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Dynamics, Statistics and Projective Geometry of Galois Fields

V. I. Arnold reveals some unexpected connections between such appar-
ently unrelated theories as Galois fields, dynamical systems, ergodic the-
ory, statistics, chaos and the geometry of projective structures on finite
sets. The author blends experimental results with examples and geomet-
rical explorations to make these findings accessible to a broad range of
mathematicians, from undergraduate students to experienced researchers.

V. I . Arnold was Professor of Mathematics at the Université de
Paris IX (Paris-Dauphine) and at the Steklov Mathematical Institute in
the Russian Academy of Sciences until his death in 2010.





Dynamics, Statistics and Projective
Geometry of Galois Fields

V. I. ARNOLD



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521872003

C© V. I. Arnold 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Arnold, V. I. (Vladimir Igorevich), 1937–2010.

The dynamics, statistics, and projective geometry of Galois fields / V. I. Arnold.
p. cm.

Includes index.
ISBN 978-0-521-87200-3 – ISBN 978-0-521-69290-8 (pbk.)

1. Finite fields (Algebra) 2. Galois theory. I. Title.
QA247.3.A76 2010

512′.32 – dc22 2010031765

ISBN 978-0-521-87200-3 Hardback
ISBN 978-0-521-69290-8 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



Some words about Vladimir Igorevich Arnold

As scientist, Vladimir Igorevich Arnold was among the most influential and
greatest mathematicians of the XX century. His discoveries, conjectures and
challenging problems strongly influenced the development and determined the
modern state of such domains in mathematics as singularity theory, dynamical
systems, real algebraic geometry, symplectic and contact geometry, symplectic
and contact topology, KAM theory, qualitative theory of differential equations,
mechanics and many others. According to the data of 2009, he was the most
cited Russian scientist, being cited in papers of mathematics, physics, astron-
omy, chemistry, biology and even medicine. A small planet discovered in 1981,
registered under # 10031, was named Vladarnolda after him – making him the
only mathematician who has had such a distinction in life! Lots of mathemati-
cians around the world are and have been publishing scientific papers on his
conjectures and problems.

The authors of these lines were his students and are representatives of
Arnold’s Moscow and Paris schools, cities where he was professor and had
a very active seminar, with lots of students. As professor, Arnold was doing
extremely careful reading and critical corrections of our texts, pointing out all
words or sentences that could be misunderstood. Sometimes, he was proposing
deeper statements of the results, conjecturing new “theorems” (whose state-
ments were often true, with slight modifications,) or improving the general
redaction of the text. In particular, the first article of each one of us was
almost entirely written by him (as his first paper was almost entirely written by
Kolmogorov): he corrected the article three or four times, the size of his cor-
rections being each time similar to the size of the article! In his seminar he
was always proposing new problems to us, often leading to new topics. To pre-
pare his students (or any mathematician attending to his seminar) to work on
his problems, sometimes he explained the interconnections of those problems
with different domains of mathematics and sketched the ways in which such



connections could be used. Other times he explained the essential elements
of the corresponding theory, pointing out the possible diculties and making a
proper choice and detailed study of relevant examples (he claimed that exam-
ples teach more than a formal proof of a result). After Arnold’s problems a
great number of publications were written by his students or by other math-
ematicians participating in his seminar. For several of those articles the main
idea was due to him, but he never signed any such paper, nor any paper of his
students. Besides his brilliant and visionary mind, Arnold was extremely gen-
erous. We learnt from him much more than mathematics and to be his student
was a fascinating, enriching and life-changing experience.

Arnold’s qualities as scientist and professor are reflected in his numer-
ous books, many of them forming a golden fund of mathematical educational
literature. His special style of writing (very easy to recognise and dicult to
reproduce) is an amazing unity of clearness and profoundness that allowed to
him to explain in an accessible way the theories standing on the very fore-
ground of modern science, and in which a committed avoidance of useless and
redundant formalism is a point of principle. Following the arguments of Arnold
any thoughtful reader can readily reconstruct the details corresponding to his
or her mathematical background and conception. Reading of his books turns
into a fascinating pastime that is almost impossible to interrupt.

Arnold’s books are equally interesting and useful to both working math-
ematicians and physicists as well as to students and teachers. Such books
as “Ordinary Differential Equations” or “Mathematical Methods of Classical
Mechanics” became bestsellers of mathematical literature. Arnold passed away
the 3rd of July 2010 when the present book was already prepared for publica-
tion. We hope that it will also find a delightful response of many readers and
will stimulate them to read Arnold’s mathematical literature.

Maxim Kazarian and Ricardo Uribe-Vargas
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Preface

This book derives from a 2-hour-long presentation to Moscow high-school
students at the Moscow State (Lomonosov) University MGU, in November
2004. It is a translation from the Russian of The Dynamics, Statistics and
Projective Geometry of Galois Fields†, which was itself based on the earlier
article Geometry and Dynamics of Galois Fields.‡ It describes some astonishing
recent discoveries of the relations between Galois fields, dynamical systems,
ergodic theory, statistics and chaos, as well as of the geometry of projective
structures on finite sets.

Most of these recent discoveries encapsulated empirical studies, and
some of the conjectures suggested by these numerical experiments are still
unproved, despite the fact that their simple statements make them quite acces-
sible to high-school students (who can study them empirically, thanks to
computers).

Together with these continuing empirical studies, it would be nice to inves-
tigate some of the remaining theoretical questions, such as the natural problem
of the intrinsic characterisation of projective permutations among all the per-
mutations of a finite set. We ought to be able to understand those geometrical
features of some special permutations of a dozen points that make these spe-
cial permutations projective, thereby distinguishing them from non-projective
permutations.

The author thanks the audience for many helpful remarks and hopes to
extend the collaboration with the readers of the present book. The author looks
forward to there being many contributions to this young domain of mathematics

† Moscow Center for Continuous Mathematical Education, Moscow, 72pp.
‡ Russian Mathematical Surveys, 59 (6), (2004) (pages 23–40 in the Russian version).

ix



x Preface

(including, one hopes, the discovery of applications of Galois fields beyond
mathematics).

The author thanks G. Capitanio for help in typing the LaTeX file of this
text and the figures. These studies were supported in part by RFBR grant
05–01–00104.



1

What is a Galois field?

A Galois field is a field that has a finite number of elements. Such fields belong
to the small quantity of the most fundamental mathematical objects that serve
to describe all other mathematical structures and models.

Another example of such fundamental objects is the well-known prime
numbers:

p = 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . , 997, 1009, . . . ;

these are the positive integers that each have only two integer divisors (namely
1 and the number itself). By convention we do not take the number 1 to be
prime.

An immediate natural question, to which this notion leads, is already rather
difficult: is the set of all the primes finite? In other words, can the above
sequence of primes be continued indefinitely?

The answer to this question was discovered in antiquity: the sequence of
prime numbers is infinite, i.e. there is no maximal prime number.

To prove it, assume the opposite, i.e. that there is a maximal prime p, and
consider the number

(2 × 3 × 5 × · · · × p) + 1 .

This has remainder (residue) 1 when we divide it by any prime number
2, 3, . . . , p. This number (which is greater than p and so, by assumption,
is not prime) is not, therefore, divisible by any of them. Hence, it has a prime
divisor which is greater than p – a contradiction. Therefore, there is no maximal
prime number p.

This remarkable mathematical result avoids the question that interests us,
as scientists, most: how often are primes encountered in the sequence of all the
natural numbers {1, 2, 3, 4, 5, 6, . . . }? Do the intervals between consecutive

1



2 What is a Galois field?

prime numbers grow as the numbers we consider become large? What is the
millionth prime expressed as a decimal number?

The first scientist to study this problem was Adrien Marie Legendre (1752–
1833), who had considered (in the eighteenth century) tables of primes up to
106 and who had discovered empirically the following law of the decline in
density of the primes: the average distance between consecutive prime numbers
of order of n, grows with n like ln n (here, ln is the natural logarithm, which is
the logarithm to the base e ≈ 2.71828 . . . , where the ‘Euler number’ e is

e = lim
k→∞

(
1 + 1

k

)k

=
∞∑

m=0

1

m!
.

Thus, for example, ln 10 ≈ 2.3, and the average distance between consecu-
tive primes close to 10 is slightly greater than 2, since

7 − 5 = 2 , 11 − 7 = 4 , 13 − 11 = 2 .

The primes in the region of n = 100 are 89, 97, 101, 103, so their average
separation is 4 2

3 . This distance should be compared with ln 100 = 2 ln 10 � 4.6
from Legendre’s law, and it is thus confirmed satisfactorily even for n = 100.

Of course, the existence of pairs of twins (that is, of prime pairs whose
difference is 2, such as 5 and 7, 17 and 19, 29 and 31) contradicts the expected
increasing separation of consecutive prime numbers, provided that the number
of such twins is infinite, which is conjecturally true. (This conjecture is one of
the most celebrated unproved statements of modern number theory.)

Unfortunately, Legendre’s empirical observations were not appreciated by
the mathematical community of the time, since ‘he had proved nothing, but
only considered some millions of examples’. It is true that he succeeded in
‘deducing’ his law from empirical statistical observations, but he was unable
to provide a strict mathematical proof that in the asymptotic limit, as n →
∞, the average distance between primes coincides with his proposed value
of ln n.

Kolmogorov said to me several times, concerning his studies on hydrody-
namical turbulence: ‘do not try to find in my works any theorem that proves the
statements I make: I am unable to deduce them from the basic (Navier–Stokes)
equations of hydrodynamics. My results on the solutions of these equations are
not proved, but they are true, which is more important than all proofs.’

The first person who appreciated Legendre’s discoveries was the Russian
mathematician Tchebyshev. He first proved that even if the average distance
between consecutive primes in the neighbourhood of a large number n does
not behave asymptotically as ln n, its relation to this Legendre value remains
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bounded, i.e. the average distance lies between c1 ln n and c2 ln n (where c1 < c2

were explicitly calculated).
Later, he proved more: provided that any oscillations between the above

limits would die out as n grows, implying that the average distance to the
asymptotic value would be c ln n for some constant c, then the constant c

cannot be different from 1.
This is not yet sufficient to prove the Legendre asymptotic formula, since

there remains the possibility of non-vanishing oscillations between c1 ln n and
c2 ln n, therefore, never leading to the c ln n behaviour.

However, about 100 years after Legendre’s discovery, two celebrated math-
ematicians, Hadamard (from France) and de la Vallée Poussin (from Belgium),
proved that the oscillations do indeed die out for n → ∞, yielding the c ln n

asymptotic behaviour of the average distance between the consecutive primes
in the neighbourhood of n.

The mathematical community claims, therefore, that Hadamard and de la
Vallée Poussin made a great discovery concerning the distribution of large
prime numbers.

It seems to me that this claim is rather unfair. These great mathematicians
simply proved the existence of the distribution law.

Both ‘scientific’ facts, namely the asymptotic proportionality, to ln n, of
the average separation, and that the constant of proportionality equals 1, were
discovered by Legendre and Tchebyshev, to whom one should attribute the
great discovery of the law of distribution of primes described above.

In this book, therefore, I shall follow Legendre rather than Hadamard: I shall
discuss empirical numerical observations that suggest some new (and astonish-
ing) natural laws whose transformation to mathematical theorems might have
to wait some hundred years (as happened in the case of the law of distribution
of primes), despite the fact that the discovery of these new laws is quite within
the reach of high-school students, even without the use of computers, although
using computers might accelerate numerical experiments†.

In addition to the prime numbers, another example of a fundamental math-
ematical object is provided by regular polyhedra (also called ‘Platonic solids’,
even though Plato did not discover them). There are five such bodies: the tetra-
hedron (with 4 faces), the octahedron (with 8 faces), the cube (with 6 faces),
the icosahedron (from the Greek ‘icos’ for its 20 faces) and the dodecahedron
(from the Greek ‘dodeca’ for its 12 faces) – see Figure 1.1.

† I used no computers in the experiments that led me personally to the results below: my
students, who verified that machines gave the same answers as I did, discovered that my
calculations contained many fewer mistakes than those done by using computers.
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Octahedron CubeTetrahedron

Icosahedron Dodecahedron

Figure 1.1 Regular polyhedra

αα

Figure 1.2 The origin of rainbows

The dodecahedron was used by Kepler to describe the orbital radius law of
planets in the solar system.

The regular polyhedra are related in a strange way to a domain of physics
which seems to be quite different – namely the theory of optical caustics, which
provides, for instance, an explanation of the phenomenon that the angular radius
of a rainbow is α = 42◦, and describes how galaxies are concentrated at large
scales in the universe.

Kolmogorov explained that the special beauty of mathematical theories is
due to the way they reveal unexpected relations between quite different natural
phenomena (say, between the theories of the electric and magnetic fields as
described by Maxwell’s equations).

In distinction to the fundamental objects in the examples above, the appli-
cations of Galois fields to the natural sciences are yet to be discovered. I hope
that they will appear rather soon, and I would like to shorten the time till then
by giving a geometric presentation of Galois field theory. My description is
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Figure 1.3 A finite circle: the Galois field Z5

closer to the scientific approach than to the axiomatic–algebraic superabstract
style that dominates current presentations of this algebraic theory.

The simplest example of a Galois field is the field of residues modulo a
prime number p (Figure 1.3).

Thus, for p = 2 we get the field consisting of two elements:

Z2 = {0, 1} ,

with its usual arithmetic

0 + 0 = 0 , 0 + 1 = 1 + 0 = 1 , 1 + 1 = 0 ,

0 · 0 = 0 · 1 = 1 · 0 = 0 , 1 · 1 = 1 .

This ‘binary’ arithmetic is the basis for calculating with computers, which
use the binary system. Thus, the simplest Galois field is extremely useful:

(the field Z2) =⇒ (computers) .

The general notion of a field is very similar to this simple example: there
are two operations (called ‘addition’ and ‘multiplication’), having the usual
properties of commutativity and associativity and satisfying the ordinary dis-
tributive law; and one can divide the elements of the field by any element of
the field different from 0.

The residues after division by 3 form the field Z3, consisting of three ele-
ments {0, 1, 2} (where 1/2 = 2, since 2 · 2 = 1 for the residues modulo 3:
(3a + 2)(3b + 2) = 9ab + 6a + 6b + 4 = 3c + 1).

On the other hand, the four residues after division of the integers by 4 do not
form a field, since the element 2 cannot be inverted (the residue 2x is sometimes
0, sometimes 2, but it is different from 1, whatever the remainder x).

However, there does exist a field of four elements, though the operations are
different from the above example. To find these operations is a useful exercise,
one that is neither too difficult, nor too easy for a beginner.
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The finite fields are called Galois fields, since Galois discovered the follow-
ing two remarkable properties of them:

1. The number of elements of a finite field is an integer of the form pn, where
p is a prime; and for any prime p and any natural number n there exists a
finite field having just pn elements.

Thus, there exist fields with

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27

elements, but there is no field with

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26

elements.

2. The field of pn elements is defined unambiguously by the number of its
elements (up to isomorphism).

Thus, a computer using the field Z2 at Moscow, and another computer,
working in Paris, might each use a different copy of this field. The Parisian
might denote the elements of the field by α and β (instead of 0 and 1), and
define the operations according to the table:

α + α = β + β = β , α + β = β + α = α ,

α · α = α , α · β = β · α = β · β = β .

But this field is isomorphic to the Moscow field of residues Z2, differing
only in the notation α ∼ 1 and β ∼ 0. The fact that phenomena are independent
of notation is a deep notion, one that is also at the foundation of relativity theory
and so the whole of relativistic physics.

I shall not give here proofs of the above-formulated existence and uniqueness
theorems for the field of pn elements. I shall instead describe, by explicit
tabulation, the operations in this field. Strangely, I have not seen in published
form the science-oriented description of finite fields that I present below.

Every field contains the 0 element (zero), which has the property of not
changing any element to which it is added. All the other elements of the field
form the multiplicative group of the field (i.e. a group under multiplication)
since each non-zero element can be inverted.

This group is always cyclic: there exists an element A of the field such that
every non-zero element of the field has the form Ak , where 1 ≤ k ≤ pn − 1 for
the field of pn elements.

I shall not prove the cyclic property (though its proof is not too diffi-
cult), since this result adds to the theory only the following statement, loved
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Figure 1.4 Lobachevsky plane

by axiomatisers: the only finite fields are those with a cyclic multiplicative
subgroup.

In other words, we can consider the theory, explained below, as describing
finite fields with an additional axiom: namely, the multiplicative group of the
field is cyclic, or in other words a primitive element exists whose powers provide
all the non-zero elements of the field.

The absence of any different finite field is a nice addition to this theory, but
the theory itself does not depend on this additional property of our axioms.

It is worthwhile to observe that the exaggerated attention to the difficult
study of the independence of axioms makes the algebraic and abstract theories
of mathematicians unnecessarily hard and intimidating for scientists.

Thus, the Lobachevsky plane is simply the interior disc of the unit circle,
whose interior points are called ‘Lobachevsky points’, and whose ‘Lobachevsky
lines’ are chords of the unit circle. The boundary circle (which does not belong
to the Lobachevsky plane) is called ‘absolute’.

It is very easy to see that these objects (forming the so-called Klein model
of the Lobachevsky plane – although, of course, they had been invented by A.
Cayley) – satisfy all but one of the axioms of Euclidean geometry (‘there exists
one, and only one, line connecting two given points’, etc.). The exception is
the ‘parallel axiom’: there exist an infinity of Lobachevsky lines going through
a given Lobachevsky point and having no common Lobachevsky points with a
given Lobachevsky line that does not contain the given Lobachevsky point (that
is, an infinity of chords, see Figure 1.4).

This list of obvious scientific facts can be completed by a (difficult) for-
mal theorem: there exists no Lobachevsky plane other than the Klein model
described above. Of course, this is true up to isomorphisms: the theorem states
that the axioms for the Lobachevsky plane imply that this plane is isomorphic
to the Klein model.
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It is interesting that Lobachevsky was unable to prove his main and quite
remarkable statement: the parallelism axiom of Euclidean geometry is inde-
pendent of the other axioms; that is, it cannot be deduced from them.

The model described above (and invented many years after Lobachevsky
worked) proved just this independence result.

Indeed, if one could use the failure of the Euclidean parallels axiom to
deduce a contradiction (which contradiction would indeed prove the axiom),
then the model would also be false providing therefore a contradiction within
the usual Euclidean geometry (concerning the ordinary geometry of the chords
of a circle).

The proofs of fundamental mathematical facts are, in many cases, much
simpler than the formal details that make mathematics textbooks so difficult.
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The organisation and tabulation
of Galois fields

Multiplication in a Galois field that consists of n elements, 0 and {Ak}, 1 ≤
k ≤ n − 1, is simply the addition of the ‘logarithms’ k of the elements (where
we consider these logarithms as the residues of the numbers k modulo n − 1):

0 · Ak = 0 , Ak · A� = Ak+�;

if k + � > n − 1, one replaces the sum by k + � − (n − 1) to reduce the sum
to a value smaller than n.

It remains to define the addition operation. Denoting the element Ak of the
field by the sign k, we arrive at the following tropical operation ∗ over these
logarithms:

Ak + A� = Ak∗� .

The modern term ‘tropical’, taken by me to mean ‘exotic’, is used when
one lowers the level of the algebraic operations, transforming multiplication
to addition, and replacing addition by the lower-level ‘tropical addition’ oper-
ation, with respect to which the normal addition is distributive, as is normal
multiplication with respect to normal addition:

x(y + z) = xy + xz is replaced by x + (y ∗ z) = (x + y) ∗ (x + z) .

An example of such tropical addition is the operation x ∗ y = max(x, y) for
the real numbers. One can obtain this tropical operation from normal addition
by using logarithms accompanied by the short wave asymptotic expansion of
quantum mechanics, when the wave length h approaches 0. The relation

x ∗h y

h
= ln(ex/h + ey/h)

defines the tropical addition operation ∗h, tending to max(x, y) as h → 0.

9



10 Organisation and tabulation of Galois fields

While all these things are obvious, they imply a non-obvious ‘tropical’
conclusion: replacing multiplication and addition operations with their tropical
versions (i.e. addition and maximum), one can transform many formulas and
theorems of calculus (such as Fourier series theory) into their (non-evident)
‘tropical’ versions, providing interesting results in convex analysis and linear
programming.

Consider for simplicity the case of the field F of z = p2 elements. It contains
the ‘scalar’ elements 1, 2 = 1 + 1, . . . . Since this field is finite, one of the sums
must coincide with the other. Hence, for some m, the sum of m 1s (equal to
the difference of the coincident sums) equals 0 i.e. m = 1 + · · · + 1 = 0. We
shall suppose the number m to be the minimal value for which this statement
is true.

We shall now prove that m = p. We will say that each element x is equivalent
to any element of the form x + 1 + · · · + 1, where the number of 1s is at most
m. Each equivalence class consists of m elements, and these classes are disjoint.
Therefore the number m of scalar elements is a divisor of the number p2 of
elements of the field. Thus, m is either p or p2.

The second case is impossible. Consider the scalar element x = 1 + · · · + 1
(p times). This element of the field of p2 elements has no inverse element, since
no integer of the form pq leaves the residue 1 when divided by p2. Therefore,
x = 0 and the number of scalars is thus m = p.

Consider the element 1 together with a primitive element A of our field.
Adding each of them fewer than p times, we create the p2 sums uA + v1. All
these elements are different (otherwise we would obtain A = (−v/u) · 1, and
therefore all the elements of the field would be scalars, which is impossible,
since the number of scalars is p, which is smaller than p2).

Thus, the field of p2 elements consists exactly of linear combinations F =
{uA + v1} with coefficients u ∈ Zp, v ∈ Zp.

In this sense we have distributed all the elements of the field in the form of
a p × p square (or rather of the ‘finite torus’ Z

2
p of Figure 2.1, this being the

2-plane over the field Zp).
So we have filled the z = p2 cells of this finite torus with the p2 ‘logarithmic

symbols’ {∞; 1, . . . , z − 1}, where the symbol k, which is a residue modulo
z − 1, denotes the element Ak of the field F , the symbol ∞ representing† the
zero element of the field.

This filling process provides a simple interpretation of the tropical operation
∗; namely, the sum of the elements of the field that correspond to the symbols

† During my lecture, the students suggested denoting ln 0 by −∞, but I kept the symbol ∞ since
I do not know whether A > 1 in F .
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R
2

Figure 2.1 The continuous torus and the finite torus consisting of four points

v

k

k ∗u

Figure 2.2 Tropical addition of the numbers k and � in the field table

k and �, given by

Ak = u′A + v′1 , A� = u′′A + v′′1 ,

is (u′ + u′′)A + (v′ + v′′)1 = Ak∗�.
Therefore (see Figure 2.2), the symbol k ∗ � fills the cells of the field table

with the vector sum of the places of the symbols k and �: the addition operation
of the field F (which consists of p2 elements) is represented by the vector
addition of the places of the summed elements in the field table.

Thus, all we need to describe the field of z = p2 elements is to calculate the
places (uk, vk) of the elements

Ak = ukA + vk1 (1 ≤ k ≤ z − 1)

in the field table.
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This calculation is an easy extension of the method of recursive construction
of the Fibonacci numbers ak , i.e. the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,
ak+2 = ak+1 + ak , which describes the population growth of rabbits.

Thus, suppose that in the field F we have

A2 = αA + β1 , (α ∈ Zp , β ∈ Zp) . (2.1)

Then, we find in F the relation

A3 = A(αA + β1) = α(αA + β1) + βA = (α2 + β)A + αβ1 .

Continuing in this way, we get the recursive relation giving the places of the
elements Ak in the field table:

uk+1 = αuk + vk , vk+1 = βuk . (2.2)

Therefore, the two residues α and β (modulo p) provide, in turn, the places
(uk, vk) of all the elements Ak in the field table.

To obtain the table, we only have to choose the values of the parameters α

and β. One should choose them in such a way that first, Ap2−1 = 1 (that is,
up2−1 = 0, vp2−1 = 1); and second, all the preceding vectors (uk, vk) (1 ≤ k <

p2 − 1) are different from the vector (0, 1).
In principle, one could try, in turn, all the p2 pairs of residues (α, β) to

find convenient values of the parameters. The number of trials is not even that
large. For instance, if p = 5 both conditions above are fulfilled by the pair
α = β = 2.

However, one can considerably accelerate the process using Pascal’s triangle
of binomial coefficients. For it is easy to prove the following explicit formula†

for the recurrent relations (2.2):

uk =
∑

αsβtCt
s+t , (2.3)

where the powers s and t are related by the homogeneity condition for the
coefficient uk in A that is implied by the condition (2.1). This condition pro-
vides the weights (deg α = 1, deg β = 2), implying, for deg uk = k − 1, the
homogeneity relation s + 2t = k − 1 for the degrees s and t of the monomials
in the formula (2.3) for the quantity uk .

For instance, for k = 6, Pascal’s triangle provides the following values for
the coefficients in (2.3):

† The notation Ct
s+t simply means the ‘number of combinations’.
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1

11

11

1

1

1

1

1

1

2

33

464

105 10 5

u6

Therefore, the quantity u6 is represented as the sum of three monomials of
weight 5:

u6 = 3αβ2 + 4α3β + 1α5 .

Using this algorithm, it took me only half an hour to calculate the places
of the 24 non-zero elements Ak of the field consisting of 25 elements. The
resulting field table is

0

0

1 2 3 4

1

2

3

4

∞ 24

8

10

15

9

2

4

18 6

21

14

16 20

22

3

12

13

7

19

1

11

5

17

23

p = 5

u

v

Example A10 = 3 · A + 1 · 1, A19 + A8 = A10.

Remark The centre of symmetry of the table, denoted by the sign ‘◦’, has the
following easy-to-prove property: k − � = 12 (mod 24) whenever the places
of the symbols k and � are situated symmetrically with respect to this centre
(on the finite torus).

For instance, 21 − 9 = 12, 17 − 5 = 12, 24 − 12 = 12: this value would be
equal to (z − 1)/2 for a field of z elements.

The reason for this symmetry is the evident identity A12 = −1: that is,
u12 = 0, v12 = 4.

And this symmetry allows us to reduce the process of constructing the
field table by a factor of two, making it twice as fast: it suffices to find the
coordinates (uk, vk) of the symbols k ≤ z/2 in the case of a field having z = pn

elements.
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The field table may be interpreted as follows. Multiplication of the elements
of the field by A acts as a linear operator on Ak on the plane of the table:

Ak · 1 = ukA + vk1 ,

Ak · A = uk+1A + vk+11 .

Therefore, the matrix of this linear operator on the plane with coordinates u

and v and equipped with the basis (1, A), has the form

(Ak) =
(

vk vk+1

uk uk+1

)
.

For k = 1, this matrix is equal to

(A) =
(

0 β

1 α

)
;

(
equal to

(
0 2
1 2

)
for p = 5

)
.

The relation (2.1) is simply the characteristic equation for the matrix (A).
Since the operator of the multiplication by Ak is the kth power of multipli-

cation by A, the matrix (Ak) is the kth power of the matrix (A).
Therefore, the construction of the field table provides a representation of

the field consisting of p2 elements by the second-order matrices (Ak), whose
elements belong to Zp.

The field operations are represented by matrix addition and multiplication:

(A)k · (A)� = (A)k+� ,

(A)k + (A)� = (A)k∗� .

For the field consisting of z = pn elements, a similar construction provides
a representation by nth-order matrices with elements in the field Zp. Some
examples where n = 3 are listed later in Chapter 8.

For the fields of p2 elements, where p = 7, 11 and 13, the calculations,
quite similar to those described above for p = 5, yield the following results:

p = 7 p = 11

(A) =
(

0 2
1 2

)
(A) =

(
0 3
1 1

)
p = 13

(A) =
(

0 2
1 4

)
.

The resulting table for the field of p2 = 49 elements fills the finite torus Z
2
7

with the following residues (modulo 48):
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0

0

1 2 3 4

1

2

3

4

5

5 6

∞

33

48

18

38

44

21

32

2

22

28

10

40

27

15

36

30

6

16

12

34

3

8

4

46

26

45

24

20

14

42

9

6

1

39

41

17

23

37

35

19

7

5

31

43

11

13

47

25

29

p = 7

v

u

The table of the field of p2 = 121 elements fills the finite torus Z
2
11 with the

residues (modulo 120):

85

50

51

120

45

65

25

32

4

94

42

84

116

9

88

58

6

14

95

15

72

2

46

117

3

114

104

76

1

73

49

97

37

109

13

61

67

11

31

29 19

83

17

48

113

80

90

93

98

52

59

115

99

22

96

18

100

27

41

21

107

70

8

26

43

81

36

103

86

68

10

47

101

87

40

78

108

82

39

55

119

112

38

33

30

20

53

12

16

77

23

79

54

63

57

106

62

24

75

35

74

66

89

118

91

28

69

56

60

71

102

34

64

92

111

110

5

7

105

p = 11

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

44

u

v

Bold numbers in these tables represent the generators Ak of the multiplicative
group of the field: they correspond to the values of k that are relatively prime
to z − 1 = p2 − 1 which equals 120 in the present case, p = 11.

The table of the field of p2 = 169 elements fills the finite torus Z
2
13 with the

residues (modulo 168 = 23 · 3 · 7) in the following table:
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0

0

1 2 3 4

1

2

3

4

5

5 6

6

7

8

9

10

7 8 9 10

∞

12

11 12

11

1

99

57

29

43

155

71

127

141

113

15

85

168

148

72

153

34

63

152

32

51

10

145

45

98

82

78

130

2

149

83

108

39

75

132

143

161

40

101

107

90

36

66

119

128

33

41

88

165

28

38

12

137

8

5

60

62

100

73

79

91

13

42

74

27

19

105

22

93

151

87

26

114

52

76

154

131

37

138

20

139

134

31

164

18

49

95

58

109

56 70

142

11

133

102

80

115

50

55

104

121

47

54

9

126

160

136

30

110

3

67

106

21

103

111

158

7

112

97

163

157

16

146

144

89

92

53

96

122

140

81

4

17

125

124

117

44

35

150

120

6

23

14

77

59

48

159

123

24

167

65

86

46

162

166

84

129

61

94

135

116

68

147

118

25

69

156

64

p = 13

u

v

Remark While the field is defined unambiguously by the number of its ele-
ments, the table of this field is not defined by this number, since it depends
upon the choice of the multiplicative generator A of the group of the non-zero
elements of the field. Instead of the generator A, one might choose a different
primitive element, Ã = Ak (which is primitive exactly when k is relatively
prime to the number z − 1 for a field of z elements).

Given a natural number m, the subset formed by the elements of the ring of
residues modulo m that are relatively prime to m is a multiplicative group of
the ring Zm, which we call the Euler group �(m). Equivalently, we can define
the Euler group �(m) as the set formed by the elements of Zm that have a
multiplicative inverse.

If we choose a primitive element A in a field of order z, we can identify the
set of all primitive elements with the elements of the Euler group �(z − 1), by
making Ak correspond to k in �(z − 1).

We will discuss the influence of the choice of the primitive element A on the
above constructions in Chapter 7: these investigations lead to some astonishing
facts about the projective geometry of finite sets (see Chapters 6 and 7).
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Chaos and randomness in Galois field tables

Looking at the tables of Galois fields in the previous chapter, one has the
impression that the ways of filling them by the integers from 1 to z − 1 (where
z is the number of elements in the field, taken to be equal to p2 in our examples)
behave in some random kind of way: it is difficult to guess the place of the next
symbol k + 1 given the place of the preceding symbol k.

Attempts to formulate this empirical observation as a mathematical state-
ment lead to hundreds of conjectures. Perhaps most of these conjectures will
become interesting theorems in the future: at present, only a few of them have
been proved.

I will now describe the general scheme for formulating the ‘randomness’
conjectures.

To begin with, note that genuinely random fillings have several properties
known from the theory of probability and stochastic processes.

To check the ‘randomness’ of the field table filling, choose one of these
properties and check whether the ‘quasi-random numbers’ that fill the table do
approximately satisfy it.

Arguing in this way, we arrive at a conjecture that claims that the chosen
randomness property is approximately fulfilled by the matrix of the field of
z = pn elements, and that the approximation gets better and better as we
increase the prime number p for fixed n, i.e. the number z of elements. In the
limit p → ∞, the property is conjectured to be fulfilled exactly.

Thus, to fix the mathematical formulation of the quasi-randomness conjec-
ture one has to describe exactly the chosen property. Since many such properties
exist, one gets many conjectures. I shall present below a short list of the simplest
examples, which are already non-trivial and interesting, despite their simplic-
ity: any high-school student can check these conjectures empirically, for fixed
p, even by hand.

17
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Let us start with an example. Suppose that the whole table is subdivided into
two disjoint parts and write G for one of these parts. We count the numbers k

that fill the table and occur in G.
For a random filling the number N of occurrences of G among m trials is

proportional to the volume (i.e. to the area in the two-dimensional case) of the
domain G:

N

m
≈ |G|

z
;

here, z is the total volume of the table, so z = p2 in the case of the field of p2

elements.
Of course, for m = z the above approximate equality is exactly fulfilled by

the sequence of the elements Ak , 1 ≤ k ≤ m, of the field since each cell of the
table that belongs to the domain G is visited by the sequence {Ak} just once.

Therefore, to formulate a non-trivial conjecture about the equidistribution
of the elements {Ak} in the field, one needs only to take a part of the whole
sequence. Choose for this part a number ϑ strictly between 0 and 1 and consider
the start of the sequence {Ak} that consists of its firsts m ≈ ϑz members
(1 ≤ k ≤ m). Then we get the following conjecture.

The geometric progression equidistribution conjecture for
the Galois field of z = pn elements

We state this as

lim
p→∞

N

m
= |G|

z
, (3.1)

where N is the number of those first m members of the sequence {Ak} from the
field of z elements that do belong to the domain G.

I have fixed here the dimension n of the table, but one can also consider the
limit z → ∞, where n is not fixed.

Example For the field of z = p2 = 25 elements, choose as G the union of the
first two columns of the table: |G| = 10, v = 0 or 1 in G.

Let us take the first half of the geometric progression {Ak}, 1 ≤ k ≤
(12 = m).

Then the number of visits (counted by the field table on page 13) is N = 5.
The deviation from the theoretical randomness criterion (3.1) is, in this case,

N

m
− |G|

z
= 5

12
− 10

25
= 1

60
.
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Therefore, even though the prime number p = 5 is not that large, the approxi-
mation to equidistribution is rather good.

I have not yet been able to prove the limit theorem (3.1) in its general form,
but in Chapter 4 I discuss some of the versions that have been proved.

Examples of other randomness criteria one may suggest are as follows.
Subdivide the field into two disjoint domains

F = G ∪ H ,

whose respective numbers of elements are given by

|F | = z , |G| = rz , |H | = sz ,

where r + s = 1.
For a genuinely random sequence of chosen elements Ak in F the frequencies

of the jumps from G to G, from G to H , from H to G, and from H to H for
the transition to the next element of the sequence are, respectively, r2, rs, sr

and s2.
For the geometric progression {Ak} (which one can leave unshortened in

this case: 1 ≤ k < z) one would expect the frequencies of the four events
(Ak ∈ G,Ak+� ∈ G), (Ak ∈ G,Ak+� ∈ H ), and so on, to be similar.

The mixing conjecture of the geometric progression {Ak}
for the field of z = pn elements

The numbers N (G,G), N (G,H ), N (H,G) and N (H,H ) of occurrences of
those symbols k for which (Ak ∈ G,Ak+� ∈ G), (Ak ∈ G,Ak+� ∈ H ), and so
on, are asymptotically proportional to the frequencies (r2, rs, sr, s2) of the
random jumps:

lim
p → ∞
� → ∞

N (G,G)

z
= r2 , lim

p → ∞
� → ∞

N (G,H )

z
= rs , . . . .

One more randomness criterion is provided by the table variation that mea-
sures the differences of the symbols k between neighbouring cells of the table.
For instance, one might count the sum of the differences |k − �|. Better still,
define � to be the sum of the cyclic distances d(k, �) between neighbouring
symbols in the table, comparing it with the similar sum for a purely random
filling of the table by the symbols k, where 1 ≤ k < z. Notice that d(k, �) here
means the difference between k and � as residues modulo p2 (although it could
be more natural to view them as residues modulo p2 − 1).
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1

2
3

4

5
6

7

Figure 3.1 Distances of value 2 between points of a finite torus

We expect that the difference, asymptotically, of each of these two (differing)
sums for the field from the mathematical expectation for a random filling would
become (relatively) small for large primes p (i.e. as the number z = pn of
elements of the fields grows).

For the table of the field of p2 = 25 elements (see page 13), the observed
averaged distance d(k, �) between the residues k, � occupying neighbouring
places in the toric table is 6.41. For a truly random filling, the expectation
of this distance (between the residues modulo p2 − 1) would be (p2 − 1)/
4 = 6.

For the table of the field with p2 = 169 elements (on page 16) the observed
averaged distance d(k, �) between the residues k, � that are horizontal neigh-
bours in the table equals 42.0299; whereas for random filling the expecta-
tion would be (p2 − 1)/4 = 42. We take neighbouring here to mean in the
sense of toric geometry: thus, for p = 5 the value u = 4 is a neighbour of
u = 0(≡ 5).

In a similar way, one can consider a different kind of variation, one that
measures the distance ρ between the places of the symbols k and k + 1 in the
table. The distance between the places can be measured using the sum of the
difference of the coordinates (using the toric geometry: that is, considering
the coordinates as being residues modulo p). One could consider the quantity
� = ∑

k �(k, k + 1), summing either over the cyclically closed sequence, or
over the usual sequence, 1 ≤ k < z.

The averaged distance �(k, k + 1) between the places of consecutive
residues in the toric p × p table of the field of p2 = 25 elements is observed to
be 2 13

24 , whereas random filling would yield the expected average of p/2 = 2 1
2 .

When counting these summands one must not forget the toric geometry of
the table filling Z

n
p with the symbols k. For instance, for p = 7 and n = 1

consider the filling of the seven consecutive places of the table by the cyclical
sequence of values k = (1, 5, 4, 2, 3, 7, 6) (see Figure 3.1).



Chaos and randomness in Galois field tables 21

r

R

Figure 3.2 Covering balls and empty balls of a set of points

For this filling one gets (for � defined on the previous page)

� = 3 + 1 + 2 + 1 + 2 + 1 + 2 = 12 ,

� = 3 + 1 + 2 + 1 + 3 + 1 + 2 = 13 ,

since d(3, 7) = 3 and d(6, 1) = 2 in the toric geometry of Z7.
The variation � takes the value 12 on this cyclical sequence of the seven

residues modulo 7.
For these variations, the field table randomness conjecture suggests a rela-

tively small difference between the quantity �, calculated from the table of the
field of z = pn elements, and the mathematical expectation of a similar sum
for a genuinely random filling of the table, provided that p (or z) is sufficiently
large.

One can use here either the sum of the m distances between the m elements
of a cyclic sequence, or the sum of the m − 1 distances between the elements
of an ordinary sequence of m elements.

As further randomness characterisation of the set {Ak} in the table one can
use a quantity such as the minimal radius r(m) of the balls centred at the first
m points of the set that cover together all the table; or one might consider
the maximal radius R(m) of the ball containing no points of this subset (see
Figure 3.2).

Let us compare the values r(m) and R(m) calculated from the field tables
with the similar characteristics of m genuinely random points: the field
table chaoticity conjecture claims that these quantities should exhibit similar
behaviour for fields of z = pn elements, where p → ∞ or z → ∞, provided
that m ≈ ϑz, where 0 < ϑ < 1 is fixed.

Yet another randomness characterisation of a set of m points of the table is
the percolation radius, defined as follows.

Enclose each point of the set in a ball of radius r , centred at that point. If r

is sufficiently small, one cannot cross the table from one side to the opposite
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no percolation percolation

Figure 3.3 Percolation due to the growth in the size of defects

(thus creating an uncontractible path on the torus) along the union of these small
balls. If the radius is sufficiently large, then such a ‘percolation’ through the
union of the balls, which could be interpreted as defects in a material, becomes
possible – see Figure 3.3. (Incidentally, the word ‘percolation’ is borrowed
from the study of leaks through the walls of containers.)

The critical (minimal) value r(m) at which the percolation first appears is
called the percolation radius of a given set of m points: it is the smallest size
of defects that can produce leakage.

The percolation chaoticity conjecture for the points of the geometric pro-
gression {Ak} in the field table compares the behaviour of the percolation radius
r(m) for m independent random points of the table (say, for m ≈ ϑz, where
0 < ϑ < 1 is fixed and the field contains a large number z = pn of elements).

Note that now, as above, when I mention limiting behaviour I shall mean as
p → ∞, but the z → ∞ limit may also be considered.

When studying percolation, it may also be interesting to replace balls of
radius r by segments of the progression

{Ak : |k − k0| ≤ �} ,

comparing it with a similar set of segments of a random sequence {Ak} of m

points of the field table. Defining in this way the quasi-percolation radii �(m),
their conjectured behaviours should be similar for the first m ≈ ϑz points {Ak}
of the z = pn elements of the table of the field and for the random sequence
of m points of the table (where, as usual, 0 < ϑ < 1 is fixed and p → ∞, or
alternatively, z → ∞).

Of course, one is able to invent many different criteria for chaoticity of the
tables, and every one of them leads to an (interesting?) conjecture of ergodic
character that deserves to be studied empirically (and which would, if the
numerical experiments confirm it, later become a proved theorem).
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The resulting theory is some number-theoretic finite version of the ergodic
theory of toric automorphisms where the chaoticity and the mixing properties of
the progressions {Ak} have been studied for volume-preserving automorphisms
A of the continuous torus T n.

The distinctiveness of our case depends on the fact that the finite torus Z
n
p

consists of a finite number of points, and that, instead of the infinite time limit
used in ergodic theory to define the time average, we let grow the number
m ≈ ϑz of points in the orbit of the dynamical system that we are studying.
(This growth can be due to increasing either the parameter p or the number
z = pn of points of the finite torus.)

It is surprising that the percolation chaoticity problem has not been studied,
as far as I know, even in the (simpler) case of the ergodic theory of continuous
toric hyperbolic automorphisms.



4

Equipartition of geometric progressions along a
finite one-dimensional torus

Two very different ways of formulating a problem exist: the abstract way,
characteristic of Bourbaki, consists of the most general formulation, thus leav-
ing no possibility for further generalisations; and the opposite concrete way is
to choose a simple case that cannot be simplified further yet preserves some
content of the problem†.

I tried in Chapter 3 to formulate the field table randomness conjectures in
the abstract form.

Let us consider now the concrete form of the first of these conjectures
concerning the equidistribution of progressions in fields of pn elements. To
do it, we restrict ourselves to the simplest field Zp, which consists of the p

residues after division by a prime number p: that is, consider the simplest case
n = 1 of the general theory of Chapter 3.

To simplify the formulas, we shall suppose the prime p to be odd and we
shall choose as the domain G of Chapter 3 the first half of the non-zero elements
of the field, that is, {c : 1 ≤ c ≤ (p − 1)/2}, |G| = (p − 1)/2.

As the segment of the geometric progression of residues we consider its first
m = (p − 3)/2 terms, {Ak : 1 ≤ k ≤ m}.

This strange choice for “half” of the progression (ϑ ≈ 1/2) is explained
by the statement of the little Fermat theorem: Ap−1 = 1, making Ak = −1
for k = (p − 1)/2. Therefore, this term of the progression is not random at all,
although randomness may be expected for smaller k: that is, for k ≤ (p − 3)/2.

Calculating these segments of the progressions of residues modulo p for
p = 5, 7, 11 and 13, we should first find all the primitive elements A for each
of these primes, i.e. those for which the smallest period T of the progression

† Tchebyshev, who had many friendly relations with French mathematicians, e.g. Liouville,
never discussed any mathematics with them in order to avoid adversely affecting his concrete
approach with their influence, as he described it, coming home.

24
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takes exactly the Fermat theorem value T = p − 1 – for other A, the period T

is a smaller divisor of p − 1.
These progressions and periods for p = 5 are provided by the following

table:

A {Ak} T N �

1 1, 1, 1, 1 1

2 2, 4, 3, 1 4 1 2 + 1 + 2 + 1 = 6

3 3, 4, 2, 1 4 0 1 + 2 + 1 + 2 = 6

4 4, 1, 4, 1 2

The primitive elements here are A = 2 and A = 3; they are shown as bold
characters.

The column N represents the number of visits of the segment of the first m =
(p − 3)/2 terms of the progression to the domain G consisting of those residues
that do not exceed (p − 1)/2. For p = 5 we obtain m = 1, (p − 1)/2 = 2, and
therefore N (A = 2) = 1 and N (A = 3) = 0.

The column � represents the sum of the distances in Z5 between consecutive
members of the progression. (We consider the progression as a cyclic sequence:
that is, we also include the distance from the last member of the period to the
first one.)

The differences between the observed frequencies and the space average
(measuring the error of the equipartition conjecture for the residues of the
geometric progression in the space of the non-zero residues) are equal to:

A = 2 :
N

m
− |G|

z − 1
= 1

1
− 2

4
= 1

2
,

A = 3 :
N

m
− |G|

z − 1
= 0

1
− 2

4
= −1

2
.

We observe that in both cases the error in the approximation to an equidistri-
bution has the absolute value 1/2. Averaging with respect to the choice of the
primitive element A, the equipartition criterion is fulfilled exactly:

N

m
= |G|

z − 1
,

where

N =
∑

N (A)

the number of the primitive elements A

= (1 + 0)

2
.
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Similar calculations for the prime number p = 7 (with m = 2, |G| = 3,
z = 7) provide the following answers:

A {Ak} T N �

1 1, 1, . . . 1

2 2, 4, 1, . . . 3

3 3, 2, 6, 4, 5, 1, . . . 6 2 1 + 3 + 2 + 1 + 3 + 2 = 12

4 4, 2, 1, . . . 3

5 5, 4, 6, 2, 3, 1, . . . 6 0 1 + 2 + 3 + 1 + 2 + 3 = 12

6 6, 1, 6, 1, . . . 2

Here, we have used the fact that the distance between the elements 1 and 5
equals 3 in Z7.

Thus, the mean number of visits of G is equal to N = (2 + 0)/2 = 1;
therefore, N/m = 1/2. The spatial average also equals

|G|
z − 1

= 3

6
= 1

2
.

Therefore, as in the p = 5 case, the equidistribution criterion is once
more fulfilled exactly, averaging with respect to the choice of the primitive
element A.

The answers for the case p = 11 take the form z = 11, m = 4, |G| = 5,
z − 1 = 10:

A {Ak} T N �

1 1, 1, . . . 1

2 2, 4, 8, 5, 10, 9, 7, 3, 6, 1 10 3 30

3 3, 9, 5, 4, 1, . . . 5

4 4, 5, 9, 3, 1, . . . 5

5 5, 3, 4, 9, 1, . . . 5

6 6, 3, 7, 9, 10, 5, 8, 4, 2, 1 10 1 30

7 7, 5, 2, 3, 10, 4, 6, 9, 8, 1 10 3 30

8 8, 9, 6, 4, 10, 3, 2, 5, 7, 1 10 1 30

9 9, 4, 3, 5, 1, . . . 5

10 10, 1, 10, 1, . . . 2
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We see from this table that the data about the visits provide the values

N = 3 + 1 + 3 + 1

4
= 2 ,

N

m
= 1

2

and the space average is equal to

|G|
z − 1

= 5

10
= 1

2
.

Thus, the equipartition criterion is fulfilled exactly when averaging over the
choice of the primitive element A. Note that the absolute values of the error for
the particular choices of A are all equal to 1/4.

For the case p = 13 we have z = 13, m = 5, |G| = 6, z − 1 = 12 and the
table of progressions takes the form:

A {Ak} T N �

1 1, 1, . . . 1

2 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, . . . 12 4 42

3 3, 9, 1, . . . 3

4 4, 3, 12, 9, 3, 1, . . . 6

5 5, 12, 8, 1, . . . 4

6 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, . . . 12 2 42

7 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . . 12 1 42

8 8, 12, 5, 1, . . . 4

9 9, 3, 1, . . . 3

10 10, 9, 12, 3, 4, 1, . . . 6

11 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1, . . . 12 3 42

12 12, 1, 12, 1, . . . 2

In this case the number of visits, averaged over the four primitive elements
of the field, is

N = 4 + 2 + 1 + 3

4
= 2 1

2 .

Therefore, N/m = 1/2. The space average also takes the value

|G|
z − 1

= 6

12
= 1

2
.

Thus, for p = 13 the equipartition criterion is also fulfilled exactly, when
averaging with respect to the choice of the primitive element A. The individual
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choices (A = 2, 6, 7, 11) provide, respectively, the errors

(3/10,−1/10,−3/10, 1/10) .

These empirical studies lead us to the following conclusion.

Theorem Taking averages with respect to the choice of the primitive element
A, the equipartition criterion for the distribution of the first m = (p − 3)/2
members of the progression {Ak} distributed among the non-zero residues after
division by p is exactly fulfilled for the domain

G = {1 ≤ c ≤ (p − 1)/2 = |G|}
in the field Zp (for any odd prime number p).

In other words, for the average number of visits

N =
∑

N (A)

(number of the primitive elements A)
,

we have the “ergodic” value

N

m
= |G|

p − 1
= 1

2
.

Proof Along with the primitive element A, the inverse residue modulo p,
B = A−1, is also a primitive element. We need the following result.

Lemma The following identity holds:

N (A) + N (B) = m .

Proof of the Lemma Taking into account the Fermat congruence Ap−1 =
A2m+2 = 1, we deduce that the two sequences {1 ≤ k ≤ m} and {1 ≤ � ≤ m}
of the progressions Ak and B� = Ap−1−� cover with multiplicity 1 the whole
progression {Ai, 1 ≤ i ≤ p − 1}, except its two trivial (‘non-random’) terms,
Ap−1 = 1 and Am+1 = −1.

Therefore they cover (with multiplicity 1) every element c other than 1
of the domain G, i.e. {2, 3, . . . , m + 1}. Thus, the sum N (A) + N (B) of the
number of visits of either sequence to the domain G equals m, and the Lemma
is therefore proved. �

Taking averages over the choices of the primitive element A, the Lemma
implies the equality of the mean number N of visits to m = (p − 3)/2. Indeed,
the whole set of the primitive residues A consists of α (disjoint) pairs of the
form {A,B}, where AB = 1 (as a residue modulo p). Each pair provides the
contribution m to the sum

∑
N (A), thanks to the Lemma.
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Therefore, the whole sum equals αm, whence we find the average number
of visits,

N =
∑

N (A)

2α
= mα

2α
= m

2
.

Thus, N/m = 1/2, which proves the Theorem. �

The above tables show that in all our examples the variation � =∑
�(Ak,Ak+1) of the whole progression of p − 1 residues, considered as

points on the finite circle Zp, is given by

� = p2 − 1

4
,

independently of the choice of the primitive residue A.
The mean variation � of a random cyclical sequence of p − 1 = 4 points of

Z5 can easily be calculated. It suffices to consider the following six sequences,
starting with the residue modulo 1:

(1, 2, 3, 4) , (1, 2, 4, 3) , (1, 3, 2, 4) ,

(1, 3, 4, 2) , (1, 4, 2, 3) , (1, 4, 3, 2) .

Their respective variations � are equal to (5, 6, 7, 6, 7, 5) (we have used the
distance �(4, 1) = 2 in Z5).

Therefore, the mean value � of the variation of a cyclical sequence of four
points on the finite circle Z5 is given by � = 6.

Thus, the variation of the cyclical geometrical progressions formed by the
powers of the primitive residues A (after division by p = 5), calculated above,
is given by �(A) = 6; this value coincides with the mean variation � = 6 of a
random cyclical sequence (of the same length p − 1 = 4) of elements of Z5.

This observation provides one more argument for the quasi-random property
of the table of the field of p = 5 elements.

As the prime number p increases, the mean variation � of a random
sequence of p − 1 points on the finite circle Zp grows like p2/4.

This follows from the following argument.
The distance between two randomly chosen points of this finite circle attains

values from 1 to (p − 1)/2. Its mean value is easily calculated to be close to
p/4. Therefore, the sum of all such distances between consecutive points of
our sequence (there are p − 1 such distances) grows asymptotically with p as
p2/4, with a declining relative error.

Thus, the calculations we have presented concerning the variations � of
cyclic geometric progressions of length p − 1 in the field Zp (for p ≤ 13)
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confirm once more that the table of the finite field with p elements exhibits
quasi-randomness.

Remark on the complexity of logarithms The chaoticity of the distribution
of geometric progressions of residues leads to interesting facts and conjectures
in complexity theory. If a is a primitive residue modulo p, each non-zero
residue x modulo p has the form ak , and the complexity conjecture is that to
calculate the ‘logarithm’ k of x is a difficult computational problem.

To define the measure of difficulty, one might classify a function (on a finite
set with a finite number of values) according to the ‘degree of complexity’ of
the formula defining this function. In order to see how to define a numerical
measure of complexity, let us consider the simplest case of the binary functions
f : (Z/nZ) → (Z/2Z).

Such a function can be considered as a sequence (x1, . . . , xn) of n elements,
each of them being either 0 or 1. There are 2n such sequences, and they form the
modulo 2 vector space (Z2)n. One can consider these functions as the vertices
of a cube of dimension n.

To measure the complexity of a function x following Newton’s idea, we
associate to it the first difference function, y, defined as the sequence of the
binary residues

y(k) = x(k + 1) − x(k) (mod 2) .

Since the argument k is a residue modulo n, we get n differences of n residues,
where we take as the element succeeding the final one to be the starting element
of the sequence. By making the sequence cyclic, we avoid boundary effects.

Thus, if x = (1, 0, 0, 1, 1), we obtain the differences y = (1, 0, 1, 0, 0),
since y(5) = x(1) − x(5) = 0.

The difference operator is a linear operator (i.e. an abelian group homomor-
phism):

D : Z
n
2 −→ Z

n
2 .

The complexity of a point x ∈ Z
n
2 will be calculated in terms of the sequence

of the consecutive differences,

Dt (x) ∈ Z
n
2 (t = 1, 2, . . . ) .

Examples For the constant function x we get D(x) = Dt (x) = 0.
For a polynomial x of degree d, i.e. for x(k) = a0k

d + · · · + ad , we get
Dtx = 0 for any t > d.

We shall study below the spectral properties of the linear operator D.
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It is natural to consider the constants to be the simplest functions, and
polynomials of low degree to be less complicated than those of higher degree,
and non-polynomial functions to be even more complicated objects. I shall not
formulate the obvious next steps, involving exponentials and then solutions of
differential equations – readers can construct their own hierarchy of more and
more complicated functions x according to their needs.

The conjecture is that the logarithmic functions defined above are compli-
cated. I shall not prove this conjecture, but I shall show several examples that
substantiate it.

Other conjectures claim that most of the 2n functions forming Z
n
2 are like

random sequences (at least asymptotically for n → ∞, and at least for the
majority of these functions). I shall not prove it, but the examples discussed
below provide complicated functions that behave in numerical experiments in
a way similar to random sequences. I hope that this quasi-random behaviour is
a general phenomenon rather than a special property of our examples.

To understand the range of complexity, we start from a general study of the
difference operator D : Z

n
2 → Z

n
2.

Since the operator D is a mapping of a finite set to itself, it decomposes the
set Z

n
2 into connected invariant components.

We consider these components as directed graphs, with the edge leaving x

connecting the point x with Dx.
Each connected component of the graph of a mapping consists of:

an attracting cycle Om of some length m ≥ 1:

O3 =O2 = ,,O1 = , . . .  ,

and trees attracted by the vertices of the cycle.

We shall need the binary trees T2q of 2q vertices:

T2 = , . . ., ,T4 = T8 =

We shall denote by Om ∗ T2q the component whose cycle Om attracts a tree
T2q at each vertex: thus, O1 ∗ T2q = T2q , and succeeding ‘products’ are

, O2 ∗T4 =O3 ∗T2 = , . . . ,
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Theorem 4.1 The graph of the difference operator D : Z
n
2 → Z

n
2 has, for

n ≤ 12, the form presented in the following table:

n
number of

components cycles and trees Du = Dv

2 1 (O1 ∗ T4) D2 = 0

3 2 (O3 ∗ T2) + (O1 ∗ T2) D4 = D

4 1 (O1 ∗ T16) D4 = 0

5 2 (O15 ∗ T2) + (O1 ∗ T2) D16 = D

6 4 2(O6 ∗ T4) + (O3 ∗ T4) + (O1 ∗ T4) D8 = D2

7 10 9(O7 ∗ T2) + (O1 ∗ T2) D8 = D

8 1 (O1 ∗ T256) D8 = 0

9 6 4(O63 ∗ T2) + (O3 ∗ T2) + (O1 ∗ T2) D64 = D

10 10 8(O30 ∗ T4) + (O15 ∗ T4) + (O1 ∗ T4) D32 = D2

11 4 3(O341 ∗ T2) + (O1 ∗ T2) D342 = D

12 24 20(O12 ∗ T16) + 2(O6 ∗ T16) D16 = D4

+(O3 ∗ T16) + (O1 ∗ T16)

The proof is by direct verification. So, for n = 2 there are 2n = 4 vertices,
and the difference operator, by definition, acts as follows:

D(0, 0) = (0, 0) , D(0, 1) = (1, 1) ,

D(1, 0) = (1, 1) , D(1, 1) = (0, 0) .

This gives the graph whose only component is

(0, 1)

(1, 0)
(1, 1) (0, 0)T4 :

(4.1)

Denoting by δ the shift operator (δx)k := xk+1, we obtain the formulas
D = 1 + δ and δn = 1. Therefore we get, for n = 3,

D = 1 + δ , D2 = 1 + 2δ + δ2 = 1 + δ2 , D3 = 1 + δ + δ2 + δ3 = δ + δ2

D4 = δ + δ2 + δ2 + δ3 = δ + 1 = D .

Several obvious properties of the formulas in the table can easily be proved
in the general situation. Thus, for n = 2m one has Dn = 0, since all the binomial
coefficients Ci

n are even for i �= 0, n:

Dn = 1 + δn = 1 + 1 = 0 (mod 2) .
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Now we shall study the positions of the logarithmic functions in this table.
Explicit calculations show that their complexities are close to the maximal
possible value of a binary function, for a given value of n.

For a primitive residue a modulo p, we define the ‘logarithm of the residue
k’ by the Fermat formula

aloga (k) = k (mod p) .

Reducing this integer modulo 2, we construct the binary function with the
values

x(k) = loga(k) (mod 2) ∈ Z/(2Z) :

with the arguments taking the values k = 1, 2, . . . , p − 1.

Example The case p = 7, a = 3 yields log3 k = (0, 2, 1, 4, 5, 3), x(k) =
(0, 0, 1, 0, 1, 1).

Thus, we obtain for each a the sequence of n = p − 1 logarithms reduced
modulo 2, x ∈ Z

n
2. Now we shall apply the complexity hierarchy defined by

the graphs of Theorem 4.1 to this binary sequence x.

Theorem 4.2 The modulo 2 reduced logarithms x of consecutive residues
modulo p have the following values (for p ≤ 13) in terms of the difference
graphs of Theorem 4.1 for n = p − 1:

p = 3

p = 5

(x ∈ T4 , a = 2);

(x ∈ T8 , a = 2 or 3);

x = 1

x = 6

x = 6

29 39

34 30

O6

10

5740

10
15 0

(x ∈ T16 , a = 3 or 5);p = 7
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804
739 864 437

910

417 735 147

534
588 894

645

571 725 387

525
854 238

54
507 306 90

951 360 201
365

216 952 347
1005

807

285

x = 285 ∈ (O30 ∗ T4), a = 2, 6, 7 or 8

O30

p = 11

n = 10

1164
3195

3030

2381

2244

1980
3435

1240

3144

3015

1725

3476. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

3350

1851p = 13

x = 1266

(x = 1206 (O12 ∗T16), a = 2, or 6, or 7, or 11);

n = 12

In this description we denote the binary sequence

x = (x1, . . . , xn) ∈ Z
n
2

by the ‘binary decimal’ integer

2n−1x1 + 2n−2x2 + · · · + xn :

thus, x = 285 in the case p = 11 (and n = 10) means the sequence

(0, 1, 0, 0, 0, 1, 1, 1, 0, 1)

of the 10 binary digits of the number 285 = 256 + 16 + 8 + 4 + 1.
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The proofs of the statements of Theorem 4.2 involve finite, but long,
calculations. In the simplest case, p = 3, a = 2, the geometric progression
{2k} = 1, 2 (mod 3) for k = 1, 2 implies the logarithms

log2 1 = 0 , log2 2 = 1 .

The sequence of reduced logarithms is (x1 = 0, x2 = 1), giving the position
of x in the graph of the theorem, according to formula 4.1.

The cases p = 11 and 13 show that as the values of p increase, so the
calculations become longer. To speed up the calculation, we can reduce the
cyclic sequences x of length n modulo the group Z/(nZ) of n cyclic rotations,
identifying, say, the sequences (0100) and (0001) for n = 4. For this reduction
by the action of δ, it is useful to consider x as a residue modulo 2n − 1. Since
the operator D commutes with these rotations, this reduction accelerates the
calculations (about n fold).

It is also useful to calculate first the kernel of Dt for large t . This kernel is
represented by the vertices forming a binary tree.

To obtain the attracted trees of the cycles it is sufficient to add this subspace
of Z

n
2 to the points of the cycle. This reasoning explains the homogeneity of the

graphs in the table of Theorem 4.1: all the attracted trees are isomorphic to the
above kernel (since the union of the cycles is the image of the linear operator
Dt for large t).

These long calculations lead to the table in Theorem 4.2, which, by com-
parison with that in Theorem 4.1, shows that the complexity of the logarithmic
function almost attains the maximal possible value for any binary function on
a set of n points.

This observation follows from both theorems only in the case n ≤ 12, but
it may be worth investigating for larger values of n, at least as a plausible
conjecture.

Similar theorems and conjectures can also be contemplated for the non-
binary functions, for instance, for those functions whose values are residues
modulo some integer q:

x ∈ (Z/qZ)n , xk ∈ Zq .

Unfortunately, I cannot begin to guess the answers to such a generalisation of
Theorem 4.1, even for q = 2, as above: the table of Theorem 4.1 shows a rather
irregular dependence on n, and even the averaged asymptotics for n → ∞ are
interesting, but undecipherable.

All these theorems and conjectures can be extended to general Galois fields
almost by inspection, but I have restricted myself above to the simplest case
of the field Zp of residues and sometimes only to the binary base Z2, since, in
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order to understand the (unknown) complexity theory, we should start from the
simplest cases.

The author is grateful to Prof. Shparlinski (Department of Computing,
Macquarie University, Sydney), who, after reading the original draft of the
present book, proved some of the conjectures discussed above, and also cor-
rected some misprints in my earlier publications.
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Adiabatic study of the distribution of geometric
progressions of residues

I shall describe here some physical arguments that shed light on the asymptotic
equipartition, as p tends to infinity, of the sequence of the residues modulo p

of the members of the geometric progression

{Ak, 1 ≤ k ≤ ϑp}

among all the non-zero residues modulo p, where A is a primitive residue and
the number ϑ , 0 < ϑ < 1, is fixed.

We shall try to evaluate the number N of those residues c from the members
of the progression whose value lies in the interval

G : 1 ≤ c ≤ µp .

To estimate N we shall use logarithms, thereby transforming the geometric
progression into an arithmetic one:

ln Ak = �k = ka (where a = ln A);

here, logarithms make sense as real numbers.
The condition Ak(mod p) ∈ G can be written in terms of logarithms as the

inclusion of the number �k into one of the intervals of the following system
(represented in Figure 5.1):

�k ∈
⋃


j,

where 
j is the gap between the logarithms of members of two arithmetic
progressions:


j = {� : ln(jp) < � ≤ ln(jp + µp)} .

37
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ln(pj)

ka (k + 1)ak,min k,max

∆j ∆j+1

ln(p(j + 1))

ln(p(j + µ))

Figure 5.1 Adiabatic approximation of a non-uniform sequence of logarithms of
members of an arithmetic progression

The length of the gap 
j equals

|
j | = ln
jp + µp

jp
= ln

(
j + µ

j

)
= ln

(
1 + µ

j

)
≈ µ

j
,

for large j .
The sum D(µ) of the lengths of all these intervals is a quantity of order

µ
∑

(1/j ), where the numbers j of the intervals that form this finite sum
are fixed by the maximal and minimal logarithms �k of the members of our
geometric progression.

This leads to an approximate relation

D(µ) ∼ µ ln(jmax) (where jmax → ∞ for p → ∞) ,

the word ‘approximation’ refers here to the size of the relative error.
The total length of the whole interval of the axis � that contains all our

logarithms �k is given by D(µ = 1) ∼ ln(jmax). The arithmetic progression
{�k} is uniformly distributed along the �-axis, according to H. Weyl’s theorem
on the equipartition of the fractional parts of an arithmetic progression in the
interval (0, 1).

This leads to our guessing that the number N of visits of the points �k to the
union of the intervals 
j should be asymptotically proportional to the fraction
formed by the sum of the lengths of these intervals in the length of the whole
segment of the axis �. That is, it should be asymptotically proportional to the
ratio D(µ)/D(1).

We arrive, therefore, at the conclusion that, for p → ∞, one should expect
the asymptotic behaviour of the number of visits to be

N

ϑp
−→

(
D(µ)

D(1)
∼ µ

)
,
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which is the asymptotic equipartition of the sequence of the residues after
division by p of the members {Ak, 1 ≤ k ≤ ϑp}; we counted visits to the
domain G, which forms the µth part of Zp.

Remark 5.1 The next term of the development ln(1 + x) ≈ x − x2

2 + · · · (for
small x) leads to the prediction that one should expect the upper limit to decline
from the asymptotic value N > ϑµ(p − 1).

Remark 5.2 Our reasoning (which is far from mathematically rigorous) may
be interpreted as some kind of adiabatic replacement of the logarithmically
non-uniform sequence (of the numbers ln(jp) = ln p + ln j and of the intervals

j starting at these points) by the arithmetic progressions (of the respective
numbers and intervals) – see Figure 5.1.

In fact, the ‘step’ ln(j + 1) − ln j = ln j+1
j

∼ 1/j of the logarithmic
sequence decreases slightly as j grows, and therefore this sequence is not
exactly an arithmetic progression (though it is rather close to one for rather
long intervals of changing j , provided that the step of the approximating arith-
metic progression is chosen appropriately to the range of j ).

If the logarithmic sequence were an arithmetic progression, our reasoning
would be based strictly on Weyl’s theorem on the equidistribution of fractional
parts.

Thus, the rest of our heuristic reasoning depends on the evaluation of the error
in the adiabatic approximation – or, alternatively, on modifying the proof of
Weyl’s theorem to include the study of the behaviour of the Fourier coefficients
of the characteristic function of the union of the intervals 
j .

For p = 997, ϑ = 1/2, µ = 1/2, A = 7, I have calculated the number N

of visits to be 279, which is larger than the conjectured asymptotic expression
ϑµ(p − 1) ≈ 249.

For p = 1009, A = 11 and ϑ = µ = 1/2 the number of visits of the residues
11k modulo 1009, 1 ≤ k ≤ 503, to the domain G = {1 ≤ x ≤ 504} is N =
269. The asymptotic expression gives ϑµ(p − 1) ≈ 252, suggesting that the
difference between N/m and |G|/z drops off like c/

√
p. It would be interesting

to see more examples, for larger p, to evaluate the decline empirically.
The quantities N (A)/m that correspond to different primitive elements A

may deviate from the mean for some exceptional values of A, and the evaluation
of the dispersion of this deviation might provide some interesting information
about how rare are those exceptional values of A for large primes p.

The following construction provides a different approach to the asymptotic
equipartition of the sequence of residues modulo p of the members of the
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geometric progression {Ak, 1 ≤ k ≤ ϑp} within all the residues modulo p,
where A is a primitive residue and the number ϑ is fixed with 0 < ϑ < 1.

Consider the multiplicative group of the complex numbers

Zp = {z ∈ C : zp = 1} .

The functions on this group are the (Fourier) linear combinations of the
characters

e0 ≡ 1, e1 = z , e2 = z2 , . . . , ep−1 = zp−1 .

Multiplication by A of the residues modulo p can be represented using this
notation as the mapping f : Zp → Zp, where f (x) = xA. This mapping acts
on the functions as a linear operator (and as an algebraic morphism)

f ∗ek = eAk .

The function e0 is invariant under this mapping, while the remaining p − 1
characters are permuted cyclically (here, A is a primitive element).

To prove equipartition one has to prove that the time averages of the functions
orthogonal to e0 converge to zero. For the character ek , we have to study the
time average

êk =
T −1∑
t=0

(
f ∗)t

ek/T .

To study this averaged function, once again take the Fourier transform by
ordering the harmonics ek (k �= 0) as they come in the above cyclic permutation
of order p − 1; that is, in the order of the sequence of the residues At (mod
p − 1) in Zp−1.

To do it, we consider the multiplicative group of complex numbers,

Zp−1 = {wt = e2πit/(p−1)} ,

for 0 ≤ t < p − 1. The corresponding harmonics E0, . . . , Ep−2 : Zp−1 → C

are defined by the formula Er (w) = wr .
As explained above, we identify the characters ek (k �= 0) with these func-

tions Er in such a way that the sequence

e1 , f ∗e1 , (f ∗)2e1 , . . . , (f ∗)p−2e1

takes the form

E0 , E1 , E2 , . . . , Ep−2

and the operator f ∗ hence takes the form Er → Er+1 of multiplication by the
function w (which is equal to E1).
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For the time average we obtain the expression

Êr = 1

T
(1 + w + w2 + · · · + wT −1)Er = 1

T

wT − 1

w − 1
Er ,

which tends to zero for large T and for any value of r and, hence, for all the
characters ek , k �= 0.

Thus, the time average of any function on the group Zp−1 tends to its space
average for T → ∞.

The space average of the harmonic ek along Zp−1 is easy to compute:

1

p − 1

p−1∑
t=0

(
(f ∗)t ek

) = 1

p − 1

p−1∑
k=1

ek = − e0

p − 1
,

since
∑p−1

k=0 ek = 0, by Vieta’s theorem for the equation zp = 1.
Therefore, the mean value êk tends to 0 as p → ∞ if k �= 0.
Thus, the time average along the segment of the geometric progression {At }

of any fixed linear combination of the harmonics on the group Zp tends to its
space average as p → ∞.

Applying this to the characteristic function of the part G of the group Zp, we
obtain a proof of the claim about the asymptotic equipartition for the segment
of the progression at the limit p → ∞.

This reasoning is, however, inadequate for a rigorous proof, since the char-
acteristic function of the domain G is not a fixed linear combination of the
harmonics: the number of the harmonic summands that are needed to approxi-
mate this characteristic function of G on Zp grows with p.

Remark In our study of the asymptotic equipartition as p → ∞ we have
fixed the (Jordan measurable) domain G in the real continuous torus T n, eval-
uating the number N of visits of a sequence {Ak} to the corresponding domain
G(p) of the finite n-torus Z

n
p; this domain consists of a finite number of points

(growing with p).
Perhaps, together with the natural domains G (similar to the band 0 ≤ u ≤ d

in T 2), one could take also some more complicated domains G(p) – similar,
say, to the set defined by the condition that u is even for the points (u, v) ∈ Z

2
p.

The conjecture then becomes that asymptotic equipartition holds as p → ∞
even for such ‘irregular domains’, provided that the algorithm defining the
domain G(p) is sufficiently simple.

I do not know any proved theorem of this kind (which would be interest-
ing even for the distribution of the fractional parts of members an arithmetic
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progression on a circle), though the Skolem theorem on the zeroes of recurrent
sequences {ak} could be considered as some sort of confirmation of this con-
jecture. Skolem’s theorem claims that the set {t : at = 0} consists of a finite set
of arithmetic progressions of integers t , whatever the recurrent sequence might
be.

The ergodic theory content of the conjectured chaoticity theorems is the
statement that sufficiently chaotic dynamics reduces the predictability of all
those properties of the trajectories that can be computed by simple algorithms.

Remark The study of the equipartition of finite segments of geometric pro-
gressions along ‘irregular’ domains of the one-dimensional finite torus Zp, as
described above, might be useful for the investigation of the degree of equipar-
tition of segments of geometric progressions in finite fields with a large number
z = pn of elements, living on an n-dimensional torus.

The point is that the mapping k �→ Ak bijectively sends the set of non-zero
residues modulo z − 1 to the set of non-zero elements of a field of z elements
(living on an n-torus).

Therefore, if we know the equipartition property for the arithmetic progres-
sion {t · r, with t = 1, 2, 3, . . . } on the 1-dimensional finite torus Zz−1, then
we can deduce information about the partition of the geometric progression
{Bt, t = 1, 2, 3, . . . }, where B = Ar , along the finite n-torus Z

n
p (consisting

of z = pn points).
For instance, to study the asymptotic behaviour of the number N of visits of a

segment of a geometric progression {Bt } to a domain G of a field of z elements,
it would suffice to know the asymptotic behaviour of the number of visits of the
corresponding segment of an arithmetic progression {t · r, t = 1, 2, 3, . . . } to
the full pre-image f −1G of the domain G under the above bijection k �→ Ak ,
which we have denoted by f .

In this sense, in order to prove the asymptotic equipartition of the segments
{Bt } of a geometric progression along the n-dimensional finite torus, it would
be enough to prove that the number of visits to subdomains of the finite circle
Zz−1 by the segment {t · r} of the arithmetic progression is proportional to the
measure of the subdomain. But one needs to know this inequality of approx-
imate proportionality for subdomains (different from the ordinary intervals)
of the finite circle, provided that the subdomain is defined by an algorithm of
bounded complexity (like, say, the domain f −1(G) for the domain G that we
have been studying on the finite torus).

Although arithmetic progressions are much simpler objects to study than
geometric ones, as far as equipartition is concerned, what we know about them
is insufficient for two reasons: one needs to study visits to complicated domains
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f −1(G), and the number z − 1 = pn − 1 of points of the one-dimensional finite
torus Zz−1 is not prime.

Despite the formal inadequacy of equipartition results on finite circles, in
relation to our problem, it seems that it might not be too difficult to obtain
the relevant results about the equipartition of arithmetic progressions that are
needed to study the equipartition of geometric progressions along n-tori.
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Projective structures generated by
a Galois field

The algebra of a Galois field has a remarkable geometrical aspect that is similar
to the projective geometry view of linear algebra in, for example, the use of the
geometry of the principal axes of ellipsoids and hyperboloids instead of the
theory of eigenvalues of quadratic forms. Calculations are usually simpler in
the algebraic version, but real understanding is reached only by the geometric
approach to the theory of principal axes.†

I shall describe now the geometric version of the algebra of a Galois field:
the theory of projective structures on finite sets and the study of the action on
them of the groups of ‘Frobenius transformations’

�k(x) = xk ,

i.e. of calculation of powers. We recall first some notation concerning the
projective line. Consider all the straight lines containing the point 0 of the
usual plane R

2. The manifold of all such lines is one-dimensional and is
diffeomorphic to the circle.

To see this, describe the points of the plane by their Cartesian coordinates
(u, v). The line is then described by its equation u = λv, where λ is a constant
that is determined by the chosen line (see Figure 6.1).

The constant λ is called the affine coordinate on the projective line (whose
points are the straight lines of the plane going through the origin 0).

However, just as the whole sphere cannot be represented by a continuous
map on a plane, the values of the affine coordinate λ do not describe all the
straight lines going through the origin. In particular, they do not describe the
vertical line (given by v = 0 in Figure 6.1). Therefore, one adds an ‘infinite’
point λ = ∞ to the axis of the variable λ, providing the description of the

† Goethe said that ‘Mathematicians are like Frenchmen: whatever you say to them they translate
into their own language and forthwith it is something entirely different.’

44
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v

u

u = λv

λ

10

Figure 6.1 A projective line and its affine coordinate λ

whole real projective line RP 1 by the values

RP 1 ∼ {λ ∈ R} � {λ = ∞} ,

where the symbol � means ‘disjoint union’.
This point at infinity, λ = ∞, of the projective line (representing the vertical

line v = 0 in Figure 6.1) is as valid as all the others, since the vertical line on
the plane is as valid as the others: for example, any line through the origin can
be transformed to any other such line by a rotation in the plane.

A different choice of the initial coordinate system on the plane (one can
take, say, ũ = v, ṽ = u) would produce a different affine coordinate λ̃ (in
our example, λ̃ = ũ/ṽ) and a different point λ̃ = ∞ on the projective line
RP 1 (which would correspond in our example to the horizontal line ṽ = 0 in
Figure 6.1).

In the neighbourhood of the vertical line shown in Figure 6.1, where λ̃ = 0
in our example, the new affine coordinate λ̃ (λ̃ = 1/λ in our example) is a
regular parametrisation of the real projective line. Therefore, whether the affine
coordinate λ tends to +∞ or −∞ , we are led to the same place (λ̃ = 0) of the
manifold of the straight lines containing the origin of the plane.

This compact manifold, the real projective line, is therefore diffeomorphic
to the circle (see Figure 6.2):

RP 1 ≈ S1 .

For a different choice of linear coordinates (which can be non-orthogonal)
on the plane, the new affine coordinate λ̃ would be a fractional-linear function
of the old one:

λ̃ = aλ + b

cλ + d
, (6.1)
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λ̃ = 0

λ = 0

λ → −∞ λ →+∞

λ̃

λ

Figure 6.2 The real projective line diffeomorphism to a circle

since the new coordinates have the form

ũ = au + bv , ṽ = cu + dv .

The new coordinate axes should not coincide, which means ad �= bc.
The transformation of the λ-axis that is defined by the formula (6.1) is called

a projective transformation. The λ-axis is considered here as being completed
by the point at infinity, and the formula (6.1) defines a diffeomorphism of the
real projective line (that is, of a circle) onto itself.

Of course, the algebraic versions of this simple geometry are the conventions

λ̃ = ∞ for cλ + d = 0 , λ̃ = a/c for λ = ∞ .

The real (n − 1)-dimensional projective space,

RP n−1 = (Rn \ 0)/(R \ 0) ,

is defined similarly to the projective line: it is the manifold of all straight lines
going through the origin 0 of the n-dimensional vector space R

n.†

Its affine chart is constructed from a linear coordinate system (u1, . . . , un)
in R

n: if un �= 0, we define the vector λ ∈ R
n−1, whose coordinates are

λ1 = u1/un , . . . , λn−1 = un−1/un .

In other words, we take the point of intersection, λ, of the line that we wish to
describe with the hyperplane un = 1 of R

n: this point is the image of the line
on the affine chart R

n−1 – similar to the situation of Figure 6.1 where n = 2.
To obtain all the straight lines through the origin of R

n, one has to use n

such affine charts, represented by the n hyperplanes, {un = 1}, . . . , {u1 = 1}.
Thus for n = 2 one needs two charts, λ and λ̃ in Figure 6.2.

† Goethe described this definition of the projective space, including its ‘infinitely far points’, by
the words ‘Willst du ins Unendliche schreiten, geh nur im Endlichen nach allen Seiten’: ‘you
want to reach infinity, move in the finite domain in all directions.’
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Figure 6.3 A projective transformation of a cat

The corresponding fractional-linear transformations are described in RP m

by the following extension of formula (6.1): for j = 1, . . . , m, the coordinates
of the image point of the point λ that has affine coordinates (λ1, . . . , λm), are

λ̃j = aj,1λ1 + · · · + aj,mλm

b1λ1 + · · · + bmλm

;

it is important to observe that the denominator is independent of the number j

of the coordinate λ̃j .
The geometric meaning of these algebraic formulas is that they describe the

projective transformations that are obtained (say, for m = 2) when we project
one plane P in 3-space onto another plane P̃ , by rays that start at a common
projection centre (see Figure 6.3).

So, the theory that we are describing is basic both for the geometry of
the projections that send straight lines to straight lines, and to the theory of
perspective (where the parallel rails of a straight railway ‘meet at an infinitely
far point on the horizon’).

The great Italian painter Paolo Uccello (whose name means ‘Bird’) was
one of the first painters to make a serious study of the mathematical theory of
perspective. It is said that when his wife once invited him at midnight to her
chamber, he replied ‘I am coming – what a nice perspective’, though what he
had in mind was the beauty of his remarkable drawing.

To become familiar with projective geometry, the reader may try to prove
the following facts:

(i) The real projective plane is non-orientable; the real projective space RP m

is orientable if the dimension m is odd and non-orientable for even m.
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(ii) The complement of a small disc on the real projective plane is diffeomor-
phic to the Möbius band (it was because of this fact that Möbius discovered
this surface).

The complex projective space CP m is defined similarly to the real one, but
starting from the complex vector space C

n, where n is still equal to m + 1. The
points of this complex projective space are the complex straight lines going
through the origin of C

n:

CP n−1 = (Cn \ 0)/(C \ 0) .

Affine coordinates and projective transformations are defined by the same
formulas as in the real case†.

In the case of complex projective spaces and transformations, the difficulties
(i) and (ii) described above vanish. Thus, the complex projective line, CP 1, can
be obtained from the λ-axis of the complex plane by the addition of a point at
infinity. The resulting variety is diffeomorphic to the ordinary sphere S2 and is
called the Riemann sphere.

In the neighbourhood of the point at infinity, λ = ∞, the affine complex
coordinate is the function λ̃ = 1/λ.

The hypersphere in C
n that is defined by the equation∑

|uk|2 = 1

is diffeomorphic to the hypersphere S2n−1 of the real vector space R
2n. This

hypersphere is intersected by the complex straight lines that go through the
origin 0 of the complex space C

n along real circles S1.
The real lines of R

n that go through zero intersect the hypersphere Sn−1

(
∑ |uk|2 = 1) along 0-dimensional spheres S0 (each of which consists of two

opposite points).
Whereas the real projective space RP m can be obtained from the sphere Sm

by gluing together all pairs of opposite points that are proportional vectors of
the real vector space, i.e.

RP m = Sm/(S0 = {±1}) ,

we obtain the complex projective space, CP m, from the sphere S2n−1 (where
n = m + 1) by identifying with a point each circle S1 along which the sphere
intersects a complex straight line that goes through the origin.

† This is the important advantage of algebra: some people are happy to apply their formulas to
objects that are quite different from those for which these formulas have been proved, and if the
result happens to be wrong, they postulate it to be presumably true for ‘ideal’ objects, thereby
replacing the difficult study of the real world by the easier investigation of ‘ideal’ objects.
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Figure 6.4 Two curves having a linking number equal to 2

All the points of this circle are complex proportional vectors of the complex
vector space, and they can be obtained from an arbitrary point of this circle by
multiplying it by all the complex numbers of modulus 1:

CP m = S2m+1/(S1 = {eiϕ}) .

The truly 4-dimensional manifold CP 2 can be obtained from the affine
complex plane C

2 by the addition ‘at infinity’ of a complex projective line
CP 1; that is, of a Riemann sphere:

CP 2 = C
2 ∪ S2 .

The complex projective line CP 1 can also be described as the manifold
whose points are the special great circles S1 of S3. A special great circle means
the intersection of the 3-sphere S3 with a complex straight line of C

2 that
contains the origin 0. In other words, a special great circle is the set of points
of the sphere S3 that are complex proportional to a given point. So the space of
special great circles is:

CP 1 = S3/(S1 = {eiϕ}) .

It is interesting to note that different special great circles in the 3-dimensional
sphere S3, which is fibred into these circles, have special locations in the sphere:
the linking number of any pair of such special great circles is equal to 1.

The linking number of two disjoint oriented smooth closed curves in the ori-
ented 3-sphere (or in the oriented Euclidean 3-space) is defined as the intersec-
tion index of one of these circles with any smooth oriented immersed compact
surface whose boundary is the other circle (see Figure 6.4).
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The orientations are used here in the following way: the orienting frame of
the surface at a boundary point consists of the orienting vector of the boundary
curve, followed by the tangent vector to the surface, directed internally.

The intersection index of the second curve with the surface whose bound is
the first curve, is found by counting the intersection points of these two objects,
equipped with their signs which are positive if the 3-frame formed by the three
vectors orienting the curve and the surface orients positively the 3-space.

The linking number of two curves does not depend on the choice of the
surface bounded by one of the curves: the surface should only be nowhere-
tangent to the second curve. The linking number L of two oriented curves is
symmetric with respect to their ordering: L(I, II) = L(II, I).

The fibration of the 3-sphere whose fibres are the above special great circles
is called the Hopf fibration, S3 → (CP 1 = S2): its fibre is S1. This fibration is
a basic object in many branches of mathematics.

The 3-sphere S3 is the ordinary Euclidean 3-space compactified by the
addition of one point. In this model of the 3-sphere, the Hopf fibration becomes
the decomposition of the Euclidean 3-space into a straight line (originating
from the circle containing the added point) and the complement to this line,
fibred into closed curves whose pairwise linking numbers are all equal to 1.

Although I can draw the resulting nice picture, I shall not do so here, but
leave to the readers the pleasure of drawing it for themselves.

Instead, we shall now transfer the theory described above in the real, and in
the complex, case, to the situation in which the numbers are replaced by the
residues modulo a prime p: we shall define the finite projective spaces P m(Zp),
in a way very similar to that in which we have defined the real manifolds RP m

and the complex manifolds CP m, but now consisting of a finite number of
points.

We shall start from the finite projective line P 1(Zp). It is defined as the set
of the straight lines of the finite plane Z

2
p containing the origin:

P 1(Zp) = (Z2
p \ 0)/(Zp \ 0) .

In terms of the coordinates (u, v) on the finite plane (which are now residues
modulo p), the equation of a straight line has the form u = λv, but the ‘affine
coordinate’ λ ∈ Zp is also a residue modulo p.

To obtain all the straight lines, we add to these p values of the affine
coordinate λ one more value, denoted by the symbol ∞ (to include the vertical
line v = 0, taking into account that λ = u/v for v �= 0).

Therefore, the finite projective line P 1(Zp) consists of p + 1 points:

|P 1(Zp)| = p + 1 (λ = 1, 2, . . . , p; ∞) .
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The projective transformations

λ �→ aλ + b

cλ + d
(6.2)

(where a, b, c and d belong to Zp, and ad − bc �= 0) permute in some way
the p + 1 points of the finite projective line, but these permutations are not
arbitrary.

Indeed, the symmetric group S(p + 1) of all the permutations of p + 1
points of our finite projective line consists of (p + 1)! permutations, and the
order of the group of the projective transformations (6.2) is much smaller.

Lemma The group PL(Zp) of the projective transformations (6.2) of the finite
projective line consisting of p + 1 points is formed by p(p2 − 1) permutations.

Proof Indeed, if a �= 0, we can divide all the coefficients by a, to get the
transformation (6.2) in a form where ã = 1. The coefficients, b̃ and c̃, may
(independently of each other) each have p values, while the remaining coeffi-
cient, d̃, has to satisfy the condition d̃ �= b̃c̃ and, for fixed values of b̃ and c̃,
can take p − 1 possible values. In this way we get p2(p − 1) transformations
(6.2).

In the remaining case a = 0, the non-degeneracy condition is bc �= 0. If
d �= 0, we can reduce the formula (6.2) to the form where d̃ = 1 by dividing
by d; the number of such transformations is (p − 1)2, since b̃c̃ �= 0.

Finally, in the case a = d = 0, the transformation has the form λ �→ bλ, and
the number of such transformations is p − 1, since b �= 0.

Thus, the total number of projective transformations of the finite projective
line P 1(Zp) of all three kinds is equal to the sum

p2(p − 1) + (p − 1)2 + (p − 1) = (p − 1)(p2 + (p − 1) + 1) = p(p2 − 1) ,

proving the Lemma. �

Now, if p is large, then (p + 1)! is much larger than p(p2 − 1). Indeed, it is
so even for p = 5, since (p + 1)! = 720 and p(p2 − 1) = 120.

I point this out because it shows that the group of projective permutations
of the points of the finite projective line is the small subset (of the permutation
group S(p + 1)) formed by those permutations that preserve some remarkable
geometric structure in the finite set P 1(Zp) consisting of p + 1 points.

Unfortunately, I have no geometric description of this remarkable structure
of the finite projective line, though algebraically this structure is described by
an affine coordinate λ ∈ Zp of the complement to some ‘infinitely far situated’
point, λ = ∞, of a finite set M equipped with a projective structure.
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A different coordinate, λ̃ : (M \ •) → Zp, defines the same projective struc-
ture on M as does the affine coordinate λ, if it is related to λ by a projective
transformation (6.2).

While this algebraic description of the projective structures on a finite set
M is not that geometric, it will be used below for the study of those projective
structures on sets of p + 1 elements that are generated by a Galois field of p2

elements. We shall also use it to study the action of the Frobenius mappings on
the projective structures of these finite sets.

Indeed, by fixing a multiplicative generator A for a field of p2 elements, we
can identify bijectively this field with the finite plane (or torus) Z

2
p of the field

table, as was described in Chapter 2.
Consider now the finite projective line P 1(Zp) whose p + 1 points are the

p + 1 straight lines of the finite plane Z
2
p that contain the origin.

Lemma The set of straight lines containing the origin of the finite plane Z
2
p,

considered as the field of p2 elements, does not depend on the choice of the
multiplicative generator A that was used to identify the field with the finite
plane.

Proof For two proportional points x and cx, where c = 1 + · · · + 1 is a scalar
(i.e. two points on the same line in the table), the corresponding elements
of the field are also scalar proportional: Ak and Ak + · · · + Ak = cAk . Since
this relation does not depend on the choice of the generator A, the Lemma is
proved. �

The set of lines in the finite plane Z
2
p, considered as the field of p2 elements,

has not a naturally-defined projective structure. If we use a generator A of
the multiplicative group, then we identify the set of lines in Z

2
p with the

set {1, 2, . . . , p + 1}: the integer i ∈ {1, 2, . . . , p + 1} represents the line in
Z

2
p spanned by Ai (see the Lemma on page 55). The resulting projective struc-

ture on the set {1, 2, . . . , p + 1} depends on the choice of the multiplicative
generator A.

We shall study examples of such structures in the next chapter.

Remark The above constructions are easily adapted to Galois fields with pn

elements (for any n).
The straight lines containing the origin form, in this case, a finite set M , the

number of points of which is equal to

|P m(Zp)| = pn − 1

p − 1
= pm + pm−1 + · · · + 1 ,
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where n = m + 1. The field table (which, remember, depends on the choice of
a multiplicative generator A) defines a finite projective structure on the space
P m(Zp) formed by the finite set M of these lines.

However, unlike the set-theoretical structure of M , this projective structure
is not intrinsic: it depends on the choice of the generator A used for the
identification of the field with the finite torus. Therefore, the projective geometry
of the Galois field should take into account several projective structures on the
same finite set M (whose number equals, as we shall soon see, the value of the
Euler function, 1

n
ϕ(z − 1), for the field of z = pn elements).

The value ϕ(x) of the Euler function is defined to be the number of those
residues modulo x that are relatively prime to x. For instance, for a prime p one
has ϕ(p) = p − 1, ϕ(pn) = (p − 1)pn−1, and for mutually prime arguments x

and y, the Euler function is multiplicative:

ϕ(x · y) = ϕ(x) · ϕ(y) .

Thus,

ϕ(24) = ϕ(3)ϕ(8) = 8, ϕ(48) = ϕ(3)ϕ(16) = 16,

ϕ(120) = ϕ(8)ϕ(3)ϕ(5) = 32, ϕ(168) = ϕ(8)ϕ(3)ϕ(7) = 48.
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Projective structures: example calculations

We will now give some examples of how to calculate the projective structures
of the finite projective lines generated by a field of p2 elements and some
examples of the group action of Frobenius mappings† on these lines and on
these structures.

Consider as the simplest example the field of 25 elements; that is, the case
p = 5. The field table was calculated on page 13 for the multiplicative generator

corresponding to the matrix (A) =
(

0 2
1 2

)
.

The finite projective line P 1(Z5) that corresponds to this field and to this
table consists of p + 1 = 6 points, which are defined by the values of the affine
coordinates λk = uk/vk for the element Ak of the field. Thus, the table on
page 13 provides the following six straight lines containing the origin:

λ k k mod 6

0 24, 18, 6, 12 0

1 8, 2, 14, 20 2

2 11, 5, 17, 23 5

3 10, 4, 16, 22 4

4 15, 9, 21, 3 3

∞ 1, 19, 7, 13 1

The last column of this table is very useful, since it will simplify many of
the calculations that follow. We shall derive it now in a more general form.

† We give the name Frobenius mappings (of a finite field to itself) to all the power mappings,
x �→ xk . Some of them are isomorphic mappings of the field, and they are usually called
‘Frobenius transformations’. There are more Frobenius mappings than genuine Frobenius
transformations of a given Galois field.

54
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Lemma The straight lines containing the origin of the plane Z
2
p represent

those sets {Ak} of elements of the field for which k = const (mod p + 1).
This congruence remains true for any choice of the multiplicative generator A

defining the table Z
2
p of the field consisting of p2 elements.

Proof The condition Ak = cA�, where c is scalar, expressing the fact that k

and � lie on the same line, can be written in the form

«Ak−� = c is a scalar element ».

The scalar subgroup of the multiplicative group {Ak} that has p2 − 1 elements,
consists of the p − 1 elements, {c = 1, c = 2, . . . , c = p − 1}.

The degrees s corresponding to the elements of this subgroup, {c = As},
form an arithmetic progression of p − 1 terms in the additive group Zz−1,
z = p2. Therefore, the step in the arithmetic progression equals (p2 − 1)/(p −
1) = p + 1. Hence, this progression has the form {s = (p + 1)r}, where r ∈
{1, 2, . . . , p − 1}, since the element Ap2−1 = 1 belongs to the subgroup of
the scalars {c} and, hence, the point s = p2 − 1 belongs to the arithmetic
progression {s}.

Therefore, the necessary and sufficient condition for the non-zero elements
Ak and A� of the field to belong to the same line is the relation k − � = (p + 1)r ,
where r ∈ Zp−1, thus proving the Lemma. �

Given a generator A of the multiplicative group of the field of p2 = 25
elements, the set of all the multiplicative generators is formed by the powers
As , where s is relatively prime to p2 − 1 = 24. There are ϕ(25 − 1) = 8 of
them:

s ∈ {1, 5, 7, 11, 13, 17, 19, 23} .

To see the permutation of the six points of the projective line that is produced
by replacing the generator A with the generator As := As , we just have to take
one point k for which λ attains a chosen value, and to represent Ak in terms
of As . Since A = Ar

s , where rs = 1 in the Euler group �(25 − 1), we obtain
Ak = Akr

s . Therefore, the new choice of the generator acts on each line in the
same way as does the Frobenius mapping �r = �−1

s .
For this reason we shall study now the action of the Frobenius mappings

�s on our straight lines. To do so, let us calculate the affine coordinate of the
image of the straight line whose affine coordinate is λ. We will denote it by

λs(λ1) = λ(�s(x)) , for λ(x) = λ1 .

To calculate the function λs of λ1 by these formulas, we may use the fact that the
relation x = Ak implies �s(x) = Aks . Hence, to calculate λs(λ1), we simply
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have to associate to λ1 any k provided by the preceding table, to multiply it by
the number s and, then, to find the value of function λ at the product ks, which
is provided by the same table (used this time in the opposite direction).

Since the value λ(Ak) depends only on the residue of k modulo 6, it suffices
to multiply by s just this residue (rather than k). This leads in few minutes to
the following table for the values of all the 8 functions λs on all the 6 lines:

λ1 0 1 2 3 4 ∞
λ5 0 3 ∞ 1 4 2

λ7 0 1 2 3 4 ∞
λ11 0 3 ∞ 1 4 2

λ13 0 1 2 3 4 ∞
λ17 0 3 ∞ 1 4 2

λ19 0 1 2 3 4 ∞
λ23 0 3 ∞ 1 4 2

One can further shorten these calculations by taking into account the con-
gruences

1 ≡ 7 ≡ 13 ≡ 19 (mod 6) ,

which imply the congruences

λ1 ≡ λ7 ≡ λ13 ≡ λ19 ,

and hence the following identities for the actions P�s of �s on the projective
line:

P�7 = P�13 = P�19 = Id ;

here, Id is the identity transformation of P 1(Z5) that leaves all of its 6 points
unchanged.

Similarly, we observe the congruences

5 ≡ 11 ≡ 17 ≡ 23 (mod 6) ,

whence

λ5 ≡ λ11 ≡ λ17 ≡ λ23 ,

and therefore the corresponding Frobenius mappings act on the projective line
in the same way:

P�5 = P�11 = P�17 = P�23 .
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Thus, we have computed the homomorphism ψ of the Euler group � (formed
by those transformations �s , or by those residues s after division by p2 − 1 =
24 that are relatively prime to the number p2 − 1) onto its projectivised version:

ψ : {�s} −→ {P�s} ,

where P�s ∈ S(p + 1) are the permutations of the p + 1 straight lines con-
taining the origin by the Frobenius mapping �s of the field consisting of p2

elements.
For the case p = 5 we have calculated the answers:

(1) � ≈ Z
3
2 (generated by a = 5, b = 7, c = 13, verifying the identities 11 =

ab, 17 = ac, 23 = abc);
(2) ψ(�) ≈ Z2 (whose nontrivial element P�5 acts on the λ axis as the

reflection of the diagram

1 2
0 4 | |

3 ∞
;

in the horizontal mirror).
(3) To check whether the permutation P�5 of 6 points is projective, note that

0 �→ 0 means that λ5 is zero when λ1 = 0. Therefore, if it is projective, it
should have the form

λ5 = aλ1/(cλ1 + d) .

The property 2 �→ ∞ of P�5 implies that λ5 should be ∞ for λ1 = 2,
and therefore one should have 2c + d = 0. Similarly, ∞ �→ 2 means that
one should have λ5 = 2 for λ1 = ∞, and so a = 2c.

We obtain therefore that d = −2c, a = 2c, yielding, for the projective
transformation P�5, the form

λ5 = 2λ1/(λ1 − 2) .

This is indeed true for all the 6 values of λ1.

Thus, the final conclusions are:

(1) The projective structure on the set {1, 2, 3, 4, 5, 6} does not depend on the
choice of the multiplicative generator used to identify the field of order 25
with the finite torus: all the 8 choices lead to the same projective structure.

(2) The kernel of the projectivisation homomorphism ψ consists of the four
Frobenius mappings that leave unchanged every straight line containing
0: {�1,�7,�13,�19}. This kernel forms a group isomorphic to Z

2
2.
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(3) The image of the projectivisation homomorphism ψ is isomorphic to Z2.
Its only nontrivial permutation of the 6 points of the finite projective line
P 1(Z5) leaves unchanged the points λ1 = 0 and λ1 = 4 and permutes
λ1 = 1 with λ1 = 3 and λ1 = 2 with λ1 = ∞.

This projective transformation is defined by the formula

λ5 = 2λ1

λ1 − 2

and is generated by the automorphism �5 of the field of 25 elements. This
automorphism satisfies the identity

�5(x + y) = �5(x) + �5(y) ,

which is not satisfied by �7.

The calculations of the projective structures and of the Frobenius mappings
(which may or may not be Frobenius automorphisms) for fields consisting
of p2 elements with other prime numbers p follows the same lines as in the
case p = 5 studied above. But the resulting answers are so different for the
different primes (p = 7, 11, 13), that I cannot even begin to guess some general
conclusions for higher values of p.

The case p = 7

The Euler group �(48) consists of

ϕ(p2 − 1) = ϕ(48) = ϕ(3) ϕ(16) = 16 residues modulo 48

relatively prime to 48:

{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47} .

This multiplicative group is isomorphic to the direct product Z4 × Z2 × Z2

with generators 5 for the factor Z4 and 7, 17 for the factors Z2.
The 8 points of the finite projective line P 1(Z7) that correspond to the ele-

ments Ak of the field, where (A) =
(

0 2
1 2

)
, are defined by the corresponding

residues of the exponents k modulo p + 1 = 8, as follows:

λ1(Ak) 0 1 2 3 4 5 6 ∞
k (mod 8) 0 2 6 7 5 3 4 1

(see the field table on page 15).
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The actions of the generators of the Euler group represented by the Frobenius
mappings �5, �7 and �17, provide the following values of the functions λ5,
λ7, λ17 (calculated, multiplying k by s, using the algorithm described in detail
earlier for the case p = 5): λk(λ) = λ1(�k(x)), for λ1(x) = λ:

λ1 0 1 2 3 4 5 6 ∞
λ5 0 1 2 5 ∞ 3 6 4

λ7 0 2 1 ∞ 5 4 6 3

λ17 0 1 2 3 4 5 6 ∞
We need no new calculations for P�17, since 17 ≡ 1 (mod 8); therefore,

the permutation P�17 = P�1 = Id is the identity transformation of the finite
projective line P 1(Z7) (i.e. it leaves each point of this line unchanged: λ17 ≡ λ1).

The permutations P�5 and P�7 act on the points corresponding to the
different values of λ as symmetries (with respect to a horizontal mirror) of the
following two diagrams, whose points represent the points of P 1 denoted by
their coordinate λ1:

The case P�5

3 4
| | 0 1 2 6
5 ∞

;

The case P�7

1 3 4
| | | 0 6
2 ∞ 5

.

The first permutation (P�5) is not projective, since it has four fixed points
(such a projective mapping ought to be the identity, leaving unchanged all the
8 points).

For the second permutation (P�7) we deduce the following: from 0 �→ 0,
we deduce that λ7 = aλ1

cλ1+d
; from 3 �→ ∞, it follows that 3c + d = 0; while

∞ �→ 3 implies the relation a = 3c. Thus, in the case that the permutation P�7

is projective, the values of λ7 ought everywhere to be equal to 3λ1/(λ1 − 3),
and this is indeed the case in the above table. Thus, the permutation P�7 is
projective (i.e. preserves the projective structure).

Multiplying the permutations that we have already calculated, we obtain the
complete projectivisation homomorphism ψ : (� ≈ {�s}) → {P�s}.
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The resulting conclusions are:

(1) The field consisting of 49 elements generates two different projective struc-
tures on the set Z8 = {0, 1, . . . , 7}, depending on the choice of the multi-
plicative generator used to identify P 1(Z7) with this set. The permutation
P�5 sends one of these two structures to the other.

The difference between these structures is analogous to the difference
between old and new railway schedules when the only change is that some
cities have been renamed.

(2) The permutation P�7 preserves both projective structures of the set of 8
elements: {k (mod 8)}.

(3) The permutation P�17 = P�1 is the identity, leaving unchanged every
point of the set P 1(Z7). The Frobenius mapping �17 belongs to the kernel
of the projectivisation homomorphism ψ . This kernel consists of the four
Frobenius mappings �s :

Ker ψ = {�1,�17,�25,�41} ,

for which s is congruent to 1 modulo 8. This group is isomorphic to the
group Z

2
2 (for example, �17�25 = �41).

(4) The image of the projectivisation homomorphism ψ is also isomorphic
to the group Z

2
2. It consists of the four permutations {P�1, P�5, P�7,

P�11}, of which P�1 = Id and P�7 are biprojective (preserving both
projective structures), while each permutation P�5 and P�11 permutes
the two projective structures of the set P 1(Z7).

The Frobenius mapping �7 is an automorphism of the field consisting
of 49 elements, �7(x + y) = �7(x) + �7(y); this does not hold for �5 or
for �11.

Thus, the group {P�s} ≈ Z
2
2 acts on the two projective structures of the

set P 1(Z7), as Z2 (with kernel {P�1, P�7} generated by the Frobenius
automorphisms of the field).

To obtain the first or the second projective structure defined by the
coordinates k mod 8 of the function λ = λk of the set of eight elements
Z8, one has to choose the following generators, As , of the multiplicative
group (as is implied by the field table on page 15):

P1 1, 7, 17, 23 25, 31, 41, 47 s = 8r ± 1

P5 5, 11, 13, 19 29, 35, 37, 43 s = 8r ± 3

The Frobenius mappings of the first line (where s = 8r ± 1) preserve
both the projective structures P1 and P5, while those of the second (where
s = 8r ± 3) permute the projective structures P1 and P5 on the set Z8.
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The case p = 11

The Euler group �(120) consists of ϕ(p2 − 1) = ϕ(120) = ϕ(3) ϕ(5) ϕ(8) =
32 residues modulo 120, relatively prime to 120: they are the residues

{1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, . . . } ,

including 120 − s together with s.
This multiplicative group is isomorphic to the direct product Z4 × Z

3
2 (with

generators 7 for Z4 and 11, 19, 61 for the three factors Z2).

Since the matrix (A) is

(
0 3
1 1

)
, the 12 points of the projective line P 1(Z11)

corresponding to the elements Ak of the field depend in the following way on
the residues modulo p + 1 = 12 of the numbers k:

λ1(Ak) 0 1 2 3 4 5 6 7 8 9 10 ∞
k (mod 12) 0 9 7 5 2 3 8 4 10 6 11 1

This follows from the field table on page 15.
The action of the generators of the Euler group by the Frobenius map-

pings �7, �11, �19 and �61 (which determine the respective permutations
P�7, . . . , P�61 of the 12 points forming P 1(Z11)) provides the following
table for the values of the functions λ7, λ11, λ19 and λ61 on the coordinates k

(mod 12) of the points of the set P 1:

λs(λ1(x)) := λ1(�s(x)) .

As explained previously (for p = 5), the calculation of λs(λ1) from the table
on page 61 follows the algorithm

(λ1 �→ k) , (k �→ sk) , (sk �→ λ1(Ask)) ,

where we first use this table the downstairs (↓) way and at the end, the opposite,
upstairs way (↑).

These calculations have to be performed only for one representative of each
of the four modulo 12 classes of the numbers s ∈ �:

�1 1 ∼ 13 ∼ 37 ∼ 49 ∼ 61 ∼ 73 ∼ 97 ∼ 109

�7 7 ∼ 19 ∼ 31 ∼ 43 ∼ 67 ∼ 79 ∼ 91 ∼ 103

�11 11 ∼ 23 ∼ 47 ∼ 59 ∼ 71 ∼ 83 ∼ 107 ∼ 119

�17 17 ∼ 29 ∼ 41 ∼ 53 ∼ 77 ∼ 89 ∼ 101 ∼ 113

In the case where s belongs to �1, the mapping P�s is the identity; hence,
λ1 = λ13 = λ37 = · · · = λ109.
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To calculate the permutation P�17 and the functions λ17 = λ29 = · · · =
λ113, it suffices to multiply the permutations P�7 and P�11 (since 7 · 11 =
77 ∈ �17). It remains, therefore, to calculate the functions λ7 and λ11, for which
the values are provided by the values of λ1(Ak) in the table on page 61 (using
the algorithm λ1 �→ k �→ sk �→ λ1(Ask)):

λ1 0 1 2 3 4 5 6 7 8 9 10 ∞
λ7 0 5 ∞ 10 4 1 6 7 8 9 3 2

λ11 0 5 3 2 8 1 7 6 4 9 ∞ 10

λ17 0 1 10 ∞ 8 5 7 6 4 9 2 3

The permutations P�7, P�11 and P�17 permute the 12 points of the finite
projective line P 1(Z11). Denoting the points of this set by the values of the
coordinate λ1, we can describe these permutations as the (horizontal) mirror
symmetries of the following three diagrams:

The case P�7

1 2 3
| | | 0 4 6 7 8 9
5 ∞ 10

,

The case P�11

1 2 4 6 10
| | | | | 0 9
5 3 8 7 ∞

,

The case P�17

2 3 4 6
| | | | 0 1 5 9

10 ∞ 8 7
.

These diagrams imply that the involutions P�7 and P�17 do not preserve
the projective structure P1 of the finite line P 1(Z11) (which is defined by the
coordinate λ1), while the involution P�11 does preserve it, since λ11 = − λ1

λ1+1
is a fractional-linear function.

Both the permutations P�7 and P�17 send the projective structure P1 to
the same image projective structure:

P7 := (P�7)(P1) = P17 := (P�17(P1)) ,
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where the functions λ7 and λ17 are fractional-linearly related:

λ17 = − λ7

λ7 + 1
.

The permutation P�11 (generated by the Frobenius automorphism �11 of
the field consisting of 121 elements) preserves both the projective structures,
P1 and (P7 = P17), on the set Z12 consisting of 12 points, while each of the
two permutations P�7 and P�17 permutes these two structures, P1 and P7.

The kernel of the projectivisation homomorphism

ψ : (� ≈ {�s}) → {P�s},

consists of the eight Frobenius mappings �s forming �1, where s = 12r + 1;
that is, where s ∈ {1, 13, 37, 49, 61, 73, 97, 109}. These eight mappings form
the group Ker ψ ≈ Z4 × Z2 (whose generators correspond to s = 13 for Z4

and to s = 61 for Z2).
The image of the projectivisation homomorphism ψ consists of the four

permutations {P�1, P�7, P�11, P�17}, which form a group isomorphic to
Z

2
2. Its action on the set of points of the projective line P 1(Z11) and on its two

projective structures P1 and P7 (provided by the coordinate functions λ = λ(k)
defined by the field of 121 elements for different choices of the generator of the
multiplicative group) is described above: in particular, P�17 = (P�11)(P�7),
(P�11)(P�11) = (P�7)(P�7) = 1.

All these facts mean that the Euler group, which is represented by 32 Frobe-
nius mappings, acts on the set of the two projective structures P1 and P7 on
the coordinates k (mod 12) of the points of the finite projective line (generated
by the field of 121 elements) as the group Z2 of the permutations of these two
structures. Both structures remain fixed under the 16 mappings P�s for which
s = 12r ± 1 (r ∈ Z): that is, for s belonging to the above lists �1 and �11. The
16 permutations P�s , for which s = 12r ± 5 (r ∈ Z) (i.e. those for which s

belongs to the above lists �7 and �17) send P1 to P7 and P7 to P1.
Thus, the kernel of the homomorphism ψ : � → Z2, defined by the actions

of the Frobenius mappings on the projective structures, is

Ker ψ = �1 ∪ �11 ≈ Z4 × Z
2
2 ,

with generators corresponding to �13 for the factor Z4 and to �61 and �11 for
the factors Z2.
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Case p = 13

The Euler group �(168) consists of the

ϕ(p2 − 1) = ϕ(168) = ϕ(3) · ϕ(7) · ϕ(8) = 48

residues modulo 168, relatively prime to 168. Namely,

�(168) = {1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47,

53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, . . . } ,

where the residue 168 − s is included together with the residue s.
This group is isomorphic to the product of four cyclic groups: �(168) �

Z6 × Z
3
2, with generators 5 for Z6, 29, 43 and 85 for the second-order factors.

The 14 points of the projective line P 1(Z13) that correspond to elements Ak

of the field for the chosen generator (A) =
(

0 2
1 4

)
, are defined by the residues

of k modulo p + 1 = 14, in the following way:

λ1(Ak) 0 1 2 3 4 5 6 7 8 9 10 11 12 ∞
k (mod 14) 0 8 2 13 11 6 7 12 4 9 10 5 3 1

(this is implied, in fact, by the table on page 16).
The actions of the generators of the Euler group by the Frobenius mappings

{�5,�29,�43,�85} give the values of the functions λ5, λ29, λ43 and λ85 via
the usual algorithm:

(λ1 �→ k) , (k �→ sk) , (λs = λ1(Ask)) .

It follows that the resulting permutation P�s depends only on the residue
of s modulo p + 1 = 14 and, therefore, the Euler group �(168) is subdivided
into six classes of residues s (mod 168), equiresidual modulo 14:

�1 = {1, 29, 43, 71, 85, 113, 127, 155} , s = 14r + 1 ;

�5 = {5, 19, 47, 61, 89, 103, 131, 145} , s = 14r + 5 ;

�11 = {11, 25, 53, 67, 95, 109, 137, 151} , s = 14r − 3 ;

�13 = {13, 41, 55, 83, 97, 125, 139, 167} , s = 14r − 1 ;

�17 = {17, 31, 59, 73, 101, 115, 143, 157} , s = 14r + 3 ;

�23 = {23, 37, 65, 79, 107, 121, 149, 163} , s = 14r − 5 ;
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The table on page 64, which relates k to λ1(Ak), gives the following values
for the functions λs :

λ1 0 1 2 3 4 5 6 7 8 9 10 11 12 ∞
λ5 0 7 10 9 3 2 6 8 5 12 1 4 ∞ 11

λ11 0 8 1 12 9 10 6 5 2 ∞ 7 3 11 4

λ13 0 5 7 ∞ 12 1 6 2 10 11 8 9 4 3

λ17 0 10 5 4 11 8 6 1 7 3 2 ∞ 9 12

λ23 0 2 8 11 ∞ 7 6 10 1 4 5 12 3 9

Therefore, the permutation P�5 acts on the 14 points of the set P 1(Z13) in
the following strange way:

P�5 : 1
� �� 7

� �� 8
�

��
10
�

��

2
��� 5

���

3
� �� 9

� �� 12
�

��
4
�

��

11
��� ∞���

0 �� 6 ��

We have denoted here the points of the finite projective line by their affine
coordinates λ1(Ak). We see that the permutation P�5 has two long orbits each
consisting of six points, and has two fixed points. It is useful to observe that
(P�5)6 = 1.

The permutation P�5 is not a projective transformation. For otherwise we
would have

λ5 = aλ1

cλ1 + d
,

since λ5 = 0 for λ1 = 0. Therefore, the condition λ5 = ∞ for λ1 = 12 would
mean that 12c + d = 0, while the condition λ5 = 11 for λ1 = ∞ would
mean a = 11c. Thus, the projective permutation P�5 would be λ5 = 11λ1/

(λ1 − 12), and this would yield, for λ1 = 1, the value λ5 = 11/(−11) = 12,
contradicting the above table, which claims λ5(λ1 = 1) = 7.

This contradiction shows that the permutation P�5 does not preserve the
usual projective structure P1, but sends it to the projective structure P5, which
is represented by the affine coordinate λ5 on {k (mod 14)}.
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The permutation P�11 permutes the 14 points of the set P 1(Z13), denoted
by their coordinates λ1, in the following strange way:

P�11 :

1
� �� 8�

����
��

��
�

2
�

���������

3
� �� 12�

����
��

��
��

11
�

		��������

4
� �� 9�

����
��

��
��

∞
�



��������

5
� �� 10	

��













7
�

����������

0 �� 6 �� ;

two fixed points and four orbits, each consisting of 3 points. Note that P�11 =
(P�5)2 and that (P�11)3 = 1.

If the permutation P�11 were projective, it would have the form λ11 =
aλ1/(cλ1 + d), since 0 �→ 0, and the action 9 �→ ∞ would imply 9c + d = 0,
while the action ∞ �→ 4 would imply a = 4c. Thus, P�11 would have the
form

λ11 = 4λ1

λ1 − 9
.

Therefore, we would obtain the value

λ11(λ1 = 1) = 4/(−8) = −20 = 6 (mod 13) ,

contradicting the value λ11(λ1 = 1) = 8 in the table on page 65.
Therefore the non-projective permutation P�11 sends the standard projec-

tive structure P1 associated to the affine coordinate λ1 to the projective structure
P11 of the same set {k (mod 14)}, associated to the affine coordinate λ11.

The permutation P�13 is a projective transformation, since it is generated
by the Frobenius automorphism �13 of the field of 169 elements.

Its projectivity is also evident from the values of the function λ13 in the
table on page 65: denoting the points of P 1 by their coordinate λ1, we get the
permutation action.
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The case P�13

1 2 3 4 8 9
| | | | | | 0 6
5 7 ∞ 12 10 11

;

this diagram implies that λ13 = −λ1/(4λ1 + 1).
The remaining permutations P�s , for s = 17 and 23, can now be obtained

by simple multiplications: we note that

13 · 5 = 65 ∈ �23 , 13 · 11 = 143 ∈ �17

and, therefore, we have the following identities for the permutation products:

P�23 = (P�5)(P�13) , P�17 = (P�11)(P�13) .

Thus, the permutation P�23 sends the structure P1 to the structure P5 (the
first permutation P�13 sends the structure P1 to itself, and the next permutation
P�5 transforms P1 into P5).

Similarly the permutation P�17 sends the structure P1 to P11.
Since the permutation P�13 preserves P5, it also preserves each of the

structures P5 and P11. Hence, the permutation P�23 preserves the structure P1

and the permutation P�17 preserves the structure P11.
To study the action of the permutation P�5 on the structure P11, it suffices

to use the affine coordinate λ11, counting the value of λ11 at the point x5, given
the value λ11(x). Since the product (P�11)(P�5) of the permutations is P�13

(because 55 ∈ �13), we get

λ11(x5) := λ1(x55) = λ1(x13) := λ13(x) ,

and, therefore, we should be able to calculate the dependence of λ13(x) on
λ11(x). Our table of the values of the functions λs (see page 65) provides this
dependence:

λ11(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 ∞
λ13(x) 0 7 10 9 3 2 6 8 5 12 1 4 ∞ 11

Therefore, the transformation P�5 acts on the expression for the coordinates
of the structure P11 in the same way as it acts on the formula for the structure
P1: the structure P11 is sent to the projective structure P13, which is defined by
the affine coordinate λ13.
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But the structure P13 coincides with P1, since the Frobenius mapping �13

is an automorphism of the field of 169 elements. Therefore, the action of the
transformation �5 on the three projective structures (generated by the field of
169 elements) is given by the triangular diagram

P�5 : P1
� �� P5�

����
��

��
��

P11





��������

;

it sends the structure P5 to the structure P11, since 5 · 5 = 25 ∈ �11.
Similarly, one may calculate the action of the permutation P�11 on these

three structures. But one can avoid new calculations, since

P�11 = (P�5)2

and, therefore, it acts as the cyclic transformation of order 3, inverse to the
action of P�5. We get the triangular diagram of the action of P�11 on the
three projective structures,

P�11 : P1
� �� P11�

����
��

��
��

P5

�



�������

.

The description of the kernel and of the image of projectivisation homomor-
phism

ψ : (� ≈ {�s}) −→ {P�s} ,

is also implicitly contained in our explicit formulas for the permutations P�s .
The answers are the three isomorphisms

� ≈ (Z6 × Z
3
2) , Ker ψ ≈ Z

3
2 , Im ψ ≈ Z6 .

Namely, the kernel consists of eight Frobenius mappings �s , where s belongs
to the class �1 (for which s = 14r + 1).

One may, for instance, take as the generators of the kernel the transformations
�29, �43, �85, taking into account the following relations for the Frobenius
mappings:

�71 = �29(�43) , �113 = �29(�85) , �127 = �43(�85) ,

�155 = �29(�43(�85)) .
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One can take the 6th-order permutation g = P�5 as the generator of the
image group. The image consists of its powers, i.e. the following identities
hold:

g2 = P�11 , g3 = P�13 , g4 = P�37 , g5 = P�17 , g6 = 1,

since 52 ∈ �11, 53 ∈ �13, 54 ∈ �37, 55 ∈ �17.
The permutation g acts cyclically on the three projective structures P1,

P5, P11 (generated by the field consisting of 169 elements). The permutation
g3 leaves each of these three structures unchanged, since it is generated by
the Frobenius automorphism of the field. We have thus described the entire
situation for p = 13.

Unfortunately, I have neither theorems, nor even conjectures, to extend the
above description of projective geometry to fields with more elements, not even
in the case of p2 elements with higher primes p, where the geometry remains
1-dimensional.

To find these generalisations one will probably have first to calculate the
formulas λ = λ(k) that describe the projective structures in terms of the pro-
jective line coordinate k (mod p + 1) and the action of the Frobenius mappings
on these structures (at least for the case of the field of p2 elements) so that we
get more examples. The fact that the answers in the cases p = 5, 7, 11 and 13
discussed above are so heterogeneous obstructs attempts to guess the general
rules for higher values of p.† The number |P 1(Zn)| of points of the projectivised
version of the affine line Zn equals nK(n), where K(n) = ∏

(1 + 1/p) over
the prime divisors p of n (being thus 1 + 1/p for prime numbers n = p).
For some special integers, starting with K(6) = 2, the quantity K attains
arbitrary large values. However, according to F. Aicardi, the Cesaro average
K̂(n) = (K(1) + · · · + K(n))/n of the coefficients K(n) tends, as n → ∞, to
a constant, namely, to K̂∞(n) = 15

π2 = ζ (2)
ζ (4) .

† In fact, for prime p, one can indeed prove that the number of different projective structures on a
set of p + 1 elements that is generated by a Galois field of p2 elements is given by 1

2 ϕ(p + 1).



8

Cubic field tables

To help the reader to conduct further experimental studies, I provide in this
chapter the tables of the fields of 8, 27, 125, 16 and 81 elements. In the case
of p3 elements I shall use the additive basis {1, A,A2}, choosing first some
generator A of the multiplicative group.

The table fills the cells (u, v,w) of a finite cube (torus) Z
3
p by the degrees k

of the powers Ak of the multiplicative generator:

Ak = ukA
2 + vkA + wk1 .

To show how this cube is filled, I shall present below its plane square sections
w = const. filled with the degrees k.

The presence of the number k (mod p2 − 1) in the cell (u, v) of the square
w in the table means we have the identity

Ak = uA2 + vA + w1 .

The tables are shown below for the square sections of the cube (torus) for
p = 2, 3 and 5.

Table of the field consisting of 23 elements

1 1 6

0 2

0 1

1 5 4

0 0 3

0 1

∞w = 0 w = 1

u

v

u

v

70
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The table corresponds to the matrix

(A) =

0 1 0

0 0 1
1 0 1


 .

The six elements Ak for which 1 ≤ k ≤ 6 are primitive (generators). The
table implies the four identities A3 = A2 + 1, A4 = A2 + A + 1, A5 = A2 +
1, A6 = A2 + A. These identities follow recursively from the first one.

Table of the field consisting of 33 elements

181

0

210

2

1

20

210

2

1

0

210

2

1

14 612

19 25

∞ 15 0

24 20 21

22 17

7 16 13 20

8

4

3

11 23

95

w= 2w= 1w= 0

v vv

uu u

The multiplicative generator that was used here corresponds to the matrix

(A) =

0 1 0

0 0 1
2 0 1


 .

The table yields 33 − 2 = 25 identities, including, for example,

A0 = 1 , A3 = A2 + 2 , A4 = A2 + 2A + 2 ,

A5 = 2A + 2 , A6 = 2A2 + 2A , A7 = A2 + 1 ,

A8 = A2 + A + 2 , A9 = 2A2 + 2A + 2 , . . . ,

A24 = 2A + 1 , A25 = 2A2 + A , A26 = 1 .

All these identities follow recursively from the second one of this list, which
means that matrix (A) satisfies its own characteristic equation.

The number of generators Ak of the multiplicative group (where 1 ≤ k ≤ 25)
equals ϕ(33 − 1) = 12. These 12 values of the degree k are represented in the
table as bold characters.
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Table of the field consisting of 53 elements

0 1 2 3 4

4

3

2

1

0

0 1 2 3 4

4

3

2

1

124

0 1 2 3 4

4

3

2

1

0

0 1 2 3 4

4

3

2

1

0

0 1 2 3 4

4

3

2

1

0

1

32

100

54

116

112

34

38

92

81

95 33

7 23

19

61

94

2

30 50

∞

w = 0

29

49

55

79 11 71

25

83

35

51

w = 1

0

6

22 88

44

58

70

28

78

10 98

46

14

12

96

99

115

65

13

57

27

15

105

67

107

39

47

103

121

93

122

18 118

4

40

52

24 20

10448 53

37

101

59

41

109

45

5

43

77

89

119

75

331

80

60 42

82 86

56

66

102

114

110

111

113

97

21

87

9 73

117

17

62

84

68

74

76

108

36

34 8

72

16

90 120

106

26

w

u

u

v

u

= 2 w = 3

w = 4

91

(A) =
 

0 1 0
0 0 1
3 0 4

63 85 69

123

vv

vv

uu

This table announces 53 − 2 = 123 congruences:

A0 = 1 , A3 = 4A2 + 3 , A4 = A2 + 3A + 2 ,

A5 = 2A2 + 2A + 3 , A6 = 3A + 1 , . . .
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. . . , A63 = 4A , . . . , A114 = 4A2 + 4A + 3 , . . .

A123 = 2A2 + 2A , A124 = 1 .

All these identities follow recursively from the second one, which means
the matrix (A) satisfies its characteristic equation.

The number of generators Ak of the multiplicative group (where 1 ≤ k ≤
123) equals ϕ(53 − 1) = ϕ(31) ϕ(4) = 60. These 60 values of k are shown in
the above field table as bold characters.

For fields consisting of p4 elements, we choose the additive generators
1, A,A2, A3, where A is a generator of the multiplicative group.

The field table fills (by the exponents k of the elements Ak) the cells
(u, v,w, t) of the finite four-dimensional cube (torus) Z

4
p:

Ak = ukA
3 + vkA

2 + wkA + tk1 .

To show this, we present below its two-dimensional plane sections (w =
const, t = const).

The appearance of the number k (where 1 ≤ k ≤ p4 − 2) in the cell (u, v)
of the square numbered (w, t) gives the identity

Ak = uA3 + vA2 + wA + t1 .

These squares form the following tables, calculated for p = 2 and for p = 3.

Table of the field consisting of 24 elements

1

0

10

,

0

9

1

0

10

1

0

10

1

0

10

12

7 6

5

,

∞
2

3

14

1

11

1

13

10

8

uu

uu

v

vv

v
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This table was computed for the generator of the multiplicative group that
is defined in the matrix representation of the field by the matrix

(A) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1


 .

The table above is the geometric shorthand description of the 24 − 3 = 13
identities:

A0 = 1 , A4 = A3 + 1 , A5 = A3 + A + 1 ,

A6 = A3 + A2 + A + 1 , . . . , A14 = A3 + A2 , A15 = 1 .

These identities follow recursively from the second one, which means the
matrix (A) satisfies its characteristic equation.

The number of generators Ak of the multiplicative group (where 1 ≤ k ≤ 14)
equals ϕ(24 − 1) = ϕ(3) ϕ(5) = 8. These eight values of the exponent k are
shown in the table as bold characters.

Table of the field consisting of 34 elements

1

0

10 2

2

1

0

10 2

2

68

23 73 13

34

5

46

61

7

37 32 51

8

16

62

52

14

w= 1 , t= 2 w= 2 , t= 2

2

42

1

0

10 2

2

58

25

70

10 67

4

601

0

10 2

2

w= 0 , t = 1

64

1

0

10 2

2

56

48

55 12

22

1

0

10 2

2

40

65 27 50

18

44 31

20 36

1

0

10 2

2

w= 0 , t = 2

28 21 45

74 47 61

0

10 2

2

38

351

0

10 2

2

0 71 77 11 72

54 63 53 33

w = 1 , t= 1 w = 2 , t = 1

∞ 3

79 30

70 39

43

w = 0 , t = 0

1

78 57 49

29 75

59 26

w= 1 , t= 0 w = 2 , t= 0

41 66 19

69 24

179

15

vvv

vvv

vv v

uu

uu

uu

u

u

u
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This table was computed for the generator (of the multiplicative group) that
is defined in the matrix representation of the field by the matrix

(A) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 2


 .

The table of the field containing 81 elements is the geometric shorthand
version of the 78 = 34 − 3 identities:

A0 = 1 , A4 = 2A3 + 1 , A5 = A3 + A + 2 ,

A6 = 2A3 + A2 + 2A + 1 , A7 = 2A3 + 2A2 + A + 2 , . . .

. . . , A79 = A3 + A2 , A80 = 1 .

All these identities follow recursively from the second one in this list (which
is just the matrix (A) satisfying its characteristic equation).

The number of generators Ak of the multiplicative group (where 1 ≤ k ≤ 79)
equals ϕ(34 − 1) = ϕ(5) ϕ(16) = 32. These 32 values of the exponent k are
shown in the table as bold characters.

The tables of the fields containing 25, 26 and 27 elements have been published
in the book: R. Lidl, H. Niederreiter, Finite Fields, second edition, Cambridge
University Press, 1999 (on pages 673–676). This book also contains a large
bibliography about the theory of finite fields and the proofs of the existence
and uniqueness of the field containing pn elements, as well as of the cyclicity
of the multiplicative group of the field, which we have here omitted.

The tables of the fields containing 32, 64 and 128 elements are presented
in this book for the choices of the multiplicative generators that are provided,
respectively (in the matrix representation of the field), by the following three
matrices:

(A) =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 0


 ,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 1




,




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 0 0 0 0 0




,

implying, respectively, the characteristic equations encoded in the last line of
these three Sylvester matrices:

A5 = A3 + 1 , A6 = A5 + 1 , A7 = A + 1 .
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Unfortunately, I do not know a convenient form for the generator A of the
multiplicative group for a general field containing pn elements, even for p = 2.

The reason for my ignorance might be the difficulty of the bibliographical
search based on the book quoted above. It mentions, however, that many useful
facts appeared first in the book: C.G.J. Jacobi, Canon Arithmeticus, Berlin,
1839, republished by Academic–Verlag, Berlin, in 1956.

However, this (apparently) full bibliography attributes the important general
results of A. Girard (Amsterdam, 1629, ‘Sur les découvertes nouvelles en
algèbre’), which they use in their book, to I. Newton (1707) and to Waring.

Girard’s forgotten theorem gives an expression for the moment function,
which is the sum of the powers

sk = xk
1 + · · · + xk

n

of the roots of the polynomial∏
(x − xj ) = xn − σ1x

n−1 + σ2x
n−2 − · · · ± σn ,

in terms of the coefficients (predating the celebrated Chevalley theorem).
The expression is, of course, a polynomial with integral coefficients in the

variables σj . These coefficients have many remarkable properties, relating them
both to the natural sciences and to number theory, including some generalisa-
tions of ‘Fermat’s little theorem’ to the traces of matrices.

The asymptotic behaviour of these coefficients gives a combinatorial def-
inition of the entropy function

∑
pj log pj (which describes the statistics of

long words in a finite alphabet in terms of the frequencies pj of occurrence of
characters in these words).

The same coefficients also provide interesting extensions of the strange
‘modular’, or ‘pseudo-doubly periodic’ p-adic behaviour of the degree d(a, b)
of the prime p in the congruences

Cpb
pa − Cb

a = pdq ,

where q is relatively prime to p, for the binomial coefficients and for their
multinomial extension.

More details about these congruences and about the strange periodicities of
the function d can be found in my article “Fermat dynamics of matrices, finite
circles and finite Lobachevsky planes”, Cahiers du CEREMADE, Université
de Paris-Dauphine, No. 0434 (3 June 2004) and in the book “Arnold’s Seminar
Problems, 2004” published in Russian by MCCME, Moscow, 2005.

For instance, d(mp + 1, b) does not depend on b when m is not too large
and d satisfies some p-adic periodicity in both arguments a and b.
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One might guess the nature of the function d of the two variables a and b

by studying the following table of its values for p = 7, where the 14 rows of
the Pascal-arranged triangle below correspond to the values 2 ≤ a ≤ 15 of the
arguments for the rows, and where 0 < b < a in each row:

3
3 3

3 3 3
3 3 3 3

3 3 3 3 3
4 4 4 4 4 4

5 5 5 5 5 5 5
3

3 3
3 3 3

3 3 3 3
3 3 3 3 3

4 4 4 4 4 4
5 5 5 5 5 5 5

3
3 3

3 3 3
3 3 3 3

3 3 3 3 3
4 4 4 4 4 4

5 5 5 5 5 5 5

4 4 4 4 4 4
4 4 4 4 4

4 4 4 4
4 44

4 4
6

. . . . . .

The ‘double periodicity’ of this picture is only a finite repetition of the
‘fundamental domain’ of scale p, which is repeated p times in both directions.
The subsequent repetition is disturbed by some corrections. The resulting block
of scale p2 is also repeated (p times in each direction) and is then disturbed to
produce a further block of scale p3, and so on. But despite this p-adic pseudo-
periodicity and the appearance of pn in the picture, neither the exact p-adic
formula for this ‘periodicity’, nor its relation to the Galois fields of pn elements
is known.

The little Fermat theorem is related to the inequality d ≥ 2 and to the
irregular growth of d(a, b) with a.

The matrix version of this theorem, or rather of its generalised form, dis-
covered by Euler, am ≡ am−ϕ(m) (mod m), is the congruence of the traces of
integer matrices,

tr (Am) ≡ tr
(
Am−ϕ(m)

)
(mod m)

for m = pn.
Some results in this direction are published in: V.I. Arnold. ‘On the matricial

version of Fermat–Euler congruences’, Japanese Journal of Mathematics, 1
(2006) 1–24.

The relevance of the last condition for the validity of this congruence sug-
gests its relation to Galois fields (but, as far as I know, such a relation has yet
to be discovered).†

† The conjecture formulated in the paper quoted above has now been proved by P. Deligne. His
proof is based on the relation to the theory of Galois fields suggested in my paper.
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It is a pity that all these remarkable facts are neglected in modern math-
ematics and computer science. Numerical experiments helped a great deal in
the discovery of the relevant empirical facts. For example, suppose the num-
ber of divisors of a large integer n grows with n, on average, like its natural
logarithm ln n. The sum of the average growth of the divisors is cn, where
c = ζ (2) = π2/6 ≈ 3/2. The mean average growth of the divisor is, however,
c1n/(

√
ln n), rather than cn/ ln n, as a scientist might suggest.

This last asymptotic result was discovered by A. Karazuba†, following a
lecture by me on Dirichlet’s earlier results on averaged asymptotics. But no
one knows the averages of the numbers of divisors τ of their sum σ and of the
mean divisor σ/τ for the values of the Euler function taken as arguments of these
functions – that is, for σ (ϕ(n))/τ (ϕ(n)) – which would presumably explain the
averaged asymptotics of the Euler period T (n) (this being the minimal period
of the geometric progression of the residues at (t = 1, 2, . . . , T ) modulo n).

Empirically this asymptotic growth rate (Cesaro-averaged in n) is observed
to be c(a)n/(ln n), as was computed by F. Aicardi‡ for the situation when
n � 109.

The minimal period T (n) is a divisor of the value ϕ(n) of the Euler function.
If it really did differ in the average from the Cesaro-averaged growth rate
of the mean divisor of ϕ(n) (as the above empirical data suggest), then such
a difference might be explained either by the fact that nature chooses for
the period T (n) a non-random divisor of ϕ(n) which is far from its mean
divisor; or alternatively by the fact that the number τ (m) of the divisors of
m = ϕ(n), their sum σ (m) and the ratio σ (m)/τ (m) might behave (in the Cesaro
average) very differently with the arguments m = ϕ(n) than with the random
arguments m.

Indeed it might happen that the values ϕ(n) of the Euler function
(for random choices of n) exhibit very different behaviour of the divisors

† The constant c1 was then computed by M. Korolev to be c1 ≈ 0.7138067 . . . :

c1 = 1

π

∏
p

p3/2

√
p − 1

ln

(
1 + 1

p

)
.

In the paper by P.T. Bateman, P. Erdős and C. Pommerance ‘The arithmetic mean of the
divisors of an integer’, (Springer Lecture Notes in Mathematics, 1981, 899, 197–220), the
following result was given:

∑
n≤x

σ (n)

τ (n)
∼ g(1)x2

2
√

π
√

ln x
for x → ∞,

where, for Re > 1
2 , g(s) = ∏

p(1 − 1
ps

1/2
(1 + 1

2 (1 + 1
p

)p−s + 1
3 (1 + 1

p
+ 1

p2 )p−2s + · · · ).
‡ C.R. Acad. Sci., Paris, ser. I, 339 (2004), 15–20: ‘Empirical estimates of the average order of

orbits period lengths in Euler groups’.
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(
τ (ϕ(n)), σ (ϕ(n)), σ (ϕ(n))/τ (ϕ(n))

)
, compared with that of the random num-

bers n themselves
(
τ (n), σ (n), σ (n)/τ (n)

)
.

These (alternative?) explanations for the non-randomness of the data of the
average divisors of ϕ(n) or of the special divisor T (n) of ϕ(n) are both possible.

To see whether they really occur requires both empirical study and mathe-
matical theories. But these subjects seem to be too classical to attract modern
mathematicians.

The unity of mathematics is its main jewel. I have hoped here to contribute to
this unity by the geometric presentation of Galois fields and of its relation to the
ergodic theory of dynamical systems, to statistics and to projective geometry,
and also to returning all these forgotten classical theories to the continuous real
(R) world of the natural sciences.
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