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Preface to the English
Edition

This book is a translation of the second edition of my German book

Algebra fiir Einsteiger.‘Von dew" Gleichungsaufliisungzur Galoz's- Theo-

rie, Vieweg, 2004. The original German edition has been expanded
by the addition of exercises. The goal of the book is described in

the original preface. In a few words it can be sketched as follows:

Galois theory is presented in the most elementary way, following the

historical evolution. The main focus is always the classical application
to algebraic equations and their solutions by radicals. I am grateful
to David Kramer, who did more than translate the present book,

having also offered several suggestions for improvements. My thanks

are also directed to Ulrike Schmickler—Hirzebruch,of Vieweg, who

first proposed a translation to the American Mathematical Society,
and to Edward Dunne, of the AMS, for managing the translation.

Jorg Bewersdorff

Translator’s Note

I wish to express my appreciation to Jorg Bewersdorff for his helpful
collaboration on the translation and to the following individuals at

the American Mathematical Society: Edward Dunne for entrusting

vii
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me with this project, Barbara Beeton for her friendly and intelligent

’IEXnicalsupport, and Arlene O’Sean for her careful copyediting of

the translation.

‘DavidKramer

E>



Pregfaces to the German
Editions

Math is like love; a simple idea, but it can get complicated.
— R. Drabek

Preface to the First German Edition

The subject of this book is the history of a classical problem in alge—
bra. We will recount the search for formulas describing the solutions

of polynomial equations in one unknown and how a succession of fail—

ures led finallyto knowledge of a quite unexpected sort, and indeed,
of fundamental importance in mathematics.

Let us look brieflyat the object that enticed many of the world’s

best mathematicians over a period of three centuries. Perhaps, dear

reader, you recall from your school days quadratic equations of the

form

zn2—6:1c+1=O

as well as the “quadraticformula”

2

a;1,2=—§i3:-
for the solution of the “general”quadratic equation

2:2 + pm + q = 0.

IX
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If we apply this formula to our example, we obtain the two solu-

tions
1

$1 =3+2\/i and 51:2 :3~—2\/§.

If you are interested in a numerical solution, you can pull out

your handy pocket calculator (or perhaps you knowlhow to com-

pute square roots by hand) and obtain the decimal representations
:01 = 5.828427. . . and 332 = 0.171572. . . . You could also use your cal-

culator to verify that these Values are in fact solutions to the original
equation. A skeptic who wished to verify that the solutions derived

from the formula are the exact solutions would have to substitute

the expressions containing the square roots into the equation and

demonstrate that the quadratic polynomial 11:2— 6:1: + 1 2 0 actually
vanishes—that is, assumes the value zero—at the values :1: = $1 and

33 = (I32.

The Solution of Equations of Higher Degree. It has long been

known how to solve cubic equations such as

:1:3—3x2—3:1:—1=0

by means of a formula similar to the quadratic formula. Indeed,
such formulas were first published in 1545 by Cardano (1501-1676)
in his book Ars Magna. However, they are quite complicated, and

have little use for numerical calculation. In an age of practically
unlimited computing power, we can do without such explicit formulas

in practical applications, since it sufiices completely to determine the

solutions by means of numeric algorithms. Indeed, for every such

equation in a single variable there exist approximation methods that

iteratively, that is, step by step, compute the desired solution more

and more precisely. Such a procedure is run until the solution has

reached an accuracy suitable for the given application.

However such iterative numeric procedures are unsuitable when

not only the numerical Value of a solution is sought, such as 931 =

3.847322. . . in the previous example, but the “exact” value

$131+?/§+\3/Z.

It is not only that such an algebraic representation possesses a certain

aesthetic quality, but in addition, a numeric solution is insufficient if
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0

one hopes to derive mathematical knowledge and principles from the

solution of the equation. Let us hypothesize, for example, based on

numeric calculation, the following identities:

6/w_1=§(enva+V13),
e" 163

= 262537412640768744,

and

27r 1 1 1
= : 1 : 4 2 1

17 8 8\/7 8
3 \/7

+%\/17+3\/fi—\/34—\/?7—2\/34+2\/E.
Without going into detail, it seems plausible that behind such

identities, if indeed they are correct, lie some mathematical laws.

A direct check to determine whether they are in fact correct or are

merely the result of chance numeric approximation would be difficult.1

2 cos

But back to Cardano. In addition to the solution for cubic equa-

tions, Cardano published in his Ars Magna a general formula for

quartic equations, that is, equations of the fourth degree, also known

as biquadratic equations. Using such formulas, the equation

a:4—8m+6=0

11 will reveal that only the first and third identities are correct. The first was

discovered by the Indian mathematician Ramanujan (1887-1920) and can be easily
checked. The third, which will be discussed in Chapter 7, contains within it a proof that

the regular heptadecagon (seventeen—sidedpolygon) can be constructed with straight-
edge and compass.

The second equation is not exact. The actual value of the right—handside is

262537412640768743.9999999999992501 . . . .

However, this approximate identity is more than mere chance. It is based on some

deep number—theoretic relationships. For more on this, see Philip J. Davies, Are there

coincidences in mathematics? American Mathematical Monthly 88 (1981), pp. 311~

320.
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can be shown to have the solution

$1 : _€(f/4+2«/5+\3/4~2\/§

+\/~€/4+2\/if/4-x/§+2\/2?/3+2fi+2€/3—2x/§~2
With the almost simultaneous discovery of formulas for solving

third- and fourth—degreeequations came the inevitable problem of

findingsimilar formulas for equations of higher degree. To accomplish
this, the techniques that were used for the cubic and quartic equations
were systematized, already in Cardano’s time, so that they could be

applied to equations of the fifth degree. But after three hundred years

of failure, mathematicians began to suspect that perhaps there were

no such formulas after all.

This question was resolved in 1826 by Niels Henrik Abel (1802-
1829), who showed that there cannot exist general solution formulas

for equations of the fifth and higher degree that involve only the usual

arithmetic operations and extraction of roots. One says that such

equations cannot be solved in radicals. The heart of Abel’s proof is

that for the intermediate Values that would appear in a hypothetically
existing formula, one could prove corresponding symmetries among
the various solutions of the equation that would lead to a contradic-

tion.

Galois Theory. A generalization of Abel’s approach, which was ap-

plicable to all polynomial equations, was found a few years later by
the twenty~year—oldEvariste Galois (1811—1832).He wrote down the

results of his researches of the previous few months on the evening
before he was killed in a duel. In these writings are criteria that allow

one to investigate any particular equation and determine whether it

can be solved in radicals. For example, the solutions to the equation

:35 — zv — 1 = 0

cannot be so expressed, while the equation

a35+15:n—44=0
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has the solution

. ml:5/—1+fl+{/3+2fl+{/3-2\/§+€/—1—\/5.
Of much greater significance than such solutions is the method

that Galois discovered, which was unorthodox, indeed revolutionary,
at the time, but today is quite usual in mathematics. What Galois

did was to establish a relationship between two completely different

types of mathematical objects and their properties. In this way he

was able to read off the properties of one of these objects, namely
the solvability of a given equation and the steps in its solution, from

those of the corresponding object.

But it was not only the principle of this approach that benefited

future mathematics. In addition, the class of mathematical objects
that Galois created for the indirect investigation of polynomial equa—

tions became an important mathematical object in its own right, one

with many important applications. This class, together with similar

objects, today forms the foundation of modern algebra, and other

subdisciplines of mathematics have also progressed along analogous
paths.

The object created by Galois that corresponds to a given equa-

tion, called today the Galois group, can be defined on the basis of

relations between the solutions of the equation in the form of iden-

tities such as cc?= :32 + 2. Concretely, the Galois group consists of

renumberings 9f the solutions.,,_Such,a ren11mhering_lgeloncs-,§oj‘J1P;\;\\4

Galois group precisely if every relationship is transformed by this

renumbering into an already existing relationship. Thus for the case

of the relation 3;? = 52:2 + 2 in our example, the renumbering corre~

sponding to exchanging the two Solutions 121 and 3:2 belongs to the

Galois group only if the identity 23%= $1 + 2 is satisfied. Finally,
every renumbering belonging to the Galois group corresponds to a

symmetry among the solutions of the equation. Moreover, the Galois

group can be determined without knowledge of the solutions.

The Galois group can be described by a finite table that is ele-

mentary but not particularly elegant. Such a table is called a group

table, and it can be looked upon as a sort of multiplication table, in
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which each entry is the result of operating on two elements of the Ga-

lois group in succession. An example is shown in Figure 0.1. What is

significantabout the Galois group, and its corresponding group table,
is that it always contains the information about whether, and if so,

how, the underlying equation can be solved in radicals. To be sure,

the proof of this in a concrete application can be quite involved; nev-

ertheless, it can always be accomplished in a finite number of steps
according to a fixed algorithm.

“~«’~4i3Z?Q'§U3UQUUIJ=-k.~EQ'11bjbQtUi:>i:>'1jk'~mC1tr>t4j@Qt0tuQ’11K.~mb:1:>t11®QQmC«3’1jk¢~QtUD>mUb'~+mC3'11uwQb::IJ>t1JmU.‘JQU@§J>Qm"'K«'11’§QUt4jB>b:1‘:r::~L«*1:1QQeu:;:>tuo-auc:mmDjIJ>tUQDK4*§Qm""‘*::>tuQbt::wG3’m~k.m
Figure 0.1. The Galois group of the equation :35 — 5:1: + 12 is

represented as a table by means of which the solvability in rad-
icals can be determined by purely combinatorial means. This

equation will be considered in detail in Section 9.17. Equa-
tions of the fifth degree that are not solvable in radicals have
tables of size 60 X 60 or 120 X 120.

Today, Ga1ois’s ideas are described in textbooks in a very ab-

stract setting. Using the class of algebraic objects that we previously
mentioned, it became possible at the beginning of the twentieth cen-

tury to reformulate what has come to be called Galois theory, and

indeed in such a way that the problem itself can be posed in terms

of such objects. More precisely, the properties of equations and their

solution can be characterized in terms of associated sets of numbers

whose common characteristic is that they are closed under the four

basic arithmetic operations. These sets of numbers are called fields.
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Thus starting with a given equation

23" + a,,_1ac"'1 + - - - + alzr —I—a0 = 0,

one forms the smallest set of numbers that contains all quantities,
such as

(12
~— — ai + ao,
<10

that can be obtained from the coeflicients of the equation using suc~

cessive basic arithmetic operations. Then one obtains an enlarged set

of numbers that is of particular use in studying the given equation
by allowing in one’s calculations, in addition to the coefficients of

the equation, the solutions m1,:L'2, . . . . This set is therefore formed of

all numbers that can be obtained from expressions of the form, for

example ,

(lo 2
—a:1

—

0.21132 + a1.
(12

If it now possible to represent the solutions of the given equation by
nested expressions involving radicals, then one can obtain additional

fields of numbers by allowing in addition to the coefficients some of

these nested radicals. Thus every solution of an equation corresponds
to a series of nested fields of numbers, and these can be found, accord-

ing to the main theorem of Galois theory, by analysis of the Galois

group. Thus by an analysis of the Galois group alone, one can answer

the question Whether the solutions of an equation can be expressed
in radicals.

p 6
,.

‘

, £*J'a,¢.;i /2».....~,7/<-....’/’em 7”‘-w‘
“' “"“““"f ’£""z"/7’

L

\xC0\xCB'�\xC0\xA6�� an M’ *p‘e"/*7/"‘“\x90�>� -‘J’-r4s—?"“““""
lg.’\xA0L&�/K5,.Mist? (Aw. ta 76..../“Gyr G ('4-----«f-==fv'-

‘Q /7

z«.._.4..:.... Jr4Jr/c‘/aL-43v‘/.. ‘inf: {r= i//7; //.f.,f/p/.r’,.. . . .

‘

g/_a‘/I/’,J‘/_f-/'.LQ’as%u://~A.‘/'/fir-se»
(er I«.;,___,

“
/fig/¢,4;,, t:.w"~ i‘“*‘5."’//7"77/‘/7’/V’f+ '7‘

0�9� p‘Z(.‘“;‘54fi.7;.-ii/lei».la.‘ -«.‘»;...22.'/ii,-z~r.‘7-:..~..>,--L»:-v/.{‘3««'-AD55"‘;
K

`\xF76�52;./'
I

6. E?‘.::t7.u)4/L;--1/ 93-
-»~

Figure 0.2. Evariste Galois and a fragment from his last let-

ter. In this passage he describes how a group G can be de-

composed with the help of the subgroup H. See Section 10.4.
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This abstraction achieved at the beginning of the twentieth cen-

tury and today basically unchanged marks both the end of a historical

process during which interest in the problem that we have described

has shifted in focus: For Cardano and his contemporaries the main

problem was to find concrete solutions to explicit problems using pro-

cedures of general applicability. But soon the point of View shifted and

the focus was on the important properties of the equations. Begin-
ning with Galois, but in full force only after the turn of the twentieth

century, the focus shifted drastically. Now abstract classes of objects
such as groups and fields became the basis for the formulation of a

host of problems, including those that inspired the creation of these

objects in the first place.2

About This Book. In order to reach as wide an audience as possible

(assumed is only general knowledge obtained from college courses in

mathematics), no attempt has been made to achieve the level of gen-

erality, precision, and completeness that are the hallmarks of mathe-

matical textbooks. The focus will be rather on ideas, concepts, and

techniques, which will be presented only insofar as they are applicable
to some concrete application and make further reading in the exten—

sive literature possible. In such a presentation, complicated proofs
have no place. However, proofs are without doubt the backbone of

any serious engagement with mathematics. In the spirit of compro—

mise, difficult proofs, except those in the last chapter, are set off from

the main text so that gaps in the logic can be avoided without the

flow of the narrative being interrupted.

Considerable emphasis is placed on the historical development of

the subject, especially since the development of modern mathematics

in recent centuries is much less well known than that of the natu-

ral sciences, and also because it can be very interesting to be able

to give a time-lapse view of false starts and important discoveries.

2In particular, many important applications have been found in modern infor~

mation theory, in particular in cryptography, as in, for example, the public key codes

realized in 1978. In these asymmetric encryption procedures, the key for encoding is
made public without creating the risk of unauthorized decoding. The mathematical
basis for such public key encryption algorithms as RSA and E1Gama1 is computations
carried out in special algebraic objects with a very large-—butfinite—number of el-
ements (precisely, the objects are residue class rings and elliptic curves defined over

finite fields).An introduction to this subject can be obtained from Johannes Buch-

mann, Introduction to Cryptography, Springer, 2004.
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And furthermore, a presentation that follows the historical develop-
ment has the advantage of making many mathematical abstractions

seem the natural consequence of individual investigations, so that one

never gets the impression of starting with an unmotivated definition

somehow descended from heaven in a completely arbitrary manner.

At the same time, we are able to leave out a great deal of material

that would be necessary to include in a work seeking great generality.
However, we must mention a significantdrawback to our approach:
Many complicated calculations will be necessary, even if they are of

an elementary nature, whose results would be more simply derived

from a qualitative point of View on the basis of general principles.

In order to make this book as distinct as possible from mathe-

matical textbooks, I have chosen the same style of presentation as in

my book Luck, Logic, and White Lies. Every chapter begins with a

simple, usually more or less rhetorical, question that gives the reader

an idea of the nature and level of difficultyof the chapter ahead, even

if the chapter usually goes far beyond simply answering the ques—

tion posed. This structure should also offer the more mathematically
sophisticated reader, for whom the overview offered here will often

be too superficialand incomplete, a quick way of determining which

parts of the book are of particular interest, after which the references

to the literature will indicate a path of additional reading.

The topics of the individual chapters are too closely woven to-

gether to make it possible to read the chapters independently of one

another. Nevertheless, the reader who is interested in only a partic—
ular aspect of the subject is encouraged to plunge directly into the

relevant chapter. Even if one then encounters a reference to another

chapter, at least the details of the calculations carried out there will

be unnecessary for an understanding of the following chapters. Of

course, the beginning of every chapter offers the opportunity to start

over if the details of the previous chapter became too difficult.

The reader who wishes to keep the very abstract passages at a

greater distance might adhere to the following plan:

0 In Chapters 1 through 6 the proofs in the set-off sections may

be skipped.
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o For understanding the following chapters, the only part of Chap-
ter 7 that is necessary is the first part, which deals with the

regular heptadecagon (17-gon).

0 Chapter 8 can be omitted entirely.

o In Chapter 9 the set—offsections at the end of the chapter may
be skipped.

0 Chapter 10 and the epilogue may also be omitted.

Readers who wish to follow a typical “AlgebraI” course should

place Chapters 9 and 10, which deal with Galois theory, as well as

the epilogue, at the center of their reading. For a deep understanding
of the subject the following are of particular importance: the main

theorem on symmetric polynomials (Chapter 5), the factorization of

polynomials (Chapter 6), and the ideas around cyclotomy (the divi-

sion of the circle) (Chapter 7). How much relative attention should

be given to the remaining chapters depends on the reader’s interests

and prior knowledge.

Following the historical development of the subject, the presen—
tation on the solvability of equations is divided into three parts:

0 Classical methods of solution, based on more or less complicated
equivalent reformulations of equations, were used historically for

deriving the general formulas for quadratic, cubic, and quartic
equations (Chapters 1 through 3).

0 Systematic investigation of the discovered solution formulas be-

comes possible when one expresses the intermediate results of

the individual calculational steps in terms of the totality of the

solutions being sought (Chapters 4 and 5). This leads to the

solution of equations in special forms, namely, those that are

less complex than those in the general form in that they exhibit

particular relationships among the solutions that can be formu—

lated as polynomial identities. In addition to equations that can

be broken down into equations of lower degree (Chapter 6), the

so—calledcyclotomic equations 3:” ~ 1 = 0 are examples of such

less—complexequations (Chapter 7). Finally, in this part should

be included the attempt, described in Chapter 8, at findinga
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general solution formula for fifth—degreeequations, the result of

which is a formula that works only in special cases.

0 Based on systematic attempts at findingsolution formulas, we

finallyarrive at the limits of solvability of equations in radicals.

These limits, as recognized and investigated by Abel and Ga-

lois, are dealt with, aside from a brief preview in Chapter 5, in

Chapters 9 and 10. The focus here is on Galois groups.

With the investigation of Galois groups we reach a level

of difiicultywell beyond that of the first chapters. Therefore,
two different presentations are given. In Chapter 9 a relatively
elementary overview is given, supplemented by numerous exam-

ples, in which the scope of the concepts introduced is reduced as

much as possible. The resulting holes are filled in Chapter 10,
which leads to the main theorem of Galois theory, which involves

the mathematical objects called fields referred to earlier, which

are closed under the four basic arithmetic operations. The dis-

cussion of these objects will be limited to those aspects relevant

to Galois theory.

The reader who wishes to deepen his or her understanding of Ga-

lois theory beyond what is contained in this book can move on to any

textbook on modern algebra. One might mention as representatives
of these books the two classics Algebra, by Bartel Leendert van der

Waerden (1903-1996), and Galois theory, by Emil Artin (1898~1962),
whose first editions appeared in 1930 and 1948. But conversely, the

present book can be seen as an extension of the usual algebra text-

books in the direction of providing examples and historical 1notiva—

tion.
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Chapter 1

Cubic Equations

Find a number that when added to its cube root yields 6.

1.1 Problems like the one given above have “entertained” genera-

tions of schoolchildren. Such problems are at least several hundred

years old. They appear as the first thirty problems that were posed to

Niccolo Fontana (1499 or 1500—1557),better known as Tartaglia (the
stutterer), in a mathematical competition. His challenger was Anto-

nio Fior (1506—?),to whom Tartaglia also posed thirty problems}
As usual, the path to a solution begins with findingan equation

that represents the problem. In our example, with a: representing the

cube root in question, we obtain the equation

a:3+a2—6=0.

But how are we to solve it? Quadratic equations can always be solved

by “completingthe square.”Then one simply takes the square root

and out pops the solution. That is, in the general case of a quadratic
equation

m2+px+q=0,

1A complete listing of the thirty problems set by Fior can be found in Re-

nato Acampora, “Die Cartelli di matematica disfida.” Der Strait zwischen Nicole

Tartaglia und Ludovico Ferrari, Institut fiir die Geschichte der Naturwissenschaften

(Reihe Algorismus, 35), Munich, 2000, pp. 41—44. See also Friedrich Katscher, Die

Icubischen Gleichungen bei Nicola Tartaglia: die relevanten Temtstellen aus seinen

“Quesitiet inventioni diverse” auf deutsch flbersetzt und lcammentiert, Vienna, 2001.

"-1
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the quantity (3)2is added to both sides, and the q is moved to the

other side of the equation, yielding
2 2

m2+m+<§>42> P!\xFD

Now the left—handside of the equation can be represented as a square:

2=2=2~q.
And by taking square roots, one obtains the general solution formula

19 H32
3312 :—”2‘

Z:

Z'—q.
Note the following important property of quadratic equations: if

one forms the negative sum of the two solutions and their product,
one obtains the coeflicients of the original equation, namely,

$1 + :02 2 —p and mm 2 q.

Such completions of the square, in the form of geometric manip-
ulations, were known already to the Babylonians around 1700 BCE.

Quadratic equations were treated systematically in the works of the

Baghdad scholar al—Khwarizmi (ca. 780—850),which were later trans-

lated into Latin, inspiring mathematical progress in Europe for cen-

turies. His name is the origin of the word algorithm. Moreover, the

word algebra is derived from the title of one of his works, al—Jab7".

From the modern point of view, al—Khwarizmi’s method of han-

dling quadratic equations is quite cumbersome. All statements and

proofs are expressed in Words, Without algebraic symbols, which had

not yet been invented. Furthermore, all the argumentation is of

a geometric nature. And finally,since negative numbers had not

been discovered——andno wonder, given the geometric context——al-
Khwarizmi had to distinguish various types of equations, which today
we would notate as $2 2 pm, 902 2 q, .102+ q 2 pm, 9:2 +1223 2 q, and

$2 2 pm +q, and since we have no difiicultyaccepting coefficients that

are less than or equal zero, we can easily reduce all these to a single
type.

Figure 1.1 gives an impression of the method of argumentation
used by al—Khwarizmi. From the figureone can see that the desired

side length as of the inner square can be calculated from area q 2



l
l
l
1

1. Cubic Equations 3

9:2 -1- pm of the hatched region using a calculation corresponding to

the formula
2

.
= 4 (73)— 3.T q +

4 2

B.
4

x

B
4

Figure 1.1. Al-Khvvarizmi’s treatment of the quadratic equa-

tion :z:2+pa:= q. The hatched area corresponds to the constant

term q.

1.2 Following this digression on quadratic equations, we shall turn

our attention again to the question posed by Fior. When Fior posed
his problems, mathematics had made little progress in the seven hun-

dred years since al—Khwarizmi. European mathematics was marked

by its static adherence to the knowledge gained in earlier periods of

activity, notably from the Arabs and the ancient Greeks. Arabic nu-

merals had been introduced into Europe, which served the need of the

mathematical calculations required in trade. Such calculations were

generally carried out by professional masters of calculation.

Although mathematics was used in many commercial applica~
tions, negative numbers remained unknown. Moreover, mathemati-

cal notation was slow to develop. Thus, for example, in the fifteenth

century the notation R3 V31 m R16 was used for the expression

{/31 ~ x/1'6.
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One of the first great advances beyond Arabic’ mathematics was

taken by Scipione del Ferro (1465?~1526),who taught at the Univer-

sity of Bologna at the beginning of the sixteenth century. He was

the first,as reported some decades later by Cardano in his book Ars

Magna,2 to solve general cubic equations, namely those of the type
233+ pacz= q. Without making his method public, del Ferro revealed

it to his student Antonio Fior. At this time, Niccolo Fontana, alias

Tartaglia, was also working on solving cubic equations. Tartaglia,
who was working as a master calculator in Venice, was one of the

best mathematicians in Italy?’And in fact, he figuredout how to

solve cubic equations of the type $3 + 19202= q. However, his method

seems to have been less a general solution algorithm than a way of

setting up special equations whose solutions could be easily found.4

At the competition mentioned at the beginning of the chapter,
Fior posed thirty problems of the type $3 + pa: = q for Tartaglia
to solve, while conversely, Tartaglia posed thirty somewhat atypical
problems, including cubic equations of the type :r3 + pm = q. At

first,neither contestant cold solve any of the problems that he had

been posed. But shortly before the end of the competition, on 13

February 1535, Tartaglia figuredout how to solve equations of the

form :33 + pm 2: q. Like del Ferro and Fior, he kept his method of

solution a secret.

And now there enters upon the stage the man whose name is as-

sociated today with the solution formula. Girolamo Cardano, known

today more for his discovery of what is called the Cardano wave and

Cardano suspension and by profession actually a physician, man-

aged to convince Tartaglia to reveal to him his formula, under the

guarantee—accordingto Tartaglia afterward—that he would keep it

2Girolamo Cardano, The Great Art or the Rules of Algebra, the English transla~
tion of the 1545 edition with additions from the editions of 1570 and 1663 (Cambridge,
Massachusetts, 1968); see the beginning of Chapter 1 and Chapter 11.

3An idea of the accomplishments of a master calculator, and in particular of the
person of Tartaglia, can be found in the historical novel Der Rechenmeister, by Dieter

Jorgensen, Berlin, 1999. A substantial part of the novel deals with the discovery of the
solution formula for cubic equations and the resulting conflict.

4See the work cited by Renato Acampora, pp. 32-34. On the other hand, based
on the fact that Tartaglia is known to have studied the work of Archimedes, Phillip
Schultz speculates (Tartaglia, Archimedes and cubic equations, Australian Mathemat-
ical Society Gazette 11 (1984), pp. 81-84) that Tartaglia could have used a geometric
method in which he determined the intersection point of the parabola y = :32 and the
hyperbola y = —q/(:5+ P).
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secret. Nonetheless, Cardano published the solution procedure in his

Ars Magna, a book describing the current state of algebraic knowl-

edge.5
The solution of cubic equations is based on the cubic binomial

formula

(u -1- v)3 = 3uv(u + U)+ (u3 123),
which Cardano was able to derive in an analogous manner to the

geometric method used by al-Khwarizmi for the quadratic equation,

though in this case the argument of course used three—dimensional

figuresand volumes (see Figure 1.2). However, this identity can also

be interpreted as a cubic equation, where the sum u + '1) yields a

solution :13 of the cubic equation

. :33 +p:1c + q = 0

if the conditions

32m = —p,

U3 + v3 = —q,

are satisfied. The cubic equation $3 +p:1: + q = 0 can then be solved

if one can find suitable quantities 1;, and ’U. But that is a relatively

simple task. Since both the sum and product of the quantities 11,3and

v3 are known, one can solve the quadratic equation

0 \x96�
to obtain u3 and 113 as the two solutions

<§>%<§>i
so that u and 1) can be determined from the two equations

`t\xAC�

3

<;>2+<2)?��
3

0X\x9F�oh <2)?
5The result of Ca.rda.no’s alleged breaking of his Word led to a great falling out

between Tartaglia and Cardano. It is thanks to the publications around this dispute

(see the works referred to in an earlier footnote) that we have knowledge of the history
leading up to the Ars Magna.
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Finally, the desired solution at of the cubic equation $3 + pcc + q = 0
'

is obtained from Ca7"dano’sformula,

w=Hm/<§>2+<§>3+Hm/<§>2+<§>3—

§§...in‘.!

ifiim
LI\!.

Figure 1.2. Depicted here is the geometric basis of the bi-
nomial equation (11,+ 11)?’= 3uv(u + 1))+ (n3+ U3), similar
to Cardano’s presentation in his Ars Magna. The large cube
can be decomposed into two subcubes and three rectangular
parallelepipeds, all with side lengths u, U, and u + 11.

If we apply this result to our problem 903+ m — = 0, we obtain

m_33+2 61:33 2 61

33 33’

whose decimal Value is approximately 1.634365.

1.3 In his Ars Magna Cardano also solved cubic equations involv-

ing quadratic terms.6 We have already seen, in the introduction, an

6/lrs Magna, Chapter XXIII.
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1. Cubic Equations 7

example of such an equation with a quadratic term:

m3—3a:2~3a:—1-—-0.

To solve such equations, Cardano transformed them using a generally
applicable procedure into equations of the form y3 + py + q = 0.

Starting with a cubic equation in the general form

:I:3+a,m2+b:c+c=0,
the transformation consists in adding the summand —gto the desired

solution cc, which allows the quadratic and cubic terms to be com-

bined:
i

:c3+aa:2 — (a:+(1)3@293G3
= (anE Q)?’

G2

G)+
2

a3.
3 3 27 3 3 3 27

To obtain the complete transformation of the coefiicients of this

equation, one replaces every occurrence of .7: in the equation via the

substitution
CI:

13:?/mg»
obtaining, after collecting terms in like powers of y, the identity

:v3+aa;2+ba:+c=y3—|—py+q,
with

1 2

p:_§a +b>

2 3 1

q—2—7a—~§ab+c.
Once one has solved the reduced cubic equation 3/3+ py + q = 0

with Cardano’s formula, the solution of the original equation can be

obtained with the transformation :13 = y
— \xC0���In the concrete example

51:3— 3:32 — 33: — 1 2 0, the transformation ;v = y + 1 leads to the

equation

3/3—~ 61/ ~ 6 = 0,

whose solution

31 = \3/i + 3/1

obtained from Cardano’s formula leads to the following solution of

the original equation:

cc=1+\3/5+3/Z.
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In addition to the progress in calculation evidenced in Cardano’s
Ars Magna, two fundamental developments are to be found that

would aid in the future development of mathematics, namely the

extension of the set of numbers to include first negative quantities
and then complex numbers. Cardano did not in fact use negative
numbers in the Ars Magna, which would have allowed him to solve
various types of cubic equations such as $3 + pm = q and $3 = pm -1- q
as a single type. But he did show a greater openness to negative num-

bers by listing in addition to the “true” solutions to an equation the

negative solutions, which he called “false” solutions. For Cardano, a

“false” solution corresponded to a “true” solution of another equa—

tion, namely one with as replaced by —m. For example, for Cardano
-4 is a false solution to the equation $3 -1- 16 = 12:12,while 4 is a true

solution of the equation 1:3 :: 12$ + 16.7

Exercises

(1) Find a solution to the cubic equation

:v3+6m2+9a:—2=O.

(2) The cubic equation

:33 + 61: ~ 20 = 0

has 2 as a solution. How is this solution given by Cardano’s
formula?

7A1's Magna, Chapter I.



Chapter 2

Casus Irreducibilis: The

Birth of the Complex
Numbers

If you try to solve the cubic equation x3 : 8:1: + 3 using
Cardano’s formula, the formula appears to fail. But this

does not indicate that the equation has no solution, for
clearly m = 3 is a solution. ‘

2.1 Like the problem that introduced Chapter 1, the above equation
may also be considered “classical,”since it comes from Cardano’s

book Ars Magnal However, Cardano, who simply gives 3 as a solu-

tion and then calculates two additional solutions, does not go more

deeply into the difficulties presented by his formula, though they can

hardly have been unknown to him.”

Let us look at the details. From the coefiicients p = -8 and

q = -3 of the equation, one obtains not the expected solution :3 = 3

but the complicated expression

m_33_|_19/5+33 19/5
2 6 3 2 6 3’

1Chapter XIII.

2Cardano mentions the problem in a 1539 letter to Tartaglia, thus six years before
the publication of A’/‘s Magna. See the work by Acampora cited earlier, pp. 62-63.

Moreover, because negative numbers were not frequently used, such situations could

not arise in equations of the type 933+ 133: = q.

-9
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Whose simplificationwould have been practically out of the question
in Cardano’s time on account of the square roots of negative num-

bers, even though at another place in the Ars M agna Cardano makes

some tentative calculations with such square roots of negative num—

bers when he seeks to solve the problem of findingtwo numbers whose
sum is 10 and whose product is 40. Of course, Cardano knew how to

find the solutions, if in fact they existed, namely, as the solutions of
the quadratic equation

:t2—10ac—|-40:0,
with the result that one obtains the following two numbers:

5 + \/-15 and 5 — x/— 5.

Although both of the numbers found hardly represent what in

Cardano’s time would have been thought of as numbers, Cardano
dared to carry out the calculation

(5+\fl—T5)(5—\/‘—T5)=25+15=4o,
thereby performing the first known calculation with what we today
call complex numbers.3

It is such calculations, using the rules of arithmetic to achieve
meaningful results, that doubtless motivated mathematicians follow-

ing Cardano to allow square roots of negative numbers, at first as in-
termediate values in a calculation, and later as mathematical objects
in their own right, for which there developed an independent interest.
An important role in this extension of the set of allowable numbers
was played by the so-called casus irreducibilis, which denoted the case

in the solution of cubic equations in which within Ca.rdano’sformula
there appeared square roots of negative numbers. In particular, this
situation occurs in the case of reduced cubic equations of the form

:r3+p:I:+q=0
when the radicand of the square root is negative:

W (2)3 o(2 +
3

< .

3Ars Magna, Chapter XXXVII, Rule II.
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Is it possible to calculate with such roots of negative numbers

and end up with the correct results? The first steps in this direction

were taken by Rafael Bombelli (1526-1572) in his book L’/llgebm,
published in the year of his death. There he solved the equation

913= 15m +4,

by courageously calculating with the radical expression

m={/2+\/1+?/2—\/E—{/2:11\/-1:§/211\/‘T

produced by Cardano’s formula. Finally, with the known solution

:3 = 4 staring him in the face, he obtained values for the two cubic

roots, namely, by calculating

(2+ \/—l)3= 8 + 12‘/— — 6 —— \/-1 = 2 + llx/-1,

(2 — \/—1)3~— 8 12¢ 1 6+ \/ 1 = 2 11¢ 1,

thereby obtaining the desired :3 = 2 + \/—1 + 2 — x/— = 4.

p\x92�� It thus seemed that the complicated expression involving the

square roots of negative numbers was equal to 4. Bombelli commented

thus: “An extravagant thought, according to many. I myself was for

a long time of the same opinion. The matter seemed to rest more on

sophistry than on truth, but I searched until I found a proof.”These

daring calculations had provided an explanation for an already known

result, just as in the history of mathematics it is certain that similar

developments occurred when negative numbers were first viewed as

a useful addition to the set of permissible numbers. In comparison
to the negative numbers, the square roots of negative numbers intro-

duced a greater level of abstraction, since there is no obvious analogy
in our everyday experience, in contrast to the negative balance in a

bank account, which can be represented by a negative number. Thus

it took almost another two hundred years before the objects hesitantly
introduced by Bombelli were accepted into general mathematical use,

under the name complex numbers. What was needed was a descrip-
tion of their fundamental properties so that there would be no doubt

as to how they could be used. This could occur only when the more

or less philosophical question, “what actually are complex numbers?”

.

,

�\x83\xF1�
§=‘§=‘‘9:x~\‘r&“k4~‘»¢~\*t4:%\t«¥'172»~r:wr\\*«~Ve&«arr!-e~\\7\«s«r\s‘9:x~\‘r&“k4~‘»¢~\*t4:%\t«¥'172»~r:wr\\*«~Ve&«arr!-e~\\7\«s«r\s>b»vm>\»:u¢«

4Quoted by Moritz Cantor, Vorlesungen fiber Geschichte der Mathematik,
Berlin, 1900-1908, Band 2, p. 625.
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was put aside in favor of definingthem on the basis of their proper-

ties. The first decisive steps in this direction were taken in 1797 by
Caspar Wessel (1745-1818) .

However, Wessel’s formal definition by no means eliminated all

doubt, not least because his writings were not widely circulated. Thus

it was for almost another half century that these imaginary or impos-
sible numbers eked out an existence similar to that of the then still

current infinitesimals,those infinitelysmall quantities of mathemat-
ical analysis (calculus): Mathematicians could use them effectively
and elegantly to obtain “correct” results quickly, results that then

might well be obtained by another method without use of the sus-

pect intermediate steps. Thus even the great Carl Friedrich Gauss

(1777-1855), on the occasion of his 1796 formulation of the funda-

mental theorem of algebra, which uses complex numbers decisively,
wrote thus:

I will carry out my proof without the use of imaginary
quantities, although I could well have allowed myself that

luxury employed by all modern analysts.5

Perhaps Gauss hit upon the essence of the reservations of many—
even Leibniz (1646—1716)had spoken in 1702 of a “wonder of analysis,
a monstrosity of the human imagination”—thirty—sixyears later, after
he had meanwhile been often compelled to mention the “metaphysics”
of complex numbers:

The difficulties that one believes to surround the theory of

imaginary quantities have their basis in large measure in

the less than optimal nomenclature. If one had . . . called

positive numbers “direct,”negative numbers “inverse,”and

imaginary numbers “lateral,”there would have been sim-

plicity instead of confusion, clarity instead of darkness.

This remark of Gauss should be understood generally to indicate

that mathematical definitions should be viewed in isolation and freed
from later interpretation and nomenclature that reflects such inter-

pretations: A mathematical object “lives”only because of its freedom

5This and following quotations are taken from Herbert Pieper, Die komplezen
Zahlen, Frankfurt/M., 1999. The last chapter of this book offers an extensive presen-
tation of the history of complex numbers.



2. The Birth of the Complex Numbers 13

from contradiction. It is “created” when a use for it is conceived, a.nd

“tended” as long as it continues to serve a purpose.

2.2 The set of complex numbers includes by definition all pairs (a, 17)
whose coordinates a and b are real numbers. Geometrically, the set

of complex numbers can be viewed as a plane, in analogy with the

number line representing the set of real numbers. With the idea that

a pair of numbers (a, b) is to interpreted as

a + bx/-1,

one definesthe mathematical operations on complex numbers as fol-

lows:

(a,b) + (c,d) : (a+c,b+d),

(cL,b)X (c, d) = (ac~ bd,bc+ ad).

The inverse operations are explained in reference to so—calledin-

verse elements. That is, subtraction is defined as the addition of a

negated value, and division as multiplication by the multiplicative
inverse. The inverse elements are defined thus:

_(a'>b) : ("av -17)

_1_ a ~b
(afib) —(a2+b27a2+b2)'

Of course, in the last definition it is assumed that (a, b) gé(0,0).

Indeed, these definitions accomplish the desired goal, since except
for failing to have an order relation, the complex numbers have all

the familiar laws of operation of the real numbers. We shall list these

laws, which the reader can easily verify from the definitions,so that

we will have some common notation and nomenclature:

0 All the relations among real numbers, such as the commutative,

associative, and distributive law properties, continue to hold.

Furthermore, the zero (0,0) and the one (1,0) have the famil—

iar properties of serving as identity elements in addition and

multiplication. Finally, subtraction and division are in fact the

inverse operations of addition and multiplication.5

6Taken all together, a set with two operations satisfying these conditions is called
a field. We shall return to this concept in Chapters 9 and 10.
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o The subset of complex numbers of the form (a, 0) behaves under

these operations like the set of real numbers, and it can be iden-

tified with them, just as the set of fractions with denominator 1

can be identified with the integers. The complex numbers can

therefore be looked on as an extension of the real numbers. For

simplicity, we will often write a complex number of the form

(a, 0) simply as a, and for a complex number (a, b) we call a the

real part.

0 We have (0,1) ><(0,1) = (0,-1)><(0,-1) : (—1,0),a result that

corresponds to the real number -1. Therefore, the two complex
numbers (0,1) and (O,-1) can be interpreted as square roots

of -1. The number (0,1) is given the special notation 2', called

the imaginary unit. In a complex number (a, b), we call b the

imaginary part.

0 We have the equation (a, b) X (a, -b) = a2 + b2, where (a, -b) is

called the conjugate of the complex number (a, b). It is denoted

by (a, b). We call \/a2 + b2 the absolute value or modulus of the

number (a, b). Within the complex plane, as the geometric rep-
resentation of the complex numbers is called, the modulus of a

complex number represents the distance of the number from the

origin.7 An example is displayed in Figure 2.1. Finally, complex
conjugation (taking the conjugate of a complex number) pos-
sesses the following property: ((a, b) X (c, d)) = (a, b) X (c, cl).

All these properties together make us certain that with pairs (a, b)
ofthe form (a, b) = (a, 0)+(b, 0) X (O,1) : a+bz', where 1'2 = 1, We have
in fact defined the set of mathematical objects of the form a + b\/-_1 .

This resulting extension of the real numbers was achieved without

using the previously undefined expression \/-—1,whose use, moreover,
is not always completely unproblematic, since it can easily lead to

erroneous calculations such as x/-1\/-1 = \/(-1)(-1) = \/1 = 1.

Another, very important, example of the complex numbers that

will be of use to us in what follows is closely related to the geomet-
ric representation of the complex numbers. We first note that every

7The definition of the distance between two complex numbers as the modulus of
their difference makes possible the creation of a function theory, or complex analysis,
on the complex numbers, whereby notions such as convergence, continuity, derivative,
and integral are defined with properties similar to those of classical analysis.
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Figure 2.1. The complex plane with the number 1 + 21' a.nd

its conjugate 1 —~ 2i. The modulus of both numbers is @\x80\x89�

complex number located on the unit circle, that is, the circle of ra-

dius 1 with center at the origin, can be represented in terms of the

trigonometric functions sine and cosine. To be precise, such complex
numbers have a representation

coscb + isin (1),

where gbis the angle that runs counterclockwise from the positive hor-

izontal axis (i.e., the positive real axis) to the line from the origin to

the complex number in question (see Figure 2.2). If We now multi-

ply together two such numbers lying on the unit circle, we can do so

merely by adding their angles together. A proof of this follows easily
from the addition laws for sine and cosine:

(cos gb-1- isin q5)(cosip+ isinip)
= (cos¢cos1[2— si11¢>sin1/1)+ 2'(cos¢sinz/1+ sinqficos1p)
= cos(¢+ @F_�+ i sin(gz5+ P\xCF\�

If We now introduce the modulus of a complex number (which
is 1 for the complex numbers lying on the unit circle), we can gen-

eralize this result to all nonzero complex numbers. Note first that

if a complex number has nonzero (hence positive) modulus m, we



16 2. The Birth of the Complex Numbers

Figure 2.2. Representation of a complex number of the form
cos ¢>+ isin :15located on the unit circle.

can set 3 2 lnm (the natural logarithm) and write m = 65. Thus
a complex number 2 with angle g1)and modulus es can be written
z = eS(cosq5+ 2'sin (b). We then see8 that

e5 (cos¢+z'sin qb)>< et(cos¢+z'sin 1,0)= es” (cos(¢+1/2)+1’sin(¢+i/2)).
The special case of raising a complex number to a power goes

under the name de M oiwe ’sformula, even though its namesake Abra—
ham de Moivre (1667-1754) never formulated it explicitly:

(es(cos¢ + i sin q5))
n

= (eS)n(cos(n¢>)+ 2’sin(n¢)).

2.3 Before we return to the casus irreducibilis, we would like to apply
the knowledge we have just gained to the equation

m3—1=0.

In the field of real numbers it is clear that 331 = 1 is the only solution.
If we move to the field of complex numbers, then de Moivre’s formula

suggests that the equation must have two additional solutions, both
of which lie on the unit circle (see Figure 2.3) and form angles with
the positive real axis of 277'and %’5,so that the three solutions form

8The reason for the validity of this equation will become clear when the power
series for sine, cosine, and exponential functions are extended to the complex numbers,which was first accomplished in 1748 by Leonhard Euler (1707-1783). One can then
see that for arbitrary complex numbers :1: + iy, one has the identity em+iy = em (cos y +
i sin y).
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an equilateral triangle. It is thus apparent that the two additional

solutions are

:1c2=—l+—\/gt’and :v3=—1—£i.
2 2 2 2

These three solutions are called third roots of unity. Equations of the

form 23”— 1 = O, which form the topic of Chapter 7, will be called

cyclotomic equationsg because of their geometric significance.

Figure 2.3. The three solutions 1, Q, and (2 of the cyclotomic
equation 31:3— 1 = 0.

2.4 The cube roots of unity are of significancefor the general cubic

equation in that with them one can extend Cardano’s formula so that

three roots are always obtainable. We begin by defining

C
—« _$ + \x80\xB8\xE2�'"

2 2

and recognizing that the two equations underlying Cardano’s formula,

31m = -12,

ug + v3 = —~q,

have as solutions, in addition to the pair (u, 11)introduced in Chap-
ter 1, the solutions (Cu,(21))and ((211,(2)),so that altogether, one

9From the Greek kuklos, circle, and -tomia, cutting.
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obtains the following three solutions to the reduced cubic equation

W \/\/*+<§>i

M“: <>2+<>?

marl3+ <;>2+<’;>%<;>2+<’;>%<;>2+<’;>%<;>2+<’;>%<;>2+<’;>%<>2+<>?
This formula holds in general, since no restrictions on the solu—

tions were assumed in its derivation. However, in the case of casus

irreducibilis, one must note that for the two complex numbers u3 and

113,which are conjugate to each other, pairs of cube roots u and v are

selected that are also conjugate to each other; only in this way can

the two equations that determine u a.nd 12 be satisfied. Not only have
we shown that the calculations carried out by Bombelli are justified,
but furthermore, we see that in the general case, the three solutions

$1, $2, and 3:3 are all real, since

-l- me
»Q

to was
Q

NJ co’‘3

3?],= €'j—l,u/+ €——(j—1)U: <"‘(.7“1)fl+Cj‘1“= C“"(j‘1),U+ €'.7"1u:

wj,

for j = 1, 2, 3. That is, in employing Cardano’s formula, it is necessary
to calculate with complex numbers even in the case that all three

solutions are real and distinct.

For the problem :03 = 8:0 + 3, which appears at the beginning of

Cardano’s Ars Magma, one obtains the solution

$_33+Z,19\/E+33.19\F1
2 643 2 16 3

1
,

5 1
,

5

=3.
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The other two solutions, which Cardano knew, are

a32=%(——1+’i\/3)<3-1-7}\l§>+%<—1—i\/3)<3—'ip\xA1\x86�
::<+«a>

and

:1:3=%l(—1—z'\/g)<3+z'\/E)+}l(—1+z\/.3)<34�E\xCC�
=%(—3+fi).

So, was all this effort worth it? In any case, the extension of the

underlying field of numbers to the complex numbers has converted the

solution algorithm into a unified process. Moreover, the extension to

the complex numbers has removed the uncertainty that we might ob-

tain incorrect results in calculating with nonreal intermediate results.

However, in actual calculations there is still one problem: Our pro-

cedure does not provide an effective way of simplifying expressions of

the type

33 .19 5
_ Zm _

2 6 3

or at least to approximate them numerically. At least the latter option
is relatively easy to accomplish if one begins with a number in polar
coordinates.”In the case of casus irreducibilis, that is, in the case

fir (Br 0(2 +
3

< ’

where the coefiicient p must be negative, the two numbers 1/,3and 123

are complex conjugates of the form

 c\x97�—<;>2—<§>‘”<
10

On the other hand, the former problem, that of simplifying cube roots of com-

plex numbers, that is, to express the real and imaginary parts separately with expres-
sions involving roots, cannot be completely resolved: If a cubic equation with rational

coefficients has three real solutions, none of which is rational, such as, for example,
:33 — 6:1: + 2 = 0, then there is no expression for the roots involving nested radicals

whose intermediate values are all real. See B. L. van der Waerden, Algebra, vol. I,
Section 64, Springer, 2003.
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The modulus of each of these numbers is

3

2 2_ 9 1(1)31/(_23)3__:3\/(2) (2) 3) ’

3
”"

3

The angle made by the two numbers with the positive real axis

can be obtained from the quotient of the real part of the number and

its modulus. To be precise, the “upper”angle is give by

cf)= arccos \xA0(\xC4�= arccos <
3g

P),(V?) 21“/:3
so that we obtain the following formula for the three solutions of the

reduced cubic equation $3 + pa: + q = O:

1 .2 .

a:j+1—2,/§cos<3¢+jgr),g~0,1,2.

Such a solution based on trigonometric functions actually has

nothing to do with algebra. However, the question of the solutions of
a cubic equation is certainly an algebraic problem. Furthermore, the

solution method of casus irreducibilis is excellently suited for learning
how to work with complex numbers.

The formulas we have just described were first discovered in 1591

by Francois Viete (1540-1603). They were published posthumously in

1615. However, Viete did not use complex numbers in his derivation,
using instead the triple-angle formula for the cosine:

cos 31¢= 4cos3 zl)— 3cos¢.

Then, using an equation of the form

y3 —« 33/— icosiizb= O,

a solution can be found using the relation y = cos 1/). To solve a cubic

equation of the reduced form 9:3 + pm + q = 0, one first makes the

transformation :2: = sy, where the parameter 3 is chosen such that the

resulting equation

33 3g 1
= 0.

8P -p/ 3
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One then obtains a solution of the reduced cubic 333+ pa: + q = 0

by starting with an angle 1/)such that

cos 31/)
W —E 1

21’ ~19/3
and making the substitution

3: = 2,/—§cos1/2,
Where the procedure works only if the conditions

g 1

21> -29/3

are satisfied. The second inequality is equivalent to

<;>2+<§>2o»
Literature on the History of Complex Numbers

p<0 and 31

Paul J . Nahin, An Imaginary Tale: The Story of \/-1, Princeton,
1998.

Lutz Fiihrer, Kubische Gleichungen und die widerwillige Entdeckung
der komplemen Zahlen, Praxis der Mathematik, 43 (2001), pp. 57—67.

Exercises

(1) Derive the formulas for the real and imaginary parts of the

square root of a complex number a + bi. Also attempt to find

analogous formulas for the real and imaginary parts of the cube

root of a complex number. Explain the problem that arises.

(2) Show that the complex conjugate of a solution of a polynomial

equation with real coefficients is also a solution.

(3) Which of the three following complex numbers are roots of unity?

131\/7l2':\/5,'_:\/2«E i:\/2+\/3,gx/6+¢§\/is.





Chapter 3

Biquadratic Equations

We seek a. solution of the equation (I74+ 6:02 -1- 36 = 60$.

3.1 The problem for this chapter is also classical, coming as well

from Cardano’s Ars Magma (Chapter XXXIX, problem V). However,
such problems caused difficulties for Cardano, because they offered

no geometric interpretation. Thus he mentions in the forward to

his book, “While positio is associated with a line, quadmtum with a

surface, and cubum with a solid, it would be foolish to attempt to

extrapolate. Nature does not permit it.”

However, thanks to his student Ludovico Ferrari (1522-1569),
Cardano was able to describe in the ATS Magna, the solution to bi-

quadratic (quartic, fourth—degree)equations. In particular, Ferrari

was able to transform equations of the form

a;4+pa;2+q:v—|—r=0

by the addition of two terms in powers of m and 51:2in such a way that

a perfect square is obtained on both sides of the equation. Deviating

only slightly from the method described by Cardano, one most simply
adds 2,2332+ 22 to both sides of the equation, where the value for z is

to be chosen later, and thereby obtains

1:4+2zw2+z2=(2z~p)a:2—q:13+(z2—r).

Although the left—handside of the equation is already in the form

of a perfect square, (:32+ z)2,such is not necessarily the case for the

23
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1-ight—handside. However, z can now be suitably chosen, namely, so

as to satisfy the condition

2x/22 —p\/z2 — = —q.

Squaring both sides of this condition leads to

2
Q

(2z——p)(z2—-7“)=

Z
and thus to the cubic equation

2

z3~—§z2—rz+I*)2t:—%=0.
Once one has determined a solution 2 to this so-called cubic re-

solvent, the solutions to the original biquadratic equation results from

a:2+z=i(«/2z~—p:n+\/z2—'r>,
where each of the two possible signs yields two solutions by virtue of
the quadratic formula. Altogether, one therefore obtains the following
four solutions:

1 1 1
221,2 =

E‘/2z—pd:——2—z—110+V22 -7“,

1 1 1

a:3,4—222 pi —2—z4p
22 1".

It remains to note that in his Ars Magma, Cardano illustrates
Ferrari’s procedure with examples in which the numbers calculated
are sometimes incorrect. For the problem posed at the start of this

chapter, one obtains the cubic resolvent

23 ——3z2—36z—342 = 0,

which can be transformed via the substitution 2 = y + 1 into the
reduced cubic

g3 -393/-380 :0.

Using the resolvent solution

z = 1 + {‘/190 + 3\/3767 + \3/190— 3x/3767,
one obtains towers of expressions in radicals that solve the original
biquadratic equation.
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By now it should be clear that as indicated in the introduction,
these algebraic formulas are completely useless if the goal is simply
to obtain numerical values, for these can be more quickly and easily
computed by means of iteration procedures. Thus for the equation at

the beginning of this chapter one obtains the solutions 3.09987 . . . and

0.64440. . . as well as the pair of complex conjugates —1.87214. . . :|:

2‘- 3.81014. . . .

Nevertheless, from a mathematical point of view, the algebraic
result is impressive. Who would have guessed a priori that cube roots

would appear in the solution of a fourth—degreeequation? However, if

viewed correctly, this result is not as surprising as it might appear at

first glance. In fact, we encountered something comparable in the case

of cubic equations: Just as Cardano’s formula contains square roots

in addition to cube roots, a general formula for biquadratic equations
must be similarly constituted. Otherwise, the general formula would

not be applicable to a special equation like 234 — 2:3 = O, with the

solution (131 = \xC0�\x9C�

3.2 Since Ferrari’s formula as presented here can be used only for

biquadratic equations in which the Variable as does not appear to the

third power, we must describe a method of converting the general
biquadratic equation of the form

w4+aa:3+b:t2+cm+d=0

into an equation in the reduced form

y"+py2+qy+r=0-

In analogy to the case of the cubic equation, this can be done by
replacing the variable av via the substitution

a

‘T:ywZ>
with the result that the two terms in ye‘that arise cancel each other:

a:4+cLa:3+bac2+c$+d=y4+py2-l-qy+7*.

Of course, as in the case of the cubic, the coefficients of the reduced

equation can be calculated from those of the original equation using

polynomial expressions.
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Literature on Biquadratic Equations

Ludwig Matthiessen, Gmmdziige dew antiken und modemen Algebra
der littemlen Gleichungen, Leipzig, 1896.

Heinrich Dérrie,Kubische und biquadmtdsche Gleichungen, Munich,
1948.

Exercises

(1) Determine all four solutions of the equation

3:4 — 8m + 6 = 0

presented at the beginning of the chapter.

(2) Determine all four solutions of the equation

31:4+ 8953+ 242:2 ~ 112$ + 52 = 0.



Chapter 4

Equations of Degree 77,

and TheirProperties

We seek an equation whose solutions are the numbers 1,
2, 3, 4, and 5.

4.1 The success in findingsolution procedures for cubic and bi-

quadratic equations led inevitably to the desire to do the same for

equations of higher degree. This search included a wish to obtain

a better understanding of polynomial equations through systematic
study. In this connection, the problem posed at the start of this chap-
ter was stated and solved. It can be found in Francois Viete’s 1591

work In artem analyticem isagoge.

In addition to creating a useful symbolic notation, Viete discussed

extensively the sorts of transformations of equations that are permissi-
ble without changing the solutions. He also found a way of construct-

ing equations that possess given numbers $1,332, . . . ,:1cn as solutions.

In the case of two given solutions :31, 2:2, one needs only a quadratic
equation, namely

302— (321+ :c2)a:+ 231232 2 0.

In the case of three prescribed solutions .’1?1,.’L'2,£lI3,the cubic equation

:33 — (:01+ $2 + $3)1E2+ (:r1a:2+ 531533 + m2:v3)m—

arirciwa = 0

27
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meets the required conditions. Analogously, the four numbers 91:1, 032,
:33, :34 are solutions of the biquadratic equation

9:4 ~ (:61+ 902 + 933 + m4)a:3
2-i-((L’1.'132+ (E11173 + (E21133 + (131934 + £I32£C4+ CL‘3£l34).’I3

— (IL‘1$‘2$'3+ £L'1.’132ZB4-I- 231233334 + m2:c3a:4)a3+ £L‘1.’L‘2$3.T4= 0.

Finally, Viete produced an equation whose solutions are the five

given numbers :31, 1:2, $3, 5104,935:

$5 — (901+ :22 + 2:3 + 0:4 + a:5)w4
+ ($1152+ 1131933 + 132553 + 131334 + 032934 + 963134 + 932135 + $3$5

+ £U4375)~”U3
— ($1302-‘E3+ 931102934 + 3511331134+ $2$3iF4 + 161132565 + 1131333135

+ 632333135 + 331134505 + 032934505 + w3964035)1L‘2
+ (CU1372153334+ :I71$2€E3€B5+ .’E1$2iE4$5+ 0311133154935 + :I32933$4-T5)33
——

:v1:r2a:3:z74m5 = 0.

Viete’s last example solves the problem posed at the beginning
of the chapter, for which one obtains the equationl

$5 ~ 159:4 + 85903 ~ 225$? + 274:3 ~ 120 = 0.

Only the obvious symmetry prevents Viete’s formula from being
completely confusing. Of course, one may easily check that Vz'éte’s
root theorem (root is a frequent synonym for solution) is correct by
substituting one of the values in for the variable. However, of greater
interest is the question of how one obtains such results, including the

analogous ones for more than five solutions. This, too, is not difli—

cult, and was described for the first time in 1637 by Rene Descartes

(1596—1650)in his work La Géometrie: If an equation is sought whose
solutions are the given numbers 331, $2, . . . ,a:,,, then one may simply

1In Viete’s notation, the equation is

1Qo ~ 15QQ + 850 — 225Q + 274N, equatur 120.

A facsimile together with German translation can be found in Henk J. M. Bos, Karin
Reich, Der doppelte Auftakt zur friihneuzeitlichen Algebra: Viéte und Descartes, in
Erhard Scholz (ed.), Geschichte der Algebra, Mannheim, 1990, pp. 183~234.
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take the equation

(0:— m1)(a:— mg)- - « (:1:— \xA0� �

In this form, it is obvious that 5131,I132, . . .
, :37, are solutions and that

there are no others. One is required simply to multiply out to obtain

an equation in the more familiar form.

In particular, Viete’s root theorem explains an observation made

already by Cardano in his Ars Magna (Chapter I, equation 2:3 +72 :

11:32).He had found three solutions for some equations of the form

:33 + ba: = M32 + c and observed that the sum of the solutions agrees

with the coeflicient a of the quadratic term. An explanation of this

fact would have been diflicult for Cardano to have discovered, since it

presupposed the existence of negative numbers to bring the equation
into a form in which the right~hand side is equal to zero.

4.2 Descartes also discusses the problem of Whether and under what

circumstances the left—handside of an equation of the form

a:”+a,,-1:n"_1+---+a1a:+a0=0

can be decomposed into a product of the form (r — 3:1)- - - (tr — \xE0\x8C&�
If there is such a decomposition into linear factors, then clearly the

solutions are known. But conversely, says Descartes, each solution

provides one step in the factorization of the equation into linear fac-

tors. For example, if :31 is a solution, then the variable :0 on the left

side of the equation can be replaced by 931 + (:1:— 221). If one then

develops the powers ($1 + (:3—— :z:1))’°into powers of $1 and (cc— :31),
then one finds that the term (93- ml) can be factored out:

:12" + an_1rc"‘1+ - - - + aim + an

= (:6— $1)”+ bn_1(w — a:1)"‘1+ » - - + b1(cc— $1) + bo,

with

bo =:z:”+a,,n1:I:"_1+-«-+a1:r+a0:0.

One thus has the desired result:

9:”+ a,,_1:c"_1+ - - - + a1:I: + (10

= (€13— 501)\xD0m1�*“ 1L’1)"_1+ bn—1($— -T1)"_2+ - - - + 51)
= (9:— 331)(a:"‘1+ c,,_g:v”“2+ - ~ - + co).
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Finally, we have succeeded in dividing the original polynomial by
the factor (:1:— :21), where all the coeflicientsC0,C1, . . . ,c,,_2 of the
resulting polynomial can be determined from those of the original
equation and the solution ml via multiplication and addition.

If one finds additional solutions, the process of breaking off a

linear factor can be continued. In an equation of the nth degree,
there are at most n linear polynomials that can be thus broken off.
Therefore, as Descartes asserted, an nth—degreeequation can have at
most n solutions.

4.3 If the number of solutions of a polynomial equation of degree
n can be at most n, then what is the least number of possible solu-
tions? Here we do not mean the number of dijferent solutions, since
the equation at” = 0, for example, has only the single solution zero.

By “numberof solutions” we mean rather the number of linear fac-
tors. Thus we are asking for the number of linear factors that can

be broken off an nth—degreeequation, and what the smallest possible
such number is. If a linear factor appears more than once, then the
corresponding solution is called a multiple solution, and we say that
we are counting solutions with multz'plz'citg/.2

The possibility of breaking off factors corresponding to solutions

allows us to say something about the minimum number of solutions:
If there is no nth—degreeequation without any solutions, then a linear
factor can be broken off of any polynomial. Furthermore, since the
resulting equation, provided that its degree is at least 1, must again
have a solution, the process can be continued, and indeed, it can be
continued until the polynomial has been entirely decomposed into lin-
ear factors. That is, if it can be proved that every nth—degreeequation
has at least one solution, then there will always be n solutions, where
solutions are counted with multiplicity.

Already before Descartes, Albert Girard (1590—1632)had con-

jectured in 1629 that an equation with complex coefficients always
possesses the number of solutions equal to its degree. Despite the
efforts of many mathematicians, a complete proof of this conjecture,
now called the fundamental theorem of algebra, was achieved only in

2Cardano dealt with multiple solutions, for example the equation 1:3 + 16 = 2:1:in Chapter I of the Ars Magna.
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1799, by Carl Friedrich Gauss. This proof justified—atleast from an

algebraic point of view—the use of complex numbers, since a further

enlargement of the set of available numbers is not necessary.

The designation “fundamental theorem of algebra”is to be un—

derstood historically. From today’spoint of View it is somewhat mis-

leading, since in fact, this theorem is fundamentally not algebraic in

nature. That is, it is based only tangentially on the properties of the

complex numbers related to the four basic arithmetic operations. Of

much greater importance are the properties of the complex numbers

that are related to distance, that is, properties related to conver-

gence, continuity, and so on. A comparison with a similar result in

the realm of the real numbers might make this clearer: The graph of

the polynomial (133— 2 viewed as a function of a real variable runs,

in the standard coordinate system, from “down and to the left” to

“upand to the right.”Therefore, it “must” cross the :1: axis at least

once. That is, the polynomial under investigation, and indeed any

polynomial of odd degree, has at least one zero (that is, a value of as

that makes the polynomial equal to zero). What appears to be sim-

ple and obvious is in fact due to fundamental properties of the real

numbers, which find expression in the so-called intermediate value

theorem. Two properties are crucial:

o A function defined by a polynomial is continuous, that is, there

are no holes or jumps in its graph; rather, its value changes
at every point by less than any prescribed bound, provided the

change in :1: is sufficientlysmall.

0 The set of real numbers has no “holes,”such as exist, for exam-

ple, in the rational numbers. Indeed, for each point on the num-

ber line one can find infinitelymany rational numbers within

any given small distance of the given point. Nonetheless, the

process of approximating the point by rational numbers takes

one outside the set of rational numbers. For example, if we ap-

proximate the square root of 2 by more and more terms of its

decimal expansion,

1, 1.4, 1.41, 1.414, 1.4142, \x90\x9B\x81�
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this sequence of rational numbers approaches a number that is
not rational, namely P\xF9\xB5�The point here is that there is no

comparable example in the set of real numbers.

A proof of the fundamental theorem of algebra can be given based
on the continuity of polynomial functions and the two key properties
of the complex numbers, namely, the lack of “holes” (called complete-
ness) and the existence of the number 7},which satisfies the equation
2'2 = ——1.The following section on the fundamental theorem of alge-
bra contains an argument for the plausibility of the theorem, as well
as a sketch of a proof.

The Fundamental Theorem of Algebra:
Plausibility and Proof

As stated in the text, it suflices to prove the following theorem: A polyno-mial with complex coeflicients whose degree is at least one has at least one

complex zero.

We begin with a plausibility argument, which makes crucial use of the
properties of the absolute value function for complex numbers, [a + bi] =

V a2 + b2, namely, that for two arbitrary complex numbers zl and 22, the
trmngle inequality holds, that is, |z1+z2| 3 |z1]+]z2|, as well as the identity
[Z122]= @x\xA3�This has a consequence that for a given polynomial

f(z) = 2" + an—1z"”1+ - - - + (1127 + ao,

with complex coefficients ann 1, . . . ,a1, :10, the absolute values of the values
taken on by the function are approximated by |z”[for suflicientlylarge (inabsolute value) z. Concretely, for a complex number z with

Izl 2 R == 1 +2(Ian—:I+---+Ia1I+laoI),
one has the inequality

]an—1z"_1+ - - - + aiz + aol
5 Ian—1Ilz"”1I+---+Ia1IIzl+Iaol

$—& 1
,,S(lan~1l+--‘+|<11l+laol)lzl"1

S -lzl -

We would now like to consider how the motion of a complex number
z about a circle of radius R with center the origin is affected by the poly-nomial f For the term z" it is clear, since by de Moivre’s formula, one
circuit around the circle of radius R is mapped to n circuits around the
circle of radius R”. This circle is depicted in the middle part of Figure



4. Equations of Degree 71, and Their Properties 33

4.1. The remaining terms of the polynomial have little effect on this result

for large R, as we have seen, so that we obtain for a function value f
an n-fold circuit within an annulus with 0 as center, inner radius %R",
and outer radius §R". For example, the middle of Figure 4.1 shows two

bounding circles for the remaining terms; the bounding annulus is shown

as a dashed line in both the center and right parts of the figure.

Figure 4.1. A revolution of a circle of sufficientlylarge radius

about the origin (left) is mapped by an nth-degree polynomial
to an n-fold revolution within an annulus centered at the origin
(right). The middle image shows the curve of the highest
power, 2", and the maximal “perturbation”at two sample
points due to the terms of lower degree.

What happens if we vary the radius of the initial circle? Ignoring the

details, what is important for us is that “everythingis continuous.” Since

we are only arguing for plausibility, we will now offer a verbal description
of the consequences: Independent of the radius of the initial circle that the

point z traverses, the image points f always form a closed curve without

any discontinuities (holes). Furthermore, any changes experienced by the

curve due to a change in the radius can be kept arbitrarily small by keeping
the change in radius sufficientlysmall.

There is one more obvious fact: For zero radius there is but a single
image point, namely (10, which by our construction lies within the inner

circle of radius %R".
Now comes, in analogy to the case of a real polynomial of odd degree,

the decisive continuity argument: If one gradually contracts the circle on

which z is moving toward the origin beginning at radius R, then the image
curve, beginning with its n-fold circuit of the origin, contracts to the point
ao. Thus at some point the origin must be crossed, and therefore the

polynomial f must contain within the circle of radius R at least one—

and indeed, for R sufficientlylarge, n—compleXzero.



34 4. Equations of Degree 71. and Their Properties

Since it is not at all simple to make the previous heuristic argument
watertight, we will take a difierent tack altogether in presenting a formal
proof, one taken first in 1815 by Jean Robert Argand (1768~1822) and
simplifieda few years later by Augustin—LouisCauchy (1789—l857).

We have already seen that the function values f of the polynomial
exceed in absolute value [f = jag] outside a sufficientlylarge circle. The
minimum of the real—valuedfunction |f is therefore to be found inside
the circle, where it is taken, according to a theorem about the extreme
values of continuous real~valued functions, at some point, which we call zo.

Developing the polynomial as a function of z ——

zo leads to

f(z) = be + bm(z — zo)'" +bm+1(z — zo)'"+1+ - - - + bn(Z — zo)",

where the index m 2 1 is such that bm 75 0. Furthermore, we may assume

be 750, since otherwise, we have already found a zero.

We now determine a complex number 11), using de Moivre’s formula,
for example, with the property

bem’—-.__._w —

bm,

and then form the argument zl = zo + ew, where e is a small number,
0 < e < 1, to be chosen later. For the associated function value f (21), we

now obtain

f(z1) : be —— bmem%—+ bm+1e"”+1wm+1+ - - - + b,,e"w"
Tn

1‘ (1 - Em)bo + bm+1€m+1’U)m+1+ - - - + b,,e"w".

This equation allows us to estimate the value [f(z1)]:

|f(Z1)l S (1 “ Gm)lbol+ em“ (lbm+1wm+1l+ ‘ ' ' + lbnwnll
= Ibo[(1— em(1 — eB)),

where B = ([b,,,,+1w"‘+1l+ » - - + |b,,w"|)/Ibo] depends only on the coeffi-
cients bo, bm, . . .

, bn and the choice of the number w. One may now choose 6

sufficiently small that 1 —eB is positive. Then with such a selection, we have
found a smaller value than the assumed minimum: If < Ibo]= If (zo)].The contradiction is eliminated if we give up the assumption b0 75 0.

Finally, we observe that the shortest and most beautiful proofs of the
fundamental theorem of algebra are based on basic theorems of the theory
of functions of a complex variable.
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Exercises

(1) Show that the nonreal zeros of a polynomial with real coefficients

come in pairs of complex conjugate numbers.

(2) Construct an nth—degreepolynomial that takes on the given val-

ues y1,...,yn at the distinct points 331, . . . ,a:n. Hint: Consider

for j = 1, . . . ,n polynomials of the form

_

(13 —

(Ez-
9J(93)“A H

mj _mi
z=1....,n

#2’

at the points :3 = 1121,. ..,m,,. The polynomial that solves this

problem is called the Lagrange interpolation formula.





Chapter 5

The Search for

Additional Solution

Formulas

Is there a common “blueprint”for the solution formulas
to equations up to the fourth degree?

5.1 The procedures that Cardano published for solving cubic and

biquadratic equations marked the beginning of a historical period
in which a Variety of attempts were made to find a general formula

for solving equations of the fifth degree. In pursuit of this goal, it

seemed a good idea to search for similarities in the solution procedures
already discovered. In the case of equations of fourth degree, various

alternatives to Ferrari’s solution method were considered, which with

other equivalence transformations and other intermediate results led

to the same resu1ts.1

To be sure, the fundamental theorem of algebra guarantees the

existence of n complex roots for an nth-degree equation. However, it

offers no clue as to how those solutions can be calculated. Neverthe-

less, based on the fundamental theorem of algebra, we can reformulate

the problem of findingthe solutions of an nth—degreeequation: Since

1The most complete description of such methods is to be found in Ludwig
Matthiessen, Grundziige der antiken und modernen Algebra der litteralen Gleichi/.n—

gen, Leipzig, 1896.
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in every equation of the form

a:"+an_193"“1+---+a1:n+ao :0

the left side can be decomposed into linear factors

ac" + a,,_1:1:"_1+ - - - +a1a: +a0 = (3:— m1)(:c— 11:2)~ - - (J2— a:,,),
can the given nth—degreeequation be transformed into an equivalent
system of equations corresponding to Viete’s root theorem? That
is, for given complex coefficients a,,_1, . . . ,a1,a0, we seek complex
numbers :31, 1:2, . . . ,:1:,, that satisfy the system of equations

531 +032+'-'+-Tn = —Gn—1,

$1$2 + 031133 + - - - + 33n—~1a7n= a'n—2:

£lI1£E2"'{13n_1£I3n= (—1)"a0.
The symmetric expressions in :z:1,cz:2,...,ccn appearing on the left
sides of the equations are called elementary symmetric polynomials.
But it is not only the solution of given equations with explicitly known
coefiicientsthat can be reinterpreted on the basis of Viete’s root the-
orem. We may certainly view the solutions :c1,m2, . . . ,a:,, as vari-

ables, so that the search for a general solution formula corresponds to
the problem of determining the variables 91:1,$2, . . . ,m,, from the ele-

mentary polynomials a,,_1, . . . ,a1, Clo. This interpretation is usually
called the general equation.

For the case of a quadratic equation, the well—knownquadratic
formula is given the following interpretation:

11 1 1
931,2 =

§(331+$2):l:—2~(931+ £I72)2— 4931$2 = §(fU1+zl72)=l:§(
It is Worth noting that in place of the square root, which is surely
the key intermediate value in solving the equation, we have a simple
expression in terms of the solutions, namely ($1 — $2).

£121--$2).

5.2 Similar expressions in terms of the solutions of the general cubic
and biquadratic equations can also be found. To be sure, the requisite
computations are correspondingly more complicated. We begin with
the cubic equation, for whose reduced form :33 + pm + q = 0 the three



5. The Search for Additional Solution Formulas 39

solutions can be computed with the help of Cardano’s formula using
the values

:01 =u+11,

$2 : €u+€2v7

$3 = C2u+(v.

From these three equations, using the identity (2+(—|—1= O, which

is clear from the third—degreecyclotomic equation Written 23 ~ 1 =

(22+ z + 1) (z — 1), one obtains expressions for u and 1) in terms of

the solutions:

14 = (501+ C21?+ C$3)»

‘U: oo|v—*c.ol+—t(£81-1- {I132"1-(21133).

Again there is a concise expression for the square root appearing
in Cardano’s formula in terms of the three solutions (:31, 932, $3:

(3)2+ (2)3= 5(U3~'~3>
1 1

= — (371"l‘<2372+ — — (371+ 4x2 + c2m3)354 54

1
— ’1‘g(C2

“ C)
x 0մ� — 931503+ (03303- 932133+ $1.123— 08\xDB�

1
.

=

~~i§pI\xD9�— :c2)(m2~ ac3)(:c1— $3).

As one can see from the presence of i in the last expression, for

the particular case of three real roots the expression under the radical

sign is always negative. More significantis the observation that the

expression is equal to zero precisely when there is a multiple root.

One can also write the analogous product for the general equation
of every other degree in which all the differences of pairs of roots

appear. Such a product of differences, Wl10se square is called the
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discriminant, irrespective of the degree of the equation, is then equal
to zero precisely when there is a multiple root.

If we are given a cubic equation with quadratic term

:c3+a:v2+bx+c=0,
then the solution process begins, as presented in Chapter1, with the
substitution

at
3”‘ Z 3/

_

3)
so that a reduced cubic equation is obtained. The intermediate values

it, 1), and x/(q/2)? + (p/3)3 that appear in Ca.rdano’sformula ca.n

be determined from the solutions of the original equation. All that
is necessary is to replace each solution 933-,j = 1,2,3, in the three
formulas just derived with

1 1
:3, + ga

=

:10,
~

§(9c1+ C132+933),

thereby leaving the three formulas unchanged. The formulas for the
three intermediate values u, 12, and x/(q/2)? + (p/3)?’thus hold un-

changed for the general cubic equation.

5.3 In Ferrari’s procedure for solving the reduced biquadratic equa—
tion $4 + p222+ qzv + r = O, the crucial step is determining a solution
2 of the cubic resolvent

P pr 612
Z3—§Z2—TZ+—2‘—+§=0,

on the basis of which the four solutions can be determined pairwise
from two quadratic equations:

$2? 2z~p:rI}:\/z2—7"+z=:O.

Using Viéte’s root theorem for quadratic equations, we can derive
from these two equations the following Values for the products of the
two pairs of solutions:

$1932 =z+ x/22-7‘,

x3a34=z~— \/z2— .

From this one immediately obtains

1
z =

§(x1:r2+ ac3m4).
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For the sake of completeness we should note that the solution

z —

21 of the cubic resolvent corresponds to a possible, but by no

means prescribed, numbering of the solutions :31, mg, 233, 934. Since

Ferrari’s procedure is a consequence of equivalence transformations,
resting on the condition prescribed by the cubic resolvent with respect
to the value ,2, the selection of a different resolvent solution also leads

to the correct solutions and therefore can affect only the numbering of

the solutions. This has as a consequence that the two other solutions

of the resolvent can be determined from the solutions 3:1, (I32, 933, 3:4 as

follows:

1
z2 = §(:U1rv3

-- 932934)»
1

Z3 : §(l31£L‘4
-- 11321133).

With this, we can express the square root that appears in Car-

dano’s formula in the solution of the cubic resolvent in terms of the

solutions 931, {B2, $3, :04 of the original equation. Up to a constant fac—

tor, the square root is equal to (251— z2)(z2 — z3)(z1 ~— 23), Where a

single factor of this product of differences looks like

1 1

2(:c1:v24 923924 ccirva $2934)— §(m1
— 024)(:v2— ms),

with the result that for the complete product of differences We obtain

(21 32) =

($1 *' z2)(z2 — Z3)(Z1— Z3)
1

=

 \xAF\xFF
— a:4)(m2— a:3)(a:1— a:2)(:r3— m4)(m1»~ :v3)(m2— :34).

Therefore, up to a constant factor, the discriminant of the original
equation coincides with that of the cubic resolvent.

For biquadratic equations that are not in reduced form, one may

proceed as in the case of a cubic equation: First, a biquadratic equa-

tion

a:4+am3+bm2+ca:+d=0

with a cubic term is transformed Via the substitution

(1

into a reduced biquadratic equation. In order to obtain formulas

for the intermediate values that arise in the process in terms of the
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solutions of the original equation, we should replace each solution :3],

j = 1, 2, 3, 4, in the formulas just derived by
1 1

3:, + Zazrj
—

Z(:c1+a:2—l—:1:3+m4).
The polynomials thus obtained take care of the general biquadratic

equation. In particular, we obtain the “first” solution of the cubic

resolvent as

Z1 = §(C'31172+ £B3$4)*

EECE1+ 332 + $3 + 334)2-

5.4 What, then, are the similarities among the three methods for

solving quadratic, cubic, and biquadratic equations? In all three

cases, the crucial intermediate values, that is, the expressions for

the roots appearing in the solution formulas, are representable as

“simple,”that is, polynomial, expressions in the solutions £131,532,. . . .

Of course, the actual form of such expressions depends on how the

solutions are numbered.

Is the ability to express intermediate values as polynomials in

the solutions 931, (I12, . .. really as surprising at it might seem at first

glance? Since a solution method always starts with the coefficients

of the equation, that is, in reference to the general equation with

the elementary symmetric polynomials in the solutions, it is actually
obvious that all the intermediate values can be expressed in terms of

the solutions using the usual arithmetic operations and nested roots.

However, What is not a priori obvious is that polynomials alone sufiice,
which was the case for degrees two, three, and four. That is, in the

representation of the intermediate values, no expression of the form,

Say,

V‘/$1+ \xF0\x88c�

may appear.

Permutations

Changing the order of a finite number of objects is called a permutation.
Since it doesn’t matter what the objects are called, one usually names them

with the natural numbers 1, 2, . . . ,n.
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It is easy to determine the number of permutations of TL objects. It

is nl, read “n factorial,”defined by n! := 1 - 2 « 3---n. To see that this is

so, observe that the number 1 can be placed in any one of the n positions,
which leaves 72 — 1 positions for the number 2, and so on. Altogether, then,
the number of arrangements is equal to n - (n — 1) - - - 3 - 2 - 1.

One simple way of notating a permutation 0 is to list the images of
the elements, that is, the locations 0(1), 0(2), . . . ,a(n) after the exchange.
Symbolically, one has

<
1 2 3 p^N� n

>0(1) 0(2) 0(3)  \xE4\x8C� U01)
’

or, more simply,

(a(1) 0(2) 0(3) cr(n)).

In special cases it can be useful to use a more suggestive notation. We

will use such a notation for the so-called cyclic permutations, in which all

the numbers from 1 to n are moved one to the other in some order, writing

1—>3—>4—>2—>1insteadof(31 4 2).
An important property of permutations is that one can execute them

one after another to obtain another permutation. As with other mappings
and functions, such a process is called composition and is frequently denoted

by the symbol 0. For example,

(1
2 3

4)o<1
2 3

4)_(1
2 3

4)1342 2314-3412’

where the order, as is usual for functions and mappings, is read from right
to left.2 What we have, then, is that the number 1 is sent to position 2, as

seen in the second permutation from the left, and then is sent to position
3, as seen in the permutation on the far left.

The collection of all n! permutations together with the operation of

composition is called the symmetric group and is denoted by Sn. Its iden-

tity element is the identity permutation, which leaves every element in its

original place.

The recognition that all intermediate values of the known so-

lution formulas for the general polynomial equations up to fourth

degree are given as polynomials in the solutions 331,112, . . . is due to

Joseph Louis Lagrange (1736-1813). Lagrange, who was active in

Berlin for the twenty years beginning in 1766 thanks to Friedrich 11,
published in 1771 an investigation into general solution theorems for

2This perhaps unusual order can be explained by the fact that the argument of a

function appears on the right, and so one writes (a 0 1')(j) = o'('r(j)).
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equations of the nth degree. Lagrange’sstarting point was the sys-

tematic investigation of the general solution formulas for equations

up to the fourth degree. Since the intermediate values in the solu-

tion of equations up to degree four are expressible as polynomials in

the solutions £131,332,. . ., it makes sense to search for methods that

express arbitrary polynomials in the solutions 1:1, (122, . . . . More pre-

cisely, one asks the question how a given polynomial h(:z:1,$2, . . . ,a:,,)
in the solutions 331, [B2, . . . can be determined from the coefiicients of

the general equation, that is, from the elementary symmetric poly-
nomials. Concretely, how can one find a simple equation for which

h(a:1,0:2, . . . ,a:,,) is a solution and whose coefficients can be expressed
in terms of the elementary symmetric polynomials.

Lagrange recognized that such an equation can always be found

Via a construction of the form

(3 _ h("I7lam2>- ‘ `\x95&�(z _ h(ma(1)ama(2)a- - - >ma(n)))‘H: 0)

where the product is formed from a suitable selection from among the

n! permuations, that is, exchanges of the Variables’ indices 1,2,. . ..

Concretely, the permutations 0 are chosen such that every possible

polynomial that can arise from h(:E1,. . . ,:rn) through permuting the

variables 931, . . . ,a;,, appears exactly once in the product. Then, as

We shall see, one achieves that the coeflicients of the equation arising

for the unknown z can be calculated in terms of the coefficients of

the general equations, that is, the elementary symmetric polynomi-

als, using basic arithmetic operations. Therefore, for the polynomial

h(a:1, . . . ,a:n) we will have obtained the desired equation.

That this all sounds more complicated than it is in reality can be

seen by means of an example. The polynomial

1 1

h(ar1,962, $3, 9:4) = §(m19:2+ 133$4)—

,—6(:v1+ 9:2 + 263 + zv4)2

appeared earlier when we were investigating the cubic resolvent in

Ferrari’s procedure for solving a biquadratic equation. Lagrange’s
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universal construction leads for this example to the equation

1 1
z —

§(:v1a:2+ :c3m4)+ s z —

§(:1c1a33+ 932.104)+ s

1
X z —

§(:c1r4+ .’L‘2.’L'3)+ 3 = 0,

where we have used the abbreviation

1
28(931,€L‘2,933,904)= 1—6(fl71+ £32+ $3 + $4) .

If we now multiply the three linear factors together, we obtain again—
but now in a generally applicable way—thecubic resolvent from

Chapter 3.

Not only in this special case, but also in general, one finds with

Lagrange’sconstruction an equation for the unknown z in which the

coeflicients are polynomials in the Variables $1,552, . . .. Since any

permutation of the variables 131,232, . . . simply rearranges the linear

factors, the polynomials that form the coefficients of the equation
constructed for the unknown 2 remain unchanged. Thus all coeffi-

cients are symmetric polynomials in the variables a:1,x2, . . .. And

such symmetric polynomials, that is, the coeflicients of the general
equation of nth degree, are always able to be expressed in terms of

the elementary symmetric polynomials using addition, subtraction,
and multiplication. This can be summarized in the fundamental the-

orem of symmetric polynomials.

Theorem 5.1. Every symmetric polynomial in 2:1, .732, . .. is a poly-
nomial in the elementary symmetric polynomials.

This theorem was first formulated by Lagrange. However, the

theorem was apparently known a century earlier by the physicist
and inventor of the calculus Isaac Newton (1643-1727), along with

a procedure for representing symmetric polynomials, for example, by
determining concretely

IE?-1-£L‘§+m§+'" = (371+£B2+€U3+---)2—2(£L‘1$2+$1$3+$21E3+~- 0'|�
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and

a:§:v2+ 123961+ mfaca+ :z:§:v1+ :c§a;3+ :v§:n2+ - --

= (:v1+m2+:vs+---)(:v1:c2+:v1:va+w2:v3+---)
— 3(:v1:v2a:s+ a:1:c2a:4 + 5131133534 + :z:2:z:3:n4 + - - - ).

How this theorem is proved using a constructive algorithm is ex—

plained in the section on the fundamental theorem of symmetric
polynomials. There is a specificapplication of Lagrange’stheorem

on symmetric polynomials to the discriminant

H(50z''— 93392= (931— $2)2(-‘E1— =Fa)2($2— ' "

2

iii

for which there must be a polynomial expression in the coefficients

due to its symmetry for each degree n of the underlying equation.

Another polynomial in the variables $1,552, . . . that had central

importance for Lagrange irrespective of the degree of the equation is

what is today called the Lagrange res0l1)ent3

h’(:E1:"1;27' ' ' 3:571): :81 +€x2+ £2533+ ' ' ' + €n—133n>
Where C is an nth root of unity. Since

h(:z:1,m2,...,:vn) = C - h(ac2,:r3,...,a31) = \xE0w\x81�

= C”_1- h(:rn,m1, . . . ,:nn_1)

and thus

h((131,£l32,...,1L‘n)n= h(ac2,:v3,. . .,:c1)" = \xC0X\x82� = h(:cn,ac1,. . . ,mn_1)",

one obtains with Lagrange’suniversal procedure for h(:c1,2:2, . . .
, run)”

a resolvent equation of degree (n — 1)! whose coefficients can be ex-

pressed in terms of those of the original equation. If this equation
were solvable using a general formula, the original equation could be

solved, since we have

1
ml :R(371+“'+517n+hI(371>w2>533>-Hymn)+h(331»$3a$4a-H1372)

+' "‘l‘h4(371a-7771:5132--~a5vn—1))

3However, even before Lagrange, such expressions were used by Bézout (1730-
1783) and Euler (1707~1783) in their work on solution formulas for the general nth-

degree equation.
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and analogous equations for the other solutions. Although for n 2 5

no general solution for Lagrange’sresolvent is apparent, his method
is successful in some special cases. The first to achieve such success

was Alexandre-ThéophileVandermonde (1735-1796), who in 1770,
independently of Lagrange, investigated “his” resolvent. We will have
more to say about this in Chapter 7.

The Fundamental Theorem on Symmetric
Polynomials

We recall Theorem 5.1:

Every symmetric polynomial in the variables $1,332, . . . can be

expressed as a polynomial in the elementary symmetric polyno-
mials.

A proof of this theorem is most easily accomplished by complete induction.
The order in which the induction will be taken will be based on a special
ordering of the polynomials, one related to the lexicographic ordering of
words in a language.

We define a monomial :12?@\xA4�� to be “bigger”than the monomial

mil”- - - 931°,"if in listing the exponents jl, jg, . . . in order, the first exponent
jg that differs from the corresponding exponent ks is larger than ks. For

example, according to this definition,the monomial \xD0x�� is bigger than
the monomial :c§:I:§a:§.r4,based on the lexicographic order of the two strings
“251” and “2421.”

The induction step now begins with an arbitrary symmetric polynomial

f($1a ' ' ' 23371): Z aj1~~‘jn${1H'a737.n
.71 J71.

whose biggest monomial with nonzero coeflicient amlmmn is the mono-

mial at?”---:u;"". We assume for the induction hypothesis that the the-
orem has already been proved for all polynomials whose monomials with
nonzero coefiicients are all smaller than the monomial 1:27;”- - -:1:,'[‘".Since

f(m1, . . . ,mn) is a symmetric polynomial, every monomial :c;n°(1)- - - a:ZL"("),

where 0‘ is any permutation of the numbers 1,2,. . . ,n, has the same co—

efficient am1,,,m,,. It follows that ml 2 mg 2 \xB0!�� 2 mn, for otherwise,
one could use a suitable permutation to find a monomial bigger than

$17”- - - cc?" whose coefficient in the polynomial f(:1:1,. . . ,m,,) is nonzero.
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Now a very special polynomial in the elementary symmetric polyno-
mials is formed:

g(a;) = am1...m,, \xA0���37j)m1—m2(ZQ7j-'17k;)m2—Tn3- - » ($1322- - - :cn)'"".
.7 jjj

The term with the largest nonzero coeflicient is

# 777-2 “"13 ml .7”?mi“ m’(«’F19«‘2)"'(931932"'iL‘n)m"=001$2 ---$3",

so that the induction hypothesis is valid for the polynomial f ~

g.

The procedure for the induction step can be put to practical purpose

if for a given symmetric polynomial, a polynomial in the elementary sym—

metric polynomials is to be calculated explicitly. After a finite number of

steps the procedure ends with the zero polynomial, which is valid both for

the formal induction proof and as the starting point for the induction.

Furthermore, the procedure described shows that for symmetric poly—
nomials with integer coefficients one can always find integer polynomials in

the elementary symmetric polynomials.
Finally, we note that with symmetric polynomials the representation

by elementary symmetric polynomials is unique. This is due to the follow-

ing uniqueness theorem, in whose formulation one can restrict to the case of

the zero polynomial (for the “general”situation of two equal polynomials,

one looks at their difference).

Theorem 5.2. A polynomial f(y1, . . . ,y,,) that vanishes at the elementary

symmetric polynomials, that is, for which

f(Z.'.C_7’,ZCl7jil7]¢,,...,£l31fl32"'13-n_):0,
j jjj

is itself identically equal to zero.

The proof is by contradiction. Suppose that we have a polynomial

f(y1, . . . ,yn) yé0. We select from among the monomials 3/{"1- - - y,’{‘"with

nonzero coefficient a the monomial that in the arrangement of n—tuples

(ml -1- mg + - - - + TI1n,’ITL2+ - - - + mm . . . ,m,,) has the “largest”n—tuple
in the lexicographic sort order. Such a monomial is uniquely determined,
since for two equally large n-tuples, the exponents of the two monomials

in question are the same. It follows that

f(Z:.'I3j,2CUjI13};,...,(l71(l72
j jjj

: am;ni+m2+~~+mn$;n2+---+mn,_,m7v:1n+ g(aJ,1’. . ‘ VT”),

wherein the polynomial g only monomials appear that are lexicographically
smaller than the first monomial. Altogether, then, as a sum, expressed as
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a polynomial in the variables :01, . . . ,:c,,, we obtain a polynomial different
from the zero polynomial. But this contradicts the assumption.

5.5 We are not going to go any more deeply into Langrange’sin-

vestigations, since aside from his theorem on symmetric polynomials,
his results will not be needed in the later chapters of this book. It
is worth noting, though, the great influence of Lagrange’swork on

later mathematicians such as Abel and Galois. It was Lagrange’s
great accomplishment to have noticed the significanceof permuting
the solutions of an equation. Lagrange was also certainly the first to

have recognized the main difficulties in solving the general equation
of fifth degree. Lagrange was able to simplify the universal method

for “his” resolvents in the case of the general fifth—degreeequation,
though it led to a resolvent of the sixth degree to be solved, for which
no simplificationpresented itself. The first attempt to establish the

impossibility of a solution of the general fifth-degreeequation in terms

of nested radicalsficalled a solution in md2'cals~was undertaken by
the Italian Paolo Ruflini (17654822), who held chairs in mathematics
and medicine at the University of Modena. Although his attempts
at a proof are incomplete, his arguments go a long way toward es-

tablishing that unlike the general fourth-degree equation, that of the

fifth degree can have no solution in radicals for which the inter1ne—

diate Values are polynomials in the variables $1, $2, . . .. Lagrange’s
methods of findinga general solution to the equation of fifth degree
could not, then, lead to success. (See the section on Ruflini and the

general equation of fifth degree.)
Ruflini’s work on the impossibility of solving the general fifth-

degree equation in radicals appeared between 1799 and 1813. A com—

plete proof of this impossibility—originallycompletely independently
of Ruffini’s Work—Was given in 1826 by the twenty—four-year-oldDan-

ish mathematician Niels Henrik Abel. Abel’s proof contains in partic-
ular a proof of the assumption made by Ruffini Without proof, namely,
that if a solution in radicals of the general fifth—degreeequation were

possible, the steps in the solution could always be arranged in such

a way that all intermediate values are polynomials in the variables
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5121,1132,. . . . Thus intermediate values of the form, say,

ts/1+a33+3/:r1+m3a:4

in a general solution formula with radicals can always be avoided.

Abel’s impossibility proof applies only to the generalequation of

fifth or higher degree, in which the solutions 3:1, 3:2, . . . interpreted as

variables are to be determined in the sense of a “generalformula” in

elementary symmetric polynomials. Whether the solutions of special

fifth—degreeequations such as, for example,

m5—a:~1:0,

f+%m~nm=a

can be represented in terms of nested radicals is not answered in

Abel’s proof. Thus, for example, the solutions of the first of the

above equations cannot be so represented, while in fact the second

one can. For instance,

$1 = 6/571+6/i§+ x5/64 —- {/144.

From Abel’s posthumous papers, it is known that in 1828, after

he had returned to Norway from research trips to Berlin (1825) and

Paris (1826), he was working on questions of the solvability in radicals

of special equations of the nth degree. Alas, at the time, Abel was

seriously ill with tuberculosis. In modest circumstances and with—

out having achieved a position commensurate with his mathematical

accomplishments, Abel died in 1829 at the age of twenty-six.4 The

problem of whether and under what circumstances a particular equa-

tion is solvable in radicals had to wait several years for a solution by
Galois.

Ruffini and the General Equation of Fifth Degree

Ruffini’s argument for why there is no general solution consisting of only
arithmetic computations and extraction of roots of equations of degree five

and higher was incomplete in some details. Moreover, Ruffini’s method of

4For a biography of Abel, see Arild Stubhaug, Niels Henrik Abel and His Times,

Springer, 2000 (Norwegian original, 1996).
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argument was quite unusual for his time, in which mathematics relied very
heavily on concrete calculations. Receiving little attention and recognition
from his mathematical peers, he attempted to improve and simplify his

argument. In what follows we will look at the central idea of his last

attempt at proof in 1813 in a slightly revised form.5
Ruffini’s research considers the ways in which the variables of a given

polynomial can be permuted without changing the polynomial. For ex-

ample, the polynomial asy
— 3z2 remains unchanged when the variables :1:

and y are interchanged, while that is not the case for the remaining four
permutations aside from the identity. The following result is the basis of
Ruffini’s attempted proof:

Theorem 5.3. For a polynomial g(a:1, . . . ,:m;) in the variables :1:1,.. . ,:c5,
let f(:1:1,. . , ,a:5) denote the mth power g(a31,. . .

, 5125)“,where m is a natural
number. Then if the polynomial f satisfiesthe identities

f(fl?1,fl72.1v3.m4:035)= f(932»$3,f(932»$3,f(932»$3, f(932»$3,f(932»$3,= f(931»£I32,a74,€B5,903)
for the corresponding permutations of the variables, then the analogous
identities hold for the polynomial g.

A proof begins with the remark that the assumption is equivalent to
the identity

9(=v1.9(=v1.9(=v1. 9(=v1.9(=v1.= 9(~”02.903,931,f04,f05)m
= g(:z:1,cc2,:1:4,:r5,m3)m.

Thus there must exist two mth roots of unity (1 and (2 such that

9($1,-’B2,933;1I«’4,$5)= C19(€B2,973,961,=B4.-'35),
g(.’L‘1,(II2,.'I}3,£‘C4,(E5)= C2g(.’I31,.’I22,£D4,(I35,£II3).

By repeatedly applying the underlying permutation of the variables in
the first equation—~inboth equations three variables are permuted cyclically
and the remaining two are unchanged—oneobtains the following result:

9(001,$2,$3.934.w5)= C19(fl72.w3,w1,934,fB5)= Cl9(f'3a,f01,$2,=v4»005)

=Cf9(w1,$2:$3a$4,035)-
This together with the analogous computation for the second permu-

tation implies that

5See Raymond G. Ayoub, Paolo Ruffini’s contributions to the quintic, Archive
for History Exact Sciences, 23 (1980), pp. 253~277; Raymond G. Ayoub, On the non-

solvability of the general polynomial, American Mathematical Monthly, 89 (1982), pp.
307-401; Christian Skau, Gjensen med Abels og Ruffinis bevis for unmuligheten av 5.
lgzise den generelle n’ tegradsligningen algebraisk nér n 35, Nordislc Matematisk Tid-
skrift (Normat), 38 (1990), pp. 53-84, 192; Ivo Radloff, Abels Unméiglichkeitsbeweis
im Spiegel der modernen Galoistheorie, Mathematische Semesterbertchte, 45 (1998),
pp. 127~139.
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Now the two permutations are combined. In particular, the first per-

mutation is followed by the second:

g(m1,:n2,a:3,:134,:I35)= C1g(a22,:v3,:v1,w4,rc5)= €1C2g(032,033,fI34,9J5,IB1)-

If the first permutation is executed twice, then one obtains

9(»”v1,$2,-T3,764,0»’5)= C19(~T2,w3,$1,$4,935)= CfC29(~’03,931,034,a75,fC2)~

For the two permutations that underlie the last two derived equations,

the five variables .are permuted cyclically (that is, the two Cycles 331 —>

:r2~+:c3-—>cc4—-+m5—>a;1and:I:1—>m3——>:r4—»a:5—>:132~—>a:1).With

analogous argumentation to that for the two three—cycles,one obtains

<<1<2>“’= (cf<2)5= 1.

From these two identities it follows immediately that C? = 1 and then,

using the previously obtained equations, (1 = (C32((3-1 = 1. Building

on this, we also obtain C5‘= 1 and (2 = ((3)2(C§’)_1= 1, from which

finallythe asserted identities for the polynomial g follow.

With this proven property of polynomials in five variables, it is at once

plausible that a solution formula for the general equationof fifth degree can-

not exist, at least not in the manner of the formulas for equations of lower

degree. That is, as described by Lagrange, those formulas are obtained by

beginning with the elementary symmetric polynomials and through them

determining step by step polynomials g1, g2, . . . in the Variables 3:1, 3:2, . . . ,

so that for each of them a power is found that can be determined from

the polynomials obtained in the previous steps using the four elementary

operations. The jth step therefore has the form
‘

gj(:1:1,m2,...)mj = fj(CC1,.’1)2,. ..),

where the function fj is expressed in terms only of the elementary sym-

metric polynomials and the polynomials g1, g2, . . .

, gj_1 determined in the

previous steps. If the given general equation is of degree five (or greater),
then Rufiini’s argument can be applied inductively to assert that every

polynomial gj must satisfy the condition

9a‘(9«"1,902,~’vs,=B4,005)= 9a'(iB2,-"33,3?1,9a'(iB2,-"33,3?1,9a'(iB2,-"33,3?1, 9a'(iB2,-"33,3?1,9a'(iB2,-"33,3?1,= 9j(fB1,fl32,fl74,i1?5,€133)~
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None of the steps can therefore lead to the polynomial of the last solution

step, such as, for example, g(:c1,a;2, . . �"k� 2 931.6

Exercises

(1) For a given cubic equation

a:3+aa:2+b:c+c=O,

determine the cubic equation whose solutions are the squares of

the given equation.

(2) Show that the solution of the general biquadratic equation

:1:4+a:1:3+b:n2+ca3+d=0

can be obtained directly, that is, Without transforming it into a

reduced biquadratic equation (Without a third power) by con-

structing a cubic equation for the resolvent

Z = 9311172 -I- (123124

in order to calculate the solutions of the biquadratic equation
from the resolvent z.

(3) Carry out the calculations implied in the previous exercise for

the resolvent

z =(a=1 + m2)(ws+ 0:4)-

6The question natually arises as to the points at which R.uffini’s argument is

incomplete and how these deficits can be fixed. We have already mentioned that
Abel offered a proof that a solution in radicals of the general equation, if one exists,
can always be obtained in such a way that each intermediate step corresponds to a

polynomial in the solutions. A reproduction of Abel’s proof with commentary can

he found in Peter Pesic, Abel’s Proof. An essay on the sources and meaning of
mathematical unsolvability, Cambridge, MA, 2003, pp. 155-174. As an alternative
to Abel’s argument, it is also possible to extend permutations to formal expressions
containing nested radicals, such as

15/1+:I:3+ 3/$1 +:z;g:1:4.

One can find a complete proof based on this approach in John Stillwell, Galois theory
for beginners, American Mathematical Monthly, 101 (1994), pp. 22-27. We will not

go into this further, preferring to highlight Galois’s more general approach.
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(4) For two polynomials with decompositions into linear factors

f (X) (X --(X -

900 =

one defines the resultant by

R(f,9) = flfi(wz— 21;)-
i=1 j=1

$71):

Clearly, the resultant is identically zero precisely when the two

polynomials have a root in common. Show that the resultant

can be formally derived from the coeflicientsof the polynomial.
Give an explicit formula for the case n = m 2: 2.

A permutation is called cyclic if it permutes k of the 72 numbers

1,2, . . . ,n cyclically and leaves the remaining 71 — k numbers in

place. A cycle that exchanges exactly two numbers is known as

a transposition. Prove the following:

(a) Every permutation is the product of cycles.
‘

(b) Every cycle is the product of transpositions.

(c) Every permutation is the product of transpositions.

(d) Every permutation is the product of transpositions that

exchange the number 1 with some other number.

(e) Every permutation is the product of transpositions that

exchange two adjacent numbers j and j + 1.



Chapter 6

Equations That Can Be
Reduced in Degree

In contrast to the equation 1:5—2:v4—~4a:3+2:1:2+11cn+4=

0, whose solutions can be determined from a quadratic
equation and a cubic equation with integer coeflicients,
nothing is comparable for the equation 21:5 +6ar:2+ 3 = 0.

What is the basis of this difference, and how can it be

recognized?

6.1 The previous chapters dealt with techniques for findinggen-
eral solution formulas for equations of particular degrees. Now, with
Abel’s proof of the impossibility of findinga formula for the solution
in radicals of the general equation of fifth or higher degree, we shall
restrict our attention to special equations of fifth and higher degree.

The first equation presented at the beginning of this chapter is

an example of an equation that though not decomposable into linear

factors, can be decomposed into factors whose degrees are greater
than 1. Since

a:5—2:r4—4:r3+2:c2+11a3+4=(m3—31:—4)(a:2—2:z:—1),

three of the five solutions can be determined from the cubic equation

(:z:3—3m—4)=0,

and the remaining two solutions form the quadratic equation

332-251;-1:0.
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Using the methods described in the previous chapters, one obtains

the solutions

(L‘1,2,3=€‘3 \xDE\xE0 \3/2—\/g\xB0��� C321,

.’1?4)5=1::\/§.
‘

For the second equation, there is no corresponding decomposition

of the polynomial 2185+ 63:2 -5- 3 into two polynomials with rational

coefficients. How such a negative assertion can be justified and how

decompositions can be found when they exist is the topic of this chap-

ter. In contrast to the previous chapters, in which concrete computa—

tions stood in the foreground, here we will be rather more concerned

with a qualitative point of View relating to properties of polynomials

with rational or integer coefficients. The proofs are not too long and

difficult, but in comparison to what has gone before, they are based

on a different type of argumentation.

The basis of applications is the following proof, due to Carl

Friedrich Gauss:

Theorem 6.1. Let g(:L')and h(a:) be two polynomials whose leading

coeflicient(that is, the coeflicientof the highest power of IL‘)is 1 (such

polynomials are called monic), all of whose coefiicientsare rational,

and whose product g(m)h(;z:)is a polynomial with integer coefiicients.
Then all the coefificientsof the original polynomials g and h must be

integers.

This theorem can be seen as a drastic generalization of the well-

known fact that the square root of 2 is irrational. Namely, the poly-

nomial {E2— 2 does not admit a decomposition into linear factors with

rational coefficients, since such coefficients would have to be integers,

which is obviously impossible. Moreover, the argumentation in the

section on the decomposition of polynomials with integer coefficients

has a certain relationship with that in the classical proof that the

square root of 2 is irrational. The basis of both is a detailed check of

divisibility relations, where the assumption of such a relation leads to

a contradiction.
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The Decomposition of Integer Polynomials

Recall Theorem 6.1:

If \xB0\x8F\x94�and Min) are two monic polynomials with rational coefl°1~
cients whose product g(:c)h(m) has all integer coefficients,then
the two polynomials \x80�\xEE�and h(:r) have integer coefficients.

The proof of this theorem, which goes back to Gauss, begins with multiply-
ing through by denominators in g(:r) and \xE0\xB1\xEA�In particular, we determine
two integers a and b of minimal size for which the two polynomials a - g(m)
and b - g(:c) have all their coefficients integers. We denote these coefficients
by co, c1, . . . and do, d1, . . . . We now investigate the product ab « �4\xE5�

We will now show by obtaining a contradiction that there is no prime
number 13 that divides all the coefficients of the product ab - \xB0c\xE3�This
is how we shall prove the assertion: since the product \xC0�\xE3� has integer
coefficients, the nonexistence of the asserted prime p implies at once that
ab = 1, and therefore a = b : 1, so that given how a and b were chosen,
it follows that the given polynomials `ѧ� and Mac) cannot have had any
denominators to get rid of, and so their coefficients must have been integers
to begin with.

Let us therefore assume that there exists a prime number p that divides
all coefficients of the product polynomial ab - \xF0k\xDA�In reference to this

prime number p we consider two cases:

Case 1. We first consider the case in which neither the polynomial
a - g(:n) nor b - h(:13)contains only coeflicients divisible by p. Thus we may
find the smallest indices j and I9 such that neither Cj nor dk is divisible by
p. The coeflicient of the term 9cj+k of the polynomial ab - g(:r)h(ac), which
can be expressed as the sum

Cjdk + Cj—1d/c+1+ ‘ - - + Cj+1dk—1+ ' --

,

is seen not to be divisible by p, in contradiction to our assumption, given
the choice of j and is, since the first summand cannot be divisible by p,
while all the other summands must be divisible by 13.

Case 2. In this case, we assume that all the coefficients of either
a - g(:v) or b - h(m) are divisible by p. Without loss of generality we may
assume that this holds for a- `\xB1\xCB�Since in the polynomial g(:1:)the leading
coeflicient is 1, it must be the case that a is divisible by p. In particular,
a > 1. But that delivers our desired contradiction, since the polynomial
% - g(m) must possess integer coefficients, contradicting the minimal choice
of a.
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If we now apply the theorem to the special case of searching for

a linear factor, we see at once that monic polynomials with integer

coefficients can have only integer roots among its rational roots. Since

such roots must divide the constant term of the polynomial, one can

easily check a finite number of integers as potential roots to determine

all rational roots of the polynomials.

6.2 Before we describe how in many special cases the demonstration

of the impossibility of a product decomposition into polynomials with

rational coefficients can be simplified,we shall look at some examples.
We would like to know how a product decomposition can be found if

one exists. As an example, let us consider the polynomial 3:5 — 2x4 -

4a:3 + 251:2+ 1120 + 4 presented at the beginning of the chapter. If

there is a decomposition, then one of the factors must be of first or

second degree, and the theorem tells us that we may limit our search

to monic polynomials with integer coefficients. We immediately see

that there is no linear factor, since there are only six factors of 4 to

check, namely :|:1, :l:2, :|:4, none of which turns out to be a root of the

polynomial. Therefore any decomposition would have to be of the

form

:v5—2:v4—4:1:3+2:1c2+11a:+4

b

where a and c must be integers and (2must be one of the six factors of

4. One can obtain further restrictions on the coefficients by evaluating

the fifth—degreepolynomial at integer arguments. For example, at

:12 = 2, the polynomial has the value 2, so that, for instance, the

hypothetical quadratic factor must divide 2 when w = 2. Therefore,
the expression 4 + 2a + b must be one of the four factors of 2, namely
one of i1,:|:2. Already these two restrictions allow us to conclude

that in all, “only”6 - 4 possibilities for a and b need to be tried.1

=(a:2+a:1:+b)=(a:2+a:1:+b)=(a:2+a:1:+b)

1A completely different approach is possible if one determines the five complex
roots of the polynomial to be factored using numerical approximation. Then one need

only check which possible selection of linear factors produces a polynomial with integer

Coefficients, which can be done without the possibility of rounding error by multiplying
out any polynomials thus obtained. Those in a hurry can try a computer algebra

system. Thus the Mathematica command Factor[:z:5— 2:134— 47:3 + 2:z:2 -1- 11:1; + 4]
immediately yields the result (-1 — 2:1: + .722)(-4 — 3:1: + :33).
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With such restrictions on the coefficients one can of course also
reach negative conclusions, that a given polynomial with integer co-

eflicients cannot be expressed as the product of two polynomials of

lower degree. Such polynomials are called irreducible over the rational

numbers.

6.3 As promised, for a proof of irreducibility there frequently exist
easier ways that make decisive use of divisibility relations. On the

polynomial 2505+ 6:32 + 3 introduced at the beginning of the chapter
we can use the so—calledEisenstein irreducibility criterion, named for
the mathematician Ferdinand Gotthold Max Eisenstein (1823—1852),
who proved this theorem in 1850, independently of a proof given four

years earlier by Theodor Schonemann.

Theorem 6.2. Suppose we are given a polynomial f(£L')= m” +

an-1a2”‘1+ - - - + alzv + a0 with integer coefiicientsthat satisfiesthe

following conditions for some prime number p:

0 an_1, . . . ,a1,ao are divisible by p.

0 a0 is not divisible by p2.

Then the polynomial f is irreducible over the rational numbers.

The proof of the Eisenstein irreducibility criterion is not very
difficult. It can be found in the appropriately named section of this

chapter.

There is no trick to showing that the polynomial 2x5 + 6:122+ 3

is irreducible using the Eisenstein criterion. (Recall that irreducible
means that the polynomial cannot be decomposed nontrivially into

two polynomials of lower degree with rational coefiicients.)To ob-

tain a monic polynomial, we begin with the polynomial multiplied by
16, which can be written (2ac)5+ 24(2:r)2+ 48. With respect to the

Eisenstein criterion for the prime p = 3, the polynomial 3/5+ 24y2+48
is irreducible over the rational numbers. Therefore, the polynomial
2:135+ 6:132+ 3 is also irreducible, since a decomposition would imme—

diately carry over to one for y5 + 243/2+ 48.

6.4 An important application of the Eisenstein irreducibility criterion

is to the cyclotomic equation $7‘ — 1 = 0. Since the linear factor
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(ac— 1) can be removed, the cyclotomic equation is never irreducible

for n > 1. However, for a prime exponent n, the linear factor (:1:—

1) is the only possible decomposition into polynomials with rational

coefficients. In other words, if you factor out the linear factor, what

is left is irreducible. That is, it can be shown that the, polynomial

:I:"—1

$—1
__::L,n—1+$n——2+___+m2+$+1

is irreducible if n is prime. To prove this, make the substitution

1: = y + 1, obtaining, using the binomial theorem,

‘“—%’:~1=v"”+‘“—%’:~1=v"”+y"”+'-~+(Z>y2+(Z>y+(?>

As is well known, all the binomial coefficients are integers. Fur-

thermore, the last representation given shows that all the binomial

coefficients that appear are divisible by n, since the prime factor n

appearing in the numerator is not canceled by anything in the de-

nominator. We can then apply Eisenstein’s criterion for the prime n

to the polynomial (ac" ~ 1) /(:1: — 1), whence this polynomial is seen

to be irreducible over the rational numbers.

Eisenstein’s Irreducibility Criterion

Recall Theorem 6.2:

Suppose we are given a polynomial f(a:) = at" + an~1:c”_1+

« - «+a1:c+ao with integer coefficients that satisfies the following
conditions for some prime number p:

o an_1, . . . ,a1, a0 are divisible by p.

a a0 is not divisible by 112.
Then the polynomial f is irreducible over the rational num-

bers.

The proof can be carried out indirectly once again; that is, we assume the

opposite of what we are trying to prove and arrive at a contradiction. We

thus assume that we have a decomposition \xF0}\x90�= g(a:)h(cc), where g(a:)
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and h(m) are monic polynomials with rational coefiicients:

g(m) = crmr + cr_1mT_1+ - - - + co,

h(:c) = dsms + ds_1a3s"1+ - - . + do,

with cr = ds = 1. It is of course assumed that the degrees 7" and s are each
at least equal to 1.

From the previous theorem, all the coefiicients cr,c,_.1, . . . ,co and

d5,ds~1, . . . , do must be integers. Since the product (10 = codo is divisi-
ble by the prime number p, but not p2, exactly one of the coefficients co
and do must be divisible by p. Let us assume that it is co. Thus the coeffi~
cient do is not divisible by p. Since cr 2 1, we can find the smallest index

3' for which Cj is not divisible by 13. For the corresponding coefficientsaj of

the polynomial f we have the formula

tlj = Cycle-1- Cj—1d1+ - - - + Codj,
where the first summand is not divisible by p, while all of the others are

divisible by p. Thus (lj is not divisible by p, which on account of j S r < n

is a contradiction.

Exercises

(1) Find a factorization of the polynomial

$6 + 91? + 19:34 — 4a:3 + 5:22 — 13:3 — 3

over the rational numbers into irreducible factors.

(2) Show that the polynomial

m6+41:5—2:n4+:r3—39:2+5a3+1

is irreducible over the rational numbers.





Chapter 7

The Construction of

Regular Polygons
With the words, “With concentrated thought \x90�\xE7� in the

morning \x90\xC2\xE5� (before I got out of bed),”Carl Friedrich
Gauss describes the circumstances surrounding his dis~

couery in the year 1796' that the regular seventeen-sided

polygon can be constructed using straightedge and com-

pass. How could Gauss have managed to consider the

possibility of a geometric construction as an eazercise of
pure imagination?

7.1 The discovery described above by the eighteen—year—oldGauss on

March 29, 1796, marks the beginning of a life in mathematics whose

scope and significancehave seldom been equaled.1 Gauss himself
described in a literary journal his discovery regarding the regular
heptadecagon (seventeen—gon)thus:

It is known to every beginner in geometry that var-

ious regular polygons, namely the triangle, penta-
gon, fifteen—gon,and those obtainable by doubling
the number of sides, have been known to be con-

structible since the time of Euclid, and it would ap—

pear that since that time, mathematicians have con-

vinced themselves that the field of elementary geom-

etry was unable to yield further results; at least I

1The chronology of Gauss’s discoveries is extraordinarily well documented in his
mathematical diaries. The first entry reads, “fundamentals on which the division of the
circle is based and indeed its divisibility into seventeen parts, etc.” See C. F. Gauss,
Mathematisches Tagebuch, 1796'~1814, Ostwalds Klassiker Nr. 256, Leipzig, 1976.

63
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know of no successful attempt at extending geome-

try’sreach in this direction.

All the more, it seems to me that note should be

taken of the discovery that in addition to those reg-

ular polygons, a host of others are amenable to geo-

metric construction, for example, the heptadecagon . . . .

Geometric constructions with straightedge and compass, gener-

ally of triangles from three given data, are a residue of classical mathe-

matics still a part of the standard school curriculum. The significance
of such exercises is less their practical application than, aside from

being part of a tradition that stretches back to antiquity, to aid the

student in developing logical habits of thought. Construction with

straightedge (unmarked ruler) and compass is limited to prescribed

elementary operations that allow the construction of certain points,

starting with two points separated by a distance of unit length. Thus

given a set of points that have been thus constructed, the following
can be additionally constructed:

0 Draw a circle whose midpoint is a point that has been con-

structed and whose radius is the distance between two con-

structed points.

0 Draw a straight line between two constructed points.

0 Every intersection of circles and lines drawn in the previous two

steps is considered a constructed point.

At first glance, there seems to be no connection between such

geometric constructions and equations in one variable. However, as

we have seen in Chapter 2, the nth roots of unity in the complex plane,
that is, the n solutions of the equation 2:" — 1 2 0, are the vertices

of a regular n—gon, and indeed with the unit circle as circumscribing
circle. Consider Figure 7.1. If starting at the point 1 = (1,0) we

can show that the next point of the n—gon in the counterclockwise

direction, namely C = cos \xC0*Y�+ isin �IM� can be constructed with

straightedge and compass, then we will have succeeded in proving the

regular n—gon to be constructible.

Gauss, who was well acquainted with the geometric interpretation
of complex numbers as points in the plane~—indeed,in his honor one
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sometimes speaks of the Gaussian plane——wasable to solve cyclotomic
equations in radicals. In order to find suitable intermediate values,
he first ordered the nth roots of unity in a particular way, motivated

by his knowledge of the divisibility properties of the integers.

Figure 7.1. The solutions of the cyclotomic equation 2:8-1 =

0 form a regular octagon. All eight eighth roots of unity can

be expressed as powers 1,(,(2, . . .,C7 of the primitive root

(2 cos \xC0\xAE\xE0�+ isin

It seems sensible at this point to order the roots according to their

position on the circle, that is, as seen from Figure 7.1, in the order

1,C,(_,"2,...,("”1,where C = cos @��� +z'sin P]\xF0�Gauss, however,
realized that it makes sense to list the roots in quite a different order,
at least in the case that n is a prime number. Considering that Q" = 1,
the value of (j depends only on the remainder when j is divided by
n. Therefore, we can choose any order of the possible remainders on

division by n. In addition to the obvious order 1,2,. ..,n
—~ 1, it is

possible, in the case of a prime number n, to obtain all the nonzero

remainders 1,2,. . . ,n
— 1 not only by repeated addition of 1, but

by repeated multiplication by a suitable number g.2 This leads to

2A proof of this fact can be found in the epilogue to this book.
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an ordering g0,g1,g2, . . . , g”‘2. The remainder obtained when g is

divided by n is called a primitive root modulo n.3

In the case of n = 17, for example, one can choose g = 3. Indeed,

starting with g0 = 1, after g1 = 31 = 3, g2 = 9, one has g3 = 33 =

27 E 10 mod 17. Then comes 34 E 3- 10 = 30 E 13. Altogether, one

obtains the order

3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1.

Since the list ends with gm E 1, we could continue with g17 E 3,

gm E 9, and so on ad infinitum.

In the case of a regular heptadecagon (17—gon),the resulting list

of roots of unity takes the form

(-1 C3 C9 C10 413 Q-54-15(:11 C16 C14 (8 4-7 C4 (12 C2 {-6) 1 7 5 > 7 3 ) ) 3 ) ) 3 1 9
‘

The purpose of this is to form partial sums of the roots of unity,
called periods, which allow for a step—by—stepcalculation of the roots

of unity. One begins with the two periods containing the roots of unity
that stand in odd, respectively even, positions. These are called the

ez'ght~member periods:

no:€1+4-9+€13+€15+¢-l6__C8+<-4+4-2’

771:§-3+€1O+C5+4-11+;-l4__€7+€l2+€-6.

Next one considers the four periods containing the roots whose

positions differ by 4 in the list. These sums of four roots of unity are

called four~member periods:

uo=<1+¢13+<;1“+<4,

u1=c3+<5+c14+c”,

u2=<9+<15+€8+<"’,

us=<1°+<“+<7+<“.

Finally, we consider the two—memberperiods, which are the sums

of roots of unity a distance of eight apart in the original list. For our

3The expression “modulo n” is generally used to indicate that the identity in

question holds only up to a division by n. For example, 12 is “equal”to 46 modulo

17, or in mathematical language, 12 is congruent to 46 modulo 17, written 12 E 46

mod 17, since both numbers have the same remainder, namely 12, on division by 17.

Equivalently, when the difference 46 — 12 is divided by 17, the remainder is zero.
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purposes the following two periods suffice:

fie= <1+ <16,

fl4= <13+ <4.

All of these periods are real and have the further property—and
this is what Gauss recognized by “concentratedthought”—obtained
by this special construction that every period can be obtained from
the next-longer period by a quadratic equation. For this the periods
are paired off, so that each sum and each product of the pair can be
represented as a sum of periods of double the length. Let us see how
this works.

The calculation begins with the two eight—memberperiods 770 and
771. Their sum is not too difficult to calculate:

no+?71=€1+C2+-~+C16=(1+C1+C2+-~+C16)—1=-1,
where we note that the sum of all nth roots of unity is always zero,
which follows at once algebraically from Viete’s root theorem applied
to the cyclotomic equation, while geometrically, the origin is clearly
the center of mass of the n vertices. In contrast, determining the
sixty—fourproducts in 770771 is tedious. After great but elementary
effort, one obtains that 771171 = -4. Therefore, the two eight—member
periods can be calculated as solutions of the quadratic equation

y2+y — 4 : 0)

yielding

no 1 = -E :l: \xC0*��’

2 2

Now from the two eight—memberperiods 770 and 171, the four four-
member periods ,ug, ,u1, ,U,2, #1; can be calculated, though we shall omit
the gory details:

/1/0+M2:=7lOa

/1o#2=C1+C2+'''+C16=*1,
#1 +#3=7)1a

/-L1/13 = -1-
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These four identities lead to the following two quadratic equa-

tions, which make possible the calculation of the four-member pe~

riods:

yz -

noy
— 1 = 0,

z?‘= mz
— 1 = 0.

The two solutions of the first equation are y1 = ,u0 and y2 = M2,

while those of the second equation are zl = p1 and Z2 = ,u3.

Finally, we can compute the two two-member periods fil and 34.

Again, the key is the calculation of their sum and product:

30 +54 = (C14' C16)+ (C13+C4) = M0;

,80fi4= (<1+ (16)(C13+ C4)= (14+65 + C”+ C3= m.

From this we obtain the quadratic equation

1/2=/I01/+li1 =0,

whose solutions are the two two—memberperiods y1 = [30and y2 = 64.

If one wishes, one may now calculate the seventeenth root of unity

C from the quadratic equation

C.’/2:/803/+1:0>

whose two solutions are y1 = ‘C1and y2 = (16. However, in a geomet-

ric construction, this quadratic equation does not need to be brought

into play, since the regular heptadecagon can be constructed using a

segment of length ,B0= 2 cos \xD0\xD4��
If one solves the quadratic equations we have obtained one after

the other and chooses the solutions in an order based on numerical

approximations, then one obtains as end result the identity suggested

in the introduction:

2 1 1 1/

,80=2cos1:=8+8\/1_7+834 2x/1-7

v W W‘+1 17+3x/fi— 34—2«/17-2 34+2x/Ti

This expression in square roots not only shows at once that the

regular heptadecagon is constructible, but also indicates how such a
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construction can be carried out.4. The reason is that the constructibil-

ity of a point with straightedge and compass is equivalent to the point
being expressible by rational numbers, the four basic arithmetic op-

erations, and the taking of square roots. For more on this, see the
section on constructions with straightedge and compass.

Constructions with Straightedge and Compass

Using the system of Cartesian coordinates, the geometric question of what
point can be constructed with straightedge and compass can be translated
into a purely algebraic problem. We have the following theorem:

Theorem 7.1. Given the “primitive”unit measure from the point (0,0)
to the point (1,0), a point in the plane can be constructed with straightedge
and compass if and only if its two coordinates can be expressed in rational
numbers and nested square roots using the four basic arithmetic operations
of addition, subtraction, multiplication, and division.

We begin with the observation that a point with such coordinates
can indeed be constructed with straightedge and compass. (Such a point
is said to be constructible.) In particular, we shall show that the four
basic operations and the extraction of square roots lead to constructible

points. The three left-hand drawings in Figure 7.2 show how- beginning
with constructed lengths a and b and the unit length 1, one can construct
the lengths a + b, a —~ b, ab, and %. Addition and subtraction are easily
carried out by transferring one segment to the other using the compass.
Multiplication and division are realized by constructing the parallel lines
indicated in gray. The laws of proportions in similar triangles guarantee
the results shown.

Taking a square root is accomplished using the laws of proportion in
similar right triangles. In the picture on the right in Figure 7.2, all three
right triangles (the two smaller triangles form a larger triangle inscribed in
the semicircle of diameter 1 + a) are similar. Observe that \/E satisfies the

1
_ x/5relation

W
—

T.

The converse statement is also not difficult to prove. To do so, we must

analyze the operations of construction with straightedge and compass in
terms of their effect on the coordinates of newly constructed points.

René Descartes was the first to make significantuse of the idea of

formulating geometric problems algebraically. Thus on the first pages of

4An explicit description of such a construction can be found in Ian Stewart, Gauss,
Scientific American, 237, no. 7, pp. 122-131 as well as in Heinrich Tietze, Famous
Problems of Mathematics: Solved and Unsolved Mathematical Problems, from An-
tiquity to Modern Times, New York, Graylock Press, 1965.
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Figure 7.2. How the basic arithmetic operations and extrac-

tion of square roots are accomplished with straightedge and

compass.

his work La Géometrie of 1637 one finds figurescorresponding to those of

Figure 7.2.5 Descartes was also the first to interpret geometric products and

powers in a way other than surface areas and Volumes, which made possible
a wide—ranginguse of fourth and higher powers. Descartes’s contribution

is commemorated in the term Cartesian coordinates (from the Latinized

name Cartesius).

7.2 Gauss did not have to carry out such explicit computations to

convince himself that there is a method for constructing the regular

heptadecagon. It sufiiced to realize that using the periods it is possible
to calculate a seventeenth root of unity using successive quadratic

equations. Finally, what is crucial is that for each period, another

period of the same length can be found, so that the sum and product
can be computed in terms of periods of double the length. We are

now going to consider this in somewhat greater detail in order to see

what other regular polygons can be constructed with straightedge and

compass. Unfortunately, some rather complicated calculations will be

necessary, which, however, are not necessary for an understanding of

the later chapters and may therefore be skipped.

As we have already described, the stepwise solution discovered

by Gauss of the cyclotomic equation can — 1 = 0, where n is a prime

5See Henk J. M. Bos, Karin Reich, Algebra: Viete und Descartes, in: Erhard

Scholz (ed.), Geschichte der Algebra, Mannheim, 1990, pp. 183-234.
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number, employs a primitive root modulo n, that is, an integer g
for which the list g1,g2, . . . ,g”‘1,when divided by n, results in a

complete set of the numbers 1, 2, . . . ,n
— 1. For every factorization of

the form 6 f = n —— 1, one can define,for each power CI“of the root of

unity C = cos \xC0y��+ isin @\xE8\xE1�the f—memberperiodsTL

Pf (ch)= <’°+ (W + CW‘+ - - - + 4'“-""""“.
Aside from the special case k = O, :i:n, . . .

,
for which all periods are

equal to Pf(1) = f, on account of

Pf (Ck): Pf (Ckse): ¢ Pf (<'kg(.f“1)e),
at most e of the f—memberperiods can be distinct:

Pf CC)» Pf (C9): Pf (€92),---> Pr (Gym).
The property to be proved relates to the product of two f—member

periods. Such a product can always be expressed as the sum of f-
member periods. To see this, observe that

f—1 f—1 f—1 f—1

Pf \xB0�\xFD�Pf \x80�\xFB�: \xB0\xB5\xFC�Cjsbe)(icky?!-3): $ 2 CJ'9z>e+kgqa.
p=O q=0 p=0 11:0

If the summation index of the inner sum is transformed by q = p +7‘,
then we obtain, as desired,

f—1 f—1 f—1 f—1

Pf \xB0�\xE5�\xB0}\xF9�: Z Z €(j+kg>~e)gpe:: Z Z <'(j‘l‘kg’I‘e)gPe
p=O r=O '/‘=0 p=O

\xF0R\xF8�

<
k

>:.. P \xC0\xF2\xE5�g'I‘B
I

'I‘=O

f

If the number e is even, then, as in the case of 77, = 17, the f-
member periods can be calculated using quadratic equations from the
2 f—memberperiods. We clearly have the identity

Pf (Ck)+ Pf (CW/2)= P2f (Ck)-
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To see that the associated product also corresponds to a sum of

2 f—memberperiods, it suffices to show that the sum of the two squares

possesses such a representation:

Pf (Ck)2+ Pf (Clef/2)2Z E1<13),(C1c(1+g““))+pf <€Icge/2(1+9‘”)))
q=0

f—1

:; Z132],(Ck(1+g‘”)>_

q=O

That this general formula is useful would be immediately clear

to anyone who has painfully worked out the sixty—fourterms of the

product 770711 in our earlier investigation of the regular heptadecagon.
In comparison to the explicit calculation, one obtains the result using

the formula just derived much more quickly:

7

%+w?=RKV+RM@f=§:Hs@”“fi=1iaH%-U=9
q:0

Here it is only for the summation index q = 4 that a summand dif-

ferent from ~1 appears, namely, P16(1) = 16. Consequently, one

obtains, as desired,

1 1

mm=§Qm+mV—@$H@)=§G-%=—4
In general, the formula for the sum of the period squares shows

that Gauss’s method for solving the cyclotomic equation 1:" — 1 2 0

always leads to a sequence of quadratic equations if n is a prime

number of the form n = 23 + 1. As of today, there are known only
five such primes, called Fermat primesf‘namely 3, 5, 17, 257, and

65537. Finally, it is not difficult to show that a regular n—gonis always
constructible when n has only Fermat primes to the first power as its

6
Since

(—1)k+12J"°+ 1

29‘+ 1
’(1-25 +2“ ~23”'+---::2(*“1>3')=

the number 2-” is always composite for an odd number k. Therefore, a number of the

form 25 + 1 can be prime only if the exponent s is a power of 2. However, 232 + 1 is

not a prime, since it has 641 as a factor. Further details on numbers of the form 25 + 1

can be found, for example, in Paulo Ribenboim, The Book of Prime Number Records,
New York, 1988, 2. VI.
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odd prime divisors.7 And the converse holds as well. Therefore, a

regular n—gonis constructible if and only if the prime decomposition
of n consists, aside from a possible power of 2, of only Fermat primes
to the first power. Thus n-gons can be constructed for the following
values of n: 2, 3,4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30,32, 34, 40, . . ..

We note finallythat an explicit derivation of the quadratic equa-
tions in the constructions of regular 257- and 65537—gonsis not that
difiicult using a computer.8 In both cases, 3 can again be used as a

primitive root. Whether it then is worthwhile to derive an explicit
construction method on the basis of the obtained quadratic equations
is something greatly to be doubted. However, such was actually done
in the nineteenth century.9

7.3 As a sort of acknowledgment of the construction of the regu-
lar pentagon, known since antiquity, we shall derive the construc-
tion algebraically here. Starting with the fifth root of unity C =

7If 7n and n are relatively prime, then there exist—as can be calculated usingthe Euclidean algorithm—two integers a and b that satisfy the equation an + bm = 1.
Since

211‘ 27r 27r
a-—+b~-—=--

m n nm’

the division of the circle into mn parts can be done given the divisions into m and 71

parts.

'3Today it is hardly imaginable that the problem of computing the period products
for the cyclotomic equation of degree 257 was the motivation for the author in 1975
to write his first computer program and to learn a computer language, in this case
ALGOL 60. Since there was no direct access to a computer, the program was written
down on paper and given to someone for input. Indeed, at the first run the desired
indices of the periods that appear in the sum were computed correctly. This was much
more intersting than the usual oral exam for a high-school diploma.

9F. J. Richelot, De resolutione algebraica aequationis $257 = 1, sive de divisione
circuli per bisectionam anguli septies repetitam in partes 257 inter se aequales com-
mentatio coronata, Journal filr die Reine and Angewandte Mathematik, IX (1832),
pp. 12-26, 146-161, 209-230, 337-356. Christian Gottlieb, The simple and straight-
forward construction of the regular 257-gon, The Mathematical Intelligencer, 21/1
(1999), pp. 31-37. Johann Gustav Hermes (1846-1912), of Lingen, is said, as reported
by Felix Klein (Vartrblgc iiber aasgewdhlte Fragen der Elementargeometrie, Leipzig,
1895, p. 13), to have derived over the course of ten years a construction method for
the regular 65537—gon.An overview of this work of over two hundred pages, completed
in 1889 and deposited at the University of Gottingen, is given by J. Hermes, Ueber
die Teilung des Kreises in 65537 gleiche Teile, Nachvvlchten 'uon der Gesellschaft der
Wissenschaften zu, Géittingen,Math.-Phys. Klasse, 3 (1894), pp. 170-186. Three pho-
tographs of the work can be found in Hans—WolfgangHenn, Elementare Geometric
und Algebra, Wiesbaden, 2003, pp. 33-34.
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cos @\xD0\�+ isin \xE0\x9A`�we construct the two periods

770 : (1 ‘l’ (4:

711 = C2+ C35

On account of 770711 = -1 and 710 + 711 = -1, one obtains these two

periods from the quadratic equation

312+ y
— 1 = 0.

This leads to

2 1 1 1

003%=39C= 5770
= -1-1'?/5:

Where §Rzdenotes the real part of the complex number z, from which

the construction can immediately be made. The four fifth roots of

unity other than 1 are as follows:

1 1 .1

-Z+Z\/5+2?/10+2\/5,
1 1 1

—Z
— Ex/'5+zZ\/10~2x/5,

1 1 .1

‘“Z—Z\/g—7.Z10—2\/5,

1 1 ,1

—Z+Zx/5—zZ10+2\/5.

The Classical Construction Problems

The three famous problems of classical antiquity that remained unsolved

into modern times are the squaring of the circle, the doubling of the cube,
and the trisection of an angle using only straightedge and compass.

The problem of squaring the circle asks for the construction of a square

whose area is equal to that of a given circle. On the assumption that the

circle has area 1, the problem amounts to constructing a segment of length
\/7_r. Since one can construct square roots and squares of lengths, the

problem is equivalent to the construction of a segment of length 7r. Thus

the algebraic equivalent of the problem is to represent 71' in terms of nested

square roots, rational numbers, and the four basic arithmetic operations. It

was shown by Ferdinand Lindemann (1852—1939)in 1882 that the number

71' is transcendent, that is, that it satisfies no polynomial equation with
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rational coeflicients. Therefore, 7r cannot be represented in terms of square
roots and hence is not constructiblem

The doubling of the cube, that is, the construction of a cube whose
volume is twice that of the unit cube, amounts to the construction of a

segment of length \xE0B<�With the methods of Galois theory one can prove
relatively easily that xi/§cannot be expressed in terms of rational numbers
and nested square roots. We shall return to this topic in Chapter 10.

The resolution of the problem of angle trisection is of a similar nature.
In dealing with the casus irreducibilis in Chapter 2 we saw the close rela-
tionship between angle trisection and cubic equations. In general, one has
the identity

3 2/2 1

cos3§—Zcos§—Zcos1/2:0.
The relationship with the problem of doubling the cube is seen more clearly
when one brings the sine function into the picture, with

7/)
3

(cos?+isin 0\x94-�= cosx/2+z'sin1/2.

To show that a general trisection algorithm does not exist, it suffices to
show that a single angle measure cannot be constructed. Of course, one
can easily trisect the full circle of 360 degrees, as well as a right angle and
a number of other special angles. However, the angle of 120° cannot be
trisected, since otherwise, the regular nonagon would be constructible with
straightedge and compass. We shall see more on this topic in Chapter 10.

7.4 The cyclotomic equation :3“ — 1 = 0 has many interesting al-

gebraic properties even for those Values of n for which the regular
n—gon is not constructible. Gauss himself recognized, as presented,
along with many other results, in his 1801 work Disquistiones arith-

meticae, that all cyclotomic equations are solvable in radicals. By
this is not meant simply a “solution”of the form :0 = {/T,since such
a symbol allows a number of algebraic interpretations. That is, the

symbol offers interpretations that differ greatly as regards the four ba-
sic arithmetic operations. For example, the expression {‘/Tcomprises
the four complex numbers 1, -1, 2',——z',of which only 2' and -2’ a.re in-

distinguishable on the basis of their algebraic properties alone. Thus
1 is uniquely defined as the multiplicative identity of the complex

10A relatively elementary discussion can be found in the very informative and
well illustrated book by Jean—Paul Delahaye, Le fascinant nombre P72, Editions Belin,Paris, 1997, Chapter 9.
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numbers, while —1 is the unique additive inverse of 1. In contrast,

1 and ——z'are characterized only as the two solutions of the equation
$2 + 1 = 0. One could also argue that an expression of the form

Q = ~—%+ \xB0:8�3 also has more than one interpretation. As with 12and

-2’,this multiplicity relates only to numbers that possess the identical

algebraic properties.

Thus one may conclude that the symbol {/5 can be used un-

problematically only when the equation 93" — (1, = 0 is irreducible

and therefore its solutions all possess identical algebraic properties.

Therefore, the solution of an equation in radicals can be interpreted
as a stepwise reduction to the solution of irreducible equations of the

form as" ~ (1 = 0.

That the cyclotomic polynomials $7 — 1 = 0 and :39 — 1 = 0 are

solvable by radicals can be shown relatively easily by a method due to

de Moivre. After removing the linear factor (:1:— 1), one can halve the

remaining exponent (to 3 or 4) via the substitution y = a:+a:‘1.Then

one can use the solution formula for a cubic or biquadratic equation.
In detail, with the substitutions into the equations divided by $3,
respectively 124,we have

m3+a32+:c+1+:r"1+a:_2+a:"3=0

and

:1:4+m3+:n2+m+1+cc”1+:v'2+a:"3+:z:“4:0.

One makes the substitutions

:132+:1:_2=y2 -2,

:L'3+:1:“3=y3—3y,

:r4+x‘4=y4—4(y2—2)—6=y4—4g/2+2.

After the unknown y is determined from the resulting third—or fourth-

degree equation, the desired unknown :12 can be obtained from the

quadratic equation

932—ym+1=0.
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7.5 In the case of the cyclotomic equation of degree 11, namely
1:11 —~ 1 = 0, the process we have just described leads to the fifth-

degree equation

1/5+y4~4y3~3y2+3y+1=0,
whose five solutions are given by yj

= 2cos \xF0ś�for j = 1,2,3,4,5.
That this equation, and therefore the cyclotomic equation of degree
11, can be solved in radicals was discovered before Gauss, in 1771, by
Alexandre ThéophileVandermonde (Mémoiresur la résolutiondes

équations).Like Lagrange, Vandermonde attempted to study the so-

lution method for the general equation up to the fourth degree in order
to generalize it to degree five. To this end, he used the resolvent, now

named for Lagrange (see Chapter 5). Although Vandermonde failed
to find a general solution formula—as of course he had to—he recog—
nized that in “specialcases in which there are equations among the

roots,”his “method could serve to solve the given equations with—
out having to use the general solution formulas.” In the equations
mentioned by Vandermonde that exist among the solutions, there are

identities for the periods such as

y%=2/2+2, y%=y4+2, y§=y5+2, yi=y3+2,
ZJ§=y1+2,11192:?/1+3/3, Z/13/3=2/2+2/4, y2y3=2/1+3/5,

with which Vandermonde, without explicit reference, established the

entire structure by which the solutions are sorted into the order

yla 1/29 3/3: 3/4» 3/5)

exactly corresponding to the general method discovered by Gauss

thirty years later using 2 as a primitive root modulo 11. In this

order, for which we shall use the notation

nk :  B\x92�(€216): C-2k+C—2k,
and so

77o=y1a 771:-3J2» 712:2/4, 773:1/3, 774:1/5,

Vandermonde was able to determine the fifth power of the Lagrange
resolvent, and indeed in the form of a sum of integer multiples of fifth
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roots of unity. In particular, for the Lagrange resolvent

z(6) = no + 6771 + 62772+ 63773+ 64774

defined for a fifth root of unity 6 : cos 2-733+1’sin 2-751for k: = 1, 2, 3, 4,
one obtains on the one hand, as already discussed in Chapter 5,

yl =no = %<—1+{‘/,@+€/z(e2)5+Q/z(e3)5+\5/z(e4)5>
and, on the other hand, though only after a complicated calculation,

z(e)5= 11 (65+ 4152 + 1663 + 2664).

From these last two equations one finallyobtains, with the help
of the already found square root representation for the fifth roots of

unity, a root representation for the two—memberperiod y1 = 2 cos  \xB0��
It remains to note that the identity given for z(e)5 can be derived

in a completely elementary way from the 55 = 3125 summands by

sorting, grouping, and simplifying on the basis of the period identity
discovered by Vandermonde (together with 770 + 771 + - - - + 774 = -1).
Independently of the actual values of the result, one can see relatively

easily that such a result can be found in the form of a sum of rational

multiples of fifth roots of unity. And this could be the reason Why
Vandermonde sorted the solutions in the way described.

First of all, the sorting has the effect that every one of the pe-

riod identities discovered by Vandermonde remains valid when each

period 77;, is replaced by nk+1 (taking into account the fact that the

numbering of the periods is defined so that they progress cyclically,
that is, 715 = 770, 775 = 771, etc.). Thus the identity

4 4 4

\xF0.��
j=o

‘ '

which obviously can be derived for z(e)5 via simplificationof the pe—

riod identities with any integers am and bj, is Valid also when every

period nk is replaced by nk+1:

4

j=0
‘

4

3:0 lc=0 j=0
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If the indices of the periods are shifted as well by 2, 3, and 4,
then altogether one obtains

4
. 5

4
. 5

(26%) + 4 . - +( \xA0\x810�
3‘: i=0

4 4
I

4

= Z::CLj,k€j(77k+ - - - 'l‘77k+4)+5Zbj€j
j=0k=O j=0

4 4

= Z �X\xFA�— ZCLJVV)E]

9:0 k=0

Here every fifth summand on the left side of the last equation is

equal to z(e)5, since, for example,
4 4

Z €j’7J’+1: ‘-1 Z €j+177j+1= 512(6)-
J'=0 i=0

The left side of the previous equation is therefore equal to 5z(e)5,
so that Vandermonde’sresult of a sum of rational multiples of fifth
roots of unity is obvious in hindsight:

4
1

4
.

Z(€)5= Z (bj— E ZCLj,k)EJ.
j=O k=0

Without going into details, we note that there are ways in which
the concrete calculation of z(e)5 can be greatly simplifiedover the

evaluation of 3125 summands.“

Although what we have presented applies specificallyto the cyclo-
tomic equaton $11 ~ 1 = 0, it is not implausible that these considera-
tions apply to every cyclotomic equation of prime degree. The reasons

“See Paul Bachmann, Die Lehre van der Kreistheilung und ihre Beziehungen
zur Zahlentheorie, Leipzig, 1872 (reprint 1988), pp. 75-98. For the special case of the
e1eventh—degreecyclotomic equation, this method, which works in general, leads to a

product representation

2(6) —

W
'

W
‘

W
' (Z(€)z(€4)),

where each of the four factors represents a sum of integer multiples of fifth roots of
unity; the last is in fact an integer. Here the four products in the numerators can be
similarly calculated in the general case, as was done for period products. Moreover,
the fact that each of the four factors corresponds to a sum of integer multiples of fifth
roots of unity can be shown in the same way as was done for z(e)5.
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that such is indeed the case can be found in Vandermonde’sequations,

Which give general relationships between the periods, and the fact that

these identities remain valid when the periods are permuted among

themselves, as in replacing the root of unity C 2 cos \xD0y\xEB�+7}sin `\x9B\xEA�
by C9,

where g denotes a primitive root modulo n. This situation may

be characterized as follows: In comparison to the solutions of the gen-

eral equation of a given degree, the algebraic calculation of periods

is “simpler,”since they satisfy additional equations. This allows, in

comparison to Lagrange’sgeneral procedure, the construction of sim~

pler resolvents, which, although they do not remain unaltered under

a permutation of the periods, do so under every permutation arising

from the substitution Q »—> (9k.This limited invariance sufficeshere to

demonstrate, for example for z(e)5, the possibility of a representation

as the the sum of fifth roots of unity.

For the specifictask of solving cyclotomic equations and from

that eventually deriving a general construction procedure, what we

have learned so far should suffice. However, only a general, up to now

recognizable only in outline, principle would be completely satisfying

from a mathematical point of view. That is precisely what Galois the-

ory will offer us, after we have developed some additional concepts,

namely an explanation whose argumentation will be much more ho-

mogeneous. Moreover, in the case of the cyclotomic equations, many

of the complicated summation expressions for periods will become

unnecessary.

Exercises

(1) Express all the seventeenth roots of unity in terms of square

roots.

(2) Generalize the calculation for the case n = 17 of the product

P(n—1)/2(C)'P(n~1)/2 (C9)

to the case of a general prime number n 2 3. How can the

necessary case distinction be most simply characterized?



Chapter 8

The Solution of

Equations of the Fifth

Degree

We seek the solution of the equation 935= 2625:v+61500.

8.1 This chapter closely follows a talk given in 1977 by the author

at the Philips Contest for Young Scientists and Inventors, “Special
equations of the fifth degree that are solvable in radicals.” The equa—
tion presented above is again a classical example. Already in 1762,
Leonhard Euler recognized from his studies of solvability of equations
that this equation belongs to a class of fifth—degreeequations that can

be solved in radicals. Like other mathematicians of his time, Euler

had attempted to extend the methods for equations of degree less

than five to those of fifth degree. Even the mountain of formulas that

resulted could not dampen Euler’s optimism, for he wrote,

One may conjecture with apparent certainty that with the

correct approach to this elimination procedure, one would

finally arrive at an equation of fourth degree. If the re-

sult were an equation of higher degree, then . .. [the pre-

viously used intermediate value for representing the solu-

tions] would itself contain roots of this degree, and that

would seem to be unreasonable.
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However, in his actual calculations, Euler had to trim his sails

somewhat:

However, since the large number of expressions makes this

task so difiicult that one cannot achieve any measure of

success, it seems appropriate to develop some special cases

that do not lead to such complex formulas.1

Euler refers to the intermediate results he used as “such values

as shorten the calculations.” In reality, Euler has avoided not merely
calculational difficulties, but the basic impossibility of a general solu—

tion. Nonetheless, in this way he arrives at a large class of fifth-degree

equations that can be solved in radicals. Since this class does not con—

tain all solvable fifth—degreeequations, we will look here at the work

of another mathematician. In 1771, thus at almost the same time as

the work of Lagrange and Vandermonde, the Italian mathematician

Giovanni Francesco Malfatti (1731-1807) was searching for a general
formula for equations of the fifth degree. Malfatti, who later, in 1804,
commented critically on Ruifini’s first attempts at an unsolvability

proof based on his own work and thereby motivated Ruffini to refine

his work, succeeded in carrying out extremely complicated calcula-

tions of a resolvent of the sixth degree. This did not lead to the

original goal of a general solution. However, Malfatti noticed that

in the special case in which the sixth—degreeresolvent possesses a ra-

tional solution, the given fifth~degreeequation can be solved. Later,

using Galois theory, it could be shown that Malfatti had character-

ized all equations of the fifth degree that are solvable in radicals (in
relation to all irreducible fifth-degreepolynomials over the rational

numbers).
Malfatti’s computations are very complicated, and it is very much

worth noting that he continued successfully from the point at which

Euler had not been able to progress.2 To get some idea of Malfatti’s

method of attack, we will consider his calculation, beginning with the

1Von der Auflifisungder Gleichungen aller Grade, reprinted in: Leonhard Euler,
Drei Abhandlungen fiber die Aufliisungdar Gleichungen, Ostwalds Klassiker Nr. 226,
Leipzig, 1928. This quotation and the one following appear on page 45; the equation
in the epigraph appears on page 50.

2See J. Pierpont, Zur Geschichte der Gleichung V. Grades (bis 1858), Monatshefte
fiir Mathematik und Physik, 6 (1895), pp. 15-68. Ma1fatti’s attempts at a solution

are described on pages 33 through 36.
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equation

$5 + 5a:1:3+ 5bm2 + 5cm + d = 0,
only for the case a = b 2 0, that is, for equations of the type

:1:5+5ca:+d=0.

Furthermore, we will assume cd yé0. We should note further that this
does not restrict the generality as much as it seems at first glance. In
fact, every equation of degree five can be transformed into an equation
of this type using a substitution that eliminates the degree—fourterm.
See the section on the transformations of Tschirnhaus and of Bring
and Jerrard.3

Ma1fatti’scalculations begin with the assumption, without loss
of generality, that the solutions are represented in the form

53,41 2: — (ejm+ e2jp+ e3jq+ 64in),
for j 2 O,1,2,3,4 and with 5 = cos + isin \x80\x94?�This corre-

sponds precisely to the method employed already by Bézout,Euler,
Lagrange,4 and Vandermonde. If one multiplies the five associated
linear factors together, then one obtains, along with Euler, the equa~
tion

:35 — 5(mn + pq)a:3+ 5 (m2p+ n2q + mp2 + nq2)$2
— 5 (771319+ n3q + mq3 + 71193— mzng + mnpq

— p2q2)as

+m5+n5+p5+q5+(mn—pq)(mp2+nq2——m2q—n2p)=0.
Finally, one must try to determine the unknowns m,n,p,q by

comparing the coefficientswith the original equation. We will employ
the following shorthand:

3/ = P9 -‘= —m77»»

7“ = m2q+ nzp = — (mp2+nq2),
11 = W317+ 7539»

w = mq3 + np3.

3For specific applications, however, it is unfortunate that equations with rationalcoeflicients are not transformed into equations of the same type.
4Since 771 = — (£121+ 64.732+ e3a:3+ 52934+ 51:5)/5, etc., at issue here are Lan-

grange resolvents for the values m5,p5, (15,17,5.
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The two identities mentioned together with the definition of the

quantities y and 7' already contain the result of comparing coefiicients

for the powers :33 and :32. For the other two powers, comparing coef-

ficients gives the pair of equations

c=—v—w+3y2,

d=m5+n5+p5+q5+20ry.

To be able to formulate as well the last-introduced identity com-

pletely in terms of 7', 1), w, y, we use the relations

M2 = (m2q+ n2p)(mgp-1- n3q)
= pq (m5—|—715)+ (mn)2(mp2+ nq2)
= (m5+ n5)y

— we

rw = — (mp2+ nq2)(mq3+ np3)
= —mn (195+ €15)— (pq)2(mgq+ nzp)
= (:05+ <15)74

- W2,

thereby obtaining for the pair of equations the new form

c = —(12+112)+ 33/2,

dy = r(11+ w) + 227"y2.

A calculation of the four unknown quantities r,v,w,y will be

possible only if two additional identities are taken into account:

mu = (m3p+ n3q)(mq3+ 71193)
= pq (m4q2+ 714192)+ mn (m2p4+ n2q4)
: pg (mgq+ n2p)2+ mn (mp2+ nq2)2~ 4m2n2p2q2
= W2 + (~y)(-N2 ~ 41/‘= -41/4

and

-73 = (mgq+ 7221))(mp2+ nqz)
= pq (m3p+ naq)+ mn (mq3—|—np3)= (21— w)y.

Putting these two identities together, we obtain

T4 = ('u — w)2y2= (1)+ w)2
2

— 4vwy2 := (2)+ w)2y2—|—163/6.
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Now, using this equation and the pair of equations previously
obtained from comparing coefficients,we may determine the values
7", 11, w, y. First, we eliminate ’U + w via

12 + w = 3312— a,

so that the following equations remain:

dy = (253/2— C)7°,

T4 = 253/6— 6cy4+ c2y2.

To eliminate the variable 7“ as well, we take the fourth power of the
first of these two equations and then substitute the second equation
into the result to obtain

d4y4= (253/2— c)4(252/4—— 603/2+ c2)yz.

Our exclusion of the special case cd = 0 helps us in what follows
to avoid some complications: First, we have 3; 7E0, since otherwise, at
least three of the values m, n, p, q would be equal to zero, resulting in
c = 0. Furthermore, we would also have 253/2—— c 7E0, since otherwise
we must have y = 0.

From y 7é0, we can now multiply the last equation by 253/"2. We
then substitute z = 253,12,so that a bicubic resolvent results, that is,
an equation of the sixth degree:

(2 — c)4(:52— (302 + 2502)= d4z.

As we shall see, it is sometimes useful to use the bicubic resolvent
in the equivalent form

(z3— 5cz2 + 15c2z + 5c3)2= (d4+ 25605)z.

Of course, in its general form, the bicubic resolvent cannot be
solved in radicals. If it were, then beginning with the variable 2, the
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values y, 7*,12, w, m, n, p, q could then be calculated in turn:

1

y:g\/2»
7‘:

dy

253,/2-0’

_3y3—cy—r2
_

2y
,

_3y3——cy+7“2
_

2y
,

s'u+y2 v+y2
2

5
mm:

2y
rd: < 2y 7")+y,

5 w—1—y2 w+y2
2

= i — 5.Paq
2y

7‘ ( 2y
7" C’!

Each equation comes almost directly from the previously derived iden-

tities, in the case of the last two equations with the help of Viete’s

root theorem. Note that the sign of the unknown y can be chosen ar-

bitrarily, since changing the sign merely exchanges the pairs (p, q) and

(m, Furthermore, note that the ordering of the variables p, q, m, n

is always taken such that the equation 1) = 77131)+ n3q is satisfied.

8.2 Malfatti himself recognized that the bicubic resolvent that he

obtained can be used to solve special equations of the fifth degree in

radicals. In particular, this is possible when a rational solution to the

bicubic resolvent can be found. Here we shall take as an example the

equation in the epigraph to this chapter with the coefficients c = —525

and d = —61500.

Since the bicubic resolvent is a monic polynomial with integer co-

efiicients,all rational solutions, as demonstrated in Chapter 6, must

be integers dividing the number 2506. One obtains additional infor~

mation from the second representation of the bicubic resolvent: Since

d4 + 256c5 = 37809000002 is a square, every rational solution must

be the square of an integer. And finally,division by 56 shows that

§~is also a solution of an equation with integer coefficients,that is,

that z is divisible by 5. Having limited the number of possible integer
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solutions to 112, one obtains the solution 2 = 5625. It then turns

out that y = 15, 7" = -150, 1) = —150,w = 1350, and finally,for

j:0a172>3>41

cc,-+1 = ej 5
75 (5+ 4x/E)+ 623'5 225 (35~ 11x/16)

+ 639‘H225 (35+ 11x/1’0)+ 541’,5/75(5— 4m).

8.3 Malfatti’s attempt at a solution shows a methodology in the finest
classical tradition, namely, to solve equations using suitable substi-
tutions and transformations. In hindsight, we see that the success of

Malfatti’s approach, to the extent that success was possible, is clari-

fied if one expresses the relevant intermediate values as polynomials
in the solutions :31, . . . ,:v5. Thus from the two identities

1
2 4 5

192-3 (a31+e:c2+e :v3+ea:4+e :35)

and

1
3 4 2

q=———5(:v1+e :1c2+e:r3+e m4+e $5)

one obtains

5

253/ = 25pq = p:\xFF+ (62+ 53)(mlacg+ 582.133 + :1:3:c4 + $4335 + 935231)
j=1

+ (6+ 64)($1933+ 132934 + $3935 + 5841131 + 115932)-

In the special case considered here, a = b = 0, since we have

5

Z-or = Z W =0

y'=1 1SJ'1SJ'1SJ'
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and —e + e2 + 63 —~ 54 = —\/5,we obtain for the resolvent solution z

the particularly simple representation5

1
2 _ ,

2
Z’ — 253/ ~ 5($1flU2I $2033 1 1133534 I £349351 005561)—

Furthermore, with this representation it is clear that in the sense

of Vandermonde, the existence of a rational solution of the bicubic

resolvent can be interpreted as a relation between the solutions.

5A derivation of the bicubic resolvent based on Lagrange’suniversal approach

(see Chapter 5) can be found in C. Runge, Uber die auflosbaren Gleichungen der

Form 1:5 + um + 11 = 0, Acta Mathematica, 7 (1885), pp. 173-186; see also Heinrich

Weber, Lehxrbuch der Algebra, Volume I, Braunschweig, 1898, pp. 670—676: One first

investigates the behavior of the slightly altered polynomial representation

«/5
y= 5(w1av2+w2ws+ws:c4: $4025 : 23531 $1903 202024 903025 $4921 $5922)

under the 120 possible permutations of the five solutions :01, . . .,ar5. Ten of these

permutations leave the polynomial unchanged. All of these are even permutations;
that is, they belong to the collection of sixty permutations that leave unchanged the

square root of the discriminant:

\/5: H($i " ma‘)-
i<.7

Furthermore, there are ten odd permutations whose effect on the polynomial y is to

change its sign. Thus the sixty even permutations transform the polynomial y into six

different polynomials y1 : 3;, yz, . . . , ys, and the sixty odd permutations transform y

into an additional six polynomials, namely y7 = —y1,. .. ,y12 = —y5. The first six

polynomials are thus solutions of the sixth—degreeequation

Z/6+>\5y5+'~+A1y+)\o=0»

Whose coefiicients A0, . . . , A5 arise from the elementary symmetric polynomials in the

polynomials yl, . . . , ya. To obtain these coeflicients in terms of c and d of the original

equation :35 + 5ca; + d = 0, the polynomials y1,. . . ,y5 are expressed in terms of the

solutions 2:1, . . .

, LE5. However, the resulting polynomials are only “almost” symmetric;
namely, the polynomials of even degree (in the variables y1,. . . ,y5) are symmetric,
while those of odd degree are altered by a sign change for odd permutations and

are unchanged by even permutations. Using the fundamental theorem on symmetric

functions and considering the degrees of c,d, \/5,/\o, , . .,/\5 as polynomials in the

variables :21, . . . , 1:5 (namely 4, 5, 10, and 12 — 23' for Aj), there must exist rational

numbers [.t(),[,l.1,]J.2, #4 satisfying

:16+ #463/4+ #2-22212+ #063 = I41\/BM

After determining the constants, one finally obtains, after squaring the equation ob-

tained, the form of the bicubic resolvent derived by a different route in the main text;

here one determines \/D by observing that the discriminant D must be representable
as a symmetric polynomial of degree 20 of the form ozcs +[3d4 with two constants oz and

,6, where the constants can be found using particular equations. One finally obtains

D = 55 (256125+ or‘).
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The Transformations of Tschirnhaus and of Bring
and Jerrard

The first systematic attempt at a general solution method for equations
of degree five was undertaken in 1683 by Ehrenfried Walther, Count of
Tschirnhaus (165l~1708). Tschirnhaus’s idea is based on the hope that one

could generalize the well-known substitutions that cause the second—highest
coefficient to disappear so that additional coefficients would disappear as

well.

Instead of transforming a given equation
—1 -2a:"+an_1:I:" +an_2w" +-~+a1m+ao=0

using the substitution

into an equation of reduced form

y" -I-bn—2y"‘2+"'+b1?J + b0 = 0,

Tschirnhaus began his investigations with a substitution of the form

2; = 9:2+ pa: + q

with parameters 1) and q to be determined. The 77, solutions :31, . . . ,a:,, of
the original equation are transformed into the n solutions y1,. . . ,y,, with

yj = + pasj + q, where the coefficients of the powers of y"_1 and y"”2
are both zero precisely when the two conditions

Z?Jj=Zy§=0
are satisfied. If one starts with a reduced equation in which the coefficient of
the second-highest power is already 0, then one obtains for the parameters
19 and q the following conditions that must be satisfied:

0=Zyj =2:(cc,2~+pm,~+q)=Zx§+PZmj+nq

=Za:§+nq,
°=Zy§=Z(w?+zwj+q)2

= Z33?-F2p::ac?+(p2+2q)Zw§+nq2.
The first of the two conditions immediately permits a unique deter—

mination of the parameter q. If one then substitutes the obtained value
for q into the second condition, then one obtains for the parameter p‘ a

quadratic equation (except in the special case in which the coefficient of
the third~highest power is already zero). Thus the so-called Tschirnhaus
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transfomnation of a given nth-degree equation can always be parameter-
ized such that the resulting equation has coeflicients equal to zero for the

powers y"_1 and 3/""2.
Tschirnhaus now believed that using transformations of higher degree,

which of course contain more parameters to be chosen, would allow further

simplificationof the equations, so that every equation could be solvable in

radicals. Although Tschirnhaus did not succeed in supporting his idea with

concrete calculations, it is nevertheless possible to use a transformation of

the form

y=:n4+pm3+qm2+r:v+s
for his special case of a fifth-degreeequation

91:5+ a4m4+ a3:r3+ a2a:2+ ala: + ao = 0,

resulting in an equation of the form

y5+b1y+bo=0-

The parameters can be determined by solving a cubic and a quardratic
equation. This fact was first discovered in 1786 by the Swedish mathemati-

cian Erland Samuel Bring (1736—1798),though without the mathematical

world taking proper note of his achievement. Only much later, in 1864, af-

ter George Birch J errard (1804-1863) had rediscovered the transformation,
were Bring’sinvestigations recalled. The transformation is today gener-

ally called the B7"ing—Jerra7'dtransformation. However, its details are so

complicated that the actual calculations are difficult to carry out.6

Literature on Equations of the Fifth Degree

R. Bruce King, Behind the Quartic Equation, Boston, 1996.

Samson Breuer,7 Uber’die irredukttblen auflésbarentrinomischen

Gleichungen fiinften Grades, Borna—Leipzig,1918.

Sigeru Kabayashi, Hiroshi Nakagawa, Resolution of equation, Math.

Japonica, 5 (1992), pp. 882-886.

6A description of the Bring~Jerrard transformation can be found in J. Pierpont,
Zur Geschichte der Gleichung V. Grades (bis 1858), Monatshefte fiir Mathematik: und

Physik, 6 (1895), pp. 18-19.

7The sad fate of the victims of racial and political persecution demands that we

recall here the 1933 expulsion of Samson Breuer (1891—1978).See Reinhard Siegmund
Schultze, Mathematiker auf der Flucht var Hitler, Braunschweig, 1998, pp. 109, 292.
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Exercises

(1) Solve the equation

:I:5+15m+12=0.

(2) Solve the equation

$5 + 330:7; — 4170 = 0.





Chapter 9

The Galois Group of an

Equation

How can one tell whether an equation of the fifthor higher
degree is solvable in radicals?

9.1 The question thus formulated is a natural continuation of our

previous results: if there is no solution to the general equation, what

types of special equations are solvable in radicals? This question
was answered by the twenty—year—oldFrench mathematician lilvariste
Galois in 1832, shortly before his death in a duel.1

Galois, who grew up in the post-Napoleon restoration, appears
to have studied the solution of equations in radicals entirely as a

self—taughtmathematician, although he did obtain a good education
for the time, first at the College Louis-le—Grand,in Paris, and then
at the Ecole Préparatoire,later the Ecole Normale. However, he
twice failed the entrance examination for the Ecole Polytechnique,
and he was initially refused entrance to the Ecole Préparatoirein
early 1831 on account of his republican agitation. His membership in
the Republican Guard later resulted in several months’ imprisonment.

1The dramatic circumstances of Galois’s discovery and the mysterious duel have
frequently led to a romanticization of his life. An example of this is the novel by Tom
Pertsinis, The French Mathematician, 1997. Those more interested in the cold facts
should look at the article by A. Rothmanx The short life of Evariste Galois, Scientific
American, April 1982, pp. 112-120. See also T. Rothman: Genius and biographers:
the fictionalization of Evariste Galois, Amer. Math. Monthly 89 (1982), 84-106, or

the biography by Laura Toti Rigatelli, Eh1am'ste Galois 1811—1832,Blrkhauser, 1996
(Italian original, 1993).

93
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Galois’s attempts to publish his ideas failed due to the lack of

understanding by the reviewers, resulting in part from the terse pre-

sentation, only much later recognized as correct. The first significant
publication occurred only fourteen years after Galois’s death, on the

recommendation of Joseph Liouville (1809~1882).
Galois’s thinking begins with the then current state of knowl-

edge, which corresponds more or less with the content of the previous

chapter. From that point, his interest may have been awakened to

ask to what extent relations based on polynomial identities among

the solutions arise that reduce the complexity of the equation in com-

parison to the normal case. Thus we have seen in Chapter 7 how

Gauss and Vandermonde solved cyclotomic equations using such re—

lationships. And Lagrange, too, whose work has been described in

this book relatively briefly,investigated polynomial expressions in the

solutions not only for the case of the general equation, but also for

special equations.

Galois’s central idea, for which there was no precedent at the

time, but which later proved to be extremely fruitful in application to

other problems in mathematics, consists in going beyond the current

state of investigation by studying a characteristic object of greater

simplicity? Specifically,for each equation, Galois associated a math-

ematical object called a group in general, and for an equation the

Galois group, in honor of Galois. The Galois group consists of a sub-

set of the permutations of the solutions together with the operation of

composition of permutations, as described in Chapter 5. The useful-

ness of this association is that it is possible to classify Galois groups

in such a way that offers a classification of equations with respect to

their solvability. In particular:

0 All important properties of a given equation—irreducibility,solv-

ability in radicals, and in the case of solvability the degree of the

required root operations~can be determined without reference

to the equation from properties of the Galois group.

2A telling example from a different area of mathematics is that of knots. For

an elementary introduction, see Alexei Sossinsky, Knots: Mathematics with a Twist,
Cambridge, Harvard University Press, 2004; Lee Neuwirth: The theory of knots, Sci-

entific Ameiican 240 (June, 1979), pp. 110-124. Less—spectacularexamples can be

found in almost every mathematical area.



9. The Galois Group of an Equation 95

0 Moreover, the number of different Galois groups is n1uch smaller
than the number of possible equations. Thus one can gain a

complete understanding of all the Galois groups associated with
equations of low degree.

9.2 As stated in the preface to this book, we are going to interest
ourselves in the “modern point of view,”that is, in Galois theory,
as developed in the early twentieth century.3 However, we first shall
define the Galois group in an “elementary”way using the terminologythat we have developed thus far. We shall follow Galois’s path in
broad outline, though without going into detail.‘‘Furthermore, we are
not going to offer complete proofs of anything, which would make little
sense given the development thus far, which has been primarily of a

motivational nature. Instead, we shall offer some concrete examples.
In the next chapter we will return to fill in some of the gaps in this
chapter’spresentation.

In their analysis of the conditions for a general solution of equa-
tions of a particular degree, Abel, and before him Ruflini,had focused
on the root operations, dealing apparently with the most striking
places within a solution formula. Galois recognized how this proce—
dure designed for the general equation could be applied to the solution
of special equations and to the desired representation of their roots.
To this end, he called a quantity known if it can be represented in
terms of already known quantities using the four arithmetic opera-
tions. One begins by considering the coefficientsof the equation as

known, in analogy to the general equation, whose coeflicients corre-

spond to the elementary symmetric polynomials. One can enlarge
the collection of known quantities by adding certain values, in par-
ticular, but not exclusively, the roots of already known quantities.
Galois called such numbers added to the collection of known quanti-
ties adjoined quantities. The process itself he called adjunction. We

B. Melvin Kiernan, The development of Galois theory from Lagrange to Artin, Archivefor History of Exact Sciences, 8 (1971/1972), pp. 40-154, as well as in an annotatedrevision of B. L. van der Waerden, Die Galois—Theorievon Heinrich Weber bis EmilArtin, Archive for History of Exact Sciences, 9 (1972), pp. 240~248.4An extensively commented translation of Galois’s original paper can be foundin Harold M. Edwards, Galois Theory, New York, 1984. An overview of the historycan be found in Erhard Scholz, Die Entstehung der Galois-Theorie, in: Erhard Scholz(ed.), Geschichte der Algebra, Mannheim, 1990, pp. 365~398.
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note that Galois’s concept of known quantities leads to sets of num~

bers that today are called fields,a concept about which we shall have

more to say in the following chapter. However, since we would like to

use this notion, we give the following definition.

Definition 9.1. A subset of the complex numbers is called a field
if it is closed under the four arithmetic operations, that is, if the

sum, difference, product, and quotient (aside from division by zero)
of any two elements (not necessarily distinct) of the field is again in

the field.5

The smallest collection of known quantities that results from an

equation with rational coefficients is the field of rational numbers, de-

noted by Q. Then building on this field,the solutions of an equation,
such as, for example,

:c3—3av—4=O,

represent a stepwise enlargement of the field of known quantities.
Thus for the solution

ac1=\3/2+\/5+?/2—x/§
we first adjoin \/.3 to the rational numbers. We thereby obtain as our

collection of known quantities resulting from the rational numbers

with the adjunction of \/§ the set

e(¢§)={a+w§|a,be@},
which it is easily shown to be closed under the four basic operations, so

that Q \xD0Mi�is in fact a field. One speaks of this field as an ezvtension

fieldof the rational numbers obtained by adjoining to Q the number

x/3

Now to obtain the solution 301, one needs to adjoin only \3/2 + x/3
as a second step, since then

3/2_\/g:
1

32+«/3‘

5The notion of a. field is usually defined in greater generality to include sets that

are not subsets of the complex numbers. However, for our purposes, the definition

given here will suflice.
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is also a known quantity. The result is the extension field denoted by
Q 0c\xB6�6/2 + \/5)-6
9.3 Building on the terminology of known quantities, we may ap—
preach the definition of the central notion of Galois group by consid-
ering an equation, namely, the nth—degreeequation

as”+ an_1m”"1+ an_29c”“2+ - - - + aim + as = 0

with complex coefficients an_1, . . .

, cL1,a0 and without multiple so-

lutions. That is, we assume that all the n solutions are distinct.7
The solution process of the equation, to the extent that it is possi—
ble, is now analyzed by associating with an arbitrary intermediate
step a field K of “known quantities”that contains the coefiicients
CLn_1, . . .

, CL1,(L0.

We noted at the beginning of the chapter that an equation can
be represented more simply than in the general case if there are poly-
nomial relations among the solutions 231, . . .

, mn. Every such relation
corresponds to a polynomial whose value is zero for the arguments
ml, . . . ,:rn. Thus, for example, the polynomial relation

$3 = 3:2 + 2

corresponds to the polynomial

h(X1,.,.,X,,)=X12—X2——2,

6However,this extension field does not contain the other two solutions of the cubicequation. To get all three solutions into an extension field with the second adjunction,one could start with the field Q(§1—+ \xD0u\xA0�3
, which contains the cube roots of unity.7For the case considered here of complex coefiicients,this condition is not really arestriction, since multiple linear factors can be eliminated by factoring them out usingonly the four basic operations. This is done with the help of the Euclidean algorithm,described later, by findingthe greatest common divisor of the given polynomial andits derivative. Since

(<2—w1>J'—w1>J'—w1>J'—w1>J'—w1>J'~ m2)"W)’s (w ~a:1>J'“1~a:1>J'“1~a:1>J'“1~a:1>J'“1z2>’°‘1x \xC0'\x97�

>< (j(.'1:—mg)(m—:n3)---+k(ar:—a21)(a;-223)-«-+---),
the greatest common divisor of the given polynomial and its derivative is equal to

(ac — m1>J"1m1>J"1m1>J"1 m1>J"1m1>J"1— m2>‘°*1-

--.

Through dividing the original polynomial by this greatest common divisor, one therebyobtains a polynomial that has the same set of roots as the original polynomial, but withno multiple roots. The first person to employ such considerations in explicit transfor-mations of polynomials was Jan Hudde (1628—1704),later the mayor of Amsterdam.
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where here and in what follows we use lowercase letters for the so—

lutions and uppercase letters for the variables of a polynomial. For

each underlying field K, we denote by BK the set of polynomials with

coeflicients in K that have the Value 0 at the arguments ml, . . . ,a3,,.

Of course, the totality of all polynomials in BK is much too great

for a detailed listing. Even a complete description is not a trivial task.

Galois himself took a route by which he used only a single polynomial
created specificallyfor his purposes. He constructed this polynomial

using what is now called the Galois resolvent, which is a special quan-

tity in terms of which all the solutions :31, . . . ,a:,, can be expressed

using the four basic operations. We will go into this very explicit

approach, though not in great detail, in the section on computing the

Galois group (at the end of this chapter). Here it will sufiice to note

that the Galois resolvent can be suflicientlycharacterized without

explicitly calculating the solutions.

Of course, there are always polynomials that obviously belong to

the defined set BK. Such examples can most easily be found among

the symmetric polynomials. For the earlier example

:33 »— 3a: — 4 = 0,

the three polynomials

X1 +X2 +X3, X1X-2X3 -4, X3 +X§+X§ -6

belong to the set BQ. However, what is really of interest are the

nonsymmetric polynomials, since only they reflect relations that allow

for a reduction in the complexity of the equation. For Vandermonde’s

equation (see Chapter 7)

:r5+:r4—4:r3-—3a:2+3zv+1=0,

with solutions my-+1
= 2cos \xB04\x87�for j = 0, 1, 2, 3,4, here are some

polynomials that belong to BQ:

Xf—X2~—2, X§-X3—2, X§—X4—2,
X1X2 ~ X1 - X4, X2X3 — X2 '“ X5,

9.4 While the set of polynomials BK may seem rather abstract and

not easily grasped, it must be made clear from the start that the set is

even larger for less-complex equations, that is, those with particularly
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many relations among the solutions. The set BK is thus a sort of
measure of the complexity of the underlying equation. A truly simple
characterization of this complexity is obtained with the help of the
Galois group, which by definition contains all permutations of the 71

variables X1, . . . ,X,, that transform a polynomial in BK to another
polynomial in the set. This leads to the following definition.

Definition 9.2. For a polynomial equation without multiple solu-
tions whose coeflicientslie in a field K, the Galois group (over the
field K) is the set of all permutations U in the symmetric group 3,,
that permute the indices 1, . . . ,n of the solutions $1,. . .

, can in such
a way that for every polynomial h(X1, . . . ,X,,) with coefiicientsin K
and h(a:1, . . . ,a:,,) = 0, one has h(:cU(1),. . . ,:v,,(,,))= O.

In the case that no nontrivial relations, that is, those not based
on symmetric polynomials, exist, the Galois group consists of all n!
permutations, and indeed, every polynomial in the set BK remains
unchanged under all permutations. In contrast, the example given
earlier of an equation of fifth degree first solved by Vandermonde
leads to a drastically reduced set of only five permutations, whereby
in this case the individual polynomials in the set BQ are altered by the

permutations, with only the value 0 resulting from evaluation at the
solutions remaining unchanged. For example, the cyclic permutation
X1 > X2 > X3 > X4 > X5 > X1 transforms the polynomial
Xi?— X2 — 2 into the polynomial X22— X3 — 2, which, however, again
belongs to the set BQ. On the other hand, simply permuting indices
1 and 2 does not lead to an element of the Galois group, as one can

see immediately by investigating the polynomial Xf — X2 — 2 and
the result of the indicated permutation. The resulting polynomial,
X; —— X1 ~ 2 does not belong to BQ, since :33—

2:1
— 2 = 233

—

ml % 0.

Another example, one to which we shall return several times, is
the biquadratic equation

£L‘4-—4:I1'3—4.’132-I-8£I3—2=0.
Without going into detail, We note first that the four solutions satisfy
the identity $1223 + 1102334 = 0, Where the numbering of the solutions
is explained in the section on computing the Galois group. In View
of the solution procedure described in Chapter 3, one should keep
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in mind that such an identity exists only when the cubic resolvent

possesses a rational solution.

Since $1204 -1- (E2123 7é0 and $1902 + 1133584 % 0, only those permu-

tations that leave the polynomial X1X3 + X2X4 can belong to the

Galois group. The result is that sixteen of the twenty—four(= 4!) per-

mutations of the numbers 1,2, 3,4 are eliminated as candidates for

membership in the Galois group. That the remaining eight permu-

tations in fact “respect”every relationship among the solutions and

therefore belong to the Galois group is demonstrated in the above-

mentioned section, where it is shown how one can check whether a

permutation belongs to the Galois group using a single polynomial in

BQ, namely

(—X2+ X3 — 2X4)8+ 16(—X2+ X3 ~— 2X4)7~ - --

— 253184(—X2+ X3 — 2X4) + 72256.

Here we shall content ourselves with an explicit enumeration of the

permutations that belong to the Galois group. The following ta-

ble shows how each of the eight permutations permutes the indices

1, 2, 3,4. The first permutation, here denoted by 00, is the identity,

that is, the permutation that leaves every index unchanged:

1 2 3 4

1 2 3 4

3 2 1 4

1 4 3 2

3 4 1 2

2 1 4 3

4 1 2 3

2 3 4 1

4 3 2 1

As already stated, it can be determined from the Galois group

alone, without reference to the original equation, whether the equa-

tion is solvable and the degree of the roots that will appear in the

solution. For such pronouncements it is not only the size of the Galois

group that is at issue. The permutations themselves play a certain

role, where what matters is the relations that exist among the permu-

tations of the Galois group themselves, that is, relations in the sense
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of composition of permutations, discussed in Chapter 5. In particular,
if one performs Galois—grouppermutations or and 7' in succession, the
result is another permutation. And this new permutation, denoted by
7- o 0, has, like a and T, the property of changing all the polynomials
in the set B K into polynomials in B K and thus is itself a member of
the Galois group.

9.5 A universally applicable procedure for documenting all the re-

lations among the elements of the Galois group, though not partic-
ularly elegant due to its explicitness, is a table of the group oper-
ation. We shall see how this works in the context of the already
mentioned biquadratic equation. As an example of composition of

permutations we shall take the permutations 01 and 05 from the Ga-
lois group. The permutation 01 permutes the solution index 1 to

the index 01(1) = 3. Since the index 3 is permuted by the second

permutation 05 to 05(3) = 4, the net result is a shift of index 1 to

or5(a1(1))= 4. One does the analogous operations for the other three
solution indices and obtains the following result:

| 1 2

first 01 PN\xAC� 3 2

. and then 05 4 3 [\3|-‘C/J
4

4

1

A look at the table of the eight permutations of the Galois group
shows that 05 o 01 2 07. The group table consists of all such combi-

nations of two permutations, a sort of glorifiedmultiplication table.
Each entry in the table is the result of first applying the permutation
from the top row and then the permutation in the left column:
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All relations among the permutations can be read off from the

group table. One can no longer tell how the solutions and their indices

are permuted by the permutations. However, one can tell—and we

shall say it again because of its irnportance—-fromthe group table

alone whether the underlying equation is solvable in radicals and the

degree of roots that are necessary for expressing the solutions.

Why the Galois group contains such information can be seen as

plausible by breaking the solution process of the underlying equation
into individual steps, each of which corresponds to the adjunction of a

single quantity, and then investigating how this adjunction alters the

Galois group. Namely, by extending the set of possible coefiicients

from a field K of “known quantities”to a larger field E, the set of

“relational” polynomials B K, which was used in the definition of the

Galois group, is clearly enlarged to a set B E. The more stringent re-

quirement on the permutations linked with the extension of the field

of coefiicients may then lead to a restriction in the set of permuta-
tions belonging to the Galois group. It is thus seen that the possible
reduction in size of the Galois group is intimately bound up with the

properties of the adjoined values. To put it more concretely, under

certain conditions, the adjunction of a value that is the mth root of

an already known quantity has the effect of reducing the number of

permutations in the Galois group by a factor of m.

9.6 We shall now take a detailed look at how the individual steps of

solving a given equation are reflected in the corresponding reductions

of the Galois group. We use our standard example of a biquadratic

equation. Its solutions, since the cubic resolvent possesses a rational

solution, can be expressed solely in terms of square roots:

a:1,3=1+x/iix/3+\/'2‘,

m2,4=1~\/ijzx/3—\/5.

Beginning with the field of rational numbers as the set of a pri-
ori known quantities (given the rational coefficients of the equation),
we add as our first additional known quantity the number @?9� For

the following two adjunctions in the solution process the numbers
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V 3 + \,f2 and V 3 — \/§ present themselves, in each case involving
the square root of a known quantity.

Let us now observe how the adjunction of these three quantities
reduces the Galois group. The initial adjunction of \/§ to the base
field K = Q leads to the result that among others, the polynomial

X1—X2+X3—X4-*4\/3

belongs to the set BQ(\/5),since 931
—

11:2 + $3
—

:34 = 4x/5. Since
the four permutations 0 = 04, 05, 06, 07 satisfy the condition scam

-

:z:C,(2)+:rC,(3)—.’I30.(4)= —4\/§,they can no longer belong to the Galois

group after the extension of the field K = Q to E = Q \x90m\x98�Con—
Versely, in analogy to the original field K = Q, one can show using
Galois’s method that the permutations 00, 01, 02, 03 in fact belong to
the Galois group. Thus the expansion of the set of “known quanti-
ties” to include the Value \/5 reduces the size of the Galois group by
one—half.

With the subsequent adjunction of the second intermediate value,
V 3 + \/3, the set of polynomials that refiect the polynomial relations

among the solutions is enlarged, for example, on account of the iden-

tity :01
—

$3 = 2V3 + x/5, to include

X1—X3—~2V3+\/§.
Since for the two permutations 0 = 01, 0'3 the equation av(,(1)—a:C,(3):-

-2 V 3 + x/Q‘holds, these permutations are eliminated from the Galois

group when V 3 + \/-2-is adjoined to the field Q \x80\xFD\x89�Conversely, one

can show that the two permutations 00, 02 in fact belong to the Galois

group.

If finallythe adjunction of V 3 — x/5 is carried out, then all four
solutions 931, . . . ,a34 can be expressed in terms of rational numbers and
the adjoined numbers using the basic arithmetic operations. By the
definition of the Galois group in terms of the obtained extension field,
we need to consider the four polynomials X, —m, for 2' = 1, 2, 3, 4. The
result is that the Galois group contains only the identity permutation
00.

In Figure 9.1 the three adjunctions and their ‘effecton the Galois

group are illustrated. There the notation K(a, b, . . \xC0)}�indicates the
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extension field formed by the adjunction of the numbers a, b, . . . to a

field K. That is, this field is defined as the totality of all numbers that

can be obtained using the four arithmetic operations on the numbers

a, b, . . . together with the numbers in the field K.

Steps in Solving the Fields of Current

I
Galois Group of

Equation “Known Quantities” the Ecniation
\/3—\/5 Q(\/§,\/3+\/5m/3—\/5) 0'0

T square root

\/3+\/5 Q(\/§,\/3+\/5) 00,02

T square root

\/E p~y� a0,a1,a'2,a3

s uare root

coefFiTcien(i'.sof the equation Q :70, U1, 0'2, :73, :74, 0'5, 0'5, 07

Figure 9.1. Solving the equation :24 ~ 49:3 — 4372+8a: ~ 2 : 0

by stepwise extension of the set of “known quantities”and

how the associated extension fields reduce the Galois group.

It remains to note that the stepwise expansion of the set of known

quantities by the square root of a previously known quantity does

more than reduce the size of the Galois group by a factor of 2. Each

of these adjunctions represents a decomposition of an appropriately
arranged group table into four equal parts, each of which contains

permutations only from one or the other half of the Galois group.

For example, from the first adjunction one obtains the following de—

composition, Where the further decompositions can be seen in the

upper-left—handsquare:

00 U1 U2 03 04 05 (76 07

0'7 0'7 0'6 05 0'4 0'3 0'2 (71 0'0

9.7 The correspondence that we have observed between adjunctions
and decompositions of the group table holds generally for analogous
decompositions into m X m squares, where m is a prime number,
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under the assumption that the equation is irreducible and that the
mth roots of unity have been adjoined in previous steps. Under these
conditions, the following can be shown:

0 The adjunction of an mth root, if it leads to an actual reduction
in the Galois group, effects a decomposition of the group table
as described into m X in squares.

0 Conversely, for every such decomposition into in X m squares
one can find an mth root whose adjunction reduces the group
table to the upper—left—handsquare.

Since mth roots of unity, as we described in Chapter 7, can always
be expressed in radicals, this equivalence leads to the following result:

Theorem 9.3. An irreducible equation is solvable in radicals pre-
cisely when the Galois group can be reduced step by step to a one

element Galois group, containing only the identity permutation, where
each step corresponds to a decomposition of the (suitably ordered)
group table into in X in squares each ofg/rhirh.rrwtainajhamtthlrpatt

of the permutations.

(In recognition of this equivalence, Galois groups allowing such a

stepwise process are called soluable.)8
With this theorem, which to be sure we have not even begun to

prove, it becomes clear why the Galois group is so valuable in analyz-
ing the solvability of an equation: in principle, purely combinatorial
considerations regarding the group table allow us to determine which
root operations make progress in solving the original equation. Thus,
for example, for the equation

51:5— :3 ~ 1 = 0

it can be shown that the associated 120 x 120 group table permits a

decomposition into squares only once: the resulting 60 x 60 square
permits no further decomposition, and this is precisely the reason that
the solutions of the given fifth—degreeequation cannot be represented
with nested root expressions with rational radicands.

Bln the next chapter we shall learn a definition that will make dealing with the
group table unnecessary.
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Of course, the possibility of investigating the Galois group purely

combinatorially via the group table is not the most elegant approach.
How such an investigation can be simplifiedand why it works the way

it does will be the topic of the next chapter.

9.8 We would like to use the remainder of this chapter to determine

the Galois groups of some other equations, some of which have made

an appearance in earlier chapters.9 As with our standard example of

the biquadratic equation, we will generally concentrate on that part

of the demonstration in which it is shown that certain permutations
cannot belong to the Galois group. The proof that the remaining

permutations must belong to the Ga.lois group can in principle always
be carried out using the technique of the section below on computing
the Galois group. In many cases, however, a simpler argument can

be adduced. However, the theorems that are of use in this regard will

be presented only in the following chapter.

In the definition of the Galois group we have generally excluded

equations with multiple roots. In the remainder of the chapter we

shall further reduce our considerations to irreducible equations. At

the level of the Galois group this is equivalent, as will be shown in the

next chapter, to the property that for every pair of solutions 11:, and

ask there exists at least one permutation 0 that permutes the solution

acj to wk, that is, a(j) 2 k. In such a case, one says that the Galois

group acts transitively on the solutions of the equation.

9.9 Quadratic equations that are irreducible always possess a Galois

group consisting of two permutations. In addition to the identity

permutation 00, there is additionally a permutation 01 that permutes
the two solutions. The group table has the following form:

9The other examples have been taken, in part, from Leonhard Soicher, John

McKay, Computing Galois groups over the rationals, Journal of Number Theory, 20

(1985), pp. 273-281. Their article also contains examples of equations of the sixth and

higher degrees.
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9.10 Regarding the Galois group of an irreducible cubic equation,
there are two possibilities: Either the Galois group contains all six
permutations of the three solutions or it contains three permutations
that permute the solutions cyclically. An example of such an equation,
derived from the cyclotomic equation of seventh degree, is

:v3+a32—2a:—1=0,
whose three solutions are zj

= 2 cos ( for j = 1, 2, 3. On account
of the identities

;v2=:r§——2,:c3=a3§~2,9:1:=:z:§—2,
the three polynomials

X2—Xf+2, X3—X§+2, X1—X§+2

belong to the set BQ of polynomials to be considered in determining
the Galois group. As a consequence, we have that a permutation 0

belonging to the Galois group is already determined by its effect on

a single index, for example on the index 0(1). Therefore the Ga-
lois group consists of only the three permutations that permute the
solutions cyclically:

The group table for the Galois group comprising these three per-
mutations has the following form:

Of course, the Galois group of the previous equation can also
be determined directly, that is, without knowledge of the solutions.
Aside from Galois’s general procedure, one may also calculate the
difference product of the solutions, whose square is the discriminant.
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This is most easily done with the general formula for cubic equations

given in Chapter 5:

(931—— ac2)(:1cg— .’133)(CI31— :33)= :i:6z'\/3 Pa\xB3�(gr,
where p and q are the coefficients of the reduced equation, for which

in the case of the equation under investigation, p 2 —gand q = ——7—
27

‘

This leads to

(901‘ 902)(~”02— 933)(901— $03)= -7,

which shows at once that the odd permutations, that is, those that

change the sign of the difference product, do not belong to the Galois

group.

9.11 “Most” irreducible cubic equations, such as the equation

x3 + :10 — 6 := 0

solved in Chapter 1 with the three solutions

- 2 61 - 2 61

W:¢’\3/3+§\/”27+<2’\3/3”§v§
for j = 0,1,2, lead to a Galois group that contains all six permuta-
tions:

The group table of the Galois group has the following form, where

the decomposition into four 3 X 3 squares corresponding to the ad-

junction of the square root of the discriminant, which contains only
three different permutations, is clear:
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The direct relationship between the Galois group and the solution
of the equation is complicated in the case of the cubic equation in that
the third root of unity C 2: —%+ \xD0Oe�3 must be assumed as “known.”
When the equation has rational coeflicients,this means that the direct
correspondence between the solution steps of the equation and the
steps in decomposition of the Galois group is ensured only when the
field Q containing the coefiicients is enlarged by the third root of

unity to \x90G1�
To that extent an equation that looks simpler than the general

one, such as the equation

m3—3:v2——3:r—1=0,
which appears at the end of Chapter 1, with the three solutions

ac,-+1 = 1+0’?/§+C2"«3/Z,
j = 0,1,2, can have a Galois group comprising six permutations.
For the difference product one obtains, since the coefiicients of the
reduced equation are p = -6 and q = —6,the value

(171— £I72)(.'E2— .’I33)(£I31— (113)T: \xC0\xBFV�E \xA0&%�
with the result that the Galois group reduces to three permutations
only when the third root of unity C is adjoined. In contrast, the Ga-
lois group over the field of rational numbers contains all six permuta-
tions.” As in the earlier investigated equation $3 + $2 — 2:0 —~ 1 = 0,
even though a casus irreducibilis is present and therefore the three
solutions are real, the three roots of unity must first be adjoined, with

1OMoreover,since

at?~3a:,~ .—2 :g9”1€/5,
the splitting field, that is, the field arising from adjunction of all the solutions, is
Q(C, P�L� The name “splittingfield” comes from the fact that it is the smallest field
in which the equation to be solved can be factored into linear factors.
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the Galois group not being thereby reduced. Then the adjunction of

a third root allows the solution of the equation.

9.12 Irreducible biquadratic equations can have Galois groups with

4, 8, 12, or 24 permutations. In some of these four cases there are

different possibilities as to which permutations belong to the Galois

group. However, from a qualitative point of view, in particular with

regard to the solvability of the Galois group, two Galois groups will

be considered the same if one can be transformed into the other by a

possible rearrangement of the rows and columns of the group table.

Such Galois groups are said to be isomorphic. With this notion of

isomorphism of groups, there are then only five possibilities for the

Galois group of an irreducible biquadratic equation: two with four

permutations and one each with 8, 12, or 24 permutations. For each

of these cases We will look at an equation.

We begin with the examples of biquadratic equations with the

equation

iE4+{E3+{132+:L‘+l=0,

solved in Chapter 7, obtained from the fifth—degreecyclotomic equa-

tion, Whose solutions are $341 = cos + isin \xB0\xD70�for j =

0, 1, 2, 3, where the numbering is chosen as has already been done in

the construction of the periods for the cyclotomic equations. In what

follows, in the relations among the solutions the following symmetry
will be apparent:

CBj+1
= 0\x9A+�

Thus, as with every other equation for periods of a cyclotomic
equation, a permutation belonging to the Galois group 0 is deter-

mined by its action on a single index, for example by the index 0(1).
This leads to the result that only four permutations, those that per-

mute the solutions cyclically, belong to the Galois group. The fol-

lowing tables show the permutations of the Galois group and the

associated group table:
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9.13 Similarly, the equation

&+1=0

leads to a Galois group with four permutations. This equation’sso-

lutions are four of the eighth roots of unity, namely
2 2'—1 2 2'—1

arj =cos `�� +isin \x80\xA7\xA3�for j: 1,2,3,4.

First, in analogy to how we dealt with the previous equation, a permu-
tation a belonging to the Galois group is determined solely by 0(1),
that is, by its action on the first index, on account of the relation

‘_ 2j—1
$3 —:v1 .

Therefore, the permutations belonging to the Galois group are those
listed in the left—handtable below. One then obtains the group table
on the right, where the four identical permutations on the diagonal
show that no renaming of the permutations can lead to the group
table of the given equation:

9.14 An irreducible biquadratic equation with a Galois group con-

sisting of eight permutations has already been investigated in Sections
9.4 and 9.5. A very simple equation that leads to an isomorphic Galois

group is

#—2=a
Whose solutions are 32,- = 2'j”1\"/§for j = 1,2,3,4. Since :1:1w3 +

:c2w4 = 0, we may proceed analogously to the previous equations
investigated. We note only that the Galois group reduces to four
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cyclic permutations if the field is extended to Q by the fourth root of

unity 1'.

9.15 A Galois group comprising all twelve even permutations is

obtained for the equation

:c4—|—8$—|—12=0.

The reason is that using the formulas of Chapter 5 for the cubic

resolvent

z3—12z+8=0,

one obtains for the difference product the value

Hm»— 53k)= 8 H(zj-- zk) = 48i\/§ @\xE5\x9A�
2

+ \x80\xEE\x9A�j>k j>k

= -576.

9.16 An irreducible biquadratic equation with a Galois group of

maximal size (24 permutations) is the following:

a34+a:+1=0.

9.17 In the case of irreducible equations of fifth degree, there are

only five possibilities for the Galois group (up to isomorphism), being
groups of 5, 10, 20, 60, 120 permutations. Equations whose Galois

group falls into one of the first three cases are solvable in radicals,
while those for the last two cases are not.

There are only five permutations in the Galois group of Vander-

Inonde’s equation 3:5 + 3:4 — 4m3 — 32:2 + 3n: + 1 2 0, whose solutions

are two—memberperiods of the cyclotomic equation of degree 11. As

described in Sections 9.3 and 9.4, one can determine the permutations
belonging to the Galois group with the help of polynomial relations

suchasatfi::c2+2 andmg =a:3+2.
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The equation :35 — 5:3 + 12 = 0 leads to a Galois group with ten
permutations. Its solutions are

- 2.’13j;1“€‘7§/p\xC9V�p\xC9V�\x80\xD2=�
125

a2a'5__E 1 i1_+e \/1 5x/5+35+125

+
11

1250111-‘E
. 2+e3J\5/—1—g\/5-3

E4j5_1 3 11.11+e\/-1-5\/5+35 25
,

)-—‘

where e = cos \xC0#N�+ isin \xF0:T�for j = O,1,2,3,4. This can be seen

from calculating the value of the bicubic resolvent z = 5 investigated
in Chapter 8, which corresponds, up to a sign to be determined, to
the identity

331562 + 5132933+ 11331104+ 1134135-|- $5$1

931.133 1221134 £3125 £41131 115mg — —10.

The Galois group of this equation appears as a group table in the
preface to this book, in Figure 0.1.

The Galois group of the equation $5 ~ 2 :: 0, whose solutions are

a:j 2: e7’1\5/2,for j 2 1, . . . ,5, contains twenty permutations. Since

110,-= ac‘§Tj:c§—1,each permutation of the Galois group is completely
determined by its action on the two solutions ml and (U2. And in fact,
all of the 5 X 4 = 20 ways of associating a pair of two different solutions
with the two solutions $1, {U2 result in a permutation belonging to the
Galois group. Indeed, these twenty permutations are defined,for

p=1,...,4andq=0,...,5, by

Upyq (gs/g): €pj+q\5/Z

forj=0,1,2,3,4.
The equation $5 + 20$ + 16 = 0 yields sixty permutations. These

are the even permutations, those that leave unchanged the integer
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value of the difference product. Using the formula given in footnote

5 in Chapter 8, the difference product is either +32000 or —32000.

An example of a fifth—degreeequation with maximal Galois group

of 120 permutations is 305 ~ :1: + 1 = 0.

9.18 We close this chapter with a theorem of Galois containing his

findingsabout the solvability of equations in the form of a “tradition-

ally”formulated criterion. That equations satisfying this criterion are

solvable was hypothesized before Galois by Abel, in 1828, in a letter

to Crelle (1780—1855).11

Theorem 9.4. An irreducible equation of prime degree is solvable in

radicals if and only if all the solutions can be expressed as polynomials
in two arbitrary solutions.

In particular, an irreducible (over the rational numbers) fifth—

degree equation with three real and two nonreal solutions cannot be

solved in radicals. Thus, for example, the equation 12:5~ 17a: — 17 is

immediately seen to be unsolvable, since by Eisenstein’s irreducibility
criterion the equation is irreducible, and furthermore, it has three real

solutions, and there is no Way that two of them can be used to express

all the solutions in terms of polynomials (with rational coeflicients).
An additional consequence of Galois’s criterion is that the size of

the Galois group of an irreducible solvable equation of prime degree
n is always a divisor of n(n — 1) and a multiple of n.

Computing the Galois Group

As we have mentioned, the set B K of polynomials used in the definition

of the Galois group is far too large to list explicitly. Even a complete

11August Leopold Crelle is remembered primarily as the founder and editor of

the first German mathematical journal. The Journal fiir die Reine und Angewandte
Mathematik is even today frequently referred to as “Crelle’s journal.” Abel’s proof
of unsolvability was published in 1826 in volume 1 of Crelle’s journal (Beweis der

Unmcjglichkeit, algebraische Gleichungen Von hoheren Graden, als dem vierten, all-

gemein aufzulosen, pp. 65—84).Our Theorem 9.4 is also formulated as Théoreme

IV (p. 143) in Abel’s Mémoire sur une Classe particuliere d’équations résolubles

algébriquement,Crelle, 4 (1829), pp. 131-156; see also Lars Gérding, Christian Skau,
Niels Henrik Abel and solvable equations, Archive for History of Exact Sciences, 48

(1994), pp. 81-103.



9. The Galois Group of an Equation 115

description is not simple.”A way out of this dilemma, allowing for an
explicit computation of the Galois group, is offered by the method used
originally by Galois for definingthe Galois group.

Galois constructed, for the hypothesized n distinct solutions ml, . . .

, sunof a given nth—degreeequation, the so-called Galois resolvent. He expressedthis in the form

t=m1:v1 +m2w2 +-~+mn:vn
with suitably chosen numbers ml, . . . ,mn. Galois then observed that one
can always find numbers ml, . . . ,m,, in the field K such that all n! values

to =

m11Ig(1) + m2H3g(2) + - - - -1- mnfEa(n)
resulting from permutations 0 of the indices 1,. .. ,n are distinct.” A
quantity 25 thus constructed now has, as Lagrange determined, the prop-erty that all solutions ml, . . . ,a:,, can be represented by polynomials in t,in particular without using root operations: ml = gl (t), . . . ,:cn = g,,(t).14Every polynomial from the set BK used to define the Galois group thus

12For readers who already know (almost) everything: The set BK is an ideal in thepolynomial ring K[Xl, . .
., n]. From the Hilbert basis theorem, there exist finitelymany (basis) polynomials hl, . . . , hm such that the set Bk comprises the polynomialsof the form

flh1+""l'fmhm
for some polynomials fl, ...,f,,,. If one could determine such basis polynomialshl, . . .

, hm, then one could compute the Galois group using the fact that each per-mutation can be individually checked with these polynomials for membership in theGalois group.
13For the values ml, . . . ,m,, to be chosen, none of the equations

ml (wan) — 9=r<1>)+'-‘+mu (='-‘o(='-‘o— $r$r) = 0

may be satisfied for two distinct permutations 0 and 7'. Each of these %n|(nl — 1)equations thus limits the possible selection of values ml, . . .
, mn by a hyperplane inK": for 11, = 2 this is a straight line in K2, for n = 3 a plane in K3, and so on. Thusin any case, there remain infinitelymany ways of choosing the values ml , . . . ,m,,.14The proof of this theorem——the“modern” variant K(:1:l,...,a:n) = K(t) canbe found in books on abstract algebra as a theorem on the existence of a primitiveelement-——wasonly sketched by Galois. Corresponding to the constructed Galois resol-vent t, Galois formed the polynomial

aESn
0(1):].

(n—1)I
= Z 9k(X1: :Xn)Tk:

k=CI

based on all permutations 0 that fix the polyno1nial’s(77.— 1)l factors, where thecoefficients gk(Xl, . . . ,Xn) appearing in the sum are polynomials in the variablesXl, . . . ,Xn that are symmetric in the variables X2, . . .

, X". If one now considers thepolynomials gl, (Xl, . . . ,Xn) as polynomials in the variable Xl, then one is dealingwith symmetric polynomials in the variables X2, . . . ,X,,, which therefore can be ex»pressed as elementary symmetric polynomials in these variables. Since furthermore,each of these elementary symmetric polynomials can be expressed as a polynomialin the variable Xl as well as the elementary symmetric polynomials in the variables
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corresponds to a polynomial equation that is satisfied by the Galois re-

solvent It. And such polynomials in one variable, as explained in Point 3

in the upcoming section on computing with polynomials, are all multiples

of an irreducible polynomial over the field K with t as a zero. Therefore

every permutation can be examined with respect to this single equation
to determine whether it belongs to the Galois group. And furthermore,

this single irreducible polynomial with t as a zero can generally be found

“easily”by employing the method of Lagrange and taking the product of

all n! linear factors (T — ta) and then decomposing this degree-n! equation
into irreducible factors, whereby one then must seek the factor Q5(T)that

has 75 as a zero.

The investigation of a particular equation should help in clarifying
these matters as well as in showing how in practice one can use the numer-

ical solutions to compute the Galois group. In fact, due to the inevitable

errors due to rounding, the numerical values are not suitable for proving
an equality, though they can be used to prove an inequality, which often

suflices. As an example, let us consider the equation

a:4~4:v3—4m2+8a:—2=0,

X2,...,Xn (for example, X2 + « ~ - +Xn = (X1 -1- - - - -l-X") —X1), one obtains

9k(X1:---:Xn)= 2 hj,k(X1y-~-:Xn)Xf{:
j=0,1,...

where the polynomials h_,-,;¢(X1,. . . ,Xn) are symmetric in the variables X1, . . . , Xn.

One now defines the polynomial

F(X) = EZhj,;,~($1,. ..,:z:,,)tkXj.
k j

The values hjlk (331,. . . , w,-L)can without exception be expressed as polynomials in the

coeflicients of the original equation, so that they must lie in the field K. As We shall

show, the equation F(X) = 0 has only :01 as a solution in common with the original

equation, so that the linear factor (X — ml) can be computed using the Euclidean

algorithm (see the following section) from the coefficients of the two equations, that is,
from values in the field K together with 75,using the four basic arithmetic operations.
That one can in fact do without division can be shown by the methods of linear algebra

(see Section 10.9).
We have still to investigate the zeros of the polynomial \x80�\xB6�Clearly, from the

factor associated with the identity, that is, the permutation that leaves everything

unchanged, we have

F(a21) = Z::hj,k((I,‘1,.. .,£I3n)tk£lI{= Zg;,~(.’.‘C1,... ,:IJn)tk = G(t,I1I1,. ..,£E,-L)= 0.

k PN\xC1� k

Furthermore,

F(.’1)2)= ZZhj‘k($1,$2,. . . ,2:-,,)tkCB‘;= ZZhj‘k(:z:2,a:1,. . .,:1:n)tkH2‘;
3' k .7"k

= Zgk(w2,w1,- - -,wn)t'°= H (t — (m1a:2 +m2ma(2) + - - i + mnma(n)))
Ic aesn

a(1)=2

#0!

with corresponding results for the other solutions 1:3, . . . ,:c,,.
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already analyzed in Sections 9.4 and 9.5. It possesses four real solutions,
whose numerical values can be found by any one of a number of approxi-
mation algorithms:

cvl = 451521655 . ..
, :32 = 0.84506656 . ..

,

$3 = 031321057. ..

, 1:4 = —1.67349368. .. .

One now seeks a Galois resolvent by trial and error, where, for example, t =

-322 + $3 — 2934 possesses the required property: By numerical calculation
one can show that the 4! = 24 values —:r,,(2)+ w,,(3)

-

2a:a(4) are distinct.
Then, by multiplication by the 24 linear factors

(T — (—=Ba<2>+ macs)
~ 22)) :

one finds for the Galois resolvent t a 24th—degreeequation with integer
coefficients, and therefore, with minimal rounding of the numerical results
one can determine the nearest integer values exactly.

In the search for a factor Q5(T) irreducible over K with rational co-

efficients that has the Galois resolvent t as a zero, knowledge about the
numerical values can again be used to advantage. We need to check which
of the twenty—fourlinear factors

(T " (—93a<2>+ M3)
— 3$a<4>))

can be multiplied together to yield a polynomial with integer coefficients.

Clearly, every combination of permutations can be rejected for which the

numerically calculated product is not close to an integer polynomial. In the
converse case, when the numerical result indeed corresponds approximately
to an integer polynomial, this allegedly integer polynomial must be checked
to see whether it is indeed a divisor of the degree-24 polynomial to be
factored.

For our concrete example, one obtains for the Galois resolvent if an

irreducible (over the rational numbers) eighth—degreepolynomial Q5(T) with

Q5(t)= 02

em = T8 + 16T7 ~ 4OT6 — 1376T5 — 928T4

+ 34048T3 + 222O8T2 — 253184T + 72256.

The linear factors that constitute the polynomial Q5(T)correspond to
the following permutation of indices:
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2

2

2

4

4

1

1

3tx3pJ>t\:>oor—-c.or—-)--n-I:-[OI-ii-!—\oDI—‘CADCAD
3 #- 03 [O1-=x—\wcot\'>L\3A>:J=-wk

The set of permutations that one obtains with this generally applicable
method is the desired Galois group. Then, on the one hand, from the

identity
‘

(-2132+ $3
- 2.’l24)8+ 16(—(132+ £63 — 2:I34)7— - "

— 253184(—o:2+ :c3g—2534)+ 72256 = 0

one obtains a polynomial belonging to the set BQ. And this identity re-

mains valid, on account of the underlying condition in the construction

of the Galois resolvent, only for those permutations corresponding to one

of the eight linear factors of the irreducible polynomial ®(T),which are

precisely the permutations in the above table. On the other hand, one can

prove conversely that every one of these permutations 0 satisfies all other

polynomial identities valid for the solutions :31, . . . ,mn. That is, one always
has h (m,,(1),. . .

, ac,(,,))= 0 whenever h(:1:1,. . . ,:c,,) = 0 holds.”

15Such a proof might begin with polynomial representations of the solutions in

terms of the Galois resolvent t. That is,

ml :91“): -~'1 51311=g71(t)'

If one inserts these representations into the beginning equation f (:12)= O to be solved,
one obtains f(gj \xC0]��= 0. From point 3 of the following section, the irreducible factor

Q5(T) belonging to the zero t of the constructed nl—degreepolynomial must be a divisor
of the polynomial f(g_,-\xB0b\xCBFor each permutation a sought on the basis of the Galois

resolvent, the associated zero t, of ®(T) satisfies f(g,- (156)) = O as well, so that every
value gj (ta) must equal one of the Solutions 1131, . . . ,a:,,. If two such values gj (ta)
and gk(t,,) are equal for some permutation 0, then t, is a zero of the associated
difference polynomial gj (T) —

gk (T), which therefore must be divisible by Q3(T). It

follows that gj (t) = gk(t), that is, :1:_7-= wk. Altogether, this shows that the values

g1(tc,), . . . , g" (to) correspond to a permutation of the solutions ml, . . . , :z:,,:

5131(1) : 91(to): ‘ - -3 33-r(n)
= gn(ta)-

That the permutation 'r is in fact the permutation 0 can be seen from the fact that
the polynomial

T — (m191(T) + - ' - + mn9n(T))
has T = t as a zero, and therefore is divisible by the polynomial Q5(T) and thus also
has the value ta as a zero:

to = 7n1g1(t0‘)+ ' ' ' ‘i’ mn9n(to)-
For permutations '7' corresponding to g1(t,,), . . . ,g,, (to) one therefore has t, = t.,..
However, this equality can hold only for a = 7', since all nl possible values of t, are
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In summary, to compute the Galois group, first a Galois resolvent t is
computed and the associated degree—n!polynomial constructed. Among its
irreducible factors, the factor (’5(T)having 15 as a zero provides a complete
description of the Galois group. In the process, every permutation of the
solutions (171,. . . ,:v,, is determined by changing a single value, namely, by
passing from the Galois resolvent t to another zero t, of the irreducible
factor Q5(T). In this way, the permutations cr are implicitly determined by

to =

m1$a(1) + m2£Ua(2)+ - ‘ - + 7nn~’6a(n)-
Beginning with polynomial representations $1 = g1 (t), . . . , run = g,, (t), one

additionally has the formulas”

mag) = g1(t,,), ..., 2200,) = gn(t,,).
To finish,we note that an extension of the field K can lead in certain
circumstances to the result that the polynomial (’5(T),irreducible over K,
can be factored into more than one factor. The factor that has the Galois
resolvent t as a zero describes the Galois group defined in terms of the
extension field. For this reason Galois himself studied the properties of
such a decomposition——inparticular, all the factors have the same degree——
in order to discover the precise behavior of the Galois group in extension
fields.

A Quick Course in Calculating with Polynomials

The determination of Galois groups, as described in the previous section,
requires an extensive investigation of polynomials, where Galois’sprocedure
allows us to restrict our attention to polynomials of a single variable, which
are relatively easy to work with. For that reason, we have assembled here
the most important properties of polynomials of one variable. It should be
noted at the outset that with respect to divisibility and related properties,
polynomials display striking analogies to the integers.

distinct. It follows that

$a(1)= 91(ta), ---y $a(n) = 9n(ta)-
If now some polynomial relation h(:r1, . . . ,a:n) = 0 is given, then one sees at once thatthe polynomial h(g1(T), . . . ,g,, \x90\xFD��is divisible by ('5(T). This yields the desired result
0 : h(g1(tU)v' ' * 197100)) : h 030(1):' ~ '

: -'17o'(n))'

It remains to note that here a single argument, namely the divisibility by G5,hasbeen used four times. This leads one to suspect that a universal principle is in play.That is indeed the case, as will be discussed in the following chapter.16A proof of which appears in Point 3 of the upcoming section on calculating with
polynomials.
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Point 1. We begin with an analogue of integer division.

Theorem 9.5. A polynomial f (X) can be divided by a nonzero polynomial
g(X) with result a quotient q(X) and remainder r(X) such that

f(X) = q(X)9(X) + 7’(X),
with the degree of the remainder polynomial r(X) of lower degree than g(X

In practice, the computation of the two polynomials q(X) and r(X) is

accomplished by means of a procedure analogous to familiar long division,
which is no coincidence, since integers written in base 10 can be understood

as the values of a polynomial evaluated at 10. However, in contrast to the

long-division algorithm, there is no borrowing, so that the polynomial case

is actually simpler. We will content ourselves with an example, since a

general description of the algorithm would yield less clarity:

(X4 2X3 : 3X2 X : 2) : (X2 2X 1)-X2+4
(X4—2X3—X2)

4X2— X+2

4X2—8X~—4

7X+6

The result is therefore

X4—2X3+3X2—X+2

=(X2—2X~—1)(X2+4)+7X+6.
Point 2. In analogy with the case of integers, the polynomial g(X) is

called a divisor of a polynomial f(X) if f(X) is divisible by g(X) with

zero remainder. A greatest common divisor of two polynomials f (X) and

g(X), denoted by gcd (f(X), g(X)), is a polynomial of maximal degree
that divides both f (X) and g(X We note first that the greatest common

divisor remains unchanged when f (X) is replaced by f (X) — h(X)g(X);
that is,

gcd (f(X),9(X)) = gcd (f(X) * h(X)9(X),9(X))-
The reason for this is that every common divisor of f (X) and g(X) also

divides f (X) — h(X)g(X), and the converse holds because the given trans-

formation is reversible.

Of special significanceis the special case in which the polynomial h(X)
is equal to the quotient q(X) resulting from division with remainder of f (X)
by g(X): in this special transformation the two polynomials f1 (X) : g(X)
and g1 (X) = f(X) — q(X)g(X) are obtained, whereby the degree of the

second polynomial is smaller than that of the polynomial g(X), since it is

a remainder of a division.
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As in the case of integers, by repeating such steps one can compute the
greatest common divisor. The procedure, called the Euclidean algorithm,
begins with the pair of polynomials fo(X) = f (X) and g0(X) = g(X) and
reaches, at the jth step, the pair

fj(X) = 9j—l(X): 9j(X) = fj—1(X)— qj—1(X)9j—1(X)>
where the degree of the polynomial gj (X) is always less than that of the
polynomial g,~_1 (X Therefore, the algorithm must terminate after a finite
number of steps with some gm (X) = 0. One then has

gcd (f(X):9(X)) 7-gcd (f1(X)>91(X)):"'

= gcd (fm(X)v0): p\x9D\xCA�
One now obtains, for every index 9', for the greatest common divisor

fm (X) thus obtained a representation fm(X) = uj (X)f,~(X) +’l}j(X)g,-(X),
for suitable polynomials Uj (X) and 71]‘(X This is clear at once inductively
if working backward from the index 3' 2 m, for which such a representation
is trivially satisfied,one considers the equation corresponding to the jth
step:

fm(X) = '“J'(X)fj(X)+”J'(X)9j(X)
= ’uj(X)9'j—1(X)+vj(X) (fj~1(X) r

(H-1 (X)9j—1(X))
= Uj(X)fj—1(X)+ (%‘(X)— vj(X)qj—1(X))9a'—1(X)-

This equation, proved by induction, now reveals to us in the case j = 0
an important property of the greatest common divisor fm (X), as stated in
the following theorem.

Theorem 9.6. The greatest common divisor of two polynomials f (X) and

g(X) can be expressed as u(X)f(X) —|—v(X)g(X) for suitably chosen poly-
nomials u(X) and v(X).

Point 3. We now come to a result proved by Galois that played an impor-
tant role in his investigations.

Theorem 9.7. If the polynomial f(X) is irreducible and possesses a com-

mon zero with the polynomial g(X), then g(X) is divisible by f(X).
We observe first that the formulation of the theorem is not quite exact,

since irreducibility is always in reference to the set in which the polyno-
mial’s coelficients are presumed to belong. Here irreducibility is meant with
respect to the field K.

Furthermore, the theorem may be interpreted to mean that the zeros

of an irreducible polynomial are algebraically indistinguishable. That is,
every property with respect to the four basic operations enjoyed by one

zero holds as well for the other zeros of an irreducible polynomial.
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For a proof, one first determines, using the Euclidean algorithm, the

greatest common divisor of f (X) and g(X), which we shall denote by d(X
Its coefficients must reside in the field K. Moreover, executing the Eu-

clidean algorithm provides us with a representation d(X) = u(X )f (X) +

u(X)g(X) for suitably chosen polynomials u(X) and u(X The common

zero of the two polynomials f (X) and g(X) is therefore also a zero of d(X),
which implies that the degree of d(X) is at least 1. This shows that the

polynomial d(X), as a divisor of the irreducible polynomial f (X), must be

equal to f(X) up to some constant c in K. That is, f(X) = cd(X) is a

divisor of the polynomial g(X

Point 4. We also would like to make note of the following theorem.

Theorem 9.8. The factorization of a polynomial into irreducible factors
is unique up to the arrangement of the factors and multiplicative constants.

For two factorizations f1 (X) - - - f3 (X) = g1 (X) - - »

gr (X) into irre-

ducible factors, the factor f1 (X) must have a common zero with a factor

gj (X According to Theorem 9.7, therefore, f1 (X) is a divisor of the poly-
nomial gj (X) and conversely. Therefore, we have f1 (X) = cgj (X) for some

number a in the field of coefficients K. If one now divides both sides of the

original equation by f1 (X), one can proceed, factor by factor, to complete
the proof.
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Exercises

(1)

(2)

(3)

Determine using the Euclidean algorithm (in the “original”Ver-

sion for integers) the greatest common divisor of the integers
145673 and 2134197.

Show that for an equation with rational coefficients and precisely
two nonreal zeros, the Galois group over the rational numbers
contains a permutation that exchanges the two nonreal solutions
and leaves all other solutions unchanged.
In what ways can the steps of the solution of the equation

:34 — 2 = 0

be arranged? That is, over what fields between Q and Q (i,  Æ�
can the solution take place? Furthermore, provide for each chain
of extension fields the associated decomposition of the Galois

group.

Hint: Altogether, there are seven different possibilities for
such chains of field extensions. One can establish this number
for the associated decompositions of the Galois group with some

effort. That this number carries over to the chains of field ex-

tensions will be shown in the next chapter.
Determine the Galois group of the cyclotomic equation

$17 — 1 = 0

and show that there is precisely one stepwise decomposition pro-
cess in the Galois group. Give as well the associated field exten-

sions.





Chapter 10

Algebraic Structures
and Galois Theory

The author of this book associates the following entry on

Galois theory in the Brockhaus Encyclopedia, sixteenth

edition, with his fruitless attempts as a fifteen-year-old
student to understand why a general equation of the fifth
degree should have no solution in radicals:

“Accordingto Galois theory, solving an equation is equiv-
alent to the construction of the fieldE over the fieldK

of coeflicientsof the equation formed by adjoining the

sought—forsolutions. The set of permutations of the so-

lutions of the equation induces a group of maps of E to

itself (automorphisms) that leave unchanged the elements

of K. By determining all the subgroups of this group of
automorphisms, it is possible to construct the fieldE step
by step using the subgroups that correspond to interme-
diate fields.The advantage of such a method is that the

relations between fields, with their two operations, addi-

tion and multiplication, is replaced by relations among

groups, which have a single operation.”
What is the relation between this description of Galois

theory and the material in the preuious chapters?

10.1 This last chapter is meant to serve as a bridge between two

points of View on Galois theory, namely, the “elementary”point of

View of the previous chapters, focused on polynomials, and the “mod-

ern” point of View that became dominant at the beginning of the twen-

tieth century. In the course of our discussion we shall show that this

modern point of view, based as it is on abstract algebraic structures,

125
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turns out to be easier to understand, despite, or indeed because of, its

level of abstraction. To understand and appreciate this simple intro—

duction to the modern theory, the reader should have had a semester

course or the equivalent on abstract algebra and/or linear algebra
and be familiar with such concepts as group, normal subgroup, quo-

tient group, field,vector space, basis, dimension, homomorphism, and

automorphism. Since this book is directed at readers who lack such

preparation in Whole or in part, the conceptual apparatus required for

an understanding of the material will be introduced in bare outline

as required in the course of the chapter.

As in the previous chapter, we begin with an nth-degree polyno-
mial equation

-1 -2ac" + a.,,_1ac" + a,,_2:c" + - - - + alaz + a0 = 0

with complex coeflicients an_1, . . .
, (L1, 0.0 and without multiple solu-

tions. That is, the solutions .731, . . . ,:cn are assumed to be distinct. In

contrast to the previous chapter, however, the field extension obtained

by adjoining the solutions of the equations to the field of coefiicients

will be in the foreground: Again, We will begin with a field K that

contains the coefficients of the equation. As we did in the previous
chapter, we adjoin to this field K all the solutions ml, . . . ,:1cn, thereby
obtaining the field K (:01,. . . ,w,,). This extension field was defined

as the set of numbers that arise from applying the basic arithmetic

operations to the elements of K and the solutions $1, . . . ,w,,. As we

shall see, the same set of numbers arises if we forgo division, so that

every number of the field K ($1, . . . ,:n,,) can be expressed as a poly-
nomial in 1101, . . . ,:z:n with coefiicients in K. We note finallythat the

field K(:1c1,. . . ,m,,) is called the splitting fieldof the given equation,
since it is the smallest field in which the equation splits into linear

factors.

10.2 The central notion of a field was defined in the previous chap-
ter, Where We limited ourselves, since it sufiiced for our purposes, to

subsets of the complex numbers closed under the four basic arithmetic

operations. We would now like to go somewhat more deeply into the

subject.1 A brief look at the general definition of a field,one that

1From a historical point of view, fields were first defined by Richard Dedekind

(1831-1916), in a paper that appeared in 1871. It was only twenty years later that the
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goes beyond the complex numbers, is given in the section on groups
and fields.

As we have seen in the previous chapter, the solution of a polyno-
mial equation is intimately bound up with the fields that lie between
K and K (931,. . . ,a:,,). Therefore, in what follows we shall attempt to

classify systematically all such fields,and we shall do so in terms of
the Galois group. But first,we need to come up with an alternative
definition of the Galois group.

10.3 We have thus far used the word “group”as a component of
the term “Galois group.”Since in what follows we will need to go
more deeply into the composition of permutations, we shall present a

formal definition of a group, after stating the following theorem.

Theorem 10.1. Every Galois group, when taken as a set of permu-
tations together with the binary operation of composition of permuta-
tions, forms a group.

That is, the Galois group satisfies the following definition.

Definition 10.2. A group consists of a set G on which is defined a

binary operation 0 (that is, for all 0, r E G, it follows that (7 o r E G)
such that the following conditions are satisfied:

o The binary operation is associative; that is, for o, r, 1/ E G, one

has (0‘O’7')OI/=(TO(7'O1/).
o The set G possesses an identity element 5 such that 5 o a =

ooe=ofor allo€G.

0 Each element 0 of G possesses an inverse, denoted by o"1, under

the operation 0 such that o o 0'1 = a”1 o 0 =: 8.

We have already asserted in the previous chapter that the com-

position a o 7' of two permutations o and 7” of the Galois group again
belongs to the Galois group, and we have demonstrated this by means

of several group tables. The reason for this is simply that the set of

notion of a field was extended to encompass other mathematical systems with analogous
properties, even those that could not be considered as subsets of the complex numbers,
for example by Heinrich Weber (1842-1913) in 1893. More details and references can

be found in Erhard Scholz, Die Entstehung der Ga1ois—Theorie,in: Erhard Scholz (ed.),
Geschichte der Algebra, Mannheim, 1990, pp. 365-398.
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polynomials BK in the definition of the Galois group is carried to

itself by the action of 7‘ and again by the action of 0:

(00 TXBK) = a'(7'(BK)) C U(BK) C BK.

One may also verify associativity easily. Indeed, it holds for ar—

bitrary functions and mappings. Thus for three permutations cr,7',1/

of the Galois group and for a given index j, one has

(0 0 (T 0 I/))(j) 0((’F0 1/)(.7'))= “(T0/(J')))= (0 0 ’T)(l/(3'))

(0 0 7') o \xD0Ӓ�

We shall make use of the associative law in what follows mostly

implicitly, namely by leaving off parentheses entirely. It is thanks to

the associative law that We can indulge in such “imprecise”notation.

It is clear that the identity element of the Galois group is the

identity permutation, that is, the permutation that leaves every index

in its place. It is clear that this permutation belongs to every Galois

group.

It is almost as obvious that for every permutation 0 there is an

inverse permutation 7‘ with the desired properties. One simply defines

7'(j) :2 k for each index j, where the index k7 is uniquely determined

by cr(k) : j. Then we have the identity 7' o a = U 0 7' = id. On

the other hand, it is much less clear whether for every permutation
er in the Galois group its inverse 7' 2 a‘1 necessarily belongs to the

Galois group as well. The simplest argument that this is so makes use

of the fact that in any finite group, the sequence of powers cf, 02 =

0 o 0‘,03 = 0 o 0‘ o 0, . . . must contain two terms that are equal. From

crp = 09, with p > q, it follows that 01”“; = id, so that a1"“‘1‘1is a

representation of the inverse element 7 : cr‘1.

Thus we have shown that every Galois group is indeed a group.

Further examples of groups appear in the section on groups and fields.

10.4 If a group G contains a subset U that is closed under the group

operation and inverses, one calls U a subgroup of G. We will require
the following theorem.
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Theorem 10.3. If a finitegroup G contains the subgroup U, then

|U|, the number of elements of U, is a divisor of ]G{, the number of
elements in the group G.

ln the special case of a Galois group, this fact was first recognized
by Galois, and implicitly by Lagrange previously.2 To prove the the-

orem, one forms for every element 0 of the group G the collection of

left cosets of o, defined by

aU={oor|TEU}.
If two products 0 0 7'1 and 0 0 T2 in oU are equal, then it follows
that r1 = o“1 1

o a o T2 : 72. This shows that every
coset has precisely ]U| elements, and thus they are all of the same size.

Furthermore, the cosets constitute a disjoint (that is, nonoverlapping)
partition of the group. This is so because if two cosets had a nonempty
intersection,

0007120”

mUfl@U%b
there would exist two elements 71,72 in the subgroup U such that

0171 = 0272, with the result that o1U = 02 0 T2 0 'rf1U = a2U. That

is, the two overlapping cosets are in fact one and the same. Since the

entire group G can be partitioned into a set of, say, n cosets all of the

same size |U|, it follows that [G] 2 n|U|, and so ]U| must be a divisor

of |G
We can draw two direct consequences of the theorem that we have

just proved.

Corollary 10.4. For every element a of a, finitegroup G the smallest

positive integer n such that o" = 5, called the order of o, is a divisor

of the number |G| of elements of G’.

The truth of the corollary can be seen at once if for a given ele-

ment 0 we consider the subgroup {e, a, 0'2, . . . `{@�The first duplication
07’ : 04 that appears in this listing, which must occur since the group
is finite,must hold, as we showed in Section 10.3, for p = 0 and q = n,

that is, for e = 0". The subgroup then contains precisely n elements,
and this number must be a divisor of JG

2The quotient \xC0R<� is called the indea: of the subgroup U in G’. How-

ever, in what follows we shall not use this terminology, in favor of a. more direct
characterization.
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Corollary 10.5. A group that contains a prime number of elements

n can be listed completely as {e, o, 02, . . . ,o”“1} for a suitably chosen

element 0. Such a group is called a cyclic group of order n.

The validity of this corollary is easily seen. Simplypchoose for

a any element other than the identity element. Then consider the

subgroup {e, a, 0'2, . . . ,cr’°‘1}, where k; is the order of the element 0.

Since lc > 1 and k: is a divisor of n, it follows that k = n, and the

subgroup is in fact the entire group.

10.5 We would like now to use the knowledge that we have gained
to expand our investigations of the previous chapter. Let us begin
with the situation in which the field K that we have been considering
is extended to a field L. The consequent expansion of the set of

polynomials B K to a set of polynomials B L results in a shrinking of

the Galois group, as we have seen in the previous chapter. However,
We may now add that this extension must lead to a subgroup, and

thus the number of elements of the Galois group must shrink to one

of its divisors, as we have seen through numerous examples in the

previous chapter.

Groups and Fields

The concept of a group extends far beyond sets of permutations with the

operation of composition. Here are some examples of groups:

0 The integers Z under addition.

0 The rational numbers Q under addition, as well as the real numbers

R and the complex numbers C, also under addition.

0 The nonzero rational numbers Q)‘ under multiplication, and also the

nonzero real numbers Rx and the nonzero complex numbers (CX ,
also

under multiplication.
o The n—dimensional real vector space R" with coordinatewise addition.

0 The set of n X in real matrices under addition.

0 The set of real n X n matrices with nonzero determinant under matrix

multiplication.
o The set of real 3 X 3 matrices with nonzero determinant whose associ—

ated mappings take the set of vertices of a Platonic solid with center
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the origin into itself. The operation for these symmetry transforma-
tions is matrix multiplication, which is equivalent to composition of

mappings.
o For a positive integer n 2 2, the set of n remainders { 0, 1, 2, . . . ,n—1}

together with addition “modulo n” forms a group; this is because, for
example for n = 3, it makes no difference which numbers from the
three cosets

{O,3,...,—3,—6,...},
{1,4,...,—2,—5,...},
{2,5,...,~1,—4,...},

one chooses and then adds. The resulting coset always depends only
on the two cosets chosen, not on the chosen numbers themselves. The

resulting group is called the cyclic group or order n and denoted by
Z/nZ. The elements of the group Z/nZ, that is, the cosets, are called
residue classes modulo n. We have seen these groups in an equivalent
(isomorphic) form, namely as the groups of nth roots of unity.

0 For a prime number n, the residue classes obtained from division by
n, excluding the ze_ro class, form a group under multiplication.

With the exception of the multiplicative matrix groups, the symme-
try groups for Platonic solids, and the permutation groups, all the groups
mentioned here are abelian, that is, the group operation is commutative,
i.e., for every pair of elements 0, 'r in the group, a 0 7' = 7' o a.

A field is defined as a set K together with two operations, denoted
usually by + (addition) and - (multiplication), such that the following con-
ditions are satisfied:

o The set K is an abelian group under addition, with the identity ele~
ment denoted by 0.

o The set K — {0} is an abelian group under multiplication, with the

identity element being denoted by 1.
0 The distributive law holds; that is, for any three elements a:,y,z in

K, the identity at - (y+z) = m-y+a:~z holds.

The most familiar examples of a field are the sets of rational num-

bers Q, real numbers R, and complex numbers C under the usual addition
and multiplication. Another example is the field (@(a,b, c, . . \x80\x8A(�constructed
by the adjunction of complex numbers a, b, c, . .. to the field of rational
numbers.

Another example of a field is that of the rational functions in the
variables X1, . . . ,X,,. Such a function is a fraction whose numerator and
denominator are polynomials in the variables X1, . . . ,X,, with coefficients
in a field K. The denominator may not be the zero polynomial, of course.3

3For clarity, it should be pointed out that the nomenclature “rational function”
is historical and not entirely correct, since a rational function is a formal quotient of
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One obtains a subfield by allowing only those rational functions for which

the variables, denoted by A0, . . . ,A,,_1, are replaced by the elementary

polynomials in the variables X1, . . . ,X,,.4 The extension of the field to

the field of all rational functions forms the basis for studying the general

polynomial equation in the context of fields (and their automorphisms).
Among the examples of groups given above one can findisome finite

fields.For a prime number n, Z/nZ is a field. In contrast to the other fields

we have looked at, namely subfields of the complex numbers, finite fields

have the following property: The n—fold sum of the multiplicative identity
1 is equal to zero. One speaks in such a case of a finiteCh(l’I‘(1Ct67"iSt’iC,or of

characteristic n, in contrast to characteristic zero, which is the designation
for all subfields of the complex numbers. With some modifications one can

develop a Galois theory for finite fields and other fields not contained in

the complex numbers, whose results can be of help in computing Galois

groups of extensions of the field of rational numbers.

10.6 The next concept that we wish to discuss is that of automor-

phism. We begin with some motivation. The concept of an auto-

morphism will enable us to characterize the Galois group in terms of

extensions from the field K to K (:31,. . . ,:n,,,)instead of as previously
in terms of the equation; in particular, two equations with coefficients

in K having identical splitting fields have identical Galois groups.

Up to now, the elements of the Galois group were viewed exclu—

sively as permutations of the solutions. However, Galois, and before

him Lagrange, had made intensive use of the fact that these permu-

tations can be viewed as functions that map each value that can be

represented by a polynomial in the solutions 51:1, . . . ,3)” to another

such value. Thus if a polynomial h(X1, . . . ,X,,) is given with coef-

ficients in the base field K, then one defines,for a permutation cr

belonging to the Galois group,

a(h(:r1,. . . ,:1:n)): h (a:g(1),. . . , mC,(,,)).
For example, a number 2 represented as 2 = mg—

3311821133 is assigned
the function value 0(2) = 1Ei(2)—.'l3U(1)1l7U(2)$U(3).In general, the given

polynomials and not a function in the usual sense of the term, although a function can

be easily defined on the basis of a rational function.

4This field contains all rational functions that are symmetric: For every such

rational function, whose numerator and denominator do not need a priori to be sym-

metric, the denominator can be made symmetric by extending the fraction. But then

the numerator of the extended fraction must also be symmetric.
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definition of cr(z) makes sense only because it is independent of the

polynomial representation :0 : h(a:1, . . . ,m,,), which is obviously never

unique. Namely, if one has two polynomials hl and hg with identical
values h1(:1:1,.. .,:L',,) = h2(m1,. . . ,:v,,), then the difference of these
two polynomials belongs to the set B K that was used in the previous
chapter in definingthe Galois group. And indeed, the Galois group
was defined in such a way that the difference belonging to B K results
in the equality hl (:lIU(1),...,:I3U(,.,))= hz (:L‘c,(1),... ,:CO.(,,)),with the
result that it makes no difference whether the value of 0(2) is defined
in terms of hl or hg.

With the given definition we have thus succeeded in extending the
definition of permutations of the set {$1, . . . ,:r,,} belonging to the
Galois group to the set of values representable by polynomials in the

solutions :31, . . . ,:L',,. As we have already mentioned, though without

proof, this set is the splitting field K(:1:1,. . .

,  \xA3\x90�But even without
reference to this unproved fact, for the permutations belonging to the
Galois group one can obtain an extension of the realm of definition to

the entire splitting field K (931,. . . ,m,,) if one allows rational functions
in the polynomials in the solutions 1:1, . . . ,.r,,. No problems with

vanishing denominators arise, since as we shall see, for y # 0 it is

always the case that a(y) yé0.

These extended permutations, in reference to their domain of def—

inition, now satisfy the properties that we Wish to invoke in the notion

of a field automorphism. First, we see at once from the definition of

the extended permutations two identities that hold for two arbitrary
values 3; and z representable polynomially in the solutions $1, . . . ,acn:

U(y + 2) = C(21)+ 0(2),

U(3/2)= 0(y)U(z>~
More difficult is the proof that or(y) = 0 can hold only for y = 0 and

that the mapping a is invertible.5

5Given a value y with a(y) = 0 and a polynomial representation y = g(t) asso-

ciated with a Galois resolvent t, one has 0 = a(y) = g(t,), that is, t, is a zero of the
polynomial g(T). In analogy to argumentation that we have used previously, it follows
that the polynomial g(t) is divisible by the irreducible polynomial Q5(T) constructed
by Galois. And therefore g(T) also has t as a zero, that is, 0 = g(t) = y.

We shall soon see that the mappings that we have constructed here are linear
operators onto the finite—climensional K-vector space K(X1, . . . ,Xn). Therefore, since

a(y) 75 0 for 1/ ;£0, every one of the mappings 0' is invertible.
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Finally, it follows that o(y) = y for all y E K , To see this, for

determining the value o(y) of a permutation 0, one simply chooses

the constant polynomial h(X1, . . . ,X,,) = g.

It is important that the four given properties also serve conversely
to determine a permutation in the Galois group. Given a function

(more usual in this context would be the term mapping), denoted by
0, defined on the field K(a:1, . . . ,:1:,,),one can use a on both sides of

the original equation. For j = 1, . . .
,

it one thereby obtains

o(:r,-)" + a,,_1o(:n,-)”—1+ - - - + a1o(a;,~)+ do = O,

that is, o(a:j) is also a solution of the equation. Since for j 75 k: one

has

o(:I:,-)— o(mk) = a(a:j) + o(—1)cr(:rk)= o(a:]~— ask)aéO,

the values o(m1), . . . ,0'(.’I)n)are distinct, so that one is acutally dealing
with a permutation of the solutions. For a polynomial h(X1, . . .

, Xn)
with coefiicients in the field K and h(w1, . . . ,:r,,) = 0, one also has

h(o(m1),. . . ,o(:z:,,))= o'(h(m1,.. .,.'z:n))= 0. Thus the permutation
defined by the function 0 in fact belongs to the Galois group.

With the proof of this equivalence complete, we have obtained a

third characterization of the Galois group. In addition to the original
definition in terms of the polynomial set B K and the characterization

in terms of the Galois resolvent, as described in the section on com-

puting the Galois group in Chapter 9, we have the following theorem.

Theorem 10.6. A Galois group of a given equation over the fieldK

can be obtained as the set Aut (K(:1:1,. . .,a:n) ]K), the set of all au-

tomorphisms of the splitting fieldK (231,. . . ,ac,,) that leave unchanged
all elements of the fieldK.

The term automorphism is defined as follows.

Definition 10.7. An automorphism of a field L is an invertible map-

ping 0 that assigns to each value y E L a value o(y) E L such that

the following conditions are satisfied:

U(y + Z) = 0(2),
= 0(y)0(z)-
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In this third characterization of the Galois group the original
equation appears only implicitly, namely, in the form of the field ex~

tension of K to K(ac1, . . . ,$,,) in terms of the solutions 51:1, . . .,:tn.
As we have stated, two equations with coefficientsin K and identical

splitting fields automatically have the same Galois group. Another
advantage of this third characterization, which nowadays is generally
taken as the definition of the Galois group, is its universality. Auto-
morphisms can be studied for field extensions that do not correspond
to a splitting field,though in such a case, the properties of interest
to us here are to be found only in part.

10.7 We now would like to investigate the properties of the Galois

group, where from now on we shall adopt the definition of the Galois

group as a group of automorphisms G = Aut (K(a:1,. . . ,mn) I K),
and therefore we no longer need to assume that the solutions of the

equation are all distinct.

The first of three important theorems that we are going to derive
were known in essence by Galois.

Theorem 10.8. If one adjoins to a fieldK all the roots 3:1, . . . ,:v,,

of an equation with coefiicientsin K
, then the set of values in the

splitting fieldK(a:1, . . . ,a:,,) that remain unchanged by every auto-

morphism in the Galois group is the fieldK.

We thus need to show that a value 2 for which 0(2) = z for all

automorphisms o in the Galois group belongs to the field K. We
have seen the argumentation that we need for the proof aleady in the

special situation of solving the cyclotomic equation.6

6In terms of our previous discussions, a proof can be most simply given using the
Galois resolvent t, for which we have proved the properties

mo'(1) : g1(t¢7)>~ - - 2 7:001) Z 971 (to)-

If we consider cr as an automorphism, then these identities can be reformulated as

a(m1)=g1(tcr)> »---3 0(mn):9n(tU)‘
,

For a value 2 = h(a:1, . . . ,z11n)that remains unchanged under all automorphisms :7 of
the Galois group, one sums the different representations of the value z and obtains in
this way, where 1G] is the number of elements in the Galois group,

IGI z = 2m) = Zh(aZh(a, . . -:‘7(mn))= Zh(91(t0)1---:gn(ta))i
or
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10.8 It is high time that we solidified the theoretical discussion with

some concrete examples. For the quadratic equation

9c2—6m+1=0,

the two solutions are used to extend the field of the rational numbers

Q to the field

\xF0\xBE\xA1�={a+b\/§Ia,bEQ}.
The Galois group consists of two permutations, where the non-

identity permutation 01 exchanges the two solutions 3 :: 2\/§. It can

be extended to the mapping (a, b E Q)

o1(a+b\/5)=a~b\/5.

We wish to use this example to offer another interpretation of

automorphisms. That is, the automorphisms of the Galois groups

are linear transformations, where the extension field is viewed as a

vector space defined over the base field K. Those readers familiar

with these concepts will certainly understand what we mean. For the

remaining readers with limited knowledge of analytic geometry and

coordinatewise calculations with vectors, and perhaps even matrices,
the Vector representation

°1l(Z)l= (51)(Z)= (—‘2)»
related to the basis {1, \/5 }, is more suggestive. However, we must

stress that such coordinatewise representations a.re of use only for a bit

of emphasis. The advantage in using constructs from linear algebra
consists in allowing one to avoid such explicit representations, which

always depend on the particular choice of basis. It is important only
that such representations exist and that the number of elements in

a basis is independent of the particular choice. This invariant of a

vector space, known as the dimension, is of course associated with

because of the symmetry in the values t,, the sum on the right—handside can be

expressed in terms of the polynomial that has these values it‘, as zeros. This polynomial
is the irreducible factor Q5(T) divisible by T — t, as was constructed by Galois from the

nth—degreeresolvent equation (see the section in Chapter 9 on computing the Galois

group). Since the coefficients of this polynomial Q§(T)are in the field K, the value z

also belongs to If.
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every other field extension, Where one speaks of the degree of the

extension. We have then the following definition.

Definition 10.9. The degree of an extension field E of a base field K

is equal to the natural number m that is the size of a basis of E as a

vector space over K ; that is, one can find exactly m values e1, . . . ,em
in E such that every value in the field E can be expressed uniquely
in the form

klel ‘i’ ‘ ' ' ‘i’ kmem

with values (coordinates) k1, . . .
, km from the field K.7

For example, the degree of the field extension Q \xB0\xE5\xA0�of Q is

equal to 2. Another example is the adjunction of the fifth root of

unity Q"= cos + isin \xF0F\x9E�to obtain the field Q((). To show

that the degree of the extension from Q to Q(C) is 4, we consider the

equation, already investigated in Chapters 7 and 9,

:I;4+:z:3+m2+:n+1:O,
whose four solutions are the complex fifth roots of unity C, C2,C3,(4. A

basis of the vector space, which also allows a simple multiplication and

division in the field Q(§),is the four values 1, Q,(2, C3. The proof that

these four values actually form a basis is most instructive, since the

arguments used can easily be generalized. First, we observe that every

number that can be expressed as a polynomial in the rational numbers

and the root of unity Q is of the form Ic01+k1§+-- -+k_,C5with rational

coefficients kg, k1, . . .. However, since (4 = -1 — C ~ (2 — (3, one can

always find a representation with k4 = k5 = - - - = 0. In this case, the

coefficients kg, kl, kg, 14:3are uniquely determined. For otherwise, that

is, if there were two difierent coordinate representations for one and

the same value, one would have for the root of unity C an equation of

at most the third degree with rational coefficients. Since the above

7Those who wish to “experiment”with this definition may wish to prove the

following degree formula for towers of extension fields:

Theorem 10.10. For a nested tower of fields K C L C E, the degree of the total
extension of E over K is equal to the product of the degree ofE over L and that of
L over K.

To prove the theorem, one selects two bases for the two intermediate extensions,
forms all products of one element from each basis, and convinces oneself that the result
is a basis of the total extension.

This degree formula is used in the proofs of the impossibility of the classical
construction problems; see the section on this topic at the end of the chapter.
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fourth—degreeequation is irreducible, none of its solutions can be a

solution of an equation of lower degree (see Theorem 9.7).
It remains only to show that the set

{Ice+ k1<+k2<2 +k3<3 I Ieo,k1,k2,k3 e Q}
is closed under division, so that this set is in fact the field Q(§).
Indeed, for two polynomials f(X) and g(X) with rational coefficients,
if g(() 74O, we have

no
I

my (:2) 9 (<3)9 (:4)
gm ggg<<2>gg<<2>gg<<4>‘

. The fraction on the right—handside of this identity has the desired

representation of the form hol + III II+ k2C2—1—h3g3, since the denomi-

nator is rational. To see this, one could multiply out the denominator

for a number of the form g(() = kgl + lc1C+ k:2(2+ k3C3.Fortunately,
one can avoid such drudgery if one uses the generally valid argument
that will be presented in the following section.

10.9 To generalize the result that we have established for the field

Q(C), We would like to prove the following theorem.

Theorem 10.11. If one adjoins to a fieldK all the solutions of an

equation with coejficientsin K, that is, $1, . . . ,:1:,,, then the degree

of this fieldextension is equal to |G], the number of elements in the

Galois group G = Aut (K(a:1,. . .,a:,,) I \xA0\xC1Z�

To prove this theorem, we shall use an argument using the Galois

resolvent t that is completely analogous to that used for the field Q(C),
whereby every value in the field K (:31,. . . ,a:,,) can be represented by
a quotient in which numerator and denominator take the form k0 +

k1t+- - -+kmt’"and all coefficients It, belong to the field K. Moreover,
the highest power in can be restricted to the value [GI— 1, since \xA0>|�is

the degree of the polynomial ®(T),which has t as a zero. It remains

to show that every such quotient can be expressed as a polynomial
in t. To that end, we consider in the |GI—dimensionalK —vector space

K[t] = {ho+ ~ - - + lll l1kg, . . .,k1G|_1 E K} the associated

mapping

h(t) E K[t] »—> g(t)h(t)
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defined by multiplication by an element g(t) E K. This mapping is

linear. Furthermore, the interpretation of the mapping as multiplica-
tion shows that in the case g(t) 74 0, no nonzero element is mapped
to zero. Results from linear algebra on systems of linear equations
tell us that every element of K [t] possesses a preimage, where in par-

ticular, the preimage of the number 1 is the number 1/ g(t). This

preimage allows us to represent expressions with g(t) in the denom-
inator as polynomials in t, so that every value in the splitting field
K (.731,. . .

, kn) can be expressed polynomially in terms of the Galois
resolvent t. The theorem is proved.

Moreover, in considering t = mlml + - - - + mnccn, one sees that

every number in the splitting field K (1121,. . . ,:cn) can be expressed as

a polynomial in the solutions ml, . . . ,:v,,. Thus in adjoining the solu-

tions, one can do without the operation of division. This fact, which

was previously mentioned but not proved, has now been established.

10.10 The close relation that we have observed between the Galois

group and its underlying field extension will now be extended to the

following theorem.

Theorem 10.12. If one adjoins the solutions 9:1, . . . ,:z:,, of an equa-
tion with coefficients in a fieldK

, then in the resulting splitting field
K (:31,. . . ,mn), the set of values that remain unchanged under the

action of every automorphism of a subgroup U of the Galois group
G = Aut (K(:v1,. . . ,mn) I K) is equal to K only when U is the full
Galois group.

That all elements of the field K remain unchanged under all au-

tomorphisms of the subgroup U is clear. What is important, how-

ever, is the converse: If aside from the field K there are no elements

that are unchanged by every automorphism of the subgroup U, then

this subgroup must be the full Galois group. In other words, every

proper subgroup of the Galois group leaves unchanged some elements

not in K.

To prove this theorem, one begins with a subgroup U of the Ga-

lois group in which the elements of the field K are the only numbers

in the extension field K(:z:1,. . .
, mu) that remain fixed by all the au-

tomorphisms of the Galois group. With the Galois resolvent t one
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forms the polynomial

H (X — aw)-
(TEU

If one applies an automorphism 'r of the subgroup U to the coefficients

of this polynomial, this corresponds to a permutation of the linear

factors, so that the coefficients remain unchanged.8 According to

our assumption, the polynomial’scoefficients must lie in the field K,
since they are invariant under all automorphisms of U. If U were

a proper subgroup, then the Galois resolvent t would be a solution

of an equation with coefficients in K whose degree was less than

the number of elements |G| of the Galois group, which contradicts

the fact that the Galois resolvent t is a zero of Q5(T) according to

Galois’s construction, that is, of an irreducible polynomial of degree

|G| over K.

A quite similar line of reasoning can be used to prove the fact

noted in Section 9.8 that the Galois group G of an irreducible equation

always acts transitively on the solutions, that is, that for every pair
of solutions 50,-,am, there is an automorphism cf of the Galois group for

which a(:r,-) = a:k.9

10.11 The three theorems of Sections 10.7, 10.9, and 10.10 now al—

low us to prove in a few quick strokes the fundamental theorem of

Galois theory. Given our journey thus far, it may come as a sur-

prise that this theorem has no immediate relation to the question
whether an equation is solvable in radicals. Rather, it establishes

a one-to—one correspondence between the subgroups of the Galois

group Aut (K(:1:1,. . . ,a:,,) [ K ) and the fields lying between K and

K(m1, . . . ,m,,). The fundamental theorem thereby makes a coherent

theory out of all of our investigations and examples of the previous

8For two distinct automorphisms 0'1 and 0'2 of U, it follows that 'r 0 0'1 and 'r_ 0 (T2

are also distinct. Furthermore, every automorphism u of U is obtained in this way,

namely, in the form 7' 0 (7'”1o 1/) = V.

9If one applies an automorphism 7‘ of the Galois group to the coefficients of the

polynomial

H (X — o‘(:I:j)),
UEG

the result is a permutation of the linear factors, so that the coefficients remain un-

changed. By Theorem 10.8, the coefficients must lie in K. Because of the irreducibil-

ity of the original polynomial and Theorem 9.7, all the solutions, and in particular the

solution wk, must appear in the product.
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chapter. See, for example, Figure 9.1 in Chapter 9. Since subgroups
of a finite group are relatively easy to findflindeed,in the worst case

one can try out a finite number of possibilities—oneobtains from the

fundamental theorem a complete classification of intermediate fields.
It is then possible in special cases to obtain immediate information
on which intermediate fields,if any, arise by the adjunction of roots.

We now state the fundamental theorem of Galois theory.

Theorem 10.13. If one adjoins to a subfieldK of the complezt num-

bers all the solutions mi, . . .
, sun of an equation with coefiicientsin K,

then the Galois group G = Aut (K(a:1,. . . ,mn) 1K) of the field6:17-

tension thereby obtained, that is, the group of all automorphisms of
the fieldK(m1,...,mn) that leave the base fieldK fired,possesses

the properties enumerated below. In detail, these properties are with

regard to the intermediate fieldsL, that is, fieldssuch that K C

L C K (:1:i,...,9cn), and to each such field the associated subgroup
Aut (K(:ci,. . .,mn) I L), which comprises all automorphisms of the

Galois group that leave every element of L fizzred.(See also Fig-
ure 10.1.)

(1) The mapping that associates the subgroup Aut (K(;r1,. . .,.’13n)]
L) with the intermediate fieldL establishes a one—to—onecorre-

spondence (that is, a bijection) between the intermediate fields
and the subgroups of the Galois group G.

(2) The degree of the fieldezctension from L to K(:t1, . . . ,:1:n)is equal
to the number of elements in the associated subgroup

Aut (K(:1:1,...,:tn)]L)
of the Galois group. This is the number of automorphisms that

fir every element of L.

(3) If an intermediate fieldL 2 K011, . . .,ym) is obtained by ad-

joining to K the roots yi, . . .

, ym of an equation with coefiicients
in K, all lying in the fieldK(:I:i, . . . ,a:,,), then the Galois group

Aut(L | K) contains |G|/|Aut (K(a:1,...,:1:n)| L)| automor-

phisms. One can thus obtain all automorphisms of this Ga—

lois group Aut(L ] K) by restricting the domain of definition
K (:31,. . .,£l3n)of the automorphisms belonging to G to the in-

termediate fieldL : K(y1, . . . ,ym).
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K'(w1:-Hymn) {id}
U n

U n

L ~13» U=Aut(K(¢v1»---,$n)lL)
U n

U r1

K G=Aut(I((:l:1,.--;5Bn)|I{)

Figure 10.1. The fundamental theorem of Galois theory:
The intermediate fields L, that is, the fields L such that K C

L C K (:01, . . . ,a:n), are in one-to-one correspondence with the

subgroups U of the Galois group G = Aut (K(a:1,. . . ,rvn) [K

A proof of the fundamental theorem consists basically in refer-

ring to the theorems already proven in Sections 10.7, 10.9, and 10.10.

We investigate the extension of an intermediate field L to the field

L(ac1,. . . ,:I:,,) = K ($1, . . .
, (En)using those three theorems. It remains

to note that the fields L(a:1, . . . ,m,,) and K(:z:1,. . . ,.'1c,,)are identical,
since the field L is simultaneously an extension field of K and a sub-

field of K(a:1, . . . ,a:,,).
With these observations out of the way, one part of the asser-

tion, namely, that an intermediate field L is uniquely determined

by the associated subgroup Aut (K(ml, . . .,:c,,) | L) (that is, that

the mapping is injective), is clear, since it is a consequence of The-

orem 10.8, according to which L can be characterized as the set of

all elements of the field K (:31,. . . , :3”)that are fixed by all automor-

phisms of Aut (K(w1,. . . ,a:,,) ] L). To show that the mapping is

in fact a bijection, we need to show that for every subgroup U of

the Galois group there is always a corresponding intermediate field L

(thus that the mapping is surjective). We can construct such a field

L with the desired property U = Aut (K(:51,. . . ,w,,) | L) by taking
all elements of K(a:1, . . .

, 337,)that are fixed by every automorphism
in U. That is,

L={z€K(a:1,...,:1:n)|a(z)=zforalla€U}.

That the set L thus defined is in fact a field—on account of con-

struction it is referred to as a fixedfield-can easily be shown by
checking that for every pair of elements of L, their sum, product,
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quotient, and difference are again in L. It is clearer that the fixed
field L contains the field K and is a subfield of K(m1, . . . ,aJ,,). And

now comes the main point: The group U = Aut (K(:n1,. . . ,:z:,,) | L)
associated with the intermediate field L thus constructed contains
the group U, since every automorphism in U fixes every element of
L. Moreover, this subgroup has the property, given the construction
of the field L, that only elements of L are fixed by all the automor-

phisms of the subgroup. According to Theorem 10.12, this has the

consequence that the subgroup U must equal the entire Galois group
Aut (K(a:1,...,:1c,,)[L).

The second part of the fundamental theorem follows at once from
Theorem 10.11 applied to the extension of L to K(a:1, . . . ,w,,).

The third part of the fundamental theorem refers to the situa-

tion that we have examined by means of a number of examples in

the previous chapter when all the solutions yl, . . . ,y,,, of a resolvent

equation are adjoined to the field K. The elements of such interme-

diate fields L are mapped again to L because of the special condi-

tions on all automorphisms 0‘ of the Galois group G. To see this,
one need only apply such an automorphism 0 of the Galois group
G = Aut (K(:v1,. . . ,a:n) I K) to both sides of the underlying equa-
tion of the intermediate field L. This shows that each of the solutions

yj is mapped by a to another solution a(yj) : yk.

Since the field L is mapped to itself by all the automorphisms
of the Galois group G, for each automorphism in G one can restrict

its definition from the field K (331,. . . ,:1:,,) to the intermediate field
L 2 K(y1, . . . ,ym), thereby obtaining an automorphism of the group

Aut(L I K Here two automorphisms 0,7 6 G yield the same re-

striction precisely when a‘1 o 7' is the identity on L, that is, when

a"1 o 7 belongs to the subgroup Aut (K(m1,. . .
, 537,)| L) associated

with the intermediate field L. That one obtains all automorphisms
in this way follows most simply from the degree formula for nested

field extensions. The fundamental theorem of Galois theory is now

completely proven.
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The Fundamental Theorem of Galois Theory:
An Example

As an example of computing all the intermediate fields between the base

field and the splitting field,we return to the biquadratic equation that We

made use of in Chapter 9, namely,

w4~4a:3~4ac2+8a:—2=O.
The four solutions of this equation are, as previously stated,

UI31,3=1+\/§:i:\/3-l-\/3,

:v2,4=1—x/2d:\/3—\/2.

The Galois group was determined in Chapter 9 to be a group with

eight elements. If the elements are considered permutations, they act on

the solutions as follows:

1234

1234

3214

1432

3412

2143

4123

2341

074321

The possible subgroups can be determined by trial and error. In ad-

dition to the whole group and the group consisting of the identity alone,
any subgroup must have either two or four elements. The two-element

subgroups arise from each of the five elements of order two:

{(70501}: {O-0102}: {OM03}: {(70:04}: {00>07}-

In addition, one can easily find, using the group table computed in, the

previous chapter, three subgroups with four elements:

{ao,a1,a2,a3 }, {ao,a3,U4,cr7}, {ag,a3,a5,05 \xA0\x9CI�

It remains to observe that the last of these groups is cyclic of order

four, while the other two four-element subgroups are isomorphic to the

group (Z/2Z)2.
According to the fundamental theorem of Galois theory, there is a one-

to-one correspondence between this collection of subgroups and the fields
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that lie between the two fields Q and

Q(.7;1,a:2,m3,a34)= Q (V3+ x/E,.
Moreover, these fields can be determined from the subgroups by determin-
ing the fixed fields. To do so, we shall use the identities

1
\/-2-= Z(w1-332-i-033 -1104),

\/3+\/5: %(501—fl33),
V3—\/§=%(9»’2*V3—\/§=%(9»’2*V3—\/§=%(9»’2*

\/7: $0101— »"03)(fC2-334)-

With these identities we can determine the images of these numbers under
the automorphisms directly from the tabulated permutations. As a direct

consequence, the fixed fields can be determined. In Figure 10.2, the sub-

groups are represented together with the corresponding intermediate fields
showing the inclusion relations among the various objects.

10.12 Now that We have proved the fundamental theorem of Galois

theory, we would like to say a bit more about its significance.As we

have seen, for every intermediate field L there corresponds precisely
one subgroup G of the Galois group Aut (K(a:1,. ..,:nn) ] L) and

conversely.

A particular intermediate field L will not necessarily be mapped
to itself by an automorphism 0 of the Galois group G. But since the

image a(L), as one can readily check, is necessarily a field,and thus

another intermediate field, it must have a corresponding subgroup.
And this subgroup can in fact be determined directly from the sub-

group U associated with L. Namely, the group must be a conjugate
subgroup of the form 0U (F1. Its automorphisms leave an element

0(2) unchanged precisely when the automorphisms of the subgroup
U leave the value 2 unchanged. This is illustrated in Figure 10.3.

If for a subgroup U all the conjugate subgroups are simply the

subgroup U, then U is called a normal subgroup. In the situation

here, in reference to the third item in the fundamental theorem of

Galois theory, this implies that every automorphism of K (231,. . . ,mn)
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Q('\/3+«/'2—,«/3—\/E)

,4,,./
V

///I \__’
~~~~~~

,4

_\_

/// Pm\x91�

/
"

Q0/3—«/5)one/3+J§)0295:»/5)L; L2

5 /;;://i* 1Pg\x90� ;rx}"// ~’\“‘>§;.:.

Q(J§) mil) aw?)

Q with 1,,=

L2= ll)(\[2—(\l3+\/§’+\/3*‘/-2-))

Figure 10.2. The subgroups of the Galois group are in one-

to-one correspondence with the fields between the base field

and the splitting field.

restricted to L yields an automorphism of L.1° We have already
mentioned that two automorphisms 0 and 7' in Aut (K(a:1,. . . ,m,,) ]
K ) are the same when restricted to L precisely when cr“10 7' is the

identity mapping on L and therefore belongs to the subgroup U =

Aut (K(:1:1,...,a3n)I L). Then the Galois group Aut(L | K) is at

once recognizable as the set G / U of cosets of the subgroup U, where

1°An example of a subgroup that is not equal to a conjugate subgroup, thus

leading to two distinct intermediate fields, can be found in a previously examined

example (see Figure 10.2), namely Q (V3 + \xE0\xA8k�and Q ( 3 — \x80at�
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K(x1,...,x,, ) {id}

/U\
\x90ױ� /n\

L a(L) “""’ U GU04

\“/ \“/
K G=Aut(K(x1,...,x,,)lK)

Figure 10.3. The fundamental theorem of Galois theory,
showing the relationships among intermediate fields L, their

images a(L) under automorphisms 0 of the Galois group, and

their associated subgroups. Due to the one—to—one correspon-
dence between intermediate fields and subgroups, L = a(L)
holds precisely when U :2 aUa'_l.

of course the composition of automorphisms within the group Aut(L |
K) can be derived from the composition of the group G.

10.13 There is a construction principle at the heart of what we

have just described that can be greatly generalized, even beyond the

bounds of Galois theory, by defininga composition for the cosets

formed from a normal subgroup U of a group G:

(a1U) o (a2U) = (01 o a2)U.

The fact that U is a normal subgroup is what guarantees that this

definition is well defined. That is, the definition does not depend
on the choice of the elements 01 and 02: One must check that the

result of a composition remains unchanged when 01 or 02 is replaced
by 01 o 7' or 02 o '7' for some automorphism 7' in U. For 02, this is

clear. However, for 01, it holds only on account of ((01 o 7‘)o a2)U =

(010020 (a2'1o*roa2))U, with a2"1oToa2 E U for7' E U.

Much less surprising than such a definition is the fact that the

composition thus defined leads to the set of cosets G / U being a group

in its own right. In the section on groups and fields we have already
made use of such notation with the example Z/nZ, where the sub-

group nZ is obviously a normal subgroup because the group Z is

abelian (commutative).
We have already encountered such quotient groups G/ U in the

previous chapter, in the form of decompositions of the group table
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(see also Figure 10.4). Moreover, in the proof of the fundamental

theorem of Galois theory we have been involved with such mech—

anisms, when We restricted automorphisms of the Galois group of

the field K(a:1, . . . ,a:,,) to the intermediate field L = K(y1, . . . ,:vm):
Whenever the subgroup U was a normal subgroup, the intermediate
field L was mapped to itself by all the automorphisms of G, so that

the restriction of the definition to L yields an automorphism group

Aut(L | K) with 0n�� elements.

Figure 10.4. The decomposition of the group table into four

4 X 4 squares, as results from the example shown in Figure
9.1 of Chapter 9, indeed for the first adjunction shown in that

figure. Above is shown the quotient group G/ U constructed

from the cosets.

The great significanceof Point 3 of the fundamental theorem of

Galois theory (Theorem 10.13) is above all that complicated field

extensions can be broken down into a succession of suitable subeX—

tensions, and indeed, in such a Way that with the first extension a

situation is achieved that satisfies the initial assumptions. Here the
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requirement for an intermediate field resulting from the adjunction of

all the solutions of an equation with coefficients in K is equivalent to

the normal group property of associated subgroups.”For a clearer

overview, Figure 10.5 shows the objects involved in the fundamental

theorem of Galois theory together with some of its assertions.

G = Aut(K(x,, ..., x,,)|K)

Figure 10.5. The fundamental theorem of Galois theory: an

intermediate field L and the associated subgroup U. In the

case that U is a normal subgroup (or equivalently, if L is a

splitting field),the Galois group Aut(L | K) can also be de-

termined, namely, as the quotient group G/ U. We have yet
to determine which properties of a normal subgroup U char-

acterize the situation in which the extension of K to L can be

achieved through the adjunction of a root K‘/E.

Artin’s Version of the Fundamental Theorem of

Galois Theory

In his 1942 book Galois theory, Emil Artin presented a proof of the fun—

damental theorem of Galois theory quite different from the one presented
here.” In contrast to earlier proofs, Artin’s proof is accomplished without

use of the Galois resolvent (or without use of the corresponding theorem of

the primitive element). Instead, Artin built up Galois theory in a Way that

“For an intermediate field L = K(y1, . . . ,ym) whose associated subgroup U is
a normal subgroup of the Galois group Aut(L | K), one may form, for each index

3‘= 1, . . . ,7n, the equation

H (X — cr(z/1))= 0:
0 EG / U

whose coefficients are in the field K and all of whose solutions belong to the field L.
Then in addition to yl, . . .

, ym, the solutions U'(yj) can be adjoined, without the field

L : K(y1, . . . ,3/m) having to be enlarged.
12For a discussion, see B. L. van der Waerden, Die Gal0is—Theorie von Heinrich

Weber bis Emil Artin, Archive for History of Easact Sciences, 9 (1972), pp, 240—248.
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makes it possible to prove the fundamental theorem, reformulated only in

some of its assumption, using exclusively concepts from linear algebra. In

particular, he investigates the set of solutions of systems of linear equa-

tions. An argumentation involving polynomials and their solutions is then

unnecessary for a proof of the fundamental theorem in this variant (though
it is, of course, for its subsequent interpretation). .

The situation investigated by Artin is the following: Given a field13E
and a finite group G of automorphisms of the field,a field K is constructed

consisting of those elements of E that are fixed by all automorphisms of G.

For this situation, Artin first proves, by analyzing various systems of

equations that he constructs, that the degree of the field extension from K

to E is equal to the number [G[ of automorphisms constituting the group

G.

With this theorem in hand, Artin’s version of the fundamental theorem

of Galois theory is relatively easy to prove. In a version simplifiedas to

terminology, it goes like this: In the situation of a field E, a finite group

G of automorphisms of this field,and a fixed field K for the group G, the

following assertions hold:

o The mapping that associates each intermediate field L with the sub-

group U of automorphisms in G that are the identity on L is a bijec~
tion, that is, a one—to—one mapping, between the intermediate fields

and the subgroups of G.

o The degree of the field extension of L to E is equal to the number of

elements {U}of the subgroup U.

o The subgroup U is a normal subgroup of G precisely when the field K

can also be represented as a fixed field of a group of automorphisms
of the intermediate field L.

10.14 In the remaining sections of this chapter we would like to

fill some of the holes left in the exposition of the previous chapter.
To this end we will consider, in light of the fundamental theorem of

Galois theory, what structure a Galois group of an equation should

have in order that the equation be solvable in radicals. In particular,
we must specialize the situation in Point 3 of the theorem to the case

of a successive adjunction of roots, Where each radicand belongs to

a field that arises from one of the previous adjunction steps. Since

root expressions can always be reformulated so that only roots with

13The theorem is valid for all fields, not only those that are subfields of the

complex numbers.
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prime degree are involved, it suflices for us to restrict our attention

to prime degrees.

We begin with the case of a one—stepadjunction, in which an nth

root {/5 is adjoined to a field K, with the radicand a in K. For Point

3 of the fundamental theorem to be applicable, its conditions must

be satisfied. To ensure that this is the case, we assume that the nth
roots of unity §,(2,. . .

, C"”1are already in the field K, so that all

solutions of the equation ac" — a = 0 lie in the field K ( �\x81
If one now extends the field K, which for some prime n contains

all nth roots of unity, to a field L by adjoining all the solutions of an

equation with coeflicients in K, then using the Galois group one can

determine Whether this extension can be obtained through adjunction
of an nth root (‘/5of some number a in K. Namely, we have the

following theorem.

Theorem 10.14. Given a fieldK that contains all nth roots of unity
(,(1,...,C""1 for a prime number n and an extension fieldL that

arises from the adjunction of all solutions of an equation with coef-
ficients in K

, there exists in L an nth root (‘/5such that a E K but

(/5 ¢ K and such that L = �\xB9&� if the Galois group Aut(L | K)
is cyclic of order n, that is, ifAut(L | K) :: {id,cr,02, . . . ,o”‘1} for
a suitably chosen automorphism 0.

To prove this theorem, we begin with the situation L = K ( \xC0�$�
In this case, every automorphism o of the Galois group

Aut (K ({/6) IK)
is uniquely determined by its effect on the element {‘/a.Note that on

account of (0 ( p5�� = 0(a) = a, the element {/5 must be mapped
by 0 to C“3/5 for some exponent lc. Moreover, exponents add under

compositions of automorphisms: If a({/E) = CI“{/5 and r( (E) =

(j (/5, then (007) = (TOG) u�� = ("+1 \"/E. The Galois group

therefore “correspondsto,”that is, is isomorphic to, a subgroup of

the cyclic group Z/nZ. Since n is a prime number, the Galois group

must consist of one automorphism or of all n of them. Since {/5 ¢ K,
the first possibility is excluded, so that the Galois group can be given
as

Aut (K({‘/al)p\x96��= {id,cr,a2,...,a"_1}
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with a({/5) =C\”/E.
We now begin, conversely, with an extension of K to a field L

Whose Galois group is equal to Aut(L l K) = {id,a,a2, . . .,a"‘1}
for a suitably chosen automorphism 0. For every element b of the field

L one can form the Lagrange resolvent, which we met in Chapters 5

and 7:

(c, b) = b + cow) + <2a2(b>+ « - ~ + <"“1a"~1(b>.
From the definition,one immediately obtains the identity

a((<,12))= aw) + cam»)+ c2a3(b>+ - - - + <""1a”(b)=<‘1-(ab),
and thus (I ((C,b)") = (C,b)”,so that (C,b)" must be in the field K. If

one finds an element b in the field L whose Lagrange resolvent (C,b)
is not equal to zero, then since = C‘j(C,b),none of the

automorphisms other than the identity leaves all the elements of the

field K ((§,b)) unchanged. From the fundamental theorem of Galois

theory, the field K ((C,b)) can therefore not be a proper subfield of

L; that is, K ((C,b)) = L. Therefore, the field L arises from the field

K by adjunction of an nth root of an element of the field K, namely,
0 = (C,b)"-

We have still to prove that one can always find in L an element b

whose Lagrange resolvent , b) does not Vanish. We can extend the

selection to Lagrange resolvents ((k,b), with k = 1, 2, . . . ,n
— 1, for

an arbitrary nth root of unity different from 1, since such Lagrange

resolvents, if they are nonzero, can be used in accord with the previous
construction. If one now forms the sum of the Lagrange resolvents

(ck,b) = 1»+ cw»)+ <2ka2<2ka2 + - - ~ + <<"~1>’“aH<<"~1>’“aH,
for the exponents k: = 0,1, . . . ,n— 1, one obtains, since 1 +Cj +C2j +

"'+C("“1)j:0 (forj:1,...,n—1),
7?. I »—t

(ck,b) = nb.

a H )—‘

Were all the Lagrange resolvents (gk,1))for the exponents k 2

1, 2, . . . ,n
— 1 to vanish, then one would have the equality (1, b) :: nb,

since only the first summand in the above sum would remain. Since

the value (1,b) remains unchanged under all automorphisms, the
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number (1, b)/ n must lie in the field K. Thus every choice of element
b not belonging to K leads to at least one nonvanishing Lagrange
resolvent (§’°,b).
10.15 From this theorem we can prove an immediate corollary by
making use again of Point 3 of the fundamental theorem of Galois

theory.”This corollary answers the question as to the circumstances
in which for the solution of an equation, an intermediate field can

be generated by adjunction of a root. Such a field is called a radical
extension.

Corollary 10.15. If a fieldK containing all nth roots of unity for a

prime number n is extended to a fieldL by adjoining all solutions of
an equation with coefiicientsin K

, then there is a normal subgroup U

of the Galois group G :: Aut(L | K) with |G] 2 n|U| precisely when

in the emtension fieldL there is an element b that is not itself in K

but such that its nth power I)" is in K (from which it follows that the

fieldK (b) is a radical ezctension of K lying within L

We have only to recall that the criterion just formulated has al-

ready been mentioned in the terminology of group tables (see Section

9.7). Whether the extension of the first radical extension can be cor-

respondingly decomposed can then be read off analogously from the

subgroup U = Aut(L I K Because of the necessary assump-
tions about the roots of unity, the criterion must, however, be seen

as unsatisfactory if we are seeking a direct answer as to whether the

solutions of an equation can be expressed in terms of radicals. We

need particularly to explain what change in the Galois group is caused

when the required roots of unity are adjoined.

10.16 To be able to use the previous theorem, the roots of unity
of the relevant degree must already belong to the base field K. To

be sure, in the examples of the previous chapter we often had the

rational numbers Q as the base field,on the basis of which we ini-

tiated our investigations into determination of the Galois group. To

use the previous theorem, it is necessary first to adjoin appropriate
elements—elements that do not necessarily belong to the splitting

“Includingthe extension discussed in Section 10.13.
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field K ($1, . . . ,:1c,,)of the equation under investigation. Then instead

of the field K, there appears an extension field K’, and analogously,
instead of the splitting field K (:31,. . . ,:r,,) of the current equation,
the field K’(a:1,...,:Bn). We shall now see how the change in the

Galois group takes place, as illustrated in Figure 10.5-
.

K,(x1,...,x,1)

U“wwm‘»QVVe~
Aut(K’(x1,...,x,,)|K’) K(x,,...,x,,)

KI Aut(K(x,,...,x,,)l K)

K

Figure 10.6. Extension of the base field K to a field K’ and

the resulting change in the Galois group.

An automorphism of the “new” Galois group

Aut (K'(:r1,. . . ,a:,,) IK)
is determined by its images of the solutions 51:1,. . .,:cn. Thus it is

uniquely determined by the possible restriction of the domain of def~

inition to the field K ($1, . . . ,:v,,). Then the Galois group

Aut (K'(a:1,. . . ,:c,,) IK’)
is a subgroup of the original Galois group Aut (K(:v1,. . . ,m,,) | K ) .15

10.17 The cyclotomic equation m" — 1 = 0 with prime degree n rep-

resents a very instructive and at the same time important application
of these considerations. Indeed, we have already mentioned, in Chap-
ter 7, the stepwise path to solving such cyclotomic equations, but it

is appropriate now to do this again in a more systematic fashion. In

particular, we wish to use the results of the previous section to prove

the following theorem.

15It remains to observe that this subgroup relation, which results from an exten-

sion of the field K to the field K’, is just the relation that Galois established in his

original investigations.
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Theorem 10.16. The cyclotomic equation as" —— 1 = 0 with prime
degree n is solvable in radicals; that is, each of its solutions can be

represented by an expression involving nested roots and rational num-

bers.

If (_fis an nth root of unity different from 1, then the field eX~

tension from Q to Q(§) is of degree n — 1, as we have seen already
in Section 10.8, where (,C2, . . .,C”‘1is a vector-space basis. Each
of the automorphisms 0' of the Galois group is uniquely determined
by the value of o((), which is always a power of C. Therefore, the
Galois group Aut(Q(€)[ Q) consists precisely of the automorphisms
determined by ok(() = (k for is = 1,2, . . . ,n

— 1.

To obtain expressions in radicals for the solutions of the cyclo-
tomic equation, we seek intermediate fields of the extension from Q to

Q(() that correspond to the steps of a solution in radicals. Based on

the fundamental theorem of Galois theory, there exist corresponding
subgroups of the Galois group Aut(Q(() I Q). However, to determine
these is by no means simple, unless the powers Ck are represented
again as in Chapter 7 in the form C9],where g is a primitive root

modulo n.16 The Galois group can then be written in the form

- 2 n—«1

{1d,og,og,...,og ,

so that for each divisor f of n — 1, setting e : "-11, we obtain one
f

(and only one) subgroup with f elements, namely,

Us = {ida6 025 ..,a;..,a; \xA0�\xE6�>g7g)‘

One obtains the associated subfield by taking a generic element 2:

from the field Z((), representing it in coordinate form

2 == m1€+ m2C2+ - - - + mn~1C”—1
with rational coordinates ml, . . .

, m,,_1 and then checking under what
a circumstances this element z remains unchanged under the automor-

phism og. This is the case precisely for

’n’Lgo=7‘n,ge=’rng2e=---,mg1=mge+1=mg2e+1=---, ...,

-»

16From a purely group—theoreticpoint of view, a primitive root modulo 71, yields
an isomorphism between the cyclic group Z/(n — 1)Z and the multiplicative group
Z/nZ~—{0}.This isomorphism makes it much easier to find the subgroups of Z/nZ-{0}
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so that the element 2 can be expressed in terms of the f—member

period as described in Chapter 7:

Z =

77190770-1- ’IT7,g1’]’]1+ - - - + ’I’)’Lge—1’I7e_]_.

The f—memberperiods

770:Pf(€)>77l:Pf(77l:Pf(77l:Pf( 77l:Pf(--'7 7]6—1:Pf<<‘ga~1)>
now possess the property that they are fixed by all the automor-

phisms of the subgroup U5 on the one hand, and on the other are

changed by every automorphism not in U6. Therefore, the fields

Q(no), @071),. . . ,Q(77e-1) must all be the same according to the fun~

damental theorem of Galois theory. Now for a solution of the cyclo-
tomic equation in radicals, it suffices to find,for every possible period

length f, an expression in radicals for a single f—memberperiod, say

770, since the other f—memberperiods can be calculated from 770 using
the four basic arithmetic operations.

The steps that make possible the solution of the nth—degreecy-

clotomic equation in radicals can now be planned on the basis of a

decomposition of the integer n— 1 into (not necessarily distinct) prime
factors: n - 1 = plpg

- ~ -

ps. One may assume inductively that all the

cyclotomic equations of degree pj have been solved in radicals. We

shall denote by K’ the field that arises from the field Q by adjoining
these roots of unity. Beginning with the increasing chain of fields

Q C Q (P(n_1)/131(O) C Q (P(P//(€)) C '“

C Q(P JO) C Q(€),

Where the Galois group of each extension step is cyclic of degree pj,
one then considers the chain of extension fields

K’ C K’ (P(P/p1(C)) C K’ (P(P//(C)) C ' "

C K’ (Pps(C)) C K10-

According to the results of Section 10.6, each extension step has

a Galois group that is a subgroup of the corresponding group for the

original chain of fields. However, groups with a prime number of ele-

ments have only themselves and the one—elementgroup as subgroups.

Therefore, for each actual extension step of the second chain, the

Galois group is the same as that of the cyclic Galois group of the
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corresponding step in the first chain. Using Lagrange resolvents, the

extension step can therefore be generated by adjunction of a single
root.

Altogether, we have shown that cyclotomic equations can be

solved in radicals. It remains to observe that in comparison to the

considerations of Chapter 7, here complex calculations have been

completely avoided. However, the price paid is a higher degree of

abstraction.

10.18 We now come finallyto the criterion (and its proof) that

allows one to determine whether an equation is solvable in radicals.

The basis of the theorem is the notion of solvability of a group, which

is defined as follows.

Definition 10.17. A finite group G’ is called solvable if there is a

chain of groups

{ld}==G0CG1CG2C"'CGk_1CGk=G

for which the subgroup G, is a normal subgroup of the next group
in the chain Gj+1, such that the quotient group G]-+1/Gj is cyclic of

prime order.”

Calling a group thus defined solvable makes sense only because

the solvability of an equation and the solvability of a group are so

closely related. We have the following theorem, whose statement in

terms of group tables was given in the previous chapter.

Theorem 10.18. An equation is solvable in radicals, that is, all of
its solutions can be expressed in terms of nested roots whose radicands

can be expressed in terms of the coefiicientsusing the four basic op-

erations, if and only if its Galois group is solvable.

To prove the theorem, we begin with a solvable equation. The

field containing the coeflicients can be extended stepwise through ad-

junction of roots of prime degree to a field that contains the solutions

:31, . . .
, a:,,.18 We shall look at only a single step, in which the field K

“Apparentlyweaker, but in fact equivalent, is a modification in the definition

whereby the quotient group has only to be abelian.

18It is by no means excluded that the field extensions lead outside the field

K(a:1, . . . ,:En).
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arising from the previous radical extensions is extended by adjunction
of pth roots, p a prime, of an element of K to a field L. We assume

such a sequence of adjunction steps in which the necessary radical ex-

tensions for the solution of the pth cyclotomic equation have already
been carried out, so that K contains the pth roots of unity. Now one

sees that the four fields K, L, K(:I:1, . . . ,a:,,), and L(.'I31,. . . ,:1:,,) are

in relation to one another as shown in Figure 10.7. In particular, the

degree of the extension of the field K(:v1, . . .
, sun)to L(w1, . . . ,m,,) is

either 1 or p, depending on Whether the adjoined pth root of unity is

or is not an element of K(ac1, . . . ,:c,,).

L(x1,...,x,,)

Ej\\clegree:lor p

de ree: la or m K(x1,---,X,,)
p

L degree: In

N

Mm»
.. U

degree: p \.

K

Figure 10.7 . Extension of the field K to a field L by the

adjunction of pth roots.

These two cases appear as follows:

0 In the case

K($1a-"a$n) :L($1a'- -awn);

the field L is a subfield of the field K (:31,. . .,:r:,,). The Ga-

lois group Aut (K(a:1,. . . ,m,,) | L) is then, by Point 3 in the

fundamental theorem, 3. normal subgroup of the Galois group

Aut (K(:z:1,. . .
, :12”)I K ), where the associated quotient group is

cyclic with order the prime p.

0 In the second case, in which the field extension of K ((121,. . . ,:1:,,)
to L(a:1, . . . ,:3,,) has degree p, we have that the Galois group

Aut (L(:v1,. . . ,a:,,) IL) is “equal”to the Galois group

Aut (K(a:1,...,:1:n)| K);
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that is, all automorphisms of the latter group result from those

of the former when its domain of definition is restricted.

Step by step, that is, with additional adjunctions of roots to the

field L, one obtains the desired chain

---CAut(L(a31,...,:v,,)|L) CAut(K(a:1,...,:z:,,)[K)C \x80߁�

of subgroups of the Galois group.

It remains to prove the converse. That is, we now begin with

the assumption that the Galois group G’ = Aut (K(:31,. . . ,m,,) I K )
is solvable, that is, that one has the requisite chain of subgroups
{id} = G0 C G1 C G2 CC Gknl C Gk = G. We HOW begin to

create a field K’ from the field K by adjunction of suitable roots of

unity. In particular, we adjoin the roots of unity of every prime degree
less than or equal to the greatest proper divisor of the number |G| of

elements of G. The Galois group H = Aut (K’(a:1,...,:r,,)IK’)is a

subgroup of the solvable Galois group G and is itself solvable. This

can be seen by modifying the above chain of subgroups as follows:

{id}CG'1flHCG2flHC---CGk_1flHCGkflH=H.

Each of these groups is a normal subgroup of the next group in the

chain. Moreover, we may View each of the associated quotient groups

(GJ-+1(1 H)/(Gj PI H) as a subgroup of the quotient group G’j+1/Gj,
which comprises precisely those cosets that contain at least one ele-

ment of H. Therefore, either G,-+1 0 H = Gj fl H or the quotient
group (G3-+1D H(Gj F] H) is cyclic of prime order. This shows that

the subgroup H itself is solvable. Thus for the rest of the proof we as-

sume without loss of generality that the chain of subgroups has been

shortened such that all the subgroups

{ld}=H0CH1 C -'-CHk_1 CHk=H

that appear are distinct.

The penultimate group, H k_1, is a normal subgroup of the group

H. Furthermore, the associated quotient group is cyclic, of order

a prime number p. According to Section 10.15, there is thus a pth
root of an element a in the field K ’

whose adjunction, as shown in

Figure 10.8, yields the first intermediate field. Then in an analogous
fashion the remaining fields can be constructed stepwise in relation
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to the subgroups H k._2, . . . ,H1 as continuing extensions up through
the field K’(:r1,. . .

, 237,),whose Galois group is Hk_1. All in all, this

shows that the solutions 21:1, . . . ,:13,, can be expressed in terms of nested

radicals with the radicands in the field K.

K’(x1,...,x,,)
E �\xF3��

H

KW?)
{

G

K’
 \xE5��

adjunction of \xA0zT�
of unity K

Figure 10.8. How to find a solution of the underlying equa-

tion for solvable groups.

10.19 With the completion of the proof above we have accomplished
the goal of this book. As announced in the introduction, using Galois

theory alone, one can determine whether a given equation is solv-

able in radicals. Properties of an equation and of the field generated
by the solutions can be obtained through the investigation of much

simpler objects, namely groups. Of course, in a specificcase, it is

not recommended to test the solvability of a group by a step—by-step
decomposition of the group table, as we have done in the previous
chapter. Much simpler is to use methods obtained from the general
theory of finite groups. However, we have deliberately refrained from

explaining such methods in this book in order to limit the scope of

this introductory excursion into the theory of polynomial equations.
We note here only that the symmetric group Sn, that is, the group

of all permutations on n elements, is not solvable for every n > 5.

A proof of this fact is given in the epilogue. Equations of the fifth

degree with Galois group 85 are therefore not solvable in radicals. An
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example of such an equation—andindeed, such equations are the rule

rather than the exception~was given in Section 9.17.

The Unsolvability of the Classical Construction

Problems

We stated in Chapter 7 that the classical problems of squaring the circle,
doubling the cube, and trisecting an angle have no solution. The reason

that the circle cannot be doubled lies not in Galois theory, but in the

transcendence of the number 7r.

The proofs of the impossibility of the other two constructions also do

not rest on the deep results of Galois theory. In general, it sufiices,as

we shall now see, to consider the formula for the degrees of towers of field

extensions.

To complete the proofs, then, we shall reformulate the results of Chap—
ter 7 in terms of fields: If a construction can be carried out with straight-
edge and compass that leads to the construction of a point z in the complex
plane, this is algebraically equivalent to the point z lying in a field obtain-

able from the field Q of rational numbers by stepwise extensions of degree
2. According to the degree formula for nested field extensions, the number

z must therefore belong to a field whose degree over the field Q of rational

numbers is a power of 2.

Since the field Q ( has degree three over the rational numbers,
3/2 cannot, based on the degree formula, lie in a field whose degree is

a power of 2. Therefore, a segment of length 3/2 cannot be constructed

with straightedge and compass. Thus the problem of doubling the cube is

unsolvable. 19

In the problem of trisecting an angle, again the key is in the construc~

tion of a cubic extension field. The problem is equivalent to constructing a

number z, given a number a on the unit circle, satisfying 23 = a. Beginning
with the field Q((, a), where C is a cube root of unity not equal to 1, the

adjunction of the number 2 yields one of the following two scenarios:

(1) The number z lies in the field Q((, a), and no genuine field extension

arises.

(2) The number 2 does not lie in the field (@(C,a), and the result is a field

extension of degree 3.

19A way of solving this problem, as Well as the other classical construction prob-
lems, in an elementary fashion, without using the degree formula or other result of
Galois theory, is described by Detlef Laugwitz in Eine elernentare Methode fiir die

Unmoglichkeit bei Konstruktionen mit Zirkel und Lineal, Elements der Mathematik,
17 (1962), pp. 54—58. In addition there is a discussion of how few square roots are

necessary to represent the roots of cubic equations.
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In case (2), which occurs, for example, in the problem of trisecting an

angle of 120 degrees, the construction of the point z with straightedge and

compass is impossible.
We note finallythat one can prove the constructibility or noncon-

structibility of regular polygons using the degree formula for nested field

extensions.
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Exercises

(1) Prove the degree formula for nested field extensions K C L C E,
that is, that the degree of the extension E over K is equal to

the products of the degrees of E over L and L over K.

(2) Show that the number of elements of a finite field must be a

power of a prime.

(3) If for a prime number n, a permutation group G C 3,, oper-

ates transitively on the set { 1, 2, . . . ,n }, then any normal sub-

group H C G with H gé{id} also operates transitively on

{1,2,...,n}. Hint: Decompose the set {1,2, . ..,n} into so-

called orbits, each of which is the set of all elements that can be

translated one into the other by a suitable permutation in H.

Why must these orbits all be of the same size?

Conclude, moreover, that if the Galois group of an irre~

ducible equation of prime degree n is solvable, then the penulti-
mate group in the solution is cyclic of order n.
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(4) Show that for a prime number n, the set of linear transfor-

mations, that is, functions fa,g, 2 Z/nZ ——> Z/nZ such that

fa,1,(a:) am + b for given residue classes (2,1) 6 Z/nZ, form
a group.

In addition, prove the following:
o No linear transformation has two or more fixed points,

that is, for each transformation fag, there is at most one

residue class a; with fa,g,(a:)= ac.

0 Every element of order n has the form fm, with b 750.
0 Every linear group, that is, a group of linear transforma-

tions including the transformation f1,1, is solvable. Hint
for the last part: The subgroup generated by f1,1 is a

component of the solution.

Among the examples of Galois groups of equations of fifth degree
in Section 9.17, it was stated that the equation 935— 2 = 0 over

the field of rational numbers leads to a Galois group with twenty
elements, while the equation $5 —— 53: + 12 = 0, despite the more

complicated root structure, results in a Galois group of only ten

elements. How is this phenomenon to be explained in the light
of our considerations in this chapter on radical extensions of the

underlying field and subgroups of the Galois group?
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In the end was the beginning. Both historically and in relation to the

thematic framework of this introduction, the end result creates a new

beginning: Although the problem of solving polynomial equations in

radicals posed by Cardano and Ferrari was able to be answered, the

objects involved in the solution, groups and fields,raise many new

questions about their general properties, and not only in the sense of

“art for art’s sake.” The knowledge that these objects, and the as-

sociated applications and techniques, are applicable in many fields of

inquiry has allowed algebra, that is, the subfield of mathematics that

deals with basic arithmetic operations, to establish itself as a major
mathematical discipline. In the field of abstract algebra, the objects
of consideration are defined and “classified” in the broadest possi-
ble generality and categorized according to their basic structure. To

do this with maximum efiiciency,general classifications are refined

as needed, for example, groups and fields with their subcategories
abelian groups and finite fields;and such classifications are also gen-

eralized, for example, with the definition of a commutative ring, which

satisfies all the requirements of a field except for the invertibility of

multiplication.1

1The best—known examples of rings that are not fields are the integers, the set of

polynomials in one or several variables, and the set of residue classes Z/TLZ for 71. not a

prime.

165
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There are several advantages to developing mathematical objects

by such an axiomatic method:

0 Mathematics becomes more transparent. In particular, one can

recognize fundamental properties in a collection of various math-

ematical objects that exhibit a number of properties in common.

0 Mathematics becomes liberated from fundamental “truths” taken

for granted once it has been freed from particular interpretations
and applications. Thus, for example, it was with the generaliza-
tion of the parallel postulate to non—Euclidean geometries that

it became possible to establish the unprovability of the parallel

axiom, a problem that had been festering since antiquity.

0 Such an approach is more economical, at least with respect to

mathematics as a whole, since important facts do not have to

be proved over and over in different situations. Moreover, these

general principles, which in fact are of central interest in mathe-

matics, can often be derived as special cases from more generally
valid theorems.

Although such an axiomatically constituted mathematics diverges
from the descriptive natural sciences in being only indirectly con-

nected with our physical perception of the world, one should note

that classification plays an important role in those sciences as well,
from the Linnaean taxonomic system of biological classification to the

periodic table of the elements to the classification of symmetries of

fundamental particles.

If this book employed such a structural approach only in the last

chapter, and perhaps half—heartedlybut pragmatically in the chapter
before that, the reason was to minimize the difficulties for the in—

terested nonmathematician. The multiplicity of definitions and con-

cepts that seem opaque on first contact presents an almost insuperable
barrier to the nonmathematician. Perhaps some readers of the last

chapter will have received such an impression, despite the contrary
intention of the author.

To avoid unnecessary complications, some things were deliber—

ately excluded, some of which are related to polynomials. We tacitly
accepted, without a formal definition,a polynomial as a formal sum
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of products of one or more variables X, Y, . . .
, and coeflicients taking

values in some fixed set. Generally, this set was a particular field,but

one could also have taken the ring of integers or indeed the set of all

polynomials in additional variables.

Such formal polynomials are to be distinguished from the func-

tions that such polynomials define when the variables are replaced
by concrete values CL,b,... from some set of numbers. Now one

can calculate both with polynomials themselves, taking their sums

and products, and with their functional values. It is clear that the

two forms of calculation are compatible, for example that one has

(f - g)(a) = f (a) - g(a). However, one should prove that this is the

case.

The simplificationof our presentation also serves the purpose of

specializing the discussion to subfields of the complex numbers. It

was clear, on account of the fundamental theorem of algebra, that a

splitting field exists for every polynomial with complex coefficients.

Despite the practicality of such an approach, and despite the impor~
tance of the fundamental theorem of algebra, the form of argumenta—
tion has little to do with algebra. It is not only that the fundamental

theorem is proved using mathematical analysis (calculus), an argu~

ment involving estimates of distance and intermediate values, which

renders the theorem’s appellation a historical artifact. It is also that a

generalization to other cases, for example that of finite fields,cannot

be carried out by such methods.

For these reasons it is understandable that in algebra a com-

pletely diiferent tack is generally taken for constructing the splitting
fields that are crucial to Galois theory. Beginning with a field K

and a polynomial irreducible over K, a field extension containing the

elements that solve the corresponding equation

_1 _

ar"+a,,_1m“ +a,,_2:r" 2+-~-—|—a1$+ag=0

is constructed in a completely formal way. One does this by the

adjunction of a formal value oz, where in calculating with expressions
of the form

k0+k1oz+k2a2 +---+k,,,o/",
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with kg, . . . , km E K, We employ the simplification

TL
a = —a,,_1o/‘*1 _2

— an_2oz” — - - ~ ~

—a1a
—

as,

so that it always can be achieved that m 3 n — 1. One can then show

that the set

K[a]={kg+k1a+k2a2+---+k,,_1oz""‘1I/cj€K}

forms a field that clearly contains a solution, namely a, of the given

equation? What is tricky here is the proof that the set K [a] is closed

under division.3

If the polynomial is then factored over the field K[a] into irre—

ducible factors, one can proceed with additional adjunction steps. In

this way, one finallyobtains a completely algebraically constructed

splitting field/1 It is uniquely determined, as can be shown, in that

every other splitting field is isomorphic to this one, that is, that the el-

ements are related by a one—to-one correspondence that is compatible
with the basic arithmetic operations.5

With the formulation thus described, the general equation can

now be made amenable to treatment by Galois theory in terms of

purely algebraic methods. We have seen the general equation in

Chapter 5 as the equation in which formal variables :51, . . . ,m,, in

2From a formal point of view, this approach is similar to that of a quotient group
from a normal subgroup. It is an example of a ring of residue classes, which can be
constructed from a ring and a subset of a ring called an ideal. It is such methods
of constructing new objects that requires the axiomatic definition of such objects as

groups and fields, not just as subgroups of the symmetric group, as we were always
able to do in the case of finite groups, and subfields of the complex numbers.

3Essentially, the arguments from Section 10.9 can be easily extended. That is,
one investigates the linear system of equations that corresponds to multiplication by
the inverse of an element of K[oz]. However, it is also necessary for the considerations
of Section 10.9 to prove that the product of two nonzero elements is again nonzero.

4This purely algebraic construction can in fact be used to prove the fundamental
theorem of algebra using complete induction. (The induction is over the highest power
of 2 that divides the degree of the equation.) Analytic arguments enter the picture only
in the form of that fact, provable by the intermediate value theorem, that every odd-

degree polynomial with real coeflicients has a real zero. See Jean—Pierre Tignol, Galois’

theory of Algebraic Equations, Singapore, 2001, pp. 119, 121—122,and Exercise 5 at
the end of this chapter.

5A field automorphism is simply an isomorphism of a field with itself.
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the associated elementary symmetric polynomials

S1(.’B1,...,.I1n)=(I}1+{I12+'--‘l-(I:.,,,
82($1, - - - fin) = $1552 +!I31iB3 + ‘ ' ' +93n—1$n,

3n(371:- ~ - amn) : -'1315172"'«Tn:

are to be determined.

In the language of field extensions, this corresponds to the situa-

tion in which beginning with a field K of polynomial coefficients, one

is to investigate the extension of the field K (31, . . .
, Sn) to the field

K(:1:1,. . . ,cc,,). Due to the uniqueness theorem for symmetric poly-
nomials (see the section on this topic in Chapter 5), one may treat

the symmetric polynomials in K (s1, . . .

, sn) as though they were for-

mal variables with no formal polynomial relations among them (one
speaks of algebraically independent quantities). One thereby obtains

an additional, fully equivalent, interpretation of the general equation,
in which now the equation’scoefficients a0, a1, . . .

, a,,_1 are variables

for which, as described, a splitting field can be constructed. Since

the solutions have no relations among themselves—in the first place
by definition and in the second place by the equivalence6-the Galois

group of the general equation is the full symmetric group.

Theorem E.1. The Galois group of the general nth—degreeequation
is the symmetric group Sn; that is, it contains all permutations of the

n solutions $1,. . . ,:1c,,.

As a consequence, the results for the general equation, as first dis-

covered by Lagrange, appear as a special case of Galois theory. Here

every intermediate field is generated by polynomials in the variables

6Of course, a direct proof is also possible: Beginning with a given polynomial
h(X1, . . . ,X,,) with h(a:1, . . .

, urn) = 0, one forms the product

g(X12-- ~ yX7l) 2 H h (Xa(1)7- ' ':X0(n)) -

UES11

Since the polynomial g is symmetric in the variables X1, . . . ,Xn, it can be expressed as

a polynomial in the elementary symmetric polynomials in these variables. There is thus

a polynomial u(Y1, . . . ,Y,,) such that the polynomial g(X1, . . . ,X,,) can be expressed
in the form g(X1, . . . , X”) = u (s1(X1, . . . ,Xn), . . . , s,,(X1, . . . ,X,,)). If one substi-

tutes the solutions 3:1, . . . ,:v,, into this identity, then one obtains O = g(:z:1, . . . ,:z:,,) =

'u.(a,,_1, . . . , 0.0). This shows immediately that u = 0. The previous polynomial iden-

tities finally show that g = O and h = 0.
i
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a,-1, . . .,a:,, that remain unchanged under the automorphisms of the

associated group of permutations. Furthermore, it naturally follows

that the solvability of the general equation of a particular degree n is

equivalent to the solvability of the symmetric group S,,. Abel’s im-

possibility theorem thus corresponds to the following gro.up~theoretic
theorem.

Theorem E.2. The symmetric group Sn is unsoluable for n 2 5.

In textbooks, this proof of a group—theoretictheorem usually is

used to derive Abel’s theorem. A proof is possible with arguments
similar to those used by Ruffini (see the section on this topic at the

end of Chapter 5). To this end, one first proves the following theorem.

Theorem E.3. If G is a subgroup of the symmetric group 8,, for
n 2 5 containing all three—cycles,that is, all cyclic permutations of
the form a —-> b —> c —> a of three distinct elements a, b, c, and ifN is

a normal subgroup of G with commutative quotient group G/N, then

this normal subgroup also contains all the three—cycles.

To prove this preparatory theorem one represents an arbitrary
three-cycle a —+ b —> c —> a as the product

(cl—+b—>a—>d)"1o(a—+e—>c—>a)_1
o(d—>b—>a—>d)o(a—->e—>c—>a),

where d and e are arbitrary distinct elements that are also distinct

from a, b, c. Since the quotient group is commutative, the product
must lie in the coset that represents the identity, that is, in N. As

asserted, then, every three—cyclebelongs to the normal subgroup N.

On the basis of the theorem just proved, it can now be deduced

step by step that every group in an ascending chain corresponding to

a solution of the symmetric group Sn must contain all three—cycles.
The chain can therefore not end in the trivial group containing a

single element, and so the symmetric group cannot be solvable.

Moreover, the same argument can be applied to the alternating
group An, defined as the group of all even permutations. With refer-

ence to the alternating group An, we note that it is a normal subgroup
of the symmetric group Sn, since the quotient group is a commutative
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two—elementgroup. In the case of the general equation, the alternat-

ing group corresponds to the intermediate field that arises through

adjunction of the square root of the discriminant.

To the extent that the base field K for the general equation is a

subgroup of the complex numbers, the implicitly assumed possibility
of extending Galois theory and its applications to radical extensions

is unproblematic. In an extension of Galois theory to arbitrary fields,
however, two additional complicating factors need to be considered:

0 The generalization works only if every irreducible polynomial
possesses distinct zeros. Otherwise, not every automorphism of

the splitting field is associated uniquely with a permutation of

the zeros, and moreover, the construction of Galois resolvents

can be problematic. Nevertheless, fields of characteristic zero

and finite fields cause no problems in this respect.

0 The characterization of radical extensions in terms of Lagrange
resolvents assumes that one can divide by the degree of the field

extension (see the end of the proof in Section 10.14). In fields

with finite characteristic this is not necessarily possible.7

Another hole in the preceding chapter relates to finite fields,
which We have used only indirectly, other than giving some exam-

ples in Chapter 10, namely, in the form of fields of residue classes

modulo a prime. In particular, we made use of the existence of a

primitive root modulo n, so that the cyclotomic equation could be

solved using suitable sums of roots of unity, that is, the periods. Thus

for prime numbers n we assumed the existence of an integer g such

that the numbers g1,g2, . . . ,g"“1represent distinct nonzero residue

classes 1, 2, . . .,n
— 1.

Using algebraic structures, this fact can be formulated in slightly

greater generality.

Theorem E.4. Every finitesubgroup of the multiplicative group of a

fieldis cyclic.

The application of interest here, relating to subgroups of a finite

field Z/pZ, was first proved, in a formulation as a statement about

7Indeed, the general quadratic equation over the two-element field Z/ZZ, for ex-

ample, is not solvable in radicals. See B. L. van der Waerden, Algebra I, Section 62.
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residue classes, by Legendre (1752#1833). Earlier proofs by Euler

must be considered incomplete. Although a proof can be given based

on extensive computations in residue classes,8 we would like to offer

a proof of the generalized theorem, which is shorter and more easily
understood.

We begin with an investigation of Euler’s phi function, which

associates with a natural number d the number of integers in the set

{1,2, . . .,d} relatively prime to d. For example, 90(6) = 2, since 1

and 5 are the only integers between 1 and 6 relatively prime to 6; and

go(8) = 4, with 1,3,5, 7 relatively prime to 8. Euler’s phi function

satisfies the relation

2 = n.

dln

We will first justify this formula, where the sum is over all divisors d of

77,. To this end, consider for each residue class j modulo 77,, represented
for example by the n integers 0, 1, . . . ,n

— 1, its order (1 as an element

of the group Z/nZ . Each such order d must be a divisor of n, and

the residue class j will have order d precisely when it is represented
by an integer m - §, so that j must lie in the subgroup generated by
the residue class associated with 3-. This subgroup is cyclic of order

d, and thus isomorphic to Z/dZ, and therefore contains precisely
elements of order d. The partition of the n—elementgroup Z/nZ thus

obtained corresponds precisely to the summation formula.

After these preparations we can address the actual content of the

theorem, namely, a finite subgroup U of the multiplicative group of

a field. If d is a natural number such that there is an element as in U

for which the group generated by m is the group {1, w, x2, . . .
, acd‘1}

of d elements, then according to Section 10.4, d is a divisor of |U], the

number of elements in U. Since rrd = 1, every element of this group
is a zero of the polynomial X d

— 1. Since we know from Section 4.2
that for each zero of a polynomial we may split ofi? a linear factor,
and thus this polynomial can have at most d zeros, there cannot exist

an element of U outside of the subgroup {l,.’12,£L‘2,. . . ,md“1}that

generates a d~element subgroup. Therefore, in the group U there is

either no element that generates a d—elementsubgroup or there are

8See, for example, Jay R. Goldman, The Queen of Mathematics, Wellesley, 1998,
Chapter 10.
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of them. If one again decomposes the group U as we earlier de-

composed the group Z/nZ according to the size of the subgroup that

each element generates, then for n = IUI we obtain the summation

formula

n = Z <,o(d)- 5,1,
dln

where each of the numbers 6,1 is either 0 or 1. One then sees immedi-

ately a similarity to the previously derived summation formula, that

for divisors d of n we must always have 64 = 1. In particular, there

are cp('n)elements of U that generate an n—elementsubgroup, that is,
the entire group U. The group U is therefore cyclic.

Exercises

(1) Prove Fermat’s little theorem: For a prime number n and a

positive integer a relatively prime to n, the number a"‘1 — 1 is

divisible by n.

(2) Prove Wz'ls0n’stheorem: For a prime number n, the number

(71— 1)! + 1 is divisible by n. Then conclude from this that a

natural number n 2 2 is prime if and only if (77,—— 1)! + 1 is

divisible by n.

(3) Prove the generalization of Fermat’s little theorem that for a

natural number n and a natural number a relatively prime to n,

the number a‘*’(")— 1 is divisible by n. Hint: First show that the

residue classes in Z/nZ represented by integers relatively prime
to n form a group under multiplication.

(4) Prove that if n = pq is a product of two distinct prime numbers

p and q and if u and ‘U are two natural numbers such that M) — 1

is divisible by (p — 1)(q - 1), then for everynatural number a,

the number am’ — a is divisible by n.9 In such a case, the pairs

(u, n) and (21,n) can serve as cryptographic keys, where one is

used for encryption, the other for decryption. One speaks of an

asymmetric cryptographic algorithm. In contrast to symmetric

9The significanceof this exercise is that the two residue class mappings m l~—> m”

and :1: I—> m” of Z/'n.Z into itself are inverses of each other. Such a construction is used

in cryptography, in the RSA encryption procedure, Here very large primes, that is,

of several hundred digits each, are used, so that determining two such prime numbers

12, q given their product 'n. = pq would be impossible even after millions of years Of

computation on today’sfastest computers.
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algorithms, in which encryption and decryption use a single key,
with the RSA algorithm one of the keys, that for encoding, say,

can be published without fear that unauthorized persons will be

able to decode encrypted messages. One therefore refers to the

RSA algorithm as public key encryption. Hint: The assertion can

be reduced to that of Exercise 3. To include the case in which a

is divisible by p or q, one might demonstrate the divisibility of

am’ — a by p and by q separately.

Prove the fundamental theorem of algebra in an algebraic way by
proving that for a nonconstant polynomial f (X) with complex

coefiicients,if one factors f into linear factors as

f(X) = (X-=v1)°--(X-wn)

in some algebraic extension field of (C (which is always possible
via an algebraic construction), one in fact has that 331, . . .

, mm 6

C. First show the following:
o The theorem holds for quadratic polynomials f (X) (see

also Exercise 1 in Chapter 2).
0 It suflices to prove the existence of a single complex solu-

tion acj. Moreover, one can restrict attention to polyno-
mials with real coefficients.

Now the proof can be carried out using mathematical in-

duction on the highest power of 2 that divides the degree of

the polynomial. For the base step of the induction, one uses

the version of the theorem for real polynomials of odd degree,
which is proved using mathematical analysis (calculus). For the

induction step, one investigates polynomials of the form

gc(X) = H (X — \xA0\x974�+ 10,-+ ca:,~mj))
¢¢¢

for a suitably chosen parameter c.

For a prime number m and a natural number a relatively prime
to m, the Legendre symbol is defined as follows:

(%>= {+1
if a = .92+ km for suitable integers .3 and k,

-1 if a does not have such representation.
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The Legendre symbol therefore tells whether the residue

class represented by a is a square in the multiplicative group

of residue classes Z/mZ — 0]\xA1�Even though the value of the Le-

gendre symbol can be determined by finite trial and error, one

is naturally interested in a direct calculation. Therefore, show

first that

aa/2 _ (E)m

is divisible by 777,.

Other properties of the Legendre symbol can be obtained

with the use of roots of unity. For a second prime number n 2 3

we again let Q denote the nth root of unity § = cos +

isin \xD0�\x9B�while the periods of length (71—~ 1)/ 2 (see Section 7.2)
are denoted by 770 = P(n_1)/2(() and 771 = P(n_1)/2((9),where

the integer g again represents a primitive root modulo n. Show

that

(770~ 771)m— \xB0\xD5r�(770— 771)= 777»(G0+ 0«1C+' ' ' + Cln—2Cn_2)

with integers a0, a1, . . . ,an_2. Show also (if you have not already
done so in Exercise 2 of Chapter 7) that

(770— 771)2= (—1)("_1)/27%

Finally, show how the resulting identity

l<“1>"%”‘1(%>* Gil ("OM W2

= m (be+ 171C+ - - - + bn~2C"—2)»
with integers b0,b1, . . . ,b,,_2, yields the law of quadratic reci-

p7"ocz'ty1°
Tn n—1m—l TL
— = —1——<—>i(n) < >2 ’

m

(7) For a group G whose number of elements [G] is divisible by a

prime number p, one defines the mapping

s0(91,92,. - - :91?)= (92, - » - ,gp,g1)

10The law of quadratic reciprocity was first proved by Carl Friedrich Gauss on

April 8, 1796, as documented by an entry in his diary. It is a fundamental result

of number theory with many ramifications. Furthermore, using the law of quadratic
reciprocity together with some other elementary properties of integers, one can compute
the values of arbitrary Legendre symbols rather quickly.
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for g1,g2,...,gp E G, as well as the set

X={(91,g2,-.-,9p)€G"lg1g2~~9p=6}»
Where 6 again denotes the group identity.

Prove the following:
° IX! = lGl”'1-
0 The mapping (,0 maps the set X into itself.
0 If the identity (pk\xB0'_�= {It holds for an element zv E G?’ and

an integer k not divisible by p, then all the coordinates of

:3 are equal.
0 Every orbit {.'I:,(p(.'17),<,02(:l2),. . . }, where m 6 G1’,consists

of either one element or p elements.

0 The number of one—elementorbits in X is divisible by 19.

Assuming that there exists an element :2: E X with a one-

element orbit, conclude that there exists at least one other ele—
ment with a one-element orbit, and thereby prove the existence
of an element of G of order p (Cauchy’stheorem).11

:11Cauchy’stheorem is usually formulated in a more general form, which is named
after Ludwig Sylow (1832-1918). The Sylow theorems make assertions about subgroupsof a group of order the power of a prime.
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