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Foreword: MASS and
REU at Penn State
University

This book is part of a collection published jointly by the Amer-
ican Mathematical Society and the MASS (Mathematics Advanced
Study Semesters) program as a part of the Student Mathematical
Library series. The books in the collection are based on lecture
notes for advanced undergraduate topics courses taught at the MASS
and/or Penn State summer REU {Research Experiences for Under-
graduates). Each book presents a self-contained exposition of a non-
standard mathematical topic, often related to current research areas,
accessible to undergraduate students familiar with an equivalent of
two years of standard college mathematics and suitable as a text for
an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced
undergraduate students from across the USA. The program’s curricu-
lum amounts to sixteen credit hours. It includes three core courses
from the general areas of algebra/number theory, geometry /topology
and analysis/dynamical systems, custom designed every year; an in-
terdisciplinary seminar; and a special colloquium. In addition, ev-
ery participant completes three research projects, one for each core
course. The participants are fully immersed into mathematics, and
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this, as well as intensive interaction among the students, usually leads
to a dramatic increase in their mathematical enthusiasm and achieve-
ment. The program is unique for its kind in the United States.

The summer mathematical REU program is formally indepen-
dent of MASS, but there is a significant interaction between the two:
about half of the REU participants stay for the MASS semester in
the fall. This makes it possible to offer research projects that re-
quire more than seven weeks (the length of the REU program) for
completion. The summer program includes the MASS Fest, a two
to three day conference at the end of the REU at which the partici-
pants present their research and that also serves as a MASS alumni
reunion. A nonstandard feature of the Penn State REU is that, along
with research projects, the participants are taught one or two intense
topics courses.

Detailed information about the MASS and REU programs at
Penn State can be found on the website www.math.psu. edu/mass.



Preface

The aim of this book is to provide a brief introduction to finite fields
and some of their many fascinating applications. The book arose
from lectures of the first author in a course entitled “Finite Fields
and Their Applications,” which was taught in the Department of
Mathematics at The Pennsylvania State University during the Fall
semester of 2004. The course was part of the department’s Math-
ematics Advanced Study Semesters (MASS) program. The second
author produced an initial online set of notes from these lectures,
which have been greatly expanded into the present voiume.

The most important chapter of this text is the first, which dis-
cusses a variety of properties of finite fields. Many of these properties
are used in later chapters where various applications of finite fields are
discussed. The chapter begins with a discussion of the basic proper-
ties of finite fields and extension fields. It then defines the important
trace and norm functions and establishes some of their properties.
Bases for extension fields, including dual, normal, and primitive nor-
mal bases, are then discussed. The first chapter concludes with a
few results concerning polynomials over finite fields. These include
a discussion of the order of a polynomial, formulas for the number
and orders of irreducible polynomials, and properties of linearized
polynomials and permutation polynomials over finite fields.

vii
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Chapter 2 includes some combinatorial applications of finite fields.
It includes a detailed discussion of latin squares and their applica-
tions to affine and projective planes as well as more general block
designs. The chapter closes with a brief discussion of Hadamard ma-
trices which arise from an elementary finite field construction.

Chapter 3 deals with algebraic coding theory and includes a dis-
cussion of some properties of codes as well as bounds on the parame-
ters of linear codes. Several encoding and decoding methods are also
discussed. Constructions for various kinds of codes including Ham-
ming, cyclic, BCH, and Goppa codes are given. A brief discussion
of perfect codes is also included. The chapter ends with a discussion
of some relations and connections between codes, latin squares, and
combinatorial designs.

The final chapter covers some elementary aspects of cryptogra-
phy. The discussion includes some basic properties of cryptographic
systems as well as symmetric key and public key cryptography. The
RSA cryptosystem and a double-round quadratic system are pre-
sented, along with key exchange systems including the Diffie-Hellman
systerm. The diserete logarithm problem for finite fields is presented
in this context. Several threshold systems for distributing secret in-
formation are presented, including one based on latin squares. The
chapter ends with a brief discussion of digital signatures and several
cryptosystems based on Dickson polynomials and elliptic curves over
finite fields.

Appendix A provides a brief review of some hasic algebraic con-
cepts that are needed for a full understanding of some of the topics
covered in the first four chapters. These concepts include topics from
number theory, groups, rings and fields, homomorphisms, polynomi-
als and splitting fields. A brief review of a few concepts from the
theory of vector spaces, including dual spaces, is presented.

Each chapter, and the first appendix, concludes with a brief set
of notes related to that chapter’s material. These notes describe a
variety of references that provide material for further reading on the
topics presented here. FEach chapter, and the first appendix, con-
tains a set of exercises of varying levels of difficulty that expand upon
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the ideas presented. Appendix B provides hints for many of these
exercises.

The first author would like to sincerely thank Sergei Tabach-
nikov, Director of the MASS program at Penn State, far inviting him
to teach a course in the MASS program. Both authors would like to
thank Sergei for his encouragement to convert our initial class notes
into this text. The first author used this text in his MASS class
taught during the Fall semester of 2006. We would like to sincerely
thank Charles F. Laywine for his careful reading and many excellent
suggestions which greatly improved the readability of our book. A
special word of thanks is owed to the 2006 class of MASS students,
who provided numerous comments and helpful suggestions for im-
provements in addition to locating a number of typographical errors.
We also thank the publishing staff of the American Mathematical
Society who helped bring this book to a successful conclusion.

G. L. Mullen
C. Mummert
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Chapter 1

Finite Fields

1. Introduction

A field is an algebraic structure consisting of a set of elements for
which the operations of addition, subtraction, multiplication, and di-
vision satisfy certain prescribed properties. The real numbers are
probably the best known example, along with the fields of rational
numbers and complex numbers. These are all examples of infinite
fields because each contains an infinite number of distinct elements.
Certain finite sets also satisfy the field properties when assigned ap-
propriate operations; these finite fields are our focus of study in this
chapter.

Because some readers may not be familiar with algebraic struc-
tures such as groups, rings, fields, and vector spaces, we have included
a brief introduction to them in Appendix A. The material there in-
cludes the basic definitions and background theorems required here.

2. Finite fields

We begin our exploration of finite fields by determining the possible
sizes of a finite field, We will see that linear algebra plays a crucial role
in the answer to this question. Recall that every field has a unique
smallest subfield, called the prime subfield, which is the intersection
of all of its subficlds (see Exercise A.20}.

1
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Lemma 1.2.1. Suppose F' is a finite field with a subfield K contain-
ing q elements. Then F is o vector space over K and |F} = g™, where
m is the dimension of F' viewed as o vector space over K.

Proof. It is straightforward to verify that F' is a vector space over K
using the field operations in F'; we leave this to the reader. Since F is
finite, we can choose a basis B = {#,..., G} for F over K. Every
element o of F can thus be written in the form o = a1 81+ - - +am P,

where a; € K for 1 < i € m and the sequence ai,az,...,dny 18
uniquely determined by a. There are |K|™ = ¢™ distinct sequences
of coefficients, because there are |K| = g choices for each a;. ]

The m occurring in Lemma 1.2.1, which is the dimension of I as
a vector space over K, is called the degree of I over K. By combining
the lemma with the fact that every finite field has prime character-
istic (Lemma A.3.6}, we obtain a characterization of the mumber of
elements that a finite field can possess.

Theorem 1.2.2. Let F be a finiie field. The cordinality of F is p™,
where p is the characteristic of F' and m is the degree of F over its
prime subfield.

We can conclude from this theorem, for example, that there is no
finite field of order 36. We will prove a converse of Theorem 1.2.2 as
Theorem 1.2.5 below.

‘We remark that for any integer n > 2 there is an algebraic strue-
ture of cardinality n, known as a neofield, which satisfies all of the
field axioms except for associativity of addition. These structures are
discussed by Dénes and Keedwell [11, pp. 246-249).

Lemma 1.2.3. If F' is a finite field with g elements and a € F is
nonzero, then a?~ ' = 1. Thuso? =a for alla ¢ F.

Proof. The result is immediate when a is zero. If @ is hot zero, we
know that @ is a unit in . There are ¢g—1 units in F', so by Lagrange’s
theorem (Theorem A.2.6) the multiplicative order of a in F' divides
g — 1. Therefore a? ! = 1 and a% = a. O
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An immediate consequence of the previous lemma is that the
multiplicative inverse of any nonzerc element e in a field of order q is
a2 because a?" 2. a=a%"1 = 1.

The polynomial z? — r has degree g and so can have at most g
roots in any field. Lemma 1.2.3 indicates that if ¥ ig a field of order
g, then every element of F'is a root of 9 - z. The next lemma follows
immediately.

Lemma 1.2.4. If F is o finite field with g elements, then x7 — x
factors in Fx] as Haep(z — a).

Qur next result precisely characterizes the orders of finite fields.
We first agk the reader to review the definition of a splitting field
(Definition A.5.7).

Theorem 1.2.5 (Existence and uniqueness of finite fields). For every
prime p and positive integer n > 1 there is ¢ finite field with p™ ele-
ments. Any finite field with p" elements is isomorphic to the splitting
fleld of z°" — & over Fy.

Proof. We first prove the existence part of the theorem. Assume that
the prime power ¢ is of the form p", where p is a prime. Consider
the polynomial r(z} = #7 — x as a polynomial with coefficients in the
field F,. Let F be a splitting field of r(z) over Fy.

Consider the set § = {a € F' | a? — a = 0}. Since the deriva-
tive '{x} is identically —1, it has no roots. Thus the derivative test
(Lemma A.5.2) shows that r{x) has no multiple roots, so |S| = ¢g. We
leave it to the reader to verify that S is a subfield of the field F. This
means S is a finite field with ¢ = p™ elements.

The unigueness part of the theorem follows from the fact that if
F' is a finite field with p™ elements, then I must have characteristic
p and so it must contain the field F, as a subfield. Hence F is the
splitting field of % — z over #,. By Theorem A.5.9, splitting fields
are unique up to field isomorphism. ]

The previous theorem shows that a finite field of a given order is
unique up to field isomorphism. Thus we speak of “the” finite field
of a particular order ¢, and we write F; to denote this field. Another
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common notation for a field of order ¢ is GF(g), where G stands for
Galois and F stands for field. This name is used in honor of Evariste
Galois {1811-1832), who in 1830 was the first person to seriously
study properties of general finite fields (fields with a prime power but
not a prime number of elements). We will use the notation F, in this
book.

Remark 1.2.6. We note that when p is a prime, the field F, is
the same as {isomorphic to) the ring Z, of integers modulo p. In
Exercise 1.9, the reader is asked to show that when m > 1 the finite
field Fym is not the same as the ring Z,= of integers modulo p™. The
reader should be sure to understand the difference between the two
commutative rings in the nonprime case, when one is a field and the
other is not.

Our next result gives a characterization of the subfield structure
of a finite field.

Theorem 1.2.7 (Subfield structure). Let F' be o finite field with p™
elements. Every subfield of F has p™ elements for some integer m

dividing n. Conversely, for any integer m dividing n there is a unique
subfield of F' of order p™.

Proof. A subfield K of the finite field I~ must have p™ distinct
elements for some positive integer m with m < n. By Lemma 1.2.1,
p™ must be a power of p™, sa m must divide n.

On the other hand, assume that m divides n. Then the polyno-
mial z#" ~1 —1 divides z#" 1 — 1, and thus z#" —z divides z¢" —z. It
follows that each root of zF™ — z is also a root of 27" — z. Hence the
field Fpn must contain a splitting field of the polynomial x?" — 2 over
F, and this splitting field must have exactly ™ distinct elements.
If the subfield was not unique, that is, if there were two such fields
contained in Fy», then their union would contain more than p™ roots
of the polynomial z#" — z in Fyn, which is impossible. 1

The next theorem is one of the most important results in finite
field theory. It will be central to the proofs of many later results in
this book.
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Figure 1.1. The subfields of Fss.

Theorem 1.2.8. The multiplicative group Iy of all nonzero elements
of the finite field F, s cyclic.

Proof. The case where ¢ = 2 is trivial so we assume that ¢ > 3.
Let g —1 = h > 1 have the prime factorization []._, pj*. For each
i consider the polynomial f;(z) = #*P — 1. This polynomial has
degree h/p; < h and thus has at most h/p; roots. Choose a;, an
element of F; which is not a root of f;, so that a; # 0. Let b; = a?/ Pil

for each i < ¢.

We will show the multiplicative order of ; is pi*. Clearly b7 -
al = 1. Thus the order of b; must divide p}* and so must be a power

of p;. Suppose &) " 1 for some k < r;. Then we have

o g —(k+1)
ri=t pip)t = (k1)
e = bS ' ). 1% =
ri—1
P . ; h/pi h/p:
This is impossible, because 5 = «/"* and o/ # 1. Thus the

order of b; is exactly p’.

Finally, let b = I—[Ll b;. Then by Lemma A.2.9 the order of b is
g — 1, because this is the least common multiple of the orders of the
elements b; for i = 1,... ¢ [
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An element 0 € F; which multiplicatively generates the group I}y
of all nonzero elements of the field I, is called a primitive element.

Remark 1.2.9. Let # be a primitive element of a finite field F'.
Then every nonzero element of F' can be written as a power of 4.
This representation makes multiplication of field elements very easy
to compute. Suppose for example that ¢ = #° and b = ¢"; then
ab = A6 = #1771t is difficult, however, to find the power s of @
such that #+68" = #°. Conversely, as we will see later in our discussion
of bases for finite fields, representations which make addition easy to
compute often have a more complex multiplicative structure.

Lemma 1.2.10. If g is a primitive element of Fy, then ¢* is a prim-
ttive element of Fy if and only if (t,q— 1) = 1.

The reader is asked to provide a proof of this lemma in Exercise 1.19.

It follows from Lemma 1.2.10 that there are ¢(g — 1) primitive
elements in F,, where ¢(n) denotes Euler’s function from elementary
number theory (see Appendix A for a discussion of this function}.

3. Extension fields

In this section, we explore further the concept of adding elements to
a given finite field to produce a larger finite field. We have seen one
application of this method already in the existence and uniqueness
theorem. Recall that the intersection of any collection of subfields of
a given field F is itself a subfield of F.

Definition 1.3.1 (Adjoining elements to a field). Let K be a subfield
of F and let M be a subset of F. Then K (M) denotes the intersection
of all subfields of F' containing K and M as subsets. This field is called
“K adjoin M.” When M is finite, say M = {61,...,6,}, we write
Ki{f,...,8) for K{M}.

Definition 1.3.2. Let K C F, 6§ € F, and p(#) = 0 where p(z) is a
monic polynomial in A[z]. Then p{x) is called the minimal polyno-
mial of # if § is not a roos of any nonzero polynomial in K [z] of lower
degree.

The following result provides a method by which one can obtain
irreducible polynomials.
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Proposition 1.3.3. The minimal polynomial of any element is irre-
ducible.

Proof. Suppose g{(x) € K[z] is a minimal polynomial which factors
as g1 (z)g2(x), and suppose g(f) = 0. Then g;(f)g2(f) = 0, so either
g1{0) = 0 or g2() = 0. Therefore either g1 = g and gz = 1, or else
g1 = 1 and gs = g, because g is the monic minimal polynomial of 8.
This shows that ¢ is irreducible. O

Definition 1.3.4. A field L is a finite extension of K if K C L and
L is a finite dimensional vector space over K. In this case we refer to
the dimension 1 of L over K as the degree of the extension, and we
write [L : K] = m.

Our next result indicates that a finite extension of a finite exten-
gion is again a finite extension.

Theorem 1.3.5 {Transitivity of degree). Let L be a finite exten-
sion of K and let M be a finite extension of L. Then M is a finite
extension of K. Moreover, we have [M : K| =M : L][L: K].

Proof. Let A = {ay,...,a,,} be a basis for L over K and B =
1B, ..., 8.} a basis for M over L. We now show that
{;8; |1 <i<m,1<j<n}

is a basis for M over K. Suppose there are scalars ¢; ; such that

Z C’é,jaiﬁj =10.

1<i<m,1<j<n
Because B is independent and «a; € L, it must be the case that
Z ci,jai =0

1<i<m

for each j. Because A is independent, we must have ¢; ; =0 for all 4

and 7. 0

Example 1.3.6. Let p be prime. In Figure 1.1, we see that Fs is
an extension of F}, of degree 3, and Fjis is an extension of £ of
degree 6. Moreover, F,1s is an extension of F,, of degree 18 =3 - 6.
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Example 1.3.7. For p a prime, let M = Fpo, L = Fj2, and K = F,.
Let 31,32 be a basis for L over K and a3, ap, @3 a basis for M over
L. Then the set {051, @102, 0281, aafBs, 03B, s} is a basis for M
over K.

Definition 1.3.8. Let K C F and let # ¢ F. Then 8 is said to be
algebraic over K if there is a nonzero polynomial p(z) € K[z] such
that p(6) = 0 in Flz]. An extension field is called algebraic if every
element of the extension field is algebraic over the base field.

Note that every algebraic element of an extension field has a
minimal polynomial over the base field. The degree of an algebraic
element of an extension field over a base field is defined to be the
degree of its minimal polynomial over the base field.

Theorem 1.3.9. Every finite extension of a finite field is algebraic.

Proof. Let L be a finite extension of K. We have shown that the
multiplicative group L* of L is cyclic; let & be a generator of L*. It
follows immediately that L = K(#). d

Our next result summarizes some important results for the actual
construction of finite fields.

Theorem 1.3.10. Let K be a subfield of F' with 8 € F algebraic of
degree n over K and let g{x) be the minimal polynomial of 8 over K.
Then:

(1) The field K(8) is isomorphic to the factor ring K [z|/(g(z}).

{2} The dimension of K(6) over K isn.

(3) The set {1,6,6% ...,8" 1} is a basis for K(8) over K.

{4) FEuvery element of K(8) i3 algebraic over K with degree di-

viding n.

Proof. To prove part 1, we use some ring theory. We first construct
the mapping 7: K[z] — K(8) defined by 7(f) = f{#). We leave it
to the reader to check that 7 is indeed a ring homomorphism. The
reader should also verify that the kernel of 7 is the set of polynomials
f € K[z] such that f(8) = 0, and that f(z) is in this kernel if and
only if f(z) is in the ideal generated by g. Let S be the range of the
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mapping 7. It is clear that S is isomorphic to the factor ring K|z]/(g),
which is a field since g(z) is irreducible. We have the sequence K C
S C K(6) of nested fields. Since § € §, we see that § = K(8}, and
the proof of part {1) is complete.

We now prove parts (2) and (3). From part (1), if « € § = K(8),
o can be written as o = f(#) for some f € K[z]. We can write f as
qg + r, where g and r are polynomials over K and the degree of r is
less than the degree of g (see Exercise A.18}. Let n be the degree of
g- A simple calculation shows that @ = f(#) = 7(#), so « is a linear
combination, with coefficients in K, of the elements 1,8,...,4"" 1.
But if @ satisfies ag + @18 + - - + @n—16™! = 0, then the polynomial
hMz) =ag+ a1z + -+ an_12" ! over K has ¢ as a root. Therefore
h{z) must be a multiple of g{x}, but this can happen only if A(z) =0
is the zero polynomial, that is, if all of the a; = 0. Hence the elements
1,8,...,6™ ! must be linearly independent over the field X, and thus
they form a basis of K(6) over K.

For part (4), first note that by part (2}, K(8) is a finite extension

field of K, so any a € K(f) is algebraic over K. Moreover, K (o) is a
subfield of K (). Letting 4 be the degree of & over K, we have

n=[K(6): K] = [K(8) : K(@)][K(a): K] = [K(6) : K (a)]d,
and hence we see that d divides n. 1

Corollary 1.3.11. Suppose that F' is an algebraic extension of K
and o € F. Then the minimal polynomial of a over K has degree
dividing [F': K].

Proof. Exercise 1.20 O

An extension obtained by adjoining a single element is called a
simple extension (see Exercises 1.6 and 1.10 for examples of such
extensions). The next theorem gives an important property of finite
fields that is not shared by infinite fields (there are finite extensions
of infinite fields that are not simple, as illustrated by Exercise 1.4}.

Theorem 1.3.12. Let F, be a finite field and let F. be o finite ex-
tension of Fy. Then F, is a simple algebraic extension of Fy, and for
any primitive element 8 of F,. the relation F, = F,(8) holds.
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Proof. Let 6 be a primitive element of F.. Choose a € F,(8), so
a=ag+af+- -+ anl™, where m is the degree of F,. over . This
sum is an element (recall that F, C F,.) of F,, so a € F,.. Now notice
that F,(@) contains 0, #, and all powers of §. Hence F, () contains
F.. EI

Corollary 1.3.13. For any prime power g and any integer n > 1
there is an irreducible polynomial of degree n over Fy.

Proof. Let p(z) be the minimal polynomial over F, of a primitive
element of Fi.. |

Example 1.3.14. Consider the polynomial p(z) = *+z +1 over the
field F3. Since p(z) does not have a root in Fy (recall that p(z) will
have a root a € F if and only if p(a) = 0 for some a € F; where the
arithmetic is computed modulo 2), p(x) is irreducible over F;. Let 8
be a root of p(x) so that 82 +8+1 =10, that is, 2 = —(6+1) =0 +1.
The field Fy = Fy: can be represented as the set {af + bla,b € Fy}.
We now give the addition and multiplication tables for the field Fje.

+ 0 1 0 8+1
0 0 1 g 841
1 1 0 é+1 @
8 8  #+1 0 1

g+1]|8+1 4 1 0
X 0 1 0 241
0 0 0 0 0
1 0 1 o #+1
& 0 9 #+1 i

41 0 8+1 1 f

We note that (alter simplification) (6 + 1}(6 + 1) = 8. We also
note that @ is a primitive element in the field Fy, so 8! =8, 02 =411,
and 8% = 1.

We now consider an example of a finite field with a larger non-

prime number of elements.

Example 1.3.15. Consider the field Fy, which is a vector space of
dimension 2 over Fy. Consider p(z) = 22 + z + 2 in F3lz]. This
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+ 0 1 2 6 6+1 8+2 20 20412042
0 0 1 2 ¢ P+1 9+2 20 20+1 2042
1 1 2 0 ¢+1 #+2 g 20412042 20
2 2 0 1 g+ 2 ? 6+1 2042 20 2041
] 0 0+1 0+2 20 20412042 O 1 2
g+1 | 8+1 642 6 20+120+2 20 1 2 0
G+2 | 642 ] g4+1 2042 20 20641 2 0 1
28 20 20+1 2042 O 1 2 0 #+1 6+2
20+1|280+1 20+2 20 1 2 0 4+1 642 9
20+2 2042 20 2041 2 v 1 842 8 8+1
X 0 1 2 @ 84+1 642 20 2041 2042
0 0 0 0 g 0 0 0 0 0
1 0 1 2 ¢ g4+1 642 20 2041 2042
2 0 2 1 20 204226041 8 6+2 0+1
g 0 6 20 2041 1 8+1 6+2 2042 2
f+1 0 0+1 26+2 1 f+2 20 2 g 20+1
642 0 0+2 204+1 64+1 20 2 20+2 1 L
20 0 20 7 &+ 2 2 20422041 8+1 1
20414% O 204+1 042 204+2 @ 1 g4+1 2 2¢
204241 0 2042 641 2 2041 8 1 20 6+2

Table 1.1. The addition and multiplication tables for Faz,
where 8 is a root of z2 +x + 2,

polynomial has no roots in Fy so it is irreducible over F3. Let # be a
root of p(z), s0 8 + 8+ 2 = 0. Hence 8% = —0 — 2 = 20 + 1 (recall
that we are working in characteristic 3).

The field Fj: is isomorphic to the set {af+b | a,b € F3} with its
natural operations. We can compute the addition and multiplication
tables by hand. For example, 26(6 +2) = 26 + 46 = 2(20+ 1) + 6 =
26 + 2. The complete addition and multiplication tables are shown in
Table 1.1.

We can use the multiplication table to check that the multiplica-
tive order of # in Fy is 8, which means that @ is a primitive element
of Fg.

Example 1.3.16. Let p(z) = 2 + 1 € F3[z]. It is straightforward
to check that p(z) has no roots in F3 and is thus irreducible over the
field 3. Let 8 be a root of p(z). We compute §2 = —1 and * = 1.
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Hence no root of p(z) can have order 8, that is, no root of p(z) can
be a primitive element. Nevertheless, the splitting field of p{x) over
F5 is Fy. It can be seen that # + 1 has order 8 and is thus a primitive
element for Fy over Fs.

Example 1.3.17. Consider ¢ = 2!°°, We can identify the elements
of F, with polynomials of the form ag + o100 + ast® + 4 agea®®,
where 0 < a; < 1 for each ¢ and where « is a root of an irreducible
polynomial of degree 100 over the field F5. Corollary 1.3.13 shows
that such an irreducible polynomial always exists. Theorem 1.6.4
below shows that there are exactly

100 _ 950 __ 520 | 510
1 O 5 — (2% 27" - 277 4 2°%)
irreducible polynomials of degree 100 over . We pose the following
question for readers with an interest in computation: how can one
locate an irreducible polynomial of degree 100 over F?

Let N, {n) be the number of monic irreducible polynomials of
degree n over Fy. In Theorem 1.6.4 below, we will prove that

) Ny(m) = =37 ()
d|n

Here p is the Mdébius function of elementary number theory defined
by the rule

1 ifm=1,
p(m) = ¢ (=1* if m = myma- - my, a product of distinct primes,
0 otherwise, i.e., if p° divides m for some prime p.

Let us lock at equation (1) above and show that it immediately
implies that Ny(n) > 1 for all prime powers g and all integers n > 1.
This follows from the following inequality:

Z,u n/d (nﬁqn—lﬁqn—27”_7q)>0-
d|n

Hansen and Mullen [22] give a list of primitive (and thus irre-
ducible)} polynomials of degree n over F, for each prime p < 97 with
p™ < 1050,
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The next lemmma shows that an irreducible polynomial over a
finite field is the minimal polynomial for each of its roots. We leave
the proof to the reader.

Lemma 1.3.18. Let f(z) be an irreducible polynomial over Fy and
let @ be a root of f(x). Then for any h(x) € Fylz], h{e) = 0 if and
only if flx) divides hiz).

This lemma shows that if f(z) is irreducible over Fy and f(a) =0,
then Fj, (o) contains all the roots of f(xz); thus F, () = Fy(3) when-
ever ov and /3 are roots of the same irreducible polynoinial over F.

Lemma 1.3.19. Let f{x) be an irreducible polynomial of degree m
over F,. Then f(2)|(z? — ) if and only if m|n.

Proof. First suppose m divides n, so Fym is a subfield of Fin. Let
a be a root of f(z) in its splitting field, so [Fy(a) : Fy] = m. Then
because m divides n, and Fy(a) = Fym, we have af” —a =0 in Fym.
This shows that every root of f(z) is a root of 29" — z, and therefore
f@)(@” —z).

For the converse, suppose f(z)|(z9 —x). Let & be a root of f(z).
Then we have the nested fields Fy © Fo(a) € Fgn. Now [Fyn : Fyl =n
and [F,(a) : F,] = m so we indeed have that m|n. O

The next theorem describes the roots of an irreducible polynomial
over a finite field.

Theorem 1.3.20. If f(x) is an irreducible polynomial of degree m
over Fy, then [ has o root o in Fym. Moreover, all of the roots of
f{z) are simple and are given by o, a4, P T S

Proof. Let a be aroot of f in its splitting field. Since [Fy(a) : Fy] =
m, the element « is in Fym. Now write f(z) = Y10, a;zt, where
a; € F,. Let 8 be any root of f(z). Then f(34) = Yo a;i{B9)" =
(Z;r;o aiﬁi)q = 0. Hence 37 is a root of f. Similarly ,B‘Ti is a root for
all i > 0.

Suppose that for 1 <1i < j < m we have ,B‘f = ﬁqj . Then raising
both sides to the qf"”'“j power we obtain ﬁqwm_”’ = 37" = . Hence 8
isaroot of 27" — 2, s0 mj{i+m —j). Thus ¢ and j are congruent
modulo m, a contradiction. O
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Definition 1.3.21. Let a € Fyn. Then @, a4, a?,....a?""" are the
conjugates of a over F,.

An element « € Fy= will have distinct conjugates if and only

if its minimal polynomial has degree m. If the minimal polynomial
of o has degree d (which must be a divisor of m), then the distinct
conjugates of o will be a, a9, ... ,aqdfl, each repeated exactly m/d
times. The proof of the next lemma follows immediately from these
observations.
Lemma 1.3.22, Let o € Fym and let the minimal polynomial of
o over Iy have degree d. Consider the set a,aq,aqz, . ..,af‘?m_1 of
conjugates of . The elements of this set are distinct if m = d;
otherwise each conjugate is repeated m/d times.

An automarphism of a field F is a bijection ¢: F — F such that

&( +y) = $(x)+ $(y) and $(ay) = p(a)é(y) for all 2,y ¢ F. Several
properties of automorphisms are described in Exercise 1.2.

Our next result describes the set of automorphisms of a finite
field.

Theorem 1.3.23. The distinct aulomorphisms of Fym over Fy are
given by the functions 0g,01,...,0m 1 where ;1 Fym — Fym 18 de-
fined by o5(c) = o for any o € Fye.

Proof. We have shown above that if 3 is a primitive element of F,
and ¢ # j € {0,1,...,m — 1}, then 87 + 37 . Hence if i = 3, then
a; 75 T

Now let o be any automorphism of Fy» over F, and let f(x)
be its minimal polynomial over F;. Direct calculation shows that o
sends 3 to another root of f(z) so we may assume that o(3) = ﬁqk.
Then ¢ = oy, because the action of an automorphism of a finite field

is completely determined by its action on a primitive element of the
field. O

The set of automorphisms of F, forms a group with the operation
of function composition (recall that if f and g are functions, the
composition g o f is computed for a point = as g(f(z))). This group
is called the Golois group of Fym over Iy, It is a cyclic group with
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generator o : @ — of, which is called the Frobenius automorphism.
The conjugates of o are thus the elements which o is sent to by
iterated applications of the Frobenius map.

Note that the subfields of Fi are exactly the fields of the form
Fyn where n|lm. The proper subgroups of the Galois group of Fym
over I, are exactly the groups generated by o where njm. More-
over, of(o) = o if and only if &« € Fyn. Thus there is a one-to-one
correspondence between the subfields of Fiy- and the subgroups of its
Galois group.

Remark 1.3.24 (Galois theory). In general, if L is an extension of
a field K, then the set of automorphisms of I that leave K fixed
pointwise is called the Galois group of L over K. The field of Galois
theory is the study of Galois groups, especially in the case when L
is a finite extension of K. We have shown that if K is finite and L
is a finite extension of K, then the Galois group is cyclic. When K
is infinite, the Galois group need not be cyclic, even if L is a finite
extension of K.

4. Trace and norm functions

For this section, let K = F,;, and £ = Fym.

Definition 1.4.1. For o € F', we define the #race of o over K as
Trpyl@) =a+af 4 +a8"

Equivalently, Trp,x(c) is the sum of the conjugates of a. If K is
the prime subfield of F, then the trace function is called the absoluie
trace.

Example 1.4.2. Let K = F; and F = Fps. Then Trp/x(o) =
ata’+attel. For K = Fyand F = Fig we have Trp/x (3) = 54+3%,

QOur first result shows that the range of the trace function is con-
tained in the base field. We will later show that the range equals the
base field. In fact, each element of the base field ocecurs as an element
in the range of the trace function equally often.

Lemma 1.4.3. For any a € F, Trp/x(a) € K.



16 1. Finite Fields

Proof. Let f(z) be the minimal polynomial over K of @ € F, and
assuree that the degree of f(z} is d. Recall [F' : K] = m. Let
g(z) = f(x)™¢ so g(z) is the characteristic polynomial of o (it is the
m/d-th power of the minimal polynomial of «). Then g{x} will have
the same roots as f{z); and these roots are {a,a?,... ,aqd_l} each
repeated m/d times. So Trp;x () is exactly the sum of the roots of
g(z). Therefore Trp/ g {cr} is the negative of the coefficient of 2™~ in
g(x}, because this coefficient is the negative of the sum of the roots
of the polynomial (see Exercise 1.34). O

We now give a second proof of Lemma 1.4.3. This proof illustrates
an important technique: to show that an element « of an extension
field F' is in a subfield K, it is enough to show that « is fixed by the
Frobenius automorphism of I over K. For example o € I, if and
only if o? = o and, more generally, o € F,u if and only if v ——

Second proof of Lemma 1.4.3, We wish to show that Trp/x(a) €
K for any o € F. We will show that Trg/x{a)9 = Trp/g(a), which
implies & € K becanse K is precisely the set of all elements fixed by
the Frobenius map. We compute

am—1

(Trp k() = ( Z gﬂé)q _ Tzz_; sy

i=0
Because @ € Fyn, we know that a¥ = a. Thus the terms in the
second sum are the same as terms in the sum Trp g (a) (but in a
different order}). 0

The trace function is of fundamental importance in the study of
finite field theory. The next theorem summarizes some of its proper-
ties.

Theorem 1.4.4. The trace function has the following properties:
(1) Trpyrla+B8) = Trp/x (@) + Trpypc(8) for o, B € F;
(2) Trpyglca) = cTrp/i(a) fora € F;
(3) The trace function is o linear map from F onto K;
(4) Trp/rla) =ma fora € K;
(5) Trp/g{a?) =Trp/r(a) fora € F.
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Proof. We will only prove part (3), which says that the trace function
maps onto the base field K. The other properties are easily verified,
Note that Trp/x(0) = 0; we will show that Trg/ g (o) # 0 for some
o € F. This implies that the range of the function Trp/y is all of F,
because the range of Trp/x is closed under scalar multiplication by
elements of Fj,.

To see that the range has a nonzero element, note that the kernel
of the trace function is exactly the set of roots of the polynomial
E?;El x? . This polynomial has degree ¢™ ! and so it has at most
g™ ! distinct roots, but the field F,= contains ¢™ elements. Therefore
some element of F- is not in the kernel of the trace function. O

The previous result shows that every element of the base field
s obtained at least once as the trace of an element in the extension
field. It can be shown that the trace function maps onto each element
in the base field equally often; we leave the proof of the next result
to Exercise 1.24.

Lemma 1.4.5. Forany o € K, we have {3 € F' | Trp/(8) = a}| =
m—1
gt

The next result provides an easy method to generate all of the
linear transformations from the extension field F to the subfield K.

Theorem 1.4.6. For 3 € K let Lg be the map o v Trp i (Ba).
Then Lg # L., if § # . Moreover, the linear transformations from
F to K are exactly the maps of the form Lz as 3 varies over the
elements of the field K.

Proof. Because Try/x is a linear map and the map o — Sa is linear,
it is easy to check that Lg is linear. Suppose F # v, s0 3 — v # 0.
Choose o such that Trp k(o) # 0 and let o = (5 —v)"*«. Then
Trp/ (8 — v)&') = Trp g (@) # 0, and hence Lg(a') # L (a).

A linear transformation is completely determined by its action on
a basis. In our case the field I has a basis of m elements over the
base field K. Thus there are at most ¢™ linear mappings from F- to
F,. But {Lg | 8 € Fyn} is a set of g™ distinct linear maps. Therefore
these are all of the linear maps. 0
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Another consequence of the previous theorem is that the map
~+ L. is a vector space isomorphism from F to Dual{F}), the set of
linear functions from F, to itself. We refer to Section 6 for a summary
of the important properties of Dual(V) for a finite-dimensional vector
space V.

We end our discussion of the trace function with the following
theorem.

Theorem 1.4.7 {Transitivity of the trace function), Suppose that
K C F CFE are nested finite fields. Then for anya € E,

Trg/xla) = Trp x(Treg rla)).

Proof. Let n = [E : Fl and m = [F : K| and let & € F be {ixed.
The following calculation proves the theorem:

m—1 ) m—1 i
(o) = 3 et = 3 (Sar)’
i=0 -
m—1n—1 mn—1
— Z Zaq1m+z _ z aq TI"E/K{O:). 0
i=0 j=0

The trace function is a linear functional from an extension field
to a subfield. We now turn our attention to a multiplicative analogue
of the trace function known as the norm function.

Definition 1.4.8. The norm of an element o € F over K is defined
to be

m—1 )

Normp, g (@) = aa? - " = H a¥ = "B/ em)

i=0
The norm of an element « is thus calculated by taking the product of
all of the conjugates of «v, just as the trace of o is obtained by taking
the sum of all of the conjugates of a.

Theorem 1.4.9. The norm function has the following properties:

(1) Normpx(af8) = Normp/g (o) Normp g (3) for o, 8 € F;
(2) The norm maps F onto K and F* onto K*;
(3) Normp, k(o) =™ ifa € K;
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(4) If K C F C E are nested finite fields, then

Normg g (a) = Normp/g (Normp gz (@) .

Proof. We prove only part (4), leaving the reader to check the re-
maining parts. We use the same notation as in the proof of Theo-
rem 1.4.7 for the transitivity of the trace function. We then have the
following caleulation:

Normp/ g (Normpg,p{a)) = Normy, g (0"~ D/ta" 1)
= (@D @ =D/ gD

= oldTT M (a1 = NormE/K(Oé)- U

5. Bases

We have seen that every finite field F' is a vector space over each of its
subfields, and thus has a vector space basis over each of its subfields.
We now discuss several different kinds of bases for finite fields, each
of which facilitates certain computations. When doing computations
in a finite field, there are several important operations: addition,
multiplication, computing powers, and finding inverses. With some
bases addition will be very easy, while multiplication will be more
involved. With other bases, one can do multiplications and calculate
inverses quickly, at the cost of more complicated addition.

Let € be a root of an irreducible polynomial of degree m over £.
We have already shown that {1,6,6%,...,6™ 7} is a basis of the field
£ym over Fyy. We now give a name to these kinds of bases.

Definition 1.5.1. Suppose # is a root of an irreducible polynomial
of degree m over F,. Then the basis {1,8,6%,...,6™ "} for Fyn aver
F, is called a polynomial basis.

When we use a polynomial basis for Fy» we can regard field
elements, which in reality are polynomials in # of degree at most
m — 1, as vectors. We can then add vectors in the usual way by
adding the corresponding coefficients. As was seen in Section 3, in
the multiplication table for the field Fj2, field multiplication is more
complicated. This is because we must gather terms with like powers
of the basis elements when we simplify a product.
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Definition 1.5.2. Suppose there is a # € Fym such that {#¢' | 0 <
i < m} is a basls for Fym over Fy. A basis of this form is known as a
normal basis of Fym over Fy.

For example, let oo = apf + 0187 + - - - + am—189""" . s0 that « is
represented by the vector (ag, ..., @m-1). Then, as the reader should
check, a? is represented by the shifted vector {gm-1,4do,...,2m—2).
Thus if we represent elements using normal basis, it is extremely easy
to raise a field element to the power ¢g. Addition will of course still
be easy to compute using a normal basis, while the multiplication of
field elements is still complicated. In Section 5.3, we will prove that
normal bases always exist for any extension field of .

5.1. Tests for independence. Consider Fi~ as a vector space over
Iy of dimension . We know there are many bases for this vector
space. Given B = {ay,...,m} € Fgm, how can we tell if B is a basis
for Fym over F,7 We begin with a test which determines whether a set
of elements of Fgn is independent over Iy, If this result is applied to
a set containing m elements, it can thus be used to determine whether
these elements form a basis of Fym over Fy, (see Lemma A.6.4). We
require the following notation.

Definition 1.5.3. Let {ay,..., o} be a set of m elements of F
viewed as a vector space over a subfield K. We define the discriminant
Ap/g as using a determinant:

Treg{ono) < Trerloiam)
Apiglar,.. . an) = : :

Tre/l{omar) - Trpig(omon)

The next two results use the discriminant to provide tests that
determine whether a given set of vectors forms a basis.

Theorem 1.5.4. If oq,... 0 € F, then the set {o1,...,an} s 0
basis for F over K if and only if Ap g (0, ..., 0m) is nonzero where
m is the dimension of F over K.

Proof. Assume first that aq,..., o, 18 a basis. We will show that the
discriminant is nonzero by showing that the columns of the matrix
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in the definition of the discriminant are linearly independent. Let
Ci,...,Cp denote the columns of Ap g (a1,...,0qm). Assume that
C1 4+ -+ emCy = 050 that for 1 < 5 < m we have,

1 Trpypc (o) + - 4 em Trpy ke (amay) = 0,

where each c; lies in the base field A, Let § = c1a1 + -+ + Cntm
so that Trp/ g (Ba) = 0 for all « in the extension field. This can only

happen if 3 = 0, which implies ¢y = -+ - = ¢ = 0.
For the converse, suppose Ap/g(1,...,0m) # 0 and suppose
creey + -+ - + emam = 0 for some ¢, ..., ¢y in the base field K. Then

for each «r;, 1 <7 <m,
CLa o =+ -+ + CrpQpay =0
for 1 < 7 < m. We now apply the trace function to obtain

Cq TrF/K(OthXj) + T Cm TrF/K(amaj) =0

for 1 < 7 < m. By assumption the rows 4, ..., of the matrix
in Ap/g(o,...,an) are linearly independent; since we have shown
c1Cy + - + cnCrn = 0, we must have e; = -++ = ¢, = 0. Hence the
elements vy, ..., oy, are linearly independent; by Lemma A.6.4, they
thus form a basis. [

The following result provides an alternative method to determine
whether a given set of elements forms a basis. We note that the
calculations for this method must be done in the extension field, not
in the base field. Working in the extension field may have a significant
computational cost. For example, if the base field is F, and the
extension field is Fhicoooeo, then computations in the base field may
be much faster than computations in the extension field.

Corollary 1.5.5. The set {ay,...,an} is ¢ basis for F over K if
and only if the determinant

al PR am
q
al . uoa a'?n
m—1 1
q g
al am

i8 nonzero.
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Proof. Let A be the m x m matrix whose entry in row ¢ and column
j is the element a?:_l. Let AT denote the transpose of the matrix A.
The reader should verify that the matrix product A7 A, is the m x m
matrix B whose entry in row ¢ and column j is Trp; g (a;ay). Taking
determinants we obtain

AF/K(ala'“aam) = IBI - ‘Alza

where | Al denotes the determinant of the square matrix A. The proof
of the corollary now foliows from Theorem 1.5.4. o

5.2. Dual bases. In this section, we show how dual bases for finite
fields fit into the general theory of dual spaces of finite dimensional
vector spaces.

Definition 1.5.6. Two ordered bases {a3,...,04} and {F,..., 8}
are complementary (or dual) if Trp) g (0 f;) = d;y, where &;; = 0 if
j#iand d;; =1if ¢ = 7. An ordered basis is self-dual if it is dual
with itself.

The definition of a dual basis just given becomes the same as
Definition A.6.8 once we identify each v € F with the linear functional
{(already defined above)

Ly:x— Trec{vz)
(that is, if we apply the vector space isomorphism from F to Dual(F)
that sends v to L,). This can be seen by examining the proof of the
next theorem.

Theorem 1.5.7. Euch basis of Fy= has o unique duel basis.

Proof. Let B = {a1,...,0m} be a basis for Fn over F,. Let
{a3,...,ak,} be the dual basis for B, as in Definition A.6.8. Thus af
is defined so that o (o) is 1 if ¢ = § and 0 otherwise.

By Theorem 1.4.6, for each «; there is a unique ; € Fim such
that o and L., are equal as linear functionals. Thus {L.,,..., L., .}
is a basis for Dual(Fy= }, by Theorem A.6.9.

It only remains to show that {¥1,...,%m} is a basis for Fi,. This
follows immediately from the fact that v +— L, is an isomorphism
from F to Dual(F.). O
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5.3. Existence of normal bases. In this section, we prove that
every finite field has a normal basis.

Theorem 1.5.8. For any m > 2, there is a normal basis for F-
over F,.

Before proving Theorem 1.5.8, we review some terminology from
linear algebra. Let T be a linear operator on a vector space V. We
say that a polynomial p(z) ennihilates T if p(T) = 0. The minimal
polynomial of T' is the unique monic polynomial of minimal degree
which annihilates T". The characteristic polynomial of T is the formal
determinant of xI —T. The degree of the characteristic polynomial
is always the dimension of the vector space V. We recall from linear
algebra that the minimal polynomial always divides the characteristic
polynomial.

A vector v is a eyclic vector for T i {T*(v) { k > 0} spans V.
An important result in linear algebra shows that & lincar operator
has a cyclic vector if and only if the characteristic polynomial of the
operator equals its minimal polynomial.

Proof of Theorem 1.5.8. We begin by showing that 2™ — 1 is the
minimal polynomial of the Frobenius map o. The Frobenius automor-
phism is annihilated by ™ — 1, because {¢™ ~ I)(a) = a? - a =0
for all ¢ € Fi-. Let p{x) be a polynomial of degree < m and consider
the operator

P(0) = am 1677 Fam 0™ 2 4 Fayo + ap.

Now the Frobenius automorphism and its powers form a collection
of m distinct automorphisms (including the identity automorphism).
By Artin’s lemma (Theorem A.4.3), there is some o € I such that
{p(e))(a) is nonzero. Thus p(z) does not annihilate the Frobenius
map. Thercfore ™ — 1 is the minimal pelynomial of the Frobenius
map o.

The characteristic polynomial of the Frobenius map is also of
degree m. Therefore ™ — 1 is also the characteristic polynomial of
the Frobenius map o, because the minimal polynomial must divide
the characteristic polynomial.
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This shows that the Frobenius map ¢ has a cyclic vector, say «.
It follows from the definitions that a cyclic vector for the Frobenius
map ¢ generates a normal basis; that is, if o € Fym, then {a,0{a) =
od,...,6™ a) = o?" '} spans Fp~ and so forms a basis of Fjm
over Fy since Fyn is a vector space of dimension m over F. O

Definition 1.5.9. For f{z) € Fy[z], let ®4(f) denote the number of
polynomials over F; which are of smaller degree than the degree of
f{z) and which are relatively prime to f.

A proof of the following result can be obtained along the lines
used in proving the corresponding properties for the Euler function ¢
from number theory; see also Lidl and Niederreiter [36, Lemma 3.69].

Lemma 1.5.10. The function ®, hos the following properties:
(1) ©4(f) =1 if the degree of f 4s 0,

(2) ®,(fg) = B (/)®y{g) if f and g are relatively prime;
(3) If f has degree n > 1, then

() =¢"(L—g7™) (1 —¢7™),

where {n;} are the degrees of the distinet monic irreducible
polynomials appearing in the unique factorization of f in
F,lz].

We note that the function ®, is analogous to, and in fact has
many of the same properties as, Euler’s function ¢ from elementary
number theory {see Definition A.1.2). For example, ®,(f¢) = ¢™ —
g™e=1) if f ig irreducible and has degree m over Fy. We refer to Lidl
and Niederreiter [36, Theorem 3.73] for a proot of the following result
which enumerates the normal bases of Fom over F,

Theorem 1.5.11. The number of elements in Fy that generate nor-
mal bases over Fy is ®4(x™ — 1). Because each normal basis has m
elements, this shows that there are exactly i@l)(:cm —1) normal bases
of Fgm over Fy.

Our next result illustrates one method to determine whether a
particular element o in an extension field generates a normal basis
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over the base field. The reader should keep in mind that the follow-
ing greatest common divisor computation must be performed in the
extension field Fy=, not in the base field F,. We refer to Lidl and
Niederreiter [36, Theorem 2.39] for a proof of this result.

Theorem 1.5.12. The set {a,0?,...,a7" '} is a normal basis for
Fym over F, if and only if the greatest common divisor of the polyno-
mials 7% — 1 and ax™ ' + %™ 2 4. £ o7 gs 1.

As the next theorem shows, not all finite fields have self-dual
normal bases. We showed in Section 5.3 that every finite extension
field has a normal basis over the base field; thus not all normal bases
are self-dual. This question was first resclved by Lempl and Wein-
berger [33].

Theorem 1.5.13. The field Fym has a self-dual normal basis over
Fy if and only if g is even and m is not o multiple of 4, or both ¢ and
m are odd.

5.4. Existence of primitive normal bases. It is natural to ask
whether the generator for a normal basis can be taken to be a primi-
tive element of the field.

Definition 1.5.14. A primitive normal basis for an extension field
Fym over F, is a basis of the form {c, of, aqz, ceny aqmq}, where a is
a primitive element in Fym.

The problem of proving that primitive normal bases exist is quite
difficult. In 1952, Carlitz [6] showed that Fpm has a primitive nor-
mal basis over F, for large m. In 1968, Davenport [10] showed that
for any m > 2 the extension field F~ has a primitive normal basis
over F, for p prime. Finally, in 1987 Lenstra and Schoof [34] showed
that primitive normal bases exist for every prime power ¢ and every
positive integer m > 2. We remark that these proofs used a tech-
nique involving the estimation of character sums. These estimates
are usually obtained for large values but when g and m are small,
they usually require the use of some machine computation to handle
the remaining cases not covered by the theoretical techniques.

Theorem 1.5.15 (Lenstra—Schoof). For any prime power g and any
integer m > 2 there is a primitive normal basis for Fym over F.
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Cohen and Huczynska [7] have given a proof of the primitive nor-
mal basis theorem which does not require any machine computation.
The problem of determining the number of primitive normal bases for
Fyn over Fy {as a function of ¢ and m) remains unsolved. All that
is currently known is that the number of primitive normal bases is at
least one!

6. Polynomials

In this section we discuss various properties related to polynomials
over finite fields. Our first result is that every function defined on
a finite field can be represented by a polynomial with coeflicients in
that field. This is an extremely important property of finite fields; in
fact, it characterizes finite fields in the sense that finite fields are the
only commutative rings with identity with the property that every
function defined on the ring can he realized by a polynomial with
coefficients in that ring. The next result tells us how to obtain a
polynomial representing a given function over a field.

Theorem 1.6.1 (Lagrange Interpolation Formula}. Let ag, ..., 0, be
n+1 distinct elements of @ field F and let by, ..., b, be n-+1 arbitrary
elements in F'. Then there is o unique f(z) € Flx} of degree at most
n such that fla;} =b; for 0 <i < n.

Proof. Such a polynomial is given by

For finite fields, we can do somewhat better.

Theorem 1.6.2. Every function f: F, — F, can be represented by
a unique pofynomial over F, of degree at most g — 1.

Proof. Let f be a function from I to itself. Definc a polynomial
Pi(x) over Fy by

Pi(z) = . f@)[1 - (2 — )]

aEFq
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Note that (@ — b)771 is equal to 1 if @ # b and equal to 0 if @ = b. A
straightforward calculation shows that Prla) = f(a) for all a € F,
so the polynomial Pr(x) indeed represents the function f(xz). (]

We leave as an exercise the proof of the following result which
extends the above theorem to functions with any number of variables.

Theorem 1.6.3. For any integer n 2 1, let f: FJ — Fy. Then the
function f can be represented by a unique polynomial Py, ..., zp)
over Fy of degree al most ¢ — 1 in each variable. Moreover, such a
polynomial is given by

Pf{l‘l,...,ﬂ?n)Z Z (f{al,...,an) H {1*(3’.‘1-0,2-)‘;_1})_

(@1, an)EFD 1<i<in

6.1. Counting irreducible polynomials. Recall from Section 3
that N,(n) denotes the number of distinct monic irreducible polyno-
mials of degree n > 1 over F,. In this section, we derive a formula
for Ny(n) using the technique from number theory known as Mébius
inversion.

Theorem 1.6.4. For any prime power g and any n > 1 we have
1 T
Ny(n) = = 3 u(d)g™*
d|r
where w is the Mébius function defined in Section 1.4.

The proof of this theorem will be postponed briefly. We first
prove a result about polynomials of the form z¢" — .

Theorem 1.6.5. Let T, be the set of all monic irreducible polyno-
mials over F, of degree dividing n. Then 2% — x factors in F,lz] as

Hf@T“ f

Proof. Let f(z) be a monic irreducible polynomial in F,[z]. Then
f(z) divides 29" — x if and only if the degree of f divides n. Now
29 —  has no mulsiple roots, because its derivative is —1. Hence
each monic irreducible polynomial f whose degree divides n occurs
once in the factorization of f. Therefore no power of f greater than
1 divides 29" — z. O
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We require the following theorem from number theory; a proof is
given by Lidl and Niederreiter [37, Theorem 3.24].

Theorem 1.6.6 (The additive Mobius inversion formula). Let h and
H be two functions from the positive integers to an additive Abelian
group G. Then

H(n) =Y _h(d)
djn
holds for every n if and only if
hn) = > n(5)H(d)

dln
holds for all n. In this case we also have
n
) = S HOH ()

for all n.

Proof of Theorem 1.6.4. By Theorem 1.6.5, we know that 29" -z
is the product of all the monic irreducible polynomials over F, of
degree dividing n. We want to enumerate the set of such polynomials.
By comparing degrees, we see that for every n,

¢" =) _dN,(d).
din

‘We now apply the Mobius inversion formula with &' = Z, H{n) = ¢",
and h(n) = nNy(n). This gives

nNg(n) =3 u(d)g™*,
din

and the theorem follows. O

We close this subsection by referring the reader to Exercise 1.37,
which asks for a formula for the number of monie irreducibles of degree
n over Fy (when (g,n) = 1) for which the coefficient of "1 is equal
0 a given value of a € F),.
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6.2. Orders of polynomials. The corder of an irreducible polyno-
mial 15 the multiplicative order of any of its roots in the splitting
field. In this section, we show the order of a polynomial is well de-
fined. We draw several conclusions about primitive polynomials, ul-
timately leading us to an algorithm for determining whether a given
polynomial is primitive. We begin with an easy lemma.

Lemma 1.6.7. Let f € Fy[z] have degree m > | with f(0) # 0. Then
there is an integer e such that f(x) divides z° — 1.

Proof. The factor ring F,[z]/(f) contains ¢" — 1 nonzero elements.
Moreover, the ¢™ classes ¢ + (f), 0 < j < ¢™ — 1, are nonzero. Thus
we must have 27 = 2® (mod f{z)) for some 0 < r < s < g™ —1. It
follows that z*~7 = 1 (mod f(z)) and the result follows. O

Definition 1.6.8. Let f{x) be an arbitrary polynomial in F,[z]. Let
g(z) be the unique polynomial such that g(0) # 0 and f(z) = z%g(z)
for some d. Then the order of f is the smallest positive integer e such
that g(z) divides z* — 1.

If f(x) is irreducible over F and f(0) # 0, then the order of f(x)
can be seen to be the multiplicative order of x in Flz]/(f(z)). We
know that if o is any root of f(x), then F(a) contains all the roots
of f(z). Tt follows from Theorem 1.3.20 and the characterization of
the automorphisms of a finite field that there is an automorphism of
F(o) taking any root of f(x) to any other root of f(x); thus any two
roots share the same multiplicative order. This proves the following
theorem.

Theorem 1.6.9. If f(z) € F,[z] is irreducible of degree m with
f(0y # 0, then the order of f is equal to the multiplicative order
of every root of f{z) in any extension field containing a root of f(z).

Our next result follows from the fact that the multiplicative group
of nonzero elements of F» has order g™ — 1.

Corollary 1.6.10. If f € F[z] is irreducible of degree m, then the
order of f divides g™ — 1.

Corollary 1.6.11. If f(x) is irreducible over F, and one root of f(z)
is primitive, then every root of f(x) is primitive.
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Proof. This follows from the fact that all roots of an irreducible
polynomial over Fi; have the same order. 1

In lght of the previous corollary, a polynomial ig defined to he
primitwe if any of its roots are primitive elements.

In our future work we will not require a formula for calculating
the order of an arbitrary polynomial over the field F;, and so we refer
the reader to Lidl and Niederreiter [36, Theorem 3.11] for such a
result,

Definition 1.6.12. For a polynomial f(z) = 3. ,a;z" € F,[z] of de-
gree n, the reciprocal polynomial f*(z) of f(z)is f*(x) = z"f(1/x) =
S paEth

We leave to Exercise 1.35 the proof of our next result.

Proposition 1.6.13. The reciprocal of an irreducible polynomial is
again irreducible and the reciprocal of a primitive polynomaal is again
primitive.

We close this section by stating two tests for determining whether
a polynomial is primitive. We refer to Lidl and Niederreiter [36,
Theorems 3.16 and 3.18] for proofs of these results.

Theorem 1.6.14. A polyromial f(x) of degree m over Fy is primitive
if and only if f is monic, f(0) # 0, and the order of f is g™ — 1.

The following theorem provides an algorithm which can be used
to determine if a given polynomial is a primitive polynomial over F.

Theorem 1.6.15. A monic polynomial f(x) of degree m over F, is
primitive if and only if the following hold:
(1) (—1)™f{0) is a primitive element in F,.

(2) The least r for which x7 is congruent to an element @ € F,
i5
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6.3. Linearized polynomials. Let L{z) = Z?:o ;27 | where a; €
Fyn. A polynomial of this form is called a linesrized polynomial
{another name is g-polynomial bocause the exponents are all powers
of g). These polynomials form an important class of polynomials over
finite fields because they induce linear functions from Fym to F,. We
state this fact in the next theorem.

Theorem 1.6.16. Let L{x) be a linearized polynomial. Then for all
o, B € Fpn and all c € F;:

(1) L{a+8) = L{a) + L(B),
(2) Lica) = clL(w).

Theorem 1.6.17. Let L(x) be a nonzero linearized polynomial over
Fpr and essume that the rools of L(z) lie in the field Fys, an extension
field of Fim.. Then each root of L(x) has the same multiplicity, which
is either 1, or a power of q. Moreover, the roots form a linear subspace
of the vector space F ..

Proof. From the previous theorem it is clear that the roots of L{z) =
ST o ouzd form asubspace of Fy. Tt is easy to check that L'(z) = ag
so, by the derivasive test, L{x) only has simple roots if ag # O.
Otherwise, for some k > 1 we would have ap = -+ = o, = 0, with

ay # 0. Then a computation shows that

n n . I i g®
i mk i m—1)k i—fk
Liz) = E ! = E a ¥ = (E o Mt ) .
i=k i=k

i=k

This polynomial is the ¢®-th power of a linearized polynomial
having only simple roots. Hence each oot of L{z) has multiplicity ¢*
and the proof is complete. (M|

We have already seen several examples of linearized polynomials.,
The Frobeniung automorphism x — z9 is one such example, and the
trace function provides another important example of a linearized
polynomial over Fi,. Properties of linearized polynomials can be used
to obtain a formula for the number of normal bases of an extension
field; in particular, in the proof of Theorem 1.5.11. They are also
uscful in the construction of sets of mutually orthogonal frequency
squares.
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6.4. Permutation polynomials. In this final section we briefly dis-
cuss permutation polynomials, a class of polynomials which are not
only interesting in their own right, but which also have various ap-
plications in combinatorics and cryptography. We begin by defining
a polynomial f(z) over Fy, to be a permutation polynomial if f(x)
induces an injective mapping on the field F,. Recall that a mapping
from a finite set to itself is injective if and only if it is surjective, so
we may also say that f(z) is a permutation polynomial if it induces
a bijective mapping from Fy onto F.

In Exercise 1.43, we ask the reader to show that if f(z) is a
permutation polynomial, then so is af(x +b) + cfor all a # 0,b,c €
Fy, and these are distinct. Thus, given one permutation polynomial,
we can easily generate ¢2(q — 1) others. Given a polynomial f{x}
over F,, how does one determine if f(z) is actually a permutation
polynomial on F,,? One could of course substitute the g field elements
into the polynomial and then check if the g image values f(a) are
distinct. This is not eflicient, however, if ¢ is very large. In fact
no efficient test, in terms of the coefficients of the polynomial, is
known. We state the following test; a proof is given by Lidl and
Niederreiter [37, Theorem 7.4].

Theorem 1.6.18 (Hermite—Dickson criterion). Let g = p™ where p is
a prime. Then a pelynomial f(z) over F, is a permutation polynomial
on Iy if and only if the following two conditions hold:

{1) fiz) has exactly one root in Fy.

{2) For each integer t with 1 <t < g — 2 and t Z 0 {mod p),
the reduced polynomial (f(z))* (mod #7 — x) has degree at
most g — 2.

We obtain a simple corollary by applying the Hermite—Dickson
criterion (with ¢t = (¢—1}/d) to a polynomial of degree d > 1 over Fj.

Corollary 1.6.19. There is no permulation polynomial of degree d >
1 ower Iy if d divides ¢ — 1.

Theorem 1.6.20. The polynomial " induces a permutation of Fy
if and only if (n,g—1)=1.
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Proof. The proof follows from the fact that the multiplicative group
of I, is ecyclic; see Lemma A.4.2. 0

In Exercise 1.48 we ask the reader to provide a different proof of
this theorerm.

We briefly consider another important class of permutation poly-
nomials. If ¢ € Iy and n > 2 is an integer, we define the Dickson
polynomiel of degree n and parameter a by

LA n i ¢ n—2
Dn(a:,a):zn_i o)y

i=0

For n = (0 we define Dy(r,a) = 2 and similarly we define D1 (z,a) =
x. Note that D,{z,0) = z" for n > 1, so Dickson polynomials
may be viewed as generalizations of the cyclic, or power polynomial,
z". These polynomials satisfy a second order recurrence, namely
Dypio(z,0) = 2Dy 1 {x,a) —aD,(z,a)} for n > 0; see Lidl et al. [35, p.
10]. Dickson polynomials were first studied by L. E. Dickson in his
PhD thesis in 1896. If one works over the field of complex numbers,
Dickson polynomials are related to the classical Chebyshev polyno-

mials, as explaned by Lidl et al. [35, p. Y].

Dickson polynomials satisfy a functional equation which can be
obtained as follows. Let © = y+a/y for some y € F2. We can always
find such a y by solving the quadratic equation y? —zy +ae = 0, which
must have a solution in the field Fi». Using Waring’s formula (see
Lidl and Niederreiter [37, Theorem 1.76] lor a statement and proof of
the formula), we obtain

o/ no{n—1 - ;
ul +ug = Z ( ) )(—ulug)l(ul + aug)™ 2,

—o mn—1 i

so ul +u¥ = D, (u; + ug, uiug). If we substitute ui = y, uz = a/y,
and =z = y + a/y, we obtain the extremely useful functional equation
for Dickson polynomials:
a'”,
Dz, a) =y" + o
We refer to Lid] et al. [35] for further details and basic properties
of Dickson polynomials.
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The following result provides a class of permutation polynomials
over Fy;, where we note that, as long as a € Fj is nonzero, the value of
a does not enter into the problem of determining whether the Dick-
son polynomial Dy, (z,a) permutes the field F,. For nonzero a € F,,
whether or not the polynomial D, (z, @) induces a permutation poly-
nomial on /v is determined only by the greatest common divisor of
n and ¢° — L.

Theorem 1.6.21. For any nonzero a € Iy, the Dickson polynomiol
D, (z,a) is @ permutation polynomial on Fy if and only if (n,¢> —1) =
1.

Proof. For sufficiency, assume that Dy, (b,a) = Da{e,a) for some
b,c € F,. Then there are 3,~ € F. with d+a/B=band~v+a/y=rc
Using the functional equation implies after some simplification, that

(’8‘”, _ ,Yn)(ﬁn,yn _ a?’L) — 0.

Since {n,q* — 1) = 1, 2" is a permutation polynomial on F, and
hence if 3" = ~*, then 5 = 7 so that b = ¢. Also if 3" = o™,
then @ = a/+ and it again follows that b = ¢. Hence D, (z,a) is a
permutation polynomial on Fj.

Conversely, assume that (n,¢? — 1) = d > 1. If d is even, then
¢ is odd and n is even so the Dickson polynomial contains only even
powers of . Hence for nonzero ¢ € Fy, Dy(¢,a) = D,(—c,a), and
thus the polynomial D,{x, a) is not a permutation polynomial of F,.
Thus we may assume that d is odd, which means that there is an odd
prime v dividing d and hence also dividing n. Since r is a prime, it
either divides g — 1 or ¢+ 1.

If r divides g — 1, then the equation " = 1 has r solutions in Fj.
Because r > 3, there is an element b € I, with b+ 1 or a with 6" =1
so b = 1. The functional equation implies that

Db+ abil,a) =14+a"=D,(1+a,a).
Ub+ab ! =1+a, thenb =1 or b = a, which is a contradiction.
Hence Dy, (x, a) docs not permute the field F,.

If r divides g+ 1, choase v € F;'z so that 9! = a. The equation
z" = 1 has r solutions in Fz so there is a § € Fjp with 57 = 1 and



6. Polynomials 35

B #£1and §# av 2. Hence 8771 = 1 and 37 = 1 so once again from
the functional cquation we have

Dn(')" + a'}’_la a) = D'ﬂL(fB’Y + '1(/87)?15 (I).

In addition, v +ay~! =v++7 and By +a(By) "t = v+ (37 € F,.
If Bv+a(By) > =~v+ay !, then 3= 1o0r 3 = ay * a contradiction.
Hence Dy, {x,a) 1s not a permutation polynomial on Fy. ]

Dickson polynomials are intimately tied to a famous conjecture
posed by Schur [57] in 1923. We first note from Exercise 1.45 and
Exercise 1.46 that when considered modulo a prime p, the polyno-
mial z" and the Dickson polynomial D, (x,«) permute the ficld £,
for infinitely many primes p. Are there other polynomials with inte-
ger coeflicients which permute ¥, for infinitely many primes p? The
answer is yes, because polynomials of the form az™ + b, where a is a
nonzerc integer, will be permntation polynomials for infinitely many
primes p. Are there still other such integral polynomials or classes of
integral polynomials?

Conjecture 1.6.22 (Schur 1923). If f(z) is a polynomial with inte-
ger coeflicients which is a permutation polynomial of F,, (when con-
sidered modulo p) for infinitely many primes p, then f(z) must be a
composition of binomials ax™ 4+ b and Dickson polynomials.

This conjecture remained open until 1970; see Lidl et al. [35] for
a prootf of the Schur Conjecture along with discussion of many other
algebraic and number theoretic properties of Dickson polynomials.

We close this section by alluding to the fact that Dickson polyno-
mials have applications in several areas of cornbinatorics. Exercise 2.8
illustrates how they can be used to construct complete sets of MOLS
of any prime power order ¢. For p a prime, if is conjectured that all
complete sets of p— 1 MOLS of order p are isomorphic, and thus cne
could argue that all such sets of p — 1 MOLS come from aset of p— 1
MOLS obtained by using Dickson polynomials. A class of translation
planes, called j-planes, and several infinite families of flocks of a cone
in the projective space P((3, q), as well as certain translation planes,
can be constructed from Dickson polynomials of small degrees. Dick-
son polynomials have also been used to construct ovals in projective
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planes PG(2,q), with ¢ = 2%, and e odd. Ovals can be constructed
from certain power permutation polynomials ™. We refer the reader
to Lidl et al. [35] for more details.

We also briefly mention several applications of power and Dickson
polynomials to cryptography. If one wants to quickly encipher mes-
sages, one can simply choose a value of n with (n,q — 1) = 1, so that
the polynomial ™ is a permutation polynomial over #,. Then one can
encrypt the message m by calculating m™. This can be easily deci-
phered by using the inverse polynomial z* where kn = 1 (mod ¢—1).
One can also use a Dickson analogue of this method of encryption.
There is a Dickson polynomial analogue of the RSA cryptosystem
for the secure transmission of information; and there is a Dickson
Diffie-Hellman scheme for the exchange of keys; see Chapter 4 for
details.

7. Notes

There are numerous books dealing with theoretical as well as applied
aspects of finite fields. Without question, the standard reference on
the subject is by Lidl and Niederreiter [37]. This is a very compre-
hensive and thorough survey of the theory and applications of finite
fields. This volume also contains an incredibly complete list of refer-
ences through 1983. A second book by Lidl and Niederreiter [36] is a
very readable and shortened textbook version of [37]. It also contains
a chapter on eryptographic applications of finite fields. We also re-
fer to Jungnickel [25] for a very readable textbook which approaches
many of the finite field topics from a computational point of view.
Small [59] and Wan [65] provide very readable texts dealing with var-
ious aspects, especially theoretical aspects, of finite fields. The book
by Lidl, Mullen, and Turnwald [35! provides a summary of numerous
algebraic and number theoretic properties of Dickson polynomials.

The following books discuss additional topics related to finite
fields. Menezes [43] provides a treatment of applications of finite fields
to elliptic curves and elliptic curve cryptosystems. Hachenberger [21]
provides an extensive discussion of topics related to, and extensions
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of, normal bases over finite fields. Finally, we mention the very com-
prehensive monograph by Shparlinski [58] that deals with many the-
oretical as well as computational topics related to finite fields. This
monograph also contains a collection of 3075 references.

8. Exercises

1.1. For a commutative ring B of characteristic p, show that
(01 + - +as)f =ab +-- +al
for every n > 1 and a;,4as,...,a5 € K.

1.2, Let F' be a field (not necessarily finite) and let ¢ be an au-
tomorphism of F. Show that ¢(0) = 0 and ¢(1) = 1. Show that
¢z = (¢p{z)) ' forallz c F.

1.3. Fix a field F. Let S be the set of expressions of the form
flz,y)/g(z,y) where f and g are palynomials aver F using the vari-
ables r and y and g(x,y) is not the zero polynomial. If a suitable
equivalence relation F is placed on §, then 5/F will be a field under
the ordinary operations of fraction addition and multiplication. State
this equivalence relation and prove that S/F is a field. This field is
called the field of rational functions in the variables ¢,y over F and
is often denoted F'(z,y). Note that even if F is finite, the field of
rational functions in one or more variables over F' will be infinite.

1.4. Let p be a prime number and let F,(z, y) be the field of fractions
in the variables z,y over F, (see Exercise 1.3 for a definition of this
field). Let K = Fj(zP,y") be the smallest subfield of Fj(x,y) con-
taining F, and the elements z¥ and y?. Show that [F,(z,y) : K| = p?,
and that o € K for any a € Fy{x,y). Use these facts to prove that
F,(z,y) is a finite extension of K that is not a simple extension.

1.5. Let f(z) = 2™ + a,_12™" "t + - -+ + ap be a monic polynomial of
degree n over a field F'. Consider the following algorithm. If ag = 0,
calculate f(x)/z. If ap # 0, let § with 1 < § < n be the smallest value
so that a; # 0. In this case calculate
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Show that for any polynomial f(x} over F' of degree n = 1, upon it-
eration of this algorithm, we always obtain a sequence of polynomials
that ends at 1. Hint: Use induction on the degree n.

This problem 1s analogous to the Collatz 3n 4 1 problem for the
integers where one divides by 2 if the number n is even and calculates
3n +1if n is odd. The famous, and still unsolved, 3n + 1 conjecture
postulates that starting with any positive integer n, this algorithm
will produce a sequence of positive integers which always ends at 1.

Finite Fields.

1.6. Construct the addition and multiplication tables for Fplz]/(«® +
22 + ). Determine whether or not this ring is a field.

1.7. Let f(z) = 15z + 22", Evaluate f(4) in Fy and F,.
1.8. Construct a field with 8 elements.

1.9. If p is a prime, then the fleld F, is the same (isomorphic) as
the ring Z, of integers modulo p. Explain why the field F} is not the
same as the ring Z4. In fact, it turns out that if wn > 1, the field
Fpm # Zpm, the ring of integers module p™. Explain why.

1.10. Assume that Fys = Fy(a), where o + o® + 1 = 0. Compute
o in Fys as a polynomial of degree less than 6 in a. Find the unique
n < 64 such that o =o'+ a+ 1.

1.11. Determine the multiplicative order of each nonzero clement
in F17.

1.12. Construct a field of order 16 and determine the multiplicative
order of each nonzero element in the field.

1.13. Determine the number of functions mapping F; to itself. How
many of these functions can be represented by a polynomial over F,?
By representing a function f(x) by a polynomial Py(z) over Fy, we
mean, as in Theorem 1.6.2, that P{e) = f(a) for all a € F,.

1.14., Show that any polynomial of degree two over Fy splits over Fiz
into a product of two linear polynomials.

1.15. Show that the sum of all elements of a finite field is 0, except
for the field 3.
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1.16. Prove that {f{z))? = f(x9) for f(x) € F,[x]. The property
described in this exercise is of great use in finite field calculations.

1.17. Let F be a finite extension of K = F, and let o« = 37 — 3
for some € F. Prove that @ = 79 — v with v € F if and only if
g—vekK.

1.18. Construct the field Fig by viewing it as a vector space of di-
mension four over the base field Fy. Similarly, construct the same
field by viewing it as a vector space of dimension two over the base
field Fy. We know since up to isomorphism there is only one field of
a given prime power order, that these two constructions must lead to
the same field F15. Can you construct an isomorphism between these
two fields?

1.19. Prove Lemma 1.2.10.
1.20. Prove Corollary 1.3.11.

1.21. Let K be an extension of F and let o € K have minimal
polynomial p(x) € Flz]. If g{x) € F(x) is such that ¢(a) =0 in F,
then p(z) g(z).

Trace and Norm.

1.22. Let F be a finite extension of the finite fleld K of characteristic
p. Prove that Trp/K(apﬂ) = (T‘I‘F/K(a))pn foralla € F and n > 1.

1.23. Prove that the dual basis of a normal basis of Fy» over Fy is
again a normal basis of Fim over F.

1.24. Prove Lemuma 1.4.5 which states that the trace function maps
Fym onto each element of the base field equally often. What can be
said about the distribution of values for the norm function?

1.25. Let I’ be a finite extension of K = F,. Prove that for o € I
we have N/ k(o) = 1 if and only if ¢ = 391 for some 3 € F*.

Bases.

1.26. Show that if one takes into account the order of the elements,
then the total number of distinct bases of Fym over Fy is given by

(@" =)™ —q)-- (g™ — ¢ ).
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1.27. Construct a self-dual basis of Fhe over Fy.

1.28. Prove that if {o1,...,am} is a basis of F' = Fym over K = F,
then Trp/ g (a;) # O for at least one ¢, 1 <i < m.

1.29. Prove that there exists a normal basis {e,a9,... ,aqmml} of
F = Fpn over K = Fy with Trp g (o) = 1.

1.30. Show that there is a self-dual normal basis of Fy over Iy, but
no self-dual normal basis of Fig over F.

Polynomials.

1.31. Let Fy be a finite field of characteristic p. Prove that f ¢ Fi[z]
satisfies f'(z) = 0 if and only if f(z} = g(z®)} for some polynomial
9(a) in Fyla].

1.32. Show that f(r) = z* + =z + 1 € Fy[z] is irreducible over Fj.
Then construct the addition and multiplication tables for the simple
extension Fy(#), where 0 is a root of f.

1.33. In the previous exercise the reader was asked to show that
p(z) = z* + z + 1 is irreducible over F». Is this polynomial prim-
itive over F3? That is, does p(z) have a root which generates the
multiplicative group FJ; of all nonzero elements in the field Fo.?

1.34. Let g{z) be a monic polynomial with degree m over a field F
such that ¢ has m distinct roots. Show that the coefficient of 2™ % in
g(z) is the sum of all k!(}) ordered products of k roots of g multiplied
by (—1)*.

1.35. Prove that the reciprocal polynomial of an irreducible polyno-
mial f over Iy is again irreducible over Fy. Prove that the reciprocal
of a primitive polynomial is also primitive.

1.36. Show that if f is a self-reciprocal polynomial of degree m
(f(z) = f*(z) = 2™ f(1/z)) in Fylz] of degree m > 1, then m must
be even.

1.37. If (n,p) = 1, show that the number of monic irreducible poly-
nomials of degree n over Fj; which have the trace coefficient eqgual to
any fixed value of a € F is given by

1
il d n/d’
e d%ﬂ pid)g
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where p is the characteristic of F,.

Linearized polynomials.

1.38. Prove Theorem 1.6.16, which states that linearized polynomials
indeed give linear mappings.

1.39. Show that a linearized polynomial L(z) is a permutation poly-
nomial on the field F,- if and only if L{z) only has the root 0 in Fy-.

1.40. Let L(z} = E:;é asx?" be alinearized polynomial over the field
Fyr. Tt can be shown, as for example in Lidl and Niederreiter [37, pp.
361-362], that L(x) induces a permutation on the fleld Fy if and

only if the determinant of the matrix Ay = (agj_j) where 0 < 4,7 <
r — 1 and the subscript i — 7 is calculated modulo r, is nonzero. In
fact, the set of all such permutation polynomials forms a group under
composition of functions modulo (¢ — ), called the Betti-Mathieu
group, which is isomorphic to the general linear group GL(r, F,) of
all nonsingular r x r matrices over Iy under matrix multiplication.

(i) Show that the polynomial z? induces a permutation on the
field Fyr for any r > 1.

(ii} If ¢ = 3°, show that the polynomial % — az is a permutation
polynomial on the field F, if and only if ¢ is not a square, that is, if
a#b? for any b € F,.

Permutation polynomials.

1.41. For ¢ = 2, 3, and 3, construct all permutation polynomials on
the field F, of degree no higher than g — 1.

1.42. Show that there are g! permutations on the field F,. Show
that these permutations form a group under functional composition
modulo 9 — z, and that this group is isomorphic to the symmetric
group Sg.

1.43. If f(r) is a permutation polynomial over the field Fy, show
that for all @ # 0,b,¢ € F, the polynomial af(x + b) + ¢ is also a
permutation polynomial over F,. Show that the set {af(z + b) + ¢ |
a,b,c € Fy,a # 0} contains ¢%(g — 1) polynomials.
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1.44. For an odd prime p, show that the polynomial z#=2 + p#—3 4
-+ ++22 42741 represents the permutation which consists of the trans-
position (01} that interchanges 0 and 1 and fixes all other elements
of the field F,.

1.45. Show that the polynomial " permutes the field F}, for infinitely
many primes p if and only if n is odd. Hint: use Dirichlet’s theorem
which states that if (a,b) = 1, then the artthmetic progression az + b
contains infinitely many primes as z ranges over the positive integers.
Note that the special case of Dirichlet’s theorem when ¢ = 2 and
b =1 is Enuclid’s theorem that there are infinitely many primes.

1.46. Show that the Dickson polynomial D, (z,a}, with a # 0, per-
mutes the field F,, for infinitely many primes p if and ouly if (n,6) = 1.
Hint: use Dirichlet’s theorem from Fxercise 1.45.

1.47. For a polynomial f(x) over F,, let the walue set V¢ of f(z) be
defined by Vy = {f(a) | @ € F;}. Show that the value set Vi~ of the
polynomial z" over F, has cardinality |Ver| =1+ {g — 1)/{n,q — 1},
where {a,b) denotes the greatest common divisor of the integers a
and b.

1.48. Use the preceding exercise to show z" induces a permutation
polynomial on Fj, if and only if {n,g -~ 1) = 1.
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Chapter 2

Combinatorics

1. Introduction

Combinatorics is a very large, fascinating, and extremely active area
of mathematics which, in addition, has numerous practical applica-
tions. In this chapter, we briefly discuss several area of combinatorics
in which finite fields play major roles. These include sets of mutu-
ally orthogonal latin squares, affine and projective planes, balanced
incomplete block designs, and Hadamard matrices. We begin with a
discussion of latin squares and sets of orthogonal latin squares. We
will later see that latin squares are closely related to finite geometries
and algebraic codes, and have applications in cryptography.

2. Latin squares

Latin squares have fascinated individuals for centuries. Because they
have so many interesting properties, useful applications, and are asso-
ciated with many open questions, they are still being actively studied
today.

Definition 2.2.1. A latin square of order n is an n x n matrix con-
taining n distinct symbols (usually denoted by 0,1,...,n — 1) such
that each row and column of the matrix contains each symbol exactly
once.
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Example 2.2.2, A latin square of order 6:
1 3 4

U L3 B = D
OO e WD
= O Ot R Wk
[N e e e
[V ST o e B ) §
= L = OO

While the reader can no doubt convince himself or herself that
there is indeed at least one latin square of order n for any positive
integer n, the following gives a more formal proof of this fact.

Theorem 2.2.3. There is a latin square of order n for each n > 1.

Proof. The addition table of the additive group Z/nZ of integers
modulo n is always a latin square of order n. In fact, the Cayley
table of any finite group of order n is a latin square of order n. [

Although the latin squares constructed in Theorem 2.2.3 are the
Cayley tables of groups, not every latin square is the Cayley table of
a group; see Exercise 2.13.

A central problem in the theory of latin squares is to determine
how many latin squares of each size exist.

Definition 2.2.4. Let L,, denote the number of distinct latin squares
of order n.

How can we determine the value of L,7 We begin by restricting
our focus to reduced latin squares. A latin square of order = is said to
be reduced if its first row and first column are in the standard order
0,1,...,n~1.

Definition 2.2.5. Let [,, denote the number of distinct reduced latin
squares of order n.

The value of I,, can be computed by hand for small values of n,
and by computer for slightly larger values of n, but the value of [, is
unknown for n > 12. As of the writing of this book, no formula for
I, has been found and it seems possible that none exists. The next
theorem shows that we can compute i, from [, and wvice versa.
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Theorem 2.2.6. For anyn > 2, L, =nl(n — 1)!,.

Proof. Given a latin square of order n, it is easy to see that, by inter-
changing (permuting) the n columns, we can obtain n! latin squares
of order n and each such square will be different. Similarly, by inter-
changing the last n — 1 rows, we can obtain (n — 1)! distinct squares
of order n. Moreover, each of these squares will be different from
those obtained by the column permutations. Thus if we begin with a
reduced latin square of order n, we can generate a total of nl(rn — 1}!
distinct latin squares of order n, exactly one of which is reduced.
Since there are [, distinct reduced latin squares of order n, we can
construct n!(n — 1)!,, distinct latin squares of order n. Moreover, by
permuting the rows and columns of any latin square, we can obtain a
unique reduced latin square of order n, and so the result follows. O

The values of I, for 2 < n < 7 are shown in the following table.
In Exercise 2.1, we ask the reader to compute the first three values
by hand, and the last three values by machine.

n 2 3 4 5 6 7
. 1 1 4 56 9408 16,942,080
The values of I and [1; have recently been determined using

large amounts of machine computation. Using these values, we ob-
tain:

Lyp =101 9. 7,580,721, 483, 160, 132, 811, 489, 280,
Ly =111-10!-5,363,937,773,277, 371,298,119, 673, 540, 771, 840.

See McKay and Wanless [42] for a discussion of the computational
effort used to determine the value {1, and verify the values of [, for
n < 10.

2.1. Sets of orthogonal latin squares. Given two latin squares
of the same size, we can superimpose them to create a single square
of ordered pairs, as shown below.
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012 012 (00 (1,1 (22
120 201 (12 (20 (01
2 01 120 (21 {02 (10

Square 1 Square 2 Superimposed square

Notice that each of the nine possible ordered pairs based on three
symbols appears exactly once in the superimposed square. Extending
this concept to latin squares of any order gives the following definition.

Definition 2.2.7. Two latin squares of order n are orthogonal if
when the squares are superimposed each of the n? ordered pairs of
symbols appears exactly once. A collection {L,,...,L,} of # > 2 latin
squares of the same order is said to be mutually orthogonal if every
pair of distinct squares in the collection is orthogonal.

Let N(n) denote the size of the largest collection of mutually
orthogonal latin squares (MOLS) of order n. We remind the reader
that N(n) denotes the maximum number of MOLS of order n that
exist, not the maximum number that we have been able to construct.
The remainder of this section will present several results about the
function N(n).

Theorem 2.2.8. N(n)<n—1 for anyn > 2.

Proof. It is easy to see that the n symbols in a latin square L of
order n can be renamed in any way without affecting the square’s
orthogonality with a second latin square, say M, also of order n,
Thus in any set of orthogonal squares of order n, we may assume
that the first row is in the standard order 0,1,,...,n - 1. The reader
is asked to prove these statements in Exercise 2.24.

Now consider the elements that oceur in the second row, first col-
umn of each of the N(n) orthogonal latin squares of order n. Clearly
the symbol in this cell in any of the N(n) squares cannot be 0 or that
square would not be latin. Since the symbols in this cell must be
different in each square to preserve orthogonality, there are at most
n — 1 possibilities. Thus we have that N(n) < n— 1, and our proof is
complete. 0

Definition 2.2.9. A set of t > 2 MOLS of order n is called a complete
setift=n— 1.
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‘We now show that if ¢ is a prime power, then we can use the
finite field F,; to easily construct a complete set of ¢ — I MOLS of
order g. The famous Indian mathematical statistician Raj Chandra
Bose (1901-1987) [3] is usually credited with the following important
result, although he was preceded by E. H. Moore [46].

Theorem 2.2.10 (Bose 1938). If g is a prime power, then N{g) =
g—1.

Proof. Let F} = {a1,...,a, 1}. Label the rows and columns of a
g ¥ g matrix with the elements of F,, listed in any order. For each
1 <47 < g—1 we construct a latin square L; as follows. Let fi(x,y)
be the linear polynomial f;(z,y) = a;x + y. In the location (z,y) in
the square L; place the field element f;{x,y). It is straightforward to
verify that each polynomial fi{z,y) generates a latin square of order
g, and that any two latin squares so generated are distinct.

We now show that the latin squares are mutually orthogonal, that
is, that any two distinct squares in the set are orthogonal. Let 1 <
i < j<g—1L1 and let (by,by) be any pair of elements of F,. Showing
that this pair occurs when the squares L; and L; are superimposed
is equivalent to showing that the system of equations

al,:ﬂl'+y = bl,
a;r+y= by

has a solution {x,y) over F,. This follows from basic linear algebra,
because if a; # a4, then the coeflicient matrix

a; 1
ﬂ,j 1
is invertible, and hence the pair of equations has a unique solution. O

Example 2.2.11. For ¢ = 3, using the polynomials = + ¢ and 2z +
y over Fj, we obtain the pair of MOLS of order 3 given near the
beginning of this section.

We now present a larger example using the finite field F}, which
is generated over , by an element « satisfying o +a +1 = 0. From
the three polynomials = + y, ar + ¥, and a’z + y, we obtain the
following complete set Ky, Ky, K3 of three MOLS of order four:
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b
L]
)

0 1 o « 0 1 o 0 l o «

1 0 o « a o 0 1 & o 1 0

a a® 0 1 2 a1 0 1 0 o o

o2 o 1 0 1 0 & o a af 0 1
Kl K2 K3

We have shown that if n is a prime power, then N{n) = n—1. The
problem of determining N (n} for other n is much more difficult and
for most n remains an open question. An important conjecture is that
only prime power values of n have the property that N(n) =n — 1.

Conjecture 2.2.12 (The Prime Power Conjecture). For n > 2,
Nin)=n—11f and only if n is a prime power.

After Fermat’s Last Theorem was proved in 1994, the first au-
thor proposed [48] the Prime Power Conjecture as a candidate for the
“Next Fermat Problem.” We now provide some motivation and evi-
dence for attaching such a lofty title to the Prime Power Conjecture.
We begin with a famous conjecture of Leonard Euler.

Conjecture 2.2.13 (Euler 1782). If n is an odd multiple of 2, that
is, if n = 2(2k + 1) with k£ > 0, then N{n) = 1.

Euler’s conjecture is true for & = 0 and k& = 1 (that is, for n = 2
and n = 6), but is now known to be false for all other values of k;
see Theorem 2.2.19. Fuler was unable to prove even the case when
k = 1, and may have been led to his conjecture through unsuccess-
ful attempts to construct 2 MOLS of orders 6,10,14,.... We now
provide a brief history related to Euler’s conjecture. A partial posi-
tive result was obtained over one hundred years later; see Dénes and
Keedwell [11, p. 140].

Theorem 2.2.14 (Tarry 1899-1900). N{6) =1.

We remind the reader that in 1900, without the aid of a com-
puter, Tarry’s result was no small feat; recall that the number of
latin squares of order 6 is given by Lg = 6!-5!-9,408 = 8 - 10%. An el
egant modern proof {using properties from coding and design theory)
that N (6) = 1 is due to Stinson [61].
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For latin squares of order 6, one can get very close to having a
pair of MOLS. Exercisc 2.3 asks you to construct two latin squarcs of
order 6 which, when superimposed, yield a total of 34 distinct ordered
pairs.

Thinking that Euler’s conjecture was likely true (after all, it was
true in the first two cases, and Euler had such a fabulous ability to
compute) H. F. MacNeish [40] was led to generalize Euler’s conjecture
in the following way.

Conjecture 2.2.15 {MacNeish 1922). Suppose n = ¢ - - ¢, Where
the numbers ¢; are powers of distinct primes and ¢; < -+ < ¢gr. Then
Niny=q - 1.

MacNeish’s conjecture is of course true at n = 6 and all prime
powers. It however suffered a negative fate in 1959 when Parker [52]
constructed a counterexample.

Counterexample 2.2.16 (Parker 1959). N(21) > 4.

Parker used finite fields to build the necessary orthogonal latin
squares. In particular, he showed that if m > 3 is a Mersenne prime
{a prime of the form 2™ — 1) or if m + 1 1s a Fermat prime (a prime
of the form 22" + 1) greater than 3, then there is a set of m MOLS of
order m?+m+ 1. Using the Fermat prime m-+1 = 2% + 1, Parker was
able to construct 4 MOLS of order 21, thus showing that MacNeish’s
conjecture is false. We refer to Dénes and Keedwell [11, pp. 394-396]
for further details.

The same year, Euler’s conjecture suffered the same fate.

Counterexample 2.2.17 (Bose and Shrikhande 1959). N(22} > 2.

Bose and Shrikhande also used finite fields in their disproof of the
Euler conjecture. In particular, they showed that if ¢ = 3 (mod 4) is
a prime power, then there exists a pair of MOLS of order (3¢ —1)/2.
Taking ¢ = 7 yields a pair of MOLS of order 10; see Dénes and
Keedwell {11, pp. 397-400] for details of this order 10 construction.

These two results of course showed that both the Euler and Mac-
Neish conjectures were false. It turned out that Euler’s conjecture was
incorrect at other values as well, including n = 10; see Parker {53].
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Counterexample 2.2,18 (Parker 1960). N{10) > 2. The following
table shows two superitnposed MOLS of order 10.

12 23 31 46 59 64 78 87 95 0,0
74 42 27 09 61 58 85 90 33 16
51 14 45 67 08 80 93 22 76 3.9
0,7 71 1,0 38 83 92 44 56 29 65
35 57 7,3 82 94 1,1 06 49 60 28
20 05 52 91 77 36 1,9 63 48 84
43 30 04 55 26 79 62 18 81 97
89 08 66 24 32 03 50 75 L7 41
68 86 99 7,0 15 47 21 34 02 53
96 69 88 1,3 40 25 37 01 54 72

The foitowing result of Bose, Shrikhande, and Parker [4] is the
most fundamental result in the theory of MOLS since the 1938 proof
by Bose that N{n) = n — 1 if n is a prime power. The authors not
only proved that a pair of MOLS exists for every n # 2,6, they, in
passing, show that Euler’s conjecture is false for every value of &k > 2.
To be fair to Euler, he of course did not have at his disposal any
computer or he might have made a conjecture along the lines of the
Prime Power Conjecture. In some sense, the Prime Power Conjecture
is more likely to be true since one is trying to show the nonexistence
of a highly complex structure {(a set of n —1 MOLS of order n} rather
than the nonexistence of a significantly simpler structure (a pair of
MOLS of order n).

Theorem 2.2.19 (Bose, Shrikhande, Parker 1960). N{n) > 2 for all
n except 2 and 6.

After n = 6, the next nonprime power case oceurs when n = 10.
The value of N{10) remaing unknown to this day; in fact, we are very
far from knowing the exact value of N(10}. There was a lot of interest
in whether N(10) = 9, and a lot of mathematical effort was put into
this problem using various ideas from coding theory (sec Chapter 3)
and projective planes {(see Section 3 of this chapter). Progress on the
value of N{10) remained very elusive until a result by Lam, Thiel,
and Swiercz [29] in 1989.

Theorem 2.2.20 (Lam, Thiel, Swiercz 1989). N(10) < 9.
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This result required sophisticated mathematical tools from alge-
braic coding theory together with over 2000 hours of computation
on a Cray supercomputer! Nevertheless, it is still not known today
whether there exist three MOLS of order 10. It is known that if
n >4 and N{n) < n—1, then N(n) < n — 4 (see Dénes and Keed-
well [11, p. 385]}. It follows that 2 < N{10} < 6.

To prove Theorem 2.2.24 below, MacNeish invented a method of
combining latin squares of sizes ny and ns into a larger latin square
of order nynz. We now describe this construction, which is closely
related to the Kronecker product of matrices, in detail. Let H = (h;;)
be a latin square of order ny and let K = (k,;) be a latin square of
order ny. We will form an ning X niny matrix, denoted H @ K. We
replace each element h;; of H with the ny x ng matrix whose entries
{a.s} are ordered pairs: a,; = (R, kry).

As an illustration of this construction with ny = 2 and ne = 3,
let H and K be the following squares.

= O
b = O

S -
NOI\J;——‘
—

H

The Kronecker product construction yields the following 6 x 6
square H ® K whose elements are ordered pairs {for simplicity, we
have omitted the parentheses and commas).

00 01 02 10 11 12
61 02 00 11 12 10
02 00 01 12 10 11
10 11 12 00 01 02
11 12 10 01 02 00
12 10 11 02 00 01

Hg K
Of course one can easily replace the ordered pairs 00, 01,02, 10,11, 12

by the integers 0, 1,2, 3,4, 5 to obtain a latin square of order 6 whose
elements are the usual symbols.
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Example 2.2.21. Figure 2.1 below illustrates the Kronecker prod-
uct construction for a pair Hy @ K1, Ha ® Ky of MOLS of order 12
constructed from the pair of MOLS of order 3 given at the beginning
of this section, and the first two MOLS K; and K of order 4 given
above. We replace the symbols 0, 1, o, o? in the MOLS of order 4
by 0, 1, 2, 3, respectively.

The next two lemmas show that the construction we have just
demonstrated can be used to construct sets of MOLS. The proofs are
left as exercises for the reader.

Lemma 2.2.22. If H and K are lotin squares of orders ny and no,
then H @ K s a latin square of order ning.

Proof. Exercise 2.25. 0

Lemma 2.2.23. If Hy and Ha are orthogonal latin squares of order
ny and Ky and Ky are orthogonel latin squares of order no, then
H, ® K, and Hy @ K3 are orthogonal latin squares of order nina.

Proof., Exercise 2.26. 0

Except for positive integers of the form n = 2(2k+ 1), we can use
this construction to vield a pair of MOLS of order n. (The problem
with n = 2(2k + 1) is that N(2) = 1.) It thus follows that for 3/4 of
the positive integers n, we have N(n) > 2.

Theorem 2.2.24 (MacNeish 1922). Let n = q1--- g, where ¢; ore
distinct prime powers and g1 < -+- < q.. Then N(n) = ¢ — 1.

Proof. If g is a prime power greater than 2, then N(g) > 2. By using
the construction outlined above, we can construct a set of MOLS of
order n from collections of MOLS of orders ¢; for 1 < i < r. a

If n is a prime power, then the lower bound in MacNeish’s theo-
rem is exact. It was known to MacNeish that N(6) =2 -1 =1, so
the bound is optimal in that case as well.

As indicated earlier, N(21) > 2. A more recent conjecture is that
Conjecture 2.2.15 is almost completely wrong. This rather daring
conjecture was raised by Laywine, Mullen, and Whittle [32]. It says
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a1 92 01 92 60 1 2 3 1 2 3
1 0 3 2 2 3 01
1 2 0 2 01
2 0 1 1 2 0 2 3 0 1 3 2 1t 0
3 2 1 0 1 0 3 2
H Hy K, ¢
00 01 02 03 10 1r 12 13 20 21 22 23
01 00 03 02 11 10 13 12 21 20 23 22
02 03 00 01 12 13 10 11 22 23 20 21
03 02 01 00 13 12 11 10 23 22 21 20
10 11 12 13 20 21 22 23 00 01 02 03
11 10 13 12 21 20 23 22 01 00 03 02
12 13 10 11 22 23 20 21 02 03 00 01
13 12 11 10 23 22 21 20 03 02 01 00
20 21 22 23 00 01 02 03 10 11 12 13
21 20 23 22 01 00 03 02 11 10 13 12
22 23 20 21 02 63 00 01 12 13 10 11
23 22 21 20 03 02 01 00 13 12 11 10
Hi @K
o0 01 02 03 10 11 12 13 20 21 22 23
0L 00 03 02 11 10 13 12 21 20 23 22
02 03 00 01 12 13 10 11 22 23 20 21
03 02 01 Q0 13 12 11 10 23 22 21 20
20 21 22 23 00 01 02 03 10 11 12 13
21 20 23 22 01 00 03 02 11 10 13 12
22 23 20 21 02 03 00 01 12 13 10 11
23 22 21 20 03 02 01 QO 13 12 11 10
10 11 12 13 20 21 22 23 00 01 02 03
11 10 13 12 21 20 23 22 41 00 03 02
12 13 10 11 22 23 20 21 02 03 00 01
13 12 11 10 23 22 21 20 03 02 01 Q0
H, ® Ky

Figure 2.1, Kronecker products of swo pairs of MOLS of
orders 3 and 4
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c 1 2 3 4 5 6 7 8 9
w|- - 1 2 3 4 1 6 7 8
w2 10 5 12 3 4 15 16 3 18
2004 5 3 22 7 24 4 26 5 28
3004 30 31 5 4 5 8 36 4 5
407 40 5 42 5 6 4 46 8 48
50(6 5 5 52 5 6 7 7 5 58
604 60 5 6 63 7 5 66 5 ©
w6 Y0 7T T2 5 T 6 6 6 78
BO|9 80 8 8 6 6 6 6 7 88
%06 ¥ 6 6 6 6 T 9 6 8

Table 2.1. Known lower bounds on N{n)

that, like the Euler conjecture, the MacNeish conjecture is always
wrong except at n = 6 and prime powers.

Conjecture 2.2.25 (Laywine, Mullen, Whittle 1995). Except for
prime powers n and n = 6, the MacNeish conjecture is always false.
That is, if n = g1 ---qr, where ¢¢ < --- < g, are prime powers of
distinct primes, then N{n} > ¢; — 1.

The first unresolved case of MacNeish's conjecture occurs for the
value n = 63.

Theorem 2.2.26 (Bruck and Ryser 1949). For infinitely many n,
Nin) < n—1. In particular, if n is congruent to 1 or 2 modulo 4
and the squarefree part of n contains a prime of the form 4k +3, then
Nin)<n-—1.

The proof uses Lagrange’s four squares theorem, which states
that every positive integer n can be written in the form n = a? +
as + a2 + a2 for integers a,. It is interesting to see how Lagrange’s
number theoretic result is so useful in the result of Bruck and Ryser [5]
concerning sets of MOLS.

Table 2.1 gives lower bounds for N(n} for n < 100. To read

the table, locate the desired tens digit on the left hand side and the
desired ones digit on the top.
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For much more latin square information, we refer the reader to the
monographs by Colbourn and Dinitz 8], Dénes and Keedwell [11,12],
and Laywine and Mullen [31]. In particular, we refer to Colbourn and
Iinitz [8] for a table of lower bounds for N(n) for n < 10, 000.

2.2. Sudoku squares. There has been a tremendous amount of re-
cent worldwide activity related to Sudoku puzzles, which are, in our
terminology, partial latin squares of order 9. The goal of the puzzle
is to complete the partial latin square of order 9 to a full latin square
of order 9 with the additional property that each of the nine 3 x 3
subsquares contains each of the nine numbers exactly once. Such
squares are called Sudoku squares, which translates to “the number
that is alone.” Sudoku puzzles are published in many newspapers and
the squares are being sold commercially. The following partial latin
square 1s an example of a Sudoku puzzle:

6 1 4 5
813 516
2 1
& 4 7 6
6 3
7 9 1 4
5 2
7|2 619
4 5 8 7

We say that a latin square of order ¢? is a Sudoku square if cach
of the g x g subsquares contains each number exactly once. An or-
dinary Sudoku puzzle is thus a partial latin square of order 9 with
the property that it has a unigue extension to a full Sudoku square
of order 9.

We now provide a simple construction for Sudoku squares of order
g*, where q is any prime power. In addition, our construction yields
a Sudoku square with the additional property that each of the rows
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and each of the columns, of each of the g%, ¢ x g subsquares, has the
same constant sum. We might call such a square a row/column magic
Sudoku square.

As indicated in Exercise 2.11, if one has a pair L; and Ly of
orthogonal diagonal latin squares of order n, then the square M =
nlq+ Lo is a magic square of order n, where the square M is computed
using arithmetic modulo n?. Here a magic square of order n is an nxn
array based on the numbers 0,1, ..., n—1 with the property that each
row, each column, and both of the main diagonals, have a constant
sum, called the magic sum.

For ¢ a prime power, consider a pair of polynomials a1z + ¢ and
azx + y where a; # ay € F; and neither o) nor ay is zero. These
polynomials yield a pair of orthogonal latin squares of order g, and
in fact they will both be diagonal if neither a; or as is 1 or —1. Now
form a row/column magic square of order g as illustrated above.

Given a row/column magic square M of order n, one can con-
struct a Sudoku magic square of order n? by the following construc-
tion. First note that any rearrangement of the rows or columns of a
row/column magic square yields another row/column magic square.
Place the magic square M in the top left corner of the big square
and then cyclically shift the rows down by one, and place the new
row /coluinn magic square next to the right, then shift again and place
a third row/column magic square, continuing until one has placed
n — 1 shifted row/column magic squares across the top of the big
square. Similarly shift the columns of M to fill in the left side of the
square, and then shift each of those squares across to the right as
above.

As an illustration consider the case where ¢ = 3 and the resulting

orthogonal latin squares of order 3 are as at the beginning of Sec-
tion 2.1. The resulting nonmagic square of order 3 is shown below.

- oo
SO
L o= oo

Using the above construction, we obtain the following Sudoku
latin square of order 9 with the property that each of the nine 3 x
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3 subsquares is a row/column magic square of order 3 with magic
sum 12.

N ||| D W=
— e | W O D I DN
B RS | W | =S e

ol w|lo|o]

DW= O | O] =D
L e B L I B = R R B e o

o | fjw| |~ o]l |o | o
W=~ o] ®mie

A Ol = =10

A Sudcku puzzle can be obtained by removing a small number
of elements from such a square. But how many elements can be
removed? Little research seems to have been conducted on this inter-
esting question. It is known that there are Sudoku puzzles with 77
cells filled but which do not have a unique extension to a latin square
of order 9, and a Sudoku puzzle with 17 cells fitled in that does have
a unique extension, but nnknown whether there is a Sudoku puzzle
with only 16 cells filled that has exactly one extension to a Sudoku
square. The reader may enjoy trying to construct examples of such
squares.

2.3. Generalizations of latin squares. We close this section with
a brief discussion of several possible generalizations of latin squares.
First, one could retain two dimensions and allow repetitions of ele-
ments in each row and column. Such squares are known as frequency
squares, and will shortly be defined more formally. Proceeding in a
different. direction, one could keep the number of symbols fixed at n
and extend the dimension from two (as in a square) to an arbitrary
dimension d > 2. This leads to the study of sets of orthogonal (latin)
hypercubes of order n and dimension d. Finally, to generalize further,
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one could study d-dimensional frequency hypercubes, or even hyper-
rectangles, based on m symbals, as in Suchower [62]. We will not go
into those details here, however.

Definition 2.2.27. Let n = Am. An F(n; A} frequency square is an
7 X 7 matrix consisting of rn distinet symbols such that cach symbol
appears exactly A times in cach row and column.

Example 2.2,28. An F(4;2

—

frequency square:

0 ¢t 01
1 o1 0
1 61 0
01 01

Definition 2.2.29. Two F'(n; A} frequency squares are orthogonal if
when they are superimposed each of the m? pairs appears exactly A2
times, and a set of F(n; A} frequency squares is orthogonal if cvery
pair of distinct squares in the set is orthogonal.

We note in passing that an F(n:1) frequency square is simply
a latin square of order n, and a sct of F(n;1} mutually orthogonal
frequency squares (MOFS) is a set of MOLS of order n.

The following resuit provides an upper bound on the maximum
possible number of MOFS; a proof is given by Laywine and Mullen [31,
Theorem 4.1]. We note that when n = m (50 the frequency squares
are latin squares of order n), this upper bound redunces to n — 1, the
maximum possible number of MOLS of order n.

Theorem 2.2.30. Let n = Am. The size of any orthogonal set of
F(n; ) frequency squares is less than or equal to (n — 1)%/(m —1).

In Exercise 2.14, we ask the reader to construct a complete set
of F(¢*;¢t~1) MOFS for a prime power ¢ and positive integer 7; see
Mullen [47] for such a construction using finite fields.

Definition 2.2.31. A d-dimensional hypercube of order n is an n x
-+~ % n array containing n% cells with the property that when any of
the d coordinates is fixed, each of the n symbols occurs exactly n?—2

times in the resulting subarray.
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We note that when d = 2, d-dimensional hypercubces are sim-
ply latin squares, and sets of such orthogonal hypercubes are scts of
MOLS. Laywine, Mullen, and Whittle [32] show that the maximum
number of such mutually orthogonal hypercubes of dimension d > 2
and order n is bounded above by (n® — 1)/(n — 1) — d; when d = 2
this specializes to (n® —1)/{n — 1) — 2 which yields the bound n — 1
for the cardinality of a maximal {complete) set of MOLS of order n.

In Exercise 2.15, we ask the reader to construct a complete set
of d-dimensional hypercubes of order ¢, where d > 2 and g is a prime
power. We also mention that a complete sel of d-dimensional hyper-
cubes can be used in the next section to construct the affine geometry
AG{d. q) of dimension d over the field F.

We close this section by mentioning that Laywine et al. [32] give
a recursive method for constructing sets of orthogonal cubes or, more
generally, sets of orthogonal hypercubes, from sets of MOLS.

3. Affine and projective planes

In this section, we briefly develop the theory of some finite analogues
of Euclidean geometry. Not only are these objects interesting in their
own right, they also provide very natural ways to construct the block
designs that will be studied in the next section.

As geometric abjects, projective and affine planes have beon stud-
ied for many years. Higher dimensional projective and affine geome-
tries over finite fields have also been studied widely. As of today,
no guch finite objects are known to exist except in the case of prime
powers g when of course we alse have a finite field I}, containing ¢
elements.

We will define these objects shortly, but throughout this section,
and as is standard, we will denote a projective plane and affine planc
defined over the ficld F,, respectively, by PG(2, F,) and AG(2, F,).
More generally, PG(m, F,) will denote a projective space over F, of
dimension m > 2. and AG(m, F,) will denote an affine space over F,,
also of dimension m > 2.

Definition 2.3.1. A projective plane consists of a set of points, a set
of lines, and an incidence relation that determines which points lie
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on which lines. The incidence relation needs to satisfy the following
three axioms:

(1) Every two lines intersect in exactly one point.
(2) Every two points have a unique line incident with them.

(3) There are at least four points of which no three are on the
same line.

Note that the definition of a projective plane has a duality be-
tween lines and points; if the words lines and points are exchanged in
the definition, then the first two axioms are preserved. Moreover, the
dual version of the third axiom is a consequence of the original three
axioms. Thus any proof about lines can be turned into a proof about
points, and wice versa.

Theorem 2.3.2. Let II be a finite projective plane. There is an
integer m > 2 such that every point (line) is incident with m+1 lines
(points, respectively). Moreover, II has ezactly m? + m + 1 points
(lines, respectively).

We omit a proof of the above result, which can be located in
many combinatorics books. The important point for us is that the
positive integer m in the theorem is called the order of the projective
plane. As alluded to above, there is no known case where the order
m of a projective plane is not a prime power, and as a result of
Conjecture 2.2.12 and Theorem 2.3.8 below, it is conjectured that
nonprime power order projective planes do not exist.

Definition 2.3.3. An aoffine plane consists of a set P of points, a
set L of lines, and an incidence relation that determines which points
lie onn which lines. The incidence relation must satisfy the following
three axioms:

(1) Every pair of points determines a unique line.

(2) For every point p not on a line [ there is a unique line m
incident with p and not intersecting .

{3) There are four points, no three of which are on the same
line.
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The next result illustrates how to construct an afline plane over
any field K. We leave the proof to the reader as Exercise 2.27.

Theorem 2.3.4. Let K be a field. Let P = {(x,y) | 2,y € K}. Lel
L be the set of graphs of linear functions over K: each L € L is of
the form L = {(z,y) | ax +by+c = 0} for some a,b,c € K. Then the
pair (P, L), with its natural incidence structure, is an affine plane,
denoted by AG{2, K).

We now illustrate a method to extend an affine plane to a projec-
tive plane. To do this, we will add a “line at infinity,” L.,. Begin by
renaming each point (z,y) in AG(2, K) as (z,y,1). Hence, for e # 0
and b # 0, view az + by + cz = () as the equation of a line. Put
Ly ={(1,0,00} U {(z,1,0) | z € K} so that we can view this line as
having z = 0. Let P’ be the union of P and the points on L. Let
L£'=LU{Lx}

Theorem 2.3.5. If (P,L) is an affine plane over a field K, then
(P', L)) is a projective plane over K.

Corollary 2.3.6. If q is a prime power, then PG(2, Fy) and AG(2, Fy)
both exist.

Example 2.3.7. We will now explicitly construct AG(2, F3). We
have the set of equations {ax + by = ¢ | a,b,¢ € Fs,(a,b) # (0,0}
along with the following incidence relation:

Line FEquation  Points

Ly z4+y=1 101 011
Ly r=1 101 111
Ls y=1 011 111
Ly zr+y=0 001 111
Ly =0 011 001
Lg y=20 101 001

Here, as usual, we omit the parentheses and commas in ordered tuples.
For example, 101 denotes (1,0,1). It is easy to check that this is a
model of the affine plane AG(2, F3) axioms {see Exercise 2.18).

We now add the points 100, 010, and 110 to form a projective
plane PG(2, Fy), often called the Fano plane, illustrated in Figure 2.3.
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Line Equation Points

Ly x+y+2z=0 101 011 110
Ly x+z=10 101 111 010
Ly y+z=10 011 111 100
Ly x+y=0 001 111 110
Ls x=0 011 001 010
Lg y=20 101 001 100
L+ z=10 160 010 110

The following result is one of the most fundamental results in
combinatorics, providing an equivalence between afline planes and
complete sets of MOLS.

Theorem 2.3.8 (Bose 1938). There are n — 1 mutually orthogonal
latin squares of order n if and only if there is an affine plane AG{(2,n)
(or, equivalently, there is a projective plane PG(2,n)).

Proof. We first assume that we have a complete set M4, ..., M, _1
of n — 1 MOLS of order n, and construct the affine plane AG(2,n).
Let P denote the set of all pairs (z,y) with 0 < z,y < n — 1. Thus
the points of AG(2,n) will consist of ordered pairs.

For each d with 1 < d<n—1, and for cach cwith0 < e < n—1,
form the line

L-Etd) = {(xy)“"fd(lay) = C},

where My(z, y) = ¢ means that symbol ¢ occurs in pesition (z, y) of
the dth latin square My in the set of MOLS. This gives n lines for each
of the n—1 latin squares, and hence it gives a total of (n—1)n = n?—n
lines.

‘We now form 2n more lines from the canonical row and column
squares (which are not latin squares). The row square R consisting of
rows with constant values z = ¢, gives n lines: for 0 < ¢ < n—1 the
line R. consists of all pairs with first coordinate c. Similarly consider
the column square ' defined by y = ¢; this generates an additional
n lines C,, each consisting of those points with second coordinate c,
where 0 < e < n—1.
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We have now formed a total of n2 — n + 2n = n? + n lines. We
leave it to the reader to verify that the set

(L9 Roy oo R0, Coyee o Gy [ 1<d<n—1,0<c<n 1}

forms an affine plane AG(2,n}).

Conversely, given the affine plane AG(2,n)}, we now construct
n—1 MOLS of order n. We first label the n + 1 parallel classes of the
affine plane as 0,1, ..., n, and then label the n lines in each class as
0,1,...,n — 1. The next step is to use two parallel classes to set up
a correspondence between the elements in the affine plane, and the
nuwmbers O0,1,...,n — 1 which will be uged to build the set of n — 1
MOLS of order n. We can obtain such a correspondence as follows:
assign the ordered pair (4. §) to the nnique point of intersection of line
1 of class (0 and line j of class n.

In order to consiruct the n—1 squares of order n, we place symbol
s in cell (i, j) of the square L. if line s of class e contains the ordered
pair (i,7). The latin property of the squares follows since any line
in one of the classes 1,2,...,n — 1 intersects anv line from classes
0 or n in exactly one point. Similarly, any linc from class ¢ with
e=1,2,...,n—1 intersects any line from class f, / # ¢,0,n in exactly
one point. Hence the latin squares L. and ¢ are indeed orthogonal.
This completes the proof. O

We now illustrate the ahove connection between sets of MOLS
and affine planes in the case when ¢ = 2. Consider the squares

01 o0 ., 01
M=y g0 B=y 10 C= g 4

so that M is a latin square of order 2, and R and C are the canonical
row and column sqguares of order 2. Form the lines

Li=00 11 Ry =00 01 Cy =00 10

Ly =01 10 R, =10 11 =01 00
It is easily checked that {L§, L1, Ro, B1,Cy, €1} gives an affine plane
AG(2,2).

Conversely, consider the following affine plane AG(2, 3).
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Class Line Points Class Line Points
0 0 057 2 0 012
0 1 138 2 1 345
0 2 246 2 2 678
1 0 048 3 0 036
1 1 156 3 1 147
1 2 237 3 2 258
The correspondence between the numbers 0,1, ..., 8 in the affine

plane and the nine ordered pairs (where we have omitted the paren-
theses) is given by

0~ 00 3—10 61— 20
T— 01 1—11 421
502 B— 12 222

Finally, using this correspondence, we obtain the following pair
of MOLS of order 3:

0 1 2 0 2 1

21 0 1 0 2

1 0 2 2 1 0
Ly Ly

From our earlier Prime Power Conjecture for MOLS {Conjec-
ture 2.2.12}, we obtain the following conjecture.

Conjecture 2.3.9 (The prime power conjecture for affine and pro-
jective planes). There are n — 1 mutually orthogonal latin squares of
order n if and only if n is a prime power. Equivalently, there is an
affine plane of order n, or equivalently a projective plane of order n,
if and only if n is a prime power.

We digress from our combinatorial constructions for a moment
to discuss the notion of “different,” or nonisomorphic, planes. It
is known that there is only one plane of each of the orders n =
2,3,4,5,7,8. By this we mean that any two planes of the same or-
der n < 8 are isomorphic. It is known that there are exactly four
nonisomorphic projective planes of order n = 9; see Dénes and Keed-
well [11, Section 8.4] and Lam, Kolesova, and Thiel [28].
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A plane is called Desarguesian if the theorem of Desargues con-
cerning perspective triangles is universally valid. All projective planes
constructed in the manner of Example 2.3.7, that is, with linear poly-
nomials over finite fields, are Desarguesian. A famous conjecture is
that all planes of prime order are Desarguesian (see Dénes and Keed-
well [11, p. 276]) but this has only been validated for the primes 2, 3,
5, and 7.

Definition 2.3.10. Let m be a natural nomber, m > 2. A triangle
is a set of three lines (the sides) such that any two of the three lines
intersect.

A point is a O-space, also called a 0-flat. A line is a 1-space, also
called a 1-flat. A k-flat, k > 1, will be determined by k + 1 points
which do not lie in any (k —1)-flat. An m-space is a set of points and
lines such that:

(1) There is a unique line through any two distinct points.

(2) A line which intersects two sides of a triangle must intersect
the third side.

(3) Every line contains at least three points.
(4) There is no {m + 1)-flat.

Normally m-spaces are constructed over fields, and since our focus
is on finite fields, we will now illustrate the construction of an m-space
over the finite field F,. As is customary, this space will be called a
projective geometry PG{m, F;) of dimension m > 2 over the field F,.

A point will be an (m+ 1)-tuple of elements of F, not all of which
are zero. We identify two points (ag, . .., a~) and (by, . . ., bm) as being
equivalent if there is a ¢ € F; such that (bg, ..., bm) = (cag, ..., ctm).
It is easy to check that there are (g™ —1)/(g—1) equivalence classes
of points.

A k-flat in PG{m, Fy;) is the set of all solutions to a system of
m — k independent linear homogeneous equations, that is, a system
of equations of the form

@10 tee A1 Tp

Cmm—EO " Qn—k,m Tm
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where the matrix {a;;) is nonsingular and so has rank m — k. Each
k-flat has (¢%" — 1)/(g— 1) points on it (recall that points are equiv-
alence classes of solutions).

Definition 2.3.11. A hyperplane in PG, F,) is an {m -~ 1)-flat.

From a projective geomeiry of dimension m > 2, we now con-
struct an affine geometry AG(m, Fy) of dimension m > 2 by deleting
a hyperplane. We begin with PG(m, F,), and remove any hyperplane
and the points that lie on it. The resulting space has

g™t -1 g" -1

a—1  q-1 1

Vi)

points. Suppose we remove the hyperplane corresponding to the equa-
tion x,, = 0. The remaining points can be rescaled to have z, = 1.
Therefore the remaining k-flats can be viewed as solution sets to sys-
tems of linear equations of the form

Zo
@10 e Uim
=0,
L1
Ay—k0 " Am—km 1

where (a;;) is nonsingular and so has rank m — k. This yields the
affine geometry AG(m, Fy;) of dimension m > 2 over the ficld F,. In
Exercise 2.20, the reader is asked to construct the afline geometry
AG(3, F»).

4. Block designs

Informally, a combinatorial or block design is a coilection of subscts
from a finite set. Invariably certain specified conditions are imposed
on the selection of the subsets.

Definition 2.4.1. A tactical configuretion is a set of v symbols ar-
ranged in b sets, called bilocks, such that each block is of size & and
each symbol oceurs in exactly r blocks. If v = b, the configuration is
said to be symmetric. Note that vr = bk in any tactical configuration.
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Definition 2.4.2. A (v, k. )) balanced incomplete block (BIB) design
is a tactical configuration with » symbols and blocks of size & such
that each pair of distinct svmbols occurs in exactly A blocks.

Hereafter we will omit the term BIB and simply say design.

Proposition 2.4.3. In a (v, k, A) design, the following relations hold
among the five parameters v, v, bk, A:

vr = bk,
rik—1) = Az —1).

Proof. To prove that vr = bk we simply note that vr is the total
number of times, counting multiplicities, that the v distinet elements
oceur in the design. Since thie clements are arranged in b blocks each
containing exactly &k elements; we must have vr = bk. For the second
equality, each symbol a cccurs in v blocks together with & — 1 other
gymbols in ecach block. Hence a is a member of (& — 1) ordered
pairs. Also element @ must occur A times with each of the v — 1 other
symbols, so the second equality follows. O

Hence given (v, k, A), we can always determine b and . In fact,
given any three of the parameters, we can uniquely determine the
remaining two.

Example 2.4.4. The rows shown in Figure 2.2 form the blocks of
a {7,3,1) design. Notice that the rows are developed cyclically from
the first by successively adding 1 modulo v = 7 to each element.
Moreover, we will soon sce that cach row has a special property: if
we take the 6 possible differences modulo 7 between ordered pairs in
that row, we obtain each nonzero residue modulo 7 exactly once. The
rows are algo the lines in the projective planc PG(2, F3) with points
{0,1,2,3,4,5,6}, as shown in Figure 2.3.

The following is a fundamental, and still unresolved, problem in
the theory of designs.

Question 2.4.5. Characterize the values of (v, k, A) for which there
is a (v, k, A) design. If integer values satisfy the conditions for a block
design and if such a design exists, how does one construct it?
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S O WY O
o G O e WD
B = O O OV = o

Figure 2.2. A (7.3,1) block design

It is known that the conditions in Proposition 2.4.3 are not enough
to guarantee the existence of a design. The values v = 22, r = 7,
k=7, and A = 2 satisfy vr = bk and r(k — 1) = A(v — 1) but it
can be shown that no (22,7, 2) design exists. This proof uses a more
general form of the Bruck/Ryser theorem (2.2.26); see Colbourn and
Dinitz [8, p. 76].

Open Problem 2.4.6. Is there a (22,8, 4) design? In such a design,

v=22 k=8 A=4,b=33 and r = 12. This is the smallest
unresolved case of Question 2.4.5.

Definition 2.4.7. A set D = {di,....dr} of residues modulo » is
a (v,k,A) difference set if every nonzero residue modulo v occurs
exactly A times as a difference d; — d;.

Example 2.4.8. The set {0, 1, 3} from Example 2.4.4 forms a (7,3, 1)
difference set.

Theorem 2.4.9, Let {d1,...,dr} be a (v, k, A} difference set. Define
B, ={d;+t{modwv)|1<i<k}

for0 <t <w—1. The collection {B, |0 <t <wv-—1} forms a (v, k, A)
design.

Proof. Let a be a nonzero residue modulo v. We can see that ¢ is in
B, for each r which can be obtained as a — d; for some 7. So a is in
exactly k blocks. Consider the pair (a,¢). If a = d; +t and ¢ = d; + ¢,
that is, @ and ¢ are both in block B,, then a — ¢ = d; — d;. Since D
is a difference set, this occurs exactly A times. [
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Figure 2.3. The projective plane PG(2, F2) has seven lines,
each containing three points.

‘We leave it to the reader to check that for & > 3, the existence of a
symmetric (v, &, 1) design is equivalent to the existence of a projective
plane of order v.

Corollary 2.4.10. If(dy,...,d} is a (v, k, 1) difference set with k >
3, then the collection { B} foerms a finite projective plane PG(2, k—1).

Finite fields can be used to construct many different kinds and
types of designs. We summarize, without proof, the following results.

Let g be a prime power, let m > 2 be a positive integer, and let ¢
be a positive integer with 1 < { < m. We now form designs by using
the elements of PG(m, F;) or AG(m, F;) as points of the design and
the #-flats as blocks. In this way one can build an infinite number of
(v,k, A) designs whose parameters in the projective case are shown
below:

qm+l 1 ) t+1 qutwLi -1 qm—t+i -1
V= —— - — ™= : 1
g-1 o 71 o 91
qt+1 -1 t—1 qm—t+7; -1

k= oA =]]

=1

g—1 g —1

We note that these designs are symmetric if £ = m — 1, the case when
the t-flats are hyperplanes in PG(m, F,). If ¢ = 1, then the product
for A is interpreted to be 1.
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In the afline case, the designs are not symmetric; their parameters

are shown below:
t

m—t+i 1 L m—t+i 1
R ¢/ _m—t ) - q
v=q", b= 1_[4——{]2.“1 . T_H—_—_qé—l ,
=1 =1
=1 it
k=g A=T11 .t-+ !
il

Asin the projective case, if ¢ = 1, then the product for A is interpreted
to be 1.

We now illustrate how a projective space over the field F, can be
used to construct difference sets.

Theorem 2.4.11. The points in any hyperplane of PG(m, F;) de-
termine a (v, k, A) difference set with v = {g"™! - 1)/(g— 1), k =
(™ = 1)/{g=1), and A = (¢" " = 1)/(g — 1).

Proof. Assume « is a primitive clement of Fgr41 so that the multi-
plicative group Fq“mle is generated by a. The set {1,a,a%,...,a™}
forms a polynomial basis for F.: over F, so every element o of

F,

=41 Can now be represented as of = ag + a1 + -+ - + @™, with

g
a; € F, for cach 7 = 0,1,...,m. Thus we can associate the clement
o with the (m+1)-tuple (ag, ay,. .., ax). In this way we can identify

the points of PG(m, Fj;) with powers of «.

Let H = {a®,...,a%} be any hyperplane of PG(2. F;). Then
any other hyperplane can be put in the form H. = a®H, where 0 <
e < v — 1. Note that PG(m, F,) has v = (g™ — 1}/(g — 1) distinct
hyperplanes, each of which contains & = {¢™ — 1)/{g — 1) points.
The next table gives a list of the points in each of the hyperplancs
H\,H,, ...,H, 1 in terms of H = Hy. In listing the elements of the
hyperplane H, we list only the exponents of & in the representation

above.
Hyperplane Points (exponents of o)
Hy d do . di;

H, dy +1 da +1 dy +1

H..1 di+v—-1 do+v—1 ... dp+v-—1
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In the above table, consider only the rows which contain the
exponent 0 (actually any fixed value will work, but notationally it
is easier to work with 0). These are the rows of the k& hyperplanes
containing the point a®. Hence the exponents of « in the points for
these k& hyperplanes may be listed as:

dy—dy da—dy ... dp—dy
di—dy do—de ... dip—da
di—di de—dg ... dp—dg

Note that a point o # o appears in as many rows of these k
hyperplanes as there are hiyperplanes containing any two fixed points,
which is A = {g™ "' —1)/(¢—1). Hence the off-diagonal entries repeat
each nonzero residue modulo v exactly A times. We thus have a
(v, k, A} difference set. O

5. Hadamard matrices

Hadamard’s inequality states that if H = (k;;} is a real square matrix
of size n such that [h;| < 1 forall 1 <4, j < n, then |det(H)| < n™/2.
Furthermare, these will be equal if and only if HH? = nl, where I de-
notes the identity matrix of size n, and |e| denotes the absolute value
of e. Matrices that achieve this upper bound are called Hadamard
matrices; constructing such matrices is a classical combinatorics prob-
lem which we will investigate briefly here. For more information, see
Wallis [64, Chapters 8 and 9].

Definition 2.5.1. A Hadamard matriz H,, is an n X n matrix, each
of whose entries is either —1 or 1, such that H,H! = ni, where I is
the identity matrix of size n.

We note that in a Hadamard matrix, any two distinct rows, or
columns, are orthogonal as vectors. This is equivalent to their inner
product (dot product) being zero.
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Examples 2.5.2. Some Hadamard matrices of orders 1, 2, and 4:

1 1 1t 1

11 1 -1 1 -1

o (1 —1) 1 1 -1 -1
1 -1 -1 1

Our next result limits the possible orders for which Hadamard
matrices exist.

Theorem 2.5.3. If H, is ¢ Hadamard matriz with n > 2, then n is
divisible by 4.

Proof. By multiplying the rows and columns of H,, by —1 as neces-
sary, we can assume that the first row and column of H, consist of
only 1s.

Now consider the sum

n

> (a; + az;){a1; + as;)

Jj=1
n

= Z i+ 2‘113‘133 + Z G2iG35 + Z 2403

n
E G%J =M.
j=t

We note that (a1; + ag;)(e1; + as;) is either 0 or 4, and thus »n is
divisible by 4. O

Question 2.5.4. Is there a Hadamard matrix of size 4k for each
k>17

It is believed that the answer is affirmative, but this is still not
proved; the first unresclved case occurs when 4k = 668.

Let G be a finite Abelian group. A (multiplicative) character of G
is a homomorphism from G into the multiplicative group of complex
numbers of absolute value 1. Hence if y is a character of (G, then
x(ab) = x(a)x(b) for all a,b € G.
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We refer to Lidl and Niederreiter {36, Chapter 5][37] for a discus-
sion and various properties of characters defined over a finite field F,.
Proofs of the following results can be found there.

Proposition 2.5.5. For any nontrivial multiplicative character y we

have
Z x{c} = 0.

e F;‘

For odd g, let £ be defined on Fy by

1 c¢=15 is a square
£le) = . ’
—1 otherwise.

The reader should verify that £ is a character on F, called the
quadratic character. Moreover, it can be shown that £(—1) = —1 if
and only if ¢ = 3 (mod 4).

The following theorem will be in the construction of Hadamard
matrices. A proofis given by Lidl and Niederreiter [37, Theorem 5.18].

Theorem 2.5.6. If q is odd, let f(z) = asz® + a2+ ag be a polyno-
mial over Fy with aq # 0, and let d = aj — dagay be the discriminant

of f(x). Then

> Efe) =

cEF,

{—5(@ if d #0,
(g-1)¢{az) 4fd=0.

We are now ready to prove our main result concerning the use of
finite fields in the construction of Hadamard matrices.

Theorem 2.5.7. Let ¢ =3 (mod 4) be a prime power, and let F, =
{01,...,a4}. Define a matric

1 i 1 | 1

T =1 by b1z -+ big

T bar —1 baz -+ by
H=|4

b3t bzz 1 - bay
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with by; = {{a; — a;) where 1 < i,j < q fori+# 7 (here £ denotes the
quadratic character). The matric H 4s o Haodamard matriz of order
n=g+1.

Proof. We need to verify that the rows of the matrix are orthogonal,
that is, verify that the inner products of the distinct rows of the
matrix are all zero. The proof consists of a calculation which will use
some properties of characters referred to above,

We first calculate the inner product of the first row with some
other row 7 + 1, where 1 < i < ¢. We obtain

1=14+> b= &laj—a) = > &e),
i A ek

which by one of the above properties of characters, is 0.

We now calculate the inner product of rows i+ 1 and £+ 1, where
k#14, with1 <{ <k <g¢. In this case we obtain

1=bgi — bix + Z biybics

VES N
=1—€lai— ax) — Eax —ai) + Y £la; — @)é(a; — ag),
: ik
which, after some simplification, can be rewritten as
L [UH &80 —ap) + ¥ E(e* — (e + ax)e + aiax).
ceFy

Since g =3 (mod 4), £(-1} = —~1. By Proposition 2.5.5, this reduces
to 1 —£{1} =1—1=0, and hence row i 4 1 is indeed orthogonal to
row k- 1, and the proof is complete. Ol

Once we have a Hadamard matrix H,, we can obtain others as
follows.

Proposition 2.5.8. Let H, is o Hadamard matriz of order n. Then

the matrixc
H, H,
H, —H,

is a Hadamard matriz of order 2n.
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In particular, if m = 2%, & > 0, then we can obtain a Hadamard
matrix of size m by starting with the trivial Hadamard matrix H,
and repeating this construction.

6. Notes

For a comprehensive treatment of the theory of latin squares as well
as a discussion of some applications, we refer to Dénes and Keed-
well [11]. See also Dénes and Keedwell [12] for further theory of
latin squares. The book by Laywine and Mullen [31] is a textbook
at the undergraduate level which discusses various topics in discrete
mathematics, each topic being motivated by some connection to latin
squares. We refer to Section 111, Chapter 1 of Colbourn and Dinitz [8]
for a discussion of latin squares and to Chapter 3 of the same section
for a table of the best values for the number of MOLS of order n for
n < 10, 000.

The Handbook of Combinatorial Designs [8], edited by Colbourn
and Dinitz, contains a huge amount of material related to the prop-
erties and constructions of many different kinds of combinatorial ob-
jects, many of which can be constructed using various properties of
finite fields and polynomials over finite ficlds.

Further reading related to affine and projective planes may be
found in Dénes and Keedwell [11, Chapter 8]. Colbourn and Dinitz [8]
provide a magnificent survey of many structures in the area of com-
binatorics known as design theory; a detailed discussion for the con-
struction of block designs occurs in Section II, and a survey of results
related to Hadamard matrices and their construction is in Section V,
Chapter 1.

7. Exercises

Latin squares.

2.1. Compute by hand the values of [, for n = 2,3,4; and then
calculate by machine the values of [,, for n = 5,6,7.

2.2. For each n > 2, construct a partial latin square of order n with
7, cells filled which cannot be completed to a latin square of order n.
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A partial latin square of order n is an n x n square with some cells
filled but filled in such a way that no row or column contains any
symbol twice.

2.3. Construct a pair of latin squares of order 6 with the property
that when the two squares are superimposed there are 34 distinct
ordered pairs. Explain why there is no pair of latin squares of order
6 with exactly 35 distinct pairs.

2.4. Construct 3 MOLS of each of the orders 5, 8, and 9.
2.5. Construct a pair of MOLS of order 21.

2.6, Construct a latin square L of order 4 which does not have an
orthogonal mate, that is, for which there does not exist a latin square
of order 4 orthogonal to L. Prove that your latin square does not
have an orthogonal mate.

2.7. For g an odd prime power, show that the latin square L of order
g — 1 which represents the multiplication table of F3 does not have
an orthogonal mate (that is, there is not another latin square of order
g — 1 orthogonal to the square L).

2.8. Let ¢ be a prime power and let n > 1 be a positive integer with
(n,g°—1) = 1. Let a # 0 € F,. Show that as b varies over the nonzero
elements of F,, the Dickson polynomials D, (x,a) + bD,{(y,a) give a
complete set of g — 1 mutually orthogonal latin squares of order g.
(For the definition of Dickson polynomials, see Section 6.4.)

2.9. If ¢ > 5 is an odd prime power, construct a set of ¢ — 3 diagonal
MOLS of order ¢, that is, MOLS for which each square in the set has
distinct elements on each of the two main diagonals.

2.10. Construct ¢ — ¢ mutually orthogonal Sudoku latin squares of
order ¢2, where q is an arbitrary prime power.

2.11. Show that if one has a pair of orthogonal diagonal latin squares
L,, L5 of order n, then one can construct a magic square based on the
symbols 0,1,...,n% — 1 (the sum of the elements in each row, each
column, and each of the two main diagonals is the same) of order
n via the construction nl, + Ly where the arithmetic is performed
modulo n?. Construct a magic square of order 5.
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2.12. Let ¢ # 2,3 be a prime power. Construct a latin square of
order ¢ which is orthogonal to its transpose. Such a square is said to
be self-orthogonal.

2.13. Give an example of a latin square which is not the Cayley table
of any group, although the first row and first column of the square
are in the standard order.

Frequency squares and latin hypercubes.

2.14. For g a prime power and an integer ¢ > 1, construct a complete
set of (g° — 1)2/{q — 1) MOFS of type F(g';¢*1).

2.15. For q a prime power and an integer d > 2, construct a complete
set of (g2 —1)/(g—1) —d mutually orthogonal hypercubes of dimension
d and order q.

2.16. For g a prime power and d > 2 an integer, construct a set of

1 K oyd N
1,2 (e
k=j+1
mutually orthogonal hypercubes of order g, type j with 1 <j <d-—1
and dimension d. By having type 7, we mean that when any j of the
d coordinates are fixed, each of the ¢ symbols occurs exactly g¢=7-1
times in that subarray consisting of ¢%~7 cells. Also note that a
hypercube of type j automatically has type ¢ with 0 <+¢ < j.

2.17. Let i > 1 be a positive integer. Show that for a € Fj,i and b €
F but with no two of the b values being F7 multiples of each other,
the squares of order ¢* constructed with the element Trp/x (blax +
y)) being placed at the intersection of row x and column y gives a
complete set of F(g*;¢"~1) MOFS.

Finite geometries.

2.18. Verify that the finite geometries constructed in Example 2.3.7
are actually an affine plane and a projective plane.

2.19. Construct an affine plane AG(2,3) using a complete set of
MOLS of order 3, and show this plane is the same as that constructed
using Theorem 2.3.4.
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2.20. Construct the affine geometry AG(3, Fz) and the projective
geometry PG(3, F2).

2.21. Using the projective geometry constructed in the above exer-
cise, construct a (15,7,3) difference set arising from Theorem 2.4.11.

Hadamard matrices.
2.22. Construct Hadamard matrices of orders 8 and 12.

2.23. Explain why the construction from Theorem 2.5.7 cannot be
used to construct Hadamard matrices when ¢ = 1 (mod 4).

Proofs left to the reader.

2.24. Assume that two n x n latin squares L; and Lo are orthogonal.
Prove that if the symbols of I, are permuted, then the resulting
square is still orthogonal to Lg. Prove that if Ly, Ls,..., L; form a
set of MOLS of order n, then there is a set L], L), ..., L} of i MOLS
of size n such that the first row of each square L;- is in the standard
order.

2.25. Prove Lemma 2.2.22.
2.26. Prove Lemma 2.2.23.
2.27. Prove Theorem 2.3.4.
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Chapter 3

Algebraic Coding
Theory

1. Introduction

In today’s world of modern communications, we often want to send
messages or files from one place to another, or from one computer Lo
another. Scientific progress in areas such as deep-sea and deep-space
research requires the ability to transmit information through difficult
environments.

When we send a message, we hope the person on the receiving
end can obtain the original message without errors which may have
been introduced during the transmission process. The difficulty is
that when one transmits information via a communication line, noise
and other environmental factors often introduce errors so that the
received message is not the same as the original message. For example,
radiation from the sun interferes with transmissions between the earth
and communication satellites.

In order to analyze situations such as this, we first assume that
there is a fixed set M of messages that we might wish to send, and
that this list is known to both the sender and the receiver.

In common applications, a message might be a word, a single let-
ter, or a fixed finite word on a fixed finite alphabet. Thus a “message”



30 3. Algebraic Coding Theory

A . B mamn C L3 1]
D man E u F A
G - H ERER I am

J N .- K L] L AamER
M - - N - u (@] S .
P - Q ... R Eman

S amm T - U ..
V (LR E | W .. X -,
Y wHamm V4 . 1 o
2 ANmmEmEm 3 RN 4 smEnEm
5 EEEam 6 C Rl N 7 EMEFE
§ EEMmEs § SESNEEE () S EEMNNN

Table 3.1. The cedewords of Morse code

in the ordinary sense may be a sequence of what we call messages.
A code is an injection from a set of messages to a set of words on
a fixed finite alphabet (the words in the range of this function are
called codewords). We require a code to be injective so that we can
decode the sequence that is received.

We will use Morse Code as a simple example of what we mean
by a code. This code can be viewed as a system for translating the
messages {4,B,...,Z,1,2,...,9,0} to sequences of letters from the
alphabet {8 ™} (usually ® is called dot and ™ s called dash}. The
assignment function for this code is shown below. To send a word by
Morse code, each letter in the word is translated and sent in sequence.

One of the goals of coding theory is to make it possible for the
person receiving a message to detect and correct errors that have
arigen during the transmission process. The detection of errors is ac-
complished by noticing that the received sequence is not a codeword.
For exampile, if a Morse Code operator receives @ s = s then the op-
erator will immediately know that an error has occurred, because this
sequence is not assigned to any letter or number. The operator has no
way of telling which message was intended, and thus cannot correct
the error.
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For some codes, it is possible for the receiver to determine, with
high probability, the intended message when the received sequence is
not a codeword. Such codes are often called error-correcting codes.
Because errors during transmission are inevitable in many situations,
error-correcting codes are essential for transmitting data efficiently.
These codes are often called algebraic codes because they are usually
constructed using some algebraic system, very often a finite field.

It is important to note that the codes we discuss in this chapter
are not meant to keep information secret. For example, anyone who
knows Morse Code and has suitable radio equipment can snoop on
other people’s conversations. The goal of error-correcting codes is
only to allow the intended recipient to correct errors that have oc-
curred during transmission. The field of cryptography, which we will
discuss in Chapter 4, is devoted to keeping information private.

In this chapter we first develop a few basic properties of codes,
discuss some bounds on code parameters, and discuss some encoed-
ing and decoding techniques. We then illustrate scveral constructions
for classes of codes using finite fields, briefly discuss perfect codes,
as well as several connections between codes and combinatorial de-
signs. We conclude the chapter with some connections between sets
of orthogonal latin squares and codes.

2. Basic properties of codes

In order to use algebraic properties and methods for the construction
of our codes, we will restrict our attention to the theory of linear
codes. In this way we will be able to view our codes as subspaces of
a vector space over the {inite field Fy.

Let F' denote the set of all n-tuples over the field Fi:
Fq"’q:{(a17"'3aﬂ) J a; < Fq,i: 1,...,”}.

The reader should recall that F} is a vector space over the field F,.
It has dimension n, with a standard basis consisting of the n unit
vectors of length n.

In this chapter, we will assume that the messages we wish to

transmit are elements of F(;“ for some k£ > 1. We may thus view
these messages as words of length & on the alphabet which consists
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of the ¢ elements of F,. In particular, if ¢ = 2, then our messages are
binary strings of length k. Under the assumption that the messages

are the elements of ¥, we have ¢* distinct messages that can be sent.

To apply our theoryjto the real world, we first take the true set of
messages we wish to send and assign each one to an element of F, (';“.
This assignment function {which must be injective) is shared with
the desired recipient. Because the creation and use of assignment

functions is routine, we will ignore it for the rest of this chapter.

‘When we assume our messages corme from the set F f;f, we will
always assume our codewords come from the set F* for some n > k.
A code thus gives an injective function from F(f to F7'; the codewords
are the range of this function. We are particularly interested in those

codes for which the range is a subspace of F

. for then we can use

results of linear algebra to analyze the code.

Definition 3.2.1. A linear code C is a subspace of the vector space
FFr. Such a code is called a g-ary code; the code is binary if g = 2
and fernary if ¢ = 3. The number n is the length of the code.

Since a linear code ' is a subspace of F}, it will contain g*
distinct codewords for some k& with 0 < & < n. The integer k is called
the dimension of the linear code €. We can also recognize & as the
length of each uncoded message, for our messages will be elements
from the set F¥. We will denote such a code €' as an [n, k] linear
code.

Examples 3.2.2. We briefly discuss several elementary examples of
linear codes. We can define a code, called a g-ary repetition code,
which acts by repeating the message a € I, that is to be encoded a
total of n times: @ — a...q. Clearly this is a linear code of length n
and dimension 1.

A binary parity-check code over F can be constructed with the
map (ai,...,8n) — (@1,...,8n, e ;). This code is also linear,
and has a large dimension n — 1, but (as will be seen later) no error-

correcting ability.

There are various ways to encode messages, but we will focus our
efforts on two matrix methods. One uses a parity-check matrix and
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the other uses a generator matrix. We begin with the parity-check
method.

Assume for the moment that the messages we wish to encode are
of the form (¢y, ..., cx) where each ¢; € F,. We encode each message
by appending an additional n — & digits, called parity-check digits
(Cht1s--.,€n), with each ¢; also in F,. We will then have a codeword
¢ = {ec1,...,¢n) € Fy" where the first & digits are information digits
and the last n — k digits are parity-check digits. We now show how
to find the parity-check digits.

Let H be an (n — k) x n matrix over Fy, of rank n — k. Given such
a matrix H, we can construct a code €' by letting ¢ be a codeword if
and only if He™ = 0, where T denotes the transpose. The matrix H
is called a parity-check matriz for the code C.

Lemma 3.2.3. Let H be a (n— k) x n matriz over Fy of rankn—k.
Then C = {c € F | Hc™ = 0} is a linear [n, k] code.

Proof. The code € will indeed be linear because (from linear algebra)
if ¢1,¢3 € €, then H{ac, + bey)? = 0. Since the rank of H is n — k,
the code C has dimension k. d

The equation He? = 0 leads to a system of linear equations
over the field F, which can be used to determine ¢;14,..., ¢, given
€1, ...,¢;. These equations are often called the parity-check equations
for the linear code C. If H is of the form H = (A|I,_;), where I,,_4
is the identity matrix of order n — k, then the code C is said to be in
systematic form. Note that if H iy in systematic form, then we can
compute the parity-check digits with particular ease.

We now turn from parity-check matrices to consider a dual way
of forming a linear [n, k] code. To this end, let G be a k x n matrix
(with no zero columns) of rank k over F,. We form a code C by
putting ¢ € C' if ¢ is in the row space of the matrix G. Thus € will
consist of all vectors of the form ¢ = ali where a runs through all
messages of length k, that is, all 1 x & vectors (a1,...,ax) over Fg.
The matrix ¢ is called a generator matriz for the code C.

Lemma 3.2.4. Let G be a k x n matriz over F,. The set (' = {aG |
a< FF} is a linear code. The dimension of C is the rank of G.
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The proof of Lemma 3.2.4 is left as Exercise 3.15.

If G is of the form G = (I;| — AT), where A is of size (n— k) x n
and ), denotes the k x k identity matrix, then G is in systematic form.
In this case, let H be the matrix {A|l,_). Then the matrices G and
H are related by the matrix equation GH? = 0; in this case, the code
generated by H is the same as the code for which G is the generator
matrix (see Exercise 3.9). Thus given either a generator matrix G or
a parity-check matrix H, we can obtain the other. We now consider
a small example to illustrate these concepts.

Example 3.2.5. We work over the binary field F5. Let

1 01 1100 10 1 1
H=[]1 110010 A=11 11 0
0111001 01 11

s0 that the parity-check matrix H is in systematic form with n = 7
and k = 4. We thus have a binary [7,4] linear code.

Recall that a vector ¢ € FY is a codeword if He? = 0, which is
equivalent to satisfying the following system of linear equations.
c1teategtos =0,
€1 +e2 +c3+ g =0,
o +e3 4+ =10
These can be rewritten as the system
Cy = C1 + €3 + ¢4,
Ce = C1 + C2 + €3,
7 =C3 + ¢z + ¢y,

which gives an efficient scheme for encoding the message (c1, ¢z, ¢z, ¢4):
one can encode a message (¢j, ¢y, c3,c4) using the formula

(c1,¢2.€3,¢4) = (C1,¢2.€3,C4,€1 F+ €3+ 4,01 + g+ 3,60 +c3+cyq).
Using the same example a generator matrix & is given by

0 0 11
G:

[ R e R e R
—_ o O o
- = = O

0
1
1

[ I I

0 1
1 1
0 0
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so that we have a [7, 4] linear binary code € over the field F,. Since
C has dimension 4, it will contain 2% = 16 binary codewords each of
length 7. The actual codewords will be given in Example 3.5.1.

From the above discussion, it is clear that we can construct many
linear codes by simply writing down matrices to use as generator
or parity-check matrices. As will be seen later, the difficulty is to
determine if the codes are useful for detecting and correcting errors.
In order to answer these questions, we will need the concept of the
weight of a vector and the distance between two vectors.

Definition 3.2.6. The Hamming distance d{x,y) between two vec-
tors x and y in F' is the number of coordinates where the vectors
differ. The Hamming weight wt(x} of a vector x is the number of
coordinates where the vector is nonzero.

In a linear code, the Hamming distance d(x,y) is always equal
to the Hamming weight of the vector x — y. In particular, we have
d(x,0) = wt(x).

Proposition 3.2.7. The Hamming distance function is o metric.
That is, for oll vectors u, v, and w:

(1) d{u,v) = 0.

(2) d{u,v) =0 if and only ifu=v.

(3) d{u,v) =d(v,u).

(4) d(u,w) < d{u,v) + d(v,w).

Definition 3.2.8. If C is a linear code, then the minimum distance
de of C is defined as

de = min{d(x,¥) | x,¥ € C,x # ¥} = min{wi(x) | x € C,x £ 0}.

Let x € Fy be a vector of length n over F,. The sphere of
radius ¢ about X is the set of all vectors y € F for which d(x,y) <
t. Exercise 3.1 asks the reader to determine the number of distinct
vectors in a sphere of radius £.

Let C be an [n, k] code. We say that C can correct t errors

if whenever no more than { coordinates of a codeword are changed
the original codeword can be effectively recovered from the changed
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codeword. For s > 0, we say that € can detect s errors if whenever
no more than s coordinates of a codeword are changed the resulting
word is not in C.

Definition 3.2.9. A code C is said to be t-error correcting it for
every vector x € F', there is at most one codeword ¢ € ¢ within
distance ¢ of x, that is, with d{x,c} < t.

If C is a linear code over £y of length n, dimension %, and mini-
mum distance d, we say that C is a g-ary linear [n. &, d] code. As will
be seen in our next result, the minimum distance of a code is what
determines its error correcting ability.

Theorem 3.2.10. Let C be a code.

(1) C can correct t errors if and only if do > 2t + 1.
(2) ' can detect s errors if and only if do > s+ 1.

Proof. Tor part (1), if a codeword c¢ is transmitted and the received
vector r containsg t or fewer errors, that is, differs from ¢ in ¢ or fewer
coordinates, then de(e,r) < . If ¢’ € € is any other codeword, then
de{c',r) = ¢t + 1, for if not, we would have

dc(e,¢') < dc{e,r) +dc(r, ) < 2t,
a contradiction.

For part (2), assume the received vector is obtained after the
introduction of s or fewer errors. Then it cannot be mistaken for a
codeword say ¢, because then de(c, ¢') < s, which is a contradiction.

O

The following result provides an efficient way to obtain a lower
bound on the minimum distance of a code.

Theorem 3.2.11. A linear code C' over F, with parity check matriz
H has minimum distance do > s+ 1 if and only if any s columns of
H are linearly independent over I,

Proof. For the necessity, if we have s linearly dependent columns,
then for some ¢ € C, with ¢ # 0, HeT = 0 and so wt(c) < s. For
the converse, if any s columns are linearly independent over Fj,, then
there is no ¢ € C with wt(c} < s, and so der > s+ L. O
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We note that der = s + 1 if any s columns of /T are linearly
independent and there are s + 1 columns of H which are linearly
dependent over Fj.

Suppose one wants to construct a code € to be an [n, k, d] linear
code. In order to maximize the utility of our code one would like:

{1} d to be large in order to be able to correct, or detect, large
numbers of errors.

{2} n to be small in order to only have to transmit short mes-
sages.

{3) The rate of a code is defined to be k/n. One would like to
have the rate be as close to 1 as possible so that most of
the coordinates in the transmitted message are information
digits (for which there are k& coordinates), not parity-check
digits, which are added to allow for error-correction and
detection.

As will be seen, these goals are somewhat contradictory. As one
improves the code in one of the properties, one usunally must weaken
the given code relative to some of the other properties. Thus we are in
a trade-off situation. In order to find the best solution to the coding
problem, we would first need to determine which parameters can be
obtained by a code. This is not an easy task, however,

Open Problem 3.2.12. For which n, &k, d and prime powers g is
there an [n, k, d] linear code over F,?

We end this section with a probabilistic argument that a code
that corrects relatively few errors may correct “emough” errors in
practice. If n < m are nonnegative positive integers, a reasonable
assumption may be that it is less likely for a received vector to have
m errors than it is to have n errors. The reasonability of this as-
sumption depends on the precise communication channel causing the
errors. Many probabilistic models have been developed for specific
communications channels.

Let us assume that each coordinate of a transmitted vector will

be correctly received with probability p > 0, independent of the other
coordinates. This assumption is a reasonable model of the errors that
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oceur, for example, when reading from a computer hard disk drive.
It is not a reasonable model for radio transmission, where errors tend
to come in bursts.

Under the assumption that errors occur independently with a
fixed probability 1 — p, the probability P(i) of having ¢ errors in a
received vector of length n is given by the formula

. n i i
P = ()0 -p
The following table shows these probabilites when n = 5 and p = 0.9.
P(i)

0.59049
0.32805
0.07290
0.00810

0.00045
0.00001

o= Wb = O =

In this case there is less than a 9/1000 chance that a received vector
will arrive with 3 or more errors. Thus a code with the ability to cor-
rect only 2 errors will be able to correctly decode almost all received
Inessages.

3. Bounds for parameters of codes

In this section we provide several bounds on the possible values of the
parameters n, k, and d for a linear [n, k, d] code over Fy.

Theorem 3.3.1 (Hamming bound). Suppose C is a linear In, k],
t-error correcting code over Fy of length n. Then

¢* (1+ (T)(q—1)+—--+ (?)(qﬁl)*) <q"

Proof. We first notice that the term ¢™ on the right-hand side sim-
ply counts the total number of vectors of length n over F, that are
available. Similarly, ¢* is the number of codewords in the code €
since (' has dimension k. Also note that

1+(T)(q—1)+---+@)(q—1)‘
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is the number of distinct vectors in a sphere of radius ¢ around any
codeword; see Exercise 3.1, from which the result follows. O

Codes whose parameters yield an equality in the Hamming bound,
sometimes also called the sphere-packing bound, form a very special
class of codes.

Definition 3.3.2. A #-error correcting code C over Fy of length n is
perfect it F?' is the disjoint union of the spheres of radius ¢ around
the codewords of C.

We will provide a brief discussion and classification {without
proof) for all g-ary linear perfect codes in Section 5.4.

Theoremn 3.3.3 (Plotkin bound). For a linear code C' over F, with
parameters [n, k, dg], we have

ng* (g - 1)

do <
¢S T g

Proof. We show that ng*~!(g — 1) is no less than the total weight
of all the codewords. Fix an integer 1 < i < n. Let D be the set
of codewords with a 0 in coordinate ¢. Then I is a subspace of C
containing |C|/|D| = |C/D| = ¢*~! codewords. Therefore the total
weight of all codewords in D is less than or equal to ¢ *{g — 1),
and thus the total weight of all codewords in C' is no more than
ng*~1(g —1). 0

Another very simple, but useful bound, is contained in the next
result.

Theorem 3.3.4 (Singleton bound). If C s a linear [n, k, d] code over
Fy, then
(2) qk < qn—cH-l’

which is equivalent to the inequality d <n—k+ 1.

Proof. Let C' be an [n,k,d] linear code over F,. Delete the last
d - 1 coordinates of each code word of C'. This leaves n — (d — 1)
coordinates. Distinct elements of ' cannot agree on each of the first
n — (d — 1) coordinates, because the code has distance d. Therefore
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there can in total be no more than ¢" {41 = ¢»9+1 codewords,
from which the result follows. 1

We note that the Singleton bound can also be obtained as a coral-
lary to Theorem 3.2.11 because the rank of the parity-check matrix
for C'is n — k. If equality holds in (2), then the code is called a
magimum distance separable (MDS) code. In the last section of this
chapter, we will see that sets of orthogonal latin squares are useful in
the construction of some MDS codes.

The Hamming, Plotkin, and Singleton bounds give only necessary
conditions for a linear [n, k, d] code over F}, to exist. The next result
provides a sufficient condition for the existence of such a code.

Theorem 3.3.5 (Gilbert-Varshamov bound). There is o linear [n, k|
code over Fy with mindimum distance no less than d if

q“‘“>d§(”;1)<q—1>i-

i=0

Proof. The proof is obtained by forming a parity-check matrix of
rank n — & whose columns have the property that any d — 1 columns
are linearly independent vectors over F,. To this end, we use any
nonzero vector as the first column. The second column can be taken
to be any nonzero vector which is not dependent with the first, that
is, which is not a nonzero scalar multiple of the first column. Then
the third column can be taken to be any nonzero vector which is not
a linear combination of the first two columms. We thus continue to
add new columns as long as new vectors are available.

We can add another vector of length n — &k as a column of H
as long as one is available. Assume that we have chosen a total of
m vectors of length n — k over F, for which any d — 1 columns are
linearly independent over F,. The collection of vectors which are not
available is the set of all linear combinations of these m vectors. The
number of such linear combinations is seen to be ¢, where

= (T (1)@ e
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If t < ¢"* — 1, we can choose another vector of length n — k. In
particular, if m = n — 1, we will be able to choose an n-th vector as
a column of our parity check matrix H. The code thus constructed
will have length n and minimum distance at least d. Because H has
1 — k rows, its rank is at most n — %, and thus the dimension of the
code will be at least k. O

4. Decoding methods

As we have seen earlier on, given a linear code C it is very easy to
encode a message. One can either use a parity-check matrix H or
generator matrix G to encode a message, say m, into a codeword c.
For example, ¢ = mG or He? = 0 using the parity-check equations.

On the receiving end, how can one decode a received vector r to
obtain the original codeword ¢? Given a particular code, there may
be special methods which can be used to efficiently decode received
vectors. We will discuss only one general method which can be used
to decode any linear code.

We begin with the assumption that the receiver, seeing a received
vector ¥y with errors will decode ¥ to the codeword ¢ € C which is
nearest, in Hamming distance, to y. This method of decoding is
known as neerest neighbor decoding. 1t is clear that it ' is t-error
correcting and y has no more than ¢ errors, then the nearest neighbor
decoding method produces the correct result.

Let C be a linear [n, k| code so that || = ¢*. We construct the
collection of cosets {a+ C | a € F'}. (Recall C is a subgroup of F}
under addition, so this definition makes sense.) There are ¢"~* cosets
which partition F}'.

‘We next describe an array for a linear code €. Let the cosets of
C be {a; + C}, where each a; is chosen to be an element of minimum
Hamming weight in its coset. The elements a; are known as coset
leaders. While in theory these coset leaders are very useful, one must
point out that in a large code, it will be far from easy to determine
all of the coset leaders.



92 3. Algebraic Coding Theory

We use the coset leaders to write the elements of Fi7 in an array,
called the standard array for the linear code C:

0+C = 0+4c¢ 0+4+c¢cy - 0+qu
ay+C = ay+e¢ a;+cy - a1 + Cgi
a;,+C = a;+c a;+cy - A, +Cee

where s = ¢" %, The element in position (¢, ) of the array is thus
the vector a; 4 c;.

Now given a received vector a € F', if we find the coset leader a'
of the coset containing a, then we assume that the correct codeword
for a is a — a’. Thus we assume that the error introduced during
transmission is the coset leader a,;. Since each coset leader is assumed
to have minimal weight in the given coset containing it, this method
of decoding is often called nearest neighbor decoding.

One problem with using the standard array for decoding an [n, k]
linear code C is its large size. Recall that the standard array for
C will contain ¢* columns, the number of codewords in C, and the
number of rows will be ¢"*.

The following notion will be very helpful in our decoding efforts.
If y € F, then the syndrome S(y) is Hy”, where H is the parity-
check matrix for C.

Lemma 3.4.1. Lety be a vector in Fy'. Then
(1) S(y) =04 end only ify € C.

(2) S(y) = S(z) if and only if the equality of cosets y+C = z+C
holds.

Proof. Part (1) is just a restatement of the condition involving a
parity-check matrix for a vector y to be in the code C. Part (2)
follows from a simple calculation, namely that S(y) = S(z} if and
only if H(y - #)7 = 0. The details are left to Exercise 3.11. O

Thus any two elements in the same row of the standard array
have the same syndrome, while any two elements from different rows
have different syndromes.
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To implement the syndrome deceding method, we compute the
syndrome of each coset leader and store these syndromes for future
reference. We then compute the syndrome of each incoming message
and compare it with the precomputed syndromes to find the coset
leader. Subtracting the coset leader from the received message gives
us the codeword.

We end this section with a few words regarding a drawback of
the coset leader decoding algorithm. If we have a linear code over F,
with a large number of cosets (recall in an [n, k] linear code there will
be " * distinct cosets), it will be extremely difficult to calculate all
of the coset leaders and store all of their syndromes. In such cases,
one sometimes uses what is known as incomplete decoding. Here one
calculates and stores the syndromes of some large subset of the coset
leaders. When a vector r is received, one calculates the syndrome S(r)
and searches through the stored set of syndromes. If that syndrome
is found, then we decode r to be the codeword ¢ = r — a;, where a;
is the coset leader such that S(a;) = S(r), as usual. If in our search
of the stored syndromes we do not locate the syndrome S(r} of the
received vector r, then we ask the sender to resend the message. The
term incomplete decoding is used because we are not able to decode
all possible received vectors.

As an illustration of syndrome decoding, using the binary Ham-
ming code H(2,3) from Example 3.5.1, one calculates the set of syn-
dromes to obtain the following:

Coset leader Syndrome

0000001 001
0000010 010
0000100 100
0001000 101
0010000 111
0100000 011
1000000 110

Thus if the vector r is received, the receiver calculates S(r) = 110
which is seen to correspond to the coset leader ay = 1000000, which
is the error which occurred in transmission. Thus the received vector
r is decoded to the codeword ¢ = r — ay = 0111001.
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5. Code constructions

We now provide methods for the construction of several important
classes of linear codes over finite fields.

5.1. Hamming codes. We begin by constructing the binary Ham-
ming codes H(2,m), where m > 2 is a positive integer. We form a
parity-check matrix H of size m x (2™ — 1) whose columns are the
binary representations of the numbers 1,2,...,2™ — 1. The reader
should check that the matrix H will have rank m. This matrix pro-
duces a binary Homming code H(2,m) whose parameters are n =
2m — 1, k=2"—1-—m, d = 3. Any two columns of H are lin-
early independent over F, but many collections of three columus are
dependent. Therefore, by Theorem 3.2.11, this code has minimum
distance 3 and is thus a binary l-error correcting code.

Example 3.5.1. For m = 3, a parity-check matrix H for the binary
Hamming code H{(2,3) is given by the matrix

0 01 1101
H=4{0 1 1 1 0 1 0
1110100
We can perform a similar construction aver Fy for ¢ an arbitrary
prime power. For a positive integer m > 2, such a code will have
an m x (g™ — 1)/{g — 1) parity-check matrix whose columns are the
nonzero vectors in £ whose first nonzero entry is 1. There will be
(g™-1)/{g—1) such vectors over Fy,, and thus the g-ary Homming code
H{q,m} will be a linear code with parameters

gn -1 g7 -1
—_ —m,3 .
g—1" ¢g-—1

As in the binary case, any two columns of the parity-check matrix
H will be linearly independent over ¥, and some three columns will
be dependent. Thus the general Hamming codes H(g,m) will have
minimum distance d = 3 and will thus also be l-error correcting and
2-error detecting.

5.2. Cyclic cedes. A very important class of codes is the class of
cyclic codes, so named because of the following property.
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Definition 3.5.2. A code C of length n is eyelic if for any codeword
{cy,c2,...,¢n) € C, the shifted vector (¢, cq,...,cn_1) is also in C.

One of the reasons cyclic codes are so nice to work with is that
there is a convenient algebraic way to associate vectors with polyno-
mials in a certain factor ring. Consider the factor ring Fy[z]/(z™ — 1)
which consists of all polynomials over F, of degree less than n. We
know this ring is isomorphic to Fg as a vector space over Fy. We
can therefore view a code over Fy, as a subset of Fylz]/(z™ ~ 1). To
this end, we will associate a vector (ag, ay,...,an—1) € F* with the
polynomial ag + ajz + agx? + -+ + ap_12™ ! € Fylz]/ (2™ — 1.

We note that since 2™ = 1 in this factor ring, the shifted vector
{an-1,@0,01,--.,0,2) corresponds to the polynomial

zlapF a4+ Fap 12" ) = an_1 +agr+ a2+ Fap_sx" L

More generally, we note that the cyclic shift maps on F} become the
maps {p{z) — 2ip(z) | 0 < j < n—1} on Fylz]/{z" - 1).
Definition 3.5.3. An ideal I of a ring R is a subset of R such that

I is a subring of R and T is closed under multiplication by elements
of R.

For example, in the ring Z of integers, if I denotes the set of even
integers, then I is an ideal of Z since [ is a subring of Z and the
product of any integer with an even integer always produces an even
integer in 1.

Our next result provides a fundamental connection relating cyclic
codes of length n over F, to ideals in the factor ring Ffz]/(x™ — 1).

Theorem 3.5.4. A linecar code C C Flz]/(z™ — 1) is cyclic if and
only if C is an ideal of Fyz]/(z™ — 1}.

Proof. If C is an ideal, then C is closed under the cyclie shift maps
p{x) v 27p(z), so C is a cyclic code. Conversely, the map $r(z) send-
ing p(x) to r{z)p(z), where r(x) € F,[z] is fixed, can be decomposed
into a sum of scalar multiples of cyclic shift maps. Therefore ' is
closed under ¢,y for all r(x) € Fyiz], so C is an ideal. O

We now construct generator and parity-check matrices for cyclic
linear codes directly from polynomials over F,. Let g{z) = go +
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g1+ + gn_xz" "%, be a polynomial over F, of degree n —k, where
g{x)|(z™ —1). Construct a k x n matrix G from the coefficients of the
polynomial g(x):

go H o Gnix O o 0
B B O P
0 - 0 .- W Gnk

Since gn—x # 0, the rank of G is k, so G generates an [n, k] linear
code C.

Let h{z} = (z" ~ 1)/g(x) = hg + hiz + - - + hi7* be of degree k.
We define an (n — k) x n matrix H as follows:

0 - 0 hy hi.y - ho
0 - hy hgr -+ hy O
H = . . .
Ry - hg 0 R |

Note that GH™ = 0, so H is a parity-check matrix for the [n, ¥] linear
code generated by the matrix G.

Example 3.5.5. Let g{z) = 1+ z + 2* € Fyz]. In Fy[x|, we have
271 = (-1 (2> +2+1) (23 +22+ 1), so if we let h(z) = ¥ +2%+1,

then g(z)h{x) = =7 — 1. Following the previous construction, we
obtain the matrices:
SRR W R
H=|011101 0|, G=
1110100 00 1 1010
0001101

These matrices generate a binary linear [7,4, 3] code, which the
alert reader will realize is the binary linear Hamming code H (2, 3).

Definition 3.5.6. Two codes are said to be equivalent if the columns
of the parity-check matrix for one of the codes can be permuted and
multiplied by nonzero scalars to obtain the columns of the parity-
check matrix of the other code.

In the above example, g(z) is a primitive polynomial over F and
the code obtained is equivalent to a Hamming code. This is not a
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coincidence, as the following theorem shows. A proof is given by
Hill [23, Theorem 12.24].

Theorem 3.5.7. Let C be the cyclic linear code whose generator
polynomial is primitive of degree m > 2 over Fy. Then C' is equivalent
to the binary Hamming code [2m1,2m71 — 1 —m, 3].

We mention the following g-ary results. First, not all Hamming
codes are equivalent to cyclic codes. For example, the reader should
check that the ternary Hamming code H(3,2) is not equivalent to a
cyclic code. More generally, the Hamming code H{g, m) is equivalent
to a cyclic code if (m, g — 1) = 1; see Hill [23, p. 161].

5.3. BCH and Goppa codes. We briefly illustrate how to con-
struct an important class of cyclic codes, called BCH codes, named
for R. C. Bose, D. K. Ray-Chaudhuri, and A. Hocquenghem, who
first studied various special cases of such codes.

Let b > 0 be an integer and let o € F,» be a primitive nth root
of unity. Assume that m is the multiplicative order of ¢ modulo n so
that mn is the smallest positive integer so that ¢™ =1 (mod n).

The BCH code will be constructed from the set of roots {a?*¢ |
0 < i < d—2} of a generator polynomial. Here d is called the designed
distance of the BCH code and is chosen so that 2 < d < n. For each
i with 0 < i < d—2, let M (x) be the minimum polynomial of o
Let g(x) be the least common multiple of the polynomials M) (z).
The polynomial g(x) will be the generator polynomial for the cyclic
BCH code.

Codes obtained for certain values of these parameters are known
by various special names. When b = 1, the code is known as a narrow-
sense code; when n = ¢™ — 1, the code is known as a primitive code;
and when n = g — 1, the code is called a Reed-Solomon code. These
special cases were studied before the general construction of BCH
codes was completely understood.

One important feature of BCH codes is that codes of arbitrarily
large minimum distance can be obtained. This property, which is
important for error correction, is seen in the following result.
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Theorem 3.5.8. The minimum distance of a BCH code is no less
than the designed distance.

See Lidl and Niederreiter [37, Theorem 8.4.5] for a proof of this result.

Another important class of codes are the Goppa codes, which were
developed by V. D. Goppa after the BCH codes. We now illustrate
one method to construct these codes. Let g{z) € F,m be of degree
t, where 1 < ¢ < m. Let L = {7y,...,Yn—1} be distinct elements in
Fym which are not roots of g{x). The Goppa code, usually denoted
T'(L, g), is the set of all vectors (cp,...,ca—1) € Fy* for which

Z gl 2B )

r—
where the equality is in the polynomial ring Fym [z].
As with BCH codes, Goppa codes of arbitrarily large minimum

distance can be constructed. This will be illustrated in the following
result; see Lidl and Niederreiter [37, Theorem 8.56] for a proof.

Theorem 3.5.9. The dimension of the Goppa code C = T(L,g) is
at least n — mt and the minimum distance of C is of least t + 1.

Note that the dimension of a Goppa code decreases quite quickly
as the minimum distance increases.

5.4. Perfect codes. We now provide a brief discussion of perfect
codes, that is, codes aver some F,; whose parameters n, k, and d
vield an equality in the Hamming bound of Theorem 3.3.1. This
bound states that if C' is a linear [n, k] code over F, that is t-error
correcting, then

k<1+ (Y)(q—1)+---+(?>(q—1)*) < g

Such a code is perfect if it achieves equality in the Hamming bound,
which means that F? is the disjoint union of the spheres of radius ¢
around the codewords of C.

Theorem 3.5.10. For a positive integer m > 2, the g-ary Hamming
code H(g, m) is perfect.
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Proof. For the g-ary Hamming code C, there are {¢™ — 1)/{g — 1)
codewords. Let Si(c} be the sphere of radius 1 around a codeword
c. We have |51(c)| =1+ (71‘) (g—1) for all ¢ € C. A straightforward
computation shows that |C| - [t + (})(g = 1)] = ¢", showing that the
code C is indeed perfect. O

How many perfect linear codes are there? We now provide a short
list of perfect linear codes, with a brief explanation to follow the list
as to why each of the listed codes is perfect.

(1) {(0,...,0)}.

{2) F}.

(3) A binary repetition code of odd length.

(4) For m > 2, the g-ary Hamming codes H (g, m), which have
parameters [(¢™ —1)/(g — 1), (g™ ~ 1)/(g — 1) —m, 3].

(5) The Golay code over F3 which has parameters [11, 6, 5].

(6) The Golay code over Fy which has parameters [23,12,7].

It is straightforward to verify that the codes listed here are all
perfect. If C has only one codeword (0,. .., 0), the code is perfect for
trivial reasons. Similarly, if every vector in F' is a codeword, then the
code is perfect. The proof that binary repetition codes of odd length
are perfect is left to the reader in Exercise 3.10. We have already
shown that the Hamming codes H{q,m) are perfect. The perfectness
of the binary and ternary Golay codes can be verified easily using
their parameters; see Exercise 3.12.

Rather than proving any details regarding the two Golay codes,
we will simply describe their generator matrices. The ternary linear
Golay code with parameters [11,6,5] has a generator matrix of the
form G = (I5|A), where

01 1 1 1
101 2 2
110 1 2
A_12101'
1 2 21 0
11 2 21
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The binary linear Golay code with parameters [23,12,7] has a gener-
ator matrix of the form G = (112|B), where

O e S S e S Sy S G S S )
oo T e B o B e R == T~ Y
— o~ O O o - - Ok
=N == = T S S i e B )
o B i ol i B i e B e B e S I
[ e R e e A
[ et e B LN i e B o S e i e B Y
e i = T i e B e B e B e B
foam B I == T P o T i B i )
O e bt et (D e e (O et (O
OO O O e O =

The first three codes, while perfect, are considered to be trivial
codes. The following result is a culmination of a tremendous volume
of research in algebraic coding theory, and represents one of the most
fundamental results in the field; see Tietavainen [63] or van Lint [38]
for details.

Theorem 3.5.11 (van Lint and Tietéviinen). A nontrivial perfect t-
error correcting code must have parameters of the Hamming codes or
the Golay codes, whose parameters are [11,6, 5] over Fy and [23,12,7]
over Iy.

In light of this theorem, our earlier list of perfect linear codes is
complete.

It is known that any linear code with the same parameters as the
g-ary Hamming codes is equivalent to a Hamming code; see Hill [23].
It is also known that for all prime powers ¢ there are {nonlinear)
codes that have the same parameters as the Hamming codes but are
not equivalent to a Hamming code.



6. Codes and combinatorial designs 101

6. Codes and combinatorial designs

There are many connections between codes, in particular with code-
words of particular weights in codes, and block designs. In this section
we give a brief survey of some of these relationships.

Let C be a linear [n, k] code over F,. The dual code C'" is the
set of all vectors which are orthogonal to every vector of C:

Cl:{uEFq”[u-c=0, for all ¢ € C}.

Hence C is a subspace complementary to C, justifying the notation.
If C has generator matrix G and parity-check matrix H, then C' has
generator matrix H and parity-check matrix G.

For i =0,1,...,n, let A; be the number of codewords in C' with
weight . We know Ay = 1 and A; = 0 when 0 < ¢ < dg. Let
Alz,y) = >y Aixz'y™~*. This polynomial is known as the weight
enumerator polynomial for the code €. We let A1(z,y) denote the
weight enumerator polynomial for €.

The MacWilliams identity is an extremely fundamental and im-
portant result in algebraic coding theory because it relates, in a sim-
ple way, the weight enumerator polynomial A(z,y) of a linear code
C to the weight enumerator polynomial A*(x,y) of its dual code
Ct. While a proof of the following result is not beyond the scope of
our text, we omit the proof and instead refer the reader to Lidl and
Niederreiter [37].

Theorem 3.6.1 (MacWilllams identity). Let € be a inear [n, k] code
over Fy. Let C* be the dual code of C, and let A(z,y) and AL (z,y) be
the weight enumerator polynomials of C and C*, respectively. Then

Atz y) = ¢ *Aly — =,y + (g Da).

We will now briefly illustrate how codes can be used to construct
various kinds of combinatorial designs. In Chapter 2 we discussed
{v, k, A) designs. We now extend that definition as follows:

Definition 3.6.2. A ¢-(v, k, A) design is a set of v points and b blocks
such that each point occurs in r blocks, each block has k points, and
every t-tuple of points occurs in exactly A blocks. A (v, k,)\) block
design is thus a 2-{v, k, A) design.



102 3. Algebraic Coding Theory

From our earlier discussion in Section 3 of Chapter 2, a 2-(v, &, 1)
design is a projective plane. If A = 1, the design is called a Steiner
system, and is denoted as S{f, k,v). In this terminology, a projective
plane is an $(2,n + 1,7% + n + 1) Steiner system.

We say that a codeword ¢ in a code C' holds o block B if B is the
set of indices of the nonzero coordinates of the codeword c.

Our next result illustrates how certain codes can be used to obtain
combinatorial designs.

Theorem 3.6.3. If C is a perfect binary [n, k, d] code, then the code-
words in C of weight d hold a Steiner system S(t + 1,d,n), where
t=(d—1)/2.

Example 3.6.4. Consider the [7,4,3] binary Hamming code, with
parity-check matrix

1 01 11400
H=11 11 00 1 0
01 1 1001
and generator matrix
100 01 10
01 0 00 1 1
=1 0 1 01 1 1
00 01101

Recall that C' is the span of the rows of . Table 3.2 gives a complete
list of the codewords and their weights.

The weight enumerator polynomial for the code C' is thus seen to
be

Alz,y) =y + 70%* + 72 + o7
and the dual enumerator polynomial is
At(zy) =271 Ay —z,y +2) =y" + T2yt

The code C* is known as a constant-weight code, because every
nonzero codeword has the same weight. We can, of course, deter-
mine this from the coefficients of AL,
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Rows

1

0]

B 1

R, 0

Rs 0

R4 0

R; + Rs 1

By + Ry 1

R+ Ry 1

Ry + Ry 0

Ry + Ry 0

Ry + Ry 0

R+ Ry + Ra 1
Ri+Rs+ Ry 1
Bi+ Rz + Ry 1
Ry 4+ Rs+ Ry 0

B+ R+Rs+ R, 1 1 1 1 1 7
Table 3.2. Codewords in the [7,4,3] binary Hamming code.

= e B R e Rl e R == R e B e B e B I
e o B e T B i v B T e I s i v Y L
[T T N e TR R s R == TR v T e B ey B e R s Y T
[l B e B an Bl an B e R B e R e R
== e B ac I TR R i e B S e Bl e Bl e I L e el R ]
M e G QO s QD e QR QO e D G

Now consider the nonzero codewords of € of minimal weight
(which is d = 3} which are noted in Table 3.2 with an *. The nonzero
coordinates of these vectors determine the following system:

156
267
457
137
235
346
124.

As indicated in Example 2.4.4, this is a cyelic block design generated
by {1,5,6}.

Corollary 3.6.5. For m > 3, the veciors of weight 3 in the binary
Hamming code H(2,m) with parameters 2™ — 2,2™ — 1 —m, 3] hold
a Steiner system S{2,3,2"™ —1).
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Corollary 3.6.6. The vectors of weight 7 in the binary Golay code
[23,12,7] hold a Steiner system 5(4,7,23).

We now state a fundamental result of Assmus and Mattson [2]
that can be used to locate combinatorial designs in certain codes. A
proof is given by Pless [54].

Theorem 3.6.7 {Assmus and Mattson). Let C be a binary linear
[, k,d] code with 0 < t < d. Let B; be the number of codewords in
Ct of weight i. Let s = |{i | By # O and 0 < --- < n—t}. If
s < d —t, then the codewords of weight d hold a i-design and the
vectors of any weight i < n —t such that B; # 0 hold a t-design.

7. Codes and latin squares

In this section we demonstrate some connections between codes and
latin squares. We will show that certain optimal codes may be con-
structed from sets of orthogonal latin squares.

Some of the codes we consider may be nonlinear. We will denote
a code C of length n with M codewords and minimum distance d by
saying that C is an (n, M, d) code based upon g symbols, where now
g is not required to be a prime power.

Let Ag(n,d) be the maximum value of M for which there exists
an (n,M,d) g-ary code (not necessarily linear) with M codewords.
For linear codes, the maximum is M = ¢* in which case we would
have a linear [n, k, d] code over the field F.

Theorem 3.7.1. For all n and q {not necessarily a prime power)
there is a g-ary (n, g%, n— 1) code if and only if there are n—2 MOLS
of order g.

Proof. Let {A® |1 <k <n — 2} be aset of n — 2 MOLS of order
(k)

g, and let o; 7 denote the element in row i and column j of square
A'%)_ Define C to be the set of all tuples (i, , agj), . ,agz_z)) where

0 <i,j < q. The set C will be a code with the desired properties.
Conversely, given a code C, we can obtain a set of MOLS from C in
an analogous fashion. The details are left to Exercise 3.16. |
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Example 3.7.2. We have the following set of 2 MOLS of order 3:

= o

1 2
20
01

[l S I e

1
0
2

O = b2

with the resulting code C shown in the following table:

-t

=
]

o
.

o
&I

B B B e e = OO O e
[ N e T e I e N N R == L
= O N O DD =N =D
SN RS NN =D

When ¢ is a prime power we are able to construct a complete set
of ¢ — 1 MOLS of order g, so we are able to state the following result.

Corollary 3.7.3. Let g be a prime power and n < ¢+ 1. Then
Ay(n,n—1) = g%. Moreover, there is a g-ary MDS code (n,¢*,n—1).

We note that these codes yield an equality in the Singleton bound,
and so the codes are optimal in that they have the largest possible
minimum distance for any codes with the same length and number
of codewords; that is, these codes are maximum distance separating
MDS codes.

In Exercise 2.14, the reader was asked to construct a complete
set of mutually orthogonal F(q%; ¢' ') frequency squares. Using linear
polynomials over Iy, to construct those squares, we can also obtain a
linear code, whose proof we leave as Exercise 3.13. For more details,
see Dénes, Mullen, and Suchower [13].

Theorem 3.7.4. For an integer i > 1 and any prime power q, there
is a linear code over F, with parameters (' — 1)?/(q— 1), 2i,q% "1 —
2¢*71).
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Sintilarty, by using linear polynomials to construct a complete
set of orthogonal hypercubes of dimension d > 2 and order ¢ as in
Exercise 2.15, we can obtain another class of linear codes over Fy.
The proof is left to Exercise 3.14.

Theorem 3.7.5. For any integer d > 2 and prime power q, there 1s
a linear code over F, with parameters [(g1—1)/(g—1)—d,d,¢*"* —d].

For certain sets of parameters, the number of MDS codes is the
game as the number of permutation hypercubes. In particular, the
number of g-ary MDS (n,¢" %, 2) codes is the same as the number of
n — 1 dimensional hypercubes of order g and type n — 2 {see Laywine
and Mullen [31, p. 223]).

8. Notes

The book by MacWilliams and Sloane [41] is, without question, the
primary reference on research related to the theory of error-corvecting
codes. Pless [54] is an upper division coding theory textbook which
does a beauiiful job of tying many coding theory ideas into the the-
ory and construction of combinatorial designs. Chapter 8 of Lidl and
Niederreiter [37] provides a nice introduction to algebraic coding the-
ory over finite fields, while Chapter 13 of the book by Laywine and
Mullen [31] provides some coding theory results and constructions
which are developed via the use of sets of orthogonal latin squares
and hypercubes. We also refer the reader to Hill [23] for a very read-
able treatment of algebraic coding theory which includes connections
to combinatorial designs.

9. Exercises

3.1. Show that the number of vectors of length n over Fj in a sphere
of radius ¢ about a vector is

1+(T)(q—1)+---+ (?)(q—l)f.

Constructing codes.

3.2. Show that every linear [n, k] code arises from some parity-check
matrix.
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3.3. Construct the parity-check and generator matrices for a linear
ternary Hamming code H{3,3).

3.4. Construct a 4-ary code of length n = 4 and distance d = 3
containing 16 codewords.

3.5. Construct a 5-ary code of length n = 4 and distance d = 3
containing 25 codewords.

Properties of linear codes.

3.6. If C'is a linear code over F, and ¢y, ¢z € C, show that d(cy, ¢2) =
wt(c; —c3) and thus the minimum distance de of C can be calculated
as deo = min{wt(c) | ¢ € C,c # 0}. Explain how this can make the
calculation of the linear code’s minimum distance much simpler than
just using the definition of the minimum distance de.

3.7. Show that if C is an [n, k] linear code over F,, then C* is an
[, n — k] linear code over Fy.

3.8. How many binary cyclic codes of length n = 15 are there? Find
generator polynomials for each of these codes and for each of their
dual codes.

3.9. Working over F,, let G be of the form (1| — AT), where A is of
size {n — k) x n. Let H be the matrix (4|7,_;). Show that the code
generated by H is the same as the code for which G is the parity-check
matrix.

Perfect codes.

3.10. Show that a binary repetition code of odd length is perfect.
Explain why a binary repetition code of even length is not perfect.

3.11. For a linear code €7, show that the syndromes S{y) and 5(z)
are equal if and only if we have equality of the cosets y +C =z + C.
If C has a parity-check matrix H, show that S(y) = S(z) if and only
if Hy —z)T = 0.

3.12. Show that the 3-ary Golay [11,6, 5] linear code and the binary
Golay [23,12,7] linear codes are perfect.
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Proofs left to the reader.

3.13. Complete the proof that the code constructed from the vec-
tors that produce a complete set of mutually orthogonal F(g*;¢*~1}
frequency squares in Theorem 3.7.4 has parameters
i 12 . .
q—, 2,‘,’, q2’t—1 - 2q‘r.—1 .
g—1

3.14. Complete the proof that the code constructed from the vectors
that produce a complete set of mutually orthogonal hypercubes in
Theorem 3.7.5 has the parameters [(¢® — 1)/(qg — 1) — d,d, g% ! — d|.

3.15. Prove Lemma 3.2.4.

3.16, Give a complete proof of Theorem 3.7.1.
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Chapter 4

Cryptography

In the first part of this chapter we discuss eryptography, the field of
mathematics and computer science concerned with preventing anyone
except the desired recipient from understanding a transmitted mes-
sage. As in coding theory, the person sending the message replaces
the true message with an encoded form. Unlike coding theory, the
correspondence between original and encoded messages is only known
to the sender and recipient of the message.

The last part of this chapter discusses threshold schemes, which
are used to split a piece of secret information among several individu-
als 5o that a predetermined number of those individuals must collude
in order to reconstruct the secret information. These schemes can
be used to store corporate secrets, launch codes for nuclear arms, or
other information which is thought to be too important to trust to a
single individual.

We present cryptography from a purely mathematical point of
view. When cryptography is used in the real world, nonmathematical
implementation issues can arise. We do not consider such issues here,
but refer the reader to the book by Ferguson and Schneier [16] that
discusses these issues thoroughly.

It is important to remember that the aim of cryptography is not
to send messages without errors. We assume, in fact, that no errors at
all occur during transmission. Thus we assume that the transmitted

109
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message is available to both the desired recipient and to those trying
to break the system. In order to prevent or detect errors during
transmission, the methods of coding theory (as described in Chapter
3) must be used.

1. Introduction to cryptography

The problem underlying cryptography is to transmit a message so
that only the intended recipient is able to understand it. The gen-
eral idea is that the true message (the plaintext) is replaced with
another message (the corresponding ciphertert) before transmission.
The desired recipient will be able to transform the ciphertext back
to its original plaintext form. These transformations often require
another parameter, known as a key. This technique allows the same
general transformation method to be used repeatedly, with different
keys, without compromising security if one key is discovered.

Example 4.1.1. A very simple cryptosystem for English words is
the substitution cipher. We begin with a permutation of the letters
A, B, C,D,...,Z; this permutation serves as the key. In this example,
we will use the following permutation.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
FGHIJKLMNOPQRSTUVWXYZABCDE

To encrypt a word, replace each letter using the permutation. To
decrypt, use the inverse permutation. Thus the encrypted version of
GALOIS is LFQTNX and the encrypted message KNJQI decrypts to
FIELD.

A simple substitution cipher such as the one just described pro-
vides little security, but this is not because it is easy to try all the
possible permutations. There are 26! s 4 - 10%° permutations of the
letters A-Z, and thus it would take over 3 - 10*? years to test all
the permutations at a rate of one million per second. On average,
a gearch like this is expected to test about hall of the permutations,
which gives the search an expected running time of approximately
1.5- 1012 years. This is about 100 times the age of the Earth, which
is estimated to be under 5- 10 years. Thus a blind search for the
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correct permutation is unlikely to succeed in a reasonable amount of
time.

The weakness of the substitution cipher is that an analysis of
the encrypted message based on the frequency with which each letter
occurs, and the frequency with which each pattern occurs, allows the
set of likely permutations to be reduced until an exhaustive search
is possible. Such an analysis may be done by hand. There is, in
fact, a series of puzzle books consisting entirely of famous quotations
encrypted by substitution ciphers; the goal of each puzzle is to break
the code to find the quotation. We provide an example of such a
puzzle in Exercise 4.1. This weakness in the substitution cipher shows
that the question of whether a cryptosystem is secure depends on
much more than just the number of possible keys.

The substitution cipher in Example 4.1.1 is a basic example of
a eryptosystem. In order to be more precise, we give the following
definition.

Definition 4.1.2. A cryptosystem is a pair of functions F, D, each
of which takes two arguments: a message M and a key K. For each
key Kp there must be a key Kp such that D{E(M, Kg}, Kp) =M
for every message M, The key K is the encryption key while Kp is
the corresponding decryption key.

Although this definition is intentionally abstract, in practice it
will always be clear what the messages are, what the keys are, and
what the encryption and decryption functions are.

A cryptosystem D, E is said to be secure if it is not computa-
tionally feasible to determine the true message M from an encrypted
message E{M, Kg). This is not a formal definition; a cryptosystem
may be secure only because of the lack of computational power in
contemporary computers. Indeed, several cryptosystems which were
considered secure in the 1970s are now thought to be insecure. One
such system is the Data Encryption Standard (DES), which was de-
veloped in the 1970s and is now obsolete because an exhaustive search
of the all possible keys has become feasible. Landau [30} gives a full
description of DES and the methods that were developed to try to
break it.
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2. Symmetric key cryptography

A cryptosystem is called a symmetric key system if the keys Kp and
Kg are always equal. A substitution cipher based on a self-inverse
permutation is an example of such a system. There are many well-
known symmetric key crypiosystems. These are used, for example, to
encrypt transmission by automatic teller machines over public phone
lines. Symmetric key cryptosystems tend to be designed for imple-
mentation in custom hardware with applications in which the ability
to encrypt and decrypt information at a high rate is crucial.

The drawback of symmetric key cryptosysterns is that the key
must somehow be known to both parties before communication be-
gins. This is reasonable for an automated teller machine which can be
programmed with an encryption key when it is installed, but it is not
reasonable for individuals who cannot meet but wish to communicate
over a long distance. We will not study symmetric key cryptosystems
in depth in this book. In Section 3.3 we will show how public key
cryptography can be used to securely transmit a shared key over a
public channel.

We present two examples of symmetric key cryptosystems. The
first example, known as the Advanced Encryption Standard (AES)
cryptosystem, uses finite flelds. The second example is a cryptosystem
based on latin squares.

Example 4.2.1. The Advanced Encryption Standard (AES) cryp-
tosystem is widely used in contemporary applications. It was the
winner of a competition sponsored by the government of the United
States to produce a strong symmetric key cryptosystem. This cryp-
tosystem is also known as Rijndael; it received the name AES after
winning the competition. The AES cryptosystem and its development
have been fully documented by its designers Daemen and Rijmen [9].

Like many symmetric key cryptosystems, the AES cryptosystem
operates on blocks, which are fixed length sequences of binary digits
(bits). The cryptosystem acts by breaking the message into blocks
and replacing each input block by an cutput block of the same length.
Thus the cryptosystem can be viewed as a permutation of the set of
blocks, parameterized by a key. The overall permutation is obtained
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by taking a simpler permutation and iterating it several times. Each
of these iterations is called a round; each round has a different key,
and each of these round keys is computed from the overall encryption
key.

We now give an extremely brief description of how the AES cryp-
tosvstem works, while refering the reader to Daemen and Rijmen [9]
for details. The blocks in AES are 128 bits long; these blocks may be
viewed as vectors of length 128 over F,. Each round of AES consists
of three steps: a key application step, a nonlinear step and a linear
step. Each of these steps replaces the block with a new block., Each
AES round key is 128 bits long, and the key application step in each
round consists of adding the block and the round key as vectors over
Fy (this is often called an XOR operation). The nonlinear step in
each round proceeds by breaking the 128 bit block into sixteen bytes
(8 bit units), considering each byte as an element of Fss, and replac-
ing each element with its multiplicative inverse. The linear step in
each round uses a fixed bijective linear map from Fi}2® to itself. The
number of rounds in AES is determined by the length of the overall
key: with longer keys, more rounds can be performed, which is be-
lieved to strengthen the security of the cryptosystem. It follows from
our description that an algebraic formula for AES (and a fixed key
length) can be obtained; an explicit formula is given by Ferguson,
Schroeppel, and Whiting [17].

Example 4.2.2, We describe a simple symmetric key cryptosystem
using pairs of orthogonal latin squares. The security of this cryp-
tosystem has, apparently, not been investigated.

Let Ly and Ls be two MOLS of order n based on 0,1,...,n— 1.
We will identify our messages with pairs (7,7) with 0 < 4,7 < n.
To encrypt a message (i, ), find the unique location (k,{} where the
pair (¢, 7) occurs when Ly and Lg are superimposed. The encrypted
message is (k,1). To decrypt {k,1), superimpose the squares and read
the pair (Z, 7) that occurs at location (k, 1) in the superimposed square.

An interesting property of this cryptosystem is that the key can
be canonically split into two halves, L, and L. Possession of just one
half does not allow the message to be decrypted (although knowledge
of L1, for example, might make an exhaustive search for Ly feasible).
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‘We will discuss this property in the section on threshold schemes
below.

3. Public key cryptography

Definition 4.3.1. A public key cryptosystem is a cryptosystem in
which a recipient computes a pair of keys Kg, Kp and announces
the key Kg (which is called the public key) to all potential senders.
The private key Kp is kept secret. Thus anyone who possesses the
public key can encrypt a message for the recipient, but {if the system
is secure} only someone who possesses the private key can decrypt
the message.

Public key cryptosystems are in wide use at the beginning of the
twenty-first century. One important use is in secure communication
on the internet.

Note that in order for a public key cryptosystem to be secure,
it must not be computationaily feasible to compute the private key
Kp from the public key Kg; doing so is called a direct attack on
the cryptosystem. It must also not be feasible to compute M from
E(M, Kg) without computing K p; this is called an indirect attack.

We now present two public key eryptosystems: the RSA cryp-
togystem and the double round quadratic cipher. Each of these cryp-
tosystems is notable for its use of algebraic methods. We will also dis-
cuss public key cryptosystems based on elliptic curves and on Dickson
polynomials later in the chapter.

3.1. The RSA cryptosystem. RSA is perhaps the most well stud-
ied and widely used public key eryptosystem in the early twenty-first
century. It was developed in 1978 and named for its inventors: Rivest,
Shamir, and Adleman [55].

We will define the RSA cryptosystem by deseribing how it works.
‘We identify the set of possible messages with integers 0,1,2,..., N —1,
so that there are N distinct messages. Let n = pg be a fixed integer,
where p and g are large primes. The number n will be announced
publicly but the prime factors p, g will be kept private.
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Now choose k& < n such that (k,¢(n)) = 1, where ¢ denotes
Euler’s function. Note that ¢(n) = ¢(pg) = ¢(p)dlq) = (p ~1){g—1)
is easy to compute with knowledge of p and ¢ but believed to be
difficult to compute without a factorization of n. Now choose d such
that kd = 1 (mod ¢(n)). This inverse will exist because k and &(n)
are relatively prime.

The public key for this cryptosystem is the pair (n, k) and the
encryption function is

E{M,(n, k) = M* (mod n),

where M denotes a message. The private key is the pair (n,d) and
the decryption map is

D(C, (n,d)) = C?  (mod n),

where C denotes a received ciphertext. We leave it as Exercise 4.4 to
show that

(MM = MM = M'= M (mod n),

and thus the decryption function is indeed the inverse of the encryp-
tion function.

The security of this cryptosystem rests on the difficulty of the
factoring problem: “Given an integer n of the form pg, where p and
q are distinct primes, find p and ¢.” The ability to solve this problem
efficiently would allow an attacker to determine a private key {n,d)
from a public key (n, k). In particular, potential advances in quantum
computing could make factoring extremely efficient, which could make
the RSA cryptosystem obsolete.

We note that our description of the RSA cryptosystem, while
formally correct, ignores many practical issues that would be faced in
an implementation of the algorithm. These practical issues include:
how to turn a computer document into a sequence of message units,
how to choose the number n = pg, and how to choose the public key k.
A poor implementation might make insecure choices that allow the
implementation to be broken.

One implementation detail crucial to the RSA cryptosystem is
known as padding. The design of the RSA algorithm is such that
the messages represented by 0 and 1 will always be enciphered as
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themselves; this allows the attacker to recover partial information
about the plaintext message from the ciphertext. Also, if k& is small
and M is small, then it is possible that M* < n, in which case the
modular arithmetic gives the same result as nonmodular arithmetic.
To avoid these problems, secure implementations of RSA use only a
subset of the possible values to encode messages. These values are
then padded with random bits so that no small message numbers are
ever passed into the encryption algorithm. The decryption algorithm
is modified to discard the padding, leaving the correct message.

An example that illustrates the RSA cryptosystem is given in
Exercise 4.5.

3.2. Double-round quadratic enciphering. We now present a
public key cryptosystem, known as the double-round quadratic cipher,
which is based on linear algebra and finite fields. This cryptosystem
is presented in detail by Koblitz [27]. The public key consists of a
finite ficld Fy~, a basis for this field over F,;, and n quartic polyno-
mials in n variables over F; (here, quartic means that the sum of
the exponents of the variables in any term will be no more than 4).
These public polynomials allow the sender to compute the encryption
function F: F}' — F'. The private key is, as we will see, a formula
closely related to the inverse of this function.

To form the cryptosystem, choose a prime power ¢ such that
g = 3 (mod 4), and choose an odd integer n > 1. We will see later
why these restrictions on ¢ and n are necessary. Let {by,....5,} be
a basis for F- over Fy; this basis will be made public. Then choose
three secret invertible n X n matrices A, B, and ' over F,. These
determine linear maps fa, [z, and fo from F- to itself, using the
vector space isomorphism F» 2 F7 induced by the basis B. Let ¢

q
be the function x — 2% from Fy» to itself.

The encryption map is the composite function
E=focogofpogofa.

The public key consists of a certain description of this function. By
viewing £ as a nonlinear map from F? to itself, we can decompose
E coordinatewise relative to the basis B. Each coordinate function
of E will be given by a fourth-degree polynomial with coefficients in
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F,. The public key consists of these coordinate polynomials. This
decomposition is explicitly demonstrated in Example 4.3.2 below.

We are now ready to define the set of messages for this cryptosys-
tem. We will consider x,y € F» to be equivalent if z = £y; the set
of messages is the set of equivalence classes of Fi;». Because ¢ = 3
(mod 4) and » is odd, for every o € Fin, exactly one of 2 or —x is
in the range of the squaring map g (see Exercise 4.3). Thus g may
be tegarded as a bijection from M to M, for (—z)? = (2?}. More-
over, the linear maps fa, fg, fc all respect the equivalence relation
(because, for example, fa(—z) = —fa(z)). Thus we may view E as
a well-defined map on the set of messages.

To decrypt a message E{M), we use the fact that the map

g s gl D/

is {up to a factor of £1) the inverse of the squaring map g. This is
because

()@ N/ 2 pla"H1/2) 12 4] g,

Note that n must be odd so that ¢™ + 1 is divisible by 4.

The decryption function is
D= f;l ogil o fgl 0971 e} fEl

It is straightforward to compute the inverse maps f;l, f 51, and fo L
from A, B, and C, respectively.

Example 4.3.2. We give a simple example of the double-round qua-
dratic cipher. Let ¢ = 3 and n = 3; we construct Fjs as the splitting
fleld of the irreducible polynomial 2 + 222 + 1 over F3. Let o be a
root of this polynomial in Fjs, so that B = {1, a,a?} is a polyno-
mial basis of Fys over F3. We view each element & € F3s as a vector
(zo,x1,22) in F§ using the basis B.

We choose the following matrices for A, B, and C:
01 0 00 2 011
A=|1 0 0], B=1l0 1 0}, C=11 0 0
0 01 2 00 0 0 1
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This gives us the formulas

fA(I’[),.’L‘],iﬂg) = ($1,I‘0,.’L‘2),
folzo, x1,22) = (22,71, 220},

folxo, 21, 2) = (21 + 2, T, T2).

We compute the formula for the squaring map g: « — z? relative to
our hasis:

g, r1,22) = :cﬁ + 2zpTye + (:Lf + 2zprg)a? + 2w xae® + :{:%05‘1

= (22 + 2170 + 202) + (2o7, — 23
+ (21 + 20Tz + 122 + ¥3)0’.
Recall that E = foego fgogo fa. Write E(zo, 21,22) = (yo, 1, ¥2)-
A simple but long calculation in F§ gives

Yo = 2x3zy + 3Tt + 235y + 230 + 22573 + 2p7173,
y) = T4 + 2ex; + 227 + 22370 + 2282120

+ 2:r(2)ac3 + a:f:r% + 2xoxs 4 2y2h + 225,
Yz = :170.1:[1” —+ ;r:‘l1 + 2$ga:2 + a:ﬁ:c1$2 + :r:i’xg-i—

akad 4 2wpxial + 22l + 2woxd + 2xy 28 4+ 223,

The public key consists of these three polvnomials. To encrypt a
message (To,Z1,T2), we evaluate the polynomials at (xg, 21, x9) to
obtain the ciphertext (yn,y1,y2). Exercise 4.7 asks for the formulas
of the corresponding decryption function.

In order to break the double-round quadratic cipher, it would be
sufficient to determine A4, B, and C from the public polynomials. This
seems to involve decomposing the multivariate fourth-degree polyno-
mials ag a composition of polynomials of lower degree. There is no
known method to accomplish this decomposition efficiently, and the
double-round guadratic cipher is believed to be secure. One reason
that the RSA cipher is more widely used is because its security is
better established.

A single-round quadratic cipher could be defined in which the
encryption map is of the form fg o g c fa. Such a cryptosystem is
known to be insecure; see Koblitz [27].
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3.3. Key exchange, the Diffie-Hellman system, and discrete
logarithms. When only one small message needs to be transmit-
ted, the rate at which data is sent is often of secondary importance.
I many large messages must be exchanged, however, the speed of
transmission becomes crucial. Public key cryptosystems tend to be
computationally inefficient because they perform modular arithmetic
with very large moduli. For example, the moduli used in the RSA
cryptosystem may be of magnitude 1050 or larger in contemporary
applications. Such numbers are too large to be directly manipulated
by computer processors, so specialized software is used to perform
these computations. Because symmetric key systems use numbers
that can be directly manipulated by computer processors, they are
often much faster than public key cryptosystems. In some cases,
symmetric key encryption is performed using hardware specifically
designed for the cryptosystem employed, which further increases the
encryption speed. One of the criteria used in selecting AES from other
possible cryptosystems was the existence of eflicient implementations
for desktop machines, custom encryption processors, and embedded
processors on smart, cards.

The disadvantage of symmetric key cryptosystems is that the key
must be known to both parties before the cryptosystem can be used.
It is obvious that the key cannot be transmitted unprotected from
one party to another. The method of key exchange allows two parties
to use public key cryptography to obtain a shared key which is then
used for a symmetric key cryptosystem.

Example 4.3.3. We describe a simple key exchange system that
can be implemented with any public key cryptosystem. In order to
communicate with user B, user A chooses a random encryption key K.
User A then encrypts K with user B’s public key and sends this
encrypted message to user B, who decrypts K with his private key.
Now users A and B may use a symmetric key cryptosystem for further
communication. The key K has only been sent in encrypted form; as
long as the public key cryptosystem used to transmit K is secure, and
the symmetric key cryptosystem is secure, the overall communication
will be secure.
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Note that in this “exchange” system the key was sent in only one
direction. Thus although user A can be confident that only user B
can decrypt the key, user B cannot be sure that it was user A who
sent it. The Difie—Hellman key exchange overcomes this problem by
having each user send an encrypted key to the other.

Diffie and Hellman [14] proposed a method for key exchange using
finite fields. To set up the system, users A and B first agree on a
prime power g and a primitive element g of F,, which they assume
are publicly known. Users A and B choose secret numbers o and b,
respectively. User A transmits g% to user B, who computes (g%)® =
g®. User B transmits g to user A, who computes (g*)® = g". The
users thus agree on the value of g°® = 4% and they can use it as
a common key for another cryptosystem. Note that user A cannot
easily compute b from g°, user B cannot easily compute a from g%,
and a third party cannot easily compute a or b.

The Diffie—Hellman method can also be used as a public key eryp-
tosystem, as we now explain. Fix a prime power g and let messages
be elements of F,. To set up the cryptosystem, user A chooses a
primitive element ¢ of F, and some secret value 2 <a < g — 2. User
A’s public key is the tuple (g, g, g%); the private key is the value of
a. To send a message m to user A, user B chooses a secret value
2 < b < ¢ — 2 and sends the pair (§°®m, ¢°) to user A. User B can
compute g% = (¢%)* without knowing a. User A, who knows the value
of a, computes g** = (g*)* and then computes m = {g*®m)/g®.

A potential attacker of the Diffie-Hellman key exchange will know
g, g, 9%, and g*. An attacker of the Diffie—Hellman cryptosystem has
similar information. It is clear that if the attacker could compute a
from the pair (g, ") then the cryptosystems would both he vulnera-
ble. No efficient means of performing this computation are known.

Definition 4.3.4 (The discrete logarithm). Let g be a primitive el-
ement of F,. The discrete logarithm function is the unique function
log,: Fy — {0,1,...,¢ — 2} which makes the equation

a= glogg {a)

hold for every a € Fy.



3. Public key cryptography 121

The function log, is thought to be very difficult to compute, al-
though its inverse a — g% is very easy to compute. If an efficient
method for computing discrete logarithms were discovered, the Diffie—
Hellman key exchange (and the Difie—Hellman cryptosystem} would
no longer be secure. It is known that computing discrete logarithms
in F; is of about the same level of computational difficulty as factoring
an RSA modulus n = pr when ¢ and n are of comparable size,

Several formulas for log, have been established, but they are not
computationally feasible. We state one such formula in the next the-
orem, which is proved in Mullen and White [49].

Theorem 4.3.5. Let p be a prime and let g be a primitive element
of Fyy. The following formula for the discrete log, in Fy, holds:

p—2 o
(3) logg(a):—1+zg_j_1.

=1
3.4. Elliptic curves and elliptic curve cryptography. In this
section we briefly discuss elliptic curves over finite fields and describe
their use in modern cryptosystems. An elliptic curve over a finite
field is defined using an equation of the form

E:y? + may+ azy = 2° + ap2® + a17 + ag,

where ay,az,us,a4,06 € Fy. The elliptic curve consists of all the
points (z,y) in Fj satisfying the equation together with another point
@ not in qu called the point at infinity. The solutions in qu are called
the F,-rational points, or just rational points when the field is clear
from the context. In order to define an elliptic curve, the equation
must be smooth, which means that it is impossible to find values for
x and y in an algebraic extension of F, such that (x,y) is a point on
the curve where the partial derivatives

2y +a1r + as,
2% + 2001 + g — a1y,

are simultaneously zero.

To simplify the theory, it is common to simplify the defining
equation of an elliptic curve by making variable substitutions on the
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variables. If the characteristic of the field is not 2, then we can reduce
E to the curve E’ defined by

y? = a® + box® + byz + bg

via the substitution y — y — a12/2 — a3/2 (we leave the verification
to the reader). Furthermore, if the characteristic of F, is not 2 or 3,
then by using the substitutions x +— (z — 3b2)/36,y — y/216 we can
further reduce the curve to the form

(4) yv¥=a2tazr+b,

where a,b € F,. From here forward we will assume that our elliptic
curve is of this form and that it is defined over a field F, whose
characteristic is not 2 or 3. Elliptic curves can be studied over fields
of characteristic 2 or 3, but the theory is more complicated because
substitutions such as those above cannot be performed. In the cases
we are interested in, when the characteristic is greater than 3, an
elliptic curve in the form of (4) is smooth if and only if its discriminant
—16(4a® + 27b%) is nonzero.

We now define a notion of addition for the points on an elliptic
curve.

Definition 4.3.6. Assume that P = (z;,9:) and Q@ = (z2,y2) are
points on an elliptic curve in form (4). Then we define P+Q = (za, y3)
where

w3 = A — 7 — 22, y3 = M2 — 23) — Y1,

with
NP2 0 if P+ Q,
Xe — I
2
A= ep o)
2

We leave it as a challenging exercise to show that, with the operation
just defined, the set of points on an elliptic curve forms an Abelian
group (see Exercise 4.16). Note that ) = (oo, o) serves as the iden-
tity of the group, and for each point P we have —P = (zy, —11).

Example 4.3.7. Consider the elliptic curve E: y? = 2% 4246 defined
over the field ;1. Then (2,4) + (3,5) = (7,2), (2,4) + (2,4) = (5,9),
and (2,4) + (2,7) = O.
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Since the group of rational points of an elliptic curve is a finite
group under the addition operation defined above, each point in the
group must also have finite order. Let the order of the group be n.
The elliptic curve discrete logarithm problem is the following: Given
two points P, @} in the group of rational points, determine the unique
integer ¢ with 0 < ¢ < n — 1 such that

Q=iP=P+---+ P,
e et
i times
provided that such an integer exists.

‘We now turn to the cryptographic uses of elliptic curves. These
have practical appeal because the addition operation for rational
points of an elliptic curve involves only a few arithmetical operations
in the underlying field F, and so is easy to compute. Moreover, as
indicated by Menezes [44, p. 13], the elliptic curve discrete logarithm
problem is believed to be more difficult to solve than the discrete log-
arithm problem in finite fields of approximately the same size. This
provides excellent motivation for the use of elliptic curve eryptosys-
tems over Diffie-Hellman type cryptosystems.

Example 4.3.8. One elliptic-curve cryptosystem can be defined in a
manner similar to the Diffie—Hellman system. A recipient chooses a
finite field F,, an elliptic curve £ over the finite field, and a rational
point P on the curve. The messages are the rational points of the
elliptic curve.

To make a key pair, the recipient chooses a secret value a be-
tween ( and the order of P. The recipient’s public key contains the
information about the field and curve together with values of P and
aP. The private key is the value of a.

.To send a message M to this recipient, a sender chooses a value
b and computes bP and b(aP) + M. These values are transmitted to
the recipient, who computes a(bP) = b(aP)} and then

M = (b(aP}+ M) — (b(aP)).
Another advantage of elliptic curve systems is that each user may

use a different elliptic curve while all users use the same underlying
field. Thus each user has the ability to choose a new elliptic curve from
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time to time without changing the field; this allows implementations
to be optimized for working with a particular field.

3.5. Digital signatures. Electronic contracts are far more vulner-
able to manipulation after adoption than printed contracts. This
situation is underlined by the fact that there is no physical signature
proving that an individual or company accepted the contract. In a
legal context, it is desirable to have proof that an individual or corpo-
ration truly did accept a particular electronic contract and that the
wording of this contract has not changed since it was accepted. Such
proof can be constructed via digital signature schemes.

Definition 4.3.9. A digital signature scheme consists of two func-
tions § and €. The signature function § takes a message M and
returns another message S(M), called the signature. The check func-
tion ' takes a message M and a purported signature s. If s = S(M),
the check function returns 1, and otherwise the check function returns
0. The check function is made public, but the signature function is
kept private. In order for the system to be secure, it must be in-
feasible to compute signatures with knowledge of the check function
alone.

We now give an example of how signature schemes are used on
the Internet. Before sending personal information, a user wishes to
verify that a website is authentic {not an imposter). To facilitate
this process, the website publishes a check function C that is known
to the user’s web browser. (In reality, a fixed check function with
extra parameters is used for all websites, and a particular website only
publishes values of the extra parameters.) To perform the verification,
the user's web browser chooses a message M and transmits it to the
website. The website computes S{M) and sends the signature back
to the user’s browser. The browser receives a purported signature
s and checks whether C'(M,s) = 1. If the equation holds, then the
browser will tell the user the website is authenticated. In order to
impersonate the website, it would be necessary to know the website’s
(private) signature function.

Many public key cryptosystems can be used “backwards” to im-
plement digital signature schemes. First, a user creates keys Kg and
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Kp for a public key cryptosystem with encryption function E and
decryption function . The user publicizes the decryption key Kp
and keeps the encryption key Kg secret. The signature scheme is
defined by letting S(M) = E(M, Kg) and letting C'(M,s) =1 if and
only if D(s, Kp) = M. This scheme will be secure if it is not possible
to obtain the enecryption key from knowledge of the decryption key.
The RSA cryptosystem, in particular, can be used for this purpose
(see Exercise 4.8).

Another digital signature scheme can be obtained using finite
fields. We identify our messages with elements of Fj, for p a fixed
prime. Let g be a primitive element of F, and let A < p be a fixed
secret integer. The signature for a message m is a tuple (g*,r, s) such
that

g™ =(g")y"r" (mod p).
An individual will publish the prime p, a primitive element g of Fj,
and another element ¢ = g" for some secret number k. The signature
assigned to m is a pair (r,5) such that g™ = ¢'r° (mod p), where
r = g* with (k,p — 1) = 1. To see that s can be found, note that
g™ = (g (g") = g"g* = gM e som = hr 4+ ks (mod p - 1),
and thus s = k~1(m — hr) (mod p — 1).

3.6. Dickson cryptosystems. Our final example of a cryptosystem
and signature scheme is based on Dickson polynomials. In Section 6.4
of Chapter 1, we discussed a few properties of these polynomials,
which are defined for a parameter a € F,, by

Doz, a) = Lng/éj n (n ;— i>(_a)iwn—2i'

. n—1
=0

In particular, we showed that the polynomial D, (x, a) induces a per-
mutation of Fy if and only if (n,¢” — 1) = 1. In this section we briefly
discuss a few cryptographic applications of Dickson polynomials. We
will not discuss the security of these systems. We will also omit the
proofs; the reader may refer to Lidl, Mulien, and Turnwald {35, Sec-
tion 7.1] for further details.

We first describe a Dickson polynomial analogue of the RSA
cryptosystem. It is known (see Lidl, Mullen, and Turnwald [35, p.
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156]) that the Dickson polynomial D, (z, 1) induces a permutation of
the ring Z,, with n = pi*---pf if and only if {n,v{n)) = 1 where
v(n) = lem {p;"
given by the Dickson polynomial D, (x, 1) where nm = 1 (mod v(n)).
Thus if n = pg with p and ¢ both large primes, we have a system anal-

ogous to the original RSA system. One may also replace the value

(p? — 1)}. Moreover, the inverse permutation is

a = 1 by @ = —1 with similar results.

Dickson polynomials can also be used to obtain signatures. The
map = — x* in the RSA system is replaced by the map = — Di(z,a)
where a = 1. For example if user A wants to sign a message m,
then user A computes Dy, (m, a) = s (mod n) which is sent to user B.
Then user B computes D, , (s,0) = De, (Dyg, (m,a),a) =m (mod n).
Thus the receiver knows that the message came from user A, be-
cause only user A knows the private key ds. In addition, user A
could compute D, (s, a) and send this to user B, who then calculates
D, (s,a) = m (mod n).

We now illustrate how Dickson polynomials can be used for key
exchange. Let ¢ be a prime power which is made public, and choose
another public element zg = v7~ 1 + 471 where « is a primitive
element in the field F,2. Users A and B choose secret integers a and b.
They then publish the public values D, (xg, 1) and Dy(zq,1). User A
computes Dg(Dp(z0,1),1) = Dap{zg, 1) and similarly B computes
Dy(Dy(z0,1),1) = Dyga(mg, 1). Users A and B have thus established
the common key D,,(xg, 1} = Dya(zo, 1).

As a final example of the use of Dickson polynomials in eryp-
tography using a finite field £}, we illustrate the construction of a
symmetric key cryptosystem. Let (k,¢® — 1} = 1. One enciphers
a message m as Dp{m,a) = ¢; the deciphering is accomplished by
calculating D;{c,a) where ki =1 (mod ¢° — 1).

Lidl, Mullen, and Turnwald [35, pp. 160-161] discuss possible
attacks on Dickson cryptosystems.

4. Threshold schemes

Suppose there is a secret piece of information s. A (k,t)-threshold
scheme {or {k,t) secret-sharing scheme) is a system of k objects,
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called shares, and a numeric threshold ¢ < & such that any collection
of £ shares allows s to be computed, but no collection of fewer than ¢
shares allows s to be computed. In many applications, we would like
to know that any collection of fewer than ¢ shares gives absolutely no
information about s.

Example 4.4.1. We present a threshold scheme based on the La-
grange interpolation formula {Theorem 1.6.1). Let k(z) = by + b1z +
--« 4+ bi_12'™! be a polynomial in F[z] of degree at most t — 1. The
secret s is the coeflicient by. Choose nonzero elements ¢1, ..., ¢, € Fy.
The shares are pairs of the form (e, k(e;)).

Given t pairs of the form (¢, k(c;)), with each ¢; # 0, there is a
unique polynomial function of degree at most ¢ ~ 1 which contains all
these pairs; this polynomial can be obtained by Lagrange interpola-
tion. But given t — 1 pairs, for every pair (0, ¢) there is a polynomial
function containing all # — 1 pairs and containing (0,¢). Hence no
collection of £ — 1 shares gives any information about the secret.

We now present a second secret sharing scheme that uses latin
squares.

Definition 4.4.2. A critical set for a latin square of order n is a
collection C of triples {(i,,m;)} C {1,2,...,n}3 such that (1) there
is a unique latin square S of order n such that S{i,j) = n,; for
all (4, j,ni;) in the collection C, and (2) no proper subset of C has
property {1).

To construct the secret sharing scheme, we identify the secret
information with a fixed latin square 1. We then find a eritical set C
for L., and give each user one element of the critical set.

Example 4.4.3. Let L be the following latin square.

T2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

The set C = {(1,1,1},(1,2,2),(2,4,3), (3,2,4)_, (4,3,2)} is a critical
set for L, as the reader may verify.
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Example 4.4.4. Let M be the latin square

1 2 3
2 31
3 1 2

and let § = {(2,1,2),(3,2,1),(1,3,3)}. We claim that if M is the se-
cret, then S is a (3, 2) secret-sharing scheme. Direct computation can
be used to show that any two-element subset of S extends uniquely to
the latin square M. Clearly, a one-element subset cannot determine
a latin square.

The secret-sharing scheme just described leads us to the question
of which partial latin squares of order n can be extended to latin
squares of order n. Not every partial latin square extends; for exam-
ple, the following partial 2 x 2 square cannot be completed 1o a latin
gquare of order 2.

1

In 1960, Evans [15] conjectured that any partial n x n latin square
with no more than n - 1 entries filled can be completed to a latin
square of order n. This conjecture was verified by Smetaniuk [60]
in 1981.

Theorem 4.4.5 (Smetaniuk). Any particl latin square of order n
with at most n — 1 cells filled can be extended to o latin square of
order n.

The value n — 1 in Smetaniuk’s theorem is optimal; see Exercise 4.9.

A second threshold scheme with two shares can be constructed
using latin squares as described in Example 4.2.2.

5. Notes

Schneier [56] gives a thorough account of modern cryptographic meth-
ods used in real-world applications. A popularization by Kahn [26]
gives a thorough account of the history and development of cryptog-
raphy. General information about cryptography may be found in the
Handbeok of Applied Cryptography [45].
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Lidl and Niederreiter [36] describe a class of symmetric key cryp-
tosystems known as stream ciphers. They also give a thorough in-
troduction to the theory of discrete logarithms. More information
on cryptosystems and threshold schemes using latin squares may bhe
found in Laywine and Mullen [31].

Koblitz [27] gives an introduction to several cryptosystems based
on finite fields, including the double-round guadratic cipher, as well
as cryptosystems based on elliptic curves. The elliptic curve systems
are of practical interest because although subexponential algorithms
are known for factoring integers and computing discrete logarithms in
finite fields, there are no known subexponential algorithms for com-
puting discrete logarithms in general elliptic curves (which have a
group structure but not a field structure).

Ferguson and Schneier [16] give a detailed introduction to the
practice of implementing cryptographic methods securely. They em-
phasize the difficulties involved in implementing secure systems in
real-world applications. These implementations must involve both
secure cryptosystems and secure practices by the users of the cryp-
tosystems.

Axn understanding of the subject of computational complexity, as
described by Papadimitriou [51], is essential for assessing the security
of cryptosystems.

6. Exercises

4.1. The following text has been encrypted by a simple substitution
cipher using the letters A-Z. The punctuation and spacing are un-
changed. Determine the original message.

“PEI BGPEIBGPDLDGVY OCIY VCP YPQOZ
HQKI BGPEIBGPDLY AILGQYI DP DY QYI-
SQN: EI YPQODIY DP AILGQYI EI OINDFEPY
DV DP GVO EI OINDFEPY DV DP AILGQYI
DP DY AIGQPDSQN.” - EIVKD HCDVLGKI

4.2. Let g be a power of an odd prime and let « € F7 be fixed. Show
that there is a y € F¥ with y? =z if and only if 200 1/2 = 1 in F.
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4.3. Let ¢ be a prime power such that ¢ = 3 (mod 4) and let n be
odd. Use Exercise 4.2 to show that —1 is not a perfect square in Fpn.
Use this to show that for any x € F», exactly one of x and —x is a
perfect square.

Public key cryptosystems.

4.4. Show that if n = pq is a product of distict primes, M is arbitrary,
and kd = 1 {mod ¢(n)), then M*¥ = 1 {mod n). This verifies the
decryption step of the RSA cryptosystem.

4.5. The RSA cryptosystem is used with the public key n = 517537
and k = 17. Find the corresponding decryption key d any way you
can. Then decrypt the following sequence of message units, each of
which represents one letter or space. To convert a decoded message
unit A to a letter, first reduce M modulo 27. Then A =1, B = 2,
and so onto Z = 26. If M = 0 (mod 27), then M represents a space.

301985 260072 280087 320845 378568 391456 376739
311874 229335 419880 32739 20292 192273 70755
280987 301985 144317 280987 507536 378568 391456
301985 144317 357744 192273 126852 491968 475436
350585 378935 285376 2046 280987

4.6. Verify the formulas for y, 31, and y in Example 4.3.2.

4.7. Compute the formulas for the decryption function in Exam-
ple 4.3.2.

4.8, Show that the RSA cryptosystem can be used as a digital signa-
ture scheme. To do this, show that an attack on the digital signature
scheme formed from the RSA cryptosystem can be turned into an at-
tack on the RSA cryptosystem itself. Thus if the RSA cryptosystem
is secure, then so is the signature scheme formed from it.

Latin squares.

4.9. Prove that for each n > 2 there is a partial latin square L of
order n with exactly n cells filled such that L cannot be extended to
a latin square of order n.

4.10. Show that any (n — 1) x n latin rectangle, where n > 2, can be
completed to a latin square of order n in exactly one way.
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Discrete logarithms.

4.11. Make a table showing the discrete logarithm of each nonzero
element in F7 with respect to the primitive element g = 3.

4.12. Let log, denote the discrete logarithm, where g is a primitive
element of the finite field F,;. Prove that the following identities hold
for all a,b € F; and n € N:

log,(ab) =log,(a) +log,(b) (mod g—1),
log,{ab™") = log,(a) — logy(b) (mod g —1),
log,(a") = nlog,(a) (modg—1).

Elliptic curves.

4.13. Determine all 13 of the rational points of the elliptic curve
Eiyl=24+2+6

defined over the field Fi;.

4.14. Make an addition table for the group operation on the rational
points of the elliptic curve E: y? = z* + z + 6 defined over the field
Fi1, which were found in the previous exercise.

4.15. Consider the elliptic curve E : y? = x® 4+ 7z defined over the
field Fy3. It can be shown that there are 18 rational points on F.
Find each of these rational points and determine its order. Make an
addition table for the group operation on the set of rational points of
this curve,

4.16. Prove that the addition operation for points on elliptic curves
is commutative and has O as an identity element. Then prove that
every point has an inverse. {Note that to show that the points form a
group, it is also necessary to verify that the operation is associative,
which is a much more difficult result.)

4.17. Let E be an elliptic curve over a field F, with characteris-
tic greater than 3 and assume that the curve contains three rational
points Py, Ps, and P5 with different z-values. Show that the sum of
these three points is (7. Use this fact to give a geometrical interpre-
tation of the addition operation for rational points.
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Appendix A

Background in
Number Theory
and Abstract Algebra

In this appendix, we present some basic definitions and results
of number theory and abstract algebra. Cur goal is to cover the
background material required for other parts of this book, and thus
we do not discuss these subjects in detail. Although the exposition
here is self contained, we encourage the reader unfamiliar with this
material to consult a more thorough text. The books by Andrews [1],
Grosswald [20], and Niven and Zuckerman [50] cover the fundamensals
of number theory, and the books by Fraleigh [18], Gallian [19], and
Hungerford [24] cover abstract algebra. Further material related to
vector spaces, matrices, and linear algebra is given by Lipschutz [39].

1. Number theory

At its most basic level, number theory involves the study of the ad-
ditive and multiplicative structure of the set Z of integers, with an
emphagis on divisibility and primality. We use the standard notation
(a, b} to denote the greatest (positive) common integer divisor of the
integers a and b. If {a,b) = 1, then the integers @ and b are said to
be relatively prime.

133
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Lemma A.1.1 (Euclid). For any twe integers a,b there are integers
n,m such that na +mb = (a,b). Moreover, (a,b) is the least positive
integer that can be written as a sum of integer multiples of & and b.

Proof. We prove the first statement by induction on the larger of a
and b. The result is trivial when a = &, and we may assume without
loss of generality that a and b are both positive and e < b. Consider
e =b—a Clearly 0 < ¢ < b It is immediate that (a,¢) = (a,b)
because any divisor of ¢ and ¢ divides b while any divisor of ¢ and
b divides ¢. By induction, there are integers n’ and m’' such that
n'a+m’e = (a,¢). Hence (' —m'ja+m'b = (a,b). Weletn=n"—m'
and m = m’. This completes the induction.

To prove the second statement, we note that if 7|a and r|b, then
r|(na + mb) for all integers n and m. In particular, (a,b)|(na + mb)
for all 7 and m. Thus no positive integer smaller than (2,b) can be
of the form na 4 mb. |

It should be noted that the proof of the previous lemma gives
an algorithm to find {a,b): replace the larger of @ and b with the
(positive) difference of the numbers, and continue doing this until the
numbers are equal. A more efficient algorithm for computing (o, b) is
given in Exercise A.7.

Definition A.1.2. Let ¢ denote Fuler’s function, defined so that
@(n) counts the number of integers less than n and relatively prime
to n (Including 1). For example: ¢(2) = 1, ¢(3) = 2, #(6) = 2, and
#(8) = 4. This function is also known as the totient function.

The next lemma gives several important properties of the ¢ func-
tion. These properties allow ¢{n) to be computed quickly once n has
been factored into prime powers. If n is large, it is belteved to be dif-
ficult to calculate ¢(n} without having the prime factorization of n.
{As explained in Chapter 4, this difficulty is the basis for the gener-
ally believed security of the RSA cryptosystem.) Other properties of
¢ are explored in the exercises.

Lemma A.1.3. The ¢ function has the following properties:
(1} If a and b are relatively prime, then ¢lab) = d(a)p(b).
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(2} Ifpis a prime and k& > 1 is an integer, then
$(p*y =pF —pF

Proof. Exercise A.1. N

2. Groups

‘We now consider the fundamental notion of an abstract group. We
will see that finite fields contain two groups, one under addition and
another under multiplication. Recall that a binary operation - on a
set (& is closed if a - b lies in the set G for all elements a,b € G.

Definition A.2.1. A group is a nonempty set & with a closed binary
operation - such that the following properties hold:
{1) Associativity: {a-8)-c=a-(b-c¢) foralla, b, and ¢ in G.

(2) Identity: There is an element e € G suchthat e-a = a-e =a
foralle € G.

(3} Inverses: For each a € G there is an element a=! € G such

that a-a t=a"!-a=e,

A group G is Abelian (or commutative) if a-b=1"5-a for all a,b € G,
For simplicity of notation, the group operation may sometimes be
denoted by juxtaposition of group elements: ab denotes a - b.

Example A.2.2. The following structures are groups:

{1) The integers under addition.
(2) The nonzerc rational numbers under multiplication.
{(3) The set of all 2 x 2 matrices with real entries whose determi-

nant is nonzero, with the operation of matrix multiplication.

Definition A.2.3. If G is a group, then a nonempty subset H of G
is a subgroup of GG if H is itself a group under the same operation as
inG.

The next lemma gives a convenient criterion for a subset of a
group to be a subgroup.
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Lemma A.2.4. Let G be a group and let H be a nonempty subset
of G. Then H is a subgroup of G if and only if Rk~ is in H for all
h,k € H. If H is finite, then H is a subgroup if and only if H is
closed under the group operation.

Proof. Exercise A.11. O

The order of a finite group & is the cardinality of &, which we
denote |G|. We may also speak of the order of an element of a group,
as the next definition shows.

Let a be an element of a group G. If n is a positive integer, a®
denotes the multiplication of a with itself n times. If n is negative,
then a™ = (a™1)™™, and ol is e, the identity of G.

Definition A.2.5. The order of an element a in a group G is the
least positive integer n such that a™ = ¢, if such an n exists.

Every element of a finite group has some order. Tt is not difficult
to see that if @ € G and the order of @ is n, then the set {a‘ |1 < i <
n} is a subgroup of 7, and the order of this subgroup is n, the same
as the order of a.

Every group has exactly one element of order 1, which is the
identity element e. The next theorem characterizes which other orders
may occur in a finite group.

Thecrem A.2.6 (Lagrange}. If G is a finite group, the order of
any subgroup of G divides the order of G. In particular, the order of
any element in o finite group divides the order of the group.

Proof. Let h € . Define g, and g2 to be equivalent if there is an
integer n such that g, = h"gs. The reader should verify that this is
an equivalence relation and that the cardinality of each equivalence
class is the order of h. Hence the order of h divides the order of the
group. a

Definition A.2.7. A group ( is said to be ecyclic if there is an
element g € (& such that every element h of G can be written as an
integral power A = g™ of g. Such an element g is called a generator
of G. If g is an element of a group G we write {g} for the set {g" |
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n € Z}. The set {g} forms a subgroup of G called the subgroup of G
generated by g.

Several facts follow immediately from the definitions. A group @
is cyclic if and only if there is some g € G with G = {g). A finite
group & of order n is cyclic if and only if there is an element g € G
of order n. In this case, G = {g) = {g',¢%,..., 4", 9" = e}.

Lemma A.2.8. Fuvery subgroup of a eyelic group is cyclic.

Proof. Let g generate a cyclic group & and let H be a subgroup of G.
If H = (e}, then H is trivially cyclic. Otherwise, let N = {n € Z |
g" € H}. The set N is nonempty and closed under negation (because
H is closed under inverses). Therefore there is a least positive n € N.
We claim that H = (g"}. If not, then there is a positive integer
m such that ¢™ € I and n does not divide m. Write [ = (n,m)
and choose a,b such that an + bm = | (using Lemma A.1.1). Then
gt = gonttm = gangbm = [ But | < n, which is a contradiction. O

The following result is useful for the calculation of the orders of
elements in a finite group.

Lemma A.2.9. Let G be a finite commutative group. If the order of
a € G is relatively prime to the order of b € GG, then the order of ab
is the product of the orders of a and b. More generally, the order of
ab is the least common multiple of the orders of @ and b.

Proof. Exercise A.9. O

3. Rings and fields

Definition A.3.1. A ring is a set R with two closed binary opera-
tions + and - satisfying the following properties:

(1) R is an Abelian group under the operation +.

(2) The operation - is associative.

(3) For all a,b, ¢ € R the distributive laws hold:
a-(b+c)=a-b+a-q
(bt+c)ra=b-a+tc-a.
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If the muitiplication operation is commutative, then the ring is called
commutative {note that, by definition, the addition operation in a
ring is always commutative).

Example A.3.2. The following structures form rings:

(1) The integers under the usual operations of addition and mul-
tiplication.

(2) The rational numbers with the usual operations of addition
and multiplication.

(3) The set of all 2 % 2 real matrices with the usual operations
of matrix addition and multiplication.

(4) The set of all continuous functions on the real line, with
pointwise addition and multiplication.

Definition A.3.3. A nonzero element y of a commutative ring is
called a zere divisor if there is a nonzero element z in the ring with
the property that y-z = 0.

The ring of integers with the usual multiplication operation has
no zero divisors, but some other rings do have them. No field has zero
divisors (Exercise A.16). The ring of 2 x 2 real matrices has many
zero divisors, as does the ring of continuous functions on the real line
with pointwise addition and multiplication.

Definition A.3.4. A field is a commutative ring with a multiplicative
identity with the property that every nonzero element has a multi-
plicative inverse.

Definition A.3.5. The characteristic of a ring is the least positive
integer n such that n- 1 =1+ 14 ---+ 1 {the sum of 1 with itself n
times} equals 0; if no such n exists, then the characteristic is declared
to be 0.

Lemma A.3.6. If the characteristic of a field is nonzero, then the
characteristic is prime.

Proof. Suppose the characteristic n of a field F factors as ning; thus
ninz-1 = 0. Since there are no zero divisors in F (see Exercise A.16),
either ny - 1 or ng - 1 is zero. Therefore there is a prime divisor p of n
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such that p-1 = 0. A similar argument shows that the characteristic
is exactly p. O

The field of rational numbers, the field of real numbers, and the
field of complex numbers all have characteristic zero. It follows from
Lagrange’s theorem that a finite field of order ¢ = p™ has prime
characteristic p.

Definition A.3.7. An integral domain is a commutative ring with a
multiplicative identity and no zero divisors.

Thus in an integral domain R, if a - b = 0 for some a,b € R, then
eithera =0 or b= 0.

Lemma A.3.8. A finite integral domain is a field.

Proof. The only property which must be verified is the existence of
multiplicative inverses. Let R be a finite integral domain and choose
a nonzero element a € R. Consider the set aR = {ar | r € R}, For
r1 # ro we must have ary # ara, for if ary = ary, then a(r; —r2) = 0.
Since o is nonzero, we see that ry = ro. Therefore jaR| = |R|, so the
multiplicative identity 15 is an element of aRE. Thus thereisabe R
such that ab = 1g. Clearly b is the inverse of a. O

The hypothesis of finiteness in the previous lemma is necessary;
the ring of integers is an integral domain but not a field.

The ring of integers Z is the fundamental example of an integral
domain. We can form many interesting finite rings from it, as we
now explain. Let n, a positive integer, be fixed. To form the ring Z,,,
we define a and b to be equivalent modulo n if their difference is a
multiple of n. Thus n, 2n, and —5n are equivalent modulo n, as are
n—2, 19n — 2, and 14n — 2. To perform addition or multiplication
modulo n, we perform the operations as usual in the ring Z of integers,
but then replace the result with the smallest equivalent nonnegative
integer. Thus, working modulo 5, we have:

3+44-2=348=3+3=6=1 (mod5).

We write = instead of = in order to distinguish this arithmetic from
the usual integer arithmetic with its equality of integers, and write
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{mod 5) to remind ourselves of the modulus n = 5. The integers
0,1,2,...,n—1 are pairwise inequivalent modulo n, and every integer
is equivalent to one of them. These numbers form a commutative ring
with the operations of addition and multiplication modulo n. We
denote this ring by Z, and call it the ring of integers modulo n.

Example A.3.9. The following tables show the addition and multi-
plication operations on Zs, the ring of integers modulo 5.

+/0 1 2 3 4 <101 2 3 4
601 2 3 4 0|0 0 0 0 0
141 2 3 4 0 110 1 2 3 4
212 3 4 0 1 2/0 2 41 3
313 4 0 1 2 3(]0 3 1 4 2
414 01 2 3 410 4 3 2 1

Note that the nonzero elements of Zs form a group under multi-
plication with identity 1. The following lemma explains why this has
occurred.

Lemma A.3.106. A nonzero element k in Z, has o multiplicative
inverse if and only if (k,n) = 1. In particular, if p is prime, then the
commutetive ring L, is a finite field.

Proof. Suppose that (k,n) = 1. By Euclid’s theorem, there are r, s
such that rk + sn = 1; that is, 7k = 1 (mod n}. Now assume p is
prime. Since the multiplication on Z, is associative, commutative,
and has an identity, the existence of a multiplicative inverse for every
element is enough to make the nenzero elements of Z; into a group
and Z, itself into a field. O

If » is a not prime, the ring Z, has zero divisors; for example,
2 and 3 are zero divisors in the ring Zg. More generally, an element
a € Z, is a zero divisor if and only if (a,n) > 1.

4. Homomorphisms

Definition A.4.1. A group homomorphism is a map ¥ from one
group (¢ with operation - to another group ' with operation o such
that ¥(g1-g2) = ¥(g1)o(gz) for all g1, g2 € G. A group isomorphism
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is a group homomorphism from a group GG to another group &' that
is both injective (one-to-one} and surjective (onto). If there is an
isomorphism between two groups, we call the groups isomorphic.

A ring homomorphism is a map ¢ from one ring R with oper-
ations +g and g to another ring S with operations +g5 and -5 so
that ¢(ry +x5 r2) = @(r2) +g ¢(r2) and ¢(ry -r72) = P(r1) -5 ¢(ra)
for all 1,79 € R. A ring isomorphism is a bijective ring homomor-
phism. H there is an isomorphism between two rings, we call the rings
isomorphic.

Lemma A.4.2. Let G be a finite Abelian group of order m, and let
n be an integer with (n,m) = 1. Then the map f: a > a" is an
isomorphism from G to itself (an automorphism).

Proof. We first show that f is bijective. Suppose a" = b”; then
{ab~1)® = e (see Exercise A.12). This shows that the order of ab™!
divides n. But the order of ab~! divides m, so the order divides
(n,m) = 1. We conclude ab~! = e; that is, @ = b. This shows that f
is injective. Clearly, since G is finite, f is also surjective.

Sinece (7 is Abelian, we may prove by induction on n that (ub)™ =
a™b™ for all n. Thus f is a group isomorphism. a

The following result will be useful in Chapter 1, when we prove
that every extension field has a normal basis over the base field. This
result can be proved by induction on m, the number of homomor-
phisms; a proof is provided by Lidl and Niederreiter [36, Lemma
2.33].

Theorem A.4.3 {(Artin’s Lemma). Lei 1, ..., ¥nm be a set of distinct
nonzero homomorphisms from a group G into the multiplicative group
of a field F. Letaq, ..., am be elements of F not all of which are zero.
Then there is ¢ g € G such that a1 (g) + - + amim(g) # 0.

5. Polynomials and splitting fields

Given aring B with identity, we let R[z] denote the set whose elements
are of the form ro + rz + rox? + -+ + rpz™, where each r; € R. The
variable x is treated as a new element distinct from every element of
R. The elements of R[z] are called polynomials with coefficients in R
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or sometimes just called polynomials over B. We add and multiply
elements of R[z] using naive polynomial addition and multiplication.
For example, we have:

{ro+riz+ 7‘21‘2)(8{) + 812)
= 1980 + 71507 + 1“280.1?2 + o512 + ?”151332 + ?"2815E3
= ros0 + (189 + 1981)T + (rasp + ris1)z% + rosiz?,

The reader should check that with these operations the set Rz} forms
a ring; this ring is called the ring of polynomials over R. We also note
that if R is commutative, then so is R[x].

For any polynomial p(z) over R we may form the factor ring
R[z]/{p(z)) which is the set of all polynomials over R of degree less
than the degree of p(z). To form this ring, we consider two polyno-
mials r(x),r'(x) to be equivalent if their difference is a (polynomial)
multiple of p{z). This is entirely analogous to the way the ring Z,, is
formed from the ring Z.

A root of a polynomial p(z) = ro +riz+ -+ +rz™ € Riz] is an
element 7 such that p(r) = ro + rir 4+ rar? + - +7,7™ =0 in R.

Lemma A.5.1. Let F be a field An element v € F is a root of a
polynomial p(x) € Fiz| if and only if the polynomial x — r divides the
polynomial p(z) in the ring Flzx].

Proof. Exercise A.22. &
If r is a root of p{xz) € F[xz], where F is a field, we define the
muldtiplicity of r to be the largest n such that (z — 7)™ divides p{z).

Lemma A.5.2 (The derivative test). Let p(x) = apa™ +a,.127 4+
<o+ 1T + ag be an element of Flx], where F is a field. Define the
formal derivative of p{z} to be p’{x}, where

(@) = nana "t + (n— Vap_12" "3 + - + 2052 + a1

A root r of p(x) has multiplicity greater than 1 if and only if p'(r) = 0.
Proof. Suppose that the multiplicity of » is k > 1. Write p(x) =

(z — r)*q(z) (here g{z) may be 1). It can be shown that the formal
derivative obeys the same algebraic formulas as the familiar derivative
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from elementary calculus {see Exercise A.24). In particular, p/(z) =
(k)(x — r)*'g(z) + (z — r)*¢(z). It is clear that if k¥ > 1, then
p(r) = 0. T k& = 1, then p/{z) = q(z) + (z — r)¢’(z). We have
assumed ¢(r) # 0, so if £ = 1, we have p'(r) = g(r) # 0. 0

Lemma A.5.3. A polynomial of degree n over a fleld has at most n
roots (couwnting multiplicities).

Proof. The proof follows by repeatedly applying Lemma A.5.1. We
leave the details to the reader in Exercise A.26. |

In the previous lemma, we did not make the false claim that a
polynomial over a field must have exactly as many roots (counting
multiplicity) as its degree. For example, the polynomial 22 + 1 has
no roots at all over the field of real numbers.

We say that a polynomial p(z) over a ring R is érreducible if
there are no polynomials g{z), »(2) € R[z] of positive degree such that
p(x) = q{x)r(x). It can be seen that a quadratic or cubic polynomial
over a field is irreducible if and only if it has no roots, but this is not
true for polynomials of degree 4 or higher (Exercise A.23).

Lemma A.5.4. If I is a field, then Flz]/(p{x)) is a field if and only
if p(x) 1s irreducible in Fz]. Moreover, there is a field isomorphism
from F to o proper subfield of Fx]/(p(x)).

Proof. Exercise A.27. O

We note that the construction in the previous lemma is used in
Chapter 1 to construct finite fields. In particular, to construct the
finite field Fy» one uses an irreducible polynomial p(z) of degree n over
Iy, Such an irreducible exists for every prime p and every positive
integer n > 2 by Corollary 1.3.13.

The key fact about Fz]/(p{x}) is that the equivalence class of x
in the factor ring is a root of p(x) in the extension field. The next
lemma shows that the construction in Lemma A.5.4 is unigque up to
isomorphism. We require some notation for field extensions.

Definition A.5.5. Let F be asubfield of a field K andlet ¢5,..., g% €
K. We write F(gy,...,gx) for the smallest subfield H of K such that
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FC Handg; € Hforeachi < k. Wecall F(gy,...,gxr) the extension
field of F' generated by ¢1,...,9%.

Lemma A.5.6. Suppose thet p(z) is irreducible over a field F'. Sup-
pose there is a field B = F(r), obtained by adjoining r to F, in which
T is a root of p(z). Then E is isomorphic to Flz]/(p(z)).

Proof. It is easy to show that the evaluation map ¢: Flz] — FE
which sends each g(z) to ¢{r) is a ring homomorphism. Moreover,
the kernel of ¢ includes p{z}, so ¢ induces a homomorphism $ from
Fiz]/(p(x)) to E. That is, if g(z) and r{z) are equivalent modulo
pl{x}, then ¢(q(x)) and ¢(r(z)) are equal in E, and so ¢(r(z)) is
uniquely determined by the equivalence class of r(z) in Flz]/(p(z)).

Because p{z) is irreducible, Lemma A.5.4 tells us that Flz]/{p(z))
is a field. Since ¢ does not send every element to 0, # is injective (see
Exercise A.25). Now the range of ¢ is a subfield of £ that includes 7
and includes r, so the range includes £ = F(r}. Thus gz?: is surjective.
We have shown ¢ is an isomorphism between F[z]/(p(z)) and E. O

Definition A.5.7. Suppose F is a field and p(x) € F[X]. A field K
is called a splitting field of p{z) if the following conditions hold.

(1) The monic polynomial p(x) factors into linear factors in
K[z]. This means

p(z) = (z —a){z —az)--- (= —ax)

for some a1,...,ar € K.
(2) K = F(ay,...,a), that is, the roots of p(z} generate K
over F.

We will show in Theorem A.5.9 that every polynomial has a split-
ting field and that such a field is unique up to isomorphism. This
result is crucial for the classification of finite fields in Chapter 1. We
require the following lemma.

Lemma A.5.8. Suppose that K is the splitting field of p(zx) over a
field F. Suppose that M is any field containing F in which p(x) splits
into linear factors. Then there is an injective homomorphism from
K to M which is the identity on I,
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Proof. The proof is by induction on the degree of p(x). If the degree
is 1, then the result is trivial. We assume the degree is greater than
1 and write p(z) = q1(z) - - - qx(z), where each g;{z} is irreducible and
of degree greater than 1.

Let @ € K be any root of ¢1(z). By Lemma A.5.6, F(a) is
isomorphic to Flz]/(g:1(z)}. There is a root b of ¢:(z) in M, and
F{b} is also isomorphic to Flz|/(p(z)}. Thus F(a) C K is isomorphic
to F(b) € M. Let r(z) = p(z)/(x — a) in Flz]. The degree of
r(z) is strictly less than the degree of p(z), so we may apply our
inductive hypothesis, replacing F' with F{a} and identifying F(a)
with F'(h) C M. By induction, there is an isomorphism from K to M
which is the identity on F{a) assuming we have identified F(a) with
F(b). We already have an isomorphism which identifies F(a} with
F(b) and is the identity on F. By putting these together, we obtain a
homomorphism from K to M which is the identity on F'. 'To see that
the homomorphism is injective, apply the result of Exercise A.25. []

Theorem A.5.9 (Existence and uniqueness of splitting fields). Let
p(z) be a polynomial over a field F. There is a splitting field for
p(z) over F, and it is unique in the following sense. If E and E’' are
splitting fields for p(x) over F, then there is an isomorphism between
E and E' which is the identity on F.

Proof. We first prove that p(x) has a splitting field over F. We prove
the result for all fields simultaneously by induction on the degree of
p(z). If the degree is 1, then F' is trivially a splitting field for p(z).
Now assume the degree of p(z) is larger than 1, and write p(z) as
a product gi{z) - gx(z) of irreducible factors. Apply Lemma A.5.4
to construct a field E such that ¢ has a root o in F and F =
F(a). We now view p(x) as a polynomial in E[z], and note that, by
Lemma A.5.1, & — e divides p(z) in the extension field. Let g(x) be
p(2)/{z — &) in E[z]. Then the degree of ¢(x) is less than the degree
of p(x), so by induction there is a splitting field K = E(5,...,5)
for ¢{z) over E, where $31,...,0, are the roots of g(z). Now K =
Fla,f,....0x) is a splitting field for p(z) over F.

We now turn to the uniqueness of the splitting field. Let E and £’
be splitting fields for p(z) over F. We apply Lemma A.5.8 to obtain
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an injective homomorphism ¢ from £ to E’ which is the identity on F.
It is not difficult to see that each root of p(z) in F maps to a root of
p(z) in E’ (see Exercise A.21). Thus, since ¢ is a injective and p{x)
has only finitely many roots, every root of p(z) in E’ is in the range
of ¢. Since E' is generated by these roots, E' is a subset of the range
of ¢, so ¢ is surjective. The result follows immediately. O

6. Vector spaces

Vector spaces are another important class of algebraic structures.
They are essential to the study of finite fields in Chapter 1 and to the
construction of error-correcting codes in Chapter 3.

Definition A.6.1. Let F be a field. A vector space over F consists of
a nonempty set V', an Abelian group operation + on V, and a scalar
multiplication function that takes an a € F' and a v € V and returns
av € V. In addition to the Abelian group axioms for +, the following
are required to hold for all ¢, 6 € Fand allu,veV:

(1) a(bu) = {(ab)u,
(2) (a+bu=au+bu,
(3) a{u+v)=au+av.

A subspace of a vector space V' is a nonempty subset which is
itself a vector space under the same operations as in V.

We now give several examples of vector spaces.

Examples A.6.2. (1) Let V = R? and let F = R, where R
denotes the field of real numbers. Addition is the usunal
addition of ordered pairs defined by (x1,4:1) + (z2,52) =
{1 + z2, y1 + ¥2) and scalar multiplication is defined in the
usual way as a(x1,y1) = (az1, ay; ). With these operations,
V is nothing more than the usual Euclidean plane. Similarly,
the set R? with the ordinary operations is a vector space over
R which is just the usual three-dimensional Euclidean space.

(2) For n > 1 let V =R"™ and let F = R. Define addition as

(@1, ) F W1y n) = (T + YL T F )
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and scalar multiplication by
a(z1, ..., %0} = (az1,...,0T,).
As in (1) above, V is a vector space over R.

(3) In (1) and (2) above, we may replace the field R of real
numbers by any fleld F and V' = F™ is still a vector space.
In particular, if F/ = Fy, the finite field with ¢ elements, then
V = I is a vector space over Fy which contains exactly ¢
distinet elements.

(4) It follows from (3) that any field F' is a vector space over
itself, using the field addition for vector addition and the
field multiplication for scalar multiplication. It can be seen
that if F' is a subfield of a field K, then K is a vector space
over F, using the field operations in K.

(5) Let m > 1,n > 1 be integers and let M., , denote the set
of all m x n matrices over a field F. Then M,, , becomes
a vector space over the field F' with operations defined as
follows. Let A = (ay), B = {(bij} € My and let ¢ € F be
a scalar. Then A + B = (a;; + b;;) and cA = (ca;;). The
reader should also note that with this definition of addition
and the usual matrix multiplication, M, ,, is a ring but the
ring is not commutative, that is, there are A, B € M, , for
which AB # BA.

Definition A.6.3. A set {va,..., v} of vectors in a vector space V
is said to be linearly independent over the field F' if the only solution
to the vector equation

(5) a1Vvy + apve + -+ apvy = 0,

where each a; € F, is given by a1 = a2 = --- = a; = (. If there is a
solution to Equation (5) in which at least one a; # @, then the set of
vectors is said to be linearly dependent over F.

We say that a vector v € V is a linear combination of the vectors
Vi,..., Vi If there are elements ¢1,...,cx € F, so that

V=0C1V] e Vg

A set of vectors B = {vy,..., vy} is said to span V if every vector
v € V can be written as a linear combination of B. In addition, we
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say that B forms a basis for V over F' if B is linearly independent
and spans V.

A vector space V is finite dimensional if it has a finite basis. One
of the fundamental results in the theory of finite dimensional vector
spaces is that any two bases of a fixed finite dimensional space V' must
contain the same number of vectors. This common size of all bases is
called the dimension of V.

The following lemma gives a convenient criterion for determining
whether a set of vectors forms a basis.

Lemma A.6.4. Let V' be a vector space of finite dimension m and
let vy, ..., v be a set of linearly independent vectors in V. Then this
set forms a basis for V.

Proof. Exercise A.30. a

Examples A.6.5. (1) Let R? be the vector space of all ordered
pairs of real numbers, with addition and scalar multiplica-
tion defined coordinatewise. Let vi = (1,0) and v, = (0, 1).
Then {vi,v;} is a basis for V, so the dimension of R? is 2.
Similarly, for n > 1, let R™ be the set of all n-tuples or real
numbers. Then R™ is a vector space of dimension n over the
field of real numbers.

(2) Let M,, , denote the set of all m x n matrices over a field
P, where addition and scalar multiplication are defined in
the usual way. That is if A = {a;;), B = (b;;), then A+ B =
(@ij + bi;) and ¢A = (cey;). The dimension of this vector
space is mn, as the reader should verify by constructing
a basis. An additional problem in this vein is stated as
Exercise A.28.

(3) Because the rational numbers are a subfield of the real num-
bers, the real numbers form a vector space over the field of
rational numbers. This vector space is not finite dimen-
sional.

Natural functions to study in the context of vector spaces are
those that preserve both the vector addition and scalar multiplication
operations.
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Definition A.6.6. Suppose V and W are vector spaces over the same
field F. A map f: V — W is called linear if the following hold for
alluveVandae F:

flu+v) = flu)+ f{v),
flaw) = af{u),
where operations on the left side of each equation are performed in

V and operations on the right side of each equation are performed
in W.

Several important properties of linear functions are sketched in
Exercige A.29.

We now turn to the subject of dual spaces, which are an essential
tool in Chapter 1. We point out that the following definitions and
theorem are valid for vector spaces over an arbitrary (possibly finite)
field.

Definition A.6.7. Let V be a vector space over a field F. A [linear
functional on V is a linear function from V to F. We let Dual(V)
denocte the set of all linear functionals on V' this is called the dual
space of V. This space is a vector space over F with pointwise addition
and pointwise scalar multiplication of functions. It is common to
denote the dual space of V' by V'*, but we reserve the notation £ to
denote the set of nonzere, and thus invertible, elements in a field F.

Definition A.6.8. Suppose that V' is a finite dimensional vector
space over a field F and B = {viy,...,vk} is an ordered basis for V
(that is, the elements of B have been assigned numbers 1,...,k). For
each i < k let v} be the unique linear functional defined by the rule

v, 1ifi=j,
v.(v:] =
E 0  otherwise.
(The definition of v} for each ¢ depends on the entire basis. We
leave it to the reader to verify that this is a valid definition; see
Exercise A.32.) The ordered set B* = {v{,...,vi} is the dual basis
of the ordered basis B.

Theorem A.6.9. Let V' be a finite dimensional vector space over a
field F and let B be a finite basis for V. The space Dual(V) is also
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o vector space over F with the canonical scalar multiplication. The
dual basis B* is a basis for Dual(V'). In particular, the dimension of
Dual(V) s the same as the dimension of V.

Proof. Exercise A.32. O

We caution the reader that there is a different definition of “dual
space” which is more appropriate for use with infinite dimensional
vector spaces that arise in the field of functional analysis. In the case
that a vector space is finite dimensional, the other definition of a dual
space coincides precisely with the definition we have given here.

7. Notes

There are numerous excellent texts dealing with elementary number
theory and abstract algebra. For number theory we refer to books
by Andrews {1}, Grosswald [20], and Niven and Zuckerman [50]. For
abstract algebra we refer the reader to books by Fraleigh [18], Gal-
lian [19], and Hungerford {24]. A discussion of basic properties of
vector spaces, matrices, and linear algebra is given by Lipschutz [39].

8. FExercises

Number Theory.
A.1l. Prove Lemma A.1.3.

A.2 (The Chinese Remainder Theorem). Assume that a1, aq,...,ax
are natural numbers that are pairwise relatively prime and ny,...,ng
are arbitrary natural numbers. Show that there is a natural number
s such that s = n; (mod a,) for each ¢ < k. Moreover, show that if
s and s’ are two solutions to the system of congruences, then s = s’
(mod aras - ax).

A.3. Show that for any positive integer n the following equation

holds: )
¢{n) :”E (1 - 5) )

where the product is taken over all prime divisors of n.
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A.4. Show that for any positive integer n the following equation
holds:

n=> ¢(d),
din

where the sum is taken over all divisors of n (including 1 and n).

A.5 (Fermat’s Little Theorem). Let p be a prime number. For all
integers a not divisible by p, show that a?~! = 1 (mod p).

A.6 (Euler’s Theorem). If {a,n) = 1, show that ¢*®) =1 {mod n).

A.7 (The Euclidean Algorithm). Consider the following algorithm.

Input: two positive integers a¢ and b.

Procedure: If a = b, stop and return a. Otherwise,
swap the numbers if needed so that a < 6. Replace
b by the remainder r when b is divided by a. If
this remainder is zero, return a. Otherwise, repeat
from the beginning using a and r instead of @ and b.

Show that for any positive integers a and b this algorithm will termi-
nate and return the greatest common divisor (a, 4} of the inputs.

A.8, This exercise assumes some knowledge of computational com-
plexity. Prove the algorithm presented in Exercise A.1 has an upper
bound on the number of iterations that is a linear function of the
sum of the lengths of ¢ and b in binary digits. This can be used to
show that the greatest common divisor of a pair of integers can be
computed in polynomial (in fact, quadratic) time.

Groups.
A.9. Prove Lemma A.2.9

A.10. Let a be an element of finite order k in a multiplicative group &.
Show that for m € Z we have ¢™ = e if and only if & divides m.

A.11, Prove Lemma A.2.4.

A.12. Let (¢ be an Abelian group and suppose ¢ = b™ in G. Show that
c¢b™™ = 1. This elementary fact was used in the proof of Lemma A.4.2.
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Rings and Fields.

A.13. Show that each of those structures in Example A.3.2 is a ring.
Determine which of the structures are fields.

A.14. Show that the ring Z,, is a field if and only if n is prime.

A.15. Note that if p is a prime, then the field F}, is the same as the
ring Zjp of integers modulo p. Explain why the field Fy is not the
same as the ring Z4. In fact, it turns out that if 1 > 1, then the field
Fpm # Zpm, the ring of integers modulo p™. Explain why.

A.16. Show that a field cannot have zero divisors. That is, if F is a
field and a,b € F satisfy ab = 0, then either a = 0 or b = 0. Use this
to give a complete proof of Lemma A.3.6.

A.17. Let F be a field. Show that the polynomial ring F[x] has no
zero divisors.

A.18. Let F be a field and let p(x) and g(z) be polynomials over F.
Show that there are unique polynomials r{z) and s(z) over F such
that the degree of r(z) is strictly less than the degree of ¢{x) and
plz) = q(z)s(z) + r(z).

A.19. Let F be a field, let p(x) € F[z] be irreducible, and fix g(z) €
F[z] such that g(z) is not a multiple of p{z). Show that there are
polynomials a(z) and b(z) in F[z] such that p(x)a(z) + ¢{z)b(z) = 1.
This is a special case of general properties of the rings called unique
factorization domnains, which include all rings of the form Flz].

A.20. Let R be a ring and let S be the intersection of all subrings of
. Show that 5 is a subring of R, and that if R is a field, then S is
a flield as well.

A.21, Suppose p(z) € R[z|, where R is a ring. Suppose §,5 are
two rings containing R and ¢ is a ring homomorphism from S to 5’
Then we have ¢(p(s)) = p(¢(s)) for every s € 5.

A.22, Prove Lemma A.5.1.

A.23. Show that a quadratic or cubic polynomial over a field is ir-
reducible if and only if it has no roots in the field. Construct an
example of a quartic polynomial over the real numbers which is not
irreducible but has no real roots.



8. Exercises 153

A.24. Let F be a field and let p'{x) denote the formal derivative of
p(z) € Flz|. Show that the formal derivative satisfies the following
familiar identities:
(p(z) +¢(2)) = p'(a) + ¢/ (),
(p(z)gq(z))' = p'(z)q(z) + plz)q (z),
(p(x)*) = kp(z)*~1p/ (2).

Here k must be a positive integer and (p(z))" is taken to equal 1.

A.25, Suppose ¢ is a homomorphism from a field F to a field E.
Show that either ¢{a) = 0 for every a € F or else ¢ is injective,

A.26. Prove Lemma A.5.3.
A.27. Prove Lemma A 5.4

Vector spaces.

A.28. Show that the collection of all polynomials of degree n or less,
with real coeflicients, forms a vector space over the reals, where vector
addition and scalar multiplication are given by the usual operations
on polynomials, Construct a basis for this vector space. What is its
dimension?

A.29. Let U/, V, and W be vector spaces over the same field F. Let
J:U—=Vand g: V — W be linear maps. Show that:
(1) The composition go f: IV — W is linear.
(2) The function f is completely determined by its values on an
arbitrary basis of U.

(3) The function f is injective if and only if the only vector
ucl with flu)=0isu=0.

(4) Suppose U = V and U is finite dimensional. Then f is
injective if and only if f is surjective. Show that this may
not be true if U =V and U is infinite dimensional.

A.30. Prove Lemma A.6.4.

A.31. Find a basis for the vector space V of all m x n matrices over
a fleld F. What is the dimension of V7
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A.32. Let V be a finite dimensional vector space over a field F'. Let
B be a basis for V. Prove that the dual space Dual(V') is a vector
space over F' and that the dual basis B* of B is well defined. Prove
Theorem A.6.9.
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Appendix B

Hints for Selected
Exercises

Chapter 1
1.1 For s = 2 use the binomial theorem; then use induction on s.
1.2 Use properties of an automorphism.
1.3 Two fractions a/b and ¢/d should be equivalent if ad = be.
Recall that the ring of polynomials over a field has no zero divisors
(Exercise A.17).
1.4 To show that a? € K, use Exercise 1.1, To finish the proof, use
Theorem 1.2.8.
1.5 Assume f(z) = 2™ + an 12 1+ -+ a1x +ag. Ifag =0,
divide by # and apply the induction hypothesis. If ap = 1, define 5
with 1 < 7 < n to be the smallest value so that a; = 1. Hence f(r) =
z"+ ...+ + 1. After two iterations, we obtain z™ 4. i 1 41,
Continning, we see that with each pair of iterations, the smallest
exponent on the first nonzero term decreases by one.

After 2(j — 1) iterations, we reach a polynomial of the form =™ +
.-+ x + 1. After three more iterations we are left with a polynomial
of degree n — 1, to which we apply the induction hypothesis.

155
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1.6  Follow the construction given in Section 1.3 for constructing
factor groups. This ring is not a field since the polynomial 22 + 22 + z
is not irreducible over Fy; see Lemma A.5.4.

1.Y 2andb.

1.8 TFollow the ideas used in Example 1.3.14.

1.9 Use an argument involving the characteristic of a ring.

1.10 o* =l 4+ 0+ n =22

1.11 There will be 1 element. of order 1, 1 of order 2, 2 of order 4, 4

of order &, and 8 of order 153. In general, there will be ¢(d)} elements
of order d dividing ¢ — 1.

1.12 To construct the field, follow the ideas used in Example 1.3.14.
There will be 1 element of order 1, 2 elements of order 3, 4 of order
5, and 8 of order 15.

1.13 There are ¢? functions mapping F, to itself, each of which can
be represented by a polynomial over Fy.

1.14  Use the fact that any two finite fields of the same order are
isomorphic.

1.15 Let ¢ € I, be a primitive element. Then 1 +a 4 a2+ 4
0?2 = (a1t - 1)/(e - 1).

1.16 Write out both sides of the equation, and proceed by induction
on the degree of the polynomial.

1.17  Use properties of the trace function.

1.18 Follow the ideas of Example 1.3.14.

1.19  Use the fact that the multiplicative group F of F is eyclic.
1.20 Use part (4) of Theorem 1.3.10.

1.21  Use Exercise A.19 to draw a contradiction if p(z) does not
divide g{x).

1.22 Use Exercise 1.1.
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1.23 Let o be a normal element in Fy, so o generates a normal
basis. Let {3,..., 5} be the dual basis and let

fe% o e a9
ol aq2 . x
A=
qru—l a aq-m—2
and
161 162 ﬁm
51 ; kA
B = . .
q'r'n—l (qr‘n-l -1
Ieh % B,

Show that AB = I, and thus, since A is a symmetric matrix, BA =
In. Since S is a symmetric matrix, show that (4B)T = BT A"
BT A = I, and conclude that B = BT. Then it follows that 3;
ﬁfz_l, so that the dual basis is also normal.

1.24 Show that the trace function maps onto each element of Fj
exactly ¢™~1 times. The norm function maps onto each element of
Fy exactly (g™ — 1)/(q — 1) times.

1.25 If o = 3971, calculate the norm of .

1.26  Any nonzero vector of length m can be used as a basis element;
then we can add any vector which is not a multiple of the first; then
add a third vector which is not a linear combination of the first two
vectors, etc,

1.28 Show that if Tr(a;) == 0 for each ¢, then the set of elements
consisting of the o; cannot form a basis.

1.29  Use the fact that the range of the trace function is all of F.
1.30 For the second part, assume there is a self-dual normal basis
and obtain a contradiction.

1.32 Follow the ideas of Exercise 1.6.

1.33 Yes.

1.34  First show this for polynomials of small degrees, such as 2, 3,
and 4.
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1.35 Recall that the reciprocal polynomial f*{x) = z"f(1/z) if
f(z) is of degree n. Proceed by contradiction.

1.37 If f{z) is irreducible over F,, show that f(x 4+ e) is also ir-
reducible over F, for any e € F,. Now consider a special value of e
which maps a given trace coefficient say &, to another trace coefficient,
say c.

1.39 First show that the function L : b — L{b),b € F} is a lin-
ear operator on the vector space F,r over F,. Then use part (3} of
Exercise A.20.

1.40 Use the matrix A to show that in both cases (1) and (ii), the
determinant of A; is nonzero.

1.41 Use Corollary 1.6.19.

1.42 Recall that the composition of two permutations is another
permutation.

1.44 If f(x) is the given polynomial, show that {0} =1, f{1) =0,
and flc) =cifc#£0,1€ F,.

1.45 Use the hint and Theorem 1.6.20.

1.46 Use the hint and Theorem 1.6.21.

1.47 Show that the mapping =™ from Fj to itself sends 0 to 0, and

the range of 2™ onr F; consists of (¢ — 1)/(g — 1,n) distinet values,
each repeated exactly (g — 1,n) times.

Chapter 2
21 Forn=2,...,7 I, = 1:1;4;56: 9, 408; 16, 942, 080.

2.2 Across the first row put the values 1,2,...,n — 1 in the first
n — 1 cells. Then in the last cell of the second row put the value n.

2.3 This can be done by hand, or by using a computer. See Laywine
and Mullen [31, pp. 6-7] for an example. For the second part, assume
vou have a pair of latin squares of order 6 with 35 distinct ordered
pairs, and obtain a contradiction.

2.4 First construct fields of orders 5, 8, and 9, and then use Theo-
rem 2.2.10.
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2.5 Use fields of orders 3 and 7 to construct pairs of MOLS of
orders 3 and 7; then use Lemmas 2.2.22 and 2.2.23.

2.6 The following latin square is one example.

001 2 3
1 3 0 2
20 31
3210

2.7 Use the fact that a latin square of order n has an orthogonal
mate if and only if the square consists of n disjoint transversals. Here
a transversael is a set of n cells, one in each row and one in each
column, which contain n distinet symbols.

2.8 Since for a # 0 € F, the Dickson polynomial D, (z,a) gives a
permutation of the field F, if and only if (n,¢* — 1) = 1, the proof is
similar to that given in Theorem 2.2.10 for the polynomials az + ¥.
2.9 Consider the polynomials ez +y with a # 0,1, -1 € F,,

2.10  Consider the polynomials ax + y with a € Fgz and a &€ Fy.
2.11  Use the orthogonality of the latin squares and the definition
of a magic square.

2.12  Consider the polynomials ax+y and z4ay witha # 0,1 € £.
2.13 Consider the following latin square. Show that this cannot be
the Cayley table of a group by considering the order of the group
element corresponding to the fifth row.

a b c d e
b d a e ¢
¢c e d b a
d a e ¢ b
e ¢ b a d

2.14 Consider the polynomials a1z1 + - - - + ag;z9; over F, where
(1) (a1,...,0;) #(0,...,0),
(2) (ai-f—la ey GQi) 7é (O, vy 0), and
(3) (al,...,0h;) #ela1,..., az) for any e € F,.

2.15 Use the same construction as in Exercise 2.14 except use d
variables.
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2.16 Use linear pelynomials over F, in d variables with at least
j -+ 1 nonzero coefficients.

2.17 Use properties of the trace function.

2.19 Use Theorem 2.3.8.

2.20 For the projective geometry PG(3, F2), use the construction
following Definition 2.3.10; for the affine geometry AG(3, F3), use the
construction following Definition 2.3.11.

2.22 For order 8, use Theorem 2.5.7 with ¢ = 7. For order 12, use
g=11.

2.23 Since ¢ = 1 (mod 4), we have that ¢»(—1) = 1, not —1, and
hence near the end of the proof of Theorem 2.5.7, we will not be able
to show that row ¢« + 1 is orthogonal to row k + L.

2.24  Show that if two squares are orthogonal, then they remain
orthogonal after permutations of the elements of either square.

2.25  Write out the ordered pairs in the new square and convince
yourself that each row and each column has nin, distinct ordered
Dairs.

2.26 Convince yourself that upon superposition of the resulting
two new squares, no ordered pair occurs more than once.

Chapter 3

3.1 Foreachi=201,..., t, count the number of vectors at a dis-

tance 1 from the given vector.

3.2 Let B be a basis for a linear code €. By using the vectors of
B as the rows of a matrix, one can construct a generating matrix GG
for €' and then construct from G a parity-check matrix H.

3.3 For the partiy check matrix, use as columnns, all nonzero vectors
over F3 of length 3 whose first nonzero entry is 1.

3.4 Use Theorem 3.7.1 with n=¢ =4.
3.5 Similar to the solution to the previous exercise.

3.6 If ' is lincar of dimension k&, one only neceds to calculate the
weights of the ¢* — 1 nonzero codewords; whereas if (' is nonlinear,
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then one must calculate the distance between all pairs of nonzero
codewards which requires Toughly {¢* — 1)2/2 calculations.

3.7 This follows from a vector space argument involving the dimen-
sion of the vector space and its dual space.

3.8 The number of distinct binary cyclic codes is the number of
divisors of the polynomial z'® — 1 over F;. To find this number,
factor the polynomial over the field F.

3.10 For a binary repetition code of odd length say 2k + 1, use the

fact that
% +1 2% + 1 2%+ 1 o
— o2k,
(o>+(1)+ *(k)

The sphere packing bound does not yield an equality for a binary
repetition code of even length.

3.11 Show that S(y) = S(z) if and only if H{y —2)T = 0, and this
happens if and only if y —z € C.

3.12 Show that both of these codes yield equalities in the sphere
packing bound.

3.13 Construct a 2i x (¢* — 1)?/(g — 1) generator matrix over I, of
rank 2¢ by using the vectors that give the linear polynomials gener-
ating the frequency squares.

3.14 Construct a d x (g¢ — 1)/(g — 1) — d generator matrix over F,
of rank d.

3.15  Use properties of matrix algebra.

Chapter 4

4,1 The letter G stands for A, the letter I stands for E, and the
letter Q stands for U.

4.2 Ifthereis a y with ¥* = , then the order of z can be calculated
from the order of y. Conversely, assuming 22 =1 etz = g°
for a primitive element ¢ and prove that « must be even.

4.4 Since kd =1 (mod (p—1)(g—1)), we have kd = 1 (mod p—1)
and kd = 1 (mod ¢—1). Apply Fermat’s little theorem (Exercise A.5)
and the Chinese remainder theorem {Exercise A.2) to finish the proof.
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4.5 You may need to use a computer program to search for the
decryption key.

4.6 and 4.7 These calculations are best carried out using a com-
puter algebra program.

4.8 The proof is based on the symmetry between the encryption
and decryption aspects of the RSA cryptosystem.

4.9  Arrange the partial square so that every possible choice is elim-
inated for one particular space in the square.

4.12  These identities of the logarithm follow from properties of
exponentiation in finite fields.

4,17 If P+ P+ P35 =@, then Py + P, = —FP5. Consider a line
drawn through P, and P; on the curve, and a characterization of
additive inverses.

Appendix A

A.1 For the first part, given n with (n,ab) = 1, let ny be the value
of n modulo a and ns the value of n modulo b.

A.2 Consider N = njng---ng. For each 1, n; and N/n; are rela-
tively prime, so by the Fuclidean algorithm there are a and b with
an; + bBN/n; = 1. Note that bN/n; = 1 (mod n;) and dN/n; = 0
{mod n;) for all j < k with j # 1.

A.3 Use the second part of Lemma A.1.3.

A.4 Given m < n, let d be the order of m in Z,. Show that each
such value d occurs for ¢(d) values of m.

A.5 Consider the order of a in Z,,.

A.6 Consider the multiplicative order of a in the ring Z,.

A.7T Prove that the algorithm always terminates and then use in-
duction on the number of iterations of the algorithm. Note that if
n =ma; + by and m = byag + b, then m(1 + a122) — naz = ba.

A.8 Establish an upper bound on the number of iterations of the
algorithm, using the faci that the remainder when b is divided by a

is no greater than a. Recall that the division operation runs in O(n)
time.
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A.9  First show that the order of ab divides the product & of the
order of a and the order of & Now, assuming the order of ab is r,
consider the order of the element c=a” = b67".

A.10  Show that if «* = e and @™ = e, then for n = (k,m) we have
a™ = e as well,

A.11 First show that the order [ of ab divides the least common
multiple of the orders of @ and b. Then show by contradiction that {
cannot be a proper divisor.

A.12  First prove by induction that (5")~! = b ™.

A.13 For the first part, first verify that H is closed under taking
inverses. For the second part, under the assumption that A is finite,

consider what must happen if an element is repeatedly multiplied by
itself, and use the fact that &G is a group.

A.14 and A.15 Consider zero divisors.
A.16 Use multiplicative inverses.

A.17 Consider the terms of highest degree in each of the two factors
of a polynomial product.

A.18 Suppose that g(z)s () + ri(z) = gla)ss:(z) + ro(z). Then
g{x}(s1(x) — s2(x)) = ra(z) — r1(z). Use a degree argument to show
that ra(z) — r1(z) = 0 and then use Exercise A.17 to show that
si{z) — s2(z) = 0.

A.19  The inductive proof uses Exercise A.18 repeatedly. As a
preliminary step, if the degree of g(z) is not smaller than that of
p(x), replace g(x) by the remainder obtained when dividing ¢{z) by
p(z). Now, since the degree of p(x) is greater than that of g(z),
one can write p{z) = g{z)s{z} + r(z), where s(z) is nonconstant and
therefore the remainder 7 (z) is of smaller degree than p(x). Moreover,
r{x) cannot be 0 because p(r) is irreducible. Replace q(x) by »(x)
and repeat until the degree of the new remainder r{z) is zero, as
in Exercise A.7, and thus »(z) = c¢ for some ¢ € F*. By tracing
backwards, show that there are polynomials a(z) and b(z) such that
p(x)a(z) + g(z)b(z) = c. Finally, multiply by ¢~L.

A.21 Decompose p(x) into monomials.
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A.22  The divigibility result can be proved by induction on the
degree of p(x). Then, assuming p(r) = 0, apply the result with g(z) =
x — r to show that z — r divides p(z).

A.23  Show that p(a) = 0 if and ounly if & — ¢ divides p{xz).

A.24  Tor the second equality, decompose ¢(z) into monomials and
use the first equality. For the third equality, use induction on &,
A.25  Use the multiplicative property of field isomorphisms.

A.26 Use Lemma A.5.1 and proceed by induction on the degree of
the polynomial.

A.27 The embedding of the field F uses constant polynomials.
If p{x) is reducible, then Flz}/{p(z)) will have zero divisors, and is
thus not a field by Exercise A.16. For the converse, assume p(z) is
irreducible and apply Exercise A.19 to show that all nonzero elements
of Flz]/(p(z)) have multiplicative inverses.

A.28 The dimension is n 4+ 1. One basis is {1,r,2%,...,2"}.
A.29  For part (3), use the linearity of the map. For part (4), show
that if f is not surjective, then the dimension of the range of f is less
than the dimension of I/, and if f is injective, then the dimensions
must be the same.

A.30 Show that if independent vectors vy, ..., %, do not span V,
then the dimension of V' must be greater than m.

A.31 Consider all of the mn matrices containing all 0s except for
one 1, which is moved throughout the mn cells of the matrices.

A.32 To show that the dual basis is well defined, use the fact that
a linear map is determined by its values on a basis. To show that the
dual basis is a basis, assuming the dimension of V' is k, consider a
linear combination of the form

arvyt +agve 4+t apvit = 0.

Since this is an equation relating functions, it must hold for all values
in the domain of the functions. In particular, for each vector v; in
the original basis we have

avi(vi) +aavi{(vid + -+ apvi(v) =0

from which it follows that a; = 0.
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Abelian group, 135
absolute trace function, 15
adjoining elements, 6, 144
Advanced Encryption Standard
(AES), 112

efficiency, 119
affine geometry, 66, 78, 160
affine plane, 60, 77
affine space, 59
algebraic extension, 8, 9
annihilates, 23
Artin's lemma, 23, 141
Assmus, E, F., Jr.,, 104
auttomorphism, 14, 29, 141

balanced incomplete block design,
67

basis
complementary, 22
dual, 22, 149
finite field, 19
normal, 20, 23
polynomial, 19
primitive normal, 25
self-dual normal, 25, 40
vector space, 148

BCH code, 97
designed distance, 97

Betti-Mathieu group, 41

BIBD, see balanced incomplete
block design
Bose, Raj Chandra, 47

Cayley table, 44, 77, 159
character of a group, 72

quadratic, 73
characteristic {ring), 2, 138
characteristic polynomial, 16, 23
Chinese remainder theorem, 150
ciphertext, 110
closed binary operation, 135
code, 80, see also error-correcting

code

BCH, see BCH code

constant-weight, 102

cyclic, 95

decoding methods, 91

dual, 101

equivalent, 96

Golay, see Golay code

Goppa, 98

Hamming, see Hamming code

linear, 82

narrow-sense, 97

parity-check, 82

perfect, 89, 102

primitive, 97

rate, 87

Reed—Solomon, 97
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repetition, 82, 161 direct attack, 114
trivial, 100 Dirichlet’s theorem, 42
codeword, 80 discrete logarithm, 120, 131
Collatz 3n + 1 problem, 37 and elliptic curves, 123
commutative group, 135 formula, 121
commutative ring, 138 discriminant, 20
complementary basis, 22 distributive laws, 137
conjugate element, 14 double-round quadratic
constant-weight code, 102 cryptosystem, 116
coprime, see relatively prime dual basis, 22, 149, 164
correct errcrs, 85 dual code, 101
coset leader, 91 dual space, 18, 149
critical set, 127
cryptography, 81, 109 elliptic curve, 121, 131
cryptosystem, 111 cryptosystem, 123
AES, 112 rational point, 121
attacks, 114 encryption key, 111
DES, 111 equivalent code, 96
Dickson polynomials, 125 error correction, 83
double-round quadratic, 116 error detection, 86
elliptic curve, 123 error-correcting code, 81, 85
public key, 114 Euclid, 134
RSA, see RSA cryptosystem Euclidean algorithm, 134, 151, 162
secure, 111 Euler’s conjecture, 48, 50
substitution cipher, 110, 129 Euler’s function, 154
symmetric key, 112 Euler’s theorem, 151
cyclic code, 95 extension field, 2, 6-8, 143
cyclic group, 136, 137 algebraic extension, 8, 9
cyclic vector, 23 degree, 7
finite extension, 7
Data Encyption Standard (DES), simple extension, 9, 37
111
decryption key, 111 factor ring, 142, 144
degree of F, 2 factoring problem, 115
degree of an element, 8 Fano plane, 61
derivative test, 142 Fermat’s little theorem, 151
Desarguesian plane, 65 field, 138
designed distance, 97 characteristic, 138
detect errors, 86 extension, see extension field
Dickson polynomial, 33-36, 42, 786, field of fractions, 37
159 field of rational functions, 37
cryptosystem, 125 finite dimensional, 148
difference set, 68 finite extension, 9, 39
and hyperplanes, T0 finite field, 1, 140
and projective planes, 69 existence and uniqueness, 3
Diffie-Hellman cryptosystem, 36 flat, 65
digital signature scheme, 124, 130 formal derivative, 142

dimension (vector space), 148 frequency hypercube, 58
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frequency square, 58
orthogonal, 58, 77
Frohenius automorphism, 15, 23, 31

Galois group, 14
Galois theory, 15
Galois, Evariste, 4
general linear group GL(r, Fy), 41
generator matrix, 83, 95
generator of a group, 136
generator polynomial, 97
Gilbert-Varshamov bound, 80
Golay code, 99, 107
and Steiner system, 103
Goppa code, 98
Goppa, V. D., 98
group, 135
Abelian, 135
cyclic, 136
generator, 136
homomorphism, 140
isomorphic, 141
isomorphism, 140
order of, 136

Hadamard matrix, 71
Hadamard’s inequality, 71
Hamming bound, 88, 161
Hamming code, 94, 96, 98, 89, 102

binary, 94

Hamming code

g-ary, 94

Hamming distance, 85
Hamming metric, 85
Hamming weight, 85
Hermite—Dickson criterion, 32
Hocquenghem, A., 97
holding a block, 102
homomorphism, 140
hypercube, 58

and MDS codes, 106

mutually orthogonal, 108

orthogonal, 77
hyperplane, 66

and difference sets, 70

incomplete decoding, 93
indirect attack, 114
integral domain, 139

irreducible polynormnial, 143, 152
number of, 12, 27, 40
isomorphism, 140

j-plane, 35

key exchange, 119
Dicksan polynomials, 126
Diffie-Hellman, 120
Kronecker product, 31

Lagrange interpolation formula,
26-27
Lagrange's four squares theorem,
54
Lagrange’s theorem, 136
latin hypercube, 57
latin rectangle, 130
latin square, 43, 75, see also
mutually orthogonal latin
squares
critical set, 127
number of (Ln), 44
number of reduced (1), 44
orthogonal, 46, 113
partial, 75, 128, 130
reduced, 44
self-orthogonal, 77
transversal, 159
linear code, 82
rminimum distance, 85
linear combination, 147
linear functional, 149
linear transformation
trace function, 16
linearized polynomial, 31, 41
linearly dependent, 147
linearly independent vectors, 147

m-space, 65

Mébius function w, 12

Mobius inversion formula, 28

MacNeish's conjecture, 49

MacNeish, H. F., 49

MacWilliams identity, 101

magic square, 56, 76

Mattson, H. F., Jr., 104

maximum distance separable code,
90, 106
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MDS code, see maximum distance
separable code
message, 79
minimal polynomial, 6, 8, 13, 16, 23
minirmurn distance, 85
MOLS, see mutually orthogonal
latin squares
Moore, E. H., 47
Morse code, 80
multiplicative character, see
character of a group
multiplicative group, b
multiplicity, 142
mutually orthogonal frequency
squares { MOFS), 58, 108
mutually orthogonal latin squares
(MOLS), 35, 46, 104
and projective planes, 62
complete set, 46
diagonal, 76
number of, 54

narrow-sense code, 97

nearest neighbor decoding, 92

neofield, 2

next Fermat problem, see prime
power conjecture

norm function, 18

normal basis, 20, 23, 24

order of a group, 136

order of a field element, 156

order of a group element, 136, 137,
162

order of a polynomial, 29

parity-check code, 82
parity-check matrix, 83, 95
partial latin square, see latin
square, partial
perfect code, 89, 102
permutation polynomial, 32, 41-42
¢ function, see Euler’'s function
plaintext, 110
Plotkin bound, 89
point at infinity, 121
polynomial, 141
irreducible, see irreducible
polynomial

root of, 142
polynomial basis, 19
prime power conjecture, 48, 50
for affine and projective planes,
64
prime subfield, 1
prime subring, 152
primitive code, 97
primitive element, 5-6
primitive normal basis, 25
primitive polynomial, 30, 40
primitive root, 29
private key, 114
projective geometry, 65, 78, 160
projective plane, 59
and difference sets, 69
order, 60
projective space, 59
public key, 114
public key cryptosystem, 114

g-polynomial, 31
quadratic character, 73
quartic polynomial, 116

ralatively prime, 133
rate of a code, 87
rational point, 121
Ray-Chaudhuri, D. K., 97
reciprocal polynomial, 30, 40
Reed~Solomon code, 97
repetition code, 82
ring, 137
characteristic, 138
commutative, 138
factor, see factor ring
homomorphism, 141
integral domain, 139
isomorphic, 141
ring of polynomials, 142
root, 142
multiplicity, 142, 143
RSA cryptosystem, 36, 114, 118,
130, 162
efficiency, 119
padding, 115
signature scheme, 130

scalar multiplication, 146
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Schur’s conjecture, 35
secret sharing scheme, 126, 128
from Lagrange interpolation, 127
from latin squares, 127
sell-dual normal basis, 25, 40
share (secret sharing}, 126
signature scheme, see digital
signature scheme
simple extension, 9, 37
Singleton bound, 89, 105
Smetaniuk, B. , 128
smooth (elliptic curve), 121
span, 147
sphere (coding theory), 85, 89, 106
sphere-packing bound, see
Harming bound
splitting field, 3, 144
existence and uniqueness, 145
standard array, 92
Steiner system, 1062, 163
and Golay cede, 103
subfield, 4
subgroup, 135
geneated by, 137
substitution cipher, 110, 129
sudoku square, 76
sudoku squre, 55
symmetric group, 41
symmetric key cryptosystem, 112
syndrome, 92
systematic form, 83, 84

tactical configuration, 66
Tarry, G., 48
threshold scheme, see secret
sharing scheme
Tietdvidinen, A., 100
totient function, see Euler’s
function
trace function, 15, 157
absolute, 15
transitivity, 18
transversal of a [atin square, 159
triangle, 65
trivial code, 100

value set, 42
van Lint, J. H., 100

vector space, 146
dimension, 148
finite dimensional, 148
subspace, 146

weight enumerator polynomial, 101

zero divisor, 138, 140, 152
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