


A	BOOK	OF
ABSTRACT	ALGEBRA

Second	Edition

Charles	C.	Pinter
Professor	of	Mathematics

Bucknell	University

Dover	Publications,	Inc.,	Mineola,	New	York



Copyright

Copyright	©	1982,	1990	by	Charles	C.	Pinter
All	rights	reserved.

Bibliographical	Note

This	Dover	edition,	first	published	in	2010,	is	an	unabridged	republication	of	the	1990	second	edition	of	the	work	originally	published	in
1982	by	the	McGraw-Hill	Publishing	Company,	Inc.,	New	York.

Library	of	Congress	Cataloging-in-Publication	Data

Pinter,	Charles	C,	1932–
A	book	of	abstract	algebra	/	Charles	C.	Pinter.	—	Dover	ed.

p.	cm.
Originally	published:	2nd	ed.	New	York	:	McGraw-Hill,	1990.
Includes	bibliographical	references	and	index.
ISBN-13:	978-0-486-47417-5
ISBN-10:	0-486-47417-8
1.	Algebra,	Abstract.	I.	Title.

QA162.P56	2010
512′.02—dc22

2009026228

Manufactured	in	the	United	States	by	Courier	Corporation
47417803

www.doverpublications.com

http://www.doverpublications.com


To	my	wife,	Donna,
and	my	sons,

Nicholas,	Marco,
Andrés,	and	Adrian



CONTENTS*

Preface

Chapter 1 Why	Abstract	Algebra?
History	of	Algebra.	New	Algebras.	Algebraic	Structures.	Axioms	and	Axiomatic	Algebra.
Abstraction	in	Algebra.

Chapter 2 Operations
Operations	on	a	Set.	Properties	of	Operations.

Chapter 3 The	Definition	of	Groups
Groups.	Examples	of	Infinite	and	Finite	Groups.	Examples	of	Abelian	and	Nonabelian
Groups.	Group	Tables.
Theory	of	Coding:	Maximum-Likelihood	Decoding.

Chapter 4 Elementary	Properties	of	Groups
Uniqueness	of	Identity	and	Inverses.	Properties	of	Inverses.
Direct	Product	of	Groups.

Chapter 5 Subgroups
Definition	of	Subgroup.	Generators	and	Defining	Relations.
Cay	ley	Diagrams.	Center	of	a	Group.	Group	Codes;	Hamming	Code.

Chapter 6 Functions
Injective,	Surjective,	Bijective	Function.	Composite	and	Inverse	of	Functions.
Finite-State	Machines.	Automata	and	Their	Semigroups.

Chapter 7 Groups	of	Permutations
Symmetric	Groups.	Dihedral	Groups.
An	Application	of	Groups	to	Anthropology.

Chapter 8 Permutations	of	a	Finite	Set
Decomposition	of	Permutations	into	Cycles.	Transpositions.	Even	and	Odd	Permutations.
Alternating	Groups.

Chapter 9 Isomorphism
The	Concept	of	Isomorphism	in	Mathematics.	Isomorphic	and	Nonisomorphic	Groups.
Cayley’s	Theorem.



Group	Automorphisms.

Chapter 10 Order	of	Group	Elements
Powers/Multiples	of	Group	Elements.	Laws	of	Exponents.	Properties	of	the	Order	of
Group	Elements.

Chapter 11 Cyclic	Groups
Finite	and	Infinite	Cyclic	Groups.	Isomorphism	of	Cyclic	Groups.	Subgroups	of	Cyclic
Groups.

Chapter 12 Partitions	and	Equivalence	Relations

Chapter 13 Counting	Cosets
Lagrange’s	Theorem	and	Elementary	Consequences.
Survey	of	Groups	of	Order	≤	10.
Number	of	Conjugate	Elements.	Group	Acting	on	a	Set.

Chapter 14 Homomorphisms
Elementary	Properties	of	Homomorphisms.	Normal	Subgroups.	Kernel	and	Range.
Inner	Direct	Products.	Conjugate	Subgroups.

Chapter 15 Quotient	Groups
Quotient	Group	Construction.	Examples	and	Applications.
The	Class	Equation.	Induction	on	the	Order	of	a	Group.

Chapter 16 The	Fundamental	Homomorphism	Theorem
Fundamental	Homomorphism	Theorem	and	Some	Consequences.
The	Isomorphism	Theorems.	The	Correspondence	Theorem.	Cauchy’s	Theorem.	Sylow
Subgroups.	Sylow’s	Theorem.	Decomposition	Theorem	for	Finite	Abelian	Groups.

Chapter 17 Rings:	Definitions	and	Elementary	Properties
Commutative	Rings.	Unity.	Invertibles	and	Zero-Divisors.	Integral	Domain.	Field.

Chapter 18 Ideals	and	Homomorphisms

Chapter 19 Quotient	Rings
Construction	of	Quotient	Rings.	Examples.	Fundamental	Homomorphism	Theorem	and
Some	Consequences.	Properties	of	Prime	and	Maximal	Ideals.

Chapter 20 Integral	Domains
Characteristic	of	an	Integral	Domain.	Properties	of	the	Characteristic.	Finite	Fields.
Construction	of	the	Field	of	Quotients.

Chapter 21 The	Integers
Ordered	Integral	Domains.	Well-ordering.	Characterization	of	 	Up	to	Isomorphism.
Mathematical	Induction.	Division	Algorithm.

Chapter 22 Factoring	into	Primes



Ideals	of	 .	Properties	of	the	GCD.	Relatively	Prime	Integers.	Primes.	Euclid’s	Lemma.
Unique	Factorization.

Chapter 23 Elements	of	Number	Theory	(Optional)
Properties	of	Congruence.	Theorems	of	Fermât	and	Euler.	Solutions	of	Linear
Congruences.	Chinese	Remainder	Theorem.
Wilson’s	Theorem	and	Consequences.	Quadratic	Residues.	The	Legendre	Symbol.
Primitive	Roots.

Chapter 24 Rings	of	Polynomials
Motivation	and	Definitions.	Domain	of	Polynomials	over	a	Field.	Division	Algorithm.
Polynomials	in	Several	Variables.	Fields	of	Polynomial	Quotients.

Chapter 25 Factoring	Polynomials
Ideals	of	F[x].	Properties	of	the	GCD.	Irreducible	Polynomials.	Unique	factorization.
Euclidean	Algorithm.

Chapter 26 Substitution	in	Polynomials
Roots	and	Factors.	Polynomial	Functions.	Polynomials	over	 .	Eisenstein’s	Irreducibility
Criterion.	Polynomials	over	the	Reals.	Polynomial	Interpolation.

Chapter 27 Extensions	of	Fields
Algebraic	and	Transcendental	Elements.	The	Minimum	Polynomial.	Basic	Theorem	on
Field	Extensions.

Chapter 28 Vector	Spaces
Elementary	Properties	of	Vector	Spaces.	Linear	Independence.	Basis.	Dimension.	Linear
Transformations.

Chapter 29 Degrees	of	Field	Extensions
Simple	and	Iterated	Extensions.	Degree	of	an	Iterated	Extension.
Fields	of	Algebraic	Elements.	Algebraic	Numbers.	Algebraic	Closure.

Chapter 30 Ruler	and	Compass
Constructible	Points	and	Numbers.	Impossible	Constructions.
Constructible	Angles	and	Polygons.

Chapter 31 Galois	Theory:	Preamble
Multiple	Roots.	Root	Field.	Extension	of	a	Field.	Isomorphism.
Roots	of	Unity.	Separable	Polynomials.	Normal	Extensions.

Chapter 32 Galois	Theory:	The	Heart	of	the	Matter
Field	Automorphisms.	The	Galois	Group.	The	Galois	Correspondence.	Fundamental
Theorem	of	Galois	Theory.
Computing	Galois	Groups.

Chapter 33 Solving	Equations	by	Radicals
Radical	Extensions.	Abelian	Extensions.	Solvable	Groups.	Insolvability	of	the	Quin	tic.



Appendix	A Review	of	Set	Theory

Appendix	B Review	of	the	Integers

Appendix	C Review	of	Mathematical	Induction
Answers	to	Selected	Exercises

																						Index

	
*	Italic	headings	indicate	topics	discussed	in	the	exercise	sections.



PREFACE

Once,	when	I	was	a	student	struggling	to	understand	modern	algebra,	I	was	told	to	view	this	subject	as
an	 intellectual	chess	game,	with	conventional	moves	and	prescribed	rules	of	play.	 I	was	 ill	 served	by
this	 bit	 of	 extemporaneous	 advice,	 and	 vowed	 never	 to	 perpetuate	 the	 falsehood	 that	mathematics	 is
purely—or	primarily—a	formalism.	My	pledge	has	strongly	influenced	the	shape	and	style	of	this	book.

While	giving	due	emphasis	to	the	deductive	aspect	of	modern	algebra,	I	have	endeavored	here	to
present	modern	algebra	as	a	lively	branch	of	mathematics,	having	considerable	imaginative	appeal	and
resting	on	some	firm,	clear,	and	familiar	intuitions.	I	have	devoted	a	great	deal	of	attention	to	bringing
out	 the	meaningfulness	 of	 algebraic	 concepts,	 by	 tracing	 these	 concepts	 to	 their	 origins	 in	 classical
algebra	 and	 at	 the	 same	 time	 exploring	 their	 connections	with	 other	 parts	 of	mathematics,	 especially
geometry,	number	theory,	and	aspects	of	computation	and	equation	solving.

In	 an	 introductory	 chapter	 entitled	 Why	 Abstract	 Algebra?,	 as	 well	 as	 in	 numerous	 historical
asides,	 concepts	 of	 abstract	 algebra	 are	 traced	 to	 the	 historic	 context	 in	 which	 they	 arose.	 I	 have
attempted	 to	 show	 that	 they	 arose	 without	 artifice,	 as	 a	 natural	 response	 to	 particular	 needs,	 in	 the
course	of	a	natural	process	of	evolution.	Furthermore,	I	have	endeavored	to	bring	to	light,	explicitly,	the
intuitive	content	of	the	algebraic	concepts	used	in	this	book.	Concepts	are	more	meaningful	to	students
when	 the	 students	 are	 able	 to	 represent	 those	 concepts	 in	 their	 minds	 by	 clear	 and	 familiar	 mental
images.	Accordingly,	the	process	of	concrete	concept-formation	is	developed	with	care	throughout	this
book.

I	have	deliberately	avoided	a	rigid	conventional	format,	with	its	succession	of	definition,	theorem,
proof,	corollary,	example.	 In	my	experience,	 that	kind	of	 format	encourages	some	students	 to	believe
that	 mathematical	 concepts	 have	 a	 merely	 conventional	 character,	 and	 may	 encourage	 rote
memorization.	Instead,	each	chapter	has	the	form	of	a	discussion	with	the	student,	with	the	accent	on
explaining	and	motivating.

In	an	effort	to	avoid	fragmentation	of	the	subject	matter	into	loosely	related	definitions	and	results,
each	 chapter	 is	 built	 around	 a	 central	 theme	 and	 remains	 anchored	 to	 this	 focal	 point.	 In	 the	 later
chapters	 especially,	 this	 focal	 point	 is	 a	 specific	 application	 or	 use.	 Details	 of	 every	 topic	 are	 then
woven	into	the	general	discussion,	so	as	to	keep	a	natural	flow	of	ideas	running	through	each	chapter.

The	 arrangement	 of	 topics	 is	 designed	 to	 avoid	 tedious	 proofs	 and	 long-winded	 explanations.
Routine	 arguments	 are	worked	 into	 the	 discussion	whenever	 this	 seems	 natural	 and	 appropriate,	 and
proofs	 to	 theorems	are	seldom	more	 than	a	few	lines	 long.	(There	are,	of	course,	a	few	exceptions	 to
this.)	 Elementary	 background	 material	 is	 filled	 in	 as	 it	 is	 needed.	 For	 example,	 a	 brief	 chapter	 on
functions	 precedes	 the	 discussion	 of	 permutation	 groups,	 and	 a	 chapter	 on	 equivalence	 relations	 and
partitions	paves	the	way	for	Lagrange’s	theorem.

This	 book	 addresses	 itself	 especially	 to	 the	 average	 student,	 to	 enable	 him	 or	 her	 to	 learn	 and
understand	as	much	algebra	as	possible.	 In	scope	and	subject-matter	coverage,	 it	 is	no	different	 from
many	other	standard	texts.	It	begins	with	the	promise	of	demonstrating	the	unsolvability	of	the	quintic



and	 ends	 with	 that	 promise	 fulfilled.	 Standard	 topics	 are	 discussed	 in	 their	 usual	 order,	 and	 many
advanced	and	peripheral	subjects	are	introduced	in	the	exercises,	accompanied	by	ample	instruction	and
commentary.

I	have	included	a	copious	supply	of	exercises—probably	more	exercises	than	in	other	books	at	this
level.	They	are	designed	to	offer	a	wide	range	of	experiences	to	students	at	different	 levels	of	ability.
There	is	some	novelty	in	the	way	the	exercises	are	organized:	at	the	end	of	each	chapter,	the	exercises
are	 grouped	 into	 exercise	 sets,	 each	 set	 containing	 about	 six	 to	 eight	 exercises	 and	 headed	 by	 a
descriptive	title.	Each	set	touches	upon	an	idea	or	skill	covered	in	the	chapter.

The	first	few	exercise	sets	in	each	chapter	contain	problems	which	are	essentially	computational	or
manipulative.	Then,	there	are	two	or	three	sets	of	simple	proof-type	questions,	which	require	mainly	the
ability	 to	 put	 together	 definitions	 and	 results	with	 understanding	 of	 their	meaning.	After	 that,	 I	 have
endeavored	to	make	the	exercises	more	interesting	by	arranging	them	so	that	in	each	set	a	new	result	is
proved,	or	new	light	is	shed	on	the	subject	of	the	chapter.

As	a	 rule,	all	 the	exercises	have	 the	same	weight:	very	simple	exercises	are	grouped	 together	as
parts	of	a	single	problem,	and	conversely,	problems	which	require	a	complex	argument	are	broken	into
several	subproblems	which	the	student	may	tackle	in	turn.	I	have	selected	mainly	problems	which	have
intrinsic	 relevance,	 and	 are	 not	merely	 drill,	 on	 the	 premise	 that	 this	 is	much	more	 satisfying	 to	 the
student.

CHANGES	IN	THE	SECOND	EDITION
During	 the	 seven	years	 that	 have	 elapsed	 since	publication	of	 the	 first	 edition	of	A	Book	of	Abstract
Algebra,	 I	 have	 received	 letters	 from	 many	 readers	 with	 comments	 and	 suggestions.	 Moreover,	 a
number	of	reviewers	have	gone	over	the	text	with	the	aim	of	finding	ways	to	increase	its	effectiveness
and	 appeal	 as	 a	 teaching	 tool.	 In	 preparing	 the	 second	 edition,	 I	 have	 taken	 account	 of	 the	 many
suggestions	that	were	made,	and	of	my	own	experience	with	the	book	in	my	classes.

In	 addition	 to	 numerous	 small	 changes	 that	 should	make	 the	 book	 easier	 to	 read,	 the	 following
major	changes	should	be	noted:
EXERCISES	Many	 of	 the	 exercises	 have	 been	 refined	 or	 reworded—and	 a	 few	 of	 the	 exercise	 sets
reorganized—in	order	 to	 enhance	 their	 clarity	 or,	 in	 some	 cases,	 to	make	 them	more	mathematically
interesting.	In	addition,	several	new	exericse	sets	have	been	included	which	touch	upon	applications	of
algebra	and	are	discussed	next:
APPLICATIONS	 The	 question	 of	 including	 “applications”	 of	 abstract	 algebra	 in	 an	 undergraduate
course	(especially	a	one-semester	course)	is	a	touchy	one.	Either	one	runs	the	risk	of	making	a	visibly
weak	case	for	 the	applicability	of	 the	notions	of	abstract	algebra,	or	on	 the	other	hand—by	including
substantive	 applications—one	may	 end	 up	 having	 to	 omit	 a	 lot	 of	 important	 algebra.	 I	 have	 adopted
what	 I	 believe	 is	 a	 reasonable	 compromise	 by	 adding	 an	 elementary	 discussion	 of	 a	 few	 application
areas	(chiefly	aspects	of	coding	and	automata	theory)	only	in	the	exercise	sections,	in	connection	with
specific	exercise.	These	exercises	may	be	either	stressed,	de-emphasized,	or	omitted	altogether.
PRELIMINARIES	It	may	well	be	argued	that,	in	order	to	guarantee	the	smoothe	flow	and	continuity	of
a	course	in	abstract	algebra,	the	course	should	begin	with	a	review	of	such	preliminaries	as	set	theory,
induction	and	the	properties	of	integers.	In	order	to	provide	material	for	teachers	who	prefer	to	start	the
course	 in	 this	 fashion,	 I	 have	 added	 an	 Appendix	 with	 three	 brief	 chapters	 on	 Sets,	 Integers	 and
Induction,	respectively,	each	with	its	own	set	of	exercises.
SOLUTIONS	 TO	 SELECTED	 EXERCISES	 A	 few	 exercises	 in	 each	 chapter	 are	 marked	 with	 the
symbol	#.	This	indicates	that	a	partial	solution,	or	sometimes	merely	a	decisive	hint,	are	given	at	the	end



of	the	book	in	the	section	titled	Solutions	to	Selected	Exercises.
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CHAPTER

ONE
WHY	ABSTRACT	ALGEBRA?

When	we	open	a	textbook	of	abstract	algebra	for	the	first	time	and	peruse	the	table	of	contents,	we	are
struck	by	the	unfamiliarity	of	almost	every	topic	we	see	listed.	Algebra	is	a	subject	we	know	well,	but
here	it	looks	surprisingly	different.	What	are	these	differences,	and	how	fundamental	are	they?

First,	 there	 is	 a	 major	 difference	 in	 emphasis.	 In	 elementary	 algebra	 we	 learned	 the	 basic
symbolism	and	methodology	of	algebra;	we	came	to	see	how	problems	of	the	real	world	can	be	reduced
to	sets	of	equations	and	how	these	equations	can	be	solved	to	yield	numerical	answers.	This	technique
for	translating	complicated	problems	into	symbols	is	the	basis	for	all	further	work	in	mathematics	and
the	 exact	 sciences,	 and	 is	 one	 of	 the	 triumphs	 of	 the	 human	 mind.	 However,	 algebra	 is	 not	 only	 a
technique,	 it	 is	 also	 a	 branch	 of	 learning,	 a	 discipline,	 like	 calculus	 or	 physics	 or	 chemistry.	 It	 is	 a
coherent	 and	 unified	 body	 of	 knowledge	 which	 may	 be	 studied	 systematically,	 starting	 from	 first
principles	and	building	up.	So	the	first	difference	between	the	elementary	and	the	more	advanced	course
in	algebra	 is	 that,	whereas	earlier	we	concentrated	on	 technique,	we	will	now	develop	 that	branch	of
mathematics	called	algebra	in	a	systematic	way.	Ideas	and	general	principles	will	take	precedence	over
problem	solving.	(By	the	way,	 this	does	not	mean	that	modern	algebra	has	no	applications—quite	the
opposite	is	true,	as	we	will	see	soon.)

Algebra	at	the	more	advanced	level	is	often	described	as	modern	or	abstract	algebra.	In	fact,	both
of	 these	 descriptions	 are	 partly	 misleading.	 Some	 of	 the	 great	 discoveries	 in	 the	 upper	 reaches	 of
present-day	 algebra	 (for	 example,	 the	 so-called	 Galois	 theory)	 were	 known	 many	 years	 before	 the
American	 Civil	 War	 ;	 and	 the	 broad	 aims	 of	 algebra	 today	 were	 clearly	 stated	 by	 Leibniz	 in	 the
seventeenth	 century.	 Thus,	 “modern”	 algebra	 is	 not	 so	 very	 modern,	 after	 all!	 To	 what	 extent	 is	 it
abstract?	Well,	abstraction	is	all	relative;	one	person’s	abstraction	is	another	person’s	bread	and	butter.
The	abstract	tendency	in	mathematics	is	a	little	like	the	situation	of	changing	moral	codes,	or	changing
tastes	 in	 music:	 What	 shocks	 one	 generation	 becomes	 the	 norm	 in	 the	 next.	 This	 has	 been	 true
throughout	the	history	of	mathematics.

For	example,	1000	years	ago	negative	numbers	were	considered	to	be	an	outrageous	idea.	After	all,
it	was	said,	numbers	are	for	counting:	we	may	have	one	orange,	or	two	oranges,	or	no	oranges	at	all;	but
how	 can	we	 have	minus	 an	 orange?	The	 logisticians,	 or	 professional	 calculators,	 of	 those	 days	 used
negative	numbers	as	an	aid	in	their	computations;	they	considered	these	numbers	to	be	a	useful	fiction,
for	 if	 you	 believe	 in	 them	 then	 every	 linear	 equation	 ax	 +	b	 =	 0	 has	 a	 solution	 (namely	 x	 =	−b/a,
provided	a	 ≠	 0).	Even	 the	 great	Diophantus	 once	 described	 the	 solution	 of	 4x	 +	 6	 =	 2	 as	 an	absurd
number.	The	idea	of	a	system	of	numeration	which	included	negative	numbers	was	far	too	abstract	for
many	of	the	learned	heads	of	the	tenth	century!



The	history	of	 the	complex	numbers	 (numbers	which	 involve	 )	 is	very	much	 the	same.	For
hundreds	of	years,	mathematicians	refused	to	accept	them	because	they	couldn’t	find	concrete	examples
or	applications.	(They	are	now	a	basic	tool	of	physics.)

Set	theory	was	considered	to	be	highly	abstract	a	few	years	ago,	and	so	were	other	commonplaces
of	 today.	Many	of	 the	abstractions	of	modern	algebra	are	already	being	used	by	scientists,	engineers,
and	 computer	 specialists	 in	 their	 everyday	 work.	 They	 will	 soon	 be	 common	 fare,	 respectably
“concrete,”	and	by	then	there	will	be	new	“abstractions.”

Later	 in	 this	 chapter	 we	 will	 take	 a	 closer	 look	 at	 the	 particular	 brand	 of	 abstraction	 used	 in
algebra.	We	will	consider	how	it	came	about	and	why	it	is	useful.

Algebra	has	evolved	considerably,	especially	during	the	past	100	years.	Its	growth	has	been	closely
linked	with	 the	development	of	other	branches	of	mathematics,	 and	 it	has	been	deeply	 influenced	by
philosophical	ideas	on	the	nature	of	mathematics	and	the	role	of	logic.	To	help	us	understand	the	nature
and	spirit	of	modern	algebra,	we	should	take	a	brief	look	at	its	origins.

ORIGINS
The	 order	 in	 which	 subjects	 follow	 each	 other	 in	 our	 mathematical	 education	 tends	 to	 repeat	 the
historical	stages	in	the	evolution	of	mathematics.	In	this	scheme,	elementary	algebra	corresponds	to	the
great	classical	age	of	algebra,	which	spans	about	300	years	from	the	sixteenth	 through	the	eighteenth
centuries.	 It	 was	 during	 these	 years	 that	 the	 art	 of	 solving	 equations	 became	 highly	 developed	 and
modern	symbolism	was	invented.

The	word	“algebra”—al	 jebr	 in	Arabic—was	 first	 used	 by	Mohammed	of	Kharizm,	who	 taught
mathematics	 in	Baghdad	during	 the	ninth	century.	The	word	may	be	 roughly	 translated	as	“reunion,”
and	describes	his	method	for	collecting	the	terms	of	an	equation	in	order	to	solve	it.	It	is	an	amusing	fact
that	the	word	“algebra”	was	first	used	in	Europe	in	quite	another	context.	In	Spain	barbers	were	called
algebristas,	or	bonesetters	(they	reunited	broken	bones),	because	medieval	barbers	did	bonesetting	and
bloodletting	as	a	sideline	to	their	usual	business.

The	origin	of	the	word	clearly	reflects	the	actual	context	of	algebra	at	that	time,	for	it	was	mainly
concerned	with	ways	of	 solving	 equations.	 In	 fact,	Omar	Khayyam,	who	 is	 best	 remembered	 for	 his
brilliant	verses	on	wine,	song,	love,	and	friendship	which	are	collected	in	the	Rubaiyat—but	who	was
also	a	great	mathematician—explicitly	defined	algebra	as	the	science	of	solving	equations.

Thus,	 as	we	enter	upon	 the	 threshold	of	 the	 classical	 age	of	 algebra,	 its	 central	 theme	 is	 clearly
identified	 as	 that	 of	 solving	 equations.	 Methods	 of	 solving	 the	 linear	 equation	 ax	 +	 b	 =	 0	 and	 the
quadratic	ax2	 +	 bx	 +	 c	 =	 0	 were	 well	 known	 even	 before	 the	 Greeks.	 But	 nobody	 had	 yet	 found	 a
general	solution	for	cubic	equations

x3	+	ax2	+	bx	=	c

or	quartic	(fourth-degree)	equations

x4	+	ax3	+	bx2	+	cx	=	d

This	great	accomplishment	was	the	triumph	of	sixteenth	century	algebra.
The	 setting	 is	 Italy	 and	 the	 time	 is	 the	 Renaissance—an	 age	 of	 high	 adventure	 and	 brilliant

achievement,	 when	 the	 wide	 world	 was	 reawakening	 after	 the	 long	 austerity	 of	 the	 Middle	 Ages.
America	had	 just	been	discovered,	classical	knowledge	had	been	brought	 to	 light,	and	prosperity	had



returned	to	the	great	cities	of	Europe.	It	was	a	heady	age	when	nothing	seemed	impossible	and	even	the
old	barriers	of	birth	and	rank	could	be	overcome.	Courageous	individuals	set	out	for	great	adventures	in
the	far	corners	of	 the	earth,	while	others,	now	confident	once	again	of	 the	power	of	 the	human	mind,
were	boldly	exploring	the	limits	of	knowledge	in	the	sciences	and	the	arts.	The	ideal	was	to	be	bold	and
many-faceted,	 to	 “know	 something	 of	 everything,	 and	 everything	 of	 at	 least	 one	 thing.”	 The	 great
traders	were	patrons	of	 the	arts,	 the	 finest	minds	 in	science	were	adepts	at	political	 intrigue	and	high
finance.	The	study	of	algebra	was	reborn	in	this	lively	milieu.

Those	men	who	brought	algebra	to	a	high	level	of	perfection	at	the	beginning	of	its	classical	age—
all	typical	products	of	the	Italian	Renaissanee	—were	as	colorful	and	extraordinary	a	lot	as	have	ever
appeared	 in	 a	 chapter	 of	 history.	 Arrogant	 and	 unscrupulous,	 brilliant,	 flamboyant,	 swaggering,	 and
remarkable,	they	lived	their	lives	as	they	did	their	work:	with	style	and	panache,	in	brilliant	dashes	and
inspired	leaps	of	the	imagination.

The	 spirit	 of	 scholarship	 was	 not	 exactly	 as	 it	 is	 today.	 These	men,	 instead	 of	 publishing	 their
discoveries,	 kept	 them	 as	 well-guarded	 secrets	 to	 be	 used	 against	 each	 other	 in	 problem-solving
competitions.	Such	contests	were	a	popular	attraction:	heavy	bets	were	made	on	the	rival	parties,	and
their	reputations	(as	well	as	a	substantial	purse)	depended	on	the	outcome.

One	of	the	most	remarkable	of	these	men	was	Girolamo	Cardan.	Cardan	was	born	in	1501	as	the
illegitimate	son	of	a	famous	jurist	of	the	city	of	Pavia.	A	man	of	passionate	contrasts,	he	was	destined	to
become	famous	as	a	physician,	astrologer,	and	mathematician—and	notorious	as	a	compulsive	gambler,
scoundrel,	and	heretic.	After	he	graduated	in	medicine,	his	efforts	to	build	up	a	medical	practice	were	so
unsuccessful	that	he	and	his	wife	were	forced	to	seek	refuge	in	the	poorhouse.	With	the	help	of	friends
he	became	a	lecturer	in	mathematics,	and,	after	he	cured	the	child	of	a	senator	from	Milan,	his	medical
career	also	picked	up.	He	was	finally	admitted	to	the	college	of	physicians	and	soon	became	its	rector.	A
brilliant	doctor,	he	gave	the	first	clinical	description	of	typhus	fever,	and	as	his	fame	spread	he	became
the	personal	physician	of	many	of	the	high	and	mighty	of	his	day.

Cardan’s	early	interest	in	mathematics	was	not	without	a	practical	side.	As	an	inveterate	gambler
he	was	fascinated	by	what	he	recognized	to	be	the	laws	of	chance.	He	wrote	a	gamblers’	manual	entitled
Book	on	Games	of	Chance,	which	presents	 the	first	systematic	computations	of	probabilities.	He	also
needed	mathematics	 as	 a	 tool	 in	 casting	 horoscopes,	 for	 his	 fame	 as	 an	 astrologer	was	 great	 and	 his
predictions	were	highly	regarded	and	sought	after.	His	most	important	achievement	was	the	publication
of	 a	 book	 called	Ars	Magna	 (The	Great	 Art),	 in	which	 he	 presented	 systematically	 all	 the	 algebraic
knowledge	of	his	time.	However,	as	already	stated,	much	of	this	knowledge	was	the	personal	secret	of
its	 practitioners,	 and	 had	 to	 be	 wheedled	 out	 of	 them	 by	 cunning	 and	 deceit.	 The	 most	 important
accomplishment	of	 the	day,	 the	general	 solution	of	 the	cubic	equation	which	had	been	discovered	by
Tartaglia,	was	obtained	in	that	fashion.

Tartaglia’s	life	was	as	turbulent	as	any	in	those	days.	Born	with	the	name	of	Niccolo	Fontana	about
1500,	he	was	present	at	 the	occupation	of	Brescia	by	the	French	in	1512.	He	and	his	father	fled	with
many	others	into	a	cathedral	for	sanctuary,	but	in	the	heat	of	battle	the	soldiers	massacred	the	hapless
citizens	even	in	that	holy	place.	The	father	was	killed,	and	the	boy,	with	a	split	skull	and	a	deep	saber
cut	 across	 his	 jaws	 and	 palate,	 was	 left	 for	 dead.	 At	 night	 his	 mother	 stole	 into	 the	 cathedral	 and
managed	to	carry	him	off;	miraculously	he	survived.	The	horror	of	what	he	had	witnessed	caused	him	to
stammer	 for	 the	 rest	 of	 his	 life,	 earning	 him	 the	 nickname	 Tartaglia,	 “the	 stammerer,”	 which	 he
eventually	adopted.

Tartaglia	received	no	formal	schooling,	for	that	was	a	privilege	of	rank	and	wealth.	However,	he
taught	himself	mathematics	and	became	one	of	the	most	gifted	mathematicians	of	his	day.	He	translated
Euclid	 and	Archimedes	 and	may	 be	 said	 to	 have	 originated	 the	 science	 of	 ballistics,	 for	 he	wrote	 a



treatise	on	gunnery	which	was	a	pioneering	effort	on	the	laws	of	falling	bodies.
In	 1535	Tartaglia	 found	 a	way	 of	 solving	 any	 cubic	 equation	 of	 the	 form	x3	 +	ax2	 =	b	 (that	 is,

without	an	x	term).	When	be	announced	his	accomplishment	(without	giving	any	details,	of	course),	he
was	challenged	to	an	algebra	contest	by	a	certain	Antonio	Fior,	a	pupil	of	 the	celebrated	professor	of
mathematics	Scipio	del	Ferro.	Scipio	had	already	found	a	method	for	solving	any	cubic	equation	of	the
form	x3	+	ax	=	b	(that	is,	without	an	x2	term),	and	had	confided	his	secret	to	his	pupil	Fior.	It	was	agreed
that	each	contestant	was	to	draw	up	30	problems	and	hand	the	list	to	his	opponent.	Whoever	solved	the
greater	number	of	problems	would	receive	a	sum	of	money	deposited	with	a	lawyer.	A	few	days	before
the	contest,	Tartaglia	 found	a	way	of	extending	his	method	so	as	 to	solve	any	cubic	equation.	 In	 less
than	2	hours	he	solved	all	his	opponent’s	problems,	while	his	opponent	failed	to	solve	even	one	of	those
proposed	by	Tartaglia.

For	some	time	Tartaglia	kept	his	method	for	solving	cubic	equations	to	himself,	but	in	the	end	he
succumbed	 to	Cardan’s	 accomplished	 powers	 of	 persuasion.	 Influenced	 by	Cardan’s	 promise	 to	 help
him	become	artillery	adviser	to	the	Spanish	army,	he	revealed	the	details	of	his	method	to	Cardan	under
the	promise	of	strict	secrecy.	A	few	years	later,	to	Tartaglia’s	unbelieving	amazement	and	indignation,
Cardan	published	Tartaglia’s	method	in	his	book	Ars	Magna.	Even	though	he	gave	Tartaglia	full	credit
as	the	originator	of	the	method,	there	can	be	no	doubt	that	he	broke	his	solemn	promise.	A	bitter	dispute
arose	between	the	mathematicians,	from	which	Tartaglia	was	perhaps	lucky	to	escape	alive.	He	lost	his
position	as	public	lecturer	at	Brescia,	and	lived	out	his	remaining	years	in	obscurity.

The	next	great	step	in	the	progress	of	algebra	was	made	by	another	member	of	the	same	circle.	It
was	Ludovico	Ferrari	who	discovered	the	general	method	for	solving	quartic	equations—equations	of
the	form

x4	+	ax3	+	bx2	+	cx	=	d

Ferrari	 was	 Cardan’s	 personal	 servant.	 As	 a	 boy	 in	 Cardan’s	 service	 he	 learned	 Latin,	 Greek,	 and
mathematics.	He	won	fame	after	defeating	Tartaglia	in	a	contest	in	1548,	and	received	an	appointment
as	supervisor	of	tax	assessments	in	Mantua.	This	position	brought	him	wealth	and	influence,	but	he	was
not	 able	 to	 dominate	 his	 own	 violent	 disposition.	 He	 quarreled	 with	 the	 regent	 of	Mantua,	 lost	 his
position,	and	died	at	the	age	of	43.	Tradition	has	it	that	he	was	poisoned	by	his	sister.

As	 for	 Cardan,	 after	 a	 long	 career	 of	 brilliant	 and	 unscrupulous	 achievement,	 his	 luck	 finally
abandoned	him.	Cardan’s	son	poisoned	his	unfaithful	wife	and	was	executed	in	1560.	Ten	years	later,
Cardan	 was	 arrested	 for	 heresy	 because	 he	 published	 a	 horoscope	 of	 Christ’s	 life.	 He	 spent	 several
months	in	jail	and	was	released	after	renouncing	his	heresy	privately,	but	lost	his	university	position	and
the	right	to	publish	books.	He	was	left	with	a	small	pension	which	had	been	granted	to	him,	for	some
unaccountable	reason,	by	the	Pope.

As	 this	 colorful	 time	 draws	 to	 a	 close,	 algebra	 emerges	 as	 a	 major	 branch	 of	 mathematics.	 It
became	 clear	 that	 methods	 can	 be	 found	 to	 solve	 many	 different	 types	 of	 equations.	 In	 particular,
formulas	 had	 been	 discovered	 which	 yielded	 the	 roots	 of	 all	 cubic	 and	 quartic	 equations.	 Now	 the
challenge	was	clearly	out	to	take	the	next	step,	namely,	to	find	a	formula	for	the	roots	of	equations	of
degree	5	or	higher	(in	other	words,	equations	with	an	x5	term,	or	an	x6	term,	or	higher).	During	the	next
200	years,	 there	was	hardly	a	mathematician	of	distinction	who	did	not	 try	 to	solve	 this	problem,	but
none	succeeded.	Progress	was	made	in	new	parts	of	algebra,	and	algebra	was	linked	to	geometry	with
the	 invention	 of	 analytic	 geometry.	 But	 the	 problem	 of	 solving	 equations	 of	 degree	 higher	 than	 4
remained	unsettled.	It	was,	in	the	expression	of	Lagrange,	“a	challenge	to	the	human	mind.”

It	 was	 therefore	 a	 great	 surprise	 to	 all	 mathematicians	 when	 in	 1824	 the	 work	 of	 a	 young



Norwegian	prodigy	named	Niels	Abel	came	to	light.	In	his	work,	Abel	showed	that	there	does	not	exist
any	formula	(in	the	conventional	sense	we	have	in	mind)	for	the	roots	of	an	algebraic	equation	whose
degree	 is	5	or	greater.	This	 sensational	discovery	brings	 to	a	close	what	 is	called	 the	classical	age	of
algebra.	Throughout	this	age	algebra	was	conceived	essentially	as	the	science	of	solving	equations,	and
now	the	outer	limits	of	this	quest	had	apparently	been	reached.	In	the	years	ahead,	algebra	was	to	strike
out	in	new	directions.

THE	MODERN	AGE
About	 the	 time	 Niels	 Abel	 made	 his	 remarkable	 discovery,	 several	 mathematicians,	 working
independently	in	different	parts	of	Europe,	began	raising	questions	about	algebra	which	had	never	been
considered	before.	Their	 researches	 in	 different	 branches	 of	mathematics	 had	 led	 them	 to	 investigate
“algebras”	 of	 a	 very	 unconventional	 kind—and	 in	 connection	 with	 these	 algebras	 they	 had	 to	 find
answers	 to	 questions	 which	 had	 nothing	 to	 do	 with	 solving	 equations.	 Their	 work	 had	 important
applications,	 and	 was	 soon	 to	 compel	 mathematicians	 to	 greatly	 enlarge	 their	 conception	 of	 what
algebra	is	about.

The	 new	 varieties	 of	 algebra	 arose	 as	 a	 perfectly	 natural	 development	 in	 connection	 with	 the
application	of	mathematics	to	practical	problems.	This	is	certainly	true	for	the	example	we	are	about	to
look	at	first.

The	Algebra	of	Matrices
A	matrix	is	a	rectangular	array	of	numbers	such	as

Such	arrays	come	up	naturally	 in	many	situations,	for	example,	 in	 the	solution	of	simultaneous	linear
equations.	The	above	matrix,	for	instance,	is	the	matrix	of	coefficients	of	the	pair	of	equations

Since	the	solution	of	this	pair	of	equations	depends	only	on	the	coefficients,	we	may	solve	it	by	working
on	the	matrix	of	coefficients	alone	and	ignoring	everything	else.

We	may	consider	the	entries	of	a	matrix	to	be	arranged	in	rows	and	columns;	the	above	matrix	has
two	rows	which	are

(2	11	−3)			and			(9	0.5	4)

and	three	columns	which	are

It	is	a	2	×	3	matrix.
To	simplify	our	discussion,	we	will	consider	only	2	×	2	matrices	in	the	remainder	of	this	section.
Matrices	are	added	by	adding	corresponding	entries:



The	matrix

is	called	the	zero	matrix	and	behaves,	under	addition,	like	the	number	zero.
The	multiplication	of	matrices	 is	a	 little	more	difficult.	First,	 let	us	recall	that	the	dot	product	of

two	vectors	(a,	b)	and	(a′,b′)	is

(a,b)	·	(a′,	b′)	=	aa′	+	bb′

that	 is,	 we	 multiply	 corresponding	 components	 and	 add.	 Now,	 suppose	 we	 want	 to	 multiply	 two
matrices	A	and	B;	we	obtain	the	product	AB	as	follows:

The	entry	in	the	first	row	and	first	column	of	AB,	that	is,	in	this	position

is	equal	to	the	dot	product	of	the	first	row	of	A	by	the	first	column	of	B.	The	entry	in	the	first	row	and
second	column	of	AB,	in	other	words,	this	position

is	equal	to	the	dot	product	of	the	first	row	of	A	by	the	second	column	of	B.	And	so	on.	For	example,

So	finally,

The	rules	of	algebra	for	matrices	are	very	different	from	the	rules	of	“conventional”	algebra.	For
instance,	the	commutative	law	of	multplica-tion,	AB	=	BA,	is	not	true.	Here	is	a	simple	example:

If	A	 is	 a	 real	 number	 and	A2	 =	 0,	 then	 necessarily	A	 =	 0;	 but	 this	 is	 not	 true	 of	matrices.	 For



example,

that	is,	A2	=	0	although	A	≠	0.
In	the	algebra	of	numbers,	if	AB	=	AC	where	A	≠	0,	we	may	cancel	A	and	conclude	that	B	=	C.	In

matrix	algebra	we	cannot.	For	example,

that	is,	AB	=	AC,	A	≠	0,	yet	B	≠	C.
The	identity	matrix

corresponds	in	matrix	multiplication	to	the	number	1;	for	we	have	AI	=	IA	=	A	for	every	2	×	2	matrix
A.	If	A	is	a	number	and	A2	=	1,	we	conclude	that	A	=	±1	Matrices	do	not	obey	this	rule.	For	example,

that	is,	A2	=	I,	and	yet	A	is	neither	I	nor	−I.
No	more	will	be	 said	about	 the	algebra	of	matrices	at	 this	point,	 except	 that	we	must	be	aware,

once	again,	that	it	is	a	new	game	whose	rules	are	quite	different	from	those	we	apply	in	conventional
algebra.

Boolean	Algebra
An	even	more	bizarre	kind	of	algebra	was	developed	in	the	mid-nineteenth	century	by	an	Englishman
named	 George	 Boole.	 This	 algebra—subsequently	 named	 boolean	 algebra	 after	 its	 inventor—has	 a
myriad	of	applications	today.	It	is	formally	the	same	as	the	algebra	of	sets.

If	S	is	a	set,	we	may	consider	union	and	intersection	 to	be	operations	on	the	subsets	of	5.	Let	us
agree	provisionally	to	write

A	+	B	 for	 A	∪	B

and

A	·	B	 for	 A	∩	B

(This	convention	is	not	unusual.)	Then,



and	so	on.
These	 identities	 are	 analogous	 to	 the	 ones	 we	 use	 in	 elementary	 algebra.	 But	 the	 following

identities	are	also	true,	and	they	have	no	counterpart	in	conventional	algebra:

and	so	on.
This	 unusual	 algebra	 has	 become	 a	 familiar	 tool	 for	 people	who	work	with	 electrical	 networks,

computer	 systems,	 codes,	 and	 so	 on.	 It	 is	 as	 different	 from	 the	 algebra	 of	 numbers	 as	 it	 is	 from	 the
algebra	of	matrices.

Other	exotic	algebras	arose	in	a	variety	of	contexts,	often	in	connection	with	scientific	problems.
There	were	“complex”	and	“hypercomplex”	algebras,	algebras	of	vectors	and	tensors,	and	many	others.
Today	 it	 is	 estimated	 that	 over	 200	 different	 kinds	 of	 algebraic	 systems	 have	 been	 studied,	 each	 of
which	arose	in	connection	with	some	application	or	specific	need.

Algebraic	Structures
As	legions	of	new	algebras	began	to	occupy	the	attention	of	mathematicians,	the	awareness	grew	that
algebra	 can	 no	 longer	 be	 conceived	merely	 as	 the	 science	 of	 solving	 equations.	 It	 had	 to	 be	 viewed
much	more	 broadly	 as	 a	 branch	 of	mathematics	 capable	 of	 revealing	 general	 principles	which	 apply
equally	to	all	known	and	all	possible	algebras.

What	is	it	that	all	algebras	have	in	common?	What	trait	do	they	share	which	lets	us	refer	to	all	of
them	as	“algebras”?	In	the	most	general	sense,	every	algebra	consists	of	a	set	(a	set	of	numbers,	a	set	of
matrices,	a	set	of	switching	components,	or	any	other	kind	of	set)	and	certain	operations	on	that	set.	An
operation	is	simply	a	way	of	combining	any	two	members	of	a	set	to	produce	a	unique	third	member	of
the	same	set.

Thus,	we	are	led	to	the	modern	notion	of	algebraic	structure.	An	algebraic	structure	is	understood
to	be	an	arbitrary	set,	with	one	or	more	operations	defined	on	it.	And	algebra,	then,	is	defined	to	be	the
study	of	algebraic	structures.

It	is	important	that	we	be	awakened	to	the	full	generality	of	the	notion	of	algebraic	structure.	We
must	make	an	effort	to	discard	all	our	preconceived	notions	of	what	an	algebra	is,	and	look	at	this	new
notion	of	 algebraic	 structure	 in	 its	 naked	 simplicity.	Any	 set,	with	 a	 rule	 (or	 rules)	 for	 combining	 its
elements,	 is	 already	 an	 algebraic	 structure.	 There	 does	 not	 need	 to	 be	 any	 connection	 with	 known
mathematics.	For	example,	consider	the	set	of	all	colors	(pure	colors	as	well	as	color	combinations),	and
the	operation	of	mixing	any	two	colors	to	produce	a	new	color.	This	may	be	conceived	as	an	algebraic
structure.	 It	 obeys	 certain	 rules,	 such	 as	 the	 commutative	 law	 (mixing	 red	 and	 blue	 is	 the	 same	 as
mixing	 blue	 and	 red).	 In	 a	 similar	 vein,	 consider	 the	 set	 of	 all	musical	 sounds	with	 the	 operation	 of
combining	any	two	sounds	to	produce	a	new	(harmonious	or	disharmonious)	combination.

As	another	example,	imagine	that	the	guests	at	a	family	reunion	have	made	up	a	rule	for	picking



the	closest	common	relative	of	any	 two	persons	present	at	 the	reunion	(and	suppose	 that,	 for	any	 two
people	 at	 the	 reunion,	 their	 closest	 common	 relative	 is	 also	 present	 at	 the	 reunion).	 This	 too,	 is	 an
algebraic	structure:	we	have	a	set	(namely	the	set	of	persons	at	the	reunion)	and	an	operation	on	that	set
(namely	the	“closest	common	relative”	operation).

As	the	general	notion	of	algebraic	structure	became	more	familiar	(it	was	not	fully	accepted	until
the	 early	 part	 of	 the	 twentieth	 century),	 it	 was	 bound	 to	 have	 a	 profound	 influence	 on	 what
mathematicians	perceived	 algebra	 to	be.	 In	 the	 end	 it	 became	 clear	 that	 the	 purpose	 of	 algebra	 is	 to
study	algebraic	structures,	and	nothing	 less	 than	 that.	 Ideally	 it	 should	aim	to	be	a	general	science	of
algebraic	structures	whose	results	should	have	applications	to	particular	cases,	thereby	making	contact
with	the	older	parts	of	algebra.	Before	we	take	a	closer	look	at	this	program,	we	must	briefly	examine
another	aspect	of	modern	mathematics,	namely,	the	increasing	use	of	the	axiomatic	method.

AXIOMS
The	axiomatic	method	is	beyond	doubt	the	most	remarkable	invention	of	antiquity,	and	in	a	sense	the
most	 puzzling.	 It	 appeared	 suddenly	 in	 Greek	 geometry	 in	 a	 highly	 developed	 form—already
sophisticated,	elegant,	and	 thoroughly	modern	 in	style.	Nothing	seems	to	have	foreshadowed	it	and	 it
was	unknown	to	ancient	mathematicians	before	the	Greeks.	It	appears	for	the	first	time	in	the	light	of
history	 in	 the	 great	 textbook	 of	 early	 geometry,	 Euclid’s	 Elements.	 Its	 origins—the	 first	 tentative
experiments	in	formal	deductive	reasoning	which	must	have	preceded	it—remain	steeped	in	mystery.

Euclid’s	Elements	embodies	the	axiomatic	method	in	its	purest	form.	This	amazing	book	contains
465	 geometric	 propositions,	 some	 fairly	 simple,	 some	 of	 astounding	 complexity.	 What	 is	 really
remarkable,	though,	is	that	the	465	propositions,	forming	the	largest	body	of	scientific	knowledge	in	the
ancient	world,	are	derived	logically	from	only	10	premises	which	would	pass	as	trivial	observations	of
common	sense.	Typical	of	the	premises	are	the	following:

Things	equal	to	the	same	thing	are	equal	to	each	other.
The	whole	is	greater	than	the	part.
A	straight	line	can	be	drawn	through	any	two	points.
All	right	angles	are	equal.

So	great	was	 the	 impression	made	by	Euclid’s	Elements	 on	 following	generations	 that	 it	 became	 the
model	of	correct	mathematical	form	and	remains	so	to	this	day.

It	would	be	wrong	to	believe	there	was	no	notion	of	demonstrative	mathematics	before	the	time	of
Euclid.	 There	 is	 evidence	 that	 the	 earliest	 geometers	 of	 the	 ancient	 Middle	 East	 used	 reasoning	 to
discover	geometric	principles.	They	found	proofs	and	must	have	hit	upon	many	of	the	same	proofs	we
find	 in	 Euclid.	 The	 difference	 is	 that	 Egyptian	 and	 Babylonian	 mathematicians	 considered	 logical
demonstration	to	be	an	auxiliary	process,	like	the	preliminary	sketch	made	by	artists—a	private	mental
process	which	guided	them	to	a	result	but	did	not	deserve	to	be	recorded.	Such	an	attitude	shows	little
understanding	of	the	true	nature	of	geometry	and	does	not	contain	the	seeds	of	the	axiomatic	method.

It	is	also	known	today	that	many—maybe	most—of	the	geometric	theorems	in	Euclid’s	Elements
came	from	more	ancient	times,	and	were	probably	borrowed	by	Euclid	from	Egyptian	and	Babylonian
sources.	However,	this	does	not	detract	from	the	greatness	of	his	work.	Important	as	are	the	contents	of
the	Elements,	what	has	proved	far	more	 important	 for	posterity	 is	 the	formal	manner	 in	which	Euclid
presented	these	contents.	The	heart	of	the	matter	was	the	way	he	organized	geometric	facts—arranged
them	 into	 a	 logical	 sequence	where	 each	 theorem	 builds	 on	 preceding	 theorems	 and	 then	 forms	 the



logical	basis	for	other	theorems.
(We	 must	 carefully	 note	 that	 the	 axiomatic	 method	 is	 not	 a	 way	 of	 discovering	 facts	 but	 of

organizing	 them.	 New	 facts	 in	 mathematics	 are	 found,	 as	 often	 as	 not,	 by	 inspired	 guesses	 or
experienced	 intuition.	 To	 be	 accepted,	 however,	 they	 should	 be	 supported	 by	 proof	 in	 an	 axiomatic
system.)

Euclid’s	Elements	has	stood	throughout	the	ages	as	the	model	of	organized,	rational	thought	carried
to	its	ultimate	perfection.	Mathematicians	and	philosophers	in	every	generation	have	tried	to	imitate	its
lucid	 perfection	 and	 flawless	 simplicity.	 Descartes	 and	 Leibniz	 dreamed	 of	 organizing	 all	 human
knowledge	into	an	axiomatic	system,	and	Spinoza	created	a	deductive	system	of	ethics	patterned	after
Euclid’s	geometry.	While	many	of	these	dreams	have	proved	to	be	impractical,	the	method	popularized
by	Euclid	has	become	the	prototype	of	modern	mathematical	form.	Since	the	middle	of	the	nineteenth
century,	 the	axiomatic	method	has	been	accepted	as	 the	only	correct	way	of	organizing	mathematical
knowledge.

To	perceive	why	the	axiomatic	method	is	truly	central	to	mathematics,	we	must	keep	one	thing	in
mind:	mathematics	by	its	nature	is	essentially	abstract.	For	example,	in	geometry	straight	lines	are	not
stretched	threads,	but	a	concept	obtained	by	disregarding	all	the	properties	of	stretched	threads	except
that	of	extending	in	one	direction.	Similarly,	the	concept	of	a	geometric	figure	is	the	result	of	idealizing
from	all	 the	properties	 of	 actual	 objects	 and	 retaining	only	 their	 spatial	 relationships.	Now,	 since	 the
objects	of	mathematics	are	abstractions,	it	stands	to	reason	that	we	must	acquire	knowledge	about	them
by	logic	and	not	by	observation	or	experiment	(for	how	can	one	experiment	with	an	abstract	thought?).

This	remark	applies	very	aptly	to	modern	algebra.	The	notion	of	algebraic	structure	is	obtained	by
idealizing	 from	all	 particular,	 concrete	 systems	of	 algebra.	We	choose	 to	 ignore	 the	properties	 of	 the
actual	objects	 in	 a	 system	of	 algebra	 (they	may	be	numbers,	 or	matrices,	 or	whatever—we	disregard
what	they	are),	and	we	turn	our	attention	simply	to	the	way	they	combine	under	the	given	operations.	In
fact,	just	as	we	disregard	what	the	objects	in	a	system	are,	we	also	disregard	what	the	operations	do	 to
them.	We	retain	only	the	equations	and	inequalities	which	hold	in	the	system,	for	only	these	are	relevant
to	algebra.	Everything	else	may	be	discarded.	Finally,	equations	and	inequalities	may	be	deduced	from
one	another	logically,	just	as	spatial	relationships	are	deduced	from	each	other	in	geometry.

THE	AXIOMATICS	OF	ALGEBRA
Let	us	remember	that	in	the	mid-nineteenth	century,	when	eccentric	new	algebras	seemed	to	show	up	at
every	turn	in	mathematical	research,	it	was	finally	understood	that	sacrosanct	laws	such	as	the	identities
ab	 =	ba	 and	a(bc)	=	 (ab)c	 are	 not	 inviolable—for	 there	 are	 algebras	 in	which	 they	 do	 not	 hold.	By
varying	or	deleting	some	of	these	identities,	or	by	replacing	them	by	new	ones,	an	enormous	variety	of
new	systems	can	be	created.

Most	importantly,	mathematicians	slowly	discovered	that	all	the	algebraic	laws	which	hold	in	any
system	can	be	derived	from	a	few	simple,	basic	ones.	This	is	a	genuinely	remarkable	fact,	for	it	parallels
the	discovery	made	by	Euclid	that	a	few	very	simple	geometric	postulates	are	sufficient	to	prove	all	the
theorems	of	geometry.	As	 it	 turns	out,	 then,	we	have	 the	same	phenomenon	 in	algebra:	a	 few	simple
algebraic	equations	offer	themselves	naturally	as	axioms,	and	from	them	all	other	facts	may	be	proved.

These	basic	algebraic	laws	are	familiar	to	most	high	school	students	today.	We	list	them	here	for
reference.	We	 assume	 that	A	 is	 any	 set	 and	 there	 is	 an	 operation	 on	A	which	we	 designate	with	 the
symbol	*

a	*	b	=	b	*	a (1)
If	Equation	(1)	is	true	for	any	two	elements	a	and	b	in	A,	we	say	that	the	operation	*	is	commutative.



What	it	means,	of	course,	is	that	the	value	of	a	*	b	(or	b	*	a)	is	independent	of	the	order	in	which	a	and
b	are	taken.

a	*	(b	*	c)	=	(a	*	b)	*c (2)
If	Equation	(2)	 is	 true	 for	any	 three	elements	a,	b,	and	c	 in	A,	we	 say	 the	 operation	 *	 is	associative.
Remember	that	an	operation	is	a	rule	for	combining	any	two	elements,	so	if	we	want	to	combine	three
elements,	we	can	do	 so	 in	different	ways.	 If	we	want	 to	 combine	a,	b,	 and	c	without	 changing	 their
order,	we	may	either	combine	a	with	the	result	of	combining	b	and	c,	which	produces	a	*(b	*	c);	or	we
may	first	combine	a	with	b,	and	then	combine	the	result	with	c,	producing	(a	*	b)*	c.	The	associative
law	 asserts	 that	 these	 two	possible	ways	 of	 combining	 three	 elements	 (without	 changing	 their	 order)
yield	the	same	result.

There	exists	an	element	e	in	A	such	that
e	*	a	=	a	 and	 a	*	e	=	a	 for	every	a	in	A (3)

If	such	an	element	e	exists	in	A,	we	call	it	an	identity	element	for	the	operation	*.	An	identity	element	is
sometimes	called	a	“neutral”	element,	 for	 it	may	be	combined	with	any	element	a	without	altering	a.
For	example,	0	is	an	identity	element	for	addition,	and	1	is	an	identity	element	for	multiplication.

For	every	element	a	in	A,	there	is	an	element	a−l	(“a	inverse”)	in	A	such	that
a	*	a−l	=	e	 and	 a−1	*	a	=	e (4)

If	statement	(4)	is	true	in	a	system	of	algebra,	we	say	that	every	element	has	an	inverse	with	respect	to
the	operation	*.	The	meaning	of	 the	 inverse	should	be	clear:	 the	combination	of	any	element	with	 its
inverse	produces	the	neutral	element	(one	might	roughly	say	that	the	inverse	of	a	“neutralizes”	a).	For
example,	if	A	is	a	set	of	numbers	and	the	operation	is	addition,	then	the	inverse	of	any	number	a	is	(−a);
if	the	operation	is	multiplication,	the	inverse	of	any	a	≠	0	is	1/a.

Let	us	assume	now	that	 the	same	set	A	has	a	second	operation,	symbolized	by	⊥,	as	well	as	 the
operation	*	:

a	*	(b	⊥	c)	=	(a	*	b)	⊥	(a	*	c) (5)
If	Equation	(5)	holds	 for	any	 three	elements	a,	b,	and	c	 in	A,	we	say	 that	*	 is	distributive	over	⊥.	 If
there	are	two	operations	in	a	system,	they	must	interact	in	some	way;	otherwise	there	would	be	no	need
to	consider	them	together.	The	distributive	law	is	the	most	common	way	(but	not	the	only	possible	one)
for	two	operations	to	be	related	to	one	another.

There	are	other	“basic”	 laws	besides	 the	five	we	have	 just	seen,	but	 these	are	 the	most	common
ones.	The	most	important	algebraic	systems	have	axioms	chosen	from	among	them.	For	example,	when
a	 mathematician	 nowadays	 speaks	 of	 a	 ring,	 the	 mathematician	 is	 referring	 to	 a	 set	 A	 with	 two
operations,	usually	symbolized	by	+	and	·,	having	the	following	axioms:

Addition	is	commutative	and	associative,	it	has	a	neutral	element	commonly	symbolized	by	0,	and
every	element	a	has	an	inverse	–a	with	respect	to	addition.	Multiplication	is	associative,	has	a
neutral	element	1,	and	is	distributive	over	addition.

Matrix	algebra	is	a	particular	example	of	a	ring,	and	all	the	laws	of	matrix	algebra	may	be	proved	from
the	 preceding	 axioms.	However,	 there	 are	many	 other	 examples	 of	 rings:	 rings	 of	 numbers,	 rings	 of
functions,	 rings	 of	 code	 “words,”	 rings	 of	 switching	 components,	 and	 a	 great	 many	 more.	 Every
algebraic	law	which	can	be	proved	in	a	ring	(from	the	preceding	axioms)	is	true	in	every	example	of	a
ring.	 In	 other	 words,	 instead	 of	 proving	 the	 same	 formula	 repeatedly—once	 for	 numbers,	 once	 for
matrices,	once	for	switching	components,	and	so	on—it	 is	sufficient	nowadays	 to	prove	only	 that	 the
formula	 holds	 in	 rings,	 and	 then	 of	 necessity	 it	will	 be	 true	 in	 all	 the	 hundreds	 of	 different	 concrete
examples	of	rings.



By	varying	the	possible	choices	of	axioms,	we	can	keep	creating	new	axiomatic	systems	of	algebra
endlessly.	We	may	well	ask:	is	it	legitimate	to	study	any	axiomatic	system,	with	any	choice	of	axioms,
regardless	of	usefulness,	relevance,	or	applicability?	There	are	“radicals”	in	mathematics	who	claim	the
freedom	for	mathematicians	to	study	any	system	they	wish,	without	the	need	to	justify	it.	However,	the
practice	in	established	mathematics	is	more	conservative:	particular	axiomatic	systems	are	investigated
on	 account	 of	 their	 relevance	 to	 new	 and	 traditional	 problems	 and	 other	 parts	 of	 mathematics,	 or
because	they	correspond	to	particular	applications.

In	 practice,	 how	 is	 a	 particular	 choice	 of	 algebraic	 axioms	 made?	 Very	 simply:	 when
mathematicians	 look	 at	 different	 parts	 of	 algebra	 and	 notice	 that	 a	 common	 pattern	 of	 proofs	 keeps
recurring,	and	essentially	the	same	assumptions	need	to	be	made	each	time,	they	find	it	natural	to	single
out	 this	 choice	 of	 assumptions	 as	 the	 axioms	 for	 a	 new	 system.	 All	 the	 important	 new	 systems	 of
algebra	were	created	in	this	fashion.

ABSTRACTION	REVISITED
Another	important	aspect	of	axiomatic	mathematics	is	this:	when	we	capture	mathematical	facts	in	an
axiomatic	 system,	 we	 never	 try	 to	 reproduce	 the	 facts	 in	 full,	 but	 only	 that	 side	 of	 them	 which	 is
important	or	relevant	in	a	particular	context.	This	process	of	selecting	what	is	relevant	and	disregarding
everything	else	is	the	very	essence	of	abstraction.

This	kind	of	abstraction	is	so	natural	to	us	as	human	beings	that	we	practice	it	all	the	time	without
being	aware	of	doing	so.	Like	the	Bourgeois	Gentleman	in	Molière’s	play	who	was	amazed	to	learn	that
he	spoke	in	prose,	some	of	us	may	be	surprised	to	discover	how	much	we	think	in	abstractions.	Nature
presents	us	with	a	myriad	of	interwoven	facts	and	sensations,	and	we	are	challenged	at	every	instant	to
single	out	those	which	are	immediately	relevant	and	discard	the	rest.	In	order	to	make	our	surroundings
comprehensible,	we	must	continually	pick	out	certain	data	and	separate	them	from	everything	else.

For	natural	scientists,	this	process	is	the	very	core	and	essence	of	what	they	do.	Nature	is	not	made
up	 of	 forces,	 velocities,	 and	moments	 of	 inertia.	Nature	 is	 a	whole—nature	 simply	 is!	 The	 physicist
isolates	certain	aspects	of	nature	from	the	rest	and	finds	the	laws	which	govern	these	abstractions.

It	 is	 the	 same	 with	mathematics.	 For	 example,	 the	 system	 of	 the	 integers	 (whole	 numbers),	 as
known	by	our	intuition,	is	a	complex	reality	with	many	facets.	The	mathematician	separates	these	facets
from	one	another	and	studies	 them	 individually.	From	one	point	of	view	 the	 set	of	 the	 integers,	with
addition	and	multiplication,	forms	a	ring	(that	is,	it	satisfies	the	axioms	stated	previously).	From	another
point	 of	 view	 it	 is	 an	 ordered	 set,	 and	 satisfies	 special	 axioms	 of	 ordering.	On	 a	 different	 level,	 the
positive	 integers	 form	 the	 basis	 of	 “recursion	 theory,”	 which	 singles	 out	 the	 particular	 way	 positive
integers	may	be	constructed,	beginning	with	1	and	adding	1	each	time.

It	 therefore	happens	that	 the	traditional	subdivision	of	mathematics	into	subject	matters	has	been
radically	altered.	No	 longer	are	 the	 integers	one	 subject,	 complex	numbers	another,	matrices	another,
and	so	on;	instead,	particular	aspects	of	these	systems	are	isolated,	put	in	axiomatic	form,	and	studied
abstractly	without	 reference	 to	 any	 specific	 objects.	 The	 other	 side	 of	 the	 coin	 is	 that	 each	 aspect	 is
shared	by	many	of	the	traditional	systems:	for	example,	algebraically	the	integers	form	a	ring,	and	so	do
the	complex	numbers,	matrices,	and	many	other	kinds	of	objects.

There	is	nothing	intrinsically	new	about	this	process	of	divorcing	properties	from	the	actual	objects
having	the	properties;	as	we	have	seen,	it	is	precisely	what	geometry	has	done	for	more	than	2000	years.
Somehow,	it	took	longer	for	this	process	to	take	hold	in	algebra.

The	movement	 toward	axiomatics	and	abstraction	 in	modern	algebra	began	about	 the	1830s	and
was	completed	100	years	later.	The	movement	was	tentative	at	first,	not	quite	conscious	of	its	aims,	but



it	gained	momentum	as	it	converged	with	similar	trends	in	other	parts	of	mathematics.	The	thinking	of
many	great	mathematicians	played	a	decisive	role,	but	none	left	a	deeper	or	longer	lasting	impression
than	a	very	young	Frenchman	by	the	name	of	Évariste	Galois.

The	story	of	Évariste	Galois	is	probably	the	most	fantastic	and	tragic	in	the	history	of	mathematics.
A	sensitive	and	prodigiously	gifted	young	man,	he	was	killed	in	a	duel	at	 the	age	of	20,	ending	a	life
which	in	its	brief	span	had	offered	him	nothing	but	tragedy	and	frustration.	When	he	was	only	a	youth
his	father	commited	suicide,	and	Galois	was	left	to	fend	for	himself	in	the	labyrinthine	world	of	French
university	 life	 and	 student	 politics.	He	was	 twice	 refused	 admittance	 to	 the	Ecole	Polytechnique,	 the
most	 prestigious	 scientific	 establishment	 of	 its	 day,	 probably	 because	 his	 answers	 to	 the	 entrance
examination	were	 too	original	 and	unorthodox.	When	he	presented	 an	 early	 version	of	 his	 important
discoveries	in	algebra	to	the	great	academician	Cauchy,	this	gentleman	did	not	read	the	young	student’s
paper,	but	lost	it.	Later,	Galois	gave	his	results	to	Fourier	in	the	hope	of	winning	the	mathematics	prize
of	the	Academy	of	Sciences.	But	Fourier	died,	and	that	paper,	too,	was	lost.	Another	paper	submitted	to
Poisson	was	eventually	returned	because	Poisson	did	not	have	the	interest	to	read	it	through.

Galois	 finally	 gained	 admittance	 to	 the	 École	 Normale,	 another	 focal	 point	 of	 research	 in
mathematics,	 but	 he	was	 soon	 expelled	 for	writing	 an	 essay	which	 attacked	 the	 king.	He	was	 jailed
twice	for	political	agitation	in	the	student	world	of	Paris.	In	the	midst	of	such	a	turbulent	life,	it	is	hard
to	believe	that	Galois	found	time	to	create	his	colossally	original	theories	on	algebra.

What	Galois	did	was	to	tie	in	the	problem	of	finding	the	roots	of	equations	with	new	discoveries	on
groups	of	permutations.	He	explained	exactly	which	equations	of	degree	5	or	higher	have	solutions	of
the	traditional	kind—and	which	others	do	not.	Along	the	way,	he	introduced	some	amazingly	original
and	powerful	 concepts,	which	 form	 the	 framework	of	much	 algebraic	 thinking	 to	 this	 day.	Although
Galois	did	not	work	explicitly	in	axiomatic	algebra	(which	was	unknown	in	his	day),	the	abstract	notion
of	algebraic	structure	is	clearly	prefigured	in	his	work.

In	1832,	when	Galois	was	only	20	years	old,	he	was	challenged	to	a	duel.	What	argument	led	to	the
challenge	is	not	clear:	some	say	the	issue	was	political,	while	others	maintain	the	duel	was	fought	over	a
fickle	 lady’s	wavering	 love.	The	 truth	may	never	be	known,	but	 the	 turbulent,	brilliant,	and	 idealistic
Galois	died	of	his	wounds.	Fortunately	 for	mathematics,	 the	night	before	 the	duel	he	wrote	down	his
main	mathematical	results	and	entrusted	them	to	a	friend.	This	time,	they	weren’t	lost—but	they	were
only	published	15	years	after	his	death.	The	mathematical	world	was	not	ready	for	them	before	then!

Algebra	 today	 is	 organized	 axiomatically,	 and	 as	 such	 it	 is	 abstract.	 Mathematicians	 study
algebraic	 structures	 from	a	general	point	of	view,	compare	different	 structures,	 and	 find	 relationships
between	them.	This	abstraction	and	generalization	might	appear	to	be	hopelessly	impractical—but	it	is
not!	The	general	approach	in	algebra	has	produced	powerful	new	methods	for	“algebraizing”	different
parts	 of	 mathematics	 and	 science,	 formulating	 problems	 which	 could	 never	 have	 been	 formulated
before,	and	finding	entirely	new	kinds	of	solutions.

Such	 excursions	 into	 pure	 mathematical	 fancy	 have	 an	 odd	 way	 of	 running	 ahead	 of	 physical
science,	providing	a	theoretical	framework	to	account	for	facts	even	before	those	facts	are	fully	known.
This	 pattern	 is	 so	 characteristic	 that	many	mathematicians	 see	 themselves	 as	 pioneers	 in	 a	world	 of
possibilities	 rather	 than	 facts.	 Mathematicians	 study	 structure	 independently	 of	 content,	 and	 their
science	is	a	voyage	of	exploration	through	all	the	kinds	of	structure	and	order	which	the	human	mind	is
capable	of	discerning.



CHAPTER

TWO
OPERATIONS

Addition,	 subtraction,	 multiplication,	 division—these	 and	 many	 others	 are	 familiar	 examples	 of
operations	on	appropriate	sets	of	numbers.

Intuitively,	an	operation	on	a	set	A	is	a	way	of	combining	any	two	elements	of	A	to	produce	another
element	in	the	same	set	A.

Every	operation	is	denoted	by	a	symbol,	such	as	+,	×,	or	÷	In	this	book	we	will	look	at	operations
from	a	lofty	perspective;	we	will	discover	facts	pertaining	to	operations	generally	rather	than	to	specific
operations	on	specific	sets.	Accordingly,	we	will	sometimes	make	up	operation	symbols	such	as	*	and	
to	refer	to	arbitrary	operations	on	arbitrary	sets.

Let	us	now	define	formally	what	we	mean	by	an	operation	on	set	A.	Let	A	be	any	set:

An	operation	*	on	A	is	a	rule	which	assigns	to	each	ordered	pair	(a,	b)	of	elements	of	A	exactly	one
element	a	*	b	in	A.

There	are	three	aspects	of	this	definition	which	need	to	be	stressed:

1. a	 *	b	 is	 defined	 for	 every	 ordered	 pair	 (a,	b)	 of	 elements	 of	 A.	 There	 are	many	 rules	which	 look
deceptively	like	operations	but	are	not,	because	this	condition	fails.	Often	a	*	b	is	defined	for	all	the
obvious	choices	of	a	and	b,	but	remains	undefined	in	a	few	exceptional	cases.	For	example,	division
does	not	qualify	as	an	operation	on	the	set	 	of	the	real	numbers,	for	there	are	ordered	pairs	such	as
(3,	 0)	 whose	 quotient	 3/0	 is	 undefined.	 In	 order	 to	 be	 an	 operation	 on	 ,	 division	would	 have	 to
associate	a	real	number	alb	with	every	ordered	pair	(a,	b)	of	elements	of	 .	No	exceptions	allowed!

2. a	*	b	must	be	uniquely	defined.	In	other	words,	the	value	of	a	*	b	must	be	given	unambiguously.	For
example,	one	might	attempt	to	define	an	operation	□	on	the	set	 	of	the	real	numbers	by	letting	a	□	b
be	 the	number	whose	square	 is	ab.	Obviously	 this	 is	ambiguous	because	2	□	8,	 let	us	say,	may	be
either	4	or	-4.	Thus,	□	does	not	qualify	as	an	operation	on	 !

3. If	a	and	b	are	in	A,	a	*	b	must	be	in	A.	This	condition	is	often	expressed	by	saying	that	A	is	closed
under	the	operation	*.	If	we	propose	to	define	an	operation	*	on	a	set	A,	we	must	 take	care	 that	*,
when	applied	to	elements	of	A,	does	not	take	us	out	of	A.	For	example,	division	cannot	be	regarded	as
an	operation	on	the	set	of	the	integers,	for	there	are	pairs	of	integers	such	as	(3,4)	whose	quotient	3/4
is	not	an	integer.

On	the	other	hand,	division	does	qualify	as	an	operation	on	the	set	of	all	the	positive	real



numbers,	for	the	quotient	of	any	two	positive	real	numbers	is	a	uniquely	determined	positive	real
number.

An	operation	is	any	rule	which	assigns	to	each	ordered	pair	of	elements	of	A	a	unique	element	in	A.
Therefore	 it	 is	 obvious	 that	 there	 are,	 in	 general,	many	 possible	 operations	 on	 a	 given	 set	A.	 If,	 for
example,	A	 is	a	set	consisting	of	 just	 two	distinct	elements,	say	a	and	b,	each	operation	on	A	may	be
described	by	a	table	such	as	this	one:

In	the	left	column	are	listed	the	four	possible	ordered	pairs	of	elements	of	A,	and	to	 the	right	of	each
pair	(x,	y)	is	the	value	of	x	*	y.	Here	are	a	few	of	the	possible	operations:

Each	of	these	tables	describes	a	different	operation	on	A.	Each	table	has	four	rows,	and	each	row	may	be
filled	with	either	an	a	or	a	b;	hence	there	are	16	possible	ways	of	filling	the	table,	corresponding	to	16
possible	operations	on	the	set	A.

We	have	already	seen	that	any	operation	on	a	set	A	comes	with	certain	“options.”	An	operation	*
may	be	commutative,	that	is,	it	may	satisfy

a	*	b	=	b	*	a (1)

for	any	two	elements	a	and	b	in	A.	It	may	be	associative,	that	is,	it	may	satisfy	the	equation

(a	*	b)	*	c	=	a	*	(b	*	c) (2)

for	any	three	elements	a,	b,	and	c	in	A.
To	understand	the	importance	of	the	associative	law,	we	must	remember	that	an	operation	is	a	way

of	combining	two	elements;	so	if	we	want	to	combine	three	elements,	we	can	do	so	in	different	ways.	If
we	want	to	combine	a,	b,	and	c	without	changing	their	order,	we	may	either	combine	a	with	the	result
of	combining	b	and	c,	which	produces	a	*	(b	*	c);	or	we	may	first	combine	a	with	b,	and	then	combine
the	 result	with	c,	 producing	 (a	 *	b)	 *	c.	 The	 associative	 law	 asserts	 that	 these	 two	 possible	ways	 of
combining	three	elements	(without	changing	their	order)	produce	the	same	result.

For	 example,	 the	 addition	 of	 real	 numbers	 is	 associative	 because	 a	 +	 (b	 +	 c)	 =	 (a	 +	 b)	 +	 c.
However,	division	of	 real	numbers	 is	not	 associative:	 for	 instance,	 3/(4/5)	 is	 15/4,	whereas	 (3/4)/5	 is
3/20.

If	there	is	an	element	e	in	A	with	the	property	that

e	*	a	=	a	 and	 a	*	e	=	a	 for	every	element	a	in	A (3)



then	 e	 is	 called	 an	 identity	 or	 “neutral”	 element	 with	 respect	 to	 the	 operation	 *.	 Roughly	 speaking,
Equation	(3)	tells	us	that	when	e	is	combined	with	any	element	a,	it	does	not	change	a.	For	example,	in
the	 set	 	 of	 the	 real	 numbers,	 0	 is	 a	 neutral	 element	 for	 addition,	 and	 1	 is	 a	 neutral	 element	 for
multiplication.

If	a	is	any	element	of	A,	and	x	is	an	element	of	A	such	that

a	*	x	=	e	 and	 x	*	a	=	e (4)

then	 x	 is	 called	 an	 inverse	 of	 a.	 Roughly	 speaking,	 Equation	 (4)	 tells	 us	 that	 when	 an	 element	 is
combined	with	its	inverse	it	produces	the	neutral	element.	For	example,	in	the	set	 of	the	real	numbers,
−a	 is	 the	 inverse	of	a	with	 respect	 to	 addition;	 if	a	 ≠	 0,	 then	1/a	 is	 the	 inverse	 of	a	with	 respect	 to
multiplication.

The	 inverse	of	a	 is	often	denoted	by	 the	 symbol	a−l.	 (The	 symbol	a−l	 is	 usually	 pronounced	 “a
inverse.”)

EXERCISES
Throughout	this	book,	the	exercises	are	grouped	into	exercise	sets,	each	set	being	identified	by	a	letter
A,	B,	C,	etc,	and	headed	by	a	descriptive	title.	Each	exercise	set	contains	six	to	ten	exercises,	numbered
consecutively.	Generally,	 the	 exercises	 in	 each	 set	 are	 independent	 of	 each	 other	 and	 may	 be	 done
separately.	However,	when	the	exercises	in	a	set	are	related,	with	some	exercises	building	on	preceding
ones	so	that	they	must	be	done	in	sequence,	this	is	indicated	with	a	symbol	t	in	the	margin	to	the	left	of
the	heading.

The	symbol	#	next	to	an	exercise	number	indicates	that	a	partial	solution	to	that	exercise	is	given	in
the	Answers	section	at	the	end	of	the	book.

A.	Examples	of	Operations
Which	of	the	following	rules	are	operations	on	the	indicated	set?	( 	designates	the	set	of	the	integers,	
the	rational	numbers,	and	 	the	real	numbers.)	For	each	rule	which	is	not	an	operation,	explain	why	it	is
not.
Example	 ,	on	the	set	 .

Solution	This	is	not	an	operation	on	 .	There	are	integers	a	and	b	such	that	{a	+	b)/ab	is	not	an	integer.
(For	example,

is	not	an	integer.)	Thus,	 	is	not	closed	under	*.
1 ,	on	the	set	 .
2 a*	b	=	a	ln	b,	on	the	set	{x	∈	 	:	x	>	0}.
3 a	*	b	is	a	root	of	the	equation	x2	−	a2b2	=	0,	on	the	set	 .
4 Subtraction,	on	the	set	 .
5 Subtraction,	on	the	set	{n	∈	 :	≥0}.
6 a	*	b	=	|a	−	b,	on	the	set	{n	∈	 :	≥0}.



B.	Properties	of	Operations
Each	of	the	following	is	an	operation	*	on	U.	Indicate	whether	or	not
(i) it	is	commutative,
(ii) it	is	associative,
(iii) 	has	an	identity	element	with	respect	to	*,
(iv) every	x	∈	 	has	an	inverse	with	respect	to	*.

Instructions	For	(i),	compute	x	*	y	and	y	*	x,	and	verify	whether	or	not	they	are	equal.	For	(ii),	compute
x	*	(y	*	z)	and	(x	*	y)	*	z,	and	verify	whether	or	not	they	are	equal.	For	(iii),	first	solve	the	equation	x	*	e
=	x	 for	e;	 if	 the	equation	cannot	be	solved,	 there	 is	no	 identity	element.	 If	 it	can	be	solved,	 it	 is	still
necessary	to	check	that	e	*	x	=	x*	e	=	x	for	any	x .	If	it	checks,	then	e	is	an	identity	element.	For	(iv),
first	note	that	if	there	is	no	identity	element,	there	can	be	no	inverses.	If	there	is	an	identity	element	e,
first	solve	the	equation	x	*	x′	=	e	for	x′	if	the	equation	cannot	be	solved,	x	does	not	have	an	inverse.	If	it
can	be	solved,	check	to	make	sure	that	x	*	x′	=	x′	*	x	=	x′	*	x	=	e.	If	this	checks,	x′	is	the	inverse	of	x.
Example	x	*	y	=	x	+	y	+	1

(i) x	*	y	=	x	+	y	+	1;	y	*	x	=	y	+	x	+	1	=	x	+	y	+	1.
(Thus,	*	is	commutative.)

(ii) x*(y	*	z)	=	x*(y	+	z	+	l)	=	x	+	(y	+	z	+	l)	+	l	=	x	+	y	+	z	+	2.
(x	*	y)	*	z	=	(x	+	y	+	1)	*	z	=	(x	+	y	+	1)	+	z	+	1	=	x	+	y	+	z	+	2.
(*	is	associative.)

(iii) Solve	x*	e	=	x	for	e:	x	*	e	=	x	+	e	+	1	=	x;	therefore,	e	=	−1.
Check:	x	*	(−1)	=	x	+	(−1)	+	1	=	x;	(−1)	*	x	=	(−1)	+	x	+	1	=	x.
Therefore,	−1	is	the	identity	element.
(*	has	an	identity	element.)

(iv) Solve	x	*	x′	=	−1	for	x′: 	x	*x′	=	x	+	x′	+	1	=	−1;	therefore	x′	=	−x	−	2.	Check:	x	*	(−x	−	2)	=	x	+
(−x	−	2)	+	1	=	−1;	(−x	−	2)	*	x	=	(−x	−2)	+	x	+	l	=	−l.	Therefore,	−x	−	2	is	the	inverse	of	x.
(Every	element	has	an	inverse.)

1 x	*	y	=	x	+	2y	+	4

(i) x	*	y	=	x	+	2y	+	4;	y	*	x	=
(ii) x*(y	*	z)	=	x*( )	=

(x	*	y)	*	z	=	( )	*	z	=
(iii) Solve	x	*	e	=	x	for	e.	Check.
(iv) Solve	x	*	x′	=	e	for	x′.	Check.
2 x	*	y	=	x	+	2y	−	xy



3 x	*	y	=	|x	+	y|

4 x	*	y	=	|x	−	y|

5 x	*	y	=	xy	+	1

6 x	*	y	=	max	{x,	y}	=	the	larger	of	the	two	numbers	x	and	y

7 	(on	the	set	of	positive	real	numbers)

C.	Operations	on	a	Two-Element	Set
Let	A	be	the	two-element	set	A	=	{a,	b}.
1 Write	the	tables	of	all	16	operations	on	A.	(Use	the	format	explained	on	page	20.)
Label	these	operations	0l	to	016.	Then:

2 Identify	which	of	the	operations	0l	to	016	are	commutative.
3 Identify	which	operations,	among	0l	to	016,	are	associative.
4 For	which	of	the	operations	0l	to	016	is	there	an	identity	element?
5 For	which	of	the	operations	0l	to	016	does	every	element	have	an	inverse?

D.	Automata:	The	Algebra	of	Input/Output	Sequences
Digital	 computers	 and	 related	machines	 process	 information	 which	 is	 received	 in	 the	 form	 of	 input
sequences.	An	input	sequence	is	a	finite	sequence	of	symbols	from	some	alphabet	A.	For	instance,	if	A	=
{0,1}	 (that	 is,	 if	 the	 alphabet	 consists	 of	 only	 the	 two	 symbols	 0	 and	 1),	 then	 examples	 of	 input
sequences	are	011010	and	10101111.	If	A	=	{a,	b,	c},	then	examples	of	input	sequences	are	babbcac	and
cccabaa.	Output	sequences	are	defined	in	the	same	way	as	input	sequences.	The	set	of	all	sequences	of
symbols	in	the	alphabet	A	is	denoted	by	A*.

There	is	an	operation	on	A*	called	concatenation:	If	a	and	b	are	in	A*,	say	a	=	a1a2.	.	.	an	and	b	=
blb2	…	bm,	then

ab	=	a1a2	…	anbb2.	.	.bm



In	other	words,	the	sequence	ab	consists	of	the	two	sequences	a	and	b	end	to	end.	For	example,	in	the
alphabet	A	=	{0,1},	if	a	=	1001	and	b	=	010,	then	ab	=	1001010.

The	symbol	λ	denotes	the	empty	sequence.
1 Prove	that	the	operation	defined	above	is	associative.
2 Explain	why	the	operation	is	not	commutative.
3 Prove	that	there	is	an	identity	element	for	this	operation.



CHAPTER

THREE
THE	DEFINITION	OF	GROUPS

One	of	the	simplest	and	most	basic	of	all	algebraic	structures	is	the	group.	A	group	is	defined	to	be	a	set
with	 an	 operation	 (let	 us	 call	 it	 *)	 which	 is	 associative,	 has	 a	 neutral	 element,	 and	 for	 which	 each
element	has	an	inverse.	More	formally,

By	a	group	we	mean	a	set	G	with	an	operation	*	which	satisfies	the	axioms:
(G1) *	is	associative.
(G2) There	is	an	element	e	in	G	such	that	a	*	e	=	a	and	e	*	a	=	a	for	every	element	a	in	G.
(G3) For	every	element	a	in	G,	there	is	an	element	a−l	in	G	such	that	a	*	a−1	=	e	and	a−1	*	a	=	e.

The	group	we	have	just	defined	may	be	represented	by	the	symbol	〈G,	*〉.	This	notation	makes	it
explicit	that	the	group	consists	of	the	set	G	and	the	operation	*.	(Remember	that,	in	general,	there	are
other	possible	operations	on	G,	so	it	may	not	always	be	clear	which	is	the	group’s	operation	unless	we
indicate	it.)	If	there	is	no	danger	of	confusion,	we	shall	denote	the	group	simply	with	the	letter	G.

The	groups	which	come	to	mind	most	readily	are	found	in	our	familiar	number	systems.	Here	are	a
few	examples.

	is	the	symbol	customarily	used	to	denote	the	set

{…,	−3,	−2,	−1,	0,	1,	2,	3,	…}

of	the	integers.	The	set	 ,	with	the	operation	of	addition,	is	obviously	a	group.	It	is	called	the	additive
group	 of	 the	 integers	 and	 is	 represented	 by	 the	 symbol	 〈 ,	 +〉.	 Mostly,	 we	 denote	 it	 simply	 by	 the
symbol	 .

	designates	the	set	of	the	rational	numbers	(that	is,	quotients	m/n	of	integers,	where	n	≠	0).	This
set,	with	the	operation	of	addition,	 is	called	the	additive	group	of	 the	rational	numbers,	〈 ,	+〉.	Most
often	we	denote	it	simply	by	 .

The	symbol	 	represents	the	set	of	the	real	numbers.	 ,	with	the	operation	of	addition,	is	called	the
additive	group	of	the	real	numbers,	and	is	represented	by	〈 ,	+〉,	or	simply	 .

The	set	of	all	the	nonzero	rational	numbers	 is	represented	by	 *.	This	set,	with	 the	operation	of
multiplication,	is	the	group	〈 *,	·〉,	or	simply	 *.	Similarly,	the	set	of	all	the	nonzero	real	numbers	is
represented	by	 *.	The	set	 *	with	the	operation	of	multiplication,	is	the	group	〈 *,	·〉,	or	simply	 *.

Finally,	 pos	 denotes	 the	 group	 of	 all	 the	 positive	 rational	 numbers,	 with	 multiplication.	 pos

denotes	the	group	of	all	the	positive	real	numbers,	with	multiplication.



Groups	 occur	 abundantly	 in	 nature.	 This	 statement	 means	 that	 a	 great	 many	 of	 the	 algebraic
structures	which	can	be	discerned	in	natural	phenomena	turn	out	to	be	groups.	Typical	examples,	which
we	shall	examine	later,	come	up	in	connection	with	the	structure	of	crystals,	patterns	of	symmetry,	and
various	kinds	of	geometric	transformations.	Groups	are	also	important	because	they	happen	to	be	one	of
the	fundamental	building	blocks	out	of	which	more	complex	algebraic	structures	are	made.

Especially	 important	 in	 scientific	 applications	 are	 the	 finite	 groups,	 that	 is,	 groups	with	 a	 finite
number	 of	 elements.	 It	 is	 not	 surprising	 that	 such	 groups	 occur	 often	 in	 applications,	 for	 in	 most
situations	of	the	real	world	we	deal	with	only	a	finite	number	of	objects.

The	easiest	finite	groups	to	study	are	those	called	the	groups	of	integers	modulo	n	(where	n	is	any
positive	 integer	greater	 than	1).	These	groups	will	 be	described	 in	 a	 casual	way	here,	 and	a	 rigorous
treatment	deferred	until	later.

Let	us	begin	with	a	specific	example,	say,	the	group	of	integers	modulo	6.	This	group	consists	of	a
set	of	six	elements,

{0,	1,	2,	3,	4,	5}

and	an	operation	called	addition	modulo	6,	which	may	be	described	as	follows:	Imagine	the	numbers	0
through	5	as	being	evenly	distributed	on	 the	circumference	of	a	circle.	To	add	 two	numbers	h	 and	k,
start	with	h	and	move	clockwise	k	additional	units	around	 the	circle:	h	+	k	 is	where	you	end	up.	For
example,	3	+	3	=	0,	3	+	5	=	2,	and	so	on.	The	set	{0,	1,	2,	3,	4,	5}	with	this	operation	is	called	the	group
of	integers	modulo	6,	and	is	represented	by	the	symbol	 6.

In	general,	the	group	of	integers	modulo	n	consists	of	the	set

{0,	1,	2,	…,	n	−	1}

with	 the	 operation	 of	addition	modulo	n,	which	 can	 be	 described	 exactly	 as	 previously.	 Imagine	 the
numbers	0	through	n	−	1	to	be	points	on	the	unit	circle,	each	one	separated	from	the	next	by	an	arc	of
length	2π/n.

To	add	h	and	k,	start	with	h	and	go	clockwise	through	an	arc	of	k	times	2π/n.	The	sum	h	+	k	will,	of



course,	be	one	of	the	numbers	0	through	n	−	1.	From	geometrical	considerations	it	is	clear	that	this	kind
of	addition	(by	successive	rotations	on	the	unit	circle)	is	associative.	Zero	is	the	neutral	element	of	this
group,	and	n	−	h	is	obviously	the	inverse	of	h	[for	h	+	(n	−	h)	=	n,	which	coincides	with	0].	This	group,
the	group	of	integers	modulo	n,	is	represented	by	the	symbol	 n.

Often	when	working	with	finite	groups,	it	is	useful	to	draw	up	an	“operation	table.”	For	example,
the	operation	table	of	 6	is

The	basic	format	of	this	table	is	as	follows:

with	one	row	for	each	element	of	the	group	and	one	column	for	each	element	of	the	group.	Then	3	+	4,
for	example,	is	located	in	the	row	of	3	and	the	column	of	4.	In	general,	any	finite	group	〈G,	*〉	has	a
table

The	entry	in	the	row	of	x	and	the	column	of	y	is	x	*	y.
Let	us	 remember	 that	 the	 commutative	 law	 is	not	 one	of	 the	axioms	of	group	 theory;	hence	 the

identity	a	*	b	=	b	*	a	is	not	true	in	every	group.	If	the	commutative	law	holds	in	a	group	G,	such	a	group
is	called	a	commutative	group	or,	more	commonly,	an	abelian	group.	Abelian	groups	are	named	after
the	mathematician	Niels	Abel,	who	was	mentioned	in	Chapter	1	and	who	was	a	pioneer	in	the	study	of
groups.	All	 the	examples	of	groups	mentioned	up	 to	now	are	abelian	groups,	but	here	 is	 an	example
which	is	not.

Let	G	be	the	group	which	consists	of	the	six	matrices



with	 the	 operation	 of	 matrix	 multiplication	 which	 was	 explained	 on	 page	 8.	 This	 group	 has	 the
following	operation	table,	which	should	be	checked:

In	linear	algebra	it	is	shown	that	the	multiplication	of	matrices	is	associative.	(The	details	are	simple.)	It
is	clear	that	I	is	the	identity	element	of	this	group,	and	by	looking	at	the	table	one	can	see	that	each	of
the	 six	matrices	 in	 {I,	A,	B,	C,	D,	K}	has	 an	 inverse	 in	 {I,	A,	B,	C,	D,	K}.	 (For	 example,	B	 is	 the
inverse	of	D,	A	is	the	inverse	of	A,	and	so	on.)	Thus,	G	is	a	group!	Now	we	observe	that	AB	=	C	and
BA	=	K,	so	G	is	not	commutative.

EXERCISES

A.	Examples	of	Abelian	Groups
Prove	that	each	of	the	following	sets,	with	the	indicated	operation,	is	an	abelian	group.

Instructions	Proceed	as	in	Chapter	2,	Exercise	B.
1	x	*	y	=	x	+	y	+	k (k	a	fixed	constant),	on	the	set	 	of	the	real	numbers.
2	 ,	on	the	set	{x	∈	 :	x	≠	0}.
3	x	*	y	=	x	+	y	+	xy,	on	the	set	{x	∈	 :	x	≠	−1}.
4	 ,	the	set	{x	∈	 :	−1	<	x	<	1}.

B.	Groups	on	the	Set	 	×	
The	symbol	 	×	 	represents	the	set	of	all	ordered	pairs	(x,	y)	of	real	numbers.	 	×	 	may	therefore	be
identified	with	the	set	of	all	the	points	in	the	plane.	Which	of	the	following	subsets	of	 	×	 ,	with	the
indicated	operation,	is	a	group?	Which	is	an	abelian	group?

Instructions	Proceed	as	in	the	preceding	exercise.	To	find	the	identity	element,	which	in	these	problems
is	an	ordered	pair	(e1,	e2)	of	real	numbers,	solve	the	equation	(a,	b)	*	(e1,	e2)	=	(a,	b)	for	e1	and	e2.	To



find	the	inverse	(a′,	b′)	of	(a,	b),	solve	the	equation	(a,	b)	*	(a′,	b′)	=	(e1,	e2)	for	a′	and	b′.	 [Remember
that	(x,	y)	=	(x′,	y′)	if	and	only	if	x	=	x′	and	y	=	y′.]
1	(a,	b)*(c,	d)	=	(ad	+	bc,	bd),	on	the	set	{(x,	y)	∈	 	×	 :	y	≠	0}.
#	2	(a,	b)*(c,	d)	=	(ac,	bc	+	d),	on	the	set	{(x,	y)	∈	 	×	 :	x	≠	0}.
3	Same	operation	as	in	part	2,	but	on	the	set	 	×	 .
4	(a,	b)*(c,	d)	=	(ac	−	bd,	ad	+	bc),	on	the	set	 	×	 	with	the	origin	deleted.
5	Consider	the	operation	of	the	preceding	problem	on	the	set	 	×	 .	Is	this	a	group?	Explain.

C.	Groups	of	Subsets	of	a	Set
If	A	and	B	are	any	two	sets,	their	symmetric	difference	is	the	set	A	+	B	defined	as	follows:

A	+	B	=	(A	−	B)	∪	(B	−	A)

NOTE:	A	−	B	represents	the	set	obtained	by	removing	from	A	all	the	elements	which	are	in	B.

It	is	perfectly	clear	that	A	+	B	=	B	+	A;	hence	this	operation	is	commutative.	It	is	also	associative,
as	 the	 accompanying	 pictorial	 representation	 suggests:	 Let	 the	 union	 of	A,	B,	 and	C	 be	 divided	 into
seven	regions	as	illustrated.

A	+	B	consists	of	the	regions	1,	4,	3,	and	6.

B	+	C	consists	of	the	regions	2,	3,	4,	and	7.

A	+	(B	+	C)	consists	of	the	regions	1,	3,	5,	and	7.

(A	+	B)	+	C	consists	of	the	regions	1,	3,	5,	and	7.



Thus,	A	+	(B	+	C)	=	(A	+	B)	+	C.
If	D	is	a	set,	then	the	power	set	of	D	is	the	set	PD	of	all	the	subsets	of	D.	That	is,

PD	=	{A:	A	⊆	D}

The	operation	+	is	to	be	regarded	as	an	operation	on	PD.

1	Prove	that	there	is	an	identity	element	with	respect	to	the	operation	+,	which	is	_________.
2	Prove	every	subset	A	of	D	has	an	inverse	with	respect	to	+,	which	is	_________.	Thus,	〈PD,	+〉	is	a
group!
3	Let	D	be	the	three-element	set	D	=	{a,	b,	c}.	List	the	elements	of	PD.	(For	example,	one	element	is
{a},	 another	 is	 {a,	b},	 and	 so	on.	Do	not	 forget	 the	 empty	 set	 and	 the	whole	 set	D.)	Then	write	 the
operation	table	for	〈PD,	+〉.

D.	A	Checkerboard	Game

Our	 checkerboard	 has	 only	 four	 squares,	 numbered	 1,	 2,	 3,	 and	 4.	 There	 is	 a	 single	 checker	 on	 the
board,	and	it	has	four	possible	moves:

V: Move	vertically;	that	is,	move	from	1	to	3,	or	from	3	to	1,	or	from	2	to	4,	or	from	4	to	2.
H: Move	horizontally;	that	is,	move	from	1	to	2	or	vice	versa,	or	from	3	to	4	or	vice	versa.
D: Move	diagonally;	that	is,	move	from	2	to	3	or	vice	versa,	or	move	from	1	to	4	or	vice	versa.
I: Stay	put.

We	may	 consider	 an	 operation	 on	 the	 set	 of	 these	 four	moves,	which	 consists	 of	 performing	moves
successively.	For	example,	if	we	move	horizontally	and	then	vertically,	we	end	up	with	the	same	result
as	if	we	had	moved	diagonally:

H	*	V	=	D

If	we	perform	two	horizontal	moves	in	succession,	we	end	up	where	we	started:	H	*	H	=	I.	And	so	on.	If
G	=	{V,	H,	D,	I},	and	*	is	the	operation	we	have	just	described,	write	the	table	of	G.



Granting	associativity,	explain	why	〈G,	*〉	is	a	group.

E.	A	Coin	Game

Imagine	two	coins	on	a	table,	at	positions	A	and	B.	In	this	game	there	are	eight	possible	moves:
M1: Flip	over	the	coin	at	A.
M2: Flip	over	the	coin	at	B.
M3: Flip	over	both	coins.
M4: Switch	the	coins.
M5: Flip	coin	at	A;	then	switch.
M6: Flip	coin	at	B;	then	switch.
M7: Flip	both	coins;	then	switch.
I: Do	not	change	anything.

We	may	consider	an	operation	on	the	set	{I,	M1,	…,	M7},	which	consists	of	performing	any	two	moves
in	 succession.	For	 example,	 if	we	 switch	 coins,	 then	 flip	over	 the	 coin	 at	A,	 this	 is	 the	 same	 as	 first
flipping	over	the	coin	at	B	then	switching:

M4	*	M1	=	M	2	*	M4	=	M6

If	G	=	{I,	M1,	…,	M7}	and	*	is	the	operation	we	have	just	described,	write	the	table	of	〈G,	*〉.

Granting	associativity,	explain	why	〈G,	*〉	is	a	group.	Is	it	commutative?	If	not,	show	why	not.

F.	Groups	in	Binary	Codes
The	most	basic	way	of	transmitting	information	is	to	code	it	into	strings	of	Os	and	Is,	such	as	0010111,
1010011,	etc.	Such	strings	are	called	binary	words,	and	the	number	of	0s	and	Is	in	any	binary	word	is
called	its	length.	All	information	may	be	coded	in	this	fashion.

When	information	is	transmitted,	it	is	sometimes	received	incorrectly.	One	of	the	most	important
purposes	of	coding	theory	is	to	find	ways	of	detecting	errors,	and	correcting	errors	of	transmission.

If	a	word	a	=	a1a2	…	an	is	sent,	but	a	word	b	=	b1b2	…	bn	is	received	(where	the	ai	and	the	bj	are



0s	or	1s),	then	the	error	pattern	is	the	word	e	=	e1e2	…	en	where

With	this	motivation,	we	define	an	operation	of	adding	words,	as	follows:	If	a	and	b	are	both	of	length
1,	we	add	them	according	to	the	rules

0	+	0	=	0 1	+	1	=	0 0	+	1	=	1 1	+	0	=	1

If	a	and	b	are	both	of	length	n,	we	add	them	by	adding	corresponding	digits.	That	is	(let	us	introduce
commas	for	convenience),

(a1,	a2,	…,	an)	+	(b1,	b2,	…,	bn)	=	(a1	+	b1	a2	+	b2,	…,	an	+	bn

Thus,	the	sum	of	a	and	b	is	the	error	pattern	e.
For	example,

The	symbol	 	will	designate	 the	set	of	all	 the	binary	words	of	 length	n.	We	will	prove	 that	 the
operation	of	word	addition	has	the	following	properties	on	 :

1. It	is	commutative.
2. It	is	associative.
3. There	is	an	identity	element	for	word	addition.
4. Every	word	has	an	inverse	under	word	addition.

First,	we	verify	the	commutative	law	for	words	of	length	1:

0	+	1	=	1	=	1	+	0

1	Show	that	(a1,	a2,	…,	an)	+	(b1,	b2,	…,	bn)	=	(b1,	b2,	…,	bn)	+	(a1,	a2,	…,	an).
2	To	verify	the	associative	law,	we	first	verify	it	for	words	of	length	1:

1	+	(1	+	1)	=	1	+	0	=	1	=	0	+	1	=	(1	+	1)	+	1

1	+(1	+	0)	=	1	+	1	=	0	=	0	+	0	=	(l	+	l)	+	0

Check	the	remaining	six	cases.
3	Show	that	(a1,	…,	an)	+	[(b1,	…,	bn)	+	(c1,	…,	cn)]	=	[(a1,	…,	an)	+	(b1,	…,	bn)]	+	(c1,	…,	cn).
4	The	identity	element	of	 ,	that	is,	the	identity	element	for	adding	words	of	length	n,	is	__________.
5	The	inverse,	with	respect	to	word	addition,	of	any	word	(a1,	…,	an)	is	__________.
6	Show	that	a	+	b	=	a	−	b	[where	a	−	b	=	a	+	(−b*)].
7	If	a	+	b	=	c,	show	that	a	=	b	+	c.



G.	Theory	of	Coding:	Maximum-Likelihood	Decoding
We	continue	the	discussion	started	in	Exercise	F:	Recall	that	 	designates	the	set	of	all	binary	words	of
length	n.	By	a	code	we	mean	a	subset	of	 .	For	example,	below	is	a	code	in	 5.	The	code,	which	we
shall	call	C1,	consists	of	the	following	binary	words	of	length	5:

00000
00111
01001
01110
10011
10100
11010
11101

Note	that	there	are	32	possible	words	of	length	5,	but	only	eight	of	them	are	in	the	code	C,.	These	eight
words	 are	 called	 codewords;	 the	 remaining	 words	 of	 B5	 are	 not	 codewords.	 Only	 codewords	 are
transmitted.	 If	a	word	 is	 received	which	 is	not	a	codeword,	 it	 is	clear	 that	 there	has	been	an	error	of
transmission.	 In	 a	 well-designed	 code,	 it	 is	 unlikely	 that	 an	 error	 in	 transmitting	 a	 codeword	 will
produce	 another	 codeword	 (if	 that	were	 to	 happen,	 the	 error	would	 not	 be	 detected).	Moreover,	 in	 a
good	code	it	should	be	fairly	easy	to	locate	errors	and	correct	them.	These	ideas	are	made	precise	in	the
discussion	which	follows.

The	weight	of	a	binary	word	is	the	number	of	Is	in	the	word:	for	example,	11011	has	weight	4.	The
distance	 between	 two	 binary	words	 is	 the	 number	 of	 positions	 in	which	 the	words	 differ.	 Thus,	 the
distance	between	11011	and	01001	is	2	(since	these	words	differ	only	in	their	first	and	fourth	positions).
The	minimum	 distance	 in	 a	 code	 is	 the	 smallest	 distance	 among	 all	 the	 distances	 between	 pairs	 of
codewords.	For	the	code	C1,	above,	pairwise	comparison	of	the	words	shows	that	the	minimum	distance
is	 2.	What	 this	means	 is	 that	 at	 least	 two	 errors	 of	 transmission	 are	 needed	 in	 order	 to	 transform	 a
codeword	 into	 another	 codeword;	 single	 errors	will	 change	 a	 codeword	 into	 a	noncodeword,	 and	 the
error	will	therefore	be	detected.	In	more	desirable	codes	(for	example,	the	so-called	Hamming	code),	the
minimum	distance	is	3,	so	any	one	or	two	errors	are	always	detected,	and	only	three	errors	in	a	single
word	(a	very	unlikely	occurrence)	might	go	undetected.

In	practice,	a	code	is	constructed	as	follows:	in	every	codeword,	certain	positions	are	information
positions,	and	the	remaining	positions	are	redundancy	positions.	For	instance,	in	our	code	C1,	the	first
three	positions	of	every	codeword	are	the	information	positions:	if	you	look	at	the	eight	codewords	(and
confine	your	 attention	only	 to	 the	 first	 three	 digits	 in	 each	word),	 you	will	 see	 that	 every	 three-digit
sequence	of	0s	and	Is	is	there	namely,

000,	 001,	 010,	 011,	 100,	 101,	 110,	 111

The	numbers	in	the	fourth	and	fifth	positions	of	every	codeword	satisfy	parity-check	equations.
#	1	Verify	that	every	codeword	a1a2a3a4a5	in	C1	satisfies	the	following	two	parity-check	equations:	a4	=
a1	+	a3;	a5	=	a1	+	a2	+	a3.

2	Let	C2	be	the	following	code	in	 .	The	first	three	positions	are	the	information	positions,	and	every
codeword	a1a2a3a4a5a6	satisfies	the	parity-check	equations	a4	=	a2,	a5	=	a1	+	a2,	and	a6	=	a1	+	a2	+	a3.



#	(a) List	the	codewords	of	C2.
(b) Find	the	minimum	distance	of	the	code	C2.
(c) How	many	errors	in	any	codeword	of	C2	are	sure	to	the	detected?	Explain.

3	Design	 a	 code	 in	 	where	 the	 first	 two	 positions	 are	 information	 positions.	Give	 the	 parity-check
equations,	list	the	codewords,	and	find	the	minimum	distance.

If	a	and	b	are	any	two	words,	let	d(a,	b)	denote	the	distance	between	a	and	b.	To	decode	a	received
word	x	(which	may	contain	errors	of	transmission)	means	to	find	the	codeword	closest	to	x,	that	is,	the
codeword	a	such	that	d(a,	x)	is	a	minimum.	This	is	called	maximum-likelihood	decoding.
4	Decode	the	following	words	in	C1:	11111,	00101,	11000,	10011,	10001,	and	10111.

You	may	have	noticed	 that	 the	 last	 two	words	 in	part	4	had	ambiguous	decodings:	 for	example,
10111	may	be	decoded	as	either	10011	or	00111.	This	situation	is	clearly	unsatisfactory.	We	shall	see
next	what	conditions	will	ensure	that	every	word	can	be	decoded	into	only	one	possible	codeword.

In	the	remaining	exercises,	let	C	be	a	code	in	 ,	let	m	denote	the	minimum	distance	in	C,	and	let	a
and	b	denote	codewords	in	C.
5	Prove	that	it	is	possible	to	detect	up	to	m	−	1	errors.	(That	is,	if	there	are	errors	of	transmission	in	m	−
1	or	fewer	positions	of	a	codeword,	it	can	always	be	determined	that	the	received	word	is	incorrect.)
#	6	By	the	sphere	of	radius	k	about	a	codeword	a	we	mean	the	set	of	all	words	in	 	whose	distance
from	a	is	no	greater	than	k.	This	set	is	denoted	by	Sk(a);	hence

Sk(a)	=	{x:	d(a,	x)	≤	k}

If	 ,	prove	that	any	two	spheres	of	radius	t,	say	St(a)	and	St(b),	have	no	elements	in	common.
[HINT:	Assume	there	is	a	word	x	such	that	x	∈	St(a)	and	x	∈	St,(b).	Using	the	definitions	of	 t	and	m,
show	that	this	is	impossible.]
7	Deduce	from	part	6	that	if	there	are	t	or	fewer	errors	of	transmission	in	a	codeword,	the	received	word
will	be	decoded	correctly.
8	Let	C2	be	the	code	described	in	part	2.	(If	you	have	not	yet	found	the	minimum	distance	in	C2,	do	so
now.)	 Using	 the	 results	 of	 parts	 5	 and	 7,	 explain	 why	 two	 errors	 in	 any	 codeword	 can	 always	 be
detected,	and	why	one	error	in	any	codeword	can	always	be	corrected.



CHAPTER

FOUR

ELEMENTARY	PROPERTIES	OF	GROUPS

Is	it	possible	for	a	group	to	have	 two	different	 identity	elements?	Well,	suppose	e1	and	e2	are	 identity
elements	of	some	group	G.	Then

e1	*	e2	=	e2 because	e1	is	an	identity	element,	and

e1	*	e2	=	e1 because	e2	is	an	identity	element

Therefore

e1	=	e2

This	shows	that	in	every	group	there	is	exactly	one	identity	element.
Can	an	element	a	in	a	group	have	two	different	inverses!	Well,	if	a1	and	a2	are	both	inverses	of	a,

then

a1	*	(a	*	a2)	=	a1*	e	=	a1

and

(a1	*	a)*a2	=	e*a2	=	a2

By	the	associative	law,	a1	*	(a	*	a2)	=	(a1	*	a)	*	a)	*	a2;	hence	a1	=	a2.	This	shows	that	in	every	group,
each	element	has	exactly	one	inverse.

Up	to	now	we	have	used	 the	symbol	*	 to	designate	 the	group	operation.	Other,	more	commonly
used	symbols	are	+	and	·	(“plus”	and	“multiply”).	When	+	is	used	to	denote	the	group	operation,	we	say
we	are	using	additive	notation,	and	we	refer	to	a	+	b	as	the	sum	of	a	and	b.	(Remember	that	a	and	b	do
not	have	to	be	numbers	and	therefore	“sum”	does	not,	in	general,	refer	to	adding	numbers.)	When	·	is
used	to	denote	the	group	operation,	we	say	we	are	using	multiplicative	notation’,	we	usually	write	ab
instead	of	a-b,	and	call	ab	the	product	of	a	and	b.	 (Once	again,	remember	 that	“product”	does	not,	 in



general,	refer	to	multiplying	numbers.)	Multiplicative	notation	is	the	most	popular	because	it	is	simple
and	 saves	 space.	 In	 the	 remainder	 of	 this	 book	 multiplicative	 notation	 will	 be	 used	 except	 where
otherwise	 indicated.	 In	 particular,	when	we	 represent	 a	 group	 by	 a	 letter	 such	 as	G	 or	H,	 it	 will	 be
understood	that	the	group’s	operation	is	written	as	multiplication.

There	is	common	agreement	that	in	additive	notation	the	identity	element	is	denoted	by	0,	and	the
inverse	 of	a	 is	 written	 as	−a.	 (It	 is	 called	 the	 negative	 of	a.)	 In	 multiplicative	 notation	 the	 identity
element	is	e	and	the	inverse	of	a	is	written	as	a−1	(“a	inverse”).	It	is	also	a	tradition	that	+	is	to	be	used
only	for	commutative	operations.

The	most	basic	rule	of	calculation	in	groups	is	the	cancellation	law,	which	allows	us	to	cancel	the
factor	a	in	the	equations	ab	=	ac	and	ab	=	ca.	This	will	be	our	first	theorem	about	groups.

Theorem	1	If	G	is	a	group	and	a,	b,	c	are	elements	of	G,	then

(i) 	ab	=	ac implies b	=	c 	and
(ii) 	ba	=	ca implies b	=	c

It	is	easy	to	see	why	this	is	true:	if	we	multiply	(on	the	left)	both	sides	of	the	equation	ab	=	ac	by	a
−1,	we	get	b	=	c.	In	the	case	of	ba	=	ca,	we	multiply	on	the	right	by	a−1.	This	is	the	idea	of	the	proof;
now	here	is	the	proof:

Part	(ii)	is	proved	analogously.
In	general,	we	cannot	cancel	a	in	the	equation	ab	=	ca.	(Why	not?)

Theorem	2	If	G	is	a	group	and	a,	b	are	elements	of	G,	then

ab=e implies a=b−1 and b	=	a−l

The	 proof	 is	 very	 simple:	 if	 ab	 =	 e,	 then	 ab	 =	 aa−1	 so	 by	 the	 cancellation	 law,	 b	 =	 a−1.
Analogously,	a	=	b−l.

This	theorem	tells	us	that	if	the	product	of	two	elements	is	equal	to	e,	these	elements	are	inverses
of	each	other.	In	particular,	if	a	is	the	inverse	of	b,	then	b	is	the	inverse	of	a.

The	next	theorem	gives	us	important	information	about	computing	inverses.
Theorem	3	If	G	is	a	group	and	a,	b	are	elements	of	G,	then

(i) 	(ab−1	=	b−1a−1 and
(ii)	(a−1)−1=a

The	 first	 formula	 tells	 us	 that	 the	 inverse	 of	 a	 product	 is	 the	 product	 of	 the	 inverses	 in	 reverse
order.	The	next	formula	tells	us	that	a	is	the	inverse	of	the	inverse	of	a.	The	proof	of	(i)	is	as	follows:



Since	 the	product	of	ab	and	b−1a−1	 is	 equal	 to	e,	 it	 follows	by	Theorem	2	 that	 they	are	 each	other’s
inverses.	Thus,	(ab)−1	=	b−1a−1.	The	proof	of	(ii)	is	analogous	but	simpler:	aa−l	=	e,	so	by	Theorem	2	a
is	the	inverse	of	a−1,	that	is,	a	=	(a−1)−1.

The	 associative	 law	 states	 that	 the	 two	 products	 a(bc)	 and	 (ab)c	 are	 equal;	 for	 this	 reason,	 no
confusion	can	result	if	we	denote	either	of	these	products	by	writing	abc	(without	any	parentheses),	and
call	abc	the	product	of	these	three	elements	in	this	order.

We	may	next	define	the	product	of	any	four	elements	a,	b,	c,	and	d	in	G	by

abcd	=	a(bcd)

By	successive	uses	of	the	associative	law	we	find	that

a(bc)d	=	ab(cd)	=	(ab)(cd)	=	(ab)cd

Hence	the	product	abed	(without	parentheses,	but	without	changing	the	order	of	its	factors)	is	defined
without	ambiguity.

In	general,	any	two	products,	each	involving	the	same	factors	in	the	same	order,	are	equal.	The	net
effect	of	the	associative	law	is	that	parentheses	are	redundant.

Having	made	this	observation,	we	may	feel	free	to	use	products	of	several	factors,	such	as	a1a2	···
an,	without	parentheses,	whenever	 it	 is	 convenient.	 Incidentally,	 by	using	 the	 identity	 (ab)−l	 =	b−la−l

repeatedly,	we	find	that

If	G	 is	 a	 finite	 group,	 the	 number	 of	 elements	 in	G	 is	 called	 the	order	of	G.	 It	 is	 customary	 to
denote	the	order	of	G	by	the	symbol

|G|

EXERCISES

Remark	on	notation	In	the	exercises	below,	the	exponential	notation	an	is	used	in	the	following	sense:
if	a	is	any	element	of	a	group	G,	then	a2	means	aa,	a3	means	aaa,	and,	in	general,	a1	is	the	product	of	n
factors	of	a,	for	any	positive	integer	n.

A.	Solving	Equations	in	Groups
Let	a,	b,	c,	and	x	be	elements	of	a	group	G.	In	each	of	the	following,	solve	for	x	in	terms	of	a,	b,	and	c.
Example	Solve	simultaneously:	 x2	=b 	and 	x5	=	e



From	the	first	equation,	 b	=	x2

Squaring,	 b2	=	x4

Multiplying	on	the	left	by	x,	xb2	=	xx4	=	x5	=	e.	(Note:	x5	=	e	was	given.)
Multiplying	by	(b2)−1,xb2(b2)−1.	Therefore,	x	=	(b2)−1.
Solve:
1	axb	=	c
2	x2b	=	xa−1c
Solve	simultaneously:
3	x2a	=	bxc−1 	and	 acx	=	xac
4	ax2	=	b	 and 	x3	=	e
5	x2	=	a2 and x5	=	e
6	(xax)3	=	bx and 	x2a	=	(xa)−l

B.	Rules	of	Algebra	in	Groups
For	each	of	the	following	rules,	either	prove	that	it	is	true	in	every	group	G,	or	give	a	counterexample	to
show	that	it	is	false	in	some	groups.	(All	the	counterexamples	you	need	may	be	found	in	the	group	of
matrices	{I,	A,	B,	C,	D,	K}	described	on	page	28.)
1	If	x2	=	e,	then	x	=	e.
2	If	x2	=	a2,	then	x	=	a.
3	(ab)2	=	a2b2

4	If	x2	=	x,	then	x	=	e.
5	For	every	x	∈	G,	there	is	some	y	∈	G	such	that	x	=	y2.	(This	is	the	same	as	saying	that	every	element
of	G	has	a	“square	root.”)
6	For	any	two	elements	x	and	y	in	G,	there	is	an	element	z	in	G	such	that	y	=	xz.

C.	Elements	That	Commute
If	a	and	b	are	in	G	and	ab	=	ba,	we	say	that	a	and	b	commute.	Assuming	that	a	and	b	commute,	prove
the	following:
#	1	a−1	and	b−1	commute.
2	a	and	b−1	commute.	(HINT:	First	show	that	a	=	b−1ab.)
3	a	commutes	with	ab.
4	a2	commutes	with	b2.
5	xax−1	commutes	with	xbx−1,	for	any	x	∈	G.
6	ab	=	ba 	iff 	aba∈1	=	b.

(The	abbreviation	iff	stands	for	“if	and	only	if.”	Thus,	first	prove	that	if	ab	=	ba,	then	aba−1	=	b.
Next,	prove	that	if	aba−1	=	b,	then	ab	=	ba.	Proceed	roughly	as	in	Exercise	A.	Thus,	assuming	ab	=	ba,
solve	for	b.	Next,	assuming	aba−1	=	b,	solve	for	ab.)
7	ab	=	ba iff aba−1b−1	=	e.



†	D.	Group	Elements	and	Their	Inverses1

Let	G	be	a	group.	Let	a,	b,	c	denote	elements	of	G,	and	let	e	be	the	neutral	element	of	G.

1	Prove	that	if	ab	=	e,	then	ba	=	e.	(HINT:	See	Theorem	2.)
2	Prove	that	if	abc	=	e,	then	cab	=	e	and	bca	=	e.
3	State	a	generalization	of	parts	1	and	2
Prove	the	following:
4	If	xay	=	a−1,	then	yax	=	a−1.
5	Let	a,	b,	and	c	each	be	equal	to	its	own	inverse.	If	ab	=	c,	then	bc	=	a	and	ca	=	b.
6	If	abc	is	its	own	inverse,	then	bca	is	its	own	inverse,	and	cab	is	its	own	inverse.
7	Let	a	and	b	each	be	equal	to	its	own	inverse.	Then	ba	is	the	inverse	of	ab.
8	a	=	a−1 iff aa	=	e.	(That	is,	a	is	its	own	inverse	iff	a2	=	e.)
9	Let	c	=	c−1.	Then ab	=	c 	iff xy2	abc	=	e.

†	E.	Counting	Elements	and	Their	Inverses
Let	G	be	a	finite	group,	and	let	S	be	the	set	of	all	the	elements	of	G	which	are	not	equal	to	their	own
inverse.	That	is,	S	=	{x	∈	G	:	x	≠	x−1}.	The	set	S	can	be	divided	up	into	pairs	so	that	each	element	is
paired	off	with	its	own	inverse.	(See	diagram	on	the	next	page.)	Prove	the	following:

1	In	any	finite	group	G,	the	number	of	elements	not	equal	to	their	own	inverse	is	an	even	number.
2	The	number	of	elements	of	G	equal	 to	 their	own	inverse	 is	odd	or	even,	depending	on	whether	 the
number	of	elements	in	G	is	odd	or	even.
3	If	the	order	of	G	is	even,	there	is	at	least	one	element	x	in	G	such	that	x	≠e	and	x	=	x−1.
In	parts	4	to	6,	let	G	be	a	finite	abelian	group,	say,	G	=	{e,	a1,	a2,…,	an}.	Prove	the	following:

4	(a1a2	⋯	an)2	=	e

5	If	there	is	no	element	x	≠	e	in	G	such	that	x	=	x−1,	then	a1a2	⋯	an	=	e.

6	If	there	is	exactly	one	x	≠	e	in	G	such	that	x	=	x−1,	then	a1a2	⋯	an	=	x.

†	F.	Constructing	Small	Groups
In	each	of	the	following,	let	G	be	any	group.	Let	e	denote	the	neutral	element	of	G.
1	If	a,	b	are	any	elements	of	G,	prove	each	of	the	following:
(a)	If	a2	=	a,	then	a	=	e.



(b)	If	ab	=	a,	then	b	=	e.
(c)	If	ab	=	b,	then	a	=	e.
2	Explain	why	every	row	of	a	group	table	must	contain	each	element	of	the	group	exactly	once.	(HINT:
Suppose	jc	appears	twice	in	the	row	of	a:

Now	use	the	cancellation	law	for	groups.)
3	There	is	exactly	one	group	on	any	set	of	three	distinct	elements,	say	the	set	{e,	a,	b}.	Indeed,	keeping
in	mind	parts	1	and	2	above,	there	is	only	one	way	of	completing	the	following	table.	Do	so!	You	need
not	prove	associativity.

4	There	is	exactly	one	group	G	of	four	elements,	say	G	=	{e,	a,	b,	c},	satisfying	the	additional	property
that	xx	=	e	for	every	x	∈	G.	Using	only	part	1	above,	complete	the	following	group	table	of	G:

5	There	is	exactly	one	group	G	of	four	elements,	say	G	=	{e,	a,	b,	c},	such	that	xx	=	e	for	some	x	≠	e	in
G,	 and	 yy	 ≠	 e	 for	 some	 y	∈	G	 (say,	 aa	 =	 e	 and	bb	 ≠	 e).	 Complete	 the	 group	 table	 of	G,	 as	 in	 the
preceding	exercise.
6	Use	Exercise	E3	 to	 explain	why	 the	 groups	 in	 parts	 4	 and	 5	 are	 the	 only	 possible	 groups	 of	 four
elements	(except	for	renaming	the	elements	with	different	symbols).

G.	Direct	Products	of	Groups
If	G	and	H	are	any	two	groups,	their	direct	product	is	a	new	group,	denoted	by	G	×	H,	and	defined	as
follows:	G	×	H	consists	of	all	the	ordered	pairs	(x,	y)	where	x	is	in	G	and	y	is	in	H.	That	is,

G	×	H	=	{(x,	y)	:	x	∈	G and y	∈	H}

The	operation	of	G	×	H	consists	of	multiplying	corresponding	components:



(x,	y)	·	(x′	y′)	=	(xx′,	yy′)

If	G	and	H	are	denoted	additively,	it	is	customary	to	denote	G	×	H	additively:

(x,	y)	+	(x′	y′)=(x+x′,y+y′)

1	Prove	that	G	×	H	is	a	group	by	checking	the	three	group	axioms,	(Gl)	to	(G3):
(G1) 	(x1,y1)[(x2,y2)(x3,y3)]	=	( , )

[(x1,y1)(x2,y2)](x3,y3)	=	( , )
(G2) 	Let	eG	be	the	identity	element	of	G,	and	eH	the	identity	element	of	H.

The	identity	element	of	G	×	H	is	(,).	Check
(G3)	For	each	(a,	b)	∈	G	×	H,	the	inverse	of	(a,	b)	is	(,).	Check.

2	 List	 the	 elements	 of	 2	 ×	 3,	 and	write	 its	 operation	 table.	 (NOTE:	 There	 are	 six	 elements,	 each	 of
which	is	an	ordered	pair.	The	notation	is	additive.)
#	3	If	G	and	H	are	abelian,	prove	that	G	×	H	is	abelian.
4	Suppose	the	groups	G	and	H	both	have	the	following	property:

Every	element	of	the	group	is	its	own	inverse.

Prove	that	G	×	H	also	has	this	property.

H.	Powers	and	Roots	of	Group	Elements
Let	G	be	a	group,	and	a,	b	∈	G.	For	any	positive	integer	n	we	define	an	by

If	there	is	an	element	x	∈	G	such	that	a	=	x2,	we	say	that	a	has	a	square	root	in	G.	Similarly,	if	a	=	y3	for
some	y	∈	G,	we	say	a	has	a	cube	root	in	G.	In	general,	a	has	an	nth	root	in	G	if	a	=	zn	for	some	z	∈	G.
Prove	the	following:
1	(bab−l)n	=	banb−l,	for	every	positive	integer	Prove	by	induction.	(Remember	that	to	prove	a	formula
such	as	this	one	by	induction,	you	first	prove	it	for	n	=	l;	next	you	prove	that	if	it	is	true	for	n	=	k,	then	it
must	be	true	for	n	=	k	+	1.	You	may	conclude	 that	 it	 is	 true	for	every	positive	 integer	n.	 Induction	 is
explained	more	fully	in	Appendix	C.)
2	If	ab	=	ba,	then	(ab)n	=	anbn	for	every	positive	integer	n.	Prove	by	induction.
3	If	xax	=	e,	then	(xa)2n	=	an.
4	If	a3	=	e,	then	a	has	a	square	root.
5	If	a2	=	e,	then	a	has	a	cube	root.
6	If	a∈1	has	a	cube	root,	so	does	a.
7	If	x2ax	=	a−1,	then	a	has	a	cube	root.	(HINT:	Show	that	xax	is	a	cube	root	of	a−1.)
8	If	xax	=	b,	then	06	has	a	square	root.



	
1	When	the	exercises	in	a	set	are	related,	with	some	exercises	building	on	preceding	ones	so	that	they	must	be	done	in	sequence,	this	is

indicated	with	a	symbol	t	in	the	margin	to	the	left	of	the	heading.



CHAPTER

FIVE

SUBGROUPS

Let	G	be	a	group,	and	S	 a	nonempty	subset	of	G.	 It	may	happen	 (though	 it	doesn’t	have	 to)	 that	 the
product	 of	 every	 pair	 of	 elements	 of	S	 is	 in	S.	 If	 it	 happens,	we	 say	 that	S	 is	closed	with	 respect	 to
multiplication.	Then,	it	may	happen	that	the	inverse	of	every	element	of	S	is	in	S.	In	that	case,	we	say
that	S	is	closed	with	respect	to	inverses.	If	both	these	things	happen,	we	call	S	a	subgroup	of	G.

When	 the	operation	of	G	 is	 denoted	 by	 the	 symbol	+,	 the	wording	 of	 these	 definitions	must	 be
adjusted:	 if	 the	 sum	 of	 every	 pair	 of	 elements	 of	 S	 is	 in	 S,	 we	 say	 that	 S	 is	 closed	 with	 respect	 to
addition.	If	the	negative	of	every	element	of	S	is	in	S,	we	say	that	S	is	closed	with	respect	to	negatives.
If	both	these	things	happen,	S	is	a	subgroup	of	G.

For	example,	the	set	of	all	the	even	integers	is	a	subgroup	of	the	additive	group	 	of	the	integers.
Indeed,	the	sum	of	any	two	even	integers	is	an	even	integer,	and	the	negative	of	any	even	integer	is	an
even	integer.

As	 another	 example,	 *	 (the	 group	 of	 the	 nonzero	 rational	 numbers,	 under	multiplication)	 is	 a
subgroup	of	 *	(the	group	of	the	nonzero	real	numbers,	under	multiplication).	Indeed,	 *	⊆	 *	because
every	 rational	 number	 is	 a	 real	 number.	 Furthermore,	 the	 product	 of	 any	 two	 rational	 numbers	 is
rational,	and	the	inverse	(that	is,	the	reciprocal)	of	any	rational	number	is	a	rational	number.

An	important	point	to	be	noted	is	this:	if	S	is	a	subgroup	of	G,	the	operation	of	S	is	the	same	as	the
operation	of	G.	In	other	words,	if	a	and	b	are	elements	of	S,	the	product	ab	computed	in	S	is	precisely
the	product	ab	computed	in	G.



For	example,	it	would	be	meaningless	to	say	that	〈 *,	·〉	is	a	subgroup	of	〈 ,	+〉;	for	although	it	is
true	that	 *	is	a	subset	of	 ,	the	operations	on	these	two	groups	are	different.

The	importance	of	the	notion	of	subgroup	stems	from	the	following	fact:	if	G	is	a	group	and	S	is	a
subgroup	of	G,	then	S	itself	is	a	group.

It	is	easy	to	see	why	this	is	true.	To	begin	with,	the	operation	of	G,	restricted	to	elements	of	S,	is
certainly	an	operation	on	S.	It	is	associative:	for	if	a,	b,	and	c	are	in	S,	they	are	in	G	(because	S	⊆	G);
but	G	 is	 a	group,	 so	a(bc)	=	(ab)c.	Next,	 the	 identity	 element	 e	 of	G	 is	 in	 S	 (and	 continues	 to	 be	 an
identity	 element	 in	S)	 for	S	 is	 nonempty,	 so	S	 contains	 an	 element	a;	 but	S	 is	 closed	with	 respect	 to
inverses,	 so	 S	 also	 contains	 a–1;	 thus,	 S	 contains	 aa–1	 =	 e,	 because	 S	 is	 closed	 with	 respect	 to
multiplication.	 Finally,	 every	 element	 of	 S	 has	 an	 inverse	 in	 S	 because	 S	 is	 closed	 with	 respect	 to
inverses.	Thus,	S	is	a	group!

One	reason	why	the	notion	of	subgroup	is	useful	is	that	it	provides	us	with	an	easy	way	of	showing
that	certain	things	are	groups.	Indeed,	if	G	is	already	known	to	be	a	group,	and	S	is	a	subgroup	of	G,	we
may	conclude	that	S	is	a	group	without	having	to	check	all	the	items	in	the	definition	of	“group.”	This
conclusion	is	illustrated	by	the	next	example.

Many	 of	 the	 groups	 we	 use	 in	 mathematics	 are	 groups	 whose	 elements	 are	 functions.	 In	 fact,
historically,	the	first	groups	ever	studied	as	such	were	groups	of	functions.

( )	represents	the	set	of	all	functions	from	 	to	 ,	that	is,	the	set	of	all	real-valued	functions	of	a
real	variable.	In	calculus	we	learned	how	to	add	functions:	if	f	and	g	are	functions	from	 	to	 ,	their	sum
is	the	function	f	+	g	given	by

[f	+	g](x)	=	f(x)	+	g(x)	 for	every	real	number	x

Clearly,	f	+	g	is	again	a	function	from	 	to	 ,	and	is	uniquely	determined	by	f	and	g.
( ),	with	the	operation	+	for	adding	functions,	is	the	group	〈 ( ),+〉,	or	simply	 ( ).	The	details

are	 simple,	 but	 first,	 let	 us	 remember	 what	 it	 means	 for	 two	 functions	 to	 be	 equal.	 If	 f	 and	 g	 are
functions	 from	 	 to	 ,	 then	 f	 and	g	 are	equal	 (that	 is,	 f	 =	g)	 if	 and	 only	 if	 f(x)	=	g(x)	 for	 every	 real
number	x.	 In	other	words,	 to	be	equal,	 f	and	g	must	yield	 the	 same	value	when	applied	 to	every	 real
number	x.

To	check	that	+	is	associative,	we	must	show	that	f	+	[g	+	h]	=	[f	+	g]	+	h,	for	every	three	functions,
f,	g,	and	h	in	 ( ).	This	means	that	for	any	real	number	x,	{f	+	[g	+	h]}(x)	=	{[f	+	g]	+	h}(x).	Well,

{f	+	[g	+	h]}(x)	=	f(x)	+	[g	+	h]	(x)	=	f(x)	+	g(x)	+	h(x)

and	{[f	+	g]	+	h}(x)	has	the	same	value.
The	neutral	element	of	 ( )	is	the	function	 	given	by

(x)	=	0	 for	every	real	number	x

To	show	that	 	+	f	=	f,	one	must	show	that	[ 	+	f](x)	=	f(x)	for	every	real	number	x.	This	is	true	because
[ 	+	f](x)	=	 (x)	+	f(x)	=	0	+	f(x)	=	f(x).

Finally,	the	inverse	of	any	function	f	is	the	function	–f	given	by

[–f](x)	=	–f(x)	 for	every	real	number	x

One	perceives	immediately	that	f	+	[–f]	=	 ,	for	every	function	f.



( )	represents	the	set	of	all	continuous	functions	from	 	to	 .	Now,	 ( ),	with	the	operation	+,	is
a	subgroup	of	 ( ),	because	we	know	from	calculus	that	the	sum	of	any	two	continuous	functions	is	a
continuous	function,	and	the	negative	–f	of	any	continuous	function	f	is	a	continuous	function.	Because
any	subgroup	of	a	group	is	itself	a	group,	we	may	conclude	that	 ( ),	with	the	operation	+,	is	a	group.	It
is	denoted	by	〈 ( ),	+〉,	or	simply	 ( ).

( )	 represents	 the	 set	 of	 all	 the	 differentiable	 functions	 from	 	 to	 .	 It	 is	 a	 subgroup	 of	 ( )
because	 the	 sum	 of	 any	 two	 differentiable	 functions	 is	 differentiable,	 and	 the	 negative	 of	 any
differentiable	function	is	differentiable.	Thus,	 ( ),	with	the	operation	of	adding	functions,	 is	a	group
denoted	by	〈 ( ),	+〉,	or	simply	 ( ).

By	the	way,	in	any	group	G	the	one-element	subset	{e},	containing	only	the	neutral	element,	is	a
subgroup.	It	is	closed	with	respect	to	multiplication	because	ee	=	e,	and	closed	with	respect	to	inverses
because	e–1	=	e.	At	the	other	extreme,	the	whole	group	G	is	obviously	a	subgroup	of	itself.	These	two
examples	are,	respectively,	the	smallest	and	largest	possible	subgroups	of	G.	They	are	called	the	trivial
subgroups	of	G.	All	the	other	subgroups	of	G	are	called	proper	subgroups.

Suppose	G	 is	 a	group	and	a,	b,	 and	c	 are	 elements	 of	G.	Define	S	 to	 be	 the	 subset	 of	G	which
contains	all	the	possible	products	of	a,	b,	c,	and	their	inverses,	in	any	order,	with	repetition	of	factors
permitted.	Thus,	typical	elements	of	S	would	be

abac–1

c–1a–1bbc

and	so	on.	It	is	easy	to	see	that	S	is	a	subgroup	of	G:	for	if	two	elements	of	S	are	multiplied	together,
they	yield	an	element	of	S,	 and	 the	 inverse	of	any	element	of	S	 is	an	element	of	S.	For	 example,	 the
product	of	aba	and	cb–1ac	is

abacb–1ac

and	the	inverse	of	ab–1c–1a	is

a–1cba–1

S	is	called	the	subgroup	of	G	generated	by	a,	b,	and	c.
If	a1,	…,	an	are	any	finite	number	of	elements	of	G,	we	may	define	the	subgroup	generated	by	a1,

…,	an	 in	 the	 same	way.	 In	 particular,	 if	a	 is	 a	 single	 element	 of	G,	 we	may	 consider	 the	 subgroup
generated	by	a.	This	subgroup	is	designated	by	the	symbol	〈a〉,	and	is	called	a	cyclic	subgroup	of	G;	a
is	called	its	generator.	Note	that	〈a〉	consists	of	all	the	possible	products	of	a	and	a−1,	for	example,	a–
1aaa–1	and	aaa–1aa–1.	However,	 since	 factors	of	a–1	 cancel	 factors	of	a,	 there	 is	no	need	 to	 consider
products	involving	both	a	and	a–1	side	by	side.	Thus,	〈a〉	contains

a,	aa,	aaa,.	.	.,

a–1,	a–1a–1,	a–1a–1a1,	…,

as	well	as	aa–1	=	e.



If	 the	operation	of	G	 is	denoted	by	+,	 the	 same	definitions	can	be	given	with	“sums”	 instead	of
“products.”

In	the	group	of	matrices	whose	table	appears	on	page	28,	the	subgroup	generated	by	D	is	〈D〉	=	{I,
B,	D}	and	the	subgroup	generated	by	A	is	〈A〉	=	{I,	A}.	(The	student	should	check	the	table	to	verify
this.)	In	fact,	the	entire	group	G	of	that	example	is	generated	by	the	two	elements	A	and	B.

If	a	group	G	is	generated	by	a	single	element	a,	we	call	G	a	cyclic	group,	and	write	G	−	〈a〉.	For
example,	the	additive	group	 6	is	cyclic.	(What	is	its	generator?)

Every	finite	group	G	is	generated	by	one	or	more	of	its	elements	(obviously).	A	set	of	equations,
involving	 only	 the	 generators	 and	 their	 inverses,	 is	 called	 a	 set	 of	 defining	 equations	 for	G	 if	 these
equations	completely	determine	the	multiplication	table	of	G.

For	 example,	 let	G	 be	 the	 group	 {e,	 a,	 b,	 b2,	 ab,	 ab2}	 whose	 generators	 a	 and	 b	 satisfy	 the
equations

a2	=	e	 b3	=	e	 ba	=	ab2	 (1)

These	three	equations	do	indeed	determine	the	multiplication	table	of	G.	To	see	this,	note	first	that	the
equation	ba	=	ab2	allows	us	to	switch	powers	of	a	with	powers	of	b,	bringing	powers	of	a	 to	the	left,
and	powers	of	b	to	the	right.	For	example,	to	find	the	product	of	ab	and	ab2,	we	compute	as	follows:

But	by	Equations	(1),	a2	=	e	and	b4	=	b3b	=	b;	so	finally,	(ab)(ab2)	=	b.	All	the	entries	in	the	table	of	G
may	be	computed	in	the	same	fashion.

When	 a	 group	 is	 determined	 by	 a	 set	 of	 generators	 and	 defining	 equations,	 its	 structure	 can	 be
efficiently	represented	in	a	diagram	called	a	Cayley	diagram.	These	diagrams	are	explained	in	Exercise
G.

EXERCISES

A.	Recognizing	Subgroups
In	parts	1–6	below,	determine	whether	or	not	H	is	a	subgroup	of	G.	(Assume	that	the	operation	of	H	is
the	same	as	that	of	G.)

Instructions	If	H	is	a	subgroup	of	G,	show	that	both	conditions	in	the	definition	of	“subgroup”	are
satisfied.	If	H	is	not	a	subgroup	of	G,	explain	which	condition	fails.

Example	G	=	 *,	the	multiplicative	group	of	the	real	numbers.

H	=	{2n	:	n	∈	 }	 H	is	 	 is	not	□	 a	subgroup	of	G.

(i)	If	2n,	2m	∈	H,	then	2n2m	=	2n+m.	But	n	+	m	∈	 ,	so	2n+m	∈	H.
(ii)	If	2n	∈	H,	then	1/2n	=	2–n.	But	–n	∈	 ,	so	2n+m	∈	H.
(Note	 that	 in	 this	example	 the	operation	of	G	and	H	 is	multiplication.	 In	 the	next	 problem,	 it	 is

addition.)



1	G	=	〈 ,	+〉,	H	=	{log	a	:	a	∈	 ,	a	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
2	G	=	〈 ,	+〉,	H	=	{log	n	:	n	∈	 ,	n	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
3	G	=	〈 ,	+〉,	H	=	{x	∈	 	:	tan	x	∈	 }.	 H	is	□	 is	not	□	 a	subgroup	of	G.
HINT:	Use	the	following	formula	from	trigonometry:

4	G	=	〈 *,	·〉,	H	=	{2n3m	:	m,	n	∈	 }.	 H	is	□	 is	not	□	 a	subgroup	of	G.
5	G	=	〈 	×	 ,	+〉,	H	=	{(x,	y)	:	y	=	2x}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
6	G	=	〈 	×	 ,	+〈,	H	=	{(x,	y)	:	x2	+	y2	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
7	Let	C	and	D	be	sets,	with	C	⊆	D.	Prove	that	PC	is	a	subgroup	of	PD.	(See	Chapter	3,	Exercise	C.)

B.	Subgroups	of	Functions
In	each	of	the	following,	show	that	H	is	a	subgroup	of	G.

Example	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(0)	=	0}
(i)	Suppose	f,	g	∈	H;	then	f(0)	=	0	and	g(0)	=	0,	so	[f	+	g](0)	=	f(0)	+	g(0)	=	0	+	0	=	0.	Thus,	f	+	g

∈	H.
(ii)	If	f	∈	H,	then	f(0)	=	0.	Thus,	[–f](0)	=	–f(0)	=	–0	=0,	so	–f	∈	H.

1	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(x)	=	0	for	every	x	∈	[0,1]}
2	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(–x)	=	–f(x)}
3	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f	is	periodic	of	period	π}
REMARK:	A	function	f	is	said	to	be	periodic	of	period	a	if	there	is	a	number	a,	called	the	period	of	f,	such
that	f(x)	=	f(x	+	na)	for	every	x	∈	 	and	n	∈	 .
4	G	=	〈 	( ),	+〉,	H	=	{f	∈	 ( )	:	
5	G	=	〈 ( ),+〉,	H	=	{f∈ ( )	:	df/dx	is	constant}
6	G	=	〈 ( ),+〉,	H	=	{f	∈	 ( )	:	f(x)∈	 	for	every	x∈ }

C.	Subgroups	of	Abelian	Groups
In	the	following	exercises,	let	G	be	an	abelian	group.
1	If	H	=	{x	∈	G	:	x	=	x–1},	 that	 is,	H	consists	of	all	 the	elements	of	G	which	are	 their	own	inverses,
prove	that	H	is	a	subgroup	of	G.
2	Let	n	be	a	fixed	integer,	and	let	H	=	{x	∈	G	:	xn	=	e}.	Prove	that	H	is	a	subgroup	of	G.
3	Let	H	=	{x	∈	G	:	x	=	y2	for	some	y	∈	G};	that	is,	let	H	be	the	set	of	all	the	elements	of	G	which	have	a
square	root.	Prove	that	H	is	a	subgroup	of	G.
4	Let	Hbe	a	subgroup	of	G,	and	let	K	=	{x	∈	G	:	x2	∈	H}.	Prove	that	K	is	a	subgroup	of	G.
#	5.	Let	H	be	a	subgroup	of	G,	and	let	K	consist	of	all	the	elements	x	in	G	such	that	some	power	of	x	is
in	H.	That	is,	K	=	{x	∈	G	:	for	some	integer	n	>	0,	xn	∈	H).	Prove	that	K	is	a	subgroup	of	G.
6	Suppose	H	and	K	are	subgroups	of	G,	and	define	HK	as	follows:

HK	=	{xy	:	x	∈	H	and	y	∈	K}



Prove	that	HK	is	a	subgroup	of	G.
7	Explain	why	parts	4–6	are	not	true	if	G	is	not	abelian.

D.	Subgroups	of	an	Arbitrary	Group
Let	G	be	a	group.
1	If	H	and	K	are	subgroups	of	a	group	G,	prove	that	H	∩	K	is	a	subgroup	of	G.	(Remember	that	x	∈	H	∩
K	iff	x	∈	H	and	x	∈	K.)
2	Let	H	and	K	be	subgroups	of	G.	Prove	that	if	H	⊆	K,	then	H	is	a	subgroup	of	K.
3	By	 the	 center	of	 a	 group	G	we	mean	 the	 set	 of	 all	 the	 elements	 of	G	 which	 commute	with	 every
element	of	G,	that	is,

C	=	{a	∈	G	:	ax	=	xa	for	every	x	∈	G)

Prove	that	C	is	a	subgroup	of	G.
4	Let	C′	=	{a	∈	G:	(ax)2	=	(xa)2	for	every	x	∈	G).	Prove	that	C′	is	a	subgroup	of	G.
#	5	Let	G	be	a	finite	group,	and	let	S	be	a	nonempty	subset	of	G.	Suppose	S	 is	closed	with	respect	 to
multiplication.	Prove	 that	S	 is	 a	 subgroup	of	G.	 (HINT:	 It	 remains	 to	prove	 that	S	contains	e	 and	 is
closed	with	respect	to	inverses.	Let	S	=	{a1,	…,	an}.	If	ai	∈	S,	consider	the	distinct	elements	aia1,	aia2,
…,	aian.)

6	Let	G	be	a	group	and	f	:	G	→	G	a	function.	A	period	of	f	is	any	element	a	in	G	such	that	f(x)	=	f(ax)
for	every	x	∈	G.	Prove:	The	set	of	all	the	periods	of	f	is	a	subgroup	of	G.
#	7	Let	H	be	a	subgroup	of	G,	and	let	K	=	{x	∈	G	:	xax−1	∈	H	iff	a	∈	H}.	Prove:

(a)	K	is	a	subgroup	of	G.
(b)	H	is	a	subgroup	of	K.

8	Let	G	and	H	be	groups,	and	G	×	H	their	direct	product.
(a)	Prove	that	{(x,	e)	:	x	∈	G}	is	a	subgroup	of	G	×	H.
(b)	Prove	that	{(x,	x)	:	x	∈	G}	is	a	subgroup	of	G	×	G.

E.	Generators	of	Groups
1	List	all	the	cyclic	subgroups	of	〈 10,	+〉.
2	Show	that	 10	is	generated	by	2	and	5.
3	Describe	the	subgroup	of	 12	generated	by	6	and	9.
4	Describe	the	subgroup	of	 	generated	by	10	and	15.
5	Show	that	 	is	generated	by	5	and	7.
6	Show	that	 2	×	 3	is	a	cyclic	group.	Show	that	 3	×	 4	is	a	cyclic	group.
#	7	Show	that	 2	×	 4	is	not	a	cyclic	group,	but	is	generated	by	(1,	1)	and	(1,	2).
8	Suppose	a	group	G	is	generated	by	two	elements	a	and	b.	If	ab	=	ba,	prove	that	G	is	abelian.

F.	Groups	Determined	by	Generators	and	Defining	Equations
#	1	Let	G	be	the	group	{e,	a,	b,	b2,	ab,	ab2}	whose	generators	satisfy	a2	=	e,	b3	=	e,	ba	=	ab2.	Write	the



table	of	G.
2	Let	G	be	the	group	{e,	a,	b,	b2,	b3,	ab,	ab2,	ab3}	whose	generators	satisfy	a2	=	e,	b4	=	e,	ba	=	ab3.
Write	the	table	of	G.	(G	is	called	the	dihedral	group	D4.)

3	Let	G	be	the	group	{e,	a,	b,	b2,	b3,	ab,	ab2,	ab3}	whose,	generators	satisfy	a4	=	e,	a2	=	b2,	ba	=	ab3.
Write	the	table	of	G.	(G	is	called	the	quaternion	group.)
4	Let	G	be	the	commutative	group	{e,	a,	b,	c,	ab,	be,	ac,	abc}	whose	generators	satisfy	a2	=	b2	=	c2	=	e.
Write	the	table	of	G.

G.	Cayley	Diagrams
Every	 finite	group	may	be	 represented	by	a	diagram	known	as	a	Cayley	diagram.	A	Cayley	diagram
consists	of	points	joined	by	arrows.

There	is	one	point	for	every	element	of	the	group.
The	arrows	represent	the	result	of	multiplying	by	a	generator.

For	 example,	 if	G	 has	 only	 one	 generator	 a	 (that	 is,	G	 is	 the	 cyclic	 group	 〈a〉),	 then	 the	 arrow	→
represents	the	operation	“multiply	by	a”:

e→a→a2→a3	·	·	·

If	 the	group	has	 two	generators,	 say	a	 and	b,	we	need	 two	 kinds	 of	 arrows,	 say	 	 and	→,	where	
means	“multiply	by	a,”	and	→	means	“multiply	by	b.”

For	example,	the	group	G	=	{e,	a,	b,	b2,	ab,	ab2}	where	a2	=	e,	b3	=	e,	and	ba	=	ab2	(see	page	47)
has	the	following	Cayley	diagram:

Moving	in	the	forward	direction	of	the	arrow	→	means	multiplying	by	b,

whereas	moving	in	the	backward	direction	of	the	arrow	means	multiplying	by	b–1:

(Note	that	“multiplying	x	by	b”	is	understood	to	mean	multiplying	on	the	right	by	b:	 it	means	xb,	not
bx.)	It	is	also	a	convention	that	if	a2	=	e	(hence	a	=	a–1),	then	no	arrowhead	is	used:



for	if	a	=	a–1,	then	multiplying	by	a	is	the	same	as	multiplying	by	a–1.
The	Cayley	diagram	of	a	group	contains	the	same	information	as	the	group’s	table.	For	instance,	to

find	the	product	(ab)(ab2)	in	the	figure	on	page	51,	we	start	at	ab	and	follow	the	path	corresponding	to
ab2	(multiplying	by	a,	then	by	b,	then	again	by	b),	which	is

This	path	leads	to	b;	hence	(ab)(ab2)	=	b.
As	 another	 example,	 the	 inverse	 of	 ab2	 is	 the	 path	 which	 leads	 from	 ab2	 back	 to	 e.	 We	 note

instantly	that	this	is	ba.
A	point-and-arrow	diagram	is	the	Cayley	diagram	of	a	group	iff	it	has	the	following	two	properties:

(a)	For	each	point	x	and	generator	a,	there	is	exactly	one	a-arrow	starting	at	x,	and	exactly	one	a-arrow
ending	at	x;	 furthermore,	at	most	one	arrow	goes	from	x	 to	another	point	y.	 (b)	 If	 two	different	paths
starting	at	x	lead	to	the	same	destination,	then	these	two	paths,	starting	at	any	point	y,	lead	to	the	same
destination.

Cayley	diagrams	are	a	useful	way	of	finding	new	groups.
Write	the	table	of	the	groups	having	the	following	Cayley	diagrams:	(REMARK:	You	may	take	any

point	to	represent	e,	because	 there	 is	perfect	symmetry	 in	a	Cayley	diagram.	Choose	e,	 then	 label	 the
diagram	and	proceed.)

H.	Coding	Theory:	Generator	Matrix	and	Parity-Check	Matrix	of	a	Code
For	the	reader	who	does	not	know	the	subject,	linear	algebra	will	be	developed	in	Chapter	28.	However,
some	rudiments	of	vector	and	matrix	multiplication	will	be	needed	in	this	exercise;	they	are	given	here:

A	vector	with	n	components	is	a	sequence	of	n	numbers:	(a1,	a2,	…,	an).	The	dot	product	of	 two
vectors	with	n	components,	say	the	vectors	a	=	(a1,	a2,	…,	an)	and	b	=	(b1,	b2,	…,	bn),	is	defined	by

a	·	b	=	(a1,	a2,	…,	an)	·	(b1,	b2,	…,	bn)	=	a1b1	+	a2b2	+	·	·	·	+	anbn

that	is,	you	multiply	corresponding	components	and	add.	For	example,

(1,4,	–2,	3)	·	(6,	2,	4,	–2)	=	1(6)	+	4(2)	+	(–2)4	+	3(–2)	=	0



When	a	·	b	=	0,	as	in	the	last	example,	we	say	that	a	and	b	are	orthogonal.
A	matrix	is	a	rectangular	array	of	numbers.	An	“m	by	n	matrix”	(m	×	n	matrix)	has	m	rows	and	n

columns.	For	example,

is	a	3	×	4	matrix:	It	has	three	rows	and	four	columns.	Notice	that	each	row	of	B	 is	a	vector	with	four
components,	and	each	column	of	B	is	a	vector	with	three	components.

If	A	is	any	m	×	n	matrix,	let	a1,	a2,	…,	an	be	the	columns	of	A.	(Each	column	of	A	is	a	vector	with
m	components.)	If	x	is	any	vector	with	m	components,	xA	denotes	the	vector

xA	=	(x·a1,	x·a2,	…,	x·an)

That	is,	the	components	of	xA	are	obtained	by	dot	multiplying	x	by	the	successive	columns	of	A.	For
example,	if	B	is	the	matrix	of	the	previous	paragraph	and	x	=	(3,1,	–2),	then	the	components	of	xB	are

that	is,	xB	=	(−7,	3,	−15,	8).
If	A	 is	 an	 m	 ×	 n	 matrix,	 let	 a(1),	 a(2),	 …,	 a(m)	 be	 the	 rows	 of	 A.	 If	 y	 is	 any	 vector	 with	 n

components,	Ay	denotes	the	vector

Ay	=	(y	·	a(1),	y	·	a(2),	…,	y	·	a(m))

That	is,	the	components	of	Ay	are	obtained	by	dot	multiplying	y	with	the	successive	rows	of	A.	(Clearly,
Ay	is	not	the	same	as	yA.)	From	linear	algebra,	A(x	+	y)	=	Ax	+	Ay	and	(A	+	B)x	=	Ax	+	Bx.

We	shall	now	continue	 the	discussion	of	codes	begun	in	Exercises	F	and	G	of	Chapter	3.	Recall
that	 	is	the	set	of	all	vectors	of	length	n	whose	entries	are	0s	and	1s.	In	Exercise	F,	page	32,	 it	was
shown	that	 	is	a	group.	A	code	is	defined	to	be	any	subset	C	of	 .	A	code	is	called	a	group	code	if	C
is	 a	 subgroup	 of	 .	 The	 codes	 described	 in	 Chapter	 3,	 as	well	 as	 all	 those	 to	 be	mentioned	 in	 this
exercise,	are	group	codes.

An	m	×	n	matrix	G	is	a	generator	matrix	for	the	code	C	if	C	is	the	group	generated	by	the	rows	of
G.	For	example,	if	C1	is	the	code	given	on	page	34,	its	generator	matrix	is

You	may	check	that	all	eight	codewords	of	C1	are	sums	of	the	rows	of	G1.
Recall	 that	every	codeword	consists	of	 information	digits	and	parity-check	digits.	In	the	code	C1

the	first	three	digits	of	every	codeword	are	information	digits,	and	make	up	the	message;	 the	last	two



digits	are	parity-check	digits.	Encoding	a	message	is	the	process	of	adding	the	parity-check	digits	to	the
end	of	the	message.	If	x	is	a	message,	then	E(x)	denotes	the	encoded	word.	For	example,	recall	that	in
C1	the	parity-check	equations	are	a4	=	a1	+	a3	and	a5	=	a1	+	a2	+	a3.	Thus,	a	three-digit	message	a1a2a3
is	encoded	as	follows:

E(a1,	a2,	a3)	=	(a1,	a2,	a3,	a1	+	a3,	a1	+	a2	+	a3)

The	 two	digits	added	at	 the	end	of	a	word	are	 those	dictated	by	 the	parity	check	equations.	You	may
verify	that

This	is	true	in	all	cases:	If	G	is	the	generator	matrix	of	a	code	and	x	is	a	message,	then	E(x)	is	equal	to
the	 product	 xG.	 Thus,	 encoding	 using	 the	 generator	 matrix	 is	 very	 easy:	 you	 simply	 multiply	 the
message	x	by	the	generator	matrix	G.

Now,	the	parity-check	equations	of	C1	(namely,	a4	=	a1	+	a3	and	a5	=	a1	+	a2	+	a3)	can	be	written
in	the	form

a1	+	a3	+	a4	=	0	 and	 a1	+	a2	+	a3	+	a5	=	0

which	is	equivalent	to

(a1,	a2,	a3,	a4,	a5)	·	(1,	0,	1,	1,	0)	=	0

and

(a1,	a2,	a3,	a4,	a5)	·	(1,	1,	1,	0,	1)	=	0

The	 last	 two	equations	 show	 that	 a	word	a1a2a3a4a5	 is	 a	codeword	 (that	 is,	 satisfies	 the	parity-check
equations)	if	and	only	if	(a1,	a2,	a3,	a4,	a5)	is	orthogonal	to	both	rows	of	the	matrix:

H	is	called	the	parity-check	matrix	of	the	code	C1.	This	conclusion	may	be	stated	as	a	theorem:
Theorem	1	Let	H	be	the	parity-check	matrix	of	a	code	C	in	 .	A	word	x	in	 	is	a	codeword	if	and

only	if	Hx	=	0.
(Remember	that	Hx	is	obtained	by	dot	multiplying	x	by	the	rows	of	H.)
1	Find	the	generator	matrix	G2	and	the	parity-check	matrix	H2	of	the	code	C2	described	in	Exercise	G2
of	Chapter	3.
2	Let	C3	be	the	following	code	in	 :	the	first	four	positions	are	information	positions,	and	the	parity-
check	 equations	 are	a5	 =	a2	 +	a3	 +	a4,	a6	 =	 a1	 +	a3	 +	 a4,	 and	a7	 =	 a1	 +	a2	 +	 a4.	 (C3	 is	 called	 the
Hamming	code.)	Find	the	generator	matrix	G3	and	parity-check	matrix	H3	of	C3.



The	weight	 of	 a	word	x	 is	 the	 number	 of	 Is	 in	 the	word	 and	 is	 denoted	 by	w(x).	 For	 example,
w(11011)	 =	 4.	 The	minimum	weight	 of	 a	 code	C	 is	 the	weight	 of	 the	 nonzero	 codeword	 of	 smallest
weight	in	the	code.	(See	the	definitions	of	“distance”	and	“minimum	distance”	on	page	34.)	Prove	the
following:
#	3	d(x,	y)	=	w(x	+	y).
4	w(x)	=	d(x,	0),	where	0	is	the	word	whose	digits	are	all	0s.
5	The	minimum	distance	of	a	group	code	C	is	equal	to	the	minimum	weight	of	C.
6	(a)	If	x	and	y	have	even	weight,	so	does	x	+	y.

(b)	If	x	and	y	have	odd	weight,	x	+	y	has	even	weight.
(c)	If	x	has	odd	and	y	has	even	weight,	then	x	+	y	has	odd	weight.

7	In	any	group	code,	either	all	the	words	have	even	weight,	or	half	the	words	have	even	weight	and	half
the	words	have	odd	weight.	(Use	part	6	in	your	proof.)
8	H(x	+	y)	=	0	if	and	only	if	Hx	=	Hy,	where	H	denotes	the	parity-check	matrix	of	a	code	in	 	and	x
and	y	are	any	two	words	in	 ).



CHAPTER

SIX

FUNCTIONS

The	 concept	 of	 a	 function	 is	 one	 of	 the	most	 basic	mathematical	 ideas	 and	 enters	 into	 almost	 every
mathematical	discussion.	A	function	is	generally	defined	as	follows:	If	A	and	B	are	sets,	then	a	function
from	A	to	B	 is	a	rule	which	to	every	element	x	in	A	assigns	a	unique	element	y	 in	B.	To	 indicate	 this
connection	between	x	and	y	we	usually	write	y	=	f(x),	and	we	call	y	the	image	of	x	under	the	function	f.

There	is	nothing	inherently	mathematical	about	this	notion	of	function.	For	example,	imagine	A	to
be	a	set	of	married	men	and	B	to	be	the	set	of	their	wives.	Let	f	be	the	rule	which	to	each	man	assigns
his	wife.	Then	f	is	a	perfectly	good	function	from	A	to	B;	under	this	function,	each	wife	is	the	image	of
her	husband.	(No	pun	is	intended.)

Take	care,	however,	to	note	that	if	there	were	a	bachelor	in	A	then	f	would	not	qualify	as	a	function
from	A	 to	B;	 for	 a	 function	 from	A	 to	B	 must	 assign	 a	 value	 in	 B	 to	 every	 element	 of	 A,	 without
exception.	Now,	suppose	the	members	of	A	and	B	are	Ashanti,	among	whom	polygamy	is	common;	in
the	land	of	the	Ashanti,	f	does	not	necessarily	qualify	as	a	function,	for	it	may	assign	to	a	given	member
of	A	several	wives.	If/is	a	function	from	A	to	B,	it	must	assign	exactly	one	image	to	each	element	of	A.

If	f	is	a	function	from	A	to	B	it	is	customary	to	describe	it	by	writing

f	:	A	→	B

The	set	A	is	called	the	domain	of	f.	The	range	of	f	is	the	subset	of	B	which	consists	of	all	the	images	of
elements	of	A.	In	the	case	of	the	function	illustrated	here,	{a,	b,	c}	is	the	domain	of	f,	and	{x,	y}	is	the



range	of	f(z	 is	not	 in	 the	range	of	 f).	 Incidentally,	 this	 function	 f	may	be	represented	 in	 the	simplified
notation

This	notation	is	useful	whenever	A	is	a	finite	set:	the	elements	of	A	are	listed	in	the	top	row,	and	beneath
each	element	of	A	is	its	image.

It	may	perfectly	well	happen,	if	f	is	a	function	from	A	to	B,	that	two	or	more	elements	of	A	have	the
same	image.	For	example,	if	we	look	at	the	function	immediately	above,	we	observe	that	a	and	b	both
have	the	same	image	x.	If	f	is	a	function	for	which	this	kind	of	situation	does	not	occur,	then	f	is	called
an	injective	function.	Thus,

Definition	1	A	function	f	:	A	→	B	is	called	injective	if	each	element	of	B	is	the	image	of	no	more
than	one	element	of	A.

The	 intended	 meaning,	 of	 course,	 is	 that	 each	 element	 y	 in	B	 is	 the	 image	 of	 no	 two	 distinct
elements	of	A.	So	if

that	 is,	xl	 and	x2	 have	 the	 same	 image	y,	we	must	 require	 that	xl	 be	equal	 to	x2.	 Thus,	 a	 convenient
definition	of	“injective”	is	this:	a	function	f	:	A	→B	is	injective	if	and	only	if

f(x1)	=	f(x2) 	implies x1	=	x2

If	f	is	a	function	from	A	to	B,	there	may	be	elements	in	B	which	are	not	images	of	elements	of	A.	If
this	does	not	happen,	that	is,	if	every	element	of	B	is	the	image	of	some	element	of	A,	we	say	that	f	is
surjective.

Definition	2	A	function	f	:	A	→	B	is	called	surjective	if	each	element	of	B	is	the	image	of	at	least
one	element	of	A.



This	is	the	same	as	saying	that	B	is	the	range	of	f.
Now,	suppose	that	f	is	both	injective	and	surjective.	By	Definitions	1	and	2,	each	element	of	B	is

the	image	of	at	least	one	element	of	A,	and	no	more	than	one	element	of	A.	So	each	element	of	B	is	the
image	 of	 exactly	 one	 element	 of	 A.	 In	 this	 case,	 f	 is	 called	 a	 bijective	 function,	 or	 a	 one-to-one
correspondence.

Definition	3	A	function	f	:	A	→B	is	called	bijective	if	it	is	both	injective	and	surjective.

It	is	obvious	that	under	a	bijective	function,	each	element	of	A	has	exactly	one	“partner”	in	B	and	each
element	of	B	has	exactly	one	partner	in	A.

The	most	natural	way	of	combining	 two	functions	 is	 to	form	their	“composite.”	The	 idea	 is	 this:
suppose	f	is	a	function	from	A	to	B,	and	g	is	a	function	from	B	to	C.	We	apply	f	to	an	element	x	in	A	and
get	an	element	y	in	B;	 then	we	apply	g	 to	y	and	get	an	element	z	in	C.	Thus,	z	 is	obtained	from	x	by
applying	f	and	g	in	succession.	The	function	which

consists	of	applying	f	and	g	in	succession	is	a	function	from	A	to	C,	and	is	called	the	composite	of	f	and
g.	More	precisely,

Let	f	:	A	→	B	and	g	:	B	→	C	be	functions.	The	composite	function	denoted	by	g	∘	f	is	a	function
from	A	to	C	defined	as	follows:

[g	∘	f](x)	=	g(f(x))	 for	every	x	∊	A

For	example,	consider	once	again	a	set	A	of	married	men	and	the	set	B	of	their	wives.	Let	C	be	the	set	of
all	the	mothers	of	members	of	B.	Let	f	:	A	→B	be	the	rule	which	to	each	member	of	A	assigns	his	wife,
and	g	:	B	→	C	the	rule	which	to	each	woman	in	B	assigns	her	mother.	Then	g	∘	f	is	the	“mother-in-law
function,”	which	assigns	to	each	member	of	A	his	wife’s	mother:



For	another,	more	conventional,	example,	let	f	and	g	be	the	following	functions	from	 	to	 :	f(x)	=
2x;	 g(x)	 =	 x	 +	 1.	 (In	 other	 words,	 f	 is	 the	 rule	 “multiply	 by	 2”	 and	 g	 is	 the	 rule	 “add	 1.”)	 Their
composites	are	the	functions	g	∘	f	and	f	∘	g	given	by

[f	∘	g](x)	=	f(g(x))	=	2(x	+	1)

and

[g	∘	f](x)	=	g(f(x))	=	2x	+	1

f	∘	g	 and	 g	 ∘	 f	 are	 different:	 f	 ∘	g	 is	 the	 rule	 “add	 1,	 then	multiply	 by	 2,”	whereas	g	 ∘	 fis	 the	 rule
“multiply	by	2	and	then	add	1.”

It	is	an	important	fact	that	the	composite	of	two	injective	functions	is	injective,	the	composite	of
two	surjective	functions	is	surjective,	and	the	composite	of	two	bijective	functions	is	bijective.	In	other
words,	if	f	:	A	→	B	and	g	:	B	→	C	are	functions,	then	the	following	are	true:

If	f	and	g	are	injective,	then	g	∘	f	is	injective.
If	f	and	g	are	surjective,	then	g	∘	f	is	surjective.
If	f	and	g	are	bijective,	then	g	∘	f	is	bijective.

Let	us	tackle	each	of	these	claims	in	turn.	We	will	suppose	that	f	and	g	are	injective,	and	prove	that	g	∘
fis	injective.	(That	is,	we	will	prove	that	if	[g	∘	f](x)	=	[g	∘	f](y),	then	x	=	y.)

Suppose	[g	∘	f](x)	=	[g	∘	f](y),	that	is,

g(f(x))	=	g(f(y))

Because	g	is	injective,	we	get

f(x)	=	f(y)

and	because	f	is	injective,

x	=	y

Next,	let	us	suppose	that	f	and	g	are	surjective,	and	prove	that	g	∘	f	is	surjective.	What	we	need	to
show	here	is	that	every	element	of	C	is	g	∘	f	of	some	element	of	A.	Well,	 if	z	∈	C,	 then	(because	g	 is
surjective)	x	=	g(y)	for	some	y	∈	B;	but	f	is	surjective,	so	y	=	f(x)	for	some	x	∈	A.	Thus,

z	=	g(y)	=	g(f(x))	=	[g	∘	f](x)

Finally,	if	f	and	g	are	bijective,	they	are	both	injective	and	surjective.	By	what	we	have	already	proved,
g	∘	f	is	injective	and	surjective,	hence	bijective.

A	function	f	from	A	to	B	may	have	an	inverse,	but	it	does	not	have	to.	The	inverse	of	f,	if	it	exists,



is	a	function	f−1	(“	f	inverse”)	from	B	to	A	such	that

x	=	f−1(y)	 if	and	only	if	 y	=	f(x)

Roughly	speaking,	if	f	carries	x	to	y	then	f−l	carries	y	to	x.	For	instance,	returning	(for	the	last	time)	to
the	example	of	a	set	A	of	husbands	and	the	set	B	of	their	wives,	if	f	:	A	→	B	is	the	rule	which	to	each
husband	assigns	his	wife,	then	f−l	:	B	→	A	is	the	rule	which	to	each	wife	assigns	her	husband:

If	we	think	of	functions	as	rules,	then	f−1	is	the	rule	which	undoes	what	ever	f	does.	For	instance,	if	f	is
the	real-valued	function	 f(x)	=	2x,	 then	 f−1	 is	 the	 function	 f−1(x)	=	x/2	 [or,	 if	 preferred,	 f−1(y)	=	y/2].
Indeed,	the	rule	“divide	by	2”	undoes	what	the	rule	“multiply	by	2”	does.

Which	 functions	 have	 inverses,	 and	 which	 others	 do	 not?	 If	 f,	 a	 function	 from	A	 to	B,	 is	 not
injective,	it	cannot	have	an	inverse;	for	“not	injective”	means	there	are	at	least	two	distinct	elements	x1
and	x2	with	the	same	image	y;

Clearly,	x1	=	f−1(y)	and	x2	=	f−1(y)	so	f−l(y)	 is	ambiguous	 (it	has	 two	different	values),	and	 this	 is	not
allowed	for	a	function.

If	f,	a	function	from	A	to	B	is	not	surjective,	there	is	an	element	y	in	B	which	is	not	an	image	of	any
element	of	A;	thus	f−l(y)	does	not	exist.	So	f−1	cannot	be	a	function	from	B	(that	is,	with	domain	B)	to	A.

It	is	therefore	obvious	that	if	f−l	exists,	f	must	be	injective	and	surjective,	that	is,	bijective.	On	the
other	hand,	if	f	is	a	bijective	function	from	A	to	B,	its	inverse	clearly	exists	and	is	determined	by	the	rule
that	if	y	=	f(x)	then	f−1(y)	=	x.



Furthermore,	it	is	easy	to	see	that	the	inverse	of	f	is	also	a	bijective	function.	To	sum	up:
A	function	f	:	A	→	B	has	an	inverse	if	and	only	if	it	is	bijective.
In	that	case,	the	inverse	f−l	is	a	bijective	function	from	B	to	A.

EXERCISES

A.	Examples	of	Injective	and	Surjective	Functions
Each	of	the	following	is	a	function	f	:	 	→	 .	Determine

(a)	whether	or	not	f	is	injective,	and
(b)	whether	or	not	f	is	surjective.

Prove	your	answer	in	either	case.

Example	1	f(x)	=	2x

f	is	injective.
PROOF	Suppose	f(a)	=	f(b),	that	is,

2a	=	2b

Then

a	=	b

Therefore	f	is	injective.	■
f	is	surjective.
PROOF	Take	any	element	y	∈ .	Then	y	=	2(y/2)	=	f(y/2).
Thus,	every	y	∈	 	is	equal	to	f(x)	for	x	=	y/2.
Therefore	f	is	surjective.	■

Example	2	f(x)	=	x2

f	is	not	injective.
PROOF	By	exhibiting	a	counterexample:	f(2)	=	4	f(−2),	although	2	≠	−2.■
f	is	not	surjective.
PROOF	By	exhibiting	a	counterexample:	−1	is	not	equal	to	f(x)	for	any	x	∈ .■

1 f(x)	=	3x	+	4
2 f(x)	=	x3	+	1



3 f(x)	=	|x|
#	4 f(x)	=	x3	−	3x

5

#	6
7 Determine	the	range	of	each	of	the	functions	in	parts	1	to	6.

B.	Functions	on	 	and	
Determine	whether	each	of	the	functions	listed	in	parts	1−4	is	or	is	not	(a)	injective	and	(b)	surjective.
Proceed	as	in	Exercise	A.
1 f	:	 →(0,	∞),	defined	by	f(x)	=	ex.
2 f	:	(0,1)→,	defined	by	f(x)	=	tan	x.
3 f	:	 → ,	defined	by	f(x)	=	the	least	integer	greater	than	or	equal	to	x.
4 f	:	 → ,	defined	by	

5 Find	a	bijective	function	f	from	the	set	 	of	the	integers	to	the	set	E	of	the	even	integers.

C.	Functions	on	Arbitrary	Sets	and	Groups
Determine	whether	each	of	the	following	functions	is	or	is	not	(a)	injective	and	(b)	surjective.	Proceed
as	in	Exercise	A.

In	parts	1	to	3,	A	and	B	are	sets,	and	A	×	B	denotes	the	set	of	all	the	ordered	pairs	(x,y)	as	x	ranges
over	A	and	y	over	B.
1 f	:	A	×	B	→	A,defined	by	f(x,y)	=	x.
2 f	:	A	×	B	→	B	×	A,	defined	by	f(x,	y)	=	(y,	x).
3 f	:	A	×	B,defined	by	f(x)	=	(x,	b),	where	b	is	a	fixed	element	of	B.
4 G	is	a	group,	a	∈	G,	and	f	:	G	→	G	is	defined	by	f(x)	=	ax.
5 G	is	a	group	and	f	:	G	→	G	is	defined	by	f(x)	=	x−1.
6 G	is	a	group	and	f	:	G	→	G	is	defined	by	f(x)	=	x2.

D.	Composite	Functions
In	parts	1−3	find	the	composite	function,	as	indicated.
1 f	:	 → 	is	defined	by	f(x)	=	sin	x.
g	:	 → 	is	defined	by	g(x)	=	ex.

Find	f	∘	g	and	g	∘	f.
2 A	and	B	are	sets;	f:	A	×	B	→	B	×	A	is	given	by	f(x,	y)	=	(y,	x).
g	:	B	×	A	→	B	is	given	by	g(y,	x)	=	y.

Find	g	∘	f.
3 f	:	(0,1)→ 	is	defined	by	f(x)	=	1	/x.
g	:	 → 	is	defined	by	g(x)	=	In	x.

Find	g	∘	f.	Explain	why	f	∘	g	is	undefined.



4 In	school,	Jack	and	Sam	exchanged	notes	in	a	code	f	which	consists	of	spelling	every	word	backwards
and	interchanging	every	letter	s	with	t.	Alternatively,	they	use	a	code	g	which	interchanges	the	letters	a
with	o,	i	with	u,	e	with	y,	and	s	with	t.	Describe	the	codes	f	∘	g	and	g	∘	f.	Are	they	the	same?
5 A	=	{a,	b,	c,	d};	f	and	g	are	functions	from	A	to	A;	in	the	tabular	form	described	on	page	57,	they	are
given	by

Give	f	∘	g	and	g	∘	f	in	the	same	tabular	form.
6 G	is	a	group,	and	a	and	b	are	elements	of	G.
f	:	G	→	G	is	defined	by	f(x)	=	ax.
g	:	G	→	G	is	defined	by	g(x)	=	bx.

Find	f	∘	g	and	g	∘	f.
7 Indicate	the	domain	and	range	of	each	of	the	composite	functions	you	found	in	parts	1	to	6.

E.	Inverses	of	Functions
Each	of	the	following	functions	f	is	bijective.	Describe	its	inverse.
1	f	:	(0,	∞)→	(0,	∞),	defined	by	f(x)	=	1	/x.
2	f	:	 →	(0,	∞),	defined	by	f(x)	=	ex.
3	f	:	 → ,	defined	by	f(x)	=	x3	+	1.
4	f	:	 → ,	defined	by	

5	A	=	{a,	b,	c,	d},	B	=	{1,	2,	3,	4}	and	f	:	A	→	B	is	given	by

6	G	is	a	group,	a	∈	G,	and	f:	G	→	G	is	defined	by	f(x)	=	ax.

F.	Functions	on	Finite	Sets
1	The	members	of	the	U.N.	Peace	Committee	must	choose,	from	among	themselves,	a	presiding	officer
of	 their	committee.	For	each	member	x,	 let	 f(x)	designate	 that	member’s	choice	 for	officer.	 If	no	 two
members	vote	alike,	what	is	the	range	of	f?
2	Let	A	be	a	finite	set.	Explain	why	any	injective	function	f	:	A	→	A	is	necessarily	surjective.	(Look	at
part	1.)
3	If	A	is	a	finite	set,	explain	why	any	surjective	function	f	:	A	→	A	is	necessarily	injective.
4	Are	the	statements	in	parts	2	and	3	true	when	A	is	an	infinite	set?	If	not,	give	a	counterexample.
#	5	If	A	has	n	elements,	how	many	functions	are	there	from	A	to	A?	How	many	bijective	functions	are
there	from	A	to	A?

G.	Some	General	Properties	of	Functions
In	parts	1	to	3,	let	A,	B,	and	C	be	sets,	and	let	f	:	A	→	B	and	g	:	B	→	C	be	functions.
1	Prove	that	if	g	∘	f	is	injective,	then	f	is	injective.



2	Prove	that	if	g	∘	f	is	surjective,	then	g	is	surjective.
3	Parts	1	and	2,	 together,	 tell	us	 that	 if	g	∘	 f	 is	bijective,	 then	 f	 is	 injective	and	g	 is	 surjective.	 Is	 the
converse	of	this	statement	true:	If	xy0	is	injective	and	g	surjective,	is	g	∘	f	bijective?	(If	“yes,”	prove	it;
if	“no,”	give	a	counterexample.)
4	Let	f	:	A	→	B	and	g	:	B	→	A	be	functions.	Suppose	that	y	=	f(x)	iff	x	=	g(y).	Prove	that	f	is	bijective,
and	g	=	f−1

H.	Theory	of	Automata
Digital	computers	and	other	electronic	systems	are	made	up	of	certain	basic	control	circuits.	Underlying
such	circuits	is	a	fundamental	mathematical	notion,	the	notion	of	finite	automata,	also	known	as	finite-
state	machines.

A	 finite	 automaton	 receives	 information	 which	 consists	 of	 sequences	 of	 symbols	 from	 some
alphabet	 A.	 A	 typical	 input	 sequence	 is	 a	word	 x	 =	 x1x2	…	 xn,	 where	 xl	 x2,.	 .	 .	 are	 symbols	 in	 the
alphabet	A.	The	machine	has	a	set	of	internal	components	whose	combined	state	is	called	the	internal
state	 of	 the	machine.	 At	 each	 time	 interval	 the	machine	 “reads”	 one	 symbol	 of	 the	 incoming	 input
sequence	 and	 responds	 by	going	 into	 a	 new	 internal	 state:	 the	 response	 depends	 both	 on	 the	 symbol
being	read	and	on	the	machine’s	present	internal	state.	Let	S	denote	the	set	of	internal	states;	we	may
describe	a	particular	machine	by	specifying	a	function	α	:	S	×	A	→	S.	If	si	is	an	internal	state	and	aj	is
the	 symbol	 currently	being	 read,	 then	α(si	aj)	=	sk	 is	 the	machine’s	 next	 state.	 (That	 is,	 the	machine,
while	in	state	si	responds	to	the	symbol	aj	by	going	into	the	new	state	sk.)	The	function	α	is	called	the
next-state	function	of	the	machine.

Example	Let	M1	be	the	machine	whose	alphabet	is	A	=	{0,1},	whose	set	of	internal	states	is	S	=
{s0,	s1},	and	whose	next-state	function	is	given	by	the	table

(The	table	asserts:	When	in	state	s0	and	reading	0,	remain	in	s0.	When	in	s0	and	reading	1,	go	to	state	s1.
When	in	s1	and	reading	0,	remain	in	s1	When	in	s1	and	reading	1,	go	to	state	s0.)

A	possible	use	of	M1	 is	 as	a	parity-check	machine,	which	may	be	used	 in	decoding	 information
arriving	on	a	communication	channel.	Assume	the	incoming	information	consists	of	sequences	of	five
symbols,	0s	and	Is,	such	as	10111.	The	machine	starts	off	in	state	s0.	 It	reads	the	first	digit,	1,	and	as
dictated	by	the	table	above,	goes	into	state	s1.	Then	it	reads	the	second	digit,	0,	and	remains	in	s1.	When
it	 reads	 the	 third	 digit,	 1,	 it	 goes	 into	 state	 s0,	 and	when	 it	 reads	 the	 fourth	 digit,	 1,	 it	 goes	 into	 s1.
Finally,	it	reaches	the	last	digit,	which	is	the	parity-check	digit:	if	the	sum	of	the	first	four	digits	is	even,
the	parity-check	digit	is	0;	otherwise	it	is	1.	When	the	parity-check	digit,	1,	is	read,	the	machine	goes
into	state	s0.	Ending	in	state	s0	indicates	that	the	parity-check	digit	is	correct.	If	the	machine	ends	in	s1,
this	indicates	that	the	parity-check	digit	is	incorrect	and	there	has	been	an	error	of	transmission.

A	 machine	 can	 also	 be	 described	 with	 the	 aid	 of	 a	 state	 diagram,	 which	 consists	 of	 circles
interconnected	by	arrows:	the	notation



means	that	if	the	machine	is	in	state	si	when	x	is	read,	it	goes	into	state	sj.	The	diagram	of	the	machine
M1	of	the	previous	example	is

In	parts	1−4	describe	 the	machines	which	are	able	 to	carry	out	 the	 indicated	functions.	For	each
machine,	give	the	alphabet	A,	the	set	of	states	S,	and	the	table	of	the	next-state	function.	Then	draw	the
state	diagram	of	the	machine.
#	1	The	input	alphabet	consists	of	four	letters,	a,	b,	c,	and	d.	For	each	incoming	sequence,	the	machine
determines	whether	that	sequence	contains	exactly	three	a’s.

2	The	same	conditions	pertain	as	in	part	1,	but	the	machine	determines	whether	the	sequence	contains	at
least	three	a’s.
3	 The	 input	 alphabet	 consists	 of	 the	 digits	 0,	 1,	 2,	 3,	 4.	 The	 machine	 adds	 the	 digits	 of	 an	 input
sequence;	the	addition	is	modulo	5	(see	page	27).	The	sum	is	to	be	given	by	the	machine’s	state	after	the
last	digit	is	read.
4	The	machine	tells	whether	or	not	an	incoming	sequence	of	0s	and	Is	ends	with	111.
5	If	M	is	a	machine	whose	next-state	function	is	α,	define	ᾱ	as	follows:	If	x	is	an	input	sequence	and	the
machine	(in	state	si.)	begins	reading	x,	then	ᾱ(si,	x)	is	the	state	of	the	machine	after	the	last	symbol	of	x
is	 read.	 For	 instance,	 if	M1	 is	 the	machine	 of	 the	 example	 given	 above,	 then	 ᾱ(s0,11010)	 =	 s1.(The
machine	is	in	s0	before	the	first	symbol	is	read;	each	1	alters	the	state,	but	the	0s	do	not.	Thus,	after	the
last	0	is	read,	the	machine	is	in	state	s1.)
(a)	For	the	machine	M1,	give	ᾱ(s0,x)	for	all	three-digit	sequences	x.
(b)	For	the	machine	of	part	1,	give	ᾱ(si,	x)	for	each	state	si	and	every	two-letter	sequence	x.
6	 With	 each	 input	 sequence	 x	 we	 associate	 a	 function	 Tx:	S→	 S	 called	 a	 state	 transition	 function,
defined	as	follows:

Tx(si)	=	ᾱ(si,x)

For	the	machine	M1	of	the	example,	if	x	=	11010,	Tx	is	given	by

Tx(s0)	=	s1	 and	 Tx(s1)=	s0

(a)	Describe	the	transition	function	Tx	for	the	machine	M1	and	the	following	sequences:	x	=	01001,	x
=10011,	x	=	01010.
(b)	Explain	why	M1	has	only	two	distinct	transition	functions.	[Note:	Two	functions	f	and	g	are	equal	if
f(x)	=	g(x)	for	every	x;	otherwise	they	are	distinct.]
(c)	For	 the	machine	of	part	1,	describe	 the	 transition	 function	T1	 for	 the	following	x:	x	=	abbca,	x	=



babac,	x	=	ccbaa.
(d)	How	many	distinct	transition	functions	are	there	for	the	machine	of	part	3?

I.	Automata,	Semigroups,	and	Groups
By	a	semigroup	we	mean	a	set	A	with	an	associative	operation.	(There	does	not	need	to	be	an	identity
element,	nor	do	elements	necessarily	have	inverses.)	Every	group	is	a	semigroup,	though	the	converse	is
clearly	false.	With	every	semigroup	A	we	associate	an	automaton	M	=	M	(A)	called	the	automaton	of	the
semigroup	A.	The	alphabet	of	M	is	A,	the	set	of	states	also	is	A,	and	the	next-state	function	is	α(s,	a)	=	sa
[or	α(s,	a)	=	s	+	a	if	the	operation	of	the	semigroup	is	denoted	additively].
1	Describe	M( 4).	That	is,	give	the	table	of	its	next-state	function,	as	well	as	its	state	diagram.
2	Describe	M(S3).

If	M	 is	a	machine	and	S	 is	 the	set	of	 states	of	M,	 the	state	 transition	 functions	of	M	 (defined	 in
Exercise	H6	of	this	chapter)	are	functions	from	S	to	S.	In	the	next	exercise	you	will	be	asked	to	show
that	Ty	∘	Tx	=	Txy;	 that	 is,	 the	composite	of	 two	transition	functions	is	a	 transition	function.	Since	the
composition	of	functions	is	associative	[f	∘	(g	∘	h)	=	(f	∘	g)	∘	h],	it	follows	that	the	set	of	all	transition
functions,	with	the	operation	°,	 is	a	semigroup.	 It	 is	denoted	by	 (M)	and	called	the	semigroup	of	 the
machine	M.
3	Prove	that	Txy	=	Ty	∘	Tx.
4	Let	M1	be	the	machine	of	the	example	in	Exercise	H	above.	Give	 the	 table	of	 the	semigroup	 (M1.
Does	 (M1)	have	an	identity	element?	Is	 (M1)	a	group?
5	Let	M2	be	 the	machine	of	Exercise	H3.	How	many	distinct	 functions	 are	 there	 in	 (M3)?	Give	 the
table	of	 (M3).	Is	 (M3)	a	group?	(Why?)
6	Find	the	table	of	 (M)	if	M	is	the	machine	whose	state	diagram	is



CHAPTER

SEVEN
GROUPS	OF	PERMUTATIONS

In	 this	 chapter	we	 continue	 our	 discussion	 of	 functions,	 but	we	 confine	 our	 discussions	 to	 functions
from	a	set	to	itself.	In	other	words,	we	consider	only	functions	f	:	A	→	A	whose	domain	is	a	set	A	and
whose	range	is	in	the	same	set	A.

To	begin	with,	we	note	that	any	two	functions	f	and	g	(from	A	to	A)	are	equal	if	and	only	if	f(x)	=
g(x)	for	every	element	x	in	A.

If	f	and	g	are	functions	from	A	to	A,	their	composite	f	∘	g	is	also	a	function	from	A	to	A.	We	recall
that	it	is	the	function	defined	by

[f	∘	g](x)	=	f(g(x))	 for	every	x	in	A	 (1)

It	is	a	very	important	fact	that	the	composition	of	functions	is	associative.	Thus,	if	f,	g,	and	h	are	three
functions	from	A	to	A,	then

f	∘	(g	∘	h)	=	(f	∘	g)	∘	h

To	prove	that	the	functions	f	∘	(g	∘	h)	and	(f	∘	g)	∘	h	are	equal,	one	must	show	that	for	every	element	x
in	A,

{f	∘	[g	∘	h]}(x)	=	{[f	∘	g]	∘	h}(x)

We	get	this	by	repeated	use	of	Equation	(1):

By	 a	 permutationof	 a	 set	 A	 we	 mean	 a	 bijective	 function	 from	 A	 to	 A,	 that	 is,	 a	 one-to-one
correspondence	between	A	and	itself.	In	elementary
algebra	we	learned	to	think	of	a	permutation	as	a	rearrangement	of	the	elements	of	a	set.	Thus,	for	the
set	 {1,2,3,4,5},	 we	 may	 consider	 the	 rearrangement	 which	 changes	 (1,2,3,4,5)	 to	 (3,2,1,5,4);	 this
rearrangement	may	be	identified	with	the	function



which	 is	 obviously	 a	 one-to-one	 correspondence	 between	 the	 set	 {1,2,3,4,5}	 and	 itself.	 It	 is	 clear,
therefore,	 that	 there	 is	no	 real	difference	between	 the	new	definition	of	permutation	and	 the	old.	The
new	 definition,	 however,	 is	 more	 general	 in	 a	 very	 useful	 way	 since	 it	 allows	 us	 to	 speak	 of
permutations	of	sets	A	even	when	A	has	infinitely	many	elements.

In	Chapter	6	we	saw	that	the	composite	of	any	two	bijective	functions	is	a	bijective	function.	Thus,
the	composite	of	any	 two	permutations	of	A	 is	a	permutation	of	A.	 It	 follows	 that	we	may	 regard	 the
operation	∘	of	composition	as	an	operation	on	the	set	of	all	 the	permutations	of	A.	We	have	just	seen
that	composition	is	an	associative	operation.	Is	there	a	neutral	element	for	composition?

For	any	set	A,	the	identity	function	on	A,	symbolized	by	εA	or	simply	ε,	is	the	function	x	→	x	which
carries	every	element	of	A	to	itself.	That	is,	it	is	defined	by

ε(x)	=	x	 for	every	element	 x	∈	A

It	is	easy	to	see	that	ε	is	a	permutation	of	A	(it	is	a	one-to-one	correspondence	between	A	and	itself);	and
if	f	is	any	other	permutation	of	A,	then

f	∘	ε	=	f	 and	 ε	∘	f	=	f

The	first	of	these	equations	asserts	that	[f	∘	ε](x)	=	f(x)	for	every	element	x	in	A,	which	is	quite	obvious,
since	[f	∘	ε](x)=	f(ε(x))=	f(x).	The	second	equation	is	proved	analogously.

We	saw	in	Chapter	6	 that	 the	 inverse	of	any	bijective	function	exists	and	 is	a	bijective	function.
Thus,	the	inverse	of	any	permutation	of	A	is	a	permutation	of	A.	Furthermore,	if	f	is	any	permutation	of
A	and	f−1	is	its	inverse,	then

f−1	∘	f=	ε	 and	 f	∘	f−1	=	ε

The	first	of	these	equations	asserts	that	for	any	element	x	in	A,

[f−1	∘	f](x)	=	ε(x)

that	is,	f−1(f(x))	=	x:

This	 is	 obviously	 true,	 by	 the	 definition	 of	 the	 inverse	 of	 a	 function.	The	 second	 equation	 is	 proved
analogously.

Let	us	recapitulate:	The	operation	∘	of	composition	of	functions	qualifies	as	an	operation	on	the	set
of	all	the	permutations	of	A.	This	operation	is	associative.	There	is	a	permutation	ε	such	that	ε	∘	f	=	f	and



f	∘	ε	=	f	for	any	permutation	f	of	A.	Finally,	for	every	permutation	f	of	A	there	is	another	permutation	f−1
of	A	such	that	f	∘	f−1	=	ε	and	f−1	∘	f	=	ε.	Thus,	the	set	of	all	the	permutations	of	A,	with	the	operation	∘
of	composition,	is	a	group.

For	any	set	A,	the	group	of	all	the	permutations	of	A	is	called	the	symmetric	group	on	A,	and	it	is
represented	by	the	symbol	SA.	For	any	positive	integer	n,	the	symmetric	group	on	the	set	{1,	2,	3,.	.	.,	n}
is	called	the	symmetric	group	on	η	elements,	and	is	denoted	by	Sn.

Let	us	take	a	look	at	S3.	First,	we	list	all	the	permutations	of	the	set	{1,2,3}:

This	notation	for	functions	was	explained	on	page	57;	for	example,

is	the	function	such	that	β(1)	=	3,	β(2)	=	1,	and	β(3)	=	2.	A	more	graphic	way	of	representing	the	same
function	would	be

The	operation	on	elements	of	S3	is	composition.	To	find	α	∘	β,	we	note	that

Thus

Note	that	in	α	∘	β,	β	is	applied	first	and	α	next.	A	graphic	way	of	representing	this	is

The	 other	 combinations	 of	 elements	 of	 S3	 may	 be	 computed	 in	 the	 same	 fashion.	 The	 student



should	check	the	following	table,	which	is	the	table	of	the	group	S3:

By	a	group	of	permutations	we	mean	any	group	SA	or	Sn,	or	any	subgroup	of	one	of	these	groups.
Among	the	most	interesting	groups	of	permutations	are	the	groups	of	symmetries	of	geometric	figures.
We	will	see	how	such	groups	arise	by	considering	the	group	of	symmetries	of	the	square.

We	may	think	of	a	symmetry	of	the	square	as	any	way	of	moving	a	square	to	make	it	coincide	with
its	 former	 position.	 Every	 time	 we	 do	 this,	 vertices	 will	 coincide	 with	 vertices,	 so	 a	 symmetry	 is
completely	described	by	its	effect	on	the	vertices.

Let	us	number	the	vertices	as	in	the	following	diagram:

The	most	obvious	symmetries	are	obtained	by	rotating	the	square	clockwise	about	its	center	P,	through
angles	of	90°,	180°,	and	270°,	respectively.	We	indicate	each	symmetry	as	a	permutation	of	the	vertices;
thus	a	clockwise	rotation	of	90°	yields	the	symmetry

for	 this	 rotation	carries	vertex	1	 to	2,2	 to	3,	3	 to	4,	and	4	 to	1.	Rotations	of	180°	and	270°	yield	 the
following	symmetries,	respectively:

The	remaining	symmetries	are	flips	of	the	square	about	its	axes	A,	B,	C,	and	D:



For	example,	when	we	flip	the	square	about	the	axis	A,	vertices	1	and	3	stay	put,	but	2	and	4	change
places;	so	we	get	the	symmetry

In	the	same	way,	the	other	flips	are

and

One	last	symmetry	is	the	identity

which	leaves	the	square	as	it	was.
The	operation	on	symmetries	is	composition:	Ri	∘	Rj	is	the	result	of	first	performing	Rj,	and	then	Ri.

For	example,	R1	∘	R4	is	the	result	of	first	flipping	the	square	about	its	axis	A,	then	rotating	it	clockwise
90°:

Thus,	the	net	effect	is	the	same	as	if	the	square	had	been	flipped	about	its	axis	C.
The	eight	symmetries	of	the	square	form	a	group	under	the	operation	∘	of	composition,	called	the

group	of	symmetries	of	the	square.
For	 every	 positive	 integer	 n	 ≥	 3,	 the	 regular	 polygon	 with	 n	 sides	 has	 a	 group	 of	 symmetries,

symbolized	by	Dn,	which	may	be	found	as	we	did	here.	These	groups	are	called	the	dihedral	groups.
For	example,	the	group	of	the	square	is	D4,	the	group	of	the	pentagon	is	D5,	and	so	on.



Every	 plane	 figure	 which	 exhibits	 regularities	 has	 a	 group	 of	 symmetries.	 For	 example,	 the
following	figure,	has	a	group	of	symmetries	consisting	of	two	rotations	(180°	and	360°)	and	two	flips
about	 the	 indicated	 axes.	 Artificial	 as	 well	 as	 natural	 objects	 often	 have	 a	 surprising	 number	 of
symmetries.

Far	more	complicated	than	the	plane	symmetries	are	the	symmetries	of	objects	in	space.	Modern-
day	crystallography	and	crystal	physics,	for	example,	rely	very	heavily	on	knowledge	about	groups	of
symmetries	of	three-dimensional	shapes.

Groups	of	symmetry	are	widely	employed	also	in	the	theory	of	electron	structure	and	of	molecular
vibrations.	In	elementary	particle	physics,	such	groups	have	been	used	to	predict	the	existence	of	certain
elementary	particles	before	they	were	found	experimentally!

Symmetries	 and	 their	groups	arise	 everywhere	 in	nature:	 in	quantum	physics,	 flower	petals,	 cell
division,	the	work	habits	of	bees	in	the	hive,	snowflakes,	music,	and	Romanesque	cathedrals.

EXERCISES

A.	Computing	Elements	of	S6
1	Consider	the	following	permutations	f,	g,	and	h	in	S6:

Compute	the	following:

2	f	°(g	∘	h)	=



3	g	∘	h−1	=
4	h	∘	g−1°	f−1	=
5	g	∘	g	∘	g	=

B.	Examples	of	Groups	of	Permutations
1	Let	G	be	the	subset	of	S4	consisting	of	the	permutations

Show	that	G	is	a	group	of	permutations,	and	write	its	table:

2	List	the	elements	of	the	cyclic	subgroup	of	S6	generated	by

3	Find	a	four-element	abelian	subgroup	of	S5.	Write	its	table.
4	The	subgroup	of	S5	generated	by

has	six	elements.	List	them,	then	write	the	table	of	this	group:



C.	Groups	of	Permutations	of	
In	 each	 of	 the	 following,	A	 is	 a	 subset	 of	 	 and	G	 is	 a	 set	 of	 permutations	 of	A.	 Show	 that	G	 is	 a
subgroup	of	SA,	and	write	the	table	of	G.
1	A	is	the	set	of	all	x	∈	 	such	that	x	≠	0,1.	G	=	{ε,	f,	g},	where	f(x)	=	1	/(1	−	x)	and	g(x)	=	(x	−	1)	/x.
2	A	is	the	set	of	all	the	nonzero	real	numbers.	G	=	{ε,	f,	g,	h},	where	f(x)	=	1/x,	g(x)	=	−x,	and	h(x)	=	–
1/x.
3	A	is	the	set	of	all	the	real	numbers	x	≠	0,	1.	G	=	{ε,	f,	g,	h,	k},	where	f(x)	=	1	−	x,	g(x)	=	1/x,	h(x)	=
1/(1	−	x),	j(x)	=	(x	−	1)/x,	and	k(x)	=	x/(x	−	1).
4	A	is	the	set	of	all	the	real	numbers	x	≠	0,1,2.	G	is	the	subgroup	of	SA	generated	by	f(x)	=	2	−	x	and	g(x)
=	2/x.	(G	has	eight	elements.	List	them,	and	write	the	table	of	G.)

†	D.	A	Cyclic	Group	of	Permutations
For	each	integer	n,	define	fn	by	fn(x)	=	x	+	n.
1	Prove:	For	each	integer	n,	fn	is	a	permutation	of	 ,	that	is,	fn	∈	SR.
2	Prove	that	fn	∘	fm	=	fn	+	m	and	 .
3	Let	G	=	{fn	:	n	∈	 }.	Prove	that	G	is	a	subgroup	of	SR.
4	Prove	that	G	is	cyclic.	(Indicate	a	generator	of	G.)

†	E.	A	Subgroup	of	S
For	any	pair	of	real	numbers	a	≠	0	and	b,	define	a	function	fa,b	as	follows:

fa,b	(x)	=	ax	+	b

1	Prove	that	fa,	b	is	a	permutation	of	 ,	that	is,	fa,b	∈	S .
2	Prove	that	fa,b	∘	fc,d	=	fac,	ad	+	b.
3	Prove	that	 .
4	Let	G	=	{fa,b	:	a	∈	 ,	b	∈	 ,	a	≠	0}.	Show	that	G	is	a	subgroup	of	SR.

F.	Symmetries	of	Geometric	Figures
1	Let	G	 be	 the	group	of	 symmetries	 of	 the	 regular	 hexagon.	List	 the	 elements	 of	G	 (there	 are	 12	of
them),	then	write	the	table	of	G.



2	Let	G	be	the	group	of	symmetries	of	the	rectangle.	List	the	elements	of	G	(there	are	four	of	them),	and
write	the	table	of	G.
3	List	the	symmetries	of	the	letter	Z	and	give	the	table	of	this	group	of	symmetries.	Do	the	same	for	the
letters	V	and	H.
4	List	the	symmetries	of	the	following	shape,	and	give	the	table	of	their	group.

(Assume	that	the	three	arms	are	of	equal	length,	and	the	three	central	angles	are	equal.)

G.	Symmetries	of	Polynomials
Consider	the	polynomial	p	=	(x1	−	x2)2	+	(x3	−	x4)2.	It	is	unaltered	when	the	subscripts	undergo	any	of
the	following	permutations:

For	example,	the	first	of	these	permutations	replaces	p	by

(x2	−	x1)2	+	(x3	−	x4)2

the	second	permutation	replaces	p	by	(x1	−	x2)2	+	(x4	−	x3)2;	and	so	on.	The	symmetries	of	a	polynomial
ρ	 are	 all	 the	 permutations	 of	 the	 subscripts	 which	 leave	 ρ	 unchanged.	 They	 form	 a	 group	 of
permutations.

List	the	symmetries	of	each	of	the	following	polynomials,	and	write	their	group	table.



1 p	=	x1x2	+	x2x3
2 p	=	(x1	−	x2)(x2	−	x3)(x1	−	x3)
3 p	=	x1x2	+	x2x3	+	x1x3
4 p	=	(x1	−	x2)(x3	−	x4)

H.	Properties	of	Permutations	of	a	Set	A
1	Let	A	be	a	set	and	a	∈	A.	Let	G	be	the	subset	of	SA	consisting	of	all	the	permutations	f	of	A	such	that
f(a)	=	a.	Prove	that	G	is	a	subgroup	of	SA.
#	2	If	f	is	a	permutation	of	A	and	a	∈	A,	we	say	that	f	moves	a	if	f	(a)	≠	a.	Let	A	be	an	infinite	set,	and	let
G	be	the	subset	of	SA	which	consists	of	all	the	permutations	f	of	A	which	move	only	α	finite	number	of
elements	of	A.	Prove	that	G	is	a	subgroup	of	SA.

3	Let	A	be	a	finite	set,	and	B	a	subset	of	A.	Let	G	be	the	subset	of	SA	consisting	of	all	the	permutations	f
of	A	such	that	f(x)	∈	B	for	every	x	∈	B.	Prove	that	G	is	a	subgroup	of	SA.
4	Give	an	example	to	show	that	the	conclusion	of	part	3	is	not	necessarily	true	if	A	is	an	infinite	set.

I.	Algebra	of	Kinship	Structures	(Anthropology)
Anthropologists	 have	used	groups	of	 permutations	 to	 describe	kinship	 systems	 in	 primitive	 societies.
The	algebraic	model	for	kinship	structures	described	here	is	adapted	from	An	Anatomy	of	Kinship	by	H.
C.	 White.	 The	 model	 is	 based	 on	 the	 following	 assumptions,	 which	 are	 widely	 supported	 by
anthropological	research:
(i) The	entire	population	of	 the	society	 is	divided	into	clans.	Every	person	belongs	tö	one,	and	only

one,	clan.	Let	us	call	the	clans	k1,	k2,...,	kn.
(ii) In	every	clan	ki,	all	the	men	must	choose	their	wives	from	among	the	women	of	a	specified	clan	kj.

We	symbolize	this	by	writing	w(ki)	=	kj.
(iii) Men	 from	 two	different	 clans	cannot	marry	women	 from	 the	 same	clan.	That	 is,	 if	ki	 ≠	kj,	 then

w(ki)	≠	w(kj).
(iv) All	the	children	of	a	couple	are	assigned	to	some	fixed	clan.	So	if	a	man	belongs	to	clan	ki,	all	his

children	belong	to	a	clan	which	we	symbolize	by	c(ki).
(v) Children	whose	fathers	belong	to	different	clans	must	themselves	be	in	different	clans.	That	is,	if	ki

≠	kj,	then	c(ki)	≠	c(kj).
(vi) A	man	cannot	marry	a	woman	of	his	own	clan.	That	is,	w(ki)	≠	ki.

Now	let	K	=	{k1,k2,.	.	.,	kn}	be	the	set	of	all	the	distinct	clans.	By	(ii),	w	is	a	function	from	K	to	K,
and	by	(iv),	c	is	a	function	from	K	to	K.	By	(iii),	w	is	an	injective	function;	hence	(see	Exercise	F2	of
Chapter	6)	w	is	a	permutation	of	K.	Likewise,	by	(v),	c	is	a	permutation	of	K.

Let	G	be	the	group	of	permutations	generated	by	c	and	w;	that	is,	G	consists	of	c,	w,	c−1,	w−1,	and
all	possible	composites	which	can	be	formed	from	these	—for	example,	c	∘	w	∘	w	∘	c−1	∘	w−1.	Clearly
the	identity	function	ε	is	in	G	since,	for	example,	ε	=	c	∘	c−1.	Here	are	two	final	assumptions:
(vii) Every	person,	in	any	clan,	has	a	relation	in	every	other	clan.	This	means	that	for	any	ki	and	kj	in	K,

there	is	a	permutation	α	in	G	such	that	α(ki)	=	kj



(viii) Rules	of	kinship	apply	uniformly	to	all	clans.	Thus,	for	any	α	and	β	in	G,	if	α(kj)	=	β(kj)	for	some
specific	clan	kj,	it	necessarily	follows	that	α(ki)	=	β(ki)	for	every	clan	ki
Prove	parts	1–3:

1	Let	α	∈	G.	If	α(ki)	=	ki	for	any	given	ki,	then	α	=	ε.
2	Let	a	α	G.	There	is	a	positive	integer	m	≤	n	such	that	αm	=	ε.
[αm	=	α	∘	α	∘	···	∘	α	(m	factors	of	α).	HINT:	Consider	α(k1),	α2(k1),	etc.]
3	The	group	G	consists	of	exactly	n	permutations.
Explain	parts	4–9.
4	If	a	person	belongs	to	clan	ki,	that	person’s	father	belongs	to	clan	c−1(ki).	If	a	woman	belongs	to	clan
kj,	her	husband	belongs	to	clan	w−1(kj).
5	If	any	man	is	in	the	same	clan	as	his	son,	then	c	=	ε.	If	any	woman	is	in	the	same	clan	as	her	son,	then
c	=	w.
6	 If	a	person	belongs	 to	clan	ki,	 the	 son	of	his	mother’s	 sister	belongs	 to	clan	c	∘	w−1	∘	w	 ∘	 c−1(ki).
Conclude	that	marriage	between	matrilateral	parallel	cousins	(marriage	between	a	woman	and	the	son	of
her	mother’s	sister)	is	prohibited.
7	Marriage	between	a	man	and	the	daughter	of	his	father’s	sister	is	prohibited.
8	If	matrilateral	cross-cousins	may	marry	(that	is,	a	woman	may	marry	the	son	of	her	mother’s	brother),
then	c	∘	w	=	w−1	∘	c.
9	If	patrilateral	cross-cousins	may	marry	(a	woman	may	marry	the	son	of	her	father’s	sister),	then	c	and
w−1	commute.



CHAPTER

EIGHT

PERMUTATIONS	OF	A	FINITE	SET

Permutations	 of	 finite	 sets	 are	 used	 in	 every	 branch	 of	 mathematics—for	 example,	 in	 geometry,	 in
statistics,	 in	 elementary	 algebra—and	 they	 have	 a	myriad	 of	 applications	 in	 science	 and	 technology.
Because	 of	 their	 practical	 importance,	 this	 chapter	 will	 be	 devoted	 to	 the	 study	 of	 a	 few	 special
properties	of	permutations	of	finite	sets.

If	n	is	a	positive	integer,	consider	a	set	of	n	elements.	It	makes	no	difference	which	specific	set	we
consider,	just	as	long	as	it	has	n	elements;	so	let	us	take	the	set	{1,2,…,	n).	We	have	already	seen	that
the	group	of	all	the	permutations	of	this	set	is	called	the	symmetric	group	on	η	elements	and	is	denoted
by	 Sn.	 In	 the	 remainder	 of	 this	 chapter,	 when	 we	 say	 “permutation”	 we	 will	 invariably	 mean	 a
permutation	of	the	set	{1,2,…,	n}	for	an	arbitrary	positive	integer	n.

One	 of	 the	 most	 characteristic	 activities	 of	 science	 (any	 kind	 of	 science)	 is	 to	 try	 to	 separate
complex	things	into	their	simplest	component	parts.	This	intellectual	“divide	and	conquer”	helps	us	to
understand	complicated	processes	and	solve	difficult	problems.	The	savvy	mathematician	never	misses
the	 chance	 of	 doing	 this	 whenever	 the	 opportunity	 presents	 itself.	 We	 will	 see	 now	 that	 every
permutation	can	be	decomposed	into	simple	parts	called	“cycles,”	and	these	cycles	are,	in	a	sense,	the
most	basic	kind	of	permutations.

We	begin	with	an	example:	take,	for	instance,	the	permutation

and	look	at	how	f	moves	the	elements	in	its	domain:



Notice	how	f	decomposes	its	domain	into	three	separate	subsets,	so	that,	in	each	subset,	the	elements	are
permuted	 cyclically	 so	 as	 to	 form	 a	 closed	 chain.	 These	 closed	 chains	may	 be	 considered	 to	 be	 the
component	parts	of	the	permutation;	they	are	called	“cycles.”	(This	word	will	be	carefully	defined	in	a
moment.)	Every	permutation	breaks	down,	just	as	this	one	did,	into	separate	cycles.

Let	a1,	a2,	…,	as	be	distinct	elements	of	the	set	{1,2,…,	n}.	By	the	cycle	(a1a2	…	as)	we	mean	the
permutation

of	{1,2,…,	n}	which	carries	a1	to	a2,	a2	to	a3,…,	as−1	to	as,	and	as	to	a1,	while	leaving	all	the	remaining
elements	of	{1,2,…,n}	fixed.

For	instance,	in	s6,	the	cycle	(1426)	is	the	permutation

In	S5,the	cycle	(254)	is	the	permutation

Because	cycles	are	permutations,	we	may	form	 the	compositeof	 two	cycles	 in	 the	usual	manner.
The	composite	of	cycles	is	generally	called	their	productand	it	is	customary	to	omit	the	symbol	°.	For
example,	in	S5,

Actually,	it	is	very	easy	to	compute	the	product	of	two	cycles	by	reasoning	in	the	following	manner:	Let
us	continue	with	the	same	example,

Remember	that	the	permutation	on	the	right	is	applied	first,	and	the	permutation	on	the	left	is	applied



next.	Now,

β	carries	1	to	2,	and	α	carries	2	to	4;	hence	αβ	carries	1	to	4.
β	carries	2	to	4,	and	α	carries	4	to	5;	hence	αβ	carries	2	to	5	.
β	leaves	3	fixed	and	so	does	α	;	hence	αβ	leaves	3	fixed.
β	carries	4	to	1	and	α	leaves	1	fixed,	so	αβ	carries	4	to	1.
β	leaves	5	fixed	and	α	carries	5	to	2;	hence	αβ	carries	5	to	2.

If	(a1a2…as)	is	a	cycle,	the	integer	s	is	called	its	length;	thus,	(a1a2…as)	is	a	cycle	of	length	s.	For
example,	(1532)	is	a	cycle	of	length	4.

If	 two	cycles	have	no	elements	 in	common	 they	are	 said	 to	be	disjoint.	 For	 example,	 (132)	 and
(465)	 are	 disjoint	 cycles,	 but	 (132)	 and	 (453)	 are	 not	 disjoint.	Disjoint	 cycles	 commute:	 that	 is,	 if
(a1…ar)	and	(bl…bs)	are	disjoint,	then

It	is	easy	to	see	why	this	is	true:	α	moves	the	a’s	but	not	the	fc’s,	while	β	moves	the	ft’s	but	not	the	a’s.
Thus,	if	β	carries	bi	to	bj,	then	αβ	does	the	same,	and	so	does	βα	Similarly,	if	a	carries	ah	to	ak	then	βα
does	the	same,	and	so	does	αβ.

We	are	now	ready	to	prove	what	was	asserted	at	the	beginning	of	this	chapter:	Every	permutation
can	be	decomposed	into	cycles—in	fact,	into	disjoint	cycles.	More	precisely,	we	can	state	the	following:

Theorem	1	Every	permutation	is	either	the	identity,	a	single	cycle,	or	a	product	of	disjoint	cycles.
We	begin	with	an	example,	because	the	proof	uses	 the	same	technique	as	 the	example.	Consider

the	permutation

and	let	us	write	f	as	a	product	of	disjoint	cycles.	We	begin	with	1	and	note	that

We	 have	 come	 a	 complete	 circle	 and	 found	 our	 first	 cycle,	 which	 is	 (135).	 Next,	 we	 take	 the	 first
number	which	hasn’t	yet	been	used,	namely,	2.	We	see	that

Again	we	 have	 come	 a	 complete	 circle	 and	 found	 another	 cycle,	which	 is	 (24).	 The	 only	 remaining
number	is	6,	which/leaves	fixed.	We	are	done:

f	=	(135)(24)

The	proof	for	any	permutation	f	follows	the	same	pattern	as	the	example.	Let	a1	be	the	first	number
in	{1,…,	n)	such	that	f(a1)≠	a1.	Let	a2	=	f(a1),	a3	=	f(a2),	and	so	on	in	succession	until	we	come	to	our
first	repetition,	that	is,	until	f(ak)	is	equal	to	one	of	the	numbers	a1,	a2,…,	ak−1.	Say	f(ak)	=	ai	If	ai	is	not



a1,we	have

so	ai	is	the	image	of	two	elements,	ak	and	ai−1,	which	is	impossible	because	f	is	bijective.	Thus,	ai	=	a1,
and	therefore	f(ak)	=	a1.We	have	come	a	complete	circle	and	found	our	first	cycle,	namely,	(a1a2	···	ak).

Next,	let	b1	be	the	first	number	which	has	not	yet	been	examined	and	such	that	f(b1)	≠	b1.	We	let	b2
=	f(b1),	b3	=	f(b2),	and	proceed	as	before	to	obtain	the	next	cycle,	say	(b1	···	bt).	Obviously	(b1	···	bt)	is
disjoint	 from	 (a1	 …,	 ak).	 We	 continue	 this	 process	 until	 all	 the	 numbers	 in	 {1,	 …,	 n)	 have	 been
exhausted.	This	concludes	the	proof.

Incidentally,	 it	 is	 easy	 to	 see	 that	 this	 product	 of	 cycles	 is	 unique,	 except	 for	 the	 order	 of	 the
factors.

Now	our	curiosity	may	prod	us	to	ask:	once	a	permutation	has	been	written	as	a	product	of	disjoint
cycles,	has	it	been	simplified	as	much	as	possible?	Or	is	there	some	way	of	simplifying	it	further?

A	cycle	of	length	2	is	called	a	transposition.	In	other	words,	a	transposition	is	a	cycle	(ai,	aj)	which
interchanges	the	two	numbers	ai	and	aj.It	 is	a	fact	both	remarkable	and	trivial	that	every	cycle	can	be
expressed	as	a	product	of	one	or	more	transpositions.	In	fact,

(a1a2	…	ar)	=	(arar−1)(arar−2)	…	(ara3)(ara2ara1)

which	may	be	verified	by	direct	computation.	For	example,

(12345)	=	(54)(53)(52)(51)

However,	there	is	more	than	one	way	to	write	a	given	permutation	as	a	product	of	transpositions.	For
example,	(12345)	may	also	be	expressed	as	a	product	of	transpositions	in	the	following	ways:

as	well	as	in	many	other	ways.
Thus,	every	permutation,	after	it	has	been	decomposed	into	disjoint	cycles,	may	be	broken	down

further	 and	 expressed	 as	 a	 product	 of	 transpositions.	 However,	 the	 expression	 as	 a	 product	 of
transpositions	is	not	unique,	and	even	the	number	of	transpositions	involved	is	not	unique.

Nevertheless,	when	a	permutation	π	is	written	as	a	product	of	transpositions,	one	property	of	this
expression	is	unique:	the	number	of	transpositions	involved	is	either	always	even	or	always	odd.	 (This
fact	will	 be	 proved	 in	 a	moment.)	 For	 example,	we	 have	 just	 seen	 that	 (12345)	 can	 be	written	 as	 a
product	of	four	transpositions	and	also	as	a	product	of	six	transpositions;	it	can	be	written	in	many	other
ways,	 but	 always	 as	 a	 product	 of	 an	 even	 number	 of	 transpositions.	 Likewise,	 (1234)	 can	 be
decomposed	in	many	ways	into	transpositions,	but	always	an	odd	number	of	transpositions.

A	permutation	is	called	even	if	it	is	a	product	of	an	even	number	of	transpositions,	and	odd	if	it	is	a
product	of	an	odd	number	of	transpositions.	What	we	are	asserting,	therefore,	is	that	every	permutation
is	unambiguously	either	odd	or	even.

This	may	seem	like	a	pretty	useless	fact—but	actually	the	very	opposite	is	true.	A	number	of	great



theorems	of	mathematics	depend	for	their	proof	(at	that	crucial	step	when	the	razor	of	logic	makes	its
decisive	cut)	on	none	other	but	the	distinction	between	even	and	odd	permutations.

We	begin	by	showing	that	the	identity	permutation,	ε,	is	an	even	permutation.

Theorem	2	No	matter	how	ε	is	written	as	a	product	of	transpositions,	the	number	of	transpositions
is	even.

PROOF:	Let	t1,	t2,	…,	tm	be	m	transpositions,	and	suppose	that

ε	=	t1t2	…	tm	 (1)

We	aim	to	prove	that	ε	can	be	rewritten	as	a	product	of	m	−	2	transpositions.	We	will	then	be	done:	for
if	ε	were	equal	to	a	product	of	an	odd	number	of	transpositions,	and	we	were	able	to	rewrite	this	product
repeatedly,	each	 time	with	 two	fewer	 transpositions,	 then	eventually	we	would	get	ε	equal	 to	a	single
transposition	(ab),	and	this	is	impossible.

Let	x	be	any	numeral	appearing	in	one	of	the	transpositions	t2,	…,	tm.	Let	tk	=	(xa),	and	suppose	tk
is	the	last	transposition	in	Equation	(1)	(reading	from	left	to	right)	in	which	x	appears:

Now,	 tk−1	 is	 a	 transposition	which	 is	 either	 equal	 to	 (xa),	 or	 else	 one	 or	 both	 of	 its	 components	 are
different	from	χ	and	a.	This	gives	four	possibilities,	which	we	now	treat	as	four	separate	cases.

Case	I 	tk−1	=	(xa).
Then	 tk−1tk	 =	 (xa)(xa),	which	 is	 equal	 to	 the	 identity	 permutation.	Thus,	 tk−1tk	may	 be	 removed

without	changing	Equation	(1).	As	a	result,	ε	is	a	product	of	m	−	2	transpositions,	as	required.
Case	II	 tk−1	=	(xb)	where	b	≠	x,a.
Then	 tk−1)tk	=	(xb)(xa)

But	 (xb)(xa)	=	(xa)(ab)
We	replace	tk−1	tk	by	(xa)(ab)	in	Equation	(1).	As	a	result,	the	last	occurrence	of	x	is	one	position	further
left	than	it	was	at	the	start.

Case	III	tk−1	=	(ca),where	c	≠x,a.
Then	 tk−1	tk	=	(ca)(xa)

But	 (ca)(xa)	=	(xc)(ca)
We	replace	tk−1	tk	by	(xa)(bc)	in	Equation	(1),	as	in	Case	II.

Case	IV	tk−1	=	(bc),	where	b	≠	x,	a	and	c	≠	x,	a
Then	 tk−tk	=	(bc)(xa)

But	 (bc)(xa)	=	(xa)(bc)
We	replace	tk−1	tk	by	(xa)(bc)	in	Equation	(1),	as	in	Cases	II	and	III.

In	Case	I,	we	are	done.	In	Cases	II,	III,	and	IV,	we	repeat	the	argument	one	or	more	times.	Each
time,	the	last	appearance	of	χ	is	one	position	further	left	than	the	time	before.	This	must	eventually	lead



to	Case	 I.	 For	 otherwise,	we	 end	 up	with	 the	 last	 (hence	 the	 only)	 appearance	 of	 x	 being	 in	 t1.This
cannot	be:	for	if	t1	=	(xa)	and	x	does	not	appear	in	t2,	…,	tm,	then	ε	(x)	=	a,	which	is	impossible!	■

(The	box	■	is	used	to	mark	the	ending	of	a	proof.)
Our	conclusion	is	contained	in	the	next	theorem.
Theorem	3	If	π	∈	Sn,	then	π	cannot	be	both	an	odd	permutation	and	an	even	permutation.
Suppose	π	can	be	written	as	the	product	of	an	even	number	of	transpositions,	and	differently	as	the

product	of	an	odd	number	of	transpositions.	Then	the	same	would	be	true	for	π−1	But	ε	=	π°	π−1:	thus,
writing	π−1	as	a	product	of	an	even	number	of	transpositions	and	π	as	a	product	of	an	odd	number	of
transpositions,	 we	 get	 an	 expression	 for	 ε	 as	 a	 product	 of	 an	 odd	 number	 of	 transpositions.	 This	 is
impossible	by	Theorem	2.

The	set	of	all	the	even	permutations	in	Sn	is	a	subgroup	of	Sn.	It	is	denoted	by	An,	and	is	called	the
alternating	group	on	the	set	{1,	2,	…,	n}.

EXERCISES

A.	Practice	in	Multiplying	and	Factoring	Permutations
1	Compute	each	of	the	following	products	in	S9.	(Write	your	answer	as	a	single	permutation.)

(a)	(145)(37)(682)
(b)	(17)(628)(9354)
(c)	(71825)(36)(49)
(d)	(12)(347)

#	(e)	(147)(1678)(74132)
(f)	(6148)(2345)(12493)

2	Write	each	of	the	following	permutations	in	s9	as	a	product	of	disjoint	cycles:

(a)

(b)

(c)

(d)

3	Express	each	of	the	following	as	a	product	of	transpositions	in	S8:
(a)	(137428)
(b)	(416)(8235)
(c)	(123)(456)(1574)
(d)	

4	If	α	=	(3714),	β	=	(123),	and	γ	=	(24135)	in	s7,	express	each	of	the	following	as	a	product	of	disjoint
cycles:

(a)	α−1	β
(b)	γ−l	α
(c)	α2β



(d)	β2αγ
(e)	γ4

#	(f)	γ3α−1

(g)	β−1γ
(h)	α−1γ2α

(NOTE:	α2	=	α	∘	α,	γ3	=	γ	∘	γ	∘	γ,	etc.)
5	 In	S5,	 write	 (12345)	 in	 five	 different	 ways	 as	 a	 cycle,	 and	 in	 five	 different	 ways	 as	 a	 product	 of
transpositions.
6	In	S5,	express	each	of	the	following	as	the	square	of	a	cycle	(that	is,	express	as	α2	where	α	is	a	cycle):

(a)	(132)
(b)	(12345)
(c)	(13)(24)

B.	Powers	of
If	π	 is	any	permutation,	we	write	π	∘	π	=	π2,	π	∘	π	∘	π	=	π3,	etc.	The	convenience	of	 this	notation	 is
evident.
1	Compute	α−1,	α2,	α3,	α4,	α5	where

(a)	α	=	(123)
(b)	α	=	(1234)
(c)	α	=	(123456).

In	the	following	problems,	let	α	be	a	cycle	of	length	s,	say	α	=	(α1α2	…αs).

#	2	 Describe	 all	 the	 distinct	 powers	 of	α.	 How	many	 are	 there?	Note	 carefully	 the	 connection	with
addition	of	integers	modulo	s	(page	27).

3	Find	the	inverse	of	a,	and	show	that	α−1	=	αs

Prove	each	of	the	following:
#	4	α2	is	a	cycle	iff	s	is	odd.
5	If	s	is	odd,	α	is	the	square	of	some	cycle	of	length	α.	(Find	it.	HINT:	Show	α	=	αs+1.)
6	If	s	is	even,	say	s	=	2t,	then	α2	is	the	product	of	two	cycles	of	length	t.	(Find	them.)
7	If	s	is	a	multiple	of	k,	say	s	=	kt,	then	αk	is	the	product	of	k	cycles	of	length	t.
8	If	s	is	a	prime	number,	every	power	of	α	is	a	cycle.

C.	Even	and	Odd	Permutations
1	Determine	which	of	the	following	permutations	is	even,	and	which	is	odd.

(a)	

(b)	(71864)
(c)	(12)(76)(345)
(d)	(1276)(3241)(7812)
(e)	(123)(2345)(1357)

Prove	each	of	the	following:



2	(a)	The	product	of	two	even	permutations	is	even.
(b)	The	product	of	two	odd	permutations	is	even.
(c)	The	product	of	an	even	permutation	and	an	odd	permutation	is	odd.

3	(a)	A	cycle	of	length	l	is	even	if	l	is	odd.
(b)	A	cycle	of	length	l	is	odd	if	l	is	even.

4	(a)	If	α	and	β	are	cycles	of	length	/	and	ra,	respectively,	then	aß	is	even	or	odd	depending	on	whether	l
+	m	−	2	is	even	or	odd.
(b)	If	π	=	β1	…	βr	where	each	βi	is	a	cycle	of	length	li,	then	π	is	even	or	odd	depending	on	whether	l1

+	l2	+	…	+	lr	−	r	is	even	or	odd.

D.	Disjoint	Cycles
In	each	of	the	following,	let	α	and	β	be	disjoint	cycles,	say

α	=	(a1a2	…	as) 	and 	β	=	(b1b2	…	br)

Prove	parts	1−3:
1	For	every	positive	integer	n,	(αβ)n	=	αnβn.
2	If	αβ	=	ε,	then	α	=	ε	and	β	=	ε.
3	If	(αβ)t	=	ε,	then	αt	=	ε	and	βt	=	ε	(where	t	is	any	positive	integer).	(Use	part	2	in	your	proof.)
4	Find	a	transposition	γ	such	that	αβγ	is	a	cycle.
5	Let	γ	be	the	same	transposition	as	in	the	preceding	exercise.	Show	that	ay	β	and	γαβ	are	cycles.
6	Let	α	and	β	be	cycles	of	odd	length	(not	disjoint).	Prove	that	if	a2	=	β2,	then	α	=	β.

†	E.	Conjugate	Cycles
Prove	each	of	the	following	in	Sn:

1	Let	α	=	(a1,	…,	as)	be	a	cycle	and	let	π	be	a	permutation	in	Sn.	Then	παπ−1	 is	 the	cycle	 (π(a1),	…,
π(as)).

If	α	is	any	cycle	and	π	any	permutation,	παπ−1	is	called	a	conjugate	of	α.	In	the	following	parts,	 let	π
denote	any	permutation	in	Sn.
#	2	Conclude	from	part	1:	Any	two	cycles	of	the	same	length	are	conjugates	of	each	other.
3	If	α	and	β	are	disjoint	cycles,	then	παπ−1	and	πβπ−1	are	disjoint	cycles.
4	Let	σ	be	a	product	α1	…	αt	of	t	disjoint	cycles	of	lengths	l1	…,	lt,	respectively.	Then	πσπ−1	 is	also	a
product	of	t	disjoint	cycles	of	lengths	l1,	…,	lt
5	Let	α1	and	α2	be	cycles	of	the	same	length.	Let	β1	and	β2	be	cycles	of	the	same	length.	Let	α1	and	β1
be	disjoint,	and	let	α2	and	β2	be	disjoint.	There	is	a	permutation	π	∈	Sn	such	that	α1β1	=	πα2β2π−1

†	F.	Order	of	Cycles
1	Prove	in	Sn:	If	α	=	(a1	…	as)	is	a	cycle	of	length	s,	then	αs	=	ε,	α2s	=	ε,	and	α3s	=	ε.	Is	αk	=	ε	for	any
positive	integer	k	<	s?	(Explain.)



If	α	is	any	permutation,	the	least	positive	integer	n	such	that	αn	=	ε	is	called	the	order	of	α.
2	Prove	in	Sn:	If	α	=	(α1	…	as)	is	any	cycle	of	length	s,	the	order	of	α	is	s.
3	Find	the	order	of	each	of	the	following	permutations:

(a)	(12)(345)
(b)	(12)(3456)
(c)	(1234)(56789)

4	What	is	the	order	of	αβ,	if	a	and	β	are	disjoint	cycles	of	lengths	4	and	6,	respectively?	(Explain	why.
Use	the	fact	that	disjoint	cycles	commute.)
5	What	is	the	order	of	αβ	if	α	and	β	are	disjoint	cycles	of	lengths	r	and	s,	respectively?	(Venture	a	guess,
explain,	but	do	not	attempt	a	rigorous	proof.)

†	G.	Even/Odd	Permutations	in	Subgroups	of	Sn
Prove	each	of	the	following	in	Sn	:
1	 Let	α1,	…,	αr	 be	 distinct	 even	 permutations,	 and	 β	 an	 odd	 permutation.	 Then	 α1β,	…,	αr	 β	 are	 r
distinct	odd	permutations.	(See	Exercise	C2.)
2	If	β1,	…,βr	are	distinct	odd	permutations,	then	β1βl,	β1β2,	…,	βlβr	are	r	distinct	even	permutations.
3	In	Sn,	there	are	the	same	number	of	odd	permutations	as	even	permutations.	(HINT:	Use	part	1	to	prove
that	 the	 number	 of	 even	 permutations	 ≤	 is	 the	 number	 of	 odd	 permutations.	Use	 part	 2	 to	 prove	 the
reverse	of	that	inequality.)
4	 The	 set	 of	 all	 the	 even	 permutations	 is	 a	 subgroup	 of	 Sn.	 (It	 is	 denoted	 by	 An	 and	 is	 called	 the
alternating	group	on	n	symbols.)
5	 Let	H	 be	 any	 subgroup	 of	 Sn.	H	 either	 contains	 only	 even	 permutations,	 or	H	 contains	 the	 same
number	of	odd	as	even	permutations.	(Use	parts	1	and	2.)

†	H.	Generators	of	An	and	Sn
Remember	that	in	any	group	G,	a	set	S	of	elements	of	G	is	said	to	generate	G	if	every	element	of	G	can
be	expressed	as	a	product	of	elements	in	S	and	inverses	of	elements	in	S.	(See	page	47.)
1	Prove	that	the	set	T	of	all	the	transpositions	in	Sn	generates	Sn.
#	2	Prove	that	the	set	T1	=	{(12),	(13),	…,	(1n)}	generates	Sn.
3	Prove	that	every	even	permutation	is	a	product	of	one	or	more	cycles	of	length	3.	[HINT:	(13)(12)	=
(123);	(12)(34)	=	(321)(134).]	Conclude	that	the	set	U	of	all	cycles	of	length	3	generates	An.
4	Prove	that	the	set	U1	=	{(123),	(124),	…,(12n)}	generates	An.	[HINT:	(abc)	=	(1ca)(1ab),	(1ab)	=	(1b2)
(12a)(12b),	and	(1b2)	=	(12b)2.]
5	The	pair	of	cycles	(12)	and	(12	···	n)	generates	Sn.	[HINT:	(1	···	n)(12)(1…	n)−1	=	(23);	(12)(23)(12)	=
(13).]



CHAPTER

NINE

ISOMORPHISM

Human	perception,	as	well	as	the	“perception”	of	so-called	intelligent	machines,	is	based	on	the	ability
to	recognize	the	same	structure	in	different	guises.	It	 is	the	faculty	for	discerning,	in	different	objects,
the	same	relationships	between	their	parts.

The	dictionary	tells	us	that	two	things	are	“isomorphic”	if	they	have	the	same	structure.	The	notion
of	 isomorphism—of	 having	 the	 same	 structure—is	 central	 to	 every	 branch	 of	 mathematics	 and
permeates	all	of	abstract	reasoning.	It	is	an	expression	of	the	simple	fact	that	objects	may	be	different	in
substance	but	identical	in	form.

In	geometry	there	are	several	kinds	of	isomorphism,	the	simplest	being	congruence	and	similarity.
Two	geometric	 figures	 are	 congruent	 if	 there	 exists	 a	plane	motion	which	makes	one	 figure	coincide
with	 the	other;	 they	are	 similar	 if	 there	exists	 a	 transformation	of	 the	plane,	magnifying	or	 shrinking
lengths	in	a	fixed	ratio,	which	(again)	makes	one	figure	coincide	with	the	other.

We	do	not	even	need	to	venture	into	mathematics	to	meet	some	simple	examples	of	isomorphism.
For	instance,	the	two	palindromes

are	different,	but	obviously	isomorphic;	indeed,	the	first	one	coincides	with	the	second	if	we	replace	M



by	R,	A	by	O,	and	D	by	T.
Here	 is	 an	 example	 from	 applied	mathematics:	 A	 flow	 network	 is	 a	 set	 of	 points,	 with	 arrows

joining	 some	of	 the	points.	Such	networks	 are	used	 to	 represent	 flows	of	 cash	or	goods,	 channels	of
communication,	electric	circuits,	and	so	on.	The	flow	networks	(A)	and	(B),	below,	are	different,	but	can
be	shown	to	be	isomorphic.	Indeed,	(A)	can	be	made	to	coincide	with	(B)	if	we	superimpose	point	1	on
point	6,	point	2	on	point	5,	point	3	on	point	8,	and	point	4	on	point	7.	(A)	and	(B)	then	coincide	in	the
sense	 of	 having	 the	 same	 points	 joined	 by	 arrows	 in	 the	 same	 direction.	 Thus,	 network	 (A)	 is
transformed	into	network	(B)	 if	we	replace	points	1	by	6,	2	by	5,	3	by	8,	and	4	by	7.	The	one-to-one
correspondence	which	carries	out	this	transformation,	namely,

is	called	an	isomorphism	from	network	(A)	to	network	(B),	for	it	transforms	(A)	into	(B).
Incidentally,	the	one-to-one	correspondence

is	an	 isomorphism	 between	 the	 two	palindromes	of	 the	preceding	 example,	 for	 it	 transforms	 the	 first
palindrome	into	the	second.

Our	next	and	final	example	is	from	algebra.	Consider	the	two	groups	G1	and	G2	described	below:

Table	of	G1



Table	of	G2

G1	and	G2	are	different,	but	isomorphic.	Indeed,	if	in	G1	we	replace	0	by	e,	1	by	a,	and	2	by	b,	then	G1
coincides	with	G2,	the	table	of	G1	being	transformed	into	the	table	of	G2.	In	other	words,	the	one-to-one
correspondence

transforms	G1	 to	G2.	 It	 is	 called	 an	 isomorphism	 from	G1	 to	 G2.	 Finally,	 because	 there	 exists	 an
isomorphism	from	G1	to	G2,	G1	and	G2	are	isomorphic	to	each	other.

In	general,	by	an	isomorphism	between	two	groups	we	mean	a	one-to-one	correspondence	between
them	which	transforms	one	of	the	groups	into	the	other.	If	there	exists	an	isomorphism	from	one	of	the
groups	to	the	other,	we	say	they	are	isomorphic.	Let	us	be	more	specific:

If	G1	and	G2	are	any	groups,	an	isomorphism	from	G1	to	G2	is	a	one-to-one	correspondence	f	from
G1	to	G2	with	the	following	property:	For	every	pair	of	elements	a	and	b	in	G1,

If	f(a)	=	a′	and	f(b)	=	b′	then	f(ab)	=	a′b′	 (1)

In	other	words,	if/matches	a	with	a′	and	b	with	b′	it	must	match	ab	with	a′b′.

It	is	easy	to	see	that	if	/has	this	property	it	transforms	the	table	of	G1	into	the	table	of	G2:

There	 is	 another,	 equivalent	 way	 of	 looking	 at	 this	 situation:	 If	 two	 groups	 G1	 and	 G2	 are
isomorphic,	 we	 can	 say	 the	 two	 groups	 are	 actually	 the	 same,	 except	 that	 the	 elements	 of	G1	 have
different	 names	 from	 the	 elements	 of	G2.	G1	 becomes	 exactly	G2	 if	 we	 rename	 its	 elements.	 The
function	which	does	the	renaming	is	an	isomorphism	from	G1	to	G2.	Thus,	in	our	last	example,	if	0	is



renamed	e,	1	is	renamed	a,	and	2	is	renamed	6,	G1	becomes	exactly	G2,	with	the	same	table.	(Note	that
we	have	also	renamed	the	operation:	it	was	called	+	in	G1	and	·	in	G2.)

By	the	way,	property	(1)	may	be	written	more	concisely	as	follows:

f(ab)	=	f(a)f(b)	 (2)

So	we	may	sum	up	our	definition	of	isomorphism	in	the	following	way:
Definition	Let	G1	and	G2	be	groups.	A	bijective	function	f	:	G1	→	G2	with	the	property	that	for	any

two	elements	a	and	b	in	G1,

f(ab)	=	f(a)f(b)	 (2)

is	called	an	isomorphism	from	G1	to	G2.
If	there	exists	an	isomorphism	from	G1	to	G2,	we	say	that	G1	is	isomorphic	to	G2.
If	 there	 exists	 an	 isomorphism	 f	 from	G1	 to	G2,	 in	 other	words,	 if	G1	 is	 isomorphic	 to	G2,	 we

symbolize	this	fact	by	writing

G1	≅	G2

to	be	read,	“G1	is	isomorphic	to	G2.”
How	does	one	recognize	if	two	groups	are	isomorphic?	This	is	an	important	question,	and	not	quite
so	easy	to	answer	as	it	may	appear.	There	is	no	way	of	spontaneously	recognizing	whether	two	groups
G1	and	G2	are	isomorphic.	Rather,	the	groups	must	be	carefully	tested	according	to	the	above	definition.

G1	and	G2	are	isomorphic	if	there	exists	an	isomorphism	from	G1	to	G2.	Therefore,	the	burden	of
proof	is	upon	us	to	 find	an	isomorphism	from	G1	to	G2,	and	show	that	 it	 is	an	 isomorphism.	 In	other
words,	we	must	go	through	the	following	steps:
1. Make	an	educated	guess,	and	come	up	with	a	function	f	:	G1	 	G2	which	looks	as	though	it	might	be

an	isomorphism.
2. Check	that	f	is	injective	and	surjective	(hence	bijective).
3. Check	that	f	satisfies	the	identity

f(ab)	=	f(a)f(b)

Here’s	an	example:	 	 is	 the	group	of	 the	real	numbers	with	 the	operation	of	addition.	 pos	 is	 the
group	of	the	positive	real	numbers	with	the	operation	of	multiplication.	It	is	an	interesting	fact	that	 	and
pos	are	isomorphic.	To	see	this,	let	us	go	through	the	steps	outlined	above:

1. The	educated	guess:	The	exponential	 function	 f(x)	=	ex	 is	 a	 function	 from	 	 to	 pos	which,	 if	we
recall	its	properties,	might	do	the	trick.

2. f	is	injective:	Indeed,	if	f(a)	=	f(b),	that	is,	ea	=	eb,	then,	taking	the	natural	log	on	both	sides,	we	get	a
=	b.

f	is	surjective:	Indeed,	if	y	∈	 pos,	that	is,	if	y	is	any	positive	real	number,	then	y	=	eln	y	=	f(ln	y);
thus,	y	=	f(x)	for	x	=	ln	y.



3. It	is	well	known	that	ea+b	=	ea	·	eb,	that	is,

f(a	+	b)	=	f(a)	·	f(b)

Incidentally,	note	carefully	 that	 the	operation	of	 	 is	+,	whereas	 the	operation	of	 pos	 is	 ·.	That	 is	 the
reason	 we	 have	 to	 use	 +	 on	 the	 left	 side	 of	 the	 preceding	 equation,	 and	 ·	 on	 the	 right	 side	 of	 the
equation.

How	does	one	recognize	when	two	groups	are	not	isomorphic?	In	practice	it	is	usually	easier	to	show
that	two	groups	are	not	isomorphic	than	to	show	they	are.	Remember	that	if	two	groups	are	isomorphic
they	are	replicas	of	each	other;	their	elements	(and	their	operation)	may	be	named	differently,	but	in	all
other	respects	they	are	the	same	and	share	the	same	properties.	Thus,	if	a	group	G1	has	a	property	which
group	G2	does	not	have	(or	vice	versa),	they	are	not	isomorphic!	Here	are	some	examples	of	properties
to	look	out	for:

1. Perhaps	G1	is	commutative,	and	G2	is	not.
2. Perhaps	G1	has	an	element	which	is	its	own	inverse,	and	G2	does	not.
3. Perhaps	G1	is	generated	by	two	elements,	whereas	G2	is	not	generated	by	any	choice	of	two	of	its

elements.
4. Perhaps	 every	 element	 of	G1	 is	 the	 square	 of	 an	 element	 of	G1,	 whereas	G2	 does	 not	 have	 this

property.

This	 list	 is	 by	no	means	 exhaustive;	 it	merely	 illustrates	 the	 kind	of	 things	 to	 be	on	 the	 lookout	 for.
Incidentally,	the	kind	of	properties	to	watch	for	are	properties	which	do	not	depend	merely	on	the	names
assigned	to	individual	elements;	for	instance,	in	our	last	example,	0	∈	G1	and	0	∉	G2,	but	nevertheless
G1	and	G2	are	isomorphic.

Finally,	let	us	state	the	obvious:	if	G1	and	G2	cannot	be	put	in	one-to-one	correspondence	(say,	G1
has	more	elements	that	G2),	clearly	they	cannot	be	isomorphic.

In	the	early	days	of	modern	algebra	the	word	“group”	had	a	different	meaning	from	the	meaning	it
has	 today.	 In	 those	 days	 a	 group	 always	 meant	 a	 group	 of	 permutations.	 The	 only	 groups
mathematicians	 used	 were	 groups	 whose	 elements	 were	 permutations	 of	 some	 fixed	 set	 and	 whose
operation	was	composition.

There	 is	 something	 comforting	 about	working	with	 tangible,	 concrete	 things,	 such	 as	 groups	 of
permutations	of	a	set.	At	all	times	we	have	a	clear	picture	of	what	it	is	we	are	working	with.	Later,	as
the	axiomatic	method	reshaped	algebra,	a	group	came	to	mean	any	set	with	any	associative	operation
having	 a	 neutral	 element	 and	 allowing	 each	 element	 an	 inverse.	 The	 new	 notion	 of	 group	 pleases
mathematicans	 because	 it	 is	 simpler	 and	 more	 lean	 and	 sparing	 than	 the	 old	 notion	 of	 groups	 of
permutations;	 it	 is	 also	more	general	 because	 it	 allows	many	new	 things	 to	 be	 groups	which	 are	 not
groups	of	permutations.	However,	 it	 is	harder	 to	visualize,	precisely	because	so	many	different	 things
can	be	groups.

It	was	therefore	a	great	revelation	when,	about	100	years	ago,	Arthur	Cayley	discovered	that	every
group	is	isomorphic	to	a	group	of	permutations.	Roughly,	this	means	that	the	groups	of	permutations	are
actually	all	the	groups	there	are!	Every	group	is	(or	is	a	carbon	copy	of)	a	group	of	permutations.	This
great	result	is	a	classic	theorem	of	modern	algebra.	As	a	bonanza,	its	proof	is	not	very	difficult.

Cayley’s	Theorem	Every	group	is	isomorphic	to	a	group	of	permutations.



PROOF:	Let	G	be	a	group;	we	wish	to	show	that	G	is	isomorphic	to	a	group	of	permutations.	The	first
question	 to	 ask	 is,	 “What	 group	 of	 permutations?	 Permutations	 of	 what	 set?”	 (After	 all,	 every
permutation	must	be	a	permutation	of	some	fixed	set.)	Well,	the	one	set	we	have	at	hand	is	the	set	G,	so
we	 had	 better	 fix	 our	 attention	 on	 permutations	 of	 G.	 The	 way	 we	 match	 up	 elements	 of	G	 with
permutations	of	G	is	quite	interesting:

With	each	element	a	in	G	we	associate	a	function	πa	:	G	→	G	defined	by

πa(x)	=	ax

In	other	words,	πa	is	the	function	whose	rule	may	be	described	by	the	words	“multiply	on	the	left	by	a,”
We	will	now	show	that	πa	is	a	permutation	of	G:

1. πa	is	injective:	Indeed,	if	πa(x1)	=	πa(x2),	then	ax1	=	ax2,	so	by	the	cancellation	law,	x1	=	x2.
2. πa	is	surjective:	For	if	y	∈	G,	then	y	=	a(a−1	y)	=	πa(a−1	y).	Thus,	each	y	in	G	is	equal	to	πa(x)	for	x

=	a−1	y.
3. Since	πa	is	an	injective	and	surjective	function	from	G	to	G,	πa	is	a	permutation	of	G.

Let	us	remember	 that	we	have	a	permutation	πa	 for	each	element	a	 in	G;	 for	example,	 if	b	and	c	are
other	elements	in	G,	πb	is	the	permutation	“multiply	on	the	left	by	b,”	πc	is	the	permutation	“multiply	on
the	left	by	c,”	and	so	on.	In	general,	let	G*	denote	the	set	of	all	the	permutations	πa	as	a	ranges	over	all
the	elements	of	G:

G*	=	{πa	:	a	∈	G}

Observe	 now	 that	 G*	 is	 a	 set	 consisting	 of	 permutations	 of	 G—but	 not	 necessarily	 all	 the
permutations	of	G.	In	Chapter	7	we	used	the	symbol	SG	to	designate	the	group	of	all	the	permutations	of
G.	 We	 must	 show	 now	 that	 G*	 is	 a	 subgroup	 of	 SG,	 for	 that	 will	 prove	 that	 G*	 is	 a	 group	 of
permutations.

To	prove	that	G*	is	a	subgroup	of	SG,	we	must	show	that	G*	is	closed	with	respect	to	composition,
and	closed	with	respect	to	inverses.	That	is,	we	must	show	that	if	πa	and	πb	are	any	elements	of	G*,	their
composite	πa	∘	πb	is	also	in	G*;	and	if	πa	is	any	element	of	G*,	its	inverse	is	in	G*.

First,	we	claim	that	if	a	and	b	are	any	elements	of	G,	then

πa	∘	πb	=	πab	 (3)

To	 show	 that	πa	 ∘	πb	 and	πab	 are	 the	 same,	we	must	 show	 that	 they	 have	 the	 same	 effect	 on	 every
element	x:	that	is,	we	must	prove	the	identity	[πa	∘	πb](x)	=	πab(x).	Well,	[πa	∘	πb](x)	=	πa(πb(x))	=	πa(bx)
=	a(bx)	=	(ab)x	=	πab(x).	Thus,	πa	∘	πb	=	πab;	this	proves	that	the	composite	of	any	two	members	Za	and
πb	of	G*	is	another	member	πab	of	G*.	Thus,	G*	is	closed	with	respect	to	composition.

It	is	each	to	see	that	πe	is	the	identity	function:	indeed,

πe(x)	=	ex	=	x



In	other	words,	πe	is	the	identity	element	of	SG.
Finally,	by	Equation	(3),

πa	∘	πa	−	1	=	πaa	−	1	=	πe

So	by	Theorem	2	of	Chapter	4,	the	inverse	of	πa	is	πa−1.	This	proves	that	the	inverse	of	any	member	πa
of	G*	is	another	member	πa−1	of	G*.	Thus,	G*	is	closed	with	respect	to	inverses.

Since	G*	is	closed	with	respect	to	composition	and	inverses,	G*	is	a	subgroup	of	SG.
We	are	now	in	the	final	lap	of	our	proof.	We	have	a	group	of	permutations	G*,	and	it	remains	only

to	show	that	G	is	isomorphic	to	G*.	To	do	this,	we	must	find	an	isomorphism	f	:	G	→	G*.	Let	f	be	the
function

f(a)	=	πa

In	other	words,	f	matches	each	element	a	in	G	with	the	permutation	πa	in	G*.	We	can	quickly	show	that
f	is	an	isomorphism:

1. f	is	injective:	Indeed,	if	f(a)	=	f(b)	then	πa	=	πb.	Thus,	πa(e)	=	πb(e),	that	is,	ae	=	be,	so,	finally,	a	=	b.
2. f	is	surjective:	Indeed,	every	element	of	G*	is	some	πa,	and	πa	=	f(a).
3. Lastly,	f(ab)	=	πab	=	πa	∘	πb	=	f(a)	∘	f(b).

Thus,	f	is	an	isomorphism,	and	so	G	≅	G*.	■

EXERCISES

A.	Isomorphism	Is	an	Equivalence	Relation	among	Groups
The	following	three	facts	about	isomorphism	are	true	for	all	groups:

(i)	Every	group	is	isomorphic	to	itself.
(ii)	If	G1	≅	G2,	then	G2	≅	G1.
(iii)	If	G1	≅	G2	and	G2	≅	G3,	then	G1	≅	G3.

Fact	(i)	asserts	that	for	any	group	G,	there	exists	an	isomorphism	from	G	to	G.
Fact	(ii)	asserts	that,	if	there	is	an	isomorphism	f	from	G1	to	G2,	there	must	be	some	isomorphism

from	G2	to	G1.	Well,	the	inverse	of	f	is	such	an	isomorphism.
Fact	(iii)	asserts	 that,	 if	 there	are	isomorphisms	 f	:	G1	→	G2	and	g	 :	G2	→	G3,	 there	must	be	an

isomorphism	from	G1	to	G3.	One	can	easily	guess	that	g	∘	f	is	such	an	isomorphism.	The	details	of	facts
(i),	(ii),	and	(iii)	are	left	as	exercises.

1	Let	G	be	any	group.	If	ε	:	G	→	G	is	the	identity	function,	ε(x)	=	x,	show	that	ε	is	an	isomorphism.
2	 Let	 G1	 and	 G2	 be	 groups,	 and	 f	 :	 G1	 →	 G2	 an	 isomorphism.	 Show	 that	 f−1:	 G2	 →	 G1	 is	 an
isomorphism.	 [HINT:	 Review	 the	 discussion	 of	 inverse	 functions	 at	 the	 end	 of	 Chapter	 6.	 Then,	 for



arbitrary	elements	c,	d	∈	G2,	there	exist	a,	b	∈	G1,	such	that	c	=	f(a)	and	d	=	f(b).	Note	that	a	=	f−1(c)
and	b	=	f−1(d).	Show	that	f−1(cd)	=	f−1(c)f−1(d).]
3	Let	G1,	G2,	and	G3	be	groups,	and	let	f:	G1	→	G2	and	g	:	G2	→	G3	be	isomorphisms.	Prove	that	g	∘	f	:
G1	→	G3	is	an	isomorphism.

B.	Elements	Which	Correspond	under	an	Isomorphism
Recall	 that	 an	 isomorphism	 f	 from	 G1	 to	 G2	 is	 a	 one-to-one	 correspondence	 between	 G1	 and	 G2
satisfying	 f(ab)	 =	 f(a)f(b).	 f	 matches	 every	 element	 of	Gl	 with	 a	 corresponding	 element	 of	G2.	 It	 is
important	to	note	that:

(i) f	matches	the	neutral	element	of	G1	with	the	neutral	element	of	G2.
(ii) If	f	matches	an	element	x	in	G1	with	y	in	G2,	then,	necessarily,	f	matches	x−l	with	y−1	That	is,	if	x	↔

y,	then	x−l	↔	y−1.
(iii) f	matches	a	generator	of	G1	with	a	generator	of	G2.

The	details	of	these	statements	are	now	left	as	an	exercise.	Let	G1	and	G2	be	groups,	and	let	f	:	G1	→	G2
be	an	isomorphism.
1	If	e1	denotes	the	neutral	element	of	G1	and	e2	denotes	the	neutral	element	of	G2,	prove	that	f(e1)	=	e2.
[HINT:	In	any	group,	there	is	exactly	one	neutral	element;	show	that	f(e1)	is	the	neutral	element	of	G2.]

2	Prove	that	for	each	element	a	in	G1	f(a−l)	=	[f(a)]−1.	(HINT:	You	may	use	Theorem	2	of	Chapter	4.)
3	If	G1	is	a	cyclic	group	with	generator	a,	prove	that	G2	is	also	a	cyclic	group,	with	generator	f(a).

C.	Isomorphism	of	Some	Finite	Groups
In	each	of	the	following,	G	and	H	are	finite	groups.	Determine	whether	or	not	G	≅	H.	Prove	your	answer
in	either	case.

To	find	an	isomorphism	from	G	to	H	will	require	a	little	 ingenuity.	For	example,	 if	G	and	H	are
cyclic	groups,	it	is	clear	that	we	must	match	a	generator	a	of	G	with	a	generator	b	of	H;	that	is,	f(a)	=	b.
Then	f(aa)	=	bb,	f(aaa)	=	bbb,	and	so	on.	If	G	and	H	are	not	cyclic,	we	have	other	ways:	for	example,	if
G	has	an	element	which	is	its	own	inverse,	it	must	be	matched	with	an	element	of	H	having	the	same
property.	Often,	the	specifics	of	a	problem	will	suggest	an	isomorphism,	if	we	keep	our	eyes	open.

To	prove	that	a	specific	one-to-one	correspondence	f	:	G	→	H	is	an	isomorphism,	we	may	check
that	it	transforms	the	table	of	G	into	the	table	of	H.

#	1	G	is	the	checkerboard	game	group	of	Chapter	3,	Exercise	D.	H	is	the	group	of	the	complex	numbers
{i,	−i,	1,	−1}	under	multiplication.



2	G	is	the	same	as	in	part	1.	H	=	 4.
3	G	is	the	group	P2	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)	H	is	as	in	part	1.
#	4	G	is	S3,	H	is	the	group	of	matrices	described	on	page	28	of	the	text.
5	G	is	the	coin	game	group	of	Chapter	3,	Exercise	E.	H	is	D4,	the	group	of	symmetries	of	the	square.
6	G	is	the	group	of	symmetries	of	the	rectangle.	H	is	as	in	part	1.

D.	Separating	Groups	into	Isomorphism	Classes
Each	of	 the	 following	 is	a	 set	of	 four	groups.	 In	each	set,	determine	which	groups	are	 isomorphic	 to
which	others.	Prove	your	answers,	and	use	Exercise	A3	where	convenient.
1	 4	 2	×	 2	 P2	 V
[P2	denotes	the	group	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)	V	denotes	the	group
of	the	four	complex	numbers	{i,	−i,	1,	−1}	with	respect	to	multiplication.]
2	S3	 6	 3	×	 2	
( 	denotes	the	group	{1,2,3,4,5,6}	with	multiplication	modulo	7.	The	product	modulo	7	of	a	and	b	 is
the	remainder	of	ab	after	division	by	7.)
3	 8	 P3	 2	×	 2	×	 2	 D4

(D4	is	the	group	of	symmetries	of	the	square.)
4	The	groups	having	the	following	Cayley	diagrams:

E.	Isomorphism	of	Infinite	Groups
#	1	Let	E	designate	the	group	of	all	the	even	integers,	with	respect	to	addition.	Prove	that	 	≅	E.
2	Let	G	be	the	group	{10n	:	n	∈	 }	with	respect	to	multiplication.	Prove	that	G	≅	 .	(Remember	that	the
operation	of	 	is	addition.)
3	Prove	that	 	=	 	×	 .
4	We	 have	 seen	 in	 the	 text	 that	 	 is	 isomorphic	 to	 pos.	 Prove	 that	 	 is	 not	 isomorphic	 to	 *	 (the
multiplicative	group	of	the	nonzero	real	numbers).	(HINT:	Consider	the	properties	of	the	number	−1	in	
*.	Does	 	have	any	element	with	those	properties?)
5	Prove	that	 	is	not	isomorphic	to	 .
6	 We	 have	 seen	 that	 	 ≅	 pos.	 However,	 prove	 that	 	 is	 not	 isomorphic	 to	 pos.	 ( pos	 is	 the
multiplicative	group	of	positive	rational	numbers.)

F.	Isomorphism	of	Groups	Given	by	Generators	and	Defining	Equations
If	a	group	G	is	generated,	say,	by	a,	b,	and	c,	then	a	set	of	equations	involving	a,	b,	and	c	is	called	a	set
of	defining	equations	for	G	if	these	equations	completely	determine	the	table	of	G.	(See	end	of	Chapter



5.)	If	G′	is	another	group,	generated	by	elements	a′,	b′,	and	c′	satisfying	the	same	defining	equations	as
a,	b,	and	c,	then	G′	has	the	same	table	as	G	(because	the	tables	of	G	and	G′	are	completely	determined
by	the	defining	equations,	which	are	the	same	for	G	as	for	G′).

Consequently,	 if	we	know	generators	and	defining	equations	for	two	groups	G	and	G′,	and	if	we
are	able	to	match	the	generators	of	G	with	those	of	G′	so	that	the	defining	equations	are	the	same,	we
may	conclude	that	G	≅	G′.

Prove	that	the	following	pairs	of	groups	G,	G′	are	isomorphic.

#	1	G	=	the	subgroup	of	S4	generated	by	(24)	and	(1234);	G′	=	{e,	a,	b,	b2,	b3,	ab,	ab2,	ab3}	where	a2	=
e,	b4	=	e,	and	ba	=	ab3.

2	G	=	S3;	G′	=	{e,	a,	b,	ab,	aba,	abab}	where	a2	=	e,	b2	=	e,	and	bab	=	aba.

3	G	=	D4;	G′	=	{e,	a,	b,	ab,	aba,	(ab)2,	ba,	bab}	where	a2	=	b2	=	e	and	(ab)4	=	e.

4	G	=	 2	×	 2	×	 2;	G′	=	{e,	a,	b,	c,	ab,	ac,	bc,	abc}	where	a2	=	b2	=	c2	=	e	and	(ab)2	=	(bc)2	=	(ac)2	=	e.

G.	Isomorphic	Groups	on	the	Set	
1	G	 is	 the	 set	{x	∈	 	 :	x	≠	−1}	with	 the	operation	x	 *	y	 =	x	 +	y	 +	xy.	Show	 that	 f(x)	=	x	−	 1	 is	 an
isomorphism	from	 *	to	G.	Thus,	 *	≅	G.
2	G	is	the	set	of	the	real	numbers	with	the	operation	x	*	y	=	x	+	y	+	l.	Find	an	isomorphism	f	:	 	→	G
and	show	that	it	is	an	isomorphism.
3	G	is	the	set	of	the	nonzero	real	numbers	with	the	operation	x	*	y	=	xy/2.	Find	an	isomorphism	from	 *
to	G.
4	Show	that	f(x,	y)	=	(−1)y	x	is	an	isomorphism	from	 pos	×	 2	to	 *.	(REMARK:	To	combine	elements	of	
pos	×	 2,	one	multiplies	first	components,	adds	second	components.)	Conclude	that	 *	≅	 pos	×	 2.

H.	Some	General	Properties	of	Isomorphism
1	Let	G	and	H	be	groups.	Prove	that	G	×	H	≅	H	×	G.
#	2	If	G1	≅	G2	and	H1	≅	H2,	then	G1	×	H1	≅	G2	×	H2.

3	Let	G	be	any	group.	Prove	that	G	is	abelian	iff	the	function	f(x)	=	x−1	is	an	isomorphism	from	G	to	G.
4	Let	G	be	any	group,	with	its	operation	denoted	multiplicatively.	Let	H	be	a	group	with	the	same	set	as
G	and	let	its	operation	be	defined	by	x	*	y	=	y	·	x	(where	·	is	the	operation	of	G).	Prove	that	G	≅	H.
5	Let	c	be	a	fixed	element	of	G.	Let	H	be	a	group	with	the	same	set	as	G,	and	with	the	operation	x	*	y	=
xcy.	Prove	that	the	function	f(x)	=	c−lx	is	an	isomorphism	from	G	to	H.

I.	Group	Automorphisms
If	G	is	a	group,	an	automorphism	of	G	is	an	isomorphism	from	G	to	G.	We	have	seen	(Exercise	A1)	that
the	 identity	 function	 ε(x)	 =	 x	 is	 an	 automorphism	 of	 G.	 However,	 many	 groups	 have	 other
automorphisms	besides	this	obvious	one.

1	Verify	that



is	an	automorphism	of	 6.
2	Verify	that

and

are	all	automorphisms	of	 5.

3	If	G	is	any	group,	and	a	is	any	element	of	G,	prove	that	f(x)	=	axa’−1	is	an	automorphism	of	G.
4	Since	each	automorphism	of	G	is	a	bijective	function	from	G	to	G,	it	is	a	permutation	of	G.	Prove	the
set

Aut(G)

of	all	the	automorphisms	of	G	is	a	subgroup	of	SG.	(Remember	that	the	operation	is	composition.)

J.	Regular	Representation	of	Groups
By	Cayley’s	theorem,	every	group	G	is	isomorphic	to	a	group	G*	of	permutations	of	G.	Recall	that	we
match	each	element	a	in	G	with	the	permutation	πa	defined	by	πa	=	ax,	that	is,	the	rule	“multiply	on	the
left	by	a.”	We	let	G*	=	{πa	:	a	∈	G};	with	the	operation	∘	of	composition	it	is	a	group	of	permutations,
called	the	left	regular	representation	of	G.	(It	is	called	a	“representation”	of	G	because	it	is	isomorphic
to	G.)

Instead	of	using	the	permutations	πa,	we	could	just	as	well	have	used	the	permutations	ρa	defined
by	ρa(x)	=	xa,	 that	 is,	 “multiply	on	 the	 right	 by	a.”	The	 group	Gρ	 =	 {ρa:	a	∈	G}	 is	 called	 the	 right
regular	representation	of	G.

If	G	is	commutative,	there	is	no	difference	between	right	and	left	multiplication,	so	G*	and	Gρ	are
the	same,	and	are	simply	called	the	regular	representation	of	G.	Also,	if	the	operation	of	G	is	denoted
by	+,	the	permutation	corresponding	to	a	is	“add	a”	instead	of	“multiply	by	a.”

Example	The	regular	representation	of	 3	consists	of	the	following	permutations:

The	regular	representation	of	 3	has	the	following	table:



The	function

is	easily	seen	to	be	an	isomorphism	from	 3	to	its	regular	representation.
Find	the	right	and	left	regular	representation	of	each	of	the	following	groups,	and	compute	their	tables.
(If	the	group	is	abelian,	find	its	regular	representation.)

1	P2,	the	group	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)
2	 4.
3	The	group	G	of	matrices	described	on	page	28	of	the	text.



CHAPTER

TEN
ORDER	OF	GROUP	ELEMENTS

Let	G	 be	 an	 arbitrary	 group,	 with	 its	 operation	 denoted	 multiplicadvely.	 Exponential	 notation	 is	 a
convenient	shorthand:	for	any	positive	integer	n,	we	will	agree	to	let

and

a0	=	e

Take	 care	 to	 observe	 that	we	 are	 considering	 only	 integer	 exponents,	not	 rational	 or	 real	 exponents.
Raising	a	to	a	positive	power	means	multiplying	a	by	itself	the	given	number	of	times.	Raising	a	to	a
negative	power	means	multiplying	a−1	by	 itself	 the	given	number	of	 times.	Raising	a	 to	 the	power	0
yields	the	group’s	identity	element.

These	 are	 the	 same	 conventions	 used	 in	 elementary	 algebra,	 and	 they	 lead	 to	 the	 same	 familiar
“laws	of	exponents.”

Theorem	1:	Laws	of	exponents	 if	G	 is	a	group	and	a	∈G,	 the	 following	 identities	hold	 for	all
integers	m	and	n:

(i)	aman	=	am+n

(ii)	(am)n	=	amn

(iii)	a−n	=	(a−l)n	=	(an)−l

These	laws	are	very	easy	to	prove	when	m	and	n	are	positive	integers.	Indeed,

(i)	

(ii)	



Next,	by	definition	a−n	=	a−1	···	a−1	=	(a−1)n.	Finally,	since	the	inverse	of	a	product	is	the	product	of	the
inverses	in	reverse	order,

(an)−1	=	(aa	···	a)−1	=	a−1a−1	···	a−1	=	a−n

To	prove	Theorem	1	completely,	we	need	to	check	the	other	cases,	where	each	of	the	integers	m
and	n	 is	allowed	to	be	zero	or	negative.	This	routine	case-by-case	verification	is	 left	 to	the	student	as
Exercise	A	at	the	end	of	this	chapter.

In	order	to	delve	more	deeply	into	the	behavior	of	exponents	we	must	use	an	elementary	but	very
important	property	of	the	integers:	From	elementary	arithmetic	we	know	that	we	can	divide	any	integer
by	 any	 positive	 integer	 to	 get	 an	 integer	 quotient	 and	 an	 integer	 remainder.	 The	 remainder	 is
nonnegative	and	less	than	the	dividend.	For	example,	25	may	be	divided	by	8,	giving	a	quotient	of	3,
and	leaving	a	remainder	of	1:

Similarly,	−25	may	be	divided	by	8,	with	a	quotient	of	−4	and	a	remainder	of	7:

This	important	principle	is	called	the	division	algorithm.	In	its	precise	form,	it	may	be	stated	as	follows:

Theorem	 2:	 Division	 algorithm	 if	 m	 and	 n	 are	 integers	 and	 n	 is	 positive,	 there	 exist	 unique
integers	q	and	r	such	that

m	=	nq	+	r 	and 	0	≥	r	<	n

We	call	q	the	quotient,	and	r	the	remainder,	in	the	division	of	m	by	nx.
At	 this	 stage	we	will	 take	 the	division	algorithm	 to	be	a	postulate	of	 the	 system	of	 the	 integers.

Later,	 in	 Chapter	 19,	 we	 will	 turn	 things	 around,	 starting	 with	 a	 simpler	 premise	 and	 proving	 the
division	algorithm	from	it.

Let	G	be	a	group,	and	a	an	element	of	G.	Let	us	observe	that

If	there	exists	a	nonzero	integer	m	such	that	am	=	e,	then	there	exists	a	positive	integer	n	such	that	an	=
e.

Indeed,	if	am	=	e	where	m	is	negative,	then	a−m	=	(am)−1	=	e−1	=	e.	Thus,	a−m	=	e	where	−m	is	positive.
This	simple	observation	is	crucial	in	our	next	definition.	Let	G	be	an	arbitrary	group,	and	a	an	element
of	G:

Definition	If	there	exists	a	nonzero	integer	m	such	that	am	–	e,	then	the	order	of	the	element	a	is
defined	to	be	the	least	positive	integer	n	such	that	an	=	e.

If	there	does	not	exist	any	nonzero	integer	m	such	that	am	=	e,	we	say	that	a	has	order	infinity.
Thus,	in	any	group	G,	every	element	has	an	order	which	is	either	a	positive	integer	or	infinity.	If

the	order	of	a	 is	a	positive	 integer,	we	say	that	a	has	finite	order;	otherwise,	a	has	 infinite	order.	For



example,	 let	 us	 glance	 at	 S3,	 whose	 table	 appears	 on	 page	 72.	 (It	 is	 customary	 to	 use	 exponential
notation	for	composition:	for	instance,	β	∘	β	=	β2,	β	∘	β	∘	β	=	β3,	and	so	on.)	The	order	of	α	is	2,	because
α2	=	ε	and	2	is	the	smallest	positive	integer	which	satisfies	that	equation.	The	order	of	β	is	3,	because	β3
=	ε,	and	3	is	the	lowest	positive	power	of	β	equal	to	ε.	It	is	clear,	similarly,	that	γ	has	order	2,	δ	has	order
3,	and	κ	has	order	2.	What	is	the	order	of	ε?

It	 is	 important	 to	note	 that	one	speaks	of	powers	of	a	 only	when	 the	group’s	operation	 is	 called
multiplication.	When	we	use	additive	notation,	we	speak	of	multiples	of	a	instead	of	powers	of	a.	The
positive	multiples	of	a	are	a,	a	+	a,	a	+	a	+	a,	and	so	on,	while	the	negative	multiples	of	a	are	−a,(−a)	+
(−a),	(−a)	+	(−a)	+	(−a),	and	so	on.	 In	 6,	 the	number	2	has	order	3,	because	2	+	2	+	2	=	0,	and	no
smaller	multiple	of	2	is	equal	to	0.	Similarly,	the	order	of	3	is	2,	the	order	of	4	is	3,	and	the	order	of	5	is
6.

In	 ,	the	number	2	has	infinite	order,	because	no	nonzero	multiple	of	2	is	equal	to	0.	As	a	matter	of
fact,	in	 ,	every	nonzero	number	has	infinite	order.

The	 main	 fact	 about	 the	 order	 of	 elements	 is	 given	 in	 the	 next	 two	 theorems.	 In	 each	 of	 the
following	theorems,	G	is	an	arbitrary	group	and	a	is	any	element	of	G.

Theorem	3:	Powers	of	a,	if	a	has	finite	order	if	the	order	of	a	is	n,	there	are	exactly	n	different
powers	of	a,	namely,

a0,	a,	a2,	a3,	…,	an−1

What	this	theorem	asserts	is	that	every	positive	or	negative	power	of	a	is	equal	to	one	of	the	above,
and	the	above	are	all	different	from	one	another.

Before	going	on,	remember	that	the	order	of	a	in	n,	hence

an	=	e

and	n	is	the	smallest	positive	integer	which	satisfies	this	equation.
PROOF	OF	THEOREM	3:	Let	us	begin	by	proving	that	every	power	of	a	is	equal	to	one	of	the	powers

a0,a1,a2,	…,	an−1.	Let	am	be	any	power	of	a.	Use	the	division	algorithm	to	divide	m	by	n:

m	=	nq	+	r 0	≤	r	<	n

Then	 am	=	anq	+r	=	(anqar	=	(an)qar	=	eqar	=	ar

Thus,	am	=	ar,	and	r	is	one	of	the	integers	0,1,	2,	…,	n	−	1.
Next,	we	will	prove	that	a0,a1,a2,	…,	an−1	are	all	different,	Suppose	not;	suppose	ar	=	as,	where	r

and	s	are	distinct	integers	between	0	and	n	−	1.	Either	r	<	s	or	s	<	r,	say	s	<	r.	Thus	0	≤	s	<	r	<	n,	and
consequently,

0	<	r	−	s	<	n	 (1)



However,	this	is	impossible,	because	by	Equation	(1),	r	−	s	is	a	positive	integer	less	than	n,	whereas	n
(the	order	of	a)	is	the	smallest	positive	integer	such	that	an	=	e.

This	proves	that	we	cannot	have	ar	=	as	where	r	≠	s.	Thus,	a0,	a1,	a2,	…,	an	−	1	are	all	different!	■

Theorem	4:	Powers	of	a,	if	a	has	infinite	order	If	a	has	order	infinity,	then	all	the	powers	of	a
are	different.	That	is,	if	r	and	s	are	distinct	integers,	then	ar	≠	as.

PROOF:	Let	r	and	s	be	integers,	and	suppose	ar	=	as.

But	a	has	order	infinity,	and	this	means	that	am	is	not	equal	to	e	for	any	integer	m	expect	0.	Thus,	r	−	s	=
0,	so	r	=	s.	■

This	chapter	concludes	with	a	technical	property	of	exponents,	which	is	of	tremendous	importance
in	applications.

If	a	is	an	element	of	a	group,	the	order	of	a	is	the	least	positive	integer	n	such	that	an	=	e.	But	there
are	other	integers,	say	t,	such	that	a	=	e.	How	are	they	related	to	n?	The	answer	is	very	simple:

Theorem	5	Suppose	an	element	a	in	a	group	has	order	n.	Then	at	=	e	iff	t	is	a	multiple	of	n	(“t	is	a
multiple	of	n”	means	that	t	=	nq	for	some	integer	q).

PROOF:	If	t	=	nq,	then	at	=	anq	=	(an)q	=	eq	=	e.	Conversely,	suppose	at	=	e.	Divide	t	by	n	using	the
division	algorithm:

t	=	nq	+	r 0	≤	r	<	n

Then

e	=	at	=	anq	+	r	=	(an)qar	=	eqar	=	ar

Thus,	ar	=	e,	where	0	≤	r	<n.	If	r	≠0,	then	r	is	a	positive	integer	less	than	n,	whereas	n	is	the	smallest
positive	integer	such	that	an	=	e.	Thus	r	=	0,	and	therefore	t	=	nq.	■

If	a	is	any	element	of	a	group,	we	will	denote	the	order	of	a	by

ord(a)

EXERCISES

A.	Laws	of	Exponents
Let	G	be	a	group	and	a	∈	G.
1	Prove	that	aman	=	am	+	n	in	the	following	cases:

(a) m	=	0
(b) m	<	0	and	n	>	0
(c) m	<	0	and	n	<	0

2 Prove	that	(am)n	=	amn	in	the	following	cases:



(a) m	=	0
(b) n	=	0
(c) m	<	0	and	n	>	0
(d) m	>	0	and	n	<	0
(e) m	<	0	and	n	<	0

3 Prove	that	(an)−	1	=	a−	n	in	the	following	cases:
(a) n	=	0
(b) n	<	0

B.	Examples	of	Orders	of	Elements
1 What	is	the	order	of	10	in	 25?
2 What	is	the	order	of	6	in	 16?
3 What	is	the	order	of

in	S6
4 What	is	the	order	of	1	in	 *?	What	is	the	order	of	1	in	 ?
5 If	A	is	the	set	of	all	the	real	numbers	x	≠	0,1,2,	what	is	the	order	of

in	SA?
6 Can	an	element	of	an	infinite	group	have	finite	order?	Explain.
7 In	 24,	list	all	the	elements	(a)	of	order	2;	(b)	of	order	3;	(c)	of	order	4;	(d)	of	order	6.

C.	Elementary	Properties	of	Order

Let	a,	b,	and	c	be	elements	of	a	group	G.	Prove	the	following:
1 Ord(a)	=	1 iff a	=	e.
2 If	ord(a)	=	n,	then	an	−	r	=	(ar)−1.
3 If	ak	=	e	where	k	is	odd,	then	the	order	of	a	is	odd.
4	Ord(a)	=	ord(bab	−1).
5 The	order	of	a	−l	is	the	same	as	the	order	of	a.
6 The	order	of	ab	is	the	same	as	the	order	of	ba.	[HINT:	if

then	a	is	the	inverse	of	x.	Thus,	ax	=	e.]
7 Ord(abc)	=	ord(cab)	=	ord(bca).
8 Let	x	=	a1a2	···	an,	and	let	y	be	a	product	of	the	same	factors,	permuted	cyclically.	(That	is,	y	=	akak	+	1



···	ana1	···	ak	−1.)	Then	ord(x)	=	ord(y).

D.	Further	Properties	of	Order
Let	a	be	any	element	of	finite	order	of	a	group	G.	Prove	the	following:
1 If	ap	=	e	where	p	is	a	prime	number,	then	a	has	order	p.	(a	≠	e.)
2 The	order	of	ak	is	a	divisor	(factor)	of	the	order	of	a.
3 If	ord(a)	=	km,	then	ord(ak)	=	m.
4 If	ord(a)	=	n	where	n	is	odd,	then	ord(a2)	=	n.
5	If	a	has	order	n,	and	ar	=	as,	then	n	is	a	factor	of	r	−	s.
6 If	a	is	the	only	element	of	order	k	in	G,	then	a	is	in	the	center	of	G.	(HINT:	Use	Exercise	C4.	Also,	see
Chapter	4,	Exercise	C6.)

7 If	the	order	of	a	is	not	a	multiple	of	ra,	then	the	order	of	ak	is	not	a	multiple	of	m.	(HINT:	Use	part	2.)
8 If	ord(a)	=	mk	and	ark	=	e,	then	r	is	a	multiple	of	m.

†	E.	Relationship	between	ord	(ab),	ord	(a),	and	ord	(b)

Let	a	and	b	be	elements	of	a	group	G.	Let	ord(a)	=	m	and	ord(b)	=	n;	 let	 lcm(m,	n)	 denote	 the	 least
common	multiple	of	m	and	n.	Prove	parts	1–5:
1	If	a	and	b	commute,	then	ord(ab)	is	a	divisor	of	lcm(m,	n).
2	 If	m	and	n	are	 relatively	prime,	 then	no	power	of	a	 can	be	equal	 to	any	power	of	b	 (except	 for	e).
(REMARK:	 Two	 integers	 are	 said	 to	 be	 relatively	 prime	 if	 they	 have	 no	 common	 factors	 except	 ±1.)
(HINT:	Use	Exercise	D2.)
3	If	m	and	n	are	relatively	prime,	then	the	products	aibj	(0	≤	i	<	m,	0	≤	j	<	n)	are	all	distinct.
4	Let	a	and	b	commute.	If	m	and	n	are	relatively	prime,	then	ord(ab)	=	mn.	(HINT:	Use	part	2.)
5	Let	a	and	b	commute.	There	is	an	element	c	in	G	whose	order	is	lcm(m,	n).	(HINT:	Use	part	4,	above,
together	with	Exercise	D3.	Let	c	=	aib	where	ai	is	a	certain	power	of	a.)
6	Give	an	example	to	show	that	part	1	is	not	true	if	a	and	b	do	not	commute.

Thus,	there	is	no	simple	relationship	between	ord(ab),	ord(a),	and	ord(b)	if	a	and	b	fail	to	commute.

†	F.	Orders	of	Powers	of	Elements
Let	a	be	an	element	of	order	12	in	a	group	G.
1	What	is	the	smallest	positive	integer	k	such	that	a8k	=	e?	(HINT:	Use	Theorem	5	and	explain	carefully!)
#	2	What	is	the	order	of	a8?
3	What	are	the	orders	of	a9,	a10,	a5?
4	Which	powers	of	a	have	the	same	order	as	a?	[That	is,	for	what	values	of	k	is	ord(ak)	=	12?]
5	Let	a	 be	 an	 element	 of	 order	m	 in	 any	 group	G.	What	 is	 the	 order	 of	ak?	 (Look	 at	 the	 preceding
examples,	and	generalize.	Do	not	prove.)
6	Let	a	be	an	element	of	order	m	 in	any	group	G.	For	what	values	of	k	 is	ord(ak)	=	m?	 (Look	at	 the
preceding	examples.	Do	not	prove.)



†	G.	Relationship	between	ord(a)	and	ord(ak)
From	elementary	arithmetic	we	know	that	every	integer	may	be	written	uniquely	as	a	product	of	prime
numbers.	Two	integers	m	and	n	are	said	to	be	relatively	prime	if	they	have	no	prime	factors	in	common.
(For	example,	15	and	8	are	relatively	prime.)	Here	is	a	useful	fact:	If	m	and	n	are	relatively	prime,	and
m	is	a	factor	of	nk,	then	m	is	a	factor	of	k.	(Indeed,	all	the	prime	factors	of	m	are	factors	of	nk	but	not	of
n,	hence	are	factors	of	k.)

Let	a	be	an	element	of	order	n	in	a	group	G.
1	Prove	that	if	m	and	n	are	relatively	prime,	then	am	has	order	n.	(HINT:	If	amk	=	e,	use	Theorem	5	and
explain	why	n	must	be	a	factor	of	k.)
2	 Prove	 that	 if	 am	 has	 order	 n,	 then	m	 and	 n	 are	 relatively	 prime.	 [HINT:	 Assume	m	 and	 n	 have	 a
common	factor	q	>1,	hence	we	can	write	m	=	m′	q	and	n	=	n′q.	Explain	why	(am)n	=	e,	and	proceed	from
there.]
3	Let	l	be	the	least	common	multiple	of	m	and	n.	Let	l/m	=	k.	Explain	why	(am)k	=	e.
4	Prove:	If	(am)t	=	e,	then	n	is	a	factor	of	mt.	(Thus,	mt	is	a	common	multiple	of	m	and	n.)	Conclude	that

5	Use	parts	3	and	4	to	prove	that	the	order	of	am	is	[lcm(m,	n)]/m.

†	H.	Relationship	between	the	Order	of	a	and	the	Order	of	any	kth	Root	of	a
Let	a	denote	an	element	of	a	group	G.
1	Let	a	have	order	12.	Prove	that	if	a	has	a	cube	root,	say	a	=	b3	for	some	b	∈	G,	then	b	>	has	order	36.
{HINT:	Show	that	b36	=	e;	then	show	that	for	each	factor	k	of	36,	bk	=	e	is	impossible.	[Example:	If	b12	=
e,	then	b12	=	(b3)4	=	a4	=	e.]	Derive	your	conclusion	from	these	facts.}
#	2	Let	a	have	order	6.	If	a	has	a	fourth	root	in	G,	say	a	=	b4,	what	is	the	order	of	b?
3	Let	a	have	order	10.	If	a	has	a	sixth	root	in	G,	say	a	=	b6,	what	is	the	order	of	b?
4	Let	a	have	order	n,	and	suppose	a	has	a	sixth	root	in	G,	say	a	=	bk.	Explain	why	the	order	of	b	is	a
factor	of	nk.

Let

5	Prove	that	n	and	l	are	relatively	prime.	[HINT:	Suppose	n	and	l	have	a	common	factor	q	>	1.	Then	n	=
qn′	and	l	=	ql′,	so

Thus	bn,k	=	e.	(Why?)	Draw	your	conclusion	from	these	facts.]
Thus,	 if	a	has	order	n	and	a	has	a	kth	 root	b,	 then	b	has	order	nk/l,	where	n	and	 l	 are	 relatively

prime.



6	Let	a	have	order	n.	Let	k	be	an	integer	such	that	every	prime	factor	of	k	is	a	factor	of	n.	Prove:	If	a	has
a	kth	root	b,	then	ord(b)	=	nk.



CHAPTER

ELEVEN

CYCLIC	GROUPS

If	G	is	a	group	and	a	∈	G,	it	may	happen	that	every	element	of	G	is	a	power	of	a.	In	other	words,	G	may
consist	of	all	the	powers	of	a,	and	nothing	else:

G	=	{an	:	n	∈	 }

In	that	case,	G	is	called	a	cyclic	group,	and	a	is	called	its	generator.	We	write

G	=	〈a〉

and	say	that	G	is	the	cyclic	group	generated	by	a.
If	G	=	〈a〉	is	the	cyclic	group	generated	by	a,	and	a	has	order	n,	we	say	that	G	is	a	cyclic	group	of

order	n.	We	will	see	in	a	moment	that,	in	that	case,	G	has	exactly	n	elements.	If	the	generator	of	G	has
order	 infinity,	we	 say	 that	G	 is	 a	 cyclic	 group	 of	 order	 infinity.	 In	 that	 case,	we	will	 see	 that	G	 has
infinitely	many	elements.

The	simplest	example	of	a	cyclic	group	is	 ,	which	consists	of	all	the	multiples	of	1.	(Remember
that	 in	 additive	 notation	we	 speak	 of	 “multiples”	 instead	 of	 “powers.”)	 	 is	 a	 cyclic	 group	 of	 order
infinity;	its	generator	is	1.	Another	example	of	a	cyclic	group	is	 6,	which	consists	of	all	the	multiples	of
1,	added	modulo	6.	 6	is	a	cyclic	group	of	order	6;	1	is	a	generator	of	 6,	but	 6	has	another	generator
too.	What	is	it?

Suppose	〈a〉	is	a	cyclic	group	whose	generator	a	has	order	n.	Since	〈a〉	is	the	set	of	all	the	powers
of	a,	it	follows	from	Theorem	3	of	Chapter	10	that

〈a〉	=	{e,a,a2,...,an	−1}

If	 we	 compare	 this	 group	 with	 n,	 we	 notice	 a	 remarkable	 resemblance!	 For	 one	 thing,	 they	 are
obviously	in	one-to-one	correspondence:



In	other	words,	the	function

f(i)	=	ai

is	a	one-to-one	correspondence	from	 n	to	〈a〉.	But	this	function	has	an	additional	property,	namely,

f(i	+	j)	=	ai	+	j	=	aiaj	=	f(i)f(j)

Thus,	f	is	an	isomorphism	from	 n	to	〈a〉.	In	conclusion,

n	≅	〈a〉

Let	us	 review	the	situation	 in	 the	case	where	a	has	order	 infinity.	 In	 this	case,	by	Theorem	4	 of
Chapter	10,

〈a〉	=	{.	.	.,a−2,a−1,	e,a,a2,...}

There	is	obviously	a	one-to-one	correspondence	between	this	group	and	 :

In	other	words,	the	function

f(i)	=	ai

is	a	one-to-one	correspondence	from	 	to	〈a〉.	As	before,	f	is	an	isomorphism,	and	therefore

	≅	〈a〉

What	we	have	just	proved	is	a	very	important	fact	about	cyclic	groups;	let	us	state	it	as	a	theorem.

Theorem	1:	Isomorphism	of	cyclic	groups

(i) For	every	positive	integer	n,	every	cyclic	group	of	order	n	is	isomorphic	to	 n.	Thus,	any	two	cyclic
groups	of	order	n	are	isomorphic	to	each	other.

(ii) Every	 cyclic	 group	 of	 order	 infinity	 is	 isomorphic	 to	 ,	and	 therefore	 any	 two	 cyclic	 groups	 of
order	infinity	are	isomorphic	to	each	other.
If	G	is	any	group	and	a	∈	G,	it	is	easy	to	see	that

1.	The	product	of	any	two	powers	of	a	is	a	power	of	a;	for	aman	=	am	+	n.



2.	Furthermore,	the	inverse	of	any	power	of	a	is	a	power	of	a,	because	(an)−1	=	a−n.
3.	It	therefore	follows	that	the	set	of	all	the	powers	of	a	is	a	subgroup	of	G.
This	 subgroup	 is	 called	 the	cyclic	 subgroup	of	G	generated	by	a.	 It	 is	 obviously	 a	 cyclic	group,	 and
therefore	we	denote	it	by	〈a〉.	If	the	element	a	has	order	n,	 then,	as	we	have	seen,	〈a〉	contains	the	n
elements	{e,	a,	a2,.	 .	 .,	an	−1}.	 If	a	has	order	 infinity,	 then	〈a〉	=	{.	 .	 .,	a−2,	a−1,	e,	a,	a2,...}	 and	 has
infinitely	many	elements.

For	example,	in	 ,	〈2〉	is	the	cyclic	subgroup	of	 	which	consists	of	all	the	multiples	of	2.	In	 15,
〈3〉	is	the	cyclic	subgroup	{0,3,6,9,12}	which	contains	all	the	multiples	of	3.	In	S3,	〈β〉	=	{ε,	β,	δ},	and
contains	all	the	powers	of	β.

Can	 a	 cyclic	 group,	 such	 as	 ,	 have	 a	 subgroup	 which	 is	 not	 cyclic?	 This	 question	 is	 of	 great
importance	 in	 our	 understanding	 of	 cyclic	 groups.	 Its	 answer	 is	 not	 obvious,	 and	 certainly	 not	 self-
evident:

Theorem	2	Every	subgroup	of	a	cyclic	group	is	cyclic.

Let	G	=	〈a〉	be	a	cyclic	group,	and	let	H	be	any	subgroup	of	G.	We	wish	to	prove	that	H	is	cyclic.
Now,	G	has	a	generator	a;	and	when	we	say	 that	H	 is	cyclic,	what	we	mean	 is	 that	H	 too	has	a

generator	(call	it	b),	and	H	consists	of	all	the	powers	of	b.	The	gist	of	this	proof,	therefore,	is	to	find	a
generator	of	H,	and	then	check	that	every	element	of	H	is	a	power	of	this	generator.

Here	is	the	idea:	G	is	the	cyclic	group	generated	by	a,	and	H	is	a	subgroup	of	G.	Every	element	of
H	is	therefore	in	G,	which	means	that	every	element	of	H	is	some	power	of	a.	The	generator	of	H	which
we	are	searching	for	is	therefore	one	of	the	powers	of	a—one	of	the	powers	of	a	which	happens	to	be	in
H;	but	which	one?	Obviously	the	lowest	one!	More	accurately,	the	lowest	positive	power	of	a	in	H.

And	now,	carefully,	here	is	the	proof:
PROOF:	Let	m	be	the	smallest	positive	integer	such	that	am	∈	H.	We	will	show	that	every	element	of

H	is	a	power	of	am,	hence	am	is	a	generator	of	H.
Let	at	be	any	element	of	H.	Divide	t	by	m	using	the	division	algorithm:

t	=	mq	+	r	 0	≤	r	<	m

Then	 at	=	amq	+	r	=	amq	ar

Solving	for	ar,	 ar	=	(amq)−1	at	=	(am)−q	at

But	am	∈	H	and	at	∈	H;	thus	(am)−q	∈	H.
It	follows	that	ar	∈	H.	But	r	<	m	and	m	is	the	smallest	positive	iriteger	such	that	am	∈	H.	So	r	=	0,

and	therefore	t	=	mq.



We	conclude	that	every	element	at	∈	H	is	of	the	form	at	=	(am)q,	that	is,	a	power	of	am.	Thus,	H	is
the	cyclic	group	generated	by	am.	■

This	chapter	ends	with	a	final	comment	regarding	the	different	uses	of	the	word	“order”	in	algebra.
Let	G	be	a	group;	as	we	have	seen,	the	order	of	an	element	a	in	G	 is	 the	 least	positive	integer	n

such	that

(The	order	of	a	is	infinity	if	there	is	no	such	n.)
Earlier,	we	defined	the	order	of	the	group	G	to	be	the	number	of	elements	in	G.	Remember	that	the

order	of	G	is	denoted	by	|G|.
These	are	two	separate	and	distinct	definitions,	not	to	be	confused	with	one	another.	Nevertheless,

there	is	a	connection	between	them:	Let	a	be	an	element	of	order	n	in	a	group.	By	Chapter	10,	Theorem
3,	there	are	exactly	n	different	powers	of	a,	hence	〈a〉	has	n	elements.	Thus,

If	 ord(a)	=	n	 then	 |〈a〉|	=	n

That	is,	the	order	of	a	cyclic	group	is	the	same	as	the	order	of	its	generator.

EXERCISES

A.	Examples	of	Cyclic	Groups
1	List	the	elements	of	〈6〉	in	 16.
2	List	the	elements	of	〈f〉	in	S6,	where

3	Describe	the	cyclic	subgroup	 	in	 *.	Describe	the	cyclic	group	 	in	 .
4	If	f(x)	=	x	+	1,	describe	the	cyclic	subgroup	〈f〉	of	SR.
5	If	f(x)	=	x	+	1,	describe	the	cyclic	subgroup	〈f〉	of	 ( ).
6	Show	that	−1,	as	well	as	1,	is	a	generator	of	 .	Are	there	any	other	generators	of	 ?	Explain!	What	are
the	generators	of	an	arbitrary	infinite	cyclic	group	〈a〉?
7	Is	 *	cyclic?	Try	to	prove	your	answer.	HINT:	Suppose	k	is	a	generator	of	 *:
If	k	<	1,	then	k	>	k2	>	k3>	⋯	

If	k	>	1,	then	k	<	k2	<	k3	<	⋯	

B.	Elementary	Properties	of	Cyclic	Groups

Prove	each	of	the	following:
#	1	If	G	is	a	group	of	order	n,	G	is	cyclic	iff	G	has	an	element	of	order	n.
2	Every	cyclic	group	is	abelian.



3	If	G	=	〈a〉	and	b	∈	G,	the	order	of	b	is	a	factor	of	the	order	of	a.
4	In	any	cyclic	group	of	order	n,	there	are	elements	of	order	k	for	every	integer	k	which	divides	n.
5	Let	G	be	an	abelian	group	of	order	mn,	where	m	and	n	are	relatively	prime.	If	G	has	an	element	of
order	m	and	an	element	of	order	n,	G	is	cyclic.	(See	Chapter	10,	Exercise	E4.)
6	Let	〈a〉	be	a	cyclic	group	of	order	n.	If	n	and	m	are	relatively	prime,	then	the	function	f(x)	=	xm	is	an
automorphism	of	〈a〉.	(HINT:	Use	Exercise	B3	and	Chapter	10,	Theorem	5.)

C.	Generators	of	Cyclic	Groups

For	 any	positive	 integer	n,	 let	ϕ(n)	 denote	 the	number	of	 positive	 integers	 less	 than	n	 and	 relatively
prime	to	n.	For	example,	1,	2,	4,	5,	7,	and	8	are	relatively	prime	to	9,	so	ϕ(9)	=	6.	Let	a	have	order	n,
and	prove	the	following:
1	ar	is	a	generator	of	〈a〉	iff	r	and	n	are	relatively	prime.	(HINT:	See	Chapter	10,	Exercise	G2.)
2	〈a〉	has	ϕ(n)	different	generators.	(Use	part	1	in	your	proof.)
3	For	any	factor	m	of	n,	let	Cm	=	{x	∈	〈a〉	:	xm	=	e).	Cm	is	a	subgroup	of	〈a〈.
#	4	Cm	has	exactly	m	elements.	(HINT:	Use	Exercise	B4.)
5	An	element	x	in	〈a〉	has	order	m	iff	x	is	a	generator	of	Cm.
6	There	are	ϕ(m)	elements	of	order	m	in	〈a〉.	(Use	parts	1	and	5.)
#	7	Let	n	=	mk.	ar	has	order	m	 iff	r	=	kl	where	 l	and	m	 are	 relatively	prime.	 (HINT:	 See	Chapter	10,
Exercise	G1,	2.)

8	If	c	is	any	generator	of	〈a〉,	then	{cr	:	r	is	relatively	prime	to	n}	is	the	set	of	all	the	generators	of	〈a〉.

D.	Elementary	Properties	of	Cyclic	Subgroups	of	Groups
Let	G	be	a	group	and	let	a,	b	∈	G.	Prove	the	following:
1	If	a	is	a	power	of	b,	say	a	=	bk,	then	〈a〉	⊆	〈b〉.
2	Suppose	a	is	a	power	of	b,	say	a	=	bk.	Then	b	is	equal	to	a	power	of	a	iff	〈a〉	=	〈b〉.
3	Suppose	a	∈	〈b〉.	Then	〈a〉	=	〈b〉	iff	a	and	b	have	the	same	order.
4	Let	ord(a)	=	n,	and	b	=	ak.	Then	〈a〉	=	〈b〉	iff	n	and	k	are	relatively	prime.
5	Let	ord(a)	=	n,	and	suppose	a	has	a	kth	 root,	say	a	=	bk.	Then	〈a〉	=	〈b〉	 iff	k	 and	n	 are	 relatively
prime.
6	Any	cyclic	group	of	order	mn	has	a	unique	subgroup	of	order	n.

E.	Direct	Products	of	Cyclic	Groups
Let	G	and	H	be	groups,	with	a	∈	G	and	b	∈	H.	Prove	parts	1-4:
1	If	(a,	b)	is	a	generator	of	G	×	H,	then	a	is	a	generator	of	G	and	b	is	a	generator	of	H.
2	If	G	×	H	is	a	cyclic	group,	then	G	and	H	are	both	cyclic.
3	The	converse	of	part	2	is	false.	(Give	an	example	to	demonstrate	this.)
4	Let	ord(a)	=	m	and	ord(b)	=	n.	The	order	of	(a,	b)	in	G	×	H	is	the	least	common	multiple	of	m	and	n.
(HINT:	Use	Chapter	10,	Theorem	5.	Nothing	else	is	needed!)



5	Conclude	from	part	4	that	if	m	and	n	are	relatively	prime,	then	(a,	b)	has	order	mn.

6	Suppose	(c,	d)	∈	G	×	H,	where	c	has	order	m	and	d	has	order	n.	Prove:	If	m	and	n	are	not	 relatively
prime	(hence	have	a	common	factor	q	>	1),	then	the	order	of	(c,	d)	is	less	than	mn.
7	Conclude	from	parts	5	and	6	that	〈a〉	×	〈b〉	is	cyclic	iff	ord(a)	and	ord(b)	are	relatively	prime.
8	Let	G	be	an	abelian	group	of	order	mn,	where	m	and	n	are	relatively	prime.	Prove:	If	G	has	an	element
a	of	order	m	and	an	element	b	of	order	n,	then	G	≅	〈a〉	×	〈b〉.	(HINT:	See	Chapter	10,	Exercise	E1,	2.)
9	Let	〈a〉	be	a	cyclic	group	of	order	mn,	where	m	and	n	are	relatively	prime,	and	prove	that	〈a〉	≅	〈am〉
×	〈an〉.

†	F.	kth	Roots	of	Elements	in	a	Cyclic	Group
Let	〈a〉	be	a	cyclic	group	of	order	n.	For	any	integer	k,	we	may	ask:	which	elements	in	〈a〉	have	a	kth
root?	The	exercises	which	follow	will	answer	this	question.
1	Let	a	have	order	10.	For	what	integers	k	(0	≤	k	≤	12),	does	a	have	a	kth	root?	For	what	integers	k	(0	≤
k	≤	12),	does	a6	have	fcth	root?

Let	k	and	n	be	any	 integers,	and	 let	gcd(k,	n)	denote	 the	greatest	common	divisor	of	k	and	n.	A
linear	combination	of	k	and	n	is	any	expression	ck	+	dn	where	c	and	d	are	integers.	It	is	a	simple	fact	of
number	theory	(the	proof	is	given	on	page	219),	that	an	integer	m	is	equal	to	a	linear	combination	of	k
and	n	iff	m	is	a	multiple	of	gcd(k,	n).	Use	this	fact	to	prove	the	following,	where	a	is	an	element	of	order
n	in	a	group	G.
2	If	m	is	a	multiple	of	gcd(k,	n),	then	am	has	a	kth	root	in	〈a〉.	[HINT:	Compute	am,	and	show	that	am	=
(ac)k	for	some	ac	∈	〈a〉.]
#	3	If	am	has	a	kth	root	in	〈a〉,	then	m	is	a	multiple	of	gcd(k,	n).	Thus,	am	has	a	kth	root	in	〈a〉	iff	gcd(k,
n)	is	a	factor	of	m.

4	a	has	a	kth	root	in	〈a〉	iff	k	and	n	are	relatively	prime.
5	Let	p	be	a	prime	number.

(a)	If	n	is	not	a	multiple	of	p,	then	every	element	in	〈a〉	has	a	pth	root.
(b)	If	n	is	a	multiple	of	p,	and	am	has	a	pth	root,	then	m	is	a	multiple	of	p.

(Thus,	the	only	elements	in	〈a〉	which	have	pth	roots	are	e,	ap,	a2p,	etc.)
6	The	set	of	all	the	elements	in	〈a〉	having	a	kth	root	is	a	subgroup	of	〈a〉.	Explain	why	this	subgroup	is
cyclic,	say	〈am〉.	What	is	the	value	of	m?	(Use	part	3.)



CHAPTER

TWELVE
PARTITIONS	AND	EQUIVALENCE	RELATIONS

Imagine	emptying	a	jar	of	coins	onto	a	table	and	sorting	them	into	separate	piles,	one	with	the	pennies,
one	with	the	nickels,	one	with	the	dimes,	one	with	the	quarters,	and	one	with	the	half-dollars.	This	is	a
simple	example	of	partitioning	a	set.	Each	separate	pile	 is	called	a	class	of	 the	partition;	 the	 jarful	of
coins	has	been	partitioned	into	five	classes.

Here	 are	 some	other	 examples	of	partitions:	The	distributor	of	 farm-fresh	 eggs	usually	 sorts	 the
daily	supply	according	to	size,	and	separates	the	eggs	into	three	classes	called	“large,”	“medium,”	and
“small.”

The	 delegates	 to	 the	Democratic	 national	 convention	may	be	 classified	 according	 to	 their	 home
state,	thus	falling	into	50	separate	classes,	one	for	each	state.

A	student	files	class	notes	according	to	subject	matter;	the	notebook	pages	are	separated	into	four
distinct	categories,	marked	(let	us	say)	“algebra,”	“psychology,”	“English,”	and	“American	history.”

Every	 time	we	 file,	 sort,	 or	 classify,	we	 are	 performing	 the	 simple	 act	 of	 partitioning	 a	 set.	 To
partition	a	set	A	is	to	separate	the	elements	of	A	 into	nonempty	subsets,	say	A1,	A2,	A3	etc.,	which	are
called	the	classes	of	the	partition.	Any	two	distinct	classes,	say	Ai	and	Aj	are	disjoint,	which	means	they
have	no	elements	in	common.	And	the	union	of	the	classes	is	all	of	A.

Instead	of	dealing	with	the	process	of	partitioning	a	set	(which	is	awkward	mathematically),	 it	 is
more	convenient	to	deal	with	the	result	of	partitioning	a	set.	Thus,	{A1,	A2,	A3,	A4},	 in	 the	 illustration
above,	is	called	a	partition	of	A.	We	therefore	have	the	following	definition:

A	partition	of	a	set	A	is	a	family	{Ai:	i	∈	I}	of	nonempty	subsets	of	A	which	are	mutually	disjoint
and	whose	union	is	all	of	A.

The	notation	 {Ai:	 i	∈	 I}	 is	 the	 customary	way	 of	 representing	 a	 family	 of	 sets	 {Ai,	Aj,	Ak,	…}
consisting	of	one	set	Ai	for	each	index	i	in	I.	(The	elements	of	I	are	called	indices’,	the	notation	{Ai:	i	∈



I}	may	be	read:	the	family	of	sets	Ai,	as	i	ranges	over	I.)
Let	{Ai:	 i	∈	 I}	 be	 a	 partition	 of	 the	 set	A.	We	may	 think	 of	 the	 indices	 i,	 j,	 k,	…	 as	 labels	 for

naming	the	classes	Ai,	Aj,	Ak,	.…	Now,	in	practical	problems,	it	is	very	inconvenient	to	insist	that	each
class	be	named	once	and	only	once.	It	is	simpler	to	allow	repetition	of	indexing	whenever	convenience
dictates.	For	example,	the	partition	illustrated	previously	might	also	be	represented	like	this,	where	A1	is
the	same	class	as	A5,	A2	is	the	same	as	A6,	and	A3	is	the	same	as	A7.

As	we	have	seen,	any	two	distinct	classes	of	a	partition	are	disjoint;	this	is	the	same	as	saying	that
if	two	classes	are	not	disjoint,	they	must	be	equal.	The	other	condition	for	the	classes	of	a	partition	of	A
is	that	their	union	must	be	equal	to	A;	this	is	the	same	as	saying	that	every	element	of	A	lies	in	one	of	the
classes.	Thus,	we	have	the	following,	more	explicit	definition	of	partition:

By	a	partition	of	a	set	A	we	mean	a	family	{Ai:	i	∈	I}	of	nonempty	subsets	of	A	such	that
(i) If	any	two	classes,	say	Ai	and	Aj,	have	a	common	element	x	(that	is,	are	not	disjoint),	then	Ai	=
Aj	and

(ii) Every	element	x	of	A	lies	in	one	of	the	classes.
We	now	turn	to	another	elementary	concept	of	mathematics.	A	relation	on	a	set	A	is	any	statement

which	 is	 either	 true	or	 false	 for	 each	ordered	pair	 (x,	y)	 of	 elements	 of	A.	 Examples	 of	 relations,	 on
appropriate	 sets,	 are	 “x	 =	 y,”	 “x	 <	 y,”	 “x	 is	 parallel	 to	 y,”	 “x	 is	 the	 offspring	 of	 y,”	 and	 so	 on.	 An
especially	important	kind	of	relation	on	sets	is	an	equivalence	relation.	Such	a	relation,	will	usually	be
represented	by	the	symbol	∼,	so	that	x	∼	y	may	be	read	“x	is	equivalent	to	y.”	Here	is	how	equivalence
relations	are	defined:

By	an	equivalence	relation	on	a	set	A	we	mean	a	relation	∼	which	is
Reflexive:	that	is,	x	∼	x	for	every	x	in	A;
Symmetric:	that	is,	if	x	∼	y,	then	y	∼	x;	and
Transitive:	that	is,	if	x	∼	y	and	y	∼	z,	then	x	∼	z.
The	most	obvious	example	of	an	equivalence	relation	is	equality,	but	there	are	many	other	examples,	as
we	shall	be	seeing	soon.	Some	examples	from	our	everyday	experience	are	“x	weighs	the	same	as	y,”	“x
is	the	same	color	as	y,”	“x	is	synonymous	with	y,”	and	so	on.

Equivalence	 relations	 also	 arise	 in	 a	 natural	 way	 out	 of	 partitions.	 Indeed,	 if	 {Ai:	 i	∈	 I}	 is	 a
partition	of	A,	we	may	define	an	equivalence	relation	∼	on	A	by	letting	x	∼	y	iff	x	and	y	are	in	the	same
class	of	the	partition.

In	other	words,	we	call	two	elements	“equivalent”	if	they	are	members	of	the	same	class.	It	is	easy	to



see	that	the	relation	∼	is	an	equivalence	relation	on	A.	Indeed,	x	∼	x	because	x	is	in	the	same	class	as	x;
next,	if	x	and	y	are	in	the	same	class,	then	y	and	x	are	in	the	same	class;	finally,	if	x	and	y	are	in	the	same
class,	and	y	and	z	are	in	the	same	class,	then	x	and	z	are	in	the	same	class.	Thus,	∼	is	an	equivalence
relation	on	A;	it	is	called	the	equivalence	relation	determined	by	the	partition	{Ai:	i	∈	I}.

Let	∼	be	an	equivalence	relation	on	A	and	x	an	element	of	A.	The	set	of	all	the	elements	equivalent
to	x	is	called	the	equivalence	class	of	x,	and	is	denoted	by	[x].	In	symbols,

[x]	=	{y	∈	A:	y	∼	x}

A	useful	property	of	equivalence	classes	is	this:
Lemma	If	x∼	y,	then	[x]	=	[y].

In	other	words,	if	two	elements	are	equivalent,	they	have	the	same	equivalence	class.	The	proof	of	this
lemma	is	 fairly	obvious,	 for	 if	x	∼	y,	 then	 the	elements	equivalent	 to	x	 are	 the	same	as	 the	elements
equivalent	to	y.

For	example,	let	us	return	to	the	jarful	of	coins	we	discussed	earlier.	If	A	is	the	set	of	coins	in	the
jar,	call	any	two	coins	“equivalent”	if	they	have	the	same	value:	thus,	pennies	are	equivalent	to	pennies,
nickels	are	equivalent	 to	nickels,	 and	so	on.	 If	x	 is	 a	particular	nickel	 in	A,	 then	[x],	 the	 equivalence
class	of	x,	is	the	class	of	all	the	nickels	in	A.	If	y	is	a	particular	dime,	then	[y]	is	the	pile	of	all	the	dimes;
and	so	forth.	There	are	exactly	five	distinct	equivalence	classes.	If	we	apply	the	lemma	to	this	example,
it	states	simply	that	if	two	coins	are	equivalent	(that	is,	have	the	same	value),	they	are	in	the	same	pile.
By	the	way,	the	five	equivalence	classes	obviously	form	a	partition	of	A;	this	observation	is	expressed	in
the	next	theorem.

Theorem	 If	∼	 is	an	equivalence	relation	on	A,	 the	 family	of	all	 the	equivalence	classes,	 that	 is,
{[x]:	x	∈	A),	is	a	partition	of	A.

This	 theorem	states	 that	 if	∼	 is	an	equivalence	relation	on	A	and	we	sort	 the	elements	of	A	 into
distinct	classes	by	placing	each	element	with	the	ones	equivalent	to	it,	we	get	a	partition	of	A.

To	prove	the	theorem,	we	observe	first	that	each	equivalence	class	is	a	nonempty	subset	of	A.	(It	is
nonempty	because	x	∼	x,	so	x	∈	[x].)	Next,	we	need	to	show	that	any	two	distinct	classes	are	disjoint—
or,	equivalently,	that	if	two	classes	[x]	and	[y]	have	a	common	element,	they	are	equal.	Well,	if	[x]	and
[y]	have	a	common	element	u,	then	u	∼	x	and	u	∼	y.	By	the	symmetric	and	transitive	laws,	x	∼	y.	Thus,
[x]	=	[y]	by	the	lemma.

Finally,	we	must	show	that	every	element	of	A	lies	in	some	equivalence	class.	This	is	true	because
x	∈	[x].	Thus,	the	family	of	all	the	equivalence	classes	is	a	partition	of	A.

When	∼	is	an	equivalence	relation	on	A	and	A	 is	partitioned	into	its	equivalence	classes,	we	call
this	partition	the	partition	determined	by	the	equivalence	relation	∼.

The	student	may	have	noticed	by	now	that	the	two	concepts	of	partition	and	equivalence	relation,
while	 superficially	different,	 are	 actually	 twin	 aspects	 of	 the	 same	 structure	on	 sets.	Starting	with	 an
equivalence	relation	on	A,	we	may	partition	A	into	equivalence	classes,	thus	getting	a	partition	of	A.	But
from	this	partition	we	may	retrieve	the	equivalence	relation,	for	any	two	elements	x	and	y	are	equivalent
iff	they	lie	in	the	same	class	of	the	partition.

Going	 the	other	way,	we	may	begin	with	 a	partition	of	A	 and	define	 an	 equivalence	 relation	by
letting	any	two	elements	be	equivalent	iff	they	lie	in	the	same	class.	We	may	then	retrieve	the	partition
by	partitioning	A	into	equivalence	classes.

As	a	final	example,	let	A	be	a	set	of	poker	chips	of	various	colors,	say	red,	blue,	green,	and	white.
Call	 any	 two	 chips	 “equivalent”	 if	 they	 are	 the	 same	 color.	 This	 equivalence	 relation	 has	 four



equivalence	classes:	the	set	of	all	the	red	chips,	the	set	of	blue	chips,	the	set	of	green	chips,	and	the	set
of	white	chips.	These	four	equivalence	classes	are	a	partition	of	A.

Conversely,	if	we	begin	by	partitioning	the	set	A	of	poker	chips	into	four	classes	according	to	their
color,	this	partition	determines	an	equivalence	relation	whereby	chips	are	equivalent	iff	they	belong	to
the	same	class.	This	is	precisely	the	equivalence	relation	we	had	previously.

A	final	comment	 is	 in	order.	 In	general,	 there	are	many	ways	of	partitioning	a	given	set	A;	each
partition	determines	(and	is	determined	by)	exactly	one	specific	equivalence	relation	on	A.	Thus,	if	A	is
a	 set	 of	 three	 elements,	 say	 a,	b,	 and	 c,	 there	 are	 five	 ways	 of	 partitioning	 A,	 as	 indicated	 by	 the
accompanying	illustration.	Under	each	partition	is	written	the	equivalence	relation	determined	by	that
partition.

Once	again,	each	partition	of	A	determines,	and	is	determined	by,	exactly	one	equivalence	relation	on	A.

EXERCISES

A.	Examples	of	Partitions
Prove	 that	 each	 of	 the	 following	 is	 a	 partition	 of	 the	 indicated	 set.	 Then	 describe	 the	 equivalence
relation	associated	with	that	partition.
1	For	each	integer	r	∈	{0,	1,	2,	3,	4},	let	Ar	be	the	set	of	all	the	integers	which	leave	a	remainder	of	r
when	divided	by	5.	(That	is,	x	∈	Ar	iff	x	=	5q	+	r	for	some	integer	q.)	Prove:	{A0,	A1,	A2,	A3,	A4}	 is	a
partition	of	 .
#	2	For	each	integer	n,	let	An	=	{x	∈	 :	n	≤	x	<	n	+	1}.	Prove	{An:	n	∈	 }	is	a	partition	of	 .
3	For	each	rational	number	r,	let	Ar	=	{(m,	n)	∈	 	×	 *:	m/n	=	r}.	Prove	that	{Ar:	r	∈	 }	is	a	partition	of	
	×	 *,	where	 *	is	the	set	of	nonzero	integers.
4	For	r	∈	{0,	1,	2,	…,	9},	let	Ar	be	the	set	of	all	the	integers	whose	units	digit	(in	decimal	notation)	is
equal	to	r.	Prove:	{A0,	A1,	A2,	…,	A9}	is	a.	partition	of	 .
5	For	any	rational	number	x,	we	can	write	x	=	q	+	n/m	where	q	is	an	integer	and	0	≤	n/m	<	1.	Call	n/m
the	fractional	part	of	x.	For	each	rational	r	∈	{x:0	≤	x	<	1},	let	Ar	=	{x	∈	 :	the	fractional	part	of	x	 is
equal	to	r}.	Prove:	{Ar:	0	≤	r	<	1}	is	a	partition	of	 .
6	For	each	r	∈	 ,	let	Ar	=	{(x,	y)	∈	 	×	 :	x	−	y	=	r}.	Prove:	{Ar:	r	∈	 }	is	a	partition	of	 	×	 .

B.	Examples	of	Equivalence	Relations
Prove	 that	 each	 of	 the	 following	 is	 an	 equivalence	 relation	 on	 the	 indicated	 set.	 Then	 describe	 the



partition	associated	with	that	equivalence	relation.
	1	In	 ,	m	∼	n	iff	|m|	=	|n|.
	2	In	 ,	r	∼	s	iff	r	−	s	∈	 .
	3	Let	⌈x⌉	denote	the	greatest	integer	≤	x.	In	 ,	let	a	∼	b	iff	⌈a⌉	=	⌈b⌉.
	4	In	 ,	let	m	∼	n	iff	m	−	n	is	a	multiple	of	10.
	5	In	 ,	let	a	∼	b	iff	a	−	b	∈	 .
	6	In	 ( ),	let	f	∼	g	iff	f(0)	=	g(0).
	7	In	 ( ),	let	f	∼	g	iff	f(x)	=	g(x)	for	all	x	>	c,	where	c	is	some	fixed	real	number.
	8	If	C	is	any	set,	PC	denotes	the	set	of	all	the	subsets	of	C.	Let	D	⊆	C.	In	PC,	let	A	∼	B	iff	A	∩	D	=	B	∩
D.
	9	In	 	×	 ,	let	(a,	b)	∼	(c,	d)	iff	a2	+	b2	=	c2	+	d2.
10	In	 *,	let	a	∼	b	iff	a/b	∈	 ,	where	 *	is	the	set	of	nonzero	real	numbers.

C.	Equivalence	Relations	and	Partitions	of	 	×	
In	parts	1	to	3,	{Ar:	r	∈	 }	is	a	family	of	subsets	of	 	×	 .	Prove	it	is	a	partition,	describe	the	partition
geometrically,	and	give	the	corresponding	equivalence	relation.
1 For	each	r	∈	 ,	Ar	=	{(x,	y):	y	=	2x	+	r}.
2 For	each	r	∈	 ,	Ar	=	{(x,	y):	x2	+	y2	=	r2}.
3 For	each	r	∈	 ,	Ar	=	{(x,	y):	y	=	|x|	+	r}.
In	parts	4	to	6,	an	equivalence	relation	on	 	×	 	is	given.	Prove	it	is	an	equivalence	relation,	describe	it
geometrically,	and	give	the	corresponding	partition.
4 (x,	y)	∼	(u,	υ)	iff	ax2	+	by2	=	au2	+	bυ2	(where	a,	b	>	0).
5 (x,	y)	∼	(u,	υ)	iff	x	+	y	=	u	+	υ
6 (x,	y)	∼	(u,	υ)	iff	x2	−	y	=	u2	−	υ.

D.	Equivalence	Relations	on	Groups
Let	G	 be	 a	 group.	 In	 each	 of	 the	 following,	 a	 relation	 on	G	 is	 defined.	 Prove	 it	 is	 an	 equivalence
relation.	Then	describe	the	equivalence	class	of	e.
1	If	H	is	a	subgroup	of	G,	let	a	∼	b	iff	ab−1	∈	H
2	If	H	 is	a	subgroup	of	G,	let	a	∼	b	 iff	a−xb	∈	H.	 Is	 this	 the	same	equivalence	relation	as	 in	part	1?
Prove,	or	find	a	counterexample.
3	Let	a	∼	b	iff	there	is	an	x	∈	G	such	that	a	=	xbx−1.
4	Let	a	∼	b	iff	there	is	an	integer	k	such	that	ak	=	bk

#	5	Let	a	∼	b	iff	ab−1	commutes	with	every	x	∈	G.
6	Let	a	∼	b	iff	ab−1	is	a	power	of	c	(where	c	is	a	fixed	element	of	G).

E.	General	Properties	of	Equivalence	Relations	and	Partitions
1	Let	{Ai:	i	∈	I}	be	a	partition	of	A.	Let	{Bj:	j	∈	J}	be	a	partition	of	B.	Prove	that	{A,	×	Bj,	(i,	j)	∈	I	×	J}
is	a	partition	of	A	×	B.



2	 Let	∼I	 be	 the	 equivalence	 relation	 corresponding	 to	 the	 above	 partition	 of	 A,	 and	 let	∼J	 be	 the
equivalence	 relation	 corresponding	 to	 the	 partition	 of	 B.	 Describe	 the	 equivalence	 relation
corresponding	to	the	above	partition	of	A	×	B.
3	Let	f:	A	→	B	be	a	function.	Define	∼	by	a	∼	b	iff	f(a)	=	f(b).	Prove	that	∼	is	an	equivalence	relation
on	A.	Describe	its	equivalence	classes.
4	Let	 f:	A	→	B	be	a	 function,	and	 let	{Bi:	 i	∈	 I}	be	a	partition	of	B.	Prove	 that	 {f−1(Bi):	 i	∈	 I}	 is	 a
partition	 of	 A.	 If	∼I	 is	 the	 equivalence	 relation	 corresponding	 to	 the	 partition	 of	 B,	 describe	 the
equivalence	relation	corresponding	to	the	partition	of	A.	[REMARK:	For	any	C	⊆	B,	f−1C)	=	{x	∈	A:	f(x)
∈	C}.]
5	Let	∼1	and	∼2	be	distinct	equivalence	relations	on	A.	Define	∼3	by	a	∼3	b	 iff	a	∼1	b	and	a	∼2	b.
Prove	that	∼3	is	an	equivalence	relation	on	A.	If	[x],	denotes	the	equivalence	class	of	x	for	∼i	(i	=	1,	2,
3),	prove	that	[x]3	=	[x]1	∩	[x]2.



CHAPTER

THIRTEEN

COUNTING	COSETS

Just	 as	 there	 are	 great	 works	 in	 art	 and	 music,	 there	 are	 also	 great	 creations	 of	 mathematics.
“Greatness,”	 in	mathematics	 as	 in	 art,	 is	 hard	 to	 define,	 but	 the	 basic	 ingredients	 are	 clear:	 a	 great
theorem	should	contribute	substantial	new	information,	and	it	should	be	unexpected!.	That	is,	it	should
reveal	 something	 which	 common	 sense	 would	 not	 naturally	 lead	 us	 to	 expect.	 The	 most	 celebrated
theorems	of	plane	geometry,	as	may	be	recalled,	come	as	a	complete	surprise;	as	the	proof	unfolds	in
simple,	sure	steps	and	we	reach	the	conclusion—a	conclusion	we	may	have	been	skeptical	about,	but
which	is	now	established	beyond	a	doubt—we	feel	a	certain	sense	of	awe	not	unlike	our	reaction	to	the
ironic	or	tragic	twist	of	a	great	story.

In	 this	 chapter	 we	 will	 consider	 a	 result	 of	 modern	 algebra	 which,	 by	 all	 standards,	 is	 a	 great
theorem.	It	is	something	we	would	not	likely	have	foreseen,	and	which	brings	new	order	and	simplicity
to	the	relationship	between	a	group	and	its	subgroups.

We	begin	by	adding	to	our	algebraic	tool	kit	a	new	notion—a	conceptual	tool	of	great	versatility
which	will	serve	us	well	in	all	the	remaining	chapters	of	this	book.	It	is	the	concept	of	a	coset.

Let	G	be	a	group,	and	H	a	subgroup	of	G.	For	any	element	a	in	G,	the	symbol

aH

denotes	the	set	of	all	products	ah,	as	a	remains	fixed	and	h	ranges	over	H.	aH	is	called	a	left	coset
of	H	in	G.
In	similar	fashion

Ha

denotes	the	set	of	all	products	ha,	as	a	remains	fixed	and	h	ranges	over	H.	Ha	is	called	a	right
coset	of	H	in	G.

In	practice,	it	will	make	no	difference	whether	we	use	left	cosets	or	right	cosets,	just	as	long	as	we
remain	consistent.	Thus,	from	here	on,	whenever	we	use	cosets	we	will	use	right	cosets.	To	simplify	our



sentences,	we	will	say	coset	when	we	mean	“right	coset.”
When	we	deal	with	cosets	in	a	group	G,	we	must	keep	in	mind	that	every	coset	in	G	is	a	subset	of

G.	Thus,	when	we	need	to	prove	that	two	cosets	Ha	and	Hb	are	equal,	we	must	show	that	they	are	equal
sets.	What	this	means,	of	course,	is	that	every	element	x	∈	Ha	is	in	Hb,	and	conversely,	every	element	y
∈	Hb	is	in	Ha.	For	example,	let	us	prove	the	following	elementary	fact:

If	a	∈	Hb,	then	Ha	=	Hb (1)

We	are	given	that	a	∈	Hb,	which	means	that	a	=	h1b	for	some	h1	∈	H.	We	need	to	prove	that	Ha	=	Hb.
Let	x	∈	Ha;	this	means	that	x	=	h2a	for	some	h2	∈	H.	But	a	=	h1b,	so	x	=	h2a	=	(h2h1)b,	and	the

latter	is	clearly	in	Hb.	This	proves	that	every	x	∈	Ha	is	in	Hb;	analogously,	we	may	show	that	every	y∈
Hb	is	in	Ha,	and	therefore	Ha	=	Hb.

The	first	major	fact	about	cosets	now	follows.	Let	G	be	a	group	and	let	H	be	a	fixed	subgroup	of
G:

Theorem	1	The	family	of	all	the	cosets	Ha,	as	a	ranges	over	G,	is	a	partition	of	G.

PROOF:	First,	we	must	show	that	any	two	cosets,	say	Ha	and	Hb,	are	either	disjoint	or	equal.	If	they
are	disjoint,	we	are	done.	If	not,	let	x	∈	Ha	∩	Hb.	Because	x	∈	Ha,	x	=	hxa	for	some	h1	∈	H.	Because	x
∈	Hb,	x	=	h2b	for	some	h2	∈	H.	Thus,	h1a	=	h2b,	and	solving	for	a,	we	have

Thus,

a	∈	Hb

It	follows	from	Property	(1)	above	that	Ha	=	Hb.
Next,	we	must	show	that	every	element	c	∈	G	 is	 in	one	of	 the	cosets	of	H.	But	 this	 is	obvious,

because	c	=	ec	and	e	∈	H;	therefore,

c	=	ec	∈	Hc

Thus,	the	family	of	all	the	cosets	of	H	is	a	partition	of	G.	■
Before	going	on,	 it	 is	worth	making	a	small	comment:	A	given	coset,	say	Hb,	may	be	written	in

more	 than	one	way.	By	Property	(1)	 if	a	 is	any	element	 in	Hb,	 then	Hb	 is	 the	same	as	Ha.	Thus,	 for
example,	 if	 a	coset	of	H	contains	n	 different	 elements	a1,	a2,	…,	an,	 it	may	be	written	 in	n	 different
ways,	namely,	Ha1,	Ha2,	…,	Han.

The	 next	 important	 fact	 about	 cosets	 concerns	 finite	 groups.	 Let	G	 be	 a	 finite	 group,	 and	H	 a
subgroup	of	G.	We	will	show	that	all	the	cosets	of	H	have	the	same	number	of	elements!	This	fact	is	a
consequence	of	the	next	theorem.



Theorem	2	If	Ha	is	any	coset	of	H,	there	is	a	one-to-one	correspondence	from	H	to	Ha.

PROOF:	The	most	obvious	function	from	H	to	Ha	is	the	one	which,	for	each	h	∈	H,	matches	h	with
ha.	Thus,	let	f:	H	→	Ha	be	defined	by

f(h)	=	ha

Remember	that	a	remains	fixed	whereas	h	varies,	and	check	that	f	is	injective	and	surjective.
f	is	injective:	Indeed,	if	f(h1)	=	f(h2),	then	h1a	=	h2a,	and	therefore	h1	=	h2.

f	is	surjective,	because	every	element	of	Ha	is	of	the	form	ha	for	some	h	∈	H,	and	ha	=	f(h).
Thus,	f	is	a	one-to-one	correspondence	from	H	to	Ha,	as	claimed.	■

By	Theorem	2,	any	coset	Ha	has	the	same	number	of	elements	as	H,	and	therefore	all	the	cosets
have	the	same	number	of	elements!

Let	us	take	a	careful	look	at	what	we	have	proved	in	Theorems	1	and	2.	Let	G	be	a	finite	group	and
H	any	subgroup	of	G.	G	has	been	partitioned	into	cosets	of	H,	and	all	 the	cosets	of	H	have	 the	same
number	of	elements	(which	is	the	same	as	the	number	of	elements	in	H).	Thus,	the	number	of	elements
in	G	 is	 equal	 to	 the	number	of	 elements	 in	H,	multiplied	by	 the	number	of	 distinct	 cosets	 of	H.	This
statement	is	known	as	Lagrange’s	theorem.	(Remember	that	the	number	of	elements	in	a	group	is	called
the	group’s	order.)

Theorem	3:	Lagrange’s	theorem	Let	G	be	a	finite	group,	and	H	any	subgroup	of	G.	The	order	of
G	is	a	multiple	of	the	order	of	H.

In	other	words,	the	order	of	any	subgroup	of	a	group	G	is	a	divisor	of	the	order	of	G.
For	example,	if	G	has	15	elements,	its	proper	subgroups	may	have	either	3	or	5	elements.	If	G	has

7	elements,	it	has	no	proper	subgroups,	for	7	has	no	factors	other	than	1	and	7.	This	last	example	may
be	generalized:

Let	G	be	a	group	with	a	prime	number	p	of	elements.	If	a	∈	G	where	a	≠	e,	then	the	order	of	a	is
some	integer	m	≠	1.	But	then	the	cyclic	group	〈a〉	has	m	elements.	By	Lagrange’s	theorem,	m	must	be	a
factor	of	p.	But	p	 is	a	prime	number,	and	 therefore	m	=	p.	 It	 follows	 that	〈a〉	has	p	 elements,	 and	 is
therefore	all	of	G!	Conclusion:

Theorem	 4	 If	 G	 is	 a	 group	 with	 a	 prime	 number	 p	 of	 elements,	 then	 G	 is	 a	 cyclic	 group.
Furthermore,	any	element	a	≠	e	in	G	is	a	generator	of	G.

Theorem	4,	which	 is	merely	a	consequence	of	Lagrange’s	 theorem,	 is	quite	 remarkable	 in	 itself.
What	 it	 says	 is	 that	 there	 is	 (up	 to	 isomorphism)	 only	 one	 group	 of	 any	 given	 prime	 order	 p.	 For
example,	the	only	group	(up	to	isomorphism)	of	order	7	is	 7,	the	only	group	of	order	11	is	 11,	and	so
on!	So	we	now	have	complete	information	about	all	the	groups	whose	order	is	a	prime	number.

By	the	way,	if	a	is	any	element	of	a	group	G,	the	order	of	a	is	the	same	as	the	order	of	the	cyclic



subgroup	〈a〉,	and	by	Lagrange’s	theorem	this	number	is	a	divisor	of	the	order	of	G.	Thus,

Theorem	5	The	order	of	any	element	of	a	finite	group	divides	the	order	of	the	group.

Finally,	if	G	is	a	group	and	H	is	a	subgroup	of	G,	the	index	of	H	in	G	is	the	number	of	cosets	of	H
in	G.	We	denote	it	by	(G:H).	Since	the	number	of	elements	in	G	is	equal	to	the	number	of	elements	in
H,	multiplied	by	the	number	of	cosets	of	H	in	G,

EXERCISES

A.	Examples	of	Cosets	in	Finite	Groups
In	each	of	the	following,	H	is	a	subgroup	of	G.	In	parts	1–5	list	the	cosets	of	H.	For	each	coset,	list	the
elements	of	the	coset.

Example	G	=	 4,	H	=	{0,	2}.
(REMARK:	If	the	operation	of	G	is	denoted	by	+,	it	is	customary	to	write	H	+	x	for	a	coset,	rather

than	Hx.)	The	cosets	of	H	in	this	example	are

H	=	H	+	0	=	H	+	2	=	{0,	2} and H+	1	=	H	+	3	=	{1,	3}

1 G	=	S3,	H	=	{ε,	β,	δ}.
2 G	=	S3,	H	=	{ε,	α}.
3 G	=	 15,	H	=	〈5〉.
4 G	=	D4,	H	={R0,	R4}.(For	D4,	see	page	73.)
5 G	=	S4,	H	=	A4.(For	A4,	see	page	86.)
6 Indicate	the	order	and	index	of	each	of	the	subgroups	in	parts	1	to	5.

B.	Examples	of	Cosets	in	Infinite	Groups
Describe	the	cosets	of	the	subgroups	described	in	parts	1–5:
1 The	subgroup	〈3〉	of	 .
2 The	subgroup	 	of	 .
3 The	subgroup	H	=	{2n:	n	∈	 }	of	 *.
4 The	subgroup	〈 〉	of	R*;	the	subgroup	〈 〉	of	 .
5 The	subgroup	H	=	{(x,	y):	x	=	y}	of	( 	×	 .
6 For	any	positive	integer	m,	what	is	the	index	of	〈m〉	in	 ?
7 Find	a	subgroup	of	 *	whose	index	is	equal	to	2.

C.	Elementary	Consequences	of	Lagrange’s	Theorem
Let	G	be	a	finite	group.	Prove	the	following:
1	If	G	has	order	n,	then	xn	=	e	for	every	x	in	G.
2	Let	G	have	order	pq,	where	p	and	q	are	primes.	Either	G	 is	cyclic,	or	every	element	x	≠	e	 in	G	has



order	p	or	q.
3	Let	G	have	order	4.	Either	G	is	cyclic,	or	every	element	of	G	is	its	own	inverse.	Conclude	that	every
group	of	order	4	is	abelian.
4	If	G	has	an	element	of	order	p	and	an	element	of	order	q,	where	p	and	q	are	distinct	primes,	then	the
order	of	G	is	a	multiple	of	pq.
5	If	G	has	an	element	of	order	k	and	an	element	of	order	m,	then	|G|	is	a	multiple	of	lcm(k,	m),	where
lcm(k,	m)	is	the	least	common	multiple	of	k	and	m.
#	6	Let	p	be	a	prime	number.	In	any	finite	group,	the	number	of	elements	of	order	p	is	a	multiple	of	p	−
1.

D.	Further	Elementary	Consequences	of	Lagrange’s	Theorem
Let	G	be	a	finite	group,	and	let	H	and	K	be	subgroups	of	G.	Prove	the	following:
1	Suppose	H	⊆	K	(therefore	H	is	a	subgroup	of	K).	Then	(G:	H)	=	(G:	K)(K:	H).
2	The	order	of	H	∩	K	is	a	common	divisor	of	the	order	of	H	and	the	order	of	K.
3	Let	H	have	order	m	and	K	have	order	n,	where	m	and	n	are	relatively	prime.	Then	H	∩	K	=	{e}.
4	Suppose	H	and	K	are	not	equal,	and	both	have	order	the	same	prime	number	p.	Then	H	∩	K	=	{e}.
5	Suppose	H	has	index	p	and	K	has	index	p,	where	p	and	g	are	distinct	primes.	Then	the	index	of	H	∩	K
is	a	multiple	of	pq.
#	6	If	G	is	an	abelian	group	of	order	n,	and	m	is	an	integer	such	that	m	and	n	are	relatively	prime,	then
the	function	f(x)	=	xm	is	an	automorphism	of	G.

E.	Elementary	Properties	of	Cosets
Let	G	be	a	group,	and	H	a	subgroup	of	G.	Let	a	and	b	denote	elements	of	G.	Prove	the	following:
1	Ha	=	Hb	iff	ab−1	∈	H.
2	Ha	=	H	iff	a	∈	H.
3	If	aH	=	Ha	and	bH	=	Hb,	then	(ab)H	=	H(ab).
#	4	If	aH	=	Ha,	then	a−1H	=	Ha−1.
5	If	(ab)H	=	(ac)H,	then	bH	=	cH.
6	The	number	of	right	cosets	of	H	is	equal	to	the	number	of	left	cosets	of	H.
7	If	J	is	a	subgroup	of	G	such	that	J	=	H	∩	K,	then	for	any	a	∈	G,	Ja	=	Ha	∩	Ka.	Conclude	that	if	H	and
K	are	of	finite	index	in	G,	then	their	intersection	H	∩	K	is	also	of	finite	index	in	G.

Theorem	5	of	this	chapter	has	a	useful	converse,	which	is	the	following:
Cauchy’s	theorem	If	G	is	a	finite	group,	and	p	is	a	prime	divisor	of	|G|,	then	G	has	an	element	of

order	p.
For	example,	a	group	of	order	30	must	have	elements	of	orders	2,	3,	and	5.	Cauchy’s	theorem	has

an	elementary	proof,	which	may	be	found	on	page	340.
In	the	next	few	exercise	sets,	we	will	survey	all	possible	groups	whose	order	is	≤10.	By	Theorem	4

of	this	chapter,	if	G	is	a	group	with	a	prime	number	p	of	elements,	then	G	≅	 p.	This	 takes	care	of	all
groups	of	orders	2,	3	5,	and	7.	In	Exercise	G6	of	Chapter	15,	it	will	be	shown	that	if	G	is	a	group	with
p2	elements	(where	p	is	a	prime),	then	G	≅ p2	or	G	≅	 p	×	 p.	This	will	take	care	of	all	groups	of	orders	4
and	9.	The	remaining	cases	are	examined	in	the	next	three	exercise	sets.



†	F.	Survey	of	All	Six-Element	Groups
Let	G	be	any	group	of	order	6.	By	Cauchy’s	theorem,	G	has	an	element	a	of	order	2	and	an	element	b	of
order	3.	By	Chapter	10,	Exercise	E3,	the	elements

e,	a,	b,	b2,	ab,	ab2

are	all	distinct;	and	since	G	has	only	six	elements,	these	are	all	the	elements	in	G.	Thus,	ba	is	one	of	the
elements	e,	a,	b,	b2,	ab,	or	ab2.
1	Prove	that	ba	cannot	be	equal	to	either	e,	a,	b,	or	b2.	Thus,	ba	=	ab	or	ba	=	ab2.

Either	of	these	two	equations	completely	determines	the	table	of	G.	(See	the	discussion	at	the	end
of	Chapter	5.)
2	If	ba	=	ab,	prove	that	G	≅	 6.
3	If	ba	=	ab2,	prove	that	G	≅	S3.

It	follows	that	 6	and	S3	are	(up	to	isomorphism),	the	only	possible	groups	of	order	6.

†	G.	Survey	of	All	10-EIement	Groups
Let	G	be	any	group	of	order	10.
1	Reason	as	in	Exercise	F	to	show	that	G	=	{e,	a,	b,	b2,	b3,	b4,	ab,	ab2,	ab3,	ab4},	where	a	has	order	2
and	b	has	order	5.
2	Prove	that	ba	cannot	be	equal	to	e,	a,	b,	b2,	b3,	or	b4.
3	Prove	that	if	ba	=	ab,	then	G	≅	 10.

4	If	ba	=	ab2,	prove	that	ba2	=	a2b4,	and	conclude	that	b	=	b4.	This	is	impossible	because	b	has	order	5;
hence	ba	≠	ab2.	(HINT:	The	equation	ba	=	ab2	tells	us	that	we	may	move	a	factor	a	from	the	right	to	the
left	of	a	factor	b,	but	in	so	doing,	we	must	square	b.	To	prove	an	equation	such	as	the	preceding	one,
move	all	factors	a	to	the	left	of	all	factors	b.)
5	If	ba	=	ab3,	prove	that	ba2	=	a2b9	=	a2b4,	and	conclude	that	b	=	b4.	This	is	impossible	(why?);	hence
ba	≠	ab3.
6	Prove	that	if	ba	=	ab4,	then	G	≅	D5	(where	D5	is	the	group	of	symmetries	of	the	pentagon).

Thus,	the	only	possible	groups	of	order	10	(up	to	isomorphism),	are	 10	and	D5.

†	H.	Survey	of	All	Eight-Element	Groups
Let	G	be	any	group	of	order	8.	If	G	has	an	element	of	order	8,	then	G	≅	 8.	Let	us	assume	now	that	G
has	no	element	of	order	8;	hence	all	the	elements	≠	e	in	G	have	order	2	or	4.
1	If	every	x	≠	e	in	G	has	order	2,	let	a,	b,	c	be	three	such	elements.	Prove	that	G	=	{e,	a,	b,	c,	ab,	bc,	ac,
abc}.	Conclude	that	G	≅	 2	×	 2	×	 2.

In	the	remainder	of	this	exercise	set,	assume	G	has	an	element	a	of	order	4.	Let	H	=	〈a〉	=	{e,	a,	a2,
a3}.	If	b	∈	G	is	not	in	H,	then	the	coset	Hb	=	{b,	ab,	a2b,	a3b}.	By	Lagrange’s	theorem,	G	is	the	union
of	He	=	H	and	Hb;	hence

G	=	{e,	a,	a2,	a3,	b,	ab,	a2b,	a3b}



2	Assume	there	is	in	Hb	an	element	of	order	2.	(Let	b	be	this	element.)	If	ba	=	a2b,	prove	 that	b2a	=
a4b2,	hence	a	=	a4,	which	is	impossible.	(Why?)	Conclude	that	either	ba	=	ab	or	ba	=	a3b.
3	Let	b	be	as	in	part	2.	Prove	that	if	ba	=	ab,	then	G	≅	 4	×	 2.

4	Let	b	be	as	in	part	2.	Prove	that	if	ba	=	a3b,	then	G	≅	D4.

5	Now	assume	the	hypothesis	in	part	2	is	false.	Then	b,	ab,	a2b,	and	a3b	all	have	order	4.	Prove	that	b2	=
a2.	(HINT:	What	is	the	order	of	b2?	What	element	in	G	has	the	same	order?)
6	Prove:	If	ba	=	ab,	then	(a3b)2	=	e,	contrary	to	the	assumption	that	ord(a3b)	=	4.	If	ba	=	a2b,	then	a	=
b4a	=	e,	which	is	impossible.	Thus,	ba	=	a3b.
7	The	equations	a4	=	b4	=	e,	a2	=	b2,	and	ba	=	a3b	completely	determine	the	table	of	G.	Write	this	table.
(G	is	known	as	the	quarternion	group	Q.)

Thus,	the	only	groups	of	order	8	(up	to	isomorphism)	are	 8,	 2	×	 2	×	 2,	 4	×	 2,	D4,	and	Q.

†	I.	Conjugate	Elements
If	a	∈	G,	 a	 conjugate	 of	a	 is	 any	 element	 of	 the	 form	 xax−1,	 where	 x	∈	G.	 (Roughly	 speaking,	 a
conjugate	of	a	is	any	product	consisting	of	a	sandwiched	between	any	element	and	its	inverse.)	Prove
each	of	the	following:
1	The	relation	“a	is	equal	to	a	conjugate	of	b”	is	an	equivalence	relation	in	G.	(Write	a	∼	b	 for	“a	 is
equal	to	a	conjugate	of	b.”)

This	relation	∼	partitions	any	group	G	into	classes	called	conjugacy	classes.	(The	conjugacy	class
of	a	is	[a]	=	{xax−1:	x	∈	G}.)

For	 any	element	a	∈	G,	 the	centralizer	 of	a,	 denoted	by	Ca,	 is	 the	 set	 of	 all	 the	 elements	 in	G
which	commute	with	a.	That	is,

Ca	=	{x	∈	G:	xa	=	ax}	=	{x	∈	G:	xax−1	=	a}

Prove	the	following:
2	For	any	a	∈	G,	Ca	is	a	subgroup	of	G.
3	x−1ax	=	y−1ay	iff	xy−1	commutes	with	a	iff	xy−1	∈	Ca.
4	x−1ax	=	y−1ay	iff	Cax	=	Cay.	(HINT:	Use	Exercise	El.)
5	There	is	a	one-to-one	correspondence	between	the	set	of	all	the	conjugates	of	a	and	the	set	of	all	the
cosets	of	Ca.	(HINT:	Use	part	4.)
6	The	number	of	distinct	conjugates	of	a	is	equal	to	(G:	Ca),	the	index	of	Ca	in	G.	Thus,	the	size	of	every
conjugacy	class	is	a	factor	of	|G.

†	J.	Group	Acting	on	a	Set
Let	A	be	a	set,	and	let	G	be	any	subgroup	of	SA.	G	is	a	group	of	permutations	of	A;	we	say	it	is	a	group
acting	on	the	set	A.	Assume	here	that	G	is	a	finite	group.	If	u	∈	A,	the	orbit	of	u	(with	respect	to	G)	is
the	set

O(u)	=	{g(u):	g	∈	G}



1	Define	 a	 relation	∼	 on	A	 by	u	∼	υ	 iff	g(w)	=	υ	 for	 some	g	∈	G.	 Prove	 that	∼	 is	 an	 equivalence
relation	on	A,	and	that	the	orbits	are	its	equivalence	classes.

If	u	∈	A,	the	stabilizer	of	u	is	the	set	Gu	=	{g	∈	G:	g(u)	=	u},	that	is,	the	set	of	all	the	permutations
in	G	which	leave	u	fixed.
2	Prove	that	Gu	is	a	subgroup	of	G.
#	3	Let	α	=	(1	2)(3	4)(5	6)	and	β	=	(2	3)	in	S6.	Let	G	be	the	following	subgroup	of	S6:	G	=	{ε,	α,	β,	αβ,
βα,	αβα,	βαβ,	(αβ)2}.Find	O(1),	O(2),	O(5),	G1,	G2,	G4,	G5.

4	Let	f,	g	∈	G.	Prove	that	f	and	g	are	in	the	same	left	coset	of	Gu	iff	f(u)	=	g(u).	(HINT:	Use	Exercise	El
modified	for	left	cosets.)
5	Use	part	4	to	show	that	the	number	of	elements	in	O(u)	is	equal	to	the	index	of	Gu	in	G.	[HINT:	If	f(u)
=	υ,	match	the	coset	of	f	with	υ.]
6	Conclude	from	part	5	that	the	size	of	every	orbit	(with	respect	to	G)	is	a	factor	of	the	order	of	G.	In
particular,	if	f	∈	SA,	the	length	of	each	cycle	of	f	is	a	factor	of	the	order	of	f	in	SA.

K.	Coding	Theory:	Coset	Decoding
In	order	 to	undertake	 this	exercise	set,	 the	reader	should	be	familiar	with	 the	 introductory	paragraphs
(preceding	the	exercises)	of	Exercises	F	and	G	of	Chapter	3	and	Exercise	H	of	Chapter	5.

Recall	that	 	is	the	group	of	all	binary	words	of	length	n.	A	group	code	C	is	a	subgroup	of	 .	To
decode	a	received	word	x	means	to	find	the	codeword	a	closest	to	x,	that	is,	the	codeword	a	such	that
the	distance	d(a,	x)	is	a	minimum.

But	d(a,	x)	=	w(a	+	x),	the	weight	(number	of	Is)	of	a	+	x.	Thus,	to	decode	a	received	word	x	is	to
find	the	codeword	a	such	that	the	weight	w(a	+	x)	is	a	minimum.	Now,	the	coset	C	+	x	consists	of	all	the
sums	c	+	x	 as	c	 ranges	over	 all	 the	 codewords;	 so	by	 the	previous	 sentence,	 if	a	 +	x	 is	 the	word	of
minimum	weight	in	the	coset	C	+	x,	then	a	is	the	word	to	which	x	must	be	decoded.

Now	a	=	(a	+	x)	+	x;	so	a	is	found	by	adding	x	to	the	word	of	minimum	weight	in	the	coset	C	+	x.
To	recapitulate:	In	order	to	decode	a	received	word	x	you	examine	the	coset	C	+	x,	find	the	word	e	of
minimum	weight	in	the	coset	(it	is	called	the	coset	leader),	and	add	e	to	x.	Then	e	+	x	is	the	codeword
closest	to	x,	and	hence	the	word	to	which	x	must	be	decoded.

1	Let	C1	be	the	code	described	in	Exercise	G	of	Chapter	3.
(a) List	the	elements	in	each	of	the	cosets	of	C1.
(b) Find	 a	 coset	 leader	 in	 each	 coset.	 (There	may	 be	more	 than	 one	word	 of	minimum	weight	 in	 a
coset;	choose	one	of	them	as	coset	leader.)
(c) Use	the	procedure	described	above	to	decode	the	following	words	x:	11100,	01101,	11011,	00011.
2	Let	C3	be	the	Hamming	code	described	in	Exercise	H2	of	Chapter	5.	List	the	elements	in	each	of	the
cosets	of	C3	and	find	a	leader	in	each	coset.	Then	use	coset	decoding	to	decode	the	following	words	x:
1100001,	0111011,	1001011.
3	Let	C	be	a	code	and	let	H	be	the	parity-check	matrix	of	C.	Prove	that	x	and	y	are	in	the	same	coset	of
C	if	and	only	if	Hx	=	Hy.	(HINT:	Use	Exercise	H8,	Chapter	5.)

If	x	 is	any	word,	Hx	 is	called	the	syndrome	of	x.	 It	 follows	from	part	3	 that	all	 the	words	 in	 the
same	 coset	 have	 the	 same	 syndrome,	 and	 words	 in	 different	 cosets	 have	 different	 syndromes.	 The



syndrome	of	a	word	x	is	denoted	by	syn(x).
4	Let	a	code	C	have	q	cosets,	and	let	the	coset	leaders	be	e1,	e2,	…,	eq.	Explain	why	 the	following	 is
true:	To	decode	a	received	word	x,	compare	syn(x)	with	syn(e1,	…,	syn(eq)	and	find	the	coset	leader	ei
such	that	syn(x)	=	syn(ei).	Then	x	is	to	be	decoded	to	x	+	ei.
5	Find	the	syndromes	of	the	coset	leaders	in	part	2.	Then	use	the	method	of	part	4	to	decode	the	words	x
=	1100001	and	x	=	1001011.



CHAPTER

FOURTEEN

HOMOMORPHISMS

We	 have	 seen	 that	 if	 two	 groups	 are	 isomorphic,	 this	 means	 there	 is	 a	 one-to-one	 correspondence
between	them	which	transforms	one	of	the	groups	into	the	other.	Now	if	G	and	H	are	any	groups,	it	may
happen	 that	 there	 is	a	 function	which	 transforms	G	 into	H,	although	 this	 function	 is	not	 a	 one-to-one
correspondence.	For	example,	 6	is	transformed	into	 	3	by

as	we	may	verify	by	comparing	their	tables:

If	G	and	H	are	any	groups,	and	there	is	a	function	f	which	transforms	G	into	H,	we	say	that	if	is	a
homomorphic	 image	 of	G.	 The	 function	 f	 is	 called	 a	 homomorphism	 from	 G	 to	 f.	 This	 notion	 of
homomorphism	is	one	of	the	skeleton	keys	of	algebra,	and	this	chapter	is	devoted	to	explaining	it	and



defining	it	precisely.
First,	let	us	examine	carefully	what	we	mean	by	saying	that	“f	transforms	G	into	H.”	To	begin	with,

f	must	be	a	function	from	G	onto	H;	but	that	is	not	all,	because	f	must	also	transform	the	table	of	G	into
the	table	of	H.	To	accomplish	this,	f	must	have	the	following	property:	for	any	two	elements	a	and	b	in
G,

if	 f(a)	=	a′	 and	 f(b)	=	b′, 	then	 f(ab)	=	a′	b′	 (1)

Graphically,

Condition	(1)	may	be	written	more	succinctly	as	follows:

f(ab)	=	f(a)f(b)	 (2)

Thus,
Definition	if	G	and	H	are	groups,	a	homomorphism	from	G	to	H	is	a	function	f:	G	→H	such	that

for	any	two	elements	a	and	b	in	G,

f(ab)	=	f(a)f(b)

If	there	exists	a	homomorphism	from	G	onto	H,	we	say	that	H	is	a	homomorphic	image	of	G.
Groups	have	a	very	important	and	privileged	relationship	with	their	homomorphic	images,	as	the

next	few	examples	will	show.
Let	P	denote	the	group	consisting	of	two	elements,	e	and	o,	with	the	table

We	call	this	group	the	parity	group	of	even	and	odd	numbers.	We	should	think	of	e	as	“even”	and	o	as
“odd,”	and	the	table	as	describing	the	rule	for	adding	even	and	odd	numbers.	For	example,	even	+	odd	=
odd,	odd	+	odd	=	even,	and	so	on.

The	function	f:	 	→P	which	carries	every	even	integer	to	e	and	every	odd	integer	to	o	is	clearly	a
homomorphism	 from	 	 to	P.	 This	 is	 easy	 to	 check	 because	 there	 are	 only	 four	 different	 cases:	 for
arbitrary	integers	r	and	s,	r	and	s	are	either	both	even,	both	odd,	or	mixed.	For	example,	if	r	and	s	are
both	odd,	their	sum	is	even,	so	f(r)	=	0,	f(s)	=	o,	and	f(r	+	s)	=	e.	Since	e	=	o	+	o,

f(r+	s)	=	f(r)+f(s)

This	equation	holds	analogously	in	the	remaining	three	cases;	hence	 f	 is	a	homomorphism.	(Note	that
the	symbol	+	is	used	on	both	sides	of	the	above	equation	because	the	operation,	in	 	as	well	as	in	P,	is
denoted	by	+.)



It	follows	that	P	is	a	homomorphic	image	of	 !
Now,	what	 do	P	 and	 	 have	 in	 common?	P	 is	 a	much	 smaller	 group	 than	 ,	 therefore	 it	 is	 not

surprising	that	very	few	properties	of	the	integers	are	to	be	found	in	P.	Nevertheless,	one	aspect	of	the
structure	of	 	is	retained	absolutely	intact	in	P,	namely,	the	structure	of	the	odd	and	even	numbers.	(The
fact	of	being	odd	or	even	is	called	 the	parity	of	 integers.)	In	other	words,	as	we	pass	 from	 	 to	P	we
deliberately	lose	every	aspect	of	the	integers	except	their	parity	;	their	parity	alone	(with	its	arithmetic)
is	retained,	and	faithfully	preserved.

Another	example	will	make	this	point	clearer.	Remember	that	D4	is	the	group	of	the	symmetries	of
the	square.	Now,	every	symmetry	of	the

square	either	interchanges	the	two	diagonals	here	labeled	1	and	2,	or	leaves	them	as	they	were.	In	other
words,	every	symmetry	of	the	square	brings	about	one	of	the	permutations

of	the	diagonals.
For	each	Ri	∈	D4,	let	f(Ri)	be	the	permutation	of	the	diagonals	produced	by	Ri	Then	f	is	clearly	a

homomorphism	from	D4	onto	S2.	Indeed,	it	is	clear	on	geometrical	grounds	that	when	we	perform	the
motion	Ri	followed	by	the	motion	Rj	on	the	square,	we	are,	at	the	same	time,	carrying	out	the	motions
f(Ri)	followed	by	f(Rj)	on	the	diagonals.	Thus,

f(RjºRi)	=	f(Rj)ºf(Ri)

It	follows	that	52	is	a	homomorphic	image	of	D4.	Now	S2	is	a	smaller	group	than	D4,	and	therefore
very	few	of	the	features	of	D4	are	to	be	found	in	S2.	Nevertheless,	one	aspect	of	the	structure	of	D4	 is
retained	 absolutely	 intact	 in	S2,	 namely,	 the	 diagonal	 motions.	 Thus,	 as	 we	 pass	 from	D4	 to	 52,	 we
deliberately	 lose	 every	 aspect	 of	 plane	motions	 except	 the	motions	 of	 the	 diagonals;	 these	 alone	 are
retained	and	faithfully	preserved.

A	final	example	may	be	of	some	help;	it	relates	to	the	group	 	described	in	Chapter	3,	Exercise	E.
Here,	briefly,	is	the	context	in	which	this	group	arises:	The	most	basic	way	of	transmitting	information
is	 to	 code	 it	 into	 strings	of	Os	and	 Is,	 such	as	0010111,	1010011,	 etc.	Such	 strings	are	 called	binary
words,	and	the	number	of	0s	and	Is	in	any	binary	word	is	called	its	length.	The	symbol	 	designates	the
group	consisting	of	all	binary	words	of	length	n,	with	an	operation	of	addition	described	in	Chapter	3,
Exercise	E.

Consider	the	function	f:	 	→ 	which	consists	of	dropping	the	last	two	digits	of	every	seven-digit



word.	This	kind	of	function	arises	in	many	practical	situations:	for	example,	it	frequently	happens	that
the	 first	 five	digits	 of	 a	word	 carry	 the	message	while	 the	 last	 two	digits	 are	 an	 error	 check.	Thus,	 f
separates	the	message	from	the	error	check.

It	is	easy	to	verify	that	f	is	a	homomorphism;	hence	 	is	a	homomorphic	image	of	 .	As	we	pass
from	 	 to	 ,	 the	message	 component	 of	words	 in	 	 is	 exactly	 preserved	while	 the	 error	 check	 is
deliberately	lost.

These	 examples	 illustrate	 the	 basic	 idea	 inherent	 in	 the	 concept	 of	 a	 homomorphic	 image.	 The
cases	which	 arise	 in	 practice	 are	 not	 always	 so	 clear-cut	 as	 these,	 but	 the	underlying	 idea	 is	 still	 the
same:	In	a	homomorphic	image	of	G,	some	aspect	of	G	is	isolated	and	faithfully	preserved	while	all	else
is	deliberately	lost.

The	next	theorem	presents	two	eleirientary	properties	of	homomorphisms.

Theorem	1	Let	G	and	H	be	groups,	and	f:	G	→	H	a	homomorphism.	Then

(i) f(e)	=	e,	and
(ii) f(a−l)	=	[f(a)]−l	for	every	element	a	∈	G.
In	the	equation	f(e)	=	e,	the	letter	e	on	the	left	refers	to	the	neutral	element	in	G,	whereas	the	letter	e	on
the	right	refers	to	the	neutral	element	in	H.

To	prove	(i),	we	note	that	in	any	group,

if yy	=	y 	then 	y	=	e

(Use	the	cancellation	law	on	the	equation	yy	=	ye.)	Now,	f(e)f(e)	=	f(ee)	=	f(e);	hence	f(e)	=	e.
To	 prove	 (ii),	 note	 that	 f(a)f(a−1)	=	 f(aa−1)	=	 f(e).	But	 f(e)	 =	 e,	 so	 f(a)f(a−1)	 =	 e.	 It	 follows	 by

Theorem	2	of	Chapter	4	that	f(a−1)	is	the	inverse	of	f(a),	that	is,	f(a−l)	=	[f(a)]−1.
Before	going	on	with	our	study	of	homomorphisms,	we	must	be	introduced	to	an	important	new

concept.	If	a	is	an	element	of	a	group	G,	a	conjugate	of	α	is	any	element	of	the	form	xax−l,	where	x	∈G.
For	example,	the	conjugates	of	α	in	S3	are

as	well	as	a	itself,	which	may	be	written	in	two	ways,	as	ε	∘	α	∘	ε	−1	or	as	α	∘	α	∘	α	−1.	if	H	is	any	subset
of	a	group	G,	we	say	that	H	is	closed	with	respect	to	conjugates	if	every	conjugate	of	every	element	of
H	is	in	H.	Finally,

Definition	Let	H	be	a	subgroup	of	a	group	G.	H	is	called	a	normal	subgroup	of	G	if	it	is	closed
with	respect	to	conjugates,	that	is,	if

for	any a	∈	H and x	∈	G 	xax−l	∈	H

(Note	that	according	to	this	definition,	a	normal	subgroup	of	G	is	any	nonempty	subset	of	G	which	 is
closed	with	respect	to	products,	with	respect	to	inverses,	and	with	respect	to	conjugates.)



We	now	return	to	our	discussion	of	homomorphisms.
Definition	Let	f	:	G	→	H	be	a	homomorphism.	The	kernel	of	f	is	the	set	K	of	all	the	elements	of	G

which	are	carried	by	f	onto	the	neutral	element	of	H.	That	is,

K	=	{x	∈	G:	f(x)	=	e}

Theorem	2	Let	f	:	G	→	H	be	a	homomorphism.
(i) The	kernel	of	f	is	a	normal	subgroup	of	G,	and
(ii) The	range	of	f	is	a	subgroup	of	H.

PROOF:	Let	K	denote	the	kernel	of	f.	If	a,	b	∈	K,	this	means	that	f(a)	=	e	and	f(b)	=	e.	Thus,	f(ab)	=
f(a)f(b)	=	ee	=	e;	hence	ab	∈	k.

If	a	∈	k,	then	f(a)	=	e.	Thus,	f(a−l)	=	[f(a)]−1	=	e−1	=	e,	so	a−1	∈	K.
Finally,	if	a	−	K	and	x	∈	G,	then	f(xax−l)	=	f(x)f(a)f(x−l)	=	f(x)f(a)[f(x)]−1	=	e,	which	shows	that	xax

−l	∈	K.	Thus,	K	is	a	normal	subgroup	of	G.
Now	we	must	prove	part	(ii).	If	f(a)	and	f(b)	are	in	the	range	of	f,	then	their	product	f(a)f(b)	=f(ab)

is	also	in	the	range	of	f.
If	f(a)	is	in	the	range	of	f,	its	inverse	is	[f(a)]−l	=	f(a−l),	which	is	also	in	the	range	of	f.	Thus,	the

range	of	f	is	a	subgroup	of	H.	■
If	f	is	a	homomorphism,	we	represent	the	kernel	of	f	and	the	range	of	f	with	the	symbols

ker(f) and ran(f)

EXERCISES

A.	Examples	of	Homomorphisms	of	Finite	Groups
1	Consider	the	function	f	:	 8	→	 4	given	by

Verify	that	f	is	a	homomorphism,	find	its	kernel	K,	and	list	the	cosets	of	K.	[REMARK:	To	verify	that	f	is
a	homomorphism,	you	must	show	that	f(a	+	b)	=	f(a)	+	f(b)	for	all	choices	of	a	and	b	in	 8;	there	are	64
choices.	This	may	be	accomplished	by	checking	that	f	transforms	the	table	of	 8	to	the	table	of	 4,	as	on
page	136.]
2	Consider	the	function	f	:	S3	→	 2	given	by

Verify	that	f	is	a	homomorphism,	find	its	kernel	K,	and	list	the	cosets	of	K.
3	 Find	 a	 homomorphism	 f: 15	 →	 5,	 and	 indicate	 its	 kernel.	 (Do	 not	 actually	 verify	 that	 f	 is	 a
homomorphism.)
4	Imagine	a	square	as	a	piece	of	paper	lying	on	a	table.	The	side	facing	you	is	side



A.	The	side	hidden	from	view	is	side	B.	Every	motion	of	 the	square	either	 interchanges	the	two	sides
(that	 is,	 side	B	 becomes	visible	 and	 side	A	 hidden)	or	 leaves	 the	 sides	 as	 they	were.	 In	other	words,
every	motion	Ri	of	the	square	brings	about	one	of	the	permutations

of	the	sides;	call	it	g(Ri).	Verify	that	g:	D4	 	S2	is	a	homomorphism,	and	give	its	kernel.
5	Every	motion	of	the	regular	hexagon	brings	about	a	permutation	of	its	diagonals,	labeled	1,	2,	and	3.
For	each	Ri	∈	D6,	let	f(Ri)	be	the	permutation	of

the	diagonals	produced	by	Ri	Argue	informally	(appealing	to	geometric	intuition)	to	explain	why	f:	D6∈
S3	is	a	homomorphism.	Then	complete	the	following:

(That	is,	find	the	value	of	f	on	all	12	elements	of	D6.)

#	6	Let	B	⊂	A.	Let	h	 :	PA	→	PB	be	defined	by	h(C)	=	C	=	C	 	B.	 For	A	 =	 {1,2,3}	 and	B	=	{1,	2},
complete	the	following:

For	any	A	and	B	⊂	A,	show	that	h	is	a	homomorphism.

B.	Examples	of	Homomorphisms	of	Infinite	Groups
Prove	that	each	of	the	following	is	a	homomorphism,	and	describe	its	kernel.
1	The	function	ϕ	:	 ( )→	 	given	by	ϕ(f)	=	f(0).
2	The	function	ϕ	:	 ( )	→	 ( )	given	by	ϕ(f)	=	f	′.	 	(R)	is	the	group	of	differentiable	functions	from	
to	 	f′	is	the	derivative	of	f.
3	The	function	f: 	×	 	→	 	given	by	f(x,	y)	=	x	+	y.



4	The	function	f	: *	→	 pos	defined	by	f(x)	=	|x|.
5	The	function	f	:	 *	→	 pos	defined	by	f(a	+	bi)	=	 .
6	Let	G	be	the	multiplicative	group	of	all	2	×	2	matrices

satisfying	ad	−	bc	≠	0.	Let	f:	G	→	 *	be	given	by	f(A)	=	determinant	of	A	=	ad	−	bc.

C.	Elementary	Properties	of	Homomorphisms
Let	G,	H,	and	K	be	groups.	Prove	the	following:
1	If	f	:	G	→	G	and	g	:H	→K	are	homomorphisms,	then	their	composite	gº	f:	G→	K	is	a	homomorphism.
#	2	If	f	:	G	→	H	is	a	homomorphism	with	kernel	K,	then	f	is	injective	iff	K	=	{e}.
3	If	f	:	G	→	H	is	a	homomorphism	and	is	any	subgroup	of	G,	then	f(K)	=	{f(x)	:	x	∈	K}	is	a	subgroup	of
H.
4	If	f	:	G	→	H	is	a	homomorphism	and	j	is	any	subgroup	of	H,	then

f−1(J)	=	{x	∈G:	f(x)∈J}

is	a	subgroup	of	G.	Furthermore,	ker	f	⊆	f−1(J).
5	If	f	:	G	→	H	is	a	homomorphism	with	kernel	K,	and	J	is	a	subgroup	of	G,	letfJ	designate	the	restriction
of	f	to	J.	(In	other	words	fJ	is	the	same	function	as	f,	except	that	its	domain	is	restricted	to	J.)	Then	ker	fJ
=	J	 	K.
6	For	any	group	G,	the	function	f:	G	→	G	defined	by	f(x)	=	e	is	a	homomorphism.
7	For	any	group	G,	{e}	and	G	are	homomorphic	images	of	G.
8	The	function	f:	G→G	defined	by	f(x)	=	x2	is	a	homomorphism	iff	G	is	abelian.
9	The	functions	f1(x,	y)	=	x	and	f2(x,	y)	=	y,	from	G	×	H	to	G	and	H,	respectively,	are	homomorphisms.

D.	Basic	Properties	of	Normal	Subgroups
In	the	following,	let	G	denote	an	arbitrary	group.
1	Find	all	the	normal	subgroups	(a)	of	S3	and	(b)	of	D4.
Prove	the	following:
2	Every	subgroup	of	an	abelian	group	is	normal.
3	The	center	of	any	group	G	is	a	normal	subgroup	of	G.
4	Let	H	be	a	subgroup	of	G.	H	is	normal	iff	it	has	the	following	property:	For	all	a	and	b	in	G,	ab	∈	H
iff	ba	∈	H.
5	Let	H	be	a	subgroup	of	G.	H	is	normal	iff	aH	=	Ha	for	every	a	∈	G.
6	Any	intersection	of	normal	subgroups	of	G	is	a	normal	subgroup	of	G.

E.	Further	Properties	of	Normal	Subgroups
Let	G	denote	a	group,	and	H	a	subgroup	of	G.	Prove	the	following:



#	1	If	H	has	index	2	in	G,	then	H	is	normal.	(HINT:	Use	Exercise	D5.)
2	Suppose	an	element	a	∈	G	has	order	2.	Then	(〈a〉)	is	a	normal	subgroup	of	G	iff	a	is	in	the	center	of
G.
3	If	a	is	any	element	of	G,	(〈a〉)	is	a	normal	subgroup	of	G	iff	a	has	the	following	property:	For	any	x	∈
G,	there	is	a	positive	integer	k	such	that	xa	=	akx.
4	In	a	group	G,	a	commutator	is	any	product	of	the	form	aba−1b−1,	where	a	and	b	are	any	elements	of
G.	If	a	subgroup	H	of	G	contains	all	the	commutators	of	G,	then	H	is	normal.
5	If	H	and	K	are	subgroups	of	G,	and	K	is	normal,	then	HK	is	a	subgroup	of	G.	(HK	denotes	the	set	of
all	products	hk	as	h	ranges	over	H	and	k	ranges	over	K.)
#	6	Let	S	be	the	union	of	all	the	cosets	Ha	such	that	Ha	=	aH.	Then	S	is	a	subgroup	of	G,	and	H	 is	a
normal	subgroup	of	S.

F.	Homomorphism	and	the	Order	of	Elements
If	f	:	G	→	H	is	a	homomorphism,	prove	each	of	the	following:
1	For	each	element	a	∈G,	the	order	of	f(a)	is	a	divisor	of	the	order	of	a.
2	The	order	of	any	element	b	≠	e	in	the	range	of	f	is	a	common	divisor	of	|G|	and	|H|.	(Use	part	1.)
3	If	the	range	of	f	has	n	elements,	then	xn	∈	ker	f	for	every	x	∈	G.
4	Let	m	be	an	integer	such	that	m	and	|H|	are	relatively	prime.	For	any	x	∈	G,	if	xm	∈	ker	f,	then	x	∈	ker
f.
5	Let	the	range	of	f	have	m	elements.	If	a	∈	G	has	order	n,	where	m	and	n	are	relatively	prime,	then	a	is
in	the	kernel	of	f.	(Use	part	1.)
6	Let	p	be	a	prime.	If	ran	f	has	an	element	of	order	p,	then	G	has	an	element	of	order	p.

G.	Properties	Preserved	under	Homomorphism
A	property	of	groups	is	said	to	be	“preserved	under	homomorphism”	if,	whenever	a	group	G	has	that
property,	every	homomorphic	image	of	G	does	also.	In	 this	exercise	set,	we	will	survey	a	few	typical
properties	preserved	under	homomorphism.	If	f	:	G	→	H	is	a	homomorphism	of	G	onto	H,	prove	each
of	the	following:
1	If	G	is	abelian,	then	H	is	abelian.
2	If	G	is	cyclic,	then	H	is	cyclic.
3	If	every	element	of	G	has	finite	order,	then	every	element	of	H	has	finite	order.
4	If	every	element	of	G	is	its	own	inverse,	every	element	of	H	is	its	own	inverse.
5	If	every	element	of	G	has	a	square	root,	then	every	element	of	H	has	a	square	root.
6	If	G	is	finitely	generated,	then	H	is	finitely	generated.	(A	group	is	said	to	be	“finitely	generated”	if	it	is
generated	by	finitely	many	of	its	elements.)

†	H.	Inner	Direct	Products
If	G	is	any	group,	let	H	and	K	be	normal	subgroups	of	G	such	that	H	 K	=	{e}.	Prove	the	following:
1	Let	h1	and	h2	be	any	two	elements	of	H,	and	k1	and	k2	any	two	elements	of	K.

h1k1	=	h2k 	implies h1	=	h2 and k1	=	k2



(HINT:	If	h1k1	=	h2k2,	then	 h1	∈	H	 	K	and	k2 	∈	H	 	K.	Explain	why.)
2	For	any	h	∈	H	and	k	∈	K,	hk	=	kh.	 (HINT:	hk	=	kh	 iff	hkh−lk−l	=	e.	Use	 the	 fact	 that	H	and	K	 are
normal.)
3	Now,	make	the	additional	assumption	that	G	=	HK	that	is,	every	x	in	G	can	be	written	as	x	=	hk	 for
some	h	∈	H	and	k	∈	K.	Then	the	function	ϕ(h,k)	=	hk	is	an	isomorphism	from	H	×	K	onto	G.

We	have	thus	proved	the	following:	If	H	and	K	are	normal	subgroups	of	G,such	that	H	 	K=	{e}
and	G	=	HK,	then	G	≅	H	×	K.	G	is	sometimes	called	the	inner	direct	product	of	H	and	K.

†	I.	Conjugate	Subgroups
Let	H	be	a	subgroup	of	G.	For	any	a	∈	G,	let	aHa−l	=	{axa−l	:x	∈H};	aHa−l	is	called	a	conjugate	of	H.
Prove	the	following:
1	For	each	a	∈	G,	aHa−l	is	a	subgroup	of	G.
2	For	each	a	∈	G,	H	≅	aHa−1.
3	H	is	a	normal	subgroup	of	G	iff	H	=	aHa−1	for	every	a	∈	G.
In	the	remaining	exercises	of	this	set,	let	G	be	a	finite	group.	By	the	normalizer	of	H	we	mean	the	set
N(H)	=	{a	∈G:	axa−1	∈	H	for	every	x	∈	H}.

4	If	a∈	N(H),	then	aHa−1	=	H.	(Remember	that	G	is	now	a	finite	group.)
5	N(H)	is	a	subgroup	of	G.
6	H	⊆	N(H).	Furthermore,	H	is	a	normal	subgroup	of	N(H).
In	parts	7–10,	let	N	=	N(H).

7	For	any	a,b	∈G,	aHa−1	=	bHb−1	iff	b−1a∈N(H).
#	8	There	is	a	one-to-one	correspondence	between	the	set	of	conjugates	of	H	and	the	set	of	cosets	of	N.
(Thus,	there	are	as	many	conjugates	of	H	as	cosets	of	N.)

9	H	has	exactly	(G	:N)	conjugates.	In	particular,	the	number	of	distinct	conjugates	of	if	H	is	a	divisor	of
|G|.
10	Let	K	be	any	subgroup	of	G,	let	K*	=	{Na	:	a	∈	K},	and	let

XK	=	{aHa−l:	a	∈	K}

Argue	as	in	part	8	to	prove	that	XK	is	in	one-to-one	correspondence	with	K*.	Conclude	that	the	number
of	elements	in	XK	is	a	divisor	of	|K|.



CHAPTER

FIFTEEN
QUOTIENT	GROUPS

In	Chapter	14	we	learned	to	recognize	when	a	group	H	is	a	homomorphic	image	of	a	group	G.	Now	we
will	make	 a	 great	 leap	 forward	 by	 learning	 a	method	 for	 actually	 constructing	 all	 the	 homomorphic
images	of	any	group.	This	is	a	remarkable	procedure,	of	great	importance	in	algebra.	In	many	cases	this
construction	will	allow	us	to	deliberately	select	which	properties	of	a	group	G	we	wish	to	preserve	in	a
homomorphic	image,	and	which	other	properties	we	wish	to	discard.

The	most	important	instrument	to	be	used	in	this	construction	is	the	notion	of	a	normal	subgroup.
Remember	 that	 a	 normal	 subgroup	 of	 G	 is	 any	 subgroup	 of	 G	 which	 is	 closed	 with	 respect	 to
conjugates.	We	begin	by	giving	an	elementary	property	of	normal	subgroups.

Theorem	1	If	H	is	a	normal	subgroup	of	G,	then	aH	=	Ha	for	every	a	∈	G.

(In	other	words,	there	is	no	distinction	between	left	and	right	cosets	for	a	normal	subgroup.)

PROOF:	Indeed,	if	x	is	any	element	of	aH,	then	x	=	ah	for	some	h	∈	H.	But	H	is	closed	with	respect
to	conjugates;	hence	aha−1	∈	H.	Thus,	x	=	ah	=	(aha−1)a	 is	an	element	of	Ha.	This	shows	that	every
element	of	aH	is	in	Ha;	analogously,	every	element	of	Ha	is	in	aH.	Thus,	aH	=	Ha.	■

Let	G	be	a	group	and	let	H	be	a	subgroup	of	G.	There	is	a	way	of	combining	cosets,	called	coset
multiplication,	which	works	as	follows:	the	coset	of	a,	multiplied	by	the	coset	of	b,	is	defined	to	be	the
coset	of	ab.	In	symbols,

Ha	·	Hb	=	H(ab)

This	definition	is	deceptively	simple,	for	it	conceals	a	fundamental	difficulty.	Indeed,	it	is	not	at	all	clear
that	 the	 product	 of	 two	 cosets	Ha	 and	Hb,	 multiplied	 together	 in	 this	 fashion,	 is	 uniquely	 defined.
Remember	that	Ha	may	be	the	same	coset	as	Hc	(this	happens	iff	c	is	in	Ha),	and,	similarly,	Hb	may	be
the	same	coset	as	Hd.	Therefore,	 the	product	Ha	·	Hb	 is	 the	same	as	the	product	He	 ·	Hd.	Yet	 it	may
easily	happen	that	H(ab)	is	not	the	same	coset	as	H(cd).	Graphically,

For	example,	if	G	=	S3	and	H	=	{ε,	α},	then



and	yet

H(β	∘	δ)	=	Hε	≠	Hβ	=	H(γ	∘	κ)

Thus,	coset	multiplication	does	not	work	as	an	operation	on	the	cosets	of	H	=	{ε,	α}	in	S3.	The	reason	is
that,	although	H	is	a	subgroup	of	S3,	H	is	not	a	normal	subgroup	of	S3.	If	H	were	a	normal	subgroup,
coset	multiplication	would	work.	The	next	theorem	states	exactly	that!

Theorem	2	Let	H	be	a	normal	subgroup	of	G.	If	Ha	=	He	and	Hb	=	Hd,	then	H(ab)	=	H(cd).

PROOF:	If	Ha	=	Hc,	then	a	∈	Hc;	hence	a	=	h1c	for	some	h1	∈	H.	If	Hb	=	Hd,	then	b	∈	Hd;	hence	b
=	h2d	from	some	h2	∈	H.	Thus,

ab	=	h1ch2d	=	h1(ch2)d

But	ch2	∈	cH	=	Hc	(the	last	equality	is	true	by	Theorem	1).	Thus,	ch2	=	h3c	for	some	h3	∈	H.	Returning
to	ab,

ab	=	h1(ch2)d	=	h1(h3c)d	=	(h1h3)(cd)

and	this	last	element	is	clearly	in	H(cd).
We	have	shown	that	ab	∈	H(cd).	Thus,	by	Property	(1)	in	Chapter	13,	H(ab)	=	H(cd).	■
We	are	now	ready	to	proceed	with	the	construction	promised	at	the	beginning	of	the	chapter.	Let	G

be	a	group	and	let	H	be	a	normal	subgroup	of	G.	Think	of	the	set	which	consists	of	all	the	cosets	of	H.
This	set	is	conventionally	denoted	by	the	symbol	G/H.	Thus,	if	Ha,	Hb,	He,.	.	.	are	cosets	of	H,	then

G/H	=	{Ha,	Hb,	Hc,.	.	.}

We	have	just	seen	that	coset	multiplication	is	a	valid	operation	on	this	set.	In	fact,

Theorem	3	G/H	with	coset	multiplication	is	a	group.

PROOF:	Coset	multiplication	is	associative,	because

The	identity	element	of	G/H	is	H	=	He,	for	Ha	·	He	=	Ha	and	He	·	Ha	=	Ha	for	every	coset	Ha.
Finally,	the	inverse	of	any	coset	Ha	is	the	coset	Ha−1,	because	Ha	·	Ha−1	=	Haa−1	=	He	and	Ha−1	·

Ha	=	Ha−1	a	He.
The	group	G/H	is	called	the	factor	group,	or	quotient	group	of	G	by	H.
And	now,	the	pièce	de	résistance:



Theorem	4	G/H	is	a	homomorphic	image	of	G.

PROOF:	The	most	obvious	function	from	G	to	G/H	is	the	function	f	which	carries	every	element	to
its	own	coset,	that	is,	the	function	given	by

f(x)	=	Hx

This	function	is	a	homomorphism,	because

f(xy)	=	Hxy	=	Hx	·	Hy	=	f(x)f(y)

f	is	called	the	natural	homomorphism	from	G	onto	G/H.	Since	there	is	a	homomorphism	from	G	onto
G/H,	G/H	is	a	homomorphic	image	of	G.	■

Thus,	when	we	construct	quotient	groups	of	G,	we	are,	in	fact,	constructing	homomorphic	images
of	 G.	 The	 quotient	 group	 construction	 is	 useful	 because	 it	 is	 a	 way	 of	 actually	 manufacturing
homomorphic	images	of	any	group	G.	In	fact,	as	we	will	soon	see,	it	is	a	way	of	manufacturing	all	the
homomorphic	images	of	G.

Our	 first	 example	 is	 intended	 to	 clarify	 the	 details	 of	 quotient	 group	 construction.	 Let	 	 be	 the
group	of	the	integers,	and	let	〈6〉	be	the	cyclic	subgroup	of	 	which	consists	of	all	 the	multiples	of	6.
Since	 	 is	abelian,	and	every	subgroup	of	an	abelian	group	 is	normal,	〈6〉	 is	a	normal	subgroup	of	 .
Therefore,	we	may	form	the	quotient	group	 /〈6〉.	The	elements	of	this	quotient	group	are	all	the	cosets
of	the	subgroup	〈6〉,	namely:

These	are	all	the	different	cosets	of	〈6〉,	for	it	is	easy	to	see	that	〈6〉	+	6	=	〈6〉	+	0,	〈6〉	+	7	=	〈6〉	+	1,
〈6〉	+	8	=	〈6〉	+	2,	and	so	on.

Now,	 the	operation	on	 	 is	 denoted	by	+,	 and	 therefore	we	will	 call	 the	operation	on	 the	 cosets
coset	addition	 rather	 than	coset	multiplication.	But	nothing	 is	changed	except	 the	name;	 for	example,
the	coset	〈6〉	+	1	added	to	the	coset	〈6〉	+	2	is	the	coset	〈6〉	+	3.	The	coset	〈6〉	+	3	added	to	the	coset
〈6〉	+	4	is	the	coset	〈6〉	+	7,	which	is	the	same	as	〈6〉	+	1.	To	simplify	our	notation,	let	us	agree	to	write
the	cosets	in	the	following	shorter	form:

Then	 /〈6〉	 consists	of	 the	 six	 elements	 	and	 ,	 and	 its	 operation	 is	 summarized	 in	 the
following	table:



The	reader	will	perceive	immediately	the	similarity	between	this	group	and	 6.	As	a	matter	of	fact,	the
quotient	group	construction	of	 /〈6〉	 is	considered	 to	be	 the	rigorous	way	of	constructing	 6.	So	from
now	on,	we	will	consider	 6	to	be	the	same	as	 /〈6〉;	and,	in	general,	we	will	consider	 n	to	be	the	same
as	 /〈n〉.	In	particular,	we	can	see	that	for	any	n,	 n	is	a	homomorphic	image	of	 .

Let	us	repeat:	The	motive	for	the	quotient	group	construction	is	that	it	gives	us	a	way	of	actually
producing	all	the	homomorphic	images	of	any	group	G.	However,	what	is	even	more	fascinating	about
the	quotient	group	construction	 is	 that,	 in	practical	 instances,	we	can	often	choose	H	 so	as	 to	“factor
out”	unwanted	properties	of	G,	and	preserve	 in	G/H	only	“desirable”	 traits.	 (By	“desirable”	we	mean
desirable	within	the	context	of	some	specific	application	or	use.)	Let	us	look	at	a	few	examples.

First,	we	will	need	two	simple	properties	of	cosets,	which	are	given	in	the	next	theorem.

Theorem	5	Let	G	be	a	group	and	H	a	subgroup	of	G.	Then

(i) Ha	=	Hb	 iff	 ab−1	∈	H	 and
(ii) Ha	=	H	 iff	 a	∈	H

PROOF:	If	Ha	=	Hb,	then	a	∈	Hb,	so	a	=	hb	for	some	h	∈	H.	Thus,

ab−1	=	h	∈	H

If	ab−1	∈	H,	then	ab−1	=	h	for	h	∈	H,	and	 therefore	a	=	hb	∈	Hb.	 It	 follows	by	Property	(1)	of
Chapter	13	that	Ha	=	Hb.

This	proves	(i).	It	follows	that	Ha	=	He	iff	ae−1	=	a	∈	H,	which	proves	(ii).	■
For	our	first	example,	let	G	be	an	abelian	group	and	let	H	consist	of	all	the	elements	of	G	which

have	 finite	order.	 It	 is	 easy	 to	 show	 that	H	 is	 a	 subgroup	of	G.	 (The	 details	may	 be	 supplied	 by	 the
reader.)	Remember	that	in	an	abelian	group	every	subgroup	is	normal;	hence	H	is	a	normal	subgroup	of
G,	 and	 therefore	we	may	 form	 the	 quotient	 group	G/H.	We	will	 show	 next	 that	 in	G/H,	no	 element
except	the	neutral	element	has	finite	order.

For	suppose	G/H	 has	an	element	Hx	 of	 finite	order.	Since	 the	neutral	 element	of	G/H	 is	H,	 this
means	there	is	an	integer	m	≠	0	such	that	(Hx)m	=	H,	that	is,	Hxm	=	H.	Therefore,	by	Theorem	5(ii),	xm
∈	H,	so	xm	has	finite	order,	say	t:

(xm)t	=	xmt	=	e

But	then	x	has	finite	order,	so	x	∈	H.	Thus,	by	Theorem	5(ii),	Hx	=	H.	This	proves	that	in	G/H,	the	only
element	Hx	of	finite	order	is	the	neutral	element	H.

Let	us	recapitulate:	If	H	is	the	subgroup	of	G	which	consists	of	all	the	elements	of	G	which	have



finite	order,	then	in	G/H,	no	element	(except	the	neutral	element)	has	finite	order.	Thus,	in	a	sense,	we
have	“factored	out”	all	 the	elements	of	 finite	order	(they	are	all	 in	H)	and	produced	a	quotient	group
GIH	whose	elements	all	have	infinite	order	(except	for	the	neutral	element,	which	necessarily	has	order
1).

Our	next	 example	may	bring	out	 this	 idea	even	more	clearly.	Let	G	 be	 an	arbitrary	group;	by	a
commutator	of	G	we	mean	any	element	of	the	form	aba−1b−1	where	a	and	b	are	in	G.	The	reason	such	a
product	is	called	a	commutator	is	that

aba−1b−1	=	e	 iff	 ab	=	ba

In	other	words,	aba−1b−1	reduces	to	the	neutral	element	whenever	a	and	b	commute—and	only	in	that
case!	Thus,	in	an	abelian	group	all	the	commutators	are	equal	to	e.	In	a	group	which	is	not	abelian,	the
number	of	distinct	commutators	may	be	regarded	as	a	measure	of	the	extent	to	which	G	departs	 from
being	commutative.	(The	fewer	the	commutators,	the	closer	the	group	is	to	being	an	abelian	group.)

We	will	see	in	a	moment	that	 if	H	 is	a	subgroup	of	G	which	contains	all	 the	commutators	of	G,
then	G/H	 is	 abelian!	 What	 this	 means,	 in	 a	 fairly	 accurate	 sense,	 is	 that	 when	 we	 factor	 out	 the
commutators	 of	 G	we	 get	 a	 quotient	 group	which	 has	 no	 commutators	 (except,	 trivially,	 the	 neutral
element)	and	which	is	therefore	abelian.

To	say	that	G/H	is	abelian	is	to	say	that	for	any	two	elements	Hx	and	Hy	in	G/H,	HxHy	=	HyHx;
that	is,	Hxy	=	Hyx.	But	by	Theorem	5(ii),

Hxy	=	Hyx	 iff	 xy(yx)−1	∈	H

Now	xy(yx)−1	is	the	commutator	xyx−1y−1;	so	if	all	commutators	are	in	H,	then	G/H	is	abelian.

EXERCISES

A.	Examples	of	Finite	Quotient	Groups
In	each	of	the	following,	G	is	a	group	and	H	is	a	normal	subgroup	of	G.	List	the	elements	of	G/H	and
then	write	the	table	of	G/H.

Example	G	=	 6	 and	 H	=	{0,	3}

The	elements	of	G/H	are	the	three	cosets	H	=	H	+	0	=	{0,	3},	H	+	1	=	{1,	4},	and	H	+	2	=	{2,	5}.	(Note
that	H	+	3	is	the	same	as	H	+	0,	H	+	4	is	the	same	as	H	+	1,	and	H	+	5	is	the	same	as	H	+	2.)	The	table
of	G/H	is

1	G	=	 10,	H	=	{0,5}.	(Explain	why	G/H	≅	Z5.)
2	G	=	S3,	H	=	{ε,	β,	δ}.



3	G	=	D4,	H	=	{R0,	R2}.	(See	page	73.)
4	G	=	D4,	H	=	{R0,	R2,	R4,	R5}.
5	G	=	 4	×	 2,	H	=	〈(0,1)〉	=	the	subgroup	of	 4	×	 2	generated	by	(0,1).
6	G	=	P3,	H	=	{ø,	{1}}.	(P3	is	the	group	of	subsets	of	{1,	2,	3}.)

B.	Examples	of	Quotient	Groups	of	 	×	
In	each	of	the	following,	H	is	a	subset	of	 	×	 .
(a)	Prove	that	H	is	a	normal	subgroup	of	 	×	 .	(Remember	that	every	subgroup	of	an	abelian	group	is

normal.)
(b)	In	geometrical	terms,	describe	the	elements	of	the	quotient	group	G/H.
(c)	In	geometrical	terms	or	otherwise,	describe	the	operation	of	G/H.
1	H	=	{(x,0):x	∈	 }
2	H	=	{(x,	y):y	=	−x}
3	H	=	{(x,	y):y	=	2x}

C.	Relating	Properties	of	H	to	Properties	of	G/H
In	parts	1-5	below,	G	is	a	group	and	if	is	a	normal	subgroup	of	G.	Prove	the	following	(Theorem	5	will
play	a	crucial	role):

1	If	x2	∈	H	for	every	x	∈	G,	then	every	element	of	G/H	is	its	own	inverse.	Conversely,	if	every	element
of	G/H	is	its	own	inverse,	then	x2	∈	H	for	all	x	∈	G.
2	Let	m	be	a	fixed	integer.	If	xm	∈	H	for	every	x	∈	G,	then	the	order	of	every	element	in	G/H	is	a	divisor
of	m.	Conversely,	if	the	order	of	every	element	in	G/H	is	a	divisor	of	m,	then	xm	∈	H	for	every	x	∈	G.
3	Suppose	that	for	every	x	∈	G,	there	is	an	integer	n	such	that	xn	∈	H;	then	every	element	of	G/H	has
finite	 order.	 Conversely,	 if	 every	 element	 of	G/H	 has	 finite	 order,	 then	 for	 every	 x	∈	G	 there	 is	 an
integer	n	such	that	xn	∈	H.
#	4	Every	element	of	G/H	has	a	square	root	iff	for	every	x	∈	G,	there	is	some	y	∈	G	such	that	xy2	∈	H.
5	G/H	is	cyclic	iff	there	is	an	element	a	∈	G	with	the	following	property:	for	every	x	∈	G,	there	is	some
integer	n	such	that	xan	∈	H.
6	If	G	is	an	abelian	group,	let	Hp	be	the	set	of	all	x	∈	H	whose	order	is	a	power	of	p.	Prove	that	Hp	is	a
subgroup	of	G.	Prove	that	G/Hp	has	no	elements	whose	order	is	a	nonzero	power	of	p
7	 (a)	If	G/H	is	abelian,	prove	that	H	contains	all	the	commutators	of	G.
(b)	Let	K	be	a	normal	subgroup	of	G,	and	H	a	normal	subgroup	of	K.	If	G/H	 is	abelian,	prove	 that

G/K	and	K/H	are	both	abelian.

D.	Properties	of	G	Determined	by	Properties	of	G/H	and	H
There	are	some	group	properties	which,	if	they	are	true	in	G/H	and	in	H,	must	be	true	in	G.	Here	is	a
sampling.	Let	G	be	a	group,	and	H	a	normal	subgroup	of	G.	Prove	the	following:

1	If	every	element	of	G/H	has	finite	order,	and	every	element	of	H	has	finite	order,	then	every	element
of	G	has	finite	order.



2	 If	 every	 element	 of	G/H	 has	 a	 square	 root,	 and	 every	 element	 of	H	 has	 a	 square	 root,	 then	 every
element	of	G	has	a	square	root.	(Assume	G	is	abelian.)
3	Let	p	be	a	prime	number.	If	G/H	and	H	are	p-groups,	then	G	 is	a	p-group.	A	group	G	 is	called	a	p-
group	if	the	order	every	element	x	in	G	is	a	power	of	p.
#	4	 If	G/H	 and	H	 are	 finitely	 generated,	 then	G	 is	 finitely	 generated.	 (A	 group	 is	 said	 to	 be	 finitely
generated	if	it	is	generated	by	a	finite	subset	of	its	elements.)

E.	Order	of	Elements	in	Quotient	Groups
Let	G	be	a	group,	and	H	a	normal	subgroup	of	G.	Prove	the	following:

1	For	each	element	a	∈	G,	the	order	of	the	element	Ha	in	G/H	is	a	divisor	of	the	order	of	a	in	G.	(HINT:
Use	Chapter	14,	Exercise	F1.)
2	If	(G:	H)	=	m,	the	order	of	every	element	of	G/H	is	a	divisor	of	m.
3	If	(G:	H)	=	p,	where	p	is	a	prime,	then	the	order	of	every	element	a	∉	H	in	G	is	a	multiple	of	p.	(Use
part	1.)
4	If	G	has	a	normal	subgroup	of	index	p,	where	p	is	a	prime,	then	G	has	at	least	one	element	of	order	p.
5	If	(G:	H)	=	m,	then	am	∈	G	for	every	a	∈	G.
#	6	In	 / ,	every	element	has	finite	order.

†	F.	Quotient	of	a	Group	by	Its	Center
The	center	of	a	group	G	 is	 the	normal	 subgroup	C	of	G	 consisting	of	 all	 those	elements	of	G	 which
commute	with	every	element	of	G.	Suppose	the	quotient	group	G/C	is	a	cyclic	group;	say	it	is	generated
by	the	element	Ca	of	G/C.	Prove	parts	1-3:

1	For	every	x	∈	G,	there	is	some	integer	m	such	that	Cx	=	Cam.
2	For	every	x	∈	G,	there	is	some	integer	m	such	that	x	=	cam,	where	c	∈	C.
3	For	any	two	elements	x	and	y	in	G,	xy	=	yx.	(HINT:	Use	part	2	to	write	x	=	cam,	y	=	c′an,	and	remember
that	c,	c′	∈	C.)
4	Conclude	that	if	G/C	is	cyclic,	then	G	is	abelian.

†	G.	Using	the	Class	Equation	to	Determine	the	Size	of	the	Center
{Prerequisite:	Chapter	13,	Exercise	I.)

Let	G	be	a	finite	group.	Elements	a	and	b	in	G	are	called	conjugates	of	one	another	(in	symbols,	a
~	b)	 iff	a	 =	xbx−1	 for	 some	x	∈	G	 (this	 is	 the	 same	 as	b	−	x−1ax).	 The	 relation	~	 is	 an	 equivalence
relation	 in	 G;	 the	 equivalence	 class	 of	 any	 element	 a	 is	 called	 its	 conjugacy	 class.	 Hence	 G	 is
partitioned	into	conjugacy	classes	(as	shown	in	the	diagram);	the	size	of	each	conjugacy	class	divides
the	order	of	G.	(For	these	facts,	see	Chapter	13,	Exercise	I.)



“Each	element	of	the	center	C	is	alone	in	its	conjugacy	class.”

Let	S1,	S2,.	.	.,	St	be	the	distinct	conjugacy	classes	of	G,	and	let	k1,	k2,..	.,	kt	be	their	sizes.	Then	|G|
=	k1	+	k2	+	…	+	kt	(This	is	called	the	class	equation	of	G.)

Let	G	be	a	group	whose	order	is	a	power	of	a	prime	p,	say	|G|	=	pk.	Let	C	denote	the	center	of	G.
Prove	parts	1-3:

1	The	conjugacy	class	of	a	contains	a	(and	no	other	element)	iff	a	∈	C.
2	Let	c	be	the	order	of	C.	Then	|G|	=	c	+	ks	+	ks	+	1	+	 ···	+	kt,	where	ks,.	 .	 .,	kt	are	 the	sizes	of	all	 the
distinct	conjugacy	classes	of	elements	x	∉	C.
3	For	each	i	∈	{s,	s	+	1,...,	t},	ki	is	equal	to	a	power	of	p.	(See	Chapter	13,	Exercise	I6.)
4	Solving	the	equation	|G|	=	c	+	ks	+	·	·	·	+	kt	for	c,	explain	why	c	is	a	multiple	of	p
We	may	conclude	 from	part	4	 that	C	must	 contain	more	 than	 just	 the	one	element	e;	 in	 fact,	 |C|	 is	a
multiple	of	p.
5	Prove:	If	|G|	=	p2,	G	must	be	abelian.	(Use	the	preceding	Exercise	F.)
#	6	Prove:	If	|G|	=	p2,	then	either	G	≅	 p2	or	G	≅	∈p	×	∈p.

†	H.	Induction	on	|G|:	An	Example
Many	theorems	of	mathematics	are	of	the	form	“P(n)	is	true	for	every	positive	integer	n.”	[Here,	P(n)	is
used	as	a	symbol	to	denote	some	statement	involving	n.]	Such	theorems	can	be	proved	by	induction	as
follows:
(a)	Show	that	P(n)	is	true	for	n	=	1.
(b)	For	any	fixed	positive	integer	k,	show	that,	if	P(n)	is	true	for	every	n	<	k,	then	P(n)	must	also	be	true

for	n	=	k.
If	we	can	show	(a)	and	(b),	we	may	safely	conclude	that	P(n)	is	true	for	all	positive	integers	n.

Some	theorems	of	algebra	can	be	proved	by	induction	on	the	order	n	of	a	group.	Here	is	a	classical
example:	Let	G	 be	 a	 finite	 abelian	group.	We	will	 show	 that	G	must	 contain	 at	 least	 one	 element	of



order	p,	for	every	prime	factor	p	of	|G|.	If	|G|	=	1,	this	is	true	by	default,	since	no	prime	p	can	be	a	factor
of	1.	Next,	let	|G|	=	k,	and	suppose	our	claim	is	true	for	every	abelian	group	whose	order	is	less	than	k.
Let	p	be	a	prime	factor	of	k.

Take	any	element	a	≠	e	in	G.	If	ord(a)	=	p	or	a	multiple	of	p,	we	are	done!

1	If	ord(a)	=	tp	(for	some	positive	integer	t),	what	element	of	G	has	order	p?
2	Suppose	ord(a)	is	not	equal	to	a	multiple	of	p.	Then	G/〈a〉	is	a	group	having	fewer	than	k	elements.
(Explain	why.)	The	order	of	G/〈a〉	is	a	multiple	of	p.	(Explain	why.)
3	Why	must	G/(a)	have	an	element	of	order	p?
4	Conclude	that	G	has	an	element	of	order	p.	(HINT:	Use	Exercise	El.)



CHAPTER

SIXTEEN
THE	FUNDAMENTAL	HOMOMORPHISM	THEOREM

Let	G	be	any	group.	In	Chapter	15	we	saw	that	every	quotient	group	of	G	is	a	homomorphic	image	of
G.	Now	we	will	see	that,	conversely,	every	homomorphic	image	of	G	 is	a	quotient	group	of	G.	More
exactly,	every	homomorphic	image	of	G	is	isomorphic	to	a	quotient	group	of	G.

It	 will	 follow	 that,	 for	 any	 groups	G	 and	H,	H	 is	 a	 homomorphic	 image	 of	G	 iff	H	 is	 (or	 is
isomorphic	 to)	 a	quotient	group	of	G.	Therefore,	 the	notions	of	homomorphic	 image	 and	 of	quotient
group	are	interchangeable.

The	thread	of	our	reasoning	begins	with	a	simple	theorem.

Theorem	1	Let	f:	G	→	H	be	a	homomorphism	with	kernel	K.	Then

f(a)	=	f(b) iff Ka	=	Kb

(In	other	words,	any	two	elements	a	and	b	in	G	have	the	same	image	under	f	 iff	 they	are	 in	 the	same
coset	of	K.)

Indeed,

What	does	this	theorem	really	tell	us?	It	says	that	if	f	is	a	homomorphism	from	G	to	H	with	kernel
K,	then	all	the	elements	in	any	fixed	coset	of	K	have	the	same	image,	and,	conversely,	elements	which
have	the	same	image	are	in	the	same	coset	of	K.



It	 is	 therefore	clear	already	 that	 there	 is	a	one-to-one	correspondence	matching	cosets	of	K	with
elements	 in	H.	 It	 remains	 only	 to	 show	 that	 this	 correspondence	 is	 an	 isomorphism.	 But	 first,	 how
exactly	does	this	correspondence	match	up	specific	cosets	of	K	with	specific	elements	of	H?	Clearly,	for
each	x,	the	coset	Kx	is	matched	with	the	element	f(x).	Once	this	is	understood,	the	next	theorem	is	easy.

Theorem	2	Let	f:	G	→	H	be	a	homomorphism	of	G	onto	H.	If	K	is	the	kernel	of	f,	then

H	≅	G/K

PROOF:	To	show	that	G/K	is	isomorphic	to	H,	we	must	look	for	an	isomorphism	from	G/K	to	H.	We
have	just	seen	that	there	is	a	function	from	G/K	to	H	which	matches	each	coset	Kx	with	the	element	f(x);
call	this	function	ϕ.	Thus,	ϕ	is	defined	by	the	identity

ϕ(Kx)	=	f(x)

This	definition	does	not	make	 it	obvious	 that	ϕ(Kx)	 is	uniquely	defined.	 (If	 it	 is	 not,	 then	we	cannot
properly	call	ϕ	a	function.)	We	must	make	sure	 that	 if	Ka	 is	 the	same	coset	as	Kb,	 then	ϕ(Ka)	 is	 the
same	as	ϕ(Kb):	that	is,

if	 Ka	=	Kb	 then	 f(a)	=	f(b)

As	a	matter	of	fact,	this	is	true	by	Theorem	1.
Now,	let	us	show	that	ϕ	is	an	isomorphism:

ϕ	is	injective:	If	ϕ(Ka)	=	ϕ(Kb	then	f(a)	=	f(b);	so	by	Theorem	1,	Ka	=	Kb.
ϕ	is	surjective,	because	every	element	of	H	is	of	the	form	f(x)	=	ϕ(Kx).	Finally,	ϕ(Ka	·	Kb)	=	ϕ(Kab)	=

f(ab)	=	f(a)f(b)	=	ϕ(Ka)ϕ(Kb).
Thus,	ϕ	is	an	isomorphism	from	G/K	onto	H.	■

Theorem	 2	 is	 often	 called	 the	 fundamental	 homomorphism	 theorem.	 It	 asserts	 that	 every
homomorphic	image	of	G	is	isomorphic	to	a	quotient	group	of	G.	Which	specific	quotient	group	of	G?
Well,	if	f	 is	a	homomorphism	from	G	onto	H,	then	H	 is	isomorphic	to	the	quotient	group	of	G	by	 the
kernel	of	f

The	fact	that	f	is	a	homomorphism	from	G	onto	H	may	be	symbolized	by	writing

Furthermore,	the	fact	that	K	is	the	kernel	of	this	homomorphism	may	be	indicated	by	writing



Thus,	in	capsule	form,	the	fundamental	homomorphism	theorem	says	that

Let	us	see	a	few	examples:
We	saw	in	the	opening	paragraph	of	Chapter	14	that

is	 a	 homomorphism	 from	 6	 onto	 3.	 Visibly,	 the	 kernel	 of	 f	 is	 {0,	 3},	 which	 is	 the	 subgroup	 of	 6
generated	by	〈3〉,	that	is,	the	subgroup	(3).	This	situation	may	be	symbolized	by	writing

We	conclude	by	Theorem	2	that

3	≅	 6/〈3〉

For	 another	 kind	of	 example,	 let	G	 and	H	 be	 any	 groups	 and	 consider	 their	 direct	 product	G	×
H.Remember	that	G	×	H	consists	of	all	the	ordered	pairs	(x,	y)	as	x	ranges	over	G	and	y	ranges	over	H.
You	multiply	ordered	pairs	by	multiplying	corresponding	components;	that	is,	the	operation	on	G	×	H	is
given	by

(a,	b)	·	(c,	d)	=	(ac,	bd)

Now,	let	f	be	the	function	from	G	×	H	onto	H	given	by

f(x,	y)	=	y

It	is	easy	to	check	that	f	is	a	homomorphism.	Furthermore,	(x,	y)	is	in	the	kernel	of	f	iff	f	(x,	y)	=	y	=	e.
This	means	that	the	kernel	of	f	consists	of	all	the	ordered	pairs	whose	second	component	is	e.	Call	this
kernel	G*;	then

G*	=	{(x,	e):	x	∈	G}

We	symbolize	all	this	by	writing

By	the	fundamental	homomorphism	theorem,	we	deduce	that	H	≅	(G	×	H)/G*.[It	is	easy	to	see	that	G*
is	an	isomorphic	copy	of	G;	thus,	identifying	G*	with	G,	we	have	shown	that,	roughly	speaking,	(G	×
H)/G	≅	H.]

Other	uses	of	the	fundamental	homomorphism	theorem	are	given	in	the	exercises.

EXERCISES
In	 the	 exercises	which	 follow,	FHT	will	 be	 used	 as	 an	 abbreviation	 for	 fundamental	 homomorphism



theorem.

A.	Examples	of	the	FHT	Applied	to	Finite	Groups
In	 each	 of	 the	 following,	 use	 the	 fundamental	 homomorphism	 theorem	 to	 prove	 that	 the	 two	 given
groups	are	isomorphic.	Then	display	their	tables.

Example	 2	and	 6/〈2〉.

is	a	homomorphism	from	 6	onto	 2.(Do	not	prove	that	f	is	a	homomorphism.)	The	kernel	of	f	is	{0,	2,
4}	=	〈2〉.	Thus,

It	follows	by	the	FHT	that	 2	≅	 6/〈2〉.

1	 5	and	 20/〈5〉.
2	 3	and	 6/〈3〉.
3	 2	and	S3/{ε,	β,	δ}.
4	P2	and	P3/K,	where	K	=	{0,	{c}}.	[HINT:	Consider	the	function	f(C)	=	C	∩	{a,	b}.	P3	is	the	group	of
subsets	of	{a,	b,	c},	and	P2	of	{a,	b}.]

5	 3	and	( 3	×	 3)/K,	where	K	=	{(0,	0),	(1,	1),	(2,	2)}.[HINT:	Consider	the	function	f(a,	b)	=	a	−	b	from	
3	×	 3	to	 3.]

B.	Example	of	the	FHT	Applied	to	 ( )
Let	α:	 ( )	→	 	be	defined	by	α(f)	=	f(l)	and	let	β: ( )	→	 	be	defined	by	β(f)	=	f(2).

1	Prove	that	α	and	β	are	homomorphisms	from	 ( )	onto	 .
2	Let	J	be	the	set	of	all	the	functions	from	 	to	 	whose	graph	passes	through	the	point	(1,	0)	and	let	K
be	the	set	of	all	the	functions	whose	graph	passes	through	(2,	0).Use	the	FHT	to	prove	that	 	≅	 ( )/J
and	 	≅	 ( )/K
3	Conclude	that	 ( )/J	≅	 ( )/K

C.	Example	of	the	FHT	Applied	to	Abelian	Groups
Let	G	be	an	abelian	group.	Let	H	=	{x2:	x	∈	G}	and	K	=	{x	∈	G:	x2	=	e}.

1	Prove	that	f(x)	=	x2	is	a	homomorphism	of	G	onto	H.
2	Find	the	kernel	of	f.
3	Use	the	FHT	to	conclude	that	H	≅	G/K

†	D.	Group	of	Inner	Automorphisms	of	a	Group	G



Let	G	be	a	group.	By	an	automorphism	of	G	we	mean	an	isomorphism	f:	G	→	G.

#	1	The	symbol	Aut(G)	is	used	to	designate	the	set	of	all	the	automorphisms	of	G.Prove	that	the	set	Aut
(G),	with	the	operation	∘	of	composition,	is	a	group	by	proving	that	Aut(G)	is	a	subgroup	of	SG.

2	By	an	inner	automorphism	of	G	we	mean	any	function	ϕa	of	the	following	form:

for	every	x	∈	G ϕa(x)	=	axa−1

Prove	that	every	inner	automorphism	of	G	is	an	automorphism	of	G.
3	Prove	that,	for	arbitrary	a,	b	∈	G.

ϕa	∘	ϕb	=	ϕab and (ϕa)−1	=	ϕa	−	1

4	Let	I(G)	designate	the	set	of	all	the	inner	automorphisms	of	G.	That	is,	I(G)	=	{ϕa:	a	∈	G}.Use	part	3
to	prove	that	I(G)	is	a	subgroup	of	Aut(G).Explain	why	I(G)	is	a	group.
5	By	the	center	of	G	we	mean	the	set	of	all	those	elements	of	G	which	commute	with	every	element	of
G,	that	is,	the	set	C	defined	by

C	=	{a	∈	G:	ax	=	xa	for	every	x	∈	G}

Prove	that	a	∈	C	if	and	only	if	axa−1	=	x	for	every	x	∈	G.
6	Let	h:	G	→	I(G)	be	the	function	defined	by	h(a)	=	ϕa.	Prove	that	h	is	a	homomorphism	from	G	onto
I(G)	and	that	C	is	its	kernel.
7	Use	the	FHT	to	conclude	that	I(G)	is	isomorphic	with	G/C.

†	E.The	FHT	Applied	to	Direct	Products	of	Groups
Let	G	and	H	be	groups.	Suppose	J	is	a	normal	subgroup	of	G	and	K	is	a	normal	subgroup	of	H.

1	Show	that	the	function	f(x,	y)	=	(Jx,	Ky)	is	a	homomorphism	from	G	×	H	onto	(G/J)	×	(H/K).
2	Find	the	kernel	of	f.
3	Use	the	FHT	to	conclude	that	(G	×	H)/(J	×K)	≅	(G/J)	×	(H/K).

†	F.	First	Isomorphism	Theorem
Let	G	be	a	group;	let	H	and	K	be	subgroups	of	G,	with	H	a	normal	subgroup	of	G.	Prove	the	following:

1	H	 	K	is	a	normal	subgroup	of	K
#	2	If	HK	=	{xy:	x	∈	H	and	y	∈	K},	then	HK	is	a	subgroup	of	G.
3	H	is	a	normal	subgroup	of	HK.
4	Every	member	of	the	quotient	group	HK/H	may	be	written	in	the	form	Hk	for	some	k	∈	K.
5	The	function	f(k)	=	Hk	is	a	homomorphism	from	K	onto	HK/H,	and	its	kernel	is	H	 	K
6	By	the	FHT,	K/(H	 	K)	≅	HK/H.	(This	is	referred	to	as	the	first	isomorphism	theorem.)

†	G.	A	Sharper	Cayley	Theorem



If	H	is	a	subgroup	of	a	group	G,	let	X	designate	the	set	of	all	the	left	cosets	of	H	in	G.	For	each	element
a	∈	G,	define	pa:	X	→	X	as	follows:

pa(xH)	=	(ax)H

1	Prove	that	each	pa	is	a	permutation	of	X.
2	Prove	that	h:	G	→	SX	defined	by	h(a)	=	pa	is	a	homomorphism.

#	3	Prove	that	the	set	{a	∈	H:	xax−1∈	H	for	every	x	∈	G},	that	is,	the	set	of	all	the	elements	of	H	whose
conjugates	are	all	in	H,	is	the	kernel	of	h.

4	Prove	that	if	H	contains	no	normal	subgroup	of	G	except	{e},	then	G	is	isomorphic	to	a	subgroup	of
SX.

†	H.	Quotient	Groups	Isomorphic	to	the	Circle	Group
Every	complex	number	a	+	bi	may	be	represented	as	a	point	in	the	complex	plane.

The	unit	circle	in	the	complex	plane	consists	of	all	the	complex	numbers	whose	distance	from	the	origin
is	1;	thus,	clearly,	the	unit	circle	consists	of	all	the	complex	numbers	which	can	be	written	in	the	form

cos	x	+	i	sin	x

for	some	real	number	x.
#	1	For	each	x	∈	 ,	it	is	conventional	to	write	cis	x	=	cos	x	+	i	sin	x.	Prove	that	eis	(x	+	y)	=	(cis	x)(cis	y).
2	Let	T	designate	 the	set	{cis	x:	x	∈	 },	 that	 is,	 the	set	of	all	 the	complex	numbers	 lying	on	 the	unit
circle,	with	the	operation	of	multiplication.	Use	part	1	to	prove	that	T	is	a	group.	(T	is	called	the	circle
group.)
3	Prove	that	f(x)	=	cis	x	is	a	homomorphism	from	 	onto	T.
4	Prove	that	ker	f	=	{2nπ:	n	∈	 }	=	〈2π〉.
5	Use	the	FHT	to	conclude	that	T	≅	 /〈2〉.
6	Prove	that	g(x)	=	cis	2πx	is	a	homomorphism	from	 	onto	T,	with	kernel	 .
7	Conclude	that	T	≅	 / .

†	I.	The	Second	Isomorphism	Theorem
Let	H	and	K	be	normal	subgroups	of	a	group	G,	with	H	 	k	Define	ϕ:	G/H	→	G/K	by	ϕ(Ha)	=	Ka.
Prove	parts	1–4:

1	ϕ	is	a	well-defined	function.	[That	is,	if	Ha	=	Hb,	then	ϕ(Ha)	=	ϕ(Hb).]



2	ϕ	is	a	homomorphism.
3	ϕ	is	surjective.
4	ker	ϕ	K/H
5	Conclude	(using	the	FHT)	that	(G/H)K/H)	≅	G	/K.

†	J.	The	Correspondence	Theorem
Let	f	be	a	homomorphism	from	G	onto	H	with	kernel	K:

If	S	is	any	subgroup	of	H,	let	S*	=	{x	∈G:	f(x)∈	S}.	Prove:
1	S*	is	a	subgroup	of	G.
2	K	 	S*.
3	Let	g	be	the	restriction	of	f	to	S.*[That	is,	g(x)	=	f(x)	for	every	x	∈	S*,	and	S*	 is	 the	domain	of	g.]
Then	g	is	a	homomorphism	from	S*	onto	S,	and	K	=	ker	g.
4	S	≅	S*/K.

†	K.	Cauchy’s	Theorem
Prerequisites:	Chapter	13,	Exercise	I,	and	Chapter	15,	Exercises	G	and	H.

If	G	 is	 a	group	and	p	 is	 any	prime	divisor	 of	 |G|,	 it	will	 be	 shown	here	 that	G	 has	 at	 least	 one
element	of	order	p.	This	has	already	been	shown	for	abelian	groups	in	Chapter	15,	Exercise	H4.	Thus,
assume	here	that	G	is	not	abelian.	The	argument	will	proceed	by	induction;	thus,	let	|G|	=	k,	and	assume
our	claim	is	true	for	any	group	of	order	less	than	k.	Let	C	be	the	center	of	G,	let	Ca	be	the	centralizer	of
a	for	each	a	∈	G,	and	let	k	=	c	+	ks	+	⋯	+	kt	be	the	class	equation	of	G,	as	in	Chapter	15,	Exercise	G2.
1	Prove:	If	p	is	a	factor	of	|Ca|	for	any	a	∈	G,	where	a	∉	C,	we	are	done.	(Explain	why.)
2	Prove	that	for	any	a	∉	C	in	G,	if	p	is	not	a	factor	of	|Ca|,	then	p	is	a	factor	of	(G:	Ca).
3	 Solving	 the	 equation	k	 =	c	 +	ks	 +	⋯	 +	kt	 for	c,	 explain	why	p	 is	 a	 factor	 of	c.	We	 are	 now	done.
(Explain	why.)

†	L.	Subgroups	of	p-Groups	(Prelude	to	Sylow)
Prerequisites:	Exercise	J;	Chapter	15,	Exercises	G	and	H.

Let	pbea	prime	number.	A	p-group	is	any	group	whose	order	is	a	power	of	p.	It	will	be	shown	here
that	if	|G|	=	pk	then	G	has	a	normal	subgroup	of	order	pm	for	every	m	between	1	and	k.	The	proof	is	by
induction	on	|G|;	we	therefore	assume	our	result	is	true	for	all	/^-groups	smaller	than	G.	Prove	parts	1
and	2:
1	There	is	an	element	a	in	the	center	of	G	such	that	ord	(a)	=	p.	(See	Chapter	15,	Exercises	G	and	H.)
2	〈a〉	is	a	normal	subgroup	of	G.
3	Explain	why	it	may	be	assumed	that	G/〈a〉	has	a	normal	subgroup	of	order	pm	−1.
#	4	Use	Exercise	J4	to	prove	that	G	has	a	normal	subgroup	of	order	pm.

SUPPLEMENTARY	EXERCISES



Exercise	sets	M	through	Q	are	included	as	a	challenge	for	the	ambitious	reader.	Two	important	results	of
group	theory	are	proved	in	these	exercises:	one	is	called	Sylow’s	theorem,	the	other	is	called	the	basis
theorem	of	finite	abelian	groups.

†	M.	p-Sylow	Subgroups
Prerequisites:	Exercises	J	and	K	of	this	Chapter,	Exercise	I1	of	Chapter	14,	and	Exercise	D3	of	Chapter
15.

Let	p	be	a	prime	number.	A	finite	group	G	is	called	a	p-group	if	the	order	of	every	element	x	in	G
is	a	power	p.	(The	orders	of	different	elements	may	be	different	powers	of	p.)	If	H	is	a	subgroup	of	any
finite	group	G,	and	H	is	a	p-group,	we	call	H	a	p-subgroip	of	G.	Finally,	if	K	is	a	p-subgroup	of	G,	and
K	is	maximal	(in	the	sense	that	K	is	not	contained	in	any	larger	p-subgroup	of	G),	then	K	is	called	a	p-
Sylow	subgroup	of	G.
1	Prove	that	the	order	of	any	p-group	is	a	power	of	p.(HINT:Use	Exercise	K.)
2	Prove	that	every	conjugate	of	a	p-Sylow	subgroup	of	G	is	a	p-Sylow	subgroup	of	G.

Let	K	be	a	p-Sylow	subgroup	of	G,	and	N	=	N(K)	the	normalizer	of	K.
3	Let	a	∈	N,	and	suppose	the	order	of	Ka	in	N/K	is	a	power	of	p.	Let	S	=	〈Ka〉	be	the	cyclic	subgroup	of
N/K	generated	by	Ka.	Prove	that	N	has	a	subgroup	S*	such	that	S*/K	is	a	p-group.	(HINT:	See	Exercise
J4.)
4	Prove	that	S*	is	a	p-subgroup	of	G	(use	Exercise	D3,	Chapter	15).	Then	explain	why	S*	=	K,	and	why
it	follows	that	Ka	=	K.
5	Use	parts	3	and	4	to	prove:	no	element	of	N/K	has	order	a	power	of	p	(except,	trivially,	the	identity
element).
6	If	a	∈	N	and	the	order	of	p	is	a	power	of	p,	then	the	order	of	Ka	(in	N/K)	is	also	a	power	of	p.	(Why?)
Thus,	Ka	=	K.(Why?)
7	Use	part	6	to	prove:	if	aKa−l	=	K	and	the	order	of	a	is	a	power	of	p,	then	a	∈	K.

†	N.	Sylow’s	Theorem
Prerequisites:	Exercises	K	and	M	of	this	Chapter	and	Exercise	I	of	Chapter	14.

Let	G	be	a	finite	group,	and	K	a	p-Sylow	subgroup	of	G.Let	X	be	the	set	of	all	the	conjugates	of	K.
See	Exercise	M2.	If	C1,	C2	∈	X,	let	C1∼C2	iff	C1	=	aC2a−l	for	some	α	∈	K

1	Prove	that	∼	is	an	equivalence	relation	on	X.
Thus,	∼	partitions	X	into	equivalence	classes.	If	C	∈,	X	let	the	equivalence	class	of	C	be	denoted

by	[C].



2	For	each	C	∈	X,	prove	that	the	number	of	elements	in	[C]	is	a	divisor	of	|K|.	(HINT:	Use	Exercise	I10
of	Chapter	14.)	Conclude	that	for	each	C	∈	X,	the	number	of	elements	in	[C]	is	either	1	or	a	power	of	p.
3	Use	Exercise	M7	to	prove	that	the	only	class	with	a	single	element	is	[K],
4	Use	parts	2	and	3	to	prove	that	the	number	of	elements	in	X	is	kp	+	1,	for	some	integer	k.
5	Use	part	4	to	prove	that	(G:N)	is	not	a	multiple	of	p.
6	Prove	that	(N:	K)	is	not	a	multiple	of	p.	(Use	Exercises	K	and	M5.)
7	Use	parts	5	and	6	to	prove	that	(G:	K)	is	not	a	multiple	of	p.
8	Conclude:	Let	G	be	a	finite	group	of	order	pkm,	where	p	is	not	a	factor	of	m.	Every	p-Sylow	subgroup
K	of	G	has	order	pk.

Combining	part	8	with	Exercise	L	gives
Let	G	 be	 a	 finite	 group	 and	 let	 p	 be	 a	 prime	 number.	For	 each	n	 such	 that	 pn	 divides	 |G|,	G	has	 a
subgroup	of	order	pn.
This	is	known	as	Sylow’s	theorem.

†	O.	Lifting	Elements	from	Cosets
The	purpose	of	this	exercise	is	to	prove	a	property	of	cosets	which	is	needed	in	Exercise	Q.	Let	G	be	a
finite	abelian	group,	and	let	a	be	an	element	of	G	such	that	ord(a)	is	a	multiple	of	ord(x)	for	every	x	∈
G.	Let	H	=	〈a〉.	We	will	prove:
For	every	x	∈	G,	there	is	some	y	∈	G	such	that	Hx	=	Hy	and	ord(y)	=	ord(Hy).
This	means	that	every	coset	of	H	contains	an	element	y	whose	order	is	the	same	as	the	coset’s	order.

Let	x	be	any	element	in	G,	and	let	ord	(a)	=	t,	ord(x)	=	s,	and	ord	(Hx)	=	r.
1	Explain	why	r	is	the	least	positive	integer	such	that	xr	equals	some	power	of	a,	say	xr	=	am.
2	Deduce	from	our	hypotheses	that	r	divides	s,	and	s	divides	t.

Thus,	we	may	write	s	=	ru	and	t	=	sυ,	so	in	particular,	t	=	ruυ.
3	Explain	why	amu	=	e,	and	why	it	follows	that	mu	=	tz	for	some	integer	z.	Then	explain	why	m	=	rυz.
4	Setting	y	=	xa−υz,	prove	that	Hx	=	Hy	and	ord(y)	=	r,	as	required.

†	P.	Decomposition	of	a	Finite	Abelian	Group	into	p-Groups

Let	G	be	an	abelian	group	of	order	pkm,	where	pk	and	m	are	relatively	prime	(that	is,	pk	and	m	have	no
common	 factors	 except	 ±1).	 (REMARK:	 If	 two	 integers	 j	 and	 k	 are	 relatively	 prime,	 then	 there	 are
integers	s	and	t	such	that	sj	+	tk	=	1.	This	is	proved	on	page	220.)

Let	Gpk	 be	 the	 subgroup	of	G	 consisting	 of	 all	 elements	whose	 order	 divides	pk.	Let	Gm	 be	 the
subgroup	of	G	consisting	of	all	elements	whose	order	divides	ra.	Prove:
1	For	any	x	∈	G	and	integers	s	and	t,	xspk	∈	Gm	and	xtm	∈	Gpk.
2	For	every	x	∈	G,	there	are	y	∈	Gpk	and	z	∈	Gm	such	that	x	=	yz.
3	Gpk	 	Gm	=	{e}.
4	G	≅	Gpk	×	Gm.	(See	Exercise	H,	Chapter	14.)
5	Suppose	|G|	has	the	following	factorization	into	primes:	 .	Then	G	≅	G1	×	G2	×	⋯	×
Gn	where	for	each	i	=	1,	…,	n,	Gi	is	a	pi-group.



Q.	Basis	Theorem	for	Finite	Abelian	Groups
Prerequisite:	Exercise	P.

As	a	provisional	definition,	let	us	call	a	finite	abelian	group	“decomposable”	if	there	are	elements
al,	…,	an	∈	G	such	that:
(Dl)	For	every	x	∈	G,	there	are	integers	k1,	…,	kn	such	that	 .	(D2)	If	there	are	integers	l1,
…,	ln	such	that	 	then	 	 .
If	(Dl)	and	(D2)	hold,	we	will	write	G	=	[a1,	a2,	…,	an].	Assume	this	in	parts	1	and	2.
1	Let	G′	be	the	set	of	all	products	 	range	over	 .	Prove	that	G′	is	a	subgroup	of	G,
and	G′	=	[a2,	…,	an].
2	Prove:	G	≅	〈a1〉	×	G′.	Conclude	that	G	≅〈a1〉	×	〈a2〉	×	⋯	×	〈an

In	 the	remaining	exercises	of	 this	set,	 let	p	be	a	prime	number,	and	assume	G	 is	a	 finite	abelian
group	such	that	the	order	of	every	element	in	G	 is	some	power	of	p.	Let	a	∈	G	be	an	element	whose
order	is	the	highest	possible	in	G.	We	will	argue	by	induction	to	prove	that	G	is	“decomposable.”	Let	H
=	〈a〉.
3	Explain	why	we	may	assume	that	G/H	=	[Hb1,	…,	Hbn]	for	some	bl,	…,	bn	∈	G.

By	Exercise	O,	we	may	assume	that	for	each	i	=	1,	…,	n,	ord	(bi)	=	(Hbi).	We	will	show	that	G	=
[a,	b1,	…,	bn].
4	Prove	that	for	every	x	∈	G,	there	are	integers	k0,	k1,	…,	kn	such	that

5	Prove	that	if	 ,	then	 .	Conclude	that	G	=	[a,	b,1,	…,	bn].
6	Use	Exercise	P5,	together	with	parts	2	and	5	above,	to	prove:	Every	finite	abelian	group	G	is	a	direct
product	 of	 cyclic	 groups	 of	 prime	 power	 order.	 (This	 is	 called	 the	 basis	 theorem	 of	 finite	 abelian
groups.)

It	 can	 be	 proved	 that	 the	 above	 decomposition	 of	 a	 finite	 abelian	 group	 into	 cyclic	p-groups	 is
unique,	except	 for	 the	order	of	 the	factors.	We	leave	 it	 to	 the	ambitious	reader	 to	supply	 the	proof	of
uniqueness.



CHAPTER

SEVENTEEN
RINGS:	DEFINITIONS	AND	ELEMENTARY	PROPERTIES

In	 presenting	 scientific	 knowledge	 it	 is	 elegant	 as	well	 as	 enlightening	 to	 begin	with	 the	 simple	 and
move	 toward	 the	more	 complex.	 If	we	build	upon	 a	knowledge	of	 the	 simplest	 things,	 it	 is	 easier	 to
understand	the	more	complex	ones.	In	the	first	part	of	this	book	we	dedicated	ourselves	to	the	study	of
groups—surely	one	of	the	simplest	and	most	fundamental	of	all	algebraic	systems.	We	will	now	move
on,	 and,	 using	 the	 knowledge	 and	 insights	 gained	 in	 the	 study	 of	 groups,	we	will	 begin	 to	 examine
algebraic	systems	which	have	two	operations	instead	of	just	one.

The	most	basic	of	the	two-operational	systems	is	called	a	ring:	it	will	be	defined	in	a	moment.	The
surprising	 fact	 about	 rings	 is	 that,	 despite	 their	 having	 two	 operations	 and	 being	more	 complex	 than
groups,	 their	 fundamental	 properties	 follow	 exactly	 the	 pattern	 already	 laid	 out	 for	 groups.	 With
remarkable,	almost	compelling	ease,	we	will	 find	 two-operational	analogs	of	 the	notions	of	 subgroup
and	quotient	group,	homomorphism	and	isomorphism—as	well	as	other	algebraic	notions—	and	we	will
discover	that	rings	behave	just	like	groups	with	respect	to	these	notions.

The	two	operations	of	a	ring	are	traditionally	called	addition	and	multiplication,	and	are	denoted	as
usual	 by	 +	 and	 ·,	 respectively.	 We	 must	 remember,	 however,	 that	 the	 elements	 of	 a	 ring	 are	 not
necessarily	numbers	(for	example,	there	are	rings	of	functions,	rings	of	switching	circuits,	and	so	on);
and	 therefore	“addition”	does	not	necessarily	 refer	 to	 the	conventional	addition	of	numbers,	nor	does
multiplication	necessarily	 refer	 to	 the	conventional	operation	of	multiplying	numbers.	 In	 fact,	+	and	 ·
are	nothing	more	than	symbols	denoting	the	two	operations	of	a	ring.

By	a	 ring	we	mean	a	 set	A	with	 operations	 called	 addition	 and	multiplication	which	 satisfy	 the
following	axioms:

(i) A	with	addition	alone	is	an	abelian	group.
(ii) Multiplication	is	associative.
(iii) Multiplication	is	distributive	over	addition.	That	is,	for	all	a,	b,	and	c	in	A,

a(b	+	c)	=	ab	+	ac

and

(b	+	c)a	=	ba	+	ca

Since	A	with	addition	alone	is	an	abelian	group,	there	is	in	A	a	neutral	element	for	addition:	it	is	called
the	zero	element	and	 is	written	0.	Also,	every	element	has	an	additive	 inverse	called	 its	negative;	 the



negative	of	a	is	denoted	by	−a.	Subtraction	is	defined	by

a−b	=	a	+	(−b)

The	easiest	examples	of	 rings	are	 the	 traditional	number	systems.	The	set	 	of	 the	 integers,	with
conventional	addition	and	multiplication,	is	a	ring	called	the	ring	of	the	integers.	We	designate	this	ring
simply	with	 the	 letter	 .	 (The	 context	will	make	 it	 clear	whether	we	 are	 referring	 to	 the	 ring	 of	 the
integers	or	the	additive	group	of	the	integers.)

Similarly,	 	is	the	ring	of	the	rational	numbers,	 	the	ring	of	the	real	numbers,	and	 	the	ring	of	the
complex	numbers.	In	each	case,	the	operations	are	conventional	addition	and	multiplication.

Remember	that	 ( )	represents	the	set	of	all	the	functions	from	 	to	 ;	 that	is,	 the	set	of	all	real-
valued	functions	of	a	real	variable.	In	calculus	we	learned	to	add	and	multiply	functions:	if	f	and	g	are
any	two	functions	from	 	to	 ,	their	sum	f	+	g	and	their	product	fg	are	defined	as	follows:

[f	+	g](x)	=	f(x)	+	g(x)	 for	every	real	number	x

and

[fg](x)	=	f(x)g(x)	 for	every	real	number	x

( )	 with	 these	 operations	 for	 adding	 and	 multiplying	 functions	 is	 a	 ring	 called	 the	 ring	 of	 real
functions.	It	is	written	simply	as	 ( ).	On	page	46	we	saw	that	 ( )	with	only	addition	of	functions	is	an
abelian	group.	It	is	left	as	an	exercise	for	you	to	verify	that	multiplication	of	functions	is	associative	and
distributive	over	addition	of	functions.

The	 rings	 ,	 ,	 , ,	 and	 ( )	 are	 all	 infinite	 rings,	 that	 is,	 rings	with	 infinitely	many	 elements.
There	are	also	finite	rings:	rings	with	a	finite	number	of	elements.	As	an	important	example,	consider
the	 group	 n,	 and	 define	 an	 operation	 of	 multiplication	 on	 n	 by	 allowing	 the	 product	ab	 to	 be	 the
remainder	of	the	usual	product	of	integers	a	and	b	after	division	by	n.	(For	example,	in	 5,	2	·	4	=	3,	3	·	3
=	4,	and	4·3	=	2.)	This	operation	is	called	multiplication	modulo	n.	 n	with	addition	and	multiplication
modulo	η	is	a	ring:	the	details	are	given	in	Chapter	19.

Let	A	 be	 any	 ring.	 Since	A	with	 addition	 alone	 is	 an	 abelian	 group,	 everything	we	 know	 about
abelian	groups	 applies	 to	 it.	However,	 it	 is	 important	 to	 remember	 that	A	with	 addition	 is	 an	 abelian
group	in	additive	notation	and,	therefore,	before	applying	theorems	about	groups	to	A,	these	theorems
must	 be	 translated	 into	 additive	 notation.	 For	 example,	 Theorems	 1,	 2,	 and	 3	 of	 Chapter	 4	 read	 as
follows	when	the	notation	is	additive	and	the	group	is	abelian:

a	+	b	=	a	+	c	 implies	 b	=	c	 (1)

a	+	b	=	0	 impliesa	=	−b	 and	 b	=	−a	 (2)

−(a	+	b)	=	−(a)	+	−(b)	 and	−	(−a)	=	a	 (3)

Therefore	Conditions	(1),	(2),	and	(3)	are	true	in	every	ring.
What	 happens	 in	 a	 ring	when	we	multiply	 elements	 by	 zero?	What	 happens	when	we	multiply

elements	by	the	negatives	of	other	elements?	The	next	theorem	answers	these	questions.

Theorem	1	Let	a	and	b	be	any	elements	of	a	ring	A.



(i) a0	=	0	 and	 0a	=	0
(ii) a(−b)	=	−	(ab) 	and	 (−a)b	=	−(ab)
(iii) (−a)(−b)	=	ab
Part	(i)	asserts	 that	multiplication	by	zero	always	yields	zero,	and	parts	(ii)	and	(iii)	state	 the	familiar
rules	of	signs.

PROOF:	To	prove	(i)	we	note	that

Thus,	aa	+	0	=	aa	+	a0.	By	Condition	(1)	above	we	may	eliminate	 the	 term	aa	on	both	sides	of	 this
equation,	and	therefore	0	=	a0.

To	prove	(ii),	we	have

Thus,	a(−b)	+	ab	=	0.	By	Condition	(2)	above	we	deduce	that	a(−b)	=	−	(ab).	The	twin	formula	(−a)b	=
−	(−ab)	is	deduced	analogously.

We	prove	part	(iii)	by	using	part	(ii)	twice:

(−a)(−b)	=	−[a(−b)]	=	−[	−	(ab)]	=	ab	■

The	 general	 definition	 of	 a	 ring	 is	 sparse	 and	 simple.	 However,	 particular	 rings	may	 also	 have
“optional	 features”	 which	 make	 them	 more	 versatile	 and	 interesting.	 Some	 of	 these	 options	 are
described	next.

By	definition,	addition	is	commutative	in	every	ring	but	mutiplication	is	not.	When	multiplication
also	is	commutative	in	a	ring,	we	call	that	ring	a	commutative	ring.

A	ring	A	does	not	necessarily	have	a	neutral	element	for	multiplication.	If	 there	 is	in	A	a	neutral
element	for	multiplication,	it	is	called	the	unity	of	A,	and	is	denoted	by	the	symbol	1.	Thus,	a	.	1	=	a	and
1	.	a	=	a	for	every	a	in	A.	If	A	has	a	unity,	we	call	A	a	ring	with	unity.	The	rings	 , ,	 ,	 ,	and	 ( )	are
all	examples	of	commutative	rings	with	unity.

Incidentally,	 a	 ring	whose	 only	 element	 is	 0	 is	 called	 a	 trivial	 ring;	 a	 ring	with	more	 than	 one
element	is	nontrivial.	In	a	nontrivial	ring	with	unity,	necessarily	1	≠	0.	This	is	true	because	if	1	=	0	and	x
is	any	element	of	the	ring,	then

x	=	x1	=	x0	=	0

In	other	words,	if	1	=	0	then	every	element	of	the	ring	is	equal	to	0;	hence	0	is	the	only	element	of	the
ring.

If	A	 is	 a	 ring	with	unity,	 there	may	be	 elements	 in	A	which	have	a	multiplicative	 inverse.	 Such
elements	are	said	to	be	invertible.	Thus,	an	element	a	is	invertible	in	a	ring	if	there	is	some	x	in	the	ring
such	that



ax	=	xa	=	1

For	example,	in	 	every	nonzero	element	is	invertible:	its	multiplicative	inverse	is	its	reciprocal.	On	the
other	hand,	in	 	the	only	invertible	elements	are	1	and	−1.

Zero	 is	 never	 an	 invertible	 element	 of	 a	 ring	 except	 if	 the	 ring	 is	 trivial;	 for	 if	 zero	 had	 a
multiplicative	inverse	x,	we	would	have	0x	=	1,	that	is,	0	=	1.

If	A	 is	a	commutative	 ring	with	unity	 in	which	every	nonzero	element	 is	 invertible,	A	 is	called	a
field.	Fields	are	of	the	utmost	importance	in	mathematics;	for	example,	 , ,	and	 	are	fields.	There	are
also	 finite	 fields,	such	as	 5	 (it	 is	easy	 to	check	 that	every	nonzero	element	of	 5	 is	 invertible).	Finite
fields	have	beautiful	properties	and	fascinating	applications,	which	will	be	examined	later	in	this	book.

In	 elementary	mathematics	we	 learned	 the	 commandment	 that	 if	 the	 product	 of	 two	 numbers	 is
equal	to	zero,	say

ab	=	0

then	one	of	 the	 two	factors,	either	a	or	b	 (or	both)	must	be	equal	 to	zero.	This	 is	certainly	 true	 if	 the
numbers	are	real	(or	even	complex)	numbers,	but	the	rule	is	not	inviolable	in	every	ring.	For	example,
in	 6,

2·3	=	0

even	though	the	factors	2	and	3	are	both	nonzero.	Such	numbers,	when	they	exist,	are	called	divisors	of
zero.

In	any	ring,	a	nonzero	element	a	is	called	a	divisor	of	zero	if	there	is	a	nonzero	element	b	in	the
ring	such	that	the	product	ab	or	ba	is	equal	to	zero.

(Note	carefully	that	both	factors	have	to	be	nonzero.)	Thus,	2	and	3	are	divisors	of	zero	in	 6;	4	is	also	a
divisor	 of	 zero	 in	 6,	 because	 4·3	 =	 0.	 For	 another	 example,	 let	 2( )	 designate	 the	 set	 of	 all	 2	 ×	 2
matrices	 of	 real	 numbers,	 with	 addition	 and	multiplication	 of	matrices	 as	 described	 on	 page	 8.	 The
simple	task	of	checking	that	 2( )	satisfies	the	ring	axioms	is	assigned	as	Exercise	C1	at	the	end	of	this
chapter.	 2( )	is	rampant	with	examples	of	divisors	of	zero.	For	instance,

hence

are	both	divisors	of	zero	in	 2( ).
Of	course,	there	are	rings	which	have	no	divisors	of	zero	at	all!	For	example,	 , ,	 ,	and	 	do	not

have	any	divisors	of	zero.	It	is	important	to	note	carefully	what	it	means	for	a	ring	to	have	no	divisors	of
zero:	it	means	that	if	the	product	of	two	elements	in	the	ring	is	equal	to	zero,	at	least	one	of	the	factors	is
zero.	(Our	commandment	from	elementary	mathematics!)

It	is	also	decreed	in	elementary	algebra	that	a	nonzero	number	a	may	be	canceled	in	the	equation
ax	=	ay	to	yield	x	=	y.	While	undeniably	true	in	the	number	systems	of	mathematics,	this	rule	is	not	true



in	every	ring.	For	example,	in	 6,

2.5	=	2.2

yet	we	cannot	cancel	the	common	factor	2.	A	similar	example	involving	2×2	matrices	may	be	seen	on
page	9.	When	cancellation	is	possible,	we	say	the	ring	has	the	“cancellation	property.”

A	ring	is	said	to	have	the	cancellation	property	if

ab	=	ac	 or	 ba	=	ca	 implies	 b	=	c

for	any	elements	a,	b,	and	c	in	the	ring	if	a	≠	0.
There	is	a	surprising	and	unexpected	connection	between	the	cancellation	property	and	divisors	of	zero:

Theorem	2	A	ring	has	the	cancellation	property	iff	it	has	no	divisors	of	zero.

PROOF:	 The	 proof	 is	 very	 straightforward.	 Let	 A	 be	 a	 ring,	 and	 suppose	 first	 that	 A	 has	 the
cancellation	property.	To	prove	that	A	has	no	divisors	of	zero	we	begin	by	letting	ab	=	0,	and	show	that
a	or	b	is	equal	to	0.	If	a	=	0,	we	are	done.	Otherwise,	we	have

ab	=	0	=	a0

so	by	the	cancellation	property	(cancelling	a),	b=0.
Conversely,	 assume	 A	 has	 no	 divisors	 of	 zero.	 To	 prove	 that	 A	 has	 the	 cancellation	 property,

suppose	ab	=	ac	where	a	≠	0.	Then

ab	−	ac	=	a(b	−	c)	=	0

Remember,	there	are	no	divisors	of	zero!	Since	a	≠	0,	necessarily	b	−	c	=	0,	so	b	=	c.■
An	 integral	 domain	 is	 defined	 to	 be	 a	 commutative	 ring	 with	 unity	 having	 the	 cancellation

property.	 By	 Theorem	 2,	 an	 integral	 domain	may	 also	 be	 defined	 as	 a	 commutative	 ring	with	 unity
having	 no	 divisors	 of	 zero.	 It	 is	 easy	 to	 see	 that	 every	 field	 is	 an	 integral	 domain.	 The	 converse,
however,	is	not	true:	for	example,	 	is	an	integral	domain	but	not	a	field.	We	will	have	a	lot	to	say	about
integral	domains	in	the	following	chapters.

EXERCISES

A.	Examples	of	Rings
In	each	of	the	following,	a	set	A	with	operations	of	addition	and	multiplication	is	given.	Prove	that	A
satisfies	all	the	axioms	to	be	a	commutative	ring	with	unity.	Indicate	the	zero	element,	the	unity,	and	the
negative	of	an	arbitrary	a.
1	A	is	the	set	 	of	the	integers,	with	the	following	“addition”	⊕	and	“multiplication”	 :

a	⊕	b	=	a	+	b−1	 a	 	b	=	ab	−	(a	+	b)	+	2

2	A	is	the	set	 	of	the	rational	numbers,	and	the	operations	are	⊕	and	 	defined	as	follows:

a	⊕	b	=	a	+	b	+	1	 a	 	b	=	ab	+	a	+	b



#	3	A	is	the	set	 	×	 	of	ordered	pairs	of	rational	numbers,	and	the	operations	are	the	following	addition
⊕	and	multiplication	 :

4	 	with	conventional	addition	and	multiplication.
5	Prove	that	the	ring	in	part	1	is	an	integral	domain.
6	Prove	that	the	ring	in	part	2	is	a	field,	and	indicate	the	multiplicative	inverse	of	an	arbitrary	nonzero
element.
7	Do	the	same	for	the	ring	in	part	3.

B.	Ring	of	Real	Functions
1	Verify	that	 ( )	satisfies	all	the	axioms	for	being	a	commutative	ring	with	unity.	Indicate	the	zero	and
unity,	and	describe	the	negative	of	any	f.
#	2	Describe	the	divisors	of	zero	in	 ( ).
3	Describe	the	invertible	elements	in	 ( ).
4	Explain	why	 ( )	is	neither	a	field	nor	an	integral	domain.

C.	Ring	of	2	×	2	Matrices
Let	 2( )	designate	the	set	of	all	2	×	2	matrices

whose	entries	are	real	numbers	a,	b,	c,	and	d,	with	the	following	addition	and	multiplication:

and

1 Verify	that	 2( )	satisfies	the	ring	axioms.
2 Show	that	 2( )	is	not	commutative	and	has	a	unity.
3 Explain	why	 2( )	is	not	an	integral	domain	or	a	field.

D.	Rings	of	Subsets	of	a	Set
If	D	is	a	set,	then	the	power	set	of	D	is	the	set	PD	of	all	the	subsets	of	D.	Addition	and	multiplication	are
defined	as	follows:	If	A	and	B	are	elements	of	PD	(that	is,	subsets	of	D),	then

A	+	B	=	(A	−	B)∪(B	−	A)	 and	 AB	=	A	∩	B



It	was	shown	in	Chapter	3,	Exercise	C,	that	PD	with	addition	alone	is	an	abelian	group.

#	1	Prove:	PD	is	a	commutative	ring	with	unity.	(You	may	assume	∩	is	associative;	for	the	distributive
law,	use	the	same	diagram	and	approach	as	was	used	to	prove	that	addition	is	associative	in	Chapter	3,
Exercise	C.)

2	Describe	the	divisors	of	zero	in	PD.
3	Describe	the	invertible	elements	in	PD.
4	Explain	why	PD	is	neither	a	field	nor	an	integral	domain.	(Assume	D	has	more	than	one	element.)
5	Give	the	tables	of	P3,	that	is,	PD	where	D	=	{a,	b,	c}	.

E.	Ring	of	Quaternions
A	quaternion(in	matrix	form)	is	a	2	×	2	matrix	of	complex	numbers	of	the	form

1	 Prove	 that	 the	 set	 of	 all	 the	 quaternions,	with	 the	matrix	 addition	 and	multiplication	 explained	 on
pages	7	and	8,	is	a	ring	with	unity.	This	ring	is	denoted	by	the	symbol	 .	Find	an	example	to	show	that	
	is	not	commutative.	(You	may	assume	matrix	addition	and	multiplication	are	associative	and	obey	the

distributive	law.)
2	Let

Show	that	the	quaternion	a,	defined	previously,	may	be	written	in	the	form

α	=	al	+	bi	+	cj	+	dk

(This	is	the	standard	notation	for	quaternions.)
#	3	Prove	the	following	formulas:

i2	=	j2	=	k2	=	−l	 ij	=	−ji	=	k	 jk=−kj	=	i	 ki=−ik=j

4	The	conjugate	of	α	is

The	norm	of	α	is	a2	+	b2	+	c2	+	d2,	and	is	written	∥α∥.Show	directly	(by	matrix	multiplication)	that

Conclude	that	the	multiplicative	inverse	of	α	is	(1/t)	ᾱ.
5	A	skew	field	is	a	(not	necessarily	commutative)	ring	with	unity	in	which	every	nonzero	element	has	a
multiplicative	inverse.	Conclude	from	parts	1	and	4	that	 	is	a	skew	field.



F.	Ring	of	Endomorphisms
Let	G	be	an	abelian	group	in	additive	notation.	An	endomorphism	of	G	is	a	homomorphism	from	G	to
G.	Let	End(G)	denote	the	set	of	all	the	endomorphisms	of	G,	and	define	addition	and	multiplication	of
endomorphisms	as	follows:

1	Prove	that	End(G)	with	these	operations	is	a	ring	with	unity.
2	List	the	elements	of	End( 4),	then	give	the	addition	and	multiplication	tables	for	End( 4).

REMARK:	 The	 endomorphisms	 of	 4	 are	 easy	 to	 find.	Any	 endomorphisms	 of	 4	 will	 carry	 1	 to
either	0,	1,	2,	or	3.	For	example,	take	the	last	case:	if

then	necessarily

hence	f	is	completely	determined	by	the	fact	that

G.	Direct	Product	of	Rings
If	A	and	B	are	rings,	their	direct	product	is	a	new	ring,	denoted	by	A	×	B,	and	defined	as	follows:	A	×	B
consists	of	all	the	ordered	pairs	(x,	y)	where	x	is	in	A	and	y	is	in	B.	Addition	in	A	×	B	consists	of	adding
corresponding	components:

(x1,	y1)	+	(x2,	y2)	=	(x1+x2,	y1+y2)

Multiplication	in	A	×	B	consists	of	multiplying	corresponding	components:

(x1,	y1)	·	(x2,	y2)	=	(x1x2,	y1y2)

1	If	A	and	B	are	rings,	verify	that	A	×	B	is	a	ring.
2	If	A	and	B	are	commutative,	show	that	A	×	Bis	commutative.	If	A	and	B	each	has	a	unity,	show	that	A
×	B	has	a	unity.
3	Describe	carefully	the	divisors	of	zero	in	A	×	B.
#	4	Describe	the	invertible	elements	in	A	×	B.
5	Explain	why	A	×	B	can	never	be	an	integral	domain	or	a	field.	(Assume	A	and	B	each	have	more	than
one	element.)

H.	Elementary	Properties	of	Rings
Prove	parts	1−4:



1	In	any	ring,	a(b	−	c)	=	ab	−	ac	and	(b	−	c)a	=	ba	−	ca.
2	In	any	ring,	if	ab	=	−ba,	then	(a	+	b)2	=	(a	−	b)2	=	a2	+	b2.
3	In	any	integral	domain,	if	a2	=	b2,	then	a	=	±b.
4	In	any	integral	domain,	only	1	and	−1	are	their	own	multiplicative	inverses.	(Note	that	x	=	x−1	iff	x2	=
1.)
5	Show	that	the	commutative	law	for	addition	need	not	be	assumed	in	defining	a	ring	with	unity:	it	may
be	 proved	 from	 the	 other	 axioms.	 [HINT:	 Use	 the	 distributive	 law	 to	 expand	 (a	 +	 b)(1	 +	 1)	 in	 two
different	ways.]
#	6	Let	A	be	any	ring.	Prove	that	if	the	additive	group	of	A	is	cyclic,	then	A	is	a	commutative	ring.
7	Prove:	In	any	integral	domain,	if	an	=	0	for	some	integer	n,	then	a	=	0.

I.	Properties	of	Invertible	Elements
Prove	that	parts	1−5	are	true	in	a	nontrivial	ring	with	unity.
1	If	a	is	invertible	and	ab	=	ac,	then	b	=	c.
2	An	element	a	can	have	no	more	than	one	multiplicative	inverse.
3	If	a2	=	0	then	a	+	1	and	a	−	1	are	invertible.
4	If	a	and	b	are	invertible,	their	product	ab	is	invertible.
5	The	set	S	of	all	the	invertible	elements	in	a	ring	is	a	multiplicative	group.
6	By	part	5,	the	set	of	all	the	nonzero	elements	in	a	field	is	a	multiplicative	group.	Now	use	Lagrange’s
theorem	to	prove	that	in	a	finite	field	with	m	elements,	xm−1	=	1	for	every	x	≠	0.
7	If	ax	=	1,	x	is	a	right	inverse	of	a;	if	ya	=	1,	y	is	a	left	inverse	of	a.	Prove	that	if	a	has	a	right	inverse	y
and	a	left	inverse	y,	then	a	is	invertible,	and	its	inverse	is	equal	to	x	and	to	y.	(First	show	that	yaxa	=	1.)
8	Prove:	In	a	commutative	ring,	if	ab	is	invertible,	then	a	and	b	are	both	invertible.

J.	Properties	of	Divisors	of	Zero
Prove	that	each	of	the	following	is	true	in	a	nontrivial	ring.
1	If	a	≠	±1	and	a2	=	1,	then	a	+	1	and	a	−	1	are	divisors	of	zero.
#	2	If	ab	is	a	divisor	of	zero,	then	a	or	b	is	a	divisor	of	zero.
3	In	a	commutative	ring	with	unity,	a	divisor	of	zero	cannot	be	invertible.
4	Suppose	ab	≠	0	in	a	commutative	ring.	If	either	α	or	is	a	divisor	of	zero,	so	is	ab.
5	Suppose	a	is	neither	0	nor	a	divisor	of	zero.	If	ab	=	ac,	then	b	=	c.
6	A	×	B	always	has	divisors	of	zero.

K.	Boolean	Rings
A	ring	A	is	a	boolean	ring	if	a2	=	a	for	every	a	∈	A.	Prove	that	parts	1	and	2	are	true	in	any	boolean	ring
A.
1 For	every	a	∈	A,	a	=	−a.	[HINT:	Expand	(a	+	a)2.]
2 Use	part	1	to	prove	that	A	is	a	commutative	ring.	[HINT:	Expand	(a	+	b)2.]
In	parts	3	and	4,	assume	A	has	a	unity	and	prove:



3 Every	element	except	0	and	1	is	a	divisor	of	zero.	[Consider	x(x	−	1).]
4 1	is	the	only	invertible	element	in	A.
5 Letting	a	∨	b	=	a	+	b	+	ab	we	have	the	following	in	A:

a	∨	bc	=	(a	∨	b)(a	∨	c)	 a∨	(1	+	a)	=	1	 a∨a	=	a	 a(a	∨	b)	=	a

L.	The	Binomial	Formula
An	important	formula	in	elementary	algebra	is	the	binomial	expansion	formula	for	an	expression	(a	+
b)n.	The	formula	is	as	follows:

where	the	binomial	coefficient

This	theorem	is	true	in	every	commutative	ring.	(If	K	 is	any	positive	integer	and	a	 is	an	element	of	a
ring,	ka	 refers	 to	 the	 sum	a	 +	a	 +	⋯	 +	 a	 with	 k	 terms,	 as	 in	 elementary	 algebra.)	 The	 proof	 of	 the
binomial	theorem	in	a	commutative	ring	is	no	different	from	the	proof	in	elementary	algebra.	We	shall
review	it	here.

The	proof	of	the	binomial	formula	is	by	induction	on	the	exponent	n.	The	formula	is	trivially	true
for	n	=	1.	In	the	induction	step,	we	assume	the	expansion	for	(a	+	b)n	is	as	above,	and	we	must	prove
that

Now,

Collecting	terms,	we	find	that	the	coefficient	of	an	+	1	−kbk	is

By	direct	computation,	show	that

It	will	follow	that	(a	+	b)n	+	1	is	as	claimed,	and	the	proof	is	complete.



M.	Nilpotent	and	Unipotent	Elements
An	element	a	of	a	ring	is	nilpotent	if	an	=	0	for	some	positive	integer	n.
1	In	a	ring	with	unity,	prove	that	if	a	is	nilpotent,	then	a	+1	and	a	−	1	are	both	invertible.	[HINT:	Use	the
factorization

1	−	an	=	(1	−	a)(1	+	a	+	a2	+	⋯	+	a	n−1)

for	1	−	a,	and	a	similar	formula	for	1	+	a.]
2	 In	 a	 commutative	 ring,	 prove	 that	 any	 product	 xa	 of	 a	 nilpotent	 element	 a	 by	 any	 element	 x	 is
nilpotent.
#	3	In	a	commutative	ring,	prove	that	the	sum	of	two	nilpotent	elements	is	nilpotent.	(HINT:	You	must
use	the	binomial	formula;	see	Exercise	L.)

An	element	a	of	a	ring	is	unipotent	iff	1	−	a	is	nilpotent.

4	In	a	commutative	ring,	prove	that	the	product	of	two	unipotent	elements	a	and	b	is	unipotent.	[HINT:
Use	the	binomial	formula	to	expand	1	−	ab	=	(1	−	a)	+	a(1	−	b)	to	power	n	+	m.]
5	In	a	ring	with	unity,	prove	that	every	unipotent	element	is	invertible.	(HINT:	Use	Part	1.)



CHAPTER

EIGHTEEN
IDEALS	AND	HOMOMORPHISMS

We	have	already	seen	several	examples	of	smaller	rings	contained	within	larger	rings.	For	example,	 	is
a	ring	inside	the	larger	ring	 ,	and	 	itself	is	a	ring	inside	the	larger	ring	 .	When	a	ring	B	is	part	of	a
larger	ring	A,	we	call	B	a	subring	of	A.	The	notion	of	subring	is	the	precise	analog	for	rings	of	the	notion
of	subgroup	for	groups.	Here	are	the	relevant	definitions:

Let	A	be	a	ring,	and	B	a	nonempty	subset	of	A.	If	the	sum	of	any	two	elements	of	B	is	again	in	B,
then	B	is	closed	with	respect	to	addition.	If	the	negative	of	every	element	of	B	is	in	B,	then	B	is	closed
with	respect	to	negatives.	Finally,	if	the	product	of	any	two	elements	of	B	is	again	in	B,	then	B	is	closed
with	 respect	 to	 multiplication.	 B	 is	 called	 a	 subring	 of	 A	 if	 B	 is	 closed	 with	 respect	 to	 addition,
multiplication,	and	negatives.	Why	is	B	then	called	a	subring	of	A?	Quite	elementary:

If	a	nonempty	subset	B	⊆	A	is	closed	with	respect	to	addition,	multiplication,	and	negatives,	then	B
with	the	operations	of	A	is	a	ring.

This	fact	is	easy	to	check:	If	a,	b,	and	c	are	any	three	elements	of	B,	then	a,	b,	and	c	are	also	elements	of
A	because	B	⊆	A.	But	A	is	a	ring,	so

Thus,	in	B	addition	and	multiplication	are	associative	and	the	distributive	law	is	satisfied.	Now,	B	was
assumed	to	be	nonempty,	so	there	is	an	element	b	∈	B	but	B	is	closed	with	respect	to	negatives,	so	−b	is
also	in	B.	Finally,	B	is	closed	with	respect	to	addition;	hence	b	+	(−b)	∈	B.	That	is,	0	is	in	B.	Thus,	B
satisfies	all	the	requirements	for	being	a	ring.

For	example,	 	is	a	subring	of	 	because	the	sum	of	two	rational	numbers	is	rational,	the	product
of	two	rational	numbers	is	rational,	and	the	negative	of	every	rational	number	is	rational.

By	the	way,	if	B	is	a	nonempty	subset	of	A,	there	is	a	more	compact	way	of	checking	that	B	is	a
subring	of	A	:

B	is	a	subring	of	A	if	and	only	if	B	is	closed	with	respect	to	subtraction	and	multiplication.



The	reason	is	that	B	is	closed	with	respect	to	subtraction	iff	B	is	closed	with	respect	to	both	addition	and
negatives.	This	last	fact	is	easy	to	check,	and	is	given	as	an	exercise.

Awhile	 back,	 in	 our	 study	 of	 groups,	 we	 singled	 out	 certain	 special	 subgroups	 called	 normal
subgroups.	We	will	 now	 describe	 certain	 special	 subrings	 called	 ideals	 which	 are	 the	 counterpart	 of
normal	subgroups:	that	is,	ideals	are	in	rings	as	normal	subgroups	are	in	groups.

Let	A	 be	 a	 ring,	 and	B	 a	 nonempty	 subset	 of	A.	We	will	 say	 that	B	 absorbs	 products	 in	 A	 (or,
simply,	B	absorbs	products)	if,	whenever	we	multiply	an	element	in	B	by	an	element	in	A	(regardless	of
whether	the	latter	is	inside	B	or	outside	B),	their	product	is	always	in	B.	In	other	words,

for	all	b	∈	B	and	x	∈	A,	xb	and	bx	are	in	B.

A	nonempty	subset	B	of	a	ring	A	is	called	an	ideal	of	A	if	B	is	closed	with	respect	to	addition	and
negatives,	and	B	absorbs	products	in	A.

A	simple	example	of	an	ideal	is	the	set	 	of	the	even	integers.	 	is	an	ideal	of	 	because	the	sum	of
two	even	integers	is	even,	the	negative	of	any	even	integer	is	even,	and,	finally,	the	product	of	an	even
integer	by	any	integer	is	always	even.

In	a	commutative	ring	with	unity,	the	simplest	example	of	an	ideal	is	the	set	of	all	the	multiples	of
a	fixed	element	a	by	all	the	elements	in	the	ring.	In	other	words,	the	set	of	all	the	products

xa

as	a	remains	fixed	and	x	ranges	over	all	the	elements	of	the	ring.	This	set	is	obviously	an	ideal	because

and

y(xa)	=	(yx)a

This	ideal	is	called	the	principal	ideal	generated	by	a,	and	is	denoted	by

〈a〉

As	in	the	case	of	subrings,	if	B	is	a	nonempty	subset	of	A,	there	is	a	more	compact	way	of	checking
that	B	is	an	ideal	of	A	:

B	is	an	ideal	of	A	if	and	only	if	B	is	closed	with	respect	to	subtraction	and	B	absorbs	products	in	A.
We	shall	see	presently	that	ideals	play	an	important	role	in	connection	with	homomorphism
Homomorphisms	are	almost	the	same	for	rings	as	for	groups.
A	homomorphism	from	a	ring	A	to	a	ring	B	is	a	function	f	:	A	→	B	satisfying	the	identities

f(xl	+	x2)	=	f(x1)	+	f(x2)

and

f(x1x2)	=	f(x1)f(x2)



There	is	a	longer	but	more	informative	way	of	writing	these	two	identities:

1.	If	f(x1)	=	y1	and	f(x2)	=	y2	then	f(x1	+	x2)	=	y1	+	y2.
2.	If	f(x1)	=	y1	and	f(x2)	=	y2	then	f(x1	x2)	=	y1	y2

In	other	words,	if	f	happens	to	carry	xl	to	y1	and	x2	to	y2,	then,	necessarily,	it	must	carry	x1	+	x2	to	y1	+	y2
and	x1x2	to	y1y2.	Symbolically,
If	 	and	 ,	then	necessarily

One	can	easily	confirm	for	oneself	that	a	function	f	with	this	property	will	 transform	the	addition	and
multiplication	 tables	 of	 its	 domain	 into	 the	 addition	 and	multiplication	 tables	 of	 its	 range.	 (We	may
imagine	 infinite	 rings	 to	have	“nonterminating”	 tables.)	Thus,	a	homomorphism	from	a	ring	A	onto	a
ring	B	is	a	function	which	transforms	A	into	B.

For	example,	the	ring	 6	is	transformed	into	the	ring	 3	by

as	we	may	verify	by	comparing	their	tables.	The	addition	tables	are	compared	on	page	136,	and	we	may
do	the	same	with	their	multiplication	tables:

If	 there	 is	 a	 homomorphism	 from	 A	 onto	 B,	 we	 call	 B	 a	 homomorphic	 image	 of	 A.	 If	 f	 is	 a
homomorphism	from	a	ring	A	to	a	ring	B,	not	necessarily	onto,	the	range	of/is	a	subring	of	B.	(This	fact
is	routine	to	verify.)	Thus,	the	range	of	a	ring	homomorphism	is	always	a	ring.	And	obviously,	the	range
of	a	homomorphism	is	always	a	homomorphic	image	of	its	domain.

Intuitively,	if	B	is	a	homomorphic	image	of	A,	this	means	that	certain	features	of	A	are	 faithfully
preserved	 in	B	 while	 others	 are	 deliberately	 lost.	 This	 may	 be	 illustrated	 by	 developing	 further	 an
example	described	in	Chapter	14.	The	parity	ring	P	consists	of	two	elements,	e	and	o,	with	addition	and



multiplication	given	by	the	tables

We	should	think	of	e	as	“even”	and	o	as	“odd,”	and	 the	 tables	as	describing	 the	rules	 for	adding	and
multiplying	odd	and	even	integers.	For	example,	even	+	odd	=	odd,	even	times	odd	=	even,	and	so	on.

The	function	f:	 	→	P	which	carries	every	even	 integer	 to	e	and	every	odd	 integer	 to	o	 is	easily
seen	 to	be	a	homomorphism	 from	 	 to	P	 this	 is	made	clear	on	page	137.	Thus,	P	 is	 a	 homomorphic
image	of	 .	Although	the	ring	P	is	very	much	smaller	than	the	ring	 ,	and	therefore	few	of	the	features	of
	can	be	expected	to	reappear	in	P,	nevertheless	one	aspect	of	the	structure	of	 	 is	 retained	absolutely
intact	in	P,	namely,	 the	structure	of	odd	and	even	numbers.	As	we	pass	from	 	to	P,	the	parity	of	 the
integers	(their	being	even	or	odd),	with	its	arithmetic,	is	faithfully	preserved	while	all	else	is	lost.	Other
examples	will	be	given	in	the	exercises.

If	f	is	a	homomorphism	from	a	ring	A	to	a	ring	B,	the	kernel	of	f	is	the	set	of	all	the	elements	of	A
which	are	carried	by	f	onto	the	zero	element	of	B.	In	symbols,	the	kernel	of	f	is	the	set

K	=	{x	∈	A	:	f(x)	=	0}

It	is	a	very	important	fact	that	the	kernel	of	f	is	an	ideal	of	A.	(The	simple	verification	of	this	fact	is	left
as	an	exercise.)

If	A	 and	B	 are	 rings,	 an	 isomorphism	 from	A	 to	B	 is	 a	 homomorphism	 which	 is	 a	 one-to-one
correspondence	from	A	to	B.	In	other	words,	it	is	an	injective	and	surjective	homomorphism.	If	there	is
an	isomorphism	from	A	to	B	we	say	that	A	is	isomorphic	to	B,	and	this	fact	is	expressed	by	writing

A	≅	B

EXERCISES

A.	Examples	of	Subrings
Prove	that	each	of	the	following	is	a	subring	of	the	indicated	ring:

1	{x	+	 y	:	x,	y	≅	 }	is	a	subring	of	 .
2	{x	+	21/3	y	+	22/3	z	:	x,	y,	z	∈	 }	is	a	subring	of	 .
3	{x2y	:	x,	y	∈	 }	is	a	subring	of	 .
#	4	Let	 ( )	be	the	set	of	all	the	functions	from	 	to	 	which	are	continuous	on	(−∞,	∞)	and	let	 ( )	be
the	set	of	all	the	functions	from	 	to	 	which	are	differentiable	on	(−∞,	∞).	Then	 ( )	and	 ( )	are
subrings	of	 ( ).

5	Let	 ( )	be	the	set	of	all	functions	from	 	to	 	which	are	continuous	on	the	interval	[0,1].	Then	 ( )	is
a	subring	of	 ( ),	and	 ( )	is	a	subring	of	 ( ).
6	The	subset	of	 2( )	consisting	of	all	matrices	of	the	form



is	a	subring	of	 2( ).

B.	Examples	of	Ideals
1	Identify	which	of	the	following	are	ideals	of	 	×	 ,	and	explain:	{(n,	n)	:	n	∈	 };	{(5n,	0)	:	n	∈	 };	{(n,
m)	:	n	+	m	is	even};	{(n,	m)	:	nm	is	even};	{(2n,	3m)	:	n,	m	∈	 }.
2	List	all	the	ideals	of	 12.
#	3	Explain	why	every	subring	of	 n	is	necessarily	an	ideal.
4	Explain	why	the	subring	of	Exercise	A6	is	not	an	ideal.
5	Explain	why	 ( )	is	not	an	ideal	of	 ( ).
6	Prove	that	each	of	the	following	is	an	ideal	of	 ( ):
(a)	The	set	of	all	f	such	that	f(x)	=	0	for	every	rational	x.
(b)	The	set	of	all	f	such	that	f(0)	=	0.
7	List	all	the	ideals	of	P3.	(P3	is	defined	in	Chapter	17,	Exercise	D.)
8	Give	an	example	of	a	subring	of	P3	which	is	not	an	ideal.
9	Give	an	example	of	a	subring	of	 3	×	 3	which	is	not	an	ideal.

C.	Elementary	Properties	of	Subrings
Prove	parts	1–6:

1	A	nonempty	subset	B	of	a	ring	A	is	closed	with	respect	to	addition	and	negatives	iff	B	is	closed	with
respect	to	subtraction.
2	 Conclude	 from	 part	 1	 that	 B	 is	 a	 subring	 of	 A	 iff	 B	 is	 closed	 with	 respect	 to	 subtraction	 and
multiplication.
3	If	A	is	a	finite	ring	and	B	is	a	subring	of	A,	then	the	order	of	B	is	a	divisor	of	the	order	of	A.
#	4	If	a	subring	B	of	an	integral	domain	A	contains	1,	then	B	is	an	integral	domain.	(B	is	then	called	a
subdomain	of	A.)

#	5	Every	subring	containing	the	unity	of	a	field	is	an	integral	domain.
6	If	a	subring	B	of	a	field	F	is	closed	with	respect	to	multiplicative	inverses,	then	B	is	a	field.	(B	is	then
called	a	subfield	of	F.)
7	Find	subrings	of	 18	which	illustrate	each	of	the	following:
(a)	A	is	a	ring	with	unity,	B	is	a	subring	of	A,	but	B	is	not	a	ring	with	unity.
(b)	A	and	B	are	rings	with	unity,	B	is	a	subring	of	A,	but	the	unity	of	B	is	not	the	same	as	the	unity	of	A.
8	Let	A	be	a	ring,	f	:	A	→	A	a	homomorphism,	and	B	=	{x	∈	A	:	f(x)	=	x}.	Prove	that	B	is	a	subring	of	A.
9	The	center	of	a	ring	A	is	the	set	of	all	the	elements	a	∈	A	such	that	ax	=	xa	for	every	x	∈	A.	Prove	that
the	center	of	A	is	a	subring	of	A.

D.	Elementary	Properties	of	Ideals
Let	A	be	a	ring	and	J	a	nonempty	subset	of	A.



1	Using	Exercise	C1,	explain	why	J	 is	 an	 ideal	of	A	 iff	J	 is	 closed	with	 respect	 to	 subtraction	 and	J
absorbs	products	in	A.
2	 If	A	 is	a	 ring	with	unity,	prove	 that	J	 is	an	 ideal	of	A	 iff	J	 is	 closed	with	 respect	 to	addition	and	J
absorbs	products	in	A.
3	Prove	that	the	intersection	of	any	two	ideals	of	A	is	an	ideal	of	A.
4	Prove	that	if	J	is	an	ideal	of	A	and	1	∈	J,	then	J	=	A.
5	Prove	that	if	J	is	an	ideal	of	A	and	J	contains	an	invertible	element	a	of	A,	then	J	=	A.
6	Explain	why	a	field	F	can	have	no	nontrivial	ideals	(that	is,	no	ideals	except	{0}	and	F).

E.	Examples	of	Homomorphisms
Prove	that	each	of	the	functions	in	parts	1–6	is	a	homomorphism.	Then	describe	its	kernel	and	its	range.

1	ϕ	:	 ( )→ 	given	by	ϕ(f)	=	f(0).
2	h	:	 	×	 →	 	given	by	h(x,	y)	=	x.
3	h	:	 	→	 2( )	given	by

4	h	:	 	×	 	→	 2( )	given	by

#	5	Let	A	be	the	set	 	×	 	with	the	usual	addition	and	the	following	“multiplication”:

(a,	b)	 	(c,	d)	=	(ac,	bc)

Granting	that	A	is	a	ring,	let	f	:	A	→	 2( )	be	given	by

6	h	:	Pc	→	Pc	given	by	h(A)	=	A	 	D,	where	D	is	a	fixed	subset	of	C.
7	List	all	the	homomorphisms	from	 2	to	 4;	from	 3	to	 6.

F.	Elementary	Properties	of	Homomorphisms
Let	A	and	B	be	rings,	and	f	:	A	→	B	a	homomorphism.	Prove	each	of	the	following:

1	f(A)	=	{f(x):	x	∈	A}	is	a	subring	of	B.
2	The	kernel	of	f	is	an	ideal	of	A.
3	f(0)	=	0,	and	for	every	a	∈	A,	f(−a)	=	−f(a).
4	f	is	injective	iff	its	kernel	is	equal	to	{0}.
5	If	B	is	an	integral	domain,	then	either	f(l)	=	1	or	f(l)	=	0.	If	f(l)	=	0,	then	f(x)	=	0	for	every	x	∈	A.	If	f(1)
=	1,	the	image	of	every	invertible	element	of	A	is	an	invertible	element	of	B.



6	Any	homomorphic	image	of	a	commutative	ring	is	a	commutative	ring.	Any	homomorphic	image	of	a
field	is	a	field.
7	If	the	domain	A	of	 the	homomorphism	 f	 is	a	field,	and	if	the	range	of	 f	has	more	than	one	element,
then	f	is	injective.	(HINT:	Use	Exercise	D6.)

G.	Examples	of	Isomorphisms
1	Let	A	be	the	ring	of	Exercise	A2	in	Chapter	17.	Show	that	the	function	f(x)	=	x	−	1	is	an	isomorphism
from	 	to	A	hence	 	≅	A.
2	Let	 	be	the	following	subset	of	 2( ):

Prove	that	the	function

is	an	isomorphism	from	 	to	 .	[REMARK:	You	must	begin	by	checking	that	f	is	a	well-defined	function;
that	is,	if	a	+	bi	=	c	+	di,	then	f(a	+	bi)	=	f(c	+	di).	To	do	this,	note	that	if	a	+	bi	=	c	+	di	then	a	−	c	=	(d
−	b)i;	this	last	equation	is	impossible	unless	both	sides	are	equal	to	zero,	for	otherwise	it	would	assert
that	a	given	real	number	is	equal	to	an	imaginary	number.]
3	Prove	that	{(x,	x)	:	x	∈	 }	is	a	subring	of	 	×	 ,	and	show	{(x,	x)	:	x	∈	 }	≅	 .
4	Show	that	the	set	of	all	2	×	2	matrices	of	the	form

is	a	subring	of	 2( ),	then	prove	this	subring	is	isomorphic	to	 .
For	any	integer	k,	let	k 	designate	the	subring	of	 	which	consists	of	all	the	multiples	of	k.
5	Prove	that	 	∉	2 	then	prove	that	2 	∉	3 .	Finally,	explain	why	if	k	≠	l,	then	k 	∉	l .	(REMEMBER:	How
do	you	show	that	two	rings,	or	groups,	are	not	isomorphic?)

H.	Further	Properties	of	Ideals
Let	A	be	a	ring,	and	let	J	and	K	be	ideals	of	A.
Prove	parts	1-4.	(In	parts	2-4,	assume	A	is	a	commutative	ring.)

1	If	J	 	K	=	{0},	then	jk	=	0	for	every	j	∈	J	and	k	∈	K.
2	For	any	a	∈	A,	Ia	=	{ax	+	j	+	k	:	x	∈	A,	j	∈	J,	k	∈	K}	is	an	ideal	of	A.
#	3	The	radical	of	J	is	the	set	rad	J	=	{a	∈	A	:	an	∈	J	for	some	n	∈	 }.	For	any	ideal	J,	rad	J	is	an	ideal
of	A.

4	For	any	a	∈	A,	{x	∈	A	:	ax	=	0}	is	an	ideal	(called	the	annihilator	of	a).
Furthermore,	{x	∈	A	:	ax	=	0	for	every	a	∈	A}	is	an	ideal	(called	the	annihilating	ideal	of	A).	If	A	is	a
ring	with	unity,	its	annihilating	ideal	is	equal	to	{0}.
5	Show	that	{0}	and	A	are	ideals	of	A.	(They	are	trivial	ideals;	every	other	ideal	of	A	is	a	proper	ideal.)



A	proper	ideal	J	of	A	is	called	maximal	if	it	is	not	strictly	contained	in	any	strictly	larger	proper	ideal:
that	is,	if	J	⊆	K,	where	K	is	an	ideal	containing	some	element	not	in	J,	then	necessarily	K	=	A.	Show
that	 the	 following	 is	an	example	of	a	maximal	 ideal:	 In	 ( ),	 the	 ideal	J	=	{f	 :	 f(0)	=	0}.	 [HINT:	Use
Exercise	D5.	Note	that	if	g	∈	K	and	g(0)	≠	0	(that	is,	g	∉	J),	then	the	function	h(x)	=	g(x)	−	g(0)	is	in	J
hence	h(x)	−	g(x)	∈	K.	Explain	why	this	last	function	is	an	invertible	element	of	 ( ).]

I.	Further	Properties	of	Homomorphisms
Let	A	and	B	be	rings.	Prove	each	of	the	following:

1	If	f	:	A	→	B	is	a	homomorphism	from	A	onto	B	with	kernel	K,	and	J	is	an	ideal	of	A	such	that	K	 	J
then	f(J)	is	an	ideal	of	B.
2	If	f	:	A	→	B	 is	a	homomorphism	from	A	onto	B,	and	B	 is	a	 field,	 then	 the	kernel	of	 f	 is	a	maximal
ideal.	(HINT:	Use	part	1,	with	Exercise	D6.	Maximal	ideals	are	defined	in	Exercise	H5.)
3	There	are	no	nontrivial	homomorphisms	from	 	to	 .	[The	trivial	homomorphisms	are	f(x)	=	0	and	f(x)
=	x.]
4	If	n	is	a	multiple	of	m,	then	 m	is	a	homomorphic	image	of	 n.
5	If	n	is	odd,	there	is	an	injective	homomorphism	from	 2	into	 2n.

†	J.	A	Ring	of	Endomorphisms
Let	A	be	a	commutative	ring.	Prove	each	of	the	following:

1	For	each	element	a	in	A,	the	function	πa	defined	by	πa(x)	=	ax	satisfies	the	identity	πa(x	+	y)	=	πa(x)	+
πa(y).	(In	other	words,	πa	is	an	endomorphism	of	the	additive	group	of	A.)
2	πa	is	injective	iff	a	is	not	a	divisor	of	zero.	(Assume	a	≠	0.)
3	πa	is	surjective	iff	a	is	invertible.	(Assume	A	has	a	unity.)
4	Let	 	denote	the	set	{πa	:	a	∈	A}	with	the	two	operations

[πa	+	πb](x)	=	πa(x)	+	πb(x)	 and	 πa	πb	=	πa	∘	πb

Verify	that	 	is	a	ring.
5	If	ϕ	:	A	→	 	is	given	by	ϕ(a)	=	πa,	then	ϕ	is	a	homomorphism.
6	 If	A	 has	 a	 unity,	 then	ϕ	 is	 an	 isomorphism.	 Similarly,	 if	A	 has	 no	 divisors	 of	 zero	 then	ϕ	 is	 an
isomorphism.



CHAPTER

NINETEEN

QUOTIENT	RINGS

We	continue	our	journey	into	the	elementary	theory	of	rings,	traveling	a	road	which	runs	parallel	to	the
familiar	landscape	of	groups.	In	our	study	of	groups	we	discovered	a	way	of	actually	constructing	all
the	homomorphic	images	of	any	group	G.	We	constructed	quotient	groups	of	G,	and	showed	that	every
quotient	group	of	G	 is	a	homomorphic	image	of	G.	We	will	now	imitate	 this	procedure	and	construct
quotient	rings.

We	begin	by	defining	cosets	of	rings:

Let	A	be	a	ring,	and	J	an	ideal	of	A.	For	any	element	a	∈	A,	the	symbol	J	+	a	denotes	the	set	of	all
sums	j	+	a,	as	a	remains	fixed	and	j	ranges	over	J.	That	is,

J	+	a	=	{j	+	a	:	j	∈	J}

J	+	a	is	called	a	coset	of	J	in	A.

It	 is	 important	 to	note	that,	 if	we	provisionally	 ignore	multiplication,	A	with	addition	alone	is	an
abelian	 group	 and	 J	 is	 a	 subgroup	 of	 A.	 Thus,	 the	 cosets	 we	 have	 just	 defined	 are	 (if	 we	 ignore
multiplication)	precisely	the	cosets	of	the	subgroup	J	in	the	group	A,	with	the	notation	being	additive.
Consequently,	everything	we	already	know	about	group	cosets	continues	to	apply	in	the	present	case—
only,	 care	 must	 be	 taken	 to	 translate	 known	 facts	 about	 group	 cosets	 into	 additive	 notation.	 For
example,	 Property	 (1)	 of	 Chapter	 13,	 with	 Theorem	 5	 of	 Chapter	 15,	 reads	 as	 follows	 in	 additive
notation:

We	also	know,	by	the	reasoning	which	leads	up	to	Lagrange’s	theorem,	that	the	family	of	all	the	cosets	J
+	a,	as	a	ranges	over	A,	is	a	partition	of	A.



There	is	a	way	of	adding	and	multiplying	cosets	which	works	as	follows:

In	other	words,	the	sum	of	the	coset	of	a	and	the	coset	of	b	is	the	coset	of	a	+	b;	the	product	of	the	coset
of	a	and	the	coset	of	b	is	the	coset	of	ab.

It	is	important	to	know	that	the	sum	and	product	of	cosets,	defined	in	this	fashion,	are	determined
without	ambiguity.	Remember	that	J	+	a	may	be	the	same	coset	as	J	+	c	[by	Condition	(1)	this	happens
iff	c	is	an	element	of	J	+	a],	and,	likewise,	J	+	b	may	be	the	same	coset	as	J	+	d.	Therefore,	we	have	the
equations

Obviously	we	must	be	absolutely	certain	that	J	+	(a	+	b)	=	J	+	(c	+	d)	and	J	+	ab	=	J	+	cd.	The	next
theorem	provides	us	with	this	important	guarantee.

Theorem	1	Let	J	be	an	ideal	of	A.	If	J	+	a	=	J	+	c	and	J	+	b	=	J	+	d,	then

(i) J	+	(a	+	b)	=	J	+	(c	+	d),	and
(ii) J	+	ab	=	J	+	cd.

PROOF:	We	are	given	that	J	+	a	=	J	+	c	and	J	+	b	=	J	+	d;	hence	by	Condition	(2),

a	–	c	∈	J	 and	 b	–	d	∈	J

Since	J	 is	closed	with	respect	 to	addition,	(a	−	c)	+	(b	−	d)	=	(a	+	b)	−	 (c	+	d)	 is	 in	J.	 It	 follows	by
Condition	 (2)	 that	 J	 +	 (a	 +	b)	 =	 J	 +	 (c	 +	 d),	 which	 proves	 (i).	 On	 the	 other	 hand,	 since	 J	 absorbs
products	in	A,

and	therefore	(ab	−	cb)	+	(cb	−	cd)	=	ab	−	cd	is	in	J.	It	follows	by	Condition	(2)	that	J	+	ab	=	J	+	cd.
This	proves	(ii).	■

Now,	think	of	the	set	which	consists	of	all	the	cosets	of	J	in	A.	This	set	is	conventionally	denoted
by	the	symbol	A/J.	For	example,	if	J	+	a,	J	+	b,	J	+	c,…	are	cosets	of	J,	then

A/J	=	{J	+	a,	J	+	b,	J	+	c,…}

We	have	just	seen	that	coset	addition	and	multiplication	are	valid	operations	on	this	set.	In	fact,



Theorem	2	A/J	with	coset	addition	and	multiplication	is	a	ring.

PROOF:	 Coset	 addition	 and	multiplication	 are	 associative,	 and	multiplication	 is	 distributive	 over
addition.	(These	facts	may	be	routinely	checked.)	The	zero	element	of	A/J	is	the	coset	J	=	J	+	0,	for	if	J
+	a	is	any	coset,

(J	+	a)	+	(J	+	0)	=	J	+	(a	+	0)	=	J	+	a

Finally,	the	negative	of	J	+	a	is	J	+	(–a),	because

(J	+	a)	+	(J	+	(–a))	=	J	+	(a	+	(–a))	=	J	+	0	■

The	ring	A/J	is	called	the	quotient	ring	of	A	by	J.
And	now,	the	crucial	connection	between	quotient	rings	and	homomorphisms	:

Theorem	3	A/J	is	a	homomorphic	image	of	A.

Following	the	plan	already	laid	out	for	groups,	the	natural	homomorphism	from	A	onto	A/J	is	the
function	f	which	carries	every	element	to	its	own	coset,	that	is,	the	function	f	given	by

f(x)	=	J	+	x

This	function	is	very	easily	seen	to	be	a	homomorphism.
Thus,	when	we	construct	quotient	rings	of	A,	we	are,	in	fact,	constructing	homomorphic	images	of

A.	The	quotient	ring	construction	is	useful	because	it	is	a	way	of	actually	manufacturing	homomorphic
images	of	any	ring	A.

The	quotient	ring	construction	is	now	illustrated	with	an	important	example.	Let	 	be	 the	ring	of
the	 integers,	 and	 let	 〈6〉	 be	 the	 ideal	 of	 	 which	 consists	 of	 all	 the	multiples	 of	 the	 number	 6.	 The
elements	of	the	quotient	ring	 /〈6〉	are	all	the	cosets	of	the	ideal	(6),	namely:

We	will	represent	these	cosets	by	means	of	the	simplified	notation	 	 .	The	rules	for	adding
and	multiplying	cosets	give	us	the	following	tables:



One	cannot	fail	to	notice	the	analogy	between	the	quotient	ring	 /〈6〉	and	the	ring	 6.	In	fact,	we
will	regard	them	as	one	and	the	same.	More	generally,	for	every	positive	integer	n,	we	consider	 n	to	be
the	same	as	 /〈n〉.	In	particular,	this	makes	it	clear	that	 n	is	a	homomorphic	image	of	 .

By	Theorem	3,	any	quotient	 ring	A/J	 is	a	homomorphic	 image	of	A.	Therefore	 the	quotient	 ring
construction	is	a	way	of	actually	producing	homomorphic	images	of	any	ring	A.	In	fact,	as	we	will	now
see,	it	is	a	way	of	producing	all	the	homomorphic	images	of	A.

Theorem	4	Let	f	:	A	→	B	be	a	homomorphism	from	a	ring	A	onto	a	ring	B,	and	let	K	be	the	kernel
of	f.	Then	B	≅	A/B.

PROOF:	To	show	that	A/K	is	isomorphic	with	B,	we	must	look	for	an	isomorphism	from	A/K	to	B.
Mimicking	the	procedure	which	worked	successfully	for	groups,	we	let	ϕ	be	the	function	from	A/K	to	B
which	matches	each	coset	K	+	x	with	the	element	f(x);	that	is,

ϕ(K	+	x)	=	f(x)

Remember	 that	 if	we	 ignore	multiplication	 for	 just	 a	moment,	A	 and	B	 are	 groups	 and	 f	 is	 a	 group
homomorphism	from	A	onto	B,	with	kernel	K.	Therefore	we	may	apply	Theorem	2	of	Chapter	16:	ϕ	is	a
well-defined,	bijective	function	from	A/K	to	B.	Finally,

Thus,	ϕ	is	an	isomorphism	from	A/K	onto	B.	■
Theorem	4	is	called	the	fundamental	homomorphism	theorem	for	rings.	Theorems	3	and	4	together

assert	that	every	quotient	ring	of	A	is	a	homomorphic	image	of	A,	and,	conversely,	every	homomorphic
image	 of	 A	 is	 isomorphic	 to	 a	 quotient	 ring	 of	 A.	 Thus,	 for	 all	 practical	 purposes,	 quotients	 and
homomorphic	images	of	a	ring	are	the	same.

As	in	the	case	of	groups,	there	are	many	practical	instances	in	which	it	is	possible	to	select	an	ideal
J	of	A	so	as	to	“factor	out”	unwanted	traits	of	A,	and	obtain	a	quotient	ring	A/J	with	“desirable”	features.

As	a	simple	example,	let	A	be	a	ring,	not	necessarily	commutative,	and	let	J	be	an	ideal	of	A	which
contains	all	the	differences

ab	–	ba



as	a	and	b	range	over	A.	It	is	quite	easy	to	show	that	the	quotient	ring	A/J	is	then	commutative.	Indeed,
to	say	that	A/J	is	commutative	is	to	say	that	for	any	two	cosets	J	+	a	and	J	+	b,

(J	+	a)(J	+	b)	=	(J	+	b)(J	+	a)	 that	is	 J	+	ab	=	J	+	ba

By	Condition	(2)	this	last	equation	is	true	iff	ab	−	ba	∈	J.	Thus,	if	every	difference	ab	−	ba	is	in	J,	then
any	two	cosets	commute.

A	number	of	important	quotient	ring	constructions,	similar	in	principle	to	this	one,	are	given	in	the
exercises.

An	ideal	J	of	a	commutative	ring	is	said	to	be	a	prime	ideal	if	for	any	two	elements	a	and	b	in	the
ring,

If	 ab	∈	J	 then	 a	∈	J	 or	 b	∈	J

Whenever	J	 is	 a	prime	 ideal	of	 a	 commutative	 ring	with	unity	A,	 the	quotient	 ring	A/J	 is	 an	 integral
domain.	(The	details	are	left	as	an	exercise.)

An	ideal	of	a	ring	is	called	proper	if	it	is	not	equal	to	the	whole	ring.	A	proper	ideal	J	of	a	ring	A	is
called	a	maximal	ideal	if	there	exists	no	proper	ideal	K	of	A	such	that	J	⊆	K	with	J	≠	K	(in	other	words,
J	is	not	contained	in	any	strictly	larger	proper	ideal).	It	is	an	important	fact	that	if	A	is	a	commutative
ring	with	unity,	then	J	is	a	maximal	ideal	of	A	iff	A/J	is	a	field.

To	prove	this	assertion,	let	J	be	a	maximal	ideal	of	A.	If	A	is	a	commutative	ring	with	unity,	it	is
easy	to	see	that	A/J	is	one	also.	In	fact,	it	should	be	noted	that	the	unity	of	A/J	is	the	coset	J	+	1,	because
if	J	+	a	is	any	coset,	(J	+	a)(J	+	1)	=	J	+	a1	=	J	+	a.	Thus,	to	prove	that	A/J	is	a	field,	it	remains	only	to
show	that	if	J	+	a	is	any	nonzero	coset,	there	is	a	coset	J	+	x	such	that	(J	+	a)(J	+	x)	=	J	+	1.

The	zero	coset	is	J.	Thus,	by	Condition	(3),	to	say	that	J	+	a	is	not	zero,	is	to	say	that	a	∉	J.	Now,
let	K	be	the	set	of	all	the	sums

xa	+	j

as	x	ranges	over	A	and	j	ranges	over	J.	It	is	easy	to	check	that	K	is	an	ideal.	Furthermore,	K	contains	a
because	a	=	1a	+	0,	and	K	contains	every	element	j	∈	J	because	j	can	be	written	as	0a	+	j.	Thus,	K	is	an
ideal	which	contains	 J	and	 is	 strictly	 larger	 than	J	 (for	 remember	 that	a	∈	K	 but	a	∉	J).	But	J	 is	 a
maximal	ideal!	Thus,	K	must	be	the	whole	ring	A.

It	follows	that	1	∈	K,	so	1	=	xa	+	j	for	some	x	∈	A	and	j	∈	J.	Thus,	1	–	xa	=	j	∈	J,	so	by	Condition
(2),	J	+	1	=	J	+	xa	=	(J	+	x)(J	+	a).	In	the	quotient	ring	A/J,	J	+	x	is	therefore	the	multiplicative	inverse
of	J	+	a.

The	converse	proof	 consists,	 essentially,	of	 “unraveling”	 the	preceding	argument;	 it	 is	 left	 as	 an
entertaining	exercise.

EXERCISES

A.	Examples	of	Quotient	Rings
In	each	of	the	following,	A	is	a	ring	and	J	is	an	ideal	of	A.	List	the	elements	of	A/J,	and	then	write	the
addition	and	multiplication	tables	of	A/J.

Example	A	=	 6,	J	=	{0,	3}.



The	elements	of	A/J	are	the	three	cosets	J	=	J	+	0	=	{0,3},	J	+	1	=	{1,4},	and	J	+	2	=	{2,5}.	The
tables	for	A/J	are	as	follows:

1	A	=	 10,	J	=	{0,5}.
2	A	=	P3,	J	=	{0,	{a}}.	(P3	is	defined	in	Chapter	17,	Exercise	D.)
3	A	=	 2	×	 6;	J	=	{(0,0),	(0,2),	(0,4)}.

B.	Examples	of	the	Use	of	the	FHT
In	 each	 of	 the	 following,	 use	 the	 FHT	 (fundamental	 homomorphism	 theorem)	 to	 prove	 that	 the	 two
given	groups	are	isomorphic.	Then	display	their	tables.

Example	 2	and	 6/〈2〉.
The	following	function	is	a	homomorphism	from	 6	onto	 2:

(Do	not	prove	that	J	is	a	homomorphism.)
The	kernel	of	f	is	{0,	2,	4}	=	(2).	Thus:

It	follows	by	the	FHT	that	 2	≅	 6/〈2〉.

1	 5	and	 20/〈5〉.
2	 3	and	 6/〈3〉.
3	P2	and	P3/K,	where	K	=	{0,	{c}}.	[HINT:	See	Chapter	18,	Exercise	E6.	Consider	the	function	f(X)	=	X
∩	{a,	b}.]
4	 2	and	 2	×	 2/K,	where	K	=	{(0,	0),	(0,1)}.

C.	Quotient	Rings	and	Homomorphic	Images	in	 ( )
1	 Let	 ϕ	 be	 the	 function	 from	 ( )	 to	 	 ×	 	 defined	 by	 ϕ(f)	 =	 (f(0),	 f(1)).	 Prove	 that	 ϕ	 is	 a
homomorphism	from	 ( )	onto	 	×	 ,	and	describe	its	kernel.
2	Let	J	be	the	subset	of	 ( )	consisting	of	all	f	whose	graph	passes	through	the	points	(0,0)	and	(1,0).
Referring	to	part	1,	explain	why	J	is	an	ideal	of	 ( ),	and	 ( )/J	≅	 	×	 .
3	Let	ϕ	be	the	function	from	 ( )	to	 ( ,	 )	defined	as	follows:

ϕ(f)	=	f 	=	the	restriction	of	J	to	



(NOTE:	 The	 domain	 of	 f 	 is	 	 and	 on	 this	 domain	 f 	 is	 the	 same	 function	 as	 f.)	 Prove	 that	ϕ	 is	 a
homomorphism	from	 ( )	onto	 ( ,	 ),	and	describe	the	kernel	of	ϕ.	[ ( ,	 )	 is	 the	ring	of	 functions
from	 	to	 .]
4	Let	J	be	the	subset	of	 ( )	consisting	of	all	f	such	that	f(x)	=	0	for	every	rational	x.	Referring	to	part	3,
explain	why	J	is	an	ideal	of	 ( )	and	 ( )/J	≅	 ( ).

D.	Elementary	Applications	of	the	Fundamental	Homomorphism	Theorem
In	each	of	the	following	let	A	be	a	commutative	ring.	If	a	∈	A	and	n	is	a	positive	integer,	the	notation	na
will	stand	for

a	+	a	+	⋯	+	a	 (n	terms)

1	Suppose	2x	=	0	for	every	x	∈	A.	Prove	that	(x	+	y)2	=	x2	+	y2	for	all	x	and	y	in	A.	Conclude	that	the
function	h(x)	=	x2	is	a	homomorphism	from	A	to	A.	If	J	=	{x	∈	A	:	x2	=	0}	and	B	=	{x2	:	x	∈	A),	explain
why	J	is	an	ideal	of	A,	B	is	a	subring	of	A,	and	A/J	≅	B.
2	Suppose	6x	=	0	for	every	x	∈	A.	Prove	that	the	function	h(x)	=	3x	is	a	homomorphism	from	A	to	A.	If
J	=	{x	:	3x	=	0}	and	B	=	{3x	:	x	∈	A},	explain	why	J	is	an	ideal	of	A,	B	is	a	subring	of	A,	and	A/J	≅	B.
3	 If	 a	 is	 an	 idempotent	 element	 of	 A	 (that	 is,	 a2	 =	 a),	 prove	 that	 the	 function	 πa(x)	 =	 ax	 is	 a
homomorphism	from	A	into	A.	Show	that	the	kernel	of	πa	is	Ia,	the	annihilator	of	a	(defined	in	Exercise
H4	of	Chapter	18).	Show	that	the	range	of	πa	is	〈a〉.	Conclude	by	the	FHT	that	A/Ia	=	〈a〉.
4	 For	 each	 a	∈	 A,	 let	 πa	 be	 the	 function	 given	 by	 πa(x)	 =	 ax.	 Define	 the	 following	 addition	 and
multiplication	on	 	=	{πa	:	a	∈	A}:

πa	+	πb	=	πa+b	and	πa	πb	=	πab
( 	is	a	ring;	however,	do	not	prove	this.)	Show	that	the	function	ϕ(a)	=	πa	is	a	homomorphism	from	A
onto	 .	Let	I	designate	the	annihilating	ideal	of	A	(defined	in	Exercise	H4	of	Chapter	18).	Use	the	FHT
to	show	that	A/I	≅	 .

E.	Properties	of	Quotient	Rings	A/J	in	Relation	to	Properties	of	J
Let	A	be	a	ring	and	J	an	ideal	of	A.	Use	Conditions	(1),	(2),	and	(3)	of	this	chapter.	Prove	each	of	the
following:

#	1	Every	element	of	A/J	has	a	square	root	iff	for	every	x	∈	A,	there	is	some	y	∈	A	such	that	x	–	y2	∈	J.
2	Every	element	of	A/J	is	its	own	negative	iff	x	+	x	∈	J	for	every	x	∈	A.
3	A/J	is	a	boolean	ring	iff	x2	–	x	∈	J	for	every	x	∈	A.	(A	ring	S	 is	called	a	boolean	ring	iff	s2	=	s	 for
every	s	∈	S.)
4	 If	 J	 is	 the	 ideal	 of	 all	 the	 nilpotent	 elements	 of	 a	 commutative	 ring	A,	 then	A/J	 has	 no	 nilpotent
elements	(except	zero).	(Nilpotent	elements	are	defined	in	Chapter	17,	Exercise	M;	by	M2	and	M3	they
form	an	ideal.)
5	Every	element	of	A/J	is	nilpotent	iff	J	has	the	following	property:	for	every	x	∈	A,	there	is	a	positive
integer	n	such	that	xn	∈	J.
#	6	A/J	has	a	unity	element	iff	there	exists	an	element	a	∈	A	such	that	ax	–	x	∈	J	and	xa	–	x	∈	J	 for
every	x	∈	A.



F.	Prime	and	Maximal	Ideals
Let	A	be	a	commutative	ring	with	unity,	and	J	an	ideal	of	A.	Prove	each	of	the	following:

1	A/J	is	a	commutative	ring	with	unity.
2	J	is	a	prime	ideal	iff	A/J	is	an	integral	domain.
3	Every	maximal	ideal	of	A	 is	a	prime	ideal.	(HINT:	Use	the	fact,	proved	in	this	chapter,	 that	 if	J	is	a
maximal	ideal	then	A/J	is	a	field.)
4	If	A/J	is	a	field,	then	J	is	a	maximal	ideal.	(HINT:	See	Exercise	I2	of	Chapter	18.)

G.	Further	Properties	of	Quotient	Rings	in	Relation	to	Their	Ideals
Let	A	be	a	ring	and	J	an	ideal	of	A.	(In	parts	1–3	and	5	assume	that	A	is	a	commutative	ring	with	unity.)

#	1	Prove	that	A/J	is	a	field	iff	for	every	element	a	∈	A,	where	a	∉	J,	there	is	some	b	∈	A	such	that	ab	–
1	∈	J.

2	 Prove	 that	 every	 nonzero	 element	 of	A/J	 is	 either	 invertible	 or	 a	 divisor	 of	 zero	 iff	 the	 following
property	holds,	where	a,	x	∈	A:	For	every	a	∉	J,	there	is	some	x	∉	J	such	that	either	ax	∈	J	or	ax	–	1	∈
J.
3	An	ideal	J	of	a	ring	A	is	called	primary	iff	for	all	a,	b	∈	A,	if	ab	∈	J,	then	either	a	∈	J	or	bn	∈	J	for
some	positive	integer	n.	Prove	that	every	zero	divisor	in	A/J	is	nilpotent	iff	J	is	primary.
4	An	ideal	J	of	a	ring	A	is	called	semiprime	iff	it	has	the	following	property:	For	every	a	∈	A,	if	an	∈	J
for	some	positive	integer	n,	 then	necessarily	a	∈	J.	Prove	that	J	 is	semiprime	iff	A/J	has	no	nilpotent
elements	(except	zero).
5	Prove	that	an	integral	domain	can	have	no	nonzero	nilpotent	elements.	Then	use	part	4,	together	with
Exercise	F2,	to	prove	that	every	prime	ideal	in	a	commutative	ring	is	semiprime.

H.	Zn	as	a	Homomorphic	Image	of	Z
Recall	that	the	function

f(a)	=	ā

is	the	natural	homomorphism	from	 	onto	 n.	If	a	polynomial	equation	p	=	0	is	satisfied	in	 ,	necessarily
f(p)	=	f(0)	is	true	in	 n.	Let	us	take	a	specific	example;	there	are	integers	x	and	y	satisfying	11x2	−	8y2	+
29	=	0	(we	may	take	x	=	3	and	y	=	4).	It	follows	that	there	must	be	elements	 	and	 	in	 6	which	satisfy	

	 in	 6,	 that	 is,	 .	 (We	 take	 	 and	 .)	 The	 problems	 which
follow	are	based	on	this	observation.

1	Prove	that	the	equation	x2	–	7y2	−	24	=	0	has	no	integer	solutions.	(HINT:	If	there	are	integers	x	and	y
satisfying	this	equation,	what	equation	will	 	and	 	satisfy	in	 7?)

2	Prove	that	x2	+	(x	+	1)2	+	(x	+	2)2	=	y2	has	no	integer	solutions.
3	Prove	that	x2	+	10y2	=	n	(where	n	is	an	integer)	has	no	integer	solutions	if	the	last	digit	of	n	is	2,	3,	7,
or	8.
4	Prove	 that	 the	 sequence	3,	 8,	 13,	18,	23,…	does	not	 include	 the	 square	of	 any	 integer.	 (HINT:	 The



image	of	each	number	on	this	list,	under	the	natural	homomorphism	from	 	to	 5,	is	3.)
5	Prove	that	the	sequence	2,	10,	18,	26,…	does	not	include	the	cube	of	any	integer.
6	Prove	that	the	sequence	3,	11,	19,	27,…	does	not	include	the	sum	of	two	squares	of	integers.
7	Prove	that	if	n	is	a	product	of	two	consecutive	integers,	its	units	digit	must	be	0,	2,	or	6.
8	Prove	that	if	n	is	the	product	of	three	consecutive	integers,	its	units	digit	must	be	0,	4,	or	6.



CHAPTER

TWENTY

INTEGRAL	DOMAINS

Let	us	recall	that	an	integral	domain	is	a	commutative	ring	with	unity	having	the	cancellation	property,
that	is,

if	 a	≠	0			and	 ab	=	ac			then	 b	=	c	 (1)

At	the	end	of	Chapter	17	we	saw	that	an	 integral	domain	may	also	be	defined	as	a	commutative	ring
with	unity	having	no	divisors	of	zero,	which	is	to	say	that

if	 ab	=	0	 then	 a	=	0	 or	 b	=	0	 (2)

for	as	we	saw,	(1)	and	(2)	are	equivalent	properties	in	any	commutative	ring.
The	system	 	of	 the	 integers	 is	 the	exemplar	and	prototype	of	 integral	domains.	In	fact,	 the	 term

“integral	domain”	means	a	system	of	algebra	(“domain”)	having	 integerlike	properties.	However,	 	 is
not	the	only	integral	domain:	there	are	a	great	many	integral	domains	different	from	 .

Our	 first	 few	comments	will	 apply	 to	 rings	generally.	To	begin	with,	we	 introduce	a	 convenient
notation	for	multiples,	which	parallels	the	exponent	notation	for	powers.	Additively,	the	sum

a	+	a	+	···	+	a

of	n	equal	terms	is	written	as	n	·	a.	We	also	define	0	·	a	to	be	0,	and	let	(-n)	·	a	=	−(n	·	a)	for	all	positive
integers	n.	Then

m	·	a	+	n	·	a	=	(m	+	n)·a	 and	 m	·	(n	·	a)	=	(mn)	·	a

for	every	element	a	of	a	ring	and	all	integers	m	and	n.	These	formulas	are	the	translations	into	additive
notation	of	the	laws	of	exponents	given	in	Chapter	10.

If	A	is	a	ring,	A	with	addition	alone	is	a	group.	Remember	that	in	additive	notation	the	order	of	an
element	a	in	A	is	the	least	positive	integer	n	such	that	n	·	a	=	0.	If	there	is	no	such	positive	integer	n,
then	a	is	said	to	have	order	infinity.	To	emphasize	the	fact	that	we	are	referring	to	the	order	of	a	in	terms



of	addition,	we	will	call	it	the	additive	order	of	a.
In	a	ring	with	unity,	if	1	has	additive	order	n,	we	say	the	ring	has	“characteristic	n.”	In	other	words,

if	A	is	a	ring	with	unity,
the	characteristic	of	A	is	the	least	positive	integer	n	such	that

If	there	is	no	such	positive	integer	n,	A	has	characteristic	0.
These	concepts	are	especially	simple	in	an	integral	domain.	Indeed,

Theorem	1	All	the	nonzero	elements	in	an	integral	domain	have	the	same	additive	order.

PROOF:	That	is,	every	a	≠	0	has	the	same	additive	order	as	the	additive	order	of	1.	The	truth	of	this
statement	becomes	transparently	clear	as	soon	as	we	observe	that

n	·	a	=	a	+	a	+	·	·	·	+	a	=	1a	+	·	·	·	+	1a	=	(1	+	·	·	·	+	1)a	=	(n	·	1)a

hence	n	·	a	=	0	iff	n	·	1	=	0.	(Remember	that	in	an	integral	domain,	if	the	product	of	two	factors	is	equal
to	0,	at	least	one	factor	must	be	0.)	■

It	follows,	in	particular,	that	if	the	characteristic	of	an	integral	domain	is	a	positive	integer	n,	then

n	·	x	=	0

for	every	element	x	in	the	domain.
Furthermore,

Theorem	 2	 In	 an	 integral	 domain	 with	 nonzero	 characteristic,	 the	 characteristic	 is	 a	 prime
number.

PROOF:	If	the	characteristic	were	a	composite	number	mn,	then	by	the	distributive	law,

Thus,	either	m	·	1	=	0	or	n	·	1	=	0,	which	is	impossible	because	mn	was	chosen	to	be	the	least	positive
integer	such	that	(mn)	·	1	=	0.	■

A	very	interesting	rule	of	arithmetic	is	valid	in	integral	domains	whose	characteristic	is	not	zero.

Theorem	3	In	any	integral	domain	of	characteristic	p,

(a	+	b)p	=	ap	+	bp	 for	all	elements	a	and	b

PROOF:	 This	 formula	 becomes	 clear	 when	 we	 look	 at	 the	 binomial	 expansion	 of	 (a	 +	 b)p.
Remember	that	by	the	binomial	formula,



where	the	binomial	coefficient

It	 is	 demonstrated	 in	 Exercise	 L	 of	 Chapter	 17	 that	 the	 binomial	 formula	 is	 correct	 in	 every
commutative	ring.

Note	that	if	p	is	a	prime	number	and	0	<	k	<	p,	then

because	every	factor	of	the	denominator	is	less	than	p,	hence	p	does	not	cancel	out.	Thus,	each	term	of
the	binomial	expansion	above,	except	for	the	first	and	last	terms,	is	of	the	form	px,	which	is	equal	to	0
because	the	domain	has	characteristic	p.	Thus,	(a	+	b)p	=	ap	+	bp.	■

It	 is	 obvious	 that	 every	 field	 is	 an	 integral	 domain:	 for	 if	a	 ≠	 0	 and	ax	 =	ay	 in	 a	 field,	we	 can
multiply	both	sides	of	this	equation	by	the	multiplicative	inverse	of	a	to	cancel	a.	However,	not	every
integral	domain	is	a	field:	for	example,	 	is	not	a	field.	Nevertheless,

Theorem	4	Every	finite	integral	domain	is	a	field.

List	the	elements	of	the	integral	domain	in	the	following	manner:

0,	1,	a1,	a2,	…,	an

In	 this	 manner	 of	 listing,	 there	 are	 n	 +	 2	 elements	 in	 the	 domain.	 Take	 any	ai,	 and	 show	 that	 it	 is
invertible:	to	begin	with,	note	that	the	products

ai0,	ai1,	aia1,	aia2,	…,	aian

are	 all	 distinct:	 for	 if	aix	 =	aiy,	 then	x	 =	y.	Thus,	 there	 are	 n	+	 2	distinct	 products	aix;	 but	 there	 are
exactly	n	+	2	elements	in	the	domain,	so	every	element	in	the	domain	is	equal	to	one	of	these	products.
In	particular,	1	=	aix	for	some	x;	hence	ai	is	invertible.

OPTIONAL

The	integral	domain	 	is	not	a	field	because	it	does	not	contain	the	quotients	m/n	of	integers.	However,	
can	be	enlarged	to	a	field	by	adding	to	it	all	the	quotients	of	integers;	the	resulting	field,	of	course,	is	 ,
the	field	of	the	rational	numbers.	 	consists	of	all	quotients	of	integers,	and	it	contains	 	(or	rather,	an
isomorphic	copy	of	 )	when	we	identify	each	integer	n	with	the	quotient	n/1.	We	say	that	 	is	the	field
of	quotients	of	 .

It	 is	 a	 fascinating	 fact	 that	 the	method	 for	 constructing	 	 from	 	 can	be	 applied	 to	 any	 integral
domain.	Starting	from	any	integral	domain	A,	it	is	possible	to	construct	a	field	which	contains	A:	a	field
of	quotients	of	A.	This	is	not	merely	a	mathematical	curiosity,	but	a	valuable	addition	to	our	knowledge.
In	applications	it	often	happens	that	a	system	of	algebra	we	are	dealing	with	lacks	a	needed	property,
but	is	contained	in	a	larger	system	which	has	that	property—and	that	is	almost	as	good!	In	the	present
case,	A	is	not	a	field	but	may	be	enlarged	to	one.



Thus,	 if	A	 is	 any	 integral	 domain,	we	will	 proceed	 to	 construct	 a	 field	A*	 consisting	 of	 all	 the
quotients	of	elements	in	A;	and	A*	will	contain	A,	or	rather	an	isomorphic	copy	of	A,	when	we	identify
each	element	a	of	A	with	the	quotient	a/1.	The	construction	will	be	carefully	outlined	and	the	busy	work
left	as	an	exercise.

Given	A,	let	S	denote	the	set	of	all	ordered	pairs	(a,	b)	of	elements	of	A,	where	b	≠	0.	That	is,

S	=	{(a,	b):	a,b	∈	A			and			b	≠	0}

In	order	 to	understand	 the	next	 step,	we	 should	 think	of	 (a,	b)	as	a/b.	 [It	 is	 too	 early	 in	 the	proof	 to
introduce	 fractional	notation;	nevertheless	 each	ordered	pair	 (a,	b)	 should	be	 thought	of	 as	 a	 fraction
a/b.}	Now	a	problem	of	representation	arises	here,	because	it	is	obvious	that	the	quotient	xa/xb	is	equal
to	the	quotient	a/b;	to	put	the	same	fact	differently,	the	quotients	a/b	and	c/d	are	equal	whenever	ad	=
bc.	That	is,	if	ad	=	bc,	then	a/b	and	c/d	are	two	different	ways	of	writing	the	same	quotient.	Motivated
by	 this	 observation,	 we	 define	 (a,	 b)	 ~	 (c,	 d)	 to	 mean	 that	 ad	 =	 bc,	 and	 easily	 verify	 that	 ~	 is	 an
equivalence	relation	on	the	set	5.	(Equivalence	relations	are	explained	in	Chapter	12.)	Then	we	let	[a,	b]
denote	the	equivalence	class	of	(a,	b),	that	is,

[a,b]	=	{(c,d)	∈	S	:	(c,	d)	~	(a,	b)}

Intuitively,	all	the	pairs	which	represent	a	given	quotient	are	lumped	together	in	one	equivalence	class;
thus,	each	quotient	is	represented	by	exactly	one	equivalence	class.

Let	us	recapitulate	the	formal	details	of	our	construction	up	to	this	point:	Given	the	set	S	of	ordered
pairs	of	elements	in	A,	we	define	an	equivalence	relation	—	in	S	by	letting	(a,	b)	~	(c,	d)	iff	ad=	bc.	We
let	 [a,	 b]	 designate	 the	 equivalence	 class	 of	 (a,	 b),	 and	 finally,	we	 let	 A*	 denote	 the	 set	 of	 all	 the
equivalence	classes	[a,	b].	The	elements	of	A*	will	be	called	quotients.

Before	going	on,	observe	carefully	that

[a,b]	=	[r,s]	 iff	 (a,	b)~(r,s)	 iff	 as	=	br	 (3)

As	our	next	step,	we	define	operations	of	addition	and	multiplication	in	A*:

[a,	b]	+	[c,	d]	=	[ad	+	bc,	bd]

and

[a,	b]	·	[c,	d]	=	[ac,	bd]

To	understand	these	definitions,	simply	remember	the	formulas

We	must	make	certain	these	definitions	are	unambiguous;	that	is,	if	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	we
have	equations



and	we	must	therefore	verify	that	[ad	+	bc,	bd]	=	[ru	+	st,	su]	and	[ac,	bd]	=	[rt,	su].	This	is	left	as	an
exercise.	 It	 is	 also	 left	 for	 the	 student	 to	 verify	 that	 addition	 and	multiplication	 are	 associative	 and
commutative	and	the	distributive	law	is	satisfied.

The	zero	element	is	[0,1],	because	[a,	b]	+	[0,1]	=	[a,	b].	The	negative	of	[a,	b]	is	[-a,	b],	for	[a,	b]
+	[-a,	b]	=	[0,	b2]	=	[0,1].	[The	last	equation	is	true	because	of	Equation	(3).]	The	unity	is	[1,1],	and	the
multiplicative	inverse	of	[a,	b]	is	[b,a],	for	[a,	b]	·	[b,	a]	=	[ab,	ab]	=	[1,1].	Thus,	A*	is	a	field!

Finally,	if	A′	is	the	subset	of	A*	which	contains	every	[a,	1],	we	let	ϕ	be	the	function	from	A	to	A′
defined	by	ϕ(a)	=	[a,	1].	This	function	is	injective	because,	by	Equation	(3),	if	[a,	1]	=	[b,	1]	then	a	=	b.
It	is	obviously	surjective	and	is	easily	shown	to	be	a	homomorphism.	Thus,	ϕ	is	an	isomorphism	from	A
to	A′	so	A*	contains	an	isomorphic	copy	A′	of	A.

EXERCISES

A.	Characteristic	of	an	Integral	Domain
Let	A	be	a	finite	integral	domain.	Prove	each	of	the	following:

1	Let	a	be	any	nonzero	element	of	A.	If	n	·	a	=	0,	where	n	≠	0,	then	n	is	a	multiple	of	the	characteristic
of	A.
2	If	A	has	characteristic	zero,	n	≠	0,	and	n	·	a	=	0,	then	a	=	0.
3	If	A	has	characteristic	3,	and	5	·	a	=	0,	then	a	=	0.
4	If	there	is	a	nonzero	element	a	in	A	such	that	256	·	a	=	0,	then	A	has	characteristic	2.
5	If	there	are	distinct	nonzero	elements	a	and	b	in	A	such	that	125	·	a	=	125	·	b,	then	A	has	characteristic
5.
6	If	there	are	nonzero	elements	a	and	in	A	such	that	(a	+	b)2	=	a2	+	b2,	then	A	has	characteristic	2.
7	If	there	are	nonzero	elements	a	and	b	in	A	such	that	10a	=	0	and	14b	=	0,	then	A	has	characteristic	2.

B.	Characteristic	of	a	Finite	Integral	Domain
Let	A	be	an	integral	domain.	Prove	each	of	the	following:

1	If	A	has	characteristic	q,	then	q	is	a	divisor	of	the	order	of	A.
2	If	the	order	of	A	is	a	prime	number	p,	then	the	characteristic	of	A	must	be	equal	to	p.
3	If	the	order	of	A	is	pm,	where	p	is	a	prime,	the	characteristic	of	A	must	be	equal	to	p.
4	If	A	has	81	elements,	its	characteristic	is	3.
5	If	A,	with	addition	alone,	is	a	cyclic	group,	the	order	of	A	is	a	prime	number.

C.	Finite	Rings
Let	A	be	a	finite	commutative	ring	with	unity.

1	Prove:	Every	nonzero	element	of	A	 is	either	a	divisor	of	zero	or	invertible.	(HINT:	Use	an	argument
analogous	to	the	proof	of	Theorem	4.)
2	Prove:	If	a	≠	0	is	not	a	divisor	of	zero,	then	some	positive	power	of	a	is	equal	to	1.	(HINT:	Consider	a,
a2,	a3,....	Since	A	is	finite,	there	must	be	positive	integers	n	<	m	such	that	an	=	am.)



3	Use	part	2	to	prove:	If	a	is	invertible,	then	a−1	is	equal	to	a	positive	power	of	a.

D.	Field	of	Quotients	of	an	Integral	Domain
The	following	questions	refer	to	the	construction	of	a	field	of	quotients	of	A,	as	outlined	on	pages	203	to
205.

1	If	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	prove	that	[a,	b]	+	[c,	d]	=	[r,	s]	+	[t,	u].
2	If	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	prove	that	[a,	b][c,	d]	=	[r,	s][t,	u].
3	If	(a,	b)	~	(c,	d)	means	ad	=	bc,	prove	that	~	is	an	equivalence	relation	on	S.
4	Prove	that	addition	in	A*	is	associative	and	commutative.
5	Prove	that	multiplication	in	A*	is	associative	and	commutative.
6	Prove	the	distributive	law	in	A*.
7	Verify	that	ϕ:	A	→	A′	is	a	homomorphism.

E.	Further	Properties	of	the	Characteristic	of	an	Integral	Domain
Let	A	be	an	integral	domain.	Prove	parts	1-4:

1	Let	a	∈	A.	If	A	has	characteristic	p,	and	n	·	a	=	0	where	n	is	not	a	multiple	of	p,	then	a	=	0.
2	If	p	is	a	prime,	and	there	is	a	nonzero	element	a	∈	A	such	that	p	·	a	=	0,	then	A	has	characteristic	p.
3	If	p	is	a	prime,	and	there	is	a	nonzero	element	a	∈	A	such	that	pm	·	a	=	0	for	some	integer	m,	then	A
has	characteristic	p.
4	If	A	has	characteristic	p,	then	the	function	f(a)	=	ap	is	a	homomorphism	from	A	to	A.
#	5	Let	A	have	order	p,	where	p	is	a	prime.	Explain	why

A	=	{0,1,2·1,3·1,...,(p	−	1).1}

Prove	that	A	≅	 p.
#	6	If	A	has	characteristic	p,	prove	that	for	any	positive	integer	n,

(a)	(a	+	b)pn	=	apn	+	bpn

(b)	
7	Let	A	⊆	B	where	A	and	B	are	integral	domains.	Prove:	A	has	characteristic	p	iff	B	has	characteristic	p.

F.	Finite	Fields
By	Theorem	4,	“finite	integral	domain”	and	“finite	field”	are	the	same.

1	Prove:	Every	finite	field	has	nonzero	characteristic.
2	Prove	that	if	A	is	a	finite	field	of	characteristic	p,	the	function	f(a)	=	ap	is	an	automorphism	of	A;	that
is,	an	isomorphism	from	A	to	A.	(HINT:	Use	Exercise	E4	above	and	Exercise	F7	of	Chapter	18.	To	show
that	f	is	surjective,	compare	the	number	of	elements	in	the	domain	and	in	the	range	of	f.)

The	function	f(a)	=	ap	is	called	the	Froebenius	automorphism.
3	Use	part	2	to	prove:	In	a	finite	field	of	characteristic	p,	every	element	has	a	p-th	root.



CHAPTER

TWENTY-ONE

THE	INTEGERS

There	are	two	possible	ways	of	describing	the	system	of	the	integers.
On	the	one	hand,	we	may	attempt	to	describe	it	concretely.
On	 the	 other	 hand,	 we	 may	 find	 a	 list	 of	 axioms	 from	 which	 it	 is	 possible	 to	 deduce	 all	 the

properties	of	the	integers,	so	the	only	system	which	has	all	these	properties	is	the	system	of	the	integers.
The	second	of	these	two	ways	is	the	way	of	mathematics.	It	is	elegant,	economical,	and	simple.	We

select	as	axioms	only	those	particular	properties	of	the	integers	which	are	absolutely	necessary	in	order
to	prove	further	properties	of	the	integers.	And	we	select	a	sufficiently	complete	list	of	axioms	so	that,
using	them,	one	can	prove	all	the	properties	of	the	integers	needed	in	mathematics.

We	 have	 already	 seen	 that	 the	 integers	 are	 an	 integral	 domain.	 However,	 there	 are	 numerous
examples	of	integral	domains	which	bear	little	resemblance	to	the	set	of	the	integers.	For	example,	there
are	finite	integral	domains	such	as	 5,	fields	(remember	that	every	field	is	an	integral	domain)	such	as	
and	 ,	and	others.	Thus,	 in	order	 to	pin	down	the	 integers	—	that	 is,	 in	order	 to	find	a	 list	of	axioms
which	applies	 to	 the	 integers	 and	only	 the	 integers—we	must	 select	 some	additional	 axioms	and	add
them	to	the	axioms	of	integral	domains.	This	we	will	now	proceed	to	do.

Most	of	the	traditional	number	systems	have	two	aspects.	One	aspect	is	their	algebraic	structure:
they	 are	 integral	 domains	 or	 fields.	The	other	 aspect—which	we	have	not	 yet	 touched	upon—is	 that
their	elements	can	be	ordered.	That	is,	if	a	and	b	are	distinct	elements,	we	can	say	that	a	is	less	than	b	or
b	is	less	than	a.	This	second	aspect—the	ordering	of	elements—will	now	be	formalized.

An	ordered	integral	domain	is	an	integral	domain	A	with	a	relation,	symbolized	by	<,	having	the
following	properties:

1. 	For	any	a	and	b	in	A,	exactly	one	of	the	following	is	true:

a	=	b 	a	<	b	 or	 b	<	a

Furthermore,	for	any	a,	b,	and	c	in	A,
2. 	If	a	<	b	and	b	<	c,	then	a	<	c.
3. 	If	a	<	b,	then	a	+	c	<	b	+	c.



4. 	If	a	<	b,	then	ac	<	bc	on	the	condition	that	0	<	c.
The	relation	<	is	called	an	order	relation	on	A.	The	four	conditions	which	an	order	relation	must	fulfill
are	familiar	to	everyone.	Properties	1	and	2	require	no	comment.	Property	3	asserts	that	we	are	allowed
to	add	any	given	c	to	both	sides	of	an	inequality.	Property	4	asserts	that	we	may	multiply	both	sides	of
an	inequality	by	any	c,	on	the	condition	that	c	is	greater	than	zero.

As	usual,	a	>	b	has	the	same	meaning	as	b	<	a.	Furthermore,	a	≤	b	means	“a	<	b	or	a	=	b,”	and	b	≥
a	means	the	same	as	a	≤	b.

In	an	ordered	integral	domain	A,	an	element	a	is	called	positive	if	a	>0.	If	a	<0	we	call	a	negative.
Note	 that	 if	a	 is	positive	 then	−a	 is	 negative.	 (Proof:	Add	−a	 to	 both	 sides	 of	 the	 inequality	a	 >	 0.)
Similarly,	if	a	is	negative,	then	−a	is	positive.

In	 any	 ordered	 integral	 domain,	 the	 square	 of	 every	 nonzero	 element	 is	 positive.	 Indeed,	 if	 c	 is
nonzero,	then	either	c	>	0	of	c	<0.	If	c	>0,	then,	multiplying	both	sides	of	the	inequality	c	>0	by	c,

cc	>	c0	=	0

so	c2>0.	On	the	other	hand,	if	c<0,	then

(−c)	>	0

hence

(−c)(−c)	>	0(−c)	=	0

But	(−c)(−c)	=	c2,	so	once	again,	c2	>	0.
In	particular,	since	1	=	l2,	1	is	always	positive.
From	the	fact	that	1	>0,	we	immediately	deduce	that	1	+	1	>	1,	1	+	1	+	1	>	1	+	1,	and	so	on.	In

general,	for	any	positive	integer	n,

(n	+	1)·	1	>	n	·	1

where	n	·	1	designates	the	unity	element	of	the	ring	A	added	to	itself	n	times.	Thus,	in	any	ordered
integral	domain	A,	the	set	of	all	the	multiples	of	1	is	ordered	as	in	 :	namely

⋯	<(−2)·1	<(−1)·1	<0<1<2·1<3·1<	⋯

The	set	of	all	the	positive	elements	of	A	is	denoted	by	A+.	An	ordered	integral	domain	A	is	called
an	integral	system	if	every	nonempty	subset	of	A+	has	a	least	element.	In	other	words,	if	every	nonempty
set	of	positive	elements	of	A	has	a	least	element.	This	property	is	called	the	well-ordering	property	for
A+.

It	is	obvious	that	 	is	an	integral	system,	for	every	nonempty	set	of	positive	integers	contains	a	least
number.	For	example,	the	smallest	element	of	the	set	of	all	the	positive	even	integers	is	2.	Note	that	
and	 	 are	not	 integral	 systems.	 For	 although	 both	 are	 ordered	 integral	 domains,	 they	 contain	 sets	 of
positive	numbers,	such	as	{x:0	<x<l},	which	have	no	least	element.

In	any	integral	system,	there	is	no	element	between	0	and	1.	For	suppose	A	is	an	integral	system	in
which	there	are	elements	χ	between	0	and	1.	Then	the	set	{x	∊	A:	0<x<	1}	is	a	nonempty	set	of	positive
members	of	A,	so	by	the	well-ordering	property	it	has	a	least	element	c.	That	is,



0	<c	<	1

and	c	is	the	least	element	of	A	with	this	property.	But	then	(multiplying	by	c),

0	<	c2	<	c

Thus,	c2	is	between	0	and	1	and	is	less	than	c,	which	is	impossible.
Thus,	there	is	no	element	of	A	between	0	and	1.
Finally,	in	any	integral	system,	every	element	is	a	multiple	of	1.	If	that	were	not	the	case,	we	could

use	the	well-ordering	principle	to	pick	the	least	positive	element	of	A	which	is	not	a	multiple	of	1	:	call
it	b.	Now,	b>0	and	there	are	no	elements	of	A	between	0	and	1,	so	b>l.	 (Remember	 that	b	cannot	be
equal	to	1	because	b	is	not	a	multiple	of	1.)	Since	b	>	1,	it	follows	that	b	−	1	>0.	But	b	−	1	<	b	and	b	is
the	least	positive	element	which	is	not	a	multiple	of	1,	so	b	−	1	is	a	multiple	of	1.	Say

b	−	1	=	n	·	1

But	then	b	=	n	·	1	+	1	=	(n	+	1)·	1,	which	is	impossible.
Thus,	in	any	integral	system,	all	the	elements	are	multiples	of	1	and	these	are	ordered	exactly	as	in	

.	 It	 is	 now	 a	 mere	 formality	 to	 prove	 that	 every	 integral	 system	 is	 isomorphic	 to	 	 This	 is	 left	 as
Exercise	Dat	the	end	of	this	chapter.

Since	every	 integral	 system	 is	 isomorphic	 to	 ,	 any	 two	 integral	 systems	 are	 isomorphic	 to	 each
other.	Thus	 	is,	up	to	isomorphism,	the	only	integral	system.	We	have	therefore	succeeded	in	giving	a
complete	axiomatic	characterization	of	

Henceforward	we	consider	 	to	be	defined	by	the	fact	that	it	is	an	integral	system.
The	theorem	which	follows	is	the	basis	of	proofs	by	mathematical	induction.	It	is	intuitively	clear

and	easy	to	prove.

Theorem	1	Let	K	represent	a	set	of	positive	integers.	Consider	the	following	two	conditions’.

(i)	1	is	in	K.
(ii)	For	any	positive	integer	k,	if	k∈	K,	then	also	k	+	1	∈	K.
If	K	 is	 any	 set	 of	 positive	 integers	 satisfying	 these	 two	 conditions,	 then	K	consists	of	 all	 the	positive
integers.

PROOF:	Indeed,	if	K	does	not	contain	all	the	positive	integers,	then	by	the	well-ordering	principle,
the	set	of	all	the	positive	integers	which	are	not	in	K	has	a	least	element.	Call	it	b;	b	is	the	least	positive
integer	not	in	K.	By	Condition	(i),	b	≠	1,	hence	b	>	1.

Thus,	b	−	1	>	0,	and	b	−	1	∈	K.	But	then,	by	Condition	(ii),	b	∈	K,	which	is	impossible.	■
Let	the	symbol	Sn	represent	any	statement	about	the	positive	integer	n.	For	example,	Sn	might	stand

for	“n	is	odd,”	or	“n	is	a	prime,”	or	it	might	represent	an	equation	such	as	(n	−	1)(n	+	1)	=	n2	−	1	or	an
inequality	such	as	n	≤	n2.	If,	let	us	say,	Sn	stands	for	n	≤	n2,	then	S1	asserts	that	1	≤	12,	S2	asserts	that	2	≤
22,	S3	asserts	that	3	≤	32,	and	so	on.

Theorem	2:	Principle	of	mathematical	induction	Consider	the	following	conditions	:

(i) S1	is	true.



(ii) For	any	positive	integer	k,	if	Sk	is	true,	then	also	Sk+1	is	true.
If	Conditions	(i)	and	(ii)	are	satisfied,	then	Sn	is	true	for	every	positive	integer	n.

PROOF:	Indeed,	if	K	is	the	set	of	all	the	positive	integers	k	such	that	Sk	is	true,	then	K	complies	with
the	conditions	of	Theorem	1.	Thus,	K	contains	all	 the	positive	integers.	This	means	that	Sn	 is	true	for
every	n.	■

As	 a	 simple	 illustration	of	 how	 the	principle	of	mathematical	 induetion	 is	 applied,	 let	Sn	 be	 the
statement	that

that	is,	the	sum	of	the	first	n	positive	integers	is	equal	to	n(n	+	1)/2.	Then	S1	is	simply

which	is	clearly	true.	Suppose,	next,	that	k	is	any	positive	integer	and	that	Sk	is	true.	In	other	words,

Then,	by	adding	k	+	1	to	both	sides	of	this	equation,	we	obtain

that	is,

However,	this	last	equation	is	exactly	Sk+1.	We	have	therefore	verified	that	whenever	Sk	is	true,	Sk+1	also
is	true.	Now,	the	principle	of	mathematical	induction	allows	us	to	conclude	that

for	every	positive	integer	n.
A	 variant	 of	 the	 principle	 of	 mathematical	 induction,	 called	 the	 principle	 of	 strong	 induction,

asserts	that	Sn	is	true	for	every	positive	integer	n	on	the	conditions	that
(i) S1	is	true,	and
(ii) For	any	positive	integer	k,	if	Si	is	true	for	every	i	<	k,	then	Sk	is	true.
The	details	are	outlined	in	Exercise	H	at	the	end	of	this	chapter.

One	of	 the	most	 important	 facts	about	 the	 integers	 is	 that	any	 integer	m	may	be	divided	by	any
positive	integer	n	to	yield	a	quotient	q	and	a	positive	remainder	r.	(The	remainder	is	less	than	the	divisor
n.)	For	example,	25	may	be	divided	by	8	to	give	a	quotient	of	3	and	a	remainder	of	1:



This	process	is	known	as	the	division	algorithm.	It	is	stated	in	a	precise	manner	as	follows:
Theorem	 3:	 Division	 algorithm	 If	 m	 and	 n	 are	 integers	 and	 n	 is	 positive,	 there	 exist	 unique

integers	q	and	r	such	that

m	=	nq	+	r and 0	≤	r	<	n

We	call	q	the	quotient,	and	r	the	remainder,	in	the	division	of	m	by	n.
PROOF:	We	begin	by	showing	a	simple	fact:

There	exists	an	integer	x	such	that	xn≤	m. 	(*)

Remember	that	n	is	positive;	hence	n	≥	1.	As	for	m,	either	m≥	0	or	m	<	0.	We	consider	these	two	cases
separately:

Suppose	m	≥	0.	Then

Suppose	m	<	0.	We	may	multiply	both	sides	of	n	≥	1	by	the	positive	integer	−m	to	get	(−m)n≥	−m.
Adding	mn	+	m	to	both	sides	yields

Thus,	regardless	of	whether	m	is	positive	or	negative,	there	is	some	integer	x	such	that	xn	≤	m.
Let	W	 be	 the	 subset	of	 	 consisting	 of	 all	 the	 nonnegative	 integers	which	 are	 expressible	 in	 the

form	m	−	xn,	where	x	 is	any	integer.	By	(*)	W	 is	not	empty;	hence	by	the	well-ordering	property,	W
contains	a	 least	 integer	 r.	Because	r	∈	W,	r	 is	nonnegative	and	 is	expressible	 in	 the	form	m	−	nq	for
some	integer	q.	That	is,

r	≥0

and

r	=	m	−	nq

Thus,	we	 already	 have	m	 =	 nq	 +	 r	 and	 0	 ≤	 r.	 It	 remains	 only	 to	 verify	 that	 r<n.	 Suppose	 not:
suppose	n≤	r,	that	is,	r−n≥	0.	But

r	−	n	=	(m	−	nq)	−	n	=	m	−	n(q	+1)

and	clearly	r	−	n	<	r.	This	means	that	m	−	n(q	+	1)	is	an	element	of	W	less	than	r,	which	is	impossible
because	r	is	the	least	element	of	W.	We	conclude	that	n≤	r	is	impossible;	hence	r<n.

The	verification	that	q	and	r	are	unique	is	left	as	an	exercise.	■



EXERCISES

A.	Properties	of	Order	Relations	in	Integral	Domains
Let	A	be	an	ordered	integral	domain.	Prove	the	following,	for	all	a,	b,	and	c	in	A:

1 	If	a	≤	b	and	b	≤	c,	then	a	≤	c.
2 	If	a	≤	b,	then	a	+c	≤	b	+	c.
3 	If	a	≤	b	andc	≥	0,	then	ac	≤	bc.
4 	If	a	<	b	andc	<	0,	then	bc	<	ac.
5 	a	<	b	iff	−	b	<−a.
6 	If	a	+c<b	+	c,	then	a	<	b.
7 	If	ac	<	bc	and	c	>	0,	then	a	<	b.
8 	If	a	<	b	andc<	d,	then	a	+c	<	b	+	d.

B.	Further	Properties	of	Ordered	Integral	Domains
Let	A	be	an	ordered	integral	domain.	Prove	the	following,	for	all	a,	b,	and	c	in	A:

1 	a2	+	b2	≥	2ab
2 	a2	+	b2	≥	ab	and	a2	+	b2	≥	−	ab
3 	a2	+b2	+	c2	≥	ab	+	bc	+	ac
4 	a2	+	b2	>,if	a2	+	b2	≠	0
5 	a	+	b	<	ab	+	1,if	a,b	>	1
6 	ab	+	ac	+	bc	+1	<	a	+	b	+	c	+	abc,	if	a,	b,	c	>	1

C.	Uses	of	Induction
Prove	parts	1−7,	using	the	principle	of	mathematical	induction.	(Assume	n	is	a	positive	integer.)

1 	1	+	3	+	5	+	⋯	+	(2n	−	1)	=	n2	(The	sum	of	the	first	n	odd	integers	is	n2.)
2 	13	+	23	+	⋯	+	n3	=	(1	+	2	+	⋯	+	n)2

3 	12	+	22	+	⋯	+	(n	−	1)2	<	 	<	12	+	22	+	⋯	+	n2

4 	13	+	23	+	⋯	+	(n	−	1)3	<	 	<	13	+	23	+	⋯	+	n3

5 	12	+	22	+	⋯	+	n2	=	 	n(n	+	1)(2n	+	1)
6 	13	+	23	+	⋯	+	n3	=	 	n2(n	+	1)2

7 	

8	The	Fibonacci	sequence	is	the	sequence	of	integers	F1,	F2,	F3,…defined	as	follows:	F1	=	1;	F2	=	1;
Fn+2	=	Fn+1	+	Fn	for	all	positive	integers	n.	(That	is,	every	number,	after	the	second	one,	is	the	sum	of
the	two	preceding	ones.)	Use	induction	to	prove	that	for	all	n	>	0,

Fn	+	1	Fn	+	2	−FnFn	+	3	=	(−l)n



D.	Every	Integral	System	Is	Isomorphic	to	
Let	A	be	an	integral	system.	Let	h: →A	be	defined	by:	h(n)	=	n	·	1.	The	purpose	of	this	exercise	is	to
prove	that	h	is	an	isomorphism,	from	which	it	follows	that	A	≅	

1 	Prove:	For	every	positive	integer	n,	n	·	1	>	0.	What	is	the	characteristic	of	A
2 Prove	that	h	is	injective	and	surjective.
3 	Prove	that	h	is	an	isomorphism.

E.	Absolute	Values
In	any	ordered	integral	domain,	define	|a|	by

Using	this	definition,	prove	the	following:

1 	|−a|	=	|a|
2 	a	≤	|a|
3 	a	≤	−|a|
4 	If	b	>0,	|a|≤	b	iff	−b	≤	a	≤	b
5 	|a+b|	≤|a|	+|b|
6 	|a−b|≤|a|	+|b|
7 	|ab|	=	|a|·|b|
8 	|a|−|b|≤	|a	−	b|
9 	||a|−|b||≤	|a	−	b|

F.	Problems	on	the	Division	Algorithm
Prove	parts	1−3,	where	k,	m,	n,	q,	and	r	designate	integers.

1 	Let	n	>	0	and	k	>	0.	If	q	is	the	quotient	and	r	is	the	remainder	when	m	is	divided	by	n,	then	q	is	the
quotient	and	kr	is	the	remainder	when	km	is	divided	by	kn.
#	2	Let	n	>	0	and	k	>	0.	If	q	is	the	quotient	when	m	is	divided	by	n,	and	q1	is	the	quotient	when	q	is
divided	by	k,	then	q1	is	the	quotient	when	m	is	divided	by	nk.

3	If	n	≠	0,	there	exist	q	and	r	such	that	m	=	nq	+	r	and	0	≤	r	<	|n|.	(Use	Theorem	3,	and	consider	the	case
when	n	<	0.)
4 	In	Theorem	3,	suppose	m	=	nq1	+	r1	=	nq2	+	r2	where	0	≤	r1,	r2	<	n.	Prove	that	r1	−	r2	=	0.	 [HINT:
Consider	the	difference	(nq1	+	r1	−	(nq2	+	r2).]
5 	Use	 part	 4	 to	 prove	 that	 q1	−	 q2	 =	 0.	 Conclude	 that	 the	 quotient	 and	 remainder,	 in	 the	 division
algorithm,	are	unique.
6 	If	r	is	the	remainder	when	m	is	divided	by	n,	prove	that	m	=	r	in	 n.

G.	Laws	of	Multiples



The	purpose	of	this	exercise	is	to	give	rigorous	proofs	(using	induction)	of	the	basic	identities	involved
in	the	use	of	exponents	or	multiples.	If	A	is	a	ring	and	a	∈	A,	we	define	n	·	a	(where	n	is	any	positive
integer)	by	the	pair	of	conditions:

(i)	1	·	a	=	a,	 and	 (ii)	(n	+	1)·	a	=	n	·	a	+	a

Use	 mathematical	 induction	 (with	 the	 above	 definition)	 to	 prove	 that	 the	 following	 are	 true	 for	 all
positive	integers	n	and	all	elements	a,	b	∈	A:

1 	n	·(a	+	b)	=	n	·	a	+	n	·	b
2 	(n	+	m)·	a	=	n	·	a	+	m	·	a
3 	(n	·	a)b	=	a(n	·	b)	=	n	·	(ab)
4 	m	·	(n	·	a)	=	(mn)	·	a
5 	n	·	a	=	(n	·	1)a	 where	1	is	the	unity	element	of	A
6 (n	·	a)(m	·	b)	=	(nm)	·	ab (Use	parts	3	and	4.)

H.	Principle	of	Strong	Induction
Prove	the	following	in	 :

1 	Let	K	denote	a	set	of	positive	integers.	Consider	the	following	conditions:
(i)	I∈K.
(ii)	For	any	positive	integer	k,	if	every	positive	integer	less	than	k	is	in	K,	then	k	∈	K.
If	K	satisfies	these	two	conditions,	prove	that	K	contains	all	the	positive	integers.
2 	Let	Sn	represent	any	statement	about	the	positive	integer	n.	Consider	the	following	conditions:
(i)	S1	is	true.
(ii)	For	any	positive	integer	k,	if	Si	is	true	for	every	i	<	k,	Sk	is	true.
If	Conditions	(i)	and	(ii)	are	satisfied,	prove	that	Sn	is	true	for	every	positive	integer	n.



CHAPTER

TWENTY-TWO
FACTORING	INTO	PRIMES

It	has	been	said	that	 the	two	events	most	decisive	in	shaping	the	course	of	our	development	were	the
invention	of	 the	wheel	 and	 the	discovery	of	numbers.	From	 the	 time—ages	 ago—when	humans	 first
learned	the	use	of	numbers	for	counting,	they	have	been	a	source	of	endless	fascination.	Alchemists	and
astrologers	extolled	the	virtues	of	“mystic”	numbers	and	found	in	them	the	key	to	potent	magic.	Others,
more	 down	 to	 earth,	 found	 delight	 in	 observing	 the	 many	 regularities	 and	 unexpected	 properties	 of
numbers.	 The	 integers	 have	 been	 a	 seemingly	 inexhaustible	 source	 of	 problems	 great	 and	 small	 on
which	mathematics	has	fed	and	continues	to	draw	in	our	day.

The	 properties	 of	 prime	 numbers	 alone	 have	 occupied	 the	 energies	 of	mathematicians	 from	 the
time	of	Euclid.	New	questions	relating	to	the	primes	continue	to	appear,	and	many	continue	to	resist	the
best	efforts	to	solve	them.	Most	importantly,	a	large	part	of	number	theory	starts	out	from	a	few	basic
facts	about	prime	numbers.	They	will	be	outlined	in	this	chapter.

Modern	number	theory	is	the	oldest	as	well	as	one	of	the	newest	parts	of	mathematics.	It	rests	upon
some	 basic	 data	 regarding	 the	 structure	 of	 the	 domain	 	 of	 the	 integers.	 An	 understanding	 of	 this
structure	is	a	fundamental	part	of	any	mathematical	education.

An	important	feature	of	any	ring	is	the	structure	of	its	ideals.	We	therefore	begin	by	asking:	What
are	the	ideals	of	 ?	We	have	already	made	use	of	principal	ideals	of	 ,	such	as	the	ideal

〈6〉	=	{…,	−18,	−12,	−6,	0,	6,	12,	18,	…}

which	consist	of	all	the	multiples	of	one	fixed	integer.	It	is	natural	to	inquire	whether	 	has	any	ideals
which	are	not	principal,	and	what	they	might	look	like.	The	answer	is	far	from	self-evident.

Theorem	1	Every	ideal	of	 	is	principal.

PROOF:	 Let	 J	 be	 any	 ideal	 of	 .	 If	 0	 is	 the	 only	 integer	 in	 J,	 then	 J	 =	 〈0〉,	 the	 principal	 ideal
generated	by	0.	 If	 there	are	nonzero	 integers	 in	J,	 then	for	each	x	 in	J,	−x	 is	also	 in	J;	 thus	 there	are
positive	integers	in	J.	By	the	well-ordering	property	we	may	pick	the	least	positive	integer	in	J,	and	call
it	n.

We	will	prove	that	J	=	〈n〉,	which	is	to	say	that	every	element	of	J	is	some	multiple	of	n.	Well,	let	m
be	any	element	of	J.	By	the	division	algorithm	we	may	write	m	=	nq	+	r	where	0	≤	r	<	n.	Now	m	was
chosen	in	J,	and	n	∈	J,	hence	nq	is	in	J.	Thus,



r	=	m	−	nq	∈	J

Remember	that	r	is	either	0	or	else	positive	and	less	than	n.	The	second	case	is	impossible,	because	n	is
the	least	positive	integer	in	J.	Thus,	r	=	0,	and	therefore	m	=	nq,	which	is	a	multiple	of	n.

We	have	proved	that	every	element	of	J	is	a	multiple	of	n,	which	is	to	say	that	J	=	〈n〉.	■
It	is	useful	to	note	that	by	the	preceding	proof,	any	ideal	J	is	generated	by	the	least	positive	integer

in	J.
If	r	and	s	are	integers,	we	say	that	s	is	a	multiple	of	r	if	there	is	an	integer	k	such	that

s	=	rk

If	this	is	the	case,	we	also	say	that	r	is	a	factor	of	s,	or	r	divides	s,	and	we	symbolize	this	by	writing

r|s

Note	that	1	and	−1	divide	every	integer.	On	the	other	hand,	an	integer	r	divides	1	iff	r	is	invertible.
In	 	there	are	very	few	invertible	elements.	As	a	matter	of	fact,

Theorem	2	The	only	invertible	elements	of	 	are	1	and	−1.

PROOF:	If	s	is	invertible,	this	means	there	is	an	integer	r	such	that

rs	=	1

Clearly	 r	 ≠	 0	 and	 s	 ≠	 0	 (otherwise	 their	 product	 would	 be	 0).	 Furthermore,	 r	 and	 s	 are	 either	 both
positive	or	both	negative	(otherwise	their	product	would	be	negative).

If	r	and	s	are	both	positive,	then	r	=	1	or	r	>1.	In	case	r	>	1	we	may	multiply	both	sides	of	1	<	r	by
s	to	get	s	<	rs	=	1	;	this	is	impossible	because	s	cannot	be	positive	and	<	1.	Thus,	it	must	be	that	r	=	1;
hence	1	=	rs	=	1s	=	s,	so	also	s	=	1.

If	r	and	s	are	both	negative,	then	−r	and	−s	are	positive.	Thus,

1	=	rs	=	(−r)(−s)

and	by	the	preceding	case,	−r	=	−s	=	1.	Thus,	r	=	s	=	−1.	■
A	pair	of	integers	r	and	s	are	called	associates	if	they	divide	each	other,	that	is,	if	r|s	and	s|r.	If	r

and	s	are	associates,	this	means	there	are	integers	k	and	l	such	that	r	=	ks	and	s	=	lr.	Thus,	r	=	ks	=	klr,
hence	kl	=	1.	By	Theorem	2,	k	and	l	are	±1,	and	therefore	r	=	±s.	Thus,	we	have	shown	that

If	r	and	s	are	associates	in	 ,	then	r	=	±s. (1)

An	integer	t	is	called	a	common	divisor	of	integers	r	and	s	if	t|r	and	t|s.	A	greatest	common	divisor
of	r	and	s	is	an	integer	t	such	that
(i) t|r	and	t|s	and
(ii) For	any	integer	u,	if	u|r	andthen	u|t.
In	other	words,	t	is	a	greatest	common	divisor	of	r	and	s	if	t	is	a	common	divisor	of	r	and	s,	and	every
other	common	divisor	of	r	and	s	divides	t.	Note	that	the	adjective	“greatest”	in	this	definition	does	not
mean	primarily	 that	 t	 is	 greater	 in	magnitude	 than	 any	other	 common	divisor,	 but,	 rather,	 that	 it	 is	 a



multiple	of	any	other	common	divisor.
The	words	“greatest	common	divisor”	are	familiarly	abbreviated	by	gcd.	As	an	example,	2	is	a	gcd

of	8	 and	10;	but	−2	also	 is	 a	 gcd	of	8	 and	10.	According	 to	 the	definition,	 two	different	 gcd’s	must
divide	each	other;	hence	by	Property	(1)	above,	they	differ	only	in	sign.	Of	the	two	possible	gcd’s	±t	for
r	and	s,	we	select	the	positive	one,	call	it	the	gcd	of	r	and	s,	and	denote	it	by

gcd(r,	s)

Does	 every	 pair	 r,	 s	 of	 integers	 have	 a	 gcd?	 Our	 experience	 with	 the	 integers	 tells	 us	 that	 the
answer	is	“yes.”	We	can	easily	prove	this,	and	more:

Theorem	3	Any	two	nonzero	integers	r	and	s	have	a	greatest	common	divisor	t.	Furthermore,	t	is
equal	to	a	“linear	combination”	of	r	and	s.	That	is,

t	=	kr	+	ls

for	some	integers	k	and	l.
PROOF:	Let	J	be	the	set	of	all	the	linear	combinations	of	r	and	s,	that	is,	the	set	of	all	ur	+	υs	as	u

and	υ	range	over	 .	J	is	closed	with	respect	to	addition	and	negatives	and	absorbs	products	because

and

w(ur	+	υs)	=	(wu)r	+	(wυ)s

Thus,	J	 is	 an	 ideal	of	 .	By	Theorem	1,	J	 is	 a	principal	 ideal	of	 ,	 say	J	 =	〈t〉.	 (J	 consists	 of	 all	 the
multiples	of	t.)

Now	t	is	in	J,	which	means	that	t	is	a	linear	combination	of	r	and	s:

t	=	kr+	ls

Furthermore,	r	=	1r	+	0s	and	s	=	0r	+	1s,	sor	and	s	are	linear	combinations	of	r	and	s;	thus	r	and	s	are	in
J.	But	all	the	elements	of	J	are	multiples	of	t,	so	r	and	s	are	multiples	of	t.	That	is,

t|r	 and	 t|s

Now,	if	u	is	any	common	divisor	of	r	and	s,	this	means	that	r	=	xu	and	s	=	yu	for	some	integers	x	and	y.
Thus,

t=	kr	+	ls	=	kxu	+	lyu	=	u(kx	+	ly)

It	follows	that	u|t.	This	confirms	that	t	is	the	gcd	of	r	and	s.	■
A	word	of	warning:	the	fact	that	an	integer	m	is	a	linear	combination	of	r	and	s	does	not	necessarily

imply	that	m	is	the	gcd	of	r	and	s.	For	example,	3	=	(1)15	+	(−2)6,	and	3	is	the	gcd	of	15	and	6.	On	the
other	hand,	27	=	(1)15	+	(2)6,	yet	27	is	not	a	gcd	of	15	and	6.

A	pair	of	integers	r	and	s	are	said	to	be	relatively	prime	 if	 they	have	no	common	divisors	except



±1.	For	example,	4	and	15	are	relatively	prime.	If	r	and	s	are	relatively	prime,	their	gcd	is	equal	to	1;	so
by	Theorem	3,	there	are	integers	k	and	l	such	that	kr	+	ls	=	1.	Actually,	the	converse	of	this	statement	is
true	too:	if	some	linear	combination	of	r	and	s	is	equal	to	1	(that	is,	if	there	are	integers	k	and	l	such	that
kr	+	ls	=	1),	then	r	and	s	are	relatively	prime.	The	simple	proof	of	this	fact	is	left	as	an	exercise.

If	m	is	any	integer,	it	is	obvious	that	±1	and	±m	are	factors	of	m.	We	call	these	the	trivial	factors	of
m.	If	m	has	any	other	factors,	we	call	them	proper	factors	of	m.	For	example,	±1	and	±6	are	the	trivial
factors	of	6,	whereas	±2	and	±3	are	proper	factors	of	6.

If	an	integer	m	has	proper	factors,	m	is	called	composite.	If	an	integer	p	≠	0,	1	has	no	proper	factors
(that	is,	if	all	its	factors	are	trivial),	then	we	call	p	a	prime.	For	example,	6	is	composite,	whereas	7	is	a
prime.

Composite	number	lemma	If	a	positive	integer	m	is	composite,	then	m	=	rs	where

1	<	r	<	m and 1	<	s	<	m

PROOF:	If	m	is	composite,	this	means	that	m	=	rs	for	integers	r	and	s	which	are	not	equal	either	to	1
or	to	m.	We	may	take	r	and	s	to	be	positive;	hence	1	<	r	and	1	<	s.	Multiplying	both	sides	of	1	<	r	by	s
gives	s	<	rs	=	m.	Analogously,	we	get	r	<	m.	■

What	 happens	 when	 a	 composite	 number	 is	 divided	 by	 a	 prime?	 The	 next	 lemma	 provides	 an
answer	to	that	question.

Euclid’s	lemma	Let	m	and	n	be	integers,	and	let	p	be	a	prime.

If	p|(mn),	then	either	p|m	or	p|n.

PROOF:	If	p|m	we	are	done.	So	let	us	assume	that	p	does	not	divide	m.	What	integers	are	common
divisors	of	p	and	m?

Well,	the	only	divisors	of	p	are	±1	and	±p.	Since	we	assume	that	p	does	not	divide	m,	p	and	−p	are
ruled	out	as	common	divisors	of	p	and	m,	hence	their	only	common	divisors	are	1	and	−1.

It	follows	that	gcd(p,	m)	=	1,	so	by	Theorem	3,

kp	+	lm	=	1

for	some	integer	coefficients	k	and	l.	Thus,

kpn	+	lmn	=	n

But	p|(mn),	so	there	is	an	integer	h	such	that	mn	=	ph.	Therefore,

kpn	+	lph	=	n

that	is,	p(kn	+	lh)	=	n.	Thus,	p|n.	▪
Corollary	1	Let	m1,	…,	mt,	be	integers,	and	let	p	be	a	prime.	If	p|(m1	⋯	mt),	then	p|mi	 for	one	of

the	factors	mi	among	m1,	…,	mt.

We	may	write	the	product	m1	⋯	mt	as	m1(m2	⋯	mt),	so	by	Euclid’s	lemma,	p|m1	or	p|m2	⋯	mt.	In	the
first	case	we	are	done,	and	in	the	second	case	we	may	apply	Euclid’s	lemma	once	again,	and	repeat	this
up	to	t	times.



Corollary	2	Let	q1,	…,	qt	and	p	be	positive	primes.	 If	p|(q1	⋯	qt),	 then	p	 is	 equal	 to	one	of	 the
factors	q1,	…,	qt.

PROOF:	By	Corollary	1,	p	divides	one	of	the	factors	q1,	…,	qt,	say	p|qi	But	qi	is	a	prime,	so	its	only
divisors	are	±1	and	±qi;	p	is	positive	and	not	equal	to	1,	so	if	p|qi,	necessarily	p	=	qi.	■

Theorem	 4:	 Factorization	 into	 primes	Every	 integer	 n	 >	 1	 can	 be	 expressed	 as	 a	 product	 of
positive	primes.	That	is,	there	are	one	or	more	primes	p1,	…,	pr	such	that

n	=	p1p2	⋯	pr

PROOF:	Let	K	represent	the	set	of	all	the	positive	integers	greater	than	1	which	cannot	be	written	as
a	product	of	one	or	more	primes.	We	will	assume	there	are	such	integers,	and	derive	a	contradiction.

By	the	well-ordering	principle,	K	contains	a	least	integer	m;	m	cannot	be	a	prime,	because	if	it	were
a	prime	it	would	not	be	in	K.	Thus,	m	is	composite;	so	by	the	composite	number	lemma,

m	=	rs

for	positive	integers	r	and	s	less	than	m	and	greater	than	1;	r	and	s	are	not	in	K	because	m	 is	the	least
integer	in	K.	This	means	that	r	and	s	can	be	expressed	as	products	of	primes,	hence	so	can	m	=	rs.	This
contradiction	proves	that	K	is	empty;	hence	every	n	>	1	can	be	expressed	as	a	product	of	primes.	■

Theorem	5:	Unique	 factorization	Suppose	n	 can	be	 factored	 into	positive	primes	 in	 two	ways,
namely,

n	=	p1	⋯	pr	=	q1	⋯	qt

Then	r	 =	 t,	and	 the	 pi	 are	 the	 same	 numbers	 as	 the	 qj	 except,	 possibly,	 for	 the	 order	 in	 which	 they
appear.

PROOF:	In	the	equation	p1	⋯	pr	=	q1	⋯	qt,	let	us	cancel	common	factors	from	each	side,	one	by	one,
until	we	can	do	no	more	canceling.	If	all	the	factors	are	canceled	on	both	sides,	this	proves	the	theorem.
Otherwise,	we	are	left	with	some	factors	on	each	side,	say

pi	⋯	pk	=	qj	⋯	qm

Now,	pi	is	a	factor	of	pi	⋯	pk,	so	pi|qj	⋯	qm.	Thus,	by	Corollary	2	to	Euclid’s	lemma,	p1	is	equal	to	one
of	the	factors	qj,	…,	qm,	which	is	impossible	because	we	assumed	we	can	do	no	more	canceling.	■

It	follows	from	Theorems	4	and	5	 that	every	 integer	m	can	be	factored	 into	primes,	and	 that	 the
prime	factors	of	m	are	unique	(except	for	the	order	in	which	we	happen	to	list	them).

EXERCISES

A.	Properties	of	the	Relation	“a	Divides	a”
Prove	the	following,	for	any	integers	a,	b,	and	c:

1	If	a|b	and	b|c,	then	a|c.



2	a|b	iff	a|(−b)	iff	(−a)|b.
3	1|a	and	(−1)|a.
4	a|0.
5	If	c|a	and	c|b,	then	c|	(ax	+	by)	for	all	x,	y	∈	 .
6	If	a	>	0	and	b	>	0	and	a|b,	then	a	≤	b.
7	a|b	iff	ac|bc,	when	c	≠	0.
8	If	a|b	and	c|d,	then	ac|bd.
9	Let	p	be	a	prime.	If	p|an	for	some	n	>	0,	then	p|a.

B.	Properties	of	the	gcd
Prove	 the	following,	 for	any	 integers	a,	b,	and	c.	For	each	of	 these	problems,	you	will	need	only	 the
definition	of	the	gcd.

#	1	If	a	>	0	and	a|b,	then	gcd(a,	b)	=	a.
2	gcd(a,	0)	=	a,	if	a	>	0.
3	gcd(a,	b)	=	gcd(a,	b	+	xa)	for	any	x	∈	 .
4	Let	p	be	a	prime.	Then	gcd(a,	p)	=	1	or	p.	(Explain.)
5	 Suppose	 every	 common	divisor	 of	a	 and	b	 is	 a	 common	 divisor	 of	 c	 and	d,	 and	 vice	 versa.	 Then
gcd(a,	b)	=	gcd(c,	d).
6	If	gcd(ab,	c)	=	1,	then	gcd(a,	c)	=	1	and	gcd(b,	c)	=	1.
7	Let	gcd(a,	b)	=	c.	Write	a	=	ca′	and	b	=	cb′.	Then	gcd(a′,	b′)	=	1.

C.	Properties	of	Relatively	Prime	Integers
Prove	the	following,	for	all	integers	a,	b,	c,	d,	r,	and	s.	(Theorem	3	will	be	helpful.)

1	If	there	are	integers	r	and	s	such	that	ra	+	sb	=	1,	then	a	and	b	are	relatively	prime.
2	If	gcd(a,	c)	=	1	and	c|ab,	then	c|b.	(Reason	as	in	the	proof	of	Euclid’s	lemma.)
3	If	a|d	and	c|d	and	gcd(a,	c)	=	1,	then	ac|d.
4	If	d|ab	and	d|cb,	where	gcd(a,	c)	=	1,	then	d|b.
5	If	d	=	gcd(a,	b)	where	a	=	dr	and	b	=	ds,	then	gcd(r,	s)	=	1.
6	If	gcd(a,	c)	=	1	and	gcd(b,	c)	=	1,	then	gcd(ab,	c)	=	1.

D.	Further	Properties	of	gcd’s	and	Relatively	Prime	Integers
Prove	the	following,	for	all	integers	a,	b,	c,	d,	r,	and	s:

1	Suppose	a|b	and	c|b	and	gcd(a,	c)	=	d.	Then	ac|bd.
2	If	ac|b	and	ad|b	and	gcd(c,	d)	=	1,	then	acd|b.
#	3	Let	d	=	gcd(a,	b).	For	any	integer	x,	d|x	iff	x	is	a	linear	combination	of	a	and	b.
4	Suppose	that	for	all	integers	x,	x|a	and	x|b	iff	x|c.	Then	c	=	gcd(a,	b).
5	For	all	n	>	0,	if	gcd(a,	b)	=	1,	then	gcd(a,	bn)	=	1.	(Prove	by	induction.)
6	Suppose	gcd(a,	b)	=	1	and	c|ab.	Then	there	exist	integers	r	and	s	such	that	c	=	rs,	r|a,	s|b,	and	gcd(r,	s)
=	1.



E.	A	Property	of	the	gcd
Let	a	and	b	be	integers.
Prove	parts	1	and	2:

#	1	Suppose	a	is	odd	and	b	is	even,	or	vice	versa.	Then	gcd(a,	b)	=	gcd(a	+	b,	a	−	b).
2	Suppose	a	and	b	are	both	odd.	Then	2gcd(a,	b)	=	gcd(a	+	b,	a	−	b).
3	If	a	and	b	are	both	even,	explain	why	either	of	the	two	previous	conclusions	are	possible.

F.	Least	Common	Multiples
A	least	common	multiple	of	two	integers	a	and	b	is	a	positive	integer	c	such	that	(i)	a|c	and	b|c;	(ii)	if	a|x
and	b|x,	then	c|x.

1	Prove:	The	set	of	all	the	common	multiples	of	a	and	b	is	an	ideal	of	
2	Prove:	Every	pair	of	integers	a	and	b	has	a	least	common	multiple.	(HINT:	Use	part	1.)

The	positive	least	common	multiple	of	a	and	b	is	denoted	by	lcm(a,	b).	Prove	the	following	for	all
positive	integers	a,	b,	and	c:
#	3	a	·	lcm(b,	c)	=	lcm(ab,	ac).
4	If	a	=	a1c	and	b	=	b1c	where	c	=	gcd(a,	b),	then	lcm(a,	b)	=	a1b1c.
5	lcm(a,	ab)	=	ab.
6	If	gcd(a,	b)	=	1,	then	lcm(a,	b)	=	ab.
7	If	lcm(a,	b)	=	ab,	then	gcd(a,	b)	=	1.
8	Let	gcd(a,	b)	=	c.	Then	lcm(a,	b)	=	ab/c.
9	Let	gcd(a,	b)	=	c	and	lcm(a,	b)	=	d.	Then	cd	=	ab.

G.	Ideals	in	
Prove	the	following:

1	〈n〉	is	a	prime	ideal	iff	n	is	a	prime	number.
2	Every	prime	ideal	of	 	is	a	maximal	ideal.	[HINT:	If	〈p〉	⊆	〈a〉,	but	〈p〉	≠	〈a〉,	explain	why	gcd(p,	a)	=
1	and	conclude	that	1	∈	〈a〉.]	Assume	the	ideal	is	not	{0}.
3	For	every	prime	number	p,	 p	is	a	field.	(HINT:	Remember	 p	=	 /〈p〉.	Use	Exercise	4,	Chapter	19.)
4	If	c	=	lcm(a,	b),	then	〈a〉	∩	〈b〉	=	〈c〉.
5	Every	homomorphic	image	of	 	is	isomorphic	to	 n	for	some	n.

6	Let	G	be	a	group	and	let	a,	b	∈	G.	Then	S	=	{n	∈	 :	abn	=	bna}	is	an	ideal	of	 .
7	Let	G	be	a	group,	H	a	subgroup	of	G,	and	a	∈	G.	Then

S	=	{n	∈	 :an	∈	H}

is	an	ideal	of	 .
8	If	gcd(a,	b)	=	d,	then	〈a〉	+	〈b〉	=	〈d〉.	(NOTE:	If	J	and	K	are	ideals	of	a	ring	A,	then	J	+	K	=	{x	+	y:	x
∈	J	and	y	∈	K}.)



H.	The	gcd	and	the	1cm	as	Operations	on	
For	any	two	integers	a	and	b,	let	a	*	b	=	gcd(a,	b)	and	a	∘	b?	=	lcm(a,	b).	Prove	the	following	properties
of	these	operations:

1	*	and	∘	are	associative.
2	There	is	an	identity	element	for	º,	but	not	for	*	(on	the	set	of	positive	integers).
3	Which	integers	have	inverses	with	respect	to	º?
4	Prove:	a	*	(b	∘	c)	=	(a	*	b)	∘	(a	*	c).



CHAPTER

TWENTY-THREE

ELEMENTS	OF	NUMBER	THEORY	(OPTIONAL)

Almost	as	soon	as	children	are	able	to	count,	they	learn	to	distinguish	between	even	numbers	and	odd
numbers.	 The	 distinction	 between	 even	 and	 odd	 is	 the	 most	 elemental	 of	 all	 concepts	 relating	 to
numbers.	It	is	also	the	starting	point	of	the	modern	science	of	number	theory.

From	a	sophisticated	standpoint,	a	number	is	even	if	the	remainder,	after	dividing	the	number	by	2,
is	0.	The	number	is	odd	if	that	remainder	is	1.

This	notion	may	be	generalized	in	an	obvious	way.	Let	n	be	any	positive	integer:	a	number	is	said
to	be	congruent	to	0,	modulo	n	if	the	remainder,	when	the	number	is	divided	by	ft,	is	0.	The	number	is
said	to	be	congruent	to	1,	modulo	n	if	the	remainder,	when	the	number	is	divided	by	is	1.	Similarly,	the
number	 is	congruent	 to	2,	modulo	n	 if	 the	 remainder	 after	 division	by	 ft	 is	 2;	 and	 so	 on.	This	 is	 the
natural	way	of	generalizing	the	distinction	between	odd	and	even.

Note	that	“even”	is	the	same	as	“congruent	to	0,	modulo	2”;	and	“odd”	is	the	same	as	“congruent
to	1,	modulo	2.”

In	short,	the	distinction	between	odd	and	even	is	only	one	special	case	of	a	more	general	notion.
We	shall	now	define	this	notion	formally:



Let	n	be	any	positive	integer.	If	a	and	b	are	any	two	integers,	we	shall	say	that	a	is	congruent	to	b,
modulo	n	 if	a	and	b,	when	 they	are	divided	by	n,	 leave	 the	 same	 remainder	 r.	That	 is,	 if	we	use	 the
division	algorithm	to	divide	a	and	b	by	n,	then

a	=	nq1	+	r	 and	 b	=	nq2	+	r

where	the	remainder	r	is	the	same	in	both	equations.
Subtracting	these	two	equations,	we	see	that

a	−	b	=	(nq1	+	r)	−	(nq2	+	r)	=	n(q1	−	q2)

Therefore	we	get	the	following	important	fact:

a	is	congruent	to	b,	modulo	n	 iff	 n	divides	a	−	b	 (1)

If	a	is	congruent	to	b,	modulo	n,	we	express	this	fact	in	symbols	by	writing

a	≡	b	(mod	n)

which	should	be	read	“a	is	congruent	to	b,	modulo	n.”	We	refer	to	this	relation	as	congruence	modulo	n.
By	using	Condition	 (1),	 it	 is	easily	verified	 that	congruence	modulo	n	 is	 a	 reflexive,	 symmetric,

and	transitive	relation	on	 .	It	is	also	easy	to	check	that	for	any	n	>	0	and	any	integers	a,	b,	and	c,

a	≡	b	(mod	n)	 implies	 a	+	c	≡	b	+	c	(mod	n)

and

a	≡	b	(mod	n)	 implies	 ac	≡	bc	(mod	n)

(The	proofs,	which	are	exceedingly	easy,	are	assigned	as	Exercise	C	at	the	end	of	this	chapter.)



Recall	that

〈n〉	=	{…,	−3n,	−2n,	−n,	0,	n,	2n,	3n,…}

is	the	ideal	of	 	which	consists	of	all	the	multiples	of	n.	The	quotient	ring	 /〈n〉	is	usually	denoted	by	 n,
and	its	elements	are	denoted	by	 .	These	elements	are	cosets:

and	so	on.	It	is	clear	by	inspection	that	different	integers	are	in	the	same	coset	iff	they	differ	from	each
other	by	a	multiple	of	n.	That	is,

If	a	is	any	integer,	the	coset	(in	 n)	which	contains	a	will	be	denoted	by	 .	For	example,	in	 6,

In	particular,	 	means	that	a	and	b	are	in	the	same	coset.	It	follows	by	Condition	(2)	that

On	account	of	this	fundamental	connection	between	congruence	modulo	n	and	equality	in	 n,	most
facts	 about	 congruence	 can	 be	 discovered	 by	 examining	 the	 rings	 n.	 These	 rings	 have	 very	 simple
properties,	which	are	presented	next.	From	these	properties	we	will	then	be	able	to	deduce	all	we	need
to	know	about	congruences.

Let	n	be	a	positive	integer.	It	is	an	important	fact	that	for	any	integer	a,

Indeed,	if	a	and	n	are	relatively	prime,	their	gcd	is	equal	to	1.	Therefore,	by	Theorem	3	of	Chapter	22,
there	are	integers	s	and	t	such	that	sa	+	tn	=	1.	It	follows	that

1	−	sa	=	tn	∈	〈n〉

so	by	Condition	(2)	of	Chapter	19,1	and	sa	belong	to	the	same	coset	in	 /〈n〉.	This	is	the	same	as	saying
that	 ;	hence	 	is	the	multiplicative	inverse	of	 	in	 n.	The	converse	is	proved	by	reversing	the
steps	of	this	argument.

It	 follows	from	Condition	(4)	above,	 that	 if	n	 is	a	prime	number,	every	nonzero	element	of	 n	 is
invertible!	Thus,

p	is	a	field	for	every	prime	number	p.	 (5)



In	any	field,	the	set	of	all	the	nonzero	elements,	with	multiplication	as	the	only	operation	(ignore
addition),	is	a	group.	Indeed,	the	product	of	any	two	nonzero	elements	is	nonzero,	and	the	multiplicative
inverse	of	any	nonzero	element	is	nonzero.	Thus,	in	 p,	the	set

with	multiplication	as	its	only	operation,	is	a	group	of	order	p	−	1.
Remember	that	if	G	is	a	group	whose	order	is,	let	us	say,	m,	then	xm	=	e	for	every	x	in	G.	(This	is

true	by	Theorem	5	of	Chapter	13.)	Now,	 	has	order	p	−	1	and	its	identity	element	is	 ,	so	
for	every	 .	 If	we	use	Condition	 (3)	 to	 translate	 this	 equality	 into	 a	 congruence,	we	get	 a
classical	result	of	number	theory:

Little	theorem	of	Fermat	Let	p	be	a	prime.	Then,

ap	−	1	≡	1	(mod	p) 	for	every	 a	 	0(mod	p)

Corollary	ap	≡	a	(mod	p)	for	every	integer	a.
Actually,	a	version	of	this	theorem	is	true	in	 n	even	where	n	is	not	a	prime	number.	In	this	case,	let

Vn	denote	the	set	of	all	the	invertible	elements	in	 n.	Clearly,	Vn	is	a	group	with	respect	to	multiplication.
(Reason:	The	product	of	two	invertible	elements	is	invertible,	and,	if	a	 is	invertible,	so	is	its	inverse.)
For	 any	 positive	 integer	 n,	 let	ϕ(n)	 denote	 the	 number	 of	 positive	 integers,	 less	 than	 n,	 which	 are
relatively	prime	to	n.	For	example,	1,	3,	5,	and	7	are	relatively	prime	to	8;	hence	ϕ(8)	=	4.	ϕ	is	called
Eulef’s	phi−function.

It	follows	immediately	from	Condition	(4)	that	the	number	of	elements	in	Vn	is	ϕ(n).
Thus,	 Vn	 is	 a	 group	 of	 order	ϕ(n),	 and	 its	 identity	 element	 is	 .	 Consequently,	 for	 any	 	 in	

.	If	we	use	Condition	(3)	to	translate	this	equation	into	a	congruence,	we	get:

Euler’s	theorem	If	a	and	n	are	relatively	prime,	αϕ(n)	≡	1	(mod	n).

FURTHER	TOPICS	IN	NUMBER	THEORY
Congruences	are	more	important	in	number	theory	than	we	might	expect.	This	is	because	a	vast	range
of	problems	in	number	theory—problems	which	have	nothing	to	do	with	congruences	at	first	sight—can
be	 transformed	 into	 problems	 involving	 congruences,	 and	 are	 most	 easily	 solved	 in	 that	 form.	 An
example	is	given	next:

A	Diophantine	equation	is	any	polynomial	equation	(in	one	or	more	unknowns)	whose	coefficients
are	integers.	To	solve	a	Diophantine	equation	is	to	find	integer	values	of	the	unknowns	which	satisfy	the
equation.	We	might	be	 inclined	 to	 think	 that	 the	 restriction	 to	 integer	values	makes	 it	 easier	 to	 solve
equations;	in	fact,	the	very	opposite	is	true.	For	instance,	even	in	the	case	of	an	equation	as	simple	as	4x
+	2y	=	5,	 it	 is	not	obvious	whether	we	can	 find	an	 integer	 solution	consisting	of	x	 and	y	 in	 .	 (As	 a
matter	of	fact,	there	is	no	integer	solution;	try	to	explain	why	not.)

Solving	Diophantine	equations	is	one	of	the	oldest	and	most	important	problems	in	number	theory.
Even	 the	 problem	 of	 solving	 Diophantine	 linear	 equations	 is	 difficult	 and	 has	 many	 applications.
Therefore,	it	is	a	very	important	fact	that	solving	linear	Diophantine	equations	is	equivalent	to	solving
linear	congruences.	Indeed,



ax	+	by	=	c	 iff	 by	=	c	−ax	 iff	 ax	≡	c	(mod	b)

Thus,	any	solution	of	ax	≡	c	(mod	b)	yields	a	solution	in	integers	of	ax	+	by	=	c.
Finding	 solutions	 of	 linear	 congruences	 is	 therefore	 an	 important	 matter,	 and	 we	 will	 turn	 our

attention	to	it	now.
A	 congruence	 such	 as	 ax	 ≡	 b	 (mod	 n)	 may	 look	 very	 easy	 to	 solve,	 but	 appearances	 can	 be

deceptive.	In	fact,	many	such	congruences	have	no	solutions	at	all!	For	example,	4x	≡	5	(mod	2)	cannot
have	a	solution,	because	4x	 is	always	even	[hence,	congruent	 to	0	(mod	2)],	whereas	5	 is	odd	[hence
congruent	to	1	(mod	2)].	Our	first	item	of	business,	therefore,	is	to	find	a	way	of	recognizing	whether	or
not	a	linear	congruence	has	a	solution.

Theorem	1	The	congruence	ax	≡	b	(mod	n)	has	a	solution	iff	gcd(a,	n)	|	b.

Indeed,

Next,	by	the	proof	of	Theorem	3	in	Chapter	22,	if	J	is	the	ideal	of	all	the	linear	combinations	of	a	and	n,
then	gcd(a,	n)	is	the	least	positive	integer	in	J.	Furthermore,	every	integer	in	J	is	a	multiple	of	gcd(a,	n).
Thus,	b	is	a	linear	combination	of	a	and	n	iff	b	∈	J	iff	b	is	a	multiple	of	gcd(a,	n).	This	completes	the
proof	of	our	theorem.

Now	 that	 we	 are	 able	 to	 recognize	 when	 a	 congruence	 has	 a	 solution,	 let	 us	 see	 what	 such	 a
solution	looks	like.

Consider	the	congruence	ax	≡	b	(mod	n).	By	a	solution	modulo	n	of	this	congruence,	we	mean	a
congruence

x	≡	c	(mod	n)

such	that	any	integer	x	satisfies	x	≡	c	(mod	n)	iff	it	satisfies	ax	≡	b	(mod	n).	[That	is,	the	solutions	of	ax
≡	b	 (mod	n)	 are	 all	 the	 integers	 congruent	 to	 c,	modulo	n.]	 Does	 every	 congruence	ax	 ≡	 b	 (mod	n)
(supposing	 that	 it	 has	 a	 solution)	 have	 a	 solution	 modulo	 n?	 Unfortunately	 not!	 Nevertheless,	 as	 a
starter,	we	have	the	following:

Lemma	If	gcd(a,	n)	=	1,	then	ax	≡	b	(mod	n)	has	a	solution	modulo	n.
PROOF:	Indeed,	by	(3),	ax	≡	b	(mod	n)	is	equivalent	to	the	equality	 	in	 n.	But	by	Condition

(4),	 	has	a	multiplicative	inverse	in	 n;	hence	from	 	we	get	 .	Setting	 ,	we	get	
	in	 n,	that	is,	x	≡	c	(mod	n).	■
Thus,	if	a	and	n	are	relatively	prime,	ax	≡	b	(mod	n)	has	a	solution	modulo	n.	If	a	and	n	are	not

relatively	prime,	we	have	no	solution	modulo	n;	nevertheless,	we	have	a	very	nice	result:

Theorem	2	 If	 the	 congruence	 ax	 ≡	b	 (mod	n)	has	 a	 solution,	 then	 it	 has	 a	 solution	modulo	m,
where



This	means	that	the	solution	of	ax	≡	b	(mod	n)	is	of	the	form	x	≡	c	(mod	m);	it	consists	of	all	the
integers	which	are	congruent	to	c,	modulo	m.

PROOF.	To	prove	this,	let	gcd(a,	n)	=	d,	and	note	the	following:

But	a/d	and	n/d	are	relatively	prime	(because	we	are	dividing	a	and	n	by	d,	which	is	their	gcd);	hence	by
the	lemma,

has	a	solution	x	mod	n/d.	By	Condition	(6),	this	is	also	a	solution	of	ax	≡	b	(mod	n).	■
As	 an	 example,	 let	 us	 solve	 6x	 ≡	 4	 (mod	 10).	 Gcd(6,10)	 =	 2	 and	 2|4,	 so	 by	 Theorem	 1,	 this

congruence	has	a	solution.	By	Condition	(6),	this	solution	is	the	same	as	the	solution	of

This	is	equivalent	to	the	equation	 	in	 5,	and	its	solution	is	 .	So	finally,	the	solution	of	6x	≡	4
(mod	10)	is	x	≡	4	(mod	5).

How	 do	we	 go	 about	 solving	 several	 linear	 congruences	 simultaneously?	Well,	 suppose	we	 are
given	k	congruences,

a1x	≡	b1	(mod	n1),	 a2x	≡	b2	(mod	n2),…,	akx	=	bk	(mod	nk)

If	each	of	 these	congruences	has	a	solution,	we	solve	each	one	 individually	by	means	of	Theorem	2.
This	gives	us

x	≡	c1	(mod	m1),	 x	≡	c2(mod	m2),	 …,	 x	≡	ck	(mod	mk)

We	are	left	with	the	problem	of	solving	this	last	set	of	congruences	simultaneously.
Is	there	any	integer	x	which	satisfies	all	k	of	these	congruences?	The	answer	for	two	simultaneous

congruences	is	as	follows:

Theorem	 3	Consider	 x	 ≡	a	 (mod	 n)	and	 x	 ≡	b	 (mod	m).	There	 is	 an	 integer	 x	 satisfying	 both
simultaneously	iff	a	≡	b	(mod	d),	where	d	=	gcd(m,	n).

PROOF:	If	x	is	a	simultaneous	solution,	then	n	|	(x	−	a)	and	m	|	(x	−	b).	Thus,

x	−	a	=	nq1	 and	 x	−	b	=	mq2

Subtracting	the	first	equation	from	the	second	gives

a	−	b	=	mq2	−	nq1



But	d|m	and	d|n,	so	d|(a	−	b);	thus,	a	≡	b	(mod	d).
Conversely,	if	a	≡	b	(mod	d),	then	d	|	(a	−	b),	so	a	−	b	=	dq.	By	Theorem	3	of	Chapter	22,	d	=	rn	+

tm	for	some	integers	r	and	t.	Thus,	a	−	b	=	rqn	+	tqm.	From	this	equation,	we	get

a	−	rqn	=	b	+	tqm

Set	x	=	a	−	rqn	=	b	+	tqm;	then	x	−	a	=	−rqn	and	x	−	b	=	tqm;	hence	n|(x	−	a)	and	m|(x	−	b),	so

x	≡	a	(mod	n)	 and	 x	≡	b	(mod	m)	■

Now	 that	 we	 are	 able	 to	 determine	 whether	 or	 not	 a	 pair	 of	 congruences	 has	 a	 simultaneous
solution,	let	us	see	what	such	a	solution	looks	like.

Theorem	4	If	a	pair	of	congruences	x	≡	a	(mod	n)	and	x	≡	b	(mod	m)	has	a	simultaneous	solution,
then	it	has	a	simultaneous	solution	of	the	form

x	≡	c	(mod	t)

where	t	is	the	least	common	multiple	of	m	and	n.
Before	 proving	 the	 theorem,	 let	 us	 observe	 that	 the	 least	 common	 multiple	 (1cm)	 of	 any	 two

integers	 ra	 and	n	 has	 the	 following	 property:	 let	 t	 be	 the	 least	 common	multiple	 of	m	 and	n.	 Every
common	multiple	of	m	and	n	is	a	multiple	of	t,	and	conversely.	That	is,	for	all	integers	x,

m|x	 and	 n|x	 iff	 t|x

(See	Exercise	F	at	the	end	of	Chapter	22.)	In	particular,

m|(x	−	c)	 and	 n|(x	−	c)	 iff	 t|(x	−	c)

hence

x	≡	c	(mod	m)	 and	 x	≡	c	(mod	n)	 iff	 x	≡	c	(mod	t)	(7)

Returning	to	our	theorem,	let	c	be	any	solution	of	the	given	pair	of	congruences	(remember,	we	are
assuming	there	is	a	simultaneous	solution).	Then	c	≡	a	(mod	n)	and	c	≡	b	(mod	m).	Any	other	integer	x
is	a	simultaneous	solution	iff	x	≡	c	(mod	n)	and	x	≡	c	(mod	m).	But	by	Condition	(7),	this	is	true	iff	x	≡	c
(mod	t).	The	proof	is	complete.

A	special	case	of	Theorems	3	and	4	is	very	important	in	practice:	it	is	the	case	where	m	and	n	are
relatively	prime.	Note	that,	in	this	case,	gcd(m,	n)	=	1	and	lcm(m,	n)	=	mn.	Thus,	by	Theorems	3	and	4,

If	m	and	n	are	relatively	prime,	the	pair	of	congruences	x	≡	a	(mod	n)	and	x	≡	b	(mod	m)	always
has	a	solution.	This	solution	is	of	the	form	x	≡	c	(mod	mn).
This	statement	can	easily	be	extended	to	the	case	of	more	than	two	linear	congruences.	The	result

is	known	as	the

Chinese	 remainder	 theorem	Let	m1,m2,…,mk	 be	 pairwise	 relatively	 prime.	 Then	 the	 system	 of
simultaneous	linear	congruences

x	≡	c1	(mod	m1),	 x	≡	c2	(mod	m2),	…,			x	=	ck	(mod	mk)



always	has	a	solution,	which	is	of	the	form	x	≡	c	(mod	m1m2	…	mk).
Use	Theorem	4	to	solve	x	≡	c1	(mod	m1)	and	x	≡	c2	(mod	m2)	simultaneously.	The	solution	is	of	the

form	x	≡	d	 (mod	m1m2).	Solve	 the	 latter	simultaneously	with	x	≡	c3	 (mod	m3),	 to	get	a	solution	mod
m1m2m3.	Repeat	this	process	k	−	1	times.

EXERCISES

A.	Solving	Single	Congruences
1	For	each	of	the	following	congruences,	find	m	such	that	the	congruence	has	a	unique	solution	modulo
m.	If	there	is	no	solution,	write	“none.”

(a)	60x	≡	12	(mod	24)
(b)	42x	≡	24	(mod	30)
(c)	49x	≡	30	(mod	25)
(d)	39x	≡	14	(mod	52)
(e)	147x	≡	47	(mod	98)
(f)	39x	≡	26	(mod	52)

2	Solve	the	following	linear	congruences:
(a)	12x	≡	7	(mod	25)
(b)	35x	≡	8	(mod	12)
(c)	15x	≡	9	(mod	6)
(d)	42x	≡	12	(mod	30)
(e)	147x	≡	49	(mod	98)
(f)39x	≡	26	(mod	52)

3	(a)	Explain	why	2x2	≡	8	(mod	10)	has	the	same	solutions	as	x2	≡	4	 (mod	5).(b)	Explain	why	x	≡	2
(mod	5)	and	x	≡	3	(mod	5)	are	all	the	solutions4	of	2x2	≡	8	(mod	10).
4	Solve	the	following	quadratic	congruences.	(If	there	is	no	solution,	write	“none.”)

(a)	6x2	≡	9	(mod	15)
(b)	60x2	≡	18	(mod	24)
(c)	30x2	≡	18	(mod	24)
(d)	4(x	+	1)2	≡	14	(mod	10)
(e)	4x2	−	2x	+	2	≡	0	(mod	6)

#	(f)	3x2	−	6x	+	6	≡	0	(mod	15)
5	Solve	the	following	congruences:

(a)	x4	≡	4	(mod	6)
(b)	2(x	−	1)4	≡	0	(mod	8)
(c)	x3	+	3x2	+	3x	+	1	=	0	(mod	8)
(d)	x4	+	2x2	+	1	≡	4	(mod	5)

6	Solve	the	following	Diophantine	equations.	(If	there	is	no	solution,	write	“none.”)
(a)	14x	+	15y	=	11
(b)	4x	+	5y	=	1



(c)	21x	+	10y	=	9
#	(d)	30x2	+	24y	=	18

B.	Solving	Sets	of	Congruences
Example	Solve	the	pair	of	simultaneous	congruences	x	≡	5	(mod	6),	x	≡	7	(mod	10).
By	Theorems	3	and	4,	this	pair	of	congruences	has	a	solution	modulo	30.	From	x	≡	5	(mod	6),	we

get	x	≡	6q	+	5.	Introducing	this	into	x	≡	7	(mod	10)	yields	6q	+	5	≡	7	(mod	10).	Thus,	successively,	6q	≡
2	(mod	10),	3q	≡	1	(mod	5),	q	≡	2	(mod	5),	q	=	5r	+	2.	Introducing	this	into	x	=	6q	+	5	gives	x	=	6(5r	+
2)	+	5	=	30r	+	17.	Thus,	x	≡	17	(mod	30).	This	is	our	solution.

1	Solve	each	of	the	following	pairs	of	simultaneous	congruences:
(a)	x	≡	7	(mod	8);	x	≡	11	(mod	12)
(b)	x	≡	12	(mod	18);	x	≡	30	(mod	45)
(c)	x	≡	8	(mod	15);	x	=	11	(mod	14)

2	Solve	each	of	the	following	pairs	of	simultaneous	congruences:
(a)	10x	≡	2	(mod	12);	6x	≡	14	(mod	20)
(b)4x	≡	2	(mod	6);	9x	≡	3	(mod	12)
(c)	6x	≡	2	(mod	8);	10x	≡	2	(mod	12)

#	3	Use	Theorems	3	and	4	to	prove	the	following:	Suppose	we	are	given	k	congruences

x	=	c1	(mod	m1),	 x	≡	c2(mod	m2)	 …,	 x	≡	ck	(mod	mk)

There	is	an	x	satisfying	all	k	congruences	simultaneously	if	for	all	 i,	 j	∈	{1,	…,	k},	ci	≡	cj	 (mod	dij),
where	dij	=	gcd(mi,	mj).	Moreover,	the	simultaneous	solution	is	of	the	form	x	≡	c	(mod	t),	where	t	=	lcm
(m1,	m2,	…,	mk).
4	 Solving	 each	 of	 the	 following	 systems	 of	 simultaneous	 linear	 congruences;	 if	 there	 is	 no	 solution,
write	“none.”

(a)	x	≡	2	(mod	3);	x	≡	3	(mod	4);	x	=	1	(mod	5);	x	≡	4	(mod	7)
(b)	6x	≡	4	(mod	8);	10x	≡	4	(mod	12);	3x	≡	8	(mod	10)
(c)	5x	≡	3	(mod	6);	4x	≡	2	(mod	6);	6x	≡	6	(mod	8)

5	Solve	the	following	systems	of	simultaneous	Diophantine	equations:
#	(a)	4x	+	6y	=	2;	9x	+	12y	=	3
(b)	3x	+	4y	=	2;	5x	+	6y	=	2;	3x	+	10y	=	8.

C.	Elementary	Properties	of	Congruence
Prove	the	following	for	all	integers	a,	b,	c,	d	and	all	positive	integers	m	and	n:

1	If	a	≡	b	(mod	n)	and	b	≡	c	(mod	n),	then	a	≡	c	(mod	n).
2	If	a	≡	b	(mod	n),	then	a	+	c	≡	b	+	c	(mod	n).
3	If	a	≡	b	(mod	n),	then	ac	≡	bc	(mod	n).
4	a	≡	b	(mod	1).
5	If	ab	≡	0	(mod	p),	where	p	is	a	prime,	then	a	≡	0	(mod	p)	or	b	≡	0	(mod	p).



6	If	a2	≡	b2	(mod	p),	where	p	is	a	prime,	then	a	≡	±b	(mod	p).
7	If	a	≡	b	(mod	m),	then	a	+	km	≡	b	(mod	m),	for	any	integer	k.	In	particular,	a	+	km	≡	a	(mod	m).
8	If	ac	≡	bc	(mod	n)	and	gcd(c,	n)	≡	1,	then	a	≡	b	(mod	n).
9	If	a	≡	b	(mod	n),	then	a	≡	b	(mod	m)	for	any	m	which	is	a	factor	of	n.

D.	Further	Properties	of	Congruence
Prove	the	following	for	an	integers	a,	b,	c	and	all	positive	integers	m	and	n:

1	If	ac	≡	bc	(mod	n),	and	gcd(c,	n)	≡	d,	then	a	≡	b	(mod	n/d).
2	If	a	≡	b	(mod	n),	then	gcd(a,	n)	=	gcd(b,	n).
3	If	a	≡	b	(mod	p)	for	every	prime	p,	then	a	=	b.
4	If	a	≡	b	(mod	n),	then	am	≡	bm	(mod	n)	for	every	positive	integer	m.
5	If	a	≡	b	(mod	m)	and	a	≡	b	(mod	n)	where	gcd(m,	n)	=	1,	then	a	≡	b	(mod	mn).
#	6	If	ab	≡	1	(mod	c),	ac	≡	1	(mod	b)	and	bc	≡	1	(mod	a),	then	ab	+	bc	+	ac	≡	1	(mod	abc).	(Assume	a,
b,	c	>	0.)

7	If	a2	≡	1	(mod	2),	then	a2	≡	1	(mod	4).
8	If	a	≡	b	(mod	n),	then	a2	+	b2	≡	2ab	(mod	n2),	and	conversely.
9	If	a	≡	1	(mod	m),	then	a	and	m	are	relatively	prime.

E.	Consequences	of	Fermat’s	Theorem
1	If	p	is	a	prime,	find	ϕ(p).	Use	this	to	deduce	Fermat’s	theorem	from	Euler’s	theorem.
Prove	parts	2-6:

2	If	p	>	2	is	a	prime	and	a	 	0	(mod	p),	then

a(p	−	1)/2	≡	±1(mod	p)

3 (a)	Let	p	a	prime	>	2.	If	p	≡	3	(mod	4),	then	(p	−	1)/2	is	odd.
(b)	Let	p	>	2	be	a	prime	such	that	p	≡	3	(mod	4).	Then	there	is	no	solution	to	the	congruence	x2	+	1	≡

0	(mod	p).	[HINT:	Raise	both	sides	of	x2	≡	−1	(mod	p)	 to	the	power	(p	−	1)/2,	and	use	Fermat’s	 little
theorem.]
#	4	Let	p	and	q	be	distinct	primes.	Then	pq	−	1	+	qp	−	1	≡	1(mod	pq).
5	Let	p	be	a	prime.

(a)	If,	(p	−	1)	|	m,	then	am	≡	1	(mod	p)	provided	that	p	 	a.
(b)	If,	(p	−	1)|	m,	then	am	+	1	≡	a(mod	pq)	for	all	integers	a.

#	6	Let	p	and	q	be	distinct	primes.
(a)	If	(p	−	1)	|	m	and	(q	−	1)	|	m,	then	am	≡	1	(mod	pq)	for	any	a	such	that	p	 	a	and	q	 	a.
(b)	If	(p	−	1)	|	m	and	(q	−	1)	|	m,	then	am	+	1	≡	a	(mod	pq)	for	integers	a.

7	Generalize	the	result	of	part	6	to	n	distinct	primes,	p1…,	pn.	(State	your	result,	but	do	not	prove	it.)
8	Use	part	6	to	explain	why	the	following	are	true:



#	(a)	a19	≡	a	(mod	133).
(b)	a10	≡	1	(mod	66),	provided	a	is	not	a	multiple	of	2,	3,	or	11.
(c)	a13	≡	a	(mod	105).
(d)	a49	≡	a	(mod	1547).	(HINT:	1547	=	7	×	13	×	17.)

9	Find	the	following	integers	x:
(a)	x	≡	838	(mod	210)
(b)	x	≡	757	(mod	133)
(c)	x	≡	573	(mod	66)

F.	Consequences	of	Euler’s	Theorem
Prove	parts	1-6:

1	If	gcd	(a,	n)	=	1,	the	solution	modulo	n	of	ax	≡	b	(mod	n)	is	x	≡	aϕ(n)-1b	(mod	n).
2	If	gcd	(a,	n)	=	1,	then	amϕ(n)	≡	1	(mod	n)	for	all	values	of	m.
3	If	gcd	(m,	n)	=	gcd	(a,	mn)	=	1,	then	aϕ(m)ϕ(n)	≡	1	(mod	mn).
4	If	p	is	a	prime,	ϕ(pn)	=	pn	−	pn	−	1	=	pn	−	1(p	−	1).	(HINT:	For	any	integer	a,	a	and	pn	have	a	common
divisor	≠	±1	iff	a	is	a	multiple	of	p.	There	are	exactly	pn	−	1	multiples	of	p	between	1	and	pn.)
5	For	every	a	 	0	(mod	p),	apn(p	−	1)),	where	p	is	a	prime.
6	Under	the	conditions	of	part	3,	if	t	is	a	common	multiple	of	ϕ	(m)	and	ϕ	(n),	then	at	≡	1	(mod	mn).
Generalize	to	three	integers	l,	m,	and	n.
7	Use	parts	4	and	6	to	explain	why	the	following	are	true:

(a)	a12	≡	1	(mod	180)	for	every	a	such	that	gcd(a,	180)	=	1.
(b)	a42	≡	1	(mod	1764)	if	gcd	(a,	1764)	=	1.	(REMARK:	1764	=	4	×	9	×	49.)
(c)	a60	≡	1	(mod	1800)	if	gcd	(a,	1800)	=	1.

#	8	If	gcd	(m,	n)	=	l,	prove	that	nϕ(m)	+	mϕ(n)	≡	1	(mod	mn).
9	If	l,	m,	n	are	relatively	prime	in	pairs,	prove	that	(mn)ϕ(l)	+	(ln)ϕ(m)	+	(lm)ϕ(n)	≡	1	(mod	lmn).

G.	Wilson’s	Theorem,	and	Some	Consequences

In	any	integral	domain,	if	x2	=	1,	then	x2	−	1	=	(x	+	1)(x	−	1)	=	0;	hence	x	=	±1.	Thus,	an	element	x	≠	±1
cannot	be	 its	own	multiplicative	 inverse.	As	a	consequence,	 in	 p	 the	 integers	 	may	be
arranged	in	pairs,	each	one	being	paired	off	with	its	multiplicative	inverse.
Prove	the	following:

1	In	 .
2	(p	−	2)!	≡	1	(mod	p)	for	any	prime	number	p.
3	(p	−	1)!	+	1	≡	0	(mod	p)	for	any	prime	number	p	This	is	known	as	Wilson’s	theorem.
4	For	any	composite	number	n	≠	4,	(n	−	1)!	≡	0	(mod	n).	[HINT:	If	p	is	any	prime	factor	of	n,	then	p	is	a
factor	of	(n	−	1)!	Why?]

Before	going	on	to	the	remaining	exercises,	we	make	the	following	observations:	Let	p	>	2	be	a
prime.	Then



Consequently,

REASON:	p	−	1	≡	−1	(mod	p),	p	−	2	≡	−2	(mod	p),·	·	·,	(p	+	1)/2	≡	−(p	−	1)/2	(mod	p).
With	this	result,	prove	the	following:
5	[(p	−	l)/2]!2	≡	(-1)(p	+	1)/2	(mod	p),	for	any	prime	p	>	2.	(HINT:	Use	Wilson’s	theorem.)
6	If	p	≡	1	(mod	4),	then	(p	+	1)/2	is	odd.	(Why?)	Conclude	that

7	If	p	≡	3	(mod	4),	then	(p	+	1)/2	is	even.	(Why?)	Conclude	that

8	When	p	>	2	is	a	prime,	the	congruence	x2	+	1	≡	0	(mod	p)	has	a	solution	if	p	≡	1	(mod	4).
9	For	any	prime	p	>	2,	x2	≡	−1	(mod	p)	has	a	solution	iff	p	 	3	(mod	4).	(HINT:	Use	part	8	and	Exercise
E3.)

H.	Quadratic	Residues
An	integer	a	is	called	a	quadratic	residue	modulo	m	if	there	is	an	integer	x	such	that	x2	≡	a	 (mod	m).
This	is	the	same	as	saying	that	ā	 is	a	square	in	 m.	If	a	is	not	a	quadratic	residue	modulo	m,	then	a	 is
called	 a	 quadratic	 nonresidue	 modulo	 m.	 Quadratic	 residues	 are	 important	 for	 solving	 quadratic
congruences,	 for	 studying	 sums	of	 squares,	 etc.	Here,	we	will	 examine	quadratic	 residues	modulo	an
arbitrary	prime	p	>	2.

Let	h	:	 	be	defined	by	 .

1	Prove	h	is	a	homomorphism.	Its	kernel	is	 .
#	2	The	range	of	h	has	(p	−	1)/2	elements.	Prove:	If	ran	h	=	R,	R	is	a	subgroup	of	 	having	two	cosets.
One	contains	all	the	residues,	the	other	all	the	nonresidues.

The	Legendre	symbol	is	defined	as	follows:

3	Referring	to	part	2,	let	the	two	cosets	of	R	be	called	1	and	-1.	Then	 .	Explain	why



for	every	integer	α	which	is	not	a	multiple	of	p.

#	4	Evaluate	 .

5	Prove:	if	a	≡	b	(mod	p),	then	 .	In	particular,	

6	Prove:

7	 	(HINT:	Use	Exercises	G6	and	7.)

The	most	important	rule	for	computing

is	the	law	of	quadratic	reciprocity,	which	asserts	that	for	distinct	primes	p,	q	>	2,

(The	 proof	may	 be	 found	 in	 any	 textbook	 on	 number	 theory,	 for	 example,	Fundamentals	 of	Number
Theory	by	W.	J.	LeVeque.)
8	Use	parts	5	to	7	and	the	law	of	quadratic	reciprocity	to	find:

Is	14	a	quadratic	residue,	modulo	59?
9	Which	of	the	following	congruences	is	solvable?

(a)	x2	=	30	(mod	101)
(b)	x2	≡	6	(mod	103)
(c)	2x2	≡	70	(mod	106)

NOTE:	x2	≡	a	(mod	p)	is	solvable	iff	a	is	a	quadratic	residue	modulo	p	iff

I.	Primitive	Roots
Recall	that	Vn	is	the	multiplicative	group	of	all	the	invertible	elements	in	 n.	If	Vn	happens	to	be	cyclic,
say	Vn	=	〈m〉,	then	any	integer	a	≡	m	(mod	n)	is	called	a	primitive	root	of	n.

1	Prove	that	a	is	a	primitive	root	of	n	iff	the	order	of	ā	in	Vn	is	ϕ(n).
2	Prove	that	every	prime	number	p	has	a	primitive	root.	(HINT:	For	every	prime	 	is	a	cyclic	group.
The	simple	proof	of	this	fact	is	given	as	Theorem	1	in	Chapter	33.)
3	Find	primitive	roots	of	the	following	integers	(if	there	are	none,	say	so):	6,	10,	12,	14,	15.



4	Suppose	a	is	a	primitive	root	of	m.	Prove:	If	b	is	any	integer	which	is	relatively	prime	to	m,	then	b	≡
ak	(mod	m)	for	some	k	 	1.
5	Suppose	m	has	a	primitive	root,	and	let	n	be	relatively	prime	to	ϕ	(m).	(Suppose	n	>	0.)	Prove	that	if	a
is	relatively	prime	to	m,	then	xn	≡	a	(mod	m)	has	a	solution.
6	Let	p	>	2	be	a	prime.	Prove	that	every	primitive	root	of	p	is	a	quadratic	nonresidue,	modulo	p.	(HINT:
Suppose	a	primitive	root	α	is	a	residue;	then	every	power	of	a	is	a	residue.)
7	A	prime	p	of	the	form	p	=	2m	+	1	is	called	a	Fermat	prime.	Let	p	be	a	Fermât	prime.	Prove	that	every
quadratic	nonresidue	mod	p	is	a	primitive	root	of	p.	(HINT:	How	many	primitive	roots	are	there?	How
many	residues?	Compare.)



CHAPTER

TWENTY-FOUR

RINGS	OF	POLYNOMIALS

In	 elementary	 algebra	 an	 important	 role	 is	 played	 by	 polynomials	 in	 an	 unknown	 x.	 These	 are
expressions	such	as

whose	 terms	 are	 grouped	 in	 powers	 of	 x.	 The	 exponents,	 of	 course,	 are	 positive	 integers	 and	 the
coefficients	are	real	or	complex	numbers.

Polynomials	 are	 involved	 in	 countless	 applications—applications	 of	 every	 kind	 and	 description.
For	example,	polynomial	functions	are	the	easiest	functions	to	compute,	and	therefore	one	commonly
attempts	 to	 approximate	 arbitrary	 functions	 by	 polynomial	 functions.	A	 great	 deal	 of	 effort	 has	 been
expended	by	mathematicians	to	find	ways	of	achieving	this.

Aside	 from	 their	 uses	 in	 science	 and	 computation,	 polynomials	 come	 up	 very	 naturally	 in	 the
general	study	of	rings,	as	the	following	example	will	show:

Suppose	we	wish	to	enlarge	the	ring	 	by	adding	to	it	the	number	π.	It	is	easy	to	see	that	we	will
have	to	adjoin	to	 	other	new	numbers	besides	just	π;	for	the	enlarged	ring	(containing	π	as	well	as	all
the	integers)	will	also	contain	such	things	as	−	π,	π	+	7,	6π2	−	11,	and	so	on.

As	a	matter	of	fact,	any	ring	which	contains	 	as	a	subring	and	which	also	contains	the	number	π
will	have	to	contain	every	number	of	the	form

aπn	+	bπn”1	+	⋯	+	kπ	+	l

where	a,	b,	…,	k,	l	are	integers.	In	other	words,	it	will	contain	all	the	polynomial	expressions	in	π	with
integer	coefficients.

But	the	set	of	all	the	polynomial	expressions	in	π	with	integer	coefficients	is	a	ring.	(It	is	a	subring
of	 	because	it	is	obvious	that	the	sum	and	product	of	any	two	polynomials	in	π	is	again	a	polynomial	in
π.)	This	ring	contains	 	because	every	integer	a	 is	a	polynomial	with	a	constant	term	only,	and	it	also
contains	π.

Thus,	 if	we	wish	 to	enlarge	 the	 ring	 	by	adjoining	 to	 it	 the	new	number	π,	 it	 turns	out	 that	 the



“next	 largest”	 ring	after	 	which	contains	 	 as	 a	 subring	and	 includes	π,	 is	 exactly	 the	 ring	of	 all	 the
polynomials	in	π	with	coefficients	in	 .

As	this	example	shows,	aside	from	their	practical	applications,	polynomials	play	an	important	role
in	the	scheme	of	ring	theory	because	they	are	precisely	what	we	need	when	we	wish	to	enlarge	a	ring	by
adding	new	elements	to	it.

In	elementary	algebra	one	considers	polynomials	whose	coefficients	are	real	numbers,	or	in	some
cases,	complex	numbers.	As	a	matter	of	fact,	the	properties	of	polynomials	are	pretty	much	independent
of	 the	exact	nature	of	 their	coefficients.	All	we	need	 to	know	is	 that	 the	coefficients	are	contained	 in
some	ring.	For	convenience,	we	will	assume	this	ring	is	a	commutative	ring	with	unity.

Let	A	be	a	commutative	ring	with	unity.	Up	to	now	we	have	used	letters	to	denote	elements	or	sets,
but	now	we	will	use	 the	 letter	x	 in	a	different	way.	 In	a	polynomial	expression	such	as	ax2	+	bx	+	c,
where	a,	b,	c	∈	A,	we	do	not	consider	x	to	be	an	element	of	A,	but	rather	x	is	a	symbol	which	we	use	in
an	 entirely	 formal	way.	Later	we	will	 allow	 the	 substitution	of	 other	 things	 for	x,	 but	 at	 present	x	 is
simply	a	placeholder.

Notationally,	the	terms	of	a	polynomial	may	be	listed	in	either	ascending	or	descending	order.	For
example,	4x3	–	3x2	+	x	+	1	and	1	+	x	–	3x2	+	4x3	denote	 the	same	polynomial.	 In	elementary	algebra
descending	order	is	preferred,	but	for	our	purposes	ascending	order	is	more	convenient.

Let	A	be	a	commutative	ring	with	unity,	and	x	an	arbitrary	symbol.	Every	expression	of	the	form

a0	+	a1x	+	a2x2	+	⋯	+	anxn

is	called	a	polynomial	in	x	with	coefficients	in	A,	or	more	simply,	a	polynomial	in	x	over	A.	The
expressions	akxk,	for	k	∈	{1,	…,	n},are	called	the	terms	of	the	polynomial.
Polynomials	in	x	are	designated	by	symbols	such	as	a(x),	b(x),	q(x),	and	so	on.	If	a(x)	=	a0	+	a1x	+

⋯	+	anxn	 is	any	polynomial	and	akxk	 is	any	one	of	 its	 terms,	ak	 is	called	 the	coefficient	of	xk.	By	 the
degree	of	a	polynomial	a(x)	we	mean	the	greatest	n	such	that	the	coefficient	of	xn	is	not	zero.	In	other
words,	if	a(x)	has	degree	n,	 this	means	that	an	≠	0	but	am	=	0	 for	every	m	>	n.	The	degree	of	a(x)	 is
symbolized	by

deg	a(x)

For	example,	1	+	2x	−	3x2	+	x3	is	a	polynomial	degree	3.
The	polynomial	 0	+	0x	 +	 0x2	 +	⋯	 all	 of	whose	 coefficients	 are	 equal	 to	 zero	 is	 called	 the	 zero

polynomial,	and	is	symbolized	by	0.	It	is	the	only	polynomial	whose	degree	is	not	defined	(because	it
has	no	nonzero	coefficient).

If	 a	 nonzero	polynomial	a(x)	=	a0	 +	a1x	 +	⋯	 +	anxn	 has	 degree	n,	 then	an	 is	 called	 its	 leading
coefficient:	it	is	the	last	nonzero	coefficient	of	a(x).	The	term	anxn	is	then	called	its	leading	term,	while
a0	is	called	its	constant	term.

If	a	polynomial	a(x)	has	degree	zero,	this	means	that	its	constant	term	a0	is	its	only	nonzero	term:
a(x)	 is	 a	 constant	 polynomial.	 Beware	 of	 confusing	 a	 polynomial	 of	 degree	 zero	 with	 the	 zero
polynomial.

Two	 polynomials	 a(x)	 and	 b(x)	 are	 equal	 if	 they	 have	 the	 same	 degree	 and	 corresponding
coefficients	are	equal.	Thus,	if	a(x)	=	a0	+	⋯	+	anxn	is	of	degree	n,	and	b(x)	=	b0	+	⋯	+	bmxm	is	of	degree



m,	then	a(x)	=	b(x)	iff	n	=	m	and	ak	=	bk	for	each	k	from	0	to	n.
The	familiar	sigma	notation	for	sums	is	useful	for	polynomials.	Thus,

with	the	understanding	that	x0	=	1.
Addition	 and	 multiplication	 of	 polynomials	 is	 familiar	 from	 elementary	 algebra.	 We	 will	 now

define	 these	 operations	 formally.	 Throughout	 these	 definitions	 we	 let	 a(x)	 and	 b(x)	 stand	 for	 the
following	polynomials:

Here	we	 do	not	 assume	 that	a(x)	 and	 b(x)	 have	 the	 same	 degree,	 but	 allow	 ourselves	 to	 insert	 zero
coefficients	if	necessary	to	achieve	uniformity	of	appearance.

We	add	polynomials	by	adding	corresponding	coefficients.	Thus,

a(x)	+	b(x)	=	(a0	+	b0)	+	(a1,	+	b1)x	+	⋯	+	(an	+	bn)xn

Note	that	the	degree	of	a(x)	+	b(x)	is	less	than	or	equal	to	the	higher	of	the	two	degrees,	deg	a(x)	and
deg	b(x).

Multiplication	is	more	difficult,	but	quite	familiar:
a(x)b(x)

=	a0b0	+	(a0b1	+	b0a1)x	+	(a0b2	+	a1	b1	+	a2	b0)x2	+	⋯	+	an	bn	x2n

In	other	words,	the	product	of	a(x)	and	b(x)	is	the	polynomial

c(x)	=	c0	+	c1x	+	⋯	+	c2n	x2n

whose	kth	coefficient	(for	any	k	from	0	to	2n)	is

This	is	the	sum	of	all	the	aibj	for	which	i	+	j	=	k.	Note	that	deg	[a(x)b(x)]	≤	deg	a(x)	+	deg	b(x).
If	A	is	any	ring,	the	symbol

A[x]

designates	 the	 set	 of	 all	 the	 polynomials	 in	 x	 whose	 coefficients	 are	 in	 A,	 with	 addition	 and
multiplication	of	polynomials	as	we	have	just	defined	them.

Theorem	1	Let	A	be	a	commutative	ring	with	unity.	Then	A[x]	is	a	commutative	ring	with	unity.

PROOF:	To	prove	this	theorem,	we	must	show	systematically	that	A[x]	satisfies	all	the	axioms	of	a



commutative	 ring	 with	 unity.	 Throughout	 the	 proof,	 let	 a(x),	 b(x),	 and	 c(x)	 stand	 for	 the	 following
polynomials:

The	axioms	which	involve	only	addition	are	easy	to	check:	for	example,	addition	is	commutative
because

The	associative	law	of	addition	is	proved	similarly,	and	is	left	as	an	exercise.	The	zero	polynomial	has
already	been	described,	and	the	negative	of	a(x)	is

–	a(x)	=	(–	a0)	+	(–	a1)x	+	⋯	+	(–	an)xn

To	prove	that	multiplication	is	associative	requires	some	care.	Let	b(x)c(x)	=	d(x),	where	d(x)	=	d0
+	d1x	+	⋯	+	d2nx2n.	By	the	definition	of	polynomial	multiplication,	the	kth	coefficient	of	b(x)c(x)	is

Then	a(x)[b(x)c(x)]	=	a(x)d(x)	=	e(x),	where	e(x)	=	e0	+	e1x	+	⋯	+	e3nx3n.	Now,	 the	 lth	coefficient	of
a(x)d(x)	is

It	is	easy	to	see	that	the	sum	on	the	right	consists	of	all	the	terms	ah	bi	cj	such	that	h	+	i	+	j	=	l	Thus,

For	each	l	from	0	to	3n,	el	is	the	lth	coefficient	of	a(x)[b(x)c(x)].
If	we	repeat	this	process	to	find	the	lth	coefficient	of	[a(x)	b(x)]c(x),	we	discover	that	it,	too,	is	el

Thus,

a(x)[b(x)c(x)]	=	[a(x)b(x)]c(x)

To	prove	the	distributive	law,	let	a(x)[b(x)	+	c(x)]	=	d{x)	where	d(x)	=	d0	+	d1x	+	⋯	+	d2nx2n.	By
the	definitions	of	polynomial	addition	and	multiplication,	the	kth	coefficient	a(x)[b(x)	+	c(x)]	is



But	Σi+j	 =	 k	aibj.	 is	 exactly	 the	kth	 coefficient	 of	a(x)	b(x),	 and	Σi	 +	 j	 =	 k	 aicj	 is	 the	 kth	 coefficient	 of
a(x)c(x),	hence	dk	is	equal	to	the	kth	coefficient	of	a(x)	b(x)	+	a(x)c(x).	This	proves	that

a(x)[b(x)	+	c(x)]	=	a(x)b(x)	+	a(x)c(x)

The	commutative	 law	of	multiplication	 is	 simple	 to	verify	and	 is	 left	 to	 the	 student.	Finally,	 the
unity	polynomial	is	the	constant	polynomial	1.	■

Theorem	2	If	A	is	an	integral	domain,	then	A[x]	is	an	integral	domain.

PROOF:	If	a(x)	and	b(x)	are	nonzero	polynomials,	we	must	show	that	their	product	a(x)	b(x)	is	not
zero.	Let	an	be	the	leading	coefficient	of	a(x),	and	bm	the	leading	coefficient	of	b(x).	By	definition,	an	≠
0,	and	bm	≠	0.	Thus	anbm	≠	0	because	A	 is	an	integral	domain.	It	follows	that	a(x)	b(x)	has	a	nonzero
coefficient	(namely,	an	bm),	so	it	is	not	the	zero	polynomial.	■

If	A	is	an	integral	domain,	we	refer	to	A[x]	as	a	domain	of	polynomials,	because	A[x]	is	an	integral
domain.	Note	that	by	the	preceding	proof,	if	an	and	bm	are	the	leading	coefficients	of	a(x)	and	b(x),	then
anbm	 is	 the	 leading	coefficient	of	a(x)	b(x).	Thus,	deg	a(x)b(x)	=	n	 +	m:	 In	 a	 domain	 of	 polynomials
A[x],	where	A	is	an	integral	domain,

deg[a(x)	·	b(x)]	=	deg	a(x)	+	deg	b(x)

In	 the	 remainder	 of	 this	 chapter	 we	will	 look	 at	 a	 property	 of	 polynomials	 which	 is	 of	 special
interest	when	all	the	coefficients	lie	in	a	field.	Thus,	from	this	point	forward,	let	F	be	a	field,	and	let	us
consider	polynomials	belonging	to	F[x].

It	would	be	tempting	to	believe	that	if	F	is	a	field	then	F[x]	also	is	a	field.	However,	this	is	not	so,
for	 one	 can	 easily	 see	 that	 the	multiplicative	 inverse	 of	 a	 polynomial	 is	 not	 generally	 a	 polynomial.
Nevertheless,	by	Theorem	2,	F[x]	is	an	integral	domain.

Domains	of	polynomials	over	a	 field	do,	however,	have	a	very	special	property:	any	polynomial
a(x)	may	be	divided	by	any	nonzero	polynomial	b(x)	to	yield	a	quotient	q(x)	and	a	remainder	r(x).	The
remainder	is	either	0,	or	if	not,	its	degree	is	less	than	the	degree	of	the	divisor	b(x).	For	example,	x2	may
be	divided	by	x	–	2	to	give	a	quotient	of	x	+	2	and	a	remainder	of	4:

This	kind	of	polynomial	division	is	familiar	to	every	student	of	elementary	algebra.	It	is	customarily	set
up	as	follows:



The	process	of	polynomial	division	is	formalized	in	the	next	theorem.
Theorem	3:	Division	algorithm	for	polynomials	If	a(x)	and	b(x)	are	polynomials	over	a	field	F,

and	b(x)	≠	0,	there	exist	polynomials	q(x)	and	r(x)	over	F	such	that

a(x)	=	b(x)q(x)	+	r(x)

and

r(x)	=	0	 or	 deg	r(x)	<	deg	b(x)

PROOF:	Let	b(x)	 remain	fixed,	and	 let	us	show	that	every	polynomial	a(x)	satisfies	 the	following
condition:

There	exist	polynomials	q(x)	and	r(x)	over	F	such	that	a(x)	=	b(x)	q(x)	+	r(x),	and	r(x)	=	0	or	deg
r(x)	<	deg	b(x).

We	will	assume	there	are	polynomials	a(x)	which	do	not	fulfill	the	condition,	and	from	this	assumption
we	will	 derive	 a	 contradiction.	 Let	a(x)	 be	 a	 polynomial	 of	 lowest	 degree	 which	 fails	 to	 satisfy	 the
conditions.	Note	that	a(x)	cannot	be	zero,	because	we	can	express	0	as	0	=	b(x)	 ·	0	+	0,	whereby	a(x)
would	satisfy	the	conditions.	Furthermore,	deg	a(x)	≥	deg	b(x),	for	if	deg	a(x)	<	deg	b(x)	then	we	could
write	a(x)	=	b(x)	·	0	+	a(x),	so	again	a(x)	would	satisfy	the	given	conditions.

Let	a(x)	=	a0	+	⋯	+	anxn	and	b(x)	=	b0	+	⋯	+	bmxm.	Define	a	new	polynomial

This	expression	is	the	difference	of	two	polynomials	both	of	degree	n	and	both	having	the	same	leading
term	anxn.	Because	anxn	cancels	in	the	subtraction,	A(x)	has	degree	less	than	n.

Remember	 that	 a(x)	 is	 a	 polynomial	 of	 least	 degree	 which	 fails	 to	 satisfy	 the	 given	 condition;
hence	A(x)	does	satisfy	it.	This	means	there	are	polynomials	p(x)	and	r(x)	such	that

A(x)	=	b(x)p(x)	+	r(x)

where	r(x)	=	0	or	deg	r(x)	<	deg	b(x).	But	then



If	we	 let	p(x)	+	 (an/bm)xn	 –	m	 be	 renamed	q(x),	 then	a(x)	=	b(x)q(x)	+	 r(x),	 so	 a(x)	 fulfills	 the	 given
condition.	This	is	a	contradiction,	as	required.	■

EXERCISES

A.	Elementary	Computation	in	Domains	of	Polynomials
REMARK	ON	NOTATION:	In	some	of	the	problems	which	follow,	we	consider	polynomials	with	coefficients
in	 n	for	various	n.	To	simplify	notation,	we	denote	the	elements	of	 n	by	1,	2,	…,	n	–	1	rather	than	the
more	correct	 .

#	1	Let	a(x)	=	2x2	+	3x	+	1	and	b(x)	=	x3	+	5x2	+	x.	Compute	a(x)	+	b(x),	a(x)	–	b(x)	and	a(x)b(x)	in	 [x],
5[x],	 6[x],	and	 7[x].

2	Find	the	quotient	and	remainder	when	x3	+	x2	+	x	+	1	is	divided	by	x2	+	3x	+	2	in	 [x]	and	in	 5[x].
3	Find	the	quotient	and	remainder	when	x3	+	2	is	divided	by	2x2	+	3x	+	4	in	 [x],	in	 3[x],	and	in	 5[x].

We	call	b(x)	a	factor	of	a(x)	if	a(x)	=	b(x)q(x)	for	some	q(x),	that	is,	if	the	remainder	when	a(x)	is
divided	by	b(x)	is	equal	to	zero.

4	Show	that	the	following	is	true	in	A[x]	for	any	ring	A:	For	any	odd	n,
(a)	x	+	1	is	a	factor	of	xn	+	1.
(b)	x	+	1	is	a	factor	of	xn	+	xn–1	+	⋯	+	x	+	1.

5	Prove	the	following:	In	 3[x],	x	+	2	is	a	factor	of	xm	+	2,	for	all	m.	In	 n[x],	x	+	(x	–	1)	is	a	factor	of	xm

+	(n	−	1),	for	all	m	and	n.
6	Prove	that	there	is	no	integer	m	such	that	3x2	+	4x	+	m	is	a	factor	of	6x4	+	50	in	 [x].
7	For	what	values	of	n	is	x2	+	1	a	factor	of	x5	+	5x	+	6	in	 n[x]?

B.	Problems	Involving	Concepts	and	Definitions

1	Is	x8	+	1	=	x3	+	1	in	 5[x]?	Explain	your	answer.
2	Is	there	any	ring	A	such	that	in	A[x],	some	polynomial	of	degree	2	is	equal	to	a	polynomial	of	degree
4?	Explain.
#	3	Write	all	the	quadratic	polynomials	in	 5[x].	How	many	are	there?	How	many	cubic	polynomials	are
there	in	 5[x]?	More	generally,	how	many	polynomials	of	degree	m	are	there	in	 n[x]?

4	Let	A	be	an	integral	domain;	prove	the	following:



If	(x	+	1)2	=	x2	+	1	in	A[x],	then	A	must	have	characteristic	2.
If	(x	+	1)4	=	x4	+	1	in	A[x],	then	A	must	have	characteristic	2.

If	(x	+	1)6	=	x6	+	2x3	+	1	in	A[x],	then	A	must	have	characteristic	3.
5	 Find	 an	 example	 of	 each	 of	 the	 following	 in	 8[x]:	 a	 divisor	 of	 zero,	 an	 invertible	 element.	 (Find
nonconstant	examples.)
6	Explain	why	x	cannot	be	invertible	in	any	A[x],	hence	no	domain	of	polynomials	can	ever	be	a	field.
7	There	are	rings	such	as	P3	in	which	every	element	≠0,1	is	a	divisor	of	zero.	Explain	why	this	cannot
happen	in	any	ring	of	polynomials	A[x],	even	when	A	is	not	an	integral	domain.
8	Show	that	in	every	A[x],	there	are	elements	≠0,1	which	are	not	idempotent,	and	elements	≠0,1	which
are	not	nilpotent.

C.	Rings	A[x]	Where	A	Is	Not	an	Integral	Domain
1	Prove:	If	A	is	not	an	integral	domain,	neither	is	A[x].
2	Give	examples	of	divisors	of	zero,	of	degrees	0,	1,	and	2,	in	 4[x].

3	In	 10[x],	(2x	+	2)(2x	+	2)	=	(2x	+	2)(5x3	+	2x	+	2),	yet	(2x	+	2)	cannot	be	canceled	in	this	equation.
Explain	why	this	is	possible	in	 10[x],	but	not	in	 5[x].
4	Give	examples	in	 4[x],	in	 6[x],	and	in	Z9[x]	of	polynomials	a(x)	and	b(x)	such	that	deg	a(x)b(x)	<	deg
a(x)	+	deg	b(x).
5	If	A	is	an	integral	domain,	we	have	seen	that	in	A[x],

deg	a(x)b(x)	=	deg	a(x)	+	deg	b(x)

Show	that	if	A	is	not	an	integral	domain,	we	can	always	find	polynomials	a(x)	and	b(x)	such	that	deg
a(x)b(x)	<	deg	a(x)	+	deg	b(x).
6	Show	that	if	A	is	an	integral	domain,	the	only	invertible	elements	in	A[x]	are	the	constant	polynomials
with	inverses	in	A.	Then	show	that	in	 4[x]	there	are	invertible	polynomials	of	all	degrees.

#	 7	 Give	 all	 the	 ways	 of	 factoring	 x2	 into	 polynomials	 of	 degree	 1	 in	 9[x];	 in	 5[x].	 Explain	 the
difference	in	behavior.

8	Find	all	 the	square	roots	of	x2	+	x	+	4	 in	 5[x].	Show	that	 in	 8[x],	 there	are	 infinitely	many	square
roots	of	1.

D.	Domains	A[x]	Where	A	Has	Finite	Characteristic
In	each	of	the	following,	let	A	be	an	integral	domain:

1	Prove	that	if	A	has	characteristic	p,	then	A[x]	has	characteristic	p.
2	Use	part	1	to	give	an	example	of	an	infinite	integral	domain	with	finite	characteristic.
3	Prove:	If	A	has	characteristic	3,	 then	x	+	2	 is	a	 factor	of	xm	+	2	 for	all	m.	More	generally,	 if	A	has
characteristic	p,	then	x	+	(p	–	1)isa	factor	of	xm	+	(p	−	1)	for	all	m.
4	Prove	that	if	A	has	characteristic	p,	then	in	A[x],	(x	+	c)p	=	xp	+	cp.	(You	may	use	essentially	the	same
argument	as	in	the	proof	of	Theorem	3,	Chapter	20.)



5	Explain	why	the	following	“proof	of	part	4	is	not	valid:	(x	+	c)p	=	xp	+	cp	in	A[x]	because	(a	+	c)p	=	ap
+	cp	for	all	a,	c	∈	A.	(Note	the	following	example:	in	 2,	a2	+	1	=	a4	+	1	for	every	a,	yet	x2	+	1	≠	x4	+	1
in	 2[x].)

#	6	Use	the	same	argument	as	in	part	4	to	prove	that	if	A	has	characteristic	p,	then	[a(x)	+	b(x)]p	=	a(x)p
+	b(x)p	for	any	a(x),	b(x)	∈	A[x].	Use	this	to	prove:

E.	Subrings	and	Ideals	in	A[x]
1	Show	that	if	B	is	a	subring	of	A,	then	B[x]	is	a	subring	of	A[x].
2	If	B	is	an	ideal	of	A,	B[x]	is	an	ideal	of	A[x].
3	Let	S	be	the	set	of	all	the	polynomials	a(x)	in	A[x]	for	which	every	coefficient	ai	for	odd	i	is	equal	to
zero.	Show	that	S	is	a	subring	of	A[x].	Why	is	the	same	not	true	when	“odd”	is	replaced	by	“even”?
4	Let	J	consist	of	all	the	elements	in	A[x]	whose	constant	coefficient	is	equal	to	zero.	Prove	that	J	is	an
ideal	of	A[x].
#	5	Let	J	consist	of	all	the	polynomials	a0	+	a1x	+	⋯	+	anxn	in	A[x]	such	that	a0	+	a1	+	⋯	+	an	=	0.	Prove
that	J	is	an	ideal	of	A[x].

6	Prove	that	the	ideals	in	both	parts	4	and	5	are	prime	ideals.	(Assume	A	is	an	integral	domain.)

F.	Homomorphisms	of	Domains	of	Polynomials
Let	A	be	an	integral	domain.

1	Let	h	:	A[x]→	A	map	every	polynomial	to	its	constant	coefficient;	that	is,

h(a0	+	a1x	+	⋯	+	anxn)	=	a0

Prove	that	h	is	a	homomorphism	from	A[x]	onto	A,	and	describe	its	kernel.
2	Explain	why	the	kernel	of	h	in	part	1	consists	of	all	the	products	xa(x),	for	all	a(x)	∈	A[x].	Why	is	this
the	same	as	the	principal	ideal	〈x〉	in	A[x]?
3	Using	parts	1	and	2,	explain	why	A[x]/〈x〉	≅	A.
4	Let	g	 :	A[x]	→	A	 send	every	polynomial	 to	 the	 sum	of	 its	 coefficients.	Prove	 that	g	 is	 a	 surjective
homomorphism,	and	describe	its	kernel.
5	If	c	∈	A,	let	h	:	A[x]	→	A[x]	be	defined	by	h(a(x))	=	a(cx),	that	is,

h(a0	+	a1x	+	⋯	+	anxn)	=	a0	+	a1cx	+	a2c2x2	+	⋯	+	ancnxn

Prove	that	h	is	a	homomorphism	and	describe	its	kernel.
6	If	h	is	the	homomorphism	of	part	5,	prove	that	h	is	an	automorphism	(isomorphism	from	A[x]	to	itself)
iff	c	is	invertible.

G.	Homomorphisms	of	Polynomial	Domains	Induced	by	a	Homomorphism	of	the
Ring	of	Coefficients



Let	A	and	B	be	rings	and	let	h	:	A	→	B	be	a	homomorphism	with	kernel	K.	Define	 	:	A[x]	→	B[x]	by

(a0	+	a1x	+	⋯	+	anxn)	=	h(a0)	+	h(a1)x	+	⋯	+	h(an)xn

(We	say	that	 	is	induced	by	h.)

1	Prove	that	 	is	a	homomorphism	from	A[x]	to	B[x].
2	Describe	the	kernel	 	of	 .
#	3	Prove	that	 	is	surjective	iff	h	is	surjective.
4	Prove	that	 	is	injective	iff	h	is	injective.
5	Prove	that	if	a(x)	is	a	factor	of	b(x),	then	 (a(x))	is	a	factor	of	 (b{x)).
6	If	h	:	 	→	 n	is	the	natural	homomorphism,	let	 	:	 [x]	→	 n[x]	be	the	homomorphism	induced	by	h.
Prove	that	 (a(x))	=	0	iff	n	divides	every	coefficient	of	a(x).
7	Let	 	be	as	in	part	6,	and	let	n	be	a	prime.	Prove	that	if	a(x)b(x)	∈	ker	 ,	then	either	a(x)	or	b(x)	is	in
ker	 .	(HINT:	Use	Exercise	F2	of	Chapter	19.)

H.	Polynomials	in	Several	Variables
A[x1,	x2]	 denotes	 the	 ring	 of	 all	 the	 polynomials	 in	 two	 letters	 x1	 and	 x2	 with	 coefficients	 in	A.	 For
example,	x2	–	2xy	+	y2	+	x	−	5	is	a	quadratic	polynomial	in	 [x,	y].	More	generally,	A[x1,	…,	xn]	is	the
ring	of	the	polynomials	in	n	letters	x1,	…,	xn	with	coefficients	in	A.	Formally	it	 is	defined	as	follows:
Let	A[x1]	be	denoted	by	A1;	then	A1[x2]	is	A[x1,	x2].	Continuing	in	this	fashion,	we	may	adjoin	one	new
letter	xi	at	a	time,	to	get	A[x1,	…,	xn].

1	Prove	that	if	A	is	an	integral	domain,	then	A[x1,	…,	xn]	is	an	integral	domain.
2	Give	a	 reasonable	definition	of	 the	degree	of	any	polynomial	p(x,	y)	 in	A[x,	y]	and	 then	 list	 all	 the
polynomials	of	degree	≤	3	in	Z3[x,	y].

Let	us	denote	an	arbitrary	polynomial	p(x,	y)	in	A[x,	y]	by	Σ	aijxiyj	where	Σ	ranges	over	some	pairs	i,	j	of
nonnegative	integers.

3	 Imitating	 the	 definitions	 of	 sum	 and	 product	 of	 polynomials	 in	A[x],	 give	 a	 definition	 of	 sum	 and
product	of	polynomials	in	A[x,	y].
4	Prove	that	deg	a(x,	y)b(x,	y)	=	deg	a(x,	y)	+	deg	b(x,	y)	if	A	is	an	integral	domain.

I.	Fields	of	Polynomial	Quotients
Let	A	be	an	integral	domain.	By	the	closing	part	of	Chapter	20,	every	integral	domain	can	be	extended
to	a	“field	of	quotients.”	Thus,	A[x]	can	be	extended	to	a	field	of	polynomial	quotients,	which	is	denoted
by	A(x).	Note	 that	A(x)	 consists	of	 all	 the	 fractions	a(x)/b(x)	 for	a(x)	and	b(x)	≠	0	 in	A[x],	 and	 these
fractions	are	added,	subtracted,	multiplied,	and	divided	in	the	customary	way.

1	Show	that	A(x)	has	the	same	characteristic	as	A.
2	Using	part	1,	explain	why	there	is	an	infinite	field	of	characteristic	p,	for	every	prime	p.
3	 If	A	 and	B	 are	 integral	 domains	 and	 h	 :	A	→	B	 is	 an	 isomorphism,	 prove	 that	 h	 determines	 an



isomorphism	 	:	A(x)	→	B(x).

J.	Division	Algorithm:	Uniqueness	of	Quotient	and	Remainder
In	 the	 division	 algorithm,	 prove	 that	 q(x)	 and	 r(x)	 are	 uniquely	 determined.	 [HINT:	 Suppose	 a(x)	 =
b(x)q1(x)	+	r1(x)	=	b(x)q2(x)	+	r2(x),	and	subtract	these	two	expressions,	which	are	both	equal	to	a(x).]



CHAPTER

TWENTY-FIVE
FACTORING	POLYNOMIALS

Just	as	every	integer	can	be	factored	into	primes,	so	every	polynomial	can	be	factored	into	“irreducible”
polynomials	which	cannot	be	factored	further.	As	a	matter	of	fact,	polynomials	behave	very	much	like
integers	when	 it	comes	 to	 factoring	 them.	This	 is	especially	 true	when	 the	polynomials	have	all	 their
coefficients	in	a	field.

Throughout	this	chapter,	we	let	F	represent	some	field	and	we	consider	polynomials	over	F.	It	will
be	found	 that	F[x]	has	a	considerable	number	of	properties	 in	common	with	 .	To	begin	with,	all	 the
ideals	of	F[x]	are	principal	ideals,	which	was	also	the	case	for	the	ideals	of	 .

Note	carefully	 that	 in	F[x],	 the	principal	 ideal	generated	by	a	polynomial	a(x)	consists	of	all	 the
products	a(x)s(x)	as	a(x)	remains	fixed	and	s(x)	ranges	over	all	the	members	of	F[x].

Theorem	1	Every	ideal	of	F[x]	is	principal.

PROOF:	Let	J	be	any	ideal	of	F[x].	If	J	contains	nothing	but	the	zero	polynomial,	J	is	the	principal
ideal	generated	by	0.	If	there	are	nonzero	polynomials	in	J,	let	b(x)	be	any	polynomial	of	lowest	degree
in	J.	We	will	show	that	J	=	〈(b(x)〉,	which	 is	 to	say	 that	every	element	of	J	 is	a	polynomial	multiple
b(x)q(x)	of	b(x).

Indeed,	if	a(x)	 is	any	element	of	J,	we	may	use	the	division	algorithm	to	write	a(x)	=	b(x)q(x)	+
r(x),	where	r(x)	=	0	or	deg	r(x)	<	deg	b(x).	Now,	r(x)	=	a{x)	−b(x)q(x);	but	a(x)	was	chosen	 in	J,	and
b(x)	∈	J;	hence	b(x)q(x)	∈	J.	It	follows	that	r(x)	is	in	J.

If	 r(x)	 ≠	 0,	 its	 degree	 is	 less	 than	 the	 degree	 of	 b(x).	 But	 this	 is	 impossible	 because	 b(x)	 is	 a
polynomial	of	lowest	degree	in	J.	Therefore,	of	necessity,	r(x)	=	0.

Thus,	finally,	a(x)	=	b(x)q(x);	so	every	member	of	J	is	a	multiple	of	b(x),	as	claimed.	■
It	follows	that	every	ideal	J	of	F[x]	is	principal.	In	fact,	as	the	proof	above	indicates,	J	is	generated

by	any	one	of	its	members	of	lowest	degree.

Throughout	 the	 discussion	 which	 follows,	 remember	 that	 we	 are	 considering	 polynomials	 in	 a
fixed	domain	F[x]	where	F	is	a	field.

Let	a(x)	and	b(x)	be	in	F[x].	We	say	that	b(x)	is	a	multiple	of	a(x)	if

b(x)	=	a(x)s(x)

for	some	polynomial	s(x)	in	F[x].	If	b(x)	is	a	multiple	of	a(x),	we	also	say	that	a(x)	is	a	factor	of	b(x),	or



that	a(x)	divides	b(x).	In	symbols,	we	write

a(x)∣b(x)

Every	nonzero	constant	polynomial	divides	every	polynomial.	For	if	c	≠	0	is	constant	and	a(x)	=
a0+…+anxn,	then

hence	c	∣	a(x).	A	polynomial	a(x)	is	invertible	iff	it	is	a	divisor	of	the	unity	polynomial	1.	But	if	a(x)b(x)
=	1,	this	means	that	a(x)	and	b(x)	both	have	degree	0,	that	is,	are	constant	polynomials:	a(x)	=	a,	b(x)	=
b,	and	ab	=	1.	Thus,

the	invertible	elements	of	F[x]	are	all	the	nonzero	constant	polynomials.
A	 pair	 of	 nonzero	 polynomials	 a(x)	 and	 b(x)	 are	 called	 associates	 if	 they	 divide	 one	 another:

a(x)∣b(x)	and	b(x)∣a(x).	That	is	to	say,

a(x)	=	b(x)c(x)	 and	 b(x)	=	a(x)d(x)

for	some	c(x)	and	d(x).	If	this	happens	to	be	the	case,	then

a(x)	=	b(x)c(x)	=	a(x)d(x)c(x)

hence	d(x)c(x)	=	1	because	F[x]	is	an	integral	domain.	But	then	c(x)	and	d(x)	are	constant	polynomials,
and	therefore	a(x)	and	b(x)	are	constant	multiples	of	each	other.	Thus,	in	F[x],

a(x)	and	b(x)	are	associates	iff	they	are	constant	multiples	of	each	other.
If	a(x)	=	a0	+	⋯	+	anxn,	the	associates	of	a(x)	are	all	its	nonzero	constant	multiples.	Among	these

multiples	is	the	polynomial

which	is	equal	to	(1/an)a(x),	and	which	has	1	as	its	leading	coefficient.	Any	polynomial	whose	leading
coefficient	 is	 equal	 to	 1	 is	 called	monk.	 Thus,	 every	 nonzero	 polynomial	 a(x)	 has	 a	 unique	 monic
associate.	For	example,	the	monic	associate	of	3	+	4x	+	2x3	is	 .

A	polynomial	d(x)	is	called	a	greatest	common	divisor	of	a(x)	and	b(x)	if	d(x)	divides	a(x)	and	b(x),
and	is	a	multiple	of	any	other	common	divisor	of	a(x)	and	b(x);	in	other	words,
(i) d(x)∣a(x)	and	d(x)∣b(x),	and
(ii) For	any	u(x)	 in	F[x],	 if	u(x)∣a(x)	 and	u(x)∣b(x),	 then	u(x)∣d(x).	According	 to	 this	 definition,	 two
different	gcd’s	of	a(x)	and	b(x)	divide	each	other,	that	is,	are	associates.	Of	all	the	possible	gcd’s	of
a(x)	and	b(x),	we	 select	 the	monic	one,	 call	 it	 the	 gcd	of	a(x)	 and	b(x),	 and	denote	 it	 by	gcd[a(x),
b(x)].
It	is	important	to	know	that	any	pair	of	polynomials	always	has	a	greatest	common	divisor.

Theorem	2	Any	two	nonzero	polynomials	a(x)	and	b(x)	in	F[x]	have	a	gcd	d(x).Furthermore,	d(x)
can	be	expressed	as	a	“linear	combination”



d(x)	=	r(x)a(x)	+	s(x)b(x)

where	r(x)	and	s(x)	are	in	F[x].
PROOF:	The	proof	is	analogous	to	the	proof	of	the	corresponding	theorem	for	integers.	If	J	is	the	set

of	all	the	linear	combinations

u(x)a(x)	+	υ(x)b(x)

as	u(x)	and	υ(x)	range	over	F[x],	then	J	is	an	ideal	of	F[x],	say	the	ideal	〈d(x)〉	generated	by	d(x).	Now
a(x)	=	 la(x)	+	0b(x)	 and	b(x)	=	0a(x)	+	1b(x),	 so	a(x)	 and	b(x)	 are	 in	J.	But	 every	 element	 of	 7	 is	 a
multiple	of	d(x),	so

d(x)∣a(x)	 and	 d(x)∣b(x)

If	k(x)	is	any	common	divisor	of	a(x)	and	b(x),	this	means	there	are	polynomials	f(x)	and	g(x)	such
that	a(x)	=	k(x)f(x)	and	b(x)	=	k(x)g(x).	Now,	d(x)	∈	J,	so	d(x)	can	be	written	as	a	linear	combination

hence	k(x)∣d(x).	This	confirms	that	d(x)	is	the	gcd	of	a(x)	and	b(x).	■
Polynomials	a(x)	and	b(x)	in	F[x]	are	said	to	be	relatively	prime	if	their	gcd	is	equal	to	1.	(This	is

equivalent	to	saying	that	their	only	common	factors	are	constants	in	F.)
A	polynomial	a(x)	of	positive	degree	 is	said	 to	be	reducible	over	F	 if	 there	are	polynomials	b(x)

and	c(x)	in	F[x],	both	of	positive	degree,	such	that

a(x)	=	b(x)c(x)

Because	b(x)	and	c(x)	both	have	positive	degrees,	and	 the	sum	of	 their	degrees	 is	deg	a(x),	each	has
degree	less	than	deg	a(x).

A	 polynomial	 p(x)	 of	 positive	 degree	 in	 F[x]	 is	 said	 to	 be	 irreducible	 over	 F	 if	 it	 cannot	 be
expressed	as	the	product	of	two	polynomials	of	positive	degree	in	F[x].	Thus,	p(x)	is	irreducible	iff	it	is
not	reducible.

When	we	say	that	a	polynomial	p(x)	is	irreducible,	it	is	important	that	we	specify	irreducible	over
the	field	F.	A	polynomial	may	be	irreducible	over	F,	yet	reducible	over	a	larger	field	E.	For	example,
p(x)	=	x2	+	1	is	irreducible	over	 ;	but	over	 	it	has	factors	(x	+	i)(x	−	i).

We	next	 state	 the	analogs	 for	polynomials	of	Euclid’s	 lemma	and	 its	 corollaries.	The	proofs	 are
almost	identical	to	their	counterparts	in	 ;	therefore	they	are	left	as	exercises.

Euclid’s	 lemma	 for	 polynomials	 Let	 p(x)	 be	 irreducible.	 If	 p(x)∣	 a(x)b(x),	 then	 p(x)∣a(x)	 or
p(x)∣b(x).

Corollary	1	Let	p(x)	be	 irreducible.	 If	 p(x)	 ∣a1(x)a2(x)	⋯	an(x),	 then	 p(x)	 ∣	ai(x)	 for	 one	 of	 the
factors	ai(x)	among	a1(x),.	.	.,	an(x).

Corollary	2	Let	q1(x),	…,	qr(x)	and	p(x)	be	monic	irreducible	polynomials.	If	p(x)	∣	q1	(x)	…	qr(x),
then	p(x)	is	equal	to	one	of	the	factors	q1(x),...,qr(x).



Theorem	3:	Factorization	into	irreducible	polynomials	Every	polynomial	a(x)	of	positive	degree
in	F[x]	can	be	written	as	a	product

a(x)	=	kp1(x)p2(x)	…	pr(x)

where	k	is	a	constant	in	F	and	p1(x),	…,	pr(x)	are	monic	irreducible	polynomials	of	F[x].
If	 this	 were	 not	 true,	 we	 could	 choose	 a	 polynomial	 a(x)	of	 lowest	 degree	 among	 those	 which

cannot	be	factored	into	irreducibles.	Then	a(x)	is	reducible,	so	a(x)	=	b(x)c(x)	where	b(x)	and	c(x)	have
lower	degree	than	a(x).	But	this	means	that	b(x)	and	c(x)	can	be	factored	into	irreducibles,	and	therefore
a(x)	can	also.

Theorem	 4:	 Unique	 factorization	 If	 a(x)	 can	 be	 written	 in	 two	 ways	 as	 a	 product	 of	 monic
irreducibles,	say

a(x)	=	kp1(x)	⋯	pr(x)	=	lq1(x)	⋯	qs(x)

then	k	=	l,	r	=	s,	and	each	pi(x)	is	equal	to	a	qJ(x).
The	 proof	 is	 the	 same,	 in	 all	major	 respects,	 as	 the	 corresponding	 proof	 for	 	 ;	 it	 is	 left	 as	 an

exercise.
In	the	next	chapter	we	will	be	able	to	improve	somewhat	on	the	last	two	results	in	the	special	cases

of	 [x]	and	 [x].	Also,	we	will	learn	more	about	factoring	polynomials	into	irreducibles.

EXERCISES

A.	Examples	of	Factoring	into	Irreducible	Factors
1	Factor	x4	−	4	into	irreducible	factors	over	 ,	over	 ,	and	over	 .
2	Factor	x6	−	16	into	irreducible	factors	over	 ,	over	 ,	and	over	 .
3	Find	all	the	irreducible	polynomials	of	degree	≤	4	in	 2[x].

#	4	Show	 that	x2	 +	 2	 is	 irreducible	 in	 5[x].	Then	 factor	x4	−	 4	 into	 irreducible	 factors	 in	 5[x].	 (By
Theorem	3,	it	is	sufficient	to	search	for	monic	factors.)

5	Factor	2x3	+	4x	+	1	in	 5[x].	(Factor	it	as	in	Theorem	3.)
6	In	 6[x],	factor	each	of	the	following	into	two	polynomials	of	degree	1	:	x,	x	+	2,	x	+	3.	Why	is	this
possible?

B.	Short	Questions	Relating	to	Irreducible	Polynomials
Let	F	be	a	field.	Explain	why	each	of	the	following	is	true	in	F[x]:
1	Every	polynomial	of	degree	1	is	irreducible.
2	If	a(x)	and	b(x)	are	distinct	monic	polynomials,	they	cannot	be	associates.
3	Any	two	distinct	irreducible	polynomials	are	relatively	prime.
4	If	a(x)	is	irreducible,	any	associate	of	a(x)	is	irreducible.
5	If	a(x)≠,	a(x)	cannot	be	an	associate	of	0.
6	In	 p[x],	every	nonzero	polynomial	has	exactly	p	−	1	associates.



7	x2	+	1	is	reducible	in	 p[x]	iff	p	=	a	+	b	where	ab	≡	1	(mod	p).

C.	Number	of	Irreducible	Quadratics	over	a	Finite	Field
1	 Without	 finding	 them,	 determine	 how	many	 reducible	 monic	 quadratics	 there	 are	 in	 5[x].	 [HINT:
Every	reducible	monic	quadratic	can	be	uniquely	factored	as	(x	+	a)(x	+	b).]
2	How	many	reducible	quadratics	are	there	in	 5[x]?	How	many	irreducible	quadratics?
3	Generalize:	How	many	irreducible	quadratics	are	there	over	a	finite	field	of	n	elements?
4	How	many	irreducible	cubics	are	there	over	a	field	of	n	elements?

D.	Ideals	in	Domains	of	Polynomials
Let	F	be	a	field,	and	let	J	designate	any	ideal	of	F[x].	Prove	parts	1−4.
1	Any	two	generators	of	J	are	associates.
2	J	has	a	unique	monic	generator	m(x).	An	arbitrary	polynomial	a(x)	∈	F[x]	is	in	J	iff	m(x)	∣	a(x).
3	J	is	a	prime	ideal	iff	it	has	an	irreducible	generator.
#	4	If	p(x)	is	irreducible,	then	〈p(x)〉	is	a	maximal	ideal	of	F[x].	(See	Chapter	18,	Exercise	H5.)
5	Let	S	be	the	set	of	all	polynomials	a0	+	a1x	+	⋯	+	anxn	in	F[x]	which	satisfy	a0	+	a1	+	⋯	+	an	=	0.	It
has	been	shown	(Chapter	24,	Exercise	E5)	that	S	is	an	ideal	of	F[x].	Prove	that	x	−	1	∈	S,	and	explain
why	it	follows	that	S	=	〈−	1〉.
6	Conclude	from	part	5	that	F[x]/〈x	−	1〉	≅	F.	(See	Chapter	24,	Exercise	F4.)
7	Let	F[x,	y]	denote	the	domain	of	all	the	polynomials	Σ	aijxiyj	in	two	letters	x	and	y,	with	coefficients	in
F.	Let	J	be	the	ideal	of	F[x,	y]	which	contains	all	 the	polynomials	whose	constant	coefficient	in	zero.
Prove	that	J	is	not	a	principal	ideal.	Conclude	that	Theorem	1	is	not	true	in	F[x,	y].

E.	Proof	of	the	Unique	Factorization	Theorem
1	Prove	Euclid’s	lemma	for	polynomials.
2	Prove	the	two	corollaries	of	Euclid’s	lemma.
3	Prove	the	unique	factorization	theorem	for	polynomials.

F.	A	Method	for	Computing	the	gcd
Let	a(x)	and	b(x)	be	polynomials	of	positive	degree.	By	the	division	algorithm,	we	may	divide	a(x)	by
b(x):

a(x)	=	b(x)ql(x)	+	r1,(x)

1	Prove	that	every	common	divisor	of	a(x)	and	b(x)	is	a	common	divisor	of	b(x)	and	r1(x).
It	follows	from	part	1	that	the	gcd	of	a(x)	and	b(x)	is	the	same	as	the	gcd	of	b(x)	and	r1(x).	This

procedure	can	now	be	repeated	on	b(x)	and	r1(x);	divide	b(x)	by	r1(x):

b(x)	=	r1(x)q2(x)r2(x)



Next

r1(x)	=	r2(x)q3(x)	+	r3(x)

Finally,

rn−1(x)	=	rn	(x)qn+1(x)	+	0

In	 other	 words,	 we	 continue	 to	 divide	 each	 remainder	 by	 the	 succeeding	 remainder.	 Since	 the
remainders	continually	decrease	in	degree,	there	must	ultimately	be	a	zero	remainder.	But	we	have	seen
that

gcd[a(x),b(x)]	=	gcd[b(x),	r1(x)]	=	⋯	=	gcd[rn−1(x),	rn(x)]

Since	rn(x)	is	a	divisor	of	rn−1(x),	it	must	be	the	gcd	of	rn(x)	and	rn−.1.	Thus,

rn(x)	=	gcd[a(x),	b(x)]

This	method	is	called	the	euclidean	algorithm	for	finding	the	gcd.
#	2	Find	the	gcd	of	x3	+	1	and	x4	+	x3	+	2x2	+	x	−	1.	Express	this	gcd	as	a	linear	combination	of	the	two
polynomials.

3	Do	the	same	for	x24	—	1	and	x15	−	1.
4	Find	the	gcd	of	x3	+	x2	+	x	+	1	and	x4	+	x3	+	2x2	+	2x	in	 3[x].

G.	A	Transformation	of	F[x]
Let	G	be	the	subset	of	F[x]	consisting	of	all	polynomials	whose	constant	term	is	nonzero.	Let	h	:	G	→	G
be	defined	by

h(a0	+	a1x	+	⋯	+	anxn)	=	an	+	an−1x	+	⋯	+	a0xn

Prove	parts	1−3:
1	h	preserves	multiplication,	that	is,	h[a(x)b(x)]	=	h[a(x)]h[b(x)].
2	h	is	injective	and	surjective	and	h	∘	h	=	ε.
3	a0	+	a1x	+	⋯	+	anxn	is	irreducible	iff	an	+	an−lx	+	⋯	+	a0xn	is	irreducible.

4	Let	a0	+	a1x	+	⋯	+anxn	=	(b0	+	⋯	+bmxm)(c0+	⋯	+cqxq).	Factor

an	+	an−1x	+	⋯	+	a0xn

5	Let	a(x)	=	a0	+	a1x	+	⋯	+	anxn	and	â(x)	=	an	+	an	−	1x	+	⋯	+	a0xn.	If	c	∈	F,	prove	that	a(c)	=	0	iff
â(1/c)	=	0.



CHAPTER

TWENTY-SIX

SUBSTITUTION	IN	POLYNOMIALS

Up	to	now	we	have	treated	polynomials	as	formal	expressions.	If	a(x)	is	a	polynomial	over	a	field	F,	say

a(x)	=	a0	+	a1x	+	⋯	+	anxn

this	 means	 that	 the	 coefficients	 a0,	 a1,	 …,an	 are	 elements	 of	 the	 field	 F,	 while	 the	 letter	 x	 is	 a
placeholder	which	plays	no	other	role	than	to	occupy	a	given	position.

When	we	 dealt	with	 polynomials	 in	 elementary	 algebra,	 it	was	 quite	 different.	 The	 letter	 x	was
called	an	unknown	and	was	allowed	to	assume	numerical	values.	This	made	a(x)	into	a	function	having
x	as	its	independent	variable.	Such	a	function	is	called	a	polynomial	function.

This	 chapter	 is	 devoted	 to	 the	 study	 of	 polynomial	 functions.	 We	 begin	 with	 a	 few	 careful
definitions.

Let	a(x)	=	a0	+	a1x	+	⋯+	anxn	be	a	polynomial	over	F.	If	c	is	any	element	of	F,	then

a0	+	a1c	+	⋯+	ancn

is	also	an	element	of	F,	obtained	by	substituting	c	for	x	in	the	polynomial	a(x).	This	element	is	denoted
by	a(c).	Thus,

a(c)	=	a0	+	a1c	+	⋯	+	ancn

Since	we	may	substitute	any	element	of	F	for	x,	we	may	regard	a(x)	as	a	function	from	F	to	F.	As	such,
it	is	called	a	polynomial	function	on	F.

The	 difference	 between	 a	 polynomial	 and	 a	 polynomial	 function	 is	 mainly	 a	 difference	 of
viewpoint.	Given	a(x)	with	 coefficients	 in	F:	 if	x	 is	 regarded	merely	 as	 a	 placeholder,	 then	a(x)	 is	 a
polynomial;	if	x	is	allowed	to	assume	values	in	F,	then	a(x)	is	a	polynomial	function.	The	difference	is	a
small	one,	and	we	will	not	make	an	issue	of	it.

If	a(x)	is	a	polynomial	with	coefficients	in	F,	and	c	is	an	element	of	F	such	that



a(c)	=	0

then	we	call	c	a	root	of	a(x).	For	example,	2	is	a	root	of	the	polynomial	3x2	+	x	−	14	∈	 [x],	because	3	·
22	+	2	−	14	=	0.

There	is	an	absolutely	fundamental	connection	between	roots	of	a	polynomial	and	factors	of	that
polynomial.	This	connection	is	explored	in	the	following	pages,	beginning	with	the	next	theorem:

Let	a(x)	be	a	polynomial	over	a	field	F.

Theorem	1	c	is	a	root	of	a(x)	iff	x	−	c	is	a	factor	of	a(x).

PROOF:	If	x	−	c	is	a	factor	of	a(x),	this	means	that	a(x)	=	(x	−	c)q(x)	for	some	q(x).	Thus,	a(c)	=	(c
−	c)q(c)	=	0,	so	c	is	a	root	of	a(x).	Conversely,	if	c	is	a	root	of	a(x),	we	may	use	the	division	algorithm
to	divide	a(x)	by	x	−	c:	a(x)	=	(x	−	c)q(x)	+	r(x).	The	remainder	r(x)	is	either	0	or	a	polynomial	of	lower
degree	than	x	−	c;	but	lower	degree	than	x	—	c	means	that	r(x)	is	a	constant	polynomial:	r(x)	=	r	≥	0.
Then

0	=	a(c)	=	(c	−	c)	q(c)	+	r	=	0	+	r	=	r

Thus,	r	=	0,	and	therefore	x	−	c	is	a	factor	of	a(x).	■
Theorem	1	tells	us	that	if	c	is	a	root	of	a(x),	then	x	−	c	is	a	factor	of	a(x)	(and	vice	versa).	This	is

easily	 extended:	 if	 c1	 and	 c2	 are	 two	 roots	 ofa(x),	 then	 x	−	 c1	 and	 x	−	 c2	 are	 two	 factors	 of	 a(x).
Similarly,	 three	 roots	 give	 rise	 to	 three	 factors,	 four	 roots	 to	 four	 factors,	 and	 so	 on.	 This	 is	 stated
concisely	in	the	next	theorem.

Theorem	2	If	a(x)	has	distinct	roots	cl,	…,	cm	in	F,	then	(x	−	c1)(x	−	c2)	⋯	(x	−	cm)	is	a	factor	of
a(x).

PROOF:	To	prove	this,	let	us	first	make	a	simple	observation:	if	a	polynomial	a(x)	can	be	factored,
any	root	of	a(x)	must	be	a	root	of	one	of	its	factors.	Indeed,	if	a(x)	=	s(x)t(x)	and	a(c)	=	0,	then	s(c)	t(c)
=	0,	and	therefore	either	s(c)	=	0	or	t(c)	−	0.

Let	cl,…,	cm	be	distinct	roots	of	a(x).	By	Theorem	1,

a(x)	=	(x	−	c1)	q1(x)

By	our	observation	in	the	preceding	paragraph,	c2	must	be	a	root	of	x	−	c1	or	of	q1(x).	It	cannot	be	a	root
of	x	−	c1	because	c2	−	c1	≠	0;	so	c2	is	a	root	of	q1(x).	Thus,	q1(x)	=	(x	−	c2)	q2(x),	and	therefore

a(x)	=	(x	−	c1)(x	−	c2)	q2(x)

Repeating	this	argument	for	each	of	the	remaining	roots	gives	us	our	result.	■
An	immediate	consequence	is	the	following	important	fact:

Theorem	3	If	a(x)	has	degree	n,	it	has	at	most	n	roots.

PROOF:	If	a(x)	had	n	+	1	roots	c1,…,	cn	+	1,	then	by	Theorem	2,	(x	−	c1)	⋯	(x	−	cn	+	1)	would	be	a
factor	of	a(x),	and	the	degree	of	a(x)	would	therefore	be	at	least	x	+	1.	■

It	 was	 stated	 earlier	 in	 this	 chapter	 that	 the	 difference	 between	 polynomials	 and	 polynomial



functions	is	mainly	a	difference	of	viewpoint.	Mainly,	but	not	entirely!	Remember	that	two	polynomials
a(x)	and	b(x)	are	equal	iff	corresponding	coefficients	are	equal,	whereas	two	functions	a(x)	and	b(x)	are
equal	iff	a(x)	=	b(x)	for	every	x	in	their	domain.	These	two	notions	of	equality	do	not	always	coincide!

For	example,	consider	the	following	two	polynomials	in	 	5	[x]:

You	may	check	that	a(0)	=	b(0),	a(1)	=	b(l),…,	a(4)	=	b(4);	hence	a(x)	and	b(x)	are	equal	functions	from
	5	to	 5.	But	as	polynomials,	a(x)	and	b(x)	are	quite	distinct!	(They	do	not	even	have	the	same	degree.)

It	is	reassuring	to	know	that	this	cannot	happen	when	the	field	F	is	infinite.	Suppose	a(x)	and	b(x)
are	 polynomials	 over	 a	 field	 F	 which	 has	 infinitely	 many	 elements.	 If	 a(x)	 and	 b(x)	 are	 equal	 as
functions,	this	means	that	a(c)	=	b(c)	for	every	c	∈	F.	Define	the	polynomial	d(x)	to	be	the	difference	of
a(x)	 and	 b(x):	 d(x)	 =	 a(x)	 −	 b(x).	 Then	 d(c)	 =	 0	 for	 everyc	∈	 F.	 Now,	 if	 d(x)	 were	 not	 the	 zero
polynomial,	it	would	be	a	polynomial	(with	some	finite	degree	n)	having	infinitely	many	roots,	and	by
Theorem	3	this	is	impossible!	Thus,	d(x)	is	the	zero	polynomial	(all	its	coefficients	are	equal	to	zero),
and	therefore	a(x)	is	the	same	polynomial	as	b(x).	(They	have	the	same	coefficients.)

This	tells	us	that	if	F	is	a	field	with	infinitely	many	elements	(such	as	 ,	 ,	or	 ),	there	is	no	need
to	 distinguish	 between	 polynomials	 and	 polynomial	 functions.	 The	 difference	 is,	 indeed,	 just	 a
difference	of	viewpoint.

POLYNOMIALS	OVER	 	AND	
In	 scientific	 computation	 a	 great	 many	 functions	 can	 be	 approximated	 by	 polynomials,	 usually
polynomials	 whose	 coefficients	 are	 integers	 or	 rational	 numbers.	 Such	 polynomials	 are	 therefore	 of
great	practical	 interest.	 It	 is	easy	 to	 find	 the	rational	 roots	of	such	polynomials,	and	 to	determine	 if	a
polynomial	over	 	is	irreducible	over	 .	We	will	do	these	things	next.

First,	let	us	make	an	important	observation:
Let	a(x)	be	a	polynomial	with	rational	coefficients,	say

We	may	now	factor	out	s	from	all	but	the	first	term	to	get

The	polynomial	b(x)	has	integer	coefficients;	and	since	it	differs	from	a(x)	only	by	a	constant	factor,	it
has	the	same	roots	as	a(x).	Thus,	for	every	polynomial	with	rational	coefficients,	there	is	a	polynomial
with	integer	coefficients	having	the	same	roots.	Therefore,	for	the	present	we	will	confine	our	attention
to	polynomials	with	integer	coefficients.	The	next	theorem	makes	it	easy	to	find	all	the	rational	roots	of
such	polynomials:

Let	s/t	be	a	rational	number	in	simplest	form	(that	is,	the	integers	s	and	t	do	not	have	a	common



factor	greater	than	1).	Let	a(x)	=	a0	+	⋯	+	an	xn	be	a	polynomial	with	integer	coefficients.

Theorem	4	If	s/t	is	a	root	of	a(x),	then	s|a0	and	t|an.

PROOF:	If	s/t	is	a	root	of	a(x),	this	means	that

a0	+	a1(s/t)	+	⋯	+	an(sn/tn)	=	0

Multiplying	both	sides	of	this	equation	by	tn	we	get

a0	tn	+	a1stn	−	1	+	⋯	+	ansn	=	0 	(1)

We	may	now	factor	out	s	from	all	but	the	first	term	to	get

−	a0tn	=	s(altn	−	1	+	⋯	+	ansn	−	1

Thus,	s	/a0tn;	and	since	s	and	t	have	no	common	factors,	s|a0.	Similarly,	in	Equation	(1),	we	may	factor
out	t	from	all	but	the	last	term	to	get

t(a0tn	−	1	+	⋯	+	an	−	1sn	−	l)=	−	ansn

Thus,	t\ansn;	and	since	s	and	t	have	no	common	factors,	t\an.	■

As	an	example	of	the	way	Theorem	4	may	be	used,	let	us	find	the	rational	roots	of	a(x)	=	2x4	+	7x3
+	5x2	+	7x	+	3.	Any	rational	root	must	be	a	fraction	sit	where	s	is	a	factor	of	3	and	t	is	a	factor	of	2.	The
possible	roots	are	therefore	±1,	±3,	± 	and	± .	Testing	each	of	these	numbers	by	direct	substitution	into
the	equation	a(x)	=	0,	we	find	that	−	 	and	−	3	are	roots.

Before	going	to	the	next	step	in	our	discussion	we	note	a	simple	but	fairly	surprising	fact.
Lemma	Let	a(x)	=	b(x)c(x),	where	a(x),	b(x),	and	c(x)	have	integer	coefficients.	If	a	prime	number

p	divides	every	coefficient	of	a(x),	it	either	divides	every	coefficient	of	b(x)	or	every	coefficient	of	c(x).
PROOF:	If	this	is	not	the	case,	let	br	be	the	first	coefficient	of	b(x)	not	divisible	by	p,	and	let	ct	be

the	first	coefficient	of	c(x)	not	divisible	by	p.	Now,	a(x)	=	b(x)	c(x),	so

ar	+	t	=	b0cr	+	t	+	⋯	+	brct	+	⋯	+	br	+	tc0

Each	term	on	the	right,	except	brct	is	a	product	biCjwhere	either	i	>	r	or	j	>	t.	By	our	choice	of	br	and	ct,
if	i	>	r	then	p	|	bi,	and	j	>	t	then	p	 |	cj.	Thus,	p	is	a	factor	of	every	term	on	the	right	with	the	possible
exception	of	brcn	but	p	is	also	a	factor	of	ar	+	t.	Thus,	p	must	be	a	factor	of	brcn	hence	of	either	br	or	cn
and	this	is	impossible.	■

We	 saw	 (in	 the	 discussion	 immediately	 preceding	 Theorem	 4)	 that	 any	 polynomial	 a{x)	 with
rational	coefficients	has	a	constant	multiple	ka(x),	with	integer	coefficients,	which	has	the	same	roots	as
a(x).	We	can	go	one	better;	let	a(x)∈	 [x]:

Theorem	5	Suppose	a(x)	can	 be	 factored	 as	 a(x)	 =	b(x)c(x),	where	 b(x)	and	 c(x)	have	 rational
coefficients.	 Then	 there	 are	 polynomials	 B(x)	and	C(x)	with	 integer	 coefficients,	 which	 are	 constant



multiples	of	b(x)	and	c(x),	respectively,	such	that	a(x)	=	B(x)C(x).

PROOF.	Let	k	and	 l	 be	 integers	 such	 that	kb(x)	and	 lc(x)	 have	 integer	 coefficients.	Then	kla(x)	 =
[kb(x)][lc(x)].	By	the	lemma,	each	prime	factor	of	kl	may	now	be	canceled	with	a	factor	of	either	kb(x)
or	lc(x).	■

Remember	 that	 a	 polynomial	a(x)	 of	 positive	 degree	 is	 said	 to	 be	 reducible	 over	F	 if	 there	 are
polynomials	b(x)	and	c(x)	in	F[x],	both	of	positive	degree,	such	that	a(x)	=	b(x)	c(x).	If	there	are	no	such
polynomials,	then	a(x)	is	irreducible	over	F.

If	we	use	this	terminology,	Theorem	5	states	that	any	polynomial	with	integer	coefficients	which	is
reducible	over	 	is	reducible	already	over	 .

In	Chapter	25	we	saw	that	every	polynomial	can	be	factored	into	irreducible	polynomials.	In	order
to	 factor	 a	 polynomial	 completely	 (that	 is,	 into	 irreducibles),	 we	 must	 be	 able	 to	 recognize	 an
irreducible	polynomial	when	we	see	one!	This	is	not	always	an	easy	matter.	But	there	is	a	method	which
works	remarkably	well	for	recognizing	when	a	polynomial	is	irreducible	over	 :

Theorem	6:	Eisenstein	’	s	irreducibility	criterion	Let

a(x)	=	a0	+	a1x	+	⋯	+	anxn

be	 a	 polynomial	 with	 integer	 coefficients.	 Suppose	 there	 is	 a	 prime	 number	 p	 which	 divides	 every
coefficient	of	a(x)	except	the	leading	cofficient	an	;	suppose	p	does	not	divide	an	and	p2	does	not	divide
a0.	Then	a(x)	is	irreducible	over .

PROOF:	If	a(x)	can	be	factored	over	 	as	a(x)	=	b(x)c(x),	then	by	Theorem	5	we	may	assume	b(x)
and	c(x)	have	integer	coefficients:	say

b(x)	=	b0	+	⋯	+	bkxk 	and 	c(x)	=	c0	+	⋯	+	cmxm

Now,	a0	=	b0c0;p	divides	a0	but	p2	does	not,	so	only	one	of	b0,	c0	is	divisible	by	p.	Say	p|	c0	and	p	∤	b0.
Next,	an	=	bkcm	and	p	∤	an,	so	p	∤	cm.

Let	s	be	the	smallest	integer	such	that	p	∤	cs.	We	have

as	=	b0cs	+	b1	cs	−	1	+	⋯	+	bsc0

and	by	our	choice	of	cs,	every	term	on	the	right	except	b0cs	is	divisible	by	p.	But	as	also	is	divisible	by
p,	and	 therefore	b0cs	must	be	divisible	by	p.	This	 is	 impossible	because	p	∤	b0	and	p	∤	cs.	 Thus,	 a(x)
cannot	be	factored.	■

For	 example,	x3	 +	2x2	 +	4x	 +	2	 is	 irreducible	 over	 	 because	p	 =	 2	 satisfies	 the	 conditions	 of
Eisenstein’s	criterion.

POLYNOMIALS	OVER	 	AND	
One	of	 the	most	 far-reaching	 theorems	 of	 classical	mathematics	 concerns	 polynomials	with	 complex
coefficients.	It	is	so	important	in	the	frame	work	of	traditional	algebra	that	it	is	called	the	fundamental
theorem	of	algebra.	It	states	the	following:

Every	nonconstant	polynomial	with	complex	coefficients	has	a	complex	root.



(The	proof	of	this	theorem	is	based	upon	techniques	of	calculus	and	can	be	found	in	most	books	on
complex	analysis.	It	is	omitted	here.)

It	 follows	 immediately	 that	 the	 irreducible	 polynomials	 in	 [x]	 are	 exactly	 the	 polynomials	 of
degree	1.	For	if	a(x)	is	a	polynomial	of	degree	greater	than	1	in	 	[x],	then	by	the	fundamental	theorem
of	algebra	it	has	a	root	c	and	therefore	a	factor	x	−	c.

Now,	every	polynomial	in	 	[x]	can	be	factored	into	irreducibles.	Since	the	irreducible	polynomials
are	all	of	degree	1,	it	follows	that	if	a(x)	is	a	polynomial	of	degree	n	over	 ,	it	can	be	factored	into

a(x)	=	k(x	−	c1)(x	−	c2)	⋯	(x	−	cn)

In	particular,	if	a(x)	has	degree	n	it	has	n	(not	necessarily	distinct)	complex	roots	c1	…	cn.
Since	 every	 real	 number	 a	 is	 a	 complex	number	 (a	 =	a	 +	 0i),	what	 has	 just	 been	 stated	 applies

equally	to	polynomials	with	real	coefficients.	Specifically,	if	a(x)	is	a	polynomial	of	degree	n	with	real
coefficients,	 it	can	be	factored	into	a(x)	=	k(x	−	c1)	⋯	 (x	−	cn),	where	cl,	…,cn	are	complex	numbers
(some	of	which	may	be	real).

For	our	closing	comments,	we	need	the	following	lemma:
Lemma	Suppose	a(x)	∈	 [x].	If	a	+	bi	is	a	root	of	a(x),	so	is	a	−	bi.
PROOF:	Remember	 that	a	−	bi	 is	called	 the	conjugate	of	a	+	bi.	 If	r	 is	 any	complex	number,	we

write	r	for	its	conjugate.	It	is	easy	to	see	that	the	function	f(r)	=	 	is	a	homomorphism	from	 	to	 	(in
fact,	 it	 is	an	isomorphism).	For	every	real	number	a,	f(a)	=	a.	Thus,	 if	a(x)	has	 real	coefficients,	 then
f(a0	+	a1r	+	⋯	+	anrn)	=	a0	+	a1 	+	⋯	+	an n.	Since	f(0)	=	0,	it	follows	that	if	r	is	a	root	of	a(x),	so	is	 .	■

Now	let	a(x)	be	any	polynomial	with	real	coefficients,	and	let	r	=	a	+	bi	be	a	complex	root	of	a(x).
Then	 	is	also	a	root	of	a(x),	so

(x	−	r)(x	−	 )	=	x2	−	2ax	+	(a2	+	b2)

and	this	is	a	quadratic	polynomial	with	real	coefficients!	We	have	thus	shown	that	any	polynomial	with
real	coefficients	can	be	factored	into	polynomials	of	degree	1	or	1	in	 [x].	In	particular,	the	irreducible
polynomials	of	the	linear	polynomials	and	[x]	are	the	linear	polynomials	and	the	irreducible	quadratics
(that	is,	the	ax2	+	bx	+	c	where	b2	−	4ac	<	0).

EXERCISES

A.	Finding	Roots	of	Polynomials	over	Finite	Fields
In	order	 to	 find	 a	 root	of	a(x)	 in	 a	 finite	 field	F,	 the	 simplest	method	 (if	F	 is	 small)	 is	 to	 test	 every
element	of	F	by	substitution	into	the	equation	a(x)	=	0.
1	Find	all	the	roots	of	the	following	polynomials	in	 	5[x],	and	factor	the	polynomials:

x3	+	x2	+	x	+	1; 	3x4	+	x2	+	1;	 x5	+	1;	 x4	+	1;	 x4	+	4

#	2	Use	Fermat’s	theorem	to	find	all	the	roots	of	the	following	polynomials	in	 	7[x]:

x100	−	1;	 3x98	+	x19	+	3;	 2x74	−	x55	+	2x	+	6



3	Using	Fermat	’s	theorem,	find	polynomials	of	degree	≤6	which	determine	the	same	functions	as	the
following	polynomials	in	 	7[x]:

3x75	−	5x54	+	2x13	−	x2;	 4x108	+	6x101	−	2x81;	 3x103	−	x73	+	3x55	−	x25

4	Explain	why	every	polynomial	in	 	p[x]	has	the	same	roots	as	a	polynomial	of	degree	<	p.

B.	Finding	Roots	of	Polynomials	over	
#	 1	 Find	 all	 the	 rational	 roots	 of	 the	 following	 polynomials,	 and	 factor	 them	 into	 irreducible
polynomials	in	 	[x]:

2	Factor	each	of	the	preceding	polynomials	in	 [x]	and	in	 [x].
3	Find	associates	with	integer	coefficients	for	each	of	the	following	polynomials:

4	Find	all	the	rational	roots	of	the	polynomials	in	part	3	and	factor	them	over	 .
5	Does	2x4	+	3x2	−	2	have	any	rational	roots?	Can	it	be	factored	into	two	polynomials	of	lower	degree
in	 	[x]?	Explain.

C.	Short	Questions	Relating	to	Roots
Let	F	be	a	field.
Prove	that	parts	1−3	are	true	in	F[x].
1	The	remainder	of	p(x),	when	divided	by	x	−	c,	is	p(c).
2	(x	−	c)|(p(x)	−	p(c)).
3	Every	polynomial	has	the	same	roots	as	any	of	its	associates.
4	If	a(x)	and	b(x)	have	the	same	roots	in	F,	are	they	necessarily	associates?	Explain.
5	Prove:	If	a(x)	is	a	monic	polynomial	of	degree	n,	and	a(x)	has	n	roots	c1,	…,	cn	∈	F,	then	a(x)	=	(x	−
c1)	⋯	(x	−	cn).
6	Suppose	a(x)	and	b(x)	have	degree	<n.	If	a(c)	=	b(c)	for	n	values	of	c,	prove	that	a(x)	=	b(x).
7	There	are	infinitely	many	irreducible	polynomials	in	 5[x].

#	8	How	many	roots	does	x2	−	x	have	in	 	10?	In	 11?	Explain	the	difference.

D.	Irreducible	Polynomials	in	 [x]	by	Eisenstein’s	Criterion	(and	Variations	on	the
Theme)

1	Show	that	each	of	the	following	polynomials	is	irreducible	over	 :



2	 It	often	happens	 that	a	polynomial	a(y),	 as	 it	 stands,	does	not	 satisfy	 the	conditions	of	Eisenstein’s
criterion,	but	with	a	simple	change	of	variable	y	=	x	+	c,	it	does.	It	is	important	to	note	that	if	a(x)	can	be
factored	 into	 p(x)q(x),	 then	 certainly	 a(x	 +	 c)	 can	 be	 factored	 into	 p(x	 +	 c)q(x	 +	 c).	 Thus,	 the
irreducibility	of	a(x	+	c)	implies	the	irreducibility	of	a(x).

(a)	Use	the	change	of	variable	y	=	x	+	l	 to	show	that	x4	+	4x	+	 l	 is	 irreducible	 in	 [x].	 [In	other
words,	test	(x	+	l)4	+	4(x	+	1)	+	1	by	Eisenstein’s	criterion.]

(b)	Find	an	appropriate	change	of	variable	to	prove	that	the	following	are	irreducible	in	 [x]:

x4	+	2x2	−	l;	 x3	−3x	+	1;	 x4	+	1;	 x4	−	10x2	+	1

#	3	Prove	that	for	any	prime	p,	xp	−	l	+	xp	−	2	+	⋯	+	x	+	1	is	irreducible	in	 [x].[HINT:	By	elementary
algebra,

(x	−	1)(xp	−1	+	xp	−	2	+	⋯	+	x	+	1)	=	xp	−	1

hence

Use	the	change	of	variable	y	=	x	+	1,	and	expand	by	the	binomial	theorem.

4	By	Exercise	G3	of	Chapter	25,	the	function

h(a0	+	a1x	+	⋯	+	anxn)	=	an	+	an	−	1x	+	⋯	+a0xn

restricted	to	polynomials	with	nonzero	constant	term	matches	irreducible	polynomials	with	irreducible
polynomials.	Use	this	fact	to	state	a	dual	version	of	Eisenstein’s	irreducibility	criterion.
5	Use	part	4	to	show	that	each	of	the	following	polynomials	is	irreducible	in	 [x]:

E.	Irreducibility	of	Polynomials	of	Degree	≤4
1	Let	F	be	any	field.	Explain	why,	if	a(x)	is	a	quadratic	or	cubic	polynomial	in	F[x],	a(x)	is	irreducible
in	F[x]	iff	a(x)	has	no	roots	in	F.
2	Prove	that	the	following	polynomials	are	irreducible	in	 [x]:

3	Suppose	a	monic	polynomial	a(x)	of	degree	4	in	F[x]	has	no	roots	in	F.	Then	a(x)is	reducible	iff	it	is	a



product	of	two	quadratics	x2	+	ax	+	b	and	x2	+	cx	+	d,	that	is,	iff

a(x)	=	x4	+	(a	+	c)x3	+	(ac	+	b	+	d)x2	+	(bc	+	ad)x	+bd

If	 the	 coefficients	 of	a(x)	 cannot	 be	 so	 expressed	 (in	 terms	 of	any	a,	b,c,	d	∈	F)	 then	a(x)	must	 be
irreducible.

Example	a(x)	=	x4	+	2x3	+	x	+	1;	then	bd	=	1,	so	b	=	d	=	±1;	thus,	bc	+	ad	=	±(a	+	c),	but	a	+	c	=	2
and	bc	+	ad	=	1;	which	is	impossible.
Prove	that	the	following	polynomials	are	irreducible	in	 [x]	(use	Theorem	5,	searching	only	for	integer
values	of	a,	b,	c,	d):

x4	−	5x2	+	1;	 3x4	−	x2	−	2;	 x4	+	x3	+	3x	+	1

4	Prove	that	the	following	polynomials	are	irreducible	in	 5[x]:

2x3	+	x2	+	4x	+	l;	 x4	+	2;	 x4	+	4x2	+	2;	 x4	+1

F.	Mapping	onto	 	n	to	Determine	Irreducibility	over	
If	h	: 	→	 n	is	the	natural	homomorphism,	let	 	:	 	[x]	→	 	n[x]	be	defined	by

(a0	+	a1x	+	⋯	+	anxn)	=	h(a0)	+	h(al)x	+	⋯	+	h(an)xn

In	Chapter	24,	Exercise	G,	it	is	proved	that	 	is	a	homomorphism.	Assume	this	fact	and	prove:
#	1	If	 (a(x))	is	irreducible	in	 n[x]	and	a(x)	is	monic,	then	a(x)	is	irreducible	in	 [x].

2	x4	+	10x3	+	7	is	irreducible	in	 [x]	by	using	the	natural	homomorphism	from	 	to	 5.
3	The	following	are	 irreducible	 in	 [x]	 (find	 the	 right	value	of	n	 and	use	 the	natural	homomorphism
from	 	to	 	n):

x4	−	10	x2	+	1;	 x4	+7	x3	+	14x2	+	3;	 x5	+1

G.	Roots	and	Factors	in	A[x]	When	A	Is	an	Integral	Domain
It	is	a	useful	fact	that	Theorems	1,	2,	and	3	are	still	 true	 in	A[x]	when	A	 is	not	a	 field,	but	merely	an
integral	domain.	The	proof	of	Theorem	1	must	be	altered	a	bit	to	avoid	using	the	division	algorithm.	We
proceed	as	follows:
If	a(x)	=	a0	+	a1x	+	⋯	+	anxn	and	c	is	a	root	of	a(x),	consider

a(x)	−	a(c)	=	a1(x	−	c)	+	a2(x2	−	c2)	+	⋯	+	an(xn	−	cn)

1	Prove	that	for	k	=	1,	…,	n:

ak(xk	−	ck)	=	ak(x	−	c)(xk	−	l	+	xk	−	2c	+	⋯	+	ck	−	l)

2	Conclude	from	part	1	that	a(x)	−	a(c)	=	(x	−	c)q(x)	for	some	q(x).



3	Complete	the	proof	of	Theorem	1,	explaining	why	this	particular	proof	is	valid	when	A	is	an	integral
domain,	not	necessarily	a	field.
4	Check	that	Theorems	2	and	3	are	true	in	A[x]	when	A	is	an	integral	domain.

H.	Polynomial	Interpolation
One	of	the	most	important	applications	of	polynomials	is	to	problems	where	we	are	given	several	values
of	x	(say,	x	=	a0,a1,	…,	an)	and	corresponding	values	of	y	(say,	y	=	b0,	b,…,	bn),	and	we	need	to	find	a
function	y	=	 f(x)	such	 that	 f(a0)	=	b0,	 f(a1)	=	b1,…,	 f(an)	=	bn.	The	 simplest	 and	most	 useful	 kind	 of
function	for	this	purpose	is	a	polynomial	function	of	the	lowest	possible	degree.

We	now	consider	a	commonly	used	technique	for	constructing	a	polynomial	p(x)	of	degree	n	which
assumes	given	values	b0,	b1,…,	bn	are	given	points	a0,	a1,…,an,.	That	is,

p(a0)=	b0,p(a1)=b,	…,p(an)	=bn

First,	for	each	i	=	0,1,	…,	n,	let

qi(x)=	(x	−	a0)	⋯(x	−	ai	−	1)(x	−	ai	+1)	⋯	(x	−	an)

1	Show	that	qi(aj)	=	0	for	j	≠	i,	and	qi(ai)	≠	0.
Let	qi(ai)	=	ci,	and	define	p(x)	as	follows:

(This	is	called	the	Lagrange	interpolation	formula.)
2	Explain	why	p(a0)	=	b0,	p(ax)	=,…,p(an)=bn.
#	3	Prove	that	there	is	one	and	only	one	polynomial	p(x)	of	degree	≤	n	such	that	p(a0)	=	b0,	…,	p(an)	=
bn.

4	Use	the	Lagrange	interpolation	formula	to	prove	that	if	F	is	a	finite	field,	every	function	from	F	to	F
is	 equal	 to	 a	 polynomial	 function.	 (In	 fact,	 the	 degree	 of	 this	 polynomial	 is	 less	 than	 the	 number	 of
elements	in	F.)
5	If	t(x)	is	any	polynomial	in	F[x],	and	a0,	…,	an	∈	F,	the	unique	polynomial	p(x)	of	degree	≤	n	 such
that	p(a0)	=	t(a0),	…,	p(an)	=	t(an)	is	called	the	Lagrange	interpolator	for	t(x)	and	a0,	…,	an.	Prove	that
the	remainder,	when	t(x)	is	divided	by	(x	−	a0)(x	−	a1)	⋯	(x	−	an),	is	the	Lagrange	interpolator.

I.	Polynomial	Functions	over	a	Finite	Field
1	Find	three	polynomials	in	 5[x]	which	determine	the	same	function	as

x2	−	x	+	1

2	Prove	that	xp	−	x	has	p	roots	in	 p[x],	for	any	prime	p.	Draw	the	conclusion	that	in	 p[x],	xp	−	x	can	be
factored	as



xp	−	x	=	x(x	−	1)(x	−	2)	⋯	[x	−	(p	−	1)]

3	Prove	that	if	a(x)	and	b(x)	determine	the	same	function	in	 	p[x],	then

(xp	−	x)|(a(x)−b(x))

In	the	next	four	parts,	let	F	be	any	finite	field.
#	4	Let	a(x)	 and	b(x)	be	 in	F[x].	 Prove	 that	 if	a(x)	 and	b(x)	 determine	 the	 same	 function,	 and	 if	 the
number	of	elements	in	F	exceeds	the	degree	of	a(x)	as	well	as	the	degree	of	b(x),	then	a(x)	=	b(x).

5	Prove:	The	set	of	all	a(x)	which	determine	the	zero	function	is	an	ideal	of	F[x].	What	its	generator?
6	Let	 	(F)	be	the	ring	of	all	functions	from	F	to	F,	defined	in	the	same	way	as	 	( ).	Let	h:	F[x]→	
(F)	 send	 every	 polynomial	 a(x)	 to	 the	 polynomial	 function	 which	 it	 determines.	 Show	 that	 h	 is	 a
homomorphism	from	F[x]	onto	 (F).	(NOTE:	To	show	that	h	is	onto,	use	Exercise	H4.)
7	Let	F	=	{C	1,	…,	cn}	and	p(x)	=	(x	−	c1)	⋯	(x	−	cn).	Prove	that

F[x]/〈p(x)〉	≅	 (F)



CHAPTER

TWENTY-SEVEN

EXTENSIONS	OF	FIELDS

In	 the	 first	 26	chapters	of	 this	book	we	 introduced	 the	cast	 and	 set	 the	 scene	on	a	vast	 and	complex
stage.	Now	it	is	time	for	the	action	to	begin.	We	will	be	surprised	to	discover	that	none	of	our	effort	has
been	wasted;	for	every	notion	which	was	defined	with	such	meticulous	care,	every	subtlety,	every	fine
distinction	will	have	its	use	and	play	its	prescribed	role	in	the	story	which	is	about	to	unfold.

We	will	see	modern	algebra	reaching	out	and	merging	with	other	disciplines	of	mathematics;	we
will	 see	 its	machinery	 put	 to	 use	 for	 solving	 a	wide	 range	 of	 problems	which,	 on	 the	 surface,	 have
nothing	whatever	to	do	with	modern	algebra.	Some	of	these	problems—ancient	problems	of	geometry,
riddles	 about	 numbers,	 questions	 concerning	 the	 solutions	 of	 equations—reach	 back	 to	 the	 very
beginnings	of	mathematics.	Great	masters	of	the	art	of	mathematics	puzzled	over	them	in	every	age	and
left	 them	unsolved,	 for	 the	machinery	 to	 solve	 them	was	 not	 there.	Now,	with	 a	 light	 touch	modern
algebra	uncovers	the	answers.

Modern	algebra	was	not	built	 in	an	 ivory	 tower	but	was	created	part	and	parcel	with	 the	 rest	of
mathematics—tied	 to	 it,	 drawing	 from	 it,	 and	 offering	 it	 solutions.	 Clearly	 it	 did	 not	 develop	 as
methodically	as	it	has	been	presented	here.	It	would	be	pointless,	in	a	first	course	in	abstract	algebra,	to
replicate	 all	 the	 currents	 and	 crosscurrents,	 all	 the	 hits	 and	 misses	 and	 false	 starts.	 Instead,	 we	 are
provided	with	a	finished	product	 in	which	the	agonies	and	efforts	 that	went	 into	creating	it	cannot	be
discerned.	 There	 is	 a	 disadvantage	 to	 this:	 without	 knowing	 the	 origin	 of	 a	 given	 concept,	 without
knowing	the	specific	problems	which	gave	it	birth,	the	student	often	wonders	what	it	means	and	why	it
was	ever	invented.

We	hope,	beginning	now,	 to	shed	 light	on	 that	kind	of	question,	 to	 justify	what	we	have	already
done,	and	to	demonstrate	that	the	concepts	introduced	in	earlier	chapters	are	correctly	designed	for	their
intended	purposes.

Most	of	classical	mathematics	 is	 set	 in	a	 framework	consisting	of	 fields,	 especially	 ,	 ,	and	 .
The	theory	of	equations	deals	with	polynomials	over	 	and	 ,	calculus	is	concerned	with	functions	over	
,	and	plane	geometry	is	set	in	 	×	 .	It	is	not	surprising,	therefore,	that	modern	efforts	to	generalize	and
unify	 these	 subjects	 should	 also	 center	 around	 the	 study	of	 fields.	 It	 turns	 out	 that	 a	 great	 variety	 of
problems,	ranging	from	geometry	to	practical	computation,	can	be	translated	into	the	language	of	fields
and	formulated	entirely	in	terms	of	the	theory	of	fields.	The	study	of	fields	will	therefore	be	our	central



concern	in	the	remaining	chapters,	though	we	will	see	other	themes	merging	and	flowing	into	it	like	the
tributaries	of	a	great	river.

If	F	 is	a	 field,	 then	a	subfield	of	F	 is	any	nonempty	subset	of	F	which	 is	closed	with	 respect	 to
addition	and	subtraction,	multiplication	and	division.	(It	would	be	equivalent	to	say:	closed	with	respect
to	 addition	 and	 negatives,	multiplication	 and	multiplicative	 inverses.)	As	we	 already	 know,	 if	K	 is	 a
subfield	of	F,	then	K	is	a	field	in	its	own	right.

If	K	is	a	subfield	of	F,	we	say	also	that	F	is	an	extension	field	of	K.	When	it	is	clear	in	context	that
both	Fand	K	are	fields,	we	say	simply	that	F	is	an	extension	of	K.

Given	a	field	F,	we	may	look	inward	from	F	at	all	the	subfields	of	F.	On	the	other	hand,	we	may
look	 outward	 from	 F	 at	 all	 the	 extensions	 of	 F.	 Just	 as	 there	 are	 relationships	 between	 F	 and	 its
subfields,	 there	 are	 also	 interesting	 relationships	 between	 F	 and	 its	 extensions.	 One	 of	 these
relationships,	as	we	shall	see	later,	is	highly	reminiscent	of	Lagrange’s	theorem—an	inside-out	version
of	it.

Why	should	we	be	interested	in	looking	at	the	extensions	of	fields?	There	are	several	reasons,	but
one	is	very	special.	If	F	 is	an	arbitrary	field,	 there	are,	 in	general,	polynomials	over	F	which	have	no
roots	 in	F.	For	 example,	x2	 +	 1	 has	 no	 roots	 in	 .	 This	 situation	 is	 unfortunate	 but,	 it	 turns	 out,	 not
hopeless.	For,	as	we	shall	soon	see,	every	polynomial	over	any	field	F	has	roots.	If	these	roots	are	not
already	in	F,	they	are	in	a	suitable	extension	of	F.	For	example,	x2	+	1	=	0	has	solutions	in	 .

In	the	matter	of	factoring	polynomials	and	extracting	their	roots,	 	is	utopia!	In	 	every	polynomial
a(x)	of	degree	n	has	exactly	n	roots	c1,	…,	cn	and	can	therefore	be	factored	as	a(x)	=	k(x	−	c1)(x	−	c2)	⋯
(x	 −	 cn).	 This	 ideal	 situation	 is	 not	 enjoyed	 by	 all	 fields—far	 from	 it!	 In	 an	 arbitrary	 field	 F,	 a
polynomial	 of	 degree	n	may	 have	 any	 number	 of	 roots,	 from	 no	 roots	 to	n	 roots,	 and	 there	may	 be
irreducible	 polynomials	 of	 any	 degree	whatever.	 This	 is	 a	messy	 situation,	 which	 does	 not	 hold	 the
promise	of	an	elegant	theory	of	solutions	to	polynomial	equations.	However,	it	turns	out	that	F	always
has	a	suitable	extension	E	such	that	any	polynomial	a{x)	of	degree	n	over	F	has	exactly	n	solutions	in
E.	Therefore,	a(x)	can	be	factored	in	E[x]	as

a(x)	=	k(x	−	c1)(x	−	c2)	⋯	(x	−	cn)

Thus,	paradise	is	regained	by	the	expedient	of	enlarging	the	field	F.	This	is	one	of	the	strongest	reasons
for	 our	 interest	 in	 field	 extensions.	 They	 will	 give	 us	 a	 trim	 and	 elegant	 theory	 of	 solutions	 to
polynomial	equations.

Now,	let	us	get	to	work!	Let	E	be	a	field,	F	a	subfield	of	E,	and	c	any



element	of	E.	We	define	the	substitution	function	σc	as	follows:
For	every	polynomial	a(x)	in	F[x],

σc	(a(x))	=	a(c)

Thus,	 σc	 is	 the	 function	 “substitute	 c	 for	 x.”	 It	 is	 a	 function	 from	 F[x]	 into	 E.	 In	 fact,	 σc	 is	 a
homomorphism.	This	is	true	because

and

The	kernel	of	the	homomorphism	σc	is	the	set	of	all	the	polynomials	a(x)	such	that	a(c)	=	σc(a(x))	=
0.	That	is,	the	kernel	of	σc	consists	of	all	the	polynomials	a(x)	in	F[x]	such	that	c	is	a	root	of	a(x).

Let	Jc	denote	the	kernel	of	ac	;	since	the	kernel	of	any	homomorphism	is	an	ideal,	Jc	is	an	ideal	of
F[x).

An	element	c	in	E	is	called	algebraic	over	F	 if	it	is	the	root	of	some	nonzero	polynomial	a(x)	in
F[x].	 Otherwise,	 c	 is	 called	 transcendental	 over	 F.	 Obviously	 c	 is	 algebraic	 over	 F	 iff	 Jc	 contains
nonzero	polynomials,	and	transcendental	over	F	iff	Jc	=	{0}.

We	will	confine	our	attention	now	to	the	case	where	c	is	algebraic.	The	transcendental	case	will	be
examined	in	Exercise	G	at	the	end	of	this	chapter.

Thus,	let	c	be	algebraic	over	F,	and	let	Jc	be	the	kernel	of	σc	(where	σc	is	the	function	“substitute	c
for	 x”).	 Remember	 that	 in	 F[x]	 every	 ideal	 is	 a	 principal	 ideal;	 hence	 Jc	 =	 〈p(x)〉	 =	 the	 set	 of	 all
multiples	of	p(x),	for	some	polynomial	p(x).	Since	every	polynomial	in	Jc	is	a	multiple	of	p(x),	p(x)	is	a
polynomial	of	 lowest	 degree	 among	 all	 the	 nonzero	 polynomials	 in	 Jc.	 It	 is	 easy	 to	 see	 that	 p(x)	 is
irreducible;	otherwise	we	could	factor	it	into	polynomials	of	lower	degree,	say	p(x)	=	f(x)g(x).	But	then
0	=	p(c)	=	f(c)g(c),	so	f(c)	=	0	or	g(c)	=	0,	and	therefore	either	f(x)	or	g(x)	is	in	Jc.	This	is	impossible,
because	we	have	just	seen	thatp{x)	has	the	lowest	degree	among	all	the	polynomials	in	Jc,	whereas	f(x)
and	g(x)	both	have	lower	degree	than	p(x).

Since	every	constant	multiple	of	p(x)	is	in	Jc,	we	may	take	p(x)	to	be	monic,	that	is,	to	have	leading
coefficient	1.	Then	p(x)	 is	 the	unique	monic	 polynomial	 of	 lowest	 degree	 in	Jc.	 (Also,	 it	 is	 the	 only
monic	irreducible	polynomial	in	Jc.)	This	polynomial	p(x)	is	called	the	minimum	polynomial	of	c	over
F,	and	will	be	of	considerable	importance	in	our	discussions	in	a	later	chapter.

Let	us	look	at	an	example:	 	is	an	extension	field	of	 ,	and	 	contains	the	irrational	number	 .
The	function	 	is	the	function	“substitute	 	for	x”;	for	example	 	(x4	−	3x2	+	1)	=	 	−	3 	+
1	=	−1.	By	our	discussion	above,	 :	 [x]	→	 .	is	a	homomorphism	and	its	kernel	consists	of	all	the
polynomials	in	 [x]	which	have	 	as	one	of	their	roots.	The	monic	polynomial	of	least	degree	in	 [x]
having	 	as	a	root	is	p(x)	=	x2	−	2;	hence	x2	−	2	is	the	minimum	polynomial	of	 	over	 .



Now,	 let	 us	 turn	 our	 attention	 to	 the	 range	 of	 σc.	 Since	 σc	 is	 a	 homomorphism,	 its	 range	 is
obviously	closed	with	respect	 to	addition,	multiplication,	and	negatives,	but	 it	 is	not	obviously	closed
with	respect	to	multiplicative	inverses.	Not	obviously,	but	in	fact	it	is	closed	for	multiplicative	inverses,
which	is	far	from	self-evident,	and	quite	a	remarkable	fact.	In	order	to	prove	this,	letf(c)	be	any	nonzero
element	in	the	range	of	σc.	Since	f(c)	≠	0,	f(x)	is	not	in	the	kernel	of	σc.	Thus,	f(x)	is	not	a	multiple	of
p(x),	and	since	p(x)	is	irreducible,	it	follows	that	f(x)	and	p(x)	are	relatively	prime.	Therefore	there	are
polynomials	s(x)	and	t(x)	such	that	s(x)f(x)	+	t(x)p(x)	=	1.	But	then

and	therefore	s(c)	is	the	multiplicative	inverse	of	f(c).
We	have	just	shown	that	the	range	of	σc	is	a	subfield	of	E.	Now,	the	range	of	σc	is	the	set	of	all	the

elements	a(c),	for	all	a(x)	in	F[x]:

Range	σc	=	{a(c):	a(x)	∈	F[x]}

We	have	just	seen	that	range	σc	is	a	field.	In	fact,	it	is	the	smallest	field	containing	F	and	c:	indeed,	any
other	field	containing	F	and	c	would	inevitably	contain	every	element	of	the	form

a0	+	a1c	+	⋯	+	ancn (a0,	…,	an	∈	F)

in	other	words,	would	contain	every	element	in	the	range	of	σc.
By	the	smallest	field	containing	F	and	c	we	mean	the	field	which	contains	F	and	c	and	is	contained

in	any	other	field	containing	F	and	c.	It	is	called	the	field	generated	by	F	and	c,	and	is	denoted	by	the
important	symbol

F(c)

Now,	here	is	what	we	have,	in	a	nutshell:	σc	is	a	homomorphism	with	domain	F[x],	range	F(c),	and
kernel	Jc	=	〈p(x)〉.	Thus,	by	the	fundamental	homomorphism	theorem,

Finally,	here	is	an	interesting	sidelight:	 if	c	and	d	are	both	roots	of	p(x),	where	c	and	d	are	 in	E,
then,	 by	what	we	 have	 just	 proved,	F(c)	 and	F(d)	 are	 both	 isomorphic	 to	F[x]/〈p(x)〉,	 and	 therefore
isomorphic	to	each	other:

If	c	and	d	are	roots	of	the	same	irreducible	polynomial	p(x)	in	F[x],	then	F(c)	≅	F(d)
In	particular,	this	shows	that,	given	F	and	c,	F(c)	is	unique	up	to	isomorphism.

It	is	time	now	to	recall	our	main	objective:	if	a(x)	is	a	polynomial	in	F[x]	which	has	no	roots	in	F,
we	wish	to	enlarge	F	to	a	field	E	which	contains	a	root	of	a(x).	How	can	we	manage	this?

An	 observation	 is	 in	 order:	 finding	 extensions	 of	F	 is	 not	 as	 easy	 as	 finding	 subfields	 of	F.	 A
subfield	of	F	is	a	subset	of	an	existing	set:	it	is	therel	But	an	extension	of	F	is	not	yet	there.	We	must
somehow	build	it	around	F.



Let	p(x)	be	an	irreducible	polynomial	in	F[x].	We	have	just	seen	that	if	F	can	be	enlarged	to	a	field
E	 containing	 a	 root	 c	 of	p(x),	 then	F(c)	 is	 already	what	we	 are	 looking	 for:	 it	 is	 an	 extension	 of	F
containing	a	root	of	p(x).	Furthermore,	F(c)	 is	 isomorphic	to	F[x]/〈p(x)〉.	Thus,	the	 field	extension	we
are	searching	for	is	precisely	F[x]/〈p(x)〉.	Our	result	is	summarized	in	the	next	theorem.

Basic	 theorem	of	 field	 extensions	Let	F	 be	 a	 field	 and	 a(x)	a	 nonconstant	 polynomial	 in	F[x].
There	exists	an	extension	field	E	of	F	and	an	element	c	in	E	such	that	c	is	a	root	of	a(x).

PROOF:	 To	 begin	with,	 a(x)	 can	 be	 factored	 into	 irreducible	 polynomials	 in	F[x].	 If	 p(x)	 is	 any
nonconstant	irreducible	factor	of	a(x),	it	is	clearly	sufficient	to	find	an	extension	of	F	containing	a	root
of	p(x),	since	such	a	root	will	also	be	a	root	of	a(x).

In	 Exercise	D4	 of	 Chapter	 25,	 the	 reader	 was	 asked	 to	 supply	 the	 simple	 proof	 that,	 if	 p(x)	 is
irreducible	in	F[x],	then	〈p(x)〉	is	a	maximal	ideal	of	F[x].	Furthermore,	by	the	argument	at	the	end	of
Chapter	19,	if	〈p(x)〉	is	a	maximal	ideal	of	F[x],	then	the	quotient	ring	F[x]/〈p(x)〉	is	a	field.

It	remains	only	to	prove	that	F[x]/	〈p(x)〉	 is	 the	desired	field	extension	of	F.	When	we	write	J	=
〈p(x)〉,	 let	 us	 remember	 that	 every	 element	 of	F[x]/J	 is	 a	 coset	 of	J.	We	will	 prove	 that	F[x]/J	 is	 an
extension	of	F	by	identifying	each	element	a	in	F	with	its	coset	J	+	a.

To	be	precise,	define	h:	F	→	F[x]/J	by	h(a)	=	J	+	a.	Note	 that	h	 is	 the	 function	which	matches
every	a	in	F	with	its	coset	J	+	a	in	F[x]/J.	We	will	now	show	that	h	is	an	isomorphism.

By	 the	 familiar	 rules	 of	 coset	 addition	 and	 multiplication,	 h	 is	 a	 homomorphism.	 Now,	 every
homomorphism	between	fields	is	 injective.	(This	 is	 true	because	the	kernel	of	a	homomorphism	is	an
ideal,	and	a	field	has	no	nontrivial	ideals.)	Thus,	h	is	an	isomorphism	between	its	domain	and	its	range.

What	 is	 the	range	of	h?	It	consists	of	all	 the	cosets	J	+	a	where	a	∈	F,	 that	 is,	 all	 the	cosets	of
constant	 polynomials.	 (If	 a	 is	 in	F,	 then	 a	 is	 a	 constant	 polynomial.)	 Thus,	F	 is	 isomorphic	 to	 the
subfield	 of	 F[x]/J	 containing	 all	 the	 cosets	 of	 constant	 polynomials.	 This	 subfield	 is	 therefore	 an
isomorphic	copy	of	F,	which	may	be	identified	with	F,	so	F[x]/J	is	an	extension	of	F.

Finally,	if	p(x)	=	a0	+	a1x	+	⋯	+	anxn,	let	us	show	that	the	coset	J	+	x	is	a	root	of	p(x)	in	F[x]/J.	Of
course,	in	F[x]/J,	the	coefficients	are	not	actually	a0,	a1,	…,	an,	but	their	cosets	J	+	a0,	J	+	a1,	…,	J	+	an.
Writing

J	+	a0	=	ā0,	…,	J	+	an	=	ān and J	+	x	=	

we	must	prove	that

ā0	+	ā1 	+	⋯	+	ān n	=	J (J	is	the	zero	coset)

Well,

This	completes	 the	proof	of	 the	basic	 theorem	of	field	extensions.	Observe	 that	we	may	use	 this
theorem	several	times	in	succession	to	get	the	following:



Let	a(x)	be	a	polynomial	of	degree	n	in	F[x],	There	is	an	extension	field	∈	of	F	which	contains	all	n
roots	of	a(x).

EXERCISES

A.	Recognizing	Algebraic	Elements
Example	To	show	that	 	is	algebraic	over	 ,	one	must	find	a	polynomial	p(x)	∈	 [x]	such

that	 	is	a	root	of	p(x).
Let	a	=	 ;	then	a2	=	1	+	 ,	a2	−	1	=	 ,	and	finally,	(a2	−	l)2	=	2.	Thus,	a	satisfies	p(x)	=

x4	−	2x2	−1	=	0.
1	Prove	that	each	of	the	following	numbers	is	algebraic	over	 :

(a) i
(b)
(c) 2	+	3i
(d)

#	(e)
(f) 	+	
(g)

2	Prove	that	each	of	the	following	numbers	is	algebraic	over	the	given	field:
(a) 	over	 (π)
(b) 	over	 (π2)
(c) π2	−	1	over	 (π3)
NOTE:	Recognizing	a	transcendental	element	is	much	more	difficult,	since	it	requires	proving	that

the	element	cannot	be	a	root	of	any	polynomial	over	the	given	field.	In	recent	times	it	has	been	proved,
using	sophisticated	mathematical	machinery,	that	π	and	e	are	transcendental	over	 .

B.	Finding	the	Minimum	Polynomial
1	Find	the	minimum	polynomial	of	each	of	the	following	numbers	over	 .	(Where	appropriate,	use	the
methods	of	Chapter	26,	Exercises	D,	E,	and	F	to	ensure	that	your	polynomial	is	irreducible.)

(a) 1	+	2i
(b) 1	+	
(c) 1	+	

#(d)	
(e)	 	+	
(f)	

2	Show	that	the	minimum	polynomial	of	 	+	i	is
(a) x2	−	2 x	+	3	over	
(b) x4	−	2x2	+	9	over	
(c) x2	−	2ix	−	3	over	 (i)

3	Find	the	minimum	polynomial	of	the	following	numbers	over	the	indicated	fields:
	+	i over	 ;	over	 :	over	 (i);	over	 ( )



over	 ;	over	 (i);	over	 ( );	over	

4	 For	 each	 of	 the	 following	 polynomials	 p(x),	 find	 a	 number	 a	 such	 that	 p(x)	 is	 the	 minimum
polynomial	of	a	over	 :

(a) x2	+	2x	−	1
(b) x4	+	2x2	−	1
(c) x4	−	10x2	+	1

5	Find	a	monic	irreducible	polynomial	p(x)	such	that	 [x]/〈p(x)〉	is	isomorphic	to
(a) ( )
(b) (1	+	 )
(c)

C.	The	Structure	of	Fields	F[x]/〈p	(x)〉
Let	p(x)	be	an	irreducible	polynomial	of	degree	n	over	F.	Let	c	denote	a	root	of	p(x)	in	some	extension
of	F	(as	in	the	basic	theorem	on	field	extensions).
1	Prove:	Every	element	in	F(c)	can	be	written	as	r(c),	for	some	r(x)	of	degree	<	n	in	F[x].	[HINT:	Given
any	element	t(c)	∈.	F(c),	use	the	division	algorithm	to	divide	t(x)	by	p(x).]
2	If	s(c)	=	t(c)	in	F(c),	where	s(x)	and	t(x)	have	degree	<	n,	prove	that	s(x)	=	t(x).
3	Conclude	from	parts	1	and	2	that	every	element	in	F(c)	can	be	written	uniquely	as	r(c),	with	deg	r(x)	<
n.
#	4	Using	 part	 3,	 explain	why	 there	 are	 exactly	 four	 elements	 in	 2[x]/〈x2	 +	x	 +	 1〉.	 List	 these	 four
elements,	and	give	their	addition	and	multiplication	tables.	{HINT:	Identify	 2[x]/〈x2	+	x	+	1〉	with	

2(c),	where	c	 is	a	 root	of	x2	+	x	+	1.	Write	 the	elements	of	 2(c)	as	 in	part	3.	When	computing	 the
multiplication	table,	use	the	fact	that	c2	+	c	+	1	=	0.}

5	Describe	 2[x]/〈x3	+	x	+	1〉,	as	in	part	4.

6	Describe	 3[x]/〈x3	+	x2	+	2〉,	as	in	part	4.

D.	Short	Questions	Relating	of	Field	Extensions
Let	F	be	any	field.
Prove	parts	1–5:
#	1	If	c	is	algebraic	over	F,	so	are	c	+	1	and	kc	(where	k	∈	F).
2	If	c	≠	0	and	c	is	algebraic	over	F,	so	is	1/c.
3	If	cd	is	algebraic	over	F,	then	c	is	algebraic	over	F(d).	If	c	+	d	is	algebraic	over	F,	then	c	is	algebraic
over	F(d)	(Assume	c	≠	0	and	d	≠	0.)
4	If	the	minimum	polynomial	of	a	over	F	is	of	degree	1,	then	a	∈	F,	and	conversely.
5	Suppose	F	⊆	K	and	a	∈	K.	If	p(x)	is	a	monic	irreducible	polynomial	in	F[x],	and	p(a)	=	0,	then	p(x)	is
the	minimum	polynomial	of	a	over	F.
6	Name	a	field	(≠	 	or	 )	which	contains	a	root	of	x5	+	2x3	+	4x2	+	6.
#	7	Prove:	 (1	+	i)	≅	 (1	−	i).	However,	 ( )	≅	 ( ).
8	If	p(x)	is	irreducible	and	has	degree	2,	prove	that	F[x]/〈p(x)〉	contains	both	roots	of	p(x).



E.	Simple	Extensions
Recall	the	definition	of	F(a).	It	is	a	field	such	that	(i)	F	⊆	F(a);	(ii)	a	∈	F(a);	(iii)	any	field	containing	F
and	a	contains	F(a).
Use	this	definition	to	prove	parts	1–5,	where	F	⊆	K,	c	∈	F,	and	a	∈	K:

1	F(a)	=	F(a	+	c)	and	F(a)	=	F(ca).	(Assume	c	≠	0.)
2	F(a2)	⊆	F(a)	and	F(a	+	b)	⊆	F(a,	b).	[F(a,	b)	is	the	field	containing	F,	a,	and	b,	and	contained	in	any
other	field	containing	F,	a	and	b.]	Why	are	the	reverse	inclusions	not	necessarily	true?
3	a	+	c	is	a	root	of	p(x)	iff	a	is	a	root	of	p(x	+	c);	ca	is	a	root	of	p(x)	iff	a	is	a	root	of	p(cx).
4	Let	p(x)	be	irreducible,	and	let	a	be	a	root	of	p{x	+	c).	Then

F[x]/〈p(x	+	c)〉	≅	F(a) and F[x]/〈p(x)〉	≅	F(a	+	c)

Conclude	that	F[x]/〈p(x	+	c)〉	≅	F[x]/〈p(x)〉.
5	Let	p(x)	be	irreducible,	and	let	a	be	a	root	of	p(cx).	Then	F[x]/〈p(cx)〉	≅	F(a)	and	F[x]/〈p(x)〉	≅	F(ca).
Conclude	that	F[x]/〈p(cx)〉	≅	F[x]/〈p(x)〉.
6	Use	parts	4	and	5	to	prove	the	following:

(a) 11[x]/〈x2	+	1〉	≅	 11[x]/〈x2	+	x	+	4〉.
(b) If	a	is	a	root	of	x2	−	2	and	b	is	a	root	of	x2	−	4x	+	2,	then	 (a)	≅	 (b).
(c) If	a	is	a	root	of	x2	−	2	and	b	is	a	root	of	x2	−	 ,	then	 (a)	≅	 (b).

†	F.	Quadratic	Extensions
If	the	minimum	polynomial	of	a	over	F	has	degree	2,	we	call	F(a)	a	quadratic	extension	of	F.
1	Prove	that,	if	F	is	a	field	whose	characteristic	is	≠2,	any	quadratic	extension	of	F	is	of	the	form	F( ),
for	some	a	∈	F	(HINT:	Complete	the	square,	and	use	Exercise	E4.)

Let	F	be	a	finite	field,	and	F*	the	multiplicative	group	of	nonzero	elements	of	F.	Obviously	H	=
{x2:	 x	∈	F*}	 is	 a	 subgroup	 of	F*;	 since	 every	 square	 x2	 in	F*	 is	 the	 square	 of	 only	 two	 different
elements,	namely	±x,	exactly	half	the	elements	of	F*	are	in	H.	Thus,	H	has	exactly	two	cosets:	H	itself,
containing	 all	 the	 squares,	 and	 aH	 (where	 a	 ∉	 H),	 containing	 all	 the	 nonsquares.	 If	 a	 and	 b	 are
nonsquares,	then	by	Chapter	15,	Theorem	5(i),

Thus:	if	a	and	b	are	nonsquares,	a/b	is	a	square.	Use	these	remarks	in	the	following:
2	Let	F	be	a	finite	field.	If	a,	b	∈	F,	let	p(x)	=	x2	−	a	and	q{x)	=	x2	−	b	be	irreducible	in	F[x],	and	let	
and	 	denote	roots	of	p(x)	and	q(x)	in	an	extension	of	F.	Explain	why	a/b	is	a	square,	say	a/b	=	c2	for
some	c	∈	F.	Prove	that	 	is	a	root	of	p(cx).
3	Use	part	2	to	prove	that	F[x]/〈p(cx)〉	≅	F( );	then	use	Exercise	E5	to	conclude	that	F( )	≅	F( )	.
4	Use	part	3	to	prove:	Any	two	quadratic	extensions	of	a	finite	field	are	isomorphic.
5	If	a	and	b	are	nonsquares	in	 ,	a/b	is	a	square	(why?).	Use	the	same	argument	as	in	part	4	to	prove	that
any	two	simple	extensions	of	 	are	isomorphic	(hence	isomorphic	to	 ).



G.	Questions	Relating	to	Transcendental	Elements
Let	F	be	a	field,	and	let	c	be	transcendental	over	F.	Prove	the	following:

1	{a(c):a(x)	∈	F[x]}	is	an	integral	domain	isomorphic	to	F[x].
#	2	F(c)	is	the	field	of	quotients	of	{a(c):	a(x)	∈	F[x]},	and	is	isomorphic	to	F(x),	the	field	of	quotients
of	F[x].

3	If	c	is	transcendental	over	F,	so	are	c	+	1,	kc	(where	k	∈	F	and	k	≠	0),	c2.
4	If	c	is	transcendental	over	F,	every	element	in	F(c)	but	not	in	F	is	transcendental	over	F.

†	H.	Common	Factors	of	Two	Polynomials:	Over	F	and	over	Extensions	of	F
Let	F	be	a	field,	and	let	a(x),	b(x)	∈	F[x].	Prove	the	following:

1	If	a{x)	and	b{x)	have	a	common	root	c	in	some	extension	of	F,	they	have	a	common	factor	of	positive
degree	in	F[x].	[Use	the	fact	that	a(x),	b(x)	∈	ker	σc.]
2	If	a(x)	and	b(x)	are	relatively	prime	in	F[x],	they	are	relatively	prime	in	K[x],	for	any	extension	K	of
F.	Conversely,	if	they	are	relatively	prime	in	K[x],	then	they	are	relatively	prime	in	F[x].

†	I.	Derivatives	and	Their	Properties
Let	a(x)	=	a0	+	a1x	+	⋯	+	anxn	∈	F[x].	The	derivative	of	a(x)	is	the	following	polynomial	a′(x)	∈	F[x]:

a′(x)	=	a1	+	2a2x	+	…	+	nanxn	−	1

(This	is	the	same	as	the	derivative	of	a	polynomial	in	calculus.)	We	now	prove	the	analogs	of	the	formal
rules	of	differentiation,	familiar	from	calculus.

Let	a(x),	b(x)	∈	F[x],	and	let	k	∈	F.

Prove	parts	1–4:
1	[a	(x)	+	b	(x)]′	=	a′(x)	+	b′(x)
2	[a(x)b(x)]′	=	a′(x)b(x)	+	a(x)b′(x)
3	[ka(x)]′	=	ka′(x)
4	If	F	has	characteristic	0	and	a′(x)	=	0,	then	a(x)	is	a	constant	polynomial.	Why	is	this	conclusion	not
necessarily	true	if	F	has	characteristic	p	≠	0?
5	Find	the	derivative	of	the	following	polynomials	in	 5[x]:

x6	+	2x3	+	x	+	1 x5	+	3x2	+	1 x15	+	3x10	+	4x5	+	1

6	If	F	has	characteristic	p	≠	0,	and	a′(x)	=	0,	prove	that	the	only	nonzero	terms	of	a(x)	are	of	the	form
ampxmp	for	some	m.	[That	is,	a(x)	is	a	polynomial	in	powers	of	xp.]

†	J.	Multiple	Roots
Suppose	a(x)	≅	F[x],	and	K	is	an	extension	of	F.	An	element	c	∈	K	is	called	a	multiple	root	of	a(x)	if	(x
−	c)m|a(x)	for	some	m	>	1.	It	is	often	important	to	know	if	all	the	roots	of	a	polynomial	are	different,	or



not.	 We	 now	 consider	 a	 method	 for	 determining	 whether	 an	 arbitrary	 polynomial	 a(x)	 ≅	 F[x]	 has
multiple	roots	in	any	extension	of	F.

Let	K	be	any	field	containing	all	the	roots	of	a(x)	.Suppose	a(x)	has	a	multiple	root	c.
1	Prove	that	a(x)	=	(x	−	c)2q(x)	∈	K[x].
2	Compute	a′(x),	using	part	1.
3	Show	that	x	−	c	is	a	common	factor	of	a(x)	and	a′(x).Use	Exercise	hi	to	conclude	that	a(x)	and	a′(x)
have	a	common	factor	of	degree	>1	in	F[x].

Thus,	if	a(x)	has	a	multiple	root,	 then	a(x)	and	a′(x)	have	a	common	factor	in	F[x].	To	prove	the
converse,	suppose	a(x)	has	no	multiple	roots.	Then	a(x)	can	be	factored	as	a(x)	=	(x	−	c1)	⋯	 (x	−	cn)
where	c1,	…,	cn	are	all	different.
4	Explain	why	a′(x)	is	a	sum	of	terms	of	the	form

(x	−	c1)⋯(x	−	ci	−	1)(x	−	ci	+	1)⋯(x	−	cn)

5	Using	part	4,	explain	why	none	of	the	roots	c1,	…,	cn	of	a(x)	are	roots	of	a′(x).
6	Conclude	that	a(x)	and	a′(x)	have	no	common	factor	of	degree	>1	in	F[x].

This	important	result	is	stated	as	follows:	A	polynomial	a(x)	in	F[x]	has	a	multiple	root	iff	a(x)	and
a′	(x)	have	a	common	factor	of	degree	>1	in	F[x].
7	Show	 that	 each	of	 the	 following	polynomials	has	no	multiple	 roots	 in	 any	 extension	of	 its	 field	of
coefficients:

x3	−	7x2	+	8	∈	 [x] x2	+	x	+	1	∈	 5[x] x100	−	1	∈	 7[x]

The	preceding	example	is	most	interesting:	it	shows	that	there	are	100	different	hundredth	roots	of
1	over	 7.	(The	roots	±1	are	in	 7,	while	the	remaining	98	roots	are	in	extensions	of	 7.)	Corresponding
results	hold	for	most	other	fields.



CHAPTER

TWENTY-EIGHT

VECTOR	SPACES

Many	physical	quantities,	such	as	length,	area,	weight,	and	temperature,	are	completely	described	by	a
single	 real	 number.	 On	 the	 other	 hand,	 many	 other	 quantities	 arising	 in	 scientific	 measurement	 and
everyday	reckoning	are	best	described	by	a	combination	of	several	numbers.	For	example,	a	point	 in
space	is	specified	by	giving	its	three	coordinates	with	respect	to	an	xyz	coordinate	system.

Here	 is	 an	 example	 of	 a	 different	 kind:	 A	 store	 handles	 100	 items;	 its	 monthly	 inventory	 is	 a
sequence	of	100	numbers	(a1,	a2,	…,	a100)	specifying	the	quantities	of	each	of	the	100	items	currently	in
stock.	Such	a	sequence	of	numbers	is	usually	called	a	vector.	When	the	store	is	restocked,	a	vector	is
added	to	the	current	inventory	vector.	At	the	end	of	a	good	month	of	sales,	a	vector	is	subtracted.

As	 this	 example	 shows,	 it	 is	 natural	 to	 add	 vectors	 by	 adding	 corresponding	 components,	 and
subtract	 vectors	 by	 subtracting	 corresponding	 components.	 If	 the	 store	 manager	 in	 the	 preceding
example	decided	to	double	inventory,	each	component	of	the	inventory	vector	would	be	multiplied	by	2.
This	shows	that	a	natural	way	of	multiplying	a	vector	by	a	real	number	k	is	to	multiply	each	component
by	k.	This	kind	of	multiplication	is	commonly	called	scalar	multiplication.

Historically,	as	the	use	of	vectors	became	widespread	and	they	came	to	be	an	indispensable	tool	of
science,	vector	algebra	grew	to	be	one	of	the	major	branches	of	mathematics.	Today	it	forms	the	basis
for	much	of	advanced	calculus,	the	theory	and	practice	of	differential	equations,	statistics,	and	vast	areas
of	 applied	 mathematics.	 Scientific	 computation	 is	 enormously	 simplified	 by	 vector	 methods;	 for
example,	3,	or	300,	or	3000	individual	readings	of	scientific	 instruments	can	be	expressed	as	a	single
vector.

In	any	branch	of	mathematics	it	is	elegant	and	desirable	(but	not	always	possible)	to	find	a	simple
list	 of	 axioms	 from	 which	 all	 the	 required	 theorems	 may	 be	 proved.	 In	 the	 specific	 case	 of	 vector
algebra,	we	wish	 to	 select	 as	 axioms	only	 those	particular	properties	of	vectors	which	 are	 absolutely
necessary	for	proving	further	properties	of	vectors.	And	we	must	select	a	sufficiently	complete	 list	of
axioms	 so	 that,	 by	 using	 them	and	 them	alone,	we	 can	 prove	 all	 the	 properties	 of	 vectors	 needed	 in
mathematics.

A	delightfully	simple	list	of	axioms	is	available	for	vector	algebra.	The	remarkable	fact	about	this
axiom	system	is	that,	although	we	conceive	of	vectors	as	finite	sequences	(a1,	a2,	…,	an)	of	numbers,



nothing	in	the	axioms	actually	requires	them	to	be	such	sequences!	Instead,	vectors	are	treated	simply	as
elements	in	a	set,	satisfying	certain	equations.	Here	is	our	basic	definition:

A	vector	space	over	a	 field	F	 is	 a	 set	V,	with	 two	operations	+	and	 ·	 called	vector	addition	 and
scalar	multiplication,	such	that
1.	V	with	vector	addition	is	an	abelian	group.
2.	For	any	k	∊	F	and	a	∊	V,	the	scalar	product	ka	is	an	element	of	V,	subject	to	the	following	conditions:
for	all	k,	l	∊	F	and	a,	b	∊	V,
(a)	k(a)	+	b)	=	ka	+	kb,
(b)	(k	+	l)a	=	ka	+	la,
(c)	k(la)	=	(kl)a,
(d)	1a	=	a.

The	elements	of	V	are	called	vectors	and	the	elements	of	the	field	F	are	called	scalars,
In	 the	 following	 exposition	 the	 field	 F	 will	 not	 be	 specifically	 referred	 to	 unless	 the	 context

requires	it.	For	notational	clarity,	vectors	will	be	written	in	bold	type	and	scalars	in	italics.
The	traditional	example	of	a	vector	space	is	the	set	 n	of	all	n-tuples	of	real	numbers,	(a1,	a2,	…,

an),	with	the	operations

(a1,	a2,	…,	an)	+	(b1,	b2,	…,	bn)	=	(a1	+	b1,	a2	+	b2,	…,	an	+	bn)

and	 k(a1,	a2,	…,	an)	=	(ka1,	ka2,	…,	kan)

For	example,	 2	is	the	set	of	all	two-dimensional	vectors	(a,	b),	while	 3	is	the	set	of	all	vectors	(a,	b,	c)
in	euclidean	space.	(See	the	figure	on	the	next	page.)

However,	these	are	not	the	only	vector	spaces!	Our	definition	of	vector	space	is	so	very	simple	that
many	other	things,	quite	different	in	appearance	from	the	traditional	vector	spaces,	satisfy	the	conditions
of	our	definition	and	are	therefore,	legitimately,	vector	spaces.

For	example,	 ,	you	may	recall,	is	the	set	of	all	functions	from	 	to	 .	We	define	the	sum	f	+	g	of
two	functions	by	the	rule

[f	+	g](x)=	f(x)	+	g(x)

and	we	define	the	product	af,	of	a	real	number	a	and	a	function	f,	by

[af](x)	=	af(x)

It	is	very	easy	to	verify	that	 ,	with	these	operations,	satisfies	all	the	conditions	needed	in	order	to	be	a
vector	space	over	the	field	 .

As	another	example,	let	 denote	the	set	of	all	polynomials	with	real	coefficients.	Polynomials	are



added	as	usual,	and	scalar	multiplication	is	defined	by

k(a0	+	a1x	+	⋯	+	anxn)	=	(ka0)	+	(ka1)x	+	⋯	+	(kan)xn

Again,	it	is	not	hard	to	see	that	 	is	a	vector	space	over	 .
Let	V	be	a	vector	space.	Since	V	with	addition	alone	is	an	abelian	group,	there	is	a	zero	element	in

V	called	the	zero	vector,	written	as	0.	Every	vector	a	in	V	has	a	negative,	written	as	−a.	Finally,	since	V
with	 vector	 addition	 is	 an	 abelian	 group,	 it	 satisfies	 the	 following	 conditions	 which	 are	 true	 in	 all
abelian	groups:

a	+	b	=	a	+	c	 implies	 b=	c	 (1)

a	+	b	=	0	 implies	 a	=	−b	 and 	b	=	−a	 (2)

−(a	+	b)	=	(−a)	+	(−b) and 	−(−a)	=	a	 (3)

There	 are	 simple,	 obvious	 rules	 for	 multiplication	 by	 zero	 and	 by	 negative	 scalars.	 They	 are
contained	in	the	next	theorem.

Theorem	1	If	V	is	a	vector	space,	then:

(i) 0a	=	0,	for	every	a	∈	V
(ii) k0	=	0,	for	every	scalar	k.
(iii) If	ka	=	0,	then	k	=	0	or	a	=	0.
(iv) (−1)a	=	−a	for	every	a	∈	V.

To	prove	Rule	(i),	we	observe	that

0a	=	(0	+	0)a	=	0a	+	0a

hence	0	+	0a	=	0a	+	0a.	It	follows	by	Condition	(1)	that	0	=	0a.
Rule	(ii)	is	proved	similarly.	As	for	Rule	(iii),	if	k	=	0,	we	are	done.	If	k	≠0,	we	may	multiply	ka	=

0	by	1/k	to	get	a	=	0.	Finally,	for	Rule	(iv),	we	have

a	+	(−1)a	=	1a	+	(−1)a	=	(1	+	(−1))a	=	0a	=	0

so	by	Condition	(2),	(−1)a	=	−a.
Let	V	be	a	vector	space,	and	U	⊆	V.	We	say	that	U	is	closed	with	respect	to	scalar	multiplication	if

ka	∈	U	 for	every	scalar	k	and	every	a	∈	U.	We	call	U	a	subspace	of	V	 if	U	 is	closed	with	respect	 to
addition	and	scalar	multiplication.	It	is	easy	to	see	that	if	V	is	a	vector	space	over	the	field	F,	and	U	is	a
subspace	of	V,	then	U	is	a	vector	space	over	the	same	field	F.

If	a1,a2,	…,	an	are	in	V	and	k1,	k2,	…,	kn	are	scalars,	then	the	vector

k1a1	+	k2	a2	+	⋯	+	knan

is	called	a	linear	combination	of	a1,a2,	…,	an.	The	set	of	all	the	linear	combinations	of	a1,a2,	…,	an	is	a
subspace	of	V.	(This	fact	is	exceedingly	easy	to	verify.)

If	U	 is	 the	 subspace	 consisting	 of	 all	 the	 linear	 combinations	 of	 a1,a2,	 …,	 an,	 we	 call	U	 the



subspace	spanned	by	a1,a2,	…,	an.	An	equivalent	way	of	saying	the	same	thing	is	as	follows:	a	space	(or
subspace)	U	is	spanned	by	a1,a2,	…,	an	iff	every	vector	in	U	is	a	linear	combination	of	a1,	a2,	…,	an.

If	U	is	spanned	by	a1,a2,	…,	an,	we	also	say	that	a1,a2,	…,	an	span	U.
Let	S	=	{a1,a2,	…,	an}	be	a	set	of	distinct	vectors	in	a	vector	space	V.	Then	S	is	said	to	be	linearly

dependent	if	there	are	scalars	k1,	…,	kn,	not	all	zero,	such	that

k1a1	+	k2a2	+	⋯	+	knan	=	0	 (4)

Obviously	this	is	the	same	as	saying	that	at	least	one	of	the	vectors	in	S	is	a	linear	combination	of	the
remaining	ones.	[Solve	for	any	vector	ai,	in	Equation	(4)	having	a	nonzero	coefficient.]

If	S	=	{a1,a2,	…,	an}	is	not	linearly	dependent,	then	it	is	linearly	independent.	That	is,	S	is	linearly
independent	iff

k1a1	+	k2a2	+	⋯	+	knan	=	0	 implies	 k1	=	k2	=	⋯	=	kn	=	0

This	is	the	same	as	saying	that	no	vector	in	S	is	equal	to	a	linear	combination	of	the	other	vectors	in	S.
It	 is	 obvious	 from	 these	definitions	 that	 any	 set	of	vectors	 containing	 the	 zero	vector	 is	 linearly

dependent.	Furthermore,	the	set	{a},	containing	a	single	nonzero	vector	a,	is	linearly	independent.
The	next	two	lemmas,	although	very	easy	and	at	first	glance	rather	trite,	are	used	to	prove	the	most

fundamental	theorems	of	this	subject.
Lemma	1	 If	{a1,	a2,	…,	an}	 is	 linearly	 dependent,	 then	 some	ai,	 is	 a	 linear	 combination	 of	 the

preceding	ones,	a1,	a2,	…,	ai−1.
PROOF:	Indeed,	if	{a1,	a2,	…,	an}	is	linearly	dependent,	then	k1a1	+	⋯	+	knan	=	0	 for	coefficients

k1,k2,	…,kn	which	are	not	all	zero.	If	ki	is	the	last	nonzero	coefficient	among	them,	then	k1ai	+	⋯	+	kiai	=
0,	and	this	equation	can	be	used	to	solve	for	ai	in	terms	of	a1,⋯,ai−1.■

Let	{a1	a2,	…, ,	…,	an}	denote	the	set	{a1,a2,	…,	an}	after	removal	of	ai.
Lemma	2	If	{a1,a2,	…,	an}	spans	V,	and	ai	is	a	linear	combination	of	preceding	vectors,	then	{a1,

…, ,	…,an}	still	spans	V.
PROOF:	Our	assumption	is	that	ai,	=	k1a1	+	⋯	+	ki−1ai−1	for	some	scalars	k1,	…,	ki−1.	Since	every

vector	b∈	V	is	a	linear	combination

b	=	l1a1	+	⋯	+	liai	+	⋯	+	lnan

it	can	also	be	written	as	a	linear	combination

b	=	l1a1	+	⋯	+	li(k1	a1	+	⋯	+ki−1	ai−1)	+	⋯	ln	an

in	which	ai	does	not	figure.	■

A	set	of	vectors	{a1,	…,	an}	in	V	is	called	a	basis	of	V	if	it	is	linearly	independent	and	spans	V.

For	example,	the	vectors	ε1	=	(1,	0,	0),	ε2	=	(0,1,0),	and	ε3	=	(0,0,1)	form	a	basis	of	( 3.	They	are



linearly	 independent	 because,	 obviously,	 no	 vector	 in	 {ε1,	ε2,	ε3}	 is	 equal	 to	 a	 linear	 combination	 of
preceding	ones.	[Any	linear	combination	of	ε1	and	ε2	is	of	the	form	aε1	+	bε2	=	(a,	b,	0),	whereas	ε3	is
not	of	this	form;	similarly,	any	linear	combination	of	ε1	alone	is	of	the	form	aε1	=	(a,	0,	0),	and	ε2	is	not
of	that	form.]	The	vectors	ε1,ε2,	ε3	span	 3	because	any	vector	(a,	b,	c)	in	 	can	be	written	as	(a,	b,	c)	=
aε1	+	bε2	+	cε3.

Actually,	{ε1,	ε2,	ε3}	is	not	the	only	basis	of	 3.	Another	basis	of	 3	consists	of	the	vectors	(1,	2,	3),
(1,0,	2),	and	(3,	2,1);	in	fact,	there	are	infinitely	many	different	bases	of	 3.	Nevertheless,	all	bases	of	 3

have	 one	 thing	 in	 common:	 they	 contain	 exactly	 three	 vectors!	 This	 is	 a	 consequence	 of	 our	 next
theorem:

Theorem	2	Any	two	bases	of	a	vector	space	V	have	the	same	number	of	elements.

PROOF:	Suppose,	on	the	contrary,	that	V	has	a	basis	A	=	{a1,	…,	an}	and	a	basis	B	=	{b1,	…,	bm}
where	m	≠	n.	To	be	specific,	suppose	n	<	m.	From	this	assumption	we	will	derive	a	contradiction.

Put	the	vector	bl	in	the	set	A,	so	A	now	contains	{b1,	a1	a2,	…,	an}.	This	set	is	linearly	dependent
because	b1	is	a	linear	combination	of	a1,	…,	an.	But	then,	by	Lemma	1,	some	ai	is	a	linear	combination
of	preceding	vectors.	By	Lemma	2	we	may	expel	this	ai,	and	the	remaining	set	{b1,	al,	…,	 ,	…,	an}
still	spans	V.

Repeat	this	argument	a	second	time	by	putting	b2	in	A,	so	A	now	contains	{b2,	b1,	a1,	a2,	…, ,	…,
an}.	This	set	is	linearly	dependent	because	{b1,a1,	…,	 ,	…,	an}	spans	V	and	therefore	b2	 is	a	linear
combination	of	b1,	a1,	…,	 ,	…,	an.	By	Lemma	1,	some	aj	is	a	linear	combination	of	preceding	vectors
in	A,	so	by	Lemma	2	we	may	remove	aj,	and	{b2,	b1,	a1,	a2,	…, ,	…,	 ,	an}	still	spans	V.

This	 argument	 is	 repeated	n	 times.	Each	 time,	 a	 vector	 from	B	 is	 put	 into	A	 and	 a	 vector	ak	 is
removed.	At	the	end	of	the	nth	repetition,	A	contains	only	b1,	…,bn,	and	{b1,	…,	bn}	still	spans	V.	But
this	is	impossible	because	it	implies	that	bn	+1	is	a	linear	combination	of	b1,	…,	bn,	whereas	in	fact,	B	=
{bl,	…,	bn,	…,	bm}	is	linearly	independent!

This	contradiction	proves	that	any	two	bases	of	V	must	contain	the	same	number	of	elements	!	■

If	V	 has	 a	 basis	 {a1,	…,	an},	we	 call	V	 a	 finite-dimensional	 vector	 space	 and	 say	 that	V	 is	 of
dimension	n.	In	that	case,	by	Theorem	2	every	basis	of	V	has	exactly	n	elements.

In	 the	 sequel	we	consider	only	 finite-dimensional	vector	 spaces.	The	next	 two	 lemmas	are	quite
interesting.	The	first	one	states	that	if	{a1	…,	am}	spans	V,	there	is	a	way	of	removing	vectors	from	this
set,	one	by	one,	until	we	are	left	with	an	independent	set	which	still	spans	V.

Lemma	3	If	the	set	{a1,	…,	am}	spans	V,	it	contains	a	basis	of	V.

PROOF:	 If	{a1,	…,	am}	 is	an	 independent	 set,	 it	 is	a	basis,	and	we	are	done.	 If	not,	 some	a1	 is	a
linear	combination	of	preceding	ones,	so	{a1,	…,	 ,	…,	am}	still	spans	V.	Repeating	this	process,	we
discard	vectors	one	by	one	from	{a1	…,am}	and,	each	time,	the	remaining	vectors	still	span	V.	We	keep
doing	 this	until	 the	 remaining	 set	 is	 independent.	 (In	 the	worst	 case,	 this	will	happen	when	only	one
vector	is	left.)	■

The	next	lemma	asserts	that	if	{a1,	…,	as}	is	an	independent	set	of	vectors	in	V,	there	is	a	way	of



adding	vectors	to	this	set	so	as	to	get	a	basis	of	V.
Lemma	4	If	the	set	{a1,	…,as}	is	linearly	independent,	it	can	be	extended	to	a	basis	of	V.
PROOF:	 If	 {b1,	…,	bn}	 is	 any	basis	of	V,	 then	 {a1,	…,	as,	b1,	…,	bn}	 spans	V.	By	 the	 proof	 of

Lemma	3,	we	may	discard	vectors	from	this	set	until	we	get	a	basis	of	V.	Note	that	we	never	discard	any
ai,	because,	by	hypothesis,	ai,	is	not	a	linear	combination	of	preceding	vectors.	■

The	next	theorem	is	an	immediate	consequence	of	Lemmas	3	and	4.

Theorem	3	Let	V	have	dimension	n.	If	{a1,	…,	an}	is	an	independent	set,	 it	 is	already	a	basis	of
V.If{bl,	…,bn}	spans	V,	it	is	already	a	basis	of	V.

If	{a1,	…,	an}	is	a	basis	of	V,	then	every	vector	c	in	V	has	a	unique	expression	c	=	k1a1	+	⋯	+	knan
as	a	linear	combination	of	a1,	…,	an.	Indeed,	if

c	=	k1	a1	+	⋯	+	knan	=	l1a1	+	⋯	+	lnan

then

(k1	−	l1)a1	+	⋯	+(kn	−	ln)an	=	0

hence

k1	−	l1	=	⋯	=	kn	−	ln	=	0

so	k1	=	l1,	…	kn	=	ln. 	If	 c	=	k1al	+	⋯	+	knan, the	 coefficients	k1,	…,	kn	are	called	the	coordinates	of
c	with	respect	to	the	basis	{al,	…,	an}.	It	is	then	convenient	to	represent	c	as	the	n-tupie

c	=	(k1,	…,	kn)

If	U	and	V	are	vector	spaces	over	a	field	F,	a	function	h	:	U	→	V	is	a	homomorphism	if	it	satisfies
the	following	two	conditions:

h(a	+	b)	=	h(a)	+	h(b)

and

h(ka)	=	kh(a)

A	homomorphism	of	vector	spaces	is	also	called	a	linear	transformation.
If	h	:	U→V	is	a	linear	transformation,	its	kernel	[that	is,	the	set	of	all	a	∈	U	such	that	h(a)	=	0]	is	a

subspace	of	U,	 called	 the	null	space	 of	h.	Homomorphisms	 of	 vector	 spaces	 behave	 very	much	 like
homomorphisms	of	groups	and	rings.	Their	properties	are	presented	in	the	exercises.

EXERCISES

A.	Examples	of	Vector	Spaces



1	Prove	that	 n,	as	defined	on	page	283,	satisfies	all	the	conditions	for	being	a	vector	space	over	 .
2	Prove	that	 ( ),	as	defined	on	page	284,	is	a	vector	space	over	 .
3	Prove	that	 ,as	defined	on	page	284,	is	a	vector	space	over	 .
4	Prove	 that	 2( ),	 the	 set	of	all	2	×	2	matrices	of	 real	numbers,	with	matrix	addition	and	 the	 scalar
multiplication

is	a	vector	space	over	 .

B.	Examples	of	Subspaces
#	1 	Prove	that	{(a,	b,	c)	:	2a	−	3b	+	c	=	0}	is	a	subspace	of	 3.
2 	Prove	that	the	set	of	all	(x,	y,	z)	∈	 3	which	satisfy	the	pair	of	equations	ax	+	by	+	c	=	0,	dx	+	ey	+	f
=	0	is	a	subspace	of	 3.
3 	Prove	that	{f	:	f(l)	=	0}	is	a	subspace	of	 ( ).
4 	Prove	that	{	f	:	f	is	a	constant	on	the	interval	[0,1]}	is	a	subspace	of	 ( ).
5 	Prove	that	the	set	of	all	even	functions	[that	is,	functions	f	such	that	f(x)	=	f(−x)]	is	a	subspace	of	 (
).	Is	the	same	true	for	the	set	of	all	the	odd	functions	[that	is,	functions	f	such	that	f(−x)	=	−f(x)]?
6 	Prove	that	the	set	of	all	polynomials	of	degree	≤n	is	a	subspace	of	

C.	Examples	of	Linear	Independence	and	Bases

1 	Prove	that	{(0,0,0,1),	(0,0,1,1),	(0,1,1,1),	(1,1,1,1)}	is	a	basis	of	 4.
2 	If	a	=	(1,	2,	3,4)	and	b	=	(4,	3,2,1),	explain	why	{a,	b}	may	be	extended	to	a	basis	of	 4.	Then	find	a
basis	of	 4	which	includes	a	and	b.
3 	Let	A	be	the	set	of	eight	vectors	(x,	y,	z)	where	x,	y,	z	=	1,	2.	Prove	that	A	spans	 3,	and	find	a	subset
of	A	which	is	a	basis	of	 3.
4 	If	 	is	the	subspace	of	 	consisting	of	all	polynomials	of	degree	≤	n,	prove	that	{1,	x,	x2,	…,	xn}
is	a	basis	of	 .	Then	find	another	basis	of	 .
5 	Find	a	basis	for	each	of	the	following	subspaces	of	 3:

#	(a)	S1	=	{(x,	y,	z)	:	3x	−	2y	+	z	=	0}		 (b)	S2	=	{(x,	y,	z)	:	x	+	y	−	z	=	0	and	2x	−	y	+	z	=	0}

6 	Find	a	basis	for	the	subspace	of	 3	spanned	by	the	set	of	vectors	(x,	y,	z)	such	that	x2	+	y2	+	z2	=	1.
7 	Let	U	be	the	subspace	of	 ( )	spanned	by	{cos2	x,	sin2	x,	cos	2x}.	Find	the	dimension	of	U,	and	then
find	a	basis	of	U.
8 	Find	a	basis	for	the	subspace	of	 	spanned	by

{x3	+	x2	+	x	+	1,	x2	+	1,	x3	−	x2	+	x	−	1,	x2	−	1}

D.	Properties	of	Subspaces	and	Bases
Let	V	be	a	finite-dimensional	vector	space.	Let	dim	V	designate	the	dimension	of	V.	Prove	each	of	the
following:



1 	If	U	is	a	subspace	of	V,	then	dim	U	≤	dim	V.
2 	If	U	is	a	subspace	of	V,	and	dim	U	=	dim	V,	then	U	=	V.
3 	Any	set	of	vectors	containing	0	is	linearly	dependent.
4 	The	set	{a},	containing	only	one	nonzero	vector	a,	is	linearly	independent.
5 	Any	subset	of	an	independent	set	is	independent.	Any	set	of	vectors	containing	a	dependent	set	is
dependent.
#	6 	If	{a,	b,	c}	is	linearly	independent,	so	is	{a	+	b,	b	+	c,	a	+	c}.
7 	If	{a1,	…,	an}	is	a	basis	of	V,	so	is	{k1a1,	…,	k	nan	}	for	any	nonzero	scalars
8 	The	space	spanned	by	{a1,	…,an}	is	the	same	as	the	space	spanned	by	{b1,	…,	bm}	iff	each	ai	is	a
linear	combination	of	b1,	…,	bm,	and	each	bj	is	a	linear	combination	of	a1	…,	an.

E.	Properties	of	Linear	Transformations
Let	U	 and	 V	 be	 finite-dimensional	 vector	 spaces	 over	 a	 field	 F,	 and	 let	 h	 :	 U	 →	 V	 be	 a	 linear
transformation.	Prove	parts	1–3:

1 	The	kernel	of	h	is	a	subspace	of	U.	(It	is	called	the	null	space	of	h.)
2 The	range	of	h	is	a	subspace	of	V.	(It	is	called	the	range	space	of	h.)
3 	h	is	injective	iff	the	null	space	of	h	is	equal	to	{0}.

Let	Nbe	the	null	space	of	h,	and	 the	range	space	of	h.	Let	{a1,	…,	ar}	be	a	basis	of	N.	Extend	it	to	a
basis	{al,	…,	ar,	…,	an}	of	U.
Prove	parts	4–6:
4 	Every	vector	b∈	 	is	a	linear	combination	of	h(ar+1),	…,	h(an).
#	5 	{h(ar+1),	…,	h(an)}	is	linearly	independent.
6 	The	dimension	of	 	is	n	−	r.
7 	Conclude	as	follows:	for	any	linear	transformation	h,	dim	(domain	h)	=	dim	(null	space	of	h)	+	dim
(range	space	of	h).
8 	Let	U	and	V	have	the	same	dimension	n.	Use	part	7	to	prove	that	h	is	injective	iff	h	is	surjective.

F.	Isomorphism	of	Vector	Spaces
Let	U	and	V	be	vector	spaces	over	 the	field	F,	with	dim	U	=	n	and	dim	V	=	m.	Let	h	 :	U	→	V	 be	 a
homomorphism.
Prove	the	following:
1 	Let	h	be	injective.	If	{a1..	.,	ar}	 is	a	 linearly	 independent	subset	of	U,	 then	{h(a1),	…,	h(ar)}	 is	a
linearly	independent	subset	of	V.
#	2 	h	is	injective	iff	dim	U	=	dim	h(U).
3 	Suppose	dim	U	=	dim	V;	h	is	an	isomorphism	(that	is,	a	bijective	homomorphism)	iff	h	is	injective
iff	h	is	surjective.
4 	Any	n-dimensional	vector	space	V	over	F	is	isomorphic	to	the	space	Fn	of	all	n-tupies	of	elements	of
F.



†G.	Sums	of	Vector	Spaces
Let	T	and	U	be	subspaces	of	V.	The	sum	of	T	and	U,	denoted	by	T	+	U,	is	the	set	of	all	vectors	a	+	b,
where	a	∈	T	and	b	∈	U.
1 	Prove	that	T	+	U	and	T	∩	U	are	subspaces	of	V.

V	is	said	to	be	the	direct	sum	of	T	and	U	if	V	=	T	+	U	and	T	∩	U	=	{0}.	In	that	case,	we	write	V	=	T
⊕	U.
#	2 	Prove:	V	=	T	⊕	U	iff	every	vector	c	∈	V	can	be	written,	in	a	unique	manner,	as	a	sum	c	=	a	+	b
where	a	∈	U	and	b	∈	U.

3 	Let	T	be	a	k-dimensional	subspace	of	an	n-dimensional	space	V.	Prove	that	an	(n	−	k)-dimensional
subspace	U	exists	such	that	V	=	T	⊕	U.
4 	If	T	and	U	are	arbitrary	subspaces	of	V,	prove	that

dim	(T	+	U)	=	dim	T	+	dim	U	−	dim	(T	∩	U)



CHAPTER

TWENTY-NINE

DEGREES	OF	FIELD	EXTENSIONS

In	 this	 chapter	we	will	 see	 how	 the	machinery	 of	 vector	 spaces	 can	 be	 applied	 to	 the	 study	 of	 field
extensions.

Let	F	and	K	be	fields.	If	K	is	an	extension	of	F,	we	may	regard	K	as	being	a	vector	space	over	F.
We	may	treat	the	elements	in	K	as	“vectors”

and	 the	 elements	 in	 F	 as	 “scalars.”	 That	 is,	 when	 we	 add	 elements	 in	K,	 we	 think	 of	 it	 as	 vector
addition;	when	we	add	and	multiply	elements	 in	F,	we	 think	of	 this	as	addition	and	multiplication	of
scalars;	 and	 finally,	when	we	multiply	 an	 element	 of	F	 by	 an	 element	 of	K,	we	 think	 of	 it	 as	 scalar
multiplication.

We	will	be	especially	interested	in	the	case	where	the	resulting	vector	space	is	of	finite	dimension.
If	K,	as	a	vector	space	over	F,	is	of	finite	dimension,	we	call	K	a	finite	extension	of	F.	If	the	dimension
of	 the	vector	 space	K	 is	n,	we	 say	 that	K	 is	 an	extension	of	degree	n	 over	F.	 This	 is	 symbolized	 by
writing

[K	:	F]	=	n

which	should	be	read,	“the	degree	of	K	over	F	is	equal	to	n.”
Let	 us	 recall	 that	F(c)	 denotes	 the	 smallest	 field	which	 contains	F	 and	c.	 This	means	 that	F(c)

contains	F	and	c,	and	that	any	other	field	K	containing	F	and	c	must	contain	F(c).	We	saw	in	Chapter	27
that	if	c	is	algebraic	over	F,	then	F(c)	consists	of	all	the	elements	of	the	form	a(c),	for	all	a(x)	in	F[x].
Since	F(c)	is	an	extension	of	F,	we	may	regard	it	as	a	vector	space	over	F.	Is	F(c)	a	finite	extension	of



F?
Well,	let	c	be	algebraic	over	F,	and	let	p(x)	be	the	minimum	polynomial	of	c	over	F.	[That	is,	p(x)

is	 the	monic	polynomial	of	lowest	degree	having	casa	root.]	Let	the	degree	of	the	polynomial	p(x)	be
equal	to	n.	It	turns	out,	then,	that	the	n	elements

1,	c,c2,	…,	cn	−	1

are	 linearly	 independent	 and	 span	F(c).	We	will	 prove	 this	 fact	 in	 a	moment,	 but	meanwhile	 let	 us
record	what	it	means.	It	means	that	the	set	of	n	“vectors”	{1,c,c2,	…,	cn	−	1}	is	a	basis	of	F(c);	hence
F(c)	is	a	vector	space	of	dimension	n	over	the	field	F.	This	may	be	summed	up	concisely	as	follows:

Theorem	1	The	degree	of	F(c)	over	F	is	equal	to	the	degree	of	the	minimum	polynomial	of	c	over
F.

PROOF:	 It	 remains	 only	 to	 show	 that	 the	 n	 elements	 1,	 c,	…,	 cn	−	 l	 span	F(c)	 and	 are	 linearly
independent.	Well,	if	a(c)	is	any	element	of	F(c),	use	the	division	algorithm	to	divide	a(x)	by	p(x):

a(x)	=	p(x)q(x)	+	r(x)	 where	deg	r(x)≤n	−	1

Therefore,

This	shows	that	every	element	of	F(c)	is	of	the	form	r(c)	where	r(x)	has	degree	n	−	l	or	less.	Thus,	every
element	of	F(c)	can	be	written	in	the	form

a0	+	a1c	+	⋯	+	an	−	1cn	−	1

which	is	a	linear	combination	of	1,c,c2,	…,	cn	−	1.
Finally,	to	prove	that	1,c,c2,	…,	cn	−	l	are	linearly	independent,	suppose	that	a0	+	a1c	+	⋯	+	an	−	lcn

−	1	=	0.	If	the	coefficients	a0,a1,	…,	an	−	1	were	not	all	zero,	c	would	be	the	root	of	a	nonzero	polynomial
of	degree	n	−	1	or	less,	which	is	impossible	because	the	minimum	polynomial	of	c	over	F	has	degree	n.
Thus,	a0	=	a1	=	⋯	=	an	−	1	=	0.■

For	example,	let	us	look	at	 ( ):	the	number	 	is	not	a	root	of	any	monic	polynomial	of	degree
1	over	 .	For	such	a	polynomial	would
have	to	be	 ,and	the	latter	is	not	in	 [x]	because	 	is	irrational.	However,	 	is	a	root	of	x2	−	2,
which	is	therefore	the	minimum	polynomial	of	 	over	 ,	and	which	has	degree	2.	Thus,

In	particular,	every	element	in	 ( )	is	therefore	a	linear	combination	of	1	and	 ,that	is,	a	number	of
the	form	 	where	a,b	∈	 .

As	another	example,	i	is	a	root	of	the	irreducible	polynomial	of	over	x2	+	1	in	 [x].Therefore	x2	+	1
is	the	minimum	polynomial	of	i	over	 	x2	+	1	has	degree	2,	so	[ (i)	:	 ]	=	2.	Thus,	 (i)	consists	of	all	the



linear	combinations	of	1	and	i	with	real	coefficients,	that	is,	all	the	a	+	bi	where	a,b	∈	 .Clearly	then,	
(i)	=	 ,	so	the	degree	of	 	over	 	is	equal	to	2.

In	the	sequel	we	will	often	encounter	the	following	situation:	E	is	a	finite	extension	of	K,	where	K
is	a	finite	extension	of	F.	If	we	know	the

degree	of	E	 over	K	 and	 the	degree	of	K	 over	F,	 can	we	determine	 the	degree	of	E	 over	F	 This	 is	 a
question	of	major	importance!	Fortunately,	it	has	an	easy	answer,	based	on	the	following	lemma:

Lemma	Let	a1a2,	…,	am	be	a	basis	of	the	vector	space	K	over	F,	and	let	b1,b2,	…,	bn	be	a	basis	of
the	vector	space	E	over	K.	Then	the	set	of	mn	products	{aibj}	is	a	basis	of	the	vector	space	E	over	the
field	F.

PROOF:	To	prove	that	the	set	{aibj}	spans	E,	note	that	each	element	c	in	E	can	be	written	as	a	linear
combination	c	=	k1b1	+	⋯	+	knbn	with	coefficients	ki	 in	K.	But	each	k,i	because	 it	 is	 in	K,	 is	 a	 linear
combination

ki	=	li1a1	+	⋯	+	lim	am

with	coefficients	lij	in	F.	Substituting,

and	this	is	a	linear	combination	of	the	products	aibj	with	coefficient	lij	in	F.
To	prove	that	{aibj}	is	linearly	independent,	suppose	∑	lijaibj	=	0.	This	can	be	written	as

(l11a1	+	⋯	+	l1m	am)	b1	+	⋯	+	(ln1a1	+	⋯	+	lnmam)bn	=	0

and	 since	 b1,	 …,	 bn	 are	 independent,	 lila1	 +	 ·	 ·	 ·	 +	 limam	 =	 0	 for	 each	 i.	 But	 a1,	 …,	 am	 are	 also
independent,	so	every	lij	=	0.	■

With	this	result	we	can	now	conclude	the	following:

Theorem	2	Suppose	F	⊆	K	⊆	E	where	E	is	a	finite	extension	of	K	and	K	 is	a	finite	extension	of
F.Then	∈	is	a	finite	extension	of	F,	and

[E	:	F]	=	[E	:	K][K	:	F]

This	theorem	is	a	powerful	tool	in	our	study	of	fields.	It	plays	a	role	in	field	theory	analogous	to
the	role	of	Lagrange’s	theorem	in	group	theory.	See	what	it	says	about	any	two	extensions,	K	and	E	of	a



fixed	“base	field”	F	:	If	K	is	a	subfield	of	E9	then	the	degree	of	K	(over	F)	divides	the	degree	of	∈	(over
F).

If	c	is	algebraic	over	F,	we	say	that	F(c)	is	obtained	by	adjoining	c	to	F.	If	c	and	d	are	algebraic
over	F,	we	may	find	adjoin	c	to	F,	thereby	obtaining	F(c),	and	then	adjoin	d	to	F(c).	The	resulting	field
is	denoted	F(c,	d)	and	is	the	smallest	field	containing	F,	c	and	d.	[Indeed,	any	field	containing	F,	c	and	d
must	contain	F(c),	hence	also	F(c,d).]	 It	does	not	matter	whether	we	first	adjoin	c	and	 then	d	or	vice
versa.

If	c1,	…,	cn	are	algebraic	over	F,	we	let	F(c1,	…,	cn)	be	the	smallest	field	containing	F	and	c1,	…,
cn.	We	call	 it	 the	 field	obtained	by	adjoining	c1,…,cn	 to	F.	We	may	 form	F(c1,	…,	cn)	 step	 by	 step,
adjoining	one	ci	at	a	time,	and	the	order	of	adjoining	the	ci	is	irrelevant.

An	extension	F(c)	formed	by	adjoining	a	single	element	to	F	is	called	a	simple	extension	of	F.	An
extension	F(c1,	…,	cn)formed	by	adjoining	a	 finite	number	of	elements	c1,	…,	cnis	 called	an	 iterated
extension.	It	is	called	“iterated”	because	it	can	be	formed	step	by	step,	one	simple	extension	at	a	time:

F	⊆	F(c1)	⊆	F(c1,c2)	⊆	F(cl,c2,c3)	⊆	…	⊆	F(c1,	…,	cn	 (1)

If	 c1,	 …,	 cn	 are	 algebraic	 over	 F,	 then	 by	 Theorem	 1,	 each	 extension	 in	 Condition	 (1)	 is	 a	 finite
extension.	By	Theorem	2,	F(c1	c2)	is	a	finite	extension	of	F;	applying	Theorem	2	again,	F(c1,c2,c3)	is	a
finite	extension	of	F;	and	so	on.	So	finally,	if	c1,	…,	cn	are	algebraic	over	F,	then	F(c1,	…,	cn)	is	a	finite
extension	of	F.

Actually,	the	converse	is	true	too:	every	finite	extension	is	an	iterated	extension.	This	is	obvious:
for	if	K	is	a	finite	extension	of	F,	say	an	extension	of	degree	n,	then	K	has	a	basis	{a1,	…,an}	over	F.
This	means	that	every	element	in	K	is	a	linear	combination	of	a1,	…,	an	with	coefficients	in	F;	but	any
field	containing	F	and	a1,	…,	an	obviously	contains	all	the	linear	combinations	of	a1,	…,	an;	hence	K	is
the	smallest	field	containing	F	and	a1,	…,	an.	That	is,	K	=	F(a1,	…,	an).

In	fact,	if	K	is	a	finite	extension	of	F	and	K	=	F(a1,	…,	an),	then	a1,	…,	an	have	 to	be	algebraic
over	F.	This	is	a	consequence	of	a	simple	but	important	little	theorem:

Theorem	3	If	K	is	a	finite	extension	of	F,	every	element	of	K	is	algebraic	over	F

PROOF:	 Indeed,	 suppose	K	 is	 of	 degree	n;	 over	F,	 and	 let	 c	 be	 any	 element	 of	K.	 Then	 the	 set
{1,c,c2,	…,	cn)	is	linearly	dependent,	because	it	has	n	+	1	elements	in	a	vector	space	K	of	dimension	n.
Consequently,	there	are	scalars	a0,…,an	∈	F,	not	all	zero,	such	that	a0	+	a1c	+	⋯	+	ancn	=	0.	Therefore	c
is	a	root	of	the	polynomial	a(x)	=	a0	+	a1x	+	⋯	+	anxn	in	F[x].■

Let	us	sum	up:	Every	iterated	extension	F(c1,	…,	cn),	where	c1,	…,	cn	are	algebraic	over	F,	is	finite
extension	of	extension	of	F.	Conversely,	every	finite	extension	of	F	is	an	iterated	extension	F(c1,	…,	cn),
where	c1,	…,	cn	are	algebraic	over	F.

Here	is	an	example	of	the	concepts	presented	in	this	chapter.	We	have	already	seen	that	 ( )	is	of
degree	2	over	 ,	and	therefore	 ( )	consists	of	all	the	numbers	a	+	b 	where	a,b	∈	 .	Observe	that	

cannot	be	in ( );	for	if	it	were,	we	would	have	 	=	a	+	b 	for	rational	a	and	b;	squaring	both
sides	and	solving	for	 	would	give	us	 	=	a	rational	number,	which	is	impossible.

Since	 	 is	not	 in	 ( ), 	cannot	be	a	 root	of	a	polynomial	of	degree	1	over	 ( )	 (such	 a



polynomial	would	have	 to	be	x	−	 ).	But	 	 is	 a	 root	of	x2	−	 3,	which	 is	 therefore	 the	minimum
polynomial	of	 	over	 ( ).Thus,	 ( , )	is	of	degree	2	over	 ( ),	and	therefore	by	Theorem	2,
( , )	is	of	degree	4	over	 .

By	the	comments	preceding	Theorem	1,	{1, }	is	a	basis	of	 ( )	over	 ,and	{1, }	is	a	basis
of	 ( , )	over	 ( ).	Thus,	by	the	lemma	of	this	chapter,	{1, , , }	is	a	basis	of	 ( , )
over	 .	This	means	that	 ( , )	consists	of	all	the	numbers	a	+	b +	c 	+	d	 ,	for	all	a	b,c,	and
d	in	 .

For	later	reference.	The	technical	observation	which	follows	will	be	needed	later.
By	 the	 comments	 immediately	 preceding	 Theorem	 1,	 every	 element	 of	 F(c1)	 is	 a	 linear

combination	of	powers	of	c1,	with	coefficients	in	F.	That	is,	every	element	of	F(c1)	is	of	the	form

where	the	ki	are	in	F.	For	the	same	reason,	every	element	of	F(c1	c2)	is	of	the	form

where	the	coefficients	lj	are	in	F(c1).Thus,	each	coefficient	lj	is	equal	to	a	sum	of	the	form	(2).	But	then,
clearing	brackets,	it	follows	that	every	element	of	F(c1c2)	is	of	the	form

where	the	coefficients	kij	are	in	F.
If	we	continue	this	process,	it	is	easy	to	see	that	every	element	of	F(c1,c2,…,	cn)	is	a	sum	of	terms

of	the	form

where	the	coefficient	k	of	each	term	is	in	F.

EXERCISES

A.	Examples	of	Finite	Extensions
1	 Find	 a	 basis	 for	 (i )	 over	 ,	 and	 describe	 the	 elements	 of	 (i ).(See	 the	 two	 examples
immediately	following	Theorem	1.)
2	Show	that	every	element	of	 (2	+	3i)	can	be	written	as	a	+	bi,	where	a,b	∈ 	Conclude	that	 (2	+	3i)	=	
.
#	 3	 If	 ,	 show	 that	 {1,	 21/3,	 22/3,	 a,21/3a,	 22/3a}	 is	 a	 basis	 of	 (a)	 over	 .	 Describe	 the
elements	of	 (a).

#	4	Find	a	basis	of	 ( )	over	 ,	and	describe	the	elements	of	 .
5	Find	a	basis	of	 	over	 	and	describe	the	elements	of	 ( ).(See	the	example	at



the	end	of	this	chapter.)
6	Find	a	basis	of	 ( , , )	over	 ,	and	describe	the	elements	of	 ( , , .
7	Name	an	extension	of	 	over	which	π	is	algebraic	of	degree	3.

†	B.	Further	Examples	of	Finite	Extensions
Let	F	be	a	field	of	characteristic	≠	2.	Let	a	≠	b	be	in	F.

1	Prove	that	any	field	F	containing	 	+	 	also	contains	 	and	 .[HINT:	Compute	( 	+	 )2	and
show	that	 	∈	F.	Then	compute	 ( 	+	 ),	which	is	also	in	F]	Conclude	that	F( 	+	 )	=	F(

, ).
2	Prove	that	if	b	≠	x2a	for	any	x	∈	F,	then	 ∉F( ).	Conclude	that	F( , )	is	of	degree	4	over	F.
3	Show	that	x	=	 	+	 	satisfies	x4	−	2(a	+	b)x2	+	(a	−	b)2	=	0.	Show	that	x	=	 	also
satisfies	this	equation.	Conclude	that

4	Using	parts	1	to	3,	find	an	uncomplicated	basis	for	 (d)	over	 ,	where	d	 is	a	root	of	x4	−	14x2	+	9.
Then	find	a	basis	for	 	over	 .

C.	Finite	Extensions	of	Finite	Fields
By	the	proof	of	the	basic	theorem	of	field	extensions,	if	p(x)	is	an	irreducible	polynomial	of	degree	n	in
F[x],	then	F[x]/〈p(x)〉	≅	F(c)	where	c	is	a	root	of	p(x).	By	Theorem	1	in	this	chapter,	F(c)	is	of	degree	η
over	F.	Using	the	paragraph	preceding	Theorem	1:
1	Prove	that	every	element	of	F(c)	can	be	written	uniquely	as	a0	+	a1c	+	⋯	+an	−	lcn	−	1,	for	some	a0,…,
an	−	1	∈	F.
#	2	Construct	a	field	of	four	elements.	(It	is	to	be	an	extension	of	 	2.)	Describe	its	elements,	and	supply
its	addition	and	multiplication	tables.

3	Construct	a	field	of	eight	elements.	(It	is	to	be	an	extension	of	 	2).

4	Prove	that	if	F	has	q	elements,	and	a	is	algebraic	over	F	of	degree	n,	then	F(a)	has	qn	elements.
5	Prove	that	for	every	prime	number	p,	there	is	an	irreducible	quadratic	in	 p[x].	Conclude	that	for	every
prime	p,	there	is	a	field	with	p2	elements.

D.	Degrees	of	Extensions	(Applications	of	Theorem	2)
Let	F	be	a	field,	and	K	a	field	extension	of	F.	Prove	the	following:

1	[K:F]	=	1	iff	K	=	F.
#	2	If	[K	:	F]	is	a	prime	number,	there	is	no	field	properly	between	F	and	K	(that	is,	there	is	no	field	L
such	that	F	 	L	 	K).

3	If	[K:F]	is	a	prime,	then	K	=	F(a)	for	every	a	∈	K	−	F.
4	 Suppose	a,b	∈	K	 are	 algebraic	 over	F	with	degrees	m	 and	η,	where	m	 and	 «	 are	 relatively	 prime.
Then:



(a) F(a,b)is	degree	mn	over	F.
(b) 	F(a)	 	F(b)=	F.

5	If	the	degree	of	F(a)	over	F	is	a	prime,	then	F(a)	=	F(an)	for	any	n	(on	the	condition	that	an	∉	F).
6	If	an	irreducible	polynomial	p(x)	∈	F[x]	has	a	root	in	K,	then	deg	p(x)|[K:F].

E.	Short	Questions	Relating	to	Degrees	of	Extensions
Let	F	be	a	field.
Prove	parts	1−3:
1	The	degree	of	a	over	F	is	the	same	as	the	degree	of	1/a	over	F.	It	is	also	the	same	as	the	degrees	of	a	+
c	and	ac	over	F,	for	any	c	∈	F.
2	a	is	of	degree	1	over	F	iff	a	∈	F.
3	If	a	real	number	c	is	a	root	of	an	irreducible	polynomial	of	degree	>1	in	 [x],	then	c	is	irrational.
4	Use	part	3	and	Eisentein	’	s	irreducibility	criterion	to	prove	that	 (where	ra,	m	n	∈	 )	is	irrational
if	there	is	a	prime	number	which	divides	ra	but	not	n,and	whose	square	does	not	divide	ra.
5	Show	that	part	4	remains	true	for	 	where	q	>1.
6	If	a	and	b	are	algebraic	over	F,	prove	that	F(a,	b)	is	a	finite	extension	of	F.

†	F.	Further	Properties	of	Degrees	of	Extensions
Let	F	be	a	field,	and	K	a	finite	extension	of	F.	Prove	each	of	the	following:
1	Any	element	algebraic	over	K	is	algebraic	over	F,	and	conversely.
2	If	b	is	algebraic	over	K,	then	[F(b	:F]	|	[K(b)	:F].
3	If	fe	is	algebraic	over	K,	then	[K(b)	:K]	≤	[F(b)	:	F].	(HINT:	The	minimum	polynomial	of	b	over	F	may
factor	in	K[x],	and	6	will	then	be	a	root	of	one	of	its	irreducible	factors.)
#	4	If	b	is	algebraic	over	K,	then	[K(b):F(b)]	≤	[K	:F].	[HINT:	Note	that	F	⊆	K	⊆	K(b)	and	F	⊆	F(b)	⊆
K(b).	Relate	the	degrees	of	the	four	extensions	involved	here,	using	part	3.]

#	5	Let	p(x)	be	irreducible	in	F[x].	If	[K	:	F]	and	deg	p(x)	are	relatively	prime,	then	p(x)	is	irreducible	in
K[x].

†	G.	Fields	of	Algebraic	Elements:	Algebraic	Numbers
Let	F	⊆	K	and	a,b	∈	K.	We	have	seen	on	page	295	that	if	a	and	b	are	algebraic	over	F,	then	F(a,	b)	is	a
finite	extension	of	F.
Use	the	above	to	prove	parts	1	and	2.

1	If	a	and	b	are	algebraic	over	F,	then	a	+	b,	a	−	b,	ab,	and	a	/	b	are	algebraic	over	F.	(In	the	last	case,
assume	b	≠	0.)
2	The	set	{x	∈	K	:	x	is	algebraic	over	F}	is	a	subfield	of	K,	containing	F.

Any	complex	number	which	is	algebraic	over	 	is	called	an	algebraic	number.	By	part	2,	the	set	of
all	the	algebraic	numbers	is	a	field,	which	we	shall	designate	by	 .

Let	a(x)	=	a0	+	a1x	+	⋯	+	anxn	be	in	 [x],	and	let	c	be	any	root	of	a(x).	We	will	prove	that	c	∈	 .
To	begin	with,	all	the	coefficients	of	a(x)	are	in	 (a0,a1,	…,an).



3	Prove:	 (a0,	a1,	…,	an)	is	a	finite	extension	of	 .
Let	 (a0,	…,	an)	=	 1	Since	a(x)	∈	 1[x],	c	is	algebraic	over	 1	Prove	parts	4	and	5:

4	 1(c)	is	a	finite	extension	of	 1	hence	a	finite	extension	of	 .	(Why?)
5	c	∈ .
Conclusion:	 The	 roots	 of	 any	 polynomial	 whose	 coefficients	 are	 algebraic	 numbers	 are	 themselves
algebraic	numbers.

A	field	F	is	called	algebraically	closed	if	the	roots	of	every	polynomial	in	F[x]	are	in	F.	We	have
thus	proved	that	 	is	algebraically	closed.



CHAPTER

THIRTY
RULER	AND	COMPASS

The	ancient	Greek	geometers	considered	the	circle	and	straight	line	to	be	the	most	basic	of	all	geometric
figures,	other	 figures	being	merely	variants	and	combinations	of	 these	basic	ones.	To	understand	 this
view	we	must	 remember	 that	 construction	 played	 a	 very	 important	 role	 in	Greek	 geometry:	when	 a
figure	was	defined,	a	method	was	also	given	for	constructing	it.	Certainly	the	circle	and	the	straight	line
are	 the	 easiest	 figures	 to	 construct,	 for	 they	 require	 only	 the	 most	 rudimentary	 of	 all	 geometric
instruments:	 the	 ruler	 and	 the	 compass.	 Furthermore,	 the	 ruler,	 in	 this	 case,	 is	 a	 simple,	 unmarked
straightedge.

Rudimentary	 as	 these	 instruments	may	be,	 they	 can	be	 used	 to	 carry	 out	 a	 surprising	 variety	 of
geometric	constructions.	Lines	can	be	divided	into	any	number	of	equal	segments,	and	any	angle	can	be
bisected.	From	any	polygon	it	is	possible	to	construct	a	square	having	the	same	area,	or	twice	or	three
times	 the	 area.	With	 amazing	 ingenuity,	Greek	geometers	 devised	ways	 to	 cleverly	 use	 the	 ruler	 and
compass,	unaided	by	any	other	instrument,	to	perform	all	kinds	of	intricate	and	beautiful	constructions.
They	were	so	successful	that	it	was	hard	to	believe	they	were	unable	to	perform	three	little	tasks	which,
at	first	sight,	appear	to	be	very	simple:	doubling	the	cube,	trisecting	any	angle,	and	squaring	the	circle.
The	first	task	demands	that	a	cube	be	constructed	having	twice	the	volume	of	a	given	cube.	The	second
asks	 that	 any	 angle	 be	 divided	 into	 three	 equal	 parts.	The	 third	 requires	 the	 construction	of	 a	 square
whose	area	is	equal	to	that	of	a	given	circle.	Remember,	only	a	ruler	and	compass	are	to	be	used!

Mathematicians,	 in	 Greek	 antiquity	 and	 throughout	 the	 Renaissance,	 devoted	 a	 great	 deal	 of
attention	 to	 these	 problems,	 and	 came	 up	 with	 many	 brilliant	 ideas.	 But	 they	 never	 found	 ways	 of
performing	the	above	three	constructions.	This	is	not	surprising,	for	these	constructions	are	impossible!
Of	course,	the	Greeks	had	no	way	of	knowing	that	fact,	for	the	mathematical	machinery	needed	to	prove
that	these	constructions	are	impossible—in	fact,	the	very	notion	that	one	could	prove	a	construction	to
be	impossible—was	still	two	millennia	away.

The	final	resolution	of	these	problems,	by	proving	that	the	required	constructions	are	impossible,
came	from	a	most	unlikely	source:	 it	was	a	by-product	of	 the	arcane	study	of	field	extensions,	 in	 the
upper	reaches	of	modern	algebra.

To	understand	how	all	this	works,	we	will	see	how	the	process	of	ruler-and-compass	constructions
can	be	placed	in	the	framework	of	field	theory.	Clearly,	we	will	be	making	use	of	analytic	geometry.

If	 	is	any	set	of	points	in	the	plane,	consider	operations	of	the	following	two	kinds:

1. Ruler	operation:	Through	any	two	points	in	 ,	draw	a	straight	line.



2. Compass	operation:	Given	 three	points	A,	B,	 and	C	 in	 ,	 draw	a	 circle	with	 center	C	 and	 radius
equal	in	length	to	the	segment	AB.

The	points	of	intersection	of	any	two	of	these	figures	(line-line,	line-circle,	or	circle-circle)	are	said
to	be	constructible	in	one	step	from	 .	A	point	P	is	called	constructible	from	 	if	there	are	points	P1,
P2,	…,	Pn	=	P	 such	 that	P1	 is	constructible	 in	one	step	from	 ,	P2	 is	constructible	 in	one	step	from	

,	and	so	on,	so	that	Pi	is	constructible	in	one	step	from	 .
As	a	simple	example,	 let	us	see	that	 the	midpoint	of	a	 line	segment	AB	 is	constructible	from	the

two	points	A	and	B	in	the	above	sense.	Well,	given	A	and	B,	first	draw	the	line	AB.	Then,	draw	the	circle
with	center	A	and	radius	 	and	the	circle	with	center	A	and	radius	 ;	let	C	and	D	be	the	points	of
intersection	of	these	circles.	C	and	D	are	constructible	in	one	step	from	{A,	B}.	Finally,	draw	the	line
through	C	and	D;	the	intersection	of	this	line	with	AB	is	the	required	midpoint.	It	is	constructible	from
{A,	B}.

As	 this	 example	 shows,	 the	 notion	 of	 constructible	 points	 is	 the	 correct	 formalization	 of	 the
intuitive	idea	of	ruler-and-compass	constructions.

We	call	a	point	in	the	plane	constructible	if	it	is	constructible	from	 	×	 ,	that	is,	from	the	set	of	all
points	in	the	plane	with	rational	coefficients.

How	 does	 field	 theory	 fit	 into	 this	 scheme?	 Obviously	 by	 associating	 with	 every	 point	 its
coordinates.	More	exactly,	with	every	constructible	point	P	we	associate	a	certain	field	extension	of	 ,
obtained	as	follows:

Suppose	P	has	coordinates	(a,	b)	and	is	constructed	from	 	×	 	in	one	step.	We	associate	with	P
the	 field	 (a,	 b),	 obtained	 by	 adjoining	 to	 	 the	 coordinates	 of	 P.	 More	 generally,	 suppose	 P	 is
constructible	 from	 	×	 	 in	n	 steps:	 there	 are	 then	n	 points	P1,	P2,	…,	Pn	 =	P	 such	 that	 each	Pi	 is
constructible	in	one	step	from	 	×	 	 	{P1,	…,	Pi	−1}.	Let	the	coordinates	of	P1,	…,	Pn	be	(a1,	b1),	…,
(an,	bn),	respectively.	With	the	points	P1,	…,	Pn	we	associate	fields	K1,	…,	Kn	where	K1	=	 (a1,	b1),	and
for	each	i	>	1,

Ki	=	Ki	−	1	(ai,bi)

Thus,	K1	=	 (a1,	b1),	K2	=	K1(a2,	b2),	and	so	on:	beginning	with	 ,	we	adjoin	first	the	coordinates	of	P1,
then	the	coordinates	of	P2,	and	so	on	successively,	yielding	the	sequence	of	extensions

	⊆	K1	⊆	K2	⊆	·	·	·	⊆	Kn	=	K

We	call	K	the	field	extension	associated	with	the	point	P.



Everything	we	will	have	to	say	in	the	sequel	follows	easily	from	the	next	lemma.
Lemma	If	K1,	…,	Kn	are	as	defined	previously,	then	[Ki	:	Ki	−	1]	=	1,2,	or	4.
PROOF:	Remember	that	Ki	−	1	already	contains	the	coordinates	of	P1,.	.	.,	Pi	−	1,	and	Ki	is	obtained

by	adjoining	to	Ki	−	1	the	coordinates	xi,	yi	of	Pi.	But	Pi	is	constructible	in	one	step	from	 	×	 	 	{P1,.	.
.,	Pi	−	1},	so	we	must	consider	three	cases,	corresponding	to	the	three	kinds	of	intersection	which	may
produce	Pi,	namely:	line	intersects	line,	line	intersects	circle,	and	circle	intersects	circle.

Line	intersects	line:	Suppose	one	line	passes	through	the	points	(a1,	a2)	and	(b1,	b2),	and	the	other
line	passes	through	(c1,	c2)	and	(d1,	d2).	We	may	write	equations	for	these	lines	in	terms	of	the	constants
a1,	a2,	b1,	b2,	c1,	c2	and	d1,	d2	(all	of	which	are	in	Ki	−	1),	and	then	solve	these	equations	simultaneously
to	give	the	coordinates	x,	y	of	the	point	of	intersection.	Clearly,	these	values	of	x	and	y	are	expressed	in
terms	of	a1,	a2,	b1,	b2,	c1,	c2,	d1,	d2,	hence	are	still	in	Ki	−	1.	Thus,	Ki,	=	Ki	−	1.

Line	 intersects	circle:	Consider	 the	 line	AB	 and	 the	circle	with	center	C	 and	 radius	 equal	 to	 the
distance	 .	 Let	 A,	 B,	 C	 have	 coordinates	 (a1,	 a2),	 (b1,	 b2),	 and	 (c1,	 c2),	 respectively.	 By
hypothesis,	Ki	−	1	contains	the	numbers	a1,	a2,	b1,	b2,	c1,	c2,	as	well	as	k2	=	the	square	of	the	distance	

.	(To	understand	the	last	assertion,	remember	that	Ki	−	1	contains	the	coordinates	of	D	and	E;	see	the
figure	and	use	the	Pythagorean	theorem.)

Now,	the	line	AB	has	equation

and	the	circle	has	equation

(x	−	c1)2	+	(y	−	c2)2	=	k2	 (2)

Solving	for	x	in	(1)	and	substituting	into	(2)	gives

This	 is	 obviously	 a	 quadratic	 equation,	 and	 its	 roots	 are	 the	 x	 coordinates	 of	 S	 and	 T.	 Thus,	 the	 x
coordinates	of	both	points	of	intersection	are	roots	of	a	quadratic	polynomial	with	coefficients	in	Ki	−	1.
The	same	is	 true	of	 the	y	coordinates.	Thus,	 if	Ki	=	Ki	−	 1(xi,	yi)	where	(xi,	yi)	 is	one	of	 the	points	of
intersection,	then



{This	assumes	that	xi,	yi,	∉	Ki	−	1.	If	either	xi	or	yi,	or	both	are	already	in	Ki	−	1,	then	[Ki	−	1,(xi,	yi)	:	Ki	−
1]	=	1	or	2.}

Circle	intersects	circle:	Suppose	the	two	circles	have	equations

x2	+	y2	+	ax	+	by	+	c	=	0	 (3)

and

x2	+	y2	+	dx	+	ey	+	f	=	0	 (4)

Then	both	points	of	intersection	satisfy

(a	−	d)x	+	(b	−	e)y	+	(c	−	f)	=	0	 (5)

obtained	 simply	 by	 subtracting	 (4)	 from	 (3).	 Thus,	 x	 and	 y	 may	 be	 found	 by	 solving	 (4)	 and	 (5)
simultaneously,	which	is	exactly	the	preceding	case.	■

We	are	now	in	a	position	to	prove	the	main	result	of	this	chapter:

Theorem	 1:	 Basic	 theorem	 on	 constructible	 points	 If	 the	 point	 with	 coordinates	 (a,	 b)	 is
constructible,	then	the	degree	of	 (a)	over	 	is	a	power	of	2,	and	likewise	for	the	degree	of	 (b)	over	
.

PROOF:	Let	P	be	a	constructible	point;	by	definition,	there	are	points	P1.	.	.,	Pn	with	coordinates	(a1,
b1),	…,	(an,	bn)	such	that	each	Pi	is	constructible	in	one	step	from	 	×	 	 	{P1,...,	Pi	−	1},	and	Pn	=	P.
Let	the	fields	associated	with	P1,.	.	.,	Pn	be	K1,.	.	.,	Kn.	Then

[Kn	:	 ]	=	[Kn	:	Kn	−	1]	[Kn	−	1	:	Kn	−	2]	⋯	[K1	:	 ]

and	by	the	preceding	lemma	this	is	a	power	of	2,	say	2m.	But

[Kn	:	 ]	=	[Kn	:	 (a)][ (a): ]

hence[ (a)	:	 ]	is	a	factor	of	2m,	hence	also	a	power	of	2.	■

We	will	now	use	this	theorem	to	prove	that	ruler-and-compass	constructions	cannot	possibly	exist
for	the	three	classical	problems	described	in	the	opening	to	this	chapter.

Theorem	2	“Doubling	the	cube”	is	impossible	by	ruler	and	compass.



PROOF:	Let	us	place	the	cube	on	a	coordinate	system	so	that	one	edge	of	the	cube	coincides	with
the	unit	interval	on	the	x	axis.	That	is,	its	endpoints	are	(0,0)	and	(1,0).	If	we	were	able	to	double	the
cube	by	ruler	and	compass,	this	means	we	could	construct	a	point	(c,	0)	such	that	c3	=	2.	However,	by
Theorem	 1,	 [ (c)	 :	 ]	 would	 have	 to	 be	 a	 power	 of	 2,	 whereas	 in	 fact	 it	 is	 obviously	 3.	 This
contradiction	proves	that	it	is	impossible	to	double	the	cube	using	only	a	ruler	and	compass.	■

Theorem	3	“Trisecting	the	angle”	by	ruler	and	compass	is	impossible.	That	is,	there	exist	angles
which	cannot	be	trisected	using	a	ruler	and	compass.

PROOF:	We	will	show	specifically	 that	an	angle	of	60°	cannot	be	 trisected.	If	we	could	 trisect	an
angle	of	60°,	we	would	be	able	to	construct	a	point	(c,	0)	(see	figure)	where	c	=	cos	20°;	hence	certainly
we	could	construct	(b,0)	where	b	=2	cos	20°.

But	from	elementary	trigonometry

cos	3θ	=	4	cos3	θ	−	3	cos	θ

hence	

Thus,	b	=	2	cos	20°	satisfies	b3	−	3b	−	1	=	0.	The	polynomial

p(x)	=	x3	−	3x	−	1

is	irreducible	over	 	because	p(x	+	1)	=	x3	+	3x2	−	3	is	irreducible	by	Eisenstein’s	criterion.	It	follows
that	 (b)	has	degree	3	over	 ,	contradicting	the	requirement	(in	Theorem	1)	that	this	degree	has	to	be	a
power	of	2.	■



Theorem	4	“Squaring	the	circle”	by	ruler	and	compass	is	impossible.

PROOF.	If	we	were	able	to	square	the	circle	by	ruler	and	compass,	it	would	be	possible	to	construct
the	point	 ;	hence	by	Theorem	1,	 	would	be	a	power	of	2.	But	it	is	well	known	that
π	is	transcendental	over	 .	By	Theorem	3	of	Chapter	29,	the	square	of	an	algebraic	element	is	algebraic;
hence	 	 is	 transcendental.	 It	 follows	 that	 	 is	not	even	a	 finite	extension	of	 ,	much	 less	 an
extension	of	some	degree	2m	as	required.	■

EXERCISES

†	A.	Constructible	Numbers
If	O	and	I	are	any	two	points	in	the	plane,	consider	a	coordinate	system	such	that

the	interval	OI	coincides	with	the	unit	interval	on	the	x	axis.	Let	 	be	the	set	of	real	numbers	such	that	
	iff	the	point	(a,	0)	is	constructible	from	{O,	I}.	Prove	the	following:

1	If	 ,	then	 	and	 .
2	If	 ,	then	 .	(HINT:	Use	similar	triangles.	See	the	accompanying	figure.)

3	If	 ,	then	 .	(Use	the	same	figure	as	in	part	2.)
4	If	a	>	0	and	 ,	then	 .	(HINT:	In	the	accompanying	figure,	AB	is	the	diameter	of	a	circle.	Use
an	elementary	property	of	chords	of	a	circle	to	show	that	 .)

It	follows	from	parts	1	to	4	that	 	is	a	field,	closed	with	respect	to	taking	square	roots	of	positive
numbers.	 	is	called	the	field	of	constructible	numbers.
5	 .
6	If	a	is	a	real	root	of	any	quadratic	polynomial	with	coefficients	in	 ,	then	 .	(HINT:	Complete	the
square	and	use	part	4.)



†	B.	Constructible	Points	and	Constructible	Numbers
Prove	each	of	the	following:
1	 Let	 	 be	 any	 set	 of	 points	 in	 the	 plane;	 (a,	 b)	 is	 constructible	 from	 	 iff	 (a,	 0)	 and	 (0,	 b)	 are
constructible	from	 .
2	If	a	point	P	is	constructible	from	{O,I}	[that	is,	from	(0,	0)	and	(1,	0)],	then	P	is	constructible	from	
×	 .
#	3	Every	point	in	 	×	 	is	constructible	from	{O,	I}.	(Use	Exercise	A5	and	the	definition	of	 .)
4	If	a	point	P	is	constructible	from	 	×	 ,	it	is	constructible	from	{O,	I}.

By	combining	parts	2	and	4,	we	get	the	following	important	fact:	Any	point	P	is	constructible	from
	 ×	 	 iff	P	 is	 constructible	 from	 {O,I}.	 Thus,	 we	 may	 define	 a	 point	 to	 be	 constructible	 iff	 it	 is

constructible	from	{O,	I}.

5	A	point	P	is	constructible	iff	both	its	coordinates	are	constructible	numbers.

†	C.	Constructible	Angles
An	angle	α	is	called	constructible	iff	there	exist	constructible	points	A,	B,	and	C	such	that	∠LABC=	α.
Prove	the	following:
1	The	angle	α	is	constructible	iff	sin	α	and	cos	α	are	constructible	numbers.
2	cos	 	iff	sin	 .
3	If	cos	α,	cos	 ,	then	cos	(α	+	ß),	cos	 .
4	cos	 	iff	cos	 .
5	If	α	and	β	are	constructible	angles,	so	are	 ,	and	nα	for	any	positive	integer	n.
#	6	The	following	angles	are	constructible:	 .
7	The	following	angles	are	not	constructible:	20°;	40°,	140°.	(HINT:	Use	the	proof	of	Theorem	3.)

D.	Constructible	Polygons
A	polygon	is	called	constructible	iff	its	vertices	are	constructible	points.	Prove	the	following:
#	1	The	regular	n-gon	is	constructible	iff	the	angle	2π/n	is	constructible.
2	The	regular	hexagon	is	constructible.
3	The	regular	polygon	of	nine	sides	is	not	constructible.

†	E.	A	Constructible	Polygon
We	 will	 show	 that	 2π/5	 is	 a	 constructible	 angle,	 and	 it	 will	 follow	 that	 the	 regular	 pentagon	 is
constructible.
1	If	r	=	cos	k	+	i	sin	k	is	a	complex	number,	prove	that	1/r	=	cos	k	−	i	sin	k.	Conclude	that	r	+	1/r	=	2
cos	k.

By	de	Moivre’s	theorem,



is	a	complex	fifth	root	of	unity.	Since

x5	−	1	=	(x	−	1)(x4	+	x3	+	x2	+	x	+	1)

ω	is	a	root	of	p(x)	=	x4	+	x3	+	x2	+	x	+	1.
2	Prove	that	ω2	+	ω	+	1	+	ω−1	+	ω−2	=	0.
3	Prove	that

(HINT:	Use	parts	1	and	2.)	Conclude	that	cos	(2π/5)	is	a	root	of	the	quadratic	4x2	−	2x	−	1.
4	Use	part	3	and	A6	to	prove	that	cos	(2π/5)	is	a	constructible	number.
5	Prove	that	2π/5	is	a	constructible	angle.
6	Prove	that	the	regular	pentagon	is	constructible.

†	F.	A	Nonconstructible	Polygon
By	de	Moivre’s	theorem,

is	a	complex	seventh	root	of	unity.	Since

x7	−	1	=	(x	−	1)(x6	+	x5	+	x4	+	x3	+	x2	+	x	+	1)

ω	is	a	root	of	x6	+	x5	+	x4	+	x3	+	x2	+	x	+	1.
1	Prove	that	ω3	+	ω2	+	ω	+	1	+	ω−1	+	ω−2	+	ω−3	=	0.
2	Prove	that

(Use	part	1	and	Exercise	El.)	Conclude	that	cos	(2π/7)	is	a	root	of	8x3	+	4x2	−	4x−	1.
3	Prove	that	8x3	+	4x2	−	4x	−	1	has	no	rational	roots.	Conclude	that	it	is	irreducible	over	 .
4	Conclude	from	part	3	that	cos	(2π/7)	is	not	a	constructible	number.
5	Prove	that	2π/7	is	not	a	constructible	angle.
6	Prove	that	the	regular	polygon	of	seven	sides	is	not	constructible.

G.	Further	Properties	of	Constructible	Numbers	and	Figures
Prove	each	of	the	following:
1	If	the	number	a	is	a	root	of	an	irreducible	polynomial	p(x)	∈	 [x]	whose	degree	is	not	a	power	of	2,
then	a	is	not	a	constructible	number.
#	2	Any	constructible	number	can	be	obtained	from	rational	numbers	by	repeated	addition,	subtraction,



multiplication,	division,	and	taking	square	roots	of	positive	numbers.
3	 	is	the	smallest	field	extension	of	 	closed	with	respect	to	square	roots	of	positive	numbers	(that	is,
any	field	extension	of	 	closed	with	respect	to	square	roots	contains	 ).	(Use	part	2	and	Exercise	A.)
4	All	the	roots	of	the	polynomial	x4	−	3x2	+	1	are	constructible	numbers.

A	 line	 is	 called	 constructible	 if	 it	 passes	 through	 two	 constructible	 points.	 A	 circle	 is	 called
constructible	if	its	center	and	radius	are	constructible.
5	The	line	ax	+	by	+	c	=	0	is	constructible	if	 .
6	The	circle	x2	+	y2	+	ax	+	by	+	c	=	0	is	constructible	if	 .



CHAPTER

THIRTY-ONE
GALOIS	THEORY:	PREAMBLE

Field	 extensions	were	 used	 in	Chapter	 30	 to	 settle	 some	 of	 the	most	 puzzling	 questions	 of	 classical
geometry.	Now	they	will	be	used	to	solve	a	problem	equally	ancient	and	important:	they	will	give	us	a
definite	and	elegant	theory	of	solutions	of	polynomial	equations.

We	will	be	concerned	not	so	much	with	finding	solutions	(which	is	a	problem	of	computation)	as
with	 the	 nature	 and	 properties	 of	 these	 solutions.	 As	 we	 shall	 discover,	 these	 properties	 turn	 out	 to
depend	 less	on	 the	polynomials	 themselves	 than	on	 the	fields	which	contain	 their	solutions.	This	 fact
should	be	kept	in	mind	if	we	want	to	clearly	understand	the	discussions	in	this	chapter	and	Chapter	32.
We	will	 be	 speaking	 of	 field	 extensions,	 but	 polynomials	will	 always	 be	 lurking	 in	 the	 background.
Every	extension	will	be	generated	by	roots	of	a	polynomial,	and	every	theorem	about	these	extensions
will	actually	be	saying	something	about	the	polynomials.

Let	us	quickly	review	what	we	already	know	of	field	extensions,	filling	in	a	gap	or	two	as	we	go
along.	Let	F	be	a	field;	an	element	a	(in	an	extension	of	F)	is	algebraic	over	F	if	a	 is	a	 root	of	some
polynomial	with	its	coefficients	in	F.	The	minimum	polynomial	of	a	over	F	is	the	monic	polynomial	of
lowest	degree	in	F[x]	having	a	as	a	root;	every	other	polynomial	in	F[x]	having	a	as	a	root	is	a	multiple
of	the	minimum	polynomial.

The	basic	theorem	of	field	extensions	tells	us	that	any	polynomial	of	degree	n	in	F[x]	has	exactly	n
roots	 in	 a	 suitable	 extension	 of	 F.	 However,	 this	 does	 not	 necessarily	 mean	 n	 distinct	 roots.	 For
example,	 in	 [x]	 the	polynomial	 (x	−	2)5	has	 five	 roots	all	equal	 to	2.	Such	 roots	 are	 called	multiple
roots.	 It	 is	perfectly	obvious	 that	we	can	come	up	with	polynomials	such	as	(x	−	2)5	having	multiple
roots;	 but	 are	 there	 any	 irreducible	 polynomials	 with	 multiple	 roots?	 Certainly	 the	 answer	 is	 not
obvious.	Here	it	is:

Theorem	 1	 If	 F	 has	 characteristic	 0,	 irreducible	 polynomials	 over	 F	 can	 never	 have	 multiple
roots.

PROOF:	To	prove	this,	we	must	define	the	derivative	of	the	polynomial	a(x)	=	a0	+	a1x	+	⋯	+anxn.	It
is	a′(x)	=	a1	 +	 2a2x	 +	⋯	 +	nanxn−l.	 As	 in	 elementary	 calculus,	 it	 is	 easily	 checked	 that	 for	 any	 two
polynomials	f(x)	and	g(x),

(f	+	g)′=	f′	+	g′	 and	 (fg)′	=	fg′	+	f	′g



Now	suppose	a(x)	is	irreducible	in	F[x]	and	has	a	multiple	root	c:	then	in	a	suitable	extension	we	can
factor	a(x)	as	a(x)	=	(x	−	c)2q(x),	and	therefore	a′(x)	=	2(x	−	c)q(x)	+	(x	−	c)2q′	(x).	So	x	−	c	is	a	factor
of	a′(x),	and	therefore	c	is	a	root	of	a′(x).	Let	p(x)	be	the	minimum	polynomial	of	c	over	F;	since	both
a(x)	and	a′(x)	have	casa	root,	they	are	both	multiples	of	p(x).

But	a(x)	 is	 irreducible:	 its	only	nonconstant	divisor	 is	 itself;	so	p(x)	must	be	a(x).	However,	a(x)
cannot	divide	a′(x)	unless	a′(x)	=	0	because	a′(x)	is	of	lower	degree	than	a(x).	So	a′(x)	=	0	and	therefore
its	 coefficient	nan	 is	 0.	Here	 is	where	 characteristic	 0	 comes	 in:	 if	 nan	 =	 0	 then	an	 =	 0,	 and	 this	 is
impossible	because	an	is	the	leading	coefficient	of	a(x).	■

In	the	remaining	three	chapters	we	will	confine	our	attention	to	fields	of	characteristic	0.	Thus,	by
Theorem	1,	any	irreducible	polynomial	of	degree	n	has	n	distinct	roots.

Let	us	move	on	with	our	review.	Let	E	be	an	extension	of	F.	We	call	E	a	finite	extension	of	F	if	E,
as	a	vector	space	with	scalars	in	F,	has	finite	dimension.	Specifically,	if	E	has	dimension	n,	we	say	that
the	degree	of	E	over	F	is	equal	to	n,	and	we	symbolize	this	by	writing	[E:	F]	=	n.	If	c	is	algebraic	over
F,	the	degree	of	F(c)	over	F	turns	out	to	be	equal	to	the	degree	of	p(x),	the	minimum	polynomial	of	c
over	F.

F(c),	obtained	by	adjoining	an	algebraic	element	c	to	F,	is	called	a	simple	extension	of	F.	F(cl,	…,
cn),	obtained	by	adjoining	n	algebraic	elements	in	succession	to	F,	is	called	an	iterated	extension	of	F.
Any	iterated	extension	of	F	is	finite,	and,	conversely,	any	finite	extension	of	F	is	an	iterated	extension
F(c1,	…,	cn).	In	fact,	even	more	is	true;	let	F	be	of	characteristic	0.

Theorem	2	Every	finite	extension	of	F	is	a	simple	extension	F(c).

PROOF:	We	already	know	 that	 every	 finite	extension	 is	 an	 iterated	extension.	We	will	now	show
that	 any	 extension	F(a,	b)	 is	 equal	 to	F(c)	 for	 some	 c.	 Using	 this	 result	 several	 times	 in	 succession
yields	our	theorem.	(At	each	stage,	we	reduce	by	1	the	number	of	elements	that	must	be	adjoined	to	F	in
order	to	get	the	desired	extension.)

Well,	given	F(a,	b),	let	A(x)	be	the	minimum	polynomial	of	a	over	F,	and	let	B(x)	be	the	minimum
polynomial	of	b	over	F.	Let	K	denote	any	extension	of	F	which	contains	all	the	roots	a1,	…,	an	of	A(x)
as	well	as	all	the	roots	b1,	…,	bm	of	B(x).	Let	a1	be	a	and	let	b1	be	b.

Let	t	be	any	nonzero	element	of	F	such	that

Cross	multiplying	and	setting	c	=	a	+	tb,	it	follows	that	c	≠	ai	+	tbj,	that	is,

c	−	tbj	≠	ai	 for	all	i	≠	1	and	j	≠	1



while	for	every	;	j	≠	1,

Thus,	b	is	the	only	common	root	of	h(x)	and	B(x).
We	will	prove	that	b	∈	F(c),	hence	also	a	=	c	−	tb	∈	F(c),	and	therefore	F(a,	b)	⊆	F(c).	But	c	∈

F(a,	b),	so	F(c)	⊆	F(a,	b).	Thus	F(a,	b)	=	F(c).
So,	it	remains	only	to	prove	that	b	∈	F(c).	Let	p(x)	be	the	minimum	polynomial	of	b	over	F(c).	If

the	degree	of	p(x)	is	1,	then	p(x)	is	x	−	b,	so	b	∈	F(c),	and	we	are	done.	Let	us	suppose	p(x)≥	2	and	get	a
contradiction:	observe	that	h(x)	and	B(x)	must	both	be	multiples	of	p(x)	because	both	have	b	as	a	root,
and	p(x)	is	the	minimum	polynomial	of	b.	But	if	h(x)	and	B(x)	have	a	common	factor	of	degree	≥2,	they
must	have	 two	or	more	 roots	 in	 common,	 contrary	 to	 the	 fact	 that	b	 is	 their	only	common	 root.	Our
proof	is	complete.	■

For	example,	we	may	apply	this	theorem	directly	to	 ( ,	 ).	Taking	t	=	1,	we	get	c	=	 	+	
,	hence	 ( ,	 )	=	 ( 	+	 ).

If	a(x)	is	a	polynomial	of	degree	n	in	F[x],	let	its	roots	be	c1,	…,	cn.	Then	F(c1,	…,	cn)	is	clearly	the
smallest	extension	of	F	containing	all	the	roots	of	a(x).	F(c1,	…,	cn)	is	called	the	root	field	of	a(x)	over
F.	We	will	have	a	great	deal	to	say	about	root	fields	in	this	and	subsequent	chapters.

Isomorphisms	were	important	when	we	were	dealing	with	groups,	and	they	are	important	also	for
fields.	You	will	 remember	 that	 if	F1	 and	F2	 are	 fields,	 an	 isomorphism	 from	F1	 to	F2	 is	 a	 bijective
function	h:	F1	→	F2	satisfying

h(a	+	b)	=	h(a)	+	h(b)	 and	 h(ab)	=	h(a)h(b)

From	these	equations	it	follows	that	h(0)	=	0,	h(l)	=	1,	h(−a)	=	−	h(a),	and	h(a−l)	=	(h(a))−1

Suppose	F1	and	F2	are	fields,	and	h:	F1→F2	is	an	isomorphism.	Let	K1	and	K2	be	extensions	of	F1
and	F2,	and	let	 :	K1→	K2	also	be	an	isomorphism.	We	call	 	and	extension	of	 	if	 (x)	=	 (x)	for	every	x
in	Fl	that	is,	if	h	and	 	are	the	same	on	F1.	( 	is	an	extension	of	h	in	the	plain	sense	that	it	is	formed	by
“adding	on”	to	h.)

As	an	example,	given	any	isomorphism	h:	F1	→	F2,	we	can	extend	h	to	an	isomorphism	 :	F1[x]→
F2[x].	(Note	that	F[x]	is	an	extension	of	F	when	we	think	of	the	elements	of	F	as	constant	polynomials;
of	 course,	 F[x]	 is	 not	 a	 field,	 simply	 an	 integral	 domain,	 but	 in	 the	 present	 example	 this	 fact	 is
unimportant.)	 Now	we	 ask:	What	 is	 an	 obvious	 and	 natural	 way	 of	 extending	 h?	 The	 answer,	 quite
clearly,	is	to	let	 	send	the	polynomial	with	coefficients	a0,	a1,	…,	an	to	the	polynomial	with	coefficients



h(a0),	h(a1),	…,	h(an):

(a0	+	a1x	+	⋯	+	anxn)	=	h(a0)	+	h(a1)x	+	⋯	+	h(an)xn

It	 is	 child’s	 play	 to	 verify	 formally	 that	 	 is	 an	 isomorphism	 from	F1[x]	 to	F2[x].	 In	 the	 sequel,	 the
polynomial	 (a(x)),	 obtained	 in	 this	 fashion,	 will	 be	 denoted	 simply	 by	 ha(x).	 Because	 	 is	 an
isomorphism,	a(x)	is	irreducible	iff	ha(x)	is	irreducible.

A	very	similar	isomorphism	extension	is	given	in	the	next	theorem.

Theorem	3	Let	h:	F1	→	F2	be	an	isomorphism,	and	let	p(x)	be	irreducible	in	F1[x].	Suppose	a	is	a
root	of	p(x),	and	b	a	root	of	hp(x).	Then	h	can	be	extended	to	an	isomorphism

:	F1,(a)	→	F2(b)

Furthermore,	 (a)	=	b.
PROOF:	Remember	that	every	element	of	F1(a)	is	of	the	form

c0	+	c1a	+	⋯	+	cnan

where	c0,	…,	cn	are	in	F1,	and	every	element	of	F2(b)	is	of	the	form	d0	+	d1b	+	⋯	+	dnbn	where	d0,	…,
dn	are	in	F2.	Imitating	what	we	did	successfully	in	the	preceding	example,	we	let	 	send	the	expression
with	coefficients	 c0,	…,	cn	 to	 the	 expression	 with	 coefficients	h(c0),	…,	h(cn):

(c0	+	c1a	+	⋯	+	cnan)	=	h(c0)	+	h(c1)b	+	⋯	+	h(cn)bn

Again,	it	is	routine	to	verify	that	 	is	an	isomorphism.	Details	are	laid	out	in	Exercise	H	at	the	end	of	the
chapter.	■

Most	often	we	yse	Theorem	3	in	the	special	case	where	F1	and	F2	are	the	same	field—let	us	call	it
F—	and	h	is	the	identity	function	ε:	F→F.	[Remember	that	the	identity	function	is	ε(x)	=	x.]	When	we
apply	Theorem	3	to	the	identity	function	ε:	F→	F,	we	get

Theorem	4	Suppose	a	and	b	are	roots	of	the	same	irreducible	polynomial	p(x)	in	F[x].Then	there	is
an	isomorphism	g:	F(a)→	F(b)	such	that	g(x)	=	x	for	every	x	in	F,	and	g(a)	=	b.

Now	let	us	consider	the	following	situation:	K	and	K′	are	finite	extensions	of	F,	and	K	and	K′	have
a	common	extension	E.	If	h	:	K	→K′	is	an	isomorphism	such	that	h(x)	=	x	for	every	x	in	F,	we	say	that	h
fixes	F.	Let	c	be	an	element	of	K;	if	h	fixes	F,	and	c	is	a	root	of	some	polynomial	a(x)	=	a0	+	⋯	+	anxn	in
F[x],	h(c)	also	is	a	root	of	a(x).	It	is	easy	to	see	why:	the	coefficients	of	a(x)	are	in	F	and	are	therefore
not	changed	by	h.	So	if	a(c)	=	0,	then



What	we	have	just	shown	may	be	expressed	as	follows:

(*)	Let	a(x)	be	any	polynomial	in	F[x].	Any	isomorphism	which	fixes	F	sends	roots	of	a(x)	to	roots
of	a(x).

If	K	happens	to	be	the	root	field	of	a(x)	over	F,	the	situation	becomes	even	more	interesting.	Say
K=	F(cl,	c2,	…,	cn),	where	cl,	c2,	…,	cn	are	the	roots	of	a(x).	If	h:	K	→	K′	 is	any	 isomorphism	which
fixes	F,	then	by	(*),	h	permutes	cl,	c2,	…,	cn.	Now,	by	the	brief	discussion	headed	“For	later	reference”
on	page	296,	every	element	of	F(c1,	…,	cn)	is	a	sum	of	terms	of	the	form

where	the	coefficient	k	is	in	F.	Because	h	fixes	F,	h(k)	=	k.	Furthermore,	c1,	c2,	…,	cn	are	the	roots	of
a(x),	so	by	(*),	the	product	 	is	transformed	by	h	into	another	product	of	the	same	form.	Thus,
h	sends	every	element	of	F(c1,	c2,	…,	cn)	to	another	element	of	F(c1,	c2,	…,	cn).

The	above	comments	are	summarized	in	the	next	theorem.

Theorem	5	Let	K	and	K′	be	finite	extensions	of	F.	Assume	K	is	the	root	field	of	some	polynomial
over	F.	If	h	:	K	→	K′	is	an	isomorphism	which	fixes	F,	then	K	=	K′.

PROOF:	From	Theorem	2,	K	and	K′	are	simple	extensions	of	F,	say	K	=	F(a)	and	K′	=	F(b).	Then	E
=	F(a,	b)	is	a	common	extension	of	K	and	K′.	By	the	comments	preceding	this	theorem,	h	maps	every
element	of	K	to	an	element	of	K′;	hence	K′⊆K.	Since	the	same	argument	may	be	carried	out	for	h−1,	we
also	have	K	⊆	K′.■

Theorem	5	is	often	used	in	tandem	with	the	following	(see	the	figure	on	the	next	page):

Theorem	6	Let	L	and	L′	be	finite	extensions	of	F.	Let	K	be	an	extension	of	L	such	that	K	is	a	root
field	over	F.	Any	isomorphism	h:L	→	L′	which	fixes	F	can	be	extended	to	an	isomorphism	 	:K→K.

PROOF:	From	Theorem	2,	K	is	a	simple	extension	of	L,	say	K	=	L(c).	Now	we	can	use	Theorem	3	to
extend	the	isomorphism	h	:	L	→	L′	to	an	isomorphism



By	Theorem	5	applied	to	 ,	K	=	K′.	■

REMARK:	It	follows	from	the	theorem	that	L′	⊆,K	since	ran	h	⊆	ran	 	=	K.
For	later	reference.	The	following	results,	which	are	of	a	somewhat	technical	nature,	will	be	needed
later.	The	first	presents	a	surprisingly	strong	property	of	root	fields.

Theorem	7	Let	K	be	the	root	 field	of	some	polynomial	over	F.	For	every	 irreducible	polynomial
p(x)	in	F[x],	if	p(x)	has	one	root	in	K,	then	p(x)	must	have	all	of	its	roots	in	K.

PROOF:	Indeed,	suppose	p(x)	has	a	root	a	in	K,	and	let	b	be	any	other	root	of	p(x).	From	Theorem	4,
there	is	an	isomorphism	h	 :	F(a)→	F(b)	 fixing	F.	But	F(a)	⊆	K;	 so	 from	Theorem	6	and	 the	remark
following	it	F(b)	⊆K;	hence	b	∈	K.■

Theorem	8	Suppose	I⊆E	⊆	K,	where	E	is	a	finite	extension	of	I	and	K	is	a	finite	extension	of	E.	If
K	is	the	root	field	of	some	polynomial	over	I,	then	K	is	also	the	root	field	of	some	polynomial	over	E.

PROOF:	Suppose	K	 is	a	 root	 field	of	 some	polynomial	over	 I.	Then	K	 is	a	 root	 field	of	 the	same
polynomial	over	E.	■

EXERCISES

A.	Examples	of	Root	Fields	over	
Example	Find	the	root	field	of	a(x)	=	(x2	−	3)(x3	−	1)	over	 .
SOLUTION	The	complex	roots	of	a(x)	are	± ,1,	 	(−1	±	 i),	so	the	root	field	is	 (± ,1,	 (−1±	
i)).	The	same	field	can	be	written	more	simply	as	 ( ,	i).

1	Show	that	 ( ,	i)	is	the	root	field	of	(x2	−2x	−	2)(x2	+	1)	over	 .

Comparing	part	1	with	 the	example,	we	note	 that	different	polynomials	may	have	 the	same	root
field.	This	is	true	even	if	the	polynomials	are	irreducible.

2	Prove	that	x2	−	3	and	x2	−	2x	−	2	are	both	irreducible	over	 .	Then	find	their	root	fields	over	 	and
show	they	are	the	same.
3	Find	the	root	field	of	x4	−	2,	first	over	 ,	then	over	 .
4	Explain:	 (i,	 )	is	the	root	field	of	x4	−	2x2	+	9	over	 ,	and	is	the	root	field	of	x2	−	2 x	+	3	over	



( ).
5	Find	irreducible	polynomials	a(x)	over	 ,	and	b(x)	over	 (i),	 such	 that	 (i,	 )	 is	 the	root	 field	of
a(x)	over	 ,	and	is	the	root	field	of	b(x)	over	 (i).	Then	do	the	same	for	 ( ,	 ).
#	6	Which	of	the	following	extensions	are	root	fields	over	 ?	Justify	your	answer:	 (i);	 ( );	 ( ),
where	 	is	the	real	cube	root	of	2;	 (2	+	 );	 (i	+	 );	 (i,	 ,	 ).

B.	Examples	of	Root	Fields	over	 p
Example	Find	the	root	field	of	x2	+	1	over	 3.
SOLUTION	By	the	basic	theorem	of	field	extensions,

where	u	is	a	root	of	x2	+	1.	In	 3(u),	x2	+	1	=	(x	+	u)(x	−	u),	because	u2	+	1	=	0.	Since	 3(u)	contains	±	u,
it	is	the	root	field	of	x2	+	1	over	 3.	Note	that	 3(u)	has	nine	elements,	and	its	addition	and	multiplication
tables	are	easy	to	construct.	(See	Chapter	27,	Exercise	C4).
1	Show	that,	in	any	extension	of	 3	which	contains	a	root	u	of

a(x)	=	x3	+	2x	+	1	∈	 3[x]

it	happens	that	u	+	1	and	u	+	2	are	the	remaining	two	roots	of	a(x).	Use	this	fact	to	find	the	root	field	of
x3	+	2x	+	1	over	 3.	List	the	elements	of	the	root	field.

2	Find	the	root	field	of	x2	+	x	+	2	over	 3,	and	write	its	addition	and	multiplication	tables.

3	Find	the	root	field	of	x3	+	x2	+	1	∈	 2[x]	over	 2.	Write	its	addition	and	multiplication	tables.

4	Find	the	root	field	over	 2	of	x3	+	x	+	1	⊆	 2[x].	(CAUTION:	This	will	prove	to	be	a	little	more	difficult
than	part	3.)
#	5	Find	the	root	field	of	x3	+	x2	+	x	+	2	over	 3.	Find	a	basis	for	this	root	field	over	 3.

C.	Short	Questions	Relating	to	Root	Field
Prove	each	of	the	following
1	Every	extension	of	degree	2	is	a	root	field.
2	If	F	⊆	I⊆	K	and	K	is	a	root	field	of	a(x)	over	F,	then	K	is	a	root	field	of	a(x)	over	I.
3	The	root	field	over	 	of	any	polynomial	in	 [x]	is	 	or	 .
4	If	c	is	a	complex	root	of	a	cubic	a(x)	∈	 [x],	then	 (c)	is	the	root	field	of	a(x)	over	 .
#	5	If	p(x)	=	x4	+ax2	+	b	is	irreducible	in	F[x],	then	F[x]/〈p(x)〉	is	the	root	field	of	p(x)	over	F.
6	If	K	=	F(a)	and	K	is	the	root	field	of	some	polynomial	over	F,	then	K	is	the	root	field	of	the	minimum
polynomial	of	a	over	F.
7	Every	root	field	over	F	is	the	root	field	of	some	irreducible	polynomial	over	F.	(HINT:	Use	part	6	and
Theorem	2.)
8	Suppose	[K	:F]	=	n,	where	K	is	a	root	field	over	F.	Then	K	is	the	root	field	over	F	of	every	irreducible



polynomial	of	degree	n	in	F[x]	having	a	root	in	K.
9	If	a(x)	is	a	polynomial	of	degree	n	in	F[x],	and	K	is	the	root	field	of	a(x)	over	F,	then	[K:	F]	divides	n!

D.	Reducing	Iterated	Extensions	to	Simple	Extensions
1	Find	c	such	that	 ( ,	 )	=	 (c).	Do	the	same	for	 ( , )
2Let	a	be	a	root	of	x3	−x	+	1,	and	b	a	root	of	x2	−	2x	−	1.	Find	c	such	that	 (a,	b)	=	 (c).	(HINT:	Use
calculus	to	show	that	x3	−	x	+	1	has	one	real	and	two	complex	roots,	and	explain	why	no	two	of	these
may	differ	by	a	real	number.)
#	3	Find	c	such	that	 ( ,	 , )	=	 (c).
4	Find	an	irreducible	polynomial	p(x)	such	that	 ( ,	 )	is	the	root	field	of	p(x)	over	 .	(HINT:	Use
Exercise	C6.)
5	Do	the	same	as	in	part	4	for	 ( ,	 ,	 ).
De	Moivre’s	theorem	provides	an	explicit	formula	to	write	the	n	complex	nth	roots	of	1.	(See	Chapter
16,	Exercise	H.)	By	de	Moivre’s	formula,	the	nth	roots	of	unity	consist	of	ω	=	cos	(2π/n)	+	i	sin(2π/n)
and	its	first	n	powers,	namely,	1,	ω,ω2,	…,	ωn−1	We	call	ω	a	primitive	nth	root	of	unity,	because	all	the
other	nth	roots	of	unity	are	powers	of	ω.	Clearly,	every	nth	root	of	unity	(except	1)	is	a	root	of

†	E.	Roots	of	Unity	and	Radical	Extensions

This	polynomial	is	irreducible	if	n	is	a	prime	(see	Chapter	26,	Exercise	D3).	Prove	parts	1−3,	where	ω
denotes	a	primitive	nth	root	of	unity.

1	 (ω)	is	the	root	field	of	xn	−	1	over	 .
2	If	n	is	a	prime,	[ (ω):	 ]	=	n	−	1.
3	If	n	is	a	prime,	ωn−1	is	equal	to	a	linear	combination	of	1,	ω,	…,	ωn−2	with	rational	coefficients.
4	Find	[ (ω): ],	where	ω	is	a	primitive	nth	root	of	unity,	for	n	=	6,	7,	and	8.
5	Prove	that	for	any	r	∈	{1,	2,	…,	n	−	1},	 ωr	is	an	nth	root	of	a.	Conclude	that	 , ω,	…, ωn−1
are	the	n	complex	nth	roots	of	a.
6	Prove	that	 (ω, )	is	the	root	field	of	xn	−	a	over	 .
7	Find	the	degree	of	 (ω, )	over	 ,	where	ω	is	a	primitive	cube	root	of	1.	Also	show	that	 (ω, )	=	
( ,	iV3)	(HINT:	Compute	ω.)

8	Prove	that	if	K	is	the	root	field	of	any	polynomial	over	 ,	and	K	contains	an	nth	root	of	any	number	a,
then	K	contains	all	the	nth	roots	of	unity.

†	F.	Separable	and	Inseparable	Polynomials
Let	F	 be	 a	 field.	An	 irreducible	 polynomial	p(x)	 in	F[x]	 is	 said	 to	 be	 separable	 over	F	 if	 it	 has	 no
multiple	 roots	 in	 any	 extension	 of	 F.	 If	 p(x)	 does	 have	 a	 multiple	 root	 in	 some	 extension,	 it	 is
inseparable	over	F.
1	Prove	that	if	F	has	characteristic	0,	every	irreducible	polynomial	in	F[x]	is	separable.



Thus,	 for	characteristic	0,	 there	 is	no	question	whether	an	 irreducible	polynomial	 is	separable	or
not.	 However,	 for	 characteristic	 p	 ≠	 0,	 it	 is	 different.	 This	 case	 is	 treated	 next.	 In	 the	 following
problems,	let	F	be	a	field	of	characteristic	p	≠	0.

2	If	a′(x)	=	0,	prove	that	the	only	nonzero	terms	of	a(x)	are	of	the	form	ampxmp	for	some	m.	 [In	other
words,	a(x)	is	a	polynomial	in	powers	of	xp.]
3	Prove	that	if	an	irreducible	polynomial	a(x)	is	inseparable	over	F,	then	a(x)	is	a	polynomial	in	powers
of	xp.	(HINT:	Use	part	2,	and	reason	as	in	the	proof	of	Theorem	1.)
4	Use	Chapter	27,	Exercise	J	(especially	the	conclusion	following	J6)	to	prove	the	converse	of	part	3.

Thus,	if	F	is	a	field	of	characteristic	p	≠	0,	an	irreducible	polynomial	a(x)	∈	F[x]	is	inseparable	iff
a(x)	is	a	polynomial	in	powers	of	xp.	For	finite	fields,	we	can	say	even	more:

5	Prove	that	if	F	is	any	field	of	characteristic	p	≠0,	then	in	F[x],

(HINT:	See	Chapter	24,	Exercise	D6.)
6	 If	F	 is	 a	 finite	 field	of	 characteristic	p	 ≠	 0,	 prove	 that,	 in	F[x],	 every	polynomial	a(xp)	 is	 equal	 to
[b(x)]p	 for	 some	 b(x).	 [HINT:	 Use	 part	 5	 and	 the	 fact	 that	 in	 a	 finite	 field	 of	 characteristic	 p,	 every
element	has	a	pth	root	(see	Chapter	20,	Exercise	F).]
7	Use	parts	3	and	6	to	prove:	In	any	finite	field,	every	irreducible	polynomial	is	separable.

Thus,	fields	of	characteristic	0	and	finite	fields	share	the	property	that	irreducible	polynomials	have
no	multiple	roots.	The	only	remaining	case	is	that	of	infinite	fields	with	finite	characteristic.	It	is	treated
in	the	next	exercise	set.

†	G.	Multiple	Roots	over	Infinite	Fields	of	Nonzero	Characteristic
If	 p[y]	is	the	domain	of	polynomials	(in	the	letter	y)	over	 p,	let	E	=	 p(y)	be	the	field	of	quotients

of	 p[y].	Let	K	denote	the	subfield	 p(yp)	of	 p(y).

1	Explain	why	 p(y)	and	 p(yp)	are	infinite	fields	of	characteristic	p.

2	Prove	that	a(x)	=	xp	−	yp	has	 the	factorization	xp	−	yp	=	 (x	−	y)p	 in	E[x],	but	 is	 irreducible	 in	K[x].
Conclude	that	there	is	an	irreducible	polynomial	a(x)	in	K[x]	with	a	root	whose	multiplicity	is	p.

Thus,	over	an	infinite	field	of	nonzero	characteristic,	an	irreducible	polynomial	may	have	multiple
roots.	 Even	 these	 fields,	 however,	 have	 a	 remarkable	 property:	 all	 the	 roots	 of	 any	 irreducible
polynomial	have	the	same	multiplicity.	The	details	follow:	Let	F	be	any	field,	p(x)	irreducible	in	F[x],	a
and	 b	 two	 distinct	 roots	 of	 p(x),	 and	K	 the	 root	 field	 of	 p(x)	 over	F.	 Let	 i:	K	→	 i(K)	 =	K′	 be	 the
isomorphism	 of	 Theorem	 4,	 and	 :	K[x]	→	K′[x]	 the	 isomorphism	 described	 immediately	 preceding
Theorem	3.
3	Prove	that	 	leaves	p(x)	fixed.
4	Prove	that	 ((x	−a)m)	=	(x−	b)m.
5	Prove	that	a	and	b	have	the	same	multiplicity.

†	H.	An	Isomorphism	Extension	Theorem	(Proof	of	Theorem	3)



Let	F1,	F2,	h,	p(x),a,	b,	and	 	be	as	in	the	statement	of	Theorem	3.	To	prove	that	 	is	an	isomorphism,	it
must	first	be	shown	that	it	is	properly	defined:	that	is,	if	c(a)	=	d(a)	in	F1(a),	then	 (c(a))	=	 (d(a)).

1	 If	c(a)	=	d(a),	 prove	 that	c(x)	−d(x)	 is	a	multiple	of	p(x).	Deduce	 from	 this	 that	hc(x)	−	hd(x)	 is	 a
multiple	of	hp(x).
#	2	Use	part	1	to	prove	that	 (c(a))	=	 (d(a)).
3	Reversing	the	steps	of	the	preceding	argument,	show	that	 	is	injective.
4	Show	that	 	is	surjective.
5	Show	that	 	is	a	homomorphism.

†	I.	Uniqueness	of	the	Root	Field
Let	h:	F1	→	F2	be	an	isomorphism.	If	a(x)	∈	F1[x],	let	Kl	be	the	root	field	of	a(x)	over	F1,	and	K2	 the
root	field	of	ha(x)	over	F2.
1	Prove:	If	p(x)	is	an	irreducible	factor	of	a(x),	u	∈	K1	is	a	root	of	p(x),	and	υ	∈	K2	is	a	root	of	hp(x),
then	F1(u)	≅	F2(υ).
2	F1(u)	=	Kl	iff	F2(υ)	=	K2.
#	3	Use	parts	1	and	2	to	form	an	inductive	proof	that	K1	≅	K2.
4	Draw	 the	 following	 conclusion:	The	 root	 field	of	 a	 polynomial	a(x)	 over	 a	 field	F	 is	 unique	up	 to
isomorphism.

†	J.	Extending	Isomorphism
In	 the	 following,	 let	 F	 be	 a	 subfield	 of	 .	 An	 injective	 homomorphism	 h:	 F→ 	 is	 called	 a
monomorphism;	it	is	obviously	an	isomorphism	F→h(F).
1	Let	ω	be	a	complex	pth	root	of	unity	(where	p	is	a	prime),	and	let	h:	 (ω)→ 	be	a	monomorphism
fixing	 .	Explain	why	h	 is	 completely	 determined	 by	 the	 value	 of	h(ω).	 Then	 prove	 that	 there	 exist
exactly	p	−1	monomorphisms	 (ω)→ 	which	fix	 .
#	2	Let	p(x)	be	irreducible	in	F[x],	and	c	a	complex	root	of	p(x).	Let	h:	F→	 	be	a	monomorphism.	If
deg	p(x)	=	n,	prove	that	there	are	exactly	n	monomorphisms	F(c)→ 	which	are	extensions	of	h.

3	 Let	F	⊆	K⊆ ,	 with	 [K:	F]	 =	 n.	 If	 h:	 F→ 	 is	 a	 monomorphism,	 prove	 that	 there	 are	 exactly	 n
monomorphisms	K→ 	which	are	extensions	of	h.
#	4	Prove:	The	only	possible	monomorphism	h: → 	is	h(x)	=	x.	Thus,	any	monomorphism	h:	 (a)	→	

	necessarily	fixes	 .
5	Prove:	There	are	exactly	three	monomorphisms	 ( )→ ,	and	they	are	determined	by	the	conditions:

→ ; → ω; → ω2,	where	ω	is	a	primitive	cube	root	of	unity.

K.	Normal	Extensions
If	K	is	the	root	field	of	some	polynomial	a(x)	over	F,	K	is	also	called	a	normal	extension	of	F.	There	are
other	possible	ways	of	defining	normal	extensions,	which	are	equivalent	to	the	above.	We	consider	the
two	most	common	ones	here:	they	are	precisely	the	properties	expressed	in	theorems	7	and	6.	Let	K	be	a
finite	extension	of	F.
1	Suppose	that	for	every	irreducible	polynomial	p(x)	in	F[x],	if	p(x)	has	one	root	in	K,	then	p(x)	must



have	all	its	roots	in	K.	Prove	that	K	is	a	normal	extension	of	F.
2	Suppose	that,	if	h	is	any	isomorphism	with	domain	K	which	fixes	F,	then	h(K)	⊆	K.	Prove	that	K	is	a
normal	extension	of	F.



CHAPTER

THIRTY-TWO
GALOIS	THEORY:	THE	HEART	OF	THE	MATTER

If	K	is	a	field	and	h	is	an	isomorphism	from	K	to	K,	we	call	h	an	automorphism	of	K	(automorphism	=
“self-isomorphism”).

We	begin	this	chapter	by	restating	Theorems	5	and	6	of	Chapter	31:
Let	K	be	the	root	field	of	some	polynomial	over	F;	suppose	a	∈	K:

(i) Any	isomorphism	with	domain	K	which	fixes	F	is	an	automorphism	of	K.
(ii) If	a	and	b	are	roots	of	an	irreducible	polynomial	p(x)	in	F[x],	there	is	an	automorphism	of	K	fixing
F	and	sending	a	to	b.

Rule	(i)	 is	merely	a	restatement	of	Theorem	5	of	Chapter	31,	using	 the	notion	of	automorphism.
Rule	(ii)	is	a	result	of	combining	Theorem	4	of	Chapter	31	[which	asserts	that	there	exists	an	F-fixing
isomorphism	from	L	=	F(a)	to	L′	=	F(b)]	with	Theorem	6	of	the	same	chapter.

Let	K	be	the	root	field	of	a	polynomial	a(x)	in	F[x],	If	c1,	c2,	…,	cn	are	the	roots	of	a(x),	then	K	=
F(c1,	c2,	…,	cn),	and,	by	(*)	on	page	316,	any	automorphism	h	of	K	which	fixes	F	permutes	c1,	c2,	…,
cn.	On	the	other	hand,	remember	that	every	element	a	in	F(c1,	c2,	…,	cn)	is	a	sum	of	terms	of	the	form

where	the	coefficient	k	of	each	term	is	in	F.	If	h	is	an	automorphism	which	fixes	F,	h	does	not	change
the	 coefficients,	 so	 h(a)	 is	 completely	 determined	 once	 we	 know	 h(c1),	 …,	 h(cn).	 Thus,	 every
automorphism	of	K	fixing	F	is	completely	determined	by	a	permutation	of	the	roots	of	a(x).

This	is	very	important!
What	it	means	is	that	we	may	identify	the	automorphisms	of	K	which	fix	F	with	permutations	of

the	roots	of	a(x).
It	 must	 be	 pointed	 out	 here	 that,	 just	 as	 the	 symmetries	 of	 geometric	 figures	 determine	 their

geometric	properties,	so	the	symmetries	of	equations	(that	is,	permutations	of	their	roots)	give	us	all	the
vital	 information	needed	to	analyze	their	solutions.	Thus,	 if	K	 is	 the	root	field	of	our	polynomial	a(x)
over	F,	we	will	now	pay	very	close	attention	to	the	automorphisms	of	K	which	fix	F.

To	 begin	 with,	 how	 many	 such	 automorphisms	 are	 there?	 The	 answer	 is	 a	 classic	 example	 of
mathematical	elegance	and	simplicity.



Theorem	1	Let	K	be	the	root	field	of	some	polynomial	over	F.	The	number	of	automorphisms	of	K
fixing	F	is	equal	to	the	degree	of	K	over	F.

PROOF:	Let	[K	:	F]	=	n,	and	let	us	show	that	K	has	exactly	n	automorphisms	fixing	F.	By	Theorem
2	of	Chapter	31,	K	=	F(a)	for	some	a	∈	K.Let	p(x)	be	the	minimum	polynomial	of	a	over	F;	if	b	is	any
root	of	p(x),	then	by	(ii)	on	the	previous	page,	there	is	an	automorphism	of	K	fixing	F	and	sending	a	to
b.	Since	p(x)	has	n	roots,	there	are	exactly	n	choices	of	b,	and	therefore	n	automorphisms	of	K	fixing	F.

[Remember	 that	 every	 automorphism	h	 which	 fixes	F	 permutes	 the	 roots	 of	 p(x)	 and	 therefore
sends	a	to	some	root	of	p(x);	and	h	is	completely	determined	once	we	have	chosen	h(a).]	■

For	example,	we	have	already	seen	that	 ( )	is	of	degree	2	over	 .	 ( )	is	the	root	field	of	x2	–
2	over	 	because	 ( )	contains	both	roots	of	x2	–	2,	namely	± .	By	Theorem	1,	 there	are	exactly
two	automorphisms	of	 ( )	fixing	 :	one	sends	 	to	 ;	it	is	the	identity	function.	The	other	sends	

	to	– ,	and	is	therefore	the	function	a	+	b 	→	a	−	b .
Similarly,	we	saw	that	 	=	 (i),	and	 	is	of	degree	2	over	 .	The	two	automorphisms	of	 	which	fix	

	are	the	identity	function	and	the	function	a	+	bi	→	a	−	bi	which	sends	every	complex	number	to	its
complex	conjugate.

As	 a	 final	 example,	 we	 have	 seen	 that	 ( ,	 )	 is	 an	 extension	 of	 degree	 4	 over	 ,	 so	 by
Theorem	1,	there	are	four	automorphisms	of	 ( ,	 )	which	fix	 :	Now,	 ( ,	 )	is	the	root	field
of	(x2	–	2)(x2	−	3)	over	 	for	it	contains	the	roots	of	this	polynomial,	and	any	extension	of	 	containing
the	roots	of	(x2	–	2)(x2	−	3)	certainly	contains	 	and	 .	Thus,	by	(*)	on	page	316,	each	of	the	four
automorphisms	which	fix	 	sends	roots	of	x2	–	2	to	roots	of	x2	−	2,	and	roots	of	x2	−	3	to	roots	of	x2	–	3.
But	there	are	only	four	possible	ways	of	doing	this,	namely,

Since	every	element	of	 ( ,	 )	 is	of	 the	 form	 ,	 these	 four	 automorphisms
(we	shall	call	them	ε,	α,	β,	and	γ)	are	the	following:

If	K	 is	an	extension	of	F,	 the	automorphisms	of	K	which	fix	F	form	a	group.	 (The	operation,	of
course,	is	composition.)	This	is	perfectly	obvious:	for	if	g	and	h	fix	F,	then	for	every	x	in	F,

that	is,	g	∘	h	fixes	F.	Furthermore,	if



that	is,	if	h	fixes	F	so	does	h–1

This	fact	is	perfectly	obvious,	but	nonetheless	of	great	importance,	for	it	means	that	we	can	now
use	 all	 of	 our	 accumulated	 knowledge	 about	 groups	 to	 help	 us	 analyze	 the	 solutions	 of	 polynomial
equations.	And	that	is	precisely	what	Galois	theory	is	all	about.

If	K	is	the	root	field	of	a	polynomial	a(x)	in	F[x],	the	group	of	all	the	automorphisms	of	K	which	fix
F	is	called	the	Galois	group	of	a(x).	We	also	call	it	the	Galois	group	of	K	over	F,	and	designate	it	by	the
symbol

Gal(K	:	F)

In	our	 last	example	we	saw	that	 there	are	 four	automorphisms	of	 ( ,	 )	which	fix	 .	We	called
them	ε,	α,	β,	and	γ.	Thus,	the	Galois	group	of	 ( ,	 )	over	 	is	Gal( ( ,	 )	:	 )	=	{ε,	α,	β,	γ};
the	operation	is	composition,	giving	us	the	table

As	one	can	see,	this	is	an	abelian	group	in	which	every	element	is	its	own	inverse;	almost	at	a	glance
one	can	verify	that	it	is	isomorphic	to	 2	×	 2.

Let	K	be	the	root	field	of	a(x),	where	a(x)	is	in	F[x].	 In	our	earlier	discussion	we	saw	that	every
automorphism	of	K	fixing	F	[that	is,	every	member	of	the	Galois	group	of	a(x)]	may	be	identified	with	a
permutation	of	the	roots	of	a(x).	However,	it	is	important	to	note	that	not	every	permutation	of	the	roots
of	a(x)	need	be	in	the	Galois	group	of	a(x),	even	when	a(x)	is	irreducible.	For	example,	we	saw	that	 (

,	 )	=	 ( 	+	 ),	where	 	+	 	is	a	root	of	the	irreducible	polynomial	x4	–	10x2	+	1	over	 .
Since	x4	–	10x2	+	1	has	four	roots,	there	are	4!	=	24	permutations	of	its	roots,	only	four	of	which	are	in
its	Galois	group.	This	is	because	only	four	of	the	permutations	are	genuine	symmetries	of	x4	–	10x2	+	1,
in	the	sense	that	they	determine	automorphisms	of	the	root	field.

In	 the	 discussion	 throughout	 the	 remainder	 of	 this	 chapter,	 let	 F	 and	K	 remain	 fixed.	 F	 is	 an
arbitrary	field	and	K	is	the	root	field	of	some	polynomial	a(x)	in	F[x].	The	thread	of	our	reasoning	will
lead	us	to	speak	about	fields	I	where	F	⊆	I	⊆	K,	that	is,	fields	“between”	F	and	K.	We	will

refer	to	them	as	intermediate	fields.	Since	K	is	the	root	field	of	a(x)	over	F,	 it	 is	also	the	root	field	of
a(x)	over	I	for	every	intermediate	field	I.

The	letter	G	will	denote	the	Galois	group	of	K	over	F.	With	each	intermediate	field	I,	we	associate
the	group



I*	=	Gal(K	:	I)

that	is,	the	group	of	all	the	automorphisms	of	K	which	fix	I.	It	 is	obviously	a	subgroup	of	G.	We	will
call	I*	the	fixer	of	I.

Conversely,	with	each	subgroup	H	of	G	we	associate	 the	subfield	of	K	containing	all	 the	a	 in	K
which	are	not	changed	by	any	π	∈	H.	That	is,

{a	∈	K	:	π(a)	=	a	for	every	π	∈	H}

One	verifies	 in	a	 trice	that	 this	 is	a	subfield	of	K.	 It	obviously	contains	F,	and	is	 therefore	one	of	 the
intermediate	fields.	It	is	called	the	fixed	field	of	H.	For	brevity	and	euphony	we	call	it	the	fixfield	of	H.

Let	us	recapitulate:	Every	subgroup	H	of	G	 fixes	an	intermediate	field	I,	called	the	 fixfield	of	H.
Every	 intermediate	 field	 I	 is	 fixed	 by	 a	 subgroup	H	 of	G,	 called	 the	 fixer	 of	 I.	 This	 suggests	 very
strongly	 that	 there	 is	 a	 one-to-one	 correspondence	 between	 the	 subgroups	 of	 G	 and	 the	 fields
intermediate	 between	F	 and	K.	 Indeed,	 this	 is	 correct.	This	 one-to-one	 correspondence	 is	 at	 the	very
heart	 of	 Galois	 theory,	 because	 it	 provides	 the	 tie-in	 between	 properties	 of	 field	 extensions	 and
properties	of	subgroups.

Just	 as,	 in	 Chapter	 29,	 we	 were	 able	 to	 use	 vector	 algebra	 to	 prove	 new	 things	 about	 field
extensions,	 now	 we	 will	 be	 able	 to	 use	 group	 theory	 to	 explore	 field	 extensions.	 The	 vector-space
connection	was	a	relative	lightweight.	The	connection	with	group	theory,	on	the	other	hand,	gives	us	a
tool	of	tremendous	power	to	study	field	extensions.

We	have	not	yet	proved	that	the	connection	between	subgroups	of	G	and	intermediate	fields	is	a
one-to-one	correspondence.	The	next	two	theorems	will	do	that.

Theorem	2	If	H	is	the	fixer	of	I,	then	I	is	the	fixfield	of	H.

PROOF:	Let	H	be	the	fixer	of	I,	and	I′	be	the	fixfield	of	H.	It	follows	from	the	definitions	of	fixer
and	fixfield	that	I	⊆	I′,	so	we	must	now	show	that	I′	⊆	I.	We	will	do	this	by	proving	that	a	∉	I	implies	a
∉	I′.	Well,	if	a	is	an	element	of	K	which	is	not	in	I,	the	minimum	polynomial	p(x)	of	a	over	I	must	have
degree	≥2	(for	otherwise,	a	∈	I).	Thus,	p(x)	has	another	root	b.	By	Rule	(ii)	given	at	the	beginning	of
this	chapter,	there	is	an	automorphism	of	K	fixing	I	and	sending	a	to	b.	This	automorphism	moves	a,	so
a	∉	I′.	■

Lemma	Let	H	be	a	subgroup	of	G,	and	I	the	fixfield	of	H.	The	number	of	elements	in	H	is	equal	to
[K	:	I].

PROOF:	Let	H	have	r	elements,	namely,	h1,	…,	hr.	Let	K	=	 I(a).	Much	of	our	proof	will	 revolve
around	the	following	polynomial:

b(x)	=	[x	–	h1(a)][x	−	h2(a)]	⋯	[x	−	hr(a)]

Since	one	of	the	hi	is	the	identity	function,	one	factor	of	b(x)	is	(x	−	a),	and	therefore	a	is	a	root	of	b(x).
In	the	next	paragraph	we	will	see	that	all	the	coefficients	of	b(x)	are	in	I,	so	b(x)	∈	I	[x].	It	follows	that
b(x)	is	a	multiple	of	the	minimum	polynomial	of	a	over	I,	whose	degree	is	exactly	[K	:	I].	Since	b(x)	is
of	degree	r,	this	means	that	r	≥	[K	:	I],	which	is	half	our	theorem.

Well,	 let	 us	 show	 that	 all	 the	 coefficients	 of	 b(x)	 are	 in	 I.	 We	 saw	 on	 page	 314	 that	 every
isomorphism	hi	 :	K	→	K	 can	 be	 extended	 to	 an	 isomorphism	 i,	 :	K[x]	 →	K[x].	 Because	 i	 is	 an



isomorphism	of	polynomials,	we	get

But	hi	∘	h1,	hi	∘	h2,	…,	hi	∘	hr	are	r	distinct	elements	of	H,	and	H	has	exactly	r	elements,	so	they	are	all
the	elements	of	H	(that	is,	they	are	h1,	…,	hr,	possibly	in	a	different	order).	So	the	factors	of	 i	(b(x))	are
the	same	as	 the	 factors	of	b(x),	merely	 in	a	different	order,	 and	 therefore	 i(b(x))	=	b(x).	 Since	 equal
polynomials	have	equal	coefficients,	hi	leaves	the	coefficients	of	b(x)	invariant.	Thus,	every	coefficient
of	b(x)	is	in	the	fixfield	of	H,	that	is,	in	I.

We	have	just	shown	that	[K	:	I]	≤	r.	For	the	opposite	inequality,	remember	that	by	Theorem	1,	[K	:
I]	is	equal	to	the	number	of	I-fixing	automorphisms	of	K.	But	there	are	at	least	r	such	automorphisms,
namely	h1,	…,	hr.	Thus,	[K	:	I]	≥	r,	and	we	are	done.	■

Theorem	3	If	I	is	the	fixfield	of	H,	then	H	is	the	fixer	of	I.

PROOF:	Let	I	be	the	fixfield	of	H,	and	I*	the	fixer	of	I.	It	follows	from	the	definitions	of	fixer	and
fixfield	that	H	⊆	I*.	We	will	prove	equality	by	showing	that	there	are	as	many	elements	in	H	as	in	I*.
By	the	lemma,	the	order	of	H	is	equal	to	[K	:	I].	By	Theorem	2,	I	is	the	fixfield	of	I*,	so	by	the	lemma
again,	the	order	of	I*	is	also	equal	to	[K	:	I].	■

It	follows	immediately	from	Theorems	2	and	3	that	there	is	a	one-to-one	correspondence	between
the	subgroups	of	Gal(K	:	F)	and	the	intermediate	fields	between	K	and	F.	This	correspondence,	which
matches	 every	 subgroup	with	 its	 fixfield	 (or,	 equivalently,	 matches	 every	 intermediate	 field	 with	 its
fixer)	 is	 called	 a	Galois	 correspondence.	 It	 is	 worth	 observing	 that	 larger	 subfields	 correspond	 to
smaller	subgroups;	that	is,

As	an	example,	we	have	seen	that	the	Galois	group	of	 ( ,	 )	over	 	is	G	=	{ε,	α,	β,	γ}	with
the	table	given	on	page	325.	This	group	has	exactly	five	subgroups—namely,	{ε},	{ε,	α},	{ε,	β},	{ε,	γ},
and	the	whole	group	G.	They	may	be	represented	in	the	“inclusion	diagram”:

On	the	other	hand,	there	are	exactly	five	fields	intermediate	between	 	and	 ( ,	 ),	which	may
be	represented	in	the	inclusion	diagram:



If	H	is	a	subgroup	of	any	galois	group,	let	H°	designate	the	fixfield	of	H.	The	subgroups	of	G	 in
our	example	have	the	following	fixfields:

(This	 is	 obvious	 by	 inspection	 of	 the	 way	 ε,	 α,	 β,	 and	 γ	 were	 defined	 on	 page	 325.)	 The	 Galois
correspondence,	for	this	example,	may	therefore	be	represented	as	follows:

In	order	to	effectively	tie	in	subgroups	of	G	with	extensions	of	the	field	F,	we	need	one	more	fact,
to	be	presented	next.

Suppose	E	⊆	I	⊆	K,	where	K	is	a	root	field	over	E	and	I	is	a	root	field	over	E.	(Hence	by	Theorem
8	 of	 Chapter	 31,	K	 is	 a	 root	 field	 over	 I.)	 If	 h	∈	Gal(K	 :	E),	h	 is	 an	 automorphism	 of	K	 fixing	E.
Consider	the	restriction	of	h	to	I,	that	is,	h	restricted	to	the	smaller	domain	I.	It	is	an	isomorphism	with
domain	I	fixing	E,	so	by	Rule	(i)	given	at	the	beginning	of	this	chapter,	it	is	an	automorphism	of	I,	still
fixing	E.	We	have	just	shown	that	if	h	∈	Gal(K	:	E),	then	the	restriction	of	h	to	I	is	in	Gal(I	:	E).	This
permits	us	to	define	a	function	μ	:	Gal(K	:	E)	→	Gal(I	:	E)	by	the	rule

μ(h)	=	the	restriction	of	h	to	I

It	is	very	easy	to	check	that	μ	is	a	homomorphism.	μ	is	surjective,	because	every	E-fixing	automorphism
of	I	can	be	extended	to	an	E-fixing	automorphism	of	K,	by	Theorem	6	in	Chapter	31.

Finally,	if	h	∈	Gal(K	:	E),	the	restriction	of	h	to	I	is	the	identity	function	iff	h(x)	=	x	for	every	x	∈	I,
that	is,	iff	h	fixes	I.	This	proves	that	the	kernel	of	μ	is	Gal(K	:	I).

To	recapitulate:	μ	is	a	homomorphism	from	Gal(K	:	E)	onto	Gal(I	:	E)	with	kernel	Gal(K	:	I).	By
the	FHT,	we	immediately	conclude	as	follows:

Theorem	4	Suppose	E	⊆	I	⊆	K,	where	I	is	a	root	field	over	E	and	K	is	a	root	field	over	E.	Then

It	follows,	in	particular,	that	Gal(K	:	I)	is	a	normal	subgroup	of	Gal(K	:	E).

EXERCISES

†	A.	Computing	a	Galois	Group
1 Show	that	 (i,	 )	is	the	root	field	of	(x2	+	1)(x2	−	2)	over	 .
#	2 Find	the	degree	of	 (i,	 )	over	 .



3 List	the	elements	of	Gal( (i,	 )	:	 )	and	exhibit	its	table.
4 Write	the	inclusion	diagram	for	the	subgroups	of	Gal( (i,	 )	:	 ),	and	the	inclusion	diagram	for	the
fields	intermediate	between	 	and	 (i,	 ).	Indicate	the	Galois	correspondence.

†	B.	Computing	a	Galois	Group	of	Eight	Elements
1 Show	that	 ( ,	 ,	 )	is	the	root	field	of	(x2	–	2)(x2	–	3)(x2	−	5)	over	 .
2 Show	that	the	degree	of	 ( ,	 ,	 )	over	 	is	8.
3 List	the	eight	elements	of	G	=	Gal( ( ,	 ,	 )	:	 )	and	write	its	table.
4 List	the	subgroups	of	G.	(By	Lagrange’s	theorem,	any	proper	subgroup	of	G	has	either	two	or	four
elements.)
5 For	each	subgroup	of	G,	find	its	fixfield.
6 Indicate	the	Galois	correspondence	by	means	of	a	diagram	like	the	one	on	page	329.

†	C.	A	Galois	Group	Equal	to	S3
1 Show	that	 ( ,	i )	is	the	root	field	of	x3	–	2	over	 ,	where	 	designates	the	real	cube	root	of	2.
(HINT:	Compute	the	complex	cube	roots	of	unity.)
2 Show	that	[ ( )	:	 ]	=	3.
3 Explain	why	x2	+	3	 is	 irreducible	over	 ( ),	 then	show	that	 [ ( ,	 i ):	 ( )]	=	2.	Conclude
that	[ ( ,	i )	:	 ]	=	6.
4 Use	part	3	to	explain	why	Gal( ( ,	 )	:	 )	has	six	elements.	Then	use	the	discussion	following
Rule	(ii)	on	page	323	to	explain	why	every	element	of	Gal( ( ,	 i )	 :	 )	may	be	 identifed	with	a
permutation	of	the	three	cube	roots	of	2.
5 Use	part	4	to	prove	that	Gal( ( ,	i )	:	 )	≅	S3.

†	D.	A	Galois	Group	Equal	to	D4

If	α	=	 	 is	a	real	fourth	root	of	2,	 then	the	four	fourth	roots	of	2	are	±α	and	±iα.	Explain	parts	1–6,
briefly	but	carefully:
#	1	 (α,	i)	is	the	root	field	of	x4	−	2	over	 .
2	[ (α)	:	 ]	=	4.
3	i	∉	 (α);	hence	[ (α,	i)	:	 (α)]	=	2.
4	[ (α,	i)	:	 ]	=	8.
5	{1,	α,	α2,	α3,	i,	iα,	iα2,	iα3}	is	a	basis	for	 (α,	i)	over	 .
6	 Any	 -fixing	 automorphism	 h	 of	 (α,	 i)	 is	 determined	 by	 its	 effect	 on	 the	 elements	 in	 the	 basis.
These,	in	turn,	are	determined	by	h(α)	and	h(i).
7	Explain:	h(α)	must	be	a	fourth	root	of	2	and	h(i)	must	be	equal	to	±i.	Combining	the	four	possibilities
for	h(α)	with	the	two	possibilities	for	h(i)	gives	eight	possible	automorphisms.	List	them	in	the	format

8	Compute	 the	 table	of	 the	group	Gal( (α,	i)	:	 )	and	show	that	 it	 is	 isomorphic	 to	D4,	 the	group	of



symmetries	of	the	square.

†	E.	A	Cyclic	Galois	Group
#	1	Describe	the	root	field	K	of	x7	−	1	over	 .	Explain	why	[K	:	 ]	=	6.
2	Explain:	If	α	is	a	primitive	seventh	root	of	unity,	any	h	∈	Gal(K	:	 )	must	send	α	to	a	seventh	root	of
unity.	In	fact,	h	is	determined	by	h(α).
3	Use	part	2	 to	 list	explicitly	 the	six	elements	of	Gal(K	 :	 ).	Then	write	 the	 table	of	Gal(K	 :	 )	and
show	that	it	is	cyclic.
4	List	all	the	subgroups	of	Gal(K	:	 ),	with	their	fixfields.	Exhibit	the	Galois	correspondence.
5	Describe	the	root	field	L	of	x6	−	1	over	 ,	and	show	that	[L	:	 ]	=	2.	Explain	why	it	follows	that	there
are	no	intermediate	fields	between	 	and	L	(except	for	 	and	L	themselves).
#	6	Let	L	be	the	root	field	of	x6	–	2	over	 .	List	the	elements	of	Gal(L	:	 )	and	write	its	table.

†	F.	A	Galois	Group	Isomorphic	to	S5
Let	a(x)	=	x5	−	4x4	+	2x	+	2	∈	 [x],	and	let	r1,	…,	r5	be	the	roots	of	a(x)	in	 .	Let	K	 (r1,	…,	r5)	be	the
root	field	of	a(x)	over	 .
Prove:	parts	1–3:
1	a(x)	is	irreducible	in	 ⌈x⌉.
2	a(x)	has	 three	real	and	two	complex	roots.	 [HINT:	Use	calculus	 to	sketch	the	graph	of	y	=	a(x),	and
show	that	it	crosses	the	x	axis	three	times.]
3	If	r1	denotes	a	real	root	of	a(x),	[ (r1)	:	 ]	=	5.	Use	this	to	prove	that	[K	:	 ]	is	a	multiple	of	5.
4	Use	part	3	and	Cauchy’s	theorem	(Chapter	13,	Exercise	E)	to	prove	that	there	is	an	element	α	of	order
5	in	Gal(K	:	 ).	Since	α	may	be	identified	with	a	permutation	of	{r1,	…,	r5},	explain	why	it	must	be	a
cycle	of	length	5.	(HINT:	Any	product	of	disjoint	cycles	on	{r1,	…,	r5}	has	order	≠	5.)
5	Explain	why	there	is	a	transposition	in	Gal	(K	:	 ).	[It	permutes	the	conjugate	pair	of	complex	roots
of	a(x).]
6	Prove:	Any	subgroup	of	S5	which	contains	a	cycle	of	 length	5	and	a	 transposition	must	contain	all
possible	transpositions	in	S5,	hence	all	of	S5.	Thus,	Gal(K	:	 )	=	S5.

G.	Shorter	Questions	Relating	to	Automorphisms	and	Galois	Groups
Let	F	be	a	field,	and	K	a	finite	extension	of	F.	Suppose	a,	b	∈	K.	Prove	parts	1–3:

1	If	an	automorphism	h	of	K	fixes	F	and	a,	then	h	fixes	F(a).
2	F(a,	b)*	=	F(a)*	 	F(b)*.
3	Aside	from	the	identity	function,	there	are	no	 -fixing	automorphisms	of	 ( ).	[HINT:	Note	that	 (

)	contains	only	real	numbers.]
4	Explain	why	the	conclusion	of	part	3	does	not	contradict	Theorem	1.
In	the	next	three	parts,	let	ω	be	a	primitive	pth	root	of	unity,	where	p	is	a	prime.

5	Prove:	If	h	∈	Gal( (ω)	:	 ),	then	h(ω)	=	ωk	for	some	k	where	1	≤	k	≤	p	−	1.



6	Use	part	5	to	prove	that	Gal( (ω)	:	 )	is	an	abelian	group.
7	Use	part	5	to	prove	that	Gal( (ω)	:	 )	is	a	cyclic	group.

†	H.	The	Group	of	Automorphisms	of	C
1	Prove:	The	only	automorphism	of	 	is	the	identity	function.	[HINT:	If	h	is	an	automorphism,	h(1)	=	1;
hence	h(2)	=	2,	and	so	on.]
2	 Prove:	 Any	 automorphism	 of	 	 sends	 squares	 of	 numbers	 to	 squares	 of	 numbers,	 hence	 positive
numbers	to	positive	numbers.
3	Using	part	2,	prove	that	if	h	is	any	automorphism	of	 ,	a	<	b	implies	h(a)	<	h(b).
#	4	Use	parts	1	and	3	to	prove	that	the	only	automorphism	of	 	is	the	identity	function.
5	List	the	elements	of	Gal( 	:	 ).
6	Prove	 that	 the	 identity	 function	and	 the	function	a	+	bi	→	a	−	bi	are	 the	only	automorphisms	of	
which	fix	 .

I.	Further	Questions	Relating	to	Galois	Groups
Throughout	 this	 set	 of	 questions,	 let	K	 be	 a	 root	 field	 over	F,	 let	G	 =	Gal(K	 :	F),	 and	 let	 I	 be	 any
intermediate	field.	Prove	the	following:

1	I*	=	Gal(K	:	I)	is	a	subgroup	of	G.
2	If	H	is	a	subgroup	of	G	and	H°	=	{a	∈	K	:	π(a)	=	a	for	every	π	∈	H},	then	H°	is	a	subfield	of	K,	and	F
⊆	H°.
3	Let	H	be	the	fixer	of	I,	and	I′	the	fixfield	of	H.	Then	I	⊆	I′.	Let	I	be	the	fixfield	of	H,	and	I*	the	fixer
of	I.	Then	H	⊆	I*.
#	4	Let	I	be	a	normal	extension	of	F	(that	is,	a	root	field	of	some	polynomial	over	F).	If	G	is	abelian,
then	Gal(K	:	I)	and	Gal(I	:	F)	are	abelian.	(HINT:	Use	Theorem	4.)

5	Let	 I	 be	 a	normal	 extension	of	F.	 If	G	 is	 a	 cyclic	group,	 then	Gal(K	 :	 I)	 and	Gal(I	 :	F)	 are	 cyclic
groups.
6	 If	G	 is	 a	 cyclic	 group,	 there	 exists	 exactly	 one	 intermediate	 field	 I	 of	 degree	 k,	 for	 each	 integer	 k
dividing	[K	:	F].

†	J.	Normal	Extensions	and	Normal	Subgroups
Suppose	F	⊆	K,	where	K	is	a	normal	extension	of	F.	(This	means	simply	that	K	is	the	root	field	of	some
polynomial	in	F[x]:	see	Chapter	31,	Exercise	K.)	Let	I1	⊆	I2	be	intermediate	fields.

1	Deduce	from	Theorem	4	that,	if	I2	is	a	normal	extension	of	I1,	then	 	is	a	normal	subgroup	of	 .
2	Prove	the	following	for	any	intermediate	field	I:	Let	h	∈	Gal	(K	:	F),	g	∈	I*,	a	∈	I,	and	b	=	h(a).	Then
[h	∘	g	∘	h−	1](b)	=	b.	Conclude	that

hI*	h−	1	⊆	h(I)*

3	Use	part	2	to	prove	that	hI*	h−	1	=	h(I)*.



Two	intermediate	fields	I1	and	I2	are	called	conjugate	iff	there	is	an	automorphism	[i.e.,	an	element
i	∈	Gal(K	:	F)]	such	that	i(I1)	=	I2.

4	Use	part	3	 to	prove	 that	 I1	and	 I2	are	conjugate	 iff	 	and	 	are	conjugate	 subgroups	 in	 the	Galois
group.
5	Use	part	4	to	prove	that	for	any	intermediate	fields	I1	and	I2	:	iff	 	is	a	normal	subgroup	of	 ,	then	I2
is	a	normal	extension	of	I1.

Combining	parts	1	and	5	we	have:	I2	is	a	normal	extension	of	I1	iff	 	is	a	normal	subgroup	of	 .
(Historically,	this	result	is	the	origin	of	the	word	“normal”	in	the	term	“normal	subgroup.”)



CHAPTER

THIRTY-THREE

SOLVING	EQUATIONS	BY	RADICALS

In	 this	 final	chapter,	Galois	 theory	will	be	used	explicitly	 to	answer	practical	questions	about	solving
equations.

In	 the	 introduction	 to	 this	 book	 we	 saw	 that	 classical	 algebra	 was	 devoted	 largely	 to	 finding
methods	for	solving	polynomial	equations.	The	quadratic	formula	yields	the	solutions	of	every	equation
of	 degree	 2,	 and	 similar	 formulas	 have	 been	 found	 for	 polynomials	 of	 degrees	 3	 and	 4.	 But	 every
attempt	 to	 find	 explicit	 formulas,	 of	 the	 same	 kind	 as	 the	 quadratic	 formula,	 which	 would	 solve	 a
general	equation	of	degree	5	or	higher	ended	in	failure.	The	reason	for	this	was	finally	discovered	by	the
young	Galois,	who	showed	that	an	equation	is	solvable	by	the	kind	of	explicit	formula	we	have	in	mind
if	and	only	if	its	group	of	symmetries	has	certain	properties.	The	group	of	symmetries	is,	of	course,	the
Galois	group	which	we	have	already	defined,	and	the	required	group	properties	will	be	formulated	in
the	next	few	pages.

Galois	 showed	 that	 the	 groups	 of	 symmetries	 of	 all	 equations	 of	 degree	 ≤4	 have	 the	 properties
needed	for	solvability,	whereas	equations	of	degree	5	or	more	do	not	always	have	them.	Thus,	not	only
is	the	classical	quest	for	radical	formulas	to	solve	all	equations	of	degree	>	4	shown	to	be	futile,	but	a
criterion	 is	made	 available	 to	 test	 any	 equation	 and	 determine	 if	 it	 has	 solutions	 given	 by	 a	 radical
formula.	All	this	will	be	made	clear	in	the	following	pages.

Every	quadratic	equation	ax2	+	bx	+	c	=	0	has	its	roots	given	by	the	formula

Equations	of	degree	3	and	4	can	be	solved	by	similar	formulas.	For	example,	the	cubic	equation	x3	+	ax
+	b	=	0	has	a	solution	given	by

Such	 expressions	 are	 built	 up	 from	 the	 coefficients	 of	 the	 given	 polynomials	 by	 repeated	 addition,



subtraction,	multiplication,	division,	and	taking	roots.	Because	of	their	use	of	radicals,	they	are	called
radical	expressions	or	radical	formulas.	A	polynomial	a(x)	is	solvable	by	radicals	 if	 there	is	a	radical
expression	giving	its	roots	in	terms	of	its	coefficients.

Let	 us	 return	 to	 the	 example	 of	x3	 +	ax	 +	b	 =	 0,	where	a	 and	b	 are	 rational,	 and	 look	 again	 at
Formula	(1).	We	may	 interpret	 this	 formula	 to	 assert	 that	 if	we	 start	with	 the	 field	of	 coefficients	 ,
adjoin	the	square	root	 ,	then	adjoin	the	cube	roots	 ,	we	reach	a	field	in	which	x3	+	ax
+	b	=	0	has	its	roots.

In	general,	to	say	that	the	roots	of	a(x)	are	given	by	a	radical	expression	is	the	same	as	saying	that
we	can	extend	the	field	of	coefficients	of	a(x)	by	successively	adjoining	nth	roots	(for	various	n),	and	in
this	way	obtain	a	field	which	contains	the	roots	of	a(x).	We	will	express	this	notion	formally	now,	in	the
language	of	field	theory.

F(c1,	…,	cn)	is	called	a	radical	extension	of	F	if,	for	each	i,	some	power	of	ci	is	in	F(c1,	…,	ci	−	1).
In	other	words,	F(c1,	…,	cn)	is	an	iterated	extension	of	F	obtained	by	successively	adjoining	nth	roots,
for	various	n.	We	say	that	a	polynomial	a(x)	in	F[x]	is	solvable	by	radicals	if	there	is	a	radical	extension
of	F	containing	all	the	roots	of	a(x),	that	is,	containing	the	root	field	of	a(x).

To	deal	effectively	with	nth	roots	we	must	know	a	little	about	them.	To	begin	with,	the	nth	roots	of
1,	called	nth	roots	of	unity,	are,	of	course,	the	solutions	of	xn	−	1	=	0.	Thus,	for	each	n,	there	are	exactly
n	 nth	 roots	 of	 unity.	 As	 we	 shall	 see,	 everything	 we	 need	 to	 know	 about	 roots	 will	 follow	 from
properties	of	the	roots	of	unity.

In	 	the	nth	roots	of	unity	are	obtained	by	de	Moivre’s	theorem.	They	consist	of	a	number	ω	and	its
first	n	 powers:	 1	 =	ω0,	ω,	ω2,	…,	ωn	−	 1.	 We	 will	 not	 review	 de	 Moivre’s	 theorem	 here	 because,
remarkably,	the	main	facts	about	roots	of	unity	are	true	in	every	field	of	characteristic	zero.	Everything
we	need	to	know	emerges	from	the	following	theorem:

Theorem	1	Any	finite	group	of	nonzero	elements	in	a	field	is	a	cyclic	group.	(The	operation	in	the
group	is	the	field’s	multiplication.)

PROOF:	If	F*	denotes	the	set	of	nonzero	elements	of	F,	suppose	that	G	⊆	F*,	and	that	G,	with	the
field’s	“multiply”	operation,	is	a	group	of	n	elements.	We	will	compare	G	with	 n	and	show	that	G,	like	
n,	has	an	element	of	order	n	and	is	therefore	cyclic.

For	any	integer	k,	let	g(k)	be	the	number	of	elements	of	order	k	in	G,	and	let	z(k)	be	the	number	of
elements	of	order	k	in	 n.	For	every	positive	integer	k	which	is	a	factor	of	n,	the	equation	xk	=	1	has	at
most	k	solutions	in	F;	thus,

(*)	G	contains	at	most	k	elements	whose	order	is	a	factor	of	k.

If	G	has	an	element	a	of	order	k,	then	〈a〉	=	{e,	a,	a2,	…,	ak	−	1)	are	all	the	distinct	elements	of	G	whose
order	is	a	factor	of	k.	[By	(*),	there	cannot	be	any	others.]	In	 n,	the	subgroup

contains	all	the	elements	of	 n	whose	order	is	a	factor	of	k.
Since	〈a〉	 and	〈n/k〉	 are	 cyclic	 groups	with	 the	 same	 number	 of	 elements,	 they	 are	 isomorphic;

thus,	the	number	of	elements	of	order	k	in	〈a〉	is	the	same	as	the	number	of	elements	of	order	k	in	〈n/k〉.



Thus,	g(k)	=	z(k).
Let	us	recapitulate:	if	G	has	an	element	of	order	k,	then	g(k)	=	z(k);	but	if	G	has	no	such	elements,

then	g(k)	=	0.	Thus,	for	each	positive	integer	k	which	is	a	factor	of	n,	the	number	of	elements	of	order	k
in	G	is	less	than	(or	equal	to)	the	number	of	elements	of	order	k	in	 n.

Now,	 every	 element	 of	G	 (as	well	 as	 every	 element	 of	 n)	 has	 a	well-defined	 order,	which	 is	 a
divisor	of	n.	Imagine	the	elements	of	both	groups	to	be	partitioned	into	classes	according	to	their	order,
and	compare	the	classes	in	G	with	the	corresponding	classes	in	 n.	For	each	k,	G	has	as	many	or	fewer
elements	of	order	k	 than	 n	 does.	So	 if	G	 had	no	 elements	 of	 order	n	 (while	 n	does	 have	 one),	 this
would	mean	that	G	has	fewer	elements	than	 n,	which	is	false.	Thus,	G	must	have	an	element	of	order	n,
and	therefore	G	is	cyclic.	■

The	nth	 roots	of	unity	 (which	are	contained	 in	F	or	a	 suitable	extension	of	F)	obviously	 form	a
group	with	respect	to	multiplication.	By	Theorem	1,	it	is	a	cyclic	group.	Any	generator	of	this	group	is
called	a	primitive	nth	root	of	unity.	Thus,	if	ω	is	a	primitive	nth	root	of	unity,	the	set	of	all	the	nth	roots
of	unity	is

1,	ω,	ω2,	…,	ωn	−	1

If	ω	is	a	primitive	nth	root	of	unity,	F(ω)	is	an	abelian	extension	of	F	in	the	sense	that	g	∘	h	=	h	∘	g
for	any	two	F-fixing	automorphisms	g	and	h	of	F(ω)).	Indeed,	any	automorphism	must	obviously	send
nth	roots	of	unity	to	nth	roots	of	unity.	So	if	g(ω)	=	ωr	and	h(ω)	=	ωs,	then	g	∘	h(ω)	=	g(ωs)	=	ωrs	and
analogously,	h	∘	g(ω)	=	ωrs.	Thus,	g	∘	h(ω)	=	h	∘	g(ω).	Since	g	and	h	fix	F,	and	every	element	of	F(ω)
is	a	linear	combination	of	powers	of	ω	with	coefficients	in	F,	g	∘	h	=	h	∘	g.

Now,	let	F	contain	a	primitive	nth	root	of	unity,	and	therefore	all	the	nth	roots	of	unity.	Suppose	a
∈	F,	and	a	has	an	nth	root	b	in	F.	It	follows,	then,	that	all	the	nth	roots	of	a	are	in	F,	for	they	are	b,	bω,
bω2,	…,	bωn	−	1.	Indeed,	if	c	is	any	other	nth	root	of	a,	then	clearly	c/b	is	an	nth	root	of	1,	say	ωr;	hence
c	=	bω4.	We	may	infer	from	the	above	that	if	F	contains	a	primitive	nth	root	of	unity,	and	b	 is	an	nth
root	of	a,	then	F(b)	is	the	root	field	of	xn	−	a	over	F.

In	particular,	F(b)	is	an	abelian	extension	of	F.	Indeed,	any	F-fixing	automorphism	of	F(b)	must
send	nth	roots	of	a	to	nth	roots	of	a:	for	if	c	is	any	nth	root	of	a	and	g	is	an	F-fixing	automorphism,	then
g(c)n	=	g(cn)	=	g(a)	=	a;	hence	g(c)	is	an	nth	root	of	a.	So	if	g(b)	=	bωr	and	h(b)	=	bωs,	then

g	∘	h(b)	=	g(bωs)	=	bωrωs	=	bωr	+	s

and

h	∘	g(b)	=	h(bωr)	=	bωsωr	=	bwr	+	s

hence	g	∘	h(b)	=	h	∘	g(b).	Since	g	and	h	 fix	F,	 and	every	element	 in	F(b)	 is	a	 linear	combination	of
powers	of	b	with	coefficients	in	F,	it	follows	that	g	∘	h	=	h	∘	g.

If	a(x)	is	in	F[x],	remember	that	a(x)	is	solvable	by	radicals	just	as	long	as	there	exists	some	radical
extension	of	F	containing	the	roots	of	a(x).	[Any	radical	extension	of	F	containing	the	roots	of	a(x)	will
do.]	Thus,	we	may	as	well	 assume	 that	 any	 radical	 extension	used	here	begins	by	adjoining	 to	F	 the
appropriate	 roots	 of	 unity;	henceforth	we	will	make	 this	 assumption.	 Thus,	 if	K	 =	F(c1,	…,	 cn)	 is	 a
radical	extension	of	F,	then



is	 a	 sequence	 of	 simple	 abelian	 extensions.	 (The	 extensions	 are	 all	abelian	 by	 the	 comments	 in	 the
preceding	three	paragraphs.)

Still,	this	is	not	quite	enough	for	our	purposes:	In	order	to	use	the	machinery	which	was	set	up	in
the	previous	chapter,	we	must	be	able	to	say	that	each	field	in	(2)	 is	a	root	field	over	F.	This	may	be
accomplished	as	follows:	Suppose	we	have	already	constructed	the	extensions	I0	⊆	I1	⊆	⋯	⊆	Iq	in	(2)
so	that	Iq	is	a	root	field	over	F.	We	must	extend	Iq	to	Iq	+	1,	so	Iq	+	1	is	a	root	field	over	F.	Also,	Iq	+	1
must	include	the	element	cq	+	1,	which	is	the	nth	root	of	some	element	a	∈	Iq.

Let	H	 =	 {h1,	 …,	 hr)	 be	 the	 group	 of	 all	 the	 F-fixing	 automorphisms	 of	 Iq,	 and	 consider	 the
polynomial

b(x)	=	[xn	−	h1(a)][xn	−	h2(a)]	⋯	[xn	−	hr(a)]

By	 the	proof	of	 the	 lemma	on	page	327,	one	factor	of	b(x)	 is	 (xn	−	a);	hence	cq	 +	 1	 is	 a	 root	of	b(x).
Moreover,	by	the	same	lemma,	every	coefficient	of	b(x)	 is	 in	 the	fixfield	of	H,	 that	 is,	 in	F.	We	now
define	Iq	+	1	to	be	the	root	field	of	b(x)	over	F.	Since	all	the	roots	of	b(x)	are	nth	roots	of	elements	in	Iq,
it	 follows	 that	 Iq	 +	 1	 is	 a	 radical	 extension	 of	 Iq.	 The	 roots	may	 be	 adjoined	 one	 by	 one,	 yielding	 a
succession	of	abelian	extensions,	as	discussed	previously.	To	conclude,	we	may	assume	in	(2)	that	K	is
a	root	field	over	F.

If	G	denotes	the	Galois	group	of	K	over	F,	each	of	these	fields	Ik	has	a	fixer	which	is	a	subgroup	of
G.	These	fixers	form	a	sequence

For	each	k,	by	Theorem	4	of	Chapter	32,	 	is	a	normal	subgroup	of	 ,	and	 	≅	Gal(Ik	 +	 1:	 Ik
which	is	abelian	because	is	an	abelian	extension	of	Ik.	The	following	definition	was	invented	precisely
to	account	for	this	situation.

A	group	G	is	called	solvable	if	it	has	a	sequence	of	subgroups	{e}	=	H0	⊆	H1	⊆	⋯	⊆	Hm	=	G	such
that	for	each	k,	Gk	is	a	normal	subgroup	of	Gk	+	1	and	Gk	+	1/Gk	is	abelian.
We	have	shown	that	if	K	is	a	radical	extension	of	F,	then	Gal(K:	F)	is	a	solvable	group.	We	wish	to

go	 further	 and	prove	 that	 if	a(x)	 is	 any	polynomial	which	 is	 solvable	by	 radicals,	 its	Galois	group	 is
solvable.	To	do	so,	we	must	first	prove	that	any	homomorphic	image	of	a	solvable	group	is	solvable.	A
key	 ingredient	 of	 our	 proof	 is	 the	 following	 simple	 fact,	 which	was	 explained	 on	 page	 152:	G/H	 is
abelian	iff	H	contains	all	the	products	xyx−	1y	−	1	for	all	x	and	y	in	G.	(The	products	xyx−	1y−	1	are	called
“commutators”	of	G.)

Theorem	2	Any	homomorphic	image	of	a	solvable	group	is	a	solvable	group.

PROOF:	Let	G	be	a	solvable	group,	with	a	sequence	of	subgroups

{e)	⊆	H1	⊆	⋯	⊆	Hm	=	G



as	specified	in	 the	definition.	Let	 f:	G	→	X	be	a	homomorphism	from	G	onto	a	group	X.	Then	 f(H0),
f(H1),	…,	f(Hm)	are	subgroups	of	X,	and	clearly	{e}	⊆	f(H0)	⊆	f(H1)	⊆	⋯	⊆	f(Hm)	=	X.	For	each	i	we
have	the	following:	if	f(a)	∈	f(Hi)	and	f(x)	∈	f(Hi	+	1),	then	a	∈	Hi	and	x	∈	Hi	+	1;	hence	xax−	1	∈	Hi	and
therefore	 f(x)f(a)f(x)−	 1	∈	 f(Hi).	 So	 f(Hi)	 is	 a	 normal	 subgroup	of	 f(Hi	 +	 1).	 Finally,	 since	Hi	 +	 1/Hi	 is
abelian,	every	commutator	xyx−	1y−	1	(for	all	x	and	y	in	Hi	+	1)	is	in	Hi;	hence	every	f(x)f(y)f(x)−	1f(y)−	1

is	in	f(Hi).	Thus,	f(Hi	+	1)/f(Hi)	is	abelian.	■
Now	we	can	prove	the	main	result	of	this	chapter:

Theorem	3	Let	a(x)	be	a	polynomial	over	a	field	F.	If	a(x)	is	solvable	by	radicals,	its	Galois	group
is	a	solvable	group.

PROOF:	By	definition,	if	K	 is	the	root	field	of	a(x),	 there	 is	an	extension	by	radicals	F(c1,	…,	cn)
such	 that	F	⊆	K	⊆	F	 (c1,	…,	 cn).	 It	 follows	 by	 Theorem	 4	 of	 Chapter	 32	 that	Gal(F(c1,	 …,	 cn):
F)/Gal(F(c1,	…,	cn):	K)	≅	Gal(K:	F);	 hence	 by	 that	 theorem,	Gal(K:	F)	 is	 a	 homomorphic	 image	 of
Gal(F(c1,	…,	cn):	F)	which	we	know	to	be	solvable.	Thus,	by	Theorem	2	Gal(K:	F)	is	solvable.	■

Actually,	the	converse	of	Theorem	3	is	true	also.	All	we	need	to	show	is	that,	if	K	is	an	extension
of	F	whose	Galois	group	over	F	is	solvable,	then	K	may	be	further	extended	to	a	radical	extension	of	F.
The	details	are	not	too	difficult	and	are	assigned	as	Exercise	E	at	the	end	of	this	chapter.

Theorem	 3	 together	 with	 its	 converse	 say	 that	 a	 polynomial	 a(x)	 is	 solvable	 by	 radicals	 iff	 its
Galois	group	is	solvable.

We	bring	 this	 chapter	 to	 a	 close	by	 showing	 that	 there	 exist	groups	which	are	not	 solvable,	 and
there	exist	polynomials	having	such	groups	as	their	Galois	group.	In	other	words,	there	are	unsolvable
polynomials.	First,	here	is	an	unsolvable	group:

Theorem	4	The	symmetric	group	S5	is	not	a	solvable	group.

PROOF:	Suppose	S5	has	a	sequence	of	subgroups

{e}	=	H0	⊆	H1	⊆	…	⊆	Hm	=	S5

as	in	the	definition	of	solvable	group.	Consider	the	subset	of	S5	containing	all	the	cycles	(ijk)	of	length
3.	We	will	show	that	if	Hi	contains	all	the	cycles	of	length	3,	so	does	the	next	smaller	group	Hi	−	1.	 It
would	follow	in	m	steps	that	H0	=	{e}	contains	all	the	cycles	of	length	3,	which	is	absurd.

So	 let	Hi	contain	all	 the	cycles	of	 length	3	 in	S5.	Remember	 that	 if	α	and	β	are	 in	Hi,	 then	 their
commutator	αβα−1β−1	is	in	Hi	−	1.	But	any	cycle	(ijk)	is	equal	to	the	commutator

(ilj)(jkm)(ilj)−1(jkm)−1	=	(ilj)(jkm)(jli)(mkj)	=	(ijk)

hence	every	(ijk)	is	in	Hi	−	1,	as	claimed.	■
Before	drawing	our	argument	toward	a	close,	we	need	to	know	one	more	fact	about	groups;	it	 is

contained	in	the	following	classical	result	of	group	theory:
Cauchy’s	theorem	Let	G	be	a	finite	group	of	n	elements.	If	p	is	any	prime	number	which	divides	n,

then	G	has	an	element	of	order	p.



For	example,	if	G	is	a	group	of	30	elements,	it	has	elements	of	orders	2,	3,	and	5.	To	give	our	proof
a	trimmer	appearance,	we	will	prove	Cauchy’s	theorem	specifically	for	p	=	5	(the	only	case	we	will	use
here,	anyway).	However,	the	same	argument	works	for	any	value	of	p.

PROOF:	Consider	all	possible	5-tuples	 (a,	b,	c,	d,	k)	 of	 elements	 of	G	whose	 product	abcdk	 =	e.
How	many	distinct	5-tuples	of	this	kind	are	there?	Well,	if	we	select	a,	b,	c,	and	d	at	random,	there	is	a
unique	k	=	d−1c−1b−1a−1	in	G	making	abcdk	=	e.	Thus,	there	are	n4	such	5-tuples.

Call	two	5-tuples	equivalent	if	one	is	merely	a	cyclic	permutation	of	the	other.	Thus,	(a,	b,	c,	d,	k)
is	equivalent	to	exactly	five	distinct	5-tuples,	namely,	(a,	b,	c,	d,	k),	(b,	c,	d,	k,	a),	(c,	d,	k,	a,	b),	(d,	k,	a,
b,	c)	and	(k,	a,	b,	c,	d).	The	only	exception	occurs	when	a	5-tuple	is	of	the	form	(a,	a,	a,	a,	a)	with	all	its
components	equal;	it	is	equivalent	only	to	itself.	Thus,	the	equivalence	class	of	any	5-tuple	of	the	form
(a,	a,	a,	a,	a)	has	a	single	member,	while	all	the	other	equivalence	classes	have	five	members.

Are	there	any	equivalence	classes,	other	than	{(e,	e,	e,	e,	e)},	with	a	single	member?	If	not,	then	5|
(n4	−	1)	[for	there	are	n4	5-tuples	under	consideration,	less	(e,	e,	e,	e,	e)];	hence	n4	≡	1	(mod	5).	But	we
are	assuming	that	5|n;	hence	n4	≡	0	(mod	5),	which	is	a	contradiction.

This	contradiction	shows	that	there	must	be	a	5-tuple	(a,	a,	a,	a,	a)	≠	(e,	e,	e,	e,	e)	such	that	aaaaa
=	a5	=	e.	Thus,	there	is	an	element	a	∈	G	of	order	5.	■

We	will	now	exhibit	a	polynomial	in	 [x]	having	S5	as	its	Galois	group	(remember	that	S5	is	not	a
solvable	group).

Let	a(x)	=	x5	−	5x	−	2.	By	Eisenstein’s	criterion,	a(x	+	2)	is	irreducible	over	 ;	hence	a(x)	also	is
irreducible	over	 .	By	elementary	calculus,	a{x)	has	a	single	maximum	at	(−1,	2),	a	single	minimum	at
(1,	−6),	 and	 a	 single	 point	 of	 inflection	 at	 (0,	−2).	 Thus	 (see	 figure),	 its	 graph	 intersects	 the	 x	 axis
exactly	three	times.	This	means	that	a(x)	has	three	real	roots,	r1,	r2,	and	r3,	and	therefore	two	complex
roots,	r4	and	r5,	which	must	be	complex	conjugates	of	each	other.

Let	K	denote	 the	root	 field	of	a(x)	over	 ,	and	G	 the	Galois	group	of	a(x).	As	we	have	already
noted,	every	element	of	G	may	be	identified	with	a	permutation	of	the	roots	r1,	r2,	r3,	r4,	r5	of	a(x),	so	G
may	be	viewed	as	a	subgroup	of	S5.	We	will	show	that	G	is	all	of	S5.

Now,	[ (r1):	 ]	=	5	because	r1	is	a	root	of	an	irreducible	polynomial	of	degree	5	over	 .	Since	[K:	
]	=	[K:	 (r1)][ (r1):	 ],	it	follows	that	5	is	a	factor	of	[K:	 ].	Then,	by	Cauchy’s	theorem,	G	contains

an	element	of	order	5.	This	element	must	be	a	cycle	of	length	5:	for	by	Chapter	8,	every	other	element
of	S5	is	a	product	of	two	or	more	disjoint	cycles	of	length	<5,	and	such	products	cannot	have	order	5.
(Try	the	typical	cases.)	Thus,	G	contains	a	cycle	of	length	5.



Furthermore,	 G	 contains	 a	 transposition	 because	 complex	 conjugation	 a	 +	 bi	 →	 a	 −	 bi	 is
obviously	a	 -fixing	automorphism	of	K;	it	interchanges	the	complex	roots	r4	and	r5	while	leaving	r1,
r2,	and	r3	fixed.

Any	 subgroup	G	⊆	 S5	 which	 contains	 a	 transposition	 τ	 and	 a	 cycle	 σ	 of	 length	 5	 necessarily
contains	all	the	transpositions.	(They	are	στσ−1,	σ2τσ−2,	σ3τσ−3,	σ4τσ−4,	and	their	products;	check	this	by
direct	computation!)	Finally,	 if	G	contains	all	 the	transpositions,	 it	contains	everything	else:	for	every
member	of	S5	is	a	product	of	transpositions.	Thus,	G	=	S5.

We	have	just	given	an	example	of	a	polynomial	a(x)	of	degree	5	over	 	whose	Galois	group	S5	is
not	solvable.	Thus,	a(x)	is	an	example	of	a	polynomial	of	degree	5	which	cannot	be	solved	by	radicals.
In	 particular,	 there	 cannot	 be	 a	 radical	 formula	 (on	 the	model	 of	 the	 quadratic	 formula)	 to	 solve	 all
polynomial	equations	of	degree	5,	since	this	would	imply	that	every	polynomial	equation	of	degree	5
has	a	radical	solution,	and	we	have	just	exhibited	one	which	does	not	have	such	a	solution.

In	Exercise	B	it	is	shown	that	S3,	S4,	and	all	their	subgroups	are	solvable;	hence	every	polynomial
of	degree	≤4	is	solvable	by	radicals.

EXERCISES

A.	Finding	Radical	Extensions
1	Find	radical	extensions	of	 	containing	the	following	complex	numbers:

(a)
(b)
(c)



2	Show	that	the	following	polynomials	in	 [x]	are	not	solvable	by	radicals:
#	(a) 2x5	−	5x4	+	5
(b) x5	−	4x2	+	2
(c) x5	−	4x4	+	2x	+	2

3	Show	that	a(x)	=	x5	−	10x4	+	40x3	−	80x2	+	79x	−	30	is	solvable	by	radicals	over	 ,	and	give	its	root
field.	[HINT:	Compute	(x	−	2)5	−	(x	−	2).]
4	Show	that	ax8	+	bx6	+	cx4	+	dx2	+	e	is	solvable	by	radicals	over	any	field.	(HINT:	Let	y	=	x;	use	the	fact
that	every	fourth-degree	polynomial	is	solvable	by	radicals.)
5	 Explain	why	 parts	 3	 and	 4	 do	 not	 contradict	 the	 principal	 finding	 of	 this	 chapter:	 that	 polynomial
equations	of	degree	n	≥	5	do	not	have	a	general	solution	by	radicals.

†	B.	Solvable	Groups
Let	G	be	a	group.	The	symbol	H	 	G	is	commonly	used	as	an	abbreviation	of	“H	is	a	normal	subgroup
of	G.”	A	normal	series	of	G	is	a	finite	sequence	H0,	H1,	…,Hn	of	subgroups	of	G	such	that

{e}	=	H0	 	H1	 	⋯	 	Hn	=	G

Such	a	series	is	called	a	solvable	series	if	each	quotient	group	Hi	+	1/Hi	is	abelian.	G	is	called	a	solvable
group	if	it	has	a	solvable	series.
1	Explain	why	every	abelian	group	is,	trivially,	a	solvable	group.
2	Let	G	be	a	solvable	group,	with	a	solvable	series	H0,	…,	Hn.	Let	K	be	a	subgroup	of	G.	Show	that	J0	=
K	∩	H0,	…,	Jn	=	K	∩	Hn	is	a	normal	series	of	K.
#	3	Use	the	remark	immediately	preceding	Theorem	2	to	prove	that	J0,	…,	Jn	is	a	solvable	series	of	K.
4	Use	parts	2	and	3	to	prove:	Every	subgroup	of	a	solvable	group	is	solvable.
5	Verify	that	{ε}	⊆	{ε,	β,	δ}	⊆	S3	is	a	solvable	series	for	S3.	Conclude	that	S3,	and	all	of	its	subgroups,
are	solvable.
6	In	S4,	let	A4	be	the	group	of	all	the	even	permutations,	and	let

B	=	{ε,	(12)(34),	(13)(24),	(14)(23)}

Show	that	{ε}	⊆	B	⊆	A4	⊆	S4	 is	a	solvable	series	 for	S4.	Conclude	 that	S4	 and	all	 its	 subgroups	are
solvable.

The	next	three	sets	of	exercises	are	devoted	to	proving	the	converse	of	Theorem	3:	 If	 the	Galois
group	of	a(x)	is	solvable,	then	a(x)	is	solvable	by	radicals.

†	C.	pth	Roots	of	Elements	in	a	Field
Let	p	be	a	prime	number,	and	ω	a	primitive	pth	root	of	unity	in	the	field	F.
1	If	d	 is	any	root	of	xp	−	a	∈	F[x],	show	that	F(ω,	d)	 is	a	root	field	of	xp	−	a.	Suppose	xp	−	a	 is	not
irreducible	in	F[x].
2	Explain	why	xp	−	a	factors	in	F[x]	as	xp	−	a	=	p(x)f(x),	where	both	factors	have	degree	≤2.



#	3	If	deg	p(x)	=	m,	explain	why	the	constant	term	of	p(x)	(let	us	call	it	b)	is	equal	to	the	product	of	m
pth	roots	of	a.	Conclude	that	b	=	ωkdm	for	some	k.

4	Use	part	3	to	prove	that	bp	=	am.
5	Explain	why	m	and	p	are	relatively	prime.	Explain	why	it	follows	that	there	are	integers	s	and	t	such
that	sm	+	tp	=	1.
6	Explain	why	bsp	=	asm.	Use	this	to	show	that	(bsat)p	=	a.
7	Conclude:	If	xp	−	a	is	not	irreducible	in	F[x],	it	has	a	root	(namely,	bsat)	in	F.

We	have	proved:	xp	−	a	either	has	a	root	in.	F	or	is	irreducible	over	F.

†	D.	Another	Way	of	Defining	Solvable	Groups
Let	G	be	a	group.	The	symbol	H	 	G	should	be	read,	“H	is	a	normal	subgroup	of	G.”	A	maximal	normal
subgroup	of	G	is	an	H	 	G	such	that,	if	H	 	J	 	G,	then	necessarily	J	=	H	or	J	=	G.	Prove	the	following:

1	If	G	is	a	finite	group,	every	normal	subgroup	of	G	is	contained	in	a	maximal	normal	subgroup.
2	Let	f:	G	→	H	be	a	homomorphism.	If	J	 	H,	then	f−1(J)	<	G.
#	3	Let	K	 	G.	If	 	is	a	subgroup	of	G/K,	let	 	denote	the	union	of	all	the	cosets	which	are	members	of	

.	If	 	 	G/K,	then	 	 	G.	(Use	part	2.)
4	If	K	is	a	maximal	normal	subgroup	of	G,	then	G/K	has	no	nontrivial	normal	subgroups.	(Use	part	3.)
5	 If	 an	 abelian	 group	 G	 has	 no	 nontrivial	 subgroups,	 G	 must	 be	 a	 cyclic	 group	 of	 prime	 order.
(Otherwise,	choose	some	a	∈	G	such	that	〈a〉	is	a	proper	subgroup	of	G.)
6	If	H	 	K	 	G,	then	G/K	is	a	homomorphic	image	of	G/H.
#	7	Let	H	 	G,	where	G/H	is	abelian.	Then	G	has	subgroups	H0,	…,	Hq	such	that	H	=	H0	 	H1	 	⋯	 	Hq
=	G,	where	each	quotient	group	Hi	+	1/Hi	is	cyclic	of	prime	order.

It	follows	from	part	7	that	if	G	is	a	solvable	group,	then,	by	“filling	in	gaps,	”	G	has	a	normal	series
in	which	 all	 the	 quotient	 groups	 are	 cyclic	 of	 prime	 order.	 Solvable	 groups	 are	 often	 defined	 in	 this
fashion.

E.	If	Gal(K:	F)	Is	Solvable,	K	Is	a	Radical	Extension	of	F
Let	K	be	a	finite	extension	of	F,	where	K	is	a	root	field	over	F,	with	G	=	Gal(K:	F)	a	solvable	group.	As
remarked	in	the	text,	we	will	assume	that	F	contains	the	required	roots	of	unity.	By	Exercise	D,	let	H0,
…,	Hn	be	a	solvable	series	for	G	in	which	every	quotient	Hi	+	1/Hi	is	cyclic	of	prime	order.	For	any	i	=	1,
…,	n,	let	Fi.	and	Fi	+	1	be	the	fixfields	of	Hi	and	Hi	+	1.

1	Prove:	Fi	is	a	normal	extension	of	Fi	+	1,	and	[Fi:	Fi	+	1]	is	a	prime	p.
2	Let	π	be	a	generator	of	Gal(Fi:	Fi	+	1),	ω	a	pth	root	of	unity	in	Fi	+	1,	and	b	∈	Fi.	Set

c	=	b	+	ωπ−1(b)	+	ω2π−2(b)	+	⋯	+	ωp	−	1π−(p	−	1)(b)

Show	that	π(c)	=	ωc.
3	Use	part	2	to	prove	that	πk(cp)	=	cp	for	every	k,	and	deduce	from	this	that	cp	∈	Fi	+	1



4	Prove	that	Fi	is	the	root	field	of	xp	−	cp	over	Fi	+	1.
5	Conclude	that	K	is	a	radical	extension	of	F.



APPENDIX

A
REVIEW	OF	SET	THEORY

A	set	is	a	collection	of	objects.	The	objects	in	the	set	are	called	the	elements	of	the	set.	If	x	is	an	element
of	a	set	A,	we	denote	this	fact	by	writing	x	∈	A	(to	be	read	as	“x	is	an	element	of	A”).	On	the	other	hand,
if	x	is	not	an	element	of	A,	we	write	x	∉	A.	(This	should	be	read	as	“x	is	not	an	element	of	A.”)

Suppose	that	A	and	B	are	sets	and	that	A	is	a	part	of	B.	In	other	words,	suppose	every	element	of	A
is	an	element	of	B.	In	that	case,	we	call	A	a	subset	of	B	and	write	A	⊆	B.	We	say	that	A	and	B	are	equal
(and	we	write	“A	=	B”)	if	A	and	B	have	the	same	elements.	It	is	easy	to	see	that	if	A	⊆	B	and	B	⊆	A,
then	A	=	B.	And	conversely,	if	A	=	B,	then	A	⊆	5	and	B	⊆	A.

Sets	are	often	represented	pictorially	by	circular	or	oval	shapes.	The	fact	that	A	⊆	B	is	represented
as	in	the	following	figure:

Many	sets	can	easily	be	described	in	words;	for	example,	“the	set	of	all	the	positive	real	numbers,”	“the
set	of	all	the	integers,”	or	“the	set	of	all	 the	rational	numbers	between	1	and	2.”	However,	 it	 is	often
more	convenient	to	describe	a	set	in	symbols.	We	do	this	by	writing

{x:	________________}

Following	 the	colon,	we	name	 the	property	which	all	 the	elements	 in	 the	 set,	 and	no	other	elements,
have	in	common.	For	example,

{x:	x	∈	 	and	x	≤	2}

is	 the	 set	 of	 all	 the	 real	 numbers	 (elements	 of	 )	 which	 are	 less	 than	 or	 equal	 to	 2.	 We	 may	 also
symbolize	this	set	by

{x	∈	 :	x	≤	2}



to	be	read	as	“the	set	of	all	x	in	 	satisfying	x	≤	2.”
If	A	and	B	are	sets,	there	are	several	ways	of	forming	new	sets	from	A	and	B:

1. The	union	of	A	and	B	(denoted	by	A	 	B)	is	the	set	of	all	those	elements	which	are	elements	of	A	or
elements	of	B.	Here,	the	word	“or”	is	used	in	the	“inclusive”	sense:	An	element	x	is	in	A	 	B	if	x	is
in	A,	or	in	B,	or	in	both	A	and	B.	Thus,	A	 	B	is	the	shaded	area	in	the	figure:

2. The	intersection	of	A	and	B	(denoted	by	A	 	B)	is	the	set	of	all	those	elements	which	are	in	A	and	in
B.	Thus,	x	is	in	A	 	B	if	x	∈	A	and	x	∈	B.	The	set	A	 	B	 is	 represented	by	 the	shaded	area	 in	 the
figure:

3. The	difference	of	two	sets	is	defined	as	follows:	A	−	B	is	the	set	of	all	those	elements	which	are	in	A,
but	not	in	B.	Thus,	x	is	in	A	−	B	if	x	∈	A	and	x	∉	B.	The	set	A	−	B	is	the	shaded	area	in	the	figure:

In	short,

We	define	 the	 empty	 set	 to	 be	 the	 set	with	 no	 elements	 at	 all.	The	 empty	 set	 is	 denoted	 by	 the
symbol	0.

There	are	several	basic	identities	involving	the	set	operations	which	have	just	been	introduced.	As
an	example	of	how	to	prove	them,	we	give	a	proof	of	the	identity

A	 	B	=	B	 	A



PROOF:	We	need	to	show	that	every	element	in	A	 	B	is	in	B	 	A,	and	conversely,	that	every	element
in	B	 	A	is	in	A	 	B.	Well,	suppose	x	∈	A	 	B;	this	means	that	x	∈	A	or	x	∈	B.	But	this	is	the	same	as
saying:	x	∈	B	or	x	∈	A.	Thus,	x	∈	B	 	A.

The	same	reasoning	shows	that	if	x	∈	B	 	A,	then	x	∈	A	 	B.	■
Next,	we	prove	the	identity

A	 	(B	 	C)	=	(A	 	B)	 	(A	 	C)

PROOF:	First,	we	will	show	that	every	element	of	A	 	(B	 	C)	is	an	element	of	(A	 	B)	 	 (A	 	C).
Well,	suppose	x	∈	A	 	(B	 	C):	This	means	that

(i) x	∈	A,	and
(ii) x	∈	B	 	C.

From	(ii),	x	∈	B	or	x	∈	C.	If	x	∈	B,	then	from	(i),	x	∈	A	 	B.	If	x	∈	C,	then	from	(i),	x	∈	A	 	C.	In	either
case,	x	is	in	(A	 	B)	 	(A	 	C).

Conversely,	suppose	x	is	in	(A	 	B)	 	(A	 	C).	Then
(i) x	∈	A	 	B,	or
(ii) x	∈	A	 	C.

In	either	case,	x	∈	B	or	x	∈	C,	so	that	x	∈	B	 	C.	Also	in	either	case,	x	∈	A.	Thus,	x	∈	A	 	 (B	 	C).
We’re	done.	■

We	conclude	this	section	with	one	more	definition:	If	A	and	B	are	sets,	then	A	×	B	denotes	the	set
of	all	ordered	pairs	(a,	b),	where	a	∈	A	and	b	∈	B.	That	is,

A	×	B	=	{(a,	b):	a	∈	A	and	b	∈	B}

We	call	A	×	B	the	cartesian	product	of	A	and	B.	Note,	by	the	way,	that	(a,	b)	is	not	the	same	as	(b,	a).
Moreover,	(a,	b)	=	(c,	d)	if	a	=	c	and	b	=	d.	That	is,	two	ordered	pairs	are	equal	if	they	have	the	same
first	component	and	the	same	second	component.

EXERCISES
Prove	the	following:
1	If	A	⊆	B	and	B	⊆	C,	then	A	⊆	C.
2	If	A	=	B	and	B	=	C,	then	A	=	C.
3	A	⊆	A	 	B	and	B	⊆	A	 	B.
4	A	 	B	⊆	A	and	A	 	B	⊆	B.
5	A	 	B	=	B	 	A.
6	A	 	A	=	A	and	A	 	A	=	A.
7	A	 	(B	 	C)	=	(A	 	B)	 	(A	 	C).
8	A	 	0	=	A	and	A	 	0	=	0.
9	A	 	(A	 	B)	=	A.

10.	A	 	(A	 	B)	=	A.
11	A	 	(B	−	C)	=	(A	 	B)	−	C.
12	(A	 	B)	−	C	=	(A	−	C)	 	(B	−	C).
13	If	A	⊆	B,	then	A	 	B	=	B.	Conversely,	if	A	 	B	=	B,	then	A	⊆	B.
14.	If	A	⊆	B,	then	A	 	B	=	A.	Conversely,	if	A	 	B	=	A,	then	A	⊆	B.



If	S	is	a	set,	and	A	is	a	subset	of	S,	then	the	complement	of	A	in	S	is	the	set	of	all	the	elements	of	S
which	are	not	in	A.	The	complement	of	A	is	denoted	by	A′:

Prove	the	following’.

15	(A	 	B)′	=	A′	 	B′.
16	(A	 	B)′	=	A′	 	B′.
17	(A′)′	=	A.
18	A	 	A′	=	0.
19	If	A	⊆	B,	then	A	 	B′	=	0,	and	conversely.
20	If	A	⊆	B	and	C	=	B	−	A,	then	A	=	B	−	C.
Prove	the	following	identities	involving	cartesian	products:
21	A	×	(B	 	C)	=	(A	×	B)	 	(A	×	C).
22	A	×	(B	 	C)	=	(A	×	B)	 	(A	×	C).
23	(A	×	B)	 	(C	×	D)	=	(A	 	C)	×	(B	 	D).
24	A	×	(B	−	D)	=	(A	×	B)	−	(A	×	D).



APPENDIX

B
REVIEW	OF	THE	INTEGERS

One	of	the	most	important	facts	about	the	integers	is	that	any	integer	m	can	be	divided	by	any	positive
integer	n	to	yield	a	quotient	q	and	a	positive	remainder	r.	(The	remainder	is	less	than	the	divisor	n.)	For
example,	25	may	be	divided	by	8	to	give	a	quotient	of	3	and	a	remainder	of	1:

This	process	is	known	as	the	division	algorithm.	It	may	be	stated	precisely	as	follows:

Theorem	 1:	 Division	 algorithm	 If	 m	 and	 η	 are	 integers	 and	 η	 is	 positive,	 there	 exist	 unique
integers	q	and	r	such	that

m	=	nq	+	r	 and	 0	≤	r	<	n

We	call	q	the	quotient	and	r	the	remainder	when	m	is	divided	by	n.
Here	we	shall	take	the	division	algorithm	as	a	postulate	of	the	system	of	the	integers.	(In	Chapter

21	we	started	with	a	more	fundamental	premise	and	proved	the	division	algorithm	from	it.)
If	r	and	s	are	integers,	we	say	that	s	is	a	multiple	of	r	if	there	is	an	integer	k	such	that

s	=	rk

In	 this	case,	we	also	say	 that	r	 is	a	 factor	of	s,	or	r	 divides	 s,	 and	we	 symbolize	 this	 relationship	by
writing

r|s

For	example,	3	is	a	factor	of	12,	so	we	write:	3|12.	Some	of	the	elementary	properties	of	divisibility	are
stated	in	the	next	theorem.

Theorem	2:	The	following	are	true	for	all	integers	a,	b,	and	c:

(i) If	a|b	and	b|c,	then	a|c.
(ii) 1|a.



(iii) a|0.
(iv) If	c|a	and	c|b,	then	c|	(ax	+	by)	for	all	integers	x	and	y.
(v) If	a|b	and	c|d,	then	ac|bd.

The	proofs	of	 these	relationships	follow	from	the	definition	of	divisibility.	For	 instance,	we	give
here	the	proof	of	(iv):	If	c|a	and	c|b,	this	means	that	a	=	kc	and	b	=	lc	for	some	k	and	l.	Then

ax	+	by	=	kcx	+	lcy	=	c(kx	+	ly)

Visibly,	c	 is	a	factor	of	c(kx	+	ly),	and	hence	a	factor	of	ax	+	by.	In	symbols,	c|(ax	+	by),	and	we	are
done.

An	integer	t	is	called	a	common	divisor	of	integers	r	and	s	if	t|r	and	t|s.	A	greatest	common	divisor
of	r	and	s	is	an	integer	t	such	that
(i) t|r	and	t|s,	and
(ii) For	any	integer	u,	if	u|r	and	u|s,	then	u|t.

In	other	words,	t	is	a	greatest	common	divisor	of	r	and	s	 if	 ί	 is	a	common	divisor	of	r	and	s	and
every	other	common	divisor	of	r	and	s	divides	t.

It	 is	 an	 important	 fact	 that	 any	 two	 nonzero	 integers	 r	 and	 s	 always	 have	 a	 positive	 greatest
common	divisor:

Theorem	3:	Any	two	nonzero	integers	r	and	s	have	a	unique	positive	greatest	common	divisor	t.
Moreover,	t	is	equal	to	a	“linear	combination”	of	r	and	s.	That	is,

t	=	kr	+	ls

for	some	integers	k	and	l.

The	unique	positive	greatest	common	divisor	of	r	and	s	is	denoted	by	the	symbol	gcd	(r,	s).
A	pair	of	integers	r	and	s	are	said	to	be	relatively	prime	 if	 they	have	no	common	divisors	except

±1.	For	example,	4	and	15	are	relatively	prime.	If	r	and	s	are	relatively	prime,	their	gcd	is	equal	to	1.	So
by	Theorem	3,	there	are	integers	k	and	l	such	that

kr	+	ls	=	1

Actually,	the	converse	of	this	statement	is	true	too,	and	is	stated	in	the	next	theorem:

Theorem	4:	Two	integers	r	and	s	are	relatively	prime	if	and	only	if	there	are	integers	k	and	l	such
that	kr	+	ls	=	1.

The	proof	of	this	theorem	is	left	as	an	exercise.	From	Theorem	4,	we	deduce	the	following:

Theorem	5	If	r	and	s	are	relatively	prime,	and	r|st,	then	r|t.

PROOF	 From	Theorem	 4	we	 know	 there	 are	 integers	 k	 and	 l	 such	 that	 kr	 +	 ls	 =	 1.	Multiplying
through	by	t,	we	get

krt	+	lst	=	t	 (1)



But	we	are	given	the	fact	that	r|st;	that	is,	st	is	a	multiple	of	r,	say	st	=	mr.	Substitution	into	Equation	(1)
gives	krt	+	lmr	=	t,	that	is,	r(kt	+	lm)	=	t.	This	shows	that	r	is	a	factor	of	t,	as	required.	■

If	an	integer	m	has	factors	not	equal	to	1	or	-1,	we	say	that	m	is	composite.	If	a	positive	integer	m	≠
1	is	not	composite,	we	call	it	a	prime.	For	example,	6	is	composite	(it	has	factors	±2	and	±3),	while	7	is
prime.

If	p	 is	 a	 prime,	 then	 for	 any	 integer	 n,	p	 and	n	 are	 relatively	 prime.	 Thus,	 Theorem	 5	 has	 the
following	corollary:

Corollary	Let	m	and	n	be	integers,	and	let	p	be	a	prime:	If	p|mn,	then	either	p|m	or	p|n.

It	 is	 a	major	 fact	 about	 integers	 that	 every	positive	 integer	m	 >	 1	 can	be	written,	 uniquely,	 as	 a
product	of	primes.	(The	proof	is	given	in	Chapter	22.)

By	a	least	common	multiple	of	two	integers	r	and	s	we	mean	a	positive	integer	m	such	that
(i) r|m	and	s|m,	and
(ii) If	r|x	and	s|x,	then	m|x.

In	other	words,	m	is	a	common	multiple	of	r	and	s	and	m	is	a	factor	of	every	other	common	multiple	of
r	and	s.	In	Chapter	22	it	is	shown	that	every	pair	of	integers	r	and	s	has	a	unique	least	common	multiple.

The	least	common	multiple	of	r	and	s	is	denoted	by	lcm(r,	s).	The	least	common	multiple	has	the
following	properties:

Theorem	6	For	any	integers	a,	b,	and	c,

(i) If	gcd(a,	b)	=	1,	then	lcm(a,	b)	=	ab.
(ii) Conversely,	if	lcm(a,	b)	=	ab,	then	gcd(a,	b)	=	1.
(iii) If	gcd(a,	b)	=	c,	then	lcm(a,	b)	=	ab|c.
(iv) lcm{a,	ab)	=	ab.

The	proofs	are	left	as	exercises.

EXERCISES
Prove	that	the	following	are	true	for	any	integers	a,	b,	and	c:

1	If	a|b	and	b|c,	then	a|c.
2	If	a|b,	then	a|(−	b)	and	(−	a)|b.
3	1|a	and	(−1)|a.
4	a|0.
5	If	a|b,	then	ac|bc.
6	If	a	>	0,	then	gcd(a,	0)	=	a.
7	If	gcd(ab,	c)	=	1,	then	gcd(a,	c)	=	1	and	gcd(b,	c)	=	1.
8	If	there	are	integers	k	and	l	such	that	ka	+	lb	=	1,	then	a	and	are	relatively	prime.
9	If	a|d	and	c|d	and	gcd(a,	c)	=	1,	then	ac|d.
10	If	d|ab	and	d|cb	and	gcd(a,	c)	=	1,	then	d|b.
11	If	gcd(a,	b)	=	1,	then	lcm(a,	b)	=	ab.



12	If	lcm(a,	b)	=	c,	then	gcd(a,	b)	=	1.
13	If	gcd(a,	b)	=	c,	then	lcm(a,	b)	=	ab/c.
14	lcm(a,	ab)	=	ab.
15	a	·	lcm(b,	c)	=	lcm(ab,	ac).



APPENDIX

C
REVIEW	OF	MATHEMATICAL	INDUCTION

The	basic	assumption	one	makes	about	the	ordering	of	the	integers	is	the	following:

Well-ordering	principle.	Every	nonempty	set	of	positive	integers	has	a	least	element.
From	 this	 assumption,	 it	 is	 easy	 to	prove	 the	 following	 theorem,	which	underlies	 the	method	of

proof	by	induction:

Theorem	 1:	 Principle	 of	 mathematical	 induction	 Let	 A	 represent	 a	 set	 of	 positive	 integers.
Consider	the	following	two	conditions:

(i) 1	is	in	A.
(ii) For	any	positive	integer	k,	if	k	is	in	A,	then	k	+	1	is	in	A.

If	A	is	any	set	of	positive	integers	satisfying	these	two	conditions,	then	A	consists	of	all	the	positive
integers.

PROOF:	If	A	does	not	contain	all	the	positive	integers,	then	by	the	well-ordering	principle	(above),
the	set	of	all	the	positive	integers	which	are	not	in	A	has	a	least	element;	call	it	b.	From	Condition	(i),	b
≠	1;	hence	b	>	1.

Thus,	b	−	1	>	0,	and	b	—	1	∈	A	because	b	 is	 the	 least	positive	 integer	not	 in	A.	But	 then,	 from
Condition	(ii),	b	∈	A,	which	is	impossible.	■

Here	 is	 an	 example	 of	 how	 the	 principle	 of	mathematical	 induction	 is	 used:	We	 shall	 prove	 the
identity

that	is,	the	sum	of	the	first	n	positive	integers	is	equal	to	n(n	+	1)/2.
Let	A	consist	of	all	the	positive	integers	n	for	which	Equation	(1)	is	true.	Then	1	is	in	A	because

Next,	suppose	that	k	is	any	positive	integer	in	A;	we	must	show	that,	in	that	case,	k	+	1	also	is	in	A.	To



say	that	k	is	in	A	means	that

By	adding	k	+	1	to	both	sides	of	this	equation,	we	get

that	is,

From	this	last	equation,	k	+	1	∈	A.
We	have	shown	that	1	∈	A,	and	moreover,	 that	 if	k	∈	A,	 then	k	+	1	∈	A.	So	by	 the	principle	of

mathematical	induction,	all	the	positive	integers	are	in	A.	This	means	that	Equation	(1)	is	true	for	every
positive	integer,	as	claimed.

EXERCISES
Use	mathematical	induction	to	prove	the	following:
1	1	+	3	+	5	+	⋯	+	(2n	−	1)	=	n2

(That	is,	the	sum	of	the	first	n	odd	integers	is	equal	to	n2.)
2	13	+	23	+	⋯	+	n3	=	(1	+	2	+	⋯	+	n)2

3	12	+	22	+	⋯	+	n2	=	 	n(n	+	1)(2n	+	1)
4	13	+	23	+	⋯	+	n3	=	 	n(n	+	1)2

5	

6	12	+	22	+	⋯	+	(n	−	1)2	<	 	<	12	+	22	+	⋯	+	n2



ANSWERS	TO	SELECTED	EXERCISES

CHAPTER	2
A3 This	is	not	an	operation	on	 ,	since	a	*	b	is	not	uniquely	defined	for	any	a,	b	∈	 ,	a	≠	0,	and	b	≠	0.

If	a	≠	0	and	b	≠	0,	then	the	equation	x2	−	a2b2	=	0	has	two	roots—namely,	x	=	a	*	b	=	±	ab.

B7	

(ii) Associative	law:

(iii) Identity	element:	To	find	an	identity	element	(if	one	exists),	we	try	to	solve	the	equation	x	*	e
=	x	for	e:

Cross	multiplying	gives	xe	=	x2	+	xe	+	x,	and	thus	0	=	x(x	+	1).	Consequently,	this	equation	can	be
solved	only	for	x	=	0	and	x	=	–	1.	For	positive	values	of	x	there	is	no	solution.

C3 We	shall	examine	only	one	of	the	operations—namely,	the	one	whose	table	is

To	say	that	the	operation	is	associative	is	to	say	that	the	equation

x	*	(y	*	z)	=	(x	*	y)	*	z

is	true	for	all	possible	choices	of	x,	of	y,	and	of	z.	Each	of	the	variables	may	be	equal	to	either	a	or
b,	yielding	eight	cases	to	be	checked:



1. a	*	(a	*	a)	=	a	*	b	=	a,	 (a	*	a)	*	a	=	b	*	a	=	a
2. a	*	(a	*	b)	=	a	*	a	=	b,	 (a	*	a)	*	b	=	b	*	b	=	a
3. a	*	(b	*	a)	=	a	*	a	=	b,	 (a	*	b)	*	a	=	a	*	a	=	b
4. a	*	(b	*	b)	=	a	*	a	=	b,	 (a	*	b)	*	b	=	a	*	b	=	a
5. b	*	(a	*	a)	=	b	*	b	=	a,	 (b	*	a)	*	a	=	a	*	a	=	b
6. b	*	(a	*	b)	=	b	*	a	=	a,	 (b	*	a)	*	b	=	a	*	b	=	a
7. b	*	(b	*	a)	=	b	*	a	=	a,	 (b	*	b)	*	a	=	a	*	a	=	b
8. b	*	(b	*	b)	=	b	*	a	=	a,	 (b	*	b)	*	b	=	a	*	b	=	a

Since	a	*	(a	*	b)	≠	(a	*	a)	*	b,	*	is	not	associative.
By	the	way,	this	operation	is	commutative,	since	a	*	b	=	a	=	b	*	a.	Using	commutativity,	we

need	not	check	all	eight	cases	above;	in	fact,	equality	in	cases	1,	3,	6,	and	8	follows	using
commutativity.	For	example,	in	case	3,	it	follows	from	commutativity	that	a	*	(b	*	a)	=	(b	*	a)	*	a
=	(a	*	b)	*	a.	Thus,	for	commutative	operations,	only	four	of	the	eight	cases	need	to	be	checked.	If
you	are	able	to	show	that	it	is	sufficient	to	check	only	cases	2	and	4	for	commutative	operations,
your	work	will	be	further	reduced.

We	have	checked	only	one	of	the	16	operations.	Check	the	remaining	15.

CHAPTER	3
A4 (ii)	Associative	law:

(iii)	Identity	element:	Solve	x	*	e	=	x	for	e.
If

then	e(1	−	x2)	=	0,	so	e	=	0.	Now	check	that	x	*	0	=	0	*	x	=	x.
(iv)	Inverses:	Solve	x	*	x′	=	0	for	x′.	(You	should	get	x′	=	−	x.)	Then	check	that	x	*	(−	x)	=	0	=	(−	x)
*	x.

B2 (ii)	Associative	law:

(a,	b)	*	[(c,	d)	*	(e,	f)]	=	(a,	b)	*	(ce,	de	+	f)	=	(ace,	bce	+	de	+	f)



[(a,	b)	*	(c,	d)]	*	f)	=	(ac,	bc	+	d)	*	(e,	f)	=	(ace,	bce	+	de	+	f)

(iii)	Identity	element:	Solve	(a,	b)	*	(e1,	e2)	=	(a,	b)	for	(e1,	e2).	Suppose

(a,	b)	*	(e1,	e2)	=	(ae,	be1	+	e2)	=	(a,	b)

This	implies	that	ae1	=	a	and	be1	+	e2	=	b,	so	e1	=	1	and	e2	=	0.	Thus,	(e1,	e2)	=	(l,	0).	Now	check
that	(a,	b)	*	(1,	0)	=	(1,	0)	*	(a,	b)	=	(a,	b).
(iv)	Inverses:	Solve	(a,	b)	*	(a′,	b′)	=	(1,	0)	for	(x′,	b′).	You	should	get	a′	=	1/a	and	b′	=	−	b/a.	Then
check.

G1	The	equation	a4	=	a1	+	a3	means	that	the	fourth	digit	of	every	codeword	is	equal	to	the	sum	of	the
first	and	third	digits.	We	check	this	fact	for	the	eight	codewords	of	C1	in	turn:	0	=	0	+	0,	1	=	0	+	1,
0	=	0	+	0,	1	=	0	+	1,	1	=	1	+	0,	0=1	+	1,	1	=	1	+	0,	and	0	=	1	+	1.

G2 (a)	 As	 stated,	 the	 first	 three	 positions	 are	 the	 information	 positions.	 Therefore	 there	 are	 eight
codewords;	 omitting	 the	 numbers	 in	 the	 last	 three	 positions	 (the	 redundancy	 positions),	 the
codewords	 are	 000,	 001,	 010,	 011,	 100,	 101,	 110,	 and	 111.	 The	 numbers	 in	 the	 redundancy
positions	 are	 specified	 by	 the	 parity-check	 equations	 given	 in	 the	 exercise.	 Thus,	 the	 complete
codewords	are	000000,	001001,	….	(Complete	the	list.)

G6 Let	ak,	bk,	xk	denote	the	digits	in	the	kth	position	of	a,	b,	and	x,	respectively.	Note	that	if	xk	≠	ak	and
xk	≠	bk,	then	ak	=	bk.	But	if	xk	≠	ak	and	xk	=	bk,	then	ak	≠	bk.	And	if	xk	=	ak	and	xk	≠	bk,	then	ak	≠	bk.
Finally,	if	xk	=	ak	and	xk	=	bk,	then	ak	=	bk.	Thus,	a	differs	from	b	in	only	those	positions	where	a
differs	from	x	or	b	differs	from	x.	Since	a	differs	from	x	in	t	or	fewer	positions,	and	b	differs	from
x	in	t	or	fewer	positions,	a	cannot	differ	from	b	in	more	than	2t	positions.

CHAPTER	4

A3 Take	the	first	equation,	x2a	=	bxc−1,	and	multiply	on	the	right	by	c:

x2ac	=	(bxc−	1)c	=	bx(c−	1c)	=	bxe	=	bx

From	the	second	equation,	x2ae	=	x(xac)	=	xacx.	Thus,

xaca	=	bx

By	the	cancellation	law	(cancel	x	on	the	right),

xac	=	b

Now	multiply	on	the	right	by	(ac)−	1	to	complete	the	problem.
C1 From	Theorem	3,	a−	1	b−	1	=	(ba)−	1	and	b−	1a−	1	=	(ab)−	1.
D2 From	Theorem	2,	if	(ab)c	=	e,	then	c	is	the	inverse	of	ab.
G3 Let	G	and	H	be	abelian	groups.	To	prove	 that	G	×	H	 is	abelian,	 let	 (a,	b)	and	(c,	d)	be	any	 two

elements	of	G	×	H	(so	that	a	∈	G,	c	∈	G,	b	∈	H,	and	d	∈	H)	and	show	that	(a,	b)	·	(c,	d)	=	(c,	d)	·
(a,	b).



PROOF:	

CHAPTER	5
B5 Suppose	f,	g	∈	H.	Then	df/dx	=	a	and	dg/dx	=	b	for	constants	a	and	b.	From	calculus,	d(f	+	g)dx	=

df/dx	+	dg/dx	=	a	+	b,	which	is	constant.	Thus,	f	+	g	∈	H.
C5 PROOF:	(i)	K	is	closed	under	products.	Let	x,	y	∈	K.	Then	there	are	integers	n,	m	>	0	such	that	xn	∈

H	 and	 ym	 ∈	 H.	 Since	 H	 is	 a	 subgroup	 of	 G,	 it	 is	 closed	 under	 products—and	 hence	 under
exponentiation	(which	is	repeated	multiplication	of	an	element	by	itself).	Thus	(xn)m	∈	H	and	(xm)n
∈	H.	Set	q	=	mn.	Since	G	is	abelian,	(xy)q	=	xqyq	=	xmnymn	=	(xn)m(ym)n	∈	H	since	both	(xn)m	and
(ym)n	are	in	H.	Complete	the	problem.

D5 S	=	{a1	…,	an}	has	n	elements.	The	n	products	a1a1,	a1a2,	…,	a1an	are	elements	of	S	(why?)	and	no
two	of	them	can	be	equal	(why?).	Hence	every	element	of	S	is	equal	to	one	of	these	products.	In
particular,	a1	=	a1ak	for	some	k.	Thus,	a1e	=	a1ak,	and	hence	e	=	ak.	This	shows	 that	e	∈S.	Now
complete	the	problem.

D7 (a)	Suppose	x	∈	K.	Then
(i)	if	a	∈	H,	then	xax−	1	∈	H,	and
(ii)	if	xbx−	1	∈	H,	then	b	∈	H.

We	shall	prove	that	x−	1	∈	K:	we	must	first	show	that	if	a	∈	H,	then	x−	1a(x−	1)−	1	=	x−	1	ax	∈
H.	Well,	a	=	x(x−	1ax)x−	1	and	if	x(x−	1	ax)x−	1	∈	H,	then	x−	1ax	∈	H	by	(ii)	above.	[Use	(ii)	with	x
−1ax	replacing	b.]	Conversely,	we	must	show	that	if	x−	1ax	∈	H,	then	a	∈	H.	Well,	if	x−	1ax	∈	H,
then	by	(i)	above,	x(x−	1ax)x−	1	=	a	∈	H.

E7 We	begin	by	listing	all	the	elements	of	 2	×	 4	obtained	by	adding	(1,	1)	to	itself	repeatedly:	(1,	1);
(1,	1)	+	(1,	1)	=	(0,	2);	(1,	1)	+	(1,	1)	+	(1,	1)	=	(1,	3);	(1,	1)	+	(1,	1)	+	(1,	1)	+	(1,	1)	=	(0,	0).	If	we
continue	adding	(1,	1)	to	multiples	of	itself,	we	simply	obtain	the	above	four	pairs	over	and	over
again.	Thus,	(1,	1)	is	not	a	generator	of	all	of	 2	×	 4.

This	process	is	repeated	for	every	element	of	 2	×	 4.	None	is	a	generator	of	 2	×	 4;	hence	 2	×	
4	is	not	cyclic.

F1 The	table	of	G	is	as	follows:

Using	the	defining	equations	a2	=	e,	b3	=	e,	and	ba	=	ab2,	we	compute	the	product	of	ab	and	ab2	in



this	way:

(ab)(ab2)	=	a(ba)b2	=	a(ab2)b2	=	a2b3b	=	eeb	=	b

Complete	the	problem	by	exhibiting	the	computation	of	all	the	table	entries.
H3 Recall	 the	definition	of	 the	operation	+	 in	Chapter	3,	Exercise	F:	x	 +	y	 has	 s	 in	 those	 positions

where	x	and	y	differ,	and	0s	elsewhere.

CHAPTER	6

A4 From	calculus,	the	function	f(x)	=	x3	–	3x	is	continuous	and	unbounded.	Its	graph	is	shown	below.
[f	is	unbounded	because	f(x)	=	x(x2	−	3)	is	an	arbitrarily	large	positive	number	for	sufficiently	large
positive	 values	 of	 x,	 and	 an	 arbitrarily	 large	 negative	 number	 (large	 in	 absolute	 value)	 for
sufficiently	large	negative	values	of	x.]	Because	f	is	continuous	and	unbounded,	the	range	of	f	is	 .
Thus,	f	is	surjective.	Now	determine	whether	f	is	injective,	and	prove	your	answer.

Graph	of	f	(x)	=	x3	−	3x

A6	f	is	injective:	To	prove	this,	note	first	that	if	x	is	an	integer	then	f(x)	is	an	integer,	and	if	x	is	not	an
integer,	then	f(x)	is	not	an	integer.	Thus,	if	f(x)	=	f(y),	then	x	and	y	are	either	both	integers	or	both
nonintegers.	Case	1,	both	 integers:	 then	 f(x)	=	2x,	 f(y)	=	2y,	and	2x	=	2y;	 so	x	=	y.	Case	2,	both
nonintegers:	⋯	(Complete	the	problem.	Determine	whether	f	is	surjective.)

F5 Let	A	 =	 {a1,	 a2,	…,	 an).	 If	 f	 is	 any	 function	 from	A	 to	A,	 there	 are	n	 possible	 values	 for	 f(ax),
namely,	 a1,	a2,	…,	 an.	 Similarly	 there	 are	 n	 possible	 values	 for	 f(a2).	 Thus	 there	 are	 n2	 pairs
consisting	of	a	value	of	f(a1)	together	with	a	value	of	f(a2).	Similarly	there	are	n3	triples	consisting
of	 a	 value	 of	 f(a1),	 a	 value	 of	 f(a2),	 and	 a	 value	 of	 f(a3).	We	may	 continue	 in	 this	 fashion	 and
conclude	as	follows:	Since	a	function	f	is	specified	by	giving	a	value	for	f(a1),	a	value	for	f(a2),	and
so	on	up	to	a	value	for	 f(an),	 there	are	nn	 functions	from	A	 to	A.	Now,	by	reasoning	 in	a	similar
fashion,	how	many	bijective	functions	are	there?

H1 The	following	is	one	example	(though	not	the	only	possible	one)	of	a	machine	capable	of	carrying



out	the	prescribed	task:

A	=	{a,	b,	c,	d}	 S	=	{s0,	s1,	s2,	s3,	s4}

The	next-state	function	is	described	by	the	following	table:

To	explain	why	the	machine	carries	out	the	prescribed	function,	note	first	that	the	letters	b,	c,
and	d	never	cause	the	machine	to	change	its	state—only	a	does.	If	the	machine	begins	reading	a
sequence	in	state	s0,	it	will	be	in	state	s3	after	exactly	three	a’s	have	been	read.	Any	subsequent	a’s
will	leave	the	machine	in	state	s4.	Thus,	if	the	machine	ends	in	s3,	the	sequence	has	read	exactly
three	a’s.	The	machine’s	state	diagram	is	illustrated	below:

I4 M1	has	only	two	distinct	transition	functions,	which	we	shall	denote	by	To	and	Te	(where	o	may	be
any	sequence	with	on	odd	number	of	1s,	and	e	any	sequence	with	an	even	number	of	1s).	To	and	Te
may	be	described	as	follows:
To(s0),	=	s1, To(s1)	=	s0
Te(s0),	=	s0, Te(s1)	=	s1
Now,	Te	∘	To	=	Toe	by	part	3.	Since	e	is	a	sequence	with	an	even	number	of	1s	and	o	is	a	sequence
with	an	odd	number	of	1s,	oe	is	a	sequence	with	an	odd	number	of	1s;	hence	Toe	=	To.	Thus,	Te	∘	To
=	To.	Similarly

Te	∘	Te	=	Te,	 To	∘	Te	=	To,	 and	To	∘	To	=	Te

In	brief,	the	table	of	 (M1)	is	as	follows:



The	table	shows	that	 (M1)	 is	a	 two-element	group.	The	identity	element	is	Te,	and	To	 is	 its	own
inverse.

CHAPTER	7
D2 fn	+	m	is	the	function	defined	by	the	formula

fn	+	m(x)	=	x	+	n	+	m

Use	this	fact	to	show	that	fn	∘	fm	=	fn	+	m.

In	order	to	show	that	f−	n	is	the	inverse	of	fn,	we	must	verify	that	fn	∘	f−	n	=	ε	and	f−	n	∘	fn	=	ε.
We	verify	the	first	equation	as	follows:	f−	n(x)	=	x	+	(−	n);	hence

[fn	∘	f−	n](x)	=	fn(f−	n(x))	=	fn(x	−	n)	=	x	−	n	+	n	=	x	=	ε(x)

Since	[fn	∘	f−	n](x)	=	ε(x)	for	every	x	in	 ,	it	follows	that	fn	∘	f−	n	=	ε.
E3 To	prove	that	f1/a,	−	b/a	is	the	inverse	of	fa,	b,	we	must	verify	that

fa,	b	∘	f1/a,	−b/a	=	ε	 and	 f1/a,	−	b/a	∘	fa,	b	=	ε

To	verify	the	first	equation,	we	begin	with	the	fact	that	f1/a,	−b/a(x)	=	x/a	−	b/a.	Now	complete	the
problem.

H2 If	 f,	g	∈	G,	 then	 f	moves	a	 finite	number	of	elements	of	A,	 say	a1,	…,	an,	and	g	moves	a	 finite
number	of	elements	of	A,	 say	b1,	…,	bm.	Now	 if	x	 is	 any	element	of	A	which	 is	not	 one	 of	 the
elements	a1,	…,	an,	b1,	…,	bm,	then

[f	∘	g](x)	=	f(g(x))	=	f(x)	=	x

Thus,	f	∘	g	moves	at	most	the	finite	set	of	elements	{a1,	…,	an,	b1,	…,	bm}.

CHAPTER	8

A1(e)

A4(f) γ3	=	γ	∘	γ	∘	γ	=	(1	2	3	4	5);	α−	1	=	(4	1	7	3);	thus;	γ3α−	1	=	γ3	∘	α	−	1	=	1	(1	2	3	4	5)	∘	(4	1	7	3)	=	(1
7	4	2	3	5)

B2

and	so	on.	Note	that	α2(a1)	=	a3,	α2(a2)	=	a4,	…,	α2(as	−	2)	=	as.	Finally,	α2(as	−	1)	=	al	and	α2(as)	=



a2.	Thus,	α2(ai)	=	a?	Complete	the	problem	using	addition	modulo	s,	page	27.
B4 Let	α	=	(a1	a2	⋯	as)	where	s	is	odd.	Then	α2	=	(a1	a3	a5	⋯	as	a2	a4	⋯	as	−	1).	If	s	is	even,	then	α2	=	?

Complete	the	problem.
E2 If	α	and	β	 are	cycles	of	 the	same	 length,	α	=	 (a1	⋯	as)	and	β	=	 (b1	⋯	bs,	 let	π	 be	 the	 following

permutation:	π(k)	=	bi	for	i	=	1,	…,	s	and	π(k)	=	k	for	k	≠	a1,	…,	as,	b1	…,	bs.	Finally,	let	π	map
distinct	elements	of	{b1	…,	bs)	−	{a1,	…,	as)	 to	distinct	elements	of	{a1,	…,	as}	–	{b1,	…,	bs}.
Now	complete	the	problem,	supplying	details.

F1 	 when	k	is	a	positive	integer,	k	<	s

For	what	values	of	k	can	you	have	αk	=	ε?
H2 Use	Exercise	H1	and	the	fact	that	(ij)	=	(1i)(1j)(1i).

CHAPTER	9
C1 The	group	tables	for	G	and	H	are	as	follows:

G	and	H	are	not	isomorphic	because	in	G	every	element	is	its	own	inverse	(VV	=	I,	HH	=	I,	and	DD
=	I),	whereas	in	H	there	are	elements	not	equal	to	their	inverse;	for	example,	(-i)(-i)	=	−1	≠	1.	Find
at	least	one	other	difference	which	shows	that	G	 	H.

C4	The	group	tables	for	G	and	H	are	as	follows:

G	and	H	are	isomorphic.	Indeed,	let	the	function	f	:	G	→	H	be	defined	by



By	inspection,	f	transforms	the	table	of	G	into	the	table	of	H,	Thus,	f	is	an	isomorphism	from	G	to
H.

El Show	that	the	function	f:	 	→	E	given	by	f(n)	=	2n	is	bijective	and	that	f(n	+	m)	=	f(n)	+	f(m).
F1 Check	that	(2	4)2	=	ε,	(1	2	3	4)4	=	ε,	and	(1	2	3	4)(2	4)	=	(2	4)(1	2	3	4)3.	Now	explain	why	G	≅	G′.
H2 Let	fG:	G1	→	G2	and	fH	:	H1	→	H2	be	isomorphisms,	and	find	an	isomorphism	f	:	G1	×	H1	→	G2	×

H2.

CHAPTER	10
A1(c) If	m	<	0	and	n	<	0,	let	m	=	−k	and	n	=	l,	where	k,	l	>	0.	Then	m	+	n	=	−	(k	+	l).	Now,

am	=	a−	k	=	(a−	1)k

and

an	=	a−	1	=	(a−	1)l

Hence

aman	=	(a−	1)k	(a−	1)l	=	(a−	1)k	+	l	=	a−	(k	+	l)	=	am	+	n

B3 The	order	of	f	is	4.	Explain	why.
C4 For	any	positive	integer	k,	if	ak	=	e,	then

Conversely,	if	(bab−	1k	=	bakb−	1	=	e,	then	ak	=	e.	(Why?)	Thus,	for	any	positive	integer	k,	ak	=	e	iff
(bab−	1)k	=	e.	Now	complete	the	problem.

D2	Let	the	order	of	a	be	equal	to	n.	Then	(ak)n	=	ank	=	(an)k	=	ek	=	e.	Now	use	Theorem	5.
F2 The	order	of	a8	is	3.	Explain	why.
H2 The	order	is	24.	Explain	why.

CHAPTER	11
A6 If	k	is	a	generator	of	 ,	this	means	that	 	consists	of	all	the	multiples	of	k;	that	is,	k,	2k,	3k,	etc.,	as

well	as	0	and	−k,	−2k,	−3k,	etc.:



B1 Let	G	be	a	group	of	order	n,	and	suppose	G	is	cyclic,	say	G	=	〈a〉.	Then	a,	the	generator	of	G,	is	an
element	 of	 order	 n.	 (This	 follows	 from	 the	 discussion	 on	 the	 first	 two	 pages	 of	 this	 chapter.)
Conversely,	let	G	be	a	group	of	order	n	(that	is,	a	group	with	n	elements),	and	suppose	G	has	an
element	a	of	order	n.	Prove	that	G	is	cyclic.

C4 By	Exercise	B4,	there	is	an	element	b	of	order	m	in	〈a〉,	and	b	∈	Cm.	Since	Cm	 is	a	subgroup	of
〈a〉,	which	 is	 cyclic,	we	know	 from	Theorem	2	 that	Cm	 is	 cyclic.	 Since	 every	 element	 x	 in	Cm
satisfies	xm	=	e,	no	element	in	Cm	can	have	order	greater	than	m.	Now	complete	the	argument.

C7 First,	assume	that	ord	(ar)	=	m.	Then	(ar)m	=	arm	=	e.	Use	Theorem	5	of	Chapter	10	to	show	that	r	=
kl	for	some	integer	l.	To	show	that	l	and	m	are	relatively	prime,	assume	on	the	contrary	that	l	and	m
have	a	common	factor	q;	that	is,

l	=	jq	 m	=	hq	 h	<	m

Now	raise	ar	to	the	power	h	and	derive	a	contradiction.	Conversely,	suppose	r	=	lk	where	l	and	m
are	relatively	prime.	Complete	the	problem.

D6 Let	 (a)	 be	 a	 cyclic	group	of	order	mn.	 If	〈a〉	 has	 a	 subgroup	of	 order	n,	 this	 subgroup	must	 be
cyclic,	and	generated	by	one	of	the	elements	in	〈a〉.	Say	〈ak〉	is	a	subgroup	of	order	n.	Then	ak	has
order	n,	 so	 (ak)n	=	akn	=	e.	By	Theorem	5	of	Chapter	10,	kn	 =	mnq	 for	 some	 integer	q	 (explain
why);	hence	k	=	mq	and	therefore	ak	=	(am)q	∈	〈am〉.

Use	this	information	to	show	that	(i)	〈a〉	has	a	subgroup	of	order	n	and	(ii)	〈a〉	has	only	one
subgroup	of	order	n.

F3 If	there	is	some	j	such	that	am	=	(aj)k	=	ajk,	then	e	=	am(ajk)−	1	=	am	−	jk;	so	by	Theorem	5	of	Chapter
10,	m	−	jk	=	nq	for	some	integer	q.	(Explain	why.)	Thus,	m	=	jk	+	nq.	Now	complete	the	problem,
supplying	all	details.

CHAPTER	12
A2 Let	x	be	any	rational	number	(any	element	of	 ),	and	suppose	x	∈	Ai.	and	x	∈	Aj,	where	i	and	j	are

integers.	Then	i	≤	x	<	i	+	1	and	j	≤	x	<	j	+	1.	Now	if	i	<	j,	then	i	+	1	≥	j;	so	x	<	i	+	1	implies	that	x	<
j,	which	is	a	contradiction.	Thus	we	cannot	have	i	<	j,	nor	can	we	have	j	<	i;	hence	i	=	j.	We	have
shown	that	if	Ai.	and	Aj	have	a	common	element	x,	then	Ai	=	Ai:	 this	 is	 the	first	condition	 in	 the
definition	of	partition.	For	 the	second	condition,	note	 that	every	rational	number	 is	an	 integer	or
lies	between	two	integers:	if	i	≤	x	<	i	+	1,	then	x	is	in	Ai

C1 Ar	consists	of	all	 the	points	 (x,	y)	satisfying	y	=	2x	+	r;	 that	 is,	Ar	 is	 the	 line	with	slope	2	and	y
intercept	equal	to	r.	Thus,	the	classes	of	the	partition	are	all	the	lines	with	slope	2.

For	the	corresponding	equivalence	relation,	we	say	that	two	points	(x,	y)	and	(u,	υ)	are
“equivalent,”	that	is,

(x,	y)	~	(u,	υ)

if	the	two	points	lie	on	the	same	line	with	slope	2:



Complete	the	solution,	supplying	details.
D5 If	ab−	1	commutes	with	every	x	in	G,	then	we	can	show	that	ba−	1	commutes	with	every	x	in	G:

ba−	1	x	=	(x−	1ab−	1)’	1	=	(ab−	1x−	1)−	1	 (why?)

CHAPTER	13
B1 Note	first	that	the	operation	in	the	case	of	the	group	 	is	addition.	The	subgroup	(3)	consists	of	all

the	multiples	of	3,	that	is,

〈3〉	=	{.	.	.,	−9,	−6,	−3,	0,	3,	6,	9,	…}

The	cosets	of	(3)	are	(3)	+	0	=	(3),	as	well	as

〈3〉	+	1	=	{.	.	.,	−8,	−5,	−2,	1,	4,	7,	10,	…}

〈3〉	+	2	=	{.	.	.,	−7,	−4,	−1,	2,	5,	8,	11,	…}

Note	that	〈3〉	+	3	=	〈3〉,	〈3〉	+	4	=	〈3〉	+	1,	and	so	on;	hence	there	are	only	three	cosets	of	〈3〉,
namely,

〈3〉	=	〈3〉	+	0	 〈3〉	+	1	〈3〉	+	2

C6	Every	element	a	of	order	p	belongs	in	a	subgroup	〈a〉.	The	subgroup	〈a〉	has	p	–	1	elements	(why?),
and	each	of	these	elements	has	order	p	(why?).	Complete	the	solution.

D6 For	one	part	of	the	problem,	use	Lagrange’s	theorem.	For	another	part,	use	the	result	of	Exercise
F4,	Chapter	11.

E4 To	say	that	aH	=	Ha	is	to	say	that	every	element	in	aH	is	in	Ha	and	conversely.	That	is,	for	any	h	∈
H,	there	is	some	k	∈	H	such	that	ah	=	ka	and	there	is	some	l	∈	H	such	that	ha	=	al.	(Explain	why
this	is	equivalent	to	aH	=	Ha.)	Now,	an	arbitrary	element	of	a−	1H	is	of	the	form	a−	1h	=	(h−	1a)−	1.
Complete	the	solution.

J3 O(1)	=	O(2)	=	{1,	2,	3,	4};	G1	=	{ε,	β};	G2	=	{ε,	αβα}.	Complete	the	problem,	supplying	details.

CHAPTER	14
A6 We	use	the	following	properties	of	sets:	For	any	three	sets	X,	Y	and	Z,

(i)	(X	∪	Y)	∩	Z	=	(X	∩	Z)	∪	(Y	∩	Z)

(ii)	(X	−	Y)	∩	Z	=	(X	∩	Z)	−	(Y	∩	Z)



Now	here	is	the	proof	that	h	is	a	homomorphism:	Let	C	and	D	be	any	subsets	of	A;	then

Now	complete,	using	(i)	and	(ii).
C2 Let	f	be	injective.	To	show	that	K	=	{e},	take	any	arbitrary	element	x	∈	K	and	show	that	necessarily

x	=	e.	Well,	since	x	∈	K,	f(x)	=	e	=	f(e).	Now	complete,	and	prove	the	converse:	Assume	K	=	{e}
….

D6 Consider	the	following	family	of	subsets	of	G:	{Hi	:	i	∈	I},	where	each	Hi	is	a	normal	subgroup	of
G.	Show	that	H	=	 	Hi	is	a	normal	subgroup	of	G.	First,	show	that	H	is	closed	under	the	group
operation:	well,	if	a,	b	∈	H,	then	a	∈	Hi	and	b	∈	Hi	for	every	i	∈	I.	Since	each	Hi	is	a	subgroup	of
G,	ab	∈	Hi	for	every	i	∈	I;	hence	ab	∈	 	Hi.	Now	complete.

E1 If	H	has	index	2,	then	g	is	partitioned	into	exactly	two	right	cosets	of	H;	also	G	is	partitioned	into
exactly	two	left	cosets	of	H.	One	of	the	cosets	in	each	case	is	H.

E6 First,	show	that	if	x	∈	S	and	y	∈	S,	then	xy	∈	S.	Well,	if	x	∈	S,	then	x	∈	Ha	=	aH	for	some	a	∈	G.
And	if	y	∈	S,	then	y	∈	Hb	=	bH	for	some	b	∈	G.	Show	that	xy	∈	H(ab)	and	that	H(ab)	=	(ab)H	and
then	complete	the	problem.

I4 It	is	easy	to	show	that	aHa−	1	⊆	H.	Show	it.	What	does	Exercise	I2	 tell	you	about	 the	number	of
elements	in	aHa−	1

I8 Let	X	=	{aHa−	1:	a	∈	G}	be	the	set	of	all	the	conjugates	of	H,	and	let	Y	=	{aN	:	a	∈	G}	be	the	set	of
all	the	cosets	of	N.	Find	a	function	f	:	X	→	Y	and	show	that	f	is	bijective.

CHAPTER	15
C4 Every	element	of	G/H	is	a	coset	Hx.	Assume	every	element	of	G/H	has	a	square	root:	this	means

that	for	every	x	∈	G,

Hx	=	(Hy)2

for	some	y	∈	G.	Avail	yourself	of	Theorem	5	in	this	chapter.
D4 Let	H	be	generated	by	{h1,	…,	hn	and	 let	G/H	 be	generated	by	{Ha1,	…,	Ham).	 Show	 that	G	 is

generated	by

{a1,	…,	am,	h1,	…,	hn}

that	is,	every	x	in	G	is	a	product	of	the	above	elements	and	their	inverses.
E6 Every	element	of	 / 	is	a	coset	 	+	(m/n).
G6 If	G	is	cyclic,	then	necessarily	G	≅	 p2.	(Why?)

If	G	is	not	cyclic,	then	every	element	x	≠	e	in	G	has	order	p.	(Why?)	Take	any	two	elements	a	≠	e
and	b	≠	e	in	G	where	b	is	not	a	power	of	a.	Complete	the	problem.

CHAPTER	16



D1 Let	f	∈	Aut(G);	that	is,	let	f	be	an	isomorphism	from	G	onto	G.	We	shall	prove	that	f−	1	∈	Aut(G);
that	is,	f−	1	is	an	isomorphism	from	G	onto	G.	To	begin	with,	it	follows	from	the	last	paragraph	of
Chapter	 6	 that	 f−	 1	 is	 a	 bijective	 function	 from	 G	 onto	 G.	 It	 remains	 to	 show	 that	 f−	 1	 is	 a
homomorphism.	Let	f−	(c)	=	a	and	f−	1(d)	=	b,	so	that	c	=	f(a)	and	d	=	f(b).	Then	cd	=	 f(a)f(b)	=
f(ab),	whence	f−	1(cd	=	ab.	Thus,

f−	1(cd)	=	ab	=	f−	1(c)f−	1(d)

which	shows	that	f−	1	is	a	homomorphism.
F2 If	a,	b	∈	HK,	then	a	=	h1k1	and	b	=	h2k2,	where	h1,	h2	∈	H	and	k1,	k2	∈	K.	Then	ab	=	h1k1h2k2	=	

.
G3 Note	that	the	range	of	h	is	a	group	of	functions.	What	is	its	identity	element?
H1 From	calculus,	cos(x	+	y)	=	cos	x	cos	y	−	sin	x	sin	y,	and	sin	(x	+	y)	=	sin	x	cos	y	+	cos	x	sin	y.
L4	The	natural	homomorphism	(Theorem	4,	Chapter	15)	is	a	homomorphism	f	:	G	→	G/〈a〉	with	kernel

〈a〉.	Let	S	be	the	normal	subgroup	of	G/〈a〉	whose	order	is	pm	−	1.	(The	existence	of	S	is	assured	by
part	3	of	this	exercise	set.)	Referring	to	Exercise	J,	show	that	S*	is	a	normal	subgroup	of	G,	and
that	the	order	of	S*	is	pm.

CHAPTER	17
A3 We	prove	that	 	is	associative:

Thus,	(a,	b) [(c,	d) (p,	q)]	=	[(a,	b) (c,	d)] (p,	q).
B2 A	nonzero	function	f	is	a	divisor	of	zero	if	there	exists	some	nonzero	function	g	such	that	 fg	=	0,

where	0	is	the	zero	function	(page	46).	The	equation	fg	=	0	means	that	f(x)g(x)	=	0(x)	for	every	x	∈
.	Very	precisely,	what	functions	f	have	this	property?

D1 For	the	distributive	law,	refer	to	the	diagram	on	page	30,	and	show	that	A	∩	(B	+	C)	=	(A	∩	B)	+	(A
∩	C):
B	+	C	 consists	of	 the	 regions	2,	 3,	 4,	 and	7;	A	∩	(B	 +	C)	 consists	 of	 the	 regions	2	 and	4.	Now
complete	the	problem.

E3 	

G4 (a,	b)	is	an	invertible	element	of	A	×	B	iff	there	is	an	ordered	pair	(c,	d)	in	A	×	B	satisfying	(a,	b)	·
(c,	d)	=	(1,	1).	Now	complete.

H6 If	A	is	a	ring,	then,	as	we	have	seen,	A	with	addition	as	the	only	operation	is	an	abelian	group:	this
group	is	called	the	additive	group	of	the	ring	A.	Now,	suppose	the	additive	group	of	A	is	a	cyclic
group,	and	its	generator	is	c.	If	a	and	b	are	any	two	elements	of	A,	then



a	=	c	+	c	+	⋯	+	c	 (m	terms)

and

b	=	c	+	c	+	⋯	+	c	 (n	terms)

for	some	positive	integers	m	and	n.
J2 If	ab	is	a	divisor	of	0,	this	means	that	ab	≠	0	and	there	is	some	x	≠	0	such	that	abx	=	0.	Moreover,	a

≠	0	and	b	≠	0,	for	otherwise	ab	=	0.
M3 Suppose	am	=	0	and	bn	=	0.	Show	that	(a	+	b)m	+	n	=	0.	Explain	why,	in	every	term	of	the	binomial

expansion	of	(a	+	b)m	+	n,	either	a	is	raised	to	a	power	≥	m,	or	b	is	raised	to	a	power	≥	n.

CHAPTER	18
A4 From	calculus,	the	sum	and	product	of	continuous	functions	are	continuous.
B3 The	proof	hinges	on	the	fact	that	if	k	and	a	are	any	two	elements	of	 n,	then

ka	=	a	+	a	+	·	+	a	 (k	terms)

C4 If	 the	cancellation	 law	holds	 in	A,	 it	must	hold	 in	B.	 (Why?)	Why	 is	 it	 necessary	 to	 include	 the
condition	that	B	contains	1?

C5 Let	B	 be	a	 subring	of	 a	 field	F.	 If	b	 is	 any	nonzero	element	of	B,	 then	b−	 1	 is	 in	F,	 though	not
necessarily	in	B.	(Why?)	Complete	the	argument.

E5 f(x,	y)f(u,	υ)	=	 	=	f[x,	y) (u,	υ)]	=

Complete	the	problem.
H3 If	an	∈	J	and	bm	∈	J,	show	that	(a	+	b)n	+	m	∈	J.	(See	the	solution	of	Exercise	M3,	Chapter	17.)

Complete	the	solution.

CHAPTER	19
E1 To	say	that	the	coset	J	+	x	has	a	square	root	is	to	say	that	for	some	element	y	in	A,	J	+	x	=	(J	+	y)(J

+	y)	=	J	+	y2.
E6 A	unity	element	of	A/J	is	a	coset	J	+	a	such	that	for	any	x	∈	A,

(J	+	a)(J	+	x)	=	J	+	x	 and	 (J	+	x)(J	+	a)	=	J	+	a

G1 To	say	that	a	∉	J	is	equivalent	to	saying	that	J	+	a	≠	J;	that	is,	J	+	a	is	not	the	zero	element	of	A/J.
Explain	and	complete.

CHAPTER	20
E5 Restrict	your	attention	to	A	with	addition	alone,	and	see	Chapter	13,	Theorem	4.
E6 For	n	=	2	you	have



Prove	the	required	formula	by	reasoning	similarly	and	using	induction:	assume	the	formula	is	true
for	n	=	k,	and	prove	for	n	=	k	+	1.

CHAPTER	21
B5 Use	the	product	(a	−	1)(b	−	1).
C8 In	the	induction	step,	you	assume	the	formula	is	true	for	n	=	k	and	prove	it	is	true	for	n	=	k	+	1.

That	is,	you	assume

Fk	+	1	Fk	+	2	−	FkFk	+	3	=	(–1)k

and	prove

Fk	+	2	Fk	+	3	−	Fk	+	1	Fk	+	4	=	(−	1)k	+	1

Recall	that	by	the	definition	of	the	Fibonacci	sequence,	Fn	+	2	=	Fn	+	1	+	Fn	for	every	n	>	2.
Thus,	Fk	+	2	=	Fk	+	1	+	Fk	and	Fk	+	4	=	Fk	+	3	+	Fk	+	2.	Substitute	these	in	the	second	of	the	equations
above.

E5 An	elegant	way	to	prove	this	inequality	is	by	use	of	part	4,	with	a	+	b	in	the	place	of	a,	and	|a|	+	|b|
in	the	place	of	b.

E8 This	can	be	proved	easily	using	part	5.
F2 You	are	given	that	m	=	nq	+	r	and	q	=	kq1	+	r1	where	0	≤	r	<	n	and	0	≤	r1	<	k.	(Explain.)	Thus,

m	=	n(kq1	+	r1	+	r	=	(nk)q1	+	(nr1	+	r)

You	must	show	that	nr1	+	r	<	nk,	(Why?)	Begin	by	noting	that	k	−	r1	>	0;	hence	k	–	r1	≥	1,	so	n(k	–
r1)	≥	n.

G5 For	the	induction	step,	assume	k	·	a	=	(k	·	1)a,	and	prove	(k	+	1)	·	a	=	[(k	+	1)	·	1]a.	From	(ii)	in
this	exercise,	(k	+	1)	·	1	=	k	·	1	+	1.

CHAPTER	22
B1 Assume	a	>	0	and	a|b.	To	solve	the	problem,	show	that	a	is	the	greatest	common	divisor	of	a	and	b.

First,	a	is	a	common	divisor	of	a	and	b:	a|a	and	a|b.	Next,	suppose	t	 is	any	common	divisor	of	a
and	b:	t|a	and	t|b.	Explain	why	you	are	now	done.

D3 From	 the	 proof	 of	 Theorem	 3,	 d	 is	 the	 generator	 of	 the	 ideal	 consisting	 of	 all	 the	 linear
combinations	of	a	and	b.

E1 Suppose	a	is	odd	and	b	is	even.	Then	a	+	b	is	odd	and	a	−	b	is	odd.	Moreover,	if	t	is	any	common
divisor	of	a	–	b	and	a	+	b,	then	t	is	odd.	(Why?)	Note	also	that	if	ris	a	common	divisor	of	a	−	b	and
a	+	b,	then	t	divides	the	sum	and	difference	of	a	+	b	and	a	−	b.



F3	If	l	=	lcm(ab,	ac),	then	l	=	abx	=	acy	for	some	integers	x	and	y.	From	these	equations	you	can	see
that	a	is	a	factor	of	l,	say	l	=	am.	Thus,	the	equations	become	am	=	abx	=	acy.	Cancel	a,	then	show
that	m	=	lcm(b,	c).

G8 Look	at	the	proof	of	Theorem	3.

CHAPTER	23

A4(f) 3x2	−	6x	+	6	=	3(x2	−	2x	+	1)	+	3	=	3(x	−	1)2	+	3.	Thus,	we	are	to	solve	the	congruence	3(x	−	1)2
≡	−3	(mod	15).	We	begin	by	solving	3y	≡	−3	(mod	15),	then	we	will	set	y	=	(x	−	1)2.

We	note	first	that	by	Condition	(6),	in	a	congruence	ax	=	b	(mod	n),	if	the	three	numbers	a,	b,
and	n	have	a	common	factor	d,	then

(That	 is,	 all	 three	 numbers	a,	b,	 and	n	may	 be	 divided	 by	 the	 common	 factor	d.)	 Applying	 this
observation	to	our	congruence	3y	≡	−3	(mod	15),	we	get

3y	≡	−3	(mod	15)	 is	equivalent	to	 y	≡	−1	(mod	5)

This	is	the	same	as	y	≡	4	(mod	5),	because	in	 5	the	negative	of	1	is	4.

Thus,	our	quadratic	congruence	is	equivalent	to

(x	−	1)2	≡	4	(mod	5)

In	 5,	22	=	4	and	32	=	4;	hence	the	solutions	are	x	−	1	=	2	(mod	5)	and	x	−	1	≡	3	(mod	5),	or	finally,

x	≡	3	(mod	5)	 and	 x	≡	4	(mod	5)

A6(d) We	begin	by	finding	all	the	solutions	of	30z	+	24y	=	18,	then	set	z	=	x2.	Now,

30z	+	24y	=	18	 iff	 24y	=	18	−	30z	 iff	 30z	≡	18	(mod	24)

By	comments	in	the	previous	solution,	this	is	equivalent	to	5z	≡	3	(mod4).	But	in	 4,	 	=	 ;	hence
5z	=	3	(mod	4)	is	the	same	as	z	≡	3	(mod	4).

Now	set	z	=	x2.	Then	the	solution	is	x2	≡	3	(mod	4).	But	this	last	congruence	has	no	solution,
because	in	 4,	 	is	not	the	square	of	any	number.	Thus,	the	Diophantine	equation	has	no	solutions.

B3 Here	is	the	idea:	By	Theorem	3,	the	first	two	equations	have	a	simultaneous	solution;	by	Theorem
4,	it	is	of	the	form	x	≡	c	(mod	t),	where	t	=	lcm(m1,	m2).	To	solve	the	latter	simultaneously	with	x	≡
c3	(mod	m3),	you	will	need	to	know	that	c3	≡	c	[mod	gcd(t,	m3)].	But	gcd(t,	m3)	=	 lcm(d13,	d23).
(Explain	this	carefully,	using	the	result	of	Exercise	H4	in	Chapter	22.)	From	Theorem	4	(especially
the	 last	 paragraph	 of	 its	 proof),	 it	 is	 clear	 that	 since	 c3	 ≡	 c1	 (mod	d13)	 and	 c3	 ≡	 c2	 (mod	 d23),
therefore	c3	≡	c	[mod	lcm(d13,	d23)].

Thus,	c3	≡	c	[mod	gcd(t,	m3)],	and	therefore	by	Theorem	3	there	is	a	simultaneous	solution	of	x



≡	c	(mod	t)	and	x	≡	c3	(mod	m3).	This	is	a	simultaneous	solution	of	x	≡	c1	(mod	m1),	x	≡	c2	(mod
m2),	and	x	≡	c3	(mod	m3).	Repeat	this	process	k	times.

An	elegant	(and	mathematically	correct)	form	of	this	proof	is	by	induction	on	k,	where	k	is	the
number	of	congruences.

B5(a) Solving	the	pair	of	Diophantine	equations	is	equivalent	to	solving	the	pair	of	linear	congruences
4x	≡	2	(mod	6)	and	9x	=	3	(mod	12).	Now	see	the	example	at	the	beginning	of	Exercise	B.

D6 Use	the	definitions,	and	form	the	product	(ab	−	1)(ac	−	1)(bc	−	1).
E4 Use	the	product	(pq	−	1	−	1)(qp	−	1	−	1).
E6 Use	Exercise	D5.
E8(a) Note	the	following:

(i)	133	=	7	×	19.
(ii)	18	is	a	multiple	of	both	7-1	and	19-1.

Now	use	part	6(b).
F8 Consider	(nϕ(m)	−	1)(mϕ(n)	−	1).
H2 In	any	commutative	ring,	if	a2	=	b2,	then	(a	+	b)(a	−	b)	=	0;	hence	a	=	±b.	Thus,	for	any	a	≠	0,	the

two	elements	a	and	−	a	have	the	same	square;	and	no	x	≠	±	a	can	have	the	same	square	as	±	a.
H4 ( )	=	−	1	because	17	is	not	a	quadratic	residue	mod	23.

CHAPTER	24
A1 We	compute	a(x)b(x)	in	 6[x]:

a(x)b(x)	=	(2x2	+	3x	+	1)(x3	+	5x2	+	x)	=	2x5	+	13x4	+	18x3	+	8x2	+	x

But	the	coefficients	are	in	 6,	and	in	 6

13	=	1	 18	=	0	 and	 8	=	2

Thus,	a(x)b(x)	=	2x5	+	x4	+	2x2	+	x	in	 6[x].

Note	that	while	the	coefficients	are	in	 6,	the	exponents	are	positive	integers	and	are	not	in	 6.
Thus,	for	example,	in	 6[x]	the	terms	x8	and	x2	are	not	the	same.

B3 In	 5[x],	there	are	5	×	5	×	5	=	125	different	polynomials	of	degree	2	or	less.	Explain	why.	There	are
5	×	5	=	25	polynomials	of	degree	1	or	0;	hence	there	are	125	−	25	=	100	different	polynomials	of
degree	2.	Explain,	then	complete	the	problem.

C7 In	 9[x],	x2	=	(x	+	3)(x	+	6)	=	(2x	+	3)(5x	+	6)	=	etc.	Systematically	list	all	the	ways	of	factoring	x2

into	factors	of	degree	1,	and	complete	the	problem.
D6	 After	 proving	 the	 first	 part	 of	 the	 problem,	 you	 can	 prove	 the	 second	 part	 by	 induction	 on	 the

number	n	of	terms	in	the	polynomial.	For	n	=	2,	it	follows	from	the	first	part	of	the	problem.	Next,
assume	the	formula	for	k	terms,



and	prove	for	k	+	1	terms:
[(a0	+	a1x	+	⋯	akxk)	+	ak	+	1xk	+	1]p	=	 (Complete.)

E5 If	a(x)	=	a0	+	a1x	+	⋯	anxn	∈	J,	then	a0	+	a1	+	⋯	+	an	=	0.	If	b(x)	is	any	element	in	A[x],	say	b(x)	=
b0	+	b1x	+	⋯	+	bmxm,	 let	B	=	b0	+	b1	+	⋯	 +	bm.	Explain	why	 the	 sum	of	 all	 the	 coefficients	 in
a(x)b(x)	is	equal	to	(a0	+	a1	⋯	+	an)B.	Supply	all	remaining	details.

G3 If	h	is	surjective,	then	every	element	of	B	is	of	the	form	h(a)	for	some	a	in	A.	Thus,	any	polynomial
with	coefficients	in	B	is	of	the	form	h(a0)	+	h(a1)x	+	⋯	+	h(an)xn.

CHAPTER	25

A4 Assume	 there	 are	a,	b	∈	 5	 such	 that	 (x	+	a)(x	 +	b)	=	x2	 +	 2.	Note	 that	 in	 5,	 only	 1	 and	 4	 are
squares.

D4 Let	〈p(x)〉	⊂	J	where	J	is	an	ideal	of	F[x],	and	assume	there	is	a	polynomial	a(x)	∈	J	where	a(x)	∉
〈p(x)〉.	Then	a(x)	and	p(x)	are	relatively	prime.	(Why?)	Complete	the	solution.

F2 The	gcd	of	the	given	polynomials	is	x	+	1.

CHAPTER	26

A2 To	find	the	roots	of	x100	−1	in	 7[x],	reason	as	follows:	From	Fermat’s	theorem,	if	a	∈	 7,	then	in	 7,
a69	=	1	for	every	integer	q.	In	particular,	a96	=	1;	hence	a100	=	a96a4	=	a4.	Thus	any	root	(in	 7)	of
x100	−	1	is	a	root	of	x4	−	1.

B1 Any	rational	root	of	9x3	+	18x2	−	4x	−	8	is	a	fraction	s/t	where

s	=	±	1,	±	8,	±	2,	or	±	4

and

t	=	±	1,	±	9,	or	±	3

Thus,	the	possible	roots	are	±	1,	±	2,	±	4,	±	8,	±	1/9,	±	1/3,	±	8/9,	±	8/3,	±	2/9,	±	2/3,	±	4/9,	and
±	4/3.	Once	a	single	root	has	been	found	by	substitution	into	the	polynomial,	the	problem	may	be
simplified.	For	example,	−2	is	one	root	of	the	above.	You	may	now	divide	the	given	polynomial	by
x	+	2.	The	remaining	roots	are	roots	of	the	quotient,	which	is	a	quadratic.

C5	Prove	by	induction:	For	n	=	1,	we	need	to	show	that	if	a(x)	is	a	monic	polynomial	of	degree	1,	say
a(x)	=	x	–	c,	and	a(x)	has	one	root	c1,	then	a(x)	=	x	–	c1.	Well,	if	c1	is	a	root	of	a(x)	=	x	–	c,	 then
a(c1)	=	c1	–	c	=	0,	so	c	=	c1;	thus,	a(x)	=	x	−	c1.

For	the	induction	step,	assume	the	theorem	is	true	for	degree	k	and	k	roots,	and	prove	it	is	true
for	degree	k	+	1	and	k	+	1	roots.

C8 If	x2	−	x	=	x(x	−	1)	=	0,	then	x	=	0	or	x	−	1	=	0.	Does	this	rule	hold	in	both	 10	and	 11?	Why?

D3 Note	that	if	p	is	a	prime	number,	and	0	<	k	<	p,	then	the	binomial	coefficient	 	is	a	multiple	of

p.	(See	page	202.)
F1 The	fact	that	a(x)	is	monic	is	essential.	Explain	why	the	degree	of	 (a(x))	is	the	same	as	the	degree



of	a(x).
H3 Assume	there	are	two	polynomials	p(x)	and	q(x),	each	of	degree	≤	n,	satisfying	the	given	condition.

Show	that	p(x)	=	q(x).
I4 If	a(x)	and	b(x)	determine	the	same	function,	then	a(x)	−	b(x)	is	the	zero	function;	that	is,	a(c)	–	b(c)

=	0	for	every	c	∈	F.

CHAPTER	27

A1(e) Let	 ;	then	a2	=	i	−	 	and	a4	=	−1	−	 i	+	2	=	1−	2 i.	Thus,	a4	−	1	=	−2
i,	and	(a4	−	1)2	=	−8.	Therefore	a	is	a	root	of	the	polynomial	(x4	–	1)2	+	8,	that	is,

x8	−2x4	+	9

B1(d) Of	the	six	parts,	(a)	−	(f),	of	this	exercise,	only	(d)	involves	a	polynomial	of	degree	higher	than
4;	hence	it	is	the	most	painstaking.	Let	a	=	 ;	then	a2	=	2	+	31/3	and	a2	−	2	=	31/3.	Thus,
(a2	−	2)3	=	3,	so	a	is	a	root	of	the	polynomial

p(x)	=	(x2	−	2)3	−	3	=	x6	−	x6	−	12x2	−	11

The	bulk	of	 the	work	is	 to	ensure	that	 this	polynomial	 is	 irreducible.	We	will	use	the	methods	of
Chapter	26,	Exercises	F	and	E.	By	the	first	of	these	methods,	we	transform	p(x)	into	a	polynomial
in	Z3[x]:

x6	−	2	=	x6	+	1

Since	none	of	 the	 three	elements	0,	1,	2	 in	 3	 is	a	 root	of	 the	polynomial,	 the	polynomial	has	no
factor	of	degree	1	in	 3[x].	So	the	only	possible	factorings	into	non	constant	polynomials	are

x6	+	1	=	(x3	+	ax2	+	bx	+	c)(x3	+	dx2	+	ex	+	f)

or

x6	+	1	=	(x4	+	ax3	+	bx2	+	cx	+	d)(x2	+	ex	+	f)

From	the	first	equation,	since	corresponding	coefficients	are	equal,	we	have:

From	(1),	c	=	f	=	±1,	and	from	(5),	a	+	d	=	0.	Consequently,	af	+	cd	=	c(a	+	d)	=	0,	and	by	(3),
eb	=	0.	But	from	(2)	(since	c	=	f),	b	+	e	=	0,	and	therefore	b	=	e	=	0.	It	follows	from	(4)	that	c	+	f	=
0,	which	is	impossible	since	c	=	f	=	±1.	We	have	just	shown	that	x6	+	1	cannot	be	factored	into	two



polynomials	each	of	degree	3.	Complete	the	solution.
C4 From	part	3,	the	elements	of	 2(c)	are	0,	1,	c,	and	c	+	1.	(Explain.)	When	adding	elements,	note	that

0	and	1	are	added	as	in	 2,	since	 2(c)	is	an	extension	of	 2.	Moreover,	c	+	c	=	c(1	+	1)	=	c0	=	0.
When	multiplying	elements,	note	the	following	example:	(c	+	1)2	=	c2	+	c	+	c	+	1	=	c	(because	c2	+
c	+	1	=	0).

D1 See	Exercise	E3,	this	chapter.
D7 In	 ( ),	1	+	1	is	a	square;	so	if	 ( )	≅	 ( ),	then	1	+	1	is	a	square	in	 ( ),	that	is,	 	∈

( ).	But	all	the	elements	of	 ( )	are	of	the	form	a 	+	b	for	a,	b	∈	∈.	(Explain	why.)	So
we	would	have	 	=	a 	+	b.	Squaring	both	sides	and	solving	for	 	(supply	details)	shows
that	 	is	a	rational	number.	But	it	is	known	that	 	is	irrational.

G2 Let	Q	denote	the	field	of	quotients	of	{a(c)	:	a(x)	∈	F[x]}.	Since	F(c)	is	a	field	which	contains	F
and	c,	it	follows	that	F(c)	contains	every	a(c)	=	a0	+	a1c	+	⋯	+	ancn	where	a0,	…,	an	∈	F.	Thus,	Q
⊆	F(c).	Conversely,	by	definition	F(c)	is	contained	in	any	field	containing	F	and	c;	hence	F(c)	⊆
Q.	Complete	the	solution.

CHAPTER	28
B1 Let	U	=	{(a,	b,	c):	2a	−	3b	+	c	=	0}.	To	show	that	U	is	closed	under	addition,	let	u,	v	∈	U.	Then	u

=	(a1,	b1,	c1)	where	2a1	−3b1	+	c1	=	0,	and	v	=	(a2,	b2,	c2)	where	2a2	−	3b2	+	c2	=	0.	Adding,

u	+	v	=	(a1	+	a2,	b1	+	b2,	c1	+	c2)

and

	2(a1	+	a2)	−	3(b1	+	b2)	+	(c1	+	c2)	=	0

C5(a) S1	=	{(x,	y,	z):	z	=	2y	−	3x}.	A	suggested	basis	for	S1	would	consist	of	the	two	vectors	(1,	0,	?)
and	(0,	1,	?)	where	the	third	component	satisfies	z	=	2y	−	3x,	that	is,

(1,	0,	−3)	 and	 (0,	1,	2)

Now	show	that	the	set	of	these	two	vectors	is	linearly	independent	and	spans	S1.
D6 Suppose	there	are	scalars	k,	l,	and	m	such	that

k(a	+	b)	+	l(b	+	c)	+	m(a	+	c)	=	0

Use	the	fact	that	{a,	b,	c}	is	independent	to	show	that	k	=	l	=	m	=	0.
E5 Let	kr	+	1,	kr	+	2,	…,	kn	be	scalars	such	that

kr	+	1	h(ar	+	1)	+	⋯	+	kn	h(an)	=	b

Hence

h(kr	+	1ar	+	1	+	⋯	+	knan)	=	0

Then	kr	+	1ar	+	1	+	⋯	+	knan	∈	 .	Recall	that	{a1,	…,	ar}	is	a	basis	for	 ,	and	complete	the	proof.



F2 Use	the	result	of	Exercise	E7.
G2 Assume	that	every	c	∈	V	can	be	written,	in	a	unique	manner,	as	c	=	a	+	b	where	a	∈	T	and	b	∈	U.

Thus,	every	vector	in	V	is	an	element	of	T	+	U,	and	conversely,	since	T	and	U	are	subspaces	of	V,
every	vector	in	T	+	U	is	an	element	of	V.	Thus,

V	=	T	+	U

In	order	to	show	that	V	=	T	⊕	U,	it	remains	to	show	that	T	 	U	=	{0};	that	is,	if	c	∈	T	 	U	then	c	=
0.	Complete	the	solution.

CHAPTER	29

A3 Note	first	that	a2	−	=	 ;	hence	 	∈	 (a)	and	therefore	 (a)	=	 ( ,	a).	(Explain.)	Now	x3	−
2	(which	is	irreducible	over	 	by	Eisenstein’s	criterion)	is	the	minimum	polynomial	of	 ;	hence
[ ( )	:	 ]	=	3.	Next,	in	 ( ),	a	satisfies	a2	−	1	−	 	=	0,	so	a	is	a	root	of	the	polynomial	x2

−	(1	+	 ).	This	quadratic	is	irreducible	over	 ( )[x]	(explain	why);	hence	x2	−	(1	+	 )	 is
the	minimum	polynomial	of	a	over	 ( )[x].	Thus,	[ ( ,	a)	:	 ( ]	=	2.	Use	Theorem	2	 to
complete.

A4 This	is	similar	to	part	3;	adjoin	first	 ,	then	a.
C2 Note	that	x2	+	x	+	1	is	irreducible	in	 2[x].
D2 Suppose	there	is	a	field	L	properly	between	F	and	K,	that	is,	F	 	L	 	K.	As	vector	spaces	over	the

field	F,	L	is	a	subspace	of	K.	(Why?)	Use	Chapter	28,	Exercise	D1.
F4 The	relationship	between	the	fields	may	be	sketched	as	follows:

[K(b)	:	F]	=	[K(b)	:	F(b)]	·	[F(b)	:	F]	=	[K(b)	:	K]	·	[K	:	F]

F5 Reasoning	as	in	part	4	(and	using	the	same	sketch),	show	that	[K(b)	:	K]	=	[F(b)	:	F],	Here,	b	is	a
root	of	p(x).

CHAPTER	30
B3 If	(a,	b)	∈	 	×	 ,	then	a	and	are	rational	numbers.	By	Exercise	A5	and	the	definition	of	 ,	(a,	0)

and	(b,	0)	are	constructible	from	{O,	I}.	With	the	aid	of	a	compass	(mark	off	the	distance	from	the
origin	 to	b	along	 the	y	axis),	we	can	construct	 the	point	 (0,	b).	From	elementary	geometry	 there
exists	a	ruler-and-compass	construction	of	a	perpendicular	to	a	given	line	through	a	specified	point
on	the	line.	Construct	a	perpendicular	to	the	x	axis	through	(a,	0)	and	a	perpendicular	to	the	y	axis
through	(0,	b).	These	lines	intersect	at	(a,	b);	hence	(a,	b)	is	constructible	from	{O,	I}.

C6 Describe	a	ruler-and-compass	construction	of	the	30-60-90°	triangle.
D1 From	geometry,	the	angle	at	each	vertex	of	a	regular	n-gon	is	equal	to	the	supplement	of	2π/n,	that

is,	π	−	(2π/n).
G2 A	number	is	constructible	iff	it	is	a	coordinate	of	a	constructible	point.	(Explain,	using	Exercise	A.)



If	P	is	a	constructible	point,	this	means	there	are	some	points,	say	n	points	P1,	P2,	…,	Pn	=	P,	such
that	each	Pi	is	constructible	in	one	step	from	 	×	 	 	{P1,	…,	Pi	−	1.	In	the	proof	of	the	lemma	of
this	chapter	it	is	shown	that	the	coordinates	of	Pi	can	be	expressed	in	terms	of	the	coordinates	of
Px,	…,	Pi	−1	using	addition,	subtraction,	multiplication,	division,	and	taking	of	square	roots.	Thus,
the	coordinates	of	P	are	obtained	by	starting	with	rational	numbers	and	sucessively	applying	these
operations.

Using	these	ideas,	write	a	proof	by	induction	of	the	statement	of	this	exercise.

CHAPTER	31
A6 Let	 	be	a	real	cube	root	of	2.	 ( )	is	not	a	root	field	over	 	because	it	does	not	contain	the

complex	cube	roots	of	2.
B5 First,	p(x)	=	x3	+	x2	+	x	+	2	is	irreducible	over	 3	because,	by	successively	substituting	x	=	0,	1,	2,

one	verifies	that	p(x)	has	no	roots	in	 3.	[Explain	why	this	fact	proves	that	p(x)	is	irreducible	over	
3.]	If	u	is	a	root	of	p(x)	in	some	extension	of	 3,	then	 3(u)	is	an	extension	of	 3	of	degree	3.	(Why?)
Thus,	 3(u)	consists	of	all	elements	au2	+	bu	+	c,	where	a,	b,	c	∈	 3.	Hence	 3(u)	has	27	elements.
Dividing	p(x)	=	x3	+	x2	+	x	+	2	by	x	−	u	gives

p(x)	=	(x	−	u)[x2	+	(u	+	1)x	+	(u2	+	u	+	1)]

where	q(x)	=	x2	+	(u	+	l)x	+	(u2	+	u	+	1)	is	in	Z3(u)[x].	(Why?)

In	 3(u)[x],	q(x)	is	irreducible:	this	can	be	shown	by	direct	substitution	of	each	of	the	27
elements	of	 3(u),	successively,	into	q(x).	So	if	w	denotes	a	root	of	q(x)	in	some	extension	of	 3(u),
then	Z3(u,	w)	includes	u	and	both	roots	of	q(x).	(Explain.)	Thus,	 3(u,	w)	is	the	root	field	of	p(x)
over	 3.	It	is	of	degree	6	over	 3.	(Why?)

C5 We	may	 identify	F[x]/〈p(x)〉	with	F(c),	 where	 c	 is	 a	 root	 of	p(x).	 Then	F(c)	 is	 an	 extension	 of
degree	4	over	F.	(Why?)	Now	complete	the	square:

Form	the	iterated	extension	F(d1,	d2),	where	d1	is	a	root	of	x2	−	[(a2/4)	−	b]	and	d2	is	a	root	of	x2	−
[(a/2)	+	d1].	Explain	why	(a)	F(d1,	d2)	=	F(c)	and	(b)	F(d1,	d2)	contains	all	the	roots	of	p(x).

D3 From	page	313,	 ( ,	 )	=	 ( 	+	 );	hence	 ( ,	 ,	 )	=	 ( 	+	 ,	 ).
As	in	the	illustration	for	Theorem	2,	taking	t	=	1	gives	c	=	 	+	 	+	 .	(Provide	details.)

D5 Use	the	result	of	part	3.	The	degree	of	 ( ,	 ,	 )	over	 	is	8	(explain	why).	Now	find	a
polynomial	p(x)	of	degree	8	having	 	+	 	+	 	as	a	root:	if	p(x)	is	monic	and	of	degree	8,
p(x)	must	be	the	minimum	polynomial	of	 	+	 	+	 	over	 .	(Why?)	Hence	p(x)	must	be
irreducible.	Explain	why	the	roots	of	p(x)	are	± 	±	 	±	 ,	all	of	which	are	in	 ( ,	 ,

).
E4 For	n	=	6,	we	have	x6	−	1	=	(x	−	1)(x	+	1)(x2	−	x	+	1)(x2	+	x	+	1).	From	the	quadratic	formula,	the

roots	of	the	last	two	factors	are	in	 ( ).



H2 Note	that	if	c(x)	=	c0	+	c1x	+	⋯	+	cnxn	then

and

h(c(a))	=	h(c0)	+	h(c1)b	+	⋯	+	h(cn)bn

For	d(x)	=	d0	+	d1x	+	⋯	+	dnxn,	we	have	similar	formulas.	Show	that	h(c(a))	=	h(d(a))	iff	b	is	a	root
of	hc(x)	−	hd(x).

I4 The	proof	is	by	induction	on	the	degree	of	a(x).	If	deg	a(x)	=	1,	then	K1	=	F1	and	K2	=	F2	(explain
why),	 and	 therefore	 K1	 ≅	 K2.	 Now	 let	 deg	 a(x)	 =	 n,	 and	 suppose	 the	 result	 is	 true	 for	 any
polynomial	of	degree	n	−	1.

Let	p(x)	be	an	irreducible	factor	of	a(x);	let	u	be	a	root	of	p(x)	and	υ	a	root	of	hp(x).	If	F1(u)	=
K1,	then	by	parts	1	and	2	we	are	done.	If	not,	let	 	=	F1(u)	and	 	=	F2(υ);	h	can	be	extended	to
an	isomorphism	h:	 	→	 ,	with	h(u)	=	υ.	In	 [x],	a(x)	=	(x	−	u)a1(x),	and	in	 [x],	ha(x)	=	
a(x)	=	(x	−	υ)ha1(x),	where	deg	a1(x)	=	deg	ha1(x)	=	n	−	1.	Complete	the	solution.

J2 Explain	why	any	monomorphism	 	:	F(c)	→	 ,	which	is	an	extension	of	h,	is	fully	determined	by
the	value	of	 (c),	which	is	a	root	of	hp(x).

J4 Since	 h(1)	 =	 1,	 begin	 by	 proving	 by	 induction	 that	 for	 any	 positive	 integer	 n,	 h(n)	 =	 n.	 Then
complete	the	solution.

CHAPTER	32

A2 In	the	first	place,	 ( )	is	of	degree	2	over	 .	Next,	x2	+	1	is	irreducible	over	 ( ).	(Explain
why.)	Complete	the	solution.

D1 The	complex	fourth	roots	of	1	are	±1	and	±i.	Thus,	the	complex	fourth	roots	of	2	are	 (1),	 (−
1),	 (i),	and	 (−	i),	that	is:

Explain	why	any	field	containing	the	fourth	roots	of	2	contains	α	and	i,	and	conversely.
E1 See	Chapter	31,	Exercise	E.
E6 Let	a	α	 	be	a	real	sixth	root	of	2.	Then	[ (α)	:	 ]	=	6.	Explain	why	x2	+	3	is	irreducible	over	

(α)	and	why	[ (a,	 i)	:	 (α)]	=	2.	If	ω	=	(1/2)	+	( /2)i	(which	is	a	primitive	sixth	root	of	1),
then	the	complex	sixth	roots	of	2	are	α,	αω,	αω2,	αω3,	αω4,	and	αω5.	Any	automorphism	of	 (α,	

i)	fixing	 	maps	sixth	roots	of	2	to	sixth	roots	of	2,	at	the	same	time	mapping	 i	to	± i
(and	hence	mapping	ω	to	ω5).	Provide	details	and	complete	the	solution.

H4 Suppose	a	≠	h(a),	say	a	<	h(a).	Let	r	be	a	rational	number	such	that	a	<	r	<	h(a).
I4 Every	subgroup	of	an	abelian	group	 is	abelian;	every	homomorphic	 image	of	an	abelian	group	 is

abelian.



CHAPTER	33
A2(a) The	polynomial	 is	 irreducible	over	 	by	Eisenstein’s	 criterion,	 and	 it	has	 three	 real	 roots	 and

two	complex	roots.	(Explain	why.)	Argue	as	in	the	example	of	page	340	and	show	that	the	Galois
group	is	S5.

B3 It	must	be	shown	that	for	each	i,	i	=	0,1,	…,	n	–	1,	the	quotient	group	Ji	+	1/Ji	is	abelian.	It	must	be
shown	that	Ji	contains	xyx−	1y−	1	for	all	x	and	y	in	Ji	+	1.	Provide	details	and	complete.

C3 F	has	an	extension	K	which	contains	all	the	roots	d1,	d2,	…,	dp	of	xp	−	a.	In	K,	xp	–	a	factors	into
linear	factors:

xp	−	a	=	(x	−	d1)(x	−	d2)	⋯	(x	−	dp)

By	uniqueness	of	factorization,	p(x)	is	equal	to	the	product	of	m	of	these	factors,	while	f(x)	 is	 the
product	of	the	remaining	factors.

D3 If	f:	G	→	G/K	is	the	natural	homomorphism,	then	 	=	f−	1	( )	=	{x	∈	G:	f(x)	∈	 }.
D7 Prove	this	statement	by	induction	on	the	order	of	G/H.	Let	|G/H|	=	n,	and	assume	the	statement	is

true	for	all	groups	H′	 	G′,	where	|G′/H′|	<	n.	If	G	has	no	normal	subgroup	J	such	that	H	⊂	J	⊂	G
(H	 ≠	 J	 ≠	G),	 then	H	 is	 a	maximal	 normal	 subgroup	 of	G;	 so	 we	 are	 done	 by	 parts	 4	 and	 5.
Otherwise,	|G/J|	<	n	and	|J/H|	<	n.	Complete	the	solution.
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Abelian	extension,	336
Abelian	group,	28
Absorbs	products,	182
Addition	modulo	n,	27
Additive	group	of	integers	modulo	n,	27
Algebraic	closure,	300
Algebraic	elements,	273
Algebraic	numbers,	299
Algebraic	structures,	10
Alternating	group,	86
Annihilating	ideal,	189
Annihilator,	188
Associates,	219,	252
Associative	operation,	21
Automata,	24,	65
Automorphism:

of	a	field,	323
Froebenius,	207
of	a	group,	101,	161
inner,	161

Basis	for	a	vector	space,	286
Basis	theorem	for	finite	abelian	groups,	167
Bijective	function,	58
Binary	codes,	33
Binomial	formula,	179
Boolean	algebra,	9
Boolean	rings,	179

Cancellation	law,	37
Cancellation	property	in	rings,	173
Cauchy’s	theorem,	131,	164,	339
Cayley	diagram,	51
Cayley’s	theorem,	95
Center:

of	a	group,	50,	154
of	a	ring,	186

Centralizer,	134
Characteristic	of	an	integral	domain,	201
Chinese	remainder	theorem,	233
Circle	group,	163
Class	equation,	154
Closure:	algebraic,	300

with	respect	to	addition,	44
with	respect	to	inverse,	44
with	respect	to	multiplication,	44



Code,	33
Commutative	operation,	20
Commutative	ring,	172
Commutator,	144,	152
Commuting	elements,	40
Composite	function,	59
Congruence,	modulo	n,	227

linear,	230
Conjugacy	class,	134
Conjugate	cycles,	88
Conjugate	elements,	133,	140
Conjugate	subgroups,	145
Constructible	angles,	308
Constructible	numbers,	307
Constructible	points,	303
Correspondence	theorem,	164
Coset,	126-134,	190

left,	127
right,	127

Coset	addition,	150
Coset	decoding,	134
Coset	multiplication,	149
Cycles,	81-82

conjugate,	88
disjoint,	82
length	of,	82
order	of,	88

Cyclic	group,	112-118
generator	of,	112

Cyclic	subgroup,	47,	114

Defining	equations,	50
Degree:

of	an	extension,	292
of	a	polynomial,	241

Derivative,	279
Dihedral	group,	74
Dimension	of	a	vector	space,	287
Diophantine	equation,	230
Direct	product:

of	groups,	42
inner,	145
of	rings,	177

Disjoint	cycles,	82
Distributive	law,	15,	170
Division	algorithm,	213,	245
Divisor	of	zero,	173
Domain	of	a	function,	57

Eisenstein’s	irreducibility	criterion,	263
Endomorphism,	177
Equivalence	class,	121
Equivalence	relation,	121-125
Euclidean	algorithm,	257
Euclid’s	lemma,	221,	254
Euler’s	phi-function,	229
Euler’s	theorem,	229
Even	permutation,	84-86
Extension:



abelian,	336
algebraic,	296
degree	of,	292
finite,	292,	312
iterated,	295
normal,	322,	333
quadratic,	278
radical,	319,	335
simple,	278,	295,	312

Extension	field,	270-281
degree	of,	292-300

Fermat’s	little	theorem,	229
Field,	172
Field	extension,	270-281

degree	of,	292-300
Field	of	quotients,	203
Finite	extension,	292,	312
First	isomorphism	theorem,	162
Fixed	field,	326
Fixer,	326
Fixfield,	326
Flow	network,	91
Froebenius	automorphism,	207
Functions,	56-68

bijective,	58
composite,	59
domain	of,	57
identity,	70
injective,	57
inverse,	60
range	of,	57
surjective,	58

Fundamentalhomomorphism	theorem,	157-168
for	groups,	158
for	rings,	193

Galois,	Évariste,	17
Galois	correspondence,	328
Galois	group,	325
Galois	theory,	311-333
Generator	matrix,	54
Greatest	common	divisor,	219,	253
Group(s),	25-43,	69-79,	103-118,	147-156

abelian,	28
acting	on	a	set,	134
alternating,	86
circle,	163
cyclic,	112-118
dihedral,	74
finite,	26
Galois,	325
of	integers	modulo	n,	26
order	of,	39
parity,	137
of	permutations,	71
quaternion,	133
quotient,	147-156
solvable,	338,	342



symmetric,	71
of	symmetries	of	a	square,	72

Group	code,	53

Homomorphisms,	136-146,	157-168,	183-184,	187-189

Ideal(s),	182-189
annihilating,	189
annihilator	of,	188
maximal,	189,	195
primary,	198
prime,	194
principal,	183,	251
proper,	189,	195
radical	of,	188
semiprime,	198

Identity	element,	21
Identity	function,	70
Index	of	a	subgroup,	129
Induction:

mathematical,	211,	214
strong,	212

Injective	function,	57
Inner	automorphism,	161
Inner	direct	product,	145
Input/output	sequence,	24
Integers,	208-217
Integral	domain,	174,	200-207

characteristic	of,	201
ordered,	209

Integral	system,	210
Inverse	function,	60
Invertible	element	in	a	ring,	172
Irreducible	polynomial,	254
Isomorphism,	90-103
Iterated	extension,	295

Kernel:
of	a	group	homomorphism,	140
of	a	ring	homomorphism,	185

Lagrange’s	theorem,	129
Leading	coefficient,	242
Least	common	multiple,	224
Legendre	symbol,	238
Linear	combination,	285
Linear	dependence,	285
Linear	independence,	285
Linear	transformation,	288

Matrices,	7-9
Matrix	multiplication,	8
Maximal	ideal,	189,	195
Minimum	polynomial,	273
Modulo	n:

addition,	27
congruence,	227,	230
multiplication,	171

Monic	polynomial,	253
Monomorphism,	322



Multiplication	modulo	n,	171

Nilpotent	element,	180
Normal	extension,	322,	333
Normal	series,	342
Normal	subgroup,	140
Null	space,	290

Odd	permutation,	84-86
Operations,	10,	19-24
Orbit,	134
Order:

of	an	element,	105
of	a	group,	39
infinite,	105

p-group,	165
p-subgroup,	165
p-Sylow	subgroup,	165
Parity-check	equations,	34
Parity-check	matrix,	54
Partition,	119-125
Permutation,	69-86

even,	84-86
odd,	84-86

Polynomial(s),	240-270
inseparable,	320
irreducible,	254
minimum,	273
monic,	253
reducible,	254
root(s)	of,	259
multiple,	280,	312
separable,	320

Polynomial	interpolation,	268
Prime	ideal,	194
Prime	numbers,	217-225
Primitive	roots,	239,	337
Principal	ideal,	183,	251
Proper	ideal,	189,	195

Quadratic	reciprocity,	239
Quadratic	residue,	238
Quaternion,	176

ring	of,	176
Quaternion	group,	133
Quotient	group,	147
Quotient	ring,	190-199

Radical(s),	335-343
Radical	extension,	319,	335
Radical	of	an	ideal,	188
Range	of	a	function,	57
Redundancy,	34
Regular	representation	of	groups,	102
Relatively	prime,	220,	254
Ring(s),	169-181,	190-199,	240-251

commutative,	172
of	endomorphisms,	177
of	polynomials,	240-251



of	quaternions,	176
quotient,	190-199
trivial,	172
with	unity,	172

Root	field,	313
Root(s)	of	a	polynomial,	259

multiple,	280,	312

Second	isomorphism	theorem,	163
Solvable	by	radicals,	335
Solvable	group,	338,	342
Solvable	series,	342
Stabilizer,	134
State,	65

diagram,	66
internal,	65
next,	65

Subgroup(s),	44-52
cyclic,	47,	114
generators	of,	47
index,	of,	129
normal,	140
p-,	165
p-Sylow,	165
proper,	46
trivial,	46

Subring,	181
Surjective	function,	58
Sylow	groups,	165
Sylow	subgroup,	165
Sylow’s	theorem,	165
Symmetric	difference,	30
Symmetric	group,	71

Transcendental	elements,	273
Transposition,	83

Unique	factorization,	222,	255
Unity,	ring	with,	172

Vector	space,	282-291
basis	of,	286
dimension	of,	287

Weight,	55
Well-ordering	property,	210
Wilson’s	theorem,	237
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