [K : F] = n. Thus, there are 

E  F,  not all zero, with Ei  Oj ai = O. If f (x) = Ei  Oi xi, then f (x) E F[x] 
and f (a) = O. Therefore, a is algebraic over F,  and so K is algebraic over 
F. 

The converse of this lemma is also true. In order to give a proof of 
the converse, we need the following property of degrees. The degree of a 
field extension is the most basic invariant of an extension. It is therefore 
important to have some information about this degree. We will use the 
following transitivity result frequently. 

Proposition 1.20 Let FCLCK be fields. Then 

[K : F] = [K : L] [L : F]. 

Proof. Let { a i  : i E  I  } be a basis for L/F, and let { bi : jEJ} be 
a basis for K I L. Consider the set {ab  i : i E /,j E J}. We will show that 
this set is a basis for  K/ F.  If x E K, then x = 	for some ai E L, 3 3 J 
with only finitely many of the bi O. But ai = Ei  Oij ai  for some {3ii E F, 
with only finitely many {3ii  nonzero for each j. Thus, x = E 
so the {a i bi  } span K as an F-vector space. For linear independence, if 
Ei 131a1b= 0 with 130 E F, then the independence of the bi  over L 
shows that Ei 13 a1  = 0 for each j. But independence of the ai  over F 
gives 	= 0 for each i,j. Thus, the ab  i are independent over F, so they 
form a basis for KIF. Therefore, 

[K : F] =  {ab i  :je  /,j E 

= 	: i  E 111 • I {bj : j  E J}1 =  [K:  L] [L:  



This proposition lb ilSed prinlarily With finite exLeasions, although it is 
true for arbitrary extensions. Note that the proof above does not assume 
that the dimensions are finite, although we are being somewhat informal 
in our treatment of infinite cardinals. 

We now prove the converse to Proposition 1.19. 

Proposition 1.21 Let K be a field extension of F If each ai E K is 
algebraic over F, then F[ai ,... , ard is a finite dimensional field extension 
of F with 

[F[ 1 ,. 	, an ] : F] < 11[F (ct i ) : F]. 

Proof. We prove this by induction on n; the case n = 1 follows from 
Proposition 1.15. If we set L = F [cti,... > an_i], then by induction L is 
a field and [L : 	< 1-17-1 [F(ct 1 ) : F]. Then F[a i ,... , an ] = L[c] is a - 
field since an  is algebraic over L,  and since min(L, an ) divides min(F, an ) 
by Proposition 1.15, we have [F[cti, , an ] : L] < [F (an ) : F]. Hence, by 
Proposition 1.20 and the induction hypothesis, 

[F[a i ,... , an ] : 	= [F[ct1 	, an] : L] [L : F] < 11[F(c) : F]. 

This finishes the proof. 

The inequality of the proposition above can be strict. For example, if 
a  =`0 and b = `A/18, then [Q(a) : = [Q(b) : = 4, since the 
polynomials x4 -2 and x 4 -18 are irreducible over Q by an application of the 
Eisenstein criterion. However, we know that Q(a, b) = Q ( O, 0), which 
has degree 8 over Q. To see this equality, note that (b/a) 4  = 3, so (bla) 2  
is a square root of 3. Thus, 0 E Q(a, b). However, [Q(a, b) : Q(a)1 < 2 
because b satisfies the polynomial x 2  —  3/  x2  — 3a2  E Q(a)[x]. Thus, 
by Proposition 1.20, 

[Q(a, b) Q ]  = [Q(a, b) Q(a)]* [Q(a) Q] < 8  = [Q( a 3 ) : Q] , 

so since Q(-A 0) is a subfield of Q(a,, b), we obtain Q(a, b) = Q(a 
The equality [Q(-a 0) : = 8 is left as an exercise (see Problem 18). 

As a corollary to the previous proposition, we have the following conve-
nient criterion for an element to be algebraic over a field. 

Corollary 1.22 If K is a field extension of  F,  then a E K is algebraic 
over F if and only if [F (a) : F] <  oc.  Moreover, K is algebraic over F if 
[K : F] < co . 

The converse to the second statement of the corollary is false. There 
are algebraic extensions of infinite degree. The set of all complex numbers 



ovef 	is 	and tlas field is in fi nite diniensional over Q  (see 
Problem 16). 

Proposition 1.21 can be extended easily to the case of fields generated 
by an arbitrary number of elements. 

Proposition 1.23 Let K be a field extension of F, and let X be a subset of 
K such that each element of X is algebraic over F. Then F(X) is algebraic 
over F. If 1X1 < oc,  then [F(X) : F]  <o  

Proof. Let a E F(X). By Proposition 1.10, there are al, ... > an E X with 
a E • an). By Proposition 1.21, F(ai,... , an ) is algebraic over 
F. Thus, a is algebraic over F and, hence, F(X) is algebraic over F. If 
1X1 < oc,  then [F(X) : F]  < oc  by Proposition 1.21. [1] 

We are now ready to prove that the property of being algebraic is transi-
tive. We will use this result frequently. In the case of finite extensions, tran-
sitivity follows from Proposition 1.20 and Corollary 1.22, but it is harder 
to prove for general extensions. 

Theorem 1.24 Let FCLCK be fields. If L I F and K L are algebraic, 
then K I F is algebraic. 

Proof. Let a E K, and let f (x) = ao + aix + • +xn be the minimal poly-
nomial of a over L. Since LIF is algebraic, the field L o  = F(ao, • an--1) 
is a finite extension of F by Corollary 1.22. Now f(x) E Lo[x], so a is 
algebraic over L o . Thus, 

[Lo(a) : 	= [Lo(a) : Lo] [Lo : F] < po. 

Because  F(ci)  C L o (a), we see that [F (a) : F] < co , so a is algebraic over 
F. Since this is true for all a E K, we have shown that K/F. is algebraic. 

[1] 

As an application of some of the results we have obtained, we can help 
to describe the set of algebraic elements of a field extension. 

Definition 1.25 Let K be a field extension of F. The set 

{a E K : a is algebraic over F} 

is called the algebraic closure of F in  K.  

Corollary 1.26 Let K be a field extension of  F,  and let L be the algebraic 
closure of F in K. Then L is a field, and therefore is the largest algebraic 
extension of F contained in K. 
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Proof. Let a, b E L. Then F(a,b) is algebraic over F by Proposition 1.23, 
so F(a,b) C L, and since a + b,ab,alb E F(a,b) C L, the set L is closed 
under the field operations, so it is a subfield of K. Each element of K that 
is algebraic over F lies in L, which means that L is the largest algebraic 
extension of F contained in K. 

Composites of field extensions 

Let F be a field, and suppose that L 1  and L2 are field extensions of F 
contained in sonic common extension K of F. Then the composite L 1  L 2  of 
L 1  and L2 is the subfield of K generated by L 1  and L2; that is, L 1 L 2  = 
L 1 (L 2 ) = L 2 (L 1 ). We will use this concept throughout this book. Some 
properties of composites are given in the Problems. We finish this section 
with some examples of composites. 

Example 1.27 Let F = Q, and view all fields in this example as subfields 
of C. Let co = e 2' i / 3 , so w 3  = 1 and co 1. The composite of Q ('72) 
and Q(co 0) is Q(co, 0). To see that this is the composite, note that 
both Q(0) and  Q(w0) are contained in Q(0,w), so their composite is 
also contained in Q( '0,w). However, if a field L contains 0 and co 2, 
then it also contains co = 0/0. Thus, L must contain 'N72 and co, so it 
must contain Q(w). Therefore, Q( 0,w) is the smallest field containing 
both Q(0) and Q(co '0). We can also show that Q( co)  
so Q(0,w) is generated by one element over Q. If a =  w  + then 
(a — co) 3  = 2. Expanding this and using the relation w 2  = —1 — co, solving 
for co yields 

a3  — 3a — 3 
= 

	

	 
3a 2  + 3a 

so co E Q(a). Thus, 	= a —  w E Q(a), so Q( -\3a co) = Q ( -\72 + w). 

Example 1.28 The composite of  Q(v) and Q(0) is the field 
Q(0, 0). This composite can be generated by a single element over Q. 
In fact, 0( \a 	= Q( \/-1-- A. To see tins,  Lite  inclusion is clear. For 
the reverse inclusion, let a = 	+ \fj. Then (a — 	3. Multiplying 
this and rearranging gives 2-\/a, = a 2  — 1, so 

2  - 1 
= a 	 E Q(a). 

2a 

Similar calculations show that 

(a 2  + 1)  E Q(  

2a 

Therefore, Q(0, 0) C Q(a), which, together with the previous inclusion, 
gives Q(0, f3-) = Q(a). 
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We will see in Section 5 that every finite extension of Q is of the form 
0(a) for some a, which indicates that there is some reason behind these ad 
hoc calculations. 

Problems 

1. Let K be a field extension of F. By defining scalar multiplication for 

a E F and a E K by a a =  ca,  the multiplication in K, show that 
K is an F-vector space. 

2. If K is a field extension of F, prove that [K : F] = 1 if and only if 
K F. 

3. Let K be a field extension of F, and let a E K. Show that the 
evaluation map ev a  : F[x] K given by ev a (f(x)) = f (a) is a ring 
and an F-vector space homomorphism. 
(Such a map is called an F-algebra homomorphism.) 

4. Prove Proposition 1.9. 

5. Show that Q(1:-5, V7.7) = Q(/+ \ti). 

6. Verify the following universal mapping property for polynomial rings: 

(a) Let A be a ring containing a field F. If a l , 	, a, E A, show that 
there is a unique ring homomorphism y : F[x l , 	, 	—4 A 
with  y(x i ) =  ai  for each i. 

(b) Moreover, suppose that B is a ring containing F, together with a 
function f:  {x 1 ,... ,x,} 	B, satisfying the following property: 
For any ring A containing F and eleme 	al , 	, a, E A, there 
is a unique ring homomorphism y : B 	A with (p( f (xi)) = ai. 
Show that B is isomorphic to F[xi , 	, xrd. 

7. Let A be a ring. If A is also an F-vector space and  ci(ab) = (cta)b — 
a(ab) for all a E F and a, b E A, then A is said to be an F-algebra. 
If A is an F-algebra, show that A contains an isomorphic copy of F. 
Also show that if K is a field extension of F, then K is an F-algebra. 

8. Let K = F(a) be a finite extension of F. For a  e K, let L c, be the 
map from K to K defined by L c. (x)  ax. Show that L,„ is an F-linear 
transformation. Also show that det(x/ — L a ) is the minimal polyno-
mial min(F, a) of a. For which a E K is det(x/ — = min(F, a)? 

9. If K is an extension of F such that [K : F] is prime, show that there 
are no intermediate fields between K and F. 



10. If K is a held extension of F and if a E K such that [F(a) 1]  is 
odd, show that F(a) = F(a2 ). Give an example to show that this can 
be false if the degree of F(a) over F is even. 

11. If K is an algebraic extension of F and if R is a subring of K with 
FCRCK, show that R is a field. 

12. Show that Q(0) and  Q(-V)  are not isomorphic as fields but are 
isomorphic as vector spaces over Q. 

13. If L 1  = F(al , 	, an ) and L2 = F(51, . b in ), show that the com- 
posite L 1 L 2  is equal to F(ai, 	, 	b i , 	b m ). 

14. If L 1  and L2 are field extensions of F that are contained in a common 
field, show that L i  L2 is a finite extension of F if and only if both L1 
and L2 are finite extensions of F. 

15. If L l  and LO are geld extensions of 17  that are contained in a common 
field, show that L 1 L 2  is algebraic over F if and only if both L i  arid 
L2 are algebraic over F. 

16. Let A be the algebraic closure of Q in C. Prove that [A : 	=  oc.  

17. Let K be a finite extension of F. If L 1  and L2 are subfields of K 
containing F,  show that [L1L2 : 	< [L1 : F] • [L2  : 	If gcdgi 
F], [L2 : 	= 1, prove that [L 1 L 2  : 	= [L1 : F] • [L2  : 

18. Show that [Q(:\V- , -V-d) : 	= 8. 

19. Give an example of field extensions L 1 , L2 of F for which [L I L2 : 	< 
[L1 : 	[L 2  : 

20. Give an example of a field e)40-ision K/F with [K: 	= 3 but with 
K F(N3,16) for any b E F. 

21. Let a E C be a root of xn — b, where b E C. Show that xn — b factors 

as n Tt— 1 
i =0 (x —  w a), where co = 

22. (a) Let F be a field, and let f(x) E F[x]. If f (x) = 	ax  and 
a E  F,  let f (x + a) = Ei  ai(x + a) i . Prove that f is irreducible 
over F if and only if f (x a) is irreducible over F for any a E F. 

(b) Show that xP-1 xp-2 	x -f- 1 is irreducible over Q if p is 
a prime. 
(Hint: Replace x by x +1 and use the Eisenstein criterion.) 

23. Recall that the characteristic of a ring R with identity is the smallest 
positive integer n for which n • 1 = 0, if such an n exists, or else the 
characteristic is 0. Let R be a ring with identity. Define y : Z 	R 
by so(n) = n • 1, where 1 is the identity of R. Show that so is a 



ring homomorphism and that k-er(o) InZ for a unique norme.gative 
integer  rn ,  and show that m is the characteristic of R. 

24. For any positive integer n, give an example of a ring of characteristic 

25. If R is an integral domain, show that either char(R) = 0 or char(R) 
is prime. 

26. Let R be a commutative ring with identity. The prime subring of R 
is the intersection of all subrings of R. Show that this intersection is 
a subring of R that is contained inside all subrings of R. Moreover, 
show that the prime subring of R is equal to {n 1:  n E Z } , where 1 
is the multiplicative identity of R. 

27. Let F be a field. If char(F) = p > 0, show that the prime subring of 
I? is isomorphic to the field IF T„ arid if char( P)-= 0, then the prime 
stihrilig is isomorphic to Z. 

28. Let F be a field. The prime subfield of F is the intersection of all 
subfields of F. Show that this subfield is the quotient field of the prime 
subring of F, that it is contained inside all subfields of  F, and  that 
it is isomorphic to Fp or Q depending on whether the chara,cteristic 
of F is p>  0 or O. 

2 Automorphisms 

The main idea of Galois was to associate to any polynomial f a group of 
permutations of the roots of f. In this section, we define and study this 
group and give some numerical information about it. Our description of this 
group is not the one originally given by Galois but  an equivalent description 
given by Artin. 

Let K be a field. A ring isomorphism from K to K is usually called an 
automorphism of K. The group of all automorphisms of K will be denoted 
Aut(K). Because we are interested in field extensions, we need to consider 
mappings of extensions. Let K and L be extension fields of F. An F- 
homomorphism : K 	L is a ring homomorphism such that T(a) = a 
for all a  E F; that is, 	p = id. If T is a bijection, then T is called an 
F-zsomorphism. An F-isomorphisrn from a field K to itself is called an 
F-automorphism. 

Let us point out some simple properties of F-homomorphisms. If T : 

K L is an F-homomorphism of extension fields of F, then T is also a 
linear transformation of F-vector spaces, since  'r(ca) = T(a)T(a) = a(a) 
for a E F and a E K. Furthermore, T 0, so T is injective since K is a 
field. Also, if  [K: 	= [L: 	< oc,  then T is automatically surjective by 
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dimension counting. In particular, any F-homomorphism from K to itself 
is a bijection, provided that 1K: 	< oo. 

Definition 2.1 Let K be a field extension of F. The Galois group 
Gal(K/F) is the set of all F-automorphisms of  K. 

If K = F(X) is generated over F by a subset X,  we can determine the 
F-automorphisms of K in terms of their action on the generating set X. 
For instance, if K is an extension of F that is generated by the roots of a 
polynomial f (x) E F[x], the following two lemmas will allow us to interpret 
the Galois group Gal(K/F) as a group of permutations of the roots of  f. 
This type of field extension obtained by adjoining to a base field roots of a 
polynomial is extremely important, and we will study it in Section 3. One 
use of these two lemmas will be to help calculate Galois groups, as shown 
in the examples below. 

Lemma 2.2 Let K = F(X) be a field extension of F that is generated by a 
subset X of K. If a, T E Gal(K/F) with ox  = 71x , then o-  = T. Therefore, 
F-automorphisms of K are determined by their action on a generating set. 

Proof. Let a E K. Then there is a finite subset {a l , 	an } C X with 
a e F(cti,...,an). This means there are polynomials f g E  F[x i ,...,xn j 
with a = f (al,. • • 7 	 , an ); say 

f(x17•• .7xn) 

i2 
d  Ci i 2 	X i  X 2  • 	7  

where each coefficient is in F. Since a and T preserve addition and multi-
plication, and fix elements of F, we have 

b111 2.-i„ 0- (a1) j 'a (ct 2) i2  •  

0- ( ( k
)i

icr(a2 ) 2 • • • cr(an) i n 

y(al) ii T(a2) i2  ' • ' T(an) i7'  

T(al 	T(2)i2 ' " T(an) i n 

Thus, a = T, so F-automorphisms are determined by their action on gen-
erators. 

Lemma 2.3 Let T : K 	L be an F-homomorphism and let a E K 
be algebraic over F. If f (x) is a polynomial over F with f(ci) = 0, 
then f (7- ( a)) = O. 7111,C7 401r, T permutes the roots of min(F, a). Also, 
min(F, a) = min(F, T(a)). 
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Proof. Let  1(x)  = ao aix • • 	a„xn . Then 

0 = T(0) = T( f (a)) = 

Rut, since each ai E F, we have 7- (ai) = ai. Thus, 0 = Ei  a i T(a) i , so 

f(7- (ci)) = O. In particular, if p(x) = min(F, a), then p(7- (a)) = 0, so 

min(F, -r(a)) divides p(x). Since p(x) is irreducible, min(F,T(a)) = p(x) = 
min(F, a). 

Corollary 2.4 If  [K: 	<oc,  then Gal(K/F)  <oc.  

Proof. We can write K = F(ai ,... , an ) for some ai E  K.  Any F-
automorphism of K is determined by what it does to the ai . By Lemma 
2.3, there are only finitely many possibilities for the image of any ai; hence, 
there are only finitely many automorphisms of K/F. [1] 

Example 2.5 Consider the extension C/R. We claim that Gal(C/R) = 
{id, where o-  is complex conjugation. Both of these functions are R-
automorphisms of C, so they are contained in Gal(C/R). To see that there 
is no other automorphism of C/R, note that an element of Gal(C/R) is 
determined by its action on i, since C = R(i). Lemma 2.3 shows that if 
T E Gal(C/R), then T(i) is a root of X 2  ± 1, so T(i) must be either i or —i. 
Therefore, -r = id or r = a. 

Example 2.6 The Galois group of Q(0)/Q is (id). To see this, if o-  is a 
Q-automorphism of Q( 0), then a(* is a root of min(Q, 0) = X 3  - 2.  
If  w = e 27r i/ 3 , then the roots of this polynomial are 0, co0, and co 2  
The only root of X 3  - 2 that lies in Q(0) is 	since if another root lies 
in this field, then co E Q(0), which is false since [Q(0) : 	= 3 and 
[Q(co) : 	= 2. Therefore, o- (* = 0, and since o-  is determined by its 
action on the generator 	we see that o-  = id. 

Example 2.7 Let K = 1F 2 (t) be the rational function field in one variable 
over IF 2 , and let F = 1F 2 (t2 ). Then [K : 	= 2. The element t satisfies the 

2 _ t2 	 t)2 polynomial x 	E F[xj, which has only t as a root, since x 2 -t2 	(x2 

in K[x]. Consequently, if o-  is an F-automorphism of  K,  then  a(t) = t, so 
o-  = id. This proves that Gal(K/F) = {id}.  

Example 2.8 Let F = F2. The polynomial 1-1-x-i-x 2  is irreducible over F, 
since it has no roots in F. In fact, this is the only irreducible quadratic over 
F; the three other quadratics factor over F. Let K = F[x]/ (1 x x2 ), a 
field that we can view as an extension field of F; see Example 1.6 for details 
on this construction. To simplify notation, we write M = (1 ± x ± x2 ). 
Every element of K can be written in the form a bx M by the division 
algorithm. Let us write a = x M. The subfield {a±M:aEF} of K is 



isomorphic to F. By identifying F with this subfielcl of K, we can write 
every element of K in the form a+ba with a, b E F. Then K = F(Q), so any 
F-automorphism of K is determined by its action on a. By Lemma 2.3, if o-
is an F-automorphism of  K,  then  a(ci) is a root of 1+ x ± x 2 . By factoring 
1 + x + x 2  as (x — a)(x — 0) and expanding, we see that the other root of 
1 + x + x 2  is a + 1. Therefore, the only possibility for  a(c) is a or a + 1, so 
Gal(K/F) has at most two elements. To see that Gal(K/F) has exactly two 
elements, we need to check that there is indeed an automorphism a with 
a(c) = a+1. If o-  does exist, then o- (a+ba) = a+b(a+1) = (a+b)+ba. We 
leave it as an exercise (Problem 7) to show that the function o-  : K K 
defined by o- (a +ba) = (a +b) +ba is an F-automorphisrn of K. Therefore, 
Gal(K/F) = {id, a}. 

The idea of Galois theory is to be able to go back and forth from field 
extensions to groups. We have now seen how to take a field extension 
K/F and associate a group, Gal(K/F). More generally, if L is a field with 
FCLC K, we can associate a group Gal (K/L). This is a subgroup of 
Gal(K/F), as we will see in the lemma below. Conversely, given a subgroup 
of Gal(K/F) we can associate a subfield of K containing F. Actually, we 
can do this for an arbitrary subset of Aut(K). Let S be a subset of Aut(K), 
and set 

T(S) = {a, EK : 7- (a) = a for all 7-  E SI . 

It is not hard to see that T(S) is a subfield of K, called the fixed field of S. 
A field L with FCLCK is called an intermediate field of the extension 
K/F. Therefore, if S C Gal(K/F), then T(S) is an intermediate field of 
K/F. 

The following lemma gives some simple properties of Galois groups and 
fixed fields. 

Lemma 2.9 Let K be a field. 

1. If L i  C L2 are subfields of K, then Gal(K/L 2 ) C Gal(K/Li)• 

2. If L is a subfield of K,  then,•L C ,T(Gal(K/L)). 

3. If S i  C S2 are subsets of Aut(K), then T(52) g T(51). 

4. IfS is a subset of Aut(K), then  S c  Gal(K/T(S)). 

5. If L = T(S) for some S C Aut(K), then L = T(Gal(K/L)). 

6. If H = Gal(K/L) for some subfield L of K, then H = Gal(K/ T(H)). 

Proof. The first four parts are simple consequences of the definitions. We 
leave the proofs of parts 2, 3, and 4 to the reader and prove part 1 for the 
sake of illustration. If o-  E Gal(K/L 2 ), then  a(a) = a for all a E L2 Thus, 
a(a) = a for all a E L I , as L 1  C L2 SO Gr E Gal(K/Li). 



To prove part, 5, suppose that 	= T(S) loF  some subset S of 
Ant,(K). Then S c Gal(K/1,),  so .F(Gal(K/L)) C .T(S) = L. But  
L C .F(Gal(K/L)), so L = .F(Gal(K/L)). For part 6, if H = Gal(K/L) for 
some subfield L of K, then L C T(Gal(K/L)), so 

Gal(K/T(Gal(K/L))) C Gal(K/L) = H. 

However, by part 4 we have H C Gal(K/T(H)), so _El = Gal(K T(H)). 

Corollary 2.10 If K is a field extension of F, then there is 1-1 inclusion 
reversing correspondence between the set of subgroups of Gal(K/F) of the 
form Gal(K/L) for some subfield L of K containing F and the set of sub-
fields of K that contain F of the form T(S) for some subset S of Aut(K). 
This correspondence is given by L Gal(K/L), and its inverse is given by 
H T(H). 

Proof. This follows immediately from the lemma. If g and T are respec-
tively the set of groups and fields in question, then the map that sends a 
subfield L of K to the subgroup Gal(K/L) of Aut(K) sends T to Ç.  This 
map is injective and surjective by part 5 of the lemma. Its inverse is given 
by sending H to T(H) by part 6. 

If K I F is a finite extension, under what circumstances does the associ-
ation L Gal(K/L) give an inclusion reversing correspondence between 
the set of all subfields of K containing F and the set of all subgroups of 
Gal(K/F)? A necessary condition from part 5 is that F = T(Gal(K/F)). 
We shall see in Section 5 that this is actually a sufficient condition. 

The next three results aim at getting more precise numerical information 
on Gal(K/F) for a finite extension K/F. We first need a definition. 

Definition 2.11 If G is a group and if K is a field, then a character is a 
group homomorphism from G to K* .  

By setting G = K',  we see that F-automorphisrns of K can be viewed 
as characters from G to K*. The next lemma will lead to a bound on 
1Gal (K/F) 

Lemma 2.12 (Dedekind's Lemma) Let 	, Tn  be distinct charac- 
ters from G to K* Then the Ti are linearly independent over K; that is, if 
E i  ciTi ( g) = o for all g E G, where the ci  E  K, then all ci = O. 

Proof. Suppose that the lemma is false. Choose k minimal (relabeling the 
Ti  if necessary) so that there are ci  G K with Ei  ci Ti (g) = 0 for all g E G. 
Then all ci  O. Since T 1  -T-2 , there is an h E G With Ti (h) 7-2(h), We 
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have 	(ci T, (h))7-i (g) = 0 and 

CiTi (hg) =>..../ (ciTi (h))7-i(g) = 0 

for all g. Subtracting gives 	1 (ci (7-1.  (h) — (h)))Ti (g) = 0 for all g. This 
is an expression involving k — 1 of the Ti with not all of the coefficients zero. 
This contradicts the minimality of k, so the lemma is proved. 

There is a vector space interpretation of Dedekind's lemma. If V is the 
set of all functions from G to K,  then V is a K-vector space under usual 
function addition and scalar multiplication, and Dedekind's lemma can be 
viewed as showing that the set of characters from G to K* forms a linearly 
independent set in V.(v  k co,, pw? 

Proposition 2.13 If K is a finite field extension of F , then Gal(K/F) < 
[K : F]. 

Proof. The group Gal(K/F) is finite by Corollary 2.4. Let Gal(K/F) = 
,Tn I, and suppose that [K : F] < n. Let  cu,...  , am  be a basis for 

K as an F-vector space. The matrix 

	

( 	) 	T 1  (Q 2 ) 	• • 	(CY Tri) 

	

T2 (i) 	Y2 (2) 	-7-2 (a rri,) 

Tn(a2) • • • Tn ( ra 

over K has rank(A) < m  < ri,  so the rows of A are linearly dependent over 
K.  Thus, there are  c E K,  not all zero, such that Ei  CiTi (cti ) = 0 for all 
j. If we set G = K* ,  then for g E G there are ai E F with g = Ei  
Thus, 

( 

C:T'(q) 	2 Ci 	aj a," = , 
, 

(a d  ) 

/ 

	

2  ai  2 	(Cti) =  O. 
\ 

All the ci are then 0 by Dedekind's lemma. This contradiction proves that 
Gal(K/F) < [K : F]. 

The following question arises naturally from this proposition: For which 
field extensions K/F does Gal(K/F) = [K : 1, ] ? The inequality in the 
proposition above may be strict, as shown in Examples 2.6 and 2.7. 

The next proposition determines when 1Gal(K/F)1 = [K : F], provided 
that the group Gal(K/F) is finite. 

A 



2 Automorphisms 	21 

Proposition 2.14 Let G be a finite group of automorphisms of K with 
F = .F(G). Then IQ = [K : FL and so G = Gal(K/F). 

Proof. By the previous proposition, ICI < [K : F] since G C Gal(K/F). 
Suppose that ICI < [K : F]. Let n = GI, and take 	• • 7c42+1 E K 
linearly independent over F. If G = 	Trj, let A be the matrix 

A 

( 	(al)  Ti (c2) 

T2(i) 	7-2(a2) 

(Ct n+i) 

T2 (+i ) 

Tn 	Tn(a2) • • • Tn(an+i) 

Then the columns of A are linearly dependent over K. Choose k minimal 
so that the first k columns of A are linearly dependent over K (relabeling 

if necessary). Thus, there are ci E K not all zero with Eik 	(ai) = 0 
for all j. Minimality of k shows all ci 	O. Thus by dividing we may 
assume that el = 1. If each ci  E F, then 0 = Ti 	eicti) for each j, so 

cc j  = O. This is false by the independence of the ai over F. Take 

E G. Since cr permutes the elements of G, we get Eik  o- (ci)Ti  (cti) = 0 

for all j. Subtracting this from the original equation and recalling that 
Cr  = 1 gives E 2 (c, — a(c i ))7-i (ct i ) = 0 for all j. Minimality of k shows 
that ci  — a(c) = 0 for each  i.  Since this is true for all a E G, we get all 

E T(G) = F. But we have seen that this leads to a contradiction. Thus 
= [K : F] . In particular, G = Gal(K/F), since G C Gal(K/F) and 
= [K : 1, ]? Gal(K/F)k 

The field extensions described in Proposition 2.14 are those of particular 
interest to us, as they were to Galois in his work on the solvability of 
polynomials. 

Definition 2.15 Let K be an algebraic extension of F. Then K is Galois 
over F if F = ,F(Cal(K F)). 

If [K : F] < co, then Proposition 2.14 gives us a numerical criterion for 
when K IF is Galois. 

Corollary 2.16 Let K be a finite extension of F. Then KI F is Galois if 
and only if 1Gal(K/F)1 =  [K:  

Proof. If K F is a Galois extension, then F = (Gal(K F)) so by Propo-
sition 2.14, 1Gal(K/F) = [K : F] . Conversely, if 1Gal(K/F)1 = [K : F], 
let L = T(Gal(K IF)). Then Gal(K/L) = Gal(K/F) by Proposition 2.14, 
and so iGal(K/F)1 = [K : L] < [K : 1, ].  Since 1Gal(K/F)1 = [K : F] , this 
forces [K:  L] = [K : F] , so L = F. 
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eXtenSiOn is Calois. However, to use it we need to know the Galois group of 
the extension. This group is not always easy to determine. For extensions or 
F of the form F(a), we have a simpler criterion to determine when  F(a)/F 
is Galois. 

Corollary 2.17 Let K be a field extension of F , and let a E K be algebraic 
over F. Then 1Gal(F(a)/F)1 is equal to the number of distinct roots of 
min(F, a) in F(a). Therefore, F(a) is Galois over F if and only if min(F, a) 
has n distinct roots in F(a), where n = deg(min(F, a)). 

Proof. If T E Gal(F(a)/F), we have seen that 7- (a) is a root of min(F, a). 
Moreover, if o- ,T E Gal(F(a)/F) with a T , then o-  (a) 7- (a), since F-
automorphisms on F(a) are determined by their action on a. Therefore, 
Gal(F(a)/F) < n. Conversely, let b be a root in F(a) of min(F, a). Define 

T : F (a) —4 F(a) by T (f (a)) = f (b) for any f (x) E F[x]. This map is well 
defined precisely because b is a root of min(F, a). It is straightforward to 
show that T is an F-automorphism, and 7- (a) = b by the definition of T. 
Thus, 1Gal(F(a)/F)1 is equal to the number of distinct roots of min(F, a) 
in F(a). Since [F(a) : 1, ]  = deg(min(F, a)), we see that F(a) is Galois over 
F if and only if min(F, a) has n distinct roots in F(a). 

There are two ways that a field extension F(a)IF can fail to be Galois. 
First, if p(x) = min(F, a), then p could fail to have all its roots in F(a). 
Second, p(x) could have repeated roots. The next two sections will address 
these concerns. We finish this section with a number of examples of ex-
tensions for which we-  determine whether or not they are Galois. Here and 
elsewhere in this book, we use the idea of the characteristic of a field (or a 
ring with identity). For the reader unfamiliar with this notion, the charac-
teristic char(F) of a field F is the order of the multiplicative identity 1 as 
an element of the additive group (Pi, +), provided that this order is finite, 
or else char(F) = 0 if this order is infinite. Note that the characteristic of 

a field is either 0 or is a prime number. More information on the charac-
teristic of a ring can be found in Appendix A or in the last six problems in 
the previous section. 

Example 2.18 The extension Q(/-2-)/Q is not Galois, for we have seen 

that [Q(0) : = 3 but IGal(Q( ■/-2-)/Q)1 = 1. The polynomial x 3  —2 has 

three distinct roots, but only one of them lies in Q(/-2-). 

Example 2.19 Let k be a field of characteristic p 0, and let k(t) be the 
rational function field in one variable over k. Considc,..-  the field extension 
k (t) I k (tP) . Then t satisfies the polynomial xP — tP E (tP)[x]. However, over 

k(t) this polynomial factors as xl) — tP = (X — t)P . Thus, the minimal polyno-
mial of t over  k(t) has only one root; consequently, Gal(k(t)/k(tP)) = fiell. 
Thus, k(t)/k(tP) is not Galois. 



the previous two ex,,,,, i nts illustrate the two ways a field extension of the 
form F(a)/F can fail to be Galois. The remaining examples are examples 
of extensions that are Galois. 

Example 2.20 Let F be a field of characteristic not 2, and let a E F be an 
element that is not the square of any element in  F.  Let K = F[x]I (x2  — a), 
a field since X 2  - a is irreducible over F .  We view F as a subfield of K 
by identifying F with the subfield {a (X 2  - a) : a E F }  of  K.  Under this 
identification, each coset is uniquely expressible in the form a -1-0x +(x 2  —a) 
and, hence, is an F-linear combination of 1 (X 2  - a) and x ± (x 2  — a) . 
Thus, 1 and u = x ± (x 2  — a) form a basis for K as an F-vector space, so 
[K : F]  = 2. If a is defined by 

o-  (a + {3u) = a — Oa 

then a is an automorphism of K since u and —u are roots in K of x 2  - a. 
Thus, id, a E Gal(K/F), so Gal(K/F) = 2 =  [K:  F]. Consequently, K/F 
is a Galois extension. 

The extension K = F(ci)  is generated by an element a with a 2  = a. We 
will often write F(/)  for this extension. The notation fci is somewhat 
ambiguous, since for an arbitrary field F there is no way to distinguish be-
tween different square roots, although this will not cause us any problems. 

Example 2.21 The extension Q( 	co)/Q is Galois, where co = 	In  
fact, the field Q(0, co) is the field generated over Q by the three roots 0, 
con and co 2 :\Y- , of X 3  -  2 ,  and since co satisfies a: 2  x ± 1 over Q and 
co is not in Q(:\Y--), we see that [Q( ■3/. , co) : = 6. It can be shown (see 
Problem 3) that the six functions 

	

id : 	-V-2-", 	co —4 co, 

	

: 	—4 co 	w  —÷ co, 

T 13/ - 	13/-- 7  W 	W 2 7  

	

p : 	—4 co \ 	co —4 co 2  

	

: 	—4 co 2  13/- 7  W 	W 7 

 : vzw2  v2 , W -÷ W
2 

extend to distinct automorphisms of Q( 	co)/Q. Thus, 

Gal(Q( 	co)/Q) = [Q( ■/- 7(0) Q]7 

  

and so Q(co, *Al' is Galois. 
One reason we did not do the calculation that shows that we do get 

six automorphisms from these formulas is that this calculation is long and 
not particularly informative. Another reason is that later on we will see 



24 	1. 	aluis 1 licou 

easier ways to determine when an extension is Galois. Knowing ahead of 
time that Q(O, w)/Q is Galois and that the degree of this extension is six 
tells us that we have six Q-automorphisms of Q(n w). There are only six 
possibilities for the images of 0 and co under an autornorphism, and so 

all six must occur. 

Example 2.22 This example shows us that any finite group can occur as 
the Galois group of a Galois extension. We will use this example a number 

of times in later sections. Let k be a field and let K 

be the field of rational functions in 71, variables over k. For each permuta-
tion a E Sn , define  a(x) = xu ( i). Then a has a natural extension to an 
automorphism of K by defining 

(

f (x 1, • • • , x7-)) = g, f (x um,  • • • , 0-0-0)  

g(xi, • • • ,x7) • - 0-(n)) 

The straightforward but somewhat messy calculation that this does define 
a field automorphism on K is left to Problem 5. We can then view S C 
Aut(K). Let F = T(S). By Proposition 2.14, K/F is a Galois extension 
with Gal(K/F) = Sn. The field F is called the field of symmetric functions 
in the x i . The reason for this name is that if f (x i , ... ,x,)/g(x i ,... ,x,) E 
F, then 

	

f 0-(l), • • • x 0-0-0)1 g(x um, • • - 	= f (xi, • • • xn) I g(xi, • • • Xn) 

for all a E S.  Let 

SI = XI ± X2 ± • • • ± Xn, 

S2 =  XIX2 XIX3 ± • • • ± Xn—lXn> 

Sn — X1X2 • Xn• 

The polynomial si is called the ith elementary symmetric function. We see 
that each s i  E F, so k(si, - • • sn) C F. Note that 

(t — x l ) • • • (t — x n ) = tn —
is tn-1 	s2tn-2 	 (-1)n s7.  

From this fact, we shall see in Section 3 that F = k(si ,... , sn ). This 
means that every symmetric function in the x i  is a rational function in the 
elementary symmetric functions, 

Problems 

1. Show that the only autAnnorphisin of Q is the identity, 



2 Automorphisais 

2. Show that the only automorphism of R is the identity. 
(Hint: If a is an automorphism, show that o- 1Q = id, and if a > 
then o-  (a) > 0. It is an interesting fact that there are infinitely many 
automorphisms of C, even though [C :111] = 2. Why is this fact not a 
contradiction to this problem?) 

3. Show that the six functions given in Example 2.21 extend to Q-
automorphisms of Q( 	co). 

4, Let B be an integral domain with quotient field  F.  If a : B 	B 
is a ring automorphism, show that a induces a ring automorphism 

: F 	F defined by o- ' (a I b) = o-  (a) I o- (b) if a, b E B with b 0. 

5. Let K = k(x i ,... ,x n ) be the field of rational functions in n variables 
over a field  k.  Show that the definition 

(f (xi>  • • • 
 0- 	 = 
> xn) 	f (x0-(07  • • xu(n))  

g(x17 • • •  , x) ) 	gxc, (i) 7 • • • 7 xo (n)) 

makes a permutation a E Sn  into a field automorphism of  K. 
(Hint: The previous problem along with Problem 1.6 may help some.) 

6. Let F be a field of characteristic not 2, and let K be an extension 
of F with [K: F] = 2. Show that K = F (V5,) for some a E F; that 
is, show that K = F(o)  with a2  = a E  F.  Moreover, show that K is 
Galois over F. 

7. Let F = F2 and K = F(c), where a is a root of 1 x ±  x 2 .  Show 
that the function a : K 	K given by o- (a ba) = a + b ba for 
a,bEF is an F-automorphism of  K. 

8. Suppose that a E C is algebraic over Q with p(x) = min(Q, a), and 
let b be any root in C of p. Show that the map a : Q(a) 	C given 
by o-  (f (a)) = f (b) is a well-defined Q-homomorphism. 

9. Show that the complex numbers 	and 1 +i-4 are roots of f (x) = 
)("2,1) x 4  — 2x3  -1-7x 2  — 6x +12. Let K be the field generated by Q and the 

r roots of f Is there an automorphism a of K with  a(i0) = 1 -1-i.0? 
g 04,i, 4, no  

10. Determine whether the following fields are Galois over Q. 

(a) Q(co), where co = exp(27-i/3). 

(b) 0(*• 

(c) \f-7 )• 
(Hint: The previous section has a problem that might be rele- 
vant.) 

H. Prove or disprove the following assertion and its converse: IfFCLC 
K arc fields with Ka and LIF Galois, then KIF is Galois. 



Ga,torts conacctions. I lie relationship given in Corollary 2.10 between 
the set of intermediate fields of a Galois extension and the set of 
subgroups of its Galois group appears in other situations, so we study 
it here. We first need a definition. If S is a set, a relation < on S is 
called a partial order on S provided that a < a for all a E S; if a < b 
and b < a, then a = b; and if a < b and b < c, then a < c. Let S 
and T be sets with partial orders <s and <T, respectively. Suppose 
that there are functions f : S T and g : T S such that (1) if 
s i  <s s2 , then f(s 2 ) <T  PSI), (ii) if t i  <T t 2 , then f(t 2 ) <s f(ti), 
and (iii) s <s g(f (s)) and t <7,  f (g(t)) for all s E S and t E T. Prove 
that there is a 1-1 order reversing correspondence between the image 
of g and the image of f, given by s f (s), whose inverse 1s t  g(t). 

13. Let k be a field, and let K = k(x) be the rational function field in one 
variable over k. Let a and T be the automorphisms of K defined by 
o- (f (x)/g(x)) = f (11x)Ig(11x) and 7- ( f (x)Ig(x)) = f(1—x)Ig(1—x), 
respectively. Determine the fixed field F of {a, T}, and determine 
Gal(K/F). Find an h E F so that F = k(h). 

14. Let k be a field, and let K = k(x) be the rational function field in 
one variable over k. If u E  K,  show that K = k(u) if and only if 

b 
u=  (ax + b)I(cx + d) for some a 	

( a 
d E k with det 	 O. 

c d 
(Hint: See the example before Proposition 1.15.) 

15. Use the previous problem to show that any invertible 2 x 2 matrix 
( a b ) 

c d 	
determines an element of Gal(k(x)/k) with x i— (ax + 

b) I (cx + d). Moreover, show that every element of Gal(k(x)/k) is 
given by such a formula. Show that the map from the set of invertible 

b 
2 x 2 matrices over k to Gal(k(x)/k) given by ( 

a 	
cp, where 

c d 
(p(x) = (ax + b) I (cx + d), is a group homomorphism. Determine the 
kernel to show that Gal(k(x)/k) 22- PGL 2 (k), the group of invertible 
2 x 2 matrices over k modulo the scalar matrices. 
(This group is the projective general linear group over k of 2 x 2 
matrices.) 

( —1/2 —0/2 	. 
16. Let k = ill, and let A be the matrix 	

0/2 —1/2 	
given by 

) 
rotating the plane around the origin by 120 0 . Using the previous 
problem, show that A determines a subgroup of Gal(k(x)/k) of order 
3. Let F be the fixed field. Show that k(x)/F is Galois, find a u so 
that F = k(u), find the minimal polynomial min(F, x), and find all 
the roots of this polynomial. 



17. Let k = p , and let k(x) be the rational function field in one variable 
over k. Define cp : k(x) 	k(x) by yo(x) =  x -I- 1. Show that ço has 
finite order in Gal(k(x)/k). Determine this order, find a u so that 
k(u) is the fixed field of cp, determine the minimal polynomial over 
k(u) of x,  and find all the roots of this minimal polynomial. 
AA. 	X - 	ly1= f 

18. Let k be a field of characteristic p > 0, and let a E k. Let f(x) = 
xP — aP —l x. Show that f is fixed by the automorphism cio of k(x) 
defined by (p(f (x)Ig(x)) = f (x +a) I g(x +a) for any f (x), g(x) E k[xJ. 
Show that k(f) is the fixed field of (p. 

19. Prove that (t — x 1 ) • • (t — x n )=-tn  - Sit n-1 	• • • ± (- 1) n  sn , as we 
claimed in Example 2.22. 

3 Normal Extensions 

In the last section, we saw that there are two ways for the field extension 
F(a)IF to fail to be Galois: if min(F, a) does not have all its roots in F(a) 
or if min(F, a) has repeated roots. The next two sections investigate these 
two situations. In this section, we investigate the case when F (a) contains 
all the roots of p(x) and what this question means for general algebraic 
extensions. We begin with a result that in the case of polynomials over R 
should be familiar. 

Lemma 3.1 Let f (x) E F[x] and a E  F. Then a is a root of f if and 
only if x — a divides f.  Furthermore, f has at most deg(f) roots in any 
extension field of F . 

Proof. By the division algorithm, f(x) = q(x) • (x — a) + r(x) for some 
g(x) and r(x) with r(x) = 0 or deg(r) < deg(x — a). In either case, we see 
that r(x) = r is a constant. But  f(ci) = r, so  f(ci) = 0 if and only if x — a 
divides f (x). 

For the second part, we argue by induction on n = deg(f). If n = 1, then 
f (x) = ax + b for some a, b E F. The only root of f is — b I a, so the result 
is true if n = 1. Assume that any polynomial over art extension field of F 

of degree n — 1 has at most n — 1 roots in any extension field K of  F.  If 
f (x) has no roots in K, then we are done. If instead a E K is a root of 

f,  then f (x) = (x — a) • g(x) for some g(x) E K[x] by the first part of the 
lemma. Since g(x) has degree n — 1, by induction g has at most n — 1 roots 

in  K.  The roots of f consist of a together with the roots of  g.  Thus, f has 

at most n roots. 

Definition 3.2 If K is an extension field of F and if f(x) E F[x], then f 
splits over K if f (x) = a ni  (x - cti) E K[xl for some al, • • ,  c E K and 
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a E F. In other words, f splits over K if f factors completely into linear 
factors in Iffxj. 

In order to talk about roots of a given polynomial, we need to have 
extension fields that contain the roots of the polynomial. The next theorem 
shows that for any f (x) E F[X], there is a finite extension of F over which 
f splits. We use a generalization of the construction of Example 1.6 to 
construct a field containing roots of a given polynomial. 

Theorem 3.3 Let f(x) E F[x] have degree n. There is an extension field 
K of F with [K : F]  < n such that K contains a root of  f.  In addition, 
there is a field L containing F with [L : < n! such that f splits over L. 

Proof. Let p(x) be an irreducible factor of f (x) in F[x], and let K be 
the field F[xJAp(x)). Then F is isomorphic to a subfield of K; namely the 
map p  : F K gi yeti yo(a) a I (p(x)) is au injection or lields. We 
will view F C K by replacing F with (,a(F). If a = x (p(x)) E K, then 
p(a) = p(x)± (p(x)) = 0 (p(x)). Thus, a is a root of p in K; therefore, a 
is a root of  f.  Since [K : = deg(p) < n, this proves the first part of the 
theorem. 

For the second part, we use induction on n. By the first part, there is a 
field K D F with [K : F]  < n such that K contains a root a of  f(),  say 
f (x) = (x — a) • g(x) with g(x) E K[x]. By induction, there is a field L D K 
with [L : K] < (n — 1)! such that g splits over L. But then f splits over L 
and [L : = [L : K ] • [K : F] < (n — 1)! • n = n!. 

Definition 3.4 Let K be an extension field of F and let f(x) e F[oc]. 

1. If  f()  E F[x], then K is a splitting field of f over F if f splits over 
K and K = F(cti • • • >an), where cti, 	, an  are the roots of f 

2. If S is a set of nonconstant polynomials over F, then K is a splitting 
field of S over F if each f E S splits over K and K = F(X), where 
X is the set of all roots of all f E S. 

Intuitively, a splitting field for a set S of polynomials is a minimal field 
extension over which each f E S splits. This is made more concrete in 
Problem 2. 

Theorem 3.3 yields immediately the existence of splitting fields for a 
finite set of polynomials. 

Corollary 3.5  If 	, fn (x)  c  F[x], then there is a splitting field for 

{fi 	fn} over F. 

Proof. Suppose that fi , • • • fm E F[x]. Note that a splitting field of 

{fil. 	fn } is the same as a splitting field of the product fl 	fm  
f = f • • • fn, then by Theorem 3.3, there is a field L D F such that f 
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splits over L. Let a l , 	, a, E L be the roots of  f.  Then F(011, 	, an ) is 
a splitting field for f over F. 

Example 3.6 The field Q(co, ;/2- ) is a splitting field for X 3  - 2 over Q, since 
we have seen in Example 2.21 that this field is also the field generated by 
the three roots of X 3  - 2 over Q. The complex field C is a splitting field over 
I ll for x 2  + 1, since C = 111(i, —i) is generated by ill and the roots of X 2  ± 1. 
In general, if F is a field and a E F, then the field F(.1-a) is a splitting field 
for X 2  - a over F. 

Example 3.7 Let F = F2 and K = F[x] I (1  +x  + x2 ) L-J_ F(a), where a is 
a root of 1 + x +  x 2 .  Then 1 + x + x 2  factors as (x — a)(x — (a + 1)) over 
K,  so K is a splitting field of 1 + x +  x 2 .  

We will show that splitting fields are unique up to isomorphism. From 
Lnis Net, Ole next, corollary would follow front Theorem 3.3. However, we 
give a different proof so that we can use it in the next example. 

Corollary 3.8 Let F be a field and let f (x) E F[x] be a polynomial of 
degree n. If K is a splitting field of f over F, then [K : F] < n!. 

Proof. We prove this by induction on n = deg( f). If n = 1, then the result 
is clear. Suppose that n > 1 and that the result is true for polynomials of 
degree n — 1. Let K be a splitting field of f over F, and let a be a root of f 
in  K.  Then [F(a) Pi] < n, since min(F, a) divides f.  If f (x) = (x — a)g(x), 
then deg(g) = n-1 and K is the splitting field of g over F(a). By induction, 
[K : F (a)] < (n — 1)! by Theorem 3.3, so 

[K : Pi] = [F(a) : 11 • [K : F(a)] 

< n • (n — 1)! = n!. 

This proves the corollary. 	 [1] 

Example 3.9 Let k be a held, and let K = k(x i ,x 2 ,... ,x n ) be the ratio-
nal function field in n variables over k. We view the symmetric group Sn  
as a subgroup of Aut(K) by defining 

f(x0-(1),  • • • , x0-(n)) 
0-  	,_- 

,x,.) 	g(x0-(1), • • • ,x0-(n)) 

for a E Sn , as in Example 2.22. Let F = T(S), the field of symmetric 
functions in the x i . Then S, = Gal(K/F) by Proposition 2.14, so [K : Fl = 

1 ,9721 = n!. We wish to determine F. Let 81, 82, , sn  be the elementary 
symmetric functions in the xi; that is, 

= xi + x2 + • • • 
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Sn = X1 X2 • • • Xn• 

Then k(si s27  ... sn ) C  F.  We claim that F = k(si 	sn ). To show this, 
we use the concept of splitting fields. Let 

f ( t ) 	tn 	s1tn-1 	 irsn c  ( 81 7 82 7 	7 8n ) [t] .  

Then f (t) = (t — x i ) • • • (t — x)  in  K,  which can be seen by expanding this 
product. Since K is generated over k by the xi, we see that K is a splitting 
field for  f(t)  over k(s i , 3 2 , ... sn ). We know that [K : Fl = 	= n!, 
and so [K : k(si 7  s2, . , sn )] > n!. However, [K : k(si, s2, 	, 8 ) ] < n! 
by Corollary 3.8. Therefore, [K : k(si, s2, . . , s n )] = [K : F]. This forces 
F = k(si,  s2 ,..., sn ). Therefore, any symmetric function can be written 
in terms of the elementary symmetric functions. In fact, every symmetric 
polynomial can be written as a polynomial in the elementary symmetric 
functions (see Problem 17). 

Algebraic closures 

We have proved the existence of splitting fields for finite sets of polynomials. 
What about infinite sets? Suppose that K is a splitting field over F of the 
set of all nonconstant polynomials over F. We do not know yet that such a 
field exists, but we will show it does exist. Let L be an algebraic extension 
of  K.  If a E L, then a is algebraic over F by Theorem 1.24 7  since K 
is algebraic over F.  Let f(x) = min(F, a). Then f splits over K; hence, 
a E  K.  Thus, L = K.  This proves that K has no algebraic extensions. 
The existence of such a field will imply the existence of splitting fields of 
an arbitrary set of polynomials. Moreover, given K,  we shall see that any 
algebraic extension of F is isomorphic to a subfield of  K.  This will allow 
us to view all algebraic extensions of F as subfields of  K. 

We first give some equivalent conditions for such a field. 

Lemma 3.10 If K is a field, then the following statements are equivalent: 

1. There are no algebraic extensions of K other than K itself. 

2. There are no finite extensions of K other than K itself. 

3. If L is a field extension of  K, then K = {a E L : a is algebraic over 
K}.  

4. Every f (x) E K[x] splits over K. 

5. Every f (x) E K[x] has a root in  K.  



O. L 	trredumbto poly/ion/ad ()c(;/ K hu kgrce L 

Proof. (1) 	(2): This is clear, since any finite extension of F is an alge- 
braic extension of F. 

(2) (3): Let a E L be algebraic over K. Then K(a) is a finite extension 
of K, so K(a)=K. Thus, a E K. 

(3) = (4): Let f(x) E K[x], and let L be a splitting field of f over K. 
Since L is algebraic over K,  statement 3 shows that L = K; that is, f splits 
over K. 

(4) (5): This is clear. 
(5) = (6): Let f (x) E K [x] be irreducible. By statement 5, f has a root 

in  K,  so f has a linear factor. Since f is irreducible, this means f itself is 
linear, so deg(f) = 1. 

(6) (1): Let, L be an algebraic extension of K. 'rake a E L and let 
p(x) = min(K, a). By statement; 6, the degree of p is 1, so [K(a) : K] = 1. 
Thus, a E K , so L = K. 	 [1] 

Definition 3.11 If K satisfies the equivalent conditions of Lemma 3.10, 
then K is said to be algebraically closed. If K is an algebraic extension of 
F and is algebraically closed, then K is said to be an algebraic closure of 
F. 

Example 3.12 The complex field C is algebraically closed. This fact is 
usually referred to as the fundamental theorem of algebra, and it will be 
proved in Section 5. If 

A = ta E C : a is algebraic over Q} , 

then it is not hard to prove that A is algebraically closed by using that C is 
algebraically closed; sec Problem 4b. Furthermore, C is an algebraic closure 
of R, and A is an algebraic closure of Q. However, C is not an algebraic 
closure of Q since C is not algebraic over Q. 

We wish to prove the  existence  of an algebraic closure of an arbitrary 
field F and to prove the existence of a splitting field for an arbitrary set of 
polynomials. In order to do this, we will use a Zorn's lemma argument. The 
next lemma is needed for technical reasons in the proof of the existence of 
an algebraic closure. 

Lemma 3.13 If K F is algebraic, then 1K1 < max 

Proof. In this proof, we require some facts of cardinal arithmetic, facts 
that can be found in Proposition 2.1 in Appendix B. If a E K, pick a 
labeling a i , 	, 	of he roots of min(F, a) in K. If .A4 is the set of all 

monic polynomials over P, define f : K 	.A4 x N by f(a) = (p(), r)  if 
p(x) = min(F, a) and a = a r . This map is clearly injective, so 

IKI  <1M  x NI = 	 , NW  



We will be done by showing that (M( < max{IFI, In. For this, if Mn  is 
the set of monic polynomials over F of degree n, then 1,A4„) = IF", since 
the map (ao, • • • , an-1) 	x n 	axi  is a bijection between Fn  and 
)v1 n.  If F is finite, then IFT1 = IFI n  is finite, and if F is infinite, then  

F.  Therefore, since M is the union of the disjoint sets M r„ we 
have IMI IUnNird = max{IFI,INI}- 

Theorem 3.14 Let F be a field. Then F has an algebraic closure. 

Proof. Let S be a set containing F with 15'1 > max{1F I INI } . Let A be 
the set of all algebraic extension fields of F inside S. Then A is ordered by 
defining K < L if L is an extension field of K. By Zorn's lemma, there is  
maximal element M of A. We claim that M is an algebraic closure of}T.' 
To show that M is algebraically closed, let L be an algebraic extension of 
M. By Lemma 3.13, 

IL I 	rnax{1 11/1,INI } 	{IFLIN11‹  S.  

Thus, there is a function f : L 	S with f = id. By defining and on 
f (L) by f (a) + f (b) = f (a + h) and f (a) • f (b) = f (ab), we see that f (L) 
is a field extension of M and f is a field homoinorphism. Maximality of M 
shows that f(L) = M, so L = M. Thus, M is algebraically closed. Since 
M is algebraic over F, we see that M is an algebraic closure of F. 

The existence of an algebraic closure yields immediately the existence of 
a splitting field for an arbitrary set of nonconstant polynomials. 

Corollary 3.1,5 Let S be a set of nonconstant polynomials over F. Then 
S has a splitting field over F. 

Proof. Let K be an algebraic closure of F. Then each f (x) E S splits over 
K. Let X be the set of roots of all f E S. Then F(X) C K is a splitting 
field for S over F, since each f splits over F(X) and this field is generated 
by the roots of all the polynomials from S. [1] 

To emphasize a useful interpretation of an algebraic closure, we record 
the following easy consequence of the existence of arbitrary splitting fields. 

Corollary 3.16 If F is a field, then the splitting field of the set of all 
nonconstant polynomials over F is an algebraic closure of F. 

Now that we have the existence of a splitting field for any set of noncon-
stant polynomials, what can we say about such fields? Can we have many 
different splitting fields, up to isomorphism? The answer is no; the next 
lemma is the first step in showing this. 

The following fact is used in the lemma below and in a number of other 
places. If a F 	F' is a field homomorphism, then there is an induced 



ring homomorphism F[x] 	P[x], which we also denote by o- , given by 
o-  (E ax)  = 	o-  (ai)x i  . It is an easy calculation to show that a does 
indeed induce a ring homomorphism on F[x]. If f (x) = (x — a i ). (x — 
an ) E F[x], then the preservation of polynomial multiplication shows that 
o-  ( f (x)) = (x — o -  (al)) (x — o- (an )). This relationship between o-  and 
factorization of polynomials will help us to study splitting fields. 

Lemma 3.17 Let a : F 	F' be a field isomorphism. Let f (x) E F[x] be 
irreducible, let a be a root of f in some extension field K of  F,and  let a' be 
a root of a(f) in some extension K' of Fl  . Then there is an isomorphism 
y:  F(a) (al ) with 7- (a) = a' and 7- 1 F  = a. 

Proof. Since f is irreducible and f(a) = 0, the minimal polynomial 
of a over F is a constant multiple of f. Thus, f and min(F, a) gener-
ate the same principal ideal in F[x]. We then have an F-isomorphism 
cio : F[x]1 (f (x)) F(a) given by  (g(x) (f (x))) = g(a) and an F' - 
isomorphism 	: Fl [x]/(f (x)) 	F'(0') given by 1P(g(x) 	(f l  (x))) = 
g(al). Since  a(f) = , the map v(g(x) 	(f (x))) = o- (g(x)) 	(f l  (x)) gives 
a well-defined isomorphism y:  F [x] I ( f (x)) 	F [x] I ( (x)) which extends 
o- . We have the following sequence of field isomorphisms: 

F()  (P-41  F[x] I ( f (x)) 	[x] I ( (x)) 	F' (a l ). 

Therefore, the composition (i0 1  0 /I 0 : F(c) 	F (a' ) is an isomorphism 
extending o-  on F with a 	x ( f (x)) 	x (f (x)) 	a' . 

Lemma 3.18 Let : F 	F' be a field isomorphism, let K be a field 
extension of  F,  and let K' be a field extension of  F'.  Suppose that K is 
a splitting field of {f i } over F and that T : K K' is a homomorphism 
with 7- 1 F  = a. If  f = o- (M, then T(K) is a splitting field of {f il } over F'.  

Proof. Because K is a splitting field of a set {fi }  of polynomials over F, 
given fi  there are a,  cu,.  • •  ,o E K with fi(x) = a ni (x - ai ). Therefore, 

(x)) = T ( a)1I . (x — 	Hence, each 	a(f) =7- (fi ) splits over 
-7- (K). Since K is generated over F by the roots of the fi, the field -7- (K) 
is generated over F' by the images of the roots of the fi ; that is, -7- (K) is 
generated over F' by the roots of the  f.  Thus, -7- (K) is a splitting field over 
F' for {M. 

The next theorem, the isomorphism extension theorem, is one of the 
most important results of Galois theory. It proves the uniqueness of splitting 
fields, although its main use is in constructing automorphisms of a field, and 
thus for calculating the Galois group of a field extension. Before proving 
it, we give a proof of the case of splitting fields of a single polynomial. 
While the full version certainly includes this case, we give a proof of this 
special case for a few reasons: The proof of this special case is easy and the 
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LiCiS case, and the full proof uses a Zorn's lemma argument aud is not very 
intuitive. 

Theorem 3.19 Let o-  : F 	F' be a field isomorphism, let f (x) E F[x], 
and let  a(f) E Fl[x] be the corresponding polynomial over F'.  Let K be the 
splitting field of f over F, and let K' be the splitting field of  a(f) over F'.  
Then there is an isomorphism T : K K' with Tip = o- . Furthermore, if 
a E K and if a' is any root of o- (min(F, a)) in  K', then T can be chosen 
so that T(a) . 

Proof. We prove this by induction on n  [K: 	If n 1, then f splits 
over F, and the result is trivial in this case. So, suppose that n > 1 and that 
the result is true for splitting fields of degree less than n. If f splits over 
F, then the result is clear. If not, let p(x) be a nonlinear irreducible factor 
of f(x), let a be a root of p, and let a' be a root of o- (p). Set L 	F(a) 
and L' = F(a'). Then [L: 	> 1, so [K:  L] < n. By Lemma 3.17, there 
is a field isomorphism p:  L 	L' with p(a) = a'. Since K is the splitting 
field over L for f(x) and K' is the splitting field over L' for o- (f), by 
induction the isomorphism 35 ,extends to an isomorphism T K 	. The 
isomorphism T is then an extension of o-  (and p), and 7- ( a) = p(a) = a'. 

Theorem 3.20 (Isomorphism Extension Theorem) Let o-  : F 	F' 
be a field isomorphism. Let S = {f i (x)} be a set of polynomials over F, and 
let S' = {o- (f i )} be the corresponding set over F'.  Let K be a splitting field 
for S over F, and let K' be a splitting field for S' over F'. Then there is 
an isomorphism 'r:  K -4  K' with TI F  = a. Furthermore, if a E K and a' 
is any root of o- (min(F, a)) in  K', then T can be chosen so that -r(a) 

Proof. We prove this with a Zorn's lemma argument. Let S be the set 
of all pairs  (L, p)  such that L is a subfield of K and cio : L K' is 
a homomorphism extending o- . This set is nonempty since (F, o- ) E S 

Furthermore, S is partially ordered by defining (L, (p) < (L', (p') if L C L' 
and (P i  I L=(p. Let {(L i , (pi)} be a chain in S. If L =Lji  Li and (p : L K' 
is defined by (p(a)pi (a)  if a E Li, then it is not hard to see that L is a field 

extension of all the Li and cio is a homomorphism extending o- . Thus, (t, p)  
is an upper bound in S for this chain. Therefore, by Zorn's lemma there is 

a maximal element (M,T) in S. We claim that M = K and 7- ( M) = K'.  If 
M  K,  then there is an f E S that does not split over M. Let a E K be a 
root of f that is not in  M,  and let p(x) = min(F, a). Set p' = a(p) E Fqx] 
and let a' E K' be a root of  p'.  Such an a' exists since p' divides f' and 
f' splits over K'. By Lemma 3.17, there is a p : M(a) T(111)(al) that 
extends T. Then (M (a), p)  e  S is  larger than (M, 7-), a contradiction to the 
maximality of (M, 7- ). This proves that M = K. The equality 7- ( K) = 



follows ïiiiiiitI1tLu1y from Lemma 	since  i  Al) L A is a splitting field 
for S" over 	. 

Corollary 3.21 Let F be a field, and let S be a subset of F[x]. Any two 
splitting fields of S over F are F-isomorphic. In particular; any two alge-
braic closures of F are F-isomorphic. 

Proof. For the proof of the first statement, the isomorphism extension 
theorem gives an isomorphism extending id on F between any two splitting 
fields of S. The second statement follows from the first, since any algebraic 
closure of F is a splitting field of the set of all nonconstant polynomials in 
F[x]. 

As a corollary to the existence and uniqueness of algebraic closures, we 
can prove that any algebraic extension of a field F can be viewed as living 
inside a fixed algebraic closure of F. 

Corollary 3.22 Let F be a field, and let N be an algebraic closure of F. 
If K is an algebraic extension of F, then K is isomorphic to a subfield of 
N. 

Proof. Let M be an algebraic closure of K. By Theorem 1.24, M is alge-
braic over F; hence, M is also an algebraic closure of F. Therefore, by the 
previous corollary, M N. If f : M N is an F-isomorphism, then f(K) 
is a subfield of N isomorphic to K. [1] 

We now go into more detail about splitting fields. One question we will 
address is the following. If K is the splitting field of a set S of polynomials 
over F, can we determine all of the polynomials in F[x] that split over K? 
Also, can we give a more intrinsic characterization of K, one that does not 
refer to the set S? The answer to both questions is yes and is found in 
Proposition 3.28. 

Definition 3.23 If K is a field extension of F, then K is normal over F 
if K is a splitting field of a set of polynomials over F. 

Example 3.24 If [K : F] = 2, then K is normal over F. For, if a E K — F, 
then K F(a), since [K F] = 2. If p(x) = min(F, a), then p has one root 
in K; hence, since deg(p) = 2, this polynomial factors over K. Because K 
is generated over F by the roots of p(x), we see that K is a splitting field 
for p(x) over F. 

Example 3.25 If FCLCK are fields such that K/F is normal, then 
K/L is normal. This is true because if K is the splitting field over F of 
a set of polynomials S C F[x], then K is generated over F by the roots 
of the polynomials in S. Consequently, K is generated by the roots as an 
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extension of L, so K is a splitting field of S over L, and so K is normal 
over L. 

Example 3.26 The field Q(co, 0) is normal over Q, since it is the split-
ting field of X 3  - 2 over Q. Similarly, if i = \,/-1, then Q( 0, i) is normal 
over Q, since it is the splitting field of x 4  — 2 over Q. The subfield Q(i) is 
also normal over Q, as it is the splitting field of X 2  1 over Q. However, 
the subfield Q( 0) is not normal over Q. At this point, we do not have 
an effective way of showing Q( 0)/Q is not normal, for we would have to 
show that there is no polynomial f E Q(x) whose roots generate Q( A. It 
is clear that min(Q, 1/-2-- ) does not split over Q(0), which will be enough 
to show that Q(0) is not normal over Q once we prove Proposition 3.28. 

Example 3.27 Let F be a field of characteristic p > 0, arid suppose that 
K a) with a,7/ E for each j. Then we show that K is z tormal 
over F. The minimal polynomial of ai  divides X P  - 4, which factors com-
pletely over K as X V  - = (X - a i )P; hence, min(F, ai) splits over K. Thus, 
K is the splitting field of {inin(F, a i ) : 1 < i < n} over F. Note that each 
min(F, ai ) has only one distinct root, and any F-automorphism of K is de-
termined by its action on the generators a l , , an , so Gal(K/F) 
For instance, if k(x l , 	, x„) is the rational function field in n variables over 
a field k of characteristic p, then 	, x)/k(4,. . . , 4) is a normal 
extension. 

If K is the splitting field over F of a set of polynomials S C F[x], then 
each polynomial in S splits over K. However, K can be viewed as a splitting 
field in other ways, as the following proposition shows. 

Proposition 3.28 If K is algebraic over F, then the following statements 
are equivalent: 

1. The field K is normal over F. 

2. If M is an algebraic  closure of K and if  : K 	M is an F- 
homomorphism, then -7- (K) =  K.  

3. If FCLCKCN are fields and if o : 	N is an F- 
homomorphism, then 0- (L) C  K,  and there is a T E Gal(K/F) with 
-7- 1L =  U.  

4. For any irreducible f(x) E F[x], if f has a root in  K, then f splits 
over K.  

Proof. (1) = (2): Let M be an algebraic closure of  K,  and let 7-  : K 	M 
be an F-homomorphism. If K is the splitting field for S C F[x] over F, 
then so is 7- (K) C AI by Lemma 3.17. Since K and T (K) are generated 
over F by the same set of roots, K = T(K). 
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(2) = (3): Suppose that FCLCKCN are fields and that a : L 	N 
is an F-homomorphism. Since L C K, the extension L/F is algebraic, and 

so o- (L) C N is algebraic over F. Let M' be the algebraic closure of F in 
N and let M be an algebraic closure of M'. Then M is also an algebraic 

closure of K. By the isomorphism extension theorem, there is an extension 
p:M 	M with tolL= o- . Let T pl.K •  By condition 2 we have 7- (K) = K, 
so  a(L) 7- (L) C 7- (K)  K.  Thus, T E Gal(K/F). 

(3) = (4): Let f(x) E F[x] be irreducible over F, and let a E K be a 
root of f. Let L F(a) C K and let N be an algebraic closure of K. If 

E 4-is any root of f, then there is an F-homomorphism o-  : 
given"by g(a) 	g({3). By condition 3, a(L) C K, so )3 E K. Hence, all 
roots of f lie in K, so f splits over K. 

(4) = (1): Condition 4 shows that min(F, a) splits over K for each a E K. 

Thus, K is thc  splitting field over F of finin(F, a) : a E Kl, so K is normal 
over F. 

One useful consequence of Proposition 3.28 is that if K is normal over 
F, then K is the splitting field of {min(F, a) : a E K} by condition 4. This 
is perhaps the most useful criterion to show that an extension is normal. 

Problems 

1. Show that K is a splitting field over F for a set {fi , 	, fr„} of poly- 
nomials in F[x] if and only if K is a splitting field over F for the 
single polynomial fi  

2. Let K be a splitting field of a set S of polynomials over F. If L is a 
subfield of K containing F for which each f E S splits over L, show 
that L=  K. 

3. If FCLCK are fields, and if K is a splitting field of S C F[x] over 
F, show that K is also a splitting field for S over L. 

4. (a) Let K be an algel n:'ically closed field extension of F. Show that 
the algebraic. closure of F in K is an algebraic closure of F. 

(b) If A = fa E C : a is algebraic over Ql, then, assuming that C is 
algebraically closed, show that A is an algebraic closure of Q. 

) 4 	) 

0 5. Give an example of fields FCK CL where L/K and KIF are 
normal but L/F is no! normal. 

6. Let f(x) be an irreducible polynomial over F of degree n, and let K 
be a field extension of F with [K : F] = m. If gcd(n,m) = 1, show 
that f is irreducible over K. 

7. Show that x 5  -  9x 3  ± 15x ± 6 is irreducible over Q(f2-", 
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9. Determine the splitting field of x4  — 7 over 
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10. Let F be a field, and let f(x) E F[x] be a polynoinial of prime dogree. 
Suppose for every field extension K of F that if f has a root in K, 
then f splits over K. Prove that either f is irreducible over F or f 
has a root (and hence splits) in F. 

11. Show that the hypotheses of the previous problem hold for 

(a) f(x) = xP — a, where char(F) = p and a E F. 

(b) f (x) = xP — x — a, where char(F) = p and a E  F.  

(c) f (x) = X P  — a, where char(F) p and F contains an element co 
with col' = 1 and co 	1. 

12. Let K be a field, and suppose that a E Aut(K) has infinite order. Let 
F be the fixed field of a. If K/F is algebraic,  show that K is normal 
over F. 

13. Let K be a normal extension of F, and let f (x) E F[x] be an irre-
ducible polynomial over F. Let gi (x) and g2 (x) be monic irreducible 
factors of f(x) in K[xj. Prove that there is a a E Gal(K/F) with 

0- (91) = 92. 

14. Let K be a normal extension of F, and let p(x) be an irreducible 
polynomial in F[x]. If p is not irreducible over K,  show that p factors 
over K into a product of irreducible polynomials of the same degree. 
In particular, if p has a root in K, then p splits over K. 

15. Let K and L be extensions of F. Show that KL is normal over F if 
both K and L are normal over F. Is the converse true? 

16. Let M be a normal extension of F. Suppose that a, a' E 11/1 are roots 
of min(F, a) and that b, b'  are roots of min(F, b). Determine whether 
or not there is an automorphism a E Gal(/V/1F) with  o(a) = a' and 
a(b)=b'.  FJL, 17 ,- 9,  
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problem Will prove that any syncluct,ric polynomial is a polyno-
mial in the elementary symmetric functions. This problem requires 
some knowledge of integral ring extensions along with theorems about 
algebraic independence from Section 19. Let K k(x i ,.. , x n ) be the 
field of rational functions in the xi  over a field k. Then the group Sn 
acts as automorphisms on K as in Example 2.22. Let f E k[x i ,... ,x n ] 
be a symmetric polynomial; that is, o- (f) = f for all o-  E  S.  Show 
that f E k[si,••• ,s721. 
(Hint: If F = T(Sn ), show that F n k[x,,... ,x 7,] is integral over 
k[s 1 , 	,s]. Moreover, show that k[s i , 	, s n ] is integrally closed 
since k[si, • . • sn] 	k[xi,... , x n ], a fact that falls out of Section 19.) 

18. Give an example of fields A: C K C T, and I C T, for which Ilk and 
TIK are algebraic:, k is algebraically closed  i  ii A,  and IK = L, but 1 
is not algebraically closed in L. 

19. This problem gives a construction of an algebraic closure of a field, 
due to E. Artin. Let F be a field, and let S be the set of all monic 
irreducible polynomials in F[x]. Let A = F[xf  : f E S] be a polyno-
mial ring with one variable for each polynomial in S. Let I be the 
ideal of A generated by all f (x f ) for f E S. Show that I 	A. Let 
M  3 I be a maximal ideal of A, and let F1  = A/M. Then F1  is an 
extension of F in which each f E S has a root. Given the field Fi , 
construct the field Fi+1  by repeating this procedure starting with Fi  
as the base field in place of F. Let L = Lf 1 Fn . Show that each 
f E S splits into linear factors over L, and show that the algebraic 
closure of F in L is an algebraic closure of F. 

4 Separable and Inseparable Extensions 

Recall from Corollary 2.17 that an algebraic extension  F(a)/F fails to 
be Galois if either min(F, a) does not split over F(a) or if min(F, a) has 
repeated roots. In the previous section, we investigated field extensions 
KIF for which min(F, a) splits over K for each a E K. In this section, we 
investigate when a minimal polynomial has repeated roots. We point out 
that in the case of fields of characteristic 0, there is no problem of repeated 
roots, as we show below. 

Let f(x) E F[x]. A root a of f has multiplicity rn if (x — ctri divides 
f (x) but (x — a)m + ' does not divide f.  If  in > 1, then a is called a repeated 
root of  J.  

Definition 4.1 Let F be a field. An irreducible polynomial f (x) E F[x] 
is separable over F if f has no repeated roots in any splitting field. A 
polynomial g(x) E F[x) is separable over F if all irreducible'• factors of g 
are separable over F. 
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Example 4.2 The polynomial x 2  — 2 is separable over Q, as is (x — 1) 9 . 
The polynomial x2  x + 1 is separable over IF2 , since we saw in Example 

2.8 that if a is a root, then so is a ± 1. Suppose that char(F) = p and 
a E F —  F. Then X P  — a is irreducible over F (see Problem 5), but it is 

not separable over F, since it has at most one root in any extension field 
of F. Note that if a is a root of xP — a, then xP — a is separable over  F(o).  

The following lemma gives some basic properties of separability. 

Lemma 4.3 Let f (x) and g(x) be polynomials over a field F. 

1. If f has no repeated roots in any splitting field, then f is separable 
over F. 

2. If g divides f and if f is separable over F, then g is separable over 
F. 

3. If 	fn are separable polynomials over F, then the product 

fi • • • fn is separable over F. 

4. If f is separable over F, then f is separable over any extension field 
of F. 

Proof. For property 1, if f has no repeated roots in any splitting field, then 
neither does any irreducible factor of f. Thus, f is separable over F. To 
show property 2, if g divides f with f separable over F, then no irreducible 
factor of f has a repeated root. However, the irreducible factors of g are 
also irreducible factors of f. Thus, g is separable over F. To prove property 
3, we see that the set of irreducible factors of the fi  is precisely the set 
of irreducible factors of the polynomial fi  • f„. Each of these irreducible 
factors have no repeated roots, so fi  • • f„ is separable over F. Finally, for 
property 4, let f (x) E F[x] be separable over F,  and let K be an extension 
of  F.  If p(x) is an irreducible factor of f (x) in K[x], let a be a root of p in 
some algebraic closure of  hT,  and set q(x) min(F, a). Then q(x) E K[x], 
so p divides q. But q lias no repeated roots, since q is an irreducible factor 
of  f.  Thus, p has no repeated roots, so f is separable over K. 

In order to have an effective test for separability, we need the concept of 
polynomial differentiation. A more general notion of differentiation, that 
of a derivation, will be used to study transcendental extensions in Chapter 
V. 

Definition 4.4 If f (x) = ao + alx + • • • ± a„xn E F[x], then the formal 
derivative sr Go is defined by f' (x) =  a 1  + 20,2 x + • • • + na„x1 L -1 . 

The formal derivative of a polynomial is well defined for any field F. 
We do not need limits in order to define it, as we do in calculus. However, 
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some strange things can happen in prime characteristic. For instance, the 
derivative of XP is 0 if the base field has characteristic p. 

The formal derivative satisfies the same basic properties as the derivative 
of calculus. If f (x), g(x) E F[x] and a, b E F, then 

1. (a f (x) + bg(x)) 1  = a f (x) + bg' (x); 

2. (f (x)g(x))/ = 	(x)g(x) + f (x)g' (x); 

3. (f (g(x))/ = 	(g(x))g' (x). 

The proof of these properties is straightforward and is left to Problem 1. 
By using derivatives, we obtain a good test for determining when a poly-

nomial has a repeated root. This test is given in the following proposition. 

Proposition 4.5 Let f(x) E F[x] be a nonconstant polynomial. Then f 
has no repeated roots in a splitting field if and only if gcd(f, f') = 1 in 
F[x]. 

Proof. We first point out that f and f' are relatively prime in F[xl if 
and only if they are relatively prime in K[x]. To prove this, suppose that 
gcd(f, f') = 1 in F[x]. Then there are polynomials g,h E F[x] with 1 = 
fg + fh. This also is an equation in K[x], so the gcd in K[x] of f and 
f' must divide 1. Thus, gcd(f, f') = 1 in K[x]. Conversely, suppose that 
gcd(f, f')= 1 in K[x]. If d is the gcd of f and f' in F[x], then d E K[x], 
so d divides 1; thus, f and f' are relatively prime in F[x]. 

Suppose that f and f' are relatively prime in F[x]. In particular, let K 
be a splitting field of {f, f'} over F. If f and f' have a common root a E K, 
then x — a divides both f and f' in K[xj. This would contradict the fact 
that f and f' are relatively prime in K[xj. Therefore, f and f' have no 
common roots. 

Conversely, if f and f' have no common roots in a splitting field K of 

{f, f'},  let d(x) be the greatest common divisor in K[x] of f(x) and f(x). 
Then d splits over K since f splits over K and d divides f.  Any root of d 
is then a common root of f and f' since d also divides f'. Thus, d(x) has 
no roots, so d = 1. Therefore, f and f' are relatively prime over K; hence, 
they are also relatively prime over F. 

With this derivative test, we can give the following criteria for when a 
polynomial is separable. Note that this test does not require that we know 
the roots of a polynomial. 

Proposition 4.6 Let f (x) E F[x] be an, irreducible polynomial. 

1. If char(F) = 0, then f is separable over F. If char(F) = p > 0, then 
f is separable over F if and only if f(x) 0, and this occurs if and 
only if f(x) F[xl. 
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g(x) E F[x] that is irreducible and separable over F. 

Proof. If f(x) E F[x] is irreducible over F, then the only possibility for 
gcd(f, f') is 1 or f. If char(F) = 0, then deg(f) = deg(f)— 1; thus, f does 
not divide f', and so gcd(f, f') = 1. Therefore, by Proposition 4.5, f has 
no repeated roots, so f is separable over F. If char(F) = p > 0, the same 
reasoning shows gcd(f,f) = f if and only if f divides f', if and only if 
f' (x) = 0, if and only if f (x) E F[xP]. 

For statement 2, suppose that char(F) = p, and let f (x) E F[x]. Let 'm 
be maximal such that f(x) E F[xPni j. Such an m exists, since f E F[xP° 1 
and f lies in F[xPII for only finitely many r because any nonconstant 
polynomial in F[xP ]  has degree at least pr. Say f(x) = g(xP ). Then 
g(x) F[xP1 by maximality of m. Moreover, g(x) is irreducible over F, 
since if g(x) = h(x) • k(x), then f (x) = h(xP7") • k(xP m  ) is reducible over F. 
By statement 2, g is separable over F. 

We now extend the concept of separability to field elements and field 
extensions. 

Definition 4.7 Let K be an extension field of F and let a E K. Then 
a is separable over F if min(F, a) is separable over F. If every a E K is 
separable over F, then K is separable over F. 

Example 4.8 If F is a field of characteristic 0, then any algebraic exten-
sion of F is separable over F, since every polynomial in F[x] is separable 
over F. If k is a field of characteristic p > 0 and if k(x) is the rational 
function field in one variable over k, then the extension  k(x)/k(x) is not 
separable, for min(k(xP),x) = tP — xP , which has only x as a root. 

We are now in a position to give a characterization of Galois extension. 
This characterization is the most common way to show that a field exten-
sion is Galois. 

Theorem 4.9 Let K be an algebraic extension of F. Then the following 
statements are equivalent: 

1. K is Galois over F. 

2. K is normal and separable over F. 

3. K is a splitting field of a set of separable polynomials over F. 

Proof. (1) 	(2): Suppose that K is Galois over F, and let a E K. Let 

, an  be the distinct elements of the set { g(a) : cr E Gal(K/F) 1. 
This set is finite by Lemma 2.3, since each  o(ci) is a root of min(F, a). Let 
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the coefficients of f lie in 1- (Gal(K/F)) =  F, so f(x) E F[x]. Therefore, 
inin(F, a) divides f, and so min(F, a) splits over K and lias no repeated 
roots. Since this is true for each a E K, the field K is the splitting field of 
the set {min(F, a) : a E K}  of polynomials separable over F. Hence, K/F 
is normal and separable. 

(2) (3): If KI F is normal and separable, then K is the splitting field 
of the set of separable polynomials {min(F, 	:aEK} by Proposition 
3.28 

(3) (1): We first assume that [K : F] <  oc,  and we use induction 
on n = [K : F]. If n = 1, then K 	F is trivially Galois over F. So, 
suppose that n > 1 and that the result holds for field extensions of degree 
less than n. Say K is the splitting field of the set of separable polynomials 
tfi (x)}. Since n > 1, there is a root a of one of the fi  which is not in 
F. Let L = F(u). Then [L : F] > 1, so [K : L] < n. Since K is the 
splitting field over L of the {fi},  which are separable over L, by induction 
K is Galois over L. Let H Gal(K/L), a subgroup of Gal(K/F). Let 

be the distinct roots of min(F, a). Then, since a is separable 
over F, we have  [L:  F] = r. By the isomorphism extension theorem, there 
are Ti E Gal(K/F) with Ti (a) = a i . The cosets Ti H are then distinct, since 
if E H -= Gal(K/L), then (Ti—i ri )(a) = a; hence, a i  = Ti (a) = 

ai . Let G = Gal(K/F). We have 

= 	: HI • 1H1 > r •IH1 = [L F] • [K : L] = [K : F]. 

Since ICI < [K : F] by Proposition 2.13, we get ICI = [K : F], so K is 
Galois over F. 

Now suppose that K/F is arbitrary. By hypothesis, K is the splitting 
field over F of a set S of separable polynomials over F. Let X be the set of 
roots of all of these polynomials. So, K = F(X). Let a E 1- (Gal(K/F)). We 
wish to show that a E F. There is a finite subset 1g , 	, an } C X with a E 
F(a l , 	, a ri ). Let L C K be the splitting field of {min(F, a i ) : 1 < i < n } . 
Then, by  the previous paragraph, L/F is a finite Galois extension. Note 
that a E L. An application of the isomorphism extension theorem shows 
that each element of Gal(L/F) extends to an F-automorphism of K, and 
so Proposition  3.28 implies that 

Gal(L/F) {o - IL : a E Gal(K/F)} . 

Therefore, a E 1-(Gal(L/F)), and this fixed field is F, since LIF is Galois. 
This proves 1-(Gal(K/F)) = F, so KIF is Galois. 

Corollary 4.10 Let L be a finite extension of F. 

1. L is separable over F if and only if L is contained in a Galois exten-
sion of F. 
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2. If L 	 ,a„) with each ai  separable over F, then L is sepa- 
rable over F. 

Proof. If L C K with K F Galois, then K F is separable by Theorem 4.9. 
Hence, L/F is separable. Conversely, suppose that L/F is separable. Since 

[L : F] <  oc,  we may write L = F (ai  , , an ) , and each ai  is separable 
over F. If K is the splitting field of {min(F, a i ) : 1 < i < 77 } , then L C K, 
and K I F is Galois by Theorem 4.9. 

For the proof of statement 2, let L = F(ai ,... , an ) with each ai  sepa-
rable over F. Then each min(F, a i ) is a separable polynomial over F. If K 
is the splitting field of these polynomials, then K/F is Galois by Theorem 
4.9. Thus, again by that theorem, K is separable over F. Since L C K, we 
see that L is separable over F. 

Fields for which all algebraic extensions are separable are particularly 
well behaved. We now determine which fields have this property. 

Definition 4.11 A field F is peilect if every algebraze extension of F is 
separable. 

Example 4.12 Any field of characteristic 0 is perfect. Therefore, ally field 
containing Q or contained in C is perfect. Any algebraically closed field is 
perfect for the trivial reason that there are no proper algebraic extensions 
of an algebraically closed fi eld. 

The following theorem characterizes perfect fields of prime characteristic. 
We have seen in previous examples that if a E F — FP  , then X P  — a is an 
irreducible polynomial that is not separable. Therefore, for F to be perfect, 
we must have FP = F. We now show this is sufficient to ensure that F is 
perfect. 

Theorem 4.13 Let F be a field of characteristic p. Then F is perfect  if 
and only if FP = F. 

Proof. Suppose that F is perfect. Let a E F, and consider the field K = 
F(a), where a is a root of xP — a. The minimal polynomial of a divides 
xP — a = (x — However, K is separable over F since F is perfect; 
thus, this minimal polynomial has no repeated roots. This means a E F, 
so a E FP. 

Conversely, suppose that FP = F. Let K be an algebraic extension of F, 
and let a E K. If p(x) = min(F, a), then by Proposition 4.6 there is an m 
with p(x) = g(xPm ) for some g(x) E F[x] with g irreducible and separable 
over F. If g(x) = a() + al x + • • , + xr, then there are bi  E F with 1)1: = a. 

for all i. Then p(x) = = (Ei  bi x ii )P. This contradicts the 
irreducibility of p unless m = I. Thus, p = g is separable over F, so a is 
separable over F. Therefore, any algebraic extension of F is separable, so 
F is perfect. 
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Example 4.14 Any finite field is perfect; to prove this, let F be a finite 
field. The map cio : F F given by (p(a) aP is a nonzero field homo-
morplaism, so cio is injective. Since F is finite, cio is also surjective. Thus, 
FP = im((p) = F,  so F is perfect by Theorem 4.13. We give another proof 

of this fact in Corollary 6.13. 

Purely inseparable extensions 

We now discuss the condition diametrically opposed to separability. This 
situation is only relevant in prime characteristic, since any algebraic exten-
sion in characteristic 0 is separable. If F is a field of characteristic p > 0, 
and if a E F, then X P  — a has only one distinct root in any splitting field, 
since if a is a root of f, then xP — a = (x — a)P . In  this case, aP =  a E  F.  

Definition 4.15 Let K be an algebraic field extension of  F.  An element 
a E K is purely inseparable over F if min(F, a) has only one distinct root. 
The field K is purely inseparable over F  if every element in K is purely 
inseparable over F.  

The definition of purely inseparable requires that we know how many 
roots there are of a minimal polynomial of an element. The following lemma 
gives an easier way to determine when an element is purely inseparable over 
a field. 

Lemma 4.16 Let F be a field of characteristic p>  O. If a is algebraic over 
F, then a is purely inseparable over F if and only if aPn  E F for some n. 
When this happens, min(F, a) (x — a)P n  for some n. 

Proof. If c 	a E  F,  then a is a root of the polynomial xPn  — a. 
This polynomial factors over  F(c)  as (x 	and min(F, a) divides this 
polynomial, so min(F, a) has only a as a root. Conversely, suppose that a is 
purely inseparable over F,  and let f (x) = min(F, a). There is a separable 
irreducible polynomial g(x) over F with f(x) 	g(x) by Proposition 
4.6. If g factors over a splitting field as g(x) 	(x — b 1 ) • • • (x — b r ), then 
f (x) = (xPrn  — b i ) (x  br ). If  r> 1, then separability of g says that 
the b, are distinct. By assumption, the only root of f is a. Thus, bi  aPm  

for each  i.  Hence, r = 1, so f (x) = xPni  — b 1 . Therefore, aP ni  E  F,  and 
min(F, a) = X P'n  — b 1  = (x a)Pni . 

The basic properties of purely inseparable extensions are given in the 
following lemma. 

Lemma 4.17 Let K be an algebraic extension of F . 

I, If a E K is separable and purely inseparable over F, then a E  F.  
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Nil. Moreover, if [K : 	<  oc,  and if p = char(P), then [K.  : 	= 
p" for some n. 

3. If K = F(X) with each a E X purely inseparable over F, then K is 
purely inseparable over F. 

4. If FCLCK are fields, then KIF is purely inseparable if and only 
if K L and LI F are purely inseparable. 

Proof. Suppose that a E K is both separable and purely inseparable over 
F. Then min(F, a) has only one distinct root, and it also has no repeated 
roots. Therefore, p(x) = x — a, so a E F. 

For property 2, if KI F is purely inseparable, then each min(F, a) splits 
over K, since the only root of min(F, a) is a itself. Consequently, K is 
normal over F by Proposition 3.28. If a E Gal(K/F), then, for any a E K, 
the automorphism a maps a to a root of min(F, a). Thus,  a(c) = a, so 
o-  = id. Therefore, Gal(K/F) 	{id}.  If [K : F] <  oc,  then K is finitely 
generated over F; say, K = F(ai ,... , a„). To prove that [K: 	is a power 
of p = char( F), by Proposition 1.20 it suffices by induction to prove this I]] 
the case K = F(a). But then [K:  F] deg(min(F, a)), which is a power 
of p by the previous lemma. 

To prove property 3, suppose that K is generated over F by a set X of 
elements purely inseparable over F. Let a E K. Then a E F(a i  , , an ) 
for some ai E X. Since each a i  is purely inseparable over F, there is an m 
such that ar E F for each i. Because a is a polynomial in the a i , we see 
that aPrn  E F. This forces min(F, a) to divide (x —  a)11 ;  hence, min(F, a) 
has only one distinct root. Therefore, a is purely inseparable over F, and 
so KI F is purely inseparable. 

Finally, for property 4, if K/F is purely inseparable, then for any a E K, 
there is an m with aPni  E F. Thus, aPni  E L, so KIL is purely inseparable. 
It is clear that L/F is purely inseparable. Conversely, if LIF and KIL 
are purely inseparable, let a E K. Then aP"' E L for some m, and so 

r 
 

(a' m )' = aP
rn 4-r 

 E F for some r. Therefore, K/F is purely inseparable. 
El 

Example 4.18 A field extension need not be either separable or purely 

inseparable. For instance, if F =F2 (x) is the rational function field in one 

variable over IF 2 , and if K 	F(x 116 ), then K 	F(fi, -N3,5). Moreover, 

fi is purely inseparable over F, and is separable over F. The subfield 

F(Ii) is purely inseparable over F, and the subfield 171 ( Ci) is separable 

over F. 

In the previous example, we can show that F(  /) consists of all the 
elements of K that are separable over F and that F(Ii) consists of all the 
elements of K that are purely inseparable over F. This is a special case of 
the following lemma. We first give the relevant definitions. 



Definition 4.19 Let K be a field extension of F. then the, separable clo-
sure of P in K is the set {a E  K : a is separable over F}. The purely insep-
arable closure of F in K is the set {a E K : a is purely inseparable over 

The separable and purely inseparable closures of  P in K are fields, as we 
now show. 

Proposition 4.20 Let K be a field extension of F. If S and I are the 
separable and purely inseparable closures of F in  K, respectively, then S 
and I are field extensions of F with SI F separable, I I F purely inseparable, 
and S nI= F. If K I F is algebraic, then K I S is purely inseparable. 

Proof. Let a,b E S. Then F(a,b) is a separable extension of F by Lemma 
410. Hence, a ± b, ab, and alb are separable over F, so they all lie in S. 
Thus, S is a field. For  I,  if c, d E  I ,  then there are n,m with e a  E F and 

dPrn  E F. Setting N = rim,  we have (c ±d)PN  , (cd)PN  , and (c/d)P N  E F. 
Thus, c± d, cd, and c/d belong to /, so / is a field. The equality snI= F 
holds, since sn / is both separable and purely inseparable over F. Finally, 
suppose that K/F is algebraic. If a E K, then min(f,', = g(xP a ) for 
some separable, irreducible polynomial g(x) E F[x] by Proposition 4.6. If 
a = ctP r', then g(a) = 0, so g(x) = min(F, a). Therefore, a is separable over 
F, so cO n  = a E S. Thus, K/S is purely inseparable. 

If K/F is an algebraic extension, we can break up the extension K/F into 
a separable extension S/F followed by a purely inseparable extension K/S, 
where S is the separable closure of F in K. Use of the separable closure is 
a nice tool to prove results dealing with separability. As an illustration, we 
prove that separability is a transitive property. 

Proposition 4.21 If F CL CK are fields such that L IF and K L are 
separable, then K IF is separable. 

Proof. Let S be the separable closure of F in K. Then L C S, as L/F 
is separable. Also, since KA is separable, KIS is separable. But KIS is 
purely inseparable, so K = S. Thus, K is separable  ove!'  F. 

Example 4.22 Let K be a finite extension of F, and suppose that char(F) 
does not divide [K : F]. We show that K IF is separable. If char(F) = 0, 
then this is clear, so suppose that char(F) = p > O. Let S be the separable 

closure of F in K. Then KIS is purely inseparable, so [K : = pn for 

some n by Lemma 4.17. However, since p does not divide [K : F], this 
forces [K : 1. Thus, K S, so K is separable over F. 

A natural question that Proposition 4.20 raises is whether the extension 
K I I is separable. The answer in general is no, although it is true if K/F 
is normal, as we now show. 
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Theorem 4.23 Let K be a normal extension of F, and let S and I be 
the separable and purely inseparable closures of F  in K, respectively. Then 
S1F is Galois, I = T(Gal(K/F)), and Gal(SIF) Gal(K//). Thus, K I I 
is Galois. Moreover, K = SI. 

Proof. Let a E  S,  and set f (x) = min(F, a). Since K is normal over F,  
the polynomial f splits over K. Since a is separable over F, the polynomial 
f has no repeated roots, so all its roots are separable over S. Thus, f 
splits over S. Hence, S is normal over F by Proposition 3.28, and since 

S is separable over F, we see by Theorem 4.9 that S is Galois over F. 
The map 0:  Gal(KIF) —> Gal(S/F) given by 0(a) = as  is a well-defined 
group homomorphism. The kernel of  G is Gal(K/S), and this group is trivial 
by Lemma 4.17 since K is purely inseparable over S. By the isomorphism 
extension theorem, if T E Gal(S/F), there is a a E Gal(K/F) with as  = T. 

Thus, 0 is an isomorphism. 
To show that I = T(Gal(K I F)), if a E I, then O n  E F for some n. 

For a E Gal(K/F), we have  a 	a(a t ) = a (a)P' , so a(a) = a. Thus, 
C T(Gal(K IF)). Conversely, take b E T(Gal(K/F)). There is an n with 

E S because K/S is purely inseparable. Let T E Gal(S/F). Since 0 is 
surjective, there is a a E Gal(K/F) with T = 0(a) = as.  Then 7- (bPn  ) = 
a(V) = bP" . This is true for each T; hence, bPn  E T(Gal(S F)) = F. This 
equality holds since S is Galois over F. Thus, b is purely inseparable over 
F. This proves I = T(Gal(K IF)), so Gal(K/F) = Gal(K/T). Therefore, 
K is Galois over I; hence, K 1 I is separable. Finally, K is separable over SI 
since IC SI, and K is purely inseparable over SI since SC SI. Therefore, 
K = SI. 

Let K be a finite extension of F. If S and I are the separable and purely 
inseparable closures of F in  K,  respectively, we define the separable degree 
[K:  1, ] , of K/F to be [S:  F]  and the inseparable degree [K : 	to be 
[K : S]. With these definitions, we see that [K : FMK : 	= [K : FL By 
Theorem 4.23, if K/F is normal, then [K : I]  = [S : F], and so [K : LS] = 
[I : F]. However, as the example below shows, in general [K 	[I : 
The inseparable degree is defined to be [K : S] and not : because the 
degree [K : S] is a better measure for how far the extension K/F is from 
being separable. The example below shows that it is possible to have / = F 
even if K is not separable over F. We will use the concepts of separable 
and inseparable degrees in Section 8. 

Example 4.24 We give an example of a field extension K/F in which 
K is not separable over the purely inseparable closure I of F in K. This 
is also an example of a nonseparable field extension K F in which the 
purely inseparable closure is F. Let k be a field of characteristic 2, let F be 

the rational function lield F = , y), let S = F(u), where a is a root of 
t2  t X, and let K S ( V7i, 7 ) . Then K/S is purely inseparable and SI F is 
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separable, so S is the separable closure of F in K. We will show that I = F, 
which will prove that KII is not separable since KIS is not separable. To 
do this, we show that if a  E K with a2  E F, then a C F. A basis for KiF 
is 1, u, Vuy, and uVuy. Say a2  E F and write a = 0u+-yVuy +6uVuy 
with a, 0,7,6  E F. Then 

a2 (1 2 ± 02( u 	,72(uy) ± 62(u  ± x ) uy.  

The coefficient of u is zero since a2  E F, so 

02 ± ± 6 )2 y  ± 62xy  O.  

If 6 = 0, then 02 	= 0, so -y = 0 since y is not a square in F. But then 

i3 =0, so a C F.  If öL  0, then 

2 

= 	± 1)
2 
 ±  

—6 

which means that x  E  F2 (y). But this is impossible. Thus, 6 = 0, and so 
we conclude that a  E F. Thus, I = F, so KII is not separable. Note that 
K 	SI also. 	

) 	 L, 
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Problems 

1. Prove the sum, product, and chain rules for formal polynomial dif- 
ferentiation in F[x]. 

F< /r  / 51p 
 

2. If FCLCK are fields such that K/F is separable, show that LIF 
and KIL are sepal.' able. 

3. If K is a field extension of F and if a  E K is not separable over 
F, show that aPrn  is separable over F for some in  > 0, where p 
char(F). 

4. Let F  CL C K be fields such that KIL is normal and L/F is purely 
inseparable. Show that K/F is normal. 

5. Let F be a field of characteristic p>  0, and let a C F —  F. Show 
that xP — a is irreducible over F. 

6. Let F be a field of characteristic p>  0, and let K be a purely insep-
arable extension of F with [K : F] =ptm. Prove that aPn E F for all 
a C K. 

7. Let K and L be extensions of F. Show that KL is separable over F 
if both K and L are separable over F. Is the converse true? 



8. Let K and L be extensions of F. Show that K L is purely inseparable 
over F if both K and L are purely inseparable Over F. Is the converse 
true? 

9. Let K and L be extensions of F. Show that K L is Galois over F if 
both K and L are Galois over F. Is the converse true? 

10. Let K and L be subfields of a common field, both of which contain a 
field F. Prove the following statements. 

(a) If K = F(X) for some set X C K, then KL = L(X). 

(b) [K L : F] < [K : F] • [L : F]. 

(c) If K and L are algebraic over F, then KL is algebraic over F. 

(d) Prove that the previous statement remains true when "alge-
braic" is replaced by "normal," "separable," "purely insepara-
ble," or "Galois." 

11. Let K be the rational function field k(x) over a perfect field k of 
characteristic p > 0. Let F = k(u) for some u E K, and write 
u = f(x)/g(x) with f and g relatively prime. Show that K/F is 
a separable extension if and only if u  K.  

12. Let K be a finite extension of F with char F =  p>  0 and KP C F. 
Thus, K/F is purely inseparable. A set { ad , , an } C K is said to be 
a p-basis for K/F provided that there is a chain of proper extensions 

IA.,,  

F  C  F(ai ) c • • • c F(an ) = K. (2. 

Show that if { al  , 	, an } is a p-basis for K/F, then [K : 1, ]  = pn, 
and conclude that the number of elements in a p-basis is uniquely 
determined by K/F. The number n is called the p-dimension of K F. 
Also, show that any finite purely inseparable extension has a p-basis. 

13. Give three examples of a field extension K F which is neither normal 
nor separable. Note that two such examples are given in the section. 

14. Let k be a field of characteristic p>  0, let K = k(x , y) be the rational 
function field over k in two variables, and let F = k(xP , yP). Show 
that K F is a purely inseparable extension of degree p2 . Show that 
K F(a) for any a E K. 

15. Prove the following product formulas for separability and insepara-
bility degree: If FCLCK are fields, then show that [K : F], = 
[K:  L]S[L : FL, and  [K:  = [K:  L] i [L : F]i. 
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We are now in the position to prove the fundamental theorem of Galois 
theory, which describes the intermediate fields of a Galois extension K F 
in terms of the subgroups of the Galois group Gal(K/F). This theorem 
allows us to translate many questions about fields into questions about 
finite groups. As an application of this theorem, we give a mostly algebraic 
proof of the fundamental theorem of algebra, which says that the complex 
field C is algebraically closed. 

Theorem 5.1 (Fundamental Theorem of Galois Theory) Let K be 
a finite Galois extension of F, and let G = Gal(K/F). Then there is a 1- 1 
inclusion reversing correspondence between intermediate fields of K IF and 
subgroups of G, given by L 	Gal(K/L) and H 1---+ T(H). Furthermore, if 
L 	H, then [K L] = _T-1] and [L : F] = [G : H]. Moreover, H is normal 
in G if and only if L is Galois over F. When this occurs, Gal(L/F) -=-̀z- GI H. 

Proof. We have seen in Lemma 2.9 that the maps L 	Gal(K/L) and 
H 	T(H) give injective inclusion reversing correspondences between the 
set of fixed fields L with FC LCK and the set of subgroups of G of 
the form Gal(K/L) for some L with FCL C K. Let L be a subfield of 
K containing F. Since K is Galois over F, the extension K is normal and 
separable over F. Thus, K is also normal and separable over L, so K is 
Galois over L. Hence, L = T(Gal(K IL)), so any intermediate field is a 
fixed field. Also, if H is a subgroup of G, then H is a finite group, so H = 
Gal(K/T(H)) by Proposition 2.14. Every subgroup of G is therefore such 
a Galois group. The maps above then yield the desired correspondences. 
Recall that 1Gal(K/F)1 	[K : F] if K is Galois over F by Proposition 
2.14. Thus, if L 	H, we have  H = [K : L], since K is Galois over L and 
H = Gal(K/L). Therefore, 

[G : H] = A/A = [K : F]I[K : L] = [L : F]. 

Suppose that H is normal in G, and let L = T(H). Take a E L, and let b 
be any root of min(F, a) in K. By the isomorphism extension theorem, there 
is a a E G with  a(a) = b. If T E H, then T(b) = To- (a)). However, 
since H is normal in G, the element o--1 To-  E H, so o--1 7- o- (a) = a. Thus, 
T(b) = a(a) = b, so b E T(H) = L. Since min(F, a) splits over K, this 
shows that min(F, a) actually splits over L. Therefore, L is normal over F 
by Proposition 3.28. Since KIF is separable and LCK, the extension L/F 
is also separable, and so L is Galois over F. Conversely, suppose that L is 
Galois over F. Let  0:  G —> Gal(L/F) be given by 0(o- ) = olL . Normality of 
LI F shows that o- L, E Gal(L/F) by Proposition 3.28, so 0 is a well-defined 
group homomorphism. The kernel of 0 is 

ker(9) = { o-  E  K: 	= id} = Gal(K/L) = H. 
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Therefore, H is normal in G. The map  Ois surjective since,  if  'r E Gal(L/F), 
then there is a u E G with ()IL T by the isomorphism extension theorem. 
Thus, Gal(L/F) G/H. 

Given a Galois extension K/F, on the surface it would seem to be in-
tractable to determine all intermediate fields; the main problem is know-
ing whether we have found all of them. However, the Galois group G = 
Gal(K/F) is a finite group, which means that there is a systematic way of 
finding all subgroups of G. By finding all subgroups, we can then deter-
mine the fixed fields of each, thereby having all intermediate fields by the 
fundamental theorem. The next two examples illustrate this procedure. Of 
course, if G is large, it may be too complicated to find all subgroups of G. 

Example 5.2 The field Q( 0,w) is Galois over Q, as we have seen pre-
viously. The Galois group is a group of order G. From group theory, there 

are two nonisomorphic groups of order 6: the cyclic group Z/67L and the 
symmetric group 83. Which is the Galois group? The subfield Q(0) is 
not Galois over Q, since the minimal polynomial of 0 does not split over 
Q(0). Therefore, the corresponding subgroup is not normal in G. How-
ever, every subgroup of an Abelian group is normal, so our Galois group 
is non-Abelian. Thus, G = Gal(Q(0,w)/Q) (J 83. We can also explic-
itly demonstrate this isomorphism. By the isomorphism extension theorem, 
there are Q-automorphisms  a , T of Q( 0, co) with 

: 	_> co Ny-2- , co _> co, 

	

T "V 	 -> W 2  . 

It is easy to check that a has order 3, T has order 2, and 0-  T 	T . The 
subgroups of the Galois group are then 

(id) , (a) 7  (T) (ay) , (a 2 T) G. 

The corresponding fixed fields are 

Q(w), Q( ),  0:2(w 2 ), Q(co 	 )
, Q. 

One way to verify that these fields are in fact the correct ones is to show 
that, for any of these fields, the field is indeed fixed by the appropriate 
subgroup and its dimension over Q is correct. For instance, 0 is fixed 
by T; hence, Q(0) C .F(T). Since the index [G : (7)] = 3, we must have 

: 	= 3. But p(o) 	3, so 0(0) = T(T). This use of 
dimension is extremely useful in determining the fixed field of a subgroup. 
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Example 5.3 Let K = Q(0 , \/). Then K is the splitting field of 
{ x 2 2,  x2 3} over Q or, alternatively, the splitting field of  (x 2 -2)(x 2 -3)  
over Q. The dimension of K/Q is 4. The four automorphisms of K Q are 
given by 

a: 	- 	, 	, 

T 	 'S 
 

T : 	- 	 -> 

This Galois group is Abelian and is isomorphic to Z/ 2Z x Z/ 2Z. The sub-
groups of G = Gal(K/Q) are 

(id) , (a) , (y) , (a-r) ,  C.  

The corresponding intermediate fields are 

K Q( ), 	Q(), Q. 

Example 5.4 Let F = C(t) be the rational function field in one variable 
over C, and let f(x) = xn — t E F[X]. The polynomial f is irreducible over 
F by the Eisenstein criterion, since F is the quotient field of the unique 



factorization domain  L:[t] and t is an irreducible element of Citi. Let A be 
the splitting field of f over F.  Then K = F(o),  where a is any root of f (x). 
To see this, if w = exp(271-i/n), then con = 1, so w ia is a root of f(x) for 
each j. There are exactly n distinct powers of co, so the n distinct elements 
a, wa, ,con-l a are precisely the roots of  f.  All of these lie in  F(c)  and 
generate  F(o),  so K = F(a).  The extension K/F is then Galois since f 
has no repeated roots. We see that [K : F] = deg(f) = n. 

The isomorphism extension theorem tells us that there is an automor-
phism a of K defined by o-  (a) = wa. This formula yields that o- i (a)  
for each j , so ai  (a)  =  a if and only if n divides j. Thus, a has order n in 
Gal(K/F). This forces Gal(K/F) to be the cyclic group generated by a. 
Each subgroup of (a) is cyclic and can be generated by an element am with 
in  a divisor of n. Given a divisor in  of n, if n = ink,  then the element ak  

is fixed by am, since 

o_m(ak) 	(w ma)k 

co n a k 	ak .  

Moreover,  F(c) is the fixed field of  (am))  for, if m' is a divisor of n 
and  am' ( c ) = a k , then  wm'k ci k , which forces n to divide  m' k . 

But, n = mk, so m divides m', and thus am' E (am). This proves that 
Gal(K/F(a k )) = (am), so the fundamental theorem tells us that  F(c) 
is the fixed field of (am). We have thus determined the subgroups of 
Gal(K/F) and the intermediate fields of K I F to be 

{(am))  : m divides n} , 

fF(a k ) : k divides n} , 

with the correspondence  F(c) 	(am) if km = n. 

Let K I F be Galois, and let L be any extension field of F with K and L 
inside some common field. Then KLIL is Galois, since if K is the splitting 
field of a set of separable polynomials over F,  then K L is the  splitting  field 
of the same set of polynomials over L,  and if f (x) E F[x], is separable over 
F,  then f(x) is separable over L. The following theorem determines the 
Galois group of KLIL and the degree of this extension. 

KL 

KflL- 



Theorem 5.5 (Natural Irrationalities) Let K be a finzte Galois exten-
sion of  F,  and let L be an arbitrary extension of F.  Then KLIL is Galois 
and Gal(KL/L) Gal(K/KnL). Moreover,  [K L: L] = [K : K n . 

Proof. Define O:  Gal(K L/ L) 	Gal(K/F) by 0(a) = crIK . This map is 

well defined since K is normal over F, and 0 is a group homomorphism. 

The kernel of 0 is {o -  E Gal(KL/L) : o- LK = id}. However, if a E ker(9), 
then o- L, = id and Cric = id. Thus, the fixed field of a contains both K and 
L, so  it contains KL. That means a = id, so 0 is injective. Since the image 
of 0 is a subgroup of Gal(K/F), this image is equal to Gal(K/E), where E 
is the fixed field of this image. We show that E K n L. If a EKnL, then 
a is fixed by a K for each a E Gal(KL/L). Therefore, a E E, so KnL c E. 
For the reverse inclusion, let a E E. Then a E K and a- 1_0a) = a for all 

E Gal(KL/ L). Thus,  a(a) = a for all such o- , so a E L. This shows 
ECKnL, and so E K n L. We have thus proved that 

Gal(KL/L) im(0) = Gal(K/K nL). 

The degree formula follows immediately from this isomorphism. 

A field extension K/F is called simple if K = F(a) for some a E  K.  The 
next theorem and its corollaries give some conditions for when an extension 
is simple. 

Theorem 5.6 (Primitive Element Theorem) A finite extension K I F 
is simple if and only if there are only finitely many fields L with Fc LCK. 

Proof. We prove this with the assumption that ./-1 = oc.  The case for 
finite fields requires a different proof, which we will handle in Section 6. 
Suppose that there are only finitely many intermediate fields of K/F. Since 
[K : F] <  oc,  we can write K = F(ai ,. an ) for some ai E  K.  We 
use induction on n; the case n = 1 is trivial. If L = F(a i , , --n-1), 

then since any field between F and L is an intermediate field of KIF, 
by induction L = F(13 ) for some )3. Then K = F(an , {3). For a E F, set 
M„ F(a.„ + a8 ), an intermediate field of K/F. Since there are only 
finitely many intermediate fields of KIF but infinitely many elements of 
F, there are a, b E F with a b and Ma  = Mb- Therefore, 

(an  + b{3)  — (an  + af3) 
= 	 E Mb. 

b— a 

Hence, a n  = (an + 1.0) — /il3 E Mb, so K = F(ctn, 0) = M.  Thus, K is a 
simple extension of F. 

Conversely, suppose that K = F(a) for some a E F. Let M be a field 
with FCMC K. Then K M(a). Let p(x) = min(F, a) and q(x) = 
min(M, a) E M[x] Then q divides p in M[x]. Suppose that q(x) = ao + 



a i x +•• • + xr, and set Mo  = F(ao , 	,ar _ i ) C M, Then q E Mo[x], so 
min(Mo , a) divides q. Thus, 

[K 	= deg(q) > deg(min(Mo , a)) = [K Mc ]  
=  [K:  M] •  [M:  Mo ]. 

This implies that [M : Mo ] = 1, so M = Mo . Therefore, M is determined 
by q. However, there are only finitely many monic divisors of p in K[xj, so 
there are only finitely many such M. 	 1=1 

Corollary 5.7 If K I F is finite and separable, then K = F(o) for some 
E K 

Proof. If K is finite and separable over F, then K = F(ai ,..., an ) for 

some ai. Let N be the splitting field over F of {min(F, a 2 ) 1 < i < n}. 

Then NI F is Galois by Theorem 4.9 since each min(F, ai) is separable 
over F. Moreover, K C N. By the fundamental theorem, the intermediate 
fields of N/F are in 1-1 correspondence with the subgroups of the finite 
group Gal(N/F). Any finite group has only finitely many subgroups, so 
NIF has only finitely many intermediate fields. In particular, KIF has 
only finitely many intermediate fields. Therefore, K = F(a) for some a by 
the primitive element theorem. 1=1 

Corollary 5.8 If K F is finite and F has characteristic 0, then K = F(c) 
for some a. 

Proof. This corollary follows immediately from the preceding corollary 
since any finite extension of a field of characteristic 0 is separable. 

The normal closure of a field extension 

Let K be an algebraic extension of F. The normal closure of K I F is the 
splitting field over F of the set {min(F, a) a E K }  of minimal polynomials 
of elements of K. As we will show below, the normal closure N of Ole 
extension K/F is a minimal normal extension of F which contains K. This 
is reasonable since, for each a E K, the polynomial min(F, a) splits over any 
normal extension of F containing K. Therefore, the set {min(F, a) : a E K} 
is a minimal set of polynomials which must split in any extension of K that 
is normal over F. We formalize this in the next result, which gives the basic 
properties of normal closure. 

Proposition 5.9 Let K be an algebraic extension of F, and let N be the 
normal closure of K F. 

I. The field N is a normal extension of F containing K. Moreover, if 
M is a normal extension of P with KCMCN, then M = N. 
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2. If K = F(ai,... ,an,), then N is the splitting field of the polynomials 
min(F, a l  ), 	, min(F, an ) over F. 

3. If  K F is a finite extension, then so is NI F. 

4. If K IF is separable, then NI F is Galois. 

Proof. Since N is a splitting field over F of a set of polynomials, N is 
normal over F. It is clear that N contains K. Suppose that M is a normal 
extension of F with K CMC N. If a E K, then a E M, so by normality 
min(F, a) splits over M. However, if X is the set of roots of the polynomials 
{min(F, a) : a E K }, we have N = F(X). But since these polynomials split 
over M, all of the roots of these polynomials lie in M. Thus , X c M, and 
so N = F(X) C M. Therefore, M = N. 

For part 2, let L = F(X), where X C N is the set of roots of the 
polynomials {min(F, ai) : 1 < i < n}. Then L is a splitting field over F of 
this set; hence, K C L and LIF is normal. By part 1, L  N. 

	

For the third part, suppose that [K : 	<  oc.  Then K is a finitely gen- 
erated extension of F; say that K = F(ai ,... ,an ). Let pi  (x) = min(F, ai ). 

By part 2, N is a splitting field of {min(F, ai ) : 1 < i < n }, a finite set of 
polynomials. Therefore, [N : <  oc.  

Finally, if K/F is separable, then each polynomial min(F, a) is separable 
over F. Therefore, N is the splitting field of the set {min(F, a) : a e K }  of 
separable polynomials over F, so N is Galois over F. 

The normal closure of an algebraic extension K/F is uniquely determined 
by the conditions in the first part of the previous proposition, as we now 
show. 

Corollary 5.10 Let K be an algebraic extension of F, and let N be the 
normal closure of K IF. If N' is any normal extension of F containing K, 
then there is an F-homomorphism from N to N'. Consequently, if N' does 
not contain any proper subfield normal over F that contains K, then N 
and N' are F-isomorphic. 

Proof. Suppose that N' is normal over F and contains K. Then min(F, a) 
splits over N' for each a E K. By the isomorphism extension theorem, the 
identity map on F extends to a homomorphism o-  : N N'. Then  a(N) is 
a splitting field of {min(F, a) : a E K }  in  N',  so  a(N) is normal over F and 
contains K. Therefore, if N' does not contain any proper subfield normal 
over F that contains K, then  a(N) =  N',  so N and N' are F-isomorphic. 

Example 5.11 Let F = Q and K = Q(0). If w 3  = 1 and w 1, then 
Q(0, w) is the splitting field of x3  - 2 over Q, SO it is normal over Q. 
This field is clearly the smallest extension of K that is normal over Q, so 
Q( w) is the normal closure of Q(w)/Q. 



Example 5.12 If K is an extension of F, and if a e K has minimal 
polynomial p(x) over F, then the normal closure of  P(a)/ F' is the field 
F(a i , a2 , , an ), where the ai  are the roots of p(x). 

Suppose that KIF is a finite separable extension with normal closure 
N. Let G = Gal(N/F) and H = Gal(N/K). So K = T(H). Suppose that 
K is not Galois over F. Then H is not normal in G. The minimality of N 
as a normal extension of F containing K translates via the fundamental 
theorem into the following group theoretic relation between G and H: The 
largest normal subgroup of G contained in H is (id) for, if H' C H is 
a normal subgroup of G, then L = T(H') is an extension of K that is 
normal over F. But, as L C N, minimality of N implies that L = N, so 
H' = (id). Recall from group theory that if H is a subgroup of a group G, 
then ngEG gHg-1  is the largest normal subgroup of a group G contained 

in a subgroup H. Therefore, in the context above, ngEG  gHg' = (id). 

The fundamental theorem of algebra 

The fundamental theorem of algebra states that every polynomial in  C[x] 
has a root in C. This was first proved by Gauss and is commonly proved 
using the theory of analytic functions in a course in complex analysis. We 
give here a proof using Galois theory, which combines the fundamental 
theorem and the Sylow theorems of group theory. It is a nice application 
of the interaction of group and field theory. 

To prove the fundamental theorem of algebra, we do need to know one 
result from analysis, namely the intermediate value theorem. Beyond this, 
we can give a proof using group theory and Galois theory. We point out the 
group theoretic fact we need: If G is a finite group whose order is a power 
of a prime p, then any maximal subgroup of G has index p in G. This fact 
can be found in Proposition 2.4 of Appendix C. 

Lemma 5.13 Let f (x) E R[x]. 

1. If f(x) = x2  - a for some a > 0, then f has a root in R. Therefore, 

every nonnegative real number has a real square root. 

2. If deg(f) is odd, then f has a root in R. Consequently, the only odd 

degree extension of R is R itself. 

Proof. Suppose that f (x) = x 2  — a with a > O. Then f(0)  <O  and  f(u) > 0 
for u sufficiently large. Therefore, there is a c E [0,u] with f(c) ,  0 by the 

intermediate value theorem. In other words, = c E R. 
For part 2, suppose that the leading coefficient of f is positive. Then 

lim f(x) = co and 	lim f (x) = —cc.  
x—,00 	 x—,— 00 

By another use of the intermediate value theorem, there isacERwith 
f(c) = O. If LiR is an odd degree extension, take a E L—R. Then R(a)/R is 



also of odd degree, so deg(min(R, a)) is odd. However, this polynomial has a 
root in R by what we have just shown. Since this polynomial is irreducible, 
this forces min(R, a) to be linear, so a E R. Therefore, L = R. 

Lemma 5.14 Every complex number has a complex square root. Therefore, 
there is no field extension N of C with [N :C1 = 2. 

Proof. To prove this, we use the polar coordinate representation of complex 
numbers. Let a E C, and set a = re' with r> O. Then -fr.  E R by Lemma 
5.13, so b = ire°  / 2  E C. We have 5 2  = r(ei°12 ) 2  = re'i°  = a. If N is an 
extension of C with [N : 	= 2, then there is an a E C with N = 
But, the first part of the lemma shows that C(fci) = C, so there are no 
quadratic extensions of C. 	 1=1 

Theorem 5.15 (Fundamental Theorem of Algebra) The field C is 
algebraically closed. 

Proof. Let L be a finite extension of C. Since char(R) = 0, the field L is 
separable over R, and L is also a finite extension of R. Let N be the normal 
closure of LIR. We will show that N = C, which will prove the theorem. 
Let G = Gal(N/R). Then 

= [N : 	= [N : Cl • [C : 

= 2[N : 

is even. Let H be a 2-Sylow subgroup of G, and let E be the fixed field 
of H. Then C  :  H  = [E : R] is odd. Thus, by Lemma 5.13, we see that 
E ; , so G = H is a 2-group. Therefore, Gal(N/C) is also a 2-group. 
Let P be a maximal subgroup of Gal(N/C). Byethc  theory  of p-groups, 
[Gal(N/C) : P] = 2. if T is the fixed field of M--rthen  [T:  = 2. This 
is impossible by Lemma 5.14. This contradiction shows that C = 1, so 

D  

Problems 

1. A transitive subgroup of S„ is a subgroup 0' such that for each i, j E 
{1, ... ,n}, there is a a E  C with 0- (i) = j. If K is the splitting 
field over F of a separable irreducible polynomial f(x) E F[x] of 
degree n, show that Gal(K/F) is divisible by n and that Gal(K/F) 
is isomorphic to a transitive subgroup of  S. Conclude that [K : 
divides n!. 

2. Write down all the transitive subgroups of S3 and S4 

3. Determine all the transitive subgroups G of S5 for which 1G1 is a 
multiple of 5. For each transitive subgroup, find a field F and an irre- 
ducible polynomial of degree 5 over F such that if K is the splitting 

N = C. 
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field of f over F, then Gal(K/F) is isomorphic to the given subgroup. 
(Hint: This will require use of semidirect products.) 

4. In the following problems, let K be the splitting field of f(x) over F. 
Determine Gal(K/F) and find all the intermediate subfields of KIF. 

(a) F Q and f (x) = x 4  —7. 

(b) F = F5 and f (x) = x 4  —7. 

(c) F = Q and f(x) = X 5  — 2. 

(d) F = F2 and f (x) = x 6  + 1. 

(e) F 	altd f(x) = x8  — 1. 

5. Let K be a Galois extension of F with [K : 	= n. If p is a prime 
divisor of n, show that there is a subfield L of K with [K: 	= p. 

6. Let N be a Galois extension of F with Gal(N/F) = A4. Show that 
there is no intermediate field of N/P with [Ai :J/1 2. 

7. Give examples of field extensions KIF with 

(a) KIF normal but not Galois, 

(b) K/F separable but not Galois. 

8. Let K/F be Galois with G = Gal(K/F), and let L be an intermediate 
field. Let N C K be the normal closure of L/F. If H = Gal(K/L), 
show that Gal(K/N) = n aeG  

9. Let K be a Galois extension of F and let a E K. Let 71 = [K : 

r = [F(a) : F ] , and H = Gal(K/F(a)). Let 	Tr be left coset 
representatives of H in G. Show that min(F, a) = 	(X — (a)). 
Conclude that 

— o - (a)) = utin(F, a)"  
aeGal(KIF) 

10. Let K be a Galois extension of F, and let a E K. Let L a  : K 	K 
be the F-linear transformation defined by L a (b) = ab. Show that the 
characteristic polynomial of L a  is equal to flaeGagic/F) (x—o- (a)) and 
the minimal polynomial of L a  is min(F, a). 

11. Let K be a finite Galois extension of F with Galois group G. Let L be 
an intermediate extension, and let H be the corresponding subgroup 
of G. If N(H) is the normalizer of H in G, let Lo  be the fixed field 
of N(H). Show that L/L0  is Galois and that if M is any subfield of 
L containing F for which LIM is Galois, then Al contains Lo. 
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12. Let F be a field of characteristic not 2, and let K be a Galois extension 
with [K : 	= 4. Prove that if Gal(K/F) rJ Z/2Z x Z/2Z, then 
K = F(fd,\A) for some a, b E F. 

13. If K is the splitting field of x 4  — 2 over Q, find Gal(K/Q) and find 
all intermediate subfields. To what group is Gal(K/Q) abstractly iso-
morphic? 

14. If K is the splitting field of x 5  — 11 over Q, find Gal(K/Q) and find 
all intermediate subfields. 

15. Let K be a finite normal extension of F such that there are no proper 
intermediate extensions of  KIF.  Show that [K : F] is prime. Give a 
counterexample if K is not normal over F. 

16. Let K be a Galois extension of Q. View K as a subfield of C. If a 
is complex conjugation, show that  a(K) = K, so o- LK E Gal(K/Q). 
Show that .F(o- K ) = K nR, and conclude that [K:  Kn < 2. Give 
examples to show that both [K : K 11 = and [K : K n = 2 can 
occur. 

17. Prove the normal basis theorem: If K is a finite Galois extension of 
F, then there is an a E K such that fo- (a) : a E Gal(K/F)} is a basis 
for K as an F-vector space. 

18. Let Qg be the quaternion group {±1, ±i, ±j, ±k}, where multiplica-
tion is determined by the relations i 2  = j 2  = —1 and ij = k = —ji. 
Show that Qg is not isomorphic to a subgroup of  84. Conclude that 
Q8 is not the Galois group of the splitting field of a degree 4 polyno-
mial over a field. 

19. (a) Let K C N both be Galois extensions of a field F. Show that 
the map cio : Gal(N/P) 	Gal(K/F) given by (p(a) = aLK 
is a surjective group homomorphism. Therefore, Gal(K/F) = 
{o- K : a E Gal(N/F)}. Show that ker((p) = Gal(N/K). 

(b) Let K and L be Galois extensions of F. Show that the restric-
tion of function map defined in (a) induces an injective group 
homomorphism Gal(KL/F) Gal(K/F) ED Gal(L/F). Show 
that this map is surjective if and only if K n L = F. 

20. Let k be a field of characteristic p > 0, let K = k(x, y) be the rational 
function field in two variables over k, and let F = k(xP,yP). 

(a) Prove that [K : 	= p2 . 

(b) Prove that KP C F. 

(c) Prove that there is no a E K with K = F(a). 

(d) Exhibit an infinite number of intermediate fields of KIF. 



21. Thib problem gives an alternative proof of the primitive element the-
orem for infinite fields. 

(a) Let V be a finite dimensional F-vector space, where F is an 
infinite field. Show that V is not the union of finitely many 
proper subspaces. 

(b) Let K/F be a finite extension of finite fields. Show that K is not 
the union of the proper intermediate fields of K/F. Conclude 
that if {Ki } is the set of proper intermediate fields and a E 
K — Ki, then K = F(a). 

22. Let K = Q(X), where X = 	: p is prime}.  Show that K is Galois 
over Q. If'o-  E Gal(K/Q), let Y, = { VT3 : a(V-73)= — 1f5.}. Prove the 
following statements. 

(a) If  Y0. = YT , then a = T. 

(b) If Y C X, then there is a a E Gal(K/Q) with Y, = Y. 

(e) If P(X) is the power set of X, show that Gal(K/Q)  
and that .)(1 = [K : 	and conclude that Gal(K/Q) > [K : 
Q]  

(Hint: A Zorn's lemma argument may help in (b). You may want to 
verify that if Y C X  and 1-p 0 Y, then [Q(Y)(1-p) : Q(Y)1 = 2. The 
inequality 'T-)(X) > IX is proved in Example 2.2 of Appendix B.) 

23. Suppose that K is an extension of F with [K: 	= 2. If char(F) 2, 
show that K/F is Galois. 

24. Let FCLCK be fields such that L/F is purely inseparable. Let 
a E K be separable over F. Prove that min(F, a) = min(L, a). Use 
this to prove the following statement: Suppose that FCLCK 
are fields such that L/F is purely inseparable, K L is separable, and 
[K : < oo. Let S be the separable closure of F in K. Then K = SL 
and  [K: 	= [S:  

25. This problem outlines a proof that the separable degree [K : F] s  of 
a finite extension K/F is equal to the number of F-homomorphisms 
from K to an algebraic closure of F. 

(a) Suppose that K = F(a), and let f(x) = min(F, a). If N is an 
algebraic closure of F and b E N is a root of  f,  show that there 
is an F-homomorphism K N that sends a to b. 

(b) If K = F(a) as above, show that all F-homomorphisms from K 
to N are obtained in the manner of the previous step. Conclude 
that [K:  Fls  is equal to the number of such F-homomorphisms. 
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of F in K. Show that any F-homomorphism from S to N extends 

uniquely to K. Use the previous step to conclude, that [S 
[K: 	is the number of F-homomorphisms from .K to N. 

26. Let K/F be a normal extension and let L/F be an algebraic exten- 
sion. If either K F or L/F is separable, show that [KL : 	= [K : 
K n 	Give an example to show that this can be false without the 
separability hypothesis. 

27. Let F be a field. Show that the rational function field F(x) is not 
algebraically closed. 

28. Let F be a finite extension of Q. Show that F is not algebraically 
closed. 





II 
Some Galois Kxtensions 

Now that we have developed the machinery of Galois theory, we apply it 
in this chapter to study special classes of field extensions. Sections 9 and 
11 are good examples of how we can use group theoretic information to 
obtain results in field theory. Section 10 has a somewhat different flavor 
than the other sections. In it, we look into the classical proof of the Hilbert 
Theorem 90, a result originally used, to help describe cyclic extensions, 
and from that proof we are led to the study of cohomology, a key tool in 
algebraic topology, algebraic geometry, and the theory of division rings. 

6 Finite Fields 

this section, we study finite fields arid, more generally, finite extensions 

of finite fields. 
Let F be a finite field, and say char(F) = p. We can view F as an 

extension field of Fp Since  F is finite, F is a finite dimensional 1F-vector  
space. If [F : Fp1 = n, then F and IFp  are isomorphic as  1F-vector spaces, 
so _b-1 = pn. We will first obtain some field theoretic information about 
F by investigating the group structure of the multiplicative group F*.  For 
the next lemma, recall that if G is an Abelian group, then the exponent 
exp(G) of G is the least common multiple of elements in G. By a group 
theory exercise, there is an element of G whose order is exp(G). From this 
fact, it follows that G is cyclic if and only if  C  -= exp(G). These facts are 
proven in Proposition 1.4 of Appendix C. 



Lemma 6.1 If k is a ficla awl G is a limitc subgroup of 	, then (1 is 

Proof. Let n = g and m = exp(G). Then m divides n by Lagrange's 
theorem. If g E G, then gm = 1, so each element of G is a root of the 
polynomial en — 1. This polynomial has at most m roots in the field K. 
However, en-1 has at least the elements of G as roots, so n < rn. Therefore, 
exp(G) = so G is cyclic. El 

Corollary 6.2 If F is a finite field, then F* is cyclic. 

Example 6.3 Let F = Fp. A generator for F* is often called a primitive 
root modulo p. For example, 2 is a primitive root modulo  5. Moreover, 2 
is not a primitive root modulo 7, while 3 is a primitive root modulo 7. In 
general, it is not easy to find a primitive root modulo p, and there is no 
simple way to find a primitive root in terms of p. 

In Section 5, the primitive element theorem was stated for arbitrary 
base fields but was proved only for infinite fields. If K/F is an extension of 
finite fields, then there are finitely many intermediate fields. Therefore, the 
hypotheses of the primitive element theorem hold for K/F. The following 
corollary finishes the proof of the primitive element theorem. 

Corollary 6.4 If KIF is an extension of finite fields, then K is a simple 
extension of F. 

Proof. By the previous corollary, the group K* is cyclic. Let a be a gen- 
erator of the cyclic group K*. Every nonzero element of K is a power of a, 
so K = F(a). Therefore, K is a simple extension of F. 	 Lii  

The following theorem exploits group theoretic properties of finite groups 
to give the main structure theorem of finite fields. 

Theorem 6.5 Let F be a finite field with char(F) = p, and set .b-1 = ?P. 
Then F is the splitting field of the separable polynomial xP" — x over 1Fp . 
Thus, F/Fp  is Galois. Furthermore, if o-  is defined on F by  a(a) = aP , then 
o-  generates the Galois group Gal(F/Fp ), so this Galois group is cyclic. 

Proof. Let _b-1 = pn , so LI;1 * = pn —1. By Lagrange's theorem, if a E F*, 
then aP n ' = 1. Multiplying by a gives aPn  = a. This equation also holds 
for a = O. Therefore, the elements of F arc roots of the polynomial xP" —x. 
However, this polynomial has at most roots, so the elements of F are 

71 
precisely the roots of xP — x. This proves that F is the splitting field over 
IF of xP n  — x, and so F is normal over  Th'.  Moreover, the derivative test 
shows that 3.7 1 ' —  x has no repeated roots, so .r; is separable over Fp . 
Thus, F is Galois over Fp. 



Define o-  : F 	 F by o- (a) = aP. An easy computation shows that o-  is 
an Fp-homomorphism, and  a is surjective since F is finite. Hence, g is an 
T' p-automorphism of F. The fixed field of o-  is {a E F : aP = a} I.  Each 
element in  T(a) is a root of xP—x, so there are at most p elements in  T(a). 
This proves that IF  = T(a), so Gal(F/Fp ) is the cyclic group generated by 
o- . 

The automorphism o-  defined above is called the Frobenius automorphism 
of F. 

Corollary 6.6 Any two finite fields of the same size are isomorphic. 

Proof. The proof of Theorem 6.5 shows that any two fields of order pn 
are splitting fields over Fp of X PII  -  x , so the corollary follows from the 
isomorphic extension theorem. 	 El 

We can use Theorem 6.5 to describe any finite extension of finite fields, 
not only extensions of Fp. 

Corollary 6.7 If K F is an extension of finite fields, then K I F is Galois 
with a cyclic Galois group. Moreover, if char(F) = p and _b-1 = p", then 
Gal(K/F) is generated by the automorphism -r defined by -r(a) = 

Proof. Say [K : Fp] = m. Then Gal(K/Fp ) is a cyclic group of order in  
by Theorem 6.5, so the order of the Frobenius automorphism o-  of K is 
rn. The group Gal(K/F) is a subgroup of Gal(K/Fp ), so it is also cyclic. 
If s = Gal(1( F1 ) and  in  = ris, then a generator of Gal(K/F) is an. By 
induction, we see that the function un is given by o- n (a) = aP` L . Also, since 
s = [K: F], we have that n = [F : Fp] , SO Lb-1= p". El 

We have described finite fields as extensions of Fp and have shown that 
any finite extension of IFp  has p" elements for some n. However, we have 
not yet determined for which n there is a field witb pn elements. Using the 
fundamental theorem along with the description of finite fields as splitting 

fields in Theorem 6.5, we now show that for each n there is a unique up to 
isomorphism field with pn elements. 

Theorem 6.8 Let N be an algebraic closure of Fp. For any positive integer 

there is a unique subfield of N of order pn. If K and L are subfields of 
N of orders p" and p", respectively, then K C L if and only if  in divides 
ri. When this occurs, L is Galois over K with Galois group generated by 
where -r(a) = aPn  

Proof. Let n be a positive integer. The set of roots in N of the polynomial 
- X has ph  elements and is a field. Thus, there is a subfield of N of 

order pn. Since any two fields of order pn in N are splitting fields of xP n  —x 
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over Fp by Theorem 6.5, any subfield of N of order pn consists exactly of 
the roots of xP n  — x. Therefore, there is a unique subfield of N of order pn. 

Let K and L be subfields of N, of orders pm and p", respectively. First, 
suppose that K C L. Then 

= [L : Fpi = [L K] • [K : Fp 

= rn,[L K], 

so rn divides n. Conversely, suppose that 711 divides 71. Each element a of 
K satisfies O m  = a. Since 111 divides n, each a also satisfies aP" = a, so 
a E L. This proves that K C L. When this happens L is Galois over K by 
Corollary 6.7. That corollary also shows that Gal(L/K) is generated by T, 
where T is defined by T(a) =  a 1 111 

If F is a finite field and f (x) E F[x], then Theorems 6.5 and 6.8 can be 
used to determine the splitting field over F of the polynomial  f.  

Corollary 6.9 Let F be a finite field, and let f (x) be a monic irreducible 
polynomial over F of degree n. 

1. If a is a root of f in some extension field of F , then F(a) is a splitting 
field for f over F. Consequently, if K is a splitting field for f over 
F, then [K 17] = 71. 

2. If F  = q, then the set of roots of f is {a : r > 1}. 

Proof. Let K be a splitting field of f over F.  If a E K is a root of f (x), 
then F(a) is an ri-dimensional  extension of F inside K. By Theorem 6.5, 
F (a) is a Galois extension of F; hence, f (x) = min(F, a) splits over F (a). 
Therefore, F(a) is a splitting field of f over F, so K = F(a). This proves 
the first statement. For the second, we note that Gal(K/F) (o- ), where 
a(c) = cg for any c E K,  by Theorem 6.8. Each root of f is then of the 
form ur(a) = aq'" by the isomorphism extension theorem, which shows that 
the set of roots of J.  is : r > . El 

Example 6.10 Let F = 	and K = F(a),  where a is a root of f (x) = 
X 3  +X 2 +1. This polynomial has no roots in F, as a quick calculation shows, 
so it is irreducible over F and [K : F] = 3. The field K is the splitting field 
of f over F, and the roots of f are a, a 2 , and a 4 , by Corollary 6.9. Since 
f (a) = 0, we see that a3  = a 2  +1, so a4  = a3  + a = a2  + a +1. Therefore, 
in terms of the basis {1, a, a2 } for KIF, the roots of f are a, a2 , and 
1 + a + a2 . This shows explicitly that F(a) is the splitting field of f over 
F. 

Example 6.11 Let F = 2 and f (x) = x 4  + x + 1. By the derivative test, 
we see that f has no repeated roots. The polynomial f is irreducible over 
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f,  since f has no roots in F and is not divisible by the unique irreducible 
quadratic x 2  + x + l in F[x]. If a is a root of  f,  then a4  = a + 1; hence, 
the roots of f are a, a + 1, a2 , and a2  L 

Example 6.12 Let f (x) = x 2  +  L If p is an odd prime, then we show 
that f is reducible over F = Fp  if and only if p 1(mod 4). To prove this, 
if a E F is a root of x 2  + 1, then a2  = —1, so a has order 4 in  F*.  By 
Lagrange's theorem, 4 divides F* = p —1, so p 1(mod 4). Conversely, if 
p 1(mod 4), then 4 divides p — 1, so there is an element a E F* of order 
4, since F* is a cyclic group of order p — 1. Thus, a4  = 1 and a2  1. This 
forces a2  = —1, so a is a root of f. 

If F is a finite field, then we have seen that every finite extension of F 
is Galois over F. Hence, every extension of F is separable over F. Every 
algebraic extension of F is then separable over F, so F is perfect. To note 
this more prominently, we record this as a corollary. We have already seen 
this fact in Example 4.14. 

Corollary 6.13 Every finite field is perfect. 

Given an integer n, Theorem 6.8 shows that there is a finite field with pn 
elements. For a specific n, how do we go about finding this field? To con-
struct, finite fields, we can use irreducible polynomials over [F r  Note that if 
f (x) is an irreducible polynomial of degree n in Fp [x], then Fp [x]/(f (x)) is 
a field extension of degree n over Fp ; hence, it has pn  elements. Conversely, 
if F has pn elements, and if F = F(a), then min(Fp , a) is an irreducible 
polynomial of degree n. Therefore, finding finite fields is equivalent to find-
ing irreducible polynomials in Fp [x]. For instance, Z 2 [x]/(x 2  + x +1) is a 
field of 4 elements, and Z5[x]/(x 4  — 7) is a field of 5 4  = 625 elements. The 
following proposition gives one way of searching for irreducible polynomials 
over Fp. 

Proposition 6.14 Let n be a positive integer. Then xP n  x factors over 
Fp  into the product of all inonic irreducible polynomials over Fp of degree 

a divisor of n. 

Proof. Let F be a field of order pn. Then F is the splitting field of xP n  x 

over Fp by Theorem 6.5. Recall that F is exactly the set of roots of X P"  —  x.  
Let a E F, and set m [F(a) : Fr] , a divisor of [F : Fp] . The polynomial 
min(Fp , a) divides xP" —  x,  since a is a root of xPn  — x. Conversely, if f (x) 
is a monic irreducible polynomial over Fp of degree m, where in divides n, 
let K be the splitting field of f over Fp inside some algebraic closure of 
F. If a is a root of f in  K,  then K = 'T (a) by Corollary 6.9. Therefore, 
[K : Fpi = m, so K C F by Theorem 6.8. Thus, a E F, so a is a root of 

TI 

XP 	X. Since f is irreducible over Fp , we have f = min(F p  , a) , so f divides 
77 

X P  - X. Since xP — x has no repeated roots, xP — x factors into distinct 



irreducible factors over Fp • We have shown that the irreducible factors of 
xPn  — x are exactly the irreducible polynomials of degree a divisor of n; 
hence, the proposition is proven. 	 Lii  

Example 6.15 The monic irreducible polynomials of degree 5 over IF2 can 
be determined by factoring x 25  — x, which we see factors as 

x 25 — x = x (x + 1) (x 5  + X 3  + 1) (X 5  + X 2  + 

X (X 5  + X4  + X3  + X + 1) (X 5  +x4  + X2  + X + 1) 
x  (x 5 + x4 + x3 + x2 + (x 5 + x3 + x 2 + x  + it) 

This factorization produces the six monic irreducible polynomials of degree 
5 over IF 2 . Note that we only need one of these polynomials in order to con-
struct a field with 2 5  elements. Similarly, the monic irreducible polynomials 
of degree 2, 3, or 6 over IF2  can be found by factoring x 26  — x. For example, 
x6  ± x 4-1 is an irreducible factor of x64  — x, so IF 2 [x]/(x 6  + x 4-1) is a field 
with 64 elements. The factorization of X 32  - x and the factor x6  + x 4-1 
of  x64 x was found by using the computer algebra program Scientific 
Workplace. 

Problems 

1. Let G be a finite Abelian group. 

(a) If a, b E G have orders n and m, respectively, and if gcd(n, m) 
1, show that ab has'order  rim.  

(b) If a, b E G have orders n and m, respectively, show that there is 
an element of G whose order is lcm(a, b) . 

(c) Show that there is an element of G whose order is exp(G). 

2. Let p be a prime, and let F be a field with 1F1 = p 2 . Show that there 
is an a E F with a2  = 5. Generalize this statement, and prove the 
generalization. 

3. Let F be a finite field. Prove that there is an irreducible polynomial 
of degree n over F for any n. 

4. Let K be a field with 1K1 = 4. Show that K = F 2 (a), where a 2 + + 
= O. 

5. Determine the irreducible factorization of x 4  + 1 over IF 3 . 

6. Let F be a finite field. If  f,  g e F[x] are irreducible polynomials of 
the same degree, show that they have the same splitting field. Use 
this to determine the splitting field of x 4  + 1 over 1F 3. 



	

7. Let (i  1. 	power of a prime j), aud let, it lw a positive integer not 
divisible by p. We let Fq  be the unique up to isomorphism finite field 
of q elements. If K is the splitting field of x — 1 over 7 9 , show that 
K = g m, where m is the order of q in the group of units (Z/nZ) *  of 
the ring Z/nZ. 

8. Let F be a field of characteristic p. 

(a) Let FP = (aP : a E F}. Show that FP is a subfield of F. 

	

(1)) ff F 	Fp (x) is the rational function field in one variable over 
IF, determine FP and [F : FP]. 

9. Show that x 4  — 7 is irreducible over  1F5, 

10. Show that every element of a finite field is a sum of two squares. 

11. Let F be a field with 1F1 = q. Determine, with proof, the number 
of monic irreducible polynomials of prime degree p over F, where p 
need not be the characteristic of F. 

12. Let K and L be extensions of a finite field F of degrees n and m, 
respectively. Show that KL has degree lcm(n, m) over F and that 
K n L has degree gcd(n,m) over F. 

13. (a) Show that X 3  ± X 2  + 1 and x3  + x + 1 are irreducible over F2. 

(b) Give an explicit isomorphism between  1F2 [x]/(x 3  + x2  + 1) and 
F2 [xl/(x 3  + x 	1). 

14. Let k be the algebraic closure of Zp, and let y E Gal(k/Z p ) be the 
Frobenius map  y(a) = aP. Show that y has infinite order, and find a 

E Gal(k/Z p ) with a (y). 

15. Let N be an algebraic closure of a finite field F. Prove that Gal(N/F) 
is an Abelian group and that any automorphism in Gal(N/F) is of 
infinite order. 
(By techniques of infinite Galois theory, one can prove that 
Gal(N/F p ) is isomorphic to the additive group of the p-adic integers; 
see Section 17.) 

7 Cyclotomic Extensions 

An nth root of unity is an element co of a field with con = 1. For instance, 
the complex number e 27-2 / 72  is an nth root of unity. We have seen roots 
of unity arise in various examples. In this section, we investigate the field 
extension  F(w)/F, where (..o is an nth root of unity. Besides being inter-
esting extensions in their own right, these extensions will play a role in 
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applications of Galois theory to ruler and compass constructions and to 
the question of solvabilfty of polynomial equations. 

Definition 7.1 If w G F with wn = 1, then w is an nth root of unity. If 
the order of w is n in the multiplicative group Ft, then w is a primitive nth 
root of unity. If w is any root of unity, then the field extension F(w)/F is 

called a cyclotomic extension. 

We point out two facts about roots of unity. First, if co E F is a primitive 

nth root of unity, then we see that, cliar(F) does not divide 'Ti  for, if it = 

with  char(F) = p, theii  0 = co" — 1 = (cum — 1)P. Therefore, cum = 1, and so 
the order of co is not n. Second, if co is an nth root of unity, then the order 
of co in the group F* divides n, so the order of co is equal to some divisor 
m of n. The element co is then a primitive Trail root of unity. 

The nth roots of unity in a field K are exactly the set of roots of xn — 1. 
Suppose that xn — 1 splits over K,  and let G be the set of roots of unity in 
K.  Then G is a finite subgroup of  Kt,  so G is cyclic by Lemma 6.1. Any 
generator of G is then a primitive nth root of unity. 

To describe cyclotomic extensions, we need to use the Euler phi function. 
If n is a positive integer, let (1)(n) be the number of integers between 1 and n 
that are relatively prime to n. The problems below give the main properties 
of the Euler phi function. We also need to know about the group of units 
of the ring Z/nZ. Recall that if R is a commutative ring with 1, then the 
set 

R* = {a E R:  there is ab ER with ab = 1} 

is a group under multiplication; it is called the group of units of R. If 
R = Z/nZ, then an easy exercise shows that 

(Z/nZ)* = {a nZ : gcd(a,n) = i}.  

Therefore, 1(Z/nZ)*1 = (1)(n) 
We now describe cyclotomic extensions of an arbitrary base field. 

Proposition 7.2 Suppose that  char(F) does not divide n, and let K be 
a splitting field of xn — 1 over F. Then K I F is Galois, K = F(w)  is 
generated by any primitive nth root of unity w, and Gal(K/F) is isomorphic 
to a subgroup of (Z/nZ)*. Thus, Gal(K/F) is Abelian and [K : F] divides 

Proof. Since char(F) does not divide n, the derivative test shows that 
xn — 1 is a separable polynomial over F.  Therefore, K is both normal and 
separable over F; hence, K is Galois over F. Let co E K be a primitive 
nth root of unity. Then all nth roots of unity are powers of co, so xn — 1 
splits over F(w). This proves that K = F(w). Any automorphisni of K that 
fixes F is determined 1),y what it does to co. However, any atitortiorphistii 
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restricts to a group automorphism of the set of roots of unity, so it maps 
the set of primitive nth roots of unity to itself. Any primitive nth root of 
unity in K is of the form co t  for some t relatively prime to n. Therefore, 
the map 0 : Gal(K F) (Z/nZ)* given by o-  t + n,Z, where o- (co) = co t , 
is well defined. If  a, 'r E Gal(K/F) with o- (co) = co t  and 7- (w) = cos, then 
(o- y)(co) = o- (cos) = cos t , so 0 is a group homomorphism. The kernel of 0 is 
the set of all o-  with o- (co) = co; that is, ker(0) = (id). Thus, 0 is injective, 
so Gal(K/F) is isomorphic to a subgroup of the Abelian group (Z/nZ)*, a 
group of order (1)(n). This finishes the proof. El 

Example 7.3 The structure of F determines the degree [F(co) Fi or, 
equivalently, the size of Gal(F(co)/F). For instance, let co = e 27i / 8  be a 
primitive eighth root of unity in C. Then co 2  = i is a primitive fourth 
root of unity. The degree of Q(co) over Q is 4, which we will show below. 
If F = Q(i), then the degree of F(co) over F is 2, since co satisfies the 
polynomial X 2  — i over F and co F. If F = R, then R(co) = C, so 
[R(co) : R] = 2. In fact, if  n>  3 and if y is any primitive nth root of unity 
in C, then R(7-) = C, so [R(7-) : = 2. 

Example 7.4 Let F = IF 2 . If co is a primitive third root of unity over F, 
then co is a root of X 3  — 1  = (x — 1)(X 2  + X + 1). Since co 1 and x 2  + x +1 
is irreducible over F, we have [F(co) F] = 2 and min(F, co) = X 2  ± x ± 1. 
If p is a primitive seventh root of unity, then by factoring X 7  — 1, by trial 
and error or by computer, we get 

x 7—  1 = (X — 1) (x 3  + X + 1) (X 3  + X 2  + 1) 

The minimal polynomial of co is then one of these cubics, so [F(co) : F] = 3. 
Of the six primitive seventh roots of unity, three have X 3  x +1 as their 
minimal polynomial, and the three others have X 3  ± X 2  ± 1 as theirs. This 
behavior is different from cyclotomic extensions of Q, as we shall see below, 
since all the primitive nth roots of unity over Q have the same minimal 
polynomial. 

We now investigate cyclotomic extensions of Q. Let co l , 	, co, be the 
primitive nth roots of unity in C. Then 

{e27rir/n gcd(r,n) = 1} , 

so there are (1)(n) primitive nth roots of unity in C. In Theorem 7.7, we will 
determine the minimal polynomial of a primitive nth root of unity over Q, 
and so we will determine the degree of a cyclotomic extension of Q. 

Definition 7.5 The nth cyclotomic polynomial is W n  (X) = f 1  — 
the m,onie polynomial in C[x] whose roots are exactly the primitive nth roots 
of unity in C. 



For example, 

(x) = x — 1, 

T 2(x)  — x  + 1, 

W4(X) (X i)(X + i) = X 2  ± 1. 

Moreover, if p is prime, then all pth roots of unity are primitive except for 
the root 1. Therefore, 

W (x) = (X P  — 1)/(X — 1) = X P-1  +x 2  + • ' + x  + 1. 

From this definition of T n (x), it is not clear that  I(x) E Q[x], nor that 
kIf n (x) is irreducible over Q. However, we verify the first of these facts in 
the next lemma and then the second in Theorem 7.7, which shows that 
klf,(x) is the minimal polynomial of a primitive nth root of unity over Q. 

Lemma 7.6 Let n be any positive integer. Then Xn  — 1 = ndln  Wd(x). 

Moreover, T n (x) E Z[x]. 

Proof. We know that xn — 1 = FEx — co), where co ranges over the set of 
all nth roots of unity. If d is the order of co in C* 7  then d divides n, and co 
is a primitive dth root of unity. Gathering all the dth root of unity terms 
together in this factorization proves the first statement. For the second, we 
use induction on n; the case n = 1 is clear since 1I1 1 (x) = x — 1. Suppose 
that klf d (x) E Z[x] for all d < n. Then from the first part, we have 

X 72 
 

( cl
H  

in,d<n 

klf n (x). 

Since in — 1 and ndin  Td(x) are monic polynomials in Z[x], the division 

algorithm, Theorem 3.2 of Appendix A, shows that  W 72 (x) E Z[x]. 	El 

We can use this lemma to calculate the cyclotomic polynomials  W 72 (x) 
by recursion. For example, to calculate 111 8 (x), we have 

8 
—

1 

	

X   	 P8( X ) W4 ( X ) W2( X ) T1 ( X )7 

S O 
x8 1 

	

W8(X) 	( x 	1)( x  +1)(x 2  4-1) 

The next theorem is the main fact about cyclotomic polynomials and 
allows us to determine the degree of a cyclotomic extension over Q. 

X4  +1. 

Theorem 7.7 Let n be any positive integer. Then Ilf n (X) is irreducible over 

Q. 



Proof. "I'o prove that k1J(x) is irreducible over Q, suppose not. Since 
1i(x) E Z[x] and is monic, 1J(x) is reducible over Z by Gauss' lemma. 

Say kif n  = f(x)h(x) with f(x),h(x) E Z[x] both monic and f irreducible 
over Z. Let co be a root of  f.  We claim that col' is a root of f for all primes 
p that do not divide n. If this is false for a prime p, then since col' is a prim-
itive nth root of unity, co') is a root of h. Since f(x) is monic, the division 
algorithm shows that f(x) divides  h(x) in Z[x]. The map Z[x] F[x] 
given by reducing coefficients mod p is a ring homomorphism.  For g  E Z[x], 
let 7g• be the image of g(x) in Fp [x]. Reducing mod p yields W(x) = 1. 

Since W(x) divides xn — I, the derivative test shows that W 72 (x) has no 
repeated roots in any extension field of Fp , since p does not divide n. Now, 

since aP = a for all a E  Th',  we see that h(sP) = h(x)P. Therefore, f divides 

hP, so any irreducible factor E F[x] of y also divides fi. Thus, q2  divides 

fh = tIf n (x), which contradicts the fact that Tn  has no repeated roots. 
This proves that if co is a root of  f,  then cuP is also a root of f,  where p is a 
prime not dividing n. But this means that all primitive nth roots of unity 
are roots of  f,  for if a is a primitive nth root of unity, then a = cut with 
t relatively prime to n. Then a = coPI — Pr, with each pi  a prime relatively 
prime to n. We see that cuP 1  is a root of  f,  so then (coPi )P2 = cuP 1 P 2  is also a 
root of  f.  Continuing this shows a is a root of  f.  Therefore, every primitive 
nth root of unity is a root of  f,  so tlf„(x) =J. .  This proves that W(x) is 
irreducible over Z, and so 4J 72 (x) is also irreducible over Q. 

If co is a primitive nth root of unity in C, then the theorem above shows 
that  11J 72  (x)  is the minimal polynomial of co over Q. The following corollary 
describes cyclotomic extensions of Q. 

Corollary 7.8 If K is a splitting field of xn — 1 over Q, then [K : 	= 
0(n) and Gal(K/Q) 	(Z/nZ) *  . Moreover, if co is a primitive nth root of 
unity in  K, then Gal(K/Q) = {o-i  : gcd(i, n) = 1}, where ai  is determined 
by o- i (w) 

Proof. The first part of the corollary follows immediately from Proposition 
7.2 and Theorem 7.7. The description of Gal(K/Q) is a consequence of the 
proof of Proposition 7.2. 

II w is a primitive Tali root, of unity in C, titcrt we will refer to the 
cyclotomic extension Q(co) as  Q.  

Example 7.9 Let K = Q7, and let co be a primitive seventh root of unity 
in C. By Corollary 7.8, Cal(K/Q) (Z/7Z) * , which is a cyclic group of 
order 6. The Galois group of K/Q is {a l. , o- 2 , o-3 , a4 , o-5 , o- 6 }, where a(w) = 
wi . Thus, al  = id, and it is easy to check that o-3 generates this group. 
Moreover, o-i  o  o-i = o-ii , where the subscripts are multiplied modulo 7. The 



subgroups of Gal(K/Q) arc then 

(ici),  (0-33 ) , (sq ) ,  (a :3 ),  

whose orders are 1, 2, 3, and 6, respectively. Let us find the corresponding 
intermediate fields. If L T(o -3) = T(o- 6 ), then [K : L] = 1(0

-6)1 = 2 by the 
fundamental theorem. To find L, we note that co must satisfy a quadratic 

over L and that this quadratic is 

(x — co) (x — o- 6  (a))) = (x — co)(x — co 6 ). 

Expanding, this polynomial is 

T2 (co w6 ) 3; ww6 = x2 (co  ± w 6) x  ±  1. 

Therefore, co w 6  E L. If we let co = exp(27i/7) = cos(27/7) i sin(27 /7), 
then co w 6  = 2 cos(27/7). Therefore, co satisfies a quadratic over 
Q(cos(27/7)); hence, L has degree at most 2 over this field. This forces 
L = Q(cos(2717)). With similar calculations, we can find M = T(o-3) = 
T(o- 2 ). The order of o-2  is 3, so [M Q] = 2. Hence, it suffices to find one 
element of M that is not in Q in order to generate M. Let 

= w -I-  0-2 (w) ± 0- 22  (w) 	 ± w 4 . 

This element is in M because it is fixed by o- . But, we show that a is not 
in Q since it is not fixed by o- 6 . To see this, we have 

0_ 6  ( w ) w 6 

▪ 

 w 12 w24 

w 6 

▪ 

 co 5 w 3 

If o-6(a) = a, this equation would give a degree 6 polynomial for which co 
is a root, and this polynomial is not divisible hy 

min (Q, co) = kJ/7(X) = X 6  ± X 5  ± x4  ± X 3  ± X 2  ± X ± 1, 

a contradiction. This forces a Q, so AI = Q(a). Therefore, the interme-
diate fields of K/Q are 

K, Q(cos(2717)), Q(co w 2 w4 Q 

Example 7.10 Let K = Q8,  and let w exp(27i/8) = (14- i)/-1. The 
Galois group of K/Q is {o- i ,o-3, o-5 ,o-7}, and note that each of the three 
nonidentity automorphisms of K have order 2. The subgroups of this Galois 
group are then 

Kid), (0-3 ) , (0-5 ) , (o- 7 ) , Ga1(K/Q). 

Each of the three proper intermediate fields has degree 2 Over Q. One is 
easy to find, since w 2  =  i  k a primitive fourth root of unity. The group 
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w 10 	. associated to Q(i) is (o-5), since o-5 (w2) 	 w2 We could find the 
two other fields in the same manner as in the previous example: Show that 
the fixed field of o- 3 is generated over Q by w o-3(w). However, we can 
get this more easily due to the special form of w. Since w = (1 ± 
and w -1  = (1 - i)/Na we see that .\/. = w w -1  G K. The element 
w 	= w co' is fixed by o- 7 ; hence, the fixed field of c17  is Q(-4). We 
know i G K and  v 	K, so -\/-2 G K. This element must generate the 
fixed field of o-3 . The intermediate fields arc then 

Q(\/-2), Q(J-1), Q( -1), Q. 

The description of the intermediate fields also shows that K = 

Problems 

I. Determine all of the subfields of Q12. 

2. Show that cos(7/9) is algebraic over Q, and find [Q(cos(7/9)) : Q]. 

3. Show that cos(27/n) and sin(27/n) are algebraic over Q for any n G 

N. 

4. Prove that Q(cos(27/n)) is Galois over Q for any n. Is the same true 
for Q(sin(27/n))? 

5. If p is a prime, prove that o ( pn) _ pn- 1 (p 1) .  

6. Let 0 : Z[x] 	F[x] be the map that sends  >. ax i  to  > 
where a is the equivalence class of a modulo p. Show that 0 is a ring 
homomorphism. 

7. If ged(n,m) = I, show that 0(nm) = 0(n)(1)(7r1). 

8. If the prime factorization of n is n 	p ic.' • • • p , show that 0(n) = 

-1 (pi - 1). 

9. Let n, m be positive integers with d = gcd(n,m) and 1 = lcm(n m). 
Prove that (1)(n)(1)(m)  

10. Show that (Z/nZ)* = {a nZ : gcd(a,n) = 1 } . 

11. If n is odd, prove that a Qn• 

12. Let n, m be positive integers with d = gcd(n, m) and 1 = lcm(n,m). 

(a) If 11 divides m, prove that Qn  C Qm• 

(b) Prove that Qn Qn, - Qi . 

(c) Prove that Q, n Q„, = Qd. 



I. Determine for which n and in there is an inclusion (1j71  	From 
this, determine which cyclotomic extensions contain V-1. 

14. Find a positive integer ii  SUCh that there is a snbficld of 	that is 
not a cyclotomic extension of Q. 

15. If d E Q, show that Q(1d) lies in some cyclotomic extension of Q. 
(This is a special case of the Kronecker—Weber theorem, which states 
that any Galois extension of Q with Abelian Galois group lies in a 
cyclotomic extension of Q.) 

16. The group (Z/nZ)* is a finite Abelian group; hence, it decomposes 
into a direct product of cyclic groups. This problem explicitly de-
scribes this decomposition. 

(a) If n = pri 1  • prick is the prime factorization of n, show that, 
(Z/nZ) 	ni (Z/pZ) as rings; hence, (Z/nZ)* r v.j  ni (z/KiZ)*. 

(b) If p is an odd prime, show that (1 + p)P t 	1  +pt-1-1( mod p1+2) if  

t > 0. Use this to find an element of large order in Z/pZ, and 
then conclude that (Z/pZ)* is cyclic if p is an odd prime. 

(c) Show that 52t 	1 + 2 t +2  (mod 2 t+ 3 ), and then that (Z/2n Z)* 
Z 12 r-2Z x Z/2Z if r > 3. Note that (Z/2 7- Z)* is cyclic if r < 2. 

17. Let G be a finite Abelian group. Show that there is a Galois extension 
K/Q with Gal(K/Q) (- -J G. 

8 Norms and Traces 

In this section, we define the norm and trace of a finite extension of fields 
and prove their basic properties. To help motivate these concepts, in Ex-
amples 7.9 and 7.10 we used elements of the form Eu,„ 0-(w) to generate 
the intermediate field T(H) of a cyclotomic extension. We will see that the 
sum E0 EH 0-(w) is the trace of co in the extension KIT(H). The definitions 
we give will not look like these sums; instead, we define the norm and trace 
in terms of linear transformations. This approach generalizes more readily 
to other situations. For instance, given a division ring (finite dimensional 
over its center), there is a notion of norm and trace that is quite important. 

Let K be a field extension of F with [K : F] = n. If a E K, let L a  
be the map L a  K K given by L a (b) = ab. It is easy to see that 
L a  is an F-vector space homomorphism. Since K is a finite dimensional 
F-vector space, we can view F-linear transformations of K as matrices 
by using bases; that is, if EndF(K) = homF (K,K) is the ring of all F-
vector space homomorphisms from K to K, then there is an isomorphism 
EndF(K) r vj  M n (F) where Mn (F) is the ring of n x n matrices over F. 



The matrix for L c, is then 

a bd 
b a ) 

If  ço: End F (K) 	ill,„(F) is an isomorphism, we can use cio to define 
the determinant and trace of a linear transformation. li•  T E EndF(K) )  
let (let(T) = det(cio(T)) and Tr(T) = Tr((p(T)). These definitions do riot 
depend on ço; to see this, let '//) be another isomorphism. Then //) corresponds 
to choosing a basis for K different from that used to obtain (p. Therefore, the 
two matrix representations of a transformation T are similar; that is, there 
is an invertible matrix A with /P(T) cp(T)A. Therefore, det(P (7)) = 
det(c,o(T)) and Tg/p(T)) = Tgc,o(7)). 

Definition 8.1 Let K be a  finite extension of F. The norm, N K IF  and 
trace TK 1 F  are defined for all a E K by 

= det(L„), 

7' 1,, p(a) = 

Example 8.2 Let F be any field, and let K = F(V71) for some d E F —F2 . 
A convenient basis for K is {1, fd}. If ( = a + ba with a, b E F, we 
determine the norm and trace of a. The linear transformation L a  is equal 
to aL i  + b_ry-d-, so we first need to find the matrix representations for L 1  

L,Td-( ) = d = d • 1 + 0 A/7l. 

and  L.  The identity transformation L 1  has matrix 

we have 

1 0 
0 1 ) • 	Lvd> For 

"0  d 
Therefore, the matrix for L."-d- is 1 0 ) 

a 
( 0 (1)  ) 	b 	Od  

From this we obtain NK/ F (a + ba) , a 2  — b2 d and TK/ F (a + ba) = 2a. 
In particular, NK / F (Va) = —d and TK / F ( Vd) = 0. 

Example 8.3 Let F =  Q and K = Q(0) . We will determine the norm 

and trace of 	An F-basis for K is {1, 	M. We can check that 

LN(1) = 	LN(0) = N, and L(N) = 2. Therefore, the matrix 
representing L N  using this basis is 

/o  0  2\  
100 

\0  1 0 ) 

so NE-/F() = 2 and TK/F(-) =  O . 
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Example 8.4 Let F be a field of characteristic p > 0, and let K IF be 
a purely inseparable extension of degree p. Say K = F(a) with aP = 
a E F. For instance, we could take K to he Lite  rational function field 
k(x) over a field k of characteristic p and F = k(x7'). A  lais  for K is 
{1, a, a 2 , ,aP-1 }. With respect to this basis, the matrix for L, is 

( 0 0 
1 0 

0 1 • 	• 

0  a\  
00  

00 
1 0 

We leave it to the reader to check that the matrix for L a2 is obtained by 
taking this matrix and shifting the columns to the left, moving the first 
column to the end. Similar processes yield the matrices L„i for each i. 

From these matrices, we see that NKIF(a)= (-1)Pa. For traces, each L ai 
has trace 0, including the identity matrix, since p 1 = 0 in F. Therefore, 
for any )3 E K we have Tr K F 03) = 0. The trace map TK/F is thus the zero 
function. 

The following leninia gives some elementary properties of norm and trace. 

Lemma 8.5 Let K be a finite extension of F with n= [K: F]. 

I. If a E K, then N K I F (a) and TK 1 F (a) lie in F. 

a The trace map TK 1 F  is an F-linear transformation. 

3. If a E F, then TKIF(a) = 

4. If a,b E  K, then NK1F(ab) NK 1 F (a) NK 1F(b). 

5. If a E F, then NK I F(a) = . 

Proof. These properties all follow immediately from the definitions and 
properties of the determinant and trace functions. 	 El 

The examples above indicate that it is riot easy in general to calculate 
norms and traces from our definition. Iii order to work effectively with 
norms and traces, we need alternative ways of calculating them. The next 
proposition shows that if we know the minimal polynomial of an element, 
then it is easy to determine the norm and trace of that element. 

Proposition 8.6 Let K be an extenszon of F with [K : 	= n. If a E K 

and p(x) = 	+ am _txm -  + • • + ai x a o  is the minimal polynomial of 
a over F. then AT K I F (a) = (-1)nct(r/Tn  )' and Th-/F(a) = - 
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Proof. Let cio : K 	EndF(K) be the map cio(a) = L a . It is easy to 
see that L a+b = L a  + Lb and L ab = L a  o Lb, so (io is a ring homomor-
phism. Also, if a E F and a E K then L a  = aLa . Thus, cp is also an 
F-vector space homomorpiiisitt. The kernel of cp is necessarily trivial, Since 

Cp is not the zero map. Since cio is injective, the minimal polynomials of a 

and L a  are equal. Let x(x) be the characteristic polynomial of L a , and 
say x(x) x n  + On-ixn-1  + + f30. By the Cayley-Hamilton theorem, 
Theorem 2.1 of Appendix D, the characteristic and minimal polynomials of 
a linear transformation have the same irreducible factors, and the minimal 
polynomial divides the characteristic polynomial. Since p is irreducible, by 
comparing degrees we see that x(x) p(x)nlm. Note that m divides n, 
because m = [F(a) : F] and 

n = 

 

[K:  F] 	[K:  F(a)] [F(a) F]. 

Now, recalling the relation between the determinant and trace of a ma- 
trix and its characteristic polynomial, we see that N K 1 F(a) = det(L a) = 
(-1) n [30 and TK 1 F(a) =Tr(La) = -On_ i . Multiplying out p(x)n/m shows 

that [30  cton/ra  and - n-1 —Cm_l,  which proves the proposition. 

Example 8.7 If F is any field and if K F(Vd) for some d E F - F2  
then a short calculation shows that the minimal polynomial of a + bfcl is 
X 2  — 2ax + (a 2  - b 2 d). Proposition 8.6 yields NK/F(a + a2  - bd 

and TK/F(a+bi-c-1)= 2a, as we had obtained before. 

If F = Q and K = Q(a), then the minimal polynomial of \n-  over F 
is  X 3  — 2. Then NK/F( 0) 2 and TK/F( 0) = O. 

Example 8.8 If K is a purely inseparable extension of F of characteristic 
p, then the minimal polynomial of any element of K is of the form xPn  - a. 
From this, it follows that the trace of any element is zero. 

If we know the minimal polynomial of an element, then it is easy to find 
the norm and trace of the element. However, it may be hard to find the 
minimal polynomial in many situations. Therefore, additional methods of 
calculating norms and traces are needed. For a Galois extension K of F 
there are simple descriptions of norm and trace in terms of automorphisms. 
Theorem 8,12 describes the norm and trace in terms of F-homomorphisms 
for general finite extensions and has the description for Galois extensions 
as a special case. In order to prove this result, we need some facts about 
separable and purely inseparable closures. Let K be a finite extension of 
F,  and let S be the separable closure of F in  K.  Recall that the purely 
inseparable degree of K/F is [K : F]i  = [K : 6]. The next three leinnim 
prove the facts we need in order to obtain the descriptions of norms arid 
traces that we desire. 



Lemma 8.9 Let K be a finite extension of F, and let S be the separable 
closure of F in  K. Then [S : F] is equal to the number of F-hornornorphisms 
from K to an algebraic closure of F. 

Proof. Let M be an algebraic closure of  F.  We may assume that K C M. 
If S is the separable closure of F in  K,  then S F(a) for some a by the 
primitive element theorem. If r 	[S : F], then there are r distinct roots 
of min(F, a) in M. Suppose that these roots are a l , 	, a,.. Then the map 

S M defined by f (a)   (ai) is a well-defined F-homomorphism 
For each i. Moreover, any F-homomorphism from S to M must be of this 
form since a must map to a root of min(F, a). Therefore, there are r dis-
tinct F-homomorphisnis from S to M. The field K is purely inseparable 
over S; hence, K is normal over S. Therefore, each ai extends to an F-
homomorphism from K to M by Proposition 3.28. We will be done once 
we show that each o- i  extends in a unique way to K.  To prove this, suppose 
that T and p are extensions of o- i  to K. Then 7- (K) K by Proposi-
tion 3.28, and so T -1 p is an automorphism of K that fixes S. However, 
Gal(K/S) {id}, since KIS is purely inseparable. Therefore, T'p= id, 
SO T p. 

Lemma 8.10 Let K be a finite dimensional, purely inseparable extension 
of F. If a E  K, then a[1( ' 11  E F. More generally, if N is a finite dimen-
sional, Galois extension of F and if a E NK, then a[K ' F1  E N. 

Proof. Let K be purely inseparable over F, and let n = [K : 	If a E  K,  
then a [1? (a): F] E F by Lemma 4.16. Since [F(a) : F] (livides n = [K‘ : 
we also have a" E F. To prove the second statement, let N be a Galois 
extension of F. Then N n K is both separable and purely inseparable over 
F, so N n K 	F. Therefore, INK  : K] 	[N : F] by the theorem of 
natural irrationalities, so INK  : N] = [K : F]. The extension NKIN is 
purely inseparable, so by the first part of the proof, we have an E N for all 
a E NK. This finishes the proof. N) 5 ' 5(1- 	' /p 

 

„ 	_ 
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Lemma 8.11 Suppose that FCLCK are fields with [K:  Fi < oo. Then 
[K : F]i 	[K : 	[L : F]i . 

Proof. Let Si  be the separable closure of F in L, let S2 be the separable 
closure of L in  K,  and let S be the separable closure of F in K. Since 
any element of K that is separable over F is also separable over L, we see 
that S C S2. Moreover, SL is a subfield of S2 such that  52/SL is both 
separable and purely inseparable, so S2 SL. We claim that this means 
that [L : S i ] = [S2  : S]. If this is true, then 	 or) 	F 	 d/F. 

) /4t4.1(L4,) 5f(L) 

04'4.6 rE 63---N 
[K : 	[K : Si 

[K S21* [S2 
[K : 82] [L : Si] 



N[/p(a) (, H ai  (a) 
.7 

and TK 1F(a) = [K : ai  (a). 

[K Ll i  [L : F]i , 

proving the result. We now verify that [L S I ] = [S2 : S]. By the primitive 
element theorem, S (a) for some a. Let f(x) = a), and let 
g(x) = min(L, a). Then g divides f in L[x]. However, since L is purely 

inseparable over S i , some power of g lies in Si  [x]. Consequently, f divides 
a power of g in F[x]. These two divisibilities force f to be a power of g. 
The polynomial f has no repeated roots since a is separable over S i , so 
the only possibility is for f = g. Thus, [S : Si ] = [L(a) : Lb and since 
L(a) SL = S2, we see that [S : S i ] = [S2 : L]. Therefore, 

[S2 	= 
[S2 	1S2 : SI]  

[L : Sli. 

	

[S : 	[S2 : L] 

This finishes the proof. 	 L. L.IS1 c1L:S,,L.1 p 

We are now in the position to obtain the most useful description of 
the norm and trace of an element. The next theorem gives formulas that 
are particularly useful for a Galois extension and will allow us to prove a 
transitivity theorem for norms and traces. 

Theorem 8.12 Let K be a finite extension of F, and let o- 1 ,... , a-, be the 
distinct F-homomorphisms from K to an algebraic closure of F. If a E  K,  
then 

5 ,  L S 

e„, 

Proof. Let M be an algebraic closure of F, and let al , 	, ar  be the dis- 
[K.17], 

tinct F-homomorphisms from K to M.  Let g(x) (Ft x — o -  (a)) 	, a 

polynomial over M. If S is the separable closure of F in  K,  then r = [S : 
by Lemma 8.9. The degree of g is 

r[K :  F]=  r[K : 	[K : S] • [S : 

= [K : 	= n. 

We claim that g(x) E F[x] and that g(x) has precisely the same roots as 
p(x) min(F, a). If this is true, we see that p divides g, and since all roots of 
g are roots of p, the only irreducible factor of g is p. Thus, g(x) = p(x) 71- 1"1 , 
where m deg(p(x)). It was shown in the proof of Theorem 8.6 that pm/n/ 
is the characteristic polynomial x(x) of L a . Thus, g(x) x(x). Therefore, 
if g(x) 	xn + 	+ 	+ , we have NK/F(a) = (-1)n-yo  and 

Tx/F(a) 	Multiplying out g(x) shows that 

70 = II—j (a)  
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and 

= — [K : Fii) cti(a). 

The formulas for the norm and trace then follow from Proposition 8.6. 
To see that g(x)  E  F[x] and that g and p have the same roots, first note 

that each cri (a) is a root of p since cri  is an F-homomorphism.  if b c M 
is a root of p(x), then by the isomorphism extension theorem there is a 
T : M M with 7- (a) = b. Since 71K is one of the o-i , say 71K = ak, then 
'1 (a) = o- k  (a) b, so b is a root of g. This proves that g and p have the same 
roots. To see that g(x)  E  F[x], let N be the normal closure of S/F. Then 

N/F is Galois; hence, N/F is separable. Also, KNIK is Galois, and by 
the theorem of natural irrationalities, [KN : K] divides [N : S]. Therefore, 
[K N : N] divides [K S] = [K : Fi], since 

[KN : NJ [N : S] = [K N : S] = [K N : K] [K S]. 

The extension KNIN is purely inseparable since K/S is purely insepara-
ble, so c[KOE]i c N for any c c KN by Lemma 8.10. Because KN is the 
composite of a Galois extension of S with a purely inseparable, hence nor-
mal, extension, KNIS is normal. Thus,  a(K) C KN by Proposition 3.28. 
So we see that g(x) c N[x], using (KN)[K: Fli C N. However, if T is any 
element of Gal(M N), then 

	

(To-40 — {al> 	7 0-7-17 

so 7- (g) = g. Thus, the coefficients of g lie in the fixed field of Gal(M/F). 
This fixed field is the purely inseparable closure of F in  M,  since M/F 
is normal. We have seen that the coe fficients of g lie in N, so they are 
separable over F. These coefficients must then be in F. This completes the 
proof of the theorem. 

	

Suppose that K is Galois over F. Then {al, 	,o}  = Gal(K/F) and 
[K : F]i  = 1. The following corollary is immediate from Theorem 8.12. 

Corollary 8.13 If K F is Galois with Galois group G, then for all a c  K, 

 NK1F(a) = 110-(a) and TK/ F(a) =  
crEG 	 crEG 

Example 8.14 Let F be a field of characteristic not 2, and let K -= F(N/3) 
for some d c F — F2 . Then Gal(K/F) = {id, 0- } , where o- (N/T/) = 
Therefore, 

NK/F(a + WTI) = (a + h)(a — WTI) = a2  — b 2 

 Th7 F(a bV-(71,) = (a bV -(71,) -I- (a — bN/T-1) = 2a. 



Example 8.15 Suppose that F is a field containing a primitive nth root 

of unity u.), and let K be an extension of F of degree n with K = F(a) 

and an = a E F. By the isomorphism extension theorem, there is an 

automorphism of K with o-  (a) = wc.  From this, we can see that the order 

of a is n, so Gal(K/F) = (a). Therefore, 

= wn(n-i)/2n '(-1)na, 

If n is odd, then n(n — 1)/2 is a multiple of n, so Wn(n-
1)/2 = 1. If n is 

even, then this exponent is not a multiple of n, so n(n-1)/2 1. How- 
ever, (W n(n-1) / 2 ) 2  = 1, so wn(n-1)/2 = 1. This justifies the final equality 
NKI F (a) = (-1)na. 

As for the trace, 

=0  

because co is a root of (xn — 1)/(x — 1) = 1 x • • • xn-1 . These norm 
and trace calculations could also have been obtained by using the minimal 
polynomial of a, which is xn — a. 

In the examples above, we often calculated the norm and trace of an 
element a for the field extension F(a)IF. If we want the norm and trace of 
an element that does not generate the larger field, our calculations will be 
more involved. This complication is eliminated by the following transitivity 
theorem, which gives relations between the norm and trace of an extension 
and a subextension. 

Theorem 8.16 If FCLCK are fields with [K : F] < oo , then 

Nit/ F = IVL/F 0 NKR, and TK/F =TLIFoTKIL; 

that is, NKIF(9) — IVL/F(NKIL (a)) and TK/F(a) = TL/F(TKIL(o)) for 
each a E K. 

Proof. Let M be an algebraic closure of F, let o- i , 	, a, be the dis- 
tinct F-homomorphisms of L to M, and let 	, Ts  be the distinct L- 

homomorphisms of K to M. By the isomorphism extension theorem, we 
can extend each o-i  and Tk to automorphisms M M, which we will also 
call ai  arid Tk respectively. Each o-i Tk is an F-homomorphism from K to 
M. In fact, any F-homornorphism of K to M is of this type, as we now 
prove. If p :  K 	M is an F-homomorphism, then pL:L--YMis equal 
to ai  for some j. The map ajl p is then an F-homomorphism K 	M 

which fixes L. Thus, o-  j— I  p = -T-k for some k, so p = o-i Tk. If a E K then by 
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min(F, a) are a, wa, w 2 a, w 3 a, and co 4 a. By the isomorphism extension 
theorem, there is a a E  Gal(K/F) with o-  (a) = wa. Then o- i (a) = cui  a. 
Consequently, o-5  = id and ai  id if i < 5. The order of a is thus equal to 
5. This means that Gal(K/F) =  (a), so K IF is a cyclic extension. 

We will analyze the cyclic extensions of degree n of a field containing 
a primitive nth root of unity and the cyclic extensions of degree p of a 
field of characteristic p. To motivate our restriction to these extensions, we 
first point out that there is no simple description of the cyclic extensions 
of degree n of a field F that does not contain a primitive nth root of unity, 
unless n = p is a prime and char(F)'= p. For instance, there is no simple 
description of the cyclic extensions of Q, extensions that are important in 
algebraic number theory. Second, we can decompose a cyclic extension of 
F into a tower of degree p cyclic extensions together with a cyclic extension 
of degree relatively prime to p. We do this as follows. Let H be a p-Sylow 
subgroup of G = Gal(K/F), and let L = T(H). Since H is normal in 
G, by the fundamental theorem L is Galois over F with [L : F] = q 
and [K : L] = pn . Furthermore, since subgroups and quotient groups of 
cyclic groups are cyclic, both L/F and K/L are cyclic extensions. Because 
H = Gal(K/L) is a cyclic p-group, there is a chain of subgroups 

(id) c Hi  c H2 C • C H„ = H 

with 	= pi . If Li  = T(Hi ), we get a tower of fields 

L„= L C L n_iC c L o  = K. 

Moreover, [L 7,_ 1  : L m ] = p and L m_ i  is a cyclic extension of L in . 
Let F be a field containing a primitive nth root of unity co. If K is an 

extension of F, suppose that there exists an a E K with an = b c F. 
We then write a = a. Note that  (w 1  a) = b for all j G Z. Therefore, K 
contains n roots of the polynomial x" — b, so F( Vt) is the splitting field 
of xn — b over F. 

The following lemma is the heart of Theorem 9.5. The standard proof of 
this lemma is to use the Hilbert theorem 90. While we give a linear algebra 
proof of this, the Hilbert theorem 90 is quite important, and we discuss it 
in detail in Section 10. 

Lemma 9.4 Let F be a field containing a primitive nth root of unity co, 
let K IF be a cyclic extension of degree n, and let a be a generator of 
Gal(K/F). Then there is an a c K with w = o- (a)la. 

Proof. The automorphism a is an F-linear transformation of K. We wish 
to find an a E K with  a(a) = wa; that is, we want to show that w is an 
eigenvalue for a. To do this, we show that co is a root of the characteristic 
polynomial of a. Now, since a has order n in Gal(K/F), we have an = id. 
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Therefore, a satisfies the polynomial xn — 1. Moreover, if there is a polyno-
mial g(x)  E  F[x] of degree m < n satisfied by o- , then the automorphisms id, 
o- , ,am—i  are linearly dependent over F, a contradiction to the Dedekind 
independence lemma. Thus, xn — 1 is the minimal polynomial of o-  over F. 
However, the characteristic polynomial of o-  has degree n = [K : F] and is 
divisible by xn — 1, so xn — 1 is the characteristic polynomial of a. Since 
co is a root of this polynomial, co is an eigenvalue for o- . Thus, there is an 
a E K with  a(a) = wa. 

We now give the description of cyclic extensions K I F of degree n when 
F contains a primitive nth root of unity. 

Theorem 9.5 Let F be a field containing a primitive nth root of unity, 
and let K I F be a cyclic Galois extension of degree n. Then there is an 
a c K with K = F(a) and an =b  F ; that is, K = F( 

Proof. By the lemma, there is an a with  a(a) = wa. Therefore, o-i  (a) = w 1 a,  

so a is fixed by o-i  only when n divides i. Since the order of o-  is n, we see 
that a is fixed only by  id, so Gal(K/F(a)) = (id). Thus, K = F(a) by the 
fundamental theorem. We see that  a(a) = (coa)n = an, so an is fixed by 
o- . Hence, b = anE F, so K = ( -A). 

We give a converse to this theorem that describes extensions of the form 
F( /)/F.  This converse is a special case of a theorem we will see in Section 
11. 

Proposition 9.6 Let F be a field containing a primitive nth root of unity, 
and let K =  F( /) for  some b c F. Then K I F is a cyclic Galois extension. 
Moreover, m = [K : F] is equal to the order of the coset bF" in the group 
F*/Fi,  and VT)) = x'" — d for same d c F. 

Proof. Let a E K with an = b. Since F contains a primitive nth root of 
unity co, the polynomial xn — b splits over K,  and it is separable over F by 
the derivative test. Thus, K is a splitting field over F for xn — b, so KIF is 
Galois. We will show that K I F is cyclic Galois by determining a generator 

for G = Gal(K/F). The roots of min(F, a) lie in the set fwia : j E Z1 since 
min(F, a) divides xn — b, so if o-  E G, then  a(a) = w i a for some i. We write 

i mod n for the smallest nonnegative integer congruent to i modulo n. Let 

S = {i mod n : c - (a)/a =  ci i  for some o-  E GI . 

Then S is the image of the function G —+ Z/nZ given by a i mod n, where 
a(a)/a =  w 1 . This map is a well-defined group homomorPhism whose image 
is S,  and it is injective, since if o-  0 mod n,, then o-  (a) = a, so o-  = id. 
Therefore, G S, a subgroup of Z/nZ; hence, G is cyclic. 
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Since [K : F]i  = [K : 	• [L : F]i  by Lemma 8.11, this proves that 
NK1 F(a)= NLIF(NKIL(a)). A similar calculation shows that TK1 F (a)= 

TL/F(TK1L(a))- 

As a consequence of this theorem, we see in the following corollary that 
the existence of an element with nonzero trace is a test for separability. 

Corollary 8.17 A finite extension K IF is separable if and only if TK1F  
is not the zero map; that is, K IF is separable if and only if there is an 
a E K with TK1 F  (a) O. 

Proof. Suppose that K IF is not separable. Then char(F) = p > O. Let 
S be the separable closure of F in K. Then S K and KIS is a purely 
inseparable extension. Moreover, [K : = pt for some t 1 by Lemma 
4.17. If a E K, then by Theorem 8.16 we have TK/ F (a) = Ts/ F (TK/s (a)). 
However by Theorem 8.12, if a l , , a,. are the distinct S-homomorphisms 
from K to an algebraic closure of F, then 

TKI s (a)=  [K:  S]i(o- i (a)+ 	+ 0- 7- (a)). 

But [K : 	= [K : 	= pt , since K is purely inseparable over S. Since 
char(F) = p, this forces TK/s(a) = 0, so TK1 F (a) = Ts/p(0) = O. Thus, 
TK/ F  is the zero map. 

Conversely, suppose that K is separable over F. Let N be the normal 
closure of K/F. By Theorem 8.16, we see that if TN/ F  is nonzero, then so is 
TK F. Say Gal(N/F) = {a 1 , ,o-n l. If a E N, then TNI F:(a)=Ei o-i (a) 
by the corollary to Theorem 8.12. By Dedekind's lemma,  a i  (a)+. -1-o-n  (a) 
is not zero for all a E  N, so TN/F is not the zero map. Therefore, TK/F is 
not the zero map. 



Problems 

1 Let K/F be an extension of finite fields. Show that the norm map 
NKIF is surjective. 

2. Let p be an odd prime, let co be a primitive pth root of unity, and let 
K =Q(co). Show that NK/Q(1 — co) = p. 

3. Let n > 3 be an integer, let co be a primitive nth root of unity, and 
let K = Q(w). Show that NK/ Q (w) = 1. 

4. In Examples 7.9 and 7.10, generators consisting of traces were found 
for intermediate fields. Let K be a Galois extension of F. If L is an 

intermediate field of K/F, show that L is generated over F by traces 
from K to L. In other words, show that L = F ({TK I L  (a) : a c K } ). 

5. Let K be a Galois extension of F. Prove or disprove that any inter-
mediate field L of K/F is of the form L = F ({NK/L (a) a E K } )- 

6. Let FCKCL be fields with L/F a finite extension, Use the product 
theorem for the purely inseparable degree proved in this section to 
prove the corresponding product formula for separable degree; that 
is, prove that [L : 	[L K],[K : 

9 Cyclic Extensions 

We resume our investigation of special types of Galois extensions. In this 
section, we study Galois extensions with cyclic Galois group. Section 11 
will study Galois extensions with an Abelian Galois group. 

Definition 9.1 A Galois extension K IF is called cyclic if Gal(K/F) is a 
cyclic group. 

Example 9.2 Let F be a field of characteristic not 2, and let a c  F— F 2 .  
If K = F(/a), then Gal(K/F) = {id, o- } where o- ( \/a) 	--va. Thus, 
Gal(K/F) 	Z/2Z is cyclic. For another example, if p is a prime, then 
the cyclotomic extension Qp /Q is cyclic, since Gal(Qp/Q) r) (Z/pZ)* is a 
cyclic group. 

Example 9.3 Let co be a primitive fifth root of unity in C, let F =Q(co), 
and let K = F(n. Then K is the splitting field of x 5  - 2 over F, so K is 
Galois over F. Also, [Pi : Q] = 4 and  [Q()  Q] = 5. The field K is the 
composite of these two extensions of Q. The degree [K : Q] is divisible by 4 
and 5; hence, it is divisible by 20. Moreover, [K : F] < 5, so [K : Q] < 20. 
Therefore, [K : = 20, and so [K : F] = 5. Let a = 2. The roots of 



IL remains Lu determine 1G1 and inn10:, (L). Let Gal(AR. = (r), and 
set 7- (a) = w t a. If m =  C , then m is the least positive integer such 

that  (t)m = 1. The polynomial 117-0 1 (x — Ti (a)) lies in F[x], since it is 
fixed by T. Looking at the constant term, we see that am E F. Therefore, 
bm =  ()fl  E  F.  If mi  is the order of bF*" in F* I Pk", then in/  divides 
m. For the reverse divisibility, we know that bm E F*n , so Um = o for 
some c E F. Then ami n = en, so am' = cw i  for some i, which means 
am E F. Therefore, 'r (a) = wtrn = a, so m divides 	since m is the 
order of wt in  F*,  Both divisibilities together yield m = mi . Moreover, 
since m = [K : F] = deg(min(F, a)) and xm — am E F[x] has a as a root, 
we see that min(F, a) = xm — am. This finishes the proof. 

The simple structure of a cyclic group allows us to give a nice description 
of the intermediate fields of a cyclic extension. This description was hinted 
at in Example 5.4. 

Corollary 9.7 Let K IF be a cyclic extension of degree n, and suppose 
that F contains a primitive nth root of unity. If K = F(n_va) with a E F, 
then any intermediate field of KIF is of the form F( 'va) for some divisor 
m of n. 

Proof. Let a-  be a generator for Gal(K/F). Then any subgroup of 
Gal(K/F) is of the form c:1-t ) for some divisor t of n. By the fundamental 
theorem, the intermediate fields are the fixed fields of the o-t . If t is a divisor 
of n, write n = tm, and let a  = va. Then  at (am) = (w t a)m = am, so 
am is fixed by a-t . However, the order of atF in FVF*n is m, so F( 7-Va) 
has degree m over F by Proposition 9.6. By the fundamental theorem, the 
fixed field of ut  has degree m over F, which forces F( Va) to be the fixed 
field of  at.  This shows that any intermediate field of K/F is 6f the form 
F( /) for some divisor m of n. 

We now describe cyclic extensions of degree p in characteristic p. Let F 
be a field of characteristic p > 0. Define p : F F by p(a) = aP — a. 
Then p is an additive group homomorphism with kernel F.  To see this, if 
a, b E F, then 

p(a b) = (a ± b)P — (a ± h) 

= aP — a ± bP — b 

= (a) + (b) 

and p(a) = 0 if and only if aP = a, if and only if a E  F. Note that if p(a) = 
b, then p(a -f-S i) = b for all i E Fp , and in fact p-1 (a) = {a +  ii E IFp }  
Therefore, if K is an extension of F such that there is an a E K with p(a) = 
a E F, then F(a) = F(—i(a )) .  The usual proof of the following theorem 
uses the additive version of Hilbert theorem 90, but, as with Lemma 9.4, 
we give a linear algebraic proof. 



Theorem 9.8 Let char(F) = p, and let K/F  be a cyclic Galois extension 
of degree p. Then K = F(a) with aP — — a = 0 for some a E F; that is, 
K = F(p-1 (a)). 

Proof. Let o-  be a generator of Gal(K/F), and let T be the linear trans-
formation T = o-  — id. The kernel of T is 

ker(T) ={bEK: u(b) = 

=F. 

Also, TP = (CT —id)P = o-P —id = 0, since the order of o-  is p and char(F) = p. 
Thus, im (TP-1 ) C ker(T). Because ker(T) = F and im (TP-1 ) is an F-

subspace of K, we get iin (TP-1 ) = ker(T). Therefore, 1 = T 1 (c) for 
some c E K.  Let a = TP-2 (c). Then T(a) = 1, so  o(c) — a = 1 or 
u(a) = a + 1. Since a is not fixed by o- , we see that a F, so F(a) = K 
because [K:  F] = p is prime. Now, 

o- ( c P — a) = u(a)P — u(a) = (a + 1)P — (a + 1) 

= aP + 1 — a — 1 = aP — a. 

If a = aP — a, then p(a) = a E F, so aP — a — a = O. 

The converse of this theorem is also true. 

Theorem 9.9 Let F be a field of characteristic p, and let a E F —  
Then f (x) = — x — a is irreducible over F,  and the splitting field of f 
over F is a cyclic Galois extension of F of degree p. 

Proof. Let K be the splitting field of f over F. If a is a root of f,  it 
is easy to check that a 	1 is also a root of f. Hence, the p roots of f 
are a, a 1, , p — 1. Therefore, K = F(a). The assumption on a 
assures us that a F. Assume for now that f is irreducible over F.  Then 
[K : F] = deg( f) = p. By the isomorphism extension theorem, there is a 
o-  E Gal(K/F) with o-  (a) = a ± 1. From this, it folloWs that the order of o-
is p, so Gal(K/F) = This proves that K I F is a cyclic Galois extension. 

It remains for us to prove that f (x) is irreducible over F. If not, then f 
factors over F as f (x) = g i (x) • • g r (x), with each gi  irreducible over F. If 

is a root of gi  for some i, then the paragraph above shows that K = F(8), 
so [K : F] = deg(gi ). This forces all degrees of the gi to be the same, so 
deg( f) = r deg(g i ). Since deg( f) is prime and f does not split over F, we 
see that r = 1; hence, f is irreducible over F. 

Example 9.10 Let F = Fp (X) be the rational function field in one variable 
over IF. We claim that x KJ' (F), so the extension F(p-1 (x)) is a cyclic 
extension of F of degree p. To prove this, suppose instead that x e 
so x = aP — a for some a G F. We can write a = f/g with f,g e Fpfx) 
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relatively prime. Then x = fPlgP - fig, or gPx = fP fg'.  Solving 
for fP gives fP = gP-1 (gx - f), so g divides fP. This is impossible; thus, 
x  I (P), arid then F(0 ---  (P)) is a cyclic extension of P of degree 7) as 
we claimed. 

Problems 

1. Suppose that F is a field containing a primitive nth root of unity, 
and let a E F. Show that xn - a is irreducible over F if and only if a 
is not an mth power for any m> 1 dividing n. 

2. Suppose that F is a field, and let co be a primitive nth root of unity 
in an algebraic closure of F. If a E F is not an mth power in F(w) 
for any rn> 1 that divides n, show that x" - a is irreducible over F. 

3. This problem describes cyclic extensions of degree four of a base field 
that does not contain a primitive fourth root of unity. Let F be a field 
that does not contain a primitive fourth root of unity. Let L = F( -1a) 
for some a E F - F2 , and let K = L(V) for some b E L - L 2 . Show 
that the following statements are equivalent: 

(a) a is a sum of two squares in F. 

(b) — 1 = NL 1 F(a) for some a E L. 

(c) a = NL 1 F (a) for some a E L. 

(d) NL / F (b) a mod F* 2  for some b E L. 

(e) K/F is a cyclic extension (with the b in Problem 3d). 

(f) L lies in a cyclic extension of F of degree 4. 

4. This problem investigates the splitting field of the polynomial xn - a 
over a field F that does not contain a primitive nth root of unity. 

(a) If a E F, show that the splitting field of x"- a over F is F(a, co), 
where a" a and co is a primitive nth root of unity. 

(b) Let N = F(a,w), let K = F(a),  and let L = F(w). Show that 
LIF is Galois and NIL is cyclic. 

(c) Suppose that min(F, w) = (x - co)(x - w -1 ) and that [N:  L] = 
n. Show that there is an element a E Gal(N/F) with  a(ci) = 
Loa and  a(w) = co, and a T with 7- (w) = co -1  and T(a) = a. 
Moreover, show that the order of o-  is n, the order of T is 2, and 
TUT = o--1 . Recall the definition of the dihedral group Dn , and 
show that D 71  = Gal(NIF). 
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(d) Let p be an odd prime, and let (.4.) E C be a primitive pth root of 
unity. Let F = Q(w) n R. Let a E Q be a rational number that 
is not a pith power in Q. Show that [F(6-1,) : F] = p and that 
if L = F(w), then [L(  /i)  : L] = p. Conclude that if /V is the 
splitting field of xP — a over F, then Gal(N/F) = D.  

5. In this problem, we prove the following result: Suppose that K I F is 
a finite extension with K algebraically closed. Then char(F) = 0 and 
K = F(\/-1). Use the following steps to prove this: 

(a) If char(F) = p>  0 and  3 E F — FP, then xPr  
over F for all r> O. 

is irreducible 

(b) If char(F) = p > 0 and there is a cyclic extension of degree p, 
then there are cyclic extensions of F of degree pr for any r > I. 

(c) Let p be a prime, and suppose that either F contains a primitive 
pth root of unity for p odd, or that F contains a primitive fourth 
root of unity forr = 2. If there is an a E F with XP —a irreducible 
over F, then XP — a is irreducible over F. 
(Hint: Use a norm argument.) 

(d) Use the previous steps to prove the result. 

10 Hilbert Theorem 90 and Group Cohomology 

In this section, we change gears. Instead of investigating Galois extensions 
with certain types of Galois groups, we investigate some deep ideas that 
arise in classical treatments of cyclic Galois extensions. Cohomology, first 
introduced in algebraic topology, is a valuable tool in many areas of algebra, 
including group theory, the theory of algebras, and algebraic geometry. 
We introduce the notions of group cohomology here, we give a couple of 
applications of the theory, and we relate it to cyclic extensions. To start 
with, we prove the so-called Hilbert theorem 90, which can be used to prove 
Lemma 9.4, the key step in characterizing cyclic extensions. 

In order to prove the Hilbert theorem 90, we define a concept that we 
will see again when we formally define group cohomology. Let K be a field, 
and let C; be a subgroup of Aut(K). A crossed homomorphism f : C  --+ K* 
is a function that satisfies f(o - T) = f(a) o-  ( f (T)) for all a, T E C. 

Proposition 10.1 Let K be a Galois extension of F with Galois group 6; 
and let f : C  --+ K* be a crossed homomorphism. Then there is an a E K 
with  f(T) = 'r(a)/a  for all  iE C. 

Proof. The Dedekind independence lemma shows that E 	f (o- )o- (c) 0 0 EG 
for some c E K, since each Po- ) 	0. Let b = Euecr, Polo- (c). Then 



	

(b) 	Ecr E G T (f( a))( rff )( C)) 	5°  

	

f (T)T(b) = 	f (T)T(f (a)) (Ta)(c) 

o GG 

	

= 	f(a)  (To )(c) = b 

o EG 

Thus,  f(r) = b I T(b). Setting a = b -1  proves the result. 

Theorem 10.2 (Hilbert Theorem 90) Let K I F be a cyclic Galois ex-
tension, and let o-  be a generator of Gal(KIF). If n E  K, then N I( F (u) = 1 
if and only if u = c-(a)/a  for some a c  K.  

Proof. One direction is easy. If u = 0- (a)/a, then NKI F (0- (a))= NKIF(a), 
so  N(n) = 1. Conversely, if NK/ F (u) = 1, then define f : C  --+ K* by 
f (id) = 1, f(a) = u, and  f(a 1 ) = uo- (u) • o-i-1 (u) for i < n. To show that 
f is a crossed homomorphism, let 0 < j < n. If i  + j  < n, then 

Po-  0- 
	

f (o-i+j) = uo- (u) • • • 0-i+j-1 (U) 

= (U0- (U) • • 0-i-1 (U)) • 0-i  (U0- (U) • • 0-i-1 (U)) 

= f (a ) • cr i (f 

Ifi+j>n,then  O <i+j—n<n,so 

Po-  0-  ) 

However, 

f (0 -  )  ai(f( ) 

f(a) = f(a 1 ) = uo- (u) •  

= (no- (u) 	o-i-1 (u)) • cr i  (no- (u) • • • 	(u)) 

= 0/0- (U) • 0-i+i-n-1  (U)) 0--n  (U0- (U) 	0-n-1 (U)) 

= f(cri cri ) NK/F(u) 

= f(0-  0-  

Therefore, f is a crossed homomorphism. By Proposition 10.1, there is an 
a E K with  f(a) = (a) I a for all i. Thus, u = f(a) = a(a)/a.  

Lemma 9.4 follows quickly from the Hilbert theorem 90. If K F is a cyclic 
extension of degree n, if a is a generator of Gal(K/F), and if F contains 
a primitive nth root of unity w, then NK/ F (w) = wn = 1. Therefore, 
w = a(a)/a  for some a E  K.  This gives an alternative proof of Lemma 9.4, 
the proof most commonly seen in Galois theory texts. 
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We can mimic the arguments above to get results about the trace. However, 

before we do so, we introduce group cohomology. Given a group G and 
an Abelian group M with some extra structure to be described shortly, 
we will obtain a sequence of cohomology groups Hn (G, M), one for each 
nonnegative integer. 

Let G be a group, and let M be an Abelian group. We say that M is a 
G - module if there is a function G x M M,  where the image of  (o- ,  m) is 
written um, such that 

1m = m, 

u(m) = (u)m, 

cr(mi + m2) = ami + am2 

for all m, ml, m2 E M and all a , -T-  E G. This is equivalent to the condition 
that M is a left module over the group ring Z[C]. For example, if K is a 
Galois extension of a field F and G = Gal(K/F), then K* is a G-module 
by defining a- a = o- (a). Similarly, the additive group (K ±) is a G-module. 

Suppose that M is a G-module. Let C"(GY , Al) be the set of all functions 
from the Cartesian product GxGx---xG en times) to M.  The elements 
of C72 (G, M) are called n - cochains. If ri  = 0, we define C° (G, M) = M. 
The set Cn(G, M) can be made into a group by adding functions compo-
nentwise; that is, if ,  f , g E Cn (G, M), define f g by 

(f + g)(0- 1 , • • an) = f (cri , • , 0- n) + g(0- 1 	, an) 

One can easily check that with this operation Cn(G, M) is an Abelian 
group. Note that Cn (G, M) = homz(Z[Gn], M), which is another way to 
see that Cn(G, M) is an Abelian group. 

Define a map 6„ : Cn (G, NI) Cn+1  (G , M) by 

6n(f)(al 7 ' ' 7 an--1--1) — 	f (0-27 • , 	an--1--1) 

+ 	( -1 ) f (0 - 17 , • • azaz+1, • • • 7 an+i) 

i= 1 

If n = 0, then the map 60  : /V/ = C° (G, M) 	(G, M) is defined 
by 60 (m)(o- ) = 	— Tn. This definition is compatible with the general 
formula above. A straightforward hut tedious calculation shows that 6, is 
a homomorphisrn and that 6, 1  o 6,, is the zero map (see Problems 1 and 
2). The maps 877, are called boundary maps. 

Let Zn(G, M) = ker(6n ). The elements of Z"(G, M) are called n-
cocycles. Since bn  (6n _ f)) = 0 for all f e Cn-1 (G,M), the image of 8n_i 



is contained in ker(6,). Let Bn(G, M) = im(6 1 ) if n > O. For n = 0, 
let B ° (G, = O. The elements of /3 72 (G, M) are called n- co boundaries. 
Finally, the nth cohomology group Hn(G,M) of G with coefficients in M 
is defined by 

(G, M) = Zn (G, M)I Br' (G, M). 

Two cocycles in Zn (G, M) are said to be cohomologous if they represent 
the same element in _Fin (G, M); that is, if they differ by a coboundary. 

Let us look at the cohomology groups for small n. The kernel of 80  
consists of all m E M with um = m for all o-  E G. Therefore, 

II ° (C, M) = M G  = {rn  E M: 	= m for all o-  E C;} 

If n = 1, then f : 	M is a 1-cocycle if 6 1 (f) = 0. This happens 
when a f (T) - f (0-T) + Po- ) = 0 for all  a, 'r E G. In other words, a 1- 
cocycle is a crossed homomorphism as defined above, at least when M is 
the multiplicative group of a field. If g is a 1-coboundary, then there is an 
m E M with g(0- ) = am - m for all o-  E G. Proposition 10.1 implies that 
if G = Gal(K/F), then any 1-cocycle from G to K* is a 1-coboundary. 
In other words, H I (G,K*) = 0. This result is often referred to as the 
cohomological Hilbert theorem 90. It is also true that HI (G, K) 0, as we 
now prove. 

Proposition 10.3 Let KIF be a Galois extension with Galois group G, 
and let g : K be a 1-cocycle. Then there is an a E K with g(T) = 
T(a) - a for all T E G. 

Proof. Since K/F is separable, the trace map TA -/ F  is not the zero map. 
Thus, there is ac  c K with TK / F (c) 0. If a = TK/F (c), then a E F* and 

K / F (ct-lc) = 1. By replacing c with a -l c, we may assume that TK/ F (c) = 
1. Recall that TK / F  (x) EueG  a(x) for all x E  K.  Let b = EueG  g(o- )o- (c). 
Then T(b) = Eu, G  T (g (0))(T 0)(C). Since  g(a) = g(T) + T(g(o- )), 

	

T(b) = 	(g(To- )- g(T))(To - )(c) 
0-Ec 

	

= 	g(Ta)(Ta)(c) - >:  g(T)(Ta)(c) 
0-Ec 	 0-EG 

= b g(T). T ()  0- (C)) 

crEG 

= b - 

Therefore, g(T) = b - T(b). Setting a = -b gives g(T) 	T(a) - a for all 
T E G. 

We record our two results about H I  in the following corollary. 



Corollary 10.4 (Cohomological Hilbert Theorem 90) Let K be a 
Galois extension of F with Galois group G. Then H 1 (9 ,ICK) = 0 and 
H 1  (G, K) = 0. 

The triviality of Ill (C,  K) can be used to give information about the 
trace map of a cyclic extension and to give an alternative proof of Theorem 
9.8, the proof that is typically seen in texts. We now obtain the analog of 
the Hilbert theorem 90 for the trace map. 

Theorem 10.5 (Additive Hilbert Theorem 90) Let K be a cyclic 
Calms extension of F, and let o-  be a generator of Gal(K/F).  If u E  K,  
then TK/F(U) = 0 if and only if u = a(a) — a for some a E K. 

Proof. If u = a(a) - a, then TK/ F (u) = 0, Conversely, suppose that 
TR-/F(u) = 0. Let n = [K : F], and define g :  K by g(id) 0, g(a) = 
u, and for i  <n by 

g(a) = u + a(u) + • + o- i-1  (u). 

If 0 < j < n, then as 0 = TK/F (u) => 	a(u), we see that regardless 
of whether i j < n or i j > n, we have 

g(o-  o- 	u + o-  (u) + • +  

= (u + 
 

	

a(u) + 	+ — (u)) + o- a (u + a(u) + 	+  

= g(a) + (g(o-i )) 

Therefore, g is a cocycle. By Proposition 10.3, there is an a E K with 
g(ai ) =aL  ((L) - a For all j. Hence, u = g(a) = a(a) -  a. 

The usual argument for Theorem 9.8 goes as follows. If K F is a cyclic 
extension of degree p with char(F) = p, then TK/ F (1) = p .1  = 0, so by the 
additive Hilbert theorem 90, 1 = a(a) - a for some a E K. It is then easy 
to see that a is a root of xP - x - c for some c E F and that K = F(a). 

Group extensions 

Second cohomology groups have some important applications. In what fol-
lows, we will discuss applications to group theory and to the theory of 
division algebras. Before doing so, we write out the formulas that deter-
mine when a 2-cochain is a 2-cocycle or a 2-coboundary. Let G be a group, 
and let M be a C-module. A function f:GxC; M is a 2-cocycle if for 
each p E G, we have 

f (c7 , 7- ) f(a'rp) = CT f('r p) f(a, p). 

We will refer to this equation as the cocycle condition. On the other hand, 
if there arc m u  E M with 

f  (a, 'r)  = m  ± am,„ - mur 



tor cacti ff, 	G, tilell f iS a 
The first application of second colioniology groups we give is to group 

extensions. We point out that a number of statements in the remainder of 
this section will be left as exercises. Suppose that E is a group that contains 
an Abelian normal subgroup M, and let G = EIM. We then say that E 
is a group extension of G by M. The basic problem is this: Given groups 
G and M, describe all groups E that, up to isomorphism, contain M as 
a normal subgroup and have E/M G. As we shall see, if M is Abelian, 
then H2 (G,M) classifies group extensions of G by M. 

Example 10.6 Let E = S3.  If M = ((123)), then M is isomorphic to 
Z/3Z and M is an Abelian normal subgroup of E. The quotient group 
EIM is isomorphic to Z/2Z. Therefore, S3 is a group extension of Z/2Z 
by Z/3Z. 

Example 10.7 Let E = Dn , the dihedral group. One description of .E is 
by generators and relations. The group E is generated by elements a and T 
satisfying 'ï 	0-2  = e and 0- TO-  = 'T L . Let A f= (a), a normal subgroup of 
E that is isomorphic to Z/nZ. The quotient EIM is isomorphic to Z/2Z, 
so E is a group extension of Z/2Z by Z/nZ. 

Example 10.8 Let M and G be groups, and let cio : 	End(M) be 
a group homomorphism. If E is the semidirect product M  x 	then 

= {(m,e): m E MI is a normal subgroup of E isomorphic to M, and 
E/M 1  G. Thus, E is a group extension of M by G. Notice that the 
group extensions in each of the two previous examples are also semidirect 
products. 

Suppose that M is Abelian and that E is a group extension of Gby M. 
We can make M into a G-module as follows. View G = E/M. If a E 

and m E M, let e be any element of E that is a coset representative of a. 
Then define am = eme -1 . Note that we will write the group operations in 
these groups multiplicatively. The groups G and E need not be Abelian, 
although we are assuming that M is Abelian. It is not hard to show that 
this definition gives a well-defined action of G on M and that M is a G-

module. We can obtain a 2-cocycle from this information. For each a E 
G, pick a coset  representative  e u  E E. The map a 	e a  need not be 
a homomorphism. Let f(0- , T) = e u e re 07,1  . Then the coset of Po- , T) in 
G is trivial, so e u e r e;_,1  E M. Therefore, f is a function from G x  C o 
M. Moreover, a short calculation shows that f is actually a 2-cocycle. 
The cocycle f does depend on the choice of coset representatives chosen. 

Suppose that {du }  is another set of coset representatives for the elements of 
G. Then there are rn, E M with du  =mu e u . Let g be the cocycle obtained 
by the choice of the du ; that is, g(o- ,T) = du d,d07,-1 . Then 

g(o- ,T) = du drdc7,1  =  



= rn a crtn, e a- e r c a , ï tc a, 

= 

= (muam-rm url )f (a , T) . 

In this calculation, we used the fact that e 0 mcj i  = a-m. The function 
(0,7) 	mu o-mrma-T1  is the image under S i  of the 1-cochain a- 
Therefore, f and g differ by a 1-coboundary, so they determine the same 
element of H2  (G, M). We have thus shown that for any group extension E 
of G and M there is a uniquely determined element of H2  (G, M). 

We can reverse these calculations. Let M be a G-module and let f E 
Z 2  (G, M). We can define a group Ef  as follows. As a set, Ef  = M x G. 
However, multiplication in Ef  is defined by 

(m, (n, T) = (m an • f(a T),, 0-71. 

A short calculation shows that this is an associative operation with an 
identity (f 1)_I,  1), and ern, (Tr I = (m' f (1 , 1 ) , 0-1 ). In fact, asso-
ciativity follows exactly from the condition that f is a 2-cocycle. The for-
mulas for identity and inverses use the fact that f (1,1) = f(1, o- ) = f (o- , 1) 
for any a E G, which also follows from the cocycle condition. The group 
M is isomorphic to the normal subgroup {(m, 1) : m E MI of Ef, and the 
quotient of Ef  by this subgroup is isomorphic to G. It is not hard to show 
that if g is another 2-cocycle that differs from f by a 2-coboundary, then 
the resulting group obtained from g is isomorphic to Ef. By being more 
precise about the definition of a group extension, these arguments would 
then show that the group extensions of M by G are classified by H 2 (G, M). 

Example 10.9 Let M and G be groups and  o:  G End(M) be a group 
homomorphism. Let E = M x  be the semidirect product of M by G. 
We determine the cocycle describing E. Let M' = {(m, e) : m E MI and 
G' = {(e,g) : g E GI be the isomorphic copies of M and G inside E. The 
elements of G' form a natural set of coset representatives of M' in E. The 
cocycle f describing E is defined by 

f (o-,T) = (e, o- )(e, T)(e, o - T) -1  = 

so f is the trivial cocycle. 
Conversely, if f is the trivial cocycle of H2 (G, M), then we can see that 

the group extension constructed from G and M and f is a semidirect prod-
uct of M by C,  for the mapping a e u  defined earlier is a homomorphism 
if and only if the corresponding cocycle is trivial. Since this map is a ho-
momorphism, we can check that the map o:  End(M), where (p(a) is 
the automorphism m e ame; 1 , is also a homomorphism, and the group 
E f  constructed above from G, M, and f is the semidirect product M x cp  G. 
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Example 10.10 Let Q8 be the quaternion group. Then Q8 = 
{+1, +1,  +j,  +kj , and the operation on Q8 is given by the relations i 2  = 
j2 _ k2 _ and ij = k = —ji. We show that Qg is a group extension of 
M = (i) by Z/ 2Z, and we determine the cocycle for this extension. First 
note that M is an Abelian normal subgroup of Qg and that Q8 /M Z/2Z. 
Therefore, Q8 is a group extension of M by Z/2Z. We use 1 and j as coset 
representatives of M in Q8. Our cocycle f that represents this group ex-
tension is then given by 

f(1, 1) = f(,ì) = f(j,1)= 1, 

—1 . 

This cocycle is not trivial, so Qg is not the semidirect product of M and 
Z/ 2Z. In fact, Qg is not the sernidirect product of any two subgroups, 
because one can show that there do not exist two subgroups of Qg whose 
intersection is (1). 

Crossed products 

Another application of the second cohomology group is in the theory of 
algebras. If F is a field, then an F-algebra is a ring A that is also an F-
vector space, in which multiplication in A and scalar multiplication are 
connected by the axiom 

a(ab) = (cta)b = a(ctb) 

for all a, b  c A and all a e F. Let K be a Galois extension of F with Galois 
group C. If f e Z2 (c, K*), we can construct an F-algebra from K, C,  and 
f as follows. For each a e GY, let x, be a symbol and let A be the Abelian 
group 

A = ED, E GKx,• 

We can define multiplication on A by using the two definitions 

x u x,  

x ua = a(a)x. 

A full definition of multiplication can then be obtained by using distribu-
tivity; that is, 

au x, 
o- EG 	TEG 

x , = 
■ 

ovrEG 

au o- (b„)f (o- , 7- )x„. 

A calculation shows that associativity of multiplication follows immediately 
from the cocycle condition and that the other axioms of an F-algebra are 

straightforward. The algebra A is an F-vector space of dimension C  -[K : 

= 1C12 . This algebra is called a crossed product and is often denoted A = 
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(KIF, G, f). Crossed products come up in the theory of division algebras. 
It is known that any crossed product is isomorphic to a ring of n x n 
matrices over a division ring. Moreover, if D is a division ring that is finite 

dimensional over the field F = ta E D : da = ad for all d E D} the center 

of  D,  then some matrix ring over D is isomorphic to a crossed product 

algebra of the form (KIF,G,f) for some Galois extension K of F. 
The algebra A is determined up to isomorphism not by the cocycle f but 

by the class of f in /4-2 (G, M), as we now show. Suppose that g is another 
2-cocycle that differs from f by a 2-coboundary. Then there are a, E K* 
with g(o- , 7-) = au cr(ar)a;71  f (o- ,T). Let y u  = au x u . Then Ky, = Kx„, so 
A = eD, E GKy,. Moreover, yu a = a(a)y,- for all a E  K,  and 

--1 yu yry, = au x u arx r(a„x„ 
= auo-(ar ox7x0--Tiao—ri 

= au o- (ar)a—,71  f(o- ,T) 

= g(o- ,T). 

Therefore, the algebra constructed with the procedure above using the 
cocycle g is isomorphic to A. Conversely, if the algebras constructed from 
two cocycles are isomorphic, then it can be seen that the cocycles are 
cohomologous; that is, they represent the same element in H 2 (G, M). 

Example 10.11 Let H be Hamilton's quaternions. The ring H consists of 
all symbols a bi +  ci  + dk with a, b,c,d E R, and multiplication is given 
by the relations i 2  = j 2  - k2 	-1 and ij = k = -ji. This was the first 
example of a noncomrnutative division ring. The field of complex numbers 
C can be viewed as the subring of H consisting of all elements of the form 
a bi, and H = C 6 Cj. The extension C/R is Galois with Galois group 
{ id, o- }, where a is complex conjugation. Let x i ,' = 1 and x, = j. Then 

x,(a bi)x; 1  = j(a +bi)j-1  = a - bi = o- (a +bi). 

The cocycle f associated to this algebra is given by 

J.  (id, id) 

f (id, cr) 

f (o- , id) 

f (0 a) 

-1 
— XidXiclXid 

—1 
- XidX0 	— '7 

—1 
XuXidX 0- = 1 7  

—1 	.2 
X u X u X id 	3 	-1 . 

On the other hand, if we start with this cocycle and construct the crossed 
product A = (C/R, Gal(C/R),f), then A = Cx id Cx,, and the map 
A H given by cxid dx,H4 c + dj is an isomorphism of R- algebras. 

Example 10.12 Let K IF be a Galois extension of degree n with Galois 
group G, and consider the crossed product A = (KIF, G, 1), where 1 rep- 
resents the trivial cocycle. We will show that A r=-' /1/171 (F), the ring of  i  x ri 

)-1 



matrices over F. First, note that A = eD, E GKx u , where multiplication 
on A is determined by the relations x,x, = x„ and x a a = o- (0,)x, for 
a E K. If f = aux, E A, then f induces a map ( p 1  : K 	K given by 

f (k) = 	au o- (k). In other words, ( p 1  is the linear combination E au o- . 
Each o-  is an F-linear transformation of  K, so (p f E EncIF(K). The rela-
tions governing multiplication in A show that the map cio : A End F (K) 
given by (p(f) = f  is an F-algebra homomorphism. Moreover, cio is injec-
tive since if E au o-  is the zero transformation, then each a, = 0 by the 
Dedekind independence lemma. Both A and EncIF(K) have dimension n2  
over F, so cio is automatically surjective. This proves that A EncIF(K), 
and so A r=" Mn (F). 

Crossed products have a simpler description when we start with a cyclic 
extension. In addition, the norm map helps to describe crossed products in 
this situation. Suppose that K IF is a cyclic Galois extension with Galois 
group C; = (u), and let a E  F* .  We can define a cocycle in H2 (G, K*) by 

= 
{ 1 if i + j < n 

f(a )  a if i + j > n. 

A straightforward calculation shows that f is indeed a 2-cocycle. The al-
gebra constructed from f is usually denoted (K/F, o- , a) and is called a 
cyclic algebra. This construction is a special case of the crossed product 
construction. If x = x u , then xax -1  = a(ci) for all a E  K,  and x" = a. 
These relations along with K and o-  fully determine the algebra (K/F,o- , a). 
If a = NK / F (c) for some c E K, then if we set  y e,-  = c—l x,, a short cal-

culation shows that yun = 1. Therefore, the cocycle associated to y u  is 
trivial, so (K/F,o- , a) —(=-' Mn (F) by Example 10.12. Moreover, Problem 16 
proves that H2 (G,K*)r -' F* INK 1 F(K*). One consequence of this fact is 
that two algebras (K/F,o- , a) and (K/F,o- , b) are isomorphic if and only if 
ab- 

- I F(K* ). Moreover, by a theorem of the theory of algebras, if 
none of the elements a,  a2 ,...,  a' are equal to the norm from K to F of 

a nonzero element of  K,  then (K/F, o- , a) is a division algebra. Hamilton's 
quaternions are of the form (C/R,o- , —1). 

The interested reader can find much more information about group ex-

tensions and crossed products in Rotman [23] and Jacobson [16]. 

Problems 

1. Let M be a G-module. Show that the boundary map 6.72  : 
(G ,  mr) 	C' (C, M)  defined in this section is a homomorphism. 

2. With notation as in the previous problem, show that 6n+1  0 6.72  is the 
zero map. 

3. Let M be a G-module, and let f E Z2 (G, M). Show that f(1, 1) 
f (1, o - ) = f (o- , 1) for all o-  E  C .  



4. E is a group with an Abelian normal subgroup AI ,  and if G = EIM, 
show that the action of G on M given by um = eme-1  if eIVI = g 
well defined and makes M into a G-module. 

5. With E,M,G as in the previous problem, if e u  is a coset representa-
tive of o- , show that the function f defined by f (o- ,T) = e u e r e;r1  is a 
2-cocycle. 

6. Suppose that M is a G-module. For each o-  E  C ,  let mu  E  M.  Show 
that the cochain f defined by f (o- ,T) = mu  +o-m, — m„ is a cobouncl-
ary. 

7. If M is a G-module and f E Z 2 (G, M), show that Ef  = M x G with 
multiplication defined by (m, (n, 	= (m an f (0 - ,T), o-T) makes 
Ef into a group. 

8. If M is a G-module, show that the group extensions constructed from 
2-cocycles  f, g E Z 2 (G, M) are isomorphic if f and g are cohomolo-
gous. 

9. In the crossed product construction given in this section, show that 
the multiplicative identity is f (1,1) -1  x id . 

10. A normalized cocycle is a cocycle f that satisfies f (1,o - ) = f (o- ,1) = 1 
for all o-  E G. Let A = (K/F, G, f) be a crossed product algebra. Show 
that x id = 1 if and only if f is a normalized cocycle. 

11. In the construction of group extensions, show that if eid is chosen to 
be 1, then the resulting cocycle is a normalized cocycle. 

12. Show that any 2-cocycle is cohomologous to a normalized cocycle. 

13. If two crossed products (KIF,G,f) and (K/F,  C, g)  are isomorphic 

as F-algebras, show that f and g are cohomologous. 

14. Let G be a group of order n. Show that nf/2  (C, 	= O. 

(Hint: Given f,  let 	= EpEG  f (o- , p). Show that, nf is cohomologous 
to the cobounclary g given by g(o-  , =c + 	— c„.) 

15. Let A = (K IF, o- , a) be a cyclic algebra. If A = Vil_701 Kx,i, show that 

= a. 

16. Cohomology of a cyclic group. In this problem, we determine 

I/ 2 (G, M) for a cyclic group G. Suppose that G = (a) is a cyclic 
group of order n. If M is a G-module, let M G  = {m E  M: o-m = ml. 
Also, define the norm map N : M M G  by  N(m) = 	—01  a im. 
We will prove that H2  (G , M) 111G I im(N) in the following steps. 
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(a) If rn E  MG ,  let fin  be the cochain given by fm (o-i , o-i) = 1 if 

i j < n, and fm (o-i ,o-i) = m if i j > n. Prove that f, is a 
co cycle. 

(b) Suppose that f, and fn  are cocycles that are cohomologous. 
Then there are ci E M with fm (o-i  , o-j ) 	fn (o-i  , o-j )-c i o-i  (ci )ci—+1i  , 
where we are writing ci for c,i. Show that m — n = N(c i ). 

(c) Prove that a cocycle f E Z 2 (G,M) is cohomologous to fm , 
where m = Ein-ol f  ( o_j ,  a .. ) Make use of the cocycle condition 

f( >0-k )f(cr i'k ,a)=0-i (f(a k ,0))1(0- 
	k+1) .  

(d) Conclude from these steps that the map m 	fm  induces an 
isomorphism MG/ im(N) H 2  (G, M). 

(It is known that // 21.  (G, M) 	11 2 (C, M) for a cyclic group CI, so this 
problem calculates all of the even dimensional cohomology groups for 
C.  

17. In this problem, we calculate 11-1 (C, M) for a cyclic group G. Let 
N be the norm map defined in the previous problem, and let D : 
M M be defined by D(m) =  am — m. We show that H' (C, M) -r-
ker(N)/ im(D). 

(a) Let m E M satisfy N (m) = O. Define a 1-cochain f by  f(a) = 
m + 0-m + • • + a 1 m.  Show that f is a 1-cocycle. For the rest 
of this problem, f, will denote this cocycle. 

(b) If f, and fn  are cohomologous, show that m — n = o-p — p for 
some p E M. 

(c) Let f be a 1-cocycle. If m = f(a), show that f is cohomologous 
to fm  

(d) Conclude that 11 1 (G, M) ker(N)/ im(D). 

(Note that H2  (G, 	ker(D)/ im(N) by the previous problem. It is 
known that H 2r+i (G, M) 11 1 (G, M) for a cyclic group G. Problems 
16 and 17 then determine all of the cohomology groups for a cyclic 
group.) 

11 Kummer Extensions 

In Section 9, we described Galois extensions with cyclic Galois groups un-
der certain restrictions on the base field. We use the results proved there 
together with the fundamental theorem of finite Abelian groups to charac-

terize Galois extensions with an Abelian Galois group, provided that the 
base field has sufficient roots of unity. 



1A.Uliiincl 1JA1,(;11:11(m1: -, 	iti•) 

Definition 11.1 Let F be a field containing a primitive nth root of unity. 
A Galois extension K of F is called an n-Kummer extension of F pro-
vided that Gal(K/F) is an Abelian group whose exponent divides n. If K is 
an n-Kummer extension of F for some n, then K IF is called a Kummer 
extension. 

Example 11.2 If F is a field that contains a primitive nth root of unity, 
and if K IF is a cyclic extension of degree n, then K/F is an n-Kummer 
extension. If F also contains a primitive mth root of unity for some m that 
is a multiple of n, then K/F is also an m-Kummer extension. Therefore, if 
an extension is an n-Kummer extension, the integer n need not be unique. 

Example 11.3 Let K = Q(A .0). The field K is the splitting field of 
(x 2  — 2)(x 2  — 3) over Q, so K is a Galois extension of Q. A short calculation 
shows that [K : Q] = 4, and the Galois group of K/Q consists of the four 
automorphisius 

id : 	 VJ 	VJ, 
0- : 	- 	VJ 	VJ, 

-> - VJ, 
VJ. 

The Galois group Gal(K/Q) is isomorphic to Z/ 2Z x Z/ 2Z, an Abelian 
group of exponent 2. Since Q contains the primitive second root of unity, 
—1, the extension K/Q is a 2-Kummer extension. 

The fundamental theorem of finite Abelian groups says that any such 
group is a direct product of cyclic groups. Using this fact together with the 
fundamental theorem of Galois theory and the characterization of cyclic 
extensions in Section 9, we obtain the following characterization of Kummer 
extensions. 

Theorem 11.4 Let F be a field containing a primitive nth root of unity, 
and let K be a finite extension of F . Then K I F is an n-Kummer extension 
if and only if K = F( , Var ) for some ai E F. 

Proof. Suppose that K = 	, ar ) with aTi2  = ai E F. If w E F is a 
primitive nth root of unity, then the distinct elements a i , 
are all the roots of xn — ai  in  K.  Thus, x'  —a is separable over F and splits 
over K.  Hence, K is the splitting field of the set {xn — ai : 1 <  i < 7- }, so 
K IF is Galois by Theorem 4.9. If a E Gal(K/F), then  a(c) = wia i  for 
some j since o- (a i ) is also a root of x'n — a i . For each k, we see that o-k (ct i ) = 
w kia i , so o- (ai) = ai. This is true for each i, and since the ai generate K 
over F, we see that an = id. Therefore, the exponent of Gal(K/F) divides 



n. To prove that Gal(K/F) is Abelian, take 0-  T 	a1(11 I ) (iv en  i, set 
o- (a i ) = wia i  and T (cti) = w ka i . Then 

(a)() = 0 Ck)
k  a i ) = W

k
W

i ai  

and 

= wiw k ai . 

Thus, 0-  T and 'ici   agree on the generators of K, so UT = TU. In other words, 
Gal(K/F) is Abelian. 

For the converse, suppose that K IF is Galois with C; = Gal(K/F) an 
Abelian group whose exponent divides n. By the fundamental theorem of 
finite Abelian groups, G = C [  x x Cr , where each Ci is cyclic. Note 
that each divides n. Let Hi  = C1  x - • • x Ci _ i  x C.i+i  x x Cr , a 
subgroup of G with G/Hi r=-' C.  Let L i  be the fixed field of  H. Then L i  
is Galois over F, since Hi  is normal in GY, and Gal(L i /F) GIHi r=j Ci . 
Therefore, Li/F is cyclic Galois. Let [L i  : Pi] = mi . Then m i  = Ci,  so 
mi  divides n. The field F contains the primitive m i th root of unity con/mi, 
so by Theorem 9.5, Li = F(o) for some ai E Li with dirn ' E F. Since 
mi divides n, we see that a 7i2  = ai E F. Under the Galois correspondence, 

the field F(cti7• • • 7ctr) = 	corresponds to the group H1  ri • • ri Hr . 
However, this intersection is (id), so F(a l , 	ar ) corresponds to (id). 
Thus, K = F(a i , 	) = F( 	.7 War). 	 [1] 

Example 11.5 If K = 	 N/ar ) for some a, E Q, then K/Q is a 
2-Kummer extension by Theorem 11.4. The degree of K/F is no larger than 
2T, but it may be less depending on the choice of the ai. Problem 1 shows 
that the degree is 2 7-  if the ai are distinct primes. However, Q0,  
has degree 4 over Q, not degree 8. 

Example 11.6 Let F = Q(i), where i = V-1, and let K = -02, 0). 
Since i is a primitive fourth root of unity, K/F is a 4-Kummer extension. 
The degree  of  KI F is 8, not 16, since K = F(/ , 0); this equality is true 
because -\,/12 = -\/-2- 0. This example shows that if K = F(cti, • • • 7 an ) is 
an n-Kummer extension of F with cei2  E F, it might be the case that a 
smaller power of some of the a i  is also in F. 

	

If F contains a primitive nth root of unity, then F( Vai , 	, Var.) is 
an n-Kummer extension of F. A basic question is to find its degree over 

F. Certainly, this degree is no larger than nr. However, as the examples 
above show, the degree might be less than nr. We proved in Proposition 

9.6 that [F(  ,V6) : F] is equal to the order of aF* in the group  Ft /Ft. We 
obtain an analogous result for Kummer extensions below. However, this is 
a harder result, and it requires more machinery to prove. It turns out that 
the concept of a bilinear pairing is the right tool to investigate this question 
about degrees. 



uciiiiition 11.7 La u  and I] be finite Abelian groups, and let C be a 
cyclic group. A function B:GxH 	C is called a bilinear pairing if B is 
a homomorphism in each component; that is, B(g 1 g2 , h) = B(gi , h)B(g 2 , h) 
for all gi ,g2  E G and all h E H, and B(g,h i li2 ) = B(g,h1 )B(g,h 2 ) for 
all g E G and all hi , h2 E H. The pairing B is called nondegenerate if 
B(g,h) = e for all h E H only if  g = e, and  if  B(g,h) e for all g e G 
only if h = e. 

Let K I F be an n-Kummer extension, and let  ,u(F) be the set of all nth 
roots of unity in F. Then  ,u(F) is a cyclic group by Theorem 6.1. Also, let 

KUM(K/F) = {a E K* : an E  F}.  

The set KLTM(K/F) is a subgroup of K*. Note that KUM(K/F) contains 
F* ,  and if K = F( 	. . . , -Va r.), it; also contains each Vai . Finally, let 

kum(K/F) = KUM(KIF)1 F*. 

We now relate bilinear pairings to Kummer extensions. We define the Kum-
mer pairing 

B: Gal (K/F) x kum(K/F)  

by 	 Cr.  44 

B(o- , aF*) = o-  (a) I a. 	 =) et 
This map is well defined, since if aF* OF*, then a  =  a0 for some a E F*. 
Thus, o- (a)1 = a(a0)1a0 = d(0)113, since  a(a) = a. 

We show that B is a nonclegenerate bilinear pairing below. But first, we 
prove a general result about bilinear pairings that allows us to exploit the 
Kummer pairing to answer questions about Kummer extensions. 

Lemma 11.8 Let B:GxH 	C be a bilinear pairing. If h E H, let 
Bh : G C be defined by Bh(g) = B(g,h). Then the map : h 	Bh  is  a 
group homomorphism from H to hom(G,C). If B is nondegenerate, then 
exp(G) divides ICI, the map (,0 is injective, and (,o induces an isomorphism 
G r=-' H. 

Proof. The property B(g,h 1 h2 )= B(g,hi)B(g, h2) translates to Bh1h2 
Bk„Bh 2 . Thus, y(hi h2) = (,o(hi)(,o(h2), so (,0 is a homomorphism. The kernel 

of (,o is 

ker(y) = {h E H : Bh = 0} 

= {h E  H:  B(g , h) = e for all h E H} . 

If (p is nondegenerate, then ker(w) = (e) , so (,0 is injective. Suppose that 

m = ICI. Then 

e = B(e, h) = B(g, h)tm = B (g', h). 
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Nonclegeneracy of B forces gm = e, so exp(G) divides ICI. By a group 

theory exercise (see Problems 4 and 5), hom(G, C) is isomorphic to the 
character group hom(G,C*) , which is isomorphic to G. Therefore, there 
are group isomorphisms 

H `"-' im((p) = hom(G, C) G. 

	

->  H1 It-f.,...(G-,C)R 	r,t, 	Ter 	 1G i 	 i i:7- 13) rq 

We now have the tools to investigate the Kummer pairing of a Kummer 

extension. 

Proposition 11.9 Let K be an n-Kummer extension of F, and let B : 
Gal(K/F) x kum(K/F) bi(F) be the associated Kummer pairing. Then 
B is nondegenerate. Consequently, kum(K IF) Gal(K/F). 

Proof. First, we show that B is a bilinear pairing. Let o- ,T E Gal(K/F) 
and aF* E kum(K/F). Then 

c77- (a) 	a (7- (a)) 7- (a) 
B(o-T,aF*) = 	 

a ( 7-  

= 7-

a) 	a 

(o-  (  

a 

a))  	 

the final equality is true because Gal(K/F) is Abelian. But o- (a)" =  c,  
since a" E F. Therefore, o- (a)la is an nth root of unity, so  a(c)/c E F. 
The automorphism T then fixes o- (a)la, so 

	

a(c) 	'r (ci)  
B(o- T, aF*) = 	 

The pairing B is thus linear in the first component. For the second com-
ponent, if a, {3 E KUM(K/F), then 

c,F.0F . )  = 0- V)  =  (0)0; 0)  = 0- (a)  0- (00)  

Therefore, B is a bilinear pairing. 
For nonclegeneracy, suppose that o-  E Gal(K/F) with B (o-, aF*) = 1 for 

all aF* E kum(K/F). Then  a(c) = a for all a E KUM(K/F). However, 
the elements in KUM(K/F) generate K as a field extension of F, and so 
automorphisms of K are determined by their action on this set. Therefore, 
o-  = id. Also, if B(a, ()LP') = 1 for all u E Gal(K/F), then a((v) = for all 
o- . But then a E T(Gal(K/F)), and this fixed field is F by the fundamental 
theorem. Therefore, aF* =  F*,  so B is nondegenerate. The isomorphism 
kum(K/F) Gal(K/F) then follows from Lemma 11.8. 

a  

a 	a • 



If K I F is a Galois extension, then [K : F] = 1Gal(K/F) . If, in addition, 
K is a Kummer extension of F , then Proposition 11.9 shows that [K: = 
Ikum(K I F)1. Therefore, if we can determine kum(K/F), then among other 
things we know the degree of K/F. The following result is a generalization 
of Theorem 9.6. 

Proposition 11.10 Let K I F be an n-Kummer extension. Then there is 
an injective group homomorphism f : kum(K F) F* I F* 7  , given by 
f (aF*) = an F*7  . The image of f is then a finite subgroup of F* I F*' of 
order equal to [K: 

Proof. It is easy to see that f is well defined and that f preserves mul-
tiplication. For injectivity, let aF* E ker(f). Then a E F*n  , so a" = a' 
for some a E F. Hence, a/a is an nth root of unity, and so ala E F. 
Therefore, a E F, so aF* = F* is the identity. The group kum(K/F) is 
then isomorphic to the image of  f.  The final statement of the proposition 
follows immediately from Proposition 11.9. 

This proposition can be used in reverse to construct Kummer extensions 
of a given degree. Let G be a finite Abelian subgroup of FVF*". In a fixed 
algebraic closure of  F,  let 

F(G) = ({F 61, : aF*" E G}). 

Problem 6 shows that F(G) is an n-Kummer extension with Galois group 
Gal(F(G)/F) G, and so [F(C) : Fi = 

Example 11.11 Let F = C(x, y, z) be the rational function fi eld in three 

variables over C, and let K = F(yxyz, :/y 2 z,<Yxz 2 ). Then K/F is a 4- 
Kummer extension. The image of kum(K/F) in FVF*4  is generated by 
the cosets of xyz, yz, and xz 2 . For simplicity we will call these three cosets 
a, b, c respectively. We claim that the subgroup of FVF*4  generated by 
a, b,c has order 32, which shows that [K : F] = 32 by Proposition 11.10. 
The subgroup (a, b) of F*/F*4  generated by a and b has order 16, since 
the 16 elements aibi with 1 < j < 4 are all distinct. To see this, suppose 
that  ab  i = a k bi . Then there is an h E F* with 

( x y  z  y2 z ) .j = x y z  ) k ( y 2 z )lh 4 

Writing h = f/ g with f , g E C[x , y , z] relatively prime gives 

(xyz) 1( y2 z)ipx,  z)  = (xy z)k  (y2  z)l g  ( x y z) 4 

By unique factorization, comparing powers of x and z on both sides of this 
equation, we  (l)tain 

i k(mod 4), 

j k + /(mod 4). 
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b3  for 1 < i,j < 4 are indeed distinct. Note that abc = x 2 y2 z 4 F 4 , so 

( (Lbw = x 4 z8F*4 = F*4. Therefore, e2  = ((b) 2 , so either the subgroup 
(a,  b,  c) of FVF* 4  generated by a,  b,  c is equal to (a, b) , or (a, b) has index 
2 in (a, b , c) . For the first to happen, we must have c = ai bi for some i, j. 
This leads to an equation 

xz 2f( x,  z) 4 = (xyz) 1 (y 2 z) j g(x 	z )4 

for some polynomials f, g. Again applying unique factorization and equat-
ing powers of x and y gives 1 i(mod 4) and 0 i ± 2 j(moci 4). A simul-
taneous solution of these equations does not exist, so c is not in the group 

(a, b), so (a, b) has index 2 in (a, b , c) . This proves that (a, b , c) has order 
32, as we wanted to show. 

Problems 

1. Let pi , . . . , pn  be distinct primes. Show that [Q( VP' • . . 	 Q] = 
2n  

2. Let F = 0;2({fri, : 1  <n  < 28 } ). Determine [F : 

3. Let N be a positive integer, and let FN = Q({f-n-  1 < n < N } ). 
Determine [FN : 0]. 

4. Let G be a finite Abelian group whose exponent divides the order of 

a cyclic group C. Show that hom(G,C) hom(G,C). 

5. If G is a finite Abelian group, show that horn(G,C) 
(Hint: First prove this if G is cyclic, then show that hom(G i  x 
G2, C) hOM(Gi C) X hom(G2,C), and then invoke the structure 
theorem for finite Abelian groups.) 

6. Let F be a field containing a primitive nth root of unity, and let 
G be a subgroup of F*/F*n. Let F(G) = F({ 	: aF*n E G } ). 
Show that F(G) is an n-Kummer extension of F and that G is the 

image of kum(F(G)/F) under the map f defined in Proposition 11.10. 
Conclude that Gal(K/F) G and [F(G) :  Fi  =  C.  



iii 

Applications of Galois Theory 

Now that we have developed Galois theory and have investigated a number 
of types of field extensions, we can put our knowledge to use to answer 
some of the most famous questions in mathematical history. In Section 15, 
we look at ruler and compass constructions and prove that with ruler and 
compass alone it is impossible to trisect an arbitrary angle, to duplicate 
the cube, to square the circle, and to construct most regular n-gons. These 
questions arose in the days of the ancient Greeks but were left unanswered 
for 2500 years. In order to prove that it is impossible to square the circle, 
we prove in Section 14 that 7F is transcendental over Q, and we prove at the 
same time that e is also transcendental over Q. In Section 16, we prove that 
there is no algebraic formula, involving only field operations and extraction 
of roots, to find the roots of an arbitrary nth degree polynomial if ri > 5. 
Before doing so, we investigate in detail polynomials of degree less than 5. 
By the mid-sixteenth century, formulas for finding the roots of quadratic, 
cubic, and quartic polynomials had been found. The success in finding the 
roots of arbitrary cubics and quartics within a few years of each other led 
people to believe that formulas for arbitrary degree polynomials would be 
found. However, it was not until the early nineteenth century that Abel 
was able to prove that it is impossible to find an algebraic formula for the 
roots of an arbitrary fifth degree polynomial, and Galois was able to use his 
new theory to explain why some polynomials had formulas for their roots 
and others did not. 
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12 Discriminants 

In this section, we define discriminants and give methods to calculate them. 
The discriminant of a polynomial is a generalization to arbitrary degree 
polynomials of the discriminant of a quadratic. If K = F(a) is a Galois ex-
tension of a field F, and if f = nain(F, a), then the Galois group Gal(K/F) 

can be viewed as a subgroup of the group of permutations of the roots of 

f.  The discriminant determines when this subgroup consists solely of even 
permutations. We will use this information to describe the splitting field of 
a polynomial of degree 4 or less in Section 13. While we only need a little 
information about discriminants in Section 13, we go into some detail here 
for two reasons. First, there are soi ne  interesting relations L hat make cal-

culating discriminants manageable, and there are notions of discriminants 
in a number of other places, such as algebraic number theory, quadratic 
form theory, and noncommutative ring theory. While the different notions 
of discriminant may seem unrelated, this is not the case, as we point out 
in the following discussion. 

The discriminant of a polynomial and an element 

The type of discriminant we need in Section 13 is the discriminant of a 
polynomial. To motivate the definition, consider a quadratic polynomial 
f (x) 	x 2  + bx  +  c whose discriminant is b2  — 4c. The roots of f are 

= 	-Vb 2  —  4e)  and ct2 = (—b — -Vb 2  — 4c). Therefore, -Vb2  — 4e = 

— ct2, so b 2  — 4c =  (cr i  — ct2) 2 . This indicates a way to generalize the 
notion of the discriminant of a quadratic to higher degree polynomials. 

Definition 12.1 Let F be a field with char(F) 	2, and let f (x) E F[x]. 
Let a l , 	, o!„ be the roots of f in some splitting field K of f over F, and 
let A = 	— aj ) E  K. Then the discriminant disc(f) of f is the 

element D = A 2  = j<i (ct — ai) 2 . 

Definition 12.2 If K is an algebraic extension of F with char(F) 2 and 
a E  K, then the discriminant disc(a) is clisc(rnin(F, a)). 

The discriminant disc(a) defined above is dependent on the base field F. 
Also, the element A is dependent on the labeling of the roots of  f,  in that a 
different labeling can change A by —1. However, the discriminant does not 
depend on this labeling. Note that if f(x) E F[x], then D = disc( f) = 0 
if and only if f has a repeated root. The discriminant thus will give us 
information only when f has no repeated roots. It is in this case that we 
concentrate our investigation. The discriminant D clearly is an element of 
K. We can say more than that. If K is the splitting field of a separable, 
irreducible polynomial f E F[x] of degree n over F, then we view Gal(K/F) 
as a subgroup of S„ by viewing the elements of Gal(K/F) as permutations 
of the roots of  f.  
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Lemma 12.3 Let F be a field with char(F) 	2, let f (x) E F[xl be an 
irreducible, separable polynomial, and let K be the splitting field of f (x) 
over F. If A is defined as in Definition 12.2, then a E Gal(K/F) is an 
even permutation if and only if  a(L) = A, and a is odd if and only if 
a(L) = — A. Furthermore, disc(f) E F. 

Proof. Before we prove this, we note that the proof we give is the same 
as the typical proof that every permutation of Sn  is either even or odd. 
In fact, the proof of this result about Sn  is really about discriminants. It 
is easy to see that each a E G = Gal(K/F) fixes disc(f), so disc(f) E F. 
For the proof of the first statement, if n = deg(f), let M = F(xl ,...,x„). 
We saw in Example 2.22 that S„ acts as field automorphisms on M by 
permuting the variables. Let h(x) = 1J < 1 (x i — xj ). Suppose that a E Sn  is 
a transposition, say a =  (ii)  with i < j. Then a affects only those factors 
of h that involve i or j. We break up these factors into four groups: 

xi  — 
xk — xj, xk — xi  for k < 
x i  — x i , x  — x i  for j <1, 

— x m , x, — xi  for i < rn < j. 

For k < i, the permutation a =  (ìj)  maps xk —xi  to xk —x i  and vice versa, 
and a maps xi  — x 1  to xi  — xi and vice versa for j < 1. If i  <m  < j, then 

o- (x i  — x,) = X j  — X  = —(x, — xi ) 

and 

o-(x„ — xi) = x, —  Xi  = —(x i  — x„). 

Finally, 

CT(Xi  — xj) = xj  — xi = —(x1 — xj ). 

Multiplying all the terms together gives  a(h) = —h. Thus, we see for an 
arbitrary a E S„ that  a(h) = h if and only if a is a product of an even 
number of permutations, and  a(h) = — h if and only if a is a product of an 
odd number of permutations. By substituting the roots ai  of f for the x i , 
we obtain the desired conclusion. 

Recall that the set An  of all even permutations in Sn  is a subgroup; it is 
called the alternating group. 

Corollary 12.4 Let F,  K,  and f be as in Lemma 12.3, and let G = 
Çal(K/F). Then G C An  if and only if disc(f) E  F2 . Under the corre-
spondence of the fundamental theorem, the field F(A) C K corresponds to 
the subgroup G n A„ of G. 



Proof. This follows from the lemma, since C C A„ if and only if each 

E G is even, and this occurs if and only if  a(s) = A. Therefore, C C A n  
if and only if disc(f) E F 2 . 

One problem with the definition of a discriminant is that in order to 
calculate it we need the roots of the polynomial. We will give other de-
scriptions of the discriminant that do not require knowledge of the roots 
and lend themselves to calculation. We first obtain a description of the 
discriminant in terms of determinants. 

Let K be a field and let a l , 	, an E K.  Then the Vandermonde matrix 
V(a l , 	, an ) is the n x n matrix 

V(a1, • • • an) = 

	

2 	 n-1 - 

	

at 	• 

	

2 	 11-  1 

	

a2 	Ct9 

• 

1 an-1 

Lemma 12.5 If K is a field and a 	, an  E  K, then the determinant of 
the Vandermonde matrix V(al • • • an) is 	— ai ). Consequently, if 
f E F[x] has roots al , 	, an  E K in some extension K of F, then the 
discriminant of f is equal to (det(V(a i ,... , 

Proof. Let A = V(a l ,... , an ). That det(A) = fli<j (cti — cti) is a moder-
ately standard fact from linear algebra. For those Who have not seen this, 

we give a proof. Note that if a i  = ai  with i j, then det(A) = 0, since 
two rows of A are the same, so the determinant formula is true in this 
case. We therefore assume that the a i  are distinct, and we prove the re-
sult using induction on n. If n = I, this is clear, so suppose that n > 1. 
Let h(x) = det(V(a l ,a 2 , x)). Then h(x) is a polynomial of de-
gree less than n. By expanding the determinant about the last row, we 
see that the leading coefficient of h is det(V(a 1 ,a 2 , an _ i )). Moreover, 

h(ai) = det(V(a l , • . • ,an_i ai)), so h(a i ) = 0 if 1  < i < n — I. Therefore, 

h(x) is divisible by each x — ai. Since deg(h) <n  and h has n — 1 distinct 
factors, h(x) = c(x—ct i ) • • • (x—a n _ i ), where c = det(V(a l , a 2 , , an _ i )). 

By evaluating h at an  and using induction, we get 

h(an ) = det(V(a l ,a2,..., an)) 

= 11 (cti  — a z ) 11 ( 

i< j<n-1 	 i<n 

=11(Cli — ai). 
i<i 

This finishes the proof that det(V(al,a2, 	, an )) = 	— ai ). The 
last statement of the lemma is an immediate consequence of this formula 
and the definition of discriminant. 	 El  



1 he discriminant of a polynomial can be determined by the coefficients 
without having to find the roots, as we proceed to show. This is à convenient 

fact and will be used in Section 13 to describe polynomials of degree 3 and 
4. Let A = V(a i  , , an ). Then det(A) 2  = det(A t A). Moreover, 

AtA =  

1 
C l  

n-1 
_al 

1 

a 2 

n-1 
a 2 

- 	- 	1 

• • 	an 

n-1 

1 al ai • 
1 a 2 a 22  

an an2 

• ct712 	1  
• - an2 	1  

n
n-1 

to 	t • ' • tn -1 

t1 t2 	tn =_ 

tTi _1 t n  • • ' t2n-2 

where t i  = Ei  aji. for i > 1, and t o  =- n. Therefore, det(A) 2  is the deter-
minant of this latter matrix. This is helpful because if the roots of f(x) 

are al, an , then there are recursive relations between the t i  and the 
coefficients of f and so the determinant of the t i  can be found in terms 
of the coefficients of f. These relations are called Newton's identities. Note 
that t i  = TK/F(c4 ) if K is the splitting field of min(F, a l ). 

Proposition 12.6 (Newton's Identities) Let f (x) = a o  a i d; + • • • + 
an _ x 7L -  1 ± : TL be a monic polynomial over F with roots co,. 	an . If 

=  E .7
then 

.7  

tm, ± an - tm- +... 	 Man-m, — 0 for m < n, 

t rn  + an_ tm -1 	" aotm—n — 0 for  m> n. 

Proof. An alternative way of stating Newton's identities is to use the 
elementary symmetric functions s i  in the ai , instead of the a i .ISince s i  = 

(-1) i an _ i , Newton's identities can also be written as 

— 	 + 32t 7,2 — ± • • • (-1) rn msm, = 0 for m < n 

trn — alt rn l — - • • ± 	 = 0 for m > n. 

The proof we give here is from Mea,d [21]. The key is arranging the terms 
in the identities in a useful manner. We start with a bit of notation. If 
(a i  a2 7  ... ar ) is a sequence of nonincreasing, nonnegative integers, let 

f(ai ,a2,...,a 7.) = > 	ai
• ctar cr (n) 

where the sum is over all permutations a of {1, 2, 	n} that give distinct 

terms. Then si  = 	(i ones) and ti  = A i) . To simplify the nota- 
tion a little, the sequence of i ones will be denoted (1 i ), and the sequence 

(, 	r(„ ) 	 2, 7, '< ■_. -/ x  
J 

a 	, 
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(a, 1, . . 1) of length i+1  will be denoted (a, 1i). It is then straightforward 
to see that 

f( —i)f(1) = f(m) + f (m-1,1) 

f(m-2) f (1,0 — f (m-1,0 + f (rn-2,1,1) 

f(m-3) f (1,1,1) — f(m-2,1,1) 	f (m-3,1,1,1) 7 

and, in general, 

	

f(rn—i)f (1i) =  f (m—i+1,1,) 	f (m—i,i,) for 1  <j  < 	{rn, — 1,n} . (12.1) 

Moreover, if m < n and i = m — 1, then 

	

f (i) f 	—  f(2,1 1112 )  + mf (l ni). 

If m > n = i, then 

f(m—n)f (i„) = f (rn—n+1,1„_ 1) - 

Newton's identities then follow from these equations by multiplying the ith 
equation in (121) by (-1)i -1  and summing ovcr j. 

Newton's identities together with Lemma 12.5 give us a manageable way 
of calculating discriminants of polynomials. As an illustration, we deter-
mine the discriminant of a quadratic and of a cubic. The calculation of the 
discriminant of a cubic will come up in Section 13. 

Example 12.7 Let f(x) = x 2  + bx + c. Then t o  = 2. Also, Newton's 
identities yield t1 + b = 0, so t i  = — b. For t2,  we  have t 2  + bti + 2c = 0, so 
t 2  = —bt i  — 2c = b 2  — 2c. Therefore, 

dis c( f) = 
2 	— b 

— b b2  — 2c 
= 2(b 2  — 2c) — b 2  = b 2  — 4c, 

   

the usual discriminant of a monk; quadratic. 

Example 12.8 Let f (x) = x 3  + px q. Then ao  = q> ai = p, and a 2  = 
so by Newton's identities we get 

t i  = 

t 2  = —2P7 

t 3  = —3q, 

14 = 2p2 . 

Therefore 

3 0 —2p 

disc( f) = 0 — 2p —3q = — 4p3  — 27g2 . 
—2p —3q 2p2  



1_1 

For an arbitrary monic cubic, we could do a similar calculation, but looking 
ahead to Section 13, where we find the roots of a cubic, we note that the 
case above is sufficient. For, if g(x) = x 3  ax2  + bx + c, let y = x a/3. 
By Taylor expansion, we have 

g(x) = g(a13) + (a13)(x — a/3) + gn(2a(3)  (x a/3) 2 + gin(a/3) (x  — a/3) 3 . 
3! 

The choice of y was made to satisfy  g" (a/3) = O. If p = gi (a/3) and 

q = g(a/3 then g(x) = y 3  + py + q. If the roots of g are a l , a 2 , and a3, 
then the roots of y 3  +py+ q are a i  — a/3, a2 — a/3, and a 3  — a/3. Therefore, 
the definition of discriminant shows that disc(g(x)) = disc(y 3 +py+q). The 
interested reader can check that disc(g(x)) = a 2 (b 2  — zlac) — 4b 3  — 27c 2  + 
18abc. 

We give a further description of the discriminant, this time in terms of 
norms. 

Proposition 12.9 Let L = F(o)  be a field extension of  F.  If f (x) = 
min(F, , then dise(f) = (— 1 )7, ‘,1,,2NL/F (f/( ct )\ ,  ) where I' (x) is the 
formal derivative of  f.  

Proof. Let K be a splitting field for f over F,  and write f(x) = (x — 

cti) • • ( X — an ) e K[x]. Set a = a l . Then a short calculation shows that 
1-rn f / (%) = 	— ai). If o- i , 	, an  are the F-homomorphisms of L 

to K that satisfy o-i (a) = a i , then by Proposition 8.12, 

NL/F(fvo)=110-.0(a))=11f/(%)• 

Using the formula above for f (cti), we see by checking signs carefully that 

N F(P (a)) = 	Raj) =1111(aj cti) = ( -1 ) 72(72-1)/2 diSC (f). 
1=1 

Example 12.10 Let p be an odd prime, and let w be a primitive pth root 
of unity in C. We use the previous result to determine disc(w). Let K = 
Q(w), the pth cyclotomic extension of Q. If f (x) = min(Q,w), then f (x) = 
1 + x + • • • + .TP-1  =  (x  1) / (x — 1). We need to calculate N R-pir(w)). 
First, 

(x) = 	  
pxP-1 (x — 1) — (xP — 1) 

— 1) 2 	7  

SO  f (w) = pC4R-1  / (C4) — 1). We claim that NK/Q (w) = 1 and NK/Q (w —1) = 
p. To prove the first equality, by the description of Gal(K/Q) given in 



Corollary 7.8, we have 

P- 

	

NK/Q (W) = 
	 p(p-1)/ 2 = 1  

since p is odd. For the second equality, note that 

p- 1 

1±x±•••+x,-1, 11 (x_w 1 ), 

p- 1 
 SO p = 	w
1 
 ). However, 

p--1 

NK/Q (C4) - 1)  fi  
so NK1Q (c4) — 1) = p, where again we use p odd. From this, we see that 

NK/Q (f i (c4))) = NK/Q  (P:  
p- 1 \\ 

pP-1  1 

NK/Q(A NK/ Q (w) P-1  

NK/Q ( u) — 1 ) 

    

The discriminant of an n-tuple and of a field extension 

We now define the discriminant of a field extension of degree n and of 
an n-tuple in the field extension. We shall see that our definition of the 
discriminant of an element is a special case of this new definition. Let K 
be a separable extension of F with [K :  Fi  = n. Recall from Lemma 8.9 
that [K : F] is equal to the number of F-homomorphisms from K into an 
algebraic closure of F. 

Definition 12.11 Let K be a separable extension of F of degree n, and let 
be the distinct F-homomorphisms from K to an algebraic clo- 

sure of F. If al, ct2, 	an  are any n elements of K, then the discriminant 
of the n - tuple (a i ,... an ) is disc(a i ,... an ) = det(o-i  (Ct .i )) 2  . ff 3 17 	On 
is any F-basis of  K, then the discriminant of the field extension K I F is 
disc(K IF) = disc(31 , 	On ) . 

The definition of disc(K/F) depends on the choice of basis. We will show 
just how it depends on the basis. But first, we give another description of 
the discriminant of an n-tuple, which will show us that this discriminant is 
an element of the base field F. 

Lemma 12.12 Let K be a separable field extension of F of degree n, and 
let  cu,.. an E K. Then disc(cti ... an ) = det(Tr K/ F (ctictj)). Conse-
quently, disc(cei, , a n ) E  F.  



Proof. Let, a  , 	,a„  be  Llte, distinct, F-ltomomorphisms from K to an 
algebraic closure @I F. If A = (cri (ai)), then the discriminant of the n-

tuple 	, an  is the determinant of the matrix A L A, whose ij entry is 

	 ak(ai)ak(a ) = 	 ak (cticti) 

= TricIF(ct ai)• 

Therefore, disc(a i , 	, an ) = det(Tr K/F(ctict1)). 

The next result shows that the discriminant can be used to test whether 
or not an n-tuple iIi  K forms a basis for  K.  

Proposition 12.13 Let K be a separable field extension of F of degree n, 
and let E  K. Then disc(a i , , an ) = 0 if and only if al> • • . > an 
are linearly dependent over F. Thus, {au .. • > c} is an F -basis for K if 
and only if disc(cti, , an ) O. 

Proof. Suppose that the ai  are linearly dependent over F. Then one of 
the a i  is an F-linear combination of the others. If a i  = Ekoi  akak with 
ai  E F, then 

TrK/ F (ai ai ) = 	ak TrK/F(akai)- 

Therefore, the columns of the matrix (TrK/F(azai))  are linearly dependent 
over F, so det(TrK/F(aiai)) = O. 

Conversely, suppose that det(Tr K/ F (ai a.i)) = O. Then the rows 
R I , ... of the matrix (Tr K/ F (ai ai )) are dependent over F, so there are 
a i  E F, not all zero, with Ei  a i Ri  = O. The vector equation Ei  ai R, = 0 
means that Ei  a i  TrKIF(cticti) = 0 for each j. Let x = Ei  a i ai . By linearity 
of the trace, we see that TrK1 F(xaj) = 0 for each j. If the ai  are indepen-
dent over F, then they form a basis for  K.  Consequently, linearity of the 
trace then implies that TrK1 F (xy) = 0 for all y E K. This means that the 
trace map is identically zero, which is false by the Dedekind independence 
lemma. Thus, the a i  are dependent over F. 

We now see exactly how the discriminant of a field extension depends on 
the basis chosen to calculate it. 

Proposition 12.14 Let {a l  , 	, an  } and {{3 L , 	,13 }  be two F - bases for 
K. Let A = (aii ) be the n x n transition matrix between the two bases; that 

{3.i  = Ei  azi ai . Then  disc(/1,. . . ,/3)  = det(A) 2 disc(a i ,... , an ). Con-
sequently, the coset of disc(K/F) in F* I F*2  is well defined, independent 
of the basis chosen. 
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Proof. Since 	Ek  akiak, we have o-i(3i) = Ek akigi(ak). In terms of 
matrices, this says that 

( 0- ()) = (aii) t (cri(cti)) = A t (cri(cti)). 

Therefore, by taking determinants, we obtain 

disc631 , 	, )3n ) = det(A) 2  disc(ai, • • • an)• 

The final statement of the proposition follows immediately from this rela- 
tion, together with the fact that the discriminant of a basis is nonzero, by 
Proposition 12.13. 	 1=1 

To make the definition of discriminant of a field extension well defined, 
one can define it to be the coset in F*/F*2  represented by disc(cti, • • • an) 
for any basis {ai, , an } of K. This eliminates ambiguity, although it is 
not always the most convenient way to work with discriminants. 

Example 12.15 In this example, we show that the discriminant of a 
polynomial is equal to the discriminant of an appropriate field extension. 
Suppose that K = F(c) is an extension of F of degree n. Then 1, a, 
ct 2 ,  an-1 is  a basis for K. We calculate disc(K/F) relative to this ba-
sis. We have disc(K/F) = det(o -i (ai -1 )) 2 . Consequently, if ai  = o-i (a), 
then 

disc(K/F) = det 

/1 ai(a) • • cri(an-1) \ 2 

1 o- 2(a) • 	a2( n-1 ) 

  

   

\ 1 
 o_n ( a ) 

det(V(ai, ct2, • • • >an)) 2 - 

Therefore, disc(K/F) = disc(a) = disc(min(F, a)). 

Example 12.16 Let K  Q(/—i). If i 	V-1, then using the basis 1,i 
of K/Q, we get 

disc(Q(i)/Q) = det 1 
	

2= (-20 2  = —4. 
1 

More generally, if K = Q(v") with d a square-free integer, then using 1, 
as a basis, we see that the discriminant is 4d. 

The discriminant of a bilinear form 

We now extend the idea of discriminant to its most general form that we 
consider. The two previous notions of discriminant will be special cases of 
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this general form. The starting point here is similar to that considered in 

Section 11, when we discussed Kummer pairings. If V is an F-vector space, 
a bilinear form on V is a mapping B:VxV F that is linear in each 
variable. In other words, for all u,  y , w E V and all a, 3 E F, we have 

B(u, av Ow) = a_13(u, v) 	B (u, w) 

B (au {3v w) = 	w) 	B (v w) 

Definition 12.17 If V is an F-vector space and if B :V xV F is a bi-
linear form, then, the discriminant of B relative to a basis V = {v i ,...,v„} 
of V is disc(B)v = det(B(v i ,vi )). 

As with the discriminant of a field extension, this definition depends 
on the choice of basis. If W = {w i , 	wn } is another basis, let A be the 
matrix describing the basis change; that is, if A = (a ii ), then wi  = Ei  
By the bilinearity of B, we have 

B(wi ,wi ) = B aikVk 

k ,1 

a ik B(yk , 

Therefore, it follows that (B(wi , wi )) = A t (B(y k , v i ))A. Taking determi-
nants gives 

disc(B) w  = det(A) 2 disc(B)v, 

the same relation that was found for field extensions. 
A bilinear form is nondegenerate if B(v, w) = 0 for all w only if y = 

0, and if B ( ), w) = 0 for all y only if w = O. As in Section 11, if we 
define By  : V —> F by By  (w) = B(y, w), then the map y 1-4  By  is a 
homomorphism from V to homF(V, F). The form B is nondegenerate if and 
only if this homomorphism is injective. If we represent this homomorphism 
by a matrix, using the basis V and the dual basis for homF(V, F), then 
this matrix is (B(v i , v1 )). Therefore, B is nondegenerate if and only if 
disc(B)v O. This condition is independent of the basis, by the change of 
basis formula above for the discriminant. 

Example 12.18 We now show that the discriminant of a field extension 
is the discriminant of the trace form. Let K be a finite separable extension 
of F. Let B:KxK F be defined by B(a, b) = TK1 F(ab). Then B is a 
bilinear form because the trace is linear. The discriminant of B relative to 
a basis V = {v i , vn } is det(TK/ F (vi vi )). But, by Lemma 12.12, this is 
the discriminant of KIF. Therefore, the previous notions of discriminant 
are special cases of the notion of discriminant of a bilinear form. 



rrobiems 

1. Let B:V x V —4 F be a bilinear form. If V = {v , 	,v} is a basis 
for V, another basis IN = {wi • • wn} is called a dual basis to V 
provided that B(vi , wi ) = 1 for all j , and B(vi , wi ) = 0 whenever 
i j. If V and IN are dual bases, show that disc(B) v  • disc(B) w  = 1. 

2. If B is a nondegenerate bilinear form on V, show that any basis has 
a dual basis. 

3. Let { e i } be a basis for Fn , and choose an ai  E F for each i. Define B 
on this basis by B(e i , ej ) = 0 if i j and B(ei, e i ) = ai E F. Prove 
that this function extends uniquely to a bilinear form B : Fn x Fn 
F, and determine the discriminant of B. 

4. Let A be a symmetric n x n matrix, and define a map B : Fn x Fn 
F by B(v, w) = vAwt , where 7) and w are viewed as row vectors. 
Show that B is bilinear. Using the fact that a symmetric matrix can 
be diagonalized by an orthogonal transformation, use the previous 
problem to determine the discriminant of B in terms of A. 

The remaining problems investigate the use of discriminants in algebraic 
number theory. They require knowledge of integrality and the Noetherian 
condition for commutative rings. 

5. Let K be a finite separable extension of F, and let A be an integrally 
closed ring with quotient field F. Let B be the integral closure of 
A in K. Show that there is an F-basis v 1 , v 2 , 	, vn  of K such that 
B c E Avi . 
(Hint: First find a basis {wi  } C B, and then use a dual basis relative 
to the trace form.) 

6. Let K be an algebraic number field, and let B be the integral clo-
sure of Z in K. Use the previous problem to show that B is a finitely 
generated Z-module, and conclude that B is a Noetherian ring. More-
over, show that there is a basis of K that is also a basis for B as a 
Z-module. Such a basis is called an integral basis for BIZ. 

7. With the notation of the previous problem, let d be the  discriminant 
of K IF relative to an integral basis {v i , , vn } of B/Z. Prove that 
d E Z. The integer d is called the discriminant of BIZ. Show that if 
we use a different integral basis, then the two discriminants are equal. 
(One use of discriminants in algebraic number theory is the following: 
It is known that any nonzero ideal of B factors uniquely into a product 
of prime ideals. If P = pZ is a prime ideal of Z, then PB = Qei l • • Qge g 
for some prime ideals Qi of B and e i  > 1. Then each e i  = 1 if and 
only if p does not divide d.) 



8. Calculate the discriminant of B/Z for the following fields, where B 
is the integral closure of Z in that field. 

(a) Q(\/-1). 

(b) Q(NAT/), where d>  0 is a square-free integer. 

(c) O (w ), where co is a primitive nth root of unity. 
(Hint: Try to prove that B = Z[cd. Calculate the discriminant 
using norms. Show that NK/Q (1 — co) = p.) 

13 Polynomials of Degree 3 and 4 

In this section, we show how to determine the Galois group and the roots 
of an irreducible polynomial of degree 2, 3, or 4. We assume throughout 
that our polynomials are separable. For degree 2, 3, or 4, requiring that 
the base field F does not have characteristic 2 or 3 is sufficient to ensure 
separability. Let f(x) E F[x] be separable and irreducible over F, and let 
K be the splitting field over F of  f.  Set f(x) = (x — al ) 	(x — an ) E 
K[x]. If n = deg(f), note that n divides [K : 	= Gal(K F)k since 
[F(a l ) : F]= n. The Galois group Gal(K/F) is isomorphic to a subgroup 
of S,„ by identifying Sn  as the group of all permutations of the roots of 

f.  Furthermore, Gal(K/F) is isomorphic to a transitive subgroup of Sn; 
that is, for each pair  i , j  E {x1,x2,...,xn }, there is a a E Gal(K/F) 
with  a(x) = x j . This fact is due to the isomorphism extension theorem. 
This limits the possible subgroups of Sn  that can be isomorphic to such a 
Galois group. We call Gal(K/F) the Galois group of f in this section for 
convenience. 

For polynomials of degree 2, there is not much to say. If f (x) = x 2  -1- bx+ 
c E F[x] is separable and irreducible over F, then the Galois group of f is 

82, a cyclic group of order 2. If char(F) 2, the quadratic formula can be 
used to find the roots of  f.  These roots are ,(—b ±  -\/b2  — 4c). Therefore, 

the splitting field K of f over F is F(\,/b2  — 4c). 

Cubic polynomials 

We now consider irreducible polynomials of degree 3. Let f be an irre-
ducible, separable polynomial of degree 3 over a field F, and let K be the 
splitting field of f over F. Then Gal(K/F) is isomorphic to a subgroup of 
83. Furthermore, as noted above, Gal(K/F) is a multiple of 3. Thus, the 
only possibilities for Gal(K/F) are A3 and  83. The following theorem is a 
direct consequence of the results about discriminants in Section 12. 

Theorem 13.1 Let f (x) G F[x] be an irreducible, separable polynomial 
of degree 3 over F, and let K be the splitting field of f over F. If D is 
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the discriminant of  f,  then Gal(K I F) 	83 if arid only if D V F2 ,  and 
Gal(K F)`-=' A3 if arid only if D G  F2 .  

Proof. Let G = Gai(K/F). By Corollary 12.4, G C A3 if and only if 
D E  F2 .  But G 83 or G  A3 ,  SO G 83 if and only if D is a square in 
F.  1=1 

Example 13.2 The polynomial x 3  — 3x +1 E Q[x] has discriminant 81 
9 2 , and it is irreducible over Q by an application of the rational root test. 
Thus, the Galois group of its splitting field over Q  is  A3. The polynomial 
X 3  — 4x ± 2 has discriminant 148 = 2 2  37, so the corresponding Galois 
group is 83. 

We now present a solution of an arbitrary cubic equation that appeared 
in Cardano [3] in 1545. We assume that the characteristic of F is neither 2 
nor 3. Let f (x) 	X 3  px + q. As indicated in Example 12.8, it is sufficient 
to work with a polynomial of this form, for if g(x) = X 3  ± ax 2  + bx + 
then by setting y = x  f  a/3, Taylor expansion gives 

g(x) = g (a 13) ± g i  (a I3)y + gn (a/3)y 2  + gin (a/3)y 3 , 

and y is chosen as such because gn(a13)= O. 
Cardano's method is to solve f =  0 by writing x = u v and obtaining 

two equations in u and v. Replacing x by u +7) in the equation f = 0 gives 

u3  +v3  + 	(3uv P) (u v) = O. 

We set u3  + v 3  +  q = 0 and 3uv + p = 0. Thus, 7) —p/(3u). Using this 
in the first equation and multiplying by u3  yields 4u6  + qu3  — p3 /27 = O. 
This is a quadratic equation in u3 , so 

Vq2 	+ 4133/27 
	  —q/2 

2 

where = q 2 /4 +p3 /27. Note that the discriminant D of f is —4p3  — 27q 2 , 
so F  = — D/108. Set A = — q/2 + ■,/f and B = —q/2 — By symmetry 
of u and v, we may set u3  = A and v 3  B.  Let co be a primitive third root 
of unity. The choices for u and 7) are then 

u = \YA, ar\YA, w 2  \YA, 

v = 'NYB, co'NYB,w 2 /B. 

We must choose the cube roots of A and B so that  /A YB = —p/3. Doing 
so, the roots of f are 

'\YA + YB, c.,..r\YA-1-w 2 AYB, w2\YA-1--w' AYB. 
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Example 13.3 Consider x 3  — 3x ± 1. Then F = —D/108 = —81/108 = 
—3/4. We have p = —3 and q = 1. Then A = —1/2 + i0/2 and 
B = —1/2 — i072, so A = exp(27i/3) and B = exp(-27ri/3), We can 
then set u = exp(27(i/9) and y = exp(-27-ri/9). Also, w = exp(27ri/3). By 
simplifying the formulas for the roots of f, we see that the three roots are 
2 cos(2719), 2 cos(87/9), and 2 cos(147/9), 

Suppose that the polynomial f(x) =  x 3  px q has real coefficients, If 
F > 0, then D < 0, so D is not a square in F. We can then take the real 
cube roots of A and B for u and v. Furthermore, if w = ( — 1 ± i-\/)/2, we 
see that the three roots of f are 

al = 	E R 7  

( -■/A  	 
 2

) CB- 	( -■/_A AYT3 
ct2 = k 	± 

and 
± CO) 	( -■/A  — -/B\ 
2 \ 	2 

On the other hand, if F  <0, then A = —q/2--FiV—F and B = 
If we choose 	= a ± bi to satisfy ./A-NYB = —p/3, we must then have 

= a — bi, The roots of f are then a l  = 2a, ct 2  = —a — biS, and 
ct 3  = —a ± b0, and all three are real numbers. 

The case where F < 0 historically had been called the "irreducible case," 
since it was realized that even though all three roots are real, the roots 
cannot be expressed in terms of real radicals. 

Quartic polynomials 

We now consider polynomials of degree 4. Let f (x) = x 4 -1--ax 3 -1--bx 2  --1- cx±d 
be an irreducible, separable polynomial over a field F, and let f factor as 

f (x) = (x — ct i )(x — ct 2 )(x — ct 3 )(x — ct 4 ) 

in some splitting field. The key idea we use to find the roots and the Galois 
group G of f is to work with an associated cubic polynomial. Set 

= a 1 a2 ct3c147 

= a 1 a3 ct2c147 

= a 1 a4 a2c137 

and 
r(x) = 	— 0 1 )(x — 0 2 )(x — 0 3 ). 

A coloptaation shows that 

r(x) = 3  — 5x 2  (ac — 4d)x 4bd a 2 d — c2  E F[x]. 

az 3  = — 



I he polynomial r lb caiiuJ  the VCsolvent of f. An easy calculation shows 
that f and r have the same discriminant. Let K = F(cr , a2 , a3, a 4 ), a 
splitting field of f over F, and let L = F(01, 027 03)7 a splitting field of r 
over F. Note that LIF is Galois. Let 

V = {e, (12)(34), (13)(24), (14)(23 )} , 

a subgroup of S4 of order 4. Then V C A4 and V is normal in S4. Each Oi  
is fixed by V, so L C .T(C n V). The reverse inclusion is also true, which 
can be seen by showing that any element of C—CnV moves one of the 
Oi. The group C is isomorphic to a transitive subgroup of S4, and it has 
order a multiple of 4. It is not hard to show that the transitive subgroups of 
S4 of order 24 and 12, respectively, are S4 and A4, and that the transitive 
subgroups of order 4 are V and the cyclic subgroups generated by a 4- 
cycle. The subgroup generated by (1234) and (24) is a transitive subgroup 
of order 8. Since this is a 2-Sylow subgroup of S4, any subgroup of order 8 
is isomorphic to it, and so is isomorphic to D4, the dihedral group of order 
8. We write C4 for the unique up to isomorphism cyclic group of order 4. 
We now show how to determine C in terms of the discriminant of f and 
the resolvent r. The particular statement of the following theorem we give 
appeared in Kappe and Warren [18]. 

Theorem 13.4 With the notation above, let m = [L : 

1. C; S4 if and only if r(x) is irreducible over F and D 0 F2 , if and 
only if m = 6. 

2. G A4 if and only if r(x) is irreducible over F and D E F2 ,  if and 
only if m = 3. 

3. C V if and only if r(x) splits over F, if and only if m = 1. 

4-  C 	C4 if and only if r(x) has a unique root t E F and h(x) = 
(x 2  — tx d)(x 2  ax (b — t)) splits over L, if and only if m = 2 
and f (x) is reducible over L. 

5. C D4 if and only if r(x) has a unique root t E F and h(x) does not 
split over L, if and only if m = 2 and f is irreducible over L. 

Proof. We first point out a couple of things. First, [K : 	< 4, since 
K = L(a i ). This equality follows from the fundamental theorem, since 
only the identity automorphism fixes L(a i ). Second, r(x) is irreducible 
over F if and only if m = 3 or m = 6. Also, r(x) has a unique root in F if 
and only if m = 2. Finally, if a is a 4-cycle, then o-2  E V. 

Suppose that r(x) is irreducible over F. Then m is either 3 or 6, so 3 
divides C. This forces C; to be isomorphic to either 84 or A4. In either 
case, V C G, so L = .F(V) by the fundamental theorem. Thus, [K:  = 

vy .2 	 ( 4/1 ) 	.1:1 1 	 c41:■! 2, / 	 1  R i  z- 3 ,, I 	A,, P3 	e C (2v (^•9), 	V,c 
tior 	' 

7) -P, 	6 S 	(5.1 )  • 



O  („r 	- 	It iit = t), all(' 	 _-14 11  ii 	- 	• thiLl% 	 11 (ill., 

only if D çt F2 , and G = A. 1  if and only if  D E  F.  Conversely, if C = S47 
thell = 84 :  V  = 6, and if G = then  tu  =  A4 ; V  = 3. In either 
case, 3 divides CL  so r(x) is irreducible over F. 

Next, r(x) splits over F if and only if L = F, if and only if m = 1. If this 
occurs, then L corresponds to both G and G n  V,  so C C V. Since !CI is a 
multiple of 4, we see G = V. Conversely, if G = V, then L corresponds to 

n V = G, so L = F; thus, m = 1 and r(x) splits over F. 
For the final case, we suppose that r(x) has a single root t in F. This is 

equivalent to m = 2. Thus, IC : cnvl -= 2, so G V. The only possibilities 
for G are G `L-' C4 or G D4. Conversely, if G is either isomorphic to D4 

or C4 7  then m = C : C n .11 = 2, so r(x) has a unique root F. Now f is 
irreducible over L if and only if [K : = 4, if and only if [K : = 8, if 
and only if G`L-' D4. Therefore, G`-=' C4 if and only if f is reducible over 
L. By relabeling if necessary, we may suppose that t = a l  a2 + ce3a4. Then 
h(x) factors over K as 

h(x) = (x — aia2)(x — a3a4)(x — (al + a2))(x 	+ ce4))• 

If h splits over L,  then a l  + a2 and a l  a2 are in L. Thus, a i  satisfies the 
quadratic polynomial 

X
2 

— (ai + a2)x + a1a2 = (x — ai)(x — a2) E L[x]. 

Thus, [K : 	< 2 because K = L(ai). Therefore, [K : 	< 4, so G C4- 

If G C4 7  let cr be a generator for G. Then a 2  E  C n V, since L is the 
unique nontrivial subfield of K/F. To fix t = a l  a 2  a3 a4 , we must have 
a2  = (12)(34). Then a l  + Ct2 7  ct3 a4, c 1 c 2 , and a3a 4  are all fixed by 
a 2 , so they lie in L. Thus, h splits over L. This completes the proof of the 
theorem. 

We now find the roots of the general polynomial of degree 4. We point 
out that the formulas we derive below only require us to find one root 
of the resolvent polynomial, and such a root can be found by Carclano's 
method. Our approach is not that of Ferrari, a student of Cardano and 
the first to solve the quartic, although deep down it is much the same. His 
method is addressed in Problem 1. Instead, our method is based on the 
theorem of Galois, which says that there is an algebraic formula for the 
roots of a polynomial if and only if the Galois group of the polynomial is 
a solvable group. We shall discuss this theorem in detail in Section 16. To 
use hindsight, the idea is that given a sequence of subgroups C; 3 H 1  3 
• • •3 Ht  = (id) for which fii+i  is normal in H, with Hi /Hi +1  Abelian, 
which exists for a solvable group, we obtain a sequence of intermediate 
subfields F = Lt  C L t _ i  C • • C K for which the extension Li_ I /Li is 
easy to describe. By describing L t _i, then Lt_2 7  and so on, eventually we 
describe K.  This brings up the question of how to motivate the definition 
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of the resolvent polynomial. For 84 7  a natural chain of subgroups is 84 D 
A4 3 V 3 (id), since this is the usual sequence that shows 84 is solvable. 
If f (x) = (x — t 1 )(x — t 2 )(x — t 3 )(x — t4), then the automorphisms in V fix 
t1t2 --f-t3t4, ti t3 + t2t4, and t i  t4 t2t3 and we have seen that the fixed field 
of V is the field generated by these three elements. This field is then the 
splitting field of the polynomial whose three roots are these three elements; 
that is, it is the splitting field of the resolvent of  f.  

Let us now find the roots of the general fourth degree polynomial. Let k 
be a field of characteristic not 2, and let K = k(t1,t2,t3, t 4 ) be the rational 
function field in four variables over k. Let 

f (x) = (x — t 1 )(x — t 2 )(x — t3)(x 

= x 4  ± ax 3 + bx2  +cx d E k(s i  S27 S37 S4)[X], 

where si is the ith elementary symmetric polynomial in the ti . Then s i  
—a, s2  =  6, s3 = —c, and 34 = d. Recall from Example 3.9 that if F 
k(s 8 27 83, 84) then K = 1;1  (t i 7 1 2 , t3, t 4 ) is the splitting field over F of f, 
and Gal(K/F) = 84. Set 

/3 1 = t t 2 	t3t47 

02 = tlt3 t2t4 

/33 — t Li t2 t3 

The resolvent r is 

r(x) = (x — 01)(x — 02)(x — 03) 

= x3  —  5x 2  (ac — 4d)x + 4511 — a 2  d — c 2 . 

Let L = F (01 , 02 , 03 ), the fixed field of  V.  For simplicity, we write a l  = 
(12)(34), o- 2  = (13)(24), and o- 3  = (14)(23). Let u = (ti +12) — (t3 t4). 
Then o- i (u) = u and o-i(u) = —u for i = 2, 3. Therefore, u2  E L. Let 
M = L(u). Then M corresponds to {id, o- 1 }. Finally, let 7) = t i  — t2. Then 

cri(v) = —v, so y 2  E  M.  Also, M(v) is fixed only by id, so K = M (v). We 
have 

U
2 = (t 1 	t2 ) 2 	(t3 	t4 ) 2  — 2(11 ± t2)(t3 + t4) 

+  t  + 6 ± t24  ± 2 (ti t2 	t3t4) — 2  (t1t3 	t2t4 	t1t4 	t2t3) 

= s? — 2s2  + 2/3 k  — 2 (02 +03) = sj.  — 2s 2  +4/3k  — 2b 

= a 2  — 41) ± 401 . 

To determine v 2 , we first point out that u s i  = 2(t 1  t2), so ti + t2 

( S i + u).  Similarly, t3 t4 =  (Si 	U). Now, 

1 
v 2  = (t1 — t2) 2  = (ti ±t2) 2  — 4t1t2 = —

4
(81 + u) 2  — 4t1t2 

1 
= —

4

( — a ± u)2  — 4tit2. 



However, we can determine t i t2 in terms of the coefficients as follows. If 
we expand (t 1 t2 — t 3 t 4 )u, recalling that u = (t 1  t2 ) — (t 3  t4 ), we get 

( t t 2  - t 3 t 4 )(( t + t 2  ) - ( + t 4 ) ) 

= t 2i t2 + t 1 t + tt4 + t3t 24 	— (t1t2t3 	t1t2t4 	t2t3t4 + t1t3t4) 

— (ti t2 4-t3t4)(t 1 	t2 	t3 	t4) — 283 

s101 — 283 = 	± 2c. 

Thus, tit2 — t3t4 = u --1 (2c — a01). Since Pi = t1t2 + t3t4, we see that 

t 2 = —12  (01 + (2c — aPi )) , 

t3t4 = 1 (01 — -u-1  ( 2c — a01)) 

SO 

v 2  = —1 (u — a) 2  — 2 (Pi  ± —
1

(2c — a0 i )) 
4 

Once we have a formula for t 1 , we will have formulas for the other t i  , since 
t 2  = o- i (t i ), t3 = 0-2(t1), and t 4  = o-3(t1). To find t 1 , note that 

1 	 1 	1 
t 1  = —

2
(t 1  -Ft 2  t 1  — t 2 ) = —2 (v —2 (u — a)) . 

To get formulas for t 2 , t3, and t 4 , we need to know o-i (v). We have  a 1 (v) — 
—v. Let 

= t 3  — t 4  = o-2(v) = 

Since  a i (u) = u, o- 2 (u) = —u, and o-3 (u) = —u, we see that 

(v') 2  = 	— a) 2  — 2 (PI  — —u1  (2c — aP i )) . 

Therefore, we have 

1 
t 1  = 

1 
t2 = 

1 
t3 = -2- 

1 
t4 — 

For a specific polynomial, these formulas will work provided that u 	O. 
Since the roots of r(x) are distinct, provided that f has no repeated roots, 
at most one choice of 0 will make u = O. 
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some of the subgroups of 84 and the corresponding intermediate subfields. 
To make the diagrams manageable, we list only one subgroup/subfield of 

each "type." For instance, there are three subgroups generated by a 4-cycle, 
and six subgroups generated by a 3-cycle. We list only one of each. The 
group S(1) below is the group of permutations that fix 1, and the element 
A is the element n(ti  - ti ), so A 2  is the discriminant of f and also of 
r. 

FIGURE 13.1. Field tower for F(t1,t2,t3,t4)/F. 

Example 13.5 Let f(x) , x4 ± x3 ± x2 ± 
X +1. Then a=b=c=d= 1, 

	

so 	= s3 = —1 and 	s2  = s4  = 1. Also, 

	

r(x) = 	— x‘72: — 3x + 2 = (x — 2)(x 2  + x — 1). 

Set 01 = 2. Then u = N/g. Also, 

	

'0 2 	71 ( - 1 + u) 2  — 2(2 + u —I  ( - 2 + 2)) 

1 
—
4 

(u2  — 2u + 1) --- 4 = 5  + u  =  
2 

Thus, y = V10 — 	In addition, we see that y' = 	10 — 2f5-. . The 

roots of f are then 

2 2 	
4 10 + 

1 	 1 



S(1) 

	

2 ' 	\ 2 \ 
--- 

	

( (1 2)(34)) 	 ((34)) 	---- ----,, 
((234)) 

2 \ /2 

V . 

	

	(0324» ( (1 2),(34» 
\ 

\ 2 	2 / 
/2  

( (1 324),(12)) 

A4 ------- 

FIGURE 13.2. Group tower for S4 

(-1 + ) — —
4

V 10 + 
1 	 i / 

/ 
 (/ 	
1 — 2 V-5-  + (-1 — 	= —

4 
(-1 — N/g) 

1 	 1 	 1 
4 10 — 

d 	1 ( 	 1 
2 	2 	= 	1)  

The polynomial h(x) = (x2 — 2x + 1) (x 2  +x-1) splits over L,  so by Theorem 
13.4 the Galois group of f is isomorphic to C4.  Alternatively, f (x) is the 
fifth cyclotomic polynomial  111 5 (x), so Section 7 tells us that the Galois 
group of f is cyclic. 

Example 13.6 Let f (x) = x 4  — 4x 3 ±4x2 +6. This polynomial is irreducible 
by the Eisenstein criterion. Now, 

r (x) = X 3  — 4X 2  — 24x = x(x 2  — 4x — 24), 

so L = Q(0). Take 01 = 0. Then 

h(x) = (x2  + (x 2  — 4x + 4) = (X 2  ± 6)(X — 2) 2 . 

Since h does not split over L, we see that the Galois group of f is isomorphic 
to  D4. 

4 10 — 



Li L. 	i ■ j,i)ti( 	)1 is id  LLtuu 	t  itnnA 

Example 13.7 Let p be a prime, and let f(x) = x4  ± px + p. Then 
r(x) = x3  - 4px - p2 . To test for roots of r(x) in Q, we only need to check 
+1, +p, +p2 . We see that +1 and ±p 2  are never roots, but r(p) = p2 (p - 5) 
and r(-p) = p2 (3 - p). Therefore, for p 3, 5, the resolvent r has no roots 
in Q; hence, r is irreducible over Q. The discriminant D = p3 (256 - 27p) is 
not a square in Q, since if p is odd, then p does not divide 256 - 27p, and 
D = 1616 çt Q2  for p = 2. Let G be the Galois group of  f.  Then G r=-' 84 
for p 3,5. If p = 3, let 0 1  = -3. Then r(x) = (x + 3)(x 2  - 3x - 3), so 
L =  Q(A/21). Then h(x) = (x 2  ± 3x ± 3)(x 2  ± 3) does not split over L, so 
G D4. If p = 5, then r(x) = (x - 5)(x 2  ± 5x ± 5), so L = Q(15-). As 
h(x) = (x 2  - 5x + 5)(x 2  — 5), h splits over L, so G r=-' C4- 

Example 13.8 Let 1 E Q, and let f(x) = x 4  - 1. Then the resolvent of 
f is r(x) = x3  + 41x = x(x2  + 41). If - 1 is not a square in Q, then r(x) 
has exactly one root in Q. Moreover, h(x) = x 2 (x 2  ± 1) does not factor 
completely over Q, so the Galois group G of f  is  D4 by Theorem 13.4. On 
the other hand, if -/ is a square in Q, then r factors completely over Q, so 
G V. For example, the Galois group of x4  +4 is V. The splitting field of 
x 4  ± 4 over Q is then Q(:\Y-4). 

Problems 

1. Ferrari's solution of the quartic. Here is Ferrari's method for finding 
the roots of a quartic, which appeared in [3]. Let g(x) = x 4  + ax3  + 
5x 2  +cx + d. Starting with g(x) -= 0, move the quadratic part of f to 
the right-hand side. Show by completion of squares that the equation 
becomes 

2 
0  

(x 2  ± l aX) = 	x 2  - cx - d. 
2 

Ferrari's idea is to add to both sides the expression y(x 2 ±a.x/2)±y 2 /4 
for sonic y, so that the left-hand side is a perfect square. The equation 
(diet becomes 

( 	
2 

2 

	

1 ) 	/1 2 	 /1 	 1 2 +x 

	

	± -
2

y = 
\
-
4

a - b y) x 2 ± 
\
-
2 

ay - x ± -
4
y - a. 

2 

We wish to choose y so that the right-hand side becomes a square, 
(ex+ f) 2 . Writing the right-hand side as Ax 2 +Bx-f-C, this is possible 
if and only if B 2  - 4AC = O. Show that this gives an equation in y to 
be solved, and if r is the resolvent of g, then this equation is r(x) = O. 
Given such a y, take the equation 

	

/ 	 1 	
2 

+ -lax +y - 	= (ex + ) 2 	(13.1) 

	

\ 	2 	2' 
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and obtain two quadratic equations in x and solve them to find the 
general solution to g(x) = O. Relate Ferrari's method by the method 
of the section by showing that e =  u and that the discriminants of 
the two quadratic equations in (13.1) are equal to v 2  and (v") 2 . 

2. Solve x 4  + 4x — 1 = 0 by Ferrari's method and by the method of the 
section. 

3. Show that 2 cos(27- /15) is a root of x 4  — x 3  - 4x2  ± 4x ± 1. What are 
the other roots? 

4. Solve the equation ((x  +2) 2  + x 2 ) 3  = 8x 4  (X+2) 2  by setting y = x+1. 

5. Find the roots of x 4  + px 3  qx 2  px ± 1, and notice that cube and 
fourth roots are not needed. 

6. Use the ideas  of this  section to show that V -5-  ± 2 — 	 — 2 = 1 
and that </7 + N/50 + 	— N/50 = 2. 

7. Find the roots of x3  - 6x — 6 and the roots of 2x 3  + 6x + 3. 

8. If the specific gravity of cork is 0.25, to what depth will a sphere of 
radius r macle of cork sink in water? Archimedes' principle is that 
the weight of water displaced is equal to the weight of the cork. 
(You might want to ask yourself why this problem is here!) 

9. Let f (x) = x 4  ± ax 2  b E Q[x]. Determine the Galois group of f 

10. Let K be a field extension of F with [K F] = 4. Show that K 
contains an intermediate subfield L with [L : F] = 2 if and only if 
K = F(u), where a satisfies a polynomial x 4  + ax 2  b E F[x]. 

11. Given the splitting field k(t i  , t 2 , t3 , t 4 ) of the general quartic (x — 
t i )(x — t 2 )(:-E — t 3 )(x — Li ) over k(s 1 ,s 2 , 33, 3 4 ), for each pair L2/L 1  
of intermediate subfields for which there is no proper intermediate 

subfield, (hid a single element that generates L2 over L i , and lind 
this element's minimal polynomial over L 1 . 

14 The Transcendence of  r and e 

The two best known and most important nonrational real numbers are 
Tr and e. In this section, we will show that both of these numbers are 
transcendental over Q. in Section 15, we will use the transcendence of Tr to 
prove that it is impossible to square the circle, one of the ruler and compass 
construction questions of ancient Greece that remained unsolved for 2500 
years. 



The recognition that irrational numbers exist can be traced back to the 
Pythagoreans' proof over 2000 years ago that N/2 is irrational. However, it 
was not known whether 71 was rational until 1761, when Lambert proved 
that 71 is irrational. Euler, after finding a continued fraction expression for 
e, believed that e was irrational but was not able to prove it. In 1767, Lam-
bert gave a proof that e was irrational. By this time, people suspected that 
not all numbers were algebraic. The existence of transcendental numbers 
remained an open question until Liouville in 1844 came up with a crite-
rion for a complex number to be algebraic and showed that transcendental 
numbers do exist. Liouville's method showed that numbers whose decimal 
expansion contained increasingly long strings of O's are transcendental. For 
instance, his method showed that Enc° 0  10 -- n is transcendental. Proving 
that a particular number, such as  71  and e, is transcendental is another 
matter. The transcendence of e was not proved until 1873, when Hermite 
gave a proof. Nine years later, Lindemann used 1-Termite's method to prove 
that 71 is transcendental. 

In this section, we give a more general result of Lindemann that im-
plies the transcendence of both e and 71 . A more detailed proof of this 
result was given by Weierstrauss in 1895 and often goes under the name 
of the Lindemann—Weierstradss theorem. Actually, we give an alternative 
version of this theorem that is a little easier to prove than the original 
version. The original version is mentioned in Problem 1. The proof of the 
Lindemann—Weierstras theorem requires some analysis, including com-
plex integration, along with Galois theory. 

Theorem 14.1 (Lindemann—Weierstray(ss) Let  C 1 ,...  , am  be distinct 
algebraic numbers. Then the exponentials  en',.. , earn are linearly inde-
pendent over Q. 

Corollary 14.2 The numbers 71  and e are transcendental over Q. 

Proof of the corollary. Suppose that e is algebraic over Q. Then there 
are rationals ri  with Eni 0  re  i  = 0. This means that the numbers e0 , 

en are linearly dependent over Q. By choosing m = n 1 and 
c  j-1, this dependence is false by the theorem. Thus, e is transcendental 
over Q. For 71 , we note that if 71 is algebraic over Q, then so is 7ri; hence, 

e 0 , ei are linearly independent over Q, which is false since Cri = —1. Thus, 

71 is transcendental over Q. 

Proof of the theorem. Suppose that there are ai  E Q with 

771 

= 0  di e 3 	. 
j = 1 

By multiplying by a suitable integer, we may assume that each ai E Z. 
Moreover, by eliminating terms if necessary, we may also assume that each 



a3 	O. Let K be the normal closure of Q((I  i, 	, ri ,)/Q. Then K is 
a Galois extension of Q. Suppose that Gal(K/Q) = to- i 	ard. Since 
E 3 7 7. =1  a 3-e'i = 0, we have 

0 = H 	'aj eak(a,) = 	, cief33 , 

Ic=1 j=1 j=0 

where the ci  E Z and the )3 can be chosen to be distinct elements of 
K by gathering together terms with the same exponent. Moreover, some 

0 (see Problem 4); without loss of generality, say co 	O. If a E 
Gal(K/Q), then the n terms E7=1  ai e"k('-i )  for 1  < k < n  are the terms 

E t aj eak('-i )  in some order, so the product is unchanged when replacing 
o- k (cti ) by o- o-k(ai). Since each {3j is a sum of terms of the form o-k(ai), 

the exponents in the expansion of FIL I  (Er1, 1  ai e"k(a-i)) are the various 

o- (8i). Thus, we obtain equations 

= 	ej egi 

j=0 

for each i. Multiplying the ith equation by Zai( 0°), we get 

0 = co +) c •eai (7j )  , 
	■ 3  
j=1  

( 1 4 . 1 ) 

where  «yj = 	— 00 . Note that 	0 since the 03  are all distinct. Each 
E K; hence, each -yi  is algebraic over Q. Thus, for a fixed j, the elements 

o-i (-yi ) are roots of a polynomial gi  (x) E Q[x], where the leading coefficient 
bi of g1  (x) can be taken to be a positive integer. Moreover, we may assume 
that gi  (0) 0 by using an appropriate multiple of min(Q,-yi ) for gi  (x). 

We now make estimates of some complex integrals. If f (x) is a polyno-
mial, let 

00 

F(x) = 

where f( i) (x) is the ith derivative of  f.  This sum is finite since f is a 
polynomial, so F is also a polynomial. Note that F(x) — (x) = f (x), so 

(e —  F(x)) = — e f(x). 

Therefore, 

L 
 a 	

f (x)dx = F(0) — 	F(a)  
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or 
a 

F (a) - F(0) = 	f e' f (x)dx. 

By setting a = 	multiplying by ci , and summing over j and j, we get 

r n 	 r n 

	

- F(0) 	:) 	 ce(7i) 	 3 

j -=1 i==1 	 j zzl i---=1 

	 ciegi(7 
) 

fogi(7)) 
e' f (z)dz. 

j-1 jrl  

Using Equation (14.1) and rearranging the second sum gives us an equation 

n 

nc0 F(0) ±):ci ):F(o-i (-yi )) 
Z=1 

r n  

= 	 egi7i) f
3 cri (7 ) 

c 	( 	 e' f (z)dz. 	 (14.2) 
	 3  

j --=1 i==1 

We define f by 

i=1 

where p is a prime yet to be specified. Recall that bi  is the leading coefficient 
of gi (x) and that each bi is a positive integer. From this definition, we see 
that 

O = f(0) = f(0) = • • = f ( P-2)  (0) 
while f(P-1) (0) = (51 	br)pnr fl 7 , gi ( 0) P 	O. We choose p to be any 

prime larger than maxi  {bi, gi (0)}, so that p does not divide f ( P-1) (0). 
However, for t > p, the polynomial PO (x) can be written in the form 

f (t) (x) = p(5 1  • - • br )Prnht (x), 

where hi (x) E Z[x] has degree at most pm n - 1. Thus, f (t) (0) is divisible 
by p for t > p; hence, F(0) = f (P -1) (0) E i  f(i ) (0) is not divisible 
by p. If we further restrict p so that p > n and p > co , then p does not 
divide nc0 F(0). We will complete the proof by showing that the first sum in 
Equation (14.2) is an integer divisible by p and that the right-hand side of 
Equation (14.2) goes to 0 as p gets large. This will show that the left-hand 
side is at least 1 in absolute value, which will then give a contradiction. 

We now show that E73:, 1   F(o-i ( -y1 )) is an integer divisible by p. 

We do this by showing that each term Erit  F(Cri('yi)) is an integer divisible 
by p. Now, 

>:F(0-)>=r,r,f(k)(0-20(3» 
i==1 	 k i==1 

r 	P  

f (x) = (51 	br)Prn P-1  111-F  gj  (x) 
(p — 1)! x  
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Since g i(x)P divides f (x) and each a i(-y1) is a root of g i (x), we see that 

0= f(cri(t.i)) 	f(cri(7i)) = • • - = f (P-1) (cri( . )). 

For t > p, since f( t) (x) = p(b i  • • - br )Pnrhi (x), 

	 f (t)  (cri()) = P -) ,(bi • • - brrn r  h t (o-i (-yi )). 	(14.3) 
j-1 	 i=_-1 

However, this sum is invariant under the action of Gal(K/Q), so it is a 
rational number. Moreover, Ein  (bi • - - br ) Pnrht(Xi) is a symmetric poly-
nomial in xi,— , x n  of degree at most prn - 1. The o-i ('-yi ) are roots of 
the polynomial gi  (x), whose leading coefficient is bi , so the second sum in 
Equation (14.3) is actually an integer by an application of the symmetric 
function theorem (see Problem 5). This shows that Er  Eni_ F(o('y)) 

is an integer divisible by p; hence, the left-hand side of Equation (14.2) is 
a nonzero integer. This means that 

O 	 p ) 
r n 	 Lai (7i) 

	 c3egi(7i) 	e - z f (z)dz 

i=_i 

= max {Ici II 
771 2  = max { e gi(7.0 

 

	

7 113 = m { ai 	)1} i   

7 11 4 	max {le -2 1 : z = 	, 
s E [0,1] 

7 11 5  = sm[E  ao x 
,i] 11 gi(z)1 z = scri(V} • 

On the straight-line path from 0 to o-i (-yi ) we have the bound 
p— 	 • 

< M, 13 . This yields the inequality 

Let 

and 

> 1 

j=1 

( bi • • • 5r ) Prn p-1 p 
< M3M4 	  

1)! 
M3 M5  

b1 • • br  ) Prn  P P 1)1 m3m5. =7114 	  

f
ai(7j) 

e' f (z)dz 



Combining this with the previous inequality gives 

g 
a(7) 

 f o  
(z)dz 

(b 1  • • • br)Prn 	P 13) 
m4 

(I)  1)! m3m5 

((b i  • • br )rnm3m5 ) P  

Since uP I (p — 1)! 	0 as p 	oo , the last term in the inequality above 
can be made arbitrarily small by choosing p large enough. This gives a 
contradiction, so our original hypothesis that the exponentials e'' , . . . 
are linearly dependent over Q is false. This proves the theorem. LI 

While we have proved that 71  and e are transcendental over Q, it is 
unknown if 71 is transcendental over Q(e) or if e is transcendental over Q(71 ). 
To discuss this further, we need a definition from Section 19. If K is a field 
extension of  F,  then a 1 ,...  , an  E K are algebraically independent over F 
if whenever f E F[x , , xn ] is a polynomial with f (al,. , an ) = 0, then 

= O. It is not hard to show that 71  and e are algebraically independent 

over Q if and only if 71 is transcendental over Q(e), if and only if e is 
transcendental over QI(7r); see Problem 2. A possible generalization of the 
Lindemann—Weierstrauss theorem is Schanuel's conjecture, which states 
that if Yi  , , yn  are Q-linearly independent complex numbers, then at 
least n of the numbers  Yi,.  , yn ,  en',.  , eYn are algebraically independent 
over Q. If Schanuel's conjecture is true, then e and  it  are algebraically 
independent over ,Q; this is left to Problem 3. 

Problems 

1. The original Lindemann WeicrstraAs theorem states that if 
, a m  are Q-linearly independent algebraic numbers, then the 

exponentials ea' , 	, ern are algebraically independent; that is, 
there is no nonzero polynomial f (x , , x in ) E Q[x , , x m ] with 

f  (ear,.  , en') = O. Show that this version of the Lindemann-
Weierstrauss theorem is equivalent to the version given in Theorem 
14.1. 

2. Recall the definition of algebraic independence given at the end of this 
section. Show that two complex numbers a, b are algebraically inde-
pendent over Q if and only if b is transcendental over Q(a). Conclude 
that b is transcendental over Q(a) if and only if a is transcendental 

over Q(b). 

= rnmim2m4 
(7) 	1 )! 



trVe that Schan,“ 	 [Ire tinpli( ,s that, there I. 
polynomial f (x, y) .E Q[x , y] with f (e, 7r) = 0. In other words, 

Schanuel's conjecture implies that 7F and e are algebraically inde-
pendent over Q. 

4. Let 
.9 

d  aix'' and 	b • xr3 i 

be functions with a i , b i  nonzero rational numbers and a i ,  13i  algebraic 
numbers. Assume that the a i  are distinct and that the  13i, are distinct. 
Writing Ei ajxi •Ei  bi  x 0.7 in the form Ek  CkX 7-i with the -yi  distinct, 
show that at least one of the ck is nonzero. 

5. Let ao, a l , 	, a E Z with an, 	0, and let {{3.2 } 3% 1  be the roots of 

the polynomial  ax  n + an-ixn-1  -I- • • • -1-ao. Let g(x ,  x 2 ,.  , x n ) be a 
symmetric polynomial in the x i  with integer coefficients. If t = deg (g) , 
show that g({3 i , , On ) is an integer. 
(Hint: Use the theorem on symmetric polynomials: If f (x i , 	, x n ) 
is a symmetric polynomial in the variables x l , . , 	, then f is a 
polynomial in the elementary symmetric functions.) 

6. Use the infinite series representation e = 	1/n!  for e to show 
that e is irrational. 
(This approach to proving that e is irrational was found by Fourier.) 

7. If u is a nonzero algebraic number, show that sin u and cos u are 
transcendental over Q. 

8. If u is a nonzero algebraic number, show that tan u, cot u, sec u, and 
csc u are all transcendental over Q. 

9. If u 1 is a nonzero algebraic number, show that any complex value 
of log u is transcendental over Q. 

10. Ii u 	1 is a nonzero algebraic number and f is any one of the 
inverse trigonometric functions, show that any complex value of f (u) 
is transcendental over Q. 

11. Let K be the set of all real-valued functions defined and continuous on 
a dense open subset of R. Define pointwise addition and multiplication 
of functions f,g E K in the common domain of f and g. 

(a) Show that K is a field and that K contains the rational function 
field R(x). 

(b) Show that the six basic trigonometric functions, In  jxj, and ex 

are in K and are not algebraic over R(x). 
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12. Early on in the proof of the Lindemann—Weierstraks theorem, 
we had an equation Em. =1 3 a•eai = 0, and we needed equations .7   

Ern: a •ea ( ') )  = 0, where a is an automorphism of an appropriate 3 -1 3 

field. If a is continuous, then we can use infinite series to show that 
a(ea) = ea (a)  . Show that if a is an automorphism of a subfield F of 

C, then u is not continuous unless a = id or a is complex conjugation 
restricted to F. 

15 Ruler and Compass Constructions 

In the days of the ancient Greeks, some of the major mathematical ques-
tions involved constructions with ruler and compass. In spite of the ability 
of many gifted mathematicians, a number of questions were left unsolved. 
It was not until the advent of field theory that these questions could be 

answered. We consider in this section the idea of constructibility by ruler 
and compass, and we answer the following four classical questions: 

1. is it possible to trisect any angle? 

2. Is it possible to double the cube? That is, given a cube of volume V, 
a side of which can be constructed, is it possible to construct a line 
segment whose length is that of the side of a cube of volume 2V? 

3. Is it possible to square the circle? That is, given a constructible circle 
of area A, is it possible to construct a square of area A? 

4. For which n is it possible to construct a regular n-gon? 

The notion of ruler and compass construction was a theoretical one to the 
Greeks. A ruler was taken to be an object that could draw perfect, infinitely 
long lines with no thickness but with no markings to measure distance. The 
only way to use a ruler was to draw the line passing through two points. 
Similarly, a compass was taken to be a device that could draw a perfect 
circle, and the only way it could be used was to draw the circle centered 
at one point and passing through another. The compass was sometimes 
referred to as a "collapsible compass"; that is, after drawing a circle, the 
compass could not be Lifted to draw a circle centered at another point with 
the same radius as that of the previous circle. Likewise, given two points a 
distance d apart, the ruler cannot be used to mark a point on another line 
a distance d from a given point on the line. 

The assumptions of constructibility are as follows. Two points are given 
and are taken to be the initial constructible points. Given any two con-
structible points, the line through these points can be constructed, as can 

the circle centered at one point passing through the other. A point is con-
structible if it is the intersection of constructible lilies and circles. 
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The first thing we note is that the collapsibility of the compass is not a 
problem, nor is not being able to use the ruler to mark distances. Given two 
constructible points a distance d apart, and a line e with a point P on E, we 
can construct a point Q on E a distance d from P. Also, if we can construct 
a circle of radius r, given any constructible point P, we can construct the 
circle of radius r centered at P. These facts are indicated in Figure 15.1. 
It is left as an exercise (Problem 4) to describe the construction indicated 
by the figure. 

d 

FIGURE 15.1. Construction of Q on .e a distance d from P. 

There are some standard constructions from elementary geometry that 
we recall now. Given a line and a point on the line, it is possible to construct 
a second line through the point perpendicular to the original line. Also, 
given a line and a point not on the line, it is possible to construct a second 
line parallel to the original line and passing through the point. These facts 
are indicated in Figure 15.2. 

FIGURE 15.2. Construction of lines perpendicular and parallel to .e passing 
through x. 

So far, our discussion has been purely geometric. We need to describe 
ruler and compass constructions algebraically in order to answer our four 
questions. To do this, we turn to the methods of analytic geometry. Given 
our original two points, we set up a coordinate system by defining the x-
axis to be the line through the points, setting one point to be the origin 



and the other to be the point (1, 0). We can draw the line perpendicular to 
the x-axis through the origin to obtain the y-axis. 

Let a E R. We say that a is a constructible number if we can construct 
two points a distance lad apart. Equivalently, a is constructible if we can 
construct either of the points (a, 0) or (0, a). If a and b are constructible 
numbers, elementary geometry tells us that a ± b, a — b, ab, and alb (if 
b 0) are all constructible. Therefore, the set of all constructible numbers 
is a subfield of R. Furthermore, if a > 0  is  constructible, then so is ,Va. 
These facts are illustrated in Figures 15.3-15.5. 

	  a 	  

  

a  	b 	 a — b 	 b 	I 

  

FIGURE 15.3. Construction of a + b and a — b. 

a + b 

01— a/b 	 a 

  

  

ab 

    

      

FIGURE 15.4. Construction of ab and a/b. 

Suppose that P is a constructible point, and set P = (a, b) in our co-
ordinate system. We can construct the lines through P perpendicular to 
the x-axis and y-axis; hence, we can construct the points (a, 0) and (0, b). 
Therefore, a and b are constructible numbers. Conversely, if a and b are con-
structible numbers, we can construct (a, 0) and (0, b), so we can construct 
P as the intersection of the line through (a, 0) parallel to the y-axis with the 
line through (0, h) parallel to the x-axis. Thus, P =  (a, b)  is constructible 
if and only if a and b are constructible numbers. 

In order to construct a number c, we must draw a finite number of lines 

and circles in such a way that c is the distance between two points of 

intersection. Equivalently, we must draw linc,3 and circles so that (c, 0) is 
a point of intersection. If we let K be the field generated over Q by all 
the numbers obtained in some such construction, we obtain a subfield of 
the field of constructible numbers. To give a criterion for when a number 



FIGURE 15.5. Construction of Va. 

is constrnctihle, we need to relate  coi stri ictiln I ity to properties of the field 
extension K/Q. We do this with analytic geoinetry. Let A: be a subfield of 
R. Given any two points in the plane of  K,  we obtain a line through these 
points. This will be called a line in K. It is not hard to show that a line in 
K has an equation of the form ax + by + c = 0 with a, b, c E K. If P and 
Q are points in the plane of  K,  the circle with center P passing through Q 
is called a circle in  K.  Again, it is not hard to show that the equation of a 
circle in K can be written in the form x 2  ± y 2  ± ax +by + c = 0 for some 
a, b, c E K. The next lemma gives us a connection between constructibility 
and field extensions. 

Lemma 15.1 Let K be a subfield of IR. 

1. The intersection of two lines in K is either empty or is a point in the 
plane of K.  

2. The intersection of a line and a circle in. K is either empty or consists 
of one or two points in the plane of K(Iii) for some u E K with 
u > O. 

3. The intersection of two circles in K is either empty or consists of one 
or two points in the plane of K ( \fii) for some u E K with u > O. 

Proof. The first statement is an easy calculation. For the remaining two 
statements, it suffices to prove statement 2, since if x 2  + y 2  ±ax +by+ c = 0 
and x 2  ± y 2  ± x + b'y + = 0 are the equations of circles C and C', 
respectively, then their intersection is the intersection of C with the line 
(a — al)x (b — W)y + (c — c') = O. So, to prove statement 2, suppose that 
our line L in K has the equation dx + ey + f = 0. We assume that d 0, 
since if d = 0, then e O. By dividing by d, we may then assume that 
d = 1. Plugging —x = cy + f into the equation of C, we obtain 

(e 2  1)y2  ± (2e f — ae + b)y +(f 2  — a f + c)  = 0.  
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Writing this equation in the form ay 2 	-y = 0, if a = 0, then y E K. 
If a 	0, then completing the square shows that either L n c =  0 or 
y E K(V,32  —  47) with 02  — 4a7 > 0. 

From this lemma, we can turn the definition of constructibility into a 
property of field extensions of Q, and in doing so obtain a criterion for 

when a number is constructible. 

Theorem 15.2  it rc(LI loonbcr C 	construct/14r 11.  and only 	thcrc is a 

tower of fields Q = K0  C  K 1  C • • C Kr  such that c E Kr  and [Ki±i  : 
Ki] < 2 for each i. Therefore, if c is constructible, then c is algebraic over 
Q, and [Q(c) : Q] is a power of 2. 

Proof. If c is constructible, then the point (c, 0) can be obtained from 
a finite sequence of constructions starting from the plane of Q. We then 
obtain a finite sequence of points, each an intersection of constructible lines 

and circles, ending at (c, 0). By Lemma 15.1, the first point either lies in 

Q or in Q(iii) for some u. This extension has degree either 1 or 2. Each 
time we construct a new point, we obtain a field extension whose degree 
over the previous field is either 1 or 2 by the lemma. Thus, we obtain a 
sequence of fields 

Q = Ko  C K1 C  1(2 C C 

with [Ki+1  : Ki ] < 2 and c E  K. Therefore, [K, : Q] = 2 for some n. 
However, [Q(c) : Q] divides [Kr  : Q], so [Q(c) : Q] is also a power of 2. 

For the converse, suppose that we have a tower Q = Ko  C K 1  C • C 
with c E Kr  and [Ki+1  : Ki] < 2 for each i. We show that c is con-
structible by induction on r. If r = 0, then c E Q, so c is constructible. 
Assume then that r > 0 and that elements of Kr _ 1  are constructible. 
Since [K, : K „I ] < 2, the quadratic formula shows that we may write 
Kr  = Kr_ i ( ra) for some a E Kr_i. Since a is constructible by assump-
tion, so is ,,/a. Therefore, Kr  = Kr_ 1 (Va) lies in the field of constructible 
numbers; hence, c is constructible. 

With this theorem, we are now able to answer the four questions posed 
earlier. We first consider trisection of angles. An angle of measure 0 is 
constructible if we can construct two intersecting lines such that the angle 
between them is O.  For example, a 60° angle can be constructed because 
the point (0/2, 1/2) is constructible, and the line through this point and 
(0, 0) makes an angle of 60° with the x-axis. Suppose that P is the point 
of intersection on two constructible lines. By drawing a circle of radius 1 
centered at P, Figure 15.6 shows that if 0 is the angle between the two 
lines, then sin° and cos° are constructible numbers. Conversely, if sin° 
and cos 0 are constructible, then 0 is a constructible angle (see Problem 

2). In order to trisect an angle of measure 0, we would need to be able to 
construct an angle of 0/3. 



Li  1{,111C1: and L.,01111)abb 	 LILL It) to 	1• I.) 

FIGURE 15.6. Construction of sines and cosines. 

Theorem 15.3 It is impossible to trisect a 60° angle by ruler and compass 
construction. 

Proof. As noted above, a 60° angle can be constructed. If a 60° angle can be 
trisected, then it is possible to construct the number a = cos 20°. However, 
the triple angle formula cos 30 = 4 cos3  0-3 cos 0 gives 4a 3 — 3a = cos 60° = 
1/2. Thus, a is algebraic over Q. The polynomial 8x3  — 6x — 1 is irreducible 
over Q because it has no rational roots. Therefore, [Q(a) : Q] = 3, so a is 
not constructible. A 20° angle cannot then be constructed, so a 60° degree 
angle cannot be trisected. El 

This theorem does not say that no angle can be trisected. A 90° angle 
can be trisected, since a 30° angle can be constructed. This theorem only 
says that not all angles can be trisected, so there is no method that will 
trisect an arbitrary angle. 

The second classical impossibility we consider is the doubling of a cube. 

Theorem 15.4 It is impossible to double a cube of length 1 by ruler and 
compass construction. 

Proof. The length of a side of a cube of volume 2 is -\3/2. The minimal 

polynomial of 	over Q is x 3  - 2. Thus, [Q(* : Q] = 3 is not a iower 
of 2, so 	is not constructible. 

The third of the classical impossibilities is the squaring of a circle. For 
this, we need to use the fact that 71 is transcendental over Q. 

Theorem 15.5 It is impossible to square a circle of radius 1. 

Proof. We are asking whether we can construct a square of area 7r. To do 
so requires us to construct a line segment of length \Fr, which is impossible 
since jr is transcendental over 0:2 by the Lindemann—Weierstrauss theorem; 
Eience, \Fr is not, algebraic of degree a power of 2. 



Our last question concerns construction of regular  ri-gons.  To determine 
which regular  ri-gons  can be constructed, we will need information about 
cyclotomic extensions. Recall from Section 7 that if co is a primitive nth 
root of unity, then [Q(co) : Q] = q5(n), where q5 is the Euler phi function. 

Theorem 15.6 A regular ri-gon is constructible if and only if q5(n) is a 
power of 2. 

Proof. We point out that a regular n-gon is constructible if and only 
if the central angles 271/n are constructible, and this occurs if and only 
if cos(27r/n) is a constructible number. Let co = e 27ri7n  = cos(27r/n) + 
i sin(27r/n), a primitive nth root of unity. Then cos(271/n) = (co + co -1 ), 

since co -1  = cos(27r/n) — i sin(27r/n). Thus, cos(27r/n) E Q(co). However, 
cos(27r/n) E R and co R, so Q(w) Q(cos(27r/n)). But co is a root of x 2  — 
2 cos(271/n)x + 1, as an easy calculation shows, so P (w ) : Q(cos(271/n))] = 
2. Therefore, if cos(27r/n) is constructible, then [Q(cos(271/n)) : Q] is a 
power of 2. Hence, q5(ri) = [QP) : Q] is also a power of 2. 

Conversely, suppose that q5(ri) is a power of 2. The field Q(co) is a 
Galois extension of Q with Abelian Galois group by Proposition 7.2. If 
H = Gal (Q(w)/Q(cias(--27170)), by the theory of finite Abelian groups there 
is a chain of subgroups 

Ho C H,C C H,  =H  

with LE/i±i  : 	= 2. If Li  = T(Hi ), then [Li  : L 1 +1 ] = 2; thus, Li  = 
Li±i  ( \/ui) for some ui. Since L i  C Q(cos(271/n)) C R, each of the ui  > 
0. Since the square root of a constructible number is constructible, we 
see that everything in Q(cos(27r/n)) is constructible. This ,  cos(27r/n) is 
constructible, so a regular n-gon is constructible. I=1 

This theorem shows, for example, that a regular 9-gon is not constructible 
and a regular 17-gon is constructible. An explicit algorithm for constructing 
a regular 17-gon was given by Gauss in 1801. If n = p171 ' • prnir is the prime 
factorization of n, then q5(ri) = ni  prni —1  (pi  — 1). Therefore, 0(n) is a power 

of 2 if and only if n = 2sq l  • gr , where r, s > 0, and the qi are primes of the 
form 2" + 1. In order to determine which regular  ri-gons are constructible, 
it then reduces to determining the primes of the form 2T" + 1. 

Problems 

1. Use the figures in this section to describe how to construct a+ b, a—b, 
ab, alb, and Va, provided that a and b are constructible. 

2. If sin 9 and cos 9 are constructible numbers, show that 0 is a con-
structible angle. 



3. tf an angie 0 can be constructed, show that a line passing through 
the origin can be constructed such that the angle between this line 
and the x-axis is O. 

4. Use the figures of this section to answer the following questions. 

(a) Given two points a distance d apart and a constructible point P 
on a line E, show that it is possible to construct a point Q on .e 
a distance d from P. 

(b) Given that some circle of radius r can be constructed, if P is a 
constructible point, show that the circle of radius r centered at 
P can be constructed. 

(c) Given a line e and a point P on e, show that it is possible to 
construct the line through P perpendicular to E. 

(d) Given a line .e and a point P not on E, show that it is possible 
to construct the line through P parallel to E. 

5. Let c E  JR  be a root of an irreducible quartic over Q. Let N be the 
normal closure of Q(c)/Q. 

(a) If Gal(N/Q) is isomorphic to either D4 or a group of order 4, 
show that c is constructible. 

(b) If Gal(N/Q) is isomorphic to either A4 or  S4,  show that c is not 
constructible. 

6. Let c E R be algebraic over Q, and let N be the normal closure of 
Q(c)/Q. If [N : 	is a power of 2, show that c is constructible. 

7. ThiS problem gives a. partial converse to Theorem 15.2. If c E R is 
algebraic over Q and if N is the normal closure of Q(c)/Q, then show 
that c is constructible if and only if [N : Q] is a power of 2. 
(The criterion for constructibility proven in this section is much like 
the definition of solvable by radicals given in Section 16. If you work 
this problem, some proofs of the next section will be easier to under-
stand.) 

8. A Fermat number is a number of the form 2 2r  +1  for some r. Suppose 
that p is an odd prime such that a regular p-gon is constructible. Show 
that p is a Fermat number. 

16 Solvability by Radicals 

In this section, we address one of the driving forces of mathematics for hun- 
dreds of years, the solvability of polynomial equations. As we saw in Section 
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13, formulas for the roots of cubic and quartic polynomials are known and 
had been found by the mid-sixteenth century. While it was over a thousand 
years between the discovery of the quadratic formula and the solution of the 
cubic, the solution of the quartic came soon after the solution of the cubic. 
This success led mathematicians to believe that formulas for the roots of 
polynomials of arbitrary degree could be found. However, nothing had been 
discovered for polynomials of higher degree until Abel proved in a paper 

published in 1824 that there is no "algebraic" solution of the quintic; that 
is, there is no solution that expresses the roots in terms of the coefficients, 
arithmetic operations, and radicals. The full story of solvability of polyno- 
mials was then discovered by Galois, who proved a necessary and sufficient 
condition for a polynomial to be solvable. His work introduced the notion 
of a group and was the birth of abstract algebra. 

We need to make precise what it means for a polynomial to be solvable. 

Consider, for example, the polynomial  x 4 -6x 2 +7. Its roots are ±-I3 

all of which lie in the extension Q(12, N/3 + 	N/3 — N,/) of Q. This 
extension gives rise to the chain of simple extensions 

where each successive field is obtained from the previous one by adjoining 
the root of au element of the previous field. This example motivates the 
following definitions. 

Definition 16.1 A field extension K of F is a radical extension if K = 
F(al ,...,a,-), such that there are integers n 1 , .. ,n, with al' E F and 
ain ` E for all i > 1. If n 1  = • • = n, =  ri ,  then K is called 
an n-radical extension of F. 

Definition 16.2 If f(x) E F[xj, then f is solvable by radicals if there is a 
radical extension LI F such that f splits over L. 	SP 4') L  

If K and F are as in the first definition, then K is an n-radical extension 
of F for n = n[ • • nr  since arit E F(ai, • • • >ai_i) for each i. The definition 
of radical extension is equivalent to the following statement: K is a radical 
extension of F if there is a chain of fields 

F = 	C 	c • • C F,. = K, 

where Fi+ i = Fi (ai) for some a i  E Fi± i with a 	Fi  for each i. From the 
definition, it follows easily that if K F is a radical extension and L/K is a 
radical extension, then L/F is a radical extension. 

Example 16.3 Any 2-Kummer extension of a field F of characteristic not 
2 is a 2-radical extension of F by Theorem 11.4. Also, if K/F is a cyclic 
extension of degree  ri ,  and if F contains a primitive nth root of unity, then 
K is an Ti-radical extension of F by Theorem 9.5. 



Example 16.4 If K = 0:2( ■,/), then K is both a 4-radical extension and a 
2-radical extension of Q. The second statement is true by considering the 
tower 

Q g Q(-4-) g Q(. ) ( -\/ )  = %-n). 
Example 16.5 Let c E R. By Theorem 15.2, c is constructible if and 
only if there is a tower Q = F0  C F1 C • C Fr  such that for each i, 
Fi±i = F(Va) for some ai E Fi, and c E Fr . Therefore, c is constructible 
if and only if c lies in a subfield K of R such that K is a 2-radical extension 
of Q. 

The definition of solvability by radicals does not say that the splitting 
field of f over F is itself a radical extension. It is possible for f to be solvable 
by radicals but that its splitting field over F is not a radical extension. 
However, if F contains "enough" roots of unity, then the splitting field of 
a solvable polynomial is a radical extension of F. For an example of the 
first statement, see Example 16.13. The second statement is addressed in 
Problem 3. 

The next lemma is the key technical piece of the proof of the character-
ization of solvability by radicals. 

Lemma 16.6 Let K be an n-radical extension of F, and let N be the 
normal closure of KIF. Then N is an ri-radical  extension of F. 

Proof. Let K = F(cti • • ,Ci r ) with a 7i2  E F(cti • • ,ci 1 _ 1 ). We argue 
by induction on r. If r = 1, then K = F(a) with an = a E F. Then 

N = F(131,. , Om ), where the  13i are the roots of min(F, a). However, this 
minimal polynomial divides xn — a, so {312  = a. Thus, N is an n-radical 
extension of F. Now suppose that r > 1. Let N0  be the normal closure of 
F(a i , , ar_ i ) over F. By induction, N0  is an n-radical extension of F. 
Since N0  is the splitting field over F of {min(F, a i ) : 1 < i < r — 1 }, and N 
is the splitting field of all min(F, a i ), we have N = N0 (-y i  , 	where 
the  «R  are roots of min(F, a r ). Also, u rn = b for some b E 	, ar _ i ) C 
N0 . By the isomorphism extension theorem, for each i there is a Cri E 

Gal(N/F) with o-i (a r ) = 	Therefore, -42  = cri (b) by Proposition 3.28. 
However, N0  is normal over F, and b E No , so  a(b) E No . Thus, each 
is an nth power of some element of N0 , so N is an n-radical extension of 
N0 . Since No is an n-radical extension of F, we see that N is an n-radical 
extension of F. 	 1=1 

We need some group theory in order to state and prove Galois' theorem 
on solvability by radicals. The key group theoretic notion is that of solv-
ability of a group. A little more information on solvability can be found in 
Appendix C. 
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(e) = Ho  C 	C • • • C Hn  = G 

such that for all i, the subgroup Hi  is normal in Hi+1  and the quotient 
group Hi4. 1 1Hi is Abelian. 

The following two propositions are the facts that we require about solv-
ability. The first is proved in Appendix C, and the second can be found in 
any good group theory book. 

Proposition 16.8 Let G be a group and N be a normal subgroup of G. 
Then G is solvable if and only if N and GIN are solvable. 

Proposition 16.9 If n > 5, then Sn  is not solvable. 

We now prove Galois' theorem characterizing polynomials that are solv-
able by radicals. 

Theorem 16.10 (Galois) Let char(F) = 0 and let f (x) E F[xj. If K is 
a splitting fi eld of f over F, then f is solvable by radicals if and only if 
Gal(K/F)  is a solvable group. 

Proof. Suppose that f is solvable by radicals. Then there is an n-radical 
extension MIF with K C M. Let co be a primitive nth root of unity in 
some extension field of M. The existence of co follows from the assumption 
that char(F) = O. Then  M(w)/M is an ri-radical  extension, so  M(w)/F is 
an ri-radical  extension. Let L be the normal closure of M(w)/F. By Lemma 
16.6, L is an ri-radical  extension of F. Thus, L is also an ri-radical  extension 
of F(w). Therefore, there is a sequence of fields 

F = Fo  C = F(co) C F2 C • C F, = L, 

where Fi+1  = F1 (ci) with ct 7i2  E Fi. For i > 1, the extension Fi±i /Fi 
is Galois with a cyclic Galois group by Theorem 9.6, since Fi  contains a 
primitive nth root of unity. Also, F1 /F0  is an Abelian Galois extension, 
since F1  is a cyclotomic extension of F. Because char(F) = 0 and L/F 
is normal, L/F is Galois by Theorem 4.9. Let G = Gal(L/F) and Hi = 
Gal(L/Fi ). We have the chain of subgroups 

= Hr  C Hr_ i  C • • C Ho = G. 

By the fundamental theorem, Hi+i  is normal in Hi  since Fi+1  is Galois 
over Fi . Furthermore, Hi/Hi±i  Gal(Fi±i /Fi ), so Hi/Hi ±i is an Abelian 
group. Thus, we see that G is solvable, so Gal(K/F) is also solvable, since 
Gal(K/F) G/ Gal(L/K). 



For the converse, suppose that Gal(K/F) is a solvable group. We have a 
chain 

Gal(K/F) = Ho  D H1 D  D H=  (id) 

with Hi+1  normal in Hi  and Hi /Hi+1  Abelian. Let Ki  = ,F(Hi ). By the fun-
damental theorem, Ki+1  is Galois over Ki  and Gal(Ki±]/Ki) Hi/Hi+i. 
Let n be the exponent of Gal(K/F), let co be a primitive nth root of unity, 
and set L i  = Ki (w). We have the chain of fields 

F C Lo  C L i  C • • C 

with K C  L. Note that Li+ -i = LiKi+i. Since Ki±i /Ki is Galois, by the 
theorem of natural irrationalities, Li±i /L i  is Galois and Gal(L i+1  /Li) is 
isomorphic to a subgroup of Ga1(Ki+1 /Ki ). This second group is isomor-
phic to Hi/ f/i+1 , an Abelian group. Thus, Gal( Li± , /Li) is Abelian, and 
its exponent divides n. The field Li+1  is an n-Kummer  extension  of Li by 
Theorem 11.4, so Li+1  is an n-radical extension of  L. Since Lo  F(w) is 
a radical extension, transitivity shows that L is a radical extension of F. 
As K C L T., the polynomial f is solvable by radicals. 

Our definition of radical extension is somewhat lacking for fields of char-
acteristic p, in that Theorem 16.10 is not true in general for prime char-
acteristic. However, by modifying the definition of radical extension in an 
appropriate way, we can extend this theorem to fields of characteristic p. 
This is addressed in Problem 2. Also, note that we only needed that char(F) 
does not divide n in both directions of the proof. Therefore, the proof above 
works for fields of characteristic p for adequately large p. 

Let k be a field. The general nth degree polynomial over k is the poly-
nomial 

f (x) = (x — t i )(x — t2)... (x — t a ) = x n 	 ir sn  

E k(t , 	, tn )[x], 

where the s, are the elementary symmetric functions in the t i . Tf we could 

find a formula for the roots of f in terms of the coefficients of  f,  we could 

use this to find a formula for the roots of an arbitrary nth degree polyno-

mial over k. If n < 4, we found formulas for the roots of f in Section 13. 
For  n>  5, the story is different. The symmetric group Sn  is a group of au-

tomorphisms on K = k(t i ,...,t a ) as in Example 2.22, and the fixed field is 

F = k(si ,...,s a ). Therefore, Gal(K/F) = Sn . Theorem 16.10 shows that 

no such formula exists if n > 5. 

Corollary 16.11 Let f (x) be the general nth degree polynomial over a field 

of characteristic O. If n > 5, then f is not solvable by radicals. 

Example 16.12 Let f(x) = x 5  — 4x + 2 E Q[x]. By graphing techniques 

of calculus, we see that this polynomial has exactly two nonreal roots, as 

indicated in the graph below. 



152 	111. Applications ot 

Furthermore, f is irreducible over Q by the Eisenstein criterion. Let K 
be the splitting field of f over Q. Then [K:  Q] is a multiple of 5, since any 
root of f generates a field of dimension 5 over Q. Let C; = Gal(K/Q). We 
can view C; C S5.  There is an element of C; of order 5 by Cayley's theorem, 
since 5 divides C. Any element of S5 of order 5 is a 5-cycle. Also, if a 
is complex conjugation restricted to K,  then a permutes the two nonreal 
roots of f and fixes the three others, so a is a transposition. The subgroup 
of S5 generated by a transposition and a 5-cycle is all of S5 so G = S5 is 
not solvable. Thus, f is not solvable by radicals. 

Example 16.13 Let f (x) =  x 3  — 3x + 1 E Q[x], and let K be the splitting 
field of f over Q. We show that f is solvable by radicals but that K is not 
a radical extension of Q. Since f has no roots in Q and deg(f) = 3, the 
polynomial f is irreducible over Q. The discriminant of f is 81 = 9 2 , so the 
Galois group of K/Q is A3  and [K : Q] = 3, by Corollary 12.4. Therefore, 
Gal(K/F) is solvable, so f is solvable by radicals by Galois' theorem. If K 
is a radical extension of Q, then there is a chain of fields 

QOE F1 OE...cIF=K 

with Fi = F_ 1  (ci) and a 7,i2  E Fi_1 for some n. Since [K : Q] is prime, we 
see that there is only one proper inclusion in this chain. Thus, K = Q(b) 
with bn = u E Q for some n. The minimal polynomial p(x) of b over Q 
splits in  K,  since K/Q is normal. Let b' be another root of p(x). Then 
bn  = )n =  u,  so bl /b is an nth root of unity. Suppose that p, = b'/b 
is a primitive mth root of unity, where m divides n. Then  Q(u) C  K,  so 
[Q(u) : = (b(m) is either 1 or 3. An easy calculation shows that (b(m) 3 
for all m. Thus, [Q(u) : Q] = 1, so p, E Q. However, the only roots of unity 
in Q are ±1, so p, = ±1. Therefore h' = ±b. This proves that p(x) has at 
most two roots, so [Q(b) : Q] < 2 < [K : Q], a contradiction to the equality 
Q(b) = K. Thus, K is not a radical extension of Q. 

Problems 

1. Let M be an algebraic closure of Fp, and let F = M(x). Show that 
f (t) = tP — t —  c is not solvable by radicals over F but that the Galois 
group of the splitting field of f over F is cyclic. 
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2. Let F be a field of characteristic p> O. Extend the definition of rad-
ical extension as follows. An extension K of F is a radical extension 
if there is a chaiii  of fields F = Fo  C F1  C • C F„ = K such 
that Fi+i  = F(u) for some u i , with either uri`i E Fi for some ni , or 

— ui E Fi . Prove that Theorem 16.10 holds in prime characteristic 
with this definition of radical extension. 

3. Let f (x) E F[x] be solvable by radicals. If F contains a primitive nth 
root of unity for all n, show that the splitting field of f over F is 
a radical extension of F. After working through this figure out just 
which roots of unity F needs to have for the argument to work. 

4. Solvability by real radicals. Suppose that f(x) E Q[x] has all real 
roots. If f is solvable by radicals, is f solvable by "real radicals"? That 
is, does there exist a chain of fields Q = Q o  C Q i  C • • C Qn  C R 
such that Q n  contains all the roots of  f,  and Qi4. 1  = Qi ( Vai )? The 
answer is no, in general, and this problem gives a criterion for when 
f is solvable by real radicals. Use the following steps to prove the 
following statement: If f (x) E Q[x] is an irreducible polynomial with 
all real roots, and if N is the splitting field of f over Q, then [N : Q] 
is a power of 2 if and only if f is solvable by real radicals. You may 
assume the following nontrivial fact: If F C K are subfields of R with 
K = F(a) such that an E F, and if L is an intermediate field of K/F 
Galois over F, then [L : F] < 2. 

(a) If [N Q] is not a power of 2, let p be an odd prime divisor of 
[N:  Q]. Let P be the subgroup of G = Gal(N/Q) generated by 
all elements of order p. Show that P is a normal subgroup of G 
and that P 	(id). 

(b) Let a be a root of  f,  and let T = Q(a). If H = Gal(N/T), show 
that P is not contained in H. Conclude that there is an element 

E G of order p not contained in H. 

(c) Let F = T((o- )). Show that a f;t F. Let Qi be in the chain 
above, and set Fi  = FQi . Show that there is an integer r > 0 
with a Fr_ i  but a E Fr . Show that F = Fr_ i  fl N and 
N C Fr . 

(d) Let E = NFr_ i . Then Fr_ i  C E C Fr . Conclude from the 
assumption above and the theorem of natural irrationalities that 
p = [E 	d < 2,  a contradiction, 
(A full proof of this criterion for solvability by real radicals can 
be found in Isaacs [14].) 





Iv 
Infinite Algebraic Fixtensions 

In this chapter, we investigate infinite Galois extensions and prove an ana-
log of the fundamental theorem of Galois theory for infinite extensions. 
The key idea is to put a topology on the Galois group of an infinite di-
mensional Galois extension and then use this topology to determine which 
subgroups of the Galois group arise as Galois groups of intermediate exten-
sions. We also give a number of constructions of infinite Galois extensions, 
constructions that arise in quadratic form theory, number theory, and Ga-
lois cohomology, among other places. 

17 Infinite Galois Extensions 

In this section, we consider Galois extensions K/F of arbitrary degree and 

prove a fundamental theorem for such extensions, If [K = oo , then not 
all subgroups of Gal(K/F) have the form Gal(K/L) for some intermediate 
extension L (see Problem 4). We need more information about Gal( 1</F)  
in order to determine when a subgroup is of the form Gal(K/L). It turns 
out that the right way to look at Gal(K/F) is to put a topology on it. This 
was first done by Krull in the 1920s, and we see below that the subgroups 
of Gal(K/F) of the form Gal(K/L) are precisely the subgroups that are 
closed with respect to the topology we define on Gal(K/F). We assume 
in this section that the reader is familiar with the basic ideas of point set 
topology, in particular with the notions of compactness and the Hausdorff 



156 	IV. Iiitinite Algebraic Extensions 

property. The interested reader can find a discussion of these notions in 
Appendix E. 

Let K be a Galois extension of F. We will use the following notation for 
the rest of this section, Let 

G = Gal(K/F), 

/={E:FCEC K, [E : F] < oo and EIF is Galois }, 

={NCG:N= Gal(KIE) for some E E I } . 

Recall part 3 of Proposition 3.28: If K/F is normal, and if FCLCKCN 
are fields with r : T, N au P-horlioniorphisin, thcii T(L) C K, arid there 
is a cr E Gal(K/F) with otr, = T. We will use this result frequently. 

We start off by proving a few simple properties of the sets I and /V - . 

Lemma 17.1 If 	,o E  K, then there is an E  El with ai E E for 
all j. 

Proof. Let E C K be the splitting field of the minimal polynomials of the 
ai over F. Then, as each ai  is separable over F, the field E is normal and 
separable over F; hence, E is Galois over F.  Since there are finitely many 

ai, we have [E F]  < oc,  so E El. 

Lemma 17.2 Let N E IV, and set N = Gal(K/E) with E E  I. Then 
E = T(N) and N is normal in G. Moreover, GIN Gal(E/F), Thus, 

Gal(E/F) = [E F]  < oc.  

Proof. Since K is normal arid separable over F, the field K is also normal 
and separable over E, so K is Galois over E. Therefore, E = T(N). As 
in the proof of the fundamental theorem, the map 0 G Gal(E/F) 
given by cri—÷ o- LE. is a group homomorphism with kernel Gal(K/E) = N. 
Proposition 3,28 shows that 0 is surjective . The remaining statements then 
follow0.  El  

Lemma 17.3 We have nNEAT N {id}, Furthermore, nNE.„TaN = fal 
for all o-  E G. 

Proof. Let 'T E niv  GAT N and let a E K. By Lemma 17.1, there is an E E 

with a E  E.  Set N Gal(K/E) E Af, The automorphism T fixes E since 
T E N, so -r(a) = a, Thus, T = id, so nNEAT  N = 	For the second 
statement, if T E o-N for all N,  then o--1 T E N for all N; thus, o--1 T = id 
by the first part. This yields T =  ci,  so nivEjv  o-N = 

Lemma 17.4 Let 	N2 E JV- . Then N i  n N2 E N- . 

Proof. Le N = Gal.(K/Ei ) with Ei  E I. Each Ei  is finite Galois over 
F; hence, E 1  E2 is also finite Galois over F, so E 1  E2 E  I. However, 
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Gal(K/E1E2) =  N1  n  N2;  to see this, we note that o-  E N1  n N2 if and 
only if crIE, = id and cr1E2  = id, if and only if E1  C T(a) and E2 C T(a), 
and if and only if E1E2 C T(a). This last condition is true if and only if 

E Gal(K/EiE2). Thus, N1  n N2 = Gal(K/E 1 E2) E 

We can now define a topology on the Galois group G. 

Definition 17.5 The Krull topology on G is defined as follows: A subset 
X of G is open if X = 0 or if X = U i o-i Ni  for some o-i  E G and Ni  E 

From the definition, it is clear that G and 0 are open sets and that the 

union of open sets is open. To show that we  do indeed have a topology on 

G, it remains to see that the intersection of two open sets is again open. It 
is sufficient to show that Ti Ni n 7-2 N2  is open for any N1 N2 E A f. To see 
this, if a E n 7-2 N2 , then 

n 7-2 N2  = aN1  n 0-N2  = 0-(N1  n N2 ), 

and o- (Ni  n N2 ) is open, since N1  n N2 E N.  by Lemma 17.4. 
We point out some properties of the Krull topology. Since each nonempty 

open set of G is a union of cosets of subgroups of /V- , the set 

{o - N : o-  E G, N E .1\1- } 

is a basis for the Krull topology. If N EN, then  Cr  N  <oc,  so G—o - N is a 
union of finitely many cosets of N. Therefore, o- N is both open and closed. 
A set that is both closed and open is called clopen. The Krull topology 
thus has a basis of clopen sets. While the existence of nontrivial clopen 
sets is not common in more familiar topologies such as the usual topologies 
on R or C, it is common for topologies arising in algebra. The following 
theorem describes the topology on G. Recall that a topological space is 
totally disconnected if the only connected subsets are single points. 

Theorem 17.6 As a topological space, G is Hausdorff, compact, and to-
tally disconnected. 

Proof. If X is a subset of G and a, T E X, let o- N be an open neighborhood 
of a not containing T. The existence of N follows from Lemma 17.3. Then 

X = (o- N n x)u ((G — o- N) n x), 

an intersection of two disjoint, nonempty open sets in X, so X is not con-
nected. Therefore, G is totally disconnected. To show that G is Hausdorfr, 
let a E G. Lemma 17.3 shows that {a} = nN  o- N. If T cr, then there is 
an N E N* with T o- N. Each o- N is an open neighborhood of a but is also 
closed, as noted above. Thus, o- N and G — o-N are disjoint open sets with 

E o- N and 7-  E  C  — o- N, so G is Hausdorff. 



The most difficult part of the proof is to show that G is compact. In prov-
ing that G is compact, we will indirectly show how G can be constructed 
from finite Galois groups. Let P be the direct product FI NEAT  GIN of the 
finite groups GIN. We make P into a topological space by giving each C/N  
the discrete topology and then giving P the product topology. Note that 
each GIN is both Hausdorff and compact, so P is Hausdorff, and by the 
Tychonoff theorem, P is compact. There is a natural group homomorphism 
f :  P defined by  f(a) = fo-NI. We will show f is a homeomorphism 
from G to the image of f and that this image is a closed subset of P. Since 
P is compact and Hausdorff, this will show that im(f) is compact, hence 
G is compact, since G is homeomorphic to im(f). 

Let f be as above. The kernel of f consists of those a E G with fo-Nl= 
{N}. Therefore, if a E ker(f), then a E nNEAT  N = {ic1}; this equality 
holds by Lemma 17.3. Thus, f is injective. Let 'TN : P C/N  be the 
projection onto the N-component. Then 7rN (f(o - )) = o- N for any a E G. 
The singleton sets TN form a basis for the discrete topology on GIN, so by 
definition of the product topology, every open set in P is a union of a finite 
intersection of sets of the form 71 -N-1 (TN) for various T E G and N E Ar. To 
show that f is continuous, it is enough to show that f -1 (7N-1 ({TN})) is 
open in G for any TN. But this preimage is just TN, which is open, so f is 
continuous. Furthermore, f(TN) = 7rN-1 ({7 - N}) n Jai( f) is open in im(f), so 
f -1  is also continuous. Therefore, f is a homeomorphism from G to im(f). 
It remains to show that im(f) is closed in P. In verifying that im(f) is 
closed in P, we will identify C/N  with the isomorphic group Gal(EN /F), 
where EN = T(N). This isomorphism is from Lemma 17.2. This amounts 
to identifying the coset TN with TLE. N • With this identification, for p E P 
the element 7rN (p) is an automorphism of EN. Note that for T E G we have 
7F N(f (T)) = TE N • Let 

C={pEP: for each N, M E Af, 7rN(P)IENnEt,/ = 7rm(P)IENnEm 1• 

We claim that C = im(f). Now, im(f) C C since 7rN(f(T))LE N  = TIEN for 

any T E G. For the reverse inclusion, let p E C. We define T as 

follows. For a E K, pick any EN CI with a E EN, possible by Lemma 17.1, 
and define r(a) = 7rN(p)(a). The condition on p to be an element of C shows 
that this is a well-defined map. To see that T is a ring homomorphism, if 
a, b E K, let EN E I with a, b E EN. Then TLE N  = 7rN(p) is a ring 
homomorphism, so T(a + b) = T(a) T(b) and T(ab) = (a)T(b). The map 
T is a bijection, since we can construct T -1  by using p — L. it is clear that 
T fixes F, so T E G. Now, as TIE N  = 71N(p), we see that PT) = p. Thus, 

C = im(f). To show that C is closed in P, take any p E P with p ,0 C. 
Then there are N, M E Af with 7rNWE N nEm  7rm(f#ENnE,,. Thus, 

7rNl ( 7rN(P)) n —1 
(7rm(p)) is an open subset of P containing p and disjoint 

from C. Therefore, P — C is open, so C = im(f) is closed. 
r,;(, 



The set N , ordered by reverse inclusion, is a dirccted 	t Chat is, if 
N2 E .A.r, then there is an N3 E Ar with N3 C Ni  n N2 namely N3 = 

N n N2. The set C/N : N  C M} together with the natural projection 
maps G/N 1  G/N2  for N1  C N2 form a directed system of groups. The 
proof that G = im(f) can be viewed as showing that G is the inverse limit 
of the set of finite groups {GIN} (see Problem 14). The inverse limit of 
a set of finite groups is called a profinite group. For more information on 
profinite groups, see Shatz [25], Serre [24], or Appendix C. 

The next theorem is the final step we need to extend the fundamental 
theorem to arbitrary Galois extensions. This theorem shows how the topol-
ogy on G comes in, and it is the analog of Proposition 2.14, which says that 
if G is a finite group of automorphisms of K, then G = Gal(K/T(G)). 

Theorem 17.7 Let H be a subgroup of G, and let H' = Gal(K T(H)). 
Then H' = H, the closure of H in the topology of G. 

Proof. It is clear that H C H', so it suffices to show that H' is closed 
and that, fi' c To show that H' is closed, take any a E G — H'.  Then 
there is an a E T(H) with o- (a) -$ a. Take E E I with a E E, and 
let N = Gal(K/E) E M. Then, for any T E N, we have 7- (a) = a, so 
a7- (a) = a(a) a. Hence, o- N is an open neighborhood of a disjoint from 
H'. Therefore, G— H' is open, so H' is closed. To prove the inclusion H' C 

H, we first set L = T(H). Let a E H' and N E M. Set E = T(N) E /, 

and let Ho = {PIE  : p E H }, a subgroup of the finite group Gal(E/F). 
Since T(H0) = T(H)nE LnE, the fundamental theorem for finite 
Galois extensions shows that Ho = Gal(E/(En L)). Since a E H', we have 

= id, so otE E Ho. Therefore, there is apEH with f)E o - LE. Thus, 
a-1 p E Gal(K/E) = N, so p E o- N n H. This shows that every basic open 
neighborhood o- N of a E H' meets H, so a E H. This proves the inclusion 
H' C H and finishes the proof. 

A way to describe H' = Gal(K T(H)) that does not involve the topology 
on G is H' = nNEAT HN (see Problem 1). 

Theorem 17.8 (Fundamental Theorem of Infinite Galois Theory) 

Let K be a Galois extension of F, and let G = Gal(K/F). With the Krull 
topology on G, the maps L Gal.(K IL) and H T(H) give an inclu-
sion reversing correspondence between the fields L with FCLCK and 

the closed subgroups H of G. Furthermore, if L  H, then IG : Hi <  oc  
if and only if [L : F]  <  oc, if and only if H is open. When this occurs, 

: = [L : Also, H is normal in G if and only if L is Galois over 
F, and when this occurs, there is a group isomorphism Gal(L/F) GIN. 
If GIN is given the quotient topology, this isomorphism is also a homeo-
morphism. 
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Proof. If L is a subfield of K containing F, then K is normal and separable 
over L, so K is Galois over L. Thus, L --= .F(Gal(K L)). If H is a subgroup 
of G, then Theorem 17.7 shows that H = Gal(K/T(H)) if and only if H 
is closed. The two maps L Gal(K/L) and H 1--4 T(H) then give an 

inclusion reversing correspondence between the set of intermediate fields of 
KIF and the set of closed subgroups of G. 

Let L be an intermediate field of KIF, and let H = Gal(K/L). Suppose 
that G :  H  <oc.  Then G— H is a finite union of cosets of H, each of which 
is closed, since H is closed. Thus, G— H is closed, so H is open. Conversely, 
if H is open, then H contains some basic neighborhood of id, so N C H 
for some N E /V- . If E = T(N), then L C E, so [L : F] < co. Finally, if 
[L : F] <oc,  then choose an E El with L C E, possible by Lemma 17.1. 
Let N = Gal(K/E). Then N C H, since L C E, so :  H < :  N  < oc.  
By Lemma 17.2, we have  C/N Gal(E/F) via the map o- N a E.  Thus, 
H/N maps to {p E  : p E H }, a subgroup of Gal(E/F) with fixed field 
L  fl E = L. By the fundamental theorem for finite extensions, the order of 
this group is [E : L]. Therefore, 

IGINI 	[E : F] 
IG : HI = 	: HINI = 

[E : L] 
= [L : F]. 

For the statement about normality, we continue to assume that H = 
Gal(K/L). Suppose that H is a normal subgroup of G. Let a E L, and let 
f(x) = min(F, a). If b E K is any root of  f,  by the isomorphism extension 
theorem there is a a E G with  a(a) = b. To see that b E L, take T E H. 
Then 

T (b) = o- 	(o- 7--  o- —1  (a)) 

= 	(a) = b 

since o-To--1  E H, as H is normal in G. Thus, b E T(H) L, so f splits over 
L. This proves that L is normal over F, and L is separable over P since KIP 
is separable. Therefore, L is Galois over F. Conversely, if L is Galois over 
F, then by the remark before Lemma 17.1 we see that the map a 	L is 
a well-defined group homomorphism  O:  G 	Gal(L/F). The kernel of 0 is 
Gal(K/L) = H, so H is normal in G, and 0 is surjective by an application 
of the isomorphism extension theorem. Thus, GI H Gal(L/F). 

The last step of the proof is to show that the natural map v 
Gal(L/F) is a homeomorphism when H is normal in G. Note that a basic 
open subset of Gal(L/F) has the form pGal(LIE) for some extension E 
that is finite Galois over F and is contained in L. Let N = Gal(K E) E .V. 
Then B -1 (Ga1(L/E)) = N. Thus, 0 -1 (p Gal(L/E)) = TN for any T E G 
with T- LL, = p, so this preimage is open in G. Therefore, 0 is continuous. 
Furthermore, the image of a compact set under a continuous map is com-
pact, and any compact subset of a Hausdorff space is closed. Since C is 
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compact and Gal(L/F) is Hausdorff, 0 maps closed sets to closed sets; that 

is, 0 is a closed map. The map y : G/H Gal(L/F) induced from 0 is 
then also continuous and closed when G/H is given the quotient topology, 
so v is a homeomorphism. 

Example 17.9 Let K/F be a Galois extension with [K : 	<  oc.  Then 

the Krull topology on Gal(K/F) is the discrete topology; hence, every 
subgroup of Gal(K/F) is closed. Thus, we recover the original fundamental 
theorem of Galois theory from Theorem 17.8. 

7ri Example 17.10 Let K  = Q ( e2k/n : k, n E NI) be the field generated 
over Q by all roots of unity in C. Then K is the splitting field over Q of the 
set {2cn —  1:  n E N}, so K/Q is Galois. If L is a finite Galois extension of 
Q contained in  K,  then L is contained in a cyclotomic extension of Q. The 
Galois group of a cyclotomic extension is Abelian. Consequently, Gal(L/F) 
is Abelian. To see that Gal(K/F) is Abelian, by the proof of Theorem 
17.8 the Galois group Gal(K/F) is isomorphic to a subgroup of the direct 
product of the Gal(L/F) as L ranges over finite Galois subextensions of Q, 
so Gal(K/F) is Abelian. As a consequence of this fact, any subextension 
of K/Q is a Galois extension of Q. 

We give an alternate proof that Gal(K/F) is Abelian that does not use 
the proof of Theorem 17.8. Take a, T E Gal(K/Q). If a E  K,  then there is 
an intermediate field L of K/Q that is Galois over Q and that a E L. The 
restrictions o- 4 '7- 4, are elements of Gal(L/Q), and this group is Abelian 
by the previous paragraph. Thus, 

o- (T(a)) = o- 4,(ilL(a)) = '71L(o- LL(a)) = T(o- (a)). 

Consequently, 0-  T = T 0-  , so Gal(K/Q) is Abelian. 

Example 17.11 Let K be an algebraic closure of  F. 	Fp is perfect, 
K is separable, and hence K is Galois over Fp . Let a : K 	K be defined 
by  o(a) = aP. Then a E G = Gal(K/F p ), and the fixed field of the cyclic 
subgroup II of G generated by a is Fp. However, we prove that H G by 
constructing an automorphism of K that is not in il.  To see this, pick an 
integer ni. for each r E N such that if r divides s, then ns  rir  (mod r). If FT. 
is the subfield of K containing pr elements, then define T by T(a) = o-nr (a) 
if a E Fr.. The conditions on the nr  show that T is well defined, and an 
easy argument shows that T is an automorphism of K that fixes Fp . For a 
specific example of a choice of the nr , for r E N, write r = pm q with q not 
a multiple of p. Let nr  satisfy 

nr  1 + p + - • • + pm' (mod pm), 

nr  0 (mod q). 

Such integers exist by the Chinese remainder theorem of number theory, 
since p" and q are relatively prime. If T = a t  for some t, then for all 



T  F ()n , 1() 	 110C1 1•), as Ga1(F,./14) is me cyclic group 
generated by ,o- Fr , which has order r. This cannot happen as nr ,„ 	00 

as m ---+ oo. Therefore, T H, so H is not a closed subgroup of G. The 
group G is obtained topologically from H, since G = H by Theorem 17.7. 
The argument that G = im( f) in the proof of Theorem 17.6 shows that 
any element of G is obtained by the construction above, for an appropriate 
choice of the Tir . This gives a description of the Galois group G as 

Gal(K/F 	{p ) `L-2  {nr } E ll Fpr : if r divides s, then n s  EE nr (mod r) 
r 

Problems 

Unless otherwise stated, in the following problems KIF will be an infinite 
Galois extension with G = Gal(K/F). 

1. Let H be a subgroup of Gal(K/F). Show that the closure H of H 

nNEAr with respect to the Krull topology on Gal(K/F) is H = 

2. Let L an intermediate fi eld of KIF. Show that the Krull topology on 
Gal(K/L) is the subspace topology inherited from the Knill topology 
on Gal(K/F). 

3. Show that Gal(K/F) is uncountable. Use this to give an example of 
a Galois extension K I F with [K : 	IGal(K/F)I. 
(Hint: Obtain a chain of finite degree Galois extensions of F whose 
union is K, and use the isomorphism extension theorem.) 

4. Show that there are subgroups of Gal(K/F) that are not closed. 

5. Here is an alternative, purely topological way to prove Problem 3. 
Prove that a totally disconnected compact topological space X with 

no isolated points is uncountable, provided that IX =  oc. 

6. Let H be a subgroup of Gal(K/F). 

(a) If H is open in the Krull topology, show that H has finite index 

in Gal(K/F). 

(b) If H has finite index in Gal(K/F), show that H is open if and 

only if H is closed. 

7. Give an example of an extension KIF such that Gal(K/F) contains 

a subgroup of finite index that is neither open nor closed. 

8. Let K/F be an infinite Galois extension, and let N be a normal sub-

group of Gal(K/F). Show that N is a normal subgroup of Gal(K/F). 



9. Let  11 /1» be a Galois extension, and let ff be a subgroup of Gal(K/F). 
Show that H is dense in Gal(K/ F) if and only if for every finite nor-
mal intermediate field L, every F-automorphism of L is the restriction 
to L of some element of H. 

10. Use the previous problem to show that H is dense in Gal(K/F) if 
and only if for each finite Galois intermediate field L, we have 

Gal(L/F) H / (FI n Gal(K/L)). 

11. Let K be a Galois extension of F, and let G = Gal(K/F). Show that 
the multiplication map G x G to G given by (g, h) 1---> gh is continuous 
with respect to the Krull topology, as is the inverse map a 1---> 
This means that G is a topological group. 

12. Here is an alternative way to view the Krull topology on a Galois 
group. Let K IF be a Galois extension. Let K have the discrete 
topology, and let K K  have the product topology. The Galois group 
Gal(K/F) is a subset of K K . Show that Gal(K/F) is a closed subset 
of K K , and notice that the same argument shows that Gal(K/L) is 
also closed if L is an intermediate field of KIF. Moreover, show that 
the Krull topology on Gal(K/F) is the same as the subspace topol-
ogy. 
(Note: This topology on K K  is called the finite topology, and it is 
the same as the compact open topology on K K .) 

13. This problem describes inverse limits. Problem 14 shows that a Galois 
group of a Galois extension is an inverse limit of finite Galois groups. 
Let {Ga } aei  be a set of groups. Suppose that I is a directed set; that 
is, / has a partial order <, such that for any a, )3 E /-, there is a E 
with a < and  j3  < 	Assume that for each pair a <  j3 in I there 
is a group homomorphism  p 	Go —> Ga  satisfying the following 
compatibility conditions: 

• (paa  = id; 

• if c < 	< 	then (Pcry 	10 )3'y o  

A group G together with homomorphisms (p a  : G —> G, satisfying 
(p,o o (po (pa  for each pair a <  j3 is said to be an inverse limit 
of the Ga  (along with the maps (pan),  provided that G satisfies the 

following universal mapping property: If H is a group together with 
homomorphisms Ta  : H —> Ga  satisfying (p co o = Ta  for each 
pair a < 0, then there is a unique homomorphism r : H -4 G with 

Pa o T for each a; that is, the following diagram commutes: 
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H 

 

G, 

 

'T 

G 

(a) Show that any two inverse limits of {G,,} are isomorphic. 

(b) Show that inverse limits exist: Let 

{ G = {g a l E H Ga  : g„ = wao(go) for all a, )3 with a  
aG1 

Show that G is an inverse limit of the {Ga }, where the maps (pa  
are the restrictions to G of the usual projection maps. 

14. Let K/F be a Galois extension, and let G  = Gal(K/F). Let ./V.  be as 
in the section, and order ./V.  by reverse inclusion. Let yao  : C/N, 
G/No  be the canonical projection whenever Na  C  N. Show that 
{C/N  : N E Al - } is an inverse system of groups and that G is the 
inverse limit of this system. 

15. Let G be a group. 

(a) Show that the set S of normal subgroups of G of finite index, 
ordered by inclusion, is a directed set. 

(b) Let y„fi  : C/N, —> G/No  be the natural projection map 

when Na  C No, and let a be the inverse limit of the groups 
{G/N,I aes . Show that there is a natural homomorphism  y : 

G —>  C and that y is injective if the intersection of all the No, 
is (e). 

(c) Let G be a profinite group. Show that G  

16. lf K is the algebraic closure of Fp , show that Gal(K/Fp) Z. 

17. Let G be a profinite group. Show that G = Gal(K/F) for some Galois 
extension K/F. 

18 Some Infinite Galois Extensions 

In this section, we describe some examples of infinite Galois extensions. 
Some of these extensions will arise from group theoretic properties of in- 
finite Galois groups. To discuss some of these extensions, we will require 
knowledge of profinite groups, information about which can be found in 
Appendix C, Shatz [25], or Serre [24]. 
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The separable closure of a field 

Let F be a field. Then F is said to be separably closed if there is no proper 
separable extension of F. Let Fac  be an algebraic closure of F. Then Fac  is 
the splitting field of the set of all nonconstant polynomials in F[x]; hence, 

Fac is a normal extension of F. However, if F is not perfect, then Fac  is 
not Galois over F. Let Fs  be the separable closure of F in Fac . The field Fs  
is called the separable closure of F. The following description of Fs  follows 
quickly from Ow properties of normal extensions. 

Proposition 18.1 Let Fs  be the separable closure of the field F. Then Fs 
 is Galois over F with Gal(F.s/F) Gal(Fa c /F). Moreover, F is a maximal 

separable extension of F, meaning that Fs  is not properly contained in any 
separable extension of F. Thus, Fs  is separably closed. 

Proof. The field F, is Galois over F, and Gal(Fs /F) = Gal(Fac /F) by 
Theorem 4.23. Suppose that Fs  C L with L/F separable. Then we can 
embed L C Fac , and then L = Fs , since Fs  is the set of all separable 
elements over F in Fac . Finally, if L is a separable extension of Fs , then 
by transitivity of separability, L is a separable extension of F, so L =  F. 
Therefore, Fs  is separably closed. 

The group Gal (Fs / F) `"J Gal (Fac/F) is often called the absolute Galois 
group of F. If G is the Galois group of a Galois extension of F, then G is 
a homomorphic image of Gal(Fs /F) by the fundamental theorem. 

The quadratic closure of a field 

In the next three sections, we require some knowledge of profinite groups. 
If G is a profinite group and p is a prime, then G is a pro-p-group if 
every open normal subgroup of G has index in G equal to a power of p. 
If G = Gal(K/F) for a Galois extension KIF, then G is a pro-p-group if 
and only if every finite Galois subextension of KIF has degree a power of 
p over F. 

Let F be a field of characteristic not 2. Then F is said to be quadratically 
closed if there is no proper quadratic extension of F. The quadratic closure 
Fq  of F is a subfield of Fs  that is quadratically closed and is a Galois 
extension of F with Gal(FSF) a pro-2-group. The following proposition 
shows the existence and uniqueness of the quadratic closure of a field. 

Proposition 18.2 Let F be a field with char(F) 2. Then the quadratic 
closure Fq  of F is the composite inside a fixed algebraic closure of F of all 
Galois extensions of F of degree a power of 2. 

Proof. Let K be the composite inside a fixed algebraic closure of F of all 
Galois extensions of F of degree a power of 2. Then K is Galois over F. 
To show that G = Gal (KIF) is a pro-2-group, let N be an open normal 



subgroup of G. If L = T(H), then [L : Fi = [G : Ni by the fundamental 
theorem. The intermediate field L is a finite extension of F; hence, L lies 
in a composite of finitely many Galois extensions of F of degree a power of 
2. Any such composite has degree over F a power of 2 by the theorem of 
natural irrationalities, so [L : Fi is a power of 2. Thus, [G : Ni is a power 
of 2, so G is a pro-2-group. 

To see that K is quadratically closed, suppose that L/K is a quadratic 
extension, and say L = K( \/a) for some a E  K.  Then a E E for some finite 
Galois subextension E. By the argument above, we have  [E:  Fi = 2r for 
some r. The extension E(Va)/E has degree at most 2. If va c E, then 
L = K and we are done. If not, consider the polynomial 

II 	(x 2  — o - (a)) E F[x]. 
EGal(E I F) 

The splitting field N over F of this polynomial is N = F(Wo- (a) : o-  E 
Gal(E/F)1). Hence, N is a 2-Kummer extension of F, so [N : F] is a 
power of 2. The field N is a Galois extension of F of degree a power of 2, 

so N C K. Moreover, va E N. This shows that ,,,/a c K, so L= K. Thus, 
K is quadratically closed. El 

In the next proposition, we give an alternate description of the quadratic 
closure of a field F of characteristic not 2. 

Proposition 18.3 Let F be a field of characteristic with char(F) 2. We 
define fields {Fn } by recursion by setting Fo  = F and Fn+1 = Fna-Va 
a E  F ri}).  Then the quadratic closure of F is the union 	, 

Proof. Let K = Unc°  1  F. Then K is a Reid, since {Fn } is a totally ordered 
collection of fields. We show that K is quadratically closed. If a E K, then 
a E Fn  for some n, so va E Fn±i C K. Thus, K(jt)=K, so K is indeed 
quadratically closed. Let Fq  be the quadratic closure of F. Then -V72, E Fq  
for each a E Fq  , so we see that F1  C Fq  . Suppose that Fn  C Fq . The 
reasoning we used to show that K is quadratically closed shows also that 
Fn+1  C Fq , so K C Fq  . To see that this inclusion is an equality, let E be 
a Galois extension of F of degree a power of 2. Then EKIK has degree 

a power of 2 by natural irrationalities. If [EK : Ki > 1, then the group 
Gal(EK/K) has a subgroup of index 2 by the theory of p-groups. If L is the 
fixed field of this subgroup, then [L : Ki = 2. However, this is impossible, 

since K is quadratically closed. This forces EK = K, so E C K. Since Fq  
is the composite of all such E, we see that Fq  C K,  so K = Fq .  El 

The p-closure of a field 

Let F be a field of characteristic not p, where p is some prime. Fix some 
algebraic closure Fa, of F. The p-closure Fp  of F is the composite in F„ of 



all Galois extensions of F of degree a power of p. The quadratic closure of 
F is then just F2.  The basic properties of the p- closure of a field are given 
in the following results. The first describes what finite extensions of F lie 
inside F. 

Lemma 18.4 Let p be a prime, and let F be a field with char(F) p. If L 
is an intermediate field of F„,1 F with [L:  Fi  < oo, then L C Fp  if and only 
if L lies in a Galois extension of F of degree a power of p. In particular, 
any finite intermediate field of Fp IF has degree over F a power of p. 

Proof. if L is a field lying inside some Galois extension E of F with [E : F] 
a power of p, then E C Fp , so L C Fp . Conversely, suppose that L C Fp  and 
[L : <  oc.  Then L = F (a , an ) for some ai  E L. From the definition 
of Fp , for each i there is a Galois extension Ei l F such that ai  E Ei  and 
[Ei : F] is a power of p. The composition of the Ei  is a Galois extension of 
F, whose degree over F is also a power of p by natural irrationalities. 

Proposition 18.5 Let Fp  be the p-closure of a field F with char(F) 
p. Then Fp  is a Galois extension of F and Gal(Fp /F) is a pro-p-group. 
Moreover, Fp  has no Galois extensions of degree p. 

Proof. The proof that  Fr/1;1  is Galois with Gal(Fp /F) a pro-p-group is 
essentially the same as the proof for the corresponding result about the 
quadratic closure, so we do not repeat it here. For the final statement, 
suppose that L is a Galois extension of Fp  with [L : Fp] = p. We need 
to obtain a contradiction. The argument we gave for the corresponding 
result about the quadratic closore will riot work, sioce the composite of 

Field exten8ioos of degree  i. power of p Heed not Lave degree a power of p if 

p 2. hasteacl, we argue as follows. Say L = Fp (a) and let a l  a9,..., a p  be 
the roots of min(Fp , a). Since  F(a)/Fp  is Galois, each a i  E F(a). By the 
construction of Fp , for each i we can find a finite Galois extension Ei lF 
of degree a power of p with ai E E(a) and min(Fp , a) E  E.  Taking the 
composite of all the Ei , we obtain a finite Galois extension E/F of degree 
a power of p with ai E E(a) and min(Fp , a) E E. Therefore,  E(a)/E is 
Galois of degree p. 

Let f (x) = 0 E Cal( ElF) (g (X)) 7 a polynomial over F with 1(a) = O. For 

each g, let a, be a root of o- (g). Let N be the normal closure of F(a)IF, 
so N is the splitting field of f (x) over F. The field NE is normal over F; 
hence, by the isomorphism extension theorem, for each g E Gal(E/F) there 
is a g' E Gal(NE IF) extending a with  a(a) = a,. The automorphism 
sends E(a) to E(aa ). Since all the roots of g lie in E(a), all the roots of 
a(q) lie in E(au ). Thus, for each g, the extension  E(a)/E is Galois and 
is of degree p. However, NE = E({aa l), so NE is a composite over E of 
Galois extensions of degree p; hence, [NE : 	 is a power of p by natural 
irrationalities. Therefore, [NE : 	a power of p, so a E F(a) C NE 
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forces a E  F. This is a contradiction, so Fp  has no Galois extension of 

degree p. 

If F contains a primitive pth root of unity, then there is a construction 
of Fp  analogous to that of the quadratic closure of F. 

Proposition 18.6 Suppose that F contains a primitive pth root of unity. 
Define a sequence of fields {Fn } by recursion by setting Fo  = F and Fn +i = 
F„({ a E Fn } ). Then the p-closure of F is Unc°  1  F. 

Proof. The proof is essentially the same as that for the quadratic closure, so 
we only outline the proof. If  F C Fp  and a E Fn , then either Fn (-07,) = Fn , 
or F„(/?i)I F„ is a Galois extension of degree p, by Proposition 9.6. In 
either case, Fn  (-6) C Fr, by the previous proposition. This shows that 

Unc°  Fri C  F. To get the reverse inclusion, let E/1-7' be a Galois extension 
of degree a power of p. By the theory of p-groups arid the fundamental 
theorem of Galois theory, there is a chain of intermediate fields 

F = Eo  C Ei  C • • C E„ = E 

with Ei+i /Ei  Galois of degree p. Since F contains a primitive pth root of 
unity, Ei+i  = E ( .Vai) for some ai E Ei  by Theorem 9.5. By induction, we 
can see that Ei  C Fi , so E C U7.7 1  F. Since Fp  is the composite of all 
such E, this gives the reverse inclusion we want. 

The maximal prime to p extension 

Let G be a profinite group, and suppose that p divides Q. Then a p-Sylow 
subgroup of G is a pro-p-group H such that [G : fl - ] is prime to p. Recall 
that a profinite group has a p-Sylow subgroup for every prime divisor p of 

and that any two p-Sylow subgroups of G are conjugate. 
Let F be a perfect held and let p be a prime. If G = Gal(Fs /F), let P be 

a p-Sylow subgroup of G. If K is the fixed field of P, then K is called the 
maximal prime to p extension of F. The maximal prime to p extension of a 
field is not uniquely determined. However, since any two p-Sylow subgroups 
of a profinite group are conjugate, any two maximal prime to p extensions 
of F are F-isornorphic. The reason for the terminolog-y above can be found 
in the following result. 

Proposition 18.7 Let F be a field, let p be a prime, and let K be a maxi-
mal prime to p extension of F. Then any finite extension of K has degree a 
power of p, and if L is an intermediate field of K I F with [L:  F] <  oc,  then 
[L : Pi] is relatively prime to p. Moreover, any separable field extension L 
of F with [L F] relatively prime to p is contained in some maximal prime 
to p extension of F. 



Proof. Recall that if U is an open subgroup of a p-Sylow subgroup P of 
G = Gal(Fs /F), then [P: U] is a power of p, and if V is open in G with 
PC VC G, then [C:  V] is relatively prime to p. Suppose that M is a finite 
extension of K. If H = Gal(Fs /M), then by the fundamental theorem, we 
have [P : H] =  [M: K]  < oc,  so H is an open subgroup of P. Thus, [P : H] 
is a power of p, so [M : K] is a power of p. 

For the second statement, let L be an intermediate field of K I F with 
[L: F]  < oc.  If A = Gal(Fs /L), then P c  A and  [C: A] = [L: F] is finite, 
by the fundamental theorem. Since [G : A] is relatively prime to p, we see 
that [L : F] is relatively prime to p. 

Let LI F be an extension with [L : F] relatively prime to p. Let F's  be 
the separable closure of F, and let G = Gal(Fs /F). Set H = Gal(Fs /L), a 
closed subgroup of G, and let P' be a p-Sylow subgroup of H. There is a 
p-Sylow subgroup P of G that contains P'. Note that [G : H] =  [L: F] is 
relatively prime to p. Moreover, we have 

[G : Pi ] = [G : H] • [H : 

= [G : P] [P : 

Both [G : H] and [H : PI are supernatural numbers not divisible by p, so 
[P : PI is not divisible by p. But, since P is a pro-p-group, [P : PI is a 
power of p. This forces [P : =1, so P' = P. Therefore, P C H, and so 
L = T(H) is contained in T(P), a maximal prime to p extension of F.  El 

Example 18.8 The maximal prime to p extension of a field F need not 
be the composite of all finite extensions of degree relatively prime to p. For 
example, if F = Q and p = 3, then Q(n and Q(b.),V) are both of degree 
3 over Q, where w is a primitive third root of unity, but their composite is 
Q(w, n, which has degree 6 over Q. Therefore, these fields are not both 
contained in a common maximal prime to p extension of Q. 

Problem 5 addresses the construction of a maximal prime to p extension 
when F is not perfect. 

The maximal Abelian extension 

Let F be a field, and let F's  be the separable closure of F. Let G = 
Gal(Fs /F). If C is the commutator subgroup of G, then the fixed field 
F„ of C' is called the maximal Abelian extension of F. This name is justi-
fied by the following result. 

Proposition 18.9 Let Fa  be the maximal Abelian extension of a field F. 
Then F is a Galois extension and Gal(Fa /F) is an Abelian group. The 
field Fa  has no extensions that are Abelian Galois extensions of F. More-
over, Fa  is the composite in Fs  of all finite Abelian Galois extensions of 
F. 



Proof. 'FIR; coiniutiLator subgroup (1' ul G is a normal subgroup, su  tile 
closure G' of G' is a closed normal subgroup of G (see Problem 17.8). 
Thus, by the fundamental theorem, Fa  = T(0) is a Galois extension of F 
and Gal(Fa /F) G/G'. The group GIG' is a homomorphic image of the 
Abelian group GIG ', so G/G' is also Abelian. 

If L  3 Fa  is an Abelian Galois extension of  F,  then L C  F. Let H = 
Gal(F5 /L), a subgroup of  C'.  However, G I H Gal(L/F), so G/H is 
Abelian. Thus, G' C  H,  so H =  C'.  Therefore, Fa  is not properly contained 
in any Abelian extension of F. 

For the final statement, if K/F is finite Abelian Galois, then KFa lFa  
is Abelian Galois by natural irrationalities. Thus, K Fa  = Fa , so K C Fa . 
Since every element of Fa  lies in a finite Galois extension of F, to show that 

Fa  is the composite of all finite Abelian Galois extensions of  P it suffices 
to show that every finite Galois extension of F inside F,, is an Abelian 
extension. Let E be such an extension. If H = Gal(Fs /E), then H is a 
normal subgroup of G containing G'; hence, G I H is Abelian. But, by the 
fundamental theorem, we have Gal(E/F) `"J G/H, so E/F is an Abelian 
Galois extension.  El 

Example 18.10 The Kronecker—Weber theorem of algebraic number the-
ory states that any Abelian extension of Q is contained in a cyclotomic 
extension. Consequently, the maximal Abelian extension of Q is the infi-
nite cyclotomic extension Q({(,), : n E N}). 

Example 18.11 If F is a field containing a primitive nth root of unity for 
all n, then the maximal Abelian extension of F is F({ 	: a e F, n e N}). 
This follows from Kummer theory (see Problem 11.6 for part of this claim). 

Problems 

1. Let L be an intermediate field of the p-closure Fp of a field F. If 
[L:  F] < oo, show that there is a chain of fields 

F=  L o  C  L c  • • • C  

such that for each j the extension Li+i /Li  is Galois of degree p. 

9 . Show that the p-closure of a field has no Galois extensions of degree 
pn for any n>  1. 

3. Describe the p-closure of Fp . 

4. Describe the maximal prime to p extension of Fp . 

5. Let F be a field, not necessarily perfect. Let F„ and Fs  be the alge-
braic and separable closures of  F,  respectively, and let I be the purely 



ulbeparitolo closure of I  iu r .  H p is a prime, let P be a p - Sylow 

subgroup of Gal(Fs /F), and let K = T(P) C F,. If p char(F), call 

KI a maximal prime to p extension of F, and if char(F) = p, call I a 
maximal prime to p extension of F. Prove the analog of Proposition 
18.7 in this case. 





Transcendental Extensions 

In this chapter, we study field extensions that are not algebraic. In the 
first two sections, we give the main properties of these extensions. In the 
remaining sections, we focus on finitely generated extensions. We discuss 
how these extensions arise in algebraic geometry and how their study can 
lead to geometric information, and we use algebraic analogs of derivations 
and differentials to study these extensions. 

19 Transcendence Bases 

The most fundamental concept in transcendental field theory is that of a 
transcendence basis. In this section, we investigate this concept. We shall 
see that the notion of a transcendence basis is very similar to that of a basis 
of a vector space. To give a rough description of a transcendence basis, let 
K I F be a field extension. A subset T of K is a transcendence basis for 
E/F if T is a maximal set of "variables" in K. To be a little less vague, 
F(T) is isomorphic to a rational function field F(X) with 7-1= .)(, and 
the maximality means that there is no larger set of variables in K. We 
need to make this precise, to prove that transcendence bases exist, and to 
determine their properties. 

Definition 19.1 Let K be a field extension of F, and let t1,... ,t, E  K.  
The set { t1, ,tn } is algebraically independent over F if f (ti,... ,t n ) 0 
for all nonzero polynomials f E F[xi,..., x n]. An arbitrary set S C K is 
algebraically independent over F if any finite subset of S is algebraically 



independent over F. If a set is not algebraically independent over F, then 
it is said to be algebraically dependent over F. 

Example 19.2 If K = F(x l ,...,x n ) is the field of rational functions over 
F in n variables, then {x l , 	, x n } is algebraically independent over F. 
Moreover, if r i ,..  rri  are any positive integers, then {4 1 , 	, xrnn-} is also 
algebraically independent over F. 

Keeping with the same field extension, let A (aii) be an n x n matrix 
with coefficients in F, and let h = Ei  aii x i . We prove that {fi , , fri }  is 
algebraically independent over F if and only if det A O. For simplicity, we 
write F[X] for F[x l , 	, x].  The matrix A induces a ring homomorphism 
A' : F[X] 	F[X] that sends x i  to fi . If det A 0, then A has an inverse; 
say A -1-  = (bii ), and A-1  induces the inverse map (A — ')' : F[X] 	F[X] 
to A'. Therefore, A' is injective, so h(f i , 	, fn ) 	0 for all nonzero h. Thus, 

, Li } is algebraically independent over F. Conversely, suppose that 
det A = O. Then the columns Ci  of A are linearly independent over F; 
say Ei  bi Ci  = 0 with each bi  E F, and not all of the bi  are zero. A 
short calculation shows that Ei  bifi = 0; hence, the fi  are algebraically 
dependent over F. 

Example 19.3 By convention, the empty set 0 is algebraically indepen-
dent over any field. The singleton sets {e}, {7r}, and {4e -1 }  are all alge-
braically independent over Q. The set {e, e 2 } is not algebraically indepen-
dent over Q, since f (e, e 2 ) =- 0 if f (x i , x 2 ) = 4— x 2 . It is unknown whether 
{e, 7r} is algebraically independent over Q. 

Example 19.4 Let FCKCL be fields, and let S be a subset of  L. If S is 
algebraically independent over ..fil", kthen S is also algebraically independent 

i over K. This s clear from the definition of algebraic independence. More-
over, if T is any subset of S and if S is algebraically independent over F, 
then T is also algebraically independent over F. The converse of the first 
statement is false in general. Suppose that K = F(x) = L. Then {x} is 
algebraically independent over F, but {x} is algebraically dependent over 
K. 

An algebraically independent set of elements behaves the same as a set of 
variables in a polynomial ring. The following lemma makes this statement 
precise. 

Lemma 19.5 Let Ix." be a field extension of P. If t i ,...  1H.  E K arc alge-
braically independent over F, then F[t i ,... , tn ] and F[x L ,... ,x r ]  are F-
isomorphic rings, and so F(ti ,... ,tn ) and F(x i , ,x) are F-isomorphic 
fields. 

Proof. Define cp : F[x l , 	, x 	K by (p(f (x , 	, x n )) = f(t i ,... ,tn ). 
Then cp is an F-homomorphism of rings. The algebraic independence of 



the t i  shows that cio is injective, and the image of cio is F[ti , 	, t].  There- 

fore, F[ti 	, t]  and F[xi ,... , x n 1 are isomorphic. This map induces an 
F-isomorphism of quotient fields, which finishes the proof. 

Definition 19.6 A field K is purely transcendental over a subfield F if K 

is isomorphic to a field of rational functions over F in some number, finite 
or infinite, of variables. 

If K = F(ti ,...,tn ) with { t 1 , 	, tn } algebraically independent, then 
K is often said to be a rational extension of F. This terminology is often 
used in algebraic geometry. We will investigate the geometric significance 
of rational extensions in Section 22. 

We now begin to analyze the definition of algebraic independence. 

Lemma 19.7 Let K be a field extension of F, and let t1, • • • ,tn  E K. Then 
the following statements are equivalent: 

1. The set { t 1 ,... ,tn } is algebraically independent over F. 

2. For each i, ti is transcendental over F(ti , • • • ,ti-1,ti+i, • • • tri). 

3. For each i, ti  is transcendental over F(ti ,... 

Proof. (1) = (2): Suppose that there are ai  E F(t i , 	, ti—i ti+i, • • • tn) 
such that ao+aiti+• • •+t,Tin = O. We may write ai  = bi/c with b 1 , 	, bn , c E 
F[ti ,.,.,ti _ i ,ti+i ,..., ta], and so 1)0 + bit + • • • + bm t.rin = O. If  b1 = 

then f 	Ei  gi (xi , 	, xi_ , xi +i , 	, 

is a polynomial and f (t i  , , tn ) = O. Since { ti • • • tn} is algebraically 
independent over F, the polynomial f must be O. Consequently, each ai  = 

0, so t i  is transcendental over F(ti, • • • ti—i, , • • • tn)- 

(2) =  (3): If ti  is transcendental over F(ti , • • • ti—i ti+1, 	,t), then 

t i  clearly is transcendental over the smaller field F(ti , • • • ,t1-1). 
(3) = (1): Suppose that the t i  are not algebraically independent over 

F. Choose m minimal such that there is a nonzero f(x i ,... ,xm ) E 
F[xi ,...,x m ] with f(ti,• • • ,tm) = O. Say f = Ei gi x,;in  with gi E 

F[xi  , 	, x m _ i ], and let ai  = g(ti,...,tm _ i ). Then ao+a i tm +• • •+artrm  = 

O. If the ai  are not all zero, then tm  is algebraic over F(t i ,. . • , tm), a contra-
diction. Thus, ai  = 0 for each J. By the minimality of m, the t 1  , ••• tm—i 
are algebraically independent over F, which implies (la all g = 0, so 

f = O. This proves Lliat, {1 1 ,...,1„) is algebraically independent over F. 
El 

Definition 19.8 If K is a field extension of F, a subset S of K is a 
transcendence basis for F if S is algebraically independent over F and 
if K is algebraic over F(S). 
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Example 19.9 If KIF is a field extension, then 0 is a transcendence basis 
for KIF if and only if KIF is algebraic. 

Example 19.10 If K = F(x i ,... ,x n ), then {x 1 , 	, x„} is a transcen- 
dence basis for K/F. Moreover, if r 1 , 	, r„ are positive integers, then we 
show that {4 1 , ... ,x 7-7,1i} is also a transcendence basis for KIF. We saw in 
Example 19.2 that {4 1 , 	, xrnu } is algebraically independent over F. We 
need to show that K is algebraic over L = F(41  , 	, 	). This is true 
because for each i the element x i  satisfies the polynomial tr — 	E L[t]. 

Here is a natural question that one may have about the definition of 
transcendence basis: Why is the condition "K is algebraic over F(S)" used 
instead of "K = F(S)"? We give two reasons. The previous example shows 
that even when K = F(X) for some algebraically independent set X over 
F, there may be other algebraically independent sets Y for which K is 
algebraic over F(Y) but that K F(Y). Moreover, it is a very restrictive 
condition to require that a field be purely transcendental over a subfield. 
Without the definition as it is given, existence of a transcendence basis 
would be uncommon, and the concept would not be very useful. 

The next two examples deal with field extensions of the sort that arise 
in algebraic geometry. We will study extensions of this type in Section 22. 

Example 19.11 Let k be a field, and let f(x,y) = y 2  — 3": 3 	E 154, y] 
Then f is an irreducible polynomial, so A 	 (1. )  i4 au  iategral 
domain. Note that A contains an isomorphic copy of k. Let K be the 
quotient field of k[x, y]/(f). We can then view K as a field extension of k. 
If u = x+ (f) and v = y +(f) are the images of x, y in K, then K = k(u, v). 
We show that ful is a transcendence basis for K/k. Since v2  = u3  — u, the 
field K is algebraic over k(u). We then need to show that u is transcendental 
over k. If this is false, then u is algebraic over k, so K is algebraic over k. 
We claim that this forces A = k[u, v] to be a field. To prove this, take t E A. 
Then t-1  E K is algebraic over k, so t + + • • • +  o  = 0 for 
sonic ai  E h; with (to 	O. Multiplying by t" -1  gives 

- — 	+ ctn-2t + • • • + a o t71-1 ) E A, 

proving that A is a field. However, A = k[x, y]/(f) is a field if and only if 
(f) is a maximal ideal of k[x, y]. The ring A cannot be a field, since (f) is 
properly contained in the ideal (x, y) of k [x, yl. Thus, u is not algebraic over 
k, so ful is a transcendence basis for Klk. Note that a similar argument 
would show that {v} is also a transcendence basis for K/k. 

Example 19.12 We give a generalization of the previous example. Let k 
be a field and let f E k#1, 	x„} be an irreducible polynomial. Then 
A = 	,x„]/(f) is an integral domain. Let K be the quotient field of 
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A. We may write 

f = gm xi: + 9,- 1 47- 1+ • • • + 

with each gi  E k[x i ,...,x n_ i ]. Let us assume that m > 0, so that f does 

involve the variable x n . If t i  = x i  + (f) is the image of x i  in A, we claim that 

{ t 1 , 	, tn_ i  } is a transcendence basis for Klk. To see this, the equation 
for f above shows that tn  is algebraic over k (t i 	, tn_ i ), so we only need 

to show that {t 1 ,... tn_ i  } is algebraically independent over k. Suppose 
that there is a polynomial h E k[x i ,...,x n_ i l with h(t i 	tn_ i ) = O. 

Then h(x i , 	x n_ i  ) E (f), so f divides h. Thus, h = fg for some 

g E k[x l ,...,x„]. However, the polynomial h does not involve the vari- 
able x„ while f does, so comparing degrees in x n  of h and fg  shows that 
h = O. Therefore, {t. -17 • • • 7 tn-1} is algebraically independent over k, so 
{ t i 	tn _ i  } is a transcendence basis for Klk. 

The argument we gave for why { t 1 , 	tn_ i } is algebraically independent 
over k is different from the argument used in the previous example to show u 
is transcendental over k. We could have used the argument of this example 
in the previous example, but we chose to give a different argument to 
illustrate different methods that can be used in dealing with transcendental 
extensions. 

There is a strong connection between the concepts of linear independence 
in vector spaces and algebraic independence in fields. In particular, we 
will prove below that every field extension has a transcendental basis and 
that the size of a transcendence basis is uniquely determined. The reader 
would benefit by recalling how the corresponding facts are proved for vector 
spaces. 

Lemma 19.13 Let K be a field extension of F, and let S C K be alge-
braically independent over F. If t E K is transcendental over F(S), then 
S U {t} is algebraically independent over F. 

Proof. Suppose that the lemma is false. Then there is a nonzero polyno-
mial f E F[x i ,...,x„,y1 with f(s i ,...,s,„t) = 0 for some s i  E S. This 
polynomial must involve y, since S is algebraically independent over F. 
Write f = g y i with gi E F[x i ,...,x n]. Since gin  0, the element 3=0 3 ,  

t is algebraic over F(S), a contradiction. Thus, S U {t} is algebraically 
independent over F. 

We now prove the existence of a transcendence basis for any field exten-
sion. 

Theorem 19.14 Let K be a field extension of F. 

I. There exists a transcendence basis for K F. 



2. If T C K such that K F(T) is algebraic, then T contains a transcen-
dence basis for K F. 

3. If S C K is algebraically independent over F, then S is contained in 
a transcendence basis of K F. 

4. If SCTCK such that S is algebraically independent over F and 
K F(T) is algebraic, then there is a transcendence basis X for K F 
withSCXCT. 

Proof. We first mention why statement 4 implies the first three statements. 
If statement 4 is true, then statements 2 and 3 are true by setting S = 
and T =  K,  respectively. Statement 1 follows from statement 4 by setting 

S = 0 and T = K. To prove statement 4, let S be the set of all algebraically 
independent subsets of T that contain S. Then S is nonempty, since S E S. 
Ordering S by inclusion, a Zorn's lemma argument shows that S contains 
a maximal element M. If K is not algebraic over F(M), then F(T) is 
not algebraic over F(M), since K is algebraic over F(T). Thus, there is 
atET with t transcendental over F(M). But by Lemma 19.13, A4 U {t} 
is algebraically independent over F and is a subset of T, contradicting 
maximality of M. Thus, K is algebraic over 17 (1), so M is a transcendence 
basis of K/F contained iny.T El 

We now show that any two transcendence bases have the same size. 

Theorem 19.15 Let K be a field extension of F. If S and T are transcen-
dence bases for K F, then 1 5'1 =  T.  

Proof. We first prove this in the case where S = {s 1 , . . , s} is finite. 
Since S is a transcendence basis for K/F, the field K is not algebraic 
over F(S — {si } ). As K is algebraic over F(T), some t E T must be 
transcendental over F(S — {s i  }). Hence, by Lemma 19.13, {5 2 , 	, 
is algebraically independent over F. Furthermore, s i  is algebraic over 
F(s2 , 	, s, t), or else {s 1 , 	, s, t} is algebraically independent, which 
is false. Thus, {5 2 , ,  s, t}  is a transcendence basis for KIF. Set t i  = t. 
Assuming we have found t i  E T for all i with 1 < i < m < n such 

that {ti, , t m_ i , sm , , sn } is a transcendence basis for K/F, by re-

placing S by this set, the argument above shows that there is a t" E T 
such that {t i , , tm_ 1 , , sn } is a transcendence basis for KIF. Set-
ting tm  = t" and continuing in this way, we get a transcendence basis 

{ti, , t}  C T of K/F. Since T is a transcendence basis for K/F, we see 
that {t i ,... ,tn }  =  T, so 171 1 = n. 

For the general case, by the previous argument we may suppose that S 
and T are both infinite. Each t E T is algebraic over F(S); hence, there is 
a finite subset St  C S with t algebraic over F (St). If 5" = UtET St 7 

then 
each t E T is algebraic over F(5"). Since K is algebraic over F(T), we see 



that, 1‘. is algebraic over F(S').  thus , S 	S' since 5"  L S and S is a 
transcendence basis for KIF. We then have 

Is l = 	= I U stl 	IT x N I = 1 71 1, 
tET 

where the last equality is true since T is infinite. Reversing the argument, 
we see that 171 1 < IS1, so 15'1 =  T.  

This theorem shows that the size of a transcendence basis for K/F is 
unique. The following definition is then well defined. 

Definition 19.16 The transcendence degree trdeg(K/F) of a field exten-
sion K F is the cardinality of any transcendence basis of  KIF.  

Corollary 19.17 Let t 1 ,... ,t.1  E  K. Then the fields F(ti ,... ,tn ) and 
F(x i ,. ,x)  are F-isomorphic if and only if is an algebraically 
independent set over F. 

Proof. IF ft,, 	, t 7,} is algebraically independent, over F, then 
F(t i ,... , tn ) and F(x l ,...  , x)  are F-isomorphic fields by Lemma 19.5. 
Conversely, if F(t i ,... , t)  F(x i ,...,x n ), suppose that ft1, , t}  is 
algebraically dependent over F. By the previous theorem, there is a subset 
S of ft1,... , trd- such that S is a transcendence basis for F(ti, • • • , t.)/F. 
However, the transcendence degree of this extension is n, which forces 
S = n, so S = ft 1 ,... , tI. Thus, {t 1 ,...  , tn } is algebraically indepen-

dent over F. 

We now prove the main arithmetic fact about transcendence degrees, the 
following transitivity result. 

Proposition 19.18 Let FCLCK be fields. Then 

trdeg(K/F) = trdeg(K/L) trdeg(L/F). 

Proof. Let S be a transcendence basis for L/F, and let T be a transcen-
dence basis for K/L. We show that SU T is a transcendence basis for KIF, 
which will prove the result because Sn T = 0. Since T is algebraically inde-
pendent over L, the set T is also algebraically independent over F(S) C L, 
so S u T is algebraically independent over F.  To show that K is algebraic 
over F(SUT), we know that K/L(T) and L/F(S) are algebraic. Therefore, 

EL(T) is algebraic over F(S U T) = F(S)(T), since each t E T is algebraic 
over F(SUT). Thus, by transitivity, K is algebraic over F(SUT), so SUT 
is a transcendence basis for KIF. This proves the proposition.  LI 
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Example 19.19 Let K = k(x i ,...,x,) be the field of rational functions 
in ri variables over a field k, and let F = k(s1 ,...,s„) be the subfield of 
K generated over k by the elementary symmetric functions s l , , s.  In 
Example 3.9, we saw that K is an algebraic extension of F with [K:  F] = 
n!. Therefore,  {s i ,...  , sn } contains a transcendence basis of Klk. However, 
{x i  , , xn } is a transcendence basis for KM, so trdeg(K/k) = n. This 
forces the s i  to be algebraically independent over k; hence, they form a 
transcendence basis for K/k. In particular, this shows that k (s i  , ,s n )r-= 

k(xl,.. -,xn). 

Example 19.20 Consider the field extension C/Q. Since Q is countable 
and C is uncountable, the transcendence degree of C/Q must be infinite 
(in fact, uncountable), for if t 1 , 	, tn  form a transcendence basis for C/Q, 
then C is algebraic over Q(ti, 	,t), so C and Q have the same cardinality, 
since they are infinite fields. However, one can show that Q(ti , 	, tn ) is 
countable. This would give a contradiction to the micountability of C. Thus, 
any transcendence basis T of C/Q is infinite. 

Let T be any transcendence basis of C/Q. Since C is algebraic over Q(T) 
and is algebraically closed, C is an algebraic closure of Q(T). Let a be a 
permutation of T. Then a induces an automorphism of Q(T) that is trivial 
on Q; hence, a extends to an automorphism of C by the isomorphism 
extension theorem. Since there are infinitely many such a, we see that 
Aut (IC) =  oc.  Because any automorphism of R is the identity, the only 

automorphisms of C that map R to R are the identity map and complex 
conjugation. Thus, there are infinitely many a E Aut(C) with  a(I) R. 
We can easily show that [C o- (R)] 2. This means that there are infinitely 
many subfields F of C with [C : F] = 2. It is a whole different question to try 
to construct such fields. Note that in order to get these automorphisms of C, 
we invoked Zorn's lemma twice, once for the existence of a transcendence 
basis of C/Q and the second time indirectly by using the isomorphism 
extension theorem. 

Problems 

1. Let K be a field extension of F, let a E K be algebraic over F, and let 
t ET be transcendental over F. Show that min(F, a) = min(F(t), a) 
and that [F (a) : F] = [F(t, a) : F (01 . 

2. Suppose that L 1 , L2 are intermediate fields of KIF. Show that 

trcleg(L 1 L2 /F) < trdeg(L i  IF) + trdeg(L 2 /F). 

3. Give an example of a field extension KIF with intermediate subfields 
L 1 ,  L2 satisfying trdeg(L i  L2/F) < trdeg(L I /F) trdeg(L2/F). 



4. Let K be a finitely generated field extension of F. If L is a field with 
FCLC K, show that LIF is finitely generated. 

5. Let K be an algebraically closed field, and let F be a subfield of K. 
If y : K K is an F-homomorphism and trdeg(K/F) < oo, show 

that y is surjective, so that y is an F-automorphism of  K.  

6. Let K be an algebraically closed field, and let F be a subfield of 
K with trdeg(K/F) = oo. Show that there is an F-homomorphism 
cio : K K that is not an F-automorphism. 

7. Let K = C(x)(-V —1 — x 2 ). Show that  [K : C(x)]= 2, and show that 
K = C(t) if t = (i — x) -1  V(-1 — 	— x). 

8. Let K R(x)(V —1 — x 2 ). Show that [K : R(x)] = 2 and that there 
is no t E K with K = R(t). 

9. If K = R(x)(V1 x 2 ), show that there is at EK with K = R(t). 

10. Let x be transcendental over C, and let K be the algebraic closure of 
C(x). Prove that K rj C. 

11. Let K = F(x) be the rational function field over a field F of charac-
teristic 0, let L 1  = F(x 2 ), and let L2 = F(X 2  ± X). 

(a) Show that 1Gal(K/L i )1 = 2 for each i, and find the unique non-
identity Li -automorphism of  K.  

(b) Show that L 1  n L2 = F. 

(Hint: What is the subgroup of Gal(K/F) generated by the au-
tomorphisms in the first part?) 

12. Let F(x) be the rational function field in one variable over a field F. 
Show that 

[F(x) : 	WI if F is infinite, 
if F is finite. 

In the following problems, we axioniatize the properties common to lin-
ear dependence and algebraic independence, and we see that these two 
situations can be analyzed simultaneously. 

Let X be a set, and let -< be a relation between elements of X and subsets 
of X. We will write a -< S if the relation holds between a E X and S C X. 
The relation -< is called a dependence relation if the following conditions 
hold: (i) if a E S, then a -< S; (ii) if a -< S, then there is a finite subset 
So of S with a -< S; (iii) if T is a set such that s -< T for all s E S, and 
if ci -< S, then a -< T; and (iv)  if ci -< S but a S — {s} for some s  E S,  
then s -< (S — {s})U 

If -< is a dependence relation on X, a subset S of X is independent if 
s S — {s} for all s E S. If S C T, we say that S spans T if t -< S for each 



t e  T.  Finally, we say that S is a basis of X if S is both independent arid 
spans X. 

13. Let F be a field, and let V be an F-vector space. Define -< by y -< S 
if y is in the subspace spanned by S. Show that -< is a dependence 
relation on V. 

14. Let K be a field extension of F. Define -< by a -< S if a is algebraic 
over F(S). Show that -< is a dependence relation on  K. 

15. Let K be a field extension of F. Define -< by a -< S if a E F(S). Is -< 
a dependence relation on K? 

16. Let K/F be a field extension with char(F) = p > O. Suppose that 
KP C F. For instance, we could take K to be any field of characteristic 
p and F =  K.  Define -< by a -< S if a E F(S). Show that -< is a 
dependence relation. This is called the relation of p- dependence. This 
relation will show up in Section 23. 

17. In this problem, we outline a proof that a set X with a dependence 
relation -< has a basis. Prove the following statements. 

(a) Let S CT be subsets of X, and let a E X. If a -< S, show that 
a -< T. Conclude that if S is independent, then any subset of 
S is independent, and if T spans X,  then any set containing T 
also spans X. 

(b) If S is  independent and a S,  show that SU { a} is independent. 

(c) If S C T are subsets of X such that S is independent and T 
spans X, show that there is a basis B of X with SCBC T. 

18. In this problem, we show that any two bases of a set X with a de-
pendence relation -< have the same size. Mimic the proofs of the 
appropriate results of the section to verify the following steps. 

(a) Suppose that B is a basis of X. If  j3 E B and a E X, let 
B' = (B — {{3 })U  {ci}. If B -< 	, then show that B' is also a 
basis of X. 

(b) If B and C are bases of X with 1B1 finite, show that 1BI = 10- 

(c) If B and C are bases of  X,  show that 1BI = C. 

20 Linear Disjointness 

In this section, we study linear disjointness, a technical condition but one 

with many applications. One way that we use this concept is to extend 



the definition of separability in a useful way to nonalp,ebraic extensions. 
We tacitly assume that all of our Reid extensions of a given field F lie 

in some common extension field C of F. Problem 6 shows that this is 
not a crucial assumption. We will also make use of tensor products. By 
phrasing some results in terms of tensor products, we are able to give 
cleaner, shorter proofs. However, the basic results on linear disjointness can 
be proved without using tensor products. Properties of tensor products are 
given in Appendix D for the benefit of the reader. 

Definition 20.1 Let K and L be subfields of a field C, each containing 
a field F. Then K and L are linearly disjoint over F if every F-linearly 
independent subset of K is also linearly independent over L. 

Let A and B be subrings or a commutative ring N. Then the ring A [B] 
is the subring of R generated by A and B; that, is, A1131 is the smallest 
subring of R containing A U B. It is not hard to show that 

A[B] = {) 	:ai bi  : ai  E A, bi  E B} . 

If A and B contain a common field F, then the universal mapping property 
of tensor products shows that there is a well-defined F-linear transforma-
tion cio : A OF B A[B] given on generators by (p(a 0 b) = ab. We refer to 
the map cio as the natural map from A OF B to A[B]. We give a criterion in 
terms of tensor products for two fields to be linear disjoint over a common 
subfield. 

Proposition 20.2 Let K and L be field extensions of a field F. Then K 
and L are linearly disjoint over F if and only if the map cp : K O F  L K[L] 
given on generators by a O b  ab is an isomorphism of F-vector spaces. 

Proof. The natural map cio : KOFL 	K[L] is surjective by the description 
of K[L] given above. So, we need to show that K and L are linearly disjoint 
over F if and only if cio is injective. Suppose first that K and L are linearly 
disjoint over F. Let fki l ie , be a basis for K as an F-vector space. Each 

element of K OF L has a unique representation in the form E k O l , with 
the  l E L. Suppose that E k1  O l. E ker(cp), so E ki i i  = O. Then each 

= 0, since K and L are linearly disjoint over F and fki l is F-linearly 
independent. Thus, cio is injective, and so cio is an isomorphism. 

Conversely, suppose that the map cio is an isomorphism. Let { ai} j  be 
an F-linearly independent subset of K. By enlarging J, we may assume that 
the set faj l is a basis for K. If fai l is not L-linearly independent, then 
there are /i  c L with E ai li  = 0, a finite sum. Then E ai  O  li  E ker((p), 

Eaj  O  li = 0 by the injectivity of (p. However, elements of K OF L can 
be represented uniquely in the form E a O  mi  with mi E L. Therefore, 

each /i  = 0, which forces the set fai l to be L-linearly independent. Thus, 
K and L are linearly disjoint over F. 	 fl  
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Corollary 20.3 The definition of linear disjointness is symmetric; that is, 
K and L  are linearly disjoint over F if and only if L and K are linearly 
disjoint over F. 

Proof. This follows from Proposition 20.2. The map ço : KOFL 	K[L] is 
an isomorphism if and only if T : LO F K L[K] = K[L] is an isomorphism, 
since 'T = i o cp, where i is the canonical isomorphism KO F L 	LO F K 
that sends a 0 b to b 0 a. 	 LI  

Lemma 20.4 Suppose that K and L are finite extensions of F. Then K 
and L are linearly disjoint over F if and only if [K L : 	= [K: F] [L  : F]. 

Proof. The natural map cio : KO F L 	K[L] that sends k 0 l to kl is 
surjective and 

dim(K F L) = [K: 	[L:  

Thus, cio is an isomorphism if and only if [KL : 	= [K: 	[L : 171]. The 
lemma then follows from Proposition 20.2. 	 LI  

Example 20.5 Suppose that K and L are extensions of F with [K : 
and [L : 1 ]  relatively prime. Then K and L are linearly disjoint over F. 
To see this, note that both [K : F] and [L : F] divide [KL : F], so their 
product divides [KL : 1 ]  since these degrees are relatively prime. The 
linear disjointness of K and L over F follows from the lemma. 

Example 20.6 Let K be a finite Galois extension of F. If L is any ex-
tension of F, then K and L are linearly disjoint over F if and only if 
K n L = F. This follows from the previous example and the theorem of 
natural irrationalities, since 

[K L : 	=  [L:  Fl][K : K n L], 

so [KL : 1 ] = [K:  1 ] [L : 1 ]  if and only if K n L = F. 

The tensor product characterization of linear disjointness leads us to 
believe that there is a reasonable notion of linear disjointness for rings, not 
just fields. Being able to discuss linear disjointness in the case of integral 
domains will make it easier to work with fields, as we will see in Section 22 
and later in this section. 

Definition 20.7 Let A and B be subrings of a field C, each containing 
a field F. Then A and B are linearly disjoint over F if the natural map 
A OF B C given by a 0 b ab is injective. 

Lemma 20.8 Suppose that 1;1  is a field, andFCACA' and FCBC 
are all subrings of a field C. If A' and B' are linearly disjoint over F, then 
A and B are linearly disjoint over F. 
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Proof. This follows immediately from properties of tensor products. There 
is a natural injective homomorphism i : A OF B A' OF B' sending a 0 b 
Lo a 0 b for a G A and B G B. If the natural map (p' : A' OF B' A'[13/1 
is injective, then restricting cp to the image of i shows that the map p: 
A OF B 	A[B] is also injective. 	 111 

Example 20.9 Let K and L be extensions of a field F. If K n L is larger 
than F, then K and L are not linearly disjoint over F by the preceding 
lemma since K nL is not linearly disjoint to itself over F. However, K and 
L may not be linearly disjoint over F even if K n L = F. As an example, 
let F = Q, K = F(0), and L = F(w O), where w is a primitive third 
root of unity. Then K n L = F, but KL = F( 	w)  has dimension 6 over 
F, whereas K OF L has dimension 9, so the map K OF L 	KL is not 
injective. 

Lemma 20.10 Suppose that A and B are subrings of a field C, each con-
taining a field F, with quotient fields K and L, respectively. Then A and 
B are linearly disjoint over F if and only if K and L are linearly disjoint 
over F. 

Proof. If K and L are linearly disjoint over F, then A and B are also 
linearly disjoint over F by the previous lemma. Conversely, suppose that A 
and B are linearly disjoint over F. Let {k l , , kn } C K be an F-linearly 
independent set, and suppose that there are  l E L with E ki i i  = O. There 
are nonzero s E A and t E B with ski  E A and tii E B for each i. The set 

{a i , , an } is also F-linearly independent; consequently, E a Obi  0, 
since it maps to the nonzero element E aiO bi E KO F  L under the natural 
map A OF B K OF B. However, E a O bi  is in the kernel of the map 
A OF B A[B]; hence, it is zero by the assumption that A and B are 
linearly disjoint over F. This shows that { k i } is L-linearly independent, so 
K and L are linearly disjoint over F.  Lii  

Example 20.11 Suppose that K/F is an algebraic extension and that 
L/F is a purely transcendental extension. Then K and L are linearly dis-
joint over F; to see this, let X be an algebraically independent set over F 
with L = F(X). From the previous lemma, it suffices to show that K and 
F[X] are linearly disjoint over F. We can view F[X] as a polynomial ring in 
the variables x E X. The ring generated by K and F[X] is the polynomial 
ring K[X]. The standard homomorphism K OF F[X] 	K[X] is an iso- 
morphism because there is a ring homomorphism 'T : K [X] 	K OF F[X] 
induced by x 	10 x for each x E X, and this is the inverse of (p. Thus, 
K and F[X] are linearly disjoint over F, so K and L are linearly disjoint 
over F. 

The following theorem is a transitivity property for linear disjointness. 



Theorem 20.12 Let K and L be extension fields of  F,  and let E be a field 
with FCECK. Then K and L are linearly disjoint over F if and only 
if E and L are linearly disjoint over F and K and EL are linearly disjoint 
over E. 

Proof. We have the following tower of fields. 

Consider the sequence of homomorphisms 

K OF L K OE (E OF L) K OE E L K[L], 

where the maps f, (p i , and (p 2  are given on generators by 

f (k 1) = k 	(1 0 1), 

(p 1 (k 0 (e 0 1)) = k 0 el, 

(p 2 (k 0): el)  = 	ke i i i , 

respectively. Each can be seen to be well defined by the universal mapping 
property of tensor products. The map f is an isomorphism by counting 
dimensions. Moreover, 	and (p 2 are surjective. The composition of these 
three maps is the standard map p  : K 	K[Til. First, suppose 
that K and L are linearly disjoint over F. Then ço is an isomorphism by 
Proposition 20.2. This forces both (p l  and (i02 to be isomorphisms, since all 
maps in question are surjective. The injectivity of (i02 implies that K and 
EL  are linearly disjoint over E. If  a : E OF L E[L] is the standard map, 
then (p i  is given on generators by (p j  (k 0 (e 0 1)) = k  O  o-  (e 0 1); hence, a 

is also injective. This shows that E and L are linearly disjoint over F. 

Conversely, suppose that E and L are linearly disjoint over F and that 
K and EL are linearly disjoint over E. Then (p 2  and a are isomorphisms 
by Proposition 20.2. The map (p j  is also an isomorphism; this follows from 
the relation between (p i  and a above. Then (p is a composition of three 
isomorphisms; hence, (p is an isomorphism. Using Proposition 20.2 again, 
we see that K and L are linearly disjoint over F.  LI  

Separability of field extensions 

One of the benefits of discussing linear disjointness is that it allows us to 
give a meaningful notion of separability for arbitrary field extensions. In 



Section 22, we shall see some geometric consequences of this more general 
notion of separability. We first give an example that will help to motivate 

the definition of separability for nonalgebraic extensions. 

Example 20.13 Let KIF be a separable extension, and let LIF be a 
purely inseparable extension. Then K and L are linearly disjoint over F. 
To prove this, note that if char(F) = 0, then L = F, and the result is 
trivial. So, suppose that char(F) = p > 0. We first consider the case where 
K/1;1  is a finite extension. By the primitive element theorem, we may write 
K = F(a) for some a E K. Let f (x) = min(F, a) and g(x) = min(L, a). 
Then g divides f in L[x]. If g(x) = ao  + + an _ 1 xn-1  + xn, then for 

each i there is a positive integer ri  with ar E F. If r is the maximum 

of the r i , then (v 14! E F for each i, so g(x)P E PH. Consequently,  g(x) 7' 7  
is a polynomial over F for which a is a root. Thus, f divides el ' in F[x]. 
Viewing these two divisibilities in  L[x], we see that the only irreducible 
factor of f in L[x] is g, so f is a power of g. The field extension KtP is 
separable; hence, f has no irreducible factors in any extension field of F. 
This forces f = g, so 

[KL : 	= [L(a) : L] = deg(g) 

= deg(f) = [K:  

From this, we obtain [KL : 11= [K:  11 • [L: F], so K and L are linearly 
disjoint over F by Lemma 20.4. 

	

If K/F is not necessarily finite, suppose that cio : K OF L 	K L is not 
injective. Then there are E K and , / 72  E L with w, (E ki 0 
l i ) = 0. If K0 is the field generated over F by the ki , then the restriction of 
cio  to Ko  OpL  is not injective, which is false by the finite dimensional case. 
Thus, is injective, so K arid 1-, are linearly disjoint over F. 

Definition 20.14 Let F be a field of characteristic p > 0, and let Fa c be 
an algebraic closure of F. Let 

Fl IP»  = {a E Fac  aPu  E F} 

and 

F l- /P = {a E Fa  : 

oo 

Fl/Pri  
n=1 

E F for some n> 0} 

The field F I /Pc°  is the composite of all purely inseparable extensions of 

F in Fa,. It is, therefore, the maximal purely inseparable extension of F in 
Fac , so Fl IP°°  is the purely inseparable closure of F in Fac. 
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Definition 20.15 A transcendence basis X for a field extension  K/17  is 
said to be a separating transcendence basis for K I F zf K is separable alge- 
braic over F(X). If K has a separating transcendence basis over F, then 

K is said to be separably generated over F. 

Example 20.16 Let K = F(x) be the rational function field in one vari-

able over a field F of characteristic p. Then {x} is a separating transcen-
dence basis for KIT'. However, {xP} is also a transcendence basis, but 
K/F(xP) is not separable. This example shows that even if  K/17  is sepa-
rably generated, not all transcendence bases of K/F are separating tran-
scendence bases. 

Example 20.17 If  K/17  is algebraic, then K is separable over F if and 
only if  K/1;1  is separably generated, so the definition of separably generated 
agrees with the definition of separable for algebraic extensions. 

We now prove the result that characterizes separability of arbitrary ex-
tensions. 

Theorem 20.18 Let K be a field extension of F. Then the following state-
ments are equivalent: 

1. Every finitely generated subextension of  K/17  is separably generated. 

2. The fi elds K and 1711Pc°  are linearly disjoint over F. 

3. The fields K and F'IP are linearly disjoint over F. 

Proof. (1) 	(2): To show that K and P/Pc°  are linearly disjoint over 
F, it suffices to assume that K is a finitely generated extension of F. By 
statement I, we know that K is separably generated over F, so there is 
a transcendence basis {t1,... , t}  of K/F for which K is separable over 
F(t i ,... , t).  By Example 20.11, the fields F(t i , , t)  and F I /Pc°  are 
linearly disjoint over F. Also, K and  F' °°  (t i ,. , tn ) are linearly dis-
joint over F(t i , , tn ) by Example 20.13, since F l /Pc° (t i , ,t) is purely 
inseparable over F(t i , 	, tn ) and K is separable over F(t 1 , 	, t n.). There- 
fore, by Theorem 20.12, the fields K and F 1 /Pc°  are linearly disjoint over 
F. 

(2) = (3): This is clear since Fl/P is a subfield of F'IPc°-  
(3) (1): Suppose that K and F I /P arc linearly disjoint over F. Let 

L = F(a i , 	, an ) be a finitely generated subextension of K. We use in- 
duction on n to show that {a l , 	an } contains a separating transcendence 
basis for L/F. The case n = 0 is clear, as is the case where  {a i ,. , an } is 
algebraically independent, since then {a l , 	, an } is a separating transcen- 
dence basis for L/F. We may then assume that n> 0 and that {a i , 	, a,„} 
is a transcendence basis for L/F, with m < n. The elements a l , 	, a„±i 



are algebraically dependent over F ,  so there is a nonzero polynomial 
f E F[x i ,... 7 xm+i] of least total degree with f (a i , ,am+i) = O. The 
assumption that f is chosen of least degree forces f to be irreducible. We 
first claim that f is not a polynomial in xPi , ... 7 xPm+/ . If f (x i , 	x m+i ) = 
g(4, 	,472+1 ) for some g E F[x i , ... 7 xm+1 ] 7  then there is an h E 

F 1 /P[x 17 . - 7 x,i+1] with f = h(xi,.. •7xm+i)P, since we are assuming 
that char(F) = p and every coefficient of g is a pth power in Fl /P. But 
this implies that h(ai,... 7 am+i ) = 0. Write h(x i ,... 7 xm+i )  

where the mj  are the monomials occurring in h and the aj  E Fl /P. Then 
E j  ajmi (ai, . • •7am+i) = 0, so the mi(ai,... 7 am+i ) are linearly depen- 

dent over Fl /P. However, since each mj  is a monomial in the x k , each 
mi (a i , ... am+i ) ELCK. The assumption that K and Ph' are linearly 
disjoint over F then forces the mi(a i , ..• am+i) to be linearly dependent 
over F. » a rn  +1 ) = 0 with {3i  E F, then h' =Ei  Oimi  is .7  
a polynomial with hi (a, 17 ... am+1 ) = 0 and deg(W) < deg(f). This con-
tradiction verifies our claim that f is not a polynomial in  x,...  

Therefore, for some i the polynomial f is not a polynomial in 4. Let 

q(t) - f (al,- • •7ai-i7t7ai+17• • •7am+i) 

	

E F[a 	.7ai-i7aid-17• • • 7 am±i ][t]. 

Then q(ai ) = 0, and q is not a polynomial in tP. If we can show that q is 
irreducible over M 7  then we will have proved that a i  is separable over M. 
To see this, the set fa i ,... 7 a i_i 7 ai+17 ... 7 am_F i l is a transcendence basis 
for L/F 7  so 

	

F[x i ,...,xm+i ] 	F[a,1 7 ...,ai_1 7 t7ai+1 7 • • •7am-i-i] 

= F[a i 7  • . • , ai-i7aid-17. • • 7a] [t] 

as rings. Under the map that sends aj  to x i  and t to x i , the polyno-
mial q is mapped to f. But f is irreducible over F 7  so q is irreducible 
in F[ai , -.7 ai-i 7ai+17• • • 7 am± ii[t]. By Gauss' lemma, this means that q 
is irreducible over M 7  the quotient field of F[a,17-7ai-i7aid-17• • .7am+1]. 
Thus, we have shown that a i  is separable over M 7  so a i  is separable over 

F(ai , ai_ 17 ai+17 ... 7 a Ti ). The induction hypothesis applied to L' 
gives us a subset of { a i ,... 7 ai_ i7 ai+17 ... a„} that is a separating tran-
scendence basis for L i /F. Since a i  is separable over L', this is also a sepa-
rating transcendence basis for LIF. El 

Definition 20.19 A field extension  K/1;1  is separable if char(F) = 0 or 
if char(F) = p > 0 and the conditions in Theorem 20.18 are satisfied; 
that is, K is separable if every finitely generated subextension of  K/1;1  is 
separably generated. 

We now give some immediate consequences of Theorem 20.18. 



Corollary 20.20 If K 	is separably ge7ierated, then A. I 1;1  is separable. 
Conversely, if  K/1;1  is separable and finitely generated, then  K/1;1  is sepa-
rably generated. 

Corollary 20.21 Suppose that K = F(at , 	,a„) is finitely generated and 
separable over F. Then there is a subset Y of {a i ,...  ,a}  that is a sepa-
rating transcendence basis of K F. 

Proof. This corollary is more accurately a consequence of the proof of (3) 
(1) in Theorem 20.18, since the argument of that step is to show that 

if K is finitely generated over F, then any finite generating set contains a 
separating transcendence basis. El 

Corollary 20.22 Let F be a perfect field. Then any finitely generated ex-
tension of F is separably generated. 

Proof. This follows immediately from part 3 of Theorem 20.18, since 
F if F is perfect. 

Corollary 20.23 Let FCECK be fields. 

1. If K IF is separable, then E I F is separable. 

2. If El F and K E are separable, then K IF is separable. 

3. If K IF is separable and E F is algebraic, then K E is separable. 

Proof. Part 1 is an immediate consequence of condition 2 of Theorem 
20.18. For part 2 we use Theorems 20.18 and 20.12. If EIF and KIE are 
separable, then E and  Fl/i)  are linearly disjoint over F, and K and Et/P 
are linearly disjoint over E. However, it follows from the definition that 
F 1/ c E l /P, so EF1 /P EVP. Thus, K and EF1 /P are linearly disjoint 
over E. Theorem 20.12 then shows that K and F I /P are linearly disjoint 
over F, so K is separable over F. 

To prove part 3, suppose that K/F is separable and E I F is algebraic. 
We know that E/F is separable by part 1. Let L = E(al ,... , an ) be a 
finitely generated subextension of K/E. If L' = F(a i , , an ), then by the 
separability of K/F there is a separating transcendence basis {t 1 ,...  , tr,2 } 
for L'IF. Because EIF is separable algebraic, EL' = L is separable over 
L', so by transitivity, L is separable over F(ti  , 	, tm ). Thus, L is separable 
over E(ti,. - • , tm), so {ti 	, tr,2 } is a separating transcendence basis for 
L/E. We have shown that L/E is separably generated for every finitely 
generated subextension of KIE, which proves that K/E is separable. El 

Example 20.24 Let F be a field of characteristic p, let K = F(x), the 
rational function field in one variable over F, and let E= F(xP). Then KIF 
is separable, but K/E is not separable. This example shows the necessity 
for the assumption that E/F be algebraic in the previous corollary. 



Luiip1u 20.25 ink.; is au example oi 	-,t•paruble extension that IS  tiot 
separably generated. Let F be a held of characteristic p, let x be tran-

scendental over F, and let K = F(x)({x i /Pn  : rt >  1 }). Then K is the 
union of the fields F(xl/P"), each of which is purely transcendental over 
P, and het ice is separably generated. Any finitely generated subextension 
E is a subfield of F(xl/P') for some n and hence is separably generated 
over F by the previous corollary. Therefore, K/F is separable. But K is 
not separably generated over F, since given any f E K, there is an n with 
f E F(xlIPh ), so K/F(f) is not separable, since K/F(x l /P") is a nontrivial 
purely inseparable extension. 

Problems 

1. liet f» be a field. Show that every field extension of P is separable if 
and only if F is perfect. 

2. Let {x, y} be algebraically independent over F. Show that F(x) and 
F(y) are linearly disjoint over F. 

3. Let F be a perfect fi eld, and let K/F be a field extension of tran-
scendence degree 1. If K is not perfect, show that K/F is separably 
generated. 
(Note: The field K of Example 20.25 is perfect.) 

4. Let F be a field, and let Fa, be an algebraic closure of F. Then the 
perfect closure of F is the smallest subfield of Fac  containing F that 
is perfect. Show that F I /Pc°  is the perfect closure of F. 

5. Prove or disprove: Let K be a finite extension of F, and let L be a 
field extension of F such that K and L are linearly disjoint over F. If 
N is the normal closure of K/F, then N and L are linearly disjoint 
over F. 

6. Let K and L be two field extensions of F. Show that there is a field 
extension C of F that contains F-isomorphic copies of both K and 
L. 

7. Let K and L be extensions of a field F. Then K and L are said to 
be free over F if every subset of K that is algebraically independent 

over F is also algebraically independent over L. 

(a) Show that this definition is symmetric; that is, show that K and 
L are free over F if and only if L and K are free over F. 

(b) Show that there exists a field extension M of F that contains 
F-isomorphic copies K' and L' of K and L, respectively, such 
that (1) M is the composite of K' and L' and (ii) K' and L' are 
free over F. 
(The field M is called the free join of K and L over F.) 



8. Let K and L be extensions of a field F. if K and L are linearly 
disjoint over F ,  show that K and L are free over F. Give an example 
to show that the converse is false. 

9. Let K be a separable extension of F. If L is an extension of F, show 
that KLIL is separable, provided that K and L are free over F. Give 
an example to show that this can be false if K and L are not free 
over F. 

10. Let K/F and L/F be separable extensions. Show that KLIF is sep-
arable, provided that K and L are free over F. Give an example to 
show this eau be false if K and L are not free over F. 

21 Algebraic Varieties 

Field extensions that are finitely generated but not algebraic arise naturally 
in algebraic geometry. In this section, we discuss some of the basic ideas of 
algebraic geometry, and in Section 22 we describe the connection between 
varieties and finitely generated field extensions. 

Let k be a field, and let f E k[x i ,... ,x n ] be a polynomial in the n 
variables x 1  , . . x n . Then f can be viewed as a function from k n  to k in the 
obvious way; if P =  (al , an ) E k n  , we will write f (P) for f (al> an). 
It is possible for two different polynomials to yield the same function on k n  
For instance, if k = IF2 , then X 2  — X is the zero function on k l , although it is 
not the zero polynomial. However, if k is infinite, then f Ek[x l ,...,x„] is 
the zero function on k n  if and only if f is the zero polynomial (see Problem 
1 

Definition 21.1 Let k be a field, and let C be an algebraically closed field 
containing k. If S is a subset of k[x l ,... ,x n ], then the zero set of S is 

Z(S) = {(a i ,..., an ) E Cn : f (a l , ..., an ) = 0 for all f E  S}.  

Definition 21.2 Let k be a field, and let C be an algebraically closed field 
containing k. Then a set V C Cn is said to be a k-variety if V = Z(S) for 
some set S of polynomials in k[x i ,...,x rd. The set 

V(k) = {P e k n  : f (P) = 0 for all f E 

is called the set of k-rational points of V. 

Before looking at a number of examples, we look more closely at the 
definitions above. The reason for working in Cn instead of k n  is that a 
polynomial f E k[x , ,x n j may not have a zero in kn but, as we shall 
see below, f does have zeros in Cu'.  For example, if f = x 2  + y2  +1 e R[x y], 



then f has no zeros in R2 , while f has the zeros (0, ±i), among others, in 
C 2 . Classical algebraic geometry is concerned with polynomials over C. On 
the other hand, zeros of polynomials over a number field are of concern 
in algebraic number theory. Working with polynomials over a field k but 
looking at zeros inside Cn allows one to handle both of these situations 
simultaneously. 

We now look at some examples of varieties. The pictures below show the 
R-rational points of the given varieties. 

Example 21.3 Let f(x,y) = y — x 2 . Then Z(f) = {(a,a2 ) : a E C}, a 
k-variety for any k C C. 

Example 21.4 Let f (x , y) = y2  — (x 3  — x). Then Z(f) is a k-variety for 
any k C C. This variety is an example of an elliptic curve, a class of curves 
of great importance in number theory. 

Example 21.5 Let f(x, y) = xn + yn — 1 E Q[x, yi, the Fermat curve. 
Fermat's last theorem states that if V = Z(f) and n > 3, then V has no 
Q-rational points other than the "trivial points," when either x = 0 or 

y = O. 

Example 21.6 Let V = {(t2 , t 3 ) : t E C}. Then V is the k-variety Z(y 2  — 
x 3 ). The description of V as the set of points of the form (t 2 , t 3 ) is called 
a parameterization of V. We will see a connection between parameterizing 
varieties and field extensions in Section 22. 



Example 21.7 Let 1.` — (I ,  L',  1 5 ) : L e  C}.  The,it V is a k-variety, since 
V is the zero set of {y 2  — xz, z 2  — x 2 y}. To verify this, note that each 
point of V does satisfy these two polynomials. Conversely, suppose that 
(a, b, c) E C3  is a zero of these three polynomials. If a = 0, then a quick 
check of the polynomials shows that b c = 0, so (a, b, c) E V. If a 0, 
then define t = bla. From 5 2  = ac, we see that c = t 2 a. Finally, the equation 
c2  = a- 2 b yields t 4 a2  = a3 t, so a = t 3 . Thus, (a,  b,  c) =  (t 3 , t4 ,  t 5 ) E V. 

Example 21.8 Let Sn =  { (a i ,  , an ) E Cn : E in_ i a  =  i}.  Then V = 
Z(-1 + E7,2 4), so -17 is a k-variety. 

Example 21.9 Let V be a C-vector subspace of Cn. We can find a matrix 
A such that V is the nullspace of A. If A = (ctii), then a point (a 1 , , a„) 
is in V if and only if Ej j ai = 0 for each i. Thus, V is the zero set of 
the set of linear polynomials Ei c jj x ,  so V is a C-variety. If each ct ii  lies 
in a subfiekl k, then V is a k-variety. 

Example 21.10 Let  SL(C) be the set of all n x n matrices over C of 

determinant 1. We view the set of all n x n matrices over C as the set Cn 2  
of n2-tuples over C. The determinant clet = clet(x ii ) is a polynomial in the 
n2  variables xii , and the coefficients of the determinant polynomial are ±L 
We then see that  SL(C) = Z(clet —1) is a k-variety for any subfiekl k of 
C. For instance, if n = 2, then 

SL2(C) = (a, b, c, d) E  C4 :  ad — bc — = 0} . 

We can define a topology on Cn, the k-Zariski topology, by defining a 
subset of Cn to be closed if it is a k-variety. The following lemma shows 
that this does indeed define a topology on  C.  Some of the problems below 
go into more detail about the k-Zariski topology. 

Lemma 21.11 The sets {Z(S):  Sc  k[xl,...,x n j} are the closed sets of 
a topology on Cn; that is, 

1. Ca  = Z ({0}) and 0 = Z({1}). 

2. If S and T are subsets of k[x i ,...,x n j, then Z(S) U Z(T) = Z(ST), 
where ST = {f g : f E S,t ET}. 

3. If {S} is an arbitrary collection of subsets of k[a: 1 , 	, x,j, then 

nc,Z(S,)= Z(U c,Sa). 

Proof. The first two parts are clear from the definitions. For the third, let 
P E Z(S). Then f (P) = 0 for all f E S, so (fg)(P) = 0 for all  fg  E ST. 
Thus, Z(S) C Z(ST). Similarly, Z(T) C Z(ST), so Z(S)UZ(T) C Z(ST). 
For the reverse inclusion, let P E Z(ST). If P Z (S), then there is an 



f E  5  with PI') ,L O. If g E T, then 0 = (f O (P ) 	f(P)g(P), so g(P)= 0, 
which forces P E Z(T). Thus, Z(ST) C Z(S) U Z(T). This proves that 
Z(S) U Z(T) = Z(ST). 

For the fourth part, the inclusion Z(L Sa) C na  z (sa)  follows from 
part 1. For the reverse inclusion, take P E na  z (sŒ) . Then P E Z(Sa ) for 
each a, so f(P) = 0 for each f E  S.  Thus, P E Z(L S„). Lii  

Example 21.12 Let  CL(C) be the set of all invertible nxn matrices over 
C. Then GL y,(C) is the complement of the zero set Z(clet), so  CL(C) is 

an open subset of  C2  respect to the k-Zariski topology. We can view 
CL(C) differently in order to view it as an algebraic variety. Let t be a 

new variable, and consider the zero set Z(t clet —1) in Cn 2 + 1 . Then the map 
CL(C) Z(t det —1) given by P (P, 1/ clet(P)) is a bijection between 
GL n (C) and Z(t clet —1). If we introduce the definition of a morphism of 
varieties, this map would turn out to be an isomorphism. In Problem 10, 
we give the definition of a morphism between varieties. 

Starting with an ideal I of k[x i , 	, x„1, we obtain a k-variety Z(/). We 
can reverse this process and obtain an ideal from a k-variety. 

Definition 21.13 Let V C  C".  The ideal of V is 

I(V) = {f E k[xi,... ,x nj f(P) = 0 for all P E V} . 

The coordinate ring of V is the ring k[V] = k[x l ,... ,x1/I(V). 

If f E k[xl, 	, x n ] and V C Cri, then f can be viewed as a function 
from V to k. Two polynomials f and g yield the same polynomial function 
on V if and only if f — g E I(V); hence, we see that k[V] can be thought 
of as the ring of polynomial functions on V. 

One of the main techniques of algebraic geometry is to translate back 
and forth from geometric properties of varieties to algebraic properties of 
their coordinate rings. We state Hilbert's Nullstellensatz below, the most 
fundamental result that connects the geometry of varieties with the algebra 
of polynomial rings. 

Let A be a commutative ring, and let I be an ideal of A. Then the radical 
of I is the ideal 

VI={fEA:frEfforsomerEN} . 

If I =  Ï,  then I is said to be a radical ideal. A standard result of com-
mutative ring theory is that fi is the intersection of all prime ideals of A 
containing T (see Problem 2). 

Lemma 21.14 If V is any subset of Cn, then I(V) is a radical ideal of 



Proof. Let f E krxi,... ,x n ] with fr E I(V) for some r. Then fr(P) = 0 
for all P E V. But fr.  (P) = (f(P))r  so f (P) = O. Therefore, f E I(V); 
hence, .T(V) is equal to its radical, so /(V) is a radical ideal. 

Lemma 21.15 The following statements are some properties of ideals of 
subsets of Cn 

1. If X and Y are subsets of Cn with X C  Y, then I(Y) C I(X). 

2. If J is a subset of k[x i ,... ,x„1, then J C I(Z(J)). 

3. If V c 6"', then V C Z(I(V)), and V = Z(I(V)) if and only if V is 
a k-variety. 

Proof. The first two parts of the lemma are clear from the definition of 
I(V). For the third, let V be a subset of  C.  lf f E I(V), then f(P) = 0 for 
all P E V, so P E Z(I(V)), which shows that V C Z(/(V)). Suppose that 
V = Z(S) for some subset S E k[x , , x 7j. Then S C I(V), so Z(/(V)) C 

Z(S) = V by the previous lemma. Thus, V = Z(/(V)). Conversely, if 
V = Z(/(V)), then V is a k-variety by definition.  Lii  

In the lemma above, if J is an ideal of k[x 1, . ,x],  we have J C I(Z(J)), 
and actually C I(Z(J)), since /(Z(J)) is a radical ideal. The following 
theorem, Hilbert':.-; Nullstellensatz, shows that T(Z(J)) is always equal to 

Theorem 21.16 (Nullstellensatz) Let J be an ideal of k[x i , • • ,xn], 
and let V = Z(J). Then I(V) = 

Proof. For a proof of the Nullstellensatz, see Atiyah and Macdonald [2, p. 
85] or Kunz [19, p. 16]. 

Corollary 21.17 There is a 1-1 inclusion reversing correspondence be- 
tween the k-varieties 	Cn and the radical ideals of 14 1 , 	,x ? „] gmen by 
V /-4  1(V). The inVeTSC correspondence is given by J 	Z 

Proof. If V is a k-variety, then the previous lemma shows that V = 
Z(I(V)). Also, the Nullstellensatz shows that if I is a radical ideal, then 
J = I(Z(J)). These two formulas tell us that the association V 1-4 I(V) is 
a bijection and that its inverse is given by J Z(J). 111 

Another consequence of the Nullstellensatz is that any proper ideal de-
fines a nonempty variety. Suppose that / is a proper ideal of k[xi, . • • , xn]. 
If V = Z(J), then the Nullstellensatz shows that I(V) = J. Since J is 
a proper ideal, the radical is also proper. However, if Z(J) = 0, then 

1 (2(J)) = k[x 	, x„]. Thus, Z(J) is nonempty. 
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Example 21.18 Let f E k[x i ,... ,x 71 ] be a polynomial, and let V = Z(f).  
If f = Al • -ptrt is the irreducible factorization of f, then /(V) = 

by the Nullstellensatz. However, we show that -V(f) = (pi - Pt) for, if 

g E Of), then gm = fh for some h E k[x i , ,x]  and some in > O. Each 

pi  then divides gm; hence, each  pi  divides g. Thus, g E (p i  • • • Pt ). For the 
reverse inclusion, p i  • • • pt  E V(f), since if r is the maximum of the r i , then 

(Pi' 	E (f). 
If f E 	,x n ] is irreducible, then Of) = (f), so the coordinate 

ring of Z(f) is k[x l  , 	, x]/(f). For example, the coordinate ring of Z(y — 
x 2 ) C C2  is k[x, y]/(y —x 2 ). This ring is isomorphic to the polynomial ring 
k[t]. Similarly, the coordinate ring of Z(y 2  — x 3 ) is k[x, W(y 2  — x 3 ). This 
ring is isomorphic to the subring k[t 2 , t 3 ] of the polynomial ring k[t]; an 
isomorphism is given by sending x to t 2  and y to t 3 . 

Definition 21.19 Let V be a k-variety. Then V is said to be irreducible 
if V is not the union of two proper k-varieties. 

Every k-variety can be written as a finite union of irreducible subvarieties, 
as Problem 7 shows. This fact reduces many questions about varieties to 
the case of irreducible varieties. 

Example 21.20 Let V be an irreducible k-variety. By taking comple-
ments, we see that the definition  of irreducibility is equivalent to the con-
dition that any two nonempty open sets have a nonempty intersection. 
Therefore, if U and U' are nonempty open subsets of V, then U n U' 0. 
One consequence of this fact is that any nonempty open subset of V is 
dense in V, as we now prove. If U is a nonempty open subset of V, and if 
C is the closure of U in V, then U n (V - 61) = 0. The set V — C is open, 
so one of U or V — C is empty. Since U is nonempty, this forces V — C = 0, 
so C = V. But then the closure of U in V is all of V, so U is dense in 
V. This unusual fact about the Zariski topology is used often in algebraic 
geometry. 

Proposition 21.21 Let V be a k-variety. Then V is irreducible if and 
only if  1(V) is a prime ideal, if and only if the coordinate ring k[V] is an 
integral domain. 

Proof. First suppose that V is irreducible. Let  f, g E k[x i ,..., x n ] with 
fg  E I(V). Then I = I(V) 	(f) and J =  1(V) ± (g) are ideals 
of k[x i , 	x n ] containing 1(V); hence, their zero sets Y = Z(/) and 
Z = Z(J) are contained in Z(/(V)) = V. Moreover, I J C I(V), since 
fg EI(V), so Y UZ=Z(IJ) contains V. This forces V = Y U Z, so either 
Y = V or Z = V, since V is irreducible. If Y = V, then I c /(Y) = I(V), 
and if Z = V, then J C 1(Z) = 1(V). Thus, either f E I(V) or g E  1(V), 
so (V) is a prime ideal of k[xi, ,x]. 



Conversely, suppose  that (V) is prime. Cf V = YUZ for sonic k-varieties 
Y and Z, let / = /(Y) and J = I(Z). Then IJ C I(YUZ) = /(V), so either 
/ C /(V) or J C I(V). This means that V C Z(/) = Y or V C Z(J) = Z. 
Therefore, Y = V or Z = V, so V is irreducible.  Lii  

In Section 22, we will obtain finitely generated field extensions by con-
sidering the quotient field of the coordinate ring of an irreducible k-variety 
as an extension of k. We finish this section with a brief discussion of the 
dimension of a variety. In Theorem 22.5, we will see that the dimension of 
an irreducible variety V is equal to the transcendence degree over k of the 
quotient field of k[V1. 

Definition 21.22 Let V be a k-variety. Then the dimension of V, denoted 
clim(V), is the largest integer n such that there is a chain 

Yo C Y 1 c 	YC V 

of irreducible k-subvarieties of  V.  

While it is not obvious, there is indeed a maximum among the lengths 
of chains of irreducible subvarieties of any variety. This is a consequence of 
Theorem 22.5. In fact, if V C Cn, then dim(V) < n. 

The definition above is purely topological. However, the dimension of a 
k-variety can be determined with purely algebraic methods. One way to 

determine the dimension of a k-variety is given in the proposition below. 

Proposition 21.23 Let V be a k-variety. Then  dim(V) is the maximum 
nonnegative integer n such that there is a chain 

P0 c P1 c • • • c 

of prime ideals of k['17]. 

Proof. Suppose that Yo  c Y1  C 	C Yn  C V is a chain of closed irre- 
ducible subsets of V. Then 

I(y) c I(Y) c 	c  1 (1/0) 

is a chain of prime ideals of k[x , 	, x n j by the previous proposition. More- 

over, the inclusions are proper by the Nullstellensatz. By taking images in 

the quotient ring k[V] = k[x 1, , x]/I(V), we get a chain of prime ideals 

of length n. However, if we have a chain of prime ideals of k[V] of length 
n, then we get a chain /(V) C Q o  C Q1 C ••• C Qn  of prime ideals of 
k[x i , ,x 7 ]. Taking zero sets gives a chain 

Z (Q n ) C • • • C Z (Q 0 ) C Z (I(V)) = V 



of irreducible k-subvarieties in V. The maximum length of a chain of irre-
ducible k-subvarieties of V is then the maximum length of a chain of prime 
ideals of k[V1. 

If A is a commutative ring, then the supremum of integers n such that 
there is a chain of prime ideals of A of length n is called the dimension 
of A. The proposition says that dim(V) = dim(k[V]) if V is a k-variety. 
Calculating the dimension of a k-variety by either the definition or by use 
of the proposition above is not easy. Instead, we will use Theorem 22.5 to 
calculate the dimension of a variety. 

Problems 

1. Let k be an infinite field. If f c k[x l ,... ,x n ] with f(P) = 0 for all 
FEkn , show that f = 0 in k[x ] 	, x].  

2. Let A be a commutative ring, and let I be an ideal of A. Show that 
is the intersection of all prime ideals of A containing I.  

(Hint: One inclusion is easy. For the other inclusion, show that if S 
is a multiplicatively closed subset of A, and P is an ideal maximal 
among all ideals J with J n S =  0,  then P is prime.) 

3. Let W be a subset of  C.  If W is the closure of W in the k-Zariski 
topology on Cn, show that W = Z(/(W)). 

4. Use the Nullstellensatz to show that if C is algebraically closed, then 
every maximal ideal of C[xi,... ,xn j is of the form (x 1  — al, .. • , xn — 
an ) for some ai  E C. 

5. A topological space V is said to be Noetherian if V satisfies the 
accending chain condition (ACC) on open subsets: If  U1  C U2 C • • • 

is an increasing chain of open subsets of V, then there is an n with 

Un  = Un +,• for each r > O. Show that the following statements are 
equivalent: 

(a) The space V is a Noetherian space. 

(b) Any nonempty collection MI- of open subsets of V has a maxi-
mal element; that is, there is a U  E {Ua } not properly contained 
in any other element of {17,}. 

(c) The space V satisfies the descending chain condition (DCC) on 
closed sets: If C1 9 C2 • is a decreasing chain of closed subsets 
of V, then there is an n with Cn  = Cn+, for each r > 1. 

6. Let V be a topological space. Show that V is a Noetherian space if 

and only if every open subset of V is compact. 

7. Let V be a Noetherian topological space. 
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(a) Show that V can be written as a finite union of closed irreducible 

subsets.  

(b) Suppose that V =  Y1 U • • U Yn  with each Yi a closed irreducible 

	

subset of V. If Yi g Yi  for each i 	j,  show that the Yi are 
uniquely determined by this decomposition for V. 

	

8. The Hilbert basis theorem says that k[x i , 	, x id is a Noetherian ring; 

	

that is, k[x l , 	, x n j satisfies the ACC on ideals. 

(a) Show that the Hilbert basis theorem implies that Cn is a 
Noetherian space. 

(b) Show that the quotient ring of a Noetherian ring is also Noethe-
rian, and conclude that any k-variety is a Noetherian space. 

9. Let V be a k-variety of dimension 1. Show that any proper closed 
subset of V is finite. 
(Hint: Show that any proper closed irreducible subset of V is a single 
point. Use the previous problems that show that a k-variety can be 
decomposed into closed irreducible subsets.) 

10. Let V C Cn and W C Cm be k-varieties. If 	, f, E k[xi, • • • ,xn], 
then the map y:  V —4 W defined by  y(P) = (fi(P), • • • , fm(P)) is 
called a k -morphism. A k-isomorphism from V to W is a k-morphism 
whose inverse function is also a k-morphism. Two varieties are said 
to be k-isomorphic if there is a k-isomorphism from one to the other. 

(a) If y : V —4 W is a k-morphism, show that there is a k-algebra 
map y* : k[W] 	k[V] induced by sending yi  to fi, if k[W] = 
k[Yi,...,Ym1//(W). 

(b) Conversely, suppose that -7-  : k[W] 	k[V] is a k-algebra map. 
Use -7-  to define a k-morphism yi from V to W. 

(c) If  ço: V —4 W is a k-inorphism, show that (y*) /  =  y, and if 

	

: k[W] 	k [V] is a k-algebra map, show that (y1 )* = T. 

(d) Conclude that V and W are k-isomorphic if and only if k[V] and 
k[W] are isomorphic as k-algebras. 

(A k-algebra map is a ring homomorphism that is simultaneously a 
k-vector space hornornorphism.) 

11. Show that a morphism between two k-varieties is a continuous map 
relative to the k-Zariski topology. 

12. Let V be the k-variety C I , and let W be the k-variety Z(y 2  — x 3 ). 
Show that the map y : V —4 W given by  y(t) =  (t 2 ,  t3 ) is a k-

morphism that is a bijection and where the inverse function ça-1  is 
continuous but that y is not a k-isomorphism. 
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22 Algebraic Function Fields 

In this section, we study one of the most important classes of field exten-
sions, those arising from algebraic geometry. We will continue to use the 
notation defined in Section 21. The point of this section is to show how field 
theoretic information can be used to obtain geometric information about 
varieties. 

Definition 22.1 Let V be an irreducible k-variety. Then the function field 
k(V) of V is the quotient field of the coordinate ring k[V]. 

This definition is meaningful because if V is irreducible, then 1 (V) is 
a prime ideal, so k[V] = k[x i ,... ,x n ]//(V) is an integral domain. The 
function field k(V) of a variety V can be viewed as a field of functions on 
V in the following way. Each f E k[V] is a polynomial function from V to 
C. A quotient f I g of elements of k[V] then defines a function from V— Z(g) 
to C. Now, V — Z(g) is an open subset of V; hence, it is a dense subset of 
V. The elements of k(V) are then rational functions defined on an open, 
dense subset of V; the density follows by Example 21.20. 

Example 22.2 Let V = Z(y — x 2 ). Then the coordinate ring of V is 
k[x, y]/(y — x 2 ), which is isomorphic to the polynomial ring k[t] by sending 
t to the coset of x in k[V]. Therefore, the function field of V is the rational 
function field k(t). 

Example 22.3 Let V = Z(y 2  — x 3 ). Then k(V) is the field k(s, t), where 
s and t are the images of x and y in k[V] = k[x, y]/(y 2  — x 3 ), respectively. 
Note that t 2  = 53 . Let z = t/s. Substituting this equation into t 2  = 53 
and simplifying shows that s = z 2 , and so t = z3 . Thus, k(V) = k(z). The 
element z is transcendental over k, since if  k(V)/k is algebraic, then k[V] 
is a field by the argument in Example 19.11, so (y 2 — x 3 ) is a maximal ideal 
of k[x, y]. However, this is not true, since (y 2  — x 3 ) is properly contained in 
the ideal (x, y). Thus, k(V) is a rational function field in one variable over 
k. Note that  k[V] is isomorphic to k[x 2 , x 3 ], a ring that is not isomorphic 
to a polynomial ring in one variable over k. 

Example 22.4 If V is an irreducible k-variety, then V gives rise to a field 
extension k(V) of k. We can reverse this construction. Let K be a finitely 
generated field extension of k. Say K = k(ai  , 	, an ) for some ai E  K.  Let 

P = 	E k[xi,. • • ,xn] f(a i ,... , an ) =  0}.  

Then P is the kernel of the ring homomorphism cio : k[x i , 	, xn ] 	K 
that sends xi to ai , so P is a prime ideal. If V = Z(P), then V is an 
irreducible k-variety with coordinate ring k[x i , .. • ,xnJ/P 	k[ai, • • • , an}, 



so the function field of V is K.  Note that if we start with an irreducible k-
variety V and let K = k(V), then the variety we get from this construction 
may not be V. Therefore, the processes of obtaining field extensions from 
varieties and vice versa are not inverses of each other. 

The next theorem gives the most useful method for computing the di-
mension of a variety. We do not give the proof, since this would go past 
the interests of this book. The interested reader can find a proof in Kunz 
[19, §3, Prop. 3.11]. 

Theorem 22.5 Let V be an irreducible k-variety. Then the dimension of 
V is equal to the transcendence degree of  k(V)/k. 

Example 22.6 The dimension of the k-variety Cn is n, since the function 
field of C72  is k(x i ,... , x 7 ), which has transcendence degree n over k. 

Example 22.7 If V = Z(y — x 2 ), then  k[V] = k[x, y]/(y — x 2 )'"=J k[x], so 
k(V)'"=J k(x) has transcendence degree 1 over k. Thus, dim(V) = 1. More 
generally, if f (x, y) is any irreducible polynomial in k[x, y] and V = Z(f), 
then k[V] = k[x , ( f ) = k[s , t] , where s and t are the images in  k[V] of x 
and y, respectively. Therefore, k(V) = k(s,t). The set {s, t} is algebraically 
dependent over k, since f (s,t) O. However, s or t is transcendental over 
k, for if s is algebraic over k, then there is a g E k[x] with g(s) = O. Viewing 
g(x) as a polynomial in x and y, we see that g E  1(V) = (f). Similarly, if 
t is algebraic over k, then there is an h(y) E k[y] with h E (f). These two 
inclusions are impossible, since g(x) and h(y) are relatively prime. This 
proves that either {s} or {t} is a transcendence basis for k(V), so k(V) has 
transcendence degree 1 over k. 

Example 22.8 Let f E k[x i ,..,, x n ] be an irreducible polynomial and set 
V = Z(f). Then  dim(V) = n — 1. To see this, we showed in Example 
19.12 that the quotient field of k[xi, , x n]/(f ) has transcendence degree 
n — 1 over k. But, this quotient field is the function field k(V) of V. Thus, 
Theorem 22.5 shows that dim(V) = n — 1. Note that the argument in the 
previous example is mostly a repeat of that given in Example 19.12 in the 
case of two variables. 

We now give some properties of the function field of an irreducible variety. 

We first need two definitions. If Klk is a field extension, then K is a regular 
extension of k provided that K/k is separable and k is algebraically closed 
in K. If P is a prime ideal of k[x l ,... xn ], then P is absolutely prime if 
for any field extension L/k the ideal generated by P in L[x i , , xn ] is a 
prime ideal. 

Example 22.9 Let P be an absolutely prime ideal of k[x i  , 	, x n ], and let 
V = Z(P)• Let L be any field extension of k contained in C. Then we can 



view V as an L-variety. The coordinate ring of V considered as an L-variety 
is L[x l , 	,x„]//, where I is the ideal of V computed in L[x 	,xn ] . The 
ideal I contains P, so I contains the ideal generated by P in L[xl, • • • ,xn]. 

Since P is absolutely prime, the Nullstellensatz tells us that I is the ideal 
generated by P. Consequently, V is irreducible as an L-variety. 

If k = R and P = (x2  + y2 ) E R[x,y], then V = Z(P) is an irreducible 
Ill-variety hut V is not irreducible as a C-variety, since the ideal of V in 
C[x,y] is (x 2  y2 ) = (x iy)(x — iy). 

Theorem 22.10 Let V be an irreducible k-variety. Then k(V) is a finitely 
generated extension of k. Moreover, k(V)/k is a regular extension if I(V) 
is absolutely prime. 

Proof. The field k(V) is the quotient field of k[V]  
The ring k[V] is generated over k as a ring by the images of the x i , so k(V) 
is generated as a field extension over k by the images of the xi. This proves 
that k(V) is a finitely generated extension of k. 

Suppose that I(V) is absolutely prime. We need to show that  k(V)/k is 
separable and that k is algebraically closed in k(V). For this, we first show 
that if L is any extension of k, then k(V) and L are linearly disjoint over 
k. To see this, note that 

k[V] Ok L 	L[xi, • • ,x]/Q, 	
L 

where Q = I(V)L[x i ,...,x n ]. This isomorphism is given on generators by 
(f I(V)) 0 1 	fl + Q. The ring L[x i ,... , x n]/Q contains an isomorphic 
copy of k[V] = k[x i ,... ,x]/I(V), and it is the ring generated by L and 
this copy of k[V]. By the assumption that I(V) is absolutely prime, Q is 
a prime ideal, so L[x i ,...,x n ]IQ is a domain. If K is the quotient field of 
this domain, there are isomorphic copies of k[V] and L inside K, and the 
tensor product k[V] Ok L is isomorphic to a subring of K. Therefore, k[V] 
and L are linearly disjoint over k, so k(V) and L are linearly disjoint over 
k by Lemma 20.10. To see that k(V) is separable over k, set L = 
From what we have shown, k(V) and k l /P are linearly disjoint, so k(V) 
is separable over k. Let k' be the algebraic closure of k in k(V). By setting 
L = k', since k(V) and k' are linearly disjoint over k, it follows that k' and 
k' are linearly disjoint over k, so k' = k. Thus, k is algebraically closed in 
k(V). This finishes the proof that k(V) is a regular extension of k. 	El 

Corollary 22.11 Let f E k[xi,..., x n ] be an absolutely irreducible poly-
nomial. If V = Z(f), then V is an irreducible k-variety, and k(V) is a 
regular extension of k. 

Proof. Since f is irreducible in k[x i ,... , x.], the principal ideal (f) is 
prime; hence, I(V) = (f) is prime. Thus, V is an irreducible k-variety. 
Moreover, (f) is absolutely prime, since f is absolutely irreducible. By the 
previous theorem, k(V) is a regular extension of k. 
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Example 22.12 Let f = y 2  — (x 3  — x) and V = Z(f). If L/k is any field 
extension, then f is irreducible in L[x, yj, since X 3  - X is not a square in 
L[x]. Therefore, k(V) is a regular extension of k. 

Example 22.13 If f = X 2  ± y 2  E R[x, y] and V = Z(f), then f is irre-
ducible over R, but f is not irreducible over C, since f = (x iy)(x — iy). 
The field extension R(V)/R is therefore not regular. This extension is sep-
arable, since char(R) = O. In R(V), we have x 2  + y 2  = 0, so (x/y) 2  = —1. 
Thus, C is a subfield of R(V), which shows that R is not algebraically closed 
in R(V). 

A natural question to ask is what geometric information about a vari-
ety can be determined from field theoretic information about its function 
field. Problem 6 below investigates one aspect of this question. We now 
investigate another. 

Definition 22.14 An irreducible k-variety V is said to be rational if k(V) 
is a purely transcendental extension of k. 

Recall that a purely transcendental extension wit Ii finite transcendence 
degree is often called a rational extension. Thus, a k-variety V is ratio-
nal if k(V)/k is a rational extension. A fundamental problem of algebraic 
geometry is to determine when a variety is rational. The problem of ratio-
nality has a more geometric formulation. Recall from vector calculus that 
a curve in IR 2  can be parameterized in the form x = f (t) and y  
where f and g are real-valued functions; that is, the curve consists of the 
points (Pt), g(t)) as t ranges over R. The functions f and g can be com-
pletely general, and even with a curve defined by polynomial equations, 
the functions f and g may be transcendental. For example, the most com-
mon parameterization of the unit circle is x = cos t and y = sin t. In the 
case of algebraic varieties, we are interested in parameterizations involving 
polynomial or rational functions. 

Example 22.15 Let V be the zero set of X 2  ± y2  — 1, an irreducible k-
variety in C2 . As noted above, if k = R, then the curve V has a transcen-
dental parameterization. We wish to find a parameterization of V in terms 
of rational functions. We can do this as follows. 

( - 1, 0) 
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Pick a point on V, for instance P = (-1,0). For a point (x, y) on V, let 

t be the slope of the line connecting these two points. Then t y/(x ± 1). 
If we solve for y and substitute into the equation x 2  + y2  — 1 = 0, we can 

solve for x in terms of t. Doing this, we see that 

2t 
Y = 	 1 + t2•  

Moreover, we can reverse this calculation to show that 

1/1 +— tt22, 1 +2to) 
 t E C, t2 — 1} = V —  {P},  

for, given (x, y) E V with (x, y) 	(-1,0), solving for t in the equation 

(1 — t 2 )/ (1 + t) = x 

yields 
Ii — x x 

t = ±
\  

1+ x 

which are elements of C, since 1+ x 0 and C is algebraically closed, so C 
contains a square root of any element. With either of these values of t, we 
see that 201+ t2 ) t(1 +x), and we can check that x 2 + (t(1 + x)) 2  = 1; 
hence, y = 201+ t 2 ) if the sign of the square root is chosen appropriately. 
So, this parameterization of V picks up all but one point of V. There is no 
value of t that yields the point P. Intuitively, we would need t =  oc  to get 
x = —1 and y = 0. Starting with any point Q on the curve and following 
this procedure will yield a parameterization of V — {Q}. 

Example 22.16 For another example of a parameterization, let Y = 
Z(y 2  — x 3 ). If we start with the point (0,0) and follow the procedure of 
Example 22.15, we obtain the parameterization x = t 2  and y = t3  given in 
Example 21.6. With this parameterization, we get all points of Y; that is, 

Y = {(t 2 ,t3 ) : t E C} . 

Not every algebraic curve can be parameterized with rational functions. 
To give an intuitive feel for why this is true, let V be the zero set of 
y 2  — (x 3  — x). Pick P = (0,0) on V. If we follow the procedure above, we 
would get t= y/x, or y = tx. Substituting this into the equation y2  = x 3 —x 
yields t 2 x 2  = x 3  — x, or x 2  — t 2 x — 1 = 0. This has the two solutions 

t2  ±-Vt2  + 4 
x = 	 

2 

neither of which are rational functions in t. While this does not prove that 
Y cannot be parameterized, it does indicate that Y is more complicated 

1 - t 2  
x = 

1+ t2 '  



than the two previous examples. In Proposition 22.18, we show that an 
irreducible curve V can be parameterized if and only if the function Field 
k(V) is rational over k. A proof that C(V)/C is not rational if V = Z(y 2  — 
X 3  ± X) is outlined in Problem 23.6. It is nontrivial to show that, a field 
extension K/F is not rational when F is algebraically closed. If F is not 
algebraically closed, then it is easier to prove that an extension of F is not 
rational, as can be seen in Problems 1 and 4. 

We now relate the concept of parameterization to that of rationality. We 
make precise what it means to parameterize a variety. We will restrict to 
curves. An algebraic variety of dimension 1 is said to be a curve. 

Definition 22.17 Let V C V' be a curve defined over k. Then V can 
be parameterized if there are rational functions f i (t) E k(t) such that 
{(f i (t),... , f n (t)) : t E 01 } is a dense subset of V with respect to the k-
Zariski topology. 

From Theorem 22.5, the function field of a curve defined over a Field 
k has transcendence degree 1 over k. We could define what it means to 
parameterize a variety of dimension greater than 1, although we will not 
do so. 

To clarify the definition above, if f(t) is a rational function, say f(t) 
g(t)/h(t) with g,  h E k[t]. Then f (a) is defined for a E C only if h(a) 	O. 
The polynomial h has at most finitely many roots, so f(a) is defined at all 
but finitely many a E C. In the definition of parameterization of a curve, 
it is being assumed that the point (fi  (t), 	, f n (t)) exists only when each 
fi (t) is defined. 

Proposition 22.18 Let V be an irreducible curve defined over k. Then V 
can be parameterized if and only if the function field k(V) is rational over 
k. 

Proof. First, suppose that V C Cn can be parameterized. Let 

f (t) • • . f n  (t) E k(t) such that U = {(fi  (t), 	, fn (t)) : t E CI is a dense 

subset of V. Define cio : k[x , ,  x]  (t) by sending x i  to fi (t). Then cp 
uniquely defines a k-hornomorphism. The kernel of cio consists of all poly-

nomials , x n ) with h( f i (t), , f n (t)) = O. For such an h, we have 

h(P) = 0 for all P E U. Therefore, U c Z(h), so by density we have 

V C Z(h). Thus, h E I(V). It is clear that 1(V) C ker((p); hence, we see that 

ker((p) = 1(V), so cio induces an injective k-homomorphism cio" : k[V] 	k(t). 
The map cio" then induces a k-homomorphism k(V) 	k(t), so k(V) is iso- 
morphic to an intermediate field of k(t)/k. By Liiroth's theorem, which we 
prove below, k(V) is a rational extension of k. 

For the converse, suppose that k(V) = k(t) for some t We abuse notation 
by writing x i  for the image of x i  in k[V]. We have x i 	fi (t) for some 
rational function fi , and we can write t = g(x i ,... 	 ,x n ) for 
some polynomials g, h.  If P E V, let a = g(P)Ih(P), provided that h(P) 



O. Then P = 	. , f(a)) by the relations between the x, and t. On the 
other hand, given a E C, if each fi (a) is defined, let Q = ( fi (a), . . , fn  (a) ) 
Then u(Q) = 0 for all u E (V), again by the relations between the x i  and t. 
Thus, Q E Z(/(V)) = V. The points of V not of the form (fi  (a), , fn  (a)) 
all satisfy h(P) = O. This does not include all points of V, or else h E 
1(V), which is false by the choice of h. Thus, V n z(h) is a finite set, so 

{(f (t), , fri (t)) : t E C} contains all but finitely many points of V, so it is 
a dense subset of V. The equations x i  = fi (t) thus give a parameterization 
of V.  LI  

We now finish the proof of Proposition 22.18 by proving Liiroth's theo-
rem. 

Theorem 22.19 (Liiroth) Let k(t) be the rational function field in one 
variable over a field k,  and let F be a field with kcFC kW, Then 
F = k(u) for some u E  F. Thus, F is purely transcendental over k.  

Proof. Let K = k(t) , and take yEF—k. We have seen in Example 1.17 
that [K:  k(v)] < oo , so [K:  F] < oo . Let f (x) = 	 + + lo be 
the minimal polynomial of t over F.  Then [K: 	n. Since t is transcen- 
dental over k, some t i 	k. Let u = l , and set 'in 	[K : k(u)]. Therefore, 
m > n, since k(u) C F. If we show m < n, then we will have proved 
that F = k(u). All /i E k(t), so there are polynomials c i  (t), 	, c(t) and 
d(t) in  k[t] with /i 	(t)/d(t), and such that {cl, cl, . . , c} is relatively 
prime. Note that cn, (t) = d(t), since f is monic, and u = ci(t)/d(t), so 
m < max {cleg(ci), cleg(d)} by Example 1.17. This may be an inequality 
instead of an equality because c i  and d may not be relatively prime. Let 

f(x, t) = d(t) f (x) = cn (t)xn +c_ 1 (t)x' + • + co (t). 

Then f (x ,t) E k[x, t],  and f is primitive as a polynomial in x. Moreover, 
clegx (f(x, t)) = n, where deg„ refers to the degree in x of a polynomial, 
and  degt  ( f(x,t)) > m, since ci and d are both coefficients of f. By dividing 

out  gcd(ci , d), we may write u = g(t) I h(t) with 9, h, E k[t] relatively prime. 

Now t is a root of' y(x) — uh(x) E P[xl, so we may write 

g(x) — uh(x) = q(x) f (x) 	 (22.1) 

with q(x) E F[x]. Plugging u = g(t) I h(t) into Equation (22.1), we see that 

g(x)h(t) — g(t)h(x) is divisible by f (x, t) in k(t)[x] as F C k(t). These 

polynomials are in k[x, t ],  and f is primitive in  x,  so we can write 

g(x)h(t) — g(t)h(x) = r(x , t) f (x , t) 

with r(x , t) E k[x,t]. The left-hand side has degree in t at most n2, since 
m = max {deg(g), deg(h)}; this equality was proved in Example 1.17. But 
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we know that the degree of f in t is at least rn. Thus, r(x,t) = r(x) E k[x]. 

In particular, r is primitive as a polynomial in k[tj[x]. Thus, rf is primitive 
in k[t][x] by Proposition 4.3 of Appendix A, so /(x, t) = g(x)h(t)— g(t)h(x) 
is a primitive polynomial in k[t][xj. By symmetry, it is also primitive in 
k[x][t]. But r(x) divides all of its coefficients, so r E k. Thus, 

n = degx (f) = degx (g(x)h(t) — g(t)h(x)) 

= deg, (g(x)h(t) — g(t)h(x)) 

= deg(f) > m. 

Therefore, n > m. Since we have already proved that n < m, we get n = m, 
and so F = k(u). 

Liiroth proved this theorem in 1876. It led to the following rationality 

problem: If L is an intermediate field of k(x l  , xri )/k with trdeg(L/k) = 
n, is L I k rational? Castelnuovo proved in 1893 that this is true for n = 2 if 
k is algebraically closed. It was not until the early 1970s, however, that an 
example of an intermediate field of C(x, y, z)/C that is not rational over C 
was found. 

Problems 

1. Let V C C2  be the zero set of x 2  + y2  + 1 = 0. Then V is defined 
over R and over C. Show that the function field of V is isomorphic to 
k(t)(V-1 — t 2 ), where k = R or k=--- C, depending on what we take 
to be the base field. Show that R(V) is not rational over R but that 
C(V) is rational over C. 

2. Let V be as in Problem 1. Find a parameterization of V over C. 

3. Let V be as in Problem 1. By Proposition 22.18, there is no param-
eterization of V over IR. Verify this directly for V by showing that 
the set of R-rational points is nonempLy and then showing  that a 
parameterized curve always has rational points. 

4. Let k be a field of characteristic not 2, and let a, b E  k* .  Show that 
ax 2 + by 2  — 1 is irreducible over k. Let K be the function field of the 
k-variety V = Z(ax 2  4-by 2  —1). Show that K/k is rational if and only 
if V has a k-rational point. 
(Note: Problem 1 can be viewed as a special case of this.) 

5. Let V be the zero set of {z 2  — x 2 y, y 2  — xz}. Mimic the method of Ex-
ample 22.15 to find a way to parameterize curves in C3 , and starting 
with Lite point P = (0,0,0), obtain the parameterization (t 3 , t 4 , t 5 ) 
of  V.  
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6. Let V and W be irreducible k-varieties. A rational map from V to 
W is a map cio : U 	W defined on a dense open subset U of  V, 
of the form (p(P) = (f i (P),... , frn (P)) for some f i  E k(xi, • 	x72)• 
We will write cio : V 	W even though the domain of cio may be a 
proper subset of V. A rational map cio is said to be dominant if im((p) 

is dense in W. If T : k(W) k(V) is a k-homomorphism of fields, 
show that T induces a dominant rational map V —> W. 
(While we have not defined k-morphism except on closed subsets of 
Cn, if we extend the definition in an appropriate way, a consequence of 
this problem is that k(V) and k(W) are k - isomorphic field extensions 
of k if and only if there are dense, open subsets Vo  C V and Wo  C W 
such that Vo  and Wo  are k-isomorphic.) 

7. Let V and W be irreducible k-varieties. Then V and W are said to 
be birational, provided that there are rational maps cio : V —> W and 
(1) : W —> V such that cio o (1) and (1) o cio are each the identity on their 
respective domains. Show that V and W are birational if and only if 
their function fields are k-isomorphic. 

8. Let V be an irreducible k-variety, and assume that k is perfect. Show 
that V is birational to a  hype rsurface Z(f) for some f E k[xl, • • >x721- 

9. Let V be a k-variety, and suppose that 1(V) is an absolutely prime 
ideal. If L is an extension field of k contained in C, show that the 
function field L(V) of V viewed as an L-variety is the free join of L 
and k(V). 
(See the definition in Problem 20.7.) 

10. Let V be an irreducible k-variety. Assume that C is an algebraic 
closure of k, and let G = Gal(C/k). For a E G, let a act on Cn by 

((ai,... ,an )) = (o- (ai), • • • ,a(an)) • 

(a) Show that a E G sends V to V. 

(b) Show that a E G induces a homomorphism from C[xi, • • • xn] 
to itself and fixes k[xi, . • • xn]- 

(c) Let J = I(V)C[x i , 	, x id. Assume that 

J = {f E C[xi,... ,x nj: f(P) = 0 for all P E 

Show that a E G sends J to itself and, hence, a induces a homo-
morphism from C[xl,...,x n]/J to itself, and that the subring 
of C[x l ,. • • xn]/J that is fixed by G is k[V]. 
(The assumption above can be shown to hold if k is a perfect 
field; sec Problem 11.) 



11. Read §6 of Draxl [6] and use Theorem 1 of [6] to prove the following 
statement: If k is perfect, then 

k(V)C[xi, • • >xn] = {f E C[xl, • • ,x72] f(P) = 0 for all P E VI. 

In other words, viewing V as a C-variety, the ideal of V is generated 
by polynomials defined over k. 

23 Derivations and Differentials 

In this section, we discuss algebraic notions of derivation and differential, 
and we use these concepts to continue our study of finitely generated field 
extensions. We shall see that by using differentials we can determine the 
transcendence degree of a finitely generated extension and when a subset 
of a separably generated extension is a separating transcendence basis. As 
a geometric application, we use these ideas to define the tangent space to a 
point of a variety. By using tangent spaces, we are able to define the notion 
of nonsingular point on a variety. This is a more subtle geometric concept 
than those discussed in Section 21. 

Let A be a commutative ring, and let M be an A-module. A derivation 
of A into  M isa   map D:  A —> M such that for all a, b E A, 

D(a ±b) = D(a) D(b), 

D(ab) = 5D(a) aD(b). 

We write Der(A, M) for the set of all derivations of A into M. Since the 
sum of derivations is easily seen to be a derivation, Der(A, M) is a group. 
Furthermore, Der(A, M) is an A-module by defining aD : A —> M by 
(aD)(x) = a(D(x)). 

Example 23.1 The simplest example of a derivation is the polynomial 
derivative map dldx : k[x] 	k[x] defined by 

n 	 n-1 

a•x i) = 	 

where k is any commutative ring. The term iai  in the formula above is, of 

course, the sum of ai with itself i times. 

Example 23.2 If k is a field, then the derivation d/dx on k[x] can be 

extended to the quotient field k(x) by use of the quotient rule; that is, the 

formula 
d ( f(x) 	g(x) ctf(x) — f (x) g(x) 

dx g(x) ) 	 g(x) 2  

defines a derivation on k(x). We shall see a generalization of this example 
in Lemma 23.10. 

d 

dx 



Example 23.3 Let k be any commutative ring, and let = k[x 	,x„ ]  
be the polynomial ring in n variables over k .  Then the partial derivative 
maps 01 axi  are each derivations of A to itself. 

Example 23.4 Let K be a field, and let D E Der(K,K). If a E  Kt,  we 
prove that  D(a 1 ) = - a-2  D (a) . To see this, note that D(1) = 0 by an 

application of the product rule. Thus, 

0 = D(1) = .D (a.  a-1 ) 

= a-1  (D (a)) ± a D (a— 1 ) . 

Solving for D (a— 1 ) gives D (a— 1 ) = — 2  D (a) , as desired. 
Other familiar facts from calculus can be verified for arbitrary deriva-

tions. For instance, if K is a field and a, b E K with b 	0, and if 
D E Der(K,K), then 

a  
D() 

 = b D (a) — aD (b) 
b 2  

To see this, we have 

D (ab-1  ) = b-1  D (a) ± a D (b -1  ) 

= b-1  D (a) — ab — 2  D (b) 

= 2  (b D (a) — a D (b)) 

from the previous calculation. This proves the validity of the quotient rule 
for derivations on a field. 

Let D be a derivation of a ring A into an A-module M. An element 
a E A is said to be a constant for D if D (a) = O. It is not hard to see 
that the set of all constants for D is a subring of A. If B is a subring 
of A, let DerB (A, be the set of all derivations D : A —> M for which 
D (b) = () for all b E  B.  By studying DerB (A, A), we will obtain information 
about the extension A/B when A and B are fields. To simplify notation, let 
DerB (A) = DerB (A, A). We will call an element of DerB (A) a B-derivation 
on A. 

Let K be a field extension of  F.  We wish to see how the vector space 
DerF(K) gives information about the field extension K/F, and vice versa. 
We first consider algebraic extensions. The following lemma, which can be 
thought of as the chain rule for derivations, will be convenient in a number 
of places. 

Lemma 23.5 Let K be a field extension of k, and let D e Derk(K). If a G 
K and f (x) E k[xj, then D(f (a)) = (a)D(a), where f (x) is the ordinary 
polynomial derivative of  f.  More  generally,  if f (x i , 	, x n ) E k[xl, • • • x721 
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and a l , 	, an  E  K, then 

ri  

=)\ 	(ad, 	, an )D(ai). 
uxi 

Proof. Suppose that f (x) — ai x i . Then 

D(f (a)) = D (): ajai ) 

	

= 	aiD(ai ) = 	' D(a) 

no,)D(a). 

The second statement follows from much the same calculation. If f 

Eix, where i = (i 1 , , in ), applying the property D(ab) 
bD(a) aD(b) repeatedly, we see that 

	

ij  _ 	ij  —1 	2J-1-1 • aj-1 aj D(ai  j±i  • ai n 

n  =) f  
(a i ,..., an )D(ai). 

Proposition 23.6 Let K be a separable algebraic field extension of  F.  
Then DerF(K) = O. 

Proof. Suppose that D E DerF(K). If a E  K,  let p(x) = min(F, a), a 
separable polynomial over F.  Then 

0 = D(p(a)) = (a)D(a) 

by Lemma 23.5. Since p is separable over F, the polynomials p and p' 
are relatively prime, so p' (a) O. Therefore, D (a) = 0, so D is the zero 
derivation. 

Corollary 23.7 Let k CFCK be fields, and suppose that K I F is a 
finite separable extension. Then each k- derivation on F extends uniquely 
to a k-derivation on  K.  

Proof. The uniqueness is a consequence of Proposition 23.6. If D i  and D2 
are k-derivations of K with the same restriction to F,  then D I  — D2 E 

DerF(K), so D i  = D2. We now show that any derivation D E Derk(F) can 
be extended to a derivation D' on  K.  We can write K = F (u) for some 
u separable over F. Let p(x) = min(F, u), and say p(t) = oi ti. We first 
define Di (u) by 

Ei D(Oi) 111  D' (u) = 
pi (u) 
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To define D' in general, if y E  K,  say y = f(u) for some f(t) E F[tl. If 

f (t) = Ei  aiti , define D' on K by 

(v) = (u)D' (u) 4- )  D(ai )ui 

These formulas are forced upon us by the requirement that D' is an exten- 

sion of  D. The verification that D' is indeed a well-defined derivation on 

K is straightforward but tedious and will be left to the reader. 	[1] 

The converse of this proposition is also true, which we will verify shortly. 
To do this, we must look at inseparable extensions. 

Proposition 23.8 Suppose that char(F) = p > 0, and let K = F(a) be 
purely inseparable over F. If K  F, then DerF(K) is a one-dimensional 
K -vector space. 

Proof. Define D : K K by D(f (a)) = f' (a). We need to show that D is 
well defined. Let p(x) = min(F, a). Then p(x) = xPm  — a for some Tri E N 
and some a E F. If f (a) = g(a), then p divides f — g, so f(x) — g(x) = 
p(x)q(x) for some q. Taking derivatives, we have f (x) — (x) = p(x)q' (x), 
since p' (x) = O. Therefore, f (a) = (a), so D is well defined. A short 
calculation shows that D is an F-derivation on K. If E is any derivation 
of  K,  then E( f (a)) = (a)E(a) by Lemma 23.5, so E is a scalar multiple 
of D, namely E =  OD if  j3 = E(a). Therefore, DerF(K) is spanned by D, 
so DerF(K) is one dimensional as a K-vector space. 

We can now prove the converse of Proposition 23.6. This converse gives 
a test for separability by using derivations. 

Corollary 23.9 If K is an algebraic extension of F with DerF(K) = 0, 
then K I F is separable. 

Proof. Suppose that DerF(K) = 0, and let S be the separable closure of 
F in  K.  If K S, then there is a proper subfield L of K containing S 
and an a E K with K = L(a) and K L purely inseparable. The previous 
proposition shows that DerL(K) 0, so DerF (K) is also nonzero, since it 
contains Der L (K). This contradicts the assumption that DerF(K) = 0, so 
K is separable over F. 

We now consider transcendental extensions. First, we need a lemma that 
will allow us to work with polynomial rings instead of rational function 
fields. 

Lemma 23.10 Let A be an integral domain with quotient field  K. Then 
any derivation on A has a unique extension to K. If D E DerB(A) for some 
subriny B of A, then the unique extension of D to K lies in DerF(K), where 
F is the quotient field of B. 



Proof. Let D E Der( .4). Define D' : K 	K by 

i  
5D(a) - aD(5) 

D(alb) = 	52  

if a,b E A and b 	O. We first note that D' is well defined. If alb = cld, 
then ad = Sc,  so aD(d) + dD(a) = 5D(c) + cD(5). Thus, by multiplying 
both sides by bd and rearranging terms, we get 

bd2 D(a) - bcdD(5) =b2 dD(c) - abdD(d). 

Using the relation ad = Sc,  we can simplify this to 

d2  (5D(a) - aD(5)) = 52  (dD(c) - cD(d)) , 

S O 
bD(a) - aD(b) 	dD(c) - cD(d) 

5 2 	 d2  
proving that D' is well defined. Checking that D' is a derivation is straight-
forward and will be left to the reader. 

To verify uniqueness of extensions, suppose that D is a derivation on K. 
If a E K, we may write a = alb with a,b E A. Then 

D(c) = D(ab-1 ) 

= 5-1 D(a) + aD(5-1 ) 

= 5-1 D(a) - ab-2  D(5), 

the final equality coming from Example 23.4. This formula shows that D 
is determined by its action on A. 

The following proposition determines the module of derivations for a 
purely transcendental extension of finite transcendence degree. 

Proposition 23.11 Suppose that K - 	 is Ow 'rational func- 

tion field over a field k in n variables. Then Derk(K) is an n-dimensional 
K -vector space with basis fa 1 Ox i  : 1 < i < n} . 

Proof. Let f E k[xi,... ,x n ]. If D E Derk(K), then by Lemma 23.5, we 
have D(f) = Ei  D(x i ) (0 f / Ox i ). Therefore, the n partial derivations 0/ 3xi 
span Derk(k[x i  , 	, xn ]). Moreover, they are K-linearly independent; if 

a.7'3/3xi  = 0, then 
, axi  o = 	ai 	 
	 dxj 

This proves independence, so the 0/ 3xi form a basis for Der k  (k [x i  , . . • xi). 
Finally, a use of the quotient rule (Example 23.4) shows that the 0/ 3x i  form 

a basis for Derk(K). 

We can generalize this theorem to any finitely generated, separable ex-
tension. 



Theorem 23.12 Suppose that K k is a finitely generated, separable exten-

sion. Then trdeg(K/k) = dimk (Derk(K)). {x ,x, nJ is a separating 
transcendence basis for K k and if F = k(x 1 , ... ,x„), then there is a basis 
{6i : 1 < i < n} for Derk(K) with 6iLF = Ox i  for each i. 

Proof. Let  {x i , 	, xn } be a separating transcendence basis for K/k, and 
set F = k(xi ,... ,x n ). The extension K/F is finite and separable. By Corol-
lary 23.7, for each i the derivation 0/0x i  extends uniquely to a derivation 
6i  on K. We show that the S i  form a basis for Der k (K). It is easy to see 
that the 6i  are K-linearly independent, for if E ai bi = 0 with the a i  E K, 
then 

( 	
, 	\ 	 ar • 

0 = > ai 6i (xi) => a • 
--- j  = ai 

for each j. To show that the 6i span Derk(K), let D be a k-derivation of K, 
and let a i  = D(x i ). Then D — Ei  a i bi  is a derivation on K that is trivial 
on F. But Der F (K) = 0 by Proposition 23.6, so D = Ei  a 1 6i . 	0 

Differentials 

Let B C A be commutative rings. Then the module of differentials Q A / 3  
is the A-module spanned by symbols da, one for each a E A, subject to the 
relations 

da = 0, 

d(ab) = adb bda 

for a E 13 arid a,b E A; that is, QA/B  is the A-module Al/N, where M is the 
free /1-module on the met of m.ywholm { (la : a c /1} and N the submodule 

generated hy the eleniellLs 

da, 

d(a b) — da — db, 

d(ab) — (adb bda) 

for a E B and a,b  E A. The map d:  A —> Q A/ B  given by d(a) = da is a 
B-derivation on A by the definition of QA / B . 

The module of differentials is determined by the following universal map-
ping property. 

Proposition 23.13 Suppose that D : A —4 M is a B-derivation from 
A to an A-module  M. Then there is a unique A-module homomorphism 
f : QA1B 	M with f o d = D; that is, f(da) = D(a) for all a E A. In 
other words, the following diagram commutes: 
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A 

d 

QA/B 

Proof. Given D, we have an A-module homomorphism f defined on the 
free A-module on the set {da : a E A} into .111 that sends da to D(a). Since 
D is a B-derivation, f is compatible with the defining relations for  
hence, f factors through these relations to give an A-module homomor-
phism f : QA/B  M with f (da) = D(a) for all a E A. The uniqueness of 
f is clear from the requirement that f (da) = D (a) , since Q A/B  is generated 
by {da : a E A } . 111 

Corollary 23.14 If B C A are commutative rings and .111 is an A-module, 
then DerB  (A, 	homA(Q A/B , 

Proof. This is really just a restatement of the universal mapping property 
for differentials. Define cio : DerB (A, M) homA(Q A/B , .A1) by letting 
p(D) be the unique element f of homA(QA/B ,M) that satisfies Jo d = D. 
A short computation using the uniqueness part of the mapping property 
shows that cio is an A-module homomorphism. For injectivity, if (p(D) = 0, 
then the condition that (p(D) o d = D shows that D = O. Finally, for 
surjectivity, if f E horn A (QA/B ,M), then setting D = f od yields (p(D) =  f.  

If .111 = A, then the corollary shows that Der B  (A) 	homA(QA/B, A), 
the dual module to QA/B. The next corollary follows immediately from this 
observation. 

Corollary 23.15 If K is a field extension of F, then 

din1 K (S2 K/F ) = dini K (Der F (K)). 

The following corollary is a consequence of the previous corollary together 
with Theorem 23.12. 

Corollary 23.16 If {x j ,... , x,} is a separating transcendence basis for 
an extension K k, then {dx 1 ,... ,dx„} is a K -basis for St Kyk  • 

Proof. Suppose that {.x i , 	, x 7,1 is a separating transcendence basis for 
K/k. By Theorem 23.12, there is a basis {S i  , 	,ôn } of Der k (K) such 
that Si extends the derivation 0/3xi on k(xi, 	, xn ). By the universal 
mapping property for differentials, there are f i  E homK(Q K/k ,K) with 

fi(dxj) 	(5 i (x j ) for each j. But,  o(x) = 0 if i 	j, and 6i (dx,i ) = 1. Under 
the isomorphism Der k (K) homK (Q K/k , K), the 6i  arc sent to the f., so 
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the fi  form a basis for homK  (Q /C / k , K). The dual basis of QK/k  to the fi 
is then {c/xi, • , dx„}, so this set is a basis for Q K/k . 

The converse of this corollary is also true, and the converse gives us a 
way to determine when a set of elements form a separating transcendence 
basis. 

Proposition 23.17 Suppose that K is a separably generated extension of 
k. If  x 1 ,... ,x  E K such that dx i ,...,dx, is a K-basis for RK/k , then 
{x 1 , ,x„} is a separating transcendence basis for K k. 

Proof. Since K/k is separably generated, ri = trdeg(K/k) by Theorem 
23.12 and Corollary 23.15. Let { , 	, y} be a separating transcendence 
basis for K/k. We will show that {x i , 	, x} is also a separating transcen- 
dence basis by replacing, one at a time, a y, by an xi  and showing that we 
still have a separating transcendence basis. The element x 1  is separable over 
k(y i , ,y r,), so there is an irreducible polynomial p(t) E k(yi,...,y,)[t] 
with p(x i ) = 0 and pi  (x i ) O. We can write p(t) in the form 

	

p(t)  f + t  + 	+ fa tn  

g0 	gi 	gn 

with each fi , gi  E k[y i ,... ,y 72 ]. By clearing denominators and dividing out 
the greatest common divisor of the new coefficients, we obtain a primi-
tive irreducible polynomial f (Yi, • • • Yn 70 with f (Yi, • .. , y n ,  x i )  = 0 and 

(a f lat)(yi, • . • Yn> X1) O. Let p Yn , Xi). Taking differentials 
and using the chain rule yields 

. Of 
0 = —

Of 
(P)dx i  + 2 

 ayi 
(P)dyi. 

Ot  

Consequently, 

)71,  (af  /3y ) (P)   dy
. dx = 

 	(a f I at)(P) 	3  

The differential  dx 1 	0, so some (0 f I Oyi)(P) 	O. By relabeling 
if necessary, we may assume that (Of I Oy i )(P) 	O. The equation 

(y 
 

i,.  , y„, x 1 ) = 0 shows that yi  is algebraic over k (x i  , y2, 	, y„). More- 
over, the condition (apayi )(P) 	0 implies that  Yi  is separable over 

k(x t , Y2 1 ' ' • 1 1171.)- Thus, each yi is separable over k(xi, Y27 • 7 yn) and since 
K is separable over k(xi, Y27 • • • 7 yn), by transitivity the set {xi, Y27 • Y7/} 

is a separating transcendence basis for K/k. 
Now, assume that for some i > 1, {xi, 	xi, Yi+i, 	yn} is a separating 

transcendence basis for K/k. Repeating the argument above for xi+1  in 
place of  x 1 ,  there is an irreducible primitive polynomial equation g (Q) = 0 



with (0g/Otn+1)(() 	0, if Q =(it, 	,x 	• ?in> 1;1+ L). this yields 
an equation 

dXj+1
(ag/aXj)(Q)  ( 199/ki)(Q)  

T 
(0g/0t)(Q) d` 3 	Yd  (09/3t)(Q) 

i= 

The differentials dx i , 	, dx n  are K-independent, so some (0 / Olki )(Q) 
O. Relabeling if necessary, we may assume that (0g/3y1 +1)(Q)  L O. Conse- 
quently, yi+1  is separable over k(xi,... ,xi+i, Yi+2 	•  ,y).  As above, this 
means that {xi, 	xi+i, Yi+2 	yn} is a separating transcendence basis 
for K/k. Continuing this procedure shows that {xi, 	xn } is a separating 
transcendence basis for K/k. 

Example 23.18 Let k o  be a field of characteristic p, let K = ko(x,y) bC  

the rational function field in two variables over /co , and let k = ko (xP , yP). 
Then { x, y} is algebraically dependent over k; in fact, K/k is algebraic. 
However, dx and dy are K-independent in Q .Kyk; to see this, suppose that 
adx bdy = 0 for some a, b E K. The  k0 -derivations  0/0x and OA 
are actually k-derivations by the choice of k. By the universal mapping 
property for differentials, there are f,g E homK(Qx -/F,K) with f 0 d = 
3/3x  and god= OA. Then f (adx bdy) = a f (dx) b f (dy) = a and 
g(adx bdy) = b. Thus, a = b = 0, so dx and dy are K-independent. This 

shows that Proposition 23.17 is false if K/k is not separably generated. 

The tangent space of a variety 

Let f(x, y) be a polynomial in R[x, y]. The equation f (x , y) = 0 defines y 
implicitly as a function of x. If P = (a, b) is a point on the carve f = 0, 
then, as long as the tangent line to the curve at P is not vertical, we  have 

dy 
(a) = 

Of/Ox
(P 

dx 	af/aY 
), 

so the tangent line to the curve at P can be written in the form 

of f 
(P)(x — a) ±—

y
(P)(y — h) = O. 

Ox 

This formula is valid even if the tangent line at P is vertical. To deal with 
vector subspaces, we define the tangent space to the curve f = 0 at P to 

be the set of solutions to the equation 

of 
Ox 

This tangent space is a vector subspace of R2 . 
The curve f = 0 is nothing more than the set of R-rational points of the 

R-variety Z(f). We can give a meaningful definition of the tangent space 



to any k-variety, for any field k, by mimicking the  case of real plane curves. 
Let V be a k-variety in Cn, where, as usual, C is an algebraically closed 
extension of k, and let P E V. For f E k[x l ,... , x n l, let 

0,r  
(lpf = 

Dx • 

The linear polynomial dp f is called the differential of f at P. 

Definition 23.19 If V is a k-variety, then the tangent space Tp(V) to V 
at P is the zero set Z (Op f : f E I(V)1). 

Example 23.20 By the Hilbert basis theorem, any ideal of k[x l , 	, frn j 
can be generated by a finite number of polynomials. Suppose that 
I(V) is generated by {f l , , fr.}. Then we show that Tp(V) = 
Zadph,...,dpm. If h = E gi fi , then by the product rule, 

dph =) d gi (P)dp ±):dpgi  f i (P) 

=) :di (P)dp fi. 

This shows that dph is a linear combination of the dp fi  for any h E 1(V). 

Example 23.21 If V = Z(y — x 2 ) and P = (a, a 2 ), then Tp(V) = Z(y 
2ax). If P = (0,0) is the origin, then 7'p(V) is the x-axis. 

Example 23.22 Let V = Z(y 2  — x 3 ). If P = (0,0), then dp f = 0 for all 
f E I(V). Consequently, 7'p(V) = C2. 
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Example 23.23 Let V = i(x 2 ±y2 ±z2 - 1), and assume that char(k) 2. 
If P = (a, b, c)  and! 	x 2  ± y2  + z2  1, then dp f = 2ax + 2by 2cz , 
so rlp(V) = Z(ax + by + cz). Since (a, b, c) 	(0, 0, 0) for all P E V, the 
tangent space Tp(V) is a 2-dimensional vector space over C. 

One of the uses of the tangent space is to define nonsingularity. To keep 
things as simple as possible, we first consider hypersurfaces; that is, varieties 
of the form Z(f) for a single polynomial  f.  

Definition 23.24 Let V = Z(f) be a k-hypersurface. A point P E V is 
nonsingular, provided that at least one of the partial derivatives f I ax i  
does not vanish at P; that is, P is nonsingular, provided that dp f O. 
Otherwise, P is said to be singular. If every point on V is nonsingular, 
then V is said to be non,singular. 

We can interpret this definition in other ways. The tangent space of V = 
Z(f) at P is the zero set of dp f = Ei (apaxi )(P)x i ,  so  Tp(V) is the zero 
set of a single linear polynomial. If f E k[x i ,...,x n ], then Tp(V) is either 
an (ri — 1)-dimensional vector space or is all of Cn, depending on whether 
dp f 0 or not. But, the point P E V is nonsingular if and only if dp f 0, 
so P is nonsingular if and only if dimk(Tp(V)) = dim(V) = ri— 1, the latter 
equality from Example 22.8, and P is singular if dimk(Tp(V)) > dim(V). 

Example 23.25 The parabola Z(y — x 2 ) is a nonsingular curve, whereas 
Z(y 2  — x3 ) has a singularity at the origin. Every other point of Z(y 2  — x 3 ) 
is nonsingular by an easy calculation. The sphere Z(x2 ± y2 ± z2 1) is 
also a nonsingular variety, provided that  char(k) 2. 

For one application of the notion of nonsingularity, we point to Problem 
6, which outlines a proof that the function field of the C-variety Z(y 2  — 
(x 3  - x)) is not rational over C. 

We now look into nonsingularity for an arbitrary variety. Suppose that 
V is a k-variety, and let f i , , f, be polynomials that generate the ideal 
1 (V). Let P E V, and consider the Jacobian matrix 

	(P) 	• • •   (P) 

J(fi, • • • frn) = 

	 (p) . . .   p) j 
dx„ 

One interpretation of the definition of a nonsingular point on a hypersurface 
is that a point P E Z( f) is nonsingular if rank(J(f))= 1, and P is singular 
if rank(J(f )) = O. In other words, P is nonsingular if the rank of J( f) is 
equal to n — dim(V). 

Definition 23.26 Suppose that V is an irreducible k-variety in Cn , and 
let  fi, ...  , f e generators of I(V). If P E  V, then P is nonsingular if the 
rank of ,I(f i ,... , f,„ ) is equal to n — clim(V). 



The following proposition shows that n — dim(V) is an upper bound for 
the rank of the Jacobian matrix. Thus, a point is nonsingular, provided 
that the Jacobian matrix has maximal rank. We will call an irreducible 
k-variety V absolutely irreducible if the ideal I(V) is an absolutely prime 
ideal of k[x i ,... , x n ]. 

Proposition 23.27 Suppose that V is an absolutely irreducible k-variety 
in Cn . Let P E V, and let , f, be generators of the ideal I(V). Then 
rank(J(f i ,... , fin )) < n — dim(V). 

Proof. We will prove this in a number of steps. Let K be the function field 

of V. The assumption that V is absolutely irreducible means that K k is 
a regular extension, by Theorem 22.10. Therefore, K/k is separably gen-
erated, so trdeg(K/k) = dim(Der k (K)), and so dim(V) = dim(Derk(K))• 
The coordinate ring of V is k[V] = k[xi,.. • ,x72]/ 1- (V) = k[si, • • • ,sn ], 
where si  = x i + I( V). Thus, K = k(si,... ,sn). Let Q = (s i ,... ,  Sn ) E Kn  . 

We first point out that 

I(V) = ff E k[xi,...,x n ] : f(si,...,sn) = 01. 

For f E I(V), let clQ  f 	En  x i (Of I Ox i )(Q). We view clQ f as a linear 
functional on Kn; that is, we view dQf as a linear transformation from K n  

to K defined by 

n  

(dQ f )(al> • • • an) 	:ckiauxi 	(Q). 

Let M be the subspace of homK (K 7  K) spanned by the c/Q f as f ranges 
over I(V). Now that we have given an interpretation of the differentials 
dQ f as linear functionals, we interpret derivations as elements of  I('.  For 
D E Derk(K), we obtain an n-tuple (D(s i ), 	,D(sn )). A k-derivation 
on K is determined by its action on the generators 	• • .7sn of Klk. 
Therefore, the map D ■-4 (D (s i ), 	, D (S n )) is a K-vector space injection 
from Der k (K) to K n  . We denote by D the image of this transformation. 

Next, we verify that an n-tuple (a i , , an ) lies in D if and only if 
dQf (cti, ..• an) = 0. One direction of this is easy. By the chain rule, we 
see that 

n  >  uxi (Q) D (Si) D(f(S1 	Sn)) = 0 

if f E I(V). For the other direction, suppose that dQf (al, ••• an ) = 0. 
We define a derivation D on K with D(s i ) = ai  as follows. First, let D' be 
the derivation D' : k[x x n] K defined by D' = Ei  
that is, DI (f) = n ai(0 f I Ox i )(Q). The condition on the ai  shows that 

(f) = 0 if f E I(V), so D' induces a k- derivation D : k[V] 	K defined 
by D(g + [(V)) = Mg). The quotient rule for derivations shows that D 



extends uniquely to a derivation on K, which we also call D. The definition 
of D' gives us D(si) = ai, so  (a i ,...  , an ) E D as desired. Now that we 
have verified our claim, we use linear algebra. The subspace D of Kri is the 
set 

D = {v E Kn : dQf (v) 0 for all dQf E M} . 

From linear algebra, this implies that dim(D) dim(M) = n. Since 

dim(M) = dim(Derk(K)) = dim(V), 

we get dim(D) = n — dim(V). 
The final step is to verify that dim(D) = rank(J'), where J' is the matrix 

((afi/axj)(Q)), and that rank(J 1 ) > rank(J), if J is the Jacobian matrix 
((a f i laxj)(P)). This will show that 

rank(J) < rank(J') = n — dim(V), 

our desired result. The first of these claims is easy. The space D is spanned 
by the dc2 fi , since the fi  generate the ideal 1 (V). The ith row of J' is the 
matrix representation of the linear transformation 42 f „ so the rank of J1  is 
the dimension of the space spanned by the dc2 fi ; in other words, rank(J) = 
dim(D). For the inequality rank(J') > rank(J), let P = (ai,... , an ) E V. 
There is a homomorphism cio : k[x i ,...  ,x]  C with (p(xi) = a i . Since P E 
V, we have f (P) = 0 for all f E (V), so 1 (V) C ker((p). We get an induced 
map : k[V] C that sends si to ai . Under this map (Of i /Ox i )(Q) 
is sent to (Of i /Ox .i)(P). If rank(J') r, then the rows of J' are linear 
combinations of some r rows of  J'.  Viewing 7p as a map on matrices, since 
o(J') = J the rows of J are linear combinations of the corresponding r 
rows of J. Thus, the rank of J is at most r, so rank(J') > rank(J). This 
finishes the proof. El 

As a consequence of the proof of this proposition, we obtain a relation 
between the dimension of the tangent space Tp (V) and of V. 

Corollary 23.28 Let V be an absolutely irreducible k- variety,  and let P E 
V. Then dim(Tp(V)) > dim(V), and dim(Tp(V)) = dim(V) if and only if 
P is nonsingular. 

Proof. The tangent space Tp(V) is the set 

71p(V) = {Q E C 7 i : dpf(Q) = O [n all f E T(V)} . 

Using the notation of the proof of the previous proposition, the map 
induces a map on differentials that sends 42 f to dpf.  If N = 

{dp f : f G /(V)}, viewed as a subspace of homc (Cn, C), then by linear 



algebra, we have dim(N) + dim(Tp(V)) = 	However, çj sends Al to N, 
so 	) > dim(N); hence, 

dim(Tp (V)) = n - dim(N) > n - dim(M) 

= n - dim(V). 

Moreover, dim(Tp (V)) = rank(J) by the same argument that shows 
dim(D) = rank(J'). Therefore, we get equality above exactly when 
rank(J') = rank(J) or when rank(J) = n - dim(V). However, this is true 
if and only if P is nonsingular, by the definition of nonsingularity.  El 

Let k be a field, and let C be an algebraically closed extension of k. In 
Example 22.4, we showed how one can obtain an irreducible k-variety from 
a finitely generated field extension of k. This map is not the inverse of the 
map that associates to each irreducible k-variety V the function field k (V). 
In that example, we saw that the nonsingular curve y = x 2  has the same 
function field as the singular curve y 2  = x 3 . However, nonsingularity is 
not the only problem. We have only talked about affine varieties; that is, 
varieties inside the affine space C.  In algebraic geometry, one usually works 
with projective varieties. It is proved in many algebraic geometry books that 
there is a 1-1 correspondence between finitely generated regular extensions 
of k of transcendence degree 1 and nonsingular projective curves. Moreover, 
if we work over C, then there is also a 1-1 correspondence between finitely 
generated extensions of C of transcendence degree 1 and Riemann surfaces. 
The interested reader can find the correspondence between nonsingular 
projective curves and extensions of transcendence degree 1 in Section 1.6 
of Hartshorne [11] and can find the connection with Riemann surfaces in 
Chevalley [4]. 

Problems 

1. Let K be a separable extension of F that is not necessarily algebraic. 

Show that any derivation on F extends to a derivation on K. 

2. If K is a finite separable extension of F, show that there is a K-vector 
space isomorphism Derk (F) OF K Der k  (K). 

3. Let K be a finite purely inseparable extension of F with char(F) = p 
and FP C K. Recall that a p-basis of KIF is a set a, , . . . , an  } of 
elements of K with 

F  C  F(ai ) c • • • c F(an ) = K, 

awl the 	 KIF n. Show Oat dirri(l)orp(K)) k equal 
to the p-dimension of K/F. 
(See Problem 12 of Section 4 and Problem 19 of Appendix D for more 
on p-dependence.) 



4. Let V-  be a C-variety in Cn, where C is algebraically closed. 

(a) If P E V, show that each dp f for f G 	,xn j defines a 
linear transformation from Cn to C, so dp f restricts to a linear 
transformation from Tp(V) to C. 

(b) Let M p = UE C[xi, 	x n] : f (P) = 01. Show that the func- 

tion dp : Nip homc  (T p (V), C) is a C-vector space homomor-
phism with kernel M. Show that dp is surjective, and conclude 
that Mp//1/4 is isomorphic to homc (Tp(V),C). 

(c) Show that Tp(V) is isomorphic to homc(Alp//1/4, C). 

	

5. Let V and TV be k-varieties, and suppose that cio : V 	W is a mor- 

	

phism. Show that cio induces a homoinorphism Tp (V) 	T,p( p)  (W). 

6. Let X C C2  be the zero set of y 2  — X 3  ± X. In this problem, we will 

show that the function field C(Y) is not rational over C. In order to do 
this, we need the following result: If Y is an irreducible nonsingular 
curve in C2  such that C(Y)/C is rational, then C[Y] is a unique 
factorization domain. Verify that C(X) is not rational over. C by 
verifying the following steps. 

(a) Show that X is an irreducible nonsingular curve. 

(b) Let F = C(x) C K. Show that K F is a degree 2 extension. If a 

is the nonidentity F - autornorphisin of K, show that a(j) = — y. 
Conclude that 0- (A) C A, where A = C[X]. 

(c) Let N = NK/ F  be the norm map from K to F. Show that 
N (a) E k[x] for all a E A. 

(d) Using the norm map, show that the units in A are merely the 
nonzero elements of C. Write x and y for the images of x and 
y in A, and show that x and y are irreducible elements of A, 
and conclude that A is not a unique factorization domain. From 
this, conclude that C(X) is not rational over C. 

(Note: To prove that C[Y] is a unique factorization domain for a 
rational curve Y requires more geometry than we have developed 
here. Problem 6.1 of Chapter I in Hartshorne [11] outlines a proof 
of this fact along with the steps above. For an alternative proof that 
does not require geometry but does use valuation theory, see §1 of 

N.) 



Appendix A 
Ring Theory 

The following appendices present some of the background material used in 
this book. In this appendix, we present the aspects of ring theory that we 
need in this book. We go into detail about unique factorization domains and 
polynomials in multiple variables, mostly for Chapter V. The irreducibility 
tests are used in the text mainly for dealing with polynomials over Q and 
over the rational function field k(x) over a field k. 

Throughout this book, we make the assumption that all rings have a 
multiplicative identity. We Start off with a review of the characteristic of a 
ring. Let R be a ring. The characteristic of R, denoted char(R), is the order 
of 1 in the additive group (R, +), provided that this order is finite; if it is 
infinite, we set char(R) = O. Here is an alternative description of char(R). 
There is a map cio : Z R given by (p(n) n • 1, the sum of 1 with itself n 
thnes. It is clear that this map is a ring homomorphism. The kernel of (,o is 

generated by a positive integer m, and m is precisely char(R). Thus, Z/TriZ 
is isomorphic to a subring of R. Moreover, this subring is easily seen to be 
the unique minimal subring of R; recall that we assume that our rings have 
an identity. This ring is called the prime subring of R. 

We remind the reader that all references to Theorems, Lemmas, etc., 
made in each appendix refer to that appendix unless it is explicitly stated 
that they come from a section of the main text. 



aiAL maximal [deals 

Let R be a commutative ring. A prime ideal of R is an ideal P R, such 
that if a, b E R with ab E P, then either a E P or b E P. For example, if p 
is a prime number, then the ideal pZ is a prime ideal of Z. A maximal ideal 
of R is an ideal M R, such that if / is any ideal of R with MCIC R, 
then either I = M or I = R; that is, M is maximal if M is not contained 
in any proper ideal other than itself. Again, if p is a prime number, then 
pZ is a maximal ideal of Z. This can be seen from the fact that the gcd 
of two integers can be written as a linear combination of the integers. If 
pZ C / and I pZ, let a E I with a pZ. Then p does not divide a, so 
gcd(a,p) = 1. Therefore, 1 = ax + py for some x, y E Z. This means that 
1 E I, since a,p E I; hence, I = Z. This proves that pZ is indeed a maximal 
ideal of Z. 

Prime and maximal ideals can be characterized in terms of quotient rings. 
This characterization is often a very useful way to deal with these ideals. 

Proposition 1.1 Let R be a commutative ring with 1. 

1. If P is a proper ideal of R, then P is a prime ideal of R if and only 
if RIP is an integral domain. 

2. If M is a proper ideal of R, then M is a maximal ideal of R if and 
only if RIM is a field. 

Proof. Let P be a prime ideal. To show that RI P is an integral domain, 
suppose that a,  3 E R/P with af3 = 0. Then a = a + P and )3 = b + P for 
some a, b E R. The condition af3 = 0 in R/P means (a+ P)(b + P) = 0+P, 
so ab c P. Since P is a prime ideal, either a E P or b E P, so a+ P = 0+  P 
or b P = 0 + P. Thus, R/P is an integral domain. The converse follows 
from the same arguments; if RIP is an integral domain and ab E P, then 
(a +P)(b +P) = 0 in R/P, so a +P = 0± P  or b+ P = 0 + P; thus, a E P 
or b E P. 

For the second statement, suppose that M is a maximal ideal of R. 
We need to show that each nonzero element of RIM is invertible. Take 
a + M E RIM with a + M 0 ± M. Then a M, so the ideal M +aR 
is properly larger than M. By maximality, this forces M + aR = R, so 
1 -= m + ar for some m E M and r E R. Then (a + M)(r + M) =1+ M, 
since m E M. Therefore, a + M is invertible, so R/M is a field. Conversely, 
suppose that RIM is a field. Let / be an ideal ofRwithMC/cR. We 
need to show that I = R. Let a E  I  — M. Then a + M 0 ± M; hence, 
a +M is invertible. Thus, there is abER with (a + M)(b+M)=1+M, so 
ab — 1 E M. Since a E I and M C I, this forces 1 E I, so I = R. Therefore, 
M is a maximal ideal of R.  LI  

From this proposition, we see that any maximal ideal is prime, but the 
converse may not be true. Our main use of these concepts will be for the 



study of polynomials. It, follows from the results of Section 3 below that if 
F is a field and R = F[x] is the ring of polynomials over F, then any prime 
ideal of R is maximal and is generated by an irreducible polynomial. 

Example 1.2 By calculations similar to those before the proposition, one 
can show that an ideal aZ of Z is a prime ideal if and only if a is a prime 
number. Moreover, an ideal / of Z is maximal if and only if / is prime. 

Let R = Z[x], the ring of polynomials in x over Z. The ideal xR is prime, 
since RIxRc-= Z is an integral domain. Moreover, xR is not maximal, since 
RIxR is not a field. Equivalently, xR is not maximal, since xR is properly 
contained in the proper ideal xR ± 2R generated by x and 2. 

The proposition above also gives us some information about the charac-
teristic of a ring. If R is an integral domain, then the map cio : Z R that 
sends n to n• 1 is a ring homoinorphisin, and int((p) is a subring of R. Thus, 
Z/ ker((p) is an integral domain, so ker((p) is a prime ideal. But ker((p) is 
generated by char(R), so char(R) is either 0 or a prime number. 

2 Unique Factorization Domains 

The main ring theoretic properties about polynomials we require in Galois 
theory are that the ring F[x] of polynomials in a variable x over a field F 
be a principal ideal domain (PID) and be a unique factorization domain 
(UFD). While these facts can be proved relatively easily, we go into some 
detail about UFDs primarily to deal with polynomials in more than one 
variable, a case we need in Chapter V. 

Let R be an integral domain. If a, b E R, we say that a divides b if b = ac 
for some c E R. A nonunit a E R is said to be irreducible if whenever 

a = bc, then either b or c is a unit. A nonunit a E R is said to be prime 
if whenever a divides bc, then a divides b or a divides c. Equivalently, a is 
prime if the principal ideal aR is a prime ideal. If a is prime, then we show 
that a is irreducible. If a = bc, then a divides bc; hence, a divides b or c. If 
a divides b, then b = ad for some d. Consequently, 1 = dc, so c is a unit. 
On the other hand, if a divides c, then the same argument shows that b is a 
unit. However, irreducible elements need not he prime. Perhaps the easiest 
example is in the ring Z[/ -5]. In this ring, 6 = 2.3 = (1+ \/-5)(1— 
With some calculation, we can see that 2 is irreducible and that 2 does not 
divide either of 1 ± \/-5. Since 2 divides their product, 2 is not prime in 

Definition 2.1 An integral domain R is a unique factorization domain 
(UFD) if every nonzero nonunit of R can be factored uniquely into a product 
of irreducible elements. 



Some words about this definition are in order. What does it mean to 
factor an element uniquely? In Z, the integer 6 factors as 6 = 2 • 3 and 
as 6 = (-2) • (-3). The four elements +2 and +3 are prime according to 
our definition. This means we have to be more precise in our meaning. If 
a, b E R such that a divides b and b divides a, we say that a and b are 
associates. Equivalently, a and b are associates if aR = bR (see Problem 

4). Therefore, two associates differ by multiplication by a unit. In studying 
divisibility, units are trivial; hence, we would like not to have to worry 
about them. Therefore, we say that an element a factors uniquely into 
a product of irreducible elements if a is a product of irreducibles, and if 
a = 7r Ie' • • • 7rnen = Oif' • • •  O with each 7ri  and Oi  irreducible-  , then n = m, 
and after reordering, e i  = fi  and 7riR = OR  for each 1. Therefore, unique 
factorization means unique up to multiplication by units. 

While irreducible elements may not be prime, they are in a UFD. This 
fact will be used frequently when dealing with polynomial rings. 

Lemma 2.2 Let R be a UFD. If 7r E R is irreducible, then 7r is prime. 

Proof. Suppose that 7r divides ab. Then ab = 7re for some c. If c = 

41  • • • O is the factorization of c into irreducibles, then 7rc = 7r0f1  • • • 0-kL 

is the factorization of 7rc = ab into irreducibles. However, if we look at 
the factorization of a and b, by uniqueness 7r must occur in one of these 
factorizations. Therefore, 7r divides a or 7r divides b, so 7r is prime. 1=1 

There are some equivalent definitions of a UFD. Some of these are ad-
dressed in the problems at the end of this appendix. One characterization, 
due to Kaplansky, is presented now, and we will use it to show that the 
ring of polynomials over a field is a UFD. This is a prime ideal theoretic 
characterization of a UFD, and is quite useful in proving facts about UFDs. 
Another characterization is that a ring is a UFD if and only if each nonunit 
can be factored into a product of primes. We use this characterization in 
the proof of the following theorem, although we leave its proof to the reader 
(Problem 9). 

Theorem 2.3 (Kaplansky) Let R be an zntegral domain. Then R is a 
UFD if and only if each nonzero prime ideal of R contains a nonzero prin-
cipal prime ideal. 

Proof. Suppose that R is a UFD, and let P be a nonzero prime ideal of R. 
If a E P with a 0, let a = 7r 1  • • 7rn  be a prime factorization of a. Since 
P is a prime ideal and a E P, one of the 7ri  must be in P. Therefore, P 
contains the principal prime ideal ( 7Vi ). 

Conversely, suppose that every nonzero prime ideal of R contains a 
nonzero principal prime ideal. Let 

S = {a E — {O} :  u is a unit or a factors into a product of primes} . 
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If S = R — {0 } , then R is a UFD by Problem 9. If not, there is an a e 
R — S with a O. Let / be an ideal of R containing a that is maximal 
under inclusion among the ideals disjoint from S. Such an ideal exists by 
an easy application of Zorn's lemma. We claim that I is a prime ideal. 

Assuming this for the moment, by hypothesis I contains a prime element 
7r. However, 7r E S, since 7v is prime. But / n s = 25, a contradiction. 
Therefore, S = R — {0 } , and so R is a UFD. 

We are then left with showing that I is prime. First, we note that S is 
closed under multiplication. If / is not prime, then there are b,cER—I 
with bc E I. Then I + bR and I --1-cR are larger than I, so, by maximality, 
both intersect S. Say xESn (I -1-bR) and y ESn (I ±cR). If x = u1+ bri 
and y = u2-Fer2 with ui E  l and ri E R, then xy = ui (u2+cr2)-Fbcrir2 E 
since bc E I. But xy E S, since S is closed under multiplication. This forces 
S n  I 0, a contradiction. Therefore, I is prime. 	 El 

We finish this section with a short discussion of greatest common divisors. 

Definition 2.4 Let R be a UFD. If a,b E R are nonzero elements, then a 
greatest common divisor of a and b is an element d such that 

1. d divides a and d divides b; 

2. if e divides a and e divides b, then e divides d. 

The gcd of two elements is not unique if it exists. However, by the second 
condition in the definition, it follows that any two gcds of a and b are 
associates. We often abuse language and call an element d the gcd of a and 
b, and write d = gcd(a, b). 

The definition of gcd makes perfect sense in any commutative ring. The 
difficulty is that a gcd of two elements need not exist, as shown in Problem 
11. However, if R is a UFD, then we can see that a gcd always exists. In 
fact, if b = 7r ie l • • • 7v,Ti and a = • • 7vlin is the factorization of a and b into 
irreducibles, where ei, fi  can be 0, and if gi = min {e i , fi }, then a gcd of a 
and b is 7rr • • 71,- . If 1 is a gcd of a and b, we say that a and b are relatively 
prime. Unlike in the integers, in a UFD a gcd of two elements need not be a 
linear combination of the elements. An example of this appears in Problem 
15. However, if R is a PID and d = gcd(a, b), then dR = aR bR, so d is 
a linear combination of a and b (Problem 17). 

The definition of gcd can be extended to any finite set of elements instead 
of just two elements. An element d E R is a gcd of al, , an  if d divides 
each ai , and any e that divides all ai also divides d. In a UFD, the gcd of 
any finite set of elements does exist. Moreover, a gcd can be calculated by 
recursion from the equation gcd(a i  , , an ) = gcd(a i  , gcd(a 2 , , an )) (see 
Problem 16). 



3 Polynomials over a Field 

Let R be a ring. We denote by R[x] the ring of polynomials in one variable 
over R. Given a polynomial f (x) = E7i2 0  rix i  with rn  0, the degree 
of f is defined to be n. For convenience, we define the degree of the zero 
polynomial to be  -oc.  While our primary interest is in polynomials over a 
field, we state a number of results for polynomials over an integral domain. 

Lemma 3.1 Let R be an integral domain.  If f (x), g(x) E R[x] are nonzero, 
then deg( f g)) = deg( f) +deg(g). Consequently, R[x] is an integral domain. 

Proof. Let f (x) = Ein_ 0  ax i  and g(x) = Eao  bix i  with deg( f) = n and 
deg(g) = m. Therefore, an , bm  O. The product of f and g is f (x)g(x) = 

E7:_+orn  (E +k=i  ai b k )x i  . Clearly, all coefficients past degree n + m are 0. 
The coefficient of X n+m  is an  bm , which is nonzero, since both a n  and bm  
are nonzero. This proves the degree formula. Moreover, it shows that  fg 
cannot be the zero polynomial unless f = 0 or g = 0; hence, R[x] is an 
integral domain. El 

If either f = 0 or g = 0, then the degree formula still holds with the 
convention that deg(0) = -oc,  given that addition is defined by n+(- oc)  = 
-oc for all integers n. 

The main theorem for polynomials over a field is the division algorithm. 
Since this result holds in more generality and is useful in its full version, 
we give the full version here. 

Theorem 3.2 (Division Algorithm) Let R be an integral domain. Let 
f (x), g(x) E R[x] with g(x) 0, and suppose that the leading coefficient 
of g is a unit in R. Then there are unique polynomials q(x),r(x) E R[x] 
satisfying f (x) = q(x)g(x) r(x) and deg(r(x)) < deg(g(x)). 

Proof. This argument is almost the same as the proof of the division al-
gorithm for polynomials with real number coefficients. We first show the 
existence of q and r with the desired properties, then we prove the unique-
ness. Let 

S = { f (x) - q(x)g(x) : q(x) E R[x]1 

The set S is clearly nonempty. Let r(x) E S be a polynomial of minimal 
degree in S. Then f = gg+r. If deg(r) > deg(g), then say r(x) = Ejn_ o  axi  
and g(x) = Eirlo  b i x i  with ay„ bm 	0 and n > m. If  q1 (x) = q(x) - 
a„b 1 :/: 7 i -m, which 'hakes sense since b„, 	1!-IS1111 led to bo a twit in R, t,fien 

f (x) - q i (x)g(x) = r(x) - an b m-1  xn -  m g(x), 

which has degree less than n, since the coefficient of xn is O. Consequently, 
this polynomial is in S and has smaller degree than r(x). This is a contra-
diction, which forces n < m. 



For uniqueness, suppose that there are q(.1,),q 1 (x) and r(x),r 1 (x) E R[X] 
with f = qg +r and f = gig +ri , and with deg(r),deg(r i ) < deg(g). Then 

g (q i  — q) = r — r 1 .  If q 1  q, then the degree of g(q i  — q) is at least deg(g), 
which is larger than deg(r — r i ). This contradiction shows that q i  = q, 
which forces r = r i . This proves the uniqueness. 

We state the usual division algorithm separately for emphasis. 

Corollary 3.3 If F is a field and if f(x),g(x) E F[x] unth g(x)  4  0, then 
there are unique polynomials q(x),r(x) E F[x] satisfying f (x) = q(x)g(x)+ 
r(x) and deg(r(x)) < deg(g(x)). 

The division algorithm yields the fact that F[x] is a Pia From this, we 
will see that P[x] is a UFD. 

Corollary 3.4 If F is a field, then F[x] is a PID. 

Proof. Let I be an ideal of F[x]. If  I = {0 } , then I is generated by O. 
If I 0, take g(x) E I  — {0} of minimal degree. If f(x) E I, by the 
division algorithm there are polynomials q and r with f = qg + r and 
deg(r) < deg(g). Since I is an ideal, r = f — qg E I. Minimality of deg(g) 
forces r = 0, which shows that f is in the ideal generated by g. Therefore, 

= (g) is principal, so F[x] is a PID. 

We can now use Kaplansky's theorem to give an easy proof that F[x] is 

a UFD. 

Lemma 3.5 If R is a PID, then R is a UFD. In particular, if F is a field, 
then F[x] is a PID. 

Proof. Suppose that R is a PID. If P is a prime ideal of R, then P is 
principal, say P = (70. Therefore, P contains the principal prime ideal (7r). 
By Theorem 2.3, R is a UFD. 

The following fact will be used early in Chapter I. 

Corollary 3.6 Let F be a field. If p(x) E F[x], then the principal ideal 

(p(x)) is a maximal ideal of F[x] if and only if p(x) is irreducible. Conse-
quently, any prime ideal of F[x] is maximal. 

Proof. Tliis really is a fact, about PIDs, a.s 1,he proof will show. Suppose 
that p(x) is irreducible. Let M be a maximal ideal of 1 , 1a:1 containing p(x). 
Since F[x] is a PID, M = (f (x)) for some polynomial f (x). Then f divides 
p since (p) C (f). But p is irreducible, so p has no divisors other than units 

or associates. Since (f) = M F[x], we see that f is not a unit; hence, 
f is an associate to p. Therefore, (f) = (p), so (p) is maximal. Conversely, 
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suppose that (p) is maximal. If p is not irreducible, then p = fg  with both 
f and g nonconstant polynomials. Then (p) C (f) C R. This contradicts 
maximality, so p is irreducible. If M is a prime ideal, then M (p) for some 
irreducible polynomial by arguments similar to those just given; hence, M 

is maximal. 

4 Factorization in Polynomial Rings 

The goal of this section is to show that R,[x] is a UFD whenever R is a 

UFD. However, we have sonic work to do in order to prove this. 

Definition 4.1 Let R be a UFD, and let f (x) E R[x]. The content c(f) of 
f is the gcd of the coefficients off.  If the content of f is 1, then f is said 
to be primitive. 

The following lemma is easy to prove, but we will use it in a number 
of places in this book. The proof follows immediately from the definition 
of addition and multiplication in polynomial rings and quotient rings; this 
will be left to the reader. 

Lemma 4.2 Let R be a ring, and let I be an ideal of R. Then the map 
: R[x] 	RI I[x] given by cp(E i  ax) 	+ /)x  is a surjective ring 

homomorphism. 

lii  particular, if p is a prime number and .6 represents the equivalence 
class of a modulo p, then the map Z[x] 	I' 	given by Ei  
is a ring hornomorphism. 

Proposition 4.3 Let R be a UFD, and let f,g E R[x]. Then, c(f g) = 
c(f)c(g). In particular, if f and g are primitive, then,  fg  is primitive. 

Proof. We may write f(x) = c( f ) f i (x) and g (x) = c(g)g1 (x) for some 
primitive polynomials fi  and g i  . So, fg = c(f)c(g) • f t g t . If we prove 
that tile product of primitive polynomials is primitive, then we will have 
proved the proposition. So, suppose that f and g are primitive. If  fg  is not 
primitive, then there is a prime element 7F that divides all of the coefficients 
of f g. Consider the polynomial ring R/(71)[x] over R/(71). Since 7F is a prime 
element, R/(71 ) is an integral domain. Let f and g be the images of f and g 
in R/(71 )[x]. Since f and g are primitive, 7F does not divide all the coefficients 
of f or g, so f 0 and g O. Therefore, f •g= fg by Lemma 4.2, and 
7 • g 0, since R/(7r)[x] is  an integral domain. However, if 7F divides all 
the coefficients of fg, then fg= 0, a contradiction. Therefore, fg is indeed 
primitive.  LI  

The following theorem is perhaps the most important result about poly-
nomials over a UFD. 
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Theorem 4.4 (Gauss' Lemma) Let R be a UFD, let F be its quotient 
field, and let f (x) E R[x]. Then f is irreducible over R if and only if f is 
primitive arid irreducible over F. 

Proof. Suppose that f is primitive and irreducible over F. If f factors 
in R[x] as f = gh with neither g nor h a unit in R[x], then since f is 
irreducible over F, either g or h must be a constant. But if g is a constant, 

g would divide all the coefficients of gh = f. This is impossible, since f is 
primitive, so f is irreducible over R. 

Conversely, suppose that f is irreducible over R. Since we can write 

f = c(f) • f t  with f t  primitive, c(f) is a unit in R[x]; hence, c(f) is a 
unit in R. Therefore, f is primitive. If f is not irreducible over F, then 
we can write f = gh with  g , h  E F[x] both of degree at least 1. By using 

common denominators, we can write gh= alb • gi  h i , where gi, h i  E R[x] 
are primitive and a, b E R are relatively prime. Then b f (x) = agi (x)h i (x). 
By Proposition 4.3, we have b = c(b f) = a, since gi  and h l  are primitive. 
But this contradicts gcd(a, b) = 1 unless a and b are both units in R. If a 
and b are units in R, then f = (agi )(1/b • h i ) is a nontrivial factorization 
of f in R[x], which contradicts the assumption that f is irreducible over 
R. Therefore, f is indeed irreducible over F. 

We can now prove that R[x] is a UFD if R is. 

Theorem 4.5 If R is a UFD, then R[x] is a UFD. 

Proof. We give here a somewhat nonstandard proof of this theorem, nia.k-
ing use of Theorem 2.3. This proof is easier to understand if the reader has 
some experience in localization. Some of the details in this proof are left to 
Problem 18. A more standard proof of this fact can be found in Hungerford 
[13, Thin. 3.11.1] or Herstein [12, Thm. 3.11.1]. 

Let Q be a nonzero prime ideal of R[x]. By Theorem 2.3, we wish to 
show that Q contains a nonzero prime element. If P = Q n R, then P is a 
prime ideal in R. If P 0, then P contains a nonzero prime element 7F of 
R, which is also a prime element of R[x]. Therefore, Q contains a nonzero 
prime element of R[x]. The more difficult case is if P = 0, which we now 
consider. Let F be the quotient field of R. Then F[x] is a UFD, as we have 
already seen. Let Q' = QF[x], the ideal of F[x] generated by Q. Then Q' 
is a prime ideal, since P = 0 (see Problem 18). Because F[x] is a UFD, 
there is a polynomial f(x) E Q' that is irreducible in F[x]. We can write 
f(x) = 20(x) with g(x) E R[x] a primitive polynomial and a, b E R. Since 
a/b is a unit in F, we have g(x) E Q'. Furthermore, g(x) is irreducible in 
F[x], since g(x) is an associate to f (x). Therefore, g(x) is irreducible over R 
.since g(x) is primitive, by Gauss' lemma. But g(x) E Q'nR[x], so g(x) E Q 
(see Problem 18 again). Finally, we need to show that g(x) is prime in R[x], 
which will finish the proof. We see that g(x)F[x] n R[x] = g(x)R[x], since 
g(x) E R[x] (see Problem 18). However, the ideal g(x)F[x] is prime, since 



F[x] is a UFD and g(x) is irreducible. Thus, g(x) E R[x] is prime, since the 

intersection of a prime ideal of F[x] with R[x] is a prime ideal of hqx]. 

Corollary 4.6 If F is a field, then F[x l ,... ,x 72 ] is a UFD for any n 

Proof. This follows by induction on n and the previous theorem, the n = 1 
case having been proven earlier. 	 [1] 

More generally, if F is a field and X is any set of variables, possibly 
infinite, then the polynomial ring F[X] is a UFD. A proof of this fact can 
be obtained from the following two points. First, any element of F[X] is 
a polynomial in finitely many of the variables, and unique factorization 
holds for polynomials in finitely many variables, and second, adding more 
variables does not affect whether an element is irreducible. 

5 Irreducibility Tests 

It is hard in general to determine if a polynomial is irreducible over a field 
F. However, if F is the quotient field of a UFD, there are some simple tests 
that can determine when a polynomial is irreducible over F. While these 
tests may seem somewhat specialized, nonetheless they can be quite useful. 

The first test is actually a test for roots, but it is also an irreducibility 
test for polynomials of degree 2 and 3. Let R be a UFD, and let F be its 
quotient field. Suppose that f(x) = ao + • • • ±  ax n E R[x]. If  c//3  E F 
is a root of f(x) with gcd(a, {3) = 1, then by multiplying the equation 
f (al {3) = 0 by )3n , we obtain the equation 

aoon + al con--1 	 anan O.  

Therefore, ao 
	( ai on—i 	an_ 1an-20 anco— i) Since a is 

relatively prime to 0, it follows that a divides ao. By a similar manipulation, 
we see that j3 divides an .  If f has degree 2 or 3, then f has a linear factor 
if and only if it is reducible over F. We record these observations as the 
first irreducibility test. 

Proposition 5.1 (Rational Root Test) Let R be a UFD with quotient 

field F. Suppose that f(x) = ao +...  + an xn E R[x] has a root  c/l3  E F 
with gcd(a,8) = 1. Then a divides ao, and )3 divides a„. If deg(f) < 3, 
then f is irreducible over F if and only if f has no roots in F. 

Example 5.2 The polynomial x 2  — p is irreducible over Q if p is a prime, 
as is x3  +3x +1, by the rational root test. The cubic x 3  +2x 2  — 4x +1 factors 
as (x — 1) (x 2  ± 3x — 1). The first factor could have been easily found by 
the rational root test; since x 3  ± 2x 2  - 4x +1 is monic, any rational root 



of it is in Z and must, divide 1, so ±1 are the only possibilities. The fourth 
degree polynomial  xd — 4 factors as (x 2  — 2)(x 2  + 2), but it lias  o  rationat 
roots. Thus for polynomials of degree 4 or larger, the existence of a rational 
root is not necessary for a polynomial to factor over Q. 

The next irreducibility test is the one we use the most in this book. 

Proposition 5.3 (Eisenstein Criterion) Let R be a UFD with quotient 
field F, and let f (x) = ao  + • • +  ax n E R[x]. 

1. Suppose there is a prime element 7F E R such that 7F divides 
ao,... ,an _ i  but not a, and that 7 2  does not divide ao. Then f is 
irreducible over F. 

2. S'appose there is a prime element 71  E R such that 7F divides al, 	an, 
but not ao and that 7 2  does not divide a n . Then f is irreducible over 
F. 

Proof. We prove statement 1; the proof of statement 2 is similar. By 
factoring out the content of  f,  we may suppose that f is primitive. Consider 
the ring RI(7 1 - )[x], and let Ti denote the image of h E R[x] obtained by 
reducing coefficients modulo 7F . The condition on the coefficients of f shows 
that 7 = O. Suppose that f factors over F. Then by Gauss! lemma, 
f also factors over R. Say f = gh with g,h E R[x] both nonconstant 
polynomials. Then f =•  h in  R/(7)[] by Lemma 4.2. Since f = 
then g-  and h each must be of the form cx i , since the only monic irreducible 
factors of xn are powers of x. If deg(g) and deg(7i) are both positive, then 
7F divides the constant term of both g and h. But ao is the product of 
these constant terms, which would force 72  to divide c/ o , which is false. 
Therefore, either g or h is a constant. Since g and h are nonconstant, 7F 

divides the leading coefficient of g or h. But an  is the product of these 
leading coefficients, so 7F divides an , which is false. The only possibility left 
is that f is irreducible over F, which proves the criterion. El 

Example 5.4 The polynomial x 5  — 12x 3  ± 2x  +2 is irreducible over Q by 
an application of the Eisenstein criterion with 7F = 2. Similarly, with 7F = 3, 
the polynomial X 3  — 3x -I-- 3 is irreducible. The Eisenstein criterion does not 
tell anything about x 4  + 2x + 4, since there is no prime that satisfies all 
the needed conditions. 

Let p be a prime. The polynomial XP — 1 factors as 

xP — 

 

1—  (x 1)(xP-1  xP-2 	• + x  +1). 

The Eisenstein criterion would appear to be useless to determine whether 
XP -1  XP -2  ± • • ± X ± 1 is irreducible. However, this is not the case. By 
a change of variables, we can determine that this polynomial is irreducible 
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over Q. Before doing so, however, we formalize the idea in the following 
lemma. The proof is straightforward and is left for the reader (Problem 
12) 

Lemma 5.5 Let f (x) E R[x] and a E R. Then the map f (x) 	f (x + a) 
is a ring isomorphism. Therefore, if f (x + a) is irreducible, then f(x) is 
irreducible. 

Example 5.6 Let f (x) = xP - 1 with p a prime. Then 

f(x +1) = (x +1)P - 1 

= xP + -' 	 x. 	• • 70 1 + (1 10- 2 

2 

Since xP - 1 factors as (x - 1)(xP -1  + • • • + x + 1), replacing x by x + 1 
yields f(x + 1) = xg(x) with g(x) the image of X P- 1  ± ± X ± 1 after 
substituting x 1 for x. Therefore, xP-1  + • • + x + 1 is irreducible if g(x) 
is irreducible. However, the coefficients of g(x) = xP-1  + pxP-2  ±• + p 
are all binomial coefficients of the form ( i ), which are all divisible by p (see 

Problem 13), except for the leading coefficient (pP) = 1. Since the constant 

term is p, Eisenstein's criterion with 7F = p shows that g(x) is irreducible; 
hence, xP- ' + • • • + x + 1 is irreducible. 

The following result is our last irreducibility test. 

Proposition 5.7 Let R be a UFD with quotient field F,  and let f(x) E 
R[x] be monic. If 7F E R is a prime element and if f  c R/(7)[x] is irre-
ducible, then f is irreducible over F.  

Proof. The polynomial f is primitive since it is monic. If f factors over 
F,  then f factors over R by Gauss' lemma. If f = gh with g,  h E R[x] 
nonconstant polynomials, then f=  • h in R/(7)[x] by Lemma 4.2. If 
7 is irreducible, this means or Tt is a unit in RI(7). Since g and h are 
nonconstant, this would force 7F to divide the leading coefficient of either 
g or h, which cannot happen since f is monic. Therefore, f is irreducible 
over R, so f is also irreducible over F.  

The converse of this proposition is false, since X 2  x + 1 is irreducible 
over Z, but X 2  x + 1 = (x ± 2)(x + 2) over F3. Also, if f is not monic, 
then the result is false, since 2x 2  + 3x + 1 = (2x +1) (x + 1) factors over 
Z, but its image in  F2 [x] is x + 1, which is irreducible. 

Example 5.8 Over F2, the polynomials 1 + x 3  + x 4  and 1 + x 3  + x 6  can 
be seen to be irreducible by trial and error. Therefore, 1 + x 3  + x4  and 

+ x 3  + x 6  are irreducible over Q, as arc 3 + 5x 3  +7x4  and -1+ 11x 3  +x6. 
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Example 5.9 Let p be a prime, and consider X P  — X — 1. This polynomial 
has no roots in Th',  since every element of Fp is a root of X P  —  x.  While a 
polynomial can have no roots but be reducible, in this case this does not 
happen. Problem 3 of Section 10 shows that a prime degree polynomial 
that has no roots in a field F is irreducible over F under the following 
hypothesis: For any field K containing F, if the polynomial has a root in 
K, then it factors into linear factors in K. Using the result of this exercise, 
we show that the hypothesis holds for X P  — X — 1, which then implies that 
it is irreducible over Fp , and so X P  — X — 1 is irreducible over Q. 

Suppose that K is a field containing Fp for which XP — X — 1 has a root 
a. So aP — a = 1. We claim that a ± 1, a ± 2, ... , a ± p — 1 are also roots of 
xP — — 1 in K. To see this, if 1  <j < p— 1, then (a ± i)P — (a ± i) —1 = 
aP iP — a — i  —1 = aP — a  —1 = 0, since iP = i(mod p) by Fermat's 
little theorem. Therefore, we have p roots of X P  — X — 1 in K, so X P  — X — 1 
factors into linear factors in K. Therefore, Problem 3 of Section 10 shows 
that XP — X — 1 is irreducible over F p , since it has no root in Fp . 

Problems 

1. For any positive integer n, give an example of a ring of characteristic 
n. 

2. Let F be a field. If char(F) =  p>  0, show that the prime subring of 
R is isomorphic to the field Fp , and if char(F) = 0, then the prime 
subring is isomorphic to Z. 

3. Let F be a field. The prime subfield of F is the intersection of all 
subfields of F. Show that this subfield is the quotient field of the prime 
subring of F, is contained inside all subfields of F, and is isomorphic 
to 1Fp  or Q depending on whether the characteristic of F is p > 0 or 
O. 

4. Let R be an integral domain. Show that a and b are associates in R 
if and only if aR = bR. 

5. Show that 2, 3, and 1 ± -V-5 are all irreducible in the ring 

Z[-V-5] = {a ± b-V-5 : a, b E Z} 

and 2 • 3 = (1 ± -V-5)(1 — -V-5), but that 2 does not divide either of 
1± 

6. If R is a UFD, show that 7r nat  in l e l'fi • 	min{e7" fn }  is a gcd of • • 7rn 
e 	„ 

	

7F • 7F„ and 7F f 	• 7F " 

	

1 	 ' 



7. Let U. be a ring, and let S be a subset or R. that is cLosed under 
multiplication and does not contain O. Use a Zorn's lemma argument 
to show that there are ideals of R maximal with respect to being 
disjoint to S. Also show that any such ideal is prime by mimicking 
the argument used in the proof of Theorem 2.3. 

8. If R is an integral domain such that there are primes 71 1, .. • > 71727 
01 7 • 0, with 7r 1  • • • 7r„ = 0 1  • • 0,, show that rn = n, and after 
renumbering if necessary, show that 7T2  and 0, are associates for each 
j. 

9. Use the previous problem to show that an integral domain R is a 
UFD if and only if every nonunit in R can be factored into a product 
of primes. 

10. Show that an integral domain R is a UFD if and only if (1) every 
nonunit of R can be factored into a product of irreducibles and (2) 
every irreducible is prime. 

11. Let R= Q[x2 ,x 3 ], the set of all polynomials over Q with no x term. 
Show that a gcd of x 5  and x 6  does not exist in R. 

12. Let R be a ring. If a E R, show that the map f(x) 	f(x ± a) is a 
ring isomorphism of R[x]. 

13. If p is a prime, show that p divides the binomial coefficient ( ) if 
0 < i < p. 

14. Let X = {x,} e , be a set of variables and F[X] the ring of poly-
nomials in the variables from X. This ring can be thought of as the 
union of all the rings F[x... x], as the union ranges over all 
finite subsets { x, 	x} of X. Show that F[X] is a LTFD if F is 

a field. 

15. Let R = Z[x], a UFD. Show that 2 and x are relatively prime but 
that 1 is not a linear combination of 2 and x; that is, there are no 
elements f, g E Z[x] with 1 = 2f -1- xg. 

16. Let R be a UFD and a l , ... an  E R. Prove that 

gcd(a i ,... an ) = gcd(a l , gcd(a2,.. •7a72))- 

Conclude that a gcd of any finite set exists. 

17. Let R be a PID. If d = gcd(a, b), show that dR = aR + bR, and 
conclude that d is a linear combination of a and b. 



18. This problem fills in all the details or the proof that R[:r] is a UFD 
if R is a UFD. Some of these parts are standard fads of localization 
but are included in case the reader has not seen localization beyond 
the construction of the field of quotients of an integral domain. 

(a) Let A C B be commutative rings, and let Q be a prime ideal of 
B. Show that Q n A is a prime ideal of A. 

(h) Ti A C B, suppose that there is a subset S of A that is closed 
under multiplication, every element of S is a unit in B, and 
B = {a/s : a E A, s E SI. If a E A —S, show that aB n A = aA. 
We write B = As when B is of this form. 

(c) Let A C B, and suppose that there is a set S as in Problem 18b 
with B A s . If P is a prime ideal of A with P n S = 0, show 
that PB is a prime ideal of B and that PB n A = P. 

(cl) If R is an integral domain with quotient field F, and if S = 
R — {0 }, show that F[x] = R[x]s. 

(e) Put t;he previous steps together to prove Theorem 4.5 in full 
detail. 





Appendix B 
Set Theory 

In this appendix, we discuss Zorn's lemma and cardinal arithmetic. For 
more information on these topics, see Enderton [8] or Stoll [26]. 

1 Zorn's Lemma 

In this book, we use Zorn's lemma in algebra to prove the isomorphism 
extension theorem, the existence of an algebraic closure, and some other 
results. We point out that Zorn's lemma has a large number of equivalent 
formulations; for instance, Zorn's lemma is equivalent to the axiom of choice 
and to the well ordering principle. However, we only require the statement 
of Zorn's lemma in this book. 

We now describe the terms involved in the statement of Zorn's lemma. 
A partial order < on a set S is a binary relation such that (I) s < s for 
all s E S, (2) if s < t and t < s, then s = t, and (3) if r < s and s   < t, 
then r < t. Examples of a set with a partial order include the real numbers 
with the usual ordering, and the set of all subsets of a given set, with set 
inclusion as the order. If S is a set with partial order <, we shall refer to 
the pair (S,<) as a partially ordered set. 

Let (S, <) be a partially ordered set. An element m E S is said to be 
maximal if whenever s S with m < s, then s = m. If T is a subset of 
S, then an element s E S is said to be an upper bound for T if t < s for 
all t E T. For instance, if S is the set of all subsets of {1, 2, 3, 4 } , then 
{1, 2, 3, 4} is a maximal element of S. If T is the set of all proper subsets of 



11,2,3,41, then (1, 2, 3, 41 is au upper butincl for T. Note that this tipper 
bound is not in  T.  Also, {1, 2, 3} and {I, 2, 4} are both maximal elements of 
T Finally, a subset T of a partially ordered set (S,<) is said to be a chain 
if for every t 1 , t 2  E T, then either t i  < t2  or t 2  < t 1 . With the example 
above, {0, {1} , {1,2}, {1,2,4}1 is a chain in S. 

We can now state Zorn's lemma. 

Theorem 1.1 (Zorn's Lemma) Let (S,<) be a nonempty partially or-
dered set. Suppose that for any chain T in S there is an upper bound for T 
in S. Then S contains a maximal element. 

In the statement of Zorn's lemma, an upper bound for a chain T need 
not be an element of T, merely an element of S. 

Example 1.2 Here is the first place that Zorn's lemma usually arises in 
algebra. Let T? be a ring with identity. We show  that 17 contains a maxima,1 
ideal. Let S be the set of all proper ideals of R. Then S 0, since (0) E S. 
The set S is partially ordered by set inclusion. To verify that Zorn's lemma 
applies, let T be a chain in S. Define I to be U T, the union of all ideals 
in T. We can see that I is an ideal of R, for if a, b E I, then a, b E J for 
some J E T, since T is a chain. Then a—b E J c I. Also, if a E f and 
r E R, then a E J for some J E T, so ra,ar EJCI. Thus, I is an ideal of 
R. Moreover, I is a proper ideal of R since no J  E T contains 1, so I does 
not contain 1. Therefore, I E S. By Zorn's lemma, S contains a maximal 
element M. A maximal ideal of R is precisely a maximal element of the set 
of proper ideals of R, so M is a maximal ideal of R. 

We now give a couple of general examples of how Zorn's lemma can be 
used in algebra. All of the uses of Zorn's lemma in this book, including 
the example above, are special examples of these. Appendix D uses Zorn's 
lemma to prove that any vector space contains a basis. 

Example 1.3 Let X be a set, and let S be a nonempty collection of subsets 
of  X,  with the partial order of set inclusion. Suppose that for every chain 
T in S the set UT is an element of S. Then S has a maximal element. To 
verify this, all we need to see to apply Zorn's lemma is that the chain T 
has an upper bound in S. But the union  U T  clearly is an upper bound for 
T, since any t E T is a subset of this union. The assumption is that this 
union is in S; hence, Zorn's lemma applies. 

Example 1.4 Let X and Y be sets, and let S be a nonempty collection 

of pairs (A, f), where A is a subset of X and f A —4 Y is a function. We 

can define a partial order on S as follows: Let (A, f) < (B, g) if A C B and 
gi A  f. It is easy to see that < is indeed a partial order on S. Suppose 
that T is a chain in S. Let M UT, and define a function h T Y by 
h(x) = g(x) if (X,g) E T and x E X. The function h is well defined by the 



condition that T is a chain. Suppose that for each chain IT, the pair (M, h) 
as constructed is an element of S. Then S has a maximal element. This 
follows from Zorn's lemma because the element (M,  h) is an upper bound 
for T by construction and, by hypothesis, lies in S. 

2 Cardinality and Cardinal Arithmetic 

We will require the use of cardinal arithmetic in a couple of places in this 
book. The theorem that any two bases of a finite dimensional vector space 
have the same number of elements can be extended to arbitrary vector 
spaces by using Zorn's lemma and some results of cardinal arithmetic. We 
now give the basic definitions and results on cardinal arithmetic that we 
require in this book. 

If S and T are sets, we write S T if there is an injective function from 
S  lo T. It, is proved in most set theory texts that S T if and only if there 
is a surjective function from T to S. If S T and T S, then we say S 
and T have the same cardinality and write S T. The Schroder-Bernstein 
theorem says that this is equivalent to the existence of a bijection between 
S and T. We will write S -< T if S -< T and if S and T do not have the 
same cardinality. 

The cardinality of a set S will be denoted S.  Addition and multiplication 
of cardinal numbers is defined by IS! + IT! = IS L_Ej T1, where S T is the 
disjoint union of S and T. Also, IS1 IT'  =  S x  T. We write 1S1 < IT' and 

< IT! if S T and S -< T, respectively. If S is an infinite set, then 15'1 
is called an infinite cardinal. If S is finite or if S N, then S is said to be 
countable. If S is countable and infinite, we write IS! = N o . The cardinal 
N o  is the smallest infinite cardinal; that is, if S is a countably infinite set 
and T is any infinite set, there is an injective function S —4 T. We recall 
the basic facts of cardinal arithmetic in the following proposition. 

Proposition 2.1 Let S and T be sets. 

1. If T is infinite and if {Sn  : n c N} is a collection of subsets of S with 
ISn l< IT1 for all n, then lUneN 	< 

2. If S and T are sets, then IS! < !S I+ In If either S or T is infinite, 
then IS1 + IT! = max {IS! , 

S. If S and T are nonempty sets, then IS1 	In If either S or T is 
infinite, then IS1 -171= max {IS! ,1711. 

If T is an infinite set, then N o 	In 

Example 2.2 Let X be a set, and let P(X) be the set of all subsets of X. 
We show that IP(X) > X . Note that there is an injective map X —4 P(X) 



given by a 	{4 Therefore, 1X1 < 1P(X)1. We finish the proof by showing 
that there is no surjective map from X to P(X). Let f : X —4 P (X) be 
any function. Define S by S= { aEX:açt f(a)}. We claim that S is not 
in the image of  f.  Suppose instead that S = f (x) for some x. Then x E S 
if and only if x f (x) = S. This is impossible, so S im(f). 

Problems 

1. Use Zorn's lemma to prove that if R is a ring with identity, then R 
has a maximal left ideal. 

2. In this problem, we show that a ring without; an identity may 
not have any maximal ideals. Let p be a prime, and let R = 
{a/p 71  : a E Z, n > 0}. Then R is a subgroup of Q under addition. 
Define multiplication in R by x • y = 0 for all x, y E R. Note that a 
subset of R is an ideal if and only if it is a subgroup under addition. 
Show that the only subgroups of R are the cyclic subgroups generated 
by 1/p  for some n, and conclude that R does not have a maximal 
ideal. 

3. Let R be a commutative ring, and let S be a subset of R that is closed 
under multiplication and does not contain O. Use Zorn's lemma to 
show that there is an ideal maximal with respect to being disjoint 
from S.  
(This fact is used to prove that the intersection of all prime ideals 
containing an ideal / is equal to the radical of I.) 

4. Prove the Schrôder—Bernstein theorem. 

5. Prove that Z N and Q  N. 

6. Prove that N -< R. 



Appendix C 
Group Theory 

There are a number of results from group theory that we will need in 
Galois theory. This section gives a brief survey of these results. For a more 
complete treatment of group theory, see Rotman [23] or any of the general 
algebra texts. 

1 Fundamentals of Finite Groups 

Let G be a group, and let H be a subgroup of G. Recall that the left coset 
gH of an element g E G is the set of all elements of the form gh with 
h E H. Right cosets are defined similarly. The distinct left (or right) cosets 
of H partition G. If G is finite, then each coset has the same number of 
elements. Tliese facts forin Lite  heart; of the proof of Lagrange's theorem, 
the most fundamental result about finite groups. 

Theorem 1.1 (Lagrange) If H is a subgroup of a finite group G, then 
1H1 divides C. Moreover, if [G H] is the number of cosets of H in G, 
then ICI [C:  H]. 

Proof. The proof of the first statement can be found in any book on group 
theory. Lagrange's theorem usually is stated as just the first sentence. The 
proof yields the equality ICI = !HI • [G H]. 

If G is a group and if N is a subgroup of G, then N is said to be a 
normal subgroup of G if grig—[  E N for all g E G and n E N. If N is 



a normal subgroup of G, let GIN be the set of all left cosets of N in G. 
Then C/N can be given the structure of a group by defining multiplication 
by gN • hN = ghN. This definition is well defined, independent of the 
representation of the cosets. 

Suppose that G is a finite Abelian group. Then there is a complete de-
scription of the structure of G. The following theorem is often called the 
fundamental theorem of finite Abelian groups. 

Theorem 1.2 (Fundamental Theorem of Finite Abelian Groups) 
Let G be a finite Abelian group. Then G is a direct product of cyclic sub-
groups. Therefore, G Z/n i Z x • • • x Z/nr.Z for some integers Tii 

It is not hard to show that Z/nmZ Z/nZ x Z/m,Z if gcd(n, m) = 1. 
This fact is one formulation of the Chinese remainder theorem. From this 
fact and the fundamental theorem of finite Abelian groups, one can obtain 
the following description of finite Abelian groups. 

Corollary 1.3 Let G be a finite Abelian group. 

1. There are integers n i , . .  ,ri,  where ni divides ni_ i  for each j , such 

that G Z/n i  Z x • • • x Z/n,..Z. The ni are uniquely determined by G 
and are called the invariant factors of G. 

2. There are integers mii  and primes pi  such that G  Z/ p 11Z  x • • x 

Z/pmt  "Z. The various pmi  '1  are uniquely determined by G and are 
called the elementary divisors of G. 

Let G be a finite group. Then the exponent of G, denoted exp(G), is the 
least common multiple of the orders of the elements of G. For example, the 
exponent of the symmetric group S3 is 6. We give a useful result about the 
exponent of a finite Abelian group. 

Proposition 1.4 Let G be a finite Abelian group. If n = exp(G), then 
there is an element of G of order n. Therefore, exp(G) is the maximum 
order of an element of G. Furthermore, G is cyclic if and only if IG1 = 
exp(G). 

Proof. A short calculation using the decomposition of G into a product 
of cyclic groups shows that for every divisor rrt or ICI there is  LU  element 

of order m. If n = exp(G), then n divides IG1 by Lagrange's theorem and 
the definition of least common multiple. Therefore, G contains an element 
of order n. Since a group G is cyclic if and only if it contains an element 
whose order is IG1, we see that G is cyclic if and only if IG1 = exp(G). [1] 

An alternative proof of this proposition that does not invoke the funda-
mental theorem of finite Abelian groups is outlined in Problem 1. 



2 The Sylow Theorems 

Let G be a finite group, and let p be a prime dividing the order ICI of 
G. Let IG1 = pnq with q not divisible by p. A p - Sylow subgroup of G is a 
subgroup of order pn, the maximal power of p possible for a subgroup of 
G. The Sylow theorems give existence and properties of p-Sylow subgroups 
of a finite group. 

Theorem 2.1 (First Sylow Theorem) Let G be a finite group, and let 
p be a prime divisor of  C. Then there exists a p - Sylow subgroup of G. 

Theorem 2.2 (Second Sylow Theorem) Let p be a prime divisor of 
C.  If H is a subgroup of G of order a power of p, then H C x.Px -1  for 

some p-Sylow subgroup P of G. In particular, if P1  and P2 are two p-Sylow 
subgroups of G, then P2 = xP2x' for some x E G. 

Theorem 2.3 (Third Sylow Theorem) Let p be a prime divisor of  C. 
If n is the number of p - Sylow subgroups of G, then p divides IG1 and n 

(mod p). 

The first Sylow theorem is the best partial converse of Lagrange's theo-
rem. Given a divisor m of 1G1, there need not be a subgroup of G of order 

m. For instance, there is no subgroup of the alternating group A4 of order 
6. However, if IG1 = pnq as above and if m = pn, then the first Sylow 
theorem gives the existence of a subgroup of order m. 

Some of the power of the Sylow theorems cornes from the following two 
facts. First, it is often convenient to have a subgroup LI of a group G with 
11/1 and [G : H] relatively prime, as is the case if H is a Sylow subgroup. 
Second, groups of prime power order are very nicely behaved. We shall see 
one property of such groups shortly. If G is a group of order pn with p a 
prime, then G is said to be a p -group. If G is an arbitrary group, a subgroup 
H of G is said to be a maximal subgroup of G if H is a proper subgroup of 

G that is not contained in any subgroup of G other than G and itself. The 
following result will help to use p-groups in field theory, for instance, in the 
proof of the fundamental theorem of algebra in Section 5. An outline of a 
proof of this proposition can be found in Problem 2. 

Proposition 2.4 Lct  C bc p-group of 07 11(:7 pn. If II ts a maximal sub-

group of G, Wen fl is normal in CI and [0:flj= p. 

If G is a finite group, then maximal subgroups of G always exist. Using 
this proposition repeatedly, we can extend the first Sylow theorem, 

Corollary 2.5 Let G be a group of order pnq with p a prime. Then G 
contains a subgroup of order pr.  for any r < n. 
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3 Solvable Groups 

In many ways, abstract algebra began with the work of Abel and Galois 
on the solvability of polynomial equations by radicals. The key idea Galois 
had was to transform questions about fields and polynomials into ques-
tions about finite groups. For the proof that it is not always possible to 
express the roots of a polynomial equation in terms of the coefficients of 
the polynomial using arithmetic expressions and taking roots of elements, 
the appropriate group theoretic property that arises is the idea of solvabil-
ity. 

Definition 3.1 A group G is solvable if there is a chain of subgroups 

= Ho  CHI  C•••C H„ = G 

such that, for each i, the subgroup H, is normal in Hi+1  arid the quotient 
group Hi+11 Hi  is Abelian. 

An Abelian group G is solvable; the chain of subgroups (e) C G satisfies 
the definition. Also, the symmetric groups 53 and 54 are solvable by con-
sidering the chains (e )) C A3 C  83 and (e )) C H C A4 C 54, respectively, 
where 

H = {e, (12)(34), (13)(24), (14)(23)1. 

Likewise, any p-group is solvable, since if IG1 = pn, there is a chain of 
subgroups 

c N1 c N2 C • • • C N C  

where 	= pi  and 	is normal in N , by Proposition 2.4. Thus, 
Ni /Ni _ i  has order p; hence, it is cyclic and therefore Abelian. One can 
obtain such a chain by taking Nn _ i  to be any maximal subgroup of G, 
Nn_2 a maximal subgroup of Nn_ i , and so on, and using Proposition 2.4. 
We shall show below that Sn  is not solvable if n > 5. This is the group 
theoretic result we need to show that the roots of the general polynomial 
of degree n cannot be written in terms of the coefficients of the polynomial 
by using algebraic operations and extraction of roots. 

We now begin to work toward showing that the symmetric group Sn  is 
not solvable if n > 5. If G is a group, let G' be the commutator subgroup 
of G; that is, G' is the subgroup of G generated by all ghg -l h-1  with 
g,h E G. It is an easy exercise to show that G' is a normal subgroup of G 
and that GIG' is Abelian. In fact, if N is a normal subgroup of G, then 
GIN is Abelian if and only if G' C N. We define G (i)  by recursion by 
setting by G (1 ) = G' and G (i+ 1)  = (G (i) )'. We then obtain a chain 

G 	G(1) 	G(2) 	w 	G(n) 	w  

such that G (7"+ L)  is normal in G ( ') and G(')/G(n+1 ) is Abelian for all m. 



Lemma 3.2 G is solvable if and only if G (n)  = (0 for some n. 

Proof. Suppose that G (n)  = (0 for some n. Then the chain 

G 9 G (1) 	G (n)  = 

shows that G is solvable. Conversely, suppose that G is solvable, and let 

= c Hn _ i  c c Ho  = G 

be a chain of subgroups such that 	normal in Hm  and Hm/Hm-Fi 
is Abelian for all rm. Then G/Hi  is Abelian, so G' = G(1 ) C Ht . Thus, 

(GOV C  H. Because H1 /H2  is Abelian, H C 112 . Therefore, G (2)  = 
(GOV C H2. Continuing this process shows that G (n)  C H„ , so 

G ( ") = 

Proposition 3.3 Let G be a group, and let N be a normal subgroup of G. 
Then G is solvable if and only if N and GIN are solvable. 

Proof. We have MITI) C G(m) and (G/N)(m )  = (G ( ')N)IN for all m. 
Thus, if G is solvable, there is an n with G (n)  = 	. Therefore, N (n)  =- 
and  (C/N) ( " ) = (0, so both N and GIN are solvable. Conversely, suppose 
that N and GIN are solvable. Then there is an m with (G/N) ( m) = 
so G( ') C N. There is an n with N (n)  = 	so G(n+rn) = (G(rn))(n) C 

N (n)  = 	. Therefore, G (n+m)  = 	, so G is solvable. 

Lemma 3.4 If n > 5, then An  is a simple group. 

For a proof of this important result, see Hungerford [13, p. 49]. 

Corollary 3.5 If n > 5, then Sn  is not solvable. 

Proof. Since An  is simple and non-Abelian, A 	An . Thus, we see for all 

m that A-r i)  = An 	(0, so An  is not solvable. By the proposition above, 
Sn  is also not solvable. 

4 Profinite Groups 

We give here a brief description of profinite groups. These are the groups 
that arise as the Galois group of a Galois extension of any degree, possibly 
infinite. This information is only used in Sections 17 and 18. Most of the 
results are stated without proof. The interested reader can find proofs and 
more information about profinite groups in Serre [24] and Shatz [25]. 

Let {Gi} ici  be a collection of groups. Suppose that I is a directed set. 
This means that / has a partial order < such that for any i, j E I, there 
is a k E / with i k and j k. Suppose that for each i and j with i <  j 



thi're is a group hoinoworphisni yj , 	Gi 	C i . Moreover, suppose tlint, 
whenever i  <j  < k we have (pi , k , k 0 (p i , j . Then the set of groups } 
together with the homomorphisms (pi,i are said to form an inverse system 
of groups. 

Definition 4.1 Let {G i ,(p} be an inverse system of groups. The inverse 
limit of this system is a group G together with homomorphisms (pi : G —> Gi 
such that if i < j, then (p i  = (pij  o (p .i, along with the following 'universal 
mapping property: If H is a group together with homomorphisms : H —4 
Gi such that Ti = pj , 3  o Ti  whenever i < j, then there is a unique group 
homomorphism 'T : H —> G with = (pio-r for each i; that is, the following 
diagram commutes: 

Ci  

The following proposition shows that inverse limits exist and are unique 
up to isomorphism. 

Proposition 4.2 Let {G i ,(p} be an inverse system of groups. Then the 
inverse limit of the Gi exists and is unique up to isomorphism. 

Proof. Let n i  Gi  be the direct product of the G i . Define G by 

{

G = bil E 11 G i : (p i ,j (gi) = gi for each pair (i, j) with i 

Then G is a subgroup of n i  Gi, since the (pi,i  are homomorphisms. Let 
(p i  : G —4 G i  be the restriction to G of the usual projection map. If i < j, 
then (pi =ç0j1 0 (pi by the definition of G. To verify the universal mapping 
property, let H be a group with homomorphisms : H —> Gi  such that 

Ti  whenever i < j. Define a homomorphism  'r:  H —> i by 

T(h) = {Ti (h)}. The condition Ti = (p j 0 says precisely that im(T) C G. 
Thus, T is a homomorphism from H to G. The formula for T is forced upon 
us by the requirement that Ti = (pi 0 'r, SO -r is unique. Thus, G is an inverse 
limit of the  C.  

We can now define a profinite group. 

Definition 4.3 A profinite group is an inverse limit of finite groups. 

There is a natural topology on a profinite group. If {Gi } is an inverse sys-

tem of finite groups, give each Gi the discrete topology and then give 11 Gi 



Li e product t,,p.)logy. The inverse limn ul the G, then inherits tlw subspace 
topology from ni C. This topology is an important tool for studying profi- 
nite groups and is used frequently in proofs of the results stated in this sec- 
tion. We describe a relation -between the topology and the algebra of G. Let 
Ni= ker((p i ). Then OIN i  is isomorphic to a subgroup of Ci ; consequently, 
Ni is a normal subgroup of finite index. Moreover, since Ni  = çoi-1 {0}, the 
preimage of a single point, Ni  is both open and closed, since Gi has the 
discrete topology. 

Proposition 4.4 Let G be a profinite group. As a topological space, G is 
Hausdorff, compact, and totally disconnected. 

Many of the fundamental numerical results about finite groups have 
analogs in the theory or profinite groups. First, we need a meaningful defi-
nition of the order of a prof-Mite group. A supernatural number is a. formal 
product np pni), where p runs over all primes, awl the exponents are non-
negative integers or oc.  While there is no natural way to add supernatural 
numbers, the product, greatest common divisor, and least common multi-
ple of a set of supernatural numbers can be defined in the obvious way. By 
using supernatural numbers, we can give a useful definition of the order of 
a group and the index of a subgroup. 

Definition 4.5 Let G be the inverse limit of the finite groups {Gi }. 

1. The order of G is the supernatural number lcmi 

2. If H is a closed subgroup of G, then the index [G : H] is equal to 
lcmi {[G i  : C n 	I. 

If p is a prime and ni is the power of p occurring in !G il, then max {n i } is 
the power of p occurring in  C.  Even though each n i  is finite, the maximum 
may be infinite. This is the reason for allowing an exponent of oc in a 
supernatural number. 

We record the basic numerical properties of profinite groups. The first 
part of the following proposition is an analog of Lagrange's theorem. 

Proposition 4.6 Let G be a profinite group. 

1. If H C K are closed subgroups of G, then [G K] = [C:  H] [H : K]. 

2. If H is a closed subgroup of G, then [G : H] = lcmu {[GIU HUIU]}, 
where U ranges over all open normal subgroups U of G. In particular, 

= lcmu {1G It'l } . 

Two different inverse systems of groups may have the same inverse limit. 
Part 2 of this proposition shows that indices are not dependent on a specific 

choice of inverse system. 
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There are good extensions of the Sylow theorems to the class of profinite 
groups. Let y be a prime. A pm -y -yroup is a prat-Mite group C for which 

ICI =- p for some n with 1 < n < oo. Equivalently, a pro-p-group is an 
inverse limit of p-groups. Suppose that G is a profinite group whose order 
is divisible by a prime p. This means that C = nq  qnq , such that np  > 1. 
A subgroup H of G is called a p-Sylow subgroup of G provided that H is 
a pro-p-group and  [C:  H] is not divisible by p. 

Theorem 4.7 Let G be a profinite group, and let p be a prime divisor of 

1. The group G has a p-Sylow subgroup. 

2. If P' is a pro-p-subgroup of G, then P is contained in a p-Sylow sub-
group of G. 

3. Any two p-Sylow subgroups of G are conjugate. 

Problems 

1. This problem outlines a proof of Proposition 1.4 that does not use 
the fundamental theorem of finite Abelian groups. Let G be a finite 
Abelian group. 

(a) If a, b E G have orders n and m, respectively, show that the 
order of ab is n,m if n and m are relatively prime. 

(b) If a has order n and if t is a divisor of n, show that at has order 

(c) If n and 771 are positive integers, and if G contains elements 
of order n and m, show that G contains an element of order 
lcm(n,,m). Use this fact to prove that G contains an element of 
order exp(G). 
(Hint: factor lcin(n,,rn) into prime powers, and then use the first 
two parts of this problem.) 

2. Let p be a prime and G be a p-group. 

(a) If H is a subgroup of G, show that H c N(H), where N(H) = 
fg EG : gHg -1  H}." 

(b) If H is a maximal subgroup of G, show that H is normal in G 
and that [G : H] = p. 

(Hint: Recall that Z(G) 	(e) if G is a p-group. Find a subgroup 
Z of Z(G) of order p, consider G/Z, and use induction on n,  where  
ICI = p" .) 
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3. Define multiplication, greatest common divisor, and least common 
multiple of a set of supernatural numbers. 

4. Let G be a profinite group, and let H be a closed subgroup of G. 
Show that [G : H] = lcmu  {[G : U]}, as the U range over all open 
normal subgroups of G that contain U. 

5. Let G be a profinite group, and let H be a subgroup of G. Show that 
the closure H of H is given by H = nu HU as U ranges over all 
open normal subgroups of G. 

6. Let G be a profinite group, and let H be a subgroup of G. Show that 
H is the intersection of all open normal subgroups of G containing 
H. 

7. Let G be a profinite group. If N is a normal subgroup of finite index 
in G, show that N is open. 

8. Let G be a profinite group. Show that any closed subgroup of G is 
also a profinite group. Also, show that any quotient of G is a profinite 
group. 

9. Read Chapter I of Shatz [25] and prove the results on profinite groups 
stated in this section. 





Appendix D 
Vector Spaces 

The use of the theory of vector spaces is a key element in field theory. 
In this appendix, we review the concepts that we will need. For a more 
detailed account of vector spaces, see Herstein [12] or Walker [27]. 

1 Bases and Dimension 

The most important property of vector spaces is the existence of a basis. 
Let V be a vector space over a field F. If v 1 , 	,  v, E V, any element of the 
form a l  v i 	• + any', is called a linear combination of the  y. A subset 
B of V is said to be linearly independent over F provided that whenever 
(t ry  I + • • .4-an v,„ = 0, with oz i  E F and vi  E B, then each cr. i  = O. Therefore, 
B is linearly independent, provided that the only way to write 0 as a linear 
combination of elements of B is in the trivial way, where all coefficients are 
O. If a set is not linearly independent, it is said to be linearly dependent. 
For example, any singleton set B = {Y} with y 0 is linearly independent. 
By definition, the empty set 0 is linearly independent. Any set containing 
0 is dependent. 

If B is a subset of V, then B is said to span V if every element of V is a 
linear combination of elements of B. For example, if V = Fn , the set of all 
n-tuples of elements of  F,  then the set 

spans Fn . The set Fn also spans Fn . In fact, if B spans a vector space V,  
then any set containing B also spans V. 
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We can now define a basis. If V is an F-vector space, a set B is a basis for 
V if B is linearly independent and spans V. For finitely generated vector 
spaces (i.e., those spaces that are spanned by a finite set), proofs of the 
existence of a basis are standard. However, a use of Zorn's lemma shows 
that any vector space has a basis. Because this proof is less standard, we 
give it here. Moreover, this proof is a good example of how Zorn's lemma 
is used in algebra. 

Theorem 1.1 Let V be a vector space over a field  F.  

1. There exists a basis for  V.  

2. If C is any linearly independent set in  V, then C is contained in a 
basis of  V.  

3. If D is any spanning set for  V, then D contains a basis of V. 

4. If C C D are subsets of V such that C is linearly independent and D 
spans V, then there is a basis B with CCBCD. 

Proof. We give a proof for part 4. Parts 2 and 3 follow from part 4 by 
setting C = 0 and D = , respectively. Part 1 follows from part 4 by 
setting C = 0 and D = V. Suppose that C C D such that C is linearly 
independent and D spans V. Let 

S = {E :CCEC D, E is linearly independent} . 

The set S is nonempty, since C E S, and it is partially ordered by inclusion. 
We check that the hypotheses of Zorn's lemma hold. Let T be a chain in S, 
and let A = UT , the union of all sets in  T.  Since each set in T is contained 
in D and contains C, the same is true for A. Therefore, A E S. Moreover, 
A is clearly an upper bound for T , since every set in T is contained in A. 
By Zorn's lemma, there is a niaximal element B of  S.  We claim that B is 
a basis. Since B E S, we see that B is linearly independent. To show that 
B spans V, let W be the span of B. Since D spans V, it is sufficient to 
show that each y E D is also in W. Suppose that there is ayED with 

W. Then y is not a linear combination of vectors in B, so B U {v} is 
linearly independent. Moreover, SU {y} C D. However, this contradicts the 
maximality of B; hence, y E W. Therefore, B does span V, finishing the 
proof.  LI  

Theorem 1.2 Let V be an F-vector space. If B i  and 132  are bases for  V,  
then B i  and B2 have the same cardinality. 

Proof. We prove only part of this theorem, taking for granted the follow- 

ing statement,: if V is spanned by a finite set 'D and if C is any linearly 
independent set in V, then C  < A. A proof of this fact is a standard 
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step in showing the uniqueness of the size of a basis for finite dimensional 
vector spaces. 

Armed with this fact, we prove the theorem for infinite dimensional vec-
tor spaces. If one of B 1  or B2  is finite, the fact above forces both to be finite. 

So, suppose that both are infinite. For each vi E  B2, write vi = E j  ct ijwi 
with the wj E B t . Let Ji  = {wj : cjj 0 } , a finite subset of B1 . Let 

= Ui J, a subset of B 1 .  Since each element of B2 is a linear combination 
of elements of 1C, the vector space V is spanned by C.  Since IC C B 1  and 

B 1  is a basis for V, this forces IC = B 1 . By Theorem 2.1 of Appendix B, 
< 1,t o  B2, since J  <  o for each i, and the union is over all elements 

of  B2.  But B2 is infinite; hence, 1,t o  B2 = B2 Therefore, B 1  = < 
Reversing the roles of B 1  and B2 gives the other inequality, proving that 

This theorem allows us to define the dimension of a vector space. The 
dimension of a vector space V is the cardinality of any basis of V. By the 
theorem, this is a well-defined invariant of the vector space. If V has a finite 
basis, then V is said to be a finite dimensional vector space. 

2 Linear Transformations 

Let V and W be vector spaces over a field  F.  A linear transformation from 
V to W is an F-vector space homomorphism from V to W. Let homF (V, W) 
be the set of all linear transformations from V to W. Then homF (V, W) is 
an F-vector space, where addition is defined by (S T)(v) = S(v) T(v) 
arid scalar multiplication by (aT)(v) = a(T (v)). It is straightforward to 
prove that homF(V, W) is indeed a vector space with these operations. 

If W = V, then homF(V, V) can be given a multiplication. Define mul-
tiplication byS.T=SoT, the usual function composition. It is not hard 
to show that S o T is again a linear transformation and that homF (V, V) 
is an associative ring under these operations. We can give a more concrete 
description of this ring using bases. Suppose that V is a finite dimensional 
vector space and that {v 1 . is a basis for V. Let T E homF(V, V). 
Then T(vi ) = Ei  ct ij vi  for some aij E  F.  Let M(T) be the n x n matrix 
(aii). A straightforward calculation shows that 

N(S T) = M(S) M (T), 

M(S 0 T) = M(S) M(T), 

M (aT) = aM(T). 

Therefore, the map 0 : T 	M(T) is a ring and vector space homomor- 
phism from homF(V, V) to /1.4-n (F), the ring of n x n matrices over F.  
Moreover, we see that 0 is a bijection. To prove injectivity, suppose that 
111(T) is the zero matrix. Then T(o rj ) = 0 for each j. Since every element 



of V is a linear combination of the u3 , this forces T to kw. the zefo !nap. 
Therefore, 0 is injective. To show that 0 is surjective, take (a ij) E Mn (F). 
It is an easy calculation to show that the formula 

S 	aivi = 	ai 	aij vi) 

gives a well-defined linear transformation with M(S) = (ci). This shows 
that 0 is surjective. Therefore, homF(V; V) Mn (F). In fact, if n I 

' Un 

is any collection of elements of V, then there is a uniquely determined linear 
transformation  o:  V —4 V given by (p(vi) = ui. On a general element of V, 
the map cio is given by (p(Ei aivi ) =Ei  ajui. Thus, linear transformations 
can be described in terms of a basis. As a vector space, ltomF(V, V) has 
dimension n2 . This can be seen by showing that the set {e ii  : 1 < i, j < n} 
of "matrix units" is a basis for Mn (F), where e ii  is the matrix of zeros, 
except for a 1 in the j) entry. 

The isomorphism 0 : hom F (V; V) Mn (F) does depend on the choice 
of basis. Given another basis {wi }  of V, we obtain another isomorphism 

: homF (V, V) `L-' Mn (F). How do these isomorphisms differ? Let  S: V 
V be the linear transformation given by S(vi) = wj, and let B be the 
matrix M(S) calculated with respect to the basis {70. If T E homF(V; V), 
we write M(T) v  and M(T) w , respectively, for the matrices obtained from 

T by using the bases V = {vi }  and YV = {wi } , respectively. A matrix 
calculation shows that 

M(T) w  = B-1 M(T) v B. 

This relation between matrix representations of linear transformations 
using different bases allows us to define the determinant and trace of a 
linear transformation. Let T E homF(V, V), and let A = (T) be the 
matrix representation of T with respect to some basis. Then we define 
the determinant and trace of T by det(T) = det(A) and Tr(T) = Tr(A), 
respectively. These definitions are well defined, since det(B-1 AB) = det (A) 

and Tr(B-1  AB) = Tr(A) for any invertible matrix B. 
The final result we describe in this section is the Cayley—Hamilton the-

orem. Let A E Mn (F). The characteristic polynomial x A (x) of A is the 
polynomial det(x/ — A), where I is the n x n identity matrix. This is a 

ía b\ 
, then monic polynomial of degree n. For instance, if A = 

c d 

XA(x) = X 2  — (a ± d)x + (ad — bc) 

= X 2  — Tr(A)x det(A). 

Since 

det(x/ — /3-1 AB) = det(B -1 (x/ — A)B) = det(x I — A), 



WC can clefilLe Lift; characteristic pot:, wonial ot a linear transtormation 

XT (x) = XA (x) if A is any matrix representation of T. 

Let f (x) E F[x], and write  f(x) -= Ei  aixi . We can evaluate f at A by 
setting f (A) = Ei  ai Ai , where A°  =  I. If A is an n x n matrix, then there 
is a nonzero polynomial f with f (A) = 0; to show the existence of such 

an  f,  the n2  1 elements I, A, ... , A n2  form a dependent set in Mn (F), 
since this vector spare has dimension 71, 2 , Therefore, there are ai  E F 

2 

with 	fit  , 0  (v.,;  Ai = O. Letting f()  = Ei  0 	proves our claim. Given a 
matrix A, the minimal polynomial of A is the monic polynomial p(x) of 
least degree such that p(A) = O. The Cayley—Hamilton theorem relates the 
characteristic and minimal polynomials of a matrix. 

Theorem 2.1 (Cayley—Hamilton) Let A be an Ti x  u.  matrix arid x,4(x) 

be the characteristic polynomial of A. Then XA (A) = O. Moreover, if p(x) 
is the minimal polynomial of A, then p(x) divides xA(x), and these two 
polynomials have the same irreducible divisors. 

Proof. A proof of this result can be found in most nonelementary books 
on linear algebra. We give a proof that uses the structure theorem for 
finitely generated modules over a PID and the rational canonical form. For 
a proof of this structure theorem and more information on this approach, 
see Chapter 5 of Walker [27]. Let V = , an n-dimensional F-vector 
space. By using A, we can define an F[x]-module structure on V as follows: 
If f(x) = 0  aix i  E F[x], then define f(x)v = Y -`7" aiAi v. We set 
A°  = I in order for this definition to make sense. It is elementary to show 
that V is an F[x]-module, and V is finitely generated as an F[x]-module, 
since it is generated as a module by a vector space basis. Therefore, there 
are elements y 1 ,..  , vt  E V and polynomials ,  f,.  E F[x] such that 

V = ED F[X]Vi 401  F[x]l(fi ). 
1=1 

Recall that ann(vi ) = {f E F[x] : fv i  = c} and that ann(vi ) = (fi ). Fur-
thermore, we may assume that f i  divides fi+i for each i. We will have 
proved the theorem once we verify that f t  is the minimal polynomial of A 
and that fl  • • ft  is the characteristic polynomial of A. From the descrip-
tion of (fi ) = ann(vi), we see that ft vi  = 0 for each i, so ft v = 0 for all 

E V. By the definition of scalar multiplication, the nullspace of ft (A) is 
Fn  , so f t (A) = O. Therefore, p divides f t . For the reverse inclusion, since 
p(A) = 0, we see that pv t  = 0, so p E ann(v t ) = (ft). This gives the reverse 
divisibility, so f t  = p. This verifies our first claim. For the second, we use 
the rational canonical form of A. There is an invertible matrix B such that 
BAB -1  is the rational canonical form of A. The rational canonical form is 
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in block matrix form 

	

ci  o 	o 
o c2  

o 	o 

where Ci  is the companion matrix to fi; 

ct / 

if f = x 3  ± 	bi xi, then 

0 	0 	—b 0  
1 0 	—b1 

ci  

Moreover, det(x/ 	= fi ; this can be seen by expanding the determinant 
along the first row and using induction on deg(fi ). Thus, 

det(x/ — A) = det(B(x/ — A)B -  ) 

= det(x/ — BAB -1 ) 

This proves the second claim, so the theorem is proved. 	 1=1 

3 Systems of Linear Equations and Determinants 

We give here a brief discussion of solving systems of linear equations. A 
system 

+ a12x2 + " • + a imxm  = b 1 , 

(1 21x1 ± a22X2 ± • • 	a2v-LX?0, — b27 

anixi an2x2 ± • • • ± anm x m  = bn  

can be represented as a matrix equation AX = B, where A = (aii ), X = 
(xi), and B = (N). Multiplication by A determines a linear transformation 
T : Fm Fn . The existence of a solution is equivalent to the condition that 
B is in the image of  T.  The rank of A, denoted rank(A), is the dimension 
of the image { Av :  y E Fm} of T, a subspace of  F. The rank of A is an 
integer no larger than min {n, m}. If rank(A) = n, then the system above 
has a solution Cm every B. More generally, the image of T is spanned by the 

columns of A; hence, the image of T is the column space of A. Therefore, 
rank(A) is equal to the dimension of the column space of A. A fundamental 
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fad about rank is that the rank of A is also equal to the dimension of the 
row space of A, the subspace of Frn spanned by the rows of A. For a proof 
of this, see Theorem 3.4.16 of [27]. 

Suppose that A is an n x n matrix. If det(A) 0, then A is an invertible 
matrix, and so the system AX = B has a unique solution X = B for 
any B. Therefore, rank(A) = n. If det(A) = 0, then the system AX = B 
cannot be solved for every B; to see this, suppose that there are Xi  with 
AX i  = ei, where feil is a basis for  F. Then the matrix C whose ith 
column is Xi is an inverse of A; hence, det(A) 0, which is false. Therefore, 
rank(A) < n. Thus, the determinant function can help us to determine 

when square systems of linear equations can be solved. 

4 Tensor Products 

In Section 20, we make use of the tensor product of vector spaces. For 
readers unfamiliar with tensor products, we give the basics here. We only 
consider tensor products of vector spaces over a field, the only case that 
we need in Section 20. In order to work with tensor products, we need the 
concept of a bilinear map. Let U, V, and W be vector spaces over a field 
F. A bilinear map from U x V to W is a function B:Ux V W such 
that 

B(au i  + bu2 ,v) = aB(u i ,v) + bB(u 2 ,v), 

B(u,av i  + bv2) = aB(u,v i ) +bB(u, v2). 

for all scalars a, b, all u, u l , u2  E U and all v, v 1 , v2  E V; that is, a bilinear 
map is linear in each component. To say this in another way, for all u E U 
and v E V, the functions Bu  : V W and By  U W given by 

Bu (v) = B(u, v), 

By (u) = B(u,v) 

are  linear  transformations. 
The tensor product U OF V can be defined as follows. Let M be the 

F-vector space with basis {(u, v) E U x V}; that is, for each pair (u, v) in 
U x V, there is a corresponding basis vector in M. Let N be the subspace 
spanned by 

(au i  + bu2 ,v) — a(u i ,v) — 

(u,av i  + bv2) — a(u,vi) — 

(au, v) — a(u , v) , 

(u, av) — a(u,v) 

for all a, b E F, all  u 1 , u 2  E U, and all vi, v2 É V. Then U OF V is defined 
to be MIN. We will denote by u 0 v the coset (u, v) +N in U OF V. Note 
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of elements of the form u 0 v. Looking at the generators of  N,  we obtain 
the following relations in U OF V 

(au i  bu2 )  0v  = a(u i  0v)  b(u2  0 v), 

u (av i 	57) 2) = a(u v i ) 	b(u 0 v 2 ) , 

au  O y =- a(u  O v), 

u av = a(u v). 

Define B:Ux V —4 U OF V by B(u, v) u 0 v. By the definition of tensor 
products, B is a bilinear map. 

It is not terribly convenient to work with the construction of tensor 
products. The tensor product of U and V is best thought of in terms of the 
universal mapping property it satisfies. 

Proposition 4.1 Let U and V be F-vector spaces, and let B:Ux V 
U OF V be the canonical bilinear map defined by B(u,v) = u  O v. If W is 
an F-vector space and C:Ux V 	W is a bilinear map, then there is a 
unique linear transformation cio : U OF V 	W such that C = cio o B; that 
is, the following diagram commutes: 

U X V 	W 

U OF V 

Proof. Let M and N be the vector spaces defined above in the construction 
of the tensor product. There is a unique linear transformation f : M W 
with f ((u, v)) = C (u, v) The bilinearity of C implies precisely that the 
generators of N lie in ker(f). Thus, there is a linear transformation cio : 
M N W given by (p((u,v)  +N)  = C (u , v) . In other words,  (u ®v) = 

C (u ,v) . Since B(u, v) = u  O v, we see that C = cio o B. Moreover, this 
definition of cp is forced upon us by the restriction that C = cio o B; if 
o-  : U OF V -4 W satisfies C = o-  o B, then o- (B(u, v)) = C(u, v), so 
o- (u  0v)  = C(u, v). Thus, o-  and cp agree on the generators of U OF V, so 
o-  = (p. El 

Perhaps the most fundamental property of tensor products of vector 
spaces, other than the universal mapping property, is that the dimension 
of U OF V is equal to dimF (U) dimF  (V). This is not a trivial fact to prove, 
which is the reason for the form of the next result. 

Proposition 4.2 Let U and V be finite dimensional F-vector spaces. 
Then V OF hOMF(U, F) hOMF (U, V). Consequently, dimF(U OF V) = 
diMF(U) • diMF(V). 
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C (v , f)(u) =f(u)v. 

We leave it to the reader to verify that C(v, f) is indeed a linear trans-
formation and that C is bilinear. By the universal mapping property, we 
get a linear transformation cp : V OF hOMF(U, F) homF (U , V) given on 
generators by  (v 0f)  C(v,f). 

Let fu i , 	,u} be a basis for  U,  and let  [v i ,...  , vm l be a basis for V. 
Then the standard basis for homF(U, V) is {Tii  }, where 

Tii  (u k ) 	ji ff  kk 
	j.  

Taking the dual basis fitT, 	, I for homF (U, F) (i.e.,  I(u) = 0 if i 
j and  iii(u) = 1), a short computation shows that (p(vi 0 Ct:i) = 

hence, cio is surjective. Another short computation shows that fvi 0 CO is 
a spanning set for V OF hOMF (U, F), which shows that V OF hOMF(U, 1;1 ) 
has dimension at most rim, while the image of cio has dimension  rim. Thus, 
cio is an isomorphism. 

To finish the proof, we note that since U and homF (U, F) are isomorphic, 
the tensor products V OF U and V OF hOMF (U,F) are isomorphic; hence, 
V OF U has dimension  rim. That U OF V has the same dimension follows 
by reversing U and V and noting that homF (V, U) is also of dimension rim. 

Corollary 4.3 Suppose that U and V are finite dimensional 1;1 -vector 
spaces. Let fu i , ,un l and { y i ,... ,vin }  be bases for U and  V, respec-
tively. Then fui 0 vi, • • > un 0 vm } is a basis for U OF V. 

Proof. The proof of the previous proposition shows that {v  0 CO is a 
basis for V OF hOMF (U, F). There is an isomorphism o-  : U OF V V OF 
hOMF(U, F) given on generators by o- (u  0 v)  1-4 y  o (see Problem 13), 
and this isomorphism sends fui O vi  I to the basis {v CO. This forces 
the set  {u O v3 1 to be a basis for U Op V.  LI  

We will need to use tensor products of vector spaces of arbitrary di-
mension in Section 20. The following result is an analog of the previous 
corollary. 

Proposition 4.4 Let U and V be 1;1 -vector spaces. If fu i l iel  is a basis for 
U, then every element of U OF V has a unique representation as a finite 
sum E i  U2 0 vi for some v i  E V. 

Proof. If an element of U OF V has two different representations in the 

form above, then subtracting the two yields an equation Kn. ui  0 = o 
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with not all vi = O. By reducing the number of terms, if necessary, we may 
assume that the nonzero vi  in this equation are linearly independent. Let 
U0  and Vo  be the subspaces of U and V generated by the ui  and the vi , 
respectively. Extend { u i  } and {vi } to bases of U and V, respectively. There 
are well-defined linear transformations a : U —> U0  and T : V —> Vo  with 

= 74 and T(vi ) = vi  for 1 <  j < n, and all other ui  arid vi  mapped 
to O. The universal mapping property of tensor products shows that there 
is a linear transformation  p:  U OF V —> tio OF 170  given on generators by 
(p(u v) = a (u) 7-  (v). Applying cio to the equation E7_ 1  ui  = 0 yields 
the saine equation in Uo  OF Vo, an impossibility by the previous corollary. 
This proves the proposition. 

We may ask why this proposition requires any proof at all, much less the 
roundabout proof given. The answer is that if we deal with modules over a 
ring R that is not a field, then it is common to have R-modules M0  C M 
and No C N such that Mo OR No is not isomorphic to the submodule of 
M OR N consisting of elements of the form Ei  mi  0 ni with mi  E Mo  and 
ni  E No . This pathological behavior happens quite frequently, even over 
rings such as Z, although it does not occur with vector spaces over a field. 

We finish this section by discussing the tensor product of F-algebras. 
If A is simultaneously a ring and an F-vector space, then A is called an 
1;1-algebra if 

c(ab) = (cta)b = a(ctb) 

for all a, b E A and all a E F; that is, there is a compatibility between 
the ring multiplication in A and the scalar multiplication. If A arid B are 
F-algebras, then we can define a multiplication on A OF B by the formula 

\ 	 
a0 b 	

\ 
(›i '‘  i 	 i 	›. 4  ' 0 ' 	>'‘ ai a'. 0 bi b'. 	(D1) 	 ai 	bi 	 ..)• 4 	./ 	j 

I 	I  

On single tensors this says that (a 0 b) (a' 0 b') = aa' 0  bb'.  It needs to be 
checked that this formula gives a well-defined operation on A OF B. We 
leave it to the reader to verify the following result. 

Proposition 4.5 Let A and B be 1;1 -algebras. Then Equation D.1 is a well-
defined multiplication on A OF B, and with respect to this multiplication, 
AØ F B is an 1;1 -algebra. 

Problems 

1. Let V be an F-vector space. If B is a subset of V containing 0, show 
that B is linearly dependent. 

2. Let B be a subset of a vector space V. Show that the set of all linear 
combinations or elements in B is a subspace of  V. 
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3. Suppose that C C B are bases of a vector space. Show that C = B. 

4. Suppose that C C B are subsets of a vector space V. 

(a) If C spans V, show that B also spans V. 

(b) If B is linearly independent, show that C is also linearly inde-
pendent. 

5. Show that the set of matrix units { e ii  } described in Section 2 of this 
appendix is a basis for Mn (F). More generally, show that the set 
of all n x 711 matrices over a field F is a vector space, and find the 
dimension by finding a basis analogous to that for Mn (F). 

6. If V and W are vector spaces of dimension n and m, respectively, 
show that homF (V, W) is isomorphic as a vector space to the space 
of all n x m matrices over F. Use this isomorphism and the previous 
problem to obtain a basis for homF  (V, W). 

7. Show that det(E3 -1 AB) = det(A) and Tr(B-1 AB) = Tr(A) for any 
matrix A and invertible matrix B. 

8. Prove the equality  A(T) w  = /3 -1 A(T) v B claimed in Section 2 of 
this appendix. 

9. Find the characteristic polynomial of the following matrices. 

(a) ( 24 	32  

/  1 	2 	3 \ 
(b) 4 	5 	6 

7 	8 	9;  

10. Find the minimal polynomial of the matrices in the previous problem. 

11. Find the characteristic and minimal polynomials of 

12. If U and V are F-vector spaces, show that U OF V V OF U. 

13. If U and V are finite dimensional F-vector spaces, show that there is 
an isomorphism between U OF V and V OF homF(U,F) that sends 
u  0v to y 	where 'it' is defined as follows: If { u l , 	, un } is a 
basis for U and if 	 is the dual basis for homF (U,F), if 
u = . 	then = 

LA. Let U, V, and W be IT-vector spaces. 



(a) Show that U  p (V (D TV) ='= (t1 	W (Li 	W).  

(b) Show that U OF (V OF W) (U.  OF V) OF W. 

15. Let U, V, and I/V be F-vector spaces. Show that 

homp(U p V, W) hOMF(U, hOM (V, T47 )). 

16. Give a proof of Proposition 4.5. 

17. Let U and V be F-vector spaces with dimp(U) < 00. If {u 1 , . ,un } is 
an F-basis for U, show that every element of U OF V can be uniquely 
written in the form Ei  u i 0 vi  for some vi  E V. 



Appendix E 
Topology 

In Section 17 and in the sections that deal with algebraic geometry, we 
need to use some notions from topology. In this appendix, we give a brief 
description of these notions. 

1 Topological Spaces 

Let X be a set. A topology on X is a collection T of subsets of X that 
satisfy the following properties: 

1. X E T and 0 E  T,  

2. If U, V E , then LT n v E 7- , 

3. If {Ui } is a collection of subsets of X such that each t/-2, E  T,  then 

E 

A set with a topology on it is called a topological space. The elements of 
a topology are called open sets. A subset C of X is called closed if X — C 
is open. We can define a topology by specifying which are the closed sets. 
The closed sets of a topology on X satisfy the following properties. 

1. Both X and 0 are closed sets. 

2. If A and B are closed sets, then A U B is closed. 

3. If {A..} is a collection of closed sets, then ni  Ai  is closed. 
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These properties follow immediately from the delini Lion of a topology 
and the DelViorgan laws of set theory. 

Example 1.1 The standard topology on ill is defined as follows. A 
nonempty subset U of R is open, provided that for every x E U there 
is a positive number o such that the open interval (x — 0,  x  + 0) is contained 
in  U.  An easy exercise shows that this does make  JR  into a topological space. 

Example 1.2 Recall that a metric space is a set X together with a func-
tion d from X x X to t fie tionnegative real numbers such that (1) d(x, x) =  0 
for all x E X, and if d(x, y) = 0, then x =  y,  (ii) d(x , y) = d(y, x) for all 
x,  y E X, and (iii) d(x , y) + d(y , z) > d(x , z) for all x, y, z E X. The function 
d is called a metric. We can use d to put a topology on  X.  A nonernpty 
subset U of X is defined to be open, provided that for every x E U there 
is a positive number (5' such that the open ball 

B (x , (5) = fy E  X:  d(x , y) < 61 

centered at x with radius (5' is contained in  U.  This topology is called the 
metric space topology. The standard topology on IR is an example of this 
construction. For another example, if X ---- TIV, then we obtain a topology 
on Rn, since we have a distance function on RI'. 

Example 1.3 If X is a topological space and Y is a subset of  X,  then we 
can put a topology on Y. We define a subset V of Y to be open if there is 
an open subset of X with V =Y nU. It is straightforward to show that 
Y is indeed a topological space. This topology on Y is called the subspace 
topology. 

Example 1.4 Let X be a set. The discrete topology on X is the topology 
for which every subset of X is open. 

Example 1.5 Let; X be a set. We define a topology on X by defining a 
proper subset of X to be closed if it is finite. The definition of a topology 
is easy to verify in this case. Note that a nonempty subset is open exactly 
when its complement is finite. This topology is called the finite complement 
topology on X . 

There are often more efficient ways to describe a topology than to list all 
of the closed sets. If X is a topological space, a basis for the topology on X 
is a collection of open subsets such that every open set is a union of elements 
from the basis. For example, the collection of open intervals forms a basis 
for the standard topology on IR. Similarly, the collection of open balls forms 
a basis for the metric topology on a metric space. A collection C of sets 
forms a basis for a topology on X provided that, given any two sets U and 

V in C, for any x E UnV there is a set W in C such that x E TV and 
C U n v The proor of this fact, is left Lo Problem 1. 
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Example 1.6  Let  R he a commutative ring, and let I be an ideal of R. 
The 1 - adic topology on R is defined as follows. A rionempty subset of R is 
open if it is the union of sets of the form a +I" for some a E R and n > O. 
We set 1.()  = R for this definition. In other words, {a + In : a E R,n> 0} 
is a basis for this topology. The only nontrivial thing to verify to see that 
this does define a topology is that the intersection of two open sets is open. 

Ui(ai 	In ') arid Ui (bi 	imi) are open sets, then their intersection is 

Ui i(ai + 1.7" ) n (bi + ). It then suffices to show that (a+ In ) n (b+Pri) 
is Open for any a, b E R and  n, 'in  > O. To prove this, we can assume that 
Tt > 7ft, so C P. if this intersection is empty, there is nothing to prove. 

lf not, let c E (a+ /"") n (b±/m). Then c+/" = a+ In  and c+/- rn = b+ 1m, 
so 

(a + In ) n (b + /m) = (c + In ) n (c + rn) 

= C Irn , 

an open set. 

Example 1.7 Here is an example that arises in algebraic geometry. Let R 
be a commutative ring, and let X = spec(R) be the set of all prime ideals 
of R. If S is a subset of R, we set Z(S) =  I/7  EX :SC Pl. We define the 
Zarzski topology on X by defining a subset of X to be closed if it is of the 
form Z(S) for some subset S of R. We verify that this is a topology on X. 
First, note that R = Z({0}) and 0 = Z({1 } ). Next, it is easy to see that 
U i  Z(Si) = Z(n i  Si ). Finally, we show that Z(S) U Z(T) = Z(ST), where 
ST = {st: s E S, t E TI. Let P E Z(ST). If P Z(S), then there is an 
s E S with s P. Since st E P for all t ET, we see that T C P, since 
P is a prime ideal. Thus, P E Z(T). Therefore, Z(ST) C Z(S)  u  Z(T). 
For the reverse inclusion, let P E Z(S) U Z(T). Then S C P or T C P. 
Since P is an ideal, in either case we have ST C P, so P E Z(ST). We 
point out the relation between the Zariski topology on spec(R) and the 
Zariski topology that we define in Section 21. We require some concepts 
from Section 21 in order to do this. Let C be an algebraically closed field, 
let V be a variety in Cn, and let R C[V] be the coordinate ring of 
V. Then V is homeomorphic to the subspace of spec(R) consisting of all 
maximal ideals of R. This is mostly a consequence of the Nullstellensatz. 

Example 1.8 Let X and Y be topological spaces. Then the product X x Y 
can be given a topology in the following way. We define a subset of X x Y 
to be open if it is a union of sets of the form U x V, where U is an open 
subset of X and V is an open subset of Y; that is, the collection C of these 
subsets is a basis for the topology. It is easy to verify that this collection 
does satisfy the requirement to be a basis. If (x y) E (U x V) n (U' x V'), 
then (U n U') x (V n V') is a basic open set that contains (x y) and is 
contained in (U x V) n (U' x V'). This topology on X x Y is called the 
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product topology. More generally, if X 1 , 	, X„ is a collection of topological 
spaces, then we get a similar topology on X 1  x 	x  X.  

Example 1.9 Let / be a set, and let {Xi L EI  be a collection of topological 
spaces. We can generalize the previous construction to define the product 
topology on ni  X. If / is infinite, then we need an extra step in the defi- 
nition. Consider the set S of all subsets of ni  xi of the form ni  where 
Ui  is open in Xi  and Ui = Xi  for all but finitely many i. If I is finite, then 
S is the basis described in the previous example. If / is not finite, then we 
let C be the collection of all sets that are finite intersections of elements of 
S. It is not hard to show that C does form a basis for a topology on H i  xi, 
and we call this the product topology on ni  X. It is true that S also forms 
a basis for a topology on  X,  the box topology, but this topology is not as 
useful as the product topology. 

2 Topological Properties 

There are various properties of topological spaces that we need to discuss. 
Let X be a topological space. Then X is called Hausdorff if for every two 
distinct points x, y E X, there are disjoint open sets U arid V with x E U 
and y E V. For example, if X is a metric space, then we see that the metric 
space topology is Hausdorff. If x, y E X are distinct points, let  o  = - d(x, y). 
Then the open balls B(x,(5) and B(y, 6) are disjoint open sets containing 
x and y, respectively. The finite complement topology on an infinite set X 
is not Hausdorff, since any two nonempty open sets must have a nonempty 
intersection. If R is an integral domain, then we show that the Zariski 
topology on spec(R) is not Hausdorff either. We note that the zero ideal is 
prime and that (0) Z(S) for any S unless Z(S) = spec(R). Consequently, 
(0) is contained in any nonernpty open set. Therefore, any two nonempty 
open sets have a nonenipty intersection, so spec(R) is not Hausdorff. 

The next concept we discuss is compactness. If X is a topological space, 
then an open cover of X is a collection of open sets whose union is X.  If 

is an open cover of  X,  then a finite subcover is a finite subset of the 
collection whose union is also X.  The space X is cadleci compact, ir every 
open cover of X has a finite subcover. 

Example 2.1 The space  JR  is not compact, since {(a, a + 1) : a E RI is an 

open cover of If/ that does not have a finite subcover. Stil )spaces of 1Rn may 
be compact. Recall that a subset Y of R .' is bounded if Y is contained in an 
open ball B(0,6) for some b. The Heine—Borel theorem says that a subset 
of  W1  is compact if and only if it is closed and bounded. 

Example 2.2 Let R be a commutative ring. The Zariski topology on 
spec(R) is compact, as we now show. Suppose that {Ui} is an open cover of 
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spec(R). If  Z(S 1 ) is the complement of  U , then ni z (si )  = z (U si )  =  0. 
We first point out that if  I is the ideal generated by Si , then Z(I) = Z(Si) 
and Z(L j Si ) ---- Z(E i  Ii ). The ideal Ei I cannot be a proper ideal, since 
if it is, then it is contained in a maximal ideal, and so Z(E i  Li ) 	0. 
Thus, Ei I  = R, so there is a finite subcollection 	,I and elements 
ri  E ij  such that r 1  ± • • • ± r = 1. Then Ein I  =--- R, and so there is• 

no prime ideal that contains each 	Consequently, n 7, Z ( I ) =-_- 0, so 
U = 1 	 spec(R). We have found a finite subcover of {Ui }, so spec(R) is 
compact. 

Example 2.3 Let {Xi } be a collection of compact topological spaces. 
Then the product ni x, is compact in the product topology. This non-
trivial fact is the Tychonoff theorem and can be found in Chapter 5 of 
Munkres [22]. 

Let X be a topological space, and let S be a subset of X. The closure 3 
of S is defined to be the intersection of all closed sets that contain S. Since 
X is closed, the closure is a closed set that contains S. The main property 
about this concept is given in the following proposition. The simple proof 
is left to Problem 4. 

Proposition 2.4 Let X be a topological space, and let S be a subset of X.  

1. If C is any closed set that contains S, then S C  C.  

2. If U is an open set with U n S 0, then U n s 0. 

One consequence of this proposition is that an element x E X is in the 
closure of a subset S, provided that for any open set U that contains x, we 

have U n S 0. This is a useful way to determine when an element is in 

S. 
If X is a topological space and Y is a subset of  X,  then Y is dense in 

X if Y = X. For example, any set S is dense in its closure S.  The open 

interval (0,1) is dense in [0,1]. If R is a commutative ring, then we show 

that any nonempty open subset of spec(R) is dense in spec(R). If (I is an 

open set, then U is a closed subset of spec(R), and U n  (spec(R) — U) = 0. 
However, we have seen that any two nonempty open sets in spec(R) have a 
nonempty intersection. This forces U = spec(R), so U is dense in spec(R). 

We have not yet discussed functions between topological spaces. If X and 
Y are topological spaces, then a function f : X —> Y is called continuous 

if  f (V)  is open in X for any open set V in Y. If X and Y are subsets 
of ill, then this definition of continuity is equivalent to the limit definition 

given in calculus; see Problem 6. 

Let X be a topological space, and let be an equivalence relation on X. 
We let X* be the set of equivalence classes, and for x E X we denote the 
equivalence class of x by X. We have a natural surjective function 7r : X —> 
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X* given by f(x) = I. We define the quotient topology on X* as follows. 
A subset Y of X* is defined to be open if 7r —I  (Y) is open in X. It is a 
simple exercise to show that this does define a topology on X* and that 7F 

is continuous. Moreover, the quotient topology is the topology on X* that 
has the fewest open sets for which 7F is continuous. 

We end this appendix with a concept that will arise in Section  17.  A 
topological space X is called connected if X is not the union of two disjoint 
closed sets. For example, R is a connected set, while the subspace [0,1] U 
[2, 3] is not connected. On the other extreme, a space X is called totally 
disconnected if the only connected subsets of X are singleton sets. A space 
with the discrete topology is totally disconnected. The topology on a Galois 
group we define in Section 17 is totally disconnected. 

Problems 

1. Let C be a collection of subsets of a set X such that for any U,V E C 
and any x E UnV there is aW EC such that a: E W and W C UnV. 
By defining a subset of X to be open if it is a union of elements of C, 
show that this gives a topology on X. 

2. A topological space X is called irreducible if X is not the union of two 
proper closed subsets. If X is irreducible, show that every nonempty 
open subset of X is dense in X arid that any two nonempty open sets 
have a nonempty intersection. 

3. Let R be an integral domain. Show that spec(R) is an irreducible 
space. 

4. Prove Proposition 2.4. 

5. Show that Q is a dense subset of IR in the standard topology on R. 

6. Let X be an open interval in Ill, and let f : X —> R. Show that f is 

continuous according to Llie definition given above if and only if f is 
continuous according to the limit definition given in calculus. 

7. Let R be a commutative ring, and let I be an ideal of R. Show that 

the /-adic topology on R is Hausdorff if and only if rri_I I" =  ( 0 ). 

8. Let X and Y be topological spaces, and let f : X —> Y be a continuous 
function. Define an equivalence relation — on X by saying that x z 
if f (x) = f (z) . Prove that — is an equivalence relation and that there 
is a continuous function f : X* —> Y such that 7 0 7r = f 

9. Let X be an infinite set, and put the finite complement topology 
on X. Prove that X is an irreducible space. Prove also that X is 

connected. 
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10. Let R and S be commutative rings, and let f : R 	S be a ring 
homomorphisrn. We assume that  f(j) = 1. If Q is a prime ideal of  S,  
show that f —1  (Q) is a prime ideal of R. Show that we have an induced 
map f* : spec(S) 	spec(R) and that this map is continuous with 

respect to the Zariski topology. 

11. Let X be a topological space. Then X has the finite intersection prop-
erty if for any collection {Ci }  of closed subsets, if the intersection of 
the Ci  is empty, then there is a finite subcollection whose intersection 
is also empty. Prove that X has the finite intersection property if and 
only if X is compact. 

12. Prove that [0,1] is a compact subspace of R without using the Heine—
Borel theorem. 

13. Prove the Heine—Borel theorem for R. 

14. Prove that (0,1) is not compact. 

15. Prove that any interval in IR is connected. 

16. The Cantor Set. Let X1  = [0,1]. Remove the middle third (1/3,2/3) 
of this interval, and let X2 be the resulting set. Remove the middle 

third of each of the two intervals that make up X2 and let X3 be the 
resulting set. If we continue this process, we obtain sets X n  for each 
positive integer n. Let C = n X. Prove that C is compact and 
totally disconnected, and that X does not contain any intervals. 
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