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Preface

Since the publication of Basic Algebra I in 1974, a number of
teachers and students of the text have communicated to the
author corrections and suggestions for improvements as well
as additional exercises. Many of these have been incorporated
in this new edition. Especially noteworthy were the
suggestions sent by Mr. Huah Chu of National Taiwan
University, Professor Marvin J. Greenberg of the University
of California at Santa Cruz, Professor J. D. Reid of Wesleyan
University, Tsuneo Tamagawa of Yale University, and
Professor F. D. Veldkamp of the University of Utrecht. We
are grateful to these people and others who encouraged us to
believe that we were on the right track in adopting the point
of view taken in Basic Algebra I.

Two important changes occur in the chapter on Galois theory,
Chapter 4. The first is a completely rewritten section on finite
fields (section 4.13). The new version spells out the principal
results in the form of formal statements of theorems. In the
first edition these results were buried in the account, which
was a tour de force of brevity. In addition, we have
incorporated in the text the proof of Gauss’ formula for the
number N(n, q) of monic irreducible polynomials of degree n
in a finite field of q elements. In the first edition this formula
appeared in an exercise (Exercise 20, p. 145). This has now
been altered to ask for N(2, q) and
N(3, q) only. The second important change in Chapter 4 is the
addition of section 4.16, “Mod p Reduction,” which gives a
proof due to John Tate of a theorem of Dedekind’s on the
existence of certain cycles in the Galois permutation group of
the roots of an irreducible monic polynomial f(x) with integer
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coefficients that can be deduced from the factorization of f(x)
modulo a prime p. A number of interesting applications of
this theorem are given in the exercises at the end of the
section.

In Chapter 5 we have given a new proof of the basic
elimination theorem (Theorem 5.6). The new proof is
completely elementary, and is independent of the formal
methods developed in Chapter 5 for the proof of Tariski’s
theorem on elimination of quantifiers for real closed fields.
Our purpose in giving the new proof is that Theorem 5.6
serves as the main step in the proof of Hilbert’s
Nullstellensatz given on pp. 424–426 of Basic Algebra II. The
change has been made for the convenience of readers who do
not wish to familiarize themselves with the formal methods
developed in Chapter 5.

At the end of the book we have added an appendix entitled
“Some Topics for Independent Study,” which lists 10 such
topics. There is a brief description of each, together with
some references to the literature. While some of these might
have been treated as integral parts of the text, we feel that
students will benefit more by pursuing them on their own.

The items listed account for approximately 10 pages of added
text. The remaining 15 or so pages added in this edition can
be accounted for by local improvements in the exposition and
additional exercises.

The text of the second edition has been completely reset,
which presented the chore of proofreading a lengthy
manuscript. This arduous task was assumed largely by the
following individuals: Huah Chu (mentioned above),
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Jone-Wen Cohn of Shanghai Normal University, Florence D.
Jacobson (“Florie,” to whom the book is dedicated), and
James D. Reid (also mentioned above). We are deeply
indebted to them for their help.

Hamden, Connecticut

Nathan Jacobson
November 1, 1984
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Preface to the First Edition

It is more than twenty years since the author began the project
of writing the three volumes of Lectures in Abstract Algebra.
The first and second of these books appeared in 1951 and
1953 respectively, the third in 1964. In the period which has
intervened since this work was conceived—around
1950—substantial progress in algebra has occurred even at
the level of these texts. This has taken the form first of all of
the introduction of some basic new ideas. Notable examples
are the development of category theory, which provides a
useful framework for a large part of mathematics,
homological algebra, and applications of model theory to
algebra. Perhaps even more striking than the advent of these
ideas has been the acceptance of the axiomatic conceptual
method of abstract algebra and its pervading influence
throughout mathematics. It is now taken for granted that the
methodology of algebra is an essential tool in mathematics.
On the other hand, in recent research one can observe a return
to the challenge presented by fairly concrete problems, many
of which require for their solution tools of considerable
technical complexity.

Another striking change that has taken place during the past
twenty years—especially since the Soviet Union startled the
world by orbiting its “sputniks”—has been the upgrading of
training in mathematics in elementary and secondary
schools. (Although there has recently been some regression in
this process, it is to be hoped that this will turn out to be only
a temporary aberration.) The upgrading of school
mathematics has had as a corollary a corresponding upgrading
of college mathematics. A notable instance of this is the early
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study of linear algebra, with a view of providing the proper
background for the study of multivariable calculus as well as
for applications to other fields. Moreover, courses in linear
algebra are quite often followed immediately by courses in
“abstract” algebra, and so the type of material which twenty
years ago was taught at the graduate level is now presented to
students with comparatively little experience in mathematics.

The present book, Basic Algebra I, and the forthcoming Basic
Algebra II were originally envisioned as new editions of our
Lectures. However, as we began to think about the task at
hand, particularly that of taking into account the changed
curricula in our undergraduate and graduate schools, we
decided to organize the material in a manner quite different
from that of our earlier books: a separation into two levels of
abstraction, the first—treated in this volume—to encompass
those parts of algebra which can be most readily appreciated
by the beginning student. Much of the material which we
present here has a classical flavor. It is hoped that this will
foster an appreciation of the great contributions of the past
and especially of the mathematics of the nineteenth century.
In our treatment we have tried to make use of the most
efficient modern tools. This has necessitated the development
of a substantial body of foundational material of the sort that
has become standard in text books on abstract algebra.
However, we have tried throughout to bring to the fore
well-defined objectives which we believe will prove
appealing even to a student with little background in algebra.
On the other hand, the topics considered are probed to a depth
that often goes considerably beyond what is customary, and
this will at times be quite demanding of talent and
concentration on the part of the student. In our second volume
we plan to follow a more traditional course in presenting
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material of a more abstract and sophisticated nature. It is
hoped that after the study of the first volume a student will
have achieved a level of maturity that will enable him to take
in stride the level of abstration of the second volume.

We shall now give a brief indication of the contents and
organization of Basic Algebra I. The Introduction, on set
theory and the number system of the integers, includes
material that will be familiar to most readers: the algebra of
sets, definition of maps, and mathematical induction. Less
familiar, and of paramount importance for subsequent
developments, are the concepts of an equivalence relation and
quotient sets defined by such relations. We introduce also
commutative diagrams and the factorization of a map through
an equivalence relation. The fundamental theorem of
arithmetic is proved, and a proof of the Recursion Theorem
(or definition by induction) is included.

Chapter 1 deals with monoids and groups. Our starting point
is the concept of a monoid of transformations and of a group
of transformations. In this respect we follow the historical
development of the subject. The concept of homomorphism
appears fairly late in our discussion, after the reader has had a
chance to absorb some of the simpler and more intuitive
ideas. However, once the concept of homomorphism has been
introduced, its most important ramifications (the fundamental
isomorphism theorems and the correspondence between
subgroups of a homomorphic image and subgroups
containing the kernel) are developed in considerable detail.
The concept of a group acting on a set, which now plays such
an important role in geometry, is introduced and illustrated
with many examples. This leads to a method of enumeration
for finite groups, a special case of which is contained in the
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class equation. These results are applied to derive the Sylow
theorems, which constitute the last topic of Chapter 1.

The first part of Chapter 2 repeats in the context of rings
many of the ideas that have been developed in the first
chapter. Following this, various constructions of new rings
from given ones are considered: rings of matrices, fields of
fractions of commutative domains, polynomial rings. The last
part of the chapter is devoted to the elementary factorization
theory of commutative monoids with cancellation property
and of commutative domains.

The main objective in Chapter 3 is the structure theory of
finitely generated modules over a principal ideal domain and
its applications to abelian groups and canonical forms of
matrices. Of course, before this can be achieved it is
necessary to introduce the standard definitions and concepts
on modules. The analogy with the concept of a group acting
on a set is stressed, as is the idea that the concept of a module
is a natural generalization of the familiar notion of a vector
space. The chapter concludes with theorems on the ring of
endomorphisms of a finitely generated module over a
principal ideal domain, which generalize classical results of
Frobenius on the ring of matrices commuting with a given
matrix.

Chapter 4 deals almost exclusively with the ramifications of
two classical problems: solvability of equations by radicals
and constructions with straightedge and compass. The former
is by far the more difficult of the two. The tool which was
forged by Galois for handling this, the correspondence
between subfields of the splitting field of a separable
polynomial and subgroups of the group of automorphisms,
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has attained central importance in algebra and number theory.
However, we believe that at this stage it is more effective to
concentrate on the problems which gave the original impetus
to Galois’ theory and to treat these in a thoroughgoing
manner. The theory of finite groups which was initiated in
Chapter 1 is amplified here by the inclusion of the results
needed to establish Galois’ criterion for solvability of an
equation by radicals. We have included also a proof of the
transcendence of π since this is needed to prove the
impossibility of “squaring the circle” by straight-edge and
compass. (In fact, since it requires very little additional effort,
the more general theorem of Lindemann and Weierstrass on
algebraic independence of exponentials has been proved.) At
the end of the chapter we have undertaken to round out the
Galois theory by applying it to derive the main results on
finite fields and to prove the theorems on primitive elements
and normal bases as well as the fundamental theorems on
norms and traces.

Chapter 5 continues the study of polynomial equations. We
now operate in a real closed field—an algebraic
generalization of the field of real numbers. We prove a
generalization of the “fundamental theorem of algebra”: the
algebraic closure of for R any real closed field. We
then derive Sturm’s theorem, which gives a constructive
method of determining the number of roots in R of a
polynomial equation in one unknown with coefficients in R.
The last part of the chapter is devoted to the study of systems
of polynomial equations and inequations in several
unknowns. We first treat the purely algebraic problem of
elimination of unknowns in such a system and then establish a
far-reaching generalization of Sturm’s theorem that is due to

21



Tarski. Throughout this chapter the emphasis is on
constructive methods.

The first part of Chapter 6 covers the basic theory of
quadratic forms and alternate forms over an arbitrary field.
This includes Sylvester’s theorem on the inertial index and its
generalization that derives from Witt’s cancellation theorem.
The important theorem of Cartan-Dieudonne on the
generation of the orthogonal group by symmetries is proved.
The second part of the chapter is concerned with the structure
theory of the so-called classical groups: the full linear group,
the orthogonal group, and the sympletic group. In this
analysis we have employed a uniform method applicable to
all three types of groups. This method was originated by
Iwasawa for the full linear group and was extended to
orthogonal groups by Tamagawa. The results provide some
important classes of simple groups whose orders for finite
fields are easy to compute.

Chapter 7 gives an introduction to the theory of algebras, both
associative and non-associative. An important topic in the
associative theory we consider is the exterior algebra of a
vector space. This algebra plays an important role in
geometry, and is applied here to derive the main theorems on
determinants. We define also the regular representation, trace,
and norm of an associative algebra, and prove a general
theorem on transitivity of these functions. For nonassociative
algebras we give definitions and examples of the most
important classes of non-associative algebras. We follow this
with a completely elementary proof of the beautiful theorem
on composition of quadratic forms which is due to Hurwitz,
and we conclude the chapter with proofs of Frobenius’
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theorem on division algebras over the field of real numbers
and Wedderburn’s theorem on finite division algebras.

Chapter 8 provides a brief introduction to lattices and
Boolean algebras. The main topics treated are the
Jordan-Holder theorem on semi-modular lattices; the
so-called “fundamental theorem of projective geometry”;
Stone’s theorem on the equivalence of the concepts of
Boolean algebras and Boolean rings, that is, rings all of
whose elements are idempotent; and finally the Mobius
function of a partially ordered set.

Basic Algebra I is intended to serve as a text for a first course
in algebra beyond linear algebra. It contains considerably
more material than can be covered in a year’s course. Based
on our own recent experience with earlier versions of the text,
we offer the following suggestions on what might be covered
in a year’s course divided into either two semesters or three
quarters. We have found it possible to cover the Introduction
(treated lightly) and nearly all the material of Chapters 1–3 in
one semester. We found it necessary to omit the proof of the
Recursion Theorem in the Introduction, the section on free
groups in Chapter 1, the last section (on “rngs”) in Chapter 2,
and the last section of Chapter 3. Chapter 4, Galois theory, is
an excellent starting point for a second semester’s course. In
view of the richness of this material not much time will
remain in a semester’s course for other topics. If one makes
some omissions in Chapter 4, for example, the proof of the
theorem of Lindemann-Weierstrass, one is likely to have
several weeks left after the completion of this material. A
number of alternatives for completing the semester may be
considered. One possibility would be to pass from the study
of equations in one unknown to systems of polynomial
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equations in several unknowns. One aspect of this is
presented in Chapter 5. A part of this chapter would certainly
fit in well with Chapter 4. On the other hand, there is
something to be said for making an abrupt change in theme.
One possibility would be to take up the chapter on algebras.
Another would be to study a part of the chapter on quadratic
forms and the classical groups. Still another would be to study
the last chapter, on lattices and Boolean algebras.

A program for a course for three quarters might run as
follows: Introduction and Chapters 1 and 2 for a first quarter;
Chapter 3 and a substantial part of Chapter 6 for a second
quarter. This will require a bit of filling in of the field theory
from Chapter 4 which is needed for Chapter 6. One could
conclude with a third quarter’s course on Chapter 4, the
Galois theory.

It is hoped that a student will round out formal courses based
on the text by independent reading of the omitted material.
Also we feel that quite a few topics lend themselves to
programs of supervised independent study.

We are greatly indebted to a number of friends and colleagues
for reading portions of the penultimate version of the text and
offering valuable suggestions which were taken into account
in preparing the final version. Walter Feit and Richard Lyons
suggested a number of exercises in group theory; Abraham
Robinson, Tsuneo Tamagawa, and Neil White have read parts
of the book on which they are experts (Chapters 5, 6, and 8
respectively) and detected some flaws which we had not
noticed. George Seligman has read the entire manuscript and
suggested some substantial improvements. S. Robert Gordon,
James Hurley, Florence Jacobson, and David Rush have used

24



parts of the earlier text in courses of a term or more, and have
called our attention to numerous places where improvements
in the exposition could be made.

A number of people have played an important role in the
production of the book, among them we mention especially
Florence Jacobson and Jerome Katz, who have been of great
assistance in the tedious task of proofreading. Finally, we
must add a special word for Mary Scheller, who cheerfully
typed the entire manuscript as well as the preliminary version
of about the same length.

We are deeply indebted to the individuals we have
mentioned—and to others—and we take this opportunity to
offer our sincere appreciation and thanks.

Hamden, Connecticut

Nathon Jacobson
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INTRODUCTION

Concepts from Set Theory. The Integers

The main purpose of this volume is to provide an introduction
to the basic structures of algebra: groups, rings, fields,
modules, algebras, and lattices— concepts that give a natural
setting for a large body of algebra, including classical algebra.
It is noteworthy that many of these concepts have arisen
either to solve concrete problems in geometry, number theory,
or the theory of algebraic equations, or to afford a better
insight into existing solutions of such problems. A good
example of the interplay between abstract theory and concrete
problems can be seen in the Galois theory, which was created
by Galois to answer a concrete question: “What polynomial
equations in one unknown have solutions expressible in terms
of the given coefficients by
rational operations and extraction of roots?” To solve this we
must first have a precise formulation of the problem, and this
requires the concepts of field, extension field, and splitting
field of a polynomial. To understand Galois’ solution of the
problem of algebraic equations we require the notion of a
group and properties of solvable groups. In Galois’ theory the
results were stated in terms of groups of permutations of the
roots. Subsequently, a much deeper understanding of what
was involved emerged in passing from permutations of the
roots to the more abstract notion of the group of
automorphisms of an extension field. All of this will be
discussed fully in Chapter 4.

Of course, once the machinery has been developed for
treating one set of problems, it is likely to be useful in other
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circumstances, and, moreover, it generates new problems that
appear interesting in their own right.

Throughout this presentation we shall seek to emphasize the
relevance of the general theory in solving interesting
problems, in particular, problems of classical origin. This will
necessitate developing the theory beyond the foundational
level to get at some of the interesting theorems. Occasionally,
we shall find it convenient to develop some of the
applications in exercises. For this reason, as well as others,
the working of a substantial number of the exercises is
essential for a thorough understanding of the material.

The basic ingredients of the structures we shall study are sets
and mappings (or, as we shall call them in this book, maps). It
is probable that the reader already has an adequate knowledge
of the set theoretic background that is required. Nevertheless,
for the purpose of fixing the notations and terminology, and
to highlight the special aspects of set theory that will be
fundamental for us, it seems desirable to indicate briefly some
of the elements of set theory.1 From the point of view of what
follows the ideas that need to be stressed concern equivalence
relations and the factorization of a map through an
equivalence relation. These will reappear in a multitude of
forms throughout our study. In the second part of this
introduction we shall deal briefly with the number system
of the integers and the more primitive system of natural
numbers or counting numbers: 0, 1, 2,…, which serve as the
starting point for the constructive development of algebra. In
view of the current emphasis on the development of number
systems in primary and secondary schools, it seems
superfluous to deal with and in a detailed fashion. We
shall therefore be content to review in outline the main steps
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in one of the ways of introducing and and to give careful
proofs of two results that will be needed in the discussion of
groups in Chapter 1. These are the existence of greatest
common divisors (g.c.d.’s) of integers and “the fundamental
theorem of arithmetic,” which establishes the unique
factorization of any natural number ≠ 0, 1 as a product of
prime factors. Later (in Chapter 2), we shall derive these
results again as special cases of the arithmetic of principal
ideal domains.

0.1 THE POWER SET OF A SET

We begin our discussion with a brief survey of some set
theoretic notions which will play an essential role in this
book.

Let S be an arbitrary set (or collection) or elements which we
denote as a, b, c, etc. The nature of these elements is
immaterial. The fact that an element a belongs to the set S is
indicated by writing a ∈ S (occasionally S a) and the
negation of a ∈ S is written as a S. If S is a finite set with
elements ai, 1 ≤ i ≤ n, then we write S = {a1, a2, …, an}. Any
set S gives rise to another set (S), the set of subsets of S.
Among these are included the set S itself and the vacuous
subset or null set, which we denote as Ø. For example, if S is
a finite set of n elements, say, S = {a1, a2, …, an}, then (S)
consists of Ø, the n sets {ai} containing single elements, n(n –
1)/2 sets {ai, aj}, i ≠ j, containing two elements,

subsets
containing i elements, and so on. Hence the cardinality of
(S), that is, the number of elements in (S) is
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We shall call (S), the power set of the set S.2 Often we shall
specify a subset of S by a property or set of properties. The
standard way of doing this is to write

(or, if S is clear, A = {x| …}) where … lists the properties
characterizing A. For example, if denotes the set of integers,
the = {x ∈ |x ≥ 0} defines the subset of non-negative
integers, or natural numbers.

If A and B ∈ (S) (that is, A and B are subsets of S) we say
that A is contained in B or is a subset of B (or B contains A)
and denote this as A ⊂ B (or B ⊃ A) if every element a in A is
also in B. Symbolically, we can write this as a ∈ A => a ∈ B
where the => is read as “implies.” The statement A = B is
equivalent to the two statements A ⊃ B and B ⊃ A
(symbolically, A = B A ⊃ B and B ⊃ A where reads “if
and only if”). If A ⊂ B and A ≠ B we write A B and say that
A is a proper subset of B. Alternatively, we can write B A.

If A and B are subsets of S, the subset of S of elements c such
that c ∈ A and c ∈ B is called the intersection of A and B. We
denote this subset as A ∩ B. If there are no elements of S
contained in both A and B, that is, A ∩ B = Ø,
then A and B are said to be disjoint (or non-overlapping). The
union (or logical sum) A ∪ B of A and B is the subset of
elements d such that either d ∈ A or d ∈ B. An important
property connecting ∩ and ∪ is the distributive law:
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This can be indicated pictorially by

where the shaded region represents (1). To prove (1), let x ∈
A ∩ (B ∪ C). Since x ∈(B ∪ C) either x ∈ B or x ∈ C, and
since x ∈ A either x ∈ (A ∩ B) or x ∈ (A ∩ C). This shows
that A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C). Now let y ∈ (A ∩ B)
∪ (A ∩ C) so either y ∈ A ∩ B or y ∈ A ∩ C. In any case y ∈
A and y ∈ B or y ∈ C. Hence y ∈ A ∩ (B ∪ C). Thus (A ∩ B)
∪ (A ∩ C) ⊂ A ∩ (B ∪ C). Hence we have both A ∩ (B ∪ C)
⊂ (A ∩ B) ∪ (A ∩ C) and (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)
and consequently we have (1).

We also have another distributive law which dualizes (1) in
the sense that it is obtained from (1) by interchanging ∪ and
∩:

It is left to the reader to draw a diagram for this law and carry
out the proof. Better still, the reader can show that (2) is a
consequence of (1)—and that, by symmetry, (1) is a
consequence of (2).
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Intersections and unions can be defined for an arbitrary set of
subsets of a set S. Let Γ be such a set of subsets ( = subset of

(S)). Then we define A ∈ Γ A = {x|x ∈ A for every A in Γ}

and A ∈ Γ A = {x|x ∈ A for some A in Γ}. If Γ is finite, say,
Γ = {A1, A2, …, An} then we write also or A1 ∩ A2 ∩
… ∩ An for the intersection and we use a similar designation
for the union. It is easy to see that the distributive laws carry
over to arbitrary intersections and unions:

.

0.2 THE CARTESIAN PRODUCT SET. MAPS

The reader is undoubtedly aware of the central role of the
concept of function in mathematics and its applications. The
case of interest in beginning calculus
real line ; usually, an open or closed interval or the whole of

; and a rule which associates with every element x of this
subset a unique real number f(x). Associated with a function
as thus “defined” we have the graph in the two-dimensional
number space (2) consisting of the points (x, f(x)). We soon
realize that f is determined by its graph and that the
characteristic property of the graph is that any line parallel to
the y-axis through a point x of the domain of definition (on
the x-axis) meets the graph in precisely one point.
Equivalently, if (x, y) and (x, y′) are on the graph then y = y′.
It is clear that the notion of a graph satisfying this condition is
a precisely defined object whereas the intuitive definition of a
function by a “rule” is not. We are therefore led to replace the
original definition by the definition of a graph.

We shall now proceed along these lines, and we shall also
substitute for the word “function” the geometric term “map”
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which is now more commonly used in the contexts we shall
consider. Also, we wish to pass from real-valued functions of
a real variable to arbitrary maps. First, we need to define the
(Cartesian) product set S × T of two arbitrary sets S and T.
This is the set of pairs (s, t), s ∈ S, t ∈ T. The sets S and T
need not be distinct. In the product S × T, the elements (s, t)
and (s′, t′) are regarded as equal if and only if s = s′ and t = t′.
Thus if S consists of m elements s1, s2, …, sm and T consists
of n elements t1, t2, …, tn, then S × T consists of the mn
elements (si, tj).

We are now ready to define a map of a set S into a set T. This
consists of the set S, called the domain of the map, the set T,
called the co-domain, and a subset α of S × T (the graph)
having the following two properties:

1. For any s ∈ S there exists a t ∈ T such that (s, t) ∈ α.

2. If (s, t) and (s, t′) ∈ α then t = t′.

The second property is called “single-valuedness.” In
specifying a definition one often says that “the function is
well-defined” when one is assured that condition 2 holds.
Together, conditions 1 and 2 state that for every s ∈ S there is
a unique t ∈ T such that (s, t) ∈ α. The classical notation for
this t is α(s). One calls this the image of s under α. In many
books on algebra (including our previous ones) we find the
notations sα and sα for α(s). This has advantages when we
deal with the composite of maps. However, since the
consensus clearly favors the classical notation α(s), we have
decided to adopt it in this book.
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Two maps are regarded as equal if and only if they have the
same domain, the same co-domain and the same graphs. The
set of maps “from S to T,” that is, having domain S and
co-domain T will be denoted as TS.3

If A is a subset of S, then we write α(A) = {α(a)|a ∈ A} and
call this the image of A under α. In particular, we have α(S),
which is called the image (or range) of the map. We shall
denote this also as im α. Usually, when the domain and
co-domain are clear, we shall speak of the “map α” (or the
“function α”) even though, strictly speaking, α is just one
component of the map.

If S1 is a subset of S and α is a map of S into T, then we get a
map of S1 to T by restricting the domain to S1. This is the map
of S1 to T whose graph is the subset of S1 × T of elements (s1,
α(s1)), s1 ∈ S1. We call this map the restriction of α to S1 and
denote it as α|S1. Turning things around we shall say that a
map α of S to T is an extension of the map β of S1 to T if β =
α|S1.

As was mentioned, the terms “map” and “mapping” come
from geometry. We shall now give a couple of geometric
examples. The first is described by the diagram
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Here the lines S and T are the domain and co-domain
respectively, O is a fixed point not on S or T and we “map”
the point P on S into the point of intersection P′ of the line OP
with T. Such mappings, called perspectivities, play an
important role in projective geometry. From our point of
view, the map consists of the sets S and T and the subset of
points (P, P′) of S × T. The second example, from Euclidean
geometry, is orthogonal projection on a line. Here the domain
is the plane, the co-domain is the line, and one maps any point
P in the plane on the foot of the perpendicular from P to the
given line:

(It is understood that if P is on l then P′ = P.) As in the
examples, it is always a good idea to keep the intuitive picture
in mind when dealing with maps,
reserving the more precise definition for situations in which a
higher degree of rigor appears appropriate. Geometry
suggests also denoting a map from S to T by α: S → T, or S
T, and indicating the definition of a particular map by x → y
where y is the image of x under the given map: e.g., P → P′ in
the foregoing example. In the special case in which the
domain and co-domain coincide, one often calls a map from S
to S a transformation of the set S.
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A map S T is called surjective if im α = T, that is, if the
range coincides with the co-domain. S T is injective if
distinct elements of S have distinct images in T, that is, if s1 ≠
s2 ⇒ α(s1) ≠ α(s2). If α is both injective and surjective, it is
called bijective (or α is said to be a one to one correspondence
between S and T). For example, the perspectivity map defined
above is bijective.

Let S T and T U. Then we define the map S U as the
map having the domain S, the co-domain U, and the graph the
subset of S × U of elements (s, β(α(s))), s ∈ S. Thus, by
definition,

We call this the composite (or product, or sometimes
resultant) of α and β (β following α).4 It is often useful to
indicate the relation γ = βα by saying that the triangle

is commutative. Similarly, we express the fact that βα = δγ for
by spacing that the rectangle
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is commutative. In general, commutativity of a diagram of
maps, when it makes sense, means that the maps obtained by
following the diagram from one initial point to a terminal
point along each displayed route are the same. As another
example, commutativity of

means that βα = ζ = ∈(δγ).

Composition of maps satisfies the associative law: if
, then γ(βα) = (γβ)α. We note first

that both of these maps have the same domain S and the same
co-domain V. Moreover, for any s ∈ S we have
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so γ(βα) and (γβ)α are identical. This can be illustrated by the
following diagram:

The associative law amounts to the statement that if the
triangles STU and TUV are commutative then the whole
diagram is commutative.

For any set S one defines the identity map 1s (or 1 if S is
clear) as S S where 1s is the subset of elements (s, s) of S ×
S. This subset is called the diagonal of S × S. If S T one
checks immediately that 1Tα = α = α1S. We now state the
following important result:

S T is bijective if and only if there exists a map T S such
that βα = 1S and αβ = 1T.

Proof. Suppose S T is bijective. Consider the subset β of T
× S of elements (α(s), s). If t ∈ T, surjectivity of α implies
there is an s in S such that α(s) = t. Hence condition 1 in the
definition of a map from T to S holds for
the set β of pairs (α(s), s)∈ T × S. Condition 2 holds for β by
the injectivity of α, since if (t, s1) and (t, s2) are in β, then
α(s1) = t and α(s2) = t, so s1 = s2. Hence we have the map T
S. If s ∈ S, the facts that (s, α(s))∈ α and (α(s),s) ∈ β imply
that β(α(s)) = s. Thus βα = 1s. If t ∈ T, we have t = α(s), s ∈ S,
and (t, s) ∈ β, so β(t) = s ∈ S. Hence α(β(t)) = α(s) = t, so αβ =
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1T. Conversely, suppose S T, T S satisfy βα = 1S, αβ =
1T. If t ∈ T, let s = β(t). Then α(s) = α(β(t)) = t; hence α is
surjective. Next suppose α(s1) = α(s2) for si ∈ S. Then s1 =
β(α(s1)) = β(α(s2)) = s2, and α is injective.

The map β satisfying βα = 1s and αβ = 1T is unique since if T
S satisfies the same condition, β′ α = 1S, αβ' = 1T, then

We shall now denote β as α–1 and call this the inverse of the
(bijective) map α. Clearly the foregoing result shows that α–1

is bijective and (α–1)–1 = α.

As a first application of the criterion for bijectivity we give a
formal proof of a fact which is fairly obvious anyhow: the
product of two bijective maps is bijective. For, let S T and
T U be bijective. Then we have the inverses

and the composite map α–1β–1: U → S.
Moreover,

Also,

Hence, α–1β–1 is an inverse of βα, that is
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This important formula has been called the
“dressing-undressing principle”: what goes on in dressing
comes off in the reverse order in undressing (e.g., socks and
shoes).

It is important to extend the notion of the Cartesian product of
two sets to the product of any finite number of sets.5 If S1, S2,
…, Sr are any sets, then Si or S1 × S2 × … × Sr, is defined to
be the set of r-tuples (s1, s2, …, sr) where the ith component
si ∈ Si. Equality is defined by (s1, s2, …, sr) = (s′1, s′2, …, s′r)
if Si = s′i for every i. If all the Si = S then we write S(r) for
Si. The concept of a product set permits us to define the
notion of a function of two or more variables. For example, a
function of two variables in S with values.
in T is a map of S × S to T. Maps of S(r) to S are called r-ary
compositions (or r-ary products) on the set S. The structures
we shall consider in the first two chapters of this book
(monoids, groups and rings) are defined by certain binary ( =
2-ary) compositions on a set S. At this point we shall be
content merely to record the definition and to point out that
we have already encountered several instances of binary
products. For example, in (S), the power set of a set S, we
have the binary products A ∪ B and A ∩ B (that is, (A, B) →
A ∪ B and (A, B)→ A ∩ B).

EXERCISES

1. Consider the maps f: X → Y, g:Y → Z. Prove: (a) f and g
injective ⇒ gf injective, (b) gf injective ⇒ f injective, (c) f
and g surjective ⇒ gf surjective. (d) gf surjective ⇒ g
surjective. (e) Give examples of a set X and a map f: X → X
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that is injective (surjective) but not surjective (injective), (f)
Let gf be bijective. What can be said about f and g
respectively (injective, surjective)?

2. Show that S T is injective if and only if there is a map T
S such that βα = 1S, surjective if and only if there is a map

T S such that αβ = 1T. In both cases investigate the
assertion: if β is unique then α is bijective.

3. Show that S T is surjective if and only if there exist no
maps β1, β2 of T into a set U such that β1 ≠ β2 but β1α = β2α.
Show that α on is injective if and only if there exist no maps
γ1, γ2 of a set U into S such that γ1 ≠ γ2 but αγ1 = αγ2.

4. Let S T and let A and B be subsets of S. Show that α(A ∪
B) = α(A) ∪ α(B). and α(A ∩ B) ⊂ α(A) ∩ α(B). Give an
example to show that α(A ∩ B) need not coincide with α(A) ∩
α(B).

5. Let S T, and let A be a subset of S. Let the complement of
A in S, that is, the set of elements of S not contained in A, be
denoted as ~ A. Show that, in general, α(~A) ~(α(A)). What
happens if α is injective? Surjective?

0.3 EQUIVALENCE RELATIONS. FACTORING A MAP
THROUGH AN EQUIVALENCE RELATION
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We say that a (binary) relation is defined on a set S if, given
any ordered pair (a, b) of elements of S, we can determine
whether or not a is in the given relation to b. For example, we
have the relation of order “>” in the set of real numbers.
Given two real numbers a and b, presumably we can
determine whether or not a > b. Another order relation is the
lexicographic ordering of words, which determines their
position in a dictionary. Still another example of a relation is
the first-cousin relation among people (a and b have a
common grand
parent). To abstract the essential element from these
situations and similar ones, we are led to define in a formal
way a (binary) relation R on a set S to be simply any subset
of the product set S × S. If (a, b) ∈ R, then we say that “a is in
the relation R to b” and we write aRb. Of particular
importance for what follows are the equivalence relations,
which we now define.

A relation E on a set S is called an equivalence relation if the
following conditions hold for any a, b, c, in S:

1. aEa (reflexive property).

2. aEb ⇒ bEa (symmetry).

3. aEb and bEc ⇒ aEc (transitivity).

An example of an equivalence relation is obtained by letting S
be the set of points in the plane and defining aEb if a and b lie
on the same horizontal line. Another example of an
equivalence relation E′ on the same S is obtained by
stipulating that aE′b if a and b are equidistant from the same
point (e.g., the origin 0).
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We shall now show that the concept of an equivalence
relation is equivalent to that of a partition of a set. If S is a set
we define a partition π(S) of S to be a set of non-vacuous
subsets of S (that is, π(S) is a subset of (S) not containing Ø)
such that the union of the sets in π(S) is the whole of S and
distinct sets in π(S) are disjoint. The subsets making up π(S)
are called the blocks of the partition. We shall now show that
with any equivalence relation E on S we can associate a
partition πE(S) and with any partition π we can associate an
equivalence relation Eπ. Moreover, the relation between E
and π are reciprocal in the sense that πEπ = π and EπE = E.
First, suppose E is given. If a ∈ S we let E (or simply ) =
{b ∈ S|bEa}. We call E the equivalence class (relative to E
or E-equivalence class) determined by a. In the first example
considered in the last paragraph, the equivalence class E is
the horizontal line through a and in the second, the
equivalence class is the circle through a having center O:

In both examples it is apparent that the set of equivalence
classes is a partition of the plane. This is a general
phenomenon. Let { |a ∈ S} be the set of equivalence classes
determined by E. Since aEa, a ∈ ; hence every element of
S is
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contained in an equivalence class and so a ∈ s = S. We
note next that = if and only if aEb. First, let aEb and let
c ∈ . Then cEa and so, by condition 3, cEb. Then c ∈ .
Then ⊂ . Also, by condition 2, bEa and so ⊂ . Hence

= . Conversely, suppose = . Since a ∈ = we see
that aEb, by the definition of . Now suppose and are
not disjoint and let c ∈ ∩ . Then cEa and cEb. Hence
= = . We therefore see that distinct sets in the set of
equivalence classes are disjoint. Hence { |a ∈ S} is a
partition of S. We denote this as πE.

Conversely, let π be any partition of the set S. Then, if a ∈ S,
a is contained in one and only one A ∈ π. We define a relation
Eπ by specifying that aEπb if and only if a and b are
contained in the same A ∈ π. Clearly this relation is reflexive,
symmetric, and transitive. Hence Eπ is an equivalence
relation. It is clear also that the equivalence class of a
relative to Eπ is the subset A in the partition π containing a.
Hence the partition πEπ associated with Eπ is the given π. It is
equally clear that if E is a given equivalence relation and πE =
{ |a ∈ S}, then the equivalence relation EπE in which
elements are equivalent if and only if they are contained in
the same is the given relation E.

If E is an equivalence relation, the associated partition π = {
|a ∈ S} is called the quotient set of S relative to the relation

E. We shall usually denote π as S/E. We emphasize again that
S/E is not a subset of S but rather of the power set (S) of S.
We now call attention to the map v of S into S/E defined by
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We call this the natural map of S to the quotient set S/E.
Clearly, v is surjective.

We shall consider next some important connections between
maps and equivalence relations. Suppose S T. Then we can
define a relation Eα in S by specifying that aEαb if and only if
α(a) = α(b). It is clear that this is an equivalence relation in S.
If c ∈ T we put

and we call this the inverse image of the element c. More
generally, if C is a subset of T, then we define

Clearly, . Also α–1(c) = Ø if c im α. On
the other hand, if c = α(a) for some a ∈ S, then α–1(c) =
α–1(α(a)) = {b|α(b) = α(a)} and this is just the equivalence
class Eα in S determined by the element a. We shall refer to
this subset of S also as the fiber over the element c ∈ im α.
The set of these fibers constitutes the partition of S
determined by Eα, that is, they are the elements of the
quotient set S/Eα.

For example, let α be the orthogonal projection map of the
plane onto a line l in the plane, as on page 6. If c is on the line
the fiber α–1(c) is the set of points on the line through c
perpendicular to l.
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Note that we can define a bijective map of the set of these
fibers into l by mapping the fiber α–1(c) into the point c,
which is the point of intersection of α–1(c) with the line l.

In the general case α defines a map of S/Eα into T:
abbreviating Eα = α–1(α(a)) to we simply define by

Since = if and only if α(a) = α(b), it is clear that the
right-hand side is independent of the choice of the element a
in and so, indeed, we do have a map. We call the map of
S/Eα induced by α. This is injective since ( ) = ( ) gives
α(a) = α(b) and this implies = , by the definition of Eα.
Of course, if α is injective to begin with, then aEαb (α(a) =
α(b)) implies a = b. In this case S/Eα can be identified with S
and can be regarded as the same as α.

We now observe that (v(a)) = α(a) = α(a). Hence we have
the factorization
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of the given map as a product of the natural map v of S to
S/Eα and the induced map of S/Eα to T. The map is
injective and v is surjective. The relation (7) is equivalent to
the commutativity of the diagram

Since v is surjective it is clear that im α = im . Hence is
bijective if and only if α is surjective. We remark finally that

is the only map which can be defined from S/Eα to T to
make (8) a commutative diagram. Let β:S/Eα → T satisfy βv =
α. Then β( ) = β(v(a) = α(a). Hence β = , by the definition
(6).

There is a useful generalization of these simple
considerations. Suppose we are given a map α:S → T and an
equivalence relation E on S. We shall say that α is compatible
with E if aEb for a, b in S implies α(a) = α(b). In this case we
can define a map of = S/E to T by : ≡ E → α(a).
Clearly this is well defined, and if v denotes the natural
surjection a → , then α = v, that is, we have the
commutativity of

46



In this case the induced map need not be injective. In fact
is injective if and only if E = Eα.

The results which we have developed in this section, which at
this point may appear to be a tedious collection of trivialities,
will play a fundamental role in what follows.

EXERCISES

1. Let = {0, 1,2, …}. Show that the following are partitions
of :

(i) {0, 2, 4, …, 2k, …}, {1, 3, 5, …, 2k + 1, …},(k ∈ )

(ii) {0, 3, 6, …, 3k,…},{1, 4, 7, …, 3k + 1, …},{2, 5, 8, …,
3k + 2, …}.

2. Let be as in 1 and let (2) = x . On (2) define (a, b)
~ (c, d) if a + d = b + c. Verify that ~ is an equivalence
relation.
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3. Let S be the set of directed line segments PQ (initial point
P, terminal point Q) in plane Euclidean geometry. With what
equivalence relation on S is the quotient set the usual set of
plane vectors?

4. If S and T are sets we define a correspondence from S to T
to be a subset of S × T. (Note that this encompasses maps as
well as relations.) If C is a correspondence from S to T, C–1 is
defined to be the correspondence from T to S consisting of the
points (t, s) such that (s, t) ∈ C. If C is a correspondence from
S to T and D is a correspondence from T to U, the
correspondence DC from S to U is defined to be the set of
pairs (s, u) ∈ S × U for which there exists a t ∈ T such that (s,
t) ∈ C and (t, u) ∈ D. Verify the associative law for
correspondences: (ED)C = E(DC), the identity law C1S = C =
1TC.

5. Show that the conditions that a relation E on S is an
equivalence are: (i) E ⊃ 1S, (ii) E = E–1, (iii) E ⊃ EE.

6. Let C be a binary relation on S. For r = 1, 2, 3, …. define
Cr = {(s, t) | for some s1, …, sr – 1 ∈ S, one has sCs1,sCs2, …,
sr – 1Ct}. Let

Show that E is an equivalence relation, and that every
equivalence relation on S containing C contains E. E is called
the equivalence relation generated by C.
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7. How many distinct binary relations are there on a set S
of 2 elements? of 3 elements? of n elements? How many of
these are equivalence relations?

8. Let S T U. Show that if U1 is a subset of U then
(βα)–1(U1) = α–1(β–1(U1)).

9. Let S T and let C and D be subsets of T. Show that
α–1(C ∪ D) = α–1(C) ∪ α–1(D) and α–1(C ∩ D) = α–1(C) ∩
α–1(D)(cf. exercise 4, p. 10).

10. Let be the set of complex numbers, + the set of
non-negative real numbers. Let f be the map z → |z| (the
absolute value of z) of into +. What is the equivalence
relation on defined by f?

11. Let * denote the set of complex numbers ≠ 0 and let
g be the map z → |z|–1z. What is the equivalence relation on
* defined by g?

0.4 THE NATURAL NUMBERS

The system of natural numbers, or counting numbers, 0, 1, 2,
3, … is fundamental in algebra in two respects. In the first
place, it serves as a starting point for constructing more
elaborate systems: the number systems of integers, of rational
numbers and ultimately of real numbers, the ring of residue
classes modulo an integer, and so on. In the second place, in
studying some algebraic structures, certain maps of the set of
natural numbers into the given structure play an important
role. For example, in a structure S in which an associative
binary composition and a unit are defined, any element a ∈ S
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defines a map n → an where a0 = 1, a1 = a, and ak = ak – 1a.
Such maps are useful in studying the structure S.

A convenient and traditional starting point for studying the
system of natural numbers is an axiomatization of this
system due to Peano. From this point of view we begin with a
non-vacuous set , a particular element of , designated as 0,
and a map a → a+ of into itself, called the successor map.

Peano’s axioms are:

1. 0 ≠ a+ for any a (that is, 0 is not in the image of
under a → a+).

2. a → a+ is injective.

3. (Axiom of induction.) Any subset of which contains
0 and contains the successor of every element in the given
subset coincides with .

Axiom 3 is the basis of proofs by the first principle of
induction. This can be stated as follows. Suppose that for each
natural number n we have associated a statement E(n) (e.g., 0
+ l + 2 + … + n = n(n + l)/2). Suppose E(0) is true and E(r+)
is true whenever E(r) is true. (The second part is called the
inductive step.) Then E(n) is true for all n ∈ . This follows
directly from axiom 3. Let S be the subset of of s for which
E(s) is true. Then 0 ∈ S and if r ∈ S, then so does r+. Hence,
by axiom 3, S = , so E(n) holds for all natural numbers.

Proofs by induction are very common in mathematics and are
undoubtedly familiar to the reader. One also encounters quite
frequently—without being conscious of it—definitions by
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induction. An example is the definition mentioned above of
an by a0 = 1, ar + 1 = ara. Definition by induction is not as
trivial as it may appear at first glance. This can be made
precise by the following

RECURSION THEOREM. Let S be a set, φ a map of S into
itself a an element of S. Then there exists one and only one
map f from to S such that

Proof. Consider the product set × S. Let Γ be the set of
subsets U of × S having the following two properties: (i) (0,
a) ∈ U, (ii) if (n, b)∈ U then (n+, φ(b)) ∈ U. Since × S has
these properties it is clear that Γ ≠ Ø. Let f be the intersection
of all the subsets U contained in Γ. We proceed to show that f
is the desired function from to S. In the first place, it
follows by induction that if n ∈ N, there exists a b ∈ S such
that (n, b) ∈ f. To prove that f is a map of to S it remains to
show that if (n, b) and (n, b′) ∈ f then b = b′. This is
equivalent to showing that the subset T of n ∈ such that (n,
b) and (n, b′) ∈ f imply b = b′ is all of . We prove this by
induction. First, 0 ∈ T. Otherwise, we have (0, a) and (0, a′)
∈ f but a ≠ a′. Then let f′ be the subset of f obtained by
deleting the element (0, a′) from f. Then it is immediate that f′
satisfies the defining conditions (i) and (ii) for the sets U ∈ Γ.
Hence f' ⊃ f. But f' f since f' was obtained by dropping (0,
a′) from f. This contradiction proves that 0 ∈ T. Now suppose
we have a natural number r such that r ∈ T but r+ T. Let (r,
b) ∈ f. Then (r+, φ(b)) ∈ f and since r+ T, we have a c ≠
φ(b) such that (r+, c) ∈ f. Now consider the subset f' of f
obtained by deleting (r+, c). Since r+ ≠ 0 and f contains (0, a),
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f′ contains (0, a). The same argument shows that if n ∈ and
n ≠ r and (n, d) ∈ f′ then (n+, φ(d)) ∈ f′. Now suppose (r, b′)
∈ f′ then b' = b and (r+, φ(b)) ∈ f' since (r+, φ(b)) was not
deleted in forming f′ from f. Thus we see that f′ ∈ Γ and this
again leads to the contradiction: f′ ⊃ f, f′ f. We have
therefore proved that if r ∈ T then r+ ∈ T. Hence T = by
induction, and so we have proved the existence of a function f
satisfying the given conditions. To prove uniqueness, let g be
any map satisfying the conditions. Then g ∈ Γ so g ⊃ f. But g
⊃ f for two maps f and g implies f = g, by the definition of a
map. Hence f is unique.

Addition and multiplication of natural numbers can be
defined by the recursion theorem. Addition of m to n can be
defined by taking a = m and φ to be the successor map n →
n+. This amounts to the two formulas:

For multiplication by m we use a = 0 and φ is the map n → n
+ m. Thus we have

It can be proved that we have the associative, commutative,
and cancellation laws of addition and multiplication:7
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We also have the fundamental rule connecting addition and
multiplication:

A fundamental concept for the system is the relation of
order defined by stating that the natural number a is greater
than or equals the natural number b (notation: a ≥ b or b ≤ a)
if the equation a = b + x has a solution x ∈ . The following
are the basic properties of this relation:

We also have the following well-ordering property of the set
of natural numbers.

Proof. Let M be the set of natural numbers m such that m ≤ s
for every s ∈ S. Then 0 ∈ M, and if s ∈ S then s+ M. Hence
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M ≠ and so, by the axiom of induction, there exists a
natural number l ∈ M such that l+ M. Then l is the required
number, since l ≤ s for every s ∈ S. Moreover, l ∈ S since
otherwise l < s for every s ∈ S and then l+ ≤ s for every s ∈ S.
This contradicts l+ M.

The well-ordering property is the basis of the following
second principle of induction. Suppose that for every n ∈
we have a statement E(n). Suppose it can be shown that E(r)
is true for a particular r if E(s) is true for all s < r. (Note that
this implies that it can be shown that E(0) is true.) Then E(n)
is true for all n. To prove this we must show that the subset F
of of r such that E(r) is false is vacuous. Now, if F is not
vacuous, then, by O4, F contains a least element t. Then E(t)
is false but E(s) is true for every s < t. This contradicts the
hypothesis and proves F = Ø.

The main relations governing order and addition and order
and multiplication are given in the following statements:

EXERCISES

1. Prove that if a ≥ b and c ≥ d then a + c ≥ b + d and ac ≥ bd.

2. Prove the following extension of the first principle of
induction: Let s ∈ and assume that for every n ≥ s we have
a statement E(n). Suppose E(s) holds, and if E(r) holds for
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some r ≥ s, then E(r+) holds. Then E(n) is true for all n ≥ s.
State and prove the analogous extension of the second
principle of induction.

3. Prove by induction that if c is a real number ≥ – 1 and n ∈
then (1 + c)n ≥ 1 + nc.

4. (Henkin.) Let N = {0, 1} and define 0+ = 1, 1+ = 1. Show
that N satisfies Peano’s axioms 1 and 3 but not 2. Let φ be the
map of N into N such that φ(0) = 1 and φ( 1) = 0. Show that
the recursion theorem breaks down for N and this φ, that is,
there exists no map f of N into itself satisfying f(0) = 0, f(n+) =
ϕ(f(n)).

5. Prove A1 and M2.

0.5 THE NUMBER SYSTEM OF INTEGERS

Instead of following the usual procedure of constructing this
system by adjoining to the negatives of the elements of
we shall obtain the system of integers in a way that seems
more natural and intuitive. Moreover, the method we shall
give is analogous to the standard one for constructing the
number system of rational numbers from the system .

Our starting point is the product set × In this set we
introduce the relation (a, b) ~ (c, d) if a + d = b + c. It is easy
to verify that this is an equivalence relation. What we have in
mind in making this definition is that the equivalence class
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determined by (a, b) is to play the role of the difference
of a and b. If we represent the pair (a, b) in the usual way as
the point with abscissa a and ordinate b, then is the set of
points with natural number coordinates on the line of slope 1
through (a, b). We call the equivalence classes (a, b) integers

and we denote their totality as . As a preliminary to defining
addition we note that if (a, b) ~ (a′, b′) and (c, d) ~ (c′, d′) then

for the hypotheses are that a + b′ = a′ + b and c + d′ = c′ + d.
Hence which means that (a + c,
b + d) ~ (a′ + c′, b′ + d′). It follows that the integer

is uniquely determined by and . We
define this integer to be sum of the integers and :

It is easy to verify that the rules Al, A2, and A3 hold. Also we
note that (a, a) ~ (b, b) and if we set 0 = (not to be
confused with the 0 of ), then
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Finally, every integer has a negative: If x = , then we
denote (which is independent of the representative (a, b)
in ) as – x. Then we have

We note next that if (a, b) ~ (a′, b′) and (c, d) ~ (c′, d′), then a
+ b′ = a′ + b, c + d′ = c′ + d. Hence

so that

The cancellation law gives

which shows that (ac + bd, ad + bc) ~ (a′c′ + b′d′, a′d′ + b′c′).
Hence, if we define

we obtain a single-valued product. It can be verified that this
is associative and
commutative and distributive with respect to addition. The
cancellation law holds if the factor z to be cancelled is not 0.
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We regard ≥ if a + d ≥ b + c. The relation is well
defined (that is, it is independent of the choice of the
representatives in the equivalence classes). One can verify
easily that Ol, O2, O3, and OA hold.

The property OM has to be modified to state:

We now consider the set ′ of non-negative integers. By
definition, this is the subset of of elements x ≥ 0, hence, of
elements x of the form . It is immediate that (b + u, b)
~ (c + u, c). Now let u be a natural number (that is, an element
of ) and define u′ = . Our remarks show that u → u′
defines a map of into whose image is ′. Moreover, if (b +
u, b) ~ (c + v, c), then b + u + c = b + c + v so u = v. Thus u →
u′ is injective. It is left to the reader to verify the following
properties:

These and the fact that u → u′ is bijective of into ′ imply
that these two systems are indistinguishable as far as the basic
operations and relation of order are concerned. In view of this
situation we can now discard the original system of natural
numbers and replace it by the set of non-negative integers, a
subset of . Also we can appropriate the notations originally
used for for this subset of . Hence from now on we denote
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the latter as and its elements as 0, 1, 2,…. It is easily seen
that the remaining numbers in can be listed as – 1, –2,….

EXERCISES

1. Show that x ≥ y ⇔ –x ≤ –y.

2. Prove that any non-vacuous set S of integers which is
bounded below (above), in the sense that there exists an
integer b (B) such that b ≤ s (B ≥ s), s ∈ S, has a least
(greatest) element.

3. Define |x| = x if x ≥ 0 and |x| = – x if x < 0. Prove that |xy| =
|x| |y| and |x + y| ≤ |x| + |y|.

0.6 SOME BASIC ARITHMETIC FACTS ABOUT

We shall say that the integer b is a factor or divisor of the
integer a if there exists a c ∈ such that a = bc. Also a is
called a multiple of b and we denote the relation by b|a.
Clearly, this is a transitive relation. If b|a and a|b, we have a =
bc and b = ad. Then a = adc. If a ≠ 0 the cancellation law
gives dc = 1. Then |d| |c| = 1 and d = ± 1, c = ±1. This shows
that if b|a and a|b and a ≠ 0, then b = ± a. An integer p is
called a prime (or irreducible) if p ≠ 0, ±1 and the only
divisors of p are ±p and ±1. If p is a prime so is –p.

The starting point for the study of number theory is the fact
that every positive integer ≠ 1 can be written in one and only
one way as a product of positive primes: a = p1p2 … ps, Pi
primes, s ≥ 1, and the uniqueness means “uniqueness apart
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from the order of the factors.” This result is called the
fundamental theorem of arithmetic. We shall now give a
proof (due to E. Zermelo) of this result based on
mathematical induction.

Let n be an integer > 1. Either n is a prime, or n = n1n2 where
n1 and n2 are > 1 and hence are < n. Hence, assuming that
every integer > 1 and < n is a product of positive primes, we
have that n1 and n2 are such products, and consequently n =
n1n2 is a product of positive primes. Then (by the second
principle of induction) every integer > 1 is a product of
positive primes. It remains to prove uniqueness of the
factorization. Let n = p1p2… ps = q1q2… qt where the pi and
qj are positive primes. First suppose p1 = q1. Cancelling this
factor, we obtain m = p2… ps = q2… qt < n. If m = 1 we are
through; otherwise, assuming the property for integers m ≠ 1,
m < n, that is, that p2,… ps are the same as q2,… ,qt except
possibly for order, it is clear that this is true also for p1 p2,…,
ps and q1 q2,…, qt. Thus uniqueness follows for n. Next
assume p1 ≠ q1, say p1 < q1. In this case it is clear that t > 1
and 0 < p1q2 …qt < n = q1q2 … qt Subtracting p1q2 … qt
from n gives

Since t > l, m > l.We obtain two factorizations of m into
positive primes by factoring p2 … ps – q2 … qt and q1 – p1
into positive primes. In the first p1 occurs, and in the second
the primes occurring are q2,…, qt and the primes that divide
q1 – p1. Assuming that the result holds for m, p1 coincides
with one of the primes q2,…, qt or it divides q1 – p1. The
latter is excluded since it implies P1|q1, so p1 = q1. Hence p1
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= qj for some j ≥ 2. Writing this qj as the first factor we obtain
a reduction to the previous case.8

The fundamental theorem of arithmetic can also be stated in
the form:

Any integer ≠ 0, ± 1 can be written as a product of primes.
Apart from order and signs of the factors this factorization is
unique.

The result can be stated also in terms of the number system
of rational numbers.9 In this context it states that every
rational number ≠ 0, ± 1 can be written in the form

where the pi are prime integers and the ?i = ± 1.
This is unique except for signs and order.

If n ∈ we can write n = ± p1p2 … ps where the pi are
positive primes (assuming always that n ≠ 0, ± 1).
Rearranging the primes, and changing the notation, we have n
= where the pi are distinct positive primes. It
follows from the fundamental theorem of arithmetic that if m
is a factor of n then m has the form where the li
satisfy 0 ≤ li ≤ ki. If m and n are two non-zero integers we can
write both in terms of the same primes provided we allow the
exponents to be 0 (and recall that a0 = 1, if a ≠ 0); that is, we
may assume m = where
the pi are distinct positive primes and the ei, fi ≥ 0. Now put gi
= min {ei, fi), hi = max (ei, fi) and consider the two integers
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It is readily seen that (m, n) is a greatest common divisor
(g.c.d.) of m and n in the sense that (m, n) | m, (m, n) | n, and
that if d is any integer such that d | m and d| n then d|(m, n).
Similarly [m, n] is a least common multiple (l.c.m.) of m and n
in the sense that m | [m, n], n | [m, n], and if m | e and n | e
then [m, n] | e. It is clear from (9) that if m and n are positive
then

There is another way of .proving the existence of a g.c.d. of
two integers which does not require factorizations into primes
and which gives the additional information that the g.c.d. can
be written in the form mu + nv where u, v ∈ . This is based
on

The Division Algorithm in . If a and b are integers and b ≠ 0
then there exist integers q and r, 0 ≤ r < |b| such that a = bq +
r.

Proof. Consider the set M of integral multiples x|b| of |b|
satisfying x|b| ≤ a. M is not vacuous since –|a| |b| ≤ – |a| ≤ a.
Hence, the set M has a greatest
number h|b| (exercise 2, p. 21). Then h|b| ≤ a so a = h|b| + r
where r ≥ 0. On the other hand, (h + l)|b| = h|b| + |b| > h|b|.
Hence (h + 1)|b| > a and h|b| + |b| > h|b| + r. Thus, r < |b|. We
now put q = h if b > 0 and q = – h if b < 0. Then h|b| = qb and
a = qb + r as required.

Now let m, n ≠ 0 ∈ and let I = {mx + ny |x, y ∈ }. This set
includes |n| > 0. Hence there is a least positive integer d = mu
+ nv ∈ I. We claim that d is a g.c.d. of m and n. First, by the
division algorithm we can write m = dq + r where 0 ≤ r < d.
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Then r = m – dq = m – (mu + nv)q = m(1 – uq) – nvq ∈ I.
Since d is the least positive integer in I, we must have r = 0.
Hence d | m. Similarly d | n. Next suppose e|m and e|n. Then
e|mu and e|nv. Hence e|mu + nv. Thus e|d.10

If d′ and d are both g.c.d. of m and n then the second
condition defining a g.c.d. gives d|d′ and d′|d. Hence d′ = ±d.
If n ≠ 0 then d ≠ 0 and we may take d > 0. This determination
of the greatest common divisor is the one we obtained from
the prime factorizations, and we denote this as (m, n).

EXERCISES

1. Show that if p is a prime and p|ab then either p|a or p|b.

2. Define g.c.d. and l.c.m. for more than two integers and
prove their existence.

3. Show that if k and m are positive integers and m ≠ nk for n
∈ then m1/k is irrational.

0.7 A WORD ON CARDINAL NUMBERS

We shall have occasion frequently in this book to use the
concept of the cardinal number of a set. At this point it will be
well to list the main facts on cardinal numbers that will be
required. No proofs will be given. These can be found in a
number of places, in particular, in Halmos’ Naive Set Theory.
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We begin by saying that two sets have the same cardinal
number or cardinality (or, are equipotent or just plain
equivalent) if there exists a 1–1 (read “one to
one”) correspondence between them. For example, the sets ,

and the set of rational numbers all have the same cardinal
number. On the other hand, the set of reals has a larger
cardinality than . As a representative of the class of sets
having the same cardinal number we take a particular ordinal
number in the class and call this the cardinal number of any
set in the class. A definition of the ordinal numbers will not
be given here, except the finite ones. We define the ordinal n
for n ∈ to be the subset of of natural numbers < n. A set is
called finite if it can be put in 1–1 correspondence with some
finite ordinal, that is, with some set of natural numbers less
than a given one. Otherwise the set is infinite. In general, we
denote the cardinal number of S by |S| and we write |S| < ∞ or
|S| = ∞ according as S is finite or infinite. It is important to
know that if m and n are distinct natural numbers then no
bijective map between the corresponding ordinals exists.
Assuming m < n this is easily proved by induction on n.
Another way of saying this is that if S and T are finite sets
such that |S| > |T| (in particular, if T is a proper subset of S)
then for any surjective map α of S onto T there exist s1 ≠ s2 in
S such that α(s1) = α(s2). This simple fact, which everyone is
aware of, is called the “pigeonhole” principle: if there are
more letters than pigeonholes then some pigeonhole must
contain more than one letter. This has many important
applications in mathematics. The pigeonhole principle is
characteristic of finite sets. For any infinite set there always
exist bijective maps onto proper subsets. If S and T are finite
sets then |S × T| = |S||T| and |ST| = |S||T| where ST is the set of
maps of T into S.

64



An important result on cardinal numbers of infinite sets is the
Schröder-Bernstein theorem: If we have injective maps of S
into T and of T into S then |S| = |T|.

1 For a general reference book on set theory adequate for our
purposes we refer the reader to the very attractive little book,
Naive Set Theory. by Paul R. Halmos, Van Nostrand
Reinhold, 1960.

2 This is frequently called the Boolean of S, (S), after
George Boole who initiated its systematic study. The
justification of the terminology “power set” is indicated in the
footnote on p.5.

3 If T consists of two elements {0, 1} then we may write T = 2
and have the set 2s of maps of S into {0, 1}. Such a map is
characterized by specifying A = {a ∈ S| α(a) = 1 }.
Conversely, given a subset A of S we can define its
characteristic function XA(a) = 1 if a ∈ 0 if a ∉ A. In this way
one can identify the set 2s of maps of S into {0, 1} with the
set of subsets of S, that is, with (S). This is the reason for
the terminology “power set”.

4 Note that the composite is written in the reverse order to
that in which the operations are performed: βα is α followed
by β. To keep the order straight it is good to think of βα as β
following α.

5 Also to infinite products. These will not be needed in this
volume, so we shall not discuss them here.
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6One is tempted to say that one can define f inductively by
conditions 1 and 2. However, this does not make sense since
in talking about a function on we must have an à priori
definition of f(n) for every n ∈ . A proof of the existence of f
must use all of Peano's axioms. An example illustrating this is
given in exercise 4, p. 19. For a fuller account of these
questions we refer the reader to an article, “On mathematical
induction,” by Leon Henkin in the American Mathematical
Monthly, vol. 67 (1960), pp. 323–338. Henkin gives a proof
of the recursion theorem based on the concept of “partial”
functions on . The proof we shall give is due independently
to P. Lorenzen, and to D. Hilbert and P. Bernays (jointly).

7 Detailed proofs can be found in E. Laundau, Foundations of
Analysis, 2nd ed., New York, Chelsea Publishing Co., 1960.
A sketch of the proofs is given in paul R. Halmos, Naive set
Theory, New York, Van Nostrand Reinhold, 1960.

8 A different proof of this result and generalizations of it will
be given in Chapter II.

9 We are assuming the reader is familiar with the construction
of from the system . A more general situation which
covers this will be considered in section 2.9.

10 There is a third, mechanical way of determining a g.c.d for
two integers, called the Euclid algorithm. This is indicated in
exercises 11, p. 150.
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1

Monoids and Groups

The theory of groups is one of the oldest and richest branches
of algebra. Groups of transformations play an important role
in geometry, and, as we shall see in Chapter 4, finite groups
are the basis of Galois’ discoveries in the theory of equations.
These two fields provided the original impetus for the
development of the theory of groups, whose systematic study
dates from the early part of the nineteenth century.

A more general concept than that of a group is that of a
monoid. This is simply a set which is endowed with an
associative binary composition and a unit—whereas groups
are monoids all of whose elements have inverses relative to
the unit. Although the theory of monoids is by no means as
rich as that of groups, it has recently been found to have
important “external” applications (notably to automata
theory). We shall begin our discussion with the simpler and
more general notion of a monoid, though our main target is
the theory of groups. It is hoped that the preliminary study of
monoids will clarify, by putting into a better perspective,
some of the results on groups. Moreover, the results on
monoids will be useful in the study of rings, which can be
regarded
as pairs of monoids having the same underlying set and
satisfying some additional conditions (e.g., the distributive
laws).

A substantial part of this chapter is foundational in nature.
The reader will be confronted with a great many new
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concepts, and it may take some time to absorb them all. The
point of view may appear rather abstract to the uninitiated.
We have tried to overcome this difficulty by providing many
examples and exercises whose purpose is to add concreteness
to the theory. The axiomatic method, which we shall use
throughout this book and, in particular, in this chapter, is very
likely familiar to the reader: for example, in the axiomatic
developments of Euclidean geometry and of the real number
system. However, there is a striking difference between these
earlier axiomatic theories and the ones we shall encounter.
Whereas in the earlier theories the defining sets of axioms are
categorical in the sense that there is essentially only one
system satisfying them—this is far from true in the situations
we shall consider. Our axiomatizations are intended to apply
simultaneously to a large number of models, and, in fact, we
almost never know the full range of their applicability.
Nevertheless, it will generally be helpful to keep some
examples in mind.

The principal systems we shall consider in this chapter are:
monoids, monoids of transformations, groups, and groups of
transformations. The relations among this quartet of concepts
can be indicated by the following diagram:
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This is intended to indicate that the classes of groups and of
monoids of transformations are contained in the class of
monoids and the intersection of the first two classes is the
class of groups of transformations. In addition to these
concepts one has the fundamental concept of homomorphism
which singles out the type of mappings that are natural to
consider for our systems. We shall introduce first the more
intuitive notion of an isomorphism.

At the end of the chapter we shall carry the discussion beyond
the foundations in deriving the Sylow theorems for finite
groups. Further results on finite groups will be given in
Chapter 4 when we have need for them in connection with the
theory of equations. Still later, in Chapter 6, we shall study
the structure of some classical geometric groups (e.g., rotation
groups).

1.1 MONOIDS OF TRANSFORMATIONS AND
ABSTRACT MONOIDS

We have seen in section 0.2 that composition of maps of sets
satisfies the associative law. If and
βα is the map from S to U defined by (βα)(S) = β(α(s)) then
we have γ(βα) = (γβ)α. We recall also that if 1T is the identity
map t → t on T, then 1Tα = α and β1T = β for every α:S → T
and β: T → U. Now let us specialize this and consider the set
M(S) of transformations (or maps) of S into itself. For
example, let S = {1, 2}. Here M(S) consists of the four
transformations
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where in each case we have indicated immediately below the
element appearing in the first row its image under the map. It
is easy to check that the following table gives the products in
this M(S):

Here, generally, we have put ρσ in the intersection of the row
headed by ρ and the column headed by σ (ρ, σ = 1, α, β, γ).
More generally, if S = {1, 2,…, n} then M(S) consists of nn

transformations, and for a given n, we can write down a
multiplication table like (1) for M(S). Now, for any
non-vacuous S, M(S) is an example of a monoid, which is
simply a non-vacuous set of elements, together with an
associative binary composition and a unit, that is, an element
1 whose product in either order with any element is this
element. More formally we give the following

DEFINITION 1.1. A monoid is a triple (M, p, 1) in which
M is a non-vacuous set, p is an associative binary
composition (or product) in M, and 1 is an element of M such
that p( 1, a) = a = p(a, 1) for all a ? M.

If we drop the hypothesis that p is associative we obtain a
system which is sometimes called a monad. On the other
hand, if we drop the hypothesis on 1
and so have just a set together with an associative binary
composition, then we obtain a semigroup (M, p). We shall
now abbreviate p(a, b), the product under p of a and b, to the
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customary ab (or a · b). An element 1 of (M, p) such that a1 =
a = 1a for all a in M is called a unit in (M, p). If 1′ is another
such element then 1′1 = 1 and 1′1 = 1′, so 1′ = 1. Hence if a
unit exists it is unique, and so we may speak of the unit of (M,
p). It is clear that a monoid can be defined also as a
semi-group containing a unit. However, we prefer to stick to
the definition which we gave first. Once we have introduced a
monoid (M, p, 1), and it is clear what we have, then we can
speak more briefly of “the monoid M,” though, strictly
speaking, this is the underlying set and is just one of the
ingredients of (M, p, 1).

Examples of monoids abound in the mathematics that is
already familiar to the reader. We give a few in the following
list.

EXAMPLES

1. ( , +,0); , the set of natural numbers, +, the usual addition
in , and 0 the first element of .

2. ( , ·, 1). Here · is the usual product and 1 is the natural
number 1.

3. ( , ·, 1); , the set of positive integers, · and 1 are as in
(2).

4. ( , +, 0); , the set of integers, + and 0 are as usual.

5. ( , ·, 1); · and 1 are as usual.

6. Let S be any non-vacuous set, (S) the set of subsets of S.
This gives rise to two monoids ( (S), ∪, Ø) and ( (S), ∩, S).
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7. Let α be a particular transformation of S and define αk

inductively by α0 = 1, αr = αr – 1α, r > 0. Then αkαl = αk + l

(which is easy to see and will be proved in section 1.4). Then
= {αk|k ∈ } together with the usual composition of

transformations and α0 = 1 constitute a monoid.

If M is a monoid, a subset N of M is called a submonoid of M
if N contains 1 and N is closed under the product in M, that is,
n1n2 ? N for every ni ? N. For instance, example 2, ( , ·, 1), is
a submonoid of ( , ·, 1); and 3, ( , ·, 1), is a submonoid of (

, ·, 1). On the other hand, the subset {0} of consisting of 0
only is closed under multiplication, but this is not a
submonoid of 2 since it does not contain 1. If N is a
submonoid of M, then N together with the product defined in
M restricted to N, and the unit, constitute a monoid. It is clear
that a submonoid of a submonoid of M is a submonoid of M.
A submonoid of the monoid M(S) of all transformations of the
set S will be called a monoid of transformations (of S).
Clearly the definition means that a subset N of M(S) is
a monoid of transformations if and only if the identity map is
contained in N and the composite of any two maps in N
belongs to N.

A monoid is said to be finite if it has a finite number of
elements. We shall usually call the cardinality of a monoid its
order, and we shall denote this as |M|. In investigating a finite
monoid it is useful to have a multiplication table for the
products in M. As in the special case which we considered
above, if M = {al = 1, a2,…, am} the multiplication table has
the form
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where aiaj is tabulated in the intersection of the row headed
by ai and the column headed by aj.

EXERCISES

1. Let S be a set and define a product in S by ab = b. Show
that S is a semigroup. Under what condition does S contain a
unit?

2. Let M = × the set of pairs of integers (xl, x2). Define
(x1, x2)(y1, y2) = (x1 + 2x2y2, x1y2 + x2y1), 1 = (1, 0). Show
that this defines a monoid. (Observe that the commutative law
of multiplication holds.) Show that if (x1, x2) ≠ (0,0) then the
cancellation law will hold for (x1, x2), that is,

3. A machine accepts eight-letter words (defined to be any
sequence of eight letters of the alphabet, possibly
meaningless), and prints an eight-letter word consisting of the
first five letters of the first word followed by the last three
letters of the second word. Show that the set of eight-letter
words with this composition is a semigroup. What if the
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machine prints the last four letters of the first word followed
by the first four of the second? Is either of these systems a
monoid?

4. Let (M, p, 1) be a monoid and let m ? M. Define a new
product pm in M by pm(a, b) = amb. Show that this defines a
semigroup. Under what condition on m do we have a unit
relative to pm?

5. Let S be a semigroup, u an element not in S. Form M = S ∪
{u} and extend the product in S to a binary product in M by
defining ua = a = au for all a ? M. Show that M is a monoid.

1.2 GROUPS OF TRANSFORMATIONS AND
ABSTRACT GROUPS

An element u of a monoid M is said to be invertible (or a
unit1) if there exists a v in M such that

If v′ also satisfies uv′ = 1 = v′u then v′ = (vu)v′ = v(uv′) = v.
Hence v satisfying (3) is unique. We call this the inverse of u
and write v = u–1. It is clear also that u–1 is invertible and
(u–1)–1 = u. We now give the following

DEFINITION 1.2. A group G (or (G, p, 1)) is a monoid all
of whose elements are invertible.

We shall call a submonoid of a monoid M (in particular, of a
group) a subgroup if, regarded as a monoid, it is a group.
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Since the unit of a submonoid coincides with that of M it is
clear that a subset G of M is a subgroup if and only if it has
the following closure properties: 1 ∈ G, g1g2 ∈ G for every gi
? G, every g ? G is invertible, and g–1 ? G.

Let U(M) denote the set of invertible elements of the monoid
M and let u1 u2 ∈ U(M). Then

and, similarly, (u2
–1u1

–1)(u1u2) = 1. Hence u1u2 ? U(M). We
saw also that if u ? U(M) then u–1 ∈ U(M), and clearly 1 · 1 =
1 shows that 1 ∈ U(M). Thus we see that U(M) is a subgroup
of M. We shall call this the group of units or invertible
elements of M. For example, if M = ( , ·, 1) then U(M) = {1,
–1} and if M = ( , ·, 1) then U(M) = {1}.

We now consider the monoid M(S) of transformations of a
non-vacuous set S. What is the associated group of units
U(M(S))? We have seen (p. 8) that a transformation is
invertible if and only if it is bijective. Hence our group is just
the set of bijective transformations of S with the composition
as the composite of maps and the unit as the identity map. We
shall call U(M(S)) the symmetric group of the set S and denote
it as Sym S. In particular, if S = {1, 2,…, n) then we shall
write Sn for Sym S and call this the symmetric group on n
letters. We usually call the elements of Sn permutations of {1,
2,…, n}. We can easily list all of these and determine the
order of Sn. Using the notation we introduced in the case n =
2, we can denote a transformation of {1, 2,…, n} by a symbol
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where this means the transformation sending i → i′, 1 ≤ i ≤ n.
In order for α to be injective the second line 1 ′,…, n′ must
contain no duplicates, that is, no i can appear twice. This will
also assure bijectivity since we cannot have an injective map
of {1, 2,…,n} on a proper subset. We can now count the
number of elements in Sn by observing that we can take the
element 1′ in the symbol (4) to be any one of the n numbers
1,2,…,n. This gives n choices for 1′. Once this has been
chosen, to avoid duplication, we must choose 2′ among the n
– 1 numbers different from 1′. This gives n – 1 choices for 2′.
After the partners of 1 and 2 have been chosen, we have n – 2
choices for 3′, and so on. Clearly this means we have n!
symbols (4) representing the elements of Sn. We have
therefore proved

THEOREM 1.1. The order of Sn is n!.

This is to be compared with the order nn of the monoid of
transformations of S = {1, 2,…, n}.

We have called a submonoid of the monoid of
transformations of a set, a monoid of transformations.
Similarly, a subgroup of the symmetric group of S will be
called a group of transformations (or transformation group).
If S is finite we generally use the term permutation group for
a group of transformations of S. A set G of transformations of
a set S is a group of transformations if and only if it consists
of bijective maps and G has the following closure properties:
1 = 1S ∈ G, αβ ∈ G,if α and β∈G, α–1 ∈ G if α ∈ G.
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EXAMPLES

1. ( , +,0) the group of integers under addition.2 Here the
inverse of a is –a.

2. ( , +, 0) where denotes the set of rational numbers; the
composition is addition; the inverse of a is –a.

3. ( , +, 0), the set of real numbers, usual + and 0.

4. ( , +, 0), the set of complex numbers; usual + and 0.

5. ( *, ·, 1), *, the set of non-zero rational numbers; the
composition is multiplication; 1 is the usual 1 and a–1 the
usual inverse.

6. (( *, ·, 1), * the set of non-zero real numbers; usual
multiplication, 1, and inverses.

7. ( *, ·, 1), * the set of non-zero complex numbers; usual
multiplication, 1, and inverses.

8. ( (3), +, 0), (3) the set of triples of real numbers (x, y, z)
with addition as (x1, y1, z3) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1
+ z2), 0 = (0, 0, 0). The inverse of (x, y, z) is ( –x, –y, –z). This
example can be described also as the group of vectors in
three-dimensional Euclidean space with the usual geometric
construction of the sum.

9. The set of rotations about a point 0 in the plane;
composition as usual. If 0 is taken to be the origin, the
rotation through an angle θ can be represented analytically as
the map (x, y) → (x′, y′) where
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For θ = 0 we get the identity map, and the inverse of the
rotation through the angle θ is the rotation through – θ.

10. The set of rotations together with the set of reflections in
the lines through 0. The latter are given analytically by (x, y)
→ (x′, y′) where

The product of two reflections is a rotation and the product in
either order of a reflection and a rotation is a reflection.

11. Consider the regular n-gon ( = polygon of n sides)
inscribed in the unit circle in the plane, so that one of the
vertices is (1,0) e.g., a regular pentagon:

The vertices subtend angles of 0, 2π/n, 4π/n,…, 2(n – 1)π/n
radians with the positive x-axis. The subset of the rotation
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group which maps our figure into itself consists of the n
rotations through angles of 0, 2π/n,…, 2(n – 1)π/n radians
respectively. These form a subgroup Rn of the rotation group.

12. We now consider the set Dn of rotations and reflections
which map the regular n-gon, as in 11, into itself. These form
a subgroup of the group defined in 10. We shall call the
elements of this group the symmetries of the regular n-gon.
The reflection in the x-axis is one of our symmetries.
Multiplying this on the left by the n rotational symmetries we
obtain n distinct reflectional symmetries. This gives them all,
for if we let S denote the reflection in the x-axis and T denote
any reflectional symmetry then ST is
one of the n-rotational symmetries R1, …, Rn, say Ri. Since S2

= 1, ST = Ri gives T = SRi which is one of those we counted.
Thus Dn consists of n rotations and n reflections and its order
is 2n. The group Dn is called the dihedral group. For n = 3
and 4 the lines in whose reflections we obtain symmetries of
our n-gon are indicated as broken lines in the following
figures:

13. Let Un denote the set of complex numbers which are nth
roots of unity in the sense that zn = 1. It is easy to determine
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these using the polar representation of a complex number: z =
reiθ = r(cos θ + i sin θ), r = | z |, θ, the argument (= angle) of
z. If z1 = r1e1θ1 and z2 = r2eiθ2 then z1z2 = r1r2ei(θ1 + θ2). It
follows that if zn = 1 then |z| = r = 1 and θ must be one of the
angles θ = 0, 2π/n, 4π/n,…, 2(n – 1)π/n. Since 1n = 1, and Z1

n

= 1 and z2
n = 1 imply (z1z2)n = z1

nz2
n = 1 and (z1

–1)n =
(z1

n)–1 = 1, it is clear that Un is a subgroup of *, the
multiplicative group of complex numbers (as in example 7).

14. The rotation group in three-dimensional Euclidean space.
This is the set of rotations about the origin 0 in the number
space (3) of triples (x, y, z), x, y, z ∈ . From analytic
geometry it is known that these maps are given analytically as
(x, y, z) → (x′, y′, z′) where

and the λi, μi, vi, are any real numbers satisfying:

We remark that all the examples 9–14 except 13 are
transformation groups. We remark also that in our list of
monoids given on p. 29, 1, 2, 3, 5 are not groups and 7 may or
may not be a group. The two geometric examples 11 and 12
illustrate a general principle. If G is a transformation group of
a set S and A is a subset then the transformations contained in
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G which map A onto itself (σ(A) = A) constitute a subgroup
GA of G. The validity of this is immediate.

We shall now consider a general construction of monoids and
groups out of given monoids and groups called the direct
product. Let M1, M2,…, Mn be given monoids and put M =
M1 × M2 × … × Mn. We introduce a product in M by

where ai, bi α Mi and put

1i, the unit of Mi. Then, writing (ai) for (a1, …, an) etc., we
have ((ai)(bi)(ci) = ((aibi)ci) and (ai)((bi)(ci)) = (ai(bici)).
Hence the associative law holds. Also 1 (ai) = (ai) = (ai)1 so 1
is the unit. Hence we have a monoid. This is called the direct
product M1 × M2 × … × Mn of the monoids Mi. If every Mi is
a group Gi, then G1 × G2 × … × Gn is a group since in this
case (ai) has the inverse (ai

–1). Then G1 × G2 × … × Gn is
called the direct product of the groups Gi. A special case of
this construction is given in example 8 above. This can be
regarded as a direct product of ( , + ,0) with itself taken three
times. As in this example, it should be noted that we do not
require the Mi (or the Gi) to be distinct. In fact, we obtain an
interesting case if we take all the Mi = N, a fixed monoid.
Then we obtain the direct product of N with itself taken n
times or the n-fold direct power of N. We shall usually denote
this as N(n).

EXERCISES
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1. Determine αβ, βα and α–1 in S5 if

2. Verify that the permutations

form a subgroup of S3.

3. Determine a multiplication table for S3.

4. Let G be the set of pairs of real numbers (a, b) with a ≠ 0
and define: (a, b)(c, d) = (ac, ad + b), 1 = (1, 0). Verify that
this defines a group.

5. Let G be the set of transformations of the real line
defined by x → x′ = ax + b where a and b are real numbers
and a ≠ 0. Verify that G is a transformation group of .

6. Verify that the set of translations x → x′ = x + b is a
subgroup of the group defined in exercise 5.

7. Show that if an element a of a monoid has a right inverse b,
that is, ab = 1; and a left inverse c, that is, ca = 1; then b = c,
and a is invertible with a–1 = b. Show that a is invertible with
b as inverse if and only if aba = a and ab2a = 1.

8. Let α be a rotation about the origin in the plane and let ρ be
the reflection in the x-axis. Show that ραρ–1 = α–1a.
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9. Let G be a non-vacuous subset of a monoid M. Show that
G is a subgroup if and only if every g ? G is invertible in M
and g1

–1g2 ? G for any g1,g2∈G.

10. Let G be a semigroup having the following properties: (a)
G contains a right unit 1r, that is, an element satisfying a1r =
a, a ∈ G, (b) every element a ? G has a right inverse relative
to 1r(ab = 1r). Show that G is a group.3

11. Show that in a group, the equations ax = b and ya = b are
solvable for any a, b ∈ G. Conversely, show that any
semigroup having this property contains a unit and is a group.

12. Show that both cancellation laws hold in a group, that is,
ax = ay ⇒ x = y and xa = ya ⇒ x = y. Show that any finite
semigroup in which both cancellation laws hold is a group
(Hint: Use the pigeon-hole principle and exercise 11.)

13. Show that any finite group of even order contains an
element a ≠ 1 such that a2 = 1.

14. Show that a group G cannot be a union of two proper
subgroups.

15. Let G be a finite set with a binary composition and unit.
Show that G is a group if and only if the multiplication table
(constructed as for monoids) has the following properties:

(i) every row and every column contains every element of G,

(ii) for every pair of elements x ≠ 1, y ≠ 1 of G, let R be any
rectangle in the body of the table having 1 as one of its
vertices, x a vertex in the same row as 1, y a vertex in the
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same column as 1, then the fourth vertex of the rectangle
depends only on the pair (x, y) and not on the position of 1.

1.3 ISOMORPHISM. CAYLEY’S THEOREM

At this point the reader may be a bit overwhelmed by the
multitude of examples of monoids and groups. It may
therefore be somewhat reassuring to know that
certain groups which look different can be regarded as
essentially the same— that is, they are “isomorphic” in a
sense which we shall define. Also we shall see that every
monoid is isomorphic to a monoid of transformations, and
every group is isomorphic to a group of transformations. Thus
we obtain essentially all monoids (groups) in the class of
monoids (groups) of transformations. This result for groups is
due to Cayley. We give first

DEFINITION 1.3. Two monoids (M, p, 1) and (M′, p′, 1′)
are said to be isomorphic if there exists a bijective map η of
M to M′ such that

The fact that M is isomorphic to M′ will be indicated by M
M′. The map η satisfying the conditions (5) is called an
isomorphism of M onto M′. Actually, the first condition in (5)
is superfluous. For, if η satisfies the second condition, then
we have η(x)η(1) = η(x) = η(1)η(x). Since η is surjective, this
shows that η(1) acts as the unit 1′ in M′, and since we know
that the unit is unique, we have η(1) = 1′. Nevertheless, we
prefer to include the first condition in (5) as part of the
definition, since this will be needed in a more general context
which we shall consider later.
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Perhaps the first significant example of isomorphism between
groups which was discovered was one between the additive
group of real numbers and the multiplicative group of positive
reals. We denote these as ( , +, 0) and ( +, ·, 1) respectively.
An isomorphism of ( , +,0) and ( +, ·, 1) is the exponential
map x → ex. This is bijective with inverse y → log y (the
natural logarithm) and we have the “functional equation”

which is just the second condition in (5) since + is the
composition in ( , +, 0).

If M and M′ are isomorphic there may exist many
isomorphisms between these monoids. For instance, if a is
any positive real number ≠1, the map x → ax is an
isomorphism between the groups we have just considered. It
is clear that isomorphism is an equivalence relation: any
monoid is isomorphic to itself (with respect to the identity
map) and if η: M → M′ is an isomorphism, then applying η–1

to the second condition in (5) gives xy = η–1(η(x)η(y)). Hence
if we write η(x) = x′ η(y) = y′, then η–1(x′)η–1(y′) = η–1(x′y′),
and this holds for all x′, y′ ∈ M′ since η is surjective. Thus η–1

is an isomorphism from M– to M. Finally, if ζ is an
isomorphism of M′ to M″ then (ζη)(xy) =ζ(η(xy)) = ζ(η(x)η(y))
= ζ(η(x)ζ(η(y)). Thus ζη :M → M″ is an isomorphism.

We shall now prove the result which was mentioned before.

CAYLEY’S THEOREM FOR MONOIDS AND
GROUPS. (1) Any monoid is isomorphic to a monoid of
transformations. (2) Any group is isomorphic to a
transformation group.
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Proof. (1) Let (M, p, 1) be a monoid. Then we shall set up an
isomorphism of (M, p, 1) with a monoid of transformations of
the set M itself. For any a ∈ M, we define the map aL: x → ax
of M into M. We call aL the left translation (or left
multiplication) defined by a. We claim first that the set ML =
{aL|a ∈ M} is a monoid of transformations, which, we have
seen, means that the identity map is in the set ML and this set
is closed under the composite product of maps. Since 1L is x
→ 1x = x, 1L = 1(= 1M) ∈ ML. Also aLbL is the map x →
a(bx). By the associative law, a(bx) = (ab)x, and this is
(ab)Lx. Thus aLbL = (ab)L ∈ ML. We note next that the map a
→ aL is an isomorphism of (M, p, 1) with the monoid of
transformations ML. The equations 1L = 1 and aLbL = (ab)L
are the conditions (5) for a → aL, and, obviously, this map is
surjective. Moreover, it is also injective; for, if aL = bL then,
in particular, a = aL 1 = bL 1 = b. Hence a → aL is an
isomorphism.

(2) Now let (G, p, 1) be a group. Then everything will follow
from the proof of (1) if we can show that GL is a group of
transformations. This requires two additional facts beyond
those we obtained in the preceding argument: the maps aL are
bijective and GL is closed under inverses. Both follow from
1L = (a–1 a)L = (a–1)LaL and 1L = aL{a–1)L which show that
aL has the inverse (a–1)L and this is in GL.

It should be noted that if M (or G) is finite then ML acts in the
finite set M. In particular, if |G| = n, then GL is a subgroup of
Sn, the symmetric group on a set of n elements. Hence we
have the

COROLLARY. Any finite group of order n is isomorphic to
a subgroup of the symmetric group Sn.
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EXAMPLES

1. Let ( , +,0) be the additive group of reals. If a ∈ , the left
translation aL is x → a + x.

2. Let G be the group of pairs of real numbers (a, b), a ≠ 0
with product (a, b) (c, d) = (ac, ad + b), 1 = (1, 0) (exercise 4,
p. 36). Here (a, b)L is the map

Another transformation group isomorphic to G is the group of
transformations of consisting of
the maps x → ax + b, a ≠ 0. The map sending (a, b) into the
transformation T(a b) defined as x → ax + b, a ≠ 0, is an
isomorphism.

EXERCISES

1. Use a multiplication table for S3 (exercise 3, p. 36) and the
isomorphism a → aL (aL the left translation defined by a) to
obtain a subgroup of S6 isomorphic to S3.

2. Show that the two groups given in examples 11 and 13 on
pages 33 and 34 are isomorphic. Obtain a subgroup of Sn
isomorphic to these groups.

3. Let G be a group. Define the right translation aR for a ∈ G
as the map x → xa in G. Show that GR = {aR} is a
transformation group of the set G and a → aR

–1 is an
isomorphism of G with GR.
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4. Is the additive group of integers isomorphic to the additive
group of rationals (examples 1 and 2 on p. 32)?

5. Is the additive group of rationals isomorphic to the
multiplicative group of nonzero rationals (examples 2 and 5
on p. 32)?

6. In define a o b = a + b – ab. Show that ( , o, 0) is a
monoid and that the map a → 1 – a is an isomorphism of the
multiplicative monoid ( , o, 1) with ( , o, 0).

1.4 GENERALIZED ASSOCIATIVITY.
COMMUTATIVITY

Let a1 a2,…, an be a finite sequence of elements of a monoid
M. We can determine from this sequence a number of
products obtained by iterating the given binary composition
of M. For instance, if n = 4, we have the following
possibilities:

In general, we obtain the products of a1, a2,…, an by
partitioning this sequence into two subsequences a1,…,am
and am + 1,…, an, 1 ≤ m ≤ n – 1. Assuming we already know
how to obtain the products of a1, …, am and am + 1,…, an, we
apply the binary composition to these results to obtain an
element of M which is a product associated with the sequence
a1, a2,…, an. Varying m in the range 1,…, n – 1 and taking all
the products for the subsequences, we obtain the various
products for a1, a2,…, an. Now we claim that the associative
law guarantees that all of these products are equal. This is, of
course, clear
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for n = 1, if we understand that the “product” in this case is
just a1 To prove the assertion in general we use induction on
n and we first prove a little lemma.

LEMMA. Define .
Then

Proof. By definition this holds if m = 1. Assume it true for m
= r and consider the case m = r + 1. Here

Now consider any product associated with the sequence a1,
a2,…, an. This has the form uv where u is a product
associated with a1, …, am and v is a product associated with
am + 1,…, an. By induction on n we may assume that

. Then, by the lemma, uv = .
Thus all products determined by the sequence a1,…, an are
equal (= ). From now on we shall denote this uniquely
determined product as a1a2 …an, omitting all parentheses.
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If all the ai = a, we denote a1a2 … an as an and call this the
nth power of a. It is clear by counting that

Also, if we define a0 = 1, then it is immediate that (6) is valid
for all m, n ∈ .

If a is an invertible element of M, then we define a–n for n ?
N by a–n = (a–1)n = a–1a–1 … a–1 (n times). It is clear that a–n

= (an)–1 and one can prove easily that (6) holds for all m, n ∈
. This is left to the reader to check.

If a and b are elements of a monoid M, it may very well
happen that ab ≠ ba. For example, in the monoid M(S), S =
{1, 2}, whose multiplication table is (1) we have αβ = γ
whereas βα = β. If ab = ba in M then a and b are said to
commute
and if this happens for all a and b in M then M is called a
commutative monoid. Commutative groups are generally
called abelian groups after Niels Hendrik Abel, a great
Norwegian mathematician of the early nineteenth century.4

We shall adopt this terminology in what follows.

If a ∈ M we define the centralizer C(a)—or CM(a) if we need
to indicate M— as the subset of M of elements b which
commute with a. This is a submonoid of M. For, 1 ∈ C(a)
since 1a = a = a 1 and if b1, b2, ∈ C(a) then

Also, if b ∈ C(a) and b is invertible then b–1 ∈ C(a), since
multiplication of ab = ba on the left and on the right by b–1
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gives b–1a = ab–1. This shows also that if M = G is a group
then C(a) is a subgroup.

It is immediate that if {Mα} is a set of submonoids of a
monoid then is a submonoid. Similarly, the intersection
of any set of subgroups of a group is a subgroup.

If A is a subset of M we define the centralizer of A as
. Clearly this is a submonoid and it is a

subgroup if M is a group. The submonoid C(M) is called the
center of M.

Suppose we have elements a1, a2,…, an ∈ M such that aiaj =
ajai for all i, j and consider any product a1′a2′ … an′ where 1′,
2′,…, n′ is a permutation of 1, 2,…, n. Suppose an occurs in
the hth place in a1′a2′ … an…, that is, ah′ = an. Then, since the
ai ∈ C(an), a(h + 1)′ … an′ … C(an) and so

The sequence of numbers 1′,…, (h – 1)′, (h + 1)′,…, n′ is a
permutation of 1, 2, … ,n – 1. Hence, using induction, we
may assume that

This implies that a1′a2′ … aan′. Thus the product a1a2 … an is
invariant under all permutations of the arguments. In
particular, if ab = ba, then
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Since a–n = (a–1)n it is clear that (7) holds also for negative
integers if a and b are invertible.

If M is commutative, one frequently denotes the composition
in M as + and writes a + b for ab. Also one writes 0 for 1.
Then + is called addition and 0
the zero element. Also in this additive notation one writes –a
for a–1 and calls this the negative of a. The nth power an

becomes na, the nth multiple of a. The rules for powers
become the following rules for multiples:

These are valid for all integral m and n if M is an abelian
group.

EXERCISES

1. Let A be a monoid, M(A) the monoid of transformations of
A into itself, AL the set of left translations aL, and AR the set
of right translations aR. Show that AL (respectively AR) is the
centralizer of AR (respectively AL) in M(A) and that AL ∩ AR
= {cR = cL|c ∈ C}, C the center of A.

2. Show that if n ≥ 3, then the center of Sn is of order 1.

3. Show that any group in which every a satisfies a2 = 1 is
abelian. What if a3 = 1 for every a?

4. For a given binary composition define a simple product of
the sequence of elements a1, a2,…, an inductively as either
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a1u where u is a simple product of a2,…, an or as van where v
is a simple product of a1, … ,an – 1. Show that any product of
≥2r elements can be written as a simple product of r elements
(which are themselves products).

1.5 SUBMONOIDS AND SUBGROUPS GENERATED
BY A SUBSET. CYCLIC GROUPS

Given a subset S of a monoid M or of a group G, one often
needs to consider the “smallest” submonoid of M or subgroup
of G containing S. What we want to have is a submonoid (or
subgroup) containing the given set and contained in every
submonoid (subgroup) containing this set. If such an object
exists it is unique; for the stated properties imply that if H(S)
and H′(S) both satisfy the conditions, then we have H(S) ⊃
H′(S) and H′(S) ⊃ H(S). Hence H(S) = H′(S). Existence can
also be established immediately in the following way. Let S
be a given subset of a monoid M (or of a group G) and let
{Mα} ({Gα}) be the set of all submonoids of M (subgroups of
G) which contain the set S. Form the intersection of all
these Mα (Gα). This is a submonoid (subgroup) since the
intersection of submonoids (subgroups) is a submonoid
(subgroup). Of course, ⊃ S. Moreover, if N is any
submonoid of M (or subgroup of G) containing S, then N is
one of the Mα (Gα) and so N contains which is the
intersection of all the Mα (Gα). We shall call the submonoid
(subgroup) generated by S. If S is a finite set, say, S = {s1,
s2,…, sr}, then we write ‹s1, s2,…, sr› in place of the more
cumbersome ‹{s1, s2,…, sr}›. An important situation occurs
when = M (or G). In this case we say that the monoid M
(group G) is generated by the subset S, or S is a set of
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generators for M (or G). This simply means that no proper
submonoid of M (subgroup of G) contains the set S.

The reader may feel somewhat uncomfortable with the
non-constructive nature of our definition of . Modern
mathematics is full of such definitions, and so one has to learn
to cope with them, and to use them with ease. Nevertheless, it
is nice and often useful to have constructive definitions when
these are available. This is the case with , as we shall now
show. We consider first the case of monoids. What do the
elements of look like? Since is a submonoid containing S,
clearly contains 1 and every product of the form s1s2 … sr
where the si are elements of S (which need not be distinct).
Thus

Here the notation indicates that ′ is the subset of the given
monoid M consisting of 1 and every product of a finite
number of elements of S. Now we claim that, in fact, =
′. To see this we observe that ′ contains S, since we are
allowing r = 1 in (10). Also ′ contains the unit, and the
product of any two elements of the form s1 … sr, si ∈ S, is
again an element of this form. Hence ′ is a submonoid of
M and since ′ ⊃ S we have ′ ⊃ . Since previously we
had ⊃ ′, = ′. Thus a constructive definition of
is that this is just the subset of M consisting of 1 and all finite
products of elements of the set S.

In the group case we let ′ be the subset of the given group
G consisting of 1 and all finite products of elements of S or
the inverses of elements of S. In other words,
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It is immediate that ⊃ ′, that ′ ⊃ S and ′ is a
subgroup. Hence ′ = .

We now restrict our attention to groups, and we consider the
simplest possible groups—those with a single generator. We
have G = , and we call G cyclic with generator a. The
preceding discussion (or the power rules) show that a = {ak|k
∈ } and this is an abelian group. One example of a cyclic
group is the additive group of integers ( , +, 0) which is
generated by 1 (or by – 1).

We now consider the map

of into . Since = {ak} this map is surjective. Also we
have m + n → am + n = aman, 0 → 1. Hence if our map is
injective it will be an isomorphism. Now suppose n → an is
not an isomorphism. Then an – m = an for some m ≠ n. We
may assume n > m. Then an – m = ana–m = ama –m = 1; so
there exist positive integers p such that ap = 1. Let r be the
least such positive integer. Then we claim that

and the elements listed in (12) are distinct, so | | = r. Let am

be any element of . By the division algorithm for integers,
we can write m = rq + p where 0 ≤ p < r. Then we have am =
arq + p = (ar)qap = 1qap = ap. Hence am = ap is one of the
elements displayed in (12). Next we note that if k ≠ l are in
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the range 0, 1, …, r – 1 then ak ≠ a1. Otherwise, taking l > k
we obtain al – k = 1 and 0 < l – k < r contrary to the choice of
r. We now see that if n → an is not an isomorphism, then
is a finite group. Accordingly, any infinite cyclic group is
isomorphic to ( , +, 0) and so any two infinite cyclic groups
are isomorphic.

We shall show next that any two finite cyclic groups of the
same order are isomorphic. Suppose has order r. Then, as
in the case of , we have = {1, b, …, br – 1}, where r is
the smallest positive integer such that br = 1. We now observe
that if h is any integer such that ah = 1, then r|h (r is a divisor
of h). We have h = qr + s, 0 ≤ s < r, so 1 = ah = (ar)qas = 1qas

= as. Since r was the least positive integer satisfying ar = 1
we must have s = 0 and so h = qr. We now claim that if m and
n are any two integers such that am = an then also bm = bn.
For, am = an gives am – n = 1. hence m – n = qr. Then bm – n =
(br)q = 1q = 1 and bm = bn. By symmetry bm = bn implies am

= an. It is now clear that we have a 1–1 correspondence
between and pairing an and bn. Since aman = am + n is
paired with bm + n = bmbn, an →bn is an isomorphism of
and .

Our analysis has proved the following

THEOREM 1.2. Any two cyclic groups of the same order
(finite or infinite) are isomorphic.

We have seen that ( , +, 0) can serve as the model of a cyclic
group of infinite order. If r is any positive integer, the
multiplicative group Ur of the complex rth roots of unity
(example 13, p. 34) can serve as a model for cyclic groups of
order r. The elements of this group are the complex numbers
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. Since
it is clear that a = e2πi/r generates Ur.

We can use the notion of a cyclic group to obtain a
classification of the elements of any group G. If a ? G we say
that a is of infinite order or of finite order r according as the
subgroup is infinite or finite of order r. In the first case am

≠ 1 for m ≠ 0. In the second case we have ar = 1 and r is the
least positive integer having this property. Also, if am = 1 then
m is a multiple of r. We shall denote the order of a by o(a)
(finite or infinite). It is clear that if o(a) = r = st where s and t
are positive integers then o(as) is t. More generally, one sees
easily that if o(a) = r < ∞ then o(ak) for any integer k ≠ 0 is [r,
k]/k = r/(r, k) where as usual [,] denotes the l.c.m. and (,)
denotes the g.c.d. (exercise 4, p. 47).

Cyclic groups are the simplest kind of groups. It is therefore
not surprising that most questions on groups are easy to
answer for this class. For example, one can determine all the
subgroups of a cyclic group. This is generally an arduous task
for most groups. We shall now prove

THEOREM 1.3. Any subgroup of a cyclic group is
cyclic. If is infinite, the subgroups ≠ 1 are infinite and s
→ is a bijective map of with the set of subgroups of .
If is finite of order r, then the order of every subgroup is a
divisor of r, and for every positive divisor q of r there is one
and only one subgroup of order q.

Proof. Let H be a subgroup of . If H = 1 ( = {1}) then H
= . Now let H ≠ 1. Then there exists an n ≠ 0 in such that
an ? H. Since also a–n = (an)–1 ∈ H we may assume n > 0.
Now let s be the smallest positive integer such that as ∈ H.
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Then we claim H = . Let am ? H and write m = qs + t
where 0 ≤ t < s. Then at = am(as)–q ∈ H, and, since s was the
least positive integer such that as ∈ H, we must have t = 0.
Then am = (as)q ∈ . Since am was any element of H we
have H = , which proves the first statement of the
theorem.

If is infinite we saw that for distinct integers m and n, am

≠ an. Hence for any positive s, the elements ams, m = 0, ± 1,
±2, … are distinct, so is an infinite group. Moreover, s is
the smallest positive integer such that as ∈ . Thus every
subgroup ≠1 is infinite and we have the 1–1 correspondence s
→ between the set of positive integers and the set of
subgroups ≠1 of .

Now suppose is of finite order r, so = {1, a, …, ar –
1}. We have seen that if H is a subgroup ≠1 of , then H =

where s is the smallest positive integer such that as ∈ H.
We claim that s|r. For, writing r = qs + t with 0 ≤ t < s, we
have 1 = ar = (as)qat so at = (as)–q ? H. The minimality of s
then forces
t = 0 and so r = qs. We can now list the elements of H as

and asq = ar = 1. This applies to H = 1 if we take s = r. In this
way we obtain a bijective map s → of the set of positive
divisors s of r onto the set of subgroups of . The order of
the subgroup corresponding to s is q = r/s and as s runs
through the positive divisiors of r, so does q. Hence the order
of every subgroup is a divisor of r and for every positive q\r
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we have one and only one subgroup of this order. This
completes the proof.

We note again that the subgroup of order q of the finite cyclic
group of order r can be displayed as in (13). There is
another characterization of this subgroup which is often
useful, namely:

COROLLARY. If has order r < ∞, then the subgroup H
of order q|r is the set of elements b ∈ such that bq = 1.

Proof. Any element of H has the form aks where s = r/q.
Then (aks)q = akr = 1. Conversely, let b = am satisfy bq = 1.
Then amq = 1 and hence mq = kr. Then m = ks so b = (as)k ∈
H.

After cyclic groups the next simplest type of groups are the
finitely generated abelian ones, (that is, abelian groups with a
finite number of generators). These include the finite abelian
groups. We shall determine the structure of this class of
groups in Chapter 3, obtaining a complete classification by
means of numerical invariants. Independently of the structure
theory, we shall now derive a criterion for a finite abelian
group to be cyclic. This result will be needed to prove an
important theorem on fields (Theorem 2.18, p. 128) To state
our criterion we require the concept of the exponent, exp G,
of a finite group G, which we define to be the smallest
positive integer e such that xe = 1 for all x ? G. For example,
exp S3 = 6 = |S3|. The result we wish to prove is

THEOREM 1.4. Let G be a finite abelian group. Then G is
cyclic if and only if exp G = |G|.
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The proof will be based on two lemmas that are of
independent interest.

LEMMA 1. Let g and h be elements of an abelian group G
having finite relatively prime orders m and n respectively
(that is, (m, n) = 1). Then o(gh) = mn.

Proof. Suppose (gh)r = 1. Then k = gr = h–r ∈ ∩ .
Then o(k)|m and o(k)|n and hence o(k) = 1. Thus (gh)r = 1 =>
gr = 1 = hr. Then m|r and n|r and hence mn = [m, n] |r. On the
other hand, (gh)mn = gmnhmn = 1. Hence o(gh) = mn.

LEMMA 2. Let G be a finite abelian group, g an element of
G of maximal order. Then exp G = o(g).

Proof. We have to show that ho(g) = 1 for every h ? G. Write
, where the pi are distinct

primes and ei ≥ 0, fi ≥ 0. If h0(g) ≠ 1, then some fi > ei and we
may assume f1 > e1. Put g = gP1e1, . Then

and o(h) = p1
f1. Hence, by Lemma 1,

. This contradicts the maximality
of o(g).

We can now give the

Proof of Theorem 1.4. First suppose G = . Then |G| = o(g)
and hence exp G = |G|. Conversely, let G be any finite abelian
group such that exp G = |G|. By Lemma 2 we have an element
g such that exp G = o(g). Then |G| = o(g) = | |. Hence G =

.

EXERCISES
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1. As in section 1.4, let C(A) denote the centralizer of the
subset A of a monoid M (or a group G). Note that C(C(A)) ⊃
A and if A ⊂ B then C(A) ⊃ C(B). Show that these imply that
C(C(C(A))) = C(A). Without using the explicit form of the
elements of show that C(A) = C( ). (Hint: Note that if c
∈ C(A) then A ⊂ C(c) and hence ⊂ C(c).) Use the last
result to show that if a monoid (or a group) is generated by a
set of elements A which pair-wise commute, then the monoid
(group) is commutative.

2. Let M be a monoid generated by a set S and suppose every
element of S is invertible. Show that M is a group.

3. Let G be an abelian group with a finite set of generators
which is periodic in the sense that all of its elements have
finite order. Show that G is finite.

4. Show that if g is an element of a group and o(g) = n then
gk, k ≠ 0, has order [n, k]/k = n/(n, k). Show that the number
of generators of is the number of positive integers < n
which are relatively prime to n. This number is denoted as
φ(n) and φ is called the Euler φ-function.

5. Show that any finitely generated subgroup of the additive
group of rationals ( , +, 0) is cyclic. Use this to prove that
this group is not isomorphic to the direct product of two
copies of it.

6. Let a, b be as in Lemma 1. Show that ∩ = 1 and
.

7. Show that if o(a) = n = rs, where (r, s) = 1, then
, where o(b) = r and o(c) = s. Hence prove that
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any finite cyclic group is isomorphic to a direct product of
cyclic groups of prime power orders.

1.6 CYCLE DECOMPOSITION OF PERMUTATIONS

A permutation γ of {1, 2, …, n} which permutes a sequence
of elements i1, i2, …, ir, r > 1, cyclically in the sense that

and fixes (that is, leaves unchanged) the other numbers in {1,
2, …, n} is called a cycle or an r-cycle. We denote this as

It is clear that we can equally well write

The permutation γ2 maps i1 into i3, i2 into i4,…, ir into i2 etc.,
and, in general, for 1 ≤ k ≤ r,

Clearly this shows that γk = 1 but γk ≠ 1 if 1 ≤ k ≤ r. Hence γ
is of order r.

Two cycles γ and γ′ are said to be disjoint if their symbols
contain no common letters. In this case it is clear that any
number moved by one of these transformations is fixed by the
other. Hence if i is any number such that γ(i) ≠ i then γγ′(i) =
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γ(i), and since also γ2(i) ≠ γ(i), γ′γ(i) = γ(i). Similarly, if γ′(i)
≠ i then γ′γ(i) = γ′(i) = γγ′(i). Also if γ(i) = i = γ′(i) then γγ′(i)
= γ′γ(i). Thus γγ′ = γ′γ, that is, any two disjoint cycles
commute. Let a be a product of disjoint cycles, that is,

Let m be the least common multiple of r, s,… ,u. Then we
claim that m is the order of α. Putting γ1= (i1 … ir), γ2 = (i1
… js),…, γk = (l1 … lu) we have αm = γ1

mγ2
m … γk

m = 1. On
the other hand, α permutes i1, …, ir and so do its powers and
the restriction of α to {i1, …, ir} is γ1. Hence if αn = 1 then
γ1

n =
1 and so n is divisible by r. Similarly, n is divisible by s,…, u
and so n is divisible by the least common multiple of r,s,… ,u.
Hence the least common multiple of these numbers is the
order of α.

It is convenient to extend the definition of cycles and the
cycle notation to 1- cycles where we adopt the convention
that for any i, (i) is the identity mapping. With this convention
we can see that every permutation is a product of disjoint
cycles. For example, if

then

from which one deduces that
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In general, for any α we can begin with any number in 1,
2,…, n, say i1, and form α(i1) = i2, α(i2) = i3,…, until we
reach a number that occurs previously in this list. The first
such repetition occurs when ir + 1 = α(ir) = i1; for, we have ik
= αk – 1(i1) and if ik = i1 for l > k then αl – k(i1) = i1. Thus the
sequence i1, i2, … ,ir is permuted cyclically by α. If r < n we
choose a j1 not in {i1, i2, …, ir}. If αm(j1) = αm(i1) then j1 =
αq – m(i1) ∈ {i1, i2, …, ir} contrary to our choice of j1. Hence
we obtain a new sequence of numbers j1, j2,… ,js permuted
cyclically by α and having no elements in common with the
first. Continuing in this way we ultimately exhaust the set {1,
2,…, n}. It is clear, on comparing the images of any i under
the two maps α and (l1 … lu) α (i1 … ir) that

a product of disjoint cycles. The different cycles occurring in
such a factorization commute and we may add or drop trivial
one-cycles. Apart from order of the factors and inclusion or
omission of 1-cycles this factorization is unique. For, if we
have one which is essentially different from the one displayed
above (or 17)), then for some i, j, i ≠ j, which occur in the
order i followed by j in one of the cycles in (17), we have that
this is not the case in the other one. The first factorization
then shows that α(i) = j and the second that α(i) ≠ j. This
contradiction proves our assertion.

A cycle of the form (ab) is called a transposition. It is easy to
verify that
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a product of r – 1 transpositions. It follows that any α ∈ Sn is
a product of transpositions. In fact, if α factors as a product of
disjoint cycles as in (17), then α is a product of (r – 1) + (s –
1) + … + (u – 1) transpositions. We denote this number,
which is uniquely determined by α, as N(α). It is clear that
N(1) = 0. There is no uniqueness of factorization of a
permutation as a product of transpositions. For example, we
have (123) = (13)(12) = (12)(23) = (23)(13). However, as we
shall now show, there is one common feature of all the
factorizations of a given α as a product of transpositions. The
number of factors occurring all have the same parity: that is,
their number is either always even or always odd. Our proof
of this fact will be based on a simple formula, which is
anyhow worth noting:

Here we are allowing h or k to be 0, meaning thereby that no
c’s or no d’s occur. Comparing images of any i in {1, 2,…, n}
shows that (19) holds. Since (ab)–1 = (ab) multiplying both
sides of (19) on the left by (ab) gives:

If N is defined as above, we have N((ac1 … chbd1 … dk)) = h
+ k + 1 and N((bd1 … dk)(ac1 … ch)) = h + k. It follows that
N((ab)(α)) = N(α) – 1 if a and b occur in the same cycle in the
decomposition of α into disjoint cycles and N((ab)α) = N(α) +
1 if a and b occur in different cycles. Hence if α is a product
of m transpositions then, since N(1) = 0, where
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∈i ±1. Changing an ?i = – 1 to 1 amounts to adding 2 to the
sum and so does not change the parity. If we make this
change for every ∈i = – 1 the final sum we obtain is m. Hence
m and N(α) have the same parity. Hence the number of factors
in any two factorizations of α as a product of transpositions
have the same parity, namely, the parity of N(α).

We call α even or odd according as α factors as a product of
an even or an odd number of transpositions (equivalently:
N(α) is even or odd.) We define the sign of α, sg α, by

Then sg 1 = 1 and if α = (ab) … (kl), β = (pq) … (uv), αβ =
(ab) … (kl)(pq) … (uv). Hence αβ is even if and only if both
α and β are even or both are odd while αβ is odd if one of the
factors is even and the other is odd. It follows that

It is clear also that the subset An of even permutations is a
subgroup of Sn.

This is called the alternating group (of degree n). Suppose we
list its elements as

Then if n ≥ 2 we have m different odd permutations
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and this catches them all, since if β is odd β(ab) is even so
β(ab) = αi for some i and β = αi(ab). Hence |Sn| = 2m = 2|An|
and so |An| = n!/2 if n ≥ 2.

EXERCISES

1. Write (456)(567)(671)(123)(234)(345) as a product of
disjoint cycles.

2. Show that if n ≥ 3 then is generated by the 3-cycles (abc).

3. Determine the sign of the permutation

4. Show that if α is any permutation then

5. Show that Sn is generated by the n – 1 transpositions (12),
(13),…, (1n) and also by the n – 1 transpositions (12),
(23),…, (n – 1n).

1.7 ORBITS. COSETS OF A SUBGROUP

Let G be a group of transformations of a set S. Then G defines
an equivalence relation on S by the rule that x ∼ G y (read: x is
G-equivalent to y) if y = α(x) for some α ∈ G. That this
relation is reflexive, symmetric, and transitive is immediate
from the definition of a transformation group: x = 1s(x), also
if y = α(x) then x = α–1(y), and if y = α(x) and z = β(y) then z =
(βα)(x). Moreover, 1s ∈ G and α–1 and βα ∈ G, if α and β ∈
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G. The G-equivalence class determined by an element x is the
set Gx = {α(x)|α ∈ G} and this is called the G-orbit of x ∈ S.
For example, if G is the group of rotations about the origin in
a plane, then the orbit of a point P is the circle through P with
center at the origin. As with any equivalence relation, the set
of orbits constitute a partition of the set S. It may happen that
there is just one orbit, that is, S = Gx for some x (and hence
for every x). In this case we say that G is a transitive group of
transformations
of the set S. It is clear that Sn is transitive on {1, 2, … ,n}. The
reader will have no difficulty showing that this is true also of
the alternating group An if n ≥ 3. On the other hand, if α ∈ Sn
and α = (i1 … ir)(j1 … js) … (l1 … lu) the factorization of α
into disjoint cycles, where we have included the 1-cycles, and
every letter in {1, 2,…, n} appears once and only once among
i1, …, ir,j1, …, js,…, l1,…, lu, then the sets

are the orbits in {1, 2,…, n} determined by the cyclic
subgroup of Sn. Observe that this gives another
interpretation of the number N(α) which we used in section
1.6, namely, where k runs over the cardinal
numbers of the orbits determined by .

Now let G be any group and let H be a subgroup of G. We
recall that we have the transformation groups GL of left
translations gL (x → gx) and GR of right translations gR both
acting in G. Since y = gx and y = xg are solvable for g for any
given y and x it is clear that GL and GR are transitive groups.
Now let HL(G) denote the subset of GL of maps hL (in G) for
h ? H. Since H is a subgroup of G and g → gL is an
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isomorphism, HL(G) is a subgroup of GL and hence HL(G) is
a transformation group of the set G. What are the orbits in the
set G determined by HL(G)? If x ? G then it is clear that its
HL(G)-orbit is

In the group theory literature this is sometimes called the left
coset of x relative to the subgroup H and sometimes the right
coset of x relative to H. The majority opinion seems to favor
the second terminology. Accordingly, we shall adopt it here
and call Hx the right coset of x relative to H. We have the
partition . Moreover, any two right cosets Hx and
Hy have the same cardinality since the map (x–1y)R:z →
z(x–1y) is bijective from Hx to Hy. Since H = H1 is one of the
right cosets we have |Hx| = |H|.

In particular, suppose G is a finite group and |G| = n and |H| =
m. We have the partition

where we have displayed the distinct cosets, so Hxi ∩ Hxj = Ø
if i ≠ j. We call the number r of these cosets the index of H in
G and denote this as [G:H]. Since |Hxi| = m, we have by (24)
that n = mr. This proves a fundamental theorem which is due
to Lagrange:

THEOREM 1.5. The order of a subgroup H of a finite
group G is a factor of
the order of G. More precisely, we have
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We also have the following

COROLLARY. If G is a finite group of order n, then xn = 1
for every x ? G.

Proof. Let m be the order of . Then xm = 1 and n = mr, so
xn = 1.

The results on right cosets have their counterparts for left
cosets. These are the orbits in G determined by the
transformation group HR(G). The orbit of x in this case is xH
= {xh|h ∈ H} and this is called the left coset of x relative to H.
If Hx is a right coset the set of inverses (hx)–1 = x–1h–1 of the
elements of Hx is the left coset x–1H. It is immediate that the
map Hx → x–1H is a bijective map of the set of right cosets
onto the set of left cosets. It follows that these two sets (of left
and right cosets) have the same cardinal number. As in the
case of finite groups, we call this the index of H in G and
denote it as [G :H]

EXERCISES

1. Determine the cosets of in where α = (1234).

2. Show that if G is finite and H and K are subgroups such
that H ⊃ K then [G:K] = [G:H][H:K].

3. Let H1 and H2 be subgroups of G. Show that any right
coset relative to H1 ∩ H2 is the intersection of a right coset of
H1 with a right coset of H2. Use this to prove Poincaré’s
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Theorem that if H1 and H2 have finite index in G then so has
H1 ∩ H2.

4. Let G be a finitely generated group, H a subgroup of finite
index. Show that H is finitely generated.

5. Let H and K be two subgroups of a group G. Show that the
set of maps x → hxk, h ∈ H, k ∈ K is a group of
transformations of the set G. Show that the orbit of x relative
to this group is the set HxK = {hxk|h ∈ H, k ∈ K}. This is
called the double coset of x relative to the pair (H, K). Show
that if G is finite then |HxK| = |H|[K:x–1 Hx ∩ K] = |K| [H:
xKx–1 ∩ H].

6. Let H be a subgroup of the finite group G. Show that there
exists a subset {z1, …, zr] of G which is simultaneously a set
of representatives of the left and of the right cosets of H in G,
that is, G is a disjoint union of the ziH and also of the Hzi 1 ≤ i
≤ r. (Hint: For any g ∈ G, write , where the xj ∈
H
and xjgH ∩ xkgH = Ø if j ≠ k. Note that the number of right
cosets of H contained in HgH is s and write ,
where yj ? H. Put Zj = xjgyj and show that

1.8 CONGRUENCES. QUOTIENT MONOIDS AND
GROUPS

In elementary number theory two integers a and b are defined
to be congruent modulo the integer m and this is denoted as a
≡ b (mod m) if a – b is a multiple of m:a – b = km, k ∈ .5

The relation between a and b thus defined for fixed m is an
equivalence relation; for, we have a ≡ a (mod m) since a – a =
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0 = 0m, a ≡ b (mod m) implies b ≡ a (mod m) since a – b =
km implies b – a = (– k)m and a ≡ b (mod m) and b ≡ c (mod
m) imply a ≡ c (mod m) since a – b = km and b – c = lm imply
a – c = (k + l)m. In the additive group ( , +, 0) congruences
mod m can be added, that is, if a ≡ a (mod m) and b ≡ b(mod
m) then a + b = a + b (mod m). This follows since a – a′ =
km, b – b = lm imply a + b – (a + b′) = (k + l)m. Also in the
monoid ( , ·, 1) congruences mod m can be multiplied: a ≡ a′
(mod m), b = b′ (mod m) imply ab = a′b′ (mod m), since a = a′
+ km, b = b′ + lm imply ab = a′b′ + (a′l + b′k + klm)m.
Congruences mod m in ( , +, 0) and in ( , ·, 1) are examples
of a general notion which we shall now define.

DEFINITION 1.4. Let (M, ·, 1) be a monoid. A congruence
(or congruence relation) ≡ in M is an equivalence relation in
M such that for any a, a′, b, b′ such that a ≡ a′ and b ≡ b′ one
has ab ≡ a′b′. (In other words, congruences are equivalence
relations which can be multiplied.)

Let ≡ be a congruence in the monoid M and consider the
quotient set = M/ ≡ of M relative to ≡. We recall that is
the subset of the power set (M) consisting of the equivalence
classes = {b ∈ M\b ≡ a}. For example, in ( , +, 0) if we
define ≡ (mod m) as above, then = {a + km|k ∈ }. Since
congruences can be multiplied it is clear in the general case
that, if Hence

is a well-defined map of × into ; that is, this is a binary
composition on . We denote this again as ·, and we shall
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now show that ( , ·, ) is a monoid. We note first that
, since the left-hand side is and the

right-hand side is . Hence follows from
the associative law in M. Also so
is a unit. The monoid ( , ·, ) is called the quotient monoid
of M relative to the congruence ≡.

In the special case M = ( , +, 0) in which ≡ is ≡ (mod m)
where m > 0, any a ∈ can be written as a = qm + r where 0
≤ r < m, which means that a ≡ r (mod m). If r1 and r2 both
satisfy 0 ≤ ri < m then r1 ≡ r2 (mod m) implies that r1 = r2.
Hence in this case the quotient monoid, which we shall
denote as / m (a special case of a general notation that will
be introduced below), consists of m elements:

In the multiplicative case of M = ( , ·, 1) we also have this
same set of elements as the underlying set for the monoid ( /

m, ·, ).

We can say a good deal more if M = G is a group and ≡ is a
congruence on G. In the first place, in this case the quotient
monoid is a group since . Hence every

is invertible and its inverse is . Next we can determine
all congruences on a group—or, more precisely, we can
reduce the problem of determining the congruences to that of
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determining certain kinds of subgroups of the given group
which we specify in the following

DEFINITION 1.5. A subgroup K of a group G is said to be
normal (sometimes called invariant, and in the older
literature, self-conjugate) if

for every g ∈ G and k ? K.

We have the following fundamental connection between
congruences on a group G and normal subgroups of G.

THEOREM 1.6. Let G be a group and ≡ a congruence on
G. Then the congruence class K = of the unit is a normal
subgroup of G and for any g ? G, = Kg = gK, the right or
the left coset of g relative to K. Conversely let K be any
normal subgroup of G, then ≡ defined by:

is a congruence relation in G whose associated congruence
classes are the left (or righta) cosets gK.

Proof. Suppose first that we have a congruence ≡ on G and
let K = . If k1, k2 ∈ K, then k1k2 ∈ K since

. Also 1 ∈ K and k1
–1 ∈ K since, as we

showed above, . Hence K is a subgroup
of G. Next let g be any element of G and consider the
congruence class . If a ∈ then g–1a and ag–1 ∈ K since

and, similarly. ag–1 ? K. It
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follows that a ? Kg and a ? gK. Conversely, let a ? Kg. Then
a = kg, k ∈ K, and so a ≡ g. The same thing
holds if a ? gK. Thus

It follows that K is normal in the sense of the foregoing
definition. This can be seen directly, or better still, it can be
seen by observing that gK = Kg for all g and a subgroup K is
equivalent to normality. If this holds, then for any g ? G and
any k ? K, kg ? gK, so kg has the form gk, k′ ∈ K. Then g–1kg
∈ K, so K is normal. On the other hand, if K is normal, a
reversal of the steps shows that kg ∈ gK for k ? K, g ? G.
Hence Kg ? gK. Replacing g by g–1 in the definition of
normality, we obtain Kg–1 ? g–1K, which implies that gK ⊂
Kg. Hence Kg = gK for every g in G.

Conversely, let K be a normal subgroup of G and define a ≡ b
(mod K) to mean a–1b ? K. This is equivalent to saying that b
? aK, or that b is in the orbit of a relative to the
transformation group KR(G). We showed in the last section
that the relation we are considering is an equivalence relation
in G for any subgroup K of G. We now proceed to show that
normality of K insures that equivalences can be multiplied
and hence that a ≡ b (mod K) is a congruence. Thus let a ≡ g
(mod K) and b ≡ h (mod K). Then a = gk1, b = hk2, ki ? K,
and since Kh = hK, k1h = hk3, k3 ? K. Then ab = gk1hk2 =
ghk3k2 so ab ≡ gh (mod K). Thus ≡ (mod K) is a congruence
relation in G. For this congruence we have = {k|1–1k ∈ K}
= K and for any g, = {a|g–1a ∈ K} = gK. This completes our
verification.
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We shall now write G/K for = G/≡ (mod K) and call this the
factor group (or quotient group) of G relative to the normal
subgroup K. By definition, the product in G/K is

K = 1K is the unit, and the inverse of gK is g–1K.

Every group ≠1 has two normal subgroups: G and 1. G is
called simple if these are its only normal subgroups.
Equivalently, G is simple if the only congruences on G are the
two trivial ones: =, and the one in which any two elements are
equivalent. It is clear from the definition that any subgroup of
an abelian group is normal. It follows easily that the only
simple abelian groups are the cyclic groups of prime order. It
is left to the reader to prove this. We remark also that if C is
the center of G then every subgroup of C is normal in G.

There is another way of looking at factor groups in terms of
multiplication of subsets of a group. If A and B are subsets of
a group G (similarly of a monoid) one defines

With this definition of product and 1 = {1}, the set of
non-vacuous subsets of G is a monoid, since (AB)C is the set
of elements (ab)c and A(BC) is the set of elements a(bc), a ∈
A, b ∈ B, c ∈ C. Hence, associativity follows from the
associative law in G. Also 1A = A = A1. It is clear that a
subset H of G is a subgroup if and only if: (1) H2 ? H, (2) 1 ∈
H, (3) H –1 ≡ {h–1|h ∈ H} ⊂ H, and (1) and (2) together imply
that H2 = H. It is clear also that the coset Hg (respectively
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gH) is the product of H and {g} (of {g} and H). A subgroup K
is normal if and only if any of the following equivalent
conditions hold: g–1Kg ⊂ K, Kg = gK, g–1Kg = K for all g ?
G. In this case, the product for sets as just defined gives
(gK)(hK) = g(Kh)K = g(hK)K = ghK2 = ghK. Thus the product
in G/K as defined by (26) coincides with the set product of gK
and hK.

EXERCISES

1. Determine addition tables for ( / 3, + ) and ( / 6, + ).
Determine all the subgroups of ( / 6, +).

2. Determine a multiplication table for ( / 6, ·).

3. Let G be the group of pairs of real numbers (a, b) a ≠ 0,
with the product (a, b)(c, d) = (ac, ad + b) (exercise 4, p. 36).
Verify that K = {(1, b)|b ∈ } is a normal subgroup of G.
Show that G/K ( *, ·, 1) the multiplicative group of
nonzero reals.

4. Show that any subgroup of index two is normal. Hence
prove that An is normal in Sn.

5. Verify that the intersection of any set of normal subgroups
of a group is a normal subgroup. Show that if H and K are
normal subgroups, then HK is a normal subgroup.

6. Let G1 and G2 be simple groups. Show that every normal
subgroup of G = G1 × G2, ≠ G, ≠ 1 is isomorphic to cither G1
or G2.
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7. Let ≡ be an equivalence relation on a monoid M. Show that
≡ is a congruence if and only if the subset of M × M defining
≡ (p. 10) is a submonoid of M × M.

8. Let {≡i} be a set of congruences on M. Define the
intersection as the intersection of the corresponding subsets of
M × M. Verify that this is a congruence on M.

9. Let G1 and G2 be subgroups of a group G and let α be the
map of G1 × G2 into G defined by ≡(g1, g2) = g1g2. Show that
the fiber over g1g2—that is, α–1(g1g2)–is the set of pairs (g1k,
k–1g2) where k ? K = G1 ∩ G2. Hence show that all fibers
have the same cardinality, namely, that of K. Use this to show
that if G1 and G2 are finite than

10. Let G be a finite group, A and B non-vacuous subsets of
G. Show that G = AB if |A| + |B| > |G|.

11. Let G be a group of order 2k where k is odd. Show that G
contains a subgroup of index 2. (Hint: Consider the
permutation group GL of left translations and use exercise 13,
p. 36.)

1.9 HOMOMORPHISMS

In dealing with mathematical structures such as monoids,
groups, vector spaces, topological spaces, etc., it is important
to specify the types of maps which in some sense are natural
in the particular context. For vector spaces these are the linear
maps, and for topological spaces they are the continuous
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ones. Nearly all the interesting results in linear algebra
concern linear transformations, or equivalently, matrices. In
fact, there is not much one can say about vector spaces that
does not involve explicitly the notion of a linear
transformation or matrix.6 The natural maps for monoids (and
for groups) are called homomorphisms. These are obtained
simply by dropping the requirement of bijectivity in the
definition of an isomorphism. The concept of homomorphism
was a rather late bloomer in the theory of groups, and it
became an important tool for the study of groups only
comparatively recently—during the past forty or fifty years.
The concept is applicable to all types of algebraic structures.
In the case of monoids we can state the definition formally as
follows:

DEFINITION 1.6. If M and M′ are monoids, then a map η
of M into M′ is
called a homomorphism if

If M′ is a group the second condition is superfluous. For, if
the first holds, we have η(1) = η(12) = η(1)2 and multiplying
by η(1)–1 we obtain 1′ = η(1). We have already encountered
several instances of homomorphisms which may not be
isomorphisms. One of these is the map

of the additive group of integers into any group G, determined
by a fixed element a ? G. Since ηa(n + m) = an + m = anam =
ηa(n)ηa(m), this is a homomorphism of ( , +, 0) into G.
Another example we had is the map
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of the symmetric group Sn into the multiplicative group
{1,–1}. That this is a homomorphism is clear from (22). Some
additional examples of homomorphisms (and of one fake) are
given in the following list.

EXAMPLES

1. Let M and M′ be monoids and map every a ? M into the
unit 1′ of M′. This is a homomorphism of M into M′.

2. Let M be the multiplicative monoid of integers: M = ( , ·,
1). Map every a ? M into 0. This satisfies η(ab) = η(a)η(b)
but it is not a homomorphism since 1 → 0 (≠ 1).

3. Let G = ( , +, 0), G′ = ( *, ·, 1) the multiplicative group of
non-zero complex numbers. Let η:θ → eiθ. This is a
homomorphism of G into G′.

4. Let G be the group of pairs (a, b), a ≠ 0, given in exercise
4, p. 36, and map G into G′ = ( *, ·, 1) by (a, b) → a. This is
a homomorphism.

5. Let G be a transformation group of a set S and let T be a
subset of S which is stabilized by G in the sense that α(T) ⊂ T
for every α ∈ G. Let α| T be the restriction of α to T. Then α
→ α | T is a homomorphism of G into Sym T. This is called
the restriction homomorphism.

We emphasize that—as in the foregoing examples—a
homomorphism η need not be surjective or injective. If, by
chance, η is surjective then we call it an epimorphism, and if
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it is injective then we call it a monomorphism. Of course, if it
is bijective, then η is an isomorphism.

If η is a homomorphism of the monoid M into the monoid M′,
then induction shows that for any a ? M and k ∈ , η(ak) =
η(a)k. If a is invertible, application of η to aa– 1 = 1 = a –1a
gives η(a)η(a–1) = 1′ = η(a–1)η(a). Hence a′ = η(a)
is invertible in M′ and η(a–1) = η(a)–1. It then follows that
η(ak) = η(a)k for all k ∈ . Another useful result which we
have to refer to frequently enough to warrant stating as a
theorem is

THEOREM 1.7. Let η and ζ be homomorphisms of a
monoid M (or group G) into a monoid M′ and let S be a set of
generators for M (for the group G). Suppose η(s) = ζ(s) for all
s ? S. Then η = ζ.

Proof. We consider first the case of monoids and let

Then 1 ∈ M1 since η(1) = 1′ = ζ(1) and M1 ⊃ S. Also if a, b ?
M1 then ab ? M1 since η(ab) = η(a)η(b) = ζ(a)ζ(b) = ζ(ab).
Thus M1 is a submonoid, and since it contains a set of
generators, M1 = M. Hence η(a) = ζ(a) for all a, and so η = ζ.
The proof is similar in the case of a group G. In this case the
argument shows that the subset G1 = {a ? G| η(a) = ζ(a)} is a
submonoid. But if a ∈ G1, then η(a–1) = η(a)–1 = ζ(a)–1 =
ζ(a–1). Hence a–1 ∈ G1 and G1 is a subgroup. Then G1 = G
since G1 contains a set of generators of G (as a group).
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A homomorphism of M into itself is called an endomorphism
and an isomorphism of M to M is called an automorphism of
M. The identity map is an automorphism. Theorem 1.7
applied to any endomorphism η and to ζ = 1 shows that if η is
an endomorphism of a monoid or a group and η is the identity
map on a set of generators then η = 1. We remark also that if
η is an endomorphism, then the set of fixed elements under η
(η(a) = a) is a submonoid if M is a monoid and a subgroup if
M = G is a group. This is clear from the proof of Theorem
1.7.

Let η:M → M′ and ζ: M′ → M″ be homomorphisms of
monoids. Then for a, b ? M,

. Also ζη(1)
= ζ(1′) = 1″, the unit of M″. Hence ζη :M → M″ is a
homomorphism. If η is bijective then, as we saw before, η–1

is an isomorphism of M′ into M. It is clear that the identity
map is an automorphism. Hence the set, Aut M, of
automorphisms of a monoid is a group of transformations of
the monoid. We call this the group of automorphisms of M.
We remark also that the larger set, End M, of endomorphisms
is a monoid of transformations, the endomorphism monoid of
M.

Let M be a monoid, ≡ a congruence on M and the quotient
monoid determined by ≡. Then the natural map v: a → (the
congruence class of a) is a homomorphism, since, v(1) = is
the unit of and
v(a)v(b) by definition of the product in . We shall now
derive the main result on homomorphisms of monoids and
groups which we state as the
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FUNDAMENTAL THEOREM OF HOMOMORPHISMS
OF MONOIDS AND GROUPS. Let η be a homomorphism
of a monoid M into a monoid M′. Then the image η(M) is a
submonoid of M′ and if M is a group, η(M) is a subgroup of
M′. The equivalence relation Eη determined by the map η
(aEηb means η(a) = η(b)) is a congruence in M and we have a
unique homomorphism of the quotient monoid = M/Eη
into M′ making

commutative. v is an epimorphism and is a monomorphism.
In the case of groups, = K = η–1(1′) is a normal subgroup
of M, = M/K, v is a → aK, and is ak → η(a).

Proof. As happens frequently at the foundational level, the
proof is not much longer than the statement of the theorem
and it amounts merely to a direct verification of the various
assertions. Let η :M → M′ be a homomorphism of monoids.
Then 1′ = η( 1) ∈ η(M), and η(a)η(b) = η(ab) shows that η(M)
is closed under the product in M′. Hence η(M) is a
submonoid. If M is a group, η(a) is invertible with inverse
η(a–1), and so η(M) is a subgroup of M′. Now consider the
equivalence relation Eη in M. Suppose a1Eηa2 and b1Eηb2,
which means that . Then
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. Thus Eη is
a congruence. Our results on maps of sets (section 0.3) show
that we have a unique induced map of = M/Eη into M′
such that v = η. We have seen that v is a homomorphism. All
that remains (for the case of monoids) is to show that is a
homomorphism. We have (a) = η(a). Then

1′,
which is what we needed. We saw in section 0.3 that v is
surjective and is injective. Hence these are respectively an
epimorphism and monomorphism of M and . Now suppose
M and M′ are groups. Since Eη is a congruence in the group
M,
we know that the congruence class K of 1 is a normal
subgroup of M and the congruence class of any a is Ka = aK
(section 1.8). By definition, the congruence class of 1 is

that is, K = η–1( 1′). The rest is clear by Theorem 1.6.

In the foregoing discussion we have derived the results on
groups as consequences of results on monoids. For the latter
the concepts of congruence and quotient monoid defined by a
congruence are essential. On the other hand, the basic results
on group homomorphisms can also be derived directly
without recourse to congruences. We proceed to do this. This
will help clarify the situation in the most important case of
group homomorphisms.

We start from scratch and consider a homomorphism η of a
group G into a group G′. Then it is immediate that the image
im G is a subgroup of G′. Next we consider K = η–1( 1′),
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which is analogous to the null space of a linear map of one
vector space into a second one. Direct verification shows that
K is a normal subgroup of G. We call this the kernel of η and
denote it also as ker η. We observe first that η is injective if
and only if ker η = 1; for, if ker η ≠ 1 then we have b ≠ 1 in G
such that η(b) = 1′ = η(1). On the other hand, if η is not
injective then we have a ≠ b in G with η(a) = η(b). Then a–1b
≠ 1 and η(a–1b) = η(a)–1η(b) = 1′, so ker η ≠ 1.

Now let L be a normal subgroup of G contained in K. Then
we can form the factor group = G/L consisting of the cosets
aL = La, a ∈ G, with multiplication (aL)(bL) = abL and unit

= L (see the last paragraph on p. 56). This definition shows
that the map v:a → aL is a homomorphism of G onto =
G/L. Now suppose aL = bL. Then b = al, l ∈ L, and η(b) =
η(a)η(l) = η(a)1′ (since L ⊂ ker η) = η(a). Hence we have a
well-defined map :aL → η(a) of G/L into G′. Since
((aL)(bL)) = (abL) = η(ab) = η(a)η(b) = (aL) (bL), is a
homomorphism. We call the homomorphism of = G/L
induced by η. If a ∈ G then v(a) = (aL) = η(a). Thus η = v,
which means that we have a commutative diagram as on the
preceding page.

Evidently = im η. What is the kernel of ? By definition,
this is the set of cosets aL such that (aL) = 1′. Since (aL) =
η(a), the condition is η(a) = 1′. Hence ker = {aL|a ∈ ker η}
= ker η/L (Clearly L is a normal subgroup of K.) Since a
homomorphism is injective if and only if its kernel is 1, is
injective if and only if L = ker η.
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The facts we have listed go beyond those stated in the
“Fundamental Theorem” in the replacement of K = ker η by
any normal subgroup L of G contained
in K. Now suppose K = L and η is surjective. Then the
homomorphism of G = G/K into G′ is surjective and
injective, hence an isomorphism. We therefore have the

COROLLARY. If G is a group and η is an epimorphism of
G onto the group G′ with kernel K, then the induced map :
aK → η(a) is an isomorphism. Thus any homomorphic image
of a group G is isomorphic to a factor group G/K by a normal
subgroup K.

EXERCISES

1. Let G = ( , +, 0), K = . Show that G/K the group of
complex numbers of the form e2πiθ, θ ∈ θ under
multiplication.

2. Let G be the set of triples of integers (k, l, m) and define
(k1, l1, m1)(k2, l2, m2) = (k1 + k2 + l1m2, l1, m1 + m2). Verify
that this defines a group with unit (0, 0,0). Show that C = {{k,
0, 0) | k ∈ } is a normal subgroup and that G/C the group

(2) = {(l, m) | l, m ∈ } with the usual addition as
composition.

3. Show that a → a–1 is an automorphism of a group G if and
only if G is abelian, and if G is abelian, then a → ak is an
endomorphism for every k ∈ .

4. Determine Aut G for (i) G an infinite cyclic group, (ii) a
cyclic group of order six, (iii) for any finite cyclic group.
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5. Determine Aut S3.

6. Let a ∈ G, a group, and define the inner automorphism (or
conjugation) Ia to be the map x → axa–1 in G. Verify that Ia
is an automorphism. Show that a → Ia is a homomorphism of
G into Aut G with kernel the center C of G. Hence conclude
that Inn G ≡ {Ia|a ∈ G} is a subgroup of Aut G with Inn G
G/C. Verify that Inn G is a normal subgroup of Aut G. Aut
G/Inn G is called the group of outer automorphisms.

7. Let G be a group, GL the set of left translations aL, a ? G.
Show that GL Aut G is a group of transformations of the set G
and that this contains GR. GL Aut G is called the holomorph
of G and is denoted as Hol G. Show that if G is finite, then
|Hol G| = |G| |Aut G|.

8. Let G be a group such that Aut G = 1. Show that G is
abelian and that every element of G satisfies the equation x2 =
1. Show that if G is finite then |G| = 1 or 2. (Hint: Use the
procedure of finding a base for a vector space to show that G
contains elements a1, a2, …, ar such that every element of G
can be written in one and only one way in the form a1

k1a2
k2

… akr, ki = 0, 1. Then show that there exists an automorphism
interchanging a1 and a2.)

9. Let α be an automorphism of a group G which fixes only
the unit of G (α(a) = a => a = 1). Show that a → α(a)a–1 is
injective. Hence show that if G is finite, then every element of
G has the form α(a)a–1.

10. Let G and α be as in 8, G finite, and assume α2 = 1. Show
that G is abelian of odd order.
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11. Let G be a finite group, α an automorphism of G, and set

Suppose |I| > |G|. Show that G is abelian. If |I| = |G|, show
that G has an abelian subgroup of index 2.

1.10 SUBGROUPS OF A HOMOMORPHIC IMAGE.
TWO BASIC ISOMORPHISM THEOREMS

We shall establish a 1–1 correspondence between the set of
subgroups of a homomorphic image of a group G and the
set of subgroups of G containing the kernel of a given
homomorphism. Since any homomorphic image is
isomorphic to a factor group we may assume = G/K, K a
normal subgroup of G. Then we have

THEOREM 1.8. Let K be a normal subgroup of G, H a
subgroup of G containing K. Then = H/K is a subgroup of

= G/K and the map H →> is a bijective map of the set of
subgroups of G containing K with the set of subgroups of .
H(⊃ K) is normal in G if and only if is normal in . In this
case,

Proof. The fact that H/K is a subgroup of G/K is clear from
the definition of G/K. Now let H1 and H2 be two subgroups of
G containing K and suppose H1/K = H2/K. Then for any h1 ∈
H1 h1K ∈ H2/K, so h1K = h2K for some h2 ∈ H2. Then h2

–1h1
∈ K, so h1 = h2k, k ∈ K. Since K ⊂ H2 this shows that h1 ∈
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H2. Thus H1 ⊂ H2 and, similarly, H2 ⊂ H1. Hence H1 = H2,
and we have shown that H → H/K is injective. To see that it
is surjective let be a subgroup of , so that is a collection
of cosets. Let H be the union in G of these cosets. If

. Hence h1
h2 ∈ H. Similarly h1

–1K = (h1K)–1 ∈ , so h–1 ∈ H. Hence H
is a subgroup of G. Clearly = H/K. It is evident that if H is
normal in G, then is normal in . Conversely, if is
normal in , then for any h ∈ H, g ∈ G, (g–1hg)K =
(gK)–1(hK)(gK) = h′K for some h′ ∈ H. It follows that g–1hg
∈ H and H is normal in G. If this condition is satisfied we can
form the factor group / and
we have the natural homomorphism of with .
We also have the natural homomorphism g → of G with .
Hence we have the homomorphism g → of G with .
The kernel is the set of g ∈ G such that ∈ , that is, the set
of g such that gK = hK for some h ∈ H. This is just the
subgroup H. Hence, by the fundamental theorem of
homomorphisms, gH → is an isomorphism of G/H with

.

It is sometimes useful to state Theorem 1.8 in what appears to
be a slightly more general form, as follows:

THEOREM 1.8′. Let η be an epimorphism of G onto G′ and
let Λ be the set of subgroups H of G containing K = ker η.
Then the map H → η(H) of Λ gives a 1–1 correspondence
between the set Λ and the complete set of subgroups of G′. H
is normal in G if and only if η(H) is normal in G′. In this case
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is an isomorphism of G/H with G′/η(H).

This can either be proved directly in a manner similar to the
proof of Theorem 1.8, or, it can be deduced from Theorem
1.8 via the isomorphism gK → η(g) of G/K with G′. We leave
the details to the reader.

The isomorphism (27) is often called the first isomorphism
theorem for groups. There is also a basic second isomorphism
theorem. This is

THEOREM 1.9. Let H and K be subgroups of G, K normal
in G. Then HK = {hk|h ? H, k ? K} is a subgroup of G
containing K, H ∩ K is normal in H and the map

is an isomorphism of HK/K with H/(K ∩ H).

Proof. Since K is normal we have hK = Kh, h ? H. Since
and , clearly HK = KH. Then

(HK)2 = HKHK = H2K2 = HK. Also 1 ∈ HK and if hk ∈
HK(h ∈ H, k ∈ K) then (hk)–1 = k–1h–1 ∈ KH = HK. Hence
HK is a subgroup of G. Clearly, HK ⊃ 1K = K and K is
normal in HK. We now consider the restriction v′ = v|H where
v:g → gK. The image of v′ is the set of cosets hK, h ? H.
Since any coset of the form hkK, h ? H, k ? K, coincides with
hK, it is clear that im v′ is HK/K. The kernel of this
homomorphism is the set of h ? H such that hK = K, the unit
of HK/K. Since hK = K if and only if h ? K, we see that ker v′
= H ∩ K and so this is a normal subgroup

130



of H, and by the fundamental theorem of homomorphisms,
h(H ∩ K) → hK is an isomorphism of H/(H ∩ K) with HK/K.
The inverse is hK → h(H ∩ K) as given in (28).

The proofs of the theorems in this section illustrate the power
of the fundamental theorem. As another illustration of this
and also of the use of the subgroup correspondence of
Theorem 1.8, we shall now give a quick re-derivation of the
results on cyclic groups. Everything will follow from the
determination of the subgroups of ( , +, 0) and their inclusion
relations. Let K be a subgroup ≠0 of . Then if n ? K so does
–n; hence K contains positive integers and consequently K
contains a least positive integer k. Now let n be any element
of K. Then the division algorithm in permits us to write n =
qk + r where 0 ≤ r < k. Clearly qk ? K and since n ∈ K, r = n –
qk ∈ K. This forces r = 0, since k is the least positive integer
in K. Thus we see that every element of K is a multiple of k
and, of course, every multiple of k is in K. Hence K = k =
{mk|m ∈ }. Conversely, it is clear that for any k ≥ 0, k is a
subgroup. This includes the subgroup 0 as 0. Thus the set of
subgroups of are the various sets k, k ∈ . Suppose k, l ∈

and l ⊃ k. Then k ∈ l so k = lm and l\k. The converse is
clear. Hence

Next we note that if k = 0 then / k and if k > 0 then / k
is just the set of congruence classes modulo the integer k, and
these are
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Thus the order of / k is k. Clearly / k is cyclic with as
generator.

Now let G = , so that G is a cyclic group with generator a.
Since aman = am + n we have the epimorphism of ( , +, 0) into
G sending n → an. Hence G / k for some k ∈ . If k = 0,
G and if k > 0, G is finite of order k. Hence it is clear that
any two cyclic groups of the same order are isomorphic.

We can also determine the subgroups of / k. If k = 0 we are
dealing with and we have the determination which we
made: the subgroups are l, l ≥ 0, and l is cyclic with
generator l. If k > 0 it follows from Theorem 1.8 that the
subgroups of / k have the form l/ k where l ≥ 0 and l ⊃
k. Then l|k, say, k = lm. Now

. It
follows that the cyclic group / k of order k has one and only
one subgroup of order m for each divisor m of k. Moreover,
this subgroup, l/ k, is cyclic with 1 + k as generator.

EXERCISES

1. Show that l ∩ k = [l, k] and l + k = {a + b|a ∈ l, b
∈ k} = (l, k).

2. Let {Hα} be a collection of subgroups containing the
normal subgroup K. Show that .

1.11 FREE OBJECTS. GENERATORS AND
RELATIONS
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The method used in the last section of studying cyclic groups
by considering these as a homomorphic images of the
“universal” cyclic group ( , +, 0) can be generalized to obtain
the structure of finitely generated abelian groups. We shall
carry out this program in Chapter 3. At this point we shall
define these universal finitely generated abelian groups,
called free abelian groups, and consider also their analogues
for commutative monoids, for arbitrary monoids, and for
arbitrary groups.

We construct first for any positive integer r and abelian group
(r) with r generators x1, x2, … ,xr such that if G is any

abelian group and a1, a2, …, ar are elements of G then there
exists a unique homomorphism of (r) into G sending

Let (r) be the r-fold direct power of : (r) is the set of
r-tuples (n1, n2, …, nr) of integers ni with addition by
components, (mi) + (ni) = (mi, + ni) and 0 = (0, 0,…, 0). This
is an abelian group. Put

Then (n1, n2,…, nr) = , so the xi generate (r). Now let
a1, a2, …,ar be a sequence of r elements of any abelian group
G and consider the map

Since the ai commute, we have
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which implies that η is a homomorphism of (r) into G.
Moreover,

and, since the xi generate (r), there is only one
homomorphism of (r) sending xi → ai, 1 ≤ i ≤ r (see
Theorem 1.7). We shall call (r) the free abelian group with r
(free) generators xi.

Identical considerations apply to commutative monoids. Let
(r) be the r-fold direct power of the monoid ( , + , 0). This is
a commutative monoid generated by the r elements xi, as in
(30). Moreover, as in the group case, if a1, a2, …, ar are
elements of a commutative monoid M, there exists a unique
homomorphism of (r) into M such that xi → ai, 1 ≤ i ≤ r. We
call (r) the free commutative monoid with r (free) generators
xi.

We shall now drop the requirement of commutativity in these
considerations. We seek to construct first a monoid, then a
group, generated by r elements xi such that if ai are any r
elements of a monoid M (group G), then there exists a unique
homomorphism of the constructed monoid (group) sending xi
→ ai, 1 ≤ i ≤ r.

We consider first the monoid case. Put X1 = X = {x1, x2, …,
xr}. Xj = X × X × … × X, j times, where j = 2, 3, …. Let FS(r)

denote the disjoint union of the sets X1, X2, …. The elements
of FS(r) are “words in the alphabet X,” that is, they are
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sequences (xi1, xi2, …, xim), xij ∈ X, m = 1, 2, 3, …. We
introduce a multiplication in FS(r) by juxtaposition, that is,

This is clearly an associative product, but we have no unit.
However, we can adjoin one and call it 1 (see exercise 5, p.
30) to obtain a monoid FM(r). It is clear from (32) that (xi1,
…, xim) = xi1 … xim; hence FM(r) is generated by the xi. Now
let a1, a2, … , ar be any r elements of any monoid M. Then
since we have a unique way of writing an element ≠1 of
FM(r) as (xl1, …, xim),

is a well defined map of FM(r). It is clear from (32) that this is
a homomorphism of FM(r) sending xi → ai 1 ≤ i ≤ r. Since the
xi generate FM(r) this is the only homomorphism having this
property. We call FM{r) the free monoid (freely) generated by
the r elements xi (or the monoid of words in the xi,).

To obtain a construction of a free group we observe first that
the subgroup of a group generated by a subset X coincides
with the submonoid generated by the union of X and the set of
inverses of the elements of X. This suggests forming the set X
∪ X′ where X is the given set {x1, x2, …, xr} and X is another
set {x1, x2, …, xr} disjoint to X and in 1–1 correspondence xi
↔ xi with X. Form the free monoid FM(2r) generated by X ∪
X. Now suppose G is a group, and a1, a2, …, ar is a sequence
of elements of G. Then we have a unique homomorphism η of
FM(2r) into G sending xi → ai, x → ai

–1, 1 ≤ i ≤ r. By the
fundamental theorem of homomorphisms, we obtain a
congruence Eη on FM(2r) by specifying that aEηb means that
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η(a) = η(b). Then xixiEη1 and xixiEη1. This suggests that we
consider the set Γ of all the congruences ≡α on FM(2r)

in which xixi ≡α 1 and xixi ≡α 1 for 1 ≤ i ≤ r, and form their
intersection ≡. By definition, a ≡ b means a ≡αb for every ≡α.
This is again a congruence (exercises 8, p. 57) and so we can
form the quotient monoid FM(2r)/ ≡ , which we shall denote
as FG(r). We observe first that FG(r) is a group generated by
the congruence classes i 1 ≤ i ≤ r. This is clear since the
congruence class i has the inverse ″i in FG(r) and FG(r) is
generated as monoid by the elements i and ’i. Again, let G
be a group, a1, a2, …, ar a sequence of elements of G. We
have the unique homomorphism η of FM(2r) into G sending xi
→ ai, x → ai

–1, 1 ≤ i ≤ r which gives a congruence Eη on
FM(2r) such that xix″iEη 1 and x″ixiEη 1. Then a ≡ b on FM(2r)

implies aEηb and hence we obtain a well defined map of
FG(r) sending the element into η(a). This is a
homomorphism of FG(r) mapping i → ai 1 ≤ i ≤ r. Since the

i generate FG(r) this is the only homomorphism which does
this.

To summarize: given the set X = {x1, …, xr} we have
obtained a map xi → i of X into a group FG(r) such that if G
is any group and xi → ai, 1 ≤ i ≤ r is any map of X into G then
we have a unique homomorphism of FG(r) into G, making the
following diagram commutative:
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We shall now show that the map xi → i is injective. We do
this by taking G in the foregoing diagram to be the free
abelian group (r) generated by the elements (0, …, 0, 1, 0,
…, 0) and choose the vertical arrow to be the map sending

. Since this is injective, and injectivity of
the composite βα of two maps implies injectivity of α, it
follows that xi → i is injective. Our last step is to identify xi
with its image i. We can then say that FG(r) is generated by
the xi. Moreover, if ai ∈ G then we have a unique
homomorphism of FG(r) into G such that xi → ai 1 ≤ i ≤ r.
We call FG(r) the free group (freely) generated by the r
elements xi.7

A group G is said to be finitely generated if it contains a finite
set of generators {ai| 1 ≤ i ≤ r}. Then we have the
homomorphism η of FG(r) sending xi → ai. Since the ai
generate G, this is an epimorphism and G FG(r)/K where K
is
the kernel of η. The normal subgroup K is called the set of
relations connecting the generators ai. If S is a subset of a
group, we can define the normal subgroup generated by S to
be the intersection of all normal subgroups of the group

137



containing S. This is a normal subgroup containing S and
contained in every normal subgroup containing S. If S is a
subset of FG(r) we say that G is defined by the relations S if G

FG(r)/K where K is the normal subgroup generated by S. If
S is finite, then we say that G is a finitely presented group.

As an example, we shall now show that the dihedral group Dn
consisting of the n rotations and the n reflections mapping a
regular n-gon into itself (example 12, p. 34) is defined by the
relations

in the free group generated by x and y. It is clear that Dn is
generated by the rotation R through an angle of 2π/n and the
reflection S in the x-axis. We have the relations

Hence Dn is a homomorphic image of FG(2)/K where K is the
normal subgroup generated by the elements (33). We shall
now show that |FG(2)/K| ≤ 2n which will imply that Dn
FG(2)/K. Let = xK, = yK in FG(2)/K. Then, since xn, y2,
and xyxy ? K we have n = 1, 2 = 1, . Then
which implies that . From this we see that the
product of any two of the elements , k = 0, 1, …, n – 1,
is one of these elements. Also, 1 is included in the displayed
set of elements and the set is closed under inverses. Hence it
is a subgroup of FG(2)/K. Since it contains the generators
and , FG(2)/K = { |0 ≤ k ≤ n – 1}. Thus |FG(2)/K| ≤ 2n
and Dn FG(2)/K.
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EXERCISES

1. Let S be a subset of a group G such that g–1Sg ? S for any g
? G. Show that the subgroup generated by S is normal. Let
T be any subset of G and let . Show that is
the normal subgroup generated by T.

2. Let G be the group defined by the following relations in
FG(3):x2x1 = x3xlx2, x3x1 = x1x3, x3x2 = x2x3. Show that G is
isomorphic to the group defined in exercise 2, p. 62

The following three exercises are taken from Burnside’s The
Theory of Groups of Finite Order, 2nd ed., 1911. (Dover
reprint, pp. 464–465.)

3. Using the generators (12), (13), …, (1n) (see exercise 5, p.
51) for Sn, show that Sn is defined by the following relations
on x1, x2, …, in FG(n – 1):

4. Using the generators (12), (23), …, (n – 1n) for Sn show
that this group is defined by x1, …, xn – 1 subjected to the
relations:

5. Show that An can be defined by the following relations on
x1, x2, …, xn – 2:

1.12 GROUPS ACTING ON SETS
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Historically, the theory of groups dealt at first only with
transformation groups. The concept of an abstract group was
introduced later in order to focus attention on those properties
of transformation groups that concern the resultant
composition only and do not refer to the set on which the
transformations act. However, in geometry one is interested
primarily in transformation groups, and even in the abstract
theory it often pays to switch back from the abstract point of
view to the concrete one of transformation groups. For one
thing, the use of transformation groups provides a counting
technique that plays an important role in the theory of finite
groups. We have already seen one instance of this in the proof
of Lagrange’s theorem. We shall see other striking examples
of results obtained by counting arguments in this section and
the next.

It is useful to have a vehicle for passing from the abstract
point of view to the concrete one of transformations. This is
provided by the concept of a group acting on a set which we
proceed to define. The idea is a simple one. We begin with an
abstract group G and we are interested in the various
“realizations” of G by groups of transformations. At first one
is tempted to consider only those realizations which are
“faithful” in the sense that they are isomorphisms of G with
groups of transformations. Experience soon shows that it is
preferable to broaden the outlook to encompass also
homomorphisms of G into transformation groups.

We now consider a group G and a homomorphism T of G into
Sym S, the group of bijective transformations of a set S.
Writing the transformation corresponding to g ? G as T(g),
the conditions on T are:
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1. T(1) = 1 (= 1s, the identity map of S).

2. T(g1g2) = T(g1)T(g2), gi ∈ G.

The first of these can be omitted if we assume, as we are
doing, that every T(g) is bijective. On the other hand, if we
retain condition 1, then the hypothesis that T(g) is bijective is
redundant. For, if T is a map of the group G into the monoid
M(S) of transformations of S satisfying both conditions, then
T is a homomorphism of G into M(S). Hence the image of G
is a subgroup of M(S) and so this is contained in Sym S. It is
useful to regard the image T(g)x of x under the transformation
T(g) corresponding to g as simply a product gx of the element
g ∈ G with the element x ? S. Thus we obtain a map

of G × S into S. What are its properties? Clearly, conditions 1
and 2 imply respectively:

We shall now reverse the order and put the following

DEFINITION 1.7. A group G is said to act (or operate) on
the set S if there exists a map (g, x) → gx of G × S into S
satisfying (i) and (ii).

We have seen that a homomorphism T of G into M(S) defines
an action of G on S simply by putting
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Conversely, suppose G acts on S. Then we define T(g) to be
the map x → gx, x ? S. Then (i) and (ii) imply 1 and 2 so T:g
→ T(g) is a homomorphism of G into Sym S.

We shall refer to T as the homomorphism associated with the
action and to T(G) as the associated transformation group. If
T is a monomorphism then we shall say that G acts effectively
on the set S. Also the kernel of T will be called the kernel of
the action. Thus G acts effectively if and only if the kernel of
the action is 1.

EXAMPLES

1. Let S = G, the underlying set of the group G. Define gx for
g ? G and x ∈ S to be the product in G of g and x. Then (i)
and (ii) are clear. This action is called the action of G on itself
by left translations (or left multiplications). This is the action
which was used to prove Cayley’s theorem. The point of the
proof of that theorem was that this action is effective.

2. Next we define an action of G on itself by right
translations. Again we take the set S to be the set G. In order
to avoid confusion with the group product gx we now
denote the action of g ∈ G on x ∈ S by g o x and we define
this to be xg–1. Then we have 1 o x = x1 = x and (g1g2) o x =
x(g1g2)–1 = xg2

–1g1
–1 = g1 o (g2 o x). Hence we do indeed

have an action of G on itself. We call this action G the action
by right translations. This is effective.

3. Another action of G on itself is the action by conjugations.
This time we denote the action of g ∈ G on x ∈ S (= G) by gx
which we define to be gxg–1. Then 1x = x and g1g2x =
(g1g2)x(g1g2)–1 = g1(g2xg2

–1)g1
–1 = g1(g2x). The kernel of
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this action is the set of c such that cx = x for all x. This means
cxc-1 = x or cx = xc. Hence the kernel is the center C and the
action is effective if and only if the center is trivial (C = 1).

4. If we have an action of G on a set S we have an action of
any subgroup H of G on S by restriction. In particular, we
have the actions of H on G by left and by right translations.

5. Let H be a subgroup and let G/H denote the set of left
cosets xH, x ∈ G. We used this notation previously only when
H was normal in G and G/H denoted the factor group. We
shall call G/H the (left) coset space of G relative to H. If g ∈
G we take g(xH) to be the set product of {g} with xH, so
g(xH) = gxH. It is clear that this defines an action of G on
G/H. The kernel of this action is the set of g such that gxH =
xH for all x ∈ G, which is equivalent to x–1gx ∈ H for all x.
This is equivalent to g ∈ xHx–1 for all x or . We
see easily that the right-hand side is the largest normal
subgroup of G contained in H. Hence the action of G on G/H
is effective if and only if H contains no subgroup ≠1 which is
normal in G.

6. As in 5 we obtain an action of G on the set G\H of right
cosets Hx by g o (Hx) = (Hx)g–1 = Hxg–1.

7. Suppose we have an action of G on a set S and T is a subset
stabilized by the action in the sense that gT ⊂ T for every g ∈
G. Then restricting the action to T gives an action of G on T.
For example, consider the action of G on itself by
conjugation. If K is a normal subgroup of G then gK = K, g ∈
G, so we have an action of G on K by restricting the
conjugation action to K.
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8. If G acts on a set S, then we have an induced action on the
power set (S). Here, if A is a non-vacuous subset we define
gA = {gx |x ∈ A} and if A = Ø we put gØ = Ø. Then 1A = A
and (g1g2)A = g1(g2A), so we have defined an action of G on

(S). It is clear that |gA| = |A|. Hence we have induced actions
also on the subsets of S of a fixed cardinality.

There is a natural definition of equivalence of actions of a
fixed group G: we say that two actions of G on S and S′
respectively are equivalent if there exists a bijective map x →
x′ of S onto S′ such that

If we denote x → x′ by α and the transformations x → gx and
x′ → gx′ by T(g) and T′(g) respectively, then (35) means the
same thing as

In other words, for every g ∈ G we have the commutativity of
the diagram

Since α is bijective (36) can be written also as (36)
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As an example of equivalence we consider the two actions of
G on itself by left and by right translations. Here the map x →
x–1 is an equivalence since (gx)–1 = x–1g–1 = g o x–1.

The equivalence relation on a set S defined by a
transformation group of S carries over to actions. If G acts on
S we define x ~ G y for x, y ∈ S to mean that y = gx for some g
∈ G. Evidently this means the same thing as equivalence
relative to the transformation group T(G), as we defined it
before. As before we obtain a partition of S into orbits, where
the G-orbit of x is Gx = {gx|g ∈ G}. We denote the quotient
set consisting of these orbits by S/G.

If H is a subgroup of G then the H-orbits of the action of H on
G by left (right) translations are the right (left) cosets of H.
Now let G act on itself by conjugations. In this case the orbit
of x ∈ G is Gx = {gxg–1 |g ∈ G}. This is called the conjugacy
class of the element x. Of course, we have a partition of G
into the distinct conjugacy classes. It is worth noting that Gx
consists of a single element, Gx = {x}, if and only if x is in the
center. Thus the center is the union of the set of conjugacy
classes which consist of single elements of G.

As an example of a decomposition into conjugacy classes we
consider the problem of determining this decomposition for
Sn. We have noted before (exercise 4, p. 51) that if β ∈ Sn
then . It follows that if α is
a product of cycles γ1, γ2, … as in (17) then

. Hence if α = (i1 … ir) … (l1 …
lu) then
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It is convenient to assume that r ≥ s ≥ … ≥ u and that the
decomposition into disjoint cycles displays every number in
{1, 2, …, n} once and only once. In this way we can associate
with α a set of positive integers (r, s,… , u) satisfying

We call such a sequence (r, s, …, u) a partition of n. It is clear
from (37) that two permutations are conjugate if and only if
they determine the same partition. It follows that the
conjugacy classes are in 1–1 correspondence with the
different partitions of n. Hence if p(n) denotes the number of
distinct partitions of n, then there are p(n) conjugacy classes
in Sn. The function of positive integers p(n) is an interesting
arithmetic function. Its first few values are

If there is just one orbit in the action of a group G on a set S,
that is, if S = Gx for some x ∈ S (and hence for every x ∈ S),
then we say that G acts transitively on S. It is clear that the
actions of G on itself by translations are transitive. More
generally, if H is a subgroup the action of G on the coset
space G/H (set of left cosets) is transitive, since for any xH
and yH we have gxH = yH for g = yx–1. We are now going to
show that in essence these are the only transitive actions of a
group G. To see this we need to introduce the stabilizer, Stab
x, of an element x ∈ S, which we define to be the set of
elements g ∈ G such that gx = x. It is clear that this is a
subgroup of G. For example, in the action of G on G by
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conjugation, Stab x = C(x), the centralizer of x in G. If y = ax
then gy = y is equivalent to gax = ax and to (a–1ga)x = x.
Hence Stab x = a–1 (Stab y)a. It follows that if G acts
transitively on S then all stabilizers of elements of S are
conjugate: Stab y = a(Stab x)a–1.

We shall now prove the following result, which gives an
internal characterization of transitive actions.

THEOREM 1.10. Let G act transitively on S and let H =
Stab x for x ∈ S. Then the action of G on S is equivalent to the
action of G on the coset space G/H.

Proof. Consider the map α:g → gx of G into S. This is
surjective since G is transitive on S. Hence we have an
induced bijective map of the quotient set of G defined by
α. We recall that is the set of equivalence classes in G
defined by . Now ax = gx is
equivalent to g–1ax = x, that is, to g–1a ∈ Stab x. Hence is
the coset g(Stab x) of Stab x and so we have the bijective map
:g(Stab x) → gx. It remains to see that this is an equivalence

of actions. This requires verifying that if g′ ∈ G then g′(g Stab
x) → g′(gx) by . This is clear since these are respectively
(g′g)Stab x and (g′g)x.

From the point of view of finite groups one of the most
important conclusions that can be drawn from the preceding
theorem is that if G is a finite group acting
transitively on a set S then |S| = [G:Stab x] for any x ∈ S. This
shows that |S| is finite and this number is a divisor of |G|.
More generally, we can apply this to any action of a finite
group G on a finite set S. We have the partition
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where the Oi are the different orbits of elements of S under
the action of G. Then G acts transitively in Oi so if xi ∈ Oi
then |Oi| = [G:Stab xi]. Hence we have the following
enumeration of the elements of S,

where the summation is taken over a set {x1, x2, …, xr} of
representatives of the orbits. It is important to take note that
all the terms [G:Stab xi] on the right-hand side are divisors of
|G|. Another useful remark that is applicable to any group is

The proof is clear.

An important special case of (40) is obtained by letting G act
on itself by conjugations. Then (40) specializes to

where C(xi) is the centralizer of xi, and {xi} is a set of
representatives of the conjugacy classes of G. This formula is
called the class equation of the finite group G. We can modify
the formula slightly by collecting the classes consisting of the
xi such that C(xi) = G. These are just the elements of the
center C of G, and their classes contain a single element.
Hence we have
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where yj runs through a set of representatives of the
conjugacy classes which contain more than one element.

The type of counting of elements of a finite group given in
(40) and (42) is an important tool in the study of finite groups.
Some instances of this will be encountered in the next section
when we consider the Sylow theorems. At this point we
illustrate the method by using the class equation to prove

THEOREM 1.11. Any finite group G of prime power order
has a center C ≠ 1.

Proof. The left hand side of (42′) is divisible by the prime p
and every term on the right-hand side is a power of p.
Moreover, since C(yj) ≠ G, [G:C(yj)] > 1,
so [G:C(yj)] is divisible by p. Then (41″) shows that |C| is
divisible by p and so C ≠ 1.

There is a useful distinction we can make for transitive
actions called primitivity and imprimitivity. This has to do
with the induced action on the power set (S). We shall say
that a partition π(S) of S is stabilized by the action of G on S if
gA ∈ π(S) for every g ∈ G and A ∈ π(S). There are two
partitions which trivially have this property: π1(S) = {S} and
π0(S) consisting of the set of subsets {x}, x ∈ S. Now we shall
call the action primitive if π1 and π0 are the only partitions of
S stabilized by G. We have the partition of S into the orbits
relative to G and this partition is stabilized by G since gA = A
for every orbit A and every g ∈ G. If the orbits consist of
single points, then G acts trivially in the sense that gx = x, g ∈
G, x ∈ S; if there is just one orbit then G is transitive. Hence if
we have a non-trivial and intransitive action of G on S then
this action is imprimitive. The interesting situation is that in
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which G acts transitively on a set with more than one element.
In this case we have the following criterion.

THEOREM 1.12. If G acts transitively on a set S with |S| >
1, then G acts primitively if and only if the stabilizer, Stab x,
of any x ∈ S is a maximal subgroup of G, that is, there exists
no subgroup H such that Stab .

Proof. We observe first that G acts imprimitively on a set S
if and only if there exists a proper subset A of S with |A| ≥ 2
such that for any g ∈ G either gA = A or gA ∩ A = Ø. If this
condition holds, then for any g1, g2 ∈ G we have either g1A =
g2A or g1A ∩ g2A = Ø. Let B be the complement in S of .
Then g1B Ø g2A = Ø for every g1, g2 ∈ G, which implies that
gB = B for every g ∈ G.lt follows that the set of (distinct)
subsets gA, g ∈ G, together with B constitute a non-trivial
partition of S which is stabilized by G. Conversely, suppose G
acts imprimitively on S so that we have a partition π(S) that
contains a proper subset A with |A| ≥ 2 such that π(S) is
stabilized by G. Then if g ∈ G either gA = A or gA ∩ A = Ø.

Now suppose Stab x for some x ∈ S is not maximal, and let H
be a subgroup such that Stab . Since we are
assuming that G acts transitively on S, this action is
equivalent to the usual one on the coset space G/Stab x. Since
equivalent actions are either both primitive or both
imprimitive, it suffices to show that the action of G on G/Stab
x is imprimitive. Now consider the set A of cosets of the form
h Stab x,h ∈ H. Since Stab we have |A| ≥ 2 and A is
a proper subset of G/Stab x. If h′ ∈ H then h′A is the set of
cosets h′h Stab x, h ∈ H, and so h′A = A. On the other hand, if
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g H, then gh1 Stab x ≠ h2 Stab x for every h1, h2 ∈ H.
Otherwise, we have gh1k1 = h2k2, where h1, h2 ∈ H, k1,
k2 ∈ Stab x. This implies that g = h2k2k1

–1h1
–1 – H, contrary

to our hypothesis. We now see that gA, which is the set of
cosets of the form gh Stab x, h ∈ H, has vacuous intersection
with A if g H. Thus gA ∩ A = Ø in this case. It follows as
above that G acts imprimitively on G/Stab x, hence on S.

Next assume that G is transitive but not primitive on S. Then
we have a subset A of S, A ≠ S, |A| ≥ 2, such that for any g ∈
G, either gA = A or gA ∩ A = Ø. Let x ∈ A and let H = {h ∈
G|hA = A). Then H is a subgroup of G and H ⊃ Stab x since
gx = x => gA ∩ A ≠ Ø => gA = A Since A ≠ S and G is
transitive on S, there exists a g ∈ G such that gx A. Then gA
≠ A and g H. Hence G ≠ H. Now let y ∈ A, y ≠ x (existence
clear since |A| ≥ 2). Then we have a g ∈ G such that gx = y.
Then (gA ∩ A) y and, consequently, gA = A but gx ≠ x. Thus
g ∈ H, Stab x, and so H ≠ Stab x. Hence Stab x is not a
maximal subgroup of G. This completes the proof.

EXERCISES

1. Let γ = (12 … n) in Sn. Show that the conjugacy class of γ
in Sn has cardinality (n – 1)!. Show that the centralizer C(γ) =

.

2. Determine representatives of the conjugacy classes in S5
and the number of elements in each class. Use this
information to prove that the only normal subgroups of S5 are
1, A5, S5.
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3. Let the partition associated with a conjugacy class be (n1,
n2, …, nq) where

Show that the number of elements in this conjugacy class is

4. Show that if a finite group G has a subgroup H of index n
then H contains a normal subgroup of G of index a divisor of
n!. (Hint: Consider the action of G on G/H by left
translations.)

5. Let p be the smallest prime dividing the order of a finite
group. Show that any subgroup H of G of index p is normal.

6. Show that every group of order p2, p a prime, is abelian.
Show that up to isomorphism there are only two such groups.

7. Let H be a proper subgroup of a finite group G. Show that
G .

8. Let G act on S, H act on T, and assume S ∩ T = Ø. Let U =
S ∪ T and define for g ∈ G, h ∈ H, s ∈ S, t ∈ T; (g, h)s = gs,
(g, h)t = ht. Show that this defines an action of G × H on U.

9. A group H is said to act on a group K by automorphisms if
we have an action of H on K and for every h ∈ H the map k
→ hk of K is an automorphism. Suppose this is the case and
let G be the product set K × H. Define a binary composition in
K × H by
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and define 1 = (1, 1)—the units of K and H respectively.
Verify that this defines a group such that h → (1, h) is a
monomorphism of H into K × H and k → (k, 1) is a
monomorphism of K into K × H whose image is a normal
subgroup. G is called a semi-direct product of K and H. Note
that if H and K are finite then |K × H| = |K||H|.

10. Let G be a group, H a transformation group acting on a set
S and let Gs denote the set of maps of S into G. Then Gs is a
group (the S-direct power of G) if we define (f1f2)(s) =
f1(s)f2(s),fi ∈ Gs, s ∈ S. If h ∈ H and f ∈ Gs define hf by
(hf)(s) = f(h–1s). Verify that this defines an action of H on Gs

by automorphism. The semi-direct product of H and Gs is

called the (unrestricted) wreath product G H of G with H.

11. Let G, H, S be as in exercise 10 and suppose G acts on a

set T. Let (f,h)∈ G H where is a map of S into G. If (f1,

h1), (f2, h2) are two such elements, the product in G H is
(f1(h1f2),h1h2). If (t,s)∈ T × S define (f, h)(t, s) = (f(s)t, hs).

Verify that this defines an action of G H on T × S. Note that

if everything is finite then |G H| = |G||S||H| and the degree of
the action, defined to be the cardinality of the set on which
the action takes place, is the product of the degrees of the
actions of H and of G.

12. Let G act on S. Then the action is called k-fold transitive
for k = 1, 2, 3,. . ., if given any two elements (x1, xk), (y1, …,
yk) in S(k) where the xi and the yi are distinct, there exists a g
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∈ G such that gxi = yi 1 ≤ i ≤ k. Show that if the action of G is
doubly transitive then it is primitive.

13. Show that if the action of G on S is primitive and effective
then the induced action on S by any normal subgroup H ≠ 1 of
G is transitive.

1.13 SYLOW’S THEOREMS

We have seen that the order of a subgroup of a finite group G
is a factor of |G| and if G is cyclic, there is one and only one
subgroup of order any given divisor of |G|. A natural question
is: If k divides |G| is there always a subgroup of G of order k?
A little experimenting shows that this is not so. For example,
the alternating group A4, whose order is 12, contains no
subgroup of order 6. Moreover, we shall show later (in
Chapter 4) that An for n ≥ 5 is simple, that
is, contains no normal subgroup ≠1, An. Since any subgroup
of index two is normal, it follows that An, n ≥ 5, contains no
subgroup of order n!/4. The main positive result of the type
we are discussing was discovered by Sylow. This states that if
a prime power pk divides the order of a finite group G, then G
contains a subgroup of order pk. Sylow also proved a number
of other important results on the subgroups of order pm where
pm is the highest power of p dividing |G|. We shall now
consider these results.

We prove first

SYLOW I. If p is a prime and pk, k ≥ 0, divides |G| (assumed
finite), then G contains a subgroup of order pk.
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Proof. We shall prove the result by induction on |G|. It is
clear if |G| = 1, and we may assume it holds for every group
of order <|G|. We first prove a special case of the theorem
(which goes back to Cauchy): if G is finite abelian and p is a
prime divisor of |G| then G contains an element of order p. To
prove this we take an element a ≠ 1 in G. If the order r of a is
divisible by p, say r = pr′, then b = ar has order p. On the
other hand, if the order r of a is prime to p, then the order
|G|/r of G/ is divisible by p and is less than |G|. Hence this
factor group contains an element b of order p. We claim
that the order s of b is divisible by p, for we have (b )s = bs

= 1 ( = ). Hence the order p of b is a divisor of s.
Now, since b has order divisible by p, we obtain an element
of order p as before. After this preliminary result we can
quickly give the proof. We consider the class equation (41):

. If for some j.
Then pk| |C(yj)| and the subgroup C(yj) has order < |G| since yj
is not in the center. Then, by the induction hypothesis, C(yj)
contains a subgroup of order pk. Next suppose p| |C|. Then, by
Cauchy’s result, C contains an element c of order p. Now
is a normal subgroup of G of order p, and the order |G|/p of G/

is divisible by pk – 1. Hence, by induction, G/ contains a
subgroup of order pk – 1. This subgroup has the form H/
where H is a subgroup of G containing . Then

Let pm be the largest power of p dividing |G|. Then Sylow I
proves the existence of subgroups of order pm of G. Such
subgroups are called Sylow p-subgroups of G. The next
Sylow theorem concerns these.
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SYLOW II. (1) Any two Sylow p-subgroups of G are
conjugate in G; that is, if P1 and P2 are Sylow p-subgroups,
then there exists an a ? G such that P2 = aP1a–1. (2) The
number of Sylow p-subgroups is a divisor of the index
of any Sylow p-subgroup and is ≡ 1 (mod p). (3) Any
subgroup of order pk is contained in a Sylow subgroup.

We shall obtain the proof by considering the action of G on
the set Π of Sylow p-subgroups by conjugation. More
generally, we note that if H is a subgroup of a group G and g
∈ G then gHg–1 is a subgroup. It follows that we have an
action of G on the set Γ of subgroups of G by conjugation: gH
= gHg–1. The stabilizer of H under this action is the subgroup
N(H) (or NG(H)) = {g ∈ G\gHg–1 = H}. This is called the
normalizer of H in G. Evidently H ⊂ N(H) and hence H is a
normal subgroup of N(H). The orbit of H under the
conjugation action of G is {gHg–1|g ∈ G}. The counting
formula on p. 74 shows that |{gHg–1|g ∈ G}| = [G:N(H)]. If G
is finite then [G:N(H)]|[G:H] since G ⊃ N(H) ⊃ H and hence
[G:H] = [G:N(H)][N(H):H].

Now let G be finite and let Π denote the set of Sylow
p-subgroups of G. If P ∈ Π then gPg–1 ∈ Π, so we have an
action of G on Π induced by the conjugation action on Γ. We
shall require the following

LEMMA. Let P be a Sylow p-subgroup of G, H a subgroup
of order pj contained in N(P). Then H ⊂ P.

Proof. Since H is a subgroup of N(P) and P is a normal
subgroup of N(P), HP is a subgroup and HP/P H/(H ∩ P)
(by the first isomorphism theorem, p. 64). Thus HP/P is
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isomorphic to a factor group of H and so it has order pk. Then
|HP| = pk|P|. Since P is a Sylow p-subgroup, k = 0, HP = P
and so H ⊂ P,

Evidently P is a Sylow p-subgroup of N(P). Moreover, it is
clear from the foregoing lemma that P is the only Sylow
p-subgroup of N(P).

We are now ready to give the

Proof of Sylow II. Let Π be the set of Sylow p-subgroups
and let G act on Π by conjugation. Let Σ be one of the orbits
under this action. Now let P ∈ Σ and restrict the action of G
on £ to an action of P on Σ. Then we have a decomposition of
Σ into P-orbits, one of which is {P}. Moreover, {P} is the
only P-orbit in Σ of cardinality one. For, if {P′} is such a
P-orbit then P ⊂ N(P′), so P = P′ since P′ is the only Sylow
p-subgroup of N(P′). Now every P-orbit has cardinality a
power of p since this cardinality is a divisor of |P|. Hence |Σ| =
1 (mod p). We show next that Σ = Π. Otherwise, we have a P
∈ Π, ∉ Σ. Applying the foregoing argument to this P we see
that there are no P-orbits
in Σ of cardinality one. This gives |Σ| = 0 (mod p) contrary to
|Σ| ≠ 1 (mod p). Hence Σ = Π, which means G acts transitively
on Π. Hence (1) is proved. We also have |Π| ≡ 1 (mod p),
which is the second assertion in (2). The first is clear also,
since |Π| = [G:N(P)]. Now let H be a subgroup of G of order
pk and restrict the action of G on Π to H. Since the H-orbits
have cardinality a power of p and since |Π| = 1 (mod p), there
exists an orbit {P} containing one element. Then H ⊂ N(P)
and so H ⊂ P, by the lemma. This proves (3).
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EXERCISES

1. Show that if P is a Sylow subgroup then N(N(P)) = N(P).

2. Show that there are no simple groups of order 148 or of
order 56.

3. Show that there is no simple group of order pq, p, and q
primes (cf. exercise 5, p. 77).

4. Show that every non-abelian group of order 6 is isomorphic
to S3.

5. Determine the number of non-isomorphic groups of order
15.

An element of order 2 in a group is called an involution. An
important insight into the structure of a finite group is
obtained by studying its involutions and their centralizers.
The next five exercises give a program for characterizing S5
in this way. These were communicated to me by Walter Feit
who attributes the first four to Richard Brauer—though he
notes that John Thompson first recognized the importance of
the result in 9. In all of these exercises, as well as in the rest
of this set, G is a finite group.

6. Let u and v be distinct involutions in G. Show that is
(isomorphic to) a dihedral group.

7. Let u and v be involutions in G. Show that if uv is of odd
order then u and v are conjugate in G (v = gug–1).
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8. Let u and v be involutions in G such that uv has even order
2n, so w = (uv)n is an involution. Show that u,v ∈ C(w).

9. Suppose G contains exactly two conjugacy classes of
involutions. Let u1 and u2 be non-conjugate involutions in G.
Let ci = |C(ui)|, i = 1, 2. Let Si i = 1, 2, be the set of ordered
pairs (x, y) with x conjugate to u1, y conjugate to u2, and (xy)n

= ui for some n. Let si = |Si|. Prove that |G| = c1s2 + c2s1.
(Hint: Count the number of ordered pairs (x, y) with x
conjugate to u1 and y conjugate to u2 in two ways. First, this
number is (|G|/c1)(|G|/c2). Since x is not conjugate to y,
exercises 7 and 8 imply that for n = o(xy)/2, (xy)n is conjugate
to either u1 or u2. This implies that (|G|/c1)(|G|/c2) = (|G|/c1)s1
+ (|G|/c2)s2.)

10. (An abstract characterization of S5.) Let G contain exactly
two conjugacy classes of involutions and let u1 and u2 be
representatives of these classes. Suppose C1 = C(u1) ×
S3 and C2 = C(u2) is a dihedral group of order 8. Then G
S5.

Sketch of proof.

(i) Since some involution is in the center of a Sylow
subgroup, C2 is a Sylow 2-subgroup.

(ii) Replacing u1 by a conjugate, one may assume u1 ∈
C2; and then u2 ∈ C1.

(iii) C2 contains three classes of involutions. If x is an
involution in C2, x ≠ u2 then x is conjugate to xu2. Since G
contains two classes of involutions, deduce that either s2 = 0
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or s2 = 4 and C2 contains a non-cyclic group V of order 4 such
that all involutions in V are conjugate to u2 in G.

(iv) contains three conjugacy classes of involutions. If x
is an involution in C1, x ≠ u1, then x is not conjugate to xu1 in
C1. Since G contains two classes of involutions (iii) implies
that for any involution x in C1, x ≠ u1, exactly one of x and
xu1 is conjugate to u1. Hence deduce that s1 = 9 (in the
notation of exercise 9).

(v) Use exercise 10 to show that either s2 = 4, |G| = 120
or s2 = 0, |G| = 72.

(vi) Show that |G| ≠ 72 as follows. Let P be a Sylow
3-group of C1 Assume |G| = 72. Let Q be a Sylow subgroup
of G containing P. Then |Q| = 9 and ⊂ N(P). Then
36||N(P)|. Hence there exists H with C(P) ⊂ H and |H| = 36.
This implies that u1 ∈ H and since u2 is a square, u2 ∈ H.
Since [G:H] = 2, H G and so H contains all involutions in
G. Then C2 ∩ H contains all involutions in C2. This is
impossible as |C2 ∩ H| = 4 and C2 contains five involutions.

(vii) By (iii), C2 contains a non-cyclic group V of order 4
such that u2 ∈ V and all the involutions in V are conjugate in
G. Let x be an element of G such that x–1u2x ≠ u2, x–1u2x ∈ V
Then x–1C2x ≠ C2 and u2 ∈ C(x–1u2x) = x–1C2x.

(viii) C(V) = V. N(V) contains at least two Sylow
2-subgroups of G, by (vii).

(ix) N(V)/V Aut V S3. Hence |N(V)| = 24.
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(x) [G:N(V)] = 5. Show that G acts effectively on the
coset space G/N(V) and hence that G S5.

The next four exercises are designed to prove the following
extension of Sylow’s first theorem. If p is a prime and pk | |G|,
then the number of subgroups of order pk is congruent 1 (mod
p). The theorem is due to Frobenius. The proof we shall
indicate is a very slick one due to P. X. Gallagher (Archiv der
Mathematik, vol. XXIII (1967), p. 469). It is based on the
action of G on the set S of subsets of cardinality pk. This type
of proof of Sylow’s theorem has had a curious history. It
seems to have been discovered by G. A. Miller more than
fifty years ago (Annals of Math., vol. 16 (1915), pp.
169–171). However, it seems to have been totally forgotten
until it was rediscovered by H. Wielandt in 1959.

11. Let |G| = pkm where p is a prime, and let n denote number
of subgroups of G of order pk. Let S be the set of subsets of G
of cardinality pk and let G act on S by left translation. If A ∈
S, let HA = Stab A. Then HA acts on A by left translations.
Note that the orbits in A under the action of HA are collections
of right cosets. Hence prove that |HA| | pk.

12. Let S0 be the subset of A ∈ S such that |HA| = pk, and 0
the subset of B ∈ S such that |HB| = pl, l < k. Note that the
orbit of any B under the action of G on S has cardinality
divisible by pm and hence prove that

13. Let A ∈ S0 and let x ∈ A. Then HA x ⊂ A and since |HA| =
pk = |A|, HAx = A. Thus A is a right coset of HA, a subgroup of
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order pk. Conversely, let H be any subgroup of order pk, Hx
one of its right cosets. Then H(Hx) = Hx so Stab Hx contains
H. Then, by exercise 11, Stab Hx = H and so Hx ∈ S0.
Conclude from this that

where n is the number of subgroups of order pk.

14. Note that |S| depends only on |G| and pk, and that by
exercises 12 and 13, n = |S0|/m = |S|/m (mod p). Hence the
congruence class of n (mod p) depends only on |G| and pk,
and not on G. Now look at a cyclic group of order |G|. In this
case there is exactly one subgroup of order pk. Hence n ≡ 1
(mod p).

The next two exercises are designed to construct a group
isomorphic to any Sylow p-subgroup of Sn, p a prime not
exceeding n.

15. Show that the order of the Sylow p-subgroup of Sn is
pvp(n!) where

where [k/l] denotes the largest integer ≤k/l. Show also that if
we write

where 0 ≤ ai < p (note. that this is the representation of n
using the base p), then
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16. Let Zp denote the subgroup of Sp generated by the cycle

(12 … p). Note that the wreath product Zp Zp has order pp +
1 and is isomorphic to a subgroup of Sp2 (exercises 10 and 11,
p. 79). Define Z r

p, r ≥ 1, inductively by Z l
p = Zp, Z k + 1

p

= Z k
p Zp. Show that Z r

p has order and is
isomorphic to a subgroup of Spr. Hence show that if n = a0 +
a1p + … + akpk, 0 ≤ ai < p, then any Sylow p-subgroup of Sn
is isomorphic to

1 This term is quite commonly used in this connection.
Unfortunately it conflicts with the meaning of the unit 1. It
will generally be clear from the context which meaning is
intended.

2 Throughout this book we use the following notations (which
have become standard): , for the set of natural numbers 0, 1,
2, … , for the set of integers; , for the set of rational
numbers; , for the set of real numbers; , for the set of
complex numbers.

3 The semigroups satisfying (a) and (b″), which is (b) with
“right inverse” replaced by “left inverse,” need not be groups.
Their structure has been determined by A. H. Clifford in
Annals of Mathematics, vol. 34 (1933), pp. 865–871.
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4 An attractive biography of Abel’s life has been written by
Oystein Ore, Niels Hendrik Abel, Minneapolis, University of
Minnesota Press, 1957.

5 It is interesting to read the discussion of congruences for
integers at the beginning of the great classic on number
theory, Disquisitiones Arithmeticae, by Carl Friedrich Gauss.
This work, published in 1801, was written when Gauss was
nineteen. English translation by A.A. Clarke, Yale University
Press, New Haven, 1966.

6 Perhaps the deepest result of linear algebra not using linear
transformations is the theorem on the invariance of
dimensionality (any two bases have the same cardinality).

7 Another construction of free groups is given on p. 89 of
Basic Algebra II.
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2

Rings

In this chapter we begin the study of a second type of
algebraic structure, called a ring. The prototype for these
structures is the ring of integers, which in the last chapter
we regarded from the monoid point of view as providing the
two monoids ( , +, 0) and ( , ·, 1). The ring theoretic way of
viewing treats these two structures simultaneously and
relates the two by means of the distributive law. Unlike the
theory of groups, which had essentially one source— namely,
the study of bijective transformations relative to the resultant
composition—the theory of rings has been fused out of a
number of special theories. For this reason it will appear less
orderly and unified than the theory of groups. However, the
multitude of examples, including many familiar to the reader,
should be convincing evidence of the richness of this branch
of algebra. In the next chapter we shall see that rings also
arise in a manner analogous to that of transformation groups,
namely, as rings of endomorphisms of abelian groups.
Moreover, we have the concept of a module, which for rings
is the exact analogue of the concept of a group acting on a set.

We begin our discussion with definitions and examples of the
various types of rings: domains, division rings, commutative
rings, and fields. After this we
study the basic notions of ideals, quotient rings, and
homomorphisms, which are analogous, respectively, to
normal subgroups, factor groups, and homomorphisms for
groups. In the second half of the chapter we restrict our
attention mainly to commutative rings, first considering
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constructions and characterizations of certain extensions of
these: fields of fractions of commutative domains, polynomial
rings in an indeterminate x. After this we consider the
elementary factorization theory of commutative domains.
Applications, especially to number theory, will be indicated
from time to time. The last section, which may be regarded as
optional, will be devoted to “rings without unit” and the
imbedding of these in “rings,” which we consider always as
having a unit.

A good deal of this material will seem familiar. However, the
student should note that our point of view has some
differences from those which he may have encountered
before. For example, polynomials are treated formally rather
than functionally, and matrices are allowed to have entries in
any ring, rather than just in the ring of real numbers. Also
we emphasize the basic homomorphism properties associated
with certain constructions of extensions of a given ring. In
important instances these properties give a characterization of
the extension and play an important role in what follows.

2.1 DEFINITION AND ELEMENTARY PROPERTIES

DEFINITION 2.1. A ring is a structure consisting of a
non-vacuous set R together with two binary compositions +, ·
in R and two distinguished elements 0, 1 ∈ R such that

1. (R, + , 0) is an abelian group.

2. (R, ·, 1) is a monoid.

3. The distributive laws
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hold for all a, b, c ∈ R.1

Thus the assumptions included under 1 and 2 are that a + b
and ab ∈ R, and the following conditions hold:

A4 For each a there is an inverse −a such that a + (− a) = 0 =
− a + a.

The structure (R, + , 0) is called the additive group of R and
(R, · , 1) is called the multiplicative monoid of R. A subset S
of a ring R is a subring if S is a subgroup of the additive
group and also a submonoid of the multiplicative monoid of
R. Clearly the intersection of any set of subrings of R is a
subring. Hence if A is a subset of R one can define the subring
generated by A to be the intersection of all subrings of R
which contain A. This is characterized by the properties: it is a
subring, it contains A, and it is contained in every subring
containing A.

EXAMPLES
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1. , + , ·, 0, 1 as usual. We noted in the Introduction that this
is a ring.

2. the rational numbers with usual + , ·, 0, 1.

3. the ring of real numbers.

4. the ring of complex numbers. , , and are subrings of
.

5. The set [ ] of real numbers of the form m + n , m, n ∈
. Clearly the difference of two numbers in [ ] is in [ ].

Also 1 ∈ [ ] and if m, n, m′, n′ ∈ then (m + n )(m′ + n′
) = (mm′ + 2nn′) + (mn′ + nm′ ) ∈ [ ]. Hence [ ] is

a subring of .

6. Same as (5) with replaced by . The same calculations
show that this is a subring of .

7. Similarly, we check that [ ] and [ ]—the sets of

complex numbers m + n , where, in the first case m,n ∈ ,
and in the second m, n ∈ —are subrings of . These are the

subrings generated by and , and by and ,
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respectively. The first of these is called the ring of Gaussian
integers.

8. The set Γ of real-valued continuous functions on the
interval [0,1] where we define f + g and fg as usual by (f +
g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). Let 0 and 1 be the
constant functions 0 and 1, respectively. Then ( Γ, +, · , 0, 1)
is a ring.

9. The set {0, 1, 2} with the indicated 0 and 1, and with
addition and multiplication defined by the tables:

is a ring. This can be verified directly. It will be clear without
such direct verification soon (perhaps it is already).

A number of elementary properties of rings are consequences
of the fact that a ring is an abelian group relative to addition
and a monoid relative to multiplication. For example, we have
– (a + b) = – a – b = – a + ( – b) and if na is defined for n ∈
as before, then the rules for multiples (or powers) in an
abelian group,
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hold. We also have the generalized associative laws for
addition and multiplication and the generalized commutative
law for addition (see pp. 40 and 41). There are also a number
of simple consequences of the distributive laws which we
now note. In the first place, induction on m and n gives the
generalization

or

We note next that

for all a; for we have a0 = a(0 + 0) = a0 + a0. Addition of –
a0 gives a0 = 0. Similarly, 0a = 0. We have the equation

which shows that

Similarly, a( – b) = – ab; consequently

170



If a and b commute, that is, ab = ba, then ambn = bnam. Also,
by induction we can prove the binomial theorem

where the binomial coefficient

The inductive step of the proof conies from the formula

The reader should carry out the proof and note just how the
commutative law of multiplication intervenes.

EXERCISES

1. Let C be the set of real-valued continuous functions on the
real line . Show that C with the usual addition of functions
and 0 is an abelian group, and that C with product (f · g)(x) =
f(g(x)) and 1 the identity map is a monoid. Is C with these
compositions and 0 and 1 a ring?
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2. Show that in a ring R, a(b – c) = ab – ac where b – c = b + (
– c) and n(ab) = (na)b = a(nb) if n ∈ .

3. Show that if all the axioms for a ring except commutativity
of addition are assumed, then commutativity follows, and
hence we have a ring.

4. Let I be the set of complex numbers of the form m + n
where either m, n ∈ or both m and n are halves of odd
integers. Show that I is a subring of .

5. If a and b are elements of a ring, define a(0) = a, a′ = [a, b]
≡ ab – ba and inductively a(k) = [a(k − 1), b] (note that for the
sake of simplicity we do not indicate the dependence of a(k)

on b). Prove the following formula:

2.2 TYPES OF RINGS

We obtain various types of rings by imposing special
conditions on the multiplicative monoid. For example, a ring
R is called commutative if (R, ·, 1) is commutative. All the
examples listed in the preceding section have this property.
Examples of non-commutative rings will be given in the next
two sections. A ring is called a domain (also integral domain)
if the set R* of non-zero elements of R is a submonoid of (R,
·, 1). It is implicit in the definition of a domain R that R ≠ 0.
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Besides this, the condition that R is a domain is that a ≠ 0 and
b ≠ 0 in R imply ab ≠ 0. Clearly any subring of a domain is a
domain. All the examples in section 1 except 8 are domains.
On the other hand, in 8 we can take the two elements f and g
such that

Then f ≠ 0 (the constant function 0) and g ≠ 0 but fg = 0.
Hence the ring of real-valued continuous functions on [0, 1] is
not a domain .

If a is an element of a ring R for which there exists b ≠ 0 such
that ab = 0 (ba = 0), then a is called a left (right) zero divisor.
Clearly 0 is a left and a right zero divisor if R has more than
one element. If a ≠ 0 is a left zero divisor and ab = 0 for b ≠
0, then b is a non-zero right zero divisor. If is clear from this
and the definition of a domain that R ≠ 0 is a domain if and
only if it possesses no zero divisors ≠ 0 (right or left).

We note also that a ring is a domain if and only if R ≠ 0 and
the restricted cancellation laws hold, that is, ab = ac, a ≠ 0,
imply b = c, and ba = ca, a ≠ 0, imply b = c. For, if R is a
domain and ab = ac, then a(b – c) = 0, so if a ≠ 0, then b – c =
0 and b = c. Similarly, ba = ca, a ≠ 0 give b = c. Conversely,
let R be a ring ≠ 0 in which these cancellation laws hold. Let
ab = 0, a ≠ 0. Then ab = a0, so that cancelling gives b = 0.
Hence R is a domain.
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A ring R is called a division ring (also skew field, sfield, or
field) if the set R* of non-zero elements is a subgroup of (R, ·,
1). This is equivalent to: 1 ≠ 0, and for any a ≠ 0 there exists a
b such that ab = 1 = ba. Examples 2, 3, 4, 6, and 9 as well as
the second example in 7 are division rings in which
multiplication is commutative. Division rings that have this
property are called fields. We shall give an example of a
non-commutative division ring in section 2.4.

It is clear that any division ring is a domain, and since
subrings of domains are domains, any subring of a division
ring is a domain. The converse does not hold, since is a
domain which is not a division ring, and is a subring of the
field . A subring of a ring which is itself a division ring will
be called a division subring. If a ≠ 0 in a division ring R then
the equation ax = b has the solution x = a− 1b. By the
restricted cancellation law this is the only solution of the
equation. Similarly, ya = b has the unique solution y = ba− 1.

We have seen that the set of invertible elements of any
monoid is a subgroup. In particular, the set U of invertible
elements of (R, ·, 1) is a subgroup. We shall call the elements
of U units—even though this conflicts slightly with the
designation the unit for 1—and U is called the group of units
(or invertible elements) of the ring. For example, the group of
units of is {1, – 1}.

EXERCISES

1. Show that any finite domain is a division ring.
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2. Show that a domain contains no idempotents (e2 = e)
except e = 0 and e = 1. An element z is called nilpotent if zn =
0 for some n ∈ +. Show that 0 is the only nilpotent in a
domain.

3. Let z be an element of a ring for which there exists aw ≠ 0
such that zwz = 0. Show that z is either a left or a right zero
divisor.

4. Show that if 1 – ab is invertible in a ring then so is 1 – ba.

5. Show that a function f in the example (8) of section 2.1 is a
zero divisor if and only if the set of points x where f(x) = 0
contains an open interval. What are the idempotents of this
ring? The nilpotents? The units?

6. Let u be an element of a ring that has a right inverse. Prove
that the following conditions on u are equivalent: (1) u has
more than one right inverse, (2) u is not a unit, (3) u is a left 0
divisor.

7. (Kaplansky.) Prove that if an element of a ring has more
than one right inverse then it has infinitely many. Construct a
counterexample to show that this does not hold for monoids.

8. Show that an element u of a ring is a unit with v = u− 1 if
and only if either of the following conditions holds: (1) uvu =
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u, vu2v = 1, (2) uvu = u and v is the only element satisfying
this condition.

9. (Hua.) Let a and b be elements of a ring such that a, b, and
ab – 1 are units. Show that a – b− 1 and (a – b− 1)− 1 – a− 1 are
units and the following identity holds:

10. (Cohn.) Let G be a group, e an element of G and θ a map
of the subset G1 = {x ∈ G|x ≠ 1} into itself satisfying

(i) θ(yxy− 1) = y(θx)y− 1, x ∈ G1, y ∈ G.

(ii) θ2(x) = x.

(iii) θ(x− 1) = e(θx)x− 1.

(iv) θ(xy− 1) = (θ(θ(x)θ(y− l)))θ(y− 1), x, y ∈ G1, x ≠ y.

Show that there exists a unique division ring D such that D* =
G and in G, θx = 1 – x, x ∈ G1, e = – 1.

2.3 MATRIX RINGS

The reader is probably already familiar with matrices and
determinants from his study of linear algebra or multivariable
calculus. We shall now generalize these notions to the extent
which will be needed in our subsequent work: matrices with
entries in any ring and determinants of matrices with entries
in a commutative ring. For a reader already familiar with
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matrices and determinants the content of this section can be
summarized by saying that the familiar results carry over in
this generality.

Let R be a ring, n a positive integer. We shall now define the
ring Mn(R) of n × n matrices over the ring R. The underlying
set of this ring are the n × n arrays or matrices

of n rows and columns with entries (also elements,
coefficients, or coordinates) aij ∈ R. The element aij of R in
the intersection of the ith row and jth column of A will be
referred to as the (i, j)-entry of A. Two matrices A and B =
(bij) are regarded as equal if and only if aij = bij for every i, j,
and the set Mn(R) is the complete set of n × n matrices with
entries in R. In short, Mn(R) is the product set of n2 copies of
R.

We define addition of matrices by the formula
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Thus, to obtain the sum we add the entries aij and bij in the
same position. We define the matrix 0 to be the matrix whose
entries are all 0. Then it is easy to verify that with the given
addition and 0, Mn(R) is an abelian group. Multiplication of
matrices is defined by

Thus the product P = AB has as its (i, j)-entry the element

For example, in the ring M3( ) of 3 × 3 matrices over we
have

We define the unit matrix 1 by
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that is, we have the unit 1 of R on the “main” diagonal
running from the upper left-hand corner to the lower
right-hand corner, and all other entries are 0. Then it is
immediate that A1 = A = 1A for A ∈ Mn(R). Also
multiplication is associative: the (i, l)-entry of A(BC), A =
(aij), B = (bij), C = (cij) is ∑ j, k aij(bjkckl) and the (i, l)-entry
of (AB)C is ∑ j, k(aijbjk)ckl. These are equal by the
associativity of multiplication in R. The distributive laws
hold, for the (i, j)-entries of A(B + C) and of AB + AC are
respectively ∑k aik(bkj + ckj) and

and these are equal by one of the distributive laws in R.
Similarly, we have the other distributive law in Mn(R). Hence
we have shown that (Mn(R), + , ·, 0, 1) is a ring.

We now define eij to be the matrix having a lone 1 as its (i,
j)-entry and all other entries 0. The n2 matrices eij, 1 ≤ i, j ≤ n
are customarily called matrix units, though they are not
(except for n = 1) units (= invertible elements) of Mn(R). It is
easy to verify the following multiplication table:

where δjk is the Kronecker delta defined by

Also we have
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The eii are idempotent: eii
2 = eii, and if n > 1, we have ell el2

= e12, el2, e12 e11 = 0, which shows that Mn(R) is never
commutative if n > 1 and R ≠ 0.

We shall denote the matrix

having the entries al, a2, …, an in this order on the main
diagonal and 0’s elsewhere as diag{a1, a2, … an}. It is clear
that the set of these diagonal matrices is a subring of Mn(R).
We now put a′ = diag{a, a, …, a}. Then a → a′ is injective
and we have (a + b)′ = a′ + b′, (ab)′ = a′b′, 0′ = 0, 1′ = 1. Thus
the map a → a′ is both a monomorphism of (R, +, 0) into
(Mn(R), +, 0) and of (R, ·, 1) into (Mn(R, ·, 1). It follows that
R′ = {a′| a ∈ R} is a subring of Mn(R) and a → a′
regarded as a map of R into R′ is an isomorphism of rings,
where we define this to be a map which is both an
isomorphism for the additive groups and an isomorphism for
the multiplicative monoids.

We shall now identify R with the isomorphic subring R′ of
Mn(R), identifying an a ∈ R with the corresponding diagonal
matrix a′ = diag{a, a, …, a}. This identification is similar to
the one which is made in identifying the integers with the
rational numbers with denominators 1, and has the effect of
embedding R in Mn(R). We now observe that multiplication
of a matrix A on the left (right) by a ∈ R amounts to
multiplication of all the entries on the left (right) by a. Hence
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aeij = eija and this matrix has the element a in the (i,
j)-position and 0’s elsewhere. Then it is clear that for the
matrix A of (3) we have

Thus every matrix is a linear combination of the eij with
“coefficients” aij ∈ R.

The group of invertible elements of Mn(R) is called the linear
group GLn(R). We shall now derive, for the case R
commutative, a determinant criterion for a matrix A to be
invertible, that is, to belong to GLn(R). It is assumed that the
reader is familiar with the definition of determinants and the
elementary facts about them.2 It is easy to convince ourselves
that the main formulas on determinants, which can be found
in any text on linear algebra, are valid for determinants of
matrices over any commutative ring. Thus if R is
commutative we can define for A = (aij) the determinant

where the summation is taken over all permutations π of 1, 2,
…, n, and sg π = 1 or – 1 according as π is even or odd. The
cofactor of the element aij in A, as in (3), is (– l)i + j times the
determinant of the n – 1 × n – 1 matrix obtained by striking
out the ith row and the jth column of A. We recall that we can
“expand” a determinant by any row and any column in the
sense that we obtain det A by multiplying the entries of any
row (or column) by their cofactors and adding the results.
Thus if Aij denotes the cofactor of aij then we have
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We recall also that the sum of the products of the elements of
any row (column)
and the corresponding cofactors of the elements of another
row (column) is 0:

These relations lead us to define the adjoint of the matrix A =
(aij) to be the matrix whose (i, j)-entry is αij = Aji. Using this
definition it is immediate that formulas (9) and (10) are
equivalent to the matrix equations

where det A in the middle is the corresponding element diag
{det A, …, det A} in Mn(R). We recall also the rule for
multiplying determinants, which in matrix form is

The multiplication rule (12) and the fact that det 1 = 1 imply
that A → det A is a homomorphism of the multiplicative
monoid of Mn(R), R commutative, into the multiplicative
monoid of R. It is clear that such a homomorphism maps the
group GLn(R) into U(R), the group of units of R: that is, if A
∈ GLn(R), then det A is a unit in R. Conversely, suppose Δ =
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det A is a unit. Since R is commutative aB = Ba for every a ∈
R, B ∈ Mn(R). In particular, (adj A)Δ− 1 = Δ− 1(adj A) so

Thus we see that

This result shows that if det A is a unit then A is invertible,
moreover, we have the formula (13) for its inverse. The main
part of the result we have proved is stated in the following

THEOREM 2.1. If R is a commutative ring, a matrix A ∈
Mn(R) is invertible if and only if its determinant is invertible
in R.

A noteworthy special case of the theorem is the

COROLLARY. If F is a field, A ∈ Mn(F) is invertible if and
only if det A ≠ 0.

EXERCISES

1. Show that the matrix

is invertible in M3( ) and find its inverse.
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2. Prove that if R is a commutative ring then AB = 1 in Mn(R)
implies BA = 1. (This is not always true for non-commutative
R.)

3. Verify that for any p ∈ R and i ≠ j, 1 + peij is invertible in
Mn(R) with inverse 1 – peij. More generally, show that if z is a
nilpotent element of a ring (that is, zn = 0 for some positive
integer n), then 1 – z is invertible. Also determine its inverse.

4. Show that diag {al, a2, …, an} is invertible in Mn(R) if and
only if every ai is invertible in R. What is the inverse?

5. Verify that for a, b ∈ , a + b → is an
isomorphism of with a subring of M2( ).

6. Show that in any ring the set C(S) of elements which
commute with every element of a given subset S constitute a
subring. If S is taken to be the whole ring, then C = C(S) is
called the center of the ring. Note that this subring is
commutative. Determine C(S) in Mn(R) for S = {eij|i, j = 1,
…, n}. Also determine the center of Mn(R).

7. Determine C(S) where S is the single matrix N = e12 + e23
+ … + en − 1·n.
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8. Show that if R is commutative and D is the set of diagonal
matrices in Mn(R), then C(D) = D.

9. Let S be any ring which contains a set of matrix units, that
is, a set of elements {eij|i, j = 1, …, n} such that eij ekl = δjk eil
and ∑1

n eij = 1. For any i, j, 1 ≤ i, j ≤ n and any a ∈ S define
aij = ∑n

k = 1 ekiajk. Show that aij ∈ R ≡ C({ekl|k, l = 1, …, n})
and that a = ∑i, j aijeij. Show that if rij are any elements of R,
then ∑ riieij = 0 only if every rij = 0. Hence show that S
Mn(R) ( denotes isomorphism).

10. Let R be a ring, R′ a set, η a bijective map of R′ into R.
Show that R′ becomes a ring if one defines:

and that η is an isomorphism of R′ with R. Use this to prove
that if u is an invertible element of a ring then(R, +, · u, 0, u−
1)where a·ub = aub is a ring isomorphic to R. Show also
that(R, , o, 1, 0)where a b = a + b – 1, a o b = a + b – ab
is a ring isomorphic to R.

11. Show that the rings Mnm(R) and Mn(Mm(R)) are
isomorphic (Hint: Use “block” addition and multiplication of
matrices.)
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12. Show that if R is a field, A ∈ Mn(R) is a zero divisor in
this ring if and only if A is not invertible. Does this hold for
arbitrary commutative R? Explain.

2.4 QUATERNIONS

In 1843, W. R. Hamilton constructed the first example of a
division ring in which the commutative law of multiplication
does not hold. This was an extension of the field of complex
numbers, whose elements were quadruples of real numbers
(α, β, γ, δ} for which the usual addition and a multiplication
were defined so that 1 = (1, 0, 0, 0) is the unit and i = (0, 1, 0,
0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1) satisfy i2 = j2 = k2 = – 1
= ijk.3 Hamilton called his quadruples quaternions. Previously
he had defined complex numbers as pairs of real numbers (α,
β) with the product (α, β)(γ, δ) = (αγ – βδ, αδ + βγ).
Hamilton’s discovery of quaternions led to a good deal of
experimentation with other such “hypercomplex” number
systems and eventually to a structure theory whose goal was
to classify such systems. A good deal of important algebra
thus evolved from the discovery of quaternions.

We shall not follow Hamilton’s way of introducing
quaternions. Instead we shall define this system as a certain
subring of the ring M2( ) of 2 × 2 matrices with complex
number entries. This will have the advantage of reducing the
calculations to a single simple verification.

We consider the subset of the ring M2( ) of complex 2 × 2
matrices that have the form
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We claim that is a subring of M2( ). Since = 1 –
2 for complex numbers it is clear that is closed under

subtraction; hence is a subgroup of the additive group of
M2( ). We obtain the unit matrix by taking a = 1, b = 0 in
(14). Hence 1 ∈ . Since

and = 1 2, the right-hand side has the form

where u = ac – b ,v = ad + b . Hence is closed under
multiplication and so is a subring of M2( ).

We shall now show that is a division ring. We note first
that

Since the αi are real numbers this is real, and is 0 only if every
αi = 0, that is, if the matrix is 0. Hence every non-zero
element of has an inverse in M2( ). Moreover, we have, by
the definition of the adjoint given in section 2.3, that
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Since = a this is obtained from the x in (14) by replacing a
by a and and b by –b and so it is contained in . Thus if
the matrix x is ≠ 0 then its inverse is

and this is contained in . Hence is a division ring.

The ring contains in its center the field of real numbers
identified with the set of diagonal matrices diag{α, α}, α ∈ .

also contains the matrices

We verify that

and if α0 + α1i + α2j + α3k = β0 + β1i + β2j + β3k, βi ∈ , then

so αi = βi, 0 ≤ i ≤ 3. Thus any x in can be written in one and
only one way in the form (15). The product of two elements
in
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is determined by the product and sum in , the distributive
laws and the multiplication table

Incidentally, because these show that is not commutative
we have constructed a division ring that is not a field. The
ring is called the division ring of real quaternions.

EXERCISES

1. Define = α0 – α1i – α2j – α3k for x = α0 + α1i + α2j + α3k.
Show that = + , = , and that = x if x ∈ .

2. Show that x = N(x) where N(x) = α0
2 + α1

2 + α2
2 + α3

2.
Define T(x) = 2α0. Show that x satisfies the quadratic
equation x2 – T(x)x + N(x) = 0.

3. Prove that N(xy) = N(x)N(y).

4. Show that the set 0 of quaternions x = α0 + α1i + α2j +
α3k, whose “coordinates” αi are rational, form a division
subring of .

5. Verify that the set I of quaternions x in which all the
coordinates αi are either integers or all are halves of odd
integers is a subring of . Is this a division subring? Show
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that T(x) and N(x) ∈ for any x ∈ I. Determine the group of
units of I.

6. Show that the subring of M2( ) generated by and is
M2( ).

7. Let m and n be non-zero integers and let R be the subset of
M2( ) consisting of the matrices of the form

where a, b, c, d ∈ . Show that R is a subring of M2( ) and
that R is a division ring if and only if the only rational
numbers x, y, z, t satifying the equation x2 – my2 – nz2 + mnt2
= 0 are x = y = z = t = 0. Give a choice of m, n that R is a
division ring and a choice of m, n that R is not a division ring.

8. Determine the center of . Determine the subring C(i)
commuting with i.

9. Let S be a division subring of which is stabilized by
every map x → dxd− 1, d ≠ 0 in . Show that either S = or S
is contained in the center.

10. (Cartan-Brauer-Hua.) Let D be a division ring, C its
center and let S be a division subring of D which is stabilized
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by every map x → dxd− 1, d ≠ 0 in D. Show that either S = D
or S ⊂ C.

2.5 IDEALS, QUOTIENT RINGS

We define a congruence ≡ in a ring to be a relation in R which
is a congruence for the additive group (R, +, 0) and the
multiplicative monoid (R, ·, 1). Hence ≡ is an equivalence
relation such that a ≡ a′ and b ≡ b′ imply a + b ≡ a′ + b′ and
ab ≡ a′ b′. Let denote the congruence class of a ∈ R and let

be the quotient set. As we have seen in section 1.5, we have
binary compositions + and · in defined by + = ,

= . These define the group ( , +, ) and the monoid (
, ·, ). We also have

Similarly, ( + ) = + . Hence ( , +, ·, , ) is a
ring which we shall call a quotient (or difference) ring of R.

We recall also that the congruences in (R, +, 0) are obtained
from the subgroups I (necessarily normal since (R, +) is
commutative) by defining a ≡ b if a – b ∈ I. Then the
congruence class is the coset a + I. If this is also a
congruence for the multiplicative monoid, then for any a ∈ R
and any b ∈ I we have a ≡ a and b ≡ 0, and so ab ≡ a0 = 0
and ba ≡ 0. In other words, if a ∈ R and b ∈ I then ab and ba
∈ I. Conversely, suppose I is a subgroup of the additive group
satisfying this condition. Then if a ≡ a′ and b ≡ b′ (mod I), a –
a′ ∈ I so ab – a′b = (a – a′)b ∈ I. Also a′b – a′b’ = a′(b – b′) ∈
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I. Hence ab – a′b′ = (ab – a′b) + (a′b – a′b′) ∈ I. Hence ab ≡
a′b′ (mod I). We now give the following

DEFINITION 2.2 If R is a ring, an ideal I of R is a subgroup
of the additive group such that for any a ∈ R and any b ∈ I,
ab and ba ∈ I.

Our results show that congruences in a ring R are obtained
from ideals I of R by defining a ≡ a′ if a – a′ ∈ I. The
corresponding quotient ring will be denoted as R/I and will
be called the quotient ring of R with respect to the ideal I. The
elements of R/I are the cosets a + I and the addition and
multiplication in R/I are defined by

Also I is the 0 and 1 + I the unit of R/I.

It is interesting to look at the “algebra” of ideals of a ring R.
We note first that the intersection of any set of ideals in R is
an ideal. This is immediate from the definition. If S is a subset
of R then the intersection (S) of all ideals of R containing S
(non-vacuous, since R is such an ideal) is an ideal containing
S
and is contained in every ideal containing S. We call (S) the
ideal generated by S. If S is a finite set, {a1, a2, …, an}, then
we write (al, a2, …, an) for (S). It is not easy to write down all
the elements of this ideal. It is clear first that it contains all
finite sums of products of the form xaiy where x, y ∈ R and
there is no way of combining xaiy + x′aiy′ into a single term.
Thus we see that to indicate explicitly all the elements of the

192



ideal (a1, a2, …, an) we must consider all elements of the
form

Now it is clear that the set I of elements of the form (18) is an
ideal. It is clear also that I contains every ai = lail. Hence

If I and J are ideals we denote the ideal generated by I ∪ J as
I + J. We claim that this is the set K of elements of the form a
+ b, a ∈ I, b ∈ J. This is clear since K is an ideal containing I
and J and is contained in every ideal containing I and J.
Another important ideal associated with I and J is the product
IJ, defined to be the ideal generated by all the products ab, a
∈ I, b ∈ J. It is easily seen that IJ coincides with the set of
elements of the form a1 b1 + a2 b2 + … + am bm where ai ∈ I,
bi ∈ J.

Sometimes we need to consider a sequence of ideals Il, I2, …
such that I1 ⊂ I2 ⊂ …. We call this an ascending chain of
ideals. It is useful to observe that for such a chain, Ij is an
ideal. It suffices to show that Ij is closed under subtraction
and under left and right multiplication by arbitrary elements
of R. To see the first, let a, b ∈ Ij. Then a ∈ Ij for some j
and b ∈ Ik for some k. If l is the greater of j and k then both a
and b are in Il. Hence a – b ∈ Il since Il is an ideal. Also xa
and ax ∈ Ij for any x ∈ R. Thus a – b ∈ Ij and xa, ax ∈ Ij
for any a and b in Ij and any x ∈ R. Then Ij is an ideal.
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If R is commutative, our description of the elements of (al, a2,
…, an simplifies considerably: namely, this ideal is the set of
elements of the form ∑1

n xiai(= ∑1
n aixi), xi ∈ R. This is clear

from (18). In particular, the ideal (a) generated by a is the set
of elements xa, x ∈ R. This is called the principal ideal
generated by a.

We can give a neat characterization of fields in terms of
ideals: namely, we have

THEOREM 2.2. Let R be a commutative ring ≠ 0. Then R is
a field if and only if the only ideals in R are R (= (1)) and 0 (
= (0)).

Proof. Suppose R is a division ring and I is a non-zero ideal
in R. If a ≠ 0
is in I then so is 1 = aa− 1. It is clear that the only ideal of a
ring containing 1 is R (since I will then contain every x = xl).
Hence I = R. This proves that the only ideals in a division ring
are 0 and R. In particular this holds for fields. Conversely,
suppose that R is a commutative ring ≠ 0 whose only ideals
are 0 and R. If a ≠ 0 is in R then (a) ≠ 0, so (a) = R. It follows
that 1 ∈ (a) and hence there is an x ∈ R such that ax = 1. Thus
every non-zero element of R is invertible and R is a field.

EXERCISES

1. Let Γ be the ring of real-valued continuous functions on [0,
1] (example 8, p. 87). Let S be a subset of [0, 1] and let Zs =
{f | f(x) = 0, x ∈ S}. Verify that Zs is an ideal. Let S1 = [0, ],
S2 = [ , 1], I1 = ZS1, I2 = ZS2. Show that I1I2 = I1 ∩ I2 = 0.
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2. Show that the associative law holds for products of ideals:
(IJ)K = I(JK) if I, J, and K are ideals.

3. Does the distributive law, I(J + K) = IJ + IK hold?

4. If R is a ring we define a right (left) ideal in R to be a
subgroup of the additive group of R such that ba ∈ I (ab ∈ I)
for every a ∈ R, b ∈ I. Verify that the subset of matrices of

the form is a right ideal and the subset of the form

is a left ideal in M2(R) for any R. Are either of these
sets ideals?

5. Prove the following extension of Theorem 2.2. A ring R ≠ 0
is a division ring if and only if 0 and R are the only left (right)
ideals in R.

6. Let R be a commutative ring and let N denote the set of
nilpotent elements of R. Show that N is an ideal and R/N
contains no non-zero nilpotent elements.

7. Let I be an ideal in R, U the group of units of R. Let U1 be
the subset of elements a ∈ U such that a ≡ 1 (mod I). Show
that U1 is a normal subgroup of U.
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8. Let I be an ideal in R and let Mn(I) denote the set of n × n
matrices with entries in I. Show that Mn(I) is an ideal in
Mn(R). Prove that every ideal in Mn(R) has the form Mn(I) for
some ideal I of R, and that I → Mn(I) is a bijective map of the
set of ideals of R onto the set of ideals of Mn(R).

2.6 IDEALS AND QUOTIENT RINGS FOR

After the generalities of the last section we now consider the
ideals of and their corresponding quoyient rings /I. This
will lead us to some interesting number theoretic results.

As we have seen in section 1.5 and again in section 1.10, the
subgroups of the additive group ( , +, 0) are the cyclic groups

where k is a nonnegative integer. Since = {xk|x ∈ }
it is clear that is the same thing as the principal ideal (k)
of multiples of k. Since any ideal is a subgroup it follows that
every ideal in is a principal ideal. Now it is clear that (l) ⊃
(k) if and only if k ∈ (l), hence, if and only if k = lm, m ∈ .
Thus the inclusion relation (l) ⊃ (k) for the principal ideals (l),
(k) is equivalent to the divisibility condition l|k. A
consequence of this is that if m, n ∈ and (m, n) denotes
theideal generated by m and n, then (m, n) = (d) where d is a
g.c.d. of m and n.Since (m, n) ⊃ (m) and (n), we have d|m and
d|n. On the other hand, if e|m and e|n then (e) ⊃ (m) and (e) ⊃
(n). Then (e) ⊃ (m, n) = (d) so e|d. Similarly, we see that (m)
∩ (n) = ([m, n]) where [m, n] is a least common multiple of m
and n.

We look next at the quotient ring /(k), which is called the
ring of residues modulo k. Since (k) = (– k) we may assume k
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≥ 0. If k = 0, then /(k) can be identified with , and if k > 0,
the elements of /(k) are the k cosets

Suppose first that k is composite: k = lm, l > 1, m > 1. Then
≠ and ≠ in /(k) but = = . Thus /(k) has
non-zero zero divisors if k is composite. Next let k = p be a
prime. In this case every ≠ in /(p) is invertible. Since
/(k) is commutative ( = = ), it follows that /(p)
is a field. Given ≠ , then p a and 1 is a g.c.d. of p and a.
Hence we have integers x and y such that ax + py = 1. Then
= = + = . Hence is invertible with as
inverse.

These simple results are important enough to state as a
theorem.

THEOREM 2.3. The ring /(k) for k composite is not a
domain. On the other hand, /(p) for p prime is a field.

We shall now determine the group U( /(k)) of units of ( /(k).
If k = 0 then these are 1 and – 1. If k > 0 we have

THEOREM 2.4. The group U(( /(k)), k > 0, consists of the
classes = a + (k) such that a and k are relatively prime
(that is, have 1 as g.c.d.).

Proof. If (a, k) = 1 (equivalently: the ideal (a, k) = (1)), then
we have integers x and y such that ax + ky = 1. Then = ,
so is invertible. Conversely, if = , then = , so ab
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= 1 + mk, m ∈ . Clearly this equation shows that any
common divisor of a and k divides 1. Hence a and k are
relatively prime.

The foregoing result shows that |U( /(k))| is the number φ(k)
of positive integers less than k and relatively prime to k. The
function φ of positive integers thus defined is called the Euler
φ-function (see exercises 4, p. 47). For example, if k = 12, the
units of /(k) are , , , , and thus φ(12) = 4. In the next
section we shall indicate in an exercise a formula for
computing φ(k) from the factorization of k into primes. At this
point we note that if p is a prime, then it is clear from the
definition that φ(p) = p – 1. Also it is easy to see that φ(pe) =
pe – pe − 1 = pe(1 – 1/p).

We recall that is G is a finite group, then a|G| = 1 for every a
∈ G. A consequence of this result and Theorem 2.4 is that if
(a, k) = 1, then φ(k) = . The usual way of stating this result
is

THEOREM 2.5. (Euler.) If a is an integer prime to the
positive integer k, then aφ(k) ≡ 1 (mod k).

For k = p a prime this reduces to an earlier result due to
Fermat.

COROLLARY. If p is a prime and a is an integer not
divisible by p then ap − 1 ≡ 1 (mod p).

This result can also be stated in a slightly different form,
namely, that ap ≡ a (mod p). This holds for all a since it is
trivial if a is divisible by p. On the other hand, if ap = a (mod
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p) and a 0 (mod p), then ap − 1 ≡ 1 (mod p) by cancellation.
Hence the two statements are equivalent.

EXERCISES

1. Write down addition and multiplication tables for /(5) and
for /(6).

2. Show that /(k) contains non-zero nilpotent elements (zn =
0, z ≠ 0) if and only if k is divisible by the square of a prime.
Determine the nilpotent elements of /(180).

3. Prove that if D is a finite division ring then a|D| = a for
every a ∈ D.

4. Let A ∈ GL2( /(p)) (that is, A is an invertible 2 × 2 matrix
with entries in /(p)). Show that Aq = 1 if q = (p2 – 1)(p2 – p).
Show also that Aq + 2 = A2 for every A ∈ M2( /(p)).

5. Let T denote the set of triangular matrices where a,
b, c ∈ . Verify that T is a subring of M2( ). Determine the
ideals of T.

2.7 HOMOMORPHISMS OF RINGS. BASIC THEOREMS

In this section we define homomorphism for rings and derive
their basic properties. Everything will follow from our earlier
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results on homomorphisms of monoids and of groups (in
sections 1.9 and 1.10) since our starting point is

DEFINITION 2.3. A homomorphism of a ring R into a ring
R′ is a map of R into R′ which is a homomorphism of both the
additive group and the multiplicative monoid of R into the
corresponding objects of R′.

Recalling that η is a homomorphism of a group G into a group
G′ if η(ab) = η(a)η(b), we see that the conditions that a map η
of a ring R into a ring R′ is a homomorphism are

where 1′ is the unit of R′. If I is an ideal in R we have the
corresponding congruence in R and the quotient ring = R/I.
Also we have the natural map v : a → . This is an
epimorphism for the additive groups and the multiplicative
monoids, hence it is an epimorphism (= surjective
homomorphism) of the ring R onto the ring . As in the case
of groups, we call K = η− 1(0′) the kernel of the
homomorphism η of R (0′ the zero element of R′). Since a ≡ b
(mod K)— that is, a – b ∈ K—is a congruence, the result of
section 2.5 shows that K is an ideal in R (a fact, which can be
verified directly also). The homomorphism η is a
monomorphism (= injective homomorphism) if and only if
the kernel is 0. It is clear also that the image under a
homomorphism of R into R′ is a subring of R′ since it is a
subgroup of the additive group of R′ as well as a submonoid
of the multiplicative monoid.
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Now suppose η is a homomorphism of the ring R into the ring
R′ and I is an ideal contained in the kernel of η. Then we
know that

is a group and a monoid homomorphism, hence it is a ring
homomorphism. We call the induced (ring) homomorphism
of R/I into R′. It is clear that we
have the commutativity of

and is the only homomorphism from R/I to R’ making this
diagram commutative. Also is a monomorphism if and only
if I coincides with the kernel of η. In this case we have the

FUNDAMENTAL THEOREM OF HOMOMORPHISMS OF
RINGS.

Let η be a homomorphism of a ring R into a ring R′, K = η−
1(0′) the kernel. Then K is an ideal in R and we have a unique
homomorphism of R/K into R′ such that η = v where v is
the natural homomorphism of R into R/K. Moreover, v is an
epimorphism and is a monomorphism.

201



This, of course, has the immediate

COROLLARY. Any homomorphic image of a ring R is
isomorphic to a quotient ring R/K of R by an ideal K.

The subgroup correspondence of a group and a homomorphic
image given in Theorem 1.8′ is applicable to rings via their
additive groups. The result for rings is

THEOREM 2.6. Let η be an epimorphism of a ring R onto a
ring R′, K the kernel. Then in the 1–1 correspondence of the
set of subgroups H of (R, +, 0) containing K with the set of
subgroups of R′ pairing H with η(H), H is a subring (ideal) if
and only if η(H) is a subring (ideal) of R′. Moreover, if I is an
ideal of R containing K then

is an isomorphism of R/I with R′/I′.

Proof. Since the image under a homomorphism is a subring
it is clear that if H is a subring of R then η(H) is a subring of
R′. If H is an ideal in R, then η(H) is a subgroup of the
additive group of R′. If h ∈ H and x′ ∈ R’ then there exists an
x such that η(x) = x′. Hence η(h)x′ = η(h)η(x) = η(hx) ∈ η(H)
and similarly x′η(h) ∈ η(H). Hence η(H) is an ideal. If H′ is a
subring (ideal) in R′ then η− 1(H′) is a subgroup of the
additive group of R and it is immediate that this is a subring
(ideal) of R. It follows that the 1–1 correspondence between
the set of subgroups of the additive group of R containing K
with the set of subgroups of R′ induces 1–1 correspondences
between the sets of subrings and also between the sets of
ideals contained in the two sets of subgroups. Also we know
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from the group result that (19) is an isomorphism of the
additive groups of R/I and R′/I′ if I is an ideal in R containing
K and I′ = η(I). Since

(19) is a ring isomorphism.

The isomorphism of R/I and R′/I′ given in the foregoing
theorem is sometimes called the first isomorphism theorem
for rings. We also have, as we have for groups, the

SECOND ISOMORPHISM THEOREM FOR RINGS. Let R
be a ring, S a subring, I an ideal in R. Then S + I = {s + i|s ∈
S, i ∈ I} is a subring of R containing I as an ideal, S ∩ I is an
ideal in S, and we have the isomorphism

of (S + I)/I with S/(S ∩ I).

Proof. Direct verification shows that S + I is a subring.
Obviously I is an ideal in S + I. We have the homomorphism s
→ s + I of S into R/I which is the restriction to S of the natural
homomorphism of R into R/I. The image is clearly (S + I)/I
and the kernel is the set of s such that s + I = I. This is the set
S ∩ I. Hence we have the isomorphism s + (S ∩ I) → s + I of
S/(S ∩ I) into (S + I)/I. The isomorphism (20) is the inverse of
this map.
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We shall now apply the fundamental homomorphism theorem
of rings to identify the smallest subring of a given ring R, that
is, the subring generated by

1. We shall call this the prime ring of R (though it may have
nothing to do with primes). For our purpose we need to use
the ring of integers with unit 1 and
for the moment it will be clearer if we use a different symbol,
say e, for the unit of R. Consider the map n → ne, n ∈ , of
into R. Since

hold in R (see section 2.1) and 1 → e, our map is a
homomorphism of into R. The image e = {ne|n ∈ } is
therefore a subring of R. Moreover, if S is any subring of R
then e ∈ S and so e ⊂ S. Hence it is clear that e is the prime
ring. Our homomorphism can also be regarded as one into e,
in which case it is an epimorphism. Consequently e /K
for some ideal K in and we know that K = (k), k ≥ 0. If k = 0
we have e and if k > 0 then e is isomorphic to the ring
of residues modulo k. We can now safely shift back to the
notation 1 for the unit of R and we can identify the prime ring
with the ring or /(k) to which it is isomorphic. With this
understanding we have the following

THEOREM 2.7. The prime ring of a ring R is either or the
ring /(k) of residues modulo some k > 0.

We recall that if k is composite then /(k) has non-zero zero
divisors. Hence if R is a domain then the prime ring is either
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or /(p) for some prime p. We shall say that R is of
characteristic k if its prime ring is /(k), k ≥ 0 (so that /(0) =
). Hence for a domain the characteristic is either 0 or a prime

p. We remark also that if the characteristic of a ring is k > 0
then ka = (k1)a = 0 for all a in the ring. Clearly, k is the
smallest positive integer having this property.

EXERCISES

1. Prove that if η is a homomorphism of the ring R into the
ring R′ and ζ is a homomorphism of R′ into R″ then ζ η is a
homomorphism of R into R″

2. Show that if u is a unit in R and η is a homomorphism of R
into R′ then η(u) is a unit in R′. Suppose η is an epimorphism.
Does this imply that η is an epimorphism of the group of units
of R onto the group of units of R′?

3. Let I be an ideal in R, n a positive integer. Apply the
fundamental theorem on homomorphisms to prove that
Mn(R)/Mn(I) Mn(R/I).

4. Show that if R is a commutative ring of prime characteristic
p then a → ap is an endomorphism of R ( = homomorphism
of R into R). Is this an automorphism?

5. Let F be a finite field of characteristic p (a prime). Show
that p – 1||F| – 1. Hence conclude that if |F| is even then the
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characteristic is two. (We shall see later that |F| is a power of
p.)

6. A ring R is simple if R ≠ 0 and R and 0 are the only ideals
in R. Show that the characteristic of a simple ring is either 0
or a prime p.

7. If S is a subset of a ring (field) R then the subring (subfield)
generated by S is defined to be the intersection of all the
subrings (subfields) containing S. If this is R itself then S is
called a set of generators of the ring R (field R). Show that if
η1 and η2 are homomorphisms of the ring R (field R) into a
second ring (field) and η1(s) = η2(s) for every s in a set of
generators of the ring R (field R) then η = η2.

8. Show that every homomorphism of a division ring into a
ring R ≠ 0 is a monomorphism.

9. If R1, R2, …, Rn are rings we define the direct sum R1 R2
… Rn as for monoids and groups. The underlying set is R =

R1 × R2 × … × Rn. Addition, multiplication, 0, and 1 are
defined by
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0i, 1i the zero and unit of Ri. Verify that R is a ring. Show that
the units of R are the elements (u1, u2, …, un), ui a unit of Ri.
Hence show that if U = U(R) and Ui = U(Ri) then U = U1 ×
U2 × … × Un, the direct product of the Ui, and that |U| = Π|Ui|
if the Ui are finite.

10. (Chinese remainder theorem). Let I1 and I2 be ideals of a
ring R which are relatively prime in the sense that I1 + I2 = R.
Show that if a1 and a2 are elements of R then there exists an a
∈ R such that a ≡ ai (mod Ii). More generally, show that if I1,
…, Im are ideals such that Ij + k ≠ jIk = R for 1 ≤ j ≤ m, then
for any (al, a2, …, am), ai ∈ R, there exists an a ∈ R such that
a ≡ ak (mod Ik) for all k.

11. Use the Chinese remainder theorem and the fundamental
theorem of homomorphisms to show that if I1 and I2 are
relatively prime ideals and I = I1 ∩ I2 then R/I R/I1 R/I2.

12. Use exercise 11 to prove that if m and n are relatively
prime integers then φ(mn) = φ(m)φ(n), φ the Euler φ-function
(p. 105). Show also that if p is a prime then φ(pe) = pe – Pe −
1. Hence prove that if n = p1

e1 p2
e2 … pr

er, pi distinct primes,
then
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13. Show that the only ring homomorphism of into is the
identity.

14. Let R be the ring of real-valued continuous functions on
[0, 1] (example 8, p. 87). Note that if 0 ≤ t ≤ 1 then the
evaluation map ηt : f → f(t) is a homomorphism of R into .
Show that any homomorphism η of R into is of this form.
(Hint: If η ≠ ηt there is an ft ∈ R such that η(ft) ≠ ηt(ft) = ft(t).
Then gt = ft – η(ft)1 ∈ R and gt(t) ≠ 0 but η(gt) = 0. Show that
there exist a finite number of ti such that g(x) = ∑ gt1

2 ≠ 0 for
all x. Then g– 1 ∈ R but η(g) = 0.)

15. Define a maximal ideal of a ring R to be a proper ideal I
such that there exists no proper ideal I′ such that ′I′ I. Show
that an ideal I of a commutative ring R is maximal if and only
if R/I is a field.

16. Define a prime ideal I of a commutative ring R by the
conditions: I ≠ R and if ab ∈ I then either a ∈ I or b ∈ I.
Show that if I is maximal then I is prime.

17. Determine the ideals and the maximal ideals and prime
ideals of /(60).

2.8 ANTI-ISOMORPHISMS

Let R be a commutative ring, Mn(R) the ring of n × n matrices
with entries in R. If A = (aij) ∈ Mn(R) we define the transpose
of A (or transposed matrix) tA to be the matrix having aji as
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its (i, j)-entry. This means that tA is obtained by reflecting the
elements of A in its main diagonal. For example, if

then

It is clear that t(tA) = A, so A → tA is bijective. Also, if A =
(aij) and B = (bij) then A + B = (aij + bij), so t(A + B) has aji +
bji as its (i, j)-entry. Hence t(A + B) = tA + tB Thus the
transpose map t : A → tA is an automorphism of the additive
group of Mn(R). Clearly tl = 1. Now consider P = AB whose
(i, j)-entry is pij = ∑n

k = 1aikbkj. Hence the (i, j)-entry of tP is
∑n

k = 1 ajkbki. On the other hand, the (i, j)-entry of tBtA is ∑n
k

= 1 bkiajk = ∑n
k = 1ajkbki, since R is commutative. We have

shown that

A map x → x* of a ring R into itself which is an
automorphism of the additive group, sends 1 into 1 and
reverses the order of multiplication: (xy)* = y*x* is
called an anti-automorphism of R. If, in addition, x** = x, x ∈
R, then the map is called an involution. Our calculations show
that this is the case with the transpose map in Mn(R), R
commutative.
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Another important instance of an involution is the map

in Hamilton’s quaternion algebra . This can be verified
directly or it can be deduced from the anti-automorphic
character of the transpose map, as we proceed to show. We
observe first that if u is an invertible element of a ring then
the map x → uxu− 1 is an automorphism. As in the case of
groups, such automorphisms are called inner automorphisms.
We note next that if we compose an automorphism with an
anti-automorphism in either order the result is an
anti-automorphism. As a consequence of these two remarks
we see that the map

is an anti-automorphism in M2(R). Moreover, the formula for

adj shows that adj(adj ) = . Hence the
“adj” map is an involution. We now specialize R = and we
refer back to the definition of as the subring of M2( ) of

matrices of the form . We recall also the definitions
of i, j, k as

210



Then adj i = – i, adj j = – j, and adj k = – k. Thus the
involution x → adj x in 2 stabilizes and induces the
involution x → , as in (22), in .

A map x → x′ of a ring R into a ring R′ is called an
anti-isomorphism if it is an isomorphism for the additive
groups and satisfies

If such a map exists, then R and R′ are said to be
anti-isomorphic. It is sometimes useful to have a ring which
is anti-isomorphic to a given ring R. Such a ring can be
constructed easily. To do this we take the same underlying set
R, the same +, 1 and 0, but we define a new product by
simply reversing the
factors and then multiplying as in R. Denoting this product as
a × b we have the definition:

Then

and
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Also a × 1 = la = a = al = 1 × a. Hence (R, +, ×, 0, 1) is a
ring. To distinguish this from R = (R, +, ·, 0,1) we shall
denote it as R0 (read “R opposite”) and call it the opposite
(ring) of R. It is clear that the identity map is an
anti-isomorphism of R and R0. Also any anti-isomorphism of
R is the same thing as an isomorphism of R0.

EXERCISES

1. Show that the identity map in R is an anti-automorphism if
and only if R is commutative.

2. Show that x = α0 + α1i + α2j + α3k → x* = α0 – α1i + α2j +
α3k is an involution in .

3. Let x → x′ be an anti-isomorphism of R onto R′. If A = (aij)
let A* = t(a′ij). Verify that A → A* is an anti-isomorphism of
Mn(R) onto Mn(R′).

4. Let a → a* be an anti-automorphism of a ring R. Let H =
{h|h* = h} (called symmetric or *-symmetric elements) and K
= {k|k* = – k} (called skew or *-skew elements). Verify that H
and K are subgroups of the additive group of R. Define {ab}
= ab + ba and [ab] = ab – ba. Show that if a, b, c, ∈ H then so
do
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and that [ab] ∈ K. Show that if a, b ∈ K then [ab] ∈ K and if
a ∈ H and b ∈ K then [ab] ∈ H.

5. Let

in M3( ) and let

where u is as indicated and 0 and 1 are the 0 and unit matrices
in M3( ). Hence x, y ∈ M6( ). Verify the following relations

Let R be the subring of M6( ) generated by , x and y. Show
that every element of R has the form f(x) + g(x)y where f(x) =
a + bx + cx2, g(x) = a′ + b′x + c′x2, and a, b, c, a′, b′, c′ ∈ ,
and that (1, x, x2, y, yx, yx2) is a base for R as vector space
over . Show that if x′ is a nilpotent element of R and y′ is an
element of R such that y′2 = 0, then y′x′2 = 0. Hence conclude
that R has no antiautomorphisms.

6. Define anti-homomorphism of a ring R into a ring R′ to be a
map η which is a homomorphism of the additive group of R
into R′ sending 1 into 1 (for 1′) and satisfying η(ab) =
η(b)η(a). Verify that the composite of a homomorphism
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(antihomomorphism) and an anti-homomorphism
(homomorphism) is an anti-homomorphism and the
composite of two anti-homomorphisms is a homomorphism.

7. Define a Jordan homomorphism η of a ring R into a ring R′
by the conditions: η is an additive group homomorphism, η(1)
= 1, and η(aba) = η(a)η(b)η(a). Show that any
homomorphism or anti-homomorphism is a Jordan
homomorphism. Show that Jordan homomorphisms satisfy:

8. (Jacobson and Rickart.) Show that if η is a Jordan
homomorphism of a ring R into a domain D then for any a, b
∈ R either η(ab) = η(a)η(b) or η(ab) = η(b)η(a).

9. (Hua.) Let η be a mapping of a ring R into a ring R′ such
that η(a + b) = η(a) + η(b), η(1) = 1, and for any a, b in R
either η(ab) = η(a)η(b) or η(ab) = η(b)η(a). Prove that η is
either a homomorphism or anti-homomorphism.

10. (Jacobson and Rickart.) Prove that any Jordan
homomorphism of a ring into a domain is either a
homomorphism or an anti-homomorphism.
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11. (Hua.) Let η be a map of a division ring D into a division
ring D′ satisfying the following conditions: (i) η is a
homomorphism of the additive groups, (ii) η(1) = 1′, (iii) if a
≠ 0 then η(a) ≠ 0 and η(a)− 1 = η(a− 1). Show that η is either a
homomorphism or an anti-homomorphism. (Hint: Use Hua’s
identity, exercise 9, p. 92).

2.9 FIELD OF FRACTIONS OF A COMMUTATIVE
DOMAIN

We have seen that any subring of a division ring is a domain.
It is natural to ask if the converse holds: namely, can every
domain be imbedded in a division ring? By this we mean:
given domain D, does there exist a monomorphism of D into
some division ring F? If this were the case then D would be
isomorphic to a subring D′ of F, so that by identifying D with
D′ we could regard D as a subring of the division ring F. The
question we have raised was an open one for some time until
it was answered in the negative by A. Malcev, who gave the
first example of a domain which cannot be imbedded in a
division ring. We shall indicate Malcev’s example in some
exercises below. Our main concern in this section will be in
the most important positive result in this direction, namely,
that every commutative domain can be imbedded in a field.
The method for doing this is exactly the familiar one that is
used to construct the field of rational numbers from the ring
of integers. To understand why it works it will be well to look
first at the relation between a subring D of a field and the
subfield F generated by D.

Accordingly, we suppose we have a subring D of a field. Let
F be the subfield generated by D. What are the elements of F?
First it is clear that if a, b ∈ D and b ≠ 0 then ab− 1 ∈ F. We
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now make the important observation that F is just the set of
elements of this form. First, the following equations show that

is a subfield of the given field:

(It should be noted that commutativity of multiplication is
used in several places in these calculations.) Since F is
generated by D, no subfield of F different from F contains D,
and since the set of {ab− 1} contains D as the subset of
elements al− 1 = a, it is clear that

One more question needs to be raised. When do we have
equality, ab− 1 = cd− 1, for the elements of the set we have
determined? It is clear that this is the case if and only if ad =
bc, since this relation follows from ab− 1 = cd− l if we
multiply both sides by bd, and ab− l = cd− l results if we
multiply both sides of ad = bc by (bd)− 1.
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Suppose now that we are given a commutative domain D. We
wish to imbed D in a field. The foregoing remarks indicate
that if this can be done, then the elements of a minimal field
extension of D are to be obtained from the pairs (a, b), a, b ∈
D, b ≠ 0. We have in mind that (a, b) is to play the role of ab−
l. Hence we adopt the following procedure, which is
suggested by the foregoing considerations.

Let D* denote the set of non-zero elements of D. Then D* ≠
Ø since D ≠ 0. We consider the product set D × D* of pairs
(a, b), a ∈ D, b ∈ D* and we introduce a relation ~ in D × D*
by defining (a, b) ~ (c, d) if and only if ad = bc. Then (a, b) ~
(a, b) since ab = ba, and if (a, b) ~ (c, d), then ad = bc; hence
cb = da, and so (c, d) ~ (a, b). Finally, if (a, b) ~ (c, d) and (c,
d) ~ (e, f) then ad = bc and cf = de. Hence adf = bcf = bde.
Since d ≠ 0 and D is commutative, d may be cancelled to give
af = be, which is the condition that (a, b) ~ (e, f). We have
therefore proved that ~ is an equivalence relation. We shall
call the equivalence class determined by (a, b) the fraction (or
quotient) a/b. Thus we have a/b = c/d if and only if ad = bc.
Let F = {a/b} the quotient set determined by our equivalence
relation in D × D*.

We shall now introduce an addition, multiplication, 0, and 1
in F to make F a field. We note first that if a/b and c/d are
two fractions, then bd ≠ 0 since b ≠ 0 and d ≠ 0. Hence we
can form the fraction (ad + bc)/bd. Moreover, if a/b = a′/b′
and c/d = c′/d′, then

for, by assumption, ab′ = ba′ and cd′ = dc′. Hence
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so that

or

which implies (26). It is now clear that

defines a (single-valued) composition + in F. Similarly we see
that if a/b and c/d are fractions then so is ac/bd. Moreover, if
a/b = a′/b′ and c/d = c′/d′, then ab′ = ba′ and cd′ = c′d, so
ab′cd′ = ba′c′d. Hence ac/bd = a′c′/b′d′ and so

defines a (single-valued) multiplication in F. If we put 0 = 0/1
and 1 = 1/1 we obtain a/b + 0 = a/b + 0/1 = (al + b0)/bl = a/b
and similarly 0 + a/b = a/b. Also (a/b)1 = a/b = l(a/b). A
straightforward verification, which is left to the reader, will
show that (F, +, ·, 0, 1) is a commutative ring. Now suppose
a/b ≠ 0. Then a ≠ 0, since 0/b = 0/1 by 01 = 0 = 0b. Hence b/a
is a fraction and (a/b)(b/a) = ab/ab = 1/1 = 1. Thus a/b has the
inverse (a/b)− 1 = b/a and hence F is a field.

We now consider the map
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of D into F. Clearly this maps 0 into 0, 1 into 1; and a + b →
(a + b)/1 = a/1 + b/1 and ab → ab/1 = (a/l)(b/l). Hence (29) is
a homomorphism. If a/1 = 0 = 0/1 then al = 10 = 0, so a = 0.
Hence the kernel is 0 and (29) is a monomorphism.

We have therefore proved the following

THEOREM 2.8. Any commutative domain can be imbedded
in a field.

We shall now identify a with a/1 (just as we identify the
integer a with the rational number a/1). Then D is identified
with a subring of F. Moreover, for any element a/b of F we
have a/b = (a/l)(l/b) = (a/l)(b/l)− 1 = ab− 1 (because of our
identification). Thus it is clear that D generates the field F.
We shall call F the field of fractions of D. The basic
homomorphism property of this field is given in

THEOREM 2.9. Let D be a commutative domain, F its field
of fractions. Then any monomorphism ηD of D into a field F′
has a unique extension to a monomorphism of ηF of F into F′.

Proof. We indicate ηD as a → a′. We shall prove first that if
ηD can be extended to a homomorphism ηF of F into F′ then
this can be done in only one way. In other words, we settle
the uniqueness question first. Now this part is clear, since if b
≠ 0 then b− 1 → (b′)− 1 under ηF. Hence ab− 1 → a′(b′)− l

under ηF. Since every element of F can be written as ab− 1 it
follows that ηF is determined to be the
map ab− 1 → a′(b′)− 1. It is now clear that our task is to show
that ab− 1 → a′(b′)− 1 is a well-defined map and is a
monomorphism of F into F′ which extends ηD. To prove that
this defines a map we assume that ab− l = cd− 1. Then we
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have ad = bc and consequently a′d′ = b′c′ in F′. Hence a′(b′)−
1 = c′(d′)− 1. This shows that ab− 1 → a′(b′)− 1 is
single-valued. Next we check the homomorphism property.
This follows from the following calculations in which a, b, c,
d ∈ D and b ≠ 0, d ≠ 0.

It is clear also that 1 → 1′, the unit of F′, since D and F have
the same unit and ηD is a homomorphism. We note next that
ab− 1 → a′(b′)− 1 is an extension of ηD since it maps a = al− 1

→ a′(l′)− 1 = a′. We have seen that any homomorphism of a
field is a monomorphism (exercise 8, p. 110). Hence we have
proved that ηD can be extended to a monomorphism ηF of F,
and we saw at the outset that this is unique.

EXERCISES

1. What is the field of fractions of a field?

2. Show that if D is a domain and F1 and F2 are fields such
that D is a subring of each and each is generated by D, then
there is a unique isomorphism of F1 onto F2 that is the
identity map on D.
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3. Show that any commutative monoid satisfying the
cancellation law (ab = ac ⇒ b = c) can be imbedded in an
abelian group.

4. Show that if am = bm and an = bn, for m and n relatively
prime positive integers, and a and b in a commutative
domain, then a = b.

5. Let R be a commutative ring, and S a submonoid of the
multiplicative monoid of R. In R × S define (a, s) ~ (b, t) if
there exists a u ∈ S such that u(at − bs) = 0. Show that this is
an equivalence relation in R × S. Denote the equivalence class
of (a, s) as a/s and the quotient set consisting of these classes
as RS− 1. Show that
RS− 1 becomes a ring relative to

Show that a → a/1 is a homomorphism of R into RS− 1 and
that this is a monomorphism if and only if no element of S is a
zero divisor in R. Show that the elements s/1, s ∈ S, are units
in RS− 1.

6. (Ore.) Let D be a domain (not necessarily commutative)
having the right common multiple property that any two
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non-zero elements a, b ∈ D have a non-zero right common
multiple m = ab1 = ba1. Consider D × D*, D* the set of
non-zero elements of D, and define (a, b) ~ (c, d) if for b1 ≠ 0
and d1 ≠ 0 such that bd1 = db1 we have ad1 = cb1. Show that
this is independent of the choice of b1, d1 and that ~ is an
equivalence relation in D × D*. Let F denote the set of
equivalence classes a/b. Show that F becomes a division ring
relative to a/b + c/d = (ad1 + cb1)/m where m = bd1 = db1 ≠ 0,
0 = 0/1, 1 = 1/1, (a/b)(c/d) = ac1/db1 where b1 ≠ 0 and cb1 =
bc1. Show that a → a/1 is a monomorphism of D into F and F
is the set of elements (a/l)(b/1)− 1, a, b ∈ D, b ≠ 0.

7. (Malcev.) Show that if ai, bi, 1 ≤ i ≤ 4, are elements of a
group satisfying the relations a1a2 = a3b4, a1b2 = a3b4, b1a2
= b3a4, then b1b2 = b3b4. Let W be the free monoid generated
by elements ai, bi, 1 ≤ i ≤ 4 (see p. 68), and let ≡ be the
smallest congruence relation ( = intersection of all congruence
relations) in W containing the elements (a1a2, a3a4), (a1b2,
a3b4), (b1a2, b3a4). Let S = W/ ≡. Show that S satisfies the
cancellation laws but that S cannot be imbedded in a group.

8. (Malcev.) Let [S] be the set of integral linear
combinations of the elements of the monoid S of exercise 7
with the obvious definitions of equality, addition,
multiplication, 0, and 1 (see exercise 8, p. 127). Show that
[S] is a domain that cannot be imbedded in a division ring.

2.10 POLYNOMIAL RINGS

For the remainder of this chapter—except in section 2.17 and
in an occasional exercise—all rings will be commutative and
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the word “ring” will be synonymous with “commutative
ring.”

One is often interested in studying a ring R′ relative to a given
subring R. In this connection we wish to consider subrings of
R′ generated by R and subsets U of R′. Such a subring will be
denoted as R[U] and will be called the subring obtained by
“adjoining” the subset U to the subring R. If V is a second
subset then R[U][V] is the subring obtained by adjoining V to
the subring R[U]. We claim that this coincides with R[U ∪ V],
the subring of R′ resulting from the adjunction of U ∪ V to R.
First, it is clear that R[U ∪ F] contains R[U] and
V and, since the subring generated by R[U] and V is contained
in every subring containing these sets, we have R[U ∪ V] ⊃
R[U][V]. Next, it is clear that R[U][V] contains R and the
subset U ∪ V; hence R[U][V] ⊃ R[U ∪ V]. Thus R[U][V] =
R[U ∪ V].

We are interested primarily in subrings obtained by adjoining
finite subsets to the “base” ring R. If U = {ul, u2, …, un} we
write R[ul, u2, …, un] for R[U]. Inducting on the foregoing
remark we see that

that is, R[ul, u2, …, un] is obtained from R by a succession of
adjunctions of single elements to previously constructed
subrings. It is therefore natural to study first subrings of the
form R[u], We can immediately write down all the elements
of R[u]; these are just the polynomials in u with coefficients in
R, that is, the set of elements of the form
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It is clear that R[u] contains all of these elements. Moreover,
if ∑0

n aiui and ∑0
m bjuj are polynomials in u with coefficients

in R and n ≥ m, then

and, since (aiui)(bjuj) = aibjui + j, we have, by the distributive
laws,

where

Moreover, 0 and 1 are polynomials in u and – ∑0
n aiui =

∑0
n(– ai)ui. Thus the set of polynomials in u with coefficients

in R form a subring of R′. Hence this set coincides with R[u].

The formulas (32)–(34) show us how to calculate the sum and
the product of given polynomials. All of this is simple
enough. However, there is one difficulty—that of deciding
when two polynomial expressions in u represent the same
element. It may happen that we have different-looking
expressions for the same element. For example, if u ∈ R
(which is not excluded) then the element u ∈ R[u] can be

224



represented both as a0 with a0 = u and as a1u with al = 1.

Less trivially, taking R′ = and R = , u = , we have u2

= – 1.

We shall now construct a ring R[x] in which the only relations
of the form a0 + a1x + … = b0 + b1x + … are the trivial ones
in which ai = bi for all i. Heuristically, the ring we seek is the
set of expressions a0 + a1x + … + anxn, ai ∈ R, where
equality is defined by equality of the coefficients: ∑ aixi = ∑
bixi only if ai = bi for all i. Addition and multiplication will be
given by (32)-(34) with x replacing u. The statement on
equality means that we want a polynomial in x to determine
the sequence of its coefficients and, of course, these are all 0
from a certain point on. We are therefore led to identify a
polynomial in x with a sequence (a0, al, …, an, 0, 0, …), ai ∈
R, and to introduce an addition and multiplication for such
sequences corresponding to the formulas (32)–(34).

We shall now carry out this program precisely and in detail.
Let R be a given ring and let R[x] denote the set of infinite
sequences

that have only a finite number of non-zero terms ai.
Sequences (a0, al, a2, …) and (b0, bl, b2, …) are regarded as
equal if and only if ai = bi for all i. In other words, R[x] is the
set of maps i → ai of the set of non-negative integers into
the given ring R such that ai = 0 for sufficiently large i. For
the present, x in our notation R[x] is meaningless, but a
genuine x will soon make its appearance to justify the
notation. We introduce a binary composition in R[x] by
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which evidently is in R[x] and zero element by

Then it is immediate that (R[x], + , 0) is an abelian group.
Next we introduce another binary composition · in R[x] by

where pi is given by (34). If ai = 0 for i > n and bj = 0 for j >
m then pk = 0 for k > m + n. Hence the element on the
right-hand side of (35) is in R[x]. We also put

Then (a0, al, …)1 = (a0, al, …) = l(a0, al, …). If A = (a0, al,
…), B = (b0, bl, …), and C = (c0, cl, …) ∈ R[x], then the (i +
1)-st term in (AB)C is

Similarly, the corresponding term in A(BC) is

Hence (AB)C = A(BC) follows from the associative law in R.
Similarly, we can verify the distributive laws. Also
commutativity of multiplication is clear from the definition of
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the pi in (34) and the commutative law in R. Hence (R[x], +, ·,
0, 1) is a commutative ring.

We now consider the map

of R into R[x]. It is clear that this is a monomorphism of the
ring R into R[x]. We shall now identify R with its image in
R[x], identifying a with a′. In this way we can regard R as a
subring of R[x]. Now let x denote the element (0, 1, 0, 0, …)
of R[x]. The formula for the product and induction on k show
that if k ≥ 0, then

We have for a ∈ R(identified with a′ = (a, 0, …)),

Hence

and R[x] is the ring obtained by adjoining x to R. We shall call
R[x] the ring of polynomials over R in the indeterminate x.
The foregoing formula and the definition of equality show
that if ∑ aixi = ∑ bixi, then ai = bi for all i. In particular, ∑aixi

= 0 implies every ai = 0.
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Once we have constructed the ring R[x] we can use it to study
any ring R[u], for we shall see that any R[u] is a
homomorphic image of R[x]. Thus we shall have R[u]
R[x]/I, I an ideal in R[x]. This will imply that the problem of
relations in R[u] can be solved by noting that a0 + a1u + … =
b0 + b1u + … if and only if ∑ aixi ≡ ∑ bixi (mod I). Hence we
shall know the relations if we know the ideal I. The
fundamental homomorphism property of R[x] is given in

THEOREM 2.10. Let R and S be (commutative) rings, η a
homomorphism of R into S, u an element of S. Let R[x] be the
ring of polynomials over R in the indeterminate x. Then η has
one and only one extension to a homomorphism ηu of R[x]
into S mapping x into u.

Proof. If A = a0 + a1x + … + anxn then we simply put

where, in general, a′ = η(a). If B = b0 + b1x + … + bmxm, then
AB = p0 + p1x + … + pn + mxn + m where pi = ∑j + k = i ajbk.
Then

and

since η is a ring homomorphism. On the other hand,
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Still easier is the verification of ηu(A + B) = ηu(A) + ηu(B),
which is left to the reader. Now we have for a ∈ R that ηu(a)
= a′ = η(a), so ηu is an extension of η. Also ηu(l) = η(l) = 1
(the unit of S) and ηu(x) = u. Hence ηu is a homomorphism of
R[x] which extends η and maps x into u. Since R[x] is
generated by R and x it is the only homomorphism having this
property (exercise 7, p. 110). This completes the proof.

Now let S be any overring of R—that is, let S be a ring
containing R as a subring—and let u ∈ S. Then the theorem
shows that we have a unique homomorphism, which is the
identity map on R and sends x → u. We shall now write A(x)
for A = a0 + a1x + … + anxn and we shall denote the image of
A(x) under this homomorphism as A(u). In this way we shall
be using the customary functional notations in the present
situation, though we are not really dealing with functions. It
will be convenient also to speak of “substituting u for x in
A(x)” when in reality what we are doing is applying the
homomorphism of R[x] into S which extends the identity map
on R and sends x into u. If I is the kernel of our
homomorphism, then R[u] R[x]/I. Since the homomorphism
is the identity on R, we have R ∩ I = 0. This result tells us
precisely what the rings R[u] obtained by adjoining a single
element u to R look like: namely, we have the

COROLLARY. R[u] R[x]/I where x is an indeterminate
and I is an ideal in such that I ∩ R = 0
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Conversely, if I is an ideal in R[x] such that I ∩ R = 0, then
the restriction to R of the natural homomorphism v of R[x]
into R[x]/I is a monomorphism. We may identify R with its
image (the element a ∈ R with the coset a + I). In this way
R[x]/I ⊃ R as a subring. Since R[x] is generated by R and x, its
homomorphic image is generated by R and u = x + I. Hence
R[x]/I R[u].

The homomorphism A(x) → A(u) is a monomorphism if and
only if A(u) = 0 implies A(x) = 0, that is, a0 + a1u + … + anun

= 0 implies every ai = 0. In this case u is called
transcendental over R, otherwise u is algebraic over R. The
classical case of this is the one in which S = (or ) and R =

. Then a real (or complex) number is called algebraic or
transcendental according as this element of (or ) is
algebraic or transcendental over .

We shall now consider the extension of all of this from one
element to a finite number. Reversing somewhat the
foregoing order of presentation, we shall launch directly into
the generalization of Theorem 2.10, which we state in the
following form.

THEOREM 2.11. For any ring R and any positive integer r
there exists a ring R[xl, x2, …, xr] with the following
“universal” property. If S is any ring and η is a
homomorphism of R into S and i → ui is a map of {1, 2, …, r}
into S, then there exists a unique extension of η to a
homomorphism ηu1, …, ur of R[x1, …, xr] into S sending xi →
ui, 1 ≤ i ≤ r.

Proof. We define R[x1, …, xr] inductively: R[x1] is the
polynomial ring in an indeterminate xl (for x) over R and,
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generally, R[x1, …, xi] is the polynomial ring in an
indeterminate xi over R[xl, …, xi − 1], 1 ≤ i ≤ r. By Theorem
2.10, we have a homomorphism ηu1 of R[x1] into S extending
η and sending xl → u1. Using induction, we may assume we
have a homomorphism of R[x1, …, xr − 1] extending η and
sending xi → ui,1 ≤ i ≤ r – 1. Then Theorem 2.10 provides an
extension of this to a homomorphism ηu1, …, ur of

into S sending xr → ur. Then ηu1, …, ur is a homomorphism
extension of η to R[x1, …, xr] such that xi → ui, 1 ≤ i ≤ r. The
uniqueness of ηui, …, ur is clear since R[x1, …, xr] is generated
by R and the x’s.

There is essentially only one ring having the property stated
in Theorem 2.11. To show this, suppose that R[y1, …, yr] is
another one. Then we have a homomorphism ζ of R[x1, …,
xr] into R[y1, …, yr] which is the identity on R and sends xi →
yi, 1 ≤ i ≤ r. We also have a homomorphism of ζ′ of R[y1, …,
yr] into
R[x1, …, xr] which is the identity on R and sends yi → xi, 1 ≤
i ≤ r. Then ζ′ζ is an endomorphism of R[x1, …, xr] which is
the identity on R and the x’s. Hence ζ′ζ is the identity
automorphism of R[x1, …, xr]. Similarly, ζζ′ is the identity on
R[y1, …, yr]. Then ζ and ζ′ are isomorphisms.

We shall now call R[x1, …, xr] the ring of polynomials over R
in r indeterminates xl, …, xr. The result just proved shows
that how one constructs this ring is only a matter of esthetics,
since it is essentially unique. (Another construction will be
indicated in exercise 9, at the end of this section.) Though our
construction (by successive adjunctions of single

231



indeterminates) does not treat the x’s symmetrically, the end
product is symmetric. In fact, we have the following

THEOREM 2.12. Let R[x1, …, xr] be the polynomial ring in
r indeterminates over R and let π be a permutation of 1, 2, …,
r. Then there exists a unique automorphism ζ(π) of R[x1, …,
xr] which is the identity on R and sends xi → xπ(i), 1 ≤ i ≤ r.

Proof. Theorem 2.11 gives a unique endomorphism ζ(π)
satisfying the stated conditions. We have to show that this is
an automorphism. Now, if we compare effects on the set of
generators R ∪ {x1, …, xr}, we see that if π1 and π2 are two
permutations of 1, …, r, then ζ(π1π2) = ζ(π1)ζ(π2). Also ζ(l) =
1. Hence ζ(π)ζ(π− 1) = 1 = ζ(π− 1)ζ(π). Thus ζ(π) is an
automorphism.

If (i1, …, ir) ∈ (r), that is, we have an r-tuple of
non-negative integers, then we can associate with this the
monomial x1

i1 … xr
ir in the x’s. We have (x1

i1 … xr
ir)(x1

j1 …

xr
jr) = x1

i1 + j1 … xr
ir + jr. It follows from this as in the special

case r = 1) that R[x1, …, xr] is the set of polynomials ∑ ai1 …
ir x1

i1 … xr
ir(finite sum) where the coefficients ai1 … ir ∈ R.

For example, R[x, y] is the set of polynomials

We shall now show that if (il, …, ir) ≠ j1, …, jr) then the
associated monomials x1

i1 … xr
ir , x1

j1 … xr
jr are distinct and

the only relations ∑ ai1 … irx1
i1 … xr

ir = 0 connecting distinct
monomials are the trivial ones with every ai1 … ir = 0. This
will follow by showing that if
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where the summation is taken over a finite number of distinct
elements (i) ∈ (r), then every coefficient is 0. Note that this
will imply that for (i) ≠ (j), x1

i1 … xr
ir ≠ x1

j1 … xr
jr since,

otherwise, we have the non-trivial relation
lx1

i1 … xr
ir – 1x1

j1 … xr
jr = 0. To prove our assertion we

observe that the case r = 1 has already been established and
we assume the result for r – 1 if r > 1. We can write

where ir ranges over a finite subset of and

where (i′) = (i1, …, ir − 1), and the summation is taken over a
finite set of distinct(i′). If ∑(i) ai1 … ir x1

i1 … xr
ir = 0, ∑ Air xr

ir

= 0, 1, 2, …. Then every Air = 0 and so, by induction, we
conclude that ai1 … ir − 1ir = 0 for any fixed ir and every (i′).
Then ai1 … ir = 0 for every (i).

As in the case r = 1 treated before, we see that for any R[u1,
…, ur] the homomorphism of R[x1, …, xr] into R[u1, …, ur]
sending a → a, a ∈ R, and xi → ui, 1 ≤ i ≤ r, is an
isomorphism if and only if the following independence
property holds for the u’s: ∑(i) ai1 … r u1

i1 … ur
ir = 0 only if

every ai1 … ir = 0. If this is the case the r elements u1, …, ur
are said to be algebraically independent over R. It is clear that
this property of the x’s gives another characterization of the
ring R[x1, …, xr] as an extension of R.
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EXERCISES

1. Show that the complex number ω = – + (i = )
is algebraic (over ). Show that [ω] [x]/I where I is the
principal ideal (x2 + x + 1).

2. Show that [ ] and that the real numbers 1, , ,
are linearly independent over . Show that u = + is

algebraic and determine an ideal I such that [x]/I [u].

3. Let I be an ideal in R and let I[x1, …, xr] denote the subset
of R[x1, …, xr] of polynomials whose coefficients are
contained in I. Show that I[x1, …, xr] is an ideal in the ring
R[xl, …, xr], and that R[xl, …, xr]/I[x1, …, xr] (R/I)[y1, …,
yr] where the yi are indeterminates over R/I.

4. Let Δ = ∏i > j(xi – xj) in [x1, …, xr] and let ζ(π) be the
automorphism of [x1, …, xr] which maps xt → xπ(i), 1 ≤ i ≤
r. (Every automorphism of the ring [x1, …, xr] is the identity
on . Why?) Verify that if τ is a transposition then Δ → – Δ
under η(τ). Use this to prove the result given in section 1.6
that if π is a product of an even number of transpositions, then
every factorization of π as a product of transpositions contains
an even number of transpositions. Show that Δ2 → Δ2 under
every ζ(π).
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5. Verify that the constructions in the text of R[x] and R[x1,
…, xr] are valid also for an R which is not necessarily
commutative. Show that in this case the xi are in the center of
R[x1, …, xr]. State and prove the analogues of Theorems 2.10
and 2.11 for R[x] and R[x1, …, xr].

6. Show that the matrix ring Mn(R[x1, …, xr], xi
indeterminates in both cases.

7. Let R[[x]] denote the set of unrestricted sequences (a0, a1,
a2, …), ai ∈ R. Show that one gets a ring from R[[x]] if one
defines +, ·, 0, 1 as in the polynomial ring. This is called the
ring of formal power series in one indeterminate.

8. Let M be a monoid, R a commutative ring, and R[M] the set
of maps m → f(m) of M into R such that f(m) = 0 for all but a
finite number of m. Define addition, multiplication, 0, and 1
in R[M] by

Show that R[M] is a ring. Show that the set of maps a′ such
that a′(l) = a and a′(m) = 0 if m ≠ 1 is a subring isomorphic to
R, and the set of maps m′ such that m′(m) = 1 and m′(n) = 0 if
n ≠ m is a submonoid of the multiplicative monoid of R[M]
isomorphic to M. Identify the subrings and monoids just
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indicated. Show that R is in the center of R[M] and that every
element of R[M] can be written as a linear combination of
elements of M with coefficients in R: that is, in the form ∑
rimi, ri ∈ R, mi ∈ M. Show that ∑ rimi = 0 if and only if every
ri = 0. Show that if σ is a homomorphism of R into a ring S
such that σ(R) is contained in the center of S, and if τ is a
homomorphism of M into the multiplicative monoid of S, then
there exists a unique homomorphism of R[M] into S
coinciding with σ on R and with τ on M. If M is a group, R[M]
is called the group algebra of M over R.

9. Let R be any commutative ring and let (r) be the free
commutative monoid with r generators xi as on page 68.
Show that R[ (r)] defined as in exercise 8 is the same thing,
as R[x1, …, xr], xi indeterminates.

10. Let M = FM(r) be the free monoid with r generators xl, …,
xr (p. 68), and construct R[M] as in exercise 8. This is called
the free algebra over R generated by the xi. State the basic
homomorphism property of this ring.

2.11 SOME PROPERTIES OF POLYNOMIAL RINGS
AND APPLICATIONS

Let R[x] be the ring of polynomials in an indeterminate x over
the (commutative) ring R. If f(x) ≠ 0 is in R[x] we can write

with an ≠ 0. Then an is called the leading coefficient of f(x)
and n is the degree, deg f, of f(x). It will be convenient also to
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say that the degree of 0 is the symbol – ∞ and to adopt the
usual conventions that – ∞ < n for every n ∈ , – ∞ + (– ∞) =
– ∞, – ∞ + n = – ∞. We remark that f(x) ∈ R if and only if deg
f = 0 or – ∞ and f(x) ∈ R*, the set of non-zero elements of R,
if and only if deg f = 0. Also it is clear that

and equality holds in (37) unless deg f = deg g. If g(x) = b0 +
b1x + … + bmxm with bm ≠ 0 and f(x) is as in (36) then

Hence if either an or bm is not a zero divisor then anbm ≠ 0
and

If we take into account our convention on – ∞, we see that
(39) holds for all f(x) and g(x) if R = D is a domain. In the
case of a domain the properties of the degree function imply
the following

THEOREM 2.13. If D is a domain then so is the polynomial
D[xl, …, xr] in r indeterminates over D. Moreover, the units
of D[x1, …, xr] are the units of D.

Proof. We consider first D[x]. If f(x)g(x) = 0 then its degree
is – ∞. By (39), this can happen only if either deg f(x)= – ∞ or
deg g(x) = – ∞: that is, if either f(x) = 0 or g(x) = 0. If f(x)g(x)
= 1 then the degree relation (39) implies that deg f = 0 = deg
g. Hence if f(x) is a unit in D[x] it is contained in D and its
inverse is in D. Thus the units of D[x] are the units of D. The

237



extension of the two statements to D[x1, …, xr] is immediate
by induction on r.

We look next at the extension of the familiar division
algorithm for polynomials. Generally we are interested in this
only when the coefficient ring is a field. However,
occasionally we must consider the following more general
situation.

THEOREM 2.14. Let f(x) and g(x) ≠ 0 be polynomials in
R[x], R a ring, and let m be the degree and bm the leading
coefficient of g(x). Then there exists a k ∈ and polynomials
q(x) and r(x) ∈ R[x] with deg r(x) < deg g(x) such that

Proof. If deg f < deg g the result is clear on writing f(x) = 0 ·
g(x) + f(x). Hence suppose deg f ≥ m = deg g. Then put

Since the coefficients of xn in bmf(x) and in anxn − mg(x) are
both anbm it is clear that deg f1 < deg f. Hence we can use
induction on the degree of f(x) to obtain a k1 ∈ , q1(x), r(x)
∈ R[x] with deg r(x) < deg g(x) such that

Then, by (41) and (42),
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where q(x) = bm
k1 anxn − m + q1(x).

There are several remarks that are worth making about
Theorem 2.14. In the first place, it is easy to see that the proof
leads to an algorithm for finding k, q(x) and r(x) in a finite
number of steps. This is the usual “long” division for
polynomials. We leave it to the reader to convince himself of
this by looking at some examples. It is easy to see that we can
always take the integer k to be the larger of the two integers 0
and deg f – deg g + 1. We note also that if bm is a unit then we
can divide out by bm

k and obtain a relation of the form

(not the same q and r as in (40)), where deg r(x) < deg g(x).
This is always the case if R = F is a field. Moreover, in this
case the “quotient” q(x) and “remainder” r(x) are unique. For,
if

and deg r(x) and deg r1(x) < deg g(x) then we have

Hence, if q(x) ≠ q1(x) then the degree of the left-hand side is
at least m, and the degree of the right-hand side is less than m.
This contradiction shows that q(x) = q1(x) and hence r(x) =
r1(x). It is clear from this that g(x) is a divisor or factor of
f(x)—that is, there exists a q(x) such that f(x) = g(x)g(x) if and
only if r(x) = 0—and this fact can be ascertained in a finite
number of steps by carrying out the division algorithm.
Finally, we note that if we pass to the field of fractions, then
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(40′) is equivalent to f(x)/g(x) = q(x) + r(x)/g(x), which may
be a form more familiar to the reader.

An important special case of theorem 2.14 is

COROLLARY 1. (The “remainder theorem.”) If f(x) ∈ R[x]
and a ∈ R then there exists a unique q(x) ∈ R[x] such that

Proof. The argument above shows that we have a unique
q(x) ∈ R[x] and an r ∈ R such that f(x) = (x – a)q(x) + r.
Substitution of x = a (that is, applying the homomorphism of
R[x] into R, which is the identity on R and sends x → a) gives
f(a) = (a – a)q(a) + r = r. Hence we have (43), and q(x) is
unique.

An immediate corollary of Corollary 1 is

COROLLARY 2. (The “factor theorem.”) (x – a)|f(x)((x – a)
is a factor of f(x)) if and only if f(a) = 0.

We shall now apply these results to obtain some important
properties of F[x], F a field, and more generally of F[u], a
ring generated by F and a single element u. We shall call a
domain D a principal ideal domain (abbreviated as p.i.d.) if
every ideal in D is principal. We recall that this is the case for
D = (section 2.6) and we now prove

THEOREM 2.15. If F is a field then the ring F[x] of
polynomials in one indeterminate x over F is a principal ideal
domain.
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Proof. Let I be an ideal in F[x]. If I = 0 (the ideal with the
single element 0) then we can write I = (0). Now assume I ≠ 0
and consider the non-zero elements of I. Since these have
degrees which are non-negative integers, there exists a g(x) ≠
0 in I of minimal degree among the non-zero elements of I.
Let f(x) be any element of I. Applying the division algorithm
we obtain f(x) = q(x)g(x) + r(x) where deg r(x) < deg g(x).
Since I is an ideal and f(x) and g(x) are in I then r(x) = f(x) –
q(x)g(x) ∈ I. If r(x) ≠ 0 we have a contradiction to the choice
of g(x) as an element ≠ 0 of least degree in I. Hence r(x) = 0
and f(x) = q(x)g(x). This shows that every element of I is a
multiple of g(x) ∈ I and, of course, every such multiple is in I.
Hence I = (g(x)). Since this holds for every ideal I and since
F[x] has no non-zero zero divisors, F[x] is a p.i.d.

This result does not extend beyond the case of one
indeterminate: F[x1, x2, …, xr] is not a p.i.d. if r > 1. For
example, let I be the set of polynomials in F[x1, …, xr] having
0 as constant term: that is, having the form ∑ ai1 … ir x1

i1 …

xr
ir with a0 … 0 = 0. It is clear that I is an ideal with the

generators xl, x2, …, xr. If I = (a) then a|xi for 1 ≤ i ≤ r. Since
xi is an irreducible polynomial, either a is a unit or a is an
associate of xi. Since r > 1 and I ≠ (1), both of these
possibilities are excluded. Thus I is not principal.

In F[x] we have (f(x)) ⊃ (g(x)) if and only if g(x) = f(x)h(x),
that is, if and only if f(x)|g(x). If f(x)|g(x) and g(x)|f(x) we have
g(x) = f(x)h(x) and f(x) = g(x)k(x) so g(x) = g(x)k(x)h(x).
Hence if g(x) ≠ 0 then k(x)h(x) = 1, and k and h are non-zero
elements of F. It follows that the generator g(x) of (g(x)) ≠ 0
is determined up to a unit multiplier. We may therefore
normalize the generator so that its leading coefficient is 1, and

241



it is then uniquely determined by this property. Polynomials
having leading coefficient 1 will be called monic.

We now consider any ring of the form F[u], F a field. We
have the epimorphism f(x) → f(u) of F[x] onto F[u], whose
kernel is an ideal I such that I ∩ F = 0 (section 2.10). Now I =
(g(x)) and g(x) is not a unit since I ∩ F = 0. Hence either g(x)
= 0 or deg g(x) > 0. In the first case I = 0, so the epimorphism
f(x) → f(u) is an isomorphism and u is transcendental over F.
If deg g(x) > 0 we may assume it to be the monic generator of
I. Then we shall call g(x) the minimum polynomial over F of
the (algebraic) element u. This is the monic polynomial of
least degree having u for a root in the sense that g(u) = 0.
Moreover, it is clear that if f(x) is any polynomial such that
f(u) = 0 then f(x) ∈ I = (g(x)), and f(x) is thus a multiple of
g(x). The structure of F[u] depends on the way g(x) factors in
F[x]. For example, we have

THEOREM 2.16. Let u be algebraic over F with minimum
polynomial g(x). Then F[u] is a field if g(x) is irreducible in
F[x] in the sense that we cannot write g(x) = f(x)h(x) where
deg f(x) > 0 and deg h(x) > 0. On the other hand, if g(x) is
reducible then F[u] is not a domain.

Proof. We know that any ideal of F[x]/I has the form J/I
where J is an ideal of F[x] containing I = (g(x)) (Theorem 2.6,
p. 107). Then J = (f(x)) and g(x) = f(x)h(x). If g(x) is
irreducible either f(x) or h(x) is a unit. In the first case, J =
F[x]; in the second case, J = I. Hence F[u] F[x]/I has just
two ideals: 0 and the whole ring. This implies that F[u] is a
field, by Theorem 2.2, p. 102. Now assume g(x) = f(x)h(x)
where deg f(x) > 0 and deg h(x) > 0. Then deg f(x) and deg
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h(x) < deg g(x). Hence f(u) ≠ 0 and h(u) ≠ 0. However,
f(u)h(u) = g(u) = 0. Thus F[u] has zero divisors ≠ 0.

We shall apply next the “factor theorem” to establish the
following important result on roots of a polynomial.

THEOREM 2.17 Let f(x) be a polynomial of degree n > 0 in
F[x], F a field. Then f(x) has at most n distinct roots in F.

Proof. Let al, a2, …, ar be distinct roots of f(x). We shall
prove by induction on r that f(x) is divisible by 1

r (x – ai).
This has just been proved for r = 1. Assume it for r – 1. Then
f(x) = 1

r − 1 (x – aj)h(x) in F[x]; hence 0 = f(ar) = 1
r − 1 (ar

– aj)h(ar). Since every ar – aj ≠ 0 we get h(ar) = 0. Hence h(x)
= (x – ar)k(x), by the case r = 1. Then f(x) = 1

r (x – ai)k(x).
Comparison of degrees shows that r ≤ n.

As an application of this result and a criterion for a finite
abelian group to be cyclic, which we gave in Theorem 1.4 (p.
46), we shall now prove the following beautiful theorem on
fields.

THEOREM 2.18. Any finite subgroup of the multiplicative
group of afield is cyclic.

Proof. Let G be a finite subgroup of the multiplicative group
F* of non-zero elements of the field F. Of course, G is
abelian since F is a field. The criterion we had was that G is
cyclic if and only if |G| = exp G, the smallest integer m such
that am = 1 for every a ∈ G. Since a|G| = 1 for every a in a
finite group we always have exp G ≤ |G|. On the other hand,
by Theorem 2.17, f(x) = xexpG – 1 has at most exp G solutions
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in F and hence in G. Hence |G| ≤ exp G. Thus exp G = |G| and
G is cyclic.

We remark that the foregoing result is not valid for division
rings that are not commutative. For example, let be the
division ring of quaternions over . The quaternions ± 1, ± i,
± j, ± k form a finite non-cyclic subgroup of the multiplicative
group of .

As a special case of Theorem 2.18 we see that if F is a finite
field then F* is cyclic. In particular, the non-zero elements of
/(p), p a prime, constitute a cyclic group of order p – 1 under

multiplication. Some number theoretic consequences of the
results we have obtained will be indicated in the following
exercises.

EXERCISES

1. Let f(x) = xn + a1xn − 1 + … + an, ai ∈ F, a field, n > 0, and
let u = x + (f(x)) in F[x]/(f(x)). Show that every element of
F[u] can be written in one and only one way in the form b0 +
b1u + … + bn − 1 un − 1, bj ∈ F.

2. Take F = , f(x) = x3 + 3x – 2 in exercise 1. Show that F[u]
is a field and express the elements

as polynomials of degree ≤ 2 in u.
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3. (a) Show that [ ] and [ ] are not isomorphic.

(b) Let p = /(p), p a prime, and let R1 = p[x]/(x2 – 2), R2 =
p[x]/(x2 – 3).

Determine whether R1 R2 in each of the cases in which p =
2, 5, or 11.

4. Show that x3 + x2 + 1 is irreducible in ( /(2))[x] and that (
/2))[x]/(x3 + x2 + 1) is a field with eight elements.

5. Construct fields with 25 and 125 elements.

6. Show that x3 – x has 6 roots in /(6).

7. Use the Chinese remainder theorem (exercises 10 and 11,
p. 110) to show that if F is a field and f(x) ∈ F[x] is monic
and factors as f(x) = g(x)h(x), (g(x), h(x)) = 1, then F[x]/(f(x))

F[x]/(g(x)) F(x)/(h(x)). Show also that if f(x) = 1
n(x –

ai) in F[x] where the ai are distinct then F[x]/(f(x)) = F …
F (n F’s).

8. Show that the quaternion division ring contains an
infinite number of elements u satisfying u2 = – 1.

9. Show that the ideal (3, x3 – x2 + 2x – 1) in [x] is not
principal.
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10. Let I denote the ideal given in exercise 9. Is [x]/I a
domain? (Hint: Show that [x]/I [x]/ where = /(3) and

= ( 3 – 2 + – ), = x + (3).)

11. Let R be a ring without nilpotent elements ≠ 0 (zn = 0 in R
⇒ z = 0). Prove that if f(x) ∈ R[x] is a zero divisor then there
exists an element a ≠ 0 in R such that af(x) = 0 (Note: This
holds without restriction on R.)

12. Let F be a field of q elements, F* = {a1, …, aq − 1} the set
of non-zero elements of F. Show that a1a2 … aq − 1 = – 1.
(Hint: Use the proof of Theorem 2.18 and also exercise 5, p.
110, if q is even.)

13. Prove Wilson’s theorem: If p is a prime in , then (p – 1)!
≡ – 1 (mod p).

14. Find generators for the cyclic groups p* of non-zero
elements of /(p) for p = 3, 5, 7, and 11.

15. An integer a is called a quadratic residue modulo the
prime p or quadratic nonresidue mod p according as the
congruence x2 ≡ a (mod p) has or has not a solution. We
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define the Legendre symbol by = 0 if a ≡ 0 (mod p),

= 1 if

a ≡ 0(mod p) and a is a quadratic residue (mod p), = – 1 if

a is not a quadratic residue modulo p. Note that = 1 if and
only if a + (p) is a square in the multiplicative group of /(p).

Hence show that for p ≠ 2, = 1 if and only if and only if

a(p − 1)/2 ≡ 1(mod p). Show that for any integers a and b,

=

16. Let f(x), g(x) ≠ 0 be elements of F[x] with deg g = m.
Show that f(x) can be written in one and only one way in the
form a0(x) + a1(x)g(x) + a2(x)g(x)2 + … + ar(x)g(x)r where
deg ai(x) < m.

The following exercise gives an alternative proof of the
remainder theorem that has several advantages over the proof
in the text; notably, it gives an explicit formula for the
quotient and it is valid for non-commutative rings.

17. Let f(x) = a0 + a1x + … + anxn. We have the formulas xi –
ai = (xi − l + axi − 2 + … + ai − 1)(x – a), i ≥ 1. Left
multiplication by ai and summation on i gives ∑0

n aixi – ∑0
n

aiai = ∑1
n a1(xi − 1 + axi − 2 + … + ai − 1)(x – a). Hence f(x) =
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q(x)(x – a) + f(a) where f(a) = ∑0
n aiai and q(x) = ∑1

nqjxj − 1,
qj = aj + aj + la + … + anan − j.

2.12 POLYNOMIAL FUNCTIONS

The reader is undoubtedly familiar with the notion of a
polynomial function of a real variable which occurs in the
calculus. We shall now consider the generalization of such
functions to any field F and determine the relation between
the ring of polynomial functions and the ring of polynomials
in indeterminates over F.

Let S be a non-vacuous set and F a field, and let Fs denote the
set of maps s → f(s) of S into F. As usual, f = g means f(s) =
g(s) for all s and addition and multiplication of functions are
defined by

If a ∈ F then a defines the constant function a such that a(s) =
a for all s. In particular we have the constant functions 0 and
1. It is straightforward to verify that (FS, +, ·, 0, 1) is a
(commutative) ring. For example, we have

Hence (f + g)h = fh + gh. If we define (– f)(s) = – f(s) we have
f + (– f) = 0.

It is immediate also that the map of F into FS which sends any
a ∈ F into the corresponding constant function is a
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monomorphism. From now on we identify F with its image,
so FS becomes an extension of the field F.

We now take S = F, and so are considering the ring of maps
of F into itself. In addition to the constant functions a
particularly important map is the identity s → s, which we
have usually denoted as 1 (or 1F). In the present context we
shall use the customary calculus notation s for this function as
well as for the variable s—with the hope that we will create
no more than the usual confusion that results from the double
meaning assigned to this symbol. We now consider the
subring F[s] generated by F (that is, the field of constant
functions) and s (the identity function). The elements of this
ring will be called polynomial functions in one variable over
F. Since the ring F[s] is generated by F and s we have the
epimorphism of F[x], x an indeterminate, onto F[s], which is
the identity map on F and sends x → s. Here f(x) → f(s) and
f(s) is the function s → a0 + a1s + … + ansn if f(x) = a0 + a1x
+ … anxn.

The homomorphism f(x) → f(s) is an isomorphism if and only
if F is infinite. To see this we observe that f(s) = 0 in the ring
of polynomial functions means that f(s) = 0 for all values of
the variable s: that is, f(a) = 0 for all a ∈ F. We have already
seen that if f(x) ≠ 0 and deg f = n then f(x) has no more than n
distinct roots in F. Thus if F is infinite, then f(a) = 0 for all a
forces f = 0. Hence the kernel of the epimorphism is 0 and f(x)
→ f(s) is an isomorphism of F[x] with the ring of polynomial
functions. On the other hand, if F is finite—say, if F = {a1,
a2, …, aq}—then the polynomial
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whereas the function

This is clear since h(ai) = 0, 1 ≤ i ≤ q. Hence the
homomorphism f(x) → f(s) is not an isomorphism if F is
finite. This is clear also by counting: the set of all maps of F
into F is finite. Hence F[s] is finite. On the other hand, F[x] is
infinite. Hence no isomorphism can exist between F[x] and
F[s].

The definition of polynomial functions in several variables is
an immediate generalization of the foregoing. Here we take S
= F(r), the product set F × F × … × F of r copies of F. Its
elements are the finite sequences (s1, s2, …, sr). As before,
we have the ring of functions FS = FF(r), which is an
extension of the field F. We now pick out r particular
functions, “the projections on the r axes.” These are the maps

Again, following tradition, we denote the ith projection, just
displayed, as si and we consider the ring F[s1, s2, …, sr]
obtained by adjoining these to the field F (of constant
functions). The elements of F[s1, …, sr] are called polynomial
functions in r variables over F. If F[x1, x2, …, xr] is the
polynomial ring in r indeterminates we have the epimorphism
of F[x1, …, xr] into F[sl, …, sr], sending a → a, a ∈ F, xi →
si the ith projection function. We denote the image of f(x1, x2,
…, xr) as f(sl, s2, …, sr). If F is a finite field of q elements,
then we see, as in the special case r = 1, that f(x1, …, xr) →
f(sl, …, sr) is not an isomorphism; but if F is infinite it is an
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isomorphism, as we shall now prove. This assertion is
equivalent to the following basic theorem.

THEOREM 2.19. If F is an infinite field and f(xl, x2, …, xr)
is a polynomial ≠ 0 in F[x1, x2, …, xr] (xi indeterminates)
then there exist elements al, a2, …, ar in F such that f(a1, a2,
…, ar) ≠ 0.

Proof. The case r = 1 has been proved. Hence we assume r >
1 and we assume the result for r – 1 indeterminates. We write

where Bi ∈ F[x1, x2, …, xr − 1] and we may assume Bn ≡
Bn(x1, …, xr − 1) ≠ 0. Then, by the induction hypothesis, we
know that there exist ai ∈ F such that Bn(a1, …, ar − 1) ≠ 0.
Then

in F[xr]. Hence we can choose xr = ar so that f(a1, …, ar) ≠ 0.

We can also easily determine the kernel K of the foregoing
epimorphism of F[xl,…, xr] into the ring of polynomial
functions in the case of a finite F. We sketch the argument for
this and leave it to the reader to fill in the details. First, we
note that if |F| = q then the foregoing argument will show that
if f(x1,…, xr) ∈ F[xl, …, xr], and the degree of f in every xi <
q, then the corresponding polynomial function f(s1,…, sr) ≠ 0.
Next we observe that xi

q – xi ∈ K since aq = a, a ∈ F
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(exercise 3, p. 105). The next step is to prove that every
polynomial f(xl, …, xr) can be written in the form

where the degree of f0 in every xi is < q. This can be seen by
expressing every power xi

k = (xi
q – xi)qk(xi) + rk(xi) where qk,

rk ∈ F[xi] and deg rk < q. Making
these substitutions in every monomial x1

k1 x2
k2 … xr

kr

occurring in f(x1, …, xr) we obtain (44). We now see that f(x1,
…, xr) ∈ K if and only if f0(xl, …, xr) = 0. This shows that K
is the ideal (x1

q – xl, x2
q – x2), …, xr

q – xr) generated by the
xi

q – xi. Hence the ring of polynomial functions in r variables
over a field of q elements is isomorphic to

EXERCISES

1. Prove the following extension of Theorem 2.19. If f(x1, …,
xr) ∈ F[x1, …, xr], F infinite, and f(a1, …, ar) = 0 for all (al,
a2, …, ar) for which a second polynomial g(xl, …, xr) ≠ 0 has
values g(al, a2, …, ar) ≠ 0, then

In the remainder of the exercises F is a finite field with |F| =
q.
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2. Prove that every function in r variables over F (every
element of FF(r)) is a polynomial function. (Hint: Count both
sets.)

3. Define the degree of the monomial x1
i1 … xr

ir to be ∑1
r ij

and the (total) degree of the polynomial f as the maximum of
the degrees of the monomials occurring in f (that is,
monomials having non-zero coefficients ai1 … ir in f = ∑ ai1 …
ir x1

i1 … xr
ir). Show that the method of proving (44) by

replacing every xi
k = (xi

q – xi)qk(xi) + rk(xi) where deg rk < q
yields a polynomial f0(xl, …, x0) of deg ≤ deg f (as well as of
deg < q in every xi).

4. Show that if f0 and g0 are two polynomials of deg < q in
every xi, and f0 and g0 define the same function, then f0 = g0.

5. Let f(xl, …, xr) satisfy f(0,…, 0) = 0 and f(a1, …, ar) ≠ 0 for
every (al, …, ar) ≠ (0, …, 0). Prove that if g(xl, …, xr) = 1 –
f(xl, …, xr) = 1 – f(x1, …, xr)q − 1 then

6. Show that the g of exercise 5 determines the same
polynomial function as

Hence prove that deg g ≥ r(q – 1).

253



7. (Artin-Chevalley.) Let f(xl, …, xr) be a polynomial of
degree n < r, the number of indeterminates. Assume f(0, …,
0) = 0. Prove that there exist (al, …, ar) ≠ (0, …, 0) such that
f(al, …, ar) = 0.

2.13 SYMMETRIC POLYNOMIALS

Let R be a ring, R[x1, …, xr] the ring of polynomials over R in
r indeterminates. We have seen that if π is a permutation i →
i′ of {1, 2, …, r} then π determines an automorphism ζ(π) of
R[xl, …, xr] such that a → a, a ∈ R, xi → xi′, 1 ≤ i ≤ r
(Theorem 2.12, p. 125). A polynomial f(xl, …, xr) is said to be
symmetric (in the x’s) if f(xl, …, xr) is fixed under ζ(π) for
every permutation π. The set of symmetric polynomials is a
subring ∑ of R[xl, …, xr] containing R. The coefficients of the
powers of x of the polynomial

are symmetric, for we can extend the automorphism ζ(π) to an
automorphism ζ′(π) of R[x1, …, xr; x] sending x → x. Then
ζ′(π)(g(x)) = (x – x1′)(x – x2′) … (x – xr′) = g(x). Hence if we
write

where pi ∈ R[x1, …, xr], then ζ(π)(pi) = pi for all π. Thus pi ∈
∑. Comparing (45) and (46) we obtain
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The polynomials pi are called the elementary symmetric
polynomials in x1, …, xr. We shall now prove that ∑ = R[p1,
p2, …, pr] and that the pi, are algebraically independent over
R.

The equation ∑ = R[pl, …, pr] means, of course, that every
symmetric polynomial can be expressed as a polynomial in
the elementary symmetric polynomials pi with coefficients in
R. It suffices to prove this for homogeneous polynomials. By
a homogeneous polynomial we mean one in which all of the
terms ax1

k1 … xr
kr which occur have the same (total) degree

k1 + k2 + … + kr. Any polynomial can be written in one and
only one way as a sum of homogeneous polynomials of
different degrees. Since the automorphism ζ(π) maps
homogeneous polynomials of degree k into homogeneous
polynomials of degree k it is clear that if f(x1, …, xr) is
symmetric then so are its homogeneous parts.

We now suppose that f(xl, …, xr) is a homogeneous
symmetric polynomial of degree, say m. We introduce the
lexicographic ordering in the set of monomials of degree m:
that is, we say that x1

k1 … xr
kr is higher than x1

l1 … xr
lr if k1 =

l1, …, ks = ls but ks + 1 > ls + l (s ≥ 0). For example, x1
2 x2 x3 >

x1 x2
3 > x1 x2

2 x3. Let x1
k1 x2

k2 … xr
kr be the highest

monomial occurring in f (with non-
zero coefficient). Since f is symmetric it contains all the
monomials obtained from x1

k1 x2
k2 … xr

kr by permuting the
x’s. Hence k1 ≥ k2 ≥ k3 ≥ … kr.

We now consider the highest monomial in the homogeneous
symmetric polynomial p1

dl p2
d2 … pr

dr, di ≥ 0. We observe
that if M1 and M2 are monomials of degree m and N is a
monomial of degree r then M1 > M2 implies NM1 > NM2.
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Hence if N1 > N2 then M1 N1 > M2 N2. Now it is clear that the
highest monomial in pi is x1 x2 … xi. It follows that the
highest monomial in p1

d1 p2
d2 … pr

dr is

Hence the highest monomial in pl
kl − k2 p2

k2 − k3 … pr
kr is the

same as that in f, so if the coefficient in f of this monomial is
a, then the highest monomial in f1 = f – ap1

k1 − k2 p2
k2 − k3 …

pr
kr is less than that of f. We can repeat the process with f1.

Since there are only a finite number of monomials of degree
m, a finite number of applications of the process yields a
representation of f as a polynomial in p1, p2, …, pr.

We show next that the pi are algebraically independent.
Suppose

where this is summed over a finite set of distinct (d) = (dl, …,
dr), di ∈ +. If the relation is non-trivial we have ad1 … dr ≠ 0
for some (d). For any (d) define (k) = (kl, k2, …, kr) by ki = di
+ di + 1 + … + dr. Then the degree of p1

dl … pr
dr in the x’s is

m = ∑1
r ki = ∑1

r idi and the highest monomial of this degree
occurring in p1

dl … pr
dr is x1

k1 … xr
kr. If (d′) = (d′1, …, d′r)

and k′i = d′i + … + d′r = ki for 1 ≤ i ≤ r then d′i = di, 1 ≤ i ≤ r.
Thus distinct monomials p1

d1 … pr
dr in the p’s have distinct

highest monomials in the x’s occurring in them. We now
choose among the (d) such that ad1 … dr ≠ 0 the one such that
m is maximal and the highest monomial x1

k1 … xr
kr is

maximal. Then expressing our relation in the p’s in terms of
the x’s we get the terms x1

k1 … xr
kr only once and with
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non-zero coefficient ad1 … dr. This contradicts the algebraic
independence of the x’s.

We have now proved the first two statements in

THEOREM 2.20. Every symmetric polynomial is expressible
as a polynomial in the elementary symmetric polynomials pi.
The elementary symmetric polynomials are algebraically
independent over R. Every xi is algebraic over R[pl, p2 …, pr].

The last statement is clear since (45) and (46) give

EXERCISES

1. Express ∑i, j, k ≠ xi
2 xj

2 xk, r ≥ 5, in terms of the p’s.

2. Let Δ = ∏ i < j(xi – xj). Show that Δ2 is symmetric and
express Δ2 for r = 3 in terms of the elementary symmetric
polynomials.

3. (Newton’s identities.) Let sk = ∑n
i = 1 xi

k. Establish the
following relations connecting the symmetric polynomials sk
and the elementary symmetric polynomials pi : sk – p1sk − 1 +
p2sk − 2 – … + (– 1)k − 1 pk − 1s1 + (– 1)kkpk = 0, 1 ≤ k ≤ n, sn
+ j – p1sn + j − 1 + … + (– 1)kpksn + j − k + (– 1)npnsj = 0, j > 0.
(Note that these are recursive formulas for expressing the
power sums sk as polynomials in the pi. On the other hand,
they show that k!pk is a polynomial in sl, …, sk with integer
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coefficients.) (Sketch of Proof. Write f(x) = xn – p1xn − 1 + …
+ ( – 1)n pn = ∏1

n(x – xi) = (x – xi)qi(x). By exercise 17, p.
134, qi(x) = xn − 1 – (p1 – xi)xn − 2 + … + (– 1)k(pk – pk − 1xi +
pk − 2xi

2 – … + (– l)kxi
k)xn − k + 1 + …. Formal differentiation

(see pp. 230–231) gives nxn − 1 – (n – 1)p1xn − 2 + … = ∑1
n

qi(x) = nxn − 1 – (np1 – s1)xn − 2 + … (– 1)k(npk – pk − 1s1 + …
+ (– 1)ksk)xn − k − 1 + …. Comparison of the coefficients of xn
− k − 1 yields the first set of Newton’s identities for k ≤ n – 1.
The remaining identities can be obtained by summing on i the
relations xi

n + j – plxi
n + j − 1 + … + (– 1 )npnxi

j = 0 for j ≥ 0.)

2.14 FACTORIAL MONOIDS AND RINGS

In the remainder of this chapter we consider the elementary
theory of divisibility in (commutative) domains. In a number
of important domains every a ≠ 0 and not a unit can be
written as a = p1 p2 … ps, where the Pi are irreducible, and
such factorizations are unique up to unit factors and the order
of the factors. When this is the case we can determine all the
factors (up to unit multipliers) of a and hence we can give a
simple condition for a|b, that is, for ax = b to be solvable.
Since the factorization theory that we shall consider is a
purely multiplicative one, mainly concerned with the
multiplicative monoid of a domain, it will be clearer to
consider first the divisibility theory of monoids.

Let M be a commutative monoid satisfying the cancellation
law: ab = ac implies b = c. Let U be the subgroup of units of
M. If a, b ∈ M, we say that b is a factor or divisor of a if there
exists an element c in M such that a = bc. We indicate this by
writing b|a, and in this case we say that a is a multiple of b.
The relation of divisibility is transitive and reflexive—if b|a
and c|b then c|a, and a|a—but it is not symmetric. An element
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u is a unit if and only if u|1. The units are trivial factors since
they are factors of every element (a = u(u− 1a)). If a|b and b|a
then we shall say that a and b are associates and write a ~ b.
The conditions for this are b = au, a = bv. Hence b = bvu, and
thus, by the cancellation law, vu = 1 and v and u are units.
The converse is immediate, so the condition that a ~ b is that
a and b differ by a unit factor. Since the set of units
is a subgroup of M, it is clear that the relation of
associatesness is an equivalence relation.

If b|a but a b (a is not a factor of b) then we say that b is a
proper factor of a. If u is a unit and u = vw, then it is
immediate that v and w are units. Thus the units of M do not
have proper factors. An element a ∈ M is said to be
irreducible4 if a is not a unit and a has no proper factors other
than units. If a is not a unit and is not irreducible then a = bc
where b and c are proper factors of a. Any associate of an
irreducible element is also irreducible.

If an element a ∈ M has a factorization a = p1p2 … ps, where
the pi are irreducible, then a also has the factorization a =
p′1p′2 … p′s where p′i = uipi and the ui are units such that u1u2
… us = 1. Hence if M has units ≠ 1 and s > 1 we can always
alter a factorization in the way indicated to obtain other
factorizations into irreducible elements, and since the
commutative law holds we can also change the order of the
factors. We shall say that a factorization into irreducible
elements is essentially unique if these are the only changes
that can be made in factoring an element into irreducible
ones. More precisely, a = p1p2 … ps is an essentially unique
factorization of a into irreducible elements pi if for any other
factorization a = p′1p′2 … p′t, p′i irreducible, we have t = s
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and p′i′ ~ pi for a suitable permutation i → i′ of {1, 2, …, s}.
We use this definition to formulate the following

DEFINITION 2.4. Let M be a commutative monoid
satisfying the cancellation law. Then M is called factorial
(sometimes Gaussian or a unique factorization monoid) if
every non-unit of M has an essentially unique factorization
into irreducible elements. A domain D is factorial if its
monoid D* of non-zero elements is factorial.

Our main objective in the remainder of this chapter is to show
that a number of important types of domains are factorial.
That this is not always the case can be seen in considering the
following

EXAMPLE

Let D = [ ], the set of complex numbers of the form a +
b , where a, b ∈ . It is easy to check that D is a subring
of . Hence D is a domain. To investigate the arithmetic in D
we introduce the norm of an element of this domain: if r = a +
b , then we define the norm N(r) = r = a2 + 5b2. Since
the absolute value of complex numbers is a multiplicative
function, N is multiplicative on D: that is, N(rs) = N(r)N(s).
Also
N(r) is a positive integer if r ≠ 0. We use the norm first to
determine the units of D. If rs = 1 then N(r)N(s) = 1, so N(r) =
a2 + 5b2 = 1. Since a and b are integers this holds only if a =
± 1 and b = 0. Hence U = {1, – 1}. It follows that the only
associates of an element r are r and – r. We shall now show
that 9 has two factorizations into irreducibles in D which do
not differ merely by unit factors. These are:
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All of the factors 3, 2 ± are irreducible, for if 3 = rs, r, s
∈ D, then 9 = N(3) = N(r)N(s). Hence if r and s are non-units
then N(r) = 3 and N(s) = 3. However, it is clear that N(r) = a2

+ 5b2 = 3 has no integral solution. Thus 3 is irreducible and,
similarly, 2 + and 2 – are irreducible. Also, it is
clear that 3, 2 + and 3, 2 – are not associates. Hence 9
does not have an essentially unique factorization into
irreducible elements (though it does have factorizations into
irreducibles), and [ ] is therefore not factorial.

In any factorial monoid M one can determine up to unit
factors all the factors of a given non-unit a, provided that a
factorization of a into irreducible elements is known; for, if a
= p1p2 … ps where the pi are irreducible, and if a = bc where
b = p′1 … p′1, c = p″1 … p″u, and the p′j and p″k are
irreducible, then

Hence, by the uniqueness property, p′j ~ pij where ij ≠ ik if j ≠
k. Hence b ~ pi1pi2 … Pit. Thus any factor of a is an associate
of one of the products of the form pi1 pi2 … pit obtained from
the factorization a = p1 p2 … ps. If we call the number s of
irreducible factors in the decomposition a = p1 … ps the
length of a then it is clear that any proper factor of a has
smaller length than a. Hence it is clear that any factorial
monoid satisfies the following
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Divisor chain condition. M contains no infinite sequences of
elements a1, a2, … such that each ai + l is a proper factor of
ai.

Equivalently, the condition is that if a1, a2, … is a sequence
of elements of M such that ai + 1|ai then there exists an integer
N such that aN ~ aN + 1 ~ aN + 2 ~ ….

We obtain next a second necessary condition for factoriality.
An element p of M is called a prime if p is not a unit and if
p|ab implies either p|a or p|b. In other words, p is not a unit
and p a and p b implies p ab. Now let p be an irreducible
element in a factorial monoid M and suppose p/ab. Then p is
not a unit and if a is a unit then ab ~ b so p|b. Similarly, if b is
a unit then p|a. If a and b are non-units we have a = p1 … ps,
b = p′1 … p′t, pi, p′j irreducible. Then ab = P1 … psp′1 … P′t
and since p|ab, either p ~ pi for some i or p ~ p′j for some j.
Thus either p|a or p|b, and we have proved that any factorial
monoid satisfies
the

Primeness condition. Every irreducible element of M is
prime.

We shall now show that the foregoing two conditions are
sufficient for factoriality. We note first that the divisor chain
condition insures the existence of a factorization into
irreducible elements for any non-unit of M. Let a be a
non-unit. We shall show first that a has an irreducible factor.
If a is irreducible, there is nothing to prove. Otherwise, let a =
a1 b1 where a1 is a proper factor of a. Either a1 is irreducible
or a1 = a2 b2 where a2 is a proper factor of a1. We continue
this process and obtain a sequence a, a1, a2, … in which each
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element is a proper factor of the preceding one. By the divisor
chain condition this process terminates in a finite number of
steps with an irreducible factor an of a.

Now put an = p1 and write a = p1 a′. If a′ is a unit, a is
irreducible and we are through. Otherwise, a′ = p2 a″ where
p2 is irreducible. Continuing this process, we obtain the
sequence a, a′, a″, … where each element is a proper factor of
the preceding and each a(i − 1) = pia(i), pi irreducible. This
breaks off with an irreducible element a(s − 1) = ps. Then

and we have the required factorization of a into irreducible
factors.

We shall show next that the primeness condition insures the
essential uniqueness of factorization into irreducible
elements. Let

be two factorizations of a into irreducible elements. If s = 1, a
= p1 is irreducible; hence t = 1 and p′1 = p1. We shall now use
induction and assume that any element which has a
factorization as a product of s – 1 irreducible elements has
essentially only one such factorization. Since p1 in (48) is
irreducible, it is prime by the primeness condition, and it is
clear by induction that if p is a prime and p|a1 a2 … ar then
p|ai for some i. Hence p1|p′j for some j. By rearranging the p′,
if necessary, we may assume p1|p′1. Since p′1 is irreducible
this means that p′1 ~ p1 and so p′1 = p1u1, u1 a unit. We
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substitute this in the second factorization in (48) and cancel
p1 to obtain

where p″2 = u1p′1 and p″i = p′i, i > 2, are irreducible. By the
induction assumption we have s – 1 = t – 1 and for a suitable
ordering of the p″j we have pj ~ p″j, j = 2, …, s. Then s = t
and pi ~ p′i, 1 ≤ i ≤ s.

We have now established the following criterion:

THEOREM 2.21. Let M be a commutative monoid satisfying
the cancellation law. Then M is factorial if and only if the
divisor chain condition and the primeness condition hold in
M.

We shall show next that we can replace the second condition
in the foregoing theorem by the condition that every pair of
elements of M have a greatest common divisor. An element d
is called a greatest common divisor (g.c.d.) of a and b if d|a
and d|b; and if c is any element such that c|a and c|b, then c|d.
If d and d′ are two g.c.d.’s of a and b, then the definition
shows that d|d′ and d′|d. Hence d ~ d′. Thus, the g.c.d., if it
exists, is determined up to a unit multiplier. We shall find it
convenient to denote any determination of a g.c.d. of a and b
as (a, b). The dual notion of a g.c.d. is a least common
multiple. We call m a least common multiple (l.c.m.) of a and
b if a|m and b|m; and if n is any element such that a|n and b|n,
then m|n. We denote any l.c.m. of a and b by [a, b].

We shall now show that in a factorial monoid any two
elements a and b have a g.c.d. and an l.c.m. If a is a unit then
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it is clear that a is a g.c.d. and b is an l.c.m. of a and b. Hence
we may assume that a is not a unit. Then we look at a
factorization of a as a product of irreducible elements. By
replacing associated irreducible factors in such a factorization
of a by a single representative one multiplied by unit factors,
we obtain a factorization

where u is a unit, the pi are irreducible and not associates, and
the ei are positive integers. It is clear now that the factors of a
have the form u′ p1

e′1 p2
e′2 … pr

e′r where u′ is a unit and the e′
are integers such that 0 ≤ e′ ≤ ei. It is easy to see also that if a
and b are two non-units, then we can write these in terms of
the same non-associate irreducible elements, that is, we can
obtain

where u and v are units, if we allow the ei and fi to be
non-negative integers. Now consider the element

Clearly d|a and d|b. Moreover, if c|a and c|b, then c = wpl
kl

p2
k2 … pt

kt where w is a unit and 0 ≤ ki ≤ ei, fi. Then ki ≤ gi
and c|d. Thus the element d is a
g.c.d. of a and b. In a similar manner one sees that if hi = max
(ei, fi), then

is an l.c.m. of a and b.
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If a and b have a unit as g.c.d. then we have (a, b) = 1 and we
say that a and b are relatively prime. This is the case if and
only if either a or b is a unit or no irreducible factor of either
one is a factor of both.

Now let M be a commutative monoid with cancellation law
and assume that M satisfies the

G.c.d. condition. Any two elements of M have a g.c.d.

We shall show that this implies that irreducible elements of M
are prime. We break the argument up into a number of simple
lemmas.

LEMMA 1. Any finite number of elements a1, …, ar of M
have a g.c.d., that is, there exists a d in M such that d|ai, 1 ≤ i
≤ r, and if e ∈ M satisfies e|ai for 1 ≤ i ≤ r, then e|d.

Proof. Let d1 = (al, a2), d2 = (dl, a3), …, d = dr = (dr − 1, ar).
Then the definitions show that d is a g.c.d. of a1, …, ar.

We denote any g.c.d. of a1, …, ar as (a1, …, ar).

LEMMA 2. ((a, b), c) ~ (a, (b, c)).

Proof. Both are g.c.d.’s of a, b, and c.

LEMMA 3. c(a, b) ~ (ca, cb).

Proof. Let (a, b) = d, (ca, cb) = e. Then cd|ca and cd|cb, and
so cd|(ca, cb). Hence e = cdu. Now ca = ex = cdux. Hence a =
dux, that is, du|a. Similarly, du|b and so du|d. Hence u is a
unit and (ca, cb) ~ cd ~ c(a, b).
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LEMMA 4. If (a, b) ~ 1 and (a, c) ~ 1 then (a, bc) ~ 1.

Proof. If (a, b) ~ 1, then Lemma 3 shows that (ac, bc) ~ c. It
is clear that (a, ac) ~ a. Hence

We can now prove

LEMMA 5. The g.c.d. condition implies the primeness
condition.

Proof. Let p be irreducible and suppose p a and p b. Since p
is irreducible these imply that (p, a) ~ 1 and (p, b) ~ 1. Then
Lemma 4 shows that (p, ab) ~ 1 and so p ab. Thus if p|ab
then either p|a or p|b.

These results yield our second criterion for factoriality:

THEOREM 2.22 Let M be a commutative monoid satisfying
the cancellation law. Then M is factorial if and only if the
divisor chain condition and the g.c.d. condition hold in M.

Proof. Lemma 5 shows that if the indicated conditions hold
then the divisor chain condition and primeness condition
hold. Hence M is factorial by Theorem 2.21. Conversely, if M
is factorial then M satisfies the divisor chain condition and, as
we have seen, every pair of elements of M have a g.c.d.

EXERCISES

1. Show that if M is factorial then ab ~ [a, b](a, b) in M.
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2. Let M be a commutative monoid with cancellation law.
Show that the relation of associateness ~ is a congruence
relation. Let be the corresponding quotient monoid. Show
that satisfies the cancellation law and that is the only unit
in . Show that M is factorial if and only if is factorial.

3. Show that [ ] satisfies the divisor chain condition.

4. Show that [x] satisfies the divisor chain condition.

5. Let D be the set of expressions a1xα1 + a2xα2 + … + anxαn

where the ai ∈ some field F and the αi are non-negative
rational numbers. Define equality and addition in the obvious
way and multiplication using the distributive law and
(aixαi)(ajxαj) = aiajxαi + αj. (This can be done rigorously using
the procedure of exercise 8, p. 127.) Show that D is a domain.
Show that the divisor chain condition fails in D.

6. Show that any prime is irreducible.

7. Let [ ] be the set of real numbers of the form a + b
where a, b ∈ . Show that [ ] is not factorial.

268



8. Let p be a prime of the form 4n + 1 and let q be a prime

such that = – 1(see p. 133 for the definition of ).
Show that [ ] is not factorial.

2.15 PRINCIPAL IDEAL DOMAINS AND EUCLIDEAN
DOMAINS

We are now going to apply our results on factorization in
monoids to domains. The results are applicable to any
commutative domain D, since the set D* of non-zero
elements of D is a submonoid of the multiplicative monoid of
D and the cancellation law holds. The concepts and results
carry over. We now make the important observation (which
we have already made for ) that the divisibility b|a is
equivalent to the set inclusion (b) ⊃ (a) for the principal
ideals (b) and (a). For, (b) ⊃ (a) is equivalent to a ∈ (b) and
this is equivalent to a = bc, by the definition of (b). Since a
and b are associates in D* if and only if a|b and b|a, we see
that a ~ b if and only if (a) ⊃ (b) and (b) ⊃ (a); hence, if and
only if (a) = (b). Thus a is a proper factor of b if and only if
we have the proper inclusion (a) (b). The divisor chain
condition for M = D* is therefore equivalent to:

The ascending chain condition for principal ideals. D
contains no infinite properly ascending chain of principal
ideals (a1) (a2) (a3) … .

We have defined a principal ideal domain (p.i.d.) to be a
domain in which every ideal is principal. We have seen that
and F[x] for any field F are p.i.d., and we shall give other
examples of p.i.d. below. We shall now show that any p.i.d. D
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is factorial. We establish first the divisor chain property by
proving the ascending chain condition for principal (hence
all) ideals. We recall that in any ring the union of an
ascending chain of ideals is an ideal (section 2.5, p. 102).
Hence if (a1) ⊂ (a2) ⊂ (a3) ⊂ … then I = (ai) is an ideal in
D. Consequently, I = (d) for some d ∈ I. Then d ∈ (an) for
some n and I = (d) ⊂ (an). Then if m ≥ n, (am) ⊃ (an) ⊃ I ⊃
(am) so (an) = (an + 1) = …. This proves that D contains no
infinite properly ascending chain of ideals.

To complete the proof of factoriality it is enough to show that
D* satisfies either the primeness condition or the g.c.d.
condition. We shall prove both, thereby giving two alternative
proofs of factoriality.

Let a, b ∈ D and consider the ideal (a, b) generated by a and
b.5 Exactly as in the case of (p. 104) we see that if (a, b) =
(d) then d is a g.c.d. Since every ideal is principal this shows
that every pair of elements of D have a g.c.d.

We shall give next a direct proof that irreducible elements of
a p.i. d. are prime. This will give a proof of factoriality that is
independent of the considerations on greatest common
divisors that led to Theorem 2.22.

Let p be irreducible in D* and suppose p|ab but p a, a, b ∈
D*. The condition p irreducible means that there exists no
ideal I such that D I (p). Since p a, a (p) so (p, a) (p)
and hence (p, a) = (1). Thus we have’u, v ∈ D such that up +
va = 1. Then upb + vab = b. Since p|ab, this implies that p|b.
Hence p is a prime.
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We have now doubly proved:

THEOREM 2.23. Any principal ideal domain is factorial.

In particular, this implies that if F is a field, then F[x] is
factorial. We remark that it also gives another proof of the
fact that is factorial (p. 22).

The notion of a principal ideal domain is a nice abstract
concept. However, we need a practical criterion for proving
that certain rings are p.i.d. This is provided by the notion of a
Euclidean domain, which we now define.

DEFINITION 2.5. A domain D is called Euclidean if there
exists a map δ:a → δ(a) of D into the set of non-negative
integers such that if a, b ≠ 0 ∈ D, then there exist q, r ∈ D
such that a = bq + r where δ(r) <(b).

The ring becomes Euclidean if one defines δ(a) = |a|. Also
the division algorithm for polynomials shows that F[x] is
Euclidean for any field F if we define δ(f(x)) = 2deg f(x)

(where it is understood that 2− ∞ = 0). Another important
example of a Euclidean domain is the

Ring of Gaussian integers [ ]. This is the subset of of
complex numbers of the form m + ni where m, n ∈ and i =

. Thus [ ] can be identified with the set of “lattice”
points, that is, points with integral coordinates in the complex
plane. It is readily verified that [i] is a subring of , hence an
integral domain. If a = m + ni we put δ(a) = a = |a|2 = m2 +
n2. Then δ(a) ∈ and δ(ab) = δ(a)δ(b). To prove that δ
satisfies the condition of the definition of a Euclidean domain,
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we note that if b ≠ 0 then ab− l = μ + vi, where μ and v are
rational numbers. Now we can find integers u and v such that
|u – μ| ≤ , |υ – v| ≤ . Set ? = μ – u, η = v – u, so that |?| ≤
and |η| ≤ . Then

where q = u + υi is in [i] and r = b(? + ηi). Since r = a – bq, r
∈ [i]. Moreover

Thus δ(r) < δ(b). Hence [ ] is Euclidean.

The main result on Euclidean domains is the following

THEOREM 2.24. Euclidean domains are principal.

Proof. The proof is identical with the one given in the
special case D = F[x]. Let I be an ideal in a Euclidean domain
D. If I = (0) we have I = (0). Otherwise, let b ≠ 0 be an
element of I for which δ(b) is minimal for the non-zero
elements of I. Let a be any element of I. Then a = bq + r for
some q, r ∈ D with δ(r) < δ(b). Since r = a – bq ∈ I and δ(r) <
δ(b) we must have r = 0 by the choice of b in I. Hence a = bq
so I = (b).

Since every p.i.d. is factorial we have the

COROLLARY. Euclidean domains are factorial.

272



EXERCISES

1. Let F be a field. Is F a p.i.d.?

2. Show that the set [ ] of real numbers of the form m + n
, m, n ∈ , is a Euclidean domain with respect to the

function δ(m + n ) = |m2 – 2n2|.

3. Let D be the set of complex numbers of the form m + n
where m and n are either both in or are both halves of

odd integers (exercise 4, p. 89). Show that D is a Euclidean
domain relative to δ(m + n ) = m2 + 3n2.

4. Let D be a p.i.d., E a domain containing D as a subring.
Show that if d is a g.c.d. of a and b in D, then d is also a g.c.d.
of a and b in E.

5. Show that if a ≠ 0 in a p.i.d. D, then D/(a) is a field if a is a
prime and D/(a) is not a domain if a is not prime.

6. Let D be a Euclidean domain whose function δ satisfies: (i)
δ(ab) = δ(a)δ(b) and (ii) δ(a + b) ≤ max (δ(a), δ(b)). Show
that either D is a field or D = F[x], F a field, x an
indeterminate.
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7. Let p be a prime of the form 4n + 1, n ∈ . Use the

criterion of exercise 15, p. 133 to show that = 1. Hence
prove that p is not a prime in [i], the ring of Gaussian
integers.

8. Use exercise 7 to prove that any prime p of the form 4n + 1
is a sum a2 + b2, a, b ∈ .

9. Determine the primes ( = irreducible elements) of [i].

10. Show that a positive integer m is a sum of two squares of
integers if and only if the primes of the form 4n + 3 occurring
in the prime decomposition of m occur with even
multiplicities.

11. (Euclid’s algorithm for finding the g.c.d.) Let a1, a2 be
non-zero elements of a Euclidean domain. Define ai and qi
recursively by a1 = ql a2 + a3, ai = qiai + l + ai + 2 where δ(ai +
2) < δ(ai + 1). Show that there exists an n such that an ≠ 0 but
an + 1 =0, and that d = an = (a1, a2). Also use the equations to
obtain an expression for d in the form xa1 + ya2.

12. Apply the foregoing to the polynomials x3 + x2 + x – 3
and x4 – x3 + 3x2 + x – 4 in [x].
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The next three exercises are designed to explain one of the
mysteries of the integral calculus: the partial fraction
decomposition of rational functions.

13. Let F be a field and suppose f(x) is a non-zero polynomial
in F[x] which has a factorization f(x) = f1(x)f2(x) where deg fi
> 0 and (f1, f2) = 1. Show that if deg g(x) < deg f(x), then there
exist ui(x) ∈ F[x] such that g(x) = u2(x)f1(x) + u1(x)f2(x) and
deg ui < deg fi. (Hint: Existence of υ1(x) and υ2(x) such that
υ2(x)f1(x) + υ1(x)f2(x) = g(x) is clear. Now divide υi(x) by fi(x)
obtaining the remainder ui(x) of degree < deg fi. Apply degree
considerations.) Note that in the field of fractions F(x) of F[x]
one has g(x)/f(x) = u1(x)/f1(x) + u2(x)/f2(x). Use induction to
prove that if f(x) = p1(x)e1 … pr(x)er, pi(x) distinct primes, then
g(x)/f(x) = ∑1

r gi(x)/pi(x)er where deg gi < deg pi
er.

14. Show that if g(x), p(x) ≠ 0 in F[x] then there exist ai(x) ∈
F[x] with deg ai < deg p such that

15. Assuming the result (which will be proved in Chapter 5)
that the irreducible polynomials in [x] are either linear or
quadratic, show that if f(x), g(x) ∈ [x] and deg g < deg f,
then one can decompose the fraction g(x)/f(x) in (x) as a sum
of of partial fractions of one of the forms a/(x – r)e or (bx +
c)/(x2 + sx + t)e where x2 + sx + t is irreducible. More
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precisely, suppose f(x) = ∏1
m (x – ri)ei ∏1

n (x2 + sjx + tj)fj

where the quadratics are irreducible then g(x)/f(x) can be
written in the
form

16. Investigate the uniqueness questions posed by exercises
13–15.

17. Define the Möbius function μ(n) of positive integers by
the following rules: (a) μ(1) = 1, (b) μ(n) = 0 if n has a square
factor, (c) μ(n) = (– l)s if n = p1 p2 … ps, pi distinct primes.
Prove that μ is multiplicative in the sense that μ(n1 n2) =
μ(n1)μ(n2) if (n1, n2) = 1. Also prove that

18. Prove the Möbius inversion formula: If f(n) is a function
of positive integers with values in a ring and

then
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19. Prove that if φ(n) is the Euler φ-function then

20. Let F be a field with q (< ∞) elements. Prove that the
number of irreducible monic quadratic polynomials with
coefficients in F is q(q – l)/2 and the number of irreducible
cubics with coefficients in F is q(q2 – l)/3. (See Corollary 2 to
Theorem 4.26, p. 289.)

2.16 POLYNOMIAL EXTENSIONS OF FACTORIAL
DOMAINS

In this section we prove the important theorem that states that
if D is factorial then so is the domain D[x] of polynomials in
an indeterminate x over D.

Let D be factorial. Then any finite set of non-zero elements of
D have a g.c.d. We shall find it convenient to define the g.c.d.
(a1, a2, …, ak) where ai ∈ D to be 0 if all the ai = 0, and
otherwise to be the g.c.d. of the non-zero ai. If f(x) = a0 + a1x
+ … + anxn ≠ 0 we define the content c(f) of f(x) as (a0, al, …,
an) (≠ 0). If d = c(f) we can write ai = da′i, 0 ≤ i ≤ n, and f(x) =
df1(x) where

We have seen in our discussion of g.c.d.’s in monoids
(section 2.14) that (da, db) = d(a, b). It follows by induction
that d(b1, b2, …, br) = (db1, …, dbr).
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This evidently implies that the content c(f1) is 1. A
polynomial having this property is called primitive. Hence we
have the factorization f(x) = c(f)f1(x) as a product of the
content of f and a primitive polynomial. Now let f(x) = ef2(x)
be any factorization of f(x) as a product of a constant e and a
primitive polynomial f2(x) = a″0 + a″1x + … + a″nxn. Then ai
= a″ie and 1 is a g.c.d. of the a″i. Hence e is a g.c.d. of the ai,
and so e ~ c(f).

It is useful to extend the factorization of a polynomial as
product of an element of D and a primitive polynomial to
polynomials with coefficients in the field of fractions. The
result we require is

LEMMA 1. Let D be a factorial domain, F the field of
fractions of D, and f(x) ≠ 0 ∈ F[x]. Then f(x) = γf1(x) where γ
∈ F and f1(x) is a primitive polynomial in D[x]. Moreover,
this factorization is unique up to unit multipliers in D.

Proof. Let f(x) = α0 + α1x + … + αnxn where the αi ∈ F and
αn ≠ 0. We can write αi = aibi

– 1, ai, bi ∈ D. Then if b = ∏ bi,
bf(x) ∈ D[x] so bf(x) = cf1(x) where f1(x) ∈ D[x] and is
primitive. Then f(x) = γ f1(x) where γ = cb– 1 ∈ F. Now let f(x)
= δf2(x) where δ ∈ F and f2(x) ∈ D[x] and is primitive. Then δ
= de– 1, d, e ∈ D. Hence we have cb– 1 f1(x) = de– l f2(x) and
cef1(x) = bdf2(x). The result proved before for polynomials
with coefficients in D shows that f1(x) ~ f2(x) and ce ~ bd.
Then we have bd = uce, u is a unit in D, and de– 1 = ucb– l.
Hence δ = uγ as required.
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As in the case of D[x], we call the element γ, which is
determined up to a unit multiplier by f(x), the content of f(x) ∈
F[x]. An immediate consequence of Lemma 1 is the

COROLLARY. Let f(x) and g(x) be primitive in D[x] and
assume these are associates in F[x]. Then they are associates
in D[x].

Proof. We are given that f(x) = αg(x), α ≠ 0 in F. Then the
uniqueness part of Lemma 1 shows that α is a unit in D.

The key lemma for proving the factoriality of D[x] is

LEMMA 2(Gauss’ lemma.) The product of primitive
polynomials is primitive.

Proof. Suppose f(x) and g(x) are primitive but h(x) = f(x)g(x)
is not. Then there exists an irreducible element (hence a
prime) p ∈ D such that p f(x), p g(x) but p|h(x). We now
observe that saying that p is a prime is equivalent to saying
that ≡ D/(p) is a domain. This is immediate from the
definitions. Hence [x]
is a domain. We now apply the homomorphism of D[x] onto

[x] sending a ∈ D into its coset = a + (p) and x → x. This
gives (x) (x) = (x) = but (x) ≠ 0, (x) ≠ . This
contradicts the fact that [x] is a domain and hence proves
the lemma.

LEMMA 3. If f(x) ∈ D[x] has positive degree and is
irreducible in D[x], then f(x) is irreducible in F[x].
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Proof. If f(x) ∈ D[x] has positive degree and is irreducible in
D[x] then f(x) is primitive. Suppose that f(x) is reducible in
F[x]: f(x) = φ1(x) φ2(x) where φi(x) ∈ F[x] and deg φi(x) > 0.
We have φi(x) = αifi(x) where αi ∈ F and fi(x)is primitive in
D[x]. Then f(x) = α1α2f1(x)f2(x) and f1(x)f2(x) is primitive by
Gauss' lemma. It follows that f(x) and f1(x)f2(x) differ by a
unit multiplier in D. Since deg fi(x) > 0 this contradicts the
irreducibility of f(x) in D[x].

We are now ready to prove

THEOREM 2.25. If D is factorial then so is D[x].

Proof. Let f(x) ∈ D[x] be non-zero and not a unit. Then f(x)
= df1(x) where d ∈ D and f1(x) is primitive. If deg f1(x) > 0
then f1(x) is not a unit and if this is not irreducible we have
f1(x) = f1 1(x)f1 2(x) where deg f1i(x) > 0 so deg f1i(x) < deg
f1(x). Clearly f1 i(x) is primitive. Hence using induction on the
degree we see that f1(x) = q1(x) q2(x) … qt(x) where the qi(x)
are irreducible in D[x]. If d is not a unit we have d = p1p2
…ps where the pi are irreducible in D. Clearly these are then
irreducible in D[x]. Using the factorizations of d and f1(x)
(when these are not units) we obtain a factorization of f(x)
into irreducible factors in D[x]. It remains to prove
uniqueness up to unit multipliers of any two such
factorizations. Suppose first that f(x) is primitive. Then the
irreducible factors of f(x) all have positive degree. Thus we
have f(x) = q1(x) … qh(x) = q1

′(x) … qk
′(x) where the qi(x)

and qj
′(x) are irreducible of positive degree. Then these are

irreducible in F[x] by Lemma 3. Since F[x] is factorial we
have h = k, and by suitably ordering the qj

′(x) we may assume
that qi(x) and qi

′(x) for 1 ≤ i ≤ h are associates in F[x]. Then
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the corollary to Lemma 1 shows that qi(x) ~ qi
′(x) in D[x].

Next suppose that f(x) is not primitive. Since the irreducible
factors of positive degree are primitive, their product is
primitive. Hence any factorization of f(x) into irreducible
elements in D[x] contains factors belonging to D, and their
product is the content of f(x). By modifying by a unit
multiplier we may assume that this is the same for the two
factorizations. Since D is factorial we
can pair off the irreducible factors of f(x) belonging to D into
associate pairs. The product of the remaining factors, if any,
is a primitive polynomial. Since we have taken care of these
the proof is complete.

An immediate consequence of the theorem is that if D is
factorial so is the ring D[x1, …, xr] of polynomials in r
indeterminates over D: for example, [x1, …, xr] is factorial
and so is F[x1, …, xr] for any field F. It is clear from this that
the class of factorial domains is more extensive than that of
p.i.d. (see p. 131 and also exercise 5 below).

An important consequence of the factoriality of D[x] and of
Lemma 3 is the following

COROLLARY. If D is factorial and f(x) ∈ D[x] is monic,
then any monic factor of f(x) in F[x] is contained in D[x].

Proof. We can write f(x) = p1(x)e1 … pr(x)er where the pi(x)
are monic and irreducible in D[x], pi(x) ≠ pj(x) if i ≠ j and ei >
0. Then the monic factors of f(x) in D[x] have the form p1(x)f1

… pr(x)fr with 0 ≤ fi ≤ ei. If we now pass from D[x] to F[x]
then, by Lemma 3, the pi(x) are irreducible in F[x]. Hence f(x)
has the same monic factors in D[x] and in F[x].
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EXERCISES

1. Prove that if f(x) is a monic polynomial with integer
coefficients then any rational root of f(x) is an integer.

2. Prove the following irreducibility criterion due to
Eisenstein. If f(x) = a0 + a1x + … + anxn ∈ [x] and there
exists a prime p such that p|ai, 0 ≤ i ≤ n – 1, p an and p2 a0,
then f(x) is irreducible in [x].

3. Show that if p is a prime (in ) then the polynomial
obtained by replacing x by x + 1 in xp – 1 + xp – 2 + … + 1 =
(xp – l)/(x – 1) is irreducible in [x]. Hence prove that the
“cyclotomic” polynomial xp – 1 + xp – 2 + … + 1 is irreducible
in [x].

4. Obtain factorization into irreducible factors in [x] of the
following polynomials: x3 – 1, x4 – 1, x6 – 1, x6 – 1, x7 – 1, x8

– 1, x9 – 1, x10 – 1.

5. Prove that if D is a domain which is not a field then D[x] is
not a p.i.d.

6. Let F be a field and f(x) an irreducible polynomial in F[x].
Show that f(x) is irreducible in F(t)[x], t an indeterminate.

2.17 “RNGS” (RINGS WITHOUT UNIT)

In most algebra books a ring is defined to be non-vacuous set
R equipped with two binary compositions + and · and an
element 0 such that (R, +, 0) is an abelian group, (R, ·) is a
semigroup (p. 29), and the distributive laws hold. In other
words, the existence of a unit for multiplication is not
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assumed. We shall consider these systems briefly, and so as
not to conflict with our old terminology we adopt a different
term: rngs6 for the structures which are not assumed to have
units. We remark first that the elementary properties of rings
which we noted in section 2.1 (generalized associativity,
generalized distributivity, rules for multiples, etc.) carry over
to rngs. The verification of this is left to the reader. We shall
now show that any rng can be imbedded in a ring. This fact
permits the reduction of most questions on rngs to the case of
rings.

Suppose we are given a rng R. Our procedure for constructing
a ring containing R is to take S = × R the product set of
and R. If m, n ∈ and a, b ∈ R we define addition in S by

We define 0 = (0, 0). Then it is clear that (S, +, 0) is an
abelian group: in fact, it is the direct product (also called
direct sum) of ( , +, 0) and (R, +, 0). We define multiplication
in S by

where on the right-hand side mb and na denote respectively
the mth multiple of b and the nth multiple of a as defined in
the additive group (R, +, 0). We have
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It now follows from the associative laws in and in R, the
distributive laws in R, and the properties of multiples in R that
the associative law of multiplication is valid in S. If we put 1
= (1, 0) then we have 1(m, a) = (1, 0)(m, a) = (m, a) = (m, a)(
1, 0) = (m, a) 1. Hence (S, ·, 1) is a monoid.

Also we have

Hence (m, a)[(n, b) + (q, c)] = (m, a)(n, b) + (m, a)(q, c).
Similarly, the other distributive law holds. Hence (S, +, ·, 0,
1) is a ring.

We now consider the subset of elements (0, a)in S. We have
(0, a) + (0, b) = (0, a + b), (0, a),(0, b) = (0, ab) and 0 = (0, 0)
is in this subset. Thus the subset is a subring isomorphic to R
(with the obvious definitions of these terms).We have
therefore proved

THEOREM 2.26. Any mg can be imbedded in a ring.
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We note also that R identified with the corresponding subset
of S is an ideal in S since (m, b)(0, a) = (0, ma + ba) and (0,
a)(m, b) = (0, ma + ab).

EXERCISES

1. An element a of a rng R is called right (left)
quasi-invertible (or right or left quasiregular) if there exists a
b such that a + b – ab = 0 (a + b – ba = 0). Show that this is
equivalent to saying that 1 – a has the right inverse (left
inverse) 1 – b in S = × R, with the ring structure defined
above.

2. (Kaplansky.) Let R be a rng in which every element but one
is right quasiinvertible. Show that R has a unit and R is a
division ring.

3. Let R be a rng for which there exists a positive integer k
such that ka = 0 for all a ∈ R. Let Sk = /(k) × R. Write = m
+ (k) in /(k) and define ( , a) + ( , b) = ( + , a + b), ( ,
a)( , b) = ( , mb + na + ab), 0 = ( , 0), 1 = ( , 0). Verify
that (Sk, +, ·, 0, 1) is a ring of characteristic k and that R is
imbedded in Sk.

4. Let R be a rng without zero divisors ≠ 0(that is, ab = 0 in R
implies either a = 0 or b = 0). Assume R comtains elements a
and b ≠ 0 such that ab + kb = 0 for some positive integer k.
Show that ca + kc = 0 = ac + kc for all c ∈ R.

5. Let R be a rng without zero divisors ≠ 0 and let S be the
ring × R as in the text. Let Z = {z ∈ S | za = 0 for all a ∈ R}.
Show that Z is an ideal in S and S/Z is a domain. Show that a
→ a + Z is a monomorphism of R into S/Z.
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1The term “ring” appears to have been used first by A.
Fraenkel, who gave a set of axioms for this concept in an
article in Journal für die reine und angewandete Mathematik,
vol. 145 (1914). However, his definition was marred by the
inclusion of some ad hoc assumptions that are not appropriate
for a general theory. The concept as defined here is due to
Emmy Noether, who formulated it in a paper in
Mathematische Annalen, vol. 83 (1921). Before this the term
“Zahlring” had occurred in algebraic number theory.

2The principal theorems on determinants will be derived later
in this book, using exterior algebras (section 7.2, pp.
416–419).

3It seems to have taken Hamilton ten years to arrive at this
multiplication table. In fact, he had spent a good deal of effort
trying to construct a field of triples of real numbers (which is
not possible) before he realized that it was necessary to go to
quadruples and to drop the commutativity of multiplication.
Perhaps this bit of history may serve as an encouragement to
the student who sometimes finds himself on the wrong track
in attacking a problem. (See Carl A. Boyer, A History of
Mathematics, New York, Wiley, 1968, p. 625.)

4We use this term rather than “prime,” which we have used
hitherto in discussing the arithmetic of . In the general case
prime elements will be defined differently below (p. 142).

5There is no harm in allowing either a = 0 or b = 0 in these
considerations.
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6Suggested pronunciation: rungs. This term was suggested to
me by Louis Rowen.
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3

Modules over a Principal Ideal Domain

The central concept of the axiomatic development of linear
algebra is that of a vector space over a field. The
axiomatization of linear algebra, which was effected in the
1920’s, was motivated to a large extent by the desire to
introduce geometric notions in the study of certain classes of
functions in analysis. At first one dealt exclusively with
vector spaces over the reals or the complexes. It soon became
apparent that this restriction was rather artificial, since a large
body of the results depended only on the solution of linear
equations and thus were valid for arbitrary fields. This led to
the study of vector spaces over arbitrary fields and this is
what presently constitutes linear algebra.

The concept of a module is an immediate generalization of
that of a vector space. One obtains the generalization by
simply replacing the underlying field by any ring. Why make
this generalization? In the first place, one learns from
experience that the internal logical structure of mathematics
strongly urges the pursuit of such “natural” generalizations.
These often result in an improved insight into the theory
which led to them in the first place. A good illustration of this
is afforded by the study of a linear transformation in a finite
dimensional vector space over a field—a central problem of
linear algebra. As we
shall see in sections 3.2 and 3.10, given a linear
transformation T in a vector space V over F, we can use this
to convert V into a module over the polynomial ring F[λ], λ an
indeterminate.1 The study of this module will lead to the
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theory of canonical forms for matrices of a linear
transformation and to the solution of the problem of similarity
of matrices.

It is an easy step to pass from modules over F[λ] to modules
over any principal ideal domain. This will give us other
applications. In particular, specializing the p.i.d. to be , we
shall obtain the structure theory of finitely generated abelian
groups, hence, of finite abelian groups.

It would be wrong to conclude from these remarks that the
historical development of the theory of modules followed the
logical path of extension of linear algebra which we have
indicated. The concept of a module seems to have made its
first appearance in algebra in algebraic number theory—in
studying subsets of rings of algebraic numbers closed under
addition and multiplication by elements of a specified
subring. Modules first became an important tool in algebra in
the late 1920’s largely due to the insight of Emmy Noether,
who was the first to realize the potential of the module
concept. In particular she observed that this concept could be
used to bridge the gap between two important developments
in algebra that had been going on side by side and
independently: the theory of representations (=
homomorphisms) of finite groups by matrices due to
Frobenius, Burnside, and Schur, and the structure theory of
algebras due to Molien, Cartan, and Wedderburn. We
consider these matters in Vol. II of this work. More recently
one has had the development of homological algebra, in
which modules also play a central role. This, too, is
considered in Vol. II.
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The principal topic of this chapter is the study of finitely
generated modules over a p.i.d. D and the two special cases,
in which D is either or a polynomial ring F[λ], F a field. As
we have noted, these give, respectively, the structure theory
of finitely generated abelian groups and canonical forms for
linear transformations. Of course, we shall need to begin with
some general theory. However, we shall not develop this
much beyond what is actually needed to achieve our
immediate objectives. Most of the general theory of modules
and other applications are discussed in our second volume.

3.1RING OF ENDOMORPHISMS OF AN ABELIAN
GROUP

Let M be an abelian group. We use the additive notation in M:
+ for the given binary composition, 0 for the unit, − a for the
inverse of a, and ma, m , for the mth power. Let End M
denote the set of endomorphisms of M. By definition
, these are the maps η of M into M such that

and we have seen that the second condition is a consequence
of the first. Hence a map η of M into M is an endomorphism if
and only if

We recall that this implies also that η (mx) = mη(x) for any m
. We recall further that if X is a set of generators for M,

then η is determined by its effect on X: that is, if η (x) = ζ(x)
for two endomorphisms η and ζ and all x in a set of
generators, then η = ζ.
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Let us look at some

EXAMPLES

1. Let M be an infinite cyclic group ( , + , 0). Then 1 is a
generator and if η(1) = m, then η(x) = η (xl) = xη(l) = xm.
Hence η is the map x → mx, x M, where m = η(l).
Moreover, if m is any element of , then the map x → mx is
an endomorphism since we have the power rule m(x + y) = mx
+ my. It is clear that x → mx maps 1 into m. Since
endomorphisms are determined by their effects on the
generator 1 it is clear we have a 1–1 correspondence between
the set End M, M = ( , +, 0) and , which pairs η End M
with η (l) = m .

2. Let M = ( (2), +, 0), the direct product (or sum) of two
copies of ( , +, 0). The elements here are the pairs of integers
(x, y) and we have (x, y) = x(l, 0) + y(0, 1), so e = (1, 0) and f
= (0, 1) generate (2). Hence if η End (2), then η is
determined by the pair of elements η (e), η(f). Moreover, any
pair of elements (u, v) (2) × (2) can be obtained in this
way, this is, if (u, v) is given, then there exists an
endomorphism η such that η (e) = u4 and η (f) = v. To see this
we let η be the map which sends (x, y) = xe + yf into xu + yv.
Then (x′, y′) → x′u + and (x + x′, y + y′) → (x + x′)u + (y +
y′)v; = (xu + yv) + (x′u + y′v). Hence η is a homomorphism
and η(e) = u and η(f) = v, as required. Thus we have a 1–1
correspondence between End (2) and (2) × (2), which pairs
an endomorphism η with the element (η (e), η(f)) (2) ×
(2).

These considerations generalize immediately to M = (n) for
any positive integer n and
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lead to a 1–1 correspondence between End (n) and
.

3. Let M be a finite cyclic group. In this case we may take M
= ( /(n), + ,0) where n is a positive integer, and, in general, x
is the coset x + (n). Then I is a generator and we have a 1–1
correspondence between End /(n) and /(n) sending η End

/(n) into η (1).

We shall now organize End M for any abelian group M into a
ring. We know that if η , ζ End M, then the composite η ζ
End M, and we have the associative law (ηζ)ρ = η(ζρ). Also,
the identity map 1:x→x is an endomorphism.
Hence (End M, ·, 1) is a monoid. All of this holds even if M is
not abelian. However, a good deal more can be said in the
abelian case: namely, as we shall now show, End M with
composite multiplication and an addition and 0, which we
shall now define, constitute a ring. If η , ζ End M we define
η + ζ by

This map of M into M is an endomorphism since

We remark that the commutativity of + is used in the passage
from the second to the third of these equations. Next we
define the map 0 as x → 0, x M. Evidently this is an
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endomorphism and η + 0 = η = 0 + η for any η End M. Let
− η be the map x → − η(x) so − η is the composite of η and
the map x → − x, which is an automorphism, since M is
abelian. Hence − η End M, and clearly η + (-η) = 0= -η + η.
Since ((η + ζ) + ρ)(x) = (η + ζ)(x) + ρ(x) = η(x) + ζ(x) + ρ(x)
and (η + (ζ + ρ))(x) = η(x) + (ζ + ρ)(x) = η(x) + ζ(x) + ρ(x),
associativity holds for the addition composition +.
Commutativity also holds since (η + ζ)(x) = η(x) + ζ(x) = ζ(x)
+ η(x) = (ζ + η)(x). Thus we have verified that (End M, +, 0)
is an abelian group.

Previously, we had that (End M, 1) is a monoid. Now, we
have for η, ζ, ρ End M,

Similarly, ((η + ζ)ρ)(x) = η(ρ(x)) + ζ(ρ(x)). Hence both
distributive laws hold in End M, and so we have verified the
following basic

THEOREM 3.1 Let M be an abelian group (written
additively) and let End M denote the set of endomorphisms of
M. Define ηζ and η + ζ for η, ζ End M by (ηζ)(x) = η(ζ(x))
and (η + ζ)(x) = η(x) + ζ(x), 1 and 0 by lx = x, 0x = 0. Then
(End M, + , ·, 0, 1) is a ring.

We shall call (End M, +, ·, 0, 1) or, more briefly, End M, the
ring of endomorphisms of the abelian group M. We consider
again the examples we gave above and we seek to identify the
rings End M in these cases.

EXAMPLES
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1. M = ( , + , 0). We saw that the map η → η(l) is a bijective
map of End M onto In this map η + ζ →(η +ζ)(1) = η(1) +
ζ(1), ηζ,→(ηζ)(1)= η(ζ(1))= ζ(1)η(1)= η(1)ζ(1) and 1 →1(1) =
1 Hence η→ η(1)is an isomorphism of End M with the ring of
integers . Hence we can say that the ring of endomorphisms
of an infinite cyclic group is the ring .

2. M = ( (2), +, 0). In this case we obtain the bijective map η
→ (η(e), η(f)) of End M onto (2) × (2), the set of pairs of
elements of (2). Here e = (1,0) and f = (0, 1). Suppose η(e) =
(a, b) and η(f) = (c, d). Then we evidently have a bijective
map

of End M onto the ring M2( ) of 2 × 2 integral matrices. We
claim that this is an isomorphism. Suppose ζ is a second
endomorphism and ζ(e) = (a′, b′), ζ(f) = (c′, d′). Then

Now (η + ζ)(e) = η(e) + ζ(e) = (a, b) + (a′, b′) = (a + a′, b +
b′) and similarly (η + ζ)(f) = (c + c′, d + d′). Hence

and this is the sum of the matrices in (3) and (4). Next we
determine (ηζ)(e) = η(ζ(e)) = η (a′, b′) = η(a′e + b′f) = η (a′e) +
η(b′f) = a′η(e) + b′η(f) = a′(a, b) + b′(c, d) = (a′a, a′b) + (b′c,
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b′d) = (aa′ + cb′, ba′ + db′). Similarly, (ηζ(f) = (ac′ + cd′, bc′
+ dd′). Thus

the product of the matrix in (3) followed by the one in (4).

Also 1(e) = (1, 0) and 1(f) = (0, 1) so . Hence we
have verified that the map (3) is an isomorphism of End M
with the matrix ring M2( ).

3. M a cyclic group of order n. One sees, as in 1, that End M
is isomorphic to the ring /(n).

The fact that End M is a ring with respect to the compositions
and the 0 and 1 that we defined is analogous to the fact that
the set of bijective maps of a set with the usual composition
and 1 is a group. We now define a ring of endomorphisms to
be any subring of a ring End M, M an abelian group. We shall
now prove the analogue for rings of Cayley’s theorem for
groups (p. 38).

THEOREM 3.2. Any ring is isomorphic to a ring of
endomorphisms of an abelian group.2

Proof. The idea of the proof is identical with that of Cayley’s
theorem. Given the ring R we take M = (R, +, 0), the additive
group of R, and for any a we call the map aL:x → ax the left
multiplication determined by a.3 Since aL( x + y) = a(x + y) =
ax + ay = aLx + aLy, aL End M. Also (a + b)Lx = (a + b)x =
ax + bx = aLx + bLx = (aL + bL)x (by definition of the sum of
endomorphisms) and (ab)Lx = (ab)x = a(bx) = aL(bLx) =
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(aLbL) (x), lx = x. Hence a → aL is a homomorphism of the
ring R into End M. Since aL = bL implies a = aL1 = bL1= b, a
→ aL is a monomorphism. The image is a subring RL of End
M and we have R ≈ RL.

It is interesting to consider also the right multiplications of a
ring. We define aR:x → xa and note that this is an
endomorphism of M = (R, +,0) since (x + y)a = xa + ya. Also
it is immediate that a → aR is an anti-homomorphism of R
into End M. The image RR = {aR} is a subring of End M and
R and are anti-isomorphic. We note also that the subrings RL
and RR are the centralizers of each other in End M, that is, we
have

THEOREM 3.3 RL = C(RR) and RR = C(RL) in End M.

Proof. It is clear from (ax)b = a(xb) that aLbR = bRaL for any
a, b R. Now let η be an endomorphism of M such that aLη =
ηaL, a R. Then η(x) = η(x1) = η(xL1) = xL(η (1)) = xη(1).
Hence η = η(1)R RR. Thus C(RL) = RR and, by symmetry
C(RR) = RL.

EXERCISES

1. Let G be a group (written multiplicatively), and let F = GG

be the set of maps of G into G. If η, ζ F define ηζ in the
usual way as the composite η following ζ. Define η + ζ by (η
+ ζ)(x) = η(x)ζ(x). Define l:x → x,0:x → 1. Investigate the
properties of the structure (F, +, ·, 0, 1).

2. Let M be an abelian group. Observe that Aut M is the group
of units (invertible elements) of End M. Use this to show that
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Aut M for the cyclic group of order n is isomorphic to the
group of cosets m = m + (n) in /(n) such that (m, n) = 1.

3. Determine Aut M for M = ( (2), +, 0).

4. Determine End ( , +, 0).

5. In several cases we have considered, we have End (R, +, 0)
≈ R for a ring R. Does this hold in general? Does it hold if R is
a field?

3.2LEFT AND RIGHT MODULES

The concept of a left module is the ring analogue of a group
acting on a set. As in the group case, this arises in considering
a homomorphism of a given ring R into the ring of
endomorphisms, End M, of an abelian group M. If η is such a
homomorphism, η(a) End M, so we have

and since η is a homomorphism we have

x M, a, b R. We now consider the map (a, x) → η(a)(x) of
R × M into M and we abbreviate the image η(a)(x) as ax. Then
the foregoing equations read:
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for x, y M, a, b, 1 R. We formalize this in the following

DEFINITION 3.1. If R is a ring, a left R-module is an
abelian group M together with a map (a, x) → ax of R × M
into M satisfying properties 1–4.

We have seen that a homomorphism η of R into End M gives
rise to a left module structure on M by defining ax = η(a)(x)
for a R, x M. Conversely,
suppose we are given a left R-module M. For any a R we let
aL be the map x → ax of M into itself. Then the module
property 1 states that aL End M. Moreover, it is clear from
properties 2–4 that a → aL is a homomorphism of R into End
M. The module obtained from this homomorphism by the
procedure we gave is the given left module. On the other
hand, if we begin with a homomorphism η of R into End M
and we construct the corresponding left R-module M, then the
associated homomorphism a → aL coincides with η, since aLx
= ax = η(a)(x). Thus it is clear that the concept of a left
R-module is equivalent to that of a homomorphism of R into
the ring of endomorphisms of some abelian group.

The notion of right .R-module is dual to that of left R-module.
We give this in
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DEFINITION 3.1′. A right module for a ring R is an abelian
group M together with a map (x, a) → xa of M × R into M
satisfying for a, b, 1 R and x, y M:

Let aR denote the map x → xa in M. Then aR End M and a
→ aR satisfies (a + b)R = aR + bR, (ab)R = bRaR, 1R = 1, so
this is an anti-homomorphism of R into End M (section 2.8, p.
114). Conversely, if η is an anti-homomorphism of R into the
endomorphism ring, End M, of an abelian group, M becomes
an R-module if we define the action xa, x M, a R, to be
η(a)(x).

Any anti-homomorphism η of a ring can be regarded as a
homomorphism of the opposite ring R° of R (p. 113). This is
clear since the identity map is an anti-isomorphism of R° onto
R and the composite of this and η is a homomorphism. It
follows from this that if M is a right (left) module for R, and
we put ax = xa (xa = ax), we make M into a left (right)
R°-module. If R is commutative, R° = R as rings and so any
left (right) R-module is also a right (left) R-module in which
ax = xa. Thus for commutative rings there is no distinction
between left and right modules.

We now consider some important instances of modules. We
observe first that any abelian group M (written additively) is a
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-module. Here one defines ax in the usual way for a , x
M. The module conditions 1–4 are clear from the properties
of multiples in an abelian group. The observation that abelian
groups are -modules permits us to subsume the theory of
abelian groups in
that of modules. The usefulness of this reduction will be
apparent in what follows.

A type of module which is very probably familiar to the
reader is a vector space V over a field F. We recall that a
vector space is defined axiomatically as an abelian group V
together with a product ax V for a F, x V such that
conditions 1 -4 hold. Thus V is a left F-module. Now suppose
T is a linear transformation in V. We abbreviate T(x) as Tx.
Then the defining conditions are that T maps V into V and

a F, x, y V. The first of these conditions is that T End V
and the second is that aLT = TaL for every endomorphism
aL:x → ax, a F. It follows that the subring FL[T], generated
by FL = {aL|a F} and T, is a commutative subring of End
V. Since a → aL is a homomorphism of F, the basic
homomorphism property of F[λ], λ an indeterminate,
(Theorem 2.10, p. 122) shows that the map

(ai F) is a homomorphism of F[λ] into FL[T], hence, into
End V. Then it is clear that V becomes a left F[λ]-module if
we define

300



for every f(λ) = a0 + a1 λ + … + am λm F[λ]. We shall see
that the theory of a single linear transformation of a finite
dimensional vector space can be derived by viewing the
vector space as an F[λ]-module in this way.

As our last example of a module we consider any ring R, and
take M to be the additive group (R, +, 0) of R. Let R act on M
by left multiplication: ax for a R and x M is the product
as defined in Then 1–4 are clear, and so M is a left R-module.
Similarly M is a right R-module if we define xa, x M, a
R, to be the ring product.

EXERCISES

1. Let M be a left R-module and let η be a homomorphism of
a ring S into R. Show that M becomes a left S-module if we
define ax = η(a)(x) for a S, x M.

2. Let M be a left R-module and let B = {b R|bx = 0 for all x
M}. Verify that B is an ideal in R. Show also that if C is

any ideal contained in B then M becomes a left R/C-module
by defining (a + C)x = ax.

3. Let M be a left R-module, S a subring of R. Show that M is
a left S-module if we define bx, b S, x M, as given in M
as left R-module. (Note that this is a special case of exercise
1). In particular, the ring R can be regarded as a left S-module
in this way.

4. Let V = (n)0 the vector space of n-tuples of real numbers
with the usual addition and multiplication by elements of .
Let T be the linear transformation of V defined by
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Consider V as left [λ]-module as in the text, and determine:
(a) λx, (b)(λ2 + 2)x, (c)(λn-1 + λn-2 + … + l)x. What elements
satisfy (λ2 − l)x = 0?

5. Consider the example of exercise 4 and let B be the ideal in
[λ] defined as in exercise 2. Give an explicit description of

B.

6. Let M be an abelian group written additively. Show that
there is only one way of making M into a left -module.

7. Let M be a left -module. Show that the given action of
is the only one which can be used to make M a left
-module.

8. Let M be a finite abelian group ≠ 0. Can M be made into a
left -module?

3.3FUNDAMENTAL CONCEPTS AND RESULTS

From now on we shall deal almost exclusively with left
modules and we shall refer to these simply as “modules,”
“R-modules,” or “modules over R” (R the given ring). Of
course, what we shall say about these will be applicable also
to right modules. The modifier “right” will be used when we
wish to state results explicitly for these.

Let M be an R-module. The fact that x ax is an endomorphism
of (M, +, 0) implies that a0 = 0 and a( − x)= − ax, x M, a
R. The fact that a → aL is a homomorphism of R into End M
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gives 0x = 0, ( − a)x = –ax. Also, by induction, we have a( ∑
xi) = ∑ axi and (∑ ai)x = ∑ aix.

We define a submodule N of M to be a subgroup of the
additive group (M, +, 0) which is closed under the action of
the elements of R: that is, if a R and y N, then ay N.
Explicitly, the conditions for a non-vacuous subset N of M to
be a submodule are: (a) if y1, y2 N then y1 + y2 N, (b) if y

N and a R then ay N. These are certainly satisfied by
submodules. On the other hand, if N satisfies these conditions,
then N contains 0 = 0y, y N, and N contains − y = ( − l)y.
Thus N is a subgroup of the additive group and hence a
submodule of M.

What are the submodules of the types of modules we
considered in section 3.2? First, let M be a -module. If N is a
subgroup of (M, +, 0), and n is a positive integer and y N,
then ny = y + … + y (n terms) N. Also 0y and
( − n)y N. Hence N is a -submodule. The converse is
clear. Hence the -submodules of M are the subgroups of (M,
+, 0). Next let V be a vector space over a field F. Then it is
clear from the definitions that the submodules are the
subspaces of V. Now let T be a linear transformation in F and
regard V as an F[λ]-module in the manner of section 3.2. In
this case the submodules are simply the subspaces W
stabilized by T—that is, satisfying TW(≡ T(W)) ? W—since
this condition on a subspace amounts to λw W if w W,
and clearly this implies that (a0 + a1 λ + … + anλn)w W.
Finally, we consider the case of R regarded as left R-module
(M = (R, +, 0) and the module action is left multiplication).
Here the submodules are the subsets of R that are closed
under addition and under left multiplication by arbitrary
elements of R. Such a subset is called a left ideal of R (cf.
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exercise 4 on p. 103). Similarly, the submodules of R
regarded as right R-modules in the usual way are the right
ideals: subsets closed under addition and under right
multiplication by arbitrary elements of R.

If {Nα}is a set of submodules of M, then ∩ Nα is a
submodule. Hence if S is a non-vacuous subset, then the

intersection S of all the submodules of M containing S is a
submodule of M. We call this the submodule generated by S,
since it is a submodule containing S and contained in every

submodule containing S. It is immediate that S is the
subset of elements of the form a1y1 + a2y2 + … + aryr where

the ai R and the yi S . If {Nα} is a set of submodules,
then the submodule generated by ∪ Nα is the set of sums yα1
+ yα2 + … + yαr where yαk Nαk. We call this the submodule
generated by the Nα and denote it as ∑ Nα. If {Nα }is finite,
say, {N1, N2,…, Nm}, then we write either ∑ Ni or + N2 + …
+ Nm for the submodule generated by the Ni.

We now consider the factor group M = M/N of M relative to a
submodule N. Its elements are the cosets x = x + N with the
addition (x1 + N) + (x2 + N) = x1 + x2 + N, the 0-element N,
and – (x + N) = −x + N. If a R and x1 ≡ x2 (mod N), that is,
x2 − x1 N then ax2 − ax1 = a(x2 − x1) N so ax1 ≡ ax2(mod
N). It follows that if we put

then this coset is independent of the choice of the element x in
its coset. Hence (a, x) → ax is a map of R × M into M. We
also have
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and, similarly, (a + b)x = ax + bx, (ab)x = a(bx) and 1x = x.
Thus M = M/N with the action (6) is an .R-module. We call
this the quotient module M/N of M with respect to the
submodule N.

We define homomorphisms for modules only if the rings over
which these are defined are identical. In this case we define a
homomorphism(module homomorphism, R-homomorphism,
homomorphism over R) of M into M′ to be a map η of M into
M′ which is a homomorphism of the additive groups and
which satisfies η(ax) = aη(x), a R, x M. It is clear from
(6) that if N is a submodule of M then the natural map v:x →
x = x + N is a module homomorphism of M into M.

The kernel of a homomorphism of M into M′ is defined to be
the kernel η-1(0) of the group homomorphism. This is a
subgroup of M, and since η(y) = 0 implies η(ay) = aη(y) = 0,
ker η is a submodule of M. The image η(M) (or im η = {η(x)|x

M}) is a submodule of M′; for it is a subgroup of M′, and if
y η(M), y = η(x), x M, and ay = aη(x) = η(ax) η(M). As
in the case of groups, it is immediate that if N is a submodule
contained in ker η, then the map

is a module homomorphism of M/N into M′ such that η = ηv
where v is the homomorphism x → x = x + N. Moreover, η is
a monomorphism if and only if N = ker η. In this case we
have the fundamental theorem of homomorphisms for
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modules that any homomorphism η can be factored as ηv
where v is the natural homomorphism of M onto M = M/ker η
and η is the induced monomorphism of M into M′ (η:M →
M′). If η is surjective so is η, and η is then an isomorphism.
Thus any homomorphic image of M is isomorphic to a
quotient module.

The results in sections 1.9 and 1.10 on group homomorphisms
carry over to modules. It is left to the reader to check this; we
shall feel free to use the corresponding module results when
we have need for them.

The analogue for modules of cyclic groups are cyclic
modules. Such a module is generated by a single element and
thus has the form M = Rx = {ax\a R}where x M. The role
played by the infinite cyclic group ( , +, 0) is now taken by R
as R-module. This is generated by 1, since R = R1. If M = Rx
then we have the homomorphism μx of R into Rx which sends
a ax. Clearly this is a group homomorphism and μx(ba) =
(ba)x, and bμx(a) = b(ax). Hence μx(ba) = bμx(a) and μx is
indeed a module homomorphism of R. Evidently this is
surjective and hence M = Rx ≈ R/ker μx. Now ker μx = {d
R|dx = 0} and, being a submodule of R, it is a left ideal of R.
We shall call this the annihilator of x (in R) and denote it as
ann x. In this notation we have the following formula for a
cyclic module:

If ann x = 0 we have Rx ≈ R. In the special case R = we
have either x ≈ R, or ann x = (n) where n > 0 and is the
smallest positive integer such that nx = 0. Clearly this is the
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order of the element x and of the cyclic group x . Thus ann
x for an element x of a module can be regarded as a
generalization of the order of an element of a group. For this
reason ann x is sometimes called the order ideal of the
element x.

Now let M and N be modules and let Hom(M, N) (or
HomR(M, N)) denote the set of homomorphisms of M into N.
This set can be made into an abelian group by defining η + ζ
for η, ζ Hom(M, N) by (η + ζ)(x) = η(x) + ζ(x) and 0 by 0(x)
= 0 (the zero element of N). The verification that η + ζ, 0
Hom(M, N) and that (Hom(M, N), +, 0) is an abelian group
requires only one step more than the corresponding
verification that the endomorphisms of an abelian group form
an abelian group (p. 160). This is that (η + ζ(ax) = a((η +
ζ)(x)), which is clear, since (η + ζ)(ax) = η(ax) + ζ(ax) = aη(x)
+ aζ(x) and a((η + ζ)(x)) = a(η(x) + ζ(x)) = aη(x) + aζ(x). Now
consider a third module P, and let η Hom(M, N), ζ
Hom(N, P). Then ζη is a homomorphism of the additive
group (M,+,0) into (P, +,0), and since (ζη)(ax) = ζ(η(ax)) =
ζ(aη(x)) = aζ(η(x)) = a((ζη)(x)), ζη Hom(M, P). As in the
special case of End M, we have the distributive laws (ζ1 +
ζ2)η = ζ1η + ζ2η, ζ(η1 + η2) = ζη1 + ζη2 if η, η1, η2,
Hom(M, A) and ζ, ζ1, ζ2 Hom(N, P). It is clear also that lNη
= η = η1M, and if Q is a fourth module, then (ωζ)η = ω(ζη)
for η Hom(M, N), ζ Hom(N, P), ω Hom(P, Q). These
results specialize to the conclusion that (Hom(M, M), + , ·, 0,
1) is a ring. We shall denote this ring as EndRM and call it the
ring of endomorphisms of the module M.

EXERCISES
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1. Determine Hom( , /(n)) and Hom( /(n), ), n → 0 (as
-modules).

2. Determine Hom( /(m), /(n)), m, n →0 (as -modules).

3. Show that Hom( (2), ) ≈ ( (2), +, 0).

4. Prove that for any R and R-module M, Hom(R, M) ≈ (M, + ,
0).

5. Show that EndR M is the centralizer in End M of the set of
group endomorphisms aL, a R.

6. Does aL EndR M?

7. A module M is called irreducible if M ≠ 0 and 0 and M are
the only submodules of M. Show that M is irreducible if and
only if M ≠ 0 and M is cyclic with every non-zero element as
generator.

8. A left (right) ideal I of R is called maximal if R ≠ I and
there exist no left (right) ideals I′ such that R I′ I. Show
that a module M is irreducible if and only if M ≈ R/I where I
is a maximal left ideal of R.

9. (Schur′s lemma.) Show that if M1 and M2 are irreducible
modules, then any nonzero homomorphism of M1 into M2is
an isomorphism. Hence show that if M is irreducible then
EndR M is a division ring.

3.4FREE MODULES AND MATRICES
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Let R be a ring and let R(n)be the set of n-tuples (x1, x2, …,
xn), xi R. As a generalization of the familiar construction of
the n dimensional vector space (n)we introduce an addition,
0 element in R(n)and a multiplication by elements of R in the
following manner:

It is clear that (R(n), +, 0) is an abelian group; this is just a
special case of the direct product construction that we gave on
p. 35. It is immediate also from (11) that the module
conditions 1–4 hold for R(n). Hence R(n)is a module over the
ring R. In the special case n = 1, R(1)is the same thing as R
regarded as left R-module in the usual manner. Put

Then xiei = (0,…, 0, xi,0,…, 0) and

Hence the n elements ei generate R(n)as R-module. Moreover,
by (13), ∑ xiei = 0 implies (x1, x2, …, xn) = 0, which implies
every xi = 0. Equivalently, ∑ xiei

= ∑ yiei implies xi = yi, 1 ≤ i
≤ n. A set of generators having these properties is called a
base. The existence of a base of n elements characterizes R(n)

in the sense of isomorphism. We shall show this by first
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establishing another basic property of R(n)namely, if M is any
module over R and (u1, u2, …, un) is an ordered set of n
elements of M, then there exists a unique homomorphism μ of
R(n)into M sending ei → ui, 1 ≤ i ≤ n. To see this we simply
define μ by

It is clear that this is single valued, and direct verification
shows that it is a module homomorphism. Moreover, we have
= ut for all i and since a homomorphism is determined by its
action on a set of generators (module analogue of Theorem
1.7, p. 60), it is clear that p is the only homomorphism of
R(n)into M sending ei into ui 1 ≤ i ≤ n.

Now suppose the ui constitute a base for M in the sense
defined above. Then im μ, which is a submodule of M,
contains the generators u1 ,…, un. Hence im μ = M. Also, if x
= (x1, …, xn) ker μ then ∑ xiui = 0, so, by the definition of a
base, every xi = 0 and x = 0. Thus ker μ = 0 and so is an
isomorphism. We have therefore shown that the existence of a
base of n elements for a module M implies that M ≈ R(n). In
this case we shall say that M is a free R-module of rank n.

It may happen that there exist distinct integers m and n such
that R(m) ≈ R(n). Examples of R for which this occurs are
somewhat difficult to construct. In fact, for many important
classes of rings one has the familiar result of linear algebra of
invariance of base number. In particular, as we shall now
show, this holds for all commutative rings.

THEOREM 3.4. If R is commutative, R(m) ≈ R(n) implies m =
n.
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Proof. In view of the result on free modules, the statement to
be proved is equivalent to: if M is a module over a
commutative ring R and M has bases of m and of n elements,
then m = n. Thus let {ei|1 ≤ i ≤ n}, {fj|1 ≤ j ≤ m}be bases for
M. Then we have

where the aji, bij R. Substitution now gives

Since the f’s and the e’s form bases we have

where j, j′ = 1, 2,…, m; i, i′ = 1, 2,…, n. Now suppose m < n
and consider the two n × n matrices
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Then (16) is equivalent to the matrix condition BA = 1. Since
R is commutative this implies AB = 1 (Theorem 2.1, p. 96 and
exercise 2, p. 97). However, it is clear from the form of the
matrices A and B that the last n − m rows of AB are 0, so AB ≠
1. This contradiction shows that m ≥ n. By symmetry, n ≥ m,
so m = n.

The foregoing argument shows that if (e1,…, en) and (f1,… ,
fn are bases and fj = ∑n

i=1 ajiei, ei = ∑n
j=1 bijfi,then AB = 1 =

BA for A = (aij), B = (bij)Hence A and B are invertible, that is,
A, B GLn(R), the group of n × n invertible matrices with
entries in R. Conversely, suppose (e1,… , en) is a base and A

GLn(R). Define fj = MM M n
i=1 ajiei 1 ≤ j ≤ n. Then (f1,…,

fn) is also a base. First, we have ∑ bkjfj = ∑n
i, j=1 bkjajiei = ek

since BA = 1. Since the ei generate M, this shows that the fi
also generate M. Next suppose we have a relation ∑ djfj = 0.
Then ∑i, j djajiei = 0 and ∑n

j=1 djaji=0, 1 ≤ i ≤ n. Hence ∑n
i,

j=1 djajibih = 0 for all h. Since AB = 1 this gives dh = 0 for all
h. Hence (f1,…, fn) is a base. This result shows that if we are
given one ordered base (e1,…, en) for a free module over a
commutative ring R, then we obtain all ordered bases (f1,…,
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fn) by applying the matrices A GLn(R) to (ei) in the sense
that we take fj = ∑ aijei, A = (aij).

We now drop the restriction that R is commutative, and we
consider the additive group Hom(R(m) R(n)) of (module)
homomorphisms of R(m) into R(n) for any m, n. To study this
we choose bases (e1,…, em), (f1,…, fn) for R(m) and R(n)

respectively. If η Hom(R(m), R(n)) we tabulate

and call the m × n matrix A = (aij) (m rows and n columns) the
matrix of η relative to the (ordered) bases (e1,…, em), (f1,… ,
fn). The homomorphism η is determined by its matrix relative
to the bases (ei), (fj). For, if we have (17), and if x = (x1 ,…,
xm) = ∑ xiei, then

Thus η is the map

where
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We can express this also in matrix form. In general, if A =
(aij) and B = (bij) are m × n matrices, we define the sum A +
B = (aij + bij): that is, A + B is the matrix whose (i, j)- entry is
aij + bij. If A = (aij) is an m × n matrix and B = (bjk) is an n ×
q matrix, then we define the product P = AB as the m × q
matrix whose (i, k)-entry, 1 ≤ i≤ m, 1 ≤ k ≤ q, is given by the
formula

For example, we have

If we use the definition of the matrix product given by (20)
then we can rewrite (18) and (19) as

The set Mm, n(R) of m × n matrices with entries taken from R
is a group under the addition composition (aij) + (bij) = (aij +
bij)and 0 as the m × n matrix all of whose entries are 0. We
shall now show that this group is isomorphic to
Hom(R(m), R(n)) under the map η → A where A is the matrix
of η relative to the bases (ei), (fj) for R(m) and R(n)

respectively. It is clear that η → A is injective since A
determines η by (21), and also our map is surjective, since if
A is a given matrix in Mm, n(R) we can define vi = ∑n

j=1aijfj.
Then, as we have seen, there exists an η Hom(R(m), R(n))
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such that η(ei) = vi,1 ≤ i ≤ m. Clearly, this η has as its
associated matrix the given matrix A. Hence η → A is
bijective. Now let ζ Hom(R(m), R(n)) and let ζ → B = (bij)
so ζ(ei) = ∑ bijfj.Then (η + ζ)(ei) = η(ei) + ζ(ei) = ∑ j aijfj + ∑ j
bijfi = ∑ j (aij + bij)fj.Thus η + ζ → A + B, and η → A is a
group isomorphism.

Next let ρ Hom(R(n), R(q)) and let (g1,g2,…, gq) be a base
for R(q). Let C be the matrix of ρ relative to the bases (f1, …,
fn), (g1,…, gq) so ρ(fj) = ∑ q

k=1 cjkgk, C = (cjk). As before, let
η Hom(R(m), R(n)) have the matrix A = (aij) relative to and
Then ρη Hom(R(m), R(q)), and

Thus the matrix of ρη relative to (ei), (gk) is AC. We can use
this fact to prove that multiplication of rectangular matrices is
associative, a fact, which, of course, can be established also
directly, as in the special case of square matrices (p. 94). We
introduce a fourth free module R(s) with base (h1) and let τ
Hom(R(q), R(s)). Then τ(ρη) = (τρ)η Hom(R(m), R(s)). We
shall now denote the matrix of any homomorphism we are
considering relative to the bases we have chosen by putting a
superscript * after the symbol for the map, e.g., η* = A, ρ* =
C. Then we have (ρη)* = η*ρ* and hence η*(ρ*τ*) = η*(τρ)*
= (τ(ρη))* = (ρη)*τ* = (η*ρ*)τ*. Since η*, ρ* and τ* can be
taken to be any m × n, n × q, q × s matrices this proves
associativity for arbitrary matrix multiplications. In the same
way one can establish the distributive laws: if A, A1,A2 Mm,
n(R) and C, C1, C2 Mn, q(R) then (A1 + A2)C = A1C + A2C
and A(C1 + C2) = AC1 + AC2.
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In the special case of EndR R(n) = Hom(R(n), R(n)) our result
gives an anti-isomorphism η → η* = A of EndR R(n) with the
ring of matrices Mn(R) ( = Mn, n (R)). Here A is the matrix of
η relative to the base (ei): that is, if η(ei) = ∑ aijej then A =
(aij). If R is commutative we have the anti-automorphism A
→t A (the transpose of A) in the matrix ring Mn(R) (see p.
111). Combining this with the anti-isomorphism η → η* = A
we obtain an isomorphism η →t A of End RR(n) with Mn(R).
This is what we used in the example of (2) which we
considered on p. 161.

All of these considerations relating homomorphisms between
free modules and matrices should be familar to the reader in
the special case of matrices associated with linear maps of
vector spaces. The foregoing discussion illustrates the general
principle that in many situations the passage from vector
spaces to free modules is fairly routine.

EXERCISES

1. Let R be arbitrary and let (e1 ,…, en) be a base for R(n)

Show that (f1, …, fm), fj= ∑n
j′=1 ajj′ej′ is a base for R(m) if and

only these exists an n × m matrix B such that AB = 1m, BA =
1n where A = (aij), 1m is the usual m × m unit matrix, and 1n is
the n × n unit matrix. Hence show that R(m) ≈ R(n) if and only
if there exists A Mm, n(R), B Mn, m(R) such that AB = 1m,
BA = 1n.

2. Let η EndR (R(n)) and let A be the matrix of η relative to
the base (e1,…, en). Let fi = ∑ Pijej where P = (pij) GL n(R).
Verify that the matrix of η relative to the base (f1, … fn) is
PAP-1.
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3. Let denote a free right R-module with base (e1, …, en). Let
η EndR Rn and write η(ei) = ∑n

j =1 ejaji. Show that η → A =
(aij) is an isomorphism of EndR Rn with Mn(R).

4. Let R be commutative. Show that if η is a surjective
endomorphism of R(n) then η is bijective. Does the same
conclusion hold if η is injective?

5. Let R be commutative and let M and N be R-modules. If a
R and η Hom(M, N) define aη by (aη)(x) = a(η(x)) = η(ax).
Show that aη Hom(M, N) and that this action of R on
Hom(M, N) converts the latter into an R-module. Show that
Hom(R(m), R(n)) is free of rank mn.

6. Let R be commutative and let (e1, …, en) be a base for R(n).
Put fi = ∑ aijej where A = (aij) Mn(R). Show that the fI form
a base for a free submodule K of R(n) if and only if det A is
not a zero-divisor. Show that for any x = x + K in R(n)/K one
has (det A)x = 0. (Hint: It suffices to show that (det A) ei = 0
for 1 ≤ i ≤ n.)

3.5DIRECT SUMS OF MODULES

We shall now define the module analogue of the direct
product of monoids or of groups (p. 35). Let M1, M2, …, Mn
be modules over the same ring R and let M be the product set
M1 × M2 × … × Mn of n-tuples (x1, x2, …, xn) where xi Mi.
As in the special case of the free module R(n), we introduce an
addition, a 0 element, and a multiplication by elements in R
by
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These define a module structure on M. Then M with this
structure is called the direct sum of the modules Mi and is
denoted either as M1 ⊕ M2 ⊕ … ⊕ Mn or as ⊕ n

1 Mi.

A basic homomorphism property of ⊕ n
1 Mi is the following

result. Suppose we are given homomorphisms ηi 1 ≤ i ≤ n, of
Mi into a module N. Then we
have the map η of ⊕ Mi, into N defined by

Since

and

η is a homomorphism of ⊕ Mt into N. We shall use this
homomorphism in the proof of the first part of the following
theorem, which characterizes by internal properties the direct
sum of modules.
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THEOREM 3.5. Let M be a module and suppose M contains
submodules M1, …, Mn having the following properties:

(i) M = M1 + M2 + … + Mn(that is, M is generated by the Mi

(ii) for every i,1 ≤ i ≤ n, we have

Then the map

is an isomorphism of ? Mi with M. Conversely, in ? Mi let

Then M′i is a submodule of ? Mi isomorphic to Mi and the
conditions (i), (ii) hold for these submodules of ⊕ Mi

Proof. Suppose the submodules Mi of M satisfy (i) and (ii),
and consider the map i:(x1, …, xn) → ∑ n

1xi. Since this is just
the map η defined by the isomorphisms xi → xi of Mi onto Mi
as above, i is a homomorphism of ⊕ Mi into M. Now i is
surjective; for, if x is any element of M we can write x = ∑ xi,
xi Mi
since M = ∑ Mi by condition (i) and ∑ Mi is the set of
elements of the form ∑ xi, xi Mi. Then ι(x1, …, xn) = ∑ xi =
x. To see that ι is injective it suffices to show that its kernel is
0, that is, to prove that if ι(x1,…, xn) = ∑ n

1 xi = 0 then every
xi = 0. This is clear from (ii) since ∑ n

1xi = 0 gives – xi = ∑ j≠i
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xj, hence xi Mi (∑ j≠i Mj) = 0. Thus every xi = 0. We
have now proved that l is an isomorphism. Conversely,
consider ⊕ Mi. It is immediate that the map

is a monomorphism of Mi into
M. The image is M′i, so M′i is a submodule of M isomorphic
to Mi. Since

(i) holds for the submodules M′i of M. Since ∑ j≠i M′j is the
set of elements of the form (x1, …, xi-1, 0, xi + 1, …, xn) it is
clear also that (ii) holds. This completes the proof.

This theorem permits us to identify a module M with ⊕ Mi if
the Mi are submodules of M satisfying the conditions (i) and
(ii). In this case we shall say that M is the (internal) direct
sum of its submodules Mi, and we shall also write M = ⊕ Mi
or M = M1 ⊕ M2 ⊕ … ⊕ Mn whenever conditions (i) and (ii)
hold for the submodules Mi.

If a set of submodules Mi, 1 ≤ i ≤ n, satisfy condition (ii) then
we shall say that these submodules of M are independent. It is
immediate that this is the case if and only if every relation of
the form ∑ n

1xi = 0, xi Mi, implies every xi = 0. Also the Mi
are independent if and only if every relation ∑ n

1 xi = ∑ n
1 yi,

xi, yi Mi, forces xi = yi, 1 ≤ i ≤ n. It should be noted that the
independence conditions are stronger than the condition Mi
Mj = 0, i ≠ j, and are even stronger than the set of conditions
Mi (∪j≠i Mj) = 0. For example, in the two dimensional
vector space (2) over , let
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Pictorially, we have

that is, X is the set of vectors having end points on the x-axis,
Y is the set having end points on the y-axis and Z is the set
having end points on the 450 line. Clearly, the intersection of
any one of these lines with the union of the other two is the
origin. On the other hand, X + Y = (2), so (X + Y) Z = Z.
Hence X, Y, and Z are not independent.

The criteria in terms of elements for independence of
submodules have the following consequences:

I. Let M1, …, Mn be independent submodules of M. Put N1 =
M1 + … + Mr1, N2 = Mr1 + 1 + … + Mr1+r2, N3 = Mr1 + r2+ 1
+ … + Mr1+r2+r3, etc. Then N1, N2, … are independent.

II. Let M1,…, Mn be independent and suppose Mi = Mi1 ⊕
Mi2 ⊕ … ⊕ Miri, 1 ≤ i ≤ n, where the Mij are submodules of
Mi. Then the submodules M11,…, Mlr1, M21, …, M2r2,…,
Mn1,…, Mnrn are independent.
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The proof is left to the reader. An immediate consequence of
these results is

THEOREM 3.6. Let M = ⊕ Mi , Mt a submodule (that is, M is
the direct sum of the submodules Mi). Put N1 = M1 + … +
Mr1, N2 = Mr1 + 1 + … + Mr1+r2, etc. Then M = ⊕ Nj. Also, if
Mi = ⊕ Mij, 1 ≤ i ≤ n, 1 ≤ j ≤ ri, then M = ⊕ Mij.

We omit the proof of this also.

EXERCISES

1. Let V be a vector space over a field F. Show that the
non-zero vectors xi, 1 ≤ i ≤ n, of V are linearly independent if
and only if the subspaces Fxi are independent. Show also that
the xι form a base if and only if V = ⊕ Fxi.

2. Let M be a module, and Mi, 1 ≤ i ≤ n, be submodules such
that M = ∑ Mi and the “triangular” set of conditions

hold. Show that M = ⊕ Mi.

3. Show that /(pe), p a prime, e > 0, regarded as a -module
is not a direct sum
of any two non-zero submodules. Does this hold for ? Does
it hold for /(n) for other positive integers n?
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4. Show that if M = M1 ⊕ M2 then M1 ≈ M/M2 and M2 ≈
M/M1

5. Let M and N be R-modules, f:M → N, g:N → M R-module
homomorphisms such that fg(y) = y for all y N. Show that
M = ker f ⊕ Im g.

3.6FINITELY GENERATED MODULES OVER A P.I.D.
PRELIMINARY RESULTS

We are now ready to turn our attention to the main objective
of this chapter: the study of finitely generated modules over a
principal ideal domain and the applications of this theory to
finite abelian groups and to linear transformations. Let M be a
module over a p.i.d. D which is generated by a finite set of
elements x1, x2, …, xn, so M ≈ ∑ n

1 Dxi. To study M it is
natural to introduce the free module D(n) with base (e1, e2, …,
en) and the epimorphism η: ∑ n

1 aiei → ∑ n
1 aixi, ai D, of

D(n) onto M. Then M ≈ where K = ker η A first result

we shall need is that K is finitely generated. This will follow
from the following stronger result.

THEOREM 3.7. Let D be a p.i.d. and let D(n) be the free
module of rank n over D. Then any submodule K of D(n) is
free with base of m ≤ n elements.

Proof. Since we are not excluding K = 0 we must adopt the
convention that the module consisting of 0 alone is “free of
rank 0” (with vacuous base). Of course, the result is trivial if
n = 0. Now suppose n > 0 and assume the result holds for any
submodule of a free module with a base of n - 1 elements
over D. Let D(n-1) be the submodule generated by e1, …, en.
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This is free with (e2,…, en) as base; hence, if K ? D(n-1) then
the result holds. Thus we may assume K ? D(n-1]. Consider
the subset I of D of elements b for which there exists an
element of the form be1 + y K where y D(n-1). This is an
ideal in D and since K ? D(n-l), I≠0. Hence I = (d) with d ≠ 0
and we have an element f1 = de1 + y1 K where y1
D(n-1). Now consider L = K D(n-1). This is a submodule of
D(n-1), so, by induction, it has a base (f2, …, fm) of m – 1 ≤ n
– 1 elements (where we may have m – 1 = 0). We shall now
show that (f1, f2, …, fm) is a base for K and this will prove the
theorem. First, let x K. Then x = be1 + y where b I = (d)
and y D(n-1). Then b = k1 d and so x-k1f1 = k1de1 + y –
k1(de1 + y1) = y - k1y1 L = K D(n-1). Hence x – k1f1 =
∑m

2 kjfj where the kj D and x = ∑ m
1kifi. Thus the fi

generate K. Next suppose ∑ m
1kifi = 0. Then k1de1 + k1y1 + ∑

m
2 kjj = 0. Since y1 and the fj,

j ≥ 2, are in D(n-1), this gives a relation k1de1 + ∑ n
2 lkek = 0

with lk D. Hence k1d = 0 and since d ≠ 0, K1 = 0. Then ∑
m

2kjfj = 0 and since (f2, …, fm) is a base for L, every kj = 0.
Thus (f1, f2, …, fm) is a base for X.

Since any field F is a p.i.d. (whose only ideals are (0) and
(1)), the foregoing theorem can be specialized to the case in
which D = F is a field. Then it reduces to the following well
known result of linear algebra. If V is an n dimensional vector
space over F (that is, V is a free F-module of rank n) then any
subspace of V is finite dimensional with dimensionality m ≤
n.

We return now to M ≈ D(n)/K and we apply Theorem 3.7 to
conclude that K has a base of m ≤ n elements. The method we
are going to apply will work just as well if we have a finite set
of generators, and as a practical matter it is sometimes useful
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not to have to resort to a base. Hence we assume we have a
set of generators f1, f2, …, fm for the submodule K where m
may exceed n. We now express these generators in terms of
the base (e1, e2, …, en) in the form

The m × n matrix A = (aki) of these relations is called the
relations matrix of the ordered set of generators (f1, …, fm) in
terms of the ordered base (e1, …, en). Of course, there is
nothing special about our choices of the base (ei) for D(n) and
the generators (fk) for K. This observation suggests that we
see what happens when we change these. Now we know that
any other base for D(n) will have the form (e′1, …, e′n) where
e′i = ∑ n

j=1pijej where P = (pij) is an invertible matrix in the
matrix ring Mn(D). We can’t make such a sweeping statement
about sets of generators for the submodule K. However, it is
clear that if Q = (qkl) is an invertible matrix in Mm(D) with
inverse Q-1 = (q*kl) then (f′1, … , f′m), where f′k = ∑ m

l = 1
qklf1 is another set of generators for k. For, it is clear that the
f′k K and ∑ k q*rkf′k = ∑k, l q*rkqklf1 = fr so the f′s are in the
submodule generated by the f′’s. Hence the f′’s generate K.
What is the relations matrix of the f′’s relative to the e’’s? We
have

where (p*ij) = P-1. Hence the new relations matrix is
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We are now led to the problem of making the “right” choices
for Q and P to achieve a simple “normal” form for the
relations which will yield important information on M ≈
D(n/K. Since the matrix problem thus posed is of interest in its
own right we shall treat it separately in the next section before
returning to our analysis of D(n)/K.

EXERCISES

1. Find a base for the submodule of (3) generated by f1 = (1,
0, – 1), f2 = (2, – 3, 1), f3 = (0, 3, l), f4 = (3, 1, 5).

2. Find a base for the submodule of [λ](3) generated by f1 =
(2λ – 1, λ, λ2 + 3), f3 = (λ, λ,λ2), f3 = (λ+l,2λ, 2λ2 – 3).

3. Find a base for the -submodule of (3) consisting of all
(x1, x2, x3) satisfying the conditions x1 + 2x2 + 3x3 = 0, x1 +
4x2 + 9x3 = 0.

3.7EQUIVALENCE OF MATRICES WITH ENTRIES IN A
P.I.D.

Two m × n matrices with entries in a p.i.d. D are said to be
equivalent if there exists an invertible matrix P in Mm(D) and
an invertible matrix Q in Mn(D) such that B = PAQ. It is clear
that this defines an equivalence relation in the set Mm, n(D) of
m × n matrices with entries in D. We now consider the
problem of selecting among the matrices equivalent to a given
matrix A one that has a particularly simple “normal” form.
The result we shall prove is the following
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THEOREM 3.8. If A Mm, n(D), D a p.i.d., then A is
equivalent to a matrix which has the “diaqonal” form

diag{d1, d2, …, dr, 0, …, 0}

where the di ≠ 0 and didj if i ≤ j.

We shall obtain the matrices P and Q which transform A into
a matrix of the form (23) as products of matrices of some
special forms which we shall now define. Without specifying
the size (m x m or n x n) we introduce first certain invertible
(square) matrices with entries in D), which we shall call
elementary, and consider the effects of left or right
multiplications by these matrices.

First, let b D and let i ≠ j. Put Tij(b) = 1 + beij where eij is
the matrix with a lone 1 in the (i, j) place, O’s elsewhere.
Tij(b) is invertible since

Next, let u be an invertible element of D and put Di(u) = 1 +
(u – l)eii so Di(u) is diagonal with ith diagonal entry u and
remaining diagonal entries 1. Then Di(u) is invertible with

327



Di(u)-1 = Di(u-1). Finally, let Pij = 1 – eii – ejj + eij + eij. Also
this matrix is invertible since P2

ij = 1.

It is easy to verify that

I. Left multiplication of A by the m xm matrix Tij(b) yields a
matrix whose ith row is obtained by multiplying the jth row
of A by b and adding it to the ith row of A, and whose
remaining rows are the same as in A.

Right multiplication of A by the n × n matrix Tij(b) gives a
matrix whose jth column is b times the ith column of A plus
the jth column of A, and whose remaining columns are
identical with those of A.

II. Left multiplication of A by the m × m matrix Di(u)
amounts to the operation of multiplying the ith row of A by u,
and leaving the other rows as in A.

Right multiplication of A by the n × n matrix Di(u) amounts to
multiplying the ith column of A by u, and leaving the
remaining columns unaltered.

III. Left multiplication of A by the m × m matrix Pij amounts
to interchanging the ith and jth rows of A, and leaving the
other rows as in A.

Right multiplication of A by the n × n matrix Pij amounts to
interchanging the ith and jth columns of A, and leaving the
other columns unchanged.

We call the matrices Tij(b), Di(u), Pij elementary matrices of
types I, II, and III respectively. Left (right) multiplication of A
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by one of these will be called an elementary transformation
on the rows (columns) of the corresponding type. Such
elementary transformations yield matrices equivalent to A.

We now proceed to the

Proof of Theorem 3.8. We shall first give a proof in the
special case in which D is Euclidean with map 5 of D into
(p. 148). If A = 0 there is nothing to prove. Otherwise, let aij
be a non-zero element of A with minimal δ(aij). Elementary
row and column transformations will bring this element to the
(1, 1) position. Assume now that it is there. Let k > 1 and alk
= a1lbk + blk, where δ(blk) <
δ(a11). Now subtract the first column times bk from the kth.
This elementary transformation replaces alk by blk. If blk ≠ 0
we obtain a matrix equivalent to A for which the minimum δ
for the non-zero entries is less than that appearing in A. We
repeat the original procedure with this new matrix. Similarly,
if ak1 = a11bk + bkl, where bkl ≠ 0 and δ(bkl) < δ(a11) then an
elementary transformation of type I on the rows gives an
equivalent matrix for which the minimum 5 for the non-zero
entries has been reduced. Since the “degree” δ is a
non-negative integer a finite number of applications of this
process yields an equivalent matrix B = (bij) in which b11\blk
and b11|bk1 for all k. Then elementary transformation on the
rows and columns of type I gives an equivalent matrix of
form
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We can also arrange to have b11 | ckl for every k, l. For if bll
ckl then we add the kth row to the first obtaining the new first
row (b11, ck2, …, ckl, …, ckn). Repetition of the first process
replaces ckl by a non-zero element with a δ less than that of
bl1 A finite number of steps of the sort indicated will then
give a matrix (24) equivalent to A in which b11 ≠ 0 and b11|ckl
for every k, l. We now repeat the process on the submatrix
(ckl). This gives an equivalent matrix of the form

in which c22 dpq for all p, q. Moreover, the elementary
transformations on the rows and columns of (ckl) which yield
(25) do not affect the divisibility condition by bl1 Hence b11 |
c22 and b11|dpq. Continuing in this way we obtain the
equivalent diagonal matrix diag {d1, d2, …, dr, 0, …, 0} with
di|dj for i ≤ j (d1 = bll, d2 = c22, etc).

The argument in the general case is quite similar to the
foregoing. Here we use induction on the length of a non-zero
element of D in place of δ(a). We define the length l(a) of a ≠
0 to be the number of prime factors occurring in a
factorization a = p1 p2 … pr, pi primes. We also use the
convention that l(u) = 0 if u is a unit. In addition to the
elementary transformations that sufficed in the Euclidean case
we shall need to use also multiplications by matrices of the
form
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where is invertible. As in the previous case we may
assume that a11 ≠ 0 and l(a11) ≤ l(aij) for every aij ≠ 0.
Assume all alk. Interchanging the second and kth column we
may assume a11 a12. Write a = al1, b = al2, and let d = (a,
b) so l(d) < 1(a). There exist elements x, y D such that ax +
by = d. Put s = bd−1, t = −ad−1. Then we have the matrix
equation

which implies that both matrices are invertible (since D is
commutative). Then (26) is invertible. Multiplying A on the
right by this gives the matrix whose first row is (d, 0, a13, …,
a1n) and l(d) < l(a11). Similarly, if a11 akl for some k,
elementary transformations together with left multiplication
by a suitable matrix (26) yields an equivalent matrix in which
the length of some non-zero element is less that l(a11). In this
way we can arrange to have a11 | alk and a11 | akl for all k.
Elementary transformations then give a matrix of the form
(24). The rest of the argument is essentially the same as in the
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Euclidean case. The only difference is that we continue to
reduce the length rather than the degree δ.

A matrix equivalent to A having the diagonal form given in
Theorem 3.8 is called a normal form for A. The diagonal
elements of a normal form are called invariant factors of A.
Clearly any of these can be replaced by an associate (product
by a unit). We shall now show that this is the only alteration
which can be made in the invariant factors, that is, these are
determined up to unit multipliers. We shall obtain this result
by deriving formulas for the invariant factors in terms of the
elements of A. We recall that the matrix A is said to be of
(determinantal) rank r if there exists a non-zero r-rowed
minor in A but every (r + l)-rowed minor of A is 0. Since the
i-rowed minors are sums of products of (i − l)-rowed minors
by elements of D it is clear that if the rank is r, then for every
i, 1 ≤ i ≤ r, A has non-zero i-rowed minors. We now have the
following result, which gives formulas for the invariant
factors.

THEOREM 3.9. Let A be an m × n matrix with entries in a
p.i.d. D and suppose the rank of A to be r. For each i ≤ r let Δi
be a g.c.d. of the i-rowed minors of A.

Then any set of invariant factors for A differ by unit
multipliers from the elements

(Note: It is clear that Δi = 0 and Δi-1)
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Proof. Let Q = (qkl) be an m × m matrix with entries in D.
Then the (k, i)-entry of QA is ∑j qkjaji. This shows that the
rows of QA are linear combinations with coefficients in D of
the rows of A. Hence the i-rowed minors of QA are linear
combinations of the i-rowed minors of A and so the g.c.d. of
the i-rowed minors of A is a divisor of the g.c.d. of the
i-rowed minors of QA. Similarly, since the columns of AP, P

Mn(D), are linear combinations of the columns of A, the
g.c.d. of the i-rowed minors of A is a divisor of the g.c.d. of
the i-rowed minors of AP. Combining these two facts and
using symmetry of the relation of equivalence, we see that if
A and B are equivalent the g.c.d. of the i-rowed minors of A
and B are the same. Now let B = diag{d1,d2, …, dr, 0, …, 0}
be a normal form for A. Then the divisibility conditions di | dj
if i < j imply that a g.c.d. of the i-rowed minors of B is Δi =
d1d2 … di. Evidently the assertion of the theorem follows
from this.

An immediate consequence of Theorem 3.9 is that the
invariant factors are determined up to unit multipliers and two
m × n matrices are equivalent if and only if they have the
same invariant factors.

EXERCISES

1. Obtain a normal form for the integral matrix
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2. Obtain a normal form for the matrix

in M4( [λ]), λ an indeterminate. Also find invertible matrices
P and Q such that PAQ is in normal form.

3. Determine the invariant factors of

by using the formulas (27).

4. Prove that if D is Euclidean then any invertible matrix in
Mn(D) is a product of elementary matrices. Show also that
any elementary matrix of type III is a product of elementary
matrices of types I and II. (Consider the case of 2 × 2 matrices
first.) Hence prove that if D is Euclidean any invertible matrix
in Mn(D) is a product of elementary matrices of types I and
II.4

5. Prove that if F is a field any matrix in Mn(F) of
determinant 1 is a product of elementary matrices of type I.

6. Let D be a p.i.d. and ai D, 1 ≤ i ≤ n. Let d be a g.c.d. of
the elements ai. Show that there exists an invertible matrix Q
in Mn(D) such that
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7. Show that if the elements a11, a12, …, a1n are relatively
prime then there exist akj D, 2 ≤ k ≤ n, 1 ≤ j ≤ n such that
the square matrix (aij) is invertible in Mn(D) (D a p.i.d.).

8. Let A Mn(D) where D is Euclidean and assume det A ≠ 0.
Show that there exists an invertible P Mn(D) such that PA
has the triangular form

where the di ≠ 0 and for any i, δ(bji) < δ(di).

9. Show that if A Mm,n(D), D a p.i.d., then A and t A have
the same invariant factors.

10. Let R be a ring and define the elementary matrix Tij(a), i ≠
j, a R, as above. Verify the following relations:

These are called the Steinberg relations.

3.8STRUCTURE THEOREM FOR FINITELY
GENERATED MODULES OVER A P.I.D.
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We are now ready to prove the

FUNDAMENTAL STRUCTURE THEOREM FOR
FINITELY GENERATED MODULES OVER A P.I.D. If M
(≠0) is a finitely generated module over a p.i.d. D, M is a
direct sum of cyclic modules: M = Dz1 ⊕ Dz2 ⊕ … ⊕ Dzs
such that the order ideals ann zi satisfy

Remark. If b ann z, b(az) = a(bz) = 0 for any a D. Hence
ann az ⊃ ann z. This implies that any two generators of a
cyclic D-module have the same annihilator. Thus ann z is
independent of the choice of the generator z of Dz.

Proof. We have seen that if x1, x2, …, xn is a set of generators
for M we have the epimorphism η of the free module D(n)

with base(ei) 1 ≤ i ≤ n, onto M sending ei → xi. Then M ≅
D(n)/K and K is generated by a finite set of elements f1, …, fm
such that fj = ∑ ajiei. Thus we have the relations matrix A =
(aji) Mm,n(D). We now replace the base (ei) by (e'i) where

invertible in Mn(D), and we replace
the set of generators fk ,1 ≤ k ≤ m, by f'1, …, f'm where

and Q = (qkl) is invertible in Mm(D). Then,
as we saw in section 3.6, the new relations matrix is QAP-1.
By Theorem 3.8, we can choose P and Q so that QAP-1 =
diag{d1, …, dr, 0, …, 0} where the d’s are ≠ 0 and di|dj if i ≤
j. This means that the relations connecting the generators f'k
of K to the base (e'j) are
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Now put Then y1, y2, …, yn is another
set of generators of M which are the images of the base (e'j)
under the epimorphism η of D(n) into M. Since die'i= f'i K
for 1 ≤ i ≤ r, we have diyi = 0 for the corresponding yi. Now

suppose we have a relation where the bi D.

Then and hence we have

Since (e'1, e'2, … e'n) is a base for
D(n) this implies that bi = cidi, 1 ≤ i ≤ n. But then biyi = cidiyi
= 0. Thus we have shown that if ∑ biyi = 0 then every biyi = 0.
Hence we have

Moreover, we have the additional fact that if biyi = 0 then bi
(di). Since diyi = 0 we have ann yi = (di). The divisibility
conditions on the di evidently
give the relations

Now it is clear that if di is a unit then diyi = 0 implies yi = 0.
Hence this element can be dropped from the set of generators
{y1, y2, …, yn}. Suppose d1, …, dt are units and that dt+1,
dt+2, … are not units, and put z1 = yt+1, z2 = yt+2, …, Zs = yn
where s = n − t. Then we have M = Dz1 ⊕ Dz2 ⊕ … ⊕ Dzs
where every Dzj ≠ 0 and the conditions (28) hold.

EXERCISES
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1. Determine the structure of (3)/K where K is generated by
f1 = (2, 1, −3), f2 = (1, −1, 2).

2. Let D be the ring of Gaussian integers [ ]. Determine
the structure of D(3)/K where K is generated by f1 = (1, 3, 6),

f2 = (2 + 3i, −3i, 12 −18i), f3 = (2 − 3i, 6 + 9i, −18i), i =
Show that M = D(3)/K is finite (of order 352512).

3. Let M be the ideal in [x] generated by 2 and x. Show that
M is not a direct sum of cyclic [x]–modules.

The remaining exercises are designed to develop a proof of
the fundamental structure theorem which does not depend on
the normal form of matrices (Theorem 3.8). In these M is a
finitely generated module over a p.i.d. D. We use the notion
of length of an element of D as defined in section 3.7,
extending this to 0 by putting l(0) = ∞, which we regard as
greater than any integer. Also, if x M, we define l(x) = 1(d)
where ann x = (d).

4. Let N be a submodule of M, x M. Show that: (i) ann (x +
N) ⊃ ann x and ann (x + N) ann x if and only if Dx ∩ N ≠ 0,
(ii) l(x + N) ≤ l(x) and l(x + N) < l(x) if and only if Dx ∩ N ≠
0.

5. Let x1, x2, …, xn be a set of n (≥ 1) generators for M and let
where the greatest common divisor (a1, a2, …, an)

= 1. Show that there exists a set of n generators y1, y2, …, yn
with y1 = y (cf. exercise 7, p. 186). (Sketch of proof. Clear for
n = 1. For n = 2, let b1 b2 D satisfy a1b1 + a2b2 = 1. Then
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y1 = y, y2 = − b2x1 + b1x2 generate M. For n > 2, put d = (a2,
…, an). The case d = 0 (hence a2 = … = an = 0) is trivial, so
assume d ≠ 0 and write aj = da'j. Then (a'2, … , a'n) = 1, so,
by induction, one has a set of generators y3,
…,yn for Also (a1, d) = 1 and y = a1x1 + dy2, so
the case n = 2 shows that there is a z2 in P = Dx1 + Dy2 such
that D + Dz2 = P. Then y, z2, y3, …, yn generate M.)

6. Let x1, x2, …, xn be a set of generators for M such that (i) n
is minimal, (ii) l(x1) is minimal for all sets of n generators for
M. Show that M = Dx1 ⊕ N where and that ann
x1 ⊃ ann y for any y N. This will prove the structure
theorem by induction on n. (Sketch of proof. If Dx1 ∩ N ≠ 0,
l(x1 + N) < l(x1) by exercise 4. Then ann (x1 + N) = (a1) ≠ 0
and a1x1 + a2x2 + ··· + anxn = 0 for ai D. Put d = (a1, ···,
an), ai = da'i. Then (a´1, …, a´n) = 1, so by exercise 5 we

have a set of generators . We have dy1 =
0 and l(y1) ≤ 1(d) ≤ l(a1) ≤ l(x1) contrary to the choice of x1,
…, xn. To show ann x1 ⊃ ann y for y N it suffices to prove
ann x1 ⊃ ann xj, j > 1 and, by symmetry, it is enough to show
ann x1 ⊃ ann x2. Suppose not and let ann x1 = (d1) ann x2 =
(d2). Then d2 ≠ 0, so (d1, d2) = d ≠ 0 and l(d) < l(d1) = l(x1).
Also di = dd´i and (d´i, d´2) = 1 so we have a set of generators
y1, y2 …, yn with y1 = d´1x1 + d´2x2. Then l(y1) < l(x1), a
contradiction.)

3.9 TORSION MODULES AND PRIMARY
COMPONENTS.INVARIANCE THEOREM

The decomposition of a finitely generated module over a
p.i.d. given by the fundamental structure theorem is generally
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not unique. For example, if M is free, then any base (e1, …,
en) determines such a decomposition, M = De1 ⊕ … ⊕ Den
with ann ei = 0, and changing the base to another one (f1,
…,fn) where the f’s are not merely multiples of the e’s in
some order gives a second direct decomposition, M = Df1 ⊕
… ⊕ Dfn, different from the first. However, there is
something which is invariant about the various
decompositions of M into cyclic submodules whose order
ideals satisfy the inclusion relations stated in the structure
theorem: namely, the sequence of order ideals ann z1, ann z2,
… is the same for any two such decompositions. Our next
main objective is to prove this. However, before launching
into the proof it will be useful to introduce the concept of the
torsion submodule of a module over a p.i.d. and to develop
some of its properties. This will facilitate the proof of the
invariance theorem and afford a better insight into the
structure of modules over a p.i.d.

Let M be a finitely generated module over a p.i.d. D, and let
tor M be the subset of elements y M such that ay = 0 for
some a ≠ 0 in D. Then y tor M if and only if ann y ≠ 0. If
aiyi = 0, i = 1, 2, and ai ≠ 0, then a = a1a2 ≠ 0 and a(y1 + y2) =
a2a1y1 + a1a2y2 = 0. This, and the fact that ay = 0 implies
a(by) = b(ay) = 0 shows that tor M is a submodule of M. We
call this the torsion submodule of M and say that M is a
torsion module if M = tor M. Now suppose we have the
decomposition M = Dz1 ⊕ Dz2 ⊕ … ⊕ Dzs, where ann z1 ⊃
ann z2 ⊃ … ⊃ ann zs. Suppose also that ann zi ≠ 0 if i ≤ r and
ann zi = 0 if r < i ≤ s. Then the zi, i ≤ r, are in tor M so Dz1 +
… + Dzr ⊂ tor M. On the other hand, suppose y = b1z1 + … +
bszs tor M. Then there exists an a ≠ 0 such that 0 = ay =
ab1z1 + … + abszs = 0. Then every abizi = 0, which implies
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that abi = 0 if i > r. Since a ≠ 0 this gives bi = 0, i > r, and y =

+ … + Dzr Thus we have

It is clear also that Dzr+1 + … + Dzs = Dzr+1 ⊕ … ⊕ Dzs is a
free submodule of M, and M = tor M ⊕ (Dzr+1 + … + Dzs).
We therefore have the following

THEOREM 3.10 Any finitely generated module over a p.i.d.
is a direct sum of its torsion submodule and a free submodule.

If p is a prime we define the p-component Mp of M to be the
subset of M of elements y such that pky = 0 for some k .
This is contained in tor M and it is a submodule. If p1, p2, …,
ph are distinct primes then the corresponding pi-components
are independent. To see this it is enough to show that Mp1 ∩
(Mp2 + … + Mph) = 0. Hence let y be in this intersection.
Then y = y2 + … + yh, yi MP1, and pi

k1yi = 0 for some ki
. Hence p2

k2 … ph
khy = 0. On the other hand, we have p1k1y

= 0 since y Mp1. Then p1
k1 ann y and p2

k2 … ph
kh ann

y. Hence 1 = (p1
k1, p2

k2 … ph
kh) ann y and so y = 0. We

shall show next that “almost all”, meaning all but a finite
number, of the p-components are 0 and tor M is a direct sum
of these p-components. This will follow from the first part of
the following.

LEMMA. (1) If M = Dx where ann x = (d) and d = gh with
(g, h) = 1, then M − Dy ⊕ Dz where ann y − (g) and ann z −
(h). (2) If M − Dy + Dz where ann y = (g) ann z = (h), and (g,
h) = 1, then M = Dx where ann x = (gh).
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Proof. (1) Put y = hx, z = gx. Then Dy + Dz contains x since
there exist a, b D such that ah + bg = 1; hence x = (ah +
bg)x = a(hx) + b(gx) = ay + bz. Since M = Dx it follows that
M = Dy + Dz. If u Dy ∩ Dz, gu = 0 and hu = 0 since gy =
ghx = 0 and hz = hgx = 0. Then u = 1u = ahu + bgu = 0.
Hence Dy ∩ Dz = 0 and M = Dy ⊕ Dz. It is clear also that ann
y = (g) and ann z = (h). (2) As in (1), we have M = Dy ⊕ Dz,
and if we put x = y + z, then cx = 0 implies cy = 0 = cz. Then c
is a multiple of g and of h, hence, of their least common
multiple gh. Since (gh)(y + z) = 0 we have ann x = (gh). Also,
if ah + bg = 1 then y = ahy = ah(y + z) = ahx. Hence y Dx.
Then z = x − y Dx and so Dx = M.

It follows by induction from the first part of this lemma that if
d = p1

e1p2
e2 … pt

et where the pi are distinct primes and ann x
= (d), then M = Dx1 ⊕ … ⊕ Dxt
where ann xi = (Pi

ei). This shows that any cyclic torsion
module is a direct sum of cyclic modules which are primary
in the sense that their order ideals have the form (pe), p a
prime. We can use this to prove

THEOREM 3.11. Let M be a finitely generated torsion
module over a p.i.d. Then the primary component Mp = 0 for
all but a finite number of primes: say, p1, p2, …, ph, and M =
MP1 ⊕ MP2 ⊕ … ⊕ MPh.

Proof. Let x1, …, xn be a set of generators, so M = Dx1 + … +
Dxn, and let p1, …, ph be the distinct prime factors of all the
di such that ann xi = (di). Then Dxi ⊂ Mp1 + … + Mph and so
M = Mp1 + … + MPh. Since the Mpi. are independent we have
M = MPl ⊕ … ⊕ MPh. Now let p be a prime different from all
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the pi, 1 ≤ i ≤ h. Then Mp = Mp ∩ (MP1 + … + MPh) = 0.
Hence every Mp, p ≠ pi, is 0.

We now combine the fundamental structure theorem with the
decomposition of a cyclic torsion module into primary ones.
This gives the following result:

THEOREM 3.12. Any finitely generated torsion module is a
direct sum of primary cyclic modules.

Evidently we obtain this result by writing M as a direct sum
of cyclic modules as in the main theorem. Then, as we saw
above, each of these is a direct sum of primary cyclic
submodules. Consequently M is such a direct sum. More
precisely, if M = Dz1 ⊕ … ⊕ Dzr and ann zi = (di) satisfies
ann z1 ⊃ ann z2 ⊃ … ⊃ ann zr then d1|d2| … |dr. Then we may
assume that di = p1

e1i … ph
eht where the displayed primes are

distinct and ej1 ≤ ej2 ≤ … ≤ejr, 1 ≤ j ≤ h. Then M is a direct
sum of cyclic modules with annihilators (pj

eJt). We remark
also that if the prime powers pj

eJt are given then we can
reconstruct the di: the last one, ds, is the least common
multiple of all the prime powers that occur. Striking out the
prime power factors of ds, then ds-1 is the l.c.m. of the
remaining ones, and so on. For example, if D = and the
prime power factors of the di are 32, 33, 34, 52, 54, 7, 73 then
ds = 345473, ds−1 = 33527, and ds−2 = d1 = 32. We note also
that if we are given a decomposition of M as a direct sum of
primary cyclic submodules, then by forming sums of suitable
primary cyclic submodules as in the second part of the
foregoing lemma we obtain a direct decomposition into cyclic
submodules. In our example let x1, x2, …, x7 be generators of
the sequence of primary direct summands of M. Then Dx3 +
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Dx5 + Dx7 = Dz3, Dx2 + Dx4 + Dx6 = Dz2, Dx1 = Dz1 and ann
zi = (di) satisfy ann z1 ⊃ ann z2 ⊃ ann z3.

We are now ready to prove the

INVARIANCE THEOREM. Let M = Dz1 ⊕ Dz2 ⊕ … ⊕
Dzs = Dw1 ⊕ Dw2 ⊕ … ⊕ Dwt where ann z1 ⊃ ann z2 ⊃ … ⊃
ann zs and ann w1 ⊃ ann w2 ⊃ … ⊃ ann wt and none of the
components are 0. Then s = t and ann zi = ann wi, 1 ≤ i ≤ s.

Proof. I. Reduction to torsion modules. Suppose that ann zi ≠
0 for i ≤ r and = 0 for i > r, and that ann Wj ≠ 0 for j ≤ u and =
0 for j > u. Then

by (30). Also M/tor M ≅ Dzr+l ⊕ … ⊕ Dzs ≅ Dwu+1 ≅ … ≅
Dwt and these are free modules of ranks s − r and t − u
respectively. The theorem on invariance of rank for free
modules over a commutative ring (Theorem 3.4) shows that s
− r = t − u. Thus the number of ann zi = 0 is the same as the
number of ann wj = 0. It remains to prove the theorem for tor
M, for which we have the displayed direct decompositions
into cyclic submodules.

II. Reduction to primary torsion modules. We now assume M
is a torsion module and we decompose the cyclic summands
Dzi and DWj as direct sums of primary cyclic submodules.
The foregoing considerations on decomposition into primary
cyclic submodules imply that the theorem will follow for
torsion modules if we can show that any two decompositions
of M as direct sums of primary cyclic submodules have the
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same set of order ideals. This amounts to showing that for any
prime power pe the number of cyclic direct summands with
order ideal (pe) is the same for the two decompositions. Now
if we fix p and form the sum of the cyclic summands in each
decomposition having order ideals of the form (pe), e = 1, 2,
…, then both of these sums coincide with the p-component
Mp. Hence it suffices to prove the result for each Mp, that is,
we may assume M = Mp is primary.

III. Proof in the primary case. We now assume M = Mp. Then
ann zi − (pet), ann wi = (pft) and, since ann z1 ⊃ ann z2 ⊃ … ⊃
ann zs and ann w1 ⊃ ann w2 ⊃ … ⊃ ann wt, we have e1 ≤ e2 ≤
… ≤ es and f1 ≤ f2≤ …≤ ft. We now observe that for any k
, pkM = {pkx|x M} is a submodule and M ⊃ pM ⊃ p2M ⊃
…. Let M(k) = pkM/pk + 1M. Any coset of this D-module has
the form pkx + pk+1M and satisfies p(pkx + pk+1M) = pk+1M =
0 in M(k). Thus the ideal (p) annihilates M(k) so M(k) can be
regarded in a natural way as D = D/(p) module (exercise 2, p.
165). Since p is a prime, D is a field, and so M(k) is a vector
space over D. We can relate its dimensionality to the ei and fj
in the following way. We have pkM = 0 if k ≥ es and pkM =
Dpkzq+1 + Dpkzq+2 + … +
Dpkzs if eq+1 is the first ei > k. Then the cosets pkzq+1 +
pk+1M, …, pkzs + pk+1M form a base for M(k) as vector space
over D. Hence we see that the dimensionality of this space is
the same as the number of ei > k. Similarly, the
dimensionality is the number of fj > k. We therefore conclude
that for any k the number of ei > k is the same as the
number of fj > k. This forces s = t and ei = fi, 1 ≤ i ≤ s, which
completes the proof of the theorem.

We shall now call the sequence of order ideals, ann z1, ann z2,
…, whose uniqueness has just been proved, the invariant
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factor ideals of the module M. Our proof shows also that if M
is a torsion module the order ideals of the primary cyclic
submodules in any two decompositions of M as direct sum of
such submodules are invariant. We call these the elementary
divisor ideals of M. It is clear that any two finitely generated
modules over a p.i.d. are isomorphic if and only if they have
the same invariant factor ideals. Similarly, for torsion
modules, isomorphism holds if and only if the two modules
have the same elementary divisor ideals.

In the special case D = any ideal has a unique non-negative
generator, and if D = F[λ], F a field, then any ideal is either
generated by 0 or by a monic polynomial. It is natural in these
cases to replace the invariant factor ideals and elementary
divisor ideals by these normalized generators. One calls these
the invariant factors and elementary divisors of the module.

EXERCISES

1. Let D = [λ] and suppose M is a direct sum of cyclic
modules whose order ideals are the ideals generated by the
polynomials (λ − l)3, (λ2 + l)2, (λ − 1)(λ2 + l)4, (λ + 2)(λ2 +
l)2. Determine the elementary divisors and invariant factors of
M.

2. Show that a torsion module M over a p.i.d. D is irreducible
(definition in exercise 7, p. 169) if and only if M = Dz and
ann z = (p), p a prime. Show that if M is finitely generated
then M is indecomposable in the sense that M is not a direct
sum of two non-zero submodules if and only if M = Dz where
ann z = 0 or ann z = (pe)p a prime.
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3. Define the rank of a finitely generated module M over a
p.i.d. D to be the rank of the free module M/tor M. (This is
free since it is isomorphic to F if M = tor M ⊕ F, F free as in
Theorem 3.10.) Show that if M ≅ D(n)/K then rank M = n −
rank K. Show also that if N is a submodule of M then N and
M/N are finitely generated and rank M = rank N + rank M/N.

4. Let M be a torsion module for the p.i.d. D with invariant
factor ideals (d1) ⊃ (d2) ⊃ … ⊃ (ds). Show that any
homomorphic image M of M is a torsion module with
invariant factor ideals (d1) ⊃ (d2) ⊃ … ⊃ (dt) satisfying the
conditions: t ≤ s, dt|ds, dt−1|ds−1, …, d1|ds−t−1. (Hint: Suppose
first that M is primary.)

5. Let A, B Mn(D) satisfy det AB ≠ 0(D a p.i.d.). Let
diag{a1,a2,…,an}, diag{b1, b2, …, bn}, diag{c1,c2, … cn} be
normal forms for A, B and AB respectively (so ai|ai+1, etc.).
Prove that ai|ci and bi|ci for 1 ≤ i ≤ n.

6. Show that the assertion made in exercise 4 on a
homomorphic image M of M holds for any submodule N of
M.

7. Call a submodule N of M pure if for any y N and a D,
ax = y is solvable in M if and only if it is solvable in N. Show
that if N is a direct summand then N is pure. Show that if N is
a pure submodule of M and ann (x + N) = (d) then x can be
chosen in its coset x + N so that ann x = (d).

8. Show that if N is a pure submodule of a finitely generated
torsion module M over a p.i.d., then N is a direct summand of
M.
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9. Let M be a finitely generated torsion module over a p.i.d.
Show that any cyclic submodule Dz such that ann z ⊂ ann x
for every x M, is a pure submodule. Hence by exercise 8,
Dz is a direct summand.

3.10APPLICATIONS TO ABELIAN GROUPS AND TO
LINEAR TRANSFORMATIONS

We first specialize the structure theory of finitely generated
modules M over a p.i.d. D to the case D = . Then M is any
abelian group with a finite set of generators. In particular, M
can be any finite group. The main structure theorem now
states that any finitely generated abelian group M is a direct

sum of cyclic groups: M = z1 ⊕ z2 ⊕ … ⊕ zs
where ann zi = (di) and d1|d2|… |ds. If we normalize di to be
non-negative then the order of zi is di if di > 0 and the order of
zi is infinite if di = 0. The torsion subgroup (= submodule) of
M is the subset of M of elements of finite order. In the

foregoing decomposition this coincides with z1 + … +

zr where d1 > 0, …, dr > 0 but dr + 1 = 0. Since | zi | = di
for i ≤ r it is clear that tor M is a finite group of order di.
The second structure theorem (Theorem 3.10) implies that
any finitely generated abelian group is a direct sum of a finite
group and a free group. The finite component in any such
decomposition is uniquely determined as the torsion
subgroup. The free component may not be unique, but its rank
is an invariant.

The result on the decomposition of a torsion module as a
direct sum of primary cyclic modules specializes in the
present case to: any finite abelian group is a direct sum of
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cyclic groups of prime power orders. The prime powers
occurring in such a decomposition counted with their
multiplicities are uniquely determined. These are called the
invariants of the finite abelian group. Clearly,
two finite abelian groups are isomorphic if and only if they
have the same invariants.

For the sake of reference we summarize the main results on
finitely generated abelian groups in the following

THEOREM 3.13. Any finitely generated abelian group is a
direct sum of a finite group, its torsion subgroup, and a free
group. The rank of the free component is an invariant. Any
finite abelian group is a direct sum of cyclic groups of prime
power orders. These orders, together with their multiplicities,
are uniquely determined, and constitute a complete set of
invariants in the sense that two finite abelian groups are
isomorphic if and only if they have the same set of these
invariants.

We apply our results next to the study of a single linear
transformation T in a finite dimensional vector space V over a
field. Let (u1,u2, …, un) be a base for V over F and write

Then A is the matrix of T relative to the given base. We recall
that if (v1,v2, …, vn) is a second base for V over F and vi = ∑
sijuj where S = (sij) is an invertible matrix, then the matrix of
T relative to (vl,v2, …, vn) is SAS−1. Matrices related in this
way are said to be similar. As before (section 3.2), we can
make V an F[λ]-module by defining the action of any
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polynomial g(λ) = b0 + b1λ + … +bmλm on any vector x V
as

Clearly this action of F[λ] is the extension of the action of F
such that λx = Tx.

We note first that V is a torsion F[λ]-module. For, let x V
and consider the sequence of vectors x, λx, λ2x, …. Since V is
n-dimensional over F we have an integer m ≤ n such that λmx
is a linear combination of x, λx, …, λm−1x, say λmx = b0x +
b1λx + … + bm−1(λm−1x), bi F. Then g(λ) = λm − bm−1λm−1

−… − b0 is a non-zero polynomial such that g(λ)x = 0. Thus
ann x contains g(λ) ≠ 0 and ann x ≠ 0.

The base (u1,u2, …, un) for V over F is evidently a set of
generators of V as F[λ]-module (though, generally, not a base)
and we have the homomorphism η of the free module F[λ](n)

with base (e1, e2, …, en) onto V sending ei → ui, 1 ≤ i ≤ n.
Our method of analyzing V as F[λ]-module calls for a set of
generators for K = ker η. Such a set is given in the following

LEMMA. The elements,
form a base for K.

Proof. Since Tui = ∑ aijuj it is clear that fi K. We have λei =
fi + ∑ aijej and these relations permit us to write any element
∑gi (λ)ei in the form ∑hi(λ)fi + ∑bfef where the bi F. If this
element is in K then ∑ biei k and so ∑ biui = 0. Since the ui
constitute a base for V over F every bi = 0 and our element of
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K has the form ∑ hi(λ)fi. This shows that the fi generate k.
Suppose next that we have a relation ∑ hi(λ)fi = 0. Then

and, since the ei form a base for F[λ](n),

If any hi(λ) ≠ 0 let hr(λ) be one of maximal degree. Then
clearly the relation hr(λ)λ = ∑j hj(λ)ajr is impossible. This
proves that every hi(λ) = 0 and so the fi form a base for K.

The matrix relating the base (fi) of K to the base (ei) of F[λ](n)

is

Hence this is the matrix whose normal form gives the
invariant factors of V as F[λ]-module, and consequently gives
the decomposition of this module as direct sum of cyclic
ones. The determinant det (λl − A) is called the characteristic
polynomial of A. It has the form
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Here a1= ∑aii is called the trace, tr A, of the matrix A, and an
= det A. In general, ai is the sum of the i-rowed principal (=
diagonal) minors of the matrix A. Since f(λ) ≠ 0 and f(λ) is the
product of the invariant factors of λl − A it is clear that none
of these is 0 (which follows also from the fact that V is a
torsion module over F[λ]). Thus a normal form for λl − A has
the form

where the di(λ) are monic of positive degree and di(λ)|dj(λ) if
i ≤ j. Our results given in section 3.8 show that if P and Q are
invertible matrices in Mn(F[λ]) such that

and if we write Q−1 = and put
then we have

where ann zi = (di(λ)).

We shall use (36) for obtaining a certain canonical matrix for
the linear transformation T. Suppose first s=1, that is, V =
F[λ]z is cyclic as F[λ]-module. Then ann z = (f(λ)) where f(λ)
is the characteristic polynomial of A as in (33). Since f(λ) is
the non-zero polynomial of least degree such that f(λ)z = 0, z,
λz, …, λn−1z are linearly independent. Hence (z, λz, …, λn−1z)
is a base for V over F. We have
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Hence the matrix of T relative to the base (z, λz, …, λn−1z) is

In general, if d(λ) is a monic polynomial, and we write d(λ) =
λm − bm−1λm−1 − … − b0 then the matrix

is called the companion matrix of the given polynomial d(λ).
Using this terminology we can say that the matrix of T
relative to the base (z, λz, …, λn−1z) (in the cyclic case) is the
companion matrix of the characteristic polynomial f(λ).

We now consider the general case in which we have the
decomposition (36). Then we obtain a base for V over F by
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stringing together F-bases for the cyclic submodules F[λ]zi. If
deg di(λ) = ni then (zi,λzi, …, λnl−1zi) is a base for F[λ]zi and
if

then T(λni−1zi) = bi0zi + bi1(λzi) + … + bi,nl−1(λn
l−1 zi). It is

clear that the matrix of T relative to the base

has the form

where Bi is the companion matrix of di(λ). The matrix B is
called the rational canonical form for the linear
transformation T. Clearly the rational canonical form can be
written down as soon as we know the invariant factors of λ1 −
A, and these can be calculated by performing a series of
elementary transformations on the rows and columns of λ1 −
A.

EXAMPLE

Let T be the linear transformation in V = (3) such that
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Here the matrix A is

We have

and the two matrices flanking λ1 − A have determinants 1 and
so are invertible in M3( [λ]). Hence the invariant factors of
V as [A]-module are λ − 1 and (λ − l)2 = λ2 − 2λ + 1, and
the rational canonical form is

Our method also yields a matrix in M3( ) which transforms
A into its rational canonical
form. Thus, in the above notation we have
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and

Then a base (z1,z2,z3) which gives the rational canonical form
is

The matrix relating this to the initial base is

We can check that

There is a second canonical form (= matrix) for a linear
transformation T, the so-called Jordan form, which can be
defined if the invariant factors can be factored as products of
linear factors λ − r in F[λ]. This will always be the case if F
is the field of complex numbers (see Chapter 5, p. 309).
Under the hypothesis we have made, the elementary divisors
of V as F[λ]-module have the form (λ − r)e, r F.
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Corresponding to each of these we have a cyclic direct
summand F[λ]w with ann w = ((λ − r)e). The F-space F[A]w
has the base

and we have

Hence the matrix of the restriction of T to F[λ]w relative to
the base (w, (λ−r)w, …, (λ − r)e−1w) is

If V = F[λ]w1 ⊕ F[λ]w2 ⊕ … ⊕ F[λ]wt with ann wi = ((λ −
ri)e

l) then we can string together bases of the types just
indicated for the sequence of cyclic spaces to obtain a base for
V over F such that the matrix of T relative to this base is the
Jordan canonical form
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where

EXAMPLE

In the foregoing example (p. 198) the invariant factors were (λ
− 1), (λ − l)2. These are also the elementary divisors and the
Jordan canonical form is

Our results can be stated also in terms of matrices rather than
linear transformations. Given a matrix A Mn(F) we can use
this to define the linear transformation T in V = F(n) such that
Tui = ∑ aijuj, (u1,u2, …, un) a base for V over F. The various
matrices similar to A are the matrices of T relative to the
various ordered bases of V over F. We call the rational
canonical form of T (or the Jordan canonical form, when this
is defined) the rational canonical form (the Jordan canonical
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form) of the given matrix A. An immediate consequence of
our
results is that the matrices A and B are similar if and only if A
and B have the same rational canonical forms (or Jordan
canonical forms, when defined).

The classical results on characteristic and minimum
polynomials of matrices are also consequences of our results.
We shall now derive these. Let A, T, and the ui be as indicated
and let the normal form of λ1 − A be P(λ1 − A)Q = diag{1,
…, 1,d1(λ), …, ds(λ)}, P and Q invertible in Mn(F[λ]), di(λ)
monic of positive degree. Then P and Q have determinants
which are non-zero elements of F and the characteristic
polynomial of A is

We also have di(λ)|dj(λ) if i<j and V = F[λ]z1 ⊕ F[λ]z2 ⊕ …
⊕ F[λ]zs where ann zi = ds(λ)Put m(λ) = ds(λ). Since
di(λ)|m(λ) we have m(λ)zi = 0, and since any x V has the
form x = ∑ gi(λ)Zi we have m(λ)x = 0. Thus m(T) = 0 or,
equivalently, m(A) = 0 for the matrix A. Since g(T) = 0, or
g(A) = 0 implies g(λ)zs = 0, g(A) = 0 implies that m(λ)|g(λ).
Thus m(λ) is the monic polynomial of least degree such that
m(A) = 0. It is clear from (44) that f(A) = 0. And since every
di (λ)|m(λ) it is clear that f(λ) and m(λ) have the same
irreducible factors, differing only in the multiplicities of these
factors. Finally, if we recall the formulas for the invariant
factors given in Theorem 3.9 (p. 184) we see that m(λ) = ds(λ)
= f(λ)/Δn−1(λ) where Δ n−1(λ) is the monic g.c.d. of the (n −
1)-rowed minors of λ1 − A. These results can be stated as the
following theorem, which is a composite of results due to
Hamilton, Cayley, and Frobenius.
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THEOREM 3.14 Let A Mn(F), F a field, and let f(λ) = det
(λ1 − A) be the characteristic polynomial of A. Then f(A) = 0.
Also let Δn−1(λ) be the monic g.c.d. of the (n − 1)-rowed
minors of λ1 − A and put m(λ) = f(λ)/Δn−1(λ). Then m(A) = 0
and m(λ) is a factor of every polynomial g(λ) such that g(A) =
0. Moreover, m(λ) and f(λ) have the same prime factors in
F[λ].

EXERCISES

1. Determine the number of non-isomorphic abelian groups of
order 360.

2. Let (n) be the free -module with base (e1,…, en), K the
submodule generated by the elements where aij and d =
det (aij) ≠ 0. Show that | (n)/K| = |d|.

3. Let be a non-zero element of the ring of
Gaussian integers Show that

.

4. Verify that the characteristic polynomial of is a product of
linear factors in [λ]. Determine the rational and Jordan
canonical forms for A in M4( ). Also find matrices which
show that A is similar to these canonical forms.
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5. Prove that if F is a field, the matrices A, B Mn(F) are
similar if and only if the matrices λ1 − A, λ1 − B are
equivalent in Mn(F[λ]).

6. Prove that any matrix A is similar to its transposet A.

7. Show that the F[λ]-module determined by a linear
transformation T is cyclic if and only if the characteristic
polynomial f(λ) is the minimum polynomial of T.

8. Prove that any nilpotent matrix in Mn(F) is similar to a
matrix of the form

where Ni has the form

9. Show that a matrix A Mn( ) is similar to a diagonal
matrix, diag{r1,r2, …, rn}, ri , if and only if the minimum
polynomial m(λ) has distinct roots.

10. Show that if A2 = A then A is similar to a matrix diag{l,
…, 1, 0, …, 0}.
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11. (Weyr.) Show that the matrices A, B Mn( ) are similar
if and only if for every a and k = 1, 2, 3,… rank (a1 − A)k

= rank (a1 − B)k.

12. Show that the following matrices in Mp( /(p)), p a prime,
are similar:

13. Let P be the companion matrix of a monic irreducible
polynomial p(λ) of degree m and let N = e1m. Show that the
minimum polynomial of the em × em matrix.

is p(λ)e. Hence show that if A is a matrix such that the
elementary divisors of λ1 − A are p1(λ)e1, p2(λ)e2, …, Pt(λ)et,
where the pi(λ) are irreducible, then A is similar to
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where Bi has the form of B with P the companion matrix of
pi(λ) and number of blocks equal ei.

14. Show that any matrix in Mn( ) is similar to a matrix
consisting of diagonal blocks which have one of the following
forms:

where a2 < 4b.

15. Let R be a commutative ring, R(n) the free R-module with
base (e1,e2, …, en) and let η be the R-endomorphism of R(n)
such that ηei = ∑ aijej where A = (aij) Mn(R). Make, R(n) an
R[λ]-module, as in the field case, so that ax, a R,is defined
as in R(n) and λx = ηx. Then one has the relations
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Let Aij be the cofactor of the (i,j)-entry in λ1 − A. Multiply the
foregoing relations by A1j, A2i, …,Ani respectively and add.
Show that this gives the relations f(λ)ei = 0 where f(λ) = det
(λ1 − A). Then f(η) = 0 and, by the isomorphism of EndR R(n)

with Mn(R) (p. 174), we obtain the Hamilton-Cayley theorem
for matrices with entries in R:f(A) = 0.

3.11THE RING OF ENDOMORPHISMS OF A FINITELY
GENERATED MODULE OVER A P.I.D.

An interesting problem is that of determining the n × n
matrices B with entries in a field F which commute with a
given matrix A Mn(F). This translates to the geometric
problem of determining the linear transformations U in an
n-dimensional vector space V over F which commute with a
given linear transformation T of V over F. Then U is an
endomorphism of the additive group of V such that U(ax) =
a(Ux), a F, and U(Tx) = T(Ux). Regarding V as an
F[λ]-module, as before, the last condition becomes U(λx) =
λ(Ux), which implies that U(λkx) = λk(Ux). Then we have
U(f(λ)x) = f(λ)(Ux) for any polynomial f(λ) F[λ] and so U is
an endomorphism of V regarded as an F[λ]-module.
Conversely, this condition is sufficient to insure that U is a
linear transformation in V over F which commutes with T,
since it includes the facts that U is a group endomorphism,
that U(ax) = a(Ux), a F, and U(Tx) = U(λx) = λ(Ux) =
T(Ux).
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More generally, we now consider the problem of explicitly
determining the ring D′ of endomorphisms (that is, Hom(M,
M)) of a finitely generated module M over a p.i.d. D. We
begin with a decomposition M = Dz1 ? Dz2 ? … ? Dzs where
ann z1 ? ann z2 ? … ⊃ ann zs and ann zi = (di) ≠ 0 for i ≤ r but
ann zi = 0 if i > r. Let η D′ and suppose ηzi ( = η(zi)) = wi
M, 1 ≤ i ≤ s. Then if and hence

This shows (as we know already) that η is determined by its
effect on the generators zi of M. Moreover, diWi = di(ηzi) =
η(dizi) = 0, which shows that ann wi ⊃ ann zi so if ann wi =
(gi), then gi is arbitrary if i > r, and gi|di if i ≤ r.

Conversely, suppose that for each i we pick an element wi
M such that ann wi ? ann zi. Suppose x M and x = ∑ aizi =
∑ bizi are two representations of x. Then we have ai − bi
ann zi. Hence ai − bi ann wi and consequently ∑ aiwi = ∑
biwi. This shows that η:∑ aizi → ∑ aiwi Direct verification
shows also that η D′.

Our result is the following. We have a bijection η → (w1,w2,
…, ws) of the ring D′ = Hom(M, M) onto the set of s-tuples of
elements of M satisfying ann wi ⊃ ann zi. We now write wi =
∑ bijZj, bij D, and we associate with the ordered set (w1,w2,
…, ws) the matrix
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in the ring MS(D) of s × s matrices with entries in D. This
matrix may not be uniquely determined since any bij may be
replaced by b′ij such that b′ij = bij (mod dj) if j ≤ r. This is the
only alteration which can be made without changing the wi.
The condition that ann wi ⊃ ann zi is equivalent to

This, of course, means that there exist cij D such that dibij=
cijdj. Hence (46) is equivalent to the following condition on
the matrix B of (45): there exists a C MS(D) such that

The set R of matrices B satisfying (47) is a subring of MS(D).
Any B R determines an η D′ such that ηzi = ∑ bijZj. It is
easy to verify (as in the special case of a free module treated
in section 3.4) that the map tB → η is an epimorphism of R
onto D′. It is clear that η = 0 if and only if bij = 0 (mod dj) for
B = (bij). Hence the kernel K of our homomorphism is the set
of matrices tB such that,

Where Q = MS(D). We remark that matrices of this form
automatically satisfy (47). This implies
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THEOREM 3.15. Let M = Dz1 ⊕ Dz2 ⊕ … ⊕ Dzs where the
order ideals ann zi = (di) satisfy ann z1 ⊃ ann z2 ⊃ … ⊃ ann
zs. Then the ring D′ of endo-morphisms of the D-module M is
anti-isomorphic to R/K where R is the ring of matrices B
MS(D) for which there exists a C MS(D) such that diag{d1,
…, ds} B = C diag{d1, …, ds} and K is the ideal of matrices
of the form Q diag{d1, …, ds}, Q MS(D).

If M is a free module, all the di = 0. Then R = MS(D) and K =
0. In this case we have the result of section 3.4. If s = 1, so
that M is cyclic, the condition for B = (b) is trivially satisfied
by the commutativity of D. Then D′ ≅ D/(d) where d = d1.

A more explicit determination of the ring of matrices R can be
made if we make use of the conditions on the di that di|dj if
i≤j≤r, and di = 0 if i > r. The conditions (46) then imply:

1. bij is arbitrary if i ≥ j since in this case di = 0 (mod dj);

2. bij = 0 if i ≤ r and j > r since in this case di ≠ 0 and dj = 0;

3. bij is arbitrary if i,j > r since di = dj = 0 in this case;

4. bij = 0 (mod di
−1 dj) if i < j ≤ r.

Changing the notation slightly we see that B has the form
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Here the upper right-hand corner consists of O′s, all the
indicated bij are arbitrary, and the (i,j)-entry for i < j ≤ r is
bijdi−1dj. The conditions that the matrix is in K are that the bij
= 0 if j > r, that bij is divisible by dj if i ≥ j and j ≤ r, and that
bij is divisible by di if i < j ≤ r. If the module is a torsion
module, r = s and (49) reduces to the block of matrix in the
upper left-hand corner.

We now specialize M = V, where V is the F[λ]-module
determined by a linear transformation T in a finite
dimensional vector space V over F. This is a torsion module.
Any bij, i ≥ j, can be replaced by b′ij in the same coset mod dj.
Hence we may assume deg bij < nj = deg dj if i ≥ j. Similarly,
we may assume deg bij < ni if i < j. Matrices B R satisfying
these conditions will be called normalized. It is clear that the
map B → n restricted to normalized matrices of R is a
bijection into D′. There is a natural way of regarding D′ and R
as vector spaces over F. For R we obtain a module structure
over F simply by multiplying all the entries of B R by a
F. For D′ we define aη, a F, η D′ by (aη)x = a(ηx) =
η(ax) (cf. exercise 5, p. 175). Using these vector space
structures it is immediate that the set S of normalized matrices
contained in R is a subspace and B → n is an F-linear
isomorphism of S into D′. We are interested in calculating the
dimensionality of D′ over F, in matrix terms, the
dimensionality over F of the vector space of matrices which
commute with a given matrix. The isomorphism just
established gives us a way of doing this, namely, we may
calculate dim S. Let Sij, 1 ≤ i,j ≤ s, denote the subspaces of S
of normalized matrices having 0 entries in all places except
the (i,j)-position. Then dim Sij = nj if i ≥ j, and dim Sij = ni if i
< j. Since S is the direct sum of the subspaces Sij we have
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We can state this result in terms of matrices in the following
way:

THEOREM 3.16. (Frobenius.) Let A Mn(F), F a field, and
let d1(λ), d2(λ) …, ds(λ) be the invariant factors ≠1 of λ1 − A.
Let ni = deg di(λ). Then the dimensionality of the vector space
over F of matrices commutative with A is given by the
formula

Of course, this can also be stated in terms of linear
transformations. In this form it gives the following

COROLLARY. A linear transformation T is cyclic (that is the
corresponding F[λ]-module is cyclic) if and only if the only
linear transformations commuting with T are polynomials in
T.

Proof. T is cyclic if and only if s = 1. We also know that ds(λ)
is the minimum polynomial m(λ) of T and hence ns is the
dimensionality over F of the ring F[T] of polynomials in T
with coefficients in F (see exercise 1, p. 133). If S=1 then (50)
gives N = n1 = dim F[T]. Hence the space of linear
transformations commuting with T, which, of course, contains
F[T], coincides with F[T]. If s > 1, (50) implies that. Hence
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there exist linear transformations commuting with T which
are not polynomials in T.

EXAMPLE

Let F = and

If T is the corresponding linear transformation and the vector
space is [λ]-module via T then V = [λ]f1 ? [λ]f2. The
invariant factors are λ − 1 and (λ − 1)2. The normalized
matrices of R have the form

Since λf1 =f1,λ2f2 = (2λ − 1)f2 = −f2 + 2(λf2), the linear
transformation U corresponding to (51) satisfies

Accordingly, the general form of a matrix which commutes
with A is
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We return to the general case of a finitely generated
D-module M for a p.i.d. D, where we have M = Dz1 ⊕ Dz2 ⊕
… ⊕ Dzs as before. Since D is commutative it is clear that the
ring of endomorphism D′ of M includes all the maps x → ax,
a D. It is clear also that these are contained in the center of
D′. We shall now prove

THEOREM 3.17. The center of D′ = Hom(M, M) is the set of
maps x → ax, a D.

Proof. Our determination of D′ shows that for any i, 1 ≤ i ≤ s,
there exist an endomorphism εis such that εisZs = Zi εisZj = 0
if j ≠ s. Now let γ be in the center of D′. Then γZs = γεsszs =
εssγzs = εss(∑ aizi)(ai D) = ∑ aiεsszi = aszs. Also γzi = γεisZs
= εisγZs = εis(∑ajzj) = ∑ ajεisZj = aszi. It follows that γ is the
map x → asx.

Specializing Theorem 3.17 to the case of the module
determined by a linear tranformation, we obtain

COROLLARY 1. If U is a linear transformation in a finite
dimensional vector space which commutes with every linear
tranformation commuting with a given linear transformation
T, then U is a polynomial in T.

An immediate consequence of this corollary obtained by
taking T = 1 is

COROLLARY 2. The center of the ring of linear
transformations of a finite dimensional vector space over
afield F is the set of scalar multiplications x → ax, a F.

EXERCISES
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1. Let G be a finite abelian group which is a direct sum of
cyclic groups of orders n1,n2, …, ns where ni|nj if i ≤ j. Show
that the number of endomorphisms of G is

2. Determine the matrices in M5( ) commuting with

3. Determine the matrices in M4( ) commuting with

4. Prove that a linear transformation T in a finite dimensional
vector space over a field is cyclic if and only if the ring of
linear transformations commuting with T is a commutative
ring.

5. Prove the following extension of Theorem 3.17. The only
endomorphisms of M which commute with every idempotent
element of D′ are the mappings x → ax, a D.
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1 We use a to denote an indeterminate in the present chapter.
We do this in order to reserve x to represent vectors or, more
generally, elements of a module.

2 This result in a somewhat more special sitution—that of
algebras—seems to have been noted first by Poincaré.

3 We recall that in the group case our preferred terminology
was “translation” for such a map.

4 There exist p.i.d. in which not every invertible matrix is a
product of elementary ones. An example of this type is given
in a paper by P.M. Cohn, On the structure of GL2 of a ring,
Institut des Hautes Etudes Scientifiques, Publication ≠30
(1966), pp. 5–54.
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4

Galois Theory of Equations

The main objective of this chapter is the treatment of two
classical problems: solvability of polynomial equations by
radicals and constructions with straightedge and compass. We
shall first indicate briefly their history.

In elementary algebra one derives the formula

for solving the quadratic equation ax2 + bx + c = 0. In essence
this was known to the Babylonians. During the period of the
Italian Renaissance a considerable effort was directed toward
generalizing this to equations of higher degree and this
culminated in one of the great achievements of Renaissance
mathematics: formulas for the roots of cubic and quartic
equations. The first was due to Scipione del Ferro, who was a
professor at the University of Bologna from 1496 to 1526.
The exact date of his discovery is unknown, however we do
know that some time prior to 1541, Niccolo Tartaglia,
perhaps aware of the existence of del Ferro’s solution, was
able to discover it for himself. Tartaglia’s solution was
published by Geronimo Cardano in Ars Magna (1545) and is
generally
known as “Cardan’s formulas” for the solution of cubic
equations.1 It is easy (for us) to see that the solution of cubic
equations x3 + ax2 + bx + c = 0 can be reduced to the
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“reduced” case of equations of the form x3 + px + q = 0 (by
replacing x by x − a). Let x1, x2,x3 denote the roots of the
reduced equation and put δ = –4p3 − 21q2,
y1 = xl + ζ2x2 + −x3, y2 = x1 + −x2 + −x3.Then Cardan’s
formulas are

for suitable determinations of the cube roots (see pp.
264–266). The form of the reduced equation implies that x1 +
x2 + x3 = 0. Hence the determination of its roots xi is reduced
to solving the three linear equations x1 + x2 + x3 = 0, x1 +
ζ2x2 + ζx3 = y1, x1 + ζx2 + ζ2x3 = y2.

A general method for solving quartic equations, which was
also published by Cardano in Ars Magna, is attributed to
Cardano’s assistant, Ludovico Ferarri. We shall indicate this
method later, and note here only that, as in the case of cubics,
the solutions are given in terms of root extractions and
rational operations performed on the coefficients of the given
equation.

From the middle of the sixteenth century to the beginning of
the nineteenth century a number of attempts were made by
some of the greatest mathematicians of the period (e.g., Euler
and Lagrange) to obtain similar results for quintic equations.
Lagrange did considerably more than the other would-be
solvers of quintic equations: namely, he gave an incisive
analysis of the existing solutions of cubics and quartics and
showed that the reason these could be solved by radicals was
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that one could reduce their solution to that of “resolvent”
equations of lower degrees. On the other hand, he found that
the application of the same method to a quintic led to a
resolvent of degree six. This might have suggested strongly
that equations of higher degree than the fourth could not
generally be solved by radicals. Nevertheless, it was a
startling discovery when this was indeed found to be the case.
This was established independently by A. Ruffini (published
in 1813) and by N. H. Abel (published in 1827). Their result
(usually attributed to Abel) states that the “general” equation
of nth degree, that is, the equation xn + t1xn−1 + … + tn = 0
with indeterminate coefficients ti is not solvable by radicals.
The proofs of Ruffini and of Abel are somewhat obscure and
perhaps not complete in all details. For us they are interesting
only as history since they were soon superseded by the
crowning achievement of this line of research: Galois’
discoveries in the theory of equations. Galois
obtained his results while he was still in his teens: he was
killed in a duel in 1832 just before he was twenty-one. Galois’
work not only provided a proof of the Ruffini-Abel theorem
but it gave a criterion for solvability by radicals of any
equation xn + a1

n−1 + … = 0 (not just the “general” one).
Moreover, the main result of Galois’ discoveries, which
showed that there is a 1–1 correspondence between the set of
subfields of a certain type of field extension and the
subgroups of a finite group—the Galois group—has become a
central result in all of algebra, whose importance has
transcended by far that of the original problem which led to
it.2 Galois’ theory has been considerably simplified and
refined—mainly by the introduction of more abstract
ideas—during the century which followed its publication in
1846, some fifteen years after his death.
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The second main problem on which we shall focus our
attention had its origin in Greek mathematics. The Greeks
were unable to decide whether or not certain geometric
constructions were possible using only a straight-edge
(unmarked ruler) and compass. The most notable of these
were: (1) trisection of any angle; (2) duplication of the cube,
that is, construction of the side of a cube whose volume is
twice that of the volume of a given cube; (3) construction of a
regular heptagon (= regular polygon of seven sides); (4)
squaring the circle, that is, construction of a square whose
area is that of a given circle. Any problem on
straight-edge-compass construction can be formulated as an
algebraic problem on fields. Once this is done it is easy to see
that the first three of the foregoing problems have negative
answers. This can be seen by applying the basic
dimensionality formula for fields (Theorem 4.2). The
impossibility of squaring the circle follows from the fact, first
established by F. Lindemann in 1882, that π is a
transcendental number, that is, is not algebraic over . The
general problem of determining the integers n such that the
regular n-gon can be constructed (with straight-edge and
compass) was solved by Gauss in his Dis-quisitiones
Arithmeticae (1801). A consequence of his results is that the
constructions are possible if n = 17, 257, or 65537. Gauss’
first recorded discovery in mathematics was a method for
constructing a regular polygon of 17 sides. This had eluded
mathematicians from the time of the Greeks until Gauss—a
period of about two thousand years. Gauss’ results were
obtained by elementary but somewhat lengthy calculations
involving the roots of unity. As we shall see, Galois’ theory
makes it possible to get these rather quickly without
calculations.
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Besides the results indicated, we shall be interested in this
chapter in some byproducts of the Galois theory, one of these
being the study of finite fields, which was also initiated by
Galois. We shall introduce also some other basic field
concepts: norms, traces, primitive elements, and normal
bases.

4.1 PRELIMINARY RESULTS, SOME OLD, SOME NEW

We have defined the prime ring of a ring R as the smallest
subring of R and we saw that this is the set l of integral
multiples of 1 (section 2.7). Moreover, either 1 ≅ or l ≅
/(k), (k ≠ 0). In the first case, R has characteristic 0 and in the
second it has characteristic k. If R is a domain, k = p a prime.
Now let R = F a field. Then we define the prime field of F to
be the smallest subfield of F. If F has characteristic p ≠ 0, the
prime subring is a subfield since it is isomorphic to /(p).
Hence in this case the prime subring and prime field of F
coincide. If F has characteristic 0, we have the
monomorphism m → ml of into the prime field of F, and
this can be extended to a monomorphism of into the prime
field. It follows that the prime field is isomorphic to . In
this sense we can say that any field contains either the ring
/(p) for some prime p ( = the characteristic of the field) or else
it contains the field of rational numbers.

Let E be an extension field of the field F (E is a field
containing F as sub-field). If S is a subset of E, we recall that
F[S] denotes the subring of E generated by F and S or, as we
shall now say, the subring of E/F generated by S. We shall
now use the notation F(S) for the subfield of E/F generated by
S meaning, of course, the subfield of E generated by F and S.
As in the ring case, it is immediate that if T is a second subset
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of E then F(S)(T) = F(S ∪ T) (section 2.10). If u is an element
of E then we write F(u) for F({u}) and, more generally, for a
finite set {ul5 u2,…, un} we put F(uu u2,…, un) = F({ul9 u2,
…, un}). What does F(u) look like? First, we recall that if x is
an indeterminate, then we have the homomorphism g(x)→
g(u) of the polynomial ring F[x] into E, which is the identity
of F and sends x→u (Theorem 2.10, p. 122). If the kernel is 0,
then F[u] ≅ F[x].Otherwise, we have a monic polynomial f(x)
of positive degree such that the kernel is the principal ideal
(f(x)), and then F[u] ≅ F[x]/(f(x)). The polynomial f(x) is
prime (since, otherwise F[x]/(f(x))is not a domain). Then
F[x]/(f(x)) is a field (Theorem 2.16, p. 131). Hence, it is clear
that in this case, F(u) = F[u]. In the other case: F[x] ≅ F[u],
the homomorphism g(x)→ g(u) is a monomorphism and this
has a unique extension to a monomorphism of the field of
fractions F(x)of F[x].Then F(u) F(u) ≅ f(x) and F(u)consists
of the set of elements g(u)h(u)-1 where g(x), h(x) F[x] and
h(x) ≠ 0. In this case also, u is transcendental, whereas if F(u)
≅ F[x]/(f (x)),

f(x)of positive degree, then u is algebraic and, if f(x)is monic,
then this is the minimum polynomial of the element u. In any
case, if E = F(u), then we say that E is a simple (field)
extension of F and we call u a primitive element (= field
generator of E/F).

In studying an extension field E relative to a subfield F it is
useful to consider E as vector space (or module) over F. Here
the abelian group structure of E is that given by the addition
composition and the module composition ay, a F,y E, is
the product in E. The extensions we shall encounter most
frequently in this chapter are finite dimensional extensions
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over the base field F. We denote the dimensionality as We
shall show first that an element u E is algebraic over F if
and only if [F(u):F] < ∞ and in this case [F(u):F] is the
degree of the minimum polynomial of u over F. We shall call
this number the degree of u over F. Let u be algebraic, f(x) =
xn + a1xn-1 + … + an F[x] the minimum polynomial of u
over F. We have F(u) = F[u] and if g(x) F[x], g(x) = f(x)q(x)
+ r(x) where deg r(x) < deg f(x) = n. Then g(u) = O q(u) +
r(u), which shows that any element of F[u] has the form

and since f(x) is the polynomial of least degree such that f(u)
= 0, the only relation of the form b0 + b1u + … + bn-1un-1= 0
which can hold for bi F is the one with all bi = 0. Thus

is a base for F(u)/F. Hence this extension is n dimensional
where n = deg f(x). On the other hand, if u is transcendental
the elements 1, u, u2,… of F(u) are linearly independent over
F, which implies that F(u)is not finite dimensional over F.

We state a part of our results as

THEOREM 4.1. Let u be an element of an extension field E of
a field F. Then u is algebraic over F if and only if F(u) is
finite dimensional over F. In this case F(u) coincides with the
subring F[u] generated by F and u.
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We now suppose we have a two-storied extension of F, that
is, we have F ⊂ E ⊂ K where K is a field and E and F are
subfields. Then we can regard K as vector space over E and
over F, and E as vector space over F. We denote these spaces
as K/E, K/F, and E/F respectively. We then have the
following important relation on dimensionalities.

THEOREM 4.2. If K?E?F are fields then [K:F] is finite if and
only if [K:F] and [F:F] are finite. In this case we have the
dimensionality relation

Proof If [K:F] < ∞ then [E:F] is finite since E is a subspace of
K/F. If (u1,u2, …, un) is a base for K/F then clearly every
element of K is a linear combination of the ut with
coefficients in F and a fortiori with coefficients in F. Hence,
by a standard result of linear algebra, we can extract a base
for K/E out of the set {u1 u2, …, um}. Thus [K:F] < ∞.
Conversely, suppose [K:F] and [E:F] are finite and (vl…, vm)
is a base for K/E, (w1…, wr) a base for E/F. If z is any
element of K we have z = ∑1

m>aivifor suitable ai F, and ai
= ∑j

rbijWj for suitable bij F. Then z =∑ijbijwjvjso every
element of K is an F−linear combination of the mr elements
WjVi. Now suppose ∑aivibijwjvi = 0 for F. Then ∑aivi = 0
for af = ∑bijWj Since the form a base for K/F this implies that
every ai = 0. Since the w, form a base for F/F, af = ∑bijwj= 0
implies every = 0. Hence we have proved that the mr
elements Wjvi are F−independent, so they constitute a base for
K/F. Thus [K:F] = mr = [K:F][F:F] < ∞.
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An immediate consequence of the foregoing result is that if
[K:F] < , then the dimensionality of any subfield E/F is a
divisor of the dimensionality of K/F. In particular, if [K:F] is
a prime, then the only subfields of K/F are K and F.

EXERCISES

1. Let E = (u) where u3 − u2 + u + 2 = 0. Express (u2 + u +
l)(u2 − u ) and (u − l)-1 in the form au2 + bu + c where a, b, c

.

2. Determine [ : ].

3. Let p be a prime and let v satisfy v ≠ l,vp = 1 (e.g., v =
cos 2 π/p + i sin 2π s/p). Show that [ (v): ] = p − 1. (Hint:
Use exercise 3, p. 154.)

4. Let w = cos π/6 + i sin π/6 (in )Note that w12 = 1 but wr ≠
1 if 1 ≤ r < 12 (so w is a generator of the cyclic group of 12th
roots of 1). Show that [ (w): ] = 4 and determine the
minimum polynomial of w over .

5. Let E = F(u) where u is algebraic of odd degree ( = degree
of the minimum polynomial of u). Show that E = F(u2).

6. Let Ei = 1, 2, be a subfield of K/F such that [Ei:F] is finite.
Show that if E is the subfield of K generated by E1 and E2
then [E:F] ≤ [E1:F][E2:F].

7. Let E be an extension field of F which is algebraic over F
in the sense that every element of E is algebraic over F. Show
that any subring of E/F is a subfield. Hence prove that any
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subring of a finite dimensional extension field E/F is a
subfield.

8. Let E = F(u), u transcendental, and let K ≠ F be a subfield
of E/F. Show that u is algebraic over K.

9. Let E be an extension field of the field F such that (i) [E:F]
< ∞, (ii) for any two subfields E1 and E2 containing F, either
E1 ⊃ E2 or E2 ⊃ E1. Show that E has a primitive element over
F.

4.2 CONSTRUCTION WITH STRAIGHT-EDGE AND
COMPASS

The problem of Euclidean construction, that is, construction
with straightedge and compass, can be formulated in the
following way. Given a finite set of points S = {Pl P2,…, Pn}
in a plane ω, define a subset Sm, m = 1, 2,…, of cd
inductively by S1 = S, and Sr+1 is the union of Sr and (1) the
set of points of intersections of pairs of lines connecting
distinct points of Sr, (2) the set of points of intersections of
the lines specified in (1) with all circles having centers in Sr
and radii equal to segments having end points in Sr, (3) the set
of points of intersections of pairs of circles defined in (2). Let
C(P1, P2,…, Pn) = ∪∞

1si. Then we shall say that a point P of
ω can be constructed (by straight-edge and compass) from Pl
P2,… ,Pn if P C(Pl P2,…, P,). Otherwise P cannot be
constructed from the Pi.

How does this correspond to constructibility as defined in
Euclidean geometry? The given elements in a construction in
Euclidean geometry are points, lines, circles, and angles—a
finite number of each. Now a line is determined by two of its
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points, a circle by its center and a point on the circle, and an
angle by its vertex and two points on the two sides of the
angle equidistant from the vertex. Hence, making these
replacements, we may assume that we are given a finite set S1
= {P1 P2,…, Pn) in the plane ω. The points of the successive
sets S2, S3,…, which we defined, can certainly be obtained
from S1 by straightedge-compass construction a la Euclid. We
remark also that in Euclidean conductions one sometimes
encounters an instruction to use an “arbitrary” point or length
restricted only by a condition that the point is contained in a
certain region or that the length satisfies a certain inequality.
Thus one is instructed to choose points in designated
(non-vacuous) open subsets of the plane. We shall see in a
moment that if the given set Sl has at least two distinct points,
then the set C(P1 P2,…, Pn) we defined is dense in the plane.
Hence any instruction involving the choice of a point in a
non-vacuous open subset of the plane can be fulfilled by
choosing some point in C(P1 P2,…, Pn). Consequently, our
definition of constructible points—which has the advantage
of being precise— is equivalent to what seems to have been
intended in Euclidean geometry.

As an example, we consider the problem of trisecting an
angle of 60°. Here we are given the points P1 = (0, 0) (the

vertex), P2 = (1, 0) and P3 = (cos 60°, sin 60°) = (½,½ ).Is
the point P = (cos 20°, sin 20°) contained in C(P1 P2, P3)? An
angle of 60° can be trisected using only a straight-edge and
compass if and only if this question has an affirmative
answer.

We shall now formulate our definition algebraically. We
assume n ≥ 2, since, otherwise, C(P1 P2,…, Pn) = {P1}. We
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choose a Cartesian coordinate system so that P1 = (0, 0), the
origin, and P2 = (1, 0). We associate with the point P = (x, y)
the complex number x + iy. In this way the plane is identified
with the field of complex numbers. The given set {P1
P2,…, Pn} is identified with a set of complex numbers {z1
z2,…, zn} such that z1 = 0, z2 = 1. What is the set C(z1 z2,…,
zn) of complex numbers corresponding to the set of points
C(P1 P2,…, Pn)? It is natural to call this set the set of complex
numbers which are constructible (by straight-edge and
compass) from z1 z2,…, zn. We shall now obtain the following
characterization: C(z1 z2,…, zn) is the smallest sub-field of the
complex field containing the zi and closed under square roots
and conjugation—that is, containing every z such that z2 is in
the set and containing z = x − iy if z = x + iy x y real, is in the
set. By “smallest” we mean, as usual, that C(z1 z2,…, zn) has
the indicated closure properties and is contained in every
subset of having these closure properties.

Suppose z and z' C(z1 z2,…, zn). Then z + z' can be
constructed by the usual parallelogram method of forming the
sum of two vectors:

385



Thus z + z' is obtained as (the obvious) one of the two points
of intersection of the circle with center at z and radius |z'| (the
length of 0z') with the circle centered at z' with radius |z|. Also
it is clear that − z C(z1 z2,…, zn). Hence C(z1 z2,…, zn) is a
subgroup of the additive group of . To see that C(z1 z2,…,
zn) is closed under multiplication, inverses, and square roots
we use the polar form of z:z = reiθwhere the absolute value r
= (x2 + y2)½ if
z = x + iy and θ ,the amplitude, is the angle from the x-axis to
the line Oz. If z' = r'eiθ' then zz'= rr'ei(θ+ θ')has absolute value
rr’ equal to the product of the absolute values of zz'= and z’,
and its amplitude is the sum of the two given amplitudes. It is
easy to see that we can construct the ray having amplitude θ+
θ' and the following figure indicates a construction of rr'.

Here the broken line is parallel to 1r' and can be constructed
by ruler and compass in the same way that the parallels in the
first figure were constructed. A reversal of the foregoing
construction in which r and r' are placed on the v-axis gives
the point r/r' on the x-axis. It follows that z(z')-1 can be
constructed (if z’ ≠ 0). We see easily (as is well known) that
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any angle can be bisected with straight-edge and compass.

The following diagram indicates how can be constructed.

This implies that z½ C(z1 z2,…, zn) if z C(z1…, zn). It is
clear also that z C(z1 z2,…, z,) since this point can be
obtained by dropping a perpendicular from z to the x-axis
(line p1P2) and locating z as the mirror image of z in the
x-axis. This completes the proof that C(zl5 z2,…, zn) is a
subfield of closed under square roots and conjugation.

Next let C' be any subfield of containing the zi, 1 ≤i ≤n, and
closed under square roots and conjugation. If we take into
account the inductive definition of C(z1 z2,…, zn) as iwe
see that in order to prove that C' ?(z1,z2 …, zn) it suffices to
show that the intersection of any two lines determined by
points of
C', or of such a line with a circle having center a point of C'
and radius a segment joining two points of ', or of two such
circles, all belong to '. We note first that the fact that C' is
closed under conjugation and contains i = implies
that if z = x + iy c', x, y real, then x,y c'. It follows from
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this that the equation of any line through distinct points in C'
has the form ax + by + c = 0 where a, b, c are real numbers in
C' and the equation of a circle with center a point of C' and
radius equal to the length of a segment with end points in C' is
of the form x2 + y2 + dx + ey + f = 0 where d, e, f are real
numbers in c'. Now, the coordinates of the point of
intersection of non-parallel lines ax + by + c = 0 and a'x + b'y
+ c' = 0 can be obtained by Cramer’s rule as quotients of
certain determinants obtained from a, b, c, a', b', c'. Hence the
point of intersection of two lines whose coefficients are real
numbers in C' has coordinates that are real numbers in C. The
abscissas of the points of intersection of y = mx + b and x2 +
y2 + dx + ey +f= 0 are obtained by solving x2 + (mx + b)2 + dx
+ e(mx + b) + f = 0. Using the quadratic formula we see that
the solutions are real and in C' if m, b, d, e, and f are real in C'
and the line and circle intersect. We handle similarly the case
of a line with equation x = a and a circle x2 + y2 + dx + ey + f
= 0. Finally, we note that the points of intersection of the two
circles x2 + y2 + dx + ey + f = 0 and x2 + y2 + d'x + e'y +f' = 0
are the same as the points of intersection of x2 + y2 + dx + ey
+ f = 0 with the line (d − d')x + (e − e')y + f−f' = 0. It follows
that the points of intersection of lines and circles having real
coefficients in C' have coordinates (p, q) expressible
rationally or with square roots in terms of the coefficients.
Hence p + qi c'. This completes the proof of our assertion
that C(z1 z2,…, zn)is the smallest subfield of C containing the
zi and closed under conjugation and square roots.

It should be noted that C(z1 z2,…, zn) contains all complex
numbers of the form p + iq where p and q are rational, and
this subset is dense in in the sense that any circular region
contains a point of the set. We can now deduce from the
characterization of C(z1…, zn) the following
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Criterion A. Let z1 z2,…, zn and put F = (z1…, zn, z1…,
zn). Then a complex number z is constructible from z1 z2,…,
zn if and only if z is contained in a subfield of of the form
F(u1 u2,…, ur) where u1

2 F and every ui
2 F(u1…ui−1).

A field of the form F(u1 u2,…, ur) where u1
2 F, ui

2

F(u1…, ui−1) will be called a square root tower over F.

Proof of the criterion. Since C(z1…, zn is closed under square
roots and conjugation it is clear that C(z1…, zn,) contains F
and every square root tower
over F. Hence C(z1…, zn) ⊃ C' where C' is the set of complex
numbers satisfying the stated condition. Let z, z' C'. Then z'
is contained in a square root tower F(u' 1 …, u' r) and z’ is
contained in a square root tower F(u1…, u’s). Then z + z', zz',
and z-1 if z ≠ 0 are contained in the square root towerF(u1 …,
ur u1', us'). Thus C' is a subfield of . Clearly C is closed
under square roots, and since F = F, it is clear that F(uu …,
ur) = F(ul9 …, wr), which implies that C' is closed under
conjugation. Hence

Thus C' = C(z1 z2,…, zn), which establishes the criterion.

For the present applications the following easy consequence
of the foregoing criterion will be adequate.

COROLLARY. Let F = (z 1…, zn z1…, zn). Then any
complex number z which is constructible from z1…, zn is
algebraic of degree a power of two over F.
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Proof. If L is an extension field of the form K(u) where u2 = a
K then it is immediate that either L = K or [L:K] = 2. Hence,

by iterated application of the dimensionality formula for
fields (Theorem 4.2), we see that every square root tower over
F has dimensionality a power of two over F. It follows (also
by Theorem 4.2) that if z is contained in such an extension
then [F(z):F] = 2s for some s ≥ 0.

In many problems on constructibility we are given just two
points or, equivalenty, a segment. By choosing an appropriate
coordinate system, we may take these to be 0 and 1. Then F =

. In this case we shall call C ≡ C(z1 z2) the field of (
Euclidean) constructible complex numbers. The corollary
shows that such numbers are algebraic over of degree a
power of two.

We shall now use the foregoing corollary to dispose of three
of the four classical construction problems stated above. The
fourth, on the problem of squaring the circle, will be treated
in section 4.12 where we shall prove that π is transcendental.

Trisection of angles. Not every angle can be trisected with
straight-edge and compass. In particular, 60° cannot be
trisected. We have seen that the construction of an angle of
20° from one of 60° requires the constructibility of the point
P = (cos 20°, sin 20°) from P, = (0, 0), P2 = (1, 0) and P3 =
(cos 60°, sin 60°) =

(½,½ ). Then the point Q = (cos 20°, 0), the foot of the
perpendicular from P to P1P2, would be constructible. It is
easier to apply the criterion and corollary to this. In the
present case we have to consider the complex numbers z1 = 0,

z2 = 1, and the field F = (z1 z2, z3, z1, z2, z3)
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= . Applying the corollary we see that success in the
trisection of 60° requires that cos 20° has degree a power of

two over F, and hence over . Now we
have the trigonometric identity cos 3θ = 4 cos3 θ − 3 cos θ
which gives 4a3 − 3a = ½ for a = cos 20°. Thus the required
number a is a root of 4x3 − 3x −½ = 0 and so the minimum
polynomial of a over is a factor of this. Hence, if 4x3 − 3x
− 1/2 is irreducible in [x], then this will be the minimum
polynomial of a. Then the degree of a will be three and
therefore not a power of two. It will follow that 60° cannot be
trisected. Now, the given polynomial is irreducible if and only
if 4(½x)3 − 3(x) − ½ = ½x3 −3/2x−is irreducible. Multiplying
by 2 we get x3 − 3x − 1. Any rational root of this is integral
and so must be a divisor of 1. Since 1 and − 1 are not roots we
see that x3 − 3x − 1 is irreducible.

Duplication of the cube. Here we have to show that is not
a constructible (complex) number. This follows from

= 3, since x3 − 2 is irreducible in [x].

Construction of regular p-gons, p a prime.This requires the
constructibility of the complex number z = cos 2π/p + isin
2π/p.We have zp = 1 and, since xp − 1 = (xp−1 + xp−2 + … +
l), we have zp−1 + zp−2 + … + 1 = 0. Since xp−1 + xp−2 + … +
1 is irreducible in Q[x] (exercise 3, p. 154) we see that [ (z):

] = p −1. Hence a necessary condition for constructibility of
the regular p-gon by straight-edge and compass is that p − 1 =
2sfor some non-negative integer 5. Thus the regular p-gon can
be constructed only for primes p of the form 2s + 1. Since 6 is
not a power of 2 it follows that the regular heptagon cannot be
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constructed. We now observe that a necessary condition that
2s + 1 be a prime is that s = 2tfor some non-negative integer
t.For, suppose s is divisible by an odd number u, s = uv. Then
2s + 1 = 2UV + 1 = (2V + 1) × (2 (u−1)v − 2 (u − 2)v+ … + 1) by
the identity xu + 1 = (x + 1)(xu−1 − xu−2 + xu−3 − … + 1 ) for
any odd positive integer u. Then 2x + 1 = 2UV + 1 is not a
prime. Thus we have the improved necessary condition for
constructibility of the regular p-gon, p a prime: p must be of
the form 22t + 1. Primes of this form are called Fermat primes
after Pierre Fermat, who conjectured (wrongly) that any
integer of the form 22t + 1 is a prime.3 The known Fermat
primes
are: p = 3, 5, 17, 257, 65537, obtained by taking t = 0, 1, 2, 3,
4. Based on empirical evidence it has been conjectured that
the number of Fermat primes is finite and it is conceivable
that the foregoing list is the complete set.

In section 4.11 we shall give a necessary and sufficient
condition for the con-structibility of the regular n-gon for any
integral n. This will imply the converse of the foregoing
result, namely, that the regular p-gon can be constructed if p
is a Fermat prime. We shall conclude this section by
computing z = cos 2π/17 + i sin 2π/17 by a sequence of
rational operations and extractions of square roots. This will
show that z is a constructible complex number and hence that
the regular 17-gon can be constructed.

Put θ = 2π/17 and let z = cos θ + i sin θ. Then zk = cos kθ + i
sin kθ and these are distinct if 1 ≤ k ≤ 17. Also (zk)17 = (z17)k

= 1, so the zk furnish 17 distinct 17th roots of unity. Since the
equation x17 − 1 = 0 has at most 17 roots (Theorem 2.17, p.
132), these must be the zk. Moreover, these constitute a cyclic
subgroup of the multiplicative group * of . The minimum
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polynomial of z over is the irreducible polynomial f(x) =
Σ0

16 xi which has the roots z,…, z16 in . Then f(x) =
Π16

k=1(x − zk)and we have the relation

Since zz = 1 gives z = z 1 we have (zk)−1 = z−k = cos kθ − i sin
kθ and

We recall that the multiplicative group of /(17) is cyclic
(Theorem 2.18, p. 132) and, in fact, 3 = 3 + (17) is a
generator, since

so the order of 3 in /(17) is not 1, 2, 22 or 23. Since this
order is a divisor of 24 it must be 24. Now put

Since 30 + 38 ≡ 0 (mod 17), we have 32 + 310 ≡ 0 (mod 17),
34 + 312 ≡ 0 (mod 17) and 36 + 314 = 0 (mod 17). Hence x1, =
(z + z38

) + (z32
+ z310

) +

Thus

393



and, similarly,

We have x1 + x2 = Σ1
16 zk = —1 and direct multiplication,

using the trigonometric identity

, shows that x1x2 =
4(x1 + x2) = –4. Hence x1 and x2 are roots of (x − x1)(x − x2) =

x2 + x —4 = 0. The roots of this equation are
Since θ = 2π/l7, cos 3θ >0, cos 7θ < 0, cos 5θ < 0 and cos 6θ
< 0. Also |cos 6θ| = cos (π − 6θ) = cos 5π/17 >; cos 6π/17 =
cos 3θ. Hence x2 < 0 and so

Next, put

Then, directly using the cosine identity noted above, we have
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Similarly, y3y4 = − 1, and since yx + y2 = x1 and y3 + y4 = x2,
yx and y2 are roots of x2 − x1x –1=0, and y3 and y4 are roots of
x2 − x2x –1=0. Since cos θ > cos 2θ and cos 4θ > 0 but cos 8θ
< 0 we have y1 > y2. Similarly, y3 > y4. Hence

Now put

Then z1 > z2, z2 + z2 = y1 and zxz2 = 4 cos θ cos 4θ = 2(cos 5θ
+ cos 3θ) = y3. Hence

Then, using (8) and (9), one can obtain an explicit (somewhat
horrendous)formula for cos θ. Then one obtains sin θ =

and z = cos θ + i sin θ. It is clear from this that
z is a constructible complex number and consequently the
regular 17–gon can be constructed with straight–edge and
compass4.We have refrained from giving any reasons for the
steps in our computations.These will become clear later after
we have developed the Galois theory.
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EXERCISES

1. Show that the regular pentagon can be constructed with
straight–edge and compass.

2. Show that arc cos 11/16 can be trisected with straight–edge
and compass.

3. Show that the regular 9–gon cannot be constructed.

4.3 SPLITTING FIELD OF A POLYNOMIAL

The mathematicians of the nineteenth century dealt almost
exclusively with the field of complex numbers and its
subfields. The important fact about C from the algebraic
standpoint is that it is an adequate field for solving algebraic
equations in one unknown, that is, it is algebraically closed in
the sense that every polynomial equation xn + a1xn–1 + … +
an = 0, ai , has a root in . The central role played by in
nineteenth–century algebra can be gleaned from the fact that
during this period the result that is algebraically closed was
called “the fundamental theorem of algebra.” We still retain
this terminology but only out of respect for the past, since the
theorem no longer plays a central role in algebra. For one
thing, we are interested also in fields of characteristic p≠ 0
(for example, because of their usefulness in number theory)
and these can not be imbedded in . Our starting point will be
an arbitrary base field F. Given a polynomial f(x) F[x] we
would like to have at hand an extension field E of F which in
some sense contains all the roots of the equation f(x) = 0. We
recall thatf(r) = 0 if and only if f(x) is divisible by x − r (p.
130) and we shall say that f(x)(assumed to be monic) splits in
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the extension field E if f(x) = Πn
1(x − ri)’ that is a Product of

linear ( = first degree) factors in F[x]. Then

if r is a root off(x)in E we have 0 = f(r) = Πr
r(r − ri), which

implies that r is one of the ri. We also have the same
factorization f(x) = Π(x − ri)the polynomial ring P[x] where R
is the field F(r1 …, r2). It is clear that in dealing with the
single polynomial f(x) it would be a good idea to shift our
attention from E to F(r1…, rn), which is tailored to the study
of f We now formulate the following important

DEFINITION 4.1 Let F be a field, f(x) a monic polynomial in
F[x]. Then an extension field E/F is called a splitting field
over F of f(x) if

in E[x] and

that is, E is generated by the roots of f(x).

Our first task will be to prove the existence of a splitting field
for any polynomial f(x) of positive degree. The proof of this
result can be obtained by extending a method used first by A.

Cauchy to construct from (adjunction of ) and later
used by L. Kronecker to construct a single root of an
irreducible polynomial. We now give the proof of
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THEOREM 4.3. Any monic polynomial f(x) F[x]of positive
degree has a splitting field E/F.

Proof. Let f(x) = f1(x)f2(x) …fk(x) be the factorization of f(x)
into monic irreducible factors. Evidently k≤n = degf(x). We
use induction on n − k. If n − k = 0, all the f(x) are linear,
which means that F itself is a splitting field. Hence assume n
− k > 0 so that some fi(x), say f(x), is of degree >1. Put K =
F[x]/(f(x)). Then, since fx(x) is irreducible, K is a field. K is
also an extension field of F (using the identification of a F
with a + ((f1x)) and K = F(r)where r = x + (A(x)) is a root of
f(x) = 0). It is now best to forget about the mechanics of all of
this and just to keep in mind that we have somehow produced
an extension field K/F which is generated over F by a single
root r of the irreducible polynomial f1x). Since K ⊃ F and f(x)
and the fi(x) F[x] ⊂ K[x], we obtain the factorization of f(x)
into monic irreducible factors in K[x] by factoring every f1(x)
into monic irreducible factors. Also we have f1(x) = (x –
r)g(x) in K[x] since f1(r) = 0. Hence, if l is the number of
irreducible

factors in the factorization of f(x) in K[x], then l > k so n − l <
n − k. Hence the induction hypothesis can be applied to f(x)
and K to conclude that we have an extension field E =
K(r1,r2,…, rn) such that f(x) = ∏r

n(x − ri) in E[x]. Since f1(r)
= 0 and f1(x)\f(x), we have f(r) = 0; hence r = rt for some i.
Then
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is a splitting field over F of f(x).

EXAMPLES

1. Let f(x) = x2 + ax + b. If f(x) is reducible in F[x] (F
arbitrary) then F is a splitting field. Otherwise, put E =
F[x]/(f(x)) = F(r1) where r1 = x + (f(x)). Then E is a splitting
field since f(r1 )= 0 so f(x) = (x − r1)(x – r2) in F[x]. Thus E =
F(rx) = F(r1, r2). Since f(x) is the minimum polynomial of r1
over F, [E:F] = 2.

2. Let the base field F be /(2), the field of two elements, and
let f(x) = x3 + x + 1. Since 1 + 1 + 1 0 (mod 2) and 0 + 0 +
1 0(mod 2), f(x) has no roots in F; hence f(x) is irreducible
in F[x]. Put r1 = x + (f(x)) in F[x]/(f(x)) so F(rx) is a field and
x3 + x + 1 = (x + r1)(x2 + ax + b) in F(r1)[x]. (Note that we
can write + for − since the characteristic is two.) Comparison
of coefficients shows that a = r1 b = 1+rl

2. The elements of
F(r1 can be listed as c + drl + er1

2, c, d, e F. There are eight
of these:0, 1, r1 1 + r1

2 , 1 + r1
2, + r1

2, and 1 + r1 + r1
2.

Substituting these in x2 + r1x + 1 + r1
2 we reach (r1

2)2 +
r1(r1

2) + 1 + r1
2 = r1

4 + r1
3 + 1 + r1

2 = 0 since r1
3 = r1 + 1

and r1
4 = r1

2 + r1 Hence x2 + ax + b factors into linear factors
in F(r1)[x] and E = F(r1) is a splitting field of x3 + x + 1 over
F.

3. Let F = , f(x) = (x2 − 2)(x2 − 3). Since the rational roots
of x2 − 2 and x2 − 3 must be integral (exercise 1, p. 154), it
follows that x2 − 2 and x2 − 3 are irreducible in [x]. Form K
= (r1),rl = x + (x2 − 2) in [x]/(x2 − 2). The elements of K
have the form a + br1 a, b . We claim that x2 − 3 is
irreducible in K[x]. Otherwise, we have rational numbers a, b
such that (a + br1)2 = 3. Then (a2+ 2b2) + 2abr1 = 3 so that
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ab = 0 and a2 + 2b2 = 3. If b = 0 we obtain a2 = 3 which is
impossible since is not rational, and if a = 0, b2 = 3/2. Then

(2b)2 = 6 and since is not rational we again obtain an
impossibility. Thus x2 − 3 is irreducible in K[x] Now form E
= K[x]/(x2 – 3). Then this is a splitting field over of (x2 –
2)(x2 − 3) and [F: ] = [E:K][K:Q] = 2.2 = 4.

4. Let F = , f(x) = xp – 1, p a prime. We have xp – 1 = (x −
l)(xp_1 + xp–2 + … + 1) and we know that xp_1 + xp–2 + … +
1 is irreducible in [x]. Let E = (z) where z = x + (xp_1 +
xp–2 + … + 1) in [x]/(xp–1 + xp–2 + … + 1). We have zp = 1
and since xp–1 + … + 1 is the minimum polynomial of z over

the elements 1, z,…, zp–1 are distinct. Also (zk)p = [zpk = 1
so every zk is a root of xp − 1. It follows that xp − 1 = ∏ k–1

p(x
− zk)E[x]. Thus E is a splitting field over of xp − 1, and [E:

]=p–l.

Before proceeding to our next main result—the uniqueness up
to isomorphism of splitting fields—we note that splitting
fields are finite dimensional over the base field. Let E/F be a
splitting field over F of f(x). Then E = F(r1 r2,…, rn) where
f(r1) = 0, 1 ≤ i ≤ n. Then ri is algebraic over F, hence also
over F(r1 r2,…ri–1), Then [F(r1…, ri):F(ru …, ri–1)] < ∞
since this is the degree of ri over F(r1…, ri–1). Hence, by
iterative use of the dimensionality formula for fields
(Theorem 4.2), we obtain

where it is understood that the first term in this product is
[F(r1):F].
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We shall now prove that any two splitting fields over F of a
polynomial f(x) F[x] are isomorphic, and we shall also
obtain some important information on the number of
isomorphisms between splitting fields of f(x). In order to carry
through an inductive argument it is necessary to generalize
the considerations slightly as follows. We consider two
isomorphic fields F and F and an isomorphism η:a→ of F
onto F. We know that this can be extended to a unique
isomorphism g(x) → g(x) of F[x] onto F[x]. Let f(x) F[x] be
monic of positive degree and let E be a splitting field over F
of f(x), E a splitting field over F of f(x). Then we have the
following important

THEOREM 4.4. Let η:a→ be an isomorphism of a field F
onto a field F, f(x) F[x] be monic of positive degree, f(x) the
corresponding polynomial in F[x] (under the isomorphism
which extends η and maps x → x), and let E and E be splitting
fields of f(x) and f(x) over F and F respectively. Then n can be
extended to an isomorphism of E onto E. Moreover, the
number of such extensions is ≤[F:F] and it is precisely [F:F]
if f(x) has distinct roots in E.

Before proceeding to the proof we separate off the following
lemma which will serve as the induction step of the proof.

LEMMA. Let n be an isomorphism of a field F onto a field F
and let E and E be extension fields of F and F respectively.
Suppose r E is algebraic over F with minimum polynomial
g(x). Then n can be extended to a monomorphism ζ of F(r)
into E if and only if g(x) has a root in E, in which case the
number of such extensions is the same as the number of
distinct roots of g(x) in E.
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Proof. If an extension ζ exists, then we can apply it to the
relation g(ζ(r)) = 0 to obtain g(C(r)) = 0. Thus ζ(r) is a root of
g(x) = 0 in E. Conversely, let r be such
a root. We have the homomorphism h(x) → h(r) of F[x] into
E(Theorem 2.10, p. 122). The kernel contains the ideal
(g(x))so we have the induced homomorphism h(x) + (g(x)) →
h(r) of F[x]/(g(x)) into E. Similarly, we have the
homomorphism h(x) + (g(x)) → h(r) of F[x]/(g(x)) onto F(r).
Since g(x) is irreducible, F[x]/(g(x)) is a field and so both
homomorphisms are mono–morphisms and the second one is
an isomorphism. If we take the inverse of this isomorphism
and follow it with the monomorphism of F[x]/(g(x)) into E we
obtain the monomorphism h(r) → h(r) of F(r) = F[r] into E.
Since F(r) is generated by F and r it is clear that this is the
only monomorphism of F(r) into E extending η and sending r
→ r. It is now clear that the number of monomorphism
extensions is the same as the number of distinct choices of r,
hence, the number of distinct roots of g(x) in E.

Proof of theorem 4.4. We prove the result by induction on
[E:F]. If [E:F] = 1, E = F and f(x) = Π (x − ri) in F[x].
Applying the isomorphism h(x)→ h(x) of E[x] we obtain f(x)
= Π[(x − ri) in F[x]. Thus the ri, are the roots of f(x) in E, and,
since E is generated over F by these roots, E = F and there is
just 1 = [E:F] extension. Now assume [E:F] > 1. Then f(x) is
not a product of linear factors in F[x]. Let g(x) be a monic
irreducible factor of f(x) of degree > 1. Then g(x)\ f(x) in F[x].
We may also assume g(x) = Π1

m(x − ri) f(x) = Π1
m((x − sj,

g(x) = Π1
m (x − Sj)f(x) = Π1

m (x − Sj) in E[x] and E[x]. Put k =
F(r1). Since g(x) is irreducible it is the minimum polynomial
of r1 over F and [K:F] = m = deg g(x). By the lemma, there
exist k monomorphisms ζ1, … ζk of K into E which are
extensions of η where k is the number of different si 1 ≤ i ≤ m.
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Thus k = m if the si 1 ≤ i ≤ m, are distinct. Now it is clear
from the definition of a splitting field that E is a splitting field
over K of f(x) K[x] and F is a splitting field over ζi(K) of f(x).
Since [E:K] = [E:F]/[K:F] = [E:F]/m < [E:F] induction on
dimensionality implies that every ζi can be extended to an
isomorphism of F onto E, and that the number of such
extensions is ≤[E:K] and is [E:K] if J(x) has distinct roots in
F. Any of these isomorphisms is an extension of the given
isomorphism η of F onto F. Hence we obtain in this way at
least one extension of n to an isomorphism of E onto F.
Moreover, since the extensions of ηwhich are extensions of
distinct ζi are distinct, we obtain in this way ≤m[E:K] = [F:F]
extensions of η and exactly [F:F] such extensions if f(x) has
distinct roots. Our proof will therefore be complete if we can
convince ourselves that our method has accounted for every
extension of the isomorphism of F to F to one of E to E. But
this is clear, since if ζ is such an extension, the restriction of ζ
to K is a monomorphism of K into E and so this restriction
coincides with one of the ζi, i ≤ i ≤ k.

If we specialize the first part of this theorem to the case F = F
and ηthe identity mapping on F, we conclude that if E and E
are two splitting fields over F of f(x) then there exists an
isomorphism of E onto E which is the identity on F. We refer
to such an isomorphism (similarly, monomorphism) as an
isomorphism over F of E onto E. The second part of the result
applied to F = F gives the important information that there are
at most [E:F] automorphisms of E/F (E over F) and there are
exactly this number if f(x) has n distinct roots.

EXERCISES
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1. Show that the dimensionality of a splitting field E/F of f(x)
of degree n is at most n!.

2. Construct a splitting field over of x5 − 2. Find its
dimensionality over .

3. Determine a splitting field over /(p) of xpe
− 1, e ∈ .

4. Let E/F be a splitting field over F of f(x)and let K be a
subfield of E/F. Show that any monomorphism of K/F into
E/F can be extended to an automorphism of E.

5. Let E be an extension field of F such that [E:F] = n < ∞.
Let K be any extension field of F. Use the method of the
proof of Theorem 4.4 to show that the number of
monomorphisms of E/F into K/F does not exceed n.

4.4 MULTIPLE ROOTS

Let f(x) be a monic polynomial of positive degree in F[x] and
let E/F be a splitting field. We write the factorization of f(x)
in E[x] as

ri E, ri≠ rj if i ≠j, and we say that ri is a root of multiplicity
ki of the equation f(x) = 0. If ki = 1, then ri is called a simple
root; otherwise ri is a multiple root. If we have a second
splitting field E/F of f(x), then f(x) = Πs

1(x − rj.) in E[x]
where a → is an isomorphism of E/F onto E/F. It is clear
from this that the multiplicities ki are independent of the
choice of the splitting field. In particular, the fact that f(x) has
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only simple roots is independent of the choice of E. The last
result (Theorem 4.4) shows that there is a distinct advantage
in working with polynomials having only simple roots, since
in this case we have the exact formula that the number of
automorphisms of E/F is [E:F].

We shall show in this section that if F is of characteristic 0 or
if F is a finite field, then there is no loss in generality in
assuming that all the roots are simple. We observe first that if
we factor f(x) = P1(x)l1p2(x)l2 … pt(x)lt in F[x] where the Pi
(x) are distinct primes, then E/Fis a splitting field for f(x) if
and only if E/F is a splitting field for f0(x) = P1(x)p2(x) …
pt(x).This is clear from the definition. Hence we may assume
at the outset that f(x) is a product of distinct prime
polynomials in F[x]. We remark also that if p(x) and q(x)are
distinct monic prime polynomials in F[x], then (p(x), q(x)) = 1
in F[x]; hence there exist a(x),b(x) F[x] such that a(x)p(x) +
b(x)q(x) = 1. This precludes that p(x) = 0 and q(x) = 0 have a
common root in E. It follows that if f(x) is a product of
distinct primes, then all the roots of f(x) are simple if and only
if this is the case for the prime factors of f(x).

We shall now develop a criterion for multiple roots which can
be tested in F[x] and thus does not require recourse to a
splitting field. This will be based on formal differentiation of
polynomials, which we shall now define. We adjoin an
indeterminate h to F[x] to obtain the polynomial ring F[x,h] in
the two indeterminates x, h.Since F[x, h] = F[x][h] and h is
transcendental over F[x], any element of F[x, h] can be
written in one and only one way as f0(x) + f1(x)h + … +
fn(x)hn, fi(x) F[x]. In particular, if f(x) F[x] we have f(x +
h) =f0(x) + f1(x)h + … + fn(x)hn. Putting h = 0 in this (that is,
applying the homomorphism of F[x, h] into F[x] such that a
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→ a for a. F, x → x, h → 0) we obtain f(x) = fo(x), and so
f(x + h) −f(x) is divisible by h.Dividing h out we obtain f1(x) +
f2(x)h + … + fn(x)hn-1, and putting h = 0 in this polynomial
we obtain f1(x), which we define to be the derivative f'(x) (or
f(x)') of f(x).5 Clearly f’(x) satisfies the congruence

Moreover, if g(x) F[x] satisfies f(x + h) ≡f(x) + g(x)h (mod
h2) then f'(x)h ≡ g(x)h(mod h2) and so f'(x) = g(x) (mod
h2),which gives g(x) = f'(x). Thus f'(x) is characterized by the
congruence (12). This characterization permits us to establish
quickly the basic properties of the map f → f’ which we shall
call the standard derivation in F[x]. These are:

F−linearity:(f + g)' f'+ g',(af)' = af' for a F.

The product rule:

x' = 1.

Property (i) is immediate from (12). To establish the product
rule we multiply (12) by the corresponding congruence for
g(x + h). This gives
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Hence (13) follows from the characteristic property (12)
applied to fg.Since x + h ≡ x + lh (mod h2 we have x' = 1
which is (iii). This and the product rule imply that (xk)' = kxk −
1 if k = 1, 2, 3,…. Also l2 = 1 gives 1' 1 + 1 1' = 1' so that 2(1')
= 1' and 1' = 0. It now follows from the linearity that if f(x) =
a0 + a1x + … + anxn, then

as in the calculus of functions of a real variable.

We can now prove

THEOREM 4.5. Let f(x) be a monic polynomial of positive
degree in F[x]. Then all the roots of f in any splitting field E/F
are simple if and only if (f, f') = 1.

Proof. Let d(x) = (f(x),f'(x)) in F[x]. Suppose f(x) has a
multiple root in E[x], so f(x) = (x − r)kg(x) with k > 1. Taking
derivatives in we obtainf’(x) = (x − r)kg' + k(x − r)k − 1g which
is divisible by x − r since k − 1 ≤ 1. Thus x − r is a common
factor of f(x) and f'(x) in E[x]. It follows that d(x)≠ 1. Next
suppose all the roots of f are simple. Then we have f(x) = Π1

n

(x − ri) ri ≠ rj if i ≠ j. The extension of the product rule to
more than two factors now gives
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It is clear from this formula that (x − ri) f'(x); hence (f(x),
f'(x)) = 1. ;

If f(x) is irreducible in F[x], then (f,f') ≠ 1 implies that f|f'.
Since deg f' < deg f this forces f' = 0. If the characteristic is 0,
the formula for the derivative shows that f' = 0 if and only if f

F.Hence f' ≠ 0 if f(x) is irreducible and F is of characteristic
0. If the characteristic is p ≠ 0 and f(x) = a0 + a1x + … + anxn,
then f'(x) = Σi=1

niaixi − 1and f'(x) = 0 if and only if iai = 0, 1 ≤
i ≤ n. This holds if and only if ai = 0 for every i not divisible
by p;hence, if and only if f(x) = b0 + b1xp + b2x2p + … +
bmxmp = g(xp) where g(x) = b0 + b1x + … + bmxm.

We shall now construct an example of an irreducible
polynomial in characteristic p which has multiple roots. Let F
be any field of characteristic p.Then we have 1p = 1, and the
commutativity of multiplication gives (ab)p = apbp. By the
binomial theorem.

and since the binomial coefficient (p
i) = p!/i! (p − i)! is an

integer, and in the rational form which we have displayed, p
occurs in the numerator but not in the denominator,(p

i) is
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divisible by p. and so (a + b)p = ap +
bp. Thus we have

in F. This shows that the map a → ap is an endomorphism of
the ring F. Since F is a field this is a monomorphism and the
image Fp, the set of pth powers, is a subfield of F.

We now prove the following

LEMMA. if F has characteristic p and a F, then xp − a is
either irreducible in F[x] or it is a pth power in F[x].

Proof. Suppose xp − a = g(x)h(x) in F[x] where g(x) is a
monic polynomial of degree k, 1 ≤ k ≤ p − 1. Let E be a
splitting field over F of xp − a and let b E be a root of this
polynomial. Then we have bp = a so xp − a = xp − bp = (x −
b)p = g(x)h(x). Hence g(x) = (x − bk)and bk F. Since bp F
also and there exist integers u and v such that uk + vp = 1, b =
(bk)u(bp)v F. Thus we have xp − a = (x−bp in F[x].

We can now construct our example of an irreducible
polynomial which has multiple roots. As base field F we take
the field ( /(p)(t))of rational expressions in an indeterminate t
over the prime field /(p) of p elements, that is, the field of
fractions of the polynomial ring ( /(p))[t]. We claim that t is
not a pth power in this field. Suppose t = (f(t)/g(t))p where f(f)
= a0 + a1t + … + an

tn; and g(t) = b0 + b 1t+ … + bmtm. Then
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f(t)p = a0
p + a1

ptp; + … + an
ptnp, g(t)p = b0

p + b1
ptp+ … +

bm
ptmp so we have a relation

The linear independence of the powers 1, t, t2,… over /(p)
then implies that every bi ≠ 0 contradicting the (tacit)
assumption that g(t) ≠ 0. The foregoing lemma now shows
that the polynomial f(x) = xp − t F[x] is irreducible. On the
other hand, we see that it is a pth power in F[x], E a splitting
field. (We can also see that it has multiple roots by using the
derivative criterion and (xp − t)' = pxp − 1 = 0.)

We shall now call a polynomial contained in F[x] separable if
its irreducible factors have distinct roots. The result we have
proved is that if F is of characteristic 0, then every
polynomial with coefficients in F is separable and if the
characteristic is p there exist inseparable polynomials, at least
for certain F.We now look at this question more closely in the
characteristic p ≠ 0 case. We shall call a field (of any
characteristic) perfect if every polynomial in F[x] is
separable. Then we have seen that every field of characteristic
0 is perfect. For characteristic p ≠ 0 we have the following
criterion.

THEOREM 4.6. A field F of characteristic p ≠ 0 is perfect if
and only if F = Fp, the subfield of pth powers of the elements
of F.

Proof. If Fp F, let a F, ∉Fp. Then xp − a is irreducible,
by the lemma. Since (xp − a)’ = 0, this is an inseparable
irreducible polynomial. Hence F is not perfect. Now suppose
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that f(x) is an inseparable irreducible polynomial F[x]. Then
(f(x), f'(x)) ≠ 1 and we have seen that this implies that f(x) = a0
+ apxp + a2px2p + …. One of these ai is not a pth power. For,
if every ai = bi

p then f(x) = a0 + apxp + a2px2p + … = b0
p +

bp
pxp + b2

px2p + … = (b0 + bpx + b2px2 + …)p contrary to the
irreducibility of f(x). Hence F ≠ Fp.

COROLLARY. Every finite field is perfect.

Proof. The characteristic of a finite field is a prime p.The
monomorphism a → ap of F is an isomorphism since F is
finite. Hence F = Fp is perfect by Theorem 4.6.

EXERCISES

1. Let F be a field of characteristic 0,f(x) F[x] be monic of
positive degree. Show that if d(x) = (f(x), f'(x))then g(x)
=f(x)d(x) − 1 has the same roots as f(x) and that these are all
simple roots of g(x).

2. Let f(x) be irreducible in F[x], F of characteristic p. Show
that f(x) can be written as g(xpe

) where g(x) is irreducible and
separable. Use this to show that every root of f(x) has the
same multiplicity pe (in a splitting field).

3. Let F be of characteristic p. A polynomial f(x) F[x] is
called a p−polynomial if it has the form xpm

+ a1xpm−1
+ … +

amx. Show that a monic polynomial of positive degree is a
p−polynomial if and only if its roots form a finite subgroup of
the additive group of the splitting field and every root has the
same multiplicity pe.
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4. Let F be imperfect of characteristic p. Show that xpe
− a is

irreducible if a ∉ Fp and e = 0, 1, 2, ….

5. Let F be of characteristic p and let a F. Show that f(x) =
xp − x − a has no multiple roots and that f(x) is irreducible in
F[x] if and only if a ≠ cp − c for any c F.

4.5 THE GALOIS GROUP. THE FUNDAMENTAL
GALOIS PAIRING

We shall now derive the central results of Galois’ theory.
These establish a 1–1 correspondence between the set of
subfields of E/F, where E is a splitting field of a separable
polynomial in F[x], with the set of subgroups of the group of
automorphisms of E/F. The properties of this correspondence
serve as the basis of Galois’ criterion for solvability of an
equation by radicals and for constructibility by straight-edge
and compass. Moreover, as we noted in the introduction to
this chapter, these results play a fundamental role in many
other considerations in algebra and number theory.

First, some definitions and notations. Let E be an extension
field of a field F and let G be the set of automorphisms of
E/F: that is, the set of automorphisms η of E such that η(a) =
a for every a F. G is a group of transformations of E:1 G
and if η, ζ G, then η ζ and η-1 G. We shall call G the
Galois group of E over F and denote it as Gal E/F when we
wish to indicate the fields E and F.

EXAMPLES

1. E = F(u) where u2 = a F and a is not a square in F. We
assume also that the characteristic, char F ≠ 2. Since a is not a
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square in F, x2 − a is irreducible in F[x]. Hence this is the
minimum polynomial of u over F. Then [E:F] = 2 and (1, u)
is a base for E/F. Clearly the two maps c + du → c + du, c, d

F, and c + du → c − du are automorphisms of E/F. These
are the only ones. For, if η Gal E/F, u2 = a implies (η(u))2 =
a and since the roots in E of x2 − a = 0 are u and − u, either
η(u) = u or η(u) = − u. Then η is either the identity map or the
map c + du → c − du. Thus Gal E/F is a cyclic group of order
two.

2. One sees easily that Gal E/F has order 4 and
consists of the automorphisms η1 = 1, η2, η3, η4 such that

3. Let F be imperfect of characteristic p and let a F, ∉ Fp.
Then xp − a is irreducible (Lemma, p. 232). Adjunction of a
root u of xp = a gives an extension E = F(u) such that [E:F] =
p. Moreover, since xp − a = (x − u)p in E[x], then E is a
splitting field over F of the inseparable polynomial xp − a. If
η Gal E/F then η(u)p = a so η(u) = u. It follows that η = 1
and Gal E/F = 1.

4. Let F be a field and let E = F(t) where t is transcendental
over F. As shall be indicated in exercise 11 below, u E is a
generator of E/F if and only if it has the form

Since an automorphism of E/F sends generators into
generators, it follows that Gal E/F is the set of maps

413



where u is as in (15). We can see from this that Gal E/F is
isomorphic to the factor group GL2(F)/F* where GL2(F) is
the group of invertible 2 × 2 matrices with entries in F, and
F* is the set of matrices diag{a, a}, a ≠ 0.

Now let G be any group of automorphisms of a field E (that
is, a subgroup of the automorphism group of E). Let

in other words, Inv G is the set of elements of E which are not
moved by any η G. From the properties

of an automorphism of a field, it is clear that Inv G is a
subfield of E. We call this the subfield of G−invariants or the
G−fixed subfield of E.

If E is a given field then the definitions of Inv G for G a
group of automorphisms in E, and of Gal E/F for F a subfield,
provide two maps

The first is from the set of groups of automorphisms of E into
the set of sub-fields of F, the second from the set of subfields
of E to the set of groups of
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automorphisms. We shall now list the basic properties of
these maps:

These are immediate consequences of the definitions and we
leave it to the reader to carry out the verifications.

We shall now apply these ideas to splitting fields. Using the
present terminology, the remarks following Theorem 4.4. can
be restated as follows. If E is a splitting field over F of a
polynomial f(x) then Gal E/F is finite and we have the
inequality |Gal E/F| ≤ [E:F]. Moreover,|Gal E/F = [E:F] if f(x)
has distinct roots. In section 4.4. we saw that we can replace
f(x) by a polynomialf1(x) which is the product of the distinct
prime factors of f(x), and if f(x) is separable then f1(x) has
distinct roots. We therefore have the following important
preliminary result.

LEMMA 1. Let E/F be a splitting field of a separable
polynomial contained in F[x]. Then

Our next attack will be from the group side. We begin with an
arbitrary field E and any finite group of automorphisms G
acting in E. Then we have the following

LEMMA 2. (Artin.) Let G be a finite group of automorphisms
of a field E and let F = Inv G. Then
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Proof. Let n = |G|. Then (17) will follow if we can show that
any m > n elements of E are linearly dependent over F. We
shall base the proof of this on the well-known result of linear
algebra that any system of n homogeneous linear equations m
> n unknowns, with coefficients in a field E, has a non-trivial
solution in E. This theorem is often used to prove the
invariance of dimensionality of a finite dimensional vector
space, so it is very likely familiar to the reader. For the sake
of completeness we shall append a proof of the theorem on
linear equations after this proof. Let G = {η1 = 1, η2, …, ηn}
and let u1, u2, …, um be m > n elements of E. Then the
theorem on linear equations assures us that we have a
non-trivial solution (al, …, am) of the system of
n equations

in the m unknowns x1, …, xm. By non-triviality we mean that
(a1 …, am) ≠ (0, …, 0). Among such solutions we choose one
(b1, …, bm) with the least number of non-zero b’s. By
reordering the unknowns we may assume b1 ≠ 0 and
observing that b1

-1(b1, …, bn) is also a solution, we may
assume b1 = 1. At this point we claim that every bj is in F =
Inv G, which will prove the F−dependence of the ui, since the
first equation in (18) is ∑ujxj = 0 (ηl = 1). Suppose some bj∉
F. Without loss of generality we may assume this is b2 and,
by the definition of F, we have an ηk G such that ηk(b2) ≠
b2. Now we apply nkto the system of equations
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This will give us
and since (ηkηl, …, ηkηn) is a

permutation of (ηl, …, ηn) we have the equations
. Thus (1, ηk(b2), … ηk(bm)) is also

a solution of (18). Subtracting this from the solution (1, b2,
…, bm) we obtain the solution (0, b2 − ηk(b2), … , bm −
ηk(bm)) which is non-trivial since b2 − ηk(b2) ≠ 0. Clearly this
has fewer non-zero entries than (b1, b2, …, bm), contrary to
our choice of (b1, b2, …, bm). This completes the proof
modulo the

LEMMA ON LINEAR EQUATIONS. Let

be a system of n < m linear homogeneous equations with
coefficients aij in a field E. Then there exists a solution (a1,
a2, …, am) ≠ (0, 0, …, 0) with ai E.

Proof. The result is trivial if every aij = 0 so we may assume
some aij ≠ 0. Since we can reorder the equations and the
variables there is no loss in generality in assuming that anm ≠
0. Subtract the last equation multipled by aimanm

−1 from the
ith, 1 ≤ i ≤ n − 1. This gives an equivalent system of equations
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Assuming the result for n − 1, we have a non-trivial solution
(a1, …, am−1) of the first n − 1 equations. Then if we put

we obtain the non-trivial solution (a1, a2, …, am) of the
second system, hence of the first. Since the case n = 1 is
trivial this proves the result by induction on n.

It is convenient at this point to introduce two field concepts
which are related to concepts for polynomials which we have
introduced previously. We recall that an extension field E/F is
said to be algebraic over F if every element of E is algebraic
over F; this will certainly be the case if E is finite dimensional
over F, since F(t) is infinite dimensional when t is
transcendental. We shall now call E/F separable (algebraic)
if the minimum polynomial of every element of E is
separable. The extension field E/F is called normal
(algebraic) if every irreducible polynomial in F[x] which has
a root in E is a product of linear factors in F[x]. This is
equivalent to saying that E contains a splitting field for the
minimum polynomial of every element of E. Normality plus
separability mean that every irreducible polynomial of F[x]
which has a root in E is a product of distinct linear factors in
E[x]. Also, by the results of the last section, if E is algebraic
over F, then E is necessarily separable over F if the
characteristic is 0 or if the characteristic is p ≠ 0 and Fp = F.
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We are now ready to derive our main results, the first of
which gives two abstract characterizations of splitting fields
of separable polynomials and some important additional
information. We state this as

THEOREM 4.7 Let E be an extension field of a field F. Then
the following conditions on E/F are equivalent:

(1) E is a splitting field over F of a separable polynomial f(x).

(2) F = Inv G for some finite group of automorphisms of E.

(3) E is finite dimensional normal and separable over F.

Moreover, if E and F are as in (1) and G = Gal E/F then F =
Inv G and if G and F are as in (2), then G = Gal E/F.

Proof (1) ⇒ (2). Let G = Gal E/F and F′ = Inv G. Then F′ is a
subfield of E containing F. Also it is clear that E is a splitting
field over F′ of f(x) as well as over F and G = Gal E/F′.
Hence, by Lemma 1, |G| = [E:F] and |G| = [E:F]. Since E ⊃ F′
⊃ F we have [E:F] = [E:F′][F′:F]. Hence [F′:F] = 1, and so
F′ = F. We have proved also that F = Inv G for G = Gal E/F,
which is the first of the two supplementary statements.

(2) ⇒ (3). By Artin’s lemma, [E:F] ≤ |G|, and so E is finite
dimensional over F. Let f(x) be an irreducible polynomial in
F[x] having a root r in E. Let {r1 = r, r2, …, rm} be the orbit
of r under the action of G. Thus this is the set of distinct
elements of the form η(r), η G. Hence if ζ G, then the set
(ζ(r1), ζ(r2), …, ζ(rm)) is a permutation of (r1, r2, …, rm). We
have f(r) = 0 which implies that f(ri) = 0. Then f(x) is divisible
by x − ri and since the ri, 1 ≤ i ≤ m, are distinct, f(x) is
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divisible by We now apply to g(x) the
automorphism of E[x], which sends x → x and a → ζ(a) for a

E. This gives Since
this holds for every ζ G we see that the coefficients of g(x)
are G−invariant. Hence g(x) F[x]. Since we assumed f(x)
irreducible in F[x] we see that f(x) = g(x) = ∏ (x − ri), a
product of distinct linear factors in E[x]. Thus E is separable
and normal over F and (3) holds.

(3) ⇒ (1). Since we are given that [E:F]< ∞ we can write E =
F(r1, r2, …, rk) and each ri is algebraic over F. Let fi(x) be the
minimum polynomial of ri over F Then the hypothesis
implies that fi(x) is a product of distinct linear factors in E[x].
It follows that is separable and E = F(r1, r2, …,
rk) is a splitting field over F of f(x). Hence we have (1).

It remains to prove the second supplementary statement. We
have seen that under the hypothesis of (2) we have [E:F] ≤
|G|, and that since (3) holds, we have |Gal E/F| = [E:F]. Since
G ⊂ Gal E/F and |G| ≥ [E:F] = |Gal E/F|, evidently G = Gal
E/F.

We are now ready to establish Galois’ fundamental
group-field pairing. We state this as the

FUNDAMENTAL THEOREM OF GALOIS THEORY. Let
E be an extension field of a field F satisfying any one (hence
all) of the equivalent conditions of Theorem 4.7. Let G be the
Galois group of E over F. Let Γ = {H}, the set of subgroups
of G, and Σ, the set of intermediate fields between E and F
(the subfields of E/F). The maps H → Inv H, K → Gal E/K, H

Γ, K Σ, are inverses and so are bijections of Γ onto Σ and
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of Σ onto Γ. Moreover, we have the following properties of
the pairing:

Proof. Let H be a subgroup of G = Gal E/F. Since F = Inv G,
F ⊂ Inv H and K = Inv H is thus a subfield of E containing F.
Applying the second supplementary result of Theorem 4.7 to
H in place of G we see that Gal E/Inv H = H. In the same way
we see that |H| = |Gal E/Inv H| = [E:Inv H]. Now let K be any
subfield of E/F and let if H = Gal E/K. Then H ⊂ G = Gal E/F
so H is a subgroup of G. It is clear also that E is a splitting
field over K of a separable polynomial since it is a splitting
field over F of a separable polynomial. Hence the first
supplementary result of Theorem 4.7 applied to the pair E and
K shows that K = Inv H = Inv(Gal E/K). We have now shown
that the specified maps between Γ and Σ are inverses. Also we
know that if H1 ⊃ H2 then Inv H1 ⊂ Inv H2. Moreover, if Inv
H1 ⊂ Inv H2, then we have also that H1 = Gal E/ Inv H1 ⊃
Gal E/Inv H2 = H2. Hence (α) holds. The first part of (β) was
noted before. Since |G| = [E:F] = [E:Inv H][Inv H :F] =
|H|[Inv H :F] and |G| = |H|[G:H], evidently [Inv H:F] = [G:H].
This proves (β). If H Γ and K = Inv H is the corresponding
subfield, then the subfield K′ corresponding to the conjugate
subgroup ηHη−1 is η(K). This is clear since the condition ζ(k)
= k is equivalent to (η(ζη−1)(η(k)) = η(k) It now follows that if
is normal in G if and only if η(k) = K for every η G (K =
Inv H). Suppose this holds. Then every η G maps K onto
itself and so its restriction η = η|K is an automorphism of K/F.
Thus we have the restriction homomorphism η → η of G =
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Gal E/F into Gal K/F. The image G is a group of
automorphisms in K and clearly Inv G = F. Hence G = Gal
K/F. The kernel of the homomorphism η → η is the set of η
G such that η|K = 1K. By the pairing, this is Gal E/K = H.
Hence the kernel is if and G = Gal K/F ≅ G/H. Since F = Inv
G, K is normal over F by Theorem 4.7. Conversely, suppose
K is normal over F. Let a K and let f(x) be the minimum
polynomial of a over F. Then f(x) = (x − a1)(x − a2) … (x −
am) in K[x] where a = a1. If η G then f(η(a)) = 0 which
implies that η(a) = ai for some i. Thus η(a) K. We have
therefore shown that η(k) ⊂ K. As before, this implies that
ηHη−1 ⊂ H if H is the subgroup corresponding to K in the
Galois pairing. Then if is a normal subgroup of G. This
completes the proof of (γ).

As our first example of this theorem we shall consider the
field of the 17th roots of unity. This will clear up the mystery
in the calculations for cos 2π/17 which we gave on pp.
222–224 and reveal the reason for their success.

EXAMPLE

Let F = and let E be the field of the 17th roots of unity
over F, that is, a splitting field over of x17 − 1. Since (x17 −
1)′ = 17x16 is relatively prime to x17 − 1, x17 − 1 has distinct
roots. These constitute a cyclic subgroup U of the
multiplicative group of
E. Let z be a generator of this group. Then U = {z, z2, …, z17

= 1} and E = (z). The minimum polynomial of z over is
x16 + x15 + … + l since this polynomial is irreducible. Hence
[E: ] = 16. Consequently, if G = Gal E/ then |G| = 16. If η

G, η (U) ⊂ U and η|U is thus an automorphism of the cyclic
group U = ‹ z ›. We have the homomorphism η → η = η|U of
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G into Aut U. This is a monomorphism since if η = 1 then
η(z) = z, which implies that η = 1 since E = (z). We know
that the group of automorphisms of a cyclic group of order n
is isomorphic to the multiplicative group of /(n) and that this
has order φ(n). In particular, Aut U has order 16 and is
isomorphic to the multiplicative group of the field /(17).
Moreover, this is a cyclic group with 3 = 3 + (17) as
generator. Comparison of orders shows that Gal E/ is
isomorphic to the multiplicative group of /(17). Hence, the
automorphism η of E/ such that z → z3 is a generator of G
= Gal E/ . Thus G = {η, η2, …, η16 = 1}. We have the
following list of subgroups of G:

where ‹ηi› denotes the subgroup generated by ηi. The
respective orders are 16, 8, 4, 2, and 1. Corresponding to
these subgroups of Gal E/ , the Galois pairing gives an
increasing sequence of subfields

where Fi corresponds to Gi in the Galois pairing. What is Fi?
We use the notations which we introduced at the end of
section 4.2. As we noted there, (z, z2, …, z16) is a base for E/

since x16 + x15 + … + 1 is the minimum polynomial of z
over . We have η(z) = z3, ηi(z) = z3i. Putting
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we have η2(x1) = xl, η(x1 ) ≠ x1. Hence x1 F2, ∉ F1. Since
[G:G2] = [G1:G2] = 2 we have [F2:F1] = 2. It follows that F2
= F1(x1). Similarly, if we put

then F3 = F2(y1) and F4 = F3(z1). Thus the chain of subfields
(19) is

and the calculations we gave before amounted to
determination of the minimum polynomials of x1, y1, z1, and z
over the fields F1, F2, etc., and the calculation of these
elements as roots of quadratic equations. We remark also that
since the Galois group G is abelian all of its subgroups are
normal; hence every subfield of E/F is normal over F.

As a second illustration of the Galois correspondence we shall
obtain the theory of symmetric rational expressions, which is
similar and related to the results on symmetric polynomials
that were obtained in section 2.13.

We begin with a field F and consider the field of fractions
F(x1, …, xn) of the polynomial ring F[x1, …, xn] over F in
indeterminates xi. We recall that
if π is any permutation of {1, 2, …, n}, then we have a unique
automorphism ζ(π) of F[x1, …, xn] fixing the elements of F
and sending xi → xπ(i), 1 ≤ i ≤ n, (Theorem 2.12, p. 125).
Moreover, ζ(π) can be extended in one and only one way to
an automorphism of the field F(x1, …, xn). For the sake of
simplicity we denote the extension of ζ(π) to the field F(x1,
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…, xn) by ζ(π) again. For any two permutations π1 and π2 we
have ζ(π1 π2) = ζ(π1)ζ(π2) in F[x1, … , xn] hence also in F(x1,
…, xn). Thus the set of automorphisms {ζ(π)} is a group of
automorphisms G in F(x1, …, xn) isomorphic to the
symmetric group Sn. The fixed elements under the action of G
are called symmetric rational expressions, and Inv G is the
field of symmetric rational expressions. We proceed to
determine this field by using the Galois correspondence. For
this purpose we consider the polynomial ring E[x] where E =
F(x1, …, xn) and we introduce the polynomial.

which we can write as

where

The automorphism ζ(π) can be extended to an automorphism
ζ′(π) of E[x] fixing x. This maps g(x) into (x − xπ(1))(x − xπ(2))
… (x − xπ(n)). Since π is a permutation of the indices it is
clear that this coincides with g(x). Thus ζ′(π)(g(x)) = g(x) for
every π and so ζ(π)Pi = Pi for every π and i = 1, 2, …, n.
Hence the pi Inv G, and the subfield over F they generate,
F(p1, p2, …, pn) ⊂ Inv G. On the other hand, it is clear from E
= F(x1, …, xn) = F(p1, …, pn, x1, …, xn) and (20) that E is a
splitting field over F(p1, …, pn) of g(x), and g(x) has distinct
roots. Let ζ Gal E/F(p1, …, pn). Then applying ζ to g(xi) =
0 we obtain g(ζ(Xi)) = 0, and so ζ permutes the xi. Hence ζ
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coincides with one of the ζ(π). It follows that Gal E/F(p1, …,
pn) = G and we have the Galois pairing between the set of
subgroups of G and the set of subfields of E containing F(P1,
…, Pn). In particular, this pairs G and F(p1, …, pn) and since
the subfield corresponding to a subgroup H of G is Inv H, we
have Inv G = F(p1, …, pn). This proves the field analogue of
the first part of Theorem 2.20 on symmetric polynomials: any
symmetric rational expression in the indeterminates xi can be
expressed rationally in terms of the elementary symmetric
polynomials p1 p2, …, pn. This can also be derived easily
from Theorem 2.20.

EXERCISES

1. Show that in the subgroup-intermediate subfield
correspondence given in the fundamental theorem of Galois
theory, the subfield corresponding to the intersection of two
subgroups H1 and H2 is the subfield generated by the
corresponding intermediate fields (Inv H1 and Inv H2), and
the intersection of two intermediate fields K1 and K2
corresponds to the subgroup generated by the corresponding
subgroups Gal E/K1 and Gal E/K2.

2. Suppose E, F, G are as in the fundamental theorem and E is
generated by two intermediate extensions K and L such that K
∩ L = F and L/F is normal. Let N = Gal E/L, H = Gal E/K.
Show that N is normal in G, H ∩ N = 1 and G = HN, so G is
the semi-direct product of N and H (exercise 9, p. 79). Show
also that if K/F and L/F are normal then G = H × N.

3. Let E = (r) where r3 + r2 − 2r − 1 = 0. Verify that r′ = r2

− 2 is also a root of x3 + x2 − 2x − 1 = 0. Determine Gal E/ .
Show that E is normal over .
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4. Let E be a splitting field over of x5 − 2. Determine the
Galois group of E/ . Show that this is isomorphic to the
holomorph of a cyclic group of order 5 (p. 63). Determine the
subgroups of Gal E/ and the corresponding subfields in the
Galois pairing.

5. Let F be a field of characteristic p, a an element of F not of
the form bp − b, b F. Determine the Galois group over F of
a splitting field of xp − x − a.

6. Let E = (t) where t is transcendental over and let w
satisfy w3 = 1, w ≠ 1. Let σ be the automorphism of E/ such
that σ(t) = wt, and τ the automorphism of E/ such that τ(t) =
t−1 Show that

Show that the group of automorphisms G generated by σ and
τ has order 6 and the subfield F = Inv G = (u) where u = t3 +
t-3.

7. Let E = ( /(p))(t) where t is transcendental over /(p). Let
G be the group of automorphisms generated by the
automorphism of E such that t → t + 1. Determine F = Inv G
and [E:F].

8. Same as exercise 7 with G replaced by the group of
automorphisms such that t → at + b, a, b /(p), a ≠ 0.

9. Show that where is
normal. Determine Gal E/ .
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10. Use the method of proof of Artin’s lemma (p. 236) to
prove the following result on differential equations. Let y1, y2,
…, yn + 1 be real analytic functions which satisfy a linear
differential equation y(n) + a1 y(n−1) + … + any = 0 with
constant coefficients ai(ai ). Then the yi are linearly
dependent over .

11. Let E = F(t) where t is transcendental over F and write
any non-zero element of E as u = f(t)/g(t) where (f(t), g(t)) =
1. Call the maximum of the degrees of f and g the degree of u.
Show that if x and y are indeterminates then f(x) − yg(x) is
irreducible in F[x, y] and hence is irreducible in F(y)[x]. Show
that t is algebraic
over F(u) with minimum polynomial the monic polynomial
which is a multiple in F(u) of f(x) − ug(x). Hence conclude
that [F(t):F(u)] = 1, and F(u) = F(t) if and only if deg u = 1.
Note that this implies that

where ad − bc ≠ 0. Hence conclude that Gal E/F is the set of
maps h(t) → h(u) where u is of the form indicated.

12. Let E = F(x1, …, xn) where the xi are indeterminates, and
let ζ (π) for a permutation π of {1, 2,…, n} be as defined in
the text. Write an element of E in the form f(x1, …, xn)/g (x1,
…, xn) where f and g have no common factors. Show that if
this element is symmetric then both its numerator and
denominator are symmetric. Use this to deduce from Theorem
2.20 that f/g F(p1, p2, …, pn), pi as above.

13. Let F be of characteristic ≠ 2 and also let H be the
subgroup of G = Gal E/F(p1, …, pn) corresponding to the
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alternating group, that is, the set of ζ(π), π An. Show that
Inv H = F(p1, …, pn, Δ) where Δ = ∏i<j(xi − xj).

4.6 SOME RESULTS ON FINITE GROUPS

We shall now digress briefly to develop some results on finite
groups which are needed for the theory of equations. These
mainly concern a class of groups, called solvable, which, as
we shall see in the next section, correspond to equations
which are solvable by radicals.

Let G be a group. We introduce a standard notation G H or
H G to indicate that H is a normal subgroup of G. A
sequence of subgroups

is called a normal series for the group G. Here the notation
indicates that Gi+1 is normal in Gi (but not necessarily normal
in G). For example, we have S3 A3 l and S4 A4 V

W 1 where

We leave it to the reader to check that V is normal in A4.
Since V is abelian it is clear that W is normal in V. With the
normal series (23) we can associate the sequence of factors
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Now we shall call a group G solvable if it has a normal series
whose sequence
of factors are all abelian. The normal sequences we have
displayed for S3 and S4 show that these groups are solvable.
In fact, S3/A3 is cyclic of order 2, A3 is cyclic of order 3,
S4/A4 is cyclic of order 2, A4/V is cyclic of order 3, and V/W
and W are cyclic of order 2. Of course, any abelian group is
solvable since G 1 is a normal series with abelian factor G
= G/l. Another important class of solvable groups is given in

THEOREM 4.8. Any finite group of prime power order is
solvable.

Proof. Let G be a p−group, that is, a group of order pn, n ≥ 1,
p a prime. We have seen that G has a non-trivial center C. If
G ≠ C, put C = C1 and consider G/C1. This is a p−group and
so it has non-trival center. The center of G/C1 has the form
C2/C1 where C2 is normal in G. If G ≠ C2 let C3 be the
subgroup of G such that C3/C2 is the center of G/C2.
Continuing in this way we obtain the sequence of normal
subgroups 1 C1 C2 C3 …. Since G is finite we
eventually reach G = Cs + 1. Then G = Cs+1 Cs …
C1 1 is a normal series with abelian factors Ci + 1/Ci.

We shall now derive some of the basic properties of solvable
groups, and we shall begin by giving a test for solvability in
terms of a particular series of normal subgroups, the derived
series. If g, h G we define the commutator of g and h as

Then gh = hg(g, h), so (g, h) measures the departure from
commutativity of the elements g and h. We define the derived
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(or commutator) subgroup G′ to be the subgroup of G
generated by all the commutators (g, h), g, h G. Since (g,
h)-1 = (g-1h-1gh)-1 = h-1g-1hg = (h, g) it is clear that G′
coincides with the set of products of the form

Let η be a homomorphism of G into a second group G. Then
η(g, h) = η(g-1h-1gh) = η(g)-1)η(h)-1) η(g)η(h)). Hence η(G′)
⊂ G′. Moreover, if η is surjective then this formula shows that
every commutator (g, h), g, h G, is in η(G′). Hence in this
case η(G′) = G′. In particular, these remarks apply to any
endomorphism η of G. Now suppose K G. Then any inner
automorphism Ia:x → axa-1 of G induces an endomorphism
of K. Hence we have
Ia(K′) ⊂ K′ for every a G, which means that K′ is normal in
G. Symbolically this can be stated as

Since G G we see that G′ G.

We now define the second derived group G" = (G′)′ and
iterate this to define G(k) = (G(k−1))′, K ≥ 1. By induction,
using (26), we see that G(k) G. A weaker statement is that
G G′ G" …. We shall now show that G is solvable if
and only if there exists a k ≥ 1 such that

This will follow rather quickly from the following
characterization of the derived group.
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LEMMA. G/G′ is abelian and G′ is contained in every
normal subgroup K such that G/K is abelian.

Proof. It is clear from the definition of G′ that G is abelian if
and only if G′ = 1. If g, h G and K G, then (gK, hK) =
(gK)-1(hK)-1gKhK = (g, h)K. Hence (gK, hK) = 1 ( = K) ⇔ (g,
h) K. Thus G/K is abelian if and only if K contains every
commutator (g, h), which is the case if and only if K ⊃ G′.
Both conclusions follows from this.

We can now prove

THEOREM 4.9. A group G is solvable if and only if G(k) = 1
for some k ≥ 1.

Proof. If the condition holds we have the normal series G
G′ G" … G(k) = 1 and every G(i)/G(i + 1) is abelian
by the lemma. Then G is solvable. Conversely, suppose G is
solvable, so we have a normal series G = G1 G2 …
Gs Gs + 1 = 1 with abelian factors. By the lemma, Gi+1 ⊃
Gi′, i = 1, 2, …, since Gi/Gi + 1 is abelian. In particular, G2 ⊃
G1′ = G′ and assuming Gk ⊃ G(k), we have Gk + 1 ⊃ G′k ⊃
(G(k))′ = G(k+1). Hence Gi ⊃ G(i) for all i, and since Gs + 1 = 1,
we have G(s +1) = 1.

An easy consequence of the foregoing criterion for solvability
is the following

THEOREM 4.10. Any subgroup and any homomorphic image
of a solvable group is solvable. If K G and K and G/K are
solvable then G is solvable.
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Proof. If H is a subgroup, it is clear that H ? G implies H(i) ⊂
G(i). Hence G(k) = 1 implies H(k) = 1, and so G solvable
implies H solvable. Let η be a surjective homomorphism of G
into H. Then η(G′) = (η(G))′, so η restricted to G′ is a
surjective homomorphism of G′ onto (η(G))′. Then η(G") =
η((G′)′) = (η(G′))′ = (η(G))". By induction we have η(G(i)) =
(η(G))(i). Hence G(k) = 1 implies (η(G))(k) = 1. This proves
that if G is solvable so is any homomorphic image η(G). Now
assume K G and G/K is solvable. Let v be the natural
homomorphism of G into G/K. Since this is surjective we
have v(G(i)) = (G/K)(i). Hence v(G(k)) = 1 for a suitable k ≥ 1.
This shows that G(k) ⊂ K. If K is also solvable, then we have
an l ≥ 1 such that K(l) = 1. Then G(k+l) ⊂ K(l) = 1, and so G is
solvable.

A group G is called simple if G and 1 are the only normal
subgroups of G. Since every subgroup of an abelian group is
normal, an abelian group is simple if an only if it has no
subgroups other than itself and 1. Clearly this means that the
group is a cyclic group of prime order, a class of simple
groups that is generally regarded as trivial. The simplest class
of non-abelian simple groups is given by

THEOREM 4.11. An is simple if n ≥ 5.6

Proof. We shall prove simplicity of An by showing that if An
K ≠ 1 then K = An. It suffices to show that K contains a

3-cycle, say, (123). Then if (ijk) is any 3-cycle we take γ to be
a permutation of the form
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of 1, 2,…, n, which we may assume is even, since if our first
choice of γ is odd then we can replace it by the even
permutation (lm)γ. Now assuming γ even, we see that (ijk) =
γ(123)γ-1 K. Thus K contains every 3-cycle and since An is
generated by the 3-cycles (exercise 2, p. 51), K = An. Now let
α be an element of K such that α ≠ 1 and α has a maximum
number of fixed points among the elements ≠ 1 in K. By a
fixed point of α we mean an i, 1 ≤ i ≤ n, such that α(i) = i. We
claim that α is a 3-cycle. Otherwise, if we write α as a product
of

disjoint cycles omitting those of length 1, then in this
representation α has either the form

or

a product of disjoint transpositions. In the first case α moves
two other numbers, say 4 and 5, since α is not one of the odd
permutations (123 k). Now let β = (345) and form α1 = βαβ−1.
If α is as in (28) then α1 = (124…)…., and if α is as in (29)
then α1 = (12)(45) …. In either case α1 ≠ α and α2 = α1α−1 ≠
1. Now any number ≥ 5 is fixed by β so if it is fixed by α,
then it is also fixed by α2 = αββ−1α−1. Moreover, if α is as in
(28) then α2(2) = 2 and since in this case α moves 1, 2, 3, 4,
and 5, it is clear that α2 has more fixed points than α contrary
to the choice of α. If α is as in (29) we have α2(1) = 1 and
α2(2) = 2 so again α2 has more fixed points than α. This
contradiction proves that α is a 3-cycle and K = An.
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COROLLARY. Sn is not solvable if n ≥ 5.

Proof If it were, then the subgroup An would be solvable.
Then A′n ⊂ An and since An is simple and A′n An we have
A′n = 1. Then An would be abelian. This is certainly not the
case (even for n ≥ 4) since (123) and (234) do not commute.

We shall now give another criterion for solvability of a finite
group. This will be in terms of the concept of a composition
series, which is an important notion in the theory of finite
groups. We define a composition series for a group G to be a
normal series G = G1 G2 … Gs+1 = 1 such that each
Gi + 1 is maximal normal in Gi that is, there exists no normal
subgroup H of Gi such that Gi H Gi+ 1. We recall that if
G K then we have the bijective mapping H → H/K of the
set of subgroups of G containing K onto the set of subgroups
of G/K. In this, normal subgroups are paired. It follows that K
is maximal normal in G if and only if G/K is simple ≠ 1.
Hence a normal series G = G1 G2 … GS+1 = 1 is a
composition series if and only if every factor Gi/Gi + 1 is
simple (≠1). These factors are called the composition factors
determined by the series.

If G is a finite group, then it is clear that G = G1 contains a
maximal normal subgroup G2, and that G2 contains a
maximal normal subgroup G3. Continuing
in this way we see that any finite group has a composition
series. The composition factors are determined up to
isomorphism in the following strong sense.

THE JORDAN-HÖLDER THEOREM. Let G be a finite
group and let G = G1 G2 … Gs+1 = 1, and G = H1
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H2 … Ht+1 = 1 be two composition series for G. Then s
= t and there exists a permutation i → i′ of 1, 2, …, s such
that Gi/Gi+1 ≅ Hi′/Hi′+1, 1 ≤ i ≤ s.

Proof. We shall prove the theorem by induction on |G| and we
distinguish two cases: (I) G2 = H2 and (II) G2 ≠ H2. In i we
observe that G2 … Gs+1 = 1 and H>2 … Ht+1 = 1
are composition series for the same group G2 = H2, whose
order is less than |G|. Hence we may assume that s − 1 = t − 1
and we have a permutation i → i′ of 2, …, s such that Gi/Gi+1
≅ Hi′/Hi′+1, 2 ≤ i ≤ s. Since G1/G2 = H1/H2 the result is clear
in this case. In II, since G2 G and H2 G, G2H2 G
(exercise 5, p. 57). Since G2H2 contains G2 and H2 and G2 ≠
H>2 we have G2H2 = G by the maximality of G2 as normal
subgroup of G. By the second isomorphism theorem for
groups (p. 65), we have G/G2 = G2H2/G2 ≅ H2/(G2 ∩ H2),
and, similarly, G/H2 ≅ G2/(G2 ∩ H2). Thus we see that K3 ≡
G2 ∩ H>2 is maximal normal in H2 and in G2 and we have
the isomorphisms

Now let K3 K4 … Ku+1 be a composition series for
K3. Then since K3 is maximal normal in G2 and H2 we have
the four composition series

436



By case I we see that s = u and we can permute i → i′ 1 ≤ i ≤
s, to obtain Gi/Gi+1 ≅ Ki′/Ki′+1 where we take K1 = G1, K2 =
G2. A similar result holds for the last two composition series.
The result also holds for (ii) and (iii) since the first two
composition factors for these are respectively

and the indicated pairing pairs isomorphic factors since we
have (30). The rest of the factors are Ki/Ki+1 and these are the
same in (ii) and (iii). Putting together the information we have
obtained it is clear that we have the theorem also in case II.

We shall complete our discussion by proving the following
useful criterion for solvability of a finite group.

THEOREM 4.12. A finite group is solvable if and only if
every composition factor Gi/Gi+1 of a composition series G =
G1 G2 … Gs+1 = 1 is cyclic of prime order.

Proof. Suppose that G is solvable. Then every composition
factor Gi/Gi+1 is solvable. Being simple, it is abelian, and
hence it is cyclic of prime order. Thus every Gi/Gi+1 has this
property. Conversely, assume that we have a composition
series G = G1 G2 … Gs+1 = 1 with Gi/Gi+1 cyclic of
prime order. Then every Gi/Gi+1 is abelian and G is solvable
by definition.

EXERCISES
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1. Show that an abelian group has a composition series if and
only if it is finite.

2. Let G be cyclic of order n (< ∞) and let G = G1 G2
… Gs+1 = 1 be a composition series. Put |Gi| = ni. Show
that pi = ni/ni+1 is a prime, and conversely, if n = n1, n2, … ,
ns+1 = 1 is a sequence of integers such that ni/ni+1 is a prime
then we have a composition series for which |Gi| = ni. Use this
result to deduce the fundamental theorem of arithmetic for .

3. If g and h are elements of a group we write gh for h−1gh.
Then ghk = (gh)k and by definition of (g, h) = g−1h−1gh we
have gh = g(g, h). Verify that

4. If H G and K G define (H, K) to be the subgroup
generated by the commutators (h, k), h H, K K. Show that
(H, K) = (K, H) G.

5. Show that if H 3 G, K 3 G, and L G then

6. Define Gi by G1 = G, Gi = (Gi − 1, G). The sequence of
normal subgroups G1 ⊃ G2 ⊃ G3 ⊃ … is called the lower
central series for G. G is called nilpotent if there
exists an integer k such that Gk = 1. Show that if G is
nilpotent, then it is solvable. Give an example to show that
the converse does not hold.
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7. Show that every element h of a nilpotent group has the
Engel property: there exists an integer k such that

for every g G.

8. Prove that if H is a proper subgroup of a nilpotent group G,
then the normalizer N(H) H. (See p. 81 for the definition of
N(H).)

9. Show that if G is a finite nilpotent group, then every Sylow
subgroup is normal in G. Show that for every prime divisor p
of |G| there exists only one Sylow p−subset subgroup.

10. If G is a group define the upper central series 1 ⊂ C1 ⊂
C2 ⊂ … by C1 = C(G), the center of G, and Ci the normal
subgroup such that Ci/Ci − 1 is the center of G/Ci − 1. Show
that a finite group G is nilpotent if and only if the upper
central series ends in a finite number of steps with G (G = Ck
for some k). Note that this result and the proof of Theorem 4.8
imply that any p−group is nilpotent.

11. Prove that a finite group is nilpotent if and only if it is a
direct product of p−groups.

4.7 GALOIS′ CRITERION FOR SOLVABILITY BY
RADICALS

Let F be a field and f(x) a polynomial with coefficients in F. It
is essential that we have a precise formulation of the
statement that the equation f(x) = 0 is solvable by radicals
over F. We give this in the following
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DEFINITION 4.2. Let f(x) F[x] be monic of positive
degree. Then the equation f(x) = 0 is said to be solvable by
radicals over F if there exists an extension field K/F which
possesses a tower of subfields.

where each Fi+1 = Fi(di) and di
ni = ai Fi and K contains a

splitting field over F of f(x). A tower of subfields such as (31)
will be called a root tower over F for K.

Since each field Fi + 1 is obtained by adjoining a root of
an equation xni = ai and all the roots of f(x) are contained in K,
this means that every root of f(x)) can be obtained by starting
with elements of the base field and performing a finite
sequence of rational operations and solving equations of the
form xn = a.

Now assume f(x) has distinct roots in a splitting field E/F.
Then we define the Galois group of the polynomial f(x), or of
the equation f(x) = 0, to be the Galois group of the splitting
field E/F. Since any two splitting fields are isomorphic
over F it is clear that this is essentially independent of the
choice of the splitting field. Let

and R = {r1,
…, rn} is the set of (distinct) roots of f(x) in E. As we shall
now show, one can identify G = Gal E/F with a permutation
group of the set of roots R.7

Let η G. Then it is clear that η maps R into itself and hence
η induces a permutation of the set R. Hence we have the
homomorphism η → η|R (the restriction of η to R) of G into
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the symmetric group Sn of permutations of R = {r1, …, rn}.
Since the ri generate E/F it is clear that η → η|R is a
monomorphism of G into Sn, and that its image, which we
shall denote as Gf, is a subgroup of Sn isomorphic to G. Often
we shall not distinguish between G and Gf. For example, if Gf
= Sn then we shall say that the Galois group of the equation
f(x) = 0 is the symmetric group Sn.

We now have within our reach the crowning achievement of
Galois’ theory: the following criterion for solvability of an
equation by radicals.

An equation f(x) = 0 is solvable by radicals over a field F of
characteristic 0 if and only if its Galois group is solvable.

Besides the fundamental group-field correspondence we shall
need some information of a more special type on fields of
roots of unity and on cyclic fields, that is, splitting fields
whose Galois groups are cyclic. We shall now call a splitting
field of xn − 1 over a given base field F a cyclotomic field of
order n over F. We prove first

LEMMA 1. The Galois group of the cyclotomic field of order
n over F of characteristic 0 is abelian.

Proof. Since (xn − 1)′ = nxn − 1 and xn − 1 are relatively
prime, xn − 1 has n distinct roots z1, z2, …, zn. These
constitute a subgroup U of the multiplicative group of the
cyclotomic field. We know that U is cyclic. The map η → η|U
of the Galois group G is a monomorphism of G into Aut U,
the group of automorphisms of the cyclic group U of order n.
Thus G is isomorphic to a subgroup of Aut U and we know
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that the latter is isomorphic to the abelian group of units of
the ring /(n). Hence G is abelian.

Remark. Of course, G need not be isomorphic to the group of
units of /(n). For instance, F itself may contain the nth roots
of unity, in which case F coincides with the cyclotomic field
and G = 1.

We shall now call an extension field E/F Galois over F if it
satisfies the equivalent conditions given in Theorem 4.7 (e.g.,
E is finite dimensional, normal, and separable over F). If E/F
is Galois we have the fundamental Galois pairing of the
subgroups of Gal E/F and the subfields of E/F. E/F is called
abelian (cyclic) if it is Galois over F and G = Gal E/F is
abelian (cyclic). Lemma 1 states that any cyclotomic
extension of characteristic 0 is abelian. We derive next two
results on cyclic extensions under the hypothesis of the
existence of certain roots of unity in the base field.

LEMMA 2. If F contains n distinct nth roots of unity, then the
Galois group of xn − a over F is cyclic of order a divisor of n.

Proof. Let U be the set of nth roots of unity contained in F
and let E be the splitting field over F of xn − a. If r is one of
the roots of xn = a in E then this equation has the n roots zr, z

U, so E = F(r). If η, ζ G = Gal E/F, then η(r) = zr, ζ(r) =
z′r where z, z′ U. Then ζ η(r) = zz′r. Thus η → z is a
mono-morphism of G into the cyclic group U, and G is
isomorphic to a subgroup of U.

We prove next a partial converse to Lemma 2:
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LEMMA 3. Let p be a prime and assume F contains p distinct
pth roots of unity. Let E/F be cyclic and p dimensional. Then
E = F(d) where dp F.

Proof. Let c E, ∉ F. Then E = F(c). Let U = {z1, z2, …, zp}
be the pth roots of unity and let η be a generating
automorphism of the Galois group G of E/F. Put ci = ηi − 1(c),
1 ≤ i ≤ p. Then c1 = c and η(ci) = ci + 1 if 1 ≤ i ≤ p − 1, η(cp) =
c1. We introduce the Lagrange resolvent

Then η(zi, c) = c2 + c3zi + … + cizi
p − 1 = zi

− 1(zi, c). Hence
η(zi, c)p = (zi

− 1(zi, c))p = (zi, c)p which shows that (zi, c)p ∈
F. Now we can express c1, c2, …, cp as linear combinations
of (z1, c), (z2, c), …, (zp, c). To do this we regard (32) for 1 ≤
i ≤ p as a system of linear equations in c1, … ,cp. The
determinant of the coefficients is a Vandermonde determinant

whose value is well known to be . We now see
that since E = F(c) we also have E = F(d1, d2, …, dp) where
di = (zi, c). Then some di ∉ F, so if we put d = this di, we
have E = F(d) where dp F.

We shall also need a result which describes what happens to
the Galois group of an equation when we extend the base
field. (In the older literature the formation of such an
extension is called “adjunction of accessory irrationalities”.)
The result is the following

LEMMA 4. Let f(x) F[x] and let K be an extension field of
F. Then the Galois group of f(x) over K is isomorphic to a
subgroup of the Galois group of f(x) over F.
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Proof. Let L be a splitting field over K of f(x). Since K ⊃ F, L
contains a splitting field E of f(x) over F. In fact, if

in L[x] then L = K(r1, … , rn) and E =
F(r1, … , rn). If η Gal L/K, η maps R = {r1, … , rn} into
itself and hence it maps E into itself. Since η is determined by
its action on R, the restriction homomorphism η → η|E is a
monomorphism of Gal L/K into Gal E/F. Thus Gal L/K is
isomorphic to a subgroup of Gal E/F.

Let E be a finite dimensional extension field of F. Then E is
generated over F by a finite set {a1, … , an} of algebraic
elements ai. Let fi(x) be the minimum polynomial over F of ai
and put f(x) = ∏fi(x). Then we can construct a splitting field K
over E of f(x). Since K ⊃ F(a1, … , an) and fi(ai) = 0 it is clear
that K is also a splitting field over F of f(x). Now it can be
shown that the splitting field of a polynomial is always
normal. We shall indicate this in an exercise below. For our
present purposes it is enough to consider the case in which
f(x) is separable (which includes the characteristic 0 case). In
this case the normality (and separability) of K/F follows from
Theorem 4.7. It is clear also that every normal extension of E
contains a splitting field over F of f(x); hence it contains a
subfield isomorphic to K. It follows from this that to within
isomorphism the field K is determined by E/F and is
independent of the choice of the set of generators.
Accordingly, we shall call K/F the normal closure of E/F.
Again assuming f(x) is separable, let G = Gal K/F. If η G,
the subfield η(E) is isomorphic over F to E. The subfields
η(E) are called the conjugates of E/F in K. These generate K.
For, if we let K′ be the subfield of K generated by the η(E), η

G, then G maps K′ into itself and so it determines a finite
group of automorphisms G′ of K′ whose subfield of fixed
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elements is F. Then K′ is normal over F, by Theorem 4.7, and
consequently K′ = K.

We can now show that in the definition of solvability by
radicals there is no loss in generality in the separable case in
assuming that the field K given in the definition is normal and
separable over F. This is a consequence of the following

LEMMA 5. Let E/F have a root tower over F, say F = F1 ⊂
F2 ⊂ … ⊂ Fr+1 = E with Fi+1 = Fi(di), , and assume E
is generated over F by a finite set of elements whose minimum
polynomials are separable. Then the normal closure K/F of
E/F has a root tower over F such that the distinct integers ni
for this tower are the same as those occurring in the given
tower.

Proof. The normal closure K/F is generated by the conjugate
fields η(E), η Gal K/F. Applying η to the given tower F =
F1 ⊂ F2 ⊂ … ⊂ Fr+1 = E with Fi+1 = Fi(di), , we
obtain a root tower over F for η(E). Then K = F(η1(d1), … ,
η1(dr); η2(d1), …, η2(dr); …) where Gal K/F = {η1, η2, …}.
Obviously we can display a root tower for K over F satisfying
the stated condition.

We are now ready to establish Galois’ criterion for solvability
of an equation by radicals. Suppose first that f(x) = 0 is
solvable by radicals over F of characteristic 0. Then we have
an extension field K/F of a splitting field of f(x) which has a
root tower over F as in (31). By lemma 5 we may assume K
normal over F. Since it is automatically separable, it is Galois
over F. If n is the least common multiple of the integers ni
associated with this chain, then we can extend the chain from
K to K(z) where z is a primitive nth root of unity. Then if K is
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the splitting field over F of, say, g(x), K(z) is the splitting
field over F of g(x)(xn − 1), and so K(z) is also Galois over F.
Moreover, since zn = 1 F we may rearrange the tower for
K(z) so that its second term is F(z). Then we have

Let G be the Galois group of E/F, H the Galois group of K(z)
over F. We now observe that in the arrangement (33) each
Fi+1 is abelian over Fi. This follows from Lemma 1 for i = 1
and from Lemma 2 for i > 1, since in this case Fi contains the
requisite roots of unity. Now let Hi be the subgroup of H =
Gal K(z)/F corresponding to the subfield Fi, that is, Hi = Gal
K(z)/Fi. Since Fi+1 is normal over Fi, Hi+1 Hi. Moreover,
Hi/Hi+1 is isomorphic to the Galois group of Fi+1/Fi so this is
an abelian group. Hence we have a normal series for H with
abelian factors and so H is solvable. Since the splitting field
E/F is contained in K(z)/F, the Galois group G is isomorphic
to a factor group of H. Hence G is solvable.

Conversely, assume that the Galois group G of f(x) = 0 over F
is solvable. Let n = |G| = [E:F] where E is a splitting field
over F of f(x). Let F1 = F, F2 = F(z) where z is a primitive nth
root of unity, and let K = E(z). By Lemma 4, the Galois group
of K/F2 is isomorphic to a subgroup H of G. Hence H is
solvable and it has a composition series H = H1 H2 …

Hr+1 = 1 whose
composition factor Hi/Hi+1 is cyclic of prime order pi for 1 ≤ i
≤ r. Correspondingly, we have an increasing chain of
subfields F2 ⊂ F3 ⊂ … ⊂ Fr+2 = K where Hi = Gal K/Fi+1.
Hence Fi+1 is normal over Fi with cyclic Galois group of
prime order pi. Since pi|n( = |G|) and Fi contains a primitive
nth root of unity, Fi contains pi pith roots of 1, so by Lemma
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3, Fi+1 = Fi(di) where . Hence K contains a root tower
over F and since K contains the splitting field, f(x) = 0 is
solvable by radicals over F.

EXERCISES

1. Let p be a prime unequal to the characteristic of the field F.
Show that, if a F, then xp − a is either irreducible in F[x] or
it has a root in F.

2. Assume that xp − a, a , is irreducible in [x]. Show
that the Galois group of xp − a over is isomorphic to the
group of transformations of /(p) of the form y → ky + l
where k, l /(p) and k ≠ 0.

3. Let E/F be the cyclotomic field of the pth roots of unity
over the field F of characteristic 0. Show that E can be
imbedded in a field K which has a root tower over F such that
the integers ni are primes and [Fi+1:Fi] = ni.Call such a root
tower normalized.

4. Obtain normalized root towers over of the cyclotomic
fields of 5th and of 7th roots of unity.

5. Prove that, if f(x) = 0 has a solvable Galois group over a
field F of characteristic 0, then its splitting field can be
imbedded in an extension field which has a normalized root
tower over F.

6. Let E be a splitting field over F of f(x) F[x]. Show that E
is normal over F. (Hint: Let g(x) be an irreducible polynomial
having a root s in E. Form a splitting field over E of g(x), say,
K = E(s1 = s, …, sm) where g(x) = ∏(x − sj) in K[x]. Since s1
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and si, 2 ≤ i ≤ m have the same minimum polynomial g(x)
over F, we have an isomorphism of F(s1) onto F(si) over F
sending s1 → si. This can be extended to an isomorphism η of
E(s1) onto E(si) since both of these are splitting fields over
F(s1) and F(si) respectively of f(x). Then η(E(s1)) = E(si) and
since s1 E, E(s1) = E. Hence E(si) = E and E contains every
si. Thus g(x) = ∏(x − sj) takes place in E[x].)

4.8 THE GALOIS GROUP AS PERMUTATION GROUP
OF THE ROOTS

We are now going to exploit the idea which was introduced at
the beginning of section 4.7: that the Galois group of an
equation can be identified with a permutation group of the
roots. As before, we consider a monic polynomial of positive
degree, f(x) F[x] with distinct roots r1, …, rn in a splitting
field E = F(r1, …, rn). The group Gf, which is isomorphic to
G = Gal E/F, is the subgroup of the group Sn of permutations
of R = {r1, …, rn} induced by G. Identifying G with Gf the
Galois correspondence becomes a correspondence between
the subgroups of Gf and the subfields of E/F. We consider
first the following question. What is the subfield of E/F which
corresponds to the subgroup Gf ∩ An, An, the alternating
subgroup of Sn? For the sake of simplicity we confine our
attention to the case in which char F ≠ 2 and reserve the
consideration of the case char F = 2 for an exercise. We have
the following

THEOREM 4.13. Let F be a field of characteristic ≠2, f(x) a
monic polynomial of positive degree F[x] such that f(x) has
distinct roots ri in a splitting field E/F. Put
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Then the subfield of E/F corresponding to Gf ∩ An in the
Galois pairing is F(D).

Proof. We look first at the ring F[x1, …, xn] of polynomials
with coefficients in F in the indeterminates xi, 1 ≤ i ≤ n. We
recall that if π is a permutation of 1, 2, …, n, then we have a
unique automorphism ζ(π) of F[x1, …, xn] fixing the elements
of F and sending xi → xπ(i), 1 ≤ i ≤ n (Theorem 2.12, p. 125).
If π1 and π2 Sn, then ζ(π1π2) = ζ(π1)ζ(π2). put

and consider the effect of the automorphism ζ(kl) on Δ, where
(kl) is a transposition and k < l. We claim that ζ(kl)(Δ) = − Δ.
First ζ(kl)(xk − xl) = xl − xk = − (xk − xl). Next let k < l < i.
Then ζ(kl) interchanges xk − xi and xl − xi, both of which are
terms in Δ. Similarly, if i < k < l then ζ(kl) interchanges xi −
xk and xi − xl. Now let k < i < l. Then ζ(kl) maps xk − xi into xl
− xi = −(xi − xl) and xi − xl into xi − xk = − (xk − xi). Finally,
ζ(kl) fixes every xi − xj with i, j ≠ k, l. These observations
imply that ζ(kl)(Δ) = − Δ. Then the multiplicative character of
ζ implies that ζ(π)(Δ) = Δ or − Δ according as π is even or
odd. Now let η Gal E/F and let π be the corresponding
permutation of the roots. Then if we apply the
homomorphism of F[x1, …, xn] into E, which is the identity
on F and sends xi → ri, 1 ≤ i ≤ n, to ζ(π)Δ we obtain η(D),
where D is as in (34). Hence η(D) = D or − D according as π
is even or odd. Consequently, the subgroup of Gal E/F which
fixes the elements of the subfield F(D) of E is the subgroup of
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elements η for which the corresponding permutation π of the
roots is even. Hence, identifying G = Gal E/F with Gf, we
can say that the subgroup of Gf corresponding to F(D) is Gf ∩
An. Then the subfield of E/F corresponding to Gf ∩ An is
F(D).

Our proof shows also that for any η G, η(D) = ±D, so if we
put d = D2, then η(d) = d for all η G. Then d F. Since
F(D) is the subfield corresponding to Gf ∩ An it is clear that
F(D) = F if and only if Gf ⊂ An. Since the two square roots of
d in E are D and − D we see that Gf ⊂ An if and only if d is
the square of an element of F. Hence we have the

COROLLARY. Let F and f(x) be as in Theorem 4.13. Then
the Galois group of f(x) over F is a subgroup of the
alternating group if and only if the element

is the square of an element of F.

The element d F is called the discriminant of f(x). We
proceed to give a procedure for calculating d. We write

Then
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Also, we have the well-known Vandermonde determinant
formula

If we multiply the displayed matrix on the right by its
transpose and take the determinant of the resulting matrix, we
obtain

where si = r1
i + r2

i + … + rn
i. Since these power sums can be

expressed as polynomials in the ai with integer coefficients
(Theorem 2.20, p. 139), (40) can
be used to obtain a formula for the discriminant d = d(f) as a
polynomial in the coefficients ai with integer coefficients. It is
clear from the definition (36) of d that f has multiple roots if
and only if d = 0.

We shall now calculate d for the cases n = 2, 3.

n = 2. We have f(x) = x2 − a1x + a2 = (x − r1)(x − r2) and a1 =
r1 + r2, a2 = r1r2. Then s2 = r1

2 + r2
2 = (r1 + r2)2 − 2r1r2 =

a1
2 − 2a2. The formula (40) gives
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which is the familiar formula for the discriminant of the
quadratic polynomial x2 − a1x + a2.

n = 3. Here f(x) = x3 − a1x2 + a2x − a3 = (x − r1)(x − r2)(x −
r3), so S1 = r1 + r2 + r3 = a1, r1r2 + r1r3 + r2r3 = a2, and
r1r2r3 = a3. Then s2 = r1

2 + r2
2 + r3

2 = (r1 + r2 + r3)2 −
2(r1r2 + r1r3 + r2r3) = a1

2 − 2a2. To calculate s3 and s4 we
use the relations rk

3 = a1rk
2 − a2rk + a3, rk

4 = a1rk
3 − a2rk

2 +
a3rk. Then

Using (40) and these formulas we obtain

We obtain next a criterion on the Galois group regarded as a
permutation group of the roots, that f(x) be irreducible in F[x].
This is the following
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THEOREM 4.14 Let f(x) F[x] have no multiple roots. Then
f(x) is irreducible in F[x] if and only if Gf is a transitive
permutation group of the roots ri.

Proof. We recall that a group G of transformations of a set M
is transitive if given any pair of elements (x, y) of M there is
an η G such that η(x) = y.

Suppose first that f(x) is irreducible and ri and rj are two of its
roots. Since f(x) is irreducible and f(ri) = 0 = f(rj) there exists
an isomorphism of F(ri)/F into F(rj)/F sending ri into (p.
227). Since E = F(r1, r2,…, rm) is a splitting field over F(ri)
and over F(rj) of f(x) = ∏(x − rk) this isomorphism can be
extended to an automorphism η of E/F. Then η Gal E/F and
η(ri) = rj, which shows that G is transitive on the set of roots.
Conversely, suppose Gf is transitive. Let f1(x) be an
irreducible factor of f(x) of positive degree and let ri be one of
its roots. Then if rj is any other root we have an η Gf such
that η(ri)= rj. Since f1 (ri) = 0,0 = η(f1 (ri)). This shows that
every root of f(x) is a root of f1(x). Hence f(x) = f1(x) is
irreducible.

The two results we have derived make it easy to calculate the
Galois groups of quadratic and cubic equations. Similar ideas
apply to quartics. We shall look at the first two cases now and
will indicate how the quartics can be handled in the exercises
which follow.8 We assume that the characteristric of F is not
two and f(x) has distinct roots. If f(x) = x2 − a1x + a2, then its
group is the symmetric group S2 or the alternating group A2 =
1 according as d = a1

2 − 4a2 is not or is a square in F. Next
let f(x) = x3 − a1x2 + a2x − a3. If f(x) = (x − r)g(x) in F[x] then
the Galois group of f(x) is the same as that of the quadratic
polynomial g(x). Hence we may assume f(x) irreducible in
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F[x]. Since the only transitive subgroups of S3 are S3 and A3,
the Galois group Gf is one of these. The corollary to Theorem
4.13 shows that Gf = A3 if d = −4 a1

3a3 + a1
2a2

3 + 18a1 a2 a3
+ 4a2

3 −27a3
2 is a square in F. Otherwise, Gf = S3.

EXERCISES

1. Suppose the discriminant d(f) ≠ 0. Show that if f(x) =
f1(x)f2(x) … fr(x) where fi(x) is irreducible of degree ni in
F[x], then the set R of roots of f decomposes into orbits under
Gf of cardinality ni, 1 ≤ i ≤ r. Hence show that if the Galois

group is cyclic, say, = η , then by a suitable ordering of R
the permutation of R determined by η has the cycle
decomposition (12 … n1)(n1 + 1 … n1 + n2)(n1 + n2 + 1 …
n1 + n2 + n3)….

2. Let F = and let f(x) be a cubic with discriminant d. Show
that f(x) has multiple roots, three distinct real roots, or one
real root and two non-real roots according as d = 0, d > 0, or d
< 0.

3. Let the characteristic of F be arbitrary (including two). Let
f(x) have distinct roots r1, r2, …, rn. Put

Show that for any odd permutation σ
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Show that the subfield of invariants of Gf An is F(D').
Determine a quadratic equation with coefficients in F having
D' as a root.

In the remainder of these exercises we assume that the
characteristic of the base field is ≠ 2, f(x) = x4 − a1x3 + a2x2 −
a3x2 + a4 has distinct roots r1, r2, r3, r4, E = F(r1, r2, r3, r4) G
= Gal E/F, and Gf is the corresponding permutation group of
the roots.

4. Show that V = {1, (12)(34), (13)(24), (14)(23)} is normal in
S4.

5. Show that the subfield of E/F of invariants under Gf V is
F(t1, t2, t3) where t1 = r1r2 + r3r4, t2 = r1r3 + r2r4, and t3 =
r1r4 + r2r3.

6. Let g(x) = (x − t1)(x − t2)(x − t1). (This polynomial is called
the resolvent cubic of the quartic f(x).) Verify that

where

and that f(x) and g(x) have the same discriminant.

7. Show that the transitive subgroups of S4 are (i) S4, (ii) A4,
(iii) V, (iv) C = {1, (1234), (13)(24), (1432)} and its
conjugates, (v)D = V {(12), (34), (1423), (1324)} which is
a Sylow 2-group (subgroup of order 8 of S4) and its
conjugates.
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8. Show that the Galois group Gg of g(x) = 0 is isomorphic to
Gf/(Gf V). Assume f(x) irreducible and verify that, if (i) Gf
= S4 then Gg is of order 6, (ii) Gf = A4, Gg is of order 3, (iii)
Gf = V, Gg = 1, (iv) Gf = C or one of its conjugates (that is,
any cyclic subgroup of order 4 of S4), then Gg is of order 2,
(v) Gf = D or one of its conjugates (any Sylow subgroup of
order 8 in S4), then Gg is of order 2. Note that these results
identify Gf if we know Gg unless Gf is either as in (iv) or (v).

9. Prove that if Gg is of order 2, then Gf ≅ D or Gf ≅ C

according as f(x) is or is not irreducible in F( ), d the
discriminant of f(x).

10. Determine the Galois group of x4 + 3x3 − 3x − 2 = 0 over
.

The next four exercises are designed to show that any
solvable transitive subgroup of Sp, p a prime, is equivalent to
a subgroup of the group of transformations of /(p) of the
form x → ax + b, a ≠ 0 including all the translations x → x +
b.

11. Let H be a normal subgroup ≠ 1 of a transitive subgroup
G of Sn of transformations of {1, 2,…, n}. Show that all
H−orbits have the same cardinality. Hence show that if n = p
is a prime, then H is transitive.

12. Let p be a prime and let L be the group of all
transformations of /(p) of the form x → ax + b, a ≠ 0
including all the translations x → x + b. Show that the
translations x → x + b, b ≠ 0, are the only transformations in L
without fixed points and
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hence that these are the only transformations in L whose cycle
representations are p−cycles.

13. Let G be a group of transformations in /(p) containing
the group H of translations as normal subgroup. Show that G
is a subgroup of L. (Hint: Let τ: x → x + 1 and let η G.
Then, by exercise 12, ητη−1 has the form x → x + k. Hence
η(x + 1) = ητ(x) = η(x)+ k, from which one can conclude that
ητ(x) = kx + b.)

14. Use induction and exercise 13 to prove that any solvable
transitive subgroup of Sp, p a prime, is equivalent to a
subgroup of L containing the subgroup of translations.

15. (Galois.) Let f(x) F[x] be irreducible of prime degree
over F of characteristic 0, E a splitting field over F of f(x).
Show that f(x) is solvable by radicals over F if and only if E =
F(ri, rj) for any two roots ri,rj of f(x).

16. Let E be a splitting field over F of f(x) F[x] and let G =
Gal E/F. Let x1, … , xn be indeterminates and put = E(x1,
…,xn), = F(x1, …, xn). Note that is a splitting field over

of f(x) and show that = Gal / is isomorphic to G

under the restriction map → η = | E, Assume that
deg f(x) = n and f(x) has n distinct roots r1, r2,…, rn in E. If π
is a permutation of 1, 2,…, n put

Observe that uπ1 ≠ uπ2 if π1 and π2 are distinct permutations

and hence that the orbit of uπ under contains | | distinct
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elements. Hence conclude that uπ is a primitive element of
over (that is, = (uπ)) and the minimum polynomial of

uπ over is φπ(x) = Let

Show that φ(x) F [x1, …, xn, x] and its irreducible factors in
this ring have the form φπ(x). Hence show that G is
isomorphic to the subgroup of Sn of the permutations σ such
that the automorphism η(σ) of F[x1, …, xn, x] fixing F and x,
and sending xi → xσ(i), fixes the irreducible factors of φ(x).

4.9 THE GENERAL EQUATION OF THE nth DEGREE

By a general equation we mean one whose coefficients are
distinct indeterminates. More precisely, let F be a field and let
t1 t2, …, tn be distinct indeterminates. Then the equation

is called a general equation of the nth degree over F. This is
said to be solvable by radicals if it is solvable by radicals over
the field F(t1, …, tn) (the field of fractions of the polynomial
ring F[t1, …, tn]). For example, the quadratic formula

shows that the general equation of
second
degree is solvable by radicals since the roots are contained in
F(tl, t2, d) where d2 = t2 − 4t2 F(tl, t2). To settle the
question of solvability by radicals via Galois' criterion, we
need to determine the Galois group Gf of f(x) over F(tl, …,
tn). Let E be the splitting field of f(x) over F(tl, …, tn) and
suppose f(x) = (x − y1)(x − y2) … (x − yn) in E[x]. Then
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comparing this factorization with (45) we see that t1 = Σ yi,t2
= Σi> j yiyj, … , tn = y1y2 … yn. Hence

We shall now obtain Gf by applying a result we obtained in
section 4.5 in our discussion of symmetric rational
expressions. As before, we introduce new inde-terminates x1,
… xn and we form the field F(x1, …, xn) and its subfield of
symmetric rational expressions. We showed that the latter
coincides with F(p1, …, pn) where the pi are the elementary
symmetric polynomials in the xiand that F(x1, …, xn) is a
splitting field over F(p1, …, pn) of

and, moreover, the Galois group Gg is Sn.

We shall now carry over the result we had on the pair of
fields F(x1, …, xn) ⊃ F(p1, …, pn) to the pair we are really
interested in: F(y1, …, yn) ⊃ F(t1, …, tn) where the ti are the
indeterminates. We shall do this by establishing an
isomorphism of F(y1, …, yn) into F(x1, …, xn) which carries
F(t1, …, tn) into F(p1, …, pn). Since the ti are indeterminates
we have a homomorphism σ of F[t1, …, tn] → F[p1, …, pn]
which is the identity on F and sends ti → pi 1 ≤ i ≤ n. We
claim that σ is a monomorphism. To see this we note that
since the xi are indeterminates, we have a homomorphism τ
ofF[x1, …, xn] into F[y1, …, yn] which is the identity on F
and sends xi → yi 1 ≤ i ≤ n. We have the following diagram
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It is clear that τσ is defined. Moreover,

by the formulas relating the p’s and the x’s and the t’s and the
y’s. It now follows that if h(t1, …, tn) F[t1, …, tn] then
τσ(h) = h. This implies that σ is a monomorphism, since σ(h)
= 0 gives h = τσ(h) = 0. It is clear also that σ is surjective and
that σ is an isomorphism of F[t1, …, tn] into P[t1, …, Pn].
This has a unique extension to an isomorphism, which we
shall denote by σ also, of F(t1, …, tn) into F(P1, …, Pn).
Moreover, σ extends to an isomorphism σ′ of
F(t1, …, tn)[x] into F(p1, …, pn)[x] fixing x. This maps the
polynomial f(x) = xn − t1xn−1 + … + (− 1)ntn into the
polynomial g(x) = xn − p1xn−1 + … + (− 1 )npn. Since F(y1,
… , yn) is a splitting field over F(t1, …,tn) of f(x) and F(x1,
…, xn) is a splitting field over F(p1, …, pn) of g(x), σ can be
extended to an isomorphism ρ of F(y1 …, yn) into F(x1 …,
xn). The existence of the isomorphism ρ which maps F(t1 …,
tn) into F(p1 …, pn) implies that the Galois groups Gf and Gg
are isomorphic. In fact, it is immediate that the map η →
ρηρ−1 is an isomorphism of Gf into Gg. Since Gg is the
symmetric group it follows that Gf = Sn. It is clear also that
f(x) is irreducible in F(t1…,tn)[x] and that its roots yi are
distinct. The results we have derived can be stated as

THEOREM 4.15. The general equation of the nth degree f(x)
= 0 (as in (45)) is irreducible in F(t1, …, tn)[x] and has
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distinct roots. The Galois group of f(x) = 0 is the symmetric
group Sn.

Since Sn is not solvable if n > 4, by the Corollary to Theorem
4.11 this implies the celebrated

THEOREM OF RUFFINI-ABEL. The general equation of
the nth degree is not solvable by radicals if n > 4
(characteristic 0).

Galois' criterion implies also that general cubics and quartics
are solvable by radicals. Moreover, the proof of the criterion
suggests a procedure for solving these equations. We shall
now carry this out for cubics and we shall arrive in this way at
Cardan's formulas. The corresponding result for quartics will
be indicated in an exercise.

We now assume only that the characteristic of F is ≠ 2, ≠ 3
and we consider the general cubic x3 − t1x2 + t2x − t3 = (x −
x1)(x − x2)(x − x3) where the ti are indeterminates and the xi
are the roots in the splitting field F(x1, x2, x3). The proof of
Galois’ criterion shows that it will be handy to have available
a primitive cube root of unity. These are the roots w and w2 =
w−1 of x2 + x + 1 = 0, and so, by the quadratic formula, we

have, say, w = We
assume that these are contained in F. To simplify the
calculations we now replace the roots xi by yi = xi (x1 + x2

+ x3) = xi Then the equation is replaced by y3 + py + q
= 0, whose roots y1, y2, y3 satisfy the relation y1 + y2 + y3 = 0.
The group of the y-equation is S3, which has the composition
series S3 A3 1. The subfield corresponding to A3 is
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where K = F(p, q) and d is the discriminant. By (42),
we have d = − 4p3 − 27q2. The splitting field K(y1 y2, y3) that
we seek is cyclic, three dimensional over and so it can
be obtained by adjoining a cube root of a
Lagrange resolvent defined by the yi (which are permuted
cyclically by A3) and a cube root of unity. The three
resolvents are

where Then

and z2
3 is obtained from this by interchanging w and w2. Now

Hence if we put u = y1
2y2 + y2

2y3 + y3
2y1 + y1y2

2 + y2y3
2 +

y3y1
2 and use the relations w + w2 = − 1, w − w2 = we

obtain from (47):
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Now 0 = (y1 + y2 + y3)3 = ∑ yi
3 + 6y1y2y3 and 0 = (y1 + y2 +

y3) × (y1y2 + y2y3 + y1y3) = u + 3y1y2y3. Also y1y2y3 = —q.
Hence

Since z2
3 is obtained from zt

3 by interchanging w and w2 and

w2 − w = we obtain the formula for z2
3 by replacing

by in the foregoing formula. Hence we have
the formulas

where the same determination of is used in both
formulas. In extracting the cube roots to obtain z1 and z2 we
have three determinations for these. However, these must be
paired appropriately, since

Thus we have
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where in both formulas the same determination of is
used and the cube roots are determined so that z1z2 = − 3p.
Using (47) and the relation w + w2 + 1 = 0 we obtain

The formulas (50) and (51) are Cardan's formulas for solving
the cubic x3 + px + q = 0 with indeterminate coefficients.
They can be applied also to cubics with coefficients in any
field of characteristic ≠2, 3.

EXERCISES

1. Solve the following over by Cardan’s formulas:

(a) x3 − 2x + 4 = 0, (b) x3 − 15x + 4 − 0.

2. Assume the characteristic of F ≠ 2, 3 and consider the
general quartic x4 − t1x3 + t2x2 − t3x + t4 = ∏1

4(x − xi).
Replacing xi by yi = xi —¼t1 gives an equation f(y) = y4 + py2

+ qy + r = 0 whose roots yi satisfy ∑ yi = 0. Show that the
resolvent cubic of f(y) = 0 is g(z) = z3 − pz2 − 4rz + (4pr − q2)
= 0 (exercise 6, p. 261). Let z1, z2, z3 be the roots of the
resolvent cubic. Show that the Galois group of
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over F(z1, z2, z3) is V = {1, (12)(34), (13)(24), (14)(23)}.
Obtain formulas for y1, y2, y3, y4 in terms of z1, z2, z3 and
square roots of elements of F(z1, z2, z3). Note that together
with Cardan’s solution for the resolvent cubic this gives a
solution of the quartic by radicals.

3. Apply the method of exercise 2 to solve x4 − 2x3 − 8x − 3 =
0 over .

4. Use the fact that any finite group G is isomorphic to a
subgroup of Sn to prove that given any finite group G there
exist fields F and E/F such that

5. Let E be an extension of such that E = (t, u) where t is
transcendental over and u satisfies the equation u2 + t2 = 1
over (t). Determine the Galois group of (t, u) over (tn, un)
for any n . Show that
is contained in (tn, un). Use this to prove that the function
cos nx is expressible rationally with complex coefficients in
terms of cosnx and sinnx. Does this hold for sin nx?

6. Let F be a subfield of and let f(x) F[x] be an
irreducible cubic with discriminant d > 0 and Gf = A3. Show
that the roots of f(x) in are in . Let p be a prime and let K
= F(r) where r is real and rp F. Show that K cannot contain
a splitting Field over F of f(x).

465



7. Note that if F and f(x) are as in exercise 6, then the roots of
f(x) are real but Cardan’s formulas give expression of these
roots involving non-real numbers. Prove that this is indeed
unavoidable, that is, there exists no subfield K/F of /F which
has a root tower over F and contains a splitting field of f(x)
over F. (This is the so-called Casus irreducibilis of real
equations.)

8. Show that H = {1, (12345), (13524), (14253), (15432),
(14)(23), (15)(24), (25)(34), (12)(35), (13)(45)} is a solvable
subgroup of A5. Let f(x) = x5 − t1x4 + … be a general quintic
equation with roots x1, …, x5 over F(t1, …, t5). Let d be the

discriminant and put K = F(t1, …, t5, ). Let

and ω1 = χ1 − χ′1 Show that ω1 is fixed under H and
determine the conjugates of ω1 under the Galois group of
F(x1, …, x5)/K. Show that

9. Show that the discriminant of f(x) = x5 + px + q is d = 28p5

+ 55q4. Let ρ1, …, ρ5 be the roots of f(x) and assume d ≠ 0.
Put
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and μ1 = λ1 − λ'1 = 2λ1 Show that λ1 is a root of the resolvent
sextic of f(x):

and that f(x) is solvable by radicals over F( λ1)(F of
characteristic 0).

4.10 EQUATIONS WITH RATIONAL COEFFICIENTS
AND SYMMETRIC GROUP AS GALOIS GROUP

The theorem of Ruffini-Abel states that general equations of
degree n ≥ 5 are not solvable by radicals. Roughly this means
that it is impossible for n ≥ 5 to give a general formula in
terms of radicals which on substitution of values from a field
F gives the roots of any equation of degree n with coefficients
in F. In spite of this result it is conceivable that all equations
with coefficients in F are solvable by radicals over F. In some
cases this is true. For example, it is trivially
so if F = . We shall now show that if F = and p is any
prime then there exist f(x) [x] having Sp as Galois group.
For p ≥ 5 these are not solvable by radicals. We prove first the
following result on permutation groups.

LEMMA. IF G is a permutation group on a prime number p
of elements such that G contains an element of order p and a
transposition, then G = Sp.

Proof. We recall that the order of a cycle (12 … m) is m and
the order of a product of disjoint cycles is the 1.c.m. of the
orders of these cycles (see p. 48). Hence G contains a p−cycle
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σ = (i1i2 … ip) where the set {i1, i2, …, ip} = {1, 2, …,p}. By
re-ordering the elements 1,2,…, p suitably, we may assume
that G contains the transposition (12). Since a suitable power
of σ has the form (12 …), further re-ordering of the elements
1, 2,…, p, if necessary, permits us to assume that G contains
(12) and σ = (123 … p). Then G contains σ(12)σ−1 = (23),
σ(23)(σ−1 = (34),…, σ(p − 2, p − 1)σ−1 = (p − 1, p). We see
easily that these transpositions generate Sp. Hence G = Sp.

We shall now prove

THEOREM 4.16. Let f(x) be a polynomial of prime degree
with rational coefficients which is irreducible in the rational
field. Suppose f(x) = 0 has exactly two non-real roots in .
Then the group Gf of f(x) = 0 over is Sp.

Proof. We assume the classical result (which will be proved
in section 5.1) that f(x) = ∏1

p(x − ri) in [x], and so E = (r1,
…, rp) is a splitting field of f(x) over contained in . Since
E ⊃ (r1) and [ (r1): ] = degf(x) = p, [E: ] is divisible by
p. By Sylow’s theorem, Gf contains an element of order p.
Now consider the conjugation automorphism

a, b real, →u = a − of . This maps
f(x) into itself; hence it permutes the roots ri of f(x). Let r1 and
r2 be the non-real roots of f(x). Then r2 = r1 since f(r1) = 0
and r1 ≠ r1. Thus the conjugation interchanges r1 and r2 and
fixes all the other roots. Hence the restriction of this
automorphism to E is an element of the Galois group Gf
which is a transposition. Thus Gf contains an element of order
p and a transposition; hence Gf = Sp by the lemma.
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We shall now show how we can construct polynomials
satisfying the conditions of the theorem.9 Let m be a positive
even integer, n1 < n2 < … < nk−2
be k − 2 even integers where k is odd and > 3. Consider the
polynomial

The real roots of g(x) are n1, n2, … , nk−2 and the graph of y =
g(x) has the form:

This has (k − 3)/2 relative maxima and, since |g(h)| > 2 for
any odd integer h, it is clear that the values of these relative
maxima are > 2. This implies that f(x) = g(x) − 2 has (k − 3)/2
positive relative maxima between n1 and nk−2. It follows that
f(x) has k − 3 real roots in the interval (n1, nk−2). Since f(nk−2)
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= − 2 and f(∞) = ∞, there is also a real root > nk−2. This gives
k − 2 real roots for f(x). Let f(x) = ∏1

k(x − ri) in [x]. since
f(x) = (x2 + m)(x − n1) … (x − nk−2) − 2, equating coefficients
of xk−1 and xk−2 gives-the relations:

Hence

If we choose m sufficiently large, (54) shows that ∑ ri
2 < 0,

which implies that not every ri is real. If r1 is a non-real root,
then r1 ≠ r1 is another one, so that we have at least two
non-real roots. Since we saw that we have k − 2 real roots we
see that f(x) has exactly two non-real roots. We now write f(x)
= xk + a1xk−1 + … + ak. Clearly the ai are even integers.
Moreover, since the constant
term of g(x) is divisible by 4, that of f(x) = g(x) − 2 is not
divisible by 4. It follows from Eisenstein’s criterion applied to
the prime 2 (exercise 2, p. 154) that f(x) is irreducible in [x].
Thus we see that the condition of Theorem 4.16 can be
satisfied for every prime p = k ≥ 5. Hence we can construct
rational equations with Galois groups Sp for any prime p ≥ 5.
Since it is easy to do this also for p = 2 and 3, the result holds
for every prime p.

The foregoing result suggests an interesting question. Given a
finite group G, does there exist an equation with rational
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coefficients whose Galois group over is isomorphic to G?
This turns out to be an extremely difficult problem which,
though it was first considered about a hundred years ago, still
remains unsolved. The earliest general results on this problem
are that the answer is affirmative if G = Sn or An for any n. In
1954,I. R. Šafarewi , using deep arithmetic results, proved
that the answer is affirmative for every solvable finite group
G. Other results of this type have been obtained more
recently.

There is a general method for attacking this problem which
was initiated by D. Hilbert and further developed by Emmy
Noether.10 The Hilbert-Noether method leads to the following
theorem: The answer to the problem for a group G is yes if
the answer to the following question on G is affirmative.
Suppose G is realized as a subgroup of Sn and let F be the
subfield of G-invariants of (x1, x2,…, xn), xi indeterminates,
where Sn acts on (x1, x2,…, xn) by the set of automorphisms
which effect all the permutations on the x’s. Is F isomorphic
to (x1, x2,…, xn)? The result we proved in the last section
shows that this is true if G = Sn since in this case F = (p1,
p2,…, pn) where the pi are the elementary symmetric
polynomials and the pi are algebraically independent. Very
little is known about this question on subfields of (x1, x2,…,
xn). For example, the answer is not known for G = An. Quite
recently, it has been shown by R. Swan that the answer is
negative for certain cyclic groups (e.g., G cyclic of order
47).11 Swan’s negative result does not give a negative answer
to the original question on rational equations with given
Galois groups. However, it does show that the
Hilbert-Noether method cannot yield affirmative answers in
all cases. We shall not discuss any of these results here. They
have been mentioned primarily to dispel any notion the reader
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may have had that the Galois theory, because of its long
history, has become a closed subject.12

EXERCISE

1. (Masuda.) Let F be a field and n a positive integer and
suppose F contains n distinct nth roots of 1. (This implies
char F n.) Let K = F(x1, x2,…, xn) where the xi are
indeterminates and let σ be the automorphism of K/F that
permutes the xi cyclically: σxi = xi+1, 1 ≤ i ≤ n − 1, σxn = x1

Put G = σ , E = Inv G, so K/E is Galois with Gal K/E = G
(Theorem 4.7, p. 238). Let ζ be a primitive nth root of 1 and
put

(cf. Lemma 3, p. 253). Define cjk = yjykyj+k
−1. Show that E =

F(c11, c12, …, c1n).

4.11 CONSTRUCTIBLE REGULAR n−GONS.
CYCLOTOMIC FIELDS OVER

We return to the problem of Euclidean constructibility which
we considered in section 4.2. Our main result there was the
criterion that the complex number z is constructible by
straight edge and compass from the complex numbers z1
z2,…, zn if and only if z is contained in a subfield k over
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that possesses a square root tower over F. We shall now
improve this to the following more precise

Criterion B. The complex number z is constructible with
straight-edge and compass from z1, z2,…, zn if and only if z is
algebraic over

and the normal closure K/F of F(z)/F has dimension a power
of two over f.

Proof. Suppose that z is constructible from z1, …, zn. Then z
is contained in a subfield L/F of that has a square root tower
over F. By Lemma 5 (p. 255) we may assume that L is Galois
over F. Then L contains the normal closure K/F of F(z)/F.
Since L has a square root tower over F, [L:F] = 2s. Then
[K:F], which is a factor of [L:F], has the form 2t. Conversely,
suppose that [K:F] = 2t for K the normal closure of F(z)/F.
Then |G| = 2’ for G = Gal K/F so G is solvable and G has a
composition series G = G1 G2 … Gt+1 = 1 such that
every Gi/Gi+1 is cyclic of order 2. Correspondingly, we have
F = F1 ⊂ F2 ⊂ … Ft+1 = K where [Fi+1:Fi] = 2. Then Fi+1 =
Fi(ui) where
ui

2 − aiui + bi = 0, ai, bi Fi. Replacing ui by vi = ui ai
we obtain Fi+1 = Fi(vi) and vi

2 Fi. Thus K has a square root
tower over F and since z K, z is Euclidean constructible
from z1, …, zn by our first criterion.

We shall now apply this result to determine the n such that the
regular n-gon is constructible with ruler and compass. For this
purpose we need to determine [ (n): ] where (n) denotes
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the cyclotomic field of nth roots of unity over . We know
that the set U of nth roots of unity is a cyclic group of order n
under multiplication. Hence the number of primitive nth roots
of 1, that is, the number of generators of U, is φ(n) (exercise
4, p. 47). If z is one of these, then (n) = (z) so [ (n): ] is
the degree of the minimum polynomial of z over . Now put

If η Gal (n)/ and z is primitive, then η(z) is primitive.
Hence η(λn(x)) = λn(x) and so λn(x [x]. It is clear that
λn(x)|(xn − 1) and, in fact, since any root of unity has an order
d|n we see that

We shall now prove

THEOREM 4.17. The polynomial ηλn(x) is irreducible in
[x].

Proof. We observe first that λn(x) has integer coefficients.
This holds for n = 1 and assuming it holds for every λd(x),d <
n we have xn − 1 = λn(x)g(x) where g(x) = ∏d|n;d < n λd(x) is a
monic polynomial with integer coefficients. The division
algorithm gives integral polynomials q(x) and r(x) with deg
r(x) < deg g(x) such that xn − 1 = q(x)g(x) + r(x). Since q(x)
and r(x) are unique in [x] and xn − 1 = λn(x)g(x) in [x],
we see that λn(x) = q(x) [x]. Now suppose that
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where h(x), k(x) [x] and h(x) is irreducible in [x], hence,
in [x] (p. 153). We may also assume that h(x) and k(x) are
monic and so deg h(x) ≥ 1. Let p be a prime integer not
dividing n and let z be a root of h(x). Since (p, n) = 1, zp is a
primitive nth root of 1 and, if zp is not a root of h(x), zp is a
root of k(x) consequently z is a root of k(xp). Since h(x) is
irreducible and has z as a
root also, (h(x), k(xp)) ≠ 1 and thus (h(x)|k(xp). It follows (as
at the beginning of the proof) that k(xp) = h(x)l(x), where l(x)
is monic with integral coefficients. Since xn − 1 = λn(x)g(x),
we have xn − 1 = h(x)k(x)g(x). We now pass to congruences
modulo p or, what is the same thing, to equations in ( /(p))[x].
This gives

where, in general, if f(x) = a0xm + a1xm −1 + … + am [x],
then f(x) = a0xm + a1xm−1 + || am, ai + ai + (p) in (p) in /(p).
Similarly, we have K(xp) = h(x)l(x). Now, using ap = a for
any a , we see that

for any f(x) [x]. Thus K(xp) = K(xp) = h(x)l(x) which
implies that (h(x), l(x)) ≠ 1. Then (58) shows that xn − 1 has
multiple roots in its splitting field over /(p). Since the
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derivative (xn − 1)' = nxn−1 and n ≠ 0, we have (xn − 1, (xn −
1)') = 1 contrary to the derivative criterion for multiple roots.
This contradiction shows that zp is a root of h(x) for every
prime p n. A repetition of this shows that zr is a root of h(x)
for every integer r prime to n. Since every primitive nth root
of 1 has the form zr, (r, n) = 1, we see that h(x) is divisible by
every x − z', z' primitive. Then h(x) = λn(x) and λn(x) is
irreducible [x].

It is now clear that λn(x) is the minimum polynomial of any
primitive nth root of 1. Hence φ(n) = deg λn(x) = [ (n): ].
We remark also that the foregoing theorem generalizes a
result which we proved earlier that if p is a prime then λp(x) =
(xp − 1)/(x − 1) = xp−1 + xp−2 + … + 1 is irreducible in [x].

We now write n = 2eip2
e2 … ps

es where the pi are distinct odd
primes, e1 ≥ 0 and e1 > 0 if i > 1. Then

It is clear from this that φ(n) is a power of two if and only if
the odd primes which are factors of n are Fermat primes and
these have multiplicity 1 in the factorization. The
constructibility of a regular n−gon with straight-edge and
compass is equivalent to the constructibility of the primitive
nth root of unity z = e2πi/n. Since (z) is Galois and [ (z): ]
= φ(n) we obtain from Criterion B the following result, which
is due to Gauss.
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THEOREM 4.18. A regular n-gon is constructible with
straight-edge and compass if and only if n has the form n =
2ep2 … ps where e ≥ 0 and the pi are distinct Fermat primes.

The formula (56) provides us with an algorithm for
calculating the polynomial λn(x), which we shall now call a
cyclotomic polynomial. To begin with we have

and assuming we already know the λd(x) for proper divisors d
of n then (56) gives us λn(x). For example, we have

We shall now round out our results on cyclotomic fields over
by determining the structure of the Galois groups of these

fields or, equivalently, of the cyclotomic polynomials λn(x)
over . We now see that the order of this group is the degree
of the irreducible polynomial λn(x) and this is φ(n). It follows
from the proof of Lemma 1 (p. 252) that the Galois group of
the cyclotomic field of order n over is isomorphic to the
multiplicative group Un of units of the ring /(n). If n is a
prime then we know that this is a cyclic group of order φ(p) =
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p − 1. We proceed to determine the structure of Un for
composite n.

As indicated in exercises 9 and 10 on p. 110, it is easy to see
that if n = p1

e1p2
e2 … ps

es, pi distinct primes, then Un is
isomorphic to the direct product of the groups Upiei. Hence it
suffices to determine the structure of any Upe, p a prime. We
treat first the case of any odd prime power in

THEOREM 4.19. If p is an odd prime, the multiplicative
group Upe of units of /(pe) is cyclic.

Proof. Since the order of G = Upe is pe−1(p − 1), G is a direct
product of its subgroup H of order pe−1 consisting of the
elements which satisfy xp

e−1 = 1 and the subgroup K of order
p − 1 of the elements satisfying pp−1 = l.13 It
suffices to show that both H and K are cyclic since the direct
product of cyclic groups having relatively prime orders is
cyclic. Since Up is cyclic we can choose an integer a such that
a + (p), a2 + (p), …, ap−1 + (p) are distinct in /(p). Put b =
ape−1. Since (a,p)=1, (b,pe) = 1, and b + (pe) and a + (pe) G.
Also bp−1) =(ape−1)p−1 = aφ(pe) ≡ 1 (mod pe) and so b + (pe)

K. Since b = ape−1 ≡ (mod p), b + (p), b2 + (p), …, + bp−1 +
(p) are distinct. Hence also b + (pe), + b2 + (pe), …, bp−1 +
(pe) are distinct. This implies that the order of b + (pe) is p −
1. Since |K| = p − 1, it follows that K is cyclic with generator
b + (pe). It remains to prove that H is cyclic, and we now
assume e ≥ 2, since otherwise H = 1 and the result is clear.
Assuming e ≥ 2, we see that H is a direct product of k > 1
cyclic groups of orders pe

1, ei ≥ 1. Then the number of
solutions in H of xp = 1 is pk. Hence it is enough to show that
the number of integers n, 0 < n < pe, satisfying np ≡ 1 (mod
pe) does not exceed p. If n satisfies these conditions, then,
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since np ≡ n (mod p), we have n ≡ 1 (mod p). Then if n ≠ 1,
we may write n = 1 + ypf + zpf+1 where 1 ≤ f ≤ e − 1, 0 < y <
p, and z is a non-negative integer. Then

If np ≡ 1 (mod pe) and f < e − 1, this gives ypf+1 = 0 (mod
pf+2), and y ≡ 0 (mod p) contrary to 0 < y < p. Hence we see
that, if 1 < n < pe satisfies np ≡ 1 (mod pe), then n = 1 + ype−1,
0 < y < p. This gives at most p solutions, including 1, and
completes the proof of the theorem.

We consider next the case of the prime 2 in the following

THEOREM 4.20. U2 and U4 are cyclic and, if e ≥ 3, then U2
e

is a direct product of a cyclic group of order 2 and one of
order 2e−2.

Proof. The order of G = U2
e is φ (2e) = 2e−1 If e = 1, |G| = 1,

and if e = 2, |G| = 2, so in these cases G is cyclic. Now
suppose e ≥ 3. We show first that we have four distinct
solutions of x2 = 1 in G. This will imply that G is a direct
product of at least two distinct cyclic groups ≠ 1. Put a1 = 1,
a2 = − 1, a3 = 1 + 2e−1, a4 = − 1 + 2e−1, and xi = ai + (2e).
Then the xi are distinct elements of G satisfying xi

2 = 1, which
is what we wanted. Moreover, since G is a direct product of at
least two cyclic groups ≠ 1 and |G| = 2e−1, we see that, if x
G, then x2e−2 = 1 or, what is the same thing, if a is an odd
integer, then a2e−2 ≠ 1 (mod 2e). The proof will be completed
by displaying an x such that
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x2e−3 ≠ 1. Then we shall have a cyclic subgroup of order 2e−2

and this can happen only if G is a direct product of a cyclic
group of order 2e−2 and one of order 2. We now take x = 5 +
(2e). We note first that, if e = 3, then 52e−3 ≡ 5 1 (mod 8 =
2e) but 52e−3 ≡ 1 (mod 2e−1 = 4). Now let f ≥ 3 and let k(f) be
the largest integer such that 52f−3 ≡ 1 (mod 2k). Then we have
k(3) = 2. Since for any f ≥ 3 we have 52f−3 = 1 + y2k(f) where
y is odd, this gives

which shows that k(f + 1) ≥ k(f), so k(f) ≥ 2 if f ≥ 3. Then the
displayed relation shows that 52f+1−3 = 1 + z2k(f)+1 where z =
y + 2k(f)−1y2 is odd. Hence k(f + 1) = k(f) + 1. This and k(3) =
2 imply that k(f) = f − 1 for all f > 3. Thus 52e−3 1 (mod 2e)
if e ≥ 3, which is what we needed. This completes the proof.

The last two theorems give a description of the Galois group
of the cyclotomic field of peth roots of unity over the
rationals. The result is the following

THEOREM 4.21. The Galois group G of the cyclotomic field
of peth roots of unity over = Galois group of λp

e(x) = 0 is
cyclic unless p = 2 and e ≥ 3, in which case G is a direct
product of a cyclic group of order 2 and one of order 2e−2

EXERCISES

1. Use the Möbius inversion formula (exercise 18, p. 151) to
prove that
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2. Let f(x) have distinct roots r1, r2, …, rn Show that the
discriminant

f' the derivative of f. Let λp(x) = xp−1 + xp−2 + … + 1,p a
prime. Differentiate xp−1 − 1 = (x − 1)λp(x) to obtain

Use this and the foregoing formula to show that the
discriminant of the cyclotomic
polynomial λp(x) is

3. Let p be the field of the pth roots of unity over where
p is an odd prime. Show that p has a unique quadratic
subfield E/ and E is real (subfield of ) or not real
according as p has the form 4n + 1 or 4n + 3.

4. Use exercise 2, page 243 and Theorem 4.21 to show that
for any finite cyclic group G there exists a subfield of some
cyclotomic field over having G as Galois group.

Remark A classical theorem of Dirichlet states that any
arithmetic progression a + kd where a and d are relatively
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prime positive integers and k = 0, 1, 2, … contains an infinite
number of primes. The special case of this in which a = 1 and
d = p,p prime, and the fundamental structure theorem on finite
abelian groups (Theorem 3.13) can be used to prove that any
finite abelian group is a homomorphic image of the group of
units Un of some /(n) where n is square-free. This result and
Theorem 4.21 can be used to prove the existence of a Galois
field extension E/ with prescribed finite abelian group as
Galois group. Dirichlet’s theorem requires function theory for
its proof. However, the special case of progressions of the
form 1 + kn has an elementary proof (see, T. Nagell,
Introduction to Number Theory, Wiley, New York 1951, p.
118.)

4.12 TRANSCENDENCE OF e AND π THE
LINDEMANN-WEIERSTRASS THEOREM

In this section we shall prove that π is transcendental, that is,
not algebraic over . This will imply that π and are not
constructible numbers and hence that it is impossible to
construct with straight-edge and compass a length equal to the
circumference of a circle of given radius, or a length equal to
the side of a square whose area is that of a given circle. With
a little more effort we can prove a considerably more general
result than the transcendence of π, namely,

THE LINDEMANN-WEIERSTRASS THEOREM. If u1,u2,
…,un are algebraic numbers (that is, complex numbers which
are algebraic over ) which are linearly independent over
, then the complex exponentials eu

1, eu
2, …,eu

n are
algebraically independent over the field of algebraic
numbers.
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If u we can define eu = 1 + u + u2/2! + u3/3! + …, which
is (absolutely) convergent for every u. We also have the
functional equation euev = eu+v, which follows easily from the
power series definition of eu. It should be noted also that the
set of algebraic numbers constitute a subfield of . (We shall
prove a more general result in a moment.) Taking n = 1 in the
foregoing theorem we
see that if u is a non-zero algebraic number, then eu is
transcendental. In particular e is transcendental and, since eπi

= cos π + i sin π = − 1, πi is transcendental. Since i is
algebraic this implies the transcendence of π. Similarly, if u is
a real algebraic number ≠ 0, 1, then the relation elog u = u
implies that log u is transcendental.

We shall now show that the Lindemann-Weierstrass theorem
is equivalent to another theorem, which is sometimes also
called the Lindemann-Weierstrass theorem (or the
Generalized Lindemann theorem). We state this as

THEOREM 4.22. If u1, u2, …, un are distinct algebraic
numbers, then the complex exponentials are linearly
independent over the field of algebraic numbers.

Suppose this holds and let u1, u2, …, un be algebraic numbers
which are linearly independent over . Let (k1, k2, …, kn)
and (l1, l2, …, ln) be distinct sequences of non-negative
integers. Then ∏ (eu

i)k
i = ∑k

l
u

l and ∏ (eu
l)l

l = ∑l
l
u

l, and the
exponents ∑kiui and ∑liui are distinct. It now follows from
Theorem 4.22 that if we have r distinct sequences (k1i, k2 i,
…, kn i) of non-negative integers, then the r complex numbers
(eu

1)k
1l(eu

2)k
2l … (eu

n)k
nl are linearly independent over

algebraic numbers. Clearly this means that the exponentials
eu

1,eu
2, … eu

n are algebraically independent over algebraic
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numbers. Thus Theorem 4.22 implies the
Lindemann-Weierstrass theorem. On the other hand, suppose
the Lindemann-Weierstrass theorem holds, and let u1, u2, …,
un be distinct algebraic numbers. The subgroup of the
additive group of generated by the ui is a free -module
(since it has no torsion), so there exist r, 1 ≤ r ≤ n complex
numbers v1, v2, …, vr which are linearly independent over
such that ui = ∑j = 1

r aijvj,aij , 1 ≤ i ≤ n. Then eu
l = ∏j

r
=1

r

(ev
j)a

lj and since the ui are distinct, the vectors (ai1, …, air)
are distinct. Hence if we had a nontriv-ial linear relation with
algebraic number coefficients connecting the eu

l then on
multiplying this by a suitable power (ev

1ev
2 … ev

r)a with
positive integral a we would obtain a non-trivial algebraic
relation with algebraic number coefficients connecting the
exponentials ev

1, …, ev
r. Since the vi are linearly independent

over , this would contradict the Lindemann-Weierstrass
theorem. Thus we have the equivalence of the two theorems.

We shall prove Theorem 4.22. For this purpose we shall
require some results on algebraic elements of fields and on
integral algebraic complex numbers. We can obtain most of
these simultaneously for the two cases by considering the
following general situation. We suppose E to be a field and R
to be a subring of E. Then we shall call an element u E
integral over R or R-integral if there exists a monic
polynomial f(x) R[x] such that f(u) = 0. If R = F is a
sub-field this reduces to the concept that u is algebraic over F.
If E = then the
elements of which are algebraic over are called
algebraic numbers. On the other hand, the complex numbers
which are -integral are called algebraic integers. Obviously
these are necessarily algebraic numbers.

484



If u E is R−integral, then we have a relation of the form

Let M = R1 + Ru + … + Run−1, the R−submodule of E
generated by 1, u, …, un−1 (regarding E as an R module in
which the addition and 0 are as in the ring E and the module
action by r R is the multiplication as defined in E). We have
uM ⊂ Ru + Ru2 + … + Run, and since (60) shows that un M
we see that uM ⊂ M. This gives the “only if” part of the
following criterion.

LEMMA 1. The element ue E is R-integral if and only if there
exists a finitely generated R-submodule of E containing 1 and
satisfying uM ⊂ M.

Proof. To prove the sufficiency of the condition let M = Ru1 +
Ru2 + … + Run satisfy, (a) 1 M, (b) uM ⊂ M. Then we have
uui = ∑j=1

n = aijuj, 1 ≤ i ≤ n, where the aij R. Hence the
system of linear homogeneous equations

has the solution (x1, …, xn) = (u1, …, un). Since 1 M some
ui ≠ 0, and so the solution is not the trivial one (0, …, 0).
Hence, by a standard result of linear algebra we have det (A −
u1) = 0 where A = (aij). Thus u is a root of the characteristic
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polynomial det (x1 − A) of the matrix A. Clearly this
polynomial is monic and has coefficients in R, so u is
R−integral.

If M and N are R−submodules of E we let MN denote the
submodule generated by all the products uv, u M, v N. It
is clear that this is the set of elements of E of the form ∑ uivi,
ui M, vi N. If M and N are finitely generated, then so is
MN. In fact, it is immediate that if M = ∑1

mRui and N − ∑1
nRvj then MN = ∑ Ruivi. Also, if w E satisfies wM ⊂ M then

By induction, if M1, M2, …, Mr are finitely generated, then
the submodule M1M2 … Mr generated by all products x1 …
xr, Mi, is finitely generated,
and if wMi ⊂ Mi for one of the Mi then wM1M2 … Mr ⊂
M1M2 … Mr. We shall use these remarks and Lemma 1 to
prove

THEOREM 4.23. If E is a field and R is a subring of E, the
set A of R-integral elements of E is a subring of E containing
R. Moreover, any element of E which is A-integral is
R-integral (and so is contained in A).

Proof. Let u and v A so that there exist finitely generated
R−submodules M and N of E containing 1 such that uM ⊂ M
and vN ⊂ N. Then (u ± v)MN ⊂ u(MN) + v(MN) ⊂ MN. Also
(uv)MN ⊂ MN. Since 1 MN the conditions of Lemma 1 are
satisfied for u ± v, 1 and uv. Hence these elements are
R−integral and A is thus a subring of E. It is clear also that A
⊃ R. Now let u be A−integral. Then we have an M = Au1 + …
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+ Aun containing 1 and satisfying uM ⊂ M. We may as well
assume u1 = 1. Since uM ⊂ M there exist aij A such that uui
= ∑ aijuj. Now there exists a finitely generated R−submodule
Nij such that aijNij ⊂ Nij and 1 Nij. Multiplying together the
Nij we obtain a finitely generated module N = Rv1 + … + Rvm
with v1 = 1 satisfying aijN ⊂ N for every aij. Let P = ∑i,j
RuiVj. Then 1 = u1v1 P and u(uivk) = ∑ aijujvk = ∑ ujaijvk.
Since aijvk N this is an R−linear combination of the
elements ujvk. It follows that uP ⊂ P, and so u is R−integral,
by Lemma 1.

In the case in which R = F is a subfield this result states that
the elements of E which are algebraic over F constitute a
subring. Moreover, in this case, if u is algebraic, then F(u) =
F[u], and u– 1 is therefore algebraic for u ≠ 0. Hence the set of
elements of E which are algebraic over F constitute a subfield
A of E and every element of E which is algebraic over A is
contained in A.

We now specialize E = and R = or . Then the
-integers are the algebraic numbers and the -integers are
algebraic integers. We have the following criterion for a
complex number to be an algebraic integer:

LEMMA 2. A complex number u is an algebraic integer if
and only if u is an algebraic number and its minimum
polynomial [x].

Proof. The condition is, of course, sufficient. Now assume u
is an algebraic integer. Then we have a monic polynomial f(x)
in [x] such that f(u) = 0. If µ(x) is a minimum polynomial of
u then µ(x)|f(x). Since is factorial it follows easily that µ(x)

[x] (Corollary to Theorem 2.25).
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We can now prove the following important result:

THEOREM 4.24. A rational number is an algebraic integer if
and only if it is an integer. If u is any algebraic number, then
there exists a b such that bu is an algebraic integer.

Proof. If a it is -integral. On the other hand, if a its
minimum polynomial over is x − a, so if a is an algebraic
integer then a . Now let u be algebraic over and let
f(x) = xn + α1xn−1 + … +αn [x] bea polynomial such that
f(u) = 0. If b , b ≠ 0, then bu is a root of bnf(b− 1x) = 0 and
bnf(b− 1x) = bn(b− nxn + b− (n−1)α1x(n−1) + … +bnαn. If we
choose b to be the product of the denominators of the rational
numbers αi we obtain a monic polynomial in [x] having frw
as a root. Then bu is an algebraic integer.

We shall need to use the so-called fundamental theorem of
algebra, which states that any polynomial in [x] of positive
degree has a root in . This result, which will be proved in
section 5.1, implies that every monic polynomial of positive
degree with coefficients in factors as a product ∏(x − ri) in

[x]. In other words, contains a splitting field for every
monic polynomial ≠ 1 in [x]. It follows that if S is a finite set
of algebraic numbers we can imbed (S) in a Galois
extension K/ ⊂ .

We are now ready to begin the

Proof of Theorem 4.22. We assume, contrary to the assertion,
that we have distinct algebraic numbers u1, u2,…, un and
algebraic numbers v1, v2, …, vn not all 0 such that
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We shall show that this implies that we have a relation of the
same sort with rational vi and then that we have one of the
form

where the vi are integers, v0 ≠ 0, and the ηj are the elements of
the Galois group of a Galois extension field K/ containing
the ui and contained in . Then, by an analytic argument, we
shall show that (63) is impossible.

In order to make clearer the formal arguments which give the
passage from (62) to (63), we introduce the group algebra of
the additive group of algebraic numbers over the field of
algebraic numbers. This is a special case of the group
algebras which were defined in exercise 8, p. 127. In order to
distinguish between
the field of algebraic numbers A and its additive group, we
now denote the latter as A´ and its elements as u′, where u →
u′ is an isomorphism of (A, +, 0) onto A′. We write the
composition in A´ as multiplication. Then a → a´ is 1–1 and
a´b´ = (a + b)´, 0´ is the unit of A´ and ( ∑ a)´ is the inverse of
a´. The group algebra A[A´] we are interested in, is the set of
sums ∑ υiu´i, υi A,u´i A´, where addition is the obvious
one, and multiplication is given by the distributive law, and
(υ1u´1)(υ2u´2) = υ1υ2 (u1 + u1)´. Moreover, if u1,…,un are
distinct elements of A, then the elements u´1,u´2,…,u´n are
linearly independent over A: that is, ∑ υiu´i=0 for υi Aimplies
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that every υi = 0. Now, in we have eu1eu2 = eul+u2. Hence,
by the “universal” property of group algebras given in
exercise 8, p. 127, we have a homomorphism ε of A[A´] into

sending ∑ υiu´i into ∑ υieui.Theorem 4.22 can now be
restated as: ε is a monomorphism.

The group algebra A [A´] is commutative. We shall now show
that it is a domain. To see this we introduce an ordering in
which is compatible with addition, the so-called lexicographic
ordering of . If x = a + bi and y = c + di where a, b, c, d are
real, then we say that x > y if a > c or if a = c and b > d. This
ordering satisfies the trichotomy law: for any pair (x, y) either
x > y, x = y,or y > x. Moreover, if x > y and z > t then x + z > y
+ t. Now let ∑n1 υiu´i, ∑m1 Zjt´j be two non-zero elements of
A [A´]. Then we may assume that υ1 ≠ 0, z1 ≠ 0, and u >u2 >
… un, t1> t2> … >tm. Then (∑ υiu´i)(∑ Zjt´j)= υizi(u1 + t1)´ +
a sum of terms of the form wq´ where q < u1 + t1 Clearly this
is not zero, so A[A´] is a domain.

Suppose ∑ υiu´i ker ε. We can imbed the ui and υi in a
Galois subfield K/ of . Then the subset of elements of the
form ∑ xiy´i with x,yi is a subring K[K´] of A[A´], and if η
G = Gal K/ , then η defines two automorphisms in K[K´]
The first of these, which we shall denote as σ(η), is ∑ xiy´i →
∑ η(xi)y´i, and the second is τ(aη): ∑ xiy′i →∑ xi(η(y)i)′ The
fact that these are automorphisms is clear. Now suppose ∑
υiu´i ≠0.2 Then if G = {η1,η2,…, ηm} every σ(η)(∑ υiu´i) ≠
0 and hence
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Since U contains the factor ∑ υiu´i, U ker ε. It is clear from
the commutativity of A[A´] that σ(η)U = U for every η = ηk
G. Hence if we write U as ∑ zit´i with distinct t´i then ηU = U,
that is, ∑ η(zi)t′i = ∑ imolies η(zi) = zi for every zi and every η

G. Then zi = Inv G. We have therefore shown that if
we have a non-zero element in ker ε then we have one of the
form ∑ υiu´i with rational υi. Now apply τ(ηj) to this element
and form

Then this is a non-zero element of ker ε satisfying τ (η) =
for all η G. We can write = ∑ zit´i where the zi

and we have ∑ zi(η(ti)´) = ∑ zit´i, η G. We now average
these various expressions for to obtain

where, in general, for t K, we define
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We have now shown that ker ε ≠ 0 implies that we have a
non-zero element in ker ε of the form − vi T´(ti) where the vi

. Also, by combining terms we may assume that T´(ti) ≠
T´(tj) for i ≠ j, which implies that tj ≠ η(ti) for every η G.

Let s,t K and consider

This relation shows that if ∑ vi T´(ti) ker ε with υi , υi ≠
0, and tj ≠ η(ti) for every i ≠ j and η G, then multiplication
by T´( −t1) gives an element in ker ε of the form

with υi , υ0 ≠ 0, υi ≠ 0. Multiplication by a suitable
integer allows us to assume the υj are integers. The fact that
(64) ker ε implies that we have the relation (63).

So far the argument has been purely algebraic. We now come
to the analytic part of the proof, which will consist of
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establishing a contradiction to a relation of the form (63)
where the υi are integers, υ0 ≠ 0, and the υi are algebraic
numbers ≠ 0. We assume that all the υi and hence all ηj(ui)are
roots of a polynomial f(x) = ∑t

0,akxk [x]. a ≠ 0. Let p be a
prime and introduce

where s = tp + p − 1. Then the bj , bp−1 = a0
p and for p −

1 ≤ j ≤ s we have

It is understood here that the first bracket is 0 if j = p − 1.

Moreover, if j ≥ p, then so this is p! times an

integer. A fortiori, , 0 ≤ k < j − p,is p! times an integer and
hence the first bracket in (65) is p! times an integral
polynomial. Now put

Then summing (65) for j = p − 1, … , s we obtain
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where gp(x) [x]. We observe next that

and these are all divisible by f(x) since h(x) = xp−1f(x)p. Hence
the first summation in (67), which is h´(x) + h“(x) + … +
h(p−1)(x), is divisible by f(x) and this becomes 0 when we put
x = ui. Next we need to estimate |R(ui)| where R(x) is the
second summation in (67). We now assume that the prime p is
chosen so that p > 2|ui| for all ui Then since j + 1 ≥ p also, we
have

so
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if M is the largest of the 2n numbers and

for i= 1, 2,…, n. Hence if p > 2|ui| then we
have

Moreover, if in addition p > |a0|, then Np, which is given by
(66), is not divisible by p since Np = bp−1 = a0

p = a0 (mod p.)
We therefore have the following

LEMMA 3. Let ui1 ≤ i ≤ n, be non-zero algebraic numbers,

f(x) = [x], a0 ≠ 0, be a polynomial such
that f(ui) = 0 for all i. Let M be the maximum of the In

numbers and and let p be a

prime > max . Then there exists an
integer Np not divisible by p and a polynomial gp(x) [x] of
degree <tp such that the inequalities (68)hold.14

We now return to the relation (63) where the υi are integers,
υ0 ≠ 0, and the ui are non-zero algebraic numbers which are
roots of the polynomial f(x) − [x]
as in Lemma 3. The numbers ηj(ui), ηi G = Gal K/ , are
also roots of f(x). Hence, by Lemma 3, for all sufficiently
large primes p there exists an integer Np not divisible by p
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and an integral polynomial gp(x) of degree < pt, t = deg f,

such that for
all i = 1,…, n, j = 1,…, r, ( = |G|). Now let k be a positive
integer such that kul

i is an algebraic integer for every ui and
every l ≤ t. The existence of such a k is assured by Theorem
4.24. Then kpgp(ui) is an algebraic integer and hence every
kpgp(ηj(ui)) is an algebraic integer. Also

is an algebraic integer, but since it is
fixed by G, it is a rational number. Hence this is an integer, by
Theorem 4.23.

Now we have

where M is as before and L is a positive upper bound for the

|υi|,1 ≤ i ≤ n. The numbers are
integers divisible by p whereas Np is not. Moreover, if p is
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sufficiently large then p k and p v0 so p kpv0. Hence the
left-hand side of the inequality

is a non-zero integer. On the other hand, the right-hand side is
positive and < 1 for p sufficiently large. This contradiction
shows that (63) is impossible and concludes the proof of
Theorem 4.22 and hence of the Lindemann-Weierstrass
theorem.

EXERCISES

1. Show that sin u is transcendental for all algebraic u ≠ 0.
(Hint: Use sin u = (l/2i)(eiu − e−iu) and the transcendence of
eiu.)

2. Show that csc u, cos u, sec u, tan u, cot u are
transcendental for any algebraic u ≠ 0.

3. Let m be an integer without square factors and let F =

, the subfield of generated by . Show that F is the

set of complex numbers of the form a + b where a, b
. Let I be the subset of F of integral algebraic numbers.

Show that I is a subring of and I is the set of elements a + b

where a and b are rational numbers such that

497



4. Use the same notations as in exercise 3. Show that if m ≡ 2
or 3 (mod 4) then I is the set of numbers of the form a + b

where a, b .

5. Use the same notations as in exercises 3 and 4. Show that
if m = 1 (mod 4) then I is the set of numbers of the form a + b

where a and b are either both integers or both halves of
odd integers. Equivalently, show that I is the set of numbers

of the form a + b(l + )/2 where a, b .

4.13 FINITE FIELDS

We shall now apply the results of Galois theory to derive the
main facts about finite fields. We observe first that if F is a
finite field then |F| = pn for some prime p. To begin with we
know that the prime field of F can be identified with a field
/(p) of residues modulo p for some prime p. We may now
regard F as a vector space over /(p) in the usual way. Clearly
[F: /(p)] is finite and if [F: /(P)] = n, then we have a base
(u1,u2,…, un) for F/( /(p)), and every element of F can be
written in one and only one way as a linear combination
a1u1+a2u2 + … + anun,ai /(p). Evidently, this implies that
|F| = pn. The same method shows that if E ⊃ F, [E:F] = n, and
|F| = q < ∞ then |E| = qn.

The basic facts on finite fields can now be derived very
quickly. We have first

THEOREM 4.25. The number of elements of a finite field is a
power of a prime. Moreover, for any prime power q = pm
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there exists one and, in the sense of isomorphism, only one
field F with |F| = q.

Proof. We have already proved the first statement. To prove
the second we take the field P = /(p) with p elements and we
let F be a splitting field over P of xq − x. We claim that |F| = q
and F coincides with the set R of roots of
xq − x in F. We observe first that since (xq − x)′ = − l, xq − x
has q distinct roots in F. Next we shall show that R = {ul,
u2,…, uq} is a subfield of F. For, using the nice binomial
theorem (a + b)p = ap + bp for characteristic p, we see that for
any i and j, (ui ± uj)q = uq

i ± uj
q = ui ± uj. Hence ui ± uj R.

Also 1 R and (uiuj)q = uq
iuq

j = uiuj R, and if ui ≠ 0, then
(ui

−1)q = (ui
q)−1 = ui

−1. These results show that R is a
subfield of F. Then R contains the prime field P and R = P(R)
= F.

Next let F and F′ be two fields such that |F| = q = |F′|. Clearly
this implies that both F and F′ are extensions of P = /(p). Let
F* be the set of non-zero elements of F, so that F* is a group
under multiplication and |F*| = q − 1. Hence if u ≠ 0 in F then
uq−1 = 1 and uq = u. Since the last relation holds also for u =
0, we see that every element of F is a root of xq − x. Since this
equation has no more than q distinct roots in any field it is
clear that F is a splitting field over P of xq − x. The same is
true of F′. Hence the isomorphism theorem for splitting fields
(Theorem 4.4, p. 227) implies that F and F′ are isomorphic.

We shall now consider the relative theory of finite fields, that
is, we want to study a finite field relative to a subfield. Let |F|
= q (= pm) and let E be an extension field of F with [E:F] = n.
Then, as we saw before, E = qn. We have seen also that a →
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ap is an automorphism of E (section 4.4). Hence η:a → aq is
an automorphism of F. Moreover, since |F| = q, bq = b for b
F. Hence η Gal E/F. We now have

THEOREM 4.26. Let F be a finite field with q = pm elements,
E an extension field of F such that [F:F] = n. Then E is cyclic
over F with Galois group ?η? where η:a → aq.

Proof. We show first that the order o(η) = n. For, |E| = qn
so

aqn = a for all a E. Thus ηn = 1 and if ηn′ = 1 for 0 < n′ < n
then aqn′ = a. This would contradict the fact that the
polynomial xqn − x has no more than qn′ roots in E. Hence
o(η) = n and |〈η〉| = n. Let F′ = Inv 〈η〉. By the Fundamental
Theorem of Galois Theory, we know that [E:F′] = n and Gal
E/F′= 〈η〉. On the other hand, since η Gal E/F, F ⊂ F′ = Inv
〈η〉. Since n = [F:F] = [E:F′][F′:F] = n[F′:F] we have F′ = F
and so E is Galois over F with Gal E/F = 〈η〉.

Suppose K is a subfield of E/F. Then m = [K:F]|n = [F:F]. On
the other hand, let m be any divisor of n. Then the cyclic
group Gal E/F has one and only one subgroup of order n/m.
Hence, by the Fundamental Theorem of
Galois Theory, we have one and only one subfield K of E/F
such that [K:F] = m. Also we have |K| = qm. It is now clear
that we have the following

COROLLARY 1. Let F and E be as in Theorem 4.26. Then if
K is a subfield of E/F, |K| = qm where m|n. Conversely, if m|n
then E/F has one and only one subfield K with |K| = qm.

We can apply this result to obtain a formula due to Gauss for
the number of monic irreducible polynomials of degree n with
coefficients in F. This is given in
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COROLLARY 2. Let F be a finite field with |F| = q and let
N(n, q) denote the number of monic irreducible polynomials
in F[x] of degree n. Then

where μ is the Möbius function (defined in exercise 17, p.
151).

Proof. The proof will follow by showing that

where the product is taken over all monic irreducible
polynomials of degrees dividing n. Since xqn − x has no
multiple roots and hence no multiple factors in F[x], it
suffices to show that a monic irreducible polynomial g(x) is a
factor of xqn − x if and only if its degree m is a divisor of n.
Let g(x) be a monic irreducible factor of xqn − x in F[x], deg
g(x) = m, and let E be an extension field of F with [E:F] = n.
Then E is a splitting field over F of xqn − x and hence E
contains a root r of g(x). Then g(x) is the minimum
polynomial of r over F. Hence F(r) is a subfield of E/F such
that [F(r):F] = m. Then m|n. Conversely, let g(x) be a monic
irreducible polynomial in F[x] of degree m|n. Then K' =
F[x]/(g(x)) is an extension field of F with |K'| = qm. Since m|n,
K' is isomorphic to a subfield K of E/F. Then E contains an
element r whose minimum polynomial over F is g(x). Since
rqm = r, g(x)|(xqm − x). This establishes the factorization (70)
where g(x) runs through the set of monic irreducible
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polynomials in F[x] of degree m|n. Comparing the degrees of
the two sides of (70) we obtain

Applying the Möbius inversion formula (p. 151) we obtain
Gauss' formula (69).

We have shown in Theorem 2.18, p. 132, that any finite
subgroup of the multiplicative group of a field is cyclic. In
particular, for the finite field E, the multiplicative group E* is
cyclic. If F is a subfield and z is a generator of E* then
evidently E = F(z). Hence we have

THEOREM 4.27. IF E and F are as in Theorem 4.26, then E
has a primitive element over F.

4.14 SPECIAL BASES FOR FINITE DIMENSIONAL
EXTENSION FIELDS

Let E be a finite dimensional extension field of the field F.
We consider first the question of the existence of a primitive
element for E. There is a very pretty characterization of
extensions which have primitive elements, which is due to
Steinitz, namely,

THEOREM 4.28. Let E be a finite dimensional extension field
over F. Then E/F has a primitive element if and only if there
are only a finite number of intermediate fields between F and
E.
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Proof. Suppose first that E = F(u) and let K be a subfield
containing F. Let f(x) be the minimum polynomial of u over
F, g(x), its minimum polynomial over K. Then g(x)|f(x). Let
K' be the subfield of E/F generated by the coefficients of g(x).
Then K' ⊂ K, and clearly the minimum polynomial of u over
K' is also g(x). Since E = K(u) = K'(u), [E:K] = deg g(x) =
[E:K']. This implies K = K'. We have therefore shown that the
intermediate subfields between F and E are just the subfields
over F generated by the coefficients of monic factors of f(x) in
E[x]. Since there are only a finite number of these we see that
there are only a finite number of intermediate fields.
Conversely, assume that E/F has only a finite number of
subfields. If F is finite we saw in the last section that E has a
primitive element over F•. Hence we may assume F infinite.
The existence of a primitive element will follow by induction
on the number of generators in a finite generating set if we
can prove that, if u and v are any two elements of E, then
F(u,v) has a primitive element. We now consider the subfields
F(u + aυ) where a F. There are only a finite number of
these whereas there are an infinite number of a. Hence there
exist a ≠ b such that F(u + av) = F(u + bv). Then v = (a −
b)−1(u + av − u − bv) F(u + av) and u = u + av − av F(u +
av). Hence z = u + av is a primitive element of F(u,v).

If E is finite dimensional separable over F, then the normal
closure K of E/F is Galois over F (see p. 254). Moreover,
there are only a finite number of subfields of K/F since these
correspond to the subgroups of Gal K/F. À fortiori, E/F has
only a finite number of subfields. Steinitz’ criterion therefore
implies the

COROLLARY. Any finite dimensional separable extension
field contains a primitive element.
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We now suppose that K is any Galois extension field of F
with Galois group G = {ηi| 1 ≤ i ≤ n}, n = [K:F]. If z K and
{z1, z2, …, zm} is the orbit Gz oF z under the action of G, then
the minimum polynomial for z over F is Πm

1(x − zi). Hence z
is a primitive element if and only if the orbit of z contains n
elements or, equivalently, the elements η1(z), η2(z), …, ηn(z)
are distinct. A stronger condition than this is that the
conjugates ηi(z) are linearly independent over F. If this is the
case, then (η1(z), η2(z),…, ηn(z)) is a base for K/F. Such a
base is called a normal base for K/F. In the remainder of this
section we shall prove the existence of such a base for any
Galois extension field. The proof will be based on some
important independence properties for automorphisms of
fields.

We begin with a classical result on linear independence of
characters. Let H be a monoid, F a field. Then we define a
character χ of H in F (or F-character of H) to be a
homomorphism of H into the multiplicative group F* of
non-zero elements of F. Thus χ is a map of H into F* such
that χ(l) = 1, χ(h1h2) = χ(h1)χ(h2) for all hi H. An important
property of characters which we shall now prove is the

DEDEKIND INDEPENDENCE THEOREM. Distinct
characters of a monoid into a field are linearly independent,
that is, if χ1, … , χn and distinct characters of H into a field F,
then the only elements a1,…, an in F such that

for all h H are a1 = a2 = … = an = 0.
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Proof. We shall prove the result by induction on n. If n = 1
the result is clear since aχ(h) = 0 for a ≠ 0 gives χ(h) = 0,
which is impossible since χ(1) = 1. Now let n > 1 and assume
the theorem for n − 1 characters. Suppose we have (72) for all
h H where the ai F. Since we are assuming the result for
n − 1 characters, we may assume that every ai ≠ 0. Since χ1≠
there exists an a H such that χ1(a) ≠ χ2(a). Now replace h
by ah in (72). This gives the relation

since the χi characters. On the other hand, if we multiply (72)
by χ1(a) we obtain

Subtracting these two relations we obtain a'2χ2(h) + … +
a'nχn(h) = 0 where a'i = ai(χi(a) − χ1(a)), 2≤i≤n. Since a'2 =
a2(χ1(a) − χ2(a)) ≠ 0 this contradicts the validity of the
theorem for n − 1, and completes the proof.

One of the main applications of this theorem will be to
monomorphisms of one field into another one. For these we
have the important

COROLLARY. Let F1 and F2 be fields and let η1, η2,…, ηn
be distinct monomorphisms of F1 into F2. Then these are
linearly independent over F2.

Proof. Clearly the restrictions of the ηi to the non-zero
elements of F1 are characters of the multiplicative group H =
F*1 into F2. Hence the result follows from Dedekind's
theorem.
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We suppose next that E/F is finite dimensional separable with
[E:F] = n, and let K/F be the normal closure of E/F. Then we
have the following determinant test for a base for E/F.

THEOREM 4.29. Let E/F be finite dimensional separable,
K/F its normal closure. Then the number of monomorphisms
of E/F into K/F is n = [E:F], and if these are η1 = 1, η2, …,
ηn, then a sequence of n elements (u1, u2, …, un), ui E is a
base for E/F if and only if

Proof. Let G = Gal K/F and let H be the subgroup of G fixing
E. Then n = [E:F] = [G:H] and we can write G = ζ1H ∪ ζ2 H
? … ∪ ζnH where the ζiH are distinct cosets and ζ1 = 1. Let ηi
= ζt|E. Then ηi is a monomorphism of E/F into K/F, and ηi ≠
ηj if i ≠ j. For, if ηi = ηj then ζi

−1(ζj(u)) = u for all u E.
Hence ζ -1

i H and ζiH = ζjH contrary to hypothesis. Now let
η be any monomorphism of E/F into K/F. Since K is a
splitting field over F of a polynomial f(x) F[x] it is a
splitting field over E and over η(E) of f(x). Hence, by
Theorem 4.4, the isomorphism η of E onto η(E) can be
extended to an automorphism ζ of K/F. Then ζ Gal K/F and
so ζ = ζi λ for some λ H. But then η = ζ|E = ζi|E = ηi. Hence
η1 = 1, η2, …, ηn is the list of monomorphisms of E/F into
K/F.
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Now suppose the elements u1,u2,…,un of E are linearly
dependent over F so we have ai F not all 0 such that ∑ aiui=
0. Applying ηj we get

This means that the system of homogeneous linear equations

has the non -zero solution (x1,…,xn) = (a1,…, an). Then det
(ηj(ui)) = 0. Conversely, suppose det (ηj(ui)) = 0. Then,
turning things around we see that we have a non-zero solution
(a1, …, an), aj K, of the system of equations ∑n

j = 1 ηj (ui)
xj = 0, 1 ≤ i ≤ n. Thus ∑j ajηj(ui) = 0. Then (u1, … un) is not a
base. Otherwise, any μ can be written as ∑ciui with the ci F
and then

.
This contradicts the linear independence of the
monomorphisms η1, …, nn of E into K (Corollary to the
Dedekind theorem).

We shall now prove the existence of a normal base for any
Galois extension K/F. We distinguish two cases in the proof:
(I) K/F is cyclic. (II) F is infinite. If F is finite, K is finite and,
as we saw in section 4.13, K is cyclic over F. Hence our two
cases cover all possibilities.
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We assume first that K/F is cyclic, that is, G = Gal K/F = 〈η〉
where the order of η = n = [K:F]. Then G = {1,η,…,nn−1}. We
observe that n is a linear transformation in K over F, since η(u
+ v) = η(u) + η(v), and if a F, then η(au) = aη(μ). We can
therefore apply to η the theory of a single linear
transformation in a finite dimensional vector space (see
section 3.10, pp. 195 -197). We recall that the F[x]-module
(F[λ] in the notation of Chapter III) determined by a linear
transformation is a direct sum of cyclic ones whose
annihilators are (di(x)) where d1(x),…, ds(x) are the invariant
factors. The last one is the minimum polynomial, and the
product of all the invariant factors is the characteristic
polynomial of the transformation. Hence the F[x]-module
determined by a linear transformation is cyclic if and only if
its characteristic polynomial
and minimum polynomial coincide or, equivalently, the
degree of the minimum polynomial is the dimension of the
underlying space. We claim that this is the case for the linear
transformation η of K over F. First, we have ηn = 1, and so η
satisfies xn − 1 = 0. On the other hand, if f(x) = xm + a1xm−l +
· · · + am with the ai ? F and m < n, then f(η) ≠ 0, since the
automorphisms 1, η, …, ηm are distinct and hence are linearly
independent over K and so also over F. Now the fact that K is
cyclic as F[x]-module (via the linear transformation η) means
that we have a base for K/F of the form (u, η(u), η2(u),…,
ηn−l(u)). This is a normal base for K/F.

We now assume F is infinite. Following Artin, we shall prove
the existence of a normal base in this case by using a notion
of algebraic independence of monomorphisms of fields. If E
and K are fields and η1 ,η2, … , ηn are mono-morphisms of E
into K, then these maps are called algebraically independent
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over K if the only polynomial f(x1 ,…, xn) ∈ K[x1, …, xn], xi
indeterminates, such that f(η1(u),η2(u), …, η2(u), …, ηn(u)) =
0 for all u ? E is F = 0. We have the following

THEOREM 4.30. Let F be an infinite field, E a finite
dimensional separable extension of F, K a normal closure of
E/F. Let η1 , …, ηn be the n = [E:F] distinct monomorphisms
of E/F into K/F (cf. Theorem 4.29). Then the ηi are
algebraically independent over K.

Proof. Let f(x1, …, xn) ∈ K[x1, …, xn] satisfy f(η1(u), η2(u),
… ,ηn(u)) = 0 for all u ? E. Let (ul ,u2 ,…, un) be a base for
E/F. Then for any ai ∈ F we have 0 = f(η1(∑ aiui), …, ηn(∑
aiui)) = f(∑ aiη1(ui), … , ∑aiηn(ui)). Hence if we Put g (x1,
…, x2, …, xn) = f(∑ η1(ui)xi, …, ηn(ui)xi), then g(a1, a2, … ,
an) = 0 for all choices of ai ∈ F. Let (v1 ,v2, …, vm) be a base
for K/F. Then we can write g (x1, …, xn) = ∑; gi(x1, …, xn)vj
where g(x1,…, xn) η F[x1,…, xn. The condition g(al,…, an) =
0 gives gj(a1, …, an) = 0 for all j. Since this holds for all ai ?
F we conclude from Theorem 2.19 (p. 136) that every gj(x1,
…, xn) = 0 and g(x1, …, xn) = 0. By Theorem 4.29, det (ηj(ui))
≠ 0 so the matrix (ηj(ui)) has an inverse (vij) ∈ Mn(K). Since
g(x1,…, xn) = f(∑ η1(ui)xi, …, ∑ ηn(ui)xi), g(∑j,k vnj ηj(uk)xk,
…, ∑j,k vnjηj(uk)xk) = f(x1, …, xn)· Since g(x1,…, xn) = 0 this
implies that f(x1, …, xn) = 0, which proves the algebraic
independence of the ηi over K.

We can now complete the proof of

THE NORMAL BASE THEOREM. Any (finite
dimensional) Galois extension field K/F has a normal base.
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Proof. Since we have proved the result for G = Gal K/F
cyclic, hence for F finite, we may assume F infinite. Then, by
the result just proved, the automorphisms η1, η2, …, ηn of K/F
are algebraically independent over K. We have also seen that
if u K, then (η1(u), …, ηn(u)) is a base if and only if

Write ηiηj = ηi(j). Then j → i(j) is a permutation of 1, 2,…, n.
Now consider the polynomial ring K[x1, x2, …, xn]and the
matrix x whose (i,j)-entry is xi(j). We claim that det X ≠ 0. To
see this we specialize x1 = 1, xi = 0 if i > 1. Since j → i(j) is a
permutation of 1, 2, …, n, and for different i these
permutations are different, x1 appears once and only once in
each row and column of X. Hence the value of the
determinant after putting x1 = 1, xi = 0 for i > 1 is ± 1. Thus
d(x1 ,…, xn) ≡ det X ≠ 0. Hence by the algebraic
independence of the η's over K, there exists a u ∈ k such that
det ((ηiηj)(u)) ≠ 0. Then (η1(u), …, ηn(u)) is a normal base.

EXERCISES

1. Find a primitive element of over .

2. Find a primitive element for a splitting field over of x5 −
2.

3. Let x and y be indeterminates and let E = ( /(p))(x, v), F =
( /(p))(xp, yp). Show that [E:F] = p2 and E does not have a
primitive element over F. Display an infinite number of
distinct subfields of E/F.
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4. Determine a normal base for the field in exercise 1.

5. Prove that if E = F(u, v) where u and v are algebraic over F
and u is separable over F, then E has a primitive element over
F.

6. Let E and K be extension fields of the same field F and let
HomF(E, K) denote the set of linear maps of the vector space
E/F into K/F. Note that HomF(E, K) becomes a vector space
over K if we define addition of linear maps as usual and
define kl for k ∈ K HomF(E, K) by (kl)(x) = k(l(x)). x ∈ E.
Suppose [E:F] < ∞ and let (ξ1, …, ξn) be a base for E/F. Let li
be the element of HomF(E, K) such that li(ξj) = 0 if j ≠ i and
li(ξi) = 1. Show that (l1, …, ln) is a base for HomF(E, K)
regarded as a vector space over K. This shows that the
dimensionality of HomF(E, K) over K is [E:F].

7. With notations and hypotheses as in exercises 6, use
exercise 6 and the Dedekind Independence Theorem to show
that there are at most [E:F] monomorphisms of E/F into K/F.

4.15 TRACES AND NORMS

Let E/F be Galois, G = Gal E/F = {η1 = 1, η2, …, ηn}. If u
E we define

and call these respectively the trace and norm of u in E/F.
Evidently, these are fixed under the Galois group; hence they
are contained in F. Thus we have the trace and norm maps
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of E into F. If u, v E and a F, then

The first two of these show that T = TE/F is F−linear, that is, T
is a linear function on the vector space E over F. The
properties we noted for N = NE/F are that N is a multiplicative
map and that it is homogeneous of degree n. Evidently we
have T(0) = 0, T(−u) = − T(u), N(0) = 0. N(l) = 1, N(u) ≠ 0 if u
≠ 0 and N(u−1) = N(u)−1. It is clear that the restriction of N to
the multiplicative group E* of non-zero elements of E defines
a homomorphism of E* into F*.

As an example let us consider a quadratic extension field E =

where m is an integer without square factors. Then

any u E has the form a + , a, b , and the

Galois group consists of the identity map and a + →

a − . Hence
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Perhaps the most familiar example of traces and norms is

obtained by taking as quadratic extension of by .

Here, if u = a + b , a, b , then T(u) = 2a, which is 2
times the real part of u, and N(u) = a2 + b2 = |u|2.

Since T and N are homomorphisms, it is natural to seek
information on the images T(E) and N(F*) and the kernels of
the maps T and N (as homomorphism
of E* into F*). The first of these is easy to determine, namely,
we have T(E) ⊂ F, and since T(E) is a subspace of the one
dimensional space F/F either T(E) = 0 or T(E) = F. Moreover,
T(E) = 0 can be ruled out since this amounts to saying that we
have ∑iηi(u) = 0 for every u E, which is contrary to the
linear independence of the automorphisms ηi. Information on
N(E*) is usually not easy to obtain. For instance, if E =

, then the general problem is: for what rational
numbers c does the equation x2 − my2 = c have a rational
solution (x, y) = (a, b)? This is a non-trivial arithmetic
problem. In the case of m = − 1, the arithmetic of the ring of
Gaussian integers provides an answer which will be indicated
in exercise 4 at the end of this section.

There are two general theorems on the kernels of the trace and
norm maps which we shall now derive. The first one is
universally known as “Hilbert's Satz 90,” since it was
published by Hilbert in 1897 in his classical report on
algebraic number theory, in which it appeared as the ninetieth
theorem.15 The result is our

THEOREM 4.31. Let E be a cyclic extension field of the field
F, η a generator of the (cyclic) Galois group of E/F. Then
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NE/F(u) = l for u E if and only if there exists a v E such
that u = v(η(v))−1 (sometimes written as v;1−η).

In one direction the result is trivial: if u = v(η(v)) -1 then

To prove the converse we shall prove a more general result on
Galois extensions which is due to A. Speiser (for matrices),
namely,

THEOREM 4.32. Let E be a finite dimensional Galois
extension field of F, G the Galois group. Let n → uη be a map
of G into the multiplicative group E* satisfying the equations

for every η, ζ G. Then there exists a non-zero v E such
that

Proof. Since the uη ≠ 0 and the automorphisms η G are
linearly independent

over E, there exists an element w E such that

Then for ζ G we have
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Hence uζ= vζ(v)−1 as required.

To complete the proof of Hilbert's Satz 90 we now assume G
cyclic with generator η, and we suppose u E satisfies N(u) =
1. Define

Then for i + j ≤ n, uηj(un**j = uη(u) … nj−1(u)ηj(u) … ni+j
−l(u) = uηl + J. The same relation holds for i + j, < n since u1 =
uηn = N(u) = 1. Thus the equations (75) are satisfied for G =
〈η〉 Hence there exists a v such that u = uη = v(η(v))−1.

The two results we have proved have additive analogues. The
first is the additive form of Theorem 4.32.

THEOREM 4.33. Let E, F, G be as in Theorem 4.32 and let η
→ dη be a map of G into E satisfying

for every n, ζ G. Then there exists a c E such that

515



Proof. We have seen that there exists a u E such that T(u) ≠
0. Put

Then

as wanted.

Now let G = 〈 η 〉 and assume d is an element of E such that
T(d) = 0. Put
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Then, as in the case of norms, one sees that (79) holds. Hence,
as a consequence of Theorem 4.33 one has the following
additive analogue of Hilbert’s Satz 90.

THEOREM 4.34. Let E/F be cyclic with Galois group G =
〈η〉. Let d be an element of E of trace 0. Then there exists a c
in E such that d = c − η(c).

We shall now apply Hilbert’s Satz 90 and its additive
analogue to obtain results on the structure of cyclic
extensions. First, we shall give an improved proof and
extension of an earlier result (Lemma 3 of section 4.7, p.
253):

THEOREM 4.35. Let F contain n distinct nth roots of 1 and
let E/F be an n -dimensional cyclic extension of F. Then E =
F(u) where un F.

Proof. Let z be a primitive nth root of 1. We have NE/F(z) = zn

= 1. Hence there exists a ν E such that z = u(η(u)) −1 where
η is a generator of the Galois group. Then we have η(u) = z
−1u and η(un) = η(u)n = (z −1u)n = un. Accordingly un F.
Also η(u) = z −1u gives η(u) = z −1u and shows that there are n
−distinct elements in the orbit of u under Gal E/F. Hence the
minimum polynomial of u over F has degree n and E = F(u),

We obtain next the structure of a p-dimensional cyclic
extension of characteristic p.

THEOREM 4.36.Let F be a field of characteristic p ≠ 0 and
let E/F be a p-dimensional cyclic extension of F. Then E =
F(c) where cp − c F.
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Proof. We have TE/F(1) = l + l + … + l(p terms) = 0. Hence,
by Theorem 4.34, we have an element c E such that η(c) =
c + 1. Then ηi(c) = c + i and the orbit of c under Gal E/F
contains p elements. Hence E = F(c). Also η(cp − c) = (η(c))p

− η(c) = (c + 1)p − (c + 1) = cp − c. Hence cp -c F.

EXERCISES

1. Show that if E is a finite field and F is a subfield, so that E
is a cyclic extension of F, then the norm homomorphism NE/F
of E* is surjective on F*.

2. (Albert.) Let E be a cyclic extension of dimension n over F
and let η be a generator of Gal E/F. Let r|n, n = rm and
suppose c is a non-zero element of F such that cr = NE/F(u)
for some u E. Show that there exists a ν in the (unique)
subfield K of E/F of dimensionality m such that c = NK/F(v).

3. Let E, F, n, u be as in Theorem 4.35. Show that an element
v E satisfies an equation of the form xn = a if and only if v
has the form buk where b F and 1 ≤ k ≤ n.

4. Show that a rational number a ≠ 0 is a norm of an element
in ( ) if and only if the odd primes occurring with odd
multiplicities in the numerator or denominator of a written in
reduced form (b/c, (b, c) = 1) are of the form 4n + 1 (cf.
exercise 10, p. 150.)

5. Assume F has p distinct pth roots of 1, p a prime, and E/F
is cyclic of dimension pf. Let z be a primitive pth root of 1.
Show that if E/F can be imbedded in a cyclic field K/F of
dimension pf+1, then z = NE/F(u) for some u E.
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6. Show that if E = ( ) where m and m < 0, then E
cannot be imbedded in a cyclic quartic field over .

7. (Albert.) Let the notations be as in exercise 5 and let η be a
generator of Gal E/F. Suppose E contains an element u such
that NE/F(u) = z. Show that there exists a ν E such that
η(v)v-1 = up. Show that v is not a th power in E and that if K
= F(w) where wp = v, then K/F is cyclic of dimensionality
f+1.

8. Note that exercises 5 and 7 imply the following theorem: If
F contains distinct th roots of 1 ( prime) and E/F is
cyclic of dimension f > 1, then E can be
imbedded in a cyclic extension of dimension pf+1 over F if
and only if a primitive pth root of 1, z, is a norm in E/F. Use
this to prove that if the characteristic of F is ≠ 2 and E = F(

) ≠ F, then E/F can be imbedded in a cyclic quartic
extension of F if and only if c is a sum of two squares of
elements of F.

9. (Uchida.) Let F0 be a field of characteristic p, F = F0(s, t)
where s and t are indeterminates. Show that the Galois group
of xp − sx − t over F is isomorphic to the group of maps x →
ax + b, a,b (p), a ≠ 0.

10. (Uchida.) With notations as in exercise 9, show that the
Galois group of xp+1 − sx − t over F is isomorphic to the
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linear fractional group of maps , a, b, c, d
/(p), ad − bc ≠ 0.

11. Let W = F(ζ) where ζ is a primitive pth root of 1, p a
prime. Show that W/F is cyclic and [W:F] = s is a divisor of p
− 1. Show that Gal W/F = < τ > where τ(ζ) = ζ t and s is the
order of t + (p) in the multiplicative group of Z/(p).

12. Let the notations be as in exercise 11. Let a be an element
of W such that a is not a pth power in W but =( τa)a−t = bp,b

W. Let K = W[x]/(xp − a). Show that K/F is cyclic with
[K:F] = ps. Show that K/F contains a unique cyclic subfield
E/F with [E:F] = p.

13. Let s, t, p be as in exercise 11. Note that (s, p) = 1 = (t, p)
so there exist integers s′, t′ such that ss′ ≡ 1 (mod p) and tt′ ≡ 1
(mod p). Put tk = s′t′k = tk−1 t′, 0 <= k <= s. Show that

14. Let the notations be as in exercises 11 and 13. Let a W,
a ≠ 0, and put

Show that τ(M(a))M(a)−t is a pth power in W and hence if
M(a) is not a pth power then this can be used as the element a
of exercise 12 to construct a cyclic extension of dimension p
over F.
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Note: Exercises 12–14 give results due to Albert, who showed
also that every cyclic extension E/F with [E:F] = p can be
obtained in this way.

4.16 MOD p REDUCTION

It is generally a difficult problem to determine the Galois
group of an equation with rational coefficients. If the degree
does not exceed 4, the results given on pp. 256–261 are
effective. For any degree n we have obtained some
information that is relevant for the problem. For example, we
have seen that the Galois
group Gf of f of degree n is a subgroup of An if and only if the
discriminant d(f) is a square (p. 257). We showed also that Gf
is transitive (on the set of roots) if and only if f is irreducible.
We shall now obtain an important result called reduction mod
p which can be applied for various primes p to obtain
information on Gf which together with the results we have
indicated are often effective for determining Gf.

It is easily seen that nothing is lost in confining our attention
to monic f [x] (exercise 1, below). Let p be a prime. Then
we have the canonical homomorphism of Z[x] onto ( /(p))[x]
obtained by reducing the coefficients modulo p. If f(x) [x]
we write fp(p) for the corresponding polynomial in ( /(p))[x].
We remark that if f(x) is monic of degree n then fp(x) is monic
of degree n. We have seen (pp. 258–259) that the discriminant
d(f) is a polynomial in the coefficients ai with integer
coefficients. Hence d(f) and d(fp) = d(f)p is obtained by
reducing d(f) mod p. Thus if d(fp) ≠ 0 then d(f) ≠ 0 and both f
and fp have distinct roots. In this case we shall prove
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THEOREM 4.37. (Dedekind.)Let f(x) [x] be monic of
degree n, p a prime such that fp(x) has distinct roots
(equivalently d(fp) ≠ 0) and let fp(x) factor in ( /(p))[x] as a
product of irreducible factors of degree n1,n2,…, nr (∑ni = n).
Then the Galois group Gf contains a permutation (of the roots
off) whose cycle decomposition relative to a suitable ordering
of the roots is

Before giving the proof of this theorem we shall illustrate
how it can be used−by applying it to determine Gf for f(x) =
x6 + 22x5 + 21x4 + 12x3 − 37x2 − 29x − 15. We first use
reduction mod 2 to obtain f2(x) = x6 + x4 + x2 + x + 1.
Checking divisibility by the irreducible polynomials mod 2 of
degrees <= 3 we see that f2(x) is irreducible. Hence Gf
contains a 6-cycle so Gf is transitive. Next we have f3(x) =
x(x5 + x4 − x + 1) and we can show that x5 + x4 − x + 1 is
irreducible mod 3. Hence Gf contains a 5-cycle. Mod 5 we
have f5(x) = x(x − l)(x + l)(x + 2)(x2 + 2) and x2 + 2 is
irreducible mod 5. Hence Gf contains a 2-cycle. Now it can be
shown (exercise 3 below) that a transitive subgroup of Sn that
contains an (n − l)-cycle and a transposition coincides with
Sn. Hence Gf = S6.

The proof we shall give of Theorem 4.37 is due to John Tate
and is based on the following

THEOREM 4.38. Let f(x) [x] be monic of degree n, E a
splitting field of f(x) over , p a prime such that fp(x) has
distinct roots in its splitting field Ep
over /(p). Let D be the subring of E generated by the roots of
f(x). Then
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(a)There exist homomorphisms ψ of D into Ep.

(b)Any such homomorphism gives a bijection of the set R
of roots of f(x) in E onto the set Rp of roots of fp(x) in Ep.

(c)If ψ and ψ′ are two such homomorphisms then ψ′ = ψ σ
where σ Gal E/ .

Proof We have E = (r1,…, rn) and f(x) = Πn
1 (x − ri) in

E[x]. The ri are distinct since d(fp) ≠ 0 and hence d(f) ≠ 0. We
have D = [r1 , …, rn]. Put D′ = ∑0 <= el <= n-1 r1

e1 …
rn

en, the set of -linear combinations of the elements r1
e1

…rn
en, 0 <= ei <= n − 1. Since f(ri) = 0, ri

n is a -linear
combination of 1, ri, …, ri

n-1. Hence riD′ ? D′ and by
iteration, r1

f1 … rn
fnD′ ⊂ D′ for any positive integralfi. Then

D′ is a subring of D containing the ri and hence D′ = D. This
shows that D is a finitely generated -module. Since E has
characteristic 0, the torsion submodule of D is 0. Hence D is a
free -module with base, say, (ul, …, uN): D = u1,⊕ … ⊕
uN (p. 190). We claim that the ui constitute a base for E/
and hence N = [E: ]. The linear independence over of the
ui is clear since a non-trivial -linear relation among the ui
gives rise, on multiplying by a non-zero integer, to a
non-trivial -linear relation. Now consider D = ∑ ui.
This is a subring of E containing . Hence, by exercise 7, p.
216, D is a subfield of E. Since it contains the ri, D = E.
Hence the ui span the vector space E/ and the ui form a base
for / .

Consider pD = ∑N
1 (pui). Evidently pD is an ideal in D and

|D/pD| = pN. Since D/pD is finite, it contains a maximal
(proper) ideal. This has the form M/pD where M is a maximal
ideal of D containing pD. Then D/M is a field which is a
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homomorphic image of D/pD (since (D/pD)/(M/pD) ≈ D/M).
Since D/pD has characteristic p so has the field D/M, so its
prime field is Z/(p) and |D/M| = pm where m ≤ N. The
canonical homomorphism v of D onto D/M maps onto the
prime field /(p), and, since D = [r1,…, rn] and f(x) = Πn

1 (x
− ri) in we obtain D/M = ( /(p))[r1,…, rn] where ri = v(ri) =
ri + M. Also f(x) = Πn

1 (x − ri). Since f(x) [x], the
coefficients of f(x) are in /(p) and f(x) = fp(x). Thus D/M is a
splitting field over /(p) of fp(x). Since Ep was chosen
initially to be such a splitting field, we have an isomorphism
of D/M onto Ep. If we take the composite of v with this
isomorphism we obtain a homomorphism ψ of D onto Ep.
This proves (a).

(b). Let ψ be a homomorphism of D into Ep. Then ψ| is a
homomorphism of onto the prime field of Ep and since it
maps 1 into the unit of Ep it is the canonical homomorphism
of onto /(p). Then fp(x) = ψ(f(x)) (ψ applied to the
coefficients) = Π (x − ψ(x − ψ(ri)). Thus the ψ(ri) are the roots
of fp(x) in Ep and ψ|R is a bijection of R onto Rp.

(c). We fix a homomorphism ψ of D into Ep. Let σ
#x2208; G = Gal E/ . Then σ permutes the ri and hence σ
maps D into itself. Then σ|D is a homomorphism
of D into D (actually an automorphism) and ψσ (applied to D)
is a homomorphism of D into Ep. Distinct σ, σ′ G give
distinct permutations of the roots ri and since ψ|R is bijective
onto Rp, ψσ and ψσ′ are distinct. In this way we obtain N =
[E: ] distinct homomorphisms ψj = ψσj where G = {σ1, …,
σN}. We claim that there are no more such homomorphisms.
For, let ψN+1 be one distinct from the ψj, 1 ≤ j ≤ N. By the
Dedekind independence theorem, applied to the multiplicative
monoid H of the domain D and the field F = Ep, the ψ′s, now
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including ψN+1, are linearly independent over Ep. On the
other hand, consider the system of equations

Since there are more xi than equations, this system of linear
homogeneous equations with coefficients ψ(uj) Ep has a
non-trivial solution (a1,…, aN+1),ai Ep. Now let y D.
Then y = ∑N

1njuj,nj . Then ψi(y) = ∑njψi(uj),nj = nj + (p)
and ∑ aiψi(y) = ∑njaiψi(uj) = 0. This contradicts the
independence of the and completes the proof of (c).

We can use this result to give the

Proof of Theorem 4.37. Since Ep is a field with pm elements,
the map π:a -> ap is an automorphism of Ep. Hence if ψ is any
homomorphism of D into Ep then so is πψ. Accordingly, we
have a unique σ(ψ) G such that πψ = ψσ(ψ). The
automorphism σ = σ(ψ) is called the p-Frobenius
automorphism of E/ corresponding to ψ. If we restrict ψ
and σ to R and use the fact that ψ is bijective of R onto we
obtain the relation σ = ψ−1 πψ. This implies that the orbits of
Rp relative to <π> are mapped by ψ−1 into the orbits of R
relative to <σ>. Now the orbits of Rp relative to <π> are the
sets of roots of the irreducible factors of fp(x) in ( /(p))[x]. If
these have degrees nl,…, nr, then the cardinality of the orbits
of R relative to <σ> are n1 ,…, nr and hence σ, as a
permutation of R, has the cycle decomposition (12 … n1)(n1
+ 1 … n1 + n2) … for a suitable ordering of the roots.

EXERCISES
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1. Let f(x) [x] be monic and write f(x) = xn − a1xn−1 +
a2xn−2 − … + (− 1)nan, ai = bid−1, bi, d . Show that
dnf(d−1x) [x] is monic and has the same splitting field over
QQQQ as f(x).

2. Let f(x) [x] be monic and assume f(x) has distinct roots.
Show that Theorem 4.37 is applicable to all but a finite
number of primes.

3. Show that if G is a transitive subgroup of Sn containing an
(n − l)−cycle and a transposition, then G = Sn.

4. Determine Gf for f(x) = x6 − 12x4 + 15x3 − 6x2 + 15x + 12
(over ).

5. (Tate.) Show that for any prime p and any positive integer
n there exists an irreducible monic polynomial of degree n in
( /(p))[x]. (Use (69) or its proof.) For given n let g(x) be
irreducible monic in (Z/(2))[x] of degree n, h(x) irreducible
monic in (Z/(3))[x] of degree n − 1, k(x) irreducible monic
quadratic in Z/(p) where p is a prime > n − 2. Use the Chinese
remainder theorem (exercise 10, p. 110) to show that there
exists a monic f(x) [x] such that f2(x) = g(x), f3(x) = xh(x).
fp(x) = x(x + 1) … (x + n − 3)K(x). Show that Gf = Sn.

6. Show that any transitive subgroup of A5 is isomorphic to
one of the following three groups: (a) the cyclic group Z5, (b)
the dihedral group D5, (c) A5.

7. (Jensen and Yui.) Let f(x) = x5 − 5x + 12. Then f(x) is
irreducible in [x] and d(f) = (2653)2. If rl, …, r5 are the
roots of f, let P(x) = Π1 ≤ i < j ≤ 5 (x − (ri + rj)). Then P(x) is a
product of two different monic irreducible polynomials in
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)[x]: Use this information, exercise 6, and f3 to show that Gf ≈
D5.

8. (Jensen and Yui.) Let f(x) = x5 + 20x + 16. Then d(f) =
(2853)2 and if F(x) is defined by f(x) as in exercise 7, then

is irreducible in [x]. Use this information to show that Gf ≈
A5.

1 For a more detailed discussion of the history of the theory of
algebraic equations we refer the reader to C. A. Boyer, A
History of Mathematics, New York, Wiley, 1968, or to E. T.
Bell, The Development of Mathematics, New York,
McGraw–Hill, 1940.

2 One of the greatest mathematicians of this century,
Hermann Weyl, has given the following evaluation of Galois’
contribution in his book Symmetry, Princeton University
Press, 1952, p. 138. “Galois’ ideas, which for several decades
remained a book with seven seals but later exerted a more and
more profound influence upon the whole development of
mathematics, are contained in a farewell letter written to a
friend on the eve of his death, which he met in a silly duel at
the age of twenty–one. This letter, if judged by the novelty
and profundity of ideas it contains, is perhaps the most
substantial piece of writing in the whole literature of
mankind.”
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3 It was shown by Euler that 232 + 1 = 641.6700417. A simple
derivation of this factorization is given in G. H. Hardy and E.
M. Wright, The Theory of Numbers, New York, Oxford,
1938, p. 14.

4 For an actual construction, see H. S. M. Coxeter,
Introduction to Geometry, New York, Wiley, 1961, p. 27.

5 The reader should observe the similarity of this process to
that defining the derivative of a function of a real variable
where h is a variable and the limit is taken of [f(x + h) −
f(x)]/h as h 0.

6 This result is due to Galois.

7 This was Galois’ point of view: that is, he defined his group
as a certain permutation group of the roots of f(x) = 0. The
realization that this group could be identified with the group
of automorphisms of the splitting field is due to Dedekind,
and, as we have seen, this serves as the basis of the modern
Galois theory.

8 For a discussion of quintics consult E. Dehn, Algebraic
Equations, New York, Columbia Univ. Press, 1930, p. 195, or
H. Weber, Lehrbuch der Algebra, Vol. I, 1898, p. 670. Some
information on quintics will be indicated in the exercises at
the end of Section 4.16.

9 The construction we shall give is due to R. Brauer. A
construction of a polynomial whose Galois group over is
any Sn will be given in exercise 5, p. 305.
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10 This is discussed in N. Tschebotaröw, Grundzüge der
Galoischen Theorie (translated from Russian into German by
H. Schwerdtfeger) Groningen, 1950, p. 399.

11 R. Swan, “Invariant rational functions and a problem of
Steenrod.” Inventiones Mathematicae, vol. 7 (1969), pp.
148−158.

12 The fundamental theorem of Galois theory has been
generalized in a number of ways and this continues to be a
subject of research. The literature on this is too voluminous to
indicate here. The interested reader may consult the reviewing
journal, Mathematical Reviews. See also a survey paper by
Swan “Noether′s problem in Galois theory” in the volume
Emmy Noether in Bryn Mawr edited by J. Sally and B.
Srinivasan, Springer−Verlag, New York, 1982.

13 Here and in the remainder of this section we require the
structure theorem on finite abelian groups which we derived
in section 3.10, p. 195.

14 I am indebted to E. Schenkman for several
communications on the subject of the proof of Theorem 4.22.
In particular, I am indebted to him for the form of this lemma.

15 D. Hilbert, Theorie der algebraischen Zahlk÷rper, 1897, p.
149.
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5

Real Polynomial Equations and Inequalities

The principal objective of this chapter is the theory of
polynomial equations and inequalities in several unknowns in
the field of real numbers. The basic properties of that
serve as take-off point for the development of analysis are
contained in the statement that is a complete ordered field:
that is, we have a relation > in satisfying the axioms of an
ordered field (given in section 5.1), and the completeness
axiom that every subset of which has an upper bound has a
least upper bound. Since we shall be concerned only with
polynomial functions, it is not surprising that the full force of
these properties is not required here. We shall see that it will
suffice for our purposes to assume that we have an ordered
field R such that: (1) positive elements of R have square roots
in R and (2) every equation of odd degree in one unknown
with coefficients in R has a root in R. An ordered field
satisfying these conditions will be called real closed. It is
clear that has these properties. Moreover, the subset of
elements of which are algebraic over is also an instance
of a real closed field and this ordered field lacks the classical
completeness property.

We shall show that if R is real closed then R( ) is
algebraically closed. Taking R = we obtain = ( ),
so this will prove as a corollary
the “fundamental theorem of algebra” that the field of
complex numbers is algebraically closed.
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Our main concern will be the development of algorithms to
decide whether or not a given system of polynomial
equations, inequations (≠), and inequalities (>) with
coefficients in R has a solution in R. The first definitive result
of this sort is a classical theorem which was proved by J. C. F.
Sturm in 1836. The most general result in this direction is a
far-reaching extension of Sturm’s theorem which was proved
by A. Tarski around 1930. We shall give an alternative proof
of this theorem which is due to A. Seidenberg. Before passing
from Sturm’s theorem to Tarski’s we shall consider the theory
of elimination of variables in systems of equations and
inequations with coefficients in any field.

5.1 ORDERED FIELDS. REAL CLOSED FIELDS

We shall give a definition of an ordered field in terms of its
set P of positive elements. This is the following

DEFINITION 5.1 An ordered field (F, P) is a field F together
with a subset P (the set of positive elements) of F such that:
(1) 0 P, (2) if a F then either a P, a = 0, or − a P, (3)
if a, b P then a + b and ab P. A field F is called
or-derable if it is possible to specify a subset P in F having the
foregoing properties.

Since any field contains more than one element, it is clear that
if (F, P) is an ordered field, then P is not vacuous. If N
denotes the subset { − a|a P}, then (2) states that F = P ∪
{0} ∪ N. Moreover, it is clear from (1) that P ∩ {0} = ∅ and
N ∩ {0} = ∅. Also P ∩ N = ∅ since, if a P ∩ N, then − a
P ∩ N and hence 0 = a + ( − a) P contrary to (1). Hence the
decomposition F = P ∪ {0} ∪ N is one into disjoint subsets.
It is clear that N is closed under addition since − a + (− b) = −
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(a + b) N if a, b P. On the other hand, ab = (− a)(− b)
P if a, b N.

We can introduce an order relation a > b in (F, P) by defining
a > b to mean that a − b P. Then if a, b are any two
elements of F, we have the trichotomy: one and only one of
the three alternatives a > b, a = b, b > a holds. If a > b then a
+ c > b + c for any c and ap > bp for any positive p.
Conversely, we could start with a relation > in a field
satisfying the trichotomy law, transitivity, and the two
properties that a > b implies a + c > b + c and ap > bp if p >
0. Then we put P = {p|p > 0} and it is clear that (F, P) is an
ordered field as defined above and that the associated relation
> defined in (F, P) is the given one.

As usual, it is convenient to write a < b for b > a. The
elementary properties of inequalities in the field of real
numbers are readily established. We list
some of these: a > 0 implies a− 1 > 0 and a > b > 0 implies b−
1 > a− 1 > 0. If a > b, then − a < − b, and if a > b and c > d,
then a + c > b + d. As usual, we define |a| = a if a ≥ 0 and |a|
= − a if a < 0 and we prove that |a + b|,≤ |a| + |b| and = |a| |b|.

If F′ is a subfield of (F, P) then (F′, F′) is an ordered field for
F = F′ ∩ P. We call this the induced ordering in F′. If (P, P)
and (F′, P′) are any two ordered fields, then an isomorphism η
of F onto F′ is called an order isomorphism if η(P) ⊂ P′. Then
also η(0) = 0 and η(N) ⊂ N′, so η(P) = P′.

In any ordered field (F, P), a ≠ 0 implies a2 > 0. Hence, if a1,
a2, …, ar ≠ 0, then ∑ai

2 ≠ 0. In particular, 1 + 1 + … + 1 = 12

+ … + 12 ≠ 0 which shows that any ordered field must be of
characteristic 0. Also, we can not have − 1 = ∑ ai

2 in F since
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this would give 12 + ∑ ai
2 = 0. In particular, − 1 ≠ a2, a F,

so F does not contain a square root of − 1. It is clear from this
that the field of complex numbers is not orderable.

In the field of real numbers it is easy to establish, using the
completeness axiom, that we have the following two
properties:

(i) Any positive element has a square root in .

(ii) Any polynomial equation f(x) = 0 where f(x) [x]
and is of odd degree has a root in .

Both of these are consequences of the intermediate value
theorem that if f is a continuous function and f(a)f(b) < 0 for a
< b, then there exists a number c, a < c < b, such that f(c) = 0.
We shall now call an ordered field (R, P) real closed1 if it has
the properties (i) and (ii) (with R replacing ). We have the
following

THEOREM 5.1.A real closed field has a unique, ordering
endowing it with the structure of an ordered field. Any
automorphism of such a field is an order isomorphism. If R is
real closed, then its subfield of elements which are algebraic
over (⊂ R) is real closed.

Proof. Let (R, P) be real closed and let (P, P′) be any ordered
field structure on R. If a P then a = b2, b ≠ 0. Hence a F.
Thus P ⊂ P′ and this implies that P = P′. The second
statement follows in the same way. Now let R be real closed
and let R0 be the subfield of elements which are algebraic
over (cf. section 4.12, p. 280). If a R0 and a > 0, then we
have a b R such that b2 =
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a. Thus b is algebraic over R0 and so b R0. Hence condition
(i) holds in R0. In the same way we see that (ii) holds, so R0 is
real closed.

In particular, we see that the field of real algebraic numbers,
that is, the subfield of of numbers which are algebraic over

is real closed. Of course, this subfield is not complete.
Hence it is clear that the axioms we are using are weaker than
the completeness axiom.

We prove next the analogue for real closed fields of the
“fundamental theorem of algebra”.

THEOREM 5.2.If R is real closed then R( ) is
algebraically closed.

Proof. The proof we shall give is due to Artin and is
patterned rather closely after one of Gauss′ proofs of the
classical result. We note first that R and we have the
automorphism r = a + b → r ≡ a − b , a, b R, in
C ∪ R( ). If f(x) C[x] then f(x)f(x) R[x] and if this
has a root in C, then f has a root in C. Hence to prove that C is
algebraically closed it suffices to show that every monic
polynomial with coefficients in R has a root in C. This holds
by (ii) if the polynomial has odd degree. We show next that
every element of C has a square root in this field. This
follows from (i) for the elements a ≥ 0 of R, and if a R and
a < 0 and b satisfies b2 = − a, then ( b)2 = a. Now let r =
a + b , a, b R, b ≠ 0. Put = i and let x, y R.
Then (x + iy)2 = r is equivalent to:
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Since b ≠ 0 we may (by multiplying by a suitable element of
R—which has a square root in C) assume that b = 2, so the
second equation becomes xy = 1. This holds if y = x− 1. Then
the first equation becomes x2 − x− 2 = a or z − z−1 = a for z =
x2. Then we have z2 − az − 1 = 0 which has the solution (a +

)/2 in R since a2 + 4 > 0.2 Also a + > 0

since a + ≤ 0 leads to 4 ≤ 0. Hence there exists an x

≠ 0 in R such that x2 = (a + ). Then x4 − ax2 = 1
and x2 − x−2 = a. Hence x and y = x− 1 satisfy (1) with = 2.
We have therefore proved that every element of C has a
square root in this field. Consequently, there exists no
extension field E/C with [E:C] = 2. We proceed to use this
fact to prove that every monic polynomial with coefficients in
R has a root in C. Let f(x) be such a polynomial. Let E be a
splitting field over R of f(x)(x2 + 1) which we assume contains
C. Since the
characteristic is 0, E is Galois over R. Let G = Gal E/R and |G|
= 2em where m is odd. By Sylow’s theorem G has a subgroup
H with |H| = 2e. If D is the corresponding subfield of E/R,
then [E:D] = 2e and [D:R] = m. Since R has no proper odd
dimensional extension field we must have m = 1, and so D =
R and [E:F] = 2e and its Galois group is G = H, a group of
order 2e. Such a group is solvable. If e > 1, it follows easily
from the Galois theory (cf. section 4.11, p. 271) that E
contains a subfield F containing C such that [F:C] = 2. This
contradicts what we proved before. Hence e = 1 and so E = C.
Thus C contains a root of f(x) and C is algebraically closed.
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It is immediate from the foregoing theorem that the monic
irreducible polynomials in R[x] are either of first or second
degree. It is also clear from the formula for solving a
quadratic equation that x2 + ax + b is irreducible in R[x] if and
only if a2 < 4b.

The algebraic closure of R( ) permits us to establish for
polynomial functions on R a number of basic properties of
continuous and differentiable functions of a real variable. One
of these which we shall need is the intermediate value
theorem for polynomials.

THEOREM 5.3.Let R be a real closed field, f(x) R[x].
Suppose a, b are elements of R such that f(a)f(b) < 0. Then
there exists a c between a and b such that f(c) = 0.

Proof. We may assume f(x) is monic. Then f(x) factors in
R[x] as

where

Then
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Then gi(u) > 0 for all u R. If a and b are < ri 1 ≤ i ≤ m, then
f(a)f(b) = πi,j (a − ri)(b − ri) > 0. Similarly, if a, b > ri for all i,
then f(a)f(b) > 0.
Since we are assuming that f(a)f(b) < 0 it follows that one of
the ri is caught between a and b. Since f(ri) = 0 the result is
clear.

EXERCISES

1. (Veblen.) Let F be a field satisfying the following two
axioms: (i) − 1 is not a square in F, (ii) the sum of any two
non-squares of F is a non-square. Show that F can be ordered
to become an ordered field in one and only one way.

2. Show that ( ) has exactly two orderings making it an
ordered field.

3. Let F be an ordered field and x an indeterminate over F.
Show that F(x) is ordered if one defines

if and only if a0b0 > 0.
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4. Let F be an ordered field, f(x) = xn + a1 xn − 1 + … + an a
polynomial with coefficients in F. Put

Show that if |u| > M then |f(u)| > 0. Hence show that every
root of f(x) in F is contained in the interval − M ≤ x ≤ M.

In the next three exercises R is a real closed field.

5. Prove Rolle’s theorem for polynomials f(x): If f(a) = 0 =
f(b) and a < b, then there exists a c, a < c < b, such that f ′(c) =
0.

6. Prove the mean value theorem for polynomials: If a < b
then there exists a c, a < c < b, such that f(b) − f(a) = (b − a)
f′(c).

7. Prove that f(x) has a maximum on every closed finite
interval, a ≤ x ≤ b.

5.2 STURM’S THEOREM

In this section we shall derive a classical result, Sturm’s
theorem, which gives a method of determining the exact
number of roots in a real closed field of a polynomial
equation f(x) = 0. In deriving this we shall follow rather
closely Weber’s exposition in Lehrbuch der Algebra (1898),
Vol. 1, pp. 301–313.
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Let R be a real closed field and let f(x) be a polynomial of
positive degree with coefficients in R. Following Weber, we
shall say that a sequence of
polynomials

is a Sturm sequence of polynomials for f(x) for the closed
interval [a, b] (that is, a ≤ x ≤ b) if the fi(x) R[x] and satisfy
the following conditions:

(i) fs(x) has no roots in [a, b].

(ii) f0(a)f0(b) ≠ 0.

(iii) If c [a, b] is a root of fj(x), 0 < j < s, then
fj−l(c)fj+l(c) < 0.

(iv) If f(c) = 0 for c [a, b], then there exist open intervals
(c1,c) (that is, c1 < x < x) and (c, c2) such that f0(u)f1(u) < 0
for any u in the first of these and f0(u)f1(u) > 0 for any u in the
second.

We shall establish the existence of such sequences for any
polynomial with distinct roots, but first we shall see how such
a sequence can be used to determine the number of roots of
f(x) in the open interval (a, b). We consider the number of
variations in sign of the sequences
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of elements of R. If c = {c1, c2,…, cm} is a finite sequence of
non-zero elements of R, then we define the number of
variations in sign of c to be the number of i, 1 ≤ i ≤ m − 1,
such that cici + 1 < 0. If c = {c1, c2,…, cm} is an arbitrary
sequence of elements of R, then we define the number of
variations in sign of c to be the number of variations in the
sign of the subsequence c′ obtained by dropping the 0’s in c.
For example

has three variations in sign.

We can now state

THEOREM 5.4.Let f(x) be a polynomial of positive degree
with coefficients in a real closed field R and let f0(x) =
f(x),f1(x),… ,fs(x) be a Sturm sequence for f(x)for the interval
[a, b]. Then the number of distinct roots of f(x) in (a, b) is Va
− Vb where, in general, Vc denotes the number of variations
in sign of the sequence {f0(c),f0(c),…, fs(c)}.

Proof. The interval [a, b] is decomposed into subintervals by
the roots of the polynomials fj(x) of the given Sturm
sequence. Thus we have a sequence
a = a0 < a1 < … < am = b such that none of the fj(x) has a root
in (ai ai+1). First, let c (a0, a1) so no fj has a root in (a0, c).
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Then, by the intermediate value theorem (Theorem 5.3),
fj(a0)fj(c) ≥ 0 for 0 ≤ j ≤ s. Hence if none of the fj(a0) = 0,
then fj(a0)fj(c) > 0 which implies that Vao = Vc. Now suppose
fk(a0) = 0 for some k. Since f0(a) ≠ 0, fs(a) ≠ 0 by the
properties of Sturm sequences, we have 0 < k < s. Then
fk−1(a0)fk + 1(a0) < 0 by property (iii). Since fk−1(x) and
fk+1(x) have no roots in (a0, c) we have fk−1(a0)fk−1(c) > 0 and
fk+1(a0)fk+1(c) > 0. It follows that fk−1(c)fk+1(c) < 0. Thus
fk−1(a0), 0, fk+1(a0) and fk−1(c), fk(c), fk+1(c) each contribute
one variation of sign to Va0 and Vc respectively. Taking into
account all the k we see that Va0 = Vc. A similar argument
shows that if d (am−l am), then Vd = Vam. Now let c (ai−1,
ai), d (ai,ai+1) where 1 < i < m − 1. Then the same
argument shows that Vc = Vd provided that f(ai) ≠ 0. Now
suppose f(ai) = 0. Then, by (iv), we have f0(c)f1(c) < 0 and
f0(d)f1(d) > 0. Then the sequence f0(c),f1(c) has one variation
in sign whereas the sequence f0(d), f1(d) has none. The
argument used before shows that fj−1(c), fj(c),fj+1(c) and
fj−1(d), fj(d), fj+i(d) have the same number of variations in
sign if j > 1. Hence Vc − Vd = 1 if f(ai) = 0. Now choose a′a′

i
(ai−1,ai). Then

and our determination of each parenthesis on the right-hand
side shows that these are either 0 or 1 and that the number of
occurrences of 1 coincides with the number of ai 1 ≤ i ≤ m,
which are roots of f(x). Thus Va − Vb is the number of roots of
f(x) in (a, b).
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Now let f(x) be any polynomial in R[x] of positive degree. We
define the standard sequence for f(x) by

Thus the fi(x) are obtained by modifying the Euclid algorithm
for finding the g.c.d. of f(x) and f′(x) in such a way that the
last polynomial obtained at each stage is the negative of the
remainder in the division process. For example, if

so and

. Then the
standard sequence for f(x) is

.

In the general case it is clear from (3) that fs(x) is a factor of
every fi(x) and this is a g.c.d. of f(x) and f′(x). Now put gi,(x) =
fi(x)fs(x)−1 and consider the sequence

.

We proceed to show that this is a Sturm sequence for g0(x)
for any interval [a, b] such that g0(a) ≠ 0, g0(b) 0. Clearly
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condition (ii) holds, and (i) holds since gs(x) = 1. Dividing the
polynomials in (3) by fs(x) gives the relation

.

Now suppose gj(c) = 0. Then (5) shows that gj−1(c)gj+1(c) ≥ 0
and gj−1(c) = 0 if and only if gj+1(c) = 0. In the latter case we
obtain 0 = gj−1(c) = gj(c) = gj+1(c) = … contrary to gs = 1.
Hence we see that gj−1(c)gj+l(c) < 0, which establishes (iii).
Next suppose g0(c) = 0 for c in [a, b]. Then we have f(x) = (x
− c)eh(x), e > 0, h(c) ≠ 0 and f′(x) = (x − c)eh′(x) + e(x −
c)e−1h(x). Also fs(x) = (x − c)e−lk(x) where k(c) ≠ 0. Hence
h(x) = k(x)l(x) where l(c) ≠ 0 and h′(x) = k(x)m(x) These
relations give

so g1(c) = el(c) ≠ 0. Now choose an interval [c1, c2]
containing c in its interior such that g1(x)l(x) ≠ 0 in [c1,c2].
Then, by the intermediate value theorem and g1(c) = el(c) ≠
0,g1(x)l(x)>0 in [c1,c2]. Hence g0(x)g1(x) = (x − c)g1(x)l(x)
has the same sign as x − c in [c1,c2] so g0(x)g1(x) < 0 for c1 <
x < c and g0(x)g1(x) > 0 for c < x ≤ c2. This shows that (iv)
holds and so (4) is a Sturm sequence for g0(x).

If f(x) has no multiple roots, then the g.c.d. of f(x) and f′(x) is
1. Then the sequence {f0(x), f1(x),…, fs(x)} differs from
{g0(x), g1(x),…, gs(x)} by a non-zero multiple in R. Hence the
sequence of fi(x) is a Sturm sequence for f(x) = f0(x). If f(x)
has multiple roots, then the standard sequence (4) will not be
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a Sturm sequence for an interval containing a multiple root of
f(x). Nevertheless, we can still use the standard sequence to
determine the number of distinct roots of f(x) in (a, b). This is
the content of

STURM’S THEOREM.
Let f(x) be a polynomial of positive degree with coefficients in
a real closed field R and let {f0(x) = f(x), f1(x)) = f′(x), … ,
fs(x)} be the standard sequence (3) for f(x). Assume [a, b] is
an interval such that f(a) ≠ 0, f(b) ≠ 0. Then the number of
distinct roots of f(x) in (a, b) is Va − Vb where Vc denotes the
number of variations in sign of {f0(c),f1(c), …, fs(c)}.

Proof. Let gi(x) = fi(x)fs(x)−1 as above. Then apart from
multiplicities, the polynomials f(x) and g0(x) have the same
roots in [a, b] (exercise 1, p. 233). Since {gi(x)} is a Sturm
sequence for g0(x), the number of these roots is Va(g) − Vb(g)
where Vc(g) is the number of variations in sign in {gi(c)}.
Since

it is clear that Va(g) = Va,Vb(g) = Vb. Hence Va − Vb is the
number of distinct roots of f(x) in (a, b).

We have indicated (exercise 4, p. 311) that the roots of xn +
a1xn−l + … + an in R are in the interval [ − M, M] where M =
max (1, |a1|+ … + |an|). If we put ¼ = 1 + |a1|+ … + |an|, then
the roots of f(x) in R are in ( − ¼, ¼). Hence if f0(x) =
f(x),f1(x),… ,fs(x) is the standard sequence for f(x), then the
number of roots of f(x) in R is V−¼ − V¼ where, as usual, Vc is
the number of variations of sign of {f0(c), f1(c)),… ,fs(c)}.
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This gives a constructive way of determining the number of
roots of f(x) in R. Sometimes it is preferable to use instead of
¼ a bound η which is a polynomial in the aj. Such a bound
can be obtained by observing 1 + ai

2 > |ai|, so we can take

Then the roots in R lie in (− η, η).

EXERCISES

1. Apply Sturm’s theorem to show that x3 − 7x − 7 has two
real roots in (−2, −1).

2. Apply the theorem to determine the number of real roots of
x4 + 12x2 + 5x − 9.

3. Let f(x) = x3 + px + q, p ≠ 0. Show that

is a Sturm sequence for f(x) for any [a, b] with f(a)f(b) ≠ 0.
Note that f3 = d, the discriminant of f(x) (p. 259). Use Sturm’s
theorem to prove that f has a single real root or three distinct
real roots according as d < 0 or d > 0.

4. Let f(x) = x4 + qx2 + rx + s, L = 8qs − 2q3 − 9r2, d the
discriminant of f(x). Prove that

if d < 0 then the number of real roots of f is two;
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if d > 0, q < 0, L > 0 then f has four distinct real roots;

if d > 0 and either q ≥ 0 or L ≤ 0, then f has no real roots.

5. Define the sequence of Legendre polynomials P0, P1,…,
Pn,… by the recursion formula

where P0(x) = 1, P1(x) = x. Show that {Pm, Pm−1,…, P0} is a
Sturm sequence for Pm for the interval [−1, 1]. Show that Pm
has m distinct real roots in (− 1, 1).

6. Let f(x) R[x] where R is a real closed field and assume
deg f(x) = n. Let Wc denote the number of variations of sign in
the sequence {f(c),f′(c),… ,f(n)(c)}. Prove Budan’s theorem: if
a < b and f(a)f(b) ≠ 0, then Wa − Wb exceeds the number of
roots of f(x) in (a, b), counting the multiplicities, by a
non-negative even integer.

7. Deduce from exercise 6 Descartes′ rule of signs. Let f(x) =
a0xn + a1xn−1 + … + a1xn−l, a0a1 ≠ 0, ai R. Let P be the
number of variations of sign in {a0, a1,…,a1}. Show that P
exceeds the number of positive roots of f(x), counting
multiplicities, by a non-negative even integer.

5.3 FORMALIZED EUCLIDEAN ALGORITHM AND
STURM’S THEOREM

In the last part of this chapter we shall develop a method for
testing the solvability in a real closed field R of any finite
system of polynomial equations, inequations (F ≠ 0), and

546



inequalities (F > 0) in several unknowns. The main result
(Tarski’s theorem) will be that, given such a system, we can
determine in a finite number of steps a finite number of
systems of polynomial equations, in-equations, and
inequalities in the coefficients of the given system, such that
the given system will have a solution in R if and only if every
equation, inequation, and inequality of one of the derived
systems is satisfied by the coefficients. As an illustration of
the type of result we shall obtain, we consider the case of a
“reduced” quartic equation x4 + qx2 + rx + s = 0, q, r, s in R.
Here it can be shown that this has a root in R if and only if
one of the following alternatives involving the discriminant

and the expression

is satisfied:

I. d < 0

II. d > 0, q < 0, L > 0

III. d = 0, r ≠ 0

IV. d = 0, r = 0, q ≤ 0.
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This follows quite easily from exercise, 4, p. 316 and the fact
that d = 0 if and only if the equation has multiple roots.

We shall show in this section that we can obtain a similar
version of Sturm’s theorem for any equation whose
coefficients are parameters that take on values in a real closed
field. This will be based on a parameterized version of the
Euclidean algorithm for determining the g.c.d. of
polynomials, which we shall now derive. We begin with a
coefficient ring of the form A = K[t1,…,tr] where the ti are
indeterminate and K is either or one of the fields /(p), p a
prime. Let F(t1,…,tr;x), G(t1,…, tr; x) A[x], so

where the ui,vj A. We assume G(ti;x) ≠ 0 and we take a
“section” Gk(ti;x) = vkxk + vk−1Xk−1 + … + v0 with vk ≠ 0
obtained by dropping the terms vjXj with j > k. Thus the
x−degree of Gk, degx Gk = k and k takes on some of the values
between 0 and m. The division algorithm can be carried out to
write

where deg Rk < k and ek is a non-negative integer which is the
larger of 0 and n − k + 1 (p. 129). Note that we have displayed
− Rk, the negative of the usual remainder. This is preferable
for the application to Sturm’s theorem and is as good as the
usual remainder in other applications. For Sturm’s theorem it
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is also necessary to have ek even. Hence we shall now fix ek
to be 0 if n ≤ k and otherwise to be the smallest even integer
>n − k + 1. With this definite choice of ek we can obtain Qk
and Rk satisfying (8). Moreover, degree considerations show
that these are unique.

Now let R be any field extension of K, so that R is a field
whose prime ring is the ring K (= or /(p)). Let (c1,…,cr)
R(r) = R ×…× R(r times) and let F, G and the other notations
be as in the last paragraph. Either Vj(c1,…, cr) = 0 for all j =
0,…, m, in which case G(ci;x) = 0, or there exists a k such that
vk(c1,…, cr) ≠ 0 but vj(c1,…, cr) = 0 for j > k. Then G{ci;x) =
Gk(ci;x) is a
polynomial of degree k in x with coefficients in R. By (8), we
have

and since vk(ci)ek ≠ 0 and deg Rk(ci; x) < deg G(ci; x) it is
clear that Qk(ci; x) and − Rk(ci; x) differ by a non-zero
multiplier (vk(ci)−ek) in R from the quotient and remainder
obtained by dividing F(ci; x) by G(ci; x) ≠ 0. We note also
that the multiplier is positive if R is real closed.

We now introduce the following sets of equations and
inequations defined by polynomials in A = K[t1,…,tr]:
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The set γ = { −∞, k} for the k satisfying 0 ≤ k ≥ m and
vk(t1,…, tr) ≠ 0 is a cover of A in the sense that if R is any
extension field of K and j(R) is defined to be the subset of
R(r) of (c1,…, cr) satisfying all the conditions in j, then

. In the present instance j(R) is the set of
(c1,…, cr) such that degx G(ci; x) = j (= − ∞ if and only if
G(ci; x) = 0). In general, the terms j of a cover are finite sets
of equations and inequations whose left hand members are in
A. If we have a number of inequations l1 ≠ 0,…, lh ≠ 0 we can
replace them by a single one l ≠ 0 where l = l1l2 … lh since R
has no zero divisors ≠ 0. For the sake of uniformity we
append the trivial equation 0 = 0 (in equation 1 ≠ 0) if j
contains no equation (inequation). Hence we may assume that

j consists of a finite non-vacuous set of equations and a
single inequation. We observe also that for real closed R a set
of equations d1 = 0,…, dh = 0 is equivalent to a single
equation d = 0 where d = ∑ di

2. Hence if we are dealing
exclusively with real closed extension fields of K (necessarily
= ), then we may assume j consists of a single equation
and a single inequation.

We can now summarize our results in the following way.
Given the polynomials F and G A[x] with G = vmxm +
vm−1xm−1 + … + v0,vj A, let γ be the cover defined by the vj
as in (9). Then for each k ≠ − ∞ appearing in (9), we have
polynomials Qk,Rk A[x] such that if R is any extension field
of K and (c1,…, cr) k(R), then G(ci; x) ≠ 0 and Qk(ci; x)
and −Rk(ci; x) differ by a non-zero multiplier in R from the
quotient and remainder obtained by dividing F(ci; x) by G(ci;
x) in R[x]. The multiplier is positive if R is real closed.
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Let be a finite set of equations and a single inequation
determined by elements of A and let δ = { 1, 2,…, s} be a
cover of A. Let (j), 1 ≤ j ≤ s, be a set of equations and a
single inequation such that the set of equations is the union of
the sets of equations for F and for j and the inequation is the
product of the inequation of and the inequation of j. Then
it is clear that

(j)(R) = (R) ∩ j(R) for any R. Since it
follows that . Hence if γ = { 1 = , 2,…,

q} is a cover for A, then so is γ′ = { (1),…, (s), 2,…,
q}. The covers obtained in this way and by finite iteration of
this process will be called refinements of γ.

We recall that if f(x) and g(x) ≠ 0 R[x] where is a field, then
the Euclidean algorithm for determining a g.c.d. of f(x) and
g(x) in consists of constructing by successive divisions the
sequence of polynomials

such that deg fi+1 < deg fi for i ≥ 1 and there exist qi such that
fi−1 = qifi − fi+1(cf. exercise 11, p. 150, and equation (3)). It
follows that fs ≠ 0 and fs is a g.c.d. of f and g in R[x]. We shall
call (10) the Euclidean sequence for the pair (f, g) if g ≠ 0. It
is convenient also to extend this to the pair (f, 0) by saying
that (f, 0, 0) is the Euclidean sequence for (f, 0).

We shall now prove the

LEMMA. Let F and G ≠ 0 A[x]. Then we can construct in a
finite number of steps a cover δ = { 1, 2,…, h} which is a
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refinement of the cover (9) defined by the coefficients of G,
and sequences of polynomials Fj0 = F, Fj1,…, FjSj A[x], 1 ≤
j ≤ h, such that for any field extension R of K and any (c1,…,
cr) j(R), the terms of the sequence

differ by non-zero multipliers in R from those of the Euclidean
sequence for (F(ci; x), G(ci; x)). Moreover, the multipliers are
positive if R is real closed.

Proof. As above, we determine the polynomials Qk, Rk A[x]
for the k ≠ − ∞ appearing in (9), by the division algorithm
applied to F and Gk = vkxk +… + v0. If Rk = 0 the sequence of
polynomials Fk0 = F, Fk1 = Gk, Fk2 = 0 satisfy the stated
condition. We now assume Rk ≠ 0 (k ≠ − ∞). Then the sum of
the degrees of Gk and Rk is less than the sum of the degrees of
F and G. Using induction on the sum of the degrees we may
assume the result for the pair of polynomials (Gk, −Rk). Thus
we have a cover δk = { k1, k2,…, khk} and sequences of
polynomials {Fkl0 = Gk, Fkl1,…, Fklskl}, 1 ≤ l ≤ hk, satisfying
the conditions of the theorem for (Gk, −Rk). We now refine
the cover γ by replacing each set k, k ≠ − ∞ by the sets
k

(1), k
(2),…, k

(hk) where k
(l) has as equations the

equations of k and of kl and has the inequation which is the
product of the inequation of k and that of kl. Let δ be the
cover obtained by making these replacements for every k.
Then we associate with the set k

(l) the sequence
{F = Fkl0, Fkl1,…, FklSkl}. Moreover, for the term −∞ we
take the sequence of polynomials {F, 0, 0}. It is easily seen
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that δ together with these sequences satisfies the conditions.

As an illustration of this result we consider the reduced cubic
F(p, q; x) = x3 + px + q, p and q indeterminates, and its
derivative G(p, q; x) = F′(p, q; x) = 3x2 + p. We take K = .
We have v2 = 3, v1 = 0, v0 = p. Hence −∞ = {3 = 0, 0 = 0, p
= 0; 1 ≠ 0}; that is, −∞ consists of the equations 3 = 0, 0 = 0,
p = 0 and the trivial inequation 1 ≠ 0. Also 2 = {0 = 0; 3 ≠
0}, 0 = {3 = 0; p ≠ 0}. Evidently r−∞(R) = ∅ and 0(R) = ∅
for any R, so we may take γ = { = 2}. The division
algorithm we specified for F and G yields the remainder −R =
−(6px + 9q) so we have to repeat the process with G = 3x2 + p
and −R = −(6px + 9q). We leave it to the reader to verify that
the result obtained is that we have the cover δ = { 1, 2, 3,

4} where

and the corresponding sequences of F’s are

I. x3 + px + q, 3x2 + p, −(6px + 9q), −9(27q2 + 4p3), 0

II. x3 + px + q, 3x2 + p, −(6px + 9q), 0

III. x3 + px + q, 3x2 + p, −9q, 0
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IV. x3 + px + q, 3x2 + p, 0.

We shall now give the parameterized version of Sturm’s
theorem. This is

THEOREM 5.5.Let F(ti; x) = unxn + un−1xn−1 + ··· + u0
A[x] where uj = uj(t1,…, tr) A = [t1,…, tr], ti and x
indeterminates. Then we can determine in a finite number of
steps a finite collection { 1, 2,…, s} where each k is a
finite set of polynomial relations of the form C = 0, C > 0, C ≠
0 where C A, such that for any real closed field R, the
statement that F(ci; x) = 0 for ci R, 1 ≤ i ≤ r, has a root in R
is equivalent to the validity for ti = ci of every relation in one
of the k.

Proof. We put G(ti; x) = F′(ti; x) = nunxn−1 +(n − 1)un−1xn − 2

+ ··· + u1. We may assume G ≠ 0 since otherwise F(ti;, x) =
u0(t1,…, tr) and the result is trivial. Then we can apply the
lemma to obtain (by a finite process) the cover
δ = { 1, 2,…, h} and corresponding sequences of
polynomials Fj0 = F, Fj1,…, Fjsj A[x], 1 ≤ j ≤ h. Then if R is
a real closed field and (c1,…, cr) j(R), Fj0(ci; x), Fj1(ci; x),
…, FjSj(ci; x) differ by positive multipliers from the terms of
the standard Sturm sequence for F(ct; x). To simplify the
notation we now write for any one of the j and F0 = F,
F1,…, Fs for the corresponding sequence of polynomials.
Since δ is a refinement of the cover γ associated with G, for
all (c1,…, cr) (R) either un(c1,…, cr) = … = u1(c1,…, cr)
= 0 or there exists an m, 1 ≤ m ≤ n, such that um(c1,…, cr) ≠ 0
and uj(c1,…, cr) = 0 for all j > m. In the first case, F(ci; x) = 0
has a root in R if and only if u0(c1,…, cr) = 0. In the second

554



case we know that the roots of F(ci; x) = 0 in R all lie in the
interval (− η,η) where

Since the terms of the sequence F0(ci; x), F1(ci; x),…, Fs(ci;
x) are positive multiples of those of the standard sequence for
F(ci; x), it follows from Sturm’s theorem that F(ci; x) = 0 has
a root in R if and only if the number of variations in sign of
the sequence F0(ci; η), F1(ci; η),…, Fs(ci; η) exceeds that of
F0(ci; −η), F1(ci; −η),…, Fs(ci; −η). To express this as
polynomial conditions on the ci we associate with each
Fk(t1,…, tr; x) the pair of polynomials

where uj = uj(t1,…, tr) and nk is the degree in x of Fk. Thus gk,
hk A and gk(c1,…, cr) and hk(c1, …, cr) differ from Fk(ci; η)
and Fk(ci; − η) respectively by positive multipliers. Hence for
the elements (c1,…, cr) (R), F(ci; x) = 0 has a root in R if
and only if the number of variations in sign in the sequence
g0(ci), g1(ci) … , gs(ci) exceeds that of the sequence
h0(ci),h1(ci),…, hs(ci). We now consider all possible systems
of relations of the form
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We pair off all such relations on the g’s with those on the h’s
so that the number of variations of sign (in the obvious sense)
of the sequence of g’s exceeds that of the sequence of h’s.
Then it is clear that for (c1,…, cr) (R), F(ci; x) = 0 will be
solvable in R if and only if the ci satisfy one of these paired
systems of
equations and inequalities. If we append to each of these the
relations A we obtain one of the systems we require. Doing
this for all the pairs and all the ’s we obtain a finite set of
’s which satisfy the requirements of the theorem.

We remark that we can apply the same method to obtain a
similar result for the existence of a root in a given interval
(−c, c) where c > 0. Also we may replace A = [t1,…, tr] by
any ring F[t1,…, tr] where F is a subfield of some real closed
field.

5.4 ELIMINATION PROCEDURES. RESULTANTS

Before proceeding to the extension of Theorem 5.5 to systems
of equations, inequations, and inequalities in several
unknowns it seems appropriate to consider the simpler
problem of developing a test for the solvability of a system of
polynomial equations and inequations in some extension field
of a given field. The basic theorem we wish to prove is:
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THEOREM 5.6.Let K = or /(p), p a prime, and let A =
K[t1,…, tr], B = A[x1,…, xn] where the t’s and x’s are
indeterminates. Let

Then we can determine in a finite number of steps a finite
collection { 1, 2,…, s} where

such that for any extension field F of K and any (c1,…, cr)
F(r) the system of equations and inequation

is solvable for the x’s in some extension field E/F if and only
if the ci satisfy one of the systems

1 ≤ j ≤ s. Moreover, when one of these systems is satisfied
then a solution exists for (13) in some algebraic extension
field E/F.

Before proceeding to the proof we prove a lemma which is
due to Tarski.
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LEMMA. Let f(x), g(x) be non-zero polynomials contained in
F[x], F a field, and let h = deg f(x). If f(x)|g(x)h then there
exists no a in any extension field E/F satisfying f(a) = 0, g(a)
≠ 0. On the other hand, if then there exists such an
a in some algebraic extension field E/F.

Proof. The first statement is clear. Now assume .
We claim that there exists an irreducible factor p(x) of f(x)
which is not a factor of g(x). Otherwise, if p1(x),…, pm(x) are
the disinct irreducible factors of f(x) then P1(x)…Pm(x)|g(x)
and (p1(x) … pm(x))h|g(x)h. Since f(x)|(p1(x)… pm(x))h we
have the contradiction that f(x)|g(x)h. Now let p(x) be an
irreducible factor of f(x) which is not a factor of g{x) and let E
= F[x]|(p(x)). This is an algebraic extension of F containing a
= x + (p(x)) satisfying f(a) = 0, g(a) ≠ 0.

We now proceed to the

Proof of Theorem 5.6. We consider first the case in which n =
1 and we use induction on the sum of the degrees in x of the
Fi and G (where we define deg 0 = 0). If this sum is 0 there is
nothing to prove. We proceed to give a series of reductions if
one of the Fi or G has positive degree in x.

Case I. deg Fi > 0 for i = 1, 2. Let b0xh and d0xk be the
leading terms of F1 and F2 respectively, that is, F1 = b0xh +
b0xh− 1 + …, b0 ≠ 0, F2 = d0xk + d1xk−1 + …, d0 ≠ 0. Assume
h ≥ k. We define
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Suppose (c1,…, cr) F(r) satisfies d0(c1,…, cr) = 0. Then
(c1,…, cr) is solvable in an extension field E/F if and only if

′(c1,…, cr) is solvable in E. On the other hand, suppose
d0(c1,…, cr) ≠ 0. Then (c1,…, cr) is solvable in E if and
only if ″(c1,…, cr) is solvable in E. Since the sum of the
x-degrees of the polynomials in ′ and in ″ is less than that
of , the theorem for n = 1 with the condition in Case I
follows by the degree induction.

Case II. deg F1 > 0, deg G > 0, deg Fi = 0 if i > 1. Let b0xh

and d0xk be the leading terms of F1 and G respectively. By
long division we can obtain polynomials Q and R B such
that b0

h2
Gh = QF1 + R where R = r0xh − 1 + r1xh − 2 + … + rh

− 1 A. Now define

Let (c1, …, cr) F(r) satisfy b0(c1, …, cr) = 0. Then (c1, …,
cr) has a solution in an extension field E/F if and only if
′(c1, …, cr) has a solution in E. Next suppose b0(c1, …, cr) ≠
0. Then Fm(c1, …, cr; x) G(c1, …, cr; x) if and only if R(c1,
…, cr; x) ≠ 0, hence, if and only if ri(c1, …, cr) ≠ 0 for some i
= 0, 1, …, h - 1. By the lemma, F(c1, …, cr; x) = 0, G(c1,…,
cr; x) ≠ 0 is solvable in an extension field E if and only if
R(c1, …, cr; x) ≠ 0 and in this case a solution exists in an
algebraic extension field E/F. It follows that if b0(c1, …, cr) ≠
0 then (c1,…, cr) is solvable in an extension field if and only
if one of the systems of equations and inequation i(c1, …,
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cr) is satisfied. Moreover, in this case (c1, …, cr) is solvable
in an algebraic extension field E/F. Since the sum of the
x-degrees of the polynomials in ′ or in any i is less than
that of , the result for n = 1 follows in case II by induction
on degree.

Case III. deg F1 > 0, deg Fi = deg G = 0 if i > 1. Let the
leading term of F1 be b0xh. Define

If (c1, …, cr) satisfies b0(c1, …, cr) = 0 then (c1, …, cr) has
a solution in an extension field E/F if and only if ′(c1, …,
cr) has a solution in E/F. Now let b0(c1, …, cr) ≠ 0. Then
F1(c1, …, cr; x) has a solution in an algebraic extension E/F.
It follows that (c1, …, cr) has a solution in the algebraic
extension E/F if ′′(c1, …, cr)holds for (c1, …, cr). Since the
x-degree of F′1 is less than that of F1, Case III follows by the
degree induction.

Case IV. deg Fi = 0, 1 ≤ i ≤ m, deg G > 0. Let d0xk be the
leading coefficient of G. Define

If d0(c1, …, cr) = 0 then (c1, …, cr) has a solution in an
extension field E/F if and only if …′{cu …, cr) has a solution
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in E/F. If d0(c1, …, cr) ≠ 0 then G(c1, …, cr; x) ≠ 0 has a
solution in any field of cardinality exceeding k. Hence T′(c1,
…, cr) is solvable in an algebraic extension E/F if ′′(c1, …,
cr) is satisfied. Since the x-degree of G′ is less than that of E,
the result follows in this case.

The cases listed take care of all possibilities in which the sum
of the x-degrees of the Fi and G is positive. Hence the
theorem holds if n = 1. We now prove the theorem by
induction on n and we assume n > 1. We treat x1, …, xn-1 as
additional t′s and apply the result just proved to obtain in a
finite number of steps sets Λk, 1 ≤ k ≤ u, where Λk = {Fkl, …,
Fkhk; Gk} and the Fkj and Gk K[t1, …, tr, x1, …, xn-1] such
that the following two properties hold:

(1) If F is an extension field of K and (c1, …, cr+n-1)
F(r+n-1) satisfies one of the sets Λk(c1, …, cr+n-1)(in the sense
of (14)) then (c1, …, cr+n-1) is solvable for xn in some
algebraic extension field E/F, (2) If (c1, …, cr+n-1) is
solvable for xn in any extension field E/F then Λk(c1, …,
cr+n-1) is satisfied for one of the k. Next we use induction on
the number of x’s to obtain for each Λk a set { wklk| 1 ≤ lk ≤
uk} where klk is a finite set of polynomials contained in A
such that { klk} satisfies the statement of the theorem for the
given set of polynomials Λk (in n - 1 x’s). We now claim that
the set { klk |1 ≤ k ≤ u, 1 ≤ lk ≤ uk} satisfies the conditions of
the theorem for the given set of polynomials T. First, suppose
(c1, …, cr) satisfies klk(c1,…, cr) for some k, lk. Then we
have an algebraic extension field E/F such that Λk(c1, …, cr)
is solvable for x1, …, xn-1 in E. Denote a solution by (cr+1,
…, cr+n-1) Then applying statement (1) we see that (c1, …,
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cr) has a solution in an algebraic extension E′/F and this is an
algebraic extension of F. Conversely, suppose (c1, …, cr) is
solvable in some extension field E/F. Denote such a solution
as (cr+l,…, cr+n-1, c) Then (ci, …, Cr+n-1) E(r+n-1) and
(c1,…, cn+r-1) is solvable for xn in E. Hence there is a k such
that Λk(c1, …, cn + r − 1) is satisfied. This in turn implies that
there is an lk such that kl(c1, …, cr) is satisfied. This
completes the proof.

There is a second, more classical, method of elimination of
unknowns which is based on resultants. We now give the
main result of this method and we shall indicate extensions of
it in the exercises below. We wish to obtain a criterion for the
existence of a common factor of positive degree of two
polynomials. We consider the polynomials f(x) = anxn +
anxn-1 + … + a0, g(x) = xmxm + bm-1xm-1 + … + b0 in F[x]
where F is a field. We assume m > 0, n > 0, but we shall
allow an = 0 or bm = 0. The result we wish to establish is the
following

THEOREM 5.7.Let f(x) = anxn + an − 1xn − 1 + … + a0, g(x) =
bmxm + bm − 1xm − 1 + … + b0 where m, n > 0 and put
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Then Res (f, g) = 0 if and only if either an = 0 = bm or f(x) and
g(x) have a common factor of positive degree in F[x].

Proof. If an = 0 = bm, then the first column of the
determinant is 0, so Res (f, g) = 0. Next assume that f(x) and
g(x) have a common factor h(x) of positive degree and either
an ≠ 0 or bm ≠ 0. Then f(x) = f1 (x)h(x), g(x) = g1(x)h(x), and
either f1(x) ≠ 0 or g1(x) ≠ 0, according as an ≠ 0 or bm ≠ 0. By
symmetry, we may assume an ≠ 0, f1(x) ≠ 0. If deg h(x) = r,
then deg f1(x) = n – r. If g(x) = 0, we have g1(x) = 0;
otherwise, the relation f(x)g1(x) = g(x)f1(x) gives deg g1(x) ≤
m – r. In either case we may write f1(x) = -cn-1Xn-1 – cn-2xn-2

– … -c0, g1(x) = dm-1xm-1 + dm-2xm-2 + … + d0 where some
Ci ≠ 0, and we have the relation

If we equate the coefficients of xm+n-1, xm+n-2, …, 1 in (16)
we obtain the following equations:

Considering this as a system of linear equations in the c’s and
d’s taken in the order dm-l,dm-2, …, d0, cn-1, …, c0, we see that
the determinant of the coefficients of the c’s and d’s
appearing in (17) is 0, since not all the c’s and d’s are 0. This
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determinant = Res (f, g) Hence Res (f, g) = 0. Conversely,
assume Res (f g) = 0. Then we can retrace the steps through
(17) and (16) and conclude that there exist f1(x), g1(x) such
that f(x)g1(x) = g(x)f1(x) where deg f1 ≤ n - 1, deg g1 ≤ m - 1,
and either f1 ≠ 0 or g1 ≠ 0. Assume f1 ≠ 0. If g1 = 0, then g = 0
and bm = 0, and either f(x) is a non-zero common factor of f
and g or an = 0. If g1 ≠ 0 and g = 0 the same argument applies
to show that either an = 0 = bm or f and g have a common
factor of positive degree. Now assume g1 ≠ 0 and g ≠ 0. Then
the relations f(x)g1(x) = g(x)f1(x), f1 ≠ 0, g1 ≠ 0, g ≠ 0, imply f
≠ 0. Either an = 0 = bm, or we may assume an ≠ 0 which
implies that deg f(x) = n. Since deg f1(x) ≤ n – 1, the equation
f(x)g1(x) = g(x)f1(x) and the factorization of f, f1 g, g1 into
irreducible factors imply that f(x) and g{x) have a common
factor of positive degree.

We shall call Res (f, g) the resultant of f and g (relative to x).
If the highest coefficient of f or of g is ≠ 0, then the vanishing
of Res (f, g) is a polynomial
equation with integer coefficients in the ai and bj, which is
equivalent to the statement that f and g have a common factor
of positive degree.

EXERCISES

1. Show that if f(x) = xn + an−xxn − 1 + … + a0 and f′(x) = nxn
− 1 + (n – 1)an-1Xn-2 + … + a1, then Res (f, f′) = (-1)n(n-1)/2d
where d is the discriminant of f(x) (see section 4.8, p. 258).

2. Use the theorem on resultants to obtain a proof of Theorem
5.6 for the case of two equations F1(t1, …, tr; x) and F2(t1, …,
tr; x) and G = 1.
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3. Let f(x) , …, fm(x) g F[x] and write fi(x) = an1ixn1 + an-1,ixn
− 1 + … + a0i. Let n be an integer ≥ every ni and let

Show that the ft (x), 1 ≤ i ≤ m, have a common factor of
positive degree if and only if the gj(x), 1 ≤ j ≤ 2m, have such a
factor. Adjoin 4m indeterminates u1, …,u2m, v1,… ,v2m and
let E = F(u1, …, u2m, v1, …, v2m) Let u(x) = ∑1

2m ujgj(x), v(x)
= ∑1

2m Vjgj(x) and form Res (u(x), v(x)) F[u1, …, u2m, v1,
…,v2m] Prove that Res (u(x), v(x)) = 0 if and only if either all
an1i = 0, 1 ≤ i ≤ m, or (x), …, fm(x) have a common factor of
positive degree.

4. Show that the system of equations and inequations of the
form (13) is solvable if and only if the following system
involving x1, …, xn+1 is solvable:

(Note that this procedure gets rid of inequations.)

5.5 DECISION METHOD FOR AN ALGEBRAIC CURVE

In this section we shall give a method, due to A. Seidenberg,
for deciding whether or not a given equation f(x, y) = 0, f(x, y)

R[x, y], has a solution in R(2). In other words, does the
algebraic curve f(x, y)= 0 have real points? (E.g., x2 + y2 = 0
has, but x2 + y2 = − 1 does not.) The underlying idea of
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Seiden-berg’s method is based on the following simple
observation: If f(x, y) = 0 has a real point, then it has a real
point (a, b) nearest the origin. Then it can be shown that (a, b)
is also a solution of g(x, y) = x(∂f /∂y) – y(∂f/∂x) = 0 and
this implies that a is a root of the polynomial h(x) which is the
resultant with respect to y of f(x, y) and g(x, y) Hence the
existence of a solution in R(2) of f(x, y) = 0 implies the
existence of a root in R of h(x)= 0, a fact that can be decided
by Sturm’s method. We shall see also that the argument can
be reversed provided we replace the origin by a suitable point
and x, y by another pair of generators x′, y′-in other words, if
we make a suitable affine transformation of coordinates in the
vector space R(2). In this way we shall obtain an algorithm for
testing the solvability in R(2) of f(x, y) = 0.

The first two steps we have indicated are readily attained if R
= the field of real numbers. In this case, if f(x, y) has a
solution (x0, y0), then we consider the set of points (x, y) in
(2) such that f(x, y)= 0 and x2 + y2 ≤ x0

2 + y0
2. This is a closed

and bounded subset of (2); hence it is compact and
consequently it contains a point (a, b) nearest the origin. By
calculus, either (a, b) is a point at which (∂f/∂x)(a,b)= 0 = (∂f/
∂y)(a,b) or the line joining the origin to (a, b) is normal to the
given curve:

566



In this case (a, b) is a multiple of the normal vector ((∂f/
∂x)(a,b), (∂f/∂y)(a,b)) to the curve. In any case we have a(∂f/
∂y)(a,b) – b(∂f/∂x)(a,b) = 0, so (a,b) is a root of g(x, y) = x(∂f/
∂y) – y(df/dx) = 0.

We now proceed to establish these results, in two lemmas, for
any real closed field.

LEMMA 1.Let f(x, y) R[x, y], x, y indeterminates, R a real
closed field. Then if f(x, y) = 0 has a solution in R, it has a
solution (a, b) nearest the origin.

Proof. We consider the intersection in the space R(2) of the
locus C of f(x, y) = 0 with circles x2 + y2 = c2, c ≥ 0. Our
hypothesis implies that for some c we have a non-vacuous
intersection, and we have to show that the set S of c ≥ 0 such
that C meets x2 + y2 = c2, has a minimum. We now consider
the polynomials f(x, y) and x2 + y2 – t2 in R[x, y, t] where x, y,
t are inde-terminates, and we form their resultant with respect
to y (that is, regarding these as polynomials in y) This
resultant g(t, x) R[t, x]. We claim that the set S defined
before is the same as the set of c ≥ 0 such that g(c, x) has a
root in the interval [-c, c] First, if c S and (a, b) is a point of
intersection of the circle x2 + y2 = c2 and the curve C, then
f(a, y) and y2 + a2 – c2 have the common
factor y − b. Hence g(c, a) = 0 so g(c, x) has the root a R.
Moreover, −c ≤ a ≤ c. Conversely, assume that for c ≥ 0, g(c,
x) has a root a in R satisfying − c ≤ a ≤ c. Since the leading
coefficient of y in y2 + a2 − c2 is 1, it follows from Theorem
5.7 that y2 + a2 − c2 and f(a, y) have a common factor in R[y]
Since the factors of y2 + a2 − c2 are y ± b where b = (c2 −
a2)1/2, it follows that (a, b) or (a, − b) is a point of
intersection of C and x2 + y2 = c2. Hence c S. Let S′ be the
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subset of S of c such that g(c, ±c) ≠ 0. Thus S′ is the set of c
R such that g(c, x) has a root in the open interval (−c, c) By
the remarks following Theorem 5.5, we see that S′ is the
union of a finite number of sets defined by finite systems of
polynomial equations p(c) = 0, inequations q(c) ≠ 0, and
inequalities r(c) > 0, where p(t), q(t) r(r) ≠ R[t] If we examine
the loci in R of p(t) = 0, q(t) ≠ 0 and r(t) > 0, we see that the
set of points c satisfying the system of conditions c ≥ 0, p(c) =
0, q(c) ≠ 0, r(c) > 0 is a union (possibly vacuous) of a finite
number of intervals which may be open, closed, half open,
single points, or extend to + ∞. It follows that S′ is a subset of
R of this type. Since the set of c ≥ 0 such that g(c, ± c) = 0 is
either finite or all c ≥ 0 it is clear that S has the same structure
as S′. The result will now follow by showing that the
complement of S in the set of non-negative elements of R is
the union of open intervals; for this will imply that S is the
union of a finite number of closed intervals and hence has a
minimal element. Thus let d ≥ 0, d S. Then g(d, x) = 0, −d
≤ x ≤ d, has no solution in R. Write g(t, x) as a polynomial in x
and t − d: g(x) = g0(x) + g1(x)(t − d) + … + gm(x)(t − d)m

where gt(x) R[x] Then g0(u) ≠ if −d ≤ u ≤ d and hence there
exists a d′ > d such that g0(u) ≠ 0 if −d′ ≤ u ≤ d′. Then there
exist b > 0, B > 0 such that |g0(u)| ≥ b, |gi(u)| ≤ B if i ≥ 1 for
every u in [− d′, d′] (exercise 7, p. 311). Then if |c − d| < , |c
– d| < b/4B and u [− d′, d′] we have
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It follows that every c such that c ≤ 0, |c – d| < , |c – d| <
b/4B, c < d′ is in the complement of S in the set of
non-negative numbers. Thus we see that if d is any point in
this complement, then there exists an open interval containing
d that is contained in the complement. This completes the
proof of the lemma.

As in the classical case of the field of real numbers, a point
(a, b) on C:f(x, y) = 0 is called a simple point if

Then the normal vector to C at (a, b) is ((∂f/∂x)(a,b), (∂f/
∂y)(a,b)) and the tangent line to the curve at (a, b) has the
equation

Now let (a, b) be a point on C nearest the origin. We wish to
show that b(∂f/∂x)(a,b) − a(∂f/∂y)(a,b) = 0. This is clear if (a, b)
= (0, 0) or if (a, b) is not a simple point. Otherwise, the
equation states that the vector joining (0, 0) to (a, b) and the
normal vector to C at (a, b) are linearly dependent;
equivalently, C and the circle with center at the origin and
radius (a2 + b2)½ have the same tangent line at the point (a, b)
If this were not the case, then the tangent to C at (a, b) would
contain interior points of the circle while C itself does not
(since (a, b) is the point on C nearest to (0, 0)). We shall show
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that this situation is impossible and this will prove that b(∂f/
∂x)(a,b) − a(∂f/∂y)(a,b)= 0. Thus our result will follow from

LEMMA 2.Let p be a point of intersection (in R(2)) of a circle
and a curve C:f(x,y) = 0. Assume that p is a simple point of C
and the tangent at p to C contains points interior to the circle.
Then C itself has points interior to the circle.

Proof.By a suitable choice of axis we may take p = (0, 0) and
the tangent to C at p to be the x-axis. Then f(0,0) = 0 and (∂f/
∂x)(0,0) = 0, and we may assume that (∂f/∂y)(0,0) = 1. The
center of the circle is not on the y-axis, so we may denote it as
(a, b) with a ≠ 0. We have

taking into account the conditions on f(x, y) we can write f(x,
y) = y(1 + h(x, y)) + g(x) where h(0, 0) = 0 and g(x) is a
polynomial in x divisible by x2. Since h(0, 0) = 0 we may
choose a δ > 0 such that if |x| ≤ δ and |y| ≤ δ. Then

and (δ(1 + h(x, δ)) lies between and ,
and −δ(1 + h(x, −δ)) is between and for all x
satisfying |x| ≤ δ. Since g(0) = 0 there exists a δ′, 0 < δ ′ < δ
such that f(x, δ) = δ(1 + h(x, δ)) + g(x) > 0 and f(x, − δ) < 0 if
|x| ≤ δ′. Then for every x0, |x0| ≤ δ′ there exists a y0 in [−δ, δ]
such that f(x0, y0)= 0. Then y0 = −g(x0)(1 + h(x0, y0))−1 and
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Since g(x0) is divisible by x0
2, it is clear that if we take x0

sufficiently small and of the same sign as a (so that ax0 > 0),
then (a − x0)2 + (b − y0)2 < a2 + b2. Then (x0, y0) is a point
on C interior to the given circle. □

We have now shown that if C:f(x, y)= 0 contains a point in
R(2) then the curve C and the curve D:y(∂f/∂x) − x(∂f/∂x)= 0
have a common point in R(2) If we replace the origin by the
point (c, d), then we see also that if C has a point in R(2) then
C and D:(y − d)(∂f/∂x) − (x − c)(∂f/∂y) = 0 have a common
point in R(2).

We shall now apply this to obtain Seidenberg′s method for
deciding the solvability in R(2) of f(x, y)= 0. First, we
determine by the Euclidean algorithm a g.c.d. d(x) of the
coefficients of the powers of y in f(x, y) and write f(x, y) =
d(x)f1(x, y) where f1(x, y) is not divisible by a polynomial of
positive degree in x alone. Evidently, f(x, y)= 0 is solvable if
and only if either d(x) = 0 or f1(x, y) is solvable. This reduces
the consideration to polynomials in R[x, y] = (R[x])[y] that are
primitive as polynomials in y (over R[x]) in the sense that
they are not divisible by polynomials of positive degree in x
alone. We obtain next a reduction to polynomials without
multiple factors. For this purpose we calculate, by the
Euclidean algorithm, a g.c.d. in R(x)[y] of f(x, y) and (∂/∂y)f(x,
y) where R(x) is the field of fractions of R[x], We can write
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the g.c.d. as u(x)v(x)−1d(x, y) where d(x, y) R[x, y] and is
y-primitive. Then it follows from Gauss′ lemma (p. 152) that
d(x, y) is a factor of f(x, y) in R[x, y] Moreover, g(x, y) = f(x ,
y)d(x,y)−1 has the same irreducible factors as f(x, y) and has
no multiple factors (exercise 1, p. 233). We may now assume
that f(x, y) is y-primitive and has no multiple factors. The
latter condition implies that f(x, y) and (∂/∂y)f(x, y) have no
common factors in R(x)[y] of positive y-degree.

Let t be an additional indeterminate and form the resultant h(t,
x) of f(x, y) and g(t, x, y) = y(∂f/∂x) − (x − t)(∂f/∂y) regarded
as polynomial in y. It is clear from the definition (15) in
Theorem 5.7 that this is in R[t, x]. We claim that h(t, x) ≠ 0.
Otherwise, h(c, x)= 0 for all c R and hence f(x, y) and g(c, x,
y) = y(∂f/∂x) − (x − c)(∂f/∂y) have a common factor in R(x)[y]
of positive y-degree. This follows from the theorem on
resultants (p. 325) since we may assume that the coefficient
of the highest power of y is a non-zero element of R[x] The
fact that f(x, y) and g(c, x, y) have a non-trivial common factor
in R(x)[y] implies
that they have a non-trivial factor in R[x, y]. Since up to unit
multipliers f(x, y) has only a finite number of irreducible
factors in R[x, y] we see that there exist c1 ≠ c2 such that
g(c1,x, y), g(c2, x, y), and f(x, y) have a common factor d(x, y)
in R [x, y] of positive degree. Then f(x, y) and (∂f/∂y) = (c1 −
c2)−1[g(c1, x, y) − g(c2, x, y)] have a non-trivial common
factor. This contradicts our hypothesis. Hence h(t, x) ≠ 0.

We now choose a c R so that h(x) = h(c, x) ≠ 0 and we write
g(x, y) = g(c, x, y) = y(∂f/∂x) − (x − c)(∂f/∂y) Since h(x) is the
resultant of f(x, y) and g(x, y) these two polynomials have no
common factor of positive degree in y, and since f(x, y) is
primitive they have no common factor of positive degree in x
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alone. Hence f(x, y) and g(x, y) have no common factors other
than units in R[x, y] It now follows also that if k(y) denotes
the resultant in R(y)[x] of f(x, y) and g(x, y) then k(y) is a
non-zero polynomial in y.

We have seen that if f(x, y)= 0 has a solution in R(2) then f(x,
y) = 0 and g(x,y)= 0 have a common solution (a, b) R(2)

Then f(a, y) and g(a, y) have the common factor y − b and this
implies that the resultant h(a) of f(a, y) and g(a, y) is 0. Thus
we see that if f(x, y)= 0 has a solution in R(2) then h(x)= 0 has
a root in R. What about the converse? We shall now show that
this is the case, provided that we choose the generators x and
y of R[x, y] suitably. We remark that in place of x and y we
can use any x′ = al1x + al2y, y′ = a2lx + a22y where the aij
R and det (aij) ≠ 0.

To achieve our objective of reducing the problem of deciding
the solvability of f(x, y)= 0 in R(2) to that of h(x) = 0 in R we
now work in the algebraically closed field . Let
V be the intersection in A(2) of f(x, y) = 0 and g(x, y) = 0. If
(a,b) V then, as above, h(a)= 0 for the resultant relative to y
of f(x, y) and g(x, y). Similarly, k(b)= 0 for the resultant k(y)
of f(x, y) and g(x, y) relative to x. Since h(x) ≠ 0 and k(y) ≠ 0
the equations h(x) = 0 and k(y) = 0 have only a finite number
of roots in A. Hence V is a finite set. We have seen that if
C:f(x, y) = 0 has a point in R(2),then V has such a point and
h(x) has a root in R. Conversely, suppose h(x) has a root a in
If a is not a root of the polynomial l(x), which is the
coefficient of the highest power of y in f(x, y) then h(a) = 0
implies the existence of a b A such that (a, b) V If b R
then the point (a, b) is on V and hence on C. Otherwise, (a, b)

V where b is the conjugate of b under the automorphism ≠ 1
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of A/R. Since b ≠ b we have two points on V, (a, b) and (a, b),
with the same abscissa. Thus we see that if no (a, b) on V
satisfies l(a) = 0 and no two distinct points of V have the same
abscissa then the solvability of h( = 0 in R implies that of f(x,
y)= 0 in R(2).

We shall now arrange, by a suitable choice of coordinates,
that these two conditions are fulfilled. Let m be a non-zero
element of R and put x′ = m−1x − y, y′ = y, so x = m(x′ + y′)
and y = y′; hence R[x, y] = R[x′, y′] and f(x, y) = f(m(x′ + y′),
y′). Let fn(x, y) be the homogeneous part of highest degree n
(>0) in x and y in the polynomial f(x, y). Then the coefficient
of y′n in f(m(x′ + y), y′)
is fn(m, 1). Since fn(x, 1) ≠ 0 we can avoid the roots of fn(x,1)
= 0 and choose m R so that fn(m, 1) ≠ 0. Since the total
degree of f(x,y) is n and fn(x, y) is the homogeneous part of
degree n it follows that the coefficient of the highest power of
y′, that is, of y′n in f(m(x′ + y′), y′) is the constant fn(m, 1) ≠ 0.
This takes care of the first condition. To take care of the
second we calculate, via the Euclidean alogorithm, a g.c.d.
d{x) of h( and its derivative h′(x) Dividing h( by d(x) we
obtain a polynomial h1(x) having simple roots r1,r2,…, ru,the
same as those of h( Similarly, we calculate a polynomial k1(y)
having simple roots s1, s2,…, sv,the same as those of k(y)
Dividing out by the leading coefficients we may assume h1
and k1 are monic. Now form the polynomial

where the x′s and y′s are indeterminates and i, i′ = 1,…, u; j,j′
= 1,…, v. We shall now show by a two-fold application of the
theorem on symmetric polynomials (Theorem 2.20, p. 139)
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that we can express the foregoing polynomial as a polynomial
in x with coefficients which are polynomials in the
elementary symmetric polynomials of the xt and the with
coefficients in . First, we consider the following polynomial
in indeterminates xi and t with integer coefficients:

where m = n(n−1) and the lj [x1,…, xn] Clearly l(x1,…, xn;
t) is invariant under arbitrary permutations of the xi. Hence
the li are symmetric polynomials in the xi with the integer
coefficients. Consequently, we can write lj(x1,…, xn)
(uniquely) as a polynomial in the elementary symmetric
polynomials .
Thus lj(x1,…, xn)= mj(p1,…, pn) [p1,…, pn] and l(x1,…, xn;
t) =tm − m1(p1, …, pn)tm−1 + m2(p1,…, pn)tm−2 − … · Next
we consider the polynomial (18). Clearly, we can write this as
∏j≠j′ l(x1,…,xu; (yj −yj′)x). Using the expression for l(x1,…,
xn; t) we obtain

where zk [p1, …, pu][y1, …, yv] Since this polynomial is
unchanged under permutation of the y’s, the zk are symmetric
in the y’s. Hence
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where q1 = ∑ yi,q2 = ∑ i<j yiyj, … are the elementary
symmetric polynomials in the y’s. This shows that (18) can be
written as a polynomial in x and the pi and qj with integer
coefficients. Moreover, all of this can be done constructively
since the method given in section 2.13 of proving the
fundamental theorem on symmetric polynomials was
constructive.

If we now replace the pi and qi appearing in the formula for
(18) by the corresponding coefficients of h1(x) and k1(y)
respectively we obtain a polynomial p(x) R[x] whose roots
are the elements

where i ≠ i′, j ≠ j′ and the ranges of these are as before. We
now choose m to avoid also the roots of p(x) (as well as of
fn(x, 1)). Consider the set of points (ri, Sj) in A(2) This
contains V, and no two distinct points in this set have the
same abscissa in the (x′, y′)-coordinate system since (x, y) is
the point (m− 1x − y, x) in the (x′, y′)-system and m− 1ri − Sj ≠
m− 1ri′ − sj′ if (i, j) ≠ (i′, j′)

It now follows that if we replace f(x, y) by f(m(x + y), y) and
g(x, y) by g(m(x + y), y) the conditions are fulfilled which
insure that (the new)f(x, y)= 0 is solvable in R(2) if and only if
the resultant h(x) relative to y of f(x, y) and g(x, y) has a root
in R. Since this can be decided by Sturm’s theorem we have
achieved our goal of giving a recipe for deciding the
solvability of the original equation.
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In the next section we shall use an inductive procedure for
polynomials in a number of parameters and variables. The
inductive step will require a small extension of the decision
procedure we have just described, namely, we shall need to
consider an equation f(x, y)= 0 restricted by an inequation g(x)
≠ 0. As before, we may assume f(x, y) is primitive as a
polynomial in y. Also to avoid trivialities we assume degxf(x,
y) > 0 and deg g(x) > 0. Let t(y) be the resultant with respect
to x of f(x, y) and g(x) Then t(y) ≠ 0 since f(x, y) is y-primitive.
Choose c in R so that t(c) ≠ 0 and replace f(x, y) by f1(x, y)=
f(x, y + c). Clearly f(x, y)= 0, g(x) ≠ 0 is solvable if and only if
f1(x, y) = 0, g(x) ≠ 0 is solvable. The resultant relative to x of
f1(x, y) and g(x) is t(y + c) which is ≠ 0 for y = 0. Hence g(x)
and f1(x, 0) are relatively prime in R[x] Now put f2(x,y) = f1(x,
g(x)y) Then we claim that f1(x, y) = 0, g(x) ≠ 0 is solvable in
R(2) if and only if f2(x, y) = 0 is solvable in R(2). Suppose (a,
b) satisfies the first system. Then f2(a, g(a)− 1b) = f1(a, b) = 0.
On the other hand, if f2(a, c) = f1(a, g(a)c) = 0 then g(a) ≠ 0
since otherwise g(a) = 0 and f1(a, 0) = 0 contrary
to the fact that g(x) and f1(x, 0) are relatively prime. Thus (a,
b = g(a)c) satisfies f1(x, y) = 0, g(x) ≠ 0.

5.6 TARSKI’S THEOREM

We now consider a finite system φ of equations, inequations,
and inequalities of the form f(t1, …, tr; x1, …, xn) = 0, g(t1,
…, tr; x1, …, xn) ≠ 0, H(t1, …, tr; x1, …, xn) > 0 where the f,
G, and H are polynomials with integer coefficients. We wish
to show that we can replace φ by a finite set of systems of the
same type involving no x’s, such that if R is any real closed
field, then φ has a solution for the x’s in R for the values ti =
ci R if and only if the ci satisfy all the conditions of one of
the systems ψj. We shall prove this by eliminating all but one

577



of the x’s one by one, using the method of the last section.
Then we can apply the parameterized version of Sturm’s
theorem. To begin with, however, we reverse the direction we
wish to take and replace the system φ by a single equation f =
0 at the expense of introducing additional x’s. We observe
first that we can replace a finite set of equations fi = 0 by a
single one, ∑Fi

2 = 0, and a finite set inequations Gi ≠ 0 by a
single one, ∏Gi ≠ 0. An inequation G ≠ 0 is equivalent to G2

> 0 and the solvability of H > 0 is equivalent to that of H2z2 −
1 = 0 where z is a new indeterminate. Using these reductions
we may assume that φ consists of a single equation f(t1, …, tr;
x1, …, xn) = 0. For the inductive step of the proof we need to
carry along an inequation as well as an equation. This appears
in the following

THEOREM 5.8.Let F(ti; x, y) [t1,…, tr; x ,y], G(ti; x)
[t1,||, tr;x], ti, x, y indeterminates. Then we can determine in a
finite number of steps a finite set of pairs of polynomials
(Fj(ti;x), Gj(ti)), Fj [ti;x], Gj [ti], 1 ≤ j ≤ h, such that if
R is any real closed field, then the point (c1, …, cr) R(r) has
the property that

is solvable for x and y in R if and only if one of the systems of
equations and inequations

is solvable in R.
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The proof will consist of a finite sequence of constructions of
covers and polynomials corresponding to the steps in
Seidenberg’s decision method. Since
we are interested exclusively in real closed fields we may
assume that the members of a cover δ of A = [t1, …, tr]
consist of a single equation d = 0 and a single inequation l ≠ 0
where l, d A. If γ = { k} is a cover we can use it to define a
refinement δ′ of δ in which the term is replaced by (1),
(2), … where (k) has as equation the sum of the squares of
the equations of and of k and the inequation which is the
product of that of and of k (see p. 319). Then, for any real

closed field R, (k)(R) = (R) ∩ k(R) and
The individual steps of the proof will be of the following
type: we are given a cover δ and for δ a pair of
polynomials (f(ti;x, y), G(ti;x)) in A[x,y] and A[x] respectively.
Then we construct a cover δ′, as indicated, and for each (k),
a finite set of pairs of polynomials (fkj(ti; x, y), Gkj(ti; x)) such
that for (c1, …, cr) (k)(R), F(ci; x, y) = 0, G(ci; x) ≠ 0 is
solvable in R if and only if one of the pairs fjk(ci; x, y) = 0,
gjk(ci; x) ≠ 0 is solvable in R. This permits us to replace the
triple ( , F, G) by the various triples ( (k) , Fjk, Gjk) After a
finite number of steps of this type we eventually obtain a
cover ω = {Ωj} and a finite set of pairs of polynomials (fjk ,
Gjk) such that fjk A[x], Gjk A, and if (c1, …, cr) Ωj(R),
then the initially given system f(ci;x, y) = 0, G(ci; x) ≠ 0 is
solvable in R if and only if one of the systems fjk(ci;x) = 0,
Gjk(ci) ≠ 0 is solvable. Then we put f*jk = Fjk

2 + dj
2, G*

jk =
Gjklj. It is easily seen that the set of pairs (f*jk, G*

jk) satisfy
the conditions for the pairs (fj, Gj) stated in the theorem.

We observe next that given a finite set of polynomials {F, G,
…, H} ⊂ A[x] we can construct a cover δ = { } of A and
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corresponding polynomials which are appropriate for the
g.c.d. of {F, G, …, H} in the following sense: (i) For each

δ we have a polynomial D(ti; x) A[x] such that for any
real closed field R and any (c1, …, cr) (R), D(ci; x) is a
g.c.d. in R[x] of f(ci; x), G(ci; x), …, H(ci; x). (ii) For any ,
either D(ci; x) = 0 for all (c1, …, cr) (R), or D(ci; x) ≠ 0
for all such (c1, …, cr). In the latter case we have polynomials
f1, G1, …, H1 A[x] such that for (c1, …, cr) (R), F1(ci;
x), G1(ci; x), …, H1(ci; x) differ by a nonzero multiplier in R
from F(ci; x), G(ci; x)D(ci; x)− 1, …, H(ci; x)D(ci; x)− 1

respectively. To obtain (i) we note that the result follows by
induction on the number of polynomials if any of the given
polynomials is 0. Also the result is clear if there is just one
polynomial and it follows from the lemma on p. 319 if there
are just two non-zero polynomials. Now assume the number
of non-zero polynomials exceeds two. Using induction, we
may assume that we have constructed a cover γ of A and
corresponding polynomials E appropriate for the g.c.d. of all
but the polynomial H in the given set. Next for each of the
sets {E, H} we can construct a cover and polynomials
appropriate for the g.c.d. of {F, H}. Then we can obtain (i) by
refinement as in the proof of the lemma on p. 319. Moreover,
we may assume, by refining a cover satisfying (i) that for any

in the refined cover either
D(ci; x) = 0 for all (c1, …, cr) (R) or we have D(ti; x) =
vk(t1, …, tr)xk + vk − 1(t1, …, tr)xk − 1 + … + v0(t1, …, tr) and
vk(c1, …, cr) ≠ 0 for all (c1, …, cr) (R). By the division
algorithm, we can obtain a non-negative integer e and
polynomials F1, G1, …, H1; S, T, …, U in A[x] such that vk

eF
= F1D − S, vk

eG = G1D − T, …, vk
eH = H1D − U and degx S,

degx T, …, degx U are all < k. Since D(ci; x)|F(ci; x), D(ci;
x)|G(ci; x), …, S(ci; x) = T(ci; x) = · · · = 0. Hence F1, G1, …,
H1, satisfy the condition given in (ii).
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We shall require also an extension of this result to the case of
two polynomials in two indeterminates x and y (in addition to
the ti) Suppose we are given two polynomials f(ti; x, y), g(ti;x,
y) in A[x, y], A = [t1, …, tr] Then we can construct a cover δ
= { } and polynomials which are appropriate for the g.c.d. of
F and G in R(x)[y] in the sense that: (1) For any δ we
have a polynomial D(ti; x, y) such that if (c1, …, cr) (R),
then D(ci; x, y) is a g.c.d. in R(x)[y] of F(ci; x, y) and G(ci; x,
y). (2) For any , either D(ci; x, y) = 0 for all (c1, …, cr)
(R) or D(ci; x, y) ≠ 0 for all such (c1, …, cn) in which, case,
we have polynomials F1, G1 A[x, y] such that F1(ci, x, y)
and G1(ci; x, y) differ by a nonzero multiplier in R[x] from
F(ci; x, y)D(ci; x, y)− 1 and G(ci; x, y)D(ci; x, y)− 1

respectively (that is, we have l(x) ≠ 0 such that l(x)F(ci; x, y)
= F1(ci; x, y)D(ci;x, y) and similarly for G). We observe that
the condition on a polynomial v(ti; x) A[x] that v(ci; x) = 0
is equivalent to the vanishing for ti = ci of the sum of the
squares of the coefficients and v(ci;x) ≠ 0 is equivalent to the
non-vanishing for ti = ci of the sum of the squares of the
coefficients. This remark enables us to carry over the results
on the division algorithm in the lemma on p. 319 to the case
of two indeterminates. The foregoing argument can then be
used to obtain the stated result for F, G A[x, y] We leave it
to the reader to fill in the details.

There is another formal device we shall need, which
corresponds to choosing an η R such that g(η) ≠ 0 for a
given g(x) ≠ 0. Suppose we are given a polynomial g(ti; x) =
vmxm + vm − 1xm − 1 + … + v0 where vj = vj(t1, …, tr) A and
assume G ≠ 0. Form the cover (9) and take one of the k ≠ − ∞.
Then G(ci; x) = vk(c1, …, cr)xk + vk − 1(c1, …, cr)xk − 1 + … +
v0(c1, …, cr) and vk(c1, …, cr) ≠ 0 if (c1, …, cr) k(R) Let
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Lk(t1, …, tr) be the rational expression (k + 1) +∑k − 1
0vj(t1

,…, tr)2vk(t1,…,tr)− 2. Then Lk(c1, …, cr) is defined for the
(c1, …, cr) k(R) and G(Lk(c1, …, cr)) ≠ 0, by (7).

We shall need an analogous result also for two indeterminates
x and y. Suppose G(tj; x, y) ≠ 0. Then we can construct a
cover γ = { } and elements L(ti) (t1, …, tr) (that is,
rational expressions in the ti with integer coefficients) such
that for any γ either G(ci; x, y) = 0 for all (ci, …, cr)
(R), or, for one of the L(ti), L(ci) is defined and G(ci; L(ci), y)
≠ 0 for every (c1, …, cr) (R). The proof is an immediate
extension of the foregoing argument.

We shall now give the

Proof of Theorem 5.8. We first obtain a reduction from the
case of the pair of relations F(ti; x, y) = 0, g(ti; x) ≠ 0 to a
single one K(ti; x, y) = 0. (This corresponds to the last part of
the argument of the preceding section.) We construct a cover
δ1 and polynomials appropriate for the g.c.d. of the
coefficients of the powers of y in F(ti; x, y) and the
polynomial G(ti; x) Let 1 denote any member of the cover
δ1, D1(ti; x) the associated polynomial such that for (c1,…, cr)

1(R), D1(ci; x) is a g.c.d. in R[x] of the coefficients of the
powers of y in F(ci; x, y) and G(ci; x). If D1(ci; x) = 0 no
solution of F(ci; x, y) = 0, G(ci; x) ≠ 0 exists. Hence we may
assume D1(ci; x) ≠ 0 for all (c1,…, cr) 1(R). Then, by
condition (2), we obtain polynomials F1(ti; x, y) and G1(ti; x)

A[x, y] and A[x] respectively such that F(ci; x, y) and G(ci;
x) differ by a nonzero multiplier in R from D1(ci; x)F1(ci; x, y)
and D1(ci; x)G1(ci; x). Then (ξ, η) satisfies F(ci; ξ, η) = 0,
G(ci; ξ) ≠ 0 if and only if F1(ci; ξ, η) = 0, G1(ci; ξ) ≠ 0. Hence
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for 1 we have a reduction to the pair F1,G1,for which the
coefficients of the powers of y in F1(ci; x, y) and G1(ci; x) are
relatively prime. We now refine the cover δ1 to a cover δ2
obtained by replacing each 1 by the terms resulting from
applying to 1 the cover associated with the coefficients of x
in G1 as in (9). This reduces the consideration to sets 2 of δ2
and polynomials F2, G2 such that for (c1,…, cr) 2(R) we
have F2(ci; x, y) = F1(ci; x, y), G2(ci; x) = G1(ci; x) and G2(ti;
x) = vkxk + vk − 1xk − 1 + … + v0 where vj A, vk(c1,…, cr) ≠
0. Let T(ti; y) be the resultant of F2(ti; x, y) and G2(ti; x)
regarded as polynomials in x. Since vk(c1,…, cr) ≠ 0, T(ci; y)
= 0 for (c1,…, cr) 2(R) implies that F2(ci; x, y) and G2(ci;
x) have a common factor of positive x-degree in R(y)[x]. This
can be written as a(y)b(y) − 1h(x, y) where h(x,y) R[x, y] and
is primitive as a polynomial in x with coefficients in R[y].
Then h(x, y)|F2(ci; x, y) and h(x, y)|G2(ci; x). This implies that
h(x, y) R[x] and contradicts the fact that the coefficients of
the powers of y in F2(ci; x, y) and G2(ci; x) are relatively
prime. Thus we see that T(ci; y)≠0 for all (c1,…, cr) 2(R)
We can now pass to a refinement δ3 such that for any 3 δ3
we have a rational expression L(ti) = Q(ti)P(ti)− 1,P, Q A ,
such that for (c1,… ,cr) 3(R), P(ci) ≠ 0 and T(ci; L(ci)) ≠ 0.
We now replace the corresponding F2 by F3 where F3(ti; x, y)
= P(ti)fF2(ti; x, y + L(ti)) where F = degy, F2(ti; x, y). We
write G3 for G2. Then the resultant of F3(ti; x, y) and G3(ti; x)
regarded as polynomials in x has the form P(ti)gT{ti; y + L(ti))
and this is ≠0 for ti = ci, y = 0 if (c1,…, cr) 3(R). It
follows, as in the proof in section 5.5. that F3(ci; x, y) = 0,
G3(ci; x) ≠ 0 is solvable in R if and only if F4(ci; x, y) = 0 is
solvable where F4(ti; x, y) = F3(ti; x, G3(ti; x)y). This reduces
the consideration to a single equation with no inequations for
the various terms of the cover δ3.
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We may as well make a fresh start and suppose we are given
an equation F(ti; x, y) = 0 only (since the result we shall
obtain in this case can be applied to the various F4 and 3
above). We first construct a cover δ1 and polynomials
appropriate for the g.c.d. of the coefficients of y in F(ti; x, y)
Then for 1 δ1 we have polynomials D1(ti; x), F1(ti; x, y)
A[x] and A[x, y] such that for (c1,…, cr) 1(R), D1ci, x) is a
g.c.d. of the coefficients of y in F(ci; x, y) and F(ci; x, y) and
D1(ci; x)F1(ci; x, y) differ by a nonzero multiplier in Clearly
F(ci; x, y) = 0 is solvable in R if and only if D1(ci; x) = 0 or
F1(ci; x, y) = 0 is solvable. The first is the kind of condition
we are after so we keep it as one of our alternatives. Hence
we need to pursue only the second alternative. Here F1(ci; x,
y) is primitive as a polynomial in y with coefficients in R[x]
Next, for each F1 we obtain a cover appropriate to the g.c.d.
of F1(ti; x, y) and (∂/∂y)F1(ci; x, y) We apply these covers to
obtain a cover δ2 such that for any 2 δ2 which comes from

1 we have polynomials D2(ti; x, y),F2(ti; x, y) A[x, y] such
that for (c1 …, cr) 2(R) we have a nonzero polynomial l(x)

R[x] such that l(x)F1(ci; x, y) = D2(ci; x, y)F2(ci; x, y) and
D2(ci; x, y) is a g.c.d. in R(x)[y] of F1(ci; x, y) and (∂/∂y)F1(ci;
x, y). Then F1(ci; x, y) and F2(ci; x, y) have the same
irreducible factors of positive y-degree in R[x, y] and no such
factor occurs with multiplicity greater than one in F2(ci; x, y)
Next we apply the first step to F2 to obtain a refinement δ3 of
δ2 such that for any 3 δ3 which comes from 2 we have a
polynomial F3(ti; x, y) A[x, y] such that for (c1,…, cr)
3(R), F3(ci; x, y) is primitive as a polynomial in y over R[x]
and has the same irreducible factors of positive y-degree as
F2(ci; x, y) and none of these has multiplicity exceeding one.
Then F1(ci; x, y ) = 0 is solvable in R if and only if this is true
of F3(ci; x, y) = 0 (provided (c1,…, cr) 3(R)) Also,
F3(ci;x,y) and (∂/∂y)F3(ci ;x, y) have no common factor of
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positive degree. Put G3(ti,t; x, y) = y(∂F3/∂x) − (x − t)(∂F3/∂y)
where t is a new indeterminate and let H(ti,t; x) be the
resultant of G3(ti,t; x, y) and F3(ti; x, y) regarded as
polynomials in y. Then it can be argued, as in the decision
method itself, that H(ci,t; x) ≠ 0. Hence, resorting to another
refinement δ4 and a set 4 δ4 we obtain a rational
expression L(ti) = Q(ti)P(ti)-1, P, Q A, such that if (c1,…,
cr) 4(R) then P(ci) ≠ 0 and H(ci, L(ci); x) ≠ 0. Then if we
replace G3 by G4(ti; x, y) = P(ti)G3(ti,L(ti); x, y) A[x, y] and
put F4 = F3, then the resultant H(ti; x) of F4 and G4 regarded
as polynomials in y satisfies H(ci;x) ≠ 0 for (c1,…, cr)
4(R). The remainder of the proof follows in the same way
along the lines of the decision method itself. We leave it to
the reader to carry this out.

We can now combine this elimination theorem with the
parameterized version of Sturm’s theorem (Theorem 5.5) to
prove our main result, which is

TARSKI’S THEOREM.
Let φ be a finite set of polynomial equations, inequations, and
inequalities of the form F(t1,…, tr; x1,…, xn) = 0, G(t1,…, tr;
x1,…, xn) ≠ 0, H(t1,…, tr; x1,…, xn)> 0 where F, G, H
[t1,…, tr; x1,…, xn]. Then we can determine in a finite number
of steps a finite collection of finite sets of polynomial
equations, inequations, and inequalities of the same type in
the parameters ti alone such that, if R is any real closed field,
then the set φ has a solution for the x’s in R for ti = ci, 1 ≤ i
≤r, if and only if the ci satisfy all the conditions of one of the
sets ψj
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Proof. As above, we can replace the given system φ by one
consisting of a single equation in perhaps more than n x’s.
Hence we may assume the system has the form

where n ≥ 1. If n = 1 the result follows by applying Theorem
5.5 and adding the parameter condition G(t1,…, tr) 0 to each
of the conditions k given by this theorem. If n > 1 we regard
x1,…, xn − 2 as parameters tr + 1,…, tr + n − 2 and apply
Theorem 5.8. This replaces the given system by a finite set of
systems of the form

We can now conclude the proof by applying induction on the
number of x’s.

Suppose now that we have two real closed subfields R1 and
R2 with a common subfield F,and we have a system of
equations, inequations, and inequalities with coefficients in F
which has a solution in R1. It is clear that we can introduce
parameters and interpret our assertion as one that a certain
system involving parameters and having integral coefficients
has a solution in for certain values of the parameters—say ti =
ci in F. Then Tarski’s theorem implies that the ci satisfy one
of a certain system of equations, inequations, and inequalities
with rational coefficients which can be determined a priori
and are independent of R1 Going backwards we see that the
system given initially has a solution in R2. In particular, we
see that if a given system of equations, inequations, and
inequalities with rational coefficients has a solution in one
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real closed field R1 (e.g., ), then it has a solution in every
real closed field.

More generally, Tarski’s theorem implies his
metamathematical principle that any “elementary” sentence of
algebra which is true in one real closed field (e.g., the field of
real numbers) is true in every real closed field. We refer the
reader to books on mathematical logic for a precise and
detailed account of this
result.3 Here we shall be content to give a sketchy indication
of the meaning of Tarski’s principle and to illustrate it with a
non-trivial application.

We first define an atomic formula as an expression of the
form f > 0 or f = 0 where f is a polynomial with rational
coefficients. Next we define a formula as any expression
obtained from a finite number of atomic formulas by applying
conjunction (“and”), disjunction (“or”), negation (“not”), and
the existential quantifier (“there exists an x such that”). (Other
logical concepts such as “implies,” “for all x,” and so on, can
be defined in these terms). We define an elementary sentence
as a formula involving no free variables.

The trick in applying Tarski’s principle is to be able to
recognize that a given statement is either an elementary
sentence or is equivalent to one. As an illustration of this we
shall prove the following extension of Lemma 1 of section
5.5.

Let R be a real closed field and let f1(x1,…, xn),…, fm(x1,…,
xn) be polynomials with coefficients in R. Assume that there
exists in R(n) a simultaneous solution (a1,…, an) of the
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equations fi(x1,…, xn) = 0. Then there exists a solution nearest
the origin (that is, such that ∑ ai

2 is minimal).

To prove this we first replace the system by the single
equation f = ∑ fi2. Next we replace the coefficients by
parameters, and so we have a polynomial f(t1,…, tr; x1,…, xn)
with integral coefficients. Then our assertion can be put in the
following elementary form: for ti = ci in R either f(c1,…, cr;
x1,…, xn) = 0 has no solution or it has a solution xj = aj such
that ∑ aj

2 ≤ ∑ bj
2 for every solution xj = bj Since this is easily

proved for the field (using the argument preceding Lemma
1, p. 328) it holds for every real closed field R.

It is worth mentioning also that Tarski’s theorem has had an
important application to partial differential equations.4 This is
a striking example of the inter-connectedness of mathematics
in that a result which originated in mathematical logic has an
important consequence in one of the most applied parts of
mathematics. We note also that Tarski’s theorem is used in
section 11.4 of Volume 2 as an important element of the proof
of a theorem on positive definite rational functions that
provides the answer to a famous problem of Hilbert’s.

EXERCISES

1. Supply the missing details in the proof of Theorem 5.8.

1 This notion is equivalent to another one which is central in
the theory of formally real fields which is due to
Artin-Schreier. An account of this is given in Chapter 11 of
Volume 2 of this book.
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2 We use the convention, which is standard for , that √
denotes the positive square root.

3 Tarski’s original account appears in A decision method for
elementary algebra and geometry, a publication of RAND
Corporation, 1948. A proof of the principle, called “the
elimination of quantifiers” in the theory of real closed fields,
is given in G. Kreisel and J. L. Krivine, Elements of
Mathematical Logic. London, North-Holland Pub. Co., 2d
rev’d printing, 1971, pp. 60–65. Seidenberg’s paper is in
Annals of Math. vol. 60 (1954), pp. 365–374.

4 See A. Friedman, Generalized Functions and Partial
Differential Equations, Englewood Cliffs, N.J., Prentice Hall,
1963, Chapter 7.
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6

Metric Vector Spaces and the Classical Groups

Euclidean geometry viewed analytically is the study of an
n-dimensional vector space V over relative to a certain
symmetric bilinear form which serves to define both the
length of a vector and the cosine of the angle between two
vectors. Taking V = (n) we can take the bilinear form to be
the standard one

for x = (x1, …, xn), y = (y1, …, yn). Then x · x = Σ xi
2 = |x|2,

the square of the length of x, and if θ is the angle between x
and y, then cos θ = (x · y)/|x||y|. The function x · y, the dot
product or scalar product of x and y, is bilinear in the sense
that

for vectors x, x′, y, y′ and the real number a, and the dot
product is symmetric
(x · y = y ·x) and positive definite (x · x > 0, if x ≠ 0). All of
this is well known in analytic geometry of two and three
dimensions and the extension to any n is quite easy and
natural.
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We can generalize this situation in two ways. First, we can
drop the hypothesis of finite dimensionality and replace it by
one of completeness. This leads to the study of real Hilbert
spaces, and, if we replace by and the given symmetric
bilinear form by a positive definite hermitian one, then we
obtain complex Hilbert spaces which play an important role
in analysis. We shall not follow this path of generalization
here. Instead we shall consider extensions of Euclidean
geometry obtained by replacing (n) by any finite
dimensional vector space V over an arbitrary field F and the
dot product by any non-degenerate bilinear form B(x, y)
(definition in section 6.1) which is either symmetric, B(x, y) =
B(y, x), or alternate, B(x, x) ≡ 0. We shall call B(x, y) a metric
on V. The geometry obtained by taking B(x, y) symmetric is
called orthogonal geometry and that associated with an
alternate form is called symplectic geometry. These are the
only cases in which orthogonality of vectors, defined by x ⊥ y
if B(x, y) = 0, is a symmetric relation.

Associated with a metric B(x, y) we have the group of linear
transformations η in V such that B(ηx, ηy) = B(x, y) for all x, y

V. If B is symmetric this is called an orthogonal group and
if B is alternate it is called a symplectic group. These groups
along with the general linear group of bijective linear
transformations of a finite dimensional vector space are the
“classical” groups, in the terminology of Hermann Weyl. We
shall see that they are close to being simple. The proof of the
precise result along these lines is one of the major goals of
this chapter.

In the first part of this chapter we shall lay the foundations of
orthogonal and symplectic geometries. The topics we shall
consider are the problem of equivalence of forms, real forms
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and Sylvester’s theorem on the inertia of a real symmetric
form (or quadratic form), Witt’s cancellation theorem, and the
Cartan-Dieudonné theorem on the generation of orthogonal
groups by symmetries. After these topics we shall concentrate
on the structure theory of the classical geometric groups. In
the last section we shall indicate briefly the extension of the
theory to hermitian forms.

6.1LINEAR FUNCTIONS AND BILINEAR FORMS

Let V be a finite dimensional vector space over a field F. We
recall that a linear function on V is a map of V into the base
field F such that

for x, y V, a F. These constitute a vector space V*, called
the conjugate space of V, in which addition and the action by
any a F are defined by

If (e1, e2, …, en) is a base for V over F, then we can define a
linear function ei* by the conditions

Then (e1*, e2*, …, en*) is a base for V* over F. For, if x*
V* and x*(ei) = ai F, then (Σajej*)(ei) = ai = x*(ei); since a
linear map is determined by its restriction to a base, we have

x* = Σ aiei*. If , then and so
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the ei* are linearly independent. The base (e1*, e2*, …, en*)
is called the dual or complementary base of (e1, e2, …, en).
Evidently V* is n-dimensional.

We now define a bilinear form B on V to be a map (x, y) →
B(x, y) of V × V into F such that for any y V the map

is a linear function on V and for any x V the map

is a linear function on V. These conditions amount to the
following:

and we can amalgamate them to the single condition

By induction, we can extend (6′) to
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Formula (7) suggests a general way of constructing bilinear
forms. Let (e1, e2, …, en) be a base for V over F and for each
pair of indices (i, j), 1 ≤ i,
j ≤ n, choose an element bij F. If x = Σ ai ei, y = Σbiei we
define

Direct verification shows that B:(x, y) → (x, y) is a bilinear
form on V. Moreover, it is clear from (7) that every bilinear
form on V is obtained in this way. The matrix (B(ei, ej))
determined by a bilinear form and a base (e1, e2, …, en) is
called the matrix of B relative to the base (e1, e2, …, en). The
determinant det (B(ei, ej)) is called a discriminant of B.

Now suppose we change the base (ei) to another base (fi)
where fi = Σ pijej and the matrix p = (pij) has the inverse q =
(qij). We have

This shows that if b = (B(ei, e)), then the matrix of B relative
to the base (fi) is
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where tp is the transpose of p. Taking the determinant of this
matrix we obtain (det p)2 det b so the discriminant det b is
changed to (det p)2 det b on changing the base.

We now consider the maps x → xL and y → yR as in (4) and
(5) determined by a bilinear form B. Since xL and yR V*
these map V into V*. Moreover, they are linear maps. For, if
x1, x2 V then the corresponding linear functions x1L and x2L
are y → B(x1, y) and Y → B(x2, y) and their sum x1L + x2L is y
→ B(x1, y) + B(x2, y) = B(x1 + x2, y) which is (x1 + x2)L. Thus
x1L + x2L = (x1 + x2)L. Also (ax)L is y → B(ax, y) = aB(x, y)
which is a(xL). Hence x → xL is linear. Similarly, y → yR is
linear.

Let U be a subspace of the vector space V, B a bilinear form
on V. We define

These are subspaces of V. Moreover, it is clear from the
definitions that

and if U1 ⊃ U2 for subspaces U1 and U2 then

The subspaces V⊥L and V⊥R are called the left radical and
right radical respectively of B.
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THEOREM 6.1 The following three conditions on a bilinear
form B are equivalent: (1) V⊥R = 0, (2) V⊥L = 0, (3) the
matrix of B relative to any base is invertible.

Proof Let (el, e2, …, en) be a base and let B(ei, ej) = bij. Then
it is clear from the bilinearity that if B(ei, z) = 0 for 1 ≤ i ≤ n,
then B(x, z) = 0 for all x V. Hence z V⊥R if and only if
B(ei, z) = 0 for all i and, similarly, z V⊥L if and only if B(z,
ei) = 0 for all i. Now write z = Σ cjej. Then B(ei, z) = Σ cjB(ei,
ej) = Σ bijcj. Hence z V⊥R if and only if (c1, c2, …, cn) is a
solution of the system of homogeneous linear equations

Similarly, we see that z = Σ cjej V⊥L if and only if the c’s
satisfy

We know from linear algebra that the condition that (12) or
(13) have a solution (c1, c2 , …, cn) ≠ (0, 0, …, 0) is that det
(bij) = 0. Our result follows from this.

A bilinear form B is called non-degenerate if it satisfies the
conditions of Theorem 6.1.

The condition on a vector z that B(x, z) = 0 for all x, that is,
that z V⊥R is equivalent to saying that the linear function zR
= 0. Thus V⊥R is the kernel of the linear map R of V into V*.
Hence B is non-degenerate if and only if the kernel of R is 0,
which is equivalent to: R is injective. Since dim V = dim V*
this is the case if and only if R is surjective, that is, every
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linear function on V has the form xR:y → B(y, x) for some x in
V. Similarly, B is non-degenerate if and only if every linear
function on V has the form y → B(x, y) for some x in V.

Still assuming that B is non-degenerate we proceed to show
that the maps U → U⊥R and U → U⊥L are inverses and hence
are bijective maps in the set of subspaces of V. To see this we
shall prove the following dimensionality relation:

We recall first the well-known formula from linear algebra
which states that if T is a linear map of a finite dimensional
vector space V into a second vector space then dim V = dim
T(V) + dim (ker T). (This can be seen by observing that we
have the induced bijective map x + ker T → Tx of V/ker T
onto T(V).) Now let U be a subspace of V and let x V. Then
xR is a linear function on V so its restriction to U, xR|U, is a
linear function on U. Thus we have the linear map x → xR|U
of V into the conjugate space U* of U. The kernel of this map
is the set of x such that B(y, x) = 0 for all y U. Hence the
kernel of the map of V into U* is Hence we have n = dim V =
dim U⊥R + dim W where W is the set of linear functions on U
of the form y → B(y, x) for x V. Formula (14) will follow if
we can show that W = U*, since dim U* = dim U. Let g be a
linear function on U. Then we can extend g to a linear
function on V; for we can obtain a base for V of the form (f1
f2, …, fn) where ( f1 f2, …, fr) is a base for U and define g′ to
be the linear function on V which coincides with g on the fj), 1
≤ j ≤ r, and maps the remaining into any elements we please
in F. Now we have seen that g′ has the form y → B(y, x) for
some x V. Hence this holds also for g. This completes the
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proof of dim U⊥R = n − dim U and in a similar manner we
have dim U⊥L = n − dim U. Applying these twice we obtain
dim U⊥L⊥n = n − dim U⊥L = n − (n − dim U) = dim U and
dim U⊥R⊥L = dim U. On the other hand, we had U⊥L⊥R ⊃ U
and U⊥R⊥L ⊃ U. Hence

for any subspace U (assuming B non-degenerate).

An important point in the proof of the foregoing result is the
determination of the form of linear functions on U. Since we
shall need to refer to this later we state the result as a

LEMMA. Let B be non-degenerate and let U be a subspace of
V. Then any linear function on U has the form y → B(x, y)
(and also the form y → B(y, x)) for some x in V.

If B(x, y) = 0 we say x is orthogonal to y and we indicate this
by writing x ⊥ y. It is highly desirable that this be a symmetric
relation, that is, x ⊥ y if and only if y ⊥ x. It is quite easy to
determine the conditions for this: namely, we have

THEOREM 6.2. Let B(x, y) be a bilinear form on V. Then the
relation of orthogonality defined by B is a symmetric one if
and only if either B is symmetric
in the sense that B(x, y) = B(y, x) for all x and y or B is
alternate in the sense that B(x, x) = 0 for all x in V.

Proof. It is clear that orthogonality defined by a symmetric
form is a symmetric relation. Also if B is alternate then B(x, y)
+ B(y, x) = B(x + y, x + y) − B(x, x) − B(y, y) = 0 for all x, y
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and this skew symmetry of B implies that x ⊥ y if and only if
y ⊥ x. Now suppose B has this last property. Let x, y, and z be
arbitrary vectors in V and form w = B(x, y)z − B(x, z)y. Then x
⊥ w and the condition w ⊥ x is equivalent to

for all x, y, z. Putting x = y we obtain

for all x, z. We claim that either B(x, y) = x) for all x, y or B(x,
x) = 0 for all x. Otherwise, we have a pair of vectors u, v such
that B(u, v) ≠ B(v, u) and a vector w such that B(w, w) ≠ 0.
Then, by (17), B(u, v) = B(v, v) = 0, and B(w, u) = B(u, w) and
B(w, v) = B(v, w). Also since B(u, v) ≠ B(v, u) it follows from
(16) that B(u, w) = B(w, u) = 0 and B(v, w) = B(w, v) = 0.
Then B(u, w + v) = B(u, v) ≠ B(v, u) = B(w + v, u). Hence, by
(17), B(w + v, w + v) = 0. But B(w + v, w + v) = B(w, w) +
B(w, v) + B(v, w) + B(v, v) = B(w, w) so we have contradicted
B(w, w) ≠ 0.

If B and B′ are bilinear forms on vector spaces V and V
respectively, we call B and B′ equivalent if there exists a
bijective linear map x → x′ of V onto V′ such that B(x, y) =
B′(x′, y′) for all x, y V Evidently this is an equivalence
relation and it implies equality of dimensionality of V and V′.
It is clear that if B is alternate (symmetric) then B′ has the
same property.

EXERCISES
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1. Show that if B is any bilinear form on V, then (U1 + U2)⊥L

= U1
⊥L ∩ U2

⊥L and (U1 + U2)⊥R = U1
⊥R ∩ U2

⊥R for any two
subspaces U1 and U2. Show also that if B is non-degenerate,
then (U1 ∩ U2)⊥L = U1

⊥L + U2
⊥L and (U1 ∩ U2)⊥R = U1

⊥R +
U2

⊥R

2. Let B be an arbitrary bilinear form on V and assume U is a
subspace such
that the restriction of B to U is non-degenerate. Show that V =
U ⊕ U⊥L = U ⊕ U⊥R.

3. Let B be a non-degenerate bilinear form on V. Show that if
C is a bilinear form on V, then there exists a unique linear
transformation Lc of V into V such that C(x, y) = B(Lcx, y) for
all x, y V. Show that C is non-degenerate if and only if Lc is
bijective. Show that there exists a unique bijective linear
transformation P of V onto V such that B(y, x) = B(Px, y) for
all x, y V.

4. Show that if B is non-degenerate, then for every linear
transformation T of V into itself there exists a unique linear
transformation T′ of V into V such that B(Tx, y) = B(x, T′y) for
all x, y V. Determine the matrix of T′ in terms of the
matrices of T and B relative to a base of V. Show that the map
T → T′ is an anti-automorphism in the ring of linear
transformations and that (T′)′ = T for all T if B is either
symmetric or skew (B(y, x) = − B(x, y)).

5. If B1 and B2 are bilinear forms on V define B1 + B2 by (B1
+ B2)(x, y) = B1(x, y) + B2(x, y), and for a F, define (aB1)(x,
y) = a(B1(x, y)). Show that these are bilinear forms and that
the set of bilinear forms on V is a vector space over F relative
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to these compositions. Prove that this space is n2 dimensional
over F.

6. Let B be a symmetric (alternate) bilinear form on V so U⊥L

= U⊥R for any subspace U of V. Let W be a subspace of V⊥.
Show that B(x + W, y + W) = B(x, y) defines a symmetric
(alternate) bilinear form on V/W and that this is
non-degenerate if and only if W = V⊥.

7. Show that if B is a bilinear form, then there exist bases (u1,
…, un), (v1, …, vn) for V such that (B(ui, Vj)) = diag {1, …, 1,
0, …, 0}.

8. Let B be a bilinear form. Note that if u and v are fixed
vectors then the map x → B(x, u)v is a linear transformation
of V into V. Denote this as u ⊗ v. Find a formula for the trace
tr u ⊗ v. Show that if B is non-degenerate then every linear
transformation has the form Σ ui ⊗ vi

6.2 ALTERNATE FORMS

The bilinear forms we shall consider in the remainder of this
chapter will be either symmetric or alternate. In either case
U⊥L = U⊥R for any subspace so we shall denote this subspace
as U⊥ and call it the orthogonal complement of U. U ∩ U⊥ =
0 if and only if the restriction of B to U is non-degenerate. In
this case we shall say that U is a non-degenerate subspace. If
(e1, e2, …, en) is a base for V, then we obtain the matrix b =
(B(ei, ej)) of B relative to this base. A change of base replaces
b by pb tp, p invertible. We shall now call the matrices b, c
Mn(F) cogredient if there exists ape GLn(F) (the group of
units of Mn(F)) such that c = pb tp. This is an equivalence
relation, so with B we have associated a cogredience class of
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matrices, the set of matrices of B relative to the various
ordered bases for V. We have defined a discriminant of B to
be det b, b a matrix of B, and we have seen that B is
non-degenerate if and only if det b ≠ 0. We shall
now make the notion of discriminant more precise by
defining it to be 0 if B is degenerate, and otherwise to be the
coset (det b)F*2 of det b in the group F*/F*2 where F* is the
multiplicative group of non-zero elements of F, and F*2 is the
subgroup of squares of elements of F*. We shall refer to (det
b)F*2 as the discriminant of B. Then the various
discriminants det b, b a matrix of the non-degenerate B, are
just representatives of the coset (det b)F*2.

We have seen that if B is alternate, then B is skew symmetric:
B(x, y) = − B(y, x). Moreover, if the characteristic, char F ≠ 2,
then skew symmetry implies 2B(x, x) = 0 and B(x, x) = 0.
Thus the alternate property and skew symmetry are equivalent
if char F ≠ 2. If B is alternate and (e1, e2, …, en) is a base,
then B(ei, ej) = − B(ej, ei) and B(ei, ei) = 0. Hence the matrix b
= (B(ei, ej)) is an alternate matrix in the sense that b is skew
symmetric, that is tb = − b, and the diagonal elements are 0.
Conversely, if b = (bij) is any alternate matrix the bilinear
form B defined by B(x, y) = Σ bijaibj for x = Σ aiei and y = Σ
biei is alternate since

As we shall now show, the structure theory of alternate
bilinear forms is extremely simple. Let B be such a form.
Then we shall prove that there exists a base
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for V such that the matrix of B relative to this base has the
form

where

Here the notation indicates that we have a string of S’s
followed by a string of 0’s down the diagonal, and that other
entries are 0. If B = 0 (B(x, y) = 0 for all x, y) the result is
trivial. Otherwise, we may assume we have u and v such that
B(u, v) = b ≠ 0. Then u1 = u and v1 = b−1v satisfy B(u1, v1) =
1 = − B(v1 u1). Since B(x, ax) = aB(x, x) = 0 it is clear that u1
v1 are linearly independent. Hence these give us a start in
constructing the required base (18). Now suppose that we
have already found linearly independent vectors

such that B(ui, vi) = 1 = − B(vi, ui) and B(x, y) = 0 for every
other choice of x and y in the set {ui, vi|1 ≤ i ≤ k}. Let Vk
denote the 2k dimensional subspace of V spanned by the
vectors ui, vi. Then we claim that V = Vk ⊕ Vk

⊥. Since the
matrix of the restriction of B to Vk relative to the base (21) is
diag{S, S, …, S} and this is invertible, this bilinear form is
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non-degenerate, so Vk ∩ Vk
⊥ = 0. Now let x V and consider

the vector

We have

which implies that y Vk
⊥. Since x = y + Σ B(x, vi)ui − Σ B(x,

ui)vi we clearly have V = Vk + Vk
⊥. Thus V = Vk ⊕ Vk

⊥. We
now consider the restriction of B to Vk

⊥. If this is 0 we choose
a base (z1, …, zn − 2k) for Vk

⊥ and we obtain the base (18)
with r = k satisfying our conditions. If B restricted to Vk

⊥ is
not 0, then we can choose a pair of vectors uk + 1, vk + 1 in this
space so that B(uk + 1, vk + 1) = 1 = − B(vk + 1, uk + 1). Then we
can replace the given string of vectors (u1, v1, …, uk, vk) by
(u1, v1, …, uk + 1 vk + l). Continuing in this way we obtain our
result, which we state as

THEOREM 6.3. If B is an alternate bilinear form there exists
a base (18) for V such that the matrix of B relative to this
base has the form s = diag{S, S, …, S, 0, …, 0} where

.

If b is an alternate matrix, b determines an alternate bilinear
form B whose matrix is b relative to a given base for V. If p is
the matrix expressing the base (ui, vj, zk) of Theorem 6.3 in
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terms of the base then pb tp = s as given in this theorem.
Putting q = p− 1 we have b = qs tq. It is clear that the matrices
b and s have the same rank since the rank is unchanged on
multiplying a matrix on either side by an invertible matrix.
Also det s = 0 or 1 and so det b = (det q)2 det s = 0, or det b =
(det q)2. Hence we have

COROLLARY 1. The rank of an alternate matrix with entries
in a field is even and its determinant is a square.

It is clear also that we have

COROLLARY 2. Two alternate n × n matrices with entries in
a field are cogredient if and only if they have the same rank.

There is an important sharpening of Corollary 1 which we
shall now indicate. Let n be even and let F = (xij) the field
of rational expressions with rational coefficients in n(n − l)/2
indeterminates xij, i < j. Let X be the alternate matrix in Mn(F)
whose (i, j)-entry for i < j is xij. Then the (i, i)-entry of X is 0
and the (i, j)-entry for i > j is − xji. By Corollary 1, det X is the
square of an element of F = (xij). Clearly, F is the field of
fractions of its subring [Xij]. Hence there exist f, g [Xij]
such that det X = (f/g)2. Evidently, we may cancel common
factors of f and g, so we may assume that f and g have no
common factors in the factorial ring [xij] (other than the
units ±1). Then the relation g2 det X = f2 implies, by the
factoriality of [xij], that g is a unit so g = ±1. Thus det X = f2
and, f is determined to within a sign by this relation.

Now let R be any commutative ring and let a = (aij) be an
alternate n × n matrix with entries in R. There is a unique
homomorphism of [xij] into R sending xij → aij, i < j.
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Applying this to the relation det X = f(xl2, x23, …)2 we obtain
det a = f(a12 a23, …)2. In particular, if we specialize R =

and s = diag{S, S, …, S}, , we obtain 1 = det s
= f(l, …)2. We now fix the determination of the sign of f so
that f(1, …) = 1 and we denote this determination as Pf X and
call it the Pfaffian of X. Substitution of the aij for the xij gives
Pf a, the Pfaffian of the alternate matrix a. This satisfies

We have now established the first part of the following

THEOREM 6.4. Let n be even and let X be the alternate n × n
matrix whose (i, j)-entry for i < j is the indeterminate xij. Then
there exists a unique polynomial Pf X in the xij with integer
coefficients such that (Pf X)2 = det X and Pf s = 1 for s =

diag{S, S, …, S}, . For any commutative ring
R and alternate matrix a Mn(R) we have (22). Moreover, if
q is arbitrary in Mn(R), then qatq is alternate and

Proof. Let a be alternate and q arbitrary. Then the matrix qa
tq satisfies t(qa tq) = − qa tq and if q = (qij), a = then the (i,
i)-entry of qa tq is

606



Hence qa tq is alternate. To prove (23) we work in the field
(xij, ykl) wheie xij are the n(n − l)/2 indeterminates we had
previously and ykl, k, l = 1, 2, …, n are n2 new indeterminates.
Let X be as before and let Y = (ykl). Then YX tY is alternate
and (Pf (YX tY))2 = det YX tY = det Y2X = (det Y2)(Pf X)2.
Hence Pf (YX tY) = ±(det Y)(Pf X). Specializing Y = 1 we see
that the sign is +, so Pf (YX tY) = (det Y)(Pf X). Specialization
then gives (23).

As a consequence of (23) we have the following result which
gives a method of evaluating the Pfaffian of an alternate
matrix with entries in a field.

COROLLARY. Let a be an alternate matrix with entries in a
field and let q be an invertible matrix such that qa tq = diag
{S, …, S, 0, …, 0} as in Theorem 6.3. Then Pf a = (det q)-1 if
a is invertible and Pf a = 0 otherwise.

It is easy to calculate Pf X for n = 2 and n = 4. These are
respectively

Formulas for Pf X for higher values of n will be indicated in
the exercises below.
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EXERCISES

1. Show that

are cogredient in M4( ) and find a matrix p such that pb tp =
s.

2. Assume B is an alternate bilinear form and (u1, v1, …, uk,
vk) satisfy B(ui vi) = 1 = −B(vi, ui) with all other B(x, y) = 0
for x, y in (u1, v1, …, uk, vk). Using the notation of exercise 8
(p. 349) let . Verify that Ek

2 = Ek
and B(Ekx, y) = B(x, Eky), x, y V.

3. Let B be a non-degenerate alternate bilinear form on V, T a
linear transformation of V into V. Define the adjoint of T
relative to B as the (unique) linear transformation T′ such that
B(Tx, y) = B(x, T′y) for all x, y V. Determine the adjoint of u
⊗ v relative to B.

4. Show that Pf a is linear in any one of the rows of the
alternate matrix a (for fixed values of the entries in the
submatrix obtained by deleting the chosen row and
corresponding column).

5. Show that if a = (aij) is alternate, and if one defines αij = (−
1)i + j − 1 Pf Aij, where Aij is the (n − 2) × (n − 2) matrix
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obtained by striking out the ith and jth rows and ith and jth
columns of a, then Pf a = a12α12 + a13α13 + … + a1nα1n.

6. Let q = (qij) be an arbitrary n × n matrix with entries in a
commutative ring. Assume n even and define

Show that a = (aij) is alternate and Pf a = det q.

7. Let s = diag{S, S, …, S}, . Call a matrix a
Mn(R), R a commutative ring, symplectic symmetric if s-1t as
= a. Show that this condition is equivalent to: sa is skew.
Show that a is a root of the equation Pf (sλ − sa) = 0.

6.3 QUADRATIC FORMS AND SYMMETRIC BILINEAR
FORMS

Let V be a vector space with base (e1, e2, …, en) and let f(x1,
…, xn) be a polynomial in n indeterminates with coefficients
in the base field F of V. This determines the polynomial
function f on V into F,

If f(x1, …, xn) is a homogeneous polynomial of degree r
(definition on p. 138), then we call the corresponding function
a form of degree r. In particular, we have linear forms,
quadratic forms, cubic forms, and so on, which are forms of
degrees 1, 2, 3, etc. Since a homogeneous polynomial of
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degree 1 has the form , the concept of a linear
form coincides with that of a linear function on V. A
homogeneous polynomial of degree 2 has the form

and hence a quadratic form is a map

where the cij are fixed elements of F. We shall now show that
these maps have a simple axiomatic characterization which is
given in the following alternatives.

DEFINITION 6.1. A quadratic form Q is a map x → Q(x) of a
vector space V into its base field F such that

1. Q(ax) = a2Q(x), a F, x V

2. B(x, y) = Q(x + y) − Q(x) − Q(y)

is bilinear, that is, (x, y) → B(x, y) is a bilinear form – which
is evidently symmetric.

We claim that the two definitions we have given are
equivalent. First, suppose Q is defined by (24). Then ax =
Σaaiei and

. Also if y = Σbiei, then x + y = Σ(ai +
bi)ei and
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where dii = 2cii, dij = cij if i < j and dij = cij if i > j. It is clear
that B is bilinear. Hence Q defined by (24) satisfies the
axioms 1 and 2. Conversely, suppose Q satisfies 1 and 2.
Then if, a, b F, x, y V.

By induction, we have

so where cii = Q(ei) and cij = B(ei, ej) if i
< j. Hence Q has the form (24).

The bilinear form B associated with Q (B(x, y) = Q(x + y) −
Q(x) − Q(y)) is symmetric and we have B(x, x) = 2Q(x). If
char F ≠ 2, then Q is determined by B since .
If char F = 2, then B(x, x) = 0, so B is an alternate form. If B is
a bilinear form then Q(x) = B(x, x) is quadratic form whose
associated bilinear form is B(x, y) + B(y, x).
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If B is a symmetric bilinear form, then we have defined the
radical of B, rad B = V⊥, and B is non-degenerate if and only
if rad B = 0. If Q is a quadratic form we define the bilinear
radical, bilrad Q, to be the radical of the associated bilinear
form B. On the other hand, we define the radical of Q, rad Q
= {z|Q(x + z) = Q(x), x V}. Since Q(x + z) = Q(x) + Q(z) +
B(x, z) it is apparent that z rad Q if and only if Q(z) = 0 and
B(x, z) = 0 for all x V. Thus rad Q ⊂ bilrad Q and rad Q is
the subset of bilrad Q of z such that Q(z) = 0. It is clear from
this or from the initial definition that rad Q is a subspace of V.

If char F ≠ 2, B(x, z) = 0 for all x implies ,
so that in this case rad Q = bilrad Q. In general, we define the
defect of Q to be the dimensionality of the factor space bilrad
Q/rad Q or, equivalently, dim bilrad Q − dim rad Q. This is 0
if char F ≠ 2. On the other hand, if char F = 2, then F2 = {a2|a

F} is a subfield of F and we can define the dimensionality
[F:F2] of F regarded as a vector space over F2. Suppose this
is finite and let r > [F:F2]. Let z1, z2, … zr bilrad Q. Since r
> [F:F2] we can choose ai not all 0 such that .
Then Q(Σ aizi) = Σai

2Q(zi) = 0 and so Σ aizi rad Q. Hence
we see that any r > [F:F2] elements of bilrad Q are linearly
dependent modulo rad Q. It follows that the defect of Q does
not exceed [F:F2]. In particular, if F is perfect, F = F2, and
then the defect of Q is either 0 or 1.

The theory of quadratic forms of arbitrary characteristic is
interesting. However, as the foregoing indicates, the
characteristic two case adds some complications. We shall
therefore confine our attention to the case: char F ≠ 2.1 In this
case our remarks show that the theory is equivalent to that of
symmetric bilinear forms. At times the results will be
presented as statements on quadratic forms and at times as
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statements on symmetric bilinear forms. We prove first the
following diagonalization theorem.

THEOREM 6.5 Let B be a symmetric bilinear form on a
vector space V over afield F of characteristic ≠ 2. Then there
exists a base (u1, …, ur, z1, …, zn − r) such that the matrix of
B relative to this base has the form

A base (u1, u2, …, un) such that B(ui, uj) = 0 for all i ≠ j is
called an orthogonal base for V (relative to B or a given
quadratic form Q). Theorem 6.5 asserts the existence of such
a base.

Proof. The method of proof we shall give is a constructive
one which is due to Lagrange. We observe first that if B = 0,
then any base (z1, z2, …, zn) satisfies the condition. Hence
suppose B ≠ 0. We claim that this implies that there exists a u
≠ 0 such that B(u, u) ≠ 0. Otherwise, for every u, v

contrary to B ≠ 0. Now choose u1 so that B(u1, u1) = b1 ≠ 0.
This gives a start for an inductive construction of the required
base. Suppose then that we have already determined linearly
independent vectors (u1, …, uk) such that B(ui, uj) = δijbi, bi ≠
0, δii = 1, δij = 0 if i ≠ j, and let Vk be the subspace spanned by
these ui. We shall now show that V = Vk ⊕ Vk

⊥. Since the
matrix of the restriction of B to Vk is diag{b1, …, bk} it is
clear that this bilinear form is non-degenerate, so Vk ∩ Vk

⊥ =
0. Let x V and put
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Then B(y, uj) = B(x, uj) − B(x, uj)bj
-1 B(uj, uj) = 0. Hence y

Vk
⊥ and x = y + Σ B(x, ui)bi

− 1 ui Vk + Vk
⊥. Thus V = Vk ⊕

Vk
⊥. If the restriction of B to Vk

⊥ is 0 we take r = k and let (z1,
…, zn − k) be any base for Vk

⊥. Otherwise, we choose a uk + 1
Vk
⊥ such that bk + 1 = B(uk + 1, uk + 1) ≠ 0. Then (u1, …, uk

+ 1) is a linearly independent set satisfying the same
conditions as (u1 …, uk). Repeating the process we finally
achieve a base of the required type.

There are several remarks that are worth making about the
proof. First, it really is constructive. To indicate a mechanical
way of carrying it out we assume we have a set of vectors
{ei} which span V. For example, this could be a base for V. If
some B(ei, ei) ≠ 0, then we can choose u1 = ei. Otherwise,
assuming B ≠ 0, we have B(ei, ej) ≠ 0 for some pair ei ≠ ej.
Then B(ei + ej, ei + ej) = 2B(ei, ej) ≠ 0 and we can take u1 = ei
+ ej. Now suppose we have already determined (u1, …, uk)
and Vk as in the proof. Then for each ej in the given set of
vectors spanning V we put . Then
we see that the fj span Vk

⊥ and we can repeat the process we
applied to V. Another point which is of considerable
theoretical interest is that b1 can be taken to be any non-zero
element of F which is represented by B in the sense that there
exists a solution u1 of the equation B(u1, u1) = b1. Similarly,
bk + 1 is any non-zero element represented by the restriction
of B to Vk

⊥. This generality in the choice of the bi will enable
us in some cases to make a number of the b’s equal 1. We
remark also that if the base is chosen as in the theorem, then
the radical is spanned by the elements z1, …, zn − r. For, if
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, then B(z, zj) = 0 for all Zj and
B(ui, z) = 0 if and only if ci = 0. Hence z V⊥ if and only if z
= Σ djZj.
We note finally that as a corollary of the proof we have
another proof of the fact that if the restriction of B to a
subspace U is non-degenerate, then V = U ⊕ U⊥ (exercise 2,
p. 348), for we can choose an orthogonal base (u1, u2, …, uk)
for U. Then the proof shows that we can supplement this to
obtain an orthogonal base (u1, …, uk, uk + 1 , …, un) for V. It

is clear that we shall have and V = U ⊕ U⊥.

From the matrix point of view, Theorem 6.5 provides a
diagonal matrix cogredient to any given symmetric matrix.
The difficulty is that there is no uniqueness about this. For
example, if we replace ui by ciui ≠ 0, then bi is replaced by
ci

2bi, so the most we could hope for is that the bi are
determined to within squares. However, even this is not the
case, since b1 can be replaced by any non-zero element of the
form Σ bici

2 and this may not be a square times any one of the
bi (see exercise 2 at the end of this section). The problem of
classifying symmetric matrices relative to cogredience or,
equivalently, symmetric bilinear forms relative to equivalence
is generally a very difficult one which depends on arithmetic
properties of the underlying field. For the case of , or more
generally F, an algebraic extension of , one does have a
complete solution due to Minkowski and Hasse. For , the
Minkowski result is that cogredience holds if and only if it
holds in and in certain extensions, the p-adic fields p of

, defined for every prime number p.2 The Minkowski-Hasse
theorem is quite deep. On the other hand, there are several
important types of fields for which the solution of the

615



cogredience problem is easy. These include the following: (1)
algebraically closed fields, (2) real closed fields, (3) finite
fields. We shall now consider these.

1. Algebraically closed fields. In these fields every bi can be
replaced by 1, and so every symmetric matrix is cogredient to
one of the form diag{l, …, 1, 0, …, 0}. The number of 1’s is
the rank of the diagonal matrix. Since for invertible p, ps tp
and s have the same rank this is also the rank of the given
matrix s (and also n − dim rad B). Our result evidently implies

THEOREM 6.6. if F is algebraically closed of characteristic
≠ 2, then two symmetric matrices in Mn(F) are cogredient if
and only if they have the same rank.

2. Real closed fields.3 Suppose F = R is real closed. Since
positive elements have square roots the positive bi in (25) can
be replaced by 1’s and the negative ones by − 1′s. Re-ordering
the ui we may assume that the canonical matrix is diag{l, …,
1, − 1, …, − 1, 0, …, 0}. We shall show that the number of +
1’s and hence the number of − 1’s is an invariant.
Equivalently, we shall have that
the signature defined to be p − q where p is the number of +
1’s and q is the number of − 1’s is an invariant. This will
follow from

THEOREM 6.7 (Sylvester). Let F be an ordered field and
suppose the diagonal matrices
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are cogredient. Then the number of positive bi is the same as
the number of positive b′i.

Proof We may assume that these are matrices of a symmetric
bilinear form on an n dimensional vector space over the field
F and that the first p bi and p′ b′i are > 0, the remaining ones
negative. Let (u1, …, ur, z1, …, zn − r),(u′1 , …, u′r, z′1, …, z′n
− r) be the bases which give the matrices of the theorem.
Suppose , so . Then B(z, z) = Σ ai

2bi >
0 if z ≠ 0. Similarly if then B(z, z) ≤ 0.
Hence the two spaces and have
only the 0 vector in common. This implies that the sum of
their dimensionalities does not exceed n (by the well-known
formula dim (U1 + U2) = dim U1 + dim U2 − dim (U1 ∩ U2)
for subspaces Ui of V). Thus we have p + (n − p′) ≤ n and so p
≤ p′. By symmetry, we have p′ ≤ p and so p = p′.

This result implies

THEOREM 6.8. Two diagonal matrices in Mn(R), R a real
closed field, are cogredient if and only if they have the same
rank and same signature (= number of positive elements
minus the number of negative elements).

Before proceeding to the case of symmetric bilinear forms
over a finite field we shall give some definitions and remarks
which are of general interest. If B is a non-degenerate
symmetric bilinear form, then B is called isotropic or a null
form if there exists a vector u ≠ 0 such that B(u, u) = 0. Such a
vector is called isotropic. A form which is not isotropic is
called anisotropic. If B is isotropic, then B is universal in the
sense that B(v, v) = b has a solution for every b ≠ 0 in F. For,

617



assuming B(u, u) = 0 for u ≠ 0, non-degeneracy of B implies
that we have a w such that . Then for v = au + w
we have

Hence if we take a = b − B(w, w) we obtain B(v, v) = b.

We now consider the case of

3. Finite fields. We shall show that these forms can be
classified by their discriminants. We prove first the

LEMMA. Any non-degenerate symmetric bilinear form B on
a vector space V of ≥ 2 dimensions over a finite field F of
characteristic ≠ 2 is universal.

Proof. It is enough to prove the result for binary forms, that
is, for the case dim V = 2, and since we have proved
universality in the isotropic case, we may assume B
anisotropic. We may assume also that we have a diagonal
matrix for the form. Hence we are reduced to proving that if
ab ≠ 0 and ax2 + by2 ≠ 0 for all (x, y) ≠ (0, 0), then ax2 + by2

= c is solvable for any c ≠ 0. Dividing by a we may take a =
1. Now x2 + by2 ≠ 0 implies − b is not a square and x2 + by2 is
the norm function for the quadratic extension K/F where

. If |F| = q, |K| = q2 and the mapping u → uq is
an automorphism ≠ 1 of K/F. Then NK′F(u) = uuq = uq + 1.
Hence we have to show that for any c ≠ 0 in F there exists a u

K* such that uq + 1 = c. Now K* is cyclic of order q2 − 1
and u → uq + 1 is a homomorphism of K* into F*. The kernel
is the subgroup of u satisfying uq + 1 = 1. This has order q + 1
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since the group is cyclic. Hence the image has order (q2 −
1)/(q + 1) = q − 1, which implies that the homomorphism is
surjective. This completes the proof (cf. exercise 1, p. 300,
where a more general result is stated).

We can now prove

THEOREM 6.9. Any non-degenerate symmetric bilinear form
on a vector space V over a finite field (char ≠ 2) has a matrix
of the form diag{l, 1, …, 1, d} Equivalently, any invertible
symmetric matrix with entries in a finite field is cogredient to
one of the form diag{1, 1, …, 1, d}. Moreover, two invertible
symmetric matrices with entries in a finite field are
cogredient if and only if they have the same discriminant.

Proof. The Lagrange diagonalization process and the
foregoing lemma show that we can take b1 = b2 = … = bn − 1
= 1. This proves the first statement and the equivalent one on
matrices. Since cogredient matrices have the same
discriminant (the discriminant of the associated bilinear form)
the last statement will follow if we can show that the two
diagonal matrices diag{1, 1, …, 1, di}, i = l, 2, di ≠ 0, are
cogredient if they have the same discriminant. This is clear
since the discriminant is diF*2, and d1F*2 = d2F*2 implies
that d2 = a2d1, a F*2, which implies the cogredience of the
diagonal matrices.

EXERCISES

1. Find a diagonal matrix d cogredient in M3( ) to
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Also determine a matrix p such that ps tp = d.

2. Show that

are cogredient in M2( ).

3. Show that the symmetric bilinear form B in V over is
positive definite in the sense that B(u, u) > 0 for all u ≠ 0 if
and only if it has 1 as one of its matrices. Use the Lagrange
reduction (in this case called the Schmidt orthogonalization
process) to prove that if s is a matrix of a positive definite
symmetric bilinear form there exists a triangular matrix p
with 0’s above the main diagonal such that ps tp = 1 or s = q
tq, q = p− 1.

4. Same hypotheses as exercise 3. Call a base (u1, u2, …, un)
Cartesian if B(ui, uj) = δij. Show that if (v1, v2, …, vn) is a
second such base then the matrix relating the two is
orthogonal (o to = 1). Use the result of exercise 3 to show that
if m is any invertible matrix in Mn( ), m can be written in the
form po where p is triangular and o is orthogonal.

5. Prove that the set of polynomial functions on V can be
defined as the subring of the ring of maps from V to F
generated by the linear functions. Here addition and
multiplication of maps from V to F are the usual ones: (f +

620



g)(x) = f(x) + Q(x), (fg)(x) = f(x)g(x) This gives an intrinsic
definition of polynomial functions.

6. Let Q be a non-degenerate quadratic form on an n ≥ 3
dimensional vector space over a finite field. Show that Q is
isotropic.

6.4 BASIC CONCEPTS OF ORTHOGONAL GEOMETRY

We shall now introduce the basic definitions of orthogonal
geometry (the study of a vector space relative to a
non-degenerate symmetric bilinear form). We assume char F
≠ 2, so it is all the same whether we deal with symmetric
bilinear
forms B or quadratic forms Q. Given a quadratic form Q we
have the associated symmetric bilinear form B(x, y) = Q(x +
y) − Q(x) − Q(y) and given a symmetric bilinear form B we
have the associated quadratic form . We shall
call Q non-degenerate if B is non-degenerate.

Let (Vi, Qi), i = 1, 2, be a pair consisting of a vector space Vi
and a quadratic form Qi on Vi. Then we define an isometry η
of (V1, Q1) onto (V2, Q2) to be a bijective linear map of V1
onto V2 such that Q2(ηx) = Qi(x) for all x V1. This implies
that if is the corresponding symmetric bilinear form of Qi,
then B2(ηx, ηy) = B1(x, y), x, y V1, since
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The converse is immediate also since . If B1
is nondegenerate, the requirement of injectivity is
superfluous: if η is a linear map of V1 into V2 satisfying
Q2(ηx) = Q1(x), x V1, then η has to be injective; for, B2(ηx,
ηy) = B1(x, y) and ηx = 0 imply B1(x, y) = 0 for all y. Then x =
0 by the non-degeneracy of B1.

If there exists an isometry of (V1, Q1) onto (V2, Q2) then the
quadratic forms and Q2 and the associated symmetric bilinear
forms B1 and B2 are called equivalent

If Q is a non-degenerate quadratic form on V, an isometry of
V onto V is called an orthogonal transformation of V (or of
(V, Q)). It is clear that any linear transformation of V into
itself satisfying Q(ηx) = Q(x), x V, is orthogonal, for, we
have seen that this implies that η is injective, and since we
always assume V finite dimensional, η is also surjective. If η
is orthogonal, then so is n− 1, and if η1 and η2 are orthogonal,
then so is η1η2. Thus the set O(V, Q) of orthogonal
transformations is a subgroup of the group of bijective linear
transformations of V. This group is called the orthogonal
group of V relative to Q.

Let (e1, e2, …, en) be a base for V and let η O(V, Q). Then
we have B(ηei, ηej) = B(ei, ej) for all i, j = 1, 2, …, n.
Conversely, if these conditions hold for a linear
transformation η, then for any x = Σ aiei we have
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Thus a linear transformation η of V into V is orthogonal if and
only if

Now let b = (B(ei, ej)) the matrix of B relative to the base (e1,
e2, … , en) and let ηei = Σ hijej. Then the conditions (26) are
that

for all i and j. In matrix form these conditions are

Hence these are necessary and sufficient conditions on the
matrix h of η relative to the base (e1, e2, …, en) for η to be
orthogonal. If we take the determinants of the matrices in (27)
we obtain (det h)2 det b = det b, and since det b ≠ 0, we see
that det h = ± 1 for the matrix of an orthogonal transformation
relative to any base. Since the determinant of the matrix of a
linear transformation is unchanged on changing the base it is
clear that if we have det h = 1 or − 1 relative to one base we
shall have the same thing for every other base. An orthogonal
transformation is called proper or a rotation if det h = 1;
otherwise, the transformation is improper. If we choose an
orthogonal base for V, then the matrix b of B is diagonal.
Then it is clear that any diagonal matrix with diagonal entries
1 or − 1 satisfies (27) and hence determines an orthogonal
transformation. Moreover, this is proper or improper
according as the number of − 1′s is even or odd. It is clear that
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the set O+ (V, Q) of rotations is a normal subgroup of index
two in O(V, Q).

With any vector u such that Q(u) ≠ 0 we can associate an
orthogonal transformation Su defined by

Since x → x and x → B(x, u)v are linear for any u and v, Su is
linear. Moreover

Hence Su is orthogonal. Now Suu = u − (B(u, u)/Q(u))u = u −
2u = − u and if v ⊥ u, then Suv = v. Since B(u, u) ≠ 0 we have
the decomposition V = Fu ⊕ Fu⊥ and the result we have just
indicated gives a complete description of Su, namely, this
linear transformation is the identity map on Fu⊥ and it sends u
into − u. We shall call Su the symmetry determined by u. If we
choose a base for V consisting of u and a base for Fu⊥, then
the matrix of Su relative to this base is diag{–1, 1,…, 1}.
Evidently this implies that Su is improper. It is clear also that
Su

2 = 1.

If η is any orthogonal transformation, then we have

To see this we calculate
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In this verification we have made use of the property B(ηx, y)
= B(η-1ηx, η-1y) = B(x, η-1y) for any orthogonal
transformation. We have defined the adjoint T′ of a linear
transformation T relative to B by the condition B(Tx, y) = B(x,
T′y) (exercise 4, p. 349). Thus the condition we have derived
is that the adjoint of an orthogonal transformation coincides
with its inverse. It is immediate also that this property, that is,
TT′ = 1, implies that T is orthogonal.

A very important observation about adjoints is that if U is a
subspace stabilized by a linear transformation T (that is, T(U)
⊂ U), then U⊥ is stabilized by T′. This is clear, since if v
U⊥, so B(u, v) = 0 for all u U, then B(u, T′v) = B(Tu, v) = 0.
It follows that if η is orthogonal and stabilizes U, then ηU = U
and hence η-1U = U. Since η-1 we see that η′ stabilizes U;
hence η = (η′)′ stabilizes U⊥.

We shall say that V is an orthogonal direct sum of the
subspaces U1, U2, … , Ur if V = U1 ⊕ U2 ⊕ ··· ⊕ Ur and Ui
⊥ Uj for every i ≠ j. In this case we write
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Then if

Now, if we have a second decomposition V = U′1 ⊥ U′2 ⊥ ···
U′r and isometries η:Ui → U′i, then the linear transformation
such that η|Ui = ηi satisfies Q(ηx) =

. Hence η is an
orthogonal transformation. It is clear also that the subspaces
Ui in (30) are non-degenerate (that is, the restriction of B to
Ui is non-degenerate).

A subspace U is isotropic if it contains an isotropic vector (u
≠ 0, Q(u) = 0) and U is totally isotropic if the restriction of Q
to U is 0, or, equivalently, U ⊂ U⊥.

A two dimensional space V which is non-degenerate and
isotropic is called a hyperbolic plane. The following theorem
says about everything one can say about hyperbolic planes:

THEOREM 6.10. (1) The following conditions on a two
dimensional vector space V equipped with a quadratic form Q
are equivalent: (i) V is a hyperbolic plane, (ii) V has a base
(u, v) which is a hyperbolic pair of vectors in the sense that

(iii) The discriminant of B is − 1F*2. (2) Any two hyperbolic
planes are isometric. (3) Any hyperbolic plane contains
exactly two one dimensional totally isotropic subspaces. (4)
The rotation group of a hyperbolic plane V is isomorphic to
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the multiplicative group F* of the field F and every improper
orthogonal transformation of V is a symmetry.

Proof. (1) If V is a hyperbolic plane, V contains a vector u ≠ 0
such that Q(u) = 0, and since V⊥ = 0, V contains a vector v
such that B(u, v) ≠ 0. Since B(u, u) = 0, v is not a multiple of
u. Hence (u, v) is a base. Replacing v by a multiple of v we
may assume B(u, v) = 1. Moreover, if a F then Q(v + au) =
Q(v) + a, so if we replace v by v − Q(v)u we shall have Q(v) =
0 as well as B(u, v) = 1. Then we have (31) for the base (u, v).
Thus (i) ⇒ (ii). Now assume (ii). Clearly the determinant of
the matrix defined by (31) is − 1. Hence the discriminant of B
is − 1F*2. Now assume that the discriminant of B is − 1F*2.
Then we have a base (u1, u2) such that the matrix of B relative
to (u1, u2) is diag{b1, b2} where b1b2 = −c2 ≠ 0, c F. Let x
= cu1 + b1u2. Then Q(x) = Hence V is a
hyperbolic plane and we have proved the implication (iii) ⇒
(i). (2) This is clear since any two hyperbolic planes have
bases (u, v) and (u′, v′) which are hyperbolic pairs. It is
evident that the linear map sending u → u′, v → v′ is an
isometry. (3) Let (u, v) be a base which is a hyperbolic pair.
Then Q(au + bv) = ab. Hence au + bv is isotropic if and only
if either a = 0, b ≠ 0 or a ≠ 0, b = 0. Then Fu and Fv are the
only one dimensional totally isotropic subspaces of V. (4) Let
η be an orthogonal transformation of the hyperbolic plane V
and let Fu and Fv be the two totally isotropic one dimensional
subspaces. Then either η(Fu) = Fu and η(Fv) = Fv or η(Fu) =
Fv and η(Fv) = Fu. In the first case we have ηu = au and ηv =
bv, and abB(u, v) = B(ηu, ηv) = B(u, v) gives ab = 1, since
B(u, v) ≠ 0. Hence ηu = au
and ηv = a-1v, and clearly η is a rotation. Now assume the
second possibility. Then ηu = av and ηv = bu, and again we
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have b = a−1. This time η is improper. Also, it is clear that for
any a ≠ 0 the linear maps such that u → au, v → a−1v and u
→ av, v → a−1u are respectively rotations or improper
orthogonal transformations. Then the map of a F* into the
rotation u → au,v → a−1v is an isomorphism of F* with
O+(V, Q). Finally, if η is an improper orthogonal
transformation, so that ηu = av and ηv = a−1u, then n(u + av)
= u + av and η(u − av) = −(u − av). Hence η is the symmetry
Sa – av. □

EXERCISES

1. Show that if η is an orthogonal transformation and V1 =
{x|ηx = x}, then dim V = dim V1 + dim (1 – η)V. Show also
that V1 = ((1 − η)V)⊥ and hence V1

⊥ = (1 −η)V.

2. Let η be an orthogonal transformation such that dim V1 ≥
dim V − 1, where V1 is as in exercise 1. Show that either η = 1
or η is a symmetry.

3. Let (u, v) be a hyperbolic pair and let w (Fu + Fv)⊥ be
non-isotropic. Verify that the linear transformation ρ defined
by

coincides with SwSw − Q(w)u. (Note that Q(w − Q(w)u) ≠ 0.)

4. Let V be equipped with a non-degenerate quadratic form Q
and let Σ be a set of linear transformations of V into V such
that Σ is closed under adjoints: if T Σ then its adjoint T′
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relative to B is contained in Σ. Show that if U is a subspace
stabilized by Σ (TU ⊂ U for all T Σ), then U⊥ is stabilized
by Σ.

5. Let Q be anisotropic. Show that 0 is the only nilpotent
self-adjoint linear transformation in V relative to Q.

6. Call a linear transformation T unipotent if T − 1 = Z is
nilpotent. Show that if Q is anisotropic then 1 is the only
unipotent orthogonal linear transformation in V relative to Q.
Verify that the transformation ρ defined in exercise 3 is
unipotent. Hence prove that if dim V ≥ 3 and Q is isotropic,
then O(V, Q) contains unipotent orthogonal transformations ≠
1.

7. (Malcev.) Let T be a nilpotent self-adjoint linear
transformation in V relative to B (non-degenerate). Show that
V is an orthogonal direct sum of subspaces Vi where Vi has a
base (zi, Tzi,…, Tni − 1 zi) and the matrix of B relative to this
base has the form

Hence show that there exist nilpotent self-adjoint linear
transformations ≠ 0 in (V, Q) if and only if Q is isotropic.

8. Let T be a linear transformation in a finite dimensional
vector space V. Show that there exists a non-degenerate
symmetric bilinear form B on V such that T is self-adjoint
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relative to B. (Hint : It suffices to assume T is “cyclic”, that is,
V = F[T]u for some vector u. Then we have a base (u1, u2,…,
un) for V over F such that

. Let B be the
bilinear form on V such that where λ1
= 1 and λk = 0 if k ≤ 0. Show that B is symmetric and
non-degenerate and the λ’s can be chosen so that T is
self-adjoint relative to B.)

6.5 WITT’S CANCELLATION THEOREM

We shall now prove a basic theorem on quadratic forms on a
vector space V over F, char F ≠ 2, which oddly enough—in
spite of its importance and elementary character—was
discovered rather late in the development of the theory.
Among its important consequences are a reduction of the
classification problem for quadratic forms to anisotropic
forms, and a definition of a numerical invariant called the
Witt index, which generalizes the notion of the signature of a
real quadratic form. The result also implies an extension
theorem for isometries to orthogonal transformations. After
the preparations of the last section we can begin right in with
the proof of this theorem, namely,

WITT’S CANCELLATION THEOREM. Let Q be a
non-degenerate quadratic form on a vector space V over a
field F of characteristic ≠ 2, U1 and U2 non-degenerate
subspaces which are isometric (that is, there exists an
isometry between them). Then U1

⊥ and U2
⊥ are isometric.

(Since V = U1 ⊕ U1
⊥ = U2 ⊕ U2

⊥ this does appear to be a
“cancellation” theorem.)
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Proof. We denote isometry by ~, so we are given U1 ~ U2,
and the restrictions of Q to U1 and U2 are non-degenerate. We
wish to show that U1

⊥ ~ U2
⊥. We shall use induction on dim

Ui. Suppose first Ui = Fui and Q(ui) ≠ 0. We
may assume that Q(u1) = Q(u2). We have Q(u1 ± u2) =
2Q(u1) ± B(u1, u2). Hence either Q(u1 + u2) ≠ 0 or Q(u1 − u2)
≠ 0. Suppose first that Q(u1 + u2) ≠ 0 and consider the
symmetry Su1 + u2. Since B(u1 + u2, u1 − u2) = 2Q(u1) −
2Q(u2) = 0, (u1 − u2) ⊥ (u1 + u2) and so Su1 + u2(u1 − u2) = u1
− u2. On the other hand, Su1 + u2(u1 + u2) = − (u1 + u2). Then
Su1 + u2u1 = − u2 and consequently Su1 + u2(Fu1)⊥ = (Fu2)⊥ so
U1

⊥ ~ U2
⊥. Similarly, if Q(u1 − u2) ≠ 0, then we can use Su1 +

u2 and note that this maps u1 + u2 into itself and u1 − u2 into
u2 − u1. Then Su1 + u2 u1 = u2 and Su1 + u2 (Fu1)⊥ = (Fu2)⊥.
Now suppose the result holds for subspaces of dimensionality
dim Ui − 1 ≥ 1. We can choose a non-isotropic vector u1 in
U1 and write U1 = Fu1 ⊥ W1. Then is non-degenerate.
Applying an isometry of U1 onto U2 we obtain U2 = Fu2 ⊥
W2 where Fu1 ~ Fu2 and W1 ~ W2. Then V = Fu1 ⊥ W1 ⊥ U1
⊥ = Fu2 ⊥ W2 ⊥ U2

⊥. Applying the result in the one
dimensional case to Fu1 and Fu2 we conclude that there is an
isometry η sending W1 ⊥ U1

⊥ onto W2 ⊥ U2
⊥. Then we have

W2 ⊥ U2
⊥ = η(W1) ⊥ η(U1

⊥) and W2 ~ W1 ~ η(W1). Hence
the induction hypothesis applied to the subspaces W2 and
η(W1) of W2 ⊥ U2

⊥ implies that U2
⊥ ~ η(U1

⊥) ~ U1
⊥. □

Suppose, as in the theorem, U1 and U2 are non-degenerate
subspaces and we have an isometry η of U1 onto U2. Then the
theorem gives an isometry ζ of U1

⊥ onto U2
⊥. Since V = U1 ⊥

U1
⊥ = U2 ⊥ U2

⊥ the linear map of V into V which coincides
with η on U1 and with ζ on U1

⊥ is an orthogonal
transformation which is an extension of the given isometry.
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We shall now show that this result holds for arbitrary
subspaces: any isometry between subspaces of V can be
extended to an orthogonal transformation of V. We shall base
the proof on a canonical imbedding of a degenerate subspace
in a non-degenerate one which will effect a reduction of the
proof to the non-degenerate case. The imbedding theorem we
require is

THEOREM 6.11 Let V be equipped with a non-degenerate
quadratic form and let U be a subspace such that rad U = U
∩ U⊥ ≠ 0. Write U = rad U ⊕ U′ where U′ is a subspace and
let (z1,…, zr) be a base for rad U. Then we can imbed U in a
non-degenerate subspace U ⊕ W where W has a base (w1,…,
wr) such that (zi, wi) is a hyperbolic pair for 1 ≤ i ≤ r, and U
+ W = U′ ⊥ H1 ⊥ H2 ⊥ ··· ⊥ Hr, Hi = Fzi + FWi, a
hyperbolic plane.

Proof. Let f be the linear function on U such that f(z1) = 1,
f(zi) = 0 for i > 1, and f(u′) = 0 for u′ U′. By the lemma on p.
347, there exists a w1 V such that f(u) = B(u, w1), u U.
Thus B(z1, w1) = 1, B(zi w1) = 0 for i > 1, B(u′ w1) = 0, u′
U′. Replacing w1 by a suitable w1 + az1 we may assume
Q(w1) = 0, and thus (z1, w1) is a hyperbolic pair (hence
linearly independent). We have V = (Fz1 + Fw1) ⊕ (Fz1 +
Fw1)⊥ and . The

radical of U1 is . If r = 1 we take W = Fw1 and we
have U + W = U′ ⊥ H1 where H1 is the hyperbolic plane Fz1
+ Fw1. If r > 1 we replace the pair of spaces V, U by the pair
V1, U1 and observe that the dimension of the radical of U1 is r
− 1. Hence, using induction on the dimensionality of the
radical of the subspace, we obtain vectors w2,…, wr in V1
such that
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a
hyperbolic plane. Then satisfies our
requirements. □

Now suppose we have an isometry η of a subspace U1 onto a
subspace U2. If U1 is non-degenerate so is U2 and we have
seen that η can be extended to an orthogonal transformation η
mapping U1 into U. Then η− 1U is a totally iso- ⊕ U′1, U′1 a
subspace. By Theorem 6.11, there exists a non-degenerate
sub-space U1 + W1 = U′1 ⊥ H1 ⊥ … ⊥ Hr where Hi = Fzi +
Fwi and (zi, wi) is a hyperbolic pair. We can imbed U2 = ηU1
in U2 + W2 = η(U′1) + H′1 ⊥ … ⊥ H′r where H′i = F(ηzi) +
Fw′i and (ηzi, w′i) is a hyperbolic pair. Now it is clear that the
linear map of U1 + W1 onto U2 + W2 which coincides with η
on U1 and sends wi → w′i, 1 ≤ i ≤ r, is an isometry of U1 +
W1 onto U2 + W2 that coincides with η on U1. Since U1 + W1
is non-degenerate this can be extended to an orthogonal
transformation. Thus η can be extended to an orthogonal
transformation. Hence we have proved

WITT’S EXTENSION THEOREM. If V is equipped with a
non-degenerate quadratic form Q, any isometry of a subspace
U1 onto a subspace U2 can be extended to an orthogonal
transformation.

This applies in particular to subspaces which are totally
isotropic (Q|U1 = 0). If U1 and U2 are two such subspaces of
the same dimensionality, then the extension theorem implies
that there is an orthogonal transformation mapping U1 onto
U2. If U is a totally isotropic subspace having maximal
dimensionality for such subspaces and U1 is any totally
isotropic subspace, then we have an orthogonal
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transformation η mapping U1 into U. Then η− 1U is a totally
isotropic subspace containing U1. It follows that all maximal
totally isotropic subspaces have the same dimensionality. The
common dimensionality of maximal totally isotropic
subspaces is called the Witt index of Q; we shall denote this as
v(Q).

Now let U be a totally isotropic subspace of dimensionality v
= v(Q). Theorem 6.11 shows that we can imbed U in a
subspace U + W which is an orthogonal direct sum of v
hyperbolic planes. Thus 2v ≤ n = dim V and so v(Q) ≤ [n/2].
We can also write V = (U + W) ⊕ (U + W)⊥ and it is clear
that the subspace X ≡ (U + W)⊥ is anisotropic, that is, it
contains no isotropic vectors. We have the decomposition

where Hi is a hyperbolic plane, 1 ≤ i ≤ v, and X is anisotropic.
Next suppose V = H′1 ⊥ H′2 ⊥ … ⊥ H′r ⊥ Y is a
decomposition of V as orthogonal direct sum of hyperbolic
planes H′i and an anisotropic subspace Y. If z′i is a nonzero
vector in H′i such that Q(zi) = 0, then is an
r-dimensional totally isotropic subspace. Hence r ≤ v.
Moreover, there is an orthogonal transformation sending H1 ⊥
… ⊥ Hr into H′1 ⊥ … ⊥ H′r. This maps

onto . Since Y is
anisotropic we must have r = v and X ~ Y. We shall call any
anisotropic subspace Y, such that V is an orthogonal direct
sum of Y and hyperbolic planes, an anisotropic kernel of V.
Our result shows that any two of these are isometric. It is
clear that this implies that two non-degenerate quadratic
forms are equivalent if and only if their anisotropic kernels
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(obvious meaning) are equivalent. This reduces the problem
of classifying quadratic forms into equivalence classes to the
case of anisotropic forms.

EXERCISES

1. Call Q of maximal Witt index if v(Q) = [n/2]. Show that any
two non-degenerate quadratic forms of maximal Witt index
are equivalent if n is even, and that they are equivalent if n is
odd if and only if the associated bilinear forms have the same
discriminant.

2. Show that if Q is a non-degenerate quadratic form in a
vector space V over , then where sig Q is
the signature of Q.

3. (Cayley.) Let η be a linear transformation in V equipped
with a non-degenerate quadratic form Q, and let η′ denote the
adjoint of η relative to the corresponding symmetric bilinear
form B. Let η be orthogonal (so η′ = η− 1) and suppose det (η
+ 1) ≠ 0. Define

Show that σ is skew relative to B in the sense that σ′ = − σ and
that det (σ + 1) ≠ 0. Show that η = (1 − σ)(1 + σ)− 1 = (1 + σ)−
1 (1 − σ).

4. Use exercise 3 to prove that if V is odd dimensional, then
every proper orthogonal transformation has a non-zero fixed
point (ηx = x), and if V is even dimensional then every
improper orthogonal transformation has a non-zero fixed
point.
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5. Let Q be a quadratic form of maximal Witt index v on an
n-dimensional vector space V, n = 2v. Let U be a totally
isotropic subspace of V, (u1, u2,…, uv) a base for U. By
Theorem 6.11, there exists a base (u1,…, uv, w1,…, wv) for V
such that the matrix of B relative to this base is

1v the v × v unit matrix. Show that (u1,…, uv, w′1,…, w′v) is a
base such that the matrix of B relative to this base is (33) if
and only if w′i = wi + vi where vi U and B(ui, vj) = − B(uj,
vi), 1 ≤ i, j ≤ n. Note that this is equivalent to: vi = ∑sijuj
where S = (sij) is skew symmetric.

6. Let Q, V, and U be as in exercise 5. Let GU be the subgroup
of O(V, Q) of η which fix every u U. Show that GU is
isomorphic to the additive group of n × n skew symmetric
matrices with entries in F and hence that GU is abelian. Show
that GU ⊂ O+(V, Q).

7. Let Q, V, U, (u1,…, uv), (w1,…, wv) be as in exercise 5 and
put W = Σ Fwi. Let HU,V be the subgroup of orthogonal
transformations such that η(U) = U and η(W) = W. Show that
HU,W ≅ GLv(F), the group of v × v invertible matrices with
entries in F.

8. Use the same notations as in exercise 7. Let η GU as
defined in exercise 6. Determine the subspace V1 of vectors
fixed under η. Show that there exist η such that V1 = U if and
only if v is even, and then n is divisible by four.

6.6 THE THEOREM OF CARTAN-DIEUDONNE
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E. Cartan has proved for quadratic forms over the reals or
complexes that any orthogonal transformation is a product of
at most n symmetries, where n is the dimensionality of the
underlying vector space. This result was generalized by
Dieudonné to quadratic forms over arbitrary base fields. We
shall prove first a cheap version of this theorem, namely:

THEOREM 6.12. Any orthogonal transformation is a product
of symmetries.

Proof. Let η be orthogonal and let u be a vector with Q(u) ≠ 0.
As in the proof of Witt’s cancellation theorem, there exists a
symmetry Sw, w = u + εηu, such that η′u = −εu for η′ = Swη
and ε either 1 or − 1. Then η′ stabilizes Fu⊥, which is a
non-degenerate subspace of dimensionality n − 1. Using
induction on the dimensionality we see that the restriction
η′|Fu⊥ = Sw1Sw2 ··· Swk where Swi is the symmetry in Fu⊥

determined by wi Fu⊥. Then Sw1 = Swi|Fu⊥, and since u ⊥
wi, Sw1 fixes u. Then η″ ≡ SwkSwk − 1 ··· Sw1η′ is the identity
on Fu⊥ since (Sw1Sw2 ··· Swk)− 1 = Swk Swk − 1 ··· Sw1 (by Sw

2

= 1). Also η″u = η′u = ± u. If
η″u = u, η″ = 1, and if η″u = − u, then η″ = Su. In either case η′
is a product of symmetries, hence η = Swη′ is such a product.
□

Before giving the proof of the more precise
Cartan–Dieudonné theorem we note a result which we have
previously stated in an exercise (exercise 1, p. 366). If η is
orthogonal the subspace V1 of fixed points under η is the
orthogonal complement of the range of 1 − η. This means that
ηx = x if and only if x⊥(1 − η)y for all y. Now ηx = x if and
only if η−1x = x and hence if and only if η′x = x. Since B is
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non-degenerate this holds if and only if B((1 − η′)x, y) = 0 for
all y. Since B((1 − η′)x, y) = B(x, (1 − η)y) the result is clear.

We have called a linear tranformation T unipotent if T − 1 = Z
is nilpotent. We now note that this condition implies that det
T (the determinant of any matrix of T) = 1. This can be seen
by using the Jordan canonical matrix of T as on p. 199.
However, we can also see it in the following way, which is
more elementary. We observe first that T has a non-zero fixed
point u. (Take any v ≠ 0 and let u be the last non-zero vector
in the sequence v, Zv, Z2v,…,) Then Fu is stabilized by T, and
we have the induced linear transformation T in V = V/Fu. This
is unipotent, so, by induction on the dimensionality, we have,
det T = 1. Now if we compute the matrix of T relative to a
base (u1,u2,…, un) where u1 = u and (u2 + Fu,…, un + Fu) is
a base for V we see that det T = 1. In particular this result
shows that any unipotent orthogonal transformation is a
rotation.

We shall now give the proof of the

THEOREM OF CARTAN-DIEUDONNÉ. If dim V = n, then
any orthogonal transformation n of V is a product of ≤ n
symmetries.

Proof. The proof we shall give is due to Artin. We observe
first that the result holds if the subspace V1 of η-fixed points
is not totally isotropic. Then V1 contains a vector u such that
Q(u) ≠ 0 and η stabilizes Fu⊥. Hence using induction on n, we
may assume η|Fu⊥ is a product of ≤ n − 1 symmetries defined
by elements of Fu⊥. It follows that η is a product of ≤ n − 1
symmetries. We observe next that the result holds if there
exists a u with Q(u) ≠ 0 and Q(u − ηu) ≠ 0. Then, as in the
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proof of Theorem 6.12 (or of Witt’s cancellation theorem),
we have an Sw such that η′ = Swη fixes u. Then η′ is a product
of ≤ n − 1 symmetries and η = Swη′ is a product of ≤ n
symmetries. Next we dispose of the two dimensional case.
This is clear by what we have just proved if Q is anisotropic.
Hence we may assume V is a hyperbolic plane. Then we have
seen that we have a hyperbolic base (u, v) for V and either n
maps u → au, v → a− 1v, a F or u → av, v → a− 1u
(Theorem 6.10, p. 365). In the first case we
may assume a ≠ 1, since otherwise η = 1 and the result is
trivial. Then if w = u + v, w − ηw = (1 − a)u + (1 − a− 1)v
satisfies Q(w) ≠ 0, Q(w − ηw) ≠ 0, and so the result holds as
before. On the other hand, if ηu = av and ηv = a− 1u, then w =
u + av is fixed by η and Q(w) ≠ 0. Hence the result holds by
our first observation.

We now know that the result holds in all cases with the
possible exception of the following one: dim V ≥ 3, the
subspace V1 of η-fixed points is totally isotropic, and Q(u −
ηu) = 0 for every u satisfying Q(u) ≠ 0. We now show that
dim V ≥ 3 and the last condition imply that Q(u − ηu) = 0 for
every u. It suffices to prove this for the w ≠ 0 with Q(w) = 0.
Consider Fw⊥. This is an (n − 1)-dimensional space, and
since n ≥ 3, n − 1 > [n/2], so Fw⊥ is not totally isotropic.
Hence there is a vector u ≠ 0 such that u ⊥ w and Q(u) ≠ 0.
Then also (w ± u) ⊥ w and Q(w ± u) = Q(u) ≠ 0. Hence if ζ =
1 − η, then we have the three equations Q(ζu) = 0, Q(ζw + ζu)
= 0, Q(ζw − ζu) = 0. These equations imply Q(ζw) = Q(w −
ηw) = 0. Hence this holds for all vectors in V and so we see
that (1 − η)V is a totally isotropic subspace of V. Moreover,
we have seen that V1 = ((1 − η)V)⊥ and hence (1 − η)V = V1

⊥.
Since V1 and (1 − η)V are totally isotropic V1 ⊂ V1

⊥ = (1 −
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η)V and (1 − η)V ⊂ ((1 − η)V)⊥ = V1. Thus V1 = (1 − η)V, so
if x is any vector then (1 − η)2x = 0. Then η is unipotent and
hence η is a rotation. Also, since n = dim V1 + dim V1

⊥ and
V1

⊥ = (1 − η)V = V1, n = 2 dim V1 and V is even dimensional.

We can now quickly finish the proof for η as in the last
paragraph. We simply form η′ = Swη where Sw is any
symmetry. Then η′ is improper and hence this transformation
is a product of k ≤ n symmetries. Since any symmetry is
improper, k is odd, and since n is even, k ≤ n − 1. Then η =
Swη′ is a product of ≤ n symmetries. □

The Cartan-Dieudonné theorem offers a quick dividend: it can
be used to prove that any rotation in an odd dimensional
vector space and any improper orthogonal transformation in
an even dimensional space has a non-zero fixed point. These
results have been indicated before to be consequences of
Cayley’s parametrization of orthogonal transformations by
skew linear transformations (exercise 3 and 4, p. 370). To
prove the results using the Cartan-Dieudonné theorem we
observe first that the well-known dimensionality formula of
linear algebra, dim (U1 ∩ U2) = dim U1 + dim U2 − dim (U1
+ U2) for subspaces of a vector space V, can be used to prove
by induction on k that the intersection of k hyperplanes (=(n −
1)-dimensional subspaces) has dimensionality ≥n − k. Now
suppose η = Su1Su2 ··· Suk, Sul the symmetry determined by
the vector ui. Since Sul has a hyperplane of fixed points and
the intersection of these hyperplanes is a set of fixed points
for η, we see that η has a non-zero fixed point if
η is a product of k ≤ n − 1 symmetries. Since any symmetry is
an improper orthogonal transformation, it is clear that a
product of k symmetries is proper or improper according as k
is even or odd. Hence it follows from the Cartan-Dieudonné
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theorem that any rotation is a product of an even number ≤ n
of symmetries and any improper orthogonal transformation is
a product of an odd number ≤ n of symmetries. Thus any
rotation in an odd dimensional space and any improper
orthogonal transformation in an even dimensional space is a
product of k ≤ n − 1 symmetries and so has a non-zero fixed
point.

Let V1 be the set of fixed points of the orthogonal
transformation η. Then the argument we have used shows that
if η is a product of k symmetries then dim V1 ≥ n − k. Since
dim V1 = n − r where r is the rank of 1 − n (= dim (1 − η)V)
we see that η can not be written as a product of fewer than r
symmetries if r is the rank of 1 − η. Can it be written as a
product of r symmetries? It has been shown by Scherk that
the answer is generally “yes”. The exact result is that if r is
the rank of 1 − η, then η can be written as a product of r
symmetries unless 1 − η is skew relative to the bilinear form
B, in which case the minimum number of symmetries
required for η is r + 2.4

Another important consequence of the Cartan-Dieudonné
theorem or even of the weaker Theorem 6.12 is

THEOREM 6.13. If dim V ≥ 3, then the commutator group
(O(V, Q), O(V, Q)) coincides with (O+(V, Q), O+(V, Q)).

Proof. We observe that (O(V, Q), O(V, Q)) is generated by the
commutators Su

− 1Sv
− 1SuSv = (SuSv)2 of symmetries Su, Sv.

For, since the conjugate ηSη
− 1 = S?(u) it is clear that the

subgroup generated by all (SuSv)2 is a normal subgroup O′(V,
Q) of O(V, Q). The factor group is generated by the cosets
SuO′(V, Q). Since these generators commute, the group O(V,
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Q)/O′(V, Q) is commutative. Hence O′(V, Q) ⊃ (O(V, Q),
O(V, Q)). On the other hand, it is clear from the definition of
the commutator subgroup that the reverse inequality holds.
Hence O′(V, Q) = (O(V, Q), O(V, Q)). Our result will now
follow if we can show that any (SuSv)2 is a product of
commutators of rotations. If n = dim V is odd, the linear
transformation − 1 is an improper orthogonal transformation
contained in the center of O(V, Q). Then − Su = (− 1)Su is a
rotation and the commutator of Su and Sv coincides with the
commutator of the two rotations −Su, −Sv. We may now
assume n even and so n ≥ 4. In this case we claim that there
exists a vector w with Q(w) ≠ 0 in U⊥, U = Fu + Fv.
Otherwise U⊥ is totally isotropic, so U⊥ ⊂ U⊥⊥ = U. Since
dim U⊥ = n − dim U ≥ n − 2 ≥ 2,
we have U = U⊥ totally isotropic, contrary to the fact that U
contains the vectors u and v and Q(u) ≠ 0, Q(v) ≠ 0. Now
choose w U⊥ with Q(w) ≠ 0. Then SuSwSu

− 1 = SSuw = Sw so
SuSw = SwSu. Similarly, Sv and Sw commute. It follows that
the commutator of Su and Sv coincides with the commutator
of the two rotations SuSw and SvSw.

6.7 STRUCTURE OF THE GENERAL LINEAR GROUP
GLn(F)

In the remainder of this chapter we shall study the structure of
the “classical” geometric groups. By these we mean the
general linear group GLn(F) defined to be the group of
bijective linear transformations of an n-dimensional vector
space V over a field F, the orthogonal groups in V defined by
non-degenerate quadratic forms, and the symplectic group,
which is defined as the group of isometries of a vector space
equipped with a metric given by a non-degenerate alternate
bilinear form. The groups GLn(F) and the symplectic groups
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over F for F = /(p), p a prime, were first studied by Camille
Jordan in his Traité des Substitutions (1870). The
generalization of these results to the case of an arbitrary finite
base field and the study of orthogonal and unitary groups over
finite fields was considered by Dickson in his book, Linear
Groups with an Exposition of Galois Field Theory, which
appeared in 1900. Slightly later (in 1901) Dickson initiated
the study of the classical groups over an arbitrary base field F
and determined the structure of GLn(F), of the symplectic
group Spn(F), and of certain orthogonal groups.5 A simple
proof of the results on GLn(F) was given by Iwasawa in
1941.6 In his paper Iwasawa also sketched a proof of
simplicity of the projective symplectic groups for arbitrary
base fields. In 1948 Dieudonné in his monograph Sur les
Groupes Classiques proved the surprising result that the
structure of orthogonal groups for arbitrary base fields differs
sharply in the two cases: positive Witt index and Witt index 0
(that is, anisotropic forms). In the first case there is a general
theorem for n ≥ 5: the factor group of the commutator group
with respect to its center is simple. This is so for any base
field. On the other hand, for anisotropic forms the structure
depends on the base field and there exist cases in which the
commutator group modulo its center is not simple. In the case
of a finite field the Witt index is always positive if n ≥ 3. The
classical groups for finite fields provided the first examples
other than the alternating groups, of finite non-abelian simple
groups.

We shall begin with GLn(F) the group of bijective linear
transformations of an n-dimensional vector space V over F.
Using the correspondence between
linear transformations and their matrices relative to a base for
V we can identify GLn(F) with the group of invertible n × n
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matrices with entries in F. To begin with we shall adopt the
matrix point of view in studying the group GLn(F). We have
the determinant homomorphism a → det a of GLn(F) into the
multiplicative group F* of non-zero elements of F. The kernel
of this homomorphism is the unimodular group (or special
linear group) SLn(F) of matrices of determinant 1. The main
result we shall obtain is that except in the cases in which n = 2
and F is the field of two or three elements, SLn(F) modulo its
center is a simple group. We determine first a set of
generators for SLn(F).

LEMMA 1. SLn(F) is generated by the elementary matrices
Tij(b) = 1 + beij, i ≠ j,b F.

(Here, as usual eij is the matrix whose sole non-zero entry is a
1 in the (i,j)-position. We have eijekl = δ jkeil.)

Proof. We shall prove the result more generally in the case in
which the field F is replaced by a Euclidean domain D. It is
clear that for any b, i ≠ j, Tij(b) has determinant 1 and we shall
show that any A Mn(D) such that det A = 1, is a product of
matrices Tij(b). The proof of Theorem 3.8 (p. 182) shows that
there exist matrices P and Q which are products of matrices
of the form Tij(b) and of matrices Pij = 1 + eij + eji − eii − ejj
such that PAQ = diag{d1, d2,…, dn}. Since

we can replace the Pij by Tij(b) and by matrices 1 − 2eii.
Moreover, since Tij(b)(1 − 2eii) = (1 − 2eii)Tij(− b), Tji(b)(1 −
2eii) = (1 − 2eii)Tji(−b), and 1 −2eii commutes with every
Tjk(b), j, k ≠ i, we can gather the factors of the form 1 − 2en
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on the left-hand side of P and on the right-hand side of Q.
Multiplying by the inverses of these factors we modify the
diagonal matrix to obtain another one. Thus we may assume
that P and Q are products of matrices of the form Tij(b). This
reduces the problem to A = diag{d1, d2,…, dn}. The condition
det A = 1 gives d1d2 … dn = 1, and so every di is invertible.
Now by a sequence of elementary transformations, which
should be obvious, we can pass in succession from

This implies that diag{d− 1, d} is a product of elementary
matrices of the form Tij(b), i,j = 1, 2, i ≠ j. Clearly we have
the same result for diag{d1

− 1, d1 , 1,…, 1}. Right
multiplication of A = diag{d1, d2,…, dn} by this gives diag{1,
d1d2, d3,…, dn}. Repeating this process we eventually obtain
diag{1, 1,…, 1, d1 …, dn} = 1, which completes the proof.

We prove next

LEMMA 2. Except in the cases n = 2 and F the field of two or
three elements, SLn(F), n ≥ 2, is its own commutator group.

Proof. It suffices to show that the generators Tij(b) are
contained in the commutator group. If n ≥ 3 choose k ≠ i, j.
Then the result follows from the calculation:
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If n = 2 we have

If F has more than three elements we can choose d ≠ 0 so that
d2 ≠ 1 and then choose c = (d2 − 1)− 1b for any given b. Then
(35) shows that T12(b) is in the commutator group of SL2(F).
Similarly, T21(b) is in the commutator group.

Since GLn(F)/SLn(F) ≅ F* is abelian, SLn(F) contains the
commutator group GLn(F)′ of GLn(F). On the other hand,
Lemma 2 implies that SLn(F) = SLn(F)′ ⊂ GLn(F)′. Hence
SLn(F) = GLn(F)′. Since every Tij(1) = 1 + eij, i ≠ j, is in
SLn(F) it is clear that a matrix which commutes with every
element of SLn(F) commutes with every matrix. Hence it has
the form d1. It follows that the center C of SLn(F) is F*1
SLn(F) and this is the finite set of matrices d1 with dn = 1.

We denote the factor group SLn(F)/C as PSLn(F), the
projective unimodular group, and we shall show that this
group is simple if n ≥ 2 except in the two cases n = 2, |F| = 2
or 3. The proof we shall give of this result is due to Iwasawa
and is based on a natural action of GLn(F) on a certain set Pn
− 1(F), called the (n − 1)-dimensional projective space over F.
This is simply the set of one dimensional subspaces Fx, x ≠ 0,
of the n-dimensional vector space V over F. If T is a bijective
linear transformation of V we define an action of T on Fx by
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T(Fx) = F(Tx). In this way GLn(F) acts on Pn − 1(F). The
kernel of this
action consists of the T such that F(Tx) = Fx for all x ≠ 0 in V.
We claim that this is the set of T = a1, a ≠ 0. The condition
that T is in the kernel is equivalent to Tx = axx, where ax
F*, for every x ≠ 0 in V If b ≠ 0 in F we have T(bx) = abx(bx)
and T(bx) = bTx = baxx = ax(bx). Hence abx = ax for b ≠ 0.
Then T = a1, a = ax, if dim V = 1. Now suppose dim V ≥ 2
and let (e1, e2,…, en) be a base for V over F. We have Tei =
aeiei and if i ≠ j, T(ei + ej) = ael + ej(ei + ej). Since T(ei + ej) =
Tei + Tej = aelei + aejej, ael + ej = ael = aej. It follows again
that T = a1, a ≠ 0. Conversely, any map of this form acts as
the identity on Pn − 1(F). Thus if we put PGLn(F) =
GLn(F)/F*1 then we have a faithful action of this group on Pn
− 1(F) in which the coset [T] = F*T acts on Fx by [T](Fx) =
F(Tx). The group PGLn(F) is called the projective group. This
contains the subgroup F*SLn(F)/F*1 ≅ SLn(F)/(F*1
SLn(F)) which we have called the projective unimodular
group. This also acts faithfully on Pn − 1(F).

We shall now remind the reader of some concepts and results
on group actions which were introduced in section 1.12 and
which will be useful in this simplicity proof and in the
subsequent ones that will be given in this chapter. We recall
that if a group G acts on a set S, then the action is called
transitive if, given any x1,x2 S, there exists a g G such
that gx1 = x2. If k is a positive integer then the action of G on
S is called k-fold transitive if, given any two ordered k-tuples
of distinct elements (x1, x2,…, xk) and (y1 y2,…, yk) of
elements of S, there exists a g G such that gxi = yi 1 ≤ i ≤ k.
Clearly 1-fold transitivity is the same thing as transitivity. The
action of G is primitive if the only partitions of S which are
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stabilized by the induced action of G on the power set (S)
are the two trivial ones: (1) S alone, (2) S = {x}, x S.
Imprimitivity is equivalent to the existence of a proper subset
A of S with at least two elements such that for any g G
either gA = A or gA A = ∅. We recall also the criterion: if
G acts transitively on S then G acts primitively if and only if
Stab x, for any x in S, is a maximal subgroup of G (Theorem
1.12, p. 77).

We now prove the following

LEMMA 3. (1) If the action of a group G on a set S is 2-fold
transitive, then it is primitive. (2) If G acts primitively on S
and H G is not contained in the kernel, then H acts
transitively on S. (3) If a subgroup H acts transitively on S,
then G = H Stab x for any x S, where Stab x denotes the
stabilizer of x in G.

Proof. (1) Let A be a proper subset of S containing distinct
elements, x, y. Then if the action of G on S is 2-fold transitive,
then there is a g G such that gx = x and gy A. Then gA ≠
A and gA A contains x, so gA A ≠ ∅. Hence the action
of G is primitive. (2) We have the partition of S into the orbits
of H. Since H G, g(Hx) = H(gx) for any g G, x S.
Hence G stabilizes the partition of S into the orbits of H.
Since G acts primitively and H is not contained in the kernel
of the action of G we have just one H-orbit. Thus H acts
transitively on S. (3) Let H be a transitive subgroup of G, x an
element of S, g an element of G. Then there exists an h H
such that hx = gx. Then h− 1g Stab x and g H Stab x.

The basic simplicity criterion we shall use is
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LEMMA 4. Let G act on a set S and let K be the kernel of the
action. Then G/K is simple if G satisfies the following
conditions.

1. G acts primitively on S.

2. G = G′, the commutator group of G.

3. There exists an x S such that Stab x contains a normal
abelian subgroup Ax such that G is generated by the
conjugates gAxg− 1, g G.

Proof. Let H G, H K. Then H is transitive on S by
Lemma 3(2). Let x S satisfy condition 3. Then, by Lemma
3(3), G = H Stab x. Consider G* = HAx. This is normal in G
and so it contains every gAxg− 1. Then G* = G by condition 3.
Thus G = HAx, and G/H ≅ Ax/(H Ax) is abelian. Hence H
contains G′ = G. Thus H = G. This implies that G/K is simple.

To apply this to PSLn(F) we shall need Lemma 2 and two
other results which we proceed to establish.

LEMMA 5. SLn(F) is doubly transitive on the projective
space Pn − 1(F) if n ≥ 2.

Proof. We have to show that if Fx1 ≠ Fx2 and Fy1 ≠ Fy2
where xi ≠ 0, yi ≠ 0, then there exists a linear transformation T
of determinant 1 such that Tx1 = a1y1 ≠ 0, Tx2 = a2y2 ≠ 0, ai

F. The given conditions imply that x1, x2 and y1, y2 are
linearly independent. We can choose a base (x1, x2,…, xn) and
write y1 = ∑ a1jxj, y2 = ∑ a2jxj. If n > 2 we can add − 2 rows
to the matrix
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to obtain a matrix (aij) of determinant 1. Let yi = ∑ aijxj, 1 ≤ i
≤ n, and let T be the linear transformation such that xi → yi.
Then T satisfies the required conditions. If n = 2, then det(aij)
= a ≠ 0 if i, j = 1, 2, so if we take T to be the linear
transformation such that x1 → y1, x2 → a− 1y2 the conditions
will be satisfied.

Let (e1, e2,.. ., en) be a base for V and consider Stab e1 in
SLn(F). This is the set of linear transformations whose
matrices have the form

where a11 det An − 1 = 1. Mapping such a transformation on
the matrix An − 1 is a homomorphism whose kernel Ae1 is the
set of linear transformations with matrices

Multiplication of these matrices shows that Ae1 is abelian.
Hence this is an abelian normal subgroup of Stab e1. It is
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clear that Ae1 contains all the linear transformations with
matrices T21(b), b F*. The formulas

and the fact that SLn(F) is generated by the elements Tij(b)
implies that SLn(F) is generated by the conjugates of Ae1. We
state our results on Stab e1 as

LEMMA 6. Let Stab e1 be the stabilizer of e1 ≠ 0 in SLn(F).
Then Stab e1 contains an abelian normal subgroup Ae1 whose
conjugates generate SLn(F).

Lemmas 2, 5, and 6 show that the group SLn(F), except in the
cases n = 2, |F| = 2 or 3, fulfills the requirements for
simplicity given in Lemma 4. Hence we have our main result:

THEOREM 6.14. PSLn(F) is simple for n ≥ 2 except in the
cases n = 2, |F|= 2 or 3.

We now suppose that F is finite and we wish to determine the
order of the group PSLn(F). Let |F| = q = pr where p is the
characteristic of F. We shall first count the number of
elements in GLn(F). Let (e1, e2,…, en) be a base. Then if
(f1, f2,…,fn) is another base we have one and only one linear
transformation sending ei → fi, 1 ≤ i ≤ n, and all bijective
linear transformations are obtained in this way. Hence
|GLn(F)| is the number of bases for V. Now the first member
f1 of a base can be taken to be any non-zero vector of V. Since
the vectors of V can be written in one and only one way in the
form ∑n

1 aiei there are qn of these. Hence we have qn – 1
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choices for f1 Once this choice has been made, then f2 can be
taken to be any vector which is not a multiple of f1. There are
therefore qn – q choices for f2. To choose f3, we have to avoid
the q2 linear combinations a1f1 + a2f2 of f1 and f2. Hence we
have qn – q2 choices for f3. Continuing in this way we arrive
at

as |GLn(F)|. We have the homomorphism A → det A of
GLn(F) into F*. Since this is surjective the image has |F*| = q
– 1 elements. The kernel is SLn(F). Hence

Finally we want to determine |PSLn(F)| = |SLn(F)|/|C|. Here
|C| is the number of solutions in F* of xn = 1. Since = q – 1
we have xq−1 = 1 for every x F*. Hence |C| is the number of
solutions of xd = 1 where d = (n, q – 1). Since F* is a cyclic
group the number of these elements is d. Hence we have

where d = (n, q – 1).

EXERCISES

1. Determine the structure of PSL2(F) in the cases |F| = 2 and
|F| = 3.

2. Show that PSLn(F) is the commutator group of PGLn(F).
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3. Show that GLn(F) SLn(F) C 1 is a normal series,
all of whose factors except SLn(F)/C are abelian.

4. A linear transformation T is called a transvection if there
exists a hyperplane U such that T|U = 1u and for every x, Tx –
x U. Show that the linear transformations corresponding to
the matrices Tij(b), i ≠ j, b F are transvections. Show that
any transvection τ has the form x → x + f(x)u where f(x) is a
linear function and u is a vector such that f(u) = 0. Hence
show that there exists a base (e1, e2,…, en) for V such that the
matrix of τ is T12(1).

5. Let |F| = q = pr. Show that the group of upper triangular
matrices of the form

form a Sylow p-subgroup of GLn(F) and of SLn(F).

6. Determine the normalizer N in GLn(F) of the subgroup H
of diagonal matrices.

Show that N/H ≅ Sn the symmetric group on n elements.

6.8 STRUCTURE OF ORTHOGONAL GROUPS

In this section we assume that Q is a non-degenerate quadratic
form of positive Witt index on the vector space V. Assume
first that dim V = 2, so V is a hyperbolic plane. We have seen
in Theorem 6.10 (p. 365) and its proof that if (u, v) is a
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hyperbolic pair in V, then the rotations of V are the linear
maps ηa, a F*, such that u → au, v → a−1v. The map a →
ηa is an isomorphism of the multiplicative group F* with the
rotation group O+(V, Q). The improper orthogonal
transformations are symmetries and have the form τb where
this is the linear map sending u → bv, v → b−1u. Checking
for the base (u, v) we see that τbηaτb

− 1 = ηa
− 1 Since also τb

2

= 1, O(V, Q) = O+(V, Q) O+(V, Q)τb is isomorphic to a
semi-direct product of a cyclic group of order two and F* (see
exercise 9, p. 79).

From now on we assume dim V ≥ 3. Let x be an isotropic
vector. We proceed to define a certain subgroup Hx of Stab x
which will play the role of the subgroup Ax in the simplicity
criterion of Lemma 4 of the last section. Let u Fx⊥ and
consider the map

This is a linear map, and since x Fx⊥ it sends Fx⊥ into
itself. Moreover, we have

and for any u1, u2 Fx⊥,
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Since x,0 = 1 on Fx⊥ it follows that x,u is invertible with

x,-u = x,u
−1. Hence x,u is an isometry of Fx⊥ onto itself. By

Witt's extension theorem this can be extended to an
orthogonal transformation of V. Independently of Witt's
theorem we shall now obtain explicitly such an extension and
show that it is unique. We choose a vector y such that B(x, y)
= 1 and Q(y) = 0 (as we have done a number of times before).
Then V = Fx⊥ ⊕ Fy = Fx + Fy + U where U = (Fx + Fy)⊥.
Hence Fx⊥ = U + Fx. If u Fx⊥ we can write u = ax + u′, u′

U. Since x,ax = 1, by (36), we have x,u = x,u', so we
may assume u U. We now define ρx,u to be the linear

transformation on V which coincides with x,u on Fx⊥ and
maps

where we hope to determine a, b, and v so that x,u O(V,
Q). Since V= Fx⊥ ⊕ Fy the conditions for this are:

The second of these conditions can be replaced by the two
conditions
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Altogether we obtain the three conditions:

These have the unique solution b = 1, a = − Q(v), v = − u, that
is, b = 1, a = − Q(u),v = − u. Hence we have as definition of
ρx,u,

where y satisfies B(x, y) = 1, Q(y) = 0 and u (Fx + Fy)⊥.7

The fact that ρx,u is the only extension of ρx,u to an orthogonal
transformation is easily seen. In the first place, once y is
chosen (and we need not change this), then the normalization
of U so that U U is unique since Fx⊥ = Fx ⊕ U. Then our
analysis shows that the form (37) for ρx,u is unique. The
uniqueness of the extension has some important consequences
which we shall now note.

We have seen that if u1 and u2 Fx⊥, then x,u1+u2 = x,u1

x,u2. Now it is clear that ρx,u1 x,u2 is an orthogonal

extension of x,u1 x,u2 = x,u1+u2. Since ρx,u1+u2 is also an

orthogonal extension of x,u1+u2 the uniqueness of the
extension gives,
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It is clear also that ρx,u = 1 if and only if x,u = 1 on Fx⊥. The

definition (36) of x,u shows that this holds if and only if u
rad Fx⊥. Since this is Fx we have

Similarly we see that if η O(V, Q) then

We have seen that there is no loss in generality in choosing u
U = (Fx + Fy)⊥. With this choice of u we conclude from

(39) that ρx,u = 1 ρ u = 0. In view of (38) it is clear that the
map u → ρx,u is a monomorphism of the additive group of U
into O(V, Q). We denote the image {ρx,u} as Hx. Since it is

clear from the definition of x,u that ax,u = x,au, a F*,
we have also

This implies that Hax = Hx for any a F*. It is clear that Hx
is an abelian subgroup of O(V, Q). Also since ρx,ux = x + B(x,
u)x = x we see that Hx ⊂ Stab x. Moreover, the formula (40)
for η Stab x becomes ηρx,uη−1 = ρx,ηu and this shows that
Hx Stab x. A part of our results can be stated as
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LEMMA 1. Let x be an isotropic vector in V and let Hx be the
set of linear transformations of V defined by (37), where u
ranges over U = (Fx + Fy)⊥, y a vector such that B(x, y) = 1,
Q(y) = 0. Then Hx is a normal abelian subgroup of Stab x (in
O(V, Q)) and u → ρx,u is an isomorphism of the additive
group of U with Hx.

Another point which is worth noticing is that the
transformations ρx,u are unipotent. To see this we put vx,u =
ρx,u – 1. Then the definition of ρx,u gives vx,ux= 0, vx,uz Fx
if z Fx⊥ = Fx + U and vx,uy Fx⊥. Hence v2

x,uz = 0 =
v3

x,uy. Thus v3
x,u = 0 and ρx,u = 1 + vx,u is unipotent. We have

noted also that a unipotent orthogonal transformation is
necessarily a rotation; hence Hx ⊂ O+(V, Q).

We shall now introduce the group Ω, which is defined to be
the subgroup of 0(V, Q) generated by all the subgroups Hx, x
isotropic. If η is orthogonal then (40) implies that ηHxη−1 =
Hηx. It follows that Ω is a normal subgroup of
O(V, Q). We shall show that Ω coincides with the commutator
group of O(V, Q) and we shall see that except for the case n =
4, Witt index v = 2, Ω modulo its center is a simple group.
The proof we shall give is due to Tamagawa8 and follows
Iwasawa's method which is based on the simplicity criterion
of section 6.7. In applying this we shall use an action of Ω on
a certain quadric cone in the projective space Pn−1(F). In the
vector space V we define the set C of vectors x such that Q(x)
= 0. If (e1, e2,…, en) is a base for V and x = ∑ aiei, then the
condition Q(x) = 0 is equivalent to the quadratic equation ∑
bijaiaj = 0, bij = B(ei, ej), for the coordinates (ai) of x. Thus C
is a quadric cone in V. We let PC be the corresponding
quadric cone in Pn−1(F):PC is the set of one dimensional
subspaces Fx determined by the isotropic vectors x V. If η
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O(V, Q), η permutes the points of C and hence we have an
action Fx → F(ηx) of O(V, Q) on PC. We proceed to show
that the kernel of this action is {1, – 1}. First we prove

LEMMA 2. The center of O(V, Q) is {1, – 1}.

Proof. Let γ belong to the center and let Su be the symmetry
determined by the non-isotropic vector u. Since Fu is the set
of vectors satisfying Sux = – x, and Su(γu) = γ(Suu) = – γu, γu

Fu. Since γ is orthogonal we have γu = ±u for every
non-isotropic vector u. Let (u1, u2,…, un) be an orthogonal
base for V. Then we have γui = where εi = ± 1. Let i ≠ j and
suppose first that ui + Uj is not isotropic. Then we have y(ui +
uj) = ± (ui + uj) and also γ(ui + uj) = εui + εuj. It follows that
εi = εj. Now suppose ui + uj is isotropic. Then we choose k ≠
i, j and consider the vector u = ui + uj + uk. This is not
isotropic so we have

Again we obtain εi = εi. Thus γui = εui for all i where ε = ±1.
Since the ui form a base it follows that γ = ± 1.

Since 1 and – 1 produce the identity mapping on PC, it is
clear that these maps are contained in the kernel of the action
of O(V, Q) on PC. We claim that {1, – 1} is the kernel of this
action. This follows from

LEMMA 3. If η O(V, Q) satisfies ηx Fx for every
isotropic x, then η = ±1.
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Proof. Let (u, v) be a hyperbolic pair and let z (Fu + Fv;)⊥.
Then x = z − Q(z)u + v; is isotropic since Q(x) = Q(z) −
Q(z)B(u, v) = Q(z) − Q(z) = 0. Thus we have ηu = cuu, ηv =
cuu, ηx = cxx where cu, cv, and cx are non-zero elements of F.
Then

Since ηz (Fu + Fv)⊥ it follows that ηz = cxz and cx = cu =
cv. Hence, if c = cx we have η = cl. Since n is orthogonal, c −
± 1.

If we restrict the action of O(V, Q) on PC to Q we obtain an
action of Ω on PC whose kernel is Ω {1, − 1}. Since Ω ⊂
O+(V, Q) it is clear that if the dimensionality n of V is odd
then − 1 Ω. In this case Ω acts faithfully on PC. We now
study more closely the action of Ω on PC and we prove first

LEMMA 4. Let Tx = C Fx? and let PTx = {Fy ≠ 0|y Tx}.
Then Hx acts transitively on the complement of PTx in PC.

Proof. What this means is that if y and z are isotropic vectors
not orthogonal to x, then there exists a transformation ρx,u
Hx such that ρx,uy Fz. We may assume that B(y, x)= 1 = B(z,
x). We have V = Fy + Fx⊥ = Fy ⊕ Fx ⊕ U where U = (Fx +
Fy)⊥. Then z = ay + bx + u, u U. Since B(z, x) = 1, a = 1
and since Q(z) = 0 we have b + Q(z) = 0. Hence z = y − Q(u)x
+ u. Then ρx, − uy = z by the definition of ρx,u.

A pair of points (Fx, Fy) of the set PC will be called
hyperbolic if B(x, y) ≠ 0. In this case we may assume that (x,
y) is a hyperbolic pair of vectors of V. The preceding lemma
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shows that if (Fx, Fy) and (Fx, Fz) are hyperbolic, then there
exists an element of Ω which fixes Fx and sends Fy into Fz.
We now prove

LEMMA 5. Ω is transitive on PC and also on the set of
(ordered) hyperbolic pairs of points of PC.

Proof. Let Fx, Fy be distinct points of PC. We claim that
there exists a point Fz in PC such that (Fz, Fx) and (Fz, Fy)
are hyperbolic. Suppose first that (Fx, Fy) is hyperbolic so we
may assume (x, y) is a hyperbolic pair. Let u be a
non-isotropic vector in U = (Fx + Fy)⊥ and put z = x − Q(u)y
+ u. Then Q(z) = —Q(u)B(x, y) + Q(u) = 0, B(z, x) = —Q(u) ≠
0, and B(z, y) = 1, so Fz satisfies our requirement. Next
assume B(x, y) = 0. Since x and y are linearly independent
there is a linear function mapping x and y into 1. Hence there
is a z V such that B(x, z) = 1 = B(y, z). Subtracting a suitable
multiple of x from z we can arrange to have Q(z) = 0. Then
(Fz, Fx) and (Fz, Fy) are hyperbolic, so again we have the
required Fz. Having this we can apply Lemma 4 to obtain an
n Ω such that η(Fx) = Fy. This gives the transitivity of Ω on
PC. Now let (Fx, Fy) and (Fx′, Fy′) be hyperbolic pairs. Then
there exists η Ω such that η(Fx) = Fx′. Then (Fx′, η(Fy)) is a
hyperbolic pair. As we noted above there exists a η Ω such
that ζ(Fx′) = Fx′ and ζ(η(Fy)) = Fy′. Then ζη maps (Fx, Fy)
into (Fx′, Fy′), which proves the second statement.

We can now prove the main result for our purposes on the
action of Ω on PC:

LEMMA 6. Ω acts primitively on PC except when dim V = 4
and the Witt index v(Q) = 2.
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Proof. Suppose first that v(Q) = 1. Then any pair of distinct
points (Fx, Fy) of PC is hyperbolic and so, by Lemma 5, Ω is
2-fold transitive on PC. Then the action of Ω is primitive. We
now assume v ≥ 2, so omitting the case dim V = 4, v(Q) = 2,
we have dim V ≥ 5. Let S be one of the sets of a partition of
PC stabilized by Ω and containing more than one point.
Primitivity will follow if we can show that S = PC. Suppose
first that S contains a pair of distinct points Fx, Fy such that
B(x, y) = 0. Then we can find an isotropic vector z such that
B(x, z) = 1, B(y, z) = 0. We have V = (Fx + Fz) ⊕ U where U
= (Fx + Fz)⊥ is at least three dimensional and is not
degenerate. Since y U there exists a w U such that (y, w)
is a hyperbolic pair. We have dim U ≥ 3, and U contains
isotropic vectors. Hence Lemma 5 can be applied to the space
U (relative to the restriction of Q). This implies that there
exists an orthogonal transformation η which is a product of
ρu,v, u, v U, such that η(Fy) = Fw. Since x (Fu + Fv)⊥,
formula (37) shows that η(Fx) = Fx. Since Fx S we have ηS
= S, and since Fy S, Fw S. Thus Fy and Fw S, and (Fy,
Fw) is hyperbolic. We may therefore assume that S contains
two points Fx, Fy with (Fx, Fy) hyperbolic. Let Fz be any
point of PC ≠ Fx. We have seen above that there exists a
point Fw such that (Fx, Fw) and (Fz, Fw) are hyperbolic.
Applying Lemma 5 to the hyperbolic pairs (Fx, Fy) and (Fx,
Fw) we obtain η Ω such that η(Fx) = Fx and η(Fy) = Fw.
Then ηS = S, and Fw S since Fy S. Next we apply Lemma
5 to (Fx, Fw) and (Fz, Fw) to obtain ζ Ω such that ζ(Fx) =
Fz and ζ(Fw) = Fw. Since Fx, Fw S this implies ζS = S and
Fz S. Since Fz was arbitrary in the complement of Fx in PC
we see that S = PC.

The final lemma we shall need for the proof of the simplicity
theorem is
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LEMMA 7. The group Ω contains the commutator subgroup
(O(V, Q), O(V, Q)) of O(V, Q).

Proof. Let (x, y) be a hyperbolic pair and let u be a
non-isotropic vector. We claim that there exists a ρ Ω such
that ρu Fx + Fy. We note first that u1 = x + Q(u)y satisfies
Q(u1) = Q(u). Hence there exists an η O(V, Q) such that ηu1
= u. By Lemma 5, there exists a ρ Ω such that ρ(F(ηx)) = Fx
and p(F(ηy)) = Fy. Since u1 Fx + Fy, u = ηu1 η(Fx) +
η(Fy) and hence ρu pF(ηx) + ηF(ηy) = Fx + Fy as required.
This result implies that if Su is any symmetry, then there
exists a ρ Ω such that ρSuρ−1 = Su, where u' = ρu Fx +
Fy. Let Ox,y denote the subgroup of O(V, Q) generated by the
symmetries Su′, u′ Fx + Fy. Since the restriction of Su> to U
= (Fx + Fy)⊥ is the identity, it is clear that η′ → η′|Fx + Fy, η′

)Ox,y is an isomorphism of Ox,y with O(Fx + Fy, Q). This
maps the subgroup O+

x,y of Ox,y generated by the products of
pairs of symmetries determined by u' Fx + Fy onto O+(Fx +
Fy, Q). Now let ζ be any rotation in V and write ζ = Su1Su2 …
Su2k, ui non-isotropic. Then the result we proved shows that
there exist ρi Ω such that u'i = ρiui Fx + Fy. Then

Since Ω is a normal subgroup of O(V, Q) this relation implies
that ζ = ρSu1 … Su'2k where ρ Ω. Hence we have

Since we have seen earlier that Ω ⊂ O+(V, Q) we have
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Then O+(V, Q)/Ω ≅ O+
x,y/(O+

x,y Ω). Since O+
x,y ≅ O+(Fx

+ Fy, Q) and Fx + Fy is a hyperbolic plane, O+
x,y is abelian.

Hence O+(V, Q)/Ω is abelian and so

On the other hand, we have shown earlier (Theorem 6.13, p.
374) that (O(V, Q) O(V, Q)) = (O+(V, Q), O+(V, Q)). Hence

We are now ready to prove the main structure theorem for
orthogonal groups.

THEOREM 6.15 (Dickson-Dieudonne). Let Q be a
non-degenerate quadratic form of positive Witt index v on a
vector space V of n ≥ 3 dimensions. Then the factor group of
the commutator group of the orthogonal group O(V, Q) with
respect to its center is simple except in the cases n = 4, v = 2,
and n = 3, |F| = 3.

Proof. We shall show first that Ω = (O(V, Q), O(V, Q)) and
(Ω, Ω) = Ω. Since O(V, Q) ⊃ Ω (O(V, Q), O(V, Q)) the first
will follow from the second. To prove Ω = (Ω, Ω) it suffices
to show that every ρx,u (Ω, Ω) for x isotropic and u Fx⊥.
Choose y so that (x, y) is a hyperbolic pair, and let Ox,y be the
subgroup of O(V, Q) defined in the proof of Lemma 7. Then
Ox,y ≅ O(Fx + Fy, Q). For any a F* there is an ηa Ox,y
such that ηax = ax, ηay = a−1y, and a τ Ox,y such that τx = y,
τy = x. Then τ−1ηa

−1τηηa = η2
a (O(V, Q), O(V, Q)) ⊂ Ω. In
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considering ρx,u we may assume u U = (Fx + Fy)⊥ (see p.
383 for this and other results which we shall need on the
transformations ρx, u). We have

If |F| ≥ 4 we can choose a F* so that a2 ≠ 1. Then replacing
u by (a2 − 1)−1u we see that ρx, u is a commutator of elements
of Ω. Hence Ω = (Ω, Ω) = (O(V, Q, O(V, Q)) in this case.

Now assume |F| = 3. Taking into account the excluded cases,
we have n ≥ 4, and v = 1 if n = 4. Using the formula ρx,u1ρx,u2
= ρx, u1+u2 and the fact that U has an orthogonal base, it
suffices to show that every ρx,u, u non-isotropic in U, is
contained in (Ω, Ω). If n = 4 and v = 1, U is two dimensional
anisotropic, and so u can be supplemented to an orthogonal
base (u, v) for U. Since Q(u) = − Q(v) implies that U is
hyperbolic, we have either Q(u) = 1 = Q(v) or Q(u) = − 1 =
Q(v). If n ≥ 5, U is at least three dimensional and is
non-degenerate. The orthogonal complement Fu⊥ U of Fu
in U is at least two dimensional and non-degenerate. Hence
the restriction of Q to this space is universal and so again
there exists a vector v ⊥ u with Q(v) = Q(u). Then there exists
an orthogonal transformation τ such that τx = x, τu = − v, and
τv = u. Then τ2x = x, τ2u = − u, and τ2v = − v; hence

We now note that τ2 is contained in (O(V, Q), O(V, Q)). This
follows from a general result: if a group G is generated by
elements gi of order two then the square of any element of G
is in the commutator group. For, let = {gi} be a set of
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generators such that gi
2 = 1 and hence gi

− 1 = gi. Then if g =
g1g2 … gk,

where g' = g1 … gk−1. Then we can conclude by induction on
k that g2 (G, G). Since O(V, Q) is generated by symmetries
we see that τ2 (O(V, Q) O(V, Q)) ⊂ Ω. Hence ρx,u (Ω, Ω)
so again we have Ω = (Ω, Ω) = (O(V, Q), O(V, Q)).

We can now quickly complete the proof of Theorem 6.15 by
verifying the conditions of the simplicity criterion (Lemma 4,
p. 379) for Ω = (O(V, Q), O(V, Q)) We have seen that this
acts primitively on the projective quadric cone PC (Lemma 6)
and Ω = (Ω, Ω). Also for any Fx PC, Stab(Fx) contains the
abelian normal subgroup Hx. Since Ω is transitive on PC
(Lemma 5) any two Hx and Hy for isotropic x and y are
conjugate in Ω. Hence Ω, which is generated by all the Hx, is
generated by the conjugates of one of these subgroups. Thus
all the conditions of the simplicity criterion hold, and show
that Ω/K is simple for K the kernel of the action. Since K = Ω

{l, − l}by Lemma 3, the proof is complete.

The preceding theorem is the main result on the structure of
orthogonal groups. One may wonder whether the hypothesis
that Q is of positive Witt index is necessary to insure the
simplicity of PΩ = Ω/(Ω {1, −1}) and whether we need to
exclude the cases n = 4, v = 2, and n = 3, |F| = 3. That all of
these restrictions are needed to insure simplicity will be
indicated in the exercises. Another question which is natural
to raise is what is the intersection Ω {1, − 1}, or,
equivalently: is − 1 Ω. If n is odd then − 1 is improper, so
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that in this case − 1 . Ω. Then Ω is simple. If n is even it can
be shown that − 1 Ω if and only if the discriminant of the
bilinear form associated with Q is 1( = F*2). This can be
established by using Clifford algebras, which constitute an
important tool for studying orthogonal groups. This is shown
in section 4.8 of Volume II.

EXERCISES

1. Let F = ((x)) the field of formal power series ∑∞k=r akxk,
ak , r defined to be the field of fractions of [[x]] (see
exercise 7, p. 127). Call the order of such a power series r if
ar ≠ 0 and call it integral if the order r ≥ 0. Call the order of 0,
∞. Then

where ord denotes the order and u, v F. Show that the set I
of power series
of order ≥ 0 is a subring I of F, and that for any k > 0 the set
Pk of power series of order ≥ k is an ideal in I.

2. Let F be as in exercise 1 and let Q be the quadratic form
defined coordinate-wise by Q = ∑>1

nxi2. Then 0(V, Q) is
isomorphic to the group of matrices which are orthogonal in
the usual sense: AtA = 1. Show that this implies that A is
integral in the sense that A Mn(I). For k > 0 define Gk to be
the set of orthogonal matrices of the form 1 + B where B
Mn(Pk). Verify that Gk is a normal subgroup of the group of
orthogonal matrices and that Gk= 1. Prove that Gk/Gk+1 is
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abelian and that Gk Gk+1. Use this to prove that (0(V, Q)
O(V, Q)) modulo its center is not simple.

3. Show that Ω does not act primitively on PC if n = 4, v = 2,
and use this to prove that PΩ is not simple in this case.

6.9 SYMPLECTIC GEOMETRY. THE SYMPLECTIC
GROUP

The study of a finite dimensional vector space V with respect
to a non-degenerate alternate bilinear form B is called
symplectic geometry. We know that the dimension of such a
space is even and we have called the group of bijective linear
transformations η of V satisfying B(ηx, ηy) = B(x, y), x, y V,
the symplectic group. Since any two alternate forms on vector
spaces of the same dimensionality are equivalent, it is
unnecessary to indicate dependence on B; hence, we denote
the symplectic group as Spn(F), where F is the underlying
field and n = 2r is the dimensionality of V. The study of this
group and its associated geometry is similar to and simpler
than that of orthogonal groups. For this reason we can give a
comparatively brief treatment of the symplectic case.

We develop first the analogue of Witt’s extension theorem.
We have shown (in section 6.2., p. 351) that V has a base (ul,
vl, u2, v2, − , ur, vr) such that

We shall now call such a base a symplectic base for V. If (ui,
vi) is a symplectic base and η Spn(F), then (ηui ηvi) is a
symplectic base. Conversely, if (ui, vi) and (u′i, v′i) are two
symplectic bases, then the linear transformation η such that ui
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→ u′i, vi → v′i i =l, −, r,is symplectic. If U is a subspace of V,
then we can find a base (ul, vl, …, uk, vk, uk+l, …, um) for U
such that (uk+ l, …, um) is a base for the radical U U⊥ of U
and the ui, vi 1 ≤ i ≤ k, satisfy (47). As in the orthogonal case
(p. 368), we can find vectors vk+l, … , vm such that the 2m
vectors uj, vj, 1 ≤ j ≤ m, satisfy (47). Then the argument used
in the orthogonal case carries over to prove that if η is a linear
mapping of U into a second subspace V which is an isometry
in the sense that it is bijective and satisfies B(ηx, ηy) = B(x, y),
x, y U then n can be extended to a symplectic
transformation of V.

Next we introduce a special set of generators for Spn(F). Let u
be a non-zero vector of V and let c F. Then we define

Direct verification shows that τU,C satisfies B(τu,cx, τU,Cy) =
B(x, y), x, y V and

Also τu,c = 1 if and only if c = 0. It follows that c τU,C is a
monomorphism of the additive group of F into Spn(F). We
call τu,c a symplectic transvection in the direction u.If η
Spn(F) then we have

and if a F* then
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It is clear from the definition (48) that τU,Cx = x if x Fu⊥,
so, in particular, τu,cu = u. We also have that ζu,c ≡ τu,c − 1
maps any x into Fu; hence ζ2

u,c = 0. Thus τu,c is unipotent and
its determinant is 1.

LEMMA 1. Spn(F) is generated by the symplectic
transvections.

Proof. We observe first that the lemma will follow if we can
show that given two pairs of vectors (u, v), (u′, v′) which are
hyperbolic in the sense that B(u, v) = 1 = B(u′, v′) then there
exists a product of symplectic transvections sending u → u′, v
→ v′. Suppose we have this property and let n Spn(F). Let
(u, v) be a hyperbolic pair. Then (ηu, ηv) is hyperbolic and so
there exists a ζ which is a product of transvections such that
ζu = ηu, ζv = ηv. Then η′= ζ−1η fixes u and v, and being
symplectic it stabilizes the subspace U = (Fu + Fv)⊥. Hence
the restriction η′|U is a symplectic transformation and since
dim U = n − 2, we can use induction to conclude that η′ | U is
a product of transvections in directions given by vectors of U.
If we take the product of the transvections in V determined by
these same vectors we obtain a symplectic transformation
which is the identity on Fu + Fv and coincides with n′ on U.
Since V = Fu + Fv + U it is clear that this transformation
coincides with η′. Hence η′ is a product of symplectic
transvections and the same thing is true of n = ζη′. We have
now reduced the proof to showing that if (u, v) and (u′, v′) are
hyperbolic pairs, then there exists a product of symplectic
transvections such that u → u′, v → v′. We shall achieve this
in two stages:
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In the first stage we obtain a product of symplectic
transvections sending u → u′. Suppose first that B(u, u′) ≠ 0.
Then u ≠ u′ and if we put w = u − u′, w ≠ 0 and

Hence if we take c = B(u, u′)−1 we shall have τw,cu = u′. Next
suppose B(u, u′) = 0. Then we obtain a reduction to the
previous case by noting that we can find a vector u″ such that
B(u, u″) ≠ 0 and B(u′, u″) ≠ 0, for there exists a linear function
f on V such that f(u) ≠ 0 and f(u′) ≠ 0. Since B is
non-degenerate this can be realized by an element u″ of V:f(x)
= B(x, u″) (Lemma, p. 347). Then B(u, u″) ≠ 0 and B(u′, u″) ≠
0. Then we can pass by a single symplectic transvection from
u to u″ and by another one from u″ to u′. Hence the product of
two transvections gets us from u to u′. This accomplishes the
first step of (52). To achieve the second we have to
show—with a change of notation—that if (u, v) and (u, v′) are
hyperbolic pairs, then there exists a product of symplectic
transvections fixing u and sending v into v′. Again, we begin
with the case B(v, v′) ≠ 0 and use a transvection ηw,c where w
= v − v′ to move from v to v′. But this fixes u also since we
have B(u, v) = 1 = B(u, v′), and so B(u, w) = 0. Hence we are
through if B(v, v′) ≠ 0. Now assume B(v, v′) = 0. In this case
we insert between (u, v) and (u, v′) the pair (u, u + v) which is
also hyperbolic since B(u, u + v) = B(u, u) + B(u, v) = 1. Since
B(v, u + v) = B(v, u) = − 1 and B(u + v, v′) = B(u, v′) = 1, we
are in the first situation for the hyperbolic pairs (u, v) and (u,
u + v) and the hyperbolic pairs (u, u + v) and (u, v′). Hence we
can pass from (u, v) to (u, v′) using a product of symplectic
transvections.
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An immediate consequence of this lemma and the fact that det
τu,c = 1 for a symplectic transvection is that det η = 1 for
every symplectic transformation. We can also use the
generation by symplectic transvections to prove

LEMMA 2. The center of Spn(F) consists of the
transformations 1 and −1.

Proof. Let γ be in the center of Spn(F). Then γ commutes with
every transvection τu,c. If c 0 then the set of fixed points
under τU,C is Fu⊥. Since γ commutes with τU,C it maps a
τU,C-fixed point into a τU,C-fixed point. Hence γ stabilizes
Fu⊥. Since is the radical of Fu⊥ and γ is symplectic, it
follows that γ stabilizes every Fw, u ≠ 0. Then, as we showed
on p. 385, this implies that γ is a scalar multiplication. Since
for a F, al is symplectic if and only if a = ±1, we see that γ
= ±1.

We shall now study the action of Spn(F) on the projective
space Pn − 1(F) of one dimensional subspaces of V. The result
we require is

LEMMA 3. Spn(F) acts primitively on the projective space
Pn−1(F).

Proof. Let S be a set in a partition of Pn−1(F) stabilized by
Spn(F) such that |S|> 1. Suppose first that S contains a pair of
points Fx, Fy with B(x, y) ≠ 0, so that we may assume B(x, y)
= 1. Let Fz be any point in Pn−1(F). If B(x, z) ≠ 0 we may
assume B(x, z) = 1 as well as B(x, y) = 1. Then by the
analogue of Witt's extension theorem there exists an η
Spn(F) such that x → x, y → z. Then ηS = S since Fx S, and
Fz S since Fy S and ηy = z. Now suppose B(x, z) = 0 and
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Fz ≠ Fx. Then there exists a w V such that B(x, w) = 1 =
B(z, w). The result just proved shows that Fw S. We also
have a ζ Spn(F) such that w → w, x → z. Then ζS = S since
Fw S, and Fz S since Fx S. Thus S = Pn−1(F) if S
contains a pair of points Fx, Fy with B(x, y) ≠ 0. Now let Fx,
Fy be a pair of distinct points in S such that B(x, y) = 0. There
exists a u such that B(x, u) = 1, B(y, u) = 0. Let U = (Fx +
Fu)⊥ and let G be the subgroup of Spn(F) of transformations
η which are the identity on Fx + Fw. These map the
non-degenerate space U into itself and the set of restrictions
n\U, η G, is the symplectic group on U. Let z be a non-zero
vector of U. Since y U, the analogue of Witt's extension
theorem for the symplectic group of U implies that there
exists an η G such that ηy = z. Now ηS = S since Fx S,
and since Fy S we also have Fz S. This shows that every
Fz for z ≠ 0 in U is contained in S. Since U contains a
hyperbolic pair we have a reduction to the case we considered
first.

Before proceeding further in our analysis of symplectic
groups we shall dispose of the two dimensional case. Here we
have a symplectic base (u, v) and the condition for a linear
transformation n to be in the symplectic group boils down to
the single condition B(ηu, ηv) = B(u, v) = 1. If we write ηu =
au + bv, ηv = cu + dv then B(ηu, ηv) = ad − bc. Hence the

condition is that SL2(F). It follows that Sp2(F) =
SL2(F) and we have seen that the latter group modulo its
center is simple unless |F| = 2 or 3. Hence we see that
PSp2(F) ≡ Sp2(F)/{l, − 1} is simple unless |F| = 2 or 3. We
may now assume n ≥ 4 in the following
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LEMMA 4. Spn(F) coincides with its commutator subgroup
in all cases except: n = 2, |F| = 2 or 3, and n = 4, |F| = 2.

Proof. We suppose first that |F| > 3 and we shall show that
any transvection τz,c ≠ 1 is a commutator. Since |F| > 3 there
exists a d in F such that d 0 and d2 ≠ 1. Put b = (1 − d2)−1c, a
= − d2b. Then a + b = c so τz,c = τz,aτz,b. Let η be a symplectic
transformation such that ηz − dz. Then

Hence

We now consider the two cases in which |F| = 2 or |F| = 3. In
both cases it suffices to display a transvection ≠ 1 which is
contained in the commutator group. For, if τz,c is such a
transvection, then the subgroup Hz = {τz,c|c F}, which is
cyclic of order two or three, is contained in the commutator
group. Hence Hηz = ηHZη−1 is contained in the commutator
group. Thus every Hx is contained, and since Spn(F) is
generated by the Hx’s we shall have Spn(F) = (Spn(F) Spn(F)).
In both cases, |F| = 2 or 3, we begin with a symplectic base
(u1, vl, …, ur, vr) and we introduce a number of linear
transformations η whose symplectic character will be clear
from the fact that (ηu1, ηv1, …, ηur, ηvr) is again a symplectic
base. The motivation for our choices will be explained in the
exercises which follow. We now treat the two cases
separately.
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I. |F| = 3, n ≥ 4. Let σ and η be the linear transformations such
that

These are symplectic and

We also have

Hence ηση−1 = τv1,1.

II. |F| = 2, n ≥ 6. η and σ by

These are symplectic and

675



from which we obtain

Then ηση−1σ−1= τv1,1. This completes the proof of the
lemma.

We have now shown that in all the cases which we are
considering Spn(F) coincides with its commutator group, that
Spn(F) acts primitively on Pn−l(F) with kernel {1, −1}, and
that the subgroup Hx, x ≠ 0, is an abelian normal subgroup of
Stab (Fx). Moreover, as we saw in the foregoing proof, the
conjugates of Hx generate Spn(F). Hence, by the simplicity
criterion, we have

THEOREM 6.16. PSpn(F) = Spn(F)/{l, − 1} is simple except
in the cases n = 2, |F| = 2 or 3, and n = 4, |F| = 2.

EXERCISES

1. Let (ui, vi) be a symplectic base for V and let U and U′ be
the subspaces spanned by the ui and the vi respectively. Let K
be the subset of Spn(F) of η which stabilize U and U′. Show
that a linear transformation η K if and only if its matrix
relative to the base
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has the form

Note that K is a subgroup of Spn(F).

2. Let the notations be as in exercise 1. Let L be the subgroup
of Spn(F) of σ’s which fix every v U′. Show that a linear
transformation σ L if and only if the matrix relative to (u1,
…, ur, v1, …, vr) has the form

where tS = S. Show that the map σ → S is a monomorphism
of L into the additive group of r x r symmetric matrices. Show
that if S = eii, 1 ≤ i ≤ r, then the corresponding σ is a
transvection.

3. Let σ L and n K (as in exercises 1 and 2). Verify that
ηση−1 L. Verify that if the matrices of n and σ are (54) and
(55) respectively, then the matrix of the commutator ηση−1 is

where
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4. Apply exercises 1–3 to the verifications of the statements
of the last part of the proof of Lemma 4 on p. 394.

5. Prove that if A Mn(F), then the linear transformation of
Mn(F) defined by

is invertible if and only if no two characteristic roots of A are
inverses. (Note that this transformation stabilizes the space of
symmetric and of skew matrices.)

6. Give an example of a symplectic transformation having no
fixed points ≠.

7. Let (ui, Vi) be a symplectic base arranged as in (53) and let

Show that A is the matrix of a symplectic transformation if
and only if the Aij satisfy

8. Prove that the characteristic polynomial of a symplectic
transformation has the form g(x)xrg(x−1) where g(x) is a
polynomial of degree n{ = 2r).
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9. Show that every element of Spn(F) is a product of at most
2n symplectic transvections.

6.10 ORDERS OF ORTHOGONAL AND SYMPLECTIC
GROUPS OVER A FINITE FIELD

We shall first count the number of elements in orthogonal
groups over a finite field F. This will be based on some
formulas for the number of points on quadric surfaces in a
vector space over F. We have seen in section 6.3 that there
are two equivalence classes of non-degenerate quadratic
forms and that these are distinguished by their discriminant.
Let d be a non-square in F*. Then for even n = 2r we can take
as representatives the quadratic forms associated with the
matrices

For odd n = 2r + 1 (r ≥ 0) we can take the representatives to
be

The discriminants in the four cases (58), (59), (60), and (61)
are respectively (− l)r, (− l)rd, (− l)r+1, and (− l)r+1d. Since
we are interested in the associated orthogonal groups and
since O(V, Q) = O(V, dQ), we may replace the last quadratic
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form by d times this form. This multiplies the discriminant by
d2r+1 and so gives us a form equivalent to the one associated
with (60). Hence it suffices to consider the three cases (58),
(59), and (60). Our enumeration will be based on some
formulas for the number of points on quadric surfaces in V
over F.

LEMMA. Let |F| = q. Then the number of solutions of

is

The number of solutions of

is

The number of solutions of

is
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Proof. We consider first the two cases in which n = 2r =2.
The equation x1

2 − y1
2 = b is equivalent to uv = b for u = x1 −

yl, v = x1 + y1, and this has 2q − 1 solutions if b = 0 and q − 1
solutions if b ≠ 0. This accords with (63) for r = 1. We now
prove (63) by induction on r. We write b = a + c and we have
q choices for a. Then (62) is equivalent to the two equations

If b = 0 then the case a = 0 = c contributes (2q − l)(q2r−3 +
qr−l − qr−2) solutions and each of the cases a ≠ 0, c = − a
contributes (q − l)(q2r−3 − qr−l). Altogether we obtain

solutions. This reduces to N(2r, 0) as given by (63). In a
similar manner we obtain the second part of (63) and the two
parts of (65). To handle (66) we write this as x1

2 − y1
2 + … +

xr
2 − yr

2 = b + xr
2

+1. If b = 0 the choice xr+1 = 0 gives q2r−1 +
qr − qr−1 solutions and the q− 1 choices of xr+1 ≠ 0 give (q −
l)(q2r−1 _ qr−1) solutions. Altogether we obtain q2r solutions,
which is in accord with (67). In a similar way we obtain the
other cases in (67).

We can now establish the formulas for the orders of the
orthogonal groups. In these we shall denote the groups
associated with the matrices (58) and (60) for a field F of q
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elements as On(q) where n is even in the first case and odd in
the second. If d is a non-square in F then the orthogonal
group associated with (59) will be denoted as On(q, d). The
corresponding rotation groups will be denoted as On

+(q) and
On

+(q, d). Then we have

THEOREM 6.17. The orders of On(q) and On(q, d) are given
by the formulas:

Proof. For n = 1 the orthogonal groups consist of 1 and − 1,
so the order is 2. We now use induction on n and assume n ≥
2. Choose x V so that Q(x) = 1 and consider the orbit Gx,
where G denotes the orthogonal group in question. By Witt's
theorem, Gx is the set of vectors y such that Q(y) = 1. We now
use the formula

image

((40). p. 76) to obtain |G|. Suppose first that we have G =
On(q), n = 2r. Then Stab x is isomorphic to the orthogonal
group in Fx⊥ relative to the restriction of Q. It is clear that
this subgroup is isomorphic to On−1(q). Also the number of
elements y such that Q(y) = 1 is the number of solutions of
(62) for b = 1. By (63), this is q2r−l − qr−1. Using induction
we may assume formula (70) for n − 1 = 2r − 1.
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Multiplication by q2r−1 − qr−1 gives (68). Formula (69) is
obtained in the same way by multiplying by q2r−1 + qr−1

which, by (65), is the number of y satisfying Q(y) = 1. The
remaining case n = 2r + 1 is obtained in the same way going
down to the case On−1(q), n − 1 = 2r.

The orders of the corresponding rotation groups are obtained
by dropping the 2 in the formulas. It can be shown that
On

+/(On, On) is a group of order two and that − 1 Ωn(q) ≡
(On(q), On(q)) for even n but − 1 Ωn(q, d) = (On(q, d),
On(q, d)). (These results are established in Vol. II.) Using
these one obtains formulas for the orders of the groups
PΩn(q) and PQn(q, d) whose simplicity we proved in section
6.8.

We consider next the symplectic groups Spn(q) ≡ Spn(F)
where F is a field of q elements. Here we allow F to have
characteristic 2, in which case q is a power of 2. How many
hyperbolic pairs of vectors (x, y) are there in V? The first
vector in such a pair can be taken to be any non-zero vector in
V. Hence we have qn − 1 choices for this vector. Moreover, if
we have a hyperbolic pair (x, y), any other hyperbolic pair
beginning with x has the form (x, y′) where y′ = y + z and z
Fx⊥. Since there are qn−1 vectors in the (n − l)-dimensional
space Fx⊥, we have qn−1 choices for z. Thus we have (qn −
1)qn−l hyperbolic pairs (x, y). By the analogue of Witt's
theorem, any two of these can be mapped into each other by a
symplectic transformation. Also the stabilizer of (x, y) that is,
the set of σ Spn(q) satisfying (σx, ay) = (x, y) is a subgroup
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isomorphic to Spn−2(q). Hence as in the proof of the
preceding theorem,

Evidently this implies

THEOREM 6.18. The order of Spn(q) for a field F of q
elements is

The orders of the corresponding projective groups PSpn(q)
are again (71) if q = 2t and are 1/2|Spn(q)| if q is odd. Here we
have to take n ≥ 6 if q = 2 and n ≥ 4 if q = 3. The orders
obtained for q = 2, n = 6 and q = 3, n = 4 are respectively 29 ·
34 · 5 · 7 and 27 · 35 · 5.

EXERCISES

1. State the lemma as a result on the number of vectors x such
that Q(x) = 0 or 1 where Q is any non-degenerate quadratic
form in an n-dimensional vector space over a field of q
elements.

2. Determine the number of hyperbolic pairs in V as in
exercise 1.

3. Let p be the characteristic of F , so q is a power of p.
Determine a Sylow p-group for the orthogonal groups
considered in Theorem 6.17 and Spn(q) as in Theorem 6.18.

4. Consider the series of simple groups: (a) alternating groups
(n ≥ 5), (b) projective unimodular groups, (c) the groups
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PΩn(q), PΩn(q,d), (d) PSpn(q). Determine all the groups in
these series having orders less than one million.

6.11 POSTSCRIPT ON HERMITIAN FORMS AND
UNITARY GEOMETRY

Let K be a separable quadratic extension of the field F. Then
there exists an automorphism a → of K over F whose
fixed field is F and whose order is two (a = a). A good
example to keep in mind in this connection is F = and K =

. We shall call an n × n matrix h = (hij), with entries hij K
hermitian if hij = hji or, in matrix notation: th = h where h =
(hij). Now let V be an n-dimensional vector space over K with
base (el, e2, …, en). If x = ∑ aiei, y = ∑ biei, then we define

What are the properties of the map H:(x, y) H(x, y) First, this
is bi-additive:

Next, it satisfies

The first equation in (73) together with the first part of (74)
state that for fixed y, x → H(x, y) is a linear function on V; the
second parts of (73) and (74) state that for fixed x, y → H(x,
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y) is anti-linear (or conjugate linear) in y. We observe also
that H(y, x) = ∑i,j hijbi j = ∑i,jhijbj i. Hence, interchanging
the summation indices, we have

A mapping H of V × V into K satisfying the conditions
(73)−(75) is called a hermitian form on the vector space V/K.
The construction we have given of hermitian forms from
hermitian matrices catches all such forms. For, if H is any
hermitian form and we put hij = H(ei, ej), then hji = H(ej, ei) =
H(ei, ej) = hij. Hence h = (hij) is a hermitian matrix.
Moreover, it follows from (73) and (74) that H(∑ aiei, ∑ bjej)
= ∑ H(ei, ej)aib which shows that H is the hermitian form
associated with the hermitian matrix h.

With a bit of care these concepts can be developed also for
division rings. It should be noted first that linear algebra can
be generalized to vector spaces (or modules) over division
rings. The theory of linear dependence and invariance of
dimensionality can be extended without using determinants.
Now let be a division ring which possesses an involution,
that is, an anti-automorphsim a → such that a = a (see
section 2.8, p. 112). A good example to keep in mind here is
that of Hamilton’s division ring of quaternions ”. Let h = (hij)
be an n × n hermitian matrix: hij = hji and let V be a vector
space over with base (e1, e2,…, en). Then, if x = ∑ aiei, y =
∑ biei, we put
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Then we have (73), and

and (75). These properties define a hermitian form on V/ . It
is clear that we have a bijection between the set of hermitian
matrices and the set of hermitian forms.

Clearly the case of a division ring includes the case we
considered first: K a separable quadratic extension of F. Since
we are not insisting that the map a → is different from the
identity, we allow also the case in which = F and ≡ a.
Then the notion of a hermitian form reduces to that of a
symmetric
bilinear form. A good deal of the theory of symmetric bilinear
forms, including the structure theory for the corresponding
groups, called unitary groups, carries over to hermitian forms.
We shall indicate some of the elementary results and refer the
reader to Dieudonné’s La Géo etrie des Groupes Classiques
for the group theory. We prove first the existence of an
orthogonal base:

THEOREM 6.19. Let H be a hermitian form on a finite
dimensional vector space V over a division ring . Then
unless H is alternate and is a field of characteristic two, V
has a base (u1,…, ur, zl,…, zn−r) such that
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Proof. The proof of Theorem 6.3 will carry over if we can
show that if H ≠ 0, then there exists a vector u such that H(u,
u) ≠ 0. Hence suppose H(u, u) = 0 for all u. This implies that
H(u,v) + H(v, u) = 0 for all u, v. Since H(v,u) = H(u,v) we
have H(u,v) + H(u, v) = 0 for all u, v. Now assume H 0.
Then we can choose u and v so that H(u, v) = 1. For any a

we have H(au, v) + H(au, v) = 0; hence, aH(u, v) + H(u, v)
= 0, so a + = 0. Since 1 = 1 this implies that the

characteristic is two, and that = a for all a . Since the
identity map is an anti-automorphism only if is
commutative, we see that is a field. Since = a, H is
bilinear and since H(u, u) = 0, we see that H is an alternate
form on a vector space over a field of characteristic two. This
case was excluded; hence the result follows.

Two important special cases of this theorem are (1) = , a
→ as usual, (2) = ”, a → as usual. In these two cases
we can take the bi= ±1. In general, if we replace a ui by ciui
then bi is replaced by cibici. In both cases bi = bi implies that
bi is real. Then we can choose ci so that cici = |bi|−1. Using
this choice we replace bi by ±1. The proof of Sylvester’s
theorem carries over to show that the number of bi > 0 is
independent of the choice of the orthogonal case. The
difference in the number of positive bi and the number of
negative bi is called the signature in both cases.

The next thing we might look at is Witt’s theorem, which is
valid also for hermitian forms suitably restricted. We refer the
reader to Volume II of our Lectures in Asbtract Algebra9 or to
Dieudonne’s La Géométrie des Groupes Classiques for this
result.
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EXERCISES

1. Let K be quadratic extension of F of char. ≠2, a → the
automorphism ≠ 1 of K, and let H(x, y) be a hermitian form on
the n-dimensional vector space V/K. Let B(x, y) = H(x, y) +
H(y, x). Show that B(x, y) is a symmetric bilinear form on V/F
(2n-dimensional) satisfying

Suppose K = F(i), i2 = b F, and let B be a symmetric
bilinear form on V/F satisfying (77). Define

Show that H is hermitian. Verify that the two maps H → B
and B → H defined here are inverses.

2. Let the notations be as in exercise 1. Show that two
hermitian forms H1 and H2 are equivalent (definition as for
bilinear forms) if and only if the associated symmetric
bilinear forms B1 and B2 defined in exercise 1 are equivalent.

3. Let ” be Hamilton’s quaternion algebra with base (l,i,j,k)
over such that i2 =j2 = k2= − 1, ij = k = –ji, jk = i = –kj, ki =
j = –ik. Let V be an n-dimensional vector space over , H a
hermitian form on V/”. Let B(x,y) = H(x, y) + H(y, x). Show
that B is symmetric on the 4n-dimensional vector space V/
and B satisfies (77). Conversely let B be a symmetric bilinear
form on V/ satisfying (77). Define
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Show that H is hermitian on V/ and that the maps B → H, H
→ B are inverses.

4. Use the same notations as in exercise 3. Show that two
hermitian forms H1 and H2 on V/ are equivalent if and only
if the corresponding symmetric bilinear forms B1 and B2 on
V/ are equivalent.

1 Two references for the characteristic two case are: C.
Chevalley, The Algebraic Theory of Spinors, New York,
Columbia University Press, 1954 and J. Dieudonne, La
Géométrie des Groupes Classiques, 2nd ed., Springer, 1963.

2 These fields are discussed in Vol. II.

3 These have been defined in section 5.1, p. 308. The most
important special case is the field of real numbers.

4 P. Scherk, “On the decomposition of orthogonalities into
symmetries,”; Proceedings of the American Mathematical
Society, vol. 1 (1950), pp. 481–491.

5 L. E. Dickson, “The theory of linear groups in an arbitrary
field ,” Transactions of the American Mathematical Society,
vol. 2 (1901), pp. 363–394.

6 K. Iwasawa, “Über die Eiinfachkeit der speziellen
projection Gruppen,” Proceedings of the Imperial Academy of
Tokyo, vol. 17 (1941), pp. 57–59.
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7 These transformations seem to have been introduced first by
C. L. Siegel in “Über die Zetafunktionen indefiniter
quadratische Formen II.” Mathematische Zeitschrift, vol. 44
(1938), pp. 398–426.

8 T. Tamagawa, “On the structure of orthogonal groups,”
American Journal of Mathematics, vol. 80 (1958), pp.
191–197. An improved version of this proof appears in some
mimeographed notes by Tamagawa.

9 Springer-Verlag, New York, Heidelberg, Berlin. First
published in 1953 by D. Van Nostrand Company.
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7

Algebras Over a Field

The concept of an associative algebra is obtained by
combining that of a ring and that of a vector space, together
with certain relations connecting these structures. In this
chapter we give an introduction to associative algebras as
well as to certain classes of non-associative algebras, namely,
Lie, Jordan, and alternative algebras. In one way or another
these three classes of nonassociative algebras are closely
related to associative ones. The first two arise in making
simple modifications of the product composition in an
associative algebra. On the other hand, alternative algebras
constitute a mild generalization of associative ones. From the
point of view of applications to broad areas of mathematics
and physics, the classes we have singled out: associative,
alternative, Lie, and Jordan algebras are the important classes
of algebras.

Associative algebras occur frequently in algebra. A prime
example is the algebra of linear transformations of a finite
dimensional vector space. This plays the role of “catch-all”
algebra, which is analogous to that played by the symmetric
group in group theory: any finite dimensional associative
algebra is isomorphic to an algebra of linear transformations
of a finite dimensional vector space. It is natural to consider
homomorphisms of associative algebras into algebras of
linear transformations, or, equivalently, into algebras of
matrices. Of particular interest are the regular representations.
These give rise to the trace and norm maps of an associative
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algebra into its base field which generalize notions for fields
which were introduced in section 4.15.

Alternative algebras originated in the discovery, due
independently to J. J. Graves and A. Cayley, of the algebra
of octonions, an eight dimensional algebra over containing
Hamilton’s quaternion algebra . This has many of the
properties of ; for example, it is a division algebra.
However, it does not satisfy the associative law of
multiplication. Instead, it satisfies the laws (xx)y = x(xy) and
y(xx) = (yx)x which are weaker than associativity. Octonions
can be used to coordinatize certain “exceptional”
geometries—more exactly, certain non-Desarguesian
projective planes.

Lie algebras are named after the great Norwegian
mathematician of the late nineteenth century, Sophus Lie.
These are obtained from associative algebras by replacing the
given associative product by the Lie product, or additive
commutator, [xy] = xy – yx. Once this is done, one is
interested in subalgebras with respect to the composition [xy]
and these need not be subalgebras of the given associative
algebra. Lie algebras are the fundamental objects of study in
Lie’s theory of continuous groups. Lie’s great achievement
was the reduction of the study of local properties of
continuous groups to that of associated Lie algebras.

Jordan algebras are of comparatively recent origin. These
were introduced in 1931 by a physicist, P. Jordan, with a view
of applying them to quantum mechanics. These algebras arise
in seeking to formulate simple laws for the Jordan product (or
“anti-commutator”) x · y = (xy + yx) in an associative
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algebra over a field of characteristic #2. Jordan algebras have
applications to analysis, to geometry, and to Lie groups.

For the associative theory we shall consider the regular matrix
representations and properties of the trace and norm maps.
We shall also introduce the exterior algebra E(V) of a vector
space and apply this to give quick and incisive derivations of
some of the main properties of determinants. Finally, we shall
prove the theorems of Frobenius and of Wedderburn on
associative division algebras. For us, alternative algebras will
arise in connection with a problem on quadratic forms which
was first considered by A. Hurwitz. We shall treat Lie and
Jordan algebras very lightly—not much beyond the basic
definitions.

A generalization of the concept of an associative algebra over
a field to associative algebras over commutative rings is given
in Volume II. There we consider also the structure theory of
rings and associative algebras.

7.1 DEFINITION AND EXAMPLES OF ASSOCIATIVE
ALGEBRAS

Though we have not yet given a formal definition of the
concept of an associative algebra, we have, in fact, already
encountered a number of instances of this notion. In the
theory of fields we studied a field E relative to a subfield F,
and
in this connection we considered E as a vector space over F in
which the product au, a ∈ F, u ∈ E, is the product as defined
in E. We also have the product uv of any two elements of E,
which together with the addition in E, 0, and 1 give the ring
structure in E. The connection between the two structures of
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vector space and of ring can be described by noting that the
additive groups are the same for the two, and that a(uv) =
(au)v = u(av) for a ∈ F, u, v ∈ E.

We have a similar situation in dealing with the ring of
polynomials F[x] in an indeterminate x over the field F. In
addition to the ring structure we have the vector space
structure over the field F in which af(x), a ∈ F, f(x) ∈ F[x], is
the ring product. Again, the addition and 0 are the same for
the two structures and a(f(x)g(x)) = (af(x))g(x) = f(x)(ag(x)).

Still another example of this kind is obtained in considering
the set Mn(F) of n × n matrices with entries taken from a field
F. Here, in addition to the ring structure we also have a vector
space over F where, if M = (mij) is the n × n matrix with mij
as (i,j)–entry and a ∈ F, then aM = (amij). This is identical
with the product of M by the matrix a1 = diag{a, a,…, a}.
Since a1 is in the center of the ring, that is, a1 commutes with
every matrix, it is clear that we have a(MN) = (al)(MN) =
((al)M)N = (aM)N and a(MN) = (al)(MN) = M(al)N = M(aN).
In the first example we considered (the field over field case)
the underlying vector space may or may not be finite
dimensional. In the second, F[x], it is definitely not finite
dimensional since 1, x, x2,… are linearly independent over F.
On the other hand, Mn(F) with the vector space structure we
defined is finite dimensional. A particularly useful base for
Mn(F) over F is the base consisting of the n2 matrix units
{eij|i,j = 1,…,n} where eij denotes the matrix with a 1 in the
(i,j)−position and 0’s elsewhere (see section 2.3). We have the
multiplication table
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and the following expression for the unit 1 in terms of the
base:

We shall now give the formal definition of an associative
algebra.

DEFINITION 1. An (associative) algebra over a field F is a
pair consisting of a ring (A, +, ·, 0, 1) and a vector space A
over F such that the underlying set A and the addition and 0
are the same in the ring and vector space, and

holds for a ∈ F, x, y ∈ A. If A is finite dimensional over F,
then we shall say that the algebra is finite dimensional (or
has a finite base). We shall usually denote the algebra by the
letter (e.g., A) used to designate the underlying set.

It is clear that the foregoing examples are algebras. We give
next another important example. Let G be a finite group, say,
G = {s1 = 1, s2,…, sn}, F a field, and let F[G] denote the
vector space over F with base G. Thus F[G] consists of the
elements aisi, ai ∈ F, where aisi = 0 for distinct si if and
only if every ai = 0, and addition and multiplication by
elements of F are the obvious ones. We define a product in
F[G] by
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where sisj is as defined in the group G (see exercise 8, w p.
127). Using the associative law in G it is trivial to verify that
the product defined in F[G] is associative. Also, the
distributive laws in F give these laws in F[G] and 1 = s1 is the
unit for multiplication. Finally, the equation (3) relating
multiplication in F[G] and multiplication by elements in F is
clear. Hence we have an algebra. This is called the group
algebra over F of the finite group G.

Now suppose A is any algebra over the field F. Let a ∈ F and
consider the element al ∈ A. By (3), we have (al)x = a(lx) =
ax and x(al) = a(x1) = ax. This shows that the vector space
product ax coincides with the ring product (al)x and al is in
the center of A, that is, a1 commutes with every x ∈ A. Also,
we have the map a → al of F into A. Since 1 → 1, (a + b) 1 =
al + bl and (ab) 1 = (ab)l2 = (al)(bl) (by (ax)(by) = (b(ax))y
=((ba)x)y = (ba)(xy) = (ab)(xy)),a → al is a ring
homomorphism. If A # 0, 1 # 0 in A and then a → al is a
monomorphism since F is a field. Conversely, suppose we
have a ring R and a subring F of the center of R, which is
itself a field. Then we can regard R as an algebra over F
simply by defining ax for a ∈ F, x ∈ R, as the ring product ax.
Then (3) is immediate, and so we have an algebra. All the
examples which we gave at the beginning were obtained in
this way. These remarks show that an algebra over a field F is
essentially the same thing as a pair consisting of a ring
together with a distinguished subfield of the center of the
ring.1 The slightly more abstract definition we have given,
however, has some advantages—for example, it makes more
natural the concept of homomorphism which we shall give in
a moment.
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By now the reader probably has enough experience to
formulate for himself the basic concepts related to that of an
algebra.2 We enumerate these in the style of a shopping list
as: (1) subalgebras, (2) ideals, (3) quotient algebras,
(4) homomorphism, (5) kernel of a homomorphism. We shall
now check these items off in succession giving some brief
comments on some of them.

1. Subalgebras. A subset B of an algebra A is a subalgebra if
it is a subring of the ring A and a subspace of the vector space
of A. The intersection of subalgebras is a subalgebra. If S is a
subset of A one defines the subalgebra F[S] generated by S to
be the intersection of all subalgebras of A containing S. It is
easily seen that F[S] is the set of F-linear combinations of 1
and the monomials si1, si2 … sir, sik ∈ S. These look like a01 +

ai1…irsi1 … sir, a0, ai1 …ir ∈ F.

2. Ideals. A subset I of A is an ideal in the algebra A if I is an
ideal in A as ring and a subspace of A as vector space over F.

3. Quotient algebras. Let I be an ideal in the algebra A. Then
we obtain the quotient ring A/I and the vector space A/I.
Together these constitute an algebra which is called the
quotient (or difference) algebra of A with respect to the ideal
I.

4. Homomorphism. A map of an algebra A into an algebra B
(over the same field) is an algebra homomorphism if it is both
a ring homomorphism and a linear mapping.
Monomorphisms, epimorphisms, endomorphisms, and
automorphisms for algebras are special cases of
homomorphisms defined in the usual way. If I is an ideal we
have the canonical epimorphism v:a → a + I of A into A/I. It
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is easy to see that if S is a set of generators for A and η1 and
η2 are (algebra) homomorphisms of A into B such that η1(s) =
η2(s) for all s ∈ S, then η1 = η2.

5. Kernel of a homomorphism. If η is an algebra
homomorphism of A into B, then K = η−1(0), the subset of A
of elements k such that η(k) = 0, is an ideal in A called the
kernel of η. If I is an ideal contained in K we have the induced
homomorphism of A/I into B such that (a + I) = η(a), that
is, η = v, where v is the canonical homomorphism of A onto
A/I.

EXERCISES

1. If S is a subset of an algebra A we let CA(S) be the subset of
A of elements c such that cs = sc, s ∈ S. Verify that CA(S) is a
subalgebra. (Note that this proves in particular that the center
C = CA(A) is a subalgebra.)

2. Let be the division ring of real quaternions as defined in
section 2.4, p. 98. Note that is an algebra over with base
(1,i,j.k) having the multiplication table

Note also that G = {± 1, ±i, ±j, ±k} is a subgroup of the
multiplicative group. This subgroup is called a quaternion
group. Write 1′ = –1, i′ = –i, j′ = –j, k′ = – k in G and let [G]
be the group algebra over of G = {1, 1′, i, i′, j, j′ k, k′}.
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Show that there exists a homomorphism of [G] into such
that 1′ → – 1, i → i, i′ → –i, j → j, j′ → –j, k → k, k′ → –k.
Determine the kernel.

3. Let A = F[a], an algebra generated by a single element a.
Show that A F[x]/(f(x)) where either f(x) = 0 or f(x) is a
monic polynomial. Note that in the first case F[a] F[x], so
F[a] is infinite dimensional. Show that if f(x) is monic of
degree n then (1, a,…,an−1) is a base for F[a]. In this case a is
called algebraic and f(x) is its minimum polynomial.

4. Let A = F[a] as in exercise 3 with a algebraic with
minimum polynomial f(x). Let f(x) = q1(x)… qr(x) be the
factorization of f(x) into factors qi(x) = pi(x)ki where pi(x) is
monic and prime and pi(x) ≠ pj(x) if i ≠ j. Show that if si(x) =

j ≠ i qj(x), then there exist polynomials ti(x) such that

Put ei = si(a)ti(a). Show that

and hence that

in the sense that every element of F[a] can be written in one
and only one way in the form b1 + b2 + … + br, bi, ∈ F[a]ei.
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Put ai = aei. Show that F[a]ei is an algebra with unit ei, and
that ai is algebraic in this algebra with qi(x) as minimum
polynomial.

5. Let A = F[a] be as in exercise 4 and let

in F[x] where the bi are distinct. Let ei(x) be the Lagrange
interpolation polynomial

Show that if ei = ei(a) then we have (4) and (5) with F[a]ei, =
Fei, one dimensional.

6. Let F[G] be the group algebra of the finite group G = {s1 =
1, s2,…, sn}. If a = αisi define T(a) = αi. Show that a →
T(a) is a homomorphism of F[G] into F and determine the
kernel.

7. Let F[G] be as in exercise 6. Show that there exists a
homomorphism of F[G] into F[G × G] sending every si ∈ G
into si × si.

8. Let F[G] be as in exercise 6 with G a group of order pm, p
a prime, and F a field of characteristic p. Show that if K = ker
T, then every element of K is nilpotent.
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9. Show that the matrices A = −1ei,i+1 and B = −1ei+1, i
generate the algebra Mn(F) of n × n matrices over F.

10. Show that if c1, c2,…, cn are n distinct elements of F, then
C = cieii and D = −1ei,i+1 + en,1 generate Mn(F).

11. Prove that if C ∈ Mn(F) and the characteristic polynomial
of C has n distinct roots in a splitting field, then there exists a
D ∈ Mn(F) such that C and D generate Mn(F).

7.2 EXTERIOR ALGEBRAS. APPLICATION TO
DETERMINANTS

We shall now define some algebras which have important
applications in geometry and which can be used to derive in a
transparent fashion the main properties of determinants.
These algebras, now called exterior algebras, were introduced
in 1844 by H. G. Grassmann.3 They arise in considering the
following problem for vector spaces. Given a finite
dimensional vector space V over F, one wants to enlarge this
to an algebra A which is generated by V and has the further
property that v2 = 0 in A for every v ∈ V. Moreover, one
wishes to do this in the most general way possible, that is, no
further conditions except the consequences of the ones that
have been set down are to be imposed.

We shall now try to carry out this program. To see what is
involved we suppose we have an algebra A containing a
subspace V such that A is generated as an algebra by V, and v2
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= 0 for every v ∈ V. As we saw in section 7.1, the fact that V
generates A amounts to saying that every element of A is an
F-linear combination of 1 and monomials v1v2 … vk, k ≥ 1,
where the vi ∈ V. Now let (u1, u2,…, un) be a base for V over
F. Then any v is a linear combination of the ui;. hence any
monomial in v’s ∈ V is a linear combination of monomials in
the ui. Hence A is also generated by (u1, u2, … , un). We now
consider the set of monomials ui1ui2 … uir in the elements of
the base (ui). We shall call such a monomial standard if i1 <i2
< … < ir, and we shall prove that every element of A is a
linear combination of 1 and standard monomials in the ui. Of
course, it suffices to prove this for the monomials in the ui.
For these we shall prove a stronger result, namely, any
monomial in the ui which contains (a particular) ui more than
once is 0, and if i1 < i2 < … < ir, then

where σ is the permutation and sg σ = 1 or –
1 according as σ is even or odd. We note first that as a
consequence of the property v2 = 0,
v ∈ V we have

Hence we have uv = – vu, u, v ∈ V. In particular, we have

It is clear from the second of these relations that we may
interchange consecutive ui in a monomial at the expense of a
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change in sign. A succession of such moves can be used to
bring any ui appearing in a monomial next to any other one.
Then, by the first relation, it follows that the monomial is 0 if
there is more than one occurrence of a ui in it. Now consider a
product ui1ui2, … uir, where

is a permutation of 1, 2,…, r. If ij, > i(j
+ 1), we have

ui1,ui2, … uir, = –ui1 … ui(j − 1),ui(j + 1),uij, and the new
permutation of 1, 2, …, r differs from σ by a transposition. A
finite number of moves of the type indicated allows us to pass
from uil,ui2, … uir, to ± ui1, … uir. The number of these moves
is the number of transpositions in a factorization of σ as a
product of transpositions. Hence we have formula (7).

We now see that every element of A is a linear combination of
the elements

The number of such elements does not exceed the number of
subsets {i1, i2,…,ir} of the set N = {1, 2,…, n} including the
vacuous set.4 Thus we see something which we might not
have predicted at the outset: A is finite dimensional and, in
fact, dim A ≤ | (N)| = 2n. We can also derive a formula for
the product of any two of the monomials in (9). For this
purpose we consider the subsets S = {i1, i2, …, ir} of N and
we put us = ui1ui2 … uir if i1 < i2 < … < ir. If s, t ∈ N we
define
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and if S and T are subsets of N we put

It is clear from this definition that if T1 ≠ Ø, T2 ≠ Ø, and T1 ∩
T2 = Ø, then ∈S,T1∪T2 = ∈S,T1∈S,T2 and ∈T1∪ T2,S =
∈T1S∈T2S. From this one sees easily that

After this analysis we are ready to construct the exterior
algebra E(V) of the vector space V. We consider the set of
subsets (N) of N = {1, 2,…, n} and we let E(V) be the
2n-dimensional vector space with (N) as base. Thus the
elements of E(V) have the form S ∈ (N) asS where as ∈ F.
Also we identify S ∈ (N) with the element 1S ∈ E(V). We
now define a product in E(V) by defining

∈ E(V), and extending this linearly over E(V), by defining
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It is clear from (14) that the distributive laws hold for the
multiplication and the vector space addition thus defined, and
we have for a ∈ F that a(XY) = (aX)Y = X(aY) if X = asS, Y
= bTT. Since ∈Ø,s = 1 = ∈s,Øby (11), SØ = S = ØS by (13),
and by (14), Ø is a unit for the multiplication in E(V). From
now on we write 1 for Ø. We wish to verify that if R, S, T ∈

(N), then (RS)T = R(ST). This is clear if any one of R, S, T is
1 so we assume R ≠ Ø, S ≠ Ø, T ≠ Ø. Since ST = 0 if S ∩ T ≠
Ø we have (RS)T = 0 = R(ST) by (13) unless R, S, and T are
disjoint. In this case we have

This implies the associative law in E(V) and proves that E(V)
is an algebra.

We shall now identify the base element ui of V with the base
element {i} of E(V). This imbeds V in E(V) as the subset of
elements aiui. Moreover (13) gives ui

2 = 0, uiuj = –ujui and
if i1 < i2 < … < ir, then u11ui2 … uir = {i1, i2,…,ir}. If v =
aiui, then v2 = ai

2ui
2 + i<j aiaj(uiuj + ujui) = 0. Thus we

see that V is a subspace of E(V) which generates E(V) as an
algebra and v2 = 0 for every v ∈V. Also dim E(V) = 2n since
the elements 1 and {i1 …, ir} = ui1ui2 … uir constitute a base
for E(V). We shall call E(V) the exterior algebra of the vector
space V. The actual mechanics of our construction is not
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important. What is important is the following property which
characterizes the end product (see exercise 1 below).

THEOREM 7.1. Let L be a linear map of V into an algebra
A such that (Lv)2 = 0 for every v ∈ V. Then L can be extended
in one and only one way to a homomorphism η(L) of the
exterior algebra E(V) into A.

Proof. Put = Lv so we have 2 = 0 which implies as
before that = – , u,v ∈ V. Also, the argument which led
to (12) can be repeated verbatim to show that if we define s
= i1 … ir for S = {il, i2 … , ir}, i1 < i2 < … < ir, then S T
= ∈S,T S∪T. We now let η(L) be the linear map of E(V) into A
whose action on the base {S|S ∈ (N)} is given by η(L)Ø = 1
and η(L)S = s. Then η(L)ui = i = Lui, so η(L)v = Lv if v ∈
V. Hence η(L) is an extension of L. Also η(L)(ST) =
(η(L)S)(η(L)T) since

and

This implies that if X = asS and Y = bTT then we have
η(L)(XY) = (η(L)X)(η(L)Y) and since η(L) 1 = 1, we see that
η(L) is an algebra homomorphism. The uniqueness of η(L) is
clear.

COROLLARY 1. Let U be a subspace of V. Then the
subalgebra of E(V) generated by U is isomorphic to E(U).

707



Proof. If (ul, u2,…un) is any base for V then, as we saw for
the algebra A at the beginning of our discussion, every
element of E(V) is a linear combination of 1 and the standard
monomials uilui2 … uir. Since dim E(V) = 2n, these 2n

elements are linearly independent. Now if U is a subspace of
V we may suppose the base (ul, u2, … , un) is chosen so that
(ul,…, um) is a base for U. This shows that the standard
monomials in ul,…,um together with 1 are linearly
independent. Since these are contained in the subalgebra B of
E(V) generated by U we see that dim B ≥ 2m. On the other
hand, since u2 = 0, u ∈ U, holds in E(V), Theorem 7.1 shows
that we have a homomorphism of E(U) into E(V) sending the
element u ∈ U ⊂ E(U) into u ∈ U ⊂ E(V). The image of this
homomorphism is a subalgebra of E(V) containing U, hence it
is B. Since dim E(U) = 2m and dim B ≥ 2m we see that dim B
= 2m. This implies that our homomorphism is an
isomorphism.

COROLLARY 2. If L is a linear transformation in V and
η(L) is the endomorphism of E(V) defined by L, then

and η(L) is an automorphism if L is bijective.

Proof. Since the identity automorphism in E(V) is the
identity on V it is clear that η(1) = 1. Since η(L1L2) and
η(L1)η(L2) are endomorphisms of E(V) having the same
restrictions L1L2 to V, we have η(L1L2) = η(L1)η(L2). If L is
bijective we have the inverse linear transformation L−1 of V
into itself. Then LL−1 = 1 = L−1L gives η(L−1)η(L) = 1 =
η(L−1)η(L) so η(L) is bijective, hence, an automorphism.
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Before proceeding to the applications there is one more
important fact about E(V) which we should note, namely, we
have a direct decomposition of E(V) into subspaces

where Vr is the space spanned by all the products v1v2 … vr,
vi ∈ V. This is clear since v1v2 … vr is the linear combination
of monomials ui1 … uir where (u1, u2, …, un) is a base and
any monomial ui1 … uir is either 0 or it is ±a standard
monomial. Hence Vr is the space spanned by the standard
monomials of degree r. Since these form a base we have (16).
We see also that

since this is the number of standard monomials ui1 … uir of
degree r. In particular, we have dim Vn = 1 and u1u2 … un is
a base of this space.

Now let L be a linear transformation of V into itself and let
η(L) be the extension of L to an endomorphism of E(V). Then
it is clear from the definition of Vr that

In particular, we have η(L)Vn ⊂ Vn and since Vn = Fu1u2 …
un we have η(L)(u1u2 … un) = Δu1 … un where Δ ∈ F.
Suppose
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so Λ = (lij) is the matrix of L relative to the base (u1, u2,…,
un). Then

by the definition of det Λ =
Thus

If L1 and L2 are linear maps of V into itself and Λi is the
matrix of Li relative to (u1 u2, …, um), then the matrix of LlL2
relative to this base is Λ2Λ1. Hence we have η(L1L2)(u1 …
un) = det Λ2Λ1ul … un. On the other hand

This proves the multiplicative property of determinants of
matrices in Mn(F):

We shall use this method next to derive Laplace’s formula for
expanding a determinant by the minors of a certain set of
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rows and their corresponding cofactors. We fix a subset S =
{i1, i2, …,ik}, i1 < i2 < … < ik of N, and consider the element
η(L)(ui1 … uik). If T = {j1,j2, …, jk},j1 < j2 … < jk, then we let
ΛS,T denote the minor obtained from the il9\ …, ikik rows and
j1, …, jk columns. Then one sees, using (7), that

Let S′ = {ik + 1, …, in}, ik + 1 < … < in, be the complement of
S in N. Then we have

Where T′ = {jk + 1, …, jn} and jk + 1 < … < jn. Now ST″ = 0
unless T′ = S′, in
which case, SS′ is

where

The last formula follows by observing that there are i1 – 1
numbers in N less than i1 and all of these occur in {ik+1, …,
in}, there are i2 – 1 numbers in N less than i2 and all but one
of these occur in {ik + 1, …, in}, etc. The relation

711



now gives the formula

where T = {j1, j2,…, jk}, j1 < j2 < … < jk as before. We now
define the co-factor Λ′S,T of the minor ΛS,T to be (–1) (iq +
jq) times the complementary minor ΛS′,T, of ΛS,T. Then the
foregoing formula gives Laplace’s expansion

of the determinant by the minors obtained from the i1, i2,…,
ik-th rows. In particular, if we take k = 1, we obtain the
formula for a determinant in terms of the elements of a
particular row and the cofactor of these elements.

We now order the subsets S with |S| = k lexicographically.
Using this ordering we obtain from (22) the matrix Ck(Λ) =
(ΛS,T) of the linear transformation induced in Vk by the

endomorphism η(L). This is a matrix of rows and
columns called the kth compound of Λ. Since η(L1L2) =
η(L1)η(L2) we obtain the multiplicative property

which generalizes the multiplicative property of determinants.

It is well known that the results we have obtained on
determinants of matrices with entries in a field are valid for
matrices with entries in any commutative ring. We shall now
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show by a method of indeterminates how we can obtain the
general case from the case of fields, in fact, form a particular
field of the form (x1,…, xm), {xk} a sufficiently large set of
indeterminates.

For the multiplication theorem for determinants we take m =
2n2 and denote the xk by xij, yij, 1 ≤ i, j ≤ n. Then for X = (xij),
Y = (yij) we have det XY= (det X)(det Y) in Mn( (xij, yij)) and
hence in Mn( [xij, yij]). Now suppose R is any commutative
ring. Then we have a homomorphism of [xij yij] into R
sending the xij and yij into any 2n2 prescribed elements of R.5

Now let Λ1 and Λ2 be two matrices in Mn(R) and let η be the
homomorphism of [xij yij] sending xij, 1 ≤ i, j ≤n, into the
(i,j)-entry of Λ1 and yij into the (i,j)-entry of Λ2. Applying η
to the relation det XY = det X det Y we obtain det Λ1Λ2 = (det
Λ1)(det Λ2) for any two matrices Λi ∈ Mn(R). A similar
argument applies to the other theorems.

We shall show next that the multiplicative property of
determinants can be used to characterize the map A → det A
among the polynomial functions on Mn(F) (see section 2.12,
p. 134). For this purpose we require the following

THEOREM 7.2. Let F[xij] be the polynomial ring over a
field F in the n2 indeterminates xij, 1 ≤ i, j ≤ n and let X = (xij)
in Mn(F[xij]). Then det X is irreducible in F[xij].

Proof. We shall use induction on n, and we recall that is
factorial (p. 154). Write det X = x1iX1i where Xij denotes
the cofactor of xij in X. Let D be the subring of polynomials in
the xij ≠ x11 so F[xij] = D[x11] and we have det X = xllX11 + Y,
Y ∈ D. We may assume that X11 is irreducible as a
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polynomial in the xij, i,j > 1; hence Xl1 is irreducible in D.
Now, det X = x11X11 + Y is of degree one in x1l so any
factorization of det X in D[x11] has the form (Px11 + Q)R
where P, Q, R ∈ D. This gives PR = X11, and since Xl1 is
irreducible in D, replacing P, Q, and R by associates, we may
assume either P = 1 or P = Xl1. If P = Xll R = 1 and the
factorization is trivial. Hence if det X is reducible, then P = 1
and hence R = X11. Thus reducibility of det X in F[xij] implies
that X11|det X. Similarly, it implies that Xii|drt X and since the
cofactors Xii, 1 ≤ i ≤ n, are distinct and irreducible we have
X11X22 … Xnn|det X. The left hand side has (total) degree n(n
– 1) and the right hand side has degree n. Hence this is
impossible if n > 2. If n = 2 the relation becomes
x11x22|(x11x22 – x12x21) which is also impossible.

We can now prove the following result.

THEOREM 7.3. Let F be an infinite field and let Q(xij) be a
homogeneous polynomial of degree q in F[xij], xij
indeterminates, 1 ≤ i,j ≤ n. Assume that for the
corresponding polynomial function A = (aij) → Q(aij) = Q(A)
on Mn(F) we have (i) Q(1) = 1, (ii) Q(AB) = Q(A)Q(B). Then
Q(xij) is a power of det X.

Proof. If A = (aij) ∈ Mn(F) we define the adjoint matrix adj
A = (Aij) as usual (p. 96). Then we have A(adj A) = (det A)1 in
Mn(F). Since Q(xij) is homogeneous of degree q this gives
Q(A)Q(adj A) = Q((det A)1) = (det A)qQ(l) = (det A)q. Now
let X = (xij), adj X = (Xij), so Xij is a polynomial of degree n –
1 in the x’s. Hence P(xij) ≡ Q(xij)Q(Xij) – (det X)q ∈ F[xi;].
Since F is infinite and P(aij) = 0 for all choices of the aij ∈ F
it follows from Theorem 2.19 (p. 136) that P(xij) = 0. Thus
Q(xij)Q(Xij) = (det X)q in F[xij]; hence Q(xij)|(det X)q. Since

714



det X is irreducible and det 1 = 1 = Q(1), we have Q(xij) =
(det X)m for some m, 1 ≤m ≤ q.

Clearly this gives a characterization of det X as the
polynomial of least degree having the properties stated in the
theorem. We can use this to derive some further results on
determinants.

COROLLARY 1. If A ∈ Mn(R), R a commutative ring, then
det A = det tA (tA the transpose of A).

Proof. The method of indeterminates used above shows that
it is enough to prove this for R = (xij). Hence we may
assume R = F, an infinite field. Now consider the polynomial
Q = det tX ∈ F[xij]. We have Q(1) = det 1 = 1 and Q(AB) =
det t(AB) = det tBtA = det tB det tA = Q(B)Q(A) = Q(A)Q(B).
Hence, by Theorem 7.3, Q(xij) is a power of det X. Since the
degrees are the same we have Q(xij) = det X, and so the
theorem holds for F, and hence for any R.

This result enables us to obtain a Laplace’s expansion by
columns from the result we proved on Laplace’s expansion by
rows. Theorem 7.3 and degree consideration yield also the
following result whose proof is left to the reader.

COROLLARY 2. If Cr(A) is the rth compound of the matrix
A, then det Cr(A) = (det A) .

The exterior algebra E(V), more particularly its subspace Vr,
can be used to coordinatize the set Γr(V) of r-dimensional
subspaces of the vector space V. We have seen in Corollary 1
to Theorem 7.1 that if U is a subspace of V, then E(U) can be
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identified with the subalgebra of E(V) generated by U. If
(vl…,vr)
is a base for U, then this subalgebra is generated by the υi.We
have the decomposition E(U) = and

. The element υ1…υr is
determined up to a non-zero multiplier in F by the subspace
U, that is, another choice of base for U gives υ′
… υ′r = ρυ1 … υr where ρ ≠ 0 in F.

We shall call an element of E(V) decomposable if it has the
form υ1υ2 … υr where the υi are linearly independent
elements of V. Our result shows that an r-dimensional
subspace U of V determines a one dimensional subspace Fu
where u = υ1υ2…υr is a decomposable element defined by the
base (υ1, υ2, … ,υr) for U. Distinct U gives rise in this way to
distinct subspaces Fu. For, if U’ is a second subspace ≠ U, we
can choose a base (υ1 … ,υnυn) for V such that (υ1 … , υr) is a
base for U, (υ1 … , υs),0 ≤ s < For r is a base for U ∩ U′, and
(υ1,… ,υs, υr + 1,… ,υ2r–s) is a base for U’. Then the
consideration of the base for Vr determined by the base (υl …
, υn) for V shows that υ1 …υr and υ … υsυr+ 1 … υ2r-s are
linearly independent.

We now see that we have a 1 – 1 correspondence between the
set Γr(V) of r-dimensional subspaces of V and the set of one
dimensional subspaces Fu, where u is a decomposable
element of E(V) contained in Vr. If U ∈ Γr(V) has base (υ1,…,
υr) then the corresponding Fu is obtained from u = υ1 … υr,
and if u = υ1 … υr is decomposable then the corresponding
subspace U is ∑ Fυi.
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We now choose a base (u1, u2,…, un) for V. Then vr has the

base consisting of the products ui1ui2 … uir where i1 < i2
< … < ir. We order this base lexicographically. Then if υ1 …
υr is a decomposable element, υ1 … υr = ∑ λi1 … ir ui1… uir.
The coordinates (λi1 … ir) are determined up to a non-zero
multiplier in F by the subspace U = ∑r

1Fυi. These are called
the Plucker coordinates of the subspace U (relative to the
base (ul,…, un) for V).

EXERCISES

1. Show that Theorem 7.1 gives a characterization of E(V) by
proving that if E’(V) is a second algebra having the stated
property then there is an isomorphism of E(V) into E’(V)
which is the identity map on V.

2. Prove the following addendum to Corollary 2 to Theorem
7.1: η(L) is an automorphism only if L is bijective.

3. Let xij, i ≤ j, be indeterminates over F and let X = (xij)
where xji = xij (so X is a “generic” symmetric matrix). Show
that det X is irreducible in F[xij].

4. Let xij, i < j = 1, 2,…, n, be indeterminates over a field F
and let x = (xij)where xij is as indicated if i <j, xii = 0 and xji =
– xij if i < j. Show that the Pfaffian Pf x is irreducible in
F[xij](see section 6.2, p. 352).
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5. Use Laplace’s expansion to prove that if

where the diagonal blocks are square matrices, then det M =
∏ det Mi

The following set of exercises (6–10) outlines an alternative
proof of Theorem 7.3 in which Q(xij) is not assumed to be
homogeneous. This proof has been communicated to me by
George Seligman.

6. Let Q(xij) be as in Theorem 7.3 but without the assumption
of homogeneity. Restrict the map first to the group D of
diagonal matrices diag{al, a2,…, an} with ∏ai ≠ 0. Then the
map coincides with that determined by the polynomial
Q(x11,…, xnn, 0,…, 0)—that is, the polynomial obtained by
setting xij = 0, for every i ≠ j in Q(xij). Use the theorem on
linear independence of distinct characters of a group (see p.
291) to show that Q(xl1,…, xnn, 0,…, 0) = x11

mix22
m2 …

nn
mn,

mi ≥ 0.

7. Show that the in exercise 6 are equal by using the relation

where P = e12 + e23 + … + en – l,n + en,1.
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8. Let K be an extension field of F and use Q to define a map
of Mn(K) into K. Show that Q(AB) = Q(A)Q(B) holds also in
Mn(K).

9. Use the foregoing exercises to show that there exists an m
= 0, 1, 2,… such that Q(A) = (det A)m for every invertible A
with distinct characteristic roots.

10. Let X = (xij) and let Δ ∈ F[xij] be the discriminant of the
characteristic polynomial det (λ1 – x). Show that the
polynomial

vanishes for all matreces X = A in Mn(F). Use this to
prove that Q(X) = (det X)m.

11. Let [xij.] be the polynomial ring over in n2

indeterminates and let X =(xij) ∈ Mn( [xij]). Write the
characteristic polynomial f(λ) = det (λ1 – X) = λn – p1xnλn +
p1λn – 1 + … + (– 1)1pn where pi ∈ [xij] and let si = tr xi.
Use diagonalization of X in a suitable extension field of [xij]
and Newton’s identities (p. 140) to show that n!pi ∈ ∑n

1sj
[s1,…, s2].

12. Use exercise 11 and the Hamilton-Cayley theorem to
show that if R is a commutative ring and A ∈ Mn(R) satisfies
tr A = tr A2 = … = tr An = 0, then n!An = 0.
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13. If A1,…, Ar ∈ Mn(R), R a commutative ring, define the
standard polynomial in the Ai as
[

Show that tr[A1,…, Ar] = 0 if r is even.

14. Let E + (V) = F1 + V2 + V4 + …(see (16)). Show that E +

(V) is a commutative subalgebra of E(V).

15. (Amitsur-Levitzki theorem.) Show that if Al,…, A2n ∈
Mn(R), R a commutative ring, then[A1,…, Aln] = 0. (Sketch of
a proof by S. Rosset: Since[A1,…, A2n]is multilinear in the Ai
it suffices to prove the identity[Ai,…, A2n] = 0 for all choices
of the Ai in the base {eij} of matrix units. Hence it suffices to
assume R = or . Take R = and let V be the vector
space over with base (u1u2n,…, u2n). Consider the matrix
A = ∑2n

1 ∈ Mn(E(V)). The relation [A1,…, A2n] = 0 is
equivalent to A2n = 0 and, since the characteristic is 0, to
n!A2n = 0. Note that A2 ∈ Mn(E+(V)) and tr Alk = 0 for k = 1,
2, … follows from exercise 13. Then n!A2n = n!(A2)n = 0
follows from exercise 12.)

16. Show that [A1,…, Ak] = 0 if k ≤ 2n for any choices of the
Ai in Mn(R), but that if k < 2n then there exist Ai ∈ M(R) such
that [A1,…, Ak] ≠ 0. (Hint for the second part: Take A1 = el1,
A2 = e12 A3 = e22, A4 = e23, etc.)
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7.3 REGULAR MATRIx REPRESENTATIONS OF
ASSOCIATIVE ALGEBRAS. NORMS AND TRACES

Let V be a vector space over a field F and let EndF V =
HomF(V, V) be the set of linear transformations of V into
itself. We have seen in section 3.3 (p. 169) that EndF V can be
endowed with a ring structure in which addition,
multiplication, 0, and 1 are defined by: (L + M)x = Lx + Mx,
(LM)x = L(Mx), 0x = 0, and lx = x for L, M EndF V, x V.
Since F is commutative, the multiplications by “scalars”
(elements of F) are linear transformations. Such a map has the
form x→ax where a is an element of F. Clearly a(x + y) = ax +
ay and if b ∈ F then a(bx) = b(ax), so x → ax is contained in
EndF V. Since a(Lx) = L(ax) for every L ∈ EndF V it is clear
also that the map av: x → ax is contained in the center of
EndF V. It is immediate that a → av is a monomorphism of F
into EndF V whose image Fv = {av|a ∈ F} is a subring of the
center of EndF V.6 This fact permits us to endow EndF V with
an algebra structure in which the ring structure is the usual
one and the vector space structure is given by the usual
addition and aL = avL = Lav (cf. section 7.1). From now on in
dealing with EndF V we shall treat this as an algebra in this
manner, and we shall call EndF V the (associative) algebra of
linear transformations of the vector space V over F.

Now suppose V over F is finite dimensional with base (ul,
u2,…, un). If L ∈ EndF V we obtain the matrix Λ = (lij) of L
relative to the (ordered) base
(ul1 u2,…, un) by writing Lui = ∑n

j = 1 ij
uj 1 ≥ i ≥ n. A change

of base to (υl υ2,…, υn), where υi = ∑cijuj and Γ = (cij) is
invertible, results in the matrix ΓΛΓ – 1 for L relative to
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(υ1,…, υn). We recall also the definition of the characteristic
polynomial of Λ as

(p. 196). Since

we see that

The element ∑lii is called the trace tr Λ, of the matrix Λ.
Evidently, we have

that is, Λ → tr Λ is a linear function on Mn(F). Also, We have

If M is similar to Λ, that is, M = ΓΛΓ – 1, then M and Λ have
the same characteristic polynomials. Hence they have the
same traces and determinants. It follows that these are
determined by the linear transformation L, so that we may
define the characteristic polynomial of L, the trace of L, and
the determinant of L to be these objects determined by any
matrix of L.

722



We recall also that the map L → Λ of EndF V into Mn(F)
determined by the choice of a base is a ring anti-isomorphism
(p. 111). Moreover, since the matrix of aL, a ∈ F, is aΛ, L →
Λ is an algebra anti-isomorphism. It is psychologically
advantageous to deal with isomorphisms rather than
anti-isomorphisms. In the present situation we can go over to
isomorphisms by considering the map L → tΛ in place of L
→ Λ. Since the characteristic polynomials of Λ and t Λ are
the same we can calculate the characteristic polynomial of L
from tΛ as well as from Λ. A change of base replaces tΛ bytM
= Δ – 1ΛΔ, Δ = tΓ.

Now suppose A is an (associative) algebra over the base field
F. We proceed to show—using the same method of proof as
that used for Cayley’s theorem, and the corresponding result
for rings—that A is isomorphic to an algebra of linear
transformations.

THEOREM 7.4. Any (associative) algebra A is isomorphic
to a subalgebra of the algebra Endf A of linear
transformations of the vector space A over F.

Proof. As in the ring case (Theorem 3.2, p. 162), a
monomorphism of A into EndF A is the map u → uL where uL
is the left multiplication x → ux in A: Since the algebra
conditions give uL(ax) = u(ax) = a(ux) = auLx for a ∈ F, uL ∈
EndF A. Moreover, u → uL is a ring monomorphism by
Theorem 3.2. Since (au)Lx = aux and a(uLx) = aux, u → uL is
an algebra monomorphism. The image AL is a subalgebra of
EndF A isomorphic to A.

A homomorphism of an algebra A over F into an algebra
EndF V of linear transformations of a vector space V over F is
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called a representation of A. The particular representation u
→ uL we used in the foregoing proof is called the regular
representation of A. If we have a representation of A by linear
transformations in a finite dimensional vector space V, then
we can combine this with an isomorphism L → tη of EndF V
with Mn(F) determined by a base (u1, …, un) as before, to
obtain a homomorphism u → ρ(u) of A into Mn(F). Such a
homomorphism is called a matrix representation of A. A
change of base gives rise to an equivalent (or similar)
representation u →Δ–1ρ(u)Δ. The matrix representations of a
finite dimensional algebra associated with the regular
representation are called the regular matrix representations of
A.

Let u → ρ(u) be a regular matrix representation of A (finite
dimensional over F). Then we define the trace and norm
function T and N on A by

Since similar matrices have the same traces and norms it is
clear that these functions are unchanged on changing from
one regular matrix representation to another. Since ρ is an
algebra homomorphism it is clear from the trace and
determinant of matrices that we have the following properties
of T and N:

where n is the dimensionality [A:F]. In the next section we
shall see that if A is a Galois extension field of F, then the
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foregoing definitions yield the same functions as those we
defined in section 4.15.

We shall now look at some

EXAMPLES

1. Let be Hamilton’s quaternion algebra over , with
base (1, i, j, k) and the multiplication table

We determine the regular matrix representation of given by
the base (1, i, j, k). Let u = a0 + a1i + a2j + a3k. Then

The corresponding matrix representation is obtained by taking
the transpose of the matrix of the coefficients of the
right-hand side of these equations, that is, it is

2. Let A = F[u] where u is algebraic with minimum
polynomial f(λ). Then A F[λ]/f((λ)). Suppose
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We have the base (1, u, …, un – 1) and

This implies that for the regular matrix representation
determined by the base (1,u, …, un – 1) we have

3. As a special case of the last example we take f(λ) = λn –
1. Then it is easy to calculate ρ(x) for x = x0 + x1u + x2u2 + …
+ xn – 1. One obtains

We have N(x) = det ρ(x). A determinant of this form is called
a circulant determinant. A formula for calculating this is
given in exercise 6 below.
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EXERCISES

1. Let A be the algebra with base (el, e2, …, en) such that
ei

2 = ei, eiej = 0 if i ≠ j. Show that if x = ∑1
nxiei, then ρ(x)

determined by the given base is diag{x1, x2, …, xn}.

2. Verify that if u = a0 + a1i + a2j + a3k in then T(u) =
4a0 and N(u) = (a0

2 + a1
2 + a2

2 + a3
2).2

3. Determine ρ(x) for x = x11e11 + x12e12 + x21e21 +
x22e22 using the base (e11, e21, e12, e22) for M2(F).

4. Let A = Mn(F). Prove that if x = (xij) ∈ Mn(F) then T(X)
= n tr X and N(x) = (det X)n.

5. Let A be a finite dimensional extension field of F. Let u
∈ A have minimum polynomial m(λ) and let f(λ) be the
characteristic polynomial of ρ(u), ρ a regular matrix
representation. Show that f(λ) = m(λ)[A:F(u)]. Suppose m(λ) =

(λ – ui) in a splitting field. Show that N(u) = ( ui)[A:F(u)].

6. Assume F has n distinct nth roots of 1 = . Show
that if ρ(x) is as in (38) then det ρ(x) = i = 1

n

.

7. Verify that if η1 and η2 ∈ Mn(F) then

Hence conclude that
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holds for the trace function on an algebra.

7.4 CHANGE OF BASE FIELD. TRANSITIVITY OF
TRACE AND NORM

Let A be an algebra over the field F and let K be a subfield of
F such that [F:K] < ∞. Then, as in the case in which A is a
field (Theorem 4.2, p. 215), it is easily seen that the
dimensionality [A:K] = [A:F][F:K], and if (u1, …, un) is a
base for A over F and (υ1, …, υr) is a base for F over K, then
the nr elements υjui constitute a base for A over K. Clearly A
can be regarded as an algebra over K as well as over F, and F
is an algebra over K. We therefore have norm and trace
functions from A to F, regarding A as an algebra over F, and
from A to K as well as norms and traces from F to K. We
denote these as NA/F, TA/F, NA/K, TA/K, NF/K, and TF/K
respectively. We shall now proceed to establish the following
transitivity formulas for these functions. If u ∈ A, then

The first of these is easy. All we have to do is look at the
matrices relative to suitable bases. As before, let (u1, …, un)
be a base for A/F, (υ1, …, υr) a base for F/K. Then we have
the base
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for A over K. Let ρ be the regular matrix representation of A
determined by the base (u1, …, un) and µ the regular matrix
representation of F over K determined by (υ1, …, υr). Write
ρ(u) = (υij(u)) for u ∈ A, µ(υ) = (υ(kl(υ)) for υ ∈ F. If we
recall the definitions, including the use of the transpose
matrix, we see that we have the following relations:

Then

Accordingly, the regular matrix representation of A oyer K
determined by the base (43) is
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In other words, we obtain a regular matrix representation of
A/K by taking one of A/F and replacing the entries, which are
elements of F, by the matrices representing them in a regular
matrix representation of F/K. It is clear from (46) that

. This proves (41).

To prove (42) we shall establish a general transitivity
property of determinants. We suppose we have an nr × nr
matrix M with entries in a field K and we assume that if we
partition this into n × n blocks of r × r matrices Aij, then these
r × r matrices all commute. This is precisely the situation we
have for the matrix in (47) in which the n × n blocks µ(ρij(u))
commute, since the ρij ∈ F/K
and υ → μ(υ) is a homomorphism. Since the Aij commute
they are contained in a commutative subring B of the ring
Mr(K) of r × r matrices with entries in K. We can regard M as
an n × n matrix with entries in B, that is, as an element of
Mn(B), and we can calculate the determinant of M as element
of Mn(B):

This is an element of the subring generated by the Aij and so
is independent of the choice of the commutative subring B.
Moreover, being an element of Mr(K) it has a determinant
which is an element of K. The result we wish to prove is:

We assume first that det A11 ≠ 0, so A11
–1 exists in Mr(K).

Since A11
–1 commutes with every Aij we may adjoin it to B
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obtaining a larger commutative subring of Mr(K). Replacing
B by this subring we may assume that All

–1 ∈ B. Then we
have the following calculation in Mn(B):

(A′11 = A11). Calling the last matrix M′ we have detB M = detB
M′ by the multiplicative property of detB and the fact that detB
of the triangular matrix is clearly 1. Also we have det M = det
M′. Hence (49) will follow if we can prove det (detB M′) = det
M′. We have

so det (detB M′) = det A′11 det (detB N′). Also det M′ = det
A′11 det N′ (exercise 5, p. 421). Now we can use induction on
n to assume that det(detB N′) = det N′. This gives the required
relation det (detB M′) = det M′.

To prove the result when A11 is not invertible we extend the
base field K to K(λ), λ an indeterminate, and we replace the
matrix M by the matrix M(λ) which is obtained by replacing
the entry A11 by A11 – λ1. Let B(λ) be a commutative subring
of Mr(K(λ)) containing the entries of M(λ). Since
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the result just proved shows that det (detB( λ) M( λ)) = det M(
λ). This is an identity in the polynomial ring K[λ] which
specializes to (49) by putting λ = 0.

We now apply this to norms. If M denotes the matrix on the
right-hand side of (47), then NA/K(u) = det M and taking B to
be the commutative ring of r × r matrices µ(υ), υ ∈ F, we
have det M = det (detB M). Since υ → µ(υ) is a
homomorphism, detB M = µ(det (ρij(u))) = µ(NA/F(U)). Also
det ?(υ) = NF/K(υ) for υ ∈ F. Hence det (detB M) = det
µ(NA/F(u)) = NF/K(N A/F(u)). Hence we have the transitivity
property (42).

We now specialize everything to the case in which A = E is a
finite dimensional extension field of the field F. Let u ∈ E
and write the minimum polynomial of u over F as

Then in the regular matrix representation of F(u) = F[u] over
F using the base (1, u, …, um – 1), the matrix representing u is

The trace and determinant of this matrix are respectively a1
and am. Hence TF(U)/F(u) = a1, NF(U)/F(u) = am. Also we
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have m = [F(u): F] and r ≡ [E : F(u)] = [E : F]/m. Since u ∈
F(u) we have TE/F(u)(u) = ru and NE/F(u)(u) = ur. Hence
TE/F(u) = T F(u)/F(TE/F(U)(u)) = TF(U)/F(ru) = ra1 and
similarly NE/F(u) = am

r. Thus we have

Suppose mu(λ) = Π1
m (λ – ui) is a factorization of the

minimum polynomial mu(λ) in a splitting field. Then a1 = ∑ui

and am = ui and we can substitute these in the foregoing
formulas.

Finally, suppose E is Galois over F with Galois group

Then the factorization mu(λ) = Π1
m(λ – ui) takes place in E[λ]

and the set of
roots {ui} is the orbit of u = u1 under G. We see easily that
the sequence {η1(u), η2(u),…, ηn(u)} contains r copies of the
orbit of u. Hence ∑1

n ηi(u) = [E : F(u)]a1, Π1
n ηi(u) = am

[E :
F(u)] and so
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which were the definitions we gave in section 4.15 (p. 296)
for the trace and norm of an element of a Galois extension
field E over F.

7.5 NON-ASSOCIATIVE ALGEBRAS. LIE AND JORDAN
ALGEBRAS

One way of trying to create new mathematics from an
existing mathematical theory, especially one presented in an
axiomatic form, is to generalize the theory by dropping or
weakening some of its hypotheses. If we play this axiomatic
game with the concept of an associative algebra, we are likely
to be led to the concept of a non-associative algebra, which is
obtained simply by dropping the associative law of
multiplication. If this stage is reached in isolation from other
mathematical realities, it is quite certain that one would soon
abandon the project, since there is very little of interest that
can be said about non-associative algebras in general. What
have turned out to be interesting are certain classes of
non-associative algebras that have been brought to the
attention of algebraists because of real or hoped for
applications to other fields.

We shall look first at the two most important examples—Lie
and Jordan algebras—and we begin with the former. These
were introduced under the name of “infinitesimal groups” by
Sophus Lie in connection with his studies of continuous
groups, or more precisely, what are nowadays called Lie
groups, which are suitably restricted continuous groups. We
shall refrain from giving any precise definitions here but will
try to suggest only that a continuous group is a composite
notion involving a group and a topological space.8 An
example is the group GLn( ) of n × n invertible matrices with
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real-number entries. Here, besides the group structure, we
have the added structure of a topological space which comes
from the imbedding of GLn( ) in Mn( ) and the fact that Mn(

) can be regarded as a Euclidean space of n2 dimensions.
The connection between
the algebraic and topological structures is that the group
multiplication and the map X → X– 1 are continuous. Another
example of a continuous group is the real orthogonal group
On( ). Still another example is the Lorentz group, which is
fundamental in relativity theory.

The great achievement of Sophus Lie was the reduction of
local problems on Lie groups to problems on Lie algebras.
With each Lie group there is an associated Lie algebra. For
GLn( ) this is the Lie algebra Mn( )– of all n × n real
matrices. The Lie algebra structure on Mn( )– is that given by
the vector space structure of Mn( ) and the Lie or (additive)
commutator composition

The Lie algebra of On( ) is the set Skn( ) of n × n skew
symmetric matrices. Just as On( ) is a subgroup of GLn( ),
Skn( ) is a subalgebra of Mn( )–, that is, a subspace of the
vector space Mn( ) closed under commutation.

The examples we have just given are special cases of a
general process for obtaining Lie algebras from associative
ones. In general we begin with an associative algebra A over
any field F. We then obtain a new structure by replacing the
given associative product by the Lie or commutator product.
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In this way we obtain the Lie algebra A–. Besides this it is
natural to consider also subalgebras of the algebra A–. An
important class of example is obtained if the associative
algebra A has an involution j: that is, an anti-automorphism x
→ of A such that j2 = 1. This is the case if A is the matrix
algebra Mn(F) and j = t the transpose map X → t X. Let Sk(A,
j) denote the set of j-skew elements of A, that is, the elements
s such that = – s. If s1 s2 ∈ Sk(A, j) and al, a2 ∈ F, then s =
a1s1 + a2s2 ∈ Sk(A, j) since

Also,

– [s1, s2]. Hence Sk(A, j) is a subalgebra of A–.

What are the properties of the Lie product [x, y] in an
associative algebra which we can discover easily? First, it is
immediate that if x, x1, x2, y, y1, y2 are elements of an
associative algebra A over F and a ∈ F, then

We omit the verification, which is trivial. We note next that

since [x, x] = x2 – x2, and we ask: is the product [xy]( ≡ [x, y])
associative? In terms of the associative product xy in A we
have
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Hence associativity of [,] is equivalent to yxz + zxy = xzy +
yzx, or to y(xz – zx) – (xz – zx)y = 0, or [y[xz]] = 0. Thus
associativity will hold only if [y[xz]] = 0 for all x, y, z in A.
The first example we might test, A = M2(F),will show that
this is not the case. For instance, if we take x = e12, y = e12, z
= e21, then [y[xz]] = – 2e12. If we look again at the foregoing
calculations we obtain a positive result on the iterated
commutators, namely, the calculations show that [[xy]z] –
[x[yz]] = [[xz]y]. Since [xx] = 0 we have [x + y, x + y] = [xx] +
[xy] + [yx] + [yy] = 0 so [xy] = – [yx]. Using this and the last
relation we obtain the Jacobi identity for [xy]:

This states that if we take a product [[xy]z], permute the three
elements cyclically and add, we obtain 0.

The properties we have just derived will be used in a moment
to define abstract Lie algebras. Before doing this we consider
the second class of nonassociative algebras which we wish to
define in this section: Jordan algebras. Here we begin with
any associative algebra A over a field F of characteristic ≠ 2.
We introduce the Jordan product (called the anti-commutator
by physicists):
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We replace the associative product xy by the Jordan product x
· y to obtain the Jordan algebra A +. Then we obtain Jordan
algebras also as subalgebras of the algebras A+. For example,
if A has an involution j then the set Sym(A, j) of j-symmetric
elements is such a subalgebra. For, it is clear as with Sk(A, j),
that Sym (A, J) is a subspace and if hl, h2 ∈ Sym(A, j), then

Sym(A, j).

The Jordan product x · y is commutative:

Since this holds we have only three distinct products of three
elements (x · y) · z,
(y · z) · x and (z · x) ·y. Moreover, direct calculation gives

Hence

and, as in the case of [,], it follows that the Jordan product x ·
y is not associative. The formula (63) and the Jacobi identity
for commutators does give the relation (x · y)· z – x · (y · z) +
(y · z)· x – y · (z · x) + (z · x) · y – z · (x · y) = 0. However, this
is a trivial consequence of the commutative law. We seek
identities which do not follow in this way and we note first
that + x2). By induction, if we define x ·k =
x·k – 1 · x, x·1 = x, then x·k = xk. This implies that
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a property which is called power associativity. Next, we
compute

Taking x = e12 + e21, y = e11 in A = M2(F), we obtain x2y +
yx2 = 2e11, xyx = e22 which implies that x· 2 · y and x · (x · y)
are linearly independent. Hence we have no relation of the
form ax· 2 · y = bx · (x · y) for non-zero a, b ∈ F, valid in
every A+. On the other hand, we have

which shows that we have the Jordan identity

in every A+ .

We shall now make a fresh start and give formal definitions
of the concepts of non-associative ( = not necessarily
associative) algebras, Lie algebras, and Jordan algebras.

DEFINITION 7.2. We define a non-associative algebra A
over a field F as a vector space equipped with a binary
product (x, y) → xy which is bilinear in the sense that
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Note that we do not assume the existence of a unit, as we do
in associative algebras. The main reason for not doing so is
that units cannot exist in the most important special case of
non-associative algebras, namely: Lie algebras. Their
definition is given in

DEFINITION 7.3. A Lie algebra is a non-associative
algebra whose product, which we shall denote as [xy] (or [x,
y]), satisfies the following two laws:

An immediate consequence of the first of these is
anti-commutativity:

We remark that anti-commutativity implies that 2[xx] = 0, so
if the base field does not have characteristic 2, then
anti-commutativity is equivalent to [xx] = 0, and may be used
in place of this law in the definition of a Lie algebra of
characteristic ≠ 2.

The result we obtained above (equations (58), (59), and (60))
is that if A is any associative algebra, then A defines a Lie
algebra A – with the same underlying vector space and the Lie
product [xy] = xy – yx. We have seen also that if A is an
associative algebra with an involution j, then the set Sk(A, j)
of j-skew elements is a subalgebra (in the obvious sense) of
the Lie algebra A –. Of course, in general, this will not be a
subalgebra of A. We shall give next another way in which Lie
algebras arise, namely, as derivation algebras of algebras. Let
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A now be any non-associative algebra. Then we define a
derivation D of A to be a linear map of A into A such that

If D1 and D2 have this property, then it is clear that D1 + D2
has, and if a ∈ F then

Hence the set Der Aof derivations is a subspace of the vector
space EndF A of linear transformations of A over F. If Dl and
D2 are derivations then D1D2 is a linear transformation and

This indicates that D1D2 may not be a derivation. However,
(D1x)(D2y) + (D2x)(D1y)
is symmetric inD1 and D2, so if we interchange these and
subtract, we obtain 0. Consequently, we have

which shows that [D1, D2] ∈ Der A. We have therefore shown
that Der A is a subalgebra of the Lie algebra EndF A– of linear
transformations in the vector space A. This is called the
derivation algebra of the non-associative algebra A.
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DEFINITION 7.4. A Jordan algebra is a non-associative
algebra over a field of characteristic ≠ 2 whose product,
denoted as x · y, satisfies the laws:

What we showed in our preliminary discussion is that any
associative algebra A over a field of characteristic ≠ 2
determines a Jordan algebra A+ having the same vector space
as A and the product x · y = (xy + yx). We saw also that if A
has an involution j, then the set Sym(A, j) of j-symmetric
elements is a subalgebra of A+.

We shall now show that the other property we noted for A +

power associativity (equation (64)), is a consequence of the
definition of a Jordan algebra, that is, this holds in every
Jordan algebra. In any non-associative algebra we define the
associator [x, y, z] of x, y, z in the algebra by

This is additive in every argument, [x1 + x2, y, z] = [x1, y, z] +
[x2, y, z]etc., and satisfies the following rule for scalars: a[x,
y, z] = [ax, y, z] = [x, ay, z] = [x, y, az], a ∈ F. These two
properties can be expressed by saying that the associator [x, y,
z] is a trilinear function of its arguments. The last condition
defining a Jordan algebra can be written as the associator
condition

This condition is a cubic condition on x. From it we shall
derive a multilinear identity by a process of linearization or
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polarization (which goes back to ancient times). There are a
number of ways of doing this. The most direct, but perhaps
not the shortest, is to calculate

Replacing x2 by x2 + x3 in this we obtain

Subtracting the preceding relation and the one obtained from
it by replacing x2 by x3 we obtain the desired multilinear
identity:

Cancelling the 2 (since the characteristic is ≠ 2) we obtain

In any non-associative algebra A we denote the linear map y
→ yx by xR (the right multiplication by x) and the linear map
y → xy by xL (left multiplication by x). Using these we can
formulate the commutative law by xL = xR for all x, and, using
this, the Jordan identity (68) by
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The identity (69) is clearly equivalent to

Moreover, we can also derive another operator identity
equivalent to (69) by writing this out and choosing one of the
xi as the element on which we operate. We have

Interchanging y and x2 we obtain

We now define the powers xk (or x·k) by x1 = x, xk = x · xk – 1.
Then (70) gives the recursion formula

Now xL and x2
L commute so they generate a commutative

algebra X of linear transformations. The recursion formula
implies that every xk

L, k ≥ 1, is contained in X. Hence we
have

which is equivalent to
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This implies power associativity xk · xl = xk + l. For, this holds
for all l and k = 1, by definition. Assuming it for all l and a
fixed k, we have

EXERCISES

1. Verify that the following associator identity holds in every
non-associative algebra

2. If A is a non-associative algebra one defines the nucleus
N(A) to be the subset of elements υ which associate with
everything, that is, every associator in which one of the
arguments is υ is 0. Use exercise 1 to show that N(A) is an
associative subalgebra of A.

3. The center C (A) of a non-associative algebra A is the
subset of N(A) of elements c such that cx = xc, x ∈ A. Show
that this is a commutative associative subalgebra of A.

4. Let D be a derivation of F[λ]/F, λ an indeterminate and let
Dλ = f(λ). Show that D is determined by f(λ). Show that the
map D → f(λ) is an isomorphism of vector spaces of Der F[λ]
and F[λ]. Show that if D → f(λ) and E → g(λ), then [D, E] →
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f(λ)g'(λ) – f'(λ)g(λ), f'(λ), the formal derivative of f(λ) (see
section 4.4, p. 230).

5. Generalize exercise 4 to F[λ1, λ2,…, λr], λi indeterminates.

6. Let A be an associative algebra over F which is a
commutative domain. Show that any derivation D in A has a
unique extension to the field of fractions of A.

7. Let A be a finite dimensional separable extension of F.
Show that Der A = 0.

8. Determine Der A if F is of characteristic p ≠ 0 and A =
F[λ]/(λp – a), a ∈ F.

9. If A is an algebra, the set Mn(A) of n × n matrices with
entries in A is an algebra with the usual vector space structure
and usual matrix multiplication. Let D be of
a map of A into itself and let η(D) be the map

of A into M2(A). Show that η(D) is a homomorphism of A into
M2(A) if and only if D is a derivation.
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10. Show that a linear transformation D in a non-associative
algebra A is a derivation if and only if either one of the
following conditions holds:

Show that if A is associative then xR – xL is a derivation for
every x ∈ A. Show that if A is Lie then xL = – xR is a
derivation. Show that if A is Jordan then [xL, yL] (= [xR, yR])
is a derivation for any x, y ∈ A.

11. Let B(u, υ) be a symmetric bilinear form on a vector space
V over F of characteristic ≠ 2. Let A = F1 V the vector
space direct sum of V and a one dimensional space with base
1. Define a product x · y for x = a1 + u, y = b1 + υ, a, b ∈ F,
u, v ∈ V by

verify that A with this product is a Jordan algebra with 1.

12. Let E(V) be the exterior algebra over V. Show that F1 + V
is a subalgebra of E(V) + . Show that if B ≡ 0 in exercise 11,
the resulting Jordan algebra is isomorphic to the subalgebra
F1 + V of E(V)+.

7.6 HURWITZ'S PROBLEM.
COMPOSITION ALGEBRAS
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The following problem was considered by A. Hurwitz in
1898. For what values of n do there exist identities of the
form

where the zi have the form

aijk complex numbers? At the time Hurwitz posed and solved
this problem a number of identities of this type were known
and there had been a number of abortive attempts to find
others. The known ones were identities for n = 1, 2, 4, and 8.
The first one of these is the trivial one: x1

2y1
2 = (x1 y1)2. The

next two
are already non-trivial, namely,

where

.
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These can be verified directly, or better still, they can be
deduced from properties of the multiplication of complex
numbers and of quaternions (see exercise p. 100). It is rather
tedious to write down the corresponding identity for n = 8. A
somewhat less explicit form of this, from which we could
write out the explicit identity if we wished, will be given
later. It is not known who first discovered the foregoing
identity for n = 2. The one for n = 4 seems to be due to Euler
and, according to L. E. Dickson, the one for n = 8 was found
by C. F. Degen in 1822. The sum of squares identity for n = 4
plays an important role in the proof of a beautiful theorem of
Lagrange which states that every positive integer can be
expressed as a sum of four squares of integers.9 Hurwitz's
theorem, which we shall prove and generalize in this section,
is that identities of the form (73)–(74) exist only if n = 1, 2, 4,
and 8.

The Hurwitz problem can be viewed either from the formal or
the functional point of view. In the first we consider the x's
and y's as indeterminates and (73) as a relation in the
polynomial ring of these indeterminates over . From the
functional point of view the starting point is the function (xl,
x2,…, xn) → xi

2 whose domain is the n-dimensional vector
space of n-tuples (x1, x2,…, xn) over . Clearly this function
is a quadratic form and (73)-(74) is a functional relation. It is
not difficult to see that a solution of the problem from either
point of view implies the solution from the other one. This is
trivial in the direction formal functional. The direction
functional formal follows in the usual way from Theorem
2.19 (p. 136), since is an infinite field. We shall adopt the
functional point of view. Accordingly, we consider the
n-dimensional vector space (n) of n-tuples of complex
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numbers x = (x1, x2,…, xn) on which we have defined the
quadratic form x → xi

2, which is non-degenerate. If y =
(y1, …, yn) and z = (zl,…, zn), then we have the binary
composition (x, y) → z
where the zi are given by (74) in terms of the fixed complex
numbers aijk. It is clear from the form of (74) that this
composition is bilinear. Hence if we denote z as xy, we obtain
a non-associative algebra. Also, denoting ∑ xi

2 as Q(x), we
have Q(x)Q(y) = Q(xy).

We shall now sharpen and generalize Hurwitz's problem. We
suppose we have a finite dimensional vector space A over a
field F of characteristic ≠ 2 equipped with a non-degenerate
quadratic form Q.10 We shall say that Q permits composition
if it is possible to define a bilinear product xy on A such that

for all x, y ∈ A. We have a non-associative algebra defined by
the vector space and the product xy, and we shall now show
that by modifying the product we may assume that our
algebra has a unit. For this purpose we choose an element υ
such that Q(υ) ≠ 0 and put u = Q(υ)– 1υ2. Then Q(u) = 1 and
hence Q(xu) = Q(x) = Q(ux) for all x. Thus the multiplications
uR and uL are orthogonal transformations of A relative to Q,
and so these are invertible and their inverses are also
orthogonal. We now define a new product x * y in A by
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and we have Q(x * y) = Q(uR
-1 x)Q(uL

-1 y) = Q(x)Q(y). Also
uL

-1 u2 = uL
-1(uLu) = u and uR

-1 u2 = uR
-1(uRu) = u, which

implies that

Thus u2 is a unit relative to the * multiplication. We shall now
revert to the original notation xy for x * y, and so we assume
at the outset that the algebra A has a unit, which we denote as
1. We state

DEFINITION 7.5. A composition algebra is a pair consisting
of a non-associative algebra A with unit 1 and a
non-degenerate quadratic form Q on A such that Q(xy) =
Q(x)Q(y).

We can now proclaim our objective in this section: to
determine all the composition algebras. At the moment this
may appear to be an overly ambitious goal. However, it turns
out that we can achieve it in a surprisingly elementary
fashion.

Let (A, Q) be a composition algebra. We observe first that the
composition law (75) gives Q(x)Q(1) = Q(x) so we have

Next we linearize the composition law in the variable x by
replacing x by x + z to obtain
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Since Q(x + y) – Q(x) – Q(y) = B(x, y), the symmetric bilinear
form associated with the quadratic form Q, the foregoing
gives

Hence we have

Similarly, if we linearize with respect to the variable y we
obtain

Next we linearize (77) with respect to y by replacing y by y +
w in this equation. This leads to the relation

Since the left-hand side of this is unchanged if we interchange
x and y and z and w we obtain also

We now introduce the map j = –S1 where S1 is the symmetry
in the hyperplane orthogonal to 1,

and we abbreviate
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Then we have

and we wish to prove

LEMMA 1. We have the following properties:

Proof. We note first that B(x, z) = B(x, B(y, l)z – yz) = B(y,
1 )B(x, z) – B(x, yz) = B(yx, z) + B(yz, x) – B(x, yz) (by (79)) =
B(yx, z). Thus

and, Similarly,

By (78) and (86), we have Q(x)B(1, y) = B(x, xy) = B( x, y).
Hence B(Q(x) 1, y) = B( x, y) and B(Q(x)1 – x, y) = 0 for all
y. Since B is non-degenerate, this implies that x = Q(x)1.
Also, replacing x by we obtain x = = Q( )1 = Q(x) 1.
Hence (82) is proved. next we have B( (xy), z) = B((B(x, 1)1
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– x)(xy), z) = B(x, 1) B(xy, z) – B(x(xy), z) = B(x(xy), z) + B(xy,
xz) – B(x(xy, z) (by (79)) = B(xy, xz) = Q(x)B(y, z) = B(Q(x)y,
z). By the non-degeneracy of B, this gives (xy) = Q(x)y.
Since x = Q(x)1, we have (83). Similarly one establishes
(84). To prove (85) we compute

Hence B( , z) = B( , z) and so again by non-degeneracy we
obtain (85).

Since j : x → is linear, = x, and (85) holds, j is an
involution in A. Also, by definition of , we have x + =
T(x)1. The relations (83) and (84) give the
associator relations

Since [1, x, y] = 0 = [y, x, 1] and x = T(x)1 – these relations
imply
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Thus A is an alternative algebra in the sense of

DEFINITION 7.6. An algebra is alternative if the identities
(89) hold for allx, y in the algebra.

We have now shown that if (A, Q) is a composition algebra,
then A is alternative with involution j : x → such that x =
Q(x)1. It turns out that these conditions are also sufficient for
a composition algebra. Before we can prove this we shall
need to derive a few basic properties of alternative algebras.

We now suppose A is any alternative algebra. We note first
that linearization of the alternative laws (89) gives the
relations [x, z, y] + [z, x, y] = 0 = [y, x, z] + [y, z, x]. These
imply that the associator [x, y, z] is an alternating function of
its arguments, that is, it is unchanged under even
permutations ([x, y, z] = [y, z, x] = [z, x, y]) and changes sign
under odd permutations of the arguments. It follows also that
[x, y, x] = – [y, x, x] = 0. Hence we have the laws

We shall abbreviate (xy)x = x(yx) to xyx. We establish next the
following important identity for alternative algebras which is
due to R. Moufang:

Our starting point is the relation

755



which is equivalent to [u, x, y] = [x, y, u]. We replace
successively x by ux then y by yu in (92) and add the resulting
equations. This gives

If we subtract from this the relation obtained from (92) by
replacing u by u2 we obtain Moufang's identity.11

Now suppose A is an alternative algebra with 1 and involution
j : x → such that x = Q(x)1 where Q(x) is a non-degenerate
quadratic form. Then we have by linearization

Putting y = 1 in this we obtain x + = T(x) 1 where T(x) =
Q(x, 1). Then the alternative laws [x, x, y] = 0 = [y, x, x] and x
+ = T(x)l yield (88), so we have (xy) = ( x)y = Q(x)y. We
now have
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Hence Q(xy) = Q(x)Q(y) and (A, Q) is a composition algebra.

We have now achieved the first important step in our
analysis, namely,

THEOREM 7.5. Any composition algebra (A, Q) is
alternative and has an involution j : x → such that x =
Q(x)1. Conversely, let A be an alternative algebra with unit
and involution j : x → such that x = Q(x)l, where Q(x) is a
non-degenerate quadratic form. Then (A, Q) is a composition
algebra.

We shall give next a construction of composition algebras.
This will constitute an almost trivial generalization of the
familiar construction of complex numbers as pairs of real
numbers. For the moment we drop the alternative law and we
assume only that A is a non-associative algebra with a unit 1
and an involution j such that x = Q(x)1 where Q(x) is a
non-degenerate quadratic form. Then we have (93) and x +
= T(x)1, T(x) = B(x, 1). Let c be a non-zero element of the
base field F. From A, j, and c we shall now construct an
algebra D satisfying the same conditions as A and having
dimensionality 2 dim A. Let D = A(2), the vector space of
pairs (x, y), x, y ∈ A, with the usual direct sum vector space
structure. We introduce a binary product in D by the formula

It is immediate that this is bilinear, so along with the vector
space structure it defines an algebra on D. It is clear from (94)
that (1, 0) is a unit in D so we write 1 = (1, 0). We also have
(u, 0)(x, 0) = (ux, 0), from which it follows that u → (u, 0) is a
monomorphism of A into D. Thus we may identify A with the
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subalgebra of D made up of the elements (u, 0), u ∈ A. We
now extend the involution j on A to the linear map

Clearly j2 = 1. Direct verification, which we leave to the
reader, shows that j is an involution in D. Moreover, we have

Now (x, y)→ Q(x) – cQ(y) is a quadratic form on D. The
corresponding symmetric bilinear form is ((u, v), (x, y)) →
B(u, x) – cB(υ, y). One sees easily that this is non-degenerate.
Hence D and its involution satisfy the same conditions as A.
We shall call D the c-double of A and we now prove

LEMMA 2. (1) The c-double D is commutative and
associative if and only if A is commutative and associative
and j = 1. (2) D is associative if and only if A is commutative
and associative. (3) D is alternative if and only if A is
associative.

Proof. Write X = (x, y), U = (u,υ ), Z = (z, t) for x, y, etc. in A.
Then
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Since A is a subalgebra of D (under the identification x → (x,
0)), it is clear that if D is commutative or associative, then A
is respectively commutative or associative. Also (96) with u =
0 = x, υ = 1 shows that [U, X] = 0 implies = y; hence j = 1.
Conversely, it is clear from (96) that if A is associative and
commutative, and j = 1, then D is commutative. Also if we
put υ = x = z = 0, t = 1 in (97) we obtain the necessary
condition yu = uy, y, u ∈ A, for associativity of D. Thus D
associative implies A associative and commutative.
conversely, (97) shows that if A is associative and
commutative, then D is associative. This proves (1) and (2).
To prove (3) we note that D is alternative if and only if [ , X,
Z] = 0 for all X, Z: since X + = T(X) 1 this is equivalent to
[X, X, Z] = 0. Applying the involution to this relation we
obtain [ , , ] = 0, since

. Hence we have [Z, X, X] = 0 for all Z, X. Now assume A is
alternative. Then taking U = = ( , – y) in (97) and using [ ,
x, y] = 0, ( y)z = Q(y)z = (z )y, etc., we obtain

which shows that [ , X, Z] = 0 for all X, Z if and only if A is
associative. This proves (3).

Recalling that the algebras we are considering in Lemma 2
are composition algebras if and only if they are alternative
(Theorem 7.5), we can obtain a hierarchy of examples as
follows. We begin with A = F which satisfies the conditions
trivially. Doubling this gives a commutative associative
algebra (by Lemma 2,(1)) which is two dimensional. These
composition algebras will be called quadratic algebras.
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Among them are included the quadratic field extensions of F.
A double of a quadratic algebra is associative but not
commutative since the involution in the quadratic algebra is
not the identity mapping. The doubles of quadratic algebras
are called (generalized) quaternion algebras over F. These
are four dimensional over F. Doubling again we obtain eight
dimensional algebras which are alternative. These
composition algebras are called octonion algebras (or Cayley
algebras). Since the quaternion algebras are not commutative,
the octonions are not associative. Hence, as far as
composition algebras are concerned, we have reached the end
of the road.

We shall now prove that our constructions yield all the
composition algebras. To see this we need the following

LEMMA 3. Let (A, Q) be a composition algebra, C a proper
subalgebra containing 1 stabilized by the involution j of A (

C) such that C is a non-degenerate subspace of A relative
to B. Then C can be imbedded in a subalgebra D of A
satisfying the same conditions as C and isomorphic to a
double of C.

Proof. Since C is non-degenerate we have A = C C and we
can choose an element t ∈ C such that Q(t) = – c ≠ 0. Since
1 ∈ C, T(t) = B(1, t) = 0, so = –t and hence

If x ∈ C, B(x, t) = 0. Then, by (93), t + x = 0, and
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If x, y ∈ C then x ∈ C, so B(x, yt) = B( x, t) = 0. Hence the
subspace Ct = {yt|y ∈ C} C and, consequently, D ≡ C + Ct
= C Ct. In A we have the
relation (xy) = Q(x)y which linearizes to

Taking x, y ∈ C, z = t this gives (ty) = t(xy). Then, by (ii), (
t) = ( )t. Thus we have

Applying the involution and (ii) we obtain also

Finally, (xt)(yt) = (t )(yt) = t( y)t (by Moufang's identity) = (
x)t2 = c x. Hence

The formulas (i)–(v) show that if u, υ, x, y ∈ C, then

Hence D = C + Ct is a subalgebra of A containing C. Also
so Dj D and Q(xt) = Q(x)Q(t)

= – cQ(x). This implies that x → xt is a bijective linear map of
C onto Ct. Hence C and Ct are isomorphic as vector spaces.
Moreover, Ct is non-degenerate. Hence D, which is an
orthogonal direct sum of C and Ct, is non-degenerate.
Comparison of (vi) and (94) shows that (x, y) → x + yt is an
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isomorphism of the c-double of C with D. This completes the
proof of the lemma.

We can now prove the main result.

THE GENERALIZED HURWITZ THEOREM. The
following is a complete list of the composition algebras over
afield F of characteristic ≠ 2: (I) F1, (II) quadratic algebras,
(III) quaternion algebras, (IV) octonion algebras.

Proof. We have seen that the algebras listed are composition
algebras (with Q as defined in the construction). Now let (A,
Q) be a composition algebra. If A = F1 we have case I.
Otherwise, F1 A, so (by Lemma 3) A contains a quadratic
subalgebra that is non-degenerate and is stable under j. If A
coincides with this subalgebra we have II. Otherwise, A
contains a quaternion subalgebra stable under j and
non-degenerate. If A coincides with this we have III.
Otherwise, A contains an octonion subalgebra stable under j
and non-isotropic. Then A coincides with this subalgebra
since, otherwise, A contains a double of an octonion algebra.
Such a double is not alternative. Since A is alternative this is
impossible, and so we have case IV.

We shall now derive in explicit form the bases and
multiplication tables which are provided naturally by the
doubling process. These can be used to write out the
composition laws for the quadratic form.

First, we have F with base i0 = 1 and multiplication i02 = i0.
Let A1 denote the c1-double of this. The base we choose for
A1 is i0 = 1 and i1 = (0, 1). Omitting the products involving i0
the multiplication is described by
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Next we form the c2-double A2 of A1 and write i2 = (0, 1) in
this. Then we have the base (i0, i1, i2, i3 = i1i2) since A2 = A1

A1i2. The essential part of the multiplication table for this
base of the quaternion algebra A2 is

These all follow from the associative law and i12 = c11, i22 =
c21, i1i2 = – i2i1, (i) and (ii) above. Finally, we consider the
octonion algebra A3 which is the c3-double of A2 and hence
has the base

The multiplication for this base which one deduces from
(i)–(v) is :
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If x = x0i0 + x1i1 in A1, then x = (x0
2 – c1x1

2)1, so

Since for y = y0i0 + y1i1 we have xy = (x0y0 + c1x1y1)i0 +
(x0y1 + x1y0)i1, the composition law for Q in this case is

Similarly, taking x = x0i0 + x1i1 + x2i2 + x3i3, y = y0i0 + y1i1 +
y2i2 + y3i3 in A2 we obtain

and the composition law:
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Taking the ci = – 1 we obtain the identities we listed at the
beginning of our discussion. We could also write down the
quadratic form Q provided by the octonion algebra and the
corresponding composition law. We refrain from doing this
because of the length of the formulas.

If the base field F = and c1 = – 1, then the quadratic algebra
A1 has base (i0, i1) with i0 as unit and i12 = – 1. Clearly this is
the field of complex numbers. Taking c2 = – 1 we obtain
the quaternion algebra with base (i0, i1, i2, i3) such that i0 = 1,
ij2 = –1 for 1 ≤ j ≤ 3, i1i2 = i3 = – i2i1, i2i3 = i1 = – i3i2, i3i1 =
i2 = – i1i3. Clearly this is Hamilton's quaternion algebra .
Taking c3 = – 1 we obtain the classical octonion algebra
which was discovered independently by J. J. Graves before
1844 and by A. Cayley in 1845. The definition of this algebra
as a double of a quaternion algebra is due to L. E. Dickson.12

The Cayley-Graves algebra is a division algebra in the
sense that any x ≠ 0 in has an inverse x– 1 such that xx– 1 =
1 = x– 1x. If x = then = x0i0 – and Q(x)=

≠ 0. Then we may take x–1 = Q(x)–1 . More generally,
one sees that any composition algebra whose quadratic form
is anisotropic is a division algebra.

EXERCISES
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1. Show that every x in a composition algebra satisfies the
quadratic equation

2. Use Witt's theorem and the doubling construction to
prove that, if (A, Q) and (A', Q') are composition algebras
such that Q and Q' are equivalent quadratic forms and C and
C' are isomorphic non-degenerate subalgebras of A and A',
respectively, then any isomorphism of C onto C' can be
extended to an isomorphism of A onto A'. Hence prove that
composition algebras (A, Q) and (A', Q') are isomorphic if and
only if Q and Q' are equivalent.

3. Show that if (A, Q) is a composition algebra which is
not a division algebra, then Q has maximal Witt index (= n/2,
n = 2, 4, or 8). Such a composition algebra is called split.
Show that any two such algebras of the same dimension are
isomorphic.

4. Show that if F is a finite field, then any composition
algebra of dimension 4 or 8 is split. Does this hold for n = 2?

5. Define a quadratic algebra over a field F of any
characteristic to be an algebra F[λ]/(λ2 – λ + a) such that 4a ≠
1, together with the quadratic form Q(b + cu) = b2 + bc + c2a,
u = λ + (λ2 – λ + a). Show that this has an involution such that
u → = 1 – u and that x = Q(x) for x = b + cu. Show that for
characteristic ≠ 2 this is isomorphic to the quadratic algebras
defined in the text.
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6. Define a quaternion algebra over a field F of any
characteristic as a double of a quadratic algebra as defined in
exercise 5, and an octonion algebra as a double of a
quaternion algebra. Define composition algebras over F as in
the text where it is understood that non-degeneracy means
that the only z such that Q(z) = 0 = Q(x, z) for all x is z = 0.
Prove the following generalized Hurwitz theorem for
arbitrary F. The composition algebras over F are: (I) F, (II)
quadratic algebras, (III) quaternion algebras, (IV) octonion
algebras, (V) for char F = 2, a finite dimensional extension
field A of F such that for every x ∈ A, x2 = Q(x) ∈ F.

7. Show that if composition algebras are defined as in
Definition 7.5, then the Generalized Hurwitz theorem is still
valid if the (implicit) finite dimensionality hypothesis is
dropped.

8. Prove the following Mpufang identities for alternative
algebras of any characteristic:

9. Show that the second of the foregoing identities is
equivalent to the associator identity:

and that this linearizes to
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Use these to prove Artin's theorem: the subalgebra generated
by any two elements of an alternative algebra is associative.
(Note that this implies that alternative algebras are power
associative.)

7.7 FROBENIUS' AND WEDDERBURN'S THEOREMS
ON
ASSOCIATIVE DIVISION ALGEBRAS

In volume II we consider the structure theory of rings and of
associative algebras. One of the main results of this theory is
the reduction of the study of some quite general classes of
rings to division rings. In the case of finite dimensional
algebras we have a reduction to division algebras. What can
be said about these? The answer to this depends considerably
on the underlying field. In this section we shall consider the
three simplest cases, those in which F is either algebraically
closed, the field of real numbers, or a finite field.13

Let A be a finite dimensional associative algebra over F
which is a division algebra in the sense that every x ≠ 0 in A
has an inverse in A. If mx(λ) is the minimum polynomial of x
and mx(λ) = m1(λ)m2(λ) in F[λ], then m1(x)m2{x) = 0 which
implies that either m1(x) = 0 or m2(x) = 0. It follows that the
minimum polynomial of every x ∈ A is irreducible. We shall
identify F with the subalgebra F1 of multiples al, a ∈ F. Then
it is clear that mx(λ) is linear if and only if x = a ∈ F.

The determination of the finite dimensional division algebras
over an algebraically closed field F is trivial; for, we have the
following
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THEOREM 7.6. If F is algebraically closed, then the only
finite dimensional division algebra over F is F itself

Proof. Let A be a finite dimensional division algebra over the
algebraically closed field F and let x ∈ A. Then the minimum
polynomial of x is linear, since it is irreducible and F is
algebraically closed. Hence F[x] = F, so x ∈ F. Since this
holds for all x ∈ A, we have A = F.

We consider next the case F = and A a finite dimensional
division algebra over . The monic irreducible polynomials in

[λ] are the linear ones λ – a or the quadratic ones λ2 – 2aλ +
b with a2 < b. If x ∉ , its minimum polynomial has the
second of these forms and x = y + a, where the minimum
polynomial of y is λ2 + (b – a2). It follows that every element
of A has the form
a + y where a ∈ and either y = 0 or y2 = b ∈ with b <0.
We shall use this simple remark to prove

FROBENIUS’ THEOREM. The only finite dimensional
division algebras over are : (1) , (2) , and (3) .

Proof. The proof we shall give is a somewhat polished
version of one which has been given by Dickson.14 We let A′
denote the subset of A consisting of the elements u whose
squares are elements ≤ 0 in . We claim that A′ is a subspace
of A. Since it is clear that if u ∈ A′ and a ∈ , then au ∈ A′, it
suffices to show that if u and v are linearly independent
elements of A′, then u + v ∈ A′. We observe first that we
cannot have a relation of the form u = av + b, b ∈ . For, we
have u2 = c < 0, v2 = d <0 (since u ≠ 0, v ≠ 0), so u = av + b
gives the relation c = (av + b)2 = a2d + 2abv + b2. Since v ∉
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we have ab = 0, and a = 0 or b = 0. The first alternative
implies that u ∈ , the second that u is a multiple of v. Since
both of these have been ruled out, it follows that we cannot
have u = av + b. Thus we see that 1, u, and v are linearly
independent. Now consider u + v and u – v. Both are roots of
quadratic equations. Hence we have p, q, r, s ∈ such that

Since (u ± v)2 = u2 ± (uv + vu) + v2 and u2 = c, v2 = d, these
give the relations

Adding, we get (p + r)u + (p – r)v + (q + s – 2c – 2d) = 0.
Since u, v, 1 are linearly independent, this implies that p = r =
0. Then (u + v)2 = q ∈ and since u + v ∉ , q < 0. Thus u +
v ∈ A′ and A′ is a subspace. We saw above that any element
of A has the form a + y, a ∈ , y ∈ A′. Hence we have A =
⊕ A′.

If u ∈ A′ we now write u2 = –Q(u) where Q(u) ∈ and Q(u)
≥ 0. Moreover, Q(u) = 0 if and only if u = 0. Clearly, Q(au) =
a2Q(u) if a ∈ and B(u, v) ≡ Q(u + v) – Q(u) – Q(v) = – (u +
v)2 + u2 + v2 = –(uv + vu). The formula B(u, z) = – (uv + vu)
shows that B(u, v) is a symmetric bilinear form. Hence we see
that Q(u) is a quadratic form and B(u, v) is its associated
symmetric bilinear form. Moreover, Q is positive definite.
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We can now complete the proof. If A = we have the first
possibility we listed. Suppose A ⊇ . Then A′ ≠ 0 and we can
choose a vector i in A′ such that Q(i) = 1. Then i2 = – 1 and
[i] = = + i. If A = we have our second alternative. Now
suppose A . Then A′ i and we can choose j i such
that Q(j) = 1. Then j2 = – 1 and ij + ji = –Q(i, j) = 0, so ij =
–ji. Putting k = ij we obtain k2 = – 1, ik + ki = 0 = kj + jk.
Hence k ∈ A′ and k i, j. It follows that 1, i, j, k are linearly
independent and + i + j + k = . Now A = .
Otherwise, there exists an l ∈ A′ such that Q(l) = 1 and l i, j,
k. Then li = –il, lj = –jl, lk = –kl, k = ij. However, the first
two of these gives l(ij) = (li)j = – (il)j = – i(lj) = i(jl) = (ij)l, so
lk = kl. This contradiction shows that A = and we have the
third alternative.

We now turn to the case of a finite field F. If |F| = q and V is
an n-dimensional vector space over F, then |V| = qn. In
particular, if A is a finite dimensional division algebra over F,
then A is a finite division ring. Conversely, let A be a finite
division ring and let F be the center of A. Then F is a finite
field and A is a finite dimensional algebra over F. In 1905 J.
H. M. Wedderburn discovered the surprising fact that every
finite division ring is commutative. Wedderburn’s theorem
has a striking consequence for projective geometry. For, it is
known that Desarguesian projective geometries—that is,
projective geometries in which the theorem of Desargues
holds—can be coordinatized by division rings, and that these
are commutative if and only if the theorem of Pappus holds.15

It therefore follows from Wedderburn’s theorem that the
theorem of Pappus is valid in any finite projective geometry
in which Desargues’ theorem holds. We shall now prove
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WEDDERBURN’S THEOREM. Every finite division ring is
commutative.

Proof. Let F be the center of the finite division ring A and let
|F| = q, [A : F] = n. Then |A| = qn. We have to show that n = 1.
Let A* be the multiplicative group of non-zero elements of A.
Then we have the class equation

where the xi range over a set of representatives of the
conjugacy classes of A* (one element from each class). If xi ∈
F, Stab xi = A*, so that we have a contribution of 1 in the
above sum coming from such an xi. The number of xi ∈ F ∩
A* is q – 1, so altogether we get the contribution q – 1 in this
way. Next let xi ∉ F.

Then the subset of elements of A which commute with xi is a
division subring Fi of A containing F. Hence |Fi| = qdt where
di = [Fi : F] and di < n since xi ∉ F, and so Fi ⊂ A. It is clear
that Stab xi = Fi ∩ A*. Hence |Stab xi| = qdt – 1. We can now
rewrite (107) as

where every di < n. We observe also that every di|n. This
follows since A can be regarded in the obvious way as a (left)
vector space over Fi. When this is done and Fi is regarded in
the usual way as vector space over F, then we have the
product formula as for fields (Theorem 4.2, p. 215). Thus the
dimensionality n of A over F is divisible by the
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dimensionality di of Fi. Thus far the proof is Wedderburn’s. It
remains to show that (108) is impossible when the di| n and di
< n, unless n = 1. The argument we shall give for this is due
to E. Witt. We look at the λn – 1, λdi – 1, λ an indeterminate.
We recall that if we define the nth cyclotomic polynomial
ln(λ) = Π(λ – z), z running over the primitive nth roots of 1 in

, then λn – 1 = Πd/n ld(λ) (section 4.11, p. 272). Also we saw
that the ld(λ) are monic polynomials with integer coefficients.
It is clear from this that if di|n and di < n, then (λn – l)/(λdt – 1)
is a polynomial with integer coefficients divisible in [λ] by
ln(λ). Hence (qn – 1 )/(qdt – 1) as well as qn – 1 is divisible by
the integer ln(q). Then it follows from (108) that ln(q)|q – 1.
Now suppose n > 1 and consider the factorization ln(λ) = Π(λ
– z), z ranging over the primitive nth roots of unity. Since n >
1, no z = 1 and the distance from the point q on the real axis
to any one of the z’s exceeds the distance from q to the point
1. Hence |q – z| > q – 1 and therefore |ln(q)| = Π |q – z| > q – 1
contrary to ln(q) | q – 1. Thus n = 1 and A = F is
commutative.

EXERCISES

1. Prove the following extension of Frobenius’ theorem to
alternative division algebras. The only finite dimensional
alternative division algebras over are (a) , (b) , (c) , (d)

. (Hint: Apply the generalized Hurwitz theorem.)

1 A given ring R may not have any such subfield. For
example /(6) cannot be regarded as an algebra over any field.
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2 We suggenst as an exercise that the reader break off the
reading at this point and formulate for himself what he
regards as the fundamental concepts related to that of an
algebra. After that he can check back with the material in the
text.

3 See H. G. Grassmann, Ausdehnungslehre. The first edition
was published in 1844. A second, expanded and improved
edition appeared in 1862.

4 Conceivably some of the elements displayed in (9) could be
equal and even if distinct they could be linearly dependent.

5 We have a homomorphism of into R (m → m1) and this
can be extended to [xij, yij] sending xij and yij into any
chosen elements of R.

6 Actually Fv is the center of EndF is the center of EndF V.
See Corallary 2 to Theorem 3.17, p. 208.

7 This result seems to be due to M.H. Ingraham, Bulletin of
the American Mathematical Society, vol. 43, (1937) pp.
579–580.

8 A good introductin to Lie theory can be found in P.M.
Cohn, Lie Groups, Cambridge Tract in Mathematics no. 46,
1957, or in L. Pontrjagin, Topological Groups, Princeton
University Press, 1939.

9 See G.H. Hardy and E. M. Wright, An Introduction to the
theory of Numbers, 5th ed. Oxford University Press, 1975,
p.302.
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10 Neither restriction—finite dimensionality or characteristic
≠ 2— is essential. This will be indicated in exercises below.

11 The proof we have given makes use of the restriction that
the characteristic is ≠ 2. The result is valid without this
restriction.

12 L. E. Dickson, Linear Algebras, Cambridge Tract in
Mathematics, no. 16, 1914, p. 15; or his Algebras and Their
Arithmetics, University of Chicago Press, 1923, p. 62.

13 The case F = turns out to be surprisingly difficult,
requiring deep arithmetic results.

14 L. E. Dickson, Linear Algebras, pp. 10–12.

15 See E. Artin, Geometric Algebra, New York, Wiley, 1957,
p. 73.
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8

Lattices and Boolean Algebras

Associated with a set S one has the power set (S), the set of
its subsets, and the algebra (in the non-technical sense) of
(S) based on intersection A ∩ B and union A ∪ B. When one
attempts to set down the basic properties of the structure (
(S), ∩, ∪) one is led to the abstract concept of a Boolean
algebra. It was George Boole who first realized that this type
of algebra could be used to analyze the calculus of
propositions in logic and that it played a basic role in
probability theory.1 A more general concept than that of a
Boolean algebra is that of a lattice, which was introduced by
Dedekind in studying divisibility in commutative rings and
the combinatorial properties of ideals with respect to
intersection A ∩B and sum A + B2.

In this chapter we shall give an introduction to lattices and
Boolean algebras. Our purpose will be to acquaint the reader
with the concepts and elementary results on lattices and
Boolean algebras which are applicable to other parts of
algebra.
Some of these will be needed in Volume II in connection with
the study of universal algebra.

Besides the basic definitions, the main topics we shall treat in
this chapter are: the Jordan-Hölder theorem for semi-modular
lattices, the “fundamental theorem of projective geometry,”
which determines the isomorphisms between the lattices of
subspaces of vector spaces, the equivalence of Boolean
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algebras and Boolean rings, and the MÖbius function of a
partially ordered set.

8.1 PARTIALLY ORDERED SETS AND LATTICES

The most general concept we shall consider in this chapter is
that of a partially ordered set. We recall that a binary relation
on a set S is a subset R of the product set S × S (Introduction,
p. 10). We say that a is in the relation R to b and write aRb if
and only if (a, b) R. We now give

DEFINITION 8.1. A partially ordered set is a set S together
with a binary relation a ≥ b satisfying the following
conditions:

POl a ≥ a (reflexivity).

PO2 If a≥ b and b ≥ a, then a = b (anti-symmetry).

PO3 If a≥ b and b ≥ c, then a≥ c (transitivity).

If a ≥ b and a ≠ b, then we write a > b. Also we write a ≤ b as
an alternative for b ≥ a and a < b for b > a. In general we may
have neither a ≥ b nor b ≥ a for a pair of elements a, b S. If
we do have a ≥ b or b ≥ a for every pair (a, b) then we call S
totally ordered (or a chain).

We have encountered quite a few examples of partially
ordered sets: the set (S) of subsets of a set S where A ≥ B
for subsets A and B means A ? B, the set of subrings of a ring,
the set of subgroups of a group, the set of ideals of a ring, and
so on—all partially ordered by inclusion as defined for
subsets. In general, if S, ≥ is a partially ordered set, then any
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subset T of S is partially ordered by the relation ≥ of S
restricted to T. Other interesting examples of partial orderings
arise in discussing divisibility in monoids and rings. For
example, in the multiplicative monoid of positive integers we
can define a ≥ b to mean a|b (a is a divisor of b). Then
PO1-PO3 hold. More generally, let S be a commutative
monoid satisfying the cancellation law. We say that S is
reduced if 1 is the only invertible element in S. In this case
a|b and b|a imply a = b. Then S is partially ordered if we
define a ≥ b by a|b. If S is not reduced we obtain a non-trivial
congruence relation in S by defining a ∼ b if a = bu, u
invertible. The quotient monoid relative to this congruence
relation is reduced and can be partially ordered by the
divisibility relation.

In a finite partially ordered set the relation > can be expressed
in terms of a relation of covering. We say that a1 is a cover of
a2 if a1 > a2 and there exists no u such that a1 > u a2. It is
clear that a > b in a finite partially ordered set if and only if
there exists a sequence a = a1, a2, …, an = b such that each ai
is a cover of ai + 1. The notion of cover suggests a way of
representing a finite partially ordered set S by a diagram. We
represent the elements of S by dots. If a1 is a cover of a2 then
we place a1 above a2 and connect the two dots by a straight
line. Then a > b if and only if there is a descending broken
line connecting a to b. If no line connects a and b ≠ a, then a
and b are not comparable, that is, we have neither a ≥ b nor b
≥ a. Some examples of diagrams of partially ordered sets are
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the third one of these representing a totally ordered set.

An element u of a partially ordered set S is an upper bound of
a subset A of S if u ≥ a for every a A. The element u is a
least upper bound or sup of A if u is an upper bound of A and
u ≤ υ for every upper bound υ of A. It is clear from PO2 that if
a sup A exists, then it is unique. In similar fashion one defines
lower bounds and greatest lower bounds or infs of a set A.
Also if inf A exists, then it is unique. We now introduce the
following

DEFINITION 8.2. A lattice is a partially ordered set in
which any two elements have a least upper bound and a
greatest lower bound.

We denote the least upper bound of a and b by a ∨ b (“a cup
b” or “a union b”) and the greatest lower bound by a ∧ b (“a
cap b” or “a meet b”). If a, b, c are elements of a lattice L,
then (a ∨ b) ∨ c ≥ a, b, c and if υ ≥ a, b, c, then υ ≥ (a ∨ b), c
so υ ≥ (a ∨ b) ∨ c. Hence (a ∨ b) ∨ c is a sup of a, b, c. By
induction, one shows that any finite set of elements of a
lattice have a sup. Similarly, any finite subset has an inf. We
denote the sup and inf of a1, a2, …, an by
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respectively.

Any totally ordered set is a lattice. For, if a and b are two
elements of such a set we have either a ≥ b or b ≥ a. In the
first case, a ∨ b = a and a ∧ b = b. If b ≥ a then a ∨ b = b and
a ∧ b = a.

A partially ordered set is called a complete lattice if every
subset A = {aa} has a sup and an inf. We denote these by
and respectively. If the set {aα} coincides with the
underlying set of the lattice L then 0 ≡ is the least
element of L and 1 ≡ is the greatest element of L:0 ≤ a
and 1 ≥ a for every a L. The following is a very useful
criterion for recognizing that a given partially ordered set is
complete lattice.

THEOREM 8.1. A partially ordered set with a greatest
element 1 such that every non-vacuous subset {aα} has a
greatest lower bound is a complete lattice. Dually, a partially
ordered set with a least element 0 such that every
non-vacuous subset has a least upper bound is a complete
lattice.

Proof. Assuming the first set of hypotheses we have to show
that any A = {aα} has a sup. Since 1 ≥ aα the set B of upper
bounds of A is non-vacuous. Let b = inf B. Then it is clear that
b = sup A. The second statement follows by symmetry.

EXAMPLES

1. For any set S, (S) is a complete lattice. Here 1 = S and 0
= Ø.
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2. The set of subgroups of a group G ordered by inclusion.
Since G is a subgroup and the intersection of any set of
subgroups is a subgroup, the set of subgroups is a complete
lattice. The proof of Theorem 8.1 shows that the sup of a set
of subgroups is the intersection of all subgroups containing
the given set {Hα}. Clearly this is the subgroup generated by
all the Hα.

The next four examples are similar to 2. They are complete
lattices in which “ ≥ ” means inclusion.

3. The set of normal subgroups of a group. The sup of a set of
normal subgroups is the subgroup they generate.

4. The set of subspaces of a vector space ordered by
inclusion. The inf is the set intersection and the sup is the
subspace spanned by the given set of subspaces.

5. The set of ideals of a ring R. Inf is the set intersection, sup
is the ideal generated. For two ideals I1, I2 this is I1 + I2, the
set of sums b1, b2, bi Ii.

6. The set of left (right) ideals of a ring.

7. The set of positive integers partially ordered by divisibility:
a ≥ b a|b. Here a ∨ b
is the greatest common divisor of a and b and a ∧ b is the
least common multiple of a and b. This is a lattice but it is not
complete.

8. All the diagrams above except the last one represent
lattices (necessarily complete since they are finite).
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9. The set of rational numbers with a ≥ b having the usual
significance. This is totally ordered and hence, as we noted
above, is a lattice. However, is not complete.

10. Even the subset of of rationals between 0 and 1 is not
complete. On the other hand, the real interval [0, 1] (with the
usual order) is a complete lattice.

It is useful to sort out the basic properties of the binary
compositions a ∧ b and a ∨ b in a lattice L. This will lead us
to an alternative definition of a lattice in terms of conditions
on two binary compositions on a set. We note first that it
follows from the definitions that a ∨ b and a ∧ b are
symmetric in the two arguments. Hence we have the
commutative laws a ∨ b = b ∨ a and a ∧ b = b ∧ a. Also we
saw that (a ∨ b) ∨ c is the sup of a, b, and c. Since the sup is a
symmetric function of a, b, and c, it follows that (a ∨ b) ∨ c =
a ∨ (b ∨ c) and similarly, (a ∧ b) ∧ c = a ∧ (b ∧ c). It is clear
that every a is idempotent relative to ∨ and to ∧:a ∨ a = a, a ∧
a = a. Also it is clear that if a ≥ b, then a ∨ b = a and a ∧ b =
b. Hence, for any a and b we have (a ∨ b) ∧ a = a and (a ∧ b)
∨ a = a.

Conversely, let L be any set in which there are defined two
binary compositions ∨ and ∧ satisfying the conditions we
have noted:
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We shall show that L is a lattice relative to a suitable
definition of ≥ and that a ∨ b and a ∧ b are the sup and inf of
a and b in this lattice.

Before proceeding to the proof we remark that we have made
precisely the same assumptions on the two compositions ∨
and ∧. Hence, we have the important principle of duality that
states that, if S is a statement which can be deduced from our
axioms, then the dual statement S′ obtained by interchanging
∨ and ∧ throughout S can also be deduced.

We note next that, if a, b L(satisfying L1–L4), then the
conditions a ∨ b = a and a ∧ b = b are equivalent. We shall
now define a relation ≥ in L by specifying that a ≥ b means
that a ∨ b = a, hence a ∧ b = b. Evidently, in dualizing, a
statement a ≥ b has to be replaced by b ≥ a.

We shall now verify that the ≥ we have introduced satisfies
PO1–PO3. Since a ∨ a = a we have a ≥ a so POl holds. If a ≥
b and b ≥ a, then we have a ∨ b = a and b ∨ a = b. Since a ∨ b
= b ∨ a this gives a = b, which proves PO2. Next
assume that a ≥ b and b ≥ c. Then a ∨ b = a and b ∨ c = b.
Hence

which means that a ≥ c. Hence PO3 is valid.

Since (a ∨ b) ∧ a = a, by L4, a ∨ b ≥ a. Similarly, a ∨ b ≥ b.
Now let c be an element such that c ≥ a and c ≥ b. Then a ∨ c
= c and b ∨ c = c. Hence
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so c ≥ a ∨ b. Thus a ∨ b is a sup of a and b in L. By duality, a
∧ b is an inf of a and b. This completes the verification that a
set L with binary compositions satisfying L1 – L4 is a lattice
and a ∨ b and a ∧ b are the sup and inf in this lattice.

A subset M of a lattice L is called a sublattice if it is closed
under the compositions ∨ and ∧. It is evident that a sublattice
is a lattice relative to the induced compositions. On the other
hand, a subset of a lattice may be a lattice relative to the
partial ordering ≥ defined in L without being a sublattice. For
example, the lattice of subgroups of a group G is not a
sublattice of the set (G) since H1 ∪ H2 is generally not a
subgroup.

If a is a fixed element of a lattice L, then the subset of
elements x such that x ≥ a(x ≤ a) is evidently a sublattice. If a
≤ b, the subset of elements x L such that a ≤ x ≤ b is a
sublattice. We call such a sublattice an interval and we denote
it as I[a, b].

The definition of a lattice by means of the axioms L1 – L4
makes it natural to define a homomorphism of a lattice L into
a lattice L′ to be a map a → a′ such that (a ∨ b)′ = a′ ∨ b′ and
(a ∧ b)′ = a′ ∧ b′. In this case if a ≥ b then we have a ∨ b = a;
hence a′ ∨ b′ = a′ and a′ ≥ b′. A map between partially
ordered sets having this property is called order preserving.
Thus we have shown that a lattice homomorphism is order
preserving. However, the converse need not hold. A bijective
homomorphism of lattices is called an isomorphism. These
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can be characterized by order preserving properties, as we see
in the following

THEOREM 8.2. A bijective map of a lattice L onto a lattice
L′ is a lattice isomorphism if and only if it and its inverse are
order preserving.

Proof. We have seen that if a → a′ is a lattice isomorphism,
then this map is order preserving. It is clear also that the
inverse map is an isomorphism of L′ into L so it is order
preserving. Conversely, suppose a → a′ is bijective and it and
its inverse are order preserving. This means that a ≥ b in L if
and only if a′ ≥ b′ in L′. Let d = a ∨ b. Then d ≥ a, b, so d′ ≥
a′, b′. Let e′ ≥ a′, b′ and let e be the inverse image of e′. Then
e ≥ a, b. Hence e ≥ d and e′ ≥ d′. Thus we
have shown that d′ = a′ ∨ b′. In a similar fashion we can show
that (a ∧ b)′ = a′ ∧ b′.

EXERCISES

1. Show that the lattice of subgroups of a cyclic group of
prime power order is totally ordered.

2. What about the converse of exercise 1?

3. Obtain the diagrams for the following partially ordered
sets: (i) (S) where S = {1, 2, 3}, (ii) the lattice of subgroups
of a cyclic group of order 6, (iii) the lattice of subgroups of
the symmetric group S3.
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4. Let S be the set of real valued continuous functions on [0,
1]. Define f ≥ g if f(x) ≥ g(x) for all x in [0, 1]. Show that S is
a lattice with this definition of ≥. Is this complete?

5. Define the dual of a partially ordered set S, ≥ as S, ≥′
where a ≥′ b if and only if a ≤ b. Describe the relation of the
diagram of the dual S′(= S, ≥′) of a finite partially ordered set
S to the diagram of S.

6. Determine all the lattices of ≤5 elements by
constructing the diagrams. Which are self-dual, that is,
isomorphic to their duals?

7. Let L1 and L2 be partially ordered sets. Then one
defines a partial order on L1 × L2 by agreeing that (a1, a2) ≥
(bl, b2) if and only if a1 ≥ b1 and a2 ≥ b2. Show that if L1 and
L2 are lattices, then L1 × L2 is a lattice.

8. Let S be a set and L, ≥ a partially ordered set. Consider
the set LS of maps S → f(S) of S into L. Define f ≥ g for f, g
LS by f(S) ≥ g(S) for all S. Show that this defines a partial
ordering on LS, and that LS is a lattice if L is a lattice.

9. Give an example of a pair of lattices L1 and L2 for
which there exists a bijective order preserving map of L1 onto
L2 which is not an isomorphism.

8.2 DISTRIBUTIVITY AND MODULARITY

One of the compositions of a lattice may be viewed as the
analogue of addition in a ring, and the other can be taken as
the analogue of multiplication. Depending on which we use
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for addition and which for multiplication we can formulate
the following two distributive laws:

and its dual

It is a bit surprising that—as we shall now show—these two
conditions are equivalent. Suppose D holds. Then

which is D′. Dually D′ implies D. A lattice in which these
distributive laws hold is called distributive. There are some
important examples of this. First, as we showed in the
Introduction (p. 4), the lattice (S) of subsets of a set S is
distributive. Second, we have the following

LEMMA. Any totally ordered set is a distributive lattice.

Proof. We wish to establish D for any three elements a, b, c
and we distinguish two cases (1) a ≥ b, a ≥ c, (2) a ≤ b or a ≤
c. In (1) we have a ∧ (b ∨ c) = b ∨ c and (a ∧ b) ∨ (a ∧ c) = b
∨ c. In (2) we have a ∧ (b ∨ c) = a and (a ∧ b) ∨ (a ∧ c) = a.
Hence in both cases (D) holds.
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This lemma can be used to show that the set of positive
integers ordered by divisibility is a distributive lattice. In this
example, a ∨ b = (a, b) the g.c.d. of a and b and a ∧ b = [a, b]
the l.c.m. of a and b. Also, if we write

where the pi are distinct
primes and the ai and bi are non-negative integers, then

. Hence if
non-negative integral, then

and

Now the set of non-negative integers with the natural order is
totally ordered and max(ai, bi) = ai ∨ bi, min(ai, bi) = ai ∧ bi
in this lattice. Hence, the distributive law D′ in this lattice
gives the relation

Then we have

which is D for the lattice of positive integers ordered by
divisibility.

The same reasoning applies to any reduced factorial monoid
(cf. section 2.14, p. 140).
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Another remark on distributivity which is worth noting is that
in any lattice we have a ∧ (b ∨ c)≥ a ∧ b and a ∧ (b ∨ c) ≥ a ∧
c. Hence

Thus in order to establish distributivity it suffices to establish
the reverse inequality

The most important lattices which occur in algebra (e.g., the
lattice of submodules of a module, the lattice of normal
subgroups of a group) are not distributive. For instance, let
L(V) denote the lattice of subspaces of a vector space V over a
field F. Assume dim V ≥ 2 and let x and y be linearly
independent vectors in V. Then F(x + y) ∩ (Fx + Fy) = F(x +
y) but F(x + y) ∩ Fx = 0 and F(x + y) ∩ Fy = 0 so F(x + y) ∩
(Fx + Fy) ≠ (F(x + y) ∩ Fx) + (F(x + y) ∩ Fy). As we shall
see in a moment, the lattice L(V) satisfies a weakening of the
distributive condition, which was first formulated by
Dedekind. This is the condition:

Since b = a ∧ b the right hand side can be replaced by (a ∧ b)
∨ (a ∧ c). Hence the condition M is equivalent to D in the
special case in which a ≥ b (or a ≥ c). Condition M is called
modularity and a lattice satisfying it is said to be modular.
The dual condition M′ reads: If a ≤ b then a ∨ (b ∧ c) = b ∧ (a
∨ c). Clearly this is the same thing as M. It follows that, as for
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distributive lattices, the principle of duality is valid in
modular lattices.

The importance of modular lattices in algebra stems from the
following

THEOREM 8.3. The lattice of normal subgroups of a group
is modular. The lattice of submodules of a module is modular.

Proof. The normal subgroup generated by two normal
subgroups H1 and H2 of a group G is H1H2 = H2H1. Hence
we have to prove that if Hi, i = 1, 2, 3,
are normal subgroups such that H1 ⊃ H2 then

The remark above about the distributive law shows that it is
enough to prove that

Suppose a H1 ∩ (H2H3). Then a = h1 = h2h3, hi Hi and
h3 = h2

–1h1 H1 since H1 ⊃ H2. Thus h3 H1 ∩ H3 and a =
h2h3 h2(H1 ∩ H3). This proves the required inclusion. The
argument for modules is similar and simpler so we omit it.

An alternative definition of modularity which is sometimes
useful can be extracted from the following

THEOREM 8.4. A lattice L is modular if and only if
whenever a ≥ b and a ∧ c = b ∧ c and a ∨ c = b ∨ c for some c
in L, then a = b.
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Proof. Let L be modular and let a, b, c be elements of L such
that a ≥ b, a ∨ c = b ∨ c, a ∧ c = b ∧ c. Then

Conversely, suppose that L is any lattice satisfying the
condition stated in the theorem. Let a, b, c L and a ≥ b. We
know that a ∧ (b ∨ c) ≥ b ∨ (a ∧ c). Also

and

Hence

Since b ≤ a the dual of our first relation is

and the dual of the second one is

Thus we have
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Hence the assumed property implies that a ∧ (b ∨ c) = b ∨ (a
∧ C), which is the modular axiom.

We shall prove next an analogue for modular lattices of the
second isomorphism theorem for groups (Theorem 1.9, p. 65),
namely,

THEOREM 8.5. If a and b are elements of a modular lattice,
then the map x → x ∧ b is an isomorphism of the interval I[a,
a ∨ b] onto I[a ∧ b, b]. The inverse isomorphism is y → y ∨ a.

Proof. We note first that in any lattice the maps x → x ∨ a
and x → x ∧ a are order preserving. For, we have x ≥ y if and
only if x ∨ y = x and if and only if x ∧ y = y. Then x ∨ y = x
implies (x ∨ a) ∨ (y ∨ a) = (x ∨ y) ∨ (a ∨ a) = (x ∨ y) ∨ a = x
∨ a. Hence x ≥ y implies x ∨ a ≥ y ∨ a. Similarly, we have x ∧
a ≥ y ∧ a. Now if a ≤ x ≤ a ∨ b, then a ∧ b ≤ x ∧ b ≤ b = (a ∨
b) ∧ b, and if a ∧ b, then a = a ∨ (a ∧ b) ≤ y ∨ a ≤ a ∨ b.
Hence x → x ∧ b and y → y ∨ a map I[a, a ∨ b] into I[a ∧ b,
b] and I[a ∧ b, b] into I[a, a ∨ b] respectively. Since these
maps are order preserving the theorem will follow from
Theorem 8.2 if we can show that they are inverses. Let x
I[a, a ∨ b]. Then, since x ≥ a, by modularity

and since x ≤ a ∨ b, this gives (x ∧ b) ∨ a = x. Dually, we
have that if y I[a ∧ b, b], then (y ∨ a) ∧ b = y. This proves
the two maps are inverses.

This theorem leads us to introduce a notion of equivalence for
intervals which in modular lattices is stronger than
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isomorphism. First, we define the intervals I[u, υ] and I[w, t]
to be transposes if there exist a and b in the lattice such that
one of these coincides with I[a, a ∨ b] and the other with I[a
∧ b, b]. The intervals I[u, υ] and I[w, t] are projective if there
exists a finite sequence

such that consecutive pairs I[uk, υk], I[uk + 1, υk + 1] are
transposes. It is immediate that this is an equivalence relation.
Also it is clear from Theorem 8.5 that in a modular lattice
projective intervals are isomorphic.

EXERCISES

1. Show that the lattice of subgroups of A4 is not modular.

2. Let G be a group with two generators x, y such that xpm

= 1, ypr
= 1, y–1 xy = xm where mpr

≡ 1 (mod pm), p a prime.
Show that if H1 and H2 are subgroups of G, then H1H2 =
H2Hl. Hence show that the lattice of subgroups of G is
modular.

3. Show that if a lattice is not distributive then it contains
a sublattice of five elements whose diagram is either the first
or second diagram on p. 457. Show that if a lattice is not
modular then it contains a sublattice whose diagram is the
second one on p. 457

8.3 THE THEOREM OF JORDAN-HOLDER-DEDEKIND

A partially ordered set S is said to be of finite length if the
lengths (number of distinct terms) of its chains (= totally
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ordered subsets) are bounded. If a and b are elements of a
partially ordered set of finite length and a > b, then we can
find a finite sequence of elements a = a1, a2, …, an = b such
that each ai is a cover of ai + 1. A sequence of elements
having this property is called a connected chain from a to b.
A desirable property is that any two connected chains from a
to b (a > b) have the same length. We shall now show that
this property is assured for a lattice L of finite length if L is
semi-modular in the sense that if a and b are a pair of
elements in L such that a ∨ b covers a and b, then a and b
cover a ∧ b. We have seen that if L is modular, then I[a ∧ b,
a] and I[b, a ∨ b] are isomorphic. Hence it is clear that
modularity implies semi-modularity. The following theorem
is the lattice analogue of the Jordan-Hölder theorem for finite
groups (p. 249).

THEOREM OF JORDAN-HÖLDER-DEDEKIND. Let L be
a semimodular lattice of finite length. Then any two
connected chains from a to b, a > b, have the same length.
Moreover, if L is modular and

are two connected chains from a to b then the corresponding
intervals I[ai + 1, ai] and I[a′j + 1, a′j] can be paired so that the
paired ones are projective.

Proof. The proof imitates the proof of the group result. We
use induction on n where n + 1 is the length of one of the
connected chains from a to b. If n = 1, then a is a cover of b
and the result is clear. If a2 = a′2, then we have two connected
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chains from a2 to b and the theorem follows by induction on
n. Now
suppose a2 ≠ a′2. Then a1 is a cover of a2 and of a′2 ≠ a2,
which implies that a2 ∨ a′2 = a1. Then the semi-modularity
implies that a2 and a′2 are covers of a″3 ≡ a2 ∧ a′2. Also a″3 ≥
b. If b = a″3 we have the diagram

In this case m = n = 2 and, in the modular case, I[a2, a1] and
I[b, a′2], and I[a′2, a1] and I[b, a2] are transposes. If a″3 > b,
then we can find a connected chain a″3, a″4, …, a″q + 1 = b.
Then the result follows by induction on n applied to a2, a3,
…, an + 1 = b and a2, a″3, …, a″q + 1 = b as well as to a′2, a″3,
…, a″q + 1 = b (using q = n) and a′2, a′3, …, a′m + 1 = b. Also
in the modular case we have to use the fact that I[a2, a1] and
I[a″3, a′2 and, I[a″2, and I[a″3, a2] are transposes as in the
proof of the group result. The remaining details are left to the
reader.

Assume now that L is modular with a least element 0, and that
L is of finite length. If we ha∨e a connected chain a1 = a, a2,
…, an + 1 = b from a to b, then we shall call the number n
(uniquely determined by a and b) the length of the interval
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I[b, a]. We denote the length of I[0, a] as d(a) and call this the
rank of a. If a ≥ b, then it is clear that

Hence for any a and b in L we have

Since I[a, a ∨ b] and I[a ∧ b, b] are isomorphic, they have the
same lengths. Hence

or

which is analogous to the dimensionality formula for the
subspaces of a finite dimensional vector space.

EXERCISES

1. verify that the lattice whose diagram is
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is semi-modular but not modular.

2. Note that the definition of rank requires only that L has
a 0 and is of finite length and satisfies the
Jordan-Hölder-Dedekind condition (the first conclusion of the
J-H-D theorem). Let L be a lattice with 0 of finite length.
Then the following conditions are equivalent:

(i) L is modular.

(ii) L and its dual are semi-modular.

(iii) L satisfies the J-H-D condition and the rank condition (4).

8.4 THE LATTICE OF SUBSPACES OF A VECTOR
SPACE.
FUNDAMENTAL THEOREM OF PROJECTIVE
GEOMETRY

We consider first the basic properties of the lattice L(V) of
subspaces of a vector space V. Here we shall assume that V is
finite dimensional and, since it adds nothing to the difficulty
and considerably to the generality, we consider vector spaces
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over division rings rather than, as has been usual in this book,
vector spaces over fields. Thus we assume that V is a vector
space (or left module) over a division ring Δ and that V has a
base (el, e2, …, en) over Δ. We have already seen that the
lattice L(V) is modular (Theorem 8.3). If U is a subspace, U
has a base (f1, f2, …, fm) with m ≤ n and the dimensionality m
= n if and only if U = V. It follows that L(V) is of finite
length. Also L(V) has a greatest element 1 = V and a least
element 0 = 0 (the subspace consisting of 0 only). Another
important property of L(V) is that of existence of
complements for subspaces:
given any subspace U there exists a subspace U′ such that V =
U + U′, U ∩ U′ = 0. More briefly, we indicate these two
conditions by the single one: V = U U′. To prove the
existence of a complement we choose a base (f1, f2, …, fm)
and supplement this to a base (f1, …, fm, fm + 1, …, fn) for V.
Then it is immediate that if .
We remark that U′ is not unique if U ≠ 0, V. For, then 0 < m <
n and (f1, …, fm, fm + fm + 1, …, fn) is a base, and so U″ =
Δ(fm + fm + 1) + …. + Δfn is also a complement of U. It is clear
that U″ ≠ U′.

A lattice L with 0 and 1 is said to be complemented if for any
a L there exists an a′ such that 1 = a ∨ a′, a ∧ a′ = 0. The
element a′ is called a complement of a. Thus we ha∨e shown
that L(V) is complemented.

We shall now consider the problem of obtaining conditions
for the isomorphism of the lattices L(Vi), i = 1, 2, where Vi is
a vector space over a division ring Δi. We shall see that the
lattices are isomorphic if and only if the division rings Δi are
isomorphic and the vector spaces have the same
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dimensionality. We shall also determine all the lattice
isomorphisms between the lattices L(Vi) when these exist. A
number of problems, e.g., the problem of determining the
automorphisms of the group of bijective linear maps of ? over
Δ (equivalently of the group of invertible matrices GLn(Δ))
lead to these lattice problems.

We assume first that Δ1 ≅ Δ2 and V1 over Δ1 and V2 over Δ2
have the same dimensionality n. Let (el, …, en), (f1, …, fn) be
bases for V1 and V2 respectively and let o be an isomorphism
of Δ1 onto Δ2. If x V1 we can write x in one and only one
way as and we can define the map

Clearly this is additive:

and for a Δ1 we have so

Then we have

a Δl, x V1. A map of V1 over Δ2 into V2 over Δ2
satisfying (5) and (6) is called a semi-linear map of V1 into V2
with associated isomorphism σ, or a σ-semi-linear map of V1
into V2. If η is as defined before, , then we
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have the inverse map, , which is
σ–1-semi-linear.

Now let η be any bijective σ-semi-linear map of V1 onto V2.
Then we claim that η induces a lattice isomorphism of L(V1)
onto L(V2). We note first that if
U1 is a subspace of Vl, then its image η(U1) is a subspace of
V2. For, any pair of vectors of η(U1) have the form ηx and ηy
where x, y U1. Then ηx + ηy = η(x + y) η(U1) since x + y

U1. Also, if b Δ2 then b = σ(a) for some a Δl and b(ηx)
= σ(a)(ηx) = η(ax) η(U1) since ax U1. Hence η(U1) is a
subspace of V2 and we have the map

of the lattice L(V1) into the lattice L(V2). Clearly [η] is order
preserving: if U1 ⊂ W1 then [η]U1 ⊂ [η]W1. Now consider
η–1. We can check that this is a σ–1-semi-linear mapping of
V2 onto V1, so it gives rise to the mapping [η–1] of L(V2) into
L(V1). It is evident that if Ui L(Vi) then [η–1][η]U1 = U1 and
[η][η–1]U2 = U2. Hence [η] is bijective and so, by Theorem
8.2, [η] is a lattice isomorphism of L(V1) onto L(V2). To
summarize: if Δ1 and Δ2 are isomorphic, and V1 and V2 have
the same dimensionality, then L(V1) and L(V2) are
isomorphic. Moreover, if η is a bijective semi-linear mapping
of V1 over Δ1 onto V2 over Δ2 then [η] defined by (7) is a
lattice isomorphism of L(V1) onto L(V2). We shall now show
that the converses of these results hold—at any rate if the
dimensionalities are ≥ 3. This fact is an old result which first
appeared in a somewhat different form in projective
geometry.3 There it was called the
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FUNDAMENTAL THEOREM OF PROJECTIVE
GEOMETRY. Let Vi, i = 1, 2, be a vector space over a
division ring Δi and assume the lattice of subspaces L(V1) ≅
L(V2) and dim V1 ≥ 3. Then Δ1 ≅ Δ2 and dim V1 = dim V2.
Moreover, any isomorphism of L(V1) onto L(V2) has the form
[η] as in (7), where η is a bijective semi-linear map of V1 onto
V2.

Proof. (Artin). Let (el, e2, …, en) be a base for V1 and put
, i = 1, 2, …, n. Then

is a connected chain in L(V1) from 1 = V1 to 0. If ζ is an
isomorphism of L(V1) onto L(V2), then ζ maps the connected
chain (8) into the connected chain

Then the V2i are subspaces and there are no subspaces
properly between V2i and V2, i + l. Hence dim V2i = dim V2, i +
1 + 1 and dim V2 = n. Similarly we see that if U is an
m-dimensional subspace, then dim ζ(U) = m. In particular, if
U
is one dimensional so is ζ(U). Hence we have that ζ(Δ1ei) =
Δ2e′i ≠ 0. Since , and
, which implies that (e′1, e′2, …, e′n) is a base for V2. Let a ≠
0 in Δ1. Then

.
Hence a′ ≠ 0, and a′ is uniquely
determined since if a′ ≠ b′. This
defines a map a → a′ which can be extended by 0 → 0 to a
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map of Δ1 into Δ2. If we replace e′2, as we may, by 1′e′2, we
may assume that 1′ = 1. Similarly, we have a map a → a″ of
Δ1 into Δ2 such that Δl(el + ae3) → Δ2(e′1 + a″e′3) and 0″ = 0,
1″ = 1. We claim that a′ = a″. To see this we note that the
linear independence of e1, e2, and e3 implies that if a ≠ 0,

The image of Δ1(e2 – e3) is the intersection

which contains a′e′2 – a″e′3. Hence

Since the left-hand side is independent of a and 1′ = 1″ = 1 we
ha∨e a″ = a′. Similarly, we see that

We prove next by induction on r = 2, …, n that

Assume this for some r and consider Δ1(el + a2e2 + … + ar +
1er + 1). This is the intersection of Δ1(e1 + a2e2 + … + arer) +
Δ1er + 1 and Δ1(e1 + ar + ler + 1) + Δ1e2 + … + Δ1er, so its
image is the intersection of
with

. Hence (10) holds for all r. Then
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. The same
type of argument based on the observation that the
intersection of and

shows that

We can now prove that a → a′ is an isomorphism. We
observe that

hence . Now
the only vector of the form e′1 + ce′2 + e′3 contained in the
right-hand side is e′1 + (a′ + b′)e′2 + e′3. It follows that (a +
b)′ = a′ + b′. Similarly, using the fact that Δ1(e1 + abe2 + ae3)
⊂ Δ1e1 + Δ1(be2 + e3), we can conclude that (ab)′ = a′b′.
Hence a → a′ is a homomorphism, and since Δ1 is a division
ring it is a monomorphism. The one dimensional subspaces of
V1 have one of the forms Δ1(e1 + a2e2 + … + anen) or Δ1(a2e2
+ … + anen) and their respective images are

. Since ζ is
surjective, for any b Δ2 the subspace Δ2(e′1 + be′2) is the
image of a one dimensional subspace of Vl, and clearly this
subspace is of the first type. Thus we have

which implies that b = a′2 and
so a → a′ is an epimorphism. Hence this is an isomorphism σ
of Δ1 onto Δ2 and we have the bijective semi-linear map

. It is clear that ζ and [η] have the same effect
on one dimensional subspaces. Since any subspace is a sum
of one dimensional subspaces it is clear that ζ = [η]. This
completes the proof.
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Remarks. The hypothesis dim V1 ≥ 3 is essential for the
validity of the main conclusion of the fundamental theorem. It
is easy to sort out what happens if dim Vi ≤ 2. In the first
place, L(V) has exactly two elements if and only if dim V = 1.
Moreover, if dim V = 2, then the intersection of distinct
subspaces U1 and U2 that are different from 0 and V is 0, and
U1 + U2 = V. Hence, if dim V1 = 2 = dim V2, any bijective
map of the set of one dimensional subspaces of V1 onto the
set of one dimensional subspaces of V2 can be supplemented
by V1 → V2, 0 → 0 to an isomorphism of L(V1) onto L(V2). It
follows that if dim Vi ≤ 2, then L(V1) ≅ L(V2) if and only if
either dim V1 = 1 = dim V2 or if dim V1 = 2 = dim V2 and
|L(V1)| = |L(V2)|. It is easy to see that the last condition holds
if and only if |Δ1| = |Δ2|.

We now consider the special case of the fundamental theorem
in which V = V1 = V2. In this case, we are considering lattice
automorphisms of L(V). These form a group of
transformations of L(V). We also have the group GS(V) of
bijective semi-linear transformations of the vector space V;
for, it is immediate that if η1 is a σ-semi-linear map of V1 into
V2 and η2 is a τ-semi-linear map of V2 into V3, then η2 ηl is a
τσ-semi-linear map of V1 into V3. Moreover, if η1 is bijective,
then η1

–1 is a σ–1-semi-linear map. Clearly, these results
imply that the set GS(V) of bijective semi-linear
transformations of an n-dimensional vector space over Δ is a
transformation group. If a ≠ 0 is in Δ then the scalar
multiplication x → ax satisfies a(bx) = (aba–1)ax, and so this
map is a bijective semi-linear transformation corresponding to
the inner automorphism b → aba–l in Δ. Clearly, the map x →
ax induces the identity in the lattice L(V). We have
the homomorphism η → [η] of Sn(Δ) into the group of lattice
automorphisms of L(V). By the fundamental theorem of

804



projective geometry, this homormorphism is surjective if dim
V ≥ 3. As we have just shown, the kernel contains all the
scalar multiplications. On the other hand, the argument used
on p. 378 implies that the kernel is the set of scalar
multiplications ≠0. Denoting the latter set as Δ*L we see that
the group of lattice automorphisms of L(V) is isomorphic to
GS(V)/Δ*L. We state this as a

COROLLARY. If dim V ≥ 3 the group of lattice
automorphisms of the lattice of subspaces of a vector space V
over a division ring Δ is isomorphic to GS(V)/Δ*L where
GS(V) is the group of bijective semi-linear transformations of
V and Δ*L is the set of non-zero scalar multiplications.

EXERCISES

1. Define an anti-isomorphism of a lattice L onto a lattice L′
to be a bijective map a → a′ such that (a ∧ b)′ = a′ ∨ b′, (a ∨
b)′ = a′ ∨ b′. Note that this is the same as an isomorphism of
the dual lattice of L onto L′ and hence, by Theorem 8.2, a
lattice anti-isomorphism can be characterized as a bijective
order inverting map whose inverse is also order inverting (a ≤
b ⇔ a′ ≥ b′). Let V be a finite dimensional vector space over a
division ring Δ, V* the right vector space of linear functions
on V. If U is a subspace of V let ann U = {f ∈ V*|f(y) = 0, y ∈
U}. Prove that U → ann U is a lattice anti-isomorphism of
L(V) onto L(V*).

2. Show that if dim V1 ≥ 3 than V1 and V2 have
anti-isomorphic lattices of subspaces if and only if the
underlying division rings are anti-isomorphic and the
dimensionalities are the same.
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3. Show that for dim V ≥ 3, if L(V) has an
anti-automorphism ξ, then Δ has an anti-automorphism a →
, and there exists a map g of V × V into Δ with the following
properties:

where Q is bijective and σ-semi-linear for σ, the inverse of
a → .

(vi) g is non-degenerate in the sense that g(z, x) = 0 for all x
if and only if z = 0.

(vii) For every subspace U, ξ(U) = {υ ∈ V|g(υ, u) = 0, u ∈ U}.

4. Let V be two dimensional over a field F of q elements.
Count the number of one dimensional subspaces of V and the
order of the group S2(F). Hence conclude that there exist
automorphisms of L(V) which do not come from bijective
semilinear maps of V onto V.

5. Let V be a three-dimensional vector space over /(p), p
a prime. Determine the number of lattice automorphisms of
L(V).

8.5 BOOLEAN ALGEBRAS
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DEFINITION 8.3. A Boolean algebra4 is a lattice with a
greatest element 1 and least element 0 which is distributive
and complemented.

The most important instances of Boolean algebras are the
lattices of subsets of any set S. More generally any field of
subsets of S, that is, a collection of subsets of S which is
closed under union and intersection, contains S and ϕ, and the
complement of any set in the collection is a Boolean algebra.

The following theorem gives the most important elementary
properties of complements in a Boolean algebra.

THEOREM 8.6. The complement a′ of any element a of a
Boolean algebra B is uniquely determined. The map a → a′ is
an anti-automorphism of period ≤ 2: a → a′ satisfies

Proof. Let a ∈ B and let a′ and a1 satisfy a ∨ a′ = 1, a ∧ a1 =
0. Then

Hence, if in addition, a ∨ a1 = 1 and a ∧ a′ = 0, then a′ = a′ ∧
al, and so a′ = a1. This proves the uniqueness of the
complement. It is clear that a is the complement of a′. Hence
a″ ≡ (a′)′ = a and a → a′ is of period one or two; hence
bijective. Now let a ≤ b. Then a ∧ b′ ≤ b ∧ b′ = 0, so
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Hence b′ = a′. Since a → a′ is its own inverse and is order
inverting it follows from Theorem 8.2 (see exercise 1, p. 473)
that a → a′ is a lattice anti-isomorphism.

Historically, Boolean algebras were the first lattices to be
studied. They were introduced by Boole to formalize the
calculus of propositions. For a long time it was supposed that
the type of algebra represented by these systems was of a
different character from that involved in number systems and
their generalizations (algebras in the technical sense and
rings). However, it was discovered rather late in the day by
M. H. Stone that this is not the case. In fact, any Boolean
algebra, if properly viewed, becomes a special type of ring.

In order to make a ring out of a Boolean algebra B we
introduce the new composition

which is called the symmetric difference of a and b. We have

The first formula shows that in the Boolean algebra of subsets
of a set, U + V is the set of elements contained in U or in V
but not in both:

808



We shall now show that B is a ring with + as just defined, the
product ab = a ∧ b, and 1 as the unit of B.

Evidently + is commutative. To prove associativity we note
first that, by (13),

Hence

This is symmetric in a, b, and c. In particular, (a + b) + c = (c
+ b) + a. Commutativity therefore implies the associative law
for +. Evidently,

and
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Hence (B, +, 0) is a commutative group.

We know that · (= ∧ ) is associative and commutative. Also a
· 1 = 1 · a = a ∧ 1 = a for all a in B. It remains to check one of
the distributive laws. Now we have

Comparison shows that (a + b)c = ac + bc. Hence (B, +, ·, 0,
1) is a ring.

We have noted also that the ring B is commutative and every
element is of order ≤ 2 in the additive group. Also every
element is idempotent: a2 = a ∧ a = a. These properties of a
ring are not independent; for, as we now note, if every
element of a ring is idempotent, then the ring is commutative
and 2a = 0 for every a. To prove this we observe that

Hence ab + ba = 0. Then 2a = 2a2 = aa + aa = 0 and so a =
–a. Then ab = – ba = ba. These considerations lead us to
introduce the following
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DEFINITION 8.4. A ring called Boolean if all of its elements
are idempotent.

We have seen that such a ring is of characteristic two. We
shall prove next that any Boolean ring B defines a Boolean
algebra, and that, in fact, these two concepts are equivalent.
Suppose (B, +, ·, 0, 1) is a Boolean ring. In order to
reverse the process we used to go from a Boolean algebra to a
Boolean ring we now define

The second expression for a ∨ b shows that if we introduce
the map σ : x → 1 – x in B, then a ∨ b = = σ–1(σ(a)σ(b)), since
σ2 = 1. It is clear from this and the associative law of
multiplication in B that ∨ is associative and, of course, this
composition is commutative. Also a ∨ a = 2a – a2 = –a2 = a.
We now define a ∧ b = ab. Then associativity and
commutativity are clear, and a ∧ a = a since every element of
B is idempotent. Also we have (a ∨ b) ∧ a = (a + b – ab)a = a
and (a ∧ b) ∨ a = ab + a – a2b = a. Thus the defining
conditions L1-L4 on ∨ and ∧ for a lattice hold. It is immediate
that the ring 1 and 0 are greatest and least elements of the
lattice (B, ∨, ∧ ) and that 1 – a is a complement of a, since a ∨
(l – a) = 1 and a ∧ (1 – a) = 0. The lattice is distributive since

Thus (B, ∨, ∧, 0, 1,′) is a Boolean algebra.
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It remains to show that the process of passing from a Boolean
algebra to a ring and the process of passing from a ring to a
Boolean algebra are inverses. Thus suppose we begin with a
Boolean algebra (B, ∨, ∧, 0.1, ′). Then we obtain the ring (B,
+, ·, 0, 1) in which a + b = (a ∧ b′) ∨ (a′ ∧ b) and ab = a ∧ b.
An application of the second process to this ring gives a
Boolean alegbra in which 1 = 1, 0 = 0, a′ = 1 – a and the new
∧ and ∨ which we now denote as and respectively are a
b = a + b – ab = 1 – (1 – a)( 1 – b) = (a′ ∧ b′)′ = a ∨ b and a
b = ab = a ∧ b. Hence = ∨, = ∨ and so we obtain the
original Boolean algebra. On the other hand, suppose we start
with a Boolean ring (B, +, ·, 0, 1) and we obtain the Boolean
algebra (B, ∨, ∧ , 0, 1, ′) in which a ∨ b = a + b – ab, a ∧ b =
ab, 0 = 0, 1 = 1, a′ = 1 – a. Then applying the process we
gave yields a ring in which the new addition and
multiplication are

Also 1 = 1, 0 = 0 so we obtain the original ring. We have
therefore proved the following theorem, which is due to
Stone.

THEOREM 8.7. The following two types of abstract systems
are equivalent: Boolean algebra and Boolean ring.
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There is one more remark worth making. In passing from a
Boolean algebra to a Boolean ring we could have used ∨ for ∧
, ∧ for ∨, 1 for 0, and 0 for 1 in the construction. This follows
from the principle of duality which is applicable to Boolean
algebras. Our process then leads to a ring B′ with the same
underlying set B and with the addition

and multiplication

Also the new 0 and 1 are 0′ = 1, 1′ = 0. In terms of the ring B
we have

We define an ideal of a Boolean algebra B to be an ideal of
the associated Boolean ring (B, +, ·, 0, 1). The conditions for
a subset I to be an ideal are (1) if u, υ ∈ I, then u + υ ∈ I, and
(2) if a is arbitrary in B, then ua ∈ I. Since ua = u ∧ a and ua
= a if and only if a ≤ u, the second condition is equivalent to:
if u ∈ I, then b ∈ I for every b ≤ u. Since u ∨ υ = u + υ + uυ, u
∨ υ ∈ l for every u, υ ∈ I. Conversely, let I be a subset of B
such that if u, υ ∈ I, then u ∨ υ ∈ l and if u ∈ I, then every b ≤
u is in I. Then u ∧ υ′ and υ ∧ u′ ∈ I (u′ υ′ the complements of
u and υ). Hence u + υ = (u ∧ υ′) ∨ (υ ∧ u′) ∈ I and so I is an
ideal. Thus a subset I of a Boolean algebra is an ideal if and

813



only if it is closed under ∨ and contains every b ≤ u for any u
∈ I.

An ideal I is called proper if I ≠ B. It is clear that I is proper if
and only if 1 ∉ I. If u ∈ B then (u) = {x ∈ B|x ≤ u} is an ideal
called the principal ideal generated by u. An ideal I is
maximal if I is proper and there is no proper ideal properly
containing I( I). We now observe that an ideal I is
maximal if and only if I is proper and for every a ∈ B either a
or a′ ∈ I. First, suppose I is maximal and let a ∉ I. Consider
the set of elements of the form u + b where
u ∈ I and b ≤ a. This is an ideal properly containing I, so, by
the maximality of I, it coincides with B. Thus 1 = b + u where
b ≤ a and u ∈ I. Hence b′ = 1 + b = u ∈ I. Since a′ < b′ it is
also true that a′ ∈ I. Conversely, let I be a proper ideal such
that for every a ∈ B either a or a′ ∈ I. Let I be any ideal
properly containing I and let a ∈ , ∉ I. Then a′ ∈ I, and so a′
∈ and 1 = a + a′ ∈ . Thus = B and I is maximal.

All of this can be dualized by applying the same
considerations to the second ring B′ = (B, + ′, ·′, 0′, 1′)
associated with the Boolean algebra B. Accordingly, we
define a filter (dual ideal) of B to be an ideal of B′. The
foregoing results can be dualized as follows. First, we note
that the dual of our criterion for a subset to be an ideal is that
a subset F of a Boolean algebra B is a filter if and only if it is
closed under ∧ and containing every b ≥ u for any u ∈ F.
Since(a ∧ b)′ = a′ ∨ b′ and (a ∨ b)′ = a′ ∧ b′ it is clear that F is
a filter if and only if the set F′ of complements a′, a ∈ F, is an
ideal. Condition (1) is equivalent to the finite intersection
property: F is closed under finite intersections. A filter is
proper in the sense that F ≠ B if and only if 0 ∉ F. A maximal
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ideal of B′ is called an ultra filter of the Boolean algebra B. A
filter F is an ultra filter if and only if (1) 0 ∉ F, (2) for any a
∈ B either a or a′ ∈ F. If a ∈ B the subset of elements x ≥ a is
a filter called the principal filter generated by a.

We conclude our brief introduction to Boolean algebras by
giving a couple of examples of filters.

EXAMPLES

1. Let be the real line endowed with its usual topology and
let S denote the collection of non-vacuous open subsets of .
This has the finite intersection property. The set S of subsets
which contain open subsets of is a filter.

2. Let S be any set, B = (S) the set of subsets of S. Let I be
the set of finite subsets of S. This is an ideal in B; hence the
set F of complements of the finite subsets is a filter.

EXERCISES

1. Show that if e and f are idempotent elements of a ring
which commute, then ef and e 0 f = e + f – ef are idempotents.
Prove that the idempotent elements contained in the center
form a Boolean algebra relative to e ∨ f = e + f – ef, e ∧ f = ef,
e′ = 1 – e.

2. Prove that if R is a ring such that pa = 0 and aP = a for
every a ∈ R where p is a prime, then R is commutative.

3. Show that the cardinality of a finite Boolean algebra is a
power of two.
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4. (Seligman). Let el, e2,…, en be commuting idempotents
of a ring R and let s = . Show that .

8.6 THE MOBIUS FUNCTION OF A PARTIALLY
ORDERED SET

In this section we shall give an application of partially
ordered sets to problems of enumeration.5 The type of
problem we shall consider involves a summation over a
partially ordered set whose inversion gives the required
enumeration formula. The following problem is an instance of
this type of problem.

Problem 1. We wish to count the number of derangements of
a finite set S, that is, the number of permutations of S which
have no fixed points. Let T be a subset of S. We define

f(T) = the number of permutations of S which fix all the
elements of T but fix no element of the complement T′ of T in
S;

g(T) = the number of permutations of S which fix all the
elements of T and perhaps some additional elements as well.
Then

where, of course, U ∈ (S). The objective is to “invert” (14),
that is, to obtain a formula for f(U) in terms of the g(T). This
will give f(ϕ), which is the number of derangements of the set
S, since we have trivially that g(T) is the number of
permutations of T′ and this is |T′|!.
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In general, one has a finite partially ordered set S and
functions f and g on S with values in a commutative group A,
such that

Again, we wish to express f in terms of g. We shall need the
following lemma.

LEMMA (Szpilrajn-Marczewski). S can be totally ordered;
say, as xl, x2, …, xn so that if xi < xj in the original partial
ordering then i < j.

Proof. Since S is finite it contains a minimal element x1. We
continue this process by selecting inductively xi + 1 minimal
in the complement {xl, x2, …, xi}′. Then S ordered as xl, x2,
…, xn satisfies the desired condition: for, it is clear from the
procedure that if xi < xj, then xj could not have been chosen
before xi in our ordering. Thus we must have i < j.

We now define for x, y ∈ S

and regard this as defining a function of two variables from S
to the integers . Using the total ordering given in the lemma
we see that (15) can now be written out as a system of
equations:
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or, in matrix form,

We recall that the values f(x), g(x) are in the abelian group A,
which can be regarded as a -module in the natural way (see
p. 166). We have ξ(xi, xj) = 1, and if i > j we cannot have xi ≤
xj so ξ(xi, xj) = 0. Hence the matrix Z = (ξij) = (ξ(xi, xj)) is
upper triangular with 1’s along the diagonal, that is, Z has the
form 1 – N where

Here N = (vij) where vij. = 0 if i ≥ j and vij = – ξij i < j. It is
immediate by induction that every (i, j)-entry of Nk is 0 for i ≥
j – k + 1 and hence that Nn = 0. Thus Z = 1 – N is invertible
with inverse

The equation (17) has the abbreviated form G = ZF where G
and F are the column vectors ( = n × 1 matrices) (g(xi)),
(f(xi)). We can invert this and obtain
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F = MG, so if we write M = (μij) we have

The matrix M = (μij) defines the Möbius function of the
partially ordered set S (to ) by

In terms of this function we can rewrite (20) as

We have the following

THEOREM 8.8. For any finite partially ordered set S, there
exists a unique function μ from S × S to such that if A is any
commutative group and F and g are functions form S to A
such that (15):

then

Proof. The existence of μ has been show. To prove the
uniqueness, there is no loss in generality in assuming that the
xi are ordered as in the Szpilrajn-Marczewski lemma. We
specialize A = ( , +) and we let δk be the function from S to A
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= such that δk(xi) = δik (= 1 if i = k and = 0 otherwise). Let
?k be the corresponding function from S to defined by (15)
or, equivalently, (17). Thus .
By (20), we have . Thus
we have the matrix equation MZ = 1 where

. Hence M is uniquely determined as
Z–1 and consequently the function μ is uniquely determined.

In a similar manner we can handle systems of equations of the
form

If we define Z = (ξij) as before (using an ordering as in the
lemma) then (23) is equivalent to the matrix equation

Then

where M = Z–1. We therefore have the following

COROLLARY 1. Let f and g be functions from S to an
abelian group A satisfying

Then
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The Möbius function can be determined by a recursion
formula. For, we have

COROLLARY 2. The Möbius function is the unique function
from S × S to satisfying μ(x, y) = 0 unless x ≤ y and the
recursion formula

where the delta function

Alternatively, (25) may be replaced by

Proof. These are equivalent to the matrix equations MZ = 1
and ZM = 1, 1, the n × n unit matrix.

COROLLARY 3. If the intervals I[x, z] and I[w, t] are
isomorphic in S then μ(x, z) = μ(w, t).

Proof. From (25) we have
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The result follows from this by induction on the length of the
interval.

We shall apply this enumeration method in a moment to solve
the problem posed on p. 480. We now formulate another such
problem as

Problem 2. The map coloring problem. A map is a plane
divided into a finite number of non-overlapping connected
regions called countries by a finite number of arcs which
intersect only at their endpoints. Two countries are adjacent if
they have a common boundary which is one of the arcs. A
proper coloring is an assignment of colors to the countries so
that no two adjacent countries are given the same color.
Given a map and a number k one might ask in how many
ways can the map be properly colored using k colors. A
famous problem—first posed by DeMorgan in 1850 and
recently solved using 1200 hours of computer time—is the
four color problem: can every map be colored properly with
four colors? In other words, is the number of proper colorings
by k = 4 colors positive for every map? (The answer is “yes”.)
We shall now show that for any given map there is a
polynomial with integer coefficients in k, called the chromatic
polynomial of the map, which gives the number of proper
colorings of the map using k colors.

We define a submap Δ of a map Γ to be the map obtained by
erasing some of the boundaries. We define a partial ordering
in the set S of submaps of Γ by putting E ≤ Δ if E is a submap
of Δ. If Δ ∈ S we define

f(Δ) = the number of proper colorings of Δ in k colors;
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g(Δ) = the total number of colorings of Δ in k colors.

If c(Δ) is the number of countries in Δ then

Moreover, since any coloring of Δ is a proper coloring of
some submap E of Δ we clearly have

Hence, by Corollary 1,

where μ is the Möbius function of S. This is the chromatic
polynomial of Δ.

We shall now consider the problem of calculating Möbius
functions of some partially ordered sets and we prove first

THEOREM 8.9. Let C = {0, 1,…, n} be a chain of length n
with the natural order, then the Möbius function μ of C is
given by
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Proof. then . Clearly, we have
f(i) = g(i) – g(i – 1). Hence, from Corollary 1, we obtain
(28).

We obtain next a way of reducing the calculation of the
Möbius function of a product of two partially ordered sets to
the Möbius functions of the two sets. We recall (exercise 7, p.
461) that if S1 and S2 are partially ordered sets the product S1
× S2 is the set S1 × S2 partially ordered by (xl, x2) ≤ (y1, y2) if
and only if xl ≤ y1 and x2 ≤ y2. We have

THEOREM 8.10. Let S = S1 × S2 where Si are partially
ordered and let μ, μ1 and μ2 be the Möbius functions of S, Sl,
and S2 respectively. Then

for all x1 y1 ∈ Sl, x2, y2 ∈ S2.

Proof. Let δl, δ2, δ be the delta functions of Sl, S2, and S. Then

Also
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Hence μ1(y1, z1)μ2(y2, z2) and μ((y1, y2), (z1, z2)) satisfy the
same recursion formula as in Corollary 2. It follows from this
corollary that μ((y1, y2) = (zl, z2)) = μ1(y1, z1)μ2(y2, z2).

We can use this result and Theorem 8.9 to calculate the
Möbius function of the Boolean algebra (S) of subsets of a
finite set S = {1, 2,…, n).

COROLLARY. The Möbius function on the Boolean algebra
(S), S = {1, 2,…, n} is given by the formula

where V – U = V ∩ U′ is the set of elements in V not in U.

Proof. We observe that (S) is isomorphic to a product of n
copies of the chain C = {0, 1}. In fact, if U is a subset of S =
{1, 2,…, n}, then we associate with U its characteristic
function χU which is the map of S to {0, 1} defined by
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We can then represent χU by the vector (χU(l), χU(2),…,
χU(n)). The map

is an isomorphism of (S) onto C1 × C2 × … × Cn where Ci
= {0, 1} with the natural order. Then, by Theorem 8.10
(iterated) and Theorem 8.9, we have

The use of the Möbius function of (S) is often referred to as
the method of inclusion-exclusion. We can now give the

Solution of Problem 1. The number of derangements of S =
{1, 2, …,. n} is

This is asymptotically equal to n!/e. Thus the probability that
a randomly selected partition is a derangement is very close to

, essentially independent of n.
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We consider next the classical example which started all of
this:

Problem 3. Let n be a positive integer and let Dn be the lattice
of positive integer divisors of n ordered by divisibility (a ≥ b
means a | b). If n = p1

e1 p2
e2 … Pheh where the pi are distinct

primes and the ei > 0, then we obtain an isomorphism of Dn
with C1 × C2 × … × Ch where Ci is the chain {0, 1, …, ei}, by
mapping

If c = p1
Cl p2c2 … ph

Ch|d, so that ci ≤ di, then

We note that μ(c, d) = μ(l, d/c), which is the classical Mobius
function of number theory written as μ(d/c). The inversion
formula based on this is the one which was discovered by
Möbius.

EXERCISES

1. Let φ(n) be the Euler φ-function: φ(n) is the number of
positive integers less than and relatively prime to n. Use the
inversion method to derive the formula
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2. Determine the partially ordered set of submaps of the
map Γ:

Determine the chromatic polynomial for Γ.

3. Let L(V) be the lattice of subspaces of the n-dimensional

vector space V over a field of q elements, and let q, the
Gaussian coefficient, denote the number of k-dimensional
subspaces of V. Derive the formulas

4. If X, Y ∈ L(V) as in exercise 3, then μ(X, Y) for X ⊂ Y
depends only on m = dim Y – dim X by Corollary 3 to
Theorem 8.8. Hence write μ(X, Y) = μ(m). Prove that

5. Let W be an l-dimensional subspace of L(V) as in
exercise 3. Show that the number of k-dimensional subspaces
U such that U ∩ W = 0 is given by the formula

828



6. Find the total number of sets of vectors which generate
V (as in exercise 3).

7. Let Gn, p denote the abelian group which is the direct
product of n cyclic groups of prime order p. Let H be a
subgroup of Gn, p isomorphic to Gk, p. Find the number of
injective homomorphisms η : Gl, p → Gn, p such that η(Gl, p)
∩ H = 0.

8. If π(S) and ρ(S) are partitions of S, we say that π is a
refinement of ρ if each block (see p. 11) of π is contained in
some block of ρ. Let P be the collection of the set S, ordered
by refinement. Show that P is a lattice and determine μ.

9. Determine the Möbius functions of the following
partially ordered sets:
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1George Boole, The Mathematical Analysis of logic, 1847,
(Barnes and Noble reprint, 1965) and his Investigation of the
Laws of Thought, 1854(Dover reprint, 1953).

2Richard Dedekind, “Über Zerlegungen von Zahlen durch
ihre grössten gemeinsamen Teiler,” in his Gesamelte
Matematische Werke, vol.2, 1931, pp. 103–147, and “Über
die von drei Modulnerzeugte Dualgruppe,” ibid., pp.
236–272;

3Cf. E. Artin, Geometric Algebra, New York, Wiley, 1957, p.
88, or R. Baer, Linear Algebra and Projective Geometry,
New York, Academic Press, 1952, p. 44.

4Because of the conflict with the notion of an algebra, a better
term for this would be “Boolean lattice.” However, since
Boolean “algebra” is most commonly used we have chosen
this terminology.

5 I am indebted to Neil white for the material in this section
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Appendix

SOME TOPICS FOR INDEPENDENT STUDY

1. Euclidean Domains

References: (1) G. H. Hardy and E. M. Wright, An
Introduction to the Theory of Numbers, 5th ed. Oxford
University Press, New York, 1975, pp. 212–217. (2) H.
Chatland, “On the Euclidean algorithm,” Bulletin of the
American Mathematical Society, vol. 55 (1949), pp. 948–953.
(3) T. Motzkin, “The Euclidean algorithm,” Bulletin of the
American Mathematical Society, vol. 55 (1949), pp.
1142–1156. (4) P. Samuel, “About Euclidean rings,” Journal
of Algebra, vol. 19 (1975), 282–301.

The first three references discuss the problem of the
determination of the rings I of integral elements of quadratic
number fields Q( ) that are Euclidean (see pp. 147— 151
and exercises 3–5 on p. 287). The paper by Samuel develops
a general theory of Euclidean domains.

2. Non-commutative Principal Ideal Domains

References: (1) N. Jacobson, Theory of Rings, American
Mathematical Society Surveys, No. 2, Providence, Rhode
Island, 1943, Chapter 3. (2) P. M. Cohn, Free Rings and their
Relations, Academic Press, London and New York, 1971,
Chapter 8.

This is an extension of the theory presented in pp. 147–151 to
non-commutative domains. Examples of such domains are the
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ring of polynomials in one indeterminate with coefficients in
a division ring and the ring of formal differential polynomials
in one indeterminate.

3. The Four Square Theorem and Integral Quaternions

References: (1) G. H. Hardy and E. M. Wright, An
Introduction to the Theory of Numbers, 5th ed. Oxford
University Press, New York, 1975, pp. 300–310. (2) I. N.
Herstein, Topics in Algebra, 2nd ed., John Wiley and Sons,
New York, 1975, pp. 371–377.

The theorem, due to Lagrange, is that every positive integer is
a sum of four squares. The ring of integral quaternions is the
ring I defined in exercise 5 on p. 100. These form a
non-commutative Euclidean, hence principal ideal domain,
whose arithmetic can be used to prove the four square
theorem. An important step in the proof is that if N(x) is the
norm form of a quaternion algebra over a field of
characteristic p ≠ 2 then there exist x ≠ 0 such that N(x) = 0.
Herstein proves this by invoking Wedderburn’s theorem on
the commutativity of finite division rings. A more direct proof
of this fact follows from exercise 6, p. 361.

4. Two-Dimensional Crystallographic Groups

References: (1) H. Weyl, Symmetry, Princeton University
Press, Princeton, New Jersey, 1952, pp. 83–115. (2) H. S. M.
Coxeter, Introduction to Geometry, John Wiley and Sons,
New York, London, and Sidney, 1961, Chapter 4. (3) R.
Schwatzenberger, N-dimensional Crystallography, Pitman
Publishing Program, San Francisco, London, and Melbourne,
1980, pp. 1–10.
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These groups are the discontinuous (discrete) groups of
Euclidean motions in the plane. Such a motion is given
analytically as a map (x, y) → (x′, y′) where x′ = ax + by + h,

y′ = cx + dy + k where a, b, c, d, h, k ∈ and is an
orthogonal matrix. Discontinuity means that there is a
neighborhood of the identity map containing no element ≠ 1
of the group. Using a natural notion of equivalence (see
WeyPs book) the problem can be transformed into that of
classifying the groups in which the coefficients a,b,… are
integers and the subgroup with h = k = 0 is finite. The
interesting case is that in which h and k take on all integer
values. In the sense of unimodular equivalence there are 17
such groups. These are the possible groups of symmetries of
planar ornaments (e.g., wallpaper). Their historical
significance can be gleaned from the following quotation
from WeyPs book (p. 103):

“Examples for all 17 groups of symmetry are found among
the decorative patterns of antiquity, in particular among
Egyptian ornaments. One can hardly overestimate the depth
of geometric imagination and inventiveness reflected in these
patterns.
Their construction is far from being mathematically trivial.
The art of ornament contains in implicit form the oldest piece
of higher mathematics known to us.”

5. Finite Reflection Groups

References: (1) R. Steinberg, Lectures on Chevalley Groups,
Yale University Lecture Notes, Department of Mathematics,
Yale University, New Haven, Connecticut, 1967, Appendix.
(2) C. T. Benson and L. C. Grove, Finite Reflection Groups,
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Bogden and Quigley, Tarrytown-on-Hudson, New York and
Belmont, California, 1971. (3) R. Carter, Simple Groups of
Lie Type, Wiley-Interscience, New York, 1972, Chapter 2.

These are the finite groups generated by reflections (that is,
symmetries as defined on p. 363) in a Euclidean space. They
play a fundamental role under the guise of “Weyl groups” in
the theory of simple Lie algebras and simple Lie groups.

6. Mathieu Groups

References: (1) E. Witt, “Die 5-fach transitiven Gruppen von
Mathieu” and “Uber Steinerche Systeme,” Abhandlungen aus
den Mathematischen Seminar der Hansischen Universität,
vol. 12 (1938), pp. 256–264 and pp. 265–275. (2) J. A. Todd,
“On representation of the Mathieu group M24 as a
collineation group,” Annali di Matematica Pura ed Applicata
(IV), voi. 71 (1966), pp. 199–238. (3) N. L. Biggs and A. T.
White, Permutation Groups and Combinatorial Structures,
Cambridge University Press, London, 1979, p. 57 and pp.
70–74.

These five groups denoted as M11, M12, M22, M23, and M24
are multiply transitive simple groups discovered by E. L.
Mathieu in 1861 and 1873. The subscript n indicates the
degree of the permutation group (Mn is a subgroup of Sn).
These groups were called “sporadic” simple groups by
Burnside since they do not belong to any infinite classes of
simple groups (e.g. the alternating groups, the simple groups
defined by GLn(F) for finite F, etc.). In the period
1966–1981, 21 additional sporadic simple groups have been
found and the complete classification of finite simple groups
has been achieved through the efforts of a large number of
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mathematicians. The list of these groups is: (1) cyclic groups
of prime order, (2) the alternating groups An for n ≥ 5, (3)
groups of Lie types defined in reference 3 in Section 5, and
(4) the 26 sporadic simple groups. A certain lattice, the
“Leech lattice,” plays an important role in the definition of
most of the new sporadic groups. This is related to the Steiner
systems that are used in the definitions of the Mathieu groups.
The reader may consult a paper by J. Conway in the Bulletin
of the London Mathematical Society, vol. 1 (1969) for a
definition of the Leech lattice and its relation to Steiner
systems as well as the definition of the Conway sporadic
group.

7. Finite Fields

References: (1) L. E. Dickson, Linear Groups with an
Exposition of Galois Field Theory, 1900; Dover Publications,
1958, reprint edition, pp. 1–54. (1) A. A. Albert, Fundamental
Concepts of Higher Algebra, University of Chicago Press,
Chicago, 1956, Chapter 5.

These books contain many special properties of finite fields
that do not appear in general books on algebra. It should be
noted that finite fields have important applications, e.g., to
computer science and to cryptography.

8. Hilbert Irreducibility Theorem

References: (1) D. Hilbert, “Über die Irreduzibilitat ganzer
rationaler Funktionen mit ganzzahligen Koeffizienten,”
Journal für die reine und angewandete Mathematik, vol. 110
(1892), pp. 104–129; or Gesammelte Abhandlungen, vol. 2,
Springer-Verlag, Berlin, 1933. (2) S. Lang, Diophantine

835



Geometry, Wiley-Interscience, New York, 1962, Chapter 8.
(3) C. R. Hadlock, Field Theory and its Classical Problems,
Carus Mathematical Monographs, Mathematical Association
of America, 1978, Chapter 4.

Hilbert’s theorem states that if(t1,…, tn, x) ∈ D = [t1,…, tn,
x] is irreducible in D then there exist infinitely many choices
of ti = ai ∈ such that f(a1,…, an, x) is irreducible in [x].
The third reference above has a comparatively simple proof of
the theorem. The second reference proves the result for
polynomials with coefficients in a field of algebraic numbers
over . Hilbert used his theorem to prove the existence of
infinitely many polynomials with rational coefficients having
Galois group Sn or An.

9. Galois Groups of Some Classical Polynomials

References: (1) I. Schur, “Gleichungen ohne Affekt,”
Sitzungsberichte Preussische Akademie der
Wissenschaften-Physicalische-Mathematische Klasse, 1930,
pp. 443–449; or Gesammelte Abhandlungen vol. 3, pp.
191–197. (2) I. Schur, “Affektlose gleichungen in der Theorie
Laguerreschen und Hermiteschen Polynome,” Journal für die
reine und angewandete Mathematik, vol. 165 (1931), pp.
52–58; or Gesammelte Abhandlungen, vol. 3, pp. 227–233.

These papers determine the Galois groups over of
Laguerre, Hermite polynomials, the polynomials En(x) = l + x

+ and related polynomials. In all cases the Galois
groups are either Sn or An.

10. Plücker Equations
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References: (1) W. V. D. Hodge and D. Pedoe, Methods of
Algebraic Geometry, vol. 1, Cambridge University Press,
Cambridge, England, 1947, pp. 286–315. (2) N. Jacobson and
D. Saltman, Finite Dimensional Division Algebras, a
forthcoming book, Chapter 3.

The Plücker equations are algebraic equations on the Plücker
coordinates of an element ω of the homogeneous part Vr of
the exterior algebra E(V) that are necessary and sufficient
conditions that ω is decomposable. They endow the set of
decomposable vectors with an algebraic geometric structure.
These define a Grassmannian variety corresponding to the set
of r dimensional subspaces of the vector space V.
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Index

Action of group on a set, 71–79

effective, 72

equivalent group actions, 73

kernel of, 72

primitive, 77

transitive, 75

Algebraic element, 124

Algebraic integers, 279

Algebraic numbers, 279

Algebraically independent elements, 126

Algebras

alternative, 443

associative, 407

Boolean, 474

Cayley-Graves, 449

composition, 440
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derivation, 435

exterior, 411–422

free, 127

group, 127, 408

homomorphism of, 409

ideals in, 409

Jordan, 435

Lie, 434

of linear transformations, 422

matrix representations of, 424

non-associative, 409

quotient, 424

representation of, 403

Amitsur-Levitzki theorem, 422

Anisotropic, 359

Anistropic kernel, 370

Annihilator, 168
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Anti-homomorphism, 114

Anti-isomorphism, 109

Artin-Chevalley theorem, 137

Ascending chain (of ideals), 102, 147

Associates, 140

Associative law, 8, 17

generalized associativity, 39–40

power associativity, 433

Associator, 435

Automorphism, 60

of an extension field, 234

group of, 60

group of outer, 63

inner, 63, 112

Base, 170

Cartesian, 361

dual (or complementary), 344
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normal, 291

orthogonal, 356

symplectic, 391

Bilinear form, 344

alternate, 348, 349–353

anisotropic, 359

discriminant of, 345, 349–350

equivalent, 348

isotropic, 359

matrix of, 345

non-degenerate, 346

null, 359

radicals of, 346

symmetric, 347–361

universal, 359

Binomial theorem, 89

Block, 11
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Boolean algebra, 474

Boolean ring, 476

Budan’s theorem, 316

Cancellation law, 17, 36

restricted, 90–91

Canonical matrices

Jordan, 200

rational, 198–200

Cardan’s formulas, 266

Cardinal numbers, 24–25

Cartan-Brauer-Hua theorem, 100

Cartan-Dieudonné theorem, 372

Casus irreducibilis, 267

Cayley’s theorem, 38

analogue for algebras, 423

analogue for rings, 161

Center, 41, 97
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Centralizer, 41

Characteristic polynomial, 196

Characterization of S5, 82–83

Characters, 291

Chinese remainder theorem, 110

Class equation, 76

Cogredient, 349

Commutativity, 17, 40–41

of diagrams, 8

Commutator, 245

subgroup, 238–245

Complement, 10, 469

Composition (r-ary), 10

Composition series, 248

factors of, 248

Congruences, 54–57

intersection of, 58
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Conjugacy classes, 74

in the symmetric group, 74

Conjugates, 255, 291

Constructivility (Euclidean), 216–274

constructible regular n-gons, 272–273

Content of a polynomial, 151

Correspondence, 15

one to one, 7

Cosets, 52

coset space, 73

Cover, 318, 457

Crystallographic groups, 490

Cycles, 48

decomposition into, 48

disjoint, 48

Dedekind independence theorem, 291

Degree
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of polynomial, 128

of rational expression, 243

total, 137

Distributive laws, 4

Derangements, 480

Derivation, 434

standard, 230

Descartes’ rule of signs, 316

Determinants, 95, 396–400

Dickson-Dieudonne theorem, 389

Dimensionality relation, 346, 359, 365

for field extensions, 214

Direct product

of groups, 35

of monoids, 35

Direct sum

of modules, 175–178
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of rings, 110

Discriminant, 258, 345, 349

Division algorithm, 23, 128–317

Division ring, 91

Divisor, 22

greatest common divisor (g.c.d.), 23, 144

zero, 90

Domain, 90

Euclidean, 148, 489

factorial, 141

principal ideal domain, 130, 147–149

Duality principle, 459

Eisenstein’s criterion, 154

Element, 3

algebraic, 124

algebraically independent elements, 126

prime, 22, 143
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quasi-invertible, 156

transcendental, 124

Elementary divisor, 193

Endomorphisms, 60

ring of, 158–162, 169, 204–208

Engel property, 251

Epimorphism, 59

Equivalence

class, 11

of matrics, 181

relation, 11

Euclid algorithm, 150, 316–320

Euclidean constructions, 216–224, 271–274

Euclidean sequence, 319

Euler (p-function, 47, 105, 110

Euler theorem, 102–105

Exponent of a finite group, 46
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Extension fields

abelian, 253

algebraic, 216

cyclic, 253

Galois, 253

normal, 238

separable, 238

simple, 214

Factor, 22, 140

Factor group, 56

Factor theorem, 130

Fermat theorem, 105

Fiber, 12

Field, 91

algebraically closed, 224

cyclotomic, 252, 271–276

finite, 277–278, 287–290, 491
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of fractions, 115–118

orderable, 307

ordered, 307

perfect, 233

prime, 213

real closed, 308

splitting, 224

Filter, 479

Form, 354

bilinear, 344

hermitian, 401–403

quadratic, 354–361

See also Bilinear form

Formal power series, 127

Four color problem, 484

Four square theorem, 490

Fractions, 116

849



Free objects, 67–70, 127, 171

Frobenius’ theorem

on commutative matrices, 207

on real division algebras, 452

Function

linear, 343

polynomial, 134–137, 354

trilinear, 435

Fundamental theorem

of arithmetic, 22

of Galois theory, 239

of homomorphisms, 61, 107, 168

of projective geometry, 468

“Fundamental theorem of algebra,” 224, 309

Galois group, 234–242, 252, 256–260

of cyclotomic fields, 276

Gauss’ lemma, 152
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General equation, 262–266

Geometry

orthogonal, 361–366

symplectic, 391–396

unitary, 401–403

Greatest common divisor (g.c.d.), 23, 144

Group, 31

abelian, 41, 46–47, 194

acting on a set, 71–78

alternating, 51, 71, 247

of automorphisms, 60

commutator (derived), 245

cyclic, 42–47

dihedral, 34

direct product of, 35

factor, 56

finitely generated, 69
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finitely presented, 70

free, 69

free abelian, 67

general linear, 95, 375–382

generators of, 42

homomorphism of, 58

isomorphism of, 36–37

nilpotent, 261

orthogonal, 362

p-group, 245

periodic, 47

permutation, 32

projective unimodular, 377

semi-direct product of, 79

simple, 247

solvable, 244–245

symmetric, 31, 70
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symplectic, 391

of transformations, 32

of units, 31, 91

wreath product of, 79

Group algebra, 127, 408

Group of transformations, 32

equivalence relation defined by, 51

transitive, 51–52

Hamilton-Cayley-Frobenius theorem, 201

Hilbert irreducibility theorem, 492

Hilbert’s Satz 90, 297–298

Holomorph, 63

Homomorphism

fundamental theorem for modules, 168

fundamental theorem for monoids and groups, 61

fundamental theorem for rings, 107

of groups, 58
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induced, 61, 106

kernel of, 61, 106, 168

of modules, 168

of monoids, 58–59

restriction homomorphism, 59

of rings, 106

Hua’s identity, 92

Hua’s theorem, 114

Hurwitz’s problem, 438–449

generalized Hurwitz theorem, 447

Hyperbolic plane, 365

Ideal, 101

left and right, 103

maximal, 111

order (annihilator), 169

prime, 111

principal, 102, 478
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Idempotent element, 91

Inclusion-exclusion method, 486

Indeterminates, 122, 125

Intervals in a lattice, 460

Invariant factor, 193

Inverse, 9, 31

invertible element (or unit), 31

Involution, 82, 108, 112

Irreducible element, 141

Isometry, 362

Isomorphism

algebraic independence of, 294

first and second isomorphism theorems for groups, 65

first and second isomorphism theorems for rings, 108

of groups, 36–37

of lattices, 460

of monoids, 37
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of rings, 94–95

Isotropic, 359

Jacobi’s identity, 432

Jacobson-Rickart theorem, 114

Jordan canonical form (or matrix), 200

Jordan-Holder-Dedekind theorem, 466

Jordan-Holder theorem, 249

Jordan homomorphism, 114

Jordan identity, 433

Jordan product, 432

Kernel (of homomorphism), 61, 72, 106, 168

k-fold transitivity, 79

Lagrange resolvent, 253

Lagrange’s theorem, 52

Laplace expansion of a determinant, 417

Lattice, 457

anti-isomorphism of, 473
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complemented, 469

complete, 458

distributive, 462

isomorphism of, 460

modular, 463

semi-modular, 466

of subspaces of a vector space, 468–473

Least common multiple (l.c.m.), 23, 144

Left multiplication, 162

Left translation, 38

Legendre polynomial, 316

Legendre symbol, 133–134

Length

of an interval in a modular lattice, 467

in a principal ideal domain, 183–184

Lexicographic order, 138, 282

Lie product (or additive commutator), 431
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Lindemann-Weierstrass theorem, 277, 278

Linear group, 95

Linear transformations, 165, 194–201

adjoint, 349, 354

orthogonal, 362, 363

self-adjoint, 366

skew, 371

unipoint, 366

Malcev’s examples, 119

Map (or mapping), 5

anti-linear, 402

bijective, 7

codomain of, 5

composition of maps. 7

domain of, 5

graph of, 5

identity, 8
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image of (or range), 6

injective, 7

inverse image of, 12

inverse of, 9

natural, 12

order preserving, 460

semi-linear, 470

surjective, 7

Map coloring problem, 484

Mathematical induction, 16, 18

Mathieu groups, 491

Matrices, 90, 173

addition of, 90

adjoint matrix, 96

alternate, 350

characteristic polynomial of, 196

cogredient, 349
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companion matrix, 197

compound, 417

diagonal, 94

elementary, 181–182

equivalent, 181

hermitian, 401

inverse of matrix, 96

Jordan canonical form of, 200

matrix ring, 92–96

matrix units, 94

multiplication of, 93

normal form of, 184

rational canonical form of, 198, 200

similar, 195

trace of, 196, 423

transpose of matrix, 111

Minimum polynomial, 131
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Mobius function

of a partially ordered set, 480–487

of positive integers, 151

Mobius inversion formula, 151, 487

Module, 163, 164

cyclic, 168

defined by a linear transformation, 165

direct sum of modules, 175–178

free, 170

homomorphism of, 168

indecomposable, 193

irreducible, 169

primary, 191

quotient, 167

ring as, 165

torsion, 189, 191

Monad, 28
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Monic polynomial, 131

Monoid, 28

direct product of, 35

factorial, 140–146

free, 68

generators of, 42

homomorphism of, 58–59

isomorphism of, 37

multiplication table of, 30

order of, 29

quotient, 55

of transformations, 29

Monomial, 125

Monomorphism, 59

Moufang’s identities, 443, 450

Multiple, 42

least common multiple (l.c.m.), 23, 144
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Multiple roots, 229

Multiplication table, 30

Natural integers (the system Z), 19

Natural numbers, 15

Newton’s identities, 140

Nilpotent element, 91

Normal base theorem, 294

Norms, 296, 424

transitivity of, 426

Octonions, 446

Orbits, 51, 74

Order, 18

of an element (of a group), 44

of a monoid, 30

of orthogonal and symplectic groups, 399, 400

of PSL„(F) and SL„(F), 381

Order isomorphism, 308
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Ordered field, 307

Ore’s imbedding theorem, 119

Orthogonal, 347

base, 356

complement, 349

geometry, 361–366

group, 362

transformation, 362

Partial fraction, decomposition, 150

Partially ordered set, 456

Mobius function of, 480–487

Partition, 11

Peano’s axioms, 16

Permutation, 31

even and odd, 51

Pfaffian, 352

p-Frobenius automorphism, 304
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Pigeon hole principle, 25

Pliicker coordinates, 420

Plucker equations, 492

Polynomial, 119, 122, 125

chromatic, 484

content of, 152

cyclotomic, 252, 271–276

degree of, 128

functions, 134–137

Galois group of, 251

homogeneous, 138

Legendre, 316

p-polynomial, 234

primitive, 152

root of, 131

separable, 233

symmetric, 138–139

865



total degree of, 137

Power, 40

associativity, 433

Prime, 22, 142

field (of a field), 213

ring (of a ring), 108

Primitive element (of an extension field), 214, 290

Primitivity (for a group action), 77

Projective space, 377

Quadratic forms, 355

bilinear radical of, 355

permitting composition, 440

positive definite, 361

radical of, 356

Quasi-invertible element, 156

Quaternions, 98–100, 446, 450

Quotient module, 167
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Quotient ring, 101

Rational canonical form (or matrix), 198–200

Real closed field, 308

Recursion theorem, 16

Reduction mod p, 301

Reflection groups, 491

Relation (binary), 10

equivalence, 11

Relatively prime, 145

Remainder theorem, 130

Representations, 424

matrix, 424

regular, 424

Resultant, 326

Ring, 86

additive group of, 87

anti-homomorphism of, 114
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anti-isomorphism of, 112

Boolean, 476

characteristic of, 109

commutative, 90

direct sum of, 110

division, 91

of endomorphisms of an abelian group, 158–162

of endomorphisms of a module, 169, 204–208

of formal power series, 127

of Gaussian integers, 87

group of units of, 91

homomorphism of, 106

inner automorphism of, 112

isomorphism theorems for, 108

Jordan homomorphism of, 114

matrix, 92–96

multiplications of, 162
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multiplicative monoid of, 87

opposite, 113

polynomial, 119–126

quotient, 101–102

of residues modulo an integer, 103–105

simple, 110

without unit, 155–156

Root tower, 251

Rotation, 363

Ruffini-Abel theorem, 264

Schroder,Bernstein theorem, 25

Schur’s lemma, 170

Seidenberg’s decision method, 327–385

Semigroup, 28

Series

central, 251

composition, 248
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derived, 245

normal, 244

Sets, 3

Cartesian product of, 4

characteristic functions of, 5, 386

intersection of, 3

power set, 3

quotient, 12

totally ordered, 456

union of, 4

Signature, 359, 403

Simple group, 57

Simple ring, 110

Simplicity of alternating groups, 247

criterion, 379

of projective orthogonal groups, 389

of projective symplectic groups, 397
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of PSLn(F), 380

Skew element, 113

Solvability of an equation by radicals, 261

Square root tower, 219

Stabilizer, 78

Sturm sequence, 312

standard, 313

Sturm’s theorem, 311

parameterized version, 320

Subfield generated by a subset, 110

Subgroup, 31

generated by a subset, 43

index of, 53

normal, 55

Sylow, 80–81

Submodule, 166

Submonoid, 29
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generated by a subset, 43

Subring, 87

generated by a subset, 85, 110

prime, 108

Subset, 3

Subspace

isotropic, 365

non-degenerate, 349

totally isotropic, 365

Sylow theorems, 79–82

Frobenius’ generalization of, 83–84

Sylvester’s theorem, 359

Symmetric difference, 475

Symmetric element, 113

Symmetric polynomial, 138–139

Symmetric rational expression, 242

Symmetry, 363
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Symplectic base, 391

Symplectic geometry, 391–396

Symplectic transvection, 392

Szpilrajn-Marczewski lemma, 480

Tarski’s theorem, 335

Totally ordered set (chain), 456

Trace

function, 396, 442

of a matrix, 196, 423

transitivity of, 426

Transcendental element, 124

Transformation, 7

group, 32

linear, 165

monoid of, 28

semi-linear, 472

See also Linear transformations
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Transitivity

of determinants, 427

of norms, 426

of traces, 426

Transposition, 49

Transvection, 381

symplectic, 392

Unit, 28

Unitary geometry, 401–403

Vector space, 165

conjugate, 344

Weddeburn theorem (on finite division rings), 453

Well ordering property (of natural numbers), 18

Wilson’s theorem, 133

Witt index, 369

Witt’s cancellation theorem, 367

Witt’s extension theorem, 369
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Wreath product, 79

Zero divisor, 90

875


	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Preface to the First Edition
	Introduction: Concepts From Set Theory. The Integers
	0.1 The power set of a set
	0.2 The Cartesian product set. Maps
	0.3 Equivalence relations. Factoring a map through an equivalence relation
	0.4 The natural numbers
	0.5 The number system Z of integers
	0.6 Some basic arithmetic facts about Z
	0.7 A word on cardinal numbers

	1 Monoids And Groups
	1.1 Monoids of transformations and abstract monoids
	1.2 Groups of transformations and abstract groups
	1.3 Isomorphism. Cayley’s theorem
	1.4 Generalized associativity. Commutativity
	1.5 Submonoids and subgroups generated by a subset. Cyclic groups
	1.6 Cycle decomposition of permutations
	1.7 Orbits. Cosets of a subgroup
	1.8 Congruences. Quotient monoids and groups
	1.9 Homomorphisms
	1.10 Subgroups of a homomorphic image. Two basic isomorphism theorems
	1.11 Free objects. Generators and relations
	1.12 Groups acting on sets
	1.13 Sylow’s theorems

	2 Rings
	2.1 Definition and elementary properties
	2.2 Types of rings
	2.3 Matrix rings
	2.4 Quaternions
	2.5 Ideals, quotient rings
	2.6 Ideals and quotient rings for Z
	2.7 Homomorphisms of rings. Basic theorems
	2.8 Anti-isomorphisms
	2.9 Field of fractions of a commutative domain
	2.10 Polynomial rings
	2.11 Some properties of polynomial rings and applications
	2.12 Polynomial functions
	2.13 Symmetric polynomials
	2.14 Factorial monoids and rings
	2.15 Principal ideal domains and Euclidean domains
	2.16 Polynomial extensions of factorial domains
	2.17 “Rngs” (rings without unit)

	3 Modules Over A Principal Ideal Domain
	3.1 Ring of endomorphisms of an abelian group
	3.2 Left and right modules
	3.3 Fundamental concepts and results
	3.4 Free modules and matrices
	3.5 Direct sums of modules
	3.6 Finitely generated modules over a p.i.d. Preliminary results
	3.7 Equivalence of matrices with entries in a p.i.d.
	3.8 Structure theorem for finitely generated modules over a p.i.d.
	3.9 Torsion modules, primary components, invariance theorem
	3.10 Applications to abelian groups and to linear transformations
	3.11 The ring of endomorphisms of a finitely generated module over a p.i.d.

	4 Galois Theory of Equations
	4.1 Preliminary results, some old, some new
	4.2 Construction with straight-edge and compass
	4.3 Splitting field of a polynomial
	4.4 Multiple roots
	4.5 The Galois group. The fundamental Galois pairing
	4.6 Some results on finite groups
	4.7 Galois’ criterion for solvability by radicals
	4.8 The Galois group as permutation group of the roots
	4.9 The general equation of the nth degree
	4.10 Equations with rational coefficients and symmetric group as Galois group
	4.11 Constructible regular n-gons
	4.12 Transcendence of e and n. The Lindemann-Weierstrass theorem
	4.13 Finite fields
	4.14 Special bases for finite dimensional extensions fields
	4.15 Traces and norms
	4.16 Mod p reduction

	5 Real Polynomial Equations and Inequalities
	5.1 Ordered fields. Real closed fields
	5.2 Sturm’s theorem
	5.3 Formalized Euclidean algorithm and Sturm’s theorem
	5.4 Elimination procedures. Resultants
	5.5 Decision method for an algebraic curve
	5.6 Tarski’s theorem

	6 Metric Vector Spaces and The Classical Groups
	6.1 Linear functions and bilinear forms
	6.2 Alternate forms
	6.3 Quadratic forms and symmetric bilinear forms
	6.4 Basic concepts of orthogonal geometry
	6.5 Witt’s cancellation theorem
	6.6 The theorem of Cartan-Dieudonné
	6.7 Structure of the general linear group GLn(F)
	6.8 Structure of orthogonal groups
	6.9 Symplectic geometry. The symplectic group
	6.10 Orders of orthogonal and symplectic groups over a finite field
	6.11 Postscript on hermitian forms and unitary geometry

	7 Algebras Over A Field
	7.1 Definition and examples of associative algebras
	7.2 Exterior algebras. Application to determinants
	7.3 Regular matrix representations of associative algebras. Norms and traces
	7.4 Change of base field. Transitivity of trace and norm
	7.5 Non-associative algebras. Lie and Jordan algebras
	7.6 Hurwitz’ problem. Composition algebras
	7.7 Frobenius’ and Wedderburn’s theorems on associative division algebras

	8 Lattices And Boolean Algebras
	8.1 Partially ordered sets and lattices
	8.2 Distributivity and modularity
	8.3 The theorem of Jordan-Hôlder-Dedekind
	8.4 The lattice of subspaces of a vector space. Fundamental theorem of projective geometry
	8.5 Boolean algebras
	8.6 The Mobius function of a partially ordered set

	Appendix
	Index

