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PREFACE

Galois theory is one of the most fascinating and enjoyable branches of
algebra. The problems with which it is concerned have a long and
distinguished history: the problems of duplicating a cube or trisecting an
angle go back to the Greeks, and the problem of solving a cubic, quartic or
quintic equation to the Renaissance. Many of the problems that are raised
are of a concrete kind (and this, surely, is why it is so enjoyable) and yet the
needs of the subject have led to substantial development in many branches
of abstract algebra: in particular, in the theory of fields, the theory of groups,
the theory of vector spaces and the theory of commutative rings.

In this book, Galois theory is treated as it should be, as a subject in its
own right. Nevertheless, in the process, I have tried to show its relationship
to various topics in abstract algebra: an understanding of the structures of
abstract algebra helps give a shape to Galois theory and conversely Galois
theory provides plenty of concrete examples which show the point of
abstract theory.

This book comprises two unequal parts. In the first part, details are given
of the algebraic background knowledge that it is desirable to have before
beginning to study Galois theory. The first chapter is quite condensed: it is
intended to jog the memory, to introduce the terminology and notation
that is used, and to give one or two examples which will be useful later. In
the second chapter, the axiom of choice and Zorn's lemma are described.
Algebra is principally concerned with finite discrete operations, and it
would have been possible, at the cost of not establishing the existence of
algebraic closures, to have avoided all use of the axiom of choice.
Mathematicians do, however, need to know about the axiom of choice, and
this is an appropriate place to introduce it. A reader who has not met the
concepts of this chapter before may omit it (and Chapter 8); preferably, he
or she should read through it quite quickly to get some idea of the issues
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involved, and not worry too much about the details. The third chapter, on
rings, is much more important, and should be read rather carefully. It is an
important fact that polynomials with integer coefficients and polynomials
in several variables enjoy unique factorization, and it is necessary to go
beyond principal ideal domains to establish this fact. There are some other
special results from abstract algebra that are needed (such as basic
properties of soluble groups): most of these are established when the need
arises.

The second, more substantial, part is concerned with the theory of fields
and with Galois theory, and contains the main material of the book. Of its
nature, the theory develops an inexorable momentum. Nevertheless, there
are many digressions (for example, concerning irreducibility, geometric
constructions, finite fields and the solution of cubic and quartic equations):
one of the pleasures of Galois theory is that there are many examples which
illustrate and depend upon the general theory, but which also have an
interest of their own. The high point of the book is of course the resolution
of the problem of when a polynomial is soluble by radicals. I have, however,
tried to emphasize (in the final chapter in particular) that this is not the end
of the story: the resolution of the problem raises many new problems, and
Galois theory is still a lively subject.

Two hundred exercises are scattered through the text. It has been
suggested to me that this is rather few: I think that anyone who honestly
tries them all will disagree! In my opinion, text-book exercises are often too
straightforward, but some of these exercises are quite hard. The successful
solution of a challenging problem gives a much better understanding of the
powers and limitations of the theory than any number of trivial ones.
Remember that mathematics is not a spectator sport!

This book grew out of a course of lectures which I gave for several years
at Cambridge University. I have, however, not resisted the temptation to
add extra material. A shorter course than the whole book provides can be
obtained by omitting Chapter 2, Chapter 8, Section 10.6, Section 18.5 and
Chapter 20. 1 am grateful to all who attended the course, and helped me to
improve it. I am particularly grateful to Robert J. H. A. Turnbull, who read
and commented helpfully on an early draft and also detected many errors in
the final version of this book.
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Groups, fields and vector spaces

Galois theory is almost exclusively a branch of algebra; the reader is
expected to have some knowledge of algebra, and in particular to have
some knowledge of groups and vector spaces. Read through this chapter
and make sure that you are familiar with what is in it; if you are not, you
should consult standard text-books, such as those by MacDonald' on
groups and Halmos2 on vector spaces.

1.1 Groups
Suppose that S is a set. A law of composition o on S is a mapping

from the Cartesian product S x S into S; that is, for each ordered pair (sl, s2)
of elements of S there is defined an element s 1 o s2 of S.

A group G is a non-empty set, with a law of composition o on it with the
following properties:

(i) 91 0 (g2 o 93) = (91 o 92) o 93 for all g1, g2 and g3 in G - that is,
composition is associative;

(ii) there is an element e in G (the unit or neutral element) such that
eog=g o e=g for each g in G;

(iii) to each g in G there corresponds an element g -1 (the inverse of g)
such that g o g --' = g -' o g= e.

A group G is said to be commutative, or abelian, if g, o g2 = 92 o g, for all
g, and g2 in G.

The notation that is used for the law of composition o varies from
situation to situation. Frequently there is no symbol, and elements are
simply juxtaposed: g o h = gh. When G is abelian, it often happens that the

I D MacDonald The Theory of Groups, Oxford, 1968
2 P. R Halmos, Finite-dimensional Vector Spaces, Springer Verlag, 1974
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law is denoted by +: g o h = g + h, the neutral element is denoted by 0 and
the inverse of an element g is denoted by -g.

Let us give some examples of groups. The integers 71 (positive, zero and
negative) form a group under addition. This group is abelian, and 0 is the
unit element.

If S is a non-empty set, a mapping a from S into S is called a permutation
of S if it is one-one (that is, if a(x) = a(y) then x = y) and onto (that is, if yeS
there exists x in S such that a(x) = y). The set 2S of permutations of S is a
group under the natural composition of mappings. In detail, a1 o a2 is
defined by a1 o 62(x) = a1(Q2(x)). If S= 11, ..., n}, we write 2n for 2 .2 is not
abelian if S has more than two elements.

A subset H of a group G is a subgroup if it is a group under the law of
composition defined on G; that is, if h1 and h2 are in H, so are h1 o h2 and
hi 1. If G is a group with unit element e, the sets {e} and G are subgroups;
these are the trivial subgroups of G. Here are some examples of subgroups.
The sets

nZ= {nm:m E71}, for n>0,

are subgroups of 71, and any subgroup of 71 is of this form (why?). The
alternating group A of all permutations in 2,= which can be written as the
product of an even number of transpositions (permutations which
interchange two elements, and leave the others fixed) is a subgroup of 2:,,. If
so is a fixed element of S, the set

{ae ES:a(s0)=SO}

is a subgroup of Es.
Suppose that H is a subgroup of G, and that g is an element of G. We write

H o g for the set {ho g : h c- H }. Such a set is called a right coset of H in G. The
collection of right cosets of H is denoted by G/H.

If S is any set, the order of S, denoted by ISI, is the number of elements of S
(a non-negative integer, or + c). Thus I2;I = n!. If H is a subgroup of G, and
g1 and g2 are elements of G, the mapping which sends g to g o gI 1 o g2 is a
permutation of the set G which maps Hog 1 onto HO g2: thus any two right
cosets of H in G have the same order. As distinct right cosets are disjoint,
IGI = IG/HI.IH1 (Lagrange's theorem) and so IHI divides IGI. The quantity
IG/HI is called the index of H in G. Thus An has index 2 in 2:n-

A mapping 0 from a group G1 into a group G2 is a homomorphism if
091 o 92) = q5(g1) o q5(g2), for all g1 and g2 in G. A homomorphism which is
one-one is called a monomorphism, one which is onto is called an
epimorphism and one which is both is called an isomorphism. If 0 is a
homomorphism of G1 into G2, the image

4(G1)={4(g):gEG1}
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is a subgroup of G2, and the kernel

0-1({e})={gcG1:4(g)=e, the unit of G2}

is a subgroup of G1. It is, however, a subgroup of a special kind.
A subgroup H of a group G is a normal subgroup if g- I o h o g c- H

whenever g c- G and h c- H. We write H© G to mean that H is a normal
subgroup of G. If H© G and C1= H o g1 and C2 =Ho g2 are right cosets of
H in G, then

C1 oC2={CI QC2:C1 EC1,C2EC2}

={hog1okog2:h,keH}
={ho(g1 oko9i 1)o91 o92:h,kEH}
={hogs o92:heH}=Ho(g1 o92),

so that C1 o C2 is again a right coset of H in G; under this law of
composition, G/H is a group (the quotient group) with H as unit element,
and the natural quotient map q: G -+ G/H (which sends g to its right coset
Hog) is an epimorphism with H as kernel.

On the other hand, if 0 is a homomorphism of G1 into G2 with kernel K,
then K d G 1 and there is an isomorphism from G 1 /K onto 4)(G 1) such
that 0 = q (the first isomorphism theorem).

0

q

000 G2

i

G1/K 4(G1)

In this diagram, i is the inclusion mapping, which is of course a
monomorphism.

Let us give some examples. If G is an abelian group, any subgroup is
necessarily normal, and we can form the quotient group. In particular we
denote by 77,, the quotient group i/ni. This is the group of integers (mod n):
we identify two integers which differ by a multiple of n. The group Z. has
order n, for n > o.

There is an epimorphism of 24 onto E3, which can perhaps most easily be
described geometrically. Let 1, 2, 3, 4 be four points in a plane, no three of
which are collinear (see Fig. 1.1). Denote the line joining i and j by (() (there
are six such lines), and denote the intersection of (ij) and (kl) by (j)(kl) (there
are three such points of intersection).
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Fig. 1.1
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Then any permutation a of (1, 1,2,3, 4} defines a permutation of the lines
((j) goes to (a(i)a(j))) and a permutation 4)(a) of the points of intersection

(a(i)a(j})(a(k}a(1}}). It is easy to see that 4) is a
homomorphism, and that (using cycle notation) the kernel of 0 is

le, (12)(34), (13)(24), (14)(23)}.

This normal subgroup of S4 is called the Viergruppe, and will be denoted by
N. Finally, as

I4(S4)I = IS4/NI =1541/INI = 6 = IS3I1

4)(S4) = S3, and 0 is an epimorphism.
Suppose that A is a non-empty subset of a group G. We denote by <A>

the intersection of all those subgroups of G which contain A. <A> is a
subgroup of G, the smallest subgroup containing A, and we call it the
subgroup generated by A. If A is a singleton {x}, we write <x> for <A>; <x>
is called a cyclic subgroup of G. Similarly a group which is generated by a
single element is called a cyclic group. A cyclic group <x> is always abelian.
If it is infinite, it is isomorphic to 1; if it has order n, it is isomorphic to Z,x. In
this case n is the least positive integer k such that x" = e; n is called the order
of x. It follows from Lagrange's theorem that if G is finite then the order of x
divides IGI.

This is the basic group theory that we need; we shall need some more
group theory later, and will develop the results as we go along.

Exercises

1.1 Show that an element of a group has exactly one inverse.

1.2 Write out a proof of the first isomorphism theorem.

1.3 Suppose that H is a subgroup of G of index 2. Show that H is a
normal subgroup of G.

1.4 Suppose that G has exactly one subgroup H of order k. Show that
H is a normal subgroup of G.

1.5 Suppose that H is a normal subgroup of G and that K is a normal
subgroup of H. Is K necessarily a normal subgroup of G?

1.6 Show that any permutation of a finite set can be written as a
product of transpositions.

1.7 Show that a group G is generated by each of its elements (other
than the unit element) if and only if G is a finite cyclic group of
prime order.
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1.8 Describe the elements of 4 which generate 4 (for any positive
integer n).

1.9 Give an example of a non-abelian group of order 8 all of whose
subgroups are normal.

1.10 If nEE,,, let (n) = f ;,_1(n(j) -- n(i))/JJj<;(j - i). Show that s is a
homomorphism of I onto the multiplicative group with two
elements 1 and - 1, and that A,, is the kernel of s.

1.2 Fields
The study of fields is the first main topic of Galois theory. Here we

shall do little more than recall the definition.
A field K is a non-empty set with two laws of composition, addition and

multiplication, with which the usual arithmetic operations can be carried
out. To be precise, first K is an abelian group under addition (written +).
The neutral or zero element is written as 0 and the additive inverse of x as
-x. Let K* denote the set of non-zero elements Then multiplication
satisfies the following.

(a) 0.x=x.0=0 forallxinK.
(b) K* is an abelian group under multiplication. The multiplicative

unit is written as 1.
(c) Addition and multiplication are linked by

x(y+z)=xy+xz for all x,y and z in K.
The fields 0 of rational numbers, l of real numbers and C of complex

numbers should be familiar and their basic properties will be taken for
granted; remember that R and C belong as much to analysis as they do to
algebra. We shall give one more example of a field here. Recall that the real

number J2 is not rational. (If it were, we could write =p/q,where p and,/2-

q have no common factor. Then 2q2 = p2, so that p would be even, and we
could write p= 2k. Then q2 = 2k2, so that q would be even and 2 would be a
common factor of p and q, giving a contradiction.) Let K consist of all real

numbers of the form r + s., 2, where r and s are rational. K is clearly an
additive subgroup of R. Also

(r1 + si J2)(r2 + s2r2) = (rl r2 + 2si s2) + (rl s2 + r2s1)/,

and if r + s/ 00 then r - s..,12-0 0, so that r2 - 2s2 0. Thus if we set
u = r/(r2 - 2s2), v = - s/(r2 -2S2 )9

(r+sf2)(u+vim)=1.
Consequently K* is an abelian group under multiplication, and so K is a
subfeld of R.
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This field K is a very simple example of the sort of field that we shall
consider later. Notice that the only difficulty involved finding a
multiplicative inverse. Why did we consider r - ./2, and where did it come
from?

Exercises

1.11 Every field has at least two elements. Show that there is a field with
exactly two elements.

1.12 Let 71n be equipped with a multiplication by defining (a + n7) o
(b + nl) = ab + n71. Show that this is well defined, and that with this
multiplication Z,= is a field if and only if n is a prime number.

1.13 Which of the following subsets of C are subfields of C?

(i) {a+ib:a,beQ}.

(ii) {(iii)

{a+2"3b:a, b E Q }.

(iv) {a+2"3b+4"3c:a,b,ceO}.

1.3 Vector spaces
We are now in a position to define the notion of a vector space.

Suppose that K is a field. A set V is a vector space over K if first it is an
abelian group under addition and secondly there is a mapping (a, x) -' ax
from K x V into V which satisfies

(a) a(x+y)=ax+ay,
(b) (a + fJ)x = ax + fl x,
(c) (a f )x = a(/ix), and
(d) 1. x=x

for all a, f in K and x, y in V.
As an example, let S be a non-empty set, and let KS denote the set of all

mappings from S into K. If f and g are in Ks, define f +g by

(f + g)(s) = f(s) + g(s), for s in S.

and, if a e K, define of by

(af)(s) = a(f(s)), for s in S.

Then it is easy to verify that the axioms are satisfied. If S = i 1, ..., n}, we
write K" for Ks and, if x c- K", write

x=(xi,...,xn),
where x3 is the value of x at j.
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In fact, we need surprisingly little of the theory of vector spaces. The key is
the idea of dimension; as we shall see, this turns out to be remarkably
powerful. Suppose that V is a vector space over K. A subset W of V is a
linear subspace if it is a vector space under the operations defined on V; for
this, it is sufficient that if x and y are in W and a is in K then x + yE W and
ax c- W. If A is a non-empty subset of V, the span of A, denoted by span (A), is
the intersection of the linear subspaces containing A; it is a linear subspace
of V, and is the smallest linear subspace containing A. If span (A) = V, we say
that A spans V.

We now turn to linear dependence and linear independence. A subset A
of a vector space V over K is linearly dependent over K if there are finitely
many distinct elements x1, ..., xk of A and elements A1, ..., 2k of K. not all
zero, such that

21x1+...+2kxk=0;

if A is not linearly dependent over K, A is linearly independent over K. Note
that, even if A is infinite, the sums which we consider are finite. If A is finite
and A = {x1,. . ., xn}, where the xi are distinct, A is linearly independent over
K if it follows from

21x1 +... +2,txn=0

that
A subset A of a vector space V over K is a basis for V if it is linearly

independent and spans V. We shall see in the next chapter that every vector
space has a basis. In fact, our main interest is in finite-dimensional vector
spaces; let us consider them now.

A vector space V over K is finite dimensional if there exists a finite subset
of V which spans V. First we show that a finite-dimensional space has a
finite basis; this is a consequence of the following theorem:

Theorem 1.1 Suppose that A is a finite subset of a vector space V over K
which spans V, and that C is a linearly independent subset

of.

A (C may be
empty). There exists a basis B of V with C E_ B c A.
Proof. Consider the collection J of all subsets of A which contain C and are
linearly independent. Since JAI < occ, there exists a B in J with a maximum
number of elements. B is independent and C B c A; it remains to show
that B spans V.

Let B= {b1,. . ., b,t}, where the bi are distinct. If a e A \B, Bu {a} is linearly
dependent (by the maximality of IBI) and so there exist A, , ..., 2,, in K, not all
zero, such that

2oa+21b1 +... +2,b,
=0.
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Further, ;.0 = 0, for otherwise b1, ..., b,, would be linearly dependent. Thus

a= -A0 ---_A0 1A2b2
A0

and a e span (B). Consequently A c span (B), and so span (A) span (B). As
span (A) = V, the theorem is proved.

We would now like to define the dimension of a finite-dimensional vector
space as the number of elements in a basis. In order to do this, we need to
show that any two bases have the same number of elements. This follows
from the next theorem.

Theorem 1.2 Suppose that Visa vector space over K. If A spans V and C is a
linearly independent subset of V, then ICI IAI.

Proof. The result is trivially true if Al I=cc, and so we may suppose that

Al I< If ICI = oc, there is a finite subset D of C with IDI > Al.IAs D is again
linearly independent, it is sufficient to prove the result when ICI < ,c.
Theorem 1.2 is therefore a consequence of the following:

Theorem 1.3 (The Steinitz exchange theorem) Suppose that C = {c1,. . ., cr}

is a linearly independent subset (with r distinct elements) of a vector space V
over K, and that A = {a1.....a} is a set (with s distinct elements) which spans
V. Then there exists a set D, with C D c A u C, such that IDI = s and D spans
V.

Proof. We prove this by induction on r. The result is trivially true for r=0
(take D = A). Suppose that it is true for r - 1. As the set Co = {c1,. . ., Cr _ 1 } is

linearly independent, there exists a set Do with Co c Do c A u Co such that
IDoI = s, and Do spans V. By relabelling A if necessary, we can suppose that

Do=,C1,...,cr_ 1, ar, ar+ 1,...,as}.

If s were equal to r - 1, we would have Do = CO; but Cr E span (D0), so that we
could write

r-1
Cr = ici,

i=1

contradicting the linear independence of C. Thus s > r. As cr E span (D0), we
can write

r- s

Cr= Yjci + ajaj.
j=1 j=r

Not all aj can be zero, for again this would contradict the linear independence
of C. By relabelling if necessary, we can suppose that ar 00. Let D=
{c1,. . ., Cr, ar + 1, ..., as}. Then

r-1
ar = Oer 1 Cr - ,lici - a ja j

i= 1 j=r+1
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so that ar a span (D). Thus
span (D) 2 {cl,...,cr_1,ar,ar+1,...,as}=Do

and so span (D) : span (DO) = V.
This completes the proof.

Corollary (to Theorem 1.2) Any two bases of a finite-dimensional vector
space have the same finite number of elements.

We now define the dimension of a finite-dimensional vector space V over
K to be the number of elements in a basis. We denote the dimension of V by
dim V. Here is one simple but important result:

Theorem 1.4 Suppose that U is a linear subspace of a finite-dimensional
vector space V over K. Then dim U < dim V, and dim U = dim V if and only
if U=V.
Proof. Let A be a basis for U, and let C be a finite set which spans V.
Considered as a subset of V, A is linearly independent, and so by Theorem
1.1 there is a basis B of V with A c B A u C. Thus

dim U=IAI <IBI=dim V.

If dim U = dim V, we must have A = B, so that A spans V and U = V; of
course if U = V, dim U = dim V.

Corollary I Suppose that A is a finite subset of a finite-dimensional vector
space V over K. If Al I> dim V, A is linearly dependent.
Proof. Let U = span (A). If A were linearly independent, A would be a basis
for U, so that dim U= IAI. But dim U <dim V, giving a contradiction.

Suppose that V1 and V2 are vector spaces over the same field K. A
mapping 4 from Vl into V2 is called a linear mapping if

O(x+AO(x)+0(y),
4(2x) _ 2O(x)

for all x and y in V1 and all A in K. The study of linear mappings is an
essential part of the study of vector spaces; for our purposes we shall only
need one further corollary to Theorem 1.4.

Corollary 2 Suppose that V1 and V2 are vector spaces over K and that 0 is a
linear mapping of V1 into V2. I f dim V1 > dim V2, 0 is not one-one, and there
exists a non-zero x in V1 such that 4(x) =0.
Proof. Let n=dim V2. As dim V1 > dim V2, there exist n +I linearly
independent vectors x1, ..., x + 1 in V1. Then, by Corollary 1, {4(x1),...,

1) } is linearly dependent in V2, and so there exist A1, ..., A,+ 1 in K, not
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all zero, such that

Al(p(X1)+ ... +/11+10(X11+1)=0

But

A,O(x1)+ ... +A,1+1(P(Xn+i)=4(A1X1 +.

since 0 is linear, and

x=,1x1 + ... +,.,:+ 1Xi:+ 100

since {x1,.. ., x11 + 1 } is linearly independent. As 4)(x) = 0 = 0(0), 0 is not one-
one.

Exercises

1.14 In Kn, let e1= (0, ..., 0, 1, 0, ..., 0), where the I occurs in the jth
position. Let f j = e1 + + e f.

(a) Show that {e1,. . ., en} is a basis for K".
(b) Show that { f1, ..., f,=} is a basis for K.
(c) Is {e1,f1,J'2,...,f,=} a basis for Kn?

1.15 Suppose that S is infinite. For each s in S, let es(t) = 1 ifs = t, and let
es(t) =0 otherwise. Is {e:seS} a basis for Ks?

1.16 l can be considered as a vector space over Q. Show that R is not
finite dimensional over Q. Can you find an infinite subset of 01
which is linearly independent over 0?

1.17 Suppose that K is an infinite field and that V is a vector space over
K. Show that it is not possible to write V= Us_ 1 Ui, where
U1, ..., Un are proper linear subspaces of V.

1.18 Suppose that K is a finite field with k elements, and that V is an r-
dimensional vector space over K. Show that if V= Ut _ 1 U,, where
U1,..., Un are proper linear subspaces of V, then n > (kr -1)/(k - 1).
Show that there exist (kr - 1)/(k - 1) proper linear subspaces of V
whose union is V.
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The axiom of choice, and Zorn's lemma

The study of algebra is very largely concerned with considering finitely
many operations on finitely many objects; even when induction is used, as
in Theorem 1.3, at any one time we consider only finitely many elements.
There are, however, one or two situations when we need to consider
infinitely many objects simultaneously; in order to be able to do this, we
have to appeal to the axiom of choice.

2.1 The axiom of choice
In its simplest form, the axiom of choice can be expressed as

follows. Suppose that is an indexed family of sets, and that each of
the sets Ea is not empty. Then the axiom of choice says that the Cartesian
product 1 10tEA(Ea) is also non-empty: that is, there exists an element (c«)«eA in

the product. In these terms, the axiom of choice may seem rather self-
evident: each EM is not empty, and so we can find a suitable c,,,. The point is
that we want to be able to make this choice simultaneously. The more one
thinks about it, the more one discovers that this is a rather strong
requirement. The axiom of choice is a genuine axiom of set theory; most
mathematicians accept it and use it, as we certainly shall, but there are those
who do not. Arguments which use the axiom of choice, or one of its
equivalents, have a character of their own. You should avoid using it unless
it is really necessary.

2.2 Zorn's lemma
In the form in which we have described it, the axiom of choice is a

rather unwieldly tool. There are many statements which are equivalent to
the axiom of choice (in the sense that they can be deduced using the axiom of
choice, and the axiom of choice can be deduced from them). Thus an
equivalent statement is that every set can be `well ordered' (see Exercise 2.2
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for a definition): this is fundamental to the theory of ordinals, and leads to
the idea of `transfinite induction'. Some fifty years ago, this was the most
popular and effective way of using the axiom of choice.

More recently, it has become customary to use another equivalent of the
axiom of choice, namely Zorn's lemma. This is a technical result concerning
partially ordered sets, which proves to be rather simple to use in practice. In
order to state it, we need to say something about partially ordered sets.

A relation < on a set S is said to be a partial order if

(a) x < x for all x in S,
(b) if x < y and y < z then x < z, and
(c) if x < y and y < x then x = y.

For example, if S is a collection of subsets of a set X, the relation E <F if
E 5 F is a partial order on S ('ordering by inclusion').

A partially ordered set S is totally ordered if any two elements can be
compared: if x and y are in S then either x < y o r y,<.,, x. A non-empty subset
C of a partially ordered set S is a chain if it is totally ordered in the ordering
inherited from S.

If A is a subset of a partially ordered set S, an element x of S is an upper
bound for A if a <x for each a in A. An upper bound may or may not belong
to A: A may have many upper bounds, or none at all. For example, let S be
the collection of finite subsets of an infinite set X, ordered by inclusion. S
itself has no upper bound, and a subset of S has an upper bound in S if and
only if it is finite.

Finally, an element x of a partially ordered set S is maximal in S if,
whenever x <y, we must have x = y. In other words x is maximal if there are
no larger elements. A maximal element need not be an upper bound for S;
there may be other elements which cannot be compared with x. S may well
have many maximal elements.

We are now in a position to state Zorn's lemma.

Zorn's lemma Suppose that S is a partially ordered set with the property that
every chain in S has an upper bound. Then S has at least one maximal element.

We shall not show how to deduce this from the axiom of choice. A proof
can be found in Halmos'. After working through the proof of Theorem 2.1,
you should be able to tackle exercises 2.1 and 2.2.

2.3 The existence of a basis
In our study of Galois theory, we shall only need to apply Zorn's

lemma three times (in Theorems 8.2 (via Theorem 3.14), 8.3 and 18.5). To

P. R. Halmos, Naive Set Theory, Springer-Verlag, 1974.
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illustrate how Zorn's lemma can be used, let us show that every vector space
has a basis.

Theorem 2.1 Suppose that A is a subset of a vector space V over K which
spans V and that C is a linearly independent subset of A (C may be empty).
There exists a basis B of V with C c B g A.

We have proved this in the case that A is finite in Theorem 1.1 (and made
essential use of the finiteness of A). Taking A = V and C the empty set, we see
that this theorem implies that every vector space has a basis.
Proof. Let S denote the collection of subsets of A which are linearly
independent and contain C. Order S by inclusion. Suppose that T is a chain
in S. Let E= UDET D. E is a subset of A which contains C. Suppose that
x1, ..., x are distinct elements of E. From the definition of E, there are sets
D1, ..., D in T such that xt e Dt for 1 < i < n. Since T is a chain, there exists j,
with 1 <j <n, such that Di g DJ for 1 i n. Consequently x1, 1,. . x are all in
D. As Dj is linearly independent, {x1,.. ., is linearly independent. As this
holds for any finite subset of E, E is linearly independent. Thus E E S. E is
clearly an upper bound for T, and so every chain in S has an upper bound.

We can therefore apply Zorn's lemma, and conclude that S has a
maximal element B. B is linearly independent and C g B c A; it remains to
show that span (B) = V. Since span (A) = V, it is enough to show that A c
span (B). If not, there exists a in A which does not belong to span (B). Let
B0 = (a) u B. We shall show that B0 is linearly independent. Suppose that

A.oa+Alb, + ... +Anbn=0

where b1,. .., b,, are distinct elements of B. If 20 00,
a= --201(A1b1 + ....+Ai,b,)

contradicting the fact that a 0 span (B). Thus
)1b1 +.. . +^Ilb,,=0.

As B is linearly independent, Al = .. =A,,=O. Thus B0 is linearly
independent. Consequently B0 a S. But B0 2 B, and B0 0 B, contradicting the
maximality of B. This completes the proof.

The proof of this theorem should be compared with the proof of Theorem
1.1. In fact, the proofs are very similar: the counting argument of Theorem
1.1 is replaced by a maximality argument.

Exercises

2.1 Show that the axiom of choice is a consequence of Zorn's lemma.
(Hint: Suppose that {Ec, LEA is a family of non-empty sets. Take S to
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be all pairs (B, (c#)#EB) where B is a subset of A, and cp e E, for I E B.
Partially order S by setting (B, (cc),EB) < (C, (cy)YEc) if B c C and
c=c' for /3 E B. Now carry through the procedures of Theorem
2.1

2.2 A total order on a set S is said to be a `well-ordering' if every non-
empty subset of S has a least element. Use Zorn's lemma to show
that every non-empty set can be given a well-ordering. (Hint:
Define a partial order -< on all pairs (T, <), where T is a subset of S,
and is a well-ordering on T, by saying that

(T1, 1)-<(T2, C2)

if First T, c T2, secondly the orderings and < 2 coincide on T,
and thirdly

Pt =IX ET2:x<2t}

is contained in T1 whenever t is in T,. Apply Zorn's lemma to this.)

2.3 Suppose that (A, <) is an infinite well-ordered set. Show that there
is a unique element a such that {x: x < a} is infinite, while {x: x < b}
is finite for each b <a. Suppose that A is uncountable. Show that
there is a unique element c such that {x: x < c} is uncountable,
while {x:x<d} is countable for each d < c.

2.4 Suppose that (A, <) and (B, <) are two well-ordered sets. Show
that one (and only one) of the following must occur:

(i) there is a unique order-preserving bijection i : A B;

(ii) there exists a unique element a in A and a unique order-
preserving bijection i : {x:x<a} -+ B;

(iii) there exists a unique element b in B and a unique order-
preserving bijection i : A { y: y < b}.
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Rings

The second main topic of Galois theory is the study of polynomials. The
collection of all polynomials with coefficients in a given field forms a ring,
and rings provide a good setting for the study of factorization and
divisibility. This chapter is concerned with developing the properties of
rings that we shall need; the material is to some extent of a preliminary
nature, and you may well be familiar with much of it.

3.1 Rings
A commutative ring with a 1 is a non-empty set R with two laws of

composition: addition and multiplication. Under addition, R is an abelian
group, with neutral element 0. As far as multiplication is concerned, the
following conditions must be satisfied:

(a) (rs)t = r(st),
(b) rs = sr,
(c) (r+s)t=rt+st,
(d) there exists an identity element 1, different from 0, such that r. 1= r,

for all r, s and t in R.
Algebraists study rings which are not commutative under multiplication

(for example, rings of matrices) and rings which do not possess an identity
element 1. Such rings will not concern us: all our rings are commutative, and
possess an identity element 1. For this reason, we shall abbreviate
`commutative ring with a 1' to ring.

Let us give some examples.
1. A field is a ring.
2. The integers 1 form a ring under the usual operations of addition and

multiplication.
3. The set 1 + it of all complex numbers of the form m + in, with m and n

integers, forms a ring, under the usual operations.
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4. The set 1 + i/ 7 of all complex numbers of the form m + i,/5- n, with
m and n integers, forms a ring.

5. Suppose that R is a ring. Let R[x] denote all sequences

(a o, a i , ... , a., 0, 0, 0, ... )

of elements of R which are zero from some point on. We define addition
coordinate by coordinate and define the product of

a=(ao,aI,...,a.,0,0,0,...)
and

b =(bo, bi,..., bm,0,0,0,...)

to be

ab = (a0bo, a, bo + a0bl, a2bo + ai bl + a0b2, ..., 0, 0, ...).

It is straightforward, but tedious, to verify that the conditions for being a
ring are satisfied, with zero element

0=(0,0,...)
and unit element

1 =(1,0,0,...).

Now let x denote the element

x=(01,110.)09.4 .).

It is readily verified from the definition of multiplication that

xr = (O, 0,.. . , o, Log, o, ... )

where the single 1 occurs in the (r + 1)th place. Thus if

a=(ao,a,,...,an,0,0,...)
we have

ao=ao+alx+ +anx",

where a ; = (a;, 0, 0, ...). Thus R[x] represents all polynomial expressions in
one variable x. We can consider the map a -+ a as embedding R as a
subring of R[x]. We shall identify R with its image, and write

a a in this form, with an 0; n is then called the degree of
a.

6. We can also consider polynomials in more than one variable. In the
case of finitely many variables, we can proceed as for R[x] by considering
arrays of elements of R (with only finitely many non-zero terms), or
alternatively can proceed inductively and define

R[x,, ..., xn] = (R[xi, ..., xn -1])[xn]
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If S is an infinite set, we define the ring R[XS] to be the union of all
polynomial rings R[xsl, ..., xsn], with s1, ..., s in S, with the obvious laws of
composition.

Exercise

3.1 Suppose that S is a set and R is a ring. Let Rs denote the set of all
mappings from S to R. Show that RS is a ring, under the operations
defined by

(f + g)(s) = f(s) + g(s), (fg)(s) = f(s)g(s)-

Show that if S has more than one element then there exist non-zero
elements f and g in Rs for which fg = 0.

3.2 Integral domains
The special properties that a ring may have are many and various:

in this section we meet the first of them.
A ring is said to be an integral domain if whenever rs = 0 it follows that one

of r and s must be zero. The first four examples of the previous section are
integral domains: R[x] is an integral domain if R is (if p = ao + a 1 x + . +
a"x" and q = bo + b 1 x + + bmxm, with a 0 0 and bm 0, the coefficient of
xm +n in pq is anbm, which is non-zero).

Starting from the integers 71, we can construct the field of rational
numbers 0. An exactly similar procedure can be carried out for any integral
domain, as we shall now describe.

Let R be an integral domain, and let R* denote the non-zero elements of
R. Intuitively, a fraction is an expression of the form r/s, where r E R and
s c- R*. But different expressions can represent the same fraction: r1 Is 1=
r2/S2 if r1s2 = r2s1. It is therefore necessary to identify two expressions if they
represent the same fraction. This leads us to proceed as follows. On R x R*
we define a relation by setting (r1, s1) '- (r2, s2) if r1 s2 = r2s1. Clearly

(a) (r, s) (r, s), and
(b) (r1, s1) ' (r2, s2) if and only if (r2, s2) (r1, s1). Further

(c) if (r1, s1) (r2, S2) and (r2, S2) -- (r3, S3) then (r1, S1) -`" (r3, S3)-
For r1 s2 = r2s1 and r2s3 = r3s2, so that r1 S2S3 = r2S3s1 = r3S2s1,

and so (r1s3 - r3s1)s2 = 0. Since s2 e 0 and R is an integral domain,
r1s3=r3s1.

Thus ' is an equivalence relation on R x R*. Recall that a subset E of
R x R* is an equivalence class if E is non-empty and whenever x e E then
E= {y:x'y}, and that it follows from (a), (b) and (c) that distinct
equivalence classes are disjoint and that the union of all the equivalence
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classes is R x R*. Let F denote the collection of equivalence classes. If (r, s) C
R x R*, let r/s denote the equivalence class to which (r, s) belongs. We now
define algebraic operations on F in an obvious way:

r1/s1 + r2/s2 = (rise + r2s1)I(s1s2),

(r1 /s1)(r2/s2) = (r1 r2)/(s1 s2)

It is straightforward to verify that these do not depend upon the choice of
representatives, that they make sense (as s1s2:0), and that under these
operations F becomes an integral domain. If r/s # 0, r:00, and s/r is the
multiplicative inverse of r/s: thus F is a field. Finally the map r - r/ 1 embeds
R as a subring of F. F is called the field of fractions of R.

Suppose now that K is a field. Then the polynomial ring K[x1,..., is

an integral domain. We denote the corresponding field of fractions by
K(x1,..., the elements of this field are called rational expressions in
x1,.. ., x,, over K. Similarly we denote the field of fractions of K[XS] by
K(XS).

Exercises

3.2 Suppose that R is an integral domain, with field of fractions F.
Show that the field of fractions of R[xi, ..., can be identified
naturally with F(xl,...,

3.3 Show that an integral domain with a finite number of elements is
always a field.

3.3 Ideals
Suppose that R and S are two rings. A mapping 0 from R to S is

called a ring homomorphism if

(a) 4(ri +r2) =4(r1)+4(r2),
(b) 4 (r1 r2) = 4(r 1)4 (r2), and

(c) 0('R)= IS
for r1, r2 in R.

A homomorphism which is one-one is called a monomorphism,one which
is onto is called an epimorphism and one which is both is called an
isomorphism.

The image /(R) is a subring of S. The kernel 4-1({0}) is not (since
IR O -1({0})), but has rather different properties. A non-empty subset J of a
ring R is said to be an ideal if the following conditions hold:

(i) if r and s are in J, so is r + s;
(ii) if reR and seJ, then rseJ.
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Note that if s e J, then - s = ( -1)s E J, so that J is a subgroup of the additive
group (R, +). The ring R is an ideal in R; all ideals other than R are called
proper ideals.

Let us consider some examples.
1. The sets n71 are ideals in the ring 1, and any ideal of Z is of this form.
2. Suppose that A is a non-empty subset of a ring R. We denote by (A) the

intersection of all ideals which contain A. (A) is called the ideal generated by
A. Further,

(A)={reR:r=ria1 +-

for every element in the set on the right-hand side must be in (A), and it is
easy to see that this set is an ideal which contains A.

3. We write (al, ..., an) for ({a 1, ..., an}). An ideal (a) generated by a single
element is called a principal ideal. (a) consists of all multiples of a by
elements of R.

If 0 is a ring homomorphism from R into S, and 4(r) = 4(s) = 0, then

4(r+s)= ca(r)+q(s)=0.

Also if t E R, 0(tr) = c (t)4(r) = 4 (t)0 = 0; thus the kernel is an ideal. As
00000, the kernel is a proper ideal.

If J is a proper ideal in R, J is a normal subgroup of (R, +); we can
construct the quotient group R/J. We can also define the product of two
(right) cosets: if C1 and C2 are two cosets, we define

C1 C2 = 1C1C2 +j: C1 E C1, C2 E C2, j E J}.

If cic2 +j' and cic2 +j are elements of C1 C2,

(c1c2+j')-(C1c2+j)=c'1(c2-c2)+c2(c'1 -ci)+(j'-j)EJ,

so that C1C2 is a coset. It is straightforward to verify that with these
operations R/J is a ring, with unit J+ 1 R, and that the quotient map
q: R -' R/J is a ring homomorphism, with kernel J. As an example, the
quotient l/n71 is a ring, the ring of integers (mod n). Just as for groups,
we have an isomorphism theorem:

Theorem 3.1. Suppose that 0 is a ring homomorphism from a ring R to a ring
S, with kernel J. There is a ring isomorphism from R/J onto 4(R) such that
0=oq
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Proof. 0 is a group homomorphism from (R, +) to (S, +), so that by the first
isomorphism theorem for groups there is a group isomorphism
0: R/J---4'(R) such that 4, = q. If C1 and C2 are two cosets of J, we can
write C1 =q(xi)=J+x1, C2=q(x2)=J+x2 for some xi and x2 in R. Then
C1C2=q(xlx2)=J+xlx2, and so

c(C I C 2) = c(q(x i X2)) = 4,(X I X2) = q5(x1)4,(x2)

= J;(q(x1))(q(x2)) =
Similarly

(J+ lR)= q(1R)= 4,(18)= 'S-
Let us give an important example of a ring homomorphism. Suppose that

R is a ring, with unit element 1R, and zero element OR. We define a map 0
from 1 into R. Let d,(0) = OR, let 4(1) =1R, and if n is a positive integer let
4,(n) =1R + + 1R, the sum being taken over n terms. Clearly 4,(n + m) =
fi(n) + 4(m). If n is a negative integer, let 4,(n) = - 4,(- n). It is then
straightforward to show that 4,(n + m) = 4,(n) + 4,(m) for all n and m, and,
using the distributive law for rings, that 4,(mn) = 4(m)4(n). Thus 0 is a ring
homomorphism from 1 into R.

There are now two possibilities. Either 0 is one-one, which case q5(l) is
isomorphic to Z, or 0 fails to be one-one, in which case, by Theorem 3.1,
4,(71) is isomorphic to the finite ring 71., for some n. In the former case, we
say that R has characteristic 0, in the latter that R has characteristic n. We
write char R for the characteristic of R.

Suppose that R has non-zero characteristic n, and that n is not a prime
number. We can write n = pq, where 1 < p < n. Then 0(p) :A 0 and 4,(q) 0
(since p and q do not belong to n71) but 4,(p)q5(q) = c,(pq) = q5(n) = 0. Thus if R

is an integral domain, its characteristic must either be 0 or a prime number.

Exercises

3.4 Suppose that a and b are elements of a ring R for which (a, b) = R.
Show that (a', b") = R for any positive integers m and n.
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3.5 Suppose that R is an integral domain with characteristic k. Show
that, when R is considered as an additive group, every non-zero
element has order k (if k > 0) or infinite order (if k = 0).

3.6 Suppose that R is an integral domain of characteristic k > 0. Show
how R can be considered as a vector space over 71k.

3.7 Construct for each positive integer n an ideal in 71[x] which is
generated by n elements and is not generated by fewer than n
elements.

3.8 Suppose that K is a field. If f = ao + a 1 x + + a"x" E K [x] and
k E K, let (4)(f))(k) = ao + a 1 k + + a"k". Show that (P is a ring
homomorphism from K [x] to K K. Show that if K is finite then 4) is
an epimorphism, but not a monomorphism. What happens if K is
infinite?

3.9 Suppose that R is an infinite ring such that R/I is finite for each
non-trivial ideal I. Show that R is an integral domain.

3.4 Irreducibles, primes and unique factorization domains
Throughout this section we shall suppose that R is an integral

domain.
We say that an element q of R is invertible, or a unit, if it has a

multiplicative inverse: that is, there is an element q -1 of R such that qq -1=1.
If q is a unit then since R is an integral domain its inverse q _

1

is unique. If q1
and q2 are units, so is g1g2 (it has q2 'ql 1 as inverse), and so the units form a
group under multiplication.

Suppose now that a is a non-zero element of R which is not a unit. We say
that a factorizes if we can write a = bc, where neither b nor c is a unit. If a
does not factorize we say that a is irreducible. Thus a is irreducible if it is not
zero, not a unit, and whenever a= be then either b or c is a unit.

In this section we consider the two following questions. When can every
non-zero element of R which is not a unit be expressed as a product of
irreducible elements? If such factorization is possible, when is it essentially
unique?

We begin by characterizing irreducibility in terms of ideals. Let PP
denote the collection of proper principal ideals. We order PP by inclusion.
Recall that a principal ideal (a) in R consists of all multiples of a by elements
of R. If b e (a) we say that a divides b, and write a lb. a I b if and only if(b) g (a).

Theorem 3.2 A non-zero element a of R is irreducible if and only if (a) is a
maximal element of PP.
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Proof. If a is irreducible, a does not divide 1, so that 10 (a) and (a) is proper.
Suppose that (b) E PP and that (b) (a). Then (b) :A R, so that b is not a unit.
Also b la,, so that we can write a = bc. As a is irreducible and b is not a unit, c
is a unit. Thus (b) = (a), and (a) is maximal in PP.

Conversely suppose that (a) is maximal in PP. As (a) is proper, a is not a
unit. Suppose that a = bc, where b is not a unit. Then (b) E PP and (b) (a), so

that (b) = (a), by the maximality of (a). Thus b = of for some f in R, a = afc,
and so fc =1, since R is an integral domain. Thus c is a unit and a is
irreducible.

We now introduce a condition which is rather technical, but which allows
us to deal with the first question that we raised. We say that R satisfies the
ascending chain condition for principal ideals (ACCPI) if whenever I1 C
I2 c 13 is an increasing sequence of principal ideals then there exists n
such that IM = I,, for all m > n.

Theorem 3.3 If R satisfies the ACCPI, every element of PP is contained in a
maximal element of PP.
Proof. If (a) is in PP, either (a) is maximal in PP or it is contained in a strictly
larger ideal (a1) in PP. This process an be repeated at most finitely often,
because of the ACCPI.

Theorem 3.4 If R satisfies the ACCPI, every non-zero element of R which is
not a unit can be expressed as the product of finitely many irreducible
elements of R.
Proof. Suppose that r is a non-zero element of R which is not a unit. If r is
irreducible, there is nothing to prove. Otherwise, (r) is contained in a
maximal element (a1) of PP (Theorem 3.3). Then irreducible (Theorem
3.2) and al I r. We can therefore write r = al r1. If ri is irreducible, we are
finished: if not, we can repeat the argument for r1. Continuing in this way,
either the process terminates after a finite number of steps, in which case we
are finished, or the process continues indefinitely: that is, there is a sequence
a1, a2, a3, ... of irreducible elements of R and a sequence r1, r2, r3, ... of
elements of R such that, for each n,

r

But then r a + 1 r + 1, so that (r + 1), for each n. As a,, + 1 is irreducible,

and therefore is not a unit, (r,) :A(r + 1). Thus is a strictly increasing
sequence of ideals, contradicting the ACCPI. Thus the second possibility
cannot arise, and the proof is complete.

We now turn to the second problem, concerning the uniqueness of
factorization. Here a little care is needed. Suppose that an element r of a ring
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factorizes as a product r= r1 r2 ... r of irreducible elements. Suppose that
E1, E2, ..., E are units, with E1E2 ... En =1, and that it is a permutation of

1, ..., n }. Then we can write r = r1 ... r'',, where r'j= sjr,,UY But this is
essentially the same factorization of r.

In order to allow for this, we make the following definitions. We say that r
and s are associates if there exists a unit E such that r = Es. We say that an
integral domain R is a unique factorization domain if

(a) any non-zero element r of R which is not a unit can be written as a
finite product of irreducible elements, and

(b) if r1 ... r,, and sl ... sn are two factorizations of r as products of
irreducible elements then m = n and there is a permutation it of
I 1, ..., m} such that ri and sn(=) are associates for 1 < i <m.

If r is a non-zero element in a unique factorization domain then the
number of irreducible factors (in a factorization of r as a product of
irreducible elements) is called the length of r, and is denoted by 1(r). (If r is a
unit, we set l(r) = 0.) If r = st, then l(r) = l(s) + 1(t).

In order to characterize unique factorization domains, we need to
introduce a new concept. An integer n is irreducible in the integral domain 1
if and only if InI is a prime number. In algebra it is customary to use the term
`prime' in a special way. A non-zero element a of an integral domain is said
to be a prime if a is not a unit and whenever a I be then either a I b or a I c.

Theorem 3.5 A prime element of an integral domain R is irreducible.
Proof. If a is a prime and a = be then either a I b or a I c. If a I b we can write
b = of for some fin R, so that a = afc. As R is an integral domain, 1= fc, and
c is a unit. Similarly if a I c then b is a unit.

Theorem 3.6 An integral domain R is a unique factorization domain if and
only if R satisfies the ACCPI and every irreducible element of R is a prime.
Proof. Suppose first that R is a unique factorization domain. Suppose that
(a1) c (a2) 9 ... is an increasing sequence of principal ideals. If all the ai are
0, the series terminates. Otherwise there is a least j such that a j 0. The
sequence (1(a), l(a j + 1), ...) is a decreasing sequence of non-negative integers,
and so there exists n such that t(am) = for all m> n. This means that am
and an are associates, and so (am) _ (an) form > n. Thus R satisfies the ACCPI.

Suppose that r is irreducible and that r divides ab. We can write ab = rc. If
a is a unit, r1 b; if b is a unit r1 a. Otherwise we can write

a=s1 ... s1, b=t1 ... tm, c=u1 ... u

as products of irreducibles. Then
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ab=s1 . . . slt1 ... tm=rul ... u,,,

and r is an associate of an s= or a t j. Thus r divides a or b, and r is a prime.
Conversely, suppose that the conditions are satisfied. By Theorem 3.4,

any non-zero element r of R which is not a unit can be expressed as a
product of irreducible elements. Let m(r) be the least number of irreducible
factors in any such product. We prove that condition (b) of the definition
holds by induction on m(r). The result certainly holds when m(r) = 1, for then
r is irreducible. Suppose that m > 1, that the result holds for all s with
m(s) < m and that r = r1 ... rm is an element with m(r)=m. Suppose that
r= s1 ... s is another factorization of r into irreducible factors. By
hypothesis, rm is a prime and rm I s1 ... s,,; by repeated use of the definition of
a prime element, rm must divide s j for some 1 <j < n. By relabelling, we can
suppose that j = n. Then s = urm for some u in R. As s is irreducible, u must
be a unit, and so rm and s,, are associates. Now if r' = (u -1 r1)r2 ... rm - 1 then
m(r') < m and r' = s1 .... s,, _ 1. By the inductive hypothesis, m -1= n --1 and
there is a permutation it of { 1, ..., m --1} such that u- 1r1 and s,{1) are
associates, and so are rj and s,,(j) for 2 <j < m - 1: this establishes the
induction and completes the proof.

Exercises

3.10 What are the units in R[x], where R is an integral domain? What
are the units in 714[x]?

3.11 Show that an element a of an integral domain R is prime if and only
if R/(a) is an integral domain.

3.12 Let R=7+iJ7.
(a) Show that the units are I and -1.
(b) Let 4(m+i 5 n)=m2+5n2. q5(0)=0, 4(1)=4(-1)= 1 and

.15 and 2 - i.,,/5 areotherwise O (a) > 3. Use this to show that 2 + i,
irreducible in R.

/5 is not a prime; R is not a unique(c) Show that 2 + i,
factorization domain.

3.13 Show that Z +i,,15 7 satisfies the ACCPI.

3.14 A proper ideal I of a ring R is said to be prime if whenever abE1 then
either ac-1 or be!. Show that a non-zero element c of R is prime if
and only if (c) is a prime ideal.



28 Rings

3.5 Principal ideal domains
Recall that a principal ideal (a) in a ring R consists of all multiples

of a by elements of R.
It turns out that many important integral domains have the property

that every ideal is principal. Such integral domains are called principal ideal
domains. Let us give some examples. The ring I of integers is a principal
ideal domain: the sets n71 are ideals in 71, and every ideal is of this form. If K
is a field, the ring K[x] of polynomials in one variable is a principal ideal
domain. This is a consequence of the following theorem:

Theorem 3.7 Suppose that f and g are non-zero elements of K [x] (where K is
a field). Then there exist elements q and r in K[x] such that

g=qf +r
and either r=0 or degree r<degree f.
Proof. The proof, which is by induction on degree g, is a matter of long
division. If degree f =0, we can take q =.f `g and r = 0, and so we need only
consider the case where degree f = k > 0. If degree g < k, we can take q = 0
and r = g. Suppose that the result holds for all polynomials g of degree less
than n (where n > k) and that

g=go+ ...
has degree n. Suppose that

f=fo+...+fkxk.

Let ).=fk 'g, Then
AXn -kf= A fOxn -k + ... +gnxn

so that h = g - )x'1 -kf has degree less than n. By the inductive hypothesis,
there exist q and r such that h = q .f + r and either r = 0 or degree r < degree f.
Then

g=(Ax
k+q).f +r

and so the induction is established.

Theorem 3.8 If K is a field, K [x] is a principal ideal domain.
Proof . Suppose that J is an ideal in K [x] other than [0}, and let f be a non-
zero polynomial of minimal degree in J. If g e J, by Theorem 3.7 there exist q
and r in K [x] such that

g=qf+r
and either r = 0 or degree r < degree f. But r = g - of c- J, and so, by the
minimality of degree f, r = 0. Thus g e (f). Consequently J g (J). As (f) g J,
the result is proved.
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On the other hand, K [x, y] is not a principal ideal domain: the ideal (x, y)
is clearly not principal. Similarly 71[x] is not a principal ideal domain: the
ideal (2, x) is not principal.

Theorem 3.9 A principal ideal domain R is a unique factorization domain.
Proof. We use Theorem 3.6. Suppose first that 1,9,29 is an
increasing sequence of principal ideals. Let J = U,= 1 1 I. Then Jis an ideal in
R and so, since R is a principal ideal domain, J = (a) for some a in J. But then
a c- 11 for some j, so that J = (a) Ez Ii. This clearly means that Ik =1 j for all
k >j.

Secondly suppose that a is irreducible in R and that a I bc. Suppose that a
does not divide b. Then b (a), so that (a, b) (a). But (a) is maximal in PP
(Theorem 3.2), and (a, b) is a principal ideal: it follows that (a, b) = R. Thus
there exist p and q in R such that

ap+bq= 1.

Multiplying by c,

a pc + bcq = c;

as aI bc, it follows that aI c. Thus a is prime.

Exercises

3.15 Suppose that f = ko + k 1 x + + k,,x" is a non-zero element of
K [x] (where K is a field). An element a of K is a root off if f(a) =
ko + k 1 a + + k"a" = 0. Show that a is a root off if and only if
f c- (x -a), and show that f has at most n distinct roots.

3.16 What are the ideals in Z6? Is it a principal ideal domain?

3.17 Suppose that p is a prime number. Let R be the set of rationals
which can be written in the form r/s, where p does not divide s.
Show that S is a subring of Q. What are the units in R? Show that R
is a principal ideal domain.

3.18 Suppose that R is a principal ideal domain which is not a field.
Show that R[x] is not a principal ideal domain.

3.6 Highest common factors
Suppose that B is a subset of a ring R. We say that an element a of R

is a highest common factor of B if first a I b for each b in B and secondly if a' j b
for each b in B then a' j a. We can express this in terms of ideals: a is a highest
common factor of B if first B (a) and secondly if B (a') then (a) c (a').
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This means that if a and a' are highest common factors of B then (a) = (a'):
thus if R is an integral domain a and a' are associates.

Note also that, if B is a non-empty set of non-zero elements of a principal
ideal domain R, the ideal (B) is principal, and so (B) = (a) for some a; clearly a
is a highest common factor for B. Further there exist b1, ..., b,, in B and
r1, ..., r,, in R such that

a= r1 b 1 + ... + r,,b,,.

We shall now show that the first of these properties (but not always the
second: see Exercise 3.20) holds in unique factorization domains.

Theorem 3.10 If B is a non-empty set of non-zero elements of a unique
factorization domain R, B has a highest common factor.
Proof. The idea behind the proof is simple: we consider the irreducible
common factors of B, and combine as many as possible to obtain a highest
common factor. Let

D={reR:rb for each bin B}
be the set of common factors of B. D is non-empty, since leD. If reD and
b c- B, l(r) < l(b), and so D contains an element a of maximal length. We shall
show that a is a highest common factor of B.

Suppose that a' is another element of D. Among the common factors of a
and a' there is one of maximal length, c say. We can write

a = cd, a'= cd'.

Suppose that d' is not a unit. Let n' be an irreducible factor of d'. Then
l(cir') = l(c) + 1, so that cn' does not divide a, since 1(c) is as large as possible.
This means that n' does not divide d. Now if b is any element of B, we can
write b = of = cdf. As a' j b, cn' I b and so n' l df. n' does not divided, and n' isa
prime (by Theorem 3.7), so that n' I f. Thus an' l b. This holds for every bin B,
and so an' e D. But l(an') = l(a) + 1, contradicting the maximality of l(a). As a
consequence, d' must be a unit, and so a' I a.

Suppose that B is a non-empty subset of a ring R. We say that B is
relatively prime if 1 is a highest common factor of B. If a is a highest common
factor of a non-empty subset B of an integral domain R then the set
{c:caEB} is relatively prime.

Exercise

3.19 Suppose that R is an integral domain. Show that the following are
equivalent:

(i) every finite non-empty set of non-zero elements of R has a
highest common factor;
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(ii) every finite non-empty set of non-zero elements of R has a
least common multiple.

3.20 Show that I and -1 are the highest common factors of 2 and x in
71 [x] and that neither can be written in the form 2a + xb, with a and
b in 71 [x] .

3.21 Suppose that R is an integral domain with the property that every
non-empty set B of non-zero elements has a highest common
factor of the form yl bl + +y"b,,, with b1,.. ., by, in B and
y1, ..., y,, in R. Show that R is a principal ideal domain.

3.7 Polynomials over unique factorization domains
Galois theory is largely concerned with polynomials in one

variable, with coefficients in a field K. We shall, however, also need to
consider polynomials with integer coefficients, and to consider polynomials
in several variables. In order to deal with both of these, it is convenient to
study polynomial rings of the form R[x], where R is a unique factorization
domain.

In this section, we shall suppose that R is a unique factorization domain,
with field of fractions F. If

f = ao +a, + .. + a"x"

is a non-zero element of R[x], we define the content of f to be a highest
common factor of the non-zero coefficients of f (the fact that this is not
uniquely defined causes no problems). If f has content I we say that f is
primitive. If y is the content of f then f = yg, where g is primitive.

If f is an element of R[x], we can consider f as an element of F[x]. The
next theorem provides a partial converse.

Theorem 3.11 Suppose that R is a unique factorization domain. An element
of R[x] is a unit if and only if it is a unit in R. If f is a non-zero element of
F[x] we can write f = fig, where g is a primitive polynomial in R [x] and f3 e F.
If f = fi'g' is another such expression then g and g' are associates in R[x];
there exists a unit a in R such that g = Eg.
Proof. The first statement is obvious.

Suppose that f is a non-zero element of F[x]. We clear denominators:
there exists b in R such that Sf e R [x]. Let y be the content of c5f. Then
5f = yg, where g is primitive in R[x], and so f = (6 -'y)g = fig.

Suppose that f = fl'g' is another such expression. We again clear
denominators: there exists a in R such that a fl and ai' are in R. Then of =
(afi)g = (afi')g'. As g is primitive in R[x], ai is the content of of : so is afi'
(remember that the content is not uniquely defined!), and so a f3 and a fl' are
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associates in R. This means that there is a unit in R such that af3' =
a f g = a f'g' = 8009 ', so that g = ,cg' and g and g' are associates in R [x].

Theorem 3.12 Suppose that R is a unique factorization domain. If f and g
are primitive elements of R[x], so is fg.
Proof. Suppose that

g=bo+blx+... +bmxm,

and

f9=C0+C1X + ... +Cm+nXm+n.

Let d be the content of fg and suppose that d is not a unit. Let r be an
irreducible factor of d. As R is a unique factorization domain, r is a prime.
Since f is primitive, there exists a least i such that r does not divide ai;
similarly there exists a least j such that r does not divide b,. As r is a prime, r
does not divide aib1. We consider the coefficient

c= E akbi +; _ k + aibJ + E ai j j_,h,.
k<i l<j

Now r divides ak fork < i, and so r divides >k < i akbi +J __ k; similarly r divides
El <; ai +; _ lbi. But r also divides ci +;, and so r divides aib;: this gives the
required contradiction.

Corollary (Gauss' lemma) An element g of R[x] is irreducible if and only if
either it is an irreducible element of R or it is primitive, and irreducible in
F [x] .

Proof. Suppose that g is irreducible in R[x]. If degree g = 0, then g must be
irreducible in R. If degree g > 0, then g must certainly be primitive. Suppose
that g =fl f2 is a factorization in F[x]. By Theorem 3.11, we can write
fl = #191, f2 = #292 with 131 and a2 in F, and g1 and g2 primitive in R[x].
Thus

9=#11329192

Now g 1 g2 is primitive, so that, by Theorem 3.11, 131 F' 2 is a unit in R. Thus
9 = A 13291)92, contradicting the irreducibility of g.

The converse implications are clear.
We now come to the main result of this section.

Theorem 3.13 If' R is a unique factorization domain, so is R [x].
Proof. Suppose that f is a non-zero element of R [x]. Then f = ag, where a is
the content off and g is primitive in R[x]. We now considerg as an element
of F[x]. F[x] is a unique factorization domain, and so we can write g=
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gi ... gk as a product of irreducible elements in F[x]. By Theorem 3.11, we
can write each gj as /31.ri, where /3J E F and fi is primitive in R[x]. Note that
each fj is irreducible in R[x], by Gauss' lemma. Thus

9=flf1...fk,

where /3 = fl1 ... f3k. By Theorem 3.12, f1 ... f k is primitive, and so /3 is a unit
in R, by Theorem 3.11. Thus we can write

f =a1 ... ajfl ...fk
where al ... aj is a factorization of a/3 as a product of irreducible elements of
R. Thus f can be expressed as a product of irreducible elements of R[x].

Suppose that

is another such factorization. As al ... aJ and ai . . . a are both contents of f,
they are associates in R; since R is a unique factorization domain, 1=j and
there exists a permutation it of { 1,. .. ,j} such that ai and anct are associates
for 1 < i<j.

Further, fi ...fk = Af i ... f,,, where A is a unit in R. By Gauss' lemma,
are irreducible in F[x]. As F[x] is a unique

factorization domain, m = k and there exists a permutation p of {1,. . ., k }
and non-zero elements E1, ..., Ek of F such that fi = Ei f p(i) for 1 < i < k. But fi
and f p(i) are primitive in R[x], by Gauss' lemma, and so fi and f p(i) are
associates in R[x], by Theorem 3.11. Thus R[x] is a unique factorization
domain.

Corollary I Suppose that f is a primitive element of R[x], that g is a non-
zero element of R[x] and that f divides g in F[x]. Then f divides g in R[x].
Proof. We can factorize g as

9 =0(1 ... x191 ...9k
where the ai are irreducible in R and the gi are irreducible elements of R[x]
of positive degree. By Gauss' lemma, each gi is primitive and irreducible in
F[x]. Thus

g=(al . x;91)92 ... 9k

is a factorization of g as a product of irreducible elements of F[x]. As f
divides g in F[x], and as F[x] is a unique factorization domain, we can
write

f = Egi 1 ...gi r

where E is a non-zero element of F and 1 < i1 < ... < it < k. Now gii ... gi, is

primitive, by Theorem 3.12. As f is also primitive, E is a unit in R, by
Theorem 3.11, and so f divides g in R[x].

Corollary 2 If R is a unique factorization domain, then so is R[x1, ..., x].
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Exercises

3.22 Express all the cubic polynomials (polynomials of degree 3) in
712[x] as products of irreducible factors.

3.23 Express all the homogeneous quadratic polynomials (polynomials
of degree 2 with no constant or linear terms) in 7 2 [x, y, z] as
products of irreducible factors.

3.8 The existence of maximal proper ideals
By Theorem 3.2, a non-zero element a of a principal ideal domain

R which is not a unit is irreducible if and only if (a) is a maximal proper ideal
in R. This suggests that maximal ideals are important: Theorem 3.16 in the
next section shows that this is indeed so. Are there many such ideals?

Theorem 3.14 Suppose that J is a proper ideal of a ring R. Then there exists
a maximal proper ideal which contains J.
Proof. We use Zorn's lemma. Let P. denote the collection of proper ideals of
R which contain J. We order P. by inclusion. If C is a chain in Pj, let

1o=U{I:IEC}.
If a 1 and a2 E 10, there exist 11 and I2 in C such that a 1 E I 1 and a2 E '2 . As C
is a chain, either I1 I2 or 12 c I1. If 11 9 12, then a 1 E 12 and so a 1 + a2 E 12.

As 12 c l0, a 1 + a2 E 10. A similar argument applies if 12 c 11. More trivially,
if a El0 and r E R, then a e I1 for some I1 in C. Then ra E I1, and so ra E10.
Thus 10 is an ideal.

Further, if I E C, 1 I, since I is proper. Thus 10 l0. Consequently I0 E P,,;
10 is an upper bound for C, and so P., contains a maximal element, by Zorn's
lemma. Finally, it is obvious that a maximal element of P,, is also a maximal
proper ideal in R.

The generality of Theorem 3.14 suggests that the use of the axiom of
choice is natural here. This is indeed so: if one assumes the truth of Theorem
3.14, one can deduce the axiom of choice. The problem that follows shows
that the full force of the axiom of choice is frequently not needed.

Exercises

3.24 Prove Theorem 3.14 in the case where R has countably many
elements, without using Zorn's lemma.

3.25 Show that an element of a ring R is invertible if and only if it is
contained in no maximal proper ideal in R.
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3.26 Suppose that J is a proper prime ideal in an integral domain R.
Show that J[x] is prime in R[x]. Show that J[x] is not a maximal
proper ideal in R [x] .

3.9 More about fields
A field is a ring in which every non-zero element has an inverse.

How can we recognize when a ring is a field?

Theorem 3.15 A ring R is a field if and only if {O} and R are the only ideals in
R.

Proof. Suppose first that R is a field, that I is an ideal in R other than {0} and
that a is a non-zero element of 1. If b is any element of R, b = a(a -'b) E 1, and
so I= R.

Conversely, suppose that R is a ring whose only ideals are {0} and R. If a
is a non-zero element of R, the principal ideal (a) must be R, and so there
exists b in R such that ab = 1; consequently R is a field.

Note that if 0 is a ring homomorphism from a field K into a ring, the
kernel of 0 is a proper ideal of K, and so 0 is one-one.

Theorem 3.15 makes it easy to decide when a quotient ring is a field.

Theorem 3.16 If J is a proper ideal in a ring R then R/J is a field if and only
if J is a maximal proper ideal in R.
Proof. Let q denote the quotient map R -+ R/J. If ! is a proper ideal in R/J
then q -'(I) is a proper ideal in R; further q - '(I) = J if and only if I = {0}. It
follows from this that if J is a maximal proper ideal then {0} and R/J are the
only ideals in R/J, and R/J is a field, by Theorem 3.15.

Suppose conversely that R/J is a field. If a 0 J, q(a) 0 0, and so, since q is
onto, there exists b in R such that q(b) = (q(a)) -1. Thus

q(ab - 1 R) = q(a)q(b) - 1 RIJ = 0

so that ab -- 1R E J. There therefore exists j in J such that 1R= ab +j, and so
(J u {a}) = R. This means that J is a maximal proper ideal.

Combining this with Theorem 3.2, we obtain the following.

Corollary If a is a non-zero non-unit element of a principal ideal domain R,
R/(a) is a field if and only if a is irreducible.

Applying this to the ring of integers, we see that 4 is a field if and only if n
is a prime number.

Suppose now that K is a field. A subf eld of K is a subset of K which is a
field under the operations inherited from K. Any subfield contains 0 and 1.
The intersection of all subfields is again a subfield, the smallest subfield of K.
This subfield is called the prime subfield of K.
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K is a ring; we can consider the homomorphism 4) from 71 into K
described in Section 3.3. If K has non-zero characteristic n then, since K is
certainly an integral domain, n must be a prime number. Thus 4)(l), which is
isomorphic to 71,,, is a field. Clearly it is the prime subfield of K.

The other possibility is that K has characteristic 0. In this case 4)(71) is a
subring of K isomorphic to Z. If q = r/s is a rational, let us define 4)(q) by
setting 4)(q) = 4)(r)4)(s) -1. If r'/s' is another expression for q, rs' = r's, so that

4)(r)c(s) = 0(r')O(s)

and so

0(r) 0(s) - 1 = q5(r')4)(s') - 1.

Thus 0 is properly defined, and it is equally straightforward to verify that 4)
is a ring homomorphism of 0 into K. 4)(O) is a subfield of K. Clearly every
element of 4)(Q) is in every subfield of K, so that 4)(Q) is the prime subfield of
K. Summing up:

Theorem 3.17 Suppose that K is afield. If K has characteristic 0, the prime
subfield of K is isomorphic to Q. Otherwise, K has prime characteristic, p say,
and the prime subfield of K is isomorphic to 71p.

Exercise

3.27 Let R be the ring of Exercise 3.17. What are the possible quotient
fields of R?
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The theory of fields, and Galois theory
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Field extensions

4.1 Introduction
One of the main topics of Galois theory is the study of polynomial

equations. In order to consider how we should proceed, let us first consider
some rather trivial and familiar examples.

Polynomials involve addition and multiplication, and so it is natural to
consider polynomials with coefficients in a ring R. If we consider the
simplest possible case, when R = Z and p is a polynomial of degree 1, we find
there are difficulties: for example, we cannot solve the equation 2x + 3 = 0
in Z.

In the case where R is an integral domain, the field of fractions is
constructed in order to deal with this problem. Thus, in the example above,
if we consider 2 and 3 as elements of 0, the rational field, the equation has a
solution x= -3/2 in G.

Let us now consider a quadratic equation: x2 - 2x - 1= 0. We consider
this as an equation with rational coefficients: completing the square, we find
that

(x-1)2=2.

As we have seen in Section 1.2, there is no rational number r such that r2 = 2,
so the quadratic equation has no solution in 0. Instead, the first natural
idea is to consider the polynomial as a polynomial with real coefficients: the

/2-) = 0, and we haveequation then factorizes as (x -1 + /2-)(x - 1- ,
solutions 1- f and 1 +..,/2.

The field R is rather large, however (R is uncountable, while 0 is
countable), and it is possible to proceed more economically. Recall that in

Section 1.2 we showed that the set of all numbers of the form r +
s a field K. Clearly R K 2 0, and K appears to
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be much smaller than R. If we consider x2 - 2x - 1= 0 as an element of
K [x], we can solve it in K.

Let us express all this in more algebraic language. The polynomial
x2 -2x - 1 is irreducible in O[x] (and is therefore irreducible in Z [x]). If,
however, it is considered a an element of K [x] or fi[x], it can be written as a
product of linear factors. This suggests the following general programme:
given an element f in K [x] (where K is a field), can we find a larger field, L
say, such that f considered as an element of L[x] can be written as a
product of linear factors? If so, can we do it in an economical way?

4.2 Field extensions
Suppose that we start with a field K. In order to construct a larger

field L we frequently have, by some means or another, to construct L, and
then find a subfield of L which is isomorphic to K (think of how the complex
numbers are constructed from the reals). It is occasionally important to
realize that this sort of procedure is adopted: for this reason we define an
extension of a field K to be a triple (i, K, L), where L is another field, and i is a
(ring) monomorphism of K into L.

On the other hand, much more frequently this is far too cumbersome. If
(i, K, L) is an extension of K, the image i(K) is a subfield of L which is
isomorphic to K; we shall usually identify K with i(K) and consider it as a
subfield of L. In this case we shall write L:K for the extension. Thus C:lI is

the extension of the real numbers by the complex numbers and fly : O is the
extension of the rational numbers by the real numbers. Very occasionally,
when the going gets rough, we shall need to be rather careful: in these
circumstances we shall revert to the notation (i, K, L).

Suppose now that L : K is an extension. How do we measure how big the
extension is? It turns out that the appropriate idea is dimension, in the
vector space sense. If you are reasonably familiar with the idea of the
dimension of a vector space (as you should be) you will find this an almost
embarrassingly simple idea: the remarkable thing is that it is

extraordinarily powerful.
To begin with, then, we forget about many of the field properties of L.

Theorem 4.1 Suppose that L: K is an extension. Under the operations

(11,12) -11 +12 from Lx L to L

and

(k,1)-*kl from K x L to L,

L is a vector space over K.
Proof. All the axioms are satisfied.
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Thus C is a real vector space, and R is a vector space over the rationals Q.
We now define the degree of an extension L : K to be the dimension of L as

a vector space over K. We write [L:K] for the degree of L:K. We say that
L:K is finite if [L:K] < oc, and that L:K is infinite if [L:K] = O C-.

Thus [C : ff] =2, [R:O] = oo, and, if K is the field of all r + s-..12-, with r and
s rational, [K :C] = 2. In this sense, then, K :Q is a more economical
extension for solving x2 -2x -1= 0 than R: L.

The next theorem is very straightforward (there is an obvious argument
to try, and it works), but it is the key to much that follows. If M : L and L : K
are extensions, then clearly so is M:K.

Theorem 4.2 Suppose that M :L and L : K are extensions. Then

[M: K] = [M: L] [L: K].
Proof. First suppose that the right-hand side is finite, so that we can write
[M:L] = m < oc, and [L: K] = n < oc. Let (xl,..., xm) be a basis for M over
L, and let (y,,..., yj be a basis for L over K. We can form the products yjxi
(for 1 < i < m, 1 < j < n) in M. We shall show that the mn elements
(yjxi:1 <i <m, 1 <j <n) form a basis for M over K.

First we show that they span M over K. Let z E M. As (x1, ..., xm) is a
basis for M over L, there exist a1, ..., am in L such that

Z=alxl + ... +amxm.

As each ai is in L, and as (y1, ..., is a basis for L over K, for each i there
exist # j1 9-- ., flin in K such that

ai = fi 1 yl +. .. + All yn

Substituting,
M n

Z= E E flijyjxi
i=1 j=1

which proves our assertion.
Secondly we show that (y;xi: 1 < i < m; 1 <,j < n) is a linearly independent

set over K. Suppose that
m n

O= yi j yjxi
i= 1 j= 1

where the yij are elements of K. Let us set
n

bi= yijyj (EL)
j=1

for 1 < i < m. Then
m

0 = Y 5ixi.
i= 1
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But (x, , ..., xm) are linearly independent over L, and so 5, = 0 for 1 < i < m;
that is,

0 = for 1 < i < m.
j=

Now yij e K, and (yl,..., is a linearly independent set over K.
Consequently y;j = 0 for all i and j, and the second assertion is proved. Thus
the elements (yjxj)j m1,j r 1 form a basis for M over K, and

[M:K] = [M:L] [L:K]
provided that the right-hand side is finite.

If [M: K] = l < f , we can find a basis (z,,. . -, z1) for M over K. (z1...., z1)
spans M over K, and so it certainly spans M over L. Thus [M : L] < x.. Also
L is a K-linear subspace of M, so that [L:K] < oo (by Theorem 1.5). Thus,
if the right-hand side is infinite, we must have [M : K] = or : the proof is
complete.

We can extend this result in an obvious way. A sequence K,,:K,,_ 1,
Kit- 1 :K -21 ..., K1 : K o of extensions, where each field extends its
successor, is called a tower. Clearly

[Kit:Ko] = [K":Kit -1] [K,? - i :Kip - 2] .. [K, :Ko];

we refer to this (and to Theorem 4.2) as the tower law for field extensions.

Exercises

4.1 Suppose that [L:K] is a prime number. What fields are there
intermediate between L and K?

4.3 Algebraic and transcendental elements
Suppose that L : K is an extension, and that A is a subset of L. We

write K(A) for the intersection of all subfields of L which contain K and A.
K(A) is a subfield of L, and is the smallest subfield of L containing K and A.
Clearly L:K(A) and K(A):K are extensions. K(A):K is the extension of K
generated by A.

It is useful to see what a typical element of K(A) looks like. Let

cAu f 1j)S=i(Xl...ak:ai
be the set of all finite products of elements of A, together with 1, let V be the
K-linear subspace of L generated by S and let V* = V\ {01. Then

K(A) = ors-1:re V,se V*};

for clearly anything in the right-hand side belongs to K(A), and it is a
straightforward matter to verify that the right-hand side is a subfield of L
containing K and A.
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If A ='ai, ..., a,, , we write K(a1, ..., for K(A). In particular, we say
that an extension L:K is simple if there exists a in L such that L= K(a). Thus
C: R is a simple extension, since C = l(i). Similarly, the field K of all
m+nf2, with m and n in 0, is Q(f2).

It follows from the description of K(A) that, if L:K is a simple extension of
K and if K is countable, then L is also countable; thus f : Q is not a simple
extension.

Suppose now that L:K is an extension and that a e L. There are two
possibilities. First, there may be a non-zero polynomial .f = ko + k1x + +
k"xn in K[x] such that

f(a)=ko+k,a+ +k"a"=0.

In other words, a is a root of f. In this case we say that a is algebraic over K.
Secondly, it may happen that no such polynomial exists: in this case we shall
say that a is transcendental over K. The two possibilities lead to very
different developments: for the time being we shall concentrate on algebraic
elements, and shall consider transcendental elements at a much later stage
(Chapter 18).

At this point, let us remark that the study of transcendental numbers --
that is, elements of fly or C which are transcendental over 0 - is one of the
most difficult and profound areas of number theory. It was not until 1844
that Liouville showed that any transcendental numbers exist: this helps us
to understand why Cantor's set theory, which shows that there are
uncountably many transcendental numbers (see Exercise 4.7), came as such
a shock. Cantor's result is of no help in particular cases: Hermite's result
that e is transcendental was proved in 1873, the year before Cantor's result,
and the fact that ir is transcendental was proved by Lindemann in 1882. The
proofs are analytical, and far away from the material of this book. For an
account of transcendental number theory, see the book by Baker'.

Let us express these ideas in terms of mappings. Suppose that L:K is an
extension and that a e L. We define the evaluation map Ex from K [x] into L
by setting Ea(f) = f(a) for each f in K [x]. Notice that Ex is a ring
homomorphism from K[x] into L. It then follows immediately from the
definitions that a is transcendental over K if and only if Ea is one-one and
that a is algebraic over K if and only if Ex is not one-one.

Suppose that a is algebraic over K. The kernel Ka of the evaluation map
E,x is a non-zero ideal in K [x]; as K [x] is a principal ideal domain, there is a
non-zero polynomial nzx such that K =(M a ). Further, since the non-zero
elements of K are the units in K [x], we can take ma to be monic (that is, m«

1 A Baker, Transcendental Number Theory, Cambridge University Press, 1979.
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has leading coefficient 1:

ma =ko+k1x+ lx"-1 +x",
and then mx is uniquely determined. The polynomial ma is called the minimal
polynomial of a.

Theorem 4.3 Suppose that L:K is an extension and that a EL is algebraic.
Then ma is irreducible in K [x], the image Ex (K [x]) of the polynomial ring
K[x] is the subfield K(a) of L, and we can factor Ea as iEaq:

Ea

K [x] L

q

f
K [xJ /(mx)

Ea
K (a)

where q is the quotient mapping, Ea is an isomorphism and i is the inclusion
mapping.
Proof. Suppose that ma= fg. Then

0 = E.(mx) = E.(f)E2(g) =f(a)g(a),

so that either f(a) = 0 or g(a) = 0. If f(a) = 0, f c- (mx), so that m,X f and g is a
unit. Similarly if g c- (ma), f is a unit. Thus ma is irreducible. The corollary to
Theorem 3.16 implies that K[x]/(ma) is a field. Now by Theorem 3.1 we can
factorize E. in the following way:

E,
K [x] L

q i

K[x]/(mx)
Ex

Ex(K[x])

Since E. is an isomorphism, this means that Ea(K [x]) is a subfield of L.
Since Ea(k) = k if k E K and E(x)= a, Ea(K [x]) K v {a }, and so
Ea(K [x]) 2 K(a). But clearly Ea(K [x]) g K(a), and so the proof is complete.

Let us now relate these ideas to the degree of an extension.
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Theorem 4.4 Suppose that L:K is an extension and that a e L. Then a is
algebraic over K if and only if [K(a) : K] < oc. If this is so, then [K(a) : K] is
the degree of ma.
Proof. First, suppose that [K(a): K] = n < oc. Consider the n + 1 terms 1, a,
a2, ..., a" in K(a). Either two terms ar and as (with 0 <r<s <n) are equal, in
which case xs _ Xr is in the kernel Ka of the evaluation map Ea, or they are all
distinct. In this latter case, by Corollary 1 to Theorem 1.4, { 1, a, ..., a"} are
linearly dependent over K. Thus there exist ko, k1, ..., k,,, not all zero, such
that ko+k1a+ +kna"=0. Then

f=ko+klx+ +k"x"EK«
so that in either case EM is not one-one.

Next suppose that a is algebraic over K, and that ma is the minimal
polynomial of a. We shall show that if n = degree (ma) then {1, a, ..., an --1 }
forms a basis for K(a) over K. First we show that { 1, a, ..., a" - 1 } is a linearly

independent set over K. For if
ko. 1+k1a+ +k"_1a"-1=0,

let us set f = ko +kix + + k" _ i x" - 1. Then f E Ka = (ma) and degree f <
degree ma, so that f = 0, and ko = k 1 = .. = kn _ 1= 0. Secondly we show that
{1, a, ..., a" -1 I spans K(a). By Theorem 4.3, if fl e K(a) then /3 = Ea(f) for
some f E K[x]. We can write

f=maq+r
where r = 0 or degree r < n. Then f3 = Ea(f) = Ea(ma)Ea(q) + Ea(r) = Ea(r) so
that if r=ko+klx+ +k,,-lx"-',

j3=ko+kia+ ... +k"_ian-1 Espan (1,a,...,an

Exercises

4.2 Suppose that L : K and that K 1 and K2 are two intermediate fields
such that L = K(K 1, K2)- Show that [L: K] < [K 1: K] [K2: K].

4.3 Suppose that K(a) : K is a finite simple extension. For each /3 in
K(a), let T.. (f) = a/3. Ta is a linear mapping of K(a) (considered as a
vector space over K) into itself. Show that det(xI - Tj is the
minimal polynomial of a over K.

4.4 Show that x3 + 3x + 1 is irreducible in 0[x]. Suppose that a is a
root of x3 + 3x + 1 in C. Express a -1 and (1 + a) -1 as linear
combinations, with rational coefficients, of 1, a and a2.

4.5 Suppose that L(a) : L : K and that [L(a) : L] and [L: K] are relatively
prime. Show that the minimal polynomial of a over L has its
coefficients in K.

4.6 Suppose that [L : K] is a prime number. Show that L : K is simple.
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4.4 Algebraic extensions
Theorem 4.4 has the following important consequence.

Theorem 4.5 Suppose that L:K is an extension. The set L. of those elements
of L which are algebraic over K is a subfield of L.
Proof. Suppose that a and f are in La. As /3 is algebraic over K, /3 is certainly
algebraic over K(a). As K(a)(/3) = K(a, /3), we have [K(a, fl): K(a)] < x, by
Theorem 4.4. Also [K(a):K] < x.., by Theorem 4.4, so that, by Theorem 4.2,

[K(a, fl): K] = [K(a, fl): K(a)] [K(a) : K] < x .

Now K(a + /3) c K(a, /3), and so [K(a + /3):K] < cx.. Using Theorem 4.4
again, we see that a + /3 is algebraic over K. Similarly a/3 is algebraic over K.
Finally, if a is a non-zero element of La, with minimal polynomial

f =ko+klx+...
+x,:

let g= 1 + k _ 1 x + . + kox". Then g(a -1) = a -' f(cx) = O so that a-' is

algebraic over K.
This theorem gives some indication of how useful the idea of the degree of

an extension is. We have shown that if a and /3 are algebraic over K then so
are a+/3 and a/3, but we have not had to produce polynomials in K[x] of
which these elements are roots.

We say that an extension L:K is algebraic if every element of L is
algebraic over K. Not every algebraic extension is finite: for example, if A
denotes the algebraic numbers, the set of complex numbers which are
algebraic over 0, then A : Q is infinite (see Exercise 5.8 below). Finite
extensions are characterized in the following way:

Theorem 4.6 Suppose that L : K is an extension. The following are
equivalent:

(i) [L: K] < x;
(ii) L: K is algebraic, and L is finitely generated over K;
(iii) there exist finitely many algebraic elements a 1, ... , a of L such that

L : K is finite. If a c- L, then [K(a) : K] < [L: K] < -)C,

so that a is algebraic over K (Theorem 4.4); thus L:K is algebraic. If
(/31, ..., fr) is a basis for L over K, then L = K(#,,. .., fl,.), so that L is finitely
generated over K. Thus (i) implies (ii), and (ii) trivially implies (iii).

Suppose now that (iii) holds. Let KO=K, and let Kf = K(a 1, ... , a1) =
K j _ 1(cx ), for I <j,<n. Note that L = K,,. Each a j is algebraic over K_ 1, so
that [Kj:Ki _ 1] < x . We have a tower of extensions, and consequently

[K1:Ko]<x.
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Corollary 1 If L : K is an extension and if a is an element of L which is
algebraic over K, then K(a):K is algebraic.

This is a special case of the next corollary.

Corollary 2 Suppose that L:K is an extension and that S L. If each a e S is
algebraic over K, then K(S) : K is algebraic.
Proof. If /3 e K(S), there exist in S such that /3 E K(al, ..., By the
theorem, K(ai, ..., is algebraic, and so /3 is algebraic over K.

The proof of this corollary shows that, even though an algebraic
extension may be infinite, it is possible to deal with it by using arguments
involving finite extensions. The same is true of the next result.

Theorem 4.7 Suppose that M : L and L : K are algebraic extensions. Then
M : K is algebraic.
Proof. Suppose that a c- M, and that

ma=10+11x+...
+l,,xn

is its minimal polynomial over L. Then a is algebraic over K(10,..., Ij and
so

[K(10, ..., K(10, ...,1n)] = [K(lo,...,1,,, a) : K(1o, . . ., 1j] < Cc

by Theorem 4.4. Also

[K(10, ..., ln):K] < x

by Theorem 4.6, and so

[K(a):K] < [K(10, ...,1,,, a):K]

= [K(109 ...,1,,, a):K(l0, ..., [K(10, ...,1 ): K]

<,x
thus a is algebraic over K.

Exercises

4.7 Show that if L:K is algebraic and K is countable then L is
countable. Show that there exist real numbers which are
transcendental over the rationals.

4.8 Suppose that L:K is an extension, that a is an element of L which is
transcendental over K, and that f is a non-constant element of
K [x]. Show that f(a) is transcendental over K. Show that, if /3 is an
element of L which satisfies f(/3) =a, then /.3 is transcendental over
K.
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4.9 Suppose that a and b are complex numbers which are
transcendental over U. Is ab transcendental over 1?

4.10 Suppose that K(a, fl):K is an extension, that a is algebraic over K,
but not in K, and that f is transcendental over K. Show that
K(a, f3) : K is not simple.

4.5 Monomorphisms of algebraic extensions
The next result uses finiteness in a rather different way. If L:K is an

extension and T : L - L is a monomorphism with the property that T(k) = k
for each k in K, we say that T fixes K.

Theorem 4.8 Suppose that L: K is algebraic and that T : L - L is a
monomorphism which fixes K. Then T maps L onto L.
Proof. Certainly T(0) = 0. Suppose that a is a non-zero element of L. Let ma
be its minimal polynomial over K. Let R be the set of roots of rna in L. If
f3eR,

m«(T(l)) = T(m«(/3)) = T(0) = 0

so that T maps R into R. Now T isone-one and R is finite (see Exercise 3.15)
and so T must map R onto R. Thus there exists fi in R such that T(/3) =0C. As
this holds for each a in L, T must map L onto L.

A ring monomorphism of a field onto itself is called an automorphism.

Exercise

4.11 Show that the condition that L:K is algebraic cannot be dropped
from Theorem 4.8.
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Tests for irreducibility

5.1 Introduction
Suppose that f is a polynomial in K [x], where K is a field. Since

K[x] is a unique factorization domain, f can be expressed essentially
uniquely as a product of irreducible polynomials. This raises the important
practical problem: how do we recognize whether or not a given polynomial
is irreducible?

There are many important cases when the field K which we consider is
the field of fractions of a unique factorization domain R: this is so in the
most important case of all, when the field is the field l of rational numbers.
In such a situation, Gauss' lemma (the corollary to Theorem 3.12) is
particularly useful. Recall that Gauss' lemma implies that, if f is irreducible
in R[x], then f is irreducible in K[x].

As an application (which we shall need in the next chapter) let us consider

f=x3-3x-1 EL[x].

As f is a cubic, if it factorized in 71[x] it would have a linear factor, and this
would have to be either x-1 or x+ 1. But f (1) = - 3 and f (-1)=1, and so f
is irreducible in 71[x]. By Gauss' lemma, f is irreducible in Q[x].

In order to show the importance of Gauss' lemma, let us sketch the proof
of the following result, due to Kronecker:

Theorem 5.1 There is an algorithm to express any element of Z [x] as a
product of irreducible factors.

An algorithm is a procedure which takes a finite number of steps; the
number of steps depends upon the polynomial in question, but an upper
bound can be given for it in each case.
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Proof. Suppose that f has degree n. Let r be the greatest integer such that
2r<n. If f is not irreducible, f must have a non-unit factor of degree less
than or equal to r. We search for such a factor. Let c j = f(j), for 0 <j < r. If
c j = 0 for some 0 <j < r, then x -j is a factor of f. Otherwise, if g is a factor of
f in 71 [x] then g(j) must divide cj for 0 <j < r. Each c; had finitely many
divisors, and an algorithm exists to determine them. Suppose that
(do, ..., dr) is such that d j is a divisor of c j for 0 <j < r. There exists a unique
polynomial g in 0 [x] of degree at most r such that g(j) = d j for 0 <j < r:

r

9= E dj9j,
0

where

9j = I
0<k<r,k#j

We can now test (by further algorithms) whether g c- 71[x] and whether g
divides f. As there are only finitely many (r + 1)-tuples (d0,.. ., dr) to
consider, this means that there is an algorithm to find a non-unit factor of f,
if one exists. Repeated use of the algorithm leads to a factorization as a
product of irreducible factors.

This result is of theoretical importance, but the procedure is too
cumbersome to use in practice. Trial and error may enable us to factorize a
polynomial, but will not establish that a polynomial is irreducible. It is
therefore important to establish simple criteria which will ensure that a
polynomial is irreducible. This is what we shall do in the present chapter.

Exercises

5.1 Write (an outline of) a computer programme to implement the
algorithm of Theorem 5.1.

5.2 Suppose that
f =a0+ ... +a,,xn

is a polynomial in 71 [x] of degree n, and that maxilail = K. Obtain
an upper bound, in terms of n and K, for the number of calculations
required to determine whether or not f is irreducible.

5.3 Suppose that K is a field with finitely many elements. Show that
there is an algorithm to express any element of K[x] as a product
of irreducible factors.

5.4 Suppose that K is a field and that f and g are relatively prime in
K [x]. Show that f - yg is irreducible in K(y) [x].



5.2. Eisenstein's criterion 51

5.5 Suppose that K(a):K is simple and that a is transcendental over K.
Show that if /J E K(a) and f3 O K then K(a) : K(f) is finite and /3 is
transcendental over K. Show that, if fl = f(a)/g(a), where f and g
are relatively prime in K[x], then

[K(a) : K(f3)] = max(degree f, degree g).

5.2 Eisenstein's criterion
Eisenstein's crit;,rion is concerned with factorization in R[x],

where R is an integral domain.

Theorem 5.2 (Eisenstein's criterion) Suppose that R is an integral domain,
and that

has the property that fo, ..., f" are relatively prime. Suppose that p is a prime
in R, and that p I fi for 0 < i < n, while p does not divide fn and p2 does not
divide fo. Then f is irreducible in R[x].
Proof. Suppose that f = gh where

g = go + ... +grxr
and

h=ho+... +hsxS

are not units in R. If r were equal to 0 (so that g =go), it would follow that go
divides f j for 0 <j < n, so that go would be a unit: this gives a contradiction,
so that r> I. Similarly s> 1. By hypothesis, p2 does not divide goho, so that
p cannot divide both go and ho. Without loss of generality we may suppose
that p does not divide ho.

Now grhs = f", so that, by hypothesis, p does not divide gr. Let i be the
least integer such that p does not divide gi. Then 0 < i < r < n, so that p I f i;
that is,

p l (hogi + h l gi - 1 + ... + higo)

As pf gj for j < i, plhogi. As p is a prime, plho or pIgi, giving a contradiction.
As an example (which we shall need later on) let us observe that

f=x5-4x+2
is irreducible over Z[x], by Eisenstein's criterion (with p = 2), and so f is
irreducible over Q[x], by Gauss' lemma.

Exercises

5.6 Suppose that R is an integral domain and that

f=fo+fix++f"x"ER[x]
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has the property that f0,.. ., f,, are relatively prime. Suppose that p
is a prime in R, and that p I f1 for 1 < i < n, while p does not divide fo
and p2 does not divide f,,. Show that f is irreducible in R[x].

5.7 Show that if p is a prime number then x" --p is irreducible in O[x].

5.8 Let A denote the field of real numbers which are algebraic over G.
Show that [A: 0] = oc.

5.9 Show that the positive pth roots of 2 (as p varies over the primes)
are linearly independent over G.

5.10 Show that x5 - 4x + 2 and x4 -- 4x + 2 are irreducible over 0(i).

5.3 Other methods for establishing irreducibility
Even if Eisenstein's criterion cannot be applied directly, it is

sometimes possible to apply it after making a suitable transformation. For
example, if

f =x4+4x3+ 10x2+ 12x+7E7l[x],

it is not possible to apply Eisenstein's criterion directly. If we write y= x + 1,
we find that

f=y4+4y2+2.
As

g=x4+4x2+2
is irreducible in 71[x], by Eisenstein's criterion, f must be irreducible too.
The problem of course is to find a suitable transformation: this is a matter of
ingenuity and good fortune.

There is another technique which can sometimes prove useful when we
are considering polynomials in 71 [x]. Suppose that p is a prime number: for
each integer n, let n denote the image (mod p) of n under the quotient map
from / to 71 p. This quotient map induces a ring homomorphism from Z [x]
onto 1p[x]; if

f=ao+alx+ ...
then

E71p[x].

Theorem 5.3 (Localization principle) Suppose that

f
and that ao,..., a are relatively prime. Suppose that p is a prime which does
not divide a, if f is irreducible in 71 p[x], then f is irreducible in 71[x].
Proof. Suppose that f factors as f =gh, where g and h are not units. As in
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the proof of Eisenstein's criterion, since a0,. .., a are relatively prime,
degree g > I and degree h > 1; of course degree g + degree h = degree f:

As p does not divide a,,, degree f =degree f. As J=gh, degree f =
degree g + degree h. As degree g < degree g, and degree k < degree h, we
must have that degree g = degree g > I and degree h = degree h > 1. Thus
j=yk is a non-trivial factorization of f.

Notice that the localization principle can also be used to establish
Eisenstein's criterion in 71[x]. With the notation of Theorem 5.2, f = fnxn,
so that, as f = gh, go = 0 (mod p) and ho = 0 (mod p) so that fo = goho =
0 (mod p2), giving a contradiction.

To give another example of the use of localization, let us show that
f =x"+ px+ p2 is irreducible in L[x] (where p is a prime number). First
observe that if a is a root of f in 1, then a < 0 and a = 0 (mod p) so that
c x= -kp for some positive integer k. From this it follows that

(-k)"p"-2=k-1
which clearly has no solution. Thus, if f = gh is a factorization in 71 [x],
degree g > 2 and degree h > 2. As before, gi = 0 (mod p) for i < degree g and
h; = 0 (mod p) for j <degree h, so that

p=goh1 +g1ho=0 (mod p2)
giving a contradiction.

Exercises

5.11 Show (by making the transformation y = x - 1) that if p is a prime
number then 1 + x + + x" -1 is irreducible over 0.

5.12 Let 0 = 2n/7. What is the minimal polynomial of ei° over 0? What
is the minimal polynomial of 2 cos 0 over 0?
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Ruler-and-compass constructions

One of the problems that greatly exercised the Greek mathematicians and
their successors was to find a method, using ruler and compass, to trisect a
given angle. We shall show that this is not possible - it is not possible to
trisect the angle it/3 - using the ideas of Chapter 4. It is remarkable that
these ideas, which are really rather elementary, resolve the problem so
decisively: an idea does not need to be complicated in order to be effective.

6.1 Constructible points
There are many constructions that one can carry out with ruler

(straight-edge) and compasses alone. Many children, on first being given a
pair of compasses, find out for themselves how to construct a regular
hexagon (and so construct the angle 7r/3). I hope that you remember enough
school geometry to know how to bisect an angle, to drop a perpendicular
from a point to a line, to draw a line through a point parallel to a given line,
and so divide an interval into a given rational ratio, using ruler and
compasses alone.

Let us try and describe the situation in an accurate but informal way. We
begin with two distinct points PO and P1 in the plane. We take PO as origin,
and take as our first axis the line through PO and P1, and as our second axis
the line through PO perpendicular to PoPI. We take PoPI as our unit of
distance. In this way, we can think of each point in the plane as an element
(x, y) of l x R. We call x and y the coefficients of the point. From what we
have said in the preceding paragraph, we can certainly construct any point
(r1, r2) with rational coefficients, using ruler and compasses alone. There are
many other points that we can construct, too: let us describe more
accurately what this means.

We shall say that a point P is constructible if there exists a finite sequence



6.1. Constructible points 55

P01P11 ..., P,, = P of points in the plane with the following property. Let

Sj={Po,P1,...,Pj}, for 1<j<n.
For each 2 <j < n, Pi is either

(i) the intersection of two distinct straight lines, each joining two
points of Sj_ 1, or

(ii) a point of intersection of a straight line joining two points of S j _ 1

and a circle with centre a point of Sj and radius the distance
between two points of Sj _ 1, or

(iii) a point of intersection of two distinct circles, each with centre a
point of S j _ 1 and radius the distance between two points of 5j 1 '

In case (iii), the centres must be different if the circles are to intersect: the
radii may or may not be different.

We now wish to associate some fields to these geometric ideas. We do this
in a very straightforward way: R0 is an extension; if P = (x, y) is a
constructible point, we consider the extension Q(x, y): 0 generated by x
and y.

Theorem 6.1 If P = (x, y) is a constructible point, the extension Q(x, y) :O is
finite, and [Q(x, y):0] = 2r, for some non-negative integer r.
Proof. Since P is constructible, there exists a sequence P0, P1,..., Pn=P of
points which satisfies the requirements of the definitions. Let Pj = (x j, yj),
and for 1 <j <n let

Fj = Q(x1, y1, x2, Y2, ... , xj, Y A

Then Fj+ 1=Fj(xj+ l,yj+ 1), for 1 <__j < n. We shall show that [F+ 1 :Fj] =1
or 2: then, by the tower law, [F.: F1] = [F,,: 0] = 2' for some non-negative
integers. But Q(x, y) = Q(x,,, y,,) is a subfield of F containing 0, so that, by
the tower law again,

[F.: Q(x, Y)] [C(x, y) : 0] = 2S,

and so [Q(x, y):0] = 2', for some non-negative integer r.
It remains to show that [Fj+ 1:Fj] = I or 2.
If (a 1, b 1) and (a2, b2) are two points in S., the equation of the line joining

(a1, b1) and (a2, b2) is (x - a2)(b1- b2) =(a, -a2)(y - b2), and therefore has
the form

Ax+,iy+ v=0,
where A, p and v are elements of Fj. Similarly the equation of the circle,
centre (a1, b1) and radius the distance between points (a2, b2) and (a3, b3) of
Sj, is

(x-a1)2+(Y-b1)2=(a2 -a3)2+(b2 -b3)2,
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and therefore has the form

x2+y2+2gx+2fy+c=0,

where J' g and c are elements of F f.
We are now in a position to consider the three cases that can arise.
Case (i). (xj + 1, y1 + 1) is the intersection of two distinct straight lines, each

joining two points of Sj. In this case (x1 + 1, yJ + ) is the solution of two
simultaneous equations

Aix+µ1y+vi =0,

22x+p2y+v2=0

with coefficients in F.. Solving these, we find that xj + 1 and y; + 1 are in F;, so
that FJ + 1 = Fj and [Fj + 1:F1] = I.

Case (ii). (xj + 1, y1 + 1) is a point of intersection of an appropriate straight
line and circle. In this case (x;+ 1, y, + ) satisfies equations

Ax+Py+v=0,

x2+y2+2gx+2fv+c=0
with coefficients in Fi. Suppose that A 0 0. We can then eliminate x, and
obtain a monic quadratic equation in y. If this factors over F3 as

(y a)(y--fl)=0
then y , + 1 = a or A so that y; + 1 E F1; substituting in the linear equation,
x.,+ 1 E F1, so that Fj + 1 = Fj, and [F1 + 1 : FJ] = 1. If the quadratic is
irreducible, it must be the minimal polynomial for yy + : thus, by Theorem
4.4, [F1(yj +1):F1]=2. As x;+1 = -A '(1uy +1 +v), x1+1 EF,(y,+1) and so
F; + 1 = F1(x; + 1, y1 + 1) = F;(yj + 1). If A = 0, then p :A 0, and we can repeat the
argument, interchanging the roles of xj +

1
and y; + I .

Case (iii). (x3 + 1, y, + 1) is a point of intersection of two suitable circles. In
this case (x j + 1, yJ + i) satisfies equations

x2+y2+2gix+2f1Y+c1=0,

x2+y2+2g2x+2f2y+c2=0
with coefficients in Fj. Subtracting, (xj + 1 , yj + ) satisfies the equation

2(g1-92)x+2(f1-f2)Y+(cl -c2)=0.
We cannot have 91 =92 and fl =f 2, for then the circles would be
concentric, and would not intersect. Thus this case reduces to the previous
one.

Although the proof of this theorem may appear to be rather lengthy, you
should note that almost all the field theory appears in the first paragraph:
the rest is coordinate geometry of a particularly simple kind.
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Exercises

6.1 Describe how the constructions mentioned in the first paragraph
of Section 6.1 are made.

6.2 Suppose that the point (1,0) is constructible (where 1>0). Show

how to construct the points (,//-,0) and (12,0).

6.3 Construct a regular pentagon.

6.4 Suppose that P = (x, y) is a constructible point. Let a and f3 be
elements of Q(x, y). Show that (a, f3) is a constructible point.

6.2 The angle it/3 cannot be trisected
We have observed that, using ruler and compasses, we can

construct the angle it/3. We shall now show that this angle cannot be
trisected, using ruler and compasses alone, in the way that we have
described. Let us write a for n/9. If we could trisect 7r/3, there would be a
constructible point P. other than PO, on the line given by

xsin at =ycosa;

intersecting the line PPo with the circle with centre PO and radius POP1, it
would follow that (cos a, sin a) would be constructible. As

[61(cos a, sin a) : 0] = [Q(cos a, sin a) : Q(cos a)] [0(cos a) : 0]

it would follow from the tower law and Theorem 6.1 that [U(cos a) : 0] = 2r,
for some non-negative t. Now recall that

cos 3 0 = 4(cos 0)' - 3 cos 0

and that cos (n/3) = 2, so that

4(cosa)3--3 cos a- i=0.

Let a = 2 cos a. Then

a3 -3a- 1=0.
As we have seen in Section 5.1, x3 - 3x - 1 is irreducible over 0, and is
therefore the minimal polynomial for a over 0. Thus, by Theorem 4.4,
[Q(a) :0] = 3. But 0(a) = 0(cos a), and so we have the required
contradiction.

Exercises

6.5 Show that the point (21/3, 0) is not constructible (impossibility of
`duplicating the cube').

6.6 Show that it is not possible to construct (a) a regular nonagon or
(b) a regular heptagon, using ruler and compasses.
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6.3 Concluding remarks
Theorem 6.1 provides a necessary condition which a constructible

point must satisfy. Is it a sufficient condition for a point to be constructible
and, if not, what is a sufficient condition? These are much more difficult
questions than those which we have answered in this chapter. Bear them in
mind as the theory develops.

Exercise

6.7 (a) Suppose that x and y are real numbers such that
[Q(x, y):0] = 2. Show that (x, y) is constructible.

(b) Suppose that x and y are real numbers, and that 0 = FO
F1 c ... c Fr = O(x, y) is an increasing sequence of fields such that
[F; + I : Fj] = 2 for 0 < j < r. Show, by induction on r, that (x, y) is
constructible.
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Splitting fields

Suppose first that f E O[x]. As we have seen, f maybe irreducible; if not, we
can factorize f in an essentially unique way into irreducible factors. This is
as far as factorization can go in Q[x].

On the other hand, 0 is a subfield of C and we can consider f as an
element of C [x]. Now the field C has the remarkable property that any non-
unit element of C[x] can be written as a product of linear factors. This is, of
course, an immediate consequence of the fact that any non-constant
polynomial pin C[x] has a root in C. This fact (the `fundamental theorem of
algebra') is usually proved by complex function theory: if p had no root, 1/p
would be a non-constant bounded analytic function on C, contradicting
Liouville's theorem. (You may feel that there is too much analysis in this.
Some analysis is certainly needed, since the real field O is an analytic
construction. Be patient, and be sure to tackle Exercise 11.11 in due course.)

If we consider f as an element of C[x], then, we can write
f =

where A is a rational number and al, ..., a are complex numbers. Each a, is
algebraic over 0, since f(a;) = 0. Thus, if L = Q(a 1, ... , a ), L is algebraic over
0 and L is finitely generated over 0, and so [L:O] < cc (Theorem 4.6).
Further f factorizes into linear factors over L. As far as f is concerned, then,
L is large enough for our purposes.

The above argument works because of the special properties of the
complex field C. Our aim in this chapter is to show how, starting with an
element f of K [x], where K is an arbitrary field, we can construct a finite
extension L:K such that f factorizes into linear factors over L.

Exercise

7.1 Suppose that f is an irreducible polynomial in 11[x]. Show that
degree f < 2.
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7.1 Splitting fields
Suppose that K is a field, that f E K [x] and that L : K is an

extension. We say that f splits over L if we can write

f = A.(x --a1) ... (x -an)

where al, ..., a are in L and A E K.
We say that L : K is a splitting field extension for f over K (or, when it is

clear what K is, that L is a splitting field for f) if, first, f splits over L and,
secondly, there is no proper subfield L of L containing K such that f splits
over L. This last condition ensures that the extension L:K is an economical
one for f.

If we can find an extension over which f splits, we can find a splitting
field:

Theorem 7.1 Suppose that L:K is an extension and that f e K[x] splits over
L as

f = 2(x -ai) ... (x -a.).

Then K(a,, ..., an) is a splitting field for f.
Proof. f certainly splits over K(a1, ..., an). Suppose that K(ar, ...,
K'=-) K and that f splits over K':

f =)'(x - (Xl) ... (x - an).

As factorization in L[x] is essentially unique, for each i we have a,= aj, for
some j, and so at c K'. Consequently K' :-D K(a1, ..., a
proper subfield of K(ai,...,

Corollary If L : K is a splitting field extension for f c K [x] then L : K is a
finite algebraic extension.

How can we construct splitting fields? The key step is the adjunction of a
root of an irreducible polynomial.

Theorem 7.2 Suppose that f c- K [x] is irreducible of degree n. Then there is a
simple algebraic extension K(oc) : K such that [K(a) : K] = n and -a) = 0.
Proof. We must construct K(a) intrinsically, starting from K and f Let
j: K -+K [x] be the natural monomorphism, let L= K [x]/(f ), and let
q = K[x] --- L be the quotient map. Since f is irreducible, L is a field (by the
corollary to Theorem 3.16). Let i = q j : i is a monomorphism of the field K
into the field L
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J

so that (i, K, L) is an extension (remember the original definition). Now let
a = q(x) x + (f). As x generates K [x] over K, L = K(a). Also, since q is a
ring homomorphism,

f(a) = f(q(x)) = q(f) = 0.

Thus a is algebraic over K. Bearing in mind that f is irreducible over K, we
see that f must be a scalar multiple of the minimal polynomial m,,, of a over
K. Thus [L: K] = n, by Theorem 4.4.

Note that, although f is irreducible over K, it is not irreducible over K(a):
it has a linear factor x -a. Factorization is under way, and we can now
proceed inductively.

Theorem 7.3 Suppose that f E K[x]. Then there exists a splitting field
extension L: K for f, with [L: K] < n!.
Proof. We prove this by induction on n = degree f. Of course, if degree f < 1,
there is nothing to prove. Suppose that the result holds for any polynomial
of degree less than n, over any field K. Suppose that degree f= n. We
consider two cases.
Case 1. f is not irreducible over K. We can write f = gh, where degree
g = s < n and degree h = t < n. By the inductive hypothesis there is a splitting
field L K for g, with [L: K] < s!. We can write

g = A(x - a,) ... (x - a5)

with aiE L and ) e K. Note that L = K(a 1, ... , a5).

We can now consider h as an element of L[x]; by the inductive hypothesis
again, there is a splitting field M :L for h, with [M :L] < t! We can write

h=p(x-fly).. (x -A)

with fi E M and It EL. Note that M = L(J31, ..., far) = K(a1, ..., as, flu .. - , A);

as At is the coefficient of x" in f, Ap E K. Thus M : K is a splitting field
extension for f. Further,

[M:K] = [M:L][L:K] <t!s! <(s+t)!=n!
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Case 2. f is irreducible over K. Then by Theorem 7.2 there exists a simple
algebraic extension K(a) : K, with [K(a) : K] =n, such that, over K(a),

f =(x-a)h
where h E K(a) [x], and degree h = n - 1. By the inductive hypothesis, there
exists a splitting field extension LX(a) for h, with [L : K(a)] <(n - 1)!. We
can write

h= u(x-N1) ... (x-Nir-1)
with fJ E L, p c- K(a). Note that L = K(a)(f31,..., fn- 1) = K(a, #1 , ..., Jn -1)
Then

f =p(x -a)(x -fit) ... (x -Nn- 1);
again,,u is the coefficient of x" in f, so that p e K and f splits over L. Thus

L:K=K(a,fi1,...,Nn-1):K
is a splitting field extension for f. Finally

[L:K] z [L:K(a)][K(a):K] <(n- 1)!n= n!
Observe that the proof of Theorem 7.3 is largely a matter of induction;

the field theory occurs in Theorem 7.2.
Nevertheless, Theorem 7.3 is a major achievement: we can now produce a

splitting field for any polynomial over any field. Notice that there can be
some freedom of action in Theorem 7.3 (in the way we consider factors in
the case where f is not irreducible); there may also be other ways to produce
splitting fields: can these be essentially different? We shall answer this
important question in the next section.

Exercises

7.2 Show that f = x3 -x + I is irreducible in 7 3[x]. Show that if C is a
root off in a splitting field extension, then C + 1 and C -1 are also
roots. Construct a splitting field extension, and write out its
multiplication table.

7.3 Suppose that K is a field over which x" -1 splits, and suppose that
K(t) : K is a simple transcendental extension. Show that x" - t is
irreducible in K(t) [x] (Exercise 5.4). Construct a splitting field
extension for x" -- t by considering another simple transcendental
extension K(s) : K and a monomorphism i : K(t) -+ K(s) which fixes
K and sends t to s".

7.2 The extension of monomorphisms
In this section, we shall show that a splitting field extension of a

polynomial is essentially unique. In the process, we shall prove some of the
most important results of the theory. As the theory develops in the
succeeding chapters, it will, I hope, become clear why these results are so
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important. Two more remarks are in order. First, algebra is not just the
study of sets with some algebraic structure, but the study of such sets and of
mappings between them which respect the structure: in this section we
begin to consider such mappings. Secondly, although the results are
important, the proofs are natural and easy: the relationship between
`difficulty' and `importance' is a curious one.

Let us recall that if i is a ring homomorphism from a field K into a field L
then i is necessarily a monomorphism, so that i is an isomorphism of K onto
i(K). Further if

then i(f) = i(ao) + i(ai)x + . + E i(K) [x] 9 L[x]; thus i extends to a
monomorphism (which we again denote by i) from K [x] into L[x], and i is
an isomorphism of K [x] onto i(K) [x] .

We begin by considering simple algebraic extensions.

Theorem 7.4 Suppose that K(a) : K is a simple extension and that a is
algebraic over K, with minimal polynomial ma. Suppose that i is a
monomorphism from K into a field L and that ft E L. Then a necessary and
sufficient condition for there to be a monomorphism j from K(a) to L with
j(a) = fi and JIK = i is that i(m2)(f3) = 0. If the condition is satisfied then j is
unique.
Proof. Necessity. This is rather trivial. If j exists then

i(ma)(1l) =j(m«)(J(a)) =j(ma(a)) =AO) = 0.

Sufficiency. Suppose that the condition is satisfied. Let K' = i(K). Then
i : K -+ K' is an isomorphism, which extends to an isomorphism
i : K [x] -' K' [x]. As i(ma)(fl) = 0, fi is algebraic over K'. We now use the
evaluation maps to construct the following diagram.

C

EM t
'K[x] K [x]

q q,

K [x]/(m«) K' [x]/(mp)

L

f

K'($)

c
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Here Ex and Efi are the evaluation maps, q and q' are quotient maps and Ea
and Es are isomorphisms.

Now i(ma) is monic, and is irreducible over K' (since i is an isomorphism
of K [x] onto K' [x] which sends K to K') and i(ma)(f) = O, by hypothesis.
Consequently mfl=i(rna), and so (ma) is the kernel of q'i. Thus by Theorem
3.1 there exists an isomorphism

i : K [x]/(ma) - K' [x]/(mfi)

such that q'i = iq. Now let

j= Efli(Ej-'.
j is an isomorphism of K(a) onto K'(f3), and so it is a monomorphism of K(a)
into L. Also

j(a) = E, i{Ex) - i(a) = E,iq(x)

= Epq'i(x) = Efl(i(x)) -_ f3

and if k E K

j(k) = Ef(Ex) -'(k) = E fliq(k)

= E#q'i(k) = Ep(i(k)) = i(k),

so that j has the properties that we are looking for.
Finally, if j is another monomorphism of K(a) with the required

properties, then the set

F= {y:j(y)=j'(y)}

is a subfield of K(a). It contains K and a, and so F = K(a) and j is unique.
This theorem can be proved more quickly: it is not really necessary to

show that i(m2) = ms. But this proof shows how rigidly j is determined: we
have built a strong bridge between K(a) and K'(f).

Inspection of the diagram and the proof, gives the following corollary.

Corollary I Suppose that K(a) : K and K'(a') : K' are simple extensions, and
that a is algebraic over K, a' algebraic over K. Suppose that i : K - * K' is an
isomorphism. Then there exists an isomorphism j : K(a) -+ K'(a') with j(a) = a'
and jIK = i if and only if i(ma) = If so, j is unique.

Corollary 2 Suppose that K(a):K is simple and that a is algebraic over K.
Suppose that i : K -+ Lisa monomorphism, and that i(mx) has r distinct roots in
L. Then there are exactly r distinct monomorphisms j : K(a) -+ L with j IK = i.

We now consider splitting fields.

Theorem 7.5 Suppose that X : K is a splitting field extension for a polynomial
f in K [x] and that i is a monomorphism from K into a field L. Then a



7.2. The extension of monomorphisms 65

necessary and sufficient condition for there to be a monomorphism j from I
into L with JIK = i is that i(f) splits over L.
Proof. Necessity. As f splits over E, we can write

f = 1(x - a 1) ... (x -a"),

with Then

i(f) =j(f) = i(L)(x -- j(a 1)) ... (x -j((Xn))

so that i(f) splits over L.
Sufficiency. Once again we argue by induction on degree f = n. The result is
true when n = 1, for then 2: = K, and we take j = i. Suppose that the result
holds for any splitting field extension E' : K' for any polynomial of degree
less than n over any field K', and for any monomorphism i' from K' into L.
Suppose that degree f = n, and that i(f) splits over L.

As 2:K is a splitting field extension for f over K, we can write

f=
with a, E 2 and A E K. al is algebraic over K; let m be its minimal polynomial
over K. Then f =mg, and m is irreducible over K. By relabelling al, ..., a if
necessary, we can suppose that

M= (X -a1)(X --az) ... (x -ar).

Now i(f) = i(m)i(g); as i(f) splits over L, i(m) must split over L too. We can
write

i(m) = (x - f 1) ... (x - Nr)

We are now in a position to apply Theorem 7.4: K(al) : K is a simple
algebraic extension, and al has minimal polynomial m. Also i(m)(f31)=0.
There therefore exists a unique monomorphism j 1 from K(a1) to L such that

J,(a,)=fl1 and J1IK=i:

C

J1
aw i(K)(/31)

i i(K)
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We now consider f as an element of K (a 1)[x] . We can write f = (x - a 1)h,
where hEK (a 1)[x], and h splits over 1:

h = 2(x- a2) ... (x - an)

Also Z= K(al)(a2, and so X is a splitting field for h over K(a1). As
degree h = n - 1, we can apply the inductive hypothesis: there exists a
monomorphism j from E to L such that j fK(«,) =j 1. This completes the proof.

Before we establish some corollaries, let us make three remarks. First,
like Theorem 7.4, this is an extension theorem: we extend the mapping i.
Secondly, unlike Theorem 7.4, the extension need not be unique: we could
map a1 to any of Thirdly, although the extension need not be
unique, there are obviously some limitations on the number of extensions
that there can be. This is a topic to which we shall pay much attention later
on.

Corollary 1 Suppose that i : K -' K' is an isomorphism and that f c- K [x].
Suppose that Z:K is a splitting field extension for f, E':K' a splitting field
extension for i(f). Then there exists an isomorphism j : E -+ E' such that

K=i.
Proof. If we apply the theorem to the mapping i, considered as a
monomorphism from K to E', it follows that there exists a monomorphism j
from 2 to Z' which extends i. We can write

f =1(x-a1)...(x-an),

with in 2 and a. in K. Then

j(f) = i(.)(x - j(a 1)) ... (x

so that, using Theorem 7.1, it follows that

27 = K'(j(a 1), ... , j((x )) c j(Z),

and j is onto.

Corollary 2 Suppose that f EK[x] is irreducible and that 1:K is a splitting
field extension for f. If a and Ii are roots of f in X, there is an automorphism
u: f -' 2 such that 6(a) = f3 and a fixes K.
Proof. f is the minimal polynomial for a and f3 over K. By Corollary 1 of
Theorem 7.4, there is an isomorphism i : K(a) -> K(CB) with T(a) = /3 and
r(k) = k for k E K. Now E : K(a) is a splitting field extension for f over K(a),
and E:K(f3) is a splitting field extension for f over K(JJ). The result now
follows from Corollary 1.
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Exercise

7.4 The complex numbers i and 1 + i\ are roots of the quartic
f = x4 - 2x3 + 7x2 - 6x + 12. Does there exist an automorphism a

of the splitting field extension for f over 0 with a(im) = 1 + i/?

7.3 Some examples
We now consider some examples of splitting fields. First let us

consider polynomials in 0[x]. If f E 0[x] then, as we saw at the beginning
of this chapter, f splits over C[x], and we can, and usually shall, consider
the splitting field of f as a subfield of C. Alternatively, we can make the
constructions of Theorem 7.2 and 7.3. Corollary I to Theorem 7.5 then says
that the splitting field that we obtain is essentially the same.

Example 1 f = xP -- 2 in 0[x] (with p a prime).
f is irreducible, by Eisenstein's criterion, and there is one real positive

root 21IP. f is the minimal polynomial of 21/P, so that [Q(21/P) : 0] = p. If a is

any root off in C, then (a/211 P)P = aP/2 = 1, so that a = 211 Pw, where co is a
root of xP - 1. xP --1 is not irreducible, as

xP-1=(X- 1)(x"-1 +XP-2+... + 1),

Now xP - 1 + xP - 2 + + 1 is irreducible over 0 (Exercise 5.9), so that if co is
any root of xP -1 other than 1 then [U(w) : 0] = p - 1. The map n co" is a

homomorphism of 71 into the multiplicative group C*, with kernel p7L, and
so the complex numbers 1, w, ..., wP -1 must be distinct. They are all roots
of xP - 1, so that

xP-1 =(x- 1)(x-w)...(x-wP-1)
and U(w) : 0 is a splitting field extension for xP -- 1.

Now our original polynomial f splits over C(w, 21/P) since it has roots
21IP,w211",...,WP-121/P.

Further any splitting field must contain 21/P, and must also contain W=
w211P/211 P. Thus G((9,21/P)-.Q is the splitting field extension for f

What is [U(w, 21/P):Q]? In order to answer this, consider this diagram.

C

f
O(w, 211P)

(w) U(211P)
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Here (and later, when we consider similar diagrams) rising arrows represent
inclusion mappings.

By the tower law,

[Q(211 P) : Q] I [ i (w, 211 P) : O] and [O(co) : Q] I [CP((9, 21 /P) : Q] .

As [Q(211P) : Q] = p and [Q(co) : O] =p- 1, this means that [O(w, 21/1:0],>.,
p(p -1). On the other hand, if m is the minimal polynomial of 211P over 0(w),
m divides xP-2 in Q(w)[x],and so

degree m = [O(w, VIP): O(w)] < p.

Thus, by the tower law,

[Q(w, 211P) : 0] _ [Q(w, 211 P) : 0(w)] [0(w) : 0]

<p(p-1),

and so [0(w,21/P):0]=p(p-1).
This implies that degree m = p, and so xP - 2 is irreducible over 0(w).
This example has many important features. It is perhaps a bit more

complicated than one might imagine. Notice that the pth roots of unity (the
roots of xP - 1) played an important role. Notice also that we picked one of
them (other than 1): had we picked another, the result would have been the
same. (Can you formalize this, using Corollary 2 of Theorem 7.5?) Notice
also that the argument could have been simplified by appealing to Exercise
4.2.

Example 2 f= x 6- 1 in O[x].

f factorizes as

f =(x- 1)(x2+x+ 1)(x+ 1)(x2-x+ 1)

If w is a root of x2+x+ 1 then

f = (x _ 1)(x - (0)(x - (02)(x + 1)(x + (0)(x + cot)

Thus O(w): 0 is a splitting field extension for f and [0(w) : 0] = 2.

Example 3 f =x'+ 1 in 0[x].
The roots of f in C are i, iw, iw2, - i, - iw, - iw2. Thus, arguing as before,

Q(i, w):0 is the splitting field extension for f, and we have this diagram.
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GO, (0)

0(i)

0

G(CO)

Now we can take co = - i + ,/3 i/2, so that w 0 0(i) (which consists of all
complex numbers of the form r + is, with r and s in 0). Thus 0(i) 0(w) and
both 0(i) and 0(co) are proper subfields of 0(i, c)). It is now easy to conclude
that [0(i, w) : 0] = 4.

We now consider examples over more general fields. (To what extent do
we use the fact that we are considering polynomials over the rationals in
Examples 1 to 3?)

Example 4 f= x' + ax + b in K [x].
We would like to `complete the square' and write

f= x+a 2 a2 -4b-
2 4

As we shall see, this is not possible if char K = 2. Let us suppose that
char K 0 2. Then 2 =1 + 1 is a non-zero element of K, as are 4, i and 4. (Thus
in Z3, 2 = z and 1=4= 4.)

In this case we can complete the square. We therefore consider the
polynomial

g = x 2 - µ, where ji = (a 2 - 4b)/4.

g splits over K if and only if there is an element v of K such that v2 = p; in this
case g = (x - v)(x + v) and

a af= x+2-v x+2+v

splits over K. If g is irreducible, there is a splitting field extension L:K of
degree 2. In this case g = (x - v)(x + v), where v is an element of L not in K.
Thus L = K(v). Since once again

a a
f= x+2-v x+2+v

K(v):K is a splitting field extension for f.
To sum up: eitherp has a square root in K, in which case f splits over K,

or we obtain a splitting field by adjoining a square root of ,u.
Note that, as a special case, C = R(i) is a splitting field for x2+ I over R.
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There remains the case where char K = 2. Let us restrict attention to the
case where K= 12. As 12 has only two elements, there are only four monic
quadratic polynomials:

x2=x.x; x2+x=x(x+ 1); x2+ 1=(x+ 1)2; x2+x+ 1.

The first three split over 72, but f =x 2 +x+ 1 is irreducible, since
f(0) = f(1) = 1. By Theorem 7.3, there exists a splitting field extension L:7 2
for f and [L:72] = 2. Thus L has four elements, 0, 1, a and /3 say. The
element a + I is not in 712, and so /3 = a + 1. Thus a + /3 = 1. The element a/3 is
not zero (since L is a field) and cannot be a or /3: thus a#= 1. Consequently

f =x2+x+ 1=(x-(*x-/3)
and a and /3 are the roots of f. Thus

a2= a+ 1=/3 and /32=$+ 1=a
so L is not obtained by adjoining a square root.

Note though that x3 - 1= (x - 1)(x2 + x + 1) so that L:12 is a splitting
field for X3_ 1; a3=#3= 1, and so L is obtained by adjoining cube roots.

Similar phenomena occur whenever we deal with finite fields. We shall
consider these in more detail in Chapter 12.

Exercises

7.5 Suppose that M : L and L : K are extensions, and that a E M is
algebraic over K. Does [L(a) : L] always divide [K(a) : K]?

7.6 Write down all monic cubic polynomials in 12[x], factorize them
completely and construct a splitting field for each of them. Which
of these fields are isomorphic?

7.7 Find a splitting field extension K : 0 for each of the following
polynomials over 0 :x4 - 5x 2 + 6, x4 + 5x2 + 6, x4 - 5. In each case
determine the degree [K:0] and find a such that K = 0(a).

7.8 Find a splitting field extension K:0 for each of the following
polynomials over (U: x4 + 1, x4 + 4, (x4 + 1)(x4+4), (x4 -1)(x4 +4).
In each case determine the degree [K : U] and find a such that
K = 0(a).

7.9 Suppose that L:K is a splitting field extension for a polynomial of
degree n. Show that [L : K] divides n !

7.10 Find a splitting field extension for x 3 - 5 over 77, 711 and 113.



The algebraic closure of a field

8.1 Introduction
As we observed at the beginning of the preceding chapter, if

f E G[x] we can consider f as an element of Q x], and then f splits over C.
We therefore have the comforting conclusion that, whenever f e Q[x], we
can find a splitting field extension for f which is a subfield of the fixed
field C.

In this chapter we shall show that a similar phenomenon occurs for any
field K. We must make some definitions. A field L is said to be algebraically
closed if every f in L[x] splits over L. Thus the `fundamental theorem of
algebra' states that C is algebraically closed. An extension L:K is called an
algebraic closure of K if L:K is algebraic and L is algebraically closed. Note
that C:Q is not an algebraic closure of 0 since C:Q is not algebraic
(Exercise 4.7).

The next theorem gives two useful characterizations of an algebraic
closure:

Theorem 8.1 Suppose that L : K is an extension. The following are
equivalent:

(i) L : K is an algebraic closure of K.
(ii) L:K is algebraic, and every irreducible f in K[x] splits over L.

(iii) L : K is algebraic, and if L: L is algebraic then L=L.
Proof. Clearly (i) implies (ii). Suppose that (ii) holds and that L:L is
algebraic. Then L: K is also algebraic (Theorem 4.7). Suppose that a' E E.
Let m be the minimal polynomial of a' over K. Then m is irreducible and so,
by hypothesis, m splits over L:

As m(a) = 0, a' = Aj for some j, and so Y E L. Thus L = L and (iii) holds.
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Finally suppose that (iii) holds, and that f c- L[x]. By Theorem 7.3, there is a
splitting field extension L' for f over L. L:L is algebraic, by the corollary to
Theorem 7.1 and so, by hypothesis, L' = L. Thus f splits over L, and so L is
algebraically closed. Consequently L:K is an algebraic closure of K.

Corollary Suppose that L : K is an extension and that L is algebraically
closed. Let La be the field of elements of L which are algebraic over K. Then
La : K is an algebraic closure of K.

In particular, if A is the field of complex numbers which are algebraic
over 0, then A:Q is an algebraic closure for Q.

8.2 The existence of an algebraic closure
We now turn to the fundamental theorem concerning algebraic

closures.

Theorem 8.2 k f K is a field, there exists an algebraic closure L : K.
The generality of this statement suggests that we may need to use the

axiom of choice, and the maximal nature of an algebraic closure revealed by
Theorem 8.1 reinforces this belief. It is, however, necessary to proceed with
some care. Let us begin by giving a fallacious argument.

Partially order the algebraic extensions M:K by saying that
M 1: K > M2 : K if M2 is a subfield of M 1. If r is a chain of extensions M : K,
let N = U {M:M:Ke}.Ifcr,fleN,thereexistsM:K in 'such that a and f3
are in M. Define a#, a + fJand a-' (ifa :A 0) by the operations in M. This does
not depend on M, and so N is a field, and N : K. If a e N, a e M for some M,
and so a is algebraic over K. Thus N:K is an upper bound for 990. By Zom's
lemma, there is a maximal algebraic extension, and by Theorem 8.1, this is
an algebraic closure.

What is wrong with this argument? The error comes at the very
beginning, when we try to compare extensions. Recall that an extension is
really a triple (i, K, M), where i is a monomorphism from K into M. Thus in
general we cannot compare extensions in the way that is suggested.

Nevertheless, the fallacious argument has some virtue, and it is possible,
by considering fields which, as sets, are subsets of a sufficiently large fixed
set, to produce a correct argument along the lines which the fallacious
argument suggests. Exercises 8.1-8.3 show one way in which this can be
done. We shall instead give a more `ring-theoretic' argument, which uses the
axiom of choice by appealing to Theorem 3.14.

We consider a ring of polynomials in very many variables. If f is a non-
constant monic polynomial in K [x] of degree n, then f has at most n roots
in a splitting field extension: we introduce an indeterminate to correspond
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to each of these possible roots. Let U be the set of all pairs (f, j), where f is a
non-constant monic polynomial in K [x] and I <j < degree f. For each (f, j)
in U, we introduce an indeterminate x j(f ), and consider the polynomial ring
K[X U] of polynomials with coefficients in K and with indeterminates

Xu={xf(f):(f,j)e U).
Now suppose that f is a non-constant monic polynomial in K [x]. We

can write
f,= x==-a1(f)x"-1 +... +(- 1)na,(f)

(notice that we have not written monic polynomials in this form before: as
we shall see, this can be a very useful form to use). Let g(f) be the element of
K[X u] [x] that has x1(f ), ..., x,=(f) as roots:

n

g(.f) = fl (x - xj(f ))
j=1

= xn - s1 (f )xn - 1 + ... + (- 1)i=sn(.f ),

where

sj(f) _ E xi,(f) ... xtff) c- K[X v]
il< ...<i1

is the jth elementary symmetric polynomial in xi(f ),..., xn(.f).

The idea of the proof is to identify f and g(f), and to exploit the fact that
g(f) splits in K [X t,] [x]. With this in mind, we set

ti(f) = si(f) `r ai(f )
for 1 < i < n. Let I be the ideal in K [X u] generated by all the elements ti(f )
as f and i vary. The main step in the proof is to show that I is a proper ideal
in K [X J. For this, it is sufficient to show that 10 1; in other words to show
that it is not possible to find r1..... rN in K[X u] and elements
ti, (fi ), ... , tiN (fN) such that

1= ri ti,(f i) + ... + rNtiN(fN)-

Suppose that such an expression were to exist. By Theorem 7.3, there
exists a splitting field L : K for the polynomial h = f1 ... fN. Then each fk
splits over L; we can write

fk = (x - a 1(k)) ... (x - cx jk))

where nk = degree fk. Note that

a j(fk) = E ail (k) ... aij(k).
it < <ii

We now consider the evaluation map E from K[X t,] to L which sends xi(fk)
to ai(k) for I < i < nk and I < k < N, and which sends all the other
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indeterminates to 0. Then E(ss( fk)) = af(_fk), and so it follows from the
definition of ti(f) that

E(tj(fk))=O for 1 <i <nk, 1 <k <N,

so that

1=E(1)=E(r1)E(tj1(f1))+... +E(rN)E(tjfN))=0,

This gives the contradiction that we are looking for.
Since 1 is a proper ideal of K [X U], there exists a maximal proper ideal J

of K[X v] which contains I, by Theorem 3.14. (This is where we use the
axiom of choice.) By Theorem 3.16, K[X]/J is a field, M say. We now let
j = qi, where i is the natural monomorphism from K into K[X,], and q is
the quotient map from K [X L;] onto M:

Then (j, K, M) is an extension of K. Let us set fl1(f) = q(xj(f )), for all
u=(f,j) E U.

Now suppose that

f =x" -a1(j)x" - 1 + ... +(- 1)"an(f )

is a non-constant monic polynomial in K [x]. Then

j(f)=x"-j(a1(f))x"-1 +... + (- 1)"j(a"(f))

is the corresponding polynomial in M[x]. But

j(ak(f )) = q(i(ak(f ))) = q(sk(f)),

since sk(f) - i(ak(f )) = tk(f) E 1 J. Thus

j(f)=x" -q(s1(f))x"-1 + ... +(_.... 1)'=q(s"(f))

=q(x"-S1(f)x"-1 + ... +(-1)"s,,(f))

= q((x - x 1(f))(x - x2(f )) ... (x - x,:(f )))

= (x -/31(f)) ... (x -fl"(f)),
andj(f) splits over M. Further, each fik(f) is algebraic overj(K) (since it is a
root of j(f)) and the J k(f) generate M over K: thus M: K is algebraic, by
Corollary 2 to Theorem 4.6. Consequently (j, K, M) is an algebraic closure
of K.

Exercises

8.1 (i) Suppose that U is a non-empty set, and that P(U) is the set of
subsets of U. Show that if V c U and f : V -- P(U) is a mapping,
then f is not onto. (Consider {x:x c- V, x fix)).)
(ii) Suppose that U is a non-empty set and that Vc We U.
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Show that if f : V -+ P(U) is one-one then there exists a one-one
map g: W--+ P(U) such that gl ,, = f. (Use Zorn's lemma.)

8.2 Suppose that K is a field. Let U = K [x] x Z +.
(i) Show that if (k, K, L) is an algebraic extension, then there

exists a one-one mapping of L into U. (Use Zorn's lemma.)
(ii) Suppose that (k, K, L) and (1, L, M) are algebraic extensions.

Show that if f : L -+ P(U) is one-one then there exists a one-one
map g : M --+ P(U) such that f = gl.

8.3 Suppose that K is a field. Let U = K [x] x Z
(i) If a c- K, let j(a) = }(x -a, 1)}. Show that j : K P(U) is one-

one, and that j(K) can be given the structure of a field in such a way
that j is a field isomorphism.

(ii) Let F be the set of triples (S, +,.) where

(a) j(K) c S c P(U);
(b) (S, +,.) is a field, F(S) say,
(c) (i, j(K), F(S)) is an algebraic extension (here i is the inclusion
mapping).

Define a partial order on F by saying that (Si, + 1, .1) <(S2, + 21-2)
if S1 9 S2 and (i, F(S1), F(S2)) is an extension (again, i is the
inclusion mapping). Show that under this order, has a maximal
element (Zorn's lemma).

(iii) Use Theorem 7.2 or 7.3 to show that if (S, +,.) is a maximal
element of . then (j, K, F(S)) is an algebraic closure for K. (Here j
is considered as a mapping of K into F(S).)

8.3 The uniqueness of an algebraic closure
We now consider problems of uniqueness. First we establish an

extension theorem: this uses Zorn's lemma in a very standard way.

Theorem 8.3 Suppose that i : K 1 --+ K 2 is a monomorphism, that L : K 1 is

algebraic and that K 2 is algebraically closed. Then there exists a
monomorphism j : L -+ K 2 such that j 1 K, = i.

Proof. Let S denote all pairs (M, 0), where M is a subfield of L containing
K1, and 0 is a monomorphism from M into K2 such that OIK, = i. Partially
order S by setting (M1, 01) <(M2, 02) if M1 c M2 and 021M, = 01. If W is a
chain in S, let N =U {M:(M.) 0) E W}. If n E N, then n E M for some
(M. 0)e 6. Set O(n)=O(n). It is now straightforward to verify that 0 is well
defined, that O : N -* K 2 is a monomorphism and that (N, 0) is an upper
bound for W. Thus, by Zorn's lemma, S has a maximal element (M, 0). We
must show that M = L.
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If not, there exists a e L\M. a is algebraic over M: let m be its minimal
polynomial over M. Then 0(m) splits over K2, since K2 is algebraically
closed. Let

0(m)=(x -f1) ... (x -1r)
Then 0(m)(/31) = 0, and so by Theorem 7.4 there exists a monomorphism
01: M(a) - K2 with 01 iM = 0. This contradicts the maximality of (M, 0).

We are now in a position to show that an algebraic closure is essentially
unique.

Theorem 8.4 Suppose that (i1, K, L1) and (i2, K, L2) are two algebraic
closures for K. Then there exists an isomorphism j : L1 -+ L2 such that i2 = ji 1.
Proof. By Theorem 8.3 there exists a monomorphism j:L1--+L2 such that
i2= ji1

J
L2

We now use Theorem 8.1. If f is irreducible over K[x], i1(f) splits over L1,
and so i2(f) splits over j(L1). As (i2, K, j(L1)) is algebraic, (i2, K, j(L1)) is an
algebraic closure for K. Now L2: j(L1) is algebraic, as (i2, K, L2) is, and so
L2 = j(L1), by Theorem 8.1 (iii).

In future, if K is any field, we shall denote by K : K any algebraic closure of
K.

Exercises

8.4 What is the algebraic closure of 0 (as a subfield of C)?

8.5 Show that an algebraically closed field must be infinite.

8.6 Suppose that K(a):K is a simple extension and that a is

transcendental over K. Show that K(a) is not algebraically closed.

8.7 Suppose that K is a countable field. Show how to construct an
algebraic closure, by successively constructing splitting fields of the
(countably many) polynomials in K[x]. Is your construction less
fallacious than the `fallacious proof' of Theorem 8.2?

8.8 Suppose that L : K is algebraic. In what sense is it true that L = K?
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8.4 Conclusions
We have now achieved what we set out to do. Some comments are

in order. First, the proof of Theorem 8.2 is quite difficult. More to the point,
it is quite different from the very special construction of the complex field C.
Here, the hard work is constructing the real number field l from the
rational field Q. C : L is then a splitting field extension for the polynomial
x2 + 1, which is irreducible over R. It is then remarkably the case that all
polynomials over R split over C. The complex field is a very special one!

Secondly, the proof uses the axiom of choice in an essential way. This
suggests that the theorem should only be used when it is necessary to do so.

Thirdly, the existence of an algebraic closure, and the extension theorem
(Theorem 8.3) provide a useful framework in which to work. If one uses this,
the theory can be developed more simply in a few places. But the use of the
axiom of choice seems too big a price to pay: for this reason we shall not use
algebraic closures in the development of the theory.
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Normal extensions

9.1 Basic properties
In this chapter and the next we consider two important properties

that an extension may or may not have. We begin with normality.
An extension L:K is said to be normal if it is algebraic and whenever f is

an irreducible polynomial in K[x] then either f splits over L or f has no
roots in L. Clearly an algebraic extension L : K is normal if and only if the
minimal polynomial over K of each element of L splits over L.

The word `normal' is one of the most overworked words in mathematical
terminology (normal subgroups, normal topological spaces,.. .). We shall
see in due course that this is a good use of the word.

In order to characterize normality, we need to extend the definition of a
splitting field. Suppose that K is a field, and that S is a subset of K [x]. We
say that an extension L of K is a splitting field extension for S if each f in S
splits over L, and if L -2 L' 2 K and each f in S splits over L, then L = L.

If S is a finite set {f1,.. ., then L:K is a splitting field extension for S if
and only if it is a splitting field extension for g = fi ... f,,; thus the new
definition is only of interest if S is infinite.

Theorem 9.1 An extension L : K is normal if and only if it is a splitting field
extension for some S c K [x].
Proof. Suppose first that L:K is normal. L:K is algebraic: let S = {ma: a EL}
be the set of minimal polynomials over K of elements of L. By hypothesis,
each f in S splits over L, and clearly S splits over no proper subfield of L.

Conversely suppose that L:K is a splitting field extension for S. Let A
denote the set of roots in L of polynomials in S. Then clearly L = K(A), and
so L : K is algebraic, by Corollary 2 to Theorem 4.6.

Suppose that /3 E L and that m is its minimal polynomial over K. We must
show that m splits over L. First we reduce the problem to one concerning
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finite extensions. As /1 E K(A), there exist in A such that
/3 e K(ai, ..., There exist fl,. . ., f,, in S such that aj is a root of f1, for
1 < i < n. Each J splits over L. Let R be the set of roots of g = f 1 ... f,,. Then
K(R) : K is a splitting field extension for g and f c- K(R). We now consider m
as an element of K(R) [x] and construct a splitting field extension H : K(R)
for m. Let y be another root of m in H. We must show that in fact y E K(R).

We have the following diagram, where upward pointing arrows denote
inclusions:

H

K(R) K(R, Y)

K

m is the minimum polynomial of both fi and y over K, so that [K(fl):K] =
[K(y) :K] = degree m. Also, by the corollary to Theorem 7.4, there is an
isomorphism T of K($) onto K(y) which sends fi to y and which fixes K. As T
fixes K, T(9) = g.

Now K(R) : K(f3) is a splitting field extension for g over K(f), and
K(R,y):K(y) is a splitting field extension for T(g) =g over K(y), so that by
Corollary 1 to Theorem 7.5 there is an isomorphism a of K(R) onto K(R, y)
such that uI K(P) = T. This means that [K(R) : K(fl)] = [K(R, y) : K(y)], and so by

the tower law

[K(R):K] _ [K(R):K(/3)] [K(f3):K]

[K(R, y):K(y)] [K(y):K]

[K(R, y):K].

But K(R) c K(R, y), and so we must have that K(R)= K(R, y).
Consequently, y c K(R).

The case of finite extensions is particularly important:

Corollary I A finite extension L : K is normal if and only if L : K is a splitting
field extension for some g c- K [x].

For if L:K is normal and finite, and at, ..., a is a basis for L over K, then
L:K is a splitting field extension for g = m,,,1maz ... ma,.
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Let L = K(a 1, ..., a.), let m1 be the minimal polynomial of ai over K, and
let g m 1 . . . m,,. Then L : K is normal if and only if L : K is a splitting field
extension for g.

Suppose that L:K is algebraic. An extension F:L is a normal closure for
L : K if F : K is normal, and if F : M : L is a tower and M : K is normal, then
M = F.

Corollary 2 If L:K is finite, it has a finite normal closure F:L.
With the same notation as in Corollary 1, let F:L be a splitting field

extension for g over L. Then F : K is a splitting field extension for g over K so
that F:K is normal. If F:M:L is a tower and M:K is normal, then each m,
splits over M, and so g splits over M; therefore M=F.

Corollary 3 If L : K is normal and M is an intermediate field then L: M is
normal.

For there exists S c K [x] such that L: K is a splitting field extension for S.
If we consider S as a subset of M[x], L:M is a splitting field extension for S.

Exercises

9.1 Show that every algebraic extension has a normal closure.

9.2 Suppose that L:K is algebraic. Show that there is a greatest
intermediate field M for which M : K is normal.

9.3 Suppose that L : K and that M 1 and M 2 are intermediate fields.
Show that if M1 :K and M2:K are normal then so are
K(M1, M2):K and M1 n M2:K.

9.2 Monomorphisms and automorphisms
We have just seen that if L : K is normal and M is an intermediate

field then L : M is normal. On the other hand there is no reason why M : K
should be normal. For example if w is a complex cube root of 1 then
O(2113, w) :O is normal, since it is the splitting field for f = x3 _ 2, while
0(211): 0 is not, since f is irreducible and has one root in Q(2 "3) but does
not split over 0(21/3).

It is important to be able to recognize when MX is normal. In the next
theorem we give necessary and sufficient conditions for this, for finite
extensions: in fact the finiteness condition is not necessary (Exercises 9.6
and 9.7).
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Theorem 9.2 Suppose that L:K is a finite normal extension and that M is an
intermediate field. The following are equivalent:

(i) M : K is normal;
(ii) if a is an automorphism of L which fixes K then a(M) M;

(iii) if r is an automorphsim of L which fixes K then Q(M)= M.

Proof. Suppose first that M : K is normal, and that a is an automorphism of
L which fixes K. Suppose that a c- M and let m be the minimal polynomial
for a over K. Then m(a(a)) = Q(m(a)) = 0, so that a(a) is a root of m. As m
splits over M, 6(a) E M, and so a(M) M. Thus (i) implies (ii).

Since [6(M) : K] = [M : K] it is clear that (ii) implies (iii).
Suppose now that (iii) holds. As L:K is normal, L:K is the splitting field

extension for some g E K [x], by Corollary 1 to Theorem 9.1. Suppose that
a e M. Let m be the minimal polynomial for a over K. As L : K is normal, m
splits over L. We must show that m splits over M: that is, that all the roots of
m are in M. Let J3 be any root of m in L. By Theorem 7.4, there exists a
monomorphism j from K(a) to K(/3), fixing K, such that j(a) = f3. Since j fixes
K, j(g) = g. Now L:K(a) and L:K(fl) are splitting field extensions for j(g) = g.
By Corollary 1 to Theorem 7.5, there is an isomorphism a:Ir--+L which
extends j. As a fixes K, a(M) = M. In particular, this means that /3 = a(a)EM.

Exercises

9.4 Suppose that N : L and N' : L are two normal closures of L : K. Show
that there is an isomorphism j of N onto N' such that j(l) =I for
IEL.

9.5 Suppose that L: K is a finite normal extension and that f is an
irreducible polynomial in K[x]. Suppose that g and h are
irreducible monic factors of f in L[x]. Show that there is an
automorphism a of L which fixes K such that a(g)=h.

9.6 Suppose that L : K is algebraic. Show that the following are
equivalent:

(i) L:K is normal;
(ii) if j is any monomorphism from L to L which fixes K then

j(L) g L;
(iii) if j is any monomorphism from L to L which fixes K then

j(L)=L.

9.7 Show that the condition that L:K is finite can be dropped from
Theorem 9.2. (Use the previous exercise and Theorem 8.3.)
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Separability

10.1 Basic ideas
The second important property that an extension may or may not

have is separability. We have seen that normality is a rather special
property. Separability is different: we shall have to work quite hard to
produce an extension which is not separable. Lack of separability leads to
technical difficulties: when the time comes, we shall avoid these by making
appropriate assumptions.

Separability involves several definitions. Suppose first that f is an
irreducible polynomial of degree n in K[x] and that L:K is a splitting field
extension for f. We say that f is separable (over K) if f has n distinct roots in
L. Suppose next that f is an arbitrary polynomial in K [x]. We say that f is
separable (over K) if each of its irreducible factors is separable.

Suppose that L:K is an extension and that ac-L. We say that a is
separable (over K) if it is algebraic over K and its minimal polynomial over
K is separable, and say that L:K is separable if each a in L is separable over
K.

Theorem 10.1 Suppose that L:K is separable and that M is an intermediate
field. Then L : M and M : K are separable.
Proof. It is obvious that M:K is separable.

Suppose that a E L. Let ml be its minimal polynomial over M, m2 its
minimal polynomial over K. Let N:M be a splitting field extension for m2,
considered as an element of M[x]. Since m2 is separable over K, we can
write

m2=(x-(X1)...(x-a,)
where ai, ..., ar are distinct elements of N. But m1 IM2 in M[x], and so in
N [x]

M, = (x -- aj,) ... (x -- a=s)
for some I < i 1 < .. < is < r. Thus m 1 is separable.
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10.2 Monomorphisms and automorphisms
We have already seen that counting dimension leads to some

remarkably strong results. We shall find that counting monomorphisms
and automorphisms is equally useful. With this in mind, the results in this
section suggest why separability is important.

First we consider simple extensions.

Theorem 10.2 Suppose that K(a):K is a simple algebraic extension of degree
d. Suppose that j : K -+ L is a monomorphism. If a is separable over K and if
j(ma) splits over L then there are exactly d monomorphisms from K(a) to L
extending j; otherwise there are fewer than d such monomorphisms.
Proof. By Corollary 2 to Theorem 7.4, there are r such extensions, where r is
the number of distinct roots of j(ma) in L. Now d=degree ma=degree j(ma)
(Theorem 4.4), so that r <d, and r=d if and only if j(ma) splits into d distinct
linear factors: that is, if and only if j(ma) is separable over j(K) and j(m )
splits over L. Clearly a is separable over K if and only if j(ma) is separable
over j(K), and so the result is proved.

We now consider the general case

Theorem 10.3 Suppose that K': K is a finite extension of degree d, and that
j : K -+ L is a monomorphism. If K': K is separable and j(mx) splits over L for
each a in K' then there are exactly d monomorphisms from K' to L extending
j; otherwise, there are fewer than d such monomorphisms.
Proof. We prove this by induction on d. It is trivially true when d = 1.
Suppose that it is true for all extensions of degree less than d, and that
[K': K] = d.

Suppose first that the conditions are satisfied. Let a E K'\K. By Theorem
10.2 there are exactly [K(a) : K] monomorphisms from K(a) to L extending

j. Let k be one of these. We apply the inductive hypothesis to K' : K(a). First,
[K' : K(a)] < d. Secondly K' : K(a) is separable, by Theorem 10.1. If fi E K', let
mp be the minimal polynomial for /3 over K and let np be the minimal
polynomial for /3 over K(a). Then np divides mfl in K(a)[x] and so k(nfi)
divides k(mp) in L[x]. But k(mo) splits over L[x], and so k(np) splits over
L[x]. Thus the conditions are satisfied, and so k can be extended in
[K' :K(a)] ways. It therefore follows from the tower law that j can be
extended in d ways.

Suppose next that the conditions are not satisfied. Then there exists a in
K' such that j(ma) has fewer than [K(a):K] distinct roots in L, and so j can
be extended in fewer than [K(a) : K] ways to a monomorphism from K(a) to
L, by Corollary 2 to Theorem 7.4. Each of these extensions can be extended
to a monomorphism from K' to L in at most [K' : K(a)] ways, by the
inductive hypothesis, and so there are fewer than d extensions.
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Corollary I Suppose that L:K is finite and that L= K(a1, ..., ar). If ai is
separable over K(a1, ..., ai _, 1) for 1 <i <r, then L:K is separable.
Proof. Let F : L be a normal closure for L : K. Let KO=K, and let K,=
K(a 1, ..., a j) = K j _ 1(a j) for 1 < j < r. We assert that there are [K j : K]
monomorphisms from K1 into F which fix K. The result is trivially true for
j=0. Assume that it is true for j- 1, and that i is a monomorphism from
K j _ 1 to F which fixes K. Let n j be the minimal polynomial for a j over Kj _ 1,

and let m1 be the minimal polynomial for a1 over K. Then n jlm j in K,_ 1 [x],
and so i(n)Ii(m) in i(K j _ 1)[x]. But i(m)=m, and m j splits in F[x], so that
i(n j) splits in F[x]. As a f is separable over K j _ 1, i can be extended in
[K:K_ 1] ways to a monomorphism from K j to F, by Theorem 10.2. The
assertion therefore follows inductively, using the tower law. But it now
follows from Theorem 10.3 that K j:K is separable, and so, in particular,
L:K is separable.

Corollary 2 Suppose that L:K is finite and that L= K(al, ..., ar). If each ai
is separable over K then L:K is separable.

This follows from Corollary 1 and Theorem 10.1.

Corollary 3 Suppose that f E K[x] is separable over K and that L:K is a
splitting field extension for f. Then L : K is separable.

Apply Corollary 2 to the roots of f in L.

Corollary 4 Suppose that L : K is finite, and that L : M : K is a tower. If L : M
and M : K are separable, then so is L : K.

Write M=K(a1,...,ar), L=M(ar+1,...,as), and use Corollary 1 and
Theorem 10.1.

Exercise

10.1 Suppose that L:K is finite and that L:L is a normal closure for
L : K. Show that L: K is separable if and only if there are exactly
[L : K] monomorphisms of L into L' which fix K.

10.3 Galois extensions
An extension which is finite, normal and separable is called a

Galois extension.
If we apply Theorem 10.3 to the identity on K, we obtain the following.

Theorem 10.4 Suppose that L:K is finite. If L:K is a Galois extension, there
are [L : K] automorphisms of L which fix K; otherwise there are fewer than
[L:K] such automorphisms.
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This theorem is the real starting point for Galois theory. We shall
continue with this in the next chapter; in the rest of this chapter we shall
study separability further.

10.4 Differentiation
Suppose that f is a non-zero element of K [x] and that L : K is a

splitting field extension for f. We say that f has a repeated root in L if there
exists a e L and k> 1 such that

(x - a)k l f in K [x].

An irreducible polynomial in K [x] is not separable if and only if it has a
repeated root in a splitting field. It is therefore important to be able to
recognize when a polynomial has a repeated root.

Suppose that f is a non-zero polynomial in Q x], and that a is a root of f.
How do we tell if a is a repeated root? We differentiate: a is a repeated root if
and only if f'(a) = 0. Although you have no doubt learnt about
differentiation in analysis, the differential operator has strong algebraic
properties - in particular, (fg)' = f'g + fg' - and we can define the derivative
of a polynomial in a purely algebraic way.

Suppose that

We define the derivative

Df =a1 +2a2x+ +na"xn-1.

Here, as usual, jaj = aj + + a1 (j times).
D is a mapping from K[x] to K[x]. As

D(f + g) = Df + Dg, D(af) = a(Df ),

D is a K-linear mapping. Also

D(xmxn) = (m + n)xm +" - 1 = mxm - 1 x" + nxmxn - 1 = (Dxm)x" + x(Dx"),

and so, by linearity,

D(fg) = (Df)g + f(Dg).

Notice also that, if K has non-zero characteristic p, then

Dx"= px"-1= 0.

Differentiation provides a test for repeated roots, just as in the case of C[x].

Theorem 10.5 Suppose that f is a non-zero element of K [x] and that L : K is
a splitting field for f. The following are equivalent:

(i) f has a repeated root in L;
(ii) there exists a in L for which f(a) = (Df)(a) = 0;

(iii) there exists m in K [x], with degree m > 1, such that m l f and m I Df.
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Proof. Suppose that f has a repeated root a in L. Then f = (x - a)kg, where
k> 1 and g EL[x]. Thus

Df = k(x - a)k w' g + (x _ a)kDg,

and so f(a) = Df(a) = 0. Thus (i) implies (ii).
Suppose that (ii) holds. Let m be the minimal polynomial of a over K.

Then m I f and m I Df, and so (iii) holds.
Suppose that (iii) holds. We can write f = mh, with h in K[x]. As f splits

over L, so does m. Let a be a root of m in L. We can write f = (x - a)q, with q
in L[x]. Then

Df = q + (x - a)Dq.

But (x - a) I Df in L[x], since m I Df, and so (x - a) I q. Thus (x - a)2I if, and f
has a repeated root in L.

This theorem enables us to characterize irreducible polynomials which
are not separable.

Theorem 10.6 Suppose that f c- K[x] is irreducible. Then f is not separable
if and only if char K = p > 0 and f has the form

f =ao+aixp+a2x2p+ +a,,xnp.

Proof. If f is not separable, there exists m in K [x], with degree m > 1, such
that m I f and m I Df. As f is irreducible, f and m are associates. Thus f I Df; as
degree Df < degree f, it follows that Df = 0. This can only happen if
char K:00 and f has the form given in the theorem.

Conversely, if the conditions are satisfied, Df = 0 and we can take f = m
in Theorem 10.5(iii).

Corollary If char K 0, all polynomials in K [x] are separable.
Theorem 10.6 raises the question: if char K = p > 0, and f has the form

,/ =a0+aixp+ ...+anxnp,

when is f irreducible in K[x]? Before answering this, we introduce an idea
which has many applications.

Exercises

10.2 Suppose that f is a polynomial in K[x] of degree n and that either
char K = 0 or char K > n. Suppose that a e K. Establish Taylor's
formula:

D 2f(a) 2 Dnf(a)f = f(a) + Df(a) (x - a) + 2 ! (x - a) +( x - ) 2 + . . . +
n

(x - a)".
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10.3 Suppose that f is a polynomial in K[x] of degree n and that either
char K = 0 or char K > n. Show that a is a root of exact multiplicity
r(< n) if and only if

f(a) = Df(a) _ ... = Dr ` f(a) and D7(a)00.

10.5 The Frobenius monomorphism
Theorem 10.6 shows that if we are to find an inseparable

polynomial we must consider fields of non-zero characteristic. The next
result is particularly useful for dealing with these.

Theorem 10.7 Suppose that char K = p 0. The map 4(a) = ap is a
monomorphism of K into itself. The set of elements which remain fixed under
0 is exactly the prime subfield.
Proof. Of course 4(a$) _ 4(a)4(fl) and 4(1) = 1. As usual, if n e 7 + and a e K
let not = a + . + a (n times). The standard inductive argument shows that
the binomial theorem holds in K, and so

(a+I3)p=ap+ p
ap-1i6+...+ p cI3p-1+p3p.

(1) p-1

But, as p is prime, pI(p)for 1<r<p,and so

(P)rzP_rflrO.
r

Thus (a + is)" = cx + 13p and 0 is a monomorphism. The set of elements fixed
by 0 is a subfield, and therefore contains the prime subfield. But a is fixed by
0 if and only if a is a root of xp - x, and so at most p elements are fixed by 0.
Since the prime subfield has p elements, it must be the set of elements fixed
by 40.

The mapping 0 is called the Frobenius monomorphism.

Corollary If char K = p :A 0 and K is algebraic over its prime subfield, then
the Frobenius monomorphism 0 is an automorphism.

This is an immediate consequence of Theorem 4.8.

Exercises

10.4 Suppose that p is a prime number. By factorizing xp -1-1 over 71 p,
shows that (p - 1)! + 1= 0 (mod p) (Wilson's theorem).

10.5 Suppose that p is a prime number of the form 4n + 1. Show that
there exists k such that k2 + 1= 0 (mod p). Show that p is not a
prime in 1 +i71 and show that there exist u and v in 71 such that
u2 + v2 =p.
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10.6 Suppose that p is a prime number of the form 4n + 3. Show that p is
a prime in Z + iZ.

10.6 Inseparable polynomials
Suppose that

is in K [x]. We shall write f(x) = g(xp), where

g=ao+alx+... +anxn.

This is a slight abuse of terminology, which does not lead to any difficulties.

Theorem 10.8 Suppose that char K = p > 0 and that
f(x)=g(xp)=ao+aixp+ ... +x"P

is monic; then f is irreducible in K[x] if and only if g is irreducible in K[x],
and not all of the coefficients ai are pth powers of elements of K.
Proof. If g factorizes as g - g1 g2, then f factorizes as f(x) = g1(xp)g2(xp): thus
if f is irreducible, so is g.

Suppose next that each ai is a pth power of an element of K: that is, a; = bP,
for b, in K. Then

f =bo+bixP+... +bnx"P

=(bo+blx+... +b,x")p

and so f factorizes. Thus if f is irreducible, not all the a, can be pth powers
of elements of K.

Conversely, suppose that f factorizes. We must show that either g
factorizes or that all the ai are pth powers of elements of K. We can write f
as a product of irreducible factors:

f_._.f11...frr

where the f1 are monic and irreducible in K [x], f and f j are relatively
prime, for i :Aj, and n i + . +n,> 1. We have to consider two cases.

First suppose that r > 1. Then we can write f = h 1 h 2, with h 1 and h2
relatively prime (take h1=f",).

There exist Al and -2 in K [x] such that

)1h1 +)2h2= 1.

Further,

0= Df =(Dh1)h2+h1(Dh2).

Eliminating h2, we find that

Dh 1 = ).1 h 1(Dh 1) -- 22h 1(Dh 2)

and so h1 IDh1. As degree Dh1 <degree hl, we must have Dh1= 0. Similarly



10.6. Inseparable polynomials 89

Dh2 = 0. Thus we can write

h1(x)=co +c1xp+ ... +csxsp=j1(xp),

h2(x) = do + d 1 xp + ... + d,x'P =j 2(xp)

and g factorizes as g = j 1 j 2.

Secondly, suppose that r= 1. Then f =f", where f1 is irreducible, and
n > 1. Again there are two cases to consider. If p/n, we can write f= hp. If

then, applying the Frobenius monomorphism,

f =hp=c0+cixp+ +cSxSP

so that all the ai are pth powers. If p does not divide n,

0=Df =n(Df1)f i

and so Df, 1= 0. Thus we can write

f1(x)=do +dixp+ ... +drxrp=gl(xp)

and g=(g1)n

Corollary If char K = p 0 and K is algebraic over its prime subfield, then
all polynomials in K [x] are separable.
Proof. As the Frobenius monomorphism maps K onto K, every element of
K is a pth power. If f is irreducible, f can therefore not be of the form
f(x) = g(xp), and so f must be separable, by Theorem 10.6.

Bearing in mind the corollary to Theorem 10.6, this means that if we are
to find an inseparable polynomial we must consider fields K of non-zero
characteristic which are not algebraic over their prime subfields.

With this information, the search is rather short. Let K = l p(a) be the field
of rational expressions in a over 7P. Suppose if possible that -a= fr°, for
some fl in K. Then we can write f3 = f(a)/g(a), with f and g in / p[x]. Thus

_ a(g(a))P = (f(a))p

and so, since a is transcendental,
xgp = fP.

But p I degree (f p) and p does not divide degree (- xgp). Thus - a is not a
pth power in K, and so xp - a is irreducible in K [x], by Theorem 10.8. Let
L: K be a splitting field extension for xp - a, and let y be a root of xp -- a in L.
Then

(x-y)p=xp-yP=xp-a

so that xp - a fails to be separable in the most spectacular way.
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Exercises

10.7 Suppose that char K = p 0. Show that every polynomial in K[x]
is separable (K is perfect) if and only if the Frobenius
monomorphism is an automorphism of K.

10.8 Show that a field K is perfect if and only if every finite extension of
K is separable.

10.9 Suppose that char K = p > 0 and that f is irreducible in K [x].
Show that f can be written in the form fix)=&,O), where n is a
non-negative integer and g is irreducible and separable.

10.10 Suppose that char K = p > 0 and that L:K is a totally inseparable
algebraic extension: that is, every element of L\K is inseparable.
Show that if feL then its minimal polynomial over K is of the
form

xpn

-a, where a E K.

10.11 Suppose that char K = p 0, that f is irreducible in K [x] and that
L:K is a splitting field extension for f. Show that there exists a non-
negative integer n such that every root of f in L has multiplicity pn.
(Hint: use Exercise 10.3.)
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Automorphisms and fixed fields

Galois theory is largely concerned with properties of groups of auto-
morphisms of a field. If L is a field, we denote by Aut L the set of all
automorphisms of L. Aut L is a group under the usual law of composition.

Suppose that A is a subset of Aut L. We set

4(A) = {k e L: a(k) = k for each 6 in Al.

It is easy to verify that 4(A) is a subfield of L, which we call the fixed field of
A. In this way, starting from A we obtain an extension L:4(A).

Conversely suppose that L:K is an extension. We denote by F(L:K) the
set of those automorphisms of L which fix K:

f (L:K)= {aeAut L:6(k)=k for all k in K}.

When there is no doubt what the larger field L is, we shall write y(K) for
f(L:K). It is again easy to verify that F(L:K) is a subgroup of Aut L; we call
T(L:K) the Galois group of the extension L:K. In this case, then, starting
from an extension we obtain a set of automorphisms.

In this chapter we shall study this reciprocal relationship in detail.

11.1 Fixed fields and Galois groups
The operations A -+ 4(A) and L:K -+ y(K) establish a polarity

between sets of automorphisms of L and extensions L:K. The next theorem
is a standard result for such polarities.

Theorem 11.1 Suppose that L:K is an extension, and that A is an subset of
Aut L.

(i) yo(A) 2 A;
(ii) 4y(K) K;
(iii) 4y4(A) = q5(A);

(iv) y4y(K) = y(K).
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Proof. If a E A, a(k) = k for each k in 4(A), so that a E y4(A): this establishes
(i). If k c- K, a(k) = k for each a in y(K), so that k E Oy(K): this establishes (ii).

If Al q A2, then clearly 4(A1) 4(A2). Thus it follows from (i) that

Oy q(A) O(A)

but applying (ii), with 4(A) in place of K,

Oy4(A) 2 O(A).

This establishes (iii).
Similarly if K 1 c K2, y(K 1) 2 y(K2). Applying this to (ii):

ygy(K) y(K)

but applying (i), with y(K) in place of A,

y4y(K) ? y(K).

This establishes (iv).

Corollary If A is a subset of Aut L, and <A> is the subgroup of Aut L
generated by A, then O(A)=0(<A>).

For A g <A> c y4(A), by (i), and so

4(A) z) 4(<A>) 2 4yr5(A) = 4(A), by (iii).

Because of this, we shall usually restrict attention to subgroups of Aut L.
Suppose now that G is a subgroup of Aut L. If A E L, we define the

trajectory of A, T(2), to be the family ( 6(A))acG. T(L) is an element of LG, which

is a vector space over L. We can also consider L' as a vector space over any
subfield of L, and in particular as a vector space over 4(G).

The next theorem is particularly important: it takes a rather curious
form, as it is concerned with linear independence over two different fields.

Theorem 11.2 Suppose that G is a subgroup of Aut L. that K is the fixed
field of G and that B is a subset of L. Then the following are equivalent:

(i) B is linearly independent over K;
(ii) { T(f3) : /3 E B} is linearly independent over K;

(iii) { T(/3): /3 E B} is linearly independent over L.

Proof. Clearly (iii) implies (ii). Suppose that B is not linearly independent
over K : there exist distinct in B, and k1,. .. , kn in K, not all zero,
such that

k1f 1 + ...

Then if a e G,

k1a(fl1)+ ... +kna(jn) = a(k1#1 + ...

so that k1 T(/31) + + kn T(f3n) = 0, and the set { T(f3) : /3 E B } is not linearly

independent over K in LG. Thus (ii) implies (i).
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Finally, suppose that the set of trajectories {T(fi):fleB} is not linearly
independent over L in LG. There exist al, ..., fl, in B, and non-zero Al.- - -, 'tr

in L such that

Al T(N1) + ... + ArT(/3r) = 0;

further we can find X81, ..., Nr and A1, ..., Ar so that r is as small as possible. In
detail, this says that

Al a(#1) + - + Ara(13r) = 0 for each a in G. (*)

Now if T EG and a EG then i- 1a c- G, so that

for each a in G.

Operate on this equation by z:

T(21)a(/1) + - - - + T (Ar)a(I'r) = 0 for each or in G. (**)

Now multiply (*) by T(Ar), (**) by Ar, and subtract:

(T(Ar)A1 T(A1)Ar)a(fl1) + ... +(T('r)'r- 1 T(''r- 1),r)a(f3r- 1)=0
for each a in G. Thus

(T(Ar)Al -T(A1)Ar)T(/31) + ... +(T(Ar)Ar-1 T(Ar- 1)Ar)T(13r-1)=0.

Since there are fewer than r terms in the relationship, it follows from the
minimality of r that all the coefficients must be zero:

T (Ar)Ai = T (Ai)Ar for 1 < i < r;

in other words,

T(Ar 1A)=Ar1Ai for 1 <i<r.

Now this holds for each z in G, and so k1 _ Ar 1 2= E K, for 1< i < r.

Multiplying (*) by A, 1, we obtain

k1a(N1)+... +kr-1a(Nr-1)+a(1,)=0

for each a in G. But as G is a subgroup of Aut L, the identity automorphism
is in G. Thus

k113i + +kr- i$r- 1 +/3r--0

and so B is not linearly independent over K. Thus (i) implies (iii).
The next theorem shows that when G is finite we can relate the order of G

to the degree of L:4(G) in a most satisfactory way.

Theorem 11.3 Suppose that G is a finite subgroup of Aut L. Then IGI =
[L : 4(G)], G = y4(G) and L:4(G) is a Galois extension.
Proof. Let K = 4(G). If B is a subset of L which is linearly independent over
K then, by Theorem 11.2, {T(h):fieB} is a subset of LG which is linearly
independent over L. But LG has dimension IGI, and so IBI < IGI. Thus L is
finite dimensional over K, and [L:K] < IGI. On the other hand, by Theorem
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10.4, Iy4(G)I < [L:K]. As G y4(G), it follows that [L:K] = IGI and that
G = y4(G). Since [L: K] = I G I, it follows from Theorem 10.4 that L : K is a
Galois extension.

What happens if, instead of starting with a group of automorphisms, we
start with a finite extension? Here the results are not quite so clear cut. Once
again, Theorem 10.4 plays a decisive role.

Theorem 11.4 Suppose that L : K is finite. If L : K is a Galois extension, then
Iv(K)I = [L:K], and K = Oy(K). Otherwise, Iv(K)1 < [L:K] and K is a proper
subfield of qy(K).
Proof. The relationship between Iv(K)I and [L:K] is given by Theorem 10.4.
By Theorem 11.3, Iy(K)I = [L:4y(K)]. Thus, if L: K is normal and separable,

[L: K] = [L: q5y(K)];

as K g 4y(K), K 4y(K). Otherwise

[L: K] > [L: qy(K)]

so that K is a proper subfield of Oy(K).

Exercises

11.1 Suppose that L:K is a Galois extension with Galois group G, and
that a c- L. Show that L = K(a) if and only if the images of a under G
are all distinct.

11.2 Suppose that L:K is an extension. If 6 E r(L:K), a E EndK(L), the
K-linear space of K-linear mappings of L into itself. Show that
r(L:K) is a linearly independent subset of EndK(L).

11.3 Suppose that L:K is a Galois extension with Galois group G =
61, . . ., 6,s). Show that is a basis for L over K if and only
if det (a ($;)) 0.

11.4 Suppose that char K=0 and that L:K is a finite extension; let
#I, . . ., /3, be a basis for L over K. Suppose that H is a subgroup of
F(L:K); let Y =LLEH 6/3,, for 1 <j <n. Show that K(yi,..., is the
fixed field for H.

11.2 The Galois group of a polynomial
The main purpose of the theory of field extensions is to deal with

polynomials and their splitting fields.
Suppose that feK[x] and that L : K is a splitting field extension for f

over K. Then we call F(L:K) the Galois group of f; we denote it by TK(f) (or
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T(f ), when it is clear what K is). By Corollary 1 to Theorem 7.5, TK(f )
depends on f and K, but not on any particular choice of splitting field.

Let us interpret Theorem 11.4 in this setting.

Theorem 11.5 Suppose that f e K[x] and that L:K is a splitting field
extension for f. If f is separable then I = [L : K] and K = cb(T(f ));
otherwise I1(f)l < [L : K] and K is a proper subfield of 4(1(f)).

An element a of T(f) is an automorphism of L; it is the action of a on the
roots of f that is all important. The next result shows that we lose no
information if we concentrate on this action.

Theorem 11.6 Suppose that f E K [x] and that L : K is a splitting field
extension for f over K. Let R denote the set of roots of fin L. Each a in F(f)
defines a permutation of R, so that we have a mapping from F (J) into the
group ER of permutations of R. This mapping is a group homomorphism, and
is one-one.
Proof. If a E T(f ), then a(f) = f, since f has its coefficients in K. Thus, if
a ER,

f(a(a)) = a(f)(a(a)) = a(.f(a)) = a(0) = 0.

Thus a maps R into R. Since a is one-one and R is finite, aIR is a
permutation. By definition,

(al a2)(a) = al (U2(0)

so that the mapping: a-+ aIR is a group homomorphism. Finally, if
a(a) = T(a) for each a in R, then a -'T fixes K(R)=L, so that a = T.

Notice that Corollary 2 to Theorem 7.5 states that, if f is irreducible, then
F(f) acts transitively on the roots of f: if a and /3 are two roots of f in a
splitting field, there exists a in 1(f) with a(a) = /3.

Conversely, suppose that f is a monic polynomial of degree n in K[x]
which has n distinct roots in a splitting field L, and that r (f) acts transitively
on the roots of f. Let a be a root of f, and let m be the minimal polynomial of
a. Then if /3 is any root off there exists a in 1(f) such that a(a) Thus

m(f) = m(a(a)) = a(MOW) = a(m(a)) = 0,

and so m has at least n roots. Since m divides f, m = f and it follows that f is
irreducible.

Exercises

11.5 Describe the transitive subgroups of 23, E4 and 25.

11.6 Find the Galois group of x'-2 over (a) the rational field 0, (b) the
field 713 and (c) the field 71,.
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11.7 Find the Galois group of x4 + 2 over (a) the rational field 0, (b) the
field l 3 and (c) the field 715.

11.3 An example
Let us give an example. First we need some results about

permutation groups. Suppose that X is a set and that G is a subgroup of the
permutation group Ex. We define a relation on X by setting x'' y if either
x = y or the transposition (x, y) is an element of G. This relation is clearly
reflexive and symmetric. As

(x, Y)(Y, z)(x, Y) = (x, z),

it is also transitive: thus it is an equivalence relation on X.
Suppose now that X is finite and that G acts transitively on X. Suppose

that Ex and Ey are distinct equivalence classes. As G acts transitively, there
exists a< in G such that a(x) = y. Now, if x' c- Ex,

6(x, x')o -' = (a(x), 6(x')) = (Y, a(x')) E G

and so or(x') E Ey. Thus ar(Ex) Ey, and so IEXI < IEI. Similarly IEI < IEXI, and

so any two equivalence classes have the same number of elements.
In particular if X has a prime number of elements, if G acts transitively on

X and if G contains at least one transposition, then there can only be one
equivalence class, namely the whole of X, and so G contains all
transpotiions. As the transpositions generate Ex, it follows that G = Tx.

We now come to our example.

Theorem 11.7 Suppose that f e 0[x] is irreducible and has prime degree p.
If f has exactly p - 2 real roots and 2 complex roots in C then the Galois
group 1(f) of f over 0 is Ip.
Proof. Let L:Q be a splitting field extension for f, with L c C. As f is
irrreducible, T(f) acts transitively on the roots of f. Also the automorphism
z -+ z of C fixes the real roots of f and interchanges the complex ones (if a is

a root of f, f(a) = f() = f(a) = 0, so that a is a root of f): since L is generated
by the roots of f over 0, L=L, and F (f) contains a transposition. The
result therefore follows from Theorem 11.6.

As a concrete example, let us consider

f=x5-4x+2.
f is irreducible over 0, by Eisenstein's criterion. The function t -' f(t) on R
is continuous and differentiable, and so, by Rolle's theorem, between any
two real zeros of f there is a zero of f'. But

f' = 5x4 -4
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has only two real zeros, so that f has at most three real zeros. As

f(-2)=-229 f(O)=29 f(1)= -1, f(2)=26
f has at least three real roots, by the intermediate value theorem. Thus f has
three real roots and two complex roots; by the theorem, r(f) = 25. Notice
how useful elementary analysis can be!

Exercise

11.8 Sketch the graph of the polynomial

fr =(X2 + 4)x(x 2 -4)(X2 -16) 16)(x 2 -4r 2).

Show that if k is an odd integer then Ifr(1o)I > 5. Show that fr - 2 is
irreducible, and determine its Galois group over l when 2r + 3 is a
prime.

11.4 The fundamental theorem of Galois theory
The fundamental theorem of Galois theory describes the polarity

that was introduced at the beginning of the chapter in some detail.

Theorem 11.8 Suppose that L:K is finite. Let G = T(L:K), and let KO = 4(G).
If L:M:K0, let y(M) = r(L, M).

(i) The map 0 is a one-one map from the set of subgroups of G onto the
set of fields M intermediate between L and KO. y is the inverse map.

(ii) A subgroup H of G is normal if and only if 4(H):Ko is a normal
extension.

(iii) Suppose that Hv G. If a e G, GIO(H) eF(O(H), KO). The map
6 aIO(H) is a homomorphism of G onto T(4(H), KO)), with kernel H.
Thus

T(O(H):K0) ! G/H.

Proof. (i) If H is a subgroup of G, H is finite, and so yo(H) = H (Theorem
11.3). Thus 0 is one-one. L:K0 is a Galois extension of KO (Theorem 11.3);
thus if L:M:K0, L:M is normal (Corollary 3 of Theorem 9.1) and separable
(Theorem 10.1). By Theorem 11.4, 4y(M) = M. Thus 0 is onto, and y is the
inverse mapping.

(ii) Suppose that L : M : K o, and that cc-G. Then L : Q(M) : K o (since
6(L) = L, Q(K0) = K0). We shall show that y(u(M)) = a(y(M))cr - 1. For
T E y(a(M)) if and only if TQ(m) = 6(m) for each m in M, and this happens if and
only if a -1 Ta(m) = m for each m in M. Thus T E y(Q(M)) if and only if
(7- 1 TUE y(M): that is, if and only if T E Q(y(M))G - '.
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Suppose that Hv G. Then, if a c- G, using (i)

H = aHa -1= a(y4)(H))a 1

= y(a(O(H)))

Applying 0, O(H) = 4)y(a(4)(H))) = a(4(H)) for each a in G. By Theorem 9.2,
c)(H):Ko is normal.

Conversely if 4)(H) : K o is normal, then

4)(H) = a4)(H) for each a in G,

by Theorem 9.2. Thus

H = y4)(H) = y(a(4)(H))) = a(y4)(H))a 1 = aHa

for each a in G, and so H a G.
(iii) Suppose now that H©G, so that O(H) : Ko is normal. If a e G,

a(4(H)) = 4)(H), by Theorem 9.2. Thus aiO(H) is an automorphism of 4)(H)
fixing K: that is, an element of F(4(H):K). Since the group multiplication is
the composition of mappings, the mapping a - ai-O(H) is a homomorphism
of G into F(4)(H) : K). a is in the kernel of this homomorphism if and only if
ai,(H) is the identity: that is, if and only if a fixes 4)(H). Thus the kernel is
y4)(H) = H. Finally if peF(4)(H):Ko), there exists an automorphism a of L
which extends p (Theorem 10.3). As p fixes KO, a is in G; as aIO(H) = p, the
homomorphism maps G onto F(4(H):Ko).

This completes the proof. A few remarks are in order. First, the proof is,
to a large extent, a case of putting together results which have been
established earlier. It is worth pausing, and tracing these results back, to
their sources: this frequently turns out to be Theorem 7.4. Secondly, the
theorem relates subgroups of G to intermediate fields: order is reversed and,
the smaller the subgroup, the larger is the intermediate field. All the
subgroups of G relate to all the intermediate fields M of L:KO. Remember
that this occurs in terms of F(L : M), and not F(M X). Normal subgroups
relate to intermediate fields M for which M:K0 is normal; this justifies the
terminology. If M : Ko is normal, we can calculate F(M : K) in terms of
F(L:K), but as a quotient, not as a subgroup. Finally, we do not need
normality or separability. But if L:K is a Galois extension, then K = KO,
and the result is correspondingly neater.

Exercises

11.9 Given a finite group G show that there exists a Galois extension
L : K such that F(L : K) G.

11.10 Suppose that K 1 and K2 are subfields of a field L such that L: K 1
and L:K2 are both Galois extensions, with Galois groups G1 and
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G2 respectively. Show that L: K 1 n K 2 is a Galois extension if and
only if G, the group generated by G1 and G2, is finite, and that if this
is so then G = F(L:K1 nK2).

11.11 To answer this question, you need the following fact from group
theory:

If G is a finite group and IGI = prq where p is a prime which does
not divide q then G has subgroups of order ps for 1 <s < r. (A
subgroup of order pr is called a Sylow p-subgroup.)

Suppose that L : K is an extension with [L : K] = 2, that every
element of L has a square root in L, that every polynomial of odd
degree in K [x] has a root in K and that char K :A 2. Let f be an
irreducible polynomial in K [x], let M : L be a splitting field
extension for f over L, let G = r(M:K) and let H = r(M :L).

(i) By considering the fixed field of a Sylow 2-subgroup of G,
show that I(ii)

By considering a subgroup of index 2 in H, show that if n> I
then there is an irreducible quadratic in L[x].

(iii) Show that L is algebraically closed.
(iv) Show that the complex numbers are algebraically closed.

11.12 By considering the splitting field of all polynomials of odd degree
over 712, show that the condition char K 2 cannot be dropped
from question 11.11.

11.5 The theorem on natural irrationalities
Suppose that f e K[x] has Galois group IK(f ), and that L:K is an

extension. Then we can consider f as an element of L[x], and can consider
the Galois group I'L(f). In each case, we can consider the Galois group as a
permutation of the roots of f. In the first case we must fix K, and in the
second we must fix the larger field L. Thus we should expect -L(f) to be a
subgroup of f K(f ).

For example suppose that f is separable over K, that F:K is a splitting
field extension for f over K and that F:L:K. Then

r L(f) =r (F: L) cr (F: K) = F K(f )

In general L is not an intermediate field: the theorem on natural
irrationalities says that in fact this does not affect things.

Theorem 11.9 Suppose that f e K [x] and that L : K is an extension. Let N : L
be a splitting field extension for f over L, let al, ..., a be the roots off in N
and let M = K(a 1, ..., a,=) (so that M : K is a splitting field extension for f over
K). Let Lo be the fixed field of FL(f). Then if 6 e FL(f ), al m E F(M :Lo n M),
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and the map 0: a - aIM is an isomorphism of FL(f) onto the subgroup
1(M:LonM)of fK(f).
Proof. We have the following diagram of inclusions.

L0

LonM
L

If u E F(N :L), u fixes K and permutes {cx1,.. ., an} and so a(M) M. Thus
6I M is an automorphism of M, which clearly fixes LonM. Since the group
multiplication is the composition of mappings, 0 is a homomorphism of
f (N : L) into 1(M :LonM).

If 8(a) is the identity, a fixes ai, ..., an and so (since u fixes L) u must be the
identity on N = L(a 1, ... , a,,). Thus 0 is one-one.

Let V be the fixed field of 9(f (N : L)). As we have seen, V 2 Lo n M.
Suppose that x e M and x 0 Lo n M. Since Lo is the fixed field of f(N :L),

there exists 6 E T(N:L) such that u(x) x. Thus 8(6)(x) x, and so x 0 V.
Thus V= LonM, and so, by Theorem 11.3

8(T(N : L)) = I'(M : V) = F(M :LonM).

Note that if f is separable over K, then f is separable over L, and so
L = Lo: in this case the theorem becomes a little simpler.
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Finite fields

In this chapter and the next we digress a little to consider some applications
of the theory that we have developed so far.

12.1 A description of the finite fields
Suppose that K is a finite field: that is, a field with only finitely

many elements. Then char K = p > 0, and we can identify 1p and the prime
subfield of K. As K is finite, [K: ZP] must be finite. If [K: ZP] = n, then K is
an n-dimensional vector space over ZP, and as a vector space, K is
isomorphic to (lp)". Thus IKI = p".

We shall now show that for each prime p and each positive integer n there
is essentially just one field of order p".

Theorem 12.1 For each prime number p and each positive integer n there is a
field K with I K I = p". The field K is a splitting field for f = x" - x over its
prime subfield. If K and K' are two fields of order p" then K and K' are
isomorphic.
Proof. Let K: ZP be a splitting field extension for f over 71P. Since D(f)
f has p" distinct roots in K, by Theorem 10.5. Let R denote the set of roots of
f in K. Then

R = { a : 4"(a) = a },

where 4 is the Frobenius monomorphism. But {cc: 4"(a) = a} is a subfield of
K: thus R is a field, and f splits over R. Consequently R = K and
1KI=IRI=p.

Suppose now that L is a finite field of order p". L* = L\{0} is a
multiplicative group of order p"- 1. As the order of an element of a group
divides the order of the group, AP" -' = 1 for all 1 in L*. Bearing in mind that
Opn = 0, this means that 1Pn =1 for all A in L. Thus f = xP" - x has p" distinct
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roots in L, so that f splits over L and L is a splitting field for f over its prime
subfield. By Corollary 1 of Theorem 7.5, K and L are isomorphic.

Corollary I If K is a finite field, with prime subfield 71 p, then K :1 p is a
Galois extension.

Separability comes from the Corollary to Theorem 10.8. Using Theorem
10.1 and Corollary 3 to Theorem 9.1, we can strengthen this:

Corollary 2 If L: K is an extension and L is finite, then L : K is a Galois
extension.

Exercises

12.1 Show that if K is a finite field of order q and p is a prime then there
are exactly (qp-q)/p monic irreducible polynomials of degree p
over K.

12.2 Show that if K is a finite field and n is a positive integer then there
exists an (essentially unique) extension L : K with [L: K] = n.

12.3 Suppose that L: K is an extension and that L has p" elements. Show
that IKI = pd, where d 1n. Conversely, if d 1n, show that
(xP4 - x) I (xP' - x) and deduce that L has exactly one subfield with
pd elements.

12.2 An example
We have just seen that we can construct fields of all prime power

orders p" by constructing splitting field extensions for f= .xp" - x over ?Z p.
The polynomial f is of course not irreducible; in certain circumstances we
obtain more information by considering splitting fields of irreducible
polynomials.

Let us illustrate this by considering fields of order pp. Let us denote the
elements of 71p by p - 1. We consider the polynomial

g=xp-x-1.
This has no roots in Z P (g(a) _ -1 for all a in 71 p); let L: Zp be a splitting field
extension for g over ZP, and let a be a root of g in L. Then if j e 71 p,

(a+j)"-(a +j) - 1=ap+j-a-j- 1=0,
so that the roots of g are a, a+ 1, ..., a+ p - 1. Note that it follows that
L = K(a).

Next we show that g is irreducible over 7 p. Suppose that g =gig 2, where
g, and g2 are monic, and 1 <degree g1=d < p. Let

S= {i:a+i is a root of g, J.
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Then the coefficient of x"-' in g, is

-Da+i)- da+t,
iE S

where t E 71 p. As this coefficient is in 71p, - da E 71 p, and so a c- 71 p, giving a
contradiction.

This means that [L : K] = p, and so ILI = pp. As L : K is also a splitting field
extension for xpp - x, this means that (xp - x -1) I (xpp - x) in Zp[x].

Notice also that, for each non-zero j in Z p, ja, ja + I,. .., ja + p -1 are the

roots of

xp-x -j,
and an argument similar to that for g shows that this polynomial is also
irreducible. Thus L:K is also a splitting field extension for each of the
polynomials xp - x _j (1 -<,.i < p -1 }.

Exercise

12.4 Factorize xpp - x over 71 p.

12.3 Some abelian group theory
In the next section, we shall investigate further the multiplicative

group K* of non-zero elements of a finite field. This group is abelian; we
now study the structure of finite abelian groups.

Theorem 12.2 Suppose that (G, + ) is a finite abelian group. G is isomorphic to
a product of cyclic groups:

G = _ Zd X ... X /d
I s'

Further the isomorphism can be chosen so that d j I dk for I <j < k < s. The
number s is characterized by the property that G is generated by s elements,
but it is not generated by s --1 elements.
Proof. We prove this by induction on IGI. Suppose that the result is true for
all abelian groups of order less than n, and that IGI = n.

There exists an integers such that G is generated by s elements, but is
not generated by fewer than s elements. Let m be the least positive number
such that there exists a set {g1,.. ., gs} of generators and a relation

mgt+a2g2+...+asgs=0

(with a2, ..., as in 77). Note that m > 1, since otherwise G would be generated
by {g2, ..., gs}. We can write ai = mqi + ri with 0 < ri < m, for 2 < i < s. Then if

h1=g1 +g2g2+ ... +gsgs, G is generated by {h1, g2,.. .,g} and

mh1+r292+ +rsgs=o.
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The minimality of m implies that r2 = r3 = ... = rs = 0, and so mh, =0. We
now claim that G is isomorphic to <h1 > x<92, ..., gs>. If (a, b) E <hl > x
<929..., gs>, let O(a, b) = a + b. The map 0 is a homomorphism of <h,> x
<92,..., gs> into G. It is an epimorphism, since {h,, g2, ..., gs} generates G. If
(a, b) is in the kernel of ©, a + b = 0. Writing a = j, h i , b = j 292 + +Jr9s, with
0 <j l < m, we have

jlhl+j2g2+ ... +jsgs=0.

It follows from the minimality of m that j 1 = 0, and so a = b = 0. Thus 0 is an
isomorphism.

We now apply the inductive hypothesis to <g2, ..., gs), which is clearly
generated by s -1 elements, but not by s - 2 elements: the subgroup
<92, gs> is isomorphic to

4, X ... X Zds
9

with dJ I dk for 2<j < k < s. Consequently G = 71,E X 7142 X X 71ds. Let
h1,.. ., hs be the corresponding generators in G. It follows from the
minimality of m that m < d2. Let d2 = elm + f2, where 0,<f2< m, and let
h', =h 1 + e2h 2. Then G is generated by {h'1, h 2, ... , h., }. As

mh' + f2h2=0

it follows that f2=0, and so m I d2. This completes the proof.

If G is a finite group, the exponent e(G) of G is the least positive integer k
such that g'=e, for all g in G. We have already used the fact, in Theorem
12.1, that gIGI = e for all g in G. Thus e(G) < IGI, and e(G) I IGI. If g E G, we
denote the order of g by o(g): clearly o(g) e(G), and o(g) I e(G).

Some examples: in E3, the elements have order 1, 2 or 3; the exponent of
2:3 is 6. In E6, the elements have order 1, 2, 3, 4, 5 or 6: e(G)=60, and
IG1= 720.

Corollary Suppose that G is a finite abelian group. There exists g in G such
that o(g) = e(G).
Proof. G 7141 x . . . X Ids, with di I dk for 1 < j < k < s. Then if g E G, g"s = e;

thus e(G) <ds. On the other hand, G has a subgroup isomorphic to 714,; if h is
a generator of this, o(h) = ds. As o(h) < e(G), this proves the result.

Exercises

12.5 Suppose that a and b are positive integers with highest common
factor d. Show that
71aX1b-1dX1abid-

12.6 Show that a finite abelian group is isomorphic to a product of
cyclic groups of prime power order.
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12.7 Suppose that G is an abelian group. Show that the set T of elements
of finite order is a subgroup of G and that every element of G/T,
except the identity, is of infinite order.

12.8 Suppose that G is a finitely generated abelian group every element
of which, except the identity, has infinite order. Show that G 715,

where s is defined by the property that G is generated by s elements,
but is not generated by s -1 elements.

12.9 Suppose that G is a finitely generated abelian group. Show that
G Z5 x T, where T is a finite group.

12.4 The multiplicative group of a finite field

Theorem 12.3 Suppose that K is a field, with multiplicative group K* of non-
zero elements. If G is a finite subgroup of K*, then G is cyclic.
Proof. Let 2 = e(G). Then a' = 1 for all a e G. As x't -1 has at most 2 roots,
IGI<e(G). But e(G) < IGI, so that e(G) = IGI. By Theorem 12.2, G has an
element of order IGI, and so G is cyclic.

Corollary I If K is a finite field, K* is cyclic.

Corollary 2 If L: K is an extension, and L is a _f inite field, then L: K is simple.
Proof. Let a generate the multiplicative group L*. Then L= K(a).

12.5 The automorphism group of a finite field

Theorem 12.4 Suppose that K is a finite field with p" elements. Then the
group of all automorphisms of K is cyclic of order n, and is generated by the
Frobenius automorphism 0.
Proof. We can identify the prime subfield of K with 72p. Every
automorphism of K fixes 71 p. As [K :72,,] = n and K :71,, is a Galois
extension, there are exactly n automorphisms of K, by Theorem 10.4. Let d
denote the order of 0. Then

a'd _ od(a) = a for each a in K

so that the polynomial x` -x has p" roots in K. This implies that d > n. As
din, we must have that d = n, and that generates the group of
automorphisms of K.

Corollary Suppose that L:K is an extension and that L is finite. Then F(L:K)
is cyclic of order [L:K].
Proof. Suppose that L has characteristic p. As K :lp is a Galois extension,
F(L:K)L_t F'(L :71 p)/T(K :71 p) by the fundamental theorem of Galois theory,
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and so I'(L:K) is cyclic. Also L:K is a Galois extension, and so
IF(L:K)I = [L:K].

Exercises

12.10 Use Theorem 12.4 to give another solution to Exercise 12.3.

12.11 Suppose that p and q are primes and that p < q. Show that if p does
not divide q ---1 then there is an extension L : 714 which is a splitting
field extension for each of the polynomials x" -a (a a non-zero
element of Zq).
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The theorem of the primitive element

In this chapter, we consider the problem: if L:K is algebraic, under what
circumstances is L a simple extension of K?

13.1 A criterion in terms of intermediate fields

Theorem 13.1 An algebraic extension L : K is simple if and only if there are
only finitely many intermediate fields.
Proof. First suppose that there are only finitely many intermediate fields.
L:K must be finitely generated over K, for otherwise there is a strictly
increasing infinite sequence of intermediate fields. Thus L:K is finite
(Theorem 4.6). If K is finite, L is finite, and so L:K is simple (Corollary 2 of
Theorem 12.3). We may therefore restrict attention to the case where K is
infinite.

As we have observed, L is finitely generated over K. Let

r=inf{lAI:L=K(A)}.

We want to show that r = 1. Suppose on the contrary that r> 2 and that
L = K(a1, a21 ..., a,). Let M = K(a1, a2). For each fJ in K, let

Ffl= K(a1 +(3a2).

As K is infinite, and as there are only finitely many fields intermediate
between K and L, there exist fl and y in K, with /3 y, such that Ffi = Fy. But
then

(a l + f a 2) - (a l + Ya 2) = (f 3 - Y)a 2 cF,,

and so a2 E Ffl. Also a1 = (x1 + Jka2) - f a2 e Fp so that K(al, a2) c K(a1 +#a2).
Consequently

L= K(a1 + f3a2, a3, ..., ar)

contradicting the minimality of r.
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Conversely suppose that L = K(a) is simple and algebraic over K. Let m
be the minimal polynomial for a over K. m is irreducible over K, but of
course m factorizes over L. Nevertheless, m has only finitely many monic
divisors dl,..., dk, say, in L[x]. Now suppose that F is an intermediate field.
Let mF be the minimal polynomial for a over F. Considering m as an element
of F[x], we see that mF I m. But this means that mF I m in L[x], and so mF = di
for some 1 < i < k. The proof will therefore be complete if we can show that
mF determines F. Let

and let FO = K(ao, ..., ar). Then Fog F, and so mF is irreducible over FO.
Thus mF is the minimal polynomial for a over FO. As L= F0(a), [L:F0] =
degree mF (Theorem 4.4). But [L: F] = degree mF, by the same argument, so
that as F 2 FO we must have F = FO = K(ao,..., ar). Thus mF determines F;
this completes the proof.

Exercise

13.1 Use Exercise 1.17 to give another proof that L : K is simple if K is
infinite and there are only finitely many intermediate fields.

13.2 Suppose that K(t):K is a simple transcendental extension. Show
that there are infinitely many intermediate fields.

13.2 The theorem of the primitive element
This rather quaint title is given to the following theorem.

Theorem 13.2 Suppose that L : K is finite and separable. Then L : K is simple.
P r o o f . Suppose that al, ..., a,, generate L over K. Let g = mai ... M,,,, where
mat is the minimal polynomial of at over K. Then g is separable over K. Let
N:L be a splitting field extension for g over L. As a1, ..., a are roots of g,
N:K is also a splitting field extension for g over K. Thus N:K is normal
(Theorem 9.1) and separable (Corollary 3 to Theorem 10.3) and is therefore
a Galois extension. Thus K is the fixed field of I'(N : K).

Now F(N:K) is finite, and so it has finitely many subgroups. By the
fundamental theorem of Galois theory, these are in one-one
correspondence with the fields intermediate between N and K. Thus there
are finitely many fields intermediate between N and K, and a fortiori there
are finitely many fields intermediate between L and K. The result follows
from Theorem 13.1.

Corollary If L:K is a Galois extension, there exists an irreducible
polynomial fin K [x] such that L : K is a splitting field extension for f over K.
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Exercise

13.3 Let p be a prime, let J = 71 p(a), where a is transcendental over 71p,

and let K = J(fl), where /3 is transcendental over J. Let L : K be a
splitting field extension for (xp - a)(x" - /3).

(i) Show that [L: K] = p2.
(ii) Show that if y eL then y"eK.

(iii) Show that L : K is not simple.
(iv) In the case where p=2, find all the intermediate fields L: M : K.

13.4 Suppose that L:K is a Galois extension with Galois group
and that ac-L. Show that L = K(a) if and only if

(61(a), ..., a,=(a)) is a basis for L over K.

13.5 Suppose that L : K is a finite separable extension and that ML is a
finite simple extension. Show that M : K is a simple extension.

13.3 An example

Let us consider a very easy example. Q(V/2-, /) : cl is a splitting
field extension for 1= x4 - 5x2 + 6 = (x2 - 2)(x2 -3) over 0.
[0(,/2,,/3): 1] = 4, and the Galois group T0(f) is best described by its
action on . 2 and /:

a0=e ai a2 a3

./ 2 -v f2-
./3

r0(f)
,/3 . /3

is isomorphic to Z2 X 12 and has three non-trivial subgroups:
{ao, a, }, {a0, a2} and {a0, 63}. The corresponding fixed fields are 0(,/3-),

0(12) and 0(, /6-). If a is any element of Q(J, \) which does not belong
to any of these three intermediate fields, then Q( ,/29 /3) _ Q(a).



14

Cubics and quartics

In this chapter we shall see how the theory that we have developed so far
relates to the solution of cubic and quartic equations. In the process, we
shall introduce some ideas which will appear again when we return to the
general theory.

14.1 Extension by radicals
We have seen that we can deal with quadratic polynomials by

constructing a splitting field by adjoining a square root. Having done this,
we have a procedure for factorizing the polynomial.

In this chapter we shall see that similar results hold for cubics and
quartics. In order to see what we are trying to achieve, let us make some
definitions.

If L:K is an extension, and fi E L, we say that f is a radical over K if fJfl E K
for some n. Thus a radical over K is an nth root of some element of K,
possibly in a larger field.

We shall say that an extension L:K is an extension by radicals if there are
intermediate fields

L=Lr:Lr_1:...:LO=K
such that L, = Li _ 1(Ni), with fJ a radical over L,_ 1, for 1 <i <r. Thus L : K is
an extension by radicals if L can be obtained by successively adjoining
radicals.

Now suppose that f E K [x]. We say that f is solvable by radicals if there is
an extension L:K by radicals such that f splits over L. It is important to
note that L need not be a splitting field forf - it may be considerably larger.

The general problems that arise, then, and that we shall consider in the
subsequent chapters, are to determine whether FE K [x] is solvable by
radicals or not, and, if so, to find a procedure for factorizing f
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14.2 The discriminant
Suppose that f is a separable irreducible monic cubic polynomial

in K[x]. Then the Galois group TK(f) acts transitively on the three roots of
f in a splitting field, and so it must be either the full permutation group 23
or the alternating group A3. How can we determine which it is?

This is a problem which we can consider quite generally. We shall,
however, suppose that char K 0 2. Suppose that f is a polynomial in K [x]
and that al, ..., a are roots of f (repeated according to multiplicity) in a
splitting field extension L:K. We set

b= II (aj -ai)
1<i<j<,n

If f has a repeated root then b = 0; otherwise, f is separable, and b 0 0. If
QeFK(f) then

6(6) _ {f (Q(aj) - 6(1x1)) = 8, 6,

where e, = I if a is an even permutation of a1, ..., an and Ea =-1 if a is an
odd permutation.

There are therefore three possibilities. First, 6=0: in this case f has a
repeated root. Secondly, b is a non-zero element of K. In this case, b is in the
fixed field of FAA so that FADE- A. Thirdly, b 0 K. In this case, b is not in
the fixed field of TK(f), so that FAD A. On the other hand d =6' is fixed
by TK (f), so that x2 - A is the minimal polynomial of b, and [K(b) : K] = 2.
Now T,<(f) n A has index 2 in FAA so that it follows from the
fundamental theorem of Galois theory that K(b) is the fixed field of
TK(f) n An, and TK(f) n An = I'(L:K(b)).

The quantity A = b2 is called the discriminant of f. Notice that, although S
depends on the order in which we label the roots of f, A does not. Let us sum
up our discussion in terms of A.

Theorem 14.1 Suppose that char K 2 and that f c K [x]. Let A be the
discriminant of f e K [x], and let L: K be a splitting field extension for f.

(i) If d=0, f has a repeated root in L.
(ii) If A 0 and A has a square root in K, then r K(f) g All.

(iii) If A has no square root in K, it has a square root bin L. TK(f) An,

and K(b) is the fixed field of TK (f) n A.
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In practice, it is not hard to calculate the discriminant. The quantity b is
given by the Vandermonde determinant:

I1 1 ... I I

b=
a1 a2

n-1 n=-1 n-1
a1 a2 ... an

If we multiply the matrix by its transpose and evaluate the determinant we
find that

d=

n

Al

Al ... An_1

A2 ... An

An-1 An ... 12n-21

where A a i + + a . The quantities A can be expressed in terms of the
coefficients off (as we shall see in Chapter 19), and so we can calculate A.

For example, if

f= x2 +aix +ao,
then

then

d = a' - 4ao, while if

f =x3+a2x2+alx+ao,

A = - 4a 2a o + a 2a i + 18a 2a 1 ao - 4a; - 27ao.

Exercises

14.1 Suppose that f is a polynomial in K [x], with roots ai, ..., an in
some splitting field extension. Show that

n

d=nn fl Df(af),
=1

where rin = I if n(mod 4) = 0 or I and In = -1 otherwise.

14.2 Suppose that

is a polynomial of degree n in K [x] and that al, ..., an are roots of f
in a splitting field L.

(i) Show that, in L[x], f = (x -ai)gi, where

gi=a1 +a2(x+a1)+ '+a (Xn - I +aixn`2+... +an-1),



14.3. Cubic polynomials 113

(ii) Show that Df = Z7j= 1 gi.

(iii) Let A , = Y% 1 tx=, for j =1, 2, ... Establish Newton's identities:
an_ 1 +an21 =0,

+a,22 =0,

nao+a,Al + +an- An -l +anAn -=0,

and

aOAk+a,1k+1 +... +an_12k+n-1 +an2k+n=0

for k=1,2,3, ...
14.3 Suppose that f = xn + px + q. Show that

21 =22= ... -An-2=0,

An- i = -(n 1)p,

An= -nq,

An+1 = ... =A2n_3=0

and

22n _ 2 = (n - 1)p2.

Show that the discriminant d of f is

d=qn+lnngn-1 `i (n-1)n-ipn

where ?In =1 if n (mod 4) = 0 or 1 and rin = --1 otherwise.

14.4 Suppose that char K = 2 and that f E K[x] is separable. Show that
the discriminant of f always has a square root in K. Give an
example to show that Theorem 14.1 does not hold for fields of
characteristic 2.

14.3 Cubic polynomials
Suppose again that f is an irreducible monic cubic polynomial in

K [x]:

f =X3+a2x2+a1x+ao.

In order to simplify things, we shall assume that char K is not equal to 2 or
3. In particular, this means that f is separable. We can simplify the
expression for f by setting y = x + a2/3: then

f=y3+py+q,
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where p = a1 - a2/3 and q = ao + 2a2/27 - a2a1/3. We therefore consider the
polynomial

g=x3+px+q.
Let L:K be a splitting field extension for g over K, and let al, a2, a3 be the roots
of g in L. g has discriminant A = 4p3 - 2782: let 6 be a square root of A in L.
Then we know, by Theorem 14.1, that [L : K((5)] = 3 and that F(L : K((5)) is the
cyclic group A3.

How do we proceed from here? Our aim is to solve g by radicals: this
suggests that we should adjoin a cube root of a suitable element 8 of K or
K(b). In fact, it is convenient to proceed rather indirectly. If we have such an
element 0 then in a suitable splitting field X3_0 factorizes as

x3 _0=(x-f1)(x-wf3)(x_(0 2#)

where w and w2 are cube roots of unity. As a next step, then, we adjoin cube
roots of unity: let L(w):L be a splitting field extension for X3_ I =
(x -1)(x2 + x + 1). We now have the following diagram of inclusions.

L(w)

I
K(w, S)

K(b) K(cu)

K

Note that there are essentially only two possibilities. First it may happen
that x'- I splits over K(S). In this case L = L(co) and we do not need to
extend further. Secondly it may happen that x3 -1 does not split over K(o).
In this case [K(w, 6): K(o)] = 2, while [L: K(8)] = 3, and so x 3 - I does not
split over L:L 0 L(w), and we go beyond a splitting field for g.

We now return to the cubic g. In L(w) we set

1=a1+wa2+w2a3
y =al +w2a2 +wa3.

Then

Icy=a1 +a2+a3+(w+w2)(ala2+ala3+a2a3)

(al +a2+a3)2-3(ala2+(X1a3+a2a3)= -3p,
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so that /33y3 = - 27p3; and

#3+y3=(a1 +wa2+(02a3)3+(a1 +cv2a2+wcx3)3+(a1 +a2+a3)3
=3(a1 +a2+a3)+ 18aia2a3= -27q.

Thus

(x -133)(x -y3)=x2 +27gx -27p3,

and so #3 and y3 are the elements

- 2 q±2 -3d = 2'q±2(2w+ 1)S.
Consequently we can obtain f3 and y 3 by adjoining a square root of - 3 A to
K, and then obtain /3 by adjoining a cube root: then y = - 3p//3. Finally

ai=3(N+Y)
a2=3(w2/3+cy)

a3 1(w J3+w2Y)

Notice that in these calculations we are essentially working in L(a)); as we
have observed, this may well be larger than the splitting field L.

Exercise

14.5 Suppose that char K is not 2 or 3, and that f = x3 + px + q E K [x].
Let a be a root of f in a splitting field, let g = 3x2 - 3ax - p, and let P
be a root of g in a splitting field forg over K(a). Express a in terms of
/3 and show that (3 is a root of

h = 27x6 + 27g3 - p3 E K [x].

Conclude that a = j3 - p/3!i, where /33 = -- q/2 + (5 and 62 = q 2/4 +
p3/27: the cubic f can be solved by extracting a square root and a
cube root.

14.4 Quartic polynomials
Suppose now that f is an irreducible monic quartic in K[x]:

f =x4+a3X3 +a2x2 +aix +ao.

We continue to suppose that char K is not equal to 2 or 3. If we write
y=x+a3/4, f has the form

g=y4+py2+qy+r.
We therefore consider a polynomial of the form

g=x4+px2+qx+r.
Let L: K be a splitting field extension for g over K, and let a1, a2, a3 and a4 be
the roots of g in L.
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Let G be the Galois group FK(g). G can be considered, by its action on the
roots of g, as a transitive subgroup of 2:4. Now the Viergruppe N is a normal
subgroup of 24, and so H = N n G is a normal subgroup of G. Let M be the
fixed field of H. Then by the fundamental theorem of Galois theory
f (L: M) ^- H and r(M : K) G/H.

Now H is an abelian group of order 1, 2 or 4 (in fact the first possibility
cannot arise) and, as H is the kernel of the homomorphism 4i, where i is the
inclusion map G -+ E4 and 0 is the epimorphism of 2 :4 onto Z3 described in
Chapter 1, G/H is isomorphic to a subgroup of Z3, by the first isomorphism
theorem for groups.

This suggests that we should first attempt to determine the intermediate
field M. Let

9=21 +a2, Y=(X1 +23 and 6=a1 +a4.
Then

and

Q2= (x1 +22)2=
-(a1

+a2)((Z 3+a4),
Y2 = (ai +a3)2 = -121 + x3)(a2 +0C4),

a2=(21 +a4)2= -((Xi +a4)(a2+a3).

Consequently $2, y2 and 62 are in M, and so K(#2, y2, a2) c M. On the other
hand, if a is a permutation of a1, a2, 23 and a4 which fixes /32, y2 and 82, then
a c- N. Thus

r(L:K(/32, y2, d2)) g H = r(L:M)

and so K(f32,y2,52)2M. Thus M=KW,y2,a2).

Easy but tedious calculations show that
$2+Y2+52= -2p,
#2y2 +#262 +y262=p2 -4r,

and

fYa= -q;

thus K(/32, y2, 52):K is a splitting field extension for

x3 +2px2 +(p2 -4r)x -q2.
This cubic is called the cubic resolvent for g. By the results of the previous
section, we can construct /i2, y2 and a2 by adjoining square roots and cube
roots; we can then construct fl, y and b by adjoining square roots (note,
though, that ly5 = - q, so that some care is needed in the choice of signs).
Then

a1=2{/3+y+6),

a2=2{$-Y-6),
a3-2(--P+y 4



14.4. Quartic polynomials 117

and

a4-2(-fl-y+5).
Notice that this means that L = K(f3, y, 6).

What are the possible Galois groups of an irreducible quartic? The
exercises which follow provide an answer to this question.

Exercises

14.6 Suppose that G is a transitive subgroup of E. Show that G is either
(i) 24, (ii) A4, (iii) the Viergruppe N, (iv) cyclic of order 4 or (v) a non-
abelian group of order 8, isomorphic to the group of rotations and
reflections of a square.

14.7 Suppose that f is an irreducible quartic in K[x] (where char K is
not 2 or 3) and that L : K is a splitting field extension for f. Let g be
the cubic resolvent for f, and let M be a splitting field for g in L.
Verify that the following table includes all possibilities and that it
determines the Galois group of f in each case.

Discriminant g f FAD)

No square root Irreducible IE4

in K over K

Has square root Irreducible A4

in K over K

Has square root Splits over K Viergruppe
in K

No square root Splits over K Factorizes Cyclic of order 4
in K in M [x]

No square root Splits over K Irreducible Of order 8
in K over M

14.8 Determine the Galois groups of the following quartics in Q [x] :

(i) x4 + 4x + 2;
(ii) x4 + 8x - 12;

(iii) x4+ 1;
(iv) x4+x3+X2+x+ 1;
(v) x4 - 2.
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Roots of unity

We have seen that in order to deal with cubic polynomials it is helpful to
have cube roots of unity at our disposal. In this chapter we shall consider
splitting fields and Galois groups of polynomials of the form xm - 1 over a
field K.

Technical problems can arise if char K :A 0. Suppose that char K = p > 0
and that m = prq, where p does not divide q. Then in K [x],

xm -1= (xi - 1)";

thus a splitting field extension for x? -1 is a splitting field extension for
xm - 1: we need only consider the polynomial x? --1. For this reason, in this
chapter we shall suppose that char K does not divide m. In this case,
D(xm - 1) = mxm -1$ 0, and so xm -1 has m distinct roots in a splitting field.

15.1 Cyclotomic polynomials
Suppose that L:K is a splitting field extension for xm - I over K. As

xm --1 has m distinct roots, L:K is a Galois extension. The set R of roots in L
clearly forms a group under multiplication, and so, by Theorem 12.3, R is a
cyclic group of order m. An element s of R is called a primitive mth root of
unity if e generates R. Thus an element E of L is a primitive mth root of unity
if and ony if Em = I and E' $ 1 for 1 <j < m. For example, in C, i and - i are the
primitive fourth roots of unity: -- 1 is the only primitive second root of unity
and 1 is the only first root of unity. Notice that if e is a primitive mth root of
unity then L = K(E).

We now define the mth cyclotomic polynomial 0m to be

fl (x-E)
E

where the product is taken over all primitive mth roots of unity. An element
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a in L is a root of xm -1 if and only if it is a primitive dth root of unity for
some d which divides m: thus

xm-1=f Od.
dim

For example, in C[x]

01=X-1, P3=(x-CV)(X _CO2)=x2+x+ 1

02=x+ 1, iP4=(x-1)(x+i)=x2+ 1

and

x4 -1= (x -1)(x + 1)(x2 + 1) = 4P1 x'204

We have defined 'bm as an element of L[x]. In fact, as the examples
suggest, we can say much more.

Theorem 15.1 bm E K0[x], where KO is the prime subfield of K. If KO = Q
then Om E 71 [x].

Proof. Since Xm -1= f d1m'd, the theorem follows from an inductive
application of the following elementary lemma.

Lemma 15.2 (i) If L:K is an extension, if geL[x] and if there exist non-
zero f and g in K [x] such that f = qg, then q c- K [x].

(ii) Suppose that K is the field of fractions of an integral domain R, that
q c- K[x] and that there exist monic f and g in R[x] such that f = qg. Then
gER[x].
Proof. This is just a matter of long division.

(i) Let

q=ap+alx+ ... +amxm,

g=bo+b1x+ +b,xn,

f =CO+CIx+ - +cm+nxm+n

where am 96 0, bn :A 0, Cm + n 96 0. As ambn = cm + n, am e K. Suppose that we have
shown that a= E K for i >j. Then as

ajbn+aj+lbn_1 +... +ambn+j_m=cn+j

(where we set bk = 0 if k < 0), a j E K.
(ii) In this case bn = 1, and the same induction goes through.

Exercises

15.1 Show that the degree of ibm is mflp1m ((p -1)/p), where the product is
taken over all primes p which divide m.
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15.2 Show that if n is odd then o2n(x) = X)-

15.3 Show that if p is a prime then

Pn(X)=

+xPn-i+X2Pn-1+...+x(P-1)P"-

15.2 Irreducibility
By Theorem 15.1, we can consider the cyclotomic polynomials 0m

as polynomials in K0[x], where KO is the prime subfield of K. In the case
where char KO O 0, the irreducibility of km over KO depends upon m and
char Ko: for example, b3 = x2 + x + 1 is irreducible over 7s, while over 7,

x2+x+ 1=(x-2)(x--4).
(The irreducibility of cyclotomic polynomials over finite fields is the subject
of Exercises 15.5-15.9.)

In the important case where char KO = 0, the result is simple to state, but
remarkably difficult to prove:

Theorem 15.3 For each m, 1m is irreducible over 0.
Proof. Suppose that 0m is not irreducible. By Gauss' lemma we can write
Om = fg, where f and g are in 71[x] and f is an irreducible monic polynomial
with 1 < degree f < degree 0m.

Let L: 0 be a splitting field extension for 0m over 4Q. We shall first show
that, if s is a root of f in L and p is a prime which does not divide m, then EP is
a root of f.

Suppose not. Then, as EP is a primitive mth root of unity, g(EP)=O. We
define k in 7[x] by setting k(x) = g(xP). Then k(E) = g(EP) = 0. Since f is the
minimal polynomial for E over 0, f Ik in 0[x], and, by Lemma 15.2, we can
write k = f h, with h in 71[x].

We now consider the quotient map: n -+ n from 71 onto
7P,

and the
induced map: j - J of 71[x] onto 7 p[x]. Under this map, Jk=k. But

k(x) = g(xP) = (g(x)) '

and so Jk=(g'. Let q be any irreducible factor off in 7 p[x]. Then q I (g)P,
and so q-1 g. This means that 4'1 f4, so that 0-m = j'j has a repeated root in a
splitting field extension over 1,,. But we have seen that this is not so, since p
does not divide m.

Now let ri be a root of f, and let 0 be a root of g. 0 and ri are both primitive
mth roots of unity, and so there exists r such that 0 = rir, where r and m are
relatively prime. We can write r = pl ... pk as a product of primes, where no
pi divides m. Repeated application of the result that we have proved shows
that 0 is a root of f. This means that 'Pm has a repeated root in L, and we
know that this is not so.
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Exercise

15.4 Suppose that e is a primitive mth root of unity over 0, where m > 2.
Let ri = E + E -' . Show that [0(s) : 0(rl)] = 2, find the minimal
polynomial for e over 0(i) and identify the Galois group
r[O(E) : QW] -

15.3 The Galois group of a cyclotomic polynomial
Suppose that L : K is a splitting field extension for the cyclotomic

polynomial 0rn over K. If e is a primitive mth root of unity then, as we have
seen, L = K(E).

We can write the primitive mth roots of unity as

E 1,E 012.) k'

where 1 = n1, n2, ..., nk are those integers less than m which are relatively
prime to m, and k = degree 'rn. Now, if n1 and m are relatively prime,
1= (n1, m) and so there exist integers a and b such that any + bm = 1. Thus in
the quotient ring 71,,,, any= 1, and n; is a unit. Conversely if n is a unit in Z.
then n and m are relatively prime. Thus (nl, ..., nk) is the multiplicative group
Um of units in the ring 71m.

Now suppose that a is in the Galois group rK('rn). As L = K(E), a is
determined by its action on E. As a(E) is also a primitive mth root of unity,
a(E) = Eni{a} for some 1 <j(a) <k. If T is another element of rK(4krn),

Ta(E) = T(E!lf(d)) = (r(E))n'(a) = En1fT1!=1I6) = aT(E).

Thus rK('rn) is abelian. Also

nj(ra) = nJ(t)nl(a}

and so the mapping a - nj(a) is a homomorphism of r(krn) into Urn. This is
one-one, since a(s) = E if and only if a is the identity in rK('Prn). Further,
IFK((rn)I = k if and only if there are k images Eniw; thus the homomorphism is
onto if and only if FK(',n) acts transitively on the roots of 'Pm, and this
happens if and only if 0rn is irreducible over K. Summing up,

Theorem 15.4 If 'rn is the mth cyclotomic polynomial over K, f'K(Prn) is an
abelian group which is isomorphic to a subgroup of Urn, the multiplicative
group of units of the ring 7rn. 'Prn is irreducible over K if and only if I'K('Pm) is
isomorphic to Urn.

As an example,

U12={1,3,7,11}

and 12=52= 112= 1, so that U12l2x 712.
If p is a prime, Up is cyclic, by Theorem 12.3. We therefore have the

following corollary:
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Corollary If p is a prime then either 'bp splits over K or I,K(Op) is cyclic.

Exercises

15.5 Find the Galois groups of x4 + I and x 5 + 1 over 0.

15.6 Suppose that p is a prime which does not divide m, and let c be a
primitive mth root of unity over 7P, Show that [(e):l] = k, where k
is the order of pin the mul tiplicative g roup U. of units in Zm. Show
that 0,,, is irreducible over 1p if and only if U. is a cyclic group
generated by p. When is 04 irreducible over l p? When is 0$
irreducible over 71 p?

15.7 Suppose that m = q', where q is an odd prime.

(i) Show that I Uml = (q --1)q'
(ii) Use the fact that Uq is cyclic of order q -1 to show that there

is an element of order q -1 in Um.
(iii) Show that if q does not divide a then

( 1 + aq")q = 1 + bq" + 19

where q does not divide b.

(iv) Show that 1 +q has order q'-1 in Um.
(v) Combine (ii) and (iv) to show that Um is cyclic.

15.8 Suppose that m = ml ... m, where m1, ..., Mr are distinct prime
powers. Show that
UM Z - U

M ,
X ... X Urn,.

15.9 Show that Urn is cyclic if and only if m = q' or 2q' (where q is an odd
prime) or 4.

15.10 Is 018 irreducible over (a) 7123, (b) /43, (c) /73?
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Cyclic extensions

If we are going to study extensions by radicals, it is clearly useful to be able
to answer the question: when is a Galois extension L : K a splitting field
extension for a polynomial of the form x" - 0?

16.1 A necessary condition
We begin by considering a polynomial of the form xn - o in K[x].

In order to avoid problems of separability, let us suppose that char K does
not divide n. Let L:K be a splitting field extension for f = x" - o over K.
Then by Theorem 10.5, f has n distinct roots, a1, ..., an say, in L. Since
(a,a 1)" = 00-1=1, the elements ala, alai 1, ..., 1 are n distinct
roots of unity in L, so that x" -1 splits over L. Let co be a primitive nth root
of unity. Then

X'- 0=(x -a1)(x- (Oa1) ... (x -w" a1).

This suggests that we should consider the intermediate field K(w), which
contains all the nth roots of unity.

Theorem 16.1 Suppose that x" - 0 e K [x], and that char K does not divide n.
Let L : K be a splitting field extension for x" - 0 over K. Then L contains a
primitive nth root of unity, w say. The group f'(L:K(w)) is cyclic, and its order
divides n. x" - 0 is irreducible over K(w) if and only if [L : K((O)] = n.
Proof. We have seen that L contains a primitive nth root of unity and that
xn - 0 splits over L as

(x - f)(x - a)#) . . . (x - w" _ 1)
Thus L = K(w, /3) and if 6 E F(L :K(w)), a is determined by its action on /3.
Now if Q is in F(L:K(w))

a(#) _ (Oi(6)f3
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for some 0 <j(a) < n. Since to e K(w), if 6 and T are in I'(L : K(w)),

TU(f3) = T(Ei(7'/3) =
EJ(CF)T(f)

= cfb)ei(T)#

and so the map a -+ j(6) is a homomorphism of T(L:K) into the additive
group (Z,x, +). As j(6) = 0 if and only if a(/3) = $, and this happens if and only
if a is the identity, the homomorphism is one-one. Thus T(L:K) is
isomorphic to a subgroup of the cyclic group (Z,,, +): it is therefore cyclic,
and its order divides n.

If x" -- O is irreducible over K(w), IF(L:K(w))I?n, so that [L : K(w)] =
Ir(L:K(w))I =n- If x" -0 is not irreducible over K(w), let g bean irreducible
monic factor in K(w), and let y be a root of g in L. Then

x"-0=(x-y)(x-wy)... (x-w"- 1y)
so that x" - 0 splits over K(w, y), and L = K(w, y). Thus

[L: K(w)] = [K(w, y) : K(w)] = degree g < n.

Exercises

16.1 Show that x6 + 3 is irreducible over 0, but is not irreducible over
0(w), where w is a primitive sixth root of unity.

16.2 Show that the Galois group of x 1 5 -2 over 0 can be generated by
elements p, a and T satisfying

P15=64=T2= 1,

a i pa= p',

T-ipT=P14,

TIUT =6.

16.3 Let L:Q be a splitting field extension for x4 - 5 over 0. What is its
Galois group? List the fields intermediate between L and 0, and
determine which of them are normal over U.

16.2 Abel's theorem
In the case where n is a prime, we can say more about the

irreducibility of x" - 8.

Theorem 16.2 (Abel's theorem) Suppose that q is a prime, that xq - 8 E K [x]
and that char K 0 q. Then either x`' - 0 is irreducible over K or x4 - 0 has a
root in K. In the latter case xq - 0 splits over K if and only if K contains a
primitive qth root of unity.
Proof. Suppose that xq - 0 is not irreducible over K. Let L:K be a splitting
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field extension for xq - 0, let g be an irreducible monic divisor of x4 - o in
K[x] and let y be a root of g in L. Then, in L,

g = (x --- y)(x --- w"Zy) ... (x - (0"dy)

where co is a primitive qth root of unity in L, I < n2 < n3 < < nd < q and
d=degree g. Thus if

g=xd-gd-xd-1+...+(-1)dg0,

go = wkyd for some k. Raising this to the qth power, we see that go =ydq = od

Now d and q are coprime, and so there exist integers a and b such that

ad+bq= I.
Thus

D = o"d obq = (g o 8b)q

and so xq - 0 has a root gaOb in K.
If x4 _ o is not irreducible over K, [L:K((o)] divides q and is less than q,

by Theorem 16.1, and so L= K(w). Thus K(w):K is a splitting field
extension for xq - 0: the last statement of the theorem follows immediately
from this.

Exercises

16.4 Suppose that q is a prime, that char K 0 q and that xq - o is
irreducible in K[x]. Let w be a primitive qth root of unity, and let
[K(w) : K] =j. Show that the Galois group of xq - 8 can be
generated by elements a and T satisfying

Q'q=TJ= 1, 6kT =Ta,

where k is a generator of the multiplicative group Z .

16.5 Suppose that q is a prime, that char K = q and that 0e K. Describe
the splitting field for xq-0 over K.

16.3 A sufficient condition
In order to prove a converse to Theorem 16.1 we need a

fundamental result, of interest in its own right.
Suppose that G is a group and that K is a field. A (K-valued) character on

G is a homomorphism of G into the multiplicative group K* of non-zero
elements of K. We can think of a character as a K-valued function on G;
recall that the set of all K-valued functions on G is a vector space over K.

Theorem 16.3 Suppose that G is a group, that K is a field and that S is a set of
K-valued characters on G. Then S is linearly independent over K.



126 Cyclic extensions

Proof. If not, there is a minimal non-empty subset {y,.. ., y"} of distinct
elements of S which is linearly dependent over K. That is, there exist non-
zero) ,...,A,,in Ksuch that

21y1(g) + ... + 2"Yn(9) = O (*)

for all g in G. Each y= is non-zero, since it sends the identity of G to 1, and so
n>,2. As y 1 y,,, there exists h in G such that y 1(h) 0 y"(h). Now

21 Y 1(h9) + ... + A,,Y.(h9) = 0

for all g in G. Using the fact that the yj are characters, we have that

A1Y1(h)Y1(9) + " - + 2nyn(h)yn(9) =0

for all g in G. Now multiply (*) by y"(h) and subtract:

A 1(Y 1(h) - Yn(h))Y 1(9) + ... +(y, -1(h) - Yn(h))Yn -1(9)=O

for all g in G. As y 1(h) - y"(h) :o 0, this means that {Yi'. . ., y" _ 1 } is linearly
dependent over K, contradicting the minimality of {y,. . ., y"}.

If T is an automorphism of a field K, then the restriction of T to K* is a K-
valued character on K*. Spelling the theorem out in detail in this case, we
have the following corollary:

Corollary Suppose that T,,.. .,T" are distinct automorphisms of a field K and
that k1, ..., k are non-zero elements of K. Then there exists k in K such that

k1T1(k)+ +k,,Tn(k) 0.

We now turn to the converse of Theorem 16.1. We say that an extension
L:K is cyclic if it is a Galois extension and F(L:K) is a cyclic group.

Theorem 16.4 Suppose that L:K is a cyclic extension of degree n, that
char K does not divide n and that K contains a primitive nth root of unity, w
say. Then there exists 0 in K such that x" - 0 is irreducible over K and L:K is
a splitting field extension for xn - 0. If /3 is a root of xn - 0 in L, then L = K(/3).
Proof. Let a be a generator for the cyclic group T(L:K). Since the identity,
a, a2 ..., an -1 are distinct automorphisms of L, by the corollary to
Theorem 16.3 there exists a in L such that

# = a + w6(a) + ... + 0- 1 an - 0.

Observe that w ^ 1 /3: this means first that /i O K and secondly that
6(/3") _ (Q(/3))" _ f", so that 0 = f" e K.
As

x"-0=(x-f3)(x_w/3)...(x-w"-1A

K(f ):K is a splitting field extension for x"-0 over K. Since the identity,
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a'-' are distinct automorphisms of K(/3) which fix K,

[K(fJ):K] = I> n
and so L = K($). The irreducibility of x" - 9 over K now follows from
Theorem 16.1.

Exercises

16.6 Suppose that [L:K] is a prime p, that p 0 char K and that L is
algebraically closed. Suppose (if possible) that p>2.

(i) Show that the cyclotomic polynomials Op and ip2 split over
K.

(ii) Show that there exists 0 in K such that xp - 0 is irreducible
over K and L:K is the splitting field extension for x-0.

(iii) Show that f = xp2 -- 0 has no roots in K, and must be of the
form f = fi ... fp, where each fj is an irreducible polynomial
in K [x] of degree p.

(iv) Show that ifa1,a,,. spare roots of f1 then ai ... ap=cof,where
co is a pith root of unity and /3p = 0. Explain why this gives a
contradiction.

16.7 Suppose that [L: K] =4, that char K 2 and that L is algebraically
closed. Show that there exists an intermediate field M such that
[L : M] = 2 and such that cb4 splits over M. Show that this leads to a
contradiction.

16.8 Suppose that char K = O, that 1 < [L: K] < oo and that L is
algebraically closed. Show that [L : K] = 2 and that L : K is a
splitting field extension for x2 + 1. (You will probably need the fact
that if p is a prime which divides the order of a group G then G has a
subgroup of order p.)

The next three exercises are concerned with cyclic extensions of degree p,
in the case where char K = p.

16.9 Suppose that char K =p, that f = xp - x - a E K[x] and that L: K is
a splitting field extension for f. Show that if /3 is a root of f then the
roots off are /3, /3 + 1, . . ., /3 + p - 1. Show that either f splits over
K or f is irreducible over K and L: K is cyclic of degree p.

16.14 Suppose that L:K is a Galois extension with Galois group G. If
xeL,let

t r(x) _ Y 6(x).
QEc
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Show that tr is a K-linear mapping of L onto K. The mapping tr is
the trace. What is the effect of tr on K if char K I IGI?

16.11 Suppose that char K = p, that L:K is a cyclic extension of degree p
and that T generates r(L:K). Let z be an element of L with tr(z) = 1,
and let

y=(p- 1)z+(p--2)T(z)+... +2Tp-3(Z)+Tp-2(z).

Show that r(y) - y = 1, and that a = y" - y e K. Show that
f =xp-x-a is irreducible over K, that L:K is a splitting field
extension for f and that L = K(y).

16.12 Suppose that L:K is a Galois extension of degree n with Galois
group G. If x EL, let

tr(x) = E 6(x), N(x) = fl Q(x).
aEG aEG

The mapping N is the norm. Suppose that a e L has minimal
polynomial
xr - a l xr - 1 +... + (- 1)rar

Show that tr(a) = (n/r)a 1 and N(a) = a"Ir.

16.13 (Hilbert's theorem 90) Suppose that L:K is a Galois extension of
degree n with cyclic Galois group generated by T, say.

(i) Suppose that Show that N(a) = I.
(ii) Suppose that N(cx)= 1. Let co = a, c1 = aT(co), c2 = aT(c1), ...,

cn _ 1 = aT(c - 2). Show that there exists y in L such that

# =cOY+c1T(Y)+ ... +c1,- - 1(y)00.

Show that a = f3/T(f3).

16.14 Suppose that L: K is a Galois extension of degree n with cyclic
Galois group generated by T, say, and that a e L. Show that tr(a) = 0
if and only if there exists /3 in L such that a = /3 - 6#3.

16.4 Kummer extensions

It is not difficult to extend Theorems 16.1 and 16.4 to Galois
extensions with abelian Galois groups.

Theorem 16.5 Suppose that L : K is a Galois extension, that F(L : K) is an
abelian group of exponent d and that xd -1 has d distinct roots in K. Then
there exist e1, ..., or in K such that L:K is a splitting field extension for

(xd - 01) ... (Xd - Or)
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Proof. The proof is by induction on [L: K]. Suppose that [L: K] = n and
that the result holds for all extensions of smaller degree.

By Theorem 12.2 we can write

!-(L : K) = F x H

where F is cyclic of order d and H is an abelian group whose exponent e
divides d. Let M be the fixed field of F; then M : K is a Galois extension, and
f (M : K) -2---H. As x'- I has e distinct roots in K and [M : K] < n, by the
inductive hypothesis there exist in K such that M : K is a
splitting field extension for

(Xe_ 1)...(Xe-Or_1).

Let f j be a root of xe - l/i j in M, let 0 j = 04/e and let w be a primitive dth root
of unity in K. Then

d -- 1
/Xd_0 = fl (x-wlfj)

i=0

so that M:K is a splitting field extension for

(Xd-o1)... (Xd-0r-1).

We now argue as in Theorem 16.4. Let a be a generator for F. As
F(L :K) = {az:Oj<d,t E H), there exists a in L such that

Pr = E T(a) + CUQ E T(O4) + ... +wd - 16d - 1 E T(a) 0 0.
TEH TEN TEH

As before, 6r) = CO W '#r, so that Q(J3d) = (a(#r))d = /3d and Or = /3d c- M. But also

T(f r) = fl, fort E H, so that T(9r) = Or for T E H, and so Or E K. As in Theorem
16.4, L : M is a splitting field extension for xd - Or, and so L : K is a splitting
field extension for (xd - 01) . . . (xd - Or).

As extension L:K is called a Kummer extension of exponent d if it is a
splitting field extension of a polynomial of the form

(xd - O 1) ... (xd - Or)

(where 81, ..., 8r are in K) and if xd -1 has d distinct roots in K.
Let us now prove a converse to Theorem 16.5.

Theorem 16.6 Suppose that L:K is a Kummer extension of exponent d. Then
f (L:K) is abelian, and its exponent divides d.
Proof. Suppose that L:K is a splitting field extension of

f = (Xd _ 01)... (Xd _ 0j).

By Theorem 11.6, we need only consider the action of F(L:K) on the roots of
J. Let w be a primitive dth root of unity in K. Then if a e F(L : K) and f j is a
root of xd - Oj in L, 603) = w"a,if j for some n, j, so that 6d(/3j) = fij, and ad = e.
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This implies that the exponent of T(L:K) divides d. If T is another element of
f (L: K),

W(P) = z(w"°J/3 f) = w"°Jw"= J fi

=

so that r(L : K) is abelian.

Exercises

16.15 Suppose that K is a field which contains a primitive nth root of
unity and that x" - a and x" - b are irreducible over K. Show that if
b =arc" for some r which is prime to n and some c in K, then x" - a
and x" - b have the same splitting field extension over K.

16.16 Suppose K is a field which contains a primitive nth root of unity,
and that x" -a and x" - b are irreducible polynomials over K with
the same splitting field extension L : K. Let a be a root of x" -a in L,
/3 a root of x" -b. By considering the action ofF(L:K) on a and /3,
show that there exists r, prime to n, such that #3a -r c- K. Show that
b=are" for some c in K.
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Solution by radicals

The results of the two preceding chapters, together with the fundamental
theorem of Galois theory, suggest that, provided that we can construct
enough roots of units, a separable polynomial is solvable by radicals if and
only if its Galois group can be built up in some way from abelian groups.
We shall see that this is indeed so: but first we must develop some group
theory.

17.1 Soluble groups: examples
A group G is said to be soluble if there is a finite series of subgroups

(e) = Gn g Gn - Ic...CG1 gGo=G
such that

(i) Gi i Gj_ 1 for 1<,, i<n, and
(ii) Gi _ 1 /GI is cyclic, for 1 < i < n.

Let us consider some examples. The alternating group A3 is a cyclic
normal subgroup of E3, and E3/A3 is cyclic of order 2, so that A3 and E3 are
soluble. In E4 let G4 = {e}, G3 ={e, (12)}, G2 = N, the Viergruppe, G1-= A4
and Go = E4. Then

G4ziG3.< G2.< GlvGo

and G3/G4, G2/G3 and Go/G1 are all cyclic of order 2, while G1/G2 is cyclic of
order 3. Thus A4 and 24 are soluble.

If G is a finitely generated abelian group, generated by g1, ..., gn say, let
Gn={e} and Gj=G{g1,...,gn_j} for0<j<n. Then trivially Gja Gj_1 for
1 <j < n, and each G, _ 1 /G j is cyclic, since Gj _ 1/Gj is generated by the coset
G j + gn -j + 1. Thus every finitely generated abelian group (and in particular
every finite abelian group) is soluble.

We have seen that A3 and A4 are soluble. We shall show that the
alternating groups A,,, for n < 5, are all simple: that is, they have no non-
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trivial normal subgroups. Since these groups are certainly not cyclic, it
follows that they are not soluble.

Let us show that A, is simple for n > 5. It will be assumed that you are
familiar with the representations of permutations as products of disjoint
cycles. A,, is generated by the set S of products of two transpositions. We can
write S = { e} u B u T, where B is the set of products of two disjoint
transpositions and T is the set of 3-cycles. Now if n > 5, any element of T can
be written as a product of two elements of B: for example, (123) =
((45)(12))((23)(45)). It is therefore sufficient to show that if N is a normal
subgroup of A other than {e}, then N B.

We prove this by induction on n, for n > 4. The result is true for n = 4, since
the normal subgroups of A4 are {e}, the Viergruppe and A4. Suppose that
n > 4, that the result is true for n - 1, and that N is a normal subgroup of A,,
other than {e}. For each 1 <j <n, let Fj = {aEA,,:u(j)= j}. Each FJ is a
subgroup of A,,, isomorphic to A, . Suppose that T is an element of N other
than the identity. If T is a product of disjoint transpositions -
T = (a1 a2)(a3a4) ... say -- then

(a1 a 3)(a 2U4) = (U 1 a 2U 3)T(('1 U 3U 2)T E N.

Otherwise T contains a cycle of length greater than 2, so that we can write
T = (a,a2a3 ... ak)u. Let b be different from a1, a2 and a3. Then either T E Fb
or, setting T' = (a 2T(b))(a 1 b)T(a 1 b)(a 2r(b)), T' E N, T'(b) = T(b), while T'(T(b)) =

a3 0 T(r(b)) so that T -1 T' is an element of N n Fb other than the identity.
In either case, we conclude that there exists j such that N n Ff 0 {e}. But

N n F f is a normal subgroup of F3 and so, by the inductive hypothesis, N
contains all elements of B which fix j. But if (ij)(kl) is an element of B which
moves j, and if m is different from i, j, k and 1 then

(ij)(kl) = ((nnj)(kl))((im)(kl})((mj)(kl)) E N.

Thus N -2 B and the proof is complete.

17.2 Soluble groups: basic theory
Let us now establish some results concerning soluble groups. First

we need a general result.

Theorem 17.1 Suppose that G is a group, that H-< G, and that A is a
subgroup of G.

(i) H n Aa A, and A/(H n A) HA/A.
(ii) If H c A and A-< G, then H 4 A, A/H v G/H and (G/H)/(A/H)

G/A.

Proof. (i) If h E H r )A and a c A, a -' ha c H n A, so that H n A-< A. Let q be
the quotient mapping G - G/H, and let j: A --+ G be the inclusion mapping.
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The q j is a homomorphism of A onto HA/H with kernel H n A, so that the
result follows from the first isomorphism theorem.

(ii) Certainly Ha A, by (i). If C is a right coset of H in G, let 0(C) = AC. AC
is a right coset of A in G and a : G/H-+G/A is a homomorphism onto G/A.
The kernel is {C:C c Al = A/H, so that the result again follows from the first
isomorphism theorem.

Theorem 17.2 (i) If G is a soluble group and A is a subgroup of G then A is
soluble.

(ii) Suppose that G is a group and H v G. Then G is soluble if and only if H
and G/H are soluble.
Proof'. (i) Let {e} = G,,-< G,, _ 1 a . Go = G, such that Gi _ 1/G1 is cyclic for

1 < i < n. Let Ai = A n Gi. Then Ai = Ai _ 1 n Gi v Ai _ 1 and

Ai_1 Ai-GiAi-11Gi

by (i) of Theorem 17.1. But G1A1 -I /G1 is a subgroup of the cyclic group
Gi - 1 /Gi, so that either At - 1= At or Ai -1 /Ai is cyclic.

(ii) First suppose that G is soluble, and that {e} = Go = G, with
Gi - 1 /G1 cyclic. H is soluble, by (i). Let Hi = HGi/H. Now if Hgi E Hi and
Hgi-1 EHi-

(Hgi--1)-1HgiHgi-1=gi-1Hg1Hgi 1

Hgi--11gigi-1 c- Hi

so that Hiv Hi -I -
Let q : G -; G/H be the quotient mapping and let qi : Hi _ 1 --> Hi - 1 /Hi

denote the quotient mapping. Then q(Gi _ 1) = Hi _ 1, and qiq maps Gi _ 1 onto

HI _ 1/Hi. An element g of Gi _ 1 is in the kernel of qiq if and only if Hg E HGi;
that is, if and only if g c- HGi. The restriction of qiq to Gi _ 1 therefore has
kernel HGi n Gi _ 1 so that by the first isomorphism theorem,

Hi-1/H1 Gi-1I(HGinGi_1).

But G1-< Gi _ 1, and Gig HGi n Gi _ , so that by Theorem 17.1(ii),

Gi -1 /(HGi n Gi _ 1) (Gi -1 /Gi)l((HGi n Gi -JIG).

The right-hand side is a quotient of a cyclic group, so that either H , 1 = Hi

or Hi -1/Hi is cyclic. Thus G/H is soluble.
Now suppose that H-< G and that H and G/H are soluble. There exist

{e} = Ho = H, with Hi __ 1/Hi cyclic

and

{H} =Km < Km-1-< v Ko=G/H, with Kj -1/Ki cyclic.

Let q : G -+ G/H be the quotient mapping, and let Gj = q -1(K;) for 0,<.,j,<., m.
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If g3eGjand gj_1EG1_1

q(g; '1 gjg; -1) = (q(g;- 1)) 1 q(gj)q(g; - 1) E K;,

since Kjv K j -1, and so gi '1 g1gJ -1 E G j. Thus G ; _ 1 a G j. By Theorem
17.1(ii)

GJ_ 1/GJ!(G;--1/H)I(G;IH)=Kj-11Kp

which is cyclic. Thus the series
fe)=H"-< ...a Ho=H=Gm,©

G is soluble.

Corollary Z. is not soluble, for n>,5.
It has a subgroup (A5) which is not soluble.

Exercises

17.1 A group G is nilpotent if there is a finite series of subgroups

{e}=GcG_1...G0=G
and that each Gi is normal in G and G;/Gi + 1 is abelian for 0 < i < n.
Show that a finite nilpotent group is soluble and give an example of
a finite soluble group which is not nilpotent.

17.2 Suppose that G is a group of order p" (where p is a prime). Show
that the centre Z = {z:gz= zg for all g in G} has at least p elements,
and show that G is nilpotent.

17.3 Polynomials with soluble Galois groups
In this section we shall show that, if f is separable and has a soluble

Galois group, then, provided that we can construct enough roots of unity, f
is solvable by radicals.

Theorem 17.3 Suppose that f is a separable polynomial in K [x] whose
Galois group TK(f) is soluble, and suppose that char K does not divide 11'K(f)I.

Then f is solvable by radicals.
Proof. The proof is largely a matter of putting together results that we have
already established. Let d = ITK(f)I. If K does not contain a primitive dth
root of unity, we can adjoin one, s say. Let L = K(s). L: K is an extension by
radicals. Since char K does not divide d, L contains d distinct dth roots of
unity. Now let N : L be a splitting field extension for f over K. N : L is a
Galois extension, and by the theorem on natural irrationalities (Theorem
11.9) r(N:L)=rL(f) is isomorphic to a subgroup of rK(f). Thus T L(f) is
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soluble, by Theorem 17.2(i). This means that there exist subgroups

fe)=GrvGr_iv...vGo=TL(f)
such t hat G; - 1 /G f i s cyclic, for 1 <j < r.

We now exploit the fundamental theorem of Galois theory. Let L; be the
fixed field of G. Then

N=Lr:Lr_1:...:Lo=L.
Also I'(N:LL _ 1) = Gj _ 1, and GJ-v Gj_ 1, so that, by the fundamental
theorem,

T (L1: L3 _ 1) ^ G1 _ 1 /Gl, for 1 <j < r.

Thus LJ:L, _ 1 is a cyclic extension. Also [LJ:L1 _ 1] = IG; _ 1/G;I, so that
[Lj: LL _ 1 ] divides d : thus char K does not divide [LJ : L f _ 1 ], and L_1
contains a primitive [LL:Lj _ 1]th root of unity. By Theorem 16.4, there
exists an element f3 f in Lj such that L1= L1 - 1(I3j) and such that f3j is a radical
over L_1. Thus N :L is an extension by radicals, and so N : K is also an
extension by radicals. Since f splits over N, f is solvable by radicals.

Notice that if f eK[x] and if either char K = 0 or char K > degree f, then
f must be separable, by Theorem 10.6, and char K cannot divide ITK(f)I ,

since IFK(f)I divides (degree f )!.

17.4 Polynomials which are solvable by radicals
We now turn to results in the opposite direction. Here, the main

problem is one of normality. Suppose that
L=Lr:Lr_1:...:Lo=K

is an extension by radicals. Even if K contains sufficiently many roots of
unity, so that each of the extensions L f :L f _ 1 is normal, it does not follow
that L:K is a normal extension. We get round this difficulty by a
symmetrization argument.

Theorem 17.4 Suppose that L:K is a Galois extension, that M =L(/3), where
/1 is a root of xn - 0 (with 0 in L) and that char K does not divide n. Then there
exists an extension by radicals N : M such that N : K is a Galois extension.
Proof. Since char K does not divide n we can if necessary adjoin a primitive
nth root of unity, E say, to M. Then in M(E) [x]

x" _ 0= (x -F3)(X --EN) ... (X -n- 1a)

so that M(E):L is a splitting field extension for x" - 0 over L. As x" - 0 has n
distinct roots, M(E) : L is a Galois extension. Note also that M(E) :L =
L(fl, E) : L is an extension by radicals.

Now let G = F(L: K) and let

./ = fl (xn - 6(0)).
QEG
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Let N : M(E) be a splitting field for f over M(E): we have the following tower
of extensions:

N:M(E):M:L:K.

If /3Q is a root of x" - 6(O) in N then

xi -6(©)=(x-ag)(x-spa) ... (x-E"

thus N :L is a splitting field extension for f over L. Also, x" - 6(0) has n
distinct roots in N, for each a, so that f is separable over M(E). As M(E) : L
and L:K are both separable, this means that N X is separable, by Corollary
4 to Theorem 10.3.

We now use the symmetry of f; if T c- G, t(f) = f so that, since L : K is a
Galois extension, f e K[x]. There exists g in K[x] such that L:K is a
splitting field extension for g over K. Thus N:K is a splitting field extension
for fg over K, and so N:K is normal.

Finally observe that N is obtained from M by first adjoining E and then
adjoining the roots of x" -a(0), for u in G, and so N:M is an extension by
radicals.

We now apply this to extensions by radicals.

Theorem 17.5 Suppose that

L=Lr:Lr_ 1:...:Lp = K

is an extension by radicals, with Li = Li -I (fli), where fii is a root of x"i - of
(with of E Li - 1). Then if char K does not divide n1 n2 ... n, there exists an
extension M :L such that MX is a Galois extension by radicals.
Proof. We prove this by induction on r. The result is trivially true when
r = 0. Suppose that the result holds for r - 1. Then there exists an extension
Mr- 1: Lr _ 1 such that Mr _ 1 :K is a Galois extension by radicals.

Let mr be the minimal polynomial for Pr over Lr _ 1, and let nr be an
irreducible factor of mr, considered as an element of Mr - 1 [x]. By Theorem
7.2, there is a simple algebraic extension Mr _ 1(y) : Mr such that nr(y) = 0.
Since this means that mr(y) = 0, it follows from Theorem 7.4 that there is a
monomorphism i from L = Lr _ 1(fr) into M,,-,(y), fixing L,,-,, such that
0r) = y. In other words, identifying L with i(L), we can suppose that L and
Mr _ i are both subfields of Mr _ 1(fr)

We apply Theorem 17.4 to the Galois extension Mr _ 1: K and Mr _ 1(fir),
and conclude that there is an extension Mr:Mr_ 1(fr) by radicals such that
Mr : K is a Galois extension. We have the following diagram:
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Mr

f

Mr-- 1(fir)

L = Lr = Lr - 1(f 3r) M r -1

Since each of the extensions Mr:Mr_ 1(Nr), Mr_ 0r):Mr - 1 and Mr_
1
:K is

an extension by radicals, so is Mr:K.
Notice that the conditions on char K are also satisfied by the extension

M X.

Theorem 17.6 Suppose that

L=Lr:Lr_1:...:L0=K
is an extension by radicals, with Li = Li - 1(131), where /i is a root of x"i - ei
(with 9j in Li - 1), and that char K does not divide n1 ... nr. l f f E K[x] splits
over L, then the Galois group I'K(f) is soluble.
Proof. By Theorem 17.5 and the remark following it, we can assume that
L:K is a Galois extension.

For each 1 < i < r, L : Li is a Galois extension (Corollary 2 to Theorem 9.1,
and Theorem 10.1): x" i - Oi has a root f.3i in L, and so it splits over L. This
means, by Theorem 16.1, that L contains a primitive njth root of unity. Let n
be the lowest common multiple of n1, ..., nr: then L contains a primitive nth
root of unity, s say.

Now let L'= Li(E), for 0 < i < r. Then we have the following tower of
extensions:

L=Lr:Lr-1:...:Lo = L0(E):L0 = K.

We shall show that G = F(L : K) is soluble. Let Gi = F(L : L'), for 0 < i < r. As
L ' :Li _ 1 is a splitting field extension for x"i - Oi over Li - 19 Li :Li - 1 is cyclic,

and so by the fundamental theorem of Galois theory Gj 3 Gi _ 1 and
Gj _ 1/Gi ' F(L':Li _ 1). Thus Go = T(L:Lo) = F(L:K(E)) is soluble. Now E is a
primitive nth root of unity, so that K(E) : K is a splitting field extension for
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xn --1, and r(K(s) : K) is abelian (Theorem 15.4), and therefore soluble. By
the fundamental theorem of Galois theory,

r(K(E):K): F(L:K)/r(L:K(E))= GIG 0

so that GIGO is soluble. Consequently G is soluble, by Theorem 17.2.
Remember that f splits over L. Let N : K be a splitting field extension for

f over K, with N c L. The extension N :K is normal; using the fundamental
theorem of Galois theory once again,

rK(f)
an example, we have seen that the quintic x5 --4x + 2 is irreducible

over 0, and has Galois group Z5. E5 is not soluble, and so x5 -- 4x + 2
cannot be solved by radicals!

Exercise

17.3 Let Lo = 0, L1 = C(31/2)9 L2 = 4 ((31 /2 + 1)1/2). Show that L1 :Lo
and L2:L1 are both normal extensions but that L2 :LO is not
normal. Find the minimal polynomial of (31/2+ 1)1/2 over 0, and
find its Galois group.

17.4 Let f be an irreducible cubic in K [x], where K is a subfield of It
Show that f has three real roots if and only if its discriminant is
positive.

17.5 Suppose that K is a subfield of ll and that f is an irreducible cubic
in K [x] with three real roots. Suppose that L = K(r), where r E R
and rp E K for some prime p. Show that f is irreducible over L.

17.6 Suppose that K is a subfield of 11 and that f is an irreducible cubic
in K [x] with three real roots. Show that if L : K is an extension by
radicals with L R then f is irreducible over L. (It is not possible
to solve f only by extracting real roots!)

17.7 Give an example of a polynomial in G [x] which is solvable by
radicals, but whose splitting field is not an extension by radicals.
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Transcendental elements and
algebraic independence

18.1 Transcendental elements and algebraic independence
In this chapter, we leave the study of algebraic extensions, and

consider problems concerning transcendence.
Suppose that L:K is an extension and that a E L. Recall that a is

transcendental over K if the evaluation map Ea : K [x] -4L is one-one; that
is, a satisfies no non-zero polynomial relation with coefficients in K.

T h e o r e m 18.1 Suppose that L:K is an extension and that a EL is
transcendental over K. Then the evaluation map Ea can be extended uniquely
to an isomorphism Fa from the field K(x) of rational expressions in x over K
onto the field K(a).
Proof. The proof should be quite obvious: here are the details.

Remember that the field K(x) is obtained by considering an equivalence
relation on K [x] x (K [x])* (see Section 3.2).

Suppose that (f, g) e K [x] x (K [x])*. As a is transcendental over K,
&):00, and we can define G2(.f, g) = f(a)(g(a)) -1. If (f, g) (f', g') then
f9' = f'9 in K [x], so that f(a)g'(a) = f'(a)g(a) and Ga(, f, g) = Ga(f', g'). Thus
G. is constant on equivalence classes: we can therefore define Fa(f/g) =
Gx(f, g). It is straightforward to verify that Fa is a ring homomorphism.
Since Fa(x) = Ea(x) = a, Fa(K(x)) -QK(a). On the other hand, if f /g E K(x),
Fa(f /g) = f(a)(g(a)) -' E K(a), and so FjK(x)) = K(a). Finally if F, is another
monomorphism which extends E, the set

{r e K(x): Fa(r) = Fx(r))

is a subfield of K(x) which contains K [x]; it must therefore be the whole of
K(x), and so F,, is unique.

We now generalize the idea of a transcendental element. Suppose that
L : K is an extension and that A = {o,.. ., a } is a finite subset of L (where
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a1, . , a are distinct). Any element f of K[x1, ..., xn] can be written in the
form

M

f = k jx i ... xnn.j
j=

where k j e K for 1 <j < m, and di, j is a non-negative integer for 1 < i < n,
1 <j <m. We define the evaluation map EA from K[x1, ..., xn] into L by
setting

m

EA(f)= kjail,j ... anAl.

j=1

It is easy to see that EA is a ring homomorphism. We shall frequently write

EA(f) as f(ai, ..., an).
We say that A is algebraically independent over K if EA is one-one: that is,

there is no polynomial relation, with coefficients in K, between the elements
al, ..., an. Thus a one-point set {a} is algebraically independent over K if
and only if a is transcendental over K.

We say that an arbitrary subset S of L is algebraically independent over
K if each of its finite subsets is algebraically independent over K.

The proof of the next result is exactly similar to the proof of Theorem
18.1: this time we omit the details.

Theorem 18.2 Suppose that L:K is an extension and that A= {;,.. ., (Xn} is

algebraically independent over K. Then the evaluation map EA can be
extended uniquely to an isomorphism FA from the field K(x1,..., xn) of
rational expressions in x,,.. -, xn onto the field K(a1,...,

The next theorem is again very easy: it gives a useful practical criterion for
a finite set to be algebraically independent over K.

Theorem 18.3 Suppose that L:K is an extension and that a1, ..., an are
distinct elements of L. Let K0 = K, K, = K(a1, ..., a;) for 1 <i <n. Then A =
{al, ..., an} is algebraically independent over K if and only if a; is
transcendental over K; _ 1, for 1 < i < n.
Proof. Suppose that a; is algebraic over Ki _ 1. Thus

f(a;)=ko+kla;+ . +krai =0

for some non-zero f in K. _ 1 [x]. We can write each k j as

where the pj and qj are in K[x1, ..., xi _ 1] and the gj(a1, ..., a;_ 1) are non-
zero. We clear the denominators. Let

lj=pj rngk 'for0<j<r.
k#j
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Then each 1j is in K[x1, ... xj_ 1] and

g=lo+llxl + ... +lrx!t
is a non-zero element of K [x 1, ... , xj] . As g(a 1, ... , ai) = 0, A is not
algebraically independent over K.

Conversely suppose that {;,. . ., a,,} is not algebraically independent
over K. There exists an index j such that {cx1,. . ., a; _ 1 } is algebraically
independent over K, while {cx,. . ., a;} is not. Thus there exists a non-zero g
in K [x 1, ... , xj] such that g(a 1, ... , a;) = 0. Grouping terms together, we can
write

g=ko+klxj+ +krxl

where k1eK[x1,...,xj_1] for 0<i <r. Let
h=ko(al,...,aj_1)+ki(al,...,aj_1)x+ ... +kr(ai,...,aj_1)xr.

Then h e K; _ 1 [x], and h is non-zero, since {al, ..., a; _ 1 } is algebraically
independent over K. As h(a j) = 0, a; is algebraic over K;_ 1.

Exercises

18.1 Suppose that L:K is an extension, and that {cx1,. . ., as} is

algebraically independent over K. Show that if fi e K(a1, ..., as) and
# O K then fi is transcendental over K (cf. Exercise 5.3).

18.2 Suppose that K(a) : K is a simple extension and that a is
transcendental over K. Show that if z is an automorphism of K(a)
which fixes K then there exist a, b, c and d in K with ad be such
that

z(a) = (aa + b)/(ca + d).

Conversely show that any such a, b, c and d determine an
automorphism of K(a) which fixes K.

18.3 Suppose that K(a) : K is a simple extension and that a is
transcendental over K. Let a be the automorphism of K(a) which
fixes K and sends a to 1/(1-- a). Verify that a' is the identity, and
determine the fixed field of a.

18.4 Suppose that K(a) : K is a simple extension, that a is transcendental
over K, and that char K is an odd prime p. Suppose that 1 <n <p.
Let z be the automorphism of K(a) which fixes K and sends a to na.
Determine the fixed field of T.

18.2 Transcendence bases
We now introduce an idea which corresponds in many ways to the

concept of basis of a vector space. Suppose that L:K is an extension. Let 5
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denote the collection of all subsets of L which are algebraically independent
over K. We order I by inclusion. An element S of 5 which is maximal in
this ordering is called a transcendence basis for L over K.

The next result characterizes transcendence bases.

Theorem 18.4 Suppose that L:K is an extension and that S is a subset of L.
Then S is a transcendence basis for L over K if and only if S is algebraically
independent over K and L:K(S) is algebraic.
Proof. Suppose that S is a transcendence basis for L over K. Suppose that a
is an element of L which is not in S. By the maximality of S, S u {a} is not
algebraically independent over K, so there exist distinct sl, ..., s in S and a
non-zero f in K[xo, ..., such that

f as

ko+k,xo+ +kjxo,

where for 0<i<j, and k1960. Now is
algebraically independent over K. From this we conclude first that j > 1 and
secondly that kj(si, ..., sn) # 0. Now

ko(si,...,sn)+ki(si,...,sn)+... 0:

since kj(si, ..., e K(S), this means that a is algebraic over K(S), and that
L : K (S) is algebraic.

Conversely, suppose that S is algebraically independent over K and that
L:K(S) is algebraic. If a is an element of L which is not in S, a is algebraic
over K(S), so there exists a non-zero

in K(S)[x] such that g(a) = 0. Each coefficient ki involves only finitely many
elements of S, and so there exists a finite subset {5i'. . ., s,=} of S such that
kje K(si, ..., for 0 <i <j. Thus a is algebraic over K(si,..., and so

fs1l....) s,,, a} is not algebraically independent over K, by Theorem 18.3.
Consequently S u {a} is not algebraically independent over K, and S is
maximal.

Just as every vector space has a basis, so does every extension L : K have a
transcendence basis. As in Theorem 2.1, we prove rather more.

Theorem 18.5 Suppose that L : K is an extension, that A is a subset of L such
that L : K(A) is algebraic and that C is a subset of A which is algebraically
independent over K. Then there exists a transcendence basis B for L over K
with C c B c A.
Proof. The proof is very similar in nature to the proof of Theorem 2.1.
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Indeed, if we replace the phrase `linearly independent' by `algebraically
independent over K', we obtain a proof of the fact that there is a set B which
is maximal among those which contain C, are contained in A and are
algebraically independent over K.

The argument of Theorem 18.4 now shows that each element a of A is
algebraic over K(B), and so K(A):K(B) is algebraic, by Corollary 2 to
Theorem 4.6. As L:K(A) is algebraic, L:K(B) is algebraic (Theorem 4.7) and
so B is a transcendence basis for L over K, by Theorem 18.4.

Consider the extension R :Q. If S is any countable subset of 0, 0(S) is
countable. If R:0(S) were algebraic, D would be countable (Exercise 4.7).
Thus any transcendence basis for D over 0 must be uncountable.

Note that, on the other hand, it follows from Theorem 18.5 that if L :K is
finitely generated over K then there must be a finite transcendence basis for
L over K.

Exercise

18.5 Suppose that L : K is an extension, and that L is finitely generated
over K. Show that the field Ka of elements of L which are algebraic
over K is finitely generated over K.

18.3 Transcendence degree
We now pursue further the parallelism with vector spaces. First we

establish a version of the Steinitz exchange theorem (Theorem 1.3).

Theorem 18.6 Suppose that L:K is an extension, that C = {ci, ..., cr} is a
subset ofL (with r distinct elements) which is algebraically independent over K
and that A = {a1,. . ., aj is a subset of L (with s distinct elements) such that
L:K(A) is algebraic. Then r < s, and there exists a set D, with C c DE- A u C
such that IDI = s and L:K(D) is algebraic.
Proof. We prove this by induction on r. The result is trivially true for r=0
(take D = A). Suppose that it is true for r -1. As the set Co = {c1,.. ., cr _ i } is
algebraically independent over K, there exists a set Do with
Co c Do c A u CO such that ID0I = s and L: K(D0) is algebraic. By relabelling
A if necessary, we can suppose that

Do ={ci,...,cr_ I.ar,ar+i,...,as}.
As L:K(D0) is algebraic, cr is algebraic over K(D0). As {c1,. . ., cr} is
algebraically independent over K, Cr is transcendental over K(ci, ..., Cr_
(by Theorem 18.3). Thus s > r. Also, by Theorem 18.3 again,

E={ci,...,Cr_i,Cr,ar,ar+i,...,as I
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is algebraically dependent over K. Using Theorem 18.3 once more, and
using the fact that {c1,.. ., er} is algebraically independent over K, we
conclude that there exists t, with r < t < s, such that at is algebraic over
K(ci, ..., cr, ar, ..., at _ i). Let D= {ci, Then
ar is algebraic over K(D), and so K(E):K(D) is algebraic. As E -2 Do, L:K(E)
is algebraic, and so L : K(D) i s algebraic, by Theorem 4.7. As C E- D A U C
and IDS = s, this completes the proof.

Corollary If L:K is an extension, and S and T are two transcendence bases
for L over K then either S and T are both infinite or S and T have the same
finite number of elements.

If an extension L : K has a finite transcendence basis, we define its
transcendence degree to be the number of elements in the transcendence
basis; otherwise we define the transcendence degree to be oo.

18.4 The tower law for transcendence degree
Suppose that M:L and L:K are extensions. How is the

transcendence degree of M : K related to the transcendence degrees of M :L
and L :K?

Theorem 18.7 Suppose that M:L and L:K are extensions, that A is a subset
of L which is algebraically independent over K and that B is a subset of M
which is algebraically independent over L. Then A u B is algebraically
independent over K.
Proof. Let C be a finite subset of A u B. We can write

C={ai,...,ar,#i,...,Ysi
with ai e A, f3J a B. By Theorem 18.3, oci is transcendental over K(ai,..., ai _ 1)

for 1 <i <r and f31 is transcendental over L(fli, ...,#j-,) for 1 <j <s, and so
f3 is transcendental over K(ai, ..., ar, f3 , ..., f3 - i) for I <j <s. Thus C is
algebraically independent over K, by Theorem 18.3. Since this holds for any
finite subset of A u B, A u B is algebraically independent over K.

Theorem 18.8 Suppose that M:L and L:K are extensions, that A is a
transcendence basis for L over K and that B is a transcendence basis for M
over L. Then A u B is a transcendence basis for M over K.
Proof. By Theorems 18.4 and 18.7 it is enough to show that M: K(A u B) is
algebraic.

Since A is a transcendence basis for L over K, L:K(A) is algebraic. Since
K(A) g K(A u B), it follows that K(A u B)(L):K(A u B) is algebraic. As
K(A u B)(L) = L(B), this means that L(B) : K(A u B) is algebraic. But B is a
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transcendence basis for M over L, and so M:L(B) is algebraic. Thus
M : K(A u B) is algebraic, by Theorem 4.7.

Corollary If M:L and L:K are extensions, the transcendence degree of
M : K is the sum of the transcendence degrees of M : L and L : K.

18.5 Liiroth's theorem
Suppose that L:K is a finitely generated extension which has

transcendence degree r. If ai, ..., ar is a transcendence basis for L over K,
then L:K(al,..., a,) is finite. If we can find a transcendence basis al, ..., a,
for L over K such that L = K(a1, ..., ar), then we say that L is purely
transcendental over K. Even in particular cases, it is not easy to determine
whether a finitely generated extension is purely transcendental or not (see
Exercises 18.6 and 18.7 below). There is, however, one case where the
problem case be solved in a straightforward way. The proof involves
polynomials in two variables: first make sure that you are familiar with the
contents of Section 3.7.

Theorem 18.9 (Luroth's theorem) Suppose that K(t): K is a simple extension
and that t is transcendental over K. If L is a subfield of K(t) containing K then
L : K is a simple extension.
Proof. We clearly need only consider the case where L is different from both
K and K(t). Ifs E L\K, we can write s = p(t)/q(t) where p and q are non-zero
polynomials in K [x]. Then q(t)s - p(t) = 0, and t is algebraic over L. Let m be
the minimal polynomial of t over L. We can consider m as an element of
K(t)[x]; by Theorem 3.11, there exists fI in K(t) such that fim = f, where

f = ao(t) + a I (t)x + ... + an(t)xn

is a primitive polynomial in K[t] [x]. Note that

n=degree m= [K(t):L].

Since m is monic, f3 = an(t) and the terms are all in L; on the other
hand, they are not all in K, since t is transcendental over K. There therefore
exists i, with 0 < i < n, such that u = a;(t)/an(t) E L\K. We can write u as
g(t)/h(t) where g and h are relatively prime polynomials in K[t].

Let r = max (degree g, degree h).

Then [K(t):K(u)] = r (Exercise 5.3). As K(u) c L, this means that r,>,, n. It
also means that it is sufficient to show that r ,<n, for then it follows that
L = K(u).

We now consider the expression

1 = g(t)h(x) - h(t)g(x).
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As g and h are relatively prime, I is non-zero. Now (h(t))-'lc-L[x], and
(h(t)) `1 has t as a root: thus m divides (h(t)) `1 in L[x]. This implies that f
divides I in K(t)[x]. As f is primitive in K [t] [x]. It follows from Corollary 1
to Theorem 3.13 that f divides I in K [t] [x]. Thus there exists j in K [t] [x]
such that I = f j.

We can consider f, I and j either as elements of K[t] [x] or as elements of
K [x] [t] : let us denote the degree in x by degx and the degree in t by degr.

Now degr(!) < r and degr(f) > r: since f= 1j, degr(!) = degr(f) = r and
degr(j) = 0. In other words, we can consider j as an element of K [x]. In
particular, this means that j is primitive in K [t] [x], and so by Theorem 3.12
! = f j is primitive in K [t] [x]. As ! is skew-symmetric in t and x, this implies
that ! is primitive in K[x] [t]. But j e K[x], and j divides !; thus j must be a
unit in K [x], and so j E K. Consequently

n = degx(f) = degx(l) = degr(!) = degr(f) > r,

and the theorem is proved.
Does Luroth's theorem extend to purely transcendental extensions of

higher transcendence degree? It can be shown that if tl and t2 are
algebraically independent over an algebraically closed field K, and M is a
subfield of K(tl, t2) for which K(ti, t2):M is finite and separable, then M is
purely transcendental over K. It can also be shown that a corresponding
result does not hold for extensions of transcendence degree 3. These results
involve polynomials in several variables in a more fundamental way than
does Luroth's theorem. The results really belong to algebraic geometry:
they are discussed, for example, in the book by Hartshorne.'

Exercises

18.6 Suppose that K(x, y) : K is an extension with x transcendental over
K and x2 + y2 = 1. Show that K(x, y) = K(u), where u = (1 + y)/x.

18.7 Suppose that n>,3, that K(x, y) : K is an extension with x
transcendental over K and xn + Y'= I and that char K does not
divide n. Suppose if possible that K(x, y) = s.

(i) Show that there are relatively prime polynomials f, g and h in
K[x] such that max (degree f, degree g, degree h)>, I and
fn+gn=h"

(ii) Show that

f n -' I (hDg -gDh) and gn -' 1(hDf --- f Dh),

and show (by considering degrees) that this is not possible.

' R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
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Some further topics

In this chapter, we shall consider three further topics. Each has independent
interest, and also shows how the theory that we have developed so far can
be applied.

19.1 Generic polynomials
When we considered cubic polynomials, we saw that a variety of

possibilities can arise. Some depend on the original field K: whether or not
K contains cube roots of unity, for example. Others depend on special
relationships between the coefficients: these can confuse the issue, and it is
sensible to consider polynomials where this cannot happen.

Suppose that K is a field. Let K(a 1, ...,a,,): K be an extension such that
{a1,.. ., an} is algebraically independent over K. Then the generic (monic)
polynomial of degree n over K is the polynomial

x" - a 1 x" - 1 + ...+ (_ 1)"a,,.

Note that this is an element of K(a1, ..., [x], and not an element of K [x].
Note also that, since {a1,.. ., is algebraically independent over K, there
is no relationship between the coefficients: they are quite general.

We can also consider polynomials with general roots. Let K(t1, ..., tn):K
be another extension such that {t1,. . ., is algebraically independent over
K. Then we consider the polynomial

Again, this is an element of K(t1,..., tn)[x], and not an element of K[x]. We
can write

f =(x-tl)... (x-t,,)=x"-s1x"-1 +... +(- 1)"Sn9
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where
s1=tl+...+tn,

s2 = E titj,
1<i<j<n

Sn =tit 2 ... tn.

The expressions si, ..., sn, considered as elements of K[t1, -.., t.], arc the
elementary symmetric polynomials in n variables.

Suppose now that a is a permutation of { 1, ..., n}. Then a determines an
automorphism of K(ti, ..., tn):

fit1, ..., tn) f(t6(i), ..., t6(n)).if a = then a(a) _
g(t1, ..., tn) g(t'(1), ..., t6(n))

Let G be the group of all such automorphisms, and let L be the fixed field of
G. Then, by Theorem 11.3, K(t1, ..., tn):L is a Galois extension, with Galois
group G.

Theorem 19.1 L = K (s 1, ... , sn).
Proof. We can consider f as an element of K(s1,... , sn) [x]. Then
K(t1, ..., t) :K(s1, ..., s") is a splitting field extension for f, and so
[K(t1, ..., tn):K(si, ..., sn)] <n!, by Theorem 7.3. But clearly
K(s1,..., sn) c L and [K(t1,..., t"):L] = n! : it therefore follows that L=
K(s 1, . . ., sn).

Corollary f is irreducible over K(s1,..., sn) and F f Lit, the group of
permutations of {1,.. .,n}.

Theorem 19.2 The elementary symmetric polynomials s1, ..., sit are
algebraically independent over K.
Proof. The transcendence degree of K(t1, ..., t"):K is n. As K(t1, ..., tit):
K(s1, ..., sn) is algebraic, {s1,. . ., sn} contains a transcendence basis for
K(t1, ..., tn) over K, by Theorem 18.5. This must have n elements, by the
corollary to Theorem 18.6, and so it must be the whole of {s1,. . .,sn}.

By Theorem 18.2, this means that there is an isomorphism of K(ai, ...,
onto K(s i , ... , sn), which sends ai to si (for 1 < i < n) and which sends the
generic polynomial x" - a 1 x" + . + ( --1)"an to f. Thus f has the same
properties as the generic polynomial. Summing up:

Theorem 19.3 The generic polynomial
xn _ a i xn - i + ... +(- Onan
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is irreducible over K(al,..., a,,). It is separable, and its Galois group is
isomorphic to X,,. It is solvable by radicals if and only if n <4.

We say that a polynomial f in K [t1, ..., tn] is symmetric if c(f)=f for
each a in G. It follows from Theorem 19.1 that if f is a symmetric
polynomial then f can be expressed as a rational expression in se,.. ., s,,.

This is clearly not a satisfactory result: let us improve on it.
Let us set M o = K(s 1, . . ., s,,) and for 1 <j < n let

Mj=Mo(t1) ..,tj)=Mj-1(t).
Thus

K(t1, ..., tn)= 1:...:Mo= K(s1,..., sn)

Now let
j n

f j = fl (x - ti) and g j= fl (x - ti).
i= 1 i=j+1

Then f'3 E K [t 1, ... , t j] [x] and f jg j E K [s 1, ... , sn] [x] so that, by Lemma
15.2,

g j E K[s1, ..., s,,, to- .., tj] [x] c MAX].

Now t j+ 1 is a root of g j and so

[Mj + 1 :Mj] = [Mj(tj + 1): Mj] <n -j.
But [Mn:M0] = [K(t1, ..., tn):K(s1, ..., sn)] = n!, and so it follows from the
tower laws that [M, + 1: M j] = n -j, for 0 <j < n. In particular, this means
that g j is the minimal polynomial of t j + 1 over M j, and that

11,tj+1,...,tj+1_

is a basis for Mj+ 1 over Mil
We now show inductively that if f E K[s1, ..., sn, t1, ..., tj] then f can be

written uniquely in the form

.! = E pi 1 . i1til ... t
where each pi, ...i. is in K[s1, ..., sn], and summation is over all multi-indices
i 1, ... , i j, where 0 < ik < n - k for 1 < k <j. The result is trivially true for j = 0.
Suppose that it is true for j and that f e K [t1, ..., t j + 1]. As g j is the minimal
polynomial for t j + 1 over M j and g j c- K [s 1, ... , sn, t 1, ... , t j] [x], we can write

tj+1 =QO-f-Qitj+1 + ... +an_ j_1tj+i-1

where the coefficients ak are in K[s1, ..., sn, t1, ..., ti]. Substituting for t1+ i
in f wherever it occurs, and repeating the procedure if necessary, it follows
that we can write

f =bo+bItj+1+...+bn_jtin -1

where the coefficients bk are in K[s1,..., s,,, t1, ..., tj]; further as 1.
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t1 + 1, ..., t + i -1 is a basis for M+ 1 over M1, this expression is unique. The
result now follows, by applying the inductive hypothesis to the coefficients

bk
As an immediate consequence, we have

Theorem 19.4 If f is a symmetric polynomial in K [t 1, ... , tn], there exists a
unique g in K[xi, ..., xn] such that

f(ti , . . ., tit) = g(S1, . .., Sn)

This result can also be proved directly by elementary methods (Exercise
19.2). Note also that if f is a symmetric polynomial in l[t1, ..., tn] then
gE71[x,,...,xn].

Corollary Suppose that

h= x"-aixn-1+...+(-- 1)nan
is a monic polynomial in K[x], with roots ai, ..., an in some splitting f eld
extension. If f is a symmetric polynomial in t1,.. . , to then

f(ai, ..., an) = 9(al, ...,

(where g is the polynomial of the theorem).

Exercises

19.1 Let Gi be the subgroup of G which fixes ti, ..., t1. Show that M1 is
the fixed field of Gi.

19.2 Suppose that f E K[ti, ..., Suppose that at''... tnn and
ball ... ?nn are two terms in f (with ki> 0, l > o). There is a least
integer j such that kl :A 11. We say that bt111... t;= follows at,' ... tkn if

ll > k j, for this j. This defines a total order on the terms of f (the
lexicographic order). The last term is called the principal term of f.

Suppose that f is symmetric and has principal term atki' ... en;.

(i) Show that k1 > k2 > > kn.

(ii) Show that as', -k2 ... Sit;--1-k. snn has the same principal term as

f
(iii) Show that f can be written as F(si,..., sn), where

FEK[x1,...,Xn].
(iv) Show that the expression in (iii) is unique.

19.2 The normal basis theorem
Suppose that L : K is a Galois extension, with Galois group G =

{dl, ..., CO. We know that L is an n-dimensional vector space over K. The
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normal basis theorem asserts that we can find a basis for L over K in terms
of 6,, ..., 6n.

We begin by establishing a result concerning infinite integral domains.

Theorem 19.5 Suppose that R is an infinite subset of an integral domain S
and that f is a non-zero element of S[x1, ..., xn]. Then there exists (r1, ..., rd
in Rn such that f(r1, ...) rn) 0.

Proof. We prove this by induction on n. In the case where n = 1, f has only
finitely many roots in F, the field of fractions of S, and so f has only finitely
many roots in S: since R is infinite, there exists r in R such that f(r)O.

Suppose that the result is true for n - 1. S[x1] is an infinite integral
domain, and we can consider f as a non-zero element of S[x1] [x2, ..., xn].
By the inductive hypothesis, there exist r2, . . ., rn in R such that
f(x1, r2, ..., rn) is a non-zero element of S[x1]; by the case where n = 1, there
exists r, in R such that f(rl,..., rn) 0 0.

We now come to the normal basis theorem. Because we use Theorem 19.5
in the proof, we shall prove this only for infinite fields. The result is true for
extensions L:K where L and K are finite, but the proof, which exploits the
fact that such an extension is cyclic, involves properties of endomorphisms
of vector spaces which it is unreasonable either to expect the reader to know
or to develop here.

Theorem 19.6 (The normal basis theorem) Suppose that K is an infinite
field, and that L:K is a Galois extension, with Galois group G = {c1,.. ., 6n)

Then there exists I in L such that (Q1(I), ..., Qn(l)) is a basis for L over K.
Proof. By relabelling G if necessary, we can suppose that o1 is the identity.
Let us define p(i, j) by the formula

Qi6 j = Q p{i,j)

for 1 i < n, 1 <j < n. Let x 1, ... , xn be indeterminates and let M be then x n
matrix (xp(i, j)). In

- 1 with entries in K [xl, ..., xn]. Let f = det M. Then
f c- K [x1, ..., xn], and f is non-zero, since x, occurs once in each row and
once in each column, and so the coefficient of xi is 1 or - 1.

Now let (b1, ..., bn) be a basis for L over K. By Theorem 11.2 the n
trajectories

(T(bj)); =1 = ((aj(bj)) = 1)% 1

are linearly independent over L in Ln: in other words the n x n matrix
(o (b j))= _ 1,1 _ , is invertible; let C = (cij) be its inverse.

We now set

9(x1, ..., xn) = f(yj 61(b1)xj, ..., jj Q(bj)xj).
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Since
fix 1, ... , X11) = 9(Ej c 1 jX;, ... , >J c1=1X) ,

g is a non-zero element of L[x1,..., By Theorem 19.5 this means that
there exist k15.. ., k in K such that g(k1, ...,

k 1 + + ky,b,,. Then

0 :Ag(k 1, ... , kn) = f(E 61(b j)k;, ... , Y;

o (l))

= det((op(; 0(l))) = det((cr (c j(1)))).

This means that the matrix (6j(aj(l))) is invertible, and so by Theorem 11.2
(ai(l), is a basis for L over K.

Exercise

19.3 Show that the primitive nth roots of unity over 0 form a normal
basis for the splitting field of x" -1 over 0 if and only if n has no
repeated prime factors.

19.3 Constructing regular polygons
We end this chapter by considering ruler-and-compass

constructions again. We consider the following problem: given an integer
n > 2, can we construct a regular polygon with n sides of unit length, using
ruler and compasses alone? Let us say that an integer n is possible if this can
be done. Using the results of Chapter 6 (and its exercises) it should be clear
that 3, 4, 5, 6, 8 and 10 are possible, while 7 and 9 are not. Note that if n is
possible then so is 2n, for we can certainly bisect angles.

Suppose that n is an integer greater than 2. We set 0 = 27r/n,

9,,, y,, = sin 0,,, sin of=e'Dn.

The complex number E is a primitive nth root of unity in C. It is clear that
(x,,, is constructible if and only if we can construct an angle 0,,, and it is
equally clear that if we can construct angles 0 and 0 then we can construct
angles 0 + 0 and 10 - 01. Suppose that m and n are possible and that m and n
are relatively prime. Then there exist integers a and b such that am + bn =1;
multiplying by 2m/mn, it follows that a© + bom = o,,,,,, so that mn is possible.
It is trivially true that if 1 is possible then so are all its divisors: in particular,
if mn is possible, so are m and n. We therefore have the following:

Theorem 19.7 Suppose that n = 2`p1al ... prr, where pi ... pr are distinct odd
primes. Then n is possible if and only if pb is possible for I < b < aj, 1 < i < r.

This result reduces the problem to determining when p6 is possible, when
p is an odd prime.
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Theorem 19.8 Suppose that p is an odd prime. Then n = pb is possible if and
only if b = 1 and p is of the form 2k + 1.
Proof. First suppose that n is possible. Then (x, yn) is constructible, and so
[Q(x,,, yn):1l] = 2r for some r, by Theorem b.1. By the tower law,

[Q(xn, yn, i) : a] = [Q(xn, yn, i) : Q(xn, y)] [Q(xn, yn) =Q]
=2r+1.

as E E0(xn, yn, i), [Q(Cn):Q]=2s for some s.
Now, if n = p" is possible for some b > 2, then m = p2 is possible, and so

Mem):Q] = 2s, for some s. There is one primitive first root of unity, and p -1
primitive pth roots of unity, and so there are p2 - p = p(p-1) primitive mth
roots of unity. Thus the cyclotomic polynomial 0m has degree p(p - 1). But
'm is irreducible over 0 (Theorem 15.3), and is the minimal polynomial for
E,, over 0, so [0(Em) : 0] = p(p - 1). This is not of the form 2s: we conclude
that b =1 and that n = p. But 0p has degree p - 1, and so p is a prime of the
form 2s + 1.

Conversely suppose that n = 2S + 1 is prime. Then [Q(E,,) : 0] = 2s, 0
is a splitting field extension for 0n, and G =F(0(En):0) is cyclic of degree 2s,
by the corollary to Theorem 15.4. Let a be a generator for G. Then, if
0 < t <s, the group Gr generated by a2S-' has order 2, and so there are
intermediate groups

jej = Gs c Gs- 1 c ... c Go = G, with lGjlGj- 11 =2, for 1 < j < s.

Let Lj be the fixed field for Gj. Then

-1 : . .1 :...:LO= 0

is a tower of fields, and [Lj:Lj _ 1] = 2 for 1 <j <s.
We shall show that if z c- 0(En) and z = x + iy then (x, y) is constructible.

We use induction on j. The result is true for elements of Lo= 0. Suppose
that it holds for all elements of Lj _ 1 and that O= a1 + ia2 E LJ\Lj .

Then
the minimal polynomial ma for a over L, _ 1 is a quadratic in L j _ 1 [x] :

ma=x2+2bx+c.

Thus c x= - b + v, where v2 = µ = b2 - c e L j _ 1. Let us set b=b, +ib2, V=
v1 + iv2 and µ = µ 1 +iµ2 = re'H. By the inductive hypothesis, (91,92) is
constructible: from this we can successively construct (r, 0), (r112, 0) and
(r1/2 cos(0/2), r112 sin(0[2)) (since we can bisect angles). As (v1, v2) =
+ (r1 /2 cos(0/2), r112 sin(8/2)) and as (b1, b2) is constructible, by the inductive
hypothesis, this means that (a1, a2) is constructible. This establishes the
induction. This means that (xn, yn) is constructible (where E = xn + iyn) and
so n is possible.

Primes of the form 2k + 1 are known as Fermat primes. If 2k + 1 is a
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Fermat prime, k must be of the form 2': for if k = st, with s odd and greater
than 1,

2'1+ 1=2S1+ 1=(21+ 1)(2`{5-1)-2res-2)+. .. + 1).

The only known Fermat primes are 3, 5, 17, 257 and 65 537, which
correspond to k = 0, 1, 2, 3 and 4. It has been shown, using computers, that if
any other Fermat primes exist they must be larger than 1040000. To sum up:

Theorem 19.9 (Gauss) It is possible to construct a regular polygon with n
sides if and only if n is of the form 2rp1 ... pr, where t > 0 and p1...., pr are
distinct Fermat primes.
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The calculation of Galois groups

In Chapter 17, we saw that (provided that certain assumptions are made
about the character of the underlying field) a polynomial is solvable by
radicals if and only if its Galois group is soluble. This result raises many
questions. Given an irreducible separable polynomial in K[x], can its
Galois group be determined? Given an integer n, what are the possible
Galois groups of an irreducible separable polynomial of degree n in K[x]?
Given a finite group G and a field K, does there exist an irreducible
separable polynomial in K[x] whose Galois group is isomorphic to G? In
particular, what are the answers when K is the field Q of rational numbers?

20.1 A procedure for determining the Galois group of a polynomial
Suppose that K is a field. Let tt, ..., tn, x1, ..., xn be indeterminates. If a e f,,,
let a denote the permutation of t1, ..., to which sends t= to ta(i) for I < i < n,
and let ax denote the permutation of x1, ..., xn which sends xi to xa(i) for
I,< i < n. We first consider the polynomial

P = fl (y - (t1 xa(1) + . + tnxa(n)))
ael

_ fl (y - (ta(1)X 1 + ... + ta(n)Xn))
aEE,

Grouping the terms in y together, we can write
nI

P=EcfyJ,
j -o

with

c f = 2mfmx 1 ... XI

where each fm is in K[tl,..., tn] and the summation is taken over all multi-
indices m=(i1,..., in) with ik>0 for 1 <kcn and Jk_ 1 Ik=n! -j.
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Now a1(P)=P, and so at(fm)=fm, for each m and each a in 2,,. By
Theorem 19.4 we can write

Jm=gm(s1, ..., sit)

where s1 is the jth elementary symmetric polynomial in and
gm E K [s1, ..., s ]. Thus

n1

P= E (2:mgm(si,...,s,)xi' ...xn)Y';
j= o

further, given n, it is possible to calculate the polynomials explicitly.
Now suppose that

f=xi=-alxn-1+...+(--1)nan

is a monic polynomial in K[x] which has distinct roots a1, .,a,, in a
splitting field extension L. We set fl =a 1 x 1 + + a

a i x6(1) + ....+. anx6(n)

and 6.(/3) = a6(1)x 1 + + aa(n)x = 6x 1(f3). Note that, since f has distinct
roots, 6x(fl) 0 Tx(#) if 6 0 2. We consider the polynomial

F = fl (Y - a,a,0fl (Y-6a(M)
6EE" CT E -F,,

We obtain F by substituting aj for tj in P: thus

F= E (Emgm(a 1, ... , an)x i' ... Xn )Y'
j=0

and so F E K [y, x1, ..., x ].
As K [y, x1, ..., x,,] is a unique factorization domain (Corollary 2 to

Theorem 3.13), we can write F = F1 ... Fk, where each Fj is irreducible in
K[y, x1, ..., Considering the F. as elements of L[y, x1, ..., we can
write each Fj as

Fj= fl (Y-a (/3))
QE Aj

where A1, ..., Ak is a partition of E,,. By labelling the Fj appropriately, we
can suppose that the identity permutation is in A 1: thus y -- f3 divides F1 in

Now suppose that a E 2,,. Then

6xF = (a F1)(uxF2) ... (6xFj).

But QxF = F. Thus a induces a permutation of the irreducible factors
F1, ..., Fj. Let

G={Q:axF1=F1};

it is clear that G is a subgroup of X,,.
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Theorem 20.1 The group G is isomorphic to the Galois group FK(f. ).

Proof. First note that
A1= {6: y - Q.,,/3 divides F1 in L[y, x1, ..., X111)

{a: y- f3 divides ax 1F1 in L[y, x1, ..., xj}
={o:UX 1F1 =F1}=G.

Now let

H= fl (y-Qa(N))_ 11 (y-ax(N))
CEEK(f) 6EEK(.f)

If TE2:K(f),TH=
H divides F in L(xl,..., xn) [y]. Thus H divides F in K(x1,..., y]

(Lemma 15.2) and so H divides F in K[y, x1, ..., (Corollary 1 of
Theorem 3.13). This means that we can write H as a product of certain of the
irreducible factors F1, ..., FJ of F. As y -- fl divides H in L[y, x,,.. . 9 F1

must be one of these factors: thus F1 divides H in K[y, x1, ..., and so
GcFK(f)

Conversely, if TEFK(f )

Tx(F1) = fl (y -Tx7x(f3))
aEA1

_ 1I (y - Ta 16X0))

=Ta 1 11 (y-ux(f))=Ta 1(F1).
QEA1

But F1EK[y,x1,... and so T. 1(F1) = F1. Thus TEG and so 'K(f) c: G.
This completes the proof. Notice that if F= is another irreducible factor of

F, there exists Tin 2,, such that T(F1) = F1, and

T GT - 1 = {a: ax(F1) = F= };

thus each of the groups {a:cr(F)=F1} is isomorphic to FK(f ).
Suppose now that g is a polynomial in 71[x]. By Theorem 5.1, there is an

algorithm for expressing g as a product of irreducible factors

9=91 ... gJj.
Let f g 1 . . . gj. Then FO (f) = T3 (g), and f has distinct roots in a splitting
field. We can calculate the polynomial F. F E 71[ y, x1, ..., x.]. Now it is a
straightforward matter to extend the argument of Theorem 5.1 to show that
an algorithm exists to express F as a product of irreducible factors in
71[ y, x1, ..., Having found an irreducible factor F1, it remains to work
through the elements of 2n to determine which of them fix F1. Thus an
algorithm exists for calculating the Galois group of an element of 71[x].

This result is theoretically important, but the algorithm is much too
complicated to be of any practical use. As we shall see when we consider the
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quintic, though, it does suggest ways of deciding between various
possibilities. It also leads on to the next result, which is of great practical
value.

Theorem 20.2 Suppose that f is a monic polynomial in 71 [x] and that p is a
prime. Let f be the corresponding element of 71 p[x]. If f has distinct roots in a
splitting field extension L, then the cyclic group F1p(f) is isomorphic to a
subgroup of FO (f ).

Proof. Suppose that
f =xn -aixn - 1 + ...+ (- 1)nan

Let be roots of f in a splitting field extension L:Q, let
and let

F= fl(y-crfl).
aez"

Similarly let y 1, ... , yn be roots of f in a splitting field extension M : 7lp and let
6=yixi + ... +ynxn. As

n'

F (Xmgm(a1, ..., an)xil ... xn )YJ19
d=0

Fel[y,x1,...,xn] and

F= [ (Y Qxo)
GE-Z"

Let

F 1= fl (y - axp ), G1= fl (y - Qx5 ).
aer0(f) cer1o(I)

By Theorem 20.1, F1 is an irreducible factor of F in Q[y, x1, ..., x,j and G1
is an irreducible factor of F in 71 p[ y, x1, ..., xn]. F1 is a (not necessarily
irreducible) factor of Fin 71 p[ y, xl, ..., xn] and y - a divides both G1 and F1
in M[ y, x1, ..., and so G1 divides

F1= F1 (y-a 5)
aerQ(f)

in 1[y,x1,...,xn]. This means that F.p(f)cFc(f).

20.2 The soluble transitive subgroups of 2
Suppose that f is an irreducible polynomial of prime degree p in

K[x] (where char K p). The Galois group FK(f) is isomorphic to a
transitive subgroup of I. f is solvable by radicals if and only if FK(f) is
soluble. It is therefore desirable to know what the soluble transitive
subgroups of 2:p are.
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We can consider EP as acting on a set S with p elements. Suppose that G is
a transitive subgroup of EP and that H is a normal subgroup of G other than
{e}. We shall show that H is also a transitive subgroup of Ep. If x c- S, let

OH(X) =f ax: x c- H)

be the orbit of x under H. The relation `x ti x' if there exists a in H such that
Ux = x" is an equivalence relation, and OH(x) is the equivalence class of x
under this relation. Thus any two orbits are either identical or disjoint. If x
and y are in S, then since G is transitive there exists z in G such that zx = y. If
x' = ax E OH (x) then

Tx'=TUx=TUTy

so that, since TUT _' E H, TX' C- OH(y). Thus r is a one-one mapping of OH(x)
into OH(y). Similarly T -' is a one-one mapping of OH(y) into OH(x), and so
OH (x) and OH(y) have the same number of elements. Not every orbit is a
one-point set, since H :A {e}. Since p is a prime, it follows that OH(x) = S for
each x in S: in other words, H is a transitive subgroup of Ep.

Suppose now that G is a soluble transitive subgroup of Ep, and that
c...c(,,=G

is a finite series of subgroups such that G1 v G, _ 1 for 1 < i < n, G= _ 1 /Gi is
cyclic for 1 < i < n and G. _ 10 {e}. Repeated application of the above result
shows that G1 is a cyclic transitive subgroup of Ep. G. _ 1 is therefore cyclic
of order p. Let u be a generator of G,, _ 1. We can write S as

S={0, 1,2,..., p-1}

in such a way that u(j) =j + I (mod p). It will now be convenient to identify
S with the finite field 77p.

It is easy to verify that the set of affcne transformations of 71p of the form

T(a,b)(k) = ak + b,

where ac-77p and p, forms a subgroup W of Ep of order p(p -1). The
mapping z(a,b) -+ a is a homomorphism of W onto the multiplicative group
Z with kernel G _ 1 = {x(lb): b c- 7p}. Thus G _ 1 is a normal subgroup of W;
the group G _ 1 is cyclic of order p and W/G _ 1 is cyclic of order p -1, so
that W is soluble.

We shall show that G c W. Suppose that Gf c W, and that -r EGf _ 1. Then
TUT -' E G1 (where, as before, a(k) = k + 1(mod p)) and so TUT -1= z(a,b) for
some a and b. Now Tai_' has order p, and so it permutes the p points of 7LP
cyclically: thus the equation

TUT_ _1(x) = ax + b =

has no solution in 1,,; this happens if and only if a= I and bro. In other
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words TaT_' is a non-zero element of Gn_1. Thus if k e 1p,

T(k +1) -= Ta(k) = TcT -' T(k) = T(k) + b,

and so T(k) = bk + T(0). Thus r e W, and Gj g W. Thus it follows by
induction that G = Go c W.

To sum up:

Theorem 20.3 Suppose that G is a soluble transitive subgroup of 2'p (where p
is a prime). G contains a normal transitive cyclic subgroup T of order p, and
G/T is cyclic, with order dividing p - 1. Further, there exists a subgroup F of
the cyclic group lp such that G is isomorphic to the group of affine
transformations {r(a,b): a E 71p, b E F} of 71 p, where T(a,b)(k) = ak + b.

Recall that in Section 7.3 we showed that the degree of a splitting field
extension for xp -- 2 over 0 is p(p - 1), and so the Galois group of xp - 2 is
isomorphic to the group W. It is remarkable that a polynomial of such a
simple form has a Galois group which is as large as possible.

Exercises

20.1 The polynomial f = x7 + 9x2 + 7 is irreducible over 0 (this can
be checked, using Theorem 5.1). Let f be the corresponding
polynomial in 717[x]. Show that f splits over Z7 as the product of
an irreducible quartic and three linear factors (use Exercise 15.6)
and show that f is not solvable by radicals.

20.2 Show that if G is a soluble transitive subgroup of 2p (where p is a
prime) then every element of G other than the identity fixes at most
one point.

20.3 Show that if f is an irreducible polynomial in O[x] of odd prime
degree p which is solvable by radicals than either all the roots of f
are real or f has exactly one real root. Show that if p = 4k + 3 then
the discriminant can be used to distinguish the two possibilities.
What happens if p = 4k + 1?

20.4 This question needs the following results from group theory. If G is
a group of order pq, where p is a prime which does not divide q then
G has a subgroup of order p.

Let G be a transitive subgroup of 22p (where p is a prime).
(i) Show that IGI = pq, where p does not divide q. (Hint: Consider

the subgroups H of G which fixes a certain point and consider the
index of H in G.)

(ii) Show that if G has at least two subgroups of order p then there
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exists an element of G, other than the identity, which fixes two
points and so G is not soluble.

(iii) Show that if G has exactly one subgroup K of order p, then
K-<3G and G is soluble.

20.5 Suppose that f is an irreducible polynomial of prime degree p in
K [x], and that char K 0 p. Let L : K be a splitting field extension for
f. Show that f is solvable by radicals if and only if whenever a and
f3 are distinct roots of f then L = K(a, f3).

20.3 The Galois group of a quintic
Let us now consider the possible Galois groups of irreducible

quintics. Suppose that f is an irreducible separable quintic in K[x]. If f is
solvable by radicals then, by the results above, l'K(f) is isomorphic either to
W, which has order 20, or to D10, the group of rotations and reflections of a
regular pentagon, which has order 10, or to the cyclic group 715 of order 5. If
f is not solvable by radicals then TK(f) is isomorphic to the alternating
group A5 or the full symmetric group E.

Let us list some examples of irreducible quintic polynomials in 71[x],
together with their Galois groups, to show that all possibilities can occur:

(a) x5+x4-4x3-3x2+3x+ 1 15
(b) x--5x+ 12 Dio
(c) x5-2 W

(d) x5 + 20x + 16 A5

(e) x5 -4x+2 X5

We have already discussed examples (c) and (e). Example (a) is obtained
by considering a primitive 11th root of unity, a say. a has minimal
polynomial E100 x", which has cyclic Galois group 7110. This has a
subgroup of order 2 and the fixed field of this has Galois group 15. The fixed
field is generated by a + a - 1, and example (a) is the minimal polynomial of
this.

We now turn to example (d). This has discriminant 216 56 (use Exercise
14.3), so that its Galois group is contained in A5. In 17 the corresponding
polynomial is

(x + 2)(x + 3) (x3 + 2x2 - 2x - 2)

and the cubic is irreducible. It follows from Theorem 20.2 that the Galois
group of example (d) contains a cyclic subgroup of order 3, and so it must be
A5.
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Finally we consider example (b). This has discriminant 212 56, and in 713
the corresponding polynomial factorizes as

x(x2+x-- 1)(x2-x-1)
and so has Galois group 712. Using Theorem 20.2 again, we see that this
means that the polynomial f of example (b) has Galois group D10 or A5.
How can one distinguish between these possibilities? Use of Theorem 20.1
would involve considering polynomials of degree 120, which is clearly
impracticable. One way to proceed is the following. Let al, ..., a5 be the
roots of the polynomial in a splitting field L. We consider the ten elements
ai + a; of L, with 1 < i <j < 5. It is easy to verify that these are distinct, so that
the polynomial

g = fl (x -(ai +aj))
1 i<j<5

has ten distinct roots. g is invariant underl'K(f ), and so g e Q[x]. It is clear
that g splits over L. Since

5

a a -(a2+a3)----(a4+a5)
i=1

and since similar equations are satisfied by a2, a3, 04 and a5 it follows that
L:Q is a splitting field extension forg. Suppose that f had Galois group A5.
Then the Galois group would act transitively on the roots of g, and so g
would be irreducible. Using a computer it can be shown that this is not so.

I am grateful to Leonard Soicher for showing me examples (b) and (d).

Exercise

20.6 Suppose that f is a quintic in Q[x] whose Galois group contains
D 10. Show that the ten elements ai + a j ( 1 < i < j < 5) are distinct
(where al,..., a5 are the roots of f in C).

20.4 Concluding remarks
The examples of the previous section show that there are

irreducible quintics in 0 [x] with all possible Galois groups. This raises the
question: given a group G, does there exist an irreducible polynomial in
O[x] which has G as its Galois group? This is an extremely difficult
problem which has not yet been solved. In 1954, Safarevich showed that the
answer is `Yes' when G is a soluble group.

Galois theory has a long and distinguished history: nevertheless, many
interesting problems remain.
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Galois theory is one of the most beautiful branches of math-
ematics. By synthesising the techniques of group theory and
field theory it provides a complete answer to the problem of the
solubility of polynomials by radicals: that is, the problem of
determining when and how a polynomial equation can be
solved by repeatedly extracting roots and using elementary
algebraic operations. This textbook, based on lectures given
over a period of years at Cambridge, is a detailed and thorough
introduction to the subject.

The work begins with an elementary discussion of groups,
fields and vector spaces, and then leads the reader through such
topics as rings, extension fields, ruler-and-compass construc-
tions, to automorphisms and the Galois correspondence. By
these means, the problem of the solubility of polynomials by
radicals is answered; in particular it is shown that not every
quintic equation can be solved by radicals. Throughout, Dr
Garling presents the subject not as something closed, but as
one with many applications. In the final chapters, he discusses
further topics, such as transcendence and the calculation of
Galois groups, which indicate that there are many questions
still to be answered.

The reader is assumed to have no previous knowledge of
Galois theory. Some experience of modern algebra is helpful, so
that the book is suitable for undergraduates in their second or
final years. There are over goo exercises which provide a stimu-
lating challenge to the reader.
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