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PREFACE

This preface is written primarily for mathematics lecturers, but students might
find it interesting too. It describes differences between this book and other
Abstract Algebra texts and explains the reasons for those differences.

This book is not like other Abstract Algebra1 books. It is not a
textbook containing standard content. Rather, it is designed as
pre-reading or concurrent reading for an Abstract Algebra course.

I do mean that it is designed for reading, which is important because
students are often unaccustomed to learning mathematics from books,
and because research shows that many do not read effectively. This book
is therefore less dense and more accessible than typical undergraduate
texts. It contains serious discussions of central Abstract Algebra con-
cepts, but these begin where the student is likely to be. They make
links to earliermathematics, refute commonmisconceptions, and explain
how definitions and theorems capture intuitive ideas in mathematically
sophisticated ways. The narrative thus unfolds in what I hope is a natural
and engaging style, while developing the rigour appropriate for under-
graduate study.

Because of this aim, the book is structured differently from other texts.
Part 1 contains four chapters that discuss not the content of Abstract
Algebra but its structure, explaining what it means to have a coherent
mathematical theory and what it takes to understand one. There is no
‘preliminaries’ chapter; instead, notations and definitions are introduced
where they are first needed, meaning that they are spread across the text
(though a symbol list is provided on pages xiii–xiv). This means that a

1 ‘Abstract Algebra’ should probably not have upper-case ‘A’s, but I want to make the
subject name distinct from other uses of related terms.
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student reading for review might need to use the index more than usual,
so the index is extensive.

A second difference is that not all content is covered at the same depth.
The five main chapters in Part 2 each contain extensive treatment of their
central definition(s), especially where students are known to struggle.
They also discuss selected theorems and proofs, some of which are used
to highlight strategies and skills that might be useful elsewhere, and some
of which are used to draw out structural similarities and explain theory
development. But these chapters aim to prepare a student to learn from a
standard Abstract Algebra course, rather than to cover its entire content.

A third difference is that the order of the content is relatively uncon-
strained by logical theory development. Theory is explicitly discussed:
Part 1 provides information on the roles of axioms, definitions, theorems
and proofs, and Part 2 encourages attention to logical argument. But
numerous sections provide examples before inviting generalization, or
introduce technical terms informally before they are defined, or observe
phenomena to be formalized later. I take this approach with care, high-
lighting informality and noting where formal versions can be found. But
I consider it useful because the central ideas of early Abstract Algebra are
so tightly interwoven—really I would like to introduce all of the book’s
main ideas simultaneously. Obviously that is impossible, but I do want
to keep some pace in the narrative, to prioritize concepts and important
relationships over technicalities. I realize, of course, that this approach
goes against the grain ofmathematical presentation andmeans that this is
not a book that a typical course could ‘follow’. But I am contentwith that—
theworld is full of standard textbooks developing theory from the bottom
up, and my aim is to provide an alternative with a focus on conceptual
understanding.

Finally, this book explicitly discusses how students might make sense
of Abstract Algebra as it is presented in lectures and in other books.
I realize that this, too, is contentious: many mathematics lecturers place
high value on constructing ideas and arguments, and some have worked
hard to develop inquiry-based Abstract Algebra courses. I am all for
inquiry-based courses, and for anywell-thought-out approach that allows
students to reinvent mathematical ideas through independent or collab-
orative problem solving. But the reality is that most mathematics lectures
are still just that: lectures. Many lecturers are constrained by class sizes
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well into the hundreds, and flipped classroom models might promote
student engagement but it is not obvious how to use them effectively to
develop the theory of Abstract Algebra. Because of this, and because few
students follow every detail of their lectures, an important student task
is to make sense of written mathematics. Research shows that the typical
student is capable of this but ill-informed regarding how to go about it.
This book tackles that problem—it aims to deliver students who do not
yet know much Abstract Algebra but who are ready to learn.

A book like this would be impossible without work by numerous
researchers in mathematics education and psychology. In particular, the
self-explanation training in Chapter 3 was developed in collaboration
with Mark Hodds and Matthew Inglis (see Hodds, Alcock & Inglis, 2014)
on the basis of earlier research on academic reading by authors including
Ainsworth and Burcham (2007), Bielaczyc, Pirolli, and Brown (1995),
and Chi, de Leeuw, Chiu and LaVancher (1994). More information on
the studies we conducted can be found in Alcock, Hodds, Roy and Inglis
(2015), an article in the Notices of the American Mathematical Society.
The bibliography contains extensive references to decades’ worth of
research on student learning about specific concepts in Abstract Algebra
and about general proof-based mathematics. I encourage interested
readers to investigate further.

My specific thanks go to Ant Edwards, Tim Fukawa-Connelly, Kevin
Houston, Artie Prendergast-Smith, Adrian Simpson, Keith Weber, and
Iro Xenidou-Dervou, all of whom gave valuable feedback on chapter
drafts. Similarly, to careful readers Romain Lambert, Neil Pratt, and
Simon Goss, who were kind enough to point out errors. I am particularly
indebted to Colin Foster, who read a draft of the entire book before its
chapters went to anyone else. I am also grateful as ever to the team
at Oxford University Press, including Dan Taber, Katherine Ward,
Chandrakala Chandrasekaran and Richard Hutchinson. Finally, this
book is dedicated to Kristian Alcock, who has never known me not to be
writing it. I think he will be glad and amazed to see it in print.
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INTRODUCTION

This short introduction discusses the place of Abstract Algebra in typical
undergraduate degree programmes and the challenges it presents. It then
explains this book’s content and intent.

M athematics students typically encounter Abstract Algebra as
one of their first theorems-and-proofs courses. For those in
UK-like systems, where people specialize early, it might be

taught at the beginning of amathematics degree, or perhaps in the second
termor second year. For those inUS-like systems, where people specialize
late, it will more likely be an upper-level course for mathematics majors
in their junior or senior year. Either way, a course might not actually be
called Abstract Algebra. That name is an umbrella term for the theory of
groups, rings, fields and related structures, so a first coursemight be titled
Group Theory or Groups, Rings and Fields or something more basic like
Sets and Groups.

Whatever the precise arrangements, Abstract Algebra is usually studied
in parallel with other subjects such asAnalysis. BothAbstract Algebra and
Analysis involve a shift in mathematical emphasis: students who think of
mathematics as a set of algorithmsmust now learn to focus on definitions,
theorems and proofs. Part 1 of this book provides advice on that. But
the two subjects can feel quite different, and awareness of the differences
might help with understanding their respective challenges.

In Analysis, the main challenge is the reasoning: the subject makes
heavy use of logically complex statements, which few students are well
equipped to process. But its objects are relatively graspable: numbers,
sequences, series and functions are already familiar or readily repre-
sented in diagrams. In Abstract Algebra, the main challenge is almost
the opposite. The logic is more straightforward, but many of the objects
are less familiar and less easy to represent. For students, this can render

INTRODUCTION xv
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the subject somewhat meaningless—even those who do well might not
develop a strong sense of what it is ‘about’. That was my experience.
Despite having a very good lecturer,1 I never really likedAbstract Algebra
because I never really got it. I could perform the manipulations, apply the
theorems, and reconstruct the proofs, but I didn’t really understand what
it all meant.

I now believe that this happened for two reasons. The first is general
but particularly relevant in Abstract Algebra: mathematics is hierarchical,
with each level building on the last. Shifting up a level often requires
compressing some aspect of your understanding in order to to think
of it in relation to four or five new things. If you haven’t compressed
it enough, this is difficult, and higher levels can seem like meaningless
symbol-pushing. Abstract Algebra involves a lot of compression, and this
book will point out explicitly where it is needed.

The second reason is that I didn’t access good representations for
Abstract Algebra’s key ideas. I like visual representations—images that
enable me to ‘see’ how concepts are related and to develop intuition for
why things work as they do. I don’t often get that feeling from algebraic
arguments, no matter how sure I am that each step is valid. And Abstract
Algebra didn’t seem to have many visual representations, so I didn’t find
much to hold on to. I don’t blame my lecturer for this—I failed rather
badly to keep up, so I didn’t follow his lectures effectively and I probably
missed some enlightening explanations. But intuition for the subject can
be developed using diagrams and tables, so this book contains many
of those.

This book also contains explicit discussion of what Abstract Algebra
is, beginning in Chapter 1 with sections on what is abstract about
Abstract Algebra, and what is algebraic about it. The remainder of
Part 1 discusses axioms and definitions and their roles in mathematical
theory (Chapter 2), theorems and proofs and productive ways to interact
with these (Chapter 3), and research-based strategies for effective
learning (Chapter 4). Please read Chapter 4 even if you are a successful

1 In the UK we say ‘lecturer’ where those in US-like systems might say ‘instructor’
or ‘professor’.
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student—you might find that you can tweak your strategies to improve
your learning or reduce your workload or both.2

Part 2 covers topics inAbstract Algebra, startingwith binary operations
(Chapter 5) and moving on to groups and subgroups (Chapter 6),
quotient groups (Chapter 7), isomorphisms and homomorphisms
(Chapter 8) and rings (Chapter 9). Because this is not a standard
textbook, it does not try to ‘cover’ all of the relevant content for these
topics. Instead, it treats the main ideas in depth, using examples and
visual representations to explain ways to think about them accurately.
Each chapter also includes selected theorems and proofs and discusses
relationships between topics.

Because Abstract Algebra is a tightly interconnected theory, early
chapters often touch on ideas not formalized until later. For this reason,
I recommend reading the whole book in order, although each chapter
should also be readable as a self-contained unit. If you get stuck, remem-
ber that there is an extensive index, and that pages xiii–xiv list where
symbols are explained in the text. If it is practical, I also recommend
reading the entire book before starting an Abstract Algebra course. I
intend to set you upwithmeaningful understanding of themain ideas and
a good grasp of how to learn effectively, so you will likely get maximum
benefit by reading before you start. However, if you have come to this
book because your course has begun and you find yourself lost in the
abstractions, it should provide opportunities to rework your understand-
ing so that you can engage effectively. Either way, I hope that Abstract
Algebra deepens your understanding of both familiar mathematics and
higher-level theory.

2 Compared with How to Study for a Mathematics Degree and its American coun-
terpart How to Study as a Mathematics Major, the advice in Chapter 4 is condensed,
specific to Abstract Algebra, and more explicitly linked to research on learning.

INTRODUCTION xvii
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PART 1
Studying Abstract Algebra
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chapter 1

What is Abstract Algebra?

This chapter contrasts Abstract Algebra with the algebra studied in earlier
mathematics. It highlights the subject’s focus on validity of algebraic manipula-
tions across a range of structures. It then describes three approaches common
in Abstract Algebra courses: a formal approach, an equation-solving approach
and a geometric approach.

1.1 What is abstract about Abstract Algebra?

A bstract Algebra is abstract in the same sense in which other
human thinking is abstract: its concepts can be instantiated in
multiple ways. For instance, you recognize things like trees and

windows. You can do that because you understand the abstract ideas ‘tree’
and ‘window’, and you canmatch them to objects in the world. You do not
need to look at one tree to identify another; you do it by reference to the
abstract idea.

Now, trees and windows are physical objects—you can walk up and
touch them, and identify them by sight. But you can think about concepts
that are more abstract, too. For instance, you can identify an aunt. You
do that by reference to a criterion: is this a female person with a sibling
who has children? If yes, it’s an aunt. If no, it’s not. Moreover, you can
think about abstract concepts that are not single objects, like family.
A family includes multiple people—perhaps many—who are related to
one another—genetically or by marriage or by other caring relationships.
Families vary a lot, and you couldn’t necessarily recognize a family by

WHAT IS ABSTRACT ABOUT ABSTRACT ALGEBRA? 3
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sight or by checking simple criteria. But you nevertheless understand
the idea.

Abstract Algebra is about concepts that are somewhat like each of
these more abstract ideas. They are like aunts in that they are defined by
criteria. Abstract Algebra is stricter, though. Everyday human concepts,
even defined ones like ‘aunt’, tend to be used flexibly. Is your mum’s
brother’s female partner your aunt?Maybe, maybe not. And where I grew
up, adult female neighbours and friends were commonly referred to as
‘Auntie’, even where there were no family relationships. Such flexibility
doesn’t happen in Abstract Algebra, because mathematical concepts are
specified by precise definitions about which all mathematicians agree.1

The concepts of Abstract Algebra are like families in that not all are
just single things: some are sets with particular internal relationships.This
means that they can be big and complex, though that does not necessarily
make them hard to think about. A single tree, after all, might have tens
of branches and thousands of leaves—it has lots of internal structure,
but you can treat it as a single thing. Mathematical objects can be like
this too. For instance, the set of all even numbers is infinite and has lots
of internal structure, but again you can treat it as a single thing. Such
thinking is important in Abstract Algebra: often it is useful to switch
between examining an object’s internal structure and thinking of it as a
unified whole.

1.2 What is algebraic about Abstract Algebra?

To understand what is algebraic about Abstract Algebra, it is probably
useful to consider what is algebraic about earlier algebra. Many students
think of algebra as something you do, where doing algebra means manip-
ulating an expression or equation in valid ways to arrive at another.This is
often in service of a goal: solving a mechanics problem, say. And thinking
of algebra in this way is not wrong—certainly it captures most students’

1 More accurately, mathematicians agree about the principle that concepts should
be defined in this way, and most undergraduate mathematics works like this. But,
historically, there were debates about how best to define everything, and such debates
continue in developing subjects.

4 WHAT IS ABSTRACT ALGEBRA?
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experience prior to undergraduate mathematics. But it is not enough to
grasp the aims of Abstract Algebra.

Abstract Algebra focuses not on performing algebraic manipulations
but on understanding the mathematical structures that make those
manipulations valid. To seewhat Imean, consider this algebraic argument
(the arrow ‘⇒’ means ‘implies’).

x(x+ y)= yx
⇒ x2 + xy− yx = 0

⇒ x2 = 0
⇒ x = 0.

Probably you can write such arguments quickly, fluently and with only
occasional errors. But why exactly is each step valid? One step (which?)
assumes that xy = yx. This is valid because multiplication is commuta-
tive, meaning that xy and yx always take the same value. Another step
(which?) assumes that if x2 = 0 then x = 0. This is valid because 0 is the
only number that, when squared, gives 0. But such assumptions rely on
properties of operations and objects. Multiplication is commutative, but
not all operations share this property. Division is not commutative, for
instance: x/y could not be replaced by y/x. And not all objects behave
like numbers. If x and y were 2× 2 matrices,2 we could not assume that
xy = yx because matrix multiplication works like this:(

x11 x12
x21 x22

)(
y11 y12
y21 y22

)
=
(

x11y11 + x12y21 x11y12 + x12y22
x21y11 + x22y21 x21y12 + x22y22

)
.

So, for example,(
1 2
3 4

)(
5 6
7 8

)
=
(

5+ 14 6+ 16
15+ 28 18+ 32

)
=
(

19 22
43 50

)

2 This book includes examples based on matrices and complex numbers. If you
are studying in a UK-like system and have not come across these, you can find
introductions in A-level Further Mathematics textbooks or reliable online resources.

WHAT IS ALGEBRAIC ABOUT ABSTRACT ALGEBRA? 5
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but (
5 6
7 8

)(
1 2
3 4

)
=
(

5+ 18 10+ 24
7+ 24 14+ 32

)
=
(

23 34
31 46

)
.

Similarly, we could not assume that if x2 = 0 then x = 0. The matrix(
0 1
0 0

)
is not the zero matrix, but nevertheless(

0 1
0 0

)(
0 1
0 0

)
=
(

0+ 0 0+ 0
0+ 0 0+ 0

)
=
(

0 0
0 0

)
.

Algebraic validity therefore depends upon properties of both binary
operations, including multiplication, division and others to be discussed
in Chapter 5, and the sets on which these operate, which might be sets of
numbers, matrices or objects of other types—again, see Chapter 5. Binary
operationsmight be commutative on some sets but not on others. In some
sets there are few ways to combine objects to give zero; in others, there
are many. Thus, ‘facts’ that are true for one operation on one set do not
necessarily hold elsewhere, and Abstract Algebra requires concentration
to ensure that you do not overgeneralize from a familiar context. I won’t
lie: this is hard. When you are accustomed to ‘doing’ algebra in numerical
contexts, it might not require much effort. The manipulations become
natural enough that you do them easily, much as you might walk or type
easily. And concentrating on something that you do easily feels weird and
disruptive. If you concentrate on your muscles as you walk, you become
slow and ungainly. If you can touch-type, but you force yourself to look at
the keyboard and think about which letters you want, you might find that
you can’t type at all. Focusing on why algebraic manipulations are valid
can feel similar: slow, clunky and therefore like a step backward in your
learning rather than a step forward. It takes discipline, and for a while
might feel frustrating.

But the reward is worth it. Differences occur in the detail, but at
larger scales Abstract Algebra reveals strikingly similar structures. Sets

6 WHAT IS ABSTRACT ALGEBRA?



and operations that appear quite different turn out to have numerous
common properties. This sort of thing excites pure mathematicians. But
even if you’re not by nature one of those—if you’re into mathematics for
its practical applications—I encourage you to be open to the ideas. There
is pleasure in recognizing structures that cut across the subject.

1.3 Approaches to Abstract Algebra

To appreciate Abstract Algebra, you will need to engage effectively with
your course. And courses differ. Lecturers have individual approaches,
and even those who follow books will emphasize some things and skip
over others. That said, many Abstract Algebra courses start with group
theory. Some start with rings or a combination of structures but, as the
group theory beginning is common, it forms the greater part of this book.

In teaching group theory, there are three broad approaches: a formal
approach, an equation-solving approach and a geometric approach. Your
course will likely have something in common with at least one of these,
and this book will draw on all three. Here I will describe each in turn,
commenting on their advantages and disadvantages. The descriptions
are necessarily caricatures, but they give a flavour of what you might
encounter.

A formal approach is in one sense the simplest. Lecturers taking this
approach tend to begin with definitions, like that for group shown below.3
This is explained in detail in Chapters 2, 5 and 6; for now, you might like
to know that the symbol ‘∈’ means ‘(which) is an element of ’ and is often
read simply as ‘in’.

Definition: A group is a set G with a binary operation ∗ such that:

Closure for every g1,g2 ∈ G, g1 ∗ g2 ∈ G;
Associativity for every g1,g2,g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3);
Identity there exists e ∈ G such that for every g ∈ G, e ∗ g = g ∗ e = g;
Inverses for every g ∈ G, ∃g′ ∈ G such that g ∗ g′ = g′ ∗ g = e.

3 If your course uses a definition that omits the closure criterion, see Section 5.7.

APPROACHES TO ABSTRACT ALGEBRA 7
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After introducing a definition, lecturers taking a formal approach will
use it to prove general theorems. So a formal approach foregrounds the
key concepts and deductive nature of advanced mathematics. And some
people like it. It’s tidy, it’s slick and it leads to a concise set of lecture notes.
It avoids expansive discussion of ways in which abstract theory can be
instantiated, so there is minimal distraction and it should be clear that
definitions, theorems and proofs are central. It also saves time, so a course
can get to deeper results quite quickly. Some people find that motivating
because deeper results are more interesting.

The speed of a formal approach can, however, present challenges. A
theory presented with few examples provides little opportunity to build
intuition, so that students might learn many theorems but find it difficult
to decide which to use in problem solving. It is also, for some, actively
demotivating. If your lecturer takes this approach but you value intuition,
you might can find yourself staring at definitions, theorems and proofs
and thinking, ‘Well, that seems to be valid, but why should I care? Why
define a group that way in the first place?’

The equation-solving approach deals with this problem. A lecturer
taking this approach might start by inviting students to consider what
properties are needed to ensure that equations of the form x+ a = b
always have solutions. Working this out involves solving this simple
equation while attending to those properties. We want to subtract a from
both sides, writing

x+ a = b
⇒ x = b− a.

What assumptions does that require? First, subtraction must be possible;
a must have an additive inverse −a. This cannot be taken for granted:
in the set of natural numbers N = {1,2,3, . . .}, the elements have no
additive inverses. Further assumptions are revealed by unpacking what
we are doing.

x+ a = b
⇒ (x+ a)+ (−a) = b+ (−a) (adding −a to both sides)
⇒ x+ (a+ (−a)) = b+ (−a) (reordering operations on the left)
⇒ x+ 0 = b+ (−a) (using a+ (−a)= 0)
⇒ x = b+ (−a) (using x+ 0 = x).

8 WHAT IS ABSTRACT ALGEBRA?
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You see what I mean about the challenge of concentrating on validity. If
you are wondering why anyone would bother, check your assumptions
about sets and operations. Would equivalent intermediate steps be valid
if the operation were multiplication, so that the original equation read
ax = b? Would the addition and multiplication versions work if the
objects were matrices? If not, what could go wrong?

Then consider the intermediate steps. For the first, as noted above, the
object a must have an additive inverse −a. For the second, the operations
are reordered so that a+ (−a) is calculated before x+ a; for this, the
operationmust be associative.The third uses the inverse property directly.
The fourth uses the fact that 0 is the additive identity element. Finally,
the result b+ (−a) must be in the set; the set must be closed under the
operation. Now, did you notice what this means? Guaranteeing solvability
for equations like x+ a = b or ax = b requires closure, associativity, an
identity element and inverses. In other words, it requires a structure
that satisfies the definition of group. That definition does not come from
nowhere.

The equation-solving approach thus links Abstract Algebra to students’
earlier algebraic experience, so it provides a natural way in. And different
equation types demand different structures, leading to theory about rings,
fields and so on. But this approach alone gives little sense of group
structures that exist beyond familiar sets and operations.

The geometric approach addresses that. It starts with structures—and
indeed objects—that are, for many students, unfamiliar. The objects are
the symmetries of shapes such as equilateral triangles and squares, where
each symmetry is a transformation after which the shape ‘looks the same’.
For instance, an equilateral triangle has the six symmetries represented
below (the spots are just to keep track). These comprise an identity e
(‘leave the triangle where it is’), two rotations and three reflections. With
the first rotation denoted by ρ (the Greek letter ‘rho’), why does it make
sense to denote the second by ρ2? Why do you think the identity is
included?

APPROACHES TO ABSTRACT ALGEBRA 9
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e ρ ρ
2

r1 r2 r3

This use of the word symmetry differs from colloquially saying that the
triangle ‘is symmetrical’. It is more precise in that the six symmetries are
recognized as distinct. Moreover, ‘symmetry’ is a noun (as in ‘a reflection’,
‘a rotation’). This is important because these symmetries can be treated as
elements of a set. Indeed, they form a group under the binary operation
of composition, where composing two symmetries means performing one
then the other. For instance, performing ρ then r1 has the same effect as
performing the single symmetry r2.

ρ r1

What is required to establish that these symmetries form a group under
composition? Which properties are easy to check and which are more
difficult? Symmetry groups, including alternative notations, will be
discussed in Sections 5.6 and 6.7–6.8.

The geometric approach toAbstractAlgebra is often favoured by lectur-
erswho implement inquiry-based learning,4 because students canmanip-
ulate physical triangles to develop intuition and explore conjectures.

4 Instead of lecturing at the board, the lecturer sets problems for students to work
on together.
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You might enjoy this if—like me—you like visual representations. I can
imagine the objects, although it takes concentration to remember that
the group elements are symmetries—rotations and reflections—not the
triangle or its corners (see Section 6.7). If you are more of a formalist,
you might think that manipulating shapes is a bit childish, or that it
wastes time that could be used for real theory.That’s fair enough, though I
encourage you to embrace the intuition that can come from such activity.

One broader disadvantage of a geometric approach is that it privileges
one type of structure, and does so in a vivid, attention-grabbing way. This
can give the impression that the whole of group theory is about symmetry
groups, or at least that these are somehow the most important. It might
be less obvious that group theory also applies to familiar structures, and
students might therefore miss opportunities to connect their mathemat-
ical knowledge. So, while visual representations are useful, I encourage
you to develop your understanding of a range of groups, so that you can
use different insights and appreciate the scope of the theory. This book is
designed to help you do that.

APPROACHES TO ABSTRACT ALGEBRA 11
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chapter 2

Axioms and Definitions

This chapter explains how axioms and definitions fit into mathematical theories,
and describes ways to relate them to examples. It notes relationships between
axioms, definitions and the key concepts of group and ring, and introduces ideas
to be formalized in Part 2. It concludes by discussing object types in Abstract
Algebra and corresponding notations.

2.1 Mathematical axioms and definitions

A xioms and definitions form the basis of any mathematical theory,
where a theory is an interlinked network of concepts and results.
Axioms and definitions are the assumptions and agreements

from which mathematicians build a theory by proving theorems, where
a theorem is a true statement about one or more mathematical concepts.
This is represented in the diagram below.

Understanding axioms and definitions is therefore crucial. And it is
important to know what this involves, because mathematical concepts
are not like everyday concepts. That might be obvious for axioms—
in everyday life, no one really talks about those. People do talk about
definitions, but everyday definitions are not the same as mathematical
definitions. In fact, everyday definitions are mostly ignored because we
usually learn about concepts by exposure to examples. If we encounter an
unfamiliar concept, wemight look up its definition, but wemight infer its
meaning from the context. People do this imperfectly, but that is rarely
disastrous. We usually grasp roughly the intended meaning, and many
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axiom axiom definition definition definition definition

theoremtheorem theorem

theorem

theorem theoremtheorem theorem

concepts in any case have ‘woolly edges’ around which people do not
quite agree.

Mathematical definitions are not like this. Mathematical definitions
specify properties, and the words they define are used exactly and only
for things that satisfy those properties. For example, a definition of even
number appears below. I recommend reading such definitions—and all
mathematics—aloud: it is important to own the language so that you
can use it naturally when reading and when communicating with others.
Here, ‘∃’ means ‘there exists’, ‘Z’ denotes the set of all integers (whole
numbers, including negatives and zero) and ‘∈’ can be read as ‘in’.

Definition: A number n is even if and only if ∃k ∈ Z such that n = 2k.

This definition splits numbers cleanly into those that are even and those
that are not. There is no ambiguity: 4,−38 and 0 are even; 5 and −351
are not; 12.001 might be ‘close to’ the even number 12, but it is not even,
and it is certainly not considered even by some people but not by others.
This is due to the logic captured in the phrase ‘if and only if ’, which is
sometimes easier to process by considering each part separately:

A number n is even if ∃k ∈ Z such that n = 2k;
A number n is even only if ∃k ∈ Z such that n = 2k.
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The first part means that a number is even if there exists an appropriate k.
The second means that a number cannot be even otherwise—try reading
each part aloud with emphasis on the italics. Then, to make the logic
clearer, consider the two statements below.These are similarly structured,
but something important must be different because one is true and the
other is false. Which is which?

A number n is divisible by 2 if it is divisible by 4.
A number n is divisible by 2 only if it is divisible by 4.

The true statement splits numbers into three partially nested sets because
some numbers are divisible by 2 but not by 4. Consider how the logic
relates to the diagram.

even not even

divisible

by 4

In mathematics, it often happens that one of an if and an only if is true
and the other is false—Chapter 3 discusses theorems with this feature.
But definitions all have if and only if structures. Unfortunately, that is not
always apparent from teaching materials. First, some definitions sound
more natural when formulated differently—I will point out where that
occurs in this book. Second, mathematicians understand the logic of def-
initions without having to think about it, so some write ‘if ’ knowing that
they really mean ‘if and only if ’. I think that this overlooks opportunities
to help students focus on logic. On the other hand, undergraduates need
to learn their subject’s norms, to interpret this kind of thing correctly.
Whatever your lecturer’s approach, bear this information in mind.

Now, the principle behind mathematical definitions is easy enough
to work with for even numbers, where the definition is simple and the
relevant objects are familiar. It can be harder when a definition is complex
and the relevant objects are unfamiliar. Consider the definition below, for
instance.
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Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is aH = {ah|h ∈ H}.

One thing to check is that you can read this aloud. For instance, the
expression aH = {ah|h ∈ H} could be read as

‘a-big-H is the set of all elements of the form a-little-h, where little-h is
in the subgroup big-H.’

In practice, people might not bother with the detail, just saying

‘aH is the set of all elements of the form ah, where h is in H.’

That works provided that everyone is looking at the written formulation,
so they know which h or H is which. You might want to distinguish
them explicitly, though, because h and H are different types of object, as
discussed in Section 2.5.

One thing to observe is that this definition sounds natural without
an explicit ‘if and only if ’: it is formulated less as a possible property of
pre-existing objects, and more as an instruction, as a way to calculate left
cosets. Coset calculations will be introduced in Section 2.5 and discussed
further in Chapter 7. For now, note that applying this definition requires
understanding what a subgroup is, what the notation means, and so on.
Using it to prove things about cosets in general requires compressing the
idea to think about cosets as objects. Chapter 7 discusses that compres-
sion, which takes some work. But at least the word coset indicates that
there is work to do: most people have never heard it so it is clear that it
introduces a new concept.

The principle behind mathematical definitions can be even harder
to work with when a definition is complex, the relevant objects are
unfamiliar, and the word sounds like an everyday concept. For instance,
as noted in Chapter 1, a central Abstract Algebra concept is that of a
group. The group concept has a rather long definition, and you probably
have little experience with mathematical groups. But you have a lot of
experience with everyday groups, and I’m sure you can see that this
causes problems. When you hear the word ‘group’, it will be easier to
think about its everyday meaning than its mathematical meaning. Con-
sequently, many students struggle along with an understanding of groups
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that is overly influenced by the everyday meaning, and rather imprecise.
Unsurprisingly, this is not a good foundation for understanding the
related mathematical theory.

Recognizing this problem can help students to address a lot of their
own difficulties. Students often know that they do not understand things.
They might know, for instance, that they do not understand a theorem
about cosets because they do not really knowwhat cosets are.The solution
to this problem has a simple first step: study the definition. But students
new to advanced mathematics often do not think to do that, because it
is not how they have learned about concepts in everyday life or in earlier
mathematics. Consequently,much of this chapter is about ways to process
definitions. But its overarching message is simply that definitions are
paramount and should command your attention.

2.2 Relating definitions to examples

One way to understand definitions is to relate them to examples. For
instance, the concept of closure is defined below, where the symbol ‘∀’
means ‘for all’. (I will stop reminding you to read aloud now but I
recommend that you continue.)

Definition: The set S is closed under the binary operation ∗ if and only
if ∀s1, s2 ∈ S, s1 ∗ s2 ∈ S.

This definition refers to both a set, denoted by S, and a binary operation,
denoted by ∗ (‘star’). And applying it can be straightforward. For instance,
translating from the general set S and operation ∗ to the specific set N and
operation + gives

∀n1,n2 ∈ N, n1 + n2 ∈ N.

This statement is true, so the natural numbers are closed under addition.
How about other sets such as Z (the integers—whole numbers including
negatives and zero), Q (the rational numbers, those of the form p/qwhere
p ∈ Z, q ∈ Z and q ̸= 0), R (the real numbers) and C (the complex num-
bers)? Are these closed under addition?How about undermultiplication?
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Check and you will find that all five are closed under both operations: the
sum of two real numbers is a real number, the product of two complex
numbers is a complex number, and so on. So it might seem like there
isn’t much to see here. But other sets and binary operations are more
interesting. The integers are not closed under division because it is not
true that for every x1,x2 ∈ Z, x1/x2 ∈ Z: for instance, 3,2 ∈ Z but 3/2 /∈ Z

(the symbol ‘/∈’ means ‘(is) not in’). Note that this single counterexample
is enough to show that Z is not closed undermultiplication because of the
quantifier ‘∀’—when mathematicians say ‘for all’, they really mean it.

When introducing a definition, lecturers commonly apply it to a couple
of examples and ask students to apply it to more. I recommend perform-
ing at least mental checks in relation to all the examples you can think
of. If that turns out to be easy, you have quickly explored the breadth
and limitations of the concept. If it turns out to be difficult, you have
discovered either a gap in your understanding or a mathematical subtlety
that merits more attention.

Here, for instance, it might be tempting to say simply that a set is or
is not closed. But that would be mathematically ambiguous—a set on its
own cannot be closed because the definition requires a binary operation.
Another subtlety is that zero is an integer, but division by zero is not
well defined. This renders the closure question moot for division on Z,
because division is not even a binary operation on Z. That might strike
you as overly fussy, because only one element is problematic: division is
defined on nearly all of Z. Mathematicians recognize this, and sometimes
restrict to a set such as Z\{0}, which means the integers excluding zero.
But that raises another subtlety glossed over so far: must the result of a
binary operation be in the original set? If it must, then division is not a
binary operation even on Z\{0}, again due to counterexamples like 3/2.
Division is a binary operation on Q\{0}, so we could think of Z\{0} as
a subset of that. Does that affect closure? Is Z\{0} as a subset of Q\{0}
closed under division? No: 3/2 is still a counterexample.

Chapter 5 will discuss this subtlety further. It will also consider other
sets and binary operations, including matrices under addition and multi-
plication, and functions, symmetries and permutations under composi-
tion. If you are familiar with some of these, consider nowwhich are closed
underwhich operations. If you are not, think about restrictions of familiar
sets. For instance, the set of all integer multiples of 3 can be denoted
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by ‘3Z’ because 3Z = {3n|n ∈ Z} = {. . . ,−6,−3,0,3,6, . . .}. Is 3Z closed
under addition, or under multiplication? How about {z ∈ C|z = 0+ yi},
the set of all complex numbers of the form 0+ yi? Is this set closed under
addition ormultiplication? Can you construct subsets of familiar sets that
have different closure properties, perhaps for different binary operations?

Finally, for mathematical usage of everyday words, it is worth think-
ing about relationships between mathematical definitions and everyday
meanings. The two will differ, but usually the words are well chosen. For
instance, I would say informally that ‘closed’ means that it is impossible
to ‘get out of ’ the set by combining two of its elements using the binary
operation. So it is like having a closed box and, forme, this use of the word
makes sense.

A second important concept is associativity.

Definition: The operation ∗ is associative on the set S if and only if
∀s1, s2, s3 ∈ S, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3).

You can understand this in similar ways.Which operations are associa-
tive on which sets? Is there an operation that is associative on a whole set
but not on a smaller subset, or vice versa? If so, can you give an example?
If not, why not? Associativity will be discussed in Chapter 5, but thinking
in advance can ground the ideas.

A third important concept is that of an identity element, often denoted
by ‘e’ for the German word einheit, though you might also see ‘id’ or ‘ı’ or
your lecturer’s own favourite.

Definition: The element e ∈ S is the identity in S with respect to the
binary operation ∗ if and only if ∀s ∈ S, e ∗ s = s ∗ e = s.

This definition distinguishes one element of a set with a special property.
How would you describe this property informally? I would say that the
identity ‘doesn’t change anything’ when combined with other elements
using the binary operation. For instance, the identity in Z with respect to
multiplication is 1, because

∀x ∈ Z,1x = x1 = x.
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What is the identity in Z with respect to addition? It is 0, because

∀x ∈ Z,0+ x = x+ 0 = x.

Thus it makes no sense to discuss ‘the’ identity in Z; this definition too
requires both a set and a binary operation. That said, people do abuse the
language when an operation is established. For instance, the 2× 2 matrix(

1 0
0 1

)
is often referred to as ‘the’ identity matrix. Which is it, a multiplicative or
an additive identity? Could it be both, or perhaps an identity in relation
to another operation?

A final important concept is that of an inverse.

Definition: Suppose that e is the identity in S with respect to ∗. Then
s ∈ S has inverse s′ with respect to ∗ if and only if s ∗ s′ =
s′ ∗ s = e.

This definition applies to individual elements rather than just one spe-
cial one or the whole set. Also, it defines a two-sided inverse. In some
structures, it makes sense to separate left and right inverses—what might
that mean? The inverse notion applies in obvious ways for familiar cases,
subject to care regarding the binary operation. For instance, in Z under
addition, the identity is 0 and the inverse of 2 is −2, because 2+ (−2)=
(−2)+ 2 = 0. In Z under multiplication, the identity is 1 and the inverse
of 2 is 1

2 , because 2 · 1
2 = 1

2 · 2 = 1. Do all elements in Z have inverses
under both operations? Are these inverses in Z? What is the inverse of
the identity in each case? And what would be the answers for other sets
and binary operations?

To conclude this section, note that it is not a coincidence that I have
introduced the definitions of closure, associativity, identities and inverses.
As you know if you have read Section 1.3, they all combine in the
definition of group.
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2.3 The definition of group

Some definitions in Abstract Algebra are short. But some are longer, with
multiple parts. The parts are sometimes called axioms: people say things
like ‘to be a group, a set with a binary operationmust satisfy four1 axioms’.
To understand this, it might help to know that axioms can function
in two complementary but psychologically distinct ways. The first is as
assumptions, as things that are obviously true so that everyone can agree to
use themwithout justification. For instance, addition on the real numbers
is associative, because for every x,y,z ∈ R, (x+ y)+ z = x+ (y+ z). This
is one of numerous axioms for the real numbers, a list of which might be
studied in Analysis. There, however, the axioms will not take centre stage
for long because the entire subject is about the real numbers, at least at
first. This means that the axioms, once clarified, might be used without
much comment.

Abstract Algebra, in contrast, is about not one structure but many,
and about their similarities and differences. This means that axioms in
Abstract Algebra function less as assumptions and more as criteria. As
we encounter various structures, we ask whether or not they satisfy these
criteria. The definition of group has four criteria: it requires a set and
binary operation that satisfy four axioms.

Definition: A group is a set G with a binary operation ∗ such that:

Closure ∀g1,g2 ∈ G, g1 ∗ g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3);
Identity ∃e ∈ G such that ∀g ∈ G, e ∗ g = g ∗ e = g;
Inverses ∀g ∈ G, ∃g′ ∈ G such that g ∗ g′ = g′ ∗ g = e.

If you have read Chapter 1, you might notice that I have now converted
some words to symbols, writing ‘∀’ and ‘∃’ for ‘for every’ and ‘there
exists’. Whether and when to do this is debated. Some lecturers think that
learning new symbols impedes understanding, or that starting sentences
with symbols is grammatically undesirable. Others value the symbols’

1 If your course lists three, see Section 5.8.
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brevity. I am of the latter view, though I do not claim full consistency—
how I write depends on what I want to communicate. Here, I like that the
symbols draw attention to the contrasting structures of the identity and
inverses axioms: one uses ‘there exists . . . for all’; the other uses ‘for all . . .
there exists’. If you have studied some undergraduate mathematics, you
might know that order in these quantifiers is important. The ‘∃’ comes
first in the identity axiom because there is a single identity that combines
in a certain way with all other elements. The ‘∀’ comes first in the
inverses axiom because each element has its own inverse.

The structure of the group definition could be represented as below,
and its length can make Abstract Algebra look daunting—people tend to
think that long things are difficult. But that is not necessarily true. Each
part of a multi-part definition can be fairly straightforward, so there is no
need to panic—we can think about one part at a time. And some parts are
simpler than others, so in problem solving it can be useful to think about
those first.

group

definition

inverses 

axiom

identity 

axiom

assoc

axiom

closure 

axiom

Establishing that a set with a binary operation is a group requires estab-
lishing that it satisfies all four group axioms. For instance, the statements
below are all true (when the operation is addition, the additive inverse
of x is naturally denoted by ‘−x’). So the integers under addition form a
group. This group can be denoted by ‘(Z,+)’.

Closure ∀x1,x2 ∈ Z, x1 + x2 ∈ Z;
Associativity ∀x1,x2,x3 ∈ Z, (x1 + x2)+ x3 = x1 + (x2 + x3);
Identity ∃0 ∈ Z such that ∀x ∈ Z, 0+ x = x+ 0 = x;
Inverses ∀x ∈ Z, ∃(−x) ∈ Z such that x+ (−x)= (−x)+ x = 0.
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An Abstract Algebra lecturer might offer similar illustrations and ask
students to demonstrate that other structures form groups. But this might
leave you feeling nonplussed, at least initially. After all, what do the
above statements really do? Just state the obvious, you might argue—they
don’t really prove anything. This psychological conundrum arises from
the two complementary functions of axioms, and I will discuss it further
in Section 2.4. For now, you might find that the checks make more sense
where there is more clearly something to prove.

For instance, the set 3Z = {3n|n ∈ Z} forms a group under addition.
Check the axioms to convince yourself: 3Z is closed under addition,
addition is associative, the additive identity 0 is in 3Z, and every element
in 3Z has an additive inverse in 3Z. Then think about formulating written
arguments. It can help to start by introducing objects, naming them,
and specifying their properties. For instance, closure can be established
like this.

Claim: 3Z is closed under addition.
Proof : Let x1,x2 ∈ 3Z, so ∃n1,n2 ∈ Z such that x1 = 3n1,x2 = 3n2.

Then x1 + x2 = 3n1 + 3n2 = 3(n1 + n2) ∈ 3Z because
(n1 + n2) ∈ Z.
So 3Z is closed under addition.

For the identity axiom, we might write this.

Claim: 0 is the additive identity in 3Z.
Proof : 0 = 3 · 0 so 0 ∈ 3Z, and ∀x ∈ 3Z, 0+ x = x+ 0 = x.

Lecturers’ expectations for such arguments vary—some want everything
spelled out in full logical detail, others are more relaxed so long as the
conceptual ideas come through. If in doubt, show your lecturer some
attempts and ask for feedback.

Next, it can be illuminating to prove that a set and binary operation do
not form a group. Does that require proving that all four axioms are not
satisfied? No, it just requires proving that one is not satisfied. If that is not
obvious, think about the logic. The definition says that to be a group, a
structure must satisfy all four axioms. So, to show that it is not a group,
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it is enough to show that it fails one. This can be quite easy. For instance,
the integers do not form a group undermultiplication. Scan the axioms—
can you find one that is not satisfied? The problem is with inverses. Two
elements of Z do have multiplicative inverses in Z: 1 and −1. But the rest
do not, so it is not true that for all x ∈ Z, there exists x′ ∈ Z such that
xx′ = x′x = 1.

In cases where some axioms do not hold, it might be possible to restrict
to a set on which they do. Consider, for instance, the set of all 2× 2
matrices under multiplication. This structure satisfies closure, because
multiplying together two 2× 2 matrices gives another. Matrix multipli-
cation is associative, which is tedious but straightforward to check. How
would you finish this calculation to do so?((

a11 a12
a21 a22

)(
b11 b12
b21 b22

))(
c11 c12
c21 c22

)

=
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b21 + a22b22

)(
c11 c12
c21 c22

)
= . . .

And 2× 2 matrix multiplication has identity
(

1 0
0 1

)
,

because for every matrix
(

a b
c d

)
,

(
1 0
0 1

)(
a b
c d

)
=
(

a b
c d

)(
1 0
0 1

)
=
(

a b
c d

)
.

But not all 2× 2matrices havemultiplicative inverses. If you have studied
matrices, can you list some that do not? Can you suggest a restricted set
of matrices that does form a group under multiplication? We will pick up
this idea in Section 6.5 and Chapter 9.
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2.4 Commutativity and rings

Section 1.2 introduced commutativity, which is defined as below.

Definition: The binary operation ∗ is commutative on the set S if and
only if ∀s1, s2 ∈ S, s1 ∗ s2 = s2 ∗ s1.

Not every binary operation is commutative; matrix multiplication is not,
for instance. And commutativity is not part of the definition of group. It
might seem unnecessary to say that, and I do not suggest that you would
forget when asked directly or when stating the definition. But it is easy to
forget in general arguments, because everyone is accustomed to switching
around the letters in a+ b or ab.

Of course, there are plenty of groups in which the operation is com-
mutative, and these are are called abelian after the mathematician Niels
Henrik Abel.

Definition: A group (G,∗) is abelian if and only if is commutative on G.

Adding a criterion reduces the number of objects that satisfy a definition;
there are fewer abelian groups than groups. But many exist—see Chapter
6—and they have some nice, tidy properties. Abelian groups are also
pertinent to the definition of ring, which appears below.2 Can you see
how?

2 In some areas of mathematics it makes sense to allow rings that do not have
multiplicative identities, so you might find that some books or your course omit that
axiom.
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Definition: A ring is a set R with two binary operations + and · such
that:

Closure under addition ∀a,b ∈ R, a+ b ∈ R;
Associativity of addition ∀a,b,c ∈ R, (a+ b)+ c = a+ (b+ c);
Additive identity ∃0 ∈ R such that ∀a ∈ R, 0+ a = a+ 0 = 0;
Additive inverses ∀a ∈ R, ∃(−a) ∈ R such that

a+ (−a)= (−a)+ a = 0;
Commutativity of addition ∀a,b ∈ R, a+ b = b+ a;
Closure under multiplication ∀a,b ∈ R, a · b ∈ R;
Associativity of multiplication ∀a,b,c ∈ R, (a · b) · c = a · (b · c);
Multiplicative identity ∃1 ∈ R such that ∀a ∈ R, 1 · a = a · 1 = a;
Left distributivity ∀a,b,c ∈ R, a · (b+ c)= a · b+ a · c;
Right distributivity ∀a,b,c ∈ R, (a+ b) · c = a · c+ b · c.

This definition really can make Abstract Algebra look nightmarish. Two
operations? And who wants to remember that long list of axioms? But it
is simpler than it looks because the first five require that R under + be an
abelian group. This at least simplifies the theoretical structure.

add comm 

group 

add

inverses

add

identity

add 

assoc

add

closure

add

commute

ring 

right 

distrib

multip 
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multip 
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multip

identity

26 AXIOMS AND DEFINITIONS



OUP CORRECTED PROOF – FINAL, 21/12/2020, SPi

It raises questions, though. Why does addition have to be commutative
when multiplication does not? Why do additive inverses have to exist
when multiplicative ones do not? That seems a bit arbitrary, no? Of
course, mathematicians construct definitions for good reasons, so you
should always assume that there is one, even if you do not yet know it.
Rings will be discussed in Chapter 9, and it might be useful to know
that the canonical example of a ring is Z with the usual addition and
multiplication.

Closure under addition ∀x,y ∈ Z, x+ y ∈ Z;
Associativity of addition ∀x,y,z ∈ Z, (x+ y)+ z = x+ (y+ z);
Additive identity ∃0 ∈ Z such that for every x ∈ Z, 0+ x = x+ 0 = 0;
Additive inverses ∀x ∈ Z, ∃(−x) ∈ Z such that

x+ (−x)= (−x)+ x = 0;
Commutativity of addition ∀x,y ∈ Z, x+ y = y+ x;
Closure under multiplication ∀x,y ∈ Z, x · y ∈ Z;
Associativity of multiplication ∀x,y,z ∈ Z, (x · y) · z = x · (y · z);
Multiplicative identity ∃1 ∈ Z such that ∀a ∈ Z, 1 · a = a · 1 = a;
Left distributivity ∀x,y,z ∈ Z, x · (y+ z)= x · y+ x · z;
Right distributivity ∀x,y,z ∈ Z, (x+ y) · z = x · z+ y · z.

The psychological issuemight nowmakemore sense too. For the integers,
these axioms can be understood as assumptions, as things thatwe all agree
are true. We need such assumptions because no one could ‘check’ that
they hold for all integers; we have to take them for granted. They can
thus be conceptualized as specifying what the integers are by specifying
how they behave. If that seems weird, there is no need to worry—you
will understand this book if you think of the integers as familiar and the
axioms as assumptions that capture their properties. But this accounts for
the feeling that establishing that the integers form a group or ring is not
really ‘proving’ anything.
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2.5 Mathematical objects and notation

You might have noticed that mathematical objects are subject to nota-
tional conventions. Sets are usually denoted by upper-case letters. Groups
are often based on sets called G; a second group might be based on a set
called H. Subgroups, in particular, might be based on sets called H, or
sometimes N or K for normal subgroups or the kernels of homomorphisms
(see Chapters 7 and 8). Rings are often based on sets called R.

Elements of sets or groups are usually denoted by lower-case letters.
Group elements might be called g and h, or g1 and g2, or g and g′, or
a and b, according to a writer’s preferences and what works for a given
argument. If an argument involves both a group G and a subgroup H, it
might be confusing to use g and h for elements of G; g1 and g2 might be
better.

Operation notation also varies. A general operation might be denoted
by ‘∗’, but that tends to disappear once Abstract Algebra gets going,
for two reasons. First, specific operations often come with notation:
‘+’ for addition, ‘×’ or ‘·’ or juxtaposition for multiplication, ‘◦’
for function composition. Second, Abstract Algebra involves theory
building, constructing general proofs that apply to all groups or all rings.
For rings, the two operations are closely linked to standard addition
and multiplication so they are usually denoted by ‘+’ and either ‘·’
or juxtaposition. For groups, there is more variety, which demands
notational decisions. To write about all groups, we want notation that
does notmislead us into thinking about specific operations; ‘∗’ is good for
that. But mathematicians also value brevity, and dislike writing ‘∗’ all the
time (my handwritten stars always come out wonky, which is annoying).
So general statements and arguments tend to be written in multiplicative
notation using juxtaposition. With juxtaposition, the group definition
looks like this.

Definition: A group is a set G with a binary operation such that:
Closure ∀g1,g2 ∈ G, g1g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1g2)g3 = g1(g2g3);
Identity ∃e ∈ G such that ∀g ∈ G, eg = ge = g;
Inverses ∀g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = e.
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Juxtaposition is economical, and its link to multiplication makes g−1

a natural notation for the inverse of g. Using it requires care, though:
in an additive group, the operation is still addition, even if this is not
explicit. Implicit operations also contribute to economy in speech; people
often speak about ‘a group G’ with no reference to the operation. This is
perfectly acceptable, in the same way that using ‘if ’ instead of ‘if and only
if ’ in definitions is acceptable. But it can be ill-advised in a novice. If in
doubt, specify the operation.

Now, these conventions probably seem familiar, or at least sensible. I
highlight them because things do get more complex in Abstract Alge-
bra, and because the subject rewards care in tracking object types. For
instance, recall the definition of left coset.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is aH = {ah|h ∈ H}.

For an additive group, this definition could be written as below. Check
that nothing has changed except the operation notation.

Definition: Suppose thatH is a subgroup of (an additive group)G.Then
the left coset of H containing a is a+H = {a+ h|h ∈ H}.

In these definitions, aH looks like a product and a+H looks like a sum.
But they are not products or sums of two elements; they are products or
sums of an element and a set. What kind of object is aH or a+H? A coset
is defined as a set, but we should be open to the possibility that a set could
be empty or contain just one element.

We can grasp the meaning by considering the additive group
G = (Z,+), the element a = 1, and the subgroup H = (3Z,+). This
set-up gives

a+H = 1+ 3Z = {1+ h|h ∈ 3Z} = {1+ 3n|n ∈ Z}
= {. . . ,−5,−2,1,4,7, . . .}.
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What is the left coset containing a = 2? How many distinct cosets are
there of (3Z,+) in (Z,+)? How many cosets would there be of the
subgroup (6Z,+) in (Z,+)? Cosets and their important place in theory
are discussed in Chapter 7.

To reiterate, I comment on notation not because it is, in itself, difficult
or counterintuitive. Notation is always set up sensibly. But, formeaningful
understanding, it is important to notice what objects appear in math-
ematical sentences. Probably the most useful advice anyone3 gave me
about studying Abstract Algebra was that when reading a mathematical
sentence, it is a good idea to stop at every object and ask what kind of
object is that? Reminders to do that appear throughout this book.

3 Thank you, Jean Flower.
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chapter 3

Theorems and Proofs

This chapter discusses theorems and proofs in mathematical theories and
in undergraduate study. It considers deductions in proofs involving algebra,
matrices, modular arithmetic and equivalence relations. It then discusses
logic in theorem structures, drawing attention to quantifiers and conditional
statements. Its later sections explain how to read proofs effectively, and offer
advice on constructing proofs.

3.1 Theorems and proofs in Abstract Algebra

F irst things first: if you flipped straight to this chapter because
you are struggling with theorems and proofs in Abstract Algebra,
please start with Chapter 2. People often work on theorems and

proofs without fully understanding the underlying axioms and defini-
tions, which makes everything more difficult. If you have read Chapter 2,
you will know that I think of mathematical theories as in the diagram
below, where the ‘bottom’ layer contains axioms and definitions. Theo-
rems are proved from these axioms and definitions; they are the ‘results’
of the deductive science that is mathematics.

But what does it mean to prove theorems or to say that mathematics
is deductive? A deductive argument is one in which the conclusion is
a necessary consequence of the premises (also called assumptions or
hypotheses). You might not have thought of mathematics this way, but
you are nevertheless accustomed to deductive reasoning. The algebraic
step from ‘(x− 2)(x− 5)= 0’ to ‘x = 2 or x = 5’ is a deduction: if the
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axiom axiom definitiondefinition definition definition

theoremtheorem theorem

theorem

theorem theoremtheorem theorem

premise that (x− 2)(x− 5)= 0 is true, it necessarily follows that x = 2
or x = 5. A proof chains such deductions together: each step introduces
relevant objects or can be justified using axioms, definitions and earlier
results. Proofs can be long and complicated, but they can also be short
and simple, like this.

Theorem: Suppose that x2 − 7x+ 10 = 0. Then x = 2 or x = 5.

Proof : x2 − 7x+ 10 = 0
⇒ (x− 2)(x− 5) = 0.

So x = 2 or x = 5.

Thismeans that you have been ‘doing’ theorems and proofs for some time,
even if they haven’t been labelled as such. And while specific results like
this might be called ‘claims’ rather than theorems, you have seen general
theorems too. For instance, you have used Pythagoras’ Theorem, maybe
the binomial theorem and, if you have studied complex numbers, maybe
De Moivre’s Theorem.

However, before undergraduate mathematics—or before upper-level
courses in US-like systems—general theorems crop up only occasionally.
Students might be expected to engage with the corresponding proofs and
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perhaps reconstruct them in tests. But they might be expected simply to
use the theorems in calculations. Where students do have responsibility
for proofs, this often involves proofs of specific types such as proof by
induction. Such experience can mean that theorems and proofs seem
like part of mathematics, but a smallish and relatively unimportant part.
Before university, students expend more effort in a mathematical ‘plane’
where their primary responsibility is solving problems by doing calcu-
lations. They might sometimes be expected to invoke the theorems and
proofs that underlie the calculations, but these staymostly below the level
of attention.

calculationsattention

theorems

and proofs

Undergraduate pure mathematics reverses this: calculations become a
more minor part of the work, and student attention should be mostly on
theorems and proofs.

attention

calculations

theorems

and proofs

It is important to understand this because probably no one will say it—to
mathematicians, it is just obvious that subjects like Abstract Algebra are
about theory. And because no one says it, students can be baffled. They
expect to be taught problem solving and calculations, and feel let down
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by lecturers who spend little time on those and much more on theorems
and proofs.

In fact, the gap between what students expect and what pure mathe-
maticians do is smaller than it appears: much of the apparent disconnect
is pedagogical rather than intellectual. Pure mathematicians do solve
problems, but they do it in the theory plane, working out how to use
axioms and definitions to prove theorems. And they do not usually start
with axioms and definitions and work up. The reality is a messier pro-
cess of formulating definitions and theorems, tightening up definitions
when people use words in slightly different ways, adding conditions
when theorems turn out to apply only for some cases, and occasionally
reformulating the whole lot when someone notices that a different central
concept would permit more elegant proofs. After a while—where a while
might be hundreds of years—things settle down enough for everyone to
agree about key definitions and important theorems and proofs.

The resulting theory is taught to students. And teaching does usually
start with axioms and definitions and work up. This makes logical sense,
but it means that the psychological experience for students learning a
mathematical theory is quite different from that of the mathematicians
who developed it. Students do not get a say in formulations: they must
accept standard axioms and definitions, and study existing theorems and
proofs. This can be uncomfortable, especially for students who want to
understand why everything is the way it is—for them, it can seem that
definitions and theorems come out of nowhere in a way that is mysterious
and therefore annoying. But it is also difficult for dutiful students who
are willing to take a lecturer’s word—a typical course goes fast, and it
takes a lot of work to understand the reasoning packed into theorems and
proofs. I say that not to be discouraging—quite the reverse. I want you to
be comfortable with the idea that there is much to do.

I also want you to understand that when mathematicians state
even short and simple theorems, they have in mind a wealth of related
examples and reasoning. Much of Part 2 is designed to provide you with
access to something similar: it contains detailed discussions of specific
groups and rings, and explains why key concepts are formulated as they
are. The present chapter contributes in a different way: it focuses on
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understanding theorems and proofs as they might be presented in a
standard lecture course, with comments at the end on constructing proofs
for yourself. Somemathematicianswould query that approach—although
they teach pre-existing theory, they really want students to master proof
construction. But the reality is that most students do a lot of learning
from lecture notes and books, and need to know how to interpret these
accurately and meaningfully. Accurate and meaningful understanding
requires a good grasp of logic, so this chapter proceeds with that.

3.2 Logic in familiar algebra

This section reviews some familiar algebra with a focus on its underlying
logic. You might read it and think, yeah, I know all that. But many readers
will recognize that while they ‘know’ it in the sense that they could act
accordingly, they have not systematically reflected upon this knowledge.
This review will build on the discussion in Section 1.2, considering logic
in algebra in relation to numbers and matrices.

First, consider equation solving. What would you say it means to solve
an equation? Can you get beyond ‘finding x’? Maybe think about how you
would explain equation solving to a young student who is intelligent but
has not yet studied equations. What would you say? I will ask again later.

Perhaps the simplest equations take forms as in Section 1.3: x+ a = b
or ax = b. If these seem trivial, that is due to your extensive knowledge.
For young children, the world of numbers is smaller than it is for you,
and the equations x+ 5 = 2 and 5x = 2 have no solutions. For you, they
do have solutions because you know about negative and rational numbers.
In Abstract Algebra, we do not revert to the earlier position, but nor do
we assume that all numbers are always fair game—we are careful about
sets. In the integers, 5x = 2 has no solution. In the real numbers, x2 = −5
has no solution.

As discussed in Section 1.3, to guarantee that all equations of the form
x+ a = b can be solved requires that the manipulations below are valid.
So it requires a set that is closed under addition and that has associative
addition, an additive identity and additive inverses. In short, it requires
an additive group.
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x+ a = b
⇒ (x+ a)+ (−a) = b+ (−a) (adding −a to both sides)
⇒ x+ (a+ (−a)) = b+ (−a) (reordering operations using associativity)
⇒ x+ 0 = b+ (−a) (using a+ (−a)= 0)
⇒ x = b+ (−a) (using x+ 0 = x).

To guarantee that all equations of the form ax = b can be solved requires
that the manipulations below are valid. So it requires a set that is closed
undermultiplication and that has associativemultiplication, amultiplica-
tive identity and multiplicative inverses. In short, it requires a multiplica-
tive group.

ax = b
⇒ (a−1)(ax) = a−1b (multiplying both sides by a−1)
⇒ (a−1a)x = a−1b (reordering operations using associativity)
⇒ 1x = a−1b (using a−1a = 1)
⇒ x = a−1b (using 1x = x).

Now, the equations x+ a = b and ax = b each involve just one operation.
But algebra often involves addition and multiplication together. The real
numbers, for instance, have both operations and many useful properties.
They are closed under addition and under multiplication. Both addition
and multiplication are associative. There is an additive identity 0, and
every element a ∈ R has additive inverse −a ∈ R. There is also a mul-
tiplicative identity 1, although multiplicative inverses are not quite so
tidy: almost every a ∈ R has a multiplicative inverse a−1 ∈ R, but the
additive identity 0 does not. Because of this, some simple equations have
no solutions: when 0 appears in the multiplicative equation ax = b, this
equation cannot always be solved for x. The equation ax = 0 is mostly
fine if uninteresting: provided a ̸= 0, multiplying both sides by a−1 gives
x = 0. The equation 0x = b is mostly not fine: it cannot be solved for x
unless b = 0. In that case, it reads 0x = 0, which can be solved but not in
the sense of finding ‘the’ x: the solution set is the whole of R.

Multiplicative equations involving zero can sometimes be solved using
not inverses but the zero product property. This property was used
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implicitly in the previous section to deduce that if (x− 2)(x− 5)= 0 then
x− 2 = 0 or x− 5 = 0. The logic is important, as can be seen by
considering this pair of conditional statements.

If ab = 0 then a = 0 or b = 0.
If a = 0 or b = 0 then ab = 0.

The first statement is the zero product property: it says that if a product
is zero, one of its factors must be zero. The second, its converse, is the
statement that ‘anything times zero is zero’. Do these seem obviously dif-
ferent?The distinction can be hard to keep straight, for two reasons. First,
in everyday life, people are sloppy with the word ‘if ’—they use it in ways
that are logically accurate but also inways that are not.1 Second, in the real
numbers—and thus in most pre-undergraduate equation solving—both
statements are true. Such distinctions are easier to keep straight when one
statement is true and the other is false. For 2× 2 matrices, it is not true
that if ab = 0 then a = 0 or b = 0. For instance, neither(

0 1
0 0

)
nor

(
0 2
0 0

)
is the zero matrix, but(

0 1
0 0

)(
0 2
0 0

)
=
(

0+ 0 0+ 0
0+ 0 0+ 0

)
=
(

0 0
0 0

)
.

Formally, matrix multiplication admits zero divisors, nonzero elements
that multiply to zero. But it is still true that if a or b is the zero matrix,
then ab must be the zero matrix.2

Another way to clarify the logic of conditional statements is to write in
an abbreviated way using symbols (look at the implication arrows).

1 See Section 4.6 of How to Study for a Mathematics Degree or its American counter-
part How to Study as a Mathematics Major.

2 You might have been told that matrices should always be denoted by upper-case
letters. That is a sensible way to distinguish object types, but Abstract Algebra involves
reasoning about multiple structures, and no notation matches them all. That said, in
specific contexts it is easier to use familiar notation, and we could write ‘if A = 0 or
B = 0 then AB = 0’.
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ab = 0 ⇒ a = 0 or b = 0.
ab = 0 ⇐ a = 0 or b = 0.

Either way, in logical language, precision matters. Can you see that the
three statements below are logically equivalent? For most people, the last
requires some thought.

ab = 0 ⇒ a = 0 or b = 0.
If ab = 0 then a = 0 or b = 0.
ab = 0 only if a = 0 or b = 0.

Precision also matters in equation solving, at least in some contexts. Did
you notice that the earlier equations were written x+ a = b (x first) but
ax = b (x second)? I switched for multiplication because the latter sounds
more natural—we usually write 2x or 0x, not x2 or x0. But the ensuing
arguments then involved adding the additive inverse on the right but
multiplying by the multiplicative inverse on the left (they are reproduced
below so that you can check).Does thismatter?Does itmake a substantive
difference for real numbers or for 2× 2 matrices, or is it just convenient
to arrive at (aa−1)x rather than (ax)a−1?

x+ a = b
⇒ (x+ a)+ (−a) = b+ (−a) (adding −a to both sides)
⇒ x+ (a+ (−a)) = b+ (−a) (reordering operations using associativity)
⇒ x+ 0 = b+ (−a) (using a+ (−a)= 0)
⇒ x = b+ (−a) (using x+ 0 = x).

ax = b
⇒ (a−1)(ax) = a−1b (multiplying both sides by a−1)
⇒ (a−1a)x = a−1b (reordering operations using associativity)
⇒ 1x = a−1b (using a−1a = 1)
⇒ x = a−1b (using 1x = x).

It does matter, due to commutativity. For real numbers and 2× 2 matri-
ces, addition is commutative. So, for the additive argument, the order is
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just convenient: an expression like (−a)+ x+ a could be tidied up with
valid algebraic steps. But for matrices, multiplication is not commutative.
So, while associativity means that (ax)a−1 = a(xa−1), the x and the a−1

could not then be swapped to give a(a−1x).
Now, it takes discipline to remember that tempting algebraic steps

might not work on the left or right, or for zero, or for various other
elements. This can make equation solving seem complicated. In fact,
though, Abstract Algebra usually involves minimal equation solving—
people tend instead to prove general claims. I am not sure whether this
makes students’ lives easier or harder. On the one hand, you do not get
the disheartening experience of equation-solving mistakes. On the other,
you do not get the practice that might make it natural to avoid tempting
steps in general proofs. Certainly care is required over algebraic steps in
proofs like those appearing later in this chapter.

With that in mind, back to the earlier question: what does it mean
to solve an equation? Would you now change your response? I ask not
because there is a ‘right answer’, but to encourage you to reflect on your
understanding and improve its accuracy. For instance, when describing
equation solving, people often say things like ‘change sides, change signs’.
But, really, nothing changes sides or signs—each algebraic step does the
same thing to both sides. In terms appropriate to Abstract Algebra, we
might say that solving an equation involves making deductions that are
valid for the relevant sets and operations in order to reveal the solutions.
And what is valid is not universal, which will become increasingly clear
as you gain experience with groups and rings. For instance, zero divisors
like those seen for matrices also exist in modular arithmetic.

3.3 Modular arithmetic

Modular arithmetic is more ‘numerical’ than matrix arithmetic, but it
raises similar issues about algebraic structures. And you already know
about modular arithmetic—even if you have never heard of it—because
you know about clocks. On much of a clock, arithmetic works as usual.
For instance, 3 o’clock plus 5 hours is 8 o’clock; informally, we might write
3+ 5 = 8. Elsewhere, arithmetic works by ‘going over’ the 12 and starting
again at 1. For instance, 9 o’clock plus 5 hours is 2 o’clock.
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3

+5

8

9

2

+5

Writing ‘9+ 5 = 2’ would probably feel wrong, though, even if you can
see it as ‘true’ in this structure. So, because this is not ‘standard’ addition,
it has a different name: +12 (addition modulo 12). With this notation,

3+12 5 = 8 and 9+12 5 = 2.

Now, +12 is an operation on a set with just 12 elements, so its effects can
be fully captured in a table as below.

+12 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 1

2 3 4 5 6 7 8 9 10 11 12 1 2

3 4 5 6 7 8 9 10 11 12 1 2 3

4 5 6 7 8 9 10 11 12 1 2 3 4

5 6 7 8 9 10 11 12 1 2 3 4 5

6 7 8 9 10 11 12 1 2 3 4 5 6

7 8 9 10 11 12 1 2 3 4 5 6 7

8 9 10 11 12 1 2 3 4 5 6 7 8

9 10 11 12 1 2 3 4 5 6 7 8 9

10 11 12 1 2 3 4 5 6 7 8 9 10

11 12 1 2 3 4 5 6 7 8 9 10 11

12 1 2 3 4 5 6 7 8 9 10 11 12
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In this structure, equations can be solved: for instance, x+12 10 = 4 has
solution x = 6 (check against the table and a clock). Indeed, this structure
is a group. It can be denoted by (Z12,+12), and relating (Z12,+12) to the
additive group of integers (Z,+) can build intuition for more advanced
concepts in Abstract Algebra.

For instance, we need not lose the idea that 9+ 5 ‘really’ equals
14. Instead, we can say that 14 is congruent to 2 modulo 12, writing
14 ≡ 2(mod 12). So the sum

9+ 5 = 14 ≡ 2(mod 12)

captures familiar knowledge: 14.00 is 2pm. But, mathematically, we need
not be constrained by the clock: it is also true that 26 ≡ 2(mod 12), that
38 ≡ 2(mod 12), and so on. You might find it useful to imagine a bendy
integer number line wrapped around a circle so that numbers congruent
to one another all line up. Notice that this works for negative numbers
too: −10 ≡ 2(mod 12), −22 ≡ 2(mod 12) and so on.

2

1

3

4

5
6

7

8

9

10

11
12

0
−1

−2

−3

−4

−5

13 14 15

. . . ,−17,−5, 7, 19, 31 . . .

. . . ,−24,−12, 0, 12, 24, . . .

The relation ‘congruence modulo 12’ thus distributes the integers into
disjoint congruence classes (‘disjoint’ means ‘not overlapping’). Here are
three congruence classes—what are the others?

{. . . ,−24,−12,0,12,24, . . .}
{. . . ,−23,−11,1,13,25, . . .}
{. . . ,−22,−10,2,14,26, . . .}

An integer’s congruence class modulo 12 depends on its remainder on
division by 12. For instance, 14 ≡ 2(mod 12) because dividing 14 by 12
leaves remainder 2. For this specific case and a general one, we can capture
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the relationship using the symbols ‘⇔’ (‘if and only if ’ or ‘(which) is
equivalent to’) and ‘∃’ (‘there exists’).

14 ≡ 2(mod 12) ⇔ ∃n ∈ Z such that 14 = 2+ 12n;
x ≡ a(mod 12) ⇔ ∃n ∈ Z such that x = a+ 12n.

We can thus relate congruence classes to addition modulo 12 via the
theorem and proof below. Read both carefully.

Theorem: Suppose that x ≡ a(mod 12) and y ≡ b(mod 12).
Then x+ y ≡ (a+ b)(mod 12).

Proof : Suppose that x ≡ a(mod 12) so ∃n1 ∈ Z such that x = a+ 12n1

and y ≡ b(mod 12) so ∃n2 ∈ Z such that y = b+ 12n2.
Then x+ y = (a+ 12n1)+ (b+ 12n2)

= a+ (12n1 + b)+ 12n2 (by associativity)
= a+ (b+ 12n1)+ 12n2 (by commutativity)
= (a+ b)+ 12(n1 + n2) (by associativity)
≡ (a+ b)(mod 12) (by definition).

This proof might be longer than some that you have encountered, but
its steps are not especially clever. They convert the premises about con-
gruences into information about number forms, then add those number
forms and rearrange everything in validways to arrive at the conclusion. If
you wrote out the theorem and covered up the proof, you could probably
reconstruct it. I recommend trying that.

The theorem isn’t surprising, either: it says that adding a number
congruent to a modulo 12 to one congruent to b modulo 12 always
gives one congruent to (a+ b) modulo 12. This is algebraically tidy, and
familiar from clocks: any representation of 9 o’clock (09.00 or 21.00)
plus five hours is always 2 o’clock (14.00 or 02.00). Generalizing, any
representation of 9 o’clock plus any number of hours from the congruence
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class containing 5 (5 plus some number of 12s) is 2 o’clock. Why,
exactly? And how does reasoning about a clock relate to the theorem
and proof?

Mathematicians capture this theorem’s result by saying that addition
modulo 12 is well defined. This is what makes 9+12 5 = 2 meaningful:
each 9 in the table for +12 can be viewed as representing the con-
gruence class {. . . ,−15,−3,9,21,33, . . .}, and each 5 as representing
{. . . ,−19,−7,5,17,29, . . .}. Adding any element from each always gives
an element of {. . . ,−22,−10,2,14,26, . . .}. That might seem unexciting,
though—when there is pre-existing intuition, it can be hard to see how an
operation could fail to be well defined.With less intuition it is often easier,
so here it might be useful to consider multiplication. We do not tend to
multiply on clocks, but we can. For instance, 4× 5 = 20 ≡ 8 (mod 12) so
4×12 5 = 8.

+5

8

+5

+5

5

10

3

+5

10

0

I think it is less obvious that multiplication is well defined. Does multi-
plying something from the congruence class containing 4 by something
from the congruence class containing 5 always give something from the
congruence class containing 8? Why? Work this out with clocks, then
relate that reasoning to the theorem and proof below. Note that the
proof uses distributivity of multiplication over addition, the property that
x(y+ z)= xy+ xz. Where?
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Theorem: Suppose that x ≡ a(mod 12) and y ≡ b(mod 12).
Then xy ≡ (ab)(mod 12).

Proof : Suppose that x ≡ a(mod 12) so ∃n1 ∈ Z such that x = a+ 12n1

and y ≡ b(mod 12) so ∃n2 ∈ Z such that y = b+ 12n2.
Then xy = (a+ 12n1)(b+ 12n2)

= ab+ 12n1b+ 12n2a+ 122n1n2

= ab+ 12(n1b+ n2a+ 12n1n2)

≡ (ab)(mod 12).

This theoremmeans that×12, like+12, is well defined, which is important
in ring theory and will be picked up in Chapter 9. But ×12, unlike
+12, does not permit solutions to every simple equation. Consider, for
instance,

9×12 x = 3 9×12 x = 1

The first equation has solution x = 3 because 9× 3 = 27 ≡ 3(mod 12).
Does it have other solutions? The second has no solution because no
multiple of 9 is congruent to 1 modulo 12: every multiple of 9 is con-
gruent to 9, 6, 3 or 0. In particular, 9×12 4 = 0, so 9 is a zero divisor.
Thus the zero product property—if ab = 0 then a = 0 or b = 0—does not
hold formultiplicationmodulo 12. Are there other zero divisors too?How
about for multiplicationmodulo 8 or modulo 7?Think about that and the
zero product property should take its proper place in your mind, not as a
general fact but as a theorem that holds for some operations on some sets.

3.4 Equivalence classes

Modular arithmetic forms the basis for an important class of structures in
Abstract Algebra. One common notation for these structures focuses not
on remainder relationships for individual elements but on congruence
classes as sets. For instance, for congruence modulo 12, the congru-
ence class containing 0 is denoted 12Z because 12Z = {12n|n ∈ Z} =
{. . .,−24,−12,0,12,24, . . .}. In fact, 12Z is a subgroup of the additive
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group Z, because it is a subset of Z that is a group in its own right.
Subgroupswill be explored inChapter 6. For now, extending the notation,
it makes sense to denote other congruence classes by

1+ 12Z = {1+ 12n|n ∈ Z} = { . . .,−23,−11,1,13,25, . . .},
2+ 12Z = {2+ 12n|n ∈ Z} = { . . .,−22,−10,2,14,26, . . .}, and so on.

Also, for notational consistency, 12Z can be written

0+ 12Z = {0+ 12n|n ∈ Z} = { . . . ,−24,−12,0,12,24, . . .}.
These congruence classes are cosets of the subgroup 12Z in Z, where cosets
were introduced briefly in Section 2.6 and will be explored in Chapter
7. Here, coset notation like 1+ 12Z permits a reframing of the previous
section because

14 ≡ 2(mod 12) ⇔ 14 ∈ 2+ 12Z and, in general,
x ≡ a(mod 12) ⇔ x ∈ a+ 12Z.

Thus coset addition and multiplication are well defined: it is meaningful
to write

(a+ 12Z)+ (b+ 12Z) = (a+ b)+ 12Z and
(a+ 12Z)(b+ 12Z) = (ab)+ 12Z.

Now, it might be useful to know that congruence modulo 12 defines an
equivalence relation on Z with the cosets as equivalence classes. This book
could manage without these notions, but many undergraduate degree
programmes introduce equivalence relations before Abstract Algebra in
a course called something like Foundations or Introduction to Reasoning
or Sets and Proofs. So Abstract Algebra lecturers might assume that
equivalence relations are familiar and prove theorems about cosets by
quoting theorems about equivalence classes. I will not do that, but I
will discuss equivalence relations now to highlight some links. (if these
notions are unfamiliar and you find the remainder of this section difficult,
do skip to the next)

It probably ‘sounds right’ to speak of congruence in terms of equiv-
alence, saying things like ‘14 is equivalent to 2 modulo 12’. And this
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is consistent with theory, because congruence modulo 12 satisfies the
criteria below (if these take effort to process, try thinking in terms of
remainders on division by 12).

Reflexivity ∀x ∈ Z, x ≡ x(mod 12);
Symmetry ∀x,y ∈ Z, if x ≡ y(mod 12) then y ≡ x(mod 12);
Transitivity ∀x,y,z ∈ Z, if x ≡ y(mod 12) and y ≡ z(mod 12)

then x ≡ z(mod 12).

This means that congruence modulo 12 is an equivalence relation on
Z, because it satisfies the definition below. In this definition, ‘x ∼ y’
can be read as ‘x is related to y’, where ‘∼’ is a tilde (but I have heard
mathematicians call it ‘twiddles’).

Definition: A relation∼ on a setX is an equivalence relation if and only
if it is:

Reflexive ∀x ∈ X, x ∼ x;
Symmetric ∀x,y ∈ X, if x ∼ y then y ∼ x;
Transitive ∀x,y,z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

The notation x ∼ y raises potential confusion because it looks a lot like
x ∗ y or x+ y. But a relation on X is not an operation on X. For an
operation, every two elements x,y ∈ X can be combined to give another.
For a relation, nothing is combined. Rather, two elements x,y ∈ X might
be related, in which case we write x ∼ y, or not related, in which case we
write x ̸∼ y. For instance, 14 ≡ 2(mod 12) but 15 ̸≡ 2(mod 12).

A simple equivalence relation is = on the set Q: this is reflexive, sym-
metric and transitive. But not all relations are equivalence relations: the
relation< on the set Q is not reflexive because it is not true that ∀x ∈ Q,
x< x (the relation< is not symmetric either, though it is transitive).Thus
equivalence relations are special, and one consequence of their definition
is that every equivalence relation partitions its set into equivalence classes:
it distributes the elements into disjoint subsets each containing a full
set of equivalent elements. Congruence modulo 12 partitions the inte-
gers into congruence classes according to their remainders modulo 12.
The relation = on Q partitions the rational numbers into equivalence
classes including

{ 1
2 , 2

4 , 3
6 , . . .

}
,
{ 1

3 , 2
6 , 3

9 , . . .
}
, and so on. In general, we
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could imagine a partition as below, where the relational statements appear
on the right (and pairs not listed are not related—for example, a1 ̸∼ b1).
You can check that this arrangement satisfies reflexivity, symmetry and
transitivity.

c3

c2

c1

b3

b2

b1

a3

a2

a1

a1 ∼ a1 a1 ∼ a2 a1 ∼ a3

a2 ∼ a1 a2 ∼ a2 a2 ∼ a3

b2 ∼ b1 b2 ∼ b2 b2 ∼ b3

b1 ∼ b1 b1 ∼ b2 b1 ∼ b3

b3 ∼ b1 b3 ∼ b2 b3 ∼ b3

c3 ∼ c1 c3 ∼ c2 c3 ∼ c3

c2 ∼ c1 c2 ∼ c2 c2 ∼ c3

c1 ∼ c1 c1 ∼ c2 c1 ∼ c3

a3 ∼ a1 a3 ∼ a2 a3 ∼ a3

Thediagram is appropriate for Abstract Algebra because in a finite group,
every coset has the same number of elements. But that is neither part nor
consequence of the equivalence relation definition—equivalence classes
could have different numbers of elements. You will, though, see a proof
that every equivalence relation partitions its set. Here I provide a specific
version for the theorem below (you can think of the cosets as congruence
or equivalence classes).

Theorem: The cosets of 12Z in Z partition Z.

This is not a theorem for which a proof will make you more convinced.
Instead, it should clarify links to wider theory. To understand a proof,
I think it helps first to think about the relevant logic. What does it mean
to say that cosets partition a set? It means that every element of the
set is in a coset, and that the cosets are disjoint. For 12Z in Z, every
element of Z is in a coset because every a ∈ Z is in a+ 12Z. But how to
capture the notion of ‘disjoint’? One way is to say that for any two cosets,
either the intersection—the overlap—is empty, or the sets are the same.
Mathematicians denote the intersection of two sets X and Y by X∩Y
(‘X intersect Y’) and the empty set by ∅. So we want to prove that for
any two cosets a+ 12Z and b+ 12Z, either (a+ 12Z)∩ (b+ 12Z)= ∅ or
a+ 12Z = b+ 12Z.
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not possible(a+ 12Z) ∩ (b+ 12Z) = ∅ a+ 12Z = b+ 12Z

This ‘or’ statement can be proved by demonstrating that if (a+ 12Z)∩
(b+ 12Z) ̸= ∅, then a+ 12Z = b+ 12Z. Think about why, then read the
theorem and proof below (note that ‘X ⊆ Y ’ means ‘X is a subset of Y ’).

Theorem: The cosets of 12Z in Z partition Z.

Proof : Let a ∈ Z.
Observe that 0 ∈ 12Z.
So a = a+ 0 ∈ a+ 12Z.
Thus every element appears in a coset.
Now suppose that b ∈ Z and (a+ 12Z)∩ (b+ 12Z) ̸= ∅.
Then ∃x ∈ (a+ 12Z)∩ (b+ 12Z).
Because x ∈ a+ 12Z, ∃n1 ∈ Z such that x = a+ 12n1.
Because x ∈ b+ 12Z, ∃n2 ∈ Z such that x = b+ 12n2.
So a+ 12n1 = b+ 12n2 and, rearranging,
b = a+ 12(n1 − n2) and a = b+ 12(n2 − n1).
Now let y ∈ b+ 12Z.
Then ∃n3 ∈ Z such that y1 = b+ 12n3

= a+ 12(n1 − n2 + n3) ∈ a+ 12Z.
So b+ 12Z ⊆ a+ 12Z.
Similarly let y ∈ a+ 12Z.
Then ∃n3 ∈ Z such that y = a+ 12n3

= b+ 12(n2 − n1 + n3) ∈ b+ 12Z.
So a+ 12Z ⊆ b+ 12Z.
Hence b+ 12Z ⊆ a+ 12Z and a+ 12Z ⊆ b+ 12Z.
So a+ 12Z = b+ 12Z.
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Thus we have proved that
if (a+ 12Z)∩ (b+ 12Z) ̸= ∅ then a+ 12Z = b+ 12Z.
Hence the cosets of 12Z in Z partition Z.

Did you understand that proof to your own satisfaction? If not, or if the
length put you off so that you didn’t really try, have another go. Take it step
by step and, when you get to the end, think about how it all fits together.
Guidance on reading proofs effectively is provided in Section 3.6—you
might want to reread it after that.

Now, some courses define equivalence relations more formally, intro-
ducing an equivalence relation on a set X as a subset of the Cartesian
product X×X (‘X cross X’). That is pretty abstract, so here is a quick
explanation. The set X×X is the set of all pairs of the form (x,y)
where x,y ∈ X. The notation (x,y) might call to mind a plane, which
is appropriate because if X = R then R × R is indeed ‘the plane’ in the
usual sense. If X = Z then Z × Z is an infinite grid of points with integer
coordinates. If X is finite, then X×X is a finite grid. An equivalence
relation is a subset of X×X because only some elements are related to
each other (usually). For instance, for the above equivalence relation on
X = {a1,a2,a3,b1,b2,b3,c1,c2,c3}, the grid below has dots at all points
(x,y) for which x ∼ y. How is reflexivity manifest in the diagram? How
about symmetry?

a
1

a
1 a

2

a
2

a
3

a
3

b
3

b
3

b
2

b
2

b
1

b
1

c
1

c
2

c3

c
1

c
2

c
3
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It is not practical to provide a similar diagram for congruence modulo
12 on Z, because Z × Z is an infinite grid and 12 is too big. However,
below is a partial version for congruence modulo 3, where the cosets or
congruence classes of 3Z in Z are

0+ 3Z = {0+ 3x|x ∈ Z} = { . . . ,−6,−3,0,3,6,9, . . .};
1+ 3Z = {1+ 3x|x ∈ Z} = { . . . ,−5,−2,1,4,7,10, . . .};
2+ 3Z = {2+ 3x|x ∈ Z} = { . . . ,−4,−1,2,5,8,11, . . .}.

1

1

−1

−1

−2

−2

2

2

3

3−3

−3

−4 4

As I say, this way of thinking about equivalence relations is pretty
abstract. For the ideas in this book, I find it more useful to represent
each element just once and capture relationships in the layout. For
instance, for congruence modulo 3, the diagram on the left below is a
‘stretched out’ version of the bendy number line wrapped around a circle,
as if the numbers are spiralling upward so that congruent numbers line
up vertically. Each column is a coset; the leftmost is the subgroup 3Z.
Looking horizontally, each coset is ‘offset’ from the subgroup by a fixed
number. Looking vertically, the elements within every coset differ from
one another by elements of the subgroup (in this case, multiples of 3).
Chapter 7 will apply this idea to other groups.
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3.5 Logic in theorems

We now return to logic, which underlies all of mathematics and which
is important when reading theorems because misinterpreting a theorem
leaves you unlikely to understand its proof or to appreciate its place in a
theory. First, some specific information on quantifiers. Whenmathemati-
cians talk about quantifiers, they mean

the universal quantifier ‘∀’ (‘for all’), and
the existential quantifier ‘∃’ (‘there exists’).

The universal quantifier appears in the definition of associative.

Definition: The operation ∗ is associative on the set S if and only if
∀s1, s2, s3 ∈ S, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3).

This bears on the question in Section 2.3 about whether an operation
could be associative on a set but not on a smaller subset. It could not—
can you see why? If a property holds for every element of a set, it holds for
every element of every subset. Associativity involves three elements, but
that makes no difference: if it holds for every three elements of S, it holds
for every three elements of every subset of S.
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The universal and existential quantifiers appear together in the group
identity axiom. As noted in Section 2.3, quantifier order matters: this
axiom is about the existence of a single element that interacts in a certain
way with all group elements.

Identity ∃e ∈ G such that ∀g ∈ G, e ∗ g = g ∗ e = g.

To prove that something exists, it is enough to produce one. For instance,
in the set of 2× 2 matrices, a multiplicative identity is(

1 0
0 1

)
, because for every matrix

(
a b
c d

)
,(

1 0
0 1

)(
a b
c d

)
=
(

a b
c d

)(
1 0
0 1

)
=
(

a b
c d

)
.

Students sometimes worry about such assertions, though. They feel that
it is ‘cheating’ just to produce an object, that they ought somehow to
derive it. But that is not necessary. Justifications are often expected, but
it is usually fine effectively to say ‘Look, here is one that works, let me
prove it’.

Once we know that something exists, we can prove things about it.This
might be straightforward: for instance, the axiom implies that an identity
commutes with every element in its set. But it might take more work. For
instance, your lecturer might prove that for any set and operation, the
identity is unique, meaning that there is only one identity. For numbers,
this might seem weird—of course there is only one ‘1’. But remember that
identities gowith operations—there is only one 1, but there is also a 0.And
how sure are you that only one 2× 2 matrix is a multiplicative identity?
With that in mind, read the following theorem and proof. The proof uses
a common strategy for proving that something is unique: assume there
are two and prove that they must be the same.

Theorem: The identity element for an operation on a set is unique.

Proof : Suppose that e1 and e2 are both identity elements for ∗ on S.
Then e1 = e1 ∗ e2 because e2 is an identity

= e2 because e1 is an identity.
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I have always thought this argument rather cute. But it is so short that it
can seem vacuous, so it is useful to relate it to some specific sets and oper-
ations. For instance, suppose that S = R, the operation is multiplication,
e1 = 1, and e2 is a fictitious other identity element. Then the algebraic
part of the argument reads 1 = 1e2 = e2. Similarly, if S is the set of 2× 2
matrices, the operation is matrix multiplication,

e1 =
(

1 0
0 1

)
and

(
ea eb
ec ed

)
is another identity,

then the algebraic part reads(
1 0
0 1

)
=
(

1 0
0 1

)(
ea eb
ec ed

)
=
(

ea eb
ec ed

)
.

Now, I observed that the identity matrix commutes with all other
matrices. Does this contradict the fact that matrix multiplication is not
commutative? No, because quantified statements do not have straightfor-
ward ‘opposites’, so defining not commutative requires careful negation.
Commutativity is defined with a universal quantifier.

Definition: The binary operation ∗ is commutative on the set S if and
only if ∀s1, s2 ∈ S, s1 ∗ s2 = s2 ∗ s1.

A naive ‘opposite’ might be that ∀s1, s2 ∈ S, s1 ∗ s2 ̸= s2 ∗ s1. But that is not
a valid negation. Commutativity fails if s1 ∗ s2 ̸= s2 ∗ s1 for even one pair
of elements—a single counterexample refutes a universal statement. In
the actual negation below, note the new quantifier and think about how
it relates to matrices.

Definition: The binary operation ∗ is not commutative on the set S if
and only if ∃s1, s2 ∈ S such that s1 ∗ s2 ̸= s2 ∗ s1.

As explained in Chapter 2, all definitions have if and only if structures.
But many theorems are conditional statements that hold only in ‘one
direction’; their converses might be untrue. Section 3.2 considered this
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via the two statements below. For multiplication on some sets, both are
true; for others, just the second is true.

If ab = 0 then a = 0 or b = 0.
If a = 0 or b = 0 then ab = 0.

For practice, consider these statements too. Is each true for all operations
on all sets?

If e is the identity then e ∗ e = e.
If e ∗ e = e, then e is the identity.

The first is true for any identity—why? The second is often not true, even
in simple cases. For instance, in the integers, (−1)(−1)= 1, but (−1) is
not the multiplicative identity. Conditional statements thus merit careful
attention, which is challenging in Abstract Algebra for two reasons. First,
unsurprisingly, the statements themselves can be complex. Second, the
same theorem can often be written in multiple ways. For instance, the
following theorems capture the same information about cyclic groups.
Cyclic groups are discussed in Section 6.3; here, just try to see the logical
equivalence.

Theorem: Suppose that G is a cyclic group. Then every subgroup of G
is cyclic.

Theorem: Every subgroup of every cyclic group is cyclic.

Theorem: If G is a cyclic group, then every subgroup of G is cyclic.

The first formulation gives the premise and conclusion in separate sen-
tences, one introducing an object and the other saying what can be
deduced about it. The second handles everything with universal quanti-
fiers so that the premise and conclusion are packed in together. The third
is clearest with regard to conditionality: its structure is ‘if this premise
then this conclusion’. However, a purist would say that it is not properly
delimited and that it should say this.

Theorem: For every groupG, ifG is a cyclic group, then every subgroup
of G is cyclic.
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I tend to be a bit slapdash about delimiting; I think it obvious that this
theorem is about all groups and find the longer version is a bit of a
mouthful. But lack of clear delimiting can introduce ambiguity—does ‘if
y> 0 then . . .’ refer to integers or real numbers, for instance? Certainly
it is mathematically polite to introduce everything properly, so attend to
your lecturer’s approach and maybe err on the side of caution.

Regardless of its formulation, this theorem is true, so the cyclic groups
form a subset of groups for which every subgroup is cyclic. But it leaves
open the question of whether the converse is also true: if every subgroup
of a group is cyclic, must the group be cyclic? Or are the smaller nested
sets below in fact the same? If you have studied groups, you might know
the answer. If not, you will find it in Chapter 6.

groups

cyclic groups

groups with every

sub group cyclic

To conclude this section, an important theorem for which there ismore
mathematical complexity. Lagrange’s Theorem links the orders of finite
groups and their subgroups, where a subgroup is a subset of a group that is
a group in its own right. Order means ‘size’ as in number of elements, and
‘divides’ is a tidy way to say ‘is a factor of ’. (If Lagrange’s Theorem looks
different in your course, see Section 7.7.)

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then the order of H divides the order of G.

The premise of Lagrange’s Theorem states that G is a finite group—
something like a modular arithmetic group as in Section 3.3—and H is
a subgroup. The conclusion says that the order of H divides the order
of G. So, for instance, a group of order 12 can have subgroups of order
4 but not of order 5. Does that mean that subsets of order 4 necessarily
form subgroups? No: a subset might not contain the identity, for instance.
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So the converse of Lagrange’s Theorem is not true. The contrapositive,
however, is true, and serves to restrict possible sizes of subgroups within
groups.

Statement:
If H is a subgroup of G then the order of H divides the order of G.
Contrapositive:
If the order ofHdoes not divide the order ofG, thenH is not a subgroup
of G.

This is a specific case of the general principle that a conditional statement
and its contrapositive are always logically equivalent.

Statement:
If A then B.
Contrapositive:
If not B then not A.

I think about this as follows. Assume that the statement ‘If A then B’ is
true. This means that if B is not true, then A cannot be true because if
it were, then B would be true (I do not claim that this is elegant, but I
prefer it to more austere, formal explanations). It is useful to be aware of
this logical equivalence, because one of a conditional statement and its
contrapositive might be easier to work with.

3.6 Self-explanation training

Have you fully understood the theorems and proofs so far in this chapter?
I ask because research has shown that students do not always read
mathematics effectively. This is not surprising: many are not accustomed
to reading mathematics at all. In school, and perhaps in some under-
graduate classes, they have watched experts demonstrate how to perform
calculations, then practised. They have probably taken notes, but those
who understand well might rarely consult those notes, needing only the
occasional reminder.
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In Abstract Algebra, occasional reading is unlikely to suffice. Most
students do not understand entire lectures—the material is too complex
and the delivery too fast. So they have to study their notes after class. This
sounds like it should be easy because undergraduates have been reading
for perhaps 15 years. But mathematical reading is not like ordinary
reading. As discussed in the preceding sections, it requires abnormal
attention to logic. Moreover, when practised by experts, it is not linear.
Mathematicians do not start at the beginning of a page and read until the
end. Rather, they seek links among all the words and symbols, reading
back and forth along lines of text, between lines, and between paragraphs.
They do this even with mathematics that they do not find challenging,
because they understand the importance of the logical relationships.

It turns out that students learn to read in a manner more like math-
ematicians after studying the simple self-explanation training below.3
This training is taken directly from a research project,4 so its tone is
less conversational and more instructional than the rest of this book.
It will not turn you into an expert mathematical reader overnight, but
implementing it whenever you readmathematical text is likely to improve
your understanding.

Self-explanation training

The self-explanation strategy has been found to enhance problem solving
and comprehension in learners across a wide variety of academic
subjects. It can help you to better understand mathematical proofs: in
one research study, students who had worked through these materials
before reading a proof scored 30% higher than a control group on a
subsequent proof comprehension test.

3 The same training appears in How to Think about Analysis so you can skip this if
you happen to have read it there. But I’d recommend reviewing it.

4 For an accessible overview of the research, see Alcock, L., Hodds, M., Roy, S. &
Inglis, M. (2015). Investigating and improving undergraduate proof comprehension.
Notices of the American Mathematical Society, 62, 742–752. For detail, see Hodds,
M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof compre-
hension. Journal for Research in Mathematics Education, 45, 62–101.
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How to self-explain

To improve your understanding of a proof, there is a series of techniques
you should apply.

After reading each line:

• Try to identify and elaborate the main ideas in the proof.
• Attempt to explain each line in terms of previous ideas. These may be ideas

from the information in the proof, ideas from previous theorems/proofs,
or ideas from your own prior knowledge of the topic area.

• Consider any questions that arise if new information contradicts your
current understanding.

Before proceeding to the next line of the proof you should ask yourself
the following:

• Do I understand the ideas used in that line?
• Do I understand why those ideas have been used?
• How do those ideas link to other ideas in the proof, other theorems, or

prior knowledge that I may have?
• Does the self-explanation I have generated help to answer the questions

that I am asking?

Below you will find an example showing possible self-explanations
generated by students when trying to understand a proof (the labels
‘(L1)’ etc. in the proof indicate line numbers). Please read the example
carefully in order to understand how to use this strategy in your own
learning.

Example self-explanations

Theorem: No odd integer can be expressed as the sum of three even
integers.

Proof: (L1) Assume, to the contrary, that there is an odd integer x
such that x= a+ b+ c, where a,b and c are even integers.
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(L2) Then a= 2k,b= 2l and c= 2p, for some integers k, l
and p.

(L3) Thus x= a+ b+ c= 2k+ 2l+ 2p= 2(k+ l+ p).

(L4) It follows that x is even; a contradiction.

(L5) Thus no odd integer can be expressed as the sum of three
even integers. �

After reading this proof, one reader made the following self-
explanations:

• ‘This proof uses the technique of proof by contradiction’.5

• ‘Since a,b and c are even integers, we have to use the definition of an even
integer, which is used in L2.’

• ‘The proof then replaces a,b and c with their respective definitions in the
formula for x.’

• ‘The formula for x is then simplified and is shown to satisfy the definition
of an even integer also; a contradiction.’

• ‘Therefore, no odd integer can be expressed as the sum of three even
integers.’

Self-explanations compared with other comments

You must also be aware that the self-explanation strategy is not the same
as monitoring or paraphrasing. These two methods will not help your
learning to the same extent as self-explanation.

Paraphrasing

‘a,b and c have to be positive or negative, even whole numbers.’

There is no self-explanation in this statement. No additional information
is added or linked. The reader merely uses different words to describe

5 Proof by contradiction is discussed along with other types of proof in Chapter 6 of
How to Study for/as a Mathematics Degree/Major.

SELF-EXPLANATION TRAINING 59



OUP CORRECTED PROOF – FINAL, 1/12/2020, SPi

what is already represented in the text by the words ‘even integers’. You
should avoid using such paraphrasing during your own proof compre-
hension. Paraphrasing will not improve your understanding of the text
as much as self-explanation will.

Monitoring

‘OK, I understand that 2(k+ l+ p) is an even integer.’

This statement simply shows the reader’s thought process. It is not
the same as self-explanation, because the student does not relate the
sentence to additional information in the text or to prior knowledge.
Please concentrate on self-explanation rather than monitoring.

A possible self-explanation of the same sentence would be:

‘OK, 2(k+ l+ p) is an even integer because the sum of 3 integers is
an integer and 2 times an integer is an even integer.’

In this example the reader identifies and elaborates the main ideas
in the text. They use information that has already been presented to
understand the logic of the proof. This is the approach you should
take after reading every line of a proof in order to improve your
understanding of the material.

That is the end of the self-explanation training. The version used in
the research study then provided two theorems and proofs for self-
explanation practice. Here, I recommend that you flip back to the the-
orems and proofs in this chapter and practise with those.

3.7 Writing proofs

Reading proofs more effectively will help you to understand them more
fully and become better at constructing proofs of your own. But there is
no doubt that proof construction is difficult. Just as mathematical reading
is not like ordinary reading, mathematical writing is not like ordinary
writing. A proof is not like a message to tell a housemate that you have
gone to the supermarket. Nor is it like a standard algorithm that you can
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learn and apply. There are standard proof strategies, and you should look
out for those. But they are not that standard—to some extent, each proof
is different, which can leave students feeling overwhelmed.

However, specific approaches can help. Some people find it useful to
think of proof construction as involving twomain processes: a formal part
and a problem solving part. The formal part involves using the structure
of a theorem to write a ‘frame’ for its proof: writing the premises, leaving
a gap, then writing the conclusion. With that done, it is often possible to
work forward from the premises and backward from the conclusion by
formulating relevant things in terms of definitions or bymaking standard
or obvious deductions. If you let it, a formal approach will shoulder quite
a bit of the burden of proving. Indeed, for simple proofs, it might on its
own be enough.

For more complex proofs, you also need problem solving to fill in the
gap. This requires insight, which can come from reasoning about familiar
examples, or from writing down possibly relevant theorems and thinking
about whether they usefully apply. A proof will not flow from your pen
in a single stream of mathematically correct argument—probably it will
involve some false starts and periods of being stuck, and some cleaning
up so that the writing makes sense. But writing one requires no magic.
To demonstrate what I mean, I will reason through a formal part and a
problem-solving part for this theorem.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Is this theorem obviously true? It’s not to me. I know that ‘abelian’ means
that the group operation is commutative—that for every a,b ∈ G, ab =
ba. But I cannot immediately see why that would follow from the fact that
squaring every element gives the identity, so the premises and conclusion
do not seem obviously linked. It does seem plausible that the squaring
property would impose some fairly hefty restrictions on the group, but
this is not a theorem that I read and think ‘Oh yeah, that must be true’. So
proving it requires some work.

My preferred approach to that work is to get some intuition by thinking
about examples of groups in which the square of every element is the
identity. The problem is that none come to mind, even with a bit of effort.
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However, I can always start with a formal approach and see how far that
takes me. In this case, I can write a ‘frame’ for the proof like this.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Proof : Suppose that G is a group with identity e and that for every g ∈ G,
g2 = e.

. . .
So G is abelian.

At this point I have no idea how to go forward from the premises, but I do
know what the line before the conclusion should be because I know how
‘abelian’ is defined.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Proof : Suppose that G is a group with identity e and that for every g ∈ G,
g2 = e.

. . .
Thus ∀a,b ∈ G, ab = ba.
So G is abelian.

That prompts a bit of housekeeping because a and b have not been
introduced. To fix that, I would add a line after the premises.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Proof : Suppose that G is a group with identity e and that for every g ∈ G,
g2 = e.
Let a,b ∈ G.

. . .
Thus ∀a,b ∈ G, ab = ba.
So G is abelian.

62 THEOREMS AND PROOFS



OUP CORRECTED PROOF – FINAL, 1/12/2020, SPi

That’s the formal part done, so now I have to work out what could go in
the gap. Do you think it will be easier to start at the beginning and try to
go forward, or start at the end and try to go backward? My money is on
the end, because the claim that ∀a,b ∈ G, ab = ba has more to it. Going
backward can go wrong if an argument turns out not to be reversible, but
I can try it and keep an eye on the logic. Where could ab = ba come from
that would fit with the premises? Well, the premise expression g2 = e has
e on one side, so perhaps I can manipulate ab = ba to get e on one side.

ab = ba ⇔ b−1ab = b−1ba
⇔ b−1ab = a
⇔ a−1b−1ab = a−1a
⇔ a−1b−1ab = e.

Now there is an e on the right. Does this help? Not immediately, because
I now have a rather messy expression involving some inverses. However,
thinking about how to clean those up leads me to notice that, in fact,
g2 = e ⇒ gg = e ⇒ g = g−1. So every element is self-inverse and I can
write

ab = ba ⇔ a−1b−1ab = e
⇔ abab = e.

That does help, because abab = e can be written (ab)(ab)= e, which
is true by the premise because ab is an element of G. However, I have
been working backward, so I need to flip the argument upside down in
order to reason from the premises to the conclusion. I can also make it
more elegant by explaining the self-inverse idea early on. That leads to
something like this.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Proof : Suppose that G is a group with identity e and that for every g ∈ G,
g2 = e.
Then for every g ∈ G, g = g−1.
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Let a,b ∈ G.

. . .
abab = e ⇔ a−1abab = a−1

⇔ bab = a−1

⇔ b−1bab = b−1a−1

⇔ ab = b−1a−1

⇔ ab = ba.
So ∀a,b ∈ G, ab = ba.
So G is abelian.

That works, but the abab seems to come out of nowhere, so I could
introduce it more politely.

Theorem: Suppose that G is a group with identity e and that for every
g ∈ G, g2 = e. Then G is abelian.

Proof : Suppose that G is a group with identity e and that for every g ∈ G,
g2 = e.
Then for every g ∈ G, g = g−1.
Let a,b ∈ G.
Then ab ∈ G by closure.
So (ab)(ab)= e by the premise.
Now abab = e ⇔ a−1abab = a−1

⇔ bab = a−1

⇔ b−1bab = b−1a−1

⇔ ab = b−1a−1

⇔ ab = ba.
So ∀a,b ∈ G, ab = ba.
So G is abelian.

And now I am done, at least in substance. Would you clean up the proof
any more, or flesh it out? This is partly a style issue so you are allowed
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to have opinions about it. Maybe you would really spell out every step, or
maybe youwouldwritemore tersely. I recommend sharing proof attempts
with other students to get a sense of what is possible. If you do that then
you will probably agree that a reader needs enough detail to follow the
argument, but not so much that they get bogged down.

Of course, you should also attend to what your lecturer values. And
be prepared for that to change across courses or within a course: some
lecturers expect detail early on but allow flexibility later. Do focus on your
writing, though, as a separate cleaning-up task if need be.Mathematicians
write in sentences, whichmeans that you should be able to read yourwork
aloud from beginning to end in a way that sounds natural in speech. If
you cannot do that then you have probably written some symbols without
appropriate surrounding words—work out what words you would add
if explaining your argument to someone else, and write them in (maybe
consider your punctuation, too).

The important thing to note is that in constructing the above proof,
I did not do anything magical—I did not have a massive insight due to
extensive experience or luck. I just wrote a proof frame using the premise
and conclusion, translated what I knew about these into symbolic form,
then looked atwhat I had and tried something. I didn’t write it all forwards
in one go—most people cannot do that unless a proof is very similar to
one they have seen before; they have to get some ideas on paper, then
refine. If the idea of starting before you know how a proof will go makes
you nervous, I can only advise you to try it. You will probably surprise
yourself.
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chapter 4

Studying Abstract Algebra

This chapter covers practical issues in undergraduate study, starting with
the transition from earlier mathematics. It discusses strategies for effective
learning based on research in cognitive psychology, including self-explanation,
interleaving, retrieval practice and spaced study.

4.1 Who are you as a student?

Who are you as a student? Probably you are pretty dedicated:
happy to learn, and willing to put in the hours. The problem
you will face is that it is easy to be like that for the first two

weeks of a course like Abstract Algebra, but hard to sustain for more
than about four. By week eight, you might want to lie on the floor,
moan quietly and wish for someone to make it all easy. I can’t make it
easy—undergraduate mathematics just isn’t easy. But if you find Abstract
Algebra difficult, that is not because you are stupid or incapable. It’s
because it is difficult. If this is your first full-on theorems-and-proofs
course, it is likely to seem both difficult and alarmingly different from
earlier mathematics. This can make students wonder whether they have
topped out—whether they cannot cope with mathematics at this level or,
more prosaically, whether they just don’t like it.

I would encourage you, though, to avoid making either judgement
too soon. Many students transitioning to advanced mathematics have to
adjust their expectations in two ways, accepting that they will not under-
stand everything and learning to tolerate longer periods of intellectual
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discomfort. But most do manage that, and reach a point where they are
satisfied with what they have learned. Of course, some then decide that
puremathematics is not their thing and that where possible in future they
will avoid it. But better to decide fromaposition of strength, I think; better
to know that you could do more but choose not to. Others experience not
only new understanding but real joy in trading the more routine aspects
of earlier work for logical reasoning and theory building.

To reach a positive positionwithminimal pain, I think it helps to reflect
on your study trajectory, on the decisions you have made. For instance,
you probably chose to study at the most prestigious accessible institution.
A natural consequence of this is that the material you are taught will be
only just within your intellectual reach. If you wished, you could switch to
an easier degree or major, switch to a lower-prestige institution, or drop
out of higher education and take a different route into professional life.
Some students choose to do those things, and more power to them—
everyone should think about how to use their time. But most students
don’t. Most, when they reflect, decide that although it might be difficult,
they do want to stick with their degree. Reflection and recommitment
help, though. If you recognize that you’re doing what you’re doing by
choice, it becomes easier to put up with its downsides and keep your eye
on the prize.

To win the day-to-day battle with the downsides, however, requires
thoughtfully managing your studies, which really means thoughtfully
managing yourself in relation to your studies. That is because a big part
of how well people do in undergraduate mathematics is not intelligence
or talent but resilience and self-discipline. I have written about time and
self management in How to Study for a Mathematics Degree (and the
American version How to Study as a Mathematics Major) so I will not
re-hash that here. What I will do is relate study habits to research on
effective learning.

4.2 Myths about learning

Research in cognitive psychology has revealed that people commonly
believe some myths about learning. These myths are pervasive because
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they are based on misleading psychological experience—they are not
things that other students tell you, they are things that your own brain
‘tells’ you. They tend to go unchallenged because few people—including
lecturers—are educated about how the human mind works and about
what that means for learning. Here I will provide a brief overview focused
on specific ways to make learning more effective.

First, your mind. Your mind takes in information from your environ-
ment, processes it selectively and works out what to do about the parts
that it considers important.The information in educational environments
comes from stimuli such as lectures, problem sets, discussions with
friends and so on. Your mind processes these stimuli and the result is
some kind of behaviour—something to do or write or say.

MIND BEHAVIOURPERCEPTION

Cognitive psychologists agree that processing takes place in working
memory, which does the thinking that we experience as thinking.1 The
problem with working memory is that it is small: it can handle only a few
pieces of information simultaneously. You will have noticed this if you
find, while working on complex problems, that you tend to forget where
you started or what you were trying to do.

working

memory

processing

BEHAVIOURPERCEPTION

Fortunately, we also have long-term memory, which has much, much
larger capacity. This is handy, but storing information in long-term
memory requires processing in workingmemory. And using information
from long-term memory requires retrieving it.

1 Brains also do a lot of other stuff without involving conscious awareness.
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working

memory

long-term
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storage retrieval

processing

BEHAVIOURPERCEPTION

If you have studied psychology then you might already know all of that.
But have you considered its implications for learning? Learning involves
storing information in long-term memory, and remembering involves
retrieving it. How do you think students can make these processes more
effective?

Storage is not straightforward because we do not directly control it:
wanting to remember something does not guarantee that we will, because
learning does not involve simply recording stimuli. Rather, it involves
processing information, interpreting it using existing knowledge; this
determines what is stored and how it is interlinked. Similarly, we do not
directly control retrieval. We forget things, and muddle them up. This is
because memories can be inaccessible due to missing cues—knowledge
might be ‘in there’ but difficult to get out. And they can be muddled due
to ambiguous cues—if information is not well differentiated, we might
retrieve the wrong things.

You know this, of course. We have all tried and failed to remember
names of people we just met, or facts for exams. We have all accidentally
used an incorrect word or an inappropriate mathematical procedure. But
often things do go right, and we should be encouraged by that. Probably
you have learned some mathematics that you could remember immedi-
ately because it seemed obvious that it had to work in a certain way. And
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probably there is mathematics that you do not try to remember because
you can reconstruct it whenever you want. If you are like me, this might
be part of why you likemathematics: it feels good when things fit together
logically and, compared with brute-force memorization, reconstruction
is often easier and almost always less boring.

So we all can learn new things, indeed very complicated things. And
we all can store information in a way that enables retrieval. The question
is, how can we do that more consistently? I will discuss two strategies
for improving storage and two for improving retrieval,2 relating these to
the myths.

First, storage. To store information effectively, we need to process it
in what might be called a deep way. And often we do not. Many of
us have read our notes after a lecture and thought, ‘That is definitely
my handwriting but I have no recall of it.’ So deep processing does not
just happen—it often takes effort.

One way to make that effort is to engage in self-explanation; mathe-
matical self-explanation training is provided in Section 3.6 (it is short—
please read it). Self-explanation might seem unnatural at first because
it slows your reading down. But it has been shown to improve learning
across a range of academic subjects including proof-basedmathematics—
it improves both comprehension and retention.3 Self-explanation works
because it leads to more and better connections within a person’s knowl-
edge, ‘attaching’ new information more securely. This naturally also
provides more and better differentiated retrieval cues. Self-explanation
does not lead to perfect knowledge, but we are not looking for per-
fection; we are looking for strategies more effective than those people
typically use.

A second way to improve storage is to use interleaving, switching
between topics instead of ‘blocking’ your learning.

2 I owe the structure of this section to Iro Xenidou-Dervou, Nina Attridge and
Camilla Gilmore, who conduct research in the Centre for Mathematical Cognition at
Loughborough University (Nina has since moved to Portsmouth).

3 See Alcock, L., Hodds,M., Roy, S. & Inglis, M. (2015). Investigating and improving
undergraduate proof comprehension.Notices of the American Mathematical Society, 62,
742–752, http://www.ams.org/notices/201507/rnoti-p742.pdf.
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topic A

topic Ctopic Btopic Atopic Ctopic Btopic A

topic A topic B topic B topic C topic C

INTERLEAVING

BLOCKING

Interleaving is almost guaranteed to seem unnatural: most people believe
that they learn more by focusing on one thing for an extended time.
Moreover, in the short term, they are right: blocked study does lead
to better immediate performance. But that learning does not tend to
stick. Evidence on this comes from research studies like one in which
students spent the same amount of time studying formulas for calculating
volumes in either interleaved or blocked conditions.4 During practice,
the blockers were considerably more accurate than the interleavers. But
during later testing, they had forgotten a large proportion of what they
had learned, whereas the interleavers had forgotten almost nothing. It
is very important to understand this. Immediate performance is not a
good indicator of learning efficacy; good immediate performance does
not mean that learning will stick.

In terms of the memory model, interleaving is better because it helps
people to notice links between topics and to distinguish similar ideas from
different topics. Thus, like self-explanation, it automatically improves
retrieval because it leads to more integrated knowledge with more dis-
tinguishable cues.

But retrieval can also be enhanced directly. One strategy to use is
deliberate retrieval practice, whichmeans forcing yourself to recall things.
Many students do this already, testing their knowledge before exams, for
instance. But most think of it as checking what they know rather than as
a way to learn. To learn, they might reread notes or rewatch lectures. But
rereading or rewatching is passive, and can give a false sense of security
because it involves recognizing information, not recalling it. Recognizing
is much easier—if you have seen something before then it seems familiar,

4 See Rohrer, D. & Taylor, K. (2007). The shuffling of mathematics problems
improves learning, Instructional Science, 35, 481–498.
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which gives you a feeling that you ‘know’ it. But this can be misleading:
it is not the same as recalling information without prompts. Self-testing
strengthens retrieval pathways, making future retrieval easier.

A secondway to enhance retrieval is to space your study, where spacing
is the opposite of cramming or massing.

study

study

exam

MASSINGSPACING

study studystudy exam

Wed FriFriTueMon Thu Thu

Cramming is common before exams, and some students do it because
they are disorganized. But some believe it to be effective. They are wrong,
unfortunately. People learn more when they take the same amount of
study time and space it out.This is due to the way forgetting works.When
we first learn something, we forget it pretty fast. When we review, we
forget more slowly. So reviews lead to better retention.

time

retention
reviewreviewreview

All of this information is linked via an overarching myth that good
learning should not feel too hard. People do not necessarily expect
learning to be easy, but they do tend to think that smooth, straightforward
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experience means that learning is going well, and struggle means that it
is going badly. This interpretation is generally incorrect. Self-explanation,
interleaving, retrieval practice and spacing are likely to feel challenging.
But evidence shows that they work.

4.3 Effective learning

Thepreceding informationmeans that effective learning is hard. It is hard
to self-explain, to think deeply about links between new material and
existing knowledge. It is hard to interleave topics, switching regularly back
to things that you have partially forgotten. It is hard to test whether you
really can retrieve things, and thus to face the limits of what you know.
And it is hard to organize and discipline yourself to space your study
across days, weeks and terms or semesters.

So the information in this chapter is not very palatable and I do not
expect you to like it. It might be particularly unpalatable if you are one of
those people who, until recently, did well in mathematics without making
much effort. If that describes you, then probably your ego is tied up with
being that person, and adjusting to harder work will be painful. Maybe
you will decide not to bother—to disengage from the challenge. Would
I respect you less for that? Not really—it is perfectly sensible to decide
how hard you are prepared to work for things you want. But I would not
want you to disengage for the wrong reasons. Specifically, I would not
want you to disengage because you think that people who are really good
at mathematics do not have to work hard, do not have to do these things.
In fact, they do them routinely.

Professional mathematicians self-explain all the time. Indeed, they
consider self-explanation so natural that some are surprised by the idea
that students might need training to do it. To them, reading with self-
explanation is just proper reading. Of course, they might not always
need to know every detail—sometimes it makes sense to trust an expert
colleague. But, when learning new mathematics, they self-explain all the
time, looking for links to their current understanding.

Mathematicians also routinely interleave and space their work. They
might sometimes immerse themselves for long periods in single sets
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of ideas, but that tends to be exceptional. Many lack the opportunity:
most teach and do administration, and must fit their mathematical work
around that. Even where prolonged focus is possible, work will probably
be broken up. When professional mathematicians write about their craft,
they routinely describe working hard and then letting ideas percolate
while pursuing some other activity—walking, music, engaging in family
life. They know that they have to put in the work, but they also expect
insights to come when they are not sitting at desks.

Similarly, mathematicians routinely engage in retrieval practice. Again,
this is to some extent forced. Mathematicians are often assigned to teach
topics that they haven’t studied for years. So they have to relearn them. If
your lecturers seem to have lots of information at their fingertips, that is
not because they picked it up effortlessly the first time and never forgot
it. It is because they have revisited it repeatedly so that their forgetting
curves are pretty flat. But they also do retrieval practice voluntarily.
Mathematicians who have forgotten things will usually try to reconstruct
them before looking them up. They instinctively understand the value of
retrieving information by rebuilding it from other knowledge.

Sowhat should you do if you decide to suck it up, get over the emotional
challenges and study effectively? This is worth some thought because the
strategies operate at different levels.

First, you really have to study consistently. Otherwise you will find
yourself constantly doingwhatever seemsmost urgent—itwill feel impos-
sible to space or interleave your study because today it is vital that you
prepare for the next test (or whatever). So a good, realistic routine is
beneficial—think about scheduling time for each subject each week, in
relatively small blocks so that you revisit everything regularly.

Second, process things deeply. Mathematical study forces this to some
extent: most students have to think deeply when solving problems. But
you should also do it via self-explanation when reading your notes in
order to understand things that you did not grasp in lectures.

Third, test yourself regularly. And note that self-testing can fit well into
spaced and interleaved study because it need not be a big operation. In
lectures, I sometimes ask students to study a short theorem and proof for
two minutes, then cover it up and spend three minutes reconstructing
it, then check anything that they missed or found difficult. That provides
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retrieval practice for a nontrivial course item in six minutes. It probably
won’t be remembered perfectly for an exam amonth later, but it decreases
the revision required at that stage.

None of this will do magic, of course. Good strategies will not make
mathematics or its study seem easy. But evidence shows that they work.
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chapter 5

Binary Operations

This chapter discusses binary operations on numbers and on other objects.
It represents the effects of binary operations, contrasting the properties of
associativity and commutativity. It then discusses binary operations in relation
to modular arithmetic, functions, matrices, symmetries and permutations,
observing phenomena to be explored in later chapters. Finally, it discusses
binary operations as functions, and technicalities related to closure.

5.1 What is a binary operation?

I f you have read Part 1, you will know that a binary operation takes
two elements from a set and combines them to give another. For
instance, multiplication on the integers takes two integers and gives

another, as in 2× 5 = 10. To capture the effects of a binary operation,
tables can be useful. A table cannot show ‘all’ the results for an infinite set
like the integers, but it can visually represent an operation’s properties.
For instance, in the partial table below we can ‘see’ that multiplication on
the integers is commutative, meaning that for every x,y ∈ Z, xy = yx (see
Section 1.2). This is manifest in symmetry about the main diagonal from
top left to bottom right. Check that you believe this would hold for the
‘whole’ table, relating the visual representation to the equation xy = yx.
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× 0 1 2 3 4 5 6 · · ·

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 8 10 12

3 0 3 6 9 12 15 18

4 0 4 8 12 16 20 24

5 0 5 10 15 20 25 30

6 0 6 12 18 24 30 36

.

.

.

We can also see that 1 is the multiplicative identity for the integers, that
for every x ∈ Z, 1x = x1 = x (see Section 2.3). Again, imagine the ‘whole’
table.

× 0 1 2 3 4 5 6 · · ·

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 8 10 12

3 0 3 6 9 12 15 18

4 0 4 8 12 16 20 24

5 0 5 10 15 20 25 30

6 0 6 12 18 24 30 36

.

.

.

Simple cases can, however, obscure some subtleties. It is easy to assume
that the arithmetic operations of addition, multiplication, subtraction
and division are unproblematically defined, at least on familiar sets of
numbers. But division is not a binary operation on the integers because
the expression x/y is not meaningful if y = 0; moreover, the set Z\{0}
(the integers excluding zero) is not closed under division, because it is
not true that for every x,y ∈ Z, x/y ∈ Z (see Section 2.2). These prop-
erties are captured in the table below, which also highlights the lack of
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commutativity: for division, it matters which of x and y appears first.
Cases of non-commutativity mean that to avoid confusion we need to
decide whether the row or column element is x in x ∗ y. Which is it, based
on x/y below?

÷ 0 1 2 3 4 5 6 · · ·
0 undefined 0 0 0 0 0 0

1 undefined 1 1
2

1
3

1
4

1
5

1
6

2 undefined 2 1 2
3

1
2

2
5

1
3

3 undefined 3 3
2 1 3

4
3
5

1
2

4 undefined 4 2 4
3 1 4

5
2
3

5 undefined 5 5
2

5
3

5
4 1 5

6

6 undefined 6 3 2 3
2

6
5 1

...

Tables are used extensively in this book because they can both highlight
properties and provide intuition for abstract results; this chapter uses
them to observe phenomena to be explored formally later. For now, I
should say that your course might define a binary operation on a set S
as a function on S× S. If that makes sense already, good. If not, it will
be discussed along with other formal issues in Section 5.8, after some
intuitive ideas.

5.2 Associativity and commutativity

Wewill start with binary operations on numbers.The standard arithmetic
operations are addition, multiplication, subtraction and division, but
binary operations can be defined in all sorts of ways. What would tables
look like for the operations below, on the integers, say? Are the results
always defined? Are the integers closed under each operation? Is each one
commutative?
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a ∗ b = 1
2 (a+ b)

a ∗ b = √
ab

a ∗ b = a
a ∗ b = 1/(ab)
a ∗ b = min{a,b} (the minimum of a and b, e.g. min{2,−1} = −1)
a ∗ b = |a− b|

Compared with those of arithmetic, these operations might strike you as
contrived. In a sense they are, and the extent to which you encounter such
examples will depend upon your lecturer: some use them frequently, oth-
ers not at all.This book will use them just a little, to consider relationships
among binary operations’ properties. For instance, consider associativity
and commutativity, defined as below. These properties are simple but
easy to mix up, or at least to treat ambiguously. Here we will sort out the
similarities and differences.

Definition: The operation ∗ is associative on the set S if and only if
∀s1, s2, s3 ∈ S, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3).

Definition: The operation ∗ is commutative on the set S if and only if
∀s1, s2 ∈ S, s1 ∗ s2 = s2 ∗ s1.

Associativity and commutativity are similar in that both require an
operation and a set (if you have read Part 1 and you are fed up with
my remarking on this, you have probably absorbed its importance). Both
properties are also about order, but in different ways. Associativity is
about the order in which operations are performed, and whether this
can be changed without changing the result. Commutativity is about the
order in which elements appear, andwhether this can be changed without
changing the result. This difference is captured in the definitions—check
that you see how. But it can be difficult to keep in mind because earlier
experience is dominated by arithmetic, where the four standard opera-
tions fall neatly into pairs: addition and multiplication are associative and
commutative; subtraction and division are neither. For subtraction, for
instance,

(6− 3)− 1 ̸= 6− (3− 1) and 6− 2 ̸= 2− 6.
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Such results can make it seem that associativity and commutativity ‘go
together’, that either we can switch stuff around or we can’t. For instance,
to calculate 6+ 3+ 7, we might notice the sum to 10 and think about
6+ (3+ 7), implicitly using associativity. If the original sum is written as
3+ 6+ 7, we might calculate (3+ 7)+ 6, implicitly using commutativity.
These tend to feel like intelligent applications of the same reasoning, so it
is useful to recognize that associativity and commutativity do not always
go together. For instance, consider the real numbers R under the binary
operation ‘take themean of ’, which could be denoted by a ∗ b = 1

2 (a+ b).
This operation is commutative because

∀a,b ∈ R, a ∗ b = 1
2 (a+ b)= 1

2 (b+ a)= b ∗ a.

Is it associative? Is it true that for any three numbers a, b and c, (a ∗ b) ∗ c
= a ∗ (b ∗ c)? You can probably convince yourself that it is not by looking
at the general algebra:

(a ∗ b) ∗ c = 1
2
( 1
2 (a+ b)+ c

)
;

a ∗ (b ∗ c) = 1
2
(
a+ 1

2 (b+ c)
)
.

I would also think of number lines.

a

a

b

b

c

c

a ∗ b

b ∗ ca ∗ (b ∗ c)

(a ∗ b) ∗ c

But to really demonstrate, we need a counterexample. For instance,

(8 ∗ 4) ∗ 2 = 1
2
( 1
2 (8+ 4)+ 2

)= 1
2 (6+ 2)= 4,

whereas 8 ∗ (4 ∗ 2) = 1
2
(
8+ 1

2 (4+ 2)
)= 1

2 (8+ 3)= 11
2 .
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Thus ‘take the mean of ’ is commutative but not associative. Is the reverse
possible? Can a binary operation be associative but not commutative? To
help you think this through, here again is the list of operations. Is each
one associative, commutative, both or neither? Check carefully and you
will find that all combinations are possible.

a ∗ b = 1
2 (a+ b)

a ∗ b = √
ab

a ∗ b = a
a ∗ b = 1/(ab)
a ∗ b = min{a,b}
a ∗ b = |a− b|

Finally, the operation ‘take the mean of ’ can also clarify that binary
operations really are binary. The operation ∗ defined by a ∗ b = 1

2 (a+ b)
takes the mean of two numbers, not three, and certainly not more.
We could define a different operation to take the mean of three num-
bers by finding 1

3 (a+ b+ c). But that would not be a binary operation,
and its results would differ from both (a ∗ b) ∗ c = 1

2
( 1
2 (a+ b)+ c

)
and

a ∗ (b ∗ c)= 1
2
(
a+ 1

2 (b+ c)
)
. This is important because the expressions

(s1 ∗ s2) ∗ s3 and s1 ∗ (s2 ∗ s3) involve three elements but apply the binary
operation to only two at a time. For associative operations, both orders
always give the same result, meaning that s1 ∗ s2 ∗ s3 (without brackets)
is well defined. If an operation is not associative—or if we do not know
whether it is or not—we should take care over which of (s1 ∗ s2) ∗ s3 and
s1 ∗ (s2 ∗ s3) we write.

5.3 Modular arithmetic

All the sets in this chapter so far have been infinite. But many structures
in Abstract Algebra are finite, and an important class of these involves
modular arithmetic. You might have studied modular arithmetic in a
course on reasoning or number theory, or in Sections 3.3 and 3.4 of this
book—please read those now if it is unfamiliar. Then recall that modular
arithmetic works like arithmetic on a clock. In arithmetic modulo 12, we
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say things like ‘9 plus 5 is 14, which is congruent to 2 modulo 12’. This is
written

9+ 5 = 14 ≡ 2(mod12) or 9+12 5 = 2.

9

2

+5

Congruence modulo 12 is based on remainders on division by 12, where

14 ≡ 2(mod12) ⇔ ∃n ∈ Z such that 14 = 2+ 12n;
x ≡ a(mod12) ⇔ ∃n ∈ Z such that x = a+ 12n.

As proved in Section 3.3, this implies that the operations of addition
and multiplication modulo 12 are well defined: if x ≡ a(mod12) and
y ≡ b(mod12), then

x+ y ≡ (a+ b)(mod12) and xy ≡ (ab)(mod12).

As discussed in Section 3.4, congruence modulo 12 is an equivalence
relation and therefore partitions Z into disjoint equivalence classes. These
include

12Z = {12x|x ∈ Z} = {. . . ,−24,−12,0,12,24, . . .},
1+ 12Z = {1+ 12x|x ∈ Z} = {. . . ,−23,−11,1,13,25, . . .},
2+ 12Z = {2+ 12x|x ∈ Z} = {. . . ,−22,−10,2,14,26, . . .}, and so on.

In this notation, the addition and multiplication results can be written as
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(a+ 12Z)+ (b+ 12Z) = (a+ b)+ 12Z;
(a+ 12Z)(b+ 12Z) = (ab)+ 12Z.

The equivalence classes or congruence classes 12Z,1+ 12Z,2+ 12Z and
so on form elements of a set sometimes denoted Z12. Using clock-
face numbers to represent these elements, the table below captures the
structure (Z12,+12). Every 5 in the table represents the congruence
class {. . . ,−19,−7,5,17,29, . . .}; this is an instance of compression as
described in the Introduction.

+12 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 1

2 3 4 5 6 7 8 9 10 11 12 1 2

3 4 5 6 7 8 9 10 11 12 1 2 3

4 5 6 7 8 9 10 11 12 1 2 3 4

5 6 7 8 9 10 11 12 1 2 3 4 5

6 7 8 9 10 11 12 1 2 3 4 5 6

7 8 9 10 11 12 1 2 3 4 5 6 7

8 9 10 11 12 1 2 3 4 5 6 7 8

9 10 11 12 1 2 3 4 5 6 7 8 9

10 11 12 1 2 3 4 5 6 7 8 9 10

11 12 1 2 3 4 5 6 7 8 9 10 11

12 1 2 3 4 5 6 7 8 9 10 11 12

Notice that for +12, the element 12 satisfies the definition of identity.

Definition: The element e ∈ S is the identity in S with respect to the
binary operation ∗ if and only if ∀s ∈ S, e ∗ s = s ∗ e = s.
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Application: The element 12 ∈ Z12 is the identity in Z12 with respect
to the binary operation +12 because ∀x ∈ Z12, 12+12 x =
x+12 12 = x.

Unfortunately, 12 doesn’t ‘look like’ an identity. But 0 is in the same
congruence class and does look like an identity, so it is more commonly
used as the representative. The table then appears as below, where 0 falls
naturally into the usual identity position in the top row and left column.

+12 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 4 5 6 7 8 9 10 11 0

2 2 3 4 5 6 7 8 9 10 11 0 1

3 3 4 5 6 7 8 9 10 11 0 1 2

4 4 5 6 7 8 9 10 11 0 1 2 3

5 5 6 7 8 9 10 11 0 1 2 3 4

6 6 7 8 9 10 11 0 1 2 3 4 5

7 7 8 9 10 11 0 1 2 3 4 5 6

8 8 9 10 11 0 1 2 3 4 5 6 7

9 9 10 11 0 1 2 3 4 5 6 7 8

10 10 11 0 1 2 3 4 5 6 7 8 9

11 11 0 1 2 3 4 5 6 7 8 9 10

With an identity in place, we can think about additive inverses.

Definition: Suppose that e is the identity in a set S with respect to the
binary operation ∗. Then the element s ∈ S has inverse s′
with respect to ∗ if and only if s ∗ s′ = s′ ∗ s = e.
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In a diagram, it is clear that every element has an inverse under +12,
because there is always an element that ‘fills in’ the circle.

3

8

+9

+4
0 0

In the table, every element has an inverse because the identity 0 appears in
every row and column. In fact, it appears exactly once, and so does every
other element. Is that also related to inverses? If so, how? What would go
wrong if 0 did not appear in a row, or appeared multiple times?

Next, how about multiplication modulo 12? Using 0 to 11 as represen-
tatives, a table for (Z12,×12) looks like this.

×12 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11

2 0 2 4 6 8 10 0 2 4 6 8 10

3 0 3 6 9 0 3 6 9 0 3 6 9

4 0 4 8 0 4 8 0 4 8 0 4 8

5 0 5 10 3 8 1 6 11 4 9 2 7

6 0 6 0 6 0 6 0 6 0 6 0 6

7 0 7 2 9 4 11 6 1 8 3 10 5

8 0 8 4 0 8 4 0 8 4 0 8 4

9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2

11 0 11 10 9 8 7 6 5 4 3 2 1
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This table is less simple than its counterpart for addition, and it is
instructive to compare the two. For instance, 0 is not the identity for ×12,
because it is not true that ∀a ∈ Z12, 0a = a0 = a (using juxtaposition
to denote ×12). Of course, you probably weren’t expecting 0 to be the
identity for ×12; this operation is based on multiplication, so 1 is a more
likely candidate. And indeed 1 is the identity because for every a ∈ Z12,
1a = a1 = a. However, not every element has an inverse under ×12.
Some elements do: 5×12 5 = 1, so 5 is self-inverse. But 3 has no inverse
because there is no element x such that 3x = x3 = 1. How is that related
to the diagram below? Which other elements have multiplicative inverses
and which do not? Which elements would have inverses in (Z8,×8), or
in (Z11,×11)?

3

6

9

0

1

Chapter 9 will pick up this discussion. For now, note that inverses are
closely tied to equation solving. You can check from the table that in
(Z12,×12):

the equation 5x = 8 has exactly one solution x = 4;
the equation 3x = 8 has no solutions;
the equation 3x = 9 has multiple solutions x = 3,7,11.

That is because solving these equations relies on multiplicative inverses.
To solve an equation like ax = 8 for x, we want to multiply both sides (on
the left) by a−1. If a−1 exists, this is fine. For the first equation,

5x = 8 ⇒ 5−15x = 5−18
⇒ x = 5−18
⇒ x = 5.8 = 4.
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This gives a unique solution. And, where a−1 exists, it will give a unique
solution for every equation of the form ax = b. So it is not a coincidence
that an element has an inverse if and only if every element appears
in its row.

If a−1 does not exist, then the equation does not have a unique solution;
it might have no solutions or multiple solutions, as in 3x = 8 or 3x = 9.
This differs dramatically from standard multiplication on R, say, where
all three equations have unique solutions. So, although you might be
accustomed to saying that ‘the multiplicative inverse of 5 is 1

5 , that is true
only in Q or R or C under standard multiplication. In (Z12,×12), the
inverse of 5 is 5, and some elements do not have inverses. Are there values
of n for which every element of the structure (Zn,×n) has an inverse?
No, because 0 never has a multiplicative inverse. Are there values of n for
which every element of (Zn\{0},×n) has an inverse? If so, what are they?
Is there an n for which (Zn\{0},×n) has elements that have inverses but
are not self-inverse?

To conclude this section, I would like to make two points. First, it
is a while since we touched on subtraction or division. More often in
Abstract Algebra we speak about addition or multiplication, then ask
whether additive and multiplicative inverses exist. Second, you might
have noticed that I have discussed how closure, identities, inverses and
commutativity are reflected in binary operation tables. I have not done
the same for associativity. Why is that, do you think? There are two
reasons.One is that associativity is about triples of elements in expressions
like (s1 ∗ s2) ∗ s3. A table cannot represent these because it is only two-
dimensional—how could a hypothetical three-dimensional ‘table’ be used
to check whether (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3)? The other reason is that
associativity is typically either axiomatically assumed or inherited from a
structure in which it is axiomatically assumed. For instance, associativity
for addition modulo 12 requires that

∀a,b,c ∈ Z, ((a+ b)+ c)(mod12)= (a+ (b+ c))(mod12).

Whymust this be true in terms of remainders and associativity of addition
in Z? Checking inherited properties can be tedious, so the extent to which
you see it will depend on whether your lecturer is a stickler for detail.
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It can require care over quantification, however, and the next section
discusses such a case.

5.4 Binary operations on functions

We have so far considered binary operations on numbers and on equiv-
alence classes of numbers. But mathematics also contains binary opera-
tions on other objects such as functions. Thinking of functions as objects
requires more effort than thinking of numbers as objects, because func-
tions are studied later and because a single function can capture lots
of information. But language and diagrams help: we talk about ‘the
function f given by f(x)= x2’ (‘function’ is a noun), andwe represent such
functions on single graphs.

Like numbers, functions can be combined via a binary operation called
addition. This is meaningful only if two functions are defined on the
same set, but for plenty of functions that is not problematic. For instance,
consider the set of all continuous functions from R to R, sometimes
denoted C0(R,R). Two functions f,g ∈ C0(R,R) can be added together:

∀x ∈ R, ( f+ g)(x)= f(x)+ g(x).

Adding two continuous functions always gives another—this might be
proved in Calculus or Analysis. So it is true that

∀f,g ∈ C0(R,R), f+ g ∈ C0(R,R).

Thus the set C0(R,R) is closed under function addition. But notice that
this claim uses two layers of quantification. Function addition stipu-
lates that for all x ∈ R, ( f+ g)(x)= f(x)+ g(x); this means that for all
x ∈ R, the numbers ( f+ g)(x) and f(x)+ g(x) are equal. Closure of the
set C0(R,R) under function addition requires that for all f,g ∈ C0(R,R),
f+ g ∈ C0(R,R); this involves adding two entire continuous functions f
and g to get another. For this reason, we tend to tighten up on notation.
Before undergraduate level, people often say ‘the function f(x)’, which is
ambiguous because f(x) is arguably a number, not a function. I tend to
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say ‘the function f ’ instead, which helps me to think of f as an element of
a set.

Quantification is also important when addressing associativity for
function addition on C0(R,R). For associativity, we need

∀f,g,h ∈ C0(R,R), ( f+ g)+ h = f+ (g+ h).

Is this true? We can check by unpacking the equation into a statement
about function equality. The equality ( f+ g)+ h = f+ (g+ h)means

∀x ∈ R, (( f+ g)+ h)(x)= ( f+ (g+ h))(x).

How would you write a careful argument that this is the case?
Identities and inverseswork straightforwardly for addition onC0(R,R).

However, using ‘e’ in the context of functions seems ill advised, so I will
switch to the notation ‘ı’ for this identity. Then ı : R → R should be a
continuous function with the property that

∀f ∈ C0(R,R), ı+ f = f+ ı = f.

Which function ı has this property? It is ı : R → R defined by ı(x)= 0
∀x ∈ R.

Inverses then follow.The inverse of f is a function g ∈ C0(R,R)with the
property that f+ g = g+ f = ı, meaning that

∀x ∈ R, f(x)+ g(x)= g(x)+ f(x)= 0.

For instance, for f : R → R defined by f(x)= x3, the inverse function is
g : R → R defined by g(x)= −x3.

Notice that this is unusual: we normally say that ‘the’ identity function
is ı : R → R defined by ı(x)= x, and that ‘the’ inverse of f : R → R

defined by f(x)= x3 is f −1 : R → R defined by f −1(x)= 3√x. What has
happened? As usual, this is about the binary operation. I have been
discussing function addition. But when we talk about inverse functions,
we usually assume that the binary operation is composition, denoted by
‘◦’ or parentheses. Under composition, the identity is ı : R → R given
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by ı(x)= x. And f : R → R defined by f(x)= x3 has inverse f−1 : R → R

defined by f−1(x)= 3√x because ∀x ∈ R,

f−1 ◦ f(x)= f−1( f(x))= 3√
x3 = x

and

f ◦ f−1(x)= f( f−1(x))=
(

3√x
)3 = x.

Function composition is an important operation for a range of structures
in Abstract Algebra, and it is associative. You might see this confirmed as
below.

Theorem: Let S be a set and f,g,h be functions mapping S into S.
Then ( f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof : ∀x ∈ S, (( f ◦ g) ◦ h)(x) = ( f ◦ g)(h(x))
= f (g(h(x)))
= f (g ◦ h(x))
= ( f ◦ (g ◦ h))(x).

5.5 Matrices and transformations

Another type of object is a matrix. Matrices, like functions, might feel less
like objects than numbers. But matrices of appropriately matching sizes
can be combined via binary operations. For instance, for 2× 2 matrices,
addition and multiplication work like this:(

a b
c d

)
+
(

k l
m n

)
=
(

a+ k b+ l
c+m d+ n

)
;

(
a b
c d

)(
k l
m n

)
=
(

ak+ bm al+ bn
ck+ dm cl+ dm

)
.

Theset of 2× 2matrices with entries in R is sometimes denoted byM2(R)
or M(2,R) or M2×2(R) (I know, multiple notations are annoying—I
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prefer the last as it seems clearest what it means). This set is closed under
matrix addition and under matrix multiplication—why? Both operations
are associative, which you can check as in Section 1.2. Addition is com-
mutative, but multiplication is not, so M2×2(R) under multiplication is a
non-commutative algebraic structure.

How about identities and inverses? For addition, the identity is amatrix
of zeros, and all 2× 2 matrices have additive inverses. For multiplication,
the identity is(

1 0
0 1

)
, and

(
a b
c d

)
has inverse

1
ad− bc

(
d −b
−c a

)
.

How would you check that these claims are true? And what condition
must the determinant ad− bc satisfy for a multiplicative inverse to exist?

If you have studied Linear Algebra, you might know that matrices are
closely tied to transformations ormaps. Amatrix inM2×2(R) corresponds
to a linear map from R2 to itself. This is because R2 is an abbreviation for
R × R, which means the set of all pairs of real numbers (x,y) or the set of
all vectors of the form (

x
y

)
where x,y ∈ R.

Thus R2 is ‘the plane’. A 2× 2 matrix A corresponds via matrix multi-
plication to a linear transformation TA : R2 → R2 that maps the plane to
itself:

if A =
(
a11 a12
a21 a22

)
then A

(
x
y

)
=
(
a11 a12
a21 a22

)(
x
y

)
=
(
a11x+ a12y
a21x+ a22y

)
.

Note that the output is an element of R2 because a11x+ a12y and
a21x+ a22y are both single numbers. Note also that composing
transformations corresponds to multiplying matrices: if the matrix B
corresponds to another transformation TB, the matrix for performing TA
then TB is BA. Why BA rather than AB, and how does that correspond to
the usual written order for function composition?
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For intuition, I find it helpful to think about whichmatrices correspond
to simple transformations. For instance, the identity matrix maps every
point to itself. A multiple of the identity matrix is an enlargement or dila-
tion centred at (0,0); this ‘makes everything bigger or smaller’ because,
for instance, (

5 0
0 5

)(
x
y

)
=
(

5x
5y

)
.

What is the determinant for this dilation matrix? What is the inverse
transformation and what are its matrix and determinant?

A projection to the x-axis sends every point (x,y) to (x,0); its matrix is
shown in the calculation below. What is the corresponding determinant?
What geometric problem means that this transformation has no inverse?

x

y 1 0
0 0

x

y
=

x

0

(x2, 0)

(x1, 0)

(x2, y2)

(x1, y1)

A reflection or flip in the y-axis retains each point’s y-coordinate and
sends the x coordinate to the negative of itself. Inspect the diagram and
calculation below, then ask what matrix would correspond to a reflection
in the x-axis or in the line y = x. What are the inverse transformations
and what are their matrices and determinants?

x

y

(x1 , y1)

(x2 , y2)

−1 0

0 1

x

y
=

−x

y

(−x2 , y2)

(−x1 , y1)
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A 90◦ rotation about (0,0) takes the point (x,y) to (−y,x). Think about
why this works everywhere, not just for (x,y) in the first quadrant.

x

y 0 −1

1 0

x

y
=

−y

x
(x, y)

(−y, x)

More generally, a rotation of θ about (0,0) has matrix
(

cosθ −sinθ
sinθ cosθ

)
.

What is the inverse of this rotation?What are its matrix and determinant?
If you answered the questions about determinants, you will have

observed that all rotations and reflections have determinant ±1, as
do their inverses. Why must a matrix with determinant ±1 have an
inverse with determinant ±1? Rotations and reflections are isometries
of the plane, where an isometry is a distance-preserving transformation.
Distance-preserving means what it sounds like it means: if any two points
(x1,y1) and (x2,y2) are distance d apart before the transformation,
they are distance d apart after. Isometries are sometimes called ‘rigid
motions’—why, do you think? What does this have to do with their
determinants?

Finally, you might notice that I have not discussed all possible isome-
tries. As well as rotations and reflections, there exist translations and
glide reflections, which cannot be represented by matrices in the same
way and which tend to come up later rather than earlier in Abstract
Algebra. Specific rotations and reflections, however, form the elements
of an important class of structures, as discussed next.

5.6 Symmetries and permutations

Another type of mathematical object is a symmetry. The idea of symme-
tries as objects was introduced in Section 1.3, which noted that an equilat-
eral triangle has six distinct symmetries: two rotations, three reflections
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and an identity (‘do nothing’). These symmetries are represented below;
the dots are just to track which vertex goes where.

e ρ ρ2

r1 r2 r3

Each symmetry can be understood as a transformation, a function map-
ping the triangle to itself.We could think of the triangle as centred at (0,0)
so that its symmetries form a subset of isometries of the plane. Indeed,
youmight observe that the triangle in fact has infinitelymany symmetries
because we could keep spinning it: a rotation through 480◦ would map it
to itself just as well as a rotation through 120◦. But the two have the same
effect on the triangle’s vertices, so there are only six interestingly different
symmetries.

Because symmetries are transformations, they can be combined using
composition. For the symmetries of an equilateral triangle, we can con-
struct a binary operation table by cutting out a triangle, labelling its ver-
tices, deciding on a ‘start’ position, then performing pairs of symmetries
to check where it ends up. For instance, as observed in Section 1.3, the
rotation ρ followed by the reflection r1 gives the single reflection r2.

ρ r1

I strongly recommend that you do this cutting, labelling and turning. I am
not a stickler for tedious checks, but I do believe that developing intuition
for a new structure requires more than just reading a book. It will take
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five minutes to construct the whole table, so please do. Then check that it
matches that below.

◦ e ρ ρ2 r1 r2 r3

e e ρ ρ2 r1 r2 r3

ρ ρ ρ2 e r2 r3 r1

ρ2 ρ2 e ρ r3 r1 r2

r1 r1 r3 r2 e ρ2 ρ

r2 r2 r1 r3 ρ e ρ2

r3 r3 r2 r1 ρ2 ρ e

Next, take a minute to stare at this table and notice things. The table
uses only the six existing symbols, so this set of symmetries is closed
under composition; physically, any symmetry puts the triangle back in
its ‘frame’, so performing one then another does too. Second, the table is
not symmetrical about its main diagonal, so composition on this set of
symmetries is not commutative. There is a subtlety, though, because it
is not obvious how to order the elements. I put the rotations ‘before’ the
reflections, but they could be written in any order. Is there an order for
which symmetry about the main diagonal would appear? If so, what is it?
If not, why not?

As usual, associativity is not visible in the table. You could check it
for every triple of elements, but my money would be on your getting
bored before you finish. We need not worry, though, because symmetries
are transformations and transformations are functions, and function
composition is always associative (see Section 5.4). How about identities
and inverses? The identity under composition is ‘do nothing’, which is in
the top row and left column as usual. Which elements are inverses of one
another? Which are self-inverse? Every element has an inverse, so this set
of symmetries under composition forms a group known as the dihedral
group D3.
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Next, notice that the body of the table splits naturally into four
checkerboard squares, two 3× 3 squares of rotations (with the identity)
and two 3× 3 squares of reflections. Why is that, in terms of triangle
manipulations?

◦ e ρ ρ2 r1 r2 r3

e e ρ ρ2 r1 r2 r3

ρ ρ ρ2 e r2 r3 r1

ρ2 ρ2 e ρ r3 r1 r2

r1 r1 r3 r2 e ρ2 ρ

r2 r2 r1 r3 ρ e ρ2

r3 r3 r2 r1 ρ2 ρ e

Mathematically, this pattern manifests a quotient group, which will be
discussed in Chapter 7. In the meantime, you can develop more intuition
by asking how all of this works for the symmetries of a square. How
many symmetries does a square have, and how might we denote them?
Again, I recommend cutting out and labelling a square and making a
binary operation table. Do patterns of inverses work similarly to those
for a triangle, and does this table also split naturally into checkerboard
squares? Save your table for reference, then decide whether you have
enough insight to imagine its equivalent for the symmetries of a regular
pentagon or hexagon, or whether it would be worth making tables for
those too.

To conclude this section, note that an alternative, number-based
labelling provides another way to represent symmetries. Below, for
instance, a clockwise rotation ρ of a square through 90◦ sends vertex 1 to
position 2, vertex 2 to position 3, and so on; a reflection r1 in the vertical
line swaps vertices 1 and 2 and vertices 3 and 4. Such transformations
permute the vertices, where a permutation of a set S is a rearrangement
of the elements of S. Symmetries of the square can be represented as
permutations of {1,2,3,4}.
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1 2

3 4

4

4 33 2

21 1ρe r
1

There are two common notations for such permutations. One is ‘double-
decker’ notation, in which the top row of a bracketed array lists the set’s
elements, and the bottom row shows where each one goes. Permutations
corresponding to ρ and r1 would be denoted

ρ =
(

1 2 3 4
2 3 4 1

)
and r1 =

(
1 2 3 4
2 1 4 3

)
.

Mathematicians like brevity, however, and a more economical tuple nota-
tion uses just one row with one or more sets of brackets. Each element
‘goes to’ the one that follows in its bracket; the last in any bracket ‘goes
back around to’ the first. So ρ and r1 would be denoted

ρ = (1234) and r1 = (12)(34).

Formally, a permutation is a bijection from a set S to itself—a function
whose image is the whole of S, with no two elements mapping to the same
element. So two permutations can be treated as objects and combined via
composition.The diagram on the right represents this, performing ρ then
r1 for the square. When these are composed, 1 goes to 2 then back to 1
again; 2 goes to 3 then to 4, and so on.

1

2

3

4

ρ

11 1

22 2

33 3

44 4

1

2

3

4

ρ

1 1

2 2

3 3

4 4

r1 r1

In bracket notations, composition is represented implicitly using juxta-
position. And because permutations are functions, it is common to write
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the first permutation on the right.We therefore find out ‘where an element
goes’ by following it from the right permutation to the left. Here is how
that looks for the element 2 in double-decker notation. How do you think
it looks in tuple notation?

1 2 3 4
2 1 4 3

1 2 3 4
2 3 4 1

=
1 2 3 4
1 4 3 2

Because composing two permutations gives another, the set of all per-
mutations is closed under composition. And, because permutations are
functions, composition is associative. What is the identity permutation,
and howdo inverses work? If shown a permutation, could youwrite down
its inverse?

Finally, consider the relationship between permutations and symme-
tries. The set of all permutations of {1,2,3,4} has 4! = 24 elements. Why
is that? Does every permutation correspond to a symmetry of the square?
If not, which do not correspond to symmetries, andwhy not?Wewill pick
up this discussion in Section 6.9 and Chapter 7.

5.7 Binary operations as functions

This section concludes the chapter by sorting out some formalities. Sec-
tion 5.1 observed that a binary operation on a set S is formally defined
as a function on S× S. What exactly does that mean? It is not about
binary operations on functions, which take two functions and add or
compose them. Rather, it is about binary operations as function, on S× S.
The notation S× S means the set of all pairs (s1, s2) where s1, s2 ∈ S; a
function on S× S assigns an output to every such pair. For instance, a
binary operation on S = R is a function on R × R, where R × R is often
denoted by R2. For some readers, functions on R2 will be familiar from
multivariable calculus. For instance, the function f : R2 → R given by
f(x,y)= x2 − y2 is graphed below: each point (x,y) in the ‘input’ plane
has an ‘output’ z = f(x,y) at height x2 − y2.
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f (4, 2) = 42 − 22 = 12

–3

–3
–4

–20

–10

0

10

20

–2

–2

–1

–1

0

yx

10
1

2

2

3

3

4

4

For a finite-set example, consider S = Z12, as in Section 5.4. A binary
operation∗ on Z12 is a function on Z12 × Z12, so the ‘input’ set is a 12× 12
grid of points (x,y). Each ‘output’ is a point above (x,y) at height x ∗ y. For
instance, the binary operation ×12 is a function Z12 × Z12 → Z12. It is
not practical to graph the ‘whole’ function, but the diagram below shows
points corresponding to

3×12 1 = 3, 3×12 2 = 6, 3×12 3 = 9 and 3×12 4 = 0.

x

y

x ×12 y

1
2

3
4

1
2

3

4

3

6

9

0

In both cases, a binary operation ∗ on a set S is a function ∗ : S× S → S.
That notation might seem unnatural because we are used to seeing an f
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before the colon, not a ∗. So, to highlight the regularity, here are some
binary operations considered in this chapter.

× : Z × Z → Z

∗ : R × R → R given by a ∗ b = 1
2 (a+ b)

+12 : Z12 × Z12 → Z12

◦ : C0(R,R)×C0(R,R)→ C0(R,R)

× : M2×2(R)×M2×2(R)→ M2×2(R)

But there subtleties. First, as discussed in Section 5.2, binary operations
combine two elements, not three or some other number; that is what it
means to describe a binary operation as a function on S× S. In particular,
a binary operation is not a function on S, so a function like f : R → R

given by f(x)= x2 is not a binary operation. That x might be squared, but
f has domain R, not R × R.

Second, the binary operations listed above are functions ∗:S×S→S;
their outputs are in the same sets as the elements in their input pairs.
This returns us to the point from Section 5.1 about closure: each set is
closed under the listed binary operation. And, technically, this has to be
the case: for a binary operation ∗ : S× S → S, the output must be in S.
But we have also considered cases in which a set is not closed under a
binary operation: Z\{0} is not closed under division, for instance. This
does not prevent us talking about division on Z\{0}: we could consider
division to be a partial function on Z × Z or—as noted in Section 2.2—
we could consider division as a binary operation on Q\{0} and note that
Z\{0} as a subset ofQ\{0} is not closed under division.Abinary operation
on a restricted subset is sometimes called the induced operation on that
subset, which is captured in the following, more careful, definition of
closure.

Definition: Suppose that ∗ is a binary operation on a set S, and X ⊆ S.
Then X is closed under ∗ if and only if ∀x1,x2 ∈ X,
x1 ∗ x2 ∈ X.
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Now, if you digested the information in Section 2.3, you might notice
that this formality has implications for the definition of group, which is
reproduced below (in explicit operation form). Can you see the issue?

Definition: A group is a set G with a binary operation ∗ such that:

Closure ∀g1,g2 ∈ G, g1 ∗ g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3);
Identity ∃e ∈ G such that ∀g ∈ G, e ∗ g = g ∗ e = g;
Inverses ∀g ∈ G, ∃g′ ∈ G such that g ∗ g′ = g′ ∗ g = e.

This definition introduces a set and a binary operation, then lists a closure
axiom. But this axiom is redundant, because closure is implicit in the
definition of binary operation. Some people, therefore, omit the closure
axiom, listing just the other three. But many do list all four, which I think
is a good idea. Keeping definitions minimal contributes to mathematical
elegance, but it can also lead to overlooking key ideas. Moreover, making
closure explicit clarifies links between groups and subgroups, as discussed
in the next chapter.
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chapter 6

Groups and Subgroups

This chapter introduces groups, including cyclic groups, symmetry groups and
permutation groups, as well as groups of numbers and matrices. It discusses
group structures via subgroups, generators and relations. It identifies phenom-
ena common across groups and subgroups, for some providing theorems and
proofs and for others raising questions to be addressed in later chapters.

6.1 What is a group?

F irst, a note about language. In everyday life, the words group and set
are used pretty interchangeably. In some situations, one or the other
might sound more natural—a group of friends, a set of cutlery—

but the meaning is usually a collection of things that go together. In
mathematics, this is not the case: the words group and set have different
mathematical meanings. A mathematical set is simply a collection of
objects. These objects might have something in common, but that is not
necessary—a set need not have special properties. A mathematical group,
on the other hand, does have special properties. A group (G,∗) is a set G
with a binary operation ∗ that satisfies four1 axioms as in the definition
below (first discussed in Sections 1.3 and 2.3). In Abstract Algebra, we say
‘group’ only when we mean it in this sense.

1 If the definition in your course has three, see Section 5.7.
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Definition: A group is a set G with a binary operation ∗ such that:
Closure ∀g1,g2 ∈ G, g1 ∗ g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3);
Identity ∃e ∈ G such that ∀g ∈ G, e ∗ g = g ∗ e = g;
Inverses ∀g ∈ G, ∃g′ ∈ G such that g ∗ g′ = g′ ∗ g = e.

Section 2.3 established that the integers under the operation of addition
satisfy this definition and thus form a group, sometimes denoted (Z,+).
The integer multiples of 3 under addition also form a group, denoted
(3Z,+) where 3Z = {3n|n ∈ Z}. You might want to check that these
structures satisfy the group axioms.

Now, although groups involve both sets and binary operations, the sets
tend to be more salient. This can mean that students pay insufficient
attention to binary operations, which is why this book has a separate
binary operations chapter. So, if you flipped straight to the present chapter
because you are studying group theory, I recommend that you first
flip back and read Chapter 5. Your lecturer might assume that binary
operations are simple and familiar, and in a sense they are. But that’s what
makes them hard to focus on in their own right.

Chapter 5 considered various sets and binary operations in relation to
the group properties of closure, associativity, identities and inverses. Do
you understand why the structures below all satisfy the group definition?
(If you have not readChapter 5, perhaps this will convince you to do so.)

• the integers under addition
• the integer multiples of 3 under addition
• the integers modulo 12 under addition modulo 12
• the continuous functions on R under function addition
• the symmetries of an equilateral triangle under composition
• the permutations of the set {1,2,3,4} under composition.

Chapter 5 also discussed structures that do not form groups. The integers
modulo 12 do not form a group under multiplication modulo 12 because
not every element has a multiplicative inverse (see Section 5.4). Similarly,
the set of all 2× 2 matrices does not form a group under multiplication
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because not everymatrix has amultiplicative inverse. Restrictions of these
sets that do give groups will be discussed in this chapter.

Before considering specific groups, however, it is worth discussing
notation. In the definition above, the binary operation is denoted ‘∗’
(‘star’). But if the operation is (or is ‘like’) addition, it might be natural to
denote the operation by ‘+’, the identity by ‘0’ and the inverse of g by ‘−g’.
Check that the definition below is equivalent to the general version.

Definition: A group is a set G with a binary operation + such that:

Closure ∀g1,g2 ∈ G, g1 + g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1 + g2)+ g3 = g1 + ( g2 + g3);
Identity ∃0 ∈ G such that ∀g ∈ G, 0+ g = g+ 0 = g;
Inverses ∀g ∈ G, ∃(−g) ∈ G such that g+ (−g)= (−g)+ g = 0.

Similarly, as discussed in Section 2.5, the definition can be stated
using multiplicative notation, denoting the operation by juxtaposition,
the identity by ‘1’ and the inverse of g by ‘g−1’. Again, check that the
definition below is equivalent to the explicit-operation version. Which
version would be most natural for each group listed so far?

Definition: A group is a set G with a binary operation (denoted by
juxtaposition) such that:

Closure ∀g1,g2 ∈ G, g1g2 ∈ G;
Associativity ∀g1,g2,g3 ∈ G, (g1g2)g3 = g1(g2g3);
Identity ∃1 ∈ G such that ∀g ∈ G, 1g = g1 = g;
Inverses ∀g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = 1.

Additive and multiplicative notations bring along other conventions.
Combining an element with itself can be written using multiples in
additive notation, where

g+ g+ ·· · + g︸ ︷︷ ︸
n

= ng,
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and using powers in multiplicative notation, where

gg . . .g︸ ︷︷ ︸
n

= gn.

In these expressions, g is a group element but n is always an integer,
because n versions of the element g are combined. This might seem
obvious in groups with non-numerical elements, but it can be harder to
track in numerical or general contexts. I will draw attention to possi-
ble muddles. Note also that these expressions—without brackets—make
sense only because we know that the binary operation in a group is
associative (see Section 5.2).

Now, this different-notations business can seem needlessly compli-
cated. A student might wonder why mathematicians don’t just pick one
notation and stick to it. And in fact they mostly do, but in a consid-
ered way. General theorems and proofs tend to be written in multi-
plicative notation, which is the most economical. But specific notations
like ‘+’ for addition or ‘◦’ for composition might be used for specific
groups.

And specific groups take up the bulk of this chapter, the main aim of
which is to provide familiarity with groups that you will likely encounter.
But you should not worry if your course omits some of these or involves
different groups—courses have different emphases. A second aim is to
draw attention to things worth noticing, in some cases proving that
general properties hold for all groups, and in others providing informal
introductions to ideas discussed in later chapters. To this end, I will often
use group tables (often called Cayley tables), which can aid intuition. For
instance, the well-trained eye might use them to spot structures such as
subgroups.

6.2 What is a subgroup?

What do you think subgroup means? If you said ‘a subset of a group’,
that is a good start but not enough. A subgroup is a subset of a group
that, with the same binary operation, is a group in its own right. This
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places restrictions on which subsets are subgroups. For instance, the even
integers form a subgroup (2Z,+) of the additive group (Z,+) because
they satisfy the four claims below. How would you explain informally
what each claim means?

Closure ∀g1,g2 ∈ 2Z, g1 + g2 ∈ 2Z;
Associativity ∀g1,g2,g3 ∈ 2Z, (g1 + g2)+ g3 = g1 + (g2 + g3);
Identity ∃0 ∈ 2Z such that ∀g ∈ 2Z, 0+ g = g+ 0 = g;
Inverses ∀g ∈ 2Z, ∃(−g) ∈ 2Z such that g+ (−g)= (−g)+ g = 0.

In contrast, the odd numbers do not form a subgroup of (Z,+).
They do not satisfy closure because adding two odd numbers does
not give an odd number. They contain no additive identity because zero
is even. The odd numbers do satisfy associativity and the existence of
additive inverses, but that is only two of the four axioms. So they do not
form a group under addition in their own right and thus cannot form a
subgroup of (Z,+).

For a less familiar example, consider D3, the dihedral group formed
by the six symmetries of an equilateral triangle under composition.
As discussed in Section 5.6, D3 is a group because it is closed under
composition, symmetries are functions so that composition is associative
(see Section 5.5), there is an identity element (the ‘do nothing’ symmetry)
and every symmetry has an inverse.

e ρ ρ
2

r1 r2 r3
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One subgroup of D3 is {e,ρ,ρ2}. The shading in the table below shows
this as a self-contained groupwithinD3.More formally, {e,ρ,ρ2} is closed
under composition, composition is associative, and {e,ρ,ρ2} contains the
identity and all of its elements’ inverses.

◦ e ρ ρ2 r1 r2 r3

e e ρ ρ2 r1 r2 r3

ρ ρ ρ2 e r2 r3 r1

ρ2 ρ2 e ρ r3 r1 r2

r1 r1 r3 r2 e ρ2 ρ

r2 r2 r1 r3 ρ e ρ2

r3 r3 r2 r1 ρ2 ρ e

As noted in Chapter 5, associativity is no fun to check directly—no
one wants to confirm that for every three elements g1,g2 and g3 it is
true that (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3). Fortunately, associativity is defined
using the single universal quantifier for all, so every subset of every group
inherits associativity from the group (see Section 3.5). This reasoning
means that associativity is never a problem for subgroups. And it is often
easy to check whether a possible subgroup contains the identity. Inverses
and closure might require more thought, though. With that in mind,
can you identify other subgroups of D3? Can you find them all? Try this
before moving on as it will help you to get a feel for the structure of this
group and for how subgroups work in general. Section 6.7 will examine
dihedral groups in more detail, and Section 6.10 will consider conditions
guaranteeing that a subset of a group is a subgroup.

In the meantime, you can develop intuition by considering other
groups. Below is a table for the group (Z12,+12), the integers modulo 12
under addition modulo 12 (see Section 5.3). The shaded elements form a
subgroup: the set {0,3,6,9} is closed under +12, associativity is inherited,
the identity 0 is included, and 3 and 9 are mutually inverse and 0 and 6
are self-inverse. How are these properties manifest in the table?
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+12 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 4 5 6 7 8 9 10 11 0

2 2 3 4 5 6 7 8 9 10 11 0 1

3 3 4 5 6 7 8 9 10 11 0 1 2

4 4 5 6 7 8 9 10 11 0 1 2 3

5 5 6 7 8 9 10 11 0 1 2 3 4

6 6 7 8 9 10 11 0 1 2 3 4 5

7 7 8 9 10 11 0 1 2 3 4 5 6

8 8 9 10 11 0 1 2 3 4 5 6 7

9 9 10 11 0 1 2 3 4 5 6 7 8

10 10 11 0 1 2 3 4 5 6 7 8 9

11 11 0 1 2 3 4 5 6 7 8 9 10

The elements of the subgroup {0,3,6,9} are not adjacent in the ‘natural’
table order, but they can be pulled out to form a mini-table.

+12 0 3 6 9

0 0 3 6 9

3 3 6 9 0

6 6 9 0 3

9 9 0 3 6

What other subgroups does (Z12,+12) have? Again, can you list them
all? And do you notice anything about the number of elements in each
subgroup? Could (Z12,+12) have a subgroup with exactly five elements,
for instance? How about eight? Do you have an intuitive sense of why
there must be a restriction?
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6.3 Cyclic groups and subgroups

The group (Z12,+12) is a cyclic group, which might seem a natural
description based on the clock-face diagrams in Section 5.3. We can
‘cycle through’ the whole group by starting at the identity 0 (or, indeed,
anywhere else) and repeatedly adding 1.

0

1

More technically, 1 is a generator for this group, because repeatedly
combining 1 with itself via the operation +12 generates the whole group.
Definitions of generate and cyclic group for additive groups appear below.
Notice that different brackets are used to convey specific meanings.

Definition: Let (G,+) be a group and g ∈ G. The set generated by g is
⟨g⟩ = {ng|n ∈ Z}.

Definition: Let (G,+) be a group. Then G is cyclic if and only if ∃g ∈ G
such that G = ⟨g⟩.

For groups expressed in multiplicative notation, the first definition
appears below. Why does the definition of cyclic not need to change?

Definition: Let (G,×) be a group and g ∈ G. The set generator g is
⟨g⟩ = {gn|n ∈ Z}.

Now, does (Z12,+12)have generators other than 1?This questionmight
seem strange because it is intuitively natural to think of 1 as ‘the’ generator.
But there is nothing in the definition to say that a generator has to be
unique. Is 2 a generator, for instance?
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0

2

No, because the set generated by 2 is ⟨2⟩ = {2,4,6,8,10,0} ̸= Z12. Simi-
larly, neither 3 nor 4 is a generator, because ⟨3⟩ = {3,6,9,0} and ⟨4⟩ =
{4,8,0}. Notice that ⟨9⟩ = ⟨3⟩ and ⟨8⟩ = ⟨4⟩, and that every element
generates a subgroup. Does 5 generate (Z12,+12)? Check and you will
find that it does.

0

5

10 10

8

3

List all generators and you will notice that each is relatively prime to 12—
the generator and 12 have no common factors. Why?

Next, how do these ideas apply to the cyclic group (Z7,+7), the integers
modulo 7 under addition modulo 7? What generators does this have?

+7 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5
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Because 7 is prime, every nonzero element is relatively prime to 7 and
thus generates the whole group. Does that mean that (Z7,+7) has no
subgroups? No: it still has two. The first is the whole group: a group is
always a subgroup of itself. If you are inclined to think that the whole
group is not a ‘proper’ subgroup, you will be pleased to learn that mathe-
maticians use exactly that language. A proper subgroup is a subgroup that
is not the whole group, so (Z7,+7) is not a proper subgroup of itself.
The other subgroup of (Z7,+7) is ({0},+7), the set {0} under addition
modulo 7.This is a valid subgroup because it satisfies the group axioms. It
is closed under the binary operation because 0+7 0 = 0; the operation is
associative because (0+7 0)+7 0 = 0+7 (0+7 0); it contains the identity
element 0; and the single element 0 is its own inverse. If you think that
({0},+7) is a trivial subgroup, you will again be pleased to learn that this
exactly is what it is sometimes called.

+7 0

0 0

Thenumber of elements in a group (G,∗) is called the order of the group
and is denoted by |G|. To me this notation makes sense because |G| is
the ‘size’ of G, just as |−3| is the ‘size’ of the number −3. Generalizing the
above, every cyclic group of prime order has exactly two subgroups, the
whole group and the trivial subgroup. Cyclic groups of non-prime order
have networks of nested subgroups, the relationships between which can
be represented in diagrams like this one for (Z12,+12):

(Z12,+12)

({0, 2, 4, 6, 8, 10},+12)

({0, 4, 8},+12)

({0, 3, 6, 9},+12)

({0, 6},+12)

({0},+12)

Using generator notation, the labels can be abbreviated.
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1 = Z12

2

3

4
6

0

What would diagrams look like for (Z7,+7), (Z8,+8) and (Z60,+60)?
One thing to remember is that a subgroup must have the same

operation as its group. That might sound obvious, but people can get
muddled if they do not differentiate groups and sets, a problem com-
pounded by mathematicians omitting the operation when dealing with
standard groups: for (Z12,+12), they often write Z12. This abbreviation
is perfectly reasonable, and I will use it unless I sense ambiguity. But it
can tempt students into saying that Z4 is a subgroup of Z12. This is not
true because although {0,1,2,3} ⊆ {0,1,2,3,4,5,6,7,8,9,10,11}, Z4 has
operation +4, not +12, and the set {0,1,2,3} is not closed under +12: for
instance, 3+ 2 = 5 /∈ {0,1,2,3}.

That said, if you are sensitive to abstract structures then this might give
you a ‘yeah, but …’ feeling. You might want to say that Z4 is a subgroup
of Z12 because although the four-element set {0,1,2,3} is not closed
under +12, the four-element set {0,3,6,9} is, and ({0,3,6,9},+12) has
the same structure as (Z4,+4). If you did think that, good. If not, examine
the following tables. These involve different objects but have identical
structures. In mathematical terms, their structures are isomorphic, so it is
accurate to say that Z12 has a subgroup isomorphic to Z4. Isomorphisms
are discussed in Chapter 8.

+12 0 3 6 9

0 0 3 6 9

3 3 6 9 0

6 6 9 0 3

9 9 0 3 6

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
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6.4 Cyclic subgroups and generators

Did you notice that in the subgroup diagram for Z12, all of the subgroups
are cyclic? Each is generated by a single element, including the trivial
subgroup ({0},+12), which is generated by 0. In general, if a subgroup
contains the element g, it must by closure contain g ∗ g and g ∗ g ∗ g and
so on. If a subgroup of Z12 contains 3, it must contain 3+12 3 = 6 and
3+12 3+12 3 = 9 and 3+12 3+12 3+12 3 = 0. Similarly, every element
of Z12 generates a cyclic subgroup; sometimes this subgroup is the whole
of Z12.

Could Z12 also have non-cyclic subgroups? The fact that every element
generates a cyclic subgroup does not imply that every subgroup is cyclic—
perhaps there also exist subgroups without single generators. We can
explore by supposing that a subgroup H of Z12 contains, say, both 3 and
4. It must contain every multiple of 3 and of 4, so H ⊇ {3,6,9,0,4,8}. Is
that it? No: H must also contain every combination of these elements.
In particular, it must contain 9+12 4 = 1. And because it contains the
generator 1, it must be the whole group.

Perhaps similar reasoning convinces you that every subgroup of Z12
must be cyclic. But maybe in bigger cyclic groups, weirder things can
happen. What do you think? Is that possible? Might ‘big’ cyclic groups
have non-cyclic subgroups? It turns out—as in the theorem quoted in
Section 3.5—that the answer is no: every subgroup of every cyclic group is
cyclic. To prove this it helps to work with general notation and to consider
both generators and relations. The group Z12 has a single generator and
satisfies the relation that adding the generator to itself 12 times gives the
identity:

1+12 1+12 1+12 1+12 1+12 1+12 1+12 1+12 1+12 1+12 1+12 1︸ ︷︷ ︸
12

= 0.

Specifying generators and relations provides an economical way to rep-
resent groups; to standardize across groups, this is usually done in mul-
tiplicative notation. The group Z12 can be written ⟨a|a12 = e⟩, meaning
the group generated by a subject to the relation that a12 is the identity. In
this notation, the table for Z12 appears as below. This strips away links to
congruence classes and focuses attention on the abstract structure.
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e a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

e e a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

a a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 e

a2 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 e a

a3 a3 a4 a5 a6 a7 a8 a9 a10 a11 e a a2

a4 a4 a5 a6 a7 a8 a9 a10 a11 e a a2 a3

a5 a5 a6 a7 a8 a9 a10 a11 e a a2 a3 a4

a6 a6 a7 a8 a9 a10 a11 e a a2 a3 a4 a5

a7 a7 a8 a9 a10 a11 e a a2 a3 a4 a5 a6

a8 a8 a9 a10 a11 e a a2 a3 a4 a5 a6 a7

a9 a9 a10 a11 e a a2 a3 a4 a5 a6 a7 a8

a10 a10 a11 e a a2 a3 a4 a5 a6 a7 a8 a9

a11 a11 e a a2 a3 a4 a5 a6 a7 a8 a9 a10

We can use this notation to prove that every subgroup of a cyclic group
is cyclic. If you understand the intuitive arguments, then the proof below
might seem unnecessary. But if you like to see how mathematics fits
together, you might like it. It relies upon properties of exponents and the
division algorithm for the integers, which states that if n is an integer and
m is a positive integer, then there exist unique integers q and r such that

n = mq+ r and 0 ≤ r<m.

For instance, if n = 27 and m = 6, then there exist unique integers q and
r such that

27 = 6q+ r, where it happens that q = 4 and r = 3.
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This familiar knowledge is used in the following theorem and proof.
Note that in the proof, the reason for the set-up becomes clear toward the
end. So if, at some point, you are not sure what is happening, remember
the self-explanation training from Section 3.6 and be ready to read back
and forth.

Theorem: Let G be a cyclic group. Then every subgroup of G is cyclic.

Proof : Suppose that G is cyclic and that G = ⟨a⟩.
Suppose that H is a subgroup of G.
If H = {e} then H is cyclic.
IfH ̸= {e}, letm be the smallest positive integer such that am ∈ H.
Claim: H = ⟨am⟩.
Proof of claim:
Let b ∈ H ⊆ G and suppose that b = an.
Then ∃q, r ∈ Z where 0 ≤ r<m such that n = mq+ r.
Thus b = an = amq+r = (am)qar.
So ar = (am)−qan.
Now an,am ∈ H and H is a subgroup, so ar ∈ H by closure.
But 0 ≤ r<m and m is the smallest positive integer such that
am ∈ H.
So r = 0, meaning that n = qm and b = an = (am)q.
Thus b is a power of am.
So H = ⟨am⟩.
Hence H is cyclic.

We can also generalize the observation that in Z12, each element
generates a cyclic subgroup. This is a big generalization because in every
group—not just cyclic groups—each element generates a cyclic subgroup.
You might want to check that you believe this for the groups considered
so far. What subgroups are generated by each element of D3, for instance?
How would the following theorem and proof capture their properties?
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Theorem: Let G be a group and g ∈ G. Then ⟨g⟩ is a subgroup of G.

Proof : Let G be a group and let g ∈ G.
Let a,b,c ∈ ⟨g⟩.
Then ∃ l,m,n ∈ Z such that a = gl,b = gm and c = gn. So

• ⟨g⟩ is closed under the group operation because
ab = g lgm = g l+m ∈ ⟨g⟩.

• The group operation is associative on ⟨g⟩ because
(ab)c = (g lgm)gn = g l+mgn = g l+m+n = g lgm+n = g l(gmgn)=
a(bc).

• The group identity element e ∈ ⟨g⟩ because g0 = e.
• Every element in ⟨g⟩ has its inverse in ⟨g⟩ because g−l ∈ ⟨g⟩ and

glg−l = g−lgl = e.

Thus ⟨g⟩ is a subgroup of G; it is cyclic because it has a single
generator.

As usual, it is worth considering choices made in proof presentation.
For instance, for the above proof I vacillated on notation. First I denoted
the subgroup by ⟨a⟩ and elements of ⟨a⟩ by b,c,d. Then I decided that I
didn’t like that a had a different status from b,c and d, so I changed b,c and
d to x,y and z. Then I decided that I didn’t like having two ‘sets’ of letters
not involving g, so I changed it again. All of these options would be fine—
the decision is a matter of communication. Think about whether other
changes would clarify the argument for you and, if you fancy a challenge,
try writing the above two theorems and proofs in additive notation.

6.5 Theorems about cyclic groups

Most sections of this chapter have started with specific groups and invited
you to generalize. But anAbstract Algebra coursemight present theorems
and proofs without much intuitive preamble. You will therefore have to
work out how general theorems apply to familiar groups. This can be
harder than it sounds, not least because students sometimes try to read
a proof before they’ve fully understood the corresponding theorem. This
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section will therefore use cyclic groups to provide practice in understand-
ing theorems.

First, something simple. Below you can find a definition (first men-
tioned in Section 2.5), along with a theorem. Think about what the
theorem means. How would you explain it informally? Then think about
why itmust be true.How can two elements ofG be represented for a group
of the form G = ⟨a⟩? For G to be abelian, what must be true about these
elements? Which group properties might be useful for a proof?

Definition: A group (G,∗) is abelian if and only if ∗ is commutative
on G.

Theorem: Suppose that G = ⟨a⟩ is a cyclic group. Then G is abelian.

Second, consider the theorem below. This provides good understand-
ing practice because it is a bit of amouthful but, once you get past that, it is
fairly accessible. Note that ‘gcd’ means ‘greatest common divisor’, which
you might have seen expressed as ‘hcf ’ for ‘highest common factor’. With
that in mind, try reading the theorem aloud. Then try working out why
it is reasonable by applying it to the group Z12. Because the theorem is
stated in multiplicative notation, it might be easiest to think of Z12 as
⟨a|a12 = e⟩, so that each element is of the form an.

Theorem: Suppose that G = ⟨a⟩ and |G| = n. Let b ∈ G and b = as.
Then b generates a cyclic subgroup of G containing n/d
elements, where d = gcd{n, s}.

Here is how I would think. For G = Z12, n = 12. For b ∈ G I might pick
b = a5, so s = 5.Then the theorem says that a5 generates a cyclic subgroup
of G containing n/d elements, where d = gcd{n, s} = gcd{12,5} = 1
because 12 and 5 have no common divisors (factors). That is, 5 generates
a subgroup of Z12 containing 12/1 = 12 elements. That is correct because
a5 generates the whole group. It doesn’t best showcase how the theorem
works, however, because a5 generates an improper subgroup. So it is
worth trying again, choosing b = a3 or b = a4 or b = a8. Perhaps you
can immediately see how that would work. If not, think it through. It
would also be worth translating the theorem into the original additive
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notation for Z12, with elements written as numbers representing
congruence classes.

Next, consider the third theorem below.

Theorem: If G = ⟨a⟩ and |G| = n then other generators of G are of the
form ar, where r and n are coprime.

Again, try applying this to Z12, checking against your earlier list of
generators. Does the theorem reflect what you already know? Then try
using it to find generators of (Z60,+60).

This third theorem is a corollary of the second, meaning that it follows
from it more or less directly. Can you work out why? Try asking what d
must be in the second theorem for b to generate the whole group. The
third theorem also provides a way to prove the earlier observation that
a group Zp with p prime has no proper nontrivial subgroups. Can you
see why?

Now, the preceding two theorems are about finite cyclic groups. But
much reasoning in this chapter applies to every cyclic group. This might
seem to make no difference: the cyclic group Zn ‘cycles around’ through
n elements. But cyclic groups do not have to be finite. The circular image
is not universal, because the definition of cyclic group is not about circles:
it is about the group having a single generator. Here it is again, in both
multiplicative and additive forms.

Definition: Let G be a group. Then G is cyclic if and only if ∃g ∈ G such
that G = ⟨g⟩ = {gn|n ∈ Z}.

Definition: Let G be an additive group. Then G is cyclic if and only if
∃g ∈ G such that G = ⟨g⟩ = {ng|n ∈ Z}.

These definitionsmean that the infinite group (Z,+) is cyclic: the element
1 is a generator because Z = ⟨1⟩ = {n1|n ∈ Z}. This feels different from
generators in a finite cyclic group, because starting at the identity and
adding the generator 1 doesn’t seem to give everything.

30 1 2 4−4 −3 −2 −1
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The definition, however, says that an element is a generator if and only
if the set containing every integer multiple of that element is the whole
group. The ‘keep adding the generator’ intuition doesn’t quite correspond
to that because it uses every positive integer multiple of the generator, not
every integer multiple. In finite cyclic groups this makes little difference
because positive multiples alone or positives and negatives together give
the whole group.

0

1

0

1−1

In the infinite cyclic group (Z,+), it makes a big difference.

30 1 2 4−4 −3 −2 −1

Using circles to think about cyclic groups is therefore intuitively helpful
but ‘a bit wrong’ in that it does not quite work for all cases. Consequently,
it would be worth reviewing this chapter to work out which ideas apply to
(Z,+). For instance, does (Z,+) have alternative generators? Yes: g = −1
generates Z, because ⟨−1⟩ = {n(−1)|n ∈ Z} = Z. But that’s it. Every other
element generates a proper subgroup of Z. For instance, the element 3
generates the subgroup

⟨3⟩ = {n3|n ∈ Z} = {. . . ,−6,−3,0,3,6, . . .} = 3Z.

Indeed, every subgroup of (Z,+) takes the form (nZ,+) because the
theorem about subgroups of cyclic groups applies.Which other theorems
apply to (Z,+), and does re-reading with (Z,+) in mind deepen your
understanding?

To conclude, a note on notation: it is important not to mix up nZ and
Zn. The set nZ is the infinite set of integer multiples of n, which forms

122 GROUPS AND SUBGROUPS



OUP CORRECTED PROOF – FINAL, 4/12/2020, SPi

a subgroup of Z under standard addition. The set Zn is the finite set of
congruence classes of the integers under addition modulo n. It is a group
under +n, but it is not a subgroup of Z. It cannot be, because its elements
are not integers and +n is not +. If, however, you have noticed that nZ

and Zn are closely linked, you will probably enjoy Chapter 7.

6.6 Groups of familiar objects

So far, this chapter has been mostly about cyclic groups, which pop
up everywhere—all groups have cyclic subgroups, for instance, because
every element of every group generates a cyclic subgroup. But now
we will consider other groups, starting with ‘ordinary’ numbers under
multiplication.

Do the integers form a group under multiplication? It looks like they
might. The set Z is closed under multiplication, multiplication is asso-
ciative because if x,y and z are integers then (xy)z = x(yz), and a mul-
tiplicative identity exists—the number 1. But most integers do not have
multiplicative inverses: for instance, there is no integer x such that 2x =
x2 = 1. So (Z,×) is not a group.

That does, however, suggest an extension. If the integers do not form a
group under multiplication, how about the rationals, denoted Q? Ratio-
nals are numbers of the form p/q, where p,q ∈ Z and q ̸= 0. The set Q

is closed under multiplication—why? Again multiplication is associative
with identity 1. Moreover, p/q has multiplicative inverse q/p, so we also
have inverses. Or do we? Not quite, because 0 ∈ Q (0 = 0/1, for instance)
but it has no multiplicative inverse. That’s a shame. However, the set
Q\{0} does form a group under multiplication. Does Q, with 0 included,
form a group under addition?

We can ask similar questions about the real numbers, denoted R, and
the complex numbers, denoted C. Do these form groups under addition
or multiplication, perhaps with 0 excluded? Think about this and you will
see that it is not hard to identify groups formed by familiar numbers and
operations. However, such groups might not get much airtime in group
theory courses because, while they are perfectly good groups, they are not
just groups. For instance, Z is not just a group under addition, it is a ring
under addition and multiplication. This classification more fully captures
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its structure. Similarly, R is not just a group under addition, it is a field
under addition and multiplication. Rings and fields are groups with extra
structure—lots of extra structure, in some cases—and will be discussed
in Chapter 9.

It is, however, interesting to compare groups of numbers with other
groups. For instance, the group (Z,+) is cyclic. How about (Q,+) and
(R,+)? Are these cyclic? Neither is generated by 1, because integer mul-
tiples of 1 give only the integers. But could there be alternative generators?
If so, what are they? If not, why not?

We could also think about subgroups. For groups of numbers, this
is a big question: Q, R and C have more complex structures than
Z. Nevertheless, inspired by subgroups of Z, we might ask whether
({nx|x ∈ R},+) is always a subgroup of (R,+). If it is, why? If not, why
not? How about ({nx+ 1|x ∈ R},+)? Does the value of x matter? Do the
positive reals form a subgroup of (R,+) under addition, or perhaps under
multiplication? And how about finite subgroups? The group (Z,+) has
no finite subgroups except ({0},+). Does it follow that the groups (Q,+),
(R,+) and (C,+) also have no finite subgroups except ({0},+)? These
groups are ‘more infinite’ so perhaps any proper nontrivial subgroups
must also be ‘big’. What do you think?

Either way, multiplicative groups are dramatically different. For
instance, ({1,−1},×) is a (very) finite subgroup of (Q\{0},×).

× 1 −1

1 1 −1

−1 −1 1

And this extends elegantly to complex numbers.2 The table below repre-
sents the subgroup ({1, i,−1,−i},×) of (C\{0},×). Do you recognize its
structure? What if we rewrite the elements as powers of i?

2 Asnoted inChapter 1, this book includes examples based on complex numbers and
matrices. If you are studying in a UK-like system and have not come across these, you
can find introductions in A level Further Mathematics textbooks or in reliable online
resources.
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× 1 i −1 −i

1 1 i −1 −i

i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

× 1 i i2 i3

1 1 i i2 i3

i i i2 i3 1

i2 i2 i3 1 i

i3 i3 1 i i2

If you are familiar with complex numbers, you might notice that 1, i,−1
and −i are the fourth roots of unity: raising each to the power four gives
1. Using an Argand diagram of the complex plane, the roots of unity are
equally spaced around the unit circle (circles again, look). The fifth roots
of unity are shown on the right below, where I labelled only some things to
avoid clutter. These are perhaps most easily related to the diagram when
written in polar form cosθ + isinθ , where θ is the angle anticlockwise
from the positive x-axis. In that notation, the fifth roots of unity are

1, cos 2π
5 + isin 2π

5 , cos 4π
5 + isin 4π

5 , cos 6π
5 + isin 6π

5 ,
cos 8π

5 + isin 8π
5 .

cos 2π

5
+ i sin 2π

5

1

i

1

2π

5

imim

rere

You can check these claims by using trigonometric identities to
show, for instance, that (cos 2π

5 + isin 2π
5 )

5 = 1, or by recalling that
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r (cosθ + isinθ)= reiθ andworkingwith exponents (which show conve-
niently that the product of two fifth roots of unity is another). Multiplica-
tion can be conceptualized as rotating around the unit circle, as illustrated
below.

1

2π

5

im

re

e
8πi

5

6π

5

e
2πi

5 e
2πi

5 e
8πi

5e
6πi

5

6πi

5= + =

Does this convince you that the fifth roots of unity form a multiplicative
group that is structurally identical to (Z5,+5)? Generalizing, the set of
nth roots of unity is sometimes denoted Un = {z ∈ C|zn = 1}, and under
multiplication is structurally identical to (Zn,+n); we say that (Un,×) is
isomorphic to (Zn,+n), and write (Un,×)∼= (Zn,+n).

Moreover, the entire unit circle forms a group under multiplication.
That might sound unnatural because a circle seems like a unified object
rather than a set. But a circle is also a set of points. The unit circle is
U = {z ∈ C||z| = 1}; it contains all points of the form 1(cosθ + isinθ)=
1eiθ . And U is closed under multiplication, has associative multiplication
inherited from C, contains the multiplicative identity 1, and contains
multiplicative inverses: z = 1(cosθ + isinθ)= 1eiθ has inverse z−1 =
1(cos(−θ)+ isin(−θ))= 1ei(−θ). An interesting isomorphism involving
the group (U,×) is discussed in Chapter 8.

And the links do not stop there. Rotations of the whole plane about
(0,0) form a group under composition: composing two rotations gives
another; composition is associative—think literally about rotations or
see Section 5.4 on function composition; rotation through 0 is the
identity; and the inverse of rotation through θ is rotation through
−θ . Moreover, you might know from Linear Algebra or recall from
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Section 5.6 that a rotation through θ about (0,0) can be represented using
the matrix (

cosθ −sinθ
sinθ cosθ

)
.

Composing rotations corresponds to multiplying matrices, so matri-
ces of this form constitute a group under multiplication. And rotation
composition is commutative, so multiplication of rotation matrices is
commutative, even though matrix multiplication in general is not. You
could use matrix calculations to establish this directly.

Of course, rotations correspond to only a restricted class of 2× 2matri-
ces. Do they form a subgroup of M2×2(R)? In fact they cannot, because
M2×2(R) is not a group so cannot have subgroups. But the invertible
or nonsingular n× n matrices over R do form a group under matrix
multiplication. This group is called GL(n,R), the general linear group of
degree n over R. The rotation matrices do form a subgroup of GL(2,R).
And rotations considered differently form subgroups of dihedral
groups.

6.7 The dihedral group D3

The dihedral group D3 is the group of symmetries of an equilateral
triangle,mentioned in Section 1.3 and discussed in Section 5.7.The group
operation is composition—symmetries are combined by performing one
then another.

e ρ ρ
2

r1 r2 r3
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◦ e ρ ρ2 r1 r2 r3

e e ρ ρ2 r1 r2 r3

ρ ρ ρ2 e r2 r3 r1

ρ2 ρ2 e ρ r3 r1 r2

r1 r1 r3 r2 e ρ2 ρ

r2 r2 r1 r3 ρ e ρ2

r3 r3 r2 r1 ρ2 ρ e

Now, D3 has six elements. Is it isomorphic—structurally identical—to
Z6? If you trust intuition based on group tables, you might feel that it
is not, because the structures are different: the table for Z6 has diagonal
‘stripes’, whereas this table has ‘blocks’. But could reordering the elements
reveal hidden stripes? One way to answer is to consider group properties.
Every cyclic group is commutative. AndD3 is not: for instance,ρr1 ̸= r1ρ.
Reordering cannot make non-commutativity ‘go away’ because it does
not change the result of any composition. So D3 is not cyclic.

Another approach is to consider the definition, which says that a cyclic
group is generated by a single element. In D3, the identity e generates the
single-element set {e}. The rotations ρ and ρ2 each generate the subgroup
{e,ρ,ρ2}. What does a reflection generate? Repeatedly performing any
reflection gives the reflection then the identity then the reflection then the
identity, and so on. So each reflection generates a two-element subgroup.
Thus D3 is not generated by a single element, so is not cyclic.

That raises a question, however. If a single element is not enough
to generate D3, how many are needed? What do you think? Can two
elements be combined in different ways to give every group element?
Does it matter which two? I recommend that before reading on, youmake
a triangle and experiment.

The two rotations ρ and ρ2 do not generate D3—each is in the proper
subgroup generated by the other. How about two reflections? Composing
any two reflections flips the triangle over then back again, so the result
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must be a rotation. For instance, composing r1 and r2 gives r1r2 = ρ2 and
r2r1 = ρ, so ⟨r1, r2⟩ contains at least the four elements r1, r2,ρ2, and ρ.
Does it also contain others? You could check directly, or we could reason
that ⟨r1, r2⟩ must be a subgroup of D3 (you might like to think about
why). If you thought about possible subgroup orders in Sections 3.5 or 6.2,
you might know or intuit that in a finite group, the order of a subgroup
must divide the order of the group (more on that in Section 7.7). So four
elements is too many for a proper subgroup of a six-element group, and
it must be that ⟨r1, r2⟩ = D3. Do two distinct reflections always generate
D3, or is ⟨r1, r2⟩ special? For me it seems clear that all reflections are
‘equivalent’ in how they interact, so that any two will do. If that does not
seem clear to you, explore systematically.

Now, although D3 is generated by two distinct reflections, mathe-
maticians more usually conceive of it as generated by a reflection and a
rotation. Consider the rotation ρ and reflection r (renamed as we only
need one) below. These generate D3 because combining the reflection
with powers of the rotation gives every possible symmetry.

e ρ ρ
2

r ρ
2
rρr

This means that the table can be rewritten using generator-based names.
Nothing changes in the symmetry combinations, so the results corre-
spond directly to the earlier notation. Inspect the table below carefully.
Which results are ‘obvious’ and which are not?
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◦ e ρ ρ2 r ρr ρ2r

e e ρ ρ2 r ρr ρ2r

ρ ρ ρ2 e ρr ρ2r r

ρ2 ρ2 e ρ ρ2r r ρr

r r ρ2r ρr e ρ2 ρ

ρr ρr r ρ2r ρ e ρ2

ρ2r ρ2r ρr r ρ2 ρ e

Many results are obvious: it is not surprising that (ρ2)(r)= ρ2r. Others
follow directly from ρ3 = e or r2 = e: using associativity, (ρ2)(ρr)=
(ρ3)r = er = r. Check and you will see that this accounts for every
outcome in the top half of the table. But in the bottom half, some
unaccounted-for relationships appear:

rρ = ρ2r rρ2 = ρr rρr = ρ2 rρ2r = ρ ρrρ = r ρrρ2 = ρ2r
ρrρr = e ρrρ2r = ρ2 ρ2rρ = ρr ρ2rρ2 = r ρ2rρr = ρ ρ2rρ2r = e.

These equationsmust be valid because all I did was rewrite the table using
new labels. Nevertheless, I feel better when I have solidified my intuition
by performing some checks. For instance, for the first equation, triangle
manipulations look like this.

ρ

ρ
2

r

r
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The outcomes match, which is good. But the number of equations is
worrying. Does representing D3 using generators and relations require
them all? Fortunately not: it requires only one. Mathematicians often use
rρr = ρ2, commonly rewriting this as rρr = ρ−1 because ρ2 = ρ−1 and
this formulation generalizes better to other dihedral groups (see Section
6.8). Can you see why only one equation is needed? All are equivalent
due to algebraic manipulation and the more obvious relations ρ3 = e and
r2 = e. For instance, remembering that left and right composition must
be distinguished because D3 is not commutative,

rρ = ρ2r ⇔ rρr = ρ2r2 ⇔ rρr = ρ2 ⇔ rρr = ρ−1;
ρrρr = e ⇔ ρ−1ρrρr = ρ−1 ⇔ rρr = ρ−1.

Try some more and you will see that they also yield nothing new. The
relation linking the two generators is sometimes referred to as the dihedral
relation, so that D3 can be expressed in either of the forms below.

D3 = ⟨ρ, r |ρ3 = r2 = e, rρr = ρ−1⟩;
D3 = ⟨ρ, r |ρ3 = r2 = (ρr)2 = e⟩.

Now, what do you think of this notation compared with the original
e,ρ,ρ2, r1, r2, r3? I think that there is no obvious best choice. Generator-
based notation is ‘clean’ in that it uses only two symbols and highlights
underlying relationships. But the original notation highlights patterns in
the table and types of symmetry (ρr involves one of each symbol but is
a reflection, for instance). I will therefore stick with the original for later
chapters. But Abstract Algebra involves recasting familiar knowledge in
new ways, and your lecturer might have different priorities.

To conclude discussion of D3, note that although D3 is not cyclic, all of
its proper subgroups are: each is trivial or isomorphic to either Z2 or Z3.
This shows that the converse of an earlier theorem is not true:

G cyclic ⇒ every proper subgroup of G cyclic TRUE
G cyclic ⇐ every proper subgroup of G cyclic FALSE

In fact, D3 is the smallest non-abelian group. Can you work out why
smaller groups must be abelian? I will ask again at the end of the chapter.
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6.8 More symmetry groups

The obvious group to investigate next is D4, the group of symmetries of a
square.

e ρ ρ
2

r1 r2 r3

ρ
3

r4

Does the information about D3 generalize to D4? Maybe, because D3 and
D4 are similarly constructed. But D4 is bigger, so there is ‘room’ for more
internal structure.What do you think?What are the subgroups ofD4, and
are they all cyclic? Can two elements generate D4?

Like D3, the group D4 has a two-element subgroup generated by each
reflection and a subgroup {e,ρ,ρ2,ρ3} comprising the rotations and the
identity. This time, the rotation subgroup itself has a nontrivial proper
subgroup {e,ρ2}. Can you see this in the table and understand it by
imagining transformations?

◦ e ρ ρ2 ρ3 r1 r2 r3 r4

e e ρ ρ2 ρ3 r1 r2 r3 r4

ρ ρ ρ2 ρ3 e r3 r4 r2 r1

ρ2 ρ2 ρ3 e ρ r2 r1 r4 r3

ρ3 ρ3 e ρ ρ2 r4 r3 r1 r2

r1 r1 r4 r2 r3 e ρ2 ρ3 ρ

r2 r2 r3 r1 r4 ρ2 e ρ ρ3

r3 r3 r1 r4 r2 ρ ρ3 e ρ2

r4 r4 r2 r3 r1 ρ3 ρ ρ2 e

132 GROUPS AND SUBGROUPS



OUP CORRECTED PROOF – FINAL, 4/12/2020, SPi

The group D4 also has a four-element subgroup {e,ρ2, r3, r4}, high-
lighted below in the table and a mini-table. Is this subgroup cyclic?
No: each non-identity element is self-inverse so it cannot have a single
generator.

◦ e ρ ρ2 ρ3 r1 r2 r3 r4

e e ρ ρ2 ρ3 r1 r2 r3 r4

ρ ρ ρ2 ρ3 e r3 r4 r2 r1

ρ2 ρ2 ρ3 e ρ r2 r1 r4 r3

ρ3 ρ3 e ρ ρ2 r4 r3 r1 r2

r1 r1 r4 r2 r3 e ρ2 ρ3 ρ

r2 r2 r3 r1 r4 ρ2 e ρ ρ3

r3 r3 r1 r4 r2 ρ ρ3 e ρ2

r4 r4 r2 r3 r1 ρ3 ρ ρ2 e

◦ e ρ2 r3 r4

e e ρ2 r3 r4

ρ2 ρ2 e r4 r3

r3 r3 r4 e ρ2

r4 r4 r3 ρ2 e

Thus D4 is unlike D3 in having proper subgroups that are not cyclic. The
full set of subgroups of D4 is represented below.

{e}

{e, r1} {e, r2} {e, ρ
2
} {e, r3} {e, r4}

{e, ρ
2
, r3, r4}{e, ρ

2
, r1, r2} {e, ρ, ρ

2
, ρ

3
}

D4

Now, r3 and r4 ‘go together’ in that they are diagonal reflections that
appear in {e,ρ2, r3, r4}. But their inelegant positioning in the main table
suggests that the elements of D4 could be labelled in a more structurally
natural way. As for D3, a single rotation and reflection generate D4.
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e ρ ρ
2

ρ
3

ρ
3
rρ

2
rr ρr

Writing the table using the original notation but in the order equivalent
to r,ρr,ρ2r,ρ3r reveals diagonal ‘stripes’ of elements in all four table
‘blocks’.

◦ e ρ ρ2 ρ3 r1 r4 r2 r3

e e ρ ρ2 ρ3 r1 r4 r2 r3

ρ ρ ρ2 ρ3 e r3 r1 r4 r2

ρ2 ρ2 ρ3 e ρ r2 r3 r1 r4

ρ3 ρ3 e ρ ρ2 r4 r2 r3 r1

r1 r1 r4 r2 r3 e ρ ρ2 ρ3

r4 r4 r2 r3 r1 ρ3 e ρ ρ2

r2 r2 r3 r1 r4 ρ2 ρ3 e ρ

r3 r3 r1 r4 r2 ρ ρ2 ρ3 e

Also, D4 can be represented using generators and relations with only
the obvious difference from D3 (what is that difference?):

D4 = ⟨ρ, r |ρ4 = r2 = e, rρr = ρ−1⟩;
D4 = ⟨ρ, r |ρ4 = r2 = (ρr)2 = e⟩.

Do you see why the relation rρr = ρ−1 applies in all dihedral groups?
Why would performing the generating reflection then the rotation then
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the reflection always gives the inverse of the rotation? I think this is easier
to visualize in polygonswithmore edges—see the regular hexagons below.
How does it relate to the fact that the stripes in the table blocks do not
all ‘go the same way’? And, for the square, hexagon and other polygons,
which rotations can and cannot be generators?

ρ

r

r

ρ
−1

Next, what is D5 like? How could we denote its elements, and can
you write its table in multiple ways? What are its subgroups? Think
carefully here. The group D5 is bigger than D4, so it has room for more
internal structure. But a square has two different ‘types’ of reflection:
those with vertex-to-vertex axes and those with mid-edge-to-mid-edge
axes. A regular pentagon does not: like a triangle, its reflections all have
vertex-to-mid-edge axes. Moreover, its subgroups must each have order
1,2,5 or 10. Can you list them all?

You can carry on, of course, thinking about D6,D7,D8 and so on. You
might also think about symmetry groups for shapes other than regular
polygons. For instance, consider a non-square rectangle.

e ρ

r1 r2

e ρ r1 r2

e e ρ r1

r1

r1

r1

r2

r2r2

ρ ρ e r2 r1

r2 e ρ

ρ e

◦

This group is known as the Klein four-group and is often denoted V
(the German for ‘four’ is ‘vier’). A group isomorphic to V appears as a
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subgroup of D4—which is it? And what other shapes share this symmetry
group? A rhombus? A parallelogram that is not a rhombus? A trapezium?
If their symmetry groups are not V, what are they?

Finally, many other figures have symmetries. As a child, you might
have been asked about symmetry of upper-case letters. What are the
symmetry groups of A, F and N? Do any upper-case letters have other
symmetry groups? Is there a letter with symmetry group isomorphic to
Z4? If not, can you construct a shapewith symmetry groupZ4?Howabout
with symmetry group Z3 or Z5? And why stop at two dimensions? What
progress can you make in investigating the symmetry group of a cube?

6.9 Permutation groups

The final groups we will explore are groups of permutations. As in
Section 5.6, a permutation of a set S is a rearrangement of its elements
or, more technically, a bijection from S to itself. For S = {1,2,3,4}, three
permutations in ‘double-decker’ notation appear below. The first sends 1
to 2, 2 to 3, 3 to 4 and 4 to 1; the second swaps 1 and 2 and swaps 3 and
4; the third swaps 2 and 4 but does not move 1 or 3.(

1 2 3 4
2 3 4 1

) (
1 2 3 4
2 1 4 3

) (
1 2 3 4
1 4 3 2

)
In the alternative tuple notation, the first two of these would be written
(1234) and (12)(34). Tuple notation is thus more economical, but it
raises representational subtleties: the third permutation could be written
(1)(24)(3), butmathematicianswrite simply (24), assuming that elements
not mentioned stay where they are. They could also write (42), because
this has the same effect. By convention, though, the lowest number in
each bracket is listed first.

Because permutations of a set are functions on that set, any two can
be combined via composition, and it is common to write the operation
performed first on the right. Below are various representations of permu-
tation composition. When reading the tuple notation, my thinking about
the left-hand side of the equality goes like this. I start with (1234), the
rightmost permutation. I read 1 goes to 2, then nothing happens to it in
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the middle bracket, then it goes back to 1 again in the leftmost bracket.
So overall it stays where it is and does not appear on the the right-hand
side of the equality. Analogously, 2 goes to 3, then 3 goes to 4, then stays
where it is. So overall 2 goes to 4. And so on.

1 2 3 4

2 1 4 3

1 2 3 4

2 3 4 1
=

1 2 3 4

1 4 3 2

1

2

3

4

1 1

2 2

3 3

4 4

(12)(34)(1234) = (24)

Now, as a beginning undergraduate I spent quite some time on permu-
tation calculations. I felt like I was learning something, and indeed I was
learning about a new operation on a new kind of object. But my attention
was caught up in the detail—I did not manage the compression necessary
to think about permutations as elements of groups, or about how groups
of permutations compare with other groups. So here I will assume that
your course will provide calculation practice and focus instead on group
structure.

First, the full set of permutations of any set S forms a group under
composition. Closure holds because composing two permutations gives
another. Composition is associative because permutations are functions.
The identity permutation leaves every element where it is (we might
just write ‘e’ in tuple notation). And every permutation has an inverse
sending each element back to where it came from. The group of all
permutations of a set with n elements is denoted by Sn. Its elements are
usually written with numbers as above, assuming that S = {1,2,3, . . . ,n}.
The group Sn is called the symmetric group of degree n. Note: symmetric
group, not symmetry group.That name is different enough to be annoying
if symmetric groups and symmetry groups are the same, and similar
enough to be annoying if they are different. To work out which it is, we
will look at specific symmetric groups, starting small.
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The symmetric group S1 contains all permutations of the one-element
set {1}. So it too has one element: the identity permutation, which leaves
the 1 where it is. Note that experience with degenerate cases does not
necessarily make them seem less weird, and that the set {1} is a set
containing one element, whereas the set S1 is a set containing one function
on that element: the objects are different. The symmetric group S2 of
permutations of {1,2} has two elements: the identity and the permutation
that swaps 1 and 2. A table shows that S2 is isomorphic to Z2.

◦ e (12)

e e (12)

(12) (12) e

+2 0 1

0 0 1

1 1 0

Howmany elements does S3 have? It must be 6 because there are 3! = 6
bijections from a three-element set to itself. Here is a list.

e (12) (13) (23) (123) (132)

These permutations form a familiar structure: S3 is isomorphic to D3,
where labelling an equilateral triangle’s vertices with numbers provides
permutation names for D3’s elements. We know about D3, so I will not
add the table, but you might want to write one.

1

23 1

1
e

2

22

2

2

1

1

3

3

3

3

3

(12)(13)(23)

(123) (132)

1

Does it follow that symmetric groups and symmetry groups are the
same? Is S4 isomorphic to D4? No: it cannot be, because S4 has 4! = 24
elements andD4 has only eight.The elements of S4 are listed below. Check
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that the list contains no duplicates, then imagine or make a square with
numbered vertices—which permutations correspond to elements of D4?

e
(12) (13) (14) (23) (24) (34)
(123) (132) (124) (142) (134) (143) (234) (243)
(1234) (1243) (1324) (1342) (1423) (1432)
(12)(34) (13)(24) (14)(23)

If you try that seriously, you will understand why S4 has a subgroup
isomorphic to D4. For instance, the permutation (12)(34) corresponds to
the reflection shown below, and thus to an element of D4. But the per-
mutation (12) requires ‘twisting’ the square, which does not correspond
to an element of D4. With that in mind, try again—which elements of
S4 correspond to elements of D4? What twists or other disallowed moves
would be required for those that do not? Are some of these twists the same
twist in disguise?

12

3 4

12

4 3

1 2

34

(12)(34) (12)

We will return to this in Section 7.6. In the meantime, these observa-
tions link to the name symmetric group. In a square, not all vertices relate
to one another in the sameway. Under any symmetry of the square, vertex
2 remains adjacent to vertices 1 and 3; no symmetry makes it adjacent
to vertex 4. This means that in D4, there is asymmetry in the way that
the numbered vertices can be permuted. In the symmetric group, this
asymmetry disappears: S4 is maximally symmetric in that it treats each
element of S = {1,2,3,4} in exactly the same way in relation to all the
others.

The group S4 has a subgroup isomorphic to D4 because the elements of
D4 are all isometries—distance-preserving transformations (see Section
5.5)—and the property ‘being an isometry’ interacts favourably with the
group axioms: composing two isometries gives another, associativity is
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inherited, the identity is an isometry, and every isometry has an inverse
isometry. This way of identifying subgroups generalizes to any property
that interacts similarly favourably with the group axioms. One such
property is fixing elements or sets of elements. For instance, consider the
subset of S4 containing all permutations that fix the number 1. Compos-
ing two such permutations gives another, associativity is inherited, the
identity fixes 1, and every permutation that fixes 1 has an inverse that
fixes 1. This subset is therefore a subgroup; it comprises all permutations
that permute the three numbers 2, 3 and 4 so it is isomorphic to D3.

Another way to identify subgroups is via generators. As in earlier
sections, every element or set of elements generates a subgroup (note
that we have not proved this—how would you go about it?). What
subgroups are generated by individual elements of S4? How about by
pairs or triples of elements? Which combinations generate the whole of
S4? Investigate and you will find that for a group of this size, this is a
complex question. It is therefore useful to have systematic ways to think
about relationships between permutations, and one way to do this is to
consider transpositions. A transposition is a two-element permutation
like (12), and transpositions combine in useful ways to generate other
permutations. For instance, remembering that the permutation on the
right acts first,

(13)(12)= (123) and (14)(13)(12)= (1234).

Can you generalize from this to convince yourself that every permutation
can be written by composing transpositions? Can some transpositions be
made by combining other transpositions?Whatminimal set of transposi-
tionswill generate S4? Your coursemight consider that by defining an even
permutation as the product of an even number of transpositions and an
odd permutation as the product of an odd number of transpositions. Of
course, that makes sense only if all permutations are even or odd but not
both. Is that the case? Why? Do the even permutations form a subgroup
of S4, like the even numbers form a subgroup of (Z,+)? And how does
all of this generalize to bigger symmetric groups like S5 or S6? Chapter 7
will pick up some of these points.

To conclude this section, a point to remember and an observation.
The point to remember is that groups of permutations are not groups of
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numbers. They might be represented using numbers, but the elements
of permutation groups are permutations of these numbers—they are
functions. Abstraction can help here, I think. For permutations of a set
S, the order of S matters—there are more permutations of a set with four
elements than there are of a set with three. But the actual elements do not
matter: permutations of {α,β,γ ,δ} exactly match those of {1,2,3,4}. The
numbers notation is standard, but bear this in mind.

The observation is that every finite group is isomorphic to a group of
permutations. This is because in any possible group table, each row (and
column) contains each group element exactly once, so each row (and
column) is a permutation of the group elements. Thus every finite group
based on a set G is isomorphic to a subgroup of SG because it is a group
formed by a subset of all possible permutations. That observation is very
abstract, so it is worth some thought.

6.10 Identifying and defining subgroups

This chapter has considered various specific groups and subgroups. But
how can we identify subgroups in general? In small groups, this might
be fairly easy. In larger groups, it is more challenging. But we can make
progress by extending ideas raised so far. For instance, some properties
interact favourably with the group axioms. Because associativity is always
inherited from a main group, a property determines a subgroup if it
delimits a subset that is closed under the group operation and that
includes the identity and all of its elements’ inverses. This is a very
general idea.

• The subset of S4 comprising all permutations that fix the number 1 is
closed under composition and contains the identity and all of its elements’
inverses.

• The subset of S4 comprising all even permutations is closed under compo-
sition and contains the identity and all of its elements’ inverses.

• The subset of (Z,+) comprising all multiples of 3 is closed under compo-
sition and contains the identity and all of its elements’ inverses.

• The subset of D4 generated by the element ρ is closed under composition
and contains the identity and all of its elements’ inverses.
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• Thesubset of (C\{0},×) generated by e
2π i
5 is closed under composition and

contains the identity and all of its elements’ inverses.

Other properties behave similarly. For instance, the centre of a group
always forms a subgroup, where the centre is defined as below.

Definition: The centre of a group G is the set {x ∈ G|∀g ∈ G,xg = gx}.

In words, the centre of G is the set of all elements that commute with
everything in G. In abelian groups, the centre is uninteresting because
every element commutes with everything in G so the centre is the whole
group. In non-abelian groups it can be interesting, because overall non-
commutativity can accommodate specific elements that do commutewith
everything. For instance, the centre of D4 contains the identity e, because
eg = ge for every g ∈ D4. Does it contain other elements too? Check
in the table below and you will find that the centre of D4 is {e,ρ2}.
Can you find elements in the centre of D3? How about in the centre of
GL(2,R)?

◦ e ρ ρ2 ρ3 r1 r4 r2 r3

e e ρ ρ2 ρ3 r1 r4 r2 r3

ρ ρ ρ2 ρ3 e r3 r1 r4 r2

ρ2 ρ2 ρ3 e ρ r2 r3 r1 r4

ρ3 ρ3 e ρ ρ2 r4 r2 r3 r1

r1 r1 r4 r2 r3 e ρ ρ2 ρ3

r4 r4 r2 r3 r1 ρ3 e ρ ρ2

r2 r2 r3 r1 r4 ρ2 ρ3 e ρ

r3 r3 r1 r4 r2 ρ ρ2 ρ3 e

Now, I claimed that the centre is always a subgroup. Why is that?
Associativity is inherited, and the identity is always in the centre because
it always commutes with everything. So the interesting axioms involve
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closure and inverses. Checking closure requires checking that for every x
and y in the centre of G, xy is in the centre of G. That means checking that
for all g ∈ G, (xy)g = g(xy). Why must that be true? We can establish it
using the premise that x and y are in the centre.

(xy)g = x(yg) by associativity
= x(gy) because yg = gy
= (xg)y by associativity
= (gx)y because xg = gx
= g(xy) by associativity.

How about inverses? To confirm that the centre contains all of its ele-
ments’ inverses, we need to check that for every x in the centre of G, x−1

is in the centre of G. That requires checking that for all x in the centre of
G and for all g ∈ G, x−1g = gx−1. As usual, it helps to start with what we
know. If x is in the centre ofG, we know that xg = gx. Strategicmultiplying
then gives the required result.

xg = gx
⇒ x−1xg = x−1gx multiplying on the left by x−1

⇒ g = x−1gx because x−1x = e
⇒ gx−1 = x−1gxx−1 multiplying on the right by x−1

⇒ gx−1 = x−1g because xx−1 = e.

How would you write a proof that the centre of a group is always a
subgroup? Which parts of the above explanation would you keep, and
which would you abbreviate or cut?

Now, the information in this section makes it possible to identify some
subgroups in various groups. But theory building is also important, so it is
useful to examine general criteria guaranteeing that a subset is a subgroup.
Subgroup can be defined as below (using an explicit operation).

Definition: Let (G,∗) be a group and H ⊆ G. Then (H,∗) is a subgroup
of (G,∗) if and only if (H,∗) is itself a group.

IDENTIFYING AND DEFINING SUBGROUPS 143



OUP CORRECTED PROOF – FINAL, 4/12/2020, SPi

Recalling that associativity is always inherited, a subgroup must there-
fore satisfy the remaining three group axioms.

Definition: Let (G,∗) be a group and H ⊆ G. Then (H,∗) is a subgroup
of (G,∗) if and only if:

Closure ∀a,b ∈ H, a ∗ b ∈ H;
Identity the identity e ∈ H;
Inverses ∀a ∈ H, a−1 ∈ H.

This definition is perfectly adequate for proving that a subset is a sub-
group. But mathematicians like their criteria minimal, and the following
theorem provides a way to check that a subset is a subgroup using just one
criterion.

Theorem: Suppose that (G,∗) is a group and ∅ ̸= H ⊆ G.
Then (H,∗) is a subgroup of (G,∗) if and only if ∀a,b ∈ H,
a ∗ b−1 ∈ H.

This, in my view, is less intuitive because it does not relate directly to
ideas like closure, identities and inverses. But it is economical, for instance
permitting the following proof that (3Z,+) is a subgroup of (Z,+).

Claim: (3Z,+) is a subgroup of (Z,+).

Proof : Let a,b ∈ 3Z, so ∃n1,n2 ∈ Z such that a = 3n1 and b = 3n2.
Then b−1 = −3n2.
So a+ b−1 = 3n1 + (−3n2)= 3(n1 + (−n2)) ∈ 3Z.
So (3Z,+) is a subgroup of (Z,+).

The general theorem is proved below, with the proof split into two parts
because this is an if and only if theorem. One direction, labelled ‘⇒:’,
assumes that H is a subgroup and proves that the criterion is satisfied.The
other, labelled ‘⇐:’, assumes the criterion and proves thatH is a subgroup.
Which is harder and which is easier, and why? As you read the proof,
remember the self-explanation training from Section 3.6.
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Theorem: Suppose that (G,∗) is a group and ∅ ̸= H ⊆ G.
Then (H,∗) is a subgroup of (G,∗) if and only if ∀a,b ∈ H,
a ∗ b−1 ∈ H.

Proof : ⇒: Suppose that H is a subgroup and that a,b ∈ H.
Then b−1 ∈ H by the inverse criterion in the subgroup definition.
So a ∗ b−1 ∈ H because H is closed under ∗.
⇐: Assume that ∀a,b ∈ H, a ∗ b−1 ∈ H.
In particular, ∀a ∈ H, a ∗ a−1 ∈ H.
But a ∗ a−1 = e so H contains the identity.
Because e ∈ H, it follows that ∀b ∈ H, e ∗ b−1 = b−1 ∈ H.
Thus H contains all of its elements’ inverses.
Finally, suppose that a,b ∈ H.
Then b−1 ∈ H because H contains all of its elements’ inverses.
So, by the condition, a ∗ (b−1)−1 = a ∗ b ∈ H.
Thus H is closed under the group operation.
So H is a subgroup of G.

To conclude this section, you might like to note that for any group
G, the intersection of any two subgroups is a subgroup under the group
operation. Why is that? How does it play out for some of the groups
discussed in this chapter? Can you prove it using the subgroup definition
or the theorem above?

6.11 Small groups

This final section considers groupswith small numbers of elements.These
are often studied in depth, for at least two reasons. First, they can be
understood as building blocks for larger, more complex groups. Second,
they allow us to understand how the axioms restrict group structures.

We will start with groups of order four. The cyclic group of order four
can be understood as (Z4,+4) or as U4 = ({1, i,−1,−i},×). These have

SMALL GROUPS 145



OUP CORRECTED PROOF – FINAL, 4/12/2020, SPi

different elements and operations but are isomorphic: they have identical
structures.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

× 1 i −1 −i

1 1 i −1 −i

i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

Do there exist groups of order four that are not cyclic? We have
seen one—where? We can explore the general question by attempting to
construct group tables using four elements. Because we do not knowwhat
structures are possible, I will denote the operation by ∗, the identity by e,
and the remaining three elements by a, b and c.The identity property then
forces the first row and column.

∗ e a b c
e e a b c
a a
b b
c c

What shall we fill in for a ∗ a? Not a because the inverse property forces
each element to appear once in each row and column (see Section 5.3).
But we could use the ‘next’ element, b, as on the left below. What then
goes in the remaining second-row cells? The inverse property means it
must be c and e, which must also appear once in each column. Thus the
only option is that shown on the right. Completing the table via similar
reasoning gives, again, the cyclic group of order 4.
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∗ e a b c
e e a b c
a a b
b b
c c

∗ e a b c
e e a b c
a a b c e
b b
c c

However, alternative choices are possible: we could try a different element
in the a ∗ a cell. Using c and reasoning about rows and columns leads to
the table on the right below. Do check—doing so is quick so this is not
the time to just believe me.

∗ e a b c
e e a b c
a a c
b b
c c

∗ e a b c
e e a b c
a a c e b
b b e c a
c c b a e

Now come the subtleties. This looks different from the cyclic group
table—it doesn’t have diagonal ‘stripes’. But could it be the cyclic
group in disguise? It turns out that it could. Switching the order of b
and c while respecting the outcomes of the operation gives the rewritten
table below.

∗ e a c b
e e a c b
a a c b e
c c b e a
b b e a c
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∗ e a c b
e e a c b
a a c b e
c c b e a
b b e a c

Now we have a choice: each row and column needs an e and an a, but
these could be arranged in two different ways while respecting inverses.
Setting b ∗ b = a leads to the cyclic group again—can you work out how?
Setting b ∗ b = e leads to the completed table below.

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Is this a group? Yes: it isV from Section 6.8, the symmetry group of a non-
square rectangle. And that’s it. We have now explored all possibilities and
established that up to isomorphism, there are exactly two groups of order
four.

Next, groups of order three. Filling in a table’s first row and column
leaves only four blank cells. Check the possibilities for these cells and you
will see that up to isomorphism, Z3 is the only group of order three.

∗ e a b
e e a b
a a
b b

∗ e a b
e e a b
a a b e
b b e a

It is even simpler to establish that Z2 is the only group of order two.
Think about the table, and about where two-element groups have come
up so far. Finally, there is one group with one element. Because a group
must have an identity, the setwill be {e} and the operation∗will be defined
by this table.
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∗ e
e e

We have seen this before via one-element subgroups. This structure sat-
isfies closure because for every element in {e} (all one of them), e ∗ e = e.
The identity is e, because for every element, e ∗ e = e ∗ e = e. The element
e is its own inverse. And the operation is associative because (e ∗ e) ∗ e =
e ∗ (e ∗ e). As noted in Section 6.3, the idea of a one-element group might
seem uninteresting or weird. If it seems uninteresting, fair enough. If it
seems weird, remember not to let your understanding of the word group
be contaminated by its everyday meaning. In mathematics we work with
definitions, even if they apply in unexpected ways to degenerate cases.

To conclude this chapter, recall that Section 6.7 claimed that D3 is the
smallest non-commutative group. You now have enough information to
work out why—can you put it together?
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chapter 7

Quotient Groups

This chapter introduces quotient groups, which arise when elements of a group
‘clump together’ to form sets that can themselves be treated as elements of
another group. It observes where quotient groups arise and where they do not
in cyclic groups and dihedral groups. It then formalizes the resulting ideas via
cosets and normal subgroups, and links group, subgroup and quotient group
orders via Lagrange’s Theorem.

7.1 What is a quotient group?

S ection 5.6 observed that D3, the group of symmetries of an equi-
lateral triangle, has an interesting structure. Its table splits naturally
into four checkerboard squares: two 3× 3 squares of rotations (with

the identity) and two 3× 3 squares of reflections.

e ρ ρ
2

r1 r2 r3
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◦ e ρ ρ2 r1 r2 r3
e e ρ ρ2 r1 r2 r3
ρ ρ ρ2 e r2 r3 r1
ρ2 ρ2 e ρ r3 r1 r2

r1 r1 r3 r2 e ρ2 ρ

r2 r2 r1 r3 ρ e ρ2

r3 r3 r2 r1 ρ2 ρ e

The same happens for other dihedral groups such as D4, the group of
symmetries of a square (see Section 6.8). If you constructed the table
below when reading Section 5.6, you might want to get out your copy;
if not, maybe photograph this one to refer to during this chapter.

◦ e ρ ρ2 ρ3 r1 r2 r3 r4
e e ρ ρ2 ρ3 r1 r2 r3 r4
ρ ρ ρ2 ρ3 e r3 r4 r2 r1
ρ2 ρ2 ρ3 e ρ r2 r1 r4 r3
ρ3 ρ3 e ρ ρ2 r4 r3 r1 r2

r1 r1 r4 r2 r3 e ρ2 ρ3 ρ

r2 r2 r3 r1 r4 ρ2 e ρ ρ3

r3 r3 r1 r4 r2 ρ ρ3 e ρ2

r4 r4 r2 r3 r1 ρ3 ρ ρ2 e

In D3 and D4, the rotations block together because they form a subgroup
(see Sections 6.2 and 6.8). But this phenomenon goes beyond that. The
checkerboard pattern arises because composing a rotation with a reflec-
tion gives a reflection, and composing two reflections gives a rotation.

◦ rotations reflections
rotations rotations reflections

reflections reflections rotations
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This works like a familiar structure: the odd and even numbers under
addition. Adding two even numbers gives an even number; adding an
even and an odd gives an odd; adding two odds gives an even. Formally,
the even numbers form the subgroup (2Z,+) of the group (Z,+), and the
evens and their complementary set of odds behave as in the middle table
below. Moreover, the structures formed by the rotations and reflections
in D3 and by the evens and odds in (Z,+) are groups because both match
the structure of the cyclic group Z2.

+ evens odds
evens evens odds

odds odds evens

+2 0 1
0 0 1

1 1 0

The ‘elements’ of these new groups are themselves sets: the rotations,
for instance, form a single element. So this way of identifying a group
‘within’ a group is new. It is not like identifying subgroups because it is
not elements of the original group that form another (usually smaller).
Rather, sets of elements clump together to form ‘elements’ of the new one.
When this happens, the subgroup and its complementary set are known
as cosets. In D3, the cosets of the subgroup {e,ρ,ρ2} are {e,ρ,ρ2} and
{r1, r2, r3}. In Z, the cosets of the subgroup 2Z are the even numbers
and the odd numbers. The new type of group is called a quotient group
or factor group because it is formed by ‘dividing’ the whole group by a
subgroup. Using the language of division and the fact that structurally
identical groups are isomorphic, we say that

D3/{e,ρ,ρ2} ∼= Z2 (‘D3 over {e,ρ,ρ2} is isomorphic to Z2’);
Z/2Z ∼= Z2 (‘Z over 2Z is isomorphic to Z2’).

Note that in the two quotient groups D3/{e,ρ,ρ2} and Z/2Z, the sub-
group plays the role of the identity. But the quotient group operations
merit some thought because they involve not composing individual sym-
metries or adding individual numbers but operating on sets. That causes
no problems here, but the general case is more complex and will be
addressed in Section 7.6.
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For now, the obvious question is, does every group split naturally into
a subgroup and other cosets that together form a quotient group? Or is
there something special about rotations in dihedral groups and the even
numbers in Z? Are there, for instance, quotient groups not isomorphic to
Z2, or do quotient groups arise only when the subgroup is ‘half of ’ the
group? What do you think?

7.2 Quotient groups in cyclic groups

You might have observed that the quotient group Z/2Z formed by the
even and odd numbers is Z2, because elements of Z2 are congruence
classes of the integers modulo 2 under addition modulo 2 (see
Sections 3.3 and 3.4). In the table for Z2, the number 0 represents the
set { . . . ,−6,−4,−2,0,2,4,6, . . . } (the evens), the number 1 represents
the set { . . . ,−5,−3,−1,1,3,5,7, . . . } (the odds), and addition captures
remainders on division by 2.

+ evens odds
evens even odds

odds odds evens

+2 0 1
0 0 1

1 1 0

This interpretation raises a question: if Z/2Z ∼= Z2, is it also true that
Z/3Z ∼= Z3, that Z/4Z ∼= Z4, and in general that Z/nZ ∼= Zn?

The answer is yes, which is nice because Z/nZ ∼= Zn looks tidy. But we
should understand this isomorphism rather than just wanting to believe
in it. For instance, consider (3Z,+), the subgroup of (Z,+) comprising all
multiples of 3. All elements of this subgroup leave remainder 0 on division
by 3. Under the congruence class interpretation, the group (Z,+) splits
into this subgroup and another two cosets: numbers leaving remainder
1 on division by 3 and numbers leaving remainder 2. These three cosets
form a quotient group isomorphic to Z3.

+ remainder 0 remainder 1 remainder 2
remainder 0 remainder 0 remainder 1 remainder 2

rremainder 1 remainder 1 remainder 2 remainder 0

remainder 2 remainder 2 remainder 0 remainder 1
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+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

These ideas can be formalized using the definition of coset, first
mentioned in Section 2.6. Here it is, in multiplicative and additive
formulations.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is aH = {ah|h ∈ H}.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is a+H = {a+ h|h ∈ H}.

In G = Z, the additive formulation is more natural. And applying the
definition to the subgroup H = 3Z gives exactly the expected cosets.

0+ 3Z ={0+ z|z ∈ 3Z}= { . . . ,−6,−3,0,3,6,9, . . . };
1+ 3Z ={1+ z|z ∈ 3Z}= { . . . ,−5,−2,1,4,7,10, . . . };
2+ 3Z ={2+ z|z ∈ 3Z}= { . . . ,−4,−1,2,5,8,11, . . . }.

If you wondered why the definitions say left coset instead of just coset,
good. Try working out what the right cosets would be—are they different?
Then observe that 0+ 3Z = 3Z, and that denoting the cosets by 3Z,
1+ 3Z and 2+ 3Z captures the fact that they are sets, in a brief way that
is useful in tables.

‘+’ 3Z 1+ 3Z 2+ 3Z

3Z 3Z 1+ 3Z 2+ 3Z

1+ 3Z 1+ 3Z 2+ 3Z 3Z

2+ 3Z 2+ 3Z 3Z 1+ 3Z

Do you now believe that Z/nZ ∼= Zn for every natural number n? If
not, think through cosets and tables for more values of n. Once you are
convinced, you know about every quotient group in (Z,+), because every
subgroup of (Z,+) takes the form (nZ,+) (see Section 6.4). And this
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reasoning addresses Section 6.5’s question about the relationship between
nZ and Zn.The group nZ is an infinite group under standard addition; the
group Zn is a finite groupwithn elements under additionmodulon.These
are different, but we have now established their important relationship.

Indeed, we can extend this reasoning to finite cyclic groups. For
instance, Z12 has a subgroup isomorphic to Z4—see Section 6.2. What
structure do you think Z12/Z4 has? Feels like it should be Z3, no?
Fortunately, this is true. To see why, recall that the subgroup of Z12
isomorphic to Z4 is H = ({0,3,6,9},+12).

+12 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11 0
2 2 3 4 5 6 7 8 9 10 11 0 1

3 3 4 5 6 7 8 9 10 11 0 1 2
4 4 5 6 7 8 9 10 11 0 1 2 3
5 5 6 7 8 9 10 11 0 1 2 3 4

6 6 7 8 9 10 11 0 1 2 3 4 5
7 7 8 9 10 11 0 1 2 3 4 5 6
8 8 9 10 11 0 1 2 3 4 5 6 7

9 9 10 11 0 1 2 3 4 5 6 7 8
10 10 11 0 1 2 3 4 5 6 7 8 9
11 11 0 1 2 3 4 5 6 7 8 9 10

The cosets of H in Z12 can be calculated using the definition.
0+H= {0+ h|h ∈ H}= {0,3,6,9};
1+H= {1+ h|h ∈ H}= {1,4,7,10};
2+H= {2+ h|h ∈ H}= {2,5,8,11}.

But these cosets do not show up well in the table above. Quotient group
structures were evident in Section 7.1 because the cosets were in ‘blocks’.
Inspired by that, we can rearrange as below; check that the individual
additions are correct.
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+12 0 3 6 9 1 4 7 10 2 5 8 11

0 0 3 6 9 1 4 7 10 2 5 8 11
3 3 6 9 0 4 7 10 1 5 8 11 2
6 6 9 0 3 7 10 1 4 8 11 2 5
9 9 0 3 6 10 1 4 7 11 2 5 8

1 1 4 7 10 2 5 8 11 3 6 9 0
4 4 7 10 1 5 8 11 2 6 9 0 3
7 7 10 1 4 8 11 2 5 9 0 3 6
10 10 1 4 7 11 2 5 8 0 3 6 9

2 2 5 8 11 3 6 9 0 4 7 10 1
5 5 8 11 2 6 9 0 3 7 10 1 4
8 8 11 2 5 9 0 6 3 10 1 4 7
11 11 2 5 8 0 3 6 9 1 4 7 10

Then take a moment to be impressed by the structure. Adding any
element from the coset {0,3,6,9} to any from the coset {1,4,7,10} gives
one from the coset {1,4,7,10}. And adding any element from the coset
{0,3,6,9} to any from the coset {2,5,8,11} gives one from the coset
{2,5,8,11}. That is what it means for the subgroup {0,3,6,9} to be the
identity in the quotient group. Moreover, adding any element from the
coset {1,4,7,10} to any from the coset {2,5,8,11} gives one from the coset
{0,3,6,9}, and so on. Formally, the operation on cosets is well defined, so
we can write the table in more condensed ways.

+12 {0,3,6,9} {1,4,7,10} {2,5,8,11}
{0,3,6,9} {0,3,6,9} {1,4,7,10} {2,5,8,11}
{1,4,7,10} {1,4,7,10} {2,5,8,11} {0,3,6,9}
{2,5,8,11} {2,5,8,11} {0,3,6,9} {1,4,7,10}
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+12 H 1+H 2+H
H H 1+H 2+H

1+H 1+H 2+H H

2+H 2+H H 1+H

With that in place, can you generalize?What are some other subgroups of
Z12? What would be their quotient groups in Z12? How would this work
in other cyclic groups, like Z60, or Z7? The latter has only two subgroups:
the whole group (Z7,+7) and the trivial subgroup ({0},+7) (see Section
6.3). What are their quotient groups in Z7?

To conclude this section, a comment on learning about quotient groups
and cosets.When coset definitions are introduced, youwill likely be asked
to calculate cosets for specific subgroups of specific groups. This is not
very interesting as it just involves calculating lists. It is worth doing, to
develop your sense of how cosets are formed, and to understand that
in aH or a+H, the element a can be any element of the group, not
only—as muddled students sometimes think—elements of the subgroup
H (what happens if a ∈ H?). But do not make the mistake of thinking
page-filling calculations important. What is important and interesting
about cosets is their role as elements of quotient groups. By all means
calculate attentively, but then make some effort to think of the resulting
cosets as single entities. This compression is important.

7.3 Element–coset commutativity

If you understand cyclic groups, the previous section might leave you
unimpressed. With addition based on division with remainders, perhaps
it is obvious that quotient groups work tidily. But that onlymakes the gen-
eral question more interesting. Quotient groups arise not only in cyclic
groups but also in dihedral groups, where the elements are not numbers
but symmetries. Symmetries have neither division nor remainders, at
least in the usual sense—could there be an analogue of division with
remainders for dihedral groups? And, to reiterate the earlier question,
does a quotient group arise for every subgroup of every group, or not?

Wewill approach these questions by considering the dihedral groupD4.
The table in Section 7.1 (refer to your copy) shows that ifH = {e,ρ,ρ2,ρ3}
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is the four-element subgroup of rotations, then D4/H ∼= Z2. But D4 has
many subgroups, as discussed in Section 6.6 and represented below. Do
other subgroups give rise to meaningful cosets and a quotient group?
Does H = {e,ρ2} give rise to a quotient group in D4, for instance? If so,
how many elements would you expect that quotient group to have?

{e}

{e, r1} {e, r2} {e, ρ
2
} {e, r3} {e, r4}

{e, ρ
2
, r3, r4}{e, ρ

2
, r1, r2} {e, ρ, ρ

2
, ρ

3
}

D4

Calculating cosets is straightforward, but we should think carefully
about those calculations because for cyclic groups I implicitly relied on
experience of division with remainders. For instance, I calculated the
three cosets of 3Z shown below, then stopped. Probably three seemed like
the right number. But why, exactly? What would happen if we calculated
3+ 3Z, 4+ 3Z, and so on?

0+ 3Z ={0+ z|z ∈ 3Z}= { . . . ,−6,−3,0,3,6,9, . . . };
1+ 3Z ={1+ z|z ∈ 3Z}= { . . . ,−5,−2,1,4,7,10, . . . };
2+ 3Z ={2+ z|z ∈ 3Z}= { . . . ,−4,−1,2,5,8,11, . . . }.

For dihedral groups,most people have little experience. So, although your
sense of how elements ‘clump together’ might lead you to answer that
H = {e,ρ2} should have four two-element cosets in the eight-element
group D4, it is less likely that you can intuit what those cosets should
be. For that reason, we will use the definition to calculate cosets for all
eight elements, then examine the results. Here is the definition again—
this time, the multiplicative version feels more natural.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is aH = {ah|h ∈ H}.

The calculations appear below (I filled these in using the table).
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eH={ee, eρ2} = {e,ρ2};
ρH={ρe, ρρ2} = {ρ,ρ3};
ρ2H={ρ2e, ρ2ρ2}= {ρ2,e};
ρ3H={ρ3e, ρ3ρ2}= {ρ3,ρ};
r1H={r1e, r1ρ2} = {r1, r2};
r2H={r2e, r2ρ2} = {r2, r1};
r3H={r3e, r3ρ2} = {r3, r4};
r4H={r4e, r4ρ2} = {r4, r3}.

This gives four distinct cosets, each appearing twice (check). But notice
that it could have gone wrong. If the cosets overlapped—if, say, we had
found that r1H = {r1, r2} but r2H = {r2, r3}—then the cosets would not
partition the group (see Section 3.4): D4 would not split into sets that
could potentially form elements of a quotient group. However, everything
looks okay, and to visualize a potential quotient group structure we can
rearrange the elements in a table for D4. First, we can put the subgroup
H = {e,ρ2} in a ‘block’. This block is self-contained because a subgroup
must be closed under the group operation.

◦ e ρ2

e e ρ2

ρ2 ρ2 e

The next listed coset is {ρ,ρ3}, so that can go in a second block. Check
that the cells below are filled in correctly, then attend to commutativity.
This part of the table is symmetric across the main diagonal because all
the rotations commute. That might seem unremarkable, but it will be
important in a minute.

◦ e ρ2 ρ ρ3

e e ρ2 ρ ρ3

ρ2 ρ2 e ρ3 ρ

ρ ρ ρ3 ρ2 e
ρ3 ρ3 ρ e ρ2
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The next listed coset is {r1, r2}, which can go in a third block. Completing
more cells maintains commutativity, because the identity commutes with
everything, and so does the 180◦ rotation ρ2 (the subgroup {e,ρ2} is the
centre of D4—see Section 6.10).

◦ e ρ2 ρ ρ3 r1 r2
e e ρ2 ρ ρ3 r1 r2
ρ2 ρ2 e ρ3 ρ r2 r1
ρ ρ ρ3 ρ2 e
ρ3 ρ3 ρ e ρ2

r1 r1 r2
r2 r2 r1

After that, it gets interesting. Completing more cells shows that commu-
tativity continues to matter, but no longer at the level of single elements.
For instance, it is not true that r1ρ = ρr1 (check). But it is true that

r1{ρ,ρ3} = {r3, r4} = {ρ,ρ3}r1 and r2{ρ,ρ3} = {r3, r4} = {ρ,ρ3}r2.

So, although the table for individual elements is not symmetrical across
the main diagonal, it nevertheless splits into intact coset blocks. All four
of r1{ρ,ρ3}, {ρ,ρ3}r1, r2{ρ,ρ3} and {ρ,ρ3}r2 give the same coset, {r3, r4}.

◦ e ρ2 ρ ρ3 r1 r2
e e ρ2 ρ ρ3 r1 r2
ρ2 ρ2 e ρ3 ρ r2 r1

ρ ρ ρ3 ρ2 e r3 r4
ρ3 ρ3 ρ e ρ2 r4 r3

r1 r1 r2 r4 r3
r2 r2 r1 r3 r4

And the same thing happens throughout the table—individual elements
‘commute’ with cosets and the cosets stay in blocks.
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◦ e ρ2 ρ ρ3 r1 r2 r3 r4
e e ρ2 ρ ρ3 r1 r2 r3 r4
ρ2 ρ2 e ρ3 ρ r2 r1 r4 r3
ρ ρ ρ3 ρ2 e r3 r4 r2 r1
ρ3 ρ3 ρ e ρ2 r4 r3 r1 r2
r1 r1 r2 r4 r3 e ρ2 ρ3 ρ

r2 r2 r1 r3 r4 ρ2 e ρ ρ3

r3 r3 r4 r1 r2 ρ ρ3 e ρ2

r4 r4 r3 r2 r1 ρ3 ρ ρ2 e

Thus D4 splits into a potential quotient group for the subgroup H =
{e,ρ2}. This potential quotient group has four elements, each a two-
element coset of {e,ρ2}.

◦ {e,ρ2} {ρ,ρ3} {r1, r2} {r3, r4}
{e,ρ2} {e,ρ2} {ρ,ρ3} {r1, r2} {r3, r4}
{ρ,ρ3} {ρ,ρ3} {e,ρ2} {r3, r4} {r1, r2}
{r1, r2} {r1, r2} {r3, r4} {e,ρ2} {ρ,ρ3}
{r3, r4} {r3, r4} {r1, r2} {ρ,ρ3} {e,ρ2}

◦ H ρH r1H r3H

H H ρH r1H r3H

ρH ρH H r3H r1H

r1H r1H r3H H ρH

r3H r3H r1H ρH H

Now, why do you think I refer to this as a ‘potential’ quotient group?With
cosets as elements, everything seems to work. But there are ways to fill in
tables without forming groups (see Section 6.11). Does this way satisfy
the group axioms? Yes: it must, because it is isomorphic to the Klein four-
group V (see Section 6.8). Thus we can write D4/{e,ρ2} ∼= V.
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7.4 Left and right cosets

Perhaps, then, a quotient group arises for every subgroup of every group.
But we should not conclude too hastily. Everything worked for H =
{e,ρ2} in D4 due to an element–coset form of commutativity. But, with
respect to commutativity, some elements are less ‘well behaved’ than
ρ2. So it is worth checking similarly for different subgroups. Calculating
cosets for H = {e, r1}, for instance, gives:

eH={ee, er1} = {e, r1};
ρH={ρe, ρr1} = {ρ, r3};
ρ2H={ρ2e, ρ2r1}= {ρ2, r2};
ρ3H={ρ3e, ρ3r1}= {ρ3, r4};
r1H={r1e, r1r1} = {r1,e};
r2H={r2e, r2r1} = {r2,ρ2};
r3H={r3e, r3r1} = {r3,ρ};
r4H={r4e, r4r1} = {r4,ρ3}.

Again this yields four distinct cosets, each appearing twice. And again
H = {e, r1} is a subgroup of D4, so it is closed under composition and
forms a first table block. This time, the next listed coset, {ρ, r3}, gives
a self-contained block below the subgroup—check that the partial table
below is filled in correctly. However, to the right of the subgroup, things
‘go wrong’. The top row reflects the fact that e{ρ, r3} = {ρ, r3}. But the
lower row contains r1ρ = r4, not r3, and r1r3 = ρ3, not ρ. In other words,
ρ{e, r1} ̸= {e, r1}ρ.

◦ e r1 ρ r3
e e r1 ρ r3

r1 r1 e r4 ρ3

ρ ρ r3
r3 r3 ρ
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This establishes that not all elements of D4 ‘commute’ with cosets of
{e, r1}, and that the cosets do not form self-contained blocks acting as
elements in a quotient group. Thus there is something special about some
subgroups in some groups. In D4, the subgroups {e,ρ,ρ2,ρ3} and {e,ρ2}
give rise to quotient groups, but the subgroup {e, r1} does not. Subgroups
that give rise to quotient groups thus merit a name, and we call them
normal subgroups. I do not know the history but I find this an appealingly
snooty use of language, implying that it is normal for a subgroup to give
rise to a quotient group and that subgroups that do not are inferior.
They are not inferior, of course—any set that meets the definition of a
subgroup is a subgroup. But normal subgroups do have extra properties.
To understand those properties, we will work out what distinguishes
normal subgroups from other subgroups.

For all subgroups, calculating cosets is straightforward from the defi-
nition. Moreover, in the cases considered in this chapter, cosets partition
their group: they are disjoint and leave nothing out.This is necessary for a
normal subgroup because if cosets do not partition a group, they cannot
form self-contained elements in a quotient group. Must partitioning
therefore be part of a definition of normal subgroup? Or does it work
for all subgroups anyway? What do you think?

For me the answer is not intuitively obvious—groups can differ greatly,
so the fact that cosets of some subgroups partition their groups does
not obviously generalize. However, it turns out that the cosets of any
subgroup do partition the group, which can be proved by generalizing an
argument from Section 3.4. First, (left) cosets leave nothing out because
for every group G, every subgroup H contains the identity e. So, for every
element a ∈ G, the element a = ae is in the coset aH. One way to prove
that cosets are disjoint is to prove that for any two cosets aH and bH, either
aH∩ bH = ∅ (they don’t overlap at all) or aH = bH (they overlap com-
pletely, so they are the same coset).

not possibleaH ∩ bH = ∅ aH = bH
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As in Section 3.4, the ‘either . . . or’ statement can be proved by demon-
strating that if aH∩ bH ̸= ∅, then aH = bH, and a general theorem
and proof appears below. If the abstraction makes it hard going, reread
Section 3.4 first, noting that the operation in 12Z is addition, so cosets
take the form a+ 12Z, whereas here the argument is general, so the
operation is denoted by juxtaposition and cosets take the form aH.

Theorem: Suppose that H is a subgroup of G.
Then the left cosets of H in G partition G.

Proof : Let a ∈ G.
Observe that e ∈ H.
So a = ae ∈ aH.
Thus every element appears in a coset.
Now suppose that b ∈ G and aH∩ bH ̸= ∅.
Then ∃x ∈ aH∩ bH.
Because x ∈ aH, ∃h1 ∈ H such that x = ah1.
Because x ∈ bH, ∃h2 ∈ H such that x = bh2.
So ah1 = bh2 and, because h1 and h2 have inverses (in H),
b = ah1h−1

2 and a = bh2h−1
1 .

Now let y ∈ bH.
Then ∃h3 ∈ H such that y = bh3 = ah1h−1

2 h3.
Thus y ∈ aH because h1h−1

2 h3 ∈ H by subgroup closure.
So bH ⊆ aH.
Similarly let z ∈ aH be arbitrary.
Then ∃h3 ∈ H such that z = ah3 = bh2h−1

1 h3.
Thus z ∈ bH because h1h−1

2 h3 ∈ H by subgroup closure.
So aH ⊆ bH.
Hence bH ⊆ aH and aH ⊆ bH, so aH = bH.
Thus we have proved that if aH∩ bH ̸= ∅ then aH = bH.
Hence the cosets of H in G partition G.
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Perhaps you can work out how to adjust the above proof to work for right
cosets, where these are defined as below. I recommend trying that.

Definition: Suppose that H is a subgroup of G. Then the right coset of
H containing a is Ha = {ha|h ∈ H}.

Thus both left cosets and right cosets partition their groups. And this
is true for all subgroups, not just normal ones. What makes normal
subgroups special—as you might anticipate—is how left and right cosets
work together. This can be clarified by examining right cosets of {e, r1}
as a subgroup of D4. The definition above yields four distinct right cosets
that partition the group.

He={ee, r1e} = {e, r1};
Hρ={eρ, r1ρ} = {ρ, r4};

Hρ2 ={eρ2, r1ρ2}= {ρ2, r2};
Hρ3 ={eρ3, r1ρ3}= {ρ3, r3};
Hr1 ={er1, r1r1} = {r1,e};
Hr2 ={er2, r1r2} = {r2,ρ2};
Hr3 ={er3, r1r3} = {r3,ρ3};
Hr4 ={er4, r1r4} = {r4,ρ}.

But the left and right cosets are not the same.

e r1

r2

r3

r4

ρ

ρ
2

ρ
3

left cosets right cosets

e r1

r2

r3

r4

ρ

ρ
2

ρ3

This led to the problem in constructing a quotient group table for {e, r1}
in D4—look back to check. In general, if left and right cosets are unequal
then constructing a quotient group ‘goes wrong’. This motivates the
definition of normal subgroup.
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7.5 Normal subgroups: theory

We have now established that a subgroup is normal—that its cosets act
as elements of a quotient group—only if the left and right cosets ‘match’.
This is captured in the definition of normal subgroup.1

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, aH = Ha.

Note the quantifier: every element of the group must ‘commute’ with
the subgroup. Also, normality is a property of subgroups in relation to
groups. It makes no sense to speak of ‘normal groups’, and we should
state that a subgroup is normal only if it is clear what ‘main’ group is
under discussion. Mathematicians will forgive repetition: ‘Recall that H
is a normal subgroup of G’ or ‘Because {e,ρ2} is a normal subgroup of
D4, . . . ’. They will not readily forgive ambiguity: ‘H is a normal subgroup’
might make mathematicians think ‘Of what?’

Normal subgroups, being special, have their own notation: ‘H is a
normal subgroup of G’ can be written H E G, and if H is both normal
and proper we can write H ▹ G. A normal subgroup might be denoted by
N, so youmight see—orwant towrite for your ownnotes—an abbreviated
version of the definition.

Definition: N E G iff ∀a ∈ G, aN = Na.

Indeed, you might see various non-abbreviated versions; alternative for-
mulations are discussed later in this section. First, however, a point of
logic. Section 7.4 established that normality of H in G is necessary for
G/H to be a quotient group—no normality, no quotient group. We have
not explored whether normality is also sufficient.

quotient group G/H ⇒ H normal
quotient group G/H ⇐

?
H normal

1 If you have opened this book here because you are stuck with normal subgroups, I
recommend reading this chapter from the beginning.
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Moreover, youmight have noticed that the equation aH = Ha relates only
to a single row and column in a potential quotient group table, which
is not quite the same as cosets ‘hanging together’ in blocks. Happily,
everything does work: normality is both necessary and sufficient for a
subgroup to give rise to a quotient group. This can be established in part
by generalizing a theorem and proof from Section 3.3, which showed
that addition for cosets of 12Z in Z is well defined—that the natural
operation on cosets respects the results of operating on elements. The
general version below shows that the natural operation on cosets of a
normal subgroup is always well defined—that, for cosets of a normal
subgroup (written in multiplicative notation), it is always meaningful to
write (aH)(bH)= (ab)H. As you read the proof, notice that bH = Hb
does not imply that h1b = bh1, which might be a tempting inference.
Because H is a set, it implies only that there is a possibly different element
h3 ∈ H such that h1b = bh3. Where would the proof break down if a
subgroup were not normal?

Theorem: Suppose that H is a normal subgroup of G and that x ∈ aH
and y ∈ bH. Then xy ∈ (ab)H.

Proof : Suppose that H is a normal subgroup of G.
Suppose that x ∈ aH so ∃h1 ∈ H such that x = ah1

and y ∈ bH so ∃h2 ∈ H such that y = bh2.
Then xy = (ah1)(bh2)= a(h1b)h2 by associativity.
Now, because H is normal, we know that bH = Hb.
So ∃h3 ∈ H such that h1b = bh3.
Hence xy = a(bh3)h2 = (ab)(h3h2), again by associativity.
But h3h2 ∈ H because H is closed under the group operation.
Thus xy ∈ (ab)H.

The fact that the coset operation is well defined is crucial for a quotient
group to exist—it means that, under the natural operation, the cosets act
as meaningful single elements. What else is needed? A quotient group
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G/H—like any group—must satisfy the group definition. So it must be
closed under the operation, which it is because for any two cosets aH and
bH, (aH)(bH)= (ab)H (another coset). Associativity requires that for
any three cosets aH, bH and cH, ((aH)(bH))cH = aH((bH)(cH)). How
would you show that this equality holds? The identity coset will be H or,
if you prefer, eH. Why is eH equal to H, and why is it true that for every
coset aH, (eH)(aH)= (aH)(eH)= aH? Finally, which coset do you think
will act as the inverse of aH? This is not a trick question—you can check
that the obvious choice works. In your course, look out for a formally
written proof that captures the ideas in this paragraph; this establishes
that normality of H in G is sufficient for G/H to be a quotient group.

Now, I mentioned earlier that the normal subgroup definition can be
formulated in several ways. I like the aH = Ha formulation—repeated
below—because for me it links to the intuitive understanding built up in
this chapter.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, aH = Ha.

But your course might use a different formulation, where three are listed
below. Think about object types: where does each use single elements and
sets? Can you see that they are all logically equivalent?

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, ∀h ∈ H, ∃h′ ∈ H such that ah = h′a.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, a−1Ha = H.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, ∀h ∈ H, a−1ha ∈ H.

Equivalence might be proved in your course, and means that it does
not matter which formulation is treated as the definition and which are
proved as theorems. But obviously these are easily muddled, so keep your
objects and quantifiers clear.
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It might also be useful to know that coset definitions too can be
formulated differently. I defined cosets as below.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is aH = {ah|h ∈ H}.

Definition: Suppose that H is a subgroup of G. Then the left coset of H
containing a is a+H = {a+ h|h ∈ H}.

But saying that x ∈ a+H is equivalent to saying that there exists h ∈ H
such that x = a+ h, or to saying that x− a ∈ H. Either draws attention to
the fact that elements within cosets differ by elements of the subgroup. I
recommend thinking about how these formulations relate to the diagram
below (from Section 3.4) showing vertical representations for the cosets
of H = 3Z in G = Z. Each column is a coset; the leftmost is the subgroup
3Z. Within each coset, elements differ from one another by elements of
the subgroup. And each coset is horizontally ‘offset’ from the subgroup by
a fixed number—the remainder on division by 3.

3

21

−3 −2 −1

4

0

5

6 7 8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

+1

+2

+3

+6

−3

3
Z

1
+
3
Z

2
+
3
Z
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7.6 Normal subgroups: examples

The previous section was mostly formal, and your course might be like
that—Abstract Algebra can be presented primarily in terms of defini-
tions, theorems and proofs. But I like to feel that mathematics is about
something—I like examples front and centre. So we will explore some
now, viewing them through the lens of the theory.

First, in abelian groups, all subgroups are normal. That is because
groups in which the operation is commutative automatically have
element–coset commutativity. An abelian group G has ab = ba for every
a,b ∈ G. So, if it has a subgroup H, it must be true that ah = ha for every
a ∈ G and h ∈ H, and thus that aH = Ha for every a ∈ G. For instance,
every subgroup of every cyclic group is normal, and there is a chain of
normal subgroups (Z,+)▹ (Q,+)▹ (R,+)▹ (C,+).

Second, some groups are not abelian but do have ‘commutative bits’.The
centre of a group comprises the elements that commute with everything.

Definition: The centre of a group G is the set {x ∈ G|∀g ∈ G,xg = gx}.

The centre is always a subgroup—see Section 6.10. It is always normal
because if H is the centre of G, then ah = ha for every a ∈ G and h ∈ H,
and thus again aH = Ha for every a ∈ G. This is one way to identify
normal subgroups in non-abelian groups. For instance, the subgroup
{e,ρ2} is the centre of D4 and is, as established directly in Section 7.3,
a normal subgroup.

Third, the definition of normal subgroup requires only that aH = Ha
for every a ∈ G, not that ah = ha for every a ∈ G and h ∈ H. Can you see
the difference? As in the previous section, aH = Hameans only that there
exist h1,h2 ∈ H such that ah1 = h2a; the subgroup elements h1 and h2
can differ. Where have we seen a normal subgroup that is bigger than
the centre of its group? One appeared in Section 7.1. For the subgroup
H = {e,ρ,ρ2,ρ3} of D4, it is not true that ah = ha for every a ∈ G and
h ∈ H. For instance, r1ρ ̸= ρr1. But it is true that aH = Ha for every a ∈ G.
For instance, r1{e,ρ,ρ2,ρ3} = {r1, r2, r3, r4} = {e,ρ,ρ2,ρ3}r1. This led to
the quotient group structure D4/{e,ρ,ρ2,ρ3} ∼= Z2.
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◦ e ρ ρ2 ρ3 r1 r2 r3 r4

e e ρ ρ2 ρ3 r1 r2 r3 r4
ρ ρ ρ2 ρ3 e r3 r4 r2 r1
ρ2 ρ2 ρ3 e ρ r2 r1 r4 r3
ρ3 ρ3 e ρ ρ2 r4 r3 r1 r2

r1 r1 r4 r2 r3 e ρ2 ρ3 ρ

r2 r2 r3 r1 r4 ρ2 e ρ ρ3

r3 r3 r1 r4 r2 ρ ρ3 e ρ2

r4 r4 r2 r3 r1 ρ3 ρ ρ2 e

Fourth, this table can help us to see that if a subgroup’s order is half
of its group’s (finite) order, then the subgroup must be normal. Can you
see why? Remember that in a group table, every element appears once
in each row and column (see Section 5.3). So, if the top left quadrant
of the table contains subgroup elements, the top right and bottom left
quadrants must contain non-subgroup elements. What does that leave
for the bottom right quadrant? The subgroup elements again. Thus the
table must be arranged in a 2× 2 checkerboard pattern of subgroup and
non-subgroup elements, giving a quotient group isomorphic to Z2. In
Z12, for instance, the subgroup ({0,2,4,6,8,10},+12) must be normal.
In D3, the subgroup {e,ρ,ρ2} must be normal. In D4, every four-element
subgroup must be normal—you might like to pick one from the diagram
in Section 7.3 and draw a table in which its elements appear together
in the top left. As you do that, notice that every four-element subgroup
contains the group’s centre. Why is that?
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For a further example, recall that Sn is the symmetric group of order n;
its elements are permutations of the set {1,2,3, . . . ,n} and its operation is
composition. Section 6.9 noted that permutations can be constructed by
combining transpositions—each of which swaps two elements—and that
a permutation is even if it requires an even number of transpositions. The
even permutations make up half of Sn and thus form a normal subgroup
called the alternating group An. For instance, the elements of S3 are the
permutations

e (12) (13) (23) (123) (132).

Thepermutation e requires zero transpositions, and (123)= (13)(12) and
(132)= (12)(13) each require two. So A3 = {e,(123),(132)}. Recalling
that S3 is isomorphic to D3, you might want to imagine a triangle with
vertices labelled 1,2,3 and think about howA3 corresponds to a subgroup
of D3. Does the subgroup A4 of S4 correspond to a subgroup of D4? Why,
or why not?

To consider relationships between D4, A4 and S4, I find it helpful to
adapt the previous section’s vertical representation of the cosets of 3Z

in Z to construct similar diagrams for other groups and subgroups. The
diagrambelow shows the right cosets of the subgroupH = {e,ρ,ρ2,ρ3} in
D4, written in our original notation and in the generator-based notation
from Section 6.8. The horizontal shift represents right composition with
r1 or r and the vertical shifts represent left composition with elements of
H. What would change for the left cosets?

e

ρ

ρ
2

ρ
3

r1

r2

r3

r4

e

ρ

ρ
2

ρ
3

r

ρr

ρ
2
r

ρ
3
r

HH HrHr1

◦ r◦ r1

ρ ◦

ρ
2

◦

ρ
−1

◦
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For {e, r1} as a non-normal subgroup ofD4, the left and right cosets and
thus the columns differ.

e ρ ρ
2

ρ
3

r1 r2 r4

H

ρ ◦

r3

◦ r1

ρ
2
◦

ρ
3
◦

e ρ ρ
2

ρ
3

r1 r2r4

H Hρ
2

Hρ Hρ
3

r3

ρH ρ
2
H ρ

3
H

◦ ρ

◦ ρ
2

◦ ρ
3

r1◦

Now, recall that for 3Z as a subgroup of Z, the horizontal shifts
represent remainders. So these diagrams help me to see an analogue of
‘division with remainders’ in dihedral groups and general groups.

• For 3Z as a subgroup of Z, left cosets have the form (remainder)+3Z and
elements of cosets have the form (remainder)+(element of 3Z).

• For H = {e,ρ,ρ2,ρ3} as a subgroup of D4, left cosets have the form
(‘remainder’)H and elements of cosets have the form (‘remainder’)(element
of H).

• For H as a subgroup of G, left cosets have the additive or multiplicative
forms (‘remainder’)+H or (‘remainder’)H and elements of cosets have the
form (‘remainder’)+(element of H) or (‘remainder’)(element of H).

e

h1

h2

.

.

.

h
m

g1H

g1

g1h1

g1h2

g1hm g2hm

g2h2

g2h1

g2

g2H g
n
H

g
n

g
n
h1

g
n
h2

g
n
h
m

H

.

.

.

.

.

.

· · ·

· · ·

· · ·

· · ·

· · ·

.

.

.

g1

g2

h1

h2
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With this in mind, I made the diagram below to help myself
understand the structure of S4. The left column contains the elements
of D4, with rotations at the top and reflections at the bottom. The
middle column contains these elements composed with the twist
(12) (see Section 6.9). Which is performed first, the element of D4
or the twist? What does the third column show? How do we know
that this diagram shows every element of S4? How many generators
does this organization effectively use? Would you find an alternative
organization more natural? Is D4 a normal subgroup of S4? Where are
the elements of A4? You might find that this diagram prompts other
questions too.

1 2

34

1

23

4

e (12) (14)

(1234) (134) (234)

(13)(24) (1423) (1243)

(1432) (243) (132)

(12)(34) (34) (1342)

(24) (123) (143)

(14)(23) (1324) (23)

(13) (142) (124)

evenodd

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3
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3

3

3

3

3

3

3

3

3

3

3
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4

4

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

3

even

even

eveneven

even

even

even

eveneven

even

even

odd odd

odd

oddodd

odd

oddodd

odd

oddodd
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To conclude, a couple of classes of normal subgroups that we have
not yet considered. First, the degenerate cases. A group G is always a
subgroup of itself, and must be normal because for every a ∈ G, aG and
Ga represent a whole row and column of the group table; they therefore
include every element of G, so aG = G = Ga. Also, the identity alone
is always a subgroup, and must be normal because for every a ∈ G,
a{e} = ae = a = ea = {e}a. So every group has at least two normal sub-
groups. Second, students who have studied some Abstract Algebra might
know that normal subgroups occur as kernels of group homomorphisms.
If you already knew that, you might want to think about why. Either way,
you can find more in Chapter 8.

7.7 Lagrange’s Theorem

This final section broadens the discussion from normal subgroups
to all subgroups, specifically to a property of subgroups captured in
Lagrange’s Theorem. Like all theorems, this can be stated in different ways.
Section 3.5 included this simple version.

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then the order of H divides the order of G.

We will start by considering meaning and logic. You might have con-
sidered meaning in Section 6.2, which asked whether Z12 could have
subgroups of order five, or eight. Why does Lagrange’s Theorem imply
that it cannot? You might also have considered it in Section 6.7, which
noted that a subgroup taking up more than half of a finite group must be
the whole group. Why does Lagrange’s Theorem imply that?

The logic of Lagrange’s Theorem was discussed in Section 3.5, which
observed that its converse is not true: the order of a subset might divide
that of the group without that subset being a subgroup. A more subtle
possible error is assuming that if a number divides the order of a group
then there must exist a subgroup with that order. This is not true, but that
is not obvious from the examples so far. For instance, the cyclic group
Z12 has subgroups of orders 1,2,3,4,6 and 12. The dihedral group D4
has subgroups of orders 1,2,4 and 8. The smallest group to provide a
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counterexample is A4, which has order 12 but no subgroup of order 6.
You might want to explore A4 to investigate. You might also like to know
that if a prime p divides the order of a group, then it is true that the group
has a subgroup of order p. Do you have any feeling for why?

In fact, Lagrange’s Theorem says more than the above; a fuller version
involves cosets.

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then the order of G is equal to the order of
H multiplied by the number of cosets of H in G.

That is a bit wordy—you might prefer a more symbolic version using a
new definition.

Definition: LetH be a subgroup ofG.Then the index ofH inG, denoted
|G :H|, is the number of cosets of H in G.

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then |G| = |H||G :H|.

Now, if you have read this chapter from the beginning, Lagrange’s The-
orem will not surprise you. Indeed, it might seem rather obvious. But,
as everywhere in this book, much of the discussion has been about
specific examples, which can provide insight but not general proof. So you
might want to pause and think. Do we know enough to prove Lagrange’s
Theorem? Or is more work required?

A proof must establish that cosets ‘fill up’ the group without overlap-
ping, and that each has the same order as H. Check that you agree. The
filling-up part was established in Section 7.4, which proved that for any
subgroup of any group, every element is in some coset and the cosets
partition the group. The same-order part we have not yet considered. For
the subgroups explored so far, every coset does have the same number of
elements as the subgroup. But does that always hold?

One way to think about this intuitively is to imagine a row of a group
table. Suppose that a subgroup H has elements denoted hi, and consider
the coset aH, which has elements ahi. These elements are all in the same
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row and, because each row contains each group element exactly once,
each ahi must be different.

g1 h1 g2 h2 g3 g4 . . . hi hj gn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a ag1 ah1 ag2 ah2 ag3 ag4 . . . ahi ahj agn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How can we capture that formally? With a subgroup H and coset aH,
we want to prove that for h1,h2 ∈ H, if h1 ̸= h2 then ah1 ̸= ah2. Can
you think of a way to do that? The idea is simple, but those negatives
are difficult to handle, which makes it easier to remember that the
contrapositive of a conditional statement is equivalent to that statement
(see Section 3.5). Here, the contrapositive is: if ah1 = ah2 then h1 = h2.
Notice where this is used in the lemma and proof below (‘lemma’ is a word
often used for a ‘small’ or preparatory theorem).

Lemma: Suppose that G is a finite group, H is a subgroup of G, and
a ∈ G. Then |aH| = |H|.

Proof : First, note that aH = {ah|h ∈ H}, so |aH| ≤ |H|.
Now suppose that ∃h1,h2 ∈ H such that ah1 = ah2.
Then, because a has an inverse a−1 ∈ G, a−1ah1 = a−1ah2.
So h1 = h2.
Thus if h1 ̸= h2, then ah1 ̸= ah2.
So |aH| ̸< |H| and we must have |aH| = |H|.

Now we can prove Lagrange’s Theorem.

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then |G| = |H||G :H|.

Proof : Suppose that G is a finite group with subgroup H.
Then the cosets of H in G partition G (Section 7.4).
And each coset has order |H| (by the lemma above).
Thus |G| = |H||G :H|.
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A short proof can make a theorem seem trivial, so remember how much
reasoning is packed into the invoked theorem and lemma. Your course
might do aswe have, establishing those results first then presenting a short
proof. Or it might present a long proof incorporating all of the underlying
reasoning.

Now, Lagrange’s Theorem has some immediate consequences. First,
recall from Section 6.3 that the set generated by an element of a group
is defined as below.

Definition: Let G be a group and g ∈ G. The set generated by g is
⟨g⟩ = {gn|n ∈ Z}.

The set ⟨g⟩ is always a cyclic subgroup of G (see Section 6.4). Its order is
the smallest n such that gn is the identity, and this n is defined to be the
order of the element g. For instance, in D4, the order of ρ is 4, the order of
r1 is 2, and the order of e is 1. Do keep your eye on object types: g is a group
element, ⟨g⟩ = {e,g,g2,g3, . . . ,gn} is a set, |g| is a number, and |⟨g⟩| is the
same number—why? With this in place, Lagrange’s Theorem implies that
the order of every element must divide the order of the group. You might
want to consider more examples.

A second consequence of Lagrange’s Theorem is that every group of
prime order is cyclic. Why is that? Think about the definition of cyclic—
see Section 6.3—and about what orders subgroups can take in a group of
prime order.

A third consequence is this theorem.

Theorem: If a group G has order n, then gn = e for all g ∈ G.

Again, why must that be true? Every element’s order divides n—how is
that relevant? It is also worth considering the converse, which would say
that if gn = e for all g ∈ G, thenG has order n.This is not true: in the Klein
four-group V (see Section 6.8), g2 = e for all g ∈ V, but V has order 4.
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To conclude, some reasoning to show the power of abstract results.
Consider S4, for which K = {e,(12)(34),(13)(24),(14)(23)} is a normal
subgroup. We can prove that for every g ∈ S4, g6 ∈ K. Is that obvious to
you? It is not tome—I amnot familiar with this subgroup—and exploring
it draws together some ideas from this chapter.

First, checking that K is normal is nontrivial but not difficult: we can
find the left and right cosets of K in S4 and check that they are the same.
How would you do that efficiently? I might start by listing the subgroup,
which will be one coset. Then, because the cosets partition the group, a
second cosetmust be of the form aKwhere a /∈ K. I might choose a simple
element a = (12) ∈ S4 and check that (12)K = K(12).

e

(12)(34)

(13)(24)

(14)(23)

K

e

(12)(34)

(13)(24)

(14)(23)

K(12)K

(12)

K (12)

(34)

(1324)

(1423)

(12)

(34)

(1423)

(1324)

A third coset must be of the form bK where b /∈ K∪ aK (the set K∪ aK
is the union of K and aK, the set of all elements that are in K or aK or
both). So I might choose b = (13). Can you finish this reasoning to show
that the left and right cosets are equal? Do so and you will see that K is
indeed normal in S4.

e

(12)(34)

(13)(24)

(14)(23)

K

e

(12)(34)

(13)(24)

(14)(23)

K(12) K

(12)

K (12)

(34)

(1324)

(1423)

(12)

(34)

(1423)

(1324)

(13) K

(13)

K (13)

(1234)

(24)

(1432)

(13)

(24)

(1432)

(1234)
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How about the claim that for any g in S4, g6 ∈ K? This too is nontrivial
but, in principle, not difficult.We could list all 24 elements of S4, compose
each with itself six times, and check that the result is in K. That, however,
does not sound like fun. Fortunately, we can be much more efficient by
applying theorems about quotient groups and group orders. Study the
claim and proof below to see how.

Claim: Let K = {e,(12)(34),(13)(24),(14)(23)} E S4.
Then for every g ∈ S4, g6 ∈ K.

Proof : Because K is normal, S4/K is a quotient group.
By Lagrange’s Theorem, there are 24/4 = 6 cosets of K in S4.
So the quotient group S4/K has order 6.
Let g ∈ S4 be arbitrary and note that S4/K has an element gK.
Then, by the previous theorem, (gK)6 is equal to the identity in
S4/K.
But the identity in a quotient group is the subgroup, in this caseK.
So (gK)6 = K.
Now, ∀a,b ∈ G, (aK)(bK)= (ab)K,
Thus (gK)6 = K ⇒ g6K = K.
So g6 ∈ K for every g ∈ G.

You might want to read this proof a few times to sort out the object
types, thinking about group elements versus the cosets that form quotient
group elements. But notice that the argument involves no calculations
with specific group elements; rather, it relies on general results of Abstract
Algebra. I do not expect you to have this kind of reasoning at your
fingertips. But I would like you to understand the power of general
reasoning and what you might aim for.
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chapter 8

Isomorphisms and
Homomorphisms

This chapter explores and formalizes the notion that two groups can be isomor-
phic, meaning structurally identical. It introduces examples of isomorphisms and
ways of establishing whether two groups are isomorphic or not. It then explores
homomorphisms—maps between groups that respect their binary operations
but are not necessarily bijective. Finally, it explains how the First Isomorphism
Theorem links homomorphisms to normal subgroups and quotient groups.

8.1 What is an isomorphism?

Two groups are isomorphic if and only if they are structurally identi-
cal. For instance, Z4, the cyclic group of order four, is isomorphic
to the multiplicative group U4 = ({1, i,−1,−i},×). Can you see

this in their tables?

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

× 1 i −1 −i

1 1 i −1 −i

i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1
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Another group of order four is the Klein four-group V. This appears
structurally different, as on the right below. But could e,a,b and c be re-
ordered so that the table ‘matches’ that for Z4?

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

It could not, because structural properties of the two groups differ.
Consider, for instance, orders of elements, defined as below (see also
Section 7.7, and note that ‘min’ means ‘minimum’).

Definition: Let G be a group with identity e. Then the order of g ∈ G
is min{n ∈ Z+|gn = e}. If no such n exists, g is said to have
infinite order.

The group Z4 has operation +4 and identity 0, so the element 1 has
order four because 1 ̸= 0 and 1+4 1 ̸= 0 and 1+4 1+4 1 ̸= 0 but 1+4
1+4 1+4 1 = 0. In V, every non-identity element has order 2 because
a ∗ a = b ∗ b = c ∗ c = e.

Now, the ‘structural sameness’ notion is intuitive rather than for-
mal. It is completely correct, and there is nothing wrong with intuitive
conceptions—experts use them routinely. Unfortunately, it is not that
useful to work with, for two reasons. First, structural sameness is hard to
see if elements do not line up conveniently in tables. Second, as withmost
intuitive notions, it cannot be used to construct formal mathematical
arguments. Mathematicians do not argue that two groups are isomorphic
by saying ‘Look, they’re the same!’ (at least not in print—they might in
conversation). And no one can use it to prove theorems.

So we need a formal way to work with isomorphisms, and this
chapter will offer that and then go on to discuss homomorphisms.
Isomorphisms and homomorphisms are closely related—unsurprisingly,
given the names. Isomorphisms are ‘tighter’: they require exact sameness.
Homomorphisms are ‘looser’: they require two groups to have specific
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common structure but not (necessarily) to be structurally identical. Some
Abstract Algebra courses introduce homomorphisms first, which makes
logical sense because these require fewer definitional properties. But I
think that isomorphisms are so psychologically natural that it makes
sense to start with those. We will get to homomorphisms in Section 8.6.

A first thing to note is the relationship between the words isomorphic
and isomorphism. Two groups are isomorphic if and only if there is an
isomorphism between them, where an isomorphism is a function ‘match-
ing’ elements in one group to those in the other so as to respect their
structures. For instance, Z4 is isomorphic to U4 via the isomorphism ϕ

(the Greek letter ‘phi’) represented below.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

ϕ
−→

ϕ(0)= 1

ϕ(1)= i

ϕ(2)= −1

ϕ(3)= −i

× 1 i −1 −i

1 1 i −1 −i

i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

It matters how ϕ is constructed because not all functions from
Z4 to U4 are isomorphisms. To see how restrictive the notion is,
observe that a possible ‘matching’ function could map 0 ∈ Z4 to any
of 1, i,−1 or −i. Then it could map 1 ∈ Z4 to any of the remaining
three elements, giving 4× 3 options for 0 and 1 together. Extending
this reasoning yields 4× 3× 2× 1 = 4! = 24 potential matching
functions from Z4 to U4. How many respect the groups’ structures
and thus qualify as isomorphisms? Think this through, or take an
educated guess.

One possible check involves element orders: if an element of one
group has order n then so should its image under an isomorphism. This
constrains isomorphisms pretty tightly. For instance, Z4 and U4 each
have one element of order one: their respective identities 0 and 1. So
any isomorphismψ : Z4 → U4 must haveψ(0)= 1 (ψ is the Greek letter
‘psi’). Similarly, each group has one element of order two: 2 in Z4 because
2+4 2 = 0, and −1 in U4 because (−1)× (−1)= 1. So any isomorphism
must have ψ(2)= −1.
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+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

ψ
−→

ψ(0)= 1

ψ(2)= −1

× 1 −1

1 1 −1

−1 1

−1 −1 1

1 −1

That leaves two elements of order four in each group: 1 and 3 in Z4 and i
and −i in U4. The isomorphism ϕ had ϕ(1)= i and ϕ(3)= −i. Could an
isomorphism ψ have ψ(1)= −i and ψ(3)= i instead?

Inspecting full tables might help. Below, the elements are reordered
on the right to show correspondences for the potential isomorphism ψ .
Are these represented correctly in the header row and column and in the
results of the operations +4 and ×?

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

ψ
−→

ψ(0)= 1

ψ(1)= −i

ψ(2)= −1

ψ(3)= i

× 1 −i −1 i

1 1 −i −1 i

−i −i −1 i 1

−1 −1 i 1 −i

i i 1 −i −1

Everything works, so ψ : Z4 → U4 is an isomorphism. But it is the only
alternative to ϕ, the only other map that respects the groups’ structures.
And this thinking is practical only because these groups are small. So
easy-to-manipulate isomorphism criteria would be both mathematically
desirable and practically useful. We need a definition.

8.2 Isomorphism definition

To motivate the definition of isomorphism, it is instructive to think
beyond orders of elements to other properties that isomorphisms should
respect. To do that, some notation helps. Suppose that G1 and G2 are
groups and that ϕ : G1 → G2 is an isomorphism.Then every g ∈ G1 maps
to an element ϕ(g) ∈ G2.
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G
1 G

2

φ

g φ(g)

Now, in earlier mathematics, people often speak ambiguously about
notation such as ϕ(g) or f(x). They say things like ‘the function f(x)’,
which is not badly misleading but not fully precise. In fact, f denotes the
function, as in the notation f : R → R (‘f from the reals to the reals’). The
object x is an element of the domain, and f(x) is its image, an element of
the range or codomain. In our notation, ϕ is a function, g is an element
of G1, and ϕ(g) is an element of G2. As ever, object types matter.

With an isomorphismϕ : G1 → G2 in place, here are some questions.

• Suppose thatG1 is abelian (that its operation is commutative).What should
be true about G2?

• Suppose that e is the identity for G1. What should be true about ϕ(e) in G2?
Can you relate that to orders of elements?

• If g has inverse g−1 in G1, what should be the inverse of ϕ(g) in G2?
• Suppose that ⟨g⟩ = G1 (that g generates G1—see Section 6.3). What should

be true about ϕ(g) in G2? Can you relate this to orders of elements, too?

Happily, the answers to the questions are those that ‘sound right’.
Abelian groups should be isomorphic to abelian groups. Any isomor-
phism should map the identity in one group to the identity in the other,
shouldmap inverses to inverses, and shouldmap generators to generators.
That sounds like a fair few things to cover, but it turns out that two
simple criteria force a map ϕ : G1 → G2 to respect all of these aspects
of structure. The first criterion is:

if ab = c ∈ G1, then ϕ(a)ϕ(b)= ϕ(c) ∈ G2.

This forces what goes in the table ‘on the right’ to be correct with
respect to structure. Do the tables below help you to see how it relates to
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commutativity, identities, inverses and generators? Some might be easier
to think about than others.

b

a c

ϕ
−→ ϕ(b)

ϕ(a) ϕ(c)

In formal work, it can be easier to shift attention from matching
elements in isomorphic groups to isomorphisms, the functions that map
between isomorphic groups.With that focus, the criterion can be stated as

∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

b

a ab

ϕ
−→ ϕ(b)

ϕ(a) ϕ(ab)

The expression ϕ(ab)= ϕ(a)ϕ(b) requires disciplined thought, because
it looks so right that people tend to assume that it always holds. One way
to enforce that discipline is to recognize that in the table on the right,
plenty of elements could occupy the ϕ(a)ϕ(b) space; the criterion says
that for ϕ to be an isomorphism, the only option is ϕ(ab). A second way
is to remember that this general notation covers many possible groups
with different operations. For instance, the operation in Z4 is +4 and
the operation in U4 is ×. So, for the isomorphism ϕ : Z4 → U4 from the
previous section, the expression

ϕ(ab)= ϕ(a)ϕ(b) actually reads ϕ(a+4 b)= ϕ(a)×ϕ(b).
That should make it seem less likely that the criterion would always
hold. It also provides a link to a common algebraic error. In general,
(a+ b)2 ̸= a2 + b2 because the function f : (R,+)→ (R,+) given by
f(x)= x2 is not an isomorphism: where (a+ b)2 ̸= a2 + b2, we have
f(a+ b) ̸= f(a)+ f(b).
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A third way to enforce discipline is to think about orders of operations.
In ϕ(ab), the elements a,b ∈ G1 are first combined to give ab ∈ G1. Then
ϕ is applied to map ab ∈ G1 to ϕ(ab) ∈ G2.

a

b

G
1 G

2

ab φ(ab)

φ

In ϕ(a)ϕ(b), the function ϕ is first applied separately to map a ∈ G1 to
ϕ(a) ∈ G2 and b ∈ G1 to ϕ(b) ∈ G2. Then these are combined to give
ϕ(a)ϕ(b) ∈ G2.

a

b

G
1 G

2

φ

φ(a)

φ(b)

φ(a)φ(b)

For functions in general, these two processes—combine then map, map
then combine—need not give the same outcome. That’s exactly what
happens for (a+ b)2 ̸= a2 + b2: adding then squaring need not be the
same as squaring then adding. For isomorphisms, the criterion ϕ(ab)=
ϕ(a)ϕ(b)means that they must have the same outcome.

Now, focusing on isomorphisms can feel unnatural because it intro-
duces asymmetry. The relation ‘is isomorphic to’, denoted ‘∼=’, is sym-
metric: if G1 ∼= G2 then G2 ∼= G1. So we can speak of isomorphic groups
without privileging either one. But an isomorphismmaps from one group
to another; one is its domain and the other is its codomain. Fortunately,
the asymmetry is only in what we write, because every isomorphism is
invertible: ifG1 ∼= G2 via an isomorphism ϕ : G1 → G2, thenG2 ∼= G1 via
an isomorphism ϕ−1 : G2 → G1.
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G
1 G

2

φ

φ
−1

Invertibility brings us to the second isomorphism criterion. An iso-
morphism must be bijective; it must map one group to another ‘perfectly’,
without mapping two elements to the same element or missing any out
(people sometimes say that it must be ‘one-to-one and onto’). Formally,
a bijective function must be both injective and surjective, where these
notions are defined and illustrated below.

Definition: A function f : A → B is injective if and only if ∀a1,a2 ∈ A,
f(a1)= f(a2)⇒ a1 = a2.

Definition: A function f : A → B is surjective if and only if ∀b ∈ B
∃a ∈ A such that f(a)= b.

A B

f

injective and surjective

A B

f

A B

f

injective but not surjective

A B

f

surjective but not injective neither injective nor surjective
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Bijectivity is necessary for a function to be invertible—why? And it
might be considered an obvious property of isomorphisms—two groups
cannot be structurally identical if one hasmore elements than the other. If
you therefore thought about bijectivity earlier, well done. If not, note that I
implicitly assumed it when calculating the number of possible ‘matching’
functions from Z4 to U4. How, exactly?

Now we have what we need to define isomorphism and isomorphic
groups. Each definition can be formulated with a focus on the groups or a
focus on the isomorphism. Here are versions that explicitly separate the
two required properties.

Definition: Let G1 and G2 be groups. Then G1 and G2 are isomorphic
if and only if there exists a function ϕ : G1 → G2 such that:
1. ϕ is bijective;
2. ∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

Definition: Let G1 and G2 be groups. Then ϕ : G1 → G2 is an isomor-
phism if and only if:
1. ϕ is bijective;
2. ∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

Separation, though, adds length. So you might see shorter versions.

Definition: Groups G1 and G2 are isomorphic if and only if there
exists a bijectionϕ : G1 → G2 such that∀a,b ∈ G1,ϕ(ab)=
ϕ(a)ϕ(b) ∈ G2.

Definition: ϕ : G1 → G2 is a group isomorphism if and only if ϕ is
bijective and ∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

Indeed, people often abbreviate further when notation is well established
or when writing notes. Are you familiar with all of the abbreviations
below? If not, can you work out what they mean?

Definition: G1 ∼= G2 iff ∃ bijection ϕ : G1 → G2 s.t. ∀a,b ∈ G1, ϕ(ab)=
ϕ(a)ϕ(b).
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Definition: ϕ : G1 → G2 is a group isomorphism iff ϕ is bijective and
∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b).

Which formulations do you prefer? Mathematicians value brevity, but
they also tend to write carefully for students, so you might see longer
versions. For yourself, you might write something shorter, though be
sure not to lose the logic, and remember that there are two criteria.
The expression ‘ϕ(ab)= ϕ(a)ϕ(b)’ tends to catch the eye because it uses
algebraic symbols. The bijection property does not because it is expressed
in a single word. Don’t forget it.

8.3 Early isomorphism theory

So far, this chapter has played fast and loose with theory development,
using intuitive ideas to suggest claims before considering definitions.
This section will build theory in a logical order, starting with definitions
and proving theorems. The theorem below captures the earlier
observation about isomorphisms and abelian groups. What are its
premises and conclusion (see Section 3.1)? Can you see a way to
prove it?

Theorem: Suppose that G1 and G2 are isomorphic groups and that G1
is abelian. Then G2 is abelian.

The theorem has two premises and a conclusion, and to start a proof
it is a good idea to write out what these mean in terms of definitions
(see Section 3.7); to avoid confusion, it can be good to use different
notation for general elements of G1 and G2.

Premise: G1 and G2 are isomorphic, meaning that there exists a
bijection ϕ : G1 → G2 such that ∀a,b ∈ G1, ϕ(ab)=
ϕ(a)ϕ(b) ∈ G2.

Premise: G1 is abelian, meaning that ∀a,b ∈ G1, ab = ba.
Conclusion: G2 is abelian, meaning that ∀x,y ∈ G2, xy = yx.
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We can then deduce things from the premises. Because ab = ba ∈ G1,
it must be true that ϕ(ab)= ϕ(ba) ∈ G2. That would be true for any
function, not just for an isomorphism. But, because ϕ is an isomorphism,
we also have ϕ(ab)= ϕ(a)ϕ(b) and ϕ(ba)= ϕ(b)ϕ(a). Can you see how
to glue this together to prove that G2 is abelian? We can write a chain of
equalities like this:

ϕ(a)ϕ(b)= ϕ(ab)= ϕ(ba)= ϕ(b)ϕ(a).

That might seem like enough because it demonstrates commutativity of
the operation on ϕ(a),ϕ(b) ∈ G2. And indeed this reasoning forms the
crux of a valid proof. But it glosses over a subtlety: can everything in G2
be expressed as ϕ(something)? The answer is yes, because ϕ is bijective.
But, in a proof, it is polite to establish that general elements of G2 can be
written in this form. With that in mind, use the self-explanation training
from Section 3.6 to study the theorem and proof below.

Theorem: Suppose that G1 and G2 are isomorphic groups and that G1
is abelian. Then G2 is abelian.

Proof : Suppose that ϕ : G1 → G2 is an isomorphism.
Suppose that G1 is abelian.
Consider x,y ∈ G2.
Because ϕ is bijective, ∃a,b ∈ G1 such that ϕ(a)= x and
ϕ(b)= y.
Thus xy = ϕ(a)ϕ(b)

= ϕ(ab) because ϕ is an isomorphism
= ϕ(ba) because G1 is abelian
= ϕ(b)ϕ(a) because ϕ is an isomorphism
= yx.

Hence ∀x,y ∈ G2, xy = yx.
So G2 is abelian.
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Did you read slowly enough? It is easy to be lax about self-explanation
when a proof ’s steps seem simple. So maybe read again, concentrating on
the justifications and on how the argument fits the theorem.

Next, we expect isomorphisms to map identities to identities. This can
be proved using what I think of as ‘one of those identity arguments’, by
which I mean a clever-trick thing using the fact that ee = e. Below is a
theorem and proof. How does the notation capture which objects are
elements of which groups?

Theorem: Suppose that G1 and G2 are groups and that ϕ : G1 → G2 is
an isomorphism. Then ϕ(eG1)= eG2 .

Proof : By definition, eG1 = eG1eG1 .
So, because ϕ is an isomorphism,
ϕ(eG1)= ϕ(eG1eG1)= ϕ(eG1)ϕ(eG1).
ϕ(eG1) ∈ G2 must have an inverse (ϕ(eG1))

−1 ∈ G2.
So ϕ(eG1) = ϕ(eG1)ϕ(eG1)

⇒ (ϕ(eG1))
−1ϕ(eG1) = (ϕ(eG1))

−1ϕ(eG1)ϕ(eG1)

⇒ eG2 = eG2ϕ(eG1)

⇒ eG2 = ϕ(eG1) as required.

Would you write this proof differently? Would you, for instance, give the
identities single-letter names?That would be less cumbersome, but would
make it harder to track what was an element of what. Perhaps a good
compromise would be to use e1 and e2 for the identities of G1 and G2.
In the final line, would you reorder to write ϕ(eG1)= eG2 instead of the
other way around? Would you tag that onto the end, or reorder further
up to make it come out that way? There are no right answers to these
style questions, though your lecturer might have preferences. I would
like you to be aware that mathematicians make choices in writing lecture
notes and textbooks, and to think about advantages and disadvantages
of different styles so that you can understand those choices. I would
also like you to think about your own communication, and to be willing
to rewrite something if you decide it would be better in alternative
notation.
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For inverses under isomorphisms, the natural theorem appears below.

Theorem: Suppose that G1 and G2 are groups and that ϕ : G1 → G2 is
an isomorphism. Then ∀a ∈ G1, ϕ(a−1)= (ϕ(a))−1 ∈ G2.

Again, notation is both friend and foe. The equality ϕ(a−1)= (ϕ(a))−1

‘looks right’ so it is easy to remember, but it can be hard to see that there is
anything to prove. Again it can help to think about orders of operations.
In ϕ(a−1), we start with a ∈ G1, take its inverse a−1 ∈ G1, then apply ϕ to
give ϕ(a−1) ∈ G2.

a

G
1 G

2

φ

a
−1

φ(a
−1

)

In (ϕ(a))−1, we start with a ∈ G1, apply ϕ to give ϕ(a) ∈ G2, then take its
inverse (ϕ(a))−1 ∈ G2.

a

G
1 G

2

φ

φ(a)

φ(a
−1

)

The theorem claims that if ϕ is an isomorphism, then these two
processes—invert then map, map then invert—always give the same
outcome. And the theorem is true, which we can think about via the
previous result on identities: if a and b are mutually inverse in G1, and
the isomorphism maps the identity in G1 to the identity in G2, what do
the following tables capture?
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a b

a e

b e

ϕ
−→ ϕ(a) ϕ(b)

ϕ(a) ϕ(e)

ϕ(b) ϕ(e)

To construct a proof, we can again write down the premises and con-
clusion in terms of definitions. We might also consider other potentially
useful properties involving inverses in G1 and G2.

Premise: ϕ : G1 → G2 is bijective.
Premise: ∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b).
Conclusion: ∀a ∈ G1, ϕ(a−1)= (ϕ(a))−1.
Property: ∀a ∈ G1, ∃a−1 ∈ G1 such that aa−1 = a−1a = eG1 .
Property: ∀x ∈ G2, ∃x−1 ∈ G2 such that xx−1 = x−1x = eG2 .

Can you glue this information together? The theorem says that ϕ(a−1)=
(ϕ(a))−1 for all a ∈ G1, and a proof appears below. Which premises and
properties does it use? Could you construct a proof differently?

Theorem: Suppose that G1 and G2 are groups and that ϕ : G1 → G2 is
an isomorphism. Then ∀a ∈ G1, ϕ(a−1)= (ϕ(a))−1 ∈ G2.

Proof : Let a ∈ G1.
Then ∃a−1 ∈ G1 such that aa−1 = a−1a = eG1 .
So ϕ(aa−1)= ϕ(a−1a)= ϕ(eG1).
Now ϕ is a homomorphism so:
ϕ(aa−1)= ϕ(a)ϕ(a−1) and ϕ(a−1a)= ϕ(a−1)ϕ(a)
and ϕ(eG1)= eG2 .
Thus ϕ(a)ϕ(a−1)= ϕ(a−1)ϕ(a)= eG2 , i.e. (ϕ(a))−1 = ϕ(a−1).
Hence ∀a ∈ G1, ϕ(a−1)= (ϕ(a))−1.
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Finally, I noted that we expect isomorphisms to map generators of one
group to generators of the other. This is a bit fiddlier, and your course will
probably provide a theorem and proof. But the reasoning strategies sug-
gested here should help, and I encourage you to try proving this yourself.

8.4 Example isomorphisms

The previous section developed some theory, and we could keep building
on that. But, for me, there is tension between building theory and feeling
that I could ‘climb back down’ to the examples to which that theory
applies. For some people this is not an issue: they are confident in abstract
reasoning and satisfied to see theory grow, especially if it is tidy. I like
tidiness too—that is why I prefer pure to appliedmathematics—but I start
to feel vertiginous if I go too far without ‘grounding’ myself.

Another reason to study examples is that you might be wondering
whether isomorphisms are, in fact, a bit boring. Once you’ve noticed that
two groups are structurally identical, it might seem that there isn’t much
more to say. Yes, their identities and inverses match, but that is pretty
obvious. Andworkingwith small groupsmightmake isomorphisms seem
trivial. For instance, cyclic groups can be understood as points evenly
spaced around a circle, so it is not surprising that theymatch other groups
with that feature (see Section 6.6).

0
+1

1

2

3

× i

−1 1

i

−i

But we have also seen functions that are not isomorphisms. The
function f : (R,+)→ (R,+) given by f(x)= x2 is not an isomorphism
and, of the 24 bijections from Z4 to U4, only two are isomorphisms.
So there is a sense in which ‘most’ functions are not isomorphisms.
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And many interesting isomorphisms are less obvious. In Section 6.8,
you might have observed that the symmetry groups of a non-square
rectangle and a rhombus are isomorphic to the Klein four-group V; so is
the quotient groupD4/{e,ρ2} fromSection 7.3.Other isomorphisms exist
between groups of numbers and groups of transformations. For instance,
translations along a line form a group under composition—why? Check
against the group axioms. Moreover, if we denote a translation a units
to the right by ta and let T = {ta|a ∈ R} (the set of all such translations),
then (T,◦) and (R,+) are isomorphic via the map

ϕ : (R,+)→ (T,◦) given by ϕ(a)= ta.

This ϕ is an isomorphism because it is bijective—every real number cor-
responds to a unique translation and vice versa—and because it respects
the groups’ operations. For instance, 6+ (−2)= 4 in (R,+) corresponds
to t6 ◦ t−2 = t4 in (T,◦).

+6

+4

−2

For the general case, check that you believe every equality in this chain:

ϕ(a+ b)= ta+b = ta ◦ tb = ϕ(a) ◦ϕ(b).
That example might seem obvious if you were brought up on number
lines. But how must numbers have ‘felt’ to people in the past who
used only natural numbers and recorded them using tally marks? The
psychology must have changed a lot, I think.

Isomorphisms also exist for other sets of transformations. For
instance, consider the set of all enlargements or dilations of the plane
centred at (0,0). These form a group under composition—again, why? If
da denotes dilation by a factor of a and D = {da|a ∈ R}, does (D,◦)
also form a group isomorphic to (R,+)? No, it does not even form
a group, because d0 has no inverse. We can restrict so that, instead,
D = {da|a ∈ R\{0}}, but even then, (D,◦) is not isomorphic to (R\{0},+)
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because the dilations form a multiplicative rather than an additive
structure. For instance, dilating by a factor of 6 then by a factor of 1

2
yields a dilation by a factor of 3. I think of this as in the diagram below,
but the more algebraically minded might simply note that for every point
(x,y) in the plane, 1

2 · 6(x,y)= 1
2 (6x,6y)= (3x,3y).

×6

×

1

2

×3

Did you notice that R\{0} includes negative numbers? What is the
effect of da if a is negative? For any point (x,y), −1(x,y)= (−x,−y), so
d−1 is a 180◦ rotation—check that you believe this. Similarly, −3(x,y)=
(−3x,−3y), so d−3 is a 180◦ rotation with dilation by a factor of 3. What
is d−3 ◦ d−1? In general, (D,◦) is isomorphic to (R\{0},×) via

ϕ : (R\{0},×)→ (D,◦) given by ϕ(a)= da,

which is an isomorphism because it is bijective and because

ϕ(a× b)= da×b = da ◦ db = ϕ(a) ◦ϕ(b).

Finally, consider rotations of the plane centred at (0,0). These form a
group under composition—again, why? If ρa denotes an anticlockwise
rotation through a radians and X = {ρa|a ∈ R}, does (X,◦) form a group
isomorphic to (R,+), or to (R\{0},×)? Its structure is additive because,
for instance, rotating through a+ b is equivalent to rotating through
a then through b, so ρa+b = ρa ◦ ρb. Thus the map ϕ : (R,+)→ (X,◦)
respects the two groups’ operations because

ϕ(a+ b)= ρa+b = ρa ◦ ρb = ϕ(a) ◦ϕ(b).
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But isϕ a bijection?No: the link between these structures ismore complex
because ρa and ρa+2π have the same effect on every point in the plane,
so ϕ(a)= ϕ(a+ 2π). Thus ϕ is not an isomorphism (though it is a
homomorphism—more on this in Section 8.7).

Turning from transformations to numbers, if R+ = {x ∈ R|x> 0}
then the function ϕ : (R,+)→ (R+,×) given by ϕ(x)= ex is an
isomorphism. You might never have thought about it in this way, but the
exponential function has the required properties. First, check the domain
and image: for every x ∈ R, ex ∈ R+. Then check bijectivity: ϕ is injective
and surjective because no two values of x ∈ R map to the same element of
R+ and every element of R+ is ‘hit’. Finally, ϕ is an isomorphism because

ϕ(x+ y)= ex+y = exey = ϕ(x)ϕ(y).

φ

x e
x

e
yy

x + y e
x+y

(R,+) (R
+
,×)

Familiarity with the exponential function might help to ground the
preceding theory. What are the identities in (R,+) and (R+,×) and how
does ϕ link those? How do inverses work for each group, and how does ϕ
link those? Familiarity might also clarify that isomorphisms are general
versions of precisely this kind ofmatching: in (R,+) and (R+,×), the sets
and operations differ but the structures are identical.

That said, the idea that (R,+) and (R+,×) are isomorphic might be
confusing because these structures do not seem literally ‘the same’. I think
this gets to the heart of what isomorphisms are. The groups (R,+) and
(R+,×) are structurally identical in that there is a bijection between them
that respects their operations. But we are not accustomed to thinking of
R as a group with only an additive operation, or R+ as a group with only
a multiplicative operation. We know much more about the real numbers,
and it is hard to ‘forget’ that knowledge. Views of the reals that consider
more operations are discussed in Chapter 9.
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For now, you might like to know that ϕ and its inverse given by
ϕ−1(x)= ln(x) used to have serious practical utility. When calculation
was done by hand, multiplying was hard. Would you want to calculate
4,566,789× 132,453 using long multiplication? Adding is easier, and
calculations can be done by looking up logarithms, adding those, then
taking exponents.

a

b

ln a

ln b

ln a + ln b ab

φ

φ
−1

(R,+) (R
+
, ×)

To conclude this section, an example using symmetries. I learned while
writing this book that the group of rotations of a cube is isomorphic
to S4, the the set of permutations of {1,2,3,4} under composition (see
Section 6.9). Does that seemplausible? Is it obvious? Forme, plausibility is
fine. The group S4 has 4! = 24 elements, and cubes have 6 faces, 8 vertices
and 12 edges—all of those numbers ‘go with’ 24. But it is not obvious, so I
can try to count. There is the identity rotation, obviously, plus three non-
identity rotations about each of three distinct face-centred axes. That is
ten so far. Then there is one rotation through each of the six axes joining
themidpoints of opposite edges.That takes us to 16. Finally, there are two
non-identity rotations about each of the four diagonals that join opposite
vertices. That gives 24 in total.
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Of course, counting tells us nothing about the results of composing
these rotations. For that, you can experiment, or we can reach for theory
and use the fact that, as I learned, each rotation of the cube can be thought
of as a unique permutation of the diagonals that join opposite vertices in
pairs. There are four such diagonals, so this approach links more directly
to S4. Which permutations of {1,2,3,4} correspond to which rotations?

8.5 Isomorphic or not?

Because identical structures occur in different areas of mathematics, an
obvious question is which groups are isomorphic to which others. This
means that students are often asked to work out whether pairs of groups
are isomorphic or not. What would be your approach to that? Try to put
it into words before reading on.

Sometimes it is easy to tell that two groups are not isomorphic, because
isomorphisms are bijections so isomorphic groups must have the same
orders. This means that Z4 cannot be isomorphic to D3 (the group of
symmetries of an equilateral triangle—see Section 6.7) because Z4 has
four elements and D3 has six. But the group Z6 has six elements—is it
isomorphic to D3? Can you justify your answer?

When attempting such questions, students sometimes create work for
themselves by being insufficiently strategic. They look at the definition of
isomorphic, as below.

Definition: Groups G1 and G2 are isomorphic if and only if there
exists a bijectionϕ : G1 → G2 such that∀a,b ∈ G1,ϕ(ab)=
ϕ(a)ϕ(b) ∈ G2.

This lists the bijection criterion first, so they try to find isomorphisms by
constructing bijections. That is not a good strategy because, as we have
seen, the number of possible bijections can be huge. For instance, there
are 6! = 720 distinct bijections from Z6 toD3. It would take extreme good
luck to stumble upon an isomorphism, or extreme patience to check that
none is an isomorphism.
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A better strategy is to use theorems about properties that isomorphic
groups share. For instance, Z6 and D3 are not isomorphic because Z6 is
cyclic and D3 is not, or because Z6 is abelian and D3 is not, or because
Z6 has two elements of order 6 and D3 has none. Property observations
are particularly useful for infinite groups. For instance, are GL(2,R) and
(R\{0},×) isomorphic? My intuition says no because the matrix group
feels infinite ‘in a different way’. But that does not make a good mathe-
matical argument. However, we can deduce that they are not isomorphic
because (R\{0},×) is abelian and GL(2,R) is not.

Of course, if we happen to know that two infinite sets have differ-
ent cardinalities—different ‘numbers of elements’—we can use that. For
instance, (R,+) is not isomorphic to (Q,+) because there is no bijection
between R and Q. There is a bijection between N and Q, which surprises
most people because there seem to be ‘a lot more’ rational than natural
numbers. A visual way to demonstrate that a bijection exists is to arrange
the elements of Q as below, where all rationals would be included in the
infinite array. Then follow the arrow, setting ϕ(1) to be the first rational it
‘hits’, ϕ(2) to be the second, and so on, ignoring the repeats (for instance,
−1 is ‘counted’ so − 2

2 is ignored).

0 1−1−2 2 3−3−4 4
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ϕ(1)= 0 ϕ(2)= 1 ϕ(3)= 1
2 ϕ(4)= − 1

2 ϕ(5)= −1 ϕ(6)= −2. . .

This defines a bijection because ϕ matches each natural to a rational
without leaving any out or sending two naturals to the same rational.
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Is ϕ an isomorphism? No. The operation in both groups is addition,
so an isomorphism would require that for every a,b ∈ N, ϕ(a+ b)=
ϕ(a)+ϕ(b) ∈ Q. But, for instance,

ϕ(2+ 3)= ϕ(5)= −1 ̸= 1+ 1
2 = ϕ(2)+ϕ(3).

Could there be a different bijection between (N,+) and (Q,+) that is an
isomorphism? Again, my intuition says no. But it would have said no to
the existence of a bijection, so perhaps it is not reliable for infinite groups.
Fortunately, we can relate possible isomorphisms to equations. In (N,+),
the equation x+ x = 1 has no solution. But an isomorphismϕ : (N,+)→
(Q,+)would require that ϕ(x)+ϕ(x)= ϕ(1) and, whatever the value of
ϕ(1) ∈ Q, this equationwould have a solutionϕ(x) ∈ Q. So the structures
cannot be the identical and (N,+) ̸∼= (Q,+). Similarly, (R\{0},×) is not
isomorphic to (C\{0},×) because in (R\{0},×), the equation x× x = −1
has no solution. How would the argument go?

To roundoff this discussion, it is worth revisiting the two isomorphisms
from Z4 to U4. These can be reconceived as isomorphisms from Z4
to itself, as automorphisms. One, ϕ : Z4 → Z4, is the identity isomor-
phism that maps each element to itself. The other, ψ : Z4 → Z4, is rep-
resented below. You might want to check that this corresponds toψ from
Section 8.1.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

ψ
−→

ψ(0)= 0

ψ(1)= 3

ψ(2)= 2

ψ(3)= 1

+4 0 3 2 1

0 0 3 2 1

3 3 2 1 0

2 2 1 0 3

1 1 0 3 2

These are the only automorphisms on Z4, because Section 8.1’s argument
about orders of elements applies. But we can also argue using generators.
The group Z4 is cyclic so a single element generates the whole group:
both 1 and 3 are generators. Under an isomorphism, each must map
to a generator. So 1 must map to 1 or to 3. And once we know where
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a generator goes, the isomorphism is completely determined. Here, for
instance,

ψ(1) = 3
⇒ ψ(2) = ψ(1+ 1)= ψ(1)+ψ(1)= 3+ 3 = 2
⇒ ψ(3) = ψ(2+ 1)= ψ(2)+ψ(1)= 2+ 3 = 1
⇒ ψ(0) = ψ(3+ 1)= ψ(3)+ψ(1)= 1+ 3 = 0.

Can you link this to generators for other cyclic groups, as discussed in
Section 6.4? How many automorphisms are there on Z5? On Z12? On Z?

For practice in climbing through levels of abstraction, we can imag-
ine a group and think about its automorphisms; on Z4, there are two
automorphisms ϕ and ψ . Each automorphism is a function—indeed, a
bijection—sending the set to itself. So automorphisms can be combined
using composition. Composing two automorphisms gives another, func-
tion composition is always associative, there is an identity automorphism
(sending every element to itself), and each automorphism has an inverse
(sending every element back to where it came from). The automorphisms
under composition therefore forma ‘higher-level’ group; for Z4, the group
of automorphisms is isomorphic to Z2.

◦ ϕ ψ

ϕ ϕ ψ

ψ ψ ϕ

When people use the word abstract in Abstract Algebra, they are not
messing around.

8.6 Homomorphisms

We turn now from isomorphisms to homomorphisms. The beginning of
this chapter noted that these are closely related, but homomorphisms are
‘looser’ in that they have fewer definitional properties. In fact, we simply
drop the bijection criterion but keep the ‘respect the operations’ criterion.
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Definition: ϕ : G1 → G2 is a group homomorphism if and only if
∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

This means that every isomorphism is a homomorphism but not every
homomorphism is an isomorphism. Nevertheless, some existing theory
applies. Review Section 8.3 and you will see that the proofs about identi-
ties and inverses under isomorphisms do not use the bijection criterion.
So they apply to yield equivalent theorems about homomorphisms.

Theorem: Suppose that G1 and G2 are groups and that ϕ : G1 → G2 is
a homomorphism. Then ϕ(eG1)= eG2 .

Theorem: Suppose that G1 and G2 are groups and that ϕ : G1 → G2 is
a homomorphism. Then ∀a ∈ G1, ϕ(a−1)= (ϕ(a))−1.

Does a homomorphism send abelian groups to abelian groups and gen-
erators to generators? Not necessarily. Section 8.3 established that if
G1 ∼= G2 and G1 is abelian, so is G2. But the proof used the fact that iso-
morphisms are surjective. A homomorphism might not be surjective—
it might ‘miss out’ some elements of G2. So elements in the image of ϕ
(often denoted ‘imϕ’) will commute with one another, but the proof says
nothing about elements outside imϕ.

G
1

G
2

φ

im φ

Non-surjective homomorphisms can also help in thinking about gen-
erators. A natural non-surjective homomorphism occurs when G1 is a
subgroup of G2. For instance, (3Z,+) is a subgroup of (Z,+), and the
map ϕ : (3Z,+)→ (Z,+) given by ϕ(x)= x maps 3Z to a copy of itself
inside Z.
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0

0

1−1−2 2

3

3−3

−3

−4 4 6

6

−6

−6

−5 5

3Z

Z

The map ϕ is not surjective: many elements of Z are not in imϕ. But
it is a homomorphism because for every a,b ∈ 3Z, ϕ(a+ b)= a+ b =
ϕ(a)+ϕ(b) (the operation in both groups is addition). Andϕ is injective,
so it is called a monomorphism. A similar inclusion monomorphism
occurs for every subgroup of every group: if H is a subgroup of G,
there is a natural monomorphism ϕ : H → G given by ϕ(h)= h. Do
these monomorphisms map generators to generators? Not necessarily.
For instance, one generator of 3Z is 3, but its image for the map above
does not generate Z.

Could an alternative homomorphism ψ : (3Z,+)→ (Z,+) map a
generator to a generator? The obvious map to try is that defined by
ψ(x)= x/3, so that ψ(3)= 1. Is ψ a homomorphism? Yes, because
for every a,b ∈ 3Z, ψ(a+ b)= (a+ b)/3 = a/3+ b/3 = ψ(a)+ψ(b).
Indeed, ψ is bijective so it is actually an isomorphism, one that ‘squashes
everything in’.

0

0

1−1−2 2

3

3−3

−3

−4 4 6

6

−6

−6

−5 5

3Z

Z

Homomorphisms can also ‘spread everything out’. For instance, a
homomorphism ϕ : (Z,+)→ (Q,+) could map 1 ∈ Z to 1 ∈ Q, so
ϕ(1)= 1. But suppose, instead, that ϕ(1)= 2. Then

ϕ(1) = 2
⇒ ϕ(2) = ϕ(1+ 1)= ϕ(1)+ϕ(1)= 2+ 2 = 4
⇒ ϕ(3) = ϕ(2+ 1)= ϕ(2)+ϕ(1)= 4+ 2 = 6
⇒ ϕ(4) = ϕ(3+ 1)= ϕ(3)+ϕ(1)= 6+ 2 = 8, etc.
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Also, the theorem about identities means that ϕ(0)= 0, and the theo-
rem about inverses translates into additive form as ∀a ∈ G1, ϕ(−a)=
−(ϕ(a)). Thus, knowing where the generator goes specifies the whole
map.

0

0 1

1

−1

−1

−2

−2

2

2

3

3−3

−3

−4

−4

4

4 5

5−5

−5

6

6

−6

−6
Z

Q

What happens if ϕ(1)= 1
10 ? Does every homomorphism ϕ : (Z,+)→

(Q,+) squash everything in or spread everything out? What if ϕ(1)= 0?
Next, how do these ideas play out in finite groups? For instance, what

homomorphisms exist from Z6 to Z12, or to Z5, or to itself? From Z6 to
Z12, there is a monomorphism with ϕ(1)= 2. What other homomor-
phisms exist? From Z6 to Z5 there are no nontrivial homomorphisms.
Does that surprise you? Perhaps not, because 6 and 5 are coprime, so
their structures do not ‘go well together’. To understand formally, observe
that the generator 1 ∈ Z6 must map to something in Z5, and that most
possibilities lead to contradictions. For instance, setting ϕ(1)= 1 ∈ Z5
gives the following—what goes wrong?

ϕ(1) = 1
⇒ ϕ(2) = ϕ(1+6 1)= ϕ(1)+5 ϕ(1)= 1+5 1 = 2
⇒ ϕ(3) = ϕ(2+6 1)= ϕ(2)+5 ϕ(1)= 2+5 1 = 3
⇒ ϕ(4) = ϕ(3+6 1)= ϕ(3)+5 ϕ(1)= 3+5 1 = 4
⇒ ϕ(5) = ϕ(4+6 1)= ϕ(4)+5 ϕ(1)= 4+5 1 = 0
⇒ ϕ(0) = ϕ(5+6 1)= ϕ(5)+5 ϕ(1)= 0+5 1 = 1
⇒ ϕ(1) = ϕ(0+6 1)= ϕ(0)+5 ϕ(1)= 1+5 1 = 2

The calculations yield two distinct values for ϕ(1), so ϕ is not a function,
never mind a homomorphism. Similar contradictions arise for most
elements of Z5 (check), but one option works: setting ϕ(1)= 0 yields

ϕ(1+6 1)= ϕ(1)+5 ϕ(1)= 0+5 0 = 0
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and, by extension, ϕ(a)= 0 for every a ∈ Z6. This defines a homo-
morphism because for every a,b ∈ Z6, ϕ(a+6 b)= 0 = 0+5 0 =
ϕ(a)+5 ϕ(b). And this reasoning generalizes: for any two groups, there
is a degenerate or trivial homomorphism mapping every element of the
first to the identity of the second. This means that there is at least one
homomorphism between any two groups. So, unlike saying that two
groups are isomorphic, saying that two groups are ‘homomorphic’ would
be completely uninformative.

How about homomorphisms from Z6 to itself? Run through some
calculations and you will see that homomorphisms ‘organize’ elements of
Z6 into sets. For instance, a homomorphism ϕ : Z6 → Z6 with ϕ(1)= 3
must have

ϕ(2)= ϕ(1+6 1)= ϕ(1)+6 ϕ(1)= 3+6 3 = 0,

and so on. So it organizes the elements as in the diagram below, ‘collaps-
ing’ the group to the subgroup ({0,3},+6). If you have read Chapter 7
then you might notice the pattern in what gets collapsed to where: the
sets {0,2,4} and {1,3,5} are the cosets of the subgroup ({0,2,4},+6) in
Z6. This is not a coincidence, and the general phenomenon is explored in
Section 8.7.

1

2

3

4

0

5

Z6

1

2

3

4

0

5

Z6

φ

This notion of organizing or collapsing is informal but general—it can
be used to understand other homomorphisms. Consider, for instance, an
evaluation homomorphism ϕ mapping each continuous function from R

to R to a single real number by evaluating it at a specific value, say x = 2.

HOMOMORPHISMS 209



OUP CORRECTED PROOF – FINAL, 21/12/2020, SPi

This ϕ can be interpreted as collapsing each function to its value at x = 2,
or organizing functions into sets by their values at x = 2. For instance, ϕ
maps both f1 and f2 below to the number 4.

f1 : R → R defined by f1(x)= 3x− 2, then ϕ(f1)= f1(2)= 4;
f2 : R → R defined by f2(x)= x2, then ϕ(f2)= f2(2)= 4.

4

φ

RC0 (R, R)

f1

f2
2

4

2

4

It might seem weird to write things like ϕ( f ). But thinking at this
level allows us to understand ϕ : (C0(R,R),+)→ (R,+) as a homomor-
phism, because for every f,g ∈ C0(R,R),

ϕ(f+ g)= (f+ g)(2)= f(2)+ g(2)= ϕ( f )+ϕ(g).

Another homomorphism maps matrices to determinants. You might
know that if A and B are matrices with determinants det(A) and det(B),
then det(AB)= det(A)det(B). This is precisely the homomorphism cri-
terion, although it is worth considering the groups and map. In our nota-
tion, G1 is a group of matrices, say GL(2,R), under matrix multiplication.

φ

GL(2, R)

A

AB

B det(B)

det(AB)

det(A)

(R\{0},×)
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The map is ‘det’, which collapses each matrix to its determinant, or orga-
nizes matrices into sets according to their determinants. The group G2 is
(R\{0},×), because every invertible matrix has a nonzero determinant
and the equality det(AB)= det(A)det(B) uses multiplication in R.

Finally, there is a homomorphism ϕ : (R,+)→ (U,×), where U is
the unit circle U = {x ∈ C||x| = 1} (see Section 6.6). This might seem
unlikely because U is unlike R—it ‘goes round and round’, not ‘on forever
in a straight line’. But recall that we can imagine wrapping a bendy
integer number line around a clock to line up numbers that are congruent
modulo 12—see Section 3.3. Similarly, we can imagine wrapping a bendy
real number line around a circle. How should the ‘lining up’ work?
The theory of homomorphisms provides a steer: homomorphisms send
identities to identities, so any homomorphism ϕ : (R,+)→ (U,×)must
have ϕ(0)= 1.

R

U

φ(0) = 1

But how ‘tight’ should the winding be? What else should map to 1?
There are two natural possibilities. One is to keep the ‘scales’ the
same, in which case the set of numbers mapping to 1 would be
{. . . ,−4π ,−2π ,0,2π ,4π , . . .}. However, the homomorphic structures
are more readily apparent by defining the map ϕ : (R,+)→ (U,×) by
ϕ(x)= e2π ix. Putting 2π ‘in’ the map winds the number line around the
circle once every integer, so that every integer maps to 1. And ϕ is a
homomorphism because for every x,y ∈ R,

ϕ(x+ y)= e2π i(x+y) = e2π ixe2π iy = ϕ(x)ϕ(y).
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This map effectively collapses real numbers ‘modulo 1’, organizing them
into positions on the circle according to their ‘remainders’ on division
by 1. This idea will be formalized in the next section.

8.7 The First Isomorphism Theorem

This final section links homomorphisms to quotient groups via the First
Isomorphism Theorem.1 If you like mathematical theory that draws ideas
together, you will like this—it formalizes the idea that homomorphisms
organize domain elements into sets that ‘collapse’ to image elements.
Those sets turn out to be cosets of normal subgroups and thus to form
elements of quotient groups (please read Chapter 7 if you do not already
know about these concepts). A key focus is the set of elements that map
to the identity, which is called the kernel of the homomorphism.

Definition: Suppose that G1 and G2 are groups and that ϕ : G1 → G2
is a homomorphism. Then the kernel of ϕ is kerϕ =
{k ∈ G1|ϕ(k)= eG2}.

In words, the kernel of a homomorphism ϕ : G1 → G2 is the subset of
G1 containing all elements that map to the identity of G2. This subset
must contain at least one element because every homomorphism maps
the identity of G1 to the identity of G2.

G
1 G

2

φ

ker φ e
G1

e
G2

1 There are more isomorphism theorems—investigating them would give you an
idea of where Abstract Algebra goes next.
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How does this apply to the homomorphisms considered above? For
some, the kernel contains multiple elements of G1. For instance, the
homomorphism ϕ : Z6 → Z6 with ϕ(1)= 3 has kernel {0,2,4}; the
homomorphism ϕ : (R,+)→ (U,×) given by ϕ(x)= e2π ix has kernel
Z. For others, the kernel contains only one element: the homomorphism
ϕ : (Z,+)→ (Q,+) with ϕ(1)= 2 has kernel {0}. Note that {0} is the set
containing the element zero, not just the number 0—you could probably
get away with writing ‘kerϕ = 0’, but mathematicians notice this kind
of technical inaccuracy. Note also that this third homomorphism, with
only the identity in its kernel, is injective (where the others are not). This
is not a coincidence, and the general result is captured below. As usual,
remember the self-explanation training from Section 3.6. Can you justify
each deduction in this proof with definitional properties or theorems
about homomorphisms?

Theorem: Suppose that ϕ : G1 → G2 is a group homomorphism, and
that kerϕ = {eG1}. Then ϕ is injective.

Proof : Suppose that ϕ : G1 → G2 is a group homomorphism with
kerϕ = {eG1}.
Suppose that ∃a1,a2 ∈ G1 such that ϕ(a1)= ϕ(a2).
Then

ϕ(a1)(ϕ(a2))
−1 = ϕ(a2)(ϕ(a2))

−1

⇒ ϕ(a1)(ϕ(a2))
−1 = eG2

⇒ ϕ(a1)ϕ(a−1
2 ) = eG2

⇒ ϕ(a1a−1
2 ) = eG2

⇒ a1a−1
2 = eG1 because kerϕ = {eG1}

⇒ a1 = a2.

Thus ϕ is injective.
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A second key result is that, regardless of howmany elements it contains,
the kernel of a homomorphism is always a normal subgroup. Normal
subgroups—discussed in Section 7.5—are defined as below.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G, aH = Ha.

To prove that the kernel K of a homomorphism ϕ : G1 → G2 must be a
normal subgroup, we must therefore prove that it is a subgroup and that
for every a ∈ G1, aK = Ka. Can you see how both might follow from the
property that for every k ∈ K, ϕ(k)= 0? Think about that as you read this
theorem and proof.

Theorem: Suppose that K = kerϕ where ϕ : G1 → G2 is a group
homomorphism. Then K is a normal subgroup of G1.

Proof : First we will prove that K is a subgroup of G1.
K is closed under the operation for G1 because for every
k1,k2 ∈ K, ϕ(k1k2)= ϕ(k1)ϕ(k2)= eG2eG2 = eG2 .
The operation on K is associative because it is inherited from G1.
The identity eG1 ∈ K because ϕ is a homomorphism so
ϕ(eG1)= eG2 .
If k ∈ K then k−1 ∈ K because ϕ is a homomorphism so
ϕ(k−1)= (ϕ(k))−1 = (eG2)

−1 = eG2 .
Thus K is a subgroup of G1.
Now let a ∈ G1.
Then g ∈ aK ⇔ ∃k ∈ K such that g = ak.
For this k, ϕ(g)= ϕ(ak)= ϕ(a)ϕ(k)= ϕ(a)eG2 = ϕ(a).
So aK = {g ∈ G1|ϕ(g)= ϕ(a)}.
Similarly, g ∈ Ka ⇔ ∃k ∈ K such that g = ka.
For this k, ϕ(g)= ϕ(ka)= ϕ(k)ϕ(a)= eG2ϕ(a)= ϕ(a).
So Ka = {g ∈ G1|ϕ(g)= ϕ(a)}.
Thus aK = Ka, so K is a normal subgroup of G1.
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This proof establishes equality of left and right cosets of K in G1 by
showing that for a given a ∈ G, both comprise all elements g ∈ G1 for
which ϕ(g)= ϕ(a). This formalizes the way in which a homomorphism
organizes elements of its domain into sets that collapse to single elements
of its image.

G
1 G

2

φ

e
G2

φ(a
1
)

φ(a
2
)

K

a1K

a2K

The theorem provides a new way to identify normal subgroups by
identifying kernels of homomorphisms. For instance, ({0,2,4},+6) is a
normal subgroup of Z6, and (Z,+) is a normal subgroup of (R,+). We
already knew that these subgroups are normal—as in Section 7.6, every
subgroup of an abelian group is normal. But it is good to learn new links.

With this theory in place, we are ready for the First Isomorphism
Theorem, stated below. First, read the theorem and try to understand it
(this might not be easy).

First Isomorphism Theorem: Suppose that ϕ : G1 → G2 is a group
homomorphism and that K = kerϕ. Then G1/K ∼= im ϕ.

As ever, I like to understand abstract statements by relating them to exam-
ples. Here, for instance, the homomorphism ϕ : Z6 → Z6 with ϕ(1)=
3 has G1 = G2 = Z6 and K = kerϕ = {0,2,4}; the theorem concludes
that Z6/{0,2,4} is isomorphic to the image of ϕ, which is ({0,3},+6)
(check against the previous section).Thismeans that the cosets of {0,2,4}
in Z6 form a quotient group isomorphic to ({0,3},+6), which is also
isomorphic to Z2.
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+6 0 3

0 0 3

3 3 0

+2 0 1

0 0 1

1 1 0

The homomorphism ϕ : (R,+)→ (U,×) given by ϕ(x)= e2π ix has
G1 = (R,+), G2 = (U,×), and kerϕ = Z. The theorem concludes that
(R,+)/(Z,+) is isomorphic to the image of ϕ, which is the unit circle
(every element of the unit circle is ‘hit’). This means that the cosets of
(Z,+) in (R,+) form a quotient group isomorphic to the unit circle under
multiplication. This is a pretty profound result.

To link to ideas from earlier in the book, consider themapϕ : (Z,+)→
(Z12,+12) given by ϕ(x)= x mod 12 (mapping x to its remainder on
division by 12).This is a homomorphismbecause—to reformulate a result
fromSection 3.4—it satisfiesϕ(a+ b)= ϕ(a)+12 ϕ(b) for every a,b ∈ Z.
Its kernel is

kerϕ = {x ∈ Z|ϕ(x)= 0} = {. . . ,−24,−12,0,12,24, . . .} = 12Z,

and the First Isomorphism Theorem confirms that Z/12Z ∼= Z12.
Understanding why the First Isomorphism Theorem holds is an excel-

lent exercise in tracking object types. To this end, I think that a proof
outline with a diagram is probably more illuminating than a full proof.
Here is the theorem again.

First Isomorphism Theorem: Suppose that ϕ : G1 → G2 is a group
homomorphism and that K = kerϕ. Then: G1/K ∼= im ϕ.

The premises imply that K is a normal subgroup of G1. So, by Section 7.5,
there is a quotient group G1/K with elements of the form aK (or Ka). By a
theorem in this section, ϕ sends every element of the coset aK to ϕ(a), as
represented on the left below. This makes it possible to think ‘up a level’,
defining a new map 8 (‘big phi’) from quotient group elements to im ϕ

as represented on the right below. In notation, 8 : G/K → im ϕ, where
8(aK)= ϕ(a).
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G1 G2

φ

eG2

φ(a1)

φ(a2)

K

a1K

a2K

eG2

φ(a1)

φ(a2)

K

a1K

a2K

Φ
im φG1/K

A proof of the First Isomorphism Theorem must establish that8 is an
isomorphism. Does the diagram convince you that 8 is bijective? Can
you convert that understanding into a formal argument? And can you
use the fact that8(aK)= ϕ(a) to establish that for every aK,bK ∈ G1/K,
8((aK)(bK))=8(aK)8(bK)? I will leave this to your course, but you
can probably work it out—if your course uses different notation then I
recommend that you use it to relabel the diagram above.

To conclude this chapter, some reasoning using two major theo-
rems: the First Isomorphism Theorem and Lagrange’s Theorem (see
Section 7.7). These are repeated below, with a new claim.

Lagrange’s Theorem: Suppose that G is a finite group and H is a
subgroup of G. Then |G| = |H||G : H|.

First Isomorphism Theorem: Suppose that ϕ : G1 → G2 is a group
homomorphism and that K = kerϕ. Then G1/K ∼= im ϕ.

Claim: Suppose that a group G1 has order pq where p and q are both
prime, and ϕ : G1 → G2 is a surjective group homomorphism.
Then G1 ∼= G2 or G2 is abelian.

To me, the claim sounds a bit odd, and I have no immediate intuition
about why it should be true. But that need not bother me, because I
can still try to prove it using a formal approach (see Section 3.7). The
claim’s premises fit with the First Isomorphism Theorem, involving a
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group homomorphism ϕ : G1 → G2. Moreover, ϕ is surjective, meaning
that the image of ϕ is the whole of G2, so the First Isomorphism Theorem
implies that G1/K ∼= G2. But what is the kernel K? It must be a subgroup
of G1 so, by Lagrange’s Theorem, |G1| = |K||G1:K|; in words, the order of
G1 is equal to the order ofKmultiplied by the number of cosets ofK inG1.
Specifically, the order of the kernel must divide the order of G1, so it must
be 1,p,q or pq. That is a manageable number of possibilities, so I can run
through them to seewhat happens. If |K| = 1, thenK = {eG1} and the First
Isomorphism Theorem gives G1 ∼= G2. If |K| = pq, then K is the whole of
G1, so G2 is a one-element group, which must be abelian. If |K| = p then
G1/K ∼= G2 means that |G2| = q, and if |K| = q then |G2| = p. Either way,
G2 is a group of prime order so it has no nontrivial proper subgroups and
must be cyclic, and thus abelian. So my proof is complete.

As ever, I do not intend to imply that you should have such reasoning
at your fingertips—understanding the above paragraph might take some
rereading and reference to earlier chapters. I do intend to imply that
simple actions can improve your chances of constructing proofs for new
claims. Abstract Algebra, with its tightly interconnected theory, rewards
students who have a bit of optimism and an up-to-date list of theorems.
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chapter 9

Rings

This chapter introduces rings, which are sets with two binary operations that
satisfy certain axioms. It discusses example rings and simple ring theorems. It
then considers extra properties shared by some but not all rings, noting which
are necessary for a ring to be an integral domain or a field. It relates these
properties to equation solving and to theorems about these structures. Later
sections introduce subrings, ideals, quotient rings and ring homomorphisms.

9.1 What is a ring?

I f you have studied group theory, you will know that the integers Z

form a group under addition. But, as noted in Section 6.6, they form
not just this group but also a ring under addition and multiplication.

A ring is a set with two binary operations that satisfy the definition
below. A general ring is often denoted (R,+, ·) or (R,+,×) or just R.
You can replace R with Z in each axiom below to check that Z satisfies
the definition of a ring under standard addition and multiplication. Note
that the list requires a ring to have a multiplicative identity, which is no
problem for Z. But, as noted in Section 2.4, it is possible to define rings
without this axiom then call a ring with a multiplicative identity a ring
with unity or ring with one.Here, observe that the notation ‘R’ is obviously
sensible, but can lead to errors for people accustomed towriting ‘R’ for the
real numbers.1 Is R a ring under standard addition and multiplication?

1 When making notes for this chapter, I kept writing ‘R’ then changing it to ‘R’.
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Definition: A ring is a set R with binary operations + and · such that:

Closure under addition ∀a,b ∈ R, a+ b ∈ R;
Associativity of addition ∀a,b,c ∈ R, (a+ b)+ c = a+ (b+ c);
Additive identity ∃0 ∈ R such that ∀a ∈ R, 0+ a = a+ 0 = 0;
Additive inverses ∀a ∈ R, ∃(−a) ∈ R such that

a+ (−a)= (−a)+ a = 0;
Commutativity of addition ∀a,b ∈ R, a+ b = b+ a;
Closure under multiplication ∀a,b ∈ R, a · b ∈ R;
Associativity of multiplication ∀a,b,c ∈ R, (a · b) · c = a · (b · c);
Multiplicative identity ∃1 ∈ R such that ∀a ∈ R, 1 · a = a · 1 = a;
Left distributivity ∀a,b,c ∈ R, a · (b+ c)= a · b+ a · c;
Right distributivity ∀a,b,c ∈ R, (a+ b) · c = a · c+ b · c.

Another thing to observe is that it is common to denote the additive
identity by ‘0’ and the multiplicative identity by ‘1’, although rings do not
have to be based on sets of numbers. A third thing to observe is that, as
noted in Section 2.5, the definition looks long. But the first five axioms
specify that R is an abelian group under addition, meaning an additive
group in which the operation is commutative. So the ring definition can
be abbreviated.

Definition: A ring is a set R with binary operations + and · such that:

Additive abelian group R is an abelian group under +;
Closure under multiplication ∀a,b ∈ R, a · b ∈ R;
Associativity of multiplication ∀a,b,c ∈ R, (a · b) · c = a · (b · c);
Multiplicative identity ∃1 ∈ R such that ∀a ∈ R, 1 · a = a · 1 = a;
Left distributivity ∀a,b,c ∈ R, a · (b+ c)= a · b+ a · c;
Right distributivity ∀a,b,c ∈ R, (a+ b) · c = a · c+ b · c.
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When writing the definition, lecturers might abbreviate further by
omitting the axiom names. Indeed, they might omit the closure axioms
altogether because closure is assumed in the definition of binary operation
(see Section 5.8). But I like to name everything and to list closure explicitly
to ensure that it is not forgotten; I also think it helps when introducing
subrings, as in Section 9.6.

Notation for rings mirrors that for groups. Just as writing (Z,+)
emphasizes the additive group structure of the integers, writing (Z,+, ·)
or (Z,+,×) emphasizes their two-operation ring structure. A course
might not use that notation, though. As elsewhere in mathematics, mul-
tiplication is commonly denoted by juxtaposition, using (ab)c = a(bc)
rather than (a · b) · c = a · (b · c) or (a× b)× c = a× (b× c). This merits
attention if you have previously studied group theory. Each group has
just one operation, so group theoretic claims are often written using
juxtaposition regardless of whether the operation is multiplication or
addition or composition or something else. Each ring has two operations,
which need to be distinguished. So, although ring multiplication might
be denoted in different ways, addition is usually denoted explicitly by ‘+’.
This will be important in Section 9.7.

To conclude this opening section, two anticipatory notes about the ring
definition and how it is used. First, as noted in Section 2.5, the ring axioms
might seem lopsided: addition has to be commutative but multiplication
does not, and a ring must have additive inverses but not necessarily
multiplicative inverses. A ring can have those extra properties—for
instance, Z has commutative multiplication. But it doesn’t have to—Z

does not have multiplicative inverses (with exceptions for which two
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elements?). Extra properties are discussed in Section 9.4. Second, most
ring axioms deal only with addition or only with multiplication (check).
But the distributivity axioms combine addition and multiplication,
meaning that distributivity is often useful in proving theorems about
rings such as those to appear in Section 9.3.

9.2 Examples of rings

Various familiar sets form rings under standard addition and multiplica-
tion: Z, Q, R and C are all rings. You can check against the axioms, and
you might be asked to do so in a course. In some cases, a lecturer might
just assert that they hold—stating, for instance, that for every a,b ∈ R,
a+ b ∈ R. In other cases, manipulation is appropriate to establish that
everything has the required form. For instance, the following shows that
Q is closed under addition.

Claim: ∀a,b ∈ Q, a+ b ∈ Q.

Proof : Suppose that a,b ∈ Q.

Then ∃p, r ∈ Z and q, s ∈ Z\{0} such that a = p
q

and b = r
s
.

So a+ b = p
q

+ r
s

= ps+ rq
qs

∈ Q because ps+ rq ∈ Z and

qs ∈ Z\{0}.

What would you write to show that C is closed under multiplication?
And what else do you know about Z, Q, R and C? What properties do
they have that go beyond the ring axioms and distinguish them from one
another? If you have never studied this, youmight find it surprisingly hard
to pin down—the next section will look at some distinctions. For now, it
is worth exploring where rings occur in other familiar sets. For instance,
if n ∈ N, is nZ = {nx|x ∈ Z} a ring? It has addition and multiplication,
so we can start exploring the axioms. Which hold and which, if any,
do not?
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Closure under addition holds, but does require checking because not
every subset of Z has this property. For instance, the set of odd numbers
is not closed under addition because adding two odds gives an even. That
3Z is closed under addition can be demonstrated as below. This might
seem like overkill for something so simple, but you might be expected to
spell out such arguments, especially in the early stages of a course when
the focus is on building proofs from axioms.

Claim: ∀a,b ∈ 3Z, a+ b ∈ 3Z.

Proof : Suppose that a,b ∈ 3Z.
Then ∃x,y ∈ Z such that a = 3x and b = 3y.
So a+ b = 3x+ 3y = 3(x+ y), where x+ y ∈ Z.
Hence a+ b ∈ 3Z.

Associativity of addition in 3Z is inherited from Z because associativity
is defined using a single universal quantifier (see Section 3.5): for all
a,b,c ∈ Z, (a+ b)+ c = a+ (b+ c). And 3Z ⊆ Z, so it follows that for
all a,b,c ∈ 3Z, (a+ b)+ c = a+ (b+ c).

Next, there is an additive identity in 3Z because 0 = 3× 0 ∈ 3Z and
for all a ∈ 3Z, 0+ a = a+ 0 = 0. But attention to identities might make
you notice that there is no multiplicative identity: 1 /∈ 3Z and there is
no other element with the required property. So 3Z is not a ring by our
definition.2 That is the only ring axiom not satisfied, though. You might
like to consider the rest: they all hold, but which are inherited from Z, and
which warrant checks?

A different type of structure is (Zn,+n,×n), the integers modulo n
under addition and multiplication modulo n. This is usually denoted
simply ‘Zn’, and its operations were first discussed in Section 3.3. For Z7,
addition and multiplication tables appear below. Is Z7 a ring? If you think
that it is, is that because 7 is special in some way, or is Zn a ring for every
natural number n?

2 As noted in Section 2.4, in some areas of mathematics it makes sense to omit the
multiplicative identity axiom. In that case, 3Z does qualify as a ring, just not a ring with
unity or ring with one.
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+7 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

×7 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

It turns out that Z7 is a ring and every Zn is a ring. But the tables support
thinking only to a limited extent. We can ‘see’ closure under addition and
multiplication because everything in both tables is an element ofZ7. In the
left table we can ‘see’ that the additive identity is 0, that each element has
an additive inverse, and that addition is commutative (review Section 5.1
if you are not sure how). But this ‘seeing’ is informal. What would you
write to explain more fully?

For other axioms, we run into trouble. As noted in Section 5.3, tables
show the results of combining any two elements—they represent binary
operations. For axioms involving three elements, they haven’t enough
dimensions.Moreover, properties of Zn cannot be inherited directly from
Z because the elements and operations are different. Fortunately, both
addition and multiplication modulo n work so that all of the axioms are
satisfied. For instance, for left distributivity, the remainder of a(b+ c)
on division by n is always the same as the remainder of ab+ ac on
division by n. Why? How do such properties in Zn rely indirectly on
properties in Z?

A course might explore this in more or less detail, establishing or just
stating that Z, Q, R and C are rings, and that if n is a natural number then
so is Zn. Have we encountered other rings? Some groups studied in this
book do not have a second binary operation: symmetries, for instance, are
combined only using composition. But some do: square matrices have
both addition and multiplication. For 2× 2 matrices, these are defined
as below.
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(
a b
c d

)
+
(
w x
y z

)
=
(
a+w b+ x
c+ y d+ z

)
;(

a b
c d

)(
w x
y z

)
=
(
aw+ by ax+ bz
cw+ dy cx+ dz

)
.

The set of all 2× 2matrices with entries in R can be denoted byM2×2(R).
Is M2×2(R) a ring? It is. Some axioms are easy to check: closure is
straightforward because adding or multiplying two 2× 2 matrices gives
another (note that aw+ by is a single number). The additive identity is
the matrix of zeros, and(

a b
c d

)
has additive inverse

(−a −b
−c −d

)
.

This holds because 0 is the additive identity in R and a,b,c,d ∈ R have
additive inverses −a,−b,−c,−d ∈ R: the ring properties in M2×2(R)
rely on ring properties in R. Similarly, commutativity of addition in
M2×2(R) relies on commutativity of addition in R. At which step below
is that property used? And what would you write to demonstrate that
associativity and distributivity hold in M2×2(R)? Maybe work through
the calculations.(

a b
c d

)
+
(
w x
y z

)
=
(
a+w b+ x
c+ y d+ z

)
=
(
w+ a x+ b
y+ c z+ d

)
=
(
w x
y z

)
+
(

a b
c d

)
.

A course might prove that because R satisfies each ring axiom, so does
M2×2(R). Or it might do something more general, proving that if R
is a ring then so is M2×2(R), and thereby establishing that M2×2(Z),
M2×2(Q), M2×2(R) and M2×2(C) are all rings. Indeed, if R is a ring and n
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is a natural number thenMn×n(R) is a ring. I would not want to check that
forn ≥ 3, but if youdo then that can only consolidate your understanding.

A final type of ring often studied is a ring of polynomials. For example,
Z[x] denotes the ring of polynomials with integer coefficients, meaning all
expressions of the form

anxn + an−1xn−1 + ·· · + a2x2 + a1x+ a0,

where n is a non-negative integer and the coefficients ai are in Z. The
polynomials below are all elements of Z[x].

x2 + 3x− 1 x− 4 − x10 − 59x3 5

However, the expression ‘5’ might feel like a number, not a polynomial,
or indeed a poly-anything. It is a number, of course, but it is also a
polynomial—it just happens to have ai = 0 for every i ̸= 0. You might
instinctively dislike that, but for Z[x] to be a ring, it must include 5.
Otherwise, what would happen for this polynomial sum?

(x2 − 3x+ 5)+ (−x2 + 3x)

If 5 were not a polynomial, then the result would not be in Z[x], so Z[x]
would not be closed under addition. That is surely more untidiness than
we would want. A similar observation might clear up any hesitancy about
5 as a complex number: if it were not, then (7+ i)+ (−2− i) would
not be in C, so C would not be closed under addition. When people
say that Abstract Algebra provides a more sophisticated view of earlier
mathematics, this is the kind of thing they mean.

Now, I just asked you to consider a sum of polynomials without
explaining how to add in Z[x].That is because you already know.Addition
works like this.

(anxn + an−1xn−1 + ·· · + a1x+ a0)+ (bnxn + bn−1xn−1 + ·· · + b1x+ b0)

= (an + bn)xn + (an−1 + bn−1)xn−1 + ·· · + (a1 + b1)x+ (a0 + b0).
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The general formulation can make it seem that the two polynomials must
have the same degree. But some coefficients could be zero—you could
find this sum:

(2x3 + 6x− 10)+ (3x2 − 3x+ 29).

Polynomial multiplication is harder. It can be expressed in double sigma
notation, which is compact but sometimes pointlessly so because many
people need to unpack it to understand what it means.

n∑
k=0

akxk
n∑

k=0
bkxk =

2n∑
k=0

k∑
i=0
(aibk−i)xk

I find it easier to reorder so that low powers appear first. Below, what
would be some of the intermediate terms and how do they relate to the
sigma notation?

(a0 + a1x+ a2x2 + ·· · + anxn)(b0 + b1x+ b2x2 + ·· · + bnxn)

= (a0b0)+ (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + ·· · + anbnx2n.

× a0 a1x a2x2 · · · anxn

b0 a0b0 a1b0x a2b0x2 · · ·
b1x a0b1x a1b1x2

b2x2 a0b2x2

...
...

bnxn · · · anbnx2n

Now, I said that Z[x] is a ring. Are you convinced that it satisfies the
axioms? Below, these appear with R = Z[x] and with a,b,c replaced by
p(x),q(x), r(x) so that the elements look like polynomials (which is not
necessary but can counteract the tendency to think of everything as a
number). Do some axioms hold more obviously than others? Although
none are inherited from Z, do some follow as direct consequences of the
fact that the coefficients are in Z? Are Q[x],R[x] and C[x] rings too?
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Closure under addition ∀p(x),q(x) ∈ Z[x], p(x)+ q(x) ∈ Z[x];
Associativity of addition ∀p(x),q(x), r(x) ∈ Z[x],

(p(x)+ q(x))+ r(x)= p(x)+ (q(x)+ r(x));
Additive identity ∃0 ∈ Z[x] such that ∀p(x) ∈ Z[x],

0+ p(x)= p(x)+ 0 = 0;
Additive inverses ∀p(x) ∈ Z[x], ∃(−p(x)) ∈ Z[x] such that

p(x)+ (−p(x))= (−p(x))+ p(x)= 0;
Commutativity of addition ∀p(x),q(x) ∈ Z[x],

p(x)+ q(x)= q(x)+ p(x);
Closure under multiplication ∀p(x),q(x) ∈ Z[x], p(x)q(x) ∈ Z[x];
Associativity of multiplication ∀p(x),q(x), r(x) ∈ Z[x],

(p(x)q(x))r(x)= p(x)(q(x)r(x));
Multiplicative identity ∃1 ∈ Z[x] such that ∀p(x) ∈ Z[x],

1p(x)= p(x)1 = p(x);
Left distributivity ∀p(x),q(x), r(x) ∈ Z[x],

p(x)(q(x)+ r(x))= p(x)q(x)+ p(x)r(x);
Right distributivity ∀p(x),q(x), r(x) ∈ Z[x],

(p(x)+ q(x))r(x)= p(x)q(x)+ p(x)r(x).

Finally, are the ring axioms now familiar enough that, if you closed this
book, you could write them out? Try it—this would be good retrieval
practice.

9.3 Simple ring theorems

Rings of numbers, matrices and polynomials satisfy the ring definition,
so theorems deduced from its axioms apply to them all. Below are two
simple theorems often encountered early in ring theory.

Theorem: Let R be a ring. Then for every a ∈ R, 0 · a = a · 0 = 0.

Theorem: Let R be a ring. Then for every a,b ∈ R,

(−a)b = a(−b)= −(ab) and (−a)(−b)= ab.
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These theorems look a lot like the axioms—they are no more complicated
to state. They have the status of theorems, though, because they can be
proved from the axioms. I will provide proofs, but first we will consider
why these theorems are worth stating and how they relate to rings.

The first theorem probably seems obvious. You have known for a
decade that ‘anything times zero is zero’, so you might wonder why
mathematicianswould bother proving it now. Butwhy exactly does it hold
for the additive identity in every ring, not just in rings of numbers? Even
stating this theorem demands something like a ring structure because it
involves an additive identity with a multiplicative operation. This might
remind you that two ring axioms link addition andmultiplication—which
two? Read the proof below to work out which are used where.

Theorem: Let R be a ring. Then for every a ∈ R, 0 · a = a · 0 = 0.

Proof : Let a ∈ R.
Note that 0 is the additive identity in R so 0+ 0 = 0.
Hence (0+ 0)a = 0a.
So 0a+ 0a = 0a.
Now 0a ∈ R so 0a has an additive inverse −0a ∈ R.
Thus 0a+ 0a = 0a

⇒ 0a+ 0a+ (−0a) = 0a+ (−0a)
⇒ 0a = 0.

By a similar argument, a0 = 0.

Then ask, why is each step is valid? Would you have thought to use
(0+ 0)a = 0a? Either way, can you see that it is a clever move? And can
you write out the ‘similar argument’?

The second theorem—repeated below—might seem less obvious.

Theorem: Let R be a ring. Then for every a,b ∈ R,

(−a)b = a(−b)= −(ab) and (−a)(−b)= ab.
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When you first met the claim that (−a)(−b)= ab for numbers, it
might have seemed arbitrary or mysterious; you might have been
unsatisfied with claims that ‘a minus times a minus is a plus’. If so,
good for you—a mathematically minded person should always look
for justification. I, for instance, reasoned that 3 · (−2) was three ‘lots of ’
−2, and (−3) · (−2) must be ‘minus’ that. The proof below formalizes
that reasoning. It demonstrates that the interaction between additive
inverses and multiplication is not arbitrary or mysterious but a necessary
consequence of the ring axioms.

Theorem: Let R be a ring. Then for every a,b ∈ R,

(−a)b = a(−b)= −(ab) and (−a)(−b)= ab.

Proof : Let a,b ∈ R.
Then a has an additive inverse (−a) ∈ R with a+ (−a)= 0.
So (a+ (−a))b = 0b = 0.
Thus ab+ (−a)b = 0.
Now ab ∈ R so ab has an additive inverse −(ab) ∈ R.
Thus ab+ (−a)b = 0

⇒ −(ab)+ ab+ (−a)b = −(ab)+ 0
⇒ (−a)b = −(ab).

By a similar argument, a(−b)= −(ab).
Next note that b has an additive inverse (−b) ∈ R with
b+ (−b)= 0.
So (−a)(b+ (−b)) = 0

⇒ (−a)b+ (−a)(−b) = 0
⇒ −(ab)+ (−a)(−b) = 0 by the above
⇒ ab+ (−(ab))+ (−a)(−b) = ab+ 0
⇒ (−a)(−b) = ab.
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Again, why is each step valid? If your lecturer were fussy about including
axiomatic justifications—‘by distributivity’ and so on—what might you
write? Would you have thought to use (a+ (−a))b = 0b = 0? Might you
think of it in future?

To conclude, a note on proofs like these. When I studied ring theory,
I thought it ingenious to add two zeros or an element and its inverse,
then split the expression to derive the desired result. But I don’t think
I noticed that such arguments rely on distributivity. I didn’t notice that
this had to be the case for theorems linking additive identities or inverses
to a multiplicative operation. I certainly didn’t grasp the fact that two
operations and a ring structure were necessary for such results to be
meaningful. If I had noticed all of that, I think I would have found
theorems and proofs like these easier to reconstruct and more satisfying
to study.

9.4 Rings, integral domains and fields

Theprevious section’s proofs use only the ring axioms, so the correspond-
ing theorems apply to every ring. But, as noted earlier, extra properties can
be appended to the ring axioms to define other structures. For instance,
the ring Z has commutativemultiplication, whichmakes it a commutative
ring.

Definition: A ring R is commutative if and only if ∀a,b ∈ R, ab = ba.

Note that all rings have commutative addition; only those that also have
commutative multiplication are called commutative rings. This means
that the matrix ring M2×2(R) is not a commutative ring. The Venn
diagram below captures the fact that commutative rings form a subset
of all rings. Check that each example is correctly placed (the spacing is
weird for a reason—bear with me).
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ZZ6
Z[x]

Q R C Z7

M2×2(R)
commutative

rings

rings

What Z does not have is multiplicative inverses: it is not true that for all
a ∈ Z, there exists a−1 ∈ Z such that aa−1 = a−1a = 1. This means that Z

is not a division ring.

Definition: A ringR is adivision ring if and only if∀a ∈ R\{0} ∃a−1 ∈ R
such that aa−1 = a−1a = 1.

The matrix ring M2×2(R) is not a division ring either: only matrices
with nonzero determinants are invertible. And the ring of polynomials
Z[x] is not a division ring—which of its elements do and do not have
multiplicative inverses? But Q, R and C all satisfy the definition. And
something interesting happens for rings of the form Zn. In some, every
element except 0 has amultiplicative inverse. In others, that is not the case.
What is the distinction, and how does it play out in the multiplication
tables for Z7 and Z6?

×7 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

×6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1
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In Z7, every nonzero element has a multiplicative inverse:
1×7 1 = 1, 6×7 6 = 1, 2×7 4 = 4×7 2 = 1, 3×7 5 = 5×7 3 = 1.

In Z6, the elements 2, 3 and 4 do not have multiplicative inverses—the
multiplicative identity appears nowhere in their rows. This is because 2, 3
and 4 share factors with 6; they are not relatively prime to the n in Zn. In
general, Zp for p prime is a division ring, and Zn for n composite is not.
Check that everything is in the right place in this new diagram.

ZZ
6

Z[x]

Q R C Z
7

M2×2(R)
commutative

rings

rings

division rings

What stops Z6 being a division ring is that 2, 3 and 4 are all zero divisors.

Definition: In a ring R, a nonzero a ∈ R is a zero divisor if and only if
∃b ∈ R\{0} such that ab = 0 or ba = 0.

Note that in some of these definitions, 0 is excluded from a quantified
condition: the additive identity is ‘special’ in relation to some multiplica-
tive properties. And think about other rings—which have zero divisors
and which do not? How do your answers relate to the definition below?

Definition: An integral domain is a commutative ring with no zero
divisors.

Why might such a structure be called an integral domain, do you think?
The word ‘integral’ relates to integers, which form an integral domain—
check that they have the required properties. Are any other rings dis-
cussed above integral domains? Check the placements in the diagram
below.

Finally, some rings are fields.
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ZZ
6

Z[x]

Q R C Z
7

M2×2(R)
commutative

integral domains

rings

rings

division rings

Definition: A field is a commutative division ring.

This definition is nice and short, but only because it hides numerous
axioms in the words ‘commutative division ring’. With the axioms spelled
out, it looks like this.

Definition: A field is a set F with binary operations + and · such that:

Closure under addition ∀a,b ∈ F, a+ b ∈ F;
Associativity of addition ∀a,b,c ∈ F, (a+ b)+ c = a+ (b+ c);
Additive identity ∃0 ∈ F such that ∀a ∈ F, 0+ a = a+ 0 = 0;
Additive inverses ∀a ∈ F, ∃(−a) ∈ F such that

a+ (−a)= (−a)+ a = 0;
Commutativity of addition ∀a,b ∈ F, a+ b = b+ a;
Closure under multiplication ∀a,b ∈ F, a · b ∈ F;
Associativity of multiplication ∀a,b,c ∈ F, (a · b) · c = a · (b · c);
Multiplicative identity ∃1 ∈ F such that ∀a ∈ F, 1 · a = a · 1 = a;
Multiplicative inverses ∀a ∈ F\{0}, ∃a−1 ∈ F such that

aa−1 = a−1a = 1;
Commutativity of multiplication ∀a,b ∈ F, a · b = b · a;
Left distributivity ∀a,b,c ∈ F, a · (b+ c)= a · b+ a · c;
Right distributivity ∀a,b,c ∈ F, (a+ b) · c = a · c+ b · c.

Because fields must satisfy more axioms, there are fewer fields than rings.
But Q, R and C are all fields—check that you believe this. For me, the
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word ‘field’ thus seems appropriate because it conjures up an image of
a big thing with lots of things in it (blades of grass, maybe). But in fact
fields need not be big: Z7 has only seven elements, but is a field because
it is commutative and has multiplicative inverses. There do exist division
rings that are not fields—one example is the quaternions, which I will not
introduce here but which you might want to look up. Because all of our
listed division rings are fields, we can amend the diagram as below.

ZZ
6

Z[x]

Q R C Z
7

M2×2(R)
commutative

integral domains

fields

rings

rings

To conclude, note that every Zp with p prime is a field: Z19 is a field, Z43
is a field, and so on. In particular, Z2 is a field. The tables below capture
its structure.

+2 0 1

0 0 1

1 1 0

×2 0 1

0 0 0

1 0 1

Now, a two-element field is not very interesting. But it is interesting that it
exists: it is really very small. And the obvious question is, is it the smallest?
If you have studied small groups—see Section 6.11—youmight know that
it is possible to have a one-element group. Is it possible to have a one-
element field? How about a one-element ring?

9.5 Units, zero divisors and equations

Do you now understand why the ring axioms are lopsided? Fields are
‘nicer’ in that both operations have full sets of inverses, but rings of
numbers, matrices and polynomials still have much common structure,
so theory about them can be built simultaneously.They do, however, have
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different properties, and this section will relate these to equation solving
and to the zero product property from Section 3.2.

First, a ring without a full set of multiplicative inverses might still have
some. In Z, the elements 1 and −1 have multiplicative inverses; in Z6,
1 and 5 have multiplicative inverses. Ring elements with multiplicative
inverses are called units.

Definition: Suppose that R is a ring. Then u ∈ R is a unit if and only if
∃u−1 ∈ R such that uu−1 = u−1u = 1.

Note that the multiplicative identity is always a unit: 1 · 1 = 1 must hold.
Thus every ring has at least one unit. And plenty have more than one. In
themultiplication table for Z12 below, rows and columns for zero divisors
are in grey so that units stand out in white.

×12 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11

2 0 2 4 6 8 10 0 2 4 6 8 10

3 0 3 6 9 0 3 6 9 0 3 6 9

4 0 4 8 0 4 8 0 4 8 0 4 8

5 0 5 10 3 8 1 6 11 4 9 2 7

6 0 6 0 6 0 6 0 6 0 6 0 6

7 0 7 2 9 4 11 6 1 8 3 10 5

8 0 8 4 0 8 4 0 8 4 0 8 4

9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2

11 0 11 10 9 8 7 6 5 4 3 2 1
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In M2×2(R) under multiplication, every matrix with nonzero determi-
nant is a unit because it is invertible: provided ad ̸= bc,(

a b
c d

)
has multiplicative inverse

1
ad− bc

(
d −b
−c a

)
.

These units form the general linear group of degree 2, denoted GL(2,R).
Note that GL(2,R) is a group because multiplying together two invert-
ible matrices gives another, associativity is inherited, the multiplicative
identity matrix is invertible, and every invertible matrix by definition
has a multiplicative inverse. Moreover, this generalizes: for any ring, the
units form a multiplicative group. The units of Z12 are shown in the table
below; they form a group isomorphic to the Klein four-group V (see
Section 6.8).

×12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

The general claim is captured below.

Claim: The set of units U in a ring R forms a multiplicative group
because:

Closure ∀u1,u2 ∈ U, u1u2 ∈ U;
Associativity ∀u1,u2,u3 ∈ U, (u1u2)u3 = u1(u2u3);
Identity ∃1 ∈ U such that ∀u ∈ U, 1u = u1 = u;
Inverses ∀u ∈ U, ∃u−1 ∈ U such that uu−1 = u−1u = 1.

UNITS, ZERO DIVISORS AND EQUATIONS 237



OUP CORRECTED PROOF – FINAL, 21/12/2020, SPi

In my view, two of the subclaims are easier to think about and two are
harder. Do you agree? Associativity is easier because it is inherited from
R. And the identity is easier because 1 is a unit. Closure is harder. Why
must the product of two units be another? If u1 has inverse u−1

1 and u2
has inverse u−1

2 , what can we say about u1u2? Be careful—the inverse of
u1u2 is not (necessarily) u−1

1 u−1
2 because, in a ring, multiplication is not

necessarily commutative. But the inverse of u1u2 is u−1
2 u−1

1 , because

(u1u2)(u−1
2 u−1

1 ) = u1(u2u−1
2 )u−1

1 by associativity
= u1u−1

1 because u2u−1
2 = 1

= 1 because u1u−1
1 = 1.

Inverses are also harder. If u is a unit, whymust its inverse u−1 be a unit?
This might seem obvious because, in the equation uu−1 = u−1u = 1, we
could ‘swap around’ u and u−1 without changing anything important.
Unfortunately, we do not really write about ‘swapping things around’ in
proofs, sowhat canwe say that ismore formal? Youmight see an argument
like the one below, which probably adds nothing to your sense of what is
going on, but which handles everything politely.

Claim: Let U be the set of units in a ring R with unity.
Then ∀u ∈ U, ∃u−1 ∈ U such that uu−1 = u−1u = 1.

Proof : Let u ∈ U, so ∃u−1 ∈ R such that uu−1 = u−1u = 1.
Then u−1u = uu−1 = 1, i.e. u−1 has inverse u ∈ R.
Hence u−1 ∈ U.

These arguments together establish that the units in a ring R form a group
U under the ring’s multiplicative operation. But notice that U might not
be a subgroup of R, because R might not be a multiplicative group. Maybe
pause to think about that.

Now, the fact that the units form a multiplicative group relates closely
to equation solving. In any group (G,∗), every element g has an inverse
under the single operation ∗. So cancellation can be performed for every
group element:
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g ∗ x = g ∗ y ⇒ g−1 ∗ g ∗ x = g−1 ∗ g ∗ y ⇒ x = y.

In a ring, cancellation via multiplicative inverses works only for units. In
Z6, for instance, the element 5 is a unit and 5−1 = 5, so

5x = 5y ⇒ 5−15x = 5−15y ⇒ x = y.

Also, in the multiplication table for Z6, the row for 5 contains every
element exactly once. Thus every element is 5×6 something, and the
equation 5x = b has a unique solution for every b ∈ Z6.

×6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

In contrast, 2 is not a unit, so 2x = 2y does not imply that x = y. For
instance, 2×6 2 = 2×6 5, but this does not imply that 2 = 5. And the
row for 2 does not contain every element exactly once: 0,2 and 4 appear
‘too many times’ and 1,3 and 5 do not appear at all. This means that not
every element is 2×6 something: 2x = 0,2x = 2 and 2x = 4 have multiple
solutions, but 2x = 1,2x = 3 and 2x = 5 have no solutions.

Now, in the ring Z6, every nonzero element is either a unit or a zero
divisor (check). But how are units and zero divisors linked in general? Can
ring elements be neither units nor zero divisors? Or both units and zero
divisors? What do you think? It might help to explore other structures
with zero divisors, such as matrix rings. In M2×2(R), many elements are
zero divisors and many are units. For instance,(

0 1
0 0

)
and

(
0 2
0 0

)
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are both zero divisors because(
0 1
0 0

)(
0 2
0 0

)
=
(
0+ 0 0+ 0
0+ 0 0+ 0

)
=
(
0 0
0 0

)
.

And (
1 0
0 2

)
and

(
1 0
0 1

2

)
are both units because(

1 0
0 2

)(
1 0
0 1

2

)
=
(
1+ 0 0+ 0
0+ 0 0+ 1

)
=
(
1 0
0 1

)
and (

1 0
0 1

2

)(
1 0
0 2

)
=
(
1+ 0 0+ 0
0+ 0 0+ 1

)
=
(
1 0
0 1

)
.

But is every element of M2×2(R) either a zero divisor or a unit? Or is
there ‘room’ in this bigger ring for elements that are neither or both? I
recommend exploring.

In general, it turns out that no ring element can be both a unit and a
zero divisor because zero divisors cannot be units, as proved below.

Theorem: Suppose that R is a ring and a ∈ R is a zero divisor.
Then a is not a unit.

Proof : Suppose that a ∈ R is a zero divisor.
Then ∃b ∈ R with b ̸= 0 such that ab = 0 or ba = 0.
Now suppose for contradiction that a is a unit.
Then ∃a−1 ∈ R such that a−1a = aa−1 = 1.
But then ab = 0 ⇒ a−1ab = a−10 ⇒ b = 0,
and ba = 0 ⇒ baa−1 = 0a−1 ⇒ b = 0,
either of which contradicts the assumption that b ̸= 0.
Thus a is not a unit.
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Can an element be neither unit nor zero divisor? Yes: some rings
contain such elements. Did exploring in M2×2(R) provide any examples?
The ring Z provides lots. Its only units are 1 and −1; almost every integer
is a non-unit. But Z contains no zero divisors, which is part of what
characterizes it as an integral domain.

Definition: An integral domain is a commutative ring with no zero
divisors.

In contrast, the rings Z6 and M2×2(R) are not integral domains. And that
makes them different from earlier experience. Nearly all rings in earlier
algebra are integral domains, including the real numbers, the rational
numbers, and the integers (all with standard operations). Because these
have no zero divisors, they satisfy the zero product property: if ab = 0
then a = 0 or b = 0.Thismeans that in integral domains, equations of the
form ax = ay can be solved when a ̸= 0, even when a has no multiplicative
inverse. For instance, 2 has no multiplicative inverse in Z, but

2x = 2y ⇒ 2x− 2y = 0
⇒ 2x+ 2(−y)= 0
⇒ 2(x+ (−y))= 0
⇒ x+ (−y)= 0 by the zero product property
⇒ x = y.

Which ring and integral domain properties are used in the general
argument below?

Theorem: Suppose that R is an integral domain, a ∈ R, a ̸= 0 and
ax = ay. Then x = y.

Proof : ax = ay ⇒ ax− ay = 0
⇒ ax+ a(−y)= 0
⇒ a(x+ (−y))= 0
⇒ x+ (−y)= 0
⇒ x = y.
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9.6 Subrings and ideals

This section moves on from properties of individual ring elements to
subrings, where a subring is a subset of a ring that is a ring in its own
right. For instance, Z is a subring of Q. And Q is a subring of R, which
is a subring of C. Similar subring relationships exist in related structures.
For matrix rings, M2×2(Z) is a subring of M2×2(Q), which is a subring of
M2×2(R), which is a subring of M2×2(C). For polynomial rings, Z[x] is a
subring of Q[x], which is a subring of R[x], which is a subring of C[x].

Is Z3 a subring of Z? No: it is not even a subset of Z because its elements
are different. Similarly, Z3 is not a subring of Z6. Could Z3 be isomorphic
to a subring of Z6, do you think? Does Z6 contain a ‘copy’ of Z3, perhaps
disguised by different element names? The group (Z3,+3) is isomorphic
to the subgroup ({0,2,4},+6) of (Z6,+6), as captured in the addition
tables on the left below. Can you ‘see’ the group isomorphism? But a
ring isomorphism would require multiplicative matching too, and the
multiplicative tables on the right show that (Z3,+3,×3) is not isomorphic
to ({0,2,4},+6,×6). Could Z3 be isomorphic to some other subring of
Z6? If so, which one? If not, why not?

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

×3 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

+6 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

×6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Mathematicians, of course, are interested not just in specific rings and
subrings but in general theory. If R is a ring, under what conditions is S a
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subring? Clearly S must be a subset of R. And it must satisfy all the ring
axioms as listed below. But how many actually need checking? Are some,
in fact, inherited from R?

Closure under addition ∀a,b ∈ S, a+ b ∈ S;
Associativity of addition ∀a,b,c ∈ S, (a+ b)+ c = a+ (b+ c);
Additive identity ∃0 ∈ S such that ∀a ∈ S, 0+ a = a+ 0 = 0;
Additive inverses ∀a ∈ S, ∃(−a) ∈ S such that

a+ (−a)= (−a)+ a = 0;
Commutativity of addition ∀a,b ∈ S, a+ b = b+ a;
Closure under multiplication ∀a,b ∈ S, a · b ∈ S;
Associativity of multiplication ∀a,b,c ∈ S, (a · b) · c = a · (b · c);
Multiplicative identity ∃1 ∈ S such that ∀a ∈ S, 1 · a = a · 1 = a;
Left distributivity ∀a,b,c ∈ S, a · (b+ c)= a · b+ a · c;
Right distributivity ∀a,b,c ∈ S, (a+ b) · c = a · c+ b · c.

The identity, inverses and closure axioms cannot be inherited: remov-
ing elements from R might remove an identity or some inverses or
some sums or products. But the remaining axioms are inherited because
each is defined using a criterion with a single universal quantifier (see
Section 3.5). This means that five checks are required.

Closure under addition ∀a,b ∈ S, a+ b ∈ S;
Additive identity ∃0 ∈ S such that ∀a ∈ S, 0+ a = a+ 0 = 0;
Additive inverses ∀a ∈ S, ∃(−a) ∈ S such that

a+ (−a)= (−a)+ a = 0;
Closure under multiplication ∀a,b ∈ S, a · b ∈ S;
Multiplicative identity ∃1 ∈ S such that ∀a ∈ S, 1 · a = a · 1 = a.

Personally, I would be satisfied with that, as a five-item checklist is not too
arduous. But mathematicians like to minimize work, so you will likely see
a theorem like that below.
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Theorem: Suppose that R is a ring and that S ⊆ R. Then S is a subring
of R if 1R ∈ S and ∀a,b ∈ S, ab ∈ S and a− b ∈ S.

Can you work out why this is enough to guarantee that S satisfies all
five axioms on the checklist (and therefore all of the ring axioms)? When
you have considered that, try applying the theorem to establish that one
subring of M2×2(R) comprises all matrices of the form(

x 0
0 y

)
where x,y ∈ R.

Now, if you have studied group theory or read Chapter 7 then you
will know that some groups have ‘special’ subgroups known as normal
subgroups, the cosets of which form a quotient group. (If you have not read
Chapter 7, I recommend doing so now—the following text will be easier
if you know how I introduced these constructs.) Is there an analogy for
rings? Do some rings have ‘special’ subrings, the ‘cosets’ of which form a
‘quotient ring’? I think the answer is not obvious. On the one hand, every
ring is an additive group—indeed, an abelian (commutative) one. On the
other hand, every ring also hasmultiplication.Might that mean that there
are no quotient rings? Or that only some rings have quotient rings?

The answer is that quotient rings do exist. They occur when an additive
subgroup is an ideal, where ideals are commonly defined in one of the
following ways.3

Definition: Let (R,+, ·) be a ring and (S,+) be a subgroup of (R,+).
Then S is an ideal of R if and only if ∀s ∈ S and ∀r ∈ R, rs ∈ S
and sr ∈ S.

Definition: Let (R,+, ·) be a ring and (S,+) be a subgroup of
(R,+). Then S is an ideal of R if and only if ∀r ∈ R, rS ⊆ S
and Sr ⊆ S.

3 Other possibilities exist. Left ideal and right ideal can be defined separately, for
instance.
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Probably your lecturer will give a definition and go on to prove that
ideals give rise to quotient rings. If you like formal theory building, you
might be perfectly happy with that. If you are like me, though, you might
find it unsatisfying. The above definitions are equivalent—can you see
why? And they are somewhat like definitions of normal subgroup, as
below.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀g ∈ G, gH = Hg.

Definition: Let H be a subgroup of G. Then H is a normal subgroup if
and only if ∀a ∈ G and ∀h ∈ H, a−1ha ∈ H.

But the two sets of definitions are not exactly alike. The first normal
subgroup definition, for instance, requires that for every group element g,
the left and right cosets gH andHg are equal. It does not require that either
coset is a subset of H, so it does not exactly match the ideal criterion that
rS ⊆ S and Sr ⊆ S. Any analogy between normal subgroups and ideals is
not so direct as to be obvious.

Also not obvious is that in the normal subgroup definitions, the oper-
ation will be whatever is the single group operation, but in the ideal
definition, it must be multiplication. This is an important distinction,
and to understand its impact we need to distinguish the two operations,
understandwhy every additive subgroup of a ring is normal, and establish
conditions under which the cosets of an additive normal subgroup func-
tion both additively and multiplicatively as elements in a quotient ring.
Wewill work through that in this section and the next, using two examples
to highlight what happens when everything works and what goes wrong
when it doesn’t.

First, here is the definition of normal subgroup in additive form.

Definition: Let (H,+) be a subgroup of (G,+). Then H is a normal
subgroup if and only if ∀g ∈ G, g+H = H+ g.

The equation g+H = H+ g specifies that the left and right cosets of
(H,+) in (G,+) are equal, where cosets are defined as below
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Definition: Suppose that (H,+) is a subgroup of (G,). Then the left
coset of H containing g is g+H = { g+ h|h ∈ H}.

Definition: Suppose that (H,+) is a subgroup of (G,+). Then the right
coset of H containing g is H+ g = {h+ g|h ∈ H}.

In an abelian group with commutative addition, the equation g+H =
H+ g holds automatically because g+ h = h+ g for every h ∈ H and
g ∈ G (see Section 7.6). And every ring is an abelian group under addition.
So, if (S,+) is a subgroup of (R,+), then (S,+) must be a normal
subgroup of (R,+). For instance, (3Z,+) is a normal subgroup of (Z,+).
And (Z,+) is a normal subgroup of (Q,+).

Consequently, the cosets in each case form an additive quotient group
(see Section 7.5). As noted in Section 7.2, in G = (Z,+), the cosets of
H = (3Z,+) are

0+ 3Z = {0+ z|z ∈ 3Z} = {. . . ,−6,−3,0,3,6,9, . . .};
1+ 3Z = {1+ z|z ∈ 3Z} = {. . . ,−5,−2,1,4,7,10, . . .};
2+ 3Z = {2+ z|z ∈ 3Z} = {. . . ,−4,−1,2,5,8,11, . . .}.

Addition of these cosets is well defined: as in Section 7.5, it is meaningful
to write (a+ 3Z)+ (b+ 3Z)= (a+ b)+ 3Z. For instance, adding any
element of the coset 1+ 3Z (a number with remainder 1 on division by
3) to any element of the coset 2+ 3Z (a number with remainder 2 on
division by 3) gives an element of the coset 3Z (a number with remainder
0 on division by 3). And the cosets of 3Z in Z behave ‘as they should’
under addition,4 forming a quotient group Z/3Z ∼= Z3.

+3 3Z 1+ 3Z 2+ 3Z

3Z 3Z 1+ 3Z 2+ 3Z

1+ 3Z 1+ 3Z 2+ 3Z 3Z

2+ 3Z 2+ 3Z 3Z 1+ 3Z

+3 0 1 2
0 0 1 2

1 1 2 0

2 2 0 1

4 See Section 3.3 for a more formal argument for cosets of (12Z,+) in (Z,+).
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Do these cosets also behave ‘as they should’ under multiplication, thus
forming a quotient ring? They do. The tables below represent the same
additive cosets under the multiplicative operation ×3.

×3 3Z 1+ 3Z 2+ 3Z

3Z 3Z 3Z 3Z

1+ 3Z 3Z 1+ 3Z 2+ 3Z

2+ 3Z 3Z 2+ 3Z 1+ 3Z

×3 0 1 2
0 0 0 0

1 0 1 2

2 0 2 1

The structure is different, butmultiplication is well defined (comparewith
Section 3.3). For instance, any element of the coset 1+ 3Z (a number
with remainder 1 on division by 3) multiplied by any element of the coset
2+ 3Z (a number with remainder 2 on division by 3) gives an element of
the coset 2+ 3Z (a number with remainder 2 on division by 3). Thus it is
meaningful to write (1+ 3Z)(2+ 3Z)= 2+ 3Z and, in general,

(a+ 3Z)(b+ 3Z)= (ab)+ 3Z.

In ring theoretic terms, this is what we would expect, because 3Z satisfies
the definition of an ideal in Z. One formulation of this definition is
repeated below and applied to 3Z as a subring of Z.

Definition: Let (R,+, ·) be a ring and (S,+) be a subgroup of (R,+).
Then S is an ideal of R if and only if ∀s ∈ S and ∀r ∈ R, rs ∈ S
and sr ∈ S.

Application: 3Z is an additive subgroup of Z; it is an ideal of Z because
∀s ∈ 3Z and ∀r ∈ Z, rs ∈ 3Z and sr ∈ 3Z.

In words, the definition means that multiplying any element of an ideal
S by any element of the ring R gives a result in S; informally, S ‘drags
everything into itself ’ under multiplication. For 3Z as a subring of Z,
multiplying any multiple of 3 by any integer gives a multiple of 3. The
above tables might convince you that Z/3Z is a meaningful quotient ring
isomorphic to (Z3,+3,×3). But what happens if a subring is not an ideal?
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9.7 Ideals, quotient rings and ring
homomorphisms

The previous section established that 3Z is an ideal of Z, and that its
cosets form not only a quotient group under addition but also a quotient
ring under addition and multiplication. So that is an example where
everything ‘works’. But what of the second example? Is Z an ideal of Q?
No, because it is not true that ∀z ∈ Z and ∀q ∈ Q, zq ∈ Z and qz ∈ Z.
For instance, multiplying 2 ∈ Z by 5

7 ∈ Q gives 10
7 /∈ Z. In theory-building

terms, we could shrug and say ‘Okay, no quotient ring, then’. But I do not
find that satisfying. I want to knowwhy Z failing to be an ideal of Q means
that there is no quotient ring Q/Z. To find out, wewill work through some
reasoning.

Because (Z,+) is a normal subgroup of (Q,+), there is a quotient group
Q/Z. Its elements are the additive cosets of Z in Q, which take the form
q+ Z where q ∈ Q. These cosets are infinite in number, so we cannot list
them all. But here are a few.

0+ Z = {0+ z|z ∈ Z} = {. . . ,−2,−1,0,1,2, . . .};
1
4 + Z = { 1

4 + z|z ∈ Z} = {. . . ,− 7
4 ,− 3

4 , 1
4 , 5

4 , 9
4 , . . .};

1
2 + Z = { 1

2 + z|z ∈ Z} = {. . . ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , . . .}.

Because (Z,+) is a normal subgroup of (Q,+), coset addition is well
defined. For instance, adding an element of 1

4 + Z (a number with
‘remainder’ 1

4 on division by 1) to any element of 1
2 + Z (a number with

‘remainder’ 1
2 on division by 1) gives an element of 3

4 + Z (a number with
‘remainder’ 3

4 on division by 1). In general,

(q1 + Z)+ (q2 + Z)= (q1 + q2)+ Z.

Obviously infinite coset addition tables are not possible, but below are
some partial ones. Perhaps pick a few more cosets and add those too.
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+ Z 1
4 + Z 1

2 + Z . . .

Z Z 1
4 + Z 1

2 + Z

1
4 + Z 1

4 + Z 1
2 + Z 3

4 + Z

1
2 + Z 1

2 + Z 3
4 + Z Z

...

+ 0 1
4

1
2 . . .

0 0 1
4

1
2

1
4

1
4

1
2

3
4

1
2

1
2

3
4 0

...
Now, because Z is not an ideal of Q, we are expecting that coset

multiplication will not be well defined—that (q1 + Z)(q2 + Z)will not be
meaningfully equal to (q1q2)+ Z. But what exactly goes wrong? Imag-
ine multiplying 1

4 + Z by 1
2 + Z. What should the answer be? Using

the obvious coset representatives 1
4 ∈ 1

4 + Z and 1
2 ∈ 1

2 + Z gives

1
4 · 1

2 = 1
8 ∈ 1

8 + Z so we would want ( 14 + Z) · ( 12 + Z)= 1
8 + Z.

But taking the alternative representatives 5
4 ∈ 1

4 + Z and 7
2 ∈ 1

2 + Z gives

5
4 · 7

2 = 35
8 ∈ 3

8 + Z so we would want ( 14 + Z) · ( 12 + Z)= 3
8 + Z.

Because 1
8 + Z ̸= 3

8 + Z, coset multiplication is not well defined (you
can check that it fails similarly for many other cosets and representa-
tives). Thus coset multiplication is not meaningful and Q/Z is not a
quotient ring.

That is what we expected, but it does not really explain why a quotient
ring requires an ideal. To understand that, we will clarify what goes
wrong whenmultiplying 1

4 + Z by 1
2 + Z, then generalize. Consider again

the coset representatives 5
4 ∈ 1

4 + Z and 7
2 ∈ 1

2 + Z, and recall that all
elements in a coset are ‘separated from one another’ by elements of the
subgroup (see Section 7.6). Here, 5

4 = 1
4 + 1 where 1 ∈ Z and 7

2 = 1
2 + 3

where 3 ∈ Z, so we can rewrite the product as

5
4 · 7

2 = ( 14 + 1)( 12 + 3)= 1
8 + 3

4 + 1
2 + 3.

If the result were simply 1
8 + 3, it would be an element of 1

8 + Z. But
multiplying also manufactures ‘extra bits’, in this case 3

4 and 1
2 .

IDEALS, QUOTIENT RINGS AND RING HOMOMORPHISMS 249



In general, representing 1
4 + Z by 1

4 + z1 where z1 ∈ Z and 1
2 + Z by

1
2 + z2 where z2 ∈ Z gives

( 14 + z1)( 12 + z2)= 1
8 + 1

4 z2 + 1
2 z1 + 1.

The result is an element of 1
8 + Z only if the extra bits 1

4 z2 and 1
2 z1 are

integers. Are they? Not usually. And for coset multiplication to be well
defined, they would need to be integers in every case. Do you see the link
to the definition of ideal?

Definition: Let (R,+, ·) be a ring and (S,+) be a subgroup of (R,+).
Then S is an ideal of R if and only if ∀s ∈ S and ∀r ∈ R, rs ∈ S
and sr ∈ S.

Definition: Let (R,+, ·) be a ring and (S,+) be a subgroup of (R,+).
Then S is an ideal of R if and only if ∀r ∈ R, rS ⊆ S and
Sr ⊆ S.

To nail the reasoning, consider the fully general case. Suppose that R is
a ring and that (S,+) is a subgroup of (R,+), so that cosets of S in R take
the form r1 + S, r2 + S and so on; these cosets might be finite or infinite,
depending on the ring.

r1 + S = {r1, r1 + s1, r1 + s2, . . .};
r2 + S = {r2, r2 + s1, r2 + s2, . . .};
r3 + S = {r3, r3 + s1, r3 + s2, . . .};

...

Adding the cosets r1 + S and r2 + S is unproblematic. Taking arbitrary
representatives r1 + sm ∈ r1 + S and r2 + sn ∈ r2 + S gives

(r1 + sm)+ (r2 + sn) = r1 + (sm + r2)+ sn because addition is associative
= r1 + r2 + sm + sn because addition is commutative
= (r1 + r2)+ (sm + sn)
∈ (r1 + r2)+ S because sm + sn ∈ S.

Thus it is meaningful to write (r1 + S)+ (r2 + S)= (r1 + r2)+ S.
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Butmultiplying the cosets r1 + S and r2 + S is problematic. Taking again
the representatives r1 + sm and r2 + sn and using distributivity gives

(r1 + sm)(r2 + sn)= r1r2 + r1sn + smr2 + smsn.

Because S is a subring, it is closed under multiplication; hence smsn ∈ S.
But it is meaningful to write (r1 + S)(r2 + S)= (r1r2)+ S only if r1sn and
smr2 are definitely also in S. In other words, S must be an ideal.

We are nearly done now, but not quite. The above reasoning establishes
that for R/S to be a quotient ring, it is necessary that S be an ideal. Is it
also sufficient? Does every ideal give rise to a quotient ring? The answer,
happily, is yes, but we have not yet established that. We know that if S is
an ideal then coset addition and multiplication are well defined, but we
have not proved that these operations obey the ring axioms. Proving that
they do is not that difficult but also not that interesting, partly because
there are so many axioms. Your course might offer a full proof; here I will
illustrate with two.

First, consider closure under addition. Here is the axiom, in its general
form and translated into a claim about cosets in R/S.

Closure under addition ∀a,b ∈ R, a+ b ∈ R;
Closure under addition ∀a+ S, b+ S ∈ R/S,

(a+ S)+ (b+ S) ∈ R/S.

Cosets obey this axiom because, as we have established, (a+ S)+
(b+ S)= (a+ b)+ S, which is a coset of S in R and is thus an element of
R/S.

Second, consider left distributivity.

Left distributivity ∀a,b,c ∈ R, a · (b+ c)= a · b+ a · c;
Left distributivity ∀ a+ S, b+ S, c+ S ∈ R/S,

(a+S) · ((b+S)+(c+S))=(a+ S) · (b+S)+(a+S) · (c+S).
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Cosets obey this axiom due to the argument below. Where does this use
properties of coset addition and multiplication, and where does it use
properties of ring addition and multiplication?

(a+ S) · ((b+ S)+ (c+ S)) = (a+ S) · ((b+ c)+ S))
= (a · (b+ c))+ S
= (a · b+ a · c)+ S
= (a · b+ S)+ (a · c+ S)
= (a+ S) · (b+ S)+ (a+ S) · (c+ S).

As I say, such proofs are not that interesting. But working through the list
of axioms proves that if S is an ideal of R then R/S is a ring, and provides
useful exercise in taking care over algebraic validity (thus linking right
back to Chapter 1).

To relate the theory to examples, we can consider more ideals and non-
ideals. In some rings, every additive subgroup is an ideal. For instance, in
Z6 all additive subgroups are ideals—why? Does this generalize to Zn?
Other rings have more ‘room’ for substructures that are not ideals. As
above, Z is an additive subgroup—in fact a subring—of Q, but not an
ideal. Similarly, Q is a subring but not an ideal of R: for instance, 1 ∈ Q

and
√

2 ∈ R but 1
√

2 /∈ Q. The set

S =
{(

x 0
0 y

)
|x,y ∈ R

}
is a subring but not an ideal of M2×2(R), because multiplying one of its
elements by a general element of M2×2(R) gives(

x 0
0 y

)(
a b
c d

)
=
(
xa xb
yc yd

)
,

which need not be in S. Can you find an ideal of M2×2(R), or convince
yourself that this is impossible? How about ideals in polynomial rings?
For the non-ideals, where does the above argument about distributivity
break down?
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To conclude, some brief comments about where your course will
likely go with these ideas, which is to ring homomorphims and ring
isomorphisms. The group versions of these constructs were discussed in
Chapter 8. Group homomorphisms aremaps between groups that respect
their operations; group isomorphisms are bijective homomorphisms.

Definition: ϕ : G1 → G2 is a group homomorphism if and only if
∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

Definition: ϕ : G1 → G2 is a group isomorphism if and only if ϕ is
bijective and ∀a,b ∈ G1, ϕ(ab)= ϕ(a)ϕ(b) ∈ G2.

Ring homomorphisms and isomorphisms are analogous, with the obvi-
ous adjustment that they respect both ring operations.

Definition: ϕ : R1 → R2 is a ring homomorphism if and only if
∀a,b ∈ R1, ϕ(a+ b)= ϕ(a)+ϕ(b) ∈ R2 and ϕ(a · b)=
ϕ(a) ·ϕ(b) ∈ R2.

Definition: ϕ : R1 → R2 is a ring isomorphism if and only if ϕ is
bijective and ∀a,b ∈ R1, ϕ(a+ b)= ϕ(a)+ϕ(b) ∈ R2 and
ϕ(a · b)= ϕ(a) ·ϕ(b) ∈ R2.

As with the group versions, the criteria ϕ(a+ b)= ϕ(a)+ϕ(b) and
ϕ(a · b)= ϕ(a) ·ϕ(b) can be understood in terms of order of operations:
adding then mapping gives the same result as mapping then adding,
and multiplying then mapping gives the same result as mapping then
multiplying.

φ
R1 R2

a

b

a · b φ(a · b)

φ(a)

φ(b)
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Moreover, as with the group versions, ring homomorphisms link prop-
erties of elements via theorems like those below. Can you adapt ideas from
Chapter 8 to construct proofs?

Theorem: Suppose ϕ : R1 → R2 is a ring homomorphism.
Then ϕ(0R1)= 0R2 .

Theorem: Suppose that ϕ : R1 → R2 is a ring homomorphism.
Then ∀a ∈ R1, ϕ(−a)= −ϕ(a).

Ring homomorphisms also have kernels, where the kernel of
ϕ : R1 →R2 is the subset of R1 containing all elements that map to the
additive identity. The definition and theorem below are analogous to
those for groups. Can you adapt ideas from Section 8.7 to prove the
theorem?

Definition: Suppose that ϕ : R1 → R2 is a ring homomorphism. Then
the kernel of ϕ is kerϕ = {k ∈ R1|ϕ(k)= 0R2}.

Theorem: Suppose that ϕ : R1 → R2 is a ring homomorphism and that
kerϕ = {0R1}. Then ϕ is injective.

Finally, with the definition of kernel in place, we can state two ‘bigger’
theorems. Imagery from Section 8.7 should help in thinking about what
they mean.

Theorem: Suppose that ϕ : R1 → R2 is a ring homomorphism.
Then kerϕ is an ideal of R1.

Theorem: Suppose that ϕ : R1 → R2 is a ring homomorphism.
Then R1/kerϕ ∼= imϕ.
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If your course involves a lot of ring theory, you will likely study all
of these theorems in depth. You might also prove that every ideal is the
kernel of a ring homomorphism, which provides a theory-based way to
establish that every ideal gives rise to a quotient ring—can you see see
why? If your institution covers group theory and ring theory in different
courses, analogies across the two might not be apparent, so I recommend
thinking about them now. Either way, these theorems conclude both our
introduction to rings and this book’s main content.
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CONCLUSION

This concluding chapter begins with a brief review of the mathematical
concepts covered in Part 2 of the book. It then revisits ideas from Part 1,
suggesting useful things to bear in mind when studying Abstract Algebra.

The mathematical content in Part 2 of this book began with binary
operations. Chapter 5 treated these as a separate topic because research
indicates that students might not give them the attention necessary to
understand their properties. It contrasted associativity with commuta-
tivity, noting that these need not necessarily co-occur, then discussed
binary operations in modular arithmetic and on functions, matrices,
transformations, symmetries and permutations. It established that func-
tion composition is always associative—a result that applies across many
structures—and discussed technical issues around closure.

Chapter 6 discussed groups and subgroups, noting that the definition
of a group can be expressed in various notations. It introduced subgroups
as subsets of groups that are groups in their own right. It then explored
cyclic groups, discussing generators, commutativity, and the integers as
an infinite cyclic group. It explained groups and subgroups that exist in
familiar structures like the rational, real and complex numbers, and sets of
matrices. It discussed the dihedral group D3—the group of symmetries of
an equilateral triangle—along with other dihedral and symmetry groups
and ways in which they differ from cyclic groups. Finally, it discussed
groups of permutations, ways to identify and define subgroups, and
structures of small groups.

Chapter 7 began by noting that some groups split naturally into a
subgroup and cosets that form elements in a quotient group. It explored
cases in which this happens and cases in which it does not, observing
that cosets always partition the group but that a quotient group arises if
and only if the left and right cosets are the same. It discussed definitions
of normal subgroup, and observed that some subgroups are guaranteed

CONCLUSION 257



to be normal due to properties involving commutativity. It observed that
within a coset, every element is ‘offset’ from the subgroup by the same
‘remainder’, and that elements differ by elements of the subgroup. Finally,
it discussed Lagrange’sTheorem,which restricts possible subgroup orders
in finite groups.

Chapter 8 discussed isomorphic groups as those that are structurally
identical, and isomorphisms as bijective functions between isomorphic
groups. It observed that the criterion ϕ(ab)= ϕ(a)ϕ(b) can be under-
stood in terms of order of operations, and that this criterion imposes
tight restrictions on which functions are isomorphisms. It related iso-
morphisms to commutativity and identities, later observing that the
proofs do not require bijectivity so apply to homomorphisms too. It
provided examples of isomorphisms and homomorphisms, and noted
that homomorphisms can be understood as organizing elements into sets
in which every element maps to the same element of the image. This idea
was then formalized in the First Isomorphism Theorem.

Finally, Chapter 9 introduced rings as sets with two binary operations,
addition and multiplication. It provided examples of rings of numbers,
congruence classes, matrices and polynomials, and discussed simple
theorems linking additive identities and inverses to the multiplicative
ring operation. It discussed additional conditions that a ring must satisfy
to be commutative, a division ring, an integral domain, or a field, and
explored properties of units and zero divisors. It then explained why a
quotient ring exists if and only if an additive subgroup is an ideal. It
concluded by noting parallels between ring theory and group theory.

Overall, I hope that Part 2 conveyed the idea that Abstract Algebra
involves recognizing deep similarities across a range of structures. I think
that this makes Abstract Algebra the most obvious place to understand
what the mathematician Poincaré meant in saying that mathematics is
the art of giving the same name to different things. Do you agree?

Of course, this book is just a start. I have aimed to introduce key
concepts in depth, providing information on ways to think about these
accurately and productively. But great swathes of Abstract Algebra are
not covered here, and there is considerable variety in Abstract Algebra
courses. If your lecturer takes a formal approach, youmight covermost of
the ideas in this book in a small number of weeks. If your lecturer takes a
geometric approach, the emphasis might be on symmetries and permuta-
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tions, and youmight only later explore general theorems and applications
to other structures. Whatever happens, you will cover material not in
this book.

To learn effectively, it is therefore worth revisiting ideas from Part 1.
If you are new to undergraduate (or upper-level) pure mathematics,
you might have little experience with axioms, definitions, theorems and
proofs, so the information in Chapters 2 and 3 might have been new. If
you have already studied at this level, it might still be worth reflecting
on your study habits. Do you give definitions the attention they deserve,
applying them to examples and noting where they are used in proving
theorems? Do you understand what a theorem says before you try to read
its proof or construct your own? When reading mathematics, do you aim
for good self-explanations? Most students do all of these things, just not
consistently—usually for the ordinary human reasons that they are tired
or in a rush. But it is important to focus on them, because the implicit
messages from textbooks, lectures and the passage of time tend to push
students in unproductive directions.

Textbooks can be used ineffectively if students think of them only as a
source of exercises.This would not be their fault: teachers sometimes treat
textbooks that way. But virtually all textbooks contain good explanations
in their expository sections.These becomemore important in undergrad-
uate study, where you are unlikely to understand everything in lectures: a
slightly different explanation might make the links you need. That makes
it worth investing an hour or two in finding a book that you find helpful.
I recommend going to your university’s library and assembling five or six
Abstract Algebra books. Find those recommended by your lecturer, then
scan the shelves for any of which there are multiple copies—someone, at
some point, thought these worth ordering. Then, in each book, find the
beginning of the same topic—groups, say—and read the first couple of
pages. This will reveal big differences in expository style: some books are
terse and others are wordy, some have many examples and others have
few, and so on. Some you will immediately dislike. But one or two you
will find useful, perhaps in different ways. Those are the ones to borrow
or buy, and to study regularly.

Lectures, too, can discourage good habits. They make it is easy to act
like an automaton, copying down what the lecturer writes without really
taking it in. This is not your fault—the passive nature of many lectures
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makes it hard, at times, to do better. But it is your responsibility. Nomatter
what you think of your course, the only person who can do the learning
is you. So you have to work out how to learn effectively from whatever is
happening in the room. One specific problem is that lecture notes often
contain only the bare-bones axioms, definitions, theorems and proofs.
Much of the useful information is in what the lecturer says but does not
write down. Lecturers explain the thinking that links one line of a proof to
another, refer back to earlier ideas, and so on. Recording this information
might be difficult: in some lectures, students can barely keep up. But often
that is not the case. Many lecturers provide notes or lecture recordings
online, which frees you up to make choices about whether to try to write
everything, or to pre-print notes and annotate them, or to make minimal
notes and rewatch difficult sections later. Certainly your notes do not have
to look the same as everyone else’s. If you take down whatever seems
useful for your thinking, you are putting in self-explanations as you go.

Finally, good habits are hard to maintain when you are getting a bit
panicky because your course is moving fast and you are getting behind.
In those circumstances, people often try to speed up, glossing over things
that they don’t really understand in order to ‘catch up’. But usually they
need to do the opposite. Patchy understanding isn’t much use in a subject
like Abstract Algebra, and you will often make more progress in a given
week if you first sort out your understanding of its most important ideas.
And that means you do need to be studying each week. As discussed in
Chapter 1, Abstract Algebra is very hierarchical.Thismakes it particularly
unforgiving of poor study habits: students who do not study consistently
can soon find that it makes no sense at all. To avoid that situation,
I recommend reviewing Chapter 4.

I would then like to conclude by drawing together a thread that has run
through this book. Meaningful understanding is important, and my top
advice for developing meaningful understanding would be to ask, what
type of object is that? Does that symbol denote a single element or a set?
If it denotes a single element, what type of object is it? Is it a number,
perhaps, or a transformation? Is it a special kind of transformation like
a symmetry? Is the specific object important in its context, in the sense
that it has special properties? Or is it an arbitrary member of a group or
ring? If a symbol denotes a set, is that set unstructured, or is it a group
or a ring? Is it treated as a subset or subgroup or subring of another set,
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group or ring? Is it, in fact, a coset of a subgroup within a group? If so, is
the subgroup normal, so that this coset and others form a quotient group?
Is it a subring, or maybe an ideal? Do we know anything else about its
properties? Does it have inverses, or an identity, or commutativity under
some binary operation?

Asking these questions should help you toward meaningful under-
standing: identifying the objects in an axiom, definition or theorem
will clarify its meaning, especially if paired with explicit thought about
logic, as discussed in Section 3.5. This should facilitate self-explanation,
as described in Section 3.6. It should also facilitate proof construction;
Section 3.7 provided some thoughts on that but, if you read it before
Part 2, you now know much more about a range of concepts, so it would
be worth revisiting. It is then worth thinking about why a meaningful
understanding provides a strong base for constructing proofs and for
doing well in Abstract Algebra. I would list three reasons. First, when
trying to prove something, you will often have access to a lot of possibly
useful axioms, definitions and earlier theorems; deciding which to use
is much easier with clear understanding of what each one says. Second,
the theorems of Abstract Algebra are all expressed in similar notation;
students who do not really understand them can easily muddle them
up. Third, it is difficult to remember things that are not meaningfully
understood. I certainly would not want to attempt an Abstract Algebra
exam based on brute-force memorization. I am sure it can be done,
but I have long thought that students who get the top marks probably
work on average less hard than those who get slightly lower marks,
because they are doing a different and, in the long run, slightly easier task.
Acquiring meaningful understanding requires a lot of up-front effort, but
meaningful understanding sticks.
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modular arithmetic 86, 87, 89
multiplicative 19, 80, 107,

123, 236
once in each table row 88
order one 185
permutation 137
quotient group 157
symmetry 9, 97
under homomorphism 206
under isomorphism 194
unique 52

if 14, 15, 37
if and only if xiii, 14–16, 42, 53, 144
image 187, 200, 206, 215, 216, 218
implies xiii, 5, 37, 38
in xiii, 7, 14
inclusion 207
index 177
induced operation 103
inherited 90, 110, 141, 144, 223,

238, 243
injective 190, 213, 254
inquiry-based vi, 10
instructor xvi
integers xiii, 14, 22, 80, 117, 123
integral domain 233, 234, 241
interleaving 71, 72, 74
intersection xiii, 47, 145
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intuition xvi, 8, 11, 61, 81, 95, 97, 108,
130, 184

inverse
additive 8, 9, 20, 22, 221
definition 20, 87
function 92, 93
in table 88, 90
matrix 24, 94, 96
modular arithmetic 88, 89
multiplicative 20, 24, 29, 36, 89, 90,

123, 221, 233, 236
notation 29
permutation 137
self 63, 133
under homomorphism 206
under isomorphism 195, 196

invertible 127, 189, 191, 232, 237
isometry 96, 97, 139
isomorphism
({0,2,4},+6)∼= (Z3,+3) 242
({0,3,6,9},+3)∼= (Z4,+4) 115
abelian groups 192, 193
bijective 190, 192, 193, 202
criteria 187–190, 192
D3/{e,ρ,ρ2} ∼= Z2 153
D3 ∼= S3 173
D4/{e,ρ,ρ2,ρ3} ∼= Z2

152, 159
D4/{e,ρ2} ∼= V 162
D4 ∼= subgroup of S4 139
definition 191
equation solutions 204
exponential function 200
f(x)= x2 not 188, 189, 197
function 185, 188
G1/kerϕ ∼= imϕ 215
group 202, 253
identities 194
inverses 195, 196
invertible 189
notation xiv, 126, 186
order 202
(R\{0},×)∼= dilations 199

(R,+)∼= (R+,×) 200
(R,+)∼= translations 198
R1/kerϕ ∼= imϕ 254
ring 242, 253
S2 ∼= Z2 138
S4 ∼= cube rotations 201
symmetric 189
theorem 215–217
(U4,×)∼= (Z4,+4) 146
(Un,×)∼= (Zn,+n) 126
up to 148
V ∼= rectangle symmetries 135
Z/2Z ∼= Z2 153, 154
Z/nZ ∼= Zn 154
Z4 ∼= ({1, i,−1,−i},×) 183, 185,

186, 204

justification 52, 230
juxtaposition 28, 89, 100, 107, 221

kernel 28, 212–215, 218, 254, 255
Klein four-group xiv, 135, 162, 179, 184,

198, 237

ln(x) 201
Lagrange’s Theorem 55, 176–179,

217, 218
language 91, 105
learning 69, 70, 72, 74
lecture vi, 57, 72, 259
lecturer xvi, 23, 55, 65, 260
lemma 178
Linear Algebra 94
logarithm 201
logic

algebra 35
attention to 51, 57, 261
conditional statement 37, 38
contrapositive 56
converse 37, 53–56
equivalence 38, 54, 56
if 14, 15, 37
if and only if 14
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implication 37, 38
language 37, 38
only if 14, 15
or 48, 164

long-term memory 69

M2×2(R) xiii, 93, 127, 225, 237, 239,
241, 244, 252

map 94
massing 73
matrix

addition 93, 94, 225
determinant 94, 210
identity 20, 24, 52, 53, 94, 225
inverse 24, 94, 127, 237
multiplication 5, 24, 39, 53, 93, 94,

127, 225
rotation 96, 127
transformation 94, 95

mean 83, 84
memory 69
mind 69
minimum 184
modular arithmetic

addition 45, 86
clock 39, 41, 42, 84, 86
congruence 85, 154
equation 89, 90
equivalence relation 45, 46, 85
homomorphism 212
identity 86, 87
inverse 88
multiplication 44, 45, 86
partition 85
remainders 41, 42, 85, 154
well defined 85
zero divisor 44

monomorphism 207
muddle 70, 108, 261
multiplication

associative 123
by additive identity 231, 233
by additive inverse 230, 231

cancellation 238, 239
commutative 5, 79
coset 45, 249–251
identity 19, 80, 107, 123, 236
inverse 20, 24, 29, 36, 89, 90, 123,

221, 232, 233, 236
matrix 5, 39, 53, 93, 94, 127, 225
modular arithmetic 43–45, 88,

232, 233
negative 228–230
notation 107, 108, 220, 221
polynomial 227

multivariable calculus 101
myth 68, 73

N xiii
natural number xiii, 8, 203
necessary 31
negation 53
negative number 35, 228–230
normal subgroup

abelian group 171
centre 171
cosets 166, 167, 212
definition 167, 169, 214, 245
degenerate 176
half group order 172
kernel of homomorphism 214–216
notation 28, 167
quotient group 164, 167, 169, 244
subring 246, 248

not in xiii, 18
notation

∼ not an operation 46
{0} versus 0 213
{1} versus S1 138
additive 29, 107, 108, 220, 221
binary operation 102, 107
composition 28, 94, 101, 108
congruence class 44, 45
coset xiii, 45
different 93, 108, 119, 192, 194
dihedral group 99, 131, 134
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notation (cont.)
double-decker 136
element 28, 192
function 91, 187
general 28, 108
generator xiv, 116, 129
group xiii, 28, 29, 105
inverse 22, 29
isomorphism xiv, 126, 186, 189
kernel 28
matrix set xiii, 93
modular arithmetic xiii, 85
multiplicative 107, 108, 220, 221
nZ versus Zn 122
normal subgroup 28, 167
object types 28, 187, 260
operation 28, 115
order 114
permutation 100, 101, 136, 141
polynomial 227
relation xiii, 46
ring 28, 219, 221
set xiii, 16, 28
subgroup 28
tuple 100, 136

noun 91
number

complex xiii, 17, 123–126
even 4, 14, 109, 153, 154
line 41, 83, 198, 211
natural xiii, 8, 203
negative 35
odd 109, 153, 154, 223
rational xiii, 17, 35, 123, 203
real xiii, 17, 36, 123, 124
whole 14

object
function 91, 138
matrix 93
notation 28, 187
permutation 137
physical 3, 10
set 4

symmetry 9–11, 96
types 29, 30, 169, 181, 187, 216,

260, 261
obvious 23, 229
odd

number 109, 153, 154, 223
permutation 140

one-to-one and onto 190
only if 14, 15
operation

different from relation 46
induced 103
non-standard 81
notation 28
omitted 115
order 9, 82, 189, 195, 253
quotient group 153
subgroup 115

opposite 53
or 48, 165
order

composition 94
cyclic group 114, 121, 218
dihedral group 138
element 179, 184–186
elements in table 128, 147, 184, 186
group xiii, 55, 114, 120, 128, 146,

181, 202, 218
operations 9, 82, 189, 195, 253
permutation 136, 137, 140
prime 179
quantifiers 22, 52
subgroup 55, 120, 129, 135, 176,

177, 179
symmetric group 138, 141
transformation 94

overlap 41, 47

pair xiii, 94, 101
parallelogram 136
partition 46–48, 85, 160, 164–166, 177
pentagon 135
permutation 99–101, 136, 137,

139–141, 173, 201, 202
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phi xiv, 185
physical object 3, 10
plane 49, 94, 101, 125, 126, 198, 199
polar 125
polynomial xiv, 226, 227
precision 38
premise 31, 54, 55, 61, 63, 192, 196
prime 114, 121, 177, 179, 217,

218, 233
problem solving 33, 34, 61
processing 70, 71
professor xvi
projection 95
proof

chain of deductions 32
construct 35, 60–65, 192, 196,

218, 261
conviction 47
formal 61–63
premise to conclusion 63
problem solving 61
reading 49, 58, 60
reconstruct 33, 42
relate to examples 53
short 32, 53
strategy 61
study 32, 33
uniqueness 52, 53
writing 60, 62–65, 194

proper subgroup 114
psi xiv, 185
psychology 68
pure 7, 68, 197, 259

(Q,+) 248
Q xiii, 17, 46, 123, 222
quantifier

existential 51, 52
for all 18, 21, 51, 110
function addition 91, 92
order 22, 52
there exists 21, 51
universal 51–53, 223, 243

quaternions 235

quotient
group 99, 153–155, 157, 158, 162,

164, 166, 167, 169, 181, 212, 216,
244, 246, 248

ring 244, 245, 247–249, 251, 252, 255

(R\{0},×) 203
R xiii, 17, 123, 124, 222
R × R 94, 101
R2 94, 101
rational number xiii, 17, 35, 123, 203
reading v, 14–17, 49, 56, 57, 60, 65, 74
real number xiii, 17, 21, 36, 123, 124
recall 72
recognize 72
reconstruction 71, 75, 231
rectangle 135, 198
reflection

composition 128, 129
dihedral group 129, 133, 134
matrix 95
permutation notation 139
plane 95
square 135
subgroup 128, 132
triangle 9, 96, 151

reflexive 46
refute 53
relation
< on Q 46
≡ (mod 12) on Z 46
and generator 116, 131, 134
dihedral 131, 134
equivalence 45, 46, 85
is isomorphic to 189
not an operation 46
notation xiii, 46
symmetric 189

relatively prime 113, 114, 233
remainder 41, 42, 46, 85, 154, 174, 212,

224, 246–248
remembering 70
representation

circle 41, 121, 122, 125, 126

INDEX 285



OUP CORRECTED PROOF – FINAL, 21/12/2020, SPi

representation (cont.)
cosets 50
disjoint 47
equivalence relation 49, 50
partition 47
permutation 136, 137
table 79, 81
visual xvi, 79, 135

resilience 68
responsibility 260
restrict 18, 24, 56
retention 71, 73
retrieval 70–75, 228
review 73
revision 76
rho xiii, 9
rhombus 136, 198
rigour v
ring

abelian group under addition 26,
220, 244, 246

additive identity 228, 229
additive inverse 228–230
commutative 231, 232
definition 26, 220
division 232, 233
homomorphism 253–255
integers 27, 123, 219, 241
isomorphism 242, 253
matrices 225, 231, 232, 239, 242,

244, 252
modular arithmetic 224, 232
multiplicative identity axiom 223
multiplicative inverse 236
notation 28, 219, 221
polynomials 226–228, 232
quotient 244, 245, 247–249, 251,

252, 255
theory 44, 255
unit 236–241
with unity 223

root of unity xiv, 125, 126
rotation

cube 201, 202

dihedral group 128, 129, 134, 152
matrix 96, 127
plane 96, 126, 199
subgroup 128, 132, 152, 159
triangle 9, 96, 151

S× S 101, 103
S1 138
S2 138
S3 138, 173
S4 138, 139, 173, 175, 180, 201, 202
Sn xiv 137, 173
self-discipline 68, 74
self-explanation vii, 57–60, 71, 74, 75,

194, 260
self-inverse 63, 133
self-testing 72, 73
set

as object 4, 153
binary operation on 6, 9, 17, 82
empty xiii, 47
everyday 105
exclusion xiii, 18, 123
generator 112
notation xiii, 16, 28

solutions 35, 36, 39, 44, 89, 90, 239
spacing 73, 74
square 99, 101, 132, 135, 139, 152
star xiii, 17
storage 70, 71
stripes 128, 134, 135
structure 4–7, 21, 115, 124, 128, 145, 258
study 57, 68, 75, 76, 259, 260
style 64, 194
subgroup

associativity 110, 141
centre 142, 171, 172
closed 116
complex numbers 124
coset 164, 165, 249
cyclic 110, 114–120, 131, 156
definition 143, 144
dihedral 110, 128, 131–133, 135, 152,

159, 163, 164, 171
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fix elements 140
generator 113, 120, 140
inclusion monomorphism 207
integers 122, 144, 153
meaning 108
normal 164, 166, 167, 169, 171, 176,

180, 212, 214, 216, 244–246, 248
notation 28
operation 115
order 111, 129, 135, 176, 177, 179
proper 114
quotient group identity 153, 157
symmetric group 139
table 110, 111
trivial 114, 116
whole group 114

subring 242, 244, 247, 250–252
subset xiii, 48, 51
subtlety 18, 80, 103, 147, 193
surjective 190, 206, 217, 218
symbols xiii, 21, 22, 65, 192
symmetric

group xiv, 137–139, 173
relation 46

symmetry
about table diagonal 79
composition 10, 97, 98, 127
cube 201
function 97
group 10, 127, 132, 135, 136, 138,

151, 198
identity 9, 97
object 9–11, 96
permutation 99
rectangle 135
reflection 9, 128, 129
rotation 9, 128, 129
square 99, 101, 132, 139, 152
transformation 97
triangle 9, 96–98, 109, 127

table
associativity 90
blocks 128, 134, 156, 160, 163, 164

Cayley 108
element order 128, 184, 186
group order 4, 146, 147
identity 88, 146
intuition xvi, 81, 108
inverse 88, 90, 146
multiplication modulo 12 88
row and column 81, 141, 146, 172
row as permutation 141
stripes 128, 134, 135, 147
subgroup 110, 111

testing 72–75
textbook v, 259
theorem

different formulations 54
First Isomorphism 215–217
if and only if 144
Lagrange 55, 176–179, 217, 218
prove 31
relate to examples 34, 120, 121
relationship to theory 31
study 32, 33

theory xvii, 13, 28, 31, 33, 34, 47, 68,
143, 192, 197, 212, 218

there exists xiii, 14, 21, 51
transformation 94–97, 139, 198
transitive 46
translation 96, 198
transposition 140, 173
trapezium 136
tree 3
triangle 9, 96–99, 109, 127, 128, 130,

138, 151, 173
trigonometric identity 125
trivial

homomorphism 209
subgroup 114, 116, 176

true 37, 54
tuple 100, 136
twist 139, 175
type 6

(U,×) 126, 211, 213, 216
(U4,×) 145
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UK xv
undergraduate 32, 259
understanding vi, xvii, 17, 34, 39,

56–58, 120, 260, 261
union xiv, 180
unique 52, 53
unit 236–241
unit circle xiv, 125, 126, 211, 216
upper-level 32, 259
US xv

V xiv, 135, 148, 162, 179, 184, 198, 237
valid 5, 9, 39, 252
vector 94
visual xvi, 11, 79, 135, 203

walk 6
well defined 43, 44, 85, 157, 168,

246, 247
window 3
woolly edges 14
words 65
working memory 69
workload xvii
writing 60, 62–65

X×X xiii, 49

(Z,+) 22, 121, 122, 248
(Z,+,×) 27, 219

(Z,×) 24, 123
(Z3,+3) 148
(Z3,+3,×3) 247
(Z4,+4) 115, 125, 145, 183–185, 202,

204, 205
(Z6,+6) 202, 203, 213
(Z6,×6) 239
(Z7,+7) 113, 114
(Z12,×12) 88, 90
(Z12,+12) 40, 41, 86, 110, 112, 114,

115, 216
Z xiii, 14, 18, 222
Z[x] xiv, 226
Z\{0} 18, 80
Z2 153, 154
Z6 241
Z7 223, 224
Zn 121, 154, 156, 223, 224, 233
Zp 121, 233, 235
Z12 xiii, 86, 102, 115–117, 156
zero

division by 18, 80
divisor 37, 44, 233, 239–241
equation solving 39
no multiplicative inverse

90
product property 6, 36, 37,

44, 241
ring 228, 229
squared 5
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