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Preface

In the fall of 1990, I taught Math 581 at New Mexico State University
for the first time. This course on field theory is the first semester of the
year-long graduate algebra course here at NMSU. In the back of my mind,
I thought it would be nice someday to write a book on field theory, one
of my favorite mathematical subjects, and I wrote a crude form of lecture
notes that semester. Those notes sat undisturbed for three years until late
in 1993 when I finally made the decision to turn the notes into a book.
The notes were greatly expanded and rewritten, and they were in a form
sullicient to be used as the text for Math 581 when I taught it again in the
fall of 1994.

Part of my desire to write a textbook was due to the nonstandard format
of our graduate algebra sequence. The first semester of our sequence is field
theory. Our graduate students generally pick up group and ring theory in
a scenior-level course prior Lo taking field theory. Since we start with ficld
theory, we would have to jump into the middle of most graduate algebra
textbooks. This can make reading the text difficult by not knowing what
the author did before the field theory chapters. Therefore, a book devoted
to field theory is desirable for us as a text. While there are a number of
field theory books around, most of these were less complete than I wanted.
For example, Artin’s wonderful book [1] barely addresses separability and
does not deal with infinite extensions. I wanted to have a book containing
most everything I learned and enjoyed about field theory.

This leads to another reason why I wanted to write this book. There are a
number of topics I wanted to have in a single reference source. For instance,
most books do not go into the interesting details about discriminants and
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fields of algebra. I wanted to address a number of notions of discriminant
and give relations between them. For another example, I wanted to discuss
both the calculation of the Galois group of a polynomial of degree 3 or
4, which is usually done in Galois theory books, and discuss in detail the
calculation of the roots of the polynomial, which is usually not done. I feel it
is instructive to exhibit the splitting field of a quartic as the top of a tower
of simple radical extensions to stress the connection with solvability of the
Galois group. Finally, I wanted a book that does not stop at Galois theory
but discusses non-algebraic extensions, especially the extensions that arise
in algebraic geometry. The theory of finitely generated extensions makes
use of Galois theory and at the same time leads to connections between
algebra, analysis, and topology. Such connections are becoming increasingly
important in mathematical research, so students should see them early.

The approach I take to Galois theory is roughly that of Artin. This
approach is how I first learned the subject, and so it is natural that I feel it
is the best way to teach Galois theory. While I agree that the fundamental
theorem is the highlight of Galois theory, I feel strongly that the concepts of
normality and separability are vital in their own right and not just technical
detalils needed to prove the fundamental thcorem. It is duc to this feeling
that I have followed Artin in discussing normality and separability before
the fundamental theorem, and why the sections on these topics are quite
long. To help justify this, I point out that results in these sections are cited
in subsequent chapters more than is the fundamental theorem.

This book is divided into five chapters, along with five appendices for
background material. The first chapter develops the machinery of Galois
theory, ending with the fundamental theorem and some of its most imme-
diate consequences. One of these consequences, a proof of the fundamental
theorem of algebra, is a beautiful application of Galois theory and the Sy-
low theorems of group theory. This proof made a big impression on me
when I first saw it, and it helped me appreciate the Sylow theorems.

Chapter II applies Galois theory to the study of certain field extensions,
including those Galois extensions with a cyclic or Abelian Galois group.
This chapter takes a diversion in Section 10. The classical proof of the
Hilbert theorem 90 leads naturally into group cohomology. While I believe
in giving students glimpses into more advanced topics, perhaps this section
appears in this book more because of my appreciation for cohomology. As
someone who does research in division algebras, I have seen cohomology
used to prove many important theorems, so I felt it was a topic worth
having in this book.

In Chapter 111, some of the most famous mathematical problems of antiqg-
uity are presented and answered by using Galois theory. The main questions
of ruler and compass constructions left unanswered by the ancient Greeks,
such as whether an arbitrary angle can be trisected, are resolved. We com-
bine analytic and algebraic arguments to prove the transcendence of 7 and




¢ rornndas for the coots of cubic aid quartic polynouiials, discovered in
the sixteenth century, are given, and we prove that no algebraic formula
exists for the roots of an arbitrary polynomial of degree 5 or larger. The
question of solvability of polynomials led Galois to develop what we now
call Galois theory and in so doing also developed group theory. This work
of Galois can be thought of as the birth of abstract algebra and opened the
door to many beautiful theories.

The theory of algebraic extensions does not end with finite extensions.
Chapter IV discusses infinite Galois extensions and presents some impor-
tant examples. In order to prove an analog of the fundamental theorem
for infinite extensions, we need to put a topology on the Galois group.
It is through this topology that we can determine which subgroups show
up in the correspondernce between subextensions of a Galois extension and
subgroups of the Galois group. This marks just one of the many places in
algebra where use of topology leads to new insights.

The final chapter of this book discusses nonalgebraic extensions. The
first two sections develop the main tools for working with transcendental
extensions: the notion of a transcendence basis and the concept of linear
disjointness. The latter topic, among other things, allows us to extend to
arbitrary extensions the idea of separability. The remaining sections of
this chapter introduce some of the most basic ideas of algebraic geometry
and show the connections between algebraic geometry and field theory,
notably the theory of finitely generated nonalgebraic extensions. It is the
aim of these sections to show how field theory can be used to give geometric
information, and vice versa. In particular, we show how the dimension of an
algebraic variety can be calculated from knowledge of the field of rational
functions on the variety.

The five appendices give what I hope is the necessary background in set
theory, group theory, ring theory, vector space theory, and topology that
readers of this book need but in which they may be partially deficient. These
appendices are occasionally sketchy in details. Some results are proven and
others are quoted as references. Their purpose is not to serve as a text
for these topics but rather to help students fill holes in their background.
Exercises are given to help to deepen the understanding of these ideas.

Two things T wanted this book to have werc lots of examples and lots
of exercises. [ hope I have succeeded in both. One complaint I have with
some field theory books is a dearth of examples. Galois theory is not an
easy subject to learn. I have found that students often finish a course in
Galois theory without having a good feel for what a Galois extension is.
They need to see many examples in order to really understand the theory.
Some of the examples in this book are quite simple, while others are fairly
complicated. I see no use in giving only trivial cxamples when some of the
interesting mathematics can only be gleaned from looking at more intricate

examples. For this reason, I put into this book a few fairly complicated and
nonstandard examples. The time involved in understanding these examples
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will be time well spent. The saiue can be said about working thie exercises.
It is impossible to learn any mathematical subject merely by reading text.
Field theory is no exception. The exercises vary in difficulty from quite
simple to very difficult. I have not given any indication of which are the
hardest problems since people can disagree on whether a problem is difficult
or not. Nor have I ordered the problems in any way, other than trying to
place a problem in a section whose ideas are needed to work the problem.
Occasionally, I have given a series of problems on a certain theme, and
these naturally are in order. I have tried not to place crucial theorems
as exercises, although there are a number of times that a step in a proof
is given as an exercise. I hope this does not decrease the clarity of the
exposition but instead improves it by eliminating some simple but tedious
steps.

Thanks to many people need to be given. Certainly, authors of previously
written field theory books need to be thanked; my exposition has been in-
fluenced by reading these books. Adrian Wadsworth taught me field theory,
and his teaching influenced both the style and content of this book. I hope
this book is worthy of that teaching. I would also like to thank the colleagues
with whom I have discussed matters concerning this book. Al Sethuraman
read preliminary versions of this book and put up with my asking too many
questions, Irena Swanson taught Math 581 in fall 1995 using it, and David
Leep gave me some good suggestions. I must also thank the students of
NMSU who put up with mistake-riddled early versions of this book while
trying to learn field theory. Finally, I would like to thank the employees at
TCI Software, the creators of Scientific Workplace. They gave me help on
various aspects of the preparation of this book, which was typed in ITEX
using Scientific Workplace.

April 1996 Pat Morandi
Las Cruces, New Mexico




Notes to the Reader

The prerequisites for this book are a working knowledge of ring theory, in-
cluding polynomial rings, unique factorization domains, and maximal ide-
als; some group theory, especially finite group theory; vector space theory
over an arbitrary field, primarily existence of bases for finite dimensional
vector spaces, and dimension. Some point set topology is used in Sections
17 and 21. However, these sections can be read without worrying about the
topological notions. Profinite groups arise in Section 18 and tensor products
arise in Section 20. If the reader is unfamiliar with any of these topics, as
mentioned in the Preface there are five appendices at the end of the book
that cover these concepts to the depth that is needed. Especially important
is Appendix A. Facts about polynomial rings are assumed right away in
Section 1, so the rcader should peruse Appendix A to see if the material is
familiar.

The numbering scheme in this book is relatively simple. Sections are
numbered independently of the chapters. A theorem number of 3.5 means
that the theorem appears in Section 3. Propositions, definitions, etc., are
numbered similarly and in sequence with each other. Equation numbering
follows the same scheme. A problem referred to in the section that it ap-
pears will be labeled such as Problem 4. A problem from another section
will be numbered as are theorems; Problem 13.3 is Problem 3 of Section 13.
This numbering scheme starts over in each appendix. For instance, Theo-
rem 2.3 in Appendix A is the third numbered item in the second section of
Appendix A.

Definitions in this book are given in two ways. Many definitions, including
all of the most important ones, are spelled out formally and assigned a
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the text and are emphasized by italic text. If this makes it hard for a reader
to find a definition, the index at the end of the book will solve this problem.

There are a number of references at the end of the book, and these are
cited occasionally throughout the book. These other works are given mainly
to allow the reader the opportunity to see another approach to parts of field
theory or a more in-depth exposition of a topic. In an attempt to make this
book mostly self-contained, substantial results are not left to be found in
another source. Some of the theorems are attributed to a person or persons,
although most are not. Apologies are made to anyone, living or dead, whose
contribution to field theory has not been acknowledged.

Notation in this book is mostly standard. For example, the subset relation
is denoted by C and proper subset by C. If B is a subset of A, then the
set difference {z : z € A,z ¢ B} is denoted by A — B. If I is an ideal in a
ring R, the coset r + I is often denoted by 7. Most of the notation used is
given in the List of Symbols section. In that section, each symbol is given
a page reference where the symbol can be found, often with definition.
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(Galois Theory

In this chapter, we develop the machinery of Galois theory. The first four
sections constitute the technical heart of Galois theory, and Section 5
presents the fundamental theorem and some consequences. As an appli-
cation, we give a proof of the fundamental theorem of algebra using Galois
theory and the Sylow theorems of group theory.

The main idea of Galois theory is to associate a group, the Galois group,
to a field extension. We can then turn field theory problems into group the-
ory problems. Since the Galois group of a finite dimensional extension is
finite, we can utilize the numerical information about finite groups to help
investigate such field extensions. It turns out that field theory is the right
context for solving some of the famous classical problems that stumped
mathematicians for centuries. As an application of field theory, in Chapter
[11 we give proofs of the famous impossibilities of certain ruler and com-
pass constructions, and we determine why roots of polynomials of degree
5 or greater need not be given by formulas involving field operations and
extraction of roots.

1 Field Extensions

In this section, we begin the study of field theory. Consequently, there are a
number of definitions in this section, although there are also a large number
of examples intended to help the reader with the concepts. We point out
now that we take a basic knowledge of ring theory and vector space theory




UL gladied, ror istale e, we use Lhce dimension ol o iniie St vt
vector space [requently, and we use the theory of polynomial rings in one
variable over a ficld equally olten. Any rcader who is unfamiliar with a fact
used in this book is recommended to peruse the appendices; they contain
most of the background a reader will need but may not have.

While field theory is of course concerned with the study of ficlds, the
study of field theory primarily investigates field extensions. In fact, the
classical problems of ruler and compass constructions and the solvability
of polynomial equations were answered by analyzing appropriate field ex-
tensions, and we answer these problems in Chapter III in this way. While
1t may seem unusual to some readers to consider pairs of fields, we point
out that much of group theory and ring theory is concerned with group
extensions and ring extensions, respectively.

Recall that a field is a commutative ring with identity such that the
nonzero elements form a group under multiplication. If ' C K are fields,
then K is called a field extension of F. We will refer to the pair I C K
as the field extension K/F and to F as the base field. We make K into an
F-vector space by defining scalar multiplication for « € F and a € K as
« - a = «aa, the multiplication of & and a in K. We write [K : F| for the
dimension of K as an F-vector space. This dimension is called the degree of
K/F.If [K: F] < o0, then K is called a finite extension of F. Otherwise K
is an infinite extension of F. Most of this chapter will deal with finite field
extensions, although in a few places we will need to work with extensions
of any degree.

Example 1.1 In order to give examples of field extensions, we first need
examples of fields. In this book, the fields of rational numbers, real numbers,
and complex numbers will be denoted Q, R, and C, respectively. The field
Z/pZ of integers mod p will be denoted IF,,. The fields Q and I, will appear
often as the base field of examples. Finite field extensions of (@ are called
algebraic number fields and are one of the objects of study in algebraic
number theory.

Example 1.2 Let k be a field and let  be a variable. The rational func-
tion field k(z) is the quotient field of the polynomial ring k[z]; that is,
k(z) consists of all quotients f(z)/g(z) of polynomials with g(z) # 0. Sim-
ilarly, if zy,...,z, are independent variables, then the field k(z1,...,z,)
of rational functions in the z; is the quotient field of the polynomial ring
k[zy,...,x,| of polynomials in n variables, so it consists of all quotients
f(z1,...,2,)/9(z1,...,z,) of polynomials in the z; with g # 0. Field ex-
tensions of a rational function field arise frequently in algebraic geometry
and in the theory of division rings. We will work with rational function
fields frequently.




Example 1.3 Let £ be a field and fet E((2)) bu the set ol all fornal gen-
eralized power series in z with coefficients in k; that is, the elements of
k((x)) arc formal infinite sums > - ,anx™ with ng € Z and each a,, € k.

TL=TL

We define addition and multiplication on k((z)) by

oo oo

Z a,z” + i b,z" = Z(an +b,)z"

n

and

i anx” - i b,x™ = i (H-Zm anbnqc) z".

n=ung =" n=ng+n1 \k=ng

A straightforward calculation shows that k((z)) is a commutative ring with
identity. Moreover, we can show that k((z)) is a field. If f = 3°°°  a,z™ is
a nonzero element of k((z)), we need to produce an inverse for f. Suppose
that we have written the series so that a,, is the first nonzero coefficient.
By multiplying by a; 2~ ™, to find an inverse for f it suffices to assume
that np = 0 and a,, = 1. We can find the coefficients b,, of the inverse
S>> 0 bnz™ to f by recursion. To have Y o0 janz™ - Y o b,z™ = 1, we
need by = 1 since ag = 1. For n > 0, the coefficient of z™ is

bnag +bp_107 + -+ bga, =0,

so if we have determined by, ..., b,—1, then we determine b,, from the equa-
tion b,, = — Z:Zl b,.,_rar. By setting ¢ to be the series with coefficients
b, determined by this information, our computations yield fg = 1. Thus,
k((z)) is a field. The rational function field k() is naturally isomorphic to
a subficld of k((x)). In algebra, the field k((z)) is often called the field of
Laurent series over k, although this terminology is different from that used
in complex analysis.

We now give some examples of field extensions.

Example 1.4 The extension C/R is a finite extension since [C : R] = 2.
A basis for C as an R-vector space is {1,i}. As an extcusion of Q, both C
and R are infinite extensions. If a € C, let

Zi Biat

We shall see in Proposition 1.8 that Q(a) is a field extension of Q. The de-
gree of Q(a)/Q can be either finite or infinite depending on a. For instance,
if a = v/~1 or a = exp(27i/3), then [Q(a) : Q] = 2. These equalities are
consequences of Proposition 1.15. On the other hand, we prove in Section

14 that [Q(7) : Q] = 0.




Example 1.5 If & is a field, let K = k(t) be the field of rational functions
in t over k. If f is a nonzero clement of I, then we can use the construction
of Q(a) in the previous example. Let F = k(f) be the set of all rational
functions in f; that is,

Zn;oaifi m )
F=(=>=——"qa;b; €k and b;f? £0
S b 2.0

j=0

If f(t) = t?, then I{/F is an extension of degree 2; a basis for K is {1, ¢}.
In Example 1.17, we shall see that K/F is a {inite extension provided that
f is not a counstant, and in Chapter V we shall prove Liroth’s theorem,
which states that every field L with £ C L C K is of the form L = k(f) for
some f € K.

Example 1.6 Let p(t) = t> — 2 € Q[t]. Then p(t) is irreducible over Q by
the rational root test. Then the ideal (p(t)) generated by p(t) in Q[t] is max-
imal; hence, K = Q{t]/(p(t)) is a field. The set of cosets {a + (p(t)) : a € Q}
can be seen to be a ficld isomorphic to @ under the map a 1> a-- (p(l)).
We view the field Q[1]/(p(1)) as an extension ficld of Q by thinking ol @
as this isomorphic subfield. If f(t) € Q[¢], then by the division algorithm,
f(t) =q(t)p(t) +r(t) with r(t) = 0 or deg(r) < deg(p) = 3. Moreover, f(t)
and r(t) generate the same coset in Q[t]/(p(t)). What this means is that any
element of K has a unique representation in the form a+bt+ct?+ (p(t)) for
some a, b,c € Q. Therefore, the cosets 1+ (p(t)), t + (p(t)), and t* + (p(¢))
form a basis for K over Q, so [K : Q] =3. Let a =t + (p(t)). Then

@’ —2=1>+(p(t)) = 2+ (p(t)) =7 ~ 2+ (p(t)) = 0.

The element a is then a root of 22 — 2 in K. Note that we used the identi-
fication of Q as a subfield in this calculation.

If instead of 3 — 2 we had started with any irreducible polynomial of
degree n over (Q, we would obtain a field extension of Q of degree n that
contains a root of the polynomial. We will use this idea in Section 3 to
prove the existence of ficlds that contain roots of polynomniials.

Generators of fields

In order to study the roots of a polynomial over a field F', we will consider
a minimal field extension of F' that contains all the roots of the polynomial.
In intuitive terms, we want this field to be generated by F and the roots.
We need to make this more precise.

Definition 1.7 Let K be a field extension of F'. If X is a subset of K,
then the ring F[X] generated by F' and X is the intersection of all subrings
of K that contain F' and X. The field F(X) generated by F and X is the
intersection of all subfields of K that contain F and X. If X = {a),...,as}
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is finite, we will write F{X] = Flay,...,a,) and F(X) = F(ay,...,a,). If
X s finite, we call the field F(X) a finitely generated extension of F'.

It is a simple exercise to show that an intersection of subfields or subrings
of a field is again a subfield or subring, respectively. From this definition,
it follows that F'(X) is the smallest subfield with respect to inclusion of K
that contains F' and X. We can give more concrete descriptions of F[X]
and F(X). Let K be a field extension of F' and let a € K. The evaluation
homomorphism ev, is the map ev, : F[z] — K defined by ev, (>, az?) =
>, aiat. We denote ev,(f(z)) by f(a). 1t is straightforward (sce Problem
3) to show that ev, is both a ring and an F-vector space homomorphism.
We use this notion to see what it means for a field to be gencrated by a
set, of elements. We start with the easiest case, when K is generated over
F by a single element.

Proposition 1.8 Let K be a field extension of F and let a € K. Then
Fla] = {f(a) : f(z) € Fz]}

el
F(a) ={/(a)/g(a) : f,g € Flz],g(a) #0}.
Moreover, F(a) is the quotient field of Fa].

Proof. The evaluation map ev, : Flz] — K has image {f(a): f € Flz]},
so this set is a subring of K. If R is a subring of K that contains F
and @, then f(a) € R for any f(z) € F[z] by closure of addition and
multiplication. Therefore, { f(a) : f(z) € F[z]} is contained in all subrings
of K that contain F' and a. Therefore, Fla] = {f(a): f(z) € F[z]}. The
quotient field of Fa| is then the set {f(a)/g(a): f,g € Flz],g(a) #0}. It
clearly is contained in any subfield of K that contains F[a]; hence, it is
equal to F(a). O

The notation Fla] and F'(a) is consistent with the notation F[z] and
F(z) for the ring of polynomials and field of rational functions over F, as
the description of Fla| aud F(a) shows.

By similar arguments, we can describe the ring Fla,...,an] and field
F(a1,...,an) generated by F' and ay,...,an. The proof of the following
proposition is not much different from the proof of Proposition 1.8, so it is
left to Problem 4.

Proposition 1.9 Let K be a field extension of F' and let ay,...,a, € K.
Then

Flay,...,an) = {f(a1,...,an) : f € Flz1,...,zn]}

Flar, ... a,) = {f(al,...,an) cfyg €Flzy, ..., T4, g(al,”‘,an)#()},

glar,...,an)
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For arbitrary subsets X of K we can describe the field F(X) in terms of
finite subsets of X. This description is often convenient for turning ques-
tions about field extensions into questions about finitely generated field
extensions.

Proposition 1.10 Let K be a field extension of F' and let X be a subset
of K. If « € F(X), then o« € F(ay,...,a,) for some ai,...,an € X.
Therefore,

F(X) = U{F(a1>-'->an) : a’l)"')a”n E X}7
where the union is over all finite subsets of X .

Proof. Each field F(ai,...,a,) with the a; € X is contained in F(X);
hence, |J{F(a1,...,as) :a; € X} C F(X). This union contains F' and
X, so if it is a field, then it is equal to F(X), since F(X) is the small-
est subfield of K containing F' and X. To show that this union is a
field, let «,8 € |J{F(a1,...,a,) 1 a; € X}. Then there are a;,b; € X
with @« € F(ay,...,a,) and 8 € F(by,...,b,). Then both a and g

are contained in F(ai,...,an,b1,...,bm), so a * B, af, and o/f (if
B # 0) all lie in |J{F(a1,...,as) : a; € X}. This union is then a field,
so F(X)=U{F(a1,...,a,) 1 a; € X}. 0

In this chapter, our interest will be in those field extensions K/F for
which any a € K satisfies a polynomial equation over F'. We give this idea
a formal definition.

Definition 1.11 If K is a field extension of F', then an element o € K 1s
algebraic over F' if there is a nonzero polynomial f(z) € F[z] with f(a) = 0.
If o 1is not algebraic over F', then « is said to be transcendental over F'. If
every element of K is algebraic over F', then K is said to be algebraic over
F, and K/F' is called an algebraic extension.

Definition 1.12 If « is algebraic over a field F', the minimal polynomial
of a over F is the monic polynomial p(x) of least degree in F|z| for which
p(a) = 0; it is denoted min(F,«). Equivalently, min(F, a) is the monic
generator p(z) of the kernel of the evaluation homomorphism ev,,.

Example 1.13 The complex number i = +/—1 is algebraic over Q, since
?+1=0.Ifr € Q, then a = Y7 is algebraic over Q, since a is a root
of 2® — 7. If w = e2™/™ = cos(27/n) + isin(27/n), then w™ — 1 = 0,
so w is algebraic over Q. Note that min(Q,7) = z% + 1 = min(R,4) but
min(C,7) = x—1. Therefore, the minimal polynomial of an element depends
on the base field, as does whether the element is algebraic or transcendental.
The determination of min(@Q,w) is nontrivial and will be done in Section 7.




bxample L.14 In 1873, Hermute proved that e is transcendental over Q,
and 9 years later, Lindemann proved that 7 is transcendental over (Q.
However, 7 is algebraic over Q(r), since 7 is a root of the polynomial

z —7m € Q(m)[z]. It is unknown if e is transcendental over Q(7). We will
prove in Section 14 that 7 and e are transcendental over Q.

To work with algebraic extensions, we need some tools at our disposal.
The minimal polynomial of an element and the degree of a field extension
are two of the most basic tools we shall use. The following proposition gives
a relation between these objects.

Proposition 1.15 Let K be a field extension of F' and let o € K be alge-
braic over F.

1. The polynomial min(F, &) is irreducible over F.

2. If g(z) € F[z], then g(a) = 0 if and only if min(F, «) divides g(z).

3. If n = deg(min(F, ), then the elements 1,,...,a™ ! form a basis
for F(a) over F, so [F(«) : F] = deg(min(F,«)) < co. Moreover,
F(a) = Flal.

Proof. If p(z) = min(F, «), then F[z]/(p(z)) = Fa] is an integral domain.
Therefore, (p(z)) is a prime ideal, so p(z) is irreducible. To prove statement
2, if g(z) € F[z] with g(a) = 0, then g(z) € ker(ev,). But this kernel is
the ideal generated by p(z), so p(z) divides g(z). For statement 3, we first
prove that F|a] = F(«). To see this, note that F[a| is the image of the
evaluation map ev,. The kernel of ev, is a prime ideal since ev, maps
F[z] into an integral domain. However, F'[z] is a principal ideal domain, so
every nonzero prime ideal of F[z| is maximal. Thus, ker(ev,) is maximal,
so Fla] = F[z]/ker(evy) is a field. Consequently, F[a] = F(«). To finish
the proof of statement 3, let n = deg(p(z)). If b € F(a), then b = g(«) for
some g(z) € F[z]. By the division algorithm, g(z) = ¢(z)p(z)+7(z), where
r(z) = 0 or deg(r) < n. Thus, b = g(a) = r(a). Since r(«) is an F-linear
n—1

combination of 1, ¢, ..., a® !, we see that 1,a,...,a" ! span F'(a) as an

F-vector space. If S L azaf = 0, then f(z) = S, a;a! is divisible by
p(z), so f(z) = 0, or clse f is divisible by a polynomial of larger degree
than itself. Thus, 1,«,...,a™ ! is a basis for F'(a) over F. 0

Example 1.16 The element /2 satisfies the polynomial z* — 2 over Q,
which is irreducible by the Eisenstein criterion, so z° — 2 is the minimal
polynomial of /2 over Q. Thus, [Q(v/2) : Q] = 3. If p is a prime, then
z™ — p is irreducible over @, again by Eiscnstein, so [Q( /p) : Q] = n. The
complex number w = cos(27/3) + isin(27/3) satisfies ° — 1 over Q. This
factors as 3 — 1 = (z — 1)(2? + z + 1). The second factor has w as a root
and is irreducible since it has no rational root; hence, it is the minimal

polynomial of w over Q. Consequently, [Q(w) : Q] = 2.
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Let p be a prime and let p = exp(27mi/p) = cos(27/p) + i sin(27w/p). Then
p satisfies the polynomial 2P — 1 = (z — 1)(z? ' 4+ 2?2 4 - 4 2 + 1).
Since p # 1, it satisfies the polynomial 2P~ 4+ 2P~2 4 - .. 4+ 2 + 1. Moreover,
this polynomial is irreducible over @ (see Problem 22b); hence, it is the
minimal polynomial of p over Q.

Example 1.17 Here is a very nice, nontrivial example of a finite field
extension. Let k be a field and let K = k(t) be the field of rational functions
in t over k. Let u € K with u ¢ k. Write u = f(¢)/g(t) with f,¢ € k[t] and
ged(f(t),g(t)) =1, and let F' = k(u). We claim that

[K : F| = max {deg(f(t),deg(g(¢))},

which will show that I{/F' is a finite extension. To see this, first note that
K = F(t). By using Proposition 1.15, we need to determine the minimal
polynomial of t over F' to determine [K : F|. Consider the polynomial
p(z) = ug(z)—f(z) € Flz|. Then tis a root of p(z). Therefore, ¢ is algebraic
over F, and so [K : F] < o0 as K = F(t). Say f(t) = >._,ait* and
g(t) = >, bitt. First note that deg(p(z)) = max {deg(/f(¢),deg(g(¢))}. I
this were false, then the only way this could happen would be if m = n
and the coefficient of 2™ in p(x) were zero. But this coefficient is ub, — an,
which is nonzero since u ¢ k. We now show that p(z) is irreducible over F,
which will verify that [K : F] = max{n, m}. We do this by viewing p(z) in
two ways. The element u is not algebraic over k, otherwise [K : k] = [K :
F]-|F : k] < oo, which is false. Therefore, u is transcendental over k, so
k[u] 2 k[z]. Viewing p as a polynomial in u, we have p € k[z|[u] C k(z)[u],
and p has degree 1 in u. Therelore, p is irreducible over k£(z). Moreover, since
ged(f(t), g(t)) = 1, the polynomial p is primitive in k[z|[u]. Therefore, p is
irreducible over k[z]. We have p € k[u][z] = k[z][u] (think about this!), so p
is irreducible over k[u], as a polynomial in . Therefore, p is irreducible over
k(u) = F, which shows that p is the minimal polynomial of u over F'| by
Proposition 1.15. Therefore, we have [K : F| = max{deg(f(t),deg(g(t))},
as desired.

Example 1.18 Let K be a {initely generated extension of F', and suppose
that K = F(ai,...,a,). We can break up the extension K/F' into a col-
lection of subextensions that are easier to analyze. Let L; = F'(ai,...,a:),
and set Lo = F. Then we have a chain of fields

F:LUnggLQQQLn:K

with L;41 = Li(a;y1). Therefore, we can break up the extension K/F into a
series of subextensions L;;/L;, each generated by a single element. Results
such as Proposition 1.15 will help to study the extensions L;y,/L;. To
make this idea of decomposing I{/F iuto these subextensions useful, we will
need to have transitivity results that tell us how to translate information
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about subextensions to the full extension K/F. We will prove a number
of transitivity results in this book. We prove two below, one dealing with
field degrees and the other about the property of being algebraic.

Recall that the field K is finitely generated as a field over F' if K =
F(ay,...,a,) for some a; € K. This is not the same as being finitely
generated as a vector space or as a ring. The field K is finitely generated as
an F-vector space if and only if [K : F| < oo, and K is finitely generated
as a ring over F' if K = Flay, ..., a,] for some a; € K.

Lemma 1.19 If K is a finite extension of F, then K is algebraic and
finitely generated over F'.

Proof. Suppose that «;,...,«, is a basis for K over F. Then every el-
ement of K is of the form ) a;a; with a; € F, so certainly we have
K = F(aa,...,q,); thus, K is finitely generated over F. If a € K, then
{1,a,...,a™} is dependent over F, since [K : F| = n. Thus, there are
B; € F, not all zero, with >, B;a* = 0. If f(z) = 3, Biz?, then f(z) € Fz]
and f(a) = 0. Therefore, a is algebraic over F', and so K is algebraic over
F. O

The converse of this lemma is also true. In order to give a proof of
the converse, we need the following property of degrees. The degree of a
field extension is the most basic invariant of an extension. It is therefore
important to have some information about this degree. We will use the
following transitivity result frequently.

Proposition 1.20 Let F C L C K be fields. Then
(K :F]=[K:L|]-[L:F).

Proof. Let {a; : ¢ € I} be a basis for L/F, and let {b; : j € J} be
a basis for K/L. Consider the set {a;b;: i€ I,j € J}. We will show that
this sct is a basis for K/17. If x € K| then z = Zj a;b; lor some aj € L,
with only finitcly many of the b; # 0. But a; = ). f;;a; for some §;; € F,
with only finitely many (3;; nonzero for each j. Thus, z = Z” Bijaibj,
so the {a;b;} span K as an F-vector space. For linear independence, if
>_i;Bijaiby = 0 with §;; € F', then the independence of the b; over L
shows that Zz Bija; = 0 for each j. But independence of the a; over F'
gives B;; = 0 for each i, j. Thus, the a;b; are independent over F', so they
form a basis for K/F. Therefore,

(K. F]=|{aibj: i€ 1,5 € J}
=Nag:iel} - |{bj:jeJ} =[K:L]-[L:F].




This proposition 1s used pritnarily wich huite extensions, although it is
true for arbitrary extensions. Notc that the proof above docs not assume
that the dimensions are finite, although we arc being somewhat informal
in our treatment of infinite cardinals.

We now prove the converse to Proposition 1.19.

Proposition 1.21 Let K be a field extension of F. If each a; € K is

algebraic over F, then Flan,..., o] is a finite dimensional field extension
of F' with

[Fla,...,a,]: F] < H[F(az)F]

Proof. We prove this by induction on n; the case n = 1 follows from
Proposition 1.15. If we set L = Fl[ay,...,a,_1], then by induction L is
a field and [L : F] < [[75)'[F(cw) : F). Then Floy,...,an] = La,] is a
field since a, is algebraic over L, and since min(L, «,,) divides min(F, a,)
by Proposition 1.15, we have [Fa1,...,a,] : L] < [F(a,) : F]. Hence, by
Proposition 1.20 and the induction hypothesis,

[Fla, .. o] F]l = [Flog, ..., an] : L] - [L: F] < H[F(ai) . F).

This finishes the proof. O

The inequality of the proposition above can be strict. For example, if
a = V2 and b = V18, then [Q(a) : Q] = [Q(b) : Q] = 4, since the
polynomials 4 —2 and z*—18 are irreducible over Q by an application of the
Eisenstein criterion. However, we know that Q(a,b) = Q(v/2,v/3), which
has degree 8 over Q. To see this equality, note that (b/a)* = 3, so (b/a)?
is a square root of 3. Thus, v/3 € Q(a,b). However, [Q(a,b) : Q(a)] < 2
because b satisfies the polynomial z2 — 3v/2 = 22 — 3a® € Q(a)[z]. Thus,
by Proposition 1.20,

[Q(a,b) : Q] = [Q(a,b) : Qa)] - [Q(a) : Q] < 8 = [Q(V2,V3) : Q,

so since Q(+/2,/3) is a subfield of Q(a, b), we obtain Q(a,b) = Q(v/2, v/3).
The equality [Q(\“/ﬁ, V3) : (@] = 8 is left as an exercise (see Problem 18).

As a corollary to the previous proposition, we have the following conve-
nient criterion for an element to be algebraic over a field.

Corollary 1.22 If K s a field extension of F', then a € K 1§ algebraic
over F if and only if [F(a) : F| < co. Moreover, K is algebraic over F if
K F] < oo.

The converse to the second statement of the corollary is false. There
are algebraic extensions of infinite degree. The set of all complex numbers




atgeiaale over Qs atield; and this ficld is inlinite dinensional over Q (see
Problem 16).

Proposition 1.21 can be extended casily to the case of fields generated
by an arbitrary number of elements.

Proposition 1.23 Let K be a field extension of F', and let X be a subset of
K such that each element of X is algebraic over F. Then F(X) is algebraic
over F. If | X| < o0, then [F(X) : F| < oo.

Proof. Let a € F(X). By Proposition 1.10, there are a;,...,a, € X with

a € Flay,...,a,). By Proposition 1.21, F(aq,...,a,) is algebraic over
F. Thus, a is algebraic over F' and, hence, F'(X) is algebraic over F. If
|X| < 00, then [F(X) : F] < oo by Proposition 1.21. O

We are now ready to prove that the property of being algebraic is transi-
tive. We will use this result frequently. In the case of finite extensions, tran-
sitivity follows from Proposition 1.20 and Corollary 1.22, but it is harder
to prove for general extensions.

Theorem 1.24 Let F C I C K be fields. If L/F and K/L are algebraic,
then K/F' 1s algebraic.

Proof. Let o € K, and let f(z) = ap +a1z+---+2™ be the minimal poly-
nomial of « over L. Since L/ F is algebraic, the field Ly = F(ag,.. -, n-1)
is a finite extension of F' by Corollary 1.22. Now f(z) € Lo[z], so « is
algebraic over Lj. Thus,

[Lo(a) : F| = [Lo(a) : Lo] - [Lo : F] < o0.
Because F'(a) C Lo(a), we see that [F(a) : F] < oo, so « is algebraic over

F. Since this is true for all « € K, we have shown that K/F! is algebraic.
O

As an application of some of the results we have obtained, we can help
to describe the set of algebraic elements of a field extension.

Definition 1.25 Let I be a field extension of F'. The set
{a € K : a is algebraic over F'}

18 called the algebraic closure of F' in K.

Corollary 1.26 Let K be a field extension of F', and let L be the algebraic

closure of F in K. Then L 1is a field, and therefore is the largest algebraic
extension of F' contained in K.
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Proof. Let a,b € L. Then F(a,b) is algebraic over F' by Proposition 1.23,
so F(a,b) C L, and since a + b,ab,a/b € F(a,b) C L, the set L is closed
under the field operations, so it is a subfield of K. Each element of K that
1s algebraic over F' lies in L, which mcans that L is the largest algebraic
extension of F' contained in K. O

Composites of field extensions

Let F' be a field, and suppose that L, and L, are field extensions of F
contained i souie counnon cxteusion I ol F. Then the composite Ly Ly of
L, and L, is the subfield of /{ geucrated by L; and Lo; that is, L1Ly =
Ly(Ly) = Ly(Ly). We will use this concept throughout this book. Some
properties of cownposites arc given in the Problems. We finish this section
with some examples of composites.

Example 1.27 Let F' = Q, and view all fields in this example as subfields
of C. Let w = €?™/3 5o w® = 1 and w # 1. The composite of Q(+/2)
and Q(wV/?2) is Q(w, ¥/2). To see that this is the composite, note that
both Q@(+¥/2) and Q(w</2) are contained in Q(/2,w), so their composite is
also contained in Q(+/2,w). However, if a field L contains /2 and w+/2,
then it also contains w = w+/2//2. Thus, L must contain /2 and w, so it
must contain Q(/2,w). Therclore, Q(3/2,w) is the smallest Aeld containing
both Q(¥/2) and Q(w</2). We can also show that Q({/2,w) = Q(V/2 + w),
so Q(¥/2,w) is generated by one element over Q. If ¢ = w + /2, then
(a — w)® = 2. Expanding this and using the relation w? = —1 — w, solving
for w yields

o’ —3a -3

3a? + 3a

so w € Q(a). Thus, V2 = a —w € Q(a), so Q(V2,w) = Q(V/2 + w).

Example 1.28 The composite of Q(+v2) and Q(v3) is the field
Q(+/2, V3). This composite can be generated by a single element over Q.
I fact, Q(V2, V3) = (@(\/Q -+ \/Z) To see this, the inclusion D is clear. For
the reverse inclusion, let o = 2 + /3. Then (a — v/2)? = 3. Multiplying
this and rearranging gives 2v/2a = a® — 1, so

a’—1
V2 = 5 € Q(a).

a

Similar calculations show that

 (a*+1)
V3 = o € Qa).

Therefore, Q(v/2,v/3) C Q(a), which, together with the previous inclusion,
gives Q(v2,v3) = Q(a).
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We will see in Section 5 that every finite extension of Q is of the form
Q(a) for some a, which indicates that there is some reason behind these ad
hoc calculations.

Problems

[}

. Let K be a field extension of F'. By defining scalar multiplication for

a € Fand a € K by a-a = aa, the multiplication in K, show that
K is an F-vector space.

If K is a field extension of F', prove that [K : F|] = 1 if and only if
K =F.

Let I be a field extension of F', and let a € K. Show that the
evaluation map ev, : F[z] — K given by ev,(f(z)) = f(a) is a ring
and an F-vector space homomorphism.

(Such a map is called an F'-algebra homomorphism.)

Prove Proposition 1.9.

. Show that Q(v/5,V7) = @(\/—5—-{- V7).

Verify the following universal mapping property for polynomial rings:

(a) Let A be aring containing a field F'. If a,, ..., a, € A, show that
there is a unique ring homomorphism ¢ : Flz;,...,z,] —» A
with ¢(z;) = a; for each 1.

(b) Moreover, suppose that B is a ring containing F', together with a
function f: {z1,...,z,} — B, satisfying the following property:
For any ring A containing F and eleme 3 ay,...,a, € A, there
is a unique ring homomorphism ¢ : B — A with o(f(z;)) = a;.
Show that B is isoinorphic to Flz,, ..., Z,].

Let A be a ring. If A is also an F-vector space and a(ab) = (aa)b =
a(ab) for all & € F and a,b € A, then A is said to be an F-algebra.
If A is an F-algebra, show that A contains an isomorphic copy of F'.
Also show that if K is a field extension of F', then K is an F-algebra.

Let K = F(a) be a finite extension of F. For a € K, let L, be the
map from K to K defined by L, (z) = az. Show that L, is an F-linear
transformation. Also show that det(z/ — L,) is the minimal polyno-
mial min(F,a) of a. For which o € K is det(z] — L,) = min(F, a)?

If K is an extension of F' such that [K : F| is prime, show that there
are no intermediate fields between K and F.




10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

lf K is a ficld extension of F' and if a € A such that [F(a) : F] is
odd, show that F(a) = F(a?). Give an example to show that this can
be false if the degree of F'(a) over F' is even.

If K is an algebraic extension of F' and if R is a subring of K with
F C RC K, show that R is a field.

Show that Q(v/2) and Q(v/3) are not isomorphic as fields but are
Isomorphic as vector spaces over Q.

If Ly = F(ay,...,a,) and Ly = F(by,...,b,,), show that the com-
posite L1 Ly is equal to F(a1,...,an,b1,...,bm).

If L; and L, are field extensions of F' that are contained in a common
field, show that L Lo is a finite extension of F if and only if both L,
and L, are finite extensions of F'.

If I, and L» are ficld extensions of F' that are contained in a common
field, show that L;Lq is algebraic over F il and ouly il both L, and
L, are algebraic over F.

Let A be the algebraic closure of Q in C. Prove that [A : Q] = oo.

Let K be a finite extension of F. If [, and Ly are subfields of K
containing F'| show that [L1Ly: F| < [Ly : F]-[Ly: F]. If ged([L; :
F],[LQ : F]) = 1, prove that [L]_LQ : F] = [Ll : F] . [LQ : F]

Show that [Q(v/2,v/3) : Q] = 8.

Give an example of field extensions Ly, L, of F' for which [L, Ly : F] <
[Ll : F] . [LQ : F]

Give an example of a field extension K/F with [K : F] =3 but with
K # F(/b) for any b € F.

Let a € C be a root of ™ — b, where b € C. Show that 2™ — b factors
n~l, 3 _ p2wi/n
as [[;_o (z —w'a), where w = ¢ :

(a) Let F be a field, and let f(z) € Flz|. If f(z) = 3, a;x* and
a € F,let f(z+a) =3, a;i(z+ a). Prove that f is irreducible
over F' if and only if f(z+«) is irreducible over F for any o € F'.

(b) Show that P~! 4+ 2P™2 4 ... +z 4 1 is irreducible over Q if p is
a prime.
(Hint: Replace z by z + 1 and use the Eisenstein criterion.)

Recall that the characteristic of a ring R with identity is the smallest
positive integer n for which n -1 = 0, if such an n exists, or else the
characteristic is 0. Let R be a ring with identity. Define ¢ : Z — R
by p(n) = n -1, where 1 is the identity of R. Show that ¢ is a




ring homomorphism and that ker(e) = mZ for a unique nonnegative
integer m, and show that m is the characteristic of R.

24. For any positive integer n, give an example of a ring of characteristic
n.

25. If R is an integral domain, show that either char(R) = 0 or char(R)
is prime.

26. Let R be a commutative ring with identity. The prime subring of R
is the intersection of all subrings of R. Show that this intersection is
a subring of R that is contained inside all subrings of R. Moreover,
show that the prime subring of R is equal to {n-1:n € Z}, where 1
is the multiplicative identity of R.

27. Let F be a field. If char(F) = p > 0, show that the prime subring of
R is isomorphic to the Geld T, and if char(F7) = 0, then the prime
subring is isomorphic Lo Z.

28. Let F be a field. The prime subfield of F is the intersection of all
subfields of F. Show that this subfield is the quotient field of the prime
subring of F, that it is contained inside all subficlds of F,-and that
it is isomnorphic to I, or Q@ depending on whether the characteristic
of Fisp>0or 0.

2 Automorphisms

The main idca of Galois was to associate to any polynomial f a group of
permutations of the roots of f. In this section, we define and study this
group and give some numerical information about it. Our description of this
group is not the one originally given by Galois but an equivalent description
given by Artin.

Let K be a field. A ring isomorphism from A to I is usually called an
automorphism of K. The group of all automorphisms of A will be denoted
Aut(K). Because we are interested in field extensions, we need to consider
mappings of extensions. Let K and L be extension fields of F. An F'-
homomorphism 7 : K — L is a ring homomorphism such that 7(a) = a
for all @ € F; that is, 7| = id. If 7 is a bijection, then 7 is called an
F-i1somorphism. An F-isomorphism from a field K to itself is called an
F-automorphism.

Let us point out some simple properties of F-homomorphisms. If 7 :
K — L is an F~homomorphism of extension fields of F', then 7 is also a
linear transformation of F-vector spaces, since 7(aa) = 7(a)7(a) = a7(a)
for « € F and o € K. Furthermore, 7 # 0, so 7 is injective since K is a
field. Also, it [K : F] = [L: F] < oo, then 7 is automatically surjective by
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dimension counting. In particular, any F-homomorphism from X to itself

is a bijection, provided that [K : F] < co.

Definition 2.1 Let K be a field extension of F. The Galois group
Gal(K/F) 1s the set of all F-automorphisms of K.

If K = F(X) is generated over F' by a subset X, we can determine the
F-automorphisms of K in terms of their action on the generating set X.
For instance, if K is an extension of F' that is generated by the roots of a
polynomial f(z) € F[z], the following two lemmas will allow us to interpret
the Galois group Gal(K/F) as a group of permutations of the roots of f.
This type of field extension obtained by adjoining to a base field roots of a
polynomial is extremely important, and we will study it in Section 3. One
use of these two lemmas will be to help calculate Galois groups, as shown
in the examples below.

Lemma 2.2 Let K = F(X) be a field extension of F' that is generated by a
subset X of K. Ifo,7 € Gal(K/F) with o|x = 7|x, then o = 7. Therefore,
F-automorphisms of K are determined by their action on a generating set.

Proof. Let a € K. Then there is a finite subset {a;,...,an} C X with
a € F(ay,...,ay). This means there are polynomials f,g € F[z1,...,2,]
with a = f(ay,...,an)/g(ar, ..., an); say

. _ 11,12 7
flz1,...,2n) = E bivigin T T -+ T

N i1, in i
g(zy, ... xy) = E Ciyig-in Ty Tt o - T,

where each coefficient is in F'. Since o and 7 preserve addition and multi-
plication, and fix elements of F', we have

o(a) = biyiyei, 0(ctr) (@)™ - o ()™
’ Cirigei, O () o(ag)2 - oy, )in
_ N Divigei, T(0n) 7 (02) - 7 (o)
Ciyigin T(1) 27 (2)2 - T(ay )

= 7(a).

Thus, 0 = 7, so F-automorphisms are determined by their action on gen-
erators. 0

Lemma 2.3 Let 7 : K — L be an F-homomorphism and let o« € K
be algebraic over F. If f(x) is a polynomial over F with f(a) = 0,
then f(7(a)) = 0. Therefore, T permutes the roots of min(F, ). Also,
min(F, a) = min(F, 7(a)).
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Proof. Let f(z) =ap+ayz + -+ apz™. Then

0=7(0) = r(f(a)) = 3 7(as)r(e)"

)

But, since cach a; € F, we have 7(a;) = a;. Thus, 0 = Y, a;7()?, so0
f(r(a)) = 0. In particular, if p(z) = min(F,«), then p(7(a)) = 0, so
min(F, 7(a)) divides p(z). Since p(z) is irreducible, min(F, 7(«)) = p(z) =
min(F, a). O

Corollary 2.4 If [K : F] < oo, then | Gal(K/F)| < oo.

Proof. We can write K = F(ay,...,a,) for some «; € K. Any F-
automorphism of K is determined by what it does to the a;. By Lemma
2.3, there are only finitely many possibilities for the image of any «;; hence,
there are only finitely many automorphisms of K/F. O

Example 2.5 Consider the extension C/R. We claim that Gal(C/R) =
{id, o}, wherc o is complex conjugation. Both of these functions are R-
automorphisms of C, so they are contained in Gal(C/R). To see that there
is no other automorphism of C/RR, note that an element of Gal(C/R) is
determined by its action on ¢, since C = R(¢). Lemma 2.3 shows that if
7 € Gal(C/IR), then 7(i) is a root of z° + 1, so 7(i) must be either i or —q.
Therefore, 7 =id or 7 = 0.

Example 2.6 The Galois group of Q(+/2)/Q is (id). To see this, if o is a
Q-automorphism of Q({/2), then ¢(¥/2) is a root of min(Q, ¥/2) = 2% — 2.
If w = e27/3 then the roots of this polynomial are /2, w+v/2, and w? /2.
The only root of 22 — 2 that lies in Q(+/2) is v/2, since if another root lies
in this field, then w € Q(+/2), which is false since [Q(+/2) : Q] = 3 and
[Q(w) : Q] = 2. Therefore, o(¥/2) = ¥/2, and since o is determined by its
action on the generator /2, we see that o = id.

Example 2.7 Lel I = F,(t) be the rational function ficld in one variable
over Fy, and let F' = [Fy(t?). Then [K : F] = 2. The element ¢ satisfies the
polynomial 22 —t? € F[z], which has only ¢ as a root, since 2 —t? = (z—t)*
in K[z]. Conscquently, if o is an F-automorphism of K, then o(t) =t, so
o = id. This proves that Gal(K/F) = {id}.

Example 2.8 Let F' = IFy. The polynomial 14z +2? is irreducible over F,
since it has no roots in F'. In fact, this is the only irreducible quadratic over
F; the three other quadratics factor over F. Let K = F[z]/(1 + = + z?), a
field that we can view as an extension field of F'; see Example 1.6 for details
on this construction. To simplify notation, we write M = (1 4 = + z2).
Every element of K can be written in the form a + bz + M by the division
algorithi. Let us writc « = o + M. The subfield {a + M :a € F} of K is




isomorphic to F. By identifying F with this subficld of K, we can write
every element of K in the form a+ba with a,b € F. Then K = ['(«), so any
F-automorphism of K is determined by its action on a.. By Lemma 2.3, if o
is an F-automorphism of K, then o(a) is a root of 1+ z 4 z2. By factoring
1 4z 4 2% as (z — a)(z — B) and expanding, we see that the other root of
1+ z 4 z? is a+ 1. Therefore, the only possibility for o(a) is o or a4 1, so
Gal(K/F) has at most two elements. To see that Gal(K/F) has exactly two
elements, we need to check that there is indeed an automorphism o with
o(a) = a+1.If o does exist, then o(a+ba) = a+b(a+1) = (a+b) +ba. We
leave it as an exercise (Problem 7) to show that the function o : K — K
defined by o(a +ba) = (a+b) +ba is an F-automorphism of K. Therclore,
Gal(K/F) = {id,o}.

The idea of Galois theory is to be able to go back and forth from field
extensions to groups. We have now seen how to take a field extension
K/F and associate a group, Gal(K/F). More generally, if L is a field with
F C L C K, we can associate a group Gal(K/L). This is a subgroup of
Gal(K/F'), as we will see in the lemma below. Conversely, given a subgroup
of Gal(K/F) we can associate a subfield of K containing F. Actually, we
can do this for an arbitrary subset of Aut(K). Let S be a subset of Aut(K),
and set

F(S)={a€K :7(a)=aforall 7 € S} .

It is not hard to see that F(S) is a subfield of K, called the fized field of S.
A field L with FF C L C K is called an intermediate field of the extension
K/F. Therefore, if S C Gal(K/F), then 7(S) is an intermediate field of
K/F.

The following lemma gives some simple properties of Galois groups and
fixed fields.

Lemma 2.9 Let K be a field.
1. If Ly C Ly are subfields of K, then Gal(K/Ly) C Gal(K/Ly).
2. If L is a subfield of K, then'L C F(Gal(K/L)).

If S C So are subsets of Aut(K), then F(S3) C F(S)).

If S is a subset of Aut(K), then S C Gal(K/F(S5)).

If L =F(S) for some S C Aut(K), then L = F(Gal(K/L)).

SRR TE N

If H = Gal(K /L) for some subfield L of K, then H = Gal(K/F(H)).

Proof. The first four parts are simple consequences of the definitions. We
leave the proofs of parts 2, 3, and 4 to the reader and prove part 1 for the
sake of illustration. If ¢ € Gal(K/Ly), then o(a) = a for all a € L,. Thus,
o(a)=aforalla € Ly, as L, C Ly, so o € Gal(K/Ly).




To prove part 5, suppose that L = F(9) for some subset S of
Aul(K). Then S C Gal(K/L), so F(Gal(K/L)) C F(S) = L. But
L € F(Gal(K/L)), so L = F(Gal(K/L)). For part 6, if H = Gal(K /L) for
some subfield L of K, then L C F(Gal(K/L)), so

Gal(K/F(Gal(K/L))) C Gal(K/L) = H.

However, by part 4 we have H C Gal(K/F(H)), so H = Gal(K/F(H)).
O

Corollary 2.10 If K is a field extension of F', then there is 1-1 inclusion
reversing correspondence between the set of subgroups of Gal(K/F) of the
form Gal(K/L) for some subfield L of I containing F and the set of sub-
fields of K that contain F' of the form F(S) for some subset S of Aut(K).

This correspondence is given by L — Gal(K /L), and its inverse is given by
Hw— F(H).

Proof. This follows immediately from the lemma. If G and F are respec-
tively the set of groups and fields in question, then the map that sends a
subfield L of K to the subgroup Gal(K/L) of Aut(K) sends F to G. This
map is injective and surjective by part 5 of the lemma. Its inverse is given
by sending H to F(H) by part 6. O

If K/F is a finite extension, under what circumstances does the associ-
ation L +— Gal(K /L) give an inclusion reversing correspondence between
the set of all subfields of K containing F' and the set of all subgroups of
Gal(K/F)? A necessary condition from part 5 is that F' = F(Gal(K/F)).
We shall see in Section 5 that this is actually a sufficient condition.

The next three results aim at getting more precise numerical information
on |Gal(K/F)| for a finite extension K/F. We first need a definition.

Definition 2.11 If G is a group and if K 1s a field, then a character is a
group homomorphism from G to K*.

By sctting G = K*, we see that F-automorphisms :of K can be viewed
as characters from G to K*. The next lemma will leacd to a bound on
|Gal(K/F)]|.

Lemma 2.12 (Dedekind’s Lemma) Let 7,...,7, be distinct charac-
ters from G to K*. Then the 7; are linearly independent over K ; that is, of
> ¢ciTi(g) =0 for all g € G, where the c; € K, then all ¢; = 0.

Proof. Suppose that the lemma is false. Choose & minimal (relabeling the
7; if necessary) so that there are ¢; € K with . ¢;7;(g) =0 for all g € G.
Then all ¢; # 0. Since 7 # 7, there is an h € ¢ with 7, (k) # 72 (h). We
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have Zle(cin(h))n(g) = (0 and

cimi(hg) = ) (cimi(h))mi(g) = 0

1=1 7

for all g. Subtracting gives Zle(ci (11(h) — 73(h)))7:(g) = 0 for all g. This
is an expression involving k—1 of the 7; with not all of the coeflicients zero.
This contradicts the ninimality of k, so the lemima is proved. O

There is a vector space terpretation of Dedekind’s leinma. If V' is the
set of all functions from G to I, then V is a /-vector space under usual
function addition and scalar multiplication, and Dedekind’s leunna can be

viewed as showing that the set of characters from G to K* forms a linearly
independent set in V.(v= kL&) growp wLachra |

Proposition 2.13 If I{ is a finite field extension of F', then | Gal(K/F)| <
[K : F.

Proof. The group Gal(K/F") is finite by Corollary 2.4. Let Gal(K/F) =
{m1,...,7}, and suppose that [K : F|] < n. Let ay,...,a,, be a basis for
K as an F-vector space. The matrix

i) mi(a) - ()
4 me(a1) Te(az) - Ta(am)
Tnlar) Tn(az) - Thlam)

over K has rank(A) < m < n, so the rows of A are lincarly dependent over
K. Thus, there are ¢; € K, not all zero, such that ), ¢;7(a;) = 0 for all
j. If we set G = K™, then for g € G there are a; € I/ with g = 3~ a;0.
Thus, !

Z(:m(g) = Z CiTi Z ajo; | = Z(,:,,; aj Zﬁ;((k])
J

i i j i

= Z a;j (Z CiTi(aj)) = 0.

All the ¢; are then 0 by Dedekind’s lemma. This contradiction proves that
Gal(K/F) < [K : F]. O

The following question arises naturally from this proposition: For which
field extensions K /F' does |Gal(K/F)| = [K : F]? The incquality in the
proposition above may be strict, as shown in Examples 2.6 and 2.7.

The next proposition deterimines when (Gal(K/F)| = [K : F], provided
that the group Gal(K/F) is finite.
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Proposition 2.14 Let G be a finite group of automorphisms of K with
F =F(G). Then |G| = [K : F], and so G = Gal(K/F).

Proof. By the previous proposition, |G| < [K : F] since G C Gal(K/F').
Suppose that |G| < [K : F]. Let n = |G|, and take aj,...,ant1 € K
linearly independent over F. If G = {71,...,7,}, let A be the matrix

Ti(or) mi(az) - Ti(ant)
. T2(c1) Te(a2) -0 T2(ani1)
Tola1) Ta(az2) -+ Tn(ant1)

Then the columns of A are linearly dependent over K. Choose k& minimal
so that the first & columns of A are linearly dependent over K (relabeling

if necessary). Thus, there are ¢; € K not all zero with Zle ciTi(ey) =0
for all j. Minimality of k£ shows all ¢; # 0. Thus, by dividing we may
assume that c¢; = 1. If each ¢; € F', then 0 = 75(3_._, c;;) for each j, so

Zf:l c;o; = 0. This is false by the independence of the «; over F'. Take
o € (. Since o permutes the elements of GG, we get ):le o(c;)Ti(e;) =0
for all j. Subtracting this from the original equation and recalling that
ci = 1 gives Zf:2(c,; — o(e;))ri(a;) = 0 for all j. Minimality of & shows
that ¢; — o(c;) = 0 for each i. Since this is true for all o € G, we get all
¢; € F(G) = F. But we have seen that this leads to a contradiction. Thus
|G| = [K : FJ. In particular, G = Gal(K/F'), since G C Gal(K/F) and
|G| = [K : F] > | Gal(K/F)]|. a

The field extensions described in Proposition 2.14 are those of particular
interest to us, as they were to Galois in his work on the solvability of
polynomials.

Definition 2.15 Let K be an algebraic extension of F'. Then K is Galois
over I' if ' = F(Gal(K/F)).

If [K : F] < oo, then Proposition 2.14 gives us a numerical criterion for
when K/F' is Galois.

Corollary 2.16 Let K be a finite extension of F.. Then K/F' is Galois if
and only if |Gal(K/F)| = [K : F].

Proof. If K/F'is a Galois extension, then F' = F(Gal(K/F)), so by Propo-
sition 2.14, |Gal(K/F)| = [K : F|. Conversely, if |Gal(K/F)| = [K : F],
let L = F(Gal(K/F)). Then Gal(K/L) = Gal(K/F) by Proposition 2.14,
and so |Gal(K/F)| = [K : L] < [K : F). Since |Gal(K/F)| = [K : FJ, this
forces [ : L] =[K : F],so L = F. 0
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extension is Galois. However, to use it we need to know the Galois group of
the extension. This group is not always casy to determine. For extensions of
F of the form F'(a), we have a simpler criterion to determine when F'(a)/F
is Galois.

Corollary 2.17 Let K be a field extension of I, and let a € K be algebraic
over I'. Then |Gal(F(a)/F)| is equal to the number of distinct roots of
min(F, a) in F(a). Therefore, F'(a) is Galois over F if and only if min(F, a)
has n distinct roots in F'(a), where n = deg(min(F,a)).

Proof. If 7 € Gal(F'(a)/F), we have seen that 7(a) is a root of min(F,a).
Moreover, if 0,7 € Gal(F(a)/F) with o # 7, then o(a) # 7(a), since F-
automorphisms on F'(a) are determined by their action on a. Therefore,
|Gal(F'(a)/F)| < n. Conversely, let b be a root in F'(a) of min(F,a). Define
7 : F'(a) = F(a) by 7(f(a)) = f(b) for any f(z) € F[z]. This map is well
defined precisely because b is a root of min(F,a). It is straightforward to
show that 7 is an F-automorphism, and 7(a) = b by the definition of 7.
Thus, |Gal(F(a)/F)| is equal to the number of distinct roots of min(F, a)
in F'(a). Since [F(a) : F'| = deg(min(F,a)), we see that F'(a) is Galois over
F'if and only if min(F,a) has n distinct roots in F'(a). O

There are two ways that a field extension F'(a)/F' can fail to be Galois.
First, if p(z) = min(F,a), then p could fail to have all its roots in F'(a).
Second, p(z) could have repeated roots. The next two sections will address
these concerns. We finish this section with a number of examples of ex-
tensions for which we determine whether or not they arc Galois. Here and
elsewhere in this book, we use the idea of the characteristic of a field (or a
ring with identity). For the reader unfamiliar with this notion, the charac-
teristic char(F') of a field /' is the order of the multiplicative identity 1 as
an element of the additive group (F,+), provided that this order is finite,
or else char(F') = 0 if this order is infinite. Note that the characteristic of
a field is either O or is a prime number. More information on the charac-
teristic of a ring can be found in Appendix A or in the last six problems in
the previous section.

Example 2.18 The extension Q(+v/2)/Q is not Galois, for we have seen
that [Q(+/2) : Q] = 3 but IGal(Q(\S/i)/Q)I = 1. The polynomial z° — 2 has
three distinct roots, but only one of them lies in Q(v/2).

Example 2.19 Let k be a field of characteristic p .- 0, and let k(¢) be the
rational function field in one variable over k. Considcr the field extension
k(t)/k(tP). Then t satisfies the polynomial z? —tP € &(t?)[z]. However, over
k(t) this polynomial factors as z? —t? = (z —t)P. Thus, the minimal polyno-
mial of ¢ over k(¢P) has only one root; consequently, Gal(k(t)/k(t?)) = {id}.
Thus, k(t)/k(t?) is not Galois.




['he previous two eaaropaes lustrate the two ways a field extension of the
form F'(a)/F can fail to be Galois. The remaining exanples are examples
of extensions that are Galois.

Example 2.20 Let I be &:ﬁeld of characteristic not 2, and let a € F' be an
element that is not the square of any element in F. Let K = F|z]/(z* - a),
a field since 2 — a is irreducible over F. We view F as a subfield of K
by identifying F' with the subfield {a +(z?—a):ac F} of K. Under this
identification, each coset is uniquely expressible in the form a+gz+ (2% —a)
and, hence, is an F-linear combination of 1 4 (z? — a) and = + (2% — a).
Thus, 1 and u = = + (2% — a) form a basis for K as an F-vector space, so
[K : F| = 2. If o is defined by

ola + fu) = a — Pu,

then o is an automorphism of K since w and —u are roots in K of 22 — a.
Thus, id, o € Gal(K/F), so |Gal(K/F)| = 2 = [K : F]. Consequently, K/ F
is a Galois extension.

The extension K = F'(«) is generated by an element @ with «? = a. We
will often write F'(1/a) for this extension. The notation /a is somewhat
ambiguous, since for an arbitrary field /' there is no way to distinguish be-
tween different square roots, although this will not cause us any problems.

Example 2.21 The extension Q(+/2,w)/Q is Galois, where w = €>™/3 In
fact, the field Q(+/2, w) is the ficld generated over Q by the three roots v/2,
wv/2, and w?y/2, of 23 — 2, and since w satisfics @2 + = + 1 over Q and
w is not in Q(v/2), we see that [Q(v/2,w) : Q] = 6. It can be shown (see
Problem 3) that the six functions

id:\3/§—>\3/§,, W — w,

V2 - wV?2, w—w,
V2 V2, w— W
:\3/§—>w\3/§, w — w?
:\3/}5—>w2\3/§, W — w,
:\3/§—>w2\3/§, w — w?

extend to distinct automorphisms of Q(v/2,w)/Q. Thus,

MR D 3 9

Gal(Q(V3,w)/Q)| = [Q(V2,w): @,
and so Q(w, v/2)/Q is Galois.

One reason we did not do the calculation that shows that we do get
six automorphisms from these formulas is that this calculation is long and
not particularly informative. Another reason is that later on we will see
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easier ways to determine when an extension is Galois. Knowing ahead of
time that Q(V/2,w)/Q is Galois and that the degree of this extension is six
tells us that we have six Q-automorphisms of Q(1/2,w). There are only six
possibilities for the images of ¥/2 and w under an automorphism, and so
all six must occur.

Example 2.22 This exainple shows us that any finite group can occur as
the Galois group of a Galois extension. We will use this example a number
of times in later sections. Let k be a field and let K = k(z,xa,...,%y)
be the ficld of rational functions in 1 variables over k. For cach permuta-
tion o € S,,, define o(z;) = 2,(;)- Then o has a natural extension to an
automorphism of K by defining

o (f(mly--wmn)) _ f($0(1)7"'7$0(n))

g(g"l:"-:wn) B .9($U(1)7"'7$U(n))

The straightforward but somewhat messy calculation that this does define
a field automorphism on K is left to Problem 5. We can then view S,, C
Aut(K). Let F' = F(S,). By Proposition 2.14, K/F' is a Galois extension
with Gal(K/F) = S,,. The field F' is called the field of symmetric functions
in the z;. The reason for this name is that if f(z1,...,z,)/g(z1,...,Tn) €
I, then

f(IO'(l)7' . 7$U(n))/g(ma(1)>' .- vma(n)) = f(mlr s 7$Tb)/g($l7 s 7In)
for all o € 5,,. Let

S$1=2T1 +To2+ "+ Tp,

So = T1T9 -+ Ir1T3 + -+ Tp—1Tn,

Sp =T1T2° " Tpy. é
i

The polynomial s; is called the ith elementary symmetric function. We sec
that each s; € F', so k(sy1,...,8,) C F. Note that

(t—21) (t—zp) =" —s1t"  Fsot™ 2 o (1),

From this fact, we shall see in Section 3 that F' = k(s;,...,s,). This
means that every symmetric function in the z; is a rational function in the
elementary symiuetric functions.

Problems

1. Show that the ouly automorphisin of Q is the identity.
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Show that the only automorphism of R is the identity.

(Hint: If o is an automorphism, show that o|g = id, and if a > 0,
then o(a) > 0. It is an interesting fact that there are infinitely many
automorphisms of C, even though [C : R] = 2. Why is this fact not a
contradiction to this problem?)

Show that the six functions given in Example 2.21 extend to Q-
automorphisms of Q(v/2,w).

Let B be an integral domain with quotient field F. If 0 : B — B
is a ring automorphism, show that o induces a ring automorphism
o' . F'— F defined by ¢'(a/b) = g(a)/o(b) if a,b € B with b # 0.

Let K = k(z,,...,z,) be the field of rational functions in n variables
over a field k. Show that the definition

o (f(a:h ,a:n)) _ f(xa(l)r"'yma(n))

Q(Ilw'wmn) g(a:cr(l)r"yma(n))

makes a permutation o € S,, into a field automorphism of K.
(Hint: The previous problem along with Problem 1.6 may help some.)

. Let I be a field of characteristic not 2, and let K be an extension

of F' with [K : F] = 2. Show that K = F'(\/a) for some a € F'; that
is, show that K = F'(a) with a? = a € F. Moreover, show that K is
Galois over F.

Let F = Fy and K = F(a), where « is a root of 1 4+ 2 + z2. Show
that the function ¢ : K — K given by o(a + ba) = a + b + ba for
a,b € F'is an F-automorphism of K.

Suppose that a € C is algebraic over Q with p(z) = min(Q, a), and
let b be any root in C of p. Show that the map o : Q(a) — C given
by o(f(a)) = f(b) is a well-defined Q-homomorphism.

Show that the complex numbers i+/3 and 1+14+/3 are roots of f(z) =
z? — 223 + 722 — 62 4+ 12. Let K be the field generated by Q and the
roots of f. Is there an automorphism o of K with ¢ (iv/3) = 1+14/37

My ﬂ%&m PRV B vifay, |
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L1.

etermine whether the following fields are Galois over Q).

(a) Q(w), where w = exp(27i/3).
(b) Q(V2).
(c) Q(V5,V7).

(Hint: The previous section has a problem that might be rele-
vant.)

Prove or disprove the following assertion and its converse: If F' C I C
K arc ficlds with K/L and L/F Galois, then K/F is Galois.
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13.

14.

15.

16.

Galows connections. 1he relationship given in Corollary 2.10 between
the set of intermediate fields of a Galois extension and the set of
subgroups of its Galois group appears in other situations, so we study
it here. We first need a definition. If S is a set, a relation < on S is
called a partial order on S provided that ¢ < a foralla € S;ifa <b
and b < a, then ¢ = b; and if a < b and b < ¢, then a < c. Let S
and 1" be sets with partial orders <g and <p, respectively. Suppose
that there are functions f : S — T and g : T — S such that (i) if
S SS 8o, then f(SQ) _<_T f(S]), (ll) if t1 ST tg, then f(tg) SS f(tl),
and (iii) s <g g(f(s)) and t < f(g(t)) for all s € S and t € T'. Prove
that there is a 1-1 order reversing correspondence between the image
of g and the image of f, given by s — f(s), whose inverse is t — g(t).

Let k be a field, and let K = k(z) be the rational function field in one
variable over k. L.et 0 and 7 be the automorphisms of K defined by
o(f(z)/g(z)) = f(1/z)/g(1/z) and 7(f(z)/g(z)) = f(1-=)/9(1-z),
respectively. Determine the fixed field F' of {o,7}, and determine
Gal(K/F). Find an h € F so that F = k(h).

Let k be a field, and let K = k(z) be the rational function field in
one variable over k. If u € K, show that K = k(u) if and only if
u= (az +b)/(cz + d) for some a,b,c,d € k with det ( ¢ 2 ) # 0.

—

(Hint: See the example before Proposition 1.15.)

Use the previous problem to show that any invertible 2 x 2 matrix
a b
c d
b)/(cx + d). Moreover, show that every element of Gal(k(z)/k) is
given by such a formula. Show that the map from the set of invertible

2 X 2 matrices over k to Gal(k(z)/k) given by ( ﬁ

determines an element of Gal(k(z)/k) with z — (az +

Z ) — o, where

o(z) = (az +b)/(cz + d), is a group homomorphism. Determine the
kernel to show that Gal(k(z)/k) = PGLy(k), the group of invertible
2 x 2 matrices over k£ modulo the scalar matrices.

(This group is the projective general linear group over k of 2 x 2
matrices. )

—

~1/2 —+/3/2 ven b
V32 —1)2 > given by
rotating the plane around the origin by 120°. Using the previous
problem, show that A determines a subgroup of Gal(k(z)/k) of order
3. Let F' be the fixed field. Show that k(z)/F is Galois, find a u so
that F' = k(u), find the minimal polynomial min(F,z), and find all
the roots of this polynomial. ‘

Let ¥ = R, and let A be the matrix (




7. Let & = F,, and let £(x) be the rational function field in one variable
over k. Define ¢ : k(z) — k(z) by p(z) = ¢ -+ 1. Show that ¢ has
finite order in Gal(k(z)/k). Determine this order, find a « so that
k(u) is the fixed field of ¢, determine the minimal polynomial over
k() of z, and find all the roots of this minimal polynomial.

o - agl=p

18. Let k be a field of characteristic p > 0, and let a € k. Let f(z) =

zP — aP"'z. Show that f is fixed by the automorphism ¢ of k(z)

defined by ¢(f(z)/g(z)) = f(z+a)/g(z+a) for any f(z), g(z) € k[z].
Show that k(f) is the fixed field of ¢.

19. Prove that (t —zy) - (t —z,) =t" — 81" + -+ (=1)"s,, as we
claimed in Example 2.22.

3 Normal Extensions

In the last section, we saw that there are two ways for the field extension
F(a)/F to fail to be Galois: if min(F, a) does not have all its roots in F'(a)
or if min(F,a) has repeated roots. The next two sections investigate these
two situations. In this section, we investigate the case when F'(a) contains
all the roots of p(z) and what this question means for general algebraic
extensions. We begin with a result that in the case of polynomials over R
should be familiar.

Lemma 3.1 Let f(z) € Flz| and o € F. Then « is a root of f if and
only of x — « dwvides f. Furthermore, f has at most deg(f) roots in any
extension field of F.

Proof. By the division algorithm, f(z) = ¢(z) - (¢ — @) + r(z) for some
q(z) and r(z) with r(z) = 0 or deg(r) < deg(z — ). In either case, we see
that r(z) = r is a constant. But f(a) =r, so f(a) =0 if and only if z — a
divides f(z). '

For the second part, we argue by induction on n = deg(f). If n = 1, then
f(z) = az + b for some a,b € F. The only root of f is —b/a, so the result
is true if » = 1. Assume that any polynomial over an extension field of F'
of degree n — 1 has at most n — 1 roots in any extension field K of F. If
f(z) has no roots in K, then we are done. If instcad o € K is a root of
f, then f(z) = (z — ) - g(z) for some g(z) € K[z| by the first part of the
lemma. Since g(z) has degree n — 1, by induction g has at most n — 1 roots
in K. The roots of f consist of a together with the roots of g. Thus, f has
at most n roots. O

Definition 3.2 If K is an extension field of F' and if f(z) € Flz], then f
splits over K if f(z) = a][,(z — ;) € K[z] for some ay,...,an € K and
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a € F. In other words, f splits over K if f [actors completely into linear

factors in K|z].

In order to talk about roots of a given polynomial, we need to have
extension fields that contain the roots of the polynomial. The next theorem
shows that for any f(z) € F[z], there is a finite extension of F' over which
f splits. We use a generalization of the construction of Example 1.6 to
construct a field containing roots of a given polynomial.

Theorem 3.3 Let f(x) € F|z| have degree n. There is an extension field
K of F with [K : F] <n such that K contains a root of f. In addition,
there is a field L containing F' with [L : F| < nl such that f splits over L.

Proof. Let p(z) be an irreducible factor of f(z) in F[z], and let K be
the field F[z|/(p(z)). Then F' is isomorphic to a subfield of K; namely the
map @ @ I —» IC given by @(a) = a | (p(x)) is an injection ol ficlds. We
will view F' C K by replacing Fowith o(F). Il = = + (p(z)) € K, then
pla) = p(z) + (p(z)) = 0+ (p(x)). Thus, «a is a root of p in K; therefore, o
is a root of f. Since [K : F| = deg(p) < n, this proves the first part of the
theorem.

For the second part, we use induction on n. By the first part, there is a
field K O F with [K : F] < n such that K contains a root « of f(z), say
f(z) = (z —«a)-g(z) with g(z) € K|[z]. By induction, there is a field L O K
with [L : K| < (n — 1)! such that g splits over L. But then f splits over L
and [L: F|=[L: K]-[K:F]<(n—1)!-n=nl O

Definition 3.4 Let K be an extension field of F' and let f(z) € Flz].

1. If f(z) € Flz], then K is a splitting field of f over F if f splits over
K and K = F(ay,...,qy), where ay, ..., a, are the roots of f.

2. If S 1s a set of nonconstant polynomaials over F', then K is a splitting
field of S over F' if each f € S splits over K and K = F(X), where
X s the set of all roots of all f € S.

Intuitively, a splitting field for a set S of polynomials is a minimal field
extension over which each f € S splits. This is made more concrete in
Problem 2.

Theorem 3.3 yields immediately the existence of splitting fields for a
finite set of polynomials.

Corollary 3.5 If fi(z),..., fn(z) € F[z], then there is a splitting field for
{f1,-. ., fn} over F. ~

Proof. Suppose that fi,...,f, € Flz]. Note that a splitting field of
{f1,.-.,fn} is the same as a splitting field of the product f;--- f,. If
f = fi--- fn, then by Theorecm 3.3, there is a field L O F such that f
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splits over L. Let o, ..., an € L be the roots of f. Then F(ai,...,qa,) is
a splitting ficld for f over F. 03

Example 3.6 The field Q(w, v/2) is a splitting field for 23 —2 over @, since
we have seen in Example 2.21 that this field is also the field generated by
the three roots of 22 — 2 over Q. The complex field C is a splitting field over
R for 2 4 1, since C = R(7, —i) is generated by R and the roots of z* 4 1.
In general, if F' is a field and a € F, then the field F'(1/a) is a splitting field
for z2 — a over F.

Example 3.7 Let F = F; and K = F[z]/(1 +z +2?) & F(a), where « is
a root of 1 +z 4 z2. Then 1+ z 4 22 factors as (z — a)(z — (o + 1)) over
K, so K is a splitting field of 1 4+ z 4 z2.

We will show that splitting fields are unique up to isomorphism. From
this [act, the next corollary would lollow [rom Theorem 3.3. However, we
give a dillerent prool so that we can use it in the uext exanple.

Corollary 3.8 Let F be a field and let f(z) € Flz| be a polynomial of
degree n. If K is a splitting field of f over F, then [K : F] < nl.

Proof. We prove this by induction on n = deg(f). If n = 1, then the result
is clear. Suppose that n > 1 and that the result is true for polynomials of
degree n — 1. Let K be a splitting field of f over F', and let a be a root of f
in K. Then [F'(a) : F] < n, since min(F,a) divides f. If f(z) = (z—a)g(z),
then deg(g) = n—1 and K is the splitting field of g over F'(a). By induction,
[K : F(a)] <(n—1)! by Theorem 3.3, so

[K : F|=[F(a): F|-[K : F(a)]
<n-(n-1)!=nl

This proves the corollary. O

Example 3.9 Let & be a feld, and let K = k(zy,2,,...,2,) be the ratio-
nal function field in n variables over k. We view the symmetric group S,
as a subgroup of Aut(K') by defining

i (f(m,...,a:n)> _ oy To(m)

glzy, ..., zy,) a g(asg(]),...,:cg(n))

for o € S, as in Example 2.22. Let F = F(S,), the field of symmetric
functions in the z;. Then S,, = Gal(K/F') by Proposition 2.14,so [K : F] =
|Sn| = n!. We wish to determine F'. Let sy, S2,...,S, be the elementary
symmetric functions in the z;; that is,

$1 =2y +T2 + "+ Tp,
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Sp =T1T9 Ty

Then k(sy,82,...,5,) C F. We claim that F' = k(sy,..., s, ). To show this,
we use the concept of splitting fields. Let

FO) =1 = s1t™ oo (=1)"s,, € k(51,50, ..., 50)[t]-

Then f(t) = (t—z) -+ - (t—z,) in K[gg], which can be seen by expanding this
product. Since K is generated over k by the z;, we scc that K is a splitting
field for f(t) over k(sy, s2,...,8,). We know that [K : IF] = |S,,| = n!,

and so [K : k(s1,S2,...,8,)] > nl. However, [K : k(s1,s2,...,8,)] < n!
by Corollary 3.8. Therefore, [K : k(s1,52,...,5,)] = [K : F|. This forces
F = k(s1,582,-..,8,). Therefore, any symmetric function can be written

in terms of the elementary symmetric functions. In fact, every symmetric
polynomial can be written as a polynomial in the elementary symmetric
functions (see Problem 17).

Algebraic closures

We have proved the existence of splitting fields for finite sets of polynomials.
What about infinite sets? Suppose that K is a splitting field over F' of the
set of all nonconstant polynomials over . We do not know yet that such a
field exists, but we will show it does exist. Let L be an algebraic extension
of K. If a € L, then a is algebraic over F' by Theorem 1.24, since K
is algebraic over F'. Let f(z) = min(F,a). Then f splits over K; hence,
a € K. Thus, L = K. This proves that K has no algebraic extensions.
The existence of such a field will imply the existence of splitting fields of
an arbitrary set of polynomials. Moreover, given K, we shall see that any
algebraic extension of F' is isomorphic to a subfield of K. This will allow
us to view all algebraic extensions of F' as subfields of K.
We first give some equivalent conditions for such a field.

Lemma 3.10 If K is a field, then the following statements are equivalent:

1. There are no algebraic extensions of K other than K itself.
2. There are no finite extensions of K other than K itself.

3. If L is a field extension of K, then K ={a € L : a 1s algebraic over
K}.

4. Every f(zx) € K|z] splits over K.
5. Every f(z) € K|z| has a root in K.
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Proof. (1) = (2): This is clear, since any finite extension of F is an alge-
braic extension of F'.

(2) = (3): Let a € L be algebraic over K. Then K (a) is a finite extension
of K,s0 K(a) = K. Thus, a € K.

(3) = (4): Let f(z) € Klz], and let L be a splitting field of f over K.
Since L is algebraic over K, statement 3 shows that L = K; that is, [ splits
over K.

(4) = (5): This is clear.

(6) = (6): Let f(z) € K[z] be irreducible. By statement 5, f has a root
in K, so f has a linear factor. Since f is irreducible, this means f itself is
lincar, so deg(f) = 1.

(6) = (1): Let L be an algebraic extension of A Take a € [ and leb
p(x) = min(K, a). By statement 6, thic degree of p is 1, so [K(a) : K] = 1.
Thus, a € K,so L =K. O

Definition 3.11 [f K satisfies the equivalent conditions of Lemma 3.10,
then K 1is said to be algebraically closed. If K is an algebraic extension of

F and is algebraically closed, then K is said to be an algebraic closure of
F.

Example 3.12 The complex field C is algebraically closed. This fact is
usually referred to as the fundamental theorem of algebra, and it will be
proved in Section 5. If

A = {a € C : a is algebraic over Q},

then it is not hard to prove that A is algebraically closed by using that C is
algebraically closed; see Problem 4b. Furthermore, C is an algebraic closure
of R, and A is an algebraic closure of Q. However, C is not an algebraic
closure of (Q since C is not, algebraic over ().

We wish to prove the existence of an algebraic closure of an arbitrary
field F' and to prove the existence of a splitting field for an arbitrary set of
polynomials. In order to do this, we will use a Zorn’s lemma argument. The
next lemma is needed for technical reasons in the proof of the existence of
an algebraic closure.

Lemma 3.13 If K/F is algebraic, then || < max{|F|, |N|}.

Proof. In this proof, we require some facts of cardinal arithmetic, facts
that can be found in Proposition 2.1 in Appendix B. If a € K, pick a
labeling a,,...,a, of she roots of min(F,a) in K. If M is the set of all
monic polynomials over F, define f : X — M x N by f(a) = (p(z),r) if
p(z) = min(F,a) and a = a,. This map is clearly injective, so

|K| <|M x N| = max{| M|, |N|}.




We will be done by showing that [M| < max{|F|, [N|}. For this, if M,, is
the set of monic polynomials over F of degree n, then |M,| = |F™|, siuce
the map (ag,...,a,_1) — 2" + }:?:_01 a;x" is a bijection between F™ and
M,,. If F is finite, then |[F"| = |F|" is Gnite, and if F is infinite, then
|F™| = |F|. Therefore, since M is the union of the disjoint sets M,,, we
have M| = |J, M,.| = max{|F|,|N|}. O

Theorem 3.14 Let F' be a field. Then F has an algebraic closure.

Proof. Let S be a set containing F with |S| > max{|F|, |N|}. Let A be
the set of all algebraic extension fields of F' inside S. Then A is ordered by
defining K < L if L is an extension field of K. By Zorn’s lemma, there is a.
maximal element M of A. We claim that M is an algebraic closure of M~

To show that M is algebraically closed, let L be an algebraic extension of
M. By Lemma 3.13,

L] < max{|M],[N]} < {|F[,|N[} <S].

Thus, there is a function f : L — S with f|y = id. By defining + and - on
F(L) by f(a)+ f(b) = f(a+b) and f(a)- f(b) = f(ab), we see that f(L)
is a field extension of M and [ is a ficld homomorphism. Maximality of M
shows that f(L) = M, so L = M. Thus, M is algebraically closed. Since
M is algebraic over F', we see that M is an algebraic closure of F. O

The existence of an algebraic closure yields immediately the existernce of
a splitting field for an arbitrary set of nonconstant polynomials.

Corollary 3.15 Let S be a set of nonconstant polynomials over F. Then
S has a splitting field over F.

Proof. Let K be an algebraic closure of F'. Then each f(z) € S splits over
K. Let X be the set of roots of all f € S. Then F(X) C K is a splitting
field for S over F', since each f splits over F'(X) and this field is generated
by the roots of all the polynomiials [rom S. O

To emphasize a uselul interpretation of an algebraic closure, we record
the following easy consequence of the existence of arbitrary splitting fields.

Corollary 3.16 If F is a field, then the splitting field of the set of all
nonconstant polynomaials over F' s an algebraic closure of F.

Now that we have the existence of a splitting field for any set of noncon-
stant polynomials, what can we say about such fields? Can we have many
different splitting fields, up to isomorphisin? The answer is no; the next
lemma is the first step in showing this.

The following fact is used in the lemma below and in a number of other
places. If 0 : F — F' is a field homomorphism, then there is an induced




ring homomorphism F[z] — F’[z], which we also denote by o, given by
o (> aiz') = Y o(a;)z’. 1t is an easy calculation to show that o does
indeed induce a ring homomorphism on F[z]. If f(z) = (z —a1) -+ (z —
a,) € Flz/|, then the preservation of polynomial multiplication shows that
o(f(z)) = (x — o(a1))-+-(z — o(a,)). This relationship between o and
factorization of polynomials will help us to study splitting fields.

Lemma 3.17 Let 0 : F — F' be a field isomorphism. Let f(z) € Flz| be
irreducible, let o be a root of f in some extension field K of F', and let o' be
a root of a(f) in some extension K' of F'. Then there is an isomorphism
7: Fla) — F'(a') with 7(a) = o' and 7|p = 0.

Proof. Since f is irreducible and f(a) = 0, the minimal polynomial
of o over F' is a constant multiple of f. Thus, f and min(F,«) gener-
ate the same principal ideal in F[z]. We then have an F-isomorphism
¢ : Flz]/(f(z)) — F(a) given by ¢(g(z) + (f(z))) = g(a) and an F'-
isomorphism ¥ : F'lz]/(f'(x)) — F'(a’) given by ¥(g(z) + (f'(z))) =
g(a'). Since o(f) = J', the map v(g(z) + (f(2))) = o(g(z)) + (f'(z)) gives
a well-defined isomorphism v : F[z]/(f(z)) — F'[z]/(f'(z)) which extends
o. We have the [ollowing sequence of field isomorphisms:

F(a) % Flz)/(f(z) % Flz)/(f'(z) 5 F'(a)).

Therelore, the conposition ¢l ovo: F(a) — F(o/) is an isomorphism
extending o on F with a+— z + (f(z)) — z + (f'(z)) — . O

Lemma 3.18 Let o : F — F' be a field isomorphism, let K be a field
extension of F', and let K' be a field extension of F'. Suppose that K is
a splitting field of {f;} over F and that 7 - K — K' is a homomorphism
with 7|p = 0. If fi = o(fi), then 7(K) s a splitting field of {f;} over F".

Proof. Because K is a splitting field of a set {f;} of polynomials over F,
giveun f; there are a,a,..., 0, € K with fi(z) = aHj (z — ;). Therefore,
7(fi(z)) = 7(a) [ [;(x — 7(ev;)). Hence, each f] = o(fi;) = 7(f:) splits over
7(I{). Since J{ is generated over F' by the roots of the f;, the field 7 (X))
is generated over F' by the images of the roots of the f;; that is, 7(K) is
generated over F' by the roots of the f;. Thus, 7(K) is a splitting field over
F' for {f!}. O

The next theorem, the isomorphism extension theorem, is one of the
most important results of Galois theory. It proves the uniqueness of splitting
ficlds, although its main use is in constructing automorphisms of a field, and
thus for calculating the Galois group of a ficld extension. Before proving
it, we give a prool ol the case of splitting ficlds of a single polynomial.
While the full version certainly includes this case, we give a proof of this
special case for a few reasons: The proof of this special case is easy and the
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Lhils case, and thc Iull proo[ uses a Zori's lemma argument and is not very
inituitive.

Theorem 3.19 Let o : F — F' be a field isomorphism, let f(z) € F[z],
and let o(f) € F'[z] be the corresponding polynomial over F'. Let K be the
splitting field of f over F, and let K' be the splitting field of o(f) over F'.
Then there ts an isomorphism 7 : K — K' with 7|p = o. Furthermore, if
a € K and if o is any root of o(min(F,a)) in K', then 7 can be chosen
so that 7(a) = .

Proof. We prove this by induction on n = [K : F]. If n = 1, then f splits
over F', and the result is trivial in this case. So, suppose that n > 1 and that
the result is true for splitting fields of degree less than n. If f splits over
F', then the result is clear. If not, let p(z) be a nonlinear irreducible factor
of f(z), let o be a root of p, and let &’ be a root of o(p). Set L = F(«)
and L' = F(a'). Then [L : F] > 1, so [K : L] < n. By Lemma 3.17, there
is a field isomorphism p : L — L’ with p(a) = o’. Since K is the splitting
field over L for f(z) and K’ is the splitting field over L’ for o(f), by
induction the isomorphism #,extends to an isomorphism 7 : K — K’. The
isomorphism 7 is then an extension of o (and p), and 7(a) = p(a) = «'.

O

Theorem 3.20 (Isomorphism Extension Theorem) Let o : F — F'
be a field isomorphism. Let S = { fi(z)} be a set of polynomials over F', and
let S" = {o(fi)} be the corresponding set over F'. Let K be a splitting field
for S over F, and let K' be a splitting field for S' over F'. Then there is
an isomorphism 7 : K — K' with 7|p = 0. Furthermore, if « € K and o'
is any root of o(min(F, a)) in K', then 7 can be chosen so that 7(«) = o'.

Proof. We prove this with a Zorn’s lemma arguinent. Let & be the sel
of all pairs (L,¢) such that L is a subficld of X and ¢ : L — K’ is
a homomorphism extending o. This set is nonempty since (F,o) € S.
Furthermore, S is partially ordered by defining (L,¢) < (L', ¢') if L C L'
and ¢'|f, = ¢. Let {(L;,;)} be achainin S.If L = J, L; and ¢ : L — K’
is defined by ¢(a) = ¢;(a) ifa € L;, then it is not hard to sce that L is a field
extension of all the L; and ¢ is a homomorphism extending o. Thus, (L, ¢)
is an upper bound in § for this chain. Therefore, by Zorn’s lemima there is
a maximal element (A, 7) in §. We claim that M = K and 7(M) = K'. If
M # K, then there is an f € S that does not split over M. Let o € K be a
root of f that is not in A/, and let p(z) = min(F,a). Set p’ = o(p) € F'[z]
and let o’ € K’ be a root of p’. Such an o' exists since p’ divides f’ and
S splits over K'. By Lemma 3.17, there is a p : M(a) — 7(M)(c’) that
extends 7. Then (M («a),p) € S is larger than (M, 7), a contradiction to the
maximality of (M, 7). This proves that M = K. The equality 7(K) = K’




follows innediately rom Lemma 3018 suice 1 (A) € A’ is a splitting field
for S" over F. O

Corollary 3.21 Let F be a field, and let S be a subset of Fz]. Any two
splitting fields of S over F are F-isomorphic. In particular, any two alge-
braic closures of F' are F-isomorphic.

Proof. For the proof of the first statement, the isomorphism extension
theorem gives an isomorphism extending id on F' between any two splitting
fields of S. The second statement follows from the first, since any algebraic

closure of F' is a splitting field of the set of all nonconstant polynomials in
Flz]. O

As a corollary to the existence and uniqueness of algebraic closures, we
can prove that any algebraic extension of a field F' can be viewed as living
inside a fixed algebraic closure of F.

Corollary 3.22 Let F be a field, and let N be an algebraic closure of F.
If K s an algebraic extension of F, then K is isomorphic to a subfield of
N.

Proof. Let M be an algebraic closure of K. By Theorem 1.24, M is alge-
braic over F'; hence, M is also an algebraic closure of F'. Therefore, by the
previous corollary, M = N.If f : M — N is an F-isomorphism, then f(K)
is a subfield of N isomorphic to K. O

We now go into more detail about splitting fields. One question we will
address is the following. If K is the splitting field of a set S of polynomials
over I'| can we determine all of the polynomials in F'[z] that split over K7
Also, can we give a more intrinsic characterization of K, one that does not
refer to the set S7 The answer to hoth questions is yes and is found in
Proposition 3.28.

Definition 3.23 If K s a field extension of F, then I 1s normal over F
iof K s a splitting field of a set of polynomaals over F'.

Example 3.24 If [K : F] = 2, then K is normal over F. Tor, ifa € K —F,
then K = F(a), since [K : F] = 2. If p(z) = min(F|a), then p has one root
in K; hence, since deg(p) = 2, this polynomial factors over K. Because K
is generated over F' by the roots of p(z), we see that K is a splitting field
for p(z) over F.

Example 3.25 If FF C L C K are fields such that K/F' is normal, then
K/L is normal. This is true because if K is the splitting field over F' of
a set of polynomials S C F|z], then K is generated over F' by the roots
of the polynomials in .S. Consequently, K is generated by the roots as an
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extension of L, so I is a splitting feld of S over L, and so K is normal
over L.

Example 3.26 The field Q(w, v/2) is normal over @, since it is the split-
ting field of 3 — 2 over Q. Similarly, if i = v/—1, then Q(+/2,1) is normal
over QQ, since it is the splitting field of 2# — 2 over Q. The subfield Q(3) is
also normal over Q, as it is the splitting field of z? + 1 over Q. However,
the subfield Q(+/2) is not normal over Q. At this point, we do not have
an effective way of showing Q(v/2)/Q is not normal, for we would have to
show that there is 1o polynomial f € @Q(z) whosc roots generate Q(v/2). It
is clear that min(Q, v/2) does 10t split over Q(+/2), which will be enough
to show that Q(\"/ﬁ) is not normal over Q once we prove Proposition 3.28.

Example 3.27 Lect 77 be a ficld of characteristic p > 0, and suppose that
K = F(ay,...,d,) with ai{;' ¢ I [or cach 4. Then we show that /A is normal
over F. The miniinal polynomial of a; divides z” — a?, which factors coru-
pletely over K as z? —a! = (z —a;)P; hence, min(F), a;) splits over K. Thus,
K is the splitting ficld of {min(F,a;): 1 < i < n} over F. Notc that cach
min(F, a;) has only onc distinct root, and any F-automorphisin of / is de-
termined by its action on the generators ay,...,an,, so Gal(K/F) = {id}.

For instance, if k(x,,...,x,) is the rational function field in n variables over
a field k of characteristic p, then k(z1,...,zn)/k(2Y,...,2P) is a normal
extension.

If K is the splitting field over £ of a set of polynomials S C Flz], then
each polynomial in S splits over /(. However, K can be viewed as a splitting
field in other ways, as tlic following proposition shows.

Proposition 3.28 If K is algebraic over I, then the following statements
are equivalent:

1. The field K 18 normal over F.

2. If M s an algebraic closure of I and iof 7 : K — M 1s an [I'-
homomorphisin, then 7(K) = K.

3. If F C L C K C N are fields and if o : L — N 1is an F'-
homomorphism, then o(L) C K, and there is a 7 € Gal(K/F') with
T|L =0.

4. For any irreducible f(z) € F[z], of f has a root in K, then f splits
over K.

Proof. (1) = (2): Let M be an algebraic closure of K, and let 7: K — M
be an F-homomorphism. If K is the splitting field for S C F[z] over F,
then so is 7(K) € M by Lemma 3.17. Since K and 7(K) are generated
over F' by the same set of roots, K = 7(K).
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(2) = (3): Suppose that F'C L C K C N are fields and that 0 : L — N
is an F-homomorphism. Since I C K, the extension L/F is algebraic, and
so o(L) C N is algebraic over F. Let M’ be the algebraic closure of F' in
N and let M be an algebraic closure of M’. Then M is also an algebraic
closure of K. By the isomorphism extension theorem, there is an extension
p: M — M with p|p = o. Let 7 = p|k. By condition 2 we have 7(K) = K,
soo(L)=7(L) C7(K)= K. Thus, 7 € Gal(K/F).

(3) = (4): Let f(z) € F[z] be irreducible over F, and let o« € K be a
root of f. Let L = F(a) C K and let N be an algebraic closure of K. If
B € M is any root of f, then there is an F-homomorphism o : L —_ &
given/\{)y g(a) +— ¢(B). By condition 3, o(L) C K, so § € K. Hence, all
roots of f lie in K, so f splits over K.

(4) = (1): Condition 4 shows that min(F, «) splits over K foreach a € K.
Thus, /¢ is the splitting (icld over F'of {nin(F,a) : a € K}, so I is normal
over F'. O

Onc useful consequence of Proposition 3.28 is that if K is normal over
F, then I is the splitting ficld of {min(F,a) : ¢ € K} by condition 4. This
is perhaps the most useful criterion to show that an extension is normal.

Problems

1. Show that K is a splitting field over F' for a set {f1,..., fn} of poly-
nomials in F[z] if and only if K is a splitting field over F for the
single polynomial f;--- f,.

2. Let K be a splitting field of a set S of polynomials over F'. If L is a
subfield of K containing F' for which each f € S splits over L, show
that L = K.

3. If F C L C K are fields, and if K is a splitting field of S C F'[z] over
I, show that K is also a splitting field for S over L.

4. (a) Let K be an algebraically closed field extension of F'. Show that
the algebraic closure of F' in K is an algebraic closure of F'.

(b) If A = {a € C: a is algebraic over Q}, then, assuming that C is
(5.-) Lal(geb)raically closed, show that A is an algebraic closure of Q.

- <&
“{tes

5 5. Give an example of fields ¥ € K C L where L/K and K/F are
normal but L/F is nof normal.

6. Let f(x) be an irreducible polynomial over F' of degree n, and let K
be a field extension of F' with [K : F| = m. If ged(n,m) = 1, show
that f is irreducible over K.

7. Show that 2° — 92° 4 15z + 6 is irreducible over Q(v/2, V/3).
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10. Let I be a ficld, and let f(z) € F[z] be a polynomial of prime degree.
Suppose for every field extension K of F' that if f has a root in K,
then f splits over K. Prove that either f is irreducible over F' or f

has a root (and hence splits) in F.

11. Show that the hypotheses of the previous problem hold for

(a) f(z) = 2P — a, where char(F) =panda€ F.
(b) f(z) = 2P —x — a, where char(F) =p and a € F.
(c) f(z) = zP — a, where char(F) # p and F contains an element w

with wP =1 and w # 1.

12. Let K be a field, and suppose that o € Aut(K’) has infinite order. Let
F be the fixed field of . If K/F is algebraic, show that /X is normal

over F'.

13. Let K be a normal extension of F', and let f(z) € F[z] be an irre-
ducible polynomial over F'. Let ¢g1(z) and g2(z) be monic irreducible
factors of f(z) in KJ[z|. Prove that there is a o € Gal(K/F) with

a(g1) = g2

14. Let K be a normal extension of F', and let p(z) be an irreducible
polynomial in F[z]. If p ismot irreducible over K, show that p factors
over K into a product of irreducible polynomials of the same degree.

In particular, if p has a root in K, then p splits over K.

15. Let K and L be extensions of F'. Show that KL is normal over F if

both K and L are normal over F'. Is the converse true?

16. Let M be a normal extension of F. Suppose that a,a’ € M are roots
of min(F, a) and that b,b" are roots of min(F,b). Determine whether
or not there is an automorphlsm o€ Gal(M/F) with a( ) —’a’ and

o(b) =b. T F=O M= D3g) azly o § b=y
co E=Fla) allve |E:Flem ¢ TkIDF| £ drwrbde pb m eﬁ-& e

ng\,_,’éo )k[XIF( “f[ﬂ:) kaA‘F'/;' o) S’M«%K(w) ‘meMA QJLM;«/(‘ \/we( =

¢ I CaNi e hem ol £ g £x £

"
m,w’k

X

{
[




ir. I'his problem will prove that any synunctric polynomial is a polyno-
mial in the elementary symmetric functions. This problem requires
some knowledge of integral ring extensions along with theorems about
algebraic independence from Section 19. Let K = k(z1,..., z,) be the
field of rational functions in the z; over a field £. Then the group S,
acts as automorphisms on K asin Example 2.22. Let f € k[zy,. .., z,]
be a symmetric polynomial; that is, o(f) = f for all ¢ € S,,. Show
that f € k[s1,. .., sn]-

(Hint: If F = F(Sy), show that F N k[x,,...,z,] is integral over
k[si,...,Sn]. Moreover, show that k[s,,...,s,| is integrally closed
since k[s1,...,8n] & k[z1,...,Zys], a fact that falls out of Section 19.)

18. Give an example of fields &+ € K C L and [ C I for which I/k and
L/ K are algebraic, k is algebraically closed in ') and [N = L, but [
is not algebraically closed in L.

19. This problem gives a construction of an algebraic closure of a field,
due to E. Artin. Let F be a field, and let S be the set of all monic
irreducible polynomials in F[z|. Let A = F[zs : f € S] be a polyno-
mial ring with one variable for each polynomial in S. Let I be the
ideal of A generated by all f(zy) for f € S. Show that I # A. Let
M DO I be a maximal ideal of A, and let |, = A/M. Then F) is an
extension of F' in which each f € S has a root. Given the field F},
construct the field F;, by repeating this procedure starting with F;
as the basc ficld in place of F. Let L = [ J02 | F,. Show that each
f € .5 splits into lincar factors over 1o, and show that the algebraic
closure of I in L is an algebraic closure of F.

4 Separable and Inseparable Extensions

Recall from Corollary 2.17 that an algebraic extension F'(a)/F fails to
be Galois if either min(F,a) does not split over F(a) or if min(F,a) has
repeated roots. In the previous section, we investigated field extensions
K /F for which min(F,a) splits over K for each a € K. In this section, we
investigate when a minirnal polynomial has repeated roots. We point out
that in the case of ficlds of characteristic 0, there is no problem of repeated
roots, as we shiow below.

Let f(z) € Flz]. A root a of f has multiplicity m if (z — a)™ divides
f(z) but (z—a)™*! does not divide f. If m > 1, then « is called a repeated
root of f.

Definition 4.1 Let F' be a field. An irreducible polynomial f(z) € F[z]
s separable over F if f has no repeated roots in any splitting field. A
polynomial g(z) € Flz| is separable over F if all irreducible-factors of g
are separable over F.
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Example 4.2 The polynomial z® — 2 is separable over Q, as is (z — 1)°.
The polynomial z? + z + 1 is separable over Fy, since we saw in Example
2.8 that if « is a root, then so is a + 1. Suppose that char(F) = p and
a € F— FP. Then zP — a is irreducible over F' (see Problem 5), but it is
not separable over F, since it has at most one root in any extension field
of F. Note that if v is a root of zP — a, then zP — a is separable over F'(«).

The following lemma gives some basic properties of separability.

Lemma 4.3 Let f(x) and g(z) be polynomials over a field F'.

1. If f has no repeated roots in any splitting field, then f is separable
over F.

2. If g divides f and if f is separable over F, then g is separable over
F.

3. If fi,...,fn are separable polynomials over F, then the product
fi1--+ fn s separable over F.

4. If f is separable over F', then f is separable over any extension field
of F.

Proof. For property 1, if f has no repeated roots in any splitting field, then
neither does any irreducible factor of f. Thus, f is separable over F. To
show property 2, if g divides f with f separable over F', then no irreducible
factor of f has a repeated root. However, the irreducible factors of g arc
also irreducible factors of f. Thus, g is separable over F'. To prove property
3, we see that the set of irreducible factors of the f; is precisely the set
of irreducible factors of the polynomial f, --- f,,. Each of these irreducible
factors have no repeated roots, so f, - - f,, is separable over F'. Finally, for
property 4, let f(z) € F[z] be separable over F, and let K be an extension
of F. If p(z) is an irreducible factor of f(z) in Kz], let o be a root of p in
some algebraic closure of IV, and set ¢(z) = min(F, ). Then ¢(z) € Klz],
so p divides ¢. But ¢ has no repeated roots, since ¢ is an irreducible factor
of f. Thus, p has no rcpeated roots, so f is separable over K. O

In order to have an effective test for separability, we need the concept of
polynomial differentiation. A more general notion of differentiation, that
of a derivation, will be used to study transcendental extensions in Chapter

V.

Definition 4.4 If f(z) = ap + a1z + -+ + a,z™ € F[z], then the formal
derivative ['(x) 1s defined by f'(2) = ay + 2000 + -+ + na, ™

The formal derivative of a polynomial is well defined for any field F.
We do not need limits in order to dehue it. as we do in caleulus. However,




I oeparable and Lnseparable luxlensions A1

some strange things can happen in prime characteristic. For instance, the
derivative of zP is () if the base field has characteristic p.

The formal derivative satisfies the same basic properties as the derivative
of calculus. If f(z),g(z) € F[z| and a,b € F, then

L. (af(z) +bg(z))" = af'(z) + by’ (2);
2. (f(z)g(z)) = f'(z)g(z) + f(z)g' (z);
3. (flg(z)) = f'(g(z))g'(z).

The proof of these properties is straightforward and is left to Problem 1.
By using derivatives, we obtain a good test for determining when a poly-
nomial has a repeated root. This test is given in the following proposition.

Proposition 4.5 Let f(z) € F[z] be a nonconstant polynomial. Then f
has no repeated Toots in a splitting field if and only if gcd(f, f') = 1 in

Proof. We first point out that f and f’ are relatively prime in F[z] if
and only if they are relatively prime in K[z]. To prove this, suppose that
ged(f, f') = 1 in Flz]. Then there are polynomials g, h € F[z| with 1 =
fg + f'h. This also is an equation in KJ[z], so the ged in K|z| of f and
f" must divide 1. Thus, ged(f, f') = 1 in K[z]. Conversely, suppose that
ged(f, f') = 1in K[z]. If d is the ged of f and f' in F|z], then d € K[z],
so d divides 1; thus, f and f' are relatively prime in FJ[z].

Supposc that f and f’ are rclatively prime in F[z]. In particular, let K
be a splitting field of {f, f'} over F. If f and f’ have a common root . € I,
then z — « divides both f and f’ in K[z|. This would contradict the fact
that f and f’ are relatively prime in KJ[z]. Therefore, f and f’ have no
common roots.

Conversely, if f and f’ have no common roots in a splitting field K of
{f, '}, let d(x) be the greatest common divisor in K[z] of f(z) and f'(z).
Then d splits over K since f splits over K and d divides f. Any root of d
is then a common root of f and f' since d also divides f’. Thus, d(z) has
no roots, so d = 1. Therefore, f and f’ are relatively prime over K; hence,
they are also relatively prime over F. O

With this derivative test, we can give the following criteria for when a
polynomial is separable. Note that this test does not require that we know
the roots of a polynomial.

Proposition 4.6 Let f(z) € F[z] be an irreducible polynomial.

1. If char(#) =0, then f is separable over F. If char(F) =p > 0, then
f s separable over F' if and only if f'(z) # 0, and this occurs if and
only if f(z) ¢ F[zP].




2o f char(l7) = p, then f(«) = g2 ) for some wteger m — U and some
g(z) € Fz] that is irreducible and separable over F.

Proof. If f(z) € F[z] is irreducible over F', then the only possibility for
ged(f, f') is 1 or f. If char(F) = 0, then deg(f’) = deg(f) —1; thus, f does
not divide f’, and so ged(f, f') = 1. Therefore, by Proposition 4.5, f has
no repeated roots, so f is separable over F. If char(F) = p > 0, the same
reasoning shows ged(f, f') = f if and only if f divides f’, if and only if
f'(z) =0, if and only if f(z) € F[zP].

For statement 2, suppose that char(F) = p, and let f(z) € F|z]. Let'm
be maximal such that f(z) € F[z?"]. Such an m exists, since f € F[zP']
and f lies in F[r;:”f] for only finitely many r becausc any nonconstant
polynomial in F[zP'| has degree at least p”. Say f(z) = g(z?"). Then
g(z) ¢ F[zP] by maximality of m. Moreover, g(z) is irreducible over F,
since if g(z) = h(z) - k(z), then f(z) = h(zP")-k(zP") is reducible over F.
By statement 2, g is separable over F. O

We now extend the concept of separability to field elements and field
extensions.

Definition 4.7 Let K be an extension field of F' and let « € K. Then
« is separable over F if min(F,«) is separable over F. If every a € K is
separable over F', then K is separable over F'.

Example 4.8 If F' is a field of characteristic (), then any algebraic exten-
sion of F' is separable over F, since every polynomial in F[z| is separable
over F. If k is a field of characteristic p > 0 and if k(z) is the rational
function field in one variable over k, then the extension k(z)/k(zP) is not
separable, for min(k(z?P),z) = ¢t — zP, which has only z as a root.

We are now in a position to give a characterization of Galois extension.
This characterization is the most common way to show that a field exten-
sion is Galois.

Theorem 4.9 Let K be an algebraic extension of F. Then the following
statements are equivalent:

1. K is Galois over F'.
2. K is normal and separable over F'.

3. K is a splitting field of a set of separable polynomaals over F.

Proof. (1) = (2): Suppose that K is Galois over F', and let o € K. Let
a1,...,q, be the distinct elements of the set { o(a) : 0 € Gal(K/F) }.
This set is finite by Lemma 2.3, since each o(a) is a root of min(F, «). Let




S — 11w w) e Kle). Then 7(f) = f, siwee i permstites the o, Thus,
the cocflicients of f lie in F(Gal(K/F)) = F, so f(x) € F[z]. Therefore,
min(F, ) divides f, and so min(F, &) splits over K and has no repeated
roots. Since this is true for each o € K, the field K is the splitting field of
the set {min(F,«) : « € K} of polynomials separable over . Hence, X/F
is normal and separable.

(2) = (3): If K/F is normal and separable, then K is the splitting field
of the set of separable polynomials {min(F,«) : « € K} by Proposition
3.28.

(3) = (1): We first assume that [K : F| < oo, and we use induction
onn =[K:F].If n =1, then K = F is trivially Galois over F. So,
siippose that n > 1 and that the result holds for ficld extensions of degree
less than n. Say K is the splitting ficld of the set of separable polynomials
{fi(z)}. Since n > 1, there is a root « of one of the f; which is not in
F.Let L = F(a). Then [L : F] > 1,80 [K : L] < n. Since K is the
splitting field over L of the {f;}, which are separable over L, by induction
K is Galois over L. Let H = Gal(K/L), a subgroup of Gal(K/F). Let
a1,...,ar be the distinct roots of min(F,«). Then, since « is separable
over F', we have [L : F| = r. By the isomorphism extension theorem, there
are 7; € Gal(K/F) with 7;(a) = «;. The cosets 7, H are then distinct, since
if 7'7; € H = Gal(K/L), then (7; '7;)(a) = «; hence, a; = 7i(a) =
7j(a) = o. Let G = Gal(K/F). We have

|G|=|G:H|-|H|>r-|H =[L:F|-[K:L=[K:F]

Since |G| < [K : F] by Proposition 2.13, we get |G| = [K : F], so K is
Galois over F.

Now suppose that K/F' is arbitrary. By hypothesis, K is the splitting
field over F' of a set S of separable polynomials over F'. Let X be the set of
roots of all of these polynomials. So, K = F(X). Let a € F(Gal(K/F)). We
wish to show that a € F. There is a finite subset {),...,an,} € X witha €
F(ai,...,an). Let L C K be the splitting field of {min(F,a;) : 1 <7 < n}.
Then, by the previous paragraph, L/F is a finite Galois extension. Note
that ¢ € L. An application of the isomorphism extension theorem shows
that each element of Gal(L/F') extends to an F-automorphism of K, and
so Propogition 3.28 implies that

Gal(L/F) = {o|. : o € Gal(K/F)} .

Therefore, a € F(Gal(L/F)), and this fixed field is F', since L/F is Galois.
This proves F(Gal(K/F)) = F, so K/F is Galois. O

Corollary 4.10 Let L be a finite extension of F.

1. L is separable over F' if and only if L is contained wn a Galois exten-
ston of F.
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2. I[f L = F(an,...,q,) with each «; separable over F, then L is sepa-
rable over F'.

Proof. If L C K with K/F Galois, then K/F is separable by Theorem 4.9.
Hence, L/F is separable. Conversely, suppose that L/F is separable. Since
[L : F] < oo, we may write L = F(as,...,a,), and each «; is separable
over F. If K is the splitting field of {min(F,a;):1 <i <n}, then L C K,
and K/F is Galois by Theorem 4.9.

For the proof of statement 2, let L = F(a,...,a,) with each «; sepa-
rable over F'. Then each min(F,«;) is a separable polynomial over F. If K
is the splitting field of these polynomials, then K/F' is Galois by Theorem
4.9. Thus, again by that theorem, K is separable over F'. Since L C K, we
see that L is separable over I O

Fields for which all algebraic extensions are separable are particularly
well behaved. We now determine which fields have this property.

Definition 4.11 A field I' is perfect if every algebraic extension of F' is
separable.

Example 4.12 Any field of characteristic 0 is perfect. Therefore, any field
containing @ or contained in C is perfect. Any algebraically closed field is
perfect for the trivial reason that there are no proper algebraic extensions
of an algebraically closed held.

The following theorcin characterizes perfect fields of prime characteristic.
We have seen in previous examples that if a € F' — FP, then 2P — a is an
irreducible polynomial that is not separable. Therefore, for F' to be perfect,
we must have F'P = F'. We u1ow show this is suflicient to ensure that F' is
perfect.

Theorem 4.13 Let F' be a field of characteristic p. Then F is perfect if
and only if FP = F.

Proof. Suppose that F' is perfect. Let a € F', and consider the field K =
F(a), where « is a root of z? — a. The minimal polynomial of « divides
z? —a = (z — a)P. However, K is separable over F since F is perfect;
thus, this minimal polynomial has no repeated roots. This means o € F,
soa € FP.

Conversely, suppose that F'P = F. Let K be an algebraic extension of F,
and let o € K. If p(z) = min(F, a), then by Proposition 4.6 there is an m
with p(z) = g(zP") for some g(z) € F[z] with g irreducible and separable
over F. If g(z) = ap + a1z + -+ + 27, then there are b; € F' with ¥ = q;
for all i. Then p(z) = 5, bz?"t = (3., b;zP™ " #)P. This contradicts the
irreducibility of p unless m = 1. Thus, p = ¢ is separable over F, so « is
separable over F. Therefore, any algebraic extension of F' is separable, so
F is perfect. O
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Example 4.14 Any finite field is perfect; to prove this, let F be a finite
field. The map ¢ : FF — F given by ¢(a) = a? is a nonzero field homo-
morphism, so ¢ is injective. Since F' is finite, ¢ is also surjective. Thus,
FP =im(p) = F, so F' is perfect by Theorem 4.13. We give another proof
of this fact in Corollary 6.13.

Purely inseparable extensions

We now discuss the condition diametrically opposed to separability. This
situation is only relevant in prime characteristic, since any algebraic exten-
sion in characteristic 0 is separable. If F' is a field of characteristic p > 0,
and if a € F, then zP — a has only one distinct root in any splitting field,
since if v is a root of [, then 2P — a = (x — «)P. In Lhis case, aP =a € F.

Definition 4.15 Let K be an algebraic field extension of F. An element
a € K 1s purely inseparable over F if min(F,«) has only one distinct root.
The field IC 15 purely inseparable over F if every elernent in IC is purely
inseparable over F'.

The definition of purely inseparable requires that we know how many
roots there are of a minimal polynomial of an element. The following lemma
gives an easier way to determine when an element is purely inseparable over
a field.

Lemma 4.16 Let F be a field of characteristicp > 0. If « is algebraic over
F, then o is purely inseparable over F if and only if a?" € F for some n.
When this happens, min(F, ) = (z — a)?" for some n.

Proof. If a?" = a € F, then « is a root of the polynomial zP" — a.
This polynomial factors over F(«) as (z — )", and min(F, «) divides this
polynomial, so min(F, «) has only « as a root. Conversely, suppose that « is
purely inseparable over F', and let f(z) = min(F, «). There is a separable
irreducible polynomial g(z) over F with f(z) = g(zP" ) by Proposition
4.6. If g factors over a splitting field as g(z) = (z — by)--- (= — b,), then
f(z) = (zP" —b;)--- (zP" —b,). If 7 > 1, then separability of g says that
the b; are distinct. By assumption, the only root of f is c. Thus, b; = o
for each . Hence, r = 1, so f(z) = 2P~ — b;. Therefore, a?” € F, and

™m m

min(F,a) =zP —b = (z —a)? . 0

The basic properties of purely inseparable extensions are given in the
following lemma.

Lemma 4.17 Let K be an algebraic extension of F'.

1. If « € K 15 separable and purely inseparable over F', then o € F.
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{id}. Moreover, if [K : F] < 0o, and if p = char(F), then [K : F] =
p" for some n.

3. If K = F(X) with each o« € X purely inseparable over F, then K is
purely inseparable over F'.

4. If F C L C K are fields, then K/F 1is purely inseparable if and only
if K/L and L/F are purely inseparable.

Proof. Suppose that o € K is both separable and purely inseparable over
F. Then min(F, «) has only one distinct root, and it also has no repeated
roots. Therefore, p(z) =z — «, so a € F. )

For property 2, if K/F is purely inseparable, then each min(F, «) splits
over K, since the only root of min(F,a) is « itself. Consequently, K is
normal over F' by Proposition 3.28. If o € Gal(K/F'), then, for any « € K,
the automorphism o maps « to a root of min(F,«). Thus, o(a) = a, so
o = id. Therefore, Gal(K/F) = {id}. If [K : F] < oo, then K is finitcly
generated over F; say, K = F(ai,...,a;,). To prove that [K : F] is a power
of p = char(F), by Proposition 1.20 it suffices by indnction to prove this in
the case K = F(«). But then [K : F| = deg(min(F,«)), which is a power
of p by the previous lemma.

To prove property 3, suppose that K is generated over F' by a set X of
elements purely inseparable over F. Let a € K. Then a € F(ay,...,ay,)
for some «; € X. Since each «; is purely inseparable over F', there is an m
such that of " € F for each i. Because a is a polynomial in the «;, we see
that a?” € F. This forces min(F,a) to divide (z — a)P" ; hence, min(F, a)
has only one distinct root. Therefore, a is purely inseparable over F', and
so K/ F is purely inseparable.

Finally, for property 4, if K/F is purely inseparable, then for any a € K,
there is an m with a?” € F. Thus, a?" € L, so K/ L is purely inseparable.
It is clear that L/F is purely inseparable. Conversely, if L/F and K/L
are purely inseparable, let @ € K. Then a?” € L for some m, and so
(aP")P" = a?""" € F for some r. Therefore, K/F is purely inseparable.

0

Example 4.18 A field extension need not be cither separable or purely
inseparable. For instance, if F' = Fy(z) is the rational function field i1 one
variable over Fy, and if K = F(z2!/%), then K = F(y/z, Jz). Moreover,
v/ is purely inseparable over F', and {/z is separable over F'. The subfield
F(y/7) is purely inseparable over F', and the subfield F'({/z) is separable
over F.

In the previous example, we can show that F(/z) consists of all the
elements of K that are separable over F' and that F'(1/z) consists of all the
elements of K that are purely inseparable over F'. This is a special case of
the following lemma. We first give the relevant definitions.




Definition 4.19 Let K be a field extension of . 'hen the separable clo-
sure of Fan IC s the set {a € K :a 1s separable over I}, The purely insep-
arable closure of F' in K is the set {a € K : a 1s purely inseparable over F},

The separable and purely inseparable closures of F' in K are fields, as we
now show.

Proposition 4.20 Let K be a field extension of F'. If S and I are the
separable and purely inseparable closures of F' in K, respectively, then S
and I are field extensions of F' with S/F separable, I/ F purely inseparable,
and SNI =F.If K/F is algebraic, then K/S is purely inseparable.

Proof. Let a,b € S. Then F(a,b) is a scparable extension of F' by Lemma
4.10. Hence, a £ b, ab, and a/b are scparable over F, so they all lie in S.
Thus, S is a field. ¥For 7, if ¢,d € I, then there are n,m with ¢?” € F and
dP” € F. Setting N = nm, we have (¢ % dyP” (cd)pN, and (c/d)pN € F.
Thus, e+ d, cd, and ¢/d belong to I, so [ is a ficld. The equality SNI = F
holds, since SN 7 is both separable and purcly inseparable over F'. Finally,
suppose that W /[T is algebraic. If @ € K, then min(F,a) = g(z?") for
some separable, irreducible polynomial g(z) € F[z| by Proposition 4.6. If
a = oP", then g(a) = 0, so g(z) = min(F, a). Therefore, a is separable over
F,s0a? =a€S. Thus, K /S is purely inscparable. O

[f K/F is an algebraic extension, we can break up the extension K/F into
a separable extension S/ F followed by a purely inscparable extension K/S,
where S is the separable closure of F' in K. Use of the separable closure is
a nice tool to prove results dealing with separability. As an illustration, we
prove that separability is a transitive property.

Proposition 4.21 If F C L C K are fields such that L/F and K/L are
separable, then K/F is separable.

Proof. Let S be the separable closurc of F in K. Then L € S, as L/F
is separable. Also, since K/L is separable, K/S is separable. But K/S is
purely inseparable, so i = S. Thus, K is scparable over F. 0O

Example 4.22 Let K be a finite extension of F', and suppose that char(F')
does not divide [K : F|. We show that K/F is separable. If char(F) = 0,
then this is clear, so suppose that char(F) = p > 0. Let S be the separable
closurc of F' in K. Then K/S is purely inscparable, so [K : S] = p™ for
some n by Lemma 4.17. However, since p docs not divide [K : F|, this
forces [K : S] = 1. Thus, K = S, so K is separable over F.

A natural question that Proposition 4.20 raises is whether the extension
K/I is separable. The answer in general is no, although it is true if K/F
is normal, as we now show.
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Theorem 4.23 Let K be a normal extension of F, and let S and I be
the separable and purely inseparable closures of F in K, respectively. Then
S/F is Galois, [ = F(Gal(K/F)), and Gal(S/F) = Gal(K/I). Thus, K/I
18 Galois. Moreover, I = S1T.

Proof. Let a € S, and sct f(z) = min(F,a). Since K is normal over F,
the polynomial f splits over /. Since a is separable over F', the polynomial
f has no repeated roots, so all its roots are separable over S. Thus, f
splits over S. Hence, S is normal over F' by Proposition 3.28, and since
S is separable over F', we sce by Theorem 4.9 that S is Galois over £
The map 0 : Gal(K/F) — Gal(S/F') given by 6(0) = o|s is a well-defined
group homomorphism. The kernel of 4 is Gal( K/.S), and this group is trivial
by Lemma 4.17 since I is purely inseparable over S. By the isomorphism
extension theorem, il 7 € Gal(S/F), there is a 0 € Gal(K/F') with o|s = 7.
Thus, € is an isomorphism.

To show that I = F(Gal(K/F)), if a € I, then a?" € F for some n.
For o € Gal(K/F), we have a?" = c(aP") = o(a)?", so o(a) = a. Thus,
I C F(Gal(K/F)). Conversely, take b € F(Gal(K/F)). There is an n with
bP" € S because K/S is purely inseparable. Let 7 € Gal(S/F). Since § is
surjective, there is a ¢ € Gal(K/F) with 7 = 0(¢) = o|s. Then 7(b?") =
o(b?") = bP". This is true for each 7; hence, b?" € F(Gal(S/F)) = F. This
equality holds since S is Galois over F'. Thus, b is purely inseparable over
F. This proves I = F(Gal(K/F)), so Gal(K/F) = Gal(K/I). Thercfore,
K is Galois over I; hence, K/I is separable. Finally, K is separable over ST
since [ C S17, and K is purely inseparable over 57 since S C S/7. Therefore,
K =51 O

Let K be a finitc extension of F'. If S and [ are the separable and purcly
inseparable closures of F'in I{, respectively, we define the separable degree
[K : F|; of K/F to be [S : F] and the inseparable degree [K : F]; to be
[K : S]. With these definitions, we sec that [K : F|s[K : F|; = [K : F|. By
Theorem 4.23, if K/F is normal, then [K : I] =[S : F], and so [K : S] =
[I : F]. However, as the example below shows, in general [K @S] 5 [1: F.
The inseparable degree is delined to be [/ 2 S| and not [ : I7] because the
degree [K : S] is a better measure for how far the extension K/F is from
being separable. The example below shows that it is possible to have [ = F
even if K is not scparable over F. We will use the concepts of scparable
and inseparable degrees in Section 8.

Example 4.24 We give an example of a field extension /F in which
K is not separable over the purcly inseparable closure [ of £ in K. This
is also an example of a nonseparable field extension K/F' in which the
purely inseparable closure is F'. Let k be a field of characteristic 2, let F' be
the rational function field F' = k(x,y), let S = F(u), where u is a root, of
t24t4x, and let I = S(/uy). Then K /S is purely inseparable and S/ F is
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separable, so S is the separable closure of F'in K. We will show that I = F,
which will prove that K/I is not separable since K/S is not separable. To
do this, we show that if a € K with a? € F, then a € F. A basis for K/F

is 1, u, \/uy, and u,/uy. Say a® € F and write a = a+ Bu+y/ay + 6u,/uj
with a, 8,7v,6 € F'. Then

o® = + B (u+z) + 7* (uy) + 6% (u + z)uy.
The coefficient of u is zero since a? € F, so
B2 + (y + 6)%y + 6%zy = 0.

If § =0, then 82 +~2y = 0, so v = 0 since y is not a square in F. But then
B=0,s0a € F.If 6 # 0, then

B+ (r+8% v N2 (B
T sy (5+1) + (5) v

which means that z € F2(y). But this is impossible. Thus, § = 0, and so
we conclude that a € F. Thus, I = F',so K/I is not separable. Note that

&~ R
K ?é ST also. L)(,j;‘buyw\mL Arrvinsrv e g Z A S T
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Problems

1. Prove the sum, product, and chain rules for formal polynomial dif-

ferentiation m F[:c]
KIS SIE womds 9 K/Z

2. fFCLCK are‘ﬁelds such that K/F is separable, show that L/F
and K/L are separable.

3. If K is a field extension of F' and if & € K is not separable over
F, show that aP” is separable over F' for some m > 0, where p =
char(F').

4. Let F C(L C K be fields such that K/L is normal and L/F is purely
inseparable. Show that K/ F' is normal.

5. Let F' be a field of characteristic p > 0, and let a € F' — F?. Show
that P — a is irreducible over F'.

6. Let I be a field of characteristic p > 0, and let K be a purely insep-
arable extension of I with [K : F] = p™. Prove that a?” € F for all
a€ K.

7. Let K and L be extensions of F. Show that KL is separable over F'
if both K and L are separable over F'. Is the converse true?




8.

10.

11.

12.

13.

14.

15.

Let K and L be extensions of £'. Show that A L is purely inseparable
over F'if both K and L are purely inseparable over [". Is the converse
true?

Let K and L be extensions of F'. Show that KL is Galois over I' if
both K and L are Galois over F'. Is the converse true?

Let K and L be subfields of a common field, both of which contain a
field F'. Prove the following statements.

(a) If K = F(X) for some set X C K, then KL = L(X).

(b) [KL: F|<[K:F|-[L:F]. .

(c) If K and L are algebraic over F, then KL is algebraic over F.
(d) Prove that the previous statement remains true when “alge-

”

braic” is replaced by “normal,” “separable,
ble,” or “Galois.”

H

purely insepara-

Let K be the rational function field k(z) over a perfect field k of
characteristic p > 0. Let F' = k(u) for some u € K, and write
u = f(x)/g(z) with f and ¢ relatively prime. Show that K/F is
a separable extension if and only if u ¢ KP.

Let K be a finite extension of F' with char /' = p > 0 and K? C F.
Thus, K/ F is purely inseparable. A set {a,...,a,} C K issaid to be
a p-basis for K/F provided that there is a chain of proper extensions

¢ 7 - ) <
FCFla)C-C Flay) =K. ¢ [Fles):Fl=?

Show that if {a),...,a,} is a p-basis for K/F, then [K : F| = p™,
and conclude that the number of elements in a p-basis is uniquely
determined by K/ F. The number n is called the p-dimension of K/F'.
Also, show that any finite purely inseparable extension has a p-basis.

Give three examples of a field extension K/F' which is neither normal
nor separable. Note that two such examples are given in the section.

Let k£ be a field of characteristic p > 0, let K = k(z,y) be the rational
function field over k in two variables, and let ' = k(zP,yP). Show

that K/F is a purely inseparable extension of degree p®. Show that
K # F(a) for any a € K.

Prove the following product formulas for separahility and insepara-
bility degree: If FF C L C K are fields, then show that [K : F], =
(K : L|s[L: Fls and [K : F|; = [K : L|;[L : F);.
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We are now in the position to prove the fundamental theorem of Galois
theory, which describes the intermediate fields of a Galois extension K/F
in terms of the subgroups of the Galois group Gal(K/F'). This theorem
allows us to translate many questions about fields into questions about
finite groups. As an application of this theorem, we give a mostly algebraic
proof of the fundamental theorem of algebra, which says that the complex
field C is algebraically closed.

Theorem 5.1 (Fundamental Theorem of Galois Theory) Let K be
a finite Galois extension of F', and let G = Gal(K/F). Then there is a 1-1
inclusion reversing correspondence between intermediate fields of K/F and
subgroups of G, given by L +— Gal(K/L) and H — F(H). Furthermore, if
L« H, then [K : L] = |H| and [L : F) =[G : H]. Moreover, H is normal
in G if and only if L is Galois over F'. When this occurs, Gal(L/F) =2 G/ H.

Proof. We have seen in Lemma 2.9 that the maps L — Gal(K/L) and
H — F(H) give injective inclusion reversing correspondences between the
set of fixed fields L with F' C L C K and the set of subgroups of G of
the form Gal(K/L) for some L with ¥ C L C K. Let L be a subfield of
K containing F'. Since K is Galois over I, the extension K is normal and
separable over F'. Thus, K is also normal and separable over L, so K is
Galois over L. Hence, L = F(Gal(K/L)), so any intermediate field is a
fixed field. Also, if H is a subgroup of G, then H is a finite group, so H =
Gal(K/F(H)) by Proposition 2.14. Every subgroup of G is therefore such
a Galois group. The maps above then yield the desired correspondences.
Recall that | Gal(K/F)| = [K : F] if K is Galois over F' by Proposition
2.14. Thus, if L «» H, we have |H| = [K : L], since K is Galois over L and
H = Gal(K/L). Therefore,

(G: H|=|G|/|H|=[K: F|J[K: L] =[L: F].

Suppose that H is normal in G, and let L = F(H). Take a € L, and let b
be any root of min(F, a) in K. By the isomorphism extension theorem, there
isaoc € G with o(a) = b. If 7 € H, then 7(b) = o(c7'70(a)). However,
since H is normal in G, the element o~ '70 € H, so o7 'ro(a) = a. Thus,
7(b) = o(a) = b, so b € F(H) = L. Since min(F,a) splits over K, this
shows that min(F, a) actually splits over L. Therefore, L is normal over F
by Proposition 3.28. Since K/ F'is separable and L C K| the extension L/F
is also separable, and so L is Galois over F'. Conversely, suppose that L is
Galois over F'. Let 0 : G — Gal(L/F') be given by 6(c) = o|r. Normality of
L/F shows that 0|y, € Gal(L/F) by Proposition 3.28, so € is a well-defined
group homomorphism. The kernel of 0 is

ker(0) = {c € K : 0|, =id} = Gal(K/L) = H.
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Therefore, H is normal in G. The map 6 is surjective since, il 7 € Gal(L/F),
then there is a o € G with ¢|; = 7 by the isomorphism extension theorem.
Thus, Gal(L/F) 2 G/H. O

Given a Galois extension K/F, on the surface it would seem to be in-
tractable to determine all intermediate fields; the main problem is know-
ing whether we have found all of them. However, the Galois group G =
Gal(K/F) is a finite group, which means that there is a systematic way of
finding all subgroups of . By finding all subgroups, we can then deter-
mine the fixed fields of cach, thereby having all intermediate fields by the
fundamental theoren. The next two examples illustrate this procedure. Of
course, if (G is large, it may be too complicated to find all subgroups of G.

Example 5.2 The licld Q(V/2,w) is Galois over @, ag we have scen pre-
viously. The Galois group is a group of order 6. IFrom group theory, Lhere
are two nonisomorphic groups of order 6: the cyclic group Z/6Z and the
symmetric group S3. Which is the Galois group? The subfield Q(+/2) is
not Galois over @, since the minimal polynomial of v/2 does not split over
Q(+/2). Therefore, the corresponding subgroup is not normal in G. How-
ever, every subgroup of an Abelian group is normal, so our Galois group
is non-Abelian. Thus, G = Gal(Q(V/2,w)/Q) = S3. We can also explic-
itly demonstrate this isomorphism. By the isomorphism extension theorem,
there are (Q-automorphisms o, 7 of Q(v/2,w) with

a:e/i—muxs/?, w — w,
V2 - V2, w— w?

It is easy to check that o has order 3, 7 has order 2, and o7 # 70. The
subgroups of the Galois group are then

(id), (o), (), (o), (c*T) | G.

The corresponding fixed fields are
Q(V2,w), Q(w), Q(V2), Qw?V2), QwV2), @

One way to verify that these ficlds are in fact the correct ones is to show
that, for any of these fields, the field is indeed fixed by the appropriate
subgroup and its dimension over @ is correct. For instance, v/2 is fixed
by 7; hence, Q(v/2) C F(7). Since the index [G : (7)] = 3, we must have
[F(r) : F] = 3. But [Q(V2) : Q] = 3, so Q(¥/2) = F(r). This use of

dimension is extremely useful in determining the fixed field of a subgroup.
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Example 5.3 Let K = Q(v/2,v3). Then K is the splitting field of
{z? — 2,2% — 3} over Q or, alternatively, the splitting field of (z?—2)(2?-3)
over Q. The dimension of K/Q is 4. The four automorphisms of K/(Q) are
given by

K

id:vV2— V2, V33,

c:vV2— —V2, V33,
T:V2 = V2, V3 —V3,
O’T.‘\/§_’—\/§, \/§—>—\/§

This Galois group is Abelian and is isomorphic to Z/2Z x Z/2Z. The sub-
groups of G = Gal(K/Q) are

(id) , (o) , (1) ,{oT),G.

The corresponding intermediate fields are

K, Q(V3), Q(V2), Q(V6), Q.

K \ G\
W2 QWE) QW) <a>\ (o) ()
\ Q / (id)

Example 5.4 Let F' = C(¢) be the rational function field in one variable
over C, and let f(z) = 2™ —t € F[z]|. The polynomial f is irreducible over
I by the Eisenstein criterion, since F' is the quotient field of the unique




tactonzation domain C(¢] and ¢ is an irreducible element of Clt]. Let A be
the splitting field of f over F'. Then K = F(«), where a is any root of f(z).
To see this, if w = exp(2mi/n), then w™ = 1, so w'a is a root of f(z) for
each ¢. There are exactly n distinct powers of w, so the n distinct elements
a,wa, ... ,w" 'a are precisely the roots of f. All of these lie in F'(«) and
generate F'(a), so K = F(a). The extension K/F is then Galois since f
has no repeated roots. We see that [K : F| = deg(f) = n.

The isomorphism extension theorem tells us that there is an automor-
phism o of K defined by o(a) = wa. This formula yields that o%(a) = w'a
for each 7, so o*(a) = « if and only if n divides 7. Thus, ¢ has order n in
Gal(K/F'). This forces Gal(K/F) to be the cyclic group generated by o.
Each subgroup of (o) is cyclic and can be generated by an element ¢™ with
m a divisor of n. Given a divisor m of n, if n = mk, then the element a*
is fixed by ¢™, since

o™(0*) = (wma)!

nak: k

= W Q.

Moreover, F(a*) is the fixed field of (¢™) for, if m’ is a divisor of n
and am’(ak) = o, then w™*a* = o, which forces n to divide m'k.
But, n = mk, so m divides m’, and thus ¢™ € (™). This proves that
Gal(K/F(a*)) = (o™), so the fundamental theorem tells us that F(a¥)
is the fixed field of (¢™). We have thus determined the subgroups of
Gal(K/F) and the intermediate fields of K/F to be

{(c™) : m divides n},
{F(a*): k divides n},
with the correspondence F(a*) « (o™) if km = n.

Let K/F be Galois, and let L be any extension field of F' with K and L
inside some common field. Then K'IL/L is Galois, since if K is the splitting
field of a set of separable polynomials over F', then K L is the splitting field
of the same set of polynomials over L, and if f(z) € F[z] is separable over

F, then f(z) is separable over L. The following theorem determines the
Galois group of K'I./L and the degree of this extension.

— =
N

KNL-—




Theorem 5.5 (Natural Irrationalities) Let K be a finite Galois exten-
sion of I', and let L be an arbitrary estension of F. Then KL/ L is Galois
and Gal(KL/L) = Gal(K/K N L). Moreover, [KL: L] = [K : KN L].

Proof. Define 0 : Gal(KL/L) — Gal(K/F') by 8(c) = o|k. This map is
well defined since K is normal over F'| and 0 is a group homomorphism.
The kernel of 8 is{oc € Gal(KL/L) : o|x = id}. However, if o € ker(6),
then o|;, =id and o|x = id. Thus, the fixed field of o contains both K and
L, so it contains K L. That means o = id, so 6 is injective. Since the image
of ¢ is a subgroup of Gal(K/F), this image is equal to Gal(K/FE), where F
is the fixed field of this image. We show that £ = KNL.Ifa € KNL, then
a is fixed by o|x for each o € Gal(K L/L). Therefore,a € E,so KNL C E.
For the reverse inclusion, let a € E. Then a € K and o|g(a) = a for all
o € Gal(KL/L). Thus, o(a) = a for all such o, so a € L. This shows
EFECKnNL,and so E = K N L. We have thus proved that

Gal(KL/L) = im(6) = Gal(K/K NL).
The degree formula follows immediately from this isomorphism. )

A field extension K/F is called simple if K = F(«) for some o € K. The
next theorem and its corollaries give some conditions for when an extension
is simple.

Theorem 5.6 (Primitive Element Theorem) A finite extension K /F
18 semple if and only if there are only finitely many fields L with F C L C K.

Proof. We prove this with the assumption that |F| = co. The case for
finite fields requires a different proof, which we will handle in Section 6.
Suppose that there are only finitely many intermediate fields of K/ F'. Since
(K : F| < oo, we can write K = F(ay,...,a,) for some a; € K. We
use induction on n; the case n = 1 is trivial. If L = F(ay,...,a,-1),
then since any field between F' and L is an intermediate field of K/F,
by induction L = F(fB) for some 8. Then K = F(ay,fB). For a € F| set
M, = F(a, + af), an intermediate feld of K/F. Since there are only
finitely many intermediate fields of {/F but infinitely many elements of
F, there are a,b € F with a # b and M, = M. Therelore,

(an + b08) — (v, + af)

b= b—a

€ M,.

Hence, o, = (@, +08) — 00 € M,, so K = F(a,,3) = M. Thus, K is a
simple extension of F.

Conversely, suppose that K = F(«) for some o € F. Let M be a field
with ¥ C M C K. Then K = M(a). Let p(z) = min(F,a) and ¢(z) =
min(M,a) € M[z] Then g divides p in M[z]. Suppose that ¢(z) = ag +
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a1z + -+ +z7, and set My = F(aq,...,ar~1) € M. Then ¢ € Mylz], so
min(My, @) divides q. Thus,

[K : M] = deg(q) > deg(min(My, a)) = [K : M|

This implies that [M : My| = 1, so M = My. Therefore, M is determined
by g. However, there are only finitely many monic divisors of p in K[z], so
there are only finitely many such M. O

Corollary 5.7 If K/F 1s finite and separable, then K = F(«a) for some
a€ K.

Proof. If K is finite and separable over F', then K = F(a,...,q,) for
some a;. Let N be the splitting field over F' of {min(F,a;):1 <i < n}.
Then N/F is Galois by Theorem 4.9 since each min(F,a;) is separable
over F'. Moreover, K C N. By the fundamental theorem, the intermediate
fields of N/F are in 1-1 correspondence with the subgroups of the finite
group Gal(N/F). Any finite group has only finitely many subgroups, so
N/F has only finitely many intermediate fields. In particular, K/F has
only finitely many intermediate fields. Therefore, K = F'(«) for some a by
the primitive element theorem. O

Corollary 5.8 If K/F 1s finite and F' has characteristic 0, then K = F(«)
for some a.

Proof. This corollary follows immediately from the preceding corollary
since any finite extension of a field of characteristic 0 is separable. )

The normal closure of a field extension

Let K be an algebraic extension of F. The normal closure of K/F is the
splitting field over F' of the set {min(F,a) : a € K} of minimal polynomials
of clements of I{. As we will show below, the normal closure NV of the
extension A /I is a minnnal normal exteusion of I which contains K. This
is reasonable since, for each a € K, the polynomial min(F), a) splits over any
normal extension of I containing K. Therefore, the set {min(F,a) : a € K}
is a minimal set of polynomials which must split in any extension of K that
is normal over F'. We formalize this in the next result, which gives the basic
properties of normal closure.

Proposition 5.9 Let K be an algebraic extension of F', and let N be the
normal closure of K/F.

1. The field N is a normal extension of F containing K. Moreover, if
M 18 a normal extension of F' unth I{ C M C N, then M = N.
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2. If K = F(ay,...,a,), then N 1is the splitting field of the polynomials

min(F,ay),...,min(F,a,) over F.
3. If K/F 1s a finite extension, then so is N/F.
4. If K/F is separable, then N/F is Galois.

Proof. Since N is a splitting field over F' of a set of polynomials, N is
normal over F'. It is clear that IV contains K. Suppose that M is a normal
extension of F' with K C M C N. If a € K, then a € M, so by normality
min(F, a) splits over M. However, if X is the set of roots of the polynomials
{min(F,a) : a € K}, we have N = F(X). But since these polynomials split
over M, all of the roots of these polynomials lie in M. Thus , X C M, and
so N = F(X) C M. Therefore, M = N.

For part 2, let L = F(X), where X C N is the set of roots of the
polynomials {min(F,a;) : 1 <z <n}. Then L is a splitting field over F' of
this set; hence, K C L and L/F is normal. By part 1, L = N.

For the third part, suppose that [K : F] < co. Then K is a finitely gen-
erated extension of F'; say that K = F'(ai,...,a,). Let p;(z) = min(F), a;).
By part 2, N is a splitting field of {min(F,a;): 1 <1i¢ < n}, a finite set of
polynomials. Therefore, [NV : F| < co.

Finally, if K/F is separable, then each polynomial min(F,a) is separable
over F'. Therefore, N is the splitting field of the set {min(F,a) : a € K} of
separable polynomials over F', so N is Galois over F'. )

The normal closure of an algebraic extension K/ F' is uniquely determined
by the conditions in the first part of the previous proposition, as we now
show.

Corollary 5.10 Let K be an algebraic extension of F', and let N be the
normal closure of K/F. If N’ is any normal extension of F' containing IK,
then there 1s an F-homomorphism from N to N'. Consequently, if N’ does
not contain any proper subfield normal over F that contains K, then N
and N’ are IF'-isomorphic.

Proof. Suppose that N’ is normal over F' and contains K. Then min(F,a)
splits over N’ for each a € K. By the isomorphism extension theorem, the
identity map on F' extends to a homomorphism ¢ : N — N’. Then o(N) is
a splitting field of {min(F,a) : a € K} in N’, so o(N) is normal over F' and
contains K. Therefore, if N’ does not contain any proper subfield normal
over F' that contains K, then ¢(NN) = N’, so N and N’ are F-isomorphic.

U

Example 5.11 Let FF = Q and K = Q(v/2). If w® = 1 and w # 1, then
Q(v/2,w) is the splitting field of 2* — 2 over @, so it is normal over Q.
This field is clearly the smallest extension of K that is normal over Q, so
Q(V/2,w) is the normal closure of Q(w)/Q.




Example 5.12 If A is an extension of I, and if ¢ €« KA has minimal
polynomial p(z) over F| then the normal closure of F(a)/I" is the field
F(ay,asz,...,a,), where the a; are the roots of p(z).

Suppose that K/F is a finite separable extension with normal closure
N. Let ¢ = Gal(IN/F) and H = Gal(N/K). So K = F(H). Suppose that
K is not Galois over F'. Then H is not normal in G. The minimality of N
as a normal extension of I’ containing K translates via the fundamental
theorem into the following group theoretic relation between G and H: The
largest normal subgroup of GG contained in H is (id) for, if H' C H is
a normal subgroup of G, then L = F(H’) is an extension of K that is
normal over F'. But, as L C N, minimality of N implies that L = N, so
H'’ = (id). Recall from group theory that if H is a subgroup of a group G,
then (,cq 9H g~ ! is the largest normal subgroup of a group G contained
in a subgroup H. Therefore, in the context above, [ gec 9H gt = (id).

The fundamental theorem of algebra

The fundamental theorem of algebra states that every polynomial in C[z]
has a root in C. This was first proved by Gauss and is commonly proved
using the theory of analytic functions in a course in complex analysis. We
give here a proof using Galois theory, which combines the fundamental
theorem and the Sylow theorems of group theory. It is a nice application
of the interaction of group and field theory.

To prove the fundamental theorem of algebra, we do need to know one
result from analysis, namely the intermediate value theorem. Beyond this,
we can give a proof using group theory and Galois theory. We point out the
group theoretic fact we need: If (G is a finite group whose order is a power
of a prime p, then any maximal subgroup of GG has index p in G. This fact
can be found in Proposition 2.4 of Appendix C.

Lemma 5.13 Let f(z) € R[z].

1. If f(z) = 2* — a for some a > 0, then f has a root in R. Therefore,
every nonnegative real number has a real square Toot.

2. If deg(f) is odd, then f has a root in R. Consequently, the only odd
degree extension of R is R itself.

Proof. Suppose that f(z) = z?—a with a > 0. Then f(0) < 0 and f(u) > 0
for u sufficiently large. Therefore, there is a ¢ € [0,u] with f(c) = 0 by the
intermediate value theorem. In other words, v/a = c € R.

For part 2, suppose that the leading coefficient of f is positive. Then

lim f(z)=co and lim f(z) = —oco.

By another use of the intermediate value theorem, there is a ¢ € R with
f(c) =0.If L/R is an odd degree extension, take a € L—R. Then R(a)/R is




also of odd degree, so deg(min(R, a)) is odd. However, this polynomial has a
root in R by what we have just shown. Since this polynomial is irreducible,
this forces min(R, a) to be linear, so a € R. Therefore, L = R.

Lemma 5.14 Every complex number has a complex square root. Therefore,
there is no field extension N of C with [N : C] = 2.

Proof. To prove this, we use the polar coordinate representation of complex
numbers. Let ¢ € C, and set a = re*® with » > 0. Then /7 € R by Lemma
5.13, s0 b = /Te®/2 € C. We have b? = r(e¥/2)? = re¢® = 4. If N is an
extension of C with [V : C] = 2, then there is an ¢ € C with N = C(\/a).
But, the first part of the lemma shows that C(y/a) = C, so there are no
quadratic extensions of C. O

Theorem 5.15 (Fundamental Theorem of Algebra) The field C is
algebraically closed.

Proof. Let L be a finite extension of C. Since char(R) = 0, the field L is
separable over R, and L is also a finite extension of R. Let IV be the normal
closure of L/R. We will show that N = C, which will prove the theorem.
Let G = Gal(N/IR). Then

G| =[N:R]=[N:C]-[C:R]
= 2[N : C]

is even. Let H be a 2-Sylow subgroup of (G, and let E be the fixed field
of H. Then |G : H| = [E : R] is odd. Thus, by Lemma 5.13, we see that
E :cfp, so G = H is a 2-group. Thercfore, Gal(/N/C) is also a 2-group.
Let P be a maximal subgroup of Gal(/N/C). By the theory of p-groups,
[Gal(N/C) : P| = 2. If T is the fixed ficld of M7 then [T : C] = 2. This

is impossible by Lemma 5.14. This contradiction shows that |G| = 1, so
N =C. = 0

Problems

1. A transitive subgroup of S,, is a subgroup (& such that for each ¢, 7 €
{1,...,n}, there is a ¢ € G with o(i) = j. If K is the splitting
field over F' of a scparable irreducible polynomial f(z) € F[z] of
degree n, show that |Gal(K/F)| is divisible by n and that Gal(K/F)
is isomorphic to a transitive subgroup of S,. Conclude that [I{ : F|
divides nl.

2. Write down all the transitive subgroups of S3 and Sj.

3. Determine all the transitive subgroups G of Ss for which |G| is a
multiple of 5. For each transitive subgroup, find a field F' and an irre-
ducible polynomial of degree 5 over F such that if K is the splitting
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10.

11.

1. Galois Theory

field of f over F, then Gal(K/F) is isomorphic to the given subgroup.
(Hint: This will requirc use of semidirect products.)

In the following probleius, let I be the splitting field of f(x) over F.
Determine Gal(K/F') and find all the intermediate subfields of K/F.

(a) F=Qand f(z)=2*-T.
(b) F=Fsand f(z)=2*-T7.
(c) F=Qand f(z) =x° —2.
(d) F=TF, and f(z) =25+ 1.
(e) F=Qand f(z) =28 L.

. Let K be a Galois extension of F' with [K : F| = n. If p is a prime

divisor of n, show that there is a subfield L of K with [K : L] = p.

. Let N be a Galois cxtension of F' with Gal(N/F) = A,4. Show that

there s no nttermediate ﬁ(:l(li:)f' N/F wilh [N j/‘ =2,
L

. Give examples of field extensions K/F with

(a) K/F normal but not Galois,
(b) K/F separable but not Galois.

Let K/F be Galois with G = Gal(/{/F'), and let L be an intermediate
field. Let N C K be the normal closure of L/F. If H = Gal(K/L),
show that Gal(/{/N) =(,cqoHo™".

Let K be a Galois extension of F' and let a € K. Let n = [K : F,
r = [F(a) : F], and H = Gal(K/F(a)). Let 71,...,7. be left coset
representatives of H in G. Show that min(F,a) = [[I_,(z — 7(a)).
Conclude that

II (x — o(a)) = win(l7, a)™".

oceGal(K/F)

Let K be a Galois extension of F', and let a € K. Let L, : K — K
be the F-linear transformation defined by L,(b) = ab. Show that the
characteristic polynomial of Lg is equal to [ [, g1k, m (z—0(a)) and
the minimal polynomial of L, is min(F,a).

Let K be a finite Galois extension of F' with Galois group . Let L be
an intermediate extension, and let H be the corresponding subgroup
of G. If N(H) is the normalizer of H in G, let Ly be the fixed field
of N(H). Show that L/Ly is Galois and that if M is any subfield of
L containing F' for which L/M is Galois, then M contains L.




12.

13.

14.

13.

16.

17.

18.

19.

20.
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Let F' be a field of characteristic not 2, and let K be a Galols extension
with [K : F] = 4. Prove that if Gal(K/F) = Z/27 x Z/27, then
K = F(y/a, Vb) for some a,b € F.

If I is the splitting field of z* — 2 over @, find Gal(K/Q) and find
all intermediate subfields. To what group is Gal(K/Q) abstractly iso-
morphic?

If K is the splitting field of z° — 11 over @, find Gal(K/Q) and find
all intermediate subfields.

Let K be a finite normal extension of F' such that there are no proper
intermediate extensions of K/F. Show that [K : F| is prime. Give a
counterexample if K is not normal over F.

Let K be a Galois extension of Q. View K as a subfield of C. If &
is complex conjugation, show that o(K) = K, so g|x € Gal(K/Q).
Show that F(o|kx) = K NR, and conclude that [K : KNR] < 2. Give
examples to show that both [I[{: KNR] = Land [K: KNR] =2 can
ocaur.

Prove the normal basis theorem: If K is a finite Galois extension of
F, then there is an a € K such that {o(a) : 0 € Gal(K/F)} is a basis
for K as an F-vector space.

Let Qg be the quaternton group {#1,4i,+j, £k}, where multiplica-
tion is determined by the relations i2 = j°2 = —1 and ¢j = k = —ji.
Show that (Jg is not isomorphic to a subgroup of S4. Conclude that
Qs is not the Galois group of the splitting field of a degree 4 polyno-
mial over a field.

(a) Let K C N both be Galois extensions of a field F'. Show that
the map ¢ : Gal(N/ﬁ) — Gal(K/F) given by p(o) = ok
is a surjective group homomorphism. Therefore, Gal(K/F) =
{o|k : 0 € Gal(N/F)}. Show that ker(yp) = Gal(N/K).

(b) Let I and L be Galois extensions of F'. Show that the restric-
tion of function map defined in (a) induces an injective group
homomorphism Gal(KL/F) — Gal(K/F) @ Gal(L/F). Show
that this map is surjective if and only if K N L = F.

Let k be a field of characteristic p > 0, let K = k(z,y) be the rational
function field in two variables over k, and let F' = k(zP, yP).

(a) Prove that [K : F|] = p*.

(b) Prove that KP C F.

(c) Prove that there is no a € K with K = F(a).
(d) Exhibit an infinitc number of intermediate fields of K/F'.




21,

22,

23.

24.

25.

This problem gives an alteruative proof of the primitive element the-
orem for infinite fields.

(a) Let V be a finite dimensional F-vector space, where F is an
infinite field. Show that V is not the union of finitely many
proper subspaces.

(b) Let K/F be a finite extension of finite fields. Show that K is not
the union of the proper intermediate fields of K/F. Conclude
that if {K;} is the set of proper intermediate fields and a €
K —|JK;, then K = F(a).

Let K = Q(X), where X = {,/p: p is prime}. Show that X is Galois
over Q. If o € Gal(K/Q), let Y, = {\/p: 0(\/D) = —/P}. Prove the

following statements.

(a) Y, =Y;, theno = 7.
(b) If Y C X, then there is a 0 € Gal(K/Q) with Y, =Y.

(c) If P(X) is the power set of X, show that |Gal(K/Q)| = |P(X)|
and that |X| = [K : Q], and conclude that |Gal(K/Q)| > [K :

Q.

(Hint: A Zorn’s lemma argument may help in (b). You may want to
verify that if Y C X and \/p ¢ Y, then [Q(Y)(\/p) : Q(Y)] = 2. The
inequality |P(X)| > |X] is proved in Example 2.2 of Appendix B.)

Suppose that K is an extension of F' with [K : F| = 2. If char(F') # 2,
show that K/F' is Galois.

Let FF C L C K be fields such that L/F is purely inseparable. Let
a € K be separable over F. Prove that min(F,a) = min(L,a). Use
this to prove the following statement: Suppose that ¥ C L C K
are fields such that L/F' is purely inseparable, K/L is separable, and
[K : F] < o0.Let S be the separable closure of F'in K. Then K = SL
and [K: L] =[S : F].

This problem outlines a proof that the separable degree [K : F|; of
a finite extension K/F' is equal to the number of F-homomorphisms
from K to an algebraic closure of F.

(a) Suppose that K = F(a), and let f(z) = min(F,a). If NV is an
algebraic closure of F and b € IV is a root of f, show that there
is an F-homomorphism K — N that sends a to b.

(b) If K = F(a) as above, show that all F~-homomorphisms from K

to N are obtained in the manner of the previous step. Conclude
that [K : Fls is equal to the number of such F-homomorphisms.




(¢) Let AP boalinite extension, and let S be thic separable closure
of F'in K. Show that any F-homomorphism from S to NV extends
uniquely to K. Use the previous step to conclude that [S: F| =
[K : F], is the number of F~homomorphisms from K to N.

26. Let K/F be a normal extension and let L/F' be an algebraic exten-
sion. If either K/ F or L/F is separable, show that [KL : L] = [K :
K N L. Give an example to show that this can be false without the
separability hypothesis.

27. Let F be a field. Show that the rational function field F(z) is not
algebraically closed.

28. Let F be a finite extension of Q. Show that F' is not algebraically
closed.
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Some Galols Extensions

Now that we have developed the machinery of Galois theory, we apply it
in this chapter to study special classes of field extensions. Sections 9 and
11 are good examples of how we can use group theoretic information to
obtain results in field theory. Section 10 has a somewhat different flavor
than the other sections. In it, we look into the classical proof of the Hilbert
Theorem 90, a result originally used to help describe cyclic extensions,
and from that proof we are led to the study of cohomology, a key tool in
algebraic topology, algebraic geometry, and the theory of division rings.

6 Finite Fields

[ this section, we study finmite ficlds and, more generally, finitc extensions
of finite ficlds.

Let F' be a finite field, and say char(F) = p. We can view F as an
extension field of F,. Since F' is finite, F' is a finite dimensional F,-vector
space. If [F' : [F,] = n, then F' and F, are isomorphic as Fp-vector spaces,
so |F| = p™. We will first obtain some field theoretic information about
F' by investigating the group structure of the multiplicative group F™*. For
the next lemma, recall that if G is an Abelian group, then the exponent
exp(G) of G is the least common multiple of elements in G. By a group
theory exercise, there is an element of G whose order is exp(G). From this
fact, it follows that G is cyclic if and only if |G| = exp(G). These facts are
proven in Proposition 1.4 of Appendix C.




Lemma 6.1 [J I\ s « field and & s a finate subgroup of K*, then O 1s
cyclic.

Proof. Let n = |G| and m = exp(G). Then m divides n by Lagrange’s
theorem. If g € GG, then ¢™ = 1, so each element of G is a root of the
polynomial z™ — 1. This polynomial has at most m roots in the ficld K.
However, 2™ —1 has at least the elements of G as roots, son < m. Therefore,
exp(G) = |G|, so G is cyclic. O

Corollary 6.2 If F' s a finite field, then F* is cyclic.

Example 6.3 Let F' = [F,. A generator for F'™* is often called a primitive
root modulo p. For example, 2 is a primitive root modulo 5. Moreover, 2
is not a primitive root modulo 7, while 3 is a primitive root modulo 7. In
general, it is not easy to find a primitive root modulo p, and there is no
simple way to find a primitive root in terms of p.

In Section 5, the primitive element theorem was stated for arbitrary
base fields but was proved only for infinite fields. If K/F is an extension of
finite fields, then there are finitely many intermediate fields. Therefore, the
hypotheses of the primitive element theorem hold for K/F'. The following
corollary finishes the proof of the primitive element theorem.

Corollary 6.4 If K/F is an extension of finite fields, then K is a simple
extenston of F'. .

Proof. By the previous corollary, the group K™* is cyclic. Let « be a gen-
erator of the cyclic group K*. Every nonzero element of K is a power of «,
so K = F'(«). Therefore, K is a simple extension of F. O

The following theorem exploits group theoretic properties of finite groups
to give the main structure theorem of finite fields.

Theorem 6.5 Let F' be a finite field with char(F) = p, and set |F| = p".
Then F is the splitting field of the separable polynomial =P — x over IFy.
Thus, F/F, is Galois. Furthermore, if o is defined on F' by o(a) = aP, then
o generates the Galois group Gal(F/F,), so this Galots group is cyclic.

Proof. Let |F| =p™, so | = p™ — 1. By Lagrange’s theorem, if a € F™*,
then a?" ~! = 1. Multiplying by a gives a?" = a. This equation also holds
for a = 0. Therefore, the elements of F arc roots of the polynomial zP" —z.
However, this polynomial has at most p™ roots, so the elements of F' are
precisely the roots of zP" — z. This proves that F' is the splitting field over
F, of " — x, and so F is normal over [F,. Morecover, the derivative test
shows that =" — x has 1o repeated rools, so o — & is separable over If,,.
Thus, F' is Galois over [y,




Define o« ' — F by o(a) = a”. An casy computation shows that o is
an IF,-homomorphism, and ¢ is surjective since F is finite. Hence, o is an
Fp-automorphism of F'. The fixed field of 0 is{a € F : a? = a} D F,,. Each
element in (o) is a root of zP —z, so there are at most p elements in F (o).
This proves that IF, = (o), so Gal(F/IF,) is the cyclic group generated by
. 0

The automorphism o defined above is called the Frobenius automorphism
of F.

Corollary 6.6 Any two finite fields of the same size are isomorphic.

Proof. The proo{ of Thcorem 6.5 shows that any two ficlds of order p™
are splitting fields over IF,, of zP" — z, so the corollary follows from the
isomorphic extension theorem. O

We can use Theorem 6.5 to describe any finite extcnsion of finite fields,
not only extensions of F,.

Corollary 6.7 If K/F s an extension of finite fields, then K/F is Galois
with a cyclic Galois group. Moreover, if char(F) = p and |F| = p™, then
Gal(K/F) is generated by the automorphism 7 defined by 7(a) = aP" .

Proof. Say [K : Fp] = m. Then Gal(K/F,) is a cyclic group of order m
by Theorem 6.5, so the order of the Frobenius automorphism ¢ of K is
m. The group Gal(K/F) is a subgroup of Gal(K/F,), so it is also cyclic.
If s = |Gal(K/F)| and m = ns, then a generator of Gal(/{/F) is ¢™. By
induction, we see that the function o™ is given by o™ (a) = aP" . Also, since
s = [K : F|, we have that n = [F : F,], so |F| = p™. O

We have described finite fields as extensions of FF,, and have shown that
any finite extension of I, has p™ elements for some n. However, we have
not yet determined for which n there is a field with p™ elements. Using the
fundamental thcorem along with the description ot finite ficlds as splitting
fields in Theorem 6.5, we now show that for each n therc is a unique up to
isomorphism field with p™ elements.

Theorem 6.8 Let N be an algebraic closure of F,. For any positive integer
n, there is a unique subfield of N of order p™. If K and L are subfields of
N of orders p™ and p™, respectively, then K C L if and only if m divides
n. When this occurs, L is Galois over K with Galois group generated by T,
where 7(a) = aP" .

Proof. Lct n be a positive integer. The set of roots in N of the polynomial
zP" — g has p” elements and is a field. Thus, there is a subfield of N of
order p™. Since any two fields of order p™ in NV are splitting fields of 27" —z
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over IF,, by Theorem 6.5, any subfield of N of order p™ consists exactly of
the roots of zP" — z. Therefore, there is a unique subfield of N of order .

Let K and L be subfields of N, of orders p™ and p™, respectively. First,
suppose that K C L. Then

n=[L:F,)=[L: K| [K:F,]
=m|[L : K|,

so m divides n. Couvarscly, supposc that m divides n. Bach clement a of
K satisfies a?" = a. Since m divides n, cach a also satisfies " = a, so
a € L. This proves that /£ € L. When this happens L is Galois over K by
Corollary 6.7. That corollary also shows that Gal(L/K) is generated by 7,
where 7 is defined by 7(a) = al ‘. O

If F is a finite field and f(z) € F[z], then Theorems 6.5 and 6.8 can be
used to determine the splitting field over F' of the polynomial f.

Corollary 6.9 Let F be a finite field, and let f(z) be a monic irreducible
polynomaal over F' of degree n.

1. Ifa is a root of f in some extension field of F', then F(a) s a splitting
field for f over F'. Consequently, if K is a splitting ficld for f over
F, then [I: I?] = n.

2. If |F| = q, then the set of roots of f is {a"r > 1}.

Proof. Let K be a splitting field of f over F. If a € K is a root of f(z),
then F'(a) is an n-dimensional extension of F' inside K. By Theorem 6.5,
F(a) is a Galois extension of F'; hence, f(z) = min(F,a) splits over F'(a).
Therefore, F'(a) is a splitting field of f over F', so K = F(a). This proves
the first statement. For the second, we note that Gal(K/F) = (o), where
o(c) = ¢? for any ¢ € K, by Theowm 6.8. Each root of f is then of the
form ¢”(a) = a? by the 15()11101;)1115111 extension theorem, which sliows that
the sct of roots of [ is {a?" :r > L}. 0

Example 6.10 Let F = Fy and K = F(«), where « is a root of f(xz) =
z3 +x2 4 1. This polynomial has no roots in F, as a quick calculation shows,
so it is irreducible over F' and [K : F| = 3. The field K is the splitting field
of f over F, and the roots of f are o, o?, and a*, by Corollary 6.9. Since
f(a) =0, we see that o® = a® +1,s0 a* = a® + @ = o + a + 1. Therefore,
in terms of the basis {1,a,a?} for K/F, the roots of f are o, o?, and
1 + a + a?. This shows explicitly that F(«) is the splitting field of f over
F.

Example 6.11 Let ' = F, and f(z) = 2* + 2 + 1. By the derivative test,
we see that f has no repeated roots. The polynomial f is irreducible over
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[, since f has no roots in F' and is not divisible by the unique irreducible
quadratic z° + z + 1 in F[z]. If o is a root of f, then a* = « + 1; hence,
the roots of f are o, o + 1, 2, and o? + 1.

Example 6.12 Let f(z) = z? + 1. If p is an odd prime, then we show
that f is reducible over F' = F,, if and only if p = 1(mod 4). To prove this,
if a € Fis a root of 22 + 1, then a? = —1, so a has order 4 in F*. By
Lagrange’s theorem, 4 divides |[F*| = p—1, so p = 1(mod 4). Conversely, if
p = 1(inod 4), then 4 divides p — 1, so there is an element a € I'* of order
4, since F* is a cyclic group of order p — 1. Thus, a* = 1 and a? # 1. This
forces a®> = —1, so a is a root of f.

If F'is a finite field, then we have seen that every finite extension of F
is Galois over F'. Hence, every extension of F' is separable over F'. Every
algebraic extension of F' is then separable over F', so F'is perfect. To note
this more prominently, we record this as a corollary. We have already seen
this fact in Example 4.14. .

Corollary 6.13 FEvery finite field is perfect.

Given an integer n, Theorem 6.8 shows-that there is a finite field with p™
elerients. For a specific n, how do we go about finding this field? To con-
struct finite liclds, we cau use irreducible polynomials over IFy,. Note Lhat if
f(z) is an irreducible polynomial of degree n in Fp[z], then F,[z]/(f(z)) is
a field extension of degree n over IF,,; hence, it has p™ elements. Conversely,
if I has p™ elements, and if /' = F,(«), then min(F,, @) is an irreducible
polynomial of degree n. Therefore, finding finite fields is equivalent to find-
ing irreducible polynomials in F,[z]. For instance, Zy[z]/(z% + z + 1) is a
field of 4 elements, and Zs[z]/(z* — 7) is a field of 5% = 625 elements. The
following proposition gives one way of searching for irreducible polynomials
over F,.

Proposition 6.14 Let n be a positive integer. Then zP — z factors over
F, into the product of all monic irreducible polynomials over ¥y, of degree
a divisor of n.

Proof. Let F be a field of order p”. Then F is the splitting field of zP" — z
over I, by Theorem 6.5. Recall that I is exactly the set of roots of aP — 7.
Let a € F', and set m = [F,(a) : Fp|, a divisor of [F' : F;]. The polynomial
min(F,, a) divides zP" — z, since a is a root of zP" — z. Conversely, if f(z)
is a monic irreducible polynomial over I, of degree m, where m divides n,
let K be the splitting field of f over F, inside some algebraic closure of
F. 1l ais aroot of fin K, then K = IF,(a) by Corollary 6.9. Therefore,
[K : F,] =m, so K C F' by Theorem 6.8. Thus, a € F, so a is a root of
zP" — . Since f is irreducible over F,, we have f = min(F,, a), so f divides
zP" — z. Since zP" — z has 1o repeated roots, zP° — z factors into distinct




irreducible factors over F, We have shown that the irreducible actors of

zP  — z are exactly the irreducible polynomials of degree a divisor of n;
hence, the proposition is proven. 0O

Example 6.15 The monic 1rredu01b1e polynomials of degree 5 over F, can
be determined by factoring 22" — z, which we see factors as

1:25—$:a:($+1)(a:5+a:3+1) (z° + 2%+ 1)
x(a:5+x‘1+a:3+a:+1) (a;5+$4+a:2-i—m+1)
x(a:5+a:4+a:3+a:2+1) (a:5+$3+a:2+:c+1).

This factorization produces the six monic irreducible polynomials of degree
5 over F,. Note that we only need one of these polynomials in order to con-
struct a field with 2° elements. Similarly, the monic 1rredumble polynomials
of degree 2, 3, or 6 over Fy can be found by factoring z? — z. For example,
28 4z 4 1 is an irreducible factor of z%¢ — z, so Fy[z]/(z8 + 2 + 1) is a field
with 64 elements. The factorization of 232 — z and the factor 2% + z + 1
of z8% — 2 was found by using the computer algebra program Scientific
Workplace.

Problems
1. Let G be a finite Abelian group.

(a) If a,b € G have orders n and m, respectively, and if gcd(n,m) =
1, show that ab has order nm.

(b) If a,b € G have orders n and m, respectively, show that there is
an element of G whose order is lem(a, b).

(c) Show that there is an element of G whose order is exp(G).

2. Let p be a prime, and let I be a field with |F| = p?. Show that there
is an a € I with a® = 5. Generalize this statement, and prove the
generalization.

3. Let I be a finite field. Prove that there is an irreducible polynomial
of degree n over F' for any n.

4. Let K be a field with |K| = 4. Show that K = Fy(a), where o + a +
1=0.

5. Determine the irreducible factorization of z* + 1 over Fj.

6. Let F be a finite field. If f,¢g € F[z] are irreducible polynomials of
the same degree, show that they have the same splitting field. Use
this to determine the splitting field of z* + 1 over Fs.




11.

12.

13.

15.

Let ¢ e a power of a prime p, aud let o be a positive integer nol
divisible by p. We let [F; be the unique up to isomorphism finite field

of q elements. If K is the splitting field of 2™ — 1 over F,, show that
K = Fym, where m is the order of ¢ in the group of units (Z/nZ)* of
the ring Z/nZ.

Let I be a field of characteristic p.

(a) Let FP = {aP : a € F}. Show that FP is a subfield of F.

(b) If [7 = T, (x) is the rational function fickd in one variable over
Fp, determine F7 and [F : F?].

Show that 24 — 7 is irreducible over Fs.

. Show that every element of a finite field 3 a suin of two squares.

Let F be a field with |F| = ¢. Determine, with proof, the number
of monic irreducible polynomials of prime degree p over I, where p
need not be the characteristic of F.

Let K and L be extensions of a finite field F' of degrees n and m,
respectively. Show that KL has degree lcm(n,m) over F' and that
K N L has degree ged(n, m) over F.

(a) Show that 3 4+ z? + 1 and z3 + z + 1 are irreducible over F,.

(b) Give an explicit isomorphism betwecen Fs[z]/(z® + 22 4 1) and
Falz]/(x® + = + 1).

. Let k be the algebraic closure of Z,, and let ¢ € Gal(k/Z,) be the

Frobenius map ¢(a) = aP. Show that ¢ has infinite order, and find a
o € Gal(k/Z,) with o ¢ ().

Let N be an algebraic closure of a finite ficld F. Prove that Gal(N/F)
is an Abclian group and that any automorphisim in Gal(N/F) is of
infinite order.

(By techniques of infinite Galois theory, one can prove that
Gal(N/IF,,) is isomorphic to the additive group of the p-adic integers;
see Section 17.)

7 Cyclotomic Extensions

An nth root of unity is an element w of a ficld with w™ = 1. For instance,

the complex number e

27i/n is an nth root of unity. We have seen roots

of unity arise in various examples. In this section, we investigate the field
extension F(w)/F, where w is an nth root of unity. Besides being inter-
esting extensions in their own right, these extensions will play a role in
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applications of Galois theory to ruler and compass constructions and to
the question of solvability of polynomial equations.

Definition 7.1 If w € F' with w™ = 1, then w is an nth root of unity. If
the order of w is n in the multiplicative group F'*, then w is a primative nth
root of unity. If w is any root of unity, then the field extension F(w)/F 1is
called a cyclotomic extension.

We point out two facts about roots of unity. First, if w € F' is a primitive
nth root of unity, then we see that char(77) does not divide n lor, if 1. = pin
with char(F') = p, then 0 = w™ — 1 = (w™ — 1)P. Therefore, w™ = 1, and so
the order of w i1s not 1. Second, if w is an nth root of unity, then the order
of w in the group F™ divides n, so the order of w 1s equal to some divisor
m of n. The element w i1s then a primitive mth root of unity.

The nth roots of unity in a field K are exactly the set of roots of z™ — 1.
Suppose that ™ — 1 splits over K, and let G be the set of roots of unity in
K. Then @G is a finite subgroup of K*, so (G is cyclic by Lemma 6.1. Any
generator of (7 is then a primitive nth root of unity.

To describe cyclotomic extensions, we need to use the Fuler phi function.
If n is a positive integer, let ¢(n) be the number of integers between 1 and n
that are relatively prime to n. The problems below give the main properties
of the Euler phi function. We also need to know about the group of units
of the ring Z/nZ. Recall that if R is a commutative ring with 1, then the
set

R*={a€ R:thereisab e R with ab=1}

i1s a group under multiplication; it is called the group of units of R. If
R = 7Z/nZ, then an easy exercise shows that

(Z/nZ)* = {a+nZ:gcd(a,n) =1} .

Therefore, |(Z/nZ)*| = ¢(n).
We now describe cyclotomic extensions of an arbitrary base field.

Proposition 7.2 Suppose that char(F) does not divide n, and let K be
a splitting field of z™ — 1 over F. Then K/F is Galois, K = F(w) is
generated by any primative nth root of unity w, and Gal(K/F') is isomorphic
to a subgroup of (Z/nZ)*. Thus, Gal(K/F) is Abelian and [K : F| divides
d(n).

Proof. Since char(F) does not divide n, the derivative test shows that
2™ — 1 is a separable polynomial over F'. Therefore, K is both normal and
separable over F'; hence, K is Galois over F. Let w € K be a primitive
nth root of unity. Then all nth roots of unity are powers of w, so z" — 1
splits over F'(w). This proves that ' = F(w). Any automorphisin of K that
fixes I' is determined by what it does to w. However, any automorphisin
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restricts to a group automorphism of the set of roots of unity, so it maps
the set of primitive nth roots of unity to itself. Any primitive nth root of
unity in K is of the form w® for some ¢ relatively prime to n. Therefore,
the map 6 : Gal(K/F) — (Z/nZ)* given by o — t +nZ, where o(w) = wt,
is well defined. If 0,7 € Gal(K/F) with o(w) = v and 7(w) = w*, then
(07)(w) = o(w®) = w*t, s0 § is a group homomorphism. The kernel of § is
the set of all o with o(w) = w; that is, ker(d) = (id). Thus, 8 is injective,
so Gal(K/F) is isomorphic to a subgroup of the Abelian group (Z/nZ)*, a
group of order ¢(n). This finishes the proof. O

Example 7.3 The structure of F' determines the degree [F'(w) : F] or,
equivalently, the size of Gal(F(w)/F). For instance, let w = ¢2™"/8 be a,
primitive eighth root of unity in C. Then w? = 4 is a primitive fourth
root of unity. The degree of Q(w) over Q is 4, which we will show below.
If F = Q(i), then the degree of F(w) over F is 2, since w satisfies the
polynomial z2 — 7 over F and w ¢ F. If F = R, then R(w) = C, so
[R(w) : R] = 2. In fact, if n > 3 and if 7 is any primitive nth root of unity
in C, then R(7) =C, so [R(7) : R] = 2.

Example 7.4 Let F' = F,. If w is a primitive third root of unity over F,
then w is a root of > — 1 = (z — 1)(z®* + 2 +1). Since w # 1 and z? +z + 1
is irreducible over F, we have [F(w) : F] = 2 and min(F,w) = z? + 2 + 1.
If p is a primitive seventh root of unity, then by factoring z7 — 1, by trial
and error or by computer, we get

2’ —1=(z—1)(2*+2+1) (2° +2* +1).

The minimal polynomial of w is then one of these cubics, so [F(w) : F] = 3.
Of the six primitive seventh roots of unity, three have 23 + z + 1 as their
minimal polynomial, and the three others have z® + 22 + 1 as theirs. This
behavior is different from cyclotomic extensions of @, as we shall see below,
since all the primitive nth roots of unity over Q@ have the same minimal
polynomial.

We now investigate cyclotomic extensions of Q. Let wy,...,w, be the
pritnitive nth roots of unity in C. Then

{wy,. ., wr} = {ezﬂr/n cged(r,n) = 1},

s0 there are ¢(n) primitive nth roots of unity in C. In Theorem 7.7, we will
determine the minimal polynomial of a primitive nth root of unity over Q,
and so we will determine the degree of a cyclotomic extension of Q.

Definition 7.5 The nth cyclotomic polynomial is U, (z) = [Ti_,(z — w,),
the monic polynomial in Cli] whose roots are exactly the primitive nth roots
of umty wn C.




For example,

Moreover, if p is prime, then all pth roots of unity are primitive except for
the root 1. Therefore,

Uy(z) =(aP —1)/(z —1) =P +2P 2+ 42+ 1.

From this definition of ¥,,(z), it is not clear that ¥,,(z) € Q[z], nor that
U, (x) is irreducible over Q. However, we verify the first of these facts in
the next lemma and then the second in Theorem 7.7, which shows that
U, (z) is the minimal polynomial of a primitive nth root of unity over Q.

Lemma 7.6 Let n be any positive integer. Then ™ — 1 = Hd|n Uy(z).
Moreover, U, (z) € Z[z].

Proof. We know that 2™ — 1 = [[(z — w), where w ranges over the set of
all nth roots of unity. If d is the order of w in C*, then d divides n, and w
is a primitive dth root of unity. Gathering all the dth root of unity terms
together in this factorization proves the first statement. For the second, we
use induction on n; the case n = 1 is clear since ¥ (z) = z — 1. Suppose
that W4(z) € Z[z] for all d < n. Then from the first part, we have

" —1= H Uy(z) | - Up(z).

din,d<n

Since 2" — 1 and [, ¥4(z) are monic polynomials in Z[z], the division
algorithm, Theorem 3.2 of Appendix A, shows that ¥, (z) € Z|z]. O

We can use this lemma to calculate the cyclotomic polynomials ¥, (x)
by recursion. For example, to calculate ¥g(z), we have

2% — 1 = Wg(z)Vy(z) V()T (z),

SO 1:8_1 .
s(w) = GoNeiD@E+n T

The next theorem is the main fact about cyclotomic polynomials and
allows us to determine the degree of a cyclotomic extension over Q.

Theorem 7.7 Letn be any positive integer. Then ¥, (x) is irreductble over

Q.




Proot. 'lo prove that W, (z) is irreducible over QQ, suppose not. Since
¥,(z) € Z[z] and is monic, ¥,,(z) is reducible over Z by Gauss’ lemma.
Say U, = f(z)h(z) with f(z),h(z) € Z[z] both monic and f irreducible
over Z. Let w be a root of f. We claim that w? is a root of f for all primes
p that do not divide n. If this is false for a prime p, then since w? is a prim-
itive nth root of unity, w? is a root of A. Since f(z) is monic, the division
algorithm shows that f(z) divides A(zP) in Z[z]. The map Z[z] — F,[z]
given by reducing coefficients mod p is a ring homomorphism. For g € Z[z],
let g be the image of g(z) in F,[z]. Reducing mod p yields ¥, (z) = f - h.
Since W, (z) divides z™ — 1, the derivative test shows that ¥, (z) has no
repeated roots in any extension field of I, since p does not divide n. Now,
since a? = a for all a € IF,, we see that h(z?) = h(z)P. Therefore, f divides
h?, so any irreducible factor g € F,[z] of f also divides k. Thus, ¢2 divides

fh = W,(z), which contradicts the fact that ¥, has no repeated roots.
This proves that if w is a root of f, then w? is also a root of f, where p is a
prime not dividing n. But this means that all primitive nth roots of unity
are roots of f, for if « is a primitive nth root of unity, then a = w* with
t relatively prime to n. Then a = w?""P~ with each p; a prime relatively
prime to n. We see that wP! is a root of f, so then (wP*)P? = wP'P? is also a
root of f. Continuing this shows « is a root of f. Therefore, every primitive
nth root of unity is a root of f, so ¥,(xz) = f. This proves that ¥, (z) is
irreducible over Z, and so ¥, (z) is also irreducible over Q. 0

If w is a primitive nth root of unity in C, then the theorem above shows
that ¥, (x) is the minimal polynomial of w over Q. The following corollary
describes cyclotomic extensions of Q.

Corollary 7.8 If K is a splitting field of z™ — 1 over Q, then [K : Q] =
d(n) and Gal(K/Q) = (Z/nZ)". Moreover, if w is a primitive nth root of
unity in K, then Gal(K/Q) = {o; : ged(i,n) = 1}, where o; is determined
by o;(w) = W'

Proof. The first part of the corollary follows immediately from Proposition
7.2 and Theorem 7.7. The description of Gal(K/Q) is a consequence of the
proof of Proposition 7.2. O

If w is a primitive nth root of unity in C, then we will refer to the
cyclotomic extension Q(w) as Q,,.

Example 7.9 Let K = Q7, and let w be a primitive seventh root of unity
in C. By Corollary 7.8, Gal(K/Q) = (Z/7Z)", which is a cyclic group of
order 6. The Galois group of K/Q is {01, 02, 03,04, 05,06}, where 0;(w) =
w'. Thus, 01 = id, and it is easy to check that o3 generates this group.
Moreover, 0;00; = 0, where the subscripts are multiplied modulo 7. The




subgroups of Gal(K/Q) arc then

(id), (a3), (03), (o3),

whose orders are 1, 2, 3, and 6, respectively. Let us find the corresponding
intermediate fields. If L = F(03) = F(og), then [K : L] = |(os)| = 2 by the
fundamental theorem. To find L, we note that w must satisfy a quadratic
over L and that this quadralic is

(x — w)(z — o6(w)) = (z — w)(z — ).

Expanding, this polynomial is

22— (w+ W) +ww® =22 — (wH )z + L.

Therefore, w+w® € L. If we let w = exp(271/7) = cos(27/7) +isin(27/7),
then w 4+ w® = 2cos(27/7). Thereforc, w satisfics a quadratic over
Q(cos(27/7)); hence, L has degree at most 2 over this field. This forces
L = Q(cos(27/7)). With similar calculations, we can find M = F(o3) =
F(o3). The order of o is 3, so [M : Q] = 2. Hence, it suffices to find onc
element of M that is not in QQ in order to generate M. Let

a=w+0oz(w) +o5(w) = w+w® +uwt

This element is in M because it is fixed by o. But, we show that « is not
in @ since it is not fixed by og. To see this, we have

6(w) = Wb + wl? 4w
— Wb Wb 4 Ws.

If og(c) = v, this cquation would give a degree 6 polynorial for which w
is a root, and Lhis polynomial is not divisible by

min(Q,w) = Wo(z) = 2% +2° +2* + 2% + 2% + 2 + 1,

a contradiction. This forces a ¢ Q, so M = Q(«). Therefore, the interme-
diate fields of K/Q are

I, Q(cos(27/7)), Qw + w? +w*), Q.

Example 7.10 Let K = Qg, and let w = exp(2mi/8) = (1 +14)/+/2. The
Galois group of K/Q is {0),03,05,07}, and note that each of the three
nonidentity automorphisms of K have order 2. The subgroups of this Galois
group are then

(id) , (03‘), (o5), (o7), Gal(K/Q).

Each of the three proper interinediate ficlds has degrec 2 over Q. Omue is

easy to find, sinec w? = 7 is a primitive fourth root of unity. The group
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associated to Q(2) is (o5), since o5(w?) = w!'® = w?. We could find the
two other fields in the same manner as in the previous example: Show that
the fixed field of o3 is generated over Q by w + o3(w). However, we can
get this more easily due to the special form of w. Since w = (1 +14)/v2
and w™! = (1 —i)/V2, we see that V2 = w + w™! € K. The element
w+w ' =w+w’ is fixed by o7; hence, the fixed field of o7 is Q(v/2). We
know 7 € K and v2 € K, so /-2 € K. This element must generate the
fixed ficld of o3. The intermediate fields are then

K, Q(vV=2), Q(vV-1), Q(vV2), Q.

The description of the intermediate fields also shows that K = Q(v/2,14).

Problems

1. Determine all of the subfields of Qq5.
2. Show that cos(7/9) is algebraic over Q, and find [Q(cos(7/9)) : Q).

3. Show that cos(27/n) and sin(27/n) are algebraic over QQ for any n €
N.

4. Prove that Q(cos(27/n)) is Galois over Q for any n. Is the same true
for Q(sin(27/n))?

5. If p is a prime, prove that ¢(p™) =p" (p—1).

6. Let 0 : Z[z] — F,lz] be the map that sends Y ,a;z* to Y, a;zt,
where @ is the equivalence class of a modulo p. Show that 6 is a ring
homomorphism.

7. 1 ged(n,m) = L, show that ¢(nmn) = d(n)d(mn).

8. If the prime factorization of n is n = pI* -+ p2, show that ¢(n) =
'i_l
Lipg ™ (pi — 1)

9. Let n, m be positive integers with d = ged(n,m) and { = lem(n, m).

Prove that ¢(n)p(m) = ¢(d)p(l).
10. Show that (Z/nZ)* = {a + nZ : gcd(a,n) = 1}.
11. If n is odd, prove that Q,, = Q,.
12. Let n, m be positive integers with d = ged(n,m) and [ = lcm(n, m).

(a) If n divides m, prove that @, C Q,,.
(b) Prove that Q,Q,, = Q.
(¢) Prove that Q, NQ,, = Qq.




15. Determmme for which nand m there is an wclusion @@, © Q,,. From
this, determine which cyclotomic extensions contain /—1.

14. Find a positive integer n such that there is a subficld ol @,, that is
not a cyclotomic extension of Q.

15. If d € QQ, show that Q(\/Zi) lies in some cyclotomic extension of Q.
(This is a special case of the Kronecker—Weber theorem, which states
that any Galois extension of Q with Abelian Galois group lies in a
cyclotomic extension of Q.)

16. The group (Z/nZ)* is a finite Abelian group; hence, it decomposes
into a direct product of cyclic groups. This problem explicitly de-
scribes this decomposition.

(a) f n = pi*---p}f is the prime factorization of n, show that
(/1) = [[(Z/5 ) as rings; hence, (Z/nZ)* = [T;(Z/p]'Z)".

(b) If p is an odd prime, show that (1+p)?" = 1 +p'*(mod p'*?) if
t > 0. Use this to find an element of large order in Z/p;'Z, and
then conclude that (Z/p;*Z)* is cyclic if p is an odd prime.

(c) Show that 52 = 1+ 2t%2(mod 2¢+3), and then that (Z/27Z)* =
Z/27727 x Z./2Z if r > 3. Note that (Z/27Z)* is cyclic if r < 2.

17. Let GG be a finite Abelian group. Show that there is a Galois extension
K/Q with Gal(K/Q) = G.

8 Norms and Traces .

In this section, we define the norm and trace of a finite extension of ficlds
and prove their basic properties. To help motivate these concepts, in Ex-
amples 7.9 and 7.10 we used elements of the form ) _, o(w) to generate
the intermediate field F(H) of a cyclotomic extension. We will see that the
sum .y 0(w) is the trace of w in the extension K/F(H). The definitions
we give will not look like these sums; instead, we define the norm and trace
in terms of linear transformations. This approach generalizes more readily
to other situations. For instance, given a division ring (finite dimensional
over its center), there is a notion of norm and trace that is quite important.

Let K be a field extension of F with [K : F| = n. If a € K, let L,
be the map L, : K — K given by L,(b) = ab. It is easy to see that
L, is an F-vector space homomorphism. Since K is a finite dimensional
F-vector space, we can view F-linear transformations of K as matrices
by using bases; that is, if Endp(K) = homp (K, K) is the ring of all F-
vector space homomorphisms from K to K, then there is an isomorphism

Endp(K) 2 M, (F), where M, (F) is the ring of n x n matrices over F.




If ¢ @ Budg(K) — M, (F) is an isomorphism, we can usc ¢ to define
the determinant and trace of a linear transformation. [f 7" € Endp(K),
tet det(T) = det(p(T)) and Te(T) = Tr(e(T)). These definitions do not
depend on ; to see this, let 4 he another isomorphism. Then @ corresponds
to choosing a basis for K different from that used to obtain . Therefore, the
two matrix represcntations of a transformation 7' are similar; that is, there
is an invertible matrix A with ¢(T) = A7 '¢(T) A. Therefore, det(y (7)) =
det(p(T)) and Tr(y(T)) = Tr(w(T)).

Definition 8.1 Let K be a finite extension of F. The norm N r and
trace T p are defined for all a € K by

Nicyp(a) = det(ly,),

Tyepir(a) = Tr(L,).
Example 8.2 Let F be any feld, and let K = F(V/d) for somed € F—F2,
A convenient basis for K is {1,Vd}. If @ = a + bVd with a,b € F, we

determine the norm and trace of a. The lincar transformation L, is equal
to aLy + bL s, so we first need to find the matrix representations for L,

e L . .. {10
and L 5. The identity transformation L, has matrix < 0 1 ) For L 5,
we have
L(1)=Vd=0-1+1-V4,
Ly(Vd)=d=d-1+0-Vd.

. . ) 0 d
Therefore, the matrix for L s is < 10

L 0 5 0O d\ [ a U
“Lo 1 )P0 )T e e )
From this we obtain N,z (a + bVd) = a? — bd and Ty, p(a + bV/d) = 2a.
In particular, N_K/F(\/E) = —d and TK/F(\/H) =0.

). The matrix for L., is then

Example 8.3 Let ' = Q and K = Q(/2). We will determine the norm
and trace of &/2. An F-basis for K is {1, 2, \3/4_1} We can check that

Losz(1) = /2, Lyz(V2) = V4, and L g5(¥/4) = 2. Therefore, the matrix
representing L 37 using this basis is

o = O
[l ew i e
OO N

s0 Ni/p(V2) = 2 and T p(¥2) = 0.
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Example 8.4 Let I’ be a field of characteristic p > 0, and let K/F be
a purely inseparable extension of degreec p. Say K = F(a) with of =
a € F. For instance, we could take /{ to be the rational function fictd
k(xz) over a ficld k of characteristic p and £ = k(2”). A basis for I is
{1, a,a’,. . ,ap_l}. With respect to this basis, the matrix for Ly is

0 0 - 0 a)
1 0 --- 0 O
0 1

D 0 0
0 0 1 0

We leave it to the reader to check that the matrix for L,z is obtained by
taking this matrix and shifting the columns to the left, moving the first
column to the end. Similar processes yield the matrices L, for each i.
From these matrices, we see that Nx,r(a) = (—1)Pa. For traces, each L
has trace 0, including the identity matrix, since p-1 = 0 in F'. Therefore,
for any 8 € K we have Try,r(8) = 0. The trace map Tk, r is thus the zero
function.

The following lenima gives soine elementary properties ol norm and trace.
Lemma 8.5 Let K be a finite extension of F withn = [K : F].
1. Ifa € K, then Niyp(a) and Ty p(a) he in F.
The trace map Ty 15 an F-linear transformation.
Ifa € F, then Tk rp(a) = na.
Ifa,b e K, then Ngyr(ab) = Ng;r(a) - Nigyr(b).

v o

Ifa € F, then Ng/p(a) = o™

Proof. These properties all follow iminediately from the definitions and
properties of the determinant and trace functions. O

The examples above indicate that it is not easy in general to calculate
norms and traces from our definition. In order to work effectively with
norms and traces, we need alternative ways of calculating them. The next
proposition shows that if we know the minimal polynomial of an element,
then it is easy to determine the norm and trace of that element.

Proposition 8.6 Let K be an extension of F' with [K : F]=n. Ifa € K
and p(z) = 7" + Q18" 4+ oz + o 18 the minimal polynomial of

n/m

a over . then Ny p(a) = (—=1)"ay"" and T p(a) = — =, 1.
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Proof. Let ¢ : K — Endp(K) be the map ¢(a) = L,. It is easy to
see that Loypy = L, + Ly and Lg, = Ly o Ly, so ¢ is a ring homomor-
phism. Also, if « € I and a € K, then Lo, = aL,. Thus, ¢ is also an
F-vector space howmomorphisni. The keruel of ¢ is uecessarily trivial, since
 is not the zero map. Since  is injective, the minimal polynomials of a
and L, are equal. Let x(z) be the characteristic polynomial of L,, and
say x(z) = ™ + Bn_12™ ' + - + By. By the Cayley—Hamilton theorem,
Theorem 2.1 of Appendix D, the characteristic and minimal polynomials of
a linear transformation have the same irreducible factors, and the minimal
polynomial divides the characteristic polynomial. Since p is irreducible, by
comparing degrees we see that x(z) = p(z)™/™. Note that m divides n,
because m = [F'(a) : F| and

n=[K:F]=[K:F(a)]-[F(a): F).

Now, recalling the relation between the determinant and trace of a ma-
trix and its characteristic polynomial, we see that Nk r(a) = det(Ly) =

(—1)"Bo and T, r(a) = Tr(Ls) = —Bn—1. Multiplying out p(z)™/™ shows

that Gy = ag/m and 3,1 = ~Qm—1, Which proves the proposition. O

Example 8.7 If F is any field and if K = F(/d) for some d € F — F?,
then a short calculation shows that the minimal polynomial of a + bV/d is
z? — 2az + (a? — b%d). Proposition 8.6 yields Nx/r(a + bWd) = a? — b2d
and Tx/r(a + bV/d) = 2a, as we had obtained before.

If F =Q and K = Q(</2), then the minimal polynomial of /2 over F
is 23 — 2. Then N, p(v/2) =2 and Tx/r(V2) = 0.

Example 8.8 If K is a purely inseparable extension of F' of characteristic
p, then the minimal polynomial of any element of K is of the form z?" — a.
From this, it follows that the trace of any element is zero.

If we know the minimal polynomial of an element, then it is easy to find
the normi and trace of the element. However, it may be hard to find the
minimal polynomial in many situations. Therefore, additional methods of
calculating norms and traces are needed. For a Galois extension K of F,
there are simple descriptions of norm and trace in terms of automorphisms.
Theorem 8.12 describes the norm and trace in terms of F-homomorphisms
for general finite extensions and has the description for Galois extensions
as a special case. In order to prove this result, we need some facts about
separable and purely inseparable closures. Let K be a finite extension of
F, and let S be the separable closure of F' in K. Recall that the purely
inseparable degree of K/F is [I{ : F]; = [K : S]. The next three lemnias
prove the facts we need in order to obtain the descriptions of norms and
traces that we desire.




Lemimma 8.9 Lel i be a finite extension of F, and let S be the separable
closure of Fin K. Then [S : F] 1s equal to the number of F'-homomorphisms
from K to an algebraic closure of F.

Proof. Let M be an algebraic closure of F'. We may assume that K C M.
If S is the separable closure of F' in K, then S = F(a) for some a by the
primitive element theorem. If r = [S : F], then there are r distinct roots
of min(F,a) in M. Suppose that these roots are ay,...,a,. Then the map
o; © S — M defined by f(a) =f(a;) is a well-defined F-hcmomorphism
for each ¢. Moreover, any F-homomorphism from S to M must be of this
form since ¢ must map to a root of min(#,a). Thercfore, there arc r dis-
tinct F-liomomorphisms from S to M. The ficld K is purcly inscparable
over S; hence, K is normal over S. Therefore, each o; extends to an F-
homomorphism from K to M by Proposition 3.28. We will be done once
we show that each o; extends in a unique way to K. To prove this, suppose
that 7 and p are extensions of o; to K. Then 7(K) = K by Proposi-
tion 3.28, and so 7~ !p is an automorphism of K that fixes S. However,
Gal(K/S) = {id}, since K/S is purely inseparable. Therefore, 77!p = id,
SO T = p. L

Lemma 8.10 Let K be o finite dimensional, purely inseparable extension
of F. If a € K, then oK Fl ¢ B More generally, if N is a finite dimen-
sional, Galois extension of F and if a € NK, then al®:Fl ¢ N.

Proof. Let K be purely inseparable over F', and let n = [K : IF]. If a € K,
then alf(@)Fl ¢ F hy Lemma 4.16. Since [F(a) : F] divides n = [K : F),
we also have a™ € F. To prove the second statement, let N be a Galois
extension of F'. Then N N K is both separable and purely inseparable over
F,so NN K = F. Therefore, [NK : K] = [N : F] by the theorem of
natural irrationalities, so [NK : N| = [K : F]. The extension NK/N is
purely inseparable, so by the first part of the proof, we have a™ € N for all
o € NK. This finishes the proof, MKzplk] 5: 3¢ e ¥ie 24 Siwieiad g

e w080 2 be FL
#H

Lemma 8.11 Suppose that F C L C K are fields with [K : F] < co. Then

Proof. Let S; be the separable closure of F' in L, let S; be the separable
closure of L in K, and let S be the separable closure of F' in K. Since
any element of K that is separable over F' is also separable over L, we see
that S C S;. Moreover, SL is a subfield of S; such that S;/SL is both
separable and purely inseparable, so S, = SL. We claim that this means
that [L: S;] =[S : S]. If this is true, then o) N=FLY ponds Ve
ok k] sgti) »

(K Fly = [K 2 5] f(1)7e FIMI=N o™

:[KSQ][SQS

:[KSQ][le]




=K L;-[L: Fl;,

proving the result. We now verify that [L: S,] =[Sy : S]. By the primitive
element theorem, S = S)(a) for some a. Let f(z) = min(Si,a), and let
g(z) = min(L,a). Then ¢ divides f in L[z]. However, since L is purely
inseparable over S;, some power of g lies in S [z]. Consequently, f divides
a power of g in F[z]. These two divisibilities force f to be a power of g.
The polynomial f has no repeated roots since a is separable over S, so
the only possibility is for f = ¢. Thus, [S : Si] = [L(a) : L], and since
L(a) = SL = Sy, we see that [S : S1] =[Sy : L]. Therefore,

[52151] [SQiS]] $ . La$ ?SZ
Sy 8=""""+="T—+=IL:5]. ' ’
| S8 T Bzl I e
This finishes the proof., Qased. 1sL:k | s ILiSal b sorgoncde wlomins 4 T

We are now in the position to obtain the most useful description of
the norm and trace of an element. The next theorem gives formulas that
are particularly useful for a Galois extension and will allow us to prove a
transitivity theorem for norms and traces.

Theorem 8.12 Let K be o finite extension of F', and let oq,...,0, be the
distinct F'-homomorphisms from K to an algebraic closure of F. If a € K,
then

[K:F];

N[(/F(a) = HO’j(a) and TK/F(G,) = [[{ : F]l ZO’j(a).
J J

Proof. Let M be an algebraic closure of F', and let oy, ...,0, be the dis-
[K:F]i
tinct F-homomorphisms from K to M. Let g(z) = (H] T — aj(a))

polynomial over M. If S is the separable closure of F'in K, thenr =[S : F]
by Lemma 8.9. The degree of g is

rK:Fl,=r[K:S|=[K:S] [S:F]
= [K: F]=n.

y &

We claim that g(z) € F[z] and that g(z) has precisely the same roots as
p(z) = min(F, a). If this is true, we see that p divides g, and since all roots of
g are roots of p, the only irreducible factor of g is p. Thus, g(z) = p(a:)”/m,
where m = deg(p(z)). It was shown in the proof of Theorem 8.6 that p/™
is the characteristic polynomial x(z) of L,. Thus, g(z) = x(z). Therefore,
if g(z) = 2™ + y,12™" ' + -+ + ¥, we have Nk p(a) = (—1)"y and
Tg/r(a) = —7Yn-1. Multiplying out g(z) shows that

%= [ [[-05(a)

J

[K:F]i
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and

Yn—1 = —[K : FJ; Zaj(a).

The formulas for the norm and trace then follow from Proposition 8.6.

To see that g(z) € F[z] and that g and p have the same roots, first note
that each o;(a) is a root of p since o; is an F-homomorphism. If b € M
is a root of p(z), then by the isomorphism extension theorem there is a
71 M — M with 7(a) = b. Since 7|k is one of the o;, say 7|k = oy, then
7(a) = ox(a) = b,s0 b is a root of g. This proves that g and p have the same
roots. To sec that g(z) € F[z], let N be the normal closure of S/F. Then
N/F is Galois; lienice, N/F is separable. Also, KN/IK is Galois, and by
the theorew of natural irrationalities, [K N : K] divides [N : S]. Thercfore,
[KN : NJdivides [[{ : S] = [K : FJ;, since

[KN:N|-[N:S]=[KN:8)=[KN:K] [K:S|.

The extension K N/N is purely inseparable since K/S is purely insepara-
ble, so cKFli € N for any ¢ € KN by Lemma 8.10. Because KN is the
composite of a Galois extension of S with a purely inseparable, hence nor-
mal, extension, K N/S is normal. Thus, ¢,;(K) C KN by Proposition 3.28.
So we see that g(z) € N[z], using (KN)fK:F]‘ C N. However, if 7 is any
element of Gal(M/N), then

{(To-l)‘fﬁ' St (TUT)‘K} = {Jlr‘ e 7UT}7

so 7(g) = g. Thus, the coefficients of ¢ lie in the fixed field of Gal(M/F).
This fixed field is the purely inseparable closure of F' in M, since M/F
is normal. We have seen that the coefficients of ¢ lie in NV, so they are
separable over F'. These coefficients must then be in F'. This completes the
proof of the theorem. O

Suppose that K is Galois over F. Then {o,,...,0.} = Gal(K/F) and
[K : F); = 1. The following corollary is immediate from Theorem 8.12.

Corollary 8.13 If K/F is Galois with Galois group G, then for alla € K,

Ng/r(a) = H o(a) and Tg/r(a)= Z o(a).

ceG ceG

Example 8.14 Let F' be a field of characteristic not 2, and let K = F(\/d)
for some d € F — F?. Then Gal(K/F) = {id, ¢}, where ¢(vd) = —V4d.
Therefore,

Ng/r(a+b0Vd) = (a4 bVd)(a — bVd) = a® — b?d,
Ticyr(a -+ bWd) = (a+ b\/a) + (@ — b\/g) = 2aq.




Example 8.15 Suppose that F' is a field containing a primitive nth root
of unity w, and let K be an extension of F' of degree n with K = F(a)
and o™ = a € F. By the isomorphism extension theorem, there is an

automorphism of K with o(a) = wa. From this, we can see that the order
of o is n, so Gal(K/F) = (o). Therefore,

n—1

"lHa)=a wa-w"

Ng/pla) = ao(a)---o

— wn(n—l)/Qan :_(_l)na‘

If n is odd, then n(n —1)/2 is a multiple of n, so w™™~1/2 = 1, If n is
even, then this exponent is not a multiple of n, so w™™~1/2 £ 1, How-
ever, (w™»~1/2)2 = 1 g0 w™("~1/2 = _1, This justifies the final equality
Ng/r(a) = (=1)"a.

As for the trace,

Tr/r(a) =a+t+wat Fu"la=1+w+ -+ Ha
=0

because w is a root of (z" —1)/(zx —1) =1+ 2z + -+ + 2™ !. These norm
and trace calculations could also have been obtained by using the minimal
polynomial of «, which is 2™ — a.

In the examples above, we often calculated the norm and trace of an
element « for the field extension F'(«)/F. If we want the norm and trace of
an element that does not generate the larger field, our calculations will be
more involved. This complication is eliminated by the following transitivity
theorem, which gives relations between the norm and trace of an extension
and a subextension.

Theorem 8.16 If F C L C K are fields with [K : F| < oo, then
Ngjp=Npjpo Nk and Tgp=TppoTk/r;

that s, Nigyr(a) = Npjr(Niyp(a)) and Txyr(a) = Tr/r(Tk/1(a)) for
each a € K.

Proof. Let M be an algebraic closure of F, let o,,...,0, be the dis-
tinct F-homomorphisms of I, to M, and let 71,...,7s be the distinct L-
homomorphisms of K to M. By the isomorphism extension theorem, we
can extend each o; and 7, to automorphisms M — M, which we will also
call o; and 7y, respectively. Bach o;7, is an F-homomorphism from K to
M. Iu fact, any F-homomorphism of K to M is of this type, as we 110w
prove. If p: K — M is an F-homomorphism, then p|;, : L — M is equal
to o; for some j. The map aj_l p 1s then an F-homomorphism K — M

which fixes L. Thus, oj_lp = 7% lor some k, so p=o0;7%. Il a € K, then by
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min(F,a) are o, wa, w?a, w3a, and wa. By the isomorphism extension

theorem, there is a ¢ € Gal(K/F) with o(a) = wa. Then o*(a) = wia.
Consequently, ¢° = id and o* # id if i < 5. The order of o is thus equal to
5. This means that Gal(K/F) = (o), so K/F is a cyclic extension.

We will analyze the cyclic extensions of degree n of a field containing
a primitive nth root of unity and the cyclic extensions of degree p of a
field of characteristic p. To motivate our restriction to these extensions, we
first point out that there is no simple description of the cyclic extensions
of degree n of a field F' that does not contain a primitive nth root of unity,
unless n = p is a prime and char(F')= p. For instance, there is no simple
description of the cyclic extensions of @, extensions that are important in
algebraic number theory. Second, we can decompose a cyclic extension of
F into a tower of degree p cyclic extensions together with a cyclic extension
of degree relatively prime to p. We do this as follows. Let H be a p-Sylow
subgroup of G = Gal(K/F), and let L = F(H). Since H is normal in
(, by the fundamental theorem L is Galois over F' with [L : F] = ¢
and [K : L] = p™. Furthermore, since subgroups and quotient groups of
cyclic groups are cyclic, both L/F and K/L are cyclic extensions. Because
H = Gal(K/L) is a cyclic p-group, there is a chain of subgroups

(idy cHHCH,C---CH,=H
with |H;| = p*. If L; = F(H;), we get a tower of fields
Ln:LC L’n_—l cC - C L():K

Moreover, [L.,—1 : Ly| = p and L,,_) is a cyclic extension of L,,.

Let F' be a field containing a primitive nth root of unity w. If K is an
extension of F', suppose that there exists an a € K with a = b € F.
We then write o = Vb. Note that (w?a)™ = b for all i € Z. Therefore, K
contains 7 roots of the polynomial = — b, so F'(V/b) is the splitting ficld
of 2™ — b over F'.

The following lemma is the heart of Theorem 9.5. The standard proof of
this lemma is to use the Hilbert theorem 90. While we give a linear algebra
proof of this, the Hilbert theorem 90 is quite important, and we discuss it
in detail in Section 10.

Lemma 9.4 Let F' be a field containing a primitive nth root of unity w,
let K/F be a cyclic extension of degree m, and let o be o generator of
Gal(K/F). Then there is an a € K with w = o(a)/a.

Proof. The automorphism o is an F-linear transformation of K. We wish
to find an ¢ € K with o(a) = wa; that is, we want to show that w is an
eigenvaluc for o. To do this, we show that w is a root of the characteristic
polynomuiial of . Now, since o has order n in Gal(K/F), we have o™ = id.
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Therefore, o satisfies the polynomial z™ — 1. Moreover, if there is a polyno-
mial g(z) € F[z] of degree m < n satisfied by o, then the automorphisms id,
o,...,0™ ! are linearly dependent over F', a contradiction to the Dedekind
independence lemma. Thus, 2™ — 1 is the minimal polynomial of o over F'.
However, the characteristic polynomial of o has degree n = [K : F] and is
divisible by z™ — 1, so 2™ — 1 is the characteristic polynomial of &. Since
w is a root of this polynomial, w is an eigenvalue for o. Thus, there is an
a € K with o(a) = wa. O

We now give the description of cyclic extensions K/F of degree n when
I’ contains a primitive nth root of unity.

Theorem 9.5 Let F' be a field containing a primitive nth root of unity,
and let K/F be a cyclic Galois extension of degree n. Then there is an
a e K with K= F(a) and a™ = b € F; that is, K = F(3/b).

Proof. By the lemma, there is an a with o(a) = wa. Therefore, o*(a) = wia,
so a is fixed by o only when n divides 7. Since the order of o is n, we see
that a is fixed only by id, so Gal(K/F(a)) = (id). Thus, K = F'(a) by the
fundamental theorem. We see that o(a™) = (wa)™ = a™, so a™ is fixed by
o. Hence, b=a" € F,so K = (Vb). O

We give a converse to this theorem that describes extensions of the form
F(%/b)/F. This converse is a special case of a theorem we will see in Section
11.

Proposition 9.6 Let F' be a field containing a primitive nth root of unity,
and let K = F(3/b) for someb € F. Then K/F is a cyclic Galois extension.
Moreover, m = [K : F|] is equal to the order of the coset bF™*™ in the group
F¥JF*and min(F, Vb) = «™ — d for some d € F.

Proof. Let a € K with a™ = b. Since F' contains a primitive nth root of
unity w, the polynomial z™ — b splits over K, and it is separable over F' by
the derivative test. Thus, K is a splitting field over F for 2™ — b, so K/F'is
Galois. We will show that K/F is cyclic Galois by determining a generator
for G = Gal(K/F). The roots of min(F,a) lie in the set {w’a: j € Z} since
min(F, a) divides 2™ — b, so if o € G, then o(a) = w'a for some i. We write
imod n for the smallest nonnegative integer congruent to < modulo n. Let

S = {imodn: o(a)/a=w" for some o € G}.

Then § is the image of the function G — Z/nZ given by o — 4 mod n, where
o(a)/a = w'. This map is a well-defined group homomorphism whose image
is S, and it is injective, since if ¢ +— Omodn, then o(a) = a, so ¢ = id.
Thercfore, G = &, a subgroup of Z/nZ; hence, G is cyclic.




1 neoremni .t 4 we have

[K:Fl;

[K:L];
Ngp(a) = HO']Tk and Ngyp(a)= (HTk(a)) :

k

Therefore,

[K:L]; (L:F)s
Npr(Nksp(a)) = H‘Tj (HTk(a))
7 k

[KZL]-; [LF]L

= Haka(a)
.k

Since [K : F|; = [K : L]; - [L F]; by Lemma 8.11, this proves that
Ng/r(a) = Ny p(Ng/r(a)). A similar calculation shows that Tk p(a) =
T r(Tk/r(a)). L

As a consequence of this theorem, we see in the following corollary that
the existence of an element with nonzero trace is a test for separability.

Corollary 8.17 A finite extension K/F is separable if and only if Tk
is not the zero map; that is, K/F is separable if and only if there is an
a € K with Tk p(a) # 0.

Proof. Suppose that K /F' is not separable. Then char(F) = p > 0. Let
S be the separable closure of F in K. Then S # K and K/S is a purely
inseparable extension. Moreover, [K : S| = p* for some ¢ > 1 by Lemma
4.17. If a € K, then by Theorem 8.16 we have Tk r(a) = Ts/r(Tx/s(a)).
However by Theorem 8.12, if 0, ..., 0, are the distinct S-homomorphisms
from K to an algebraic closure of F', then

TK/S(CL) = [K . S]i(ol(a) 4 - -{—ar(a)).

But [K : S]; = [K : S] = p*, since K is purely inseparable over S. Since
char(F') = p, this forces Tx,g(a) = 0, so TK/F(a) = Tg/rp(0) = 0. Thus,
Tk F is the zero map.

Conversely, suppose that K is separable over F. Let N be the normal
closure of K/F. By Theorem 8.16, we see that if Tnyris nonzero, then so is
Tx)p. Say Gal(N/F) = {o1,...,00}. Ifa € N, then Ty r(a) = 3~, 0;(a)
by the corollary to Theorem 8.12. By Dedekind’s lemma, o (a)+- - -40,(a)
is not zero for all a € IV, so Tiy,F is not the zero map. Therefore, Tk, 5 is
not the zero map. ([




Problems

1. Let K/F be an extension of finite fields. Show that the norm map
Nk F 18 surjective.

2. Let p be an odd prime, let w be a primitive pth root of unity, and let
K = Q(w). Show that Ng (1l —w) = p.

3. Let n > 3 be an integer, let w be a primitive nth root of unity, and
let K = Q(w). Show that Nk g(w) = 1.

4. In Examples 7.9 and 7.10, generators consisting of traces were found
for intermediate fields. Let K be a Galois extension of F. If L is an
intermedliate field of K/ F, show that L is generated over F' by traces
from K to L. In other words, show that L = F' ({Tx,r(a): a € K}).

5. Let K be a Galois extension of F'. Prove or disprove that any inter-
mediate field L of K/F is of the form L = F' ({Ngyr(a) : a € K}).

6. Let ¥ C K C L befields with L/F a finite extension. Use the product
thcorem for the purely inseparable degree proved in this section to

prove the corresponding product formula for separable degree; that
is, prove that [L : F|; = [L: K|;[K : Fls.

9 Cyclic Extensions

We resume our investigation of special types of Galois extensions. In this
section, we study Galois extensions with cyclic Galois group. Section 11
will study Galois extensions with an Abelian Galois group.

Definition 9.1 A Galois extension K/F is called cyclic if Gal(K/F) is a
cyclic group.

Example 9.2 Let F be a field of characteristic not 2, and let a € F* — F*2.
If K = F(\/a), then Gal(K/F) = {id,o} where o(y/a) = —+/a. Thus,
Gal(K/F) = Z/27 is cyclic. For another example, if p is a prime, then
the cyclotomic extension Q,/Q is cyclic, since Gal(Q,/Q) = (Z/pZ)* is a
cyclic group.

Example 9.3 Let w be a primitive fifth root of unity in C, let F' = Q(w),
and let K = F(+/2). Then K is the splitting field of z° — 2 over F, so K is
Galois over F. Also, [F: Q] = 4 and [Q(+/2) : Q] = 5. The field K is the
composite of these two extensions of Q. The degree [K : Q] is divisible by 4
and 5; hence, it 1s divisible by 20. Moreover, [K : F] < 5, so [K : Q] < 20.
Therefore, [K : Q] = 20, and so [K : F] = 5. Let o = v/2. The roots of




Lu remains Lo determine |G| and mun(£a). Let Gal(hj ) = (1), and
set 7(a) = wta. If m = |G|, then m is the least positive integer such
that (w*)™ = 1. The polynomial Hzgl(:c — 7%(a)) lies in F[z], since it is
fixed by 7. Looking at the constant term, we see that a™ & . Thercfore,
b™ = (™)™ € F*". If m’ is the order of bF*" in B [F*" then ! divides
m. For the reverse divisibility, we know that ™ € F** so b™ = ¢" for
some ¢ € F. Then a™" = c", so o™ = aw' for some 1, which means
a™ € F. Therefore, Tm/@’) = wim o™= a‘,"‘so m divides m’, since m is the
order of w' in F*. Both divisibilities together yield m = m’. Moreover,
since m = [K : F] = deg(min(F,a)) and 2™ — a™ € F[z] has a as a root,
we see that min(F,a) = 2™ — a™. This finishes the proof. O

The simple structure ol a cyclic gronp allows us to give a nice description
of the intermediate fields of a cyclic extension. This description was hinted
at in Example 5.4.

Corollary 9.7 Let K/F be a cyclic extension of degree n, and suppose
that F' contains a primitive nth root of unity. If K = F({/a) with a € F,
then any intermediate field of K/F is of the form F( %/a) for some divisor
m of n.

Proof. Let o be a generator for Gal(K/F). Then any subgroup of
Gal(K/F) is of the form (¢!} for some divisor ¢ of n. By the fundamental
theorem, the intermediate fields are the fixed fields of the ot. If ¢ is a divisor
of n, write n = tm, and let @ = {/a. Then o'(a™) = (W'a)™ = a™, so0
a™ is fixed by o*. However, the order of a! F*™ in F*/I*™ is m, so F( /a)
has degree m over F' by Proposition 9.6. By the fundamental theorem, the
fixed field of o* has degree m over F', which forces F'( {/a) to be the fixed
field of o!. This shows that any intermediate field of K/F is of the form
F( 7/a) for some divisor m of n. O

We now describe cyclic extensions of degree p in charactcristic p. Let F'
be a field of characteristic p > 0. Define p : FF — F by p(a) = a? — a.
Then g is an additive group homomorphism with kernel F,. To see this, if
a,b € F| then

pla+b)=(a+b)P —(a+b)
=aP —a+bP -0
= p(a) + p(b),

and p(a) = 0 if and only if a? = a, if and only if a € F,,. Note that if p(a) =
b, then p(a +.¢) = b for all ¢ € F,,, and in fact p~'(a) = {a+1i|i € Fp}.
Therefore, if K is an extension of F' such that there is an o € K with p(a) =
a € F, then F(a) = F(p~1(a)). The usual proof of the following theorem
uses the additive version of Hilbert theorem 90, but, as with Lemma 9.4,
we give a linear algebraic proof.




Theorem 9.8 Let char(F) = p, and let K/F be a cyclic Galois extension
of degree p. Then K = F(«a) with a? — o — a =0 for some a € F; that is,
K = F(p~1(a)).

Proof. Let o be a generator of Gal(K/F'), and let T be the linear trans-
formation T' = ¢ — id. The kernel of T is

ker(T) = {b € K : 0(b) = b}
= F

Also, TP = (0—id)? = oP—id = 0, since the order of ¢ is p and char(F') = p.
Thus, im (TP~!) C ker(T)). Because ker(T') = F and im (TP"!) is an F-
subspace of K, we get iin (T'p‘l) = ker(T). Therefore, 1 = TP~ !(c) for
some ¢ € K. Let a = TP7%(c). Then T(a) = 1, so o(a) —a = 1 or
o(c) = a + 1. Since « is not fixed by o, we see that a ¢ F, so F(a) = K
because [K : F] = p is prime. Now,

o(a? ~ @) = o(a) —o(a) = (a+ 1) — (a+1)

=P +1—a—-1=a? — a.
Ifa=aP —q, then p(a) =a € F;so a?P —a —a=0. O
The converse of this theorem is also true.

Theorem 9.9 Let F be a field of characteristic p, and leta € F —p~ '(F).
Then f(z) = P — x — a s irreducible over F', and the splitting field of f
over F' is a cyclic Galois extension of F' of degree p.

Proof. Let K be the splitting field of f over F'. If a is a root of f, it
is easy to check that « 4 1 is also a root of f. Hence, the p roots of f
are a, a + 1,...,a + p — 1. Therefore, K = F(«). The assumption on a
assures us that o ¢ F'. Assume for now that f is irreducible over F'. Then
[K : F] = deg(f) = p. By the isomorphism extension theorem, there is a
o € Gal(K/F) with o(a) = a+ 1. From this, it follows that the order of o
is p, so Gal(K/F) = (o). This proves that K/F is a cyclic Galois extension.

It remains for us to prove that f(z) is irreducible over F'. If not, then f
factors over F' as f(z) = g1(z) - - - g-(x), with each g; irreducible over F'. If
B is a root of g; for some 7, then the paragraph above shows that K = F(f3),
so [K : F| = deg(g;).- This forces all degrees of the g; to be the same, so
deg(f) = rdeg(g1). Since deg(f) is prime and f does not split over F', we
see that » = 1; hence, f is irreducible over F. O

Example 9.10 Let F' = F,(z) be the rational function field in one variable
over Fp,. We claim that = ¢ p~!'(F), so the extension F(p~!(z)) is a cyclic
extension of F" of degree p. To prove this, suppose instead that z € p~!(F),
so z = aP — a for some a € F. We can write a = f/g with f,g € F,[z]
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relatively prime. Then z = fP/g? — f/g, or gPz = fP — fgP~'. Solving
for fP gives f? = gP~1(gx — f), so g divides fP. This is impossible; thus,
z & p_l (1), and then IP(p~ '(F)) is a cyclic extension of 7 ol degree poas
we claimed.

Problems

1. Suppose that F' is a field containing a primitive nth root of unity,
and let a € I'. Show that ™ — a is irreducible over F' if and only if a
is not an mth power for any m > 1 dividing n.

2. Suppose that F'is a field, and let w be a primitive nth root of unity
in an algebraic closure of F. If a € F' is not an mth power in F'(w)
for any m > 1 that divides n, show that z™ — a is irreducible over F.

3. This problem describes cyclic extensions of degree four of a bhase field
that does not contain a primitive fourth root of unity. Let F" be a field
that does not contain a primitive fourth root of unity. Let L = F'(1/a)
for some a € F — F?, and let K = L(~+/b) for some b € L — L?. Show
that the following statements are equivalent:

(a) a is a sum of two squares in F.
(b) =1 = Ny p(a) for some a € L.
c
d

(c) a = Np/r(a) for some o € L.
(d) Np,r(b) = amod F** for some b € L.
e) K/F is a cyclic extension (with the b in Problem 3d).

)
)
)
)
)
f)

(
(f) L lies in a cyclic extension of F' of degree 4.

4. This problem investigates the splitting field of the polynomial " —
over a field F' that does not contain a primitive nth root of unity.

(a) Ifa € F, show that the splitting field of 2™ —a over F is F(a,w),
where o™ = a and w is a primitive nth root of unity.

(b) Let N = F(o,w), let K = F'(a), and let L = F(w). Show that
L/F is Galois and N/L is cyclic.

(¢) Suppose that min(F,w) = (z — w)(z —w™!) and that [V : L] =
n. Show that there is an element ¢ € Gal(N/F) with o(a) =
wa and o(w) = w, and a 7 with 7(w) = w™! and 7(a) = «a.
Moreover, show that the order of ¢ is n, the order of 7 is 2, and
7o = o~ 1. Recall the definition of the dihedral group D,,, and
show that D, = Gal(N/F).
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(d) Let p be an odd prime, and let w € C be a primitive pth root of
unity. Let F' = Q(w) NR. Let a € Q be a rational number that
is not a pth power in Q). Show that [F({/a) : F] = p and that
il L = ['(w), then [L(a) - L] = p. Couclude that if N is the
splitting field of 2P — a over F, then Gal(N/F) = D,,.

5. In this problem, we prove the following result: Suppose that K/F is
a finite cxtension with /i algebraically closed. Then char(F) = 0 and
K = F(v/—1). Use the following steps to prove this:

(a) If char(F)=p>0and B € F — F?, then 27" — 3 is irreducible
over F' for all » > 0.

(b) If char(F') = p > 0 and there is a cyclic extension of degree p,
then there are cyclic extensions of F' of degree p” for any r > 1.

(c) Let p be a prime, and suppose that either F' contains a primitive
pth root of unity for p odd, or that F' contains a primitive fourth
root of unity for p = 2. If thereis an a € F' with 2P —a irreducible
over F, then 2P — a is irreducible over F.

(Hint: Use a norm argument.)

(d) Use the previous steps to prove the result.

10 Hilbert Theorem 90 and Group Cohomology

In this section, we change gears. Instead of investigating Galois extensions
with certain types of Galois groups, we investigate some deep ideas that
arise in classical treatments of cyclic Galois extensions. Cohomology, first
introduced in algebraic topology, is a valuable tool in many areas of algebra,
including group theory, the theory of algebras, and algebraic geometry.
We introduce the notions of group cohomology here, we give a couple of
applications of the theory, and we relate it to cyclic extensions. To start
with, we prove the so-called Hilbert theorem 90, which can be used to prove
Lemma 9.4, the key step in characterizing cyclic extensions.

In order to prove the Hilbert theorem 90, we define a concept that we
will see again when we formally define group cohomology. Let K be a field,
and let G be a subgroup of Aut(K). A crossed homomorphism f : G — K*
is a function that satisfies f(o7) = f(o) - o(f(7)) for all 0,7 € G.

Proposition 10.1 Let K be a Galois extension of F with Galois group GG,
and let f : G — K™ be a crossed homomorphism. Then there is an a € K
with f(r) =7(a)/a for all a_{e G.

Proof. The Dedekind independence lemma shows that 3~ . f(o)o(c) # 0
for some ¢ € I, since each f(o) # 0. Let b = > . f(o)o(c). Then




ceCG
=" iro) - (ro)e) = b
ceG
Thus, f(r) = b/7(b). Setting a = b~ proves the result. o

Theorem 10.2 (Hilbert Theorem 90) Let K/F be a cyclic Galois ex-
tenston, and let o be a generator of Gal(K/F). Ifu € K, then Ng;p(u) = 1
if and only if u = o(a)/a for some a € K.

Proof. One direction is easy. If u = o(a)/a, then Ng,p(0(a)) = Ng/r(a),
so N(u) = 1. Conversely, if Nk p(u) = 1, then define f : G — K* by
f(id) =1, f(o) =u, and f(o%) = uo(u) - 0~ (u) for i < n. To show that
f is a crossed homomorphism, let 0 < i,j < n.If ¢ +j < n, then

flo'a?) = f(o™) =uo(w) o™ w)
= (uor(w)- ' () - o* (uo(w) -+ 0" (w)
= f(o")- o (£(o)).

Ifi+j5>n,then0<i+3j5—n<n,so

flo'o?) = f(6™7) = f(6"77") = uo(u) - o™ (w).

Therefore, f is a crossed homomorphism. By Proposition 10.1, there is an
a € K with f(o') = o*(a)/a for all i. Thus, u = f(o) = o(a)/a. O

Lemma 9.4 follows quickly from the Hilbert theorem 90. If K/ F is a cyclic
extension of degree n, if ¢ is a generator of Gal(K/F'), and if F' contains
a primitive nth root of unity w, then Ng/p(w) = w™ = 1. Therefore,
w = o(a)/a for some a € K. This gives an alternative proof of Lemma 9.4,
the proof most commonly seen in Galois theory texts.
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We can mimic the arguments above to get results about the trace. However,
before we do so, we introduce group cohomology. Given a group &G and
an Abelian group M with some extra structure to be described shortly,
we will obtain a sequence of cohomology groups H™(G, M), one for each
nonnegative integer.

I.et G be a group, and let M be an Abelian group. We say that M is a
G-module if there is a function G x M — M, where the image of (o, m) is
written om, such that

1m =m,
o(tm) = (o7)m,

o(my +mg) =omy + omy

for all m,m;, ms € M and all o, 7 € G. This is equivalent. to the condition
that M is a left module over the group ring Z|G]. For example, if K is a
Galois extension of a field F' and G = Gal(K/F), then K* is a G-module
by defining oa = o(a). Similarly, the additive group (K, +) is a G-module.

Suppose that M is a G-module. Let C™(G, M) be the set of all functions
from the Cartesian product G x G X -- - x G (n times) to M. The elements
of C™(G, M) are called n-cochains. If n = 0, we define C°(G, M) = M.
The sct C™(G, M) can be made into a group by adding functions compo-
nentwise; that is, if f,g € C™(G, M), define [ + g by

(f+g)or,...,on) = f(o1,.-.yon) +g(0o1,--.,0n).

One can easily check that with this operation C™(G, M) is an Abelian
group. Note that C™(G, M) = homy(Z|G"]|, M), which is another way to
see that C™(G, M) is an Abelian group.

Define a map 6, : C"(G, M) — C"" (G, M) by

on(f) (o1, Ont1) = 01f(02,. -, 0ns1)
+Z(_1)if(0'l:‘--;Ui0i+1:-~'yon+1)
i=1

+H(=1)" flo,. ., o0).

If n = 0, then the map &y : M = C°(G,M) — C*(G,M) is defined
by da(m)(e) = om — m. This definition is compatible with the general
formula above. A straightforward but tedious calculation shows that 6, is
a homomorphism and that é,, ., 0 8,, is the zero map (sec Problems 1 and
2). The maps §, are called boundary maps.

Let Z™"(G,M) = ker(6,). The elements of Z™(G,M) are called n-
cocycles. Since 6, (6,—1(f)) = 0 for all f € C* (G, M), the image of 6,_;




is contained in ker(é,). Let B™(G, M) = im(6,,_1) if » > 0. For n = 0,
let B(G, M) = 0. The elements of B™(G, M) are called n-coboundaries.
Finally, the nth cohomology group H™(G, M) of G with coefficients in M
is defined by

H™G, M) = Z™(G, M)/ BY(G, M).

Two cocycles in Z™ (G, M) are said to be cohomologous if they represent
the same element in H™ (G, M); that is, if they differ by a coboundary.

Let us look at the cohomology groups for small n. The kernel of 4
consists of all m € M with om = m for all 0 € G. Therefore,

H°(G,M)=M" ={me&M:om=mforall o € G}.

Ifn =1, then f : G — M is a l-cocycle if §,(f) = 0. This happens
when of(17) — f(o7) + f(0) = 0 for all 0,7 € G. In other words, a 1-
cocycle is a crossed homomorphism as defined above, at least when M is
the multiplicative group of a field. If g is a 1-coboundary, then there is an
m € M with g(o) = om —m for all 0 € G. Proposition 10.1 implies that
if G = Gal(K/F), then any 1-cocycle from G to K* is a 1-coboundary.
In other words, H'(G, K*) = 0. This result is often referred to as the
cohomological Hilbert theorem 90. It is also true that H'(G, K) = 0, as we
now prove.

Proposition 10.3 Let K/F be a Galois extension with Galois group G,
and let g - G — K be a l-cocycle. Then there is an a € K with g(1) =
7(a) —a for all T € G.

Proof. Siuce K/F is scparable, the trace map Tk /p is not the zero map.
Thus, there is a ¢ € K with Tg,p(c) # 0. If @ = Tk p(c), then o € F* and
Tx/r(a™'c) = 1. By replacing ¢ with a~lc, we may assume that, Tryr(c) =
1. Recall that Tx/p(z) = 3 cqo(z) forallz € K. Let b= 3 .~ g(o)o(c).
Then 7(b) = 3 _,ec 7(9(0))(70)(c). Since g(10) = g(7) + 7(g(0)),

(b)) = ) (g(r0) = 9(7)) (10)(c)

oceG
= > g(ro)(70)(e) = > 9(7)(70)(c)
oceG ceG
—b—g(r)-7 (Zo@)
occG
=b—g(7)

Therefore, g(7) = b — 7(b). Setting a = —b gives g(7) = 7(a) — a for all
T € G. 0O

We record our two results about H' in the following corollary.




Corollary 10.4 (Cohomological Hilbert Theorem 90) Let K be a

Galois extension of F with Galois group G. Then H*(G,K*) = 0 and
HY(G,K) =0.

The triviality of H!(G, K) can be used to give information about the
trace map of a cyclic extension and to give an alternative proof of Theorem
9.8, the proof that is typically seen in texts. We now obtain the analog of
the Hilbert theorem 90 for the trace map.

Theorem 10.5 (Additive Hilbert Theorem 90) Let K be a cyclic
Galows cxlension of I', and let o be a generator of Gal(K/I"). If u € I,
then Treyp(u) = 0 if and only if w = o(a) — a for some a € K.

Proof. If v = o(a) — a, then Tk, p(u) = 0. Conversely, suppose that

Txp(w) =0. Let n = [K : F], and define g : G — K by g(id) =0, g(o) =
u, and for 1 < n by

9(0") = uto(u) + -+ 0" (w).
If0 <45 <n, thenas 0= Tg/p(u) = 3 1, ot(u), we see that regardless
of whether 147 < mn or i + 75 > n, we have
g(o'o’) =uto(u) +---+ 0" (u)
=(u+o(u) +- -+ u)+o" (ut o)+ +a/7H(w)
— 9(0*) + 0" (g(0?)).
Therefore, g is a cocycle. By Proposition 10.3, there is an a € K with

g(o?) = o'(a) — a lor all 4. Hence, v = g(o) = o(a) — a- O

The usual argument for Theorem 9.8 goes as follows. If K/F' is a cyclic
extension of degree p with char(F') = p, then T /p(1) = p-1 = 0, so by the
additive Hilbert theorem 90, 1 = o(a) — a for some a € K. It is then easy
to see that a is a root of 2P — z — ¢ for some ¢ € F' and that K = F(a).

Group extensions

Second cohomology groups have some important applications. In what fol-
lows, we will discuss applications to group theory and to the thcory of
division algebras. Before doing so, we write out the formulas that deter-
mine when a 2-cochain is a 2-cocycle or a 2-coboundary. Let G be a group,
and let M be a G-module. A function f: G x G — M is a 2-cocycle if for
each o,7,p € (G, we have

flo,7)f(or,p) = o f(7,p) f(o,Tp).

We will refer to this equation as the cocycle condition. On the other hand,
if there are m, € M with

flo,7) =mg +om,; — my,




for cach 0,7 « &, then fisa = . aary.

The first application of sccond cohioniology groups we give is to group
extensions. We point out that a number of statemeunts in the remainder of
this section will be left as exercises. Suppose that F is a group that contains
an Abelian normal subgroup M, and let G = E/M. We then say that E
is a group extension of G by M. The basic problem is this: Given groups
(G and M, describe all groups E that, up to isomorphism, contain M as
a normal subgroup and have £/M = G. As we shall see, if M is Abclian,
then H?(G, M) classifies group extensions of G by M.

Example 10.6 Let £ = S3. If M = ((123)), then M is isomorphic to
Z/37 and M is an Abelian normal subgroup of E. The quotient group
E/M is isomorphic to Z/2Z. Therefore, S; is a group extension of Z/2Z
by Z/3Z.

Example 10.7 Let £ = D,, the dihedral group. One description of F is
by generators and relations. The group E' is generated by elements o and 7
satisfying 7% = 0% = e and 070 = 77 '. Lol Al = (o), a normal subgroup of
E that is isomorphic to Z/nZ. The quoticut E/M is isowmorphic to Z/27,
so E is a group extension of Z/2Z by Z/nZ.

Example 10.8 Let M and G be groups, and let ¢ : ¢ — End(M) be
a group homomorphism. If E is the semidirect product M x., G, then
M' = {(m,e) : m € M} is a normal subgroup of E isomorphic to M, and
E/M' =2 G. Thus, E is a group extension of M by (. Notice that the
group extensions in each of the two previous examples are also semidirect
products.

Suppose that M is Abelian and that F is a group extension of Giby M.
We can make M into a GG-module as follows. View G = E/M. If 0 € G
and m € M, let e be any element of £ that is a coset representative of o.
Then define om = eme~!. Note that we will write the group operations in
these groups multiplicatively. The groups G and E need not be Abclian,
although we are assuming that A/ is Abelian. It is not hard to show that
this definition gives a well-defined action of G on M and that M is a G-
module. We can obtain a 2-cocycle from this information. For cach o €
(7, pick a coset representative e, € FE. The map o — e, need not be
a homomorphism. Let f(o,7) = e,ere;}. Then the coset of f(g,7) in
G is trivial, so eyere;} € M. Therefore, f is a function from G x G to
M. Moreover, a short calculation shows that f is actually a 2-cocycle.
The cocycle f does depend on the choice of coset representatives chosen.
Suppose that {d, } is another set of coset representatives for the elements of
(7. Then there are m, € M with d, = m,e,. Let g be the cocycle obtained
by the choice of the d,; that is, g(o,7) = d,d.d,}. Then

g(0,7) = dyd,d;} = (mye,)(m e, ) (Myreqr) "
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In this calculation, we used the fact that e,me;! = om. The function
(o,7) — myom,m;} is the image under §, of the l-cochain o — m,.
Therefore, f and ¢ differ by a 1-coboundary, so they determine the same
element of H?(G, M). We have thus shown that for any group extension E
of G and M there is a uniquely determined element of H*(G, M).

We can reverse these calculations. Let M be a G-module and let f €
Z?(G, M). We can define a group E; as follows. As a set, By = M x G.

However, multiplication in E is defined by
(m,o)(n,7) = (m-on- f(o,7),aT).

A short calculation shows that this is an associative operation with an
identity (f(1,1)7',1), and (m,0)~" = (m=1f(1,1)"",07"). In fact, asso-
ciativity follows exactly from the condition that f is a 2-cocycle. The for-
mulas for identity and inverses use the fact that f(1,1) = f(1,0) = f(o,1)
for any o € , which also follows from the cocycle condition. The group
M is isomorphic to the normal subgroup {(m,1) : m € M} of Ef, and the
quotient of E; by this subgroup is isomorphic to G. It is not hard to show
that if ¢ is another 2-cocycle that differs from f by a 2-coboundary, then
the resulting group obtained from ¢ is isomorphic to Ef. By being more
precise about the definition of a group extension, these arguments would
then show that the group extensions of M by G are classified by H?(G, M).

Example 10.9 Let M and G be groups and ¢ : G — End (M) be a group
homomorphism. Let £ = M x, G be the semidirect product of M by G.
We determine the cocycle describing E. Let M’ = {(m,e):m € M} and
G' = {(e,g) : g € G} be the isomorphic copies of M and G inside E. The
elements of ' form a natural set of coset representatives of M’ in E. The
cocycle f describing F is defined by

f(o, T) = (e’o)(eaT)(e)OT)—l - (676)7

so f is the trivial cocycle.

Conversely, if f is the trivial cocycle of H?(G, M), then we can see that
the group extension constructed from G and M and f is a semidirect prod-
uct of M by &, for the mapping o — e, defined earlier is a homomorphism
if and only if the corresponding cocycle is trivial. Since this map is a ho-
momorphism, we can check that the map ¢ : G — End(M), where ¢(0) is
the automorphism m — e,me !, is also a homomorphism, and the group
E; constructed above from G, M, and f is the semidirect product M x,, G.
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Example 10.10 Let ()3 be the quaternion group. Then Qg =
{£1, 41,45, £k}, and the operation on Qs is given by the relations i =
72 =k? = —1 and ij = k = —ji. We show that Qg is a group extension of
M = (3) by Z/2Z, and we determine the cocycle for this extension. First
note that M is an Abelian normal subgroup of (Js and that Qg/M = Z/2Z.
Therefore, Qg is a group extension of M by Z/27Z. We use 1 and j as coset
representatives of M in @g. Our cocycle f that represents this group ex-
tension is then given by

This cocycle is not trivial, so Qg is not the semidirect product of M and
Z/27Z. In fact, Qg is not the semidirect product of any two subgroups,
because one can show that there do not exist two subgroups of (Js whose
intersection is (1).

Crossed products

Another application of the second cohomology group is in the theory of
algebras. If F' is a field, then an F'-algebra is a ring A that is also an F-
vector space, in which multiplication in A and scalar multiplication are
connected by the axiom

a(ab) = (aa)b = a(abd)

foralla,b € A and all @« € F. Let K be a Galois extension of F' with Galois
group G. If f € Z?(G, K*), we can construct an F-algebra from K, G, and
f as follows. For each o € G, let x, be a symbol and let A be the Abelian
group

A= ®UEGK$0"

We can define multiplication on A by using the two definitions

Tokr = [(0,T)00r,

)
Lot = 0(a)T,.

A full definition of multiplication can then be obtained by using distribu-
tivity; that is,

Y so - Y bexe =Y ag0(b)f(0,T)T0r.

ceCG TEG o, TeG

A calculation shows that associativity of multiplication follows immediately
from the cocycle condition and that the other axioms of an F-algebra are
straightforward. The algebra A is an F-vector space of dimension |G| - [K :
F| = IGI2. This algebra is called a crossed product and is often deuoted A =
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(K/F,G, f). Crossed products come up in the theory of division algebras.
It is known that any crossed product is isomorphic to a ring of n x n
matrices over a division ring. Moreover, if D is a division ring that is finite
dimensional over the field F = {a € D : da = ad for all d € D}, the center
of D, then some matrix ring over D is isomorphic to a crossed product
algebra of the form (K/F, G, f) for some Galois extension K of F.

The algebra A is determined up to isomorphism not by the cocycle f but
by the class of f in H%(G, M), as we now show. Supposc that g is another
2-cocycle that differs from f by a 2-coboundary. Then there are a, € K™
with g(o,7) = a,o(a,)a;t f(o,7). Let yo = a,z,. Then Ky, = Kz,, so

A =&,ccKy,. Moreover, y,a = o(a)y, for all a € K, and

-1 —1
YolrlYor = a’U'a:UaT:I"T(a’O'T:EO'T)

= aaa(aT):z:U:cT:c;ia;Tl

— ag0(ar)ay) f(0,7)

= g(o,7).
Therefore, the algebra constructed with the procedure above using the
cocycle g is isomorphic to A. Conversely, if the algebras constructed from

two cocycles are isomorphic, then it can be seen that the cocycles are
cohomologous; that is, they represent the same element in H?(G, M).

Example 10.11 Let H be Hamilton’s guaternions. The ring H consists of
all symbols a + bi + ¢j + dk with a,b,c,d € R, and multiplication is given
by the relations i = j? = k? = —1 and ij = k = —7ji. This was the first
exarmple of a nonicommutative division ring. The field of complex numbers
C can be viewed as the subring of H consisting of all elements of the form
a + bi, and H = C & Cj. The extension C/R is Galois with Galois group
{id, o}, where o is complex conjugation. Let z;q = 1 and z, = j. Then

zo(a+ b))z, = jla+bi)j ' =a—bi=oc(a+ bi).

The cocycle f associated to this algebra is given by
j(ld,ld) = Cl?'ldil,",dil)-;]l == 1,
£(id,0) = miazoay" = 1,
f(o,id) = zozigz; ' =1
)

flo,0) = asgasga:;jl =42 =—1

(id, o
o

On the other hand, if we start with this cocycle and construct the crossed
product A = (C/R,Gal(C/R), f), then A = Cziq ® Cz,, and the map
A — H giveu by cziq + dz, — ¢ + dj is an isomorphism of R-algebras.

Example 10.12 Let K/F be a Galois extension of degree n with Galois
group (7, and cousider the crossed product A = (K/F,G, 1), where 1 rep-
resents the trivial cocycle. We will show that A = M, (F), the ring of n x n




matrices over F'. First, note that A = ®,ccKz,, where multiplication
on A is determined by the relations z,z, = 2,, and z,a = o(a)z, for
a € K.If f =3 a,z, € A, then f induces a map 5 : K — K given by
0¢(k) = > a,0(k). In other words, ¢ is the linear combination 3 a,o.
Each o is an F-linear transformation of K, so ¢ € Endp(K). The rela-
tions governing multiplication in A show that the map ¢ : A — Endp(K)
given by ¢(f) = ¢y is an F-algebra homomorphism. Moreover, ¢ is injec-
tive since if > a,o is the zero transformation, then each a, = 0 by the
Dedekind independence lemma. Both A and Endr(K) have dimension n?

over F', so ¢ is automatically surjective. This proves that A = Endg(K),
and so A & M, (F).

Crossed products have a simpler description when we start with a cyclic
extension. In addition, the norm map helps to describe crossed products in
this situation. Suppose that K/F is a cyclic Galois extension with Galois
group G = (g}, and let a € F*. We can define a cocycle in H?(G, K*) by

s 1 ifi+73<n
1 7 _
f(a,a)—{ a ifi+j>n.

A straightforward calculation shows that f is indeed a 2-cocycle. The al-
gebra constructed from f is usually denoted (K/F,o,a) and is called a
cyclic algebra. This construction is a special case of the crossed product
construction. If z = z,, then zaz™! = o(a) for all & € K, and z™ = a.
These relations along with K and o fully determine the algebra (K/F,0,a).
If a = Ng/r(c) for some ¢ € K, then if we set y, = ¢ 'z,, a short cal-
culation shows that y? = 1. Therefore, the cocycle associated to y, is
trivial, so (K/F,0,a) & M,(F) by Example 10.12. Moreover, Problem 16
proves that H?(G, K*) = F* /N, r(K*). One consequence of this fact is
that two algebras (K/F,o,a) and (K/F,o,b) are isomorphic if and only if
ab™! € Nk p(K™). Moreover, by a theorem of the theory of algebras, if
none of the elements a, a?,...,a" ! are equal to the norm from K to F of
a nonzero element of K, then (K/F,0,a) is a division algebra. Hamilton’s
quaternions are of the form (C/R, o, —1).

The interested reader can find much more information about group ex-
tensions and crossed products in Rotman [23] and Jacobson [16].

Problems

1. Let M be a G-module. Show that the boundary map 6,
C™"(G, M) — C"" (G, M) defined in this section is a homomorphism.

2. With notation as in the previous problem, show that 6,4, 06, is the
Zero map.

3. Let M be a G-module, and let f € Z*(G, M). Show that f(1,1) =
f(1,0) = f(o,1) for all o € G.




10.

11.

12.

13.

14.

15.

16.

[f E is a group with an Abelian normal subgroup A/, andif G = E/M,
show that the action of G on M given by om =eme ' if eM =0 is
well defined and makes M into a G-module.

With E, M, as in the previous problem, if e, is a coset representa-
tive of o, show that the function f defined by f(o,7) =e,e.e,} is a
2-cocycle.

Suppose that M is a G-module. For each ¢ € GG, let m, € M. Show
that the cochain f defined by f(o,7) = my,+om,—m,+ is a cobound-
ary.

If M is a G-module and f € Z?(G, M), show that E; = M x G with
multiplication defined by (m,o)(n,7) = (m-on - f(o,7),07) makes
E; into a group.

If M is a GG-module, show that the group extensions constructed from
2-cocycles f,g € Z%(G, M) are isomorphic if f and g are cohomolo-
gous.

In the crossed product construction given in this section, show that
the multiplicative identity is f(1,1) !ziq.

A normalized cocycle is a cocycle f that satisfies f(1,0) = f(o,1) =1
forallo € G. Let A = (K/F, G, f) be a crossed product algebra. Show
that xiq = 1 if and only if f is a normalized cocycle.

In the construction of group extensions, show that if ejq is chosen to
be 1, then the resulting cocycle is a normalized cocycle.

Show that any 2-cocycle is cohomologous to a normalized cocycle.

If two crossed products (K/F,G, f) and (K/F,(, g) are isomorphic
as [F-algebras, show that f and ¢ are cohomologous.

Let G be a group of order n. Show that nH?*(G, M) = 0.
(Hint: Given f,let ¢, = 3° ¢ f(o,p). Show that nf is cohomologous
to the coboundary g given by ¢(o,7) = ¢, + 0¢; — Cor-)

Let A = (K/F,0,a) be a cyclic algebra. If A = @7} Kz,:, show that

T = a.

(22

Cohomology of o cyclic group. In this problem, we determine
H?(G, M) for a cyclic group G. Suppose that G = (o) is a cyclic
group of order n. If M is a G-module, let M“ = {m € M : em = m}.
Also, define the norm map N : M — MS by N(m) = Y0 o'm.

1=

We will prove that H2(G, M) = M /im(N) in the following steps.
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(a) If m € MC, let f,, be the cochain given by f,,(c% 07) = 1 if
147 <n,aud f,(c%,07) =m if 1+ j > n. Prove that f,, is a
cocycle.

(b) Suppose that f,, and f, are cocycles that are cohomologous.
Then there are ¢; € M with f,,(c¢%,07) = f.(c", 03)-ciaz(cj)ci_+lj,
where we are writing ¢; for ¢,:. Show that m —n = N(c).

(c) Prove that a cocycle f € Z?(G,M) is cohomologous to fi,,
where m = Z?:_Ol f(o*, o). Make use of the cocycle condition

[0, a") f(o"F, o) = o (f(o*,0)) [ (", ).

(d) Conclude from these steps that the map m — f,,, induces an
isomorphism M%/im(N) = H?(G, M).

(It is known thal [1#7(G, M) 2 [[*(G, M) lor a cyclic group (7, so this
problem calculates all of the even dimeusional cohomology groups for
G.)

17. In this problem, we calculate H'(G, M) for a cyclic group G. Let
N be the norm map defined in the previous problem, and let D :

M — M be defined by D(m) = om —m. We show that H' (G, M) &
ker(N)/im(D).

(a) Let m € M satisly N(m) = 0. Define a 1-cochain f by f(c*) =
m+om+---+ 0" tm. Show that f is a 1-cocycle. For the rest
of this problem, f,, will denote this cocycle.

(b) If fm and f, are cohomologous, show that m —n = op — p for
some p € M.

(c) Let f bea l-cocycle. If m = f(o), show that f is cohomologous
to fin-

(d) Conclude that H'(G, M) = ker(N)/im(D).

(Note that H%(G, M) = ker(D)/im(NN) by the previous problem. It is
known that H?"+'(G, M) = H'(G, M) for a cyclic group G. Problems
16 and 17 then determine all of the cohomology groups for a cyclic
group.)

11 Kummer Extensions

In Section 9, we described Galois extensions with cyclic Galois groups un-
der certain restrictions on the base field. We use the results proved there
together with the fundamental theorem of finite Abelian groups to charac-
terize Galois extensions with an Abelian Galois group, provided that the
base field has sufficient roots of unity.
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Definition 11.1 Let F' be a field containing a primitive nth root of unity.
A Galows extension K of F is called an n-Kummer eztension of F pro-
vided that Gal(K/F') is an Abelian group whose exponent divides n. If K is
an n-Kummer extension of F' for some n, then K/F is called a Kummer
extension.

Example 11.2 If F'is a field that contains a primitive nth root of unity,
and if K/F is a cyclic extension of degree n, then K/F is an n-Kummer
extension. If F' also contains a primitive mth root of unity for some m that
is a multiple of n, then K/F is also an m-Kummer extension. Therefore, if
an extension is an n-Kummer extension, the integer n need not be unique.

Example 11.3 Let K = Q(+/2,v/3). The field K is the splitting field of
(2 —2)(x2?—3) over Q, so K is a Galois extension of Q. A short calculation
shows that [/ : Q| = 4, and the Galois group of /{/Q cousists ol the [our
automorphisms

id: V2 — V2, \/?;—>\/§,

o:V2 - —-v2, V3 V3,
T:V2 - V2, V3 V3,
oT: V2 5 —V2, V3 —V3.

The Galois group Gal(K/Q) is isomorphic to Z/2Z x Z/27Z, an Abelian
group of exponent 2. Since (Q contains the primitive second root of unity,
—1, the extension K/Q is a 2-Kummer extension.

The fundamental theorem of finite Abelian groups says that any such
group is a direct product of cyclic groups. Using this fact together with the
fundamental theorem of Galois theory and the characterization of cyclic
extensions in Section 9, we obtain the following characterization of Kummer
extensions.

Theorem 11.4 Let F be a field containing a primitive nth root of unity,
and let K be o finite extension of F'. Then K/F is an n-Kummer extension

if and only of K = F(/ay,..., /a,) for some a; € F.

Proof. Suppose that K = F(a,...,a,) with al)! =a; € F. Ifw € F is a
primitive nth root of unity, then the distinct elements o, way; ..., w" oy
are all the roots of 2™ —q; in K. Thus, ™ —a; is separable over F' and splits
over K. Hence, K is the splitting field of the set {z™ —a;:1 <i <r}, so
K/F is Galois by Theorem 4.9. If o € Gal(K/F), then o(a;) = w’ay; for
some j since o(a;) is also a root of z™ —a;. For each k, we see that o*(c;) =
wkia;, so o™(a;) = ;. This is true for each i, and since the «; generate K

over F', we see that o™ = id. Therefore, the exponent of Gal(K/F) divides




n. To prove that Gal(//F) 15 Abelian, take o, 7 € Gal(h /1), Given 4, set
o(o;) = w a; and T(a;) = w®a;. Then

k k g
;) = w W a;

(o7)(e) = o(w
and | |
(To)(e) = T(W o) = W wFay.

Thus, o7 and 7o agree on the generators of K, so 07 = 7o. In other words,
Gal(K/F) is Abelian.

For the converse, suppose that K/F is Galois with G = Gal(K/F) an
Abelian group whose exponent divides n. By the fundamental theorem of
finite Abclian groups, G = C|, x --- x C,., where each Cj; is cyclic. Note
that each |C;| divides n. Tet H; = Cy x -+ x Ci_) x Cip1 x - x Cy, a
subgroup of G with G/H; = C;. Let L; be the fixed field of H;. Then L;
is Galois over F', since H; is normal in GG, and Gal(L;/F) =2 G/H; = C;.
Therefore, L;/F is cyclic Galois. Let [L; : F] = m;. Then m; = |C, so
m; divides n. The field F contains the primitive m;th root of unity w™/™
so by Theorem 9.5, L; = F(«;) for some a; € L; with o' € F. Since
m; divides n, we see that o] = a; € F. Under the Galois correspondence,
the field F(a,...,a.) = Ly --- L, corresponds to the group HyN---N H,.

However, this intersection is (id), so F(ai,...,a,) corresponds to (id).
Thus, K = F(ay,...,a,) = F(/aq,..., /a,). 0

Example 11.5 If K = Q( /a1, ...,+/a,) for some a; € Q, then K/Q is a
2-Kummer extension by Theorem 11.4. The degree of K/ F' is no larger than
27, but it may be less depending on the choice of the a;. Problem 1 shows
that the degree is 27 if the a; are distinct primes. However, Q(\f \f f)
has degree 4 over (Q, not degree 8.

Example 11.6 Let F = Q(4), where i = v/—1, and let K = F(v/12, V/3).
Since 7 is a primitive fourth root of unity, K/F' is a 4-Kummer extension.
The degree of K/F is 8, not 16, since K = F(/2, v/3); this equality is true
because /12 = /2+/3. This example shows that if K = F(ay,...,ay) is
an n-Kummer extension of F' with o € F, it might be the case that a
smaller power of some of the «; is also in F.

If F contains a primitive nth root of unity, then F({/a,..., 3/ar) is
an n-Kummer extension of F. A basic question is to find its degree over
F. Certainly, this degree is no larger than n”. However, as the examples
above show, the degree might be less than n". We proved in Proposition
9.6 that [F'({/a) : F] is equal to the order of aF™ in the group F*/F*". We
obtain an analogous result for Kummer extensions below. However, this is
a harder result, and it requires more machinery to prove. It turns out that
the concept of a bilinear pairing is the right tool to investigate this question
about degrees.




elinition L7 Lel G oand 4 be fuute Abelwun groups, and let C be a
cyclic group. A function B : G x H — C 1s called a bilinear pairing if B is
a homomorphism in each component; that is, B(g1g2,h) = Blgy, h)Blgs, h)
for all g1,92 € G and all h € H, and B(g, hyhs) = B(g, h1)B(g, h2) for
all g € G and all hy,hy € H. The pairing B s called nondegenerate if
B(g,h) =€ for allh € H only if g = e, and if B(g,h) =€ for all g € G
only if h =e.

Let K/F be an n-Kummer extension, and let ;1(F) be the set of all nth
roots of unity in F. Then p(F) is a cyclic group by Theorem 6.1. Also, let

KUM(K/F)={a€ K*:a" € F}.

The set KUM(K/F) is a subgroup of I{*. Note that KUM(K/F) contains
F*,and if K = F({/ay, ..., {/ar), it also contains cach {/a;. Finally, let

kum(K/F) = KUM(K/F)/F*.

We now relate bilinear pairings to Kummer extensions. We define the Kum-
mer pairing

B : Gal(K/F) x kum(K/F) — pu(F)

by wi & . o m o
B(U,CYF*) :g(a)/a, (e )= a =)(%);‘1 ool €

This map is well defined, since if aF'* = GF™, then o« = a3 for some a € F*.
Thus, o(a)/a = o(af)/af = &3)/5, since o(a) = a.

We show that B is a nondegenerate bilinear pairing below. But first, we
prove a general result about bilinear pairings that allows us to exploit the
Kummer pairing to answer questions about Kummer extensions.

Lemma 11.8 Let B : G x H — C be a bilinear pairing. If h € H, let
By : G — C be defined by Bp(g) = B(g,h). Then the map ¢ : h+ By is a
group homomorphism from H to hom(G, C). If B is nondegenerate, then
exp(G) divides |C|, the map ¢ is injective, and ¢ induces an isomorphism
G=ZH.

Proof. The property B(g, hiha) = B(g, h1)B(g, h2) translates to By, p, =
B, Bh,. Thus, ¢(h1hs) = o(hy)p(hs), so ¢ is a homomorphism. The kernel
of ¢ is

ker ) {hEH Bh—O}
={he€ H:B(g,h)=eforal he H}.

If ¢ is nondegenerate, then ker(y) = (e), so ¢ is injective. Suppose that
= |C|. Then

= B(e,h) = B(g,h)™ = B(g™, h).
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Nondegeneracy of B lorces g™ = e, so exp(G) divides |G|. By a group
theory exercise (see Problems 4 and 5), hom(G,C) is isomorphic to the
character group hom(G,C*) , which is isomorphic to G. Therefore, there
are group isomorphisms

H = im(y) = hom(G, C) = G.

> Hlg thew (e C M =lgY | ey ciaut i, |Gle [H =0 16l st
O

We now have the tools to investigate the Kummer pairing of a Kummer
extension.

Proposition 11.9 Let K be an n-Kummer eztension of F', and let B :
Gal(K/F) x kum(K/F) — u(F) be the associated Kummer pairing. Then
B is nondegenerate. Consequently, kum(K/F) = Gal(K/F).

Proof. First, we show that B is a bilinear pairing. Let 0,7 € Gal(K/F)
and aF™* € kum(K/F). Then

or(e) _ o(r(e)) 7(a)

B(oT,alF™) =

a  7() o

NECIECH

the final equality is true because Gal(K/F') is Abelian. But o(a)™ = a™,
since o™ € F. Therefore, o(a)/a is an nth root of unity, so o(a)/a € F.
The automorphism 7 then fixes o(a) /e, so

B(oT,aF™) = ola). M

The pairing B is thus linear in the first component. For the second com-
pouent, il o, f € KUM(K/F), then

B(o,aF*8F*) = o(aB) _ o(a)o(f) _ ola) o(B)

af af o« I¢]

Therefore, B is a bilincar pairing.

For nondegeneracy, suppose that o € Gal(K/F) with B(o,aF*) =1 for
all aF* € kum(K/F). Then o(c) = « for all o« € KUM(K/F). However,
the elements in KUM(K/F') generate K as a field extension of F', and so
automorphisms of K are determined by their action on this set. Therefore,
o =id. Also, il B(o,al™) =1 for all o € Gal(K/["), Lthen o(o) = v Tor all
o. But then o € F(Gal(K/F)), and this fixed field is F' by the fundamental
theorem. Therefore, af™ = F*, so B is nondegenerate. The isomorphism
kum(K/F) = Gal(K/F) then follows from Lemma 11.8. O
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If K/F is a Galois extension, then [K : F| = |Gal(K/F)|. lf, in addition,
K is a Kummer extension of F', then Proposition 11.9 shows that [K : F| =
|kum (K /F)|. Therefore, if we can determine kum(K/F'), then among other
things we know the degree of K /F'. The following result is a generalization
of Theorem 9.6.

Proposition 11.10 Let K/F be an n-Kummer extension. Then there 1s
an injective group homomorphism f : kum(K/F) — F*/F*"  given by
f(aF*) = a™F*™. The image of f is then a finite subgroup of F*/F*™ of
order equal to [K : F].

Proof. It is easy to see that f is well defined and that f preserves mul-
tiplication. For injectivity, let aF* € ker(f). Then o™ € F*", so a™ = a”
for some a € F. Hence, a/a is an nth root of unity, and so a/a € F.
Therefore, o € F, so aF* = F* is the identity. The group kum(K/F) is
then isomorphic to the image of f. The final statement of the proposition
follows immediately from Proposition 11.9. O

This proposition can be used in reverse to construct Kummer extensions
of a given degree. Let G be a finite Abelian subgroup of F*/F*™. In a fixed
algebraic closure of F', let

F(G) = ({F¥/a:aF*™ € G}).

Problem 6 shows that F'(() is an n-Kummer extension with Galois group
Gal(F(G)/F) = G, and so [F(G) : F] =|G|.

Example 11.11 Let F = C(z,y, z) be the rational function field in three
variables over C, and let K = F({/zyz, /422, Vz22). Then K/F is a 4-
Kummer extension. The image of kum(K/F) in F*/F** is generated by
the cosets of zyz, yz, and z2z2. For simplicity we will call these three cosets
a,b, c respectively. We claim that the subgroup of F*/F** generated by
a,b,c has order 32, which shows that [K : F] = 32 by Proposition 11.10.
The subgroup (a,b) of F*/F** generated by a and b has order 16, since
the 16 clements a*h’ with 1 < ¢,7 < 4 are all distinct. To see this, supposc
that at’ = a*b’. Then there is an h € F* with

(zy2)" (v 2) = (zy2)*(y?2) Rt
Writing h = f/g with f, g € C[z,y, 2] relatively prime gives
(zy2)'(y*2) (2,9, 2) = (zy2)*(y*2) g(2,y, 2)".

By unique factorization, comparing powers of z and z on both sides of this
cquablion, we obtain

i = k(mod 4),
i+ J=k+1(mod4).




These cquations force © = Almodd) and j = e e o0 T clolinents
a't? for 1 < 4,5 < 4 are indeed distinct. Note that abc = z2y?2*F**, so
(abc)?* = 2y 28 F** = F*1. Therefore, ¢ = (ab)?, so cither the subgroup
(a,b,c) of F*/F** generated by a,b,c is equal to (a,b), or {(a,b) has index
2 in (a,b,c). For the first to happen, we must have ¢ = a‘b? for some ¢, .
This leads to an equation

vz’ flz,y,2)* = (zy2) (v’2) g(z,y, 2)*

for some polynomials f,g. Again applying unique factorization and equat-
ing powers of z and y gives 1 = 7(mod4) and 0 = 7 + 2j(mod 4). A simul-
taneous solution of these equations does not exist, so ¢ is not in the group
(a,b), so {(a,b) has index 2 in (a,b,c). This proves that (a,b,c) has order
32, as we wanted to show.

Problems

1. Let p1,...,p, be distinct primes. Show that [Q(\/p1,...,+/Pn) : Q] =
2™,

2. Let F=Q({+v/n:1 <n <28}). Determine [F : Q).

3. Let N be a positive integer, and let Fy = Q({y/n :1 < n < N},
Determine [Fy : Q).

4. Let G be a finite Abelian group whose exponent divides the order of
a cyclic group C. Show that hom(G, ') 2 hom(G,C).

5. If G is a finite Abelian group, show that hom(G,C) = G/
(Hint: First prove this if G is cyclic, then show that hom(G; x
(G2,C) = hom(G;,C) x hom(G2,C), and then invoke the structure
theorem for finite Abelian groups.)

6. Let F' be a field containing a primitive nth root of unity, and let
(G be a subgroup of F*/F** Let F(G) = F({{/a : aF*™ € G}).
Show that F(G) is an n-Kummer extension of F' and that G is the
image of kum(F'(G)/F) under the map f defined in Proposition 11.10.
Conclude that Gal(K/F) = G and [F(G) : F| = |G]|.
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Applications of Galois Theory

Now that we have developed Galois theory and have investigated a number
of types of field extensions, we can put our knowledge to use to answer
some of the most famous questions in mathematical history. In Section 15,
we look at ruler and compass constructions and prove that with ruler and
compass alone it is impossible to trisect an arbitrary angle, to duplicate
the cube, to squarc the circle, and to construct most regular n-gons. These
questions arose in the days of the ancient Greeks but were left unanswered
for 2500 years. In order to prove that it is impossible to square the circle,
we prove in Section 14 that 7 is transcendental over (@, and we prove at the
samc time that e is also transcendental over Q. In Section 16, we prove that
therc is no algcbraic formula, involving only field opcrations and extraction
of roots, to find the roots of an arbitrary nth degree polynomial if n > 5.
Before doing so, we investigate in detail polynomials of degree less than 5.
By the mid-sixteenth century, formulas for finding the roots of quadratic,
cubic, and quartic polynomials had been found. The success in finding the
roots of arbitrary cubics and quartics within a few years of each other led
people to bclieve that formulas for arbitrary degree polynomials would be
found. However, it was not until the early nineteenth century that Abel
was able to prove that it is impossible to find an algebraic formula for the
roots of an arbitrary fifth degree polynomial, and Galois was able to use his
new theory to explain why some polynomials had formulas for their roots
and others did not.
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12 Discriminants

In this section, we define discriminants and give methods to calculate them.
The discriminant of a polynomial is a generalization to arbitrary degree
polynomials of the discriminant of a quadratic. If K = F'(a) is a Galois ex-
tension of a field F', and if f = min(F,a), then the Galois group Gal(//F')
can be viewed as a subgroup of the group of permutations of the roots of
f. The discriminant determines when this subgroup consists solely of even
permutations. We will use this information to describe the splitting field of
a polynomial of degree 4 or less in Scction 13. While we ouly necd a little
information about discriminants in Section 13, we go into some detail here
for two reasons. First, there are some interesting relations Lhat inake cal-
culating discriminants managcable, and there are notions of discriminants
in a number ol other places, such as algebraic number theory, quadratic
form theory, and noncommutative ring theory. While the dilferent notions
of discriminant may scem unrelated, this is not the case, as we point out
in the following discussion.

The discriminant of a polynomial and an element

The type of discriminant we need in Section 13 is the discriminant of a
polynomial. To motivate the definition, consider a quadratic polynomial
f(z) = z* + bx + ¢ whose discriminant is b — 4c. The roots of f are
oy = £(—=b+Vb? —4c) and ay = %(—b—y’b2 — 4¢). Therefore, v/b? — 4c =
a1 — ag, 50 b2 — dc = (o) — ag)?. This indicates a way to gencralize the
notion of the discriminant of a quadratic to higher degrec polynomials.

Definition 12.1 Let F' be a field with char(F) # 2, and let f(z) € F[x].
Let ay, ... ,a, be the roots of f in some splitting field IS of [ over F', and
let A = [lic;(ai — ;) € K. Then the discriminant disc(f) of f is the
element D = A? = [licj(ai — aj)?.

Definition 12.2 If K is an algebraic extension of F' with char(F) # 2 and
a € K, then the discriminant disc(«) is disc(min(F, a)).

The discriminant disc(«) defined above is dependent on the base field F'.
Also, the element A is dependent on the labeling of the roots of f, in that a
different labeling can change A by —1. However, the discriminant does not
depend on this labeling. Note that if f(z) € Flz|, then D = disc(f) = 0
if and only if f has a repeated root. The discriminant thus will give us
information only when f has no repeated roots. It is in this case that we
concentrate our investigation. The discriminant D clearly is an element of
K. We can say more than that. If £ is the splitting field of a separable,
irreducible polynomial f € F[z] of degree n over F, then we view Gal(K/F')
as a subgroup of S,, by viewing the elements of Gal( K/ F') as perinutations
of the roots of f.
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Lemma 12.3 Let F be a field with char(F) # 2, let f(z) € Flz| be an
irreducible, separable polynomial, and let K be the splitting field of f(x)
over F. If A is defined as in Definition 12.2, then o € Gal(K/F) is an
even permutation if and only if o(A) = A, and o is odd if and only if
g(A) = —A. Furthermore, disc(f) € F.

Proof. Before we prove this, we note that the proof we give is the same
as the typical proof that every permutation of S, is either even or odd.
In fact, the proof of this result about S, is really about discriminants. It
is easy to see that each o € G = Gal(K/F) fixes disc(f), so disc(f) € F.
For the proof of the first statement, if n = deg(f), let M = F(x1,...,z,).
We saw in Example 2.22 that S,, acts as field automorphisms on M by
permuting the variables. Let h(z) = [[,;(z: — ;). Suppose that o € S, is
a transposition, say o = (ij) with 7 < j. Then o affects only those factors
of h that involve 7 or j. We break up these factors into four groups:

CEi—CEj
Tk — T, Tp —Ty; for k <i,
T; — T, x; —x for j <l
T — Tm, Tm—T; for +<m<y.

For k < ¢, the permutation o = (i) maps zx — z; to zx —; and vice versa,
and o maps z; — x; to z; — x; and vice versa for j < [. If 1 <m < j, then

0(Ti —Tm) =Tj — Ty = —(Tm — T5)
and
O'(Cl?m x]) =Tm — T; = _(xz mm)
Finally,
oz —z5) =z; —x; = —(x; — ;).

Multiplying all the terms together gives o(h) = —h. Thus, we see for an
arbitrary ¢ € S, that o(h) = h if and only if o is a product of an even

number of permutations, and o(h) = —h if and only if o is a product of an
odd number of permutations. By substituting the roots «; of f for the z;,
we obtain the desired conclusion. O

Recall that the set A, of all even permutations in S, is a subgroup; it is
called the alternating group.

Corollary 12.4 Let F', K, and f be as in Lemma 12.3, and let G =
Gal(K/F). Then G C A, if and only if disc(f) € F?. Under the corre-
spondence of the fundamental theorem, the field F(A) C K corresponds to
the subgroup G N A, of G.




Proof. This follows from the lemma, since ¢ C A, if and only if each
o € G is even, and this occurs if and only if o(A) = A. Therefore, G C A,
if and only if disc(f) € F2. O

One problem with the definition of a diseriminant is that in order to
calculate it we need the roots of the polynomial. We will give other de-
scriptions of the discriminant that do not require knowledge of the roots
and lend themselves to calculation. We first obtain a description of the
discriminant in terms of determinants.

Let K be a field and let «;, ..., a, € K. Then the Vandermonde matriz
V(ai,...,on) is the n x n matrix

1 o of ol
ay  ob oyt
Viar,...,an) = . .
|1 an of ap” '

Lemma 12.5 If K is a field and ., . ..,a, € K, then the determinant of
the Vandermonde matriz V(en, ..., an) 15 [[;;(c; — ;). Consequently, if
f € Flz] has roots ay,...,a, € K wn some extension K of F', then the
discriminant of f is equal to (det(V(a, ..., an))?.

Proof. Let A =V(ai,...,a,). That det(A) = [[;;(a; — a;) is a moder-
atcly standard fact from lincar algebra. For those who have not secn this,
we give a proof. Note that if a; = a; with ¢ # 7, then det(A4) = 0, since
two rows of A are the same, so the determinant formula is true in this
case. We therefore assume that the «; are distinct, and we prove the re-
sult using induction on n. If n = 1, this is clear, so suppose that n > 1.
Let h(z) = det(V (a1, g, ...,an—1,z)). Then h(z) is a polynomial of de-
gree less than n. By expanding the determinant about the last row, we
see that the leading coeflicient of h is det(V (ay, s, ..., an_1)). Moreover,
h(a;) =det(V(ai,...,an_1,a:)), so h(a;) =0 if 1 <7 <n — 1. Therefore,
h(z) is divisible by each z — a;. Since deg(h) < n and h has n — 1 distinct
factors, h(z) = c¢(z—ay) -+ (z—an_1), where ¢ = det(V(ay, g, ... an—1)).
By evaluating h at «,, and using induction, we get

h(an) = det(V (o, asg,...,an))

= [ (e5—c)[](en— )

i<j<n-—1 i<n
= H(aj — o).
i<j

This finishes the proof that det(V (a1, az,...,an)) = [[;¢;(a; — ;). The
last statement of the lemma is an immediate consequence of this formula
and the definition of discriminant. O




1'he discriminant of a polynomial can be determined by the coefhicients
without having to find the roots, as we proceed to show. This is a convenient

fact and will be used in Section 13 to describe polynomials of degree 3 and
4. Let A=V(ai,...,a,). Then det(A)? = det(A*A). Moreover,

[~ . T B 2 . n—117
1 1 i 1 ]. 011 al . * al )
Q] Qg ot Qp 10{2&%"‘052_

t
A'A = i

n—1 n—1 n—1 2 n—1

Ko Qg Q] _1 Qp Qg - Q|
to t1 - lp—1
tl t2 : tn

_tn—l bn -+ t2n—2_

where ¢; = 7 ol for i > 1, and to = n. Therefore, det(A)? is the deter-
minant of this latter matrix. This is helpful because if the roots of f(z)
are «y,...,Qn,, then there are recursive relations between the ¢; and the
coefficients of f, and so the determinant of the £; can be found in terms
of the coeflicients of f. These relations are called Newton’s identities. Note
that t; = Tk p(ca}) if K is the splitting field of min(F, ay).

Proposition 12.6 (Newton’s Identities) Let f(z) = ag + a1z + -+ +
Q12" + 2™ be a monic polynomial over F with roots ay,...,an. If
ti =), a}, then

m+ On—1tm_1 + -+ Gpemt1t1 + Map—m =0  form < n,
tm + Gn_1tm_1+ -+ agtm—n =0 form > n.

Proof. An alternative way of stating Newton’s identities is to use the
elementary symmetric functions s; in the a;, instead of the a;. ‘Smce §; =
(—1)*an_;, Newton’s identities can also be written as

tm — S1tm—1+ Sotm_o2—+--(=1)"ms,, =0 form <n

tr, — @1tm—1 — + -+ (=1)"8ptm—n =0 for m > n.

The proof we give here is from Mecad [21]. The key is arranging the terms
in the identities in a useful manner. We start with a bit of notation. If

(a1,az,...,a,) is a sequence of nonincreasing, nonnegative integers, let
f(a]_,(l,g,..., an, E (Y a(rz)’
where the sum is over all permutations o of {1,2,...,n} that give distinct

terms. Then s; = f( 1, 1) (¢ ones) and t; = f;). To simplify the nota-
tion a little, the sequence of i ones will be denoted (1;), and the sequence

)= T —at ) 5 £ - f b & o« d! J:i sz PR
of¢ ) ):J { ; e d K ) .
o LS g, Sta 3
c\\x' - --..ka s J/;J \((‘ :A)_t ("'J )
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(a,1,...,1) of length i + 1 will be denoted (a, 1;). It is then straightforward
to see that

Son=0)f) = fim) + fem=11),
fm—2yf,1) = fim—1,1) + fim—2,1,1)
f(m—3)f(1,1,1) = f(m—2,1,1) + f(m—3,1,1,1)7

and, in general,

fom—iyfay = fim—it11) + fim—sp,y for 1 <i <min{m — 1L,n}. (12.1)

Moreover, if m < n and : = m — 1, then

f(l)f(17n~1) = f(2,11,1;2) + mf(lm)

If m > n =1, then

f(m—n)f(ln) = f(m—n—i—l,ln._l)-

Newton’s identities then follow from these equations by multiplying the 7th
equation in (12.1) by (=1)~! and summing over 3. O

Newton’s identities together with Lemma 12.5 give us a manageable way
of calculating discriminants of polynomials. As an illustration, we deter-
mine the discriminant of a quadratic and of a cubic. The calculation of the
discriminant of a cubic will come up in Section 13.

Example 12.7 Let f(z) = z? + bz + c¢. Then t; = 2. Also, Newton’s
identities yield ¢t; +b =0, so t; = —b. For t5, we have t5 + bt + 2¢ =0, so
ty = —bt, — 2¢ = b? — 2c. Therelore,

2 —b

disc(f):( b b2 — 9 = 2(b%* — 2¢) — b* = b* — 4c,

the usual discriminant of a monic quadratic.

Example 12.8 Let f(x) = 2° 4+ pz + ¢q. Then ag = ¢, a) = p, and ay = 0,
so by Newton’s identities we get

ty =0,
ta = —2p,
ts = —3q,
lh = 2p°.
Therefore
3 0 —2p
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For an arbitrary monic cubic, we could do a similar calculation, but looking
ahead to Section 13, where we find the roots of a cubic, we note that the
case above is sufficient. For, if g(z) = 2° + az® + bz + ¢, let y = z — a/3.
By Taylor expansion, we have

g"(a/3)
2!

2., 9"(a/3)
(z—a/3) +g—3!/~—

The choice of y was made to satisfy ¢”(a/3) = 0. If p = ¢'(a/3) and
q = g(a/3), then g(z) = > + py + ¢. If the roots of g are o, as, and as,
then the roots of y3 +py+q are a; —a/3, ay —a/3, and az—a/3. Therefore,
the definition of discriminant shows that disc(g(z)) = disc(y>+py+q). The
interested reader can check that disc(g(z)) = a?(b? — dac) — 4b° — 27c? +
18abc.

g9(z) = g(a/3)+4'(a/3)(z—a/3)+ (z—a/3)°.

We give a further description of the discriminant, this time in terms of
norms.

Proposition 12.9 Let L = F(a) be a field extension of F. If f(z) =
min(F, «), then disc(f) = (—1)*~ 1)/2NL/F(f (o)), where f'(x) is the
formal derivative of f.

Proof. Let K be a splitting field for f over F', and write f(z) = (z —
ay)-+-(z —an) € K[z]. Set @ = ). Then a short calculation shows that
fllay) = H?:l’i#j(aj — «;). If 0y, ...,0, are the F-homomorphisms of L
to K that satisfy o;(a) = «;, then by Proposition 8.12,

Nrp(f HUJ )=Hf’(aj)-

Using the formula above for f/(«;), we see by checking signs carefully that

Ny p(f Hf a;) HH = (—1)™"=D/2 disc(f).

Jj i=1
i#]

O

Example 12.10 Let p be an odd prime, and let w be a primitive pth root

of unity in C. We use the previous result to determine disc(w). Let K =

Q(w), the pth cyclotomic extension of Q. If f(z) = min(Q,w), then f(z) =

l+z4 - 42P"" = (2P —1)/(z — 1). We need to calculate N g(f'(w)).
irst, ¥ : )
) prP H(z—1)— (zP -1

f (‘T) - (fI,' . 1)2 )

50 f'{w) = pwP~' /(w—1). We claim that Ny, g(w) =1 and Ny g(w—1) =
p. To prove the first equality, by the description of Gal(K/Q) given in




Corollary 7.8, we have

p—1

Nijg(w) = Hwi — oP(P—1)/2 — 4

1=1

since p is odd. For the second equality, note that

p—1
l+z+-+277 = [[@-w),
i=1
sop =[]/, '(1 — w*). However,
p~1

Nijg(w —1) = j[](wz — 1),

i=1
s0 Ngg(w — 1) = p, where again we use p odd. From this, we see that

Nk o(p) Nk jo(w)P~

Mol £) = Mo (227 ) =
_r — P2,
p

The discremanant of an n-tuple and of a field extension

We now define the discriminant of a field extension of degree n and of
an n-tuple in the field extension. We shall see that our definition of the
discriminant of an element is a special case of this new definition. Let K
be a separable extension of F' with [K : F] = n. Recall from Lemma 8.9
that [K : F] is equal to the number of F-homomorphisms from K into an
algebraic closure of F.

Definition 12.11 Let K be a separable extension of F' of degree n, and let
01,09, ...,0, be the distinct F'~-homomorphisms from K to an algebraic clo-
sure of F'. If a1, ag, ..., are any n elements of K, then the discriminant
of the n-tuple (1, ..., an) is disc(an, - .., an) = det(o;(a )2 If B, -, On
is any F-basis of K, then the discriminant of the field extension K/F is
disc(K/F') = disc(B1,...,Bn)-

The definition of disc(K/F') depends on the choice of basis. We will show
just how it depends on the basis. But first, we give another description of
the discriminant of an n-tuple, which will show us that this discriminant is
an element of the base field F'.

Lemma 12.12 Let K be a separable field extension of F' of degree n, and
let ar,...,an € K. Then disc(ay,...,an) = det(Trg,p(oioy)). Conse-
quently, disc(a, ..., a,) € F.




Proof. Let oy,...,0, be the distinct F-honomorphisms from X to an
algehraic closure ol F. If A = (o;(cy)), then the discriminant of the n-

tuple aj, ..., a, is the determinant of the matrix A*A, whose ij entry is
> onla)ok(ag) = > or(oy)
k k
Therefore, disc(au, ..., a,) = det(Trg/p(as0y)). O

The next result shows that the discriminant can be used to test whether
or not an n-tuple in K forms a basis lor Ay,

Proposition 12.13 Let K be a separable field extension of F of degree n,
and let an,...,an € K. Then disc(ay,...,a,) = 0if and only if aq, ..., ap
are linearly dependent over F. Thus, {a1,...,a,} is an F-basis for K if
and only if disc(ay, ..., a,) # 0.

Proof. Suppose that the «; are linearly dependent over F. Then one of
the «; is an F-linear combination of the others. If «; = Zk#i o with
a; € F, then

TIK/F(CYiCYj) = Z a,kTrK/F(akaj).
k

Therefore, the columns of the matrix (Trg/p(c;c;)) are linearly dependent
over F, so det(Trg/p(ci;)) = 0.

Conversely, suppose that det(Trg,p(a;c;)) = 0. Then the rows
Ry, ..., R, of the matrix (Try,r(a;0;)) are dependent over F', so there are
a; € F, not all zero, with > a;R; = 0. The vector equation ) . a;R; = 0
means that } ; a; Trg/p (i) = 0 for each j. Let z = ), a; ;. By linearity
of the trace, we see that Trg,p(za;) = 0 for each j. If the «; are indepen-
dent over F', then they form a basis for K. Consequently, linearity of the
trace then implies that Trg/p(zy) = 0 for all y € K. This means that the
trace map is identically zero, which is false by the Dedekind independence
lemma. Thus, the «; are dependent over F. O

We now see exactly how the discriminant of a field extension depends on
the basis chosen to calculate it.

Proposition 12.14 Let {ay,...,a,} and {Bi,...,Bn} be two F-bases for
K. Let A= (a;;) be the n x n transition matriz between the two bases; that
is, By = ¥ . ay;05. Then disc(By, ..., Bn) = det(A)? disc(ay, .. ., an). Con-
sequently, the coset of disc(K/F) in F*)F*? is well defined, independent
of the basis chosen.
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Proof. Since §; = ), ax;jax, we have 0;(0;) = Y, ax;joi(ak). In terms of
matrices, this says that

(0:(85)) = (ai5) (0:(ay)) = A'(oi(ay)).
Therefore, by taking determinants, we obtain
diSC(IBI, . ,,Bn) = det(A)2 disc(al, ca ,an).

The final statement of the proposition follows immediately from this rela-
tion, together with the fact that the discriminant ol a basis is nonzero, by
Proposition 12.13. O

To make the definition of discriminant of a field extension well defined,
one can define it to be the coset in F* /F*? represented by disc(ay, . .., ay)
for any basis {ay,...,a,} of K. This eliminates ambiguity, although it is
not always the most convenient way to work with discriminants.

Example 12.15 In this example, we show that the discriminant of a
polynomial is equal to the discriminant of an appropriate field extension.
Suppose that K = F(«a) is an extension of F of degree n. Then 1, «,
a?,...,a" ! is a basis for K. We calculate disc(K/F) relative to this ba-
sis. We have disc(K/F) = det(o;(a?~!))2. Consequently, if o; = o;(),
then

1oy(a) - o1(a™ ) 2

1 og(a) -+ o9 an 1
disc(K/F) = det (@) ( )

i on(a) - op(a™™1)

= det(V(a, ag, ..., an))%

Therefore, disc(K/F') = disc(a) = disc(min(F, a)).

Example 12.16 Let K = Q(v/—1). If i = /—1, then using the basis 1,
of K/Q, we get

N
disc(Q(7)/Q) = det ( i —Zz ) = (—2i)? = —4.
More generally, if K = Q(v/d) with d a square-free integer, then using 1, v/d
as a basis, we see that the discriminant is 4d.

The discriminant of a bilinear form

We now extend the idea of discriminant to its most general form that we
cousider. The two previous notions of discriininant will be special cases of
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this general form. The starting point here is similar to that considered in
Section 11, when we discussed Kummer pairings. If V' is an F-vector space,
a bilinear form on V is a mapping B : V x V — F that is linear in each
variable. In other words, for all w,v,w € V and all «, 8 € F, we have

B(u, v + pw) = aB(u,v) + fB(u,w),
B(au + v, w) = aB(u,w) + BB(v, w).

Definition 12.17 IfV is an F-vector space and if B:V xV — F is a bi-
linear form, then the discriminant of B relative to a basis V = {vy,...,v,}
of V is disc(B)y = det(B(vi, v;)).

As with the discriminant of a field extension, this definition depends
on the choice of basis. If W = {wy,...,w,} is another basis, let A be the
matrix describing the basis change; that is, if A = (a;;), then w; = >, a;;v;.
By the bilinearity of B, we have

B(wi,wj) =B (Z QikVk, Zajlvl) = ZaikB(vk,vl)ajl.
k l k.l

Therefore, it follows that (B(w;,w;)) = A*(B(vg,v;))A. Taking determi-
nants gives
disc(B)w = det(A4)*disc(B)y,

the same relation that was found for field extensions.

A hilinear form is nondegenerate if B(v,w) = 0 for all w only if v =
0, and if B(v,w) = 0 for all v only if w = 0. As in Section 11, if we
define B, : V — F by B,(w) = B(v,w), then the map v +— B, is a
homomorphism from V to hompg(V, F'). The form B is nondegenerate if and
only if this homomorphism is injective. If we represent this homomorphism
by a matrix, using the basis V and the dual basis for hompg(V, F'), then
this matrix is (B(v;,v;)). Therefore, B is nondegenerate if and only if
disc(B)y # 0. This condition is independent of the basis, by the change of
basis formula above for the discriminant.

Example 12.18 We now show that the discriminant of a field extension
is the discriminant of the trace form. Let K be a finite separable extension
of F. Let B: K x K — F be defined by B(a,b) = Tk r(ab). Then B is a
bilinear form because the trace is linear. The discriminant of B relative to
a basis V = {v1,...,v,} is det(Tk/r (viv;)). But, by Lemma 12.12, this is
the discriminant of K /F. Therefore, the previous notions of discriminant
are special cases of the notion of discriminant of a bilinear form.




i'roblemns

1. Let B: V x V — F be a bilinear form. If V = {v(,...,v,} is a basis
for V, another basis W = {wy,...,w,} is called a dual basis to V
provided that B(v;,w;) = 1 for all i, and B(v;, w;) = 0 whenever
i # 7. 1f V and W are dual bases, show that disc(B)y - disc(B)yy = 1.

2. If B is a nondegenerate bilinear form on V, show that any basis has
a dual basis.

3. Let {e;} be a basis for F™, and choose an a; € F for each i. Define B
on this basis by B(e;,e;) = 0if ¢ # j and B(e;, e;) = a; € F. Prove
that this function extends uniquely to a bilinear form B : F™ x F™ —
F, and determine the discriminant of 3.

4. Let A be a symmetric n X n matrix, and define a map B : F™ x F™ —
F by B(v,w) = vAw', where v and w are viewed as row vectors.
Show that B is bilinear. Using the fact that a symmetric matrix can
be diagonalized by an orthogonal transformation, use the previous
problem to determine the discriminant of B in terms of A.

The remaining probhlems investigate the use of discriminants in algebraic
number theory. They require knowledge of integrality and the Noetherian
condition for commutative rings.

5. Let K be a finite separable extension of F', and let A be an integrally
closed ring with quotient field F'. Let B bhe the integral closure of
A in K. Show that there is an F-basis v,,vs,...,v, of K such that
B Q Z A’Ui.
(Hint: First find a basis {w;} C B, and then use a dual basis relative
to the trace form.)

6. Let K be an algebraic number field, and let B be the integral clo-
sure of Z in K. Use the previous problem to show that B is a finitely
generated Z-module, and conclude that B is a Noetherian ring. More-
over, show that there is a basis of K that is also a basis for B as a
Z-module. Such a basis is called an integral basis for B/Z.

7. With the notation of the previous problem, let d be the discriminant
of K/F relative to an integral basis {v,...,v,} of B/Z. Prove that
d € Z. The integer d is called the discriminant of B/Z. Show that if
we use a different integral basis, then the two discriminants are equal.
(One use of discriminants in algebraic number theory is the following:
It is known that any nonzero ideal of B factors uniquely into a product
of prime ideals. If P = pZ is a prime ideal of Z, then PB = Q5* - - - Qy’
for some prime ideals @); of B and e; > 1. Then each ¢; = 1 if and
only if p does not divide d.)




8. Calculate the discriminant of B/Z for the following fields, where B
is the integral closure of Z in that field.

(a) Q(v-1).
(b) Q(
(¢) Q(w), where w is a primitive nth root of unity.

(Hint: Try to prove that B = Z[w]. Calculate the discriminant
using norms. Show that Ng,g(1 —w) = p.)

Q(Vd), where d > 0 is a square-free integer.

13 Polynomials of Degree 3 and 4

In this section, we show how to determine the Galois group and the roots
of an irreducible polynomial of degree 2, 3, or 4. We assume throughout
that our polynomials are separable. For degree 2, 3, or 4, requiring that
the base field F' does not have characteristic 2 or 3 is sufficient to ensure
separability. Let f(z) € F[z] be separable and irreducible over F', and let
K be the splitting field over F of f. Set f(z) = (z —a1) -+ (z — ap) €
Klz]. If n = deg(f), note that n divides [K : F| = |Gal(K/F)|, since
[F(a;) : F] = n. The Galois group Gal(K/F) is isomorphic to a subgroup
of S, by identifying S, as the group of all permutations of the roots of
f. Furthermore, Gal(K/F') is isomorphic to a transitive subgroup of Sp;
that is, for each pair i,j € {z1,z9,...,2,}, there is a 0 € Gal(K/F)
with o(z;) = x;. This fact is due to the isomorphism extension theorem.
This limits the possible subgroups of S,, that can be isomorphic to such a
Galois group. We call Gal(K/F') the Galois group of f in this section for
convenience.

For polynomials of degree 2, there is not much to say. If f(z) = z? + bz +
¢ € F[z] is separable and irreducible over F', then the Galois group of f is
S, a cyclic group of order 2. If char(F') # 2, the quadratic formula can be
used to find the roots of f. These roots are §(—b + v/b? — 4c). Therefore,

the splitting field K of f over F' is F(v/b? — 4c).

Cubic polynomials

We now consider irreducible polynomials of degree 3. Let f be an irre-
ducible, separable polynomial of degree 3 over a field F', and let K be the
splitting field of f over F'. Then Gal(K/F') is isomorphic to a subgroup of
S3. Furthermore, as noted above, | Gal(K/F)| is a multiple of 3. Thus, the
only possibilities for Gal(K/F) are A3 and S3. The following theorem is a
direct consequence of the results about discriminants in Section 12.

Theorem 13.1 Let f(z) € F[x] be an irreducible, separable polynomial
of degree 3 over F, and let K be the splitting field of f over F. If D is
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the discriminant of f, then Gal(K/F) = S if and only if D ¢ F?, and
Gal(K/F) = A3z if and only if D € F?.

Proof. Let ¢ = Gal(K/F). By Corollary 124, G C As if and only if
D e F? But G= 83 0r G= A3, so G =53 if and only if D is a square in
F. O

Example 13.2 The polynomial z* — 3z 41 € Q[z] has discriminant 81 =
92, and it is irreducible over Q by an application of the rational root test.
Thus, the Galois group of its splitting field over Q is Az. The polynomial
z3 — 4z 4 2 has discriminant 148 = 22 - 37, so the corresponding Galois
group is Ss.

We now present a solution of an arbitrary cubic equation that appeared
in Cardano [3] in 1545. We assume that the characteristic of F' is neither 2
nor 3. Let f(z) = =3 + pz +¢. As indicated in Example 12.8, it is sufficient
to work with a polynomial of this form, for if g(z) = z3 4 az? + bz + ¢,
then by setting y = = + a/3, Taylor expansion gives

1 1
9(z) = 9(a/3) + ¢'(a/3)y + 59" (a/3)y* + 29" (a/3)y”,
and y is chosen as such because g”(\a,/3) = 0.
Cardano’s method is to solve f = 0 by writing z = © + v and obtaining
two equations in u and v. Replacing = by u + v in the equation f = 0 gives

w4+ 03 4+ ¢+ (Buv +p)(u+v) = 0.
We set u? +v3 4+ ¢ = 0 and 3uv + p = 0. Thus, v = —p/(3u). Using this
in the first equation and multiplying by > yields 4u® 4 qu® — p3/27 = 0.

This is a quadratic equation in 1, so

s —qE /g% +4p3/27
5 - 4 q2 P’/ :—q/Qi\/F,

U

wlicre I' = ¢%/d 4 p?/27. Note that the discriminant D of f is —dp® — 27¢2,
so ' = —D/108. Set A = —q/2 + VT and B = —¢q/2 — VI". By symmetry
of v and v, we may set ©®> = A and v3 = B. Let w be a primitive third root
of unity. The choices for © and v are then

u:\g’/z,w”q’A, wz\‘"/Z,
v=+vB, wVB, w?V/B.

We must choose the cube roots of A and B so that v/ A+v/B = —p/3. Doing
so, the roots of f arc

VA + VB, w\a/z-{-wsz, w? VA +wVB.
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Example 13.3 Consider z° — 3z + 1. Then I' = —D/108 = —81/108 =
—3/4. We have p = -3 and ¢ = 1. Then 4 = —1/2 + i/3/2 and
B = —1/2 - i/3/2, so A = exp(27i/3) and B = exp(—27i/3). We can
then set u = exp(27:/9) and v = exp(—27:/9). Also, w = exp(27i/3). By
simplifying the formulas for the roots of f, we see that the three roots are
2 cos(27/9),2 cos(87/9), and 2cos(147/9).

Suppose that the polynomial f(z) = z° + pz + ¢ has real coefficients, If
I' >0, then D < 0, so D is not a square in F. We can then take the real
cube roots of A and B for © and v. Furthermore, if w = (—1 +4v/3)/2, we
see that the three roots of f are

alz\g/z-i-\a/EER,
QQZ(e/Z-’Q_e/E)+Z\/§(€/z;\8/E),

and

a3=(€/z;€/§)zx/§(\3/z2\3/§)

On the other hand, if "' < 0, then 4 = —¢/2+i+v/~T and B = —q/2—i/—T.
If we choose VA = a + bi to satisfy VAVB = —p/3, we must then have
VB = a — bi. The roots of f are then o; = 2a, g = —a — bV/3, and
a3 = —a + bv/3, and all three are real numbers.

The case where I' < 0 historically had been called the “irreducible case,”
since it was realized that even though all three roots are real, the roots
cannot be expressed in terms of real radicals.

Quartic polynomials

We now consider polynomials of degree 4. Let f(z) = z¢4az°4-bz* 4-cz+d
be an irreducible, separable polynomial over a field F', and let f factor as

f(z)=(z— )z —az)(z —az)(z — a4

in soe splitting ficld. The key idea we use to {ind the roots and the Galois
group (G of f is to work with an associated cubic polynomial. Set

ﬁl = 10 + 30y,

B2 = arasz 4+ agay,

f3 = g + apas,

and
r(z) = (z — f1)(z — B2)(z — f3).

A computation shows that

r(z) = z° — bz + (ac — 4d)z + 4bd — a*d — ¢® € Fz].



[ he polynomtal 1 s caited the resolvent of f. An easy calculation shows
that f and r have the same discriminant. Let K = F(a,as, a3,aq), a
splitting field of f over F, and let L = F(f;, 82, 03), a splitting field of r
over F'. Note that L/F' is Galois. Let

V = {e, (12)(34), (13)(24), (14)(23)},

a subgroup of S4 of order 4. Then V C A4 and V is normal in S4. Each §;
is fixed by V, so L C F(G N V). The reverse inclusion is also true, which
can be seen by showing that any element of G — G NV moves one of the
B;. The group G is isomorphic to a transitive subgroup of S4, and it has
order a multiple of 4. It is not hard to show that the transitive subgroups of
S4 of order 24 and 12, respectively, are Sy and A4, and that the transitive
subgroups of order 4 are V and the cyclic subgroups generated by a 4-
cycle. The subgroup generated by (1234) and (24) is a transitive subgroup
of order 8. Since this is a 2-Sylow subgroup of S4, any subgroup of order 8
is isomorphic to it, and so is isomorphic to Dy, the dihedral group of order
8. We write C4 for the unique up to isomorphism cyclic group of order 4.
We now show how to determine (G in terms of the discriminant of f and
the resolvent r. The particular statement of the following theorem we give
appeared in Kappe and Warren [18].

Theorem 13.4 With the notation above, let m = [L : F].

1. G = Sy if and only if r(x) is irreducible over F and D ¢ F?, if and
only if m=6.

2. G = Ay if and only if r(x) is irreducible over F and D € F?, if and
only if m = 3.

3. G =2V if and only if r(z) splits over F, if and only if m = 1.

4. G = Cy if and only if r(z) has a unique root t € F and h(z) =
(2% — tz + d)(2°® + az + (b — t)) splits over L, if and only if m = 2
and f(x) s reducible over L.

5. G 2 Dy if and only if r(z) has a unique roott € F and h(z) does not
split over L, +f and only if m =2 and f is irreducible over L.

Proof. We first point out a couple of things. First, [K : L] < 4, since
K = L(c). This equality follows from the fundamental theorem, since
only the identity automorphism fixes L(«;). Second, r(z) is irreducible
over F' if and only if m = 3 or m = 6. Also, r(z) has a unique root in F' if
and only if m = 2. Finally, if o is a 4-cycle, then 02 € V.

Suppose that r(z) is irreducible over F. Then m is either 3 or 6, so 3
divides |G|. This forces G to be isomorphic to either S4 or A4. In either
case, V. C G, so L = F(V) by the fundamental theorem. Thus, [K : L] = 4,

o s .
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only if D ¢ F? and G = A, if and only il D € £*. Conversely, il G = Sy,
then my = |94 : V| = 6, and it G = Ay, then i = |Ay 0 V| = 3. In either
case, 3 divides |G|, so r(z) is irreducible over F'.

Next, r(z) splits over F' if and only if L = F, if and only if m = 1. If this
occurs, then L corresponds to both G and GNV,so G C V. Since |G| is a
multiple of 4, we see G = V. Conversely, if G = V, then L corresponds to
GNV =G, so L = F; thus, m =1 and r(z) splits over F'.

For the final case, we suppose that r(z) has a single root ¢ in F. This is
equivalent to m = 2. Thus, |G : GNV| = 2,s0 G € V. The only possibilities
for G are G = Cy or G = Dy. Conversely, if GG is either isomorphic to Dy
or Cy, thenm = |G : GNV| =2, so r(z) has a unique root F. Now f is
irreducible over L if and only if [K : L] = 4, if and only if [K : F] = &, if
and only if G = Dy. Therefore, G = (4 if and only if f is reducible over
L. By relabeling if necessary, we may suppose that ¢t = a;ag + azay. Then
h(z) factors over K as

h(z) = (2 — o) (z — azoy)(z — (ar + a2))(z — (a3 + aq)).

If h splits over L, then a; + a2 and oy are in L. Thus, «a; satisfies the
quadratic polynomial

2% — (1 + )z + o = (T — ap)(z — ag) € L[z].

Thus, [K : L] < 2 because K = L(«;). Therefore, [K : F| <4, s0o G = C4.
If G = C4, let 0 be a generator for G. Then ¢? € G NV, since L is the
unique nontrivial subficld of K/F. To fix t = ayag + azay, we must have
o? = (12)(34). Then «a; + ag, az + a4, o jag, and asay are all fixed by
0?, so they lie in L. Thus, h splits over L. This completes the proof of the
theorem. O

We now find the roots of the general polynomial of degree 4. We point
out that the formulas we derive below only require us to find one root
of the resolvent polynomial, and such a root can be found by Cardano’s
method. Our approach is not that of Ferrari, a student of Cardano and
the first to solve the quartic, although deep down it is much the same. His
method is addressed in Problem 1. Instead, our mecthod is based on the
theorem of Galois, which says that therc is an algebraic formula for the
roots of a polynomial il and only if the Galois group of the polynomial is
a solvable group. We shall discuss this theorem in detail in Section 16. To
use hindsight, the idea is that given a sequence of subgroups G 2 H, D
-+ D Hy = (id) for which H;4, is normal in H, with H,/H;, Abelian,
which exists for a solvable group, we obtain a sequence of Intermediate
subfields FF = L; C L;_; C --- C K for which the extension L;_1/L; is
easy to describe. By describing L;_q, then L;_», and so on, eventually we
describe K. This brings up the question of how to motivate the definition
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of the resolvent polynomial. For S4, a natural chain of subgroups is S4 O
Ag 2V D (id), since this is the usual sequence that shows S, is solvable.
If f(x) = (x—t1)(x — t2)(x — t3)(z — tq), then the automorphisms in V fix
tito +1t3ty, t1l3+1toty, and tits +tots, and we have seen that the fixed field
of V' is the field generated by these three elements. This field is then the
splitting field of the polynomial whose three roots are these three elements;
that is, it is the splitting field of the resolvent of f.

Let us now find the roots of the general fourth degree polynomial. Let k&
be a field of characteristic not 2, and let K = k(t1, to, t3, t4) be the rational
function field in four variables over k. Let

[(z) = (z —t)(z — t2)(z — t3)(z — ta)
=z"tard+bzl+cr+de k(sy,s2,s83,54)]z],
where s; is the ¢th elementary symmetric polynomial in the ¢;. Then s, =
—a, 89 = b, s3 = —¢, and s4 = d. Recall [rom Examplec 3.9 that if F' =
k(s1,82,53,84), then K = F(t,,12,t3,t4) is the splitting ficld over F' of f,
and Gal(K/F) = S4. Set

1 = titg + tstg,

Po = tits + toty,
(3 = tytg +tats.

The resolvent r is

r(z)

= (z — bi)(z — B2)(z — Bs)
= z° — bz® + (ac — 4d)z + 4bd — a®d — .
Let L = F(f1,02,03), the fixed field of V. For simplicity, we write o, =
(12)(34), o2 = (13)(24), and o3 = (14)(23). Let uw = (¢ +t2) — (¢35 + ta).
Then oy(v) = w and o;(u) = —u for i = 2,3. Therefore, u? € L. Let
M = L(u). Then M corresponds to {id,o;}. Finally, let v = ¢, — to. Then
o1(v) = —v, so v* € M. Also, M (v) is fixed only by id, so K = M(v). We
have
u? = (t) +t2)? + (t3 +t4)% — 2(t1 + t2)(t3 + t4)

=12 4 15+ 15 4+ 15 + 2(t1ta + tata) — 2(t1ts + toty + titg + tots)

=57 — 259 + 201 — 2(Bo + B3) = 57 — 255 + 4, — 2b

= a® —4b+40,.
To determine v?, we first point out that u + s; = 2(t; +t2), s0 t) +t =
> (s1 -+ u). Similarly, t3 +ts4 = 1(s1 — u). Now,

2

(5’1 + u)2 — 4t 1ty

> =

v = (t) —t2)? = (t1 +t2)? — 4t 1ty =

1
= Z(—-CI, —{- U)Q - 4t1t2.




However, we can determine ¢ty in terms of the coefficients as follows. If
we expand (¢1to — t3tq)u, recalling that uw = (¢; +t2) — (¢3 + t4), we get
(t1t2 — tata)((t1 +t2) — (t3 +t4))
= %ty + t1t5 + t3tg + tats — (Lrtats + titats + tatsts + t1t3ta)
= (tltg + t3t4)(t1 + iy + 13 + t4) — 283
= 81,81 — 283 = —CL,Bl + 2c.

Thus, ti1ty — t3ts = u™'(2c — af1). Since 1 = t1ty + tsts, we see that

tity = % <ﬁ1 + %(20— 0:,31)) ;

t3ts = % <ﬁ1 — %(20 — U:,Bl)) )

SO
1 1
2 2
=~(u—a)" —2 —(2c—a :
o = pluaf =2 (B + (2 - at))
Once we have a formula for £;, we will have formulas for the other ¢;, since
to = 01(t1), t3 = o2(t1), and t4 = o3(¢1). To find ¢,, note that
1

b= St ta b —ta) == [0+ o )
J—-2-(1+2 1 2)—2 v 2(u a) | .

To get formulas for ¢, t3, and t4, we need to know o;(v). We have o1(v) =
—v. Let
v =t3 —ty = 02(v) = o3(v).

Since o1(u) = u, oa(u) = —u, and o3(u) = —u, we see that

(’U,)Q —

(u—@Z—QOﬂ—%@c—M%O.

>

Therefore, we have

t1:%<v+%W—a0,
@:%<—w+;u—@),
=g (v +50u-a),
t4—%<—U+%pm—a0.

For a specific polynomial, these formulas will work provided that u # O.
Since the roots of r(z) are distinct, provided that f has no repeated roots,
at most one choice of A will make v = 0.
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some of the subgroups of S4 and the corresponding intermediate subficlds.
To make the diagrams manageable, we list only one subgroup/subfield of
each “type.” For instance, there are three subgroups generated by a 4-cycle,
and six subgroups generated by a 3-cycle. We list only onc of cach. The
group S(1) below is the group of permutations that fix 1, and the element
A is the element [, (¢ —t;), so A? is the discriminant of f and also of

K.
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FIGURE 13.1. Field tower for F(t1,t2,t3,ts)/F.

Example 13.5 Let f(z)=2*+2°4+2°+2+1. Thena=b=c=d =1,
so 81 = s3 = —1 and s, = s4 = 1. Also,

r(z) =x§—a:;—3$-{—2:(3:—2)(:1;2-{—1'—1).
Set B1 = 2. Then u = /5. Also,

v? = Z(—]. +u)? =22 4+u" (=2 +2)
1 o +u
=W - 2u+ 1)~ 4= “; .

Thus, v = %\/ 10 — 2v/5. In addition, we see that v/ = %\/ 10 — 2+/5. The

roots of f are then

-21- (%\/10+2\/5+%(~1+\/5)> = i(—l—k\[")) i— 10 + 2v/5,
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FIGURE 13.2. Group tower for Sy.

' (-"3 \/10+2\/§+é—(—1+ \/5)) :’}Z(_IJ“/E)’E 10 + 25,
%(-;—\/10—2\/5+?12—(—1—\/§)) :—}i(—l—\/g)nh—i— 10 — 2V/5,
%<_%\/10—2¢5+%(-1—\/€)) :%(—1—\/5)—%\/10—2\/5

The polynomial h(z) = (2% —2z41)(2? +z— 1) splits over L, so by Theorem
13.4 the Galois group of f is isomorphic to Cy. Alternatively, f(z) is the
fifth cyclotomic polynomial ¥s5(z), so Section 7 tells us that the Galois
group of f is cyclic.

W

Example 13.6 Let f(z) = z*—42*4+42%4-6. This polynomial is irreducible
by the Fisenstein criterion. Now,

r(z) = z° — 42 — 24z = z(2? — 4z — 24),
so L = Q(y/7). Take 8 = 0. Then
h(z) = (z* + 6)(z® — 4z +4) = (2% +6)(z — 2)°.

Since h does not split over L, we see that the Galois group of f is isomorphic
to D4.
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Example 13.7 Let p be a prime, and let f(z) = z' + pz + p. Then
r(z) = z° — 4pr — p°. To test for roots of 7(z) in Q, we only need to check
+1, 4+p, £p°. We see that £1 and 4p? are never roots, but r(p) = p*(p — 5)
and 7(—p) = p?(3 — p). Therefore, for p # 3,5, the resolvent r has no roots
in Q; hence, 7 is irreducible over Q. The discriminant D = p3(256 — 27p) is
not a square in (), since if p is odd, then p does not divide 256 — 27p, and
D = 1616 ¢ Q? for p = 2. Let G be the Galois group of f. Then G = Sy
for p # 3,5. If p = 3, let 8, = —3. Then r(z) = (z + 3)(z? — 3z — 3), so
L = Q(+/21). Then h(z) = (22 + 3z + 3)(x? + 3) docs 1ot split over L, so
G = Dy If p = 5, theu r(z) = (z — 5)(z? 4+ 5z 4+ 5), so L = Q(/5). As
h(z) = (2% — 5z + 5)(xz? — 5), h splits over L, so G = Cy.

Example 13.8 Let [ € @, and let f(z) = z* — [. Then the resolvent of
fis r(z) = z® + 4lz = z(x? + 41). If —[ is not a square in Q, then r(z)
has exactly one root in @Q. Moreover, h(z) = z?(z? + 1) does not factor
completely over @, so the Galois group G of f is D4 by Theorem 13.4. On
the other hand, if —! is a square in (@, then 7 factors completely over @, so
G = V. For example, the Galois group of z% + 4 is V. The splitting field of
z? + 4 over Q is then Q(v/—4).

Problems

1. Ferrari’s solution of the quartic. Here is Ferrari’s method for finding
the roots of a quartic, which appeared in [3]. Let g(z) = z* + az® +
bz? 4 cx + d. Starting with g(z) = 0, move the quadratic part of f to
the right-hand side. Show by completion of squares that the equation

becomes
1 \? 1
(a:z-f—ia,a:) = (aaz—b) 2% —cx — d.

Ferrari’s idea is to add to both sides the expression y(z?+az/2)+y?/4
for soute v, so that the left-hand side is a perfect square. The equation
trent becotues

2
1 1 1 1 1
2 2 2 2
+ —ax + = =|-a"—b+ —ay — - .
(a: 50T 2y) (4(1, y)a: -{-<2ay c):c-{-4y d

We wish to choose y so that the right-hand side becomes a square,
(ex+ f)?. Writing the right-hand side as Az?+ Bz +C, this is possible
if and only if B? —4AC = 0. Show that this gives an equation in y to
be solved, and if r is the resolvent of g, then this equation is r(z) = 0.
Given such a y, take the equation

1 1? ,
(xZ +5az + 57;) = (ex + [)? (13.1)
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and obtain two quadratic equations in z and solve them to find the
general solution to g(z) = 0. Relate Ferrari’s method by the method
of the section by showing that e = %u and that the discriminants of
the two quadratic equations in (13.1) are equal to v* and (v')2.

2. Solve z* + 4z — 1 = 0 by Ferrari’s method and by the method of the
section.

3. Show that 2 cos(27/15) is a root of z* — z3 — 42 4 4z + 1. What arc
tlic other roots?

4. Solve the equation ((z + 2)% + 3:2)3 = 8z*(z+2)? by setting y = z+1.

5. Find the roots of z* + pz3 4 gz + pz + 1, and notice that cube and
fourth roots are not needed.

6. Use the ideas of this section to show that {'/\/5 + 2 — {/\/5 —-2=1

and that v/7 + 50 + V7 — /50 = 2.
7. Find the roots of 22 — 6z — 6 and the roots of 223 + 6z + 3.

8. If the specific gravity of cork is 0.25, to what depth will a sphere of
radius r made of cork sink in water? Archimedes’ principle is that
the weight of water displaced is equal to the weight of the cork.
(You might want to ask yourself why this problem is here!)

9. Let f(z) = z* + az? + b € Q[z]. Determine the Galois group of f.

10. Let K be a ficld extension of F' with [K : F] = 4. Show that i
contains an intermediate subfield L with [L : F] = 2 if and only if
K = F(a), where « satisfies a polynomial z* + az?® + b € F[z].

11. Given the splitting fleld k(t1,%q,t3,t4) of the general quartic (z —
t)(x — to)(xz — t3)(x — tq) over k(sy, s2,S3,S4), for each pair Lo/ L,
of intermediate subfields lor which there is no proper intermediate
sublicld, lind a single element that generates Ly over Ly, aud fiud
this element’s minimal polynomial over Lj.

14 The Transcendence of 7 and e

The two best known and most important nonrational real numbers are
m and e. In this section, we will show that both of these numbers arc
transcendental over @Q. In Section 15, we will use the transcendence of 7 to
prove that it is imipossible to square the circle, one of the ruler and couipass
construction cuestions of ancient Greece that remained unsolved for 2500
years.




The recognition that irrational numbers exist can be traced back to the
Pythagoreans’ proof over 2000 years ago that /2 is irrational. However, it
was not known whether 7 was rational until 1761, when Lambert proved
that 7 is irrational. Euler, after finding a continued fraction expression for
e, believed that e was irrational but was not able to prove it. In 1767, Lam-
bert gave a proof that e was irrational. By this time, people suspected that
not all numbers were algebraic. The existence of transcendental numbers
remained an open question until Liouville in 1844 came up with a crite-
rion for a complex number to be algebraic and showed that transcendental
numbers do exist. Liouville’s method showed that numbers whose decimal
expansion contained increasingly long strings of 0’s are transcendental. For
instance, his method showed that 5 - 10™™ is transcendental. Proving
that a particular number, such as 7 and e, is transcendental is another
matter. The transcendence of e was not proved until 1873, when Hermite
gave a proof. Nine years later, Lindemann used Hermite’s method to prove
that 7 is transcendental.

In this section, we give a more general result of Lindemann that im-
plies the transcendence of both e and 7. A more detailed proof of this
result was given by Weierstrauss in 1895 and often goes under the name
of the Lindemann—Weierstraués theorem. Actually, we give an alternative
version of this theorem that is a little easier to prove than the original
version. The original version is mentioned in Problem 1. The proof of the
Lindemann—-Weierstrauss theorem requires some analysis, including com-
plex integration, along with Galois theory.

Theorem 14.1 (Lindemann—Weierstrayss) Let a, ..., o, be distinct
algebraic numbers. Then the exponentials e**,...,e%™ are linearly inde-
pendent over Q.

Corollary 14.2 The numbers m and e are transcendental over ().

Proof of the corollary. Suppose that e is algebraic over (). Then there

are rationals r; with >°7 (7’ = 0. This means that the numbers €?,

el ..., e" ! are linearly dependent over Q. By choosing m = n + 1 and
a; = i—1, this dependence is false by the theorem. Thus, e is transcendental
over Q. For m, we note that if 7 is algebraic over (9, then so is mz; hence,
e, e™ arc linearly independent over Q, which is false since ™ = —1. Thus,

7 is transcendental over QQ. O

Proof of the theorem. Suppose that there are a; € Q with

m

2: o
a;e 7= (.

Jj=1

By multiplying by a suitable integer, we may assume that each a; € Z.
Moreover, by eliminating terms if necessary, we may also assume that each




a, # 0. Let /{ be the normal closure of Q(ay,...,a,,)/Q. Then K is
a Galois extension of Q. Suppose that Gal(K/Q) = {o,...,0,}. Since
> j=, aje% =0, we have

n

DZﬁ a;e’ w(e) ch ,
k=1

i=1

where the c; € Z and the [5; can be chosen to be distinct elements of
K by gathering together terms with the same exponent. Moreover, some
c; # 0 (see Problem 4); without loss of generality, say ¢ # 0. If ¢ €
Gal(K/Q), then the n terms » 7, a;e°7+(@i) for 1 < k < n are the terms
}:]n:{ a; (%) in some order, so the product is unchanged when replacing

ox(a;) by oox(a;). Since each B; is a sum of terms of the form oy (),
the exponents in the expansion of [ [ _, (Z] _, e"”k-(%)> are the various

o(B;). Thus, we obtain equations

0= Z Cjeaé('gf)
7=0

for each 7. Multiplying the ith equation by 87:(%) we get
=co+ Y c;e” )] (14.1)

where v; = 3; — By. Note that ~; # 0 since the [, are all distinct. Each
v; € K; hence, each +y; is algebraic over Q. Thus, for a fixed j, the elements
o;(y;) are roots of a polynomial g;(z) € Q[z], where the leading coefficient
bj of g;(x) can be taken to be a positive integer. Moreover, we may assume
that g;(0) # 0 by using an appropriate multiple of min(Q, ;) for g;(z).
We now make estimates of some complex integrals. If f(z) is a polyno-

mial, let
z) =Y fY(z)
1=0

where f(9)(z) is the ith derivative of f. This sum is finite since f is a
polynomial, so F' is also a polynomial. Note that F'(z) — F'(z) = f(z), so

< (e7®F(z)) = —e “fl(x).

dx

Therefore,

/Oa e " f(z)dz = F(0) — e "F(a)
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F(a) - e"F(0) = —e“/o e " f(z)dzx

By setting @ = o;(y;), multiplying by c;, and summing over < and j, we get

S e o) - FO) ST e

j=1i=1 j=1i=1
o: (i)
= 3> ggen) / e [ (2)dz
7=11i=1

Using Equation (14.1) and rearranging the second sum gives us an equation

ncoF(0) + Z cj Z F(oi(v;))
oi(7;)
_ ZZC 27i(13) / e™* f(2)dz. (14.2)

7=11i=1
We define f by

P

flz) = u HQJ ,

where p is a prime yet to be specified. Recall that b; is the leading coefficient
of g;(x) and that each b; is a positive integer. From this definition, we see
that

0=f(0)=f(0)=-=fP2(0)
while fP~1(0) = (by---b,)P"" [1;=1 95(0)? # 0. We choose p to be any
prime larger than max; {b;,g;(0)}, so that p does not divide fP~1(0).
However, for t > p, the polynomial f(*)(z) can be written in the form

FO(@) = p(br- - b)P " hy(z),

where h;(z) € Z[z] has degree at most prn — 1. Thus, f()(0) is divisible
by p for t > p; hence, F(0) = fP~1(0) + D itp1 fU)(0) is not divisible
by p. If we further restrict p so that p > n and p > ¢p, then p does not
divide nco F(0). We will complete the proof by showing that the first sum in
Equation (14.2) is an integer divisible by p and that the right-hand side of
Equation (14.2) goes to 0 as p gets large. This will show that the left-hand
side is at least 1 in absolute value, which will then give a contradiction.
We now show that > 7, ¢; > | F(0i(7;)) is an integer divisible by p.
We do this by showing that each term >} | F(o;(~,)) is an integer divisible

by p. Now,
ZFUz 7] ZZf(k) Uz '7]

k =1
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Since gj(z)P divides f(z) and each o;(7;) is a root of g;(z), we see that

0= f(o:i(7;)) = f(oa(v;)) = - = FP D (o5(v;)).

For t > p, since f*)(xz) = p(by -+ b, )P h;(=),

Zf Y oi(v) =p- Z b )P he(os(7;))- (14.3)

However, this sum is invariant under the action of Gal(K/Q), so it is a
rational number. Morcover, > » | (by - -- b )P""hy(z;) is a symmetric poly-
nomial in z,,...,z, of degree at most prn — 1. The o;(vy,) are roots of
the polynomial g;(z), whose leading coefficient is b;, so the second sum in
Equation (14.3) is actually an integer by an application of the symmetric
function theorem (see Problem 5). This shows that > 7_, ¢; Sor Floi(vg))
is an integer divisible by p; hence, the left-hand side of Equation (14.2) is
a nonzero integer. This means that

40 (bl p)

iic eaz(w/ai(m e~* f(2)dz| > 1
j=1i=1 0
Let
o = mae e}
my = m%x{ e?i(75) },
ms = max {|o3(7;)l},
and
my = srél[%)i] {Ie z| Lz = sai(%')} ,
ms = max 1:[ 195(2)] = 2 = so3(7;)

On the straight-line path from 0 to o;(y;) we have the bound Izp‘li <

|ai(fyj)|p—1 < mf~'. This yields the inequality
/ai('Yj) f( )d (bl e bT)PTn 1 p
e ?f(z2)dz| < msgm ms m
0 Y- 2o
by--- b, )P
= m4( ! ) mimk.

(p—1)!




Combining this with the previous inequalily gives

r n U-;(’Yj)
LY een [ e s

j=1i=1

by ---b )P
< ramyms (m4£—1(7_—1))!—m§m’5’>
_ ((by -~ b )"mams)?
= MMMy
(p—1)!

Since uP/(p — 1)! — 0 as p — o0, the last term in the inequality above
can he made arbitrarily small by choosing p large enough. This gives a
contradiction, so our original hypothesis that the exponentials e*t ... e%
are linearly dependent over Q is false. This proves the theorem. O

While we have proved that m and e are transcendental over @Q, it is
unknown if 7 is transcendental over Q(e) or if e is transcendental over Q().
To discuss this further, we need a definition from Section 19. If K is a field
extension of F', then ai,...,a, € K are algebraically independent over F’
if whenever f € F[z,,...,z,] is a polynomial with f(a1,...,a,) =0, then
f = 0. It is not hard to show that m and e are algebraically independent
over Q if and only if 7 is transcendental over Q(e), if and only if e is
transcendental over Q(7); see Problem 2. A possible generalization of the
Lindemann-Weierstrauss theorem is Schanuel’s conjecture, which states
that if y,,...,y, are Q-linearly independent complex numbers, then at
least n of the numbers y1,...,y,, e¥*, ..., e¥" are algebraically independent
over Q. If Schanuel’s conjecture is true, then e and 7 are algebraically
independent over @Q; this is left to Problem 3.

Problems

1. The original Lindemann Weierstradss  theorem  states  that il
a1, ...,y are Q-linearly independent algebraic numbers, then the
exponentials e“* ..., e®" are algebraically independent; that is,
there is no nonzero polynomial f(z1,...,2m) € Q[z1,...,2m| with
f(e*r,...,e®m) = 0. Show that this version of the Lindemann-
Weierstrauss theorem is equivalent to the version given in Theorem
14.1.

2. Recall the definition of algebraic independence given at the end of this
section. Show that two complex numbers a,b are algebraically inde-
pendent over Q if and only if b is transcendental over Q(a). Conclude
that b is transcendental over Q(a) if and only if a is transcendental

over Q(b).




J.

10.

11.

coove Lhat Scliwe o care nnplies that therc o no noneero
polynomial f(z,y) € Q[z,y] with f(e,m) = 0. In other words,
Schanuel’s conjecture implies that 7 and e are algebraically inde-
pendent over Q.

. Let

T S
E a;z% and E bz’
i=1 i=1

be functions with a;, b; nonzero rational numbers and «;, §; algebraic
numbers. Assume that the «; are distinct and that the 3; are distinct.
Writing ). a;z®-) " b; % in the form 3, cxx with the «; distinct,
show that at least one of the ¢ is nonzero.

Let ag,a1,...,a, € Z with a, # 0, and let {ﬁj};:l be the roots of
the polynomial a,z™ +a, 12" '+ +ag. Let g(z1,z2,...,2,) bea
symmetric polynomial in the z; with integer coeflicients. If t = deg(g),
show that alg(fB1,...,3,) is an integer.

(Hint: Use the theorem on symmetric polynomials: If f(zy,...,z,)
is a symmetric polynomial in the variables z;,...,z,, then f is a

polynomial in the elementary symmetric functions.)

Use the infinite series representation e = Y~ 1/n! for e to show
that e is irrational.
(This approach to proving that e is irrational was found by Fourier.)

If u is a nonzero algebraic number, show that sinu and cosu are
transcendental over Q.

. If v is a nonzero algebraic number, show that tanw, cot u, secu, and

cscu are all transcendental over QQ.

Il w # 1 is a nonzecro algebraic number, show that any complex value
of logw is transcendental over Q.

Il w # 1 is a nonzero algebraic number and f is any one of the
inverse trigonometric functions, show that any complex value of f(u)
is transcendental over QQ.

Let K be the set of all real-valued functions defined and continuous on
a dense open subset of R. Define pointwise addition and multiplication
of functions f,g € K in the common domain of f and g.

(a) Show that K is a field and that K contains the rational function
field R(z).

(b) Show that the six basic trigonometric functions, In|z|, and e®
are in K and are not algebraic over R(z).
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12. Barly on in the proof of the Lindemann—Weierstra)z(ss theorem,
we had an equation Z;”:lajeaj = 0, and we needed equations

Z;.n:_l a;e°(®) = 0, where o is an automorphism of an appropriate
field. If o is continuous, then we can use infinite series to show that
o(e®) = e7(9). Show that if o is an automorphism of a subfield F' of
C, then ¢ is not continuous unless o = id or ¢ is complex conjugation

restricted to F.

15 Ruler and Compass Constructions

In the days of the ancient Greeks, some of the major mathematical ques-
tions involved constructions with ruler and compass. In spite of the ability
of many gifted mathematicians, a number of questions were left unsolved.
It was not until the advent of field theory that these questious could be
answered. We consider in this section the idea of constructibility by ruler
and compass, and we answer the following four classical questions:

1. Is it possible to trisect any angle?

2. ls it possible to double the cube? That is, given a cube of volunie V|
a side of which can be constructed, is it possible to construct a liue
segment whose length is that of the side of a cube of volume 2V7

3. Is it possible to square the circle? That is, given a counstructible circle
of area A, is it possible to construct a square of area A7

4. For which n is it possible to construct a regular n-gon?

The notion of ruler and compass construction was a thicoretical one to the
Greeks. A ruler was taken to be an object that could draw perfect, infinitely
long lines with no thickuess but with no markings to measure distance. The
only way to use a ruler was to draw the line passing thirough two points.
Similarly, a compass was taken to be a device that could draw a perfect
circle, and the only way it could be used was to draw the circle centered
at one point and passing through another. The comnpass was sometimes
referred to as a “collapsible compass”; that is, after drawing a circle, the
compass could not be lifted to draw a circle centered at another point with
the same radius as that of the previous circle. Likewise, given two points a
distance d apart, the ruler cannot be used to mark a point on another tine
a distance d from a given point on the line.

The assumptions of constructibility are as follows. T'wo points are given
and are taken to be the initial constructible points. Given any two con-
structible points, the line through these points can be constructed, as can
the circle centered ab one point passing through the other. A point is con-
structible if it is the intersection of constructible lines and circles.
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The first thing we note is that the collapsibility of the compass is not a
problem, nor is not being able to use the ruler to mark distances. Given two
constructible points a distance d apart, and a line £ with a point P on ¢, we
can construct a point ¢ on ¢ a distance d from P. Also, if we can construct
a circle of radius r, given any constructible point P, we can construct the
circle of radius r centered at P. These facts are indicated in Figure 15.1.
It is left as an exercise (Problem 4) to describe the construction indicated
by the figure.

B

A
———— d |

FIGURE 15.1. Construction of @ on £ a distance d from P.

There are some standard constructions from elementary geometry that
we recall now. Given a line and a point on the line, it is possible to construct
a second line through the point perpendicular to the original line. Also,
given a line and a point not on the line, it is possible to construct a second
line parallel to the original line and passing through the point. These facts
are indicated in Figure 15.2.

P P ~ H

AN u
T

FIGURE 15.2. Construction of lines perpendicular and parallel to ¢ passing
through «.

So far, our discussion has been purely geometric. We need to describe
ruler and compass constructions algebraically in order to answer our four
questions. To do this, we turn to the methods of analytic geometry. Given
our original two poinls, we sct up a coordinate system by defining the z-
axis to be the line through the points, setting one point to be the origin




and the other to be the point (1,0). We can draw the line perpendicular to
the z-axis through the origin to obtain the y-axis.

Let a € R. We say that a is a constructible number if we can construct
two points a distance |a| apart. Equivalently, a is constructible if we can
construct either of the points (a,0) or (0,a). If a and b are constructible
numbers, elementary geometry tells us that a + b, a — b, ab, and a/b (if
b # 0) are all constructible. Therefore, the set of all constructible numbers
is a subfield of R. Furthermore, if a > 0 is constructible, then so is /a.
These facts are illustrated in Figures 15.3—-15.5.

¢ a—+b { ' a \

*—— . | . - * - -~

} a —b — f-som s g = b b

FIGURE 15.3. Construction of @ + b and a — b.

ab { t Q

FIGURE 15.4. Construction of ab and a/b.

Suppose that P is a constructible point, and set P = (a,b) in our co-
ordinate system. We can construct the lines through P perpendicular to
the z-axis and y-axis; hence, we can construct the points (a,0) and (0, b).
Therefore, a and b are constructible numbers. Conversely, if a and b are con-
structible numbers, we can construct (a,0) and (0, b), so we can construct
P as the intersection of the line through (a, 0) parallel to the y-axis with the
line through (0, b) parallel to the z-axis. Thus, P = (a,b) is constructible
if and only if a and b are constructible numbers.

In order to construct a number ¢, we must draw a finite number of lines
and circles in such a way that |c| is the distance between two points of
intersection. Equivalently, we must draw lines and circles so that (c,0) is
a point of intersection. If we let K be the field generated over Q by all
the numbers obtained in some such construction, we obtain a subfield of
the field of constructible numbers. To give a criterion for when a number




L - a \

FIGURE 15.5. Construction of \/a.

is constrictible, we need to relate constructibility Lo propertics of the ficld
extension K /Q. We do this with analytic geometry. Let A be a subfield of
R. Given any two points in the planc of K, we obtain a line through these
points. This will be called a line in K. It is not hard to show that a line in
K has an equation of the form az + by + ¢ = 0 with a,b,c € K. If P and
(2 are points in the plane of K, the circle with center P passing through @
is called a circle in K. Again, it is not hard to show that the equation of a
circle in K can be written in the form z° + y2 4+ az + by + ¢ = 0 for some
a,b,c € K. The next lemma gives us a connection between constructibility
and field extensions.

Lemma 15.1 Let K be a subfield of R.

1. The intersection of two lines in K 1s either empty or is a point in the
plane of K.

2. The intersection of a line and a circle in K is either empty or consists
of one or two points in the plane of K(y/u) for some v € K with
u > 0.

3. The intersection of two circles in K is either empty or consists of one
or two points in the plane of K (\/u) for some u € K with u > 0.

Proof. The first statement is an easy calculation. For the remaining two
statements, it suffices to prove statement 2, since if 22 +y? +az +by+c = 0
and 22 4+ 92 + a’z + b’y + ¢/ = 0 are the equations of circles C' and C’,
respectively, then their intersection is the intersection of C' with the line
(a—a')z+ (b—b")y+ (c—c") =0. So, to prove statement 2, suppose that
our line L in K has the equation dz + ey + f = 0. We assume that d # 0,
since if d = 0, then e # 0. By dividing by d, we may then assume that
d = 1. Plugging —z = ey + f into the equation of C, we obtain

(2 + 1)y* + (2ef — ae + b)y + (f* — af +¢) = 0.
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Writing this equation in the form ay® + fy +v =0, if « = 0, then y € K.
If o # 0, then completing the square shows that either LN C = @ or
y € K(y/B? — 4ay) with 5% — 4ay > 0. O

From this lemma, we can turn the definition of constructibility into a
property of field extensions of @, and in doing so obtain a criterion for
when a number is constructible.

Theorcm L5.2 A veal nawnber ¢ ws construetible of and only if there is a
tower of fields Q = Ky C K, C --- C K, such that ¢ € K, and |y, :
K;| < 2 for each i. Therefore, if c is constructible, then c is algebraic over

Q, and [Q(c) : Q] s a power of 2.

Proof. If ¢ is constructible, then the point (¢,0) can be obtained from
a finite sequence of constructions starting from the plane of Q. We then
obtain a finite sequence of points, each an intersection of constructible lines
and circles, ending at (¢, 0). By Lemma 15.1, the first point either lies in
Q or in Q(y/u) for some u. This extension has degree either 1 or 2. Each
time we construct a new point, we obtain a field extension whose degree
over the previous field is either 1 or 2 by the lemma. Thus, we obtain a
sequence of fields

Q=KCK CK,C---CK,

with [K;yy @ K] < 2 and ¢ € K. Therefore, K, : Q] = 2" for some n.
However, [Q(c) : Q] divides [K, : Q], so [Q(c) : Q| is also a power of 2.
For the converse, suppose that we have a tower Q = Ky C I() C--- C K.
with ¢ € K, and [K;4+, @ K;| < 2 for each i. We show that ¢ is con-
structible by induction on 7. If r = 0, then ¢ € @, so ¢ is constructible.
Assume then that » > 0 and that elements of K,_| are constructible.
Since [K, : K,._] < 2, the quadratic lormula shows that we may write

K, = K,_1(v/a) for some a € K,_,. Since a is constructible by assump-
tion, so is v/a. Therefore, K, = K,_,(y/a) lies in the field of constructible
numbers; hence, ¢ is constructible. 0O

With this theorenl, we are now able to answer the four questions posed
earlier. We first consider trisection of angles. An angle of measure € is
constructible if we can construct two intersecting lines such that the angle
between them is 6. For example, a 60° angle can be constructed because
the point (v/3/2,1/2) is constructible, and the line through this point and
(0,0) makes an angle of 60° with the z-axis. Suppose that P is the point
of intersection on two constructible lines. By drawing a circle of radius 1
centered at P, Figure 15.6 shows that if ¢ is the angle between the two
lines, then sinf and cosé are constructible numbers. Conversely, if sin@
and cosf are constructible, then # is a constructible angle (see Problem
2). In order to trisect an angle of measure 8, we would need to be able to
construct an angle of §/3.
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FIGURE 15.6. Construction of sines and cosines.

Theorem 15.3 It is impossible to trisect a 60° angle by ruler and compass
construction.

Proof. As noted above, a 60° angle can be constructed. If a 60° angle can be
trisected, then it is possible to construct the number a = cos 20°. However,
the triple angle formula cos 30 = 4 cos® §—3 cos 8 gives 4o —3a = cos60° =
1/2. Thus, « is algebraic over Q. The polynomial 823 —6x — 1 is irreducible
over @ because it has no rational roots. Therefore, [Q(a) : Q] = 3, so « is
not constructible. A 20° angle cannot then be constructed, so a 60° degree
angle cannot be trisected. O

This theorem does not say that no angle can be trisected. A 90° angle
can be trisected, since a 30° angle can be constructed. This theorem only
says that not all angles can be trisected, so there is no method that will
trisect an arbitrary angle.

The second classical impossibility we consider is the doubling of a cube.

Theorem 15.4 [t is impossible to double a cube of length 1 by ruler and
compass construction.

Proof. The length of a side of a cube of volume 2 is ¥/2. The minimal
polynomial of /2 over Q is 3 — 2. Thus, [Q(+/2) : Q] = 3 is not a power
of 2, so +/2 is not constructible. O

The third of the classical impossibilities is the squaring of a circle. For
this, we need to use the fact that 7 is transcendental over Q.

Theorem 15.5 [t is tmpossible to square a circle of radius 1.

Proof. We are asking whether we can construct a square of area 7. To do
so requires us to construct a line segment of length /7, which is impossible
since 1/ is transcendental over QQ by the Lindemann—Weierstrauss theorem:;
hence, /7 is not algebraic of degree a power of 2. O




Our last question concerns construction of regular n-gons. o determine
which regular n-gons can be constructed, we will need information about
cyclotomic extensions. Recall from Section 7 that if w is a primitive nth
root of unity, then [Q(w) : Q] = ¢(n), where ¢ is the Euler phi function.

Theorem 15.6 A reqular n-gon is constructible if and only if ¢(n) is a
power of 2.

Proof. We point out that a regular n-gon is constructible if and only
if the central angles 2m/n are constructible, and this occurs if and only
if cos(2m/n) is a constructible number. Let w = 2™/ = cos(2m/n) +
isin(2m/n), a primitive nth root of unity. Then cos(2m/n) = Z(w +w™!),
since w™! = cos(2m/n) — isin(2m/n). Thus, cos(2m/n) € Q(w). Mowever,
cos(2m/n) € R and w ¢ R, so Q(w) # Q(cos(2m/n)). But w is a root of z* —
2 cos(2m/n)z + 1, as an easy calculation shows, so [Q(w) : Q(cos(2m/n))] =
2. Therefore, if cos(2m/n) is constructible, then [Q(cos(27w/n)) : Q] is a
power of 2. Hence, ¢(n) = [Q(w) : Q] is also a power of 2.

Conversely, suppose that ¢(n) is a power of 2. The field Q(w) is a
Galois extension of () with Abelian Galois group by Proposition 7.2. If
H = Gal(Q(w)/Q(cost277n))), by the theory of finite Abelian groups there

is a chain of subgroups
HyCcH,C---CH.=H

with ‘Hz'+1 . Hz‘ = 2. If Lz = JT(HZ), then [Lz : Li+l] = 2; thUS, Lz =
Li+1(y/u;) for some u;. Since L; C Q(cos(2m/n)) C R, each of the u; >
0. Since the square root of a constructible number is constructible, we
see that cverything in Q(cos(27/n)) is constructible. Thus, cos(27/n) is
coustructible, so a regular n-gon is constiructible. O

This theorem shows, for example, that a regular 9-gon is not constructible
and a regular 17-gon is constructible. An explicit algorithm for constructing
a regular 17-gon was given by Gauss in 1801. If n = pI™ - - p[*~ is the prime
factorization of n, then ¢(n) =[], p™ ' (p; — 1). Therefore, $(n) is a power
of 2 if and only if n = 2°¢, - - - ¢,-, where r, s > 0, and the g; are primes of the
form 2™ + 1. In order to determine which regular n-gons are constructible,
it then reduces to determining the primes of the form 2™ + 1.

Problems

1. Use the figures in this section to describe how to construct a+b, a—b,
ab, a/b, and /a, provided that a and b are constructible.

2. If sinf and cosf are constructible numbers, show that  is a con-
structible angle.




J. Lf an angle ¢ can be constructed, show that a line passing through
the origin can be constructed such that the angle between this line
and the z-axis is 6.

4. Use the figures of this section to answer the following questions.

(a) Given two points a distance d apart and a constructible point P
on a line ¢, show that it is possible to construct a point @ on ¢
a distance d from P.

(b) Given that some circle of radius 7 can be constructed, if P is a
constructible point, show that the circle of radius r centered at
P can be constructed.

(¢) Given a line ¢ and a point P on ¢, show that it is possible to
construct the line through P perpendicular to £.

(d) Given a line ¢ and a point P not on ¢, show that it is possible
to construct the line through P parallel to £.

5. Let ¢ € R be a root of an irreducible quartic over Q. Let N be the
normal closure of Q(c)/Q.

(a) If Gal(N/Q) is isomorphic to either D4 or a group of order 4,
show that c is constructible.

(b) If Gal(/N/Q) is isomorphic to either A4 or Sy, show that ¢ is not
constructible.

6. Let ¢ € R be algebraic over Q, and let NV be the normal closure of
Q(c)/Q. If [N : Q] is a power of 2, show that ¢ is constructible.

7. This problem gives a partial converse to Theorem 15.2. If ¢ € R is

algebraic over Q and if NV is the normal closure of Q(¢)/Q, then show
that ¢ is constructible if and only if [V : Q] is a power of 2.
(The criterion for constructibility proven in this section is much like
the definition of solvable by radicals given in Section 16. If you work
this problem, some proofs of the next section will be easier to under-
stand.)

8. A Fermat number is a number of the form 22" 41 for some 7. Suppose
that p is an odd prime such that a regular p-gon is constructible. Show
that p is a Fermat number.

16 Solvability by Radicals

In this section, we address one of the driving forces of mathematics for hun-
dreds of years, the solvability of polynomial equations. As we saw in Section
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13, formulas for the roots of cubic and quartic polynomials are known and
had been found by the mid-sixteenth century. While it was over a thousand
years between the discovery of the quadratic formula and the solution of the
cubic, the solution of the quartic came soon after the solution of the cubic.
This success led mathematicians to believe that formulas for the roots of
polynomials of arbitrary degree could be found. However, nothing had been
discovered for polynomials of higher degree until Abel proved in a paper
published in 1824 that there is no “algebraic” solution of the quintic; that
is, there is no solution that expresses the roots in terms of the coefficients,
arithmetic operations, and radicals. The full story of solvability of polyno-
mials was then discovered by Galois, who proved a necessary and sufficient
condition for a polynomial to be solvable. His work introduced the notion
of a group and was the birth of abstract algebra.

We need to make precise what it means for a polynomial to be solvable.

Consider, for example, the polynomial z*—622+7. Its roots are £+/3 & /2,

all of which lie in the extension Q(v2,v/3 4+ v2,v/3 — v2) of Q. This
extension gives rise to the chain of simple extensions

Q € O(3) € QW3 +v2) € QW3 /3 + V(Y3 - VD),

wherc each successive field is obtained from the previous one by adjoining
the root of an clement of the previous field. This example motivates the
following definitions.

Definition 16.1 A field extension K of F' is a radical extension if K =
F(ay,...,ar), such that there are integers ny,...,n, with a¥' € F and
alt € F(ay,...,a;—1) foralli> 1. Ifny =--- =n, =n, then K is called
an n-radical extension of F'.

Definition 16.2 If f(z) € Fz|, then f is solvable by radicals if there is a

radical extension L/F such that f splits over L.« Sp(f1 <L

If i and F' are as in the first definition, then K is an n-radical extension
of F for n =mn,---n, since a} € F(ay,...,a;—) for each i. The definition
of radical extension is equivalent to the following statement: K is a radical
extension of I if there is a chain of fields

F=FRCFC--CF, =K,

where F; 1, = Fj(a;) for some a; € Fyy with o] € F; for cach 7. From the
definition, it follows casily that if K/I" is a radical extension and L/K is a
radical extension, then L/F' is a radical extension.

Example 16.3 Any 2-Kummer extension of a field F' of characteristic not
2 is a 2-radical extension of F' by Theorem 11.4. Also, if K/F is a cyclic
extension of degree n, and if F' contains a primitive nth root of unity, then
K is an n-radical extension of F' by Theorem 9.5.
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Example 16.4 If K = Q(+/2), then K is both a 4-radical extension and a
2-radical extension of (). The second statement is true by considering the
tower

Q € QW) C QWA)(YVI) = (V).

Example 16.5 Let ¢ € R. By Theorem 15.2, ¢ is constructible if and
only if there is a tower Q = Fy C F), C --- C F, such that for each 1,
Fi11 = Fi(\/a;) for some a; € F;, and ¢ € F,.. Therefore, ¢ is constructible
if and only if ¢ lies in a subfield K of R such that K is a 2-radical extension

of Q.

The definition of solvability by radicals does not say that the splitting
field of f over F'is itself a radical extension. It is possible for f to be solvable
by radicals but that its splitting field over F' is not a radical extension.
However, if F' contains “enough” roots of unity, then the splitting field of
a solvable polynornial is a radical extension of F. For an example of the
first statement, see Example 16.13. The second statement is addressed in
Problem 3.

The next lernma is the key technical piece of the proof of the character-
ization of solvability by radicals. '

Lemma 16.6 Let K be an n-radical extension of F', and let N be the
normal closure of K/F. Then N is an n-radical extension of F.

Proof. Let K = F(ai,...,qa,) with af € F(a,...,qa;-). We argue
by induction on r. If 7 = 1, then K = F(a) with o™ = a € F. Then
N =F(b,...,Bm), where the 3; are the roots of min(F, ). However, this
minimal polynomial divides 2™ — a, so 8" = a. Thus, IV is an n-radical
extension of F'. Now suppose that r > 1. Let Ny be the normal closure of
F(e,...,0p—1) over F. By induction, Ny is an n-radical extension of F'.
Since N is the splitting field over F' of {min(F, ;) :1<¢<r — 1}, and N
is the splitting field of all min(F,c;), we have N = Ny(71,-..,7m), where
the ; are roots of min(F, a,.). Also, a = b for some b € F(ca,..., 1) C
Ny. By the isomorphism extension theorem, for each i there is a o; €
Gal(N/F) with o;(c,) = ;. Therefore, 4 = 0;(b) by Proposition 3.28.
However, Ny is normal over F', and b € Ny, so g;(b) € Ny. Thus, cach ~;
is an nth power of some element of N, so N is an n-radical extension of
Np. Since Ny is an n-radical extension of F', we see that N is an n-radical
extension of I O

We need some group theory in order to state and prove Galois’ theorem
on solvability by radicals. The key group theoretic notion is that of solv-
ability of a group. A little more information on solvability can be found in
Appendix C.




Petinition 16.7 A group G s solvable of there o a chaen vy osubygroups
(e)=HoCH1C---CH,=G

such that for all i, the subgroup H; is normal in H; 1 and the quotient
group H;,1/H; is Abelian. .

The following two propositions are the facts that we require about solv-
ability. The first is proved in Appendix C, and the second can be found in
any good group theory book.

Proposition 16.8 Let G be a group and N be a normal subgroup of G.
Then G is solvable if and only if N and G/N are solvable.

Proposition 16.9 Ifn > 5, then S, is not solvable.

We now prove Galois’ theorem characterizing polynomials that are solv-
able by radicals.

Theorem 16.10 (Galois) Let char(F) = 0 and let f(z) € Flz]. If K is
a splitting field of f over F, then f s solvable by radicals if and only if
Gal(K/F) is a solvable group.

Proof. Suppose that f is solvable by radicals. Then there is an n-radical
extension M/F with K C M. Let w be a primitive nth root of unity in
some extension field of M. The existence of w follows from the assumption
that char(F') = 0. Then M(w)/M is an n-radical extension, so M(w)/F is
an n-radical extension. Let L be the normal closure of M (w)/F. By Lemma
16.6, L is an n-radical extension of F'. Thus, L is also an n-radical extension
of F(w). Therefore, there is a sequence of fields

F=FRCF=FuwCFC---CF =1L,

where F;y = Fi(a;) with o € F;. For ¢ > 1, the extension Fi,,/F;
is Galois with a cyclic Galois group by Theorem 9.6, since F; contains a
primitive nth root of unity. Also, F}/Fp is an Abelian Galois extension,
since F) is a cyclotomic extension of F. Because char(F) = 0 and L/F
is normal, L/F is Galois by Theorem 4.9. Let G = Gal(L/F) and H; =
Gal(L/F;). We have the chain of subgroups

(id)=H, CH,_1C - C Hy=G.

By the fundamental theorem, H;,; is normal in H; since Fj,, is Galois
over F;. Furthermore, H;/H; 1 = Gal(F;41/F;), so Hi/H; 1 is an Abelian
group. Thus, we see that G is solvable, so Gal(K/F) is also solvable, since

Gal(K/F) = G/ Gal(L/K).




For the converse, supposc that Gal(//F') is a solvable group. We have a
chain

Gal(K/F)=Ho 2 Hi 2 --- 2 H, = (id)
with H;;y normalin H; and H;/H,;,, Abelian. Let K; = F(H;). By the fun-
damental theorem, K, is Galois over K; and Gal(K;,1/K;) & H;/H; 1.
Let n be the exponent of Gal(K/F'), let w be a primitive nth root of unity,
and set L; = K;(w). We have the chain of fields

FCLyCLiC---CL,

with K C L,. Note that L;;1 = L;K;;. Since K;,,/K; is Galois, by the
theorem of natural irrationalities, L;y1/L; is Galois and Gal(L;1/L;) is
isomorphic to a subgroup of Gal(K;,/I(;). This second group is isomor-
phic to I1;/H; 1, an Abclian group. Thns, Gal(L;4,/L;) is Abelian, and
its exponent divides n. The ficld L;y, is an n-Kummer extension of L; by
Theorem 11.4, so L;;, is an n-radical extension of L,;. Since Ly = F(w) is
a radical extension, transitivity shows that L, is a radical extension of F'.
As K C L,, the polynomial f is solvable by radicals. O

Our definition of radical extension is somewhat lacking for fields of char-
acteristic p, in that Theorem 16.10 is not true in general for prime char-
acteristic. However, by modifying the definition of radical extension in an
appropriate way, we can extend this theorem to fields of characteristic p.
This is addressed in Problern 2. Also, note that we only needed that char(F')
does not divide n in both directions of the proof. Therefore, the proof above
works for fields of characteristic p for adequately large p.

Let k be a field. The general nth degree polynomial over k is the poly-
nomial

flz)=(z—ti)(z—ta) - (x—t,)=a" —s512" "  + -+ (=1)"sp
€ k(ty,..., ty)[z],

where the s; are the elementary symmetric functions in the ¢;. Tf we could
find a formula for the roots of f in terms of the coelficients of f, we could
use this to find a formula for the roots of an arbitrary nth degree polyno-
mial over k. If n < 4, we found formulas for the roots of f in Section 13.
For n > 5, the story is different. The symmetric group S, is a group of au-
tomorphisms on K = k(t1,...,t,) as in Example 2.22, and the fixed field is
F = k(s),...,5,). Therefore, Gal(K/F') = S,. Theorem 16.10 shows that
no such formula exists if n > 5.

Corollary 16.11 Let f(z) be the general nth degree polynomial over a field
of characteristic 0. If n > 5, then f is not solvable by radicals.

Example 16.12 Let f(z) = z° — 4z + 2 € Q[z]. By graphing techniques
of calculus, we see that this polynomial has exactly two nonreal roots, as
indicated in the graph below.
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Furthermore, f is irreducible over () by the Eisenstein criterion. Let K
be the splitting field of f over @. Then [K : Q] is a multiple of 5, since any
root of f generates a field of dimension 5 over . Let G = Gal(K/Q). We
can view G C S5. There is an element of G of order 5 by Cayley’s theorem,
since 5 divides |G|. Any element of S5 of order 5 is a 5-cycle. Also, if &
is complex conjugation restricted to K, then o permutes the two nonreal
roots of f and fixes the three others, so ¢ is a transposition. The subgroup
of S5 generated by a transposition and a 5-cycle is all of S5, so G = S5 is
not solvable. Thus, f is not solvable by radicals.

Example 16.13 Let f(z) = 2° —3z +1 € Q[z], and let K be the splitting
field of f over (. We show that f is solvable by radicals but that K is not
a radical extension of @Q. Since f has no roots in Q and deg(f) = 3, the
polynomial f is irreducible over Q. The discriminant of f is 81 = 92, so the
Galois group of K/Q is Az and [K : Q] = 3, by Corollary 12.4. Therefore,
Gal(K/F') is solvable, so f is solvable by radicals by Galois’ theorem. If K
is a radical extension of (), then there is a chain of ficlds

Qchc--CF.=K

with F; = F;_1(«a;) and o € F;_, for some n. Since [K : Q] is prime, we
see that there is only one proper inclusion in this chain. Thus, K = Q(b)
with 0™ = u € Q for some n. The minimal polynomial p(z) of b over
splits in K, since K/Q is normal. Let b’ be another root of p(z). Then
b™ = (V') = u, so b'/b is an nth root of unity. Suppose that pu = b'/b
is a primitive mth root of unity, where m divides n. Then Q(u) € K, so
[Q(u) : Q] = ¢(m) is either 1 or 3. An easy calculation shows that ¢(m) # 3
for all m. Thus, [Q(u) : Q] = 1, so u € Q. However, the only roots of unity
in (Q are +1, so 4 = £1. Therefore ¥’ = +b. This proves that p(z) has at
most two roots, so [Q(b) : Q] < 2 < [K : @], a contradiction to the equality
Q(b) = K. Thus, K is not a radical extension of Q.

Problems

1. Let M be an algebraic closure of I, and let F' = M (z). Show that
f(t) = t? —t—x is not solvable by radicals over F' but that the Galois
group of the splitting ficld of f over F' is cyclic.
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2. Let F be a field of characteristic p > 0. Extend the definition of rad-
ical extension as follows. An extension K of I is a radical extension
il there is a chain of fields 7 = Fy C Fy C --- C F,, = K such
that F;,, = F;(u;) for some u;, with either u;* € F; for some n;, or
u? —u; € F;. Prove that Theorem 16.10 holds in prime characteristic
with this definition of radical extension.

3. Let f(z) € F[z] be solvable by radicals. If F' contains a primitive nth
root of unity for all n, show that the splitting field of f over F' is
a radical extension of F. After working through this, figure out just
which roots of unity F' needs to have for the argument to work.

4. Solvability by real radicals. Suppose that f(z) € Q[z] has all real
roots. If f is solvable by radicals, is f solvable by “real radicals”? That
18, does there exist a chain of lelds @ = Qo C @, € --- C Q, CR
such that @, contains all the roots of f, and Q41 = Q:( +/a;)? The
answer is no, in general, and this problem gives a criterion for when
f is solvable by real radicals. Use the following steps to prove the
following statement: If f(z) € Q[z] is an irreducible polynomial with
all real roots, and if IV is the splitting field of f over @@, then [N : Q]
1s a power of 2 if and only if f is solvable by real radicals. You may
assume the following nontrivial fact: If F' C K are subfields of R with
K = F(a) such that a™ € F, and if L is an intermediate field of K/F
Galois over F, then [L: F| < 2.

(a) If [N : Q] is not a power of 2, let p be an odd prime divisor of
[N : Q]. Let P be the subgroup of G = Gal(N/Q) generated by
all elements of order p. Show that P is a normal subgroup of G
and that P # (id).

(b) Let o be aroot of f, and let T'= Q(«). If H = Gal(N/T), show
that P is not contained in . Conclude that there is an element
o € (G of order p not contained in H.

(c) Let FF = F({o)). Show that o ¢ F. Let @; be in the chain
above, and set F; = F'Q;. Show that there is an integer r > 0
with a ¢ F._, but « € F,.. Show that FF = F._; N N and
N C F,.

(d) Let £ = NF,._;. Then F._; C E C F,.. Conclude from the
assumption above and the theorem of natural irrationalities that
p=|[E:F._] <2, a contradiction.

(A full proof of this criterion for solvability by real radicals can
be found in Isaacs [14].)







[V

Infinite Algebraic Extensions

In this chapter, we investigate infinite Galois extensions and prove an ana-
log of the fundamental theorem of Galois theory for infinite extensions.
The key idea is to put a topology on the Galois group of an infinite di-
mensional Galois extension and then use this topology to determine which
subgroups of the Galois group arise as Galois groups of intermediate exten-
sions. We also give a number of constructions of infinite Galois extensions,
constructions that arise in quadratic form theory, number theory, and Ga-
lois cohomology, among other places.

17 Infinite Galois Extensions

In this section, we consider Galois extensions K /F' of arbitrary degree and
prove a fundamental theorem for such extensions. If [K : F| = oo, then not
all subgroups of Gal(K/F') have the form Gal(K /L) for some intermediate
extension L (sce Problem 4). We need more information about Gal(K/F)
in order to determine when a subgroup is of the form Gal(K/L). It turns
out that the right way to look at Gal(K/F') is to put a topology on it. This
was first done by Krull in the 1920s, and we see below that the subgroups
of Gal(K/F') of the form Gal(K/L) are precisely the subgroups that are
closed with respect to the topology we define on Gal(K/F). We assume
in this section that the reader is familiar with the basic ideas of point set

topology, in particular with the notions of compactness and the Hausdorff
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property. The interested reader can find a discussion of these notions in
Appendix E.

Let K be a Galois extension of F'. We will use the following notation for
the rest of this section. Let

G = Gal(K/F),
I={E.FCECK, [E:F|<ocoand E/F is Galois },
N={NCG:N=Gal(K/FE) for some E € T}.

Recall part 3 of Proposition 3.28: If K/F isnormal, andil F CLC K CN
arc ficlds with 7 : L — N au I-liomomorphism, thien 7(L) C I, and there
isa o € Gal(/{/F) with o|;, = 7. We will use this result frequently.

We start off by proving a few simple properties of the sets Z and N.

Lemma 17.1 If ay,...,«a, € K, then there is an E € T with o; € E for
all 7.

Proof. Let £ C K be the splitting field of the minimal polynomials of the
«; over F'. Then, as each «; is separable over F', the field £ is normal and
separable over F'; hence, E is Galois over F'. Since there are finitely many
a;, we have [E: F] < oo,s0 B eT. O

Lemma 17.2 Let N € N, and set N = Gal(K/FE) with E € Z. Then
E = F(N) and N is normal in G. Moreover, G/N = Gal(E/F). Thus,
|G/N| = |Gal(E/F)| = [E: F] < co.

Proof. Since K is normal and separable over F', the field K is also normal
and separable over E, so K is Galois over E. Therefore, £ = F(N). As
in the proof of the fundamental theorem, the map 6 : G — Gal(E/F)
given by o — o|g Is a group homomorphism with kernel Gal(K/E) = N.
Proposition 3.28 shows that 0 is surjective. The remaining statements then
follow. 0

Lemma 17.3 We have (\ycp N = {id}. Furthermore, (\yep oN = {0}
forallo € G.

Proof. Let 7 € (| ycn IV and let ¢ € K. By Lemma 17.1, thereisan £ € 7
with a € E. Set N = Gal(K/FE) € N. The automorphism 7 fixes F since
7 € N, s0o 7(a) = a. Thus, 7 = id, so [|yen NV = {id}. For the second
statement, if 7 € oN for all N, then 0='7 € N for all N; thus, 0717 = id
by the first part. This yields 7 = 0, so [ycp 0N = {0} O

Lemma 17.4 Let Ny, N, e N. Then N1 NNy e N.

Proof. Let N; = Gal(K/E;) with E; € Z. Each E; is finite Galois over
I hence, F|F, is also finite Galois over F', so E,Ey € 7. However,
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Gal(K/E1E;) = Ny N Ny; to see this, we note that ¢ € Ny N Ny if and
only if o|g, = id and o|g, = id, if and only if Fy C F(o) and E, C F(o),
and if and only if F1Ey C F(o). This last condition is true if and only if
g e Gal(f(/ElEg) Thus, Ny NNy = Gal(K/ElEz) cN. O

We can now define a topology on the Galois group G.

Definition 17.5 The Krull topology on G is defined as follows: A subset
X of Gisopenif X =@ orif X =, 0:N; for some 0; € G and N; € N.

From the delinition, it is clear that G and @ arc open sets and that the
arion of open sets 15 open. To show that we do indeed have a topology on
(G, it remains to see that the intersection of two open sets is again open. It
is sufficient to show that 7Ny N 75Ny is open for any Ny, Ny € N. To see
this, if o € 7, Ny N 179 N,, then

71Ny N 7Ny = o Ny NoNy = a(N; N Na),

and o(N1 N Ny) is open, since Ny N N, € N by Lemma 17 4.
We point out some properties of the Krull topology. Since each nonempty
open set of G is a union of cosets of subgroups of NV, the set

{ocN:0e€ G, NeN}

is a basis for the Krull topology. If N € N, then |G : N| < co,s0 G—oN is a
union of fnitely many cosets of N. Therefore, o N is both open and closed.
A set that is both closed and open is called clopen. The Krull topology
thus has a basis of clopen sets. While the existence of nontrivial clopen
sets 1s not common in more familiar topologies such as the usual topologies
on R or C, it is common for topologies arising in algebra. The following
theorem describes the topology on G. Recall that a topological space is
totally disconnected if the only connected subsets are single points.

Theorem 17.6 As a topological space, G is Hausdorff, compact, and to-
tally disconnected.

Proof. If X is a subset of G and 0,7 € X, let 0 N be an open neighborhood
of o not containing 7. The existence of N follows from Lemma 17.3. Then

X =(eNNX)U((G—0oN)NX),

an intersection of two disjoint, nonempty open sets in X, so X is not con-
nected. Therefore, G is totally disconnected. To show that GG is Hausdorff,
let 0 € G. Lemma 17.3 shows that {o} = |y oN. If 7 # o, then there is
an N € N with 7 ¢ o N. Each o N is an open neighborhood of ¢ but is also
closed, as noted above. Thus, N and G — ¢V are disjoint open sets with
o€ coN and 7€ G—oN, so G is Hausdorff.




The most difficult part of the proof is to show that G is compact. In prov-
ing that G is compact, we will indirectly show how G can be constructed
from finite Galois groups. Let P be the direct product [y, G/N of the
finite groups G/N. We make P into a topological space by giving each G/N
the discrete topology and then giving P the product topology. Note that
each G/N is both Hausdorfl and compact, so P is Hausdorff, and by the
Tychonoff theorem, P is compact. There is a natural group homomorphism
f: G — P defined by f(o) = {cN}. We will show f is a homeomorphism
from G to the image of f and that this image is a closed subset of P. Since
P is compact and Hausdorff, this will show that im(f) is compact, hence
(G is compact, since GG is homeomorphic to im( f).

Let f be as above. The kernel of f consists of those o € G with {c N} =
{N}. Therefore, if o € ker(f), then 0 € ycpr N = {id}; this equality
holds by Lemma 17.3. Thus, f is injective. Let my : P — G/N be the
projection onto the N-component. Then 7y (f(c)) = oN for any o € G.
The singleton sets 7N form a basis for the discrete topology on G/N, so by
definition of the product topology, every open set in P is a union of a finite
intersection of sets of the form 7' (7N) for various 7 € G and N € M. To
show that f is continuous, it is enough to show that f~!(my'({7N})) is
open in (G for any 7 N. But this preimage is just 7V, which is open, so f is
continuous. Furthermore, f(7N) = m5' ({rN})Nim(f) is open in im(f), so
f~!is also continuous. Therefore, f is a homeomorphism from G to im( f).
It remains to show that im(f) is closed in P. In verifying that im(f) is
closed in P, we will identify G/N with the isomorphic group Gal(Ey/F),
where Ey = F(N). This isomorphism is from Lemma 17.2. This amounts
to identifying the coset 7N with 7|g,. With this identification, for p € P
the element 7 (p) is an automorphism of Ey. Note that for 7 € G we have

N (f(7)) =7|gy. Let
C={peP : foreach NNM e N, nn(p)lexnEy = Tm(P)EvnEy }-

We claim that C = im(f). Now, im(f) C C since 7y (f(7))|gy = 7|g, for
any 7 € (. For the reverse inclusion, let p € C. We define 7 : K — K as
follows. For a € K, pick any Ey € T with a € Ey, possible by Lemma 17.1,
and define 7(a) = mn(p)(a). The condition on p to be an element of C shows
that this is a well-defined map. To see that 7 is a ring homomorphism, if
a,b € K, let Eny € T with a,b € En. Then 7|g, = 7n(p) is a ring
homomorphism, so 7(a + b) = 7(a) + 7(b) and 7(ab) = 7(a)7(b). The map
7 is a bijection, since we can construct 7! by using p~!. Tt is clear that
7 fixes F', so 7 € G. Now, as 7|g, = 7n(p), we see that f(7) = p. Thus,
C = im(f). To show that C is closed in P, take any p € P with p ¢ C.
Then there are N, M € N with ’/TN(p)IENnEM £ WM(,O)‘ENF!EM- Thus,
T (mn(p)) N W;II (mar(p)) is an open subset of P containing p and disjoint
from C. Therefore, P — C is open, so C = im(f) is closed. O
oo L N O P G y/‘/ 2PN E LM VM eV EC,




The set N, ordered by reverse inclusion, is a durccled st that is, 1f
Ny, N, € N, then therc is an N3 € N with N3y € N; N Ny, namely N3 =
Ny 0 Ny. The set {G/N : N € N'} together with the natural projection
maps G/N, — G/N, for Ny C Ny form a directed system of groups. The
proof that G = im(f) can be viewed as showing that G is the inverse limit
of the set of finite groups {G/N} (see Problem 14). The inverse limit of
a set of finite groups is called a profinite group. For more information on
profinite groups, see Shatz [25], Serre [24], or Appendix C.

The next theorem is the final step we need to extend the fundamental
theorem to arbitrary Galois extensions. This theorem shows how the topol-
ogy on (7 comes in, and it is the analog of Proposition 2.14, which says that
if G is a finite group of automorphisms of K, then G = Gal(K/F(G)).

Theorem 17.7 Let H be a subgroup of G, and let H' = Gal(K/F(H)).
Then H' = H, the closure of H in the topology of G.

Proof. It is clear that H C H’, so it suffices to show that H' is closed
and that fT" C IT. To show that FI’ is closed, take any o € G — H’. Then
there is an « € F(H) with o(a) # o Take F € T with o € E, and
let N = Gal(K/FE) € N. Then, for any 7 € N, we have 7(a) = a, so
o7(a) = o(a) # a. Hence, o N is an open neighborhood of o disjoint from
H'. Therefore, G — H' is open, so H' is closed. To prove the inclusion H’ C
H, we first set L = F(H). Let 0 € H and N € N. Set E = F(N) € I,
and let Hy = {p|g : p € H}, a subgroup of the finite group Gal(E/F).
Since F(Hy) = F(H)NE = LN E, the fundamental theorem for finite
Galois extensions shows that Hy = Gal(£/(ENL)). Since 0 € H', we have
ol =id, so o|g € Hy. Therefore, there is a p € H with p|g = o|g. Thus,
o 'pe Gal(K/E) = N,so peoNnH. This shows that every basic open
neighborhood o N of o € H' meets H, so o € H. This proves the inclusion
H' C H and finishes the proof. 0

A way to describe H' = Gal(K/F(H)) that does not involve the topology
on (G is H' = (\yea AN (see Problem 1).

Theorem 17.8 (Fundamental Theorem of Infinite Galois Theory)
Let K be a Galois extension of F, and let G = Gal(K/F). With the Krull
topology on G, the maps L — Gal(K/L) and H — F(H) give an inclu-
sion reversing correspondence between the fields L with F C L C K and
the closed subgroups FI of G. Furthermore, if L «— H, then |G : H| < o0
if and only if [L : F] < oo, if and only if H is open. When this occurs,
|G : H| =[L : F]. Also, H is normal in G if and only if L is Galois over
F, and when this occurs, there is a group isomorphism Gal(L/F) = G/N.
If G/N is given the quotient topology, this isomorphism is also a homeo-
morphism.
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Proof. If L is a subficld of & containing F', then K is normal and separable
over L, so K is Galois over L. Thus, L = F(Gal(K/L)). If H is a subgroup
of G, then Theorem 17.7 shows that H = Gal(K/F(H)) if and only if H
is closed. The two maps L ~— Gal(K/L) and H — F(H) then give an
inclusion reversing correspondence between the set of intermediate fields of
K/F and the set of closed subgroups of GG.

Let L be an intermediate field of K/F, and let H = Gal(K/L). Suppose
that |G : H| < co. Then G— H is a finite union of cosets of /1, each of which
is closed, since H is closed. Thus, G — H is closed, so H is open. Conversely,
if H is open, then H contains some basic neighborhood of id, so N C H
for some N ¢ N. If E = F(N), then L C E, so [L : F] < co. Finally, if
[L : F] < oo, then choose an ' € T with L C F, possible by Lemma 17.1.
Let N = Gal(K/FE). Then N C H,since L C E,s0 |G: H| <|G: N| < 0.
By Lemma 17.2, we have G/N = Gal(E/F') via the map o N + o|g. Thus,
H/N maps to {p|g : p € H}, a subgroup of Gal(E/F) with fixed field
LNE = L. By the fundamental theorem for finite extensions, the order of
this group is [E : L]|. Therefore,

G/N| _[E: F)
H/N| B L

|G: H|=|G/N:H/N|=
=[L: F).

For the statement about normality, we continue to assume that H =
Gal(K/L). Suppose that H is a normal subgroup of G. Let a € L, and let
f(z) = min(F,a). If b € K is any root of f, by the isomorphism extension
theorem there is a ¢ € G with o(a) = b. To see that b € L, take 7 € H.
Then

7(b) = a“l(aTo_l(a))

=ola)=1b

since o701 € H,as H isnormal in G. Thus, b € F(H) = L, so f splits over
L. This proves thal L is nornmial over F', and L is separable over I7 since K/ F'
is separable. Therclore, L is Galois over F'. Conversely, if L is Galois over
F, then by the remark before Leinma 17.1 we see that the inap o — oy is
a well-defined group homomorphism 6 : G — Gal(L/F"). The kernel of 8 is
Gal(K/L) = H, so H is normal in (G, and 0 is surjective by an application
of the isomorphism extension theorem. Thus, G/H = Gal(L/F).

The last step of the proof is to show that the natural map v : G/H —
Gal(L/F') is a homeomorphism when A is normal in GG. Note that a basic
open subset of Gal(L/F') has the form pGal(L/FE) for some extension E
that is finite Galois over /" and is contained in L. Let N = Gal(K/E) € N.
Then 6~ (Gal(L/E)) = N. Thus, 6~ (p Gal(L/E)) = 7N for any 7 € G
with 7| = p, so this preimage is open in G. Therefore, 8 is continuous.
Furthermore, the image of a compact set under a continuous map is com-
pact, and any conipact subsct of a Hausdor(l space is closed. Since G is
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compact and Gal(L/F) is Hausdorff, § maps closed sets to closed sets; that
is, 0 is a closed map. The map v : G/H — Gal(L/F) induced from 6 is
then also continuous and closed when G/ H is given the quotient topology,
so v is a homeéomorphism. O

Example 17.9 Let K/F be a Galois extension with [K : F] < co. Then
the Krull topology on Gal(K/I") is the discrete topology; hence, every
subgroup of Gal(K/I') is closed. Thus, we recover the original fundamental
theorem of Galois theory from Theorem 17.8.

Example 17.10 Let K = Q({e?"**/" : k,n € N}) be the field generated
over @@ by all roots of unity in C. Then K is the splitting field over Q of the
set {z" — 1:n € N}, so K/Q is Galois. If L is a finite Galois extension of
Q contained in K, then L is contained in a cyclotomic extension of Q. The
Galois group of a cyclotomic extension is Abelian. Consequently, Gal(L/F")
is Abelian. To see that Gal(K/F') is Abelian, by the proof of Theorem
17.8 the Galois group Gal(K/I") is isomorphic to a subgroup of the direct
product of the Gal(L/F') as L ranges over finite Galois subextensions of (),
so Gal(K/F) is Abelian. As a consequence of this fact, any subextension
of K/Q is a Galois extension of Q.

We give an alternate proof that Gal(K/F') is Abelian that does not use
the proof of Theorem 17.8. Take 0,7 € Gal(K/Q). If a € K, then there is
an intermediate field L of K/ that is Galois over Q and that a € L. The
restrictions o|r, 7|r, are elements of Gal(L/Q), and this group is Abelian
by the previous paragraph. Thus,

o(r(a)) = olr(r[r(a)) = T|e(o|(a)) = 7(o(a)).

Consequently, o = 7o, so Gal(K/Q) is Abelian.

Example 17.11 Let K be an algebraic closure of IF,. Since I, is perfect,
K is scparable, and hence K is Galois over IF,,. Let 0 : K — K be defined
by o(a) = aP. Then o € G = Gal(K/F),), and the fixed field of the cyclic
subgroup II of G gencrated by o is F,,. However, we prove that H # G by
constructing an automorphism of K that is not in ff. To sce this, pick an
integer n,. for each r € N such that if r divides s, then ng = n, (modr). If F
is the subfield of K containing p” elements, then define T by 7(a) = ™ (a)
if a € F,.. The conditions on the n, show that 7 is well defined, and an
casy argument shows that 7 is an automorphism of K that fixes F,. For a
specific example of a choice of the n., for r € N, write r = p™¢ with ¢ not
a multiple of p. Let n, satisfy

nr=1+p+---+p™ " (modp™),
nr =0 (modgq).

Such integers exist by the Chinese remainder theorem of number theory,
since p" and g arc relatively prime. If 7 = o' for some t, then for all




vy Tl = o py, su o = L unod ey, as Gal( £ /I,) 1s ue eyehe group
geucrated by o|r., which has order r. This cannot happen as n,» — oo
as m — 00. Therefore, 7 ¢ H, so H is not a closed subgroup of G. The
group G is obtained topologically from H, since G = H by Theorem 17.7.
The argument that G = im(f) in the proof of Theorem 17.6 shows that
any element of (G is obtained by the construction above, for an appropriate
choice of the n,.. This gives a description of the Galois group G as

Gal(K/IF,) = {{nr} € HIE‘pv- : if r divides s, then ng = n,(mod r) } :

Problems

Unless otherwise stated, in the following problems K/F will be an infinite
Galois extension with G = Gal(K/F).

1.

Let H be a subgroup of Gal(K/F). Show that the closure H of H
with respect to the Krull topology on Gal(K/F) is H = (| HN.

Let L an intermediate field of K/ F. Show that the Krull topology on
Gal(K /L) is the subspace topology inherited from the Krull topology
on Gal(K/F).

Show that Gal(K/F') is uncountable. Use this to give an example of
a Galois extension K/F with [K : F| # |Gal(K/F)|.

(Hint: Obtain a chain of finite degree Galois extensions of /' whose
union is K, and use the isomorphism extension theorem.)

Show that there are subgroups of Gal(X/F') that arc not closed.

. Here is an alternative, purely topological way to prove Problem 3.

Prove that a totally disconnected compact topological space X with
no isolated points is uncountable, provided that | X| = oo.

Let H be a subgroup of Gal(K/F).

(a) If H is open in the Krull topology, show that H has finite index
in Gal(K/F).

(b) If H has finite index in Gal(K/F'), show that H is open if and
only if H is closed.

Give an example of an extension K/F such that Gal(K/F') contains
a subgroup of finite index that is neither open nor closed.

Let K/F' be an infinite Galois extension, and let N be a normal sub-
group of Gal(K/F'). Show that N is a normal subgroup of Gal(K/F).
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13.

. Let K/ be a Galois extension, and let f{ be a subgroup of Gal(K/F).

Show that H is dense in Gal(K/F) if and only if for every finite nor-

mal intermediate field L, every F-automorphism of L is the restriction
to L of some element of H.

Use the previous problem to show that H is dense in Gal(K/F) if
and only if for each finite Galois intermediate field L, we have

Gal(L/F) = H/(H NGal(K/L)).

Let K be a Galois extension of /', and let G = Gal(K/F'). Show that
the multiplication map G x G to GG given by (g, h) — g¢h is continuous
with respect to the Krull topology, as is the inverse map o +— oL,

This means that G is a topological group.

Here is an alternative way to view the Krull topology on a Galois
group. Let K/I" be a Galois extension. Let K have the discrete
topology, and let K* have the product topology. The Galois group
Gal(K/F) is a subset of K*. Show that Gal(K/F) is a closed subset
of K*, and notice that the same argument shows that Gal(K/L) is
also closed if L is an intermediate field of K/ F. Moreover, show that
the Krull topology on Gal(K/F') is the same as the subspace topol-
ogy.

(Note: This topology on K is called the finite topology, and it is
the same as the compact open topology on K% )

This problem describes inverse limits. Problem 14 shows that a Galois
group of a Galois extension is an inverse limit of finite Galois groups.
Let {Ga},er be aset of groups. Suppose that I is a directed set; that
is, I has a partial order <, such that for any «, 3 € I, thereisa~y €
with « < v and g < «. Assume that for each pair @ < in I there
is a group homomorphism ¢,z : Gg — G, satisfying the following
compatibility conditions:

® Voo = id;

o ifa<f< 7, then Pay = Ppy °Pas-

A group G together with homomorphisms ¢, : G — G, satisfying
©Yap © P3 = pu for each pair o < B is said to be an inverse limit
of the G, (along with the maps (,3), provided that G satisfies the
following universal mapping property: If /f is a group together with
homomorphisms 7, : H — G, satisfying ¢u5 0 73 = 74 for each
pair a < 3, then there is a unique homomorphism 7 : H — G with
To = o © T for each «; that is, the following diagram commutes:
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(a) Show that any two inverse limits ol {G,} are isomorphic.

(b) Show that inverse limits exist: Let

G = {{gcx} S H Ga : o = Yaplgp) for all a, B with o < ﬁ} ,

acl

Show that (' is an inverse limit of the {G }, where the maps ¢,
are the restrictions to G of the usual projection maps.

14. Let K/F be a Galois extension, and let G = Gal(K/F). Let M be as
in the section, and order N by reverse inclusion. Let @q5 : G/Ny —
(G/Ng be the canonical projection whenever N, C Ng. Show that
{G/N : N € N} is an inverse systemn of groups and that G is the
inverse limit of this systein.

15. Let G be a group.

(a) Show that the set S of normal subgroups of G of finite index,
ordered by inclusion, is a directed set.

(b) Let @o3 : G/N, — G/Ng be the natural projection map
when N, C Ng, and let G be the inverse limit of the groups
{G/Na},ecs- Show that there is a natural homomorphism ¢ :
G — G and that @ 1s injective if the intersection of all the N,
is (e).

(c) Let G be a profinite group. Show that G = G.

16. 1f K is the algebraic closure of F, show that Gal(K/F,) & Z.

17. Let GG be a profinite group. Show that G = Gal(K/F') for some Galois
extension K/F'.

18 Some Infinite Galois Extensions

In this section, we describe some examples of infinite Galois extenstions.
Some of these extensions will arise from group theoretic properties of in-
finite Galois groups. To discuss some of these extensions, we will require
knowledge of profinite groups, information about which can be found in
Appendix C, Shatz [25], or Serre [24].
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The separable closure of a field

Let F' be a field. Then F' is said to be separably closed if there is no proper
separable extension of F'. Let F,. be an algebraic closure of F'. Then Fj. is
the splitting field of the set of all nonconstant polynomials in F[z]; hence,
F,. is a normal extension of F'. However, if I’ is not perfect, then F,. is
not Galois over F'. Let I be the separable closure of F'in Fy.. The field Fj
is called the separable closure of F. The following description of F} follows
quickly from the propertics of normal extensions.

Proposition 18.1 Let I; be the separable closure of the field F'. Then F
is Galois over F' with Gal(Fs/F) = Gal(F,./F'). Moreover, Fs is a mazimal
separable extension of F', meaning that Fs 1s not properly contained in any
separable extension of F'. Thus, Fy 1s separably closed.

Proof. The field F; is Galois over F, and Gal(F,/F) = Gal(F,./F) by
Theorem 4.23. Suppose that Fs; C L with L/F separable. Then we can
embed L C F,., and then L = Fj, since F, is the set of all separable
elements over F' in F,.. Finally, if L is a separable extension of F, then
by transitivity of separability, L is a separable extension of F', so L = Fj.
Therefore, Fs is separably closed. 0

The group Gal(F,/F) =2 Gal(F,./F) is often called the absolute Galois
group of F. If G is the Galois group of a Galois extension of F', then G is
a homomorphic image of Gal(F;/F') by the fundamental theorem.

The quadratic closure of a field

In the next three sections, we require some knowledge of profinite groups.
If G is a profinite group and p is a prime, then G is a pro-p-group if
every open normal subgroup of G has index in G equal to a power of p.
If G = Gal(K/F) for a Galois extension K/F, then G is a pro-p-group if
and only if cvery finite Galois subextension of K /F has degree a power of
p over F'.

Let F be a field of characteristic not 2. Then F' is said to be quadratically
closed if there is no proper quadratic extension of F'. The quadratic closure
F, of F' is a subfield of F; that is quadratically closed and is a Galois
extension of F' with Gal(F,/F) a pro-2-group. The following proposition
shows the existence and uniqueness of the quadratic closure of a field.

Proposition 18.2 Let F' be a field with char(F') # 2. Then the quadratic
closure Fy of F' is the composite inside a fixed algebraic closure of F' of all
Galois extensions of F' of degree a power of 2.

Proof. Let K be the composite inside a fixed algebraic closure of F' of all
Galois extensions of F' of degree a power of 2. Then K is Galois over F'.
To show that G = Gal(//F) is a pro-2-group, let N be an open normal




subgroup of G. If L = F(H), then [L : F] = [G : N| by the fundamental
theorem. The intermediate field L is a finite extension of F; hence, L lies
in a composite of finitely many Galois extensions of F' of degree a power of
2. Any such composite has degree over F' a power of 2 by the theorem of
natural irrationalities, so [L : F'] is a power of 2. Thus, [G : N] is a power
of 2, so (G is a pro-2-group.

To see that K is quadratically closed, suppose that L/K is a quadratic
extension, and say L = K(y/a) for some a € K. Then a € E for some finite
Galois subextension E. By the argument above, we have [F : F| = 2" for
some r. The extension E(y/a)/E has degree at most 2. If \/a € F, then
L = K and we are done. If not, consider the polynomial

H (z* — a(a)) € Flx).

scGal(E/F)

The splitting field N over F' of this polynomial is N = F({ /o(a) : 0 €
Gal(E/F)}). Hence, N is a 2-Kummer extension of F, so [N : F] is a
power of 2. The field N is a Galois extension of F' of degree a power of 2,
so N C K. Moreover, v/a € N. This shows that \/a € K, so L = K. Thus,
K is quadratically closed. 0O

In the next proposition, we give an alternate description of the quadratic
closure of a field F' of characteristic not 2.

Proposition 18.3 Let F be a field of characteristic with char(F) # 2. We
define fields {F,} by recursion by setting Fy = F and Fry1 = Fp({\/a :
a € F,}). Then the quadratic closure of F' is the umon | J. | F,.

Proof. Let K = |J,._; Fn. Then K is a field, since {#,} is a totally ordered
collection of fields. We show that K is quadratically closed. If ¢ € K, then
a € F, for some n, s0 v/a € F,,1 C K. Thus, K(y/a) = K, so K is indeed
quadratically closed. Let F, be the quadratic closure of F. Then v/a € F,
for each ¢ € F,, so we see that Fy C F,. Suppose that F,, C F,. The
reasoning we used to show that K is quadratically closed shows also that
Fn41 C Fy, s0 K C F,. To see that this inclusion is an equality, let £ be
a Galois extension of F' of degree a power of 2. Then EK/K has degree
a power of 2 by natural irrationalities. If [FK : K] > 1, then the group
Gal(EK/K) has a subgroup of index 2 by the theory of p-groups. If L is the
fixed field of this subgroup, then [L : K] = 2. However, this is impossible,
since K is quadratically closed. This forces FK = K, so &£ C K. Since Fj
is the composite of all such E, we see that F, C K, so K = F,. O

The p-closure of a field

Let F' be a field of characteristic not p, where p is some prime. Fix some
algebraic closure F,,. of F'. The p-closure F, of F' is the composite in F,. of




all Galois extensions of F' of degree a power of p. The quadratic closure of

F'is then just F,. The basic properties of the p-closure of a field are given
in the following results. The first describes what finite extensions of F' lie
inside Fj,.

Lemma 18.4 Let p be a prime, and let F' be o field with char(F) # p. If L
is an intermediate field of Fi,./F with [L : F'| < oo, then L C F, if and only
of L lies in a Galows extension of I' of degree a power of p. In particular,
any finite intermediate field of F,/F has degree over F' a power of p.

Proof. If L is a field lying inside some Galois extension £ of F' with [E : F]
a power of p, then £ C F),, so L C F,,. Conversely, suppose that L C F, and
[L: F] <oo. Then L= F(ay,...,a,) for some a; € L. From the definition
of F}, for each i there is a Galois extension FE;/F such that a; € E; and
[E; : F] is a power of p. The composition of the E; is a Galois extension of
F', whose degree over F' is also a power of p by natural irrationalities. O

Proposition 18.5 Let F, be the p-closure of a field F' with char(F) #
p. Then F, is a Galois extension of F' and Gal(F,/F) is a pro-p-group.
Moreover, F, has no Galois extensions of degree p.

Proof. The proof that F,/F is Galois with Gal(F,/F) a pro-p-group is
essentially the same as the proof for the corresponding result about the
quadratic closure, so we do not rcpeat it here. For the final statement,
suppose that L is a Galois extension of F, with [L : F,] = p. We need
to obtain a contradiction. The argument we gave for the corresponding
resnlt about the quadratic closnre will not. work, situce Lhe composite of
licld extensions of degree a power ol p need not, have degree a power ol p il
p # 2. Instead, we argue as follows. Say L = Fy(a), and let a1, az,...,ap be
the roots of min(Fy,a). Since Fy(a)/F, is Galois, each a; € Fp(a). By the
construction of F),, for each ¢ we can find a finite Galois extension F;/F
of degree a power of p with a; € E;(a) and min(F,,a) € E;. Taking the
composite of all the F;, we obtain a finite Galois extension E/F of degree
a power of p with a; € E(a) and min(F,, a) € E. Therefore, E(a)/E is
Galois of degree p.

Let f(z) = [l ecaie, r) o(9(2)), a polynomial over I with f(a) = 0. For
each o, let a, be a root of o(g). Let N be the normal closure of F(a)/F,
so N is the splitting field of f(x) over F. The ficld NE is normal over F}
hence, by the isomorphism extension theorem, for each o € Gal(E/F) there
is a 0’ € Gal(NE/F) extending o with o(a) = a,. The automorphism o’
sends E(a) to E(a,). Since all the roots of ¢ lie in E(a), all the roots of
o(g) lic in F(ay). Thus, for each o, the cxtension E(a,)/E is Galois and
is of degree p. However, NE = F({a,}), so NE is a composite over F of
Galois extensions of degree p; hence, [NE : E] is a power of p by natural
irrationalitics. Therefore, [NE : F| is a power of p, so a € F(a) C NE
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forces a € F,. This is a contradiction, so F}, has no Galois extension of
degree p. 0

If F' contains a primitive pth root of unity, then there is a construction
of F, analogous to that of the quadratic closure of F'.

Proposition 18.6 Suppose that F' contains a primitive pth root of unity.
Define a sequence of fields { F}, } by recursion by setting Fo = F and F,y =
F.({¥/a:a€ F,}). Then the p-closure of F is | o | Fy.

Proof. The proof is essentially the same as that for the quadratic closure, so
we only outline the proof. If F;, C F,, and a € F,,, then either F,, ({/a) = F,,
or F,({/a)/F, is a Galois extension of degree p, by Proposition 9.6. In
either case, F,,({/a) C F, by the previous proposition. This shows that
U, Fi. € IF,. To get the reverse inclusion, let E/F be a Galois cxtension
of degree a power of p. By the theory of p-groups and the [undamental
theorem of Galois theory, there is a chain of intermediate fields

F=E,CE,C---CE,=FE

with F;;,/E; Galois of degree p. Since F' contains a primitive pth root of
unity, £+ = F;({/a;) for some a; € E; by Theorem 9.5. By induction, we
can see that E; C F;, so & C Uf;o:l F,. Since F), is the composite of all
such F, this gives the reverse inclusion we want. O

The mazimal prime to p extension

Let GG be a profinite group, and suppose that p divides |G|. Then a p-Sylow
subgroup of GG is a pro-p-group H such that [G : H| is prime to p. Recall
that a profinite group has a p-Sylow subgroup for every prime divisor p of
|G| and that any two p-Sylow subgroups of G are conjugate.

Let F be a perfect field and let p be a prime. If G = Gal(F;/F), let P be
a p-Sylow subgroup of G. [f K is the fixed feld of P, then K is called the
mazimal prime to p extension of F. The maxiinal prime to p extension of a
field is not uniquely determined. However, since any two p-Sylow subgroups
of a profinite group are conjugate, any two maximal prime to p extensions
ol F' arc I"-isomorphic. The reason for the terminology above can be found
in the following result.

Proposition 18.7 Let F be a field, let p be a prime, and let K be a maxi-
mal prime to p extension of F'. Then any finite extension of K has degree a
power of p, and if L is an intermediate field of K/F with [L: F| < oo, then
L : F] is relatively prime to p. Moreover, any separable field extension L
of F' with |L : F) relatively prime to p is contained in some mazimal prime
to p extension of F.




Proof. Recall that if U is an open subgroup of a p-Sylow subgroup P of
G = Gal(F,/F), then [P : U] is a power of p, and if V is open in G with
P C V C G, then [G : V] is relatively prime to p. Suppose that M is a finite
extension of K. If H = Gal(F;/M), then by the fundamental theorem, we
have [P : H| = [M : K] < 00, so H is an open subgroup of P. Thus, [P : H|
is a power of p, so [M : K| is a power of p.

For the second statement, let L be an intermediate field of K/F with
[L: F] <oo.If A= Gal(F;/L), then P C A and [G : A] = [L : F] is finite,
by the fundamental theorem. Since [G : A] is relatively prime to p, we see
that [L : F is relatively prime to p.

Let L/F be an extension with [L : F| relatively prime to p. Let F; be
the separable closure of F, and let G = Gal(F,/F). Set H = Gal(F;/L), a
closed subgroup of (7, and let P’ be a p-Sylow subgroup of H. There is a
p-Sylow subgroup P of G that contains P’. Note that [G : H]| = [L: F] is
relatively prime to p. Moreover, we have

G:P'|=|G:H] [H:P
=[G:P]-[P: P

Both [G : H] and [H : P’] are supernatural numbers not divisible by p, so
[P : P'] is not divisible by p. But, since P is a pro-p-group, [P : P'] is a
power of p. This forces [P : P'] =1, so P’ = P. Therefore, P C H, and so
L = F(H) is contained in F(P), a maximal prime to p extension of F. O

Example 18.8 The maximal prime to p extension of a field F' need not
be the composite of all finite extensions of degree relatively prime to p. For
example, if F' = Q and p = 3, then Q(+¥/5) and Q(w+/5) are both of degree
3 over Q, where w is a primitive third root of unity, but their composite is
Q(w, ¥/5), which has degree 6 over Q. Therefore, these fields are not both
contained in a common maximal prime to p extension of Q.

Problem 5 addresses the construction of a maximal prime to p extension
when F' is not perfect.

The mazxinal Abelian extension,

Let F' be a field, and let F; be the separable closure of F. Let G =
Gal(Fs/F). If G’ is the commutator subgroup of (G, then the fixed field
F, of G is called the mazimal Abelian extension of F. This name is justi-
(ied by the following result.

Proposition 18.9 Let F, be the mazimal Abelian extension of a field F'.
Then F,/F is a Galois extension and Gal(F,/F) is an Abelian group. The
field I, has no extensions that are Abelian Galois extensions of F'. More-
over, Iy 1is the composite in Fy of all finite Abelian Galois extensions of
F.




Proof. The commutator subgroup 7 ol (' is a normal subgroup, so Lhe
closure G’ of G’ is a closed normal subgroup of G (scc Problem 17.8).
Thus, by the fundamental theorem, F, = F(G’) is a Galois extension of F
and Gal(F,/F) 2 G/G'. The group G/G’ is a homomorphic image of the
Abelian group G/G’, so G/G is also Abelian.

If L O F, is an Abelian Galois extension of F', then L C F,. Let H =
Gal(F,/L), a subgroup of G'. However, G/H = Gal(L/F), so G/H is
Abelian. Thus, G' C H,so H = G'. Therefore, F} is not properly contained
in any Abelian extension of F.

For the final statement, if K/F' is finite Abelian Galois, then KF,/F,
is Abelian Galois by natural irrationalities. Thus, KF, = F,,so K C F,.
Since every element of F, lies in a finite Galois extension of F', to show that
I, 1s the composite of all finite Abclian Galois extensions of F' it suflices
to show that every fAnite Galois extension ol F'inside I, is an Abclian
extension. Let £ be such an extension. If H = Gal(F,/E), then H is a
normal subgroup of G containing G’; hence, G/H is Abelian. But, by the
fundamental theorem, we have Gal(E/F) &2 G/H, so E/F is an Abelian
Galois extension. m|

Example 18.10 The Kronecker-Weber theorem of algebraic number the-
ory states that any Abelian extension of Q is contained in a cyclotomic
extension. Consequently, the maximal Abelian extension of Q is the infi-
nite cyclotomic extension Q({w, : n € N}).

Example 18.11 If F'is a field containing a primitive nth root of unity for
all n, then the maximal Abelian extension of F' is F({{/a: a € F,n € N}).
This follows from Kummer theory (see Problem 11.6 for part of this claim).

Problems

1. Let L be an intermediate field of the p-closure F, of a ficld F. If
[L: F] < oo, show that there is a chain of fields

F=LyCLiC---CL,=1L

such that for each i the extension L;,;/L; is Galois of degree p.

o

Show that the p-closure of a field has no Galois extensions of degree
p™ for any n > 1.

3. Describe the p-closure of F,,.
4. Describe the maximal prime to p extension of [Fp,.

5. Let F' be a field, not necessarily perfect. Let F,. and F be the alge-
bralc and separable closures of F'| respectively, and let I be the purely




Hscparable closurc ol £ ut 14, b pis a pruue, let 2 be a p-Sylow
subgroup of Gal(Fs/F), and let K = F(P) C Fy. If p # char(F'), call
KT a maximal prime to p extension of I, and if char(F') = p, call I a

maximal prime to p extension of F. Prove the analog of Proposition
18.7 in this case.
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Transcendental Extensions

In this chapter, we study field extensions that are not algebraic. In the
first two sections, we give the main properties of these extensions. In the
remaining sections, we focus on finitely generated extensions. We discuss
how these extensions arise in algebraic geometry and how their study can
lead to geometric information, and we use algebraic analogs of derivations
and differentials to study these extensions.

19 'Transcendence Bases

The most fundamental concept in transcendental field theory is that of a
transcendence basis. In this section, we investigate this concept. We shall
see that the notion of a transcendence basis is very similar to that of a basis
of a vector space. To give a rough description of a transcendence basis, let
K/F be a field extension. A subset 7" of K is a transcendence basis for
K/F if T is a maximal set of “variables” in K. To be a little less vague,
F(T) is isomorphic to a rational function field F/(X) with |T| = | X]|, and
the maximality means that there is no larger set of variables in K. We
need to make this precise, to prove that transcendence bases exist, and to
determine their properties.

Definition 19.1 Let K be a field extension of F', and let t1,...,t, € K.
The set {t1,...,tn} is algebraically independent over F if f(t1,...,tn) #0
for all nonzero polynomials f € Flzy,...,zy]. An arbitrary set S C K is
algebraically independent over F' if any finite subset of S is algebraically




independent over I'. If a set is not algebraicully independent over F, Lhen
it 18 saud to be algebraically dependent over F'.

Example 19.2 If K = F(z,,...,z,) is the field of rational functions over
F in n variables, then {z;,...,z,} is algebraically independent over F.
Moreover, if r1,..., 7, are any positive integers, then {z{*,..., 27"} is also
algebraically independent over F'.

Keeping with the same field extension, let A = (a;;) be an n x n matrix
with coefficients in F', and let f; = ). a;;z,. We prove that {fy,..., fn} is
algebraically independent over F' if and only if det A # 0. For simplicity, we
write F|X] for Fz,,...,z,]. The matrix A induces a ring homomorphism
A" F|X| — F|[X] that sends z; to f;. If det A # 0, then A has an inverse;
say A1 = (b;;), and A™! induces the inverse map (A™') : F|X] — F[X]
to A’. Therefore, A’ is injective, so A(f1,. .., f) # 0 for all nonzcro h. Thus,
{f1,..., fn} is algebraically independent over F'. Conversely, suppose that
det A = 0. Then the columns C; of A are linearly independent over F
say Zj b;C; = 0 with each b; € F, and not all of the b; are zero. A
short calculation shows that Zj b;f; = 0; hence, the f; are algebraically
dependent over F'.

Example 19.3 By convention, the empty set @ is algebraically indepen-
dent over any field. The singleton sets {e}, {n}, and {4e~'} are all alge-
braically independent over Q. The set {e, e?} is not algebraically indepen-
dent over Q, since f(e, e?) = 0if f(z1,z2) = x} — 5. It is unknown whether
{e, 7} is algebraically independent over Q.

Example 19.4 Let FC K C L bL(/a fields, and let S be a subsect of L. If S is
algebraically independent over ¥, then S is also algebraically independent
over K. This is clear from the definition of algebraic independence. More-
over, if T is any subset of S and if S is algebraically independent over F’,
then T is also algebraically independent over F. The converse of the first
statement is false in general. Suppose that K = F(z) = L. Then {z} is
algebraically independent over F', but {z} is algebraically dependent over
K.

An algebraically independent set of elements behaves the same as a set of
variables in a polynomial ring. The following lemma makes this statement
precise.

Lemma 19.5 Let I\ be a field extension of I'. If t\,..., 1, € K are alge-
braically independent over F, then F[t,... tp] and Flz\,..., z,] are F-
isomorphic rings, and so F(ty,...,tn) and F(zy,...,zy) are F-isomorphic
felds.

Proof. Define ¢ : Flzy,...,z,] — K by o(f(z1,...,24)) = f(t1,...,tn).
Then ¢ is an F-homomorphism of rings. The algebraic independence of




the ¢; shows that ¢ is injective, and the image of ¢ is F[l1,...,t,]. There-
fore, F[t,...,ty] and F[x,,...,Zy] are isomorphic. This map induces an
F-isomorphism of quotient fields, which finishes the proof. O

Definition 19.6 A field K is purely transcendental over a subfield F' if K
is isomorphic to a field of rational functions over F in some number, finite
or infinite, of variables.

If K = F(t,...,tp) with {¢;,...,¢,} algebraically independent, then
K is often said to be a rational extension of F'. This terminology is often
used in algebraic geometry. We will investigate the geometric significance
of rational extensions in Section 22.

We now begin to analyze the definition of algebraic independence.

Lemma 19.7 Let K be a field extension of F, and let ty,...,t, € K. Then
the following statements are equivalent:

1. The set {ty,...,tn} is algebraically independent over F.
2. For each 1, t; is transcendental over F(ty,... ti—1,tiz1, -, tn)-

3. For each i, t; is transcendental over F(ty,... t;—1).

Proof. (1) = (2): Suppose that there are a; € F(ty,...,ti—1, tig1,. .-, ¢
such that ag+a t;+- - -+t]" = 0. We may write a; = b;/c with b, ... bn,c
F[tl,. . ',ti——l,tz’—}—l,- .. ,tn], and so bo -+ bltz “+ e 4 bmt,zn = 0. If b]
gj(tl,. vy bimay b,y e ,tn), then f = Zj gj(:}:l,... y Ti— 1, Tigly - - - ,.’L‘n)atg
is a polynomial and f(t,...,tn) = 0. Since {t1,...,t,} is algebraically
independent over F', the polynomial f must be 0. Consequently, each a; =
0, so ¢; is transcendental over F'(ty,...,t;_1,ti401,-.,tn)-

(2) = (3): If t; is transcendental over F'(ty,...,ti—1,ti+1,-.-,tn), then
t; clearly is transcendental over the smaller field F'(¢1,...,t,_1).

(3) = (1): Suppose that the ¢; are not algebraically independent over
F. Choose m minimal such that there is a nonzero f(z,...,zm) €
Flzy,...,zm] with f(t1,...,tm) = 0. Say f = Zj g;jzd, with g; €
Flzy,...,tm-1],andlet a; = g(t1,...,tm—1). Then ag+artm+---+arty, =

N

n

m

0. If the a; are not all zero, then ¢,, is algebraic over F'(t1,...,tm), a contra-
diction. Thus, a; = 0 for cach 7. By the minimality of m, the ¢,,...,t;m
are algcbraically independent, over F) which implies that all g, = 0, so
= 0. This proves that {ti,...,¢,} 1s algebraically independent over F.
O

Definition 19.8 [f K is a field extension of F, a subset S of K 1s a

transcendence basis for K/F if S is algebraically independent over F' and
if K is algebraic over F(S).
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Example 19.9 If K/F is a field extension, then @ is a transcendence basis

for K/F if and only if K/F is algebraic.

Example 19.10 If K = F(z1,...,z,), then {z1,...,z,} is a transcen-
dence basis for K/F. Moreover, if ry,...,7, are positive integers, then we
show that {z]',...,z} } is also a transcendence basis for K/F. We saw in

Example 19.2 that {z7*,...,z]} is algebraically independent over F'. We

n
need to show that /i is algebraic over L = F'(z*,...,z]). This is true

T

because for each i the element z; satisfies the polynomial t™ — " € Ll[t].

Here is a natural question that one may have about the definition of
transcendence basis: Why is the condition “/{ is algebraic over F'(S)” used
instead of “/K = F(S)"? We give two reasons. The previous example shows
that even when K = F(X) for some algebraically independent set X over
F', there may be other algebraically independent sets Y for which K is
algebraic over F'(Y') but that K # F(Y). Moreover, it is a very restrictive
condition to require that a field be purely transcendental over a subfield.
Without the definition as it is given, existence of a transcendence basis
would be uncommon, and the concept would not be very useful.

The next two examples deal with field extensions of the sort that arise
in algebraic geometry. We will study extensions of this type in Section 22.

Example 19.11 Lct k be a ficld, and let f(z,y) = y° - 2° + 2 € k[z,y].
Then [ is an irreducible polynomial, so A = k[x,y|/([) is an itegral
domain. Note that A contains an isomorphic copy of k. Let K be the
quotient field of k[z,y]/(f). We can then view K as a ficld extension of k.
Ifu=2x+4(f) and v = y+(f) are the images of z, y in K, then K = k(u,v).
We show that {u} is a transcendence basis for K/k. Since v? = u® —u, the
field K is algebraic over k(u). We then need to show that « is transcendental
over k. If this is false, then u is algebraic over k, so K is algebraic over k.
We claim that this forces A = k[u, v] to be a field. To prove this, take ¢t € A.
Then ¢! € K is algebraic over k, s0 t 7™ + ap_1t™ ' 4+ -+ + a9 = 0 for
sole «; € k with gy # 0. Multiplying by ¢*~! gives

t7 = —(Qnoy F Qnot 4+ - Fapt™ ) € A,

proving that A is a field. However, A = k[z,y]|/(f) is a ficld if and only if
(f) is a maximal ideal of k[z,y]. The ring A cannot be a field, since (f) is
properly contained in the ideal (z,y) of k[z, y|. Thus, v is not algebraic over
k, so {u} is a transcendence basis for K/k. Note that a similar argument
would show that {v} is also a transcendence basis for K/k.

Example 19.12 We give a generalization of the previous example. Let k
be a field and let f € k[zy,...,z,] be an irreducible polynormial. Then
A=klz,,...,z,]/(f) is an integral domain. Let K be the quoticnt ficld of




A. We may write

f=0mz + gzl + - 4 g0

with each ¢; € k[zy,...,zn—1]- Let us assume that m > 0, so that f does
involve the variable z,,. If t; = z;4(f) is the image of z; in A, we claim that
{t1,...,tn_1} is a transcendence basis for K /k. To see this, the equation
for f above shows that ¢, is algebraic over k(¢,,...,t,_1), so we only need
to show that {¢,...,¢tn—1} is algebraically independent over k. Suppose
that there is a polynomial h € k[zy,...,ZTn—1] With A(t1,...,tn—1) = 0.
Then h(zy,...,zn—1) € (f), so f divides h. Thus, h = fg for some
g € k[z1,...,z,]. However, the polynomial h does not involve the vari-
able z,, while f does, so comparing degrees in z, of h and fg shows that
h = 0. Therefore, {t,...,tn—1} is algebraically independent over k, so
{t1,...,tn—1} is a transcendence basis for K/k.

The argument we gave for why {¢,,...,%,—1} is algebraically independent
over k is different from the argument used in the previous example to show u
is transcendental over k. We could have used the argument of this example
in the previous example, but we chose to give a different argument to
illustrate different methods that can be used in dealing with transcendental
extensions.

There 1s a strong connection between the concepts of linear independence
in vector spaces and algebraic independence in fields. In particular, we
will prove below that every ficld extension has a transcendental basis and
that the size of a transcendence basis is uniquely determined. The reader
would benefit by recalling how the corresponding facts are proved for vector
spaces.

Lemma 19.13 Let K be a field extension of I, and let S C K be alge-
braically independent over F. If t € K is transcendental over F(S), then
S U {t} is algebraically independent over F.

Proof. Suppose that the lemma is false. Then there is a nonzero polyno-
mial f € Flzy,...,2,,y] with f(s1,...,8,,t) = 0 for some s; € S. This
polynomial must involve y, since S is algebraically independent over F.
Write f =377 9;y7 with g; € F[z,,...,24). Since ¢, # 0, the element
t is algebraic over F'(S), a contradiction. Thus, S U {t} is algebraically
independent over [ O

We now prove the existence of a transcendence basis for any field exten-
sion.

Theorem 19.14 Let K be a field extension of F'.

L. There exists a transcendence basis for K/ F'




2. If T C K such that K/F(T) is algebraic, then I" contains a transcen-
dence basts for K/ F'.

3. If S C K 1s algebraically independent over F', then S is contained in
a transcendence basis of K/ F.

4. If S €T C K such that S is algebraically independent over F' and
K/F(T) is algebraic, then there is a transcendence basis X for K/ F
with SC X CT.

Proof. We first mention why statement 4 implies the first three statements.
If statement 4 is true, then statements 2 and 3 are true by setting S = @
and T' = K, respectively. Statement 1 follows from statement 4 by setting
S=wand T = K. To prove statement 4, let S be the set of all algebraically
independent subsets of T' that contain S. Then S is nonempty, since S € S.
Ordering S by inclusion, a Zorn’s lemma argument shows that S contains
a maximal element M. If K is not algebraic over F'(M), then F(T) is
not algebraic over F(M), since K is algebraic over F(T). Thus, there is
a t € T with ¢ transcendental over F'(M). But by Lemma 19.13, M U {¢}
is algebraically independent over F' and is a subset of T, contradicting
maximality of M. Thus, K is algebraic over F(M), so M is a transcendence
basis of K/F contained in X7 0

We now show that any two transcendence bases have the same size.

Theorem 19.15 Let K be a field extension of F'. If S and T are transcen-
dence bases for K/ F, then |S| = |T|.

Proof. We first prove this in the case where S = {s1,...,s,} is finite.
Since S is a transcendence basis for K/F', the field K is not algebraic
over F'(S — {s1}). As K is algebraic over F(T), some ¢t € T must be
transcendental over F(S — {s;}). Hence, by Lemma 19.13, {sg,..., sp,t}
is algebraically independent over F. Furthermore, s; is algebraic over
F(sg,...,5n,t), or else {s1,...,8,,t} is algebraically independent, which
is false. Thus, {sz,...,Sn,t} is a transcendence basis for K/I. Sct t; = .
Assuming we have found ¢; € T for all ¢ with 1 < ¢ < m < n such
that {¢t1,...,tm-1,5m,-..,8n} 18 a transcendence basis for K/F, by re-
placing S by this set, the argument above shows that there is a t' € T
such that {¢1,...,tm—1,t',...,Sn} is a transcendence basis for K/F. Set-
ting t,, = t’' and continuing in this way, we get a transcendence basis
{t1,...,tn} C T of K/F'. Since T is a transcendence basis for K/F, we see
that {t1,...,tn} =T, s0 |T| = n.

For the general case, by the previous argument we may suppose that S
and T are both infinite. Each ¢ € T is algebraic over F'(S); hence, there is
a finite subset Sy C S with ¢ algebraic over F(Sy). If S" = | J,cp St, then
each t € T is algebraic over F'(S’). Since K is algebraic over F(T'), we see




that A s algebraic over F(S57). L'hus, S = 5" since 5" ¢ S and S is a
transcendence basis for K/ F. We then have

S| =18 = |J Sl < IT x N = 7],

teT

where the last equality is true since 7 is infinite. Reversing the argument,
we see that |T'| < |S|, so |S| = |T. 0

This theorem shows that the size of a transcendence basis for K/F' is
unique. The following definition is then well defined.

Definition 19.16 The transcendence degree trdeg(K/F) of a field exten-
ston K/F' s the cardinality of any transcendence basis of K/F.

Corollary 19.17 Let ty,...,t, € K. Then the fields F(ty,...,tn) and
F(z1,-..,zn) are F-isomorphic if and only if {t1,...,tn} 15 an algebraically
independent set over F'.

Proof. Il {{),...,l,} 1is algebraically independent over F, then
F(ty,...,tp) and F(z,,...,z,) are F-isomorphic fields by Lemma 19.5.
Conversely, if F(t1,...,tn) & F(z1,...,Z), suppose that {t1,...,tn} is
algebraically dependent over F'. By the previous theorem, there is a subset
S of {t1,...,tn} such that S is a transcendence basis for F'(ty,...,t,)/F.
However, the transcendence degree of this extension is n, which forces
|S| = n, s0 S = {t1,...,tn}. Thus, {t1,...,ts} is algebraically indepen-
dent over F. O

We now prove the main arithmetic fact about transcendence degrees, the
following transitivity result.

Proposition 19.18 Let F'C L C K be fields. Then
trdeg(K/F) = trdeg(K/L) + trdeg(L/F).

Proof. Let S be a transcendence basis for L/F', and let T' be a transcen-
dence basis for K/L. We show that SUT is a transcendence basis for K/F,
which will prove the result because SNT = @. Since T is algebraically inde-
pendent over L, the set T is also algebraically independent over F'(S) C L,
so SUT is algebraically independent over F'. To show that K is algebraic
over F'(SUT), we know that K/L(T) and L/F(S) are algebraic. Therefore,
EL(T) is algebraic over F(SUT) = F(S)(T), since each t € T is algebraic
over F(SUT). Thus, by transitivity, K is algebraic over F(SUT), so SUT
is a transcendence basis for K/F. This proves the proposition. O
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Example 19.19 Let K = k(zy,...,z,) be the field of rational functions
in n variables over a field k, and let ' = k(s;,...,s,) be the subfield of
K generated over k£ by the elementary symmetric functions s, ..., s,. In
Example 3.9, we saw that K is an algebraic extension of F' with [K : F] =
n!. Therefore, {s1,..., s, } contains a transcendence basis of K/k. However,
{z1,...,zn} is a transcendence basis for K /k, so trdeg(K/k) = n. This
forces the s; to be algebraically independent over k; hence, they form a
transcendence basis for K/k. In particular, this shows that k(s,,...,s,) =
k(ﬁl)l,...,ﬁl?n).

Example 19.20 Consider the field extension C/Q. Since @ is countable
and C is uncountable, the transcendence degree of C/(QQ must be infinite

(in fact, uncountable), for if ¢;,. .., ¢, form a transcendence basis for C/Q,
then C is algebraic over Q(ty, . ..,tn), so C and (@ have the same cardinality,
since they are infinite fields. However, one can show that Q(t;,...,t,) is

countable. This would give a contradiction to the uncountability of C. Thus,
any transcendence basis T' of C/(Q is infinite.

Let T be any transcendence basis of C/Q. Since C is algebraic over Q(7T')
and is algebraically closed, C is an algebraic closure of Q(T'). Let ¢ be a
permutation of T'. Then ¢ induces an automorphism of Q(7") that is trivial
on QQ; hence, o extends to an automorphism of C by the isomorphism
extension theorem. Since there are infinitely many such o, we see that
| Aut(C)| = oo. Because any automorphism of R is the identity, the only
automorphisms of C that map R to R are the identity map and complex
conjugation. Thus, there are infinitely many o € Aut(C) with ¢(R) # R.
We can easily show that [C : o(R)] == 2. This means that there are infinitely
many subfields F' of C with [C : F] = 2. It is a whole different question to try
to construct such fields. Note that in order to get these autormorphisms of C,
we invoked Zorn’s lemma twice, once for the existence of a transcendence
basis of C/Q and the second time indirectly by using the isomorphism
extension theorem.

Problems

1. Let K be a field extension of I, let « € K be algebraic over F', and let
t € T be transcendental over F'. Show that min(F,«) = min(F(t), «)
and that [F'(a) : F| = [F(t,a) : F(t)].

2. Suppose that L, Ly are intermediate fields of K/F. Show that

trdeg(Lle/F) < trdeg(Ll/F) + trdeg(Lz/F)

3. Give an example of a field extension K/F with intermediate subfields
Ly, Ly satisfying trdeg(Ly Lo/ F) < trdeg(L,/F') + trdeg(Loy/F).




4. Let K be a finitely generated field extension of F'. If L is a field with
FCLC K, show that L/F is finitely generated.

5. Let K be an algebraically closed field, and let F' be a subfield of K.
If ¢ : K — K is an F-homomorphism and trdeg(K/F) < oo, show
that ¢ is surjective, so that ¢ is an F-automorphism of K.

6. Let K be an algebraically closed field, and let /' be a subfield of
K with trdeg(K/F) = co. Show that there is an F-homomorphism
@ : K — K that is not an F-automorphism.

7. Let K = C(z)(v/—1 — z2). Show that [K : C(z)] = 2, and show that

K=C)ift=(i—2)" /(1 —-22)/(i — z).

8. Let K = R(z)(v/—1 — z?). Show that [K : R(z)] = 2 and that there
isno t € K with K = R(¢).

9. If K = R(z)(v/1 + z2), show that there is a t € K with K = R(¢).

10. Let z be transcendental over C, and let K be the algebraic closure of
C(z). Prove that K 2 C.

11. Let K = F'(z) be the rational function field over a field F' of charac-
teristic 0, let L, = F'(z?), and let Ly, = F(z? 4+ z).

(a) Show that |Gal(K/L;)| = 2 for each ¢, and find the unique non-
identity L;-automorphism of K.

(b) Show that Ly N L, = F.

(Hint: What is the subgroup of Gal(K/F') generated by the au-
tomorphisms in the first part?)

12. Let F'(z) be the rational function field in one variable over a field F.

Show that 7
F| if I is infinite,
[Fle): 1l = { Ry if Fis finite.

In the following problewns, we axiomatize the properties common to lin-
ear dependence and algebraic independence, and we see that these two
situations can be analyzed simultaneously.

Let X be aset, and let < be a relation between elements of X and subsets
of X. We will write o < S if the relation holds between o € X and S C X.
The relation < is called a dependence relation if the following conditions
hold: (i) if &« € S, then « < S; (ii) if @« < S, then there is a finite subset
So of S with a < S; (iii) if T is a set-such that s < T for all s € S, and
if « < S, then o <T; and (iv) if « < S but a £ S — {s} for some s € S,
then s < (S — {s}) U{a}.

If < is a dependence relation on X, a subset S of X is independent if
sAS—{s}forallse S.If SCT, wesay that S spans T if t < S for each




t € 1. Finally, we say that S is a basts of X if S 1s both independent and
spans X.

13. Let F' be a field, and let V' be an F-vector space. Define < by v < S
if v is in the subspace spanned by S. Show that < is a dependence
relation on V.

14. Let K be a field extension of F. Define < by a < S if a is algebraic
over F(S). Show that < is a dependence relation on K.

15. Let K be a field extension of F. Define < by a < S if a € F(S). Is <
a dependence relation on K7

16. Let K/F be a field extension with char(F) = p > 0. Supposc that
KP C F.Torinstance, we could take K to be any field of characteristic
p and F' = KP. Define < by a < S if a € F(S). Show that < is a
dependence relation. This is called the relation of p-dependence. This
relation will show up in Section 23.

17. In this problem, we outline a proof that a set X with a dependence
relation < has a basis. Prove the following statements.

(a) Let S C T be subsets of X, and let a € X. If @ < S, show that
a < T. Conclude that if S is independent, then any subset of
S is independent, and if 7' spans X, then any set containing T
also spans X.

(b) If S isindependent and @ £ S, show that SU{«a} is independent.

(c) If S C T are subsets of X such that S is independent and T
spans X, show that there is a basis B of X with SC B CT.

18. In this problem, we show that any two bases of a set X with a de-
pendence relation < have the same size. Mimic the proofs of the
appropriate results of the section to verify the following steps.

(a) Suppose that B is a basis of X. If § € B and a € X, let
B' = (B — {B}) U{«a}. If B < B’, then show that B’ is also a
basis of X.

(b) If B and C are bases of X with | B| finite, show that |B| = |C|.
(c) If B and C are bases of X, show that |B| = |C]|.

20 Linear Disjointness

In this section, we study linear disjointness, a technical condition but one
with many applications. One way that we use this concept is to extend




the dehinition of separability in a usctul way Lo nonalgebraic extensions.
We tacitly assume that all of our field extensions of a given field F' lie
in some common extension field C' of F. Problem 6 shows that this is
not a crucial assumption. We will also make use of tensor products. By
phrasing some results in terms of tensor products, we are able to give
cleaner, shorter proofs. However, the basic results on linear disjointness can
be proved without using tensor products. Properties of tensor products are
given in Appendix D for the benefit of the reader.

Definition 20.1 Let K and L be subfields of a field C, each containing
a field F'. Then K and L are linearly disjoint over I' if every I'-linearly
independent subset of K 1s also linearly independent over L.

Let A and B be subrings of a commutative ring R. Then the ring A[B]
is the subring of R gencrated by A and Bj; that is, A[B] is the smallest
subring of R containing AU B. It is not hard to show that

A[B] = {Zaibi 0, € A b; € B}.

If A and B contain a common field F', then the universal mapping property
of tensor products shows that there is a well-defined F'-linear transforma-
tion ¢ : AQr B — A[B] given on generators by ¢(a ® b) = ab. We refer to
the map ¢ as the natural map from A®p B to A[B]. We give a criterion in
terms of tensor products for two fields to be lincar disjoint over a common
subfield.

Proposition 20.2 Let K and L be field extensions of a field F'. Then K
and L are linearly disjoint over F' if and only if the map ¢ : KQp L — K|[L]
given on generators by a @ b — ab is an tsomorphism of F'-vector spaces.

Proof. The natural map ¢ : K®p L — K|[L] is surjective by the description
of K[L] given above. So, we need to show that K and L are linearly disjoint
over I if and only if ¢ is injective. Suppose first that K and L are linearly
disjoint over /. Let {k;},., be a basis for K as an F-vector space. Each
element of K ® p L has a unique representation in the form > k; ® l;, with
the /; € L. Suppose that > k; ® l; € ker(y), so > k;l; = 0. Then each
l; = 0, since K and L are linearly disjoint over F' and {k;} is F-linearly
independent. Thus, ¢ is injective, and so ¢ i1s an isomorphism.
Conversely, suppose that the map ¢ is an isomorphism. Let {a;} jeg be
an [-linearly independent subset of K. By enlarging J, we may assume that
the set {a;} is a basis for K. If {a;} is not L-linearly independent, then
there are [; € L with > a;l; = 0, a finite sum. Then ) a; ® I; € ker(p),
s0 »_a; ®l; = 0 by the injectivity of ¢. However, elements of K ® p L can
be represented uniquely in the form ) a; ® m; with m; € L. Therefore,
each [; = 0, which forces the set {a;} to be L-linearly independent. Thus,
K and L are linearly disjoint over F. O
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Corollary 20.3 The definition of linear disjointness 1s symmetric; that 1s,
K and L are linearly disjoint over F if and only if L and K are linearly
disjoint over I'.

Proof. This follows from Proposition 20.2. The map ¢ : K®pr L — K[L] is
an isomorphism if and only if 7 : LQr K — L[K| = K|[L] is an isomorphism,
since T = ¢ o (¢, where ¢ is the canonical isomorphism K ® r L — L Qp K
that sends a ® b to b ® a. O

Lemma 20.4 Suppose that K and L are finite extensions of F'. Then K
and L are linearly disjoint over F if and only if [KL : F] = [K : F|-[L: F).

Proof. The natural map ¢ : K ® » L — K][L| that sends k ® [ to kl is

surjective and
dim(K ®r L) = [K : F]-[L: F].

Thus, ¢ is an isomorphism if and only if [KL : F| = [K : F|-[L : F]. The
lemma then follows from Proposition 20.2. O

Example 20.5 Suppose that K and L are extensions of F' with [K : F|
and [L : F| relatively prime. Then K and L are linearly disjoint over F.
To see this, note that both [K : F] and [L : F| divide [KL : F), so their
product divides [K'L : F] since these degrees are relatively prime. The
linear disjointness of K and L over F' follows from the lemma.

Example 20.6 Let K be a finite Galois extension of F. If L is any ex-
tension of F, then K and L are linearly disjoint over F' if and only if
K N L = F. This follows from the previous example and the theorem of
natural irrationalities, since

KL:F|=[L: Fl[K: KNI
so [KL: F]=[K: F|[L: F]ifand only if K N L = F.

The tensor product characterization of linear disjointness leads us to
believe that there is a reasonable notion of linear disjointness for rings, not
just fields. Being able to discuss linear disjointness in the case of integral
domains will make it easier to work with fields, as we will see in Section 22
and later in this section.

Definition 20.7 Let A and B be subrings of a field C, each containing
a field F. Then A and B are linearly disjoint over F if the natural map
A®r B — C gwen by a ® b— ab is injective.

Lemma 20.8 Suppose that F is a field, and F C AC A and FC BC B’
are all subrings of a field C. If A" and B are linearly disjoint over F, then
A and B are linearly disjoint over F.
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Proof. This follows immediately from properties of tensor products. There
is a natural injective homomorphism i : AQr B — A’ ®pr B’ sending a® b
to a®b lor a e Aand 3 € B. If the natural map ¢’ : A’ @ B’ — A'[B’]
is injective, then restricting ¢ to the image of 7 shows that the map ¢ :
A®p B — A[B] is also injective. O

Example 20.9 Let K and L be extensions of a field F. If K N L is larger
than I', then K and L are not linearly disjoint over ¥ by the preceding
lemma since K N L is not linearly disjoint to itself over F'. However, K and
L may not be linearly disjoint over F' even if K N L = F. As an example,
let F'=Q, K = F(¥/2), and L = F(wv/2), where w is a primitive third
root of unity. Then K N L = F, but KL = F(+/2,w) has dimension 6 over
I, whereas K ®p L has dimension 9, so the map K ® r L — KL is not
injective.

Lemma 20.10 Suppose that A and B are subrings of a field C, each con-
tarning a field F', with quotient fields K and L, respectively. Then A and
B are linearly disjoint over F' if and only of K and L are linearly disjoint
over I

Proof. If K and L are linearly disjoint over I, then A and B are also
linearly disjoint over F' by the previous lemma. Conversely, suppose that A
and B are linearly disjoint over F. Let {ky,...,kn} C K be an F-linearly
independent set, and suppose that there are [; € L with > k;l; = 0. There
are nonzero s € A and ¢t € B with sk; € A and tl; € B for each ¢. The set
{a1,...,an} is also F-linearly independent; consequently, > a; ® b; # 0,
since it maps to the nonzero element > a; ®b; € K ® p L under the natural
map AQp B — K @ B. However, > a; ® b; is in the kernel of the map
A ®p B — A[B]; hence, it is zero by the assumption that A and B are
linearly disjoint over F. This shows that {k;} is L-linearly independent, so
K and L are linearly disjoint over F'. O

Example 20.11 Suppose that K/F is an algebraic extension and that
L/F is a purely transcendental extension. Then K and L are linearly dis-
joint over F'; to see this, let X be an algebraically independent set over F
with L = F(X). From the previous lemma, it suffices to show that K and
F[X] are linearly disjoint over F'. We can view F[X] as a polynomial ring in
the variables z € X. The ring generated by K and F[X] is the polynomial
ring K[X|. The standard homomorphism K ®p F[X]| — K[X] is an iso-
morphism because there is a ring homomorphism 7 : K[X] — K ®p F[X]
induced by z — 1 ® z for each z € X, and this is the inverse of ¢. Thus,
K and F[X] are linearly disjoint over F, so K and L are linearly disjoint
over F'.

The following theorem is a transitivity property for linear disjointness.




Theorem 20.12 Let K and L be extension fields of F', and let E be a field
with F C E C K. Then K and L are linearly disjoint over F if and only

if E and L are linearly disjoint over ' and K and EL are linearly disjoint
over .

Proof. We have the following tower of fields.
/ h
K \
\ /\
E 2

Consider the sequence of homomorphisms

KorlLb Kop(EorL) S Kep ELS K[L,
where the maps f, ¢;, and o are given on generators by

fk®l) =k (1®1),
o (k@ (e®l)) =k®el,

wa(k ® Z eil;) = Z ke;l;,

respectively. Each can be seen to be well defined by the universal mapping
property of tensor products. The map f is an isomorphism by counting
dimensions. Moreover, ¢, and s are surjective. The composition of these
three maps is the standard map ¢ : K Qp L — K[L]. First, suppose
that I and L are linearly disjoint over F. Then ¢ is an isontorphism by
Proposition 20.2. This forces both ¢; and ¢, to be isomorphisms, since all
maps in question are surjective. The injectivity of @5 implies that K and
EL are linearly disjoint over E. If o : E®p L — E[L] is the standard map,
then ¢, is given on generators by ¢1(k® (e ®1)) = k® o(e ® l); hence, o
is also injective. This shows that £ and L are linearly disjoint over F'.
Conversely, suppose that £ and L are linearly disjoint over F' and that
K and EL are linearly disjoint over E. Then ¢4 and o are isomorphisms
by Proposition 20.2. The map ¢; is also an isomorphism; this follows from
the relation between ¢; and o above. Then ¢ is a composition of three
isomorphisms; hence, ¢ is an isomorphism. Using Proposition 20.2 again,
we see that K and L are linearly disjoint over F'. O

Separability of field extensions

One of the benefits of discussing linear disjointness is that it allows us to
give a meaningful notion of separability for arbitrary field extensions. In




Section 22, we shall sce some geometric consequences of this more general
notion of separability. We first give an example that will help to motivate
the definition of separability for nonalgebraic extensions.

Example 20.13 Let K/F be a separable extension, and let L/F be a
purely inseparable extension. Then K and L are linearly disjoint over F.
To prove this, note that if char(F) = 0, then L = F, and the result is
trivial. So, suppose that char(F') = p > 0. We first consider the case where
K/ Fis a finite extension. By the primitive element theorem, we may write
K = F(a) for some a € K. Let f(z) = min(F,a) and g(z) = min(L, a).
Then g divides f in Lz]. If g(z) = ag + - + anp_12™ ! + 2", then for
each ¢ therc is a positive integer r; with (t_’;’? € F. If r is the maximum
of the 7;, Lhen ('v,:f' € F for cach %, so g(x)? € F[z]. Consequently, g(z)?"
is a polynomial over F' for which a is a root. Thus, f divides ¢g* in Flz|.
Viewing these two divisibilities in L[z], we see that the only irreducible
factor of f in L[z] is g, so f is a power of g. The field extension K/F' is
separable; hence, f has no irreducible factors in any extension field of F'.
This forces f = g, so

KL: L) — [L(a) : L] - deg(g)
=deg(f) = [K : F].

From this, we obtain [KL: F|=[K : F|-[L: F], so K and L are linearly
disjoint over F' by Lemma 20.4.

If K/F is not necessarily finite, suppose that ¢ : K ® » L — KL is not
injective. Then there are ky,...,k, € K and Iy, ...,l, € L with ¢(>_ k; ®
l;) = 0. If Ky is the field generated over I by the k;, then the restriction of
@ to Ko ®r L is not injective, which is false by the finite dimensional case.
Thus, ¢ is injective, so K and L arc tincarly disjoint over F.

Definition 20.14 Let F' be a field of characteristic p > 0, and let F,. be
an algebraic closure of I'. Let

e {a €F.:a" € F}
and

FPyrT — {a € Fy.:aP € F for some n > 0}
o0
_ )P
n=1

The field F'/P” is the composite of all purely inseparable extensions of
Fin F,.. It is, therefore, the maximal purely inseparable extension of /' in
Fue,s0 F 1/P” is the purely inseparable closure of F'in F,,.
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Definition 20.15 A transcendence basis X for a field extension K/F is
said to be a separating transcendence basis for K/F if K 1is separable alge-
braic over F(X). If K has a separating transcendence basis over F, then
K is said to be separably generated over F'.

Example 20.16 Let K = F(z) be the rational function field in one vari-
able over a field F' of characteristic p. Then {z} is a separating transcen-
dence basis for K/F. However, {zP} is also a transcendence basis, but
K/F(zP) is not separable. This example shows that even if K/F' is sepa-
rably generated, not all transcendence bases of K/F' are separating tran-
scendence bases.

Example 20.17 If K/F is algebraic, then K is separable over I if and
only if K/F' is separably generated, so the definition of separably generated
agrees with the definition of separable for algebraic extensions.

We now prove the result that characterizes separability of arbitrary ex-
tensions.

Theorem 20.18 Let K be a field extension of F'. Then the following state-
ments are equivalent:

1. Ewvery finitely generated subeztension of K/F is separably generated.
2. The fields I and FY/?” are linearly disjoint over F.

8. The fields K and F'/P are linearly disjoint over F.

Proof. (1) = (2): To show that K and F'/P” are linearly disjoint over
I, it suffices to assume that K is a finitely generated extension of F. By
statement |, we know that K is separably generated over I, so there is
a transcendence basis {t1,...,t,} of K/F for which K is separable over
F(ty,...,ty). By Example 20.11, the fields F(¢q,...,t,) and FY/P" are
linearly disjoint over F. Also, K and FI/Pm(tl,...,tn) are linearly dis-
joint over F(tq,...,t,) by Example 20.13, since Fl/”m(tl, ..., tn) is purely
inseparable over F'(ty,...,t,) and K is separable over F'(¢,,...,t,). Therc-
fore, by Theorem 20.12, the fields K and FY?7 are lincarly disjoint over
F.

(2) = (3): This is clear since F*/? is a subfield of F'!/P™

(3) = (1): Suppose that K and F'/P arc linearly disjoint over I7. Let
L = F(ay,...,a,) be a finitely generated subextension of K. We use in-
duction on n to show that {a,, ..., a,} contains a separating transcendence
basis for L/F'. The case n = 0 is clear, as is the case where {a),...,a,} is
algebraically independent, since then {a1,...,a,} is a separating transcen-
dence basis for L/ I'. We may then assume that n > 0 and that {a,...,a;}

is a transcendence basis for L/F', with m < n. The elements a1, ..., a1




are algebraically dependent over F', so there is a nonzero polynomial
f € Flzy,...,Tmy1] of least total degree with f(ai,-..,amy1) = 0. The
assumption that f is chosen of least degree forces f to be irreducible. We

first claim that f is not a polynomial in %,..., 20 . . If f(z1,...,Zms1) =
g(z¥,...,ab ) for some g € F[z),...,Zmy1], then there is an h €
Fl/p[arl,...,a:m+1] with f = h(zy,...,Zm41)P, since we are assuming

that char(F') = p and every coefficient of g is a pth power in FY/P. But
this implies that h(ay,...,am+1) = 0. Write h(zy, ..., Zmy1) = Zj a;my,
where the m; are the monomials occurring in A and the a; € FY/?_ Then
>ojaimi(ar, ..., amta) = 0, so the mj(ai,...,amy1) are linearly depen-
dent over F'/P. However, since each m; is a monomial in the zj, each
mj(ay,...,amy1) € L € K. The assumption that K and F'/? are linearly
disjoint over F' then forces the mj(ai,...,am+1) to be linearly dependent
over F. If Zj Bimj(ai, ..., amy1) = 0 with 3; € F', then A’ = Zj Bim; is
a polynomial with A'(ay,...,amy1) = 0 and deg(h’) < deg(f). This con-
tradiction verifies our claim that f is not a polynomial in z¥,... 27

'*Y*m—+1°
Therefore, for some ¢ the polynomial f is not a polynomial in z%. Let

(_Z(t) - f(al,...,ai_l,t,ai+1,...,am+l)

€ Flay, ..., 0i—1,0i41,- - 0m1][t].

Then ¢(a;) = 0, and ¢ is not a polynomial in tP. If we can show that g is
irreducible over M, then we will have proved that a; is separable over M.

To see this, the set {ay,...,ai—1,8i+1,---,8m+1} is @ transcendence basis
for L/ F, so
Flzy, .. 2me1] = Flay, - 05-1,t, Gig1, - -y Gme ]
- F[ala L. fa'i—l)a"i—i—h' . ‘7a'm+]_”t]

as rings. Under the map that sends a; to z; and ¢ to z;, the polyno-
mial ¢ is mapped to f. But f is irreducible over F, so ¢ is irreducible

in Flay,...,ai-1,Gi41,---,am41][t]. By Gauss’ lemma, this means that ¢
is irreducible over M, the quotient field of Fla1,...,ai—1,Qit1,- ) Cmi1]-
Thus, we have shown that a; is separable over M, so a; is separable over
L' =F(ay,-.-,8i—1,Qiy1,---,a,). The induction hypothesis applied to L’
gives us a subsct of {ay,...,a;-1,ai11,...,an} that is a separating tran-
scendence basis for L'/ F'. Since a; is separable over L', this is also a sepa-
rating transcendence basis for L/F. 0

Definition 20.19 A field extension K/F is separable if char(F") = 0 or
if char(F') = p > 0 and the conditions in Theorem 20.18 are satisfied;
that is, K/F' is separable if every finitely generated subextension of K/ I is
separably generated.

We now give some immediate consequences of Theorem 20.18.




Corollary 20.20 If K/F is separably generated, then A/F 1s separuble.
Conversely, if K/F' is separable and finitely generated, then K/F 1is sepa-
rably generated.

Corollary 20.21 Suppose that K = F(ay,...,a,,) is finitely generated and
separable over F'. Then there is a subset Y of {a\,...,a,} that is o sepa-
rating transcendence basis of K/F.

Proof. This corollary is more accurately a consequence of the proof of (3)
= (1) in Theorem 20.18, since the argument of that step is to show that
if K is finitely generated over F', then any finite generating set contains a
separating transcendence basis. O

Corollary 20.22 Let I' be a perfect field. Then any finilely generated ex-
tenston of F' is separably generated.

Proof. This follows immediately from part 3 of Theorem 20.18, since
F/P" = Fif F is perfect. O

Corollary 20.23 Let F C E C K be fields.
1. If K/F is separable, then E/F is separable.
2. If E/F and K/E are separable, then K/F is separable.
3. If K/F is separable and E/F is algebraic, then K/E is separable.

Proof. Part 1 is an immediate consequence of condition 2 of Theorem
20.18. For part 2 we use Theorems 20.18 and 20.12. If £/F and K/FE are
separable, then E and F/P are linearly disjoint over F, and K and E'/?
are linearly disjoint over F. However, it follows from the definition that
Fl/» C EYP so EFY/P C EYP Thus, K and EFYP are linearly disjoint
over E. Theorem 20.12 then shows that K and F!/? are linearly disjoint
over F', so K is separable over F'.

To prove part 3, suppose that K/F is separable and E/F' is algebraic.
We know that E/F is separable by part 1. Let L = E(a,,...,a,) be a
finitely generated subextension of K/FE. If L' = F(a,,...,a,), then by the
separability of K/F there is a separating transcendence basis {t1,...,tm}
for L'/ F. Because E/F is separable algebraic, FL' = L is separable over
L', so by transitivity, L is separable over F'(¢y,...,tmy). Thus, L is separable
over E(ty,...,tm), SO {t1,...,tm} is a separating transcendence basis for
L/E. We have shown that L/E is separably generated for every finitely
generated subextension of K/ F, which proves that K/F is separable. O

Example 20.24 Let F' be a field of characteristic p, let K = F(z), the
rational function field in one variable over F', and let E = F'(zP). Then K/F
is separable, but K/E is not separable. This example shows the necessity
for the assumption that E/F be algebraic in the previous corollary.

Py




boaanple 20025 liae Is an exanple v o weparable extension that 15 1ot
separably generated. Let F' be a field of characteristic p, let = be tran-
scendental over F, and let K = F(z)({z'/?" : n > 1}). Then K is the
union of the Gelds F(x'/P"), cach of which is purely transcendental over
[’ and hence is separably generated. Auy finitely gencrated subextension
E is a subficld of F(z!'/?") for some n and hence is scparably generated
over F' by the previous corollary. Therefore, K/F is separable. But K is
not separably generated over F, since given any f € K, there is an n with
fe F(x‘/”“), so K/F(f) is not separable, sincc K/F(a:l/P”) is a nontrivial
purely inseparable extension.

Problems

1. Let I7 be aficld. Show that cvery fickd extension ol I is separable if
and only if F' is perfect.

2. Let {z,y} be algebraically independent over F. Show that F(z) and
F(y) are linearly disjoint over F.

3. Let F' be a perfect field, and let K/F be a field extension of tran-
scendence degree 1. If K is not perfect, show that K/F is separably
generated.

(Note: The field K of Example 20.25 is perfect.)

4. Let F be a field, and let F,. be an algebraic closure of F. Then the
perfect closure of F' is the smallest subfield of F,. containing F' that
is perfect. Show that F/P” is the perfect closure of F.

5. Prove or disprove: Let K be a finite extension of F', and let L be a
field extension of F' such that K and L are linearly disjoint over F'. If
N is the normal closure of K/F, then N and L are linearly disjoint
over F'.

6. Let K and L be two field extensions of F'. Show that there is a field

extension C of F' that contains F-isomorphic copies of both K and
L.

7. Let K and L be extensions of a field F'. Then K and L are said to
be free over F if every subset of K that is algebraically independent
over F' is also algebraically independent over L.

(a) Show that this definition is symmetric; that, is, show that K and
L are free over F' if and only if L and K are free over F.

(b) Show that there exists a field extension M of F' that contains
F-isomorphic copies K’ and L' of K and L, respectively, such
that (i) M is the composite of K’ and L’ and (ii) K’ and L’ are
free over F'.

(The field M is called the free join of K and L over F.)




8. Let K and L be extensions of a field F. If K and L arc lincarly
disjoint over £, show that K and L are free over F'. Give an example
to show that the converse is false.

9. Let K be a separable extension of F. If L is an extension of F', show
that K'L/L is separable, provided that K and L are free over F'. Give
an example to show that this can be false if K and L are not free
over [

10. Let K/F and L/F be separable extensions. Show that K L/F is sep-
arable, provided that K and L are freec over F. Give an cxample to
show this can be falsc if K and L are not free over F.

21 Algebraic Varieties

Field extensions that are finitely generated but not algebraic arise naturally
in algebraic geometry. In this section, we discuss some of the basic ideas of
algebraic geometry, and in Section 22 we describe the connection between
varieties and finitely generated field extensions.

Let k be a field, and let f € k[z1,...,2,] be a polynomial in the n
variables z1,...,2,. Then f can be viewed as a function from k™ to k in the
obvious way; if P = (ay,...,a,) € k™, we will write f(P) for f(a1,...,an).
It is possible for two different polynomials to yield the same function on £™.
For instance, if k = Fy, then 22—z is the zero function on k!, although it is
not the zero polynomial. However, if k is infinite, then f € k[z),...,z,] is
the zero function on k™ if and only if f is the zero polynomial (see Problem
1).

Definition 21.1 Let k be a field, and let C be an algebraically closed field
containing k. If S is a subset of k[z1,...,x,], then the zero set of S is

Z(S)={(a1,..-,a,) € C": f(ay,...,a,) =0 for all f € S}.

Definition 21.2 Let k be a field, and let C be an algebraically closed field
containing k. Then a set V- C C™ s said to be a k-variety if V = Z(S) for
some set S of polynomials in k[zy,...,x,]. The set

V(k)y={Pek™: f(P)=0 forall f € S}
is called the set of k-rational points of V.

Before looking at a number of examples, we look more closely at the
definitions above. The reason for working in C™ instead of k™ is that a
polynomial f € k[z,,...,2,] may not have a zero in k", but, as we shall
see below, f docs have zeros i C™. For example, if f = 22 +y2+1 € R[z, 1],




then f has no zeros in R?, while f has the zeros (0,+£%), among others, in
C?. Classical algebraic geownetry is concerned with polynomials over C. On
the other hand, zeros of polynomials over a number field are of concern
in algebraic number theory. Working with polynomials over a field & but
looking at zeros inside C™ allows one to handle both of these situations
simultaneously.

We now look at some examples of varieties. The pictures below show the
[R-rational points of the given varieties.

Example 21.3 Let f(z,y) = vy — z2. Then Z(f) = {(a,az) cacC}, a
k-variety for any £ C C.

|

Example 21.4 Let f(z,y) = ¥ — (2 — z). Then Z(f) is a k-variety for
any k C C. This variety is an example of an elliptic curve, a class of curves
of great importance in number theory.

=

Example 21.5 Let f(z,y) = 2™ + y" — 1 € Q|z,y|, the Fermat curve.
Fermat’s last theorem states that if V = Z(f) and n > 3, then V has no
(Q-rational points other than the “trivial points,” when either z = 0 or
y = 0.

Example 21.6 Let V = {(#*,¢*) : t € C}. Then V is the k-variety Z(y*—
z3). The description of V' as the set of points of the form (¢2,#%) is called
a parameterization of V. We will see a connection between parameterizing
varieties and ficld extensions in Section 22.




Example 21.7 lLel V' — {U Ly e C}. Then Vois a k-varicty, since
V is the zero set of {y2 — 2z, 2% — $2y}. To verify this, note that cach
point of V does satisfy these two polynomials. Conversely, suppose that
(a,b,¢) € C3 is a zero of these three polynomials. If a = 0, then a quick
check of the polynomials shows that b = ¢ = 0, so (a,b,c) € V. If a # 0,
then define ¢t = b/a. From b? = ac, we see that c = t2a. Finally, the equation
¢ = a?b yields t*a® = a3t, so a = t3. Thus, (a,b,c) = (t3,t1,t°) e V.

Example 21.8 Let S = {(al, o ap)ECT YT Al = 1}. Then V =
Z(—1+3 ., z3),s0 V is a k-variety.

Example 21.9 Let V be a C-vector subspace of C™. We can find a matrix
A such that V' is the nullspace of A. If A = («;;), then a point (a,,...,a,)
is in V' if and only if } . a;;a; = 0 for each 7. Thus, V is the zero set of
the set of linear polynomials Zj a;;T5, 50 V is a C-variety. If each «y; lies
in a subfield k£, then V is a k-variety.

Example 21.10 Let SL,(C) be the set of all n x n matrices over C of

determinant 1. We view the set of all n x n matrices over C as the set C™°
of n?-tuples over C. The determinant det = det(z;;) is a polynomial in the
n? variables z;;, and the coefficients of the determinant polynomial are +1.
We then see that SL,(C) = Z(det —1) is a k-variety for any subfield k of

C. For instance, if n = 2, then
SLy(C) = {(a,b,c,d) € C* :ad—bc— 1 =0}

We can define a topology on C™, the k-Zariskr topology, by defining a
subset of C™ to be closed if it is a k-variety. The following lemma shows
that this does indeed define a topology on C™. Some of the problems below
go into more detail about the k-Zariski topology.

Lemma 21.11 The sets {Z(S):S Ck[z1,...,z,]|} are the closed sets of
a topology on C™; that is,

1. C™ = Z({0}) and @ = Z({1}).

2. If S and T are subsets of k[x,...,z,], then Z(SYU Z(T) = Z(ST),
where ST = {fg: fe S, teT}.

8. If {Sy} is an arbitrary collection of subsets of k[x\,...,x,], then

ﬂa Z(Sa) = Z(Ua Soc)'

Proof. The first two parts arc clear from the definitions. For the tlird, let
P c Z(8). Then f(P) =0 for all f € .5, s0 (fg)(P) =0 for all fg e ST.
Thus, Z(S) C Z(ST). Similarly, Z(T) C Z(ST), so Z(S)UZ(T) C Z(ST).
For the reverse inclusion, let P € Z(ST). If P ¢ Z(S), then there is an




feswith f(P7)#0.LgeT then 0= (fg)(L’) = f(£)g({’),s0 g(P) =0,
which forces P € Z(T). Thus, Z(ST) C Z(S) U Z(T). This proves that
Z(S)u Z(T) = Z(ST).

For the fourth part, the inclusion Z(|J, S«) € (), ( «) follows from
part 1. For the reverse inclusion, take P € (1, Z(S,). Then P € Z(S,) for
each a, so f(P) =0 for each f € S,. Thus, P € Z(|J, S ) 0O

Example 21.12 Let GL,(C) be the set of all invertible n xn matrices over
C. Then GL,(C) is the complement of the zero sct Z(det), so GL,(C) is
an open subset of C™ with respect to the k-Zariski topology. We can view
GL,(C) differently in order to view it as an algebraic variety. Let ¢ be a
new variable, and consider the zero set Z(¢det —1) in C™'*1. Then the map
GL,(C) — Z(tdet —1) given by P — (P,1/det(P)) is a bijection between
GL,(C) and Z(tdet —1). If we introduce the definition of a morphism of
varleties, this map would turn out to be an isomorphism. In Problem 10,
we glve the definition of a morphism between varieties.

Starting with an ideal I of k[z1,...,z,], we obtain a k-variety Z(I). We
can reverse this process and obtain an ideal from a k-variety.

Definition 21.13 Let V C C™. The ideal of V is
IVYy={fe€k[zy,...,zn]: f(P)=0 forallPeV}.
The coordinate ring of V is the ming k[V] = kl[z1,...,x,]/I(V).

If fek[z,...,zn] and V C C™, then f can be viewed as a function
from V to k. Two polynomials f and g yield the same polynomial function
on V if and only if f — g € I(V); hence, we see that k[V] can be thought
of as the ring of polynomial functions on V.

One of the main techniques of algebraic geometry is to translate back
and forth from geometric properties of varieties to algebraic properties of
their coordinate rings. We state Hilbert’s Nullstellensatz below, the most
fundamental result that connects the geometry of varieties with the algebra
of polynomial rings.

Let A be a commutative ring, and let I be an ideal of A. Then the radical
of I is the ideal

VIi={feA: frelforsomereN}.

If I = /I, then [ is said to be a radical ideal. A standard result of com-
mutative ring theory is that /T is the intersection of all prime ideals of A
containing I (sce Problem 2).

Lemma 21.14 If V is any subset of C™, then I(V') is a radical ideal of
klzy, ...z,




Proof. Let f € k[z1,...,z,] with f7 € I(V) for some . Then f7(P) =0
for all P € V. But f7(P) = (f(P))", so f(P) = 0. Therefore, f € I(V);
hence, I(V) is equal to its radical, so I(V) is a radical ideal. O

Lemma 21.15 The following statements are some properties of ideals of
subsets of C™.

1. If X and Y are subsets of C™ with X CY, then I(Y) C I(X).
2. If J is a subset of k[z1,...,z,)], then J C I(Z(J)).

3. IfV CCO™ thenV C Z(I(V)), and V = Z(I(V)) if and onky if V 1is

a k-varety.

Proof. The first two parts of the lemnma are clear from the definition of
I(V). For the third, let V be a subset of C™. 1f f € I(V), then f(P) = 0 for
all Pe V,so Pe Z(I(V)), which shows that V C Z(I(V)). Suppose that
V = Z(S) lor somc subset S € k[z),...,z,]. Then S C I(V),so Z(I(V)) C
Z(S) = V by the previous lemma. Thus, V = Z(I(V)). Conversely, if
V = Z(I(V)), then V is a k-variety by definition. O

In the lemma above, if J is anideal of k[z1, ... ,z,], we have J C I(Z(J)),
and actually vJ C I(Z(J)), since I(Z(J)) is a radical ideal. The following
theorem, Hilbert’s Nullstellensatz, shows that [(Z(.J)) is always cqual to

VJ.

Theorem 21.16 (Nullstellensatz) Let J be an ideal of k[zy,...,zn],
and let V = Z(J). Then I(V) = V/J.

Proof. For a proof of the Nullstellensatz, see Atiyah and Macdonald [2, p.
85] or Kunz [19, p. 16]. O

Corollary 21.17 There is a 1-1 inclusion reversing correspondence be-
tween the k-varieties in C™ and the radical ideals of k[zy, ..., x,] gwen by
V= 1(V). The wnwerse correspondence is given by J — Z(J).

Proof. If V is a k-variety, then the previous lemma shows that V =
Z(I(V)). Also, the Nullstellensatz shows that if I is a radical ideal, then
J = I(Z(J)). These two formulas tell us that the association V s I(V) is
a bijection and that its inverse is given by J — Z(J). O

Another consequence of the Nullstellensatz is that any proper ideal de-
fines a nonempty variety. Suppose that 7 is a proper ideal of k[zy,...,zy].
If V = Z(J), then the Nullstellensatz shows that (V) = v/J. Since J is
a proper ideal, the radical v/J is also proper. However, if Z(J) = @, then
I{Z(J)) = k[z\,...,z,]. Thus, Z(J) is nonempty.
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Example 21.18 Let f € k[z;,...,2,] be a polynomial, and let V = Z(f).
If f=p]' - p; is the irreducible factorization of f, then 7(V) = /(f)
by the Nullstellensatz. However, we show that m = (p1---p:) for, if
g e m, then ¢™ = fh for some h € k[z,,...,z,] and some m > 0. Bach
p; then divides g™; hence, each p; divides g. Thus, g € (p;---pt). For the
reverse inclusion, p; - - - p; € m, since if 7 is the maximum of the r;, then
(o1 pe)" € ()

If f e k[zq,...,z,] is irreducible, then /(f) = (f), so the coordinate
ring of Z(f) is k[xy,...,z,]/(f). For example, the coordinate ring of Z(y —
1?) C C? is k[z,y]/(y — =*). This ring is isomorphic to the polynomial ring
k[t]. Similarly, the coordinate ring of Z(y? — z3) is k[z,4]/(y? — «3). This
ring is isomorphic to the subring k[t?,t3] of the polynomial ring k[t]; an
isomorphism is given by sending z to t? and y to 3.

Definition 21.19 Let V be o k-variety. Then V is said to be irreducible
if V' is not the union of two proper k-varieties.

Every k-variety can be written as a finite union of irreducible subvarieties,
as Problem 7 shows. This fact reduces many questions about varieties to
the case of irreducible varieties.

Example 21.20 Let V be an irreducible k-variety. By taking comple-
ments, we see thatl the definition of irreducibility is equivaleut to the cou-
dition that any two nonempty open sets have a nonempty intersection.
Therefore, if U and U’ are nonempty open subsets of V', then U NU’ # @.
One consequence of this fact is that any nonempty open subset of V is
dense in V| as we now prove. If U is a nonempty open subset of V', and if
C' is the closure of U in V, then U N (V — C) = @. The set V — C' is open,
so one of U or V — (' is empty. Since U is nonempty, this forces V — C = &,
so C' = V. But then the closure of U in V is all of V, so U is dense in
V. This unusual fact about the Zariski topology is used often in algebraic
geometry.

Proposition 21.21 Let V be a k-variety. Then V is irreducible if and
only if I(V') is a prime ideal, if and only if the coordinate ring k[V] is an
integral domain.

Proof. First suppose that V is irreducible. Let f,g € k[z1,...,z,] with
fg € I(V). Then I = I(V)+ (f) and J = I(V) + (g) are ideals
of k[zy,...,z,] containing I(V); hence, their zero sets Y = Z(I) and
Z = Z(J) are contained in Z(I(V)) = V. Moreover, IJ C I(V), since
foelI(V),soYUZ = Z(IJ) contains V. This forces V =Y U Z, so either
Y =V or Z =V, since V is irreducible. If Y =V, then I C I(Y) = I(V),
and if Z =V, then J C I(Z) = I(V). Thus, either f € I(V) or g € I(V),
so I(V) is a prime ideal of k[z1,...,z,].




Conversely, suppose that (V) is prime. [f V = YU Z for sonic k-varieties
Yand Z,let I = I(Y)and J = I(Z). Then IJ C I(YUZ) = I(V), so either
I'CI(V)orJCI(V). Thismeansthat VC Z(I)=Y or V C Z(J) = Z.
Therefore, Y =V or Z =V, so V is irreducible. O

In Section 22, we will obtain finitely generated field extensions by con-
sidering the quotient field of the coordinate ring of an irreducible k-variety
as an extension of k. We finish this section with a brief discussion of the
dimension of a variety. In Theorem 22.5, we will see that the dimension of

an irreducible variety V is equal to the transcendence degree over k of the
quotient field of k[V].

Definition 21.22 Let V be a k-variety. Then the dimension of V', denoted
dim(V'), is the largest integer n such that there is a chain

of irreducible k-subvarieties of V.

While it is not obvious, there is indeed a maximum among the lengths
of chains of irreducible subvarieties of any variety. This is a consequence of
Theorem 22.5. In fact, if V' C C™, then dim(V') <n.

The definition above is purely topological. However, the dimension of a
k-variety can be determined with purely algebraic methods. One way to
determine the dimension of a k-variety is given in the proposition below.

Proposition 21.23 Let V be a k-variety. Then dim(V') s the mazimum
nonnegative integer n such that there is a chain

POCP1C"‘CPn
of prime ideals of k[V].

Proof. Suppose that Y C Y7 C --- C Y, C V is a chain of closed irre-
ducible subsets of V. Then

I(V) S I(Yn) C--- CI(Y)

is a chain of prime ideals of k[z1, . .., z,] by the previous proposition. More-
over, the inclusions are proper by the Nullstellensatz. By taking images in
the quotient ring k[V]| = k[z),...,z,]/I1(V), we get a chain of prime ideals
of length n. However, if we have a chain of prime ideals of k[V] of length
n, then we get a chain I(V) C Qo C @1 C --- C Q, of prime ideals of
k[zi1,...,zn]. Taking zero sets gives a chain

Z(Qn) C--C2Z(Qo) CZ(I(V) =V




of irreducible k-subvarieties in V. The maximum length of a chain of irre-
ducible k-subvaricetics of V' is then the maximum length of a chain of prime
ideals of k[V]. 0

If A is a commutative ring, then the supremum of integers n such that
there is a chain of prime ideals of A of length n is called the dimension
of A. The proposition says that dim(V) = dim(k[V]) if V is a k-variety.
Calculating the dimension of a k-variety by either the definition or by use
of the proposition above is not easy. Instead, we will use Theorem 22.5 to
calculate the dimension of a variety.

Problems

1. Let k be an infinite field. If f € k[zy,...,z,] with f(P) = 0 for all
P e k™, show that f =0 in k[z,...,z,].

2. Let A be a commutative ring, and let [ be an ideal of A. Show that
VT is the intersection of all prime ideals of A containing I.
(Hint: One inclusion is easy. For the other inclusion, show that if S
is a multiplicatively closed subset of A, and P is an ideal maximal
among all ideals J with J NS = @, then P is prime.)

3. Let W be a subset of C™. If W is the closure of W in the k-Zariski
topology on C™, show that W = Z(I(W)).

4. Use the Nullstellensatz to show that if C' is algebraically closed, then
every maximal ideal of C[zy,...,z,] is of the form (z, —ay,...,zn —
a,) for some a; € C. '

5. A topological space V is said to be Noetherian if V satisfies the
accending chain condition (ACC) on open subsets: If U} C U, C - -
is an increasing chain of open subsets of V', then there is an n with
Up = Up4. for each » > 0. Show that the following statements are
equivalent:

(a) The space V is a Noetherian space.

(b) Any nonempty collection {U,} of open subsets of V' has a maxi-
mal clement; that is, there is a U € {U,} not properly contained
in any other clement of {Ug}.

(c) The space V satisfies the descending chain condition (DCC) on
closed sets: If C} D (- - - is a decreasing chain of closed subsets
of V, then there is an n with C,, = C,, 4 for each r > 1.

6. Let V be a topological space. Show that V is a Noetherian space if
and only if every open subset of V' is compact.

7. Let V be a Noetherian topological space.
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8.

10.

11.

12.

V. Transcendental Exteusions

(a) Show that V can be written as a finite union of closed irreducible
subsets.

(b) Suppose that V =Y, U---UY, with each Y; a closed irreducible
subset of V. If ¥; € Y; for each ¢ # j, show that the Y; are
uniquely determined by this decomposition for V.

The Hilbert basis theorem says that k[z1,...,z,] is a Noetherian ring;
that is, k[z1,...,z,] satisfies the ACC on ideals.

(a) Show that the Hilbert basis theorem implies that C™ is a
Noetherian space.

(b) Show that the quotient ring of a Noetherian ring is also Noethe-
rian, and conclude that any k-variety is a Noetherian space.

Let V be a k-variety of dimension 1. Show that any proper closed
subset of V' is finite.

(Hint: Show that any proper closed irreducible subset of V' is a single
point. Use the previous problems that show that a k-variety can be
decomposed into closed irreducible subsets.)

Let V C C™and W C C™ be k-varieties. If f1,..., fm € k[z1,. .., Z4],
then the map ¢ : V. — W defined by ¢(P) = (f1(P),..., fm(P)) is
called a k-morphism. A k-isomorphism from V to W is a k-morphism
whose inverse function is also a k-morphism. Two varieties are said
to be k-isomorphic if there is a k-isomorphism from one to the other.

(a) If ¢ : V — W is a k-morphism, show that there is a k-algebra
map ¢* : k[W] — k[V] induced by sending y; to f;, if k[W] =
k[yl, R ,ym,]/I(W)

(b) Conversely, suppose that 7 : k[W] — k[V] is a k-algebra map.
Use 7 to define a k-morphism 7’ from V' to W.

(¢) If ¢ : V — W is a k-mnorphism, show that (¢*) = ¢, and if
7 k[W] — k[V] is a k-algebra map, show that (7/)* = 7.

(d) Conclude that V and W arc k-isomorphic if and ouly if k[V] and
k[W] are isomorphic as k-algebras.

(A k-algebra map is a ring homomorphism that is simultaneously a
k-vector space homomorphism.)

Show that a morphism between two k-varieties is a continuous map
relative to the k-Zariski topology.

Let V be the k-variety C!, and let W be the k-variety Z(y? — z3).
Show that the map ¢ : V. — W given by ¢(t) = (t?,t%) is a k-
morphism that is a bijection and where the inverse function =1 is
continuous but that ¢ is not a k-isomorphism.
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In this section, we study one of the most important classes of field exten-
sions, those arising from algebraic geometry. We will continue to use the
notation defined in Section 21. The point of this section is to show how field
theoretic information can be used to obtaiu geometric information about
varieties.

Definition 22.1 Let V be an irreducible k-variety. Then the function field
k(V) of V is the quotient field of the coordinate ring k[V].

This definition is meaningful because if V is irreducible, then I(V) is
a prime ideal, so k[V] = k[z1,...,z,]/I(V) is an integral domain. The
function field (V') of a variety V can be viewed as a field of functions on
V in the following way. Each f € k[V] is a polynomial function from V' to
C'. A quotient f/g of elements of k[V] then defines a function from V — Z(g)
to C. Now, V — Z(g) is an open subset of V; hence, it is a dense subset of
V. The elements of k(V') are then rational functions defined on an open,
dense subset of V; the density follows by Example 21.20.

Example 22.2 Let V = Z(y — z?). Then the coordinate ring of V is
klz,y]/(y — z?), which is isomorphic to the polynomial ring k[t] by sending
t to the coset of z in k[V]. Therefore, the function field of V is the rational
function field k().

Example 22.3 Let V = Z(y? — z3). Then k(V) is the field k(s, t), where
s and ¢ are the images of z and y in k[V] = k[z, y]/(y* — z3), respectively.
Note that t2 = s3. Let z = t/s. Substituting this equation into t? = s3
and simplifying shows that s = 22, and so ¢ = z3. Thus, k(V) = k(2). The
element z is transcendental over k, since if k(V')/k is algebraic, then k[V]
is a field by the argument in Example 19.11, so (y? —z?) is a maximal ideal
ol k[z,y]. However, this is not true, since (y? — z3) is properly contained in
the ideal (z,y). Thus, £(V) is a rational function field in one variable over
k. Note that k[V] is isomorphic to k[z? z°], a ring that is not isomorphic
to a polynomial ring in one variable over k.

Example 22.4 If V is an irreducible k-variety, then V gives rise to a ficld
extension k(V') of k. We can reverse this construction. Let K be a finitely
generated field extension of k. Say K = k(a1,...,a,) for some a; € K. Let

P:{fEk[CCl,...,CCn]If(a1,~~-,an):0}'

Then P is the kernel of the ring homomorphism ¢ : k[z1,...,z,] — K
that sends z; to a;, so P is a prime ideal. If V' = Z(P), then V is an
irreducible k-variety with coordinate ring k[z\,...,z,])/P = k[ai,...,a,],




so the function field of V' is K. Note thal if we start with an irreducible k-
varicty V and let K = k(V), then the varicty we get from this construction
may not be V. Therefore, the processes of obtaining field extensions from
varieties and vice versa are not inverses of each other.

The next theorem gives the most useful method for computing the di-
mension of a variety. We do not give the proof, since this wonld go past
the interests of this book. The interested reader can find a proof in Kunz
(19, §3, Prop. 3.11].

Theorem 22.5 Let V' be an irreducible k-variety. Then the dimension of
V' 15 equal to the transcendence degree of k(V)/k.

Example 22.6 The dimension of the k-variety C™ is n, since the function
field of C™ is k(z1,...,z,), which has transcendence degree n over k.

Example 22.7 If V = Z(y — z?), then k[V] = k[z,y]/(y — 2?) = k[z], so
k(V') 22 k(x) has transcendence degree 1 over k. Thus, dim(V) = 1. More
generally, if f(z,y) is any irreducible polynomial in k[z,y] and V = Z(f),
then k[V] = k[z,y]/(f) = k[s, t], where s and ¢ are the images in k[V] of z
and y, respectively. Therefore, k(V) = k(s,t). The set {s, t} is algebraically
dependent over k, since f(s,t) = 0. However, s or ¢ is transcendental over
k, for if s is algebraic over k, then there is a g € k[z] with g(s) = 0. Viewing
g(x) as a polynomial in z and y, we see that g € I(V) = (f). Similarly, if
t is algebraic over k, then there is an h(y) € k[y] with h € (f). These two
inclusions are impossible, since g(z) and h(y) are relatively prime. This
proves that either {s} or {t} is a transcendence basis for k(V'), so k(V') has
transcendence degree 1 over k.

Example 22.8 Let f € k[z,,...,z,] be an irreducible polynomial and set
V = Z(f). Then dim(V) = n — 1. To see this, we showed in Example
19.12 that the quotient field of k[z1,...,z,]/(f) has transcendence degree
n — 1 over k. But, this quotient field is the function field k(V') of V. Thus,
Theorem 22.5 shows that dim(V') = n — 1. Note that the argument in the
previous example is mostly a repeat of that given in Example 19.12 in the
case of two variables.

We now give some properties of the function field of an irreducible variety.
We first need two definitions. If K/k is a field extension, then K is a regular
extension of k provided that K/k is separable and k is algebraically closed
in K. If P is a prime ideal of k[z,,...,x,], then P is absolutely prime if
for any field extension L/k the ideal generated by P in L[zi,...,x,] is a
prime ideal.

Example 22.9 Let P be an absolutely prime ideal of k [1,...,2,], and let
V = Z(P). Let L be any field extension of k contained in C. Then we can




view V' as an L-variety. The coordinate ring of V' considered as an L-variety
is L[z, ..., za]/1, where I is the ideal of V computed in L{z, ..., z,]. The
ideal I contains P, so I contains the ideal generated by P in Lz,,...,z,].
Since P is absolutely prime, the Nullstellensatz tells us that I is the ideal
generated by P. Consequently, V is irreducible as an L-variety.

If k=Rand P = (2 + y?) € R[z,y], then V = Z(P) is an irreducible
R-variety but V is not irrecucible as a C-variety, since the ideal of V in
Clz,yl is (2% +y?) = (z + 1y)(z — 1y).

Theorem 22.10 Let V be an irreducible k-variety. Then k(V') is a finitely
generated extension of k. Moreover, k(V)/k is a reqular extension if (V)
18 absolutely prime.

Proof. The field k(V') is the quotient field of k[V] = k[z,,...., x|/ (V).
The ring k[V] is generated over k as a ring by the images of the z;, so k(V)
is generated as a field extension over k by the images of the z;. This proves
that k(V') is a finitely generated extension of k.

Suppose that I(V') is absolutely prime. We need to show that k(V)/k is
separable and that k is algebraically closed in k(V'). For this, we first show
that if L is any extension of k, then k(V) and L are linearly disjoint over
k. To see this, note that

k[v] Rk L = L[a:l, R a:n]/Q’ L 2k Bamsiome g,(’%,c\,yzzﬁ

where Q = I(V)L[z,,...,z,]. This isomorphism is given on generators hy
(f+I(V))®l— fl+ Q. The ring L[z,,...,2,]/Q contains an isomorphic
copy of k[V] = k[z1,...,z,])/I(V), and it is the ring generated by L and
this copy of k[V]. By the assumption that (V') is absolutely prime, @ is
a prime ideal, so L[z1,...,2,]/Q is a domain. If K is the quotient field of
this domain, there are isomorphic copies of k[V]| and L inside K, and the
tensor product k[V] ®j L is isomorphic to a subring of K. Therefore, k[V]
and L are linearly disjoint over k, so k(V') and L are linearly disjoint over
k by Lemma 20.10. To see that k(V) is separable over k, set [ = k'/P7,
From what we have shown, (V) and k'/P” are lincarly disjoint, so k(V)
is separable over k. Let k' be the algebraic closure of k in k(V'). By setting
L =k, since k(V') and k' are linearly disjoint over &, it follows that k' and
k' are linearly disjoint over k, so k' = k. Thus, k is algebraically closed in
k(V'). This finishes the proof that k(1) is a regular extension of k. O

Corollary 22.11 Let f € k[z1,...,z,]| be an absolutely irreducible poly-
nomial. If V.= Z(f), then V is an irreducible k-variety, and k(V) is a
reqular extension of k.

Proof. Since f is irreducible in k[zi,...,z,], the principal ideal (f) is
prime; hence, I(V) = (f) is prime. Thus, V is an irreducible k-variety.
Moreover, (f) is absolutely prime, since f is absolutely irreducible. By the
previous theorem, £(V) is a regular extension of k. O
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Example 22.12 Let f =y* — (23— z) and V = Z(f). Il L/k is any field
extension, then f is irreducible in L[z,y], since z° — z is not a square in
L[z]. Therefore, k(V) is a regular extension of k.

Example 22.13 If f = 2% 4+ y? € R[z,y] and V = Z(f), then [ is irre-
ducible over R, but f is not irreducible over C, since f = (z + iy)(z — iy).
The field extension R(V')/R is therefore not regular. This extension is sep-
arable, since char(R) = 0. In R(V'), we have z? + y? = 0, so (z/y)? = —1.
Thus, C is a subfield of R(V'), which shows that R is not algebraically closed
in R(V).

A natural question to ask is what geometric information about a vari-
ety can be determined from field theoretic information about its function
field. Problem 6 below investigates one aspect of this question. We now
investigate another.

Definition 22.14 An irreducible k-variety V is said to be rational if k(V)
is a purely transcendental extension of k.

Recall that o purely transcendental extension wilh linite transcendence
degree is oflen called a rational extension. Thus, a k-varicly V' is ratio-
nal if k(V)/k is a rational extension. A fundamental problem of algebraic
geometry is to determine when a variety is rational. The problem of ratio-
nality has a more geometric formulation. Recall from vector calculus that
a curve in R? can be parameterized in the form = = f(¢) and y = g(t),
where f and g are real-valued functions; that is, the curve consists of the
points (f(t),g(t)) as t ranges over R. The functions f and g can be com-
pletely general, and even with a curve defined by polynomial equations,
the functions f and g may be transcendental. For example, the most com-
mon parameterization of the unit circle is z = cost and y = sint. In the
case of algebraic varieties, we are interested in parameterizations involving
polynomial or rational functions.

Example 22.15 Let V' be the zero set of z2 4 ¢ — 1, an irreducible k-
variety in C?. As noted above, if k = R, then the curve V has a transcen-
deuntal parameterization. We wish to ind a parameterization of V' in terms
of rational fuuctions. We can do this as follows.

(—1’0)
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Pick a point on V/, for instance P = (—1,0). For a point (z,y) on V, let
t be the slope of the line connecting these two points. Then t = y/(z + 1).
If we solve for y and substitute into the equation z2 4+ 42 — 1 = 0, we can
solve for z in terms of ¢. Doing this, we see that

1—¢? 2t
r=-—: =
12 VT ige
Moreover, we can reverse this calculation to show that

{(l_tQ 2t ):teC,tQ;é—l}:V—{P},

1+4+¢271+¢2

for, given (z,y) € V with (z,y) # (—1,0), solving for ¢ in the equation
1-)/Q+t) ==

yields

1l—z

1+z
which are elements of C| since 142 % 0 and C' is algebraically closed, so C
contains a square root of any element. With either of these values of ¢, we
see that 2¢/(1+t2) = ¢(1 4 z), and we can check that z? + (t(1+z))? = 1;
hence, y = 2t/(1+t?) if the sign of the square root is chosen appropriately.
So, this parameterization of V picks up all but one point of V. There is no
value of ¢ that yields the point P. Intuitively, we would need ¢t = oo to get
2 = —1 and y = 0. Starting with any point ) on the curve and following
this procedure will yield a parameterization of V' — {Q}.

)

Example 22.16 For another example of a parameterization, let ¥ =
Z(y? — x3). If we start with the point (0,0) and follow the procedure of
Example 22.15, we obtain the parameterization z = t? and y = 3 given in
Example 21.6. With this parameterization, we get all points of Y; that is,

Y ={(*):teC}.

Not every algebraic curve can be parameterized with rational functions.
To give an intuitive feel for why this is true, let V be the zero set of
y? — (23 — z). Pick P = (0,0) on V. If we follow the procedure above, we
would get ¢t = y/z, or y = tz. Substituting this into the equation y? = 23—z

yields t?2? = 2% — z, or 22 — t?z — 1 = 0. This has the two solutions

ViR 44
-2

X

neither of which are rational functions in ¢t. While this does not prove that
Y cannot be parameterized, it does indicate that Y is more complicated




than the two previous examples. In Proposition 22.18, we show that an
irreducible curve V' can be parameterized if and only if the function feld
k(V') is rational over k. A proof that C(V)/C is not rational if V = Z(y? —
23 4 z) is outlined in Problem 23.6. It is nontrivial to show that a field
extension K/F is not rational when F is algebraically closed. If F' is not
algebraically closed, then it is easier to prove that an extension of I is not
rational, as can be seen in Problems 1 and 4.

We now relate the concept of parameterization to that of rationality. We
make precise what it means to parameterize a variety. We will restrict to
curves. An algebraic variety of dimension 1 is said to be a curve.

!
Definition 22.17 Let V C é“ be a curve defined over k. Then V can
be parameterized if there are rational functions fi(t) € k(t) such that
{(fa(t),..., fa(t)) : t € £} is a dense subset of V with respect to the k-
Zarisk: topology. k

From Theorem 22.5, the function field of a curve defined over a feld
k has transcendence degree 1 over k. We could define what it means to
parameterize a variety of dimension greater than 1, although we will not
do so.

To clarify the definition above, if f(¢) is a rational function, say f(¢) =
g(t)/h(t) with g,h € k[t]. Then f(a) is defined for a € C only if h(a) # 0.
The polynomial h has at most finitely many roots, so f(a) is defined at all
but finitely many a € C. In the definition of parameterization of a curve,
it is being assumed that the point (fi(¢),..., fo(t)) exists only when each
fi(t) is defined.

Proposition 22.18 Let V be an irreducible curve defined over k. Then V
can be parameterized if and only if the function field k(V') is rational over
k.

Proof. First, suppose that V C (C™ can be parameterized. Let
f1(t), ..., fu(t) € k(t) such that U = {(fi(¢),..., fu(t)) : t € C'} is a dense
subset of V. Define ¢ : k[z1,...,z,] — k(t) by sending z; to fi(¢). Then ¢
uniquely defines a k-homomorphism. The kernel of ¢ consists of all poly-
nomials h(zy,...,z,) with A(f1(2),..., fn(t)) = 0. For such an h, we have
h(P) = 0 for all P € U. Therefore, U C Z(h), so by density we have
V C Z(h). Thus, h € I(V). It is clear that I(V') C ker(y); hence, we see that
ker(o) = I(V), so ¢ induces an injective k-homomorphism ¢’ : k[V] — k(?).
The map ¢’ then induces a k-homomorphism k(V) — k(t), so k(V') is iso-
morphic to an intermediate field of k(¢)/k. By Liiroth’s theorem, which we
prove below, k(V) is a rational extension of k.

For the converse, suppose that k(V) = k(t) for some ¢. We abuse notation
by writing z; for the image of z; in k[V]. We have z; = f;(t) for some
rational function f;, and we can write t = g(z1,...,2,)/h(z1,...,2,) for

some polynomials g, h. If P € V', let a = g(P)/h(P), provided that h(P) #




0. Then P = (fi(a),..., fn(a)) by the relations between the z; and t. On the
other hand, given a € C, if each f;(a) is defined, let @ = (fi(a),..., fn(a)).
Then () = 0 for all uw € I(V), again by the relations between the z; and ¢.
Thus, @ € Z(I(V)) = V. The points of V not of the form (f1(a),..., fa(a))
all satisfy h(P) = 0. This does not include all points of V, or else h €
I(V), which is false by the choice of h. Thus, V' N Z(h) is a finite set, so
{(fr(),..., fa(t)) : t € C} contains all but finitely many points of V| so it is
a dense subset of V. The equations z; = f;(¢) thus give a parameterization
of V. O

We now finish the proof of Proposition 22.18 by proving Liiroth’s theo-
rem.

Theorem 22.19 (Liiroth) Let k(t) be the rational function field in one
variable over o field k, and let F' be a field with k C F C k(t). Then
F = k(u) for some u € F. Thus, F' is purely transcendental over k.

Proof. Let K = k(t), and take v € ' — k. We have seen in Example 1.17
that [K : k(v)] < 00,80 [K : F| < c0. Let f(z) = 2™ +1,12" 1 4-- -+ be
the minimal polynomial of ¢ over F. Then [K : F| = n. Since t is transcen-
dental over k, some {; ¢ k. Let w = 1;, and set mn = [K : k(u)]. Therefore,
m > n, since k(u) C F. If we show m < n, then we will have proved
that " = k(u). All [; € k(t), so there are polynomials ¢,(¢),...,cn(t) and
d(t) in k[t] with [; = ¢;(t)/d(t), and such that {d,c1,...,c,} is relatively
prime. Note that c,(t) = d(t), since f is monic, and v = ¢;(¢t)/d(t), so
m < max {deg(c;),deg(d)} by Example 1.17. This may be an inequality
instead of an equality because ¢; and d may not be relatively prime. Let

flz,t) =dt) f(z) = cn(t)z™ + cner (B)z™ 1 + - 4+ co(2).

Then f(z,t) € klz,t], and f is primitive as a polynomial in z. Moreover,
deg,(f(z,t)) = n, where deg_ refers to the degrce in = of a polynomial,
and deg,(f(z,t)) > m, since ¢; and d are both coefficients of f. By dividing
out ged(e;, d), we may write w = g(t)/h(t) with g, h € k[t] velatively prime.
Now ¢ is a rool. of g(x) — uh(z) € ['[x], so we may write

9(z) — uh(z) = q(z) f(z) (22.1)

with ¢(z) € F[z]. Plugging © = g(t)/h(t) into Equation (22.1), we see that
g(z)h(t) — g(t)h(z) is divisible by f(z,t) in k(t)[z] as F' C k(t). These
polynomials are in k[z, t], and f is primitive in z, so we can write

/q,;‘vn,'rJ A e
o

g(x)h(t) — g(t)h(z) = r(z, 1) f(z, 1)

with r(z,%) € k[z,¢]. The left-hand side has degree in ¢ at most m, since
m = max {deg(g), deg(h)}; this equality was proved in Example 1.17. But
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we know that the degrec of f in ¢ is at least m. Thus, r(z,t) = r(z) € k[z].
In particular, r is primitive as a polynomial in &[t][z]. Thus, rf is primitive
in k[t][z] by Proposition 4.3 of Appendix A, so I(z, t) = g(z)h(t) — g(t)h(z)
is a primitive polynomial in k[t][z]. By symmetry, it is also primitive in
k[z][t]. But r(z) divides all of its coeflicients, so r € k. Thus,

n = deg,(f) = deg,(g(z)h(t) — g(t)h(z))

Therefore, n > m. Since we have already proved that n < m, we get n = m,
and so F' = k(u). O

Liroth proved this theorem in 1876. It led to the following rationality
problem: If L is an intermediate field of k(z1,...,z,)/k with trdeg(L/k) =
n, is L/k rational? Castelnuovo proved in 1893 that this is true for n = 2 if
k is algebraically closed. It was not until the early 1970s, however, that an
example of an intermediate field of C(x,y, z)/C that is not rational over C
was found.

Problems

1. Let V C C? be the zero set of 22 +y? +1 = 0. Then V is defined
over R and over C. Show that the function field of V is isomorphic to
k(t)(v/—1—t2), where k = R or k = C, depending on what we take
to be the base field. Show that R(V) is not rational over R but that
C(V) is rational over C.

2. Let V be as in Problem 1. Find a parameterization of V over C.

3. Let V be as in Problem 1. By Proposition 22.18, therc is no param-
eterization of V over R. Verify this directly for V' by showing that
thic sel of R-rational poiuts is nonenipty and then showing that a
paramcterized curve always has rational points.

4. Let k be a field of characteristic not 2, and let a,b € k*. Show that
az?+by? — 1 is irreducible over k. Let K be the function field of the
k-variety V = Z(az?+by? —1). Show that K/k is rational if and only
if V has a k-rational point.

(Note: Problem 1 can be viewed as a special case of this.)

5. Let V be the zero set of {22 — z2y,y? — zz}. Mimic the method of Ex-
ample 22.15 to find a way to parameterize curves in C®, and starting
with the point P = (0,0,0), oblain the paramcterization (£, ¢4, %)
of V.
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Let V' and W be irreducible k-varieties. A rational map from V to
W is a map ¢ : U — W defined on a dense open subset U of V/,
of the form ¢(P) = (fi(P),-..., fm(P)) for some f; € k(z1,...,Zn)-
We will write ¢ : V — W even though the domain of ¢ may be a
proper subset of V. A rational map ¢ is said to be dominant if im(¢p)
15 dense in W. If 7 : k(W) — k(V) is a k-homomorphism of fields,
show that 7 induces a dominant rational map V — W.

(While we have not defined k-morphism except on closed subsets of
C™, if we extend the definition in an appropriate way, a consequence of
this problem is that k(V') and k(W) are k- isomorphic field extensions
of k if and only if there are dense, open subsets V; C V and Wy C W
such that Vy and Wy are k-isomorphic.)

. Let V and W be irreducible k-varieties. Then V and W are said to

be birational, provided that there are rational maps ¢ : V — W and
¢ : W — V such that ¢ o ¢ and ¢ o ¢ are each the identity on their
respective domains. Show that V and W are birational if and only if
Lheir function ficlds are k-isomorphic.

Let V be an irreducible k-variety, and assume that k is perfect. Show
that V' is birational to a hypersurface Z(f) for some f € k[z1,...,z,].

Let V' be a k-variety, and suppose that (V') is an absolutely prime
ideal. If L is an extension field of k£ contained in C, show that the
function field L(V') of V viewed as an L-variety is the free join of L
and k(V).

(See the definition in Problem 20.7.)

Let V' be an mrreducible k-variety. Assume that C' is an algebraic
closure of k, and let G = Gal(C/k). For o € G, let o act on C™ by

o((a1,...,a,)) = (co(a1),...,0(a,)) .

(a) Show that o € G sends V to V.

(b) Show that 0 € G induces a homomorphism from C|z1,...,z,]
to itself and fixes k[z1,...,z,).

(¢c) Let J =1(V)C[zy,...,z,]|. Assume that
J={f€eCClz1,...,z,]: f(P)=0forall Pe V}.

Show that o € (G sends J to itself and, hence, ¢ induces a homo-
morphism from C[z4,...,z,]/J to itself, and that the subring
of Clzy,...,zy)/J that is fixed by G is k[V].

(The assumiption above can be shown to hold if k is a perfect
ficld; see Problem 11.)




11. Rcead §6 of Drax! [6] and use Theorem 1 of [6] to prove the following
statement: If k is perfect, then

k(V)Clz1,...,zn) ={f €Clz1,...,z0| : f(P)=0forall Pe V}.

In other words, viewing V' as a C-variety, the ideal of V is gencrated
by polynomials defined over k.

23  Derivations and Differentials

In this section, we discuss algebraic notions of derivation and differential,
and we use these concepts to continue our study of finitely generated field
extensions. We shall see that by using differentials we can determine the
transcendence degree of a finitely generated extension and when a subset
of a separably generated extension is a separating transcendence basis. As
a geometric application, we use these ideas to define the tangent space to a
point of a variety. By using tangent spaces, we are able to define the notion
of nonsingular point on a variety. This is a more subtle geometric concept
than those discussed in Section 21.

Let A be a commutative ring, and let M be an A-module. A derivation
of Ainto M is amap D : A — M such that for all a,b € A,

D(a+b) = D(a) + D(»),
D(ab) =bD(a) + aD(b).
We write Der(A, M) for the set of all derivations of A into M. Since the
sum of derivations is easily seen to be a derivation, Der(A, M) is a group.

Furthermore, Der(A, M) is an A-module by defining aD : A — M by
(aD)(z) = a(D(z)).

Example 23.1 The simplest example of a derivation is the polynomial
derivative map d/dz : k[z] — k[z]| defined by

n n—1
Eda—: (Z aia:i) = Ziaimi_l,

1=0 i=1

where k is any commutative ring. The term 7a; in the formula above is, of
course, the sum of a; with itself ¢ times.

Example 23.2 If k is a field, then the derivation d/dz on k[z] can be
extended to the quotient field k(x) by use of the quotient rule; that is, the

formula

d (f@:))  glz)fEf(z) - flz)ftgla)

dz \g(z)/) g9(z)?
defines a derivation on k(z). We shall see a generalization of this example
in Lemma 23.10.




Example 23.3 Lel & be any conmutative ving, and let L = Kz, ..., 2]
be the polynomial ring in n variables over k. Then the partial derivative
maps d/0z; are each derivations of A to itsell.

Example 23.4 Let K be a field, and let D € Der(K,K). If a € K*, we
prove that D(a™') = —a72D(a). To see this, note that D(1) = 0 by an
application of the product rule. Thus,

0=D(1)=D(a-a ")
=a '(D(a)) +aD(a™1).

Solving for D(a™!) gives D(a™!) = —a~?D(a), as desired.

Other familiar facts from calculus can be verified for arbitrary deriva-
tions. For instance, if K is a field and a,b € K with b # 0, and if
D € Der(K, K), then

D (%) B bD(a)b—zaD(b)-

To see this, we have

D(ab™')=b""'D(a) +aD(b7 ")
=b"'D(a) — ab™?D(b)
= b"?(bD(a) — aD(b))

from the previous calculation. This proves the validity of the quotient rule
for derivations on a field.

Let D be a derivation of a ring A into an A-module M. An element
a € A is said to be a constant for D if D(a) = 0. It is not hard to see
that the set ol all constants for D is a subring of A. If B is a subring
of A, let Derg(A, M) be the set of all derivations D : A — M for which
D(b) =0 for all b € B. By studying Derg(A, A), we will obtain information
about the extension A/B when A and B are fields. To simplify notation, let
Derp(A) = Derg(A, A). We will call an element of Derg(A) a B-derivation
on A.

Let K bc a field extension of F. We wish to sec how the vector space
Derp(K) gives information about the field extension K/F, and vice versa.
We first consider algebraic extensions. The following lemma, which can be
thought of as the chain rule for derivations, will be convenient in a number
of placcs.

Lemma 23.5 Let K be a field extension of k, and let D € Dery(K). Ifa €
K and f(z) € k[z], then D(f(a)) = f'(a)D(a), where f'(x) is the ordinary
polynomial derivative of f. More generally, if f(z1,...,zn) € k[z1,. .., 24]
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and ay,...,a, € K, then

D(f(ay,...,an)) = Z 8$_(a17--~:an)D(ai)-
Proof. Suppose that f(z) = > a;z’. Then

D(f(a)) = D (3 e
= Z o; D(a*) = Z a;ia*” ' D(a)

= ["(a)D(a).
The second statement follows from much the same calculation. If f =

Sooaipi---xl, where i = (i1,...,7,), applying the property D(ab) =
bD(a) + aD(b) repeatedly, we see that

j=1 i
n (9f
:j:Zl 8331 (ah ’an)D(a'])

O

Proposition 23.6 Let K be a separable algebraic field extension of F.
Then Derp(K) = 0.

Proof. Suppose that D € Derp(K). If a € K, let p(z) = min(F,a), a
separable polynomial over F'. Then

0 = D(p(a)) = p'(a)D(a)

by Lemma 23.5. Since p is separable over F', the polynomials p and p’
are relatively prime, so p’(a) # 0. Therefore, D(a) = 0, so D is the zero
derivation. 0O

Corollary 23.7 Let k C F C K be fields, and suppose that K/F is a
finite separable extension. Then each k-derivation on F' extends uniquely
to a k-derivation on K.

Proof. The uniqueness is a consequence of Proposition 23.6. If Dy and D,
are k-derivations of K with the same restriction to F', then D, — D, €
Derp(K),so Dy = D,. We now show that any derivation D € Dery(F') can
be extended to a derivation D’ on K. We can write K = F(u) for some
u separable over F. Let p(z) = min(F,u), and say p(t) = 5 B;t'. We first

define D'(u) by .




P AN N AW (DI E TR N S UV ¥ S U GRS SR PP

To define D’ in general, if v € K, say v = f(u) for some f(t) € F[¢]. If
f(t) =37, a;t*, define D' on K by

D'(v) = f'(v)D'(u) + Z D(az)u'".

These formulas are forced upon us by the requirement that D’ is an exten-
sion of D. The verification that D’ is indeed a well-defined derivation on
K is straightforward but tedious and will be left to the reader. O

The converse of this proposition is also true, which we will verify shortly.
To do this, we must look at inseparable extensions.

Proposition 23.8 Suppose that char(F) = p > 0, and let K = F(a) be
purely inseparable over F. If K # F, then Derp(K) is a one-dimensional
K -vector space.

Proof. Define D : K — K by D(f(a)) = f'(a). We need to show that D is
well defined. Let p(z) = min(F,a). Then p(z) = 2P~ — « for some m € N
and some a € F. If f(a) = g(a), then p divides f — g, so f(z) — g(z) =
p(z)g(z) for some g. Taking derivatives, we have f'(z) — ¢'(z) = p(z)q' (z),
since p'(z) = 0. Therefore, f'(a) = ¢'(a), so D is well defined. A short
calculation shows that D is an F-derivation on K. If F is any derivation
of K, then E(f(a)) = f'(a)E(a) by Lemma 23.5, so E is a scalar multiple
of D, namely E = D if 8 = E(a). Therefore, Derp(K) is spanned by D,
so Derp(K) is one dimensional as a K-vector space. O

We can now prove the converse of Proposition 23.6. This converse gives
a test for separability by using derivations.

Corollary 23.9 If K is an algebraic extension of F with Derp(K) = 0,
then K/F is separable.

Proof. Suppose that Derp(K) = 0, and let S be the separable closure of
Fin K. If K # S, then there is a proper subfield L of K containing S
and an a € K with K = L(a) and K/L purely inseparable. The previous
proposition shows that Dery (K) # 0, so Derg(K) is also nonzero, since it
contains Dery (K). This contradicts the assumption that Derp(K) = 0, so
K is separable over F'. O

We now consider transcendental extensions. First, we need a lemma that

will allow us to work with polynomial rings instead of rational function
fields.

Lemma 23.10 Let A be an integral domain with quotient field K. Then
any derwation on A has a unique extension to K. If D € Derg(A) for some
subring B of A, then the unique extension of D to K lies in Derp(K), where
I is the quotient field of B.




Proof. Let D € Der(.1). Define D' : K — K by
bD(a) — aD(b)
b2
if a,b € A and b # 0. We first note that D’ is well defined. If a/b = ¢/d,

then ad = be, so aD(d) + dD(a) = bD(c) + ¢D(b). Thus, by multiplying
both sides by bd and rearranging terms, we get

bd*D(a) — bedD(b) = b2dD(c) — abdD(d).

D'(a/b) =

Using the relation ad = be, we can simplify this to
d? (bD(a) — aD(b)) = b2 (dD(c) — c¢D(d)),

> bD(a) — aD(h)  dD(c) — cD(d)

b? d? ’
proving that D’ is well defined. Checking that D’ is a derivation is straight-
forward and will be left to the reader.
To verify uniqueness of extensions, suppose that D is a derivation on K.
If « € K, we may write & = a/b with a,b € A. Then

D(a) = D(ab™ 1)
=b"'D(a) +aD(b 1)
=b"'D(a) — ab 2D(b),

the final equality coming from Example 23.4. This formula shows that D
is determined by its action on A. O

The following proposition determines the module of derivations for a
purely transcendental extension of finite transcendence degrec.

Proposition 23.11 Suppose that K — k(x,,...,x,) 15 the rutional func-
tion field over a field k in n variables. Then Dery(K') 15 an n-dimensional
K -vector space with basis {0/0x; : 1 <1 <n}.

Proof. Let f € k[z1,...,z,]. If D € Derg(K), then by Lemma 23.5, we
have D(f) = . D(z;)(0f/0x;). Therefore, the n partial derivations 8/0x;
span Derg(k[z1,...,T,]). Moreover, they are K-linearly independent; if

>~ a;0/0z; =0, then
ox;
0= E aja—x] = a;.

J

This proves independence, so the /0zx; form a basis for Dery (k[z, .. ., zn])-
Finally, a use of the quotient rule (Example 23.4) shows that the 0/0z; form
a basis for Dery(K). O

We can generalize this theorem to any finitely generated, separable ex-
tension.




Theorem 23.12 Suppose that K/k s a finitely generated, separable exten-
sion. Then trdeg(K/k) = dimg (Derg(K)). If {zy,...,xn} i5 a separating
transcendence basis for K/k and of F = k(z,,...,z,), then there is a basis
{6; : 1 <@ <n} for Dery(K) with &;|p = 0/0x; for each 1.

Proof. Let {z),...,z,} be a separating transcendence basis for K/k, and
set F' = k(z1,...,zn). The extension K/ F is finite and separable. By Corol-
lary 23.7, for each ¢ the derivation 0/0z; extends uniquely to a derivation
6; on K. We show that the 6; form a basis for Dery(K). It is easy to see
that the 6; are K-linearly independent, for if ). a;6; = 0 with the a; € K,

then
B 5.\ (x 0x;
0= Z a;0; | (x5) = Z a; ?)_IT = qa;

4 1

for each j. To show that the §; span Dery (), let D be a k-derivation of K,
and let a; = D(z;). Then D — . a;6; is a derivation on K that is trivial
on F. But Derp(K) = 0 by Proposition 23.6,s0 D = > . a;é;. O

Dsfferentials

Let B C A be commutative rings. Then the module of differentials Q4,5
is the A-module spanned by symbols da, one for each a € A, subject to the
relations

da =0,
d(ab) = adb + bda

fora € Banda,b € A; that is, Q4,5 is the A-modute M/N, where M is the
ree Amodule on the sel of symbols {da ¢ A} and N is Lthe submodule
generaled by the elenents

do,
d(a+b) — da — db,
d(ab) — (adb + bda)

for « € B and a,b € A. The map d: A — Q4,5 given by d(a) = da is a
B-derivation on A by the definition of {24, p.
The module of differentials is determined by the following universal map-

ping property.

Proposition 23.13 Suppose that D : A — M s a B-derwation from
A to an A-module M. Then there is a unique A-module homomorphism
[ Qap — M with f od = D; that is, f(da) = D(a) for alla € A. In

other words, the following diagram commutes:
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Qa/B

Proof. Given D, we have an A-module homomorphism f defined on the
free A-module on the set {da : a € A} into M that sends da to D(a). Since
D is a B-derivation, f is compatible with the defining relations for Q2 4,5;
hence, f factors through these relations to give an A-module homomor-
phism f : Q4,53 — M with f(da) = D(a) for all @ € A. The uniqueness of
f is clear from the requirement that f(da) = D(a), since Q 4,5 is gencrated
by {da:a € A}. O

Corollary 23.14 If B C A are commutative rings and M is an A-module,
then DerB (A, M) = hOIIlA(QA/B, M)

Proof. This is really just a restatement of the universal mapping property
for differentials. Define ¢ : Derg(4, M) — homa (24,3, M) by letting
¢(D) be the unique element f of homa (24,5, M) that satisfies fod = D.
A short coinputation using the uniqueness part of the mapping property
shows that ¢ is an A-modulec homomorphism. For injectivity, if ¢ (D) = 0,
then the coudition that ¢(D) od = D shows that D = 0. Finally, for
surjectivity, if f € homa(Q4,5, M), thensetting D = fod yiclds ¢(D) = f.

U

If M = A, then the corollary shows that Derg(A) = homa (24,5, 4),
the dual module to €24,5. The next corollary follows immediately from this
observation.

Corollary 23.15 If K is a field extension of I, then
dilIl[((QK/F) = dimK(DerF(K)).

The following corollary is a consequence of the previous corollary together
with Theorem 23.12.

Corollary 23.16 If {z),...,z,} s a separating transcendence basis for
an extension K/k, then {dxy,...,dw,} is a K-basis for Q.

Proof. Supposc that {z1,...,,} is a separating transcendence basis [or
K/k. By Theorem 23.12, there is a basis {6;,...,6,} of Derg(K) such
that §; extends the derivation 0/0z; on k(zi,...,z,). By the universal

mapping property for differentials, there are f; € homg(Qg k, K) with
fz'(dﬂ:j) = (Si(ﬂ?j) for each ] But, 6i(93j) =0if1 # j, and 5,((1:@) = 1. Under

the isomorphism Dery (K) = homg (Q i, ), the 6; arc sent to the f;, so
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the f; form a basis for homg (g i, K). The dual basis of Qk/k to the f;
is then {dz1,...,dzn}, so this set is a basis for Qg ;. 0

The converse of this corollary is also true, and the converse gives us a
way to determine when a set of elements form a separating transcendence
basis.

Proposition 23.17 Suppose that K is a separably generated extension of
k. If zi,...,2, € K such that dz,,... ,dz, is a K-basis for Qg /x, then
{x1,...,z,} is a separating transcendence basis for K/k.

Proof. Since K/k is separably generated, n = trdeg(K/k) by Theorem
23.12 and Corollary 23.15. Let {y1,...,¥y,} be a separating transcendence
basis for K/k. We will show that {z1,...,z,} is also a separating transcen-
dence basis by replacing, one at a time, a y; by an z; and showing that we
still have a separating transcendence basis. The element z, is separable over
k(y1,---,Yn), so there is an irreducible polynomial p(t) € k(y1,-..,Yn)[t]
with p(z1) =0 and p'(z1) # 0. We can write p(t) in the form

p(t) = ﬁl _{_Ilt.{.....}.f_ntn
9o g1 gn
with ecach f;, g; € k[y1, ..., yn)- By clearing denominators and dividing out
the greatest common divisor of the new coefficients, we obtain a primi-
tive irreducible polynomial f(y1,...,yn,t) with f(y1,...,Yn,z1) = 0 and

(Of/0t)(y1y---,Yn,x1) # 0. Let P = (y1,...,Yn,x1). Taking differentials
and using the chain rule yields

Consequently,

“(0f/o(P)

The differential dz, # 0, so some (0f/0y;)(FP) # 0. By relabeling
il necessary, we may assumc that (0f/0y;)(P) # 0. The cquation
f(yi,. -, yn, x1) = 0 shows that y; is algebraic over k(x1,y2, ..., yn). Morc-
over, the condition (0f/0y1)(F) # O implies that y; is separable over
k(xy,y2, -5 yn). Thus, cach y; is separable over k(z,y2, - .., ¥yn), and since
K is separable over k(z1,Y2,---,Yn), by transitivity the set {z,,y2,...,yn}
is a separating transcendence basis for K/k.

Now, assume that for some: > 1, {z1,...,%;, Yit1,---,Yn | is a separating
transcendence basis for K/k. Repeating the argument above for z;., in
place of z,, there is an irreducible primitive polynomial equation g(Q) =0




with (0g/0t,1)(() # 0,1 Q = (&1, .-, Ziy Vit 1y -« Un, Lag ). Lhis yiclds
an equation

. (8g/8z;) — (89/0y;)(Q)
o = - Z (@)
it P (ag/at 2= (99/00)(Q) ;-

The differentials dz1, . ..,dz, are K-independent, so some (09/0y,)(Q) #
0. Relabeling if necessary, we may assume that (9g/0y;+1)(Q) # 0. Consc-

quently, y;41 is separable over k(z1,...,Z;+1,¥it2,---,Yn). As above, this
means that {z1,...,Z;11,Yite,...,yn} is a separating transcendence basis
for K/k. Continuing this procedure shows that {z1,...,z,} is a separating
transcendence basis for K/k. O

Example 23.18 Lect kg be a field of characteristic p, let K = ko(z,y) be
the rational function field in two variables over kg, and let k = ko(zP, yP).
Then {z,y} is algebraically dependent over k; in fact, K/k is algebraic.
However, dz and dy are K-independent in Qg /; to see this, suppose that
adz + bdy = 0 for some a,b € K. The kg-derivations 8/ Oz and 0/dy
are actually k-derivations by the choice of k. By thc universal mapping
property for differentials, there are f,g € homg (Qx,p, K) with fod =
0/0x and go d = 0/0y. Then f(adz + bdy) = af(dz) + bf(dy) = a and
g(adx + bdy) = b. Thus, a = b =0, so dz and dy are K-independent. This
shows that Proposition 23.17 is false if K/k is not separably generated.

The tangent space of a vartety

Let f(z,y) be a polynomial in Rz, y]. The equation f(z,y) = 0 defines y
implicitly as a function of z. If P = (a,b) is a point on the carve [ = 0,
then, as long as the tangent line to the curve at P is not vertical, we have

dy, . 0f/oz
%(a) = —W(P);

so the tangent line to the curve at P can be written in the form

of of
— —(P)(y —b) =0.
5a Pz —a) + 3 (P)y ~b)
This formula is valid even if the tangent line at P is vertical. To deal with
vector subspaces, we define the tangent space to the curve f = 0 at P to

be the set of solutions to the equation

This tangent space is a vector subspace of R2.
The curve f = 0 is nothing more than the set of R-rational points of the
R-variety Z(f). We can give a meaningful definition of the tangent space




to any k-varicty, for any ficld &, by mimicking the casc ol real planc curves.
Let V be a k-variety in C™, where, as usual, C' is an algebraically closed
extension of k, and let P € V. For f € k[z),...,z,], let

(lp_/—zal P)J-L

The linear polynomial dp f is called the differential of f at P.

Definition 23.19 If V is a k-variety, then the tangent space Tp(V) to V
at P is the zero set Z ({dpf: fe I(V)}).

Example 23.20 By the Hilbert basis theoren, any ideal of k[xy, ..., z,]
can bc generated by a finite number of polynomials. Supposc that
I(V) is generated by {fi,...,f.}. Then we show that Tp(V) =
Z({dpfi,...,dpfr}. If R =3 g; f;, then by the product rule,

dph =Y gi(P)dpfi+ dpg;- f(P)

= di(P)dp fi.

This shows that dph is a linear combination of the dp f; for any A € I(V).

Example 23.21 If V = Z(y — z?) and P = (a,a?), then Tp(V) = Z(y +
2ax). If P = (0,0) is the origin, then Tp(V) is the z-axis.

Example 23.22 Let V = Z(y? — 3). If P = (0,0), then dpf = 0 for all
f € I(V). Consequently, Tp(V) = C=.
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Example 23.23 Let V = 2($2+y2+32—1), and assume that char(k) # 2.
If P=(abc)and f =2®+y*+ 22— 1, then dpf = 202 + 2by + 2cz,
so Tp(V) = Z(az + by + cz). Since (a,b,c) # (0,0,0) for all P € V, the
tangent space Tp(V) is a 2-dimensional vector space over C.

One of the uses of the tangent space is to define nonsingularity. To keep
things as simple as possible, we first consider hypersurfaces; that is, varieties
of the form Z(f) for a single polynomial f.

Definition 23.24 Let V = Z(f) be a k-hypersurface. A point P € V 1s
nonsingular, prownided that at least one of the partial derivatives Of/0x;
does not vanish at P; that is, P 1s nonsingular, provided that dpf # 0.
Otherunse, P s said to be singular. If every point on V s nonsingular,
then V is said to be nonsingular.

We can interpret this definition in other ways. The tangent space of V =
Z(f) at Pisthe zeroset of dpf = > .(0f/0z;:)(P)x;, so Tp(V) is the zero
set of a single linear polynomial. If f € k[z,,...,z,], then Tp(V) is either
an (n — 1)-dimensional vector space or is all of C™, depending on whether
dp f # 0 or not. But, the point P € V is nonsingular if and only if dp f # 0,
so P is nonsingular if and only if dimg(7Tp(V)) = dim(V') = n—1, the latter
equality from Example 22.8, and P is singular if dimg(7p(V)) > dim(V).

Example 23.25 The parabola Z(y — z?) is a nonsingular curve, whereas
Z(y? — z°) has a singularity at the origin. Every other point of Z(y* — z?)
is nonsingular by an easy calculation. The sphere Z(z? + y* + 22 — 1) is
also a nonsingular variety, provided that char(k) # 2.

For one application of the notion of nonsingularity, we point to Problem
6, which outlines a proof that the function field of the C-variety Z(y? —
(z® — z)) is not rational over C.

We now look into nonsingularity for an arbitrary variety. Suppose that
V is a k-variety, and let f,,..., f,, be polynomials that generate the ideal

I(V). Let P € V, and consider the Jacobian matrix

(D) o gD
() o Y

One interpretation of the definition of a nonsingular point on a hypersurface
is that a point P € Z(f) is nonsingular if rank(J(f)) = 1, and P is singular
if rank(J(f)) = 0. In other words, P is nonsingular if the rank of J(f) is
equal to n —dim(V).

Definition 23.26 Suppose that V is an irreducible k-variety in C™, and
let f1,..., [ be generators of [(V). If P € V, then P is nonsingular if the
rank of J(f1,..., fin) is equal to n — dim(V).




The following proposition shows that n — dim(V') is an upper bound for
the rank of the Jacobian matrix. Thus, a point is nonsingular, provided
that the Jacobian matrix has maximal rank. We will call an irreducible
k-variety V absolutely irreducible if the ideal I(V') is an absolutely prime
ideal of k[zy,...,z,].

Proposition 23.27 Suppose that V is an absolutely irreducible k-variety
inC™. Let P €V, and let fi,..., fm be generators of the ideal I(V'). Then
rank(J(f1,..., fm)) < n—dim(V).

Proof. We will prove this in a number of steps. Let K be the function field
of V. The assumption that V is absolutely irreducible means that K/k is
a regular extension, by Theorem 22.10. Therefore, K/k is separably gen-
erated, so trdeg(K/k) = dim(Dery(K)), and so dim(V') = dim(Derg(K)).
The coordinate ring of V is k[V] = k[zy,...,z,]/I(V) = k[s1,...,sn],
where s; = z; + (V). Thus, K = k(s1,...,8n). Let @ = (81,...,8,) € K™.
We first point out that

IV)=A{f €klz1,...,zn]: f(s1,...,8) = 0}.

For f € I(V), let dof = > i, zi(8f/0z;)(Q). We view dgf as a linear
functional on K™; that is, we view dg f as a linear transformation from K"
to K defined by

(de)(Oél,... Zazax

Let M he the subspace of homg (K™, K) spanned by the dg f as f ranges
over I(V). Now that we have given an interpretation of the differentials
dg f as linear functionals, we interpret derivations as elements of K™. For
D € Derg(K), we obtain an n-tuple (D(sy),...,D(sn)). A k-derivation
on K is determined by its action on the generators si,...,s, of K/k.
Therefore, the map D +— (D(s1),...,D(s,)) is a K-vector space injection
from Dery(K) to K™. We denote by D the image of this transformation.

Next, we verify that an n-tuple (ai,...,a,) lies in D if and only if
dof(ai,...,an) = 0. One direction of this is easy. By the chain rule, we
see that

2. gi(Q)D(Si) = D(f(51,---,81)) =0

if f € I(V). For the other direction, suppose that dg f(ai,...,an) = 0.
We define a derivation D on K with D(s;) = a; as follows. First, let D’ be
the derivation D’ : k[z,,...,z,] — K defined by D' = >, a;(8/90z;)(Q);
that is, D'(f) = >, a;(0f/0z;)(Q). The condition on the «; shows that
D'(f)=01f f € I(V), so D' induces a k-derivation D : k[V] — K defined
by D(g + I(V)) = D'(g). The quotient rule for derivations shows that D




extends uniquely to a derivation on K, which we also call D. The definition
of D' gives us D(s;) = a;, so (aq,...,a,) € D as desired. Now that we
have verified our claim, we use linear algebra. The subspace D of K™ is the
set

D={ve K":dgf(v)=0foralldof € M}.

From linear algebra, this implies that dim(D) + dim(M) = n. Since
dim(M) = dim(Derg(K)) = dim(V),

we get dim(D) = n — dim(V).

The final step is to verify that dim(D) = rank(J’), where J' is the matrix
((0fi/0z;)(Q)), and that rank(J’) > rank(J), if J is the Jacobian matrix
((0fi/0z;)(P)). This will show that

rank(J) < rank(J') = n —dim(V),

our desired result. The first of these claims is easy. The space D is spanned
by the dg f;, since the f; generate the ideal I(V'). The sth row of J’ is the
matrix representation of the linear transformation dg f;, so the rank of J’ is
the dimension of the space spanned by the dg f;; in other words, rank(J) =
dim(D). For the inequality rank(J') > rank(J), let P = (a1,...,a,) € V.
There is a homomorphism ¢ : k[z1,...,z,| = C with ¢(z;) = a;. Since P €
V, we have f(P) =0forall f € I(V),soI(V) C ker(¢p). We get an induced
map @ : k[V] — C that sends s; to a;. Under this map (9f;/0z;)(Q)
is sent to (0f;/0z;)(P). If rank(J') = r, then the rows of J' are linear
combinations of some r rows of J'. Viewing ¥ as a map on matrices, since
®(J') = J the rows of J are linear combinations of the corresponding r
rows of J. Thus, the rank of J is at most r, so rank(J’) > rank(J). This
finishes the proof. O

As a consequence of the proof of this proposition, we obtain a relation
between the dimension of the tangent space Tp(V') and of V.

Corollary 23.28 Let V' be an absolutely irreducible k-variety, and let P €
V. Then dim(Tp(V)) > dim(V), and dim(Tp(V)) = dim(V') if and only if
P is nonsingular.

Proof. The tangent space Tp(V') is the sct
Tp(V)={Q e C":dpf(Q) =0 forall feI(V)}.

Using the notation of the proof of the previous proposition, the map
@ induces a map on differentials that sends dof to dpf. If N =
{dpf: felI(V)}, viewed as a subspace of home(C™,C), then by linear




algebra, we have dim(N) + dim(L'p(V)) = n. However, ¢ sends M to N,
so dim(M) > dim(V); hence,

dim(Tp(V)) =n —dim(N) > n — dim(M)
=n —dim(V).

Moreover, dim(7p(V)) = rank(J) by the same argument that shows
dim(D) = rank(J’). Therefore, we get equality above exactly when
rank(J') = rank(J) or when rank(J) = n — dim(V'). However, this is true
if and only if P is nonsingular, by the definition of nonsingularity. O

Let k be a field, and let C' be an algebraically closed extension of k. In
Example 22.4, we showed how one can obtain an irreducible k-variety from
a finitely generated field extension of k. This map is not the inverse of the
map that associates to cach irreducible k-variety V' the function field k(V').
In that example, we saw that the nonsingular curve y = z? has the same
function ficld as the singular curve y? = z3. However, nonsingularity is
not the only problem. We have only talked about affine varieties; that is,
varieties inside the affine space C™. In algebraic geometry, one usually works
with projective varieties. It is proved in many algebraic geometry books that
there is a 1-1 correspondence between finitely generated regular extensions
of k of transcendence degree 1 and nonsingular projective curves. Moreover,
if we work over C, then there is also a 1-1 correspondence between finitely
generated extensions of C of transcendence degree 1 and Riemann surfaces.
The interested reader can find the correspondence between nonsingular
projective curves and extensions of transcendence degree 1 in Section 1.6
of Hartshorne [11] and can find the connection with Riemann surfaces in
Chevalley [4].

Problems

1. Let K be a separable extension of F' that is not necessarily algebraic.
Show that any derivation on F' extends to a derivation on K.

2. If K is a finite separable extension of F', show that there is a K-vector
space isomorphism Derg (F) @ p K =2 Dery (K).

3. Let K be a finite purely inseparable extension of I’ with char(F) = p
and F? C K. Recall that a p-basis of K/F' is a set {aj,...,an} of
elements of K with

FcF(a,)C- - CFla,) = K,

and the p-dimension ol K/ 7 is n. Show that dim(Derp(K£)) is cqual
to the p-dimension of K /I

(See Problem 12 of Section 4 and Problem 19 of Appendix D for more
on p-dependence.)
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4. Let V be a C-variety in C™, where C is algebraically closed.

(a) If P € V, show that each dpf for f € Clzy,...,z,] defines a
linear transformation from C™ to C, so dp f restricts to a linear
transformation from Tp (V) to C.

(b) Let Mp = {f € C[z1,...,2,) : f(P)=0}. Show that the func-
tion dp : Mp — homg(Tp(V),C) is a C-vector space homomor-
phism with kernel M 2. Show that dp is surjective, and conclude
that Mp/M?3 is isomorphic to home (T (V), C).

(c) Show that T'p(V) is isomorphic to home(Mp /M3, C).

5. Let V and W Dbe k-varietics, and supposc that ¢ : V — W is a mor-
phism. Show that ¢ induces a homomorphism Tp (V) — T,py(W).

6. Let X C C? be the zero set of y? — 3 + z. In this problem, we will
show that the function field C(Y") is not rational over C. In order to do
this, we need the following result: If ¥ is an irreducible nonsingular
curve in C? such that C(Y)/C is rational, then C[Y] is a unique
factorization domain. Verify that C(X) is not rational over.C by
verifying the following steps.

(a) Show that X is an irreducible nonsingular curve.
(b) Let FF = C(z) C K. Show that K/F is a degree 2 cxtension. If o

is the nonidentity [-automorphisin of K, show that o(y) = —y.

Conclude that o(A) C A, where A = C[X].

(c) Let N = Ng,p be the norm map from K to F. Show that
N(a) € k[z] for all a € A.

(d) Using the norm map, show that the units in A are merely the
nonzero elements of C. Write = and y for the images of z and
y in A, and show that z and y are irreducible elements of A,
and conclude that A is not a unique factorization domain. From
this, conclude that C(X) is not rational over C.

(Note: To prove that C[Y] is a unique factorization domain for a
rational curve Y requires more geometry than we have developed
here. Problem 6.1 of Chapter I in Hartshorne [11] outlines a proof
of this fact along with the steps above. For an alternative proof that
does not require geometry but does use valuation theory, see §1 of

[5]-)




Appendix A
Ring Theory

The following appendices present some of the background material used in
this book. In this appendix, we present the aspects of ring theory that we
need in this book. We go into detail about unique factorization domains and
polynomials in multiple variables, mostly for Chapter V. The irreducibility
tests are used in the text mainly for dealing with polynomials over () and
over the rational function field k(z) over a field k.

Throughout this book, we make the assumption that all rings have a
multiplicative identity. We start off with a review of the characteristic of a
ring. Let R be a ring. The characteristic of R, denoted char(R), is the order
of 1 in the additive group (R, +), provided that this order is finite; if it is
infinite, we set char(R) = 0. Here is an alternative description of char(R).
There is a map ¢ : Z — R given by ¢(n) = n -1, the sum of 1 with itself n
tiines. 1t is clear that this map is a ring homomorphism. The kernel of ¢ is
generated by a positive integer m, and m is precisely char(R). Thus, Z/mZ
is isomorphic to a subring of R. Moreover, this subring is easily seen to be
the unique minimal subring of R; recall that we assume that our rings have
an identity. This ring is called the prime subring of R.

We remind the reader that all references to Theorems, Lemmas, etc.,
made in each appendix refer to that appendix unless it is explicitly stated
that they come from a section of the main text.




L U'rnne and Maxdinal tdeals

Let R be a commutative ring. A prime ideal of R is an ideal P # R, such
that if a,b € R with ab € P, then either a € P or b € P. For example, if p
is a prime number, then the ideal pZ is a prime ideal of Z. A maxzimal ideal
of R is an ideal M # R, such that if I is any ideal of R with M C I C R,
then either 7 = M or I = R; that is, M is maximal if M is not contained
in any proper ideal other than itself. Again, if p is a prime number, then
pZ is a maximal ideal of Z. This can be seen from the fact that the gcd
of two integers can be written as a linear combination of the integers. If
pZ C I and I # pZ, let a € I with a ¢ pZ. Then p does not divide a, so
ged(a, p) = 1. Therefore, 1 = az + py for some z,y € Z. This means that
1 € I, since a,p € I; hence, I = Z. This proves that pZ is indeed a maximal
ideal of Z.

Prime and maximal ideals can be characterized in terins of quotient rings.
This characterization is often a very useful way to deal with these ideals.

Proposition 1.1 Let R be a commutative ring with 1.

1. If P 1s a proper ideal of R, then P s a prime ideal of R if and only
if R/ P is an integral domain.

2. If M s a proper ideal of R, then M 1is a maximal ideal of R if and
only of R/M s a field.

Proof. Let P be a prime ideal. To show that R/P is an integral domain,
suppose that a, 8 € R/P with af =0. Thena =a+ P and 8 =b+ P for
some a, b € R. The condition af = 0 in R/P means (a+ P)(b+P) =0+ P,
so ab € P. Since P is a prime ideal, eithera € Porb € P,soa+P =0+ P
or b+ P =0+ P. Thus, R/P is an integral domain. The converse follows
from the same arguments; if R/ P is an integral domain and ab € P, then
(a+P)(b+P)=0inR/P,soa+P =0+Porb+P=0+P;thus,a € P
orbe P.

For the second statement, suppose that M is a maximal ideal of R.
We need to show that each nonzero element of R/M is invertible. Take
a+Me R/M with a + M # 0+ M. Then a ¢ M, so the ideal M + aR
is properly larger than M. By maximality, this forces M + aR = R, so
1 =m+ar for some m € M and r € R. Then (a + M)(r + M) =1+ M,
since m € M. Therefore, a + M is invertible, so R/M is a field. Conversely,
suppose that R/M is a field. Let I be an ideal of R with M C I C R. We
need to show that 7 = R. Let a € I — M. Then a + M # 0 4+ M; hence,
a+ M is invertible. Thus, thereis a b € R with (a+M)(b+M) =14+M, so
ab—1€ M. Since a € [ and M C I, this forces 1 € I, so [ = R. Therefore,
M is a maximal ideal of R. |

From this proposition, we see that any maximal ideal is prime, but the
converse may not be true. Our main use of these concepts will be for the




study of polynomials. Lt follows fromn the results of Scetion 3 below that if
Fis a ficld and R = F[z] is the ring of polynomials over F, then any prime
idcal of R 1s maximal and is generated by an irreducible polynomial.

Example 1.2 By calculations similar to those before the proposition, one
can show that an ideal aZ of Z is a prime ideal if and only if a is a prime
number. Moreover, an ideal I of Z is maximal if and only if I is prime.

Let R = Z[z], the ring of polynomials in z over Z. The ideal z R is prime,
since R/xR = Z is an integral domain. Moreover, z R is not maximal, since
R/zR is not a field. Equivalently, zR is not maximal, since zR is properly
contained in the proper ideal xR 4 2R generated by z and 2.

The proposition above also gives us some information about the charac-
teristic of a ring. If R is an integral domain, then the map ¢ : Z — R that
sends 7 to i1 is a ring homowmorphisin, and im(p) is a subring of R. Thus,
Z/ ker(yp) is an integral domain, so ker(y) is a prime ideal. But ker(yp) is
generated by char(R), so char(R) is either 0 or a prime number.

2 Unique Factorization Domains

The main ring theoretic properties about polynomials we require in Galois
theory are that the ring F[z] of polynomials in a variable z over a field F°
be a principal ideal domain (PID) and be a unique factorization domain
(UFD). While these facts can be proved relatively easily, we go into some
detail about UFDs primarily to deal with polynomials in more than one
variable, a case we need in Chapter V.

Let R be an integral domain. If a,b € R, we say that a divides b if b = ac
for some ¢ € R. A nonunit a € R is said to be wrreducible if whenever
a = be, then cither b or ¢ is a unit. A nonunit a € R is said to be prime
if whenever a divides be, then a divides b or a divides c. Equivalently, a is
prime if the principal ideal a R is a prime ideal. [f a is primne, then we show
that a is irreducible. If a = be, then a divides bc; hence, a divides b or c. If
a divides b, then b = ad for some d. Consequently, 1 = dc, so ¢ is a unit.
On the other hand, if a divides ¢, then the same argument shows that b is a
unit. However, irreducible elements need not he prime. Perhaps the easiest
example is in the ring Z[\/—5]. In this ring, 6 = 2-3 = (1+/—5)(1 —/-5).
With some calculation, we can see that 2 is irreducible and that 2 does not
divide either of 1 ++/—5. Since 2 divides their product, 2 is not prime in

Z[V/=5).

Definition 2.1 An integral domain R is a unique factorization domain
(UFD) if every nonzero nonunit of R can be factored uniquely into a product
of 1rreducible elements.




Some words about this definition are in order. What does it mean to
factor an element uniquely? In 7Z, the integer 6 factors as 6 = 2 -3 and
as 6 = (~2) - (=3). The four elements -2 and +3 are prime according to
our definition. This means we have to be more precise in our meaning. If
a,b € R such that a divides b and b divides a, we say that a and b are
associates. Equivalently, a and b are associates if a/f = bR (see Problem
4). Therefore, two associates differ by multiplication by a unit. In studying
divisibility, units are trivial; hence, we would like not to have to worry
about them. Therefore, we say that an element a factors uniquely into
a product of irreducible elements if a is a product of irreducibles, and if
a=m' T = Qlf‘ -+~ @I with each m; and 6; irreducible, then n = m
and after reordering, e; = f; and m; R = 0; R for each 7. Therefore, unique
factorization means unique up to multiplication by units.

While irreducible elemeuts may not be prime, they are in a UFD. This
fact will be used frequently when dealing with polynomial rings.

?

Lemma 2.2 Let R be a UFD. If m € R 1s irreducible, then m is prime.

Proof. Suppose that 7 divides ab. Then ab = 7c [or some c. If ¢ =
(9{1 .- 0Jm is the factorization of ¢ into irreducibles, then mec = WQ{l cee G
is the factorization of m¢ = ab into irreducibles. However, if we look at
the factorization of a and b, by uniqueness m must occur in one of these
factorizations. Therefore, 7 divides a or 7 divides b, so 7 is prime. O

There are some equivalent definitions of a UFD. Some of these are ad-
dressed in the problems at the end of this appendix. One characterization,
due to Kaplansky, is presented now, and we will use it to show that the
ring of polynomials over a field is a UFD. This is a prime ideal theoretic
characterization of a UFD, and is quite useful in proving facts about UFDs.
Another characterization is that a ring is a UFD if and only if cach nonunit
can be factored into a product of primes. We usc this characterization in
the proof of the following theorem, although we leave its proof to the reader
(Problem 9).

Theorem 2.3 (Kaplansky) Let R be an wntegral domain. Then R is a
UFD if and only if each nonzero prime ideal of R contains a nonzero prin-
cipal prime ideal.

Proof. Suppose that 1 is a UFD, and let P be a nonzero prime ideal of R.
Ifa€ P witha#0,let a=m - m, be a prime factorization of a. Since
P is a prime ideal and a € P, one of the m; must be in P. Therefore, P
contains the principal prime ideal (m;).

Conversely, suppose that every nonzero prime ideal of R contains a
nonzero principal prime ideal. Let

S={a€ R~-{0}:aisaunit or a factors into a product of primes} .
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If S = R — {0}, then R is a UFD by Problem 9. If not, there is an a €
R — § with a # 0. Let I be an ideal of R containing a that is maximal
under inclusion among the ideals disjoint from S. Such an ideal exists by
an easy application of Zorn’s lemma. We claim that 7 is a prime ideal.
Assuming this for the moment, by hypothesis I contains a prime element
w. However, m € &, since 7 is prime. But /NS = o, a contradiction.
Therefore, S = R — {0}, and so R is a UFD.

We are then left with showing that 7 is prime. First, we note that S is
closed under multiplication. If I is not prime, then there are b,c € R — 1
with bc € I. Then I + bR and [ 4 cR are larger than 7, so, by maximality,
both intersect S. Say z € SN(I +bR)and y € SN(I +cR). If z = u; +bry
and y = ug+cry with u; € T'and r; € R, then zy = uy (ug+ery)+beriry € I
since bc € I. But zy € S, since § is closed under multiplication. This forces
SN I # &, a contradiction. Therefore, I is prime. O

We finish this section with a short discussion of greatest common divisors.

Definition 2.4 Let R be a UFD. If a,b € R are nonzero elements, then a
greatest common divisor of a and b is an element d such that

1. d divides a and d divides b;
2. if e dwides a and e divides b, then e divides d.

The ged of two elements is not unique if it exists. However, by the second
condition in the definition, it follows that any two gcds of a and b are
associates. We often abuse language and call an element d the ged of a and
b, and write d = ged(a, b).

The definition of gcd makes perfect sense in any commutative ring. The
difficulty is that a gcd of two elements need not exist, as shown in Problem
11. However, if R is a UFD, then we can see that a gcd always exists. In
fact,if b =7j! - 7w and a = 7' - - - wl" is the factorization of a and b into
irreducibles, where e;, f; can be 0, and if g; = min {e;, f;}, then a ged of a
and bis7w{" - -md" If 1 is a ged of a and b, we say that a and b are relatively
prime. Unlike in the integers, in a UFD a gcd of two elements need not be a
linear combination of the elements. An example of this appears in Problem
15. However, if R is a PID and d = gcd(a,b), then dR = aR + bR, so d is
a linear combination of a and b (Problem 17).

The definition of gcd can be extended to any finite set of elements instead
of just two elements. An element d € R is a ged of aq, ..., a, if d divides
each a;, and any e that divides all a; also divides d. In a UFD, the gcd of
any finite set of elements does exist. Moreover, a gcd can be calculated by
recursion from the equation ged(ay,...,a,) = ged(ay,ged(ag, - .., a,)) (see
Problem 16).




3 Polynomials over a Field

Let R be a ring. We denote by R[z] the ring of polynomials in one variable
over R. Given a polynomial f(z) = > 0  rz* with 7, # 0, the degree
of f is defined to be n. For convenience, we define the degree of the zero
polynomial to be —oo. While our primary interest is in polynomials over a
field, we state a number of results for polynomials over an integral domain.

Lemma 3.1 Let R be an integral domain. If f(z), g(z) € R[z| are nonzero,
then deg(fg)) = deg(f)+deg(g). Consequently, R[z] is an integral domain.

Proof. Let f(z) = Y ,a;z* and g(z) = > =, b;z’ with deg(f) = n and
deg(g) = m. Therefore, a,, b, # 0. The product of f and g is f(z)g(z) =
Z?:Om(zj'+k=i ajbx)zt. Clearly, all coeficients past degree n + m are 0.
The coefficient of z"*™ is a,b,,, which is nonzero, since both a,, and b,,
are nonzero. This proves the degree formula. Moreover, it shows that fg
cannot be the zero polynomial unless f = 0 or ¢ = 0; hence, R[z] is an
integral domain. O

If either f = 0 or ¢ = 0, then the degree formula still holds with the
convention that deg(0) = —oo, given that addition is defined by n+(—o00) =
—oo for all integers n.

The main theorem for polynomials over a field is the division algorithm.
Since this result holds in more generality and is useful in its full version,
we give the full version here.

Theorem 3.2 (Division Algorithm) Let R be an integral domain. Let
f(z),9(z) € R[z] with g(z) # 0, and suppose that the leading coefficient
of g is a unit in R. Then there are unique polynomials q(z),r(z) € Rlz]

satisfying f(z) = q(z)g(z) +r(z) and deg(r(z)) < deg(g(z))-

Proof. This argument is almost the same as the proof of the division al-
gorithm for polynomials with real number coefficients. We first show the
existence of ¢ and r with the desired properties, then we prove the unique-
ness. Let
S ={f(z) —q(z)g(z) : q(z) € Rlz]}.

The set § is clearly nonempty. Let r(z) € S be a polynomial of minimal
degree in S. Then f = qg+r. If deg(r) > deg(g), then say r(z) = > .7, a; 2"
and g(z) = > - biz" with an,bm # 0 and n > m. If ¢(z) = q(z) —

anbrtanT™ which makes sense sinee by, is assumed to be a unit in R, then

f(z) — q(z)g(z) = r(z) — anb,, z" ™g(z),

which has degree less than n, since the coefficient of 2™ is 0. Consequently,
this polynomial is in S and has smaller degree than r(z). This is a contra-
diction, which forces n < m.




For uniqueness, supposc that there are glu ), ¢ (@) and riw), r(x) € f[z]
with [/ = qg+r and f = qig+r,, and with deg(r), deg(r1) < deg(g). Then
g(q1 —q) =r—r1. Il ¢ # ¢, then the degree of g(q, — q) is at least deg(g),
which is larger than deg(r — r1). This contradiction shows that ¢ = g,
which forces 7 = 7. This proves the uniqueness. O

We state the usual division algorithm separately for emphasis.

Corollary 3.3 If I is a field and if f(z),g(z) € Flz| with g(z) # 0, then
there are unique polynomials q(z),r(z) € F|z| satisfying f(z) = q(z)g(z) +
r(z) and deg(r(z)) < deg(g(z)).

The division algorithm yields the fact that F|z| is a PTD. From this, we
will see that F[z] is a UFD.

Corollary 3.4 If F is a field, then F[z] s a PID.

Proof. Let I be an ideal of F[z|. If I = {0}, then I is generated by 0.
If I # 0, take g(z) € I — {0} of minimal degree. If f(z) € I, by the
division algorithm there are polynomials ¢ and » with f = gg + r and
deg(r) < deg(g). Since I is an ideal, r = f — qg € . Minimality of deg(g)
forces r = 0, which shows that f is in the ideal generated by g. Therefore,
I = (g) is principal, so F[z] is a PID. 0

We can now use Kaplansky’s theorem to give an casy proof that Flz] is
a UFD.

Lemma 3.5 If R is a PID, then R is a UFD. In particular, if F is a field,
then F|z| is a PID.

Proof. Suppose that R is a PID. If P is a prime ideal of R, then P is
principal, say P = (7). Therefore, P contains the principal prime ideal (7).
By Theorem 2.3, R is a UFD. O

The following fact will be used early in Chapter I.

Corollary 3.6 Let F be a field. If p(z) € Flz|, then the principal ideal
(p(z)) is a mazimal ideal of F|z] if and only if p(z) is irreducible. Conse-
quently, any prime ideal of F[x] s mazimal.

Proof. This rcally is a fact about PIDs, as Lthe proof will show. Supposc
that p(x) is irreducible. Let M be a waximal ideal of I'|z] containing p(z).
Since F|z]is a PID, M = (f(z)) for some polynomial f(z). Then f divides
p since (p) C (f). But p is irreducible, so p has no divisors other than units
or associates. Since (f) = M # F|z|, we see that f is not a unit; hence,
f is an associate to p. Therefore, (f) = (p), so (p) is maximal. Conversely,
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suppose that (p) is maximal. If p is not irreducible, then p = fg with both
[ and g nonconstant polynomials. Then (p) C (f) ¢ R. This contradicts
maximality, so p is irreducible. If M is a prie ideal, then M = (p) for some
irreducible polynomial by arguments similar to those just given; hence, M
is maximal. O

4  Factorization in Polynomial Rings

The goal of this scclion is to show that R[z] is a UFD whenever R is a
UFD. However, we have some work to do i order to prove this.

Definition 4.1 Let R be a UFD, and let f(x) € R[z]. The content c(f) of
f is the ged of the coefficients of [. If the content of f 1s 1, then f is said
to be primitive.

The following lemnma is easy to prove, but we will use it in a numnber
of places in this book. The proof follows immediately from the definition
of addition and multiplication in polynomial rings and quotient rings; this
will be left to the reader.

Lemma 4.2 Let R be a mng, and let I be an tdeal of R. Then the map
¢ : Rlz] — R/I[z] given by ©(3, a;x*) = 3 .(a; + I)x* is a surjective ring
homomorphism.

[ particular, il p is a prine number and @ represents the equivalence
class of @ modulo p, then the map Z[z] — F,[z] given by >, a;z* — Y a;a
is a ring homomorphism.

Proposition 4.3 Let R be a UFD, and let f,g € Rlz]. Then c¢(fg) =
c(f)e(g). In particular, if [ and g are primitive, then fg is prunitive.

Proof. We may write f(z) = ¢(f)fi(z) and g(z) = c(9)g:1(x) for somc
primitive polynomials f; and g;. So, fg = c(f)e(g) - figr. If we prove
that the product of primitive polynomials is primilive, then we will have
proved the proposition. So, suppose that f and g are primitive. If fg is not
primitive, then there is a prime element 7 that divides all of the coefficients
of fg. Consider the polynomial ring R/(m)[z] over R/(7). Since 7 is a prime
element, R/(7) is an integral domain. Let f and g be the images of f and g
in R/(m)[z]. Since f and g are primitive, 7 does not divide all the coefficients
of f or g,so f £ 0 and g # 0. Therefore, f -§ = fg by Lemma 4.2, and
f-3 # 0, since R/(m)[z] is an integral domain. However, if 7 divides all
the coefficients of fg, then fg = 0, a contradiction. Therefore, fg is indeed
primitive. O

The following theorem is perhaps the most important result about poly-
nomials over a UFD.




4 L aCLol1zallonn 1 L/Oly noal gy —00

Theorem 4.4 (Gauss’ Lemma) Let R be a UFD, let F be its quotient
field, and let f(z) € R[z|. Then f is irreducible over R if and only if f is

primitive and irreducible over F.

Proof. Suppose that f is primitive and irreducible over F. If f factors
in R[z] as f = gh with neither ¢ nor A a unit in R[z], then since f is
irreducible over F', either g or h must be a constant. But if g is a constant,
g would divide all the coefficients of gh = f. This is impossible, since f is
primitive, so f is irreducible over R.

Conversely, suppose that f is irreducible over R. Since we can writc
f = c(f) - fi with f| primnitive, ¢(f) is a unit in R[z]; hence, ¢(f) is a
unit in R. Thercfore, f is primitive. If f is not irreducible over F, then
we can write f = gh with g, € F[z] both of degree at lcast L. By using
cornmmon denominators, we can write gh = a/b - gyh1, where g1, h; € R[z]
are primitive and a,b € R are relatively prime. Then bf(z) = agi(z)hi(z).
By Proposition 4.3, we have b = ¢(bf) = a, since ¢g; and h; are primitive.
But this contradicts gcd(a,b) = 1 unless a and b are both units in R. If a
and b are units in R, then f = (ag1)(1/b- h1) is a nontrivial factorization
of f in R[z], which contradicts the assumption that f is irreducible over
R. Therefore, f is indeed irreducible over F'. O

We can now prove that R[z] is a UFD if R is.

Theorem 4.5 If R is a UFD, then R[z] is a UFD.

Proof. We give here a somewhat nonstandard proof of this theorem, mak-
ing use ol Theorein 2.3. This prool is easier to understand if the reader has
some experience in localization. Some of the details in this proof are left to
Problem 18. A more standard proof of this fact can be found in Hungerford
[13, Thm. 3.11.1] or Herstein [12, Thm. 3.11.1].

Let @ be a nonzero prime ideal of R[z]. By Theorem 2.3, we wish to
show that @ contains a nonzero prime element. If P = ) N R, then P is a
prime ideal in R. Il P # 0, then P contains a nonzero prime elermnent 7 of
R, which is also a primne clement of R[z]. Therefore, ) contains a nonzero
prime clement of Kjz]. The more diflicult case is if P = 0, which we now
consider. Let F' be the quotient field of R. Then F|z| is a UFD, as we have
already scen. Let Q' = QF[z], the ideal of F|z| generated by Q. Then Q'
is a prime ideal, since P = 0 (see Problem 18). Because Fz] is a UFD,
there is a polynomial f(z) € Q' that is irreducible in F[z|. We can write
f(z) = $g(z) with g(z) € R[z]| a primitive polynomial and a,b € R. Since
a/b is a unit in F', we have g(z) € Q. Furthermore, g(z) 1s irreducible in
F|z], since g(z) is an associate to f(z). Therefore, g(x) is irreducible over R
since g(z) is primitive, by Gauss’ lemma. But g(z) € Q' N R[z], so g(z) € Q
(see Problem 18 again). Finally, we need to show that g(z) is prime in R[z],
which will finish the proof. We see that g(z)F[z] N R[z] = g(z)R[z], since
g(z) € R[z] (scc Problem 18). However, the ideal g(z)F[z] is prime, since




Flz] is a UFD and g(z) is irreducible. Thus, g(z) € R|[z] is prime, since the
intersection of a prime idcal of Fz] with R[z] is a prime ideal of R[z]. O

Corollary 4.6 If F is a field, then Flz1,...,z,] is a UFD for any n.

Proof. This follows by induction on n and the previous theorem, the n =1
case having been proven earlier. O

More generally, if F' is a field and X is any set of variables, possibly
infinite, then the polynomial ring F[X] is a UFD. A proof of this fact can
be obtained from the following two points. First, any element of F[X] is
a polynomial in finitely many of the variables, and unique factorization
holds for polynomials in finitely many variables, and second, adding more
variables does not affect whether an element is irreducible.

5 TIrreducibility Tests

It is hard in general to determine if a polynomial is irreducible over a field
F'. However, if F'is the quotient field of a UFD, there are some simple tests
that can determine when a polynomial is irreducible over F. While these
tests may seem somewhat specialized, nonetheless they can be quite useful.

The first test is actually a test for roots, but it is also an irreducibility
test for polynomials of degree 2 and 3. Let R be a UFD, and let I be its
quotient field. Suppose that f(z) = ao 4 -+ + anz™ € R[z|. If /B € F
is a root of f(z) with ged(er,3) = 1, then by multiplying the equation
f(a/B) =0 by ", we obtain the equation

aoB” +a1af™ + -+ an_ 1@ B4 ana™ = 0.

Therefore, ao "™ = —«a (alﬁn_l + Fap_1" 2B+ ana'”_l). Since « is
relatively prime to g, it follows that « divides ag. By a similar manipulation,
we see that g divides a,. If f has degree 2 or 3, then f has a linear factor
if and only if it is reducible over F'. We record these observations as the
first irreducibility test.

Proposition 5.1 (Rational Root Test) Let R be a UFD with quotient
field F. Suppose that f(z) = ag + - -+ + anz™ € Rlz] has a root a/B € F
with ged(a, B) = 1. Then « divides ag, and B divides a,,. If deg(f) < 3,
then f is irreducible over F' if and only if f has no roots in F.

Example 5.2 The polynomial z2 — p is irreducible over Q if p is a prime,
as is 23 +3z+1, by the rational root test. The cubic 23 +2z% — 42+ 1 factors
as (z —1)(z® + 3z — 1). The first factor could have been easily found by
the rational root test; since 3 4 222 — 4z + 1 is monic, any rational root




of it is in Z and must divide 1, so £1 are the only possibilities. The fourth
degree polynomial 2! — 4 factors as (@ — 2)(z?* + 2), but it has no rational
roots. Thus for polynomials of degree 4 or larger, the existence of a rational
root is not necessary for a polynomial to factor over Q.

The next irreducibility test is the one we use the most in this book.

Proposition 5.3 (Eisenstein Criterion) Let R be a UFD with quotient
field F', and let f(z) = ap + -+ + apz™ € R|z].

1. Suppose there is a prime element m € R such that w divides
ao,-..,an_1 but not a, and that 72 does not divide ag. Then f is
irreducible over F.

2. Suppose there is a prime element w € R such that w dividesa,, ..., an
but not ag and that w2 does not divide a,,. Then f is irreducible over
F.

Proof. We prove statement 1; the proof of statement 2 is similar. By
factoring out the content of f, we may suppose that f is primitive. Consider
the ring R/(w)[z], and let h denote the image of h € R[z] obtained by
reducing coeflicients modulo 7. The condition on the coefficients of f shows
that f = @,z" # 0. Suppose that f factors over F. Then by Gauss’ lemma,
f also factors over R. Say f = gh with g,h € R[z] both nonconstant
polynomials. Then f = §- h in R/(7)[z] by Lemma 4.2. Since f = @,z",
then g and h each must be of the form cz?, since the only monic irreducible
factors of 2™ are powers of z. If deg(g) and deg(h) arc both positive, then
7 divides the constant term of both g and h. But ag is the product of
these constant terms, which would force 72 to divide ag, which is false.
Therefore, either § or h is a constant. Since g and h are nonconstant, 7
divides the leading coefficient of g or h. But a, is the product of these
leading coefficients, so 7 divides a,,, which is false. The only possibility left
is that f is irreducible over F', which proves the criterion. O

Example 5.4 The polynomial z° — 1223 4 2z + 2 is irreducible over Q by
an application of the Eisenstein criterion with 7 = 2. Similarly, with 7 = 3,
the polynomial z® — 3z -3 is irreducible. The Eisenstein criterion does not
tell anything about z* + 2z + 4, since there is no prime that satisfies all
the needed conditions.

Let p be a prime. The polynomial 2P — 1 factors as
2P —1=(z — 1)(a:p_1 +zP 7?24 4 +1).

The FEisenstein criterion would appear to be useless to determine whether
zP~! +2P7? + ... 4z 4 1 is irreducible. However, this is not the case. By
a change of variables, we can determine that this polynomial is irreducible
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over Q. Before doing so, however, we formalize the idea in the following
lemma. The proof is straightforward and is left for the reader (Problem
12).

Lemma 5.5 Let f(z) € R[z] and a € R. Then the map f(z) — f(z + a)
is a ring isomorphism. Therefore, if f(z + a) is irreducible, then f(z) is
wrreducible.

Example 5.6 Let f(z) = 2P — 1 with p a prime. Then

flz+1)=(z+ 1) =1

p

= Ip +pIP—l _+_ (2

):cp_2+---+p:c.

Since zP — 1 factors as (z — 1)(xP~! + -+ +z + 1), replacing =z by = + 1
yields f(z +1) = zg(z) with g(z) the image of zP~! 4 --- 4z + 1 after
substituting = + 1 for z. Therefore, P~ +--- 4z + 1 is irreducible if g(z)
is irreducible. However, the coeflicients of g(z) = 2?7~ + paP~2 + -+~ +p
are all binomial coeflicients of the form (?), which are all divisible by p (see
Problem 13), except for the leading coefficient (g) = 1. Since the constant
term is p, Eisenstein’s criterion with 7 = p shows that g(z) is irreducible;
hence, zP~! + ... 4z 4 1 is irreducible.

The following result is our last irreducibility test.

Proposition 5.7 Let R be a UFD with quotient field F', and let flz) €
R|[z] be monic. If m € R is a prime element and if f € R/(m)[z] is irre-
ducible, then f is irreducible over F'.

Proof. The polynomial f is primitive since it is monic. If f factors over
F, then f factors over R by Gauss’ lemnma. If f = gh with g,h € R|z]
nonconstant polynomials, then f = g- h in R/(w)[z] by Lemma 4.2. If
f is irreducible, this means g or A is a unit in R/(7). Since g and h are
nonconstant, this would force 7 to divide the leading coefficient of either
g or h, which cannot happen since f is monic. Therefore, f is irreducible
over R, so f is also irreducible over F'. 0

The converse of this proposition is false, since z? + = + 1 is irreducible
over Z, but z* + = + 1 = (z + 2)(z + 2) over F3. Also, if f is not monic,
then the result is false, since 2z% 4 3z +1 = (22 + 1) (z + 1) factors over
Z, but its image in Fy[z] is z + 1, which is irreducible.

Example 5.8 Over Fy, the polynomials 1 + 22 + 2% and 1 + 22 + 2% can
be seen to be irreducible by trial and error. Therefore, 1 + 2° + z* and
L 423 4+ 29 arc irreducible over @, as are 34528 4+ 7z and —1 + 112® + 26.
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Example 5.9 Let p be a prime, and consider zP — z — 1. This polynomial
has no roots in Iy, since every element of F, is a root of 2P — z. While a
polynomial can have no roots but be reducible, in this case this does not
happen. Problem 3 of Section 10 shows that a prime degree polynomial
that has no roots in a field F' is irreducible over F' under the following
hypothesis: For any field K containing F', if the polynomial has a root in
K, then it factors into linear factors in K. Using the result of this exercise,
we show that the hypothesis holds for 2P — z — 1, which then implies that
it is irreducible over [, and so 2 — z — 1 is irreducible over Q.

Supposc that K is a ficld containing F, for which 2P — 2 — 1 has a root
a. SoaP —a=1. Weclaim that a +1,a+2,...,a+p— 1 are also roots of
zP —x —1in K. To see this, if 1 <¢ <p—1,then (a+1)P —(a+1)—1=
aP +%P —a—t—-1=0a? —a—1 =0, since i = ¢(modp) by Fermat’s
little theorem. Thercfore, we have p roots of zP —z —1in K,sozP —x — 1
factors into lincar factors in K. Therefore, Problem 3 of Section 10 shows
that P — z — 1 is irreducible over F,, since it has no root in IFp,.

Problems

1. For any positive integer n, give an example of a ring of characteristic
n.

2. Let F be a field. If char(F') = p > 0, show that the prime subring of
R is isomorphic to the field F,, and if char(F) = 0, then the prime
subring is isomorphic to Z.

3. Let F be a field. The prime subfield of F' is the intersection of all
subfields of F'. Show that this subfield is the quotient field of the prime
subring of F'| is contained inside all subfields of F', and is isomorphic
to IF, or () depending on whether the characteristic of F'is p > 0 or
0.

4. Let R be an integral domain. Show that a and b are associates in R
if and only if aR = bR.

5. Show that 2, 3, and 1 ++/—5 are all irreducible in the ring
ZIV—-5| = {a+bv/-5:a,b € Z}

and 2-3 = (1++/—5)(1 —v/—5), but that 2 does not divide either of
1++--5.

6. If R is a UFD, show that mnlenfil . gminfenfa} 300 ocd of

(%)

(3} 1
it and it




10.

11.

12.

13.

14.

15.

16.

17.

Let I be a ring, and let S be a subset of IR that is closed under
multiplication and does not contain 0. Usc a Zorn’s lemmia argument
to show that there are ideals of R maximal with respect to being
disjoint to S. Also show that any such ideal is prime by mimicking
the argument used in the proof of Theorem 2.3.

If R is an integral domain such that there are primes my,...,T,,
01,...,0,, with my---m, = 0y---60,,, show that m = n, and after
renumbering if necessary, show that m; and 8, are associates for each
1.

Use the previous problem to show that an integral domain R is a
UFD if and only if every nonunit in R can be factored into a product
of primes.

Show that an integral domain R is a UFD if and only if (1) every
nonunit of R can be factored into a product of irreducibles and (2)
every irreducible is prime.

Let R = Q[z?,z?], the set of all polynomials over Q with no = term.
Show that a gcd of 2° and 28 does not exist in R.

Let R be a ring. If a € R, show that the map f(z) — f(z +a) is a
ring isomorphism of R[z].

If p is a prime, show that p divides the binomial coefficient (?) if
0<1<p.

Let X = {Zq},c; be a set of variables and F'[X] the ring of poly-
nomials in the variables from X . This ring can be thought of as the
union of all the rings F[z,,,...,Z4,], as the union ranges over all
finite subsets {z4,, .. .,Zq, } of X. Show that F[X]is a UFD if I is
a field.

Let R = Z|z], a UFD. Show that 2 and z are rclatively prime but
that 1 is not a linear combination of 2 and z; that is, there are no
elements f, g € Z[z] with 1 = 2f + zg.

Let R be a UFD and a,,...,a, € R. Prove that
ged(ay, ..., an) = ged(ag, ged(ag, ..., an)).
Conclude that a ged of any finite set exists.

Let R be a PID. If d = gcd(a,b), show that dR = aR + bR, and
conclude that d is a linear combination of ¢ and b.




18. This problem fills in all the details of the prool that Rfx] is a UFD
il Ris a UFD. Some of these parts are standard facts of localization
but are included in case the reader has not seen localization beyond
the construction of the field of quotients of an integral domain.

(a)

(b)

Let A C B be commutative rings, and let () be a prime ideal of
B. Show that Q N A is a prime idecal of A.

If A C B, supposc that therc is a subsct S of A that is closed
under multiplication, every element of S is a unit in B, and
B={a/s:a€A,seS}. Ifae A-S, show that aBNA = aA.
We write B = Ag when B is of this form.

Let A € B, and suppose that therc is a set S as in Problem 18b
with B = Ag. If P is a prime ideal of A with PN S = &, show
that PB is a prime ideal of B and that PBN A = P.

If R is an integral domain with quotient field F', and if § =
R — {0}, show that F[z] = R|z]s.

Put the previous steps together to prove Theorem 4.5 in full
detail.







Appendix B
Set Theory

In this appendix, we discuss Zorn’s lemma and cardinal arithmetic. For
more information on these topics, see Enderton [8] or Stoll [26].

1  Zorn’s Lemma

In this book, we use Zorn’s lemma in algebra to prove the isomorphism
extension theorem, the existence of an algebraic closure, and some other
results. We point out that Zorn’s lemma has a large number of equivalent
formulations; for instance, Zorn’s lemma is equivalent to the axiom of choice
and to the well ordering principle. However, we only require the statement
of Zorn’s lamma in this book.

We now describe thie terins mvolved in the statement of Zorn’s leimna.
A partial order < on a set S is a binary relation such that (1) s < s for
all s € 5, (2)if s <tand t < s, then s =¢ and (3) if »r < s and s < ¢,
then r < t. Examples of a set with a partial order include the real numbers
with the usual ordering, and the set of all subsets of a given set, with set
inclusion as the order. I S is a set with partial order <, we shall refer to
the pair (S, <) as a partially ordered set.

Let (S, <) be a partially ordered set. An element m € S is said to be
maximal if whenever s € § with m < s, then s = m. If T is a subset of
S, then an element s € S is said to be an upper bound for T if t < s for
all t € T. For instance, if S is the set of all subsets of {1,2,3,4}, then
{1,2,3,4} is a maximal element of S. If T' is the set of all proper subsets of




{1,2,3,4}, then {1,2,3,.1} is au upper bound lor 7". Note LlLat this upper
hound is not in T'. Also, {1,2,3} and {1,2,4} are both maximal clements of
T'. Finally, a subset 7" of a partially ordered set (S, <) is said to be a chain
if for every t1,t5 € T, then either t; < ¢y or t; < t;. With the example
above, {@,{1},{1,2},{1,2,4}} is a chain in S.

We can now state Zorn's lemma.

Theorem 1.1 (Zorn’s Lemma) Let (S, <) be a nonempty partially or-
dered set. Suppose that for any chain T in S there is an upper bound for T
in S. Then S contains a mazimal element.

In the statement of Zorn’s lemma, an upper bound for a chain 7" need
not be an element of 7', merely an element of S.

Example 1.2 Here is the first place that Zorn’s lemma usually arises in
algebra. Let R be aring with identity. We show that B conlains a maximal
ideal. Let S be the sct of all proper ideals of B. Then & # @, since (0) € S.
The set S is partially ordered by set inclusion. To verify that Zorn’s lemma,
applies, let 7' be a chain in S. Define / to be | J7, the union of all ideals
in 7. We can see that [ is an ideal of R, for if a,b € I, then a,b € J for
some J € T, since T is a chain. Then ¢ — b € J C [. Also, if a € I and
r € R, then a € J for some J € T, so ra,ar € J C I. Thus, [ is an ideal of
R. Moreover, I is a proper ideal of R since no J € T contains 1, so [ does
not contain 1. Therefore, I € §. By Zorn’s lemma, S contains a maximal
element M. A maximal ideal of R is precisely a maximal element of the set
of proper ideals of R, so M is a maximal ideal of R.

We now give a couple of general examples of how Zorn’s lemma can be
used in algebra. All of the uses of Zorn’s lemma in this book, including
the example above, are special examples of these. Appendix D uses Zorn’s
lemma to prove that any vector space contains a hasis.

Example 1.3 Let X be aset, and let S be a nonempty collection of subsets
of X, with the partial order of set inclusion. Suppose that for every chain
T in S the set | JT is an element of S. Then S has a maximal clement. To
verify this, all we need to see to apply Zorn’s lemma is that the chain 7
has an upper bound in S. But the union [ J7" clearly is an upper bound for
T, since any ¢t € T is a subset of this union. The assumption is that this
union is in S; hence, Zorn’s lemma applics.

Example 1.4 Let X and Y be sets, and let S be a nonempty collection
of pairs (A4, f), where A is a subset of X and f: A — Y is a function. We
can define a partial order on S as follows: Let (4, f) < (B,g) if A C B and
9la = f. It is easy to see that < is indeed a partial order on S. Suppose
that 7" is a chain in S. Let M = [J7, and define a function h: T — Y by

h(z) = g(z) if (X,g9) € T and = € X. The function h is well defined by the




coudition that 7" is a chain. Suppose that lor cach chain 7', the pair (M, h)
as constructed is an element of S. Then S has a maximmal clement. This
follows from Zorn’s lemma because the element (M, A) is an upper bound
for T' by construction and, by hypothesis, lies in S.

2 Cardinality and Cardinal Arithmetic

We will require the use of cardinal arithmetic in a couple of places in this
book. The theorem that any two bases of a finite dimensional vector space
have the same number of elements can be extended to arbitrary vector
spaces by using Zorn’s lemma, and some results of cardinal arithmetic. We
now give the basic definitions and results on cardinal arithmetic that we
require in this book.

If S and T are sets, we write S < T if there is an injective function from
S to T It is proved i nost set theory texts that S < 7" il and only if there
is a surjective function from 7' to S. If S < T and T < S, then we say S
and T have the same cardinality and write S &~ T'. The Schroder-Bernstein
theorem says that this is equivalent to the existence of a bijection between
S and T. We will write S < T'if § < T and if S and 7" do not have the
same cardinality.

The cardinality of a set S will be denoted |S|. Addition and multiplication
of cardinal numbers is defined by |S| + |T'| = |SH T, where S|#T is the
disjoint union of S and T'. Also, |S|-|T| = |S x T|. We write |S| < |T'| and
IS| < |T|if S 2T and S < T, respectively. If S is an infinitc set, then |S]
is called an infinite cardinal. If S is finite or if S =~ N, then S is said to be
countable. If S is countable and infinite, we write |S| = Ng. The cardinal
Ng is the smallest infinite cardinal; that is, if S is a countably infinite set
and 7 is any infinite set, there is an injective function S — 7. We recall
the basic facts of cardinal arithmetic in the following proposition.

Proposition 2.1 Let S and T be sets.

1. If T 1is infinite and if {S, : n € N} 1s a collection of subsets of S with
|Sn| < T for all n, then |J,cn Sa| < IT.

2. If S and T are sets, then |S| < |S|+ |T'|. If either S or T is infinite,
then |S| + |T| = max {|S|, [T}

3. If S and T are nonempty sets, then |S| < |S|-|T|. If either S or T 1is
infinite, then |S|- |T'| = max {|S|,|T|}.

4. If T is an infinite set, then g - |T| = |T|.

Example 2.2 Let X be a set, and let P(X) be the set of all subsets of X.
We show that |P(X)| > | X|. Note that there is an injective map X — P(X)




given by a — {a}. Therefore, | X| < |P(X)|. We finish the proof by showing
that there is no surjective map from X to P(X). Let f : X — P(X) be
any function. Define S by S ={a € X :a ¢ f(a)}. We claim that S is not
in the image of f. Suppose instead that S = f(z) for some z. Then =z € S
if and only if z ¢ f(z) = S. This is impossible, so S ¢ im(f).

Problems

1.

Use Zorn’s lemma to prove that if R is a ring with identity, then R
has a maximal left ideal.

In this problem, we show that a ring without an identity may
not have any maximal ideals. Let p be a prime, and let R =
{a/p™ :a € Z,n > 0}. Then R is a subgroup of @@ under addition.
Define multiplication in R by z -y = 0 for all z,y € R. Note that a
subset of R is an ideal if and only if it is a subgroup under addition.
Show that the only subgroups of R are the cyclic subgroups generated
by 1/p™ for some n, and conclude that 2 does not have a maximal
ideal.

. Let R be a commutative ring, and let S be a subset of R that is closed

under multiplication and does not contain 0. Use Zorn’s lemma to
show that there is an ideal maximal with respect to being disjoint
from S.

(This fact is used to prove that the intersection of all prime ideals
containing an ideal 7 is equal to the radical of I.)

Prove the Schroder—-Bernstein theorem.

Prove that Z ~ N and @ ~ N.

. Prove that N < R.




Appendix C
Group Theory

There are a number of results from group theory that we will need in
Galois theory. This section gives a brief survey of these results. For a more
complete treatment of group theory, see Rotman [23] or any of the general
algebra texts.

1 Fundamentals of Finite Groups

Let GG be a group, and let H be a subgroup of G. Recall that the left coset
gH of an element g € (G is the set of all elements of the form gh with
h € H. Right cosets are defined similarly. The distinct left (or right) cosets
of H partition G. If G is finite, then each coset has the same number of
clentents. These Tacls Torin the heart of the prool of Lagrange’s thicorern,
the most fundamental result about hnite groups.

Theorem 1.1 (Lagrange) If H is a subgroup of a finite group G, then
|H| dwides |G|. Moreover, iof |G : H| is the number of cosets of H in G,
then |G| = |H|-[G : H].

Proof. The proof of the first statement can be found in any book on group

theory. Lagrange’s theorem usually is stated as just the first sentence. The
proof yields the equality |G| = |H|-[G : H]. O

If G is a group and if N is a subgroup of GG, then N is said to be a
normal subgroup of G if gng=" € N for all g € G and n € N. If N is




a normal subgroup of GG, let G/N be the set of all left cosets of N in G.
Then G/N can be given the structure of a group by defining multiplication
by gN - hN = ghN. This definition is well defined, independent of the
representation of the cosets.

Suppose that G is a finite Abelian group. Then there is a complete de-
scription of the structure of G. The following theorem is often called the
fundamental theorem of finite Abelian groups.

Theorem 1.2 (Fundamental Theorem of Finite Abelian Groups)
Let G be o finite Abelian group. Then G is a direct product of cyclic sub-
groups. Therefore, G 2 Z/nZ X --- X Z/n.Z for some integers n;.

It is not hard to show that Z/nmZ = Z/nZ x Z/mZ if ged(n,m) = 1.
This fact is one formulation of the Chinese remainder theorem. From this
fact and the fundamental theorem of finite Abelian groups, one can obtain
the following description of finite Abelian groups.

Corollary 1.3 Let G be a finite Abelian group.

1. There are integers ny,...,n,, where n; dwides n;_, for each i, such
that G =2 Z/nZ x - - - x Z/n,.Z. The n; are uniquely determined by G
and are called the invariant factors of G.

2. There are integers m;; and primes p; such that G = Z/p"*Z x - - - X
Z)p 7. The various p, ° are uniguely determined by G and are
called the elementary divisors of G.

Let GG be a finite group. Then the ezponent of GG, denoted exp((G), is the
least common multiple of the orders of the elements of G. For example, the
exponent of the symmetric group S3 is 6. We give a useful result about the
exponent of a finite Abelian group.

Proposition 1.4 Let G be a finite Abelian group. If n = exp(G), then
there is an element of G of order n. Therefore, exp(G) is the maximum

order of an element of G. Furthermore, G is cyclic if and only if |G| =
exp(G).

Proof. A short calculation using the decomposition of (¢ into a product
ol cyclic groups shows that [or every divisor ol [ there is an clement
of order m. If n = exp(G), then n divides |G| by Lagrange’s theorem and
the definition of least common multiple. Therefore, G contains an element
of order n. Since a group G is cyclic if and only if it contains an element
whose order is |G|, we see that G is cyclic if and only if |G| = exp(G). O

An alternative proof of this proposition that does not invoke the funda-
mental theorem of finite Abelian groups is outlined in Problem 1.




2 The bylow Theorews

Let G be a finite group, and let p be a prime dividing the order |G| of
G. Let |G| = p™q with g not divisible by p. A p-Sylow subgroup of G is a
subgroup of order p”, the maximal power of p possible for a subgroup of
(G. The Sylow theorems give existence and properties of p-Sylow subgroups
of a finite group.

Theorem 2.1 (First Sylow Theorem) Let G be a finite group, and let
p be a prime divisor of |G|. Then there ezists a p-Sylow subgroup of G.

Theorem 2.2 (Second Sylow Theorem) Let p be a prime divisor of
|G|. If H is a subgroup of G of order a power of p, then H C xPx™' for
some p-Sylow subgroup P of G. In particular, if P, and P» are two p-Sylow
subgroups of G, then Py = xPox™t for some z € G.

Theorem 2.3 (Third Sylow Theorem) Let p be a prime divisor of |G|.
If n is the number of p-Sylow subgroups of G, then p divides |G| and n =
1(mod p).

The first Sylow thcorem 1s the best partial converse of Lagrange’s theo-
rem. Given a divisor m of |G|, there necd not bc a subgroup of GG of order
m. For instance, there is no subgroup of the alternating group A4 of order
6. However, if |G| = p™q as above and if m = p™, then the first Sylow
theorem gives the existence of a subgroup of order m.

Somc of the power of the Sylow theorems comes from the following two
facts. First, it is often convenient to have a subgroup H of a group GG with
|H| and [G : H] relatively prime, as is the case if / is a Sylow subgroup.
Second, groups of prime power order are very nicely behaved. We shall see
one property of such groups shortly. If G is a group of order p™ with p a
prime, then G is said to be a p-group. If GG is an arbitrary group, a subgroup
H of (7 is said to be a mazximal subgroup of G if H is a proper subgroup of
(; that is not contained in any subgroup of G other than (¢ and itself. The
following result will help to use p-groups in field theory, for instance, in the
proof of the fundamental theorem of algebra in Section 5. An outline of a
proof of this proposition can be found in Problem 2.

Proposition 2.4 Lel G be a p-growp of order p™. 1f 11 ws o mazimal sub-
group of G, then H is normal in G and [G : H| = p.

If G is a finitc group, then maximal subgroups of G always exist. Using
this proposition repeatedly, we can extend the first Sylow theorem.

Corollary 2.5 Let G be a group of order p™q with p a prime. Then G
contains a subgroup of order p" for any r <mn.
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3 Solvable Groups

In many ways, abstract algebra began with the work of Abel and Galois
on the solvability of polynomial equations by radicals. The key idea Galois
had was to transform questions about fields and polynomials into ques-
tions about finite groups. For the proof that it is not always possible to
express the roots of a polynomial equation in terms of the coefficients of
the polynomial using arithmetic expressions and taking roots of elements,
the appropriate group theoretic property that arises is the idea of solvabil-

1ty.
Definition 3.1 A group G is solvable 1+f there is a chain of subgroups
(e)=HyCH, C--CH,=G

such that, for each i, the subgroup H; is normal in H;\1 and the quotient
group H;/H; is Abelian.

An Abelian group G is solvable; the chain of subgroups (e) C G satisfies
the definition. Also, the symmetric groups S3 and S4 are solvable by con-
sidering the chains (e) C As; C S3 and (e) C H C Ay C Sy, respectively,
where

H = {e,(12)(34), (13)(24), (14)(23)}.

Likewise, any p-group is solvable, since if |G| = p™, there is a chain of
subgroups
<€> C N, CNQC"'CNn:G

where [N;| = p' aud N;_; is normal in N;, by Proposition 2.4. Thus,
N;/N;_1 has order p; hence, it is cyclic and therefore Abelian. One can
obtain such a chain by taking IN,,_; to be any maximal subgroup of G,
N,—- a maximal subgroup of N,,_;, and so on, and using Proposition 2.4.
We shall show below that 5, is not solvable if n > 5. This is the group
theoretic result we need to show that the roots of the general polynomial
of degree n cannot be written in terms of the coeflicients of the polynomial
by using algebraic operations and extraction of roots.

We now begin to work toward showing that the symmetric group S, is
not solvable if n > 5. If G is a group, let G’ be the commutator subgroup
of G; that is, G’ is the subgroup of G generated by all ghg™'h~! with
g,h € G. It is an easy exercise to show that G’ is a normal subgroup of GG
and that G/G’ is Abelian. In fact, if N is a normal subgroup of GG, then
G/N is Abelian if and only if G C N. We define G(? by recursion by
setting by G = G’ and GG+ = (G(*))’. We then obtain a chain

GQG(l)QG(Q)Q---QG(n)Q‘..

such that GtV is normal in G™) and G(™ /G(+1) is Abelian for all m.




Lemma 3.2 G is solvable if and only if G™ = (e) for some n.
Proof. Suppose that G(™) = (e) for some n. Then the chain
Ggg(l) 2‘”2g(n) = (e)
shows that (G is solvable. Conversely, suppose that (G is solvable, and let
(e)=H, CH, 1C---CHy=G

be a chain of subgroups such that H,,; normal in H,, and H,,/H,, 1)
is Abclian for all yn. Then G/H, is Abelian, so G’ = G) C H,. Thus,
(GM)Y C H!. Because H|/H, is Abelian, H] C H,. Therefore, G2 =
(GM)Y C H,. Continuing this process shows that G™) C H, = (e), so
G = {e). O

Proposition 3.3 Let G be a group, and let N be a normal subgroup of G.
Then G is solvable if and only if N and G/N are solvable.

Proof. We have N(™ C G(™ and (G/N)™ = (GI™ N)/N for all m.
Thus, if G is solvable, there is an n with G(*) = (e). Therefore, N(™ = (e)
and (G/N)™ = (e), so both N and G/N are solvable. Conversely, suppose
that N and G/N are solvable. Then there is an m with (G/N){™) = (e},
so GU™) C N. There is an n with N(® = (¢), so G(»t™) = (Gim)(n) C
N() = (e). Therefore, G("*™) = (¢), so G is solvable. O

Lemma 3.4 Ifn > 5, then A, is a simple group.

For a proof of this important result, see Hungerford [13, p. 49].

Corollary 3.5 Ifn > 5, then S,, is not solvable.

Proof. Since A, is simple and non-Abelian, A;, = A,. Thus, we see for all

m that AV = A, # (), so A, is not solvable. By the proposition above,
S, is also not solvable. O

4 Profinite Groups

We give here a brief description of profinite groups. These are the groups
that arise as the Galois group of a Galois extension of any degree, possibly
infinite. This information is only used in Sections 17 and 18. Most of the
results are stated without proof. The interested reader can find proofs and
more information about profinite groups in Serre [24] and Shatz [25].

Let {Gi},c; be a collection of groups. Suppose that I is a directed set.
This means that I has a partial order < such that for any 7,5 € I, there
isak €l withi <k and j < k. Suppose that for each 7 and j with 7 <3




there is a group homoworphism g, j + G - Gy Moreover, suppose that
whenever 1 < j < k we have ¢; x = ¢; 1 0@; ;. Then the set of groups {(;}
together with the homomorphisms ¢; ; are said to form an inverse system
ol groups.

Definition 4.1 Let {G;, i ;} be an inverse system of groups. The inverse
limit of this system is a group G together with homomorphisms ¢; - G — G;
such that if 1 < j, then @; = @; ; 0 @;, along with the following universal
mapping property: If H is a group together with homomorphisms 1; : H —
G: such that 7, = @;; o 7; whenever 1 < j, then there is a unique group
homomorphism 7 : H — G with 7; = ;o7 for each i; that 1s, the following
diagram commutes:

G——H

20 T;

G;

The following proposition shows that inverse limits exist and are nnique
up to isomorphism.

Proposition 4.2 Let {G;,¢; ;} be an inverse system of groups. Then the
wnverse limit of the G; exists and s unique up to isomorphism.

Proof. Let [[, G; be the direct product of the G;. Define G by

G = {{gz} € HGi :i,5(g5) = gs for each pair (¢,7) with ¢ < j} :

Then G is a subgroup of []. G;, since the ¢; ; are homomorphisms. Let
w; + G — G; be the restriction to G of the usual projection map. If ¢ < 7,
then ¢; = ¢; ; o @; by the definition of G. To verify the universal mapping
property, let [ be a group with homomorphisms 7; : H — G; such that
7; = ;7 o 7; whenever ¢ < j. Define a homomorphism 7 : H — [[, G; by
7(h) = {7:(h)}. The condition 7; = ¢; ; o 7; says precisely that im(7) C G.
Thus, 7 is a homomorphism from H to G. The formula for 7 is forced upon
us by the requirement that 7; = ¢; o7, so 7 is unique. Thus, G is an inverse
limit of the G;. O

We can now define a profinite group.

Definition 4.3 A profinite group ts an tnverse limit of finite groups.

There is a natural topology on a profinite group. If {G;} is an inverse sys-
tem of finite groups, give each G; the discrete topology and then give [ [; G;




vhic product topaslogy. The imverse it of the G, then inherits the subspace
topology from [ [, G;. This topology is an important tool for studying profi-
nite groups and is used frequently in proofs of the results stated in this sec-
tion. We describe a relation between the topology and the algebra of G. Let
N; = ker(;). Then G/N, is isomorphic Lo a subgronp of (; consequently,
N; is a normal subgroup of finite index. Moreover, since N; = ; {0}, the
preimage of a single point, N; is both open and closed, since G; has the
discretc topology.

Proposition 4.4 Let G be a profinite group. As a topological space, G 1s
Hausdorff, compact, and totally disconnected.

Many of the fundamental numerical results about finite groups have
analogs in the theory ol profinite groups. First, we need a meaningful deh-
nition of the order of a profinite group. A supernatural number is a formal
product Hp p™r, where p runs over all primes, and the cxponents are non-
negative integers or co. While there is no natural way to add supernatural
numbers, the product, greatest common divisor, and lcast common multi-
ple of a set ol supernatural numbers can be defined in the obvious way. By
using supernatural numbers, we can give a uscful definition of the order of
a group and the index of a subgroup.

Definition 4.5 Let G be the inverse limit of the finite groups {G;}.

1. The order of G is the supernatural number lem; {|G;|}.

2. If H is a closed subgroup of G, then the indez |G : H| is equal to

If p is a prime and n; is the power of p occurring in |G;|, then max {n;} is
the power of p occurring in |G|. Even though each n; is finite, the maximum
may be infinite. This 1s the rcason for allowing an exponent of co in a
supernatural number.

We record the basic numerical properties of profinite groups. The first
part of the following proposition is an analog of Lagrange’s theorem.

Proposition 4.6 Let GG be a profinite group.

1. If H C K are closed subgroups of G, then [G : K| = |G : H|-[H : K].

2. If H is a closed subgroup of G, then |G : H| =lemy {[G/U : HU/U|},
where U ranges over all open normal subgroups U of G. In particular,

|G| = lemy {|G/U]}.

Two different inverse systems of groups may have the same inverse limit.
Part 2 of this proposition shows that indices arc not dependent on a specific
choice of inverse system.
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There are good extensions of the Sylow theorems to the class of profinite
groups. Let p be a prime. A pro-p-group is a prolinite group G lor which
|G| = p" lor some n with | < n < co. Equivalently, a pro-p-group is an
inverse limit of p-groups. Suppose that G is a profinite group whose order
is divisible by a prime p. This means that |G| =[] ¢", such that n, > 1.
A subgroup H of (G is called a p-Sylow subgroup of G provided that H is
a pro-p-group and [G : H] is not divisible by p.

Theorem 4.7 Let G be a profinite group, and let p be a prime divisor of
G|

1. The group G has a p-Sylow subgroup.

2. If P is a pro-p-subgroup of G, then P is contained in a p-Sylow sub-
group of G.

3. Any two p-Sylow subgroups of G are conjugate.

Problems

1. This problem outlines a proof of Proposition 1.4 that does not use
the fundamental theorem of finite Abelian groups. Let G be a finite
Abelian group.

(a) If a,b € G have orders n and m, respectively, show that the
order of ab is nm if n and m are relatively prime.

(b) If @ has order n and if ¢ is a divisor of n, show that a* has order
n/t.

(¢) If n and m are positive integers, and if G contains elements
of order n and m, show that (G contains an element of order
lem(n, m). Use this fact to prove that G contains an element of
order exp(G).

(Hint: factor lem(n,m) into prime powers, and then use the first
two parts of this problem.)

2. Let p be a prime and G be a p-group.
(a) If H is a subgroup of G, show that H C N(H), where N(H) =
{9eG:9Hg ' =H}.'
(b) If H is a maximal subgroup of GG, show that H is normal in G

and that [G : H]| = p.

(Hint: Recall that Z(G) # (e} if G is a p-group. Find a subgroup
Z of Z(G) of order p, consider G/Z, and use induction on n, where
,Gl — ;D”.)
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. Define multiplication, greatest common divisor, and least common
nultiple of a set of supernatural nubers.

. Let G be a profinite group, and let H be a closed subgroup of G.
Show that [G : H] = lemy {[G : U]}, as the U range over all open
normal subgroups of G that contain U.

. Let G be a profinite group, and let H be a subgroup of . Show that
the closure H of H is given by H = (), HU, as U ranges over all
open normal subgroups of G.

. Let G be a profinite group, and let H be a subgroup of G. Show that
H is the intersection of all open normal subgroups of G containing
H.

. Let G be a profinite group. If IV is a normal subgroup of finite index
in GG, show that N is open.

. Let G be a profinite group. Show that any closed subgroup of G is
also a profinite group. Also, show that any quotient of G is a profinite
group.

. Read Chapter I of Shatz [25] and prove the results on profinite groups
stated in this section.







Appendix D

Vector Spaces

The use of the theory of vector spaces is a key element in field theory.
In this appendix, we review the concepts that we will nced. For a more
detailed account of vector spaces, see Herstein [12] or Walker [27].

1 Bases and Dimension

The most important property of vector spaces is the existence of a basis.
Let V be a vector space over a field F'. If vy, ..., v, € V, any element of the
form aqyvy; + -+ + a,v, is called a linear combination of the v;. A subset
B of V is said to be linearly independent over F provided that whenever
U+, = 0, with a, € Frand v; € B, then cach «; = 0. Therefore,
B is lincarly independeut, provided that the only way to write 0 as a linear
combination of elements of B is in the trivial way, where all coefficients are
0. If a set is not linearly independent, it is said to be linearly dependent.
For example, any singleton set B = {v} with v # 0 is lincarly independent.
By definition, the empty set @ is linearly independent. Any set containing
0 is dependent.

If B is a subset of V| then B is said to span V if every element of V' is a
linear combination of elements of B. For example, if V' = F™, the set of all
n-tuples of elements of F', then the set

{(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

spans F™. The set F™ also spans F". In fact, if 5 spans a vector space V,
then any set containing B also spans V.
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We can now define a basis. If V' is an F-vector space, a set B is a basis for
V' if B is linearly independent and spans V. For finitely generated vector
spaces (i.e., those spaces that are spanned by a finite set), proofs of the
existence of a basis are standard. However, a use of Zorn’s lemma shows
that any vector space has a basis. Because this proof is less standard, we
give it here. Moreover, this proof is a good example of how Zorn’s lemma
is used in algebra.

Theorem 1.1 Let V be a vector space over a field F'.

1. There exists a basis for V.

2. If C is any linearly independent set in V', then C is contained in a
basis of V.

3. If D is any spanning set for V', then D contains a basis of V.

4. If C C D are subsets of V such that C s linearly independent and D
spans V', then there is a basis B with C C B C D.

Proof. We give a proof for part 4. Parts 2 and 3 follow from part 4 by
setting C = @ and D = V), respectively. Part 1 follows from part 4 by
setting C = & and D = V. Suppose that C C D such that C is linearly
independent and D spans V. Let

S={£:CCECD, €& islinearly independent} .

The set S is nonempty, since C € §, and it is partially ordered by inclusiou.
We check that the hypotheses of Zorn’s lemma hold. Let 7 be a chainin S,
and let A = | J 7, the union of all sets in 7. Since each set in 7 is contained
in D and contains C, the same is true for A. Therefore, A € §. Moreover,
A is clearly an upper bound for 7, since every set in 7 is contained in A.
By Zorn’s lemma, there is a niaximal element B of §. We claim that B is
a basis. Since B € &, we see that B is linearly independent. To show that
B spans V', let W be the span of B. Since D spans V, it is sufficient to
show that each v € D is also in W. Suppose that there is a v € D with
v ¢ W. Then v is not a linear combination of vectors in B, so BU {v} is
linearly independent. Moreover, BlU{v} C D. However, this contradicts the
maximality ol B; hence, v € W. Therefore, B does span V, finishing the
proof. a

Theorem 1.2 Let V be an F-vector space. If B, and By are bases for V,
then By and By have the same cardinality.

Proof. We prove only part of this theorem, taking for granted the follow-
g statement: 1f V' is spanned by a finite set D and if C is any linearly
independent set in V', then |C] < |D|. A proof of this fact is a standard
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step in showing the uniqueness of the size of a basis for finite dimensional
vector spaces.

Armed with this fact, we prove the theorem for infinite dimensional vec-
tor spaces. If one of By or B, is finite, the fact above forces both to be finite.
So, suppose that both are infinite. For each v; € By, write v; = Zj QW5
with the w; € Bi. Let J; = {w; : as; # 0}, a finite subset of B;. Let
K =1J; Ji, a subset of B,. Since each element of By is a linear combination
of elements of K, the vector space V is spanned by K. Since K C B; and
By is a basis for V, this forces X = B;. By Theorem 2.1 of Appendix B,
K| < Ng|Bs], since | J;| < R for each 7, and the union is over all elements
of By. But B, is infinite; hence, Ng [Bz| = | Bz|. Therefore, |B;| = [K| < |Ba|.
Reversing the roles of By and By gives the other inequality, proving that
B)| = |Bal. 0

This theorem allows us to define the dimension of a vector space. The
dimension of a vector space V is the cardinality of any basis of V. By the
theorem, this is a well-defined invariant of the vector space. If V' has a finite
basis, then V is said to be a finite dimensional vector space.

2 Linear Transformations

Let V and W be vector spaces over a field I'. A linear transformation from
V to W is an F-vector space homomorphism from V to W. Let homg (V, W)
be the set of all linear transformations from V' to W. Then hompg (V, W) is
an F-vcctor space, where addition is defined by (S + T)(v) = S(v) + T'(v)
and scalar multiplication by (aT')(v) = a(T(v)). It is straightforward to
prove that homg(V, W) is indeed a vector space with these operations.

If W =V, then hompg(V, V) can be given a multiplication. Define mul-
tiplication by ST = S o T, the usual function composition. It is not hard
to show that S oT is again a linecar transformation and that hompg(V, V)
is an associative ring under these operations. We can give a more concrete
description of this ring using bases. Suppose that V' is a finite dimensional
vector space and that {vy,...,v,} is a basis for V. Let T € homg(V, V).
Then T'(v;) = >, avjv; for some ay; € F. Let M(T') be the n x n matrix
(ci;;). A straightforward calculation shows that

M(S+T)=M
M(SoT)=M

() + M(T),
(S) - M(T),
Theretfore, the map 6 : T +— M (T) is a ring and vector space homomor-
phism from hompg(V,V) to M,(F), the ring of n x n matrices over F.

Moreover, we sce that 6 is a bijection. To prove injectivity, suppose that
M(T) is the zero matrix. Then T'(v;) = 0 for cach j. Since every clement




of V' is a linear combination of the v,, this forces T' to be the zero map.
Therefore, 6 is injective. To show that 8 is surjective, take (cy;) € M, (F).

It is an easy calculation to show that the formula

S aj | = a (Zaij“i>
p ; :

gives a well-defined linear transformation with M (S) = (). This shows
that 0 is surjective. Therefore, homp(V, V) = M, (F). In fact, if uy,..., u,
is any collection of elements of V, then there is a uniquely determined linear
transformation ¢ : V' — V given by ¢(v;) = u;. On a general element of V|
the map ¢ is given by cp(zj a;v;) = Zj a;u;. Thus, linear transformations
can be described in terms of a basis. As a vector space, homp(V, V) has
dimension n?. This can be seen by showing that the set {e;; : 1 <14,j < n}
of “matrix units” is a basis for M, (F'), where e;; is the matrix of zeros,
except for a 1 in the (4, 7) entry.

The isomorphism 6 : hompg(V, V) = M, (F) does depend on the choice
of basis. Given another basis {w;} of V, we obtain another isomorphism
¢ : homp(V, V) = M, (F). How do these isomorphisms differ? Let S: V —
V' be the linear transformation given by S(v;) = wj, and let B be the
matrix M (S) calculated with respect to the basis {v;}. If T € homp(V, V),
we write M (T")y and M (T')w, respectively, for the matrices obtained from
T by using the bases V = {v;} and W = {w;}, respectively. A matrix
calculation shows that

M(T)y = B~*M(T)B.

This relation between matrix representations of linear transformations
using different bases allows us to define the determinant and trace of a
linear transformation. Let T € homp(V,V), and let A = M(T) be the
matrix representation of 7' with respect to some basis. Then we define
the determinant and trace of T by det(T") = det(A) and Tr(T) = Tr(A),
respectively. These definitions are well defined, since det(B~*AB) = det(A)
and Tr(B~!'AB) = Tr(A) for any invertible matrix B.

The final result we describe in this section is the Cayley—Hamilton the-
orem. Let A € M, (F). The characteristic polynomial x4(z) of A is the
polynomial det(z] — A), where I is the n x n identity matrix. This is a

. . b
monic polynomial of degree n. For instance, if A = ( i d ), then

xa(z) = 2% — (a4 d)z + (ad — be)
= 2% — Tr(A)z 4 det(A).

Since

det(z] — B"'AB) = det(B~!(z] — A)B) = det(z] — A),




we call define the chiaracleristic poty aonnal ot a linear transtoriuation by
xr(x) = xa(z) if A is any matrix representation of 7.

Let f(z) € Flz|, and write f(z) = ), a;2°. We can evaluate f at A by
setting f(A) = >, a; A%, where A° = I. If A is an n x n matrix, then there
is a nonzero polynomial f with f(A) = 0; to show the existence of such
an f, the n? + 1 elements I, A4, ..., A" form a dependent set in M, (F),
since this vector space has dimension n?. Therefore, there arec oy € F
wilh Z;i() AT = 0. Letling [(x) = Y. a;z* proves our claim. Given a
matrix A, the mingmal polynomial of A is the monic polynomial p(z) of
least degree such that p(A) = 0. The Cayley-Hamilton theorem relates the
characteristic and minimal polynomials of a matrix.

Theorem 2.1 (Cayley—Hamilton) Let A be ann xn mnatric and x 4(:)
be the characteristic polynomial of A. Then xa4(A) = 0. Morcover, if p(x)
s the manimal polynomial of A, then p(z) divides x a(z), and these two
polynomials have the same irreducible divisors.

Proof. A proof of this result can be found in most nonelementary books
on linear algebra. We give a proof that uses the structure theorem for
finitely generated modules over a PID and the rational canonical form. For
a proof of this structure theorem and more information on this approach,
see Chapter 5 of Walker [27]. Let V = F™, an n-dimensional F-vector
space. By using A, we can define an F'[z]-module structure on V as follows:
If fz) = Y i,ax® € Flz], then define f(z)v = Y 1 a;A'v. We set
AY = I in order for this definition to make sense. It is elementary to show
that V is an F[z]-module, and V is finitely generated as an F|[z|-module,
since it is generated as a module by a vector space basis. Therefore, there
arc elements v, ...,v; € V and polynomials f,..., f, € F[z] such that

V= @ Flz)v; = @F[m]/(fi).

Recall that ann(v;) = {f € Flz]: fv; =0} and that ann(v;) = (f;). Fur-
thermore, we may assume that f; divides f,4; for each ¢. We will have
proved the theorem once we verify that f; is the minimal polynomial of A
and that f,--- f, is the characteristic polynomial of A. From the descrip-
tion of (f;) = ann(v;), we sce that fiu; = 0 for each 4, so fiv = 0 for all
v € V. By the definition of scalar multiplication, the nullspace of f,(A) is
F™, so fi(A) = 0. Therefore, p divides f;. For the reverse inclusion, since
p(A) = 0, we see that pv; = 0, so p € ann(v;) = (f:). This gives the reverse
divisibility, so f; = p. This verifies our first claim. For the second, we use
the rational canonical form of A. There is an invertible matrix B such that

BAB™! is the rational canonical form of A. The rational canonical form is
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in block matrix form

C, 0 0
0 Chy 0
0 0 Cy

where C; is the companion matrix to fi; if f; = 2° 437, b;z7, then

0 -+ 0 —b
10 ~b,
Ci =
0 1 —by

Moreover, det(z! —C;) = f;; this can be seen by expanding the determinant
along the first row and using induction on deg(f;). Thus,

det(x] — A) = det(B(xI — A)B™")
= det(zl — BAB™!)
= fi o Sy

This proves the second claim, so the theorem is proved. O

3 Systems of Linear Equations and Determinants

We give here a brief discussion of solving systems of linear equations. A
system

a1z +aTa+ 0+ a1mTm = by,

(21 T1 + Q2o + -+ + ATy = bo,

Anp1T1 +Ap2T2 + - + AGpmTm = bn

can be represented as a matrix equation AX = B, where A = (a;;), X =
(z;), and B = (b;). Multiplication by A determines a linear transformation
T : F'™ — F™ The existence of a solution is equivalent to the condition that
B is in the image of T'. The rank of A, denoted rank(A), is the dimension
of the image {Av:v € F™} of T, a subspace of F'*. The rank of A is an
integer no larger than min{n, m}. If rank(A) = n, then the system above
has a solution (or every B. More geuncrally, the image of T is spanned by the
columns of A; hence, the image of T is the column space of A. Therefore,
rank(A) is equal to the dimeunsion of the column space of A. A fundaimental
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fact about rank is that the rank of A is also equal to the dimension of the
row space of A, the subspace of I'™ spanned by the rows of A. For a proof
of this, see Theorem 3.4.16 of [27].

Suppose that A is an n x n matrix. If det(A4) # 0, then A is an invertible
matrix, and so the system AX = B has a unique solution X = A~!B for
any B. Therefore, rank(A) = n. If det(A4) = 0, then the system AX = B
cannot be solved for every B; to see this, suppose that there are X; with
AX; = e;, where {e;} is a basis for ™. Then the matrix C' whose ith
column is X; is an inverse of A; hence, det(A) # 0, which is false. Therefore,
rank(A) < n. Thus, the determinant function can help us to determine
when square systems of linear equations can be solved.

4  Tensor Products

In Section 20, we make use of the tensor product of vector spaces. For
readers unfamiliar with tensor products, we give the basics here. We only
consider tensor products of vector spaces over a field, the only case that
we need in Section 20. In order to work with tensor products, we need the
concept of a bilinear map. Let U, V, and W be vector spaces over a field
. A bilinear map from U X V to W is a function B : U x V — W such
that

B(auy + bug,v) = aB(u1,v) + bB(us,v),
B(u,avy + bvg) = aB(u,v1) + bB(u,vs).
for all scalars a, b, all u,u1,uy; € U and all v,v1,v5 € V; that is, a bilinear
map is linear in each component. To say this in another way, for all © € U
and v € V, the functions B, : V — W and B, : U — W given by
B.(v) = B(u,v),
B,(u) = B(u,v)
are limear transformations.
The tensor product U @ V can be defined as follows. Let M be the
F-vector space with basis {(u,v) € U x V'}; that is, for each pair (u,v) in

U x V, there is a corresponding basis vector in M. Let N be the subspace
spanned by

(au1 + bug,v) — aluy,v) — b(ug,v),
(u, avy + bvg) — a(u,v1) — b(u, va),
(au,v) — a(u,v),
(ua ) - a’(u’v)

for all a,b € F, all u;,uy € U, and all v1,v9 € V. Then U ®p V is defined
to be M/N. We will denote by u ® v the coset (u,v) + N in U @ V. Note




thiat since the (w, v) forin a basis for M, cach element ot U &p v .. il
of elements of the form © ® v. Looking at the generators of N, we obtain
the following relations in U @ p V :

(auy + bug) @ v = a(u; ®v) + bluy @ v),
u® (avy + bvg) = a(u ®vy) + b(u-® vy),
(
(

at @U = a

u®v),

u®av = a(u ).

Define B: U XV - U®pFpV by B(u,v) = u®uv. By the definition of tensor
products, B is a bilinear map.

It is not terribly convenient to work with the construction of tensor
products. The tensor product of U and V is best thought of in terms of the
universal mapping property it satisfies.

Proposition 4.1 Let U and V be I'-vector spaces, and let B U XV —
U ®pr V be the canonical bilinear map defined by B(u,v) = u® v. If W s
an F-vector space and C : U x V. — W 1§ a bilinear map, then there is a
untque linear transformation ¢ : U @p V. — W such that C = p o B; that
is, the following diagram commutes:

Uxv—Saw
B 0

URQrV

Proof. Let M and IV be the vector spaces defined above in the construction
of the tensor product. There is a unique linear transformation f : M — W
with f ((u,v)) = C(u,v). The bilinearity of C' implies precisely that the
generators of N lie in ker(f). Thus, there is a linear transformation ¢ :
M/N — W given by ¢ ((u,v) + N) = C(u,v). In other words, p(u ®v) =
C'(u,v). Since B(u,v) = u ® v, we see that C' = ¢ o B. Moreover, this
definition of ¢ is forced upon us by the restriction that C = ¢ o B; if
o:U®rV — W satisfies C = o o B, then o(B(u,v)) = C(u,v), so
o(u®wv) = C(u,v). Thus, o and ¢ agree on the generators of U ® r V, so
g = Q. U

Perhaps the most fundamental property of tensor products of vector
spaces, other than the universal mapping property, is that the dimension
of URFrV is equal to dimp(U) -dimp (V). This is not a trivial fact to prove,
which is the reason for the form of the next result.

Proposition 4.2 Let U and V be finite dimensional F-vector spaces.
Then V @ homp (U, F') = homp(U,V). Consequently, dimp (U ®p V) =
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We leave it to the reader to verify that C(v, f) is indeed a linear trans-
formation and that C is bilinear. By the universal mapping property, we
get a linear transformation ¢ : V ®  homp (U, F') — homg (U, V) given on
generators by p(v® f) = C(v, f).

Let {uy,...,u,} be a basis for U, and let {v,...,v,,} be a basis for V.
Then the standard basis for homg (U, V) is {T};}, where

v; ifk=1
Tij(“”:{ 0 ifk .

Taking the dual basis {u7,...,u,} for homp(U, F) (i.e., %;(u;) = 0 if ¢ #
j and w;(u;) = 1), a short computation shows that ¢(v; ® 4;) = T3;;
hence, ¢ is surjective. Another short computation shows that {v; ® @} is
a spanning set for V @ hompg (U, F'), which shows that V ® p homp (U, F)
has dimension at most nm, while the image of ¢ has dimension nm. Thus,
© is an isomorphism.

To finish the proof, we note that since U and homp (U, F') are isomorphic,
the tensor products V @ p U and V ® p homp (U, F) arc isomorphic; hence,
V ®p U has dimension nm. That U @ r V has the same dimension follows
by reversing U and V and noting that homg(V,U) is also of dimension nm.

a

Corollary 4.3 Suppose that U and V are finite dimensional F-vector
spaces. Let {uy,...,un} and {vy,..., v} be bases for U and V, respec-
tively. Then {u1 @ v1,...,Un ® U } 5 a basis for U Qp V.

Proof. The proof of the previous proposition shows that {v; ® 4;} is a
basis for V ®  homp (U, F'). There is an isomorphism 0 : U @ V — V QF
hompg (U, F) given on generators by o(u ® v) — v ® u (see Problem 13),
and this isomorphism sends {u; ® v;} to the basis {v; ® 4;}. This forces
the set {u; ® v;} to be a basis for U @p V. 0

We will need to use tensor products of vector spaces of arbitrary di-
mension in Section 20. The following result is an analog of the previous
corollary.

Proposition 4.4 LetU and V be F'-vector spaces. If {u;},., is a basis for
U, then every element of U @r V has a unique representation as a finite
sum y . u; @ v; for some v; € V.

Proof. If an element of U ® V has two different representations in the
form above, then subtracting the two yields an equation Zf: LU ®u =0
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with not all v; = 0. By reducing the number of terms, il necessary, we may
assume that the nonzero v; in this equation are linearly independent. Let
Uy and Vj be the subspaces of U and V generated by the u; and the v;,
respectively. Extend {u;} and {v;} to bases of U and V, respectively. There
are well-defined linear transformations o : U — Uy and 7 : V. — Vj with
o(u;) = u; and 7(v;) = v; for 1 < ¢ < n, and all other »; and v; mapped
to 0. The universal mapping property of tensor products shows that there
is a linear transformation ¢ : U @p V — Uy @ Vy given on gencrators by
e(u®v) = o(u)®7(v). Applying ¢ to the equation >, , u; ®v; = 0 yields
the same equation in Uy Q@ Vy, au impossibility by the previous corollary.
This proves tlic propositiou. O

We 1ay ask why this proposition requires any proof at all, much less the
roundabout proof given. The answer is that if we deal with mmodules over a
ring R that is not a field, then it is common to have R-modules My, C M
and Ng C N such that My ®gr Ny is not isomorphic to the submodule of
M ®g N cousisting of elements of the form ). m; ® n; with m; € My and
n; € Ng. This pathological behavior happens quite frequently, cven over
rings such as 7Z, although it does not occur with vector spaces over a field.

We finish this section by discussing the tensor product of F-algebras.
If A is simultancously a ring and an F-vector space, then A is called an
F-algebra if

a(ab) = (aa)b = a(ab)

for all a,b € A and all a € F; that is, there is a compatibility betwecn
the ring multiplication in A and the scalar multiplication. If A and B arc
F-algebras, then we can define a multiplication on A ® p B by the formula

(Z az@?)bi) (Z a,;@b;) = Zaia;@bibfj. (D.1)
% (3 1,7

On single tensors this says that (a ® b) (¢’ ® b') = aa’ @ bb’. It needs to be
checked that this formula gives a well-defined operation on A @ B. We
leave it to the reader to verify the following result.

Proposition 4.5 Let A and B be F'-algebras. Then Fquation D.1 is a well-
defined multiplication on A @ B, and with respect to this multiplication,
A®pr B is an F-algebra.

Problems

1. Let V be an F'-vector space. If B is a subset of V' containing 0, show
that B is linearly dependent.

2. Let B be a subset of a vector space V. Show that the set of all linear
combinations of ¢lenents in B is a subspace of V.




10.

11.

12.

13.

14.
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Suppose that C C B are bases of a vector space. Show that C = B.

. Suppose that C C B are subsets of a vector space V.

(a) If C spans V, show that B also spans V.

(b) If B is linearly independent, show that C is also linearly inde-
pendent.

. Show that the set of matrix units {e;;} described in Section 2 of this

appendix is a basis for M, (F'). More generally, show that the set
of all n x m matrices over a field F' is a vector space, and find the
dimension by finding a basis analogous to that for M, (F).

If V and W arc vector spaces of dimension n and m, respectively,
show that homg(V, W) is isomorphic as a vector space to the space
of all n x m matrices over I'. Use this isomorphism and the previous
problem to obtain a basis for homg(V, W).

Show that dect(B~'AB) = det(A) and Tr(B~'AB) = Tr(A) for any
matrix 4 and invertible matrix B.

. Prove the equality A(T)yy = B 'A(T)yB claimed in Section 2 of

this appendix.

. Find the characteristic polynomial of the following matrices.

@ (§5)

Find the minimal polynomial of the matrices in the previous problem.

1 0 00

. - . . 0 1 0 0O
Find the characteristic and minimal polynomials of 000 0

0 0 1 0

[f U and V are F-vector spaces, show that UQpr V =2V Qp U.

If U and V are finite dimensional F-vector spaces, show that there is
an isomorphism between U ® p V and V ®p hoing (U, F') that sends
©w®v to v®u, where U is defined as follows: If {u1,...,u,} is a
basis for U and if {u7,...,%,} is the dual basis for homp(U, F), if
u=) . a;u;, then U= 3", a; ;.

Let U, V, and W be F-vector spaccs.




15.

16.

17.

(a) Show that U X p (V &b U[) = ([' Dpd W (U g ”r)
(b) Show that U ®@p (VW)= (URrV)Qr W.

Let U, V, and W be F-vector spaces. Show that
homp (U @F V,W) = homp (U, hompg(V, W)).

Give a proof of Proposition 4.5.

Let U and V be F-vector spaces with dimp (U) < co. If {u),...,u,} is
an F-basis for U, show that every element of U ® p V' can be uniquely
written in the form ) u; ® v; for some v; € V.




Appendix E
‘Topology

In Section 17 and in the sections that deal with algebraic geometry, we
need to use some notions from topology. In this appendix, we give a brief
description of these notions.

1 Topological Spaces

Let X be a set. A topology on X is a collection 7 of subsects of X that
satisfy the following properties:

1. XeT7Tand @€ T,
2. 1fU,VeT,thenUNV eT,

3. If {U;} is a collection of subsets of X such that each U, € 7, then
Ui U, € T.

A set with a topology on it is called a topological space. The elements of
a topology are called open sets. A subset C' of X is called closed if X — C
is open. We can define a topology by specifying which are the closed sets.
The closed sets of a topology on X satisfy the following properties.

1. Both X and @ are closed sets.
2. If A and B are closed sets, then AU B is closed.

3. If {A;} is a collection of closed sets, then [, A; is closed.
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These properties follow nnmediately from the definition of a topology
and the DeMorgan laws of set theory.

Example 1.1 The standard topology on R is defined as follows. A
nonempty subset U of R is open, provided that for every x € U there
is a positive number ¢ such that the open interval (z — 6, 2 +6) is contained
in U. An easy exercise shows that this does make R into a topological space.

Example 1.2 Recall that a metric space is a sct X together with a func-
tion d from X x X Lo the nounegative real nubers such that (i) d(z,z) =0
for all z € X, aud if d(z,y) = 0, then z =y, (ii) d(z,y) = d(y,z) for all
z,y € X, and (i) d(x,y)+d(y, z) > d(z, z) for all z,y,z € X. The function
d is called a wmctric. We can use d to put a topology on X. A nonempty
subset U of X is dchned to be open, provided that for every z € U there
is a positive number ¢ such that the open ball

B(z,6) ={ye X :d(z,y) <6}

centered at z with radius § is contained in U. This topology is called the
metric space topology. The standard topology on R is an example of this
construction. For another example, il X = R™, then we obtain a topology
on R™, since we have a distance function on R".

Example 1.3 If X is a topological space and Y is a subset of X, then we
can put a topology on Y. We define a subset V of Y to be open if there is
an open subset of X with V =Y NnU. It is straightforward to show that
Y is indeed a topological space. This topology on Y is called the subspace
topology.

Example 1.4 Let X be a set. The discrete topology on X is the topology
for which every subset of X is open.

Example 1.5 Let X be a set. We deline a topology on X by defining a
proper subscl of X to be closed if it is finite. The definition of a topology
is easy to verify in this case. Note that a nonempty subset is open exactly
when its complement is finite. This topology is called the finite complement
topology on X.

There are often more efficient ways to describe a topology than to list all
of the closed sets. 1f X is a topological space, a basts for the topology on X
is a collection of open subscts such that every open set is a union of clements
from the basis. For example, the collection of open intervals forms a basis
for the standard topology on R. Similarly, the collection of open balls forms
a basis for the metric topology on a metric space. A collection C of sets
forms a basis for a Lopology on X provided that, given any two scts U and
Vin C, for any v € UNV there is a set W in C such that x € W and
W CUNV The proof of this fact is left Lo Problewn 1.
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Example 1.6 Lel 12 be a commutative ring, and let I be an ideal of R.
The [-adic topology on R is delined as [ollows. A nonemipty subset of R is
open if it is the union of sets of the form a + [™ for some a € R and n > 0.
We set I = R for this definition. In other words, {a + ™ :a € R,n > 0}
is a basis for this topology. The only nontrivial thing to verify to see that
this does define a topology is that the intersection of two open sets is open.
If | J,(a; + I™) and \J;(b; + I™J) are open sets, then their intersection is
Ui j(ai +1™) 0 (bj +1™7). It then suffices to show that (a+1") N (b+1™)
is open for any a,b € R and n,m > 0. To prove this, we can assume that
n > m,so [ C I™. I[ this intersection is cmpty, there is nothing to prove.
Ifnot,let c € (a+I™)N(b+1™). Thenc+I" =a+I1" and c+ 1™ = b+ 1™,
S0

(a+I")NG+I)=(c+I")N(c+I™)
=c+ 1",

an open set.

Example 1.7 Here is an example that arises in algebraic geometry. Let R
be a commutative ring, and let X = spec(R) be the set of all prime ideals
of R. If S is a subset of R, we set Z(S) = {P € X : § C P}. We define the
Zariski topology on X by defining a subset of X to be closed if it is of the
form Z(S) for some subset S of R. We verify that this is a topology on X.
First, note that R = Z({0}) and @ = Z({1}). Next, it is easy to see that
U, Z(S:) = Z((); Si). Finally, we show that Z(S) U Z(T) = Z(ST), where
ST = {st:seS,teT}. Let P e Z(ST). If P ¢ Z(S), then there is an
s € S with s ¢ P. Since st € P for all t € T, we see that T' C P, since
P is a prime ideal. Thus, P € Z(T). Therefore, Z(ST) C Z(S) U Z(T).
For the reverse inclusion, let P € Z(S)U Z(T). Then S C Por T C P.
Since P is an ideal, in either case we have ST C P, so P € Z(ST). We
point out the relation between the Zariski topology on spec(R) and the
Zariski topology that we define in Section 21. We require some concepts
from Section 21 in order to do this. Let C' be an algebraically closed field,
let V' be a variety in C™, and let R = C[V] be the coordinate ring of
V. Then V is homeomorphic to the subspace of spec(R) consisting of all
maximal ideals of R. This is mostly a consequence of the Nullstellensatz.

Example 1.8 Let X and Y be topological spaces. Then the product X xY
can be given a topology in the following way. We define a subset of X x Y
to be open 1f it is a union of sets of the form U x V| where U is an open
subset of X and V is an open subset of Y'; that is, the collection C of these
subsets is a basis for the topology. It is easy to verify that this collection
docs satisfy the requirement to be a basis. If (z,y) € (U x V)N (U x V'),
then (UNU’) x (VNV’)is a basic open set that contains (x,y) and is
contaiucd in (U x V)N (U’ x V). This topology on X x Y is called the
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product topology. More generally, if X;,..., X, is a collection of topological
spaces, then we get a similar topology on X x --- x X,,.

Example 1.9 Let I be a set, and let {Xi}iel be a collection of topological
spaces. We can generalize the previous construction to define the product
topology on [[, X;. If I is infinite, then we need an extra step in the defi-
nition. Consider the set S of all subsets of [[, X; of the form [[, U;, where
U; is open in X; and U; = X; for all but finitely many 4. If I is finite, then
S is the basis described in the previous example. If I is not finite, then we
let C be the collection of all sets that are finite intersections of elements of
§. It is not hard to show that C does form a basis for a topology on [, X,
and we call this the product topology on [ [, X;. It is true that S also forms
a basis for a topology on X, the box topology, but this topology is not as
useful as the product topology.

2 Topological Properties

There are various properties of topological spaces that we need to discuss.
Let X be a topological space. Then X is called Hausdorff if for every two
distinct points =,y € X, there are disjoint open scts U and V with z €¢ U
and y € V. For example, if X is a metric space, then we sce that the metric
space topology is Hausdorff. If z, y € X are distinct points, let 6 = %d(:c, y).
Then the open balls B(z,6) and B(y, ) are disjoint open sets containing
2 and y, respectively. The finite complement topology on an infinite set X
is not Hausdorff, since any two nonempty open sets must have a noncmpty
intersection. If R is an integral domain, then we show that the Zariski
topology on spec(R) is not Hausdorff either. We note that the zero ideal is
prime and that (0) ¢ Z(S) for any S unless Z(S) = spec(R). Consequently,
(0) is contained in any nonempty open set. Therefore, any two noucnipty
open sets have a noucuiply intersection, so spec(R) is not Hausdorff,

The next concept we discuss is compactness. If X is a topological space,
then an open cover of X is a collection of open sets whose union is X. If
{U;} is an open cover of X, then a finite subcover is a finite subsct of the
collection whose union is also X. The space X is called compact il every
open cover of X has a finite subcover.

Example 2.1 The space R is not compact, since {(a,a + 1) : a € R} is an
open cover of R that docs notl have a finite subcover. Subspaces of R™ 1may
be compact. Recall that a subset Y of R™ is bounded if Y is contained in an
open ball B(0,6) for some 6. The Heine-Borel theorem says that a subset
of R™ is compact if and only if it is closed and bounded.

Example 2.2 Let R be a commutative ring. The Zariski topology on
spec(R) is compact, as we now show. Suppose that {U,} is an open cover of
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spec(R). If Z(S;) is the complement of U;, then (), Z(S;) = Z(IU S:) = @.
We first point out that if J; is the ideal generated by S;, then Z(1;) = Z(S;)
and Z(|JSi) = Z(3°; I;). The ideal Y, I; cannot be a proper ideal, since
if it is, then it is contained in a maximal ideal, and so Z(}, ;) # @.

Thus, ) . I; = R, so there is a finite subcollection I1,... I, and elements
r; € I; such that ry +--- +r, = 1. Then E?:l I; = R, and so there is

no prime ideal that contains each I;. Consequently, (I_, Z(l;) = @, so

Ui, Ui = spec(R). We have found a finite subcover of {U;}, so spec(R) is
compact.

Example 2.3 Let {X;} be a collection of compact topological spaces.
Then the product [[, X; is compact in the product topology. This non-
trivial fact is the Tychonoff theorem and can be found in Chapter 5 of
Munkres [22].

Let X be a topological space, and let S be a subset of X. The closure S
of S is dcfined to be the intersection of all closed sets that contain S. Since
X is closed, the closure is a closed set that contains S. The main property
about this concept is given in the following proposition. The simple proof
is left to Problem 4.

Proposition 2.4 Let X be a topological space, and let S be a subset of X.

1. If C is any closed set that contains S, then S C C.

2. If U is an open set with UNS # @, then U NS # @.

One consequence of this proposition is that an element z € X is in the
closure of a subset S, provided that for any open set U that contains z, we
have U NS # @. This is a useful way to determine when an element is in
S.

If X is a topological space and Y is a subset of X, then Y is dense in
X il Y = X. For example, any set S is dense in its closure S. The open
interval (0,1) is dense in [0,1]. If R is a commutative ring, then we show
that any nonempty open subset of spec(R) is dense in spec(R). If U is an
open sct, then U is a closed subset of spec(R), and U N (spec(R) —U) = @.
IHowever, we have seen that any two nonempty open sets in spec(R) have a
nonempty intersection. This forces U = spec(R), so U is dense in spec(R).

We have not yet discussed functions between topological spaces. If X and
Y arc topological spaccs, then a function f : X — Y is called continuous
if f74(V) is open in X for any open set V in Y. If X and Y are subsels
of R, then this definition of continuity is equivalent to the limit definition
given in calculus; see Problem 6.

Let X be a topological space, and let ~ be an equivalence relation on X.
We let X* be the set of equivalence classes, and for z € X we denote the
equivalence class of z by z. We have a natural surjective function 7 : X —
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X* given by f(z) = z. We define the quotient topology on X* as follows.
A subset Y of X* is defined to be open if 7#='(Y) is open in X. It is a
simple exercise to show that this does define a topology on X* and that =
is continuous. Moreover, the quotient topology is the topology on X™* that
has the fewest open sets for which 7 is continuous.

We end this appendix with a concept that will arise in Section 17. A
topological space X is called connected if X is not the union of two disjoint
closed sets. For example, R is a connected set, while the subspace [0, 1] U
[2,3] is not connected. On the other extreme, a space X is called totally
disconnected if the only connected subsets of X are singlcton sets. A space
with the discrete topology is totally disconnected. The topology on a Galois
group we define in Section 17 is totally disconnected.

Problems

1. Let C be a collection of subsets of a set X such that for any U,V € C
and any € UNV thereisa W € Csuch that z € W and W CUNV.
By defining a subset of X to he open if it is a union of clements of C,
show that this gives a topology on X.

2. A topological space X is called irreducible if X is not the union of two
proper closed subsets. If X is irreducible, show that every nonempty
open subsct of X is dense in X and that any two nonempty open scts
have a nonempty intersection.

3. Let R be an integral domain. Show that spec(R) is an irreducible
space.

4. Prove Proposition 2.4.
5. Show that @ is a dense subsct of R in the standard topology on R.

6. Let X be an open interval in R, and let f: X — R. Show that f is
continous according to the definilion given above if and only if f is
continuous according to the limit delinition giveu in calculus.

7. Let R be a commutative ring, and let I be an ideal of R. Show that
the I-adic topology on R is Hausdorfl if and ouly if (7, I" = (0).

8. Let X and Y be topological spaces, and let f : X — Y bea continuous
function. Define an cquivalence relation ~ on X by saying that z ~ z
if f(z) = f(z). Prove that ~ is an equivalencc relation and that there
is a continuous function f: X* — Y such that for = f.

9. Let X be an infinite set, and put the finite complement topology
on X. Prove that X is an irreducible space. Prove also that X is
connected.




10.

11.

12.

13.
14.

16.

J
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Let R and S be commutative rings, and let f : R — S be a ring
homomorphism. We assume that f(1) = 1. If Q is a prime ideal of S,
show that f~!(Q) is a prime ideal of R. Show that we have an induced
map f* : spec(S) — spec(R) and that this map is continuous with
respect to the Zariski topology.

Let X be a topological space. Then X has the finite intersection prop-
erty if for any collection {C;} of closed subsets, if the intersection of
the C; is empty, then there is a finite subcollection whose intersection
is also empty. Prove that X has the finite intersection property if and
only if X is compact.

Prove that [0, 1] is a compact subspace of R without using the Heine—
Borel theorem.

Prove the Heine-Borel theorem for R.

Prove that (0,1) is not compact.

. Prove that any interval in R is connected.

The Cantor Set. Let X; = [0, 1]. Remove the middle third (1/3,2/3)
of this interval, and let X, be the resulting set. Remove the middle
third of each of the two intervals that make up X2, and let X3 be the
resulting set. If we continue this process, we obtain sets X, for each
positive integer n. Let C' = (._; X,. Prove that C is compact and
totally disconnected, and that X does not contain any intervals.
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This book deals with classical Galois theory, of both finite and infi-
nite extensions, and with transcendental extensions, focusing on
finitely generated extensions and connections with algebraic geom-
etry. The purpose of the book is twofold. First, it is written to be a
textbook for a graduate-level course on Galois theory or field the-
ory. Second, it is designed to be a reference for researchers who
need to know field theory. The book is written at the level of students
who have familiarity with the basic concepts of a group, ring and
vector space theory (including the Sylow theorems), factorization in
polynomial rings, and theorems about bases of vector spaces.
Readers who do not have the proper background can consult the
appendices on ring theory, set theory, group theory, and vector

spaces; these appendices provide the background necessary to
understand the book.

This book features a large number of examples and exercises, cov-
ers a large number of topics, and in most cases provides complete
proofs for the stated results. To help readers grasp field theory, many
concepts are placed in the context of their relationships with other
areas of mathematics.
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