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Preface to the Second Edition

15 years after the first printing of Algebraic Function Fields and Codes, the
mathematics editors of Springer Verlag encouraged me to revise and extend
the book.

Besides numerous minor corrections and amendments, the second edition
differs from the first one in two respects. Firstly I have included a series
of exercises at the end of each chapter. Some of these exercises are fairly
easy and should help the reader to understand the basic concepts, others are
more advanced and cover additional material. Secondly a new chapter titled
“Asymptotic Bounds for the Number of Rational Places” has been added.
This chapter contains a detailed presentation of the asymptotic theory of
function fields over finite fields, including the explicit construction of some
asymptotically good and optimal towers. Based on these towers, a complete
and self-contained proof of the Tsfasman-Vladut-Zink Theorem is given. This
theorem is perhaps the most beautiful application of function fields to coding
theory.

The codes which are constructed from algebraic function fields were first
introduced by V. D. Goppa. Accordingly I referred to them in the first edition
as geometric Goppa codes. Since this terminology has not generally been ac-
cepted in the literature, I now use the more common term algebraic geometry
codes or AG codes.

I would like to thank Alp Bassa, Arnaldo Garcia, Cem Giineri, Sevan
Harput and Alev Topuzoglu for their help in preparing the second edition.
Moreover I thank all those whose results I have used in the exercises without
giving references to their work.

Istanbul, September 2008 Henning Stichtenoth



Preface to the First Edition

An algebraic function field over K is an algebraic extension of finite degree
over the rational function field K (z) (the ground field K may be an arbitrary
field). This type of field extension occurs naturally in various branches of
mathematics such as algebraic geometry, number theory and the theory of
compact Riemann surfaces. Hence one can study algebraic function fields from
very different points of view.

In algebraic geometry one is interested in the geometric properties of an
algebraic curve C' = {(a,) € K x K| f(a, ) = 0}, where f(X,Y) is an
irreducible polynomial in two variables over an algebraically closed field K.
It turns out that the field K(C') of rational functions on C' (which is an
algebraic function field over K') contains a great deal of information regarding
the geometry of the curve C. This aspect of the theory of algebraic function
fields is presented in several books on algebraic geometry, for instance [11],
[18], [37] and [38].

One can also approach function fields from the direction of complex anal-
ysis. The meromorphic functions on a compact Riemann surface S form an
algebraic function field M(.S) over the field € of complex numbers. Here again,
the function field is a strong tool for studying the corresponding Riemann sur-
face, see [10] or [20].

In this book a self-contained, purely algebraic exposition of the theory
of algebraic functions is given. This approach was initiated by R. Dedekind,
L. Kronecker and H. M. Weber in the nineteenth century (over the field C), cf.
[20]; it was further developed by E. Artin, H. Hasse, F. K. Schmidt and A. Weil
in the first half of the twentieth century. Standard references are Chevalley’s
book ‘Introduction to the Theory of Algebraic Functions of One Variable’ [6],
which appeared in 1951, and [7]. The close relationship with algebraic number
theory is emphasized in [1] and [9].

The algebraic approach to algebraic functions is more elementary than the
approach via algebraic geometry: only some basic knowledge of algebraic field
extensions, including Galois theory, is assumed. A second advantage is that
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some principal results of the theory (such as the Riemann-Roch Theorem) can
be derived very quickly for function fields over an arbitrary constant field K.
This facilitates the presentation of some applications of algebraic functions to
coding theory, which is the second objective of the book.

An error-correcting code is a subspace of ]Fg, the n-dimensional standard
vector space over a finite field IF;. Such codes are in widespread use for the
reliable transmission of information. As observed by V. D. Goppa in 1975, one
can use algebraic function fields over Iy to construct a large class of inter-
esting codes. Properties of these codes are closely related to properties of the
corresponding function field, and the Riemann-Roch Theorem provides esti-
mates, sharp in many cases, for their main parameters (dimension, minimum
distance).

While Goppa’s construction is the most important, it is not the only link
between codes and algebraic functions. For instance, the Hasse-Weil Theorem
(which is fundamental to the theory of function fields over a finite constant
field) yields results on the weights of codewords in certain trace codes.

A brief summary of the book follows.

The general theory of algebraic function fields is presented in Chapters 1,
3 and 4. In the first chapter the basic concepts are introduced, and A. Weil’s
proof of the Riemann-Roch Theorem is given. Chapter 3 is perhaps the most
important. It provides the tools necessary for working with concrete func-
tion fields: the decomposition of places in a finite extension, ramification and
different, the Hurwitz Genus Formula, and the theory of constant field ex-
tensions. P-adic completions as well as the relation between differentials and
Weil differentials are treated in Chapter 4.

Chapter 5 deals with function fields over a finite constant field. This chap-
ter contains a version of Bombieri’s proof of the Hasse-Weil Theorem as well as
some improvements of the Hasse-Weil Bound. As an illustration of the general
theory, several explicit examples of function fields are discussed in Chapter 6,
namely elliptic and hyperelliptic function fields, Kummer and Artin-Schreier
extensions of the rational function field.

The Chapters 2, 8 and 9 are devoted to applications of algebraic functions
to coding theory. Following a brief introduction to coding theory, Goppa’s
construction of codes by means of an algebraic function field is described
in Chapter 2. Also included in this chapter is the relation these codes have
with the important classes of BCH and classical Goppa codes. Chapter 8 con-
tains some supplements: the residue representation of geometric Goppa codes,
automorphisms of codes, asymptotic questions and the decoding of geomet-
ric Goppa codes. A detailed exposition of codes associated to the Hermitian
function field is given. In the literature these codes often serve as a test for
the usefulness of geometric Goppa codes.

Chapter 9 contains some results on subfield subcodes and trace codes.
Estimates for their dimension are given, and the Hasse-Weil Bound is used
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to obtain results on the weights, dimension and minimum distance of these
codes.

For the convenience of the reader, two appendices are enclosed. Appendix
A is a summary of results from field theory that are frequently used in the
text. As many papers on geometric Goppa codes are written in the language
of algebraic geometry, Appendix B provides a kind of dictionary between the
theory of algebraic functions and the theory of algebraic curves.

Acknowledgements

First of all I am indebted to P. Roquette from whom I learnt the theory
of algebraic functions. His lectures, given 20 years ago at the University of
Heidelberg, substantially influenced my exposition of this theory.

I thank several colleagues who carefully read the manuscript: D. Ehrhard,
P. V. Kumar, J. P. Pedersen, H.-G. Riick, C. Voss and K. Yang. They sug-
gested many improvements and helped to eliminate numerous misprints and
minor mistakes in earlier versions.

Essen, March 1993 Henning Stichtenoth



Contents

1 Foundations of the Theory of Algebraic Function Fields ...
11 Places. . oo

1.2 The Rational Function Field ..............................
1.3 Independence of Valuations .................. ... ... ......
1.4 DiIVISOTS . oot e
1.5 The Riemann-Roch Theorem .............................
1.6 Some Consequences of the Riemann-Roch Theorem ..........
1.7 Local Components of Weil Differentials.....................
1.8 EXerCiSes .. ..ot e
2 Algebraic Geometry Codes ............. ... ... ...
2.1 Codes . ...
2.2 AG Codes . ...
2.3 Rational AG Codes ......... ... .
2.4 EXEICISES . ..o it
3 Extensions of Algebraic Function Fields ...................
3.1 Algebraic Extensions of Function Fields ....................
3.2 Subrings of Function Fields .......... ... .. ... ... .......
3.3 Local Integral Bases ............. ...
3.4 The Cotrace of Weil Differentials and the Hurwitz Genus
Formula . ... ... . . .
3.5 The Different ..... ... ... .. . ... ..
3.6 Constant Field Extensions ... ......... ... ... ... ..........
3.7 Galois Extensions I ......... ... ... .. ... .. .. ... . ... ...
3.8 Galois Extensions IT ........ ... ... ... ... .. . . .. . ...
3.9 Ramification and Splitting in the Compositum of Function
Fields . ...
3.10 Inseparable Extensions .............. ... ...
3.11 Estimates for the Genus of a Function Field ................

3.12 EXEICISES . v e



XII Contents

4 Differentials of Algebraic Function Fields .................. 155
4.1 Derivations and Differentials .............................. 155
4.2 The P-adic Completion .......... ... .. ... ... 161
4.3 Differentials and Weil Differentials ......................... 170
44 EXETCISES . oot o it e 179
5 Algebraic Function Fields over Finite Constant Fields ..... 185
5.1 The Zeta Function of a Function Field .................. ... 185
5.2 The Hasse-Weil Theorem . .......... ... .. ..., 197
5.3 Improvements of the Hasse-Weil Bound .................... 208
5.4 EXEICISES . .\ttt 212
6 Examples of Algebraic Function Fields..................... 217
6.1 Elliptic Function Fields ........ ... ... ... . . . . ... 217
6.2 Hyperelliptic Function Fields ............ .. ... ... ....... 224
6.3 Tame Cyclic Extensions of the Rational Function Field . ... ... 227
6.4 Some Elementary Abelian p-Extensions of K(x),
char K =p > 0. o 232
6.5 EXEICISES . ..ot 235
7 Asymptotic Bounds for the Number of Rational Places ... .243
7.1 Thara’s Constant A(q) ... ...uuuruunuiei i 243
7.2 Towers of Function Fields ............ ... ... ... ... ....... 246
7.3 Some Tame TOWETrs .. ..ottt 259
7.4 Some Wild TOWers. .. .. oot 261
7.5 EXErciSes . ... ... 285
8 More about Algebraic Geometry Codes.................... 289
8.1 The Residue Representation of Cop(D,G) ........... ... ... 289
8.2 Automorphisms of AG Codes ......... ... ... .. 290
8.3 Hermitian Codes ............ .. .. 292
8.4 The Tsfasman-Vladut-Zink Theorem ....................... 297
8.5 Decoding AG Codes ..ot 303
8.6 EXErCiSes .. ... ..ot 308
9 Subfield Subcodes and Trace Codes........................ 311
9.1 On the Dimension of Subfield Subcodes and Trace Codes . . ... 311
9.2 Weights of Trace Codes ........ ... ... .. .. 315
9.3 EXErcCiSes ... ...t 325
Appendix A. Field Theory......... ... ... ... .. . . .. 327
Appendix B. Algebraic Curves and Function Fields............ 335

List of Notations .............. . . . i 345



Contents

XIIT



1

Foundations of the Theory of Algebraic
Function Fields

In this chapter we introduce the basic definitions and results of the theory of
algebraic function fields: valuations, places, divisors, the genus of a function
field, adeles, Weil differentials and the Riemann-Roch Theorem.

Throughout Chapter 1 we denote by K an arbitrary field.

It is only in later chapters that we will assume that K has specific properties
(for example, that K is a finite field — the case which is of particular interest
to coding theory).

1.1 Places

Definition 1.1.1. An algebraic function field F/K of one variable over K is
an extension field F O K such that F is a finite algebraic extension of K(x)
for some element x € I which is transcendental over K.

For brevity we shall simply refer to F//K as a function field. Obviously the set
K := {z € F|z is algebraic over K} is a subfield of F, since sums, products
and inverses of algebraic elements are also algebraic. K is called the field
of constants of F/K. We have K C K G F, and it is clear that F/K is a
function field over K. We say that K is algebraically closed in F (or K is the

full constant field of F) if K = K.

Remark 1.1.2. The elements of F' which are transcendental over K can be
characterized as follows: z € F' is transcendental over K if and only if the
extension F'/K(z) is of finite degree. The proof is trivial.

Ezxample 1.1.3. The simplest example of an algebraic function field is the ra-
tional function field; F/K is called rational if F = K(x) for some z € F
which is transcendental over K. Each element 0 # z € K(x) has a unique
representation

H. Stichtenoth, Algebraic Function Fields and Codes, 1

Graduate Texts in Mathematics 254,
(© Springer-Verlag Berlin Heidelberg 2009



2 1 Foundations of the Theory of Algebraic Function Fields
Z:a-Hpi(:c)"i, (1.1)
%

in which 0 # a € K, the polynomials p;(2) € K[z] are monic, pairwise distinct
and irreducible and n; € Z.

A function field F//K is often represented as a simple algebraic field extension
of a rational function field K (z); i.e., F' = K(x,y) where ¢(y) = 0 for some ir-
reducible polynomial ¢(T) € K (z)[T]. If F/K is a non-rational function field,
it is not so clear, whether every element 0 # z € F admits a decomposition
into irreducibles analogous to (1.1); indeed, it is not even clear what we mean
by an irreducible element of F'. Another problem which is closely related to
the representation (1.1) is the following: given elements a1, ..., a, € K, find
all rational functions f(z) € K(z) with a prescribed order of zero (or pole or-
der) at aq, ..., a,. In order to formulate these problems for arbitrary function
fields properly, we introduce the notions of valuation rings and places.

Definition 1.1.4. A valuation ring of the function field F/K is a ring O C F
with the following properties:

(1) KSOGF , and
(2) for every z € F we have that z € O or z=1 € O.

This definition is motivated by the following observation in the case of a
rational function field K (x): given an irreducible monic polynomial p(z) €
K|[z], we consider the set

Oneyi= { 18| (0).ate) € Kol matote) |

It is easily verified that O, is a valuation ring of K (z)/K. Note that if ¢(x)
is another irreducible monic polynomial, then O, ) # Oy()-

Proposition 1.1.5. Let O be a valuation ring of the function field F/K. Then
the following hold:

(a) O is a local ring; i.e., O has a unique maximal ideal P = O\ O*, where
O* = {z € O | there is an element w € O with zw = 1} is the group of
units of O.

(b) Let 0 £z € F. Then 1€ P +— 271 ¢0.

(¢) For the field K of constants of F/K we have K C O and K N P = {0}.

Proof. (a) We claim that P := O\ O is an ideal of O (from this it follows
at once that P is the unique maximal ideal since a proper ideal of O cannot
contain a unit).

(1) Let x € P, z € O . Then zz ¢ O* (otherwise x would be a unit),
consequently zz € P.

(2) Let 2,y € P. W.l.o.g. we can assume that z/y € O. Then 1+ xz/y € O
and x +y =y(1+ x/y) € P by (1). Hence P is an ideal of O.
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(b) is obvious.

(c) Let z € K. Assume that z ¢ O . Then z~' € O as O is a valuation
ring. Since z~! is algebraic over K, there are elements ai,...,a, € K with
ar-(z"H" 4+ ... +az27t+1 = 0, hence 27 Ya, (z71)" "L+ ... +a1) = —1.
Therefore 2 = —(a,(271)" "' +...+a1) € K[z7}] C O, 50 2 € O. This is a
contradiction to the assumption z ¢ ©. Hence we have shown that K C O.
The assertion K N P = {0} is trivial. O

Theorem 1.1.6. Let O be a valuation ring of the function field F/K and let
P be its unique mazimal ideal. Then the following hold:

(a) P is a principal ideal.

(b) If P = tO then each 0 # z € F has a unique representation of the form
z =t"u for somen € Z and u € O*.

(¢) O is a principal ideal domain. More precisely, if P =10 and {0} #1 C O
is an ideal then I = t"O for some n € IN.

A ring having the above properties is called a discrete valuation ring. The
proof of Theorem 1.1.6 depends essentially on the following lemma.

Lemma 1.1.7. Let O be a valuation ring of the algebraic function field F/ K,
let P be its maximal ideal and 0 # x € P. Let x1,...,x, € P be such that
1y =x and z; € x;41 P fori=1,...,n—1. Then we have

n<[F:K(x)] <oo.

Proof. From Remark 1.1.2 and Proposition 1.1.5(c) follows that F/K(x) is
a finite extension, so it is sufficient to prove that zi,...,z, are linearly
independent over K (z). Suppose there is a non-trivial linear combination
S pi(x)x; = 0 with ¢;(x) € K(z). We can assume that all ¢;(z) are
polynomials in 2 and that 2 does not divide all of them. Put a; := ¢;(0), the
constant term of ¢;(x), and define j € {1,...,n} by the condition a; # 0 but
a; = 0 for all ¢ > j. We obtain

—pj(@)a; =Y pilx)a; (1.2)

i

with ¢;(z) € O for i = 1,...,n (since x = 21 € P), ; € z; P for i < j and
vi(x) = xg;(x) for ¢ > j, where g;(x) is a polynomial in z. Dividing (1.2) by
x; yields
T x
—i(x) = pil@) =+ —gi(z)z;.
1<J J 1>] J
All summands on the right hand side belong to P, therefore ¢;(z) € P. On
the other hand, ¢;(z) = a; + zg;(z) with g;(z) € K[z] € O and = € P, so
that a; = ¢;(x) — zg;(x) € PN K. Since a; # 0, this contradicts Proposition
1.1.5(c). O
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Proof of Theorem 1.1.6. (a) Assume that P is not principal, and choose an
element 0 # x1 € P. As P # 210 there is x5 € P\ 210. Then .132331_1 Z O,
thereby 25 'x; € P by Proposition 1.1.5(b), so z; € xoP. By induction one
obtains an infinite sequence x1,xs, 23, ... in P such that z; € x;,1 P for all
i > 1, a contradiction to Lemma 1.1.7.

(b) The uniqueness of the representation z = t"u with v € O is trivial, so
we only need to show the existence. As z or 2~ ! is in O we can assume that
2 € O.If z € O* then z = t%2. It remains to consider the case z € P. There
is a maximal m > 1 with z € t"O, since the length of a sequence

m—2

-1
=t"", x3=t s e, Ty =t

Tr1 =2, X2
is bounded by Lemma 1.1.7. Write z = t™u with v € O. Then v must be a unit
of O (otherwise u € P = t0, so u = tw with w € O and z = t™Tlw € t™ 1O,
a contradiction to the maximality of m).

(c) Let {0} # I C O be an ideal. The set A := {r € IN|¢" € I} is non-empty
(in fact, if 0 # = € I then z = t"u with u € O* and therefore t" = zu™! € I).
Put n := min (A). We claim that I = ¢"O. The inclusion I 2 t"QO is trivial
since t" € I. Conversely let 0 # y € I. We have y = t*w with w € O* and
s> 0,s0t® €l and s > n. It follows that y = t" - t°""w € t"O. O

Definition 1.1.8. (a) A place P of the function field F/K is the mazimal
ideal of some valuation ring O of F/K. Every element t € P such that P =
tO s called a prime element for P (other notations are local parameter or
uniformizing variable).

(b) Pp :={P| P is a place of F/K}.

If O is a valuation ring of F//K and P is its maximal ideal, then O is
uniquely determined by P, namely O = {z € F'|2~! & P}, cf. Proposition
1.1.5(b). Hence Op := O is called the valuation ring of the place P.

A second useful description of places is given in terms of valuations.

Definition 1.1.9. A discrete valuation of F/K is a functionv : F — ZU{c0}
with the following properties :

(1) v(z) =00 <= z=0.

(2) v(zy) = v(x) + v(y) for allx,y € F.

(8) v(x 4+ y) > min {v(x),v(y)} for all z,y € F.

(4) There exists an element z € F with v(z) = 1.

(5) v(a) =0 for all0 £ a € K.

In this context the symbol co means some element not in Z such that
00+ 00=00+n=n+o00=o00and co >m for all m,n € Z. From (2) and
(4) it follows immediately that v : F' — Z U {oo} is surjective. Property (3) is
called the Triangle Inequality. The notions valuation and triangle inequality
are justified by the following remark:
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Remark 1.1.10. Let v be a discrete valuation of F/K in the sense of Definition
1.1.9. Fix a real number 0 < ¢ < 1 and define the function | |, : ' — IR by

12 ) if 240,
2|y =
0 if 2=0.

It is easily verified that this function has the properties of an ordinary absolute
value; the ordinary Triangle Inequality |z + y|, < ||, + |y|» turns out to be
an immediate consequence of condition (3) of Definition 1.1.9.

A stronger version of the Triangle Inequality can be derived from the
axioms and is often very useful:

Lemma 1.1.11 (Strict Triangle Inequality). Letv be a discrete valuation
of F/K and let z,y € F with v(z) # v(y). Then v(z +y) = min {v(z),v(y)}.

Proof. Observe that v(ay) = v(y) for 0 # a € K (by (2) and (5)), in particular
v(—y) = v(y). Since v(x) # v(y) we can assume v(x) < v(y). Suppose that
v(x +y) # min{v(x),v(y)}, so v(z +y) > v(z) by (3). Then we obtain
v(z) =v((x + y) —y) > min{v(z +y),v(y)} > v(z), a contradiction. O

Definition 1.1.12. To a place P € IPr we associate a function vp : F —
ZU{cx} (that will prove to be a discrete valuation of F/K ) as follows: Choose
a prime element t for P. Then every O # z € F' has a unique representation
z = t"u with w € OF and n € Z. Define vp(z) :=n and vp(0) := co.

Observe that this definition depends only on P, not on the choice of ¢. In
fact, if ¢’ is another prime element for P then P = tO = 'O, so t = t'w for
some w € Op. Therefore t"u = (t"w™)u = t/"(w"u) with w"u € OF.
Theorem 1.1.13. Let F/K be a function field.

(a) For a place P € P, the function vp defined above is a discrete valuation
of F/K. Moreover we have

Op ={z€ Flvp(z) >0},
03 = {z € Flup(2) = 0},
P ={z€ F|vp(z) > 0}.

(b) An element x € F is a prime element for P if and only if vp(z) = 1.

(¢) Conversely, suppose that v is a discrete valuation of F/K. Then the set
P:={z € F|v(z) > 0} is a place of F/K, and Op = {z € F|v(z) > 0} is
the corresponding valuation ring.

(d) Every valuation ring O of F/K is a mazimal proper subring of F.
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Proof. (a) Obviously vp has the properties (1), (2), (4) and (5) of Definition
1.1.9. In order to prove the Triangle Inequality (3) consider z,y € F with
vp(z) = n,vp(y) = m. We can assume that n < m < oo, thus z = t"uy
and y = t™uy with uy,us € Op. Then x +y = t"(ug + " "uy) = t"z with
z € Op. If 2 = 0 we have vp(x + y) = 0o > min{n, m}, otherwise z = tFu
with £ > 0 and u € Of. Therefore

vp(x +y) =vp(t"*u) = n+k >n=min{vp(z),vp(y)}.

We have shown that vp is a discrete valuation of F'/K. The remaining asser-
tions of (a) are trivial, likewise (b) and (c).

(d) Let O be a valuation ring of F/K, P its maximal ideal, vp the discrete
valuation associated to P and z € F'\ O . We have to show that F' = O[z].
To this end consider an arbitrary element y € F; then vp(yz~") > 0 for
sufficiently large k > 0 (note that vp(z~1) > 0 since z ¢ O ). Consequently
wi=yz"% €O and y = wzk € O[z]. O

According to Theorem 1.1.13 places, valuation rings and discrete valuations
of a function field essentially amount to the same thing.

Let P be a place of F/K and let Op be its valuation ring. Since P is a
maximal ideal, the residue class ring Op /P is a field. For 2 € Op we define
z(P) € Op/P to be the residue class of  modulo P, for x € F\ Op we
put x(P) := oo (note that the symbol oo is used here in a different sense
as in Definition 1.1.9). By Proposition 1.1.5 we know that K C Op and
K NP = {0}, so the residue class map Op — Op/P induces a canonical
embedding of K into Op/P. Henceforth we shall always consider K as a
subfield of Op /P via this embedding. Observe that this argument also applies
to K instead of K; so we can consider K as a subfield of Op/P as well.

Definition 1.1.14. Let P € IPp.

(a) Fp := Op/P is the residue class field of P. The map x — x(P) from F
to FpU{oo} is called the residue class map with respect to P. Sometimes we
shall also use the notation x + P = x(P) for x € Op.

(b) deg P := [Fp : K] is called the degree of P. A place of degree one is also

called a rational place of F/K.

The degree of a place is always finite; more precisely the following holds.

Proposition 1.1.15.  If P is a place of F/K and 0# x € P then
deg P < [F: K(z)] < 0.

Proof. First we observe that [F : K(x)] < co by Remark 1.1.2. Thus it suf-
fices to show that any elements z1,...,z, € Op, whose residue classes
z21(P),...,z,(P) € Fp are linearly independent over K, are linearly indepen-
dent over K (x). Suppose there is a non-trivial linear combination
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Z wi(x)z =0 (1.3)

with @;(x) € K(z). W.lo.g. we assume that the ¢;(z) are polynomials in x
and not all of them are divisible by z; i.e., p;(z) = a; + zg;(z) with a; € K
and g;(z) € Klz], not all a; = 0. Since z € P and g;(z) € Op, ¢;(x)(P) =
a;(P) = a;. Applying the residue class map to (1.3) we obtain

0=0(P)= Z ©i(2)(P)z(P) = Zaizi(P) .

This contradicts the linear independence of z1(P),..., z,(P) over K. O

Corollary 1.1.16. The field K of constants of F/K is a finite field extension
of K.

Proof. We use the fact that IPr # () (which will be proved only in Corollary
1.1.20). Choose some P € IPp. Since K is embedded into Fp via the residue
class map Op — Fp, it follows that [K : K] < [Fp : K| < 0. O

Remark 1.1.17. Let P be a rational place of F/K; i.e., deg P = 1. Then we
have Fip = K, and the residue class map maps F' to K U {oc} . In particular,
if K is an algebraically closed field, then all places are rational and we can
read an element z € F' as a function

P KU
P — z(P).
This is why F/K is called a function field. The elements of K, interpreted
as functions in the sense of (1.4), are constant functions. For this reason K
is called the constant field of F. Also the following terminology is justified
by (1.4):

Definition 1.1.18. Let z € F and P € IPp. We say that P is a zero of z if
vp(z) > 0; P is a pole of z if vp(z) < 0. If vp(z) =m >0, P is a zero of z
of order m; if vp(z) = —m < 0, P is a pole of z of order m.

Next we shall be concerned with the question as to whether there exist
places of F/K.

Theorem 1.1.19. Let F/K be a function field and let R be a subring of F
with K C R C F. Suppose that {0} # I g R is a proper ideal of R. Then
there is a place P € Pr such that I C P and R C Op.

Proof. Consider the set

F:={S|S is a subring of F with RC S and IS # S} .
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(IS is by definition the set of all finite sums _ a,s, with a, € I,s, € S;
it is an ideal of S). F is non-empty as R € F, and F is inductively or-
dered by inclusion. In fact, if H C F is a totally ordered subset of F then
T = UJ{S|S € H} is asubring of F with R C T. We have to verify that
IT # T. Suppose this is false, then 1 = 22:1 a,s, with a, € I,s, € T.
Since H is totally ordered there is an Sy € H such that s1,...,s, € Sp, so
1=>3"_,a,s, € ISy, a contradiction.

By Zorn’s lemma F contains a maximal element; i.e., there is a ring O C F
such that R C O C F, IO # O, and O is maximal with respect to these
properties. We want to show that O is a valuation ring of F'/K.

As I # {0} and JO # O we have O G F and I € O\ O*. Suppose there
exists an element z € F with 2 ¢ O and 27! ¢ O. Then 10[z] = O[z] and
1027 = O[z71], and we can find aq, . ..,an,bo, - . ., by € IO with

l=ay+ar1z+---+apz" and (1.5)
1 =by+brz7t -+ bpz™. (1.6)

Clearly n > 1 and m > 1. We can assume that m,n in (1.5) and (1.6) are
chosen minimally and m < n. We multiply (1.5) by 1 — by and (1.6) by a,z"
and obtain

1—by=(1—by)ag+ (1 —bolarz+ -+ (1 —bp)anz" and
0= (bop— )anz" +branz""' + -+ bpanz"™

Adding these equations yields 1 = ¢y + c12 + -+ + ¢p_12"" ! with coefficients
¢; € 10. This is a contradiction to the minimality of n in (1.5). Thus we have
proved that z € O or z~! € O for all z € F, hence O is a valuation ring of
F/K. ]

Corollary 1.1.20. Let F/K be a function field, z € F transcendental over
K. Then z has at least one zero and one pole. In particular Pr # (.

Proof. Consider the ring R = K|z] and the ideal I = zK|[z]. Theorem 1.1.19
ensures that there is a place P € IPr with z € P, hence P is a zero of z. The
same argument proves that z~! has a zero Q € IPx. Then Q is apole of z. 0O

Corollary 1.1.20 can be interpreted as follows: each z € F, which is not in
the constant field K of F'/K, yields a non-constant function in the sense of
Remark 1.1.17.

1.2 The Rational Function Field

For a thorough understanding of valuations and places in arbitrary function
fields, a precise idea of these notions in the simplest case is indispensable.
For this reason we investigate what these concepts mean in the case of the
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rational function field F' = K (x), where x is transcendental over K. Given an
irreducible monic polynomial p(x) € K[z] we consider the valuation ring

Oy = { 123 | 1(0).510) € Klol, oot (1.7

of K(z)/K with maximal ideal

Ruoy = {25 | 1(@.ste) € Klal, polf@), polto@)} - (18)

g(x)

In the particular case when p(z) is linear, i.e. p(x) =2 — a with a € K , we
abbreviate and write
P, =P,_,€ IPK(z) . (19)

There is another valuation ring of K (z)/K, namely

O {;ch) | £(2).0@) € Kle). deg (z) < deg g(x) } (1.10)

x)

with maximal ideal

f(z)
Py = {g(x) ‘ f(x),g9(x) € K[z], deg f(z) < deg g(x) } : (1.11)

This place is called the infinite place of K(x). Observe that these labels
depend on the specific choice of the generating element x of K(x)/K (for
example K(x) = K(1/x), and the infinite place with respect to 1/x is the
place Py with respect to x).

Proposition 1.2.1. Let F = K(x) be the rational function field.

(a) Let P = Py(;) € IPg(y) be the place defined by (1.8), where p(x) € K|x]
is an irreducible polynomial. Then p(x) is a prime element for P, and the
corresponding valuation vp can be described as follows: if z € K(x) \ {0} is
written in the form z = p(x)" - (f(x)/g(x)) with n € Z, f(x),g9(z) € Klx],
p(z)1 f(x) and p(x)tg(z), then vp(z) = n. The residue class field K(x)p =
Op/P is isomorphic to K[z]/(p(x)); an isomorphism is given by

¢:{ Klal/(p(x)) —  K(@)p,
f(x)modp(z) ~—  f(x)(P).

Consequently deg P = deg p(x).
(b) In the special case p(x) = v — a with a € K the degree of P = P, is one,
and the residue class map is given by

z(P) = z(a) for z € K(z),
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where z(«) is defined as follows: write z = f(x)/g(x) with relatively prime
polynomials f(x),g(x) € K[z]. Then

o) = {fVte) Tole) #0
0 if g(a) =
(¢) Finally, let P = Py, be the infinite place of K(x)/K defined by (1.11).
Then deg Ps, = 1. A prime element for Py, is t = 1/x. The corresponding
discrete valuation v 1s given by

Voo (f()/g()) = deg g(x) — deg f(x),

where f(x),g(x) € K[z]. The residue class map corresponding to P, is de-
termined by z(Ps) = z(00) for z € K(x), where z(c0) is defined as usual:
if

anx" + -+ agp

= ———— with an, b, #0,
z boom b with «a #

then
ap /by ifn=m
z(00) = 0 ifn<m,
0 ifn>m.

(d) K is the full constant field of K(z)/K.

Proof. We prove only some essentials of this proposition; the remaining parts
of the proof are straightforward.

(a) Let P = Py(,y, p(x) € Klx] irreducible. The ideal P,y € O, is obvi-
ously generated by p(z), hence p(z) is a prime element for P. In order to prove
the assertion about the residue class field we consider the ring homomorphism

@:{K[x] — K(z)p,
f@) — fl)(P).

Clearly the kernel of ¢ is the ideal generated by p(x). Moreover ¢ is surjective:
if 2 € Op(a), we can write z = u(x)/v(z) with u(z),v(xz) € K[z such that
p(z) fv(z). Thus there are a(z),b(x) € Klz] with a(x)p(z) + b(z)v(z) = 1,
therefore

z=1-2=—"—"p(x) + b(z)u(zx),

and z(P) = (b(x)u(x))(P) is in the image of . Thus ¢ induces an isomorphism
¢ of K[z]/(p(x)) onto K(x)p.
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(b) Now P = P, with @ € K. If f(z) € K[z] then (z — a)|(f(z) — f(«)),
hence f(z)(P) = (f(z) — f(a))(P) + f(a)(P) = f(a). An arbitrary element
z € Op can be written as z = f(z)/g(x) with polynomials f(x),g(x) € K|x]
and (x — a)fg(x) , therefore g(x)(P) = g(a) # 0 and

p) - L) _ S

d@)(P) gl -

(¢) We will only show that 1/x is a prime element for P,,. Clearly we have
that 1/x € P. Consider some element z = f(x)/g(z) € Puo; i.e., deg f < degg.
Then .
Zz=—" rf , with deg(xf) < degg.
r g
This proves that z € (1/2)O4 , hence 1/2 generates the ideal Py, and it is
therefore a P,,-prime element.

(d) Choose a place P of K(x)/K of degree one (e.g. P = P, with a € K). The
field K of constants of K (z) is embedded into the residue class field K(x)p,
hence K C K C K(z)p = K. 0O

Theorem 1.2.2. There are no places of the rational function field K(x)/K
other than the places P,y and Py, defined by (1.8) and (1.11).

Corollary 1.2.3. The places of K(x)/K of degree one are in 1-1 — corres-
pondence with K U {co} .

The corollary is obvious by Proposition 1.2.1 and Theorem 1.2.2. In terms
of algebraic geometry (cf. Appendix B) K U {oc} is usually interpreted as
the projective line P*(K) over K, hence the places of K (z)/K of degree one
correspond in a one-to-one way with the points of P!(K).

Proof of Theorem 1.2.2. Let P be a place of K (x)/K. We distinguish two cases
as follows:

Case 1. Assume that © € Op. Then K[z] C Op . Set [ := K[z] N P ; this
is an ideal of K[x] , in fact a prime ideal. The residue class map induces an
embedding Klz]|/I — K(x)p, consequently I # {0} by Proposition 1.1.15.
It follows that there is a (uniquely determined) irreducible monic polynomial
p(z) € K[z] such that T = K[z] N P = p(z) - K[z]. Every g(z) € K|[z] with
p(z)tg(x)isnot in I , so g(z) ¢ P and 1/g(x) € Op by Proposition 1.1.5. We
conclude that

flz
Oy = { L 121 9(0) € KL, plaltote) | < On
As valuation rings are maximal proper subrings of K (x), cf. Theorem 1.1.13,
we see that Op = Op(,) -

Case 2. Now z ¢ Op . We conclude that K[z71] C Op, 271 € PN K[z 1]
and PN K[z~ =27 K[z7!]. As in case 1,
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e Y
or 2 { L] ) atety € K)o Moo}

ap +ar x4+ +ayr
= b 0
{bo+b1x_1—|—~--+bma}—m 0 # }
m-+n m
apx + -t apx
= b 0
{ boxm—i-n + R + bml‘" 0 # }

{2t K0, ) < )

=0 .

Thus Op = Oy and P = P.. O

1.3 Independence of Valuations

The main result of this section is the Weak Approximation Theorem 1.3.1
(which is also referred to as the Theorem of Independence). Essentially this
says the following: If vq,...,v, are pairwise distinct discrete valuations of
F/K and z € F, and if we know the values vy (z), ..., v,_1(%), then we cannot
conclude anything about v, (z). A substantial improvement of Theorem 1.3.1
will be given later in Section 1.6.

Theorem 1.3.1 (Weak Approximation Theorem). Let F'/K be a func-
tion field, Py,..., P, € IPr pairwise distinct places of F/K, x1,...,2, € F
and ry,...,r, € Z. Then there is some x € F' such that

vp(x —x;)) =1y fori=1,...,n.
Corollary 1.3.2. Every function field has infinitely many places.

Proof of Corollary 1.3.2. Suppose there are only finitely many places, say

Py, ..., P,. By Theorem 1.3.1 we find a non-zero element x € F with vp, (z) >
0 for  =1,...,n. Then z is transcendental over K since it has zeros. But =
has no pole; this is a contradiction to Corollary 1.1.20. a

Proof of Theorem 1.3.1. The proof is somewhat technical and therefore divided
into several steps. For simplicity we write v; instead of vp,.

Step 1. There is some v € F with vy (u) > 0 and v;(u) <0 fori=2,...,n.
Proof of Step 1. By induction. For n = 2 we observe that Op, € Op, and vice
versa, since valuation rings are maximal proper subrings of F', c¢f. Theorem
1.1.13. Therefore we can find y1 € Op, \ Op, and y2 € Op, \ Op,. Then
v1(y1) > 0, va(y1) < 0, v1(y2) < 0 and va(y2) > 0. The element u := y1/ys
has the property vq(u) > 0, v2(u) < 0 as desired.

For n > 2 we have by induction hypothesis an element y with v (y) > 0,
va(y) < 0,...,v,-1(y) <0.Ifv,(y) < 0 the proof is finished. In case v, (y) > 0
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we choose z with v1(z) > 0,v,(2) < 0 and put u := y + 2". Here r > 1 is
chosen in such a manner that r - v;(z) # v;(y) for i = 1,...,n — 1 (this
is obviously possible). It follows that v1(u) > min{v;(y),r - v1(2)} > 0 and
vi(u) = min{v;(y),r - v;(2)} < 0 for i = 2,...,n (observe that the Strict
Triangle Inequality applies).

Step 2. There is some w € F such that v1(w — 1) > ry and v;(w) > r; for
1=2,...,n.
Proof of Step 2. Choose u as in Step 1 and put w := (14 u®)~!. We have, for
sufficiently large s € IN, vy (w — 1) = vy (—u*(1 + u®) 1) = s - v1(u) > r1, and
vi(w) = —v;(1+u®)=—s-vi(u) >r; fori=2,...,n.

Step 3. Given y1,...,y, € F, there is an element z € F with v;(z—y;) > r;
fori=1,...,n.
Proof of Step 3. Choose s € Z such that v;(y;) > s for all 4,5 € {1,...,n}.
By Step 2 there are wy, ..., w, with

vi(w; —1)>r;—s and vi(wj)>r; —s forj#i.

Then z := 2?21 y;w; has the desired properties.
Now we are in a position to finish the proof of Theorem 1.3.1. By Step

3 we can find z € F with v;(z —2;) > r;, i = 1,...,n. Next we choose z;
with v;(z;) = 7; (this is trivially done). Again by Step 3 there is 2’ with
vi(z' — z;) > r; for i =1,...,n. It follows that

vi(2') = vi((2' — 2;) + 2;) = min{v; (2 — 2;),vi(2:)} =74 .
Let x := 2z + 2’. Then
vi(z — ;) = v;((z — 2;) + 2) = min{v;(z — 2;), v, (")} =74

O

In Section 1.4 we shall show that an element x € F' which is transcendental

over K has as many zeros as poles (counted properly). An important step

towards that result is our next proposition which sharpens both of Lemma

1.1.7 and Proposition 1.1.15. The Weak Approximation Theorem will play a
significant role in the proof.

Proposition 1.3.3. Let F/K be a function field and let Py,..., P, be zeros
of the element © € F. Then

vai(a?) ~deg P, < [F:K(2)].

i=1
Proof. We set v; := vp,, f; := deg P; and e; := v;(x). For all ¢ there is an
element t; with

vi(t;) =1 and vi(t;) =0 fork #1i.
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Next we choose S;1,...,s;f, € Op, such that s;1(F;),...,sis, (P;) form a basis
of the residue class field Fp, over K. By a weak application of Theorem 1.3.1
we can find z;; € F' such that the following holds for all 7, j :

vi(sij — zij) >0 and vg(z;) > ex fork #1i. (1.12)
We claim that the elements
t?-zij7 1<i<r 1<j<fi, 0<a<e

are linearly independent over K (z). Their number is equal to >, fie; =
> vp,(z) - deg Py, so the proposition will follow from this claim.

Suppose there is a non-trivial linear combination

r fi e;—1
DD igalw)tizg =0 (1.13)

i=1 j=1 a=0

over K(z). W.lo.g. we can assume that ¢;;,(x) € K[z] and not all ¢;;,(x) are
divisible by z. Then there are indices k € {1,...,r} and ¢ € {0,...,ex — 1}
such that

x| @rja(x) for alla < c and all j € {1,..., fr}, and
z { prje(x) for some j € {1,..., f} . (1.14)
Multiplying (1.13) by ¢, “ we obtain
r fi e;—1
ZZ Z Pija ()it “2i5 = 0. (1.15)
i=1 j=1 a=0

For i # k all summands of (1.15) are in Py, since

Ok (Pija (X)), 2i5) = vr(@ija(2)) + avi(ti) — cor(tr) + vr(2i5)
>04+0—c+e,>0.

For i« = k and a < ¢ we have
Ok (Prja(@)ty z1s) > e +a—c>ep —c>0.
(Note that x|y q(x) and therefore vy (pgjq(x)) > ex .) For i =k and a > ¢,
Vi (Prja(2)ty “21j) > a—c>0.

Combining the above with (1.15) gives

Tr
Z(pkjc(x)zkj € Py (1.16)
i=1
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Observe that ¢pjc(z)(Py) € K, and not all yijc(z)(Pr) = 0 (by (1.14)), so
(1.16) yields a non-trivial linear combination

Tk
Z‘ijc(x)(Pk) 21 (Pp) =0

over K. This is a contradiction, as zx1(Px),...,2ks, (Pk) form a basis of
Fpk/K O

Corollary 1.3.4. In a function field F/K every element 0 # x € F has only
finitely many zeros and poles.

Proof. If x is constant, x has neither zeros nor poles. If x is transcendental
over K, the number of zeros is < [F' : K(x)] by Proposition 1.3.3. The same
argument shows that ~! has only a finite number of zeros. 0O

1.4 Divisors

The field K of constants of an algebraic function field F/K is a finite extension
field of K, cf. Corollary 1.1.16, and F' can be regarded as a function field
over K. Therefore the following assumption (which we maintain throughout
the whole book) is not critical to the theory:

From here on, F/K will always denote an algebraic function field
of one variable such that K is the full constant field of F/K.

Definition 1.4.1. The divisor group of F/K is defined as the (additively writ-
ten) free abelian group which is generated by the places of F/K; it is denoted by
Div(F). The elements of Div(F) are called divisors of F/K. In other words,
a divisor is a formal sum

D = Z npP with np € Z, almost all np =0.
PelPr

The support of D is defined as
suppD :={P € Py | np # 0}.

It will often be found convenient to write

D= npP,

pPesS
where S C Pg is a finite set with S O supp D .

A divisor of the form D = P with P € Pp is called a prime divisor. Two
divisors D =Y npP and D' =Y n's P are added coefficientwise,
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D+D' = Y (np+np)P.
PelPp

The zero element of the divisor group Div(F) is the divisor
0:= Z rpP ., all rp=0.
PelPgp
For Q € IPp and D =) npP € Div(F) we define vg(D) :=ng, therefore

suppD ={P € Py | vp(D) #0} and D = Z vp(D)-P.
Pesupp D

A partial ordering on Div(F) is defined by

D1 < Dy :<— ’Up(Dl) < UP(DQ) fOT‘ all P € IPp .

If D1 < Dy and Dy # Dy we will also write D1 < Do. A divisor D > 0 is
called positive (or effective). The degree of a divisor is defined as

deg D := Z vp(D) - deg P,
PelPr

and this yields a homomorphism deg : Div(F) — Z.

By Corollary 1.3.4 a nonzero element x € F' has only finitely many zeros
and poles in IPr. Thus the following definition makes sense.

Definition 1.4.2. Let 0 # © € F and denote by Z (resp. N) the set of zeros
(resp. poles) of x in Pr. Then we define

(z)o = Z vp(x)P , the zero divisor of x,
pPez

(2)oo := Z (—vp(x))P , the pole divisor of x,
PEN
() = ()0 — (¥)oo , the principal divisor of x.

Clearly (2)o > 0, () > 0 and

()= Y wvp(x)P. (1.17)

PelPg
The elements 0 # x € F which are constant are characterized by

reK < (z)=0.

This follows immediately from Corollary 1.1.20 (note the general assumption
made previously that K is algebraically closed in F).
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Definition 1.4.3. The set of divisors
Princ(F) :={ (z) | 0#x € F }
is called the group of principal divisors of F/K. This is a subgroup of Div(F),
since for 0 £ x,y € F, (zy) = (z) + (y) by (1.17). The factor group
CI(F) := Div(F)/Princ(F)

is called the divisor class group of F/K. For a divisor D € Div(F'), the cor-
responding element in the factor group CI(F) is denoted by [D], the divisor
class of D. Two divisors D, D" € Div(F) are said to be equivalent, written

D~D,

if [D] = [D']; i.e., D = D' + () for some x € F\ {0}. This is easily verified
to be an equivalence relation.

Our next definition plays a fundamental role in the theory of algebraic
function fields.

Definition 1.4.4. For a diwvisor A € Div(F) we define the Riemann-Roch
space associated to A by

LA ={zeF|(x)>-A} U {0}.

This definition has the following interpretation: if

A=) niP =) m;Q;
i=1 j=1

with n; > 0, m; > 0 then .Z/(A) consists of all elements = € F' such that

e 1 has zeros of order > m; at Q;, for j =1,...,s, and

e 1 may have poles only at the places Pi,..., P., with the pole order at P;
being bounded by n; (i =1,...,7).

Remark 1.4.5. Let A € Div(F). Then

(a) x € Z(A) if and only if vp(x) > —vp(A) for all P € PPp.

(b) ZL(A) # {0} if and only if there is a divisor A" ~ A with A" > 0.

The proof of these remarks is trivial; nevertheless they are often very
useful. In particular Remark 1.4.5(b) will be used frequently.

Lemma 1.4.6. Let A € Div(F'). Then we have:
(a) L(A) is a vector space over K.
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(b) If A’ is a divisor equivalent to A, then L (A) ~ L(A’) (isomorphic as
vector spaces over K ).

Proof. (a) Let x,y € Z(A) and a € K. Then for all P € Pp, vp(x +y) >
min{vp(x),vp(y)} > —vp(A) and vp(ax) = vp(a) + vp(z) > —vp(A). So
x +y and ax are in .Z(A) by Remark 1.4.5(a).

(b) By assumption, A = A’ + (2) with 0 # 2z € F. Consider the mapping

W{gw — F,

x [ — Tz.

This is a K-linear mapping whose image is contained in .Z(A’). In the same

manner,
-1

. {zm') — P,

x — xrz

is K-linear from Z(A’) to £(A). These mappings are inverse to each other,
hence ¢ is an isomorphism between Z’(A) and .Z(A’). O

Lemma 1.4.7. (¢) Z(0) = K .
(b) If A <0 then £ (A) ={0}.

Proof. (a) We have (z) = 0 for 0 # x € K, therefore K C .£(0). Conversely,
if 0 # 2 € Z(0) then (x) > 0. This means that = has no pole, so x € K by
Corollary 1.1.20.

(b) Assume there exists an element 0 # z € Z(A). Then (z) > —A > 0,
which implies that = has at least one zero but no pole. This is impossible. O

In the sequel we shall consider various K-vector spaces. The dimension of
such a vector space V will be denoted by dim V. Our next objective is to show
that Z(A) is finite-dimensional for each divisor A € Div(F).

Lemma 1.4.8. Let A, B be divisors of F/K with A < B. Then we have
Z(A) C Z(B) and

dim(Z(B)/Z(A)) < degB —deg A.

Proof. Z(A) C Z(B) is trivial. In order to prove the other assertion we can
assume that B = A + P for some P € IPpr; the general case follows then by
induction. Choose an element ¢ € F' with vp(t) = vp(B) = vp(A) + 1. For
x € Z(B) we have vp(x) > —vp(B) = —vp(t), so xt € Op. Thus we obtain
a K-linear map
,(/J . X(B) I Fp 3
oz —  (xzt)(P).
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An element x is in the kernel of 4 if and only if vp(xt) > 0; i.e., vp(z) >
—vp(A). Consequently Ker(y) = Z(A), and ¢ induces a K-linear injective
mapping from .Z(B)/.Z(A) to Fp. It follows that

dim(Z(B)/Z(A)) < dim Fp = deg B — deg A.
O

Proposition 1.4.9. For each divisor A € Div(F') the space L(A) is a finite-
dimensional vector space over K. More precisely: if A = Ay —A_ with positive
divisors Ay and A_, then

dim.Z(A) <deg Ay +1.
Proof. Since Z(A) C Z(Ay), it is sufficient to show that

We have 0 < Ay, so Lemma 1.4.8 yields dim(.Z(A4)/Z(0)) < deg A. Since
Z(0) = K we conclude that dim.Z(A;) = dim(Z(44)/Z(0) + 1 <
deg A+ =+ 1. O

Definition 1.4.10. For A € Div(F) the integer £(A) := dim.ZL(A) is called
the dimension of the divisor A.

One of the most important problems in the theory of algebraic function
fields is to calculate the dimension of a divisor. We shall be concerned with
this question in the subsequent sections; the answer to the problem will be
given by the Riemann-Roch Theorem 1.5.15.

We begin by proving a sharpening of Proposition 1.3.3. Roughly speaking,
the next theorem states that an element 0 # x € F has as many zeros as
poles, provided the zeros and poles are counted properly.

Theorem 1.4.11. All principal divisors have degree zero. More precisely: let
x € F\ K and (x)o resp. () denote the zero resp. pole divisor of x. Then

deg (z)p =deg (2)oo = [F: K(x)].
Corollary 1.4.12. (a) Let A, A’ be divisors with A ~ A’. Then we have
L(A) =¢(A") and deg A = deg A’.
(b) If deg A < 0 then ¢(A) = 0.
(¢) For a divisor A of degree zero the following assertions are equivalent:
(1) A is principal.
(2) L(A) > 1.
(8) L(A) = 1.
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Proof of Corollary 1.4.12. (a) follows immediately from Lemma 1.4.6 and
Theorem 1.4.11.

(b) Suppose that ¢(A) > 0. By Remark 1.4.5 there is some divisor A’ ~ A
with A’ > 0, hence deg A = deg A’ > 0.

(c) (1) = (2) : If A = () is principal then 271 € Z(A), so L(A) > 1.

(2) = (3) : Assume now that ¢(4) > 1 and deg A = 0. Then A ~ A’ for
some A’ > 0 (Remark 1.4.5(b)). The conditions A’ > 0 and deg A" = 0 imply
that A" =0, hence ¢(A) = ¢(A") = £(0) = 1, by Lemma 1.4.7.

(3) = (1) : Suppose that £(A) = 1 and deg A = 0. Choose 0 # z € .Z(A),
then (z)+A > 0. Since deg((z) + A) = 0, it follows that (z) + A = 0, therefore
A= —(z) = (271) is principal. O
Proof of Theorem 1.4.11. Set n := [F : K(z)] and

T

B:=(2)e = Z —vp, (x)P;

i=1

where Py,..., P, are all the poles of . Then
deg B = vai(xfl) ~deg P, < [F:K(z)]=n
i=1

by Proposition 1.3.3, and thus it remains to show that n < deg B as well.
Choose a basis u1, ..., u, of F/K(x) and a divisor C' > 0 such that (u;) > —C
fori=1,...,n. We have

(IB+C)>n(l+1) forall 1>0, (1.18)

which follows immediately from the fact that z'u; € Z(IB+C) for 0 <i <1,
1 <7 < n (observe that these elements are linearly independent over K since
Ui, ..., u, are linearly independent over K (x)). Setting ¢ := deg C' we obtain
n(l+1) <l(IB+C) <1l-deg B+ c+ 1 by Proposition 1.4.9. Thus

l(degB—n)>n—c—1 (1.19)

for all [ € IN. The right hand side of (1.19) is independent of [, therefore (1.19)
is possible only when deg B > n.

We have thus proved that deg (z)s = [F : K(2)]. Since (7)g = (271)00, we
conclude that deg (z)o = deg (27 ) oo = [F: K(z71)] = [F : K(z)]. O

Ezample 1.4.13. Once again we consider the rational function field F' = K (z)
as in Section 1.2. For 0 # z € K(z) we have z = a - f(z)/g(z) with a €
K\ {0}, f(z),g9(x) € K[z] monic and relatively prime. Let

1@ = [+ o) = [Ty
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with pairwise distinct irreducible monic polynomials p;(x), ¢;(z) € K|z]. Then
the principal divisor of z in Div(K (x)) appears thus :

(2) =D _miPi— Y m;Q; + (degg(w) — deg f ()) Poo , (1.20)
i=1 j=1

where P; resp. ) are the places corresponding to p;(z) resp. ¢;(x), cf. Section
1.2. Therefore in arbitrary function fields, principal divisors can be considered
as a substitute for the decomposition into irreducible polynomials that occurs
in the rational function field.

Again we consider an arbitrary algebraic function field F// K. In Proposition
1.4.9 we have seen that the inequality

U(A) <14 degA (1.21)

holds for all divisors A > 0. In fact (1.21) holds for every divisor of degree
> 0. In order to verify this, we can assume that ¢(A) > 0. Then A ~ A’ for
some A’ > 0 by Remark 1.4.5, so £(A) = ¢(A") <1+ degA’ =1+ deg A by
Corollary 1.4.12.

Next we want to prove the existence of a lower bound for ¢(A), similar to
the inequality in (1.21).

Proposition 1.4.14. There is a constant v € Z such that for all divisors
A € Div(F) the following holds:

deg A —((A) <~.

The emphasis here lies on the fact that + is independent of the divisor A;
it depends only on the function field F/K.

Proof. To begin with, observe that

Ay < Ay = deg Ay — ((Ay) < deg Ay — ((As), (1.22)
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by Lemma 1.4.8. We fix an element z € F'\ K and consider the specific divisor
B := (%)s. As in the proof of Theorem 1.4.11 there exists a divisor C' > 0
(depending on x) such that ¢(IB+C) > (14 1) -deg B for all [ > 0, see (1.18).
On the other hand, ((IB 4 C) < £(IB) + deg C' by Lemma 1.4.8. Combining
these inequalities we find

L(IB) > (I +1)deg B —degC = deg(IB) + ([F : K(z)] — degC).
Therefore
deg(IB) — ¢(IB) <~ foralll >0 (1.23)

with some v € Z. We want to show that (1.23) holds even when we substitute
for IB any A € Div(F') (with the above 7).

Claim. Given a divisor A, there exist divisors A;, D and an integer [ > 0
such that A < A1, A; ~ D and D <[B.

Using this claim, Proposition 1.4.14 will follow easily :

deg A —((A) < deg Ay — ((Ay) (by (1.22))
=deg D —{(D) (by Corollary 1.4.12)
< deg(IB) — £(IB) (by (1.22))
<. (by (1.23))

Proof of the Claim. Choose A; > A such that A; > 0. Then

L(IB — Ay) > L(IB) — deg A4 (by Lemma 1.4.8)
> deg(IB) — v — deg Ay (by (1.23))
>0

for sufficiently large I. Thus there is some element 0 # z € Z(IB — Ay).
Setting D := A; — (2) we obtain Ay ~ D and D < A} — (A; —IB) = [B as
desired. 0O

Definition 1.4.15. The genus g of F/K is defined by
g :=max{ deg A —¢(A)+ 1| AeDiv(F) }.

Observe that this definition makes sense by Proposition 1.4.14. It will turn
out that the genus is the most important invariant of a function field.

Corollary 1.4.16. The genus of F/K is a non-negative integer.

Proof. In the definition of g, put A = 0. Then deg(0) — ¢(0) + 1 = 0, hence
g > 0. O
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Theorem 1.4.17 (Riemann’s Theorem). Let F/K be a function field of
genus g. Then we have:

(a) For all divisors A € Div(F),
U(A)>degA+1—g.

(b) There is an integer ¢, depending only on the function field F/K, such that
U(A)=degA+1—yg,

whenever deg A > c.

Proof. (a) This is just the definition of the genus.
(b) Choose a divisor Ay with g = deg Ag — ¢(Ap) + 1 and set ¢ := deg Ag + g.
If deg A > ¢ then

0(A—Ap) >deg(A—Ag)+1—g>c—degldop+1—g=1.

So there is an element 0 # z € Z(A— Ap). Consider the divisor A" := A+ (z2)
which is > Ay. We have

deg A — ((A) =deg A" — U(A) (by Corollary 1.4.12)
> deg Ay — ¢(Ay) (by Lemma 1.4.8)
=g—1.

Hence ¢(A) < degA+1—g. O

Ezample 1.4.18. We want to show that the rational function field K (z)/K
has genus g = 0. In order to prove this, let P, denote the pole divisor of
x (notation as in Proposition 1.2.1). Consider for » > 0 the vector space
Z(rPs). Obviously the elements 1, z,...,2" are in £ (rPx), hence

r+1<l(rPx)=deg(rPx)+1—g=r+1—g

for sufficiently large r. Thus g < 0. Since g > 0 holds for every function field,
the assertion follows.

In general it is hard to determine the genus of a function field. Large parts of
Chapter 3 will be devoted to this problem.
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1.5 The Riemann-Roch Theorem

In this section F/K denotes an algebraic function field of genus g.

Definition 1.5.1. For A € Div(F) the integer
i(A) :=Ll(A) —deg A+g—1

1s called the index of specialty of A.

Riemann’s Theorem 1.4.17 states that i(A) is a non-negative integer, and
i(A) = 0 if deg A is sufficiently large. In the present section we will provide
several interpretations for i(A) as the dimension of certain vector spaces. To
this end we introduce the notion of an adele.

Definition 1.5.2. An adele of F/K is a mapping

P — F,
[0
P — ap,

such that ap € Op for almost all P € IPr. We regard an adele as an element
of the direct product [[pep, F' and therefore use the notation a = (ap)pewpy
or, even shorter, a = (ap). The set

Ap:={ala is an adele of F/K }

is called the adele space of F/K. It is regarded as a vector space over K
in the obvious manner (actually Ap can be regarded as a ring, but the ring
structure will never be used).

The principal adele of an element x € F is the adele all of whose compo-
nents are equal to x (note that this definition makes sense since x has only
finitely many poles). This gives an embedding F — Ap. The valuations vp
of F/K extend naturally to Ap by setting vp(«) := vp(ap) (where ap is the
P-component of the adele ). By definition we have that vp(a) > 0 for almost
all P € Pp.

We note that the notion of an adele is not consistent in the literature. Some
authors use the name repartition for what we call an adele. Others mean by
an adele (or a repartition) a mapping « such that «a(P) is an element of the
P-adic completion Fp for all P € IPp (cf. Chapter 4).

Definition 1.5.3. For A € Div(F') we define
Ap(A) :={a € Ap|vp(a) > —vp(A) for all P € Pp }.

Obviously this is a K-subspace of Ap.
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Theorem 1.5.4. For every divisor A the index of specialty is
i(A) = dim(Ap/(Ar(4) + F)).

Here, as usual, dim means the dimension as a K-vector space. Note that
although the vector spaces Ap, Ap(A) and F are infinite-dimensional, the
theorem states that the quotient space Ap/(Ap(A)+ F) has finite dimension
over K. As a corollary, we obtain another characterization of the genus of

Corollary 1.5.5. g =dim(Ap/(Ar(0) + F)).
Proof of Corollary 1.5.5.  i(0) = £(0) —deg(0)+9g—1=1-0+g—1=g¢g. O

Proof of Theorem 1.5.4. We proceed in several steps.
Step 1. Let Ay, Ay € Div(F) and A; < As. Then Ap(4;) € Ap(Az) and

dim(Ap(As)/Ar(A1)) = deg Ay — deg A; . (1.24)

Proof of Step 1. Ap(A1) C Ap(Asg) is trivial. Tt is sufficient to prove (1.24) in
the case Ay = Ay + P with P € IPp (the general case follows by induction).
Choose t € F with vp(t) = vp(A1) + 1 and consider the K-linear map

(p.{AF(AQ) — Fp,
' a — (tap)(P).

One checks easily that ¢ is surjective and that the kernel of ¢ is Ap(A1).
Consequently

deg Ay —deg A) =deg P = [Fp : K] = dim(Ar(As)/Ar(A1)).

Step 2. Let Ay, A € Div(F') and Ay < Ay as before. Then

dim((Ap(As) + F)/(Ar(A1) + F)
= (deg Ay — £(Az)) — (deg A1 — £(A1)) . (1.25)

Proof of Step 2. We have an exact sequence of linear mappings

0 — ZL(A2)/ L (A1) T Ap(Ag)/ Ar(Ar)
22 (Ap(Ag) + F)/(Ap(A) + F) — 0 (1.26)

where o1 and o5 are defined in the obvious manner. In fact, the only non-trivial
assertion is that the kernel of oy is contained in the image of o;. In order to
prove this, let @ € Ap(Az) with oa(a+Ap(A1)) = 0. Then o € Ap(A1)+F, so
there is some © € F with a —a € Ap(A;). As Ap(A;) C Ap(As) we conclude
that z € Ap(A2) N F = Z(As). Therefore a + Arp(A4;) = 2 + Ap(4)) =
o1(z + £ (A1)) lies in the image of 7.
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From the exactness of (1.26) we obtain

dim(Ap(A2) + F)/(Ap(A1) + F)
— dim(Ap(42)/Ar (A1) — dim(Z(43)/.Z (A1)
= (deg Ay —deg A1) — (¢(As) — L(A1)),
using (1.24).
Step 3. If B is a divisor with ¢(B) = deg B+ 1 — g, then
Ap =Ap(B)+ F. (1.27)

Proof of Step 3. To begin with, observe that for B; > B we have (by Lemma
1.4.8)

£(By) < deg By +€(B) —degB=degB,;+1—g.
On the other hand, ¢(B;) > deg B; + 1 — g by Riemann’s Theorem. Therefore
{(By)=degB1+1—g foreach By > B. (1.28)

Now we prove (1.27). Let « € Ap. Obviously one can find a divisor B; > B
such that o € Ap(B;). By (1.25) and (1.28),
dim(Ap(B1) + F)/(Ap(B) + F) = (deg By — {(B1)) — (deg B — {(B))
=(g-1)—-(g—-1)=0.
This implies Ap(B)+ F = Ap(B1) + F. Since a € Ap(By) it follows that
a € Ap(B) + F, and (1.27) is proved.

End of the proof of Theorem 1.5.4. Now we consider an arbitrary divisor A.
By Riemann’s Theorem 1.4.17(b) there exists some divisor A; > A such that
(Ay) =deg A1 +1—g. By (1.27), Ap = Ap(A41) + F, and in view of (1.25)
we obtain

dim(Ap/(Ap(A) + F)) = dim(Ap(A)) + F)/(Ar(A) + F)
= (degA1 - K(Al)) - (degA — é(A))
=(g—1)+/4(A) —deg A =i(A).

Theorem 1.5.4 can be restated as follows: for all A € Div(F') holds

((A) =deg A+ 1—g+dim(Ap/(Ap(A) + F). (1.29)

This is a preliminary version of the Riemann-Roch Theorem which we shall
prove later in this section.

Next we introduce the concept of Weil differentials which will lead to a
second interpretation for the index of specialty of a divisor.
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Definition 1.5.6. A Weil differential of F/K is a K-linear map w : Ap — K
vanishing on Ap(A) + F for some divisor A € Div(F). We call

Np = {w|w is a Weil differential of F/K }
the module of Weil differentials of F//K. For A € Div(F) let
Np(A) := {w € Qp|w vanishes on Ap(A)+ F}.
We regard 2 as a K-vector space in the obvious manner (in fact, if wq
vanishes on Ap(A;)+ F and w9 vanishes on Ap(As)+F then wy +wy vanishes

on Ap(As) + F for every divisor Az with A3 < A; and A; < Ay, and aw;
vanishes on Ap(A;) + F for a € K). Clearly £2p(A) is a subspace of £2p.

Lemma 1.5.7. For A € Div(F) we have dim 2p(A) = i(A).

Proof. 2r(A) is in a natural way isomorphic to the space of linear forms on
Ap/(Ap(A) + F). Since Ap/(Ap(A) + F) is finite-dimensional of dimension
1(A) by Theorem 1.5.4, our lemma follows immediately. ]

A simple consequence of Lemma 1.5.7 is that 2 # 0. To see this, choose
a divisor A of degree < —2. Then

dim 2p(A) =i(A) =l(A) —degA+g—12>1,
hence 2r(A) # 0.
Definition 1.5.8. For z € F and w € 2F we define zw : Ap — K by
(zw) (@) = w(za).
It is easily checked that zw is again a Weil differential of F/K. In fact, if

w vanishes on Ap(A) + F then zw vanishes on Ap(A+ (2)) + F. Clearly our
definition gives {25 the structure of a vector space over F.

Proposition 1.5.9. ¢ is a one-dimensional vector space over F.

Proof. Choose 0 # wy € 2p (we already know that 2r # 0). It has to be
shown that for every ws € (2p there is some z € F with ws = zw;. We can
assume that wy # 0. Choose A;, Ay € Div(F') such that w; € 2r(A;) and
wa € 2r(Az). For a divisor B (which will be specified later) we consider the
K-linear injective maps

Y — TWj .

S0,:{5(1‘11‘+B) —  2p(-B),
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Claim. For an appropriate choice of the divisor B holds
¢1(Z (A1 + B)) Npa(Z (A2 + B)) # {0}

Using this claim, the proof of the proposition can be finished very quickly:
we choose 1 € £ (A1 + B) and x5 € Z(As + B) such that 1w = xows # 0.
Then wy = (xlxgl)wl as desired.

Proof of the Claim. We start with a simple and well-known fact from linear
algebra: if Uy, Us are subspaces of a finite-dimensional vector space V' then

dim(U; NU) > dim Uy + dim Uy — dim V. (1.30)
Now let B > 0 be a divisor of sufficiently large degree such that
E(Az +B) = deg(Al +B) + 1-— g

for 4 = 1,2 (this is possible by Riemann’s Theorem 1.4.17). We set U; :=
vi(Z(A; + B)) C 2pr(—DB). Since
dim 2p(—B) =i(—B) = dim(—B) —deg(—B) + g — 1

=degB—-1+yg,

we obtain
dim U; + dim Uy — dim 27 (—B)

=deg(41+B)+1—g+deg(A2+B)+1—g—(degB+g—1)
=deg B + (deg Ay +deg A; +3(1 —g)).
The term in brackets is independent of B, so
dim U7 + dim Uy — dim QF(—B) >0

if deg B is sufficiently large. By (1.30) it follows that U; N Uy # {0} which
proves our claim. 0

We want to attach a divisor to each Weil differential w # 0. To this end
we consider (for a fixed w) the set of divisors

M(w) :={ A € Div(F) |w vanishes on Ap(A)+ F'}. (1.31)

Lemma 1.5.10. Let 0 # w € Qp. Then there is a uniquely determined divisor
W € M(w) such that A <W for all A € M(w).

Proof. By Riemann’s Theorem there exists a constant ¢, depending only on
the function field F/K, with the property i(A) = 0 for all A € Div(F) of
degree > ¢. Since dim(Ap/(Ap(A) + F)) =i(A) by Theorem 1.5.4, we have
that deg A < ¢ for all A € M(w). So we can choose a divisor W € M (w) of
maximal degree.
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Suppose W does not have the property of our lemma. Then there exists a
divisor Ag € M(w) with Ag £ W, i.e. vg(Ao) > vo(W) for some Q € IPp. We
claim that

W+QeMw), (1.32)

which is a contradiction to the maximality of W. In fact, consider an adele
a=(ap) € Ap(W + Q). We can write « = o/ + o” with

/ ap  for P#Q, " 0 for P#Q,
ap = and op =

0 for P=Q, ag for P=Q.
Then o € Ap(W) and o” € Ap(Ap), therefore w(a) = w(a') + w(a”) = 0.

Hence w vanishes on Ap(W + Q) + F, and (1.32) is proved. The uniqueness
of W is now obvious. O

The following definition makes sense by the preceding lemma.

Definition 1.5.11. (a) The divisor (w) of a Weil differential w # 0 is the
uniquely determined divisor of F/K satisfying

(1) w vanishes on Ap((w)) + F, and
(2) if w vanishes on Ap(A) + F then A < (w).
(b) For 0 #w € 2p and P € PPp we define vp(w) := vp((w)).

(¢) A place P is said to be a zero (resp. pole) of w if vp(w) > 0 (resp.
vp(w) < 0). The Weil differential w is called reqular at P if vp(w) > 0, and
w is said to be reqular (or holomorphic) if it is reqular at all places P € Pp.

(d) A divisor W is called a canonical divisor of F/K if W = (w) for some
w € Np.

Remark 1.5.12. 1t follows immediately from the definitions that
Np(Ad)={we2p|lw=0o0r(w)>A}

and
2p(0) ={w € 2p|w is reqular} .

As a consequence of Lemma 1.5.7 and Definition 1.5.1 we obtain
dim 27(0) =g.

Proposition 1.5.13. (a) For 0 # z € F and 0 # w € 2p we have (aw) =
(@) + (w)-

(b) Any two canonical divisors of F/K are equivalent.
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Tt follows from this proposition that the canonical divisors of F//K form
a whole class [W] in the divisor class group CI(F); this divisor class is called
the canonical class of F/K.

Proof of Proposition 1.5.13. If w vanishes on Ap(A) + F then azw vanishes on
Ap(A+ (x)) + F, consequently

(W) + (2) < (2w).

Likewise (zw) + (z7!) < (z7!'2w) = (w). Combining these inequalities we
obtain
(W) + (2) < (2w) < —(@7) + (W) = (@) + (2).

This proves (a). Item (b) follows from (a) and Proposition 1.5.9. O

Theorem 1.5.14 (Duality Theorem). Let A be an arbitrary divisor and
W = (w) be a canonical divisor of F/K. Then the mapping

" {X(W—A) — 02p(A),

x — TWw
18 an isomorphism of K-vector spaces. In particular,
i(A) =W —A).
Proof. For x € Z(W — A) we have
(aw) = (2) + (W) = —(W — A)+ W = A,

hence zw € 2p(A) by Remark 1.5.12. Therefore p maps £ (W — A) into
2r(A). Clearly p is linear and injective. In order to show that u is surjective,
we consider a Weil differential w; € 2p(A). By Proposition 1.5.9 we can write
wy = 2w with some x € F. Since

() +W=(2)+ (w) = (aw) = (w1) > A,

we obtain (z) > —(W — A), so x € L(W — A) and w; = p(x). We have
thus proved that dim 27(A) = ¢(W — A). Since dim 2r(A) = i(A) by Lemma
1.5.7, this implies i(A4) = {(IW — A). O

Summing up the results of this section we obtain the Riemann-Roch
Theorem; it is by far the most important theorem in the theory of algebraic
function fields.

Theorem 1.5.15 (Riemann-Roch Theorem). Let W be a canonical divi-
sor of F/K. Then for each divisor A € Div(F),

L(A)=degA+1—g+ (W —A).
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Proof. This is an immediate consequence of Theorem 1.5.14 and the definition
of i(A). O

Corollary 1.5.16. For a canonical divisor W we have
degW =2g—2 and (W)=g.
Proof. For A = 0, the Riemann-Roch Theorem and Lemma 1.4.7 give
1=1/(0)=deg0+1—g—+ W —0).
Thus (W) = g. Setting A = W we obtain
g=Lt(W)=degW +1—g+L(W —-W)=degW +2—g.

Therefore deg W = 2¢g — 2. O

From Riemann’s Theorem we already know that there is some constant
¢ such that i(A) = 0 whenever deg A > ¢. We can now give a more precise
description of how to choose this constant.

Theorem 1.5.17. If A is a divisor of F/K of degree degA > 2g — 1 then
U(A)=degA+1—g.

Proof. We have ((A) = deg A+1—g+{(W —A), where W is a canonical divisor.
Since deg A > 2g — 1 and deg W = 2¢g — 2, we conclude that deg(W — A) < 0.
It follows from Corollary 1.4.12 that (W — A) = 0. O

Observe that the bound 2g — 1 in this theorem is the best possible, since
for a canonical divisor W

W) > degW +1—g

by Corollary 1.5.16.

1.6 Some Consequences of the Riemann-Roch Theorem

As before, F//K denotes an algebraic function field of genus g. We want to
discuss various consequences of the Riemann-Roch Theorem. Our first aim is
to show that the Riemann-Roch Theorem characterizes the genus as well as
the canonical class of F/K.

Proposition 1.6.1. Suppose that gy € Z and Wy € Div(F) satisfy
L(A) =deg A+ 1—go+¢(Wy—A) (1.33)

for all A € Div(F). Then go = g, and Wy is a canonical divisor.



32 1 Foundations of the Theory of Algebraic Function Fields

Proof. Setting A = 0 resp. A = Wy in (1.33) we obtain ¢(Wy) = go and
deg Wy = 299 — 2 (cf. the proof of Corollary 1.5.16). Let W be a canonical
divisor of F/K. We choose a divisor A with deg A > max{2g — 2,299 — 2}.
Then ¢(A) = deg A+ 1 — g by Theorem 1.5.17 and ¢(A) = deg A+ 1 — go by
(1.33). Therefore g = go. Finally we substitute A = W in (1.33). This yields

9g=029-2)+1—g+Lt(Wo—-W),

hence ¢{(Wy — W) = 1. Since deg(Wy — W) = 0, this implies that Wy — W is
principal (cf. Corollary 1.4.12), so Wy ~ W. ]

Another useful characterization of canonical divisors is the following.

Proposition 1.6.2. A divisor B is canonical if and only if deg B = 2g — 2
and {(B) > g.

Proof. Suppose that deg B = 2g — 2 and ¢(B) > g. Choose a canonical divi-
sor W. Then

g<{(B)=degB+1—g+¢{(W—-B)=g—1+¢{(W —B),

therefore ¢(W — B) > 1. Since deg(W — B) = 0, it follows from Corollary
1.4.12 that W ~ B. O

Next we come to a characterization of the rational function field.

Proposition 1.6.3. For a function field F/K the following conditions are
equivalent:

(1) F/K is rational; i.e., F = K(z) for some x which is transcendental over
the field K.

(2) F/K has genus 0, and there is some divisor A € Div(F) with deg A = 1.

Proof. (1) = (2): See Example 1.4.18.

(2) = (1): Let ¢ = 0 and degA = 1. As degA > 29 — 1 we have that
l(A) =deg A+ 1— g =2 by Theorem 1.5.17. Thus A ~ A’ for some positive
divisor A’ (see Remark 1.4.5 (b)). Since £(A’) = 2, there exists an element
xe LAY\ K,so (x)#0and () + A" > 0. As A’ > 0 and deg A’ = 1, this
is possible only if A" = (x)~, the pole divisor of z. Now

[F: K(z)] =deg (7)o = deg A" =1
by Theorem 1.4.11, so F' = K(x). O

Remark 1.6.4. There exist non-rational function fields of genus 0 (these can-
not have a divisor of degree 1 by Proposition 1.6.3). However, if K is an
algebraically closed field or a finite field, there exists always a divisor of de-
gree 1 (for an algebraically closed field this is trivial, for a finite constant field
we shall prove it in Chapter 5), hence in these cases we have g = 0 if and only
if F/K is rational.
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It would seem appropriate at this point to give some examples of function
fields of genus > 0. However, we defer such examples to Chapter 6 at which
point we will have better methods at hand for calculating the genus.

Our next application of Section 1.5 is a strengthening of the Weak Ap-
proximation Theorem.

Theorem 1.6.5 (Strong Approximation Theorem). Let S G TPr be
a proper subset of IPr and Py,...,P. € S. Suppose there are given elements
T1,...,¢. € F and integers ny,...,n, € Z. Then there exists an element
x € F such that

vp, (x —x;) =ny (it=1,...,7), and

vp(z) >0 forall Pe S\ {Py,...,P.}.

Proof. Consider the adele & = (ap)pep, with

x; forP=P;,i=1,...,r,
ap = :
0 otherwise.

Choose a place @ € IPr \ S. For sufficiently large m € IN we have

Ap = Ap <mQ = (it 1)Pi> +F

i=1

by Theorem 1.5.4 and Theorem 1.5.17 (observe the definition of the index of
specialty which is given in Definition 1.5.1). So there is an element z € F' with
z—ae€ Ap(mQ — Y ;_,(n; + 1)P;). This means

vp,(z —x;)) >n; fori=1,...,r, and (1.34)
vp(2) >0 for Pe S\{P,...,P.}. (1.35)
Now we choose y1, ...,y € F with vp,(y;) = n;. In the same manner as above

we construct y € F with

vp,(y —y;) >n; for i=1,...,r, and (1.36)
vp(y) >0 for Pe S\{P,...,P.}. (1.37)

Then we have fori =1,...,r,
vp,(y) = vp ((y — ¥i) +vi) = (1.38)

by (1.36) and the Strict Triangle Inequality. Putting = := y + z we obtain
vp(x —x) =vp,(y+(z—x)=n; (1=1,...,7r)

by (1.38). For P € S\ {P1,...,P.}, vp(x) = vp(y + z) > 0 holds by (1.35)
and (1.37). O
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Next we investigate elements in F' which have only one pole.

Proposition 1.6.6. Let P € Pr. Then for each n > 2g there exists an ele-
ment © € F with pole divisor (x)s =nP.

Proof. By Theorem 1.5.17 we know that ¢((n —1)P) = (n — 1)deg P+ 1 —g
and {(nP) =n-deg P +1 — g, hence £ ((n — 1)P) & Z(nP). Every element
x € Z(nP)\ .Z((n—1)P) has pole divisor nP. O

Definition 1.6.7. Let P € IPr. An integer n > 0 is called a pole number of P
if there is an element © € F with (x) = nP. Otherwise n is called a gap
number of P.

Clearly n is a pole number of P if and only if £(nP) > £((n — 1) P). Moreover,
the set of pole numbers of P is a sub-semigroup of the additive semigroup IN
(to see this note that, if (z1)s = n1P and (z2)o = noP then xixo has the
pole divisor (z122)0 = (n1 + n2)P).

Theorem 1.6.8 (Weierstrass Gap Theorem). Suppose that F/K has
genus g > 0 and P is a place of degree one. Then there are exactly g gap
numbers iy < ... <1i4 of P. We have

i1=1 and iy <2g—1.

Proof. Each gap number of P is < 2g — 1 by Proposition 1.6.6, and 0 is a pole
number. We have the following obvious characterization of gap numbers:

i is a gap number of P <— Z((i—1)P)=Z(iP).
Consider now the sequence of vector spaces
K=20)CcZ(P)CZ2P)C---C.Z((29g—1)P), (1.39)

where dim.Z(0) = 1 and dim .2 ((2g — 1)P) = g by Theorem 1.5.17. Observe
that
dim.Z(iP) < dim.Z((i — 1)P) + 1

for all 4, see Lemma 1.4.8. So we have in (1.39) exactly g — 1 numbers 1 < i <
2g — 1 with Z((i — 1)P) ;Cé Z(iP). The remaining g numbers are gaps of P.

Finally we must show that 1 is a gap. Suppose the converse, so 1 is a
pole number of P. Since the pole numbers form an additive semigroup, every
n € IN is a pole number, and there are no gaps at all. This is a contradiction
because g > 0. O

Remark 1.6.9. Suppose that K is algebraically closed. Then one can show
that almost all places of F/K have the same sequence of gap numbers (which
are therefore called the gap numbers of the function field F//K). Such places
of F//K are said to be ordinary places. Every non-ordinary place is called a
Weierstrass point of F/K. If the genus of F/K is > 2, there exists at least
one Weierstrass point, see [21] or [45].
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For a divisor A of degree < 0 we have Z(A) = {0} by Corollary 1.4.12. On
the other hand, if deg A > 2g—2 then ¢(A) = deg A+1—g by Theorem 1.5.17.
So the dimension of A depends only on deg A (and the genus) in these cases.
We want to consider more closely the case where 0 < deg A < 2g — 2; here the
situation is rather complicated, but there are still some general results.

Definition 1.6.10. A divisor A € Div(F) is called non-special if i(A) = 0;
otherwise A is called special.

We note some immediate consequences of this definition.

Remark 1.6.11. (a) A is non-special <= {¢(A) =degA+1—g.

(b) deg A > 2g — 2 = A is non-special.

(¢) The property of a divisor A being special or non-special depends only on
the class [A] of A in the divisor class group.

(d) Canonical divisors are special.

(e) Every divisor A with £(A) > 0 and deg A < ¢ is special.

(f) If A is non-special and B > A then B is non-special.

Proof. (a) is clear from the definition of i(A4), (b) is just Theorem 1.5.17, and
(c) follows from the fact that £(A) and deg A depend only on the divisor class
of A.

(d) For a canonical divisor W we have (W) = ¢(W — W) = 1 by Theorem
1.5.14, hence W is special.

() 1<l(A)=degA+1—g+i(A)=i(A) >g—degA >0 since deg A < g.
Thus A is special.

(f) A is non-special if and only if Ap = Ap(A) + F, see Theorem 1.5.4. If
B > A then Ap(A) C Ap(B), so (f) follows. O

With regard to item (e) of the preceding remark, the following result is
interesting.

Proposition 1.6.12. Suppose that T C Pp is a set of places of degree one
such that |T| > g. Then there exists a non-special divisor B > 0 with deg B =
g andsupp B CT.

Proof. The crucial step of the proof is the following claim:

Claim. Given g distinct places Pi,..., P, € T and a divisor A > 0 with
0(A) = 1 and deg A < g — 1, there is an index j € {1,...,g¢} such that
A+ Pj)=1.

Suppose the claim is false; then ¢(A + P;) > 1, and there are elements z; €
LA+ P)\Z(A) for j=1,...,¢. Since

vp,(z;) = —vp,(A) =1 and wvp,(z5) > —vp,(A) for i#7j,
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the Strict Triangle Inequality implies that the g + 1 elements 1, 21, ..., z, are
linearly independent over K. Choose a divisor D > A + P, + ...+ P, with
degD = 2g — 1. Then 1,21,...,24 € Z(D), hence ¢{(D) > g+ 1. On the
other hand, ¢(D) = deg D + 1 — g = g by the Riemann-Roch Theorem. This
contradiction proves our claim.

Now the proof of Proposition 1.6.12 is very simple. By the above claim we
find divisors 0 < Pil < Pil + PiQ < .o < Pi1 + PiQ + ...+ Pz’q =B (Wlth
i, € {1,..., g}, not necessarily distinct) such that ¢(P;, +...+ P;;) = 1 for
j=1,...,g. In particular ¢£(B) = 1. The divisor B is non-special because

degB+1—g=g+1—g=1=4B).
(cf. Remark 1.6.11(a).) O

We conclude this section with an inequality for the dimension of an arbi-
trary divisor of degree < 2g — 2.

Theorem 1.6.13 (Clifford’s Theorem). For all divisors A with 0 <
deg A < 2g — 2 holds

1
L(A) §1+§-degA.

The main step in the proof of Clifford’s Theorem is the following result.

Lemma 1.6.14. Suppose that A and B are divisors such that ¢(A) > 0 and
¢(B) > 0. Then
U(A)+4(B)<1+4+(A+B).

Proof of Lemma 1.6.14. Since ¢(A) > 0 and ¢(B) > 0 we can find Ay, By >0
with A ~ Ag and B ~ By (cf. Remark 1.4.5). The set

X :={DeDiv(F) | D < Ay and £ (D) = £ (Ao)}

is non-empty because Ag € X. As deg D > 0 for all D € X, there is some
divisor Dy € X of minimal degree. It follows that

U(Dy — P) < €(Dg) forall PelPp. (1.40)
We want to show that
U(Dy) + £(By) < 14 ¢(Dgy + By) . (1.41)
From (1.41) the lemma will follow immediately:

€(A) + £(B) = {(Ao) + £(Bo) = £(Do) + {(By)
<1+4(Do+ By) <1+ 4(Ag+ By)=1+{(A+ B).
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In order to prove (1.41) we make the additional assumption that K is
an infinite field (in fact, we shall show later that Lemma 1.6.14 also holds
in the case of a finite constant field, see Theorem 3.6.3(d)). Let supp By =
{P1,...,P}. Then Z(Dy— P;) is a proper subspace of £ (Dy) fori =1,...,r,
and since a vector space over an infinite field is not the union of finitely many
proper subspaces, we can find an element

z€.Z(Do)\ | JZ(Do - P). (1.42)
i=1

Consider the K-linear map

v — 2z mod .Z(Ap).

{,,zﬂ(Bo) — #(Do+ Bo)/-L(Ao)
From (1.42) follows easily that the kernel of ¢ is K, hence

which proves (1.41). O

Proof of Theorem 1.6.13. The case ¢(A) = 0 is trivial. Likewise, if (W — A) =
0 (where W is canonical), then

1 1 1
U(A)=degA+1—g=1+ idegA—i- §(degA—29) <1+ idegA,

since deg A < 2g — 2. It remains to consider the case where ¢(A) > 0 and
(W — A) > 0. We can apply Lemma 1.6.14 to obtain

LA +HLW —-A) <1+L(W)=1+g. (1.43)
On the other hand,
LA)—t(W —A)=degA+1—g (1.44)

by the Riemann-Roch Theorem. Adding (1.43) and (1.44) yields the desired
result. O

1.7 Local Components of Weil Differentials
In Section 1.5 we considered the diagonal embedding F' — Ap which maps

x € F to the corresponding principal adele. Now we introduce for each place
P € Pg another local embedding tp : F' — Ap.
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Definition 1.7.1. Let P € IPr.

(a) For x € F let up(x) € Ap be the adele whose P-component is x, and all
other components are 0.

(b) For a Weil differential w € Q2p we define its local component wp : F — K
by

wp(z) = w(p(z)).
Clearly wp is a K-linear mapping.

Proposition 1.7.2. Let w € 2p and a = (ap) € Ap. Then wp(ap) # 0 for
at most finitely many places P, and

In particular

> wp(l)=0. (1.45)

PelPr

Proof. We can assume that w # 0 and we set W := (w), the divisor of w (see
Definition 1.5.11). There is a finite set S C IPg such that

vp(W)=0 and vp(ap)>0 forall P¢&S.
Define 5 = (0p) € Ap by

Bp = ap for P&S,
"7 o for PeS§S.

Then g € Ap(W) and a = S+ pcgtr(ap), hence w(B) = 0 and
w(a) = Z wp(ap).
PesS
For P ¢ S, tp(ap) € Ap(W) and therefore wp(ap) = 0. O

We shall see in Chapter 4 that Equation (1.45) is nothing else but the Residue
Theorem for differentials of F//K.

Next we show that a Weil differential is uniquely determined by each of
its local components.

Proposition 1.7.3. (a) Let w # 0 be a Weil differential of F/K and P € Pp.
Then

vp(w) =max{r € Z | wp(x) =0 forall € F with vp(x)>—r}.

In particular wp is not identically 0.
(b) If w,w' € 2p and wp = Wp for some P € Pp then w = w'.
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Proof. (a) Recall that, by definition, vp(w) = vp(W) where W = (w) denotes
the divisor of w. Let s := vp(w). For x € F with vp(z) > —s we have
tp(x) € Ap(W), hence wp(z) = w(tp(z)) = 0. Suppose now that wp(x) =0
for all z € F with vp(z) > —s — 1. Let a = (ag)ger, € Ar(W + P). Then

a=(a—tp(ap)) +ip(ap)
with o — tp(ap) € Ap(W) and vp(ap) > —s — 1, hence
w(a) =w(a—p(ap)) +wplap) =0.

Therefore w vanishes on Ap(W + P), a contradiction to the definition of W.
(b) If wp = W then (w—w')p =0, hence w —w’ =0 by (a). O

Once again we consider the rational function field K (x). We use the no-
tation introduced in Section 1.2; i.e., P, denotes the pole divisor of x and
P, denotes the zero divisor of z — a (for a € K). The following result will be
important in Chapter 4.

Proposition 1.7.4. For the rational function field F = K(x) the following
hold:

(a) The divisor —2P4, is canonical.

(b) There exists a unique Weil differential n € Q25 () with (n) = —2Ps and
np.(@71) = —1.

(¢) The local components np._ resp. np, of the above Weil differential n satisfy

0 for n#-1,

mr (@ = a)") = {_1 T

e (@ — a)") = 0 for n#-1,

P )1 for n=-1.

Proof. (a) deg(—2P5,) = =2 =2g — 2 and ¢(—2P,) = 0 = g, hence —2P,, is
canonical by Proposition 1.6.2.

(b) Choose a Weil differential w with divisor (w) = —2P. Then w vanishes on
the space Ak (y)(—2Px), but it does not vanish identically on A (5)(—Pxo).
Since

(see Equation (1.24) in the proof of Theorem 1.5.4) and

LPy (xil) € AK(:E)(_POO) \AK(Q;)(—QPOO) ,

we conclude that
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wp (r™H =wlp (z71) =1c#0.

lw we obtain () = —2P and np,_ (z~!) = —1. The unique-

Setting 1 := —c¢~
ness of 7 is easily proved. If n* has the same properties as n then n — n*
vanishes on the space A (,)(—Px), which implies n —n* = 0.

(¢) Since a Weil differential vanishes on principal adeles, we have by
Proposition 1.7.2 that

0=n((z—a)) = > up(lz—a)"). (1.46)

PE]PK(I)

For P # P and P # P, holds vp((x — a)™) = 0, therefore np((x —a)™) =0
by Proposition 1.7.3, and then (1.46) yields

np. ((z —a)") +np, ((x —a)") = 0. (1.47)

In the case n < —2 we have vp_((x — a)™) > 2, hence np_((zr —a)™) =0
by Proposition 1.7.3. Now (1.47) implies that np, ((x — a)™) = 0 as well. If
n >0, np,((x —a)™) = 0 by Proposition 1.7.3, and we obtain the result for
np,. ((z — a)™) again by (1.47).

Eventually we consider the case n = —1. Since

1 a

1 a
- 2 and e —2P.),
x—a x(r—a) +x ana Lpe (x(x—a)) € Ax( )

we see that np_((x —a)™!) = np_(271) = —1 (by definition of 1), and from
(1.47) follows that np, ((x —a)~!) = 1. O

1.8 Exercises

1.1. Consider the rational function field K (x)/K and a non-constant element
z = f(z)/g(z) € K(z)\ K, where f(x),g(x) € K[x] are relatively prime. We
call deg(z) := max{deg f(z),deg g(x)} the degree of z.

(i) Show that [K (x) : K(z)] = deg(z), and write down the minimal polynomial
of x over K(z) (in order to avoid calculations, you may use Theorem 1.4.11
and Example 1.4.13).

(i) Show that K (x) = K(z) if and only if z = (ax+b)/(cx+d) with a, b, c,d €
K and ad — bc # 0.

1.2. For a field extension L/M we denote by Aut(L/M) the group of auto-
morphisms of L/M (i.e., automorphisms of L which are the identity on M).
Let K(x)/K be the rational function field over K. Show:

(i) For every o € Aut(K (x)/K) there exist a,b,c,d € K such that ad—bc # 0
and o(x) = (ax + b)/(cx + d).
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(i) Given a,b,c,d € K with ad — bc # 0, there is a unique automorphism
o € Aut(K(x)/K) with o(z) = (axz +b)/(cz + d).
(iii) Denote by GLo(K) the group of invertible 2 x 2 - matrices over K. For

A = ZZ € GLy(K) denote by o4 the automorphism of K(x)/K with

oa(x) = (ax + b)/(cx + d). Show that the map which sends A to o4, is
a homomorphism from GLg(K) onto Aut(K (x)/K). Its kernel is the set of

diagonal matrices of the form 8 2 with a € K, hence

Aut(K(x)/K) ~ GLy(K)/K*.
(This group GLy(K)/K™ is called the projective linear group and is denoted
by PGL2(K).)
1.3. If L is a field and G is a group of automorphisms of L, we denote by
L :={welL|ow)=w for all oG}

the fixed field of G. It is well-known from algebra that if G is a finite group,
then L/L% is a finite extension of degree [L : LY] = ord(G).

Now let G C Aut(K(x)/K) be a finite subgroup of the automorphism group
of the rational function field K (x) over K, and put

z::Za(x) , uci= Ha(x).

oeG oeG
Show:
(i) Either z € K, or K(z) = K(z)¢.
(ii) Either u € K, or K (u) = K(z)%.
(#1) Find examples of finite subgroups G C Aut(K(z)/K) for both alterna-
tives in (i) (and also in (ii)).

1.4. Let K (x) be the rational function field over K. Find bases of the following
Riemann-Roch spaces:

X(TPOO) ) X(rPa) ) X(Pp(w)) ;
where 7 > 0, and the places Py, P, and P, are as in Section 1.2.

1.5. (Representation of rational functions by partial fractions)

(i) Show that every element z € K (z) can be written as

i=1 j=1

cij() .

where
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(a) p1(x), ..., pr(x) are distinct monic irreducible polynomials in K[x],
(0) ko kr > 1,
(c) cij(z) € K[z] and deg(c;;(x)) < deg(pi(z)),
(d) cir,(x) #0 for 1 <i<r
(e) h(z) € K[x] .
Note that the case r = 0 is allowed; it just means that z = h(z) € K[x].

(i) Show that the above representation of z is unique.

1.6. Let F' = K (x) be the rational function field over K. Show directly that
Ar = Ar(0) + F (by Corollary 1.5.5 this provides another proof that the
rational function field has genus 0).

1.7. There are many analogies between algebraic function fields and algebraic
number fields (i.e., finite extensions of the field @ of rational numbers). Here
is a first example.

A valuation ring of a field L is a subring O g L such that for all z € L one
has that z € O or 271 € O.

(i) Show that every valuation ring is a local ring (i.e., it has a unique maximal
ideal).

(ii) Now we consider the field L = Q. Show that for every prime number
p € Z, theset Z ) :={a/bc Q| a,becZ and pfb} is a valuation ring of Q.
What is the maximal ideal of Z,)?

(iii) Let O be a valuation ring of Q. Show that O = Z, for some prime
number p.

In the following exercises, F/K always denotes a function field of genus g
with full constant field K.

1.8. Assume that g > 0 and A is a divisor with ¢(A) > 0. Show that ¢(A) =
deg(A) + 1 if and only if A is a principal divisor.

1.9. Show that the following conditions are equivalent:

(a) g=0.

(b) There is a divisor A with deg(A) =2 and ¢(A) = 3.

(c) There is a divisor A with deg(A) > 1 and ¢(A) > deg(A).

(d) There is a divisor A with deg(A) > 1 and ¢(A) = deg(A) + 1.

In case of charK # 2, also the following condition is equivalent to the above:

(e) There are elements z,y € F such that F' = K (z,y) and y? = az? + b, with
a,be K*.
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1.10. Let IR(z) be the rational function field over the field of real numbers.
(i) Show that the polynomial f(T) := T2 + (2% + 1) € R(x)[T] is irreducible
over IR(z).

Let F := R(z,y), where y*> + 22 + 1 = 0. By (i), [F' : R(z)] = 2. Show:

(i) IR is the full constant field of F', and F/IR has genus g = 0.

(iii) F/IR is not a rational function field.

(iv) All places of F'/IR have degree 2.

1.11. Assume that char(K) # 2. Let F = K(z,y) with
yv* = f(z) € K[z], degf(x)=2m+1>3.

Show:

(i) K is the full constant field of F'.

(ii) There is exactly one place P € IPp which is a pole of x, and this place is
also the only pole of y.

(iii) For every r > 0, the elements 1,z,22,...,2",y,2y,...,2°y with 0 < s <
r —m are in .Z(2rP).

(iv) The genus of F/K satisfies g < m.

Remark. We will prove later that the genus is in fact ¢ = m, if the polynomial
f(x) does not have multiple factors, see Example 3.7.6.

1.12. Let K = IF3 be the field with 3 elements and K (x) the rational function
field over K. Show:

(i) The polynomial f(T) =12+ z* — 2% + 1 is irreducible over K(z).

(ii) Let F' = K (x,y) where y is a zero of the polynomial f(T") as above, and
let K be the full constant field of F. Then K has 9 elements, and F = K ().

1.13. Assume that F/K has a place P € IPp of degree one. Show that there
exist z,y € F such that [F: K(z)] = [F : K(y)] =29+ 1 and F = K(x,y).

1.14. Let V, W be vector spaces over K. A non-degenerate pairing of V' and
W is a bilinear map s : V x W — K such that the following hold: For every
v € V with v # 0 there is some w € W with s(v,w) # 0, and for every w € W
with w # 0 there is some v € V with s(v,w) # 0.

Now we consider a function field F/K, a divisor A € Div(F') and a non-zero
Weil differential w € 2p. Let W := (w). Show that the map s : L (W — A) x
Ap/(Arp(A) + F) — K given by s(z,«a) := w(za) is well-defined, and it is a
non-degenerate pairing.

1.15. Assume that the constant field K is algebraically closed. Show that for
every integer d > g, there exists a divisor A € Div(F') with deg(A) = d and
0(A) =deg(A)+1—g.
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1.16. Let i(A) denote the index of specialty of the divisor A € Div(F'). Show:
(i) i(A) < max{0,2¢g — 1 — deg(A4)}.
(#i) Assume that i(A) > 0. Show that for every divisor B,

U(A—B)<i(B).

Hint. Find a monomorphism p : £ (A — B) — Qp(B).

(iii) As a special case of (ii), show that

i(A)>0 = ((A)<g.
1.17. For a divisor C' € Div(F) with £(C') > 0 we define
|C|:={A€Div(F) | A~ C and A> 0} .

This set is called the linear system corresponding to C'. Obviously it depends
only on the divisor class [C] € CI(F). The class [C] is called primitive, if there
is no divisor B > 0 such that B < A for all A € |C|. Show:

(i) Every divisor class of degree > 2¢ is primitive.
(i) For g > 1, the canonical class is primitive.

(iii) Let g > 1, W a canonical divisor and P be a place of degree one. Then
the class [WW + P] is not primitive.

1.18. The number v := min{[F : K(z)]|z € F'} is called the gonality of F//K.
We also define for all r» > 1,

v := min{deg(A) | A € Div(F) and £(A) > r} .

The sequence (y1,72,7s, - -.) is called the gonality sequence of F/K.
(i) Show that v1 = 0 and o = 7.
In parts (ii) - (viii) we assume that there exists a rational place P € Pp.
Prove:
(ii) For all integers r > 1 there exists a divisor A, > 0 with deg(A,) = v, and
LA =r.
(i) v < Ypy1 for all r > 1.
(i) v =r+g—1forallr>g.
(v) If g > 1, then v, = 29 — 2.
(vi) v > 2(r —1) for all r € {1,...,g}.
(vii) If g > 2, then v < g.
(viii) Let I' := {j > 0] there is no r with 7, = j}. Then
(1) II'l =g,
(2) 1elMand2g—1€ Tl ifg>1.



2

Algebraic Geometry Codes

In this chapter we describe V.D.Goppa’s construction of error-correcting codes
using algebraic function fields. We start with a brief survey of the concepts
of coding theory. Then we define algebraic geometry codes (AG codes) and
develop their main properties. The codes constructed by means of a rational
function field are discussed in detail in Section 2.3.

2.1 Codes

We are going to introduce some basic notions of coding theory. The reader
who is not familiar with these concepts is referred to the introductory chapter
of any book on error-correcting codes.

Let IF, denote the finite field with ¢ elements. We consider the n-
dimensional vector space ]FZL whose elements are n-tuples a = (a1,...,a,)
with a; € IF,.

Definition 2.1.1. For a = (ay,...,an) and b= (b1,...,b,) € IF} let

d(a,b) == | {i;a; #b;}|.

This function d is called the Hamming distance on IFy. The weight of an
element a € I} is defined as

wt(a) :=d(a,0) = ’{z, ai;«éO}‘.

The Hamming distance is a metric on IF) as one can verify immediately.
In particular, the Triangle Inequality d(a,c) < d(a,b) + d(b,c) holds for all
a,b,c e IFy.

Definition 2.1.2. A code C (over the alphabet IF,) is a linear subspace of
IFy; the elements of C are called codewords. We call n the length of C' and

H. Stichtenoth, Algebraic Function Fields and Codes, 45
Graduate Texts in Mathematics 254,
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dim C' (as IFy-vector space) the dimension of C. An [n,k] code is a code of
length n and dimension k.

The minimum distance d(C) of a code C' # 0 is defined as
d(C) :=min{d(a,b)|a,b e C and a # b} = min{wt(c)|0# ce C}.

An [n, k] code with minimum distance d will be referred to as an [n, k,d] code.

Remark 2.1.3. More generally one can define a code to be an arbitrary non-
empty subset C' C A™ where A # () is a finite set. If A = IF, and C' C Fy
is a linear subspace, C' is said to be a linear code. Most codes employed in
practice belong to this class, therefore we will only consider linear codes in
this book, without writing the attribute ‘linear’.

For a code C' with minimum distance d = d(C) we set t := [(d — 1)/2]
(where [z] denotes the integer part of the real number z; ie., x = [z] + ¢
with [z] € Z and 0 < ¢ < 1). Then C is said to be t-error correcting. The
following is obvious: if u € IF) and d(u,c) <t for some ¢ € C then c is the
only codeword with d(u,c) < t.

A simple way to describe a specific code C' explicitly is to write down a
basis of C' (as a vector space over IF,).

Definition 2.1.4. Let C be an [n, k] code over IF,. A generator matriz of C
1s a k X n matriz whose rows are a basis of C.

Definition 2.1.5. The canonical inner product on Iy is defined by

(a,b) = i aib;
i=1

fora=(a1,...,a,) and b= (by,...,b,) € F].

q

Obviously this is a non-degenerate symmetric bilinear form on IFZ.

Definition 2.1.6. If C C IF is a code then
Ct={uc IF) [ (u,c) =0 for all c € C}

is called the dual of C'. The code C' is called self-dual (resp. self-orthogonal) if
C =Ct (resp. C CCH).

It is well-known from linear algebra that the dual of an [n, k] code is an
[n,n — k] code, and (C+)+ = C. In particular, the dimension of a self-dual
code of length n is n/2.



2.1 Codes 47

Definition 2.1.7. A generator matriz H of C* is said to be a parity check
matriz for C.

Clearly a parity check matrix H of an [n, k] code C'is an (n— k) X n matrix
of rank n — k, and we have

C={uelF,|H u'=0}

(where u' denotes the transpose of u). Thus a parity check matrix ‘checks’
whether a vector u € I} is a codeword or not.

One of the basic problems in algebraic coding theory is to construct - over
a fixed alphabet IF, - codes whose dimension and minimum distance are large
in comparison with their length. However there are some restrictions. Roughly
speaking, if the dimension of a code is large (with respect to its length), then
its minimum distance is small. The simplest bound is the following.

Proposition 2.1.8 (Singleton Bound). For an [n,k,d] code C' holds
k+d<n+1.
Proof. Consider the linear subspace E' C IFy given by
E:={(a1,...,a,) €EF]a; =0 forall i>d}.
Every a € E has weight < d—1, hence ENC = 0. As dim ¥ = d— 1 we obtain

k+(d—-1)=dimC+dimFE
=dim(C+ FE)+dim(CNE)=dim(C+E)<n.

O

Codes with k£ +d = n + 1 are in a sense optimal; such codes are called
MDS codes (mazimum distance separable codes). If n < ¢+ 1, there exist MDS
codes over IF, for all dimensions & < n (this will be shown in Section 2.3).

The Singleton Bound does not take into consideration the size of the al-
phabet. Several other upper bounds for the parameters k and d (involving
the length n of the code and the size ¢ of the alphabet) are known. They are
stronger than the Singleton Bound if n is large with respect to g. We refer to
[25],[28], see also Chapter 8, Section 8.4.

It is in general a much harder problem to obtain lower bounds for the
minimum distance of a given code (or a given class of codes). Only few such
classes are known, for instance BCH codes, Goppa codes or quadratic residue
codes (cf. [25],[28]). One of the reasons for the interest in algebraic geometry
codes (to be defined in the next section) is that for this large class of codes a
good lower bound for the minimum distance is available.
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2.2 AG Codes

Algebraic geometry codes (AG codes) were introduced by V.D. Goppa in
[15]. Therefore they are sometimes also called geometric Goppa codes. As a
motivation for the construction of these codes we first consider Reed-Solomon
codes over IF,. This important class of codes is well-known in coding theory
for a long time. Algebraic geometry codes are a very natural generalization of
Reed-Solomon codes.

Let n =g —1 and let 8 € IF; be a primitive element of the multiplicative
group I ie., I = {,4°,..., " = 1}. For an integer k with 1 <k <n
we consider the k-dimensional vector space

L ={f €eFy[X]|deg f < k—1} (2.1)

and the evaluation map ev : & — IF‘;L given by

ev(f) = (f(B), F(5*),.... f(B")) € Fy. (2.2)

Obviously this map is IF,-linear, and it is injective because a non-zero poly-
nomial f € IF,[X] of degree < n has less than n zeros. Therefore

Cr = {(f(B), F(B),- .. F(B")| | € L} (2.3)

is an [n, k] code over IFy; it is called an RS code (Reed-Solomon code). The
weight of a codeword 0 # ¢ = ev(f) € C}, is given by

wt(c) =n—|{i € {1,...,n}; f(B") = 0}
>n—degf>n—(k—1).
Hence the minimum distance d of C}, satisfies the inequality d > n+1—k. On
the other hand, d < n + 1 — k by the Singleton Bound. Thus Reed-Solomon

codes are MDS codes over IF,. Observe however that RS codes are short in
comparison with the size of the alphabet IF,, since n = ¢ — 1.

Now we introduce the notion of an algebraic geometry code. Let us fix
some notation valid for the entire section.

F/IF, is an algebraic function field of genus g.

Py, ..., P, are pairwise distinct places of F/IF, of degree 1.
D=P +...4+P,.

G is a divisor of F/IF, such that supp G NsuppD =0 .

Definition 2.2.1. The algebraic geometry code (or AG code) C¢(D,G) as-
sociated with the divisors D and G is defined as

Cy(D,G) = {(x(P),...,a(P,)) |z € L(G)} T
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Note that this definition makes sense: for z € Z(G) we have vp,(z) >
(i = 1,...,n) because suppG Nsupp D = 0. The residue class z(P;) of
modulo P; is an element of the residue class field of P; (see Definition 1.1.14
As deg P; = 1, this residue class field is IF, so z(P;) € IF,,.

0
).

As in (2.2) we can consider the evaluation map evp : Z(G) — IFy given by
evp(z) := (z(P1),...,x(Py)) € Fy. (2.4)

The evaluation map is IF-linear, and C (D, Q) is the image of .Z(G) under
this map. The analogy with the definition of Reed-Solomon codes (2.3) is
obvious. In fact, choosing the function field F//IF; and the divisors D and G
in an appropriate manner, RS codes are easily seen to be a special case of AG
codes, see Section 2.3.

Definition 2.2.1 looks like a very artificial way to define certain codes over
IF,. The next theorem will show why these codes are interesting: one can
calculate (or at least estimate) their parameters n, k and d by means of the
Riemann-Roch Theorem, and one obtains a non-trivial lower bound for their
minimum distance in a very general setting.

Theorem 2.2.2. C»(D,G) is an [n,k,d] code with parameters
k=4G)—4G—-D) and d>n—degG.

Proof. The evaluation map (2.4) is a surjective linear map from Z(G) to
Cy(D,G) with kernel

Ker(evp) = {r € Z(GQ) |vp,(x) >0 fori=1,...,n} = Z(G - D).
It follows that k = dimC¢(D,G) = dim.Z(G) — dim . Z(G — D) = {(G) —
{(G — D). The assertion regarding the minimum distance d makes sense only
if Cy(D,G) # 0, so we will assume this. Choose an element x € £ (G) with

wt(evp(z)) = d. Then exactly n —d places P;,, ..., P; _, in the support of D
are zeros of x, so

0#$€$(G—(Pl +"'+Pin—d))'
We conclude by Corollary 1.4.12.(b) that
0<deg(G— (P, +...+F, ) =degG—n—+d.

Hence d > n — degG. O

Corollary 2.2.3. Suppose that the degree of G is strictly less than n. Then
the evaluation map evp : L (G) — Co (D, Q) is injective, and we have:
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(a) Co(D,Q) is an [n,k,d] code with
d>n—degG and k=/0G)>degG+1—g.

Hence
k+d>n+1—g. (2.5)

(b) If in addition 2g — 2 < deg G < n, then k = degG+ 1 —g.
(c) If {z1,..., 2k} is a basis of L (G) then the matriz

.’ﬂl(Pl) l'l(PQ) xl(Pn)
M = : : :

Ik(Pl) xk(PQ) e :L'k(Pn)
is a generator matriz for Cy(D,G).

Proof. By assumption we have deg(G—D) = degG—n < 0,80 Z(G—D) = 0.
Since Z(G — D) is the kernel of the evaluation map, this is an injective
mapping. The remaining assertions are trivial consequences of Theorem 2.2.2
and the Riemann-Roch Theorem. O

We point out that the lower bound (2.5) for the minimum distance looks
very similar to the upper Singleton Bound. Putting both bounds together we
see that for deg G < n,

n+l-g<k+d<n+1. (2.6)

Note that £k +d = n + 1 if F is a function field of genus g = 0. Hence the
AG codes constructed by means of a rational function field IF,(z) are always
MDS codes. For more details see Section 2.3.

In order to obtain a meaningful bound for the minimum distance of
C(D,G) by Theorem 2.2.2, we often assume that deg G < n.

Definition 2.2.4. The integer d* := n—deg G is called the designed distance
of the code C (D, G).

Theorem 2.2.2 states that the minimum distance d of an AG code cannot
be less than its designed distance. The question whether d* = d or d* < d is
answered by the following remark.

Remark 2.2.5. Suppose that ¢(G) > 0 and d* =n — deg G > 0. Then d* = d
if and only if there exists a divisor D’ with 0 < D’ < D, deg D" = deg G and
UG — D) > 0.
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Proof. First we assume d* = d. Then there is an element 0 # x € £Z(G) such
that the codeword (x(Py),...,z(P,)) € Cx(D,G)) has precisely n — d =
n —d* = deg G zero components, say z(P;.) =0 for j =1,...,degG. Put

J

deg G

D = Z P .
j=1

Then 0 < D' < D, degD’ =degG and /(G —D’) >0 (as z € Z(G — D’)).

Conversely, if D’ has the above properties then we choose an element 0 #
y € .Z(G—D"). The weight of the corresponding codeword (y(P1),...,y(FPn))
is n —deg G = d*, hence d = d*. a

Another code can be associated with the divisors G and D, by using lo-
cal components of Weil differentials. We recall some notation introduced in
Chapter 1. For a divisor A € Div(F'), 2r(A) is the space of Weil differentials
w with (w) > A. This is a finite-dimensional vector space over IF, of dimen-
sion i(A) (the index of specialty of A). For a Weil differential w and a place
P € IPp, the map wp : ' — IF; denotes the local component of w at P.

Definition 2.2.6. Let G and D = Py + ... + P, be divisors as before (i.e.,
the P; are pairwise distinct places of degree one, and supp G Nsupp D = 0)).
Then we define the code Co(D,G) C IFy by

Co(D,G) = {(wp,(1),...,wp, (1)) |w € 2p(G — D)}.

Also the code Cq (D, G) is called an algebraic geometry code. The relation
between the codes C(D,G) and Cq(D,G) will be explained in Theorem
2.2.8 and Proposition 2.2.10. Our first result about C (D, G) is an analogue
to Theorem 2.2.2.

Theorem 2.2.7. C(D,G) is an [n,k',d’] code with parameters
k' =i(G—D)—i(G) and d >degG— (29 —2).

Under the additional hypothesis deg G > 2g — 2, we have k' = i(G — D) >
n+g—1—degG. If moreover 2g — 2 < deg G < n then

K=n+g—1—degQG.

Proof. Let P € IPp be a place of degree one and let w be a Weil differential
with vp(w) > —1. We claim that

wp(l)=0 <= wvp(w)>0. (2.7)

In order to prove this we use Proposition 1.7.3 which states that for an integer
ref,
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vp(w) >r < wp(x) =0 for allx € F with vp(z) > —r. (2.8)

The implication < of (2.7) is an obvious consequence of (2.8). Conversely,
suppose that wp(l) = 0. Let z € F' with vp(z) > 0. Since deg P = 1, we can
write = a +y with a € IF; and vp(y) > 1. Then

wp(z) =wp(a) +wp(y) =a-wp(l)+0=0.

(Observe that wp(y) = 0 because vp(w) > —1 and vp(y) > 1, cf. (2.8).) Hence
(2.7) is proved.

Now we consider the IF -linear mapping

.{QF(G—D) —  CalD.G),
oD : w — (wp, (1),...,wp, (1)).

op is surjective, and its kernel is 2z (G) by (2.7). Therefore

k' = dim 2p(G — D) — dim 25(G) = i(G — D) — i(G). (2.9)

Let op(w) € Cn(D, Q) be a codeword of weight m > 0. Then wp, (1) = 0 for
certain indices i = 41, ..., %, _m, SO

WGQF D P1
7j=1

7

by (2.7). Since 2p(A) # 0 implies deg A < 2g — 2 (by Theorem 1.5.17), we
obtain
2g—2>degG— (n—(n—m)) =degG —m.
Hence the minimum distance d’ of Cq(D,G) satisfies the inequality d' >
deg G — (29 — 2).
Assume now that deg G > 2¢g — 2. By Theorem 1.5.17 we obtain i(G) = 0.
Now (2.9) and the Riemann-Roch Theorem yield
=i(G—-D)=4G—-D)—deg(G—D)—1+yg
:€(G—D)+n+g—1—degG.

The remaining assertions of Theorem 2.2.7 follow immediately. O

In analogy to Definition 2.2.4, the integer deg G — (2¢g — 2) is called the
designed distance of Cq(D, G).

There is a close relation between the codes C'» (D, G) and Cp(D, G):

Theorem 2.2.8. The codes C»(D,G) and C(D,G) are dual to each other;
i.e.,
Cao(D,G) = Cg(D,G)*
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Proof. First we note the following fact: Consider a place P € IPg of degree one,
a Weil differential w with vp(w) > —1 and an element x € F with vp(xz) > 0.
Then

wp(z) =x(P) - -wp(l). (2.10)
In order to prove (2.10) we write = a+y with a = 2(P) € IF; and vp(y) > 0.
Then wp(z) = wp(a) + wp(y) =a-wp(l) +0=2(P) - wp(1), by (2.8).
Next we show that Co(D,G) C Cy(D,G)* . So let w € 27(G — D) and
x € Z(G). We obtain

0=w(x)= Z wp(x) (2.11)
PclPr

= Z wp, () (2.12)

=Y a(P)-wp(1) (2.13)

1
= <(wP1(1)7 s 7an(1))= (‘T(Pl)ﬂ s 7$(Pn))> )

where (, ) denotes the canonical inner product on IFj’. We still have to justify
the single steps in the above computation. (2.11) follows from Proposition
1.7.2 and the fact that Weil differentials vanish on principal adeles. For P €
Pr\{P1,...,P,} we have vp(x) > —vp(w) (asz € Z(G) and w € 2(G— D)),
so wp(x) =0 by (2.8). This proves (2.12). Finally, (2.13) follows from (2.10).
Hence Cq(D,G) C Co(D,G)* .

It is now sufficient to show that the codes Cqp(D,G) and C»(D,G)*
have the same dimension. Using Theorems 2.2.2, 2.2.7 and the Riemann-Roch
Theorem we find:

%

dim C(D,G) = i(G — D) — i(G)
=lG—-D)—deg(G—D)—1+g— (G)—degG—1+g)
=degD +¢(G — D) —{(G)
=n— (U(G)— 4G - D))
=n—dimCg(D,G) =dimCg(D,G)*.
O

Our next aim is to prove that Cn (D, G) can be represented as C¢ (D, H)
with an appropriate divisor H. For this purpose we need the following lemma.

Lemma 2.2.9. There exists a Weil differential n such that

vp,(n)=—-1 and np,(1)=1 for i=1,...,n.
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Proof. Choose an arbitrary Weil differential wy # 0. By the Weak Approx-
imation Theorem there is an element z € F with vp,(z2) = —vp,(wy) — 1
for i = 1,...,n. Setting w := zwy we obtain vp,(w) = —1. Therefore
a; == wp,(1) # 0 by (2.7). Again by the Approximation Theorem we find
y € F such that vp,(y — a;) > 0. It follows that vp,(y) = 0 and y(P;) = a;.
We put 7 := y~'w and obtain vp, (n) = vp,(w) = —1, and

np,(1) =wp,(y ") =y ' (P) wp(l)=a; ' a;=1.
o

Proposition 2.2.10. Let  be a Weil differential such that vp,(n) = —1 and
np, (1) =1 fori=1,...,n. Then

Cg(D,G)* = Co(D,G) = Cy(D,H) with H:=D—G+(n).

Proof. The equality C¢(D,G)* = Co(D,G) was already shown in Theorem
2.2.8. Observe that supp (D — G + (1)) Nsupp D = 0 since vp,(n) = —1 for
i = 1,...,n. Hence the code C»(D,D — G + (n)) is defined. By Theorem
1.5.14 there is an isomorphism p : Z(D — G + (n)) — 2r(G — D) given by
w(z) == an. For v € £(D — G + (1)) we have

(xn)p,(1) = np,(x) = x(P;) - np,(1) = 2(5),

cf. (2.10). This implies C(D,G) = C¢(D,D — G + (n)). O

Corollary 2.2.11. Suppose there is a Weil differential ) such that
2G—-D<(n) and np,(1)=1 for i=1,...,n.

Then the code C (D, Q) is self-orthogonal; i.e., C(D,G) C Co(D,G)*. If
2G—-D=(n) and np(1)=1 for i=1,...,n,

then C¢ (D, G) is self-dual.

Proof. The assumption 2G — D < (n) is equivalent to G < D — G+ (). Hence
Proposition 2.2.10 implies

This proves the first assertion. If we assume equality 2G — D = (1)) then we
have G = D — G + (n) and therefore

Cz(D,G)* = Cx(D.D — G+ (1) = Cx(D,G).
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Remark 2.2.12. Using Proposition 2.2.10, one can reduce Theorem 2.2.7 to
Theorem 2.2.2. This gives another proof of Theorem 2.2.7.

Definition 2.2.13. Two codes C1,Cy C IFZ are said to be equivalent if there

is a vector a = (a1,...,a,) € (]qu)” such that Cy = a - Cy; i.e.,

Cy ={(arc1,...,ancy) | (c1y...,cn) € C1}.

Evidently equivalent codes have the same dimension and the same minimum
distance. Note however that equivalence does not preserve all interesting prop-
erties of a code. For instance, equivalent codes may have non-isomorphic au-
tomorphism groups. We will consider automorphisms of codes in Chapter 8.

Proposition 2.2.14. (a) Suppose Gy and G2 are divisors with G1 ~ Go and
supp Gy Nsupp D = supp Gy Nsupp D = (. Then the codes C»(D,G1) and
Cy(D,Gs) are equivalent. The same holds for Co(D,G1) and Co(D,Gs).

(b) Conversely, if a code C C IFy is equivalent to Cx (D, G) (resp. Co(D,G))
then there exists a divisor G' ~ G such that supp G’ NsuppD = 0 and C =
Cy(D,G") (resp. C = Cqp(D,G")).

Proof. (a) By assumption we have that Go = Gy — (z) with vp,(2) = 0
for i =1,...,n. Hence a := (2(P1),...,2(P,)) is in (IF,)", and the mapping
x — xz from Z(G1) to £ (G2) is bijective (cf. Lemma 1.4.6). This implies that
Cy(D,G3) = a-Cy(D,Gy). The equivalence of Cp(D,G1) and Cq(D,Gs)
is proved similarly.

(b) Let C = a-Cg(D,G) with a = (a1, ...,a,) € (IF;)". Choose z € F with
z2(P)=a;(i=1,...,n) and set G’ := G — (). Then C = C»(D,G"). O

Remark 2.2.15. If G is a divisor whose support is not disjoint from supp D,
we can still define an algebraic geometry code C'» (D, G) associated with D
and G as follows: Choose a divisor G’ ~ G with supp G’ N supp D = @ (which
is possible by the Approximation Theorem) and set C ¢ (D, G) := C (D, G").
The choice of G’ is not unique and the code C (D, G) is well-defined only up
to equivalence, by Proposition 2.2.14.

2.3 Rational AG Codes

In this section we investigate AG codes associated with divisors of a rational
function field. We shall describe these codes very explicitly by means of gen-
erator and parity check matrices. In coding theory this class of codes is known
by the name of Generalized Reed-Solomon codes. Some of the most important
codes used in practice (such as BCH codes and Goppa codes; these codes will
be defined later in this section) can be represented as subfield subcodes of
Generalized Reed-Solomon codes in a natural manner.
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Definition 2.3.1. An algebraic geometry code C.»(D,G) associated with di-
visors G and D of a rational function field IF,(z)/IF, is said to be rational
(as in Section 2.2 it is assumed that D = Py + ...+ P, with pairwise distinct
places of degree one, and supp G Nsupp D = 0)).

Observe that the length of a rational AG code is bounded by ¢+ 1 because
IF,(z) has only ¢ + 1 places of degree one: the pole Py of z and for each
a € IFy, the zero P, of z — a (see Proposition 1.2.1). The following results
follow immediately from Section 2.2.

Proposition 2.3.2. Let C = C¢(D,G) be a rational AG code over ¥, and
let n, k,d be the parameters of C. Then we have:
(a) n < q+1.
(b) k=0 if and only if deg G < 0, and k = n if and only if degG > n — 2.
(c) For 0 <degG <n-—2,

k=1+degG and d=n—degG.

In particular, C is an MDS code.
(d) C* is also a rational AG code.

Next we determine specific generator matrices for rational AG codes.

Proposition 2.3.3. Let C' = C¢(D,G) be a rational AG code over IF, with
parameters n, k and d.

(a) If n < q then there exist pairwise distinct elements a1, ..., a, € IF, and
v1,..., v, € IFS (not necessarily distinct) such that

C={(viflar),vaf(2),....,onf(owm))| f € Fylz] and deg f <k —1}.

The matrix

(%} (%] ce Un
1V [e5X%)] . AUy
2 2 2
M = ayU1 Q5U2 e QL Up (2'14)
k—1 k—1 k—1
aq v Qo V2 ... Qp "Up

is a generator matriz for C.

(b) If n=q+1, C has a generator matriz

vy Vo S Up—1 0
[O5K%]N [eHX%)] oo Op_1Up—1 0
2 2 2
M=| afvi  ajva ... ap_qup1 O (2.15)
k—1 k—1 k—1
Q) v Qg U2 ... ap_qUp—1 1

where IFy = {ay,...,an_1} and vi,...,v,_1 € F.
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Proof. (a) Let D =Py + ...+ P,. As n < g, there is a place P of degree one
which is not in the support of D. Choose a place @ # P of degree one (e.g.,
@ = P;). By Riemann-Roch, ¢(Q — P) = 1, hence @ — P is a principal divisor
(Corollary 1.4.12). Let @ — P = (z); then z is a generating element of the
rational function field over IF, and P is the pole divisor of z. As usually we
write P = P,,. By Proposition 2.3.2 we can assume that degG =k —1>0
(the case k = 0 being trivial). The divisor (k — 1)Ps, — G has degree zero, so
it is principal (Riemann-Roch and Corollary 1.4.12), say (k—1)Py — G = (u)
with 0 # u € F. The k elements u, zu, ..., 2" !u are in Z(G) and they are
linearly independent over IF ;. Since £(G) = k, they constitute a basis of Z(G);
ie.,

Z(G)={uf(z)|f eF,[z] and degf <k —1}.
Setting «; := z(P;) and v; := u(P;) we obtain

(uf(2))(Bi) = u(P) f(2(F)) = vif (i)

for i =1,...,n. Therefore
C=Cyp(D,G)={(v1f(a1),...,onf(an))|degf <k —1}.
The codeword in C corresponding to uz? is (vla{,vga;‘,...,vnaﬁ;), so the

matrix (2.14) is a generator matrix of C.

(b) The proof is essentially the same as in the case n < ¢. Now we have
n = ¢+ 1 and we can choose z in such a way that P, = P, is the pole of
z. As above, (k —1)Ps, — G = (u) with 0 # u € F, and {u, zu,..., 2" tu} is
a basis of Z(G). For 1 < i <n —1 = ¢ the elements «; := 2(P;) € IF, are
pairwise distinct, so Iy = {a1,...,a,_1}. Moreover, v; := u(P;) € F for
i=1,...,n—1. For 0 <j <k — 2 we obtain

(uz?)(Py), ..., (uz?)(P,)) = (dvy,...,00 _ v,_1,0),
but for j = k — 1 holds

(uz"=1)(Py), ..., (uz""Y)(Py)) = (@ 1wy, ... ab "o, 1,9)

1

with an element 0 # v € IF,. Substituting v by v~ u yields the generator

matrix (2.15). i
Definition 2.3.4. Let o = (aq,...,q,) where the «; are distinct elements
of Fy, and let v = (v1,...,v,) where the v; are nonzero (not necessarily

distinct) elements of IF,. Then the Generalized Reed-Solomon code, denoted
by GRSy (v, v), consists of all vectors

(v1f(a1),.. ., onf(an))
with f(z) € Fylz] and deg f <k —1 (for a fized k <n).
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In the case a = (3, 8?%,...,8") (where n = ¢ — 1 and 3 is a primitive n-th
root of unity) and v = (1,1,...,1), GRSk(«,v) is a Reed-Solomon code, cf.
Section 2.2.

Obviously GRSk (a,v) is an [n, k] code, and Proposition 2.3.3.(a) states
that all rational AG codes over IFy of length n < g are Generalized Reed-
Solomon codes. The converse is also true:

Proposition 2.3.5. FEvery generalized Reed-Solomon code GRSy («, v) can be
represented as a rational AG code.

Proof. Let a = (au,...,an) with a; € IFy and v = (v1,...,v,) with v; € T
Consider the rational function field F' = IF,(z). Denote by P; the zero of
z—a;(i=1,...,n) and by P the pole of z. Choose u € F such that

uw(P;)=wv; for i=1,...,n. (2.16)

Such an element exists by the Approximation Theorem. (One can also de-
termine a polynomial v = u(z) € IF,[2] satistying (2.16), by using Lagrange
interpolation.) Now let

D:=P+...4 P, and G:=(k—1)Px — (u).

The proof of Proposition 2.3.3 shows that GRSy (a,v) = C»(D,G). O

The same arguments apply to a code of length n = ¢ + 1 over IFy, which
has a generator matrix of the specific form (2.15). All such codes can be
represented as rational AG codes.

In order to determine the dual of a rational AG code C' = C¢ (D, G), we
need (by Theorem 2.2.8 and Proposition 2.2.10) a Weil differential w of IF,(z)
such that

vp,(w)=—=1 and wp(l)=1 for i=1,...,n. (2.17)

Lemma 2.3.6. Consider the rational function field F' = IF,(z) and n distinct
elements au,...,a, € Fy. Let P, € Pp be the zero of z — oy and h(z) =
[T, (z— ). Suppose y is a element of F such that y(P;) =1 fori=1,...,n.
Then there exists a Weil differential w of F/IF, with the property (2.17) and
the divisor

(W) = () + (W(2)) = (h(2)) — 2P (2.18)
(where b/ (z) € IF (2] is the derivative of the polynomial h(z)).

Proof. There is a Weil differential n of F' with (1) = —2P, and np_(z71) =
—1 (see Proposition 1.7.4). We set

w:=y- (W (2)/h(2)) .
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The divisor of w is (w) = (y) + (h'(2)) — (h(z)) — 2P, in particular holds
vp,(w) = =1 for i = 1,...,n. We have to verify that wp, (1) = 1. Write
h(z) = (2 — a;)gi(2); then

y-h/(z)=(1+<y—1))~<g£(2)+ : )= .

h(z) gi(z)  z—q z—q;

with u € F and vp, (u) > 0 (because vp,(y — 1) > 0 and vp, (g;(2)) = 0). Since
np,((z —a;)™') =1 and np, (u) = 0 (by Proposition 1.7.4(c) and Proposition
1.7.3(a)), we obtain

om0 =an (55 ) =mn (25 ) =1

Note that Lemma 2.3.6 - combined with Theorem 2.2.8, Proposition
2.2.10 and Proposition 2.3.3 - enables us to specify a parity check matrix
for C(D,G).

Next we would like to describe BCH codes and Goppa codes by means of
rational AG codes. To this end we need the following concept:

0O

Definition 2.3.7. Consider an extension field IFym of IF, and a code C over
IFym of length n. Then
C|]Fq =CnN IFZ

is called the subfield subcode of C' (or the restriction of C' to IF,).

Clr, is a code over IF,. Its minimum distance cannot be less than the
minimum distance of C, and for the dimension of C|r, we have the trivial
estimate dim C' |]Fq < dim C. In general this can be a strict inequality.

Definition 2.3.8. Assume that n|(¢™ — 1) and let 8 € IFym be a primitive
n-th root of unity. Let | € Z and § > 2. Define a code C(n,l,d) over I m by
the generator matrix

1 ﬁl ﬁ21 o ﬁ(n—l)l
1 6l+1 ﬁQ(H-l) o ﬂ(n—l)(l—&-l)

H:=| . , , , (2.19)
i ﬁl—&-'é—2 ﬁQ(l—;-é—2) o ﬁ(n—l).(l+6—2)

The code C := C(n,1,6)*|p, is called a BCH code with designed distance 6.
In other words,
C={celF}|H =0}, (2.20)

where the matriz H is given by (2.19).
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We note that BCH codes are usually defined as special cyclic codes. One
can easily show however, that our Definition 2.3.8 coincides with the usual
definition, cf. [25],[28].

Proposition 2.3.9. Let n|(¢™ — 1) and let § € Fym be a primitive n-th root
of unity. Let F' = IF ym (2) be the rational function field over IFym and Py (resp.
Py, ) be the zero (resp. pole) of z. Fori = 1,...,n denote by P; the zero of
z— 31 and set Dg := Py +...+ P,. Suppose that a,b € Z are integers with
0<a+b<n-—2. Then we have

(a) C¢(Dg,aPy + bPy) = C(n,1,d) withl = —a and 0 = a+ b+ 2 (where
C(n,l,0) is as in Definition 2.3.8).

(b) The dual of C#(Dg,aPy+ bPy) is given by

Co(Dg,aPy + bPx)*t = Co(Dg, 1Py + sPs)

with r = —(a + 1) and s = n — b — 1. Hence the BCH code C(n,l,0)"|p,
is the restriction to IF, of the code Co(Dg, 7Py + sPx), with r =1 —1 and
s=n+1-—6—1.

Proof. (a) We consider the code C¢(Dg, aPy+bPs) where 0 < a+b <n—2.
The elements 2% - 27 with 0 < j < a+ b constitute a basis of .Z(aPy + bPs,).
Hence the matrix

1 ﬂfa ﬁf2a . (/anl)fa
1 57a+1 672a+2 . (ﬁnfl)faJrl
i ﬁfaJ;(zH»b) 672aJ.rZ(a+b) o (ﬂnfl);aJr(aer)

is a generator matrix of C'»(Dg, aPy + bPs). Substituting [ := —a and ¢ :=
a+ b+ 2 we obtain the matrix (2.19), so C»(Dg,aPy 4+ bPs) = C(n,l,0).

(b) We use the notation of Lemma 2.3.6 and set

n

y:=2" and h(z):= H (z—p7H)=2"-1.

i=1
Proposition 2.2.10 yields C.¢(Dg,aPy + bPs)* = C»(Dg, B) with

B =Dg— (aPy+bPx) + (27") + (h'(2)) — (h(2)) — 2P
= Dg — (aPy+ bPx) + n(Px — Py) + (n — 1)(Py — Px)
—(Dg — nPs) — 2Px
=(~a—1)Py+(n—b—1)Ps.
Since | = —a and § = a + b+ 2 (by (a)), we find Cy(Dg,aPy + bPs)t =

Cy(Dg,7Py+ sPx) withs=n—-b—1=n—(d—a—-2)—1=n+1-§—1
andr=—-a—-1=101-1. O
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Next we introduce Goppa codes. As with BCH codes, our definition of
Goppa codes differs from the usual definition given in most books on coding
theory. However both definitions are equivalent.

Definition 2.3.10. Let L = {a1,...,an} CIFym with |L| = n, and let g(z) €
IFym (2] be a polynomial of degree t such that 1 <t <n—1 and g(coy;) # 0 for
all a; € L.

(a) We define a code C(L,g(z)) C (IFgm)™ by the generator matriz

g(ar)™! g(az)™! g(an)™!
arg(ar) ™ agglan)™ . anglan)!
e | | | (2.21)
A lglan)™t b rglan)™t Lo b lg(an) Tt

(b) The code I'(L, g(2)) := C(L, g(2))*|w, is called the Goppa code with Goppa
polynomial g(z). This means

(L g(2) = {c € B2 [ H - ¢ =0}
with H as in (2.21).
Note that the matrix (2.21) is a special case of (2.14) (with v; = g(a;) 1),

hence C(L, g(z)) and C(L, g(z))* are Generalized Reed-Solomon codes. Now
we give an explicit description of these codes as rational AG codes.

Proposition 2.3.11. In addition to the notation of Definition 2.3.10, let P;
denote the zero of z—ay; (for oy € L), Poo the pole of z and Dy, := P +...+P,,.
Let Gg be the zero divisor of g(z) (in the divisor group of the rational function
field F =T gm(z)). Then we have

C(L,g(2)) = Co(Dyr,Go — Px) = C(Dp, A — Go)* (2.22)
and

I'(L,g(z)) = C4(Dr,Go — Pso) " |lp, = C2(Dr, A = Go)l,
where the divisor A is determined as follows: Set

h(z) := H (z—a;) and A:=(N(2))+ (n—1)Px.

Proof. Tt is sufficient to prove (2.22). For 0 < j <t — 1, the element 27¢g(2)~!
is in Z(Goy — Ps) because

(zjg(z)_l) :](PO_POO)_(GO_tPoo) > _GO+P00-



62 2 Algebraic Geometry Codes

Since dim £ (Go—Px) = t, the elements g(z) !, 2g(2)71,..., 27 1g(2) 7! form
a basis of Z(Go—Px). Thus (2.21) is a generator matrix of C ¢ (D, Go— P );
ie.,

C(Lag(z)) = Cf(DLv GO - Poo) .
From Proposition 2.2.10 and Lemma 2.3.6 we obtain C'»(Dy, G — Pso)t =

B =Dy — (Go— Px) + (I (2)) — (h(2)) — 2Ps
=D — Go+ Ps + A— (n—1)Ps, — (D, — nPs) — 2P5,
=A—Gy.

0O

In coding theory the so-called BCH Bound (resp. the Goppa Bound) for
the minimum distance of BCH codes (resp. Goppa codes) is well-known. Both
bounds can easily be derived from the above results.

Corollary 2.3.12. (a) (BCH Bound.) The minimum distance of a BCH code
with designed distance ¢ is at least §.

(b) (Goppa Bound.) The minimum distance of a Goppa code I'(L, g(2)) is at
least 1+ degg(z).

Proof. (a) Using notation as in Proposition 2.3.9 we represent the BCH code
in the form C' = C(Dg, Py + sPx)|w,. The minimum distance of the code
Cy(Dg,rPy + sPx) is, by Propositions 2.3.2 and 2.3.9(b),

d=n—deg(rPy+sPx)=n—(l-1)+(n+1-0-1))=4.

Since the minimum distance of a subfield subcode is not less than the minimum
distance of the original code, the minimum distance of C' is > 4.

(b) In the same manner we represent I'(L, g(z)) as C (D, A—Go)|r, (nota-
tion as in Proposition 2.3.11). As C'¢ (D, A— Go) has the minimum distance

d=n—deg(A—Gpy)=n— ((n— 1) —degg(z)) =1+degyg(z),
the assertion follows. 0O

Remark 2.3.13. The subfield subcode construction makes possible to construct
codes over IF, of arbitrary length, by considering codes over an appropriate
extension field IF;m and restricting them to IF,. Note however, that a code C'
over IF;m may have good parameters (i.c., large dimension and minimum dis-
tance) whereas the restricted code C|, can be very poor (since the dimension
of Clr, may be much less than the dimension of C, cf. Chapter 9).
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Remark 2.8.14. Subfield subcodes of Generalized Reed-Solomon codes are
known as alternant codes, cf. [28]. Propositions 2.3.3 and 2.3.5 state that the
class of alternant codes over IF, corresponds to the class of subfield subcodes
of rational AG codes which are defined over extension fields IFym 2 IF,.

Remark 2.3.15. From the point of view of algebra, the rational function field
IF, (%) is the most trivial example of an algebraic function field. Nevertheless
the AG codes associated with divisors of IF,(z) are already interesting codes
as we have seen in this section. So it looks promising to consider algebraic
geometry codes associated with non-rational function fields F/TF,,.

Often a function field F' is represented in the form
F=1WFy(x,y) with o(x,y) =0,

where ¢ is a non-constant irreducible polynomial in two variables with coef-
ficients in IFy. Then F' can be regarded as a finite algebraic extension of the
rational function field IFy(z) (or IF,(y)). Several problems arise:

(1) Is IF,, the full constant field of F'?
(2) Calculate the genus of F.

(3) Describe the places of F' explicitly. In particular, which places are of degree
one?

(4) Construct a basis for the spaces .Z (@), at least in specific cases.

(5) Give a convenient description of Weil differentials and of their local com-
ponents.

Another interesting question is:
(6) How many places of degree one can a function field F/IF, of genus g have?

This question is important for coding theory since one often wants to construct
long codes over IF,, and the length of an AG code associated with a function
field is bounded by the number of places of degree one.

In order to tackle these problems it is necessary to develop further the the-
ory of algebraic function fields. This will be done in the subsequent chapters.
We will continue the discussion of codes in Chapter 8.

2.4 Exercises

2.1. For a non-empty subset M C IFZ we define the support of M as supp M =
{i|1<i<mn, there is some ¢ = (c1,...,¢,) € M with ¢; # 0}.

Now let C' be an [n, k] code over IF,. For all » with 1 < r < k, the r-th
Hamming weight of C' is defined as follows:

d,(C) = min{ [supp W|; W C C is an r-dimensional subspace of C}.
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The sequence (d1(C),dy(C),...,d,(C)) is called the weight hierarchy of the
code C. Show:

(i) di(C) is equal to the minimum distance of C.
(ii) 0<di(C)<do(C) <...<dp(C)<n.
(i) (Singleton Bound) For all » with 1 <r <k one has d,.(C) <n —k+r.

2.2. In this exercise we study relations between the weight hierarchy of AG
codes and the gonality sequence of function fields, cf. Exercise 1.18. Let F/IF,
be a function field of genus g. As usual, we consider divisors D = Py +...+ P,
with n distinct places P; of degree one, and G with supp D Nsupp G = (). Let
C (D, @) be the corresponding AG code and set k := dim C (D, G). Show:

(i) For all r with 1 <r < k one has
0,(C(D,G)) > n — deg G + 7,
Observe that this is a generalization of Goppa’s Bound for the minimum

distance of AG codes (Theorem 2.2.2).
(i) Assume in addition that deg G < n. Then

d.(Cx(D,G))=n—k+r foral rwith g+1<r<k.

2.3. Let C = C¢(D, @) be the AG code associated to the divisors G and D =
Py +...+ P, with n distinct places P; of degree one and supp DNsupp G = §.
The integer a := ¢(G — D) is called the abundance of C. Show that the r-th
minimum distance d, = d,.(C¢ (D, Q)) of C(D,G) satisfies the estimate

drznfdegG‘{”YM»av

where ; denotes the j-th gonality of the function field F/IF,. Conclude the
estimate
d>n—degG+ 7,

if the abundance of C'¢(D,G) is > 1 (and v = 7y, is the gonality of F/IF,).

2.4. Let C C IF‘;1 be a rational AG code of dimension k& > 0.

(i) Prove that for every m with n+1—k < m < n there is a codeword ¢ € C
with wt(c) = m.

(i) Determine the weight hierarchy of C'.

2.5. Let F' = TF,;(z) be the rational function field over IF,. For o € IF let P,
be the zero of z—a, and denote by P, the pole of z in F. Let D := Zaewq P,
and G = rPy with r < (¢ — 2)/2.

(i) Show that the code C'» (D, Q) is self-orthogonal.

(i) For ¢ = 2% and r = (¢ — 2)/2 show that C»(D,G) is self-dual.
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2.6. (i) Take the definition of a BCH code from any textbook on coding
theory, and show that it is equivalent to our Definition 2.3.8.

(ii) The same problem for Goppa codes, see Definition 2.3.10.

2.7. Let C be an [n, k] code over the field IFym.
(i) Show that dim Clp, > n —m(n —k).
(i) Find non-trivial examples where equality holds.

(iii) Find examples where the minimum distance of C|p, is larger than the
minimum distance of C.

2.8. (Generalized AG codes) Let F/IF, be a function field of genus g. Assume
that Py, ..., Ps € IPp are distinct places and G is a divisor with P; ¢ supp G.
Fori =1,...,s let m; : Fp, — C; be an IF -linear isomorphism from the
residue class field Fp, = Op,/P; onto a linear code C; C IF;“, whose param-
eters are [n;, k; = deg P;,d;]. Let n := Y ;_, n; and define the linear map
7 L(G) — Fy by n(f) == (m(f(P1)),-.,7s(f(Ps))). The image of 7 is
then called a generalized AG code. Formulate and prove estimates for the
dimension and the minimum distance of such codes, analogous to the Goppa
Bound for AG codes (Theorem 2.2.2).

2.9. Let F/IF, be a function field of genus g, and let D = P, + ...+ P, with
distinct places P; of degree 1. Consider a divisor GG of the form G = A+ B
with A > 0 and B > 0. Assume that Z > 0 is another divisor such that the
following hold:

(1) supp G Nsupp D = supp Z Nsupp D = ),
(2) 6(A—2Z)=1((A) and {(B+ Z) = {(B).
Show that the minimum distance d of the code C(D, G) satisfies

d>deg G— (29 —2)+deg Z.

Compare with Theorem 2.2.7.
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Extensions of Algebraic Function Fields

Every function field over K can be regarded as a finite field extension of a
rational function field K (z). This is one of the reasons why it is of interest to
investigate field extensions F’/F of algebraic function fields. In this chapter
we shall study, among other things, the relationship between places, divisors,
Weil differentials and the genera of F’ and F. Let us first fix some notation
to be maintained throughout the entire chapter.

F/K denotes an algebraic function field of one variable with full con-
stant field K. The field K is assumed to be perfect; i.e., there does
not exist a purely inseparable extension L/K with 1 < [L : K| < oo.
We consider function fields F'/K' (where K' is the full constant field
of F') such that F' D F is an algebraic extension and K' O K. For
convenience, we fix some algebraically closed field ® O F and consider
only extensions I’ O F with I’ C &.

Actually the perfectness of K will be essential only in a few places of
Chapter 3, in particular in Section 3.6. The fact that we consider only ex-
tensions of F' which are contained in @ is no restriction at all, since @ is
algebraically closed and thereby every algebraic extension F//F can be em-
bedded into @.

Since this chapter is rather long, we first give a brief survey. In Section
3.1 we introduce the basic concepts: algebraic extensions of function fields,
extensions of places, ramification index and residue class degree as well as the
Fundamental Equality > e; f; = n.

Subrings of algebraic function fields, in particular holomorphy rings, are
studied in Section 3.2.

In the next section we investigate the integral closure of a subring of F//K
in a finite separable field extension F’/F, and we prove the existence of local
integral bases. This section also contains Kummer’s Theorem which is useful
in determining the decomposition of a place in a finite extension of function
fields.

H. Stichtenoth, Algebraic Function Fields and Codes, 67
Graduate Texts in Mathematics 254,
(© Springer-Verlag Berlin Heidelberg 2009
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Let F'/F be a finite separable extension of algebraic function fields. The
Hurwitz Genus Formula provides a relation between the genus of F', the genus
of F” and the different of F’/F. Section 3.4 is concerned principally with this
result.

In Section 3.5 we study the relation between ramified places and the dif-
ferent (Dedekind’s Different Theorem), and we show how to calculate the
different in specific cases.

Constant field extensions are considered in Section 3.6. The study of such
extensions reduces many problems to the case where the constant field is
algebraically closed (which is often simpler because all places have degree
one).

Section 3.7 is concerned with Galois extensions of algebraic function fields.
For some particular types of Galois extensions F’/F (Kummer and Artin-
Schreier extensions), we determine the genus of F”.

The topic of Section 3.8 is Hilbert’s theory of higher ramification groups,
including Hilbert’s Different Formula.

In Section 3.9 we discuss ramification and splitting of places in the com-
positum of two extensions; one of the main results here is Abhyankar’s Lemma.

In Section 3.10 we consider purely inseparable extensions of an algebraic
function field.

Finally we give in Section 3.11 some upper bounds for the genus of a
function field: Castelnuovo’s Inequality, Riemann’s Inequality, and an estimate
for the genus of the function field of a plane algebraic curve of degree n.

Many results of this chapter (in particular most of Sections 3.1, 3.3, 3.5,
3.7, 3.8 and 3.9) hold not only in the case of algebraic function fields but,
more generally, for extensions of Dedekind domains. Hence the reader who is
familiar with algebraic number theory can skip the appropriate sections.

3.1 Algebraic Extensions of Function Fields

We begin with some basic definitions.

Definition 3.1.1. (a) An algebraic function field F' /K’ is called an algebraic
extension of F/K if F' O F is an algebraic field extension and K' O K.

(b) The algebraic extension F' /K’ of F/K is called a constant field extension
if F' = FK', the composite field of F' and K'.

(¢) The algebraic extension F'/K' of F/K is called a finite extension if
[F': F] < o0.

One can also consider arbitrary (not necessarily algebraic) extensions of
function fields. However, we shall restrict ourselves to algebraic extensions
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since these are by far the most important ones. Arbitrary extensions of func-
tion fields are studied in detail in [7].

We note some simple consequences of the above definitions.

Lemma 3.1.2. Let F'/K' be an algebraic extension of F/K. Then the fol-
lowing hold:

(a) K'/K s algebraic and FNK' = K.

(b) F'/K' is a finite extension of F/K if and only if [K' : K] < 0.

(c) Let Fy := FK'. Then F\/K’ is a constant field extension of F/K, and
F'/K' is a finite extension of Fy/K' (having the same constant field).

Proof. (a) and (c) are trivial. As to (b), we assume first that F'/K’ is a finite
extension of F/K. Then F’ can be considered as an algebraic function field
over K whose full constant field is K’. By Corollary 1.1.16 we conclude that
[K' : K] < oc.

Conversely, suppose that [K’ : K] < co. Choose © € F\K; then F'/K'(x)
is a finite field extension (since x is transcendental over K'), and

[K'(z) : K(z)] < [K' : K] < .

(Actually it holds that [K'(z) : K(x)] = [K' : K], but we do not need this
here.) Therefore

[F' i K(z)]=[F' : K'(2)] - [K'(z) : K(z)] < c0.

Since K (x) C F C F’, this implies [F’ : F] < oc. O

Now let us study the relation between the places of F and F’.

Definition 3.1.3. Consider an algebraic extension F'/K' of F/K. A place
P’ € g is said to lie over P € Pp if P C P'. We also say that P’ is an
extension of P or that P lies under P', and we write P'|P.

Proposition 3.1.4. Let F'/K' be an algebraic extension of F/K. Suppose
that P (resp. P') is a place of F/K (resp. F'/K'), and let Op C F (resp.
Op C F’) denote the corresponding valuation ring, vp (resp. vpr) the corre-
sponding discrete valuation. Then the following assertions are equivalent:

(1) P'|P.

(2) Op C Op:.

(8) There exists an integer e > 1 such that vp/(x) = e-vp(x) for allxz € F.
Moreover, if P'|P then

P=PNF and Op=0p NFE.

For this reason, P is also called the restriction of P’ to F.
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Proof. (1) = (2): Suppose that P’'|P but Op € Ops. Then there is some
u € F with vp(u) > 0 and vp/(u) < 0. As P C P’ we conclude vp(u) = 0.
Choose t € F with vp(t) =1, then t € P’ and r := vp/(t) > 0. Consequently

vp(u't) =r-vp(u) +vp(t) =1,
vpr(u't) =r-vp(u) +op (t) < —r4+r=0.

Thus u"t € P\P’, a contradiction to P C P’.
Before proving (2) = (1) we show the following:

OpCOp =0p=FnNOp. (31)

Clearly FNOp: is a subring of F with Op C FNOp:, therefore FNOpr = Op
or FNOp = F by Theorem 1.1.13(c). Assume that F N Op: = F}; ie.,
F C Opr. Choose an element z € F'\Op:. Since F’'/F is algebraic, there is
an equation

2t ep 12" bzt =0 (3.2)

with ¢, € F. We have vp/(z") =n-vp/(z) <0 as z ¢ Ops, therefore
vp (") <wvpi(cy2”) for v=0,---,n—1.
The Strict Triangle Inequality yields
vp (2" + cpo12" T 4 ez +cg) = vp(2) # vpr(0).

This contradiction to (3.2) proves (3.1).

(2) = (1): Now we suppose Op C Ops. Let y € P; then y~! ¢ Op by
Proposition 1.1.5, therefore y=! ¢ Op/ by (3.1). Applying Proposition 1.1.5
once again, we obtain y = (y~1)~* € P’, hence P C P'.

(2) = (3): Let u € F be an element with vp(u) = 0. Then u,u=! € Op/
by (2), and so we have vpr(u) = 0. Now choose ¢ € F with vp(t) = 1 and
set e := vps(t). Since P C P’ it follows that ¢ > 1. Let 0 # = € F and
vp(z) =:7 € Z. Then vp(xt~") = 0, and we obtain

vpr(x) =vp(at™) +op(t") =041 -vp(t) =e-vp(x).
3)= (2):2€0p=vp(x)>0=vp(xr)=€-vp(xr) >0=u¢€ Op.

So we have proved the equivalences (1) <= (2) <= (3), and Op =
Op N F if P'|P. The assertion P = P’ N F is now trivial (for example, from

(3))- 0

A consequence of the preceding proposition is that for P/|P there is a
canonical embedding of the residue class field Fp = Op/P into the residue
class field Fp, = Op//P’, given by

z(P)— xz(P") for z€Op.

Therefore we can consider Fp as a subfield of Fp,.
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Definition 3.1.5. Let F'/K' be an algebraic extension of F/K, and let P’ €
Pr: be a place of F'/K' lying over P € Pp.

(a) The integer e(P’'|P) := e with
vpr(x) =e-vp(x) forallzeF
is called the ramification index of P’ over P. We say that P'|P is ramified if
e(P'|P) > 1, and P'|P is unramified if e(P'|P) = 1.
(b) f(P'|P) := [Fp, : Fp] is called the relative degree of P' over P.

Note that f(P’|P) can be finite or infinite; the ramification index is always
a natural number.

Proposition 3.1.6. Let F'/K’' be an algebraic extension of F/K and let P’
be a place of F'/K' lying over P € Pp. Then
(a) f(P'|P) < o0 <= [F':F] < .
(b) If " /K" is an algebraic extension of F'/K' and P" € Py is an exten-
sion of P, then

e(P"|P) = e(P"|P") - e(P'|P),

f(P"IP) = f(P"|P") - f(P'|P).

Proof. (a) Consider the natural embeddings K C Fp CFp, and K CK' CF},,
where [Fp : K] < oo and [Fp, : K'] < co. It follows that

[Fp i Fp] <oo < [K': K] < 0.

The latter condition is equivalent to [F’ : F] < co by Lemma 3.1.2.

(b) The assertion regarding ramification indices follows trivially from the
definitions, and f(P”|P) = f(P”|P’) - f(P'|P) follows from the inclusions
Fp CFL CFg,. O

Next we investigate the existence of extensions of places in extensions of
function fields.

Proposition 3.1.7. Let F'/K’ be an algebraic extension of F/K.

(a) For each place P' € Pp: there is exactly one place P € IPr such that P'|P,
namely P =P NF.

(b) Conversely, every place P € IPr has at least one, but only finitely many
extensions P’ € PPps.
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Proof. (a) The main step of the proof is the following.
Claim. There is some z € F, z # 0, with vp/(2) # 0. (3.3)

Assume this is false. Choose t € F' with vp/(t) > 0. Since F'/F is algebraic,
there is an equation

et + Cp 1tV et =0

with ¢; € F, co # 0 and ¢, # 0. By assumption we have vp (co) = 0 and
vpr(cit") = vpr(c;)+i-vp(t) > 0fori =1,...,n, a contradiction to the Strict
Triangle Inequality. Thus (3.3) is proved.

We set O := Ops N F and P := P’ N F. It is obvious by (3.3) that O is a
valuation ring of F/K and that P is the corresponding place. The uniqueness
assertion is trivial.

(b) Now a place P of F/K is given. Choose x € F\K whose only zero is
P (this is possible by Proposition 1.6.6). We claim that for P’ € IPr/ the
following holds:

P'|P <= vpi(x) >0. (3.4)
Since = has at least one but only finitely many zeros in F’/K’, assertion (b)
is an immediate consequence of (3.4).
Now we prove (3.4). If P/|P then vp/(x) = e(P’|P) - vp(x) > 0. Conversely,
assume that vp/(z) > 0. Let @ denote the place of F//K which lies under P’

(here we use (a)). Then vg(z) > 0, so @ = P since P is the only zero of « in
F/K. O

The preceding proposition enables us to define a homomorphism from the
divisor group Div(F) into Div(F").

Definition 3.1.8. Let F'/K' be an algebraic extension of F/K. For a place
P € Pp we define its conorm (with respect to F'/F) as

Conpyp(P) := Y _ e(P'|P)- P,
P'|P

where the sum runs over all places P' € P/ lying over P. The conorm map
is extended to a homomorphism from Div(F) to Div(F"’) by setting

COIIF//F (Z np - P) = Z’I’LP . COHF//F(P) .
The conorm behaves well in towers of function fields F” DO F’ O F; an
immediate consequence of Proposition 3.1.6(b) is the formula
COHF"/F (A) = COHFI//F/ (COHF//F (A))
for every divisor A € Div(F).

Another nice property of the conorm is that it sends principal divisors of
F to principal divisors of F’. More precisely we have:
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Proposition 3.1.9. Let F'/K' be an algebraic extension of the function field
F/K. For 0 # x € F let (2)f, ()5, (2)F resp. ()8, ()5, (2)F" denote

[o oh) [o o)

the zero, pole, principal divisor of x in Div(F) resp. in Div(F"). Then

F’ F’

0) = (@) , Conpyr((x)k) = (x)k , and Conpyp((x)") = (x)".

COﬂF'/F ((z )0

Proof. From the definition of the principal divisor of z follows that

@ = Y wp(@) P'= Y 3 e(P|P)-vp(a) - P

P'elPp/ PelPp P'|P

= Z Up(l’) ' CODF//F(P> = CODF//F( Z Up(.’[?) : P)
PelPr PelPr

= COHFI/F((SC)F) .

Considering only the positive (negative) part of the principal divisor, we ob-
tain the corresponding result for the zero (pole) divisor of x. O

By this proposition the conorm induces a homomorphism (again denoted
as conorm) of the divisor class groups

COHF//F : Cl(F) d CI(F/) .

This map is in general neither injective nor surjective (whereas the map
Conpyp : Div(F) — Div(F') is trivially injective).

One of our next goals is to find a relation between the degrees of a divisor
A € Div(F) and of its conorm in Div(F’) in the case of a finite extension
F’/F (the general case will be considered in Section 3.6). To this end we first
prove a lemma.

Lemma 3.1.10. Let K'/K be a finite field extension and let x be transcen-
dental over K. Then

[K'(z) : K(z)] = [K': K].

Proof. We can assume that K/ = K(«) for some element o € K’. Clearly
[K'(z) : K(z)] < [K' : K] since K'(z) = K(z)(«). As for the reverse in-
equality we have to prove that the irreducible polynomial ¢(T) € K[T] of «
over K remains irreducible over the field K (x). Suppose that this is false, so
o(T) = g(T) - h(T) with monic polynomials ¢(T),h(T) € K(x)[T] of degree
< deg . Since p(a) = 0 we have w.l.o.g. g(a) = 0. We write

g(T)=T" + o1 ()T + -+ ¢o(x)

with ¢;(z) € K(z) and r < deg; then
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Q" +c1(z)a" "+ () = 0.
Multiplying by a common denominator we obtain
gr(x)-a" +gr_1(x) a4 go(x) =0 (3.5)

for certain polynomials g;(z) € K[z], and we can assume that not all g;(x)
are divisible by x. Setting = 0 in (3.5) yields a non-trivial equation for «
over K of degree less than deg ¢, a contradiction. O

Theorem 3.1.11 (Fundamental Equality). Let F'/K’ be a finite exten-
sion of F/K, let P be a place of F/K and let P,..., P, be all the places
of F'/K' lying over P. Let e; := e(P;|P) denote the ramification index and
fi := [(P5|P) the relative degree of P;|P. Then

Zezfzz [F,:F].
i=1

Proof. Choose © € F such that P is the only zero of = in F/K, and let
vp(xz) =: r > 0. Then the places Pi,..., P, € Pp, are exactly the zeros of
x in F'/K' by (3.4). Now we evaluate the degree [F’ : K(z)] in two different
ways:

:T'degp'zeifi~ (3.6)

i=1

(The second line in the above equations follows from Lemma 3.1.10. The fact
that the degree of the zero divisor of x in F'/K' equals [F’ : K'(z)] is a
consequence of Theorem 1.4.11.) On the other hand,

[F':K(z)]=[F' :F]-[F:K()]=[F :F]-r-degP, (3.7)
since r P is the zero divisor of x in F//K. Comparing (3.6) and (3.7) one obtains
the desired result. O

Corollary 3.1.12. Let F'/K' be a finite extension of F/K and P € TPp.
Then we have:
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(a) |{P' € Pp:; P’ lies over P}| < [F': F].
(b) If P' € P lies over P then e(P'|P) < [F': F| and f(P'|P) < [F': F].

According to Corollary 3.1.12 the following definition makes sense:

Definition 3.1.13. Let F'/K' be an extension of F/K of degree [F' : F]=
and let P € IPp.

(a) P splits completely in F'/F if there are exactly n distinct places P' € P
with P'|P.

(b) P is totally ramified in F'/F if there is a place P' € IP g with P'|P and
e(P'|P) =n.

By the Fundamental Equality it is clear that a place P € IP g splits com-
pletely in F’/F if and only if e(P’|P) = f(P’|P) = 1 for all places P’|P in
F'. If P is totally ramified in F’/F then there is exactly one place P’ € IPp
with P’|P.

As a consequence of the Fundamental Equality we obtain:

Corollary 3.1.14. Let F'/K' be a finite extension of F/K. Then for each
divisor A € Div(F),

deg Conpr/p(A) = ~deg A.

K K]

Proof. 1t is sufficient to consider a prime divisor A = P € IPr. We have

deg Conpyp(P) = deg(z e(P'|P) - P’)

PP
_ Z P/‘P Fp/ : ]
PP
F, K]
= PPy
“ 2
- [K’l- 7] 2 eP'IP)- [Fpr i Fpl - [Fp : K]
' P'|P
- [K’1 K| (Z e(P’|P)-f(P’|p)> -deg P
' P/|P
- [[gj ?] ~deg P (by Theorem 3.1.11).
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The foregoing results can be used to prove a very useful criterion for ir-
reducibility of certain polynomials over a function field. A special case of the
following proposition is known as Eisenstein’s Irreducibility Criterion.

Proposition 3.1.15. Consider a function field F//K and a polynomial
o(T) = a,T" + an T '+ .+ a T+ ao

with coefficients a; € F'. Assume that there exists a place P € IPr such that
one of the following conditions (1) or (2) holds:
(1) vp(a,) =0, vp(a;) > vp(ag) >0 for i=1,...,n—1 , and
ged(n,vp(ag)) = 1.
(2) vp(a,) =0, vp(a;)) >0 for i=1,...,n—1 , vp(ag) <0 , and
ged(n,vp(ag)) = 1.
Then o(T) is irreducible in F[T]. If F' = F(y) where y is a root of ¢(T),
then P has a unique extension P’ € IPp/, and we have e(P'|P) = n and
f(P'|P)=1 (i.e., P is totally ramified in F(y)/F).

Proof. We consider an extension field F' = F(y) with ¢(y) = 0. The degree
of F'/F is [F' : F] < dego(T) = n, with equality if and only if ¢(T) is
irreducible in F[T]. Choose an extension P’ € Pz of P. As p(y) =0,

—any" =ag+ a1y + ...+ an_1y" L. (3.8)

First we assume (1). From vp/(a,) =0 and vp/(a;) > 0fori=1,...,n—1

it follows easily that vp:(y) > 0. Setting e := e(P’|P), we have vp/(ag) =
e-vp(ag) and vpr(a;y) = e-vp(a;)+i-vp(y) > e-vp(ag) fori=1,...,n—1.

By the Strict Triangle Inequality, (3.8) implies
n-vp(y) =e-vp(ag).

As ged(n,vp(ag)) = 1 by assumption (1), we conclude that nle and therefore
n < e. On the other hand, n > [F’ : F| > e by Corollary 3.1.12. So we obtain

n=e=[F':F]. (3.9)

All assertions of Proposition 3.1.15 follow now immediately from (3.9) and
Theorem 3.1.11.

The proof is similar in the case when one assumes (2) instead of (1). 0O

Before we can proceed further with the theory of extensions of algebraic
function fields, we have to study certain subrings of a function field.
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3.2 Subrings of Function Fields

As before, F/K denotes a function field with constant field K.

Definition 3.2.1. A subring of F/K is a ring R such that K C R C F, and
R is not a field.

In particular, if R is a subring of F/K then K & R G F. Here are two

typical examples:
(a) R = Op for some P € Pp.
(b) R=Kl[zy,...,x,] where x1,...,2, € F\K.

While Op is obviously a subring, to see that K|z, ..., z,] is also a subring,
we have to show that it is not a field. To this end, choose a place P € Pg
such that vp(xz1) > 0,...,vp(x,) > 0. Let z = 21 and d := deg P. As the
residue classes 1,z(P),...,z%(P) € Op/P are linearly dependent over K one
can find ayg,...,aq € K such that the element z = ag + aqz + ... + agz? is
not 0 but vp(z) > 0 (observe that z is transcendental over K since x ¢ K).
Clearly z € K[x1,...,2,] but 271 & K[x1,...,2,] (since vp(y) > 0 for every
y € K[x1,...,2,]).

A more general class of subrings than (a) is given by the following
definition.

Definition 3.2.2. For § # S G IPr let
Og :={z€ F|vp(z) >0 forall P € S}

be the intersection of all valuation rings Op with P € S. A ring R C F which
is of the form R = Og for some S g Pr, S # 0 is called a holomorphy ring
of F/K.

For instance, the ring K|z] is a holomorphy ring of the rational function
field K (z)/K. One checks easily that

Klz] = () Op,
P#Po

where P, denotes the unique pole of x in K(x).

We note some simple consequences of Definition 3.2.2.

Lemma 3.2.3. (a) Every valuation ring Op is a holomorphy ring, namely
Op = Og with S = {P}.

(b) Every holomorphy ring Og is a subring of F/K.



78 3 Extensions of Algebraic Function Fields

(c) For P € IPr and ) # S G IPr we have
OsCOp <= PcS.

Consequently, Og = Op < S=T1T.

Proof. (b) Since Og is a ring with K C Og C F we have only to show that it
is not a field. Choose a place P; € S. As S # IPg, the Strong Approximation
Theorem yields an element 0 # x € F' such that

vp, () >0 and wvp(x)>0 forall PeS.

Obviously z € Og but 27! ¢ Og; therefore Og is not a field.

(c) Suppose P ¢ S. By the Strong Approximation Theorem we can find z € F
with

vp(z) <0 and vg(z) >0 forall Q€S. (3.10)
(This is clear if SU {P} # IPp. If however S U {P} = IPp, choose z € Og
which has at least one zero in S; since z must have some pole it follows that
vp(z) < 0.) Each element z satisfying (3.10) is in Og but not in Op. Thus
we have proved that P ¢ S implies Og ¢ Op. The remaining assertions are
trivial. 0

Definition 3.2.4. Let R be a subring of F/K.
(a) An element z € F is said to be integral over R if f(z) = 0 for some monic
polynomial f(X) € R[X]; i.e., if there are ag,...,an—1 € R such that

Vb an 12" M a2+ ap=0.

Such an equation is called an integral equation for z over R.
(b) The set

icp(R) :={z € F | z is integral over R}
is called the integral closure of R in F.

(¢) Let Fy C F denote the quotient field of R. The ring R is called integrally
closed if icp,(R) = R; i.e., every element z € Fy which is integral over R is
already in R.

Proposition 3.2.5. Let Og be a holomorphy ring of F/K. Then
(a) F is the quotient field of Og.
(b) Og is integrally closed.

Proof. (a) Let € F,x # 0. Choose a place Py € S. By the Strong Approxi-
mation Theorem there is an element z € F' such that

vp,(2) = max{0,vp, (™) and vp(z) > max{0,vp(z~ ")} forall P € S.

1

Clearly z € Og, z # 0 and y := za € Og, so x = yz~  is in the quotient field

of Os.
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(b) Let u € F be integral over Og. Choose an integral equation
um + an,lu”_l +--+ap=0 (3.11)

with a; € Og. We have to show that vp(u) > 0 for all P € S. Suppose this is
false, so that vp(u) < 0 for some P € S. Since vp(a;) > 0,

vp(u™) =n-vp(u) < vp(au’)

for i =0,...,n— 1. Thus the Strict Triangle Inequality yields a contradiction
to (3.11). O

Theorem 3.2.6. Let R be a subring of F/K and
S(R) :={Pe€Pr|RC Op}.

Then the following hold:

(a) D # S(R) & TP

(b) The integral closure of R in I is icp(R) = Oggy. In particular, icp(R)
is an integrally closed subring of F/K with quotient field F.

Proof. (a) Since R is not a field we can find a proper ideal T g R, and by
Theorem 1.1.19 there exists a place P € IPr such that I C P and R C Op.
Therefore S(R) # (. On the other hand, consider an element z € R which
is transcendental over K. Each place @ € IPr which is a pole of z is not in
S(R), so S(R) # Pp.

(b) Since R C Og(ry and Og(p) is integrally closed (by Proposition 3.2.5) it
follows immediately that icp(R) C (’)S( g)- In order to prove the inclusion in
the reverse direction, consider an element z € Og(g). We claim:

27V Rz = R[z7Y]. (3.12)

Suppose that (3.12) is false; i.e., z71R[z71] is a proper ideal in R[27!]. By
Theorem 1.1.19 we find a place @ € IPr such that

Rz COg and z7'eqQ.

It follows that @@ € S(R) and z ¢ Oq which is a contradiction to z € Og(ry;
thus we have proved (3.12). From (3.12) we obtain a relation

L=z a7 (3.13)
i=0
with ag, - -+ ,as € R. Multiplying (3.13) by 2*t! yields

S
25t E a;z°7'=0.
i=0

This is an integral equation for z over R. 0O
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Remark 3.2.7. Note that in the proof of Theorem 3.2.6 we did not actually
use the assumption that K is the full constant field of F. Thus the theorem
remains true if we only assume that F'/K is a function field — the constant
field K of F/K may be larger than K.

An easy consequence of Proposition 3.2.5 and Theorem 3.2.6 is

Corollary 3.2.8. A subring R of F/K with quotient field F is integrally
closed if and only if R is a holomorphy ring.

Proposition 3.2.9. Let Og be a holomorphy ring of F/K. Then there is a
1-1-correspondence between S and the set of maximal ideals of Og, given by

P+— Mp :=PNQOg (for P€S).

Moreover, the map

. Os/Mp I FPZOP/P,
N+ Mp +— z+ P

18 an isomorphism.

Proof. Consider for P € S the ring homomorphism

¢1{OS — Fp,

T —x+ P.

We claim that ¢ is surjective. In fact, let 2 + P € Fp with z € Op. By the
Strong Approximation Theorem there is some x € F satisfying

vp(x —2z) >0 and vgo(x) >0 forall Qe S\{P}.

Then z € Og and ¢(x) = z + P. The kernel of ¢ is Mp = P N Og, hence
¢ induces an isomorphism ¢ : Og/Mp — Fp. Since Fp is a field, Mp is a
maximal ideal of Og. If P # @, the Strong Approximation Theorem shows
that Mp 7& MQ.

It remains to prove that each maximal ideal of Og can be written as PNOg
for some P € S. Let M C Og be a maximal ideal. By Theorem 1.1.19 there
is a place P € IPp with

MCP and OgC Op.

Lemma 3.2.3(c) shows that P € S. Since M C PN Og and M is a maximal
ideal of Og, we obtain M = PN Og. 0O

We know by Theorem 1.1.6 that a valuation ring Op of F/K is a principal
ideal domain (i.e., every ideal of Op is principal). In general holomorphy rings
are no longer principal ideal domains. However, the following generalization
of Theorem 1.1.6 holds:
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Proposition 3.2.10. If S C IPr is a non-empty finite set of places of F/K,
then Og is a principal ideal domain.

Proof. Let S = {P1,...,Ps} and let {0} # I C Og be an ideal of Og. For
i=1,...,s choose x; € I such that

vp,(z;) =:n; <wvp,(u) forall uwel.

(This is possible since vp, (u) > 0 for all w € I and I # {0}.) By the Approxi-
mation Theorem we can find z; € F' such that

vp,(2:) =0 and wvp,(z)>n; for j#i.

Clearly z; € Og, therefore the element x := Zle x;z; is in I. By the Strict
Triangle Inequality we have vp, (x) = n; for i = 1,...,s. Our proposition will
be proved when we can show that I C xOg. Consider an element z € I. Set
y:=ax " 'z, then

vp,(y) =vp(2) —n; >0 for i=1,...,s.

Consequently y € Og and z = zy € 20g. O

3.3 Local Integral Bases

In this section we investigate the integral closure of a subring of F/K in an
extension field of F'. We consider the following situation:

F/K is a function field with constant field K, and F' O F is a finite
field extension (the constant field K' of F' may be larger than K ).

Proposition 3.3.1. Let R be an integrally closed subring of F/K such that
F is the quotient field of R (i.e., R is a holomorphy ring of F/K ). For z € F’
let (T') € F[T] denote its minimal polynomial over F. Then we have:

z is integral over R <= ¢(T') € R[T].

Proof. By definition, ¢(7T) is the unique irreducible monic polynomial with
coefficients in F' such that p(z) = 0. If o(T") € R[T] then z is clearly integral
over R.

The converse is not so evident. In fact, one has to use the assumption
that R is integrally closed. So consider an element z € F’ which is integral
over R. Choose a monic polynomial f(7') € R[T] with f(z) = 0. Since ¢(T")
is the minimal polynomial of z over F' there is some (T') € F|[T] such that
f(T) = (T)-(T). Let F” O F’ be a finite extension field of F' containing
all roots of ¢, and R” = icp~(R) be the integral closure of R in F”. Since all
roots of ¢ are roots of f as well, they are in R”. The coefficients of o(T') are
polynomial expressions of the roots of ¢, so ¢(T') € R"[T]. But o(T) € F[T]
and F'N R” = R since R is integrally closed. Therefore ¢(T') € R[T]. O
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Corollary 3.3.2. Notation as in Proposition 3.3.1. Let Trp/p : F' — F de-
note the trace map from F' to F and let x € F' be integral over R. Then
TrF’/F(:E) S R

This corollary follows easily from well-known properties of the trace map-
ping. Let us briefly recall some of these properties which will be of use in
the sequel. We consider a finite field extension M/L of degree n. If M/L is
not separable, the trace map Tryyr, : M — L is the zero map. Hence we can
assume from now on that M/L is separable. In this case, Trys, : M — L is
an L-linear map which is not identically zero. It can be described as follows.
Choose an algebraically closed field ¥ O L. An embedding of M/L into ¥ is
a field homomorphism ¢ : M — ¥ such that o(a) = a for all a € L. Since
M/ L is separable there are exactly n distinct embeddings oy,...,0, of M/L
into ¥, and we have for x € M

Ty (2) = Z oi(z).

If o(T) =T" + a,—1T"" ' + ...+ ao € L[T] is the minimal polynomial of z
over L, then

Trayp(z) = —sa,—1, where s :=[M : L(z)]. (3.14)
The trace behaves well in towers of fields, i.e.

Try(z) = Traye (Tramn () (3.15)

whenever H O M D L.

Note that Corollary 3.3.2 is an immediate consequence of (3.14) and
Proposition 3.3.1.

Proposition 3.3.3. Let M/L be a finite separable field extension, and con-
sider a basis {z1,...,2n} of M/L. Then there are uniquely determined ele-
ments 27, ...,z € M, such that

Tragyr(zi2}) = 6ij -

(0;; denotes the Kronecker symbol.) The set {z3,..., 2%} is a basis of M/L as
well; it is called the dual basis of {z1,...,2z,} (with respect to the trace).

Proof. We consider the dual space M” of M over L; i.e., M" is the space
of all L-linear maps A\ : M — L. It is well-known from linear algebra that
M" is an n-dimensional vector space over L. For z € M and A € M” define
z+ A€ M" by (z-A)(w) := A(zw). This turns M" into a vector space over
M of dimension one (as dimg(M") = [M : L] - dimp;(M")). Since Tryyy, is
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not the zero map, every A € M” has a unique representation A = z - Tr ML
In particular the linear forms \; € M” given by \;(z;) = d;; (i = 1,...,n)
can be written as A; = z7 - Tryyy, with 25 € M. This means that

TI‘M/L(le;) = (Zj* . TI"M/L)(ZZ') = )\7(21) = (Sij .

As A1,..., A\, are linearly independent over L, the same holds for zf,..., 2}

no

and hence they constitute a basis of M/L. O

Our next result holds essentially without the assumption of separability.
The proof however is simpler under this additional hypothesis, and later on
we shall need the result only for separable extensions.

Theorem 3.3.4. Let R be an integrally closed subring of F/K with quotient
field F', and F'/F be a finite separable extension of degree n. Let R’ = icp/(R)
denote the integral closure of R in F'. Then we have:

(a) For every basis {x1,...,x,} of F'/F there are elements a; € R\{0} such
that ayxy,...,apx, € R'. Consequently there exist bases of F'/F which are
contained in R'.

(b) If {z1,...,2n} C R is a basis of F'/F and {z},..., 25} denotes the dual

rn
basis with respect to the trace map then

n n
> Rz CR C> Rz
=1 1=1

(¢) If in addition R is a principal ideal domain, then there exists a basis
{ui,...,un} of F'/F with the property

R/ = i Rui .
=1

Proof. (a) It must be shown that for every x € F’ there is some element
0 # a € R such that ax satisfies an integral equation over R. Since F’'/F is
algebraic and F' is the quotient field of R, there are elements a;,b; € R with
a; # 0 and

b b b
e R N 1
ar—1 ai’ ap
Multiplying this equation by a”, where a :=ag-aq - ... a,_1, we obtain

(az)" + cr_1(ax)" 4 ... 4+ cr(ax) +co =0

with ¢; € R, so ax € R'.
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(b) Now {z1,...,2,} is a basis of F'/F such that all z; € R, and {z7,...,2}}
is the dual basis. In particular each z € F’ can be represented in the form

z=e1z] +...+eyz, with e; € F.

If z € R' then 22; € R' for j = 1,...,n, consequently Trp/p(22;) € R by
Corollary 3.3.2. Since

Trpyp(22;) = Trpyp (Z eizjz;k> = Zei “Trpyp(zi27) = €5,
i=1 =1

we conclude that e; € R, hence R’ C """ | Rz}.

(¢) Choose a basis {w1, ..., w,} of F'/F with R" C >"" | Rw; (this is possible

by (b)). For 1 < k < n set

k
Ry :==R'NnY Ru;. (3.16)

i=1
We want to construct recursively uq,...,u, such that Ry = Zle Ru;. For

k=1 (i.e.,, Ry = R' N Rwy) consider the set
I :={a € F|aw € R'}.

It is contained in R, since R" C " | Rw;. Actually I; is an ideal of R,
hence I1 = a1 R for some a; € R (as R is a principal ideal domain). Setting
w1 := ajw; it is easily verified that Ry = Ruq.
Suppose now that for & > 2 we have already found u, ..., u;_1 such that
Ry =Y.' Ru,. Let
I, :=={a € F | there are by,...,b_1 € R
with bywy + ... + bg_1wi—1 + awy, € R'}.

Again I} is an ideal of R, say I = a;R. Choose u, € R’ with
U = CLW1 + ...+ Cp—1Wk—1 + AWy -

Clearly Ry 2 Zle Ru;. In order to prove the reverse inclusion, let w € Ry.
Write
w=dw +...+dyw, with d; € R.

Then dj, € I, hence dj, = daj with d € R and

k-1 k—1
w — duy, € R'ﬂZRwi =Ry = ZRui.
i—1 i=1

Therefore w € Zle Ru,.

We have proved that R’ = R,, = Z?:l Ru;. Since R’ contains some basis
of F'/F by (a), the elements uy,...,u, are linearly independent over F and
constitute a basis of F'/F. O
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Corollary 3.3.5. Let F'/F be a finite separable extension of the function field
F/K and let P € IPp be a place of F/K. Then the integral closure O of Op

in F' is
o= o

P'|P

There exists a basis {uy,...,un} of F'/F such that

n
/
i=1

Every such basis {u1,...,u,} is called an integral basis of Op over Op (or
a local integral basis of F'/F for the place P).

Proof. This is clear by Theorem 3.2.6(b), Remark 3.2.7 and Theorem 3.3.4
(observe that Op is a principal ideal domain). O

An important supplement to the existence of local integral bases is given
in the next theorem.

Theorem 3.3.6. Let F/K be a function field, F'/F be a finite separable ex-
tension field. Then each basis {z1,....zn} of F'/F is an integral basis for
almost all (i.e., all but finitely many) places P € PPp.

Proof. We consider the dual basis {z7,...,2%} of {z1,...,2,}. The minimal
polynomials of z1,...,2,, 27, ..., 25 over I involve only finitely many coeffi-
cients. Let S C IPr be the set of all poles of these coefficients. S is finite, and
for P ¢ S we have

21y Zny 2y sz € Op (3.17)

where O% = icp/ (Op). Therefore

> > >

The first and third of these inclusions are obvious by (3.17), the second and
fourth follow immediately from Theorem 3.3.4(b) (note that {z1,...,2,} is
the dual basis of {z,...,2%}). Thus {z1,...,2,} is an integral basis for each
P¢Ss. O

Next we want to describe a method which can often be used to determine
all extensions of a place P € IPr in F’. For convenience we introduce some
notation.

F := Fp is the residue class field of P.
a := a(P) € F is the residue class of a € Op.
If Y(T) = . ¢;T" is a polynomial with coefficients c; € Op, we set

G(T) =Y &T" € FITY.
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Obviously every polynomial (7)) € F[T] can be represented as v(T) = (T
with ¢(T) € Op[T] and deg¢(T) = degy(T'). With these notations we have
the following theorem.

Theorem 3.3.7 (Kummer). Suppose that F' = F(y) where y is integral
over Op, and consider the minimal polynomial o(T) € Op[T] of y over F.
Let

P(1) = [0
i=1
be the decomposition of @(T) into irreducible factors over F (i.e., the polyno-

mials v1(T),...,v-(T) are irreducible, monic, pairwise distinct in F[T]| and
g; > 1). Choose monic polynomials ¢;(T) € Op|T] with

@i(T) =v(T) and degy;(T) = deg;(T).
Then for 1 <i <r, there are places P; € IPps satisfying
PP, ¢i(y) € P and [(P]P) > degvi(T).

Moreover P; # P; fori # j.
Under additional assumptions one can prove more. Suppose that at least
one of the following hypotheses (x) resp. (xx) is satisfied:

g=1 for i=1,...,r, or (%)

{1,9,...,y" '} is an integral basis for P . (%)

Then there exists, for 1 < i < r, exactly one place P; € PP, with P;|P and
vi(y) € P;. The places Py, ..., P. are all the places of F' lying over P, and
we have

COI’IF//F(P) = Z€2P1 3
i=1

i.e., i = e(P|P). The residue class field Fp = Op,/P; is isomorphic to

€.,
[T1/(7i(T)), hence f(Pi|P) = degi(T).

Proof. We set F; := F[T/(v;(T)). Since ;(T) is irreducible, F; is an exten-

sion field of F' of degree

[F; : F] = degvi(T). (3.18)

Consider the ring Oply] = Z?;Ol Op -y’ where n = degp(T) = [F' : F).
There are ring homomorphisms

Jop[T]  —  Oply],
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and -
. Op [T] — F;
U YgT! v YT modyi(T) .

The kernel of p is the ideal generated by ¢(T'). Since
mi(o(T)) = ¢(T) mod»(T) =0,

we have Ker(p) C Ker(m;). We conclude that there is a unique homomorphism

o; : Oply] — F; with m; = 0; o p. It is explicitly given by
U{ Oply)  — Fi,
S ey — X0 6T mody(T).
From this it is obvious that o; is an epimorphism. We claim that its kernel is
Ker(o;) = P - Oply| + ¢i(y) - Op[y]. (3.19)

The inclusion Ker(o;) 2 P - Oply] + ¢i(y) - Oply] is trivial. In order to

show the reverse inclusion, consider an element Z;L;OI cjy’ € Ker(o;). Then
Z?:_()l ¢;T7 = @;(T) - ¢(T) for some 1 (T) € Op[T], hence

n—1

> T — oui(T) - (T) € P-Opl[T].

=0

Substituting 7" = y we obtain that
n—1 ‘
> ey’ = ily)-¢(y) € P-Oplyl.
j=0

This proves (3.19).

By Theorem 1.1.19 there exists a place P; € IPps such that Ker(o;) C P;
and Op[y] C Op,, hence P;|P and ¢;(y) € P;. The residue class field Op,/P;
contains Op[y]/Ker(o;) which is isomorphic to F; via o;. Therefore (by (3.18))

f(P|P) > [F; : F]=deg(T).

For i # j the polynomials v;(T') = @;(T') and ~;(T) = ¢;(T) are relatively
prime in F[T], so there is a relation

1=gi(T) - Xi(T) + @5(T) - A (T)
with \;(T), \;(T) € Op[T]. This implies

ei(y) - Ni(y) +¢i(y) - Aj(y) —1 € P-Oply].
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We conclude that 1 € Ker(o;) + Ker(o;), by (3.19). Since P; O Ker(o;) and
P; D Ker(o), we have shown that P; # P; for i # j.

Now we suppose that hypothesis (x) holds, i.e.
o(T) = [[r(T).
i=1
Then

[F' : F] =degp(T) = Zdeg%(T)

T

< Zf(PAP) < > e(P|P)- f(P|P)

< Y e(P|P)- f(P'|P)=[F": F],
P'|P

by Theorem 3.1.11. This is possible only if e(P;|P) = 1, f(P;|P) = deg ;(T),
and there are no places P’ € IPp, with P’|P other than Pi,..., P,.

Finally we assume hypothesis (xx). As before we choose P; € IPp such
that P;|P and ¢;(y) € P;.

Claim: Py, ..., P, are the only extensions of P in F”.
In fact, let P’ € P, with P’|P. Since

0=y = H @i(y)* mod P - Op[y],

we obtain

[Lwit) e r". (3.20)

P’ is a prime ideal in Op/, so (3.20) implies ¢;(y) € P’ for some i € {1,...,r}
and
P-Oplyl +¢i(y) - Oply] € P'N Oply]. (3.21)

The left hand side is a maximal ideal of Oply] by (3.19), therefore equality
holds in (3.21). As we also have

P-Oplyl + ¢i(y) - Oply] € PN Oply],
it follows that
P'NOply] = PiNOply] = ¢i(y) - Oplyl + P - Oply]. (3.22)

Since Opy] is the integral closure of Op in F’ by hypothesis (xx), Proposition
3.2.9 shows now that P’ = P;, and the claim is proved.
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As an immediate consequence of the Claim and Corollary 3.3.5 we see that

T

Orlyl =) Op,- (3.23)
i=1
By the Approximation Theorem one can find elements t1,...,t, € F’ satisfy-

ing
vp,(t;) =1 and vp,(t;) =0 for j #i.
Choose a P-prime element ¢ € F'; then
ti € Oplyl NP = ¢i(y) - Oply] +t- Oply]
by (3.23) and (3.22). Thus ¢; can be written as
ti = wi(y) - ai(y) +t - bi(y) with ai(y),bi(y) € Oply].

From this we obtain

T

_H ti =aly) - [[eiw) +t- by (3.24)

i=1

with a(y),b(y) € Oply]. As
.H #i(y)" = ¢(y) mod ¢ - Op[y]

and ¢(y) =0, (3.24) implies that

r

H t; =t-u(y) for some wu(y)e€ Oply|. (3.25)
i=1
Thereby
g = vp, H 7 | = vp,(t) = e(Bi|P). (3.26)
j=1

On the other hand we have
f(P;|P) = degi(T) (3.27)

by (3.18), (3.19), (3.22) and Proposition 3.2.9. It follows, by (3.26), (3.27) and
Theorem 3.1.11, that

T

[F': F] =Y e(P|P)- f(P|P)

i=1

< Y e degi(T) = degp(T) = [F' : F].
=1

Hence ¢; = e(F;|P) for i =1,...,r. m]
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We emphasize a special case of Kummer’s Theorem which is often partic-
ularly useful.

Corollary 3.3.8. Let o(T) =T" + fo_1(z)T"t + -+ + fo(x) € K(x)[T] be
an irreducible polynomial over the rational function field K(x). We consider
the function field K(x,y)/K where y satsfies the equation ¢(y) = 0, and an
element o € K such that fj(a) # oo for all 5,0 < j < n — 1. Denote by
Py € Pk (y) the zero of x — « in K(x). Suppose that the polynomial

pa(T) =T" + fua (@)T" "+ + fola) € K[T]

has the following decomposition in the polynomial ring K|[T]:
T
i=1

with irreducible, monic, pairwise distinct polynomials 1¥;(T) € K[T]. Then we
have:

(a) For every i = 1,...,r there is a uniquely determined place P; € IPg(, )
such that x — « € P; and ¥;(y) € P;. The element x — «v is a prime element
of P; (i.e., e(P;|P,) = 1), and the residue class field of P; is K-isomorphic to
K[T]/(4i(T)). Hence f(P;|Ps) = degthi(T).

(b) If deg ;i (T) = 1 for at least one i € {1,...,r}, then K is the full constant
field of K(x,vy).

(c) If po(T) has n = deg p(T) distinct roots 3 in K, then there is for each 8
with ¢o(3) = 0 a unique place Py g € P (s such that

r—acPy,p and y—pBcP,p3.

P, s is a place of K(x,y) of degree 1.

Proof. We set F' := K(z) and F' := K(z,y). The assumption f;(a) # oo
implies that y is integral over the valuation ring of P,, and the polynomial
©a(T) is nothing else but ¢(T') (with notation as in Kummer’s Theorem).
Thus we are in the situation of hypothesis (x) of Kummer’s Theorem, and our
corollary follows immediately. 0O

3.4 The Cotrace of Weil Differentials and the Hurwitz
Genus Formula

In this section the following situation is considered:

F/K is an algebraic function field, F'/F a finite separable extension,
K’ is the constant field of F'. Clearly, K'/K is a finite separable ex-
tension as well.
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Our aim is to associate with each Weil differential of F'/K a Weil differ-
ential of F’/K'. This will yield a very useful formula for the genus of F’, the
Hurwitz Genus Formula. For this we need to introduce the notion of different
of an extension F'/F. Note that F’/F is always assumed to be a separable
extension, hence the trace map Trp//p is not identically zero.

Definition 3.4.1. For P € IPp let O :=icp/(Op) denote the integral closure
of Op in F'. Then the set

Cp :={2 € F'| Ttpyp(z - Op) C Op}
is called the complementary module over Op.

Proposition 3.4.2. With notation as in Definition 3.4.1 the following hold:
(a) Cp is an Op-module and O C Cp.
(b) If {z1, ..., zn} is an integral basis of O over Op, then

n

*

Cp: E Op~Zi,
=1

where {z7,... 25} is the dual basis of {z1,...,2n}.

(c) There is an element t € F' (depending on P) such that Cp = t - O)p.
Moreover,
vp/(t) <0 for all P'|P,

and for every t' € F' we have:
Cp=1t-0%p < vp/(t')=vp/(t) for all P'|P.

(d) Cp = O% for almost all P € Pp.

Proof. (a) The assertion that Cp is an Opb-module is trivial. Since the trace
of an element y € O% is in Op, by Corollary 3.3.2, we have O C Cp.

(b) First we consider an element z € Cp. As {z},..., 25} is a basis of F'/F,
there are z1,...,2, € Fwithz =Y | 2;27. Since z € Cp and 21, ... 2, €O,
it follows that Trp//p(22;) € Op for 1 < j < n. Now

TI'F//F(ZZ]') = TrF//F (Z "EZZZ*Z]>
i=1
Z “Trpyp (2 25) = x4,

by the properties of the dual basis. Therefore z; € Op and z € Z?:l Op -z

Conversely, let z € > | Op - zf and u € O, say z = Y ., x;z; and
u =377 y;2 with z;,y; € Op. Then



92 3 Extensions of Algebraic Function Fields

TI‘F’/F ( Z l’iij;ij)

ij=1

n
Z w3y - Trpyp (27 25) szyz €Op.

ij=1

T‘I'F//F (ZU)

Hence z € Cp.
(¢) By (b) we know that Cp = Y. | Op-u; with appropriate elements u; € F’.
Choose « € F such that
vp(x) > —vpr(u;)

for all P'|P and i=1,...,n. Then

vpr(zu;) = e(P'|P) - vp(x) +vpr(u;) >0
for all P'|P and i = 1,...,n, therefore - Cp C O% (observe that we have
Op ={u e F'|vp/(u) > 0 for all P'|P}, by Corollary 3.3.5). Obviously z-Cp
is an ideal of O%. Hence x - Cp = y - O for some y € O, because O is
a principal ideal domain by Proposition 3.2.10. Setting ¢ := 2~'y we obtain

Cp =t-0O%. Since O C Cp, it follows immediately that vp/(t) < 0 for all
P’|P. Finally we have for t’ € F":

t-Op=t-Op < "' € Op and t7't' € O)
= vp/(tt'™1) >0 and vp (t~'') > 0 for all P'|P
< vp/(t) =vp(t") for all P'|P.
(d) Choose a basis {z1,...,2,} of F'/F. By Theorem 3.3.6 {z1,...2,} and

{zF,..., 2%} are integral bases for almost all P € IPr. Using (b) we see that
Cp = O) for almost all P. O

Definition 3.4.3. Consider a place P € Pr and the integral closure O of
Op in F'. Let Cp =t - Op be the complementary module over Op. Then we
define for P'|P the different exponent of P’ over P by

d(P/|P) = —Up/(t).

By Proposition 3.4.2, d(P'|P) is well-defined and d(P’'|P) > 0. Moreover
d(P'|P) = 0 holds for almost all P € Pr and P'|P, since Cp = 1- O
for almost all P. Therefore we can define the divisor

Diff(F'/F) := Y > d(P'|P)-
PelPr P'|P

This divisor is called the different of F'/F.

Observe that Diff (F'/F) is a divisor of F”, and Diff (F’/F) > 0. Later on
we will develop several methods for determining the different in many cases,
see for instance Theorem 3.5.1, Theorem 3.5.10 and Theorem 3.8.7.
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Remark 3.4.4. We have the following useful characterization of the comple-
mentary module Cp, which follows immediately from the definitions. For every
element z € F/,

z€Cp < vp/(z) > —d(P'|P) for all P'|P.

Let us recall some notions from Chapter 1 which are used in what follows.
Ap is the adele space of F/K. For a divisor A € Div(F) let

Ar(A) ={a € Ar |vp(a) > —vp(A) for all P € Pr}.

This is a K-subspace of Ap. The field F' is embedded into Ap diagonally. A
Weil differential w of F/K is a K-linear mapping w : Ap — K vanishing on
Ap(A) + F for some divisor A € Div(F). If w # 0 is a Weil differential of
F/K then its divisor (w) € Div(F) is defined as

(w) = max{A € Div(F) | w vanishes on Ap(A) + F}.
Definition 3.4.5. Let

Apyp ={a € Ap/ | apr = o whenever PPNF =Q NF}.

This is an F’-subspace of Ap/. The trace mapping Trp/p @ F' — F can
be extended to an F-linear map (again denoted by Trp/p) from Ap/p to Ap
by setting

(Trpyp () p = Trepyp(apr) for a € Apyp,
where P’ is any place of F” lying over P. Observe that apr € Op/ for almost
all P" € IPpv, therefore Trp/p(ap:) € Op for almost all P € IPp by Corollary
3.3.2. Hence Trp/p(a) is an adele of F//K. Clearly the trace of a principal
adele z € I is the principal adele of Trz//p(2).

For a divisor A" € Div(F’) we set
Apy(A) 1= Ap(A) O Apie.

Theorem 3.4.6. In the above situation, for every Weil differential w of F/K
there exists a unique Weil differential ' of F'/K' such that

Tr i (W' (@) = w(Trpyp(a)) (3.28)

for all o € Apyp. This Weil differential is called the cotrace of w in F'/F,
and it is denoted by Cotrpyp(w). If w # 0 and (w) € Div(F) is the divisor of
w, then

(COtI'F//F(CU)) = COHF//F((CLJ)) + DIH(F//F) .

An important special case of this theorem is:
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Corollary 3.4.7. Let F/K be a function field and x € K such that the ex-
tension F/K(x) is separable. Let n be the Weil differential of the rational
function field K(x) whose existence was proved in Proposition 1.7.4. Then the
divisor of its cotrace in F/K (x) is

(COtrF/K(:v) ("7)) = _2(37)00 + DIH(F/K(x>) '

Remark 8.4.8. Using the notion of local components of a Weil differential (cf.
Section 1.7), Equation (3.28) can be replaced by the following local conditions:
for each P € IPr and each y € F’,

wp(Tepe(y)) = TrK//K<Z e <y>> . (3.29)

P/|P

The equivalence of (3.28) and (3.29) follows after a little thought from
Proposition 1.7.2, which says that w(y) is the sum of its local components
wp(7p) for each adele 5y = (v7) perpy.-

In the course of the proof of Theorem 3.4.6 we need two lemmas which
will be proved first.

Lemma 3.4.9. For each C' € Div(F") we have Ap = Apyp + Ap/ (C') .

Proof. Let o = (apr)prerp,, be an adele of F’. For all P € IPp there exists by
the Approximation Theorem an element zp € F’ with

vp(ap —xp) > —vp (C') for all P'|P.

We set 3 = (Bp/)prep,, with fpr := xp whenever P'|P. Then 3 € Ap/p and
a—p e Ap(C"). Since a = §+ (a — 3), the lemma follows. O

Lemma 3.4.10. Let M/L be a finite separable field extension, V a vector
space over M and p 'V — L be an L-linear map. Then there is a unique
M -linear map p' =V — M such that Tryyp o p' = p.

Proof. As in the proof of Proposition 3.3.3 we consider the space of linear
forms M" = {\: M — L | Xis L-linear} as a vector space over M by setting
(z-N)(w) = Az w) for A € M" and z,w € M. The dimension of M" over M
is one, hence every A € M” has a unique representation A = z - Tr My with
z€e M.

For a fixed element v € V define the map A\, : M — L by A\,(a) := p(av);
it is clearly L-linear. Therefore A, = z,-Try;, with a unique element z, € M,
and we set p/(v) := z,. Thus we have

u(av) = (' (v) - Trage)(@) = Trage (a- 1/ (v)) (3.30)
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for all a € M and v € V, and p/(v) is uniquely determined by (3.30). Using
this it is easily verified that p' : V' — M is M-linear. Setting a = 1 in (3.30)
we obtain y = Tryy, o i, which proves the existence of y' : V' — M with the
desired properties.

Suppose that there is another p* : V' — M with Trpgy, o p' = Trpgyp, o pu*
and p* # p'. Then the image of u/ — p* is the whole of M, and we have
Trar o (i — p*) = 0. This is a contradiction, since Trpr, is not the zero
map. 0

Proof of Theorem 3.4.6. First we want to show the existence of a Weil differ-
ential w’ such that

TI‘K//K (w/(a)) = w(TrF//F(a))

holds for all & € Ap/p. For w = 0 set w’ := 0, therefore we can assume in the
sequel that w # 0. For brevity we set

W' = Conpyp((w)) + Diff(F'/F) . (3.31)

The construction of w’ is given in three steps.

Step 1. The K-linear mapping wi : Apyp — K which is defined by setting
w1 := w o Trpyp has the following properties:

(a1) wi(a) =0 for a € Apyp(W') + F'.

(by) If B" € Div(F’) is a divisor with B’ £ W', then there is an adele
B € Apyp(B') with wi(8) # 0.
Proof of Step 1. (a1) Obviously w; is K-linear, and w; vanishes on F’ since w

vanishes on F'. Now let a € Ap/p(W'). In order to prove wi(a) = 0 we only
have to verify that for all P € IPr and P’|P the following holds:

’UP(TI‘F//F(OLP/)) Z —’Up(w). (332)
(Observe that w vanishes on Ap((w)) by definition of the divisor (w).) Choose
an element z € F with vp(z) = vp(w). Then
Up/(l'ap/) = ’Up/(ZL’) + 'Up/(Oép/) 2 C(P/|P) -vp(w) - ’Up/(Wl)
vp (Conpryp((w)) = W') = —vp, (Diff(F'/F)) = —d(P'|P).

(Recall that d(P’|P) denotes the different exponent of P’|P.) This implies
by Remark 3.4.4 that xap: € Cp, the complementary module over Op, and
therefore vp(Trpyp(zapr)) > 0. As Trpyp(zap:) = - Trpyp(ap) and vp(z) =
vp(w), assertion (3.32) follows.
(b1) Now there is given a divisor B’ £ W’; i.e., there is a place Py € IPp such
that

vp-(Conpp((w)) — B) < —d(P*|Py) (3.33)

for some P*|Py. Let O, (vesp. Cp,) denote the integral closure of Op, in F’
(resp. the complementary module over Op,), and consider the set



96 3 Extensions of Algebraic Function Fields
J:={z € F' |vp+(z) > vp-(Conpyp((w)) — B') for all P*|Py} .

By the Approximation Theorem there is an element u € J which satisfies
vp«(u) = vp«(Conpyp((w)) — B’') for all P*|Py, therefore J € Cp, by Remark
3.4.4 and (3.33). Since .J - (’)jPU C J it follows that

TI'F//F(J) Z OP() . (334)

Choose t € F with vp,(t) = 1. For some r > 0 we have t" - J C Op (trivial
by definition of .J), so t" - Trp/p(J) = Trpyp(t"J) C Op,. It is easily checked
that ¢ - Trpp(J) is an ideal of Op,, consequently t" - Trp/p(J) = t° - Op,
with s > 0, and we obtain Trp/p(J) = t™ - Op, for some m € Z. By (3.34),
m < —1 and therefore

t71 . OPO g TI'F//F(J) . (335)

Recall the notion of the local component of a Weil differential, cf. Section 1.7.
By Proposition 1.7.3(a) we can find an element x € F with

vp,(x) = —vpy(w) — 1 and wp,(z) #0. (3.36)

We choose y € F with vp,(y) = vp,(w), so zy € t= - Op,. By (3.35) there is
some z € J with Trp/p(2) = xy. Consider the adele 3 € Ap/p given by
0 Zf PIJfPO )
Bp =4 o
yz if PP.
It follows from the definition of J that for P’|P,
vp(B) = —vpr(y) + vp(2)

> —vpr (Conpyp((w))) + vpr(Conpye((w)) - B')
= —'Up/(B/) .

So B € Apyp(B'). Finally, we have w1 () = w(Trpyr(8)) = wp,(x) # 0 by
(3.36). This proves (by).

Step 2. We define ws : Apr — K as follows. For a@ € Ap: there are adeles
B € Apyp and v € Ap/(W') such that a = 3 + ~, by Lemma 3.4.9. Set

wo () == wi(f).

This is well-defined. In fact, if we have two representations o = S+~ = B1+m
with 3,0, € AF’/F and v,y € AF/(W/) then

Br—f=v—mne€AppNAp(W')=App(W').

Hence wy(f1) —w1(8) = w1 (61 — ) = 0 by (a1). The mapping ws is obviously
K-linear, and by (a1) and (by) it has the following properties:



3.4 The Cotrace of Weil Differentials and the Hurwitz Genus Formula 97

(ag) wo(a) =0 for v € Ap/(W') 4+ F'.

(be) If B’ € Div(F") is a divisor with B’ £ W', then there is an adele
B € Ap/(B') with wa(8) # 0.

Thus far, we have constructed a K-linear mapping wo : Aps — K vanish-
ing on Ap/ (W') + F'. However, wy is not a Weil differential of F'/K' if K’ is
strictly larger than K. Therefore we have to ‘lift’ wo to a K’-linear map; this
is done in the next step.

Step 3. By Lemma 3.4.10 there exists a K'-linear map w’ : Apr — K’ such
that Tr gk ow’ = wy. From the definition of w; and wy we obtain immediately
that for a« € Apyp

Trgei (W'(@)) = wa(a) = wia) = w(Trpyp(a))

This proves (3.28), and it remains to show:

(a3) w'(a) =0 for « € Ap (W') + F'.

(b3) If B’ € Div(F") is a divisor with B’ £ W', then there is some adele
B € Ap/(B’) with w'(5) # 0.
Proof of (a3). Since w’ is K'-linear, the image of Ap/(W') + F’ under «’ is
either 0 or the whole of K'. In the latter case there is some o € Ap (W') + F’
such that Trp/x (w'(a)) # 0, since Trg/ i : K' — K is not the zero map.
By construction of w’ we have wy = Trgerpc 0 w’. Hence wq(a) # 0, which is a
contradiction to (as).

Proof of (b3). By (bs) there exists some adele 8 € A/ (B’) with the property
w2(B) # 0. So Tryk (w'(B)) # 0, and the assertion follows immediately.

We have established the existence of a Weil differential w’ of F'/K' satis-
fying (3.28), and we have shown that the divisor of w’ is

(') = W' = Conpyp((w)) + Diff(F'/F).

In order to prove uniqueness, suppose that w* is another Weil differential of
F'/K’ with the property (3.28); i.e.,

Tr gy (W (@) = TrK//K(w’(a)) = w(Trpyr())
for all @ € Apyp. Setting n := w* — W' we obtain
Trgyx (n(a)) =0 for all o € App . (3.37)

7 is a Weil differential of F’/K’, hence n vanishes on Ag/ (C") for some divisor
C" € Div(F’). By Lemma 3.4.9 and (3.37) it follows that Trg//x(n(a)) = 0
for all & € Ap/. This implies n = 0 and w* = w'. O

We note some formal properties of the cotrace mapping w +— Cotrp//p(w).
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Proposition 3.4.11. (a) If w,w; and wy are Weil differentials of F/K and
r € F, then

COtI'F//F(CL)1 + (A)Q) = COtI'F//F (C(J1) + COtI‘F//F((Ug)

and
Cotr pyp(2w) = x - Cotr prp(w) .

(b) Let F"/F' be another finite separable extension. Then
COtI‘F///F ((L)) = COtI‘F///F/(COtI'F//F (w))
for each Weil differential w of F/K.

Proof. Keeping in mind the uniqueness assertion in Theorem 3.4.6, it is suf-
ficient to show that

Tree ((Cotrpyp(wi) + Cotrpyp(ws) ) (@) = (@i +ws)(Tipyr(a) (3.38)

holds for all @ € Ap/p. The proof of (3.38) is straightforward, using the
linearity of the trace. In the same manner one proves that Cotrp//p(7w) = x -
Cotrpyp(w), as well as assertion (b). O

Corollary 3.4.12 (Transitivity of the Different). If F” O F' O F are
finite separable extensions, the following hold:

(a) Diff(F"' | F) = Conprp (Diff (F'/F)) 4 Diff (F" /F") .
(b) d(P"|P) = e(P"|P")-d(P'|P)+d(P"|P"), if P" (resp. P', P) are places
of F" (resp. F', F) with P" > P’ O P.

Proof. (b) is merely a reformulation of (a), so we only prove (a). Choose a
Weil differential w # 0 of /K. Then the divisor of Cotrp/p(w) is

(COtI‘F///F (w)) = COHF///F(<(,())> + DIH(F///F) (339)
by Theorem 3.4.6. On the other hand, Proposition 3.4.11 yields

(Cotrpryr(w)) = (Cotrpryer (Cotr pyp(w)))

(Cotrpye () + Dii(F" /)

= Conprpr (Conpyp((w)) + Diff (F'/F)) 4+ Diff (F" /F")

— Congprp () + Conprypr (Dff(F'/F)) + Diff(F"/F').  (3.40)

= COHF///F/

(We have used the transitivity of the conorm, cf. Definition 3.1.8.) Comparing
(3.39) and (3.40) we obtain (a). O

An important consequence of Theorem 3.4.6 is the following result.
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Theorem 3.4.13 (Hurwitz Genus Formula). Let F/K be an algebraic
function field of genus g and let F'/F be a finite separable extension. Let K’
denote the constant field of F' and g’ the genus of F'/K'. Then we have

F': F]

2’—2:[72—2 deg Diff (F'/F) .

g 2= (o1 (20— 2) + deg DI (/)

Proof. Choose a Weil differential w # 0 of F/K. It follows from Theorem
3.4.6 that

Recall that the degree of a canonical divisor is 2g — 2 (resp. 2¢9’ — 2). Then we
obtain from (3.41) and Corollary 3.1.14

2¢' — 2 = deg Conpp((w)) + deg Diff (F'/F)
= H@g —2) + deg Diff(F'/F) .

We emphasize a special case of the Hurwitz Genus Formula:

Corollary 3.4.14. Let F/K be a function field of genus g and let © € F\ K
such that the extension F/K(z) is separable. Then

29 — 2= —2[F : K(z)] + deg Diff (F//K (z)) .

Every function field F//K can be regarded as a finite extension of a rational
function field K (z) (as we shall prove in Section 3.10, one can choose z in
such a way that F//K(x) is separable). Therefore the Hurwitz Genus Formula
(resp. Corollary 3.4.14) is a powerful tool that allows determination of the
genus of F' in terms of the different of F//K (x). Thus far however, we have no
methods at hand how to determine this different. The next section addresses
this problem.

3.5 The Different

We consider a finite separable extension F'/F where F/K resp. F' K’
are algebraic function fields with constant fields K resp. K'. As always,
the field K (hence also K') is assumed to be perfect.

For P € IPr and P’ € IPr with P’'|P we have defined the ramification
index e(P'|P) and the different exponent d(P'|P) (Definition 3.1.5 and 3.4.3).
There is a close relationship between these two numbers, given by the following
theorem:



100 3 Extensions of Algebraic Function Fields

Theorem 3.5.1 (Dedekind’s Different Theorem). Withnotation as above
we have for all P'|P

(a) d(P'|P) > e(P'|P) — 1.
(b) d(P'|P) = e(P'|P) — 1 if and only if e(P’|P) is not divisible by char K.
In particular, if char K = 0 then d(P'|P) = e(P'|P) — 1.

We shall first prove part (a) of Dedekind’s Theorem; the proof will require
an understanding of the action of automorphisms on the places of a function
field. More precisely we need:

Lemma 3.5.2. Let F*/F be an algebraic extension of function fields, P € Pp
and P* € Pp. with P*|P. Consider an automorphism o of F*/F. Then
o(P*) :={o(z) | z € P*} is a place of F*, and we have

(a) vop+y(y) = vp« (07 (y)) for ally € F*.

(b) o(P*)|P .

(c) e(o(P7)|P) = e(P*|P) and f(o(P")|P) = f(P*|P).

Proof of the Lemma. Clearly o(Op~) is a valuation ring of F* and o(P*) is
its maximal ideal; therefore o(P*) is a place of F*, and the corresponding
valuation ring is Oy (p+) = 0(Op-). If t* is a prime element of P*, i.e. P* =
t* - Op+, then o(P*) = o(t*) - 0(Op+), so o(t*) is a prime element for o(P*).
(a) Let 0 £y € F*, say y = o(z). Writing z = t*"u with » = vp«(2) and u €
Op-\P*, we obtain y = o(t*)" - o(u) where o(u) € Og(p+)\o(P*) and o(t*) is
a prime element for o(P*). Therefore vy(p+)(y) = = vp-(2) = vp- (07 1(y)).
(b) o(P*) lies over P since o(P*) 2 o(P) = P.

(¢) Choose a P-prime element x € F. Then

e(0(P*)|P) = vo(pey(w) = vp+ (07" (2)) = vp-(x) = e(P*|P).

The automorphism o of F*/F induces an isomorphism & of the residue class
field F'5. onto F:(P*) given by

a(z+ P*) :==0(z) +o(P").
& is the identity on Fp, hence f(P*|P) = f(o(P*)|P). i

Proof of Theorem 3.5.1(a). As before let O% denote the integral closure of Op
in F’, and Cp the complementary module over Op. We want to show that

for every element t € F’ which satisfies

vpr(t) =1 —e(P'|P) for all P'|P. (3.43)
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Note that (3.42) implies ¢ € Cp, and the characterization of Cp given in
Remark 3.4.4 yields 1 — e(P’|P) > —d(P’'|P), so that d(P’|P) > e(P'|P) — 1.

In order to prove (3.42), consider a finite Galois extension F*/F such that
F C F’ C F*, and choose n := [F’ : F] automorphisms o1, ...,0, of F*/F
whose restrictions to F’ are pairwise distinct. For z € O, we have

T (t - 2) Zal t-z) (3.44)

We fix some place P* of F* which lies over P, and set P} := o; *(P*)
and P/ := P’ N F’. Note that o;(z) is integral over Op since z € (9 '», and
therefore vp«(o;(%)) > 0. Then we obtain

vp+(0i(t - 2)) = vp+ (04(t)) + vp+(0i(2))

> vp«(0i(t)) = vpx(t) (by Lemma 3.5.2)
(PPN —e(PIP)  (by (3.43))

> —e(P!|P)) - e(P/|P)

= —¢(P|P) = —e(P*|P) (by Lemma 3.5.2).

Using (3.44) we conclude
—e(P*|P) <vp«(Trpyp(t-2)) = e(P*|P) - vp(Trpyp(t - 2)) .

This implies vp(Trp/p(t - 2)) > 0, hence (3.42). o

The essential step in the proof of part (b) of Theorem 3.5.1 is the following
lemma.

Lemma 3.5.3. Let P € IPr and Py,...,P. € IPp: be all the extensions of P
in F'/F. Consider the residue class fields k := Op/P resp. k; :== Op,/P; D k
and the corresponding residue class maps © : Op — k resp. m; : Op, — k;
(fori=1,...,r). Then we have for every u € Op (the integral closure of Op
in F')

m(Tepyp(u) = e(Pi|P) - Try, i (mi(w)) -

i=1

Proof of Theorem 3.5.1(b). We maintain the notation of Lemma 3.5.3 and
abbreviate e; := e(P;|P). Let P = P; and e := e(P’|P). It must be shown
that

d(P'|P) =e—1 <= char K does not divide e . (3.45)

First assume that e is not divisible by char K. Suppose d(P’|P) > e. Then
there exists some w € F’ such that

vp(w) < —e and Trpyp(w-Op) € Op. (3.46)
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Since K is perfect, the extension ki /k is separable, and we can find yo € Op/
with Try, /x(71(y0)) # 0. By the Approximation Theorem there is an element
y € F' such that

vp(y — o) >0

and
vp,(y) > max{l,e; +vp (w)} for 2<i<r. (3.47)

Then y € O% and, by Lemma 3.5.3,

T(Trpyp(y)) = e Try, p(m1(y)) + Zei Ty, /i (mi(y))
i—2

= e Try, /k(m1(y0)) # 0.

(Here we use the fact that char K does not divide e, hence e # 0 in k.) We
conclude that

vp(Trpyr(y)) = 0.
Now choose z € F with vp(z) = 1. Then

Tepyp(z™'y) = 27" Trpyp(y) € Op. (3.48)
On the other hand we have x " lyw=! € O, since
vpr (& yw™") = e + vpi(y) — vpr(w) 2 0
and

vp,(z7yw™") = vp, (y) — (i + vp, (w)) >0

for i = 2,...,7, by (3.46) and (3.47). It follows that z7'y € w - O} and
Trpyr(z~'y) € Op by (3.46); this contradicts (3.48). So we have proved the
implication <« of (3.45).

In order to prove the converse, we assume now that char K divides e, and
we have to show that d(P’|P) > e. Choose v € F’ such that

vpr(u) = —e and vp,(u) > —e; +1 (1 =2,...,7). (3.49)
As before, z € F' denotes a P-prime element. For each z € O we have
vpr(zuz) >0 and vp,(xuz) >0

for i = 2,...,r. Therefore zuz € O%, and by Lemma 3.5.3,

7(Trpyp(zuz)) = e - Try, /i (m1(2uz)) + Z e; - Try, jp(mi(wuz))
i=2
= e Try, /i (mi(zuz)) = 0.
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We conclude that z - Trpyp(uz) = Trpyp(ruz) € P = 2Op, and thereby
Trpp(uz) € Op for all z € Op. Thus u € Cp and —e = vp/(u) > —d(P'|P)
by (3.49) and Remark 3.4.4. O

Proof of Lemma 3.5.3. The trace Trp/p(u) can be evaluated as the trace of
the F-linear map p : F/ — F/ which is given by u(z) = u-z (see Appendix A).
First we show that m(Trp//r(u)) has an interpretation as the trace of a certain
k-linear map i : V' — V (where V is some k-vector space to be defined below);
decomposing V into invariant subspaces will then yield the final result.

Let t € F be a P-prime element. The quotient V' := O} /tO} can be
considered as a vector space over k by setting

(x4 P)- (2 +t0p) :=22+t0p (x € Op,z€ Op). (3.50)

Note that this scalar multiplication is well-defined. Choose an integral basis
{z1,...,2n} of Op over Op (where n = [F’ : F], cf. Corollary 3.3.5). Then
{z1 +tO%, ..., z, +tO%} constitutes a basis of V over k (the proof is trivial),
in particular dimy (V') = n. We define a k-linear map i : V — V by

iz +t0p) i=u-z+tO0p. (3.51)

Let A = (aij)1<ij<n be the matrix which represents p with respect to the
basis {21,...,2,}. Since this is an integral basis and u € O’, the coefficients

a;; are in Op. Obviously A := (7(ai;))1<i j<n represents fi with respect to
{z1 +tOp, ..., 2z, +tO%}, therefore

(Trpyp(u)) = 7(Tr A) = Tr (A) = Tr (). (3.52)

Next we introduce for 1 < ¢ < r the quotients V; := Op,/P{* and the map-
pings p; : V; — Vi, defined by

pilz + P5Y) s=wu-z+ P

Vi is considered as a vector space over k in the obvious manner (cf. (3.50)),
and p; turns out to be k-linear (all this is easily verified). There is a natural
isomorphism

f 2V — @‘/Za
i=1
given by
f(z+t0p) = (z+P*,...,2+ P). (3.53)

In fact, f is surjective by the Approximation Theorem. In order to prove
that f is injective suppose f(z + tO%) = 0. Then vp,(2) > e;; i.e., we have
vp,(2-t71) >0 fori=1,...,r. This implies z - t* € O, hence z € tO).

There is a commutative diagram of k-linear mappings



104 3 Extensions of Algebraic Function Fields

\%4 > V

B ) Ly,

Fig. 3.1.

where (ft1,. .., pr)(V1, ..., 00) = (u1(v1), ..., pr(vy)), v; € Vi. Since f is an
isomorphism, it follows that Tr(z) = Tr((p1, - . ., i4r)), which is obviously equal
to >_¢_; Tr(u;). Combining this with (3.52) we obtain

m(Trpye (u ZTr 1) - (3.54)

The proof of Lemma 3.5.3 will be completed once we can show that
Tr(pi) = €; - Try, . (mi(u)) . (3.55)
Consider the chain of k-subspaces
Vi:VZ'(O) QVZ-(U >...D Vi(ei) = {0},

where Vi(j ) = Pij /P7" C V;. These spaces are invariant under g, so p; induces
linear maps

V(j)/v(j-‘rl) N V(j)/v(j""l)
AL i ! ¢ '
TNEEP) o e P
for j = 0,...,e; — 1. Here [z + P{*] denotes the residue class of z + P;" in
‘/;(j)/‘/i(J+1)~ It is easily seen that

e;—1

= Tr(oy). (3.56)
j=0

(Represent p; by a matrix with respect to a basis of V; which is composed of
bases of Vi('j) modulo Vi(ﬁl), for 0 < j <e; —1.) We know that

Trkl/k(ﬂ-l<u)) = Tr(’yi) ) (357)

where v; : k; — k; is the k-linear map defined by v;(z + P;) = u- z + P;.

Now we establish for 0 < j < e; — 1 an isomorphism A : k; — V, /V(H‘l) of
k-vector spaces such that the following diagram is commutative:
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i ~ > ki
h h
‘/i(j)/‘/i(j+1) Oij > Vi(j)/Vi(jH)
Fig. 3.2.

This diagram yields Tr(y;) = Tr(o;;) (because h is an isomorphism), and then
(3.55) follows immediately from (3.56) and (3.57).

The map h is defined as follows: Choose a P;-prime element t; € F’ and
let _
h(z+ P;) = [t} + P{].

Then it is easily verified that h is well-defined, k-linear, bijective and the
diagram in Figure 3.2 is commutative. This completes the proof of Lemma
3.5.3 and thereby Theorem 3.5.1. |

We would like to draw some conclusions from Dedekind’s Theorem. Recall
that P’|P is said to be ramified if e(P’'|P) > 1; otherwise P'|P is unramified
(cf. Definition 3.1.5).

Definition 3.5.4. Let F'/F be an algebraic extension of function fields and
P e Pp.

(a) An extension P' of P in F' is said to be tamely (resp. wildly) ramified if
e(P'|P) > 1 and the characteristic of K does not divide e(P'|P) (resp. char K
divides e(P'|P)).

(b) We say that P is ramified (resp. unramified) in F'/F if there is at least
one P' € Pp over P such that P'|P is ramified (resp. if P'|P is unramified
for all P'|P). The place P is tamely ramified in F'/F if it is ramified in F' | F
and no extension of P in F' is wildly ramified. If there is at least one wildly
ramified place P'|P we say that P is wildly ramified in F'/F.

(¢) P is totally ramified in F'/F if there is only one extension P’ € P, of P
in F', and the ramification indez is e(P'|P) = [F' : F].

(d) F'/F is said to be ramified (resp. unramified) if at least one P € PPp is
ramified in F'/F (resp. if all P € Pp are unramified in F'/F).

(e) F'/F is said to be tame if no place P € Pp is wildly ramified in F'/F.
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Corollary 3.5.5. Let F'/F be a finite separable extension of algebraic func-
tion fields.

(a) If P € P and P’ € PPpr such that P'|P, then P’'|P is ramified if and only
if P' < Diff(F'/F).
If P'|P is ramified, then

d(P'|P) =e(P'|P) —1 <= P'|P is tamely ramified
d(P'|P) > e(P'|P) < P'|P is wildly ramified .

(b) Almost all places P € Pr are unramified in F'/F.

This corollary follows immediately from Dedekind’s Theorem. Next we
note an important special case of the Hurwitz Genus Formula.

Corollary 3.5.6. Suppose that F'/F is a finite separable extension of alge-
braic function fields having the same constant field K. Let g (resp. ¢') denote
the genus of F/K (resp. F'/K ). Then

29 =2>[F' : F]-(29-2)+ Y, > (e(P'|P)—1)-degP .
PePr P'|P

Equality holds if and only if F'/F is tame (for instance if K is a field of
characteristic 0).

Proof. Trivial by Theorems 3.4.13 and 3.5.1. O

Corollary 3.5.7. Suppose that F'/F is a finite separable extension of func-
tion fields having the same constant field. Let g (resp. g') denote the genus of
F (resp. F'). Then g <¢'.

Corollary 3.5.8. Let F/K(x) be a finite separable extension of the rational
function field of degree [F : K(x)] > 1 such that K is the constant field of F.
Then F/K(x) is ramified.

Proof. The Hurwitz Genus Formula yields

29 — 2= —2[F : K(x)] + deg Diff(F/K (x)),
where g is the genus of F/K. Therefore

deg Diff (F/K (x)) > 2([F : K(z)]—1) > 0.

The assertion follows since each place in the support of the different ramifies
by Corollary 3.5.5. O

We give another application of the above results.
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Proposition 3.5.9 (Liiroth’s Theorem). FEuvery subfield of a rational func-
tion field is rational; i.e., if K G Fy € K (x) then Fo = K(y) for some y € Fp.

Proof. Suppose first that K(z)/F, is separable. Let gy denote the genus of
Fo/K. Then

—2=[K(z) : Fo]- (290 — 2) + deg Diftf (K (x)/Fy) ,

which implies go = 0. If P is a place of K (x)/K of degree one then Py = PNF
is a place of Fy/K of degree one. Therefore Fyy/K is rational by Proposition
1.6.3.

Now assume that K (z)/Fy is not separable. There is an intermediate field
Fy C Fy C K(x) such that Fy/Fj is separable and K (z)/F} is purely insepa-
rable. According to what we have proved above, it is sufficient to show that
Fy/K is rational. As K(x)/F; is purely inseparable, [K(z) : F1] = ¢ = p”
where p = char K > 0, and 29 € F} for each z € K(x). In particular,

K(z9) C F, C K(z). (3.58)

The degree [K(z) : K(x%)] is equal to the degree of the pole divisor of x?
in K(z)/K by Theorem 1.4.11, therefore [K(z) : K(z9)] = ¢. By (3.58), it
follows that Fy = K(z9), hence F;/K is rational. O

Next we prove a theorem that is often very useful for evaluating the dif-
ferent of F'/F.

Theorem 3.5.10. Suppose F' = F(y) is a finite separable extension of a
function field F of degree [F' : F] =n. Let P € IPr be such that the minimal
polynomial o(T) of y over F has coefficients in Op (i.e., y is integral over
Op), and let Py,...,P. € Pp: be all places of F' lying over P. Then the
following hold:

(a) d(P;|P) < vp,(¢'(y)) for 1 <i<r.

(b) {1,y,...,y" 1} is an integral basis of F'/F at the place P if and only if
d(Fi|P) = vp,(¢'(y)) for 1 <i<r.

(Here ©'(T) denotes the derivative of ¢(T) in the polynomial ring F[T].)

Proof. The dual basis of {1,y,...,4" 1} is closely related to the different
exponents d(P;|P) by Proposition 3.4.2, therefore our first aim is to determine
this dual basis. Since ¢(y) = 0, the polynomial ¢(T) factors in F'[T] as

o(T) = (T —y)(cn 1T+ ...+ 1T +co) (3.59)

with cg,...,chn—1 € F' and c¢,—1 = 1. We claim:

{(p/c(oy) 1o ;7(;) } is the dual basis of {1,y,...,y" '}. (3.60)
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(Note that ¢'(y) # 0 since y is separable over F.) By definition of the dual
basis, (3.60) is equivalent to

C; 1 .
TI'F//F(W -y ) = 6»” fOT 0 S Z,l S n—1. (361)

In order to prove (3.61), consider the n distinct embeddings oy,...,0, of
F'/F into @ (which denotes, as usual, an algebraically closed extension of F').
We set y; := 0;(y) and obtain

o) = [T -v).

Differentiating this equation and substituting 7" = y,, yields
o' () = [T —vi)- (3.62)
[E3%
For 0 <1 < n —1 we consider the polynomial

o(T)
— T —vy; ¢(y))

n

>—Tle¢[T].

Its degree is at most n — 1, and for 1 < v < n we have

_ o) Yy _
w(yu)—(#ﬂywu W) Sy =0,

by (3.62). A polynomial of degree < n — 1 having n distinct zeros is the zero
polynomial. Hence ¢;(T) = 0; i.e.,

n l
=% () Y
=T-y ¢y

for 0<l<n-—1. (3.63)

The embeddings o; : F/ — @ extend to embeddings o; : F'(T) — &(T) by
setting 0;(T) = T, and we obtain from (3.63)

" :ji“'j(}p@; )
_ égj <§_§ T @y(ly)) (by (3.59))
- 21(]22 Jj(w’c(iy) 'yl))Ti

n—1
C; :
— TI'FI/F </z . yl)Tl .
Zizo ¢'(y)
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Comparing coefficients yields (3.61) and thereby (3.60).
Next we want to show:

n—1

;€Y Op-y' for j=0,....,n—1. (3.64)
=0

The minimal polynomial ¢(7T") of y over F' has the form
Oo(T)=T" +an 1T+ ...+ a1 T + ag (3.65)
with a; € Op. Thus we have by (3.59) the following recursion formulas:
Ch1 =1, coy = —ag, and cy=ci_1—a; forl<i<n-—1. (3.66)

(3.64) is clearly true for j = n—1. Suppose it holds for some j € {1,...,n—1},
say

= Z sy’ with s; € Op .

Then we obtain, using (3.66) and (3.65),

n—2
41
Cji—1=a; +cjy=a;+ E Sin_ + Sn—lyn
=0

n—2 n—1 n—1
=a;+ Y syt =51 > ay €Y Op-yt.
i=0 i=0 i=0

Therefore (3.64) is proved. In a similar manner we can show

n—1

yjezop-ci for j=0,...,n—1. (3.67)
i=0

In fact, (3.67) holds for j = 0; if

n—1
Y = Zrici with r; € Op
i=0

for some j > 0, then by (3.66)

n—1

j+1 ZT’LC’L == Z z(cz—l - ai) — Toao

i=1

n—1 n—1
= E Ti41C; — ( riai) cCp—1 € E Op-c.
=0 =0 =0



110 3 Extensions of Algebraic Function Fields

Proof of Theorem 3.5.10(a). As always, Cp denotes the complementary module
and O% the integral closure of Op in F’. We have to show that d(P;|P) <
vp, (¢'(y)), which is (by definition of the different exponent) equivalent to the
following statement:

z€Cp = vp(2) > —vp,(¢'(y)) for i=1,...,r. (3.68)

The element z € Cp can be written as

n—1
Cj .
z:g r; - —— with 7, € F.
— " Y(y) '

(Note that {cg,...,c,_1} is a basis of F'/F by (3.60).) Since ' is integral
over Op and z € Cp, we have Trp/p(2 - y') € Op. Now

Cs

n—1
Trp Z-yl = Trp ( T ! -zﬂ) =17
ryr(2-y) PP ; 70

by (3.61), so 7, € Op. Observing (3.64) we obtain

n—1 n—1
1 1 . 1
z= g riC; € E Op-y' C 0.
Py = Y "

This implies (3.68) and finishes the proof of part (a) of our theorem.

Proof of Theorem 3.5.10(b). By (3.64) and (3.67) we know that

n—1 n—1
ZOp-inZOFwCi. (3.69)
i=0 i=0

Suppose now that {1,%,...,y" 1} is an integral basis for P. From (3.60) and
Proposition 3.4.2 it follows that

n—1 n—1
C; 1
PTGy T e =T

1 S
= — O .yl = 'O/ .
' (y) ; " e'ly)

Consequently d(P'|P) = vp,(¢'(y)) by Definition 3.4.3. Conversely, we have
to prove that the conditions

d(P;|P) =vp,(¢'(y))  for i=1,...,r (3.70)

imply
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n—1

OpC Y Op-y'. (3.71)

i=0
(The inclusion Op 2 Z?:_Ol Op - y' is trivial.) Let z € O), say

n—1

z = Ztiyi with t; € F.
i=0

Observe that ¢; € O by (3.64) and Cp = sa’%y) -O'% by (3.70) and Proposition
3.4.2(c); therefore

1
Trpp| ——-ci-2) €Op.
F/F(w’(y) ! >

Since

n—1
1 Cj .
Trpp| —— ¢j-2z ) =T E ty - —2 ~y’):t»7
F/F<90’(y) ’ ) F/F< !

= Y
we conclude t; € Op. This proves (3.71). O

Corollary 3.5.11. Let F' = F(y) be a finite separable extension of function
fields of degree [F' : F| =n, and let o(T) € F[T] be the minimal polynomial
of y over F. Suppose P € IPp satisfies

o(T) € Op[T) and vp: (¢'(y)) =0

for all P € P with P'|P. Then P is unramified in F'/F, and {1,y,...,y" 1}
is an integral basis for F'/F at P.

Proof. We have by Theorem 3.5.10
0 < d(P'|P) < vpr(¢ (1)) < 0

for all P’|P, hence vp/(¢'(y)) = d(P'|P) = 0. The corollary follows immedi-
ately from Dedekind’s Different Theorem and Theorem 3.5.10(b). O

We now give a second simple criterion under which the powers of one
element constitute an integral basis at a place P.

Proposition 3.5.12. Let F'/F be a finite separable extension of function
fields, P € Pr and P’ € Pp: with P'|P. Suppose that P’|P is totally ramified;
i.e., e(P'|P)=[F': F] =n. Let t € F" be a P'-prime element, and consider
the minimal polynomial o(T) € F[T] of t over F. Then d(P'|P) = vp/(¢'(t)),
and {1,t,..., "'} is an integral basis for F'/F at P.

Proof. First we claim that 1,¢,...,t" ! are linearly independent over F. As-
sume the contrary, so that
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n—1
Zriti =0 with r; € F, not allr; =0.
i=0

For r; # 0 we have
vp: (rit') = vp/ (t') + e(P'|P) - vp(r;) = imodn.

Therefore vp: (rit") # vpr(rjt?) whenever i # j, r; # 0 and r; # 0. The Strict
Triangle Inequality yields

n—1

vpr <Z riti> = min{vp: (r;it") | r; # 0} < 00,
i=0

which is a contradiction. Thus {1,¢,...,t" "'} is a basis of F'/F.

According to the formula > e;f; = n (Theorem 3.1.11), P’ is the only
place of F’ lying over P, hence Op is the integral closure of Op in F’. So we
have to show that

n—1
Op =Y Op-t. (3.72)
i=0
The inclusion D is trivial, so consider an element z € Op,. Write
n—1
z= inti with x; € F.
i=0

Since 0 < vps(z) = min{n-vp(z;)+i |0 < i < n—1} by the above argument,
we see that vp(z;) > 0 holds for all 4. This proves (3.72). The assertion
d(P’'|P) = vp/(¢'(t)) now follows from Theorem 3.5.10. O

In later sections we shall give several examples how the above results —
combined with the Hurwitz Genus Formula — can be applied to determine the
genus of a function field.

3.6 Constant Field Extensions

We consider an algebraic function field F/K with constant field K, where K
is assumed to be perfect as always in Chapter 3. This assumption is essential
for the wvalidity of most results in this section. For example there are coun-
terexamples to most assertions of Proposition 3.6.1 and Theorem 3.6.3, when
K is not perfect (see [7]). Recall that & O F denotes a fixed algebraically
closed field.

Let K’ O K be an algebraic extension (with K’ C @). The compositum
F':= FK' is a function field over K’, and its constant field is thereby a finite
extension of K’ (cf. Corollary 1.1.16). However it is not clear a priori, whether
K’ is the full constant field of FK'. So we begin this section with the following
result:
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Proposition 3.6.1. Let ' = FK' be an algebraic constant field extension of
F/K (of finite or infinite degree). Then we have:

(a) K' is the full constant field of F'.
(b) Each subset of F that is linearly independent over K remains so over K'.
(c) [F: K(x)]=[F": K'(z)] for every element x € F\K.

For the proof of this proposition we require a simple lemma that generalizes
Lemma 3.1.10.

Lemma 3.6.2. Suppose a € @ is algebraic over K. Then [K(a) : K] =
[F(a): F].

Proof of the Lemma. The inequality [F(a) : F] < [K(«) : K| being trivial,
we only have to prove that the minimal polynomial o(T') € KI[T] of « over
K remains irreducible in F[T]. Assume the contrary, so ¢(T) = ¢(T) - h(T)
with monic polynomials ¢(T), h(T) € F[T] of degree > 1. Each root of g(T")
and A(T) in @ is a root of p(T) as well, hence algebraic over K. Therefore
all coefficients of ¢g(T") and h(T) are algebraic over K (observe that they are
polynomial expressions of the roots). On the other hand, these coefficients are
elements of F. Since K is algebraically closed in F' we conclude that g(7T'),

h(T) € K[T], a contradiction to the irreducibility of o(T") over K. a

Proof of Proposition 3.6.1. (a) Consider an element v € F’ which is algebraic
over K'. Then it is algebraic over K, and there are finitely many elements
ai,...,ar € K" such that v € F(aq,...,a,). The extension K (ay,...,q,)/K
is finite and separable, therefore K(aq,...,a,) = K(«) for some a € K’ (here
we use the assumption that K is perfect). Since « is algebraic over K, we can
find 8 € F’ with K(«,v) = K(8). It follows that F(8) = F(a,v) = F(a) (as
v € F(ay,...,a.) = F(a)), and we obtain from Lemma 3.6.2

This implies K(a) = K(3), hence v € K(«) C K.
(b) Let y1,...,y, € F be linearly independent over K, and consider a linear
combination

> viyi=0  with v € K'. (3.73)
=1

Choose a € K’ such that v1,...,7,. € K(a), and write

n—1
Vi = Zcijaj with ¢;; € K, n= [K(a) : K].
j=0

From (3.73) we obtain
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(2 cijyi>aj (3.74)

with > ¢y, € F. Since [F(a) : F] = [K(a) : K] by Lemma 3.6.2, the
elements 1, q,...,a" ! are linearly independent over F, and (3.74) implies

T n

0= Z(:i_::cijaj>yi =>

—1
i=1 =0

”
Zcijyizo for 5=0,....,n—1.

i=1
As y1,...,y, are linearly independent over K, it follows that all ¢;; = 0, and
thus (3.73) is the trivial linear combination.

(¢c) Clearly [F' : K'(z)] < [F : K(x)]. It remains to show that any elements
21,...,25 € F, which are linearly independent over K (z), are linearly inde-
pendent over K'(z) as well. Suppose not, so that

Zfz(x) ~z; =0 (3.75)
i=1

with f;(z) € K'(x), not all f;(x) = 0. Multiplying by a common denominator
we can assume that all f;(x) € K'[z]. Then (3.75) gives a linear dependence
of the set {27z, | 1 < i < s,j > 0} over K'. Part (b) of our proposition
implies that this set is then linearly dependent over K as well; so z1,..., 2
are linearly dependent over K (z), a contradiction. O

Our next theorem contains a summary of the most important properties
of constant field extensions.

Theorem 3.6.3. In an algebraic constant field extension F' = FK' of F/K
the following hold:

(a) F'/F is unramified (i.e., e(P'|P) =1 for all P € Pr and all P' € Pp
with P'|P).

(b) F'/K' has the same genus as F/K.

(c) For each divisor A € Div(F) we have degConp/p(A) = deg A.

(d) For each divisor A € Div(F),

U(Conpyr(A)) = €(4).

More precisely: Every basis of £ (A) is also a basis of £ (Conpyp(A)). (Note
that £(A) C F' is a K-vector space whereas £ (Conpp(A)) is considered as
a vector space over K'.)

(e) If W is a canonical divisor of F//K then Conpyp(W) is a canonical divisor
of F' /K’

(f) The conorm map Conpyp : CI(F) — CI(F') from the divisor class group
of F/K into that of F' /K’ is injective.
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(g9) The residue class field Fp, of each place P! € IPp. is the compositum Fp K’
of K' and the residue class field Fp, where P = P' N F.

(h) If K'/K is of finite degree, every basis of K'/K is an integral basis of
F'/F for all P € PPp.

Proof. The proof is organized as follows: first we discuss (a) and (b) in the
case of a finite constant field extension, then we prove (h), (a), (c), (b), (d),
(e), (f) and (g) in the general case. To begin with, we assume that

K' = K(«) is a finite extension of K . (3.76)

We shall prove (a) and (b) under this additional hypothesis. In this situation,
F’' = F(«a) and the minimal polynomial ¢(T') of « over K remains irreducible
over ' by Lemma 3.6.2. Let P € IPr and P’ € IPp with P’|P. The different
exponent d(P’|P) satisfies

0 < d(P'|P) < vpi(¢'(a)

by Theorem 3.5.10. Now « is separable over K, and therefore ¢’ () # 0. Since
¢ () € K', this implies vp: (¢’ (a)) = 0. So we have

d(P'|P) = vp/(¢'(@)) = 0. (3.77)

By Dedekind’s Theorem we conclude that P’|P is unramified. The Hurwitz
Genus Formula yields

2'—2*M(2 —2) +deg Diff(F'/F) (3.78)
2= g eg Di , :
where g (resp. ¢’) denotes the genus of F/K (resp. F'/K’). In our situation
(3.76) we have [F’ : F] = [K’ : K] by Lemma 3.6.2 and Diff(F’/F) = 0 by
(3.77), therefore 29’ — 2 = 2g — 2 by (3.78). We have shown (a) and (b) in the
case of a finite constant field extension.

(h) We can assume that K’ = K(«) and set n := [K’ : K]. From (3.77) and
Theorem 3.5.10 we obtain that {1,qa,...,a" 1} is an integral basis of F'/F
for all P € Pp. Obviously we have for each other basis {y1,...,7,} of K'/K

n—1 ‘ n
ZOP.O/ :ZOP"}/]-.
=0 j=1

So {71,...,7n} is an integral basis as well.

From now on, K’ is an arbitrary algebraic extension of K (of finite or
infinite degree).
(a) Let P’ € IPp be an extension of P. We choose a P’-prime element ¢t € F".
There exists an intermediate field K C Ky C K’ such that the degree K : K]
is finite and t € F} := FK;. Let P, := P' N Fy, then 1 = vp/(t) = e(P'|Py) -
vp, (t) and therefore e(P’|Py) = 1. We have already proved that e(P;|P) = 1,
consequently e(P’|P) = e(P'|Py) - e(P,|P) = 1.



116 3 Extensions of Algebraic Function Fields

(c) Tt is sufficient to consider a prime divisor P € IPr. Choose x € F such that
P is the only zero of z in IPg (such an element exists by Proposition 1.6.6),
so the zero divisor () of z in Div(F) has the form (z) = rP with r > 0.
It follows from Proposition 3.1.9 that

(2)8" = Conpyp((x)8) = r - Conpyp(P).

Now we use the fact that [F' : K'(z)] = deg ((x)§") (see Theorem 1.4.11), and
we obtain

r - deg Conpyp(P) = [F' : K'(x)]
(by Proposition 3.6.1)

Thus (c) is established.
(b) As a first step, we show that

holds for A € Div(F). Indeed, if {z1,...,2,} is a basis of the space .Z(A)
then z; € Z(Conpyp(A)) by Proposition 3.1.9, and z1,...,x, are linearly
independent over K’ by Proposition 3.6.1. This proves (3.79).

Let g (resp. ¢') denote the genus of F//K (resp. F'/K"). Choose a divisor
C € Div(F) satisfying

degC > max{2g — 1, 2¢' — 1}. (3.80)
The Riemann-Roch Theorem states that
UC) = degC+1—g (3.81)

and

Here we have used the fact that deg Conp//p(C) = degC by (c). Now (3.79),
(3.80) and (3.81) imply ¢’ > g.

In order to prove the reverse inequality g < ¢’, consider a basis {u1,...,us}
of Z(Conpp(C)). There exists a field K C Ko C K’ with [Kj : K] < oo and
U1, ..., us € Fo := FKq. Obviously ui,...,us € £(Cong,p(C)), thus

Z(COHFO/F(C)) > K(COHF//F(C)) . (383)

We have shown above that Fj/Ky has genus ¢ (since it is a finite constant
field extension of F//K), so the Riemann-Roch Theorem yields

{(Conpyp(C)) = degC+1—g. (3.84)

Combining (3.82), (3.83) and (3.84) we obtain g < ¢’, and the proof of (b) is
complete.
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(d) Suppose first that deg A > 2g—1. As ¢’ = g we have by the Riemann-Roch
Theorem and (c)
E(CODF//F<A)) = deg COI’IF//F(A> + 1-— g/
=degA+1—g=1((A4).
The argument which we used in the proof of (3.79) shows that every basis of
Z(A) is also a basis of £ (Conp//p(A)).

Now consider an arbitrary divisor A € Div(F') and a basis {z1,...,z,}
of Z(A). Since 1,...,2, € £ (Congyp(A)), and since they are linearly in-
dependent over K’, it remains to prove that each z € Z(Conp/p(A)) is a
K'-linear combination of w1,...,z,. We choose prime divisors P; # P, of
F/K and set Ay := A+ ny P and Ay := A + ny Py with ny,ng > 0 such that
deg A; > 2g — 1 for i = 1,2. Then

A =min{A;, As} and L(A) = L (A1) N ZL(A2).

We extend {z1,...,z,} to bases {x1,...,Zr,Y1,...,ym} of L (A1) resp.
{z1,. . @r,21,..., 25} of £(As). The elements

Ty ooy Ty YLy e oo s Yy 21y v+ -5 2 (3.85)

are linearly independent over K. Indeed, if

r m n
Zaizi + Z bjy; + Z cpzr =0
i=1 j=1 k=1

with a;, bj, ¢, € K, then

n

D aiwi+ > by =— Y oz € L(A) N.L(Ay) = Z(A).
i=1 j=1

k=1
Since {x1,...,x,} is a basis of Z(A) and x1,...,2Z,Y1,...,Ym are linearly
independent, this implies b; = 0(j = 1,...,m), and then (by the linear inde-
pendence of x1,...,%., 21,...,2,) it follows that a; = ¢, = 0 for 1 < i < r,

1 < k < n. Observing that elements of F' which are linearly independent
over K remain linearly independent over K’ by Proposition 3.6.1, we have
established that the elements (3.85) are linearly independent over K.

Now let z € Z(Conprp(A)). Since deg A; > 2g — 1, assertion (d) holds for
A;, and we can write

=y diwity ey =) fiwit Yy giz (3.86)
i=1 j=1 i=1 k=1

with d;, ej, fi, gr € K'. Since x1,...,Zp, Y1, -+ Ym, 21, - .-, 2, are linearly
independent, the two representations in (3.86) coincide, hence e; = g5 = 0 for
1<j7<m,1<k<n. Thus z is a linear combination of z1,...,z, over K.
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(e) If W is a canonical divisor of F/K then degW = 2g — 2 and {(W) = g.
By all that we have proved above, we obtain

deg Conprp(W) =29 — 2 and {(Conpyp(W)) =g.

These two properties characterize canonical divisors of F'/K’ (see Proposition
1.6.2), so Cong/p(W) is a canonical divisor of F'/K'.

(f) Since Conp/p : CI(F) — CI(F’) is a homomorphism, we must show that
the kernel is trivial. So we consider a divisor A € Div(F') whose conorm in F’
is principal. This means that

deg COIIF//F(A) =0 and E(COHF//F(A)) =1.

Therefore deg A = 0 and ¢(A) = 1 by (c¢) and (d), and this implies that A is
principal, by Corollary 1.4.12.

(g) Let 2(P’) € Fp, where z is an element of Op:. There is an intermediate
field K C K; C K’ with z € Fy; .= FK; and [Kl : K] < 00. Set P = P’ﬂFl
and let Py, ..., P, be the other places of Fy/K; lying over P. Choose u € Fy
such that

vp, (z—u) >0 and vp,(u) >0 for 2<i<r.

Then z(P') = u(P’), and w lies in the integral closure of Op in Fy (see
Corollary 3.3.5). By (h),

n
U= Z%xi with v; € Ky, x; € Op.
i=1

Consequently
2(P') =u(P") = % z:i(P) € FpK'.
1=1
O

We can combine Theorem 3.6.3(¢) and Corollary 3.1.14 to obtain a formula
for the degree of the conorm of a divisor in arbitrary algebraic extensions of
function fields (over a perfect constant field).

Corollary 3.6.4. Let F'/K' be an algebraic extension of F/K (not necessar-
ily a constant field extension). Then we have for each divisor A € Div(F),

deg Conpyp(A) = [F': FK'] - deg A.

Proof. By Lemma 3.1.2 we know that [F' : FK'] < oo, and FK'/K' is a
constant field extension of F//K. Since

COHF’/F(A) = COHF’/FK/(COHFK’/F(A)) )
we obtain that
deg Conpyp(A) = [F': FK'] - deg Conpgr/p(A) = [F': FK'] - deg A,
by Corollary 3.1.14 and Theorem 3.6.3. 0O
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The following result is a simple consequence of Theorem 3.6.3(a) and (c).

Corollary 3.6.5. Let P € Pr be a place of F/K of degree v and let F = FK
be the constant field extension of F/K with the algebraic closure K of K.
Then

Cong,p(P)=Pi+...+ P,

with pairwise distinct places P; € Pp.

We finish this section with a result that often allows us to show that the
constant field of a finite extension F” D F of a function field F//K is no bigger
than K.

Proposition 3.6.6. Let F'/K be a function field with constant field K. Sup-
pose that F'/F is a finite extension field, with constant field K'. Let K C &
denote the algebraic closure of K. Then

[F': F]=[F'K : FK]-[K' : K]. (3.87)

In the special case F' = F(y) we obtain: if o(T) € F[T] is the minimal
polynomial of y over F', the following conditions are equivalent:

(1) K' = K.
(2) o(T) is irreducible in FK[T].

Proof. Since FF C FK' C F’, we have
[F':F)=[F':FK']| - [FK': F]. (3.88)

The extension K'/K is separable and of finite degree, hence K’ = K («) for
some a € K’, and we obtain from Lemma 3.6.2 that

[FK': F]=[K':K]. (3.89)
Proposition 3.6.1(c) shows that for each x € F\K,

[FK': K'(z)] = [FK : K(x)] and [F': K'(z)] = [F’

.N.\
E\
B

This implies - B
[F': FK'] = [F'K : FK]. (3.90)
Substituting (3.89) and (3.90) into (3.88) yields (3.87).
Consider now the case F' = F(y). Observe that [ : F] = degp(T),
and [F'K : FK] equals the degree of the minimal polynomial of y over F'K

(which divides ¢(7T') in FK[T]). The equivalence of (1) and (2) is therefore an
immediate consequence of (3.87). O
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Corollary 3.6.7. Let F/K be a function field and let F'/F be a finite ex-
tension such that K is the full constant field of F' and of F'. Let L/K be an
algebraic extension. Then L is the full constant field of FL and F'L, and we
have

[F':F] = [F'L: FL].

Proof. 1t was already shown in Proposition 3.6.1 that L is the full constant
field of F'L and of F'L. Let K D L be the algebraic closure of K, then we
obtain from Proposition 3.6.6

[F': F] = [F'K : FK]
and - - - -
[F'L:FIL] = [F'LK : FLK] = [F'K : FK],
hence [F' : F| = [F'L: FL]. O

A polynomial ¢(T) € K(x)[T] (over the rational function field K (z)) is
said to be absolutely irreducible if ¢(T) is irreducible in the polynomial ring
K (z)[T] (where K is the algebraic closure of K). The following corollary is a
special case of the Proposition 3.6.6.

Corollary 3.6.8. Let F'= K(x,y) be a function field and o(T) € K (x)[T] be
the minimal polynomial of y over K(x). The following conditions are equiva-
lent:

(1) K is the full constant field of F.
(2) ©(T) is absolutely irreducible.

3.7 Galois Extensions 1

In Sections 3.7 and 3.8 we investigate Galois extensions of algebraic function
fields. Galois extensions have several useful properties that do not hold in
arbitrary finite extensions. Recall that a finite field extension M /L is said to
be a Galois extension if the automorphism group

Aut(M/L) = {o : M — M | o is an isomorphism with
o (a) =a for all a € L}

has order [M : L]. In that case we call Aut(M/L) the Galois group of M/L
and write Gal(M/L) := Aut(M/L). The main properties of Galois extensions
are collected together in Appendix A.

An extension F'/K’ of a function field F'/K is said to be Galois if F'/F
is a Galois extension of finite degree.
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Let P be a place of F//K. Then Gal(F'/F') acts on the set of all extensions
{P’ € IPp: | P’ lies over P} via o(P’') = {o(x) | z € P’}, and we have seen in
Lemma 3.5.2 that the corresponding valuation v, (psy is given by

Vo (y) = vpi (07 (y))  for y e F'.

Theorem 3.7.1. Let F'/K' be a Galois extension of F/K and Py, Py € PPg
be extensions of P € IPp. Then Py = o(Py) for some o € Gal(F'/F). In other
words, the Galois group acts transitively on the set of extensions of P.

Proof. Assume that the assertion is false; i.e., o(Py) # P, for all 0 € G :=
Gal(F’/F). By the Approximation Theorem there is an element z € F’ such
that vp,(z) > 0 and vg(z) = 0 for all @ € IPp with Q|P and Q # P. Let
Npyp : F' — F be the norm map (see Appendix A). We obtain

o (Npye(2) = or, (I a<z>) = 3 un(0(2))

oeG oceG
= Z ’U,,—l(p1 Z ’Ua(pl) (3.91)
oG oeG

since P, does not occur among the places o(P1), o € G. On the other hand,

vp, NF’/F Z rUU(Pg) (392)
oeG

But Np/p(z) € F, therefore
vp, (NF’/F(Z)) =0 <— ’UP(NF//F(Z)) =0 <— UPQ(NF//F(Z)) =0.

This is a contradiction to (3.91) and (3.92). O

Corollary 3.7.2. Notation as in Theorem 3.7.1 (in particular F'/F is a
Galois extension). Let Py, ..., P. be all the places of F' lying over P. Then
we have:

(a) e(P;|P) = e(P;|P) and f(P;|P) = f(P;|P) for all i,j. Therefore we set
e(P) :=e(P;|P) and f(P) := f(P;|P),

and we call e(P) (resp. f(P)) the ramification index (resp. relative degree) of

P in F'/F.

(b) e(P)- f(P)-r=[F'": F]. In particular e(P), f(P) and r divide the degree

[F': F].

(¢) The different exponents d(P;|P) and d(P;|P) are the same for all i, j.
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Proof. (a) is obvious by Theorem 3.7.1 and Lemma 3.5.2, and (b) is an imme-
diate consequence of (a) and Theorem 3.1.11. As to (c), we have to consider

the integral closure
,
33 = ﬂ Op,
i=1

of Op in F’, and the complementary module
CP = {Z S F/ | TI'F//F(Z . O;:») - OP} .
Let 0 € Gal(F'/F). It is easily seen that 0(O%) = O% and o(Cp) = Cp (using

the fact that Trpp(o(u)) = Trpyp(u) for u € F'). Writing Cp = t - Op we
obtain o(t) - Op = 0(Cp) =Cp =t - O%, so that

—d(P;|P) = vp,(t) = vp,(o(t))

for 1 < i <r (by Proposition 3.4.2(c) and the definition of the different expo-
nent). Consider now two places P;, P; lying over P. Choose o € Gal(F'/F)
such that o(P;) = P;. Then

—d(P|P) = vp, (0(t) = vg1(py) (t) = vp, (t) = —d(P}| P).
O

We would like to discuss two special types of Galois extensions of a func-
tion field in more detail, namely Kummer extensions and Artin-Schreier ex-
tensions.

Proposition 3.7.3 (Kummer Extensions). Let F'/K be an algebraic func-
tion field where K contains a primitive n-th root of unity (with n > 1 and n
relatively prime to the characteristic of K ). Suppose that u € F' is an element
satisfying

u#w? foralweF and d|n,d>1. (3.93)
Let

F'=F(y) with y* =u. (3.94)

Such an extension F'/F is said to be a Kummer extension of F. We have:
(a) The polynomial ®(T) = T™ —w is the minimal polynomial of y over F (in
particular, it is irreducible over F ). The extension F'/F is Galois of degree
[F' : F] = n; its Galois group is cyclic, and the automorphisms of F'/F are
given by o(y) = Cy, where ( € K is an n-th root of unity.
(b) Let P € IPp and P’ € IPrs be an extension of P. Then

e(P'|P) = = and d(P'|P) = — —1,
rp rp

where
rp = ged(n,vp(u)) >0 (3.95)

is the greatest common divisor of n and vp(u).
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(¢) If K’ denotes the constant field of F' and g (resp. g') the genus of F/K
(resp. F'/K'), then

1 rp
=l (g1 2 Y (12 )deg P
g +[K’:K]<g *3 ( n)deg )
PelPgp

where rp is defined by (3.95).

We note that every cyclic field extension F’/F of degree n is a Kummer
extension, provided that n is relatively prime to the characteristic of F' and
F contains all n-th roots of unity. This fact is well-known from Galois theory,
cf. Appendix A.

The following special case of Proposition 3.7.3 is worth emphasizing.

Corollary 3.7.4. Let F/K be a function field and F' = F(y) with y" = u €
F, where n £ 0mod(char K') and K contains a primitive n-th root of unity.
Assume there is a place Q € IPp such that ged(vg(w),n) = 1. Then K is the
full constant field of F', the extension F'/F is cyclic of degree n, and

1
g =1+n(g- 1)+§ Z (n—rp)deg P.
PelPp

Proof of Proposition 3.7.3. (a) cf. Appendix A.
(b) Case 1. rp = 1. From (3.94) we obtain

n-vpi(y) = vp(y") = vpr(u) = e(P'|P) - vp(u),

which implies e(P’|P) = n, as n and vp(u) are relatively prime. Since n is
not divisible by char K, Dedekind’s Different Theorem yields the different
exponent d(P'|P) =n — 1.
Case 2. rp = n, say vp(u) = 1-n with | € Z. We choose t € F with

vp(t) =1 and set

y1 =t ly, up =t""u.
Then y7 = uy, vp/(y1) = vp(u1) = 0, and the irreducible polynomial of y;
over F'is

(T) =T" —uy € F[T].

Thus y; is integral over Op, and Theorem 3.5.10 yields
0 < d(P'|P) < vp (¥ (1)) -

Now ¢/(y1) = n-yi ™", s0 vp (¥'(y1)) = (n—1)-vp:(y1) = 0 and d(P'|P) = 0.
By Dedekind’s Theorem, e(P’|P) = 1, and (b) is established in Case 2.

Case 3. 1 < rp < n. Consider the intermediate field
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Fy := F(yo) with yo := Y

Then [F' : Fy] = n/rp and [Fy : F] = rp. The element y, satisfies the
equation

Yo =u (3.96)

over F. Let Py := P'NFy. Case 2 applies to Fy/F, and therefore e(Py|P) = 1.
By (3.96)
vp(u)

rp '

vp, (yO) =

This is relatively prime to n/rp, so Case 1 applies to the extension F’ = Fy(y)
(note that y™/"7 = yq). Consequently e(P’|Py) = n/rp and

e(P'|P) = e(P'|Py) - e(Py|P) =n/rp.
(¢) The degree of the different Diff (F'/F) is
deg Diff (F'/F) = > Y d(P'|P)-deg P’

PelPr P/|P
- (;—1) 3 deg P’ (by (b)). (3.97)
PclPp P'|P

Observing that for a fixed place P € IPp the ramification index e(P) = e(P’|P)
does not depend on the choice of the extension P’, we have

> degP' = %P) -deg <Z e(P'|P) - P’)

PP PP
1 rp n
a(py B Conrr ) =5 g e
rp
= P __ . degP
KK

by (b) and Corollary 3.1.14. Substituting this into (3.97) shows that

degDiff (F//F) = Y 2. TP __ qegp
T

e TP (K" : K]
n rp
=—" 1— —)d P.
K- K] D ( n )8
PelPgp
Finally, the Hurwitz Genus Formula proves (c). O

Proof of Corollary 3.7.4. From the assumption ged(vg(u),n) = 1 follows eas-
ily that u satisfies condition (3.93). It remains to show that the constant field
K’ of F' is no larger than K; then the corollary follows immediately from
Proposition 3.7.3. Choose an extension Q' of @ in F’. Part (b) of the
proposition shows that
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e(Q'Q)=[F':Fl=n. (3.98)

Now suppose that [K’ : K] > 1, and consider the intermediate field F} :=
FK' 2 F and the place @ := Q' N Fy. By (3.98) we have that ¢(Q1|Q) =
[F1 : F] > 1. On the other hand, e(Q1|Q) = 1 since F;/F is a constant field
extension (see Theorem 3.6.3). This contradiction proves that K’ = K. O

Remark 3.7.5. In the above proofs we never used the assumption that K con-
tains a primitive n-th root of unity. Therefore all assertions of Proposition
3.7.3(b),(c) and Corollary 3.7.4 hold in this more general case, with a single
exception: F(y)/F is no longer Galois if K does not contain all n-th roots of
unity.

Thus far we have not given explicit examples of function fields of genus
g > 0. This is easily done now.

Ezample 3.7.6. Assume char K # 2. Let F' = K (x,y) with

v =flz) =pi(@) ... ps(x) € K[a],

where p1(z),...,ps(x) are distinct irreducible monic polynomials and s > 1.
Let m = deg f(z). Then K is the constant field of F', and F/K has genus

_Jm-=1)/2 if m=1mod2,
I=Ym-2)/2 if m=0mod2.

Proof. We have F = Fy(y) where Fy = K(z) is the rational function field.
Let P; € IPg(,) denote the zero of p;(x) and P, the pole of x in K(z). Then
vp,(f(z)) = 1 and vp_(f(x)) = —m. From Corollary 3.7.4 we obtain that
F/Fy is cyclic of degree 2 and that K is the constant field of F'. The numbers
rp (for P € IPg(,)) are easily seen to be

rp, =1 fori=1,... s,
rp, =1 if m=1mod2,
rp. =2 if m=0mod?2.
Now the assertion follows from Corollary 3.7.4. O

We shall return to the previous example in Chapter 6. As a preparation
for Artin-Schreier extensions we need a lemma.

Lemma 3.7.7. Let F/K be an algebraic function field of characteristic p > 0.
Given an element uw € F and a place P € Pr, the following holds:

(a) either there exists an element z € F such that vp(u — (2P — z)) >0,
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(b) or else, for some z € F,
vp(u— (2 —2)) =—m <0 with m# O0modp.
In the latter case the integer m is uniquely determined by u and P, namely

—m = max{vp(u — (WP —w)) |w € F}. (3.99)

Proof. We begin by proving the following claim. Assume that z1, 22 € F\{0}
and vp(z1) = vp(x2). Then there is some y € F with

vp(y) =0 and vp(z1 — Yy x2) > vp(z1). (3.100)

Indeed, the residue class (z1/x2)(P) € Op/P is not zero, hence (x1/x2)(P) =
(y(P))? for some y € Op\P (here the perfectness of Op/P is essential). This
implies vp(y) = 0 and vp((z1/22) —yP) > 0, thereby vp(x1 — yPxa) > vp (7).
Next we show: if vp(u — (2} — 21)) = —Ip < 0, then there is an element

29 € F with
vp(u— (25 — 22)) > —Ip. (3.101)

In order to prove this, we choose t € F' with vp(t) = —I; then
vp(u— (2 — 1)) = vp(tP).
By (3.100) we can find y € F with vp(y) = 0 and
vp(u— (2] —21) — ()*) > —lp.
Since vp(yt) = vp(t) = =1 > —Ip,
vp(u— (21 —21) — (yt)" —yt)) > —Ip.

Setting 2z := z; + yt, we have established (3.101).

From (3.101), the existence of an element z € F' such that (a) (resp. (b))
holds, follows immediately. In case (b) we still have to prove the characteriza-
tion of m given in (3.99). By assumption, we have vp(u— (2 —2)) = —m < 0
with m # 0mod p. For every w € F, p-vp(w — z) # —m holds, so we may
consider the following cases:

Casel. p-vp(w—2z) > —m. Then vp((w — 2)? — (w — 2)) > —m and
vp(u— (WP —w)) =vp(u— (2P —2) — (w — 2)P — (w — 2))) = —m (we have
used the Strict Triangle Inequality).

Case 2. p-vp(w—2z) < —m. In this case we obtain vp(u — (WP —w)) =
vp(u— (2 —2) — (w—2)P — (w—2))) < —m.

In either case vp(u — (WP — w)) < —m, which proves (3.99). O
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Proposition 3.7.8 (Artin-Schreier Extensions). Let F/K be an alge-
braic function field of characteristic p > 0. Suppose that u € F is an element
which satisfies the following condition:

uZwl —w forall weF. (3.102)

Let
F'=F(y) with y* —y=u. (3.103)

Such an extension F'/F is called an Artin-Schreier extension of F. For P €
Pr we define the integer mp by

m if there is an element z € F satisfying
mp = vp(u— (2P —2)) =—m <0 and m % Omodp,
-1 ifvp(u— (2P —2)) >0 for some z € F.

(Observe that mp is well-defined by Lemma 3.7.7.) We then have:
(a) F'/F is a cyclic Galois extension of degree p. The automorphisms of F'/F
are given by o(y) =y + v, withv=0,1,...,p— 1.
(b) P is unramified in F'/F if and only if mp = —1.
(c) P is totally ramified in F'/F if and only if mp > 0. Denote by P’ the
unique place of F' lying over P. Then the different exponent d(P’|P) is given
by

A(P'|P) = (p— 1)(mp +1).

(d) If at least one place Q € IPp satisfies m¢g > 0, then K is algebraically
closed in F' and

;o p—1
g —p~g+2(—2—|— > (mp+1)~degP),
PelPgp

where g’ (resp. g) is the genus of F' /K (resp. F/K).

Proof. (a) This is well-known from Galois theory, see Appendix A.

(b) and (c¢) First we consider the case mp = —1; i.e., vp(u — (2P — 2)) > 0
for some z € F. Let y1 =y — z and u; = u — (2P — 2); then F' = F(y1), and
©1(T) = TP —T —wuy is the minimal polynomial of y; over F'. Since vp(ui) > 0
y1 is integral over the valuation ring Op, and the different exponent d(P’|P)
of an extension P’ of P in F satisfies

0 < d(P'|P) < vp(¢i(m)) =0,

since ¢ (T) = —1 (see Theorem 3.5.10). Hence d(P’'|P) = 0, and P'|P is
unramified by Dedekind’s Different Theorem.

Next we assume mp > 0. Choose z € F such that vp(u— (2P —2)) = —mp.
Consider the elements y1 = y — z and u; = u — (2P — z). As before we have
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F' = F(y1), and ¢1(T) = T? — T — uy is the minimal polynomial of y; over
F. Let P € IPr/ be an extension of P in F’. Since yf — Y1 = uy, we obtain

vpr(ur) = e(P'|P) -vp(u1) = —mp - e(P'|P)

and

vp(u1) = vp(y) —y1) =p-vp (y1).
As p and mp are relatively prime and e(P’'|P) < [F’ : F| = p, this implies
that

e(P'|P)=p and vp/(y1) = —mp.
In particular P is totally ramified in F’'/F.

Let x € F be a P-prime element. Choose integers i,7 > 0 such that
1 = ip — jmp (this is possible, as p and mp are relatively prime). Then the
element t = z'y] is a P’-prime element, since vp/ (t) = i-vp(z)+ 5 -vp/ (Y1) =
ip — jmp = 1. By Proposition 3.5.12, the different exponent d(P’|P) is
d(P'|P) = vp: (4'(t)),

where ¢(T") € F[T] is the minimal polynomial of ¢ over F. Let G :=
Gal(F'/F) be the Galois group of F’/F. Clearly

W(T) = (T —o(t)) = (T —1)- W(T)
e

with

W)= [ (T -ot) € F'[T].

o#id
So ' (T) = h(T)+ (T —t) - K'(T) and ¢’ (t) = h(t). We conclude that
d(P'|P) = vps ( I]¢- J(t))) =Y vp(t—olt) (3.104)
o#id o#id

(the sum runs over all o € G with ¢ # id). Each o € G\{id} has the form
o(y1) =y1 + p for some p € {1,...,p— 1}, hence

i .
i ] i j i I\ -
t—o(t) =a'yl —a'(y+p) =2 (l)y{ it
1=1
Since vps (y{;l) < vps (y{;l) for [ > 2, the Strict Triangle Inequality yields
vpr(t = a(t)) = vp(x') + v Gyl )

=ip+(j—1)-(—mp) =ip—jmp+mp =mp +1. (3.105)

(We have used that j # 0 in K, which follows from ip—jmp = 1.) Substituting
(3.105) into (3.104) gives d(P'|P) = (p—1)(mp +1). Thus we have shown (b)
and (c).
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(d) We assume now that mg > 0 for at least one place Q € IPp. From (c)
follows that @ is totally ramified in F’'/F. That K is the full constant field of
F’ follows exactly as in the proof of Corollary 3.7.4.

The formula

; p—1
g —p-g+2<—2+ > (mp+1)~degP)
PclPr

is an immediate consequence of (b), (¢) and the Hurwitz Genus Formula. O

Remark 3.7.9. (a) Notation as in Proposition 3.7.8. Suppose that there exists
a place @) € IPrp with

vo(u) <0 and vg(u)# Omodp.

Then w satisfies condition (3.102) by the Strict Triangle Inequality. Hence
Proposition 3.7.8 applies in this case.

(b) All cyclic field extensions F'/F of degree [F' : F| = p = char ' > 0 are
Artin-Schreier extensions, see Appendix A.

Most of the arguments given in the proof of Proposition 3.7.8 apply in a
more general situation. We call a polynomial of the specific form

a(T) = a, T + a1 T + ...+ TP + aoT € K[T] (3.106)

(where p = charK > 0) an additive (or linearized) polynomial over K. Observe
that a(T) is separable if and only if a(7T) and its derivative a’(T") have no
common factor of degree > 0. Here a/(T') = ag is constant, so the polynomial
(3.106) is separable if and only if ag # 0.

An additive polynomial has the following remarkable property:
alu+v) = a(u) + a(v)

for any wu, v in some extension field of K. In particular, if a(T) is an additive
and separable polynomial over K all of whose roots are in K, then these roots
form a subgroup of the additive group of K of order p™ = dega(T).

Proposition 3.7.10. Consider an algebraic function field F// K with constant
field K of characteristic p > 0, and an additive separable polynomial a(T) €
K|[T) of degree p™ which has all its roots in K. Let u € F. Suppose that for
each P € Pr there is an element z € F (depending on P) such that

vp(u—a(z)) >0 (3.107)

or
vp(u—a(z)) = —m with m >0 and m #Z Omodp. (3.108)
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Define mp := —1 in case (3.107) and mp :=m in case (3.108). Then mp is
a well-defined integer. Consider the extension field F' = F(y) of F where y
satisfies the equation

aly) = u.
If there exists at least one place Q € IPp with mg > 0, the following hold:
(a) F'/F is Galois, [F' : F] = p", and the Galois group of F'/F is isomorphic
to the additive group {a € K | a(a) = 0}, hence isomorphic to (Z/pZ)".
(Such a group is said to be elementary abelian of exponent p, hence F'/F is
called an elementary abelian extension of exponent p and degree p™.)

(b) K is algebraically closed in F’.
(¢) Each P € PPp with mp = —1 is unramified in F'/F.
(d) Each P € Pr with mp > 0 is totally ramified in F'/F, and the different
exponent d(P'|P) of the extension P’ of P in F' is
d(P'|P) = (p" = 1)(mp +1).
(e) Let g’ (resp. g) be the genus of F' (resp. F'). Then

/I .n pn_l
g =r" g+ <—2+ Z(mp+1)-degP>.
PelPr

The proof of Proposition 3.7.10 can be omitted; it is, with minor modifi-
cations, the same as that of Proposition 3.7.8.

3.8 Galois Extensions 11

We consider a Galois extension F'/F of algebraic function fields with
Galois group G := Gal(F'/F). Let P be a place of F' and let P’ be an
extension of P to F'.

Definition 3.8.1. (a) Gz (P'|P) := {0 € G | o(P') = P’} is called the
decomposition group of P’ over P.

(b) Gp(P'|P) :=={o € G | vp(0z—2) >0 forallz € Op:} is called the
inertia group of P'|P.

(¢) The fized field Z := Z(P'|P) of Gz(P'|P) is called the decomposition field,
the fized field T := T (P’'|P) of Gr(P’|P) is called the inertia field of P’ over
P

Clearly Gr(P'|P) C Gz(P'|P), and both are subgroups of G.
An immediate consequence of the definitions is: for 7 € G the decomposi-
tion group and the inertia group of the place 7(P’) are given by
Gz(T(P)|P) = tGz(P'|P)r™*,
Gr(r(P")|P) = 7Gr(P'|P)r !
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Theorem 3.8.2. With notation as above the following hold:

(a) The decomposition group Gz(P'|P) has order e(P’'|P) - f(P'|P).

(b) The inertia group Gr(P'|P) is a normal subgroup of Gz(P'|P) of order
e(P'|P).

(c¢) The residue class extension Fp, /Fp is a Galois extension. Each automor-

phism o € Gz(P'|P) induces an automorphism & of Fp, over Fp by setting
a(z(P") = a(2)(P") for z € Op:. The mapping

Gz(P/‘P) — Gal(F;g,/Fp) s

o +— 0,

is a surjective homomorphism whose kernel is the inertia group Gp(P'|P). In
particular, Gal(Fp, /Fp) is isomorphic to Gz(P'|P)/Gr(P'|P).

(d) Let Py (resp. Pr) denote the restriction of P’ to the decomposition field
7Z = Z(P'|P) (resp. to the inertia field T = T(P'|P)). Then the ramification
indices and residue degrees of the places P'|Pr, Pr|Pz and Pz|P are as shown
in Figure 3.3 below.

F’ P’
e(P'|Pr) =e(P'|P) = [F':T]
and f(P'|Pr) =1

T Pr
f(Pr|Pz) = f(P'|P) =T : Z]
and e(Pr|Pz) =1

A Py
e(P2|P) = [(P4|P) = 1

F P

Fig. 3.3.

Proof. (a) By Theorem 3.7.1 G acts transitively on the set of extensions of P
in F’. So we can choose o01,...,0, € G such that o1(P’),...,0,.(P’) are all
places of F’ lying over P and o;(P’) # o;(P’) for i # j. Then 0y,...,0, are a
complete set of coset representatives of G modulo Gz (P’|P), hence [F' : F] =
ord G = r-ord Gz(P’|P). On the other hand, [F' : F| =e(P'|P)- f(P'|P)-r
by Corollary 3.7.2(b). This proves (a).

Now we consider the restriction Pz = P’ N Z of P’ to Z. Obviously the
decomposition group of P’ over Py (with respect to the extension F’/Z) equals
Gz(P'|P), therefore e(P'|Pz) - f(P'|Pz) = ord Gz (P'|P) = e(P'|P) - f(P'|P)
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by (a). Since e(P’|P) = e(P’|Pz)-e(Pz|P) and f(P'|P) = f(P'|Pz)- f(Pz|P),
this implies
e(Pz|P) = f(Pz|P)=1. (3.109)

Moreover, P’ is the only extension of Py in F’.

Next we prove (c). For z € Ops let z := z(P’) € F}, denote its residue
class mod P’, and for ¢(T) = Y. 2,T" € Op:[T] set (T) := > T € F},[T).
By our general assumption that the constant field of F' is perfect, the residue
class extension Fp,/Fp is separable, hence Fp, = Fp(u) for some u € Opr.
We claim that Fp, is the splitting field of some polynomial over Fp (which
implies that F},/Fp is Galois). The place P’ is the only extension of Pz in
F'/Z, so Op: is the integral closure in F” of the valuation ring Op, of Pz (see
Corollary 3.3.5), and the minimal polynomial ¢(T") € Z|[T| of u over Z has all
its coefficients in Op,. As f(Pz|P) =1 by (3.109), we obtain z € Fp for all
z € Op,, thus ¢(T) € Fp[T]. The extension F'/Z being Galois, ¢(T) splits
completely into linear factors ¢(T') = [[(T — u;) with u; € Ops, so

o(T) = [[(T — w) with w; € Fp. (3.110)

One of the roots of ¢(T') is @, hence Fp, is the splitting field of @(T") over Fp.

Let 0 € Gz(P'|P) and y,z € Op: with § = z. Then y — z € P’, hence
o(y) —o(z) = oy —2) € o(P') = P and o(y)(P') = o(2)(P’). Therefore
g : Fp, — Fp, with 6(2(P')) = o(2)(P’) is well-defined, and it is easily
verified that the mapping o — & defines a homomorphism from Gz(P’|P)
into the Galois group of F}, over Fp. The kernel of this homomorphism is
just G (P’|P), by definition of the inertia group.

An automorphism « € Gal(F}, /Fp) is uniquely determined by «(@), and
a(u) is a root of the minimal polynomial of @ over Fp. As this minimal
polynomial divides ¢(T), there is some root u; € Ops of o(T') with a(a) = @,
(by (3.110)). Since ¢(T') is the minimal polynomial of u over Z and F'/Z is
Galois, there is an element o € Gal(F'/Z) = Gz(P’'|P) such that o(u) = u;.
Clearly ¢ = «, so our homomorphism from Gz(P'|P) to Gal(Fp,/Fp) is
surjective. The proof of (c) is now complete.

(b) Gr(P'|P) is a normal subgroup of Gz (P’|P) since it is the kernel of the
homomorphism considered in (c). We have, by (c) and (a),

f(P'|P) = [Fp : Fp] = ord Gal(Fp, /Fp)
ord Gz (P'|P)/ord Gr(P'|P)
= (e(P'|P) - f(P'|P))/ord Gr(P'|P).

Consequently ord Gp(P’|P) = e(P’|P).

(d) Tt follows from the definition that the inertia group of P’ over Pr is equal
to Gp(P'|P). Applying (b) first to the extension F'/T and then to F'/F we
obtain
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e(P'|Pr) = ord Gr(P'|P) = e(P'|P). (3.111)

All assertions of (d) are now immediate consequences of (3.109), (3.111) and
the multiplicativity of ramification indices and relative degrees in towers of
fields (see Proposition 3.1.6(b)). O

There are some useful characterizations of the decomposition field and the
inertia field:

Theorem 3.8.3. Consider a Galois extension F'/F of algebraic function
fields, a place P € Pr and an extension P’ of F in F'. For an interme-
diate field F C M C F' let Py; := P' N M denote the restriction of P' to M.
Then we have

(a) M C Z(P'|P) <= e(Py|P) = f(Py|P)=1.

(b) M D Z(P'|P) <= P’ is the only place of F’" lying over Py.
(¢c) M CT(P'|P) < e(Py|P)=1.

(d) M D T(P'|P) <= Py is totally ramified in F'/M.

Proof. By Theorem 3.8.2(d) all implications = are obvious. Before proving the
converse, we remark that the decomposition group of P’ over Py, is contained
in Gz(P'|P), and the inertia group of P’ over Py is contained in Gp(P’|P)
(this follows immediately from the definition of these groups).

(a) Suppose that e(Py|P) = f(Py|P) = 1. Then e(P'|Pyr) - f(P'|Py) =
e(P'|P) - f(P'|P), so the decomposition group of P’ over Pj; has the same
order as Gz(P'|P) by Theorem 3.8.2(a). The above remark shows that
Gz(P'|P) is equal to the decomposition group of P’ over Py, in particu-
lar Gz(P'|P) C Gal(F'/M). By Galois theory this implies Z(P’|P) 2 M.
(b), (¢), (d) The proofs are similar. O

In what follows, we shall study the phenomenon of wild ramification (see
Definition 3.5.4) in a Galois extension more closely.

Definition 3.8.4. Let F'/F be a Galois extension of algebraic function fields
with Galois group G = Gal(F’/F). Consider a place P € Pr and an extension
P’ of P in F'. For every i > —1 we define the i-th ramification group of P'|P
by

Gi(P'|P) :={0€G|vp(oz—2)>i+1 forall z€ Op}.

Clearly G;(P’|P) is a subgroup of G. For abbreviation we write G; =
G;(P'|P).
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Proposition 3.8.5. With the above notations we have:

(a) G_1 = Gz(P'|P) and Gy = Gp(P’'|P). In particular, ord Gy = e(P'|P).

() G.1 2Gy 2+ D2G; 2 Gip1 2+ and Gy, = {id} for m sufficiently
large.

(c) Let 0 € Go,i >0 and let t be a P'-prime element; i.e., vp/(t) = 1. Then

c€G; < vp(ot—t)>i+1.

(d) If char F = 0 then G; = {id} for alli > 1, and Go = Gr(P’|P) is cyclic.
(e) If char F' = p > 0 then G is a normal subgroup of Go. The order of Gy is
a power of p, and the factor group Go/G1 is cyclic of order relatively prime
to p.

(f) If char F = p > 0 then Gy is a normal subgroup of G; (for alli > 1),
and G;/Giy1 is isomorphic to an additive subgroup of the residue class field
Fp,. Hence G;/G,i11 is an elementary abelian p-group of exponent p.

Proof. (a) and (b) are obvious.

(¢) Counsider the inertia field T of P’ over P, the restriction Pr = P’ NT and
the corresponding valuation ring Op, = Op: NT. The elements 1,¢,... ¢!
(where e = e(P’|P)) constitute an integral basis for F'/T at Pr, since P'|Pr

is totally ramified (see Proposition 3.5.12). Suppose now that o € Gy =
Gal(F'/T) satisfies vp: (ot —t) > i+1, and let z € Op,. Writing z = Zf;& zt!

with x; € Op, we obtain
e—1 e—1
oz —z= in((at)l —t')=(ot—1t)- inui ,
i=1 i=1

where u; = ((ot)?—t%)/(ot—t) € Op,. This implies vp/ (02 —2) > vp/ (ot —t) >
i+ 1, hence o € Gy, and (c) is proved.

We denote by (Fp,)* (resp. Fp,) the multiplicative (resp. additive) group
of the residue class field of F” at P’, and we shall establish the following facts:
There is a homomorphism

X :Go — (Fp/))* with Ker(y) =G, (3.112)
and for all i > 1 there is a homomorphism
1% : Gz — F]lm with Ker(wi) = Gi-i-l . (3113)

The assertions (d), (e) and (f) are easy consequences of (3.112) and (3.113).
Indeed, since a finite subgroup of the multiplicative group of a field is cyclic
of order prime to the characteristic, Go/G1 is a cyclic group by (3.112). If
char F' = 0, no subgroup of the additive group F, is finite, so G; = G4 for
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all ¢ > 1 by (3.113), and since G; = {id} for sufficiently large 4, (d) follows.
If char F = p > 0, each additive subgroup of Fp, is elementary abelian of
exponent p, hence (3.113) implies the remaining assertions of (e) and (f).

In order to prove (3.112) and (3.113), we choose a P’-prime element ¢ and
set for o € Gy,
a(t)

x(o) == - + P e (Fp)*.

The definition of x (o) does not depend on the specific choice of ¢: Let t* = u-t
be another prime element for P’ (i.e., v € F’' and vps(u) = 0). Then

¥+P’: #)JFP’, (3.114)

since

o) o) _ol)-ow) olt) _olt) ,
e I CIC R

(Observe that o(u) —u € P’, as 0 € Gy.) For 0,7 € Gy we have

(o)) | 5 or@) 1) |
X(UT)—T‘FP—T'T+P—X(0)'X(T)~

Therefore x is a homomorphism (here we have used the fact that 7(t) is a
prime element at P’, and the definition of x (o) is independent of the prime
element by (3.114)). An element o € G is in the kernel of y if and only if
(o(t)/t) —1 € P';ie, vp(o(t)—t) > 2. Thus Ker(x) = G1 by (c).

It remains to prove (3.113). Let i > 1 and o € G}, then o(t) =t + ¢! . u,
for some u, € Op:. We define ¢; : G; — Fp, by

(o) == uy + P

(Actually, this definition depends on the choice of t.) For 7 € G; we have
7(t) =t + "1 - ., hence

(o7)(t) = o(t + t"uy) = o(t) + o () - o (u,)
=t 4+t (T u) T (w4 t)
(with some x € Opr; observe that o(u,) —ur € P’ since o € G;)
=t 4+t w1 )T (uy + L)
=t 4+t (uy + ur +ty) with y € Opr.

Therefore uy,, = us + ur + ty, which implies that
Yi(oT) = i(0) + (7).

The kernel of 1; is obviously G;41; this finishes the proof of (3.113). O
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As a consequence of Proposition 3.8.5 we have the following supplement
to Theorem 3.8.3.

Corollary 3.8.6. Suppose that F'/F is a Galois extension of algebraic func-
tion fields of characteristic p > 0. Let P € IPr and let P’ € Pp: be an
extension of P in F’, and consider the fized field V1 (P'|P) of the first ramifi-
cation group G1(P'|P). Denote by Py the restriction of P’ to an intermediate
field M, F C M C F'. Then the following hold:

(a) M CV1(P'|P) <= e(Puy|P) is prime to p.

(b) M 2D Vi(P'|P) <= Py is totally ramified in F' /M, and e(P'|Pyr) is a
power of p.

We omit the proof of this corollary; it is similar to the proof of Theorem
3.8.3.

There is a close relation between the different exponent d(P’'|P) and the
ramification groups G;(P’|P).

Theorem 3.8.7 (Hilbert’s Different Formula). Consider a Galois exten-
sion F'/F of algebraic function fields, a place P € Pr and a place P’ € Pp
lying over P. Then the different exponent d(P’'|P) is

[ee]
d(P'|P) = (ord G;(P'|P) - 1).

i=0
(Note that this is a finite sum, since G;(P'|P) = {id} for large i.)
Proof. First we assume that P’|P is totally ramified; i.e., G := Gal(F'/F) =
Go(P'|P). Set e; := ord G;(P'|P) (for i = 0,1,...) and e := ¢y = [F' : F].
Choose a P'-prime element ¢; then {1,t,..., ¢!} is an integral basis for F’/F
at P by Proposition 3.5.12, and d(P’|P) = vp/(¢'(t)) where o(T) € F[T] is
the minimal polynomial of ¢ over F. Since F'/F is Galois,

o(1) = [](@=ov)).

ceG
Consequently
/
P'(t) ==+ T (a(t) — 1)
o#id
We obtain

(3.115)
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So our theorem is proved in the totally ramified case. Now we consider the
general case. Let T denote the inertia field of P'|P and Pr := P’ NT. Then
Pr|P is unramified and P’|Pr is totally ramified. The ramification groups
G;(P'|P) are the same as G;(P'|Pr), for i = 0,1,..., and the different expo-
nent d(P’|P) is

d(P'|P) = e(P'|Py) - d(Pr|P) + d(P'|Pr) = d(P'|Pr), (3.116)

by Corollary 3.4.12(b) (note that d(Pr|P) = 0 as Pr|P is unramified). Now
the theorem follows from (3.115) and (3.116). O

3.9 Ramification and Splitting in the Compositum
of Function Fields

Quite often one considers the following situation: Fy/F and Fy/F are finite
extensions of a function field F', and one knows the ramification (resp. split-
ting) behavior of a place P € IPp in both extensions Fy/F and Fy/F. What
can then be said about ramification (resp. splitting) of P in the compositum
F1F»/F? In this section we address this problem.

First we deal with ramification. The main result here is:

Theorem 3.9.1 (Abhyankar’s Lemma). Let F'/F be a finite separable
extension of function fields. Suppose that F' = F1Fy is the compositum of two
intermediate fields F C Fy, Fo C F'. Let P’ € IPg be an extension of P € IPp,
and set P; := P' N F; for i =1,2. Assume that at least one of the extensions
Py|P or Py|P is tame. Then

e(P'|P) = lem{e(P;|P),e(P|P)}.

For the proof of this theorem we need the following lemma.

Lemma 3.9.2. Let G be a finite group and U C G be a normal subgroup such
that ordU = p™ (with either p = 1 or else, p a prime number) and G/U is
cyclic of order relatively prime to p. Suppose that Hy is a subgroup of G with
p" | ord Hy. Then for every subgroup Ho C G we have

ord (Hy N Hy) = ged(ord Hy, ord Hy) .

Proof of the Lemma. Clearly the order of H; N Hy divides the orders of H;
and of Hs, thus

ord (Hy N Hy) | ged(ord Hy, ord Hy) .

We set ord Hy = a1p™ and ord Hy = agp™ with (a1,p) = (az2,p) = 1, and
d := ged(aq, az2). Then ged(ord Hy,ord Hy) = p™d. It is sufficient to prove the
following claims:
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Hi N Hy contains a subgroup of order p" , and (3.117)

Hy N Hy contains an element whose order is a multiple of d. (3.118)

Let V' C Hjy be a p-Sylow subgroup of Hs (i.e., ordV = p™). Since U is
by assumption a normal subgroup of G, it is the only p-Sylow group of G,
therefore V' C U C H;. This proves (3.117).

Now we consider the canonical homomorphism 7 : G — G/U. The groups
m(H;) € G/U are of order a; (i = 1,2), and w(H;) N7(Hz) is a cyclic group
of order d = ged(aq,as) (here we use the fact that G/U is cyclic). Choose
elements g; € Hy and go € Hy such that 7(g1) = 7w(g2) is a generator of
m(Hy) Nw(Hy). Then 91_192 =:u €U C Hq, s0 go = gyu € Hy N Hy, and the
order of g, is a multiple of d. a

Proof of Theorem 3.9.1. Choose a Galois extension F*/F with F’ C F* and
an extension P* € Pp« of P’ in F*. Then we have the following situation:

F* P*
\ \
F'=FF P
F F, Py Py
F P
Fig. 3.4.

Consider the group G := Gr(P*|P) and its subgroups H; := G (P*|P;)
for i = 1,2. Let p = char F' (in the case of characteristic 0 we set p = 1). At
least one of the extensions P;| P is tame, say ged(e(Pr|P),p) = 1. The groups
G, H; and Hs satisfy the hypotheses of Lemma 3.9.2, thus

ord (Hy N Hy) = ged(ord Hy, ord Hy) .

The condition F’ = Fy F» shows that Gal(F™*/F') = Gal(F*/F1)NGal(F*/Fy)
and Gp(P*|P") = Gp(P*|P1) N Gp(P*|Py) = Hy N Hy. We obtain
e(P*|P") = ord Gp(P*|P") = ord (H; N Hs)
= ged(ord Hy,ord Hy) = ged(e(P*|Py), e(P*|Py))
= ged(e(P*|P') - e(P'|Py), e(P*|P") - e(P'| Py))
= e(P*|P') - ged(e(P'|P1), e(P'| P2)) -
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Therefore
ged(e(P'|Py),e(P|P)) = 1. (3.119)
On the other hand we have
e(P'|P) = e(P'|Py) - e(P1|P) = e(P'|P) - e(P|P) . (3.120)

Equations (3.119) and (3.120) imply that
e(P'|P) = lcm (e(P1|P),e(P2|P)).

(This is a simple fact from elementary number theory: if ax = by with non
zero integers a, b, x,y and ged(z,y) = 1, then the least common multiple of a
and b is lem(a, b) = axz = by.) O

Recall that a place P € P is said to be unramified in a finite extension
E/F if e(Q|P) = 1 for all places Q € IPg with Q|P. We have as an immediate
consequence of Abhyankar’s Lemma:

Corollary 3.9.3. Let F'/F be a finite separable extension of function fields
and let P be a place of F.

(a) Suppose that F' = F1Fy is the compositum of two intermediate fields
F C F\,F>, C F'. If P is unramified in Fy/F and in Fy/F, then P is unram-
ified in F'/F.

(b) Assume now that Fy is an intermediate field F C Fy C F' such that F'/F
is the Galois closure of Fy/F. If P is unramified in Fy/F then P is unramified
in F'/F.

Proof. (a) This is just a special case of Theorem 3.9.1.

(b) The Galois closure F’ of Fy/F is the compositum of the fields o(Fp),
where o runs through all embeddings o : Fy — F over F (where F' O F is the
algebraic closure of F'). As P is unramified in Fy/F, it is also unramified in
o(Fy)/F. Assertion (b) follows now from (a). O

In the case of wild ramification, Abhyankar’s Lemma does not hold in
general. With regard to an application in Chapter 7 (see Proposition 7.4.13)
we discuss now the simplest case of this situation: we consider a function field
F/K of characteristic p > 0 and two distinct Galois extensions Fy/F and
F5/F of degree [Fy : F| = [Fy : F| = p. Let F' = F1F, be the compositum of
Fy and Fy; then F'/F is Galois of degree [F' : F| = p?, and also the extensions
F'/Fy and F'/F5 are Galois of degree p. Let P be a place of F' and P’ a place
of F' lying above P, and denote by P; := P’ N F; the restrictions of P’ to Fj,
for i =1,2. If P||P or P,|P is unramified then Abhyankar’s Lemma describes
how P’|P; and P’| P, are ramified. So we assume now that both places P;|P
and P,|P are ramified. We then have e(P;|P) = e(P,|P) = p. By Hilbert’s
Different Formula the different exponents d(P;|P) satisty d(FP;|P) = ri(p — 1)
with r; > 2 for ¢ = 1,2. In the following proposition we consider the special
case r, =r9 = 2.
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Proposition 3.9.4. In the situation as above we assume that d(P1|P) =
d(P2|P) =2(p —1). Then one of the following assertions holds:

(1) e(P'|Py) = e(P'|P,) =1, or
(2) e(P'|Py) = e(P'|P2) = p and d(P'|Py) = d(P'|P;) = 2(p — 1).

Proof. Tt suffices to consider the case e(P’'|P;) = e(P'|P;) = p. Denote by
G; = G;(P'|P) C Gal(F’'/F) the i-th ramification group of P’|P, then

Gal(F'/F) = Gy 2 Gy 2 ... 2 Gy 2 Gs = {id} (3.121)

for some integer s > 2. For an intermediate field ' C H C F’ we set Q :=
P'NH.IfU := Gal(F'/H) is the subgroup of Gal(F’/F) corresponding to H,
the é-th ramification group of P’|@Q is (by Definition 3.8.4) G;(P'|Q) = UNG;.
By Hilbert’s Different Formula the different exponents of P’|P and P’|Q are
given by

s—1

d(P'|P) = (ord(G;) — 1), (3.122)
=0

d(P'|Q) = sz_:(ord(U NG —1). (3.123)

i=0
We distinguish two cases.

Case 1. ord(Gs_1) = p*. From Equation (3.122) we obtain d(P’'|P) =
s(p? —1). We choose H := Fy, then (3.123) gives d(P’|P;) = s(p — 1). Since
d(P'|P) = e(P'|Py) - d(Py|P)+ d(P’'|Py) by transitivity of different exponents
(Corollary 3.4.12), we conclude that s(p? — 1) = p-d(P1|P) + s(p — 1), hence
d(Py|P) = s(p—1). As d(P1|P) = 2(p—1) by assumption, we then have s = 2
and d(P'|P1) =s(p—1)=2(p—1).
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Case 2. ord(Gs_1) = p. At least one of the fields Fy, F» is not the fixed field
of the group Gs_1, so we can assume w.l.o.g. that U := Gal(F'/Fy) # Gs_1.
We obtain then from (3.123) that d(P’|P;) < s(p — 1), hence

A(P'|P) = e(P'|Py) - d(Po|P) + d(P'| Py)
<p-2p—1)+s(p—1) = 2p+s)(p—1). (3.124)

On the other hand, observing that ord(Gy) = ord(G;) = p? by Proposition
3.8.5 we get from (3.121) and (3.122)

d(P'|P) =2 200 = 1)+ (s =2)(p—1) = (2p+s)(p—1).

This inequality contradicts (3.124) and therefore Case 2 cannot occur. O

Now we proceed to splitting places. We recall that a place P € IPr splits
completely in an extension field E/F of degree [E : F] =n < oo, if P has n
distinct extensions @1, ..., Q, in E. By the Fundamental Equality 3.1.11 this
is equivalent to the condition that e(Q|P) = f(Q|P) =1 for all Q € Py lying
above P.

Lemma 3.9.5. Let Fyy/F be a finite separable extension of function fields and
let F" O Fy be the Galois closure of Fy/F. Assume that a place P € PPp is
completely splitting in Fy/F. Then P splits completely in F'/F.

Proof. Let P’ be a place of F’ lying above P and consider the decomposition
field Z := Z(P'|P) C I’ (see Definition 3.8.1). Set Py := P’ N Fy. Since P
splits completely in Fy/F we have e(Py|P) = f(FPo|P) = 1, and it follows
from Theorem 3.8.3(a) that Fy C Z. For every embedding o : Fy — F’ over
F, the place P splits completely in o(Fp)/F, hence also the field o(Fp) is
contained in Z. The Galois closure F” of F//Fj is the compositum of all these
fields o(Fp), so we have that F’ C Z and hence F' = Z; we conclude from
Theorem 3.8.2 that e(P’|P) = f(P'|P) = 1. O

Proposition 3.9.6. Let F'/F be a finite separable extension of function fields
and let Fy, Fy be intermediate fields of F'/F such that F' = F|Fy is their
compositum.

(a) Suppose that P is a place of F which splits completely in the extension
Fy/F. Then every place Q of Fy lying above P splits completely in the exten-
sion F' [ F;.

(b) If P € P splits completely in Fy/F and in F5/F, then P splits completely
in F'/F.

Proof. (a) Let E/F be the Galois closure of Fy/F'; then P splits completely in
the extension F/F by Lemma 3.9.5. We consider the compositum E’ := EF5.
By Galois theory we know that the extension E’/F; is Galois, and the Galois
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group Gal(E'/F3) is isomorphic to a subgroup of Gal(E/F) under the map
o +— o|g (the restriction of o to E).

Suppose that there is a place @ of I, above P which does not split com-
pletely in F//F5, so @ does not split completely in E’/F,. Choose a place @’
of E’ lying above ) and set P’ := Q' N E. The situation is shown in Figure
3.6.

Fig. 3.6.

Since e(Q’'|Q) - f(Q'|Q) > 1, there is an automorphism o € Gal(E’/Fy) with
0(Q’") = Q" and ¢ # id, by Theorem 3.8.2(a). Then the restriction o’ := o|g €
Gal(E/F) is not the identity on £ and o’(P’) = P’, hence the decomposition
group Gz (P’'|P) C Gal(E/F) is non-trivial. It follows that e(P’|P)- f(P'|P) =
ord Gz (P'|P) > 1, a contradiction to the fact that P splits completely in E/F.

(b) is an immediate consequence of (a). O

Corollary 3.9.7. Let F/K be a function field whose full constant field is K.

(a) Suppose that F' = F1Fy is the compositum of two finite separable exten-
sions F1/F and Fy/F. Assume that there exists a place P € Pp of degree
one which splits completely in Fy/F and in Fy/F. Then P splits completely
in F'/F, and K is the full constant field of F’.

(b) Suppose that Fy/F is a finite separable extension and P € Pp is a place
of degree one which splits completely in Fy/F'. Let F/F be the Galois closure
of Fo/F. Then P splits completely in F/F and K is the full constant field of
F.

Proof. (a) We only have to show that K is the full constant field of F' = F} Fb;
the remaining assertions follow immediately from Proposition 3.9.6. We choose
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a place P’ of F’ lying above P, then f(P’|P) = 1 and therefore the residue
class field F, of P’ is equal to the residue class field Fp = K of P. Since the
full constant field K’ of F’ satisfies K C K’ C F},, we conclude that K’ = K.

(b) is obvious. O

3.10 Inseparable Extensions

Every algebraic extension F’/F of algebraic function fields can be split into
a separable step F;/F and a purely inseparable step F’/Fy, see Appendix A.
Thus far we have mostly studied separable extensions. In the present section,
purely inseparable extensions will be investigated. Throughout this section,
K is a perfect field of characteristic p > 0, and F/K is a function field with
constant field K.

Lemma 3.10.1. Suppose F'/F is a purely inseparable field extension of de-
gree p. Then K is the constant field of F' as well. Every place P € Pr has
only one extension P’ € Pr/, namely

P' ={zeF'|2*e€P}.
The corresponding valuation ring is
Op ={z€F'|2’e€0Op}.
We have e(P'|P) = p and f(P'|P) = 1.

Proof. Let a € F’ be algebraic over K. Since F’/F is purely inseparable of
degree p, we have a? € F and aP is algebraic over K. As K is the constant
field of F' this shows that a? € K. But K is perfect, so a? € K implies a € K.
Hence K is the constant field of F’.

Next we consider a place P € IPgr. Define
R:={z€F'|2?€0p} and M :={z€ F'| 2 € P}.

Obviously R is a subring of F'/K with Op C R, and M is a proper ideal of R
containing P. Let P’ € IPps be an extension of P. For z € Op/ (resp. z € P’)
we have zP € Op:NF = Op (resp. 2P € P'NF = P), hence Opr C Rand P’ C
M. Since Ops is a maximal proper subring of F’ (see Theorem 1.1.12(c)) and
P’ is a maximal ideal of Op., this implies that Op, = R, P’ = M, and P’ is the
only place of F’ lying over P. The residue class field F,, = Op/ /P’ is clearly
purely inseparable over Fp = Op/P, consequently Fp, = Fp (observe that
Fp is a finite extension of the perfect field K, thus each algebraic extension
of Fp is separable). This proves f(P’|P) = 1, and e(P’|P) = p follows now
from the formula -5 p e(F5|P) - f(P;|P) = [ : F] = p. O
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An element z € F is called a separating element for F/K if F/K(x) is a
finite separable extension. F// K is said to be separably generated if there exists
a separating element for F// K. Next we show, among other things, that every
function field F//K is separably generated (this is not true in general if K is
not assumed to be perfect).

Proposition 3.10.2. (a) Assume z € F satisfies vp(z) Z 0mod p for some
P € Pr. Then z is a separating element for F/K. In particular F/K is
separably generated.

(b) There exist x,y € F such that F = K(x,y).

(c) For eachn > 1 the set FP" := {zP" | 2 € F} is a subfield of F. It has the
following properties:
(1) K CFP" CF, and F/FP" is purely inseparable of degree p™.
(2) The Frobenius map ¢, : F — F, defined by ¢n(z) = 2P", is an
isomorphism of F onto FP". Therefore the function field FP" /K has
the same genus as F/K.
(8) Suppose that K C Fy C F and F/Fy is purely inseparable of degree
[F: Fy) =p™. Then Foy = FP".
(d) An element z € F is a separating element for F/K if and only if z ¢ FP.

Proof. (a) Suppose that z is not separating. The extension F//K(z) is of finite
degree since z ¢ K, hence there is an intermediate field K(z) C Fy C F
such that F/Fy is purely inseparable of degree p. Let Ps; := P N F,. By the
preceding lemma we have e(P|Ps) = p, so vp(z) = p-vp,(z) = 0mod p.
(b) Choose a separating element x € F\K. Since F//K (x) is a finite separable
field extension, there is some y € F satisfying F' = K(z,y) (see Appendix A).
(c) Tt is easily verified that FP" is a field, and K = K?" C FP" because K is
perfect. The extension F/F P" is purely inseparable since zP" € FP" for each
z € F. We choose =,y € F such that x is separating and F = K(x,y), and
claim that

F=K(z,y"") (3.125)

holds. In fact, F = K(x,y?")(y) is purely inseparable over K (z,y?") since
y satisfies the equation T?" — y?" = 0 over K(sc,ypn). On the other hand,
K(z) C K(x,y?") C F, and therefore the extension F//K (x,y?" ) is separable.
This proves (3.125).

Now FP" = KP"(zP" yP") = K(2P",y?"), and (3.125) implies that F =
Fr" (x). Because z is a zero of the polynomial TP" —P" over FP" | we conclude
that

[F:FP"| <pm. (3.126)

In order to prove the reverse inequality, choose a place Py of FP" /K and an
element u € FP" with vp, (u) = 1. Let P € IPr be an extension of Py in F;
then [F: FP"] > e(P|Py). Writing u = 2P for some z € F' we obtain
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P vp(z) = vp(2P") = vp(u) = e(P|Py) - vp, (u) = e(P|Py).
So
p" <e(P|Py) <[F:FP]. (3.127)
This finishes the proof of (1).

Assertion (2) is trivial, and it remains to prove (3). By assumption, the
extension F'/Fy is purely inseparable of degree p™. Then 2#" € F, for each
2z € F,so FP" C Fy C F. The degree [F : FP"] is p" by (1), consequently we
have FP" = F,.

(d) If 2 is a separating element, K (z) € FP since F'/F? is purely inseparable of
degree > 1. Conversely, if z € F\ K is not separating, there is an intermediate
field K(z) C Fy C F such that F/F} is purely inseparable of degree p. By (c),
Fy = FP, hence z € FP. 0O

In characteristic 0 the situation is of course much simpler: each z € F\K is
a separating element, and therefore we have F' = K (x,y) with an appropriate
element y.

3.11 Estimates for the Genus of a Function Field

It is often difficult to determine the genus of a function field precisely. There-
fore we would like to derive some bounds for the genus in specific cases. As
always, F//K is an algebraic function field over the perfect constant field K.

Proposition 3.11.1. Let F /K be a subfield of F/K and [F : F|| = n. As-
sume that {z1,...,2,} is a basis of F/F such that all z; € Z(C) for some
divisor C' € Div(F). Then

g<1+n(g1—1)+degC,
where g (resp. g1) denotes the genus of F/K (resp. of F1/K ).
Proof. Let Ay be a divisor of Fy /K of sufficiently large degree such that
U(A))=tt=degA1 +1—¢1.

Choose a basis {z1,...,2:} C Fy of £(A;). Set A := Conp/p, (A1) € Div(F).
The elements
ziz; (1<i<t 1<j<n)

are in £ (A + C) and they are linearly independent over K. Hence
UA+C)>n-(degAi+1—g1). (3.128)

We may assume that deg (A+C) is sufficiently large so that the Riemann-Roch
Theorem yields
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((A+0)

deg(A+C)+1-yg
=n-degA; +degC+1—g. (3.129)

Substituting (3.129) into (3.128) we obtain g < 14 n(g; — 1) + deg C.. |

In the course of the proof of Theorem 3.11.3 we shall need the following
lemma:

Lemma 3.11.2. Assume that K is algebraically closed, and consider a sub-
field Fy /K of F/K such that F/F is separable of degree [F : Fi] =n > 1.
Let y € F be an element with F = Fy(y). Then almost all P € IPp, have the
following properties:

(a) P splits completely in F/Fy; i.e., it has n distinct extensions Py,..., P,
(b) The restrictions Py N K (y),..., P, N K(y) are pairwise distinct places of
K(y).

Proof. Let p(T') = T"+z,_1T" '+ +29 € F1[T] be the minimal polynomial
of y over Fy. For almost all P € IPr, the following hold:

{1,9,...,y" '} is an integral basis of F/Fy for P, and
P is unramified in F/F} . (3.130)

From now on we assume that P satisfies (3.130). Since K is algebraically
closed, P splits completely in F. For z € Op let Z € Op/P = K denote its
residue class modulo P; then the decomposition of the polynomial ¢(T) =
T" + Z,1T" 1 + .-+ + zy € K[T] corresponds to the splitting of P in F (by
Kummer’s Theorem). Hence we have by (3.130) a decomposition

n

(1) = [[(@ - b))

i=1

with pairwise distinct elements b; € K. For ¢ = 1,...,n there exists (
Kummer’s Theorem) a unique place P; € IPr such that P;|P and vp,(y
b;) > 0. Since the elements b; are pairwise distinct, the restrictions P;NK (y) €
Px(y) are distinct for ¢ = 1,...,n. 0O

by

Theorem 3.11.3 (Castelnuovo’s Inequality). Let F/K be a function field
with constant field K. Suppose there are given two subfields Fy /K and Fy/K
of F/K satisfying

(1) F = FyF5 is the compositum of F1 and F», and

(2) [F : F;] =n; and F;/K has genus g; (i = 1,2).
Then the genus g of F/K is bounded by

g <mnig1 +nega+ (g1 —1)(na — 1).
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Proof. We may assume that K is an algebraically closed field. (Otherwise we
replace F/K by the constant field extension FK /K with the algebraic closure
K C & of K, and F;/K by F;K/K. In a constant field extension, the genera
remain unchanged by Theorem 3.6.3, and we also have, by Proposition 3.6.6,
that [FK : F;K] = [F : F;].) Moreover we can assume that F'/F} is a separable
extension (if both F//Fy and F/F; were inseparable, then F1F, C FP & F by
Proposition 3.10.2).

The idea behind the proof of Castelnuovo’s Inequality is to find an appro-
priate divisor C' € Div(F') of small degree and a basis {uy,...,u,} C Z(C)
of F/Fy such that Proposition 3.11.1 will yield the desired inequality.

Since F' = Fy Fy, there are yi,...,ys € F» with F = Fy(y1,...,ys). The
extension F'/F} is separable, hence we can find aq,...,as € K such that the
element .

Y= Z a;y; € Fy
j=1
is a primitive element of F/Fy; ie., F' = Fi(y) (see Appendix A). By
Proposition 1.6.12 there is a divisor Ag € Div(Fy/K) with Ay > 0, deg Ay =
g2 and £(Ag) = 1. Let Py € [P, be a place not in the support of Ay, and set
BO = AO — Po. Since D‘Z(Ao) = K, it follows that

degBy=g2—1 and {(By)=0. (3.131)

Now we choose a place P € P, that has n; distinct extensions P, ..., Py,
in F'/Fy such that the restrictions

Qi = PN Fy G]PF2

are pairwise distinct and @Q; ¢ supp By, for i = 1,...,n;. This is possible by
Lemma 3.11.2. The Riemann-Roch Theorem yields

(Bo+ Qi) > deg (Bo+ Qi) +1—g2=1. (3.132)
By (3.131) and (3.132) there is an element u; € F satisfying
(u;) > —(Bo+ Qi) and vg,(u;) =—1. (3.133)

We claim that {u,...,u,, } is a basis of F//Fj; so we must show that these
elements are linearly independent over F}j. Suppose that

ni
inui =0 with x; € Fl
i=1

is a non-trivial linear combination. Choose j € {1,...,n1} such that

vp(xj) <vp(z;) for i=1,...,n1. (3.134)
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Then
vp; (Tjuj) = vp; (7)) +vp; (u;) <vp(z;) — 1.

(Observe that vp,(z;) = vp(x;) since P;|P is unramified, and vp, (u;) < —1
by (3.133).) For ¢ # j we have

vp, (Tiu;) = vp (@) +vp, (ui) > ve(z:) > ve(z)),
by (3.133) and (3.134). Therefore the Strict Triangle Inequality implies
ny
vp, (Z miui) = vp,(z;uj) < 00.
i=1

This contradiction proves that {u,...,u,, } is a basis of F/F}.

Now we consider the divisor
ny
CNZCmW&(Bm+2]%)eDw@y
i=1
Its degree is
ni
deg C = ny - deg (Bo + ZQZ> =na(ga — 1+mn1).
i=1

By (3.133) the elements uq,...,u,, are in Z(C). Therefore we can apply
Proposition 3.11.1 to obtain

g <1+4+mni(g1 —1) +na(ga —1+mn1)
=n1g1 +naga + (n1 — 1)(ng — 1).

O
In the special case F; = K(z) and F» = K(y), Castelnuovo’s Inequality
yields:

Corollary 3.11.4 (Riemann’s Inequality). Suppose that F = K(x,y).
Then we have the following estimate for the genus g of F/K:

g<(F: K@) -1)-(F: K(y)]-1).

Riemann’s Inequality (and therefore also Castelnuovo’s Inequality) is often
sharp, and it cannot be improved in general. In some situations however,
another bound for the genus of K(z,y) is even better.
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Proposition 3.11.5. Consider an algebraic function field F = K(x,y) over
K, where the irreducible equation of y over K(x) has the form

Y+ @)y A fa(@)y A+ falz) =0 (3.135)

with f;(xz) € Klz] and deg f;(x) < j for j = 1,...,n. Then the genus g of
F/K satisfies the inequality

g<-(n—1)(n—-2). (3.136)

N =

Proof. The proof is similar to that of Proposition 3.11.1. Let A := (2) denote
the pole divisor of z in F. It is a positive divisor of degree n. We claim that

vp(y) > —vp(A) for all P € Pp. (3.137)

If P is a place with vp(2z) > 0 then vp(y) > 0 by (3.135), and therefore (3.137)
holds for P. Now consider the case vp(z) < 0. Then vp(x) = —vp(A), and
the hypothesis deg f;(x) < j implies that vp(f;(x)) > j-vp(x). Suppose that
vp(y) < —vp(A). For j =1,...,n we obtain

vp(fi(z)y™ ™) > j-vp(z) + (n—j) - vp(y)
> j-vp(y) +(n—7) ve(y) =vp(y").

So Equation (3.135) contradicts the Strict Triangle Inequality, and (3.137) is
proved. We conclude that

() > —A and (y) > —A.
It follows that for all [ > n the elements
xiyj with 0<j<n—1and 0<i1<I[l—7

are in Z(lA). They are linearly independent over K as 1,y,...,y are
linearly independent over K (z). Therefore

0(1A) Zi(l—j+1)=n(l+1)—ij
=0 =0
—n(l+1) - %n(n _). (3.138)

For [ sufficiently large, the Riemann-Roch Theorem yields
LlA)=1-degA+1—-g=In+1—-g.

We substitute this into (3.138) and obtain g < (n —1)(n — 2)/2. O
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3.12 Exercises

In all exercises below we assume that K is a perfect field and F/ K is a function
field with full constant field K.

3.1. Let F'/F be an algebraic extension of F' and A € Div(F). Show that

3.2. Let Pi,..., P, be places of F/K (r > 1). Show that there is an element
x € F with the following properties:

(a) Py, ..., P, are poles of x, and there are no other poles of x.

(b) The extension F/K () is separable.

3.3. Let R = Og be a holomorphy ring of F'//K, and let Ry be a subring of F'
with R C R, ; F'. Show:

(i) For each = € Ry, the ring R[z] is a holomorphy ring.
Hint. Consider the set T := {P € S|vp(z) > 0} and show that R[z] = Or.
(i) The ring R; is a holomorphy ring of F/K.

3.4. Consider an extension field F' = F(y) of degree [F' : F] = n.Let Og C F
be a holomorphy ring of F' and assume that its integral closure in F’ is

n—1
iCF/(Os) = Z OS . yi .
=0

Show that {1,y,...,y" "1} is an integral basis of F’/F at all places P € S.

3.5. Let S ; IPr such that IPr \ S is finite. Show that there are elements
Z1y...,Tp € F with Og = Kl21,...,2,].

3.6. We define the ramification locus of a finite separable extension F’/F as
Ram(F’/F) := {P € Pp | there is some place P’ € IPp, with e(P’|P) > 1},
and its degree as

deg Ram(F'/F) := Z deg P .
PeRam(F'/F)
Now let F//K(x) be a finite separable extension of the rational function field,
having K as its full constant field, and [F : K(x)] =n > 1. Show:
(i) Ram(F/K (x)) # 0.
(i) If char K = 0 or char K > n, then degRam(F/K(z)) > 2. If moreover
the genus of F is > 0, then deg Ram(F/K (x)) > 3.

3.7. Assume that K is algebraically closed, and char K = 0 or char K’ > n. Let
F/K (x) be a separable extension of degree n such that deg Ram(F/K (x)) = 2.
Show that there is an element y € F' such that F' = K(y) and y satisfies the
equation y" = (ax + b)/(cx + d), with a,b,¢,d € K and ad # be.
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3.8. Consider the rational function field F = K(z) and a polynomial f(z) €
K|[z] of degree deg f(z) = n > 2. In case of char K = p > 0 we assume that
f(z) ¢ K[zP]. We set z = f(z) and consider the field extension K(z)/K(z),
which is separable of degree n (cf. Exercise 1.1).

(i) Show that exactly the following places of K (z) are ramified in K(z)/K(z):
the pole P, of z and the places which are zeros of the derivative f’(x).

(i) In the special case z = f(x) = 2™ where n is not divisible by the charac-
teristic of K, show that the zero and the pole of z are the only ramified places
of K(z) in K(z)/K(z). Calculate the different exponents of the places above
them, without using results of Section 3.7.

(iii) Now consider the case z = zP" — z, where p = char K > 0. Without using
results from Section 3.7, show that only the pole of z is ramified in K (z)/K(z),
with ramification index e = p® and different exponent d = 2(p® — 1).

3.9. (char K = p > 0) With notation as in the previous exercise, let z =
f(z) = g(z) + h(x) be a polynomial over K of degree n, where

g(x) = Zaixi , hx)= Zaimi .
pli

pti

Since we assume that f(z) ¢ K[zP], we have that degg(z) > 1. Clearly the
pole P of z in K(z) is totally ramified in K(z)/K(z), the only place above it
is the pole P, of x in K(z).

Show that the different exponent of P, /P is given by

d(Po/P) = (n —1) 4 (n — degg(z)) .

3.10. (i) Given an extension F’' = F(y) of the function field F/K, where y
satisfies the equation

y"=ueF, with (n,charK)=1.

Let P be a place of F//K and P’ a place of F'/K lying above P. Consider F’ as
the compositum of the fields F' and K (y) over the rational function field K (u),
and use Exercise 3.8 (ii) and Abhyankar’s Lemma to obtain the ramification
index of P’|P. This gives another proof of Proposition 3.7.3 (ramification in
Kummer extensions).

(i) (char K = p > 0) Let F’' = F(y), where y satisfies the equation
Y —y=uekF.

In a similar way as in (i), consider F’ as a compositum of two subfields. Use
Exercise 3.8 (iii) and Abhyankar’s Lemma to show: if there is a pole P € IPp
of u with vp(u) = —m < 0 and (m,p) = 1, then [F’ : F] = p®, P is totally
ramified in F’, and the different exponent of the place P’|P is given by
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d(P'|P)=(p®* —1)(m+1) .

This gives another proof for ramification and different exponents in Artin-
Schreier extensions (Propositions 3.7.8 and 3.7.10).

3.11. (char K = p > 0) Determine the genus of the function field F' = K (z,y)
which is given by the equation

YP 4+ ap_1y"IP 4+ ayyP + agy = h(zx) € K[z] ,
with a; € K, ag # 0, degh(z) =m and (m,rp) =1.
Hint. Use Exercise 3.9.

3.12. (char K = p > 0) Let E//F be a Galois extension of function fields E, F
over K. Let P be a place of F' and @ a place of E lying above P. Show:

e(@P)=0modp = d(Q|P)=(e(QIP)-1)+(p—1).
Compare with Exercise 3.9.

3.13. (i) Assume that g > 2. Let 0 : F — F be a homomorphism of F to F
over K (i.e., 0|k is the identity on K), such that F/o(F) is separable. Show
that o is surjective.
(ii) (char K # 2) Let F = K(z,y) with y? = 2® — x. We know from Example
3.7.6 that K is the full constant field of F', and F' has genus g = 1. Set

2 1 2 2 1 4 4 4

u:zu andv::(er)(y x)

Ay 8x2y3
Show that there exists a homomorphism o : ' — F over K with o(x)
and o(y) = v. The extension F/o(F) is separable of degree [F': o(F)] =

=u
4.
3.14. In this exercise we assume for simplicity that K is algebraically closed

and charK = 0. Let K(x) be a rational function field, F} = K(x,y), F» =
K(z,z) and F = F1F5 = K(x,y, z), where

y" = fla) € K[z], 2" =g(x) € K[a]

f(z) and g(x) are square-free, deg f(z) = r and degg(z) = s. Assume that
(m,r) =1, n|s and (f(x),g(z)) = 1. Determine the genera of Fy, F» and F,
and show that Castelnuovo’s Inequality is sharp in this case.

3.15. (i) Consider a Galois extension F'/K (x) of degree [F : K(x)] = ¢, with
a prime number ¢. Assume that at least 2¢ + 1 places of K (z) are ramified in
F/K(x). Show that K (z) is the only rational subfield of F with [F : K (x)] = /.
(i) Assume that ¢ # char K is a prime number, and ay,...,asb1,..., by are
distinct elements of K. Set f(z) = [[,,,(x—a;) and g(x) = [[;<;<,(x —b;),
and consider the function field F' = K (x,y) with y* = f(z)/g(x). Show that
exactly 2¢ places of K (x) are ramified in F'/K(z), and K(z) is not the only
rational subfield of F' with [F : K (z)] = ¢.
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3.16. Let o # id be an automorphism of F//K of finite order, and denote by
F(9) the fixed field of o. Let P € IPr be a place of degree one. Show:

P is totally ramified in F/F{°) <= o(P)=1P .

3.17. Let 0 be an automorphism of F'/ K. Assume that there are 2g+3 distinct
places P; of degree one with o(P;) = P;. Show that o = id.

3.18. For simplicity we assume that K is an algebraically closed field. Let
F/K be a function field of genus g > 2, and let G C Aut(F/K) be a finite
group of automorphisms of F//K. Assume that ged (ord G, char K) = 1. Show
that ord G < 84(g — 1) (this estimate is due to Hurwitz).

Hint. Let Py, ..., P, be all places of F¢ which are ramified in F/F¢. Denote
their ramification indices in F/FG by e1,..., e, and assume that e; < ey <
... < e,. Write down the Hurwitz Genus Formula for F/F G and discuss the
possible cases. The case where the field F¢ is rational, 7 = 3, e; = 2, e5 = 3
and e = 7, yields the largest possible value for ord G, namely 84(g — 1).

Remark. One can show that the automorphism group Aut(F/K) is always
finite, for all function fields F'/K of genus g > 2 (assuming that K is a perfect
field). However, the estimate ord G < 84(g — 1) does not always hold if ord G
is divisible by the characteristic of K.

3.19. Let E/F be a finite extension of F' such that F = FyFy is the com-
positum of two intermediate fields F C F; C E, i = 1,2. Assume that
[y : F] = [E : F3]. Let P; be a place of F| and P, a place of F» with
PN F = P,N F. Show that there exists a place @ of F which satisfies
QﬂFl :Pl andQﬂngpg.

3.20. Assume that F'/K has at least one rational place. Show that there exist
x,y € F such that F = K(z,y) and K(z) N K(y) = K.

Hint. If F = K (z) is a rational function field, choose x = 2"(z—1) with n > 2
and y = z(z — 1)h(z) with h(0), (1) ¢ {0,00}. Why is K(z) N K(y) = K? If
F' is not the rational function field, construct x and y in an analogous way.

3.21. (char K = p > 0) Consider a Galois extension F’/F of function fields
over K, a place P € IPr and a place P’ € P/ lying over P. Denote by
G; = G;(P'|P) the i-th ramification group of P'|P. An integer s > 1 is called
a jump of P'|P if G5 2 Gyy1.

Assume that the first ramification group G is non-cyclic of order ord G| = p?,
and that P’|P has two jumps s < t, thus

G1:...:Gs2G5+1:...:Gt2Gt+1:{id}.

Show that s = ¢ mod p.

Hint. Choose a subgroup H C G; with H # G, and ord H = p. Let E be the
fixed field of H and @ := P’ N E. Calculate the different exponent of P’|P in
two ways:
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(a) by Hilbert’s Different Formula, and
(b) by using transitivity of different exponents for P’ D Q D P.

Remark. Exercise 3.20 is the simplest special case of the Hasse-Arf Theorem
which states that for every abelian extension F'/F, two consecutive jumps
s < t of P'|P satisfy the congruence s =t mod (G : Gy).



4

Differentials of Algebraic Function Fields

In the previous chapters we have seen that Weil differentials provide a useful
tool for studying algebraic function fields. Now we shall develop the theory
of differentials (beginning with a definition of differentials that is closer to
analysis) and show how these are related to the notion of Weil differentials.

In this chapter we consider an algebraic function field F/K of one
variable. K is the full constant field of F, and K is assumed to be
perfect.

4.1 Derivations and Differentials

We begin with some basic notions.

Definition 4.1.1. Let M be a module (i.e., a vector space) over F. A mapping
d: F — M is said to be a derivation of F/K, if § is K-linear and the product
rule

S(u-v)=u-0(v)+v-o(u)
holds for all u,v € F.

Some consequences of this definition are listed in the following lemma.

Lemma 4.1.2. Let 6 : F — M be a derivation of F/K into M. Then we
have:

(a) 6(a) =0 for each a € K.

(b) 8(2") =nz""1.§(2) for 2 € F and n > 0.

(¢) If char K = p > 0, then 6(zP) =0 for each z € F.

(d) 6(x/y) = (y - 0(x) —x - d(y))/y* for x,y € F and y # 0.

The simple proof of this lemma can be omitted.

H. Stichtenoth, Algebraic Function Fields and Codes, 155
Graduate Texts in Mathematics 254,
(© Springer-Verlag Berlin Heidelberg 2009
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Before we show that some specific derivations exist, we prove a uniqueness
assertion. Recall that an element x € F is called a separating element of F/K
if F/K(z) is a separable algebraic extension, cf. Section 3.10.

Lemma 4.1.3. Suppose that x is a separating element of F/K and that 61,02 :
F — M are derivations of F/K with 61(x) = d2(x). Then §; = 5.

Proof. Lemma 4.1.2(b) implies for a polynomial f(z) = Y a;2* € K[x] that
§;(f(x)) = (X iaz’™1) - 6;(x) for j = 1,2, hence 61(f(z)) = da(f(x)). For an
arbitrary element z = f(x)/g(x) € K(x) it follows then, by Lemma 4.1.2(d),
that

g(x) - 01(f(x)) = f(z) - di(g(x))
g()?
g(x) - 92 (f(2)) — f(z) - d2(g(2))

= g(x)Q = (52(2’) .

(51(2) =

Therefore the restrictions of d; and d; to K (z) are equal. Now we consider
an arbitrary element y € F. Let h(T) = Y. u;T* € K(x)[T] be its minimal
polynomial over K(x). We apply J; (j = 1,2) to the equation h(y) = 0 and
obtain

0=, (z y> = 3 (i 0557) + - 85 (w)
— (S ) a0+ o'

As y is separable over K (), the derivative h'(y) = 3_ iu;y*~* does not vanish,
hence

50 = s v 8w

for j = 1,2. Since u; € K(x), we know already that d1(u;) = d2(u;), therefore
d1(y) = 62(y)- 0

Proposition 4.1.4. (a) Suppose that E/F is a finite separable extension of
F and dy : F — N is a derivation of F/K into some field N 2 E. Then &y can
be extended to a derivation § : E — N. This extension is uniquely determined
by 60.

(b) If x € F is a separating element of F/K and N D F is some field, then
there exists a unique derivation § : ' — N of F//K with the property §(z) = 1.

Proof. (a) Uniqueness follows from the previous lemma. In order to prove the
existence of an extension of &y, we introduce two mappings s’ and s° from the
polynomial ring F[T] into N|[T], namely

s(T) = Z SZ'Ti — 3’(T) = Z’isiTi_l
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and

s(T) = Z s;T" — s°(T) := Zéo(si)Ti .
Clearly both mappings are K-linear and satisfy the product rule. Now we
choose an element v € E such that E = F(u). Let f(T) € F[T] be the

minimal polynomial of u over F and set n := [E : F] = deg f(T). Every
element y € F has a unique representation

y=h(u) with h(T)e F[T] and degh(T)<n.

We define § : E — N by

folw)
5(y) == ho(u) — -h'(u 4.1
(1) = () = G ) (1)
and have to verify that 0 is a derivation of E which extends dy (observe that
f/(u) # 0 since u is separable over F', hence (4.1) makes sense).

First of all, if y € F then h(T) = y,h'(T) = 0 and h°(T) = §o(y), hence
(4.1) yields 6(y) = dp(y). The K-linearity of § is obvious, and it remains to
prove the product rule for 6. Consider y,z € E, say y = h(u),z = g(u) with
deg h(T') < n and deg g(T') < n. Write g(T') - h(T) = ¢(T) - f(T) + r(T) with
e(T),r(T) € FIT] and deg r(T) < n, hence y -z = c(u) - f(u) + r(u) = r(u).
Therefore

L 2) = 7,,0 _ f_O A ’I"I w) = 1 . T‘O o 07"/ ”
= ﬁ ((gh =) f = £ (gh—cf))(u). (4.2)

We evaluate the terms (gh —cf)? and (gh —cf)’ (using the product rule) and
observe that f(u) = 0. Then (4.2) is reduced to

1
()
On the other hand we obtain from (4.1)

5(y-z2) = (g°hf" + gh®f' — fo9'h — fOgh)(u). (4.3)

0 0
g 8(2) + 2 6(y) = h(w) - ( 0—%-g'><u>+g<u>-<h°—%-h')(u)

L (hg®f — hiod + ghOF — gfH) ().

f'(w)

This is in accordance with (4.3).

(b) The uniqueness assertion follows from Lemma 4.1.3. In order to prove the
existence of a derivation ¢ : F' — N with 0(x) = 1 it is sufficient to show that
there is a derivation 6y : K(z) — N of K(x)/K with dp(z) = 1, by (a). We
define §y by
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f@)\ _g9(@) - f'x) - fz) - g'(x)
g (g(:v)> - g(x)? ’ -
where f(z),g(x) € K[z] and f'(x) denotes the formal derivative of f(z) in

K[z]. Equation (4.4) is well-defined, and it is readily checked that dy is a
derivation of K(x)/K with dp(z) = 1. O

Definition 4.1.5. (a) Let x be a separating element of the function field
F/K. The unique derivation 6, : ' — F of F/K with the property §,(x) =1
18 called the derivation with respect to x.

(b) Let Derp := {n : F — F|n is a deriwation of F/K}. For ni,ns € Derp
and z,u € F we define

(m +m2)(2) = m(2) +m2(2)  and  (u-m)(2) :=u-m(z).

It is obvious that n1 +mn2 and -y are derivations of F/K, and Derp becomes
an F-module in this manner. Hence it is called the module of derivations of
F/K.

Lemma 4.1.6. Let = be a separating element of F/K. Then the following
hold:

(a) For each derivation n € Derp we have n = n(x) - §5. In particular, Derp
15 a one-dimensional F'-module.

(b) (Chain rule) If y is another separating element of F//K, then
0y = 0y(x) - 0y . (4.5)
(¢) Fort € F we have

0:(t) #0 <= t is a separating element.

Proof. (a) Consider the two derivations n and n(x) - §, of F/K into F. Since
(n(zx) - 0,)(x) = n(x) - d.(x) = n(x) and z is separating, Lemma 4.1.3 implies
that n(z) - 6, = 7.

(b) This is a special case of (a).

(c) If t is separating, 1 = 8:(t) = d:(x)-0,(t) (here we have used the definition of
0; and the chain rule). Hence §,(t) # 0. Suppose now that ¢ is not separating.
If char K = 0 then ¢ € K and 0,(t) = 0, since all derivations of F'/K vanish on
K. If char K = p > 0, then t = u” for some u € F' (see Proposition 3.10.2(d)),
and 0, (t) = 04(uP) =0 by Lemma 4.1.2. O

We are now ready to introduce the notion of a differential of F//K.
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Definition 4.1.7. (a) On the set Z := {(u,z) € F X F |z is separating } we
define a relation ~ by

(u, ) ~ (v,y) : <= v=u-d,(z). (4.6)
Using the chain rule (4.5), it is readily verified that ~ is an equivalence relation

on Z.

(b) We denote the equivalence class of (u,x) € Z with respect to the above
equivalence relation by udx and call it a differential of F/K. The equivalence
class of (1,x) is simply denoted by dx. Observe that by (4.6),

udr =vdy <= v=1u-0dy(x). (4.7)
(¢) Let
Ap :={udx|u € F, and x € F is separating }
be the set of all differentials of F/K. We define the sum of two differentials
udr, vdy € Ap as follows: Choose a separating element z; then
udr = (u-0,(x))dz and vdy=(v-0,(y))dz,

by (4.7), and we set

udr+vdy:= (u-d.(x)+v-9.(y))dz (4.8)

This definition (4.8) is independent of the choice of z by the chain rule. Like-
wise, we define

w- (udx) == (wu)de € Ap
forw € F and udx € Ap. One checks easily that Ap becomes an F-module
in this manner.
(d) For a non-separating element t € F we define dt := 0 (the zero element
of Ar); thus we obtain a mapping

F— A
d: o (4.9)
t— dt.

The pair (Ap,d) is called the differential module of F/K ( for brevity we shall
simply refer to Ap as the differential module of F/K ).

The main properties of the differential module are put together in the
following proposition.

Proposition 4.1.8. (a) Let z € F be separating. Then dz # 0, and every
differential w € Ap can uniquely be written in the form w = udz with u € F'.
Hence Ar is a one-dimensional F-module.
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(b) The map d: F — Ap as defined in (4.9) is a derivation of F/K; i.e.,
dlaz) = adzx, d(z+y)=de+dy, and d(zy)=zdy+ydz

forallz,y e F anda € K.
(¢) Fort € F we have

dt #0 <= t is separating.

(d) Suppose that § : F — M is a derivation of F/K into some F-module M.
Then there ezists a unique F-linear map p: Ap — M such that § = pod.

Proof. (a) The differential 0 = 0dz is the zero element of Ap. By (4.6) we see
immediately that (0, z) is not equivalent to (1, z), hence dz # 0.

Consider now an arbitrary differential w € Ap, say w = v dy with a sepa-
rating element y. Set w := v - §,(y). Using (4.7) we obtain

udz=(v-0,(y))dz=vdy =w.
The uniqueness of v is evident, since dz # 0 and Ap is a vector space over

the field F.
(b) Fix a separating element z € F. For all ¢t € F' we have

dt = 6,(t)dz . (4.10)

(For separating ¢ this follows from (4.7). If ¢ is not separating, d¢t = 0 by
definition, and §,(t) dz = 0 by Lemma 4.1.6.) Using (4.10), it is easily shown
that d : F — Ap is a derivation of F//K. We prove only the product formula.
Since J, is a derivation of F//K we get

d(zy) = 0:(xy) dz = (z - 0:(y) +y - 6:(2)) dz
=2 (0:(y)dz) +y- (0.(x) d2) = xdy + ydu.

(¢) Clear from the definition of d.

(d) Now there is given a derivation ¢ : ' — M. By (a), each w € Ap is
uniquely written as w = udz, and we can define p : Ap — M by p(w) :=
u-6(z). Obviously p is F-linear. In order to show that 6 = pod we have only
to prove that

5(2) = (o d)(2) (4.11)
(by Lemma 4.1.3). Equation (4.11) holds trivially by definition of pu.

It remains to prove the uniqueness of p. Suppose that v : Ap — M is
F-linear and § = v od. Then

vudz) =u-v(dz) =u-((rod)(z)) =u-0(z) = p(udz).

Hence v = p. ]
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Remark 4.1.9. (a) A differential of the specific form w = dx (with z € F) is
said to be ezact; the exact differentials form a K-subspace of Ap.

(b) Since Ap is a one-dimensional F-module, one can define the quotient
w1 /we € F for wi,ws € Ap and wy # 0 by setting
w1
U=—:<= Wi = UwWy .
wo
In particular, if z € F' is separating and y € F, the quotient dy/dz is defined,
and we have

dy
AR
by Equation (4.10). Using this notation, some previous formulas can be writ-
ten in a more suggestive manner, e.g.

d d
udmzvdy(z}vztw%(z}uzw% (4.12)
and p By d
Y Yy az
2 _2Z. 2 4.1
dv  dz dx’ (4.13)

if x and z are separating. The first one of these formulas corresponds to (4.7),
the second one is the chain rule (4.5).

4.2 The P-adic Completion

The real number field IR is the completion of the rational number field Q with
respect to the ordinary absolute value. That means: (1) the field @ is dense in
R, and (2) every Cauchy sequence in IR is convergent. In the present section
we shall consider an analogous situation, namely the completion of a function
field F//K with respect to a place P € IPp. This will provide us with a useful
tool for calculating the derivation dz/dt (where t is a P-prime element) and
will also enable us to define the residue of a differential at the place P. But
first we need to generalize slightly some earlier notions.

Definition 4.2.1. A discrete valuation of a field T is a surjective mapping
v:T — Z U {0} which satisfies

(1) v(z) =00 <= x=0.
(2) v(zy) =v(x)+v(y) foralz,yeT.
(3) v(z+y) > min{v(z),v(y)} foralx,yeT (Triangle Inequality).

The field T' (more precisely: the pair (T, v)) is called a valued field. As in
Lemma 1.1.11 one can easily prove the Strict Triangle Inequality

v(x +y) = min{v(z),v(y)} ifz,y €T andv(x) # v(y).
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We say that a sequence (z,,)n>0 in T is convergent if there exists an element
x € T (called the limit of the sequence) which satisfies:

for every c € R there is an index ny € IN

such that v(x — x,) > ¢ whenever n > nyg .
A sequence (z,,)n>0 is called a Cauchy sequence if it has the following property:

for every c € R there is an index ng € IN

such that v(z, — x,) > ¢ whenever n,m > ng .

As in analysis one can readily verify the following facts:

(a) If a sequence (x,,),>0 is convergent, then its limit « € T is unique. There-
fore we can write x = lim,,—.oo T,

(b) Every convergent sequence is a Cauchy sequence.

In general it is not true that all Cauchy sequences are convergent. Hence
we introduce the following notions.

Definition 4.2.2. (a) A valued field T is said to be complete if every Cauchy
sequence in T is convergent.

(b) Suppose that (T,v) is a valued field. A completion of T is a valued field
(T',0) with the following properties:

(1) T CT, and v is the restriction of 0 to T.

(2) T is complete with respect to the valuation ©.

(8) T is dense in T; i.e., for each z € T there is a sequence (Tn)n>0 in T
with lim,, .o T, = 2.

Proposition 4.2.3. For each valued field (T,v) there exists a completion
(T,f)) It is unique in the following sense: If (T,0) is another completion
of (T,v) then there is a unique isomorphism [ : T — T such that o = 9o f.
Hence (T',0) is called the completion of (T, v).

Proof. We give only a sketch of the proof; the tedious details are left to the
reader. First of all, we consider the set
R :={(zn)n>0| (zn)n>0 s a Cauchy sequence in T'} .

This is a ring if addition and multiplication are defined in the obvious manner
via () + (yn) = (€ + yn) and (z,,) - (yn) := (€, Yn). The set

I:={(xn)n>0| (@n)n>0 converges to 0}

is an ideal in R; actually I is a maximal ideal of R. Therefore the residue class
ring
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T:=R/I
is a field. For x € T let o(z) := (z,x,...) € R be the constant sequence and

v(z) = o(z)+1eT. It is obvious that v : T — T is an embedding, and we
can consider T' as a subfield of T" via this embedding.

Now we construct a valuation © on 7" as follows. If (Tn)n>0 is a Cauchy
sequence in T, either
lim v(x,) = oo

n—oo

(in this case, (z,,)n>0 € I), or there is an integer ng > 0 such that
v(zy) = v(zm) for all myn > ng.

This follows easily from the Strict Triangle Inequality. In any case the limit
lim,, o v(zy) exists in Z U {oo}. Moreover, if (z,) — (y,) € I then we have
lim,, 00 v(z,) = lim,— oo v(yn). Hence we can define the function ¢ : T —
Z U {co} by

0((zp)n>0 + 1) := lim v(z,).

n—oo
Using the corresponding properties of v, it is easily verified that © is a valuation
of T and o(z) = v(x) for z € T.

Next we consider a Cauchy sequence (2, )m>0 in T, say
Zm = (Tmn)n>0 + 1 with (Tyn)n>0 € R.

Then the diagonal sequence (Z,,)n>0 is a Cauchy sequence in T and

lim z, = (Tun)n>o+1 € T.

n—oo
Thus 7 is complete with respect to 0.
Now let z = (x)n>0 + I be an elemePt of T'. Upon checking, one finds
that z = lim,,_,o @, hence T is dense in T'.
Thus far we have shown that a completion (7', ) of (T, v) exists. Suppose
that (T, 9) is another completion of (T, v). For the moment, we denote by 9-lim

(resp. ©-lim) the limit of a sequence in T (resp. T'). Then we can construct a
mapping f : T — T as follows: if z € T'is represented as

z=0-lim x, with x, €T,
n—oo

we define
f(z) :=0-lim x,.
n—oo
It turns out that f is a well-defined isomorphism of T onto T with the addi-
tional property v = v o f. 0O
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It is often more convenient to consider convergent series instead of se-

quences. Let (2;,),>0 be a sequence in a valued field (7', v) and s,, 1= >~ z;.

We say that the infinite series .- z; is convergent if the sequence of its par-
tial sums (s,,)m>0 is convergent; in this case we write, as usual,

o0

E zi = lim s,,.
m—0o0

=0

In a complete field there is a very simple criterion for convergence of an
infinite series.

Lemma 4.2.4. Let (z,)n>0 be a sequence in a complete valued field (T, v).
Then we have: The infinite series Y .oz is convergent if and only if the
sequence (zy)n>0 converges to 0.

Proof. Suppose that (z,),>0 converges to 0. Consider the m-th partial sum
S 1= D ir 2. For n > m we have

n

V(Sp — Sm) = v( Z zl> > min{v(z)|m <i<n} > min{v(z;)|i > m}.

i=m+1
Since v(z;) — oo for i — oo, this shows that the sequence (s,,)n>0 is a Cauchy
sequence in T, hence convergent.

The converse statement is easy; its proof is the same as in analysis. 0

Now we specialize the above results to the case of an algebraic function
field F/K.

Definition 4.2.5. Let P be a place of F//K. The completion of F with respect
to the valuation vp is called the P-adic completion of F'. We denote this
completion by Fp and the valuation of Fp by vp.

Theorem 4.2.6. Let P € IPp be a place of degree one and let t € F be a
P-prime element. Then every element z € Fp has a unique representation of
the form

z= Zaiti with neZ and a; € K. (4.14)

This representation is called the P-adic power series expansion of z with re-
spect to t.

Conversely, if (¢;)i>n is a sequence in K, then the series > .= c;t' con-
verges in Fp, and we have

vp (i citi) = min{i|¢; # 0}.
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Proof. First we prove the existence of a representation of the form in (4.14).
Given z € Fp we choose n € Z with n < vp(2). There is an element y € F
with vp(z — y) > n (since F is dense in Fp). By the Triangle Inequality it
follows that vp(y) > n, hence vp(yt~™) > 0. As P is a place of degree one,
there is an element a,, € K with vp(yt~" — a,) > 0, and

vp(z — ant") = vp((z —y)+(y— ant")) >n.
In the same manner, we find a,+1 € K such that
vp(z — apt" — an+1t"+1) >n+1.

Iterating this construction, we obtain an infinite sequence a,, Gnt1, Gnt2,- ..

in K such that .
vp (z - Zaﬂf’) >m
i=n

for all m > n. This shows that

oo
z= g a;t".
i=n

In order to prove uniqueness we consider another sequence (b;);>y, in K
which satisfies
o0 oo
z = Zaiti = Zbltl
i=n i=m

We can assume that n = m (otherwise, if n < m, define b; := 0 for n < i < m).
Suppose there is some j with a; # b;. We choose j minimal with this property
and obtain for all k > j

vp (;: a;it’ — ibit’) = vp ((aj — b))t + Ek: (a; — bi)ti> =37 (4.15)

i=j+1

(since vp((a; — bj)t7) = j, the Strict Triangle Inequality applies). On the
other hand,

k k k k
vp (Z a;t’ — Z biti) =vp (Z ait’ — 24z — Zbiti)

i=n

> min{vp<z—iaﬁ"),w(z—ibiti)}. (4.16)

i=n

For k — o0, (4.16) tends to infinity. This is a contradiction to (4.15) and
proves that the representation (4.14) is unique.
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Finally we consider an arbitrary sequence (¢;)i>y in K. As vp(c;t?) > i for
all 4, the sequence (¢;t");>, converges to 0. Hence by Lemma 4.2.4 the series
oo, cit’ is convergent in Fp, say

oo
Zcitl =:ye€Fp.
1=n

Set jo := min{i|c; # 0}. If jo = oo then all ¢; = 0, hence y = 0 and
vp(y) = oo as well. In the case jp < co we have for all k > j

k
vp <Z Citi) = Jo
i=n

by the Strict Triangle Inequality. Since

k
vp <y - Z Citi> > Jo
i=n

for all sufficiently large k, this implies

k k
vp(y) = vp (y — Zciti + Zc,t’)
=n . =N i
— min {’UP (y — ZCztl> ,Up <Z Citi> } = jO .

We continue to consider a place P of F'/K of degree one and a P-prime el-
ement ¢. By Proposition 3.10.2, ¢ is a separating element of F//K, and thus one
can speak of the derivation d; : F' — F with respect to ¢ (cf. Definition 4.1.5).
Using the P-adic power series expansion, we can easily calculate dz/dt = §;(z)
for z € F (the notation dz/dt is explained in Remark 4.1.9).

0

Proposition 4.2.7. Let P be a place of F/K of degree one and let t € F' be
a P-prime element. If = € F has the P-adic expansion z =y .- a;t" with
coefficients a; € K, then

oo

d .
é = Z’iaitlil .

i=n

Proof. We define a mapping 4 : Fp — Fp by

o0

5<Z citi) = i icitt ™t

i=m
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This mapping is obviously K-linear and satisfies the product rule §(u - v) =
w-8(v) +v-6(u) for all u,v € Fp (the verification of the product rule is a
bit technical but straightforward). Moreover ¢(¢) = 1 holds. Therefore §(z) =
01(z) = dz/dt for each z € F, by Proposition 4.1.4(b) and Definition 4.1.5. O

Our next goal is to introduce the residue of a differential w € Ap at a
place P. For this we need some background.

Definition 4.2.8. Suppose that P is a place of F/K of degree one andt € F
is a P-prime element. If z € F has the P-adic expansion z =Y - a;t’ with
n € Z and a; € K we define its residue with respect to P and t by

resp(z) == a_1.
Clearly, respy : ' — K is a K-linear map and
resp(z) =0 if wvp(z)>0. (4.17)
The residue satisfies the following transformation formula:

Proposition 4.2.9. Let s,t € F be P-prime elements (where P is a place of
degree one). Then

resp s(z) = res (z @>
P;s - Pt dt

forall z € F.

Proof. The power series expansion of s with respect to ¢ has the following
form (see Theorem 4.2.6):

S:Zciti with ¢ #0.

i=1
Proposition 4.2.7 yields
ds i
o =c1+ ; et (4.18)

Now we distinguish several cases.
Case 1. vp(z) > 0. Then vp(z - ds/dt) > 0 as well (by (4.18)), and from

(4.17) it follows that

ds
resps(z) = resP,t(z . E) =0

Case 2. z = s~ 1. Clearly we have resp ¢(s~1) = 1. We determine the power
series expansion of s~! with respect to t:
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S S (H~%+—ﬁ+ )4
_Clt+02t2+"' Clt C1
C3 9 r
By .”>
“a (e G e )
fz 02) fa(ca,c3) o )
t 4.19
c1t< 2 + (4.19)
with certain polynomials fj(XQ, ..., Xj) € Z[X>,...,X;]. Therefore
d 1
st d—j = z—i—y with  vp(y) >0
from (4.18) and (4.19), and we obtain
d
resp (3_1 . d—j) =1+resp,(y) =1

by Case 1.

Case 3. z = s~™ with n > 2. Here resps(s~™) = 0. To begin with, we
calculate resp(s~™ - ds/dt) in the case when char K = 0. Then

n

on ds 1 d(s—mt)

d  —-n+1  dt

We write
7n+1 Z d t’L

with kK = —n + 1 and d; € K and obtain

—n+1 %) 4
—d(S ) = Z iditz_l .

dt ‘
i=k
Hence

ds 1 o~ i
I'eSP,t (57”’ . %> e T_i_l . I‘eSP7t (; ’Lditz 1> - 0 . (420)

Next we consider Case 3 in arbitrary characteristic. By (4.18) and (4.19) we
find

. ds 1 fale2),  falea,e3) 5 "
n 8 () et (1 ¢ ¢ ~~)
S a (cr+2cot+---) - (1+ ot 2 -

1

=— ( L+ 92(61,02)th 93(01,52,03)t2+”.>
it c1 ci

with polynomials g;(X1,...,X;) € Z[X1,...,X;]. These polynomials are in-

dependent of the characteristic of K, and we have



4.2 The P-adic Completion 169

1

_, ds
reSP’t<S H.E>:C2n—71.gn(clv...,cn).
1

From (4.20) it follows that g, (c1, ..., ¢,) = 0 for any elements ¢; # 0,¢a, ..., ¢,
in a field of characteristic zero, so g, (X1, ..., X, ) must be the zero polynomial
in Z[Xy,...,X,]. Thus the equality

ds
resp (s*" . E) =0=resps(s™")

holds for a field of arbitrary characteristic (for n > 2).
Case 4. Finally let z be an arbitrary element of F' with vp(z) < 0, say

o0
z:Zaisi with n>1 and a; € K.

i=—n

Then resps(z) = a1 and 2 = a_p,s ™ + - +a_15 ' +y with vp(y) > 0.
Using the results of Cases 1, 2 and 3 we get

ds ! . ds ds
resp (z %) = Z a; -Tespy (81 . E) + resP,t<y- %)

1=—n

ds

. E) =a_; =resps(z).

=a_1-Tespy (sil

Definition 4.2.10. Let w € Ap be a differential and let P € P be a place of
degree one. Choose a P-prime element t € F' and write w = udt with u € F'.
Then we define the residue of w at P by

resp(w) 1= resp(u) .

This definition is independent of the specific choice of the prime element t.
In fact, if s is another P-prime element and w = udt = z ds, then u = z-ds/dt,
and Proposition 4.2.9 yields

ds

resp,s(z) = respy (z : %) =respy(u).

We will show in the following section that the residue of a differential at
a place P of degree one has an interpretation as the local component of a
specific Weil differential at this place.
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4.3 Differentials and Weil Differentials

The goal in this section is to establish a relationship between the notions of
differentials and Weil differentials of an algebraic function field. As always, K
is assumed to be perfect.

To begin with, we recall some notations and results from previous chapters
(in particular Sections 1.5, 1.7 and 3.4). Ar denotes the adele space of F/K;
its elements are adeles a« = (ap)pep, where the P-component ap of « is an
element of F and vp(a) := vp(ap) > 0 for almost all P € IPr. The field F is
considered as a subspace of A via the diagonal embedding F' — Ap.If Ais a
divisor of F//K one considers the space Ap(A) = {a € Ap | vp(a) > —vp(A)
for all P € IPr}. A Weil differential of F is a K-linear map w : Ap — K that
vanishes on Ap(A) + F for some divisor A. The Weil differentials constitute
a one-dimensional F-module Q2. For 0 # w € p there exists a uniquely
determined divisor W = (w) € Div(F) such that w vanishes on Agr (W) but
not on Ap(B) for each divisor B > W. Such a divisor (w) is called a canonical
divisor of F//K. For each P € IPr we have another embedding tp : F' — Ap
where tp(z) is the adele whose P-component is z, and all other components
of tp(z) are 0. The local component of the Weil differential w at the place P
is the mapping wp : F' — K given by wp(z) := w(tp(2)).

If F'/F is a finite separable extension of function fields we have defined the
cotrace w' := Cotrp//p(w) of a Weil differential w € §2p; this is a Weil differ-
ential of F’, and if F’ and F have the same constant field, ' is characterized
by the condition

TYF//F Z wp/ (421)
P'|P
for all P € IPr and y € F’, cf. Theorem 3.4.6 and Remark 3.4.8. In Proposition
1.7.4 we have shown the existence of a specific Weil differential n of the ra-
tional function field K (z)/K which is uniquely determined by the following
properties:

the divisor of ) is (n) = —2Ps , and np_(z7') = —1. (4.22)
(Ps is the pole of z in K(x), and np_ is the local component of n at Ps.)
Definition 4.3.1. Let F//K be an algebraic function field. We define a map-
ping
. F— QFa
x — 6(x)
as follows: if x € F\K is a separating element of F/K we set
0(x) := Cotrp g (z)(n),

where 1 € k(5 is the Weil differential of K(x)/K characterized by (4.22).
For a non-separating element x € F we define §(x) := 0. We call () the
Weil differential of F/K associated with x.
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Note that §(x) # 0 if « is separating, hence each Weil differential w € 2p
can be written as w = z - §(z) with z € F. Now we state the main results of
this section.

Theorem 4.3.2. Suppose that F/K is an algebraic function field over a per-
fect field K, and let © € F be a separating element.

(a) The map 6 : F — 2F given by Definition 4.3.1 is a derivation of F/K.
(b) For every y € F we have
dy
oy)==="-9d(x).
)= - 5()

(¢) The map
) A — Op,
| zdx — z-6(x)
s an isomorphism of the differential module Ap onto 2p. This isomorphism
is compatible with the derivations d : F — Ap and § : F — g, that means
pod=74.
(d) If P € Pp is a place of F/K of degree one and w = z-0(x) € 2, the
local component of w at P is given by

(z-0(x))p(u) =resp(uz dx).

In particular,
(z-d(x))p(l) =resp(z dx).

(e) If w=2-0(t) € 2p and t is a prime element at the place P, then we have
vp(w) =vp(2).

An immediate consequence of this theorem is

Corollary 4.3.3 (Residue Theorem). Let F/K be an algebraic function
field over an algebraically closed field, and let w € Ap be a differential of
F/K. Then resp(w) = 0 for almost all places P € Pp, and

Z resp(w) =0.

PeclPr

Proof of the Corollary. Write w = z dx with z € F and a separating element
x € F. By Theorem 4.3.2(d) we have resp(w) = (2:6(x))p(1). Now Proposition
1.7.2 yields the desired result. 0O

The proof of Theorem 4.3.2 is rather tedious. First we shall assume that
the constant field is algebraically closed. The case of an arbitrary perfect
constant field K will then be reduced to this special case by considering the
constant field extension F' = FK of F with the algebraic closure K of K. We
begin with some preliminaries.
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Lemma 4.3.4. Suppose that F/Fy is a finite separable extension of algebraic
function fields over an algebraically closed field K. Let i € 2p, be a Weil
differential of Fo/K and w := Cotrp, g, (1). Consider a place Py € P, which
is unramified in F/Fy, and a place P € IPr which lies over Py. Then we have

wp(z) =¢p,(z) forallz € Fy.

Proof. We can assume that ¢ # 0. Let Py,..., P, € IPp be the places of
F lying over Py, say P; = P. Since Py is unramified in F/F, and K is
algebraically closed, n = [F': Fpy] by Theorem 3.1.11. By the Approximation
Theorem we can find an element 2z’ € F satisfying

vp(2' —2) 2 —vp, (¥),
vp, (2') > —vp, (1) fori=2,...,n. (4.23)
(Recall that the integer vg () is defined by vg(¢) 1= vo(W) where W = ()
denotes the divisor of 1).) Since Py is unramified in F'/Fy and w = Cotr gy, (¥),
vp,(w) =wvp, () fori=1,...,n (4.24)
by Theorem 3.4.6 and Dedekind’s Different Theorem. Consider the adele o =
(aQ)QE[pF with

ap:=2 —z,
ap, =2 fori=2,...,n, and
ag =0 for Q#Pi,...,P,.

Then a is Ap((w)) by (4.23) and (4.24), hence

wp(z) =wp(2) +w(a) =wp(z) + wp(z' — 2) + ZWR;(ZI)
i—2

=Y wn(#) = ¥n(Tror (). (4.25)

(The last equality in (4.25) follows from (4.21).) By (4.25), the proof of our
lemma will be finished when we show that

Up, (Trpyp, (1) = ¥py(2) - (4.26)

The trace Trpyp, can be evaluated by using the embeddings of F'/Fy into an
extension field of F'. We proceed as follows: Choose a Galois closure £ O F
of F/Fy (i.e., Fy C F C E, the extension E/F; is Galois, and F is minimal
with this property). Then P, is unramified in E/Fy by Corollary 3.9.3. Choose
places Q1 = Q,Q2,...,Q, € Pr with @, | P;. Since E/Fy is Galois, there
exist automorphisms oy, ..., 0, € Gal(F/Fy) such that
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o7 Q)=Q; fori=1,...,n, (4.27)

cf. Theorem 3.7.1. We assert that the restrictions o;|p (i =1,...,n) of g; to
F' are pairwise distinct. In fact, if o; |p= 0} |r, we have for each u € F'

vp (1) = v, (1) = v,-1 () (1) = vQ(0i(u)) = vo(aj(u)) = v, (u)
(we have used (4.27) and Lemma 3.5.2(a)). Therefore ¢ = j, and the embed-

dings o; |p: F' — E are pairwise distinct. Hence

Trpyp, (u) = Z o;(u)
i=1

for u € F. Now we can verify (4.26). By (4.23) and (4.27),
vl —2) = —up,(¥) and
vQ(0i(?)) = v, (2') = vp,(2') = —vp, (¥)

for i = 2,...,n. Thus
vpy (Tryr, (2) — 2) = vo(Treyr, (') — 2)
=vQ ((Z/ - Z) + ZUZ(Z/)> > —Up, (’l/)) .
i=2

Using Proposition 1.7.3 we obtain

Vpy (Trpyp, (2') = 2) =0,

hence (4.26) follows. O

Lemma 4.3.5. Let F' be an algebraic function field over an algebraically
closed field K. Suppose that x is a separating element of F//K and Py € TP i (4)
satisfies the following conditions:

(1) Py is unramified in F/K(x).
(2) Py is not the pole of = in K(z).

If 6(z) € N2F denotes the Weil differential associated with x (as defined in
Definition 4.3.1) and u € F, then

0(x)p(u) = resp(udz) (4.28)
holds for all P € Pr with P|P,.

Proof. By (1) and (2) there exists an element a € K such that ¢t := x—ais a P-
prime element. As always, P, denotes the pole of z in K (x). Consider the Weil
differential 7 € 2k (,) which is given by (4.22); then d(z) = Cotrp/k(4)(n).
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First we evaluate the left-hand side of (4.28) for u = t*, k € Z. By the
previous lemma and Proposition 1.7.4(c) we obtain

0 fork# -1,

1 fork=-1. (4.29)

3(2)p(t") = np,(t*) = {

An arbitrary element v € F' can be written as

-1
u= E a t’ +u
rvr=m

with a, € K, I > max{0, —vp(d(z))} and vp(u') > I; this follows easily from
the P-adic power series expansion of u with respect to ¢t (Theorem 4.2.6). We
have §(z)p(u’) = 0 by Proposition 1.7.3, so (4.29) implies

-1
O(z)p(u) = Z a, - 0(x)p(t’)=a_q.

On the other hand, dt = d(z — a) = dx, hence
resp(udz) =resp(udt) =respy(u) = a_1.

This proves (4.28). O

Proof of Theorem 4.3.2 under the additional hypothesis that K is algebraically
closed. We begin with (b). If y € F' is not separating, 6(y) = 0 and dy/dz =0
(see Definition 4.3.1 and Proposition 4.1.8). So §(y) = (dy/dx) - 6(x) in this
case. Henceforth we can assume that y is separating. As §(z) # 0 and Q2p
is a one-dimensional F-module (Proposition 1.5.9), é(y) = z - §(x) for some
z € F. Only finitely many places of F' are ramified over K(z) or K(y) (cf.
Corollary 3.5.5), and we can find a place P € IPp such that the restrictions of
P to K(z) (resp. K(y)) are unramified in F'/K(x) (resp. F/K(y)), and P is
neither a pole of x nor a pole of y. For every u € F',

0(y)p(u) = (z-6(x))p(u) = 6(x)p(2u)

holds. On the other hand, Lemma 4.3.5 (applied to the extensions F/K(y)
and F/K(z)) yields

5(y) p(u) = resi(udy) = resp (uji dz) — 6(2)p (ujy) .

Hence

d(z)p (u(z—ji)) =0 foral uwekF.

This implies z = dy/dz (by Proposition 1.7.3), and proves (b).
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(a) We use (b) and Proposition 4.1.8(b) and obtain for y1,y2 € F and a € K

o+ 30) = ) (4 D2 60 = 6 + 0.

_ d(ay1) _dn _
d(ay) = — = -d(z) =a- ——~-d(z) =a-d(y),
and the product rule
d d d
Sl = T 5(0) = (10 %2+ D) - 00e) = w1 Bm) + 1 50n),

(¢) By Proposition 4.1.8(d) there exists a uniquely determined F-linear map
w: Ap — p such that 6(y) = (pod)(y) = pu(dy) for all y € F. Since p is
F-linear, u(zdz) = z-p(dx) = z-6(x). As dz generates Ar and 6(x) generates
NF (as F-modules), u is bijective.

(d) This is a generalization of Lemma 4.3.5, and we want to reduce the proof
of (d) to this lemma. We choose sufficiently many pairwise distinct places
Py := P, P,,...,P. such that (P, + P> + ... + P.) is strictly larger than
ZL(Py+ ...+ P,). Each element

theLPi+Pot+...+ BNL(Pr+...+P)

has only simple poles in F', and P = P, is one of them. Setting t := tfl and
Py := PN K(t) € IPg(;) we have seen that Py is unramified in the separable
extension F'/K(t) and that Py is not the pole of ¢ in K (¢). Now (b) and Lemma
4.3.5 yield

(2 - 8(2))p(u) = <Z . CC% . 5(t)>p(“) _ S (uzif)

d
= resp (uzdf dt) =resp(uzdx).

(e) Since t is a P-prime element, the extension F/K(t) is separable
(Proposition 3.10.2), and P is unramified in F//K (t). The divisor of the Weil
differential §(¢) is given by

(0(t)) = —2(t)oo + Diff (F/K (1)),

where () is the pole divisor of ¢ in F, by (4.22) and Theorem 3.4.6. As P is
not a pole of t and P does not occur in the different of F'//K(t) (by Dedekind’s
Different Theorem), we have vp(d(t)) = 0. Hence

vp(z-0(t)) =vp(z) +vp(6(t)) =vp(2).
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Now we consider a function field F//K where K is an arbitrary perfect
field. Our aim is to prove Theorem 4.3.2 also in this case. Let K D K be
an algebraic closure of K and let F' := FK be the constant field extension of
F/K with K. Each place of F//K has finitely many extensions in F'; conversely,
each place of F'/K is an extension of some place of /K. So we have a natural
embedding Ar — Ajp of the adele spaces and principal adeles of F/K are
mapped to principal adeles of F'/K under this embedding. Hence we shall
regard Ap as a subspace of Ap.

We fix a separating element x € F\\ K; then z is separating for F//K as well,
and [F : K(z)] = [F : K(x)], cf. Proposition 3.6.1. For y € F let §(y) € 2p
(resp. 6(y) € 25) be the Weil differential of F//K (resp. F//K) associated
with y. The restriction of a Weil differential @ € 2z to the space Ar C Ap
is denoted by @ |4,

Proposition 4.3.6. With the above notation we have
5(2) |4, = 0(a). (4.30)

Proof. Recall that 6(z) = Cotr ) (n) and 6(z) = Cotr gy, (1) with specific
Weil differentials 7 € 2k () (resp. ] € 2z, ), cf. Definition 4.3.1. The first
step in the proof of Proposition 4.3.6 is the following assertion:

Mg =1- (4.31)

In fact, the map 7 |AK(I)1 Ag@) — K is K-linear, and 7 vanishes on
Ak (2)(—2Px) + K(z) (as usual, P is the pole of z in K (x)). Consider the
adele v := 1p_(27") € Ag(y) which is given by vp_ :=2~" and ~g := 0 for
@ # Px. Then 7j(v) = n(y) = —1 by (4.22). Observe that

AK(z) = AK(z)(—QPOO) + K(:B) + K -7,

since ¥ & Ak (2)(—2Ps )+ K(z) and dimg (Ag (2)/ Ak (2)(—2Ps) + K(x)) = 1,
cf. Theorem 1.5.4. So each adele 3 € Ag(,) can be written as 3 = o + ¢y
with ¢ € K and 5(8) = () = 0, and we obtain 7(8) = 7(6) + ¢ - 71(7) =
—c =n(0). This proves (4.31).

In the second step we evaluate the local component 0(x)p(u) for a place
PePrandu€ F. Let Q := PNK(x) and let Py, ..., P. € IPr be the places
of F' lying over @, say P = P;. Let Pij € IP; be the extensions of P; in F
(1<i<r; 1<j<s)and Q,...,Qs € IPg(, the extensions of Q in K(x).
There exists an element z € F' such that

for2<i<r,

0
=0 f07’1§j§51,
0
0 for2<i<r,1<j<s;. (4.32)
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This follows from the Approximation Theorem and the fact that the local
component wg(y) of a Weil differential w at a place R vanishes if vg(y) is
sufficiently large. We obtain

8(x)p(u) = 6(z)p(2) = Zé(a:)pi(z) by (4.32)
= 1Q(Trr/ k() (2)) by (4.21)

:Z (Trp/k(2)(2)) by (4.31).

Noting that Trr/ k() (2) = Trgk() () (since [F @ K(z)] = [F : K(z)]) and
applying (4.21) once again, we get

Z g, (Trr/k(@)(2)) = ) Z S( 8(z)p,, (u).

=1 i=1 j=1 7j=1
Hence _
w) =Y 6(z)p(u) (4.33)
P|P

for all u € F' (where P runs over all places of F//K lying over P).

Finally we consider an arbitrary adele o = (ap)pep, of F/K. Then

o(z)(a) = Z o(x)p(ap) by Proposition 1.7.2
PelPr
= Y > d@)plap) by (4.33)
PePr PP
= §(z)(a) by Proposition 1.7.2.

O

As before we consider the constant field extension F' = FK of F/K
with the algebraic closure K of K. Let (Ap,d) be the differential module
of F/K. There is an F-linear map p1: Arp — Ap given by u(zdz) = zdx (cf.
Proposition 4.1.8(d)) , and we can regard Ar as a submodule of Ap via this
embedding p. Since dy = dy for y € F, we denote the derivation d : F — Ap
by d as well (i.e., F'/K has the differential module (Az,d)).

Proof of Theorem 4.3.2 for an arbitrary constant field K. The idea is to reduce
the theorem to the case of an algebraically closed constant field by considering
the constant field extension F' = FK. For y € F and a separating element
x € F we have

50) = 5(0) Lar= (2 -5 L= 2 5(2) L= 2 - 62)
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(here we have used Proposition 4.3.6 and Theorem 4.3.2(b) for F//K). Hence
(b) is proved. Parts (a), (¢) and (e) follow now precisely as in the case of an
algebraically closed constant field.

(d) A place P € IPr of degree one has exactly one extension P € IPs by
Corollary 3.6.5. Thus

(z-6(x))p(u) = 6(z)p(2u) = 0(x) p(zu) = resp(zudr) = resp(zudz) .

(The last equation follows from the observation that the residue of a differ-
ential is defined by means of the power series expansion with respect to a
prime element; since P | P is unramified, every prime t € F is a P-prime
element.) O

Remark 4.3.7. (a) As a consequence of Theorem 4.3.2 we identify the dif-
ferential module Ap with the module 27 of Weil differentials of F//K. This
means that a differential w = zdx € Ap is the same as the Weil differential
w=z-0(x) € 2p (where x € F is separating and z € F'). In other words,

Ap=Qp and zdr=z-6(z). (4.34)

(b)) If 0 # w € Ap and t is a prime element at the place P € IPg, we can write
w = zdt with z € F, and we define

vp(w) =vp(z) and (w):= Y wvp(w)P. (4.35)
PclPr

Theorem 4.3.2(e) shows that the definition of vp(w) is independent of the
choice of the prime element, and it is compatible with the identification (4.34)
of Ap and 2p. Hence (w) is just the divisor of the corresponding Weil differ-
ential w as defined in Section 1.5.

(¢) As an important special case of Theorem 3.4.6 we obtain the following
formula for the divisor of a differential w = z dx # 0:

(zdz) = (2) + (dz) = (2) — 2(2) o + Diff (F/K(x)) . (4.36)
A particular case of this formula is
(dz) = —2(x)so + DIff (F/K (x)) . (4.37)

(d) Once again we consider the constant field extension F' = FK of F/K with
the algebraic closure of K. We have identified the differential module Ap with
a submodule of Az, hence we obtain a corresponding embedding of 2r into
{25 which is given by

w=2z2-6(x)— @:=2-6(x)

(we use the notation of Proposition 4.3.6). By Proposition 4.3.6, w is the re-
striction of @ to Ap. This observation yields a formula for the local component
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wp of w at a place P of degree f > 1: by Corollary 3.6.5 there are exactly
f = deg P places Pi,...,P; € Py lying over P, hence Theorem 4.3.2(d)
implies
wp(u) = Z resp, (uw) (4.38)
i=1

for w € 2p and u € F. In particular we have
wp(u) =resp(uw), (4.39)
if deg P =1.

4.4 Exercises

In all exercises below we assume that K is a perfect field and F/K is a function

field with full constant field K.

4.1. Let E/F be a finite extension field of F. Let P € IPr and @ € IPg such
that @) is an extension of P.

(i) Show that the completion Fp of F at P can be considered in a natural
way as a subfield of Fg.
(ii) Show that Fp = Eq if and only if e(Q|P) = f(Q|P) = 1.

4.2. Let P be a place of F/K of degree one, and let t € F' be a P-prime
element. Determine the P-adic power series expansions with respect to ¢ for
the following elements of F":

d 1
d 7( ) ith z,
T ™ T with 0 #r €
1+¢ 1-1¢
— and ——.
1-1t 1+

4.3. (char K # 2) Consider the function field F' = K(z,y) with defining
equation y? = 23 + 2 (see Example 3.7.6). The element x has a unique pole in
F, call it P, and then ¢ := x/y is a P-prime element. Determine the P-adic
power series of the elements x and y with respect to t.

4.4. Let © € F be a separating element of F//K. Show that there exists a
unique derivation 0 : F' — F of F'/K such that d(x) = .

4.5. Let =,y € F and ¢ € K. Show that the following conditions are equiva-
lent:

(a) dy = cdux.
(b) y = cx + z, where z € F is a non-separating element of F/K (i.e., z € K
if the characteristic of K is 0, and z = u? with some element u € F' if

char K =p > 0).
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4.6. (char K # 2) Consider the function field F = K(x,y), given by the

equation
2m—+1

y2 = H (.13 - ai) P
i=1
where m > 0 and aq, ..., a2,4+1 € K are distinct elements of K.

(i) Determine the divisor of the differential dz/y and obtain a new proof that
the genus of F/K is g = m (cf. Example 3.7.6).

(ii) Show that the differentials % dx/y with 0 < i < m — 1 are a basis of the
space 2p(0) (the space of regular differentials of F//K).

4.7. Let x be a separating element of F'/K. Show that

resP(i—x) =uvp(x),

for every place P of degree one.

As pointed out in Remark 4.3.7, we identify the differential module Ap and
the module of Weil differentials 2r. Therefore it makes sense to define for a
divisor A € Div(F) the K-vector space

Ap(A) :={w e Ap|w =0 or (w) > A},
which corresponds to 2 (A) under the identification of Ap and Qp. We define
further:

(1) A differential w € Ap is called regular (or holomorphic, or a differential
of the first kind), if w =0 or (w) > 0.

(2) A differential w € A is called exact, if w = dx for some element x € F.

(3) A differential w € Ap is called residue-free, if resp(w) = 0 for all rational
places P € Pp.

(4) A differential w € Ap is called a differential of the second kind, if for all
places P € Pr there exists an element u € F (depending on P) such that
vp(w —du) > 0.

Then we consider the following subsets of Ap:

Ag) 1= Ap(0) = {w € Ap |w is regular}
Agfx) :={w € Ar|w is ezact}

Agf) :={w € Ap|w is residue-free }

Ag) c={w € Ap|w is of the second kind }
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4.8. Prove:

(i) Ag,l), A;fx), Agf) and Ag) are K-subspaces of Ap.

(ii) ALY C AP AR,

(ii) If char K = 0 and K is algebraically closed, then Ag) = Agf).

4.9. (The result of this exercise will be used in Exercise 4.10.) Assume that
F/K has genus g > 0. Then there exists a non-special divisor B of degree ¢
such that B = P, + ...+ P,, with pairwise distinct places P,..., P,.

4.10. (K algebraically closed and char K = 0) The aim of this exercise is to
show that
. 2 ex

dlmK(A%)/A% )) = 2g,
if F/K is a function field of genus g over an algebraically closed field K with
char K = 0.
(i) Prove the claim in the case g = 0.
Hence we will assume now that ¢ > 0, and we fix a non-special divisor B =
Py + ...+ P, with distinct places Py, ..., P,.
(i) Show that for every w € Ag) there exists a unique differential w* €
2p(—2B) such that w — w* is exact.
(i4i) Show that the map f : w +— w*, where w* is defined as in (ii), is a
K-linear surjective map from Ag) onto Ag) N Ap(—2B), with kernel Agfx).
Conclude that

dimg (A2 / ALY = dimg (AP N Ap(—2B)).

(i) For i = 1,...,g we fix a Pi-prime element t; € F. Then every w €
Ag) N Ap(—2B) has a P;-adic expansion
w = (a@Qt;Q + a(()i) + Z agi)t{)dti
i>1
with agi) € K, for 1 <1i < g. Show that the map

w i (@, ad))im

~~~~~~

defines an isomorphism of A2 N Ax(—2B) onto K29,
(v) Conclude that dimK(Ag) /A;fx)) =2g.

4.11. (char K = p > 0) Recall that there is a unique subfield M C F such
that F/M is purely inseparable of degree [F' : M| = p, namely M = F?. In
what follows, we fix a separating element = of F//K.

(i) Show that every element z € F' has a unique representation of the form



182 4 Differentials of Algebraic Function Fields

p—1
_ P .
z = E w, ', with ug,...,up—1 € F.
=0

(i) If z € F is given as above, then

(iii) For a derivation n of F/K and n > 1 we define n™ :=nono...on
(n times). Show that §2 = 0.

(iv) Is 6P = 0 for every derivation § € Derp 7

4.12. (char K = p > 0) Fix a separating element « € F'; then every differen-
tial w € A has a unique representation of the form

w=(uf +ufz+.. +ub_ 2" da
with ug, ..., up—1 € F, cf. Exercise 4.11. We define the map C': Ap — Ap by
C(w) :==up_1 dzx.

This map C' is called the Cartier operator. Its definition seems to depend on
the element z. We will show in Exercise 4.13 that it is actually independent
of the choice of x.

Prove the following properties of C, for all w,w;,ws € Ap and all z € F:
(i) C(w1 + wz2) = C(wy) + C(w2).

(i) C(2Pw) = 2 C(w).

(iii) C : Ap — Ap is surjective.

(iv) C(w) =0 if and only if w is exact.

(v) f0# z € F, then C(dz/z) = dz/=z.

Hint. The proofs of (i) - (iv) are easy. In order to prove (v), one may proceed
as follows. Observe that C(dz/z) = dz/z if and only if C(2P~1dz) = dz, by
(ii). Therefore consider the set

M :={z € F|C(z!"'dz) = dz}

and show:

(a) FP C M and = € M.

(b) If0# 2z € M, then 2= € M.

(¢) If z€ M, then z+ 1€ M.

(d) If z1,20 € M, then z120 € M and 21 + 2o € M.

(e) Conclude that M = F', which finishes the proof of (v).
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4.13. (char K = p > 0) Suppose that C* : Ap — Ap is a map with the
following properties: for all w,wy,ws € Ap and all z € F',

(i) C* (w1 4+ wa) = C*(wy) + C*(wa).

(ii) C*(2Pw) = z C*(w).

(iv) C*(dz) = 0.

(v) 0 # 2z € F, then C*(dz/z) = dz/z.

Show that C* = C, where C is defined as in the previous exercise. This implies

in particular, that the definition of the Cartier operator does not depend on
the choice of the separating element x.

4.14. (char K = p > 0) Prove the following properties of the Cartier divisor.
For all w € Ar and all places P € IPp,

(i) vp(w) > 0= vp(C(w)) > 0.

(i) vp(w) = -1 = vp(C(w)) = —1.

(iii) vp(w) < =1 = vp(C(w)) > vp(w).

(iv) C(AY) € AR,

(v) resp(w) = (resp(C(w))P, if P is a place of F/K of degree one.
4.15. (K algebraically closed and char K = p > 0)

(i) Show that dimg (A2 /Al)) =

(ii) Show that dimg (AF /A%Y) = s

Compare these results with Exercise 4.10.

Hint. Use the fact that Agfx) is the kernel of the Cartier operator.

4.16. (char K = p > 0) A differential w € 2p is called logarithmic, if w =
dx/x for some element 0 # 2 € F'. We define

A:={w € NFp|(w) >0 and w is logarithmic} .

Show:

(i) A is an additive subgroup of Ag(0), i.e., we can consider A as a vector
space over the prime field IF,,.

(i) If wq, ..., wy € Aare linearly independent over IF,,, then they are linearly
independent over K.

(iii) A is a finite group of order p*, with 0 < s < ¢ (as usual, g denotes the
genus of F/K).

4.17. ( char K = p > 0) Show that a differential w € 2 is logarithmic if and
only if C(w) = w.
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4.18. ( char K = p > 0) Consider the divisor class group CI(F) of F/K and
define the subgroup

CI(F)(p) := {[A] € CU(F) [ p[A] = 0} .

We want to define a map f : CI(F)(p) — Ap. For [A] € CI(F)(p) there exists
an element 0 # x € F' such that pA = (z), by definition of C1(F")(p). Then we
set f([4]) := dz/x.

Prove:

(i) f is a well-defined group homomorphism from CI(F')(p) to A (with A as
in the previous exercise).

(i) f is an isomorphism from CI(F)(p) onto A. Conclude that C1(F)(p) is a
finite group of order p® with 0 < s < g.

Remark. If K is algebraically closed, the number s above is called the p-rank
(or the Hasse-Witt rank) of F//K. The function field is called regular (resp.
singular) if s = g (resp. s < g); it is called supersingular if s = 0.
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Algebraic Function Fields over Finite Constant
Fields

In the previous chapters we developed the theory of algebraic function fields
over an arbitrary perfect constant field K. We would now like to consider in
greater detail the case of a finite constant field. Observe that a finite field is
perfect, so that all results from Chapters 3 and 4 apply. We will mainly be
interested in the places of degree one of a function field over a finite field.
Their number is finite and can be estimated by the Hasse-Weil Bound (see
Theorem 5.2.3). This bound has many number-theoretical implications, and
it plays a crucial role in the applications of algebraic function fields to coding
theory, cf. Chapter 8 and 9.

Throughout this chapter, F denotes an algebraic function field of genus
g whose constant field is the finite field IF.

5.1 The Zeta Function of a Function Field

As in Chapter 1, Div(F') denotes the divisor group of the function field F'/IF,.
A divisor A = ZPE[PF apP 1is positive if all ap > 0; we write A > 0.

Lemma 5.1.1. For everyn > 0 there exist only finitely many positive divisors
of degree n.

Proof. A positive divisor is a sum of prime divisors. Hence it is sufficient
to prove that the set S := {P € IPp|degP < n} is finite. We choose an
element x € F\IF, and consider the set Sy := {Fy € Py, ) |deg Py < n}.
Obviously P NIF,(x) € Sy for all P € S, and each Py € Sy has only finitely
many extensions in F. Therefore we have only to show that Sy is finite. Since
the places of IF,(x) (except the pole of z) correspond to irreducible monic
polynomials p(z) € IFy[z] of the same degree (cf. Section 1.2), the finiteness
of Sy follows readily. O

H. Stichtenoth, Algebraic Function Fields and Codes, 185
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Let us recall some notation from previous chapters: Princ(F') denotes the
subgroup of Div(F) consisting of all principal divisors (z) = > pep, vp(z)- P
(with 0 # = € F). The factor group CI(F) = Div(F)/Princ(F) is called
the divisor class group of F/IF,. Two divisors A, B € Div(F) are equivalent
(written A ~ B) if B = A+ () for some principal divisor (z) € Princ(F).
The class of A in the divisor class group CI(F) is denoted by [A], hence
A~ B < A€ [B] < [A] = [B]. Equivalent divisors have the same
degree and the same dimension, so the integers

deg[A] :==deg A and (([A]) :={(A)
are well-defined for a divisor class [A] € CI(F).
Definition 5.1.2. The set

Div’(F) := {A € Div(F)|deg A = 0},

which is obviously a subgroup of Div(F), is called the group of divisors of
degree zero, and

CI°(F) := {[A] € CI(F) | deg[A] = 0}

is called the group of divisor classes of degree zero.

Proposition 5.1.3. C1°(F) is a finite group. Its order h = hp is called the
class number of F/IF,; i.e.,

h:=hp :=ord CI°(F).

Proof. Choose a divisor B € Div(F') of degree > ¢, say n := deg B, and
consider the set of divisor classes

CI"(F) := {[C] € CI(F) | deg [C] = n}.

The map

Cl’(F) — CI'(F),

[A] — [A + B]
is bijective (this is trivial), so we only have to verify that C1"(F) is finite. We
claim:

for each divisor class [C] € C1"(F) there
exists a divisor A € [C] with A >0 . (5.1)
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In fact, since degC' =n > g, we have
(Ch)=>n+l—-g>1 (5.2)

by the Riemann-Roch Theorem, and (5.1) follows from (5.2) and Remark
1.4.5(b). There are only finitely many divisors A > 0 of degree n (by Lemma
5.1.1), so (5.1) implies the finiteness of C1"(F). O

We define the integer 9 > 0 by
0 :=min{deg A| A € Div(F') and deg A > 0} . (5.3)
The image of the degree mapping deg : Div(F) — Z is the subgroup of Z
generated by 0, and the degree of each divisor of F'/IF, is a multiple of 0.

In what follows, we would like to study the numbers
A, = |{A€Div(F)|A>0 and deg A =n}|. (5.4)
For instance, Ag = 1, and A; is the number of places P € IPr of degree one.

Lemma 5.1.4. (a) A, =0 if dtn.
(b) For a fized divisor class [C] € CI(F) we have

[{4€(0)142 0} = — (s ~1).

1

(¢) For each integer n > 2g — 2 with O|n we have

h
An = —(¢"*tt9 - 1).
it )
Proof. (a) is trivial.
(b) The conditions A € [C] and A > 0 are equivalent to

A= (x)+C forsome xze€F with (z)>-C;

ie., z € Z(C)\{0}. There exist exactly ¢*(“D — 1 elements z € Z(C)\{0},
and two of them yield the same divisor if and only if they differ by a constant
factor 0 # a € IF,. This proves (b).

(¢) There are h = hp divisor classes of degree n, say [C1],...,[Ch]. By (b)
and the Riemann-Roch Theorem,

1 1
A JlA > = (%% _1) = ntl—g _ 1)
| {A€[C)]|A >0} ] q_l(q ) q—l(q )
Each divisor of degree n lies in exactly one of the divisor classes [C1], ..., [C4],
hence
- h
An: A _.A> - n+1—g_1.
;H €lCli Az 0t = - (a )
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Definition 5.1.5. The power series
Z(t) = Zp(t) ==Y _ Apt" € C[[t]]
n=0

(where A, is defined by (5.4)) is called the Zeta function of F/IF,.

Observe that we regard t here as a complex variable, and Z(t) is a power
series over the field of complex numbers (rather than the P-adic power series
that we considered in Chapter 4). We shall show now that this power series
converges in a neighbourhood of 0.

Proposition 5.1.6. The power series Z(t) = Y. A,t" is convergent for

[t| < q=1. More precisely, we have for |t| < ¢ *:

(a) If F/IF, has genus g = 0 then

1 q 1
20= 5 (=l 12w
(b) If g > 1, then Z(t) = F(t) + G(t) with

1
Fi)=—2= 3 O],
0<deg[C]<2g—2

(where [C] runs over all divisor classes [C] € CI(F) with 0 < deg[C] < 2¢g—2)

and h ) )
_ 1—g 29—2+0 o
60 = 2 (a2t s - g )

Proof. (a) g = 0. To begin with, we show that a function field of genus zero
has class number h = 1; i.e., every divisor A of degree 0 is principal. This
fact follows easily from the Riemann-Roch Theorem: as 0 > 2g — 2 , we have
l(A) =degA+1—g =1, and we can therefore find an element x # 0 with
(x) > —A. Both divisors are of degree 0, hence A = —(x) = (z~!) is principal.
Now we apply Lemma 5.1.4 and obtain

(o9} oo
DAt =" Agnt?"
n=0 n=0

oo

1
= @™ =
n:Oq
1 S on - on
“ i (- )
n=0 n=0

1 q 1
g1 \1—(qt)2 1-19
for |qt| < 1.

(b) For g > 1 the calculation is quite similar. We obtain
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- deg [C g“ch —1 deg [C
At = Y {Ac[C]; Az 0}t = M - - gde[C]
n=0 deg[C]>0 deg [C]>0 ¢
_ b S gD pdeslC] b S geslClHiog gaes(C]

q- q—1
0<deg [C]<2g—2 deg [C]>2g—2
1 :
——— Y == F) + G,
deg [C]>0
with 1
F(t) = — Z gt . ydee[C]
q 0<deg [C]<2g—2
and
((] _ ].)G(t) _ Z hqn8+1—g 4o Z hno
n=((29—2)/0)+1 n=0
1 1
— hal™9 t 29—2+0 —h .
q “(qt) = q? Mo
O

Corollary 5.1.7. Z(t) can be extended to a rational function on C; it has a
simple pole at t = 1.

Proof. Obvious, since 1/(1 — t?) has a simple pole at ¢t = 1. ]

In order to study the behavior of the Zeta function of F/IF, under finite
constant field extensions, it is convenient to have a second representation
of Z(t) as an infinite product. Recall that an infinite product [, (1 + a;)
(with complex numbers a; # —1) is said to be convergent with limit a € €
if limy, oo [[7—, (1 + @;) = a # 0. The product is called absolutely convergent
if >77, |ai] < oo. From analysis it is well-known that absolute convergence
implies convergence of the product, and the limit of an absolutely convergent
product is independent of the order of the factors. Moreover, if the product
[1;2,(1 + a;) = a is absolutely convergent, then [];~,(1 + a;)~! converges
absolutely, too, and [];2,(1+a;)~!' =a™ .

Proposition 5.1.8 (Euler Product). For |t| < q~! the Zeta function can
be represented as an absolutely convergent product

Z(ty= [ @—tter)"t. (5.5)

PelPr

In particular Z(t) # 0 for |t| < ¢~ *.
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Proof. The right hand side of (5.5) converges absolutely for |t| < ¢!, since

Ypep, 1187 <3707 Ayt < oo by Proposition 5.1.6. Each factor of (5.5)
can be written as a geometric series, and we obtain

H (1_tdegP)—l — H itdeg(nP)

PclPr PelPr n=0

— > tdesd — i At = Z(t).
n=0

A€eDiv(F);A>0

0

In the following we fix an algebraic closure IF, of IF, and consider the
constant field extension F' = FIF, of F/IF,. For each r > 1 there exists
exactly one extension IFy-/IF, of degree r with IF;» C IF,, and we set

Fr::FIqugF.

Lemma 5.1.9. (a) F,./F is a cyclic extension of degree r (i.e., F./F is Ga-
lois with a cyclic Galois group of order r). The Galois group Gal(F,./F) is
generated by the Frobenius automorphism o which acts on IFgr by o(a) = .
(b) By is the full constant field of F.

(c) F./IE 4 has the same genus as F/IF,.

(d) Let P € Pr be a place of degree m. Then Conp, jp(P) = Py + ... + Py
with d := ged (m, 1) pairwise distinct places P; € P, and deg P; = m/d.

Proof. (a) It is well-known that IFy-/IF, is cyclic of degree r, and its Galois
group is generated by the Frobenius map a +— a9. Since [F, : F] = [, : IF]
by Lemma 3.6.2, assertion (a) follows immediately.

(b) and (c¢) See Proposition 3.6.1 and Theorem 3.6.3.

(d) P is unramified in F,./F, cf. Theorem 3.6.3. Consider some place P’ € Pp,
lying over P. The residue class field of P’ is the compositum of IF, with
the residue class field Fp of P, by Theorem 3.6.3(g). Set [ := lem(m,r). As
Fp = IFym, this compositum is

Fyn - Fyr =Ty .

Therefore
degP' =[F, :Fgr] =m/d.

Since deg (Cong, /p(P)) = deg P = m (cf. Theorem 3.6.3(c)), we conclude
that Cong, /p(P) = P1 + ...+ Py with places P; of degree m/d. O
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In the proof of our next proposition we need a simple polynomial identity:
if m>1 and r > 1 are integers and d = ged (m, r) then

(x7 -1t =[x =¢m), (5.6)
¢r=1

where ¢ runs over all r-th roots of unity in €. In fact, both sides of (5.6) are
monic polynomials of the same degree, and each (r/d)-th root of unity is a
d-fold root of them. Hence the polynomials are equal. We substitute X = ¢~
n (5.6), multiply by ¢™" and obtain

-/t =TI a- ™. (5.7)

¢r=1

Proposition 5.1.10. Let Z(t) (resp. Z.(t)) denote the Zeta function of F
(resp. of F. = FIF ;). Then

= 1 2 (53)
¢r=1

for allt € C (¢ runs over the r-th roots of unity).

Proof. Tt is sufficient to prove (5.8) for |[t| < ¢~!. In this region the Euler
product representation yields
H H o deg P -1 ) (59)

PEPr P'|P

For a fixed place P € IPr we set m := deg P and d := ged (1, m); then

H (1 . tr~degP/) _ (1 . trm/d)d
PP
= [Ta-wom=TIa- "),

¢r=1 ¢r=1
y (5.7) and Lemma 5.1.9. Now we obtain from (5.9)

H H Ct degP H Z Ct

(r=1 PePg ¢r=1

Corollary 5.1.11 (F.K. Schmidt). 0=1.
Proof. For ¢? =1 we have
zi¢t) = [ a-@pyrem "= ] @ -t*") " =20),
PelPr PclPr

since 0 divides the degree of P for every P € IPp. Therefore Zy(t?) = Z(t)?
by Proposition 5.1.10. The rational function Z5(¢?) has a simple pole at t = 1,
by Corollary 5.1.7, and Z(t)? has a pole of order d at t = 1. Hence 9 = 1. O
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Corollary 5.1.12. (a) Every function field F/IF, of genus 0 is rational, and

its Zeta function is
1

-0 —q)

(b) If F/IF, has genus g > 1, its Zeta function can be written in the form
Z(t) = F(t) + G(t) with

Z(t) =

P == Y 0D gl
0<deg [C]<2g—2

h 1 1
_ g9429—1 -
G®) q—1(qt 1— gt 1—t>'

Proof. A function field of genus 0 having a divisor of degree 1 is rational, cf.
Proposition 1.6.3. The remaining assertions follow from Proposition 5.1.6 and
0=1 O

and

Proposition 5.1.13 (Functional Equation of the Zeta Function). The
Zeta function of F/IF, satisfies the functional equation

).

Proof. For g = 0 this is obvious from Corollary 5.1.12(a). For g > 1 we write
Z(t) = F(t) + G(t) as in Corollary 5.1.12(b). Let W be a canonical divisor of
F'; then

1

Z(t) = ¢9 14?9727
(t)=q (qt

(q—1)F(t) = Z ¢“1eD . pdeg[C]
0<deg [C] <2g—2
_ Z 18 [ClH1=g+L(W=C]) _ydeg[C]
0<deg [C]<2g—2
= ¢ 14?92 Z qdee [C1-(2g=2)+([W=C))  ydeg[C]—(29-2)

0<deg[C] <2g—2

1 \ deg [W—C]
— 91292 Z g w=<cyy . (7)
0<deg[C] <2g—2 a

=P g - DF(). (510)

We have used that deg [W] = 2g — 2 and, if [C] runs over all divisor classes
with 0 < deg[C] < 2g — 2, so does [W — C]. For the function G(¢) we obtain



5.1 The Zeta Function of a Function Field 193

1 h 1 1 1
9142027 ( 1) — 9—1429—2 g9(_—\29-1
q (qt) q—lq q (qt) ) T _l
qt qt
h 1 1 9¢29-1
=i | =cw. (5.11)
1 1——  qt(l—=)
t qt
Adding (5.10) and (5.11) yields the functional equation for Z(t). o

Definition 5.1.14. The polynomial L(t) := Lp(t) := (1 —t)(1 — qt)Z(t) is
called the L-polynomial of F/IF,.

By Corollary 5.1.12 it is obvious that L(t) is a polynomial of degree < 2g.
Observe that L(t) contains all information about the numbers A, (n > 0)
since

L(t)=(1 -1 —qt)iAnt”. (5.12)

n=0

Theorem 5.1.15. (a) L(t) € Z[t] and deg L(t) = 2g.
(b) (Functional Equation) L(t) = qt*9L(1/qt).
(c) L(1) = h, the class number of F/IF,,.
(d) We write L(t) = ag + a1t + - - - + az4t?9. Then the following hold:
(1) ap =1 and azg = ¢“.
(2) azg—i = ¢ ‘a; for 0 <i<yg.
(8) a1 = N — (¢ + 1) where N is the number of places P € IPr of degree
one.

(e) L(t) factors in Cl[t] in the form

29
L(t) =[] - ait). (5.13)
i=1
The complex numbers o, ..., o are algebraic integers, and they can be ar-

ranged in such a way that a;ogy; = q holds fori =1,...,g9. (We note that
a complexr number « is called an algebraic integer if it satisfies an equation
a™ 4 10T 4 cra+ cg = 0 with coefficients ¢; € Z.)

(f) If L.(t) := (1 —¢)(1 — ¢q"t) Z,.(t) denotes the L-polynomial of the constant
field extension F,. = FIF -, then

29

L) = [ -at),

i=1

where the oy are given by (5.13).
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Proof. All assertions are trivial for g = 0, hence we can assume from now on
that g > 1.

(a) We have already remarked that L(t) is a polynomial of degree < 2g. In (d)
we shall prove that its leading coefficient is ¢9, so deg L(t) = 2g. The assertion
L(t) € Z]t] follows from (5.12) by comparing coefficients.

(b) is nothing but the functional equation for the Zeta function, see Proposi-
tion 5.1.13.

(¢) With the notation of Corollary 5.1.12(b) we have

L) = (1= (L= @)F() + — (2’71 1) = (1= q1)

Hence L(1) = h.
(d) Write L(t) = ap + ait + - - - + asgt?9. The functional equation (b) yields

1 a a2q—
— 920 () = 229 2971y 4 g 9ant2d
L(t) = ¢t L(qt) =ttt et
Therefore as,—; = ¢ ‘a; for i = 0,...,g, and (2) is proved. Comparing the
coefficients of t* and ¢! in (5.12) shows that ag = Ag and a; = A; — (g+1)A,.
Since Ag = 1 and Ay = N (this is trivial by the definition of A,,, see (5.4)),
we obtain ag = 1 and a; = N — (¢ + 1). Finally asy = ¢%ao = ¢7 by (2).

(e) We consider the reciprocal polynomial
1
L (t) := t2gL(¥) = apt?9+a t? 4o dragy = 29 4ar T 4 gt L (5.14)
L™ (t) is a monic polynomial with coefficients in Z, so its roots are algebraic
integers. We write
2g

L (t) = H(t — ;) with «; € C,
i=1

therefore
1. &
297 L 7H ,

Observe that L(a; ') =0 for i = 1,...,2g, and

29
i=1

Substituting ¢ = qu and using the functional equation (b) we obtain
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1
[1¢ =00 =20 =L(3)
i=1
1 =
— 2929 — g9 — a9
= L(—) = ¢’L(u) = ¢’ - | | (1 = aju)
qu ]1;[1 !
29 . 29 a 29 q
S | (DR | S (TS
=1 4 =11 54 J
2g q
= 1]t~ ;)
j=1 J
So we can arrange the roots of L (t) as
a17ia"'7ak7ia 1/27 aq1/27_q1/27"'7_q1/27
(05} AL

where ¢'/2 occurs m times and —¢'/? occurs n times. By (5.14),

q q .
a1 —— g — (q1/2)m . (_q1/2)w =q9.
aq €73
Therefore n is even. Since n + m + 2k = 2g, m is also even, and we can
rearrange o, ..., sq such that a;ag4; = ¢ holds fori=1,...,g.

(f) We use Proposition 5.1.10 and obtain

Lo(t) = (1 =) (1 =g Zo(t") = (1 = #)(1 = ¢'t") H Z(¢t)

=1 —=t")(1—-q"t") H (1_@5 l—th H He

¢r=1 ¢r=1
2g 29
=1 II @ =aict)y =] —ait").
i=1 (=1 i=1
Hence L. (t) = H?il(l —alt). O

The above theorem shows that the number
N(F):=N=|{PcPp;degP =1} | (5.15)

can easily be calculated if the L-polynomial L(t) of F/IF, is known. More
generally we consider for » > 1 the number

N, :=N(F,)=|{P € P, ; deg P =1} |, (5.16)

where F,, = FIFg is the constant field extension of F/IF; of degree r. In
Section 5.2 the following result will play an essential role.
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Corollary 5.1.16. For all r > 1,

29
Nr:qerliZa;"
i=1

where a, ..., a5 € C are the reciprocals of the roots of L(t). In particular,
since Ny = N(F), we have

2g
N(F):q—l—l—Zai.
i=1

Proof. By Theorem 5.1.15(d), N, — (¢" + 1) is the coefficient of ¢ in the L-
polynomial L, (t). On the other hand, since L, (t) = []>%,(1 — aJt), this coef-
ficient is — 327 o O

Conversely, if the numbers N,. are known for sufficiently many r, one can
calculate the coefficients of L(¢) as follows.

Corollary 5.1.17. Let L(t) = Z?io a;t" be the L-polynomial of F/IF,, and
Sy =N, — (¢" +1). Then we have:
(a) L(0)/L(t) = X35, Syt7 L
(b) ap =1 and

ia; = S;a0 + S;—1a1 + ...+ S1a-1 (517)
fori=1,...,g.
Hence, given Ni, ..., N, we can determine L(t) from (5.17) and the equations
asg—i = q97"a; (fori=0,...,9).

Proof. (a) Write L(t) = H?il(l — a;t) as in (5.13). Then

= Tam ~ 2 ey
i=1 =1 r=0

:i<z )trl Zsrtrl
=1 \i=1

by Corollary 5.1.16 and the definition of .S,..
(b) We know that ag = 1, by Theorem 5.1.15. From (a) it follows that

00
ar + 2ast + ...+ 2ga2gt2971 = (ao +ait+...+ aggt2g) . Z Srtril .
r=1

Comparing the coefficients of t°,¢%, ... 197! yields (5.17). ]

)
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5.2 The Hasse-Weil Theorem

We retain all notation of Section 5.1. Thus F/IF, is a function field of genus
g(F) = g over the finite field IF,,
Zp(t)=Lpt)/(1 —t)(1 —qt) is its Zeta function,
Qi,...,00, are the reciprocals of the roots of Lp(t),
N(F)=|{P €Pp;degP =1},
F, = FIFy s the constant field extension of degree r, and
N, = N(F,).

The main result of this section is

Theorem 5.2.1 (Hasse-Weil). The reciprocals of the roots of Lr(t) satisfy

v =q¢'% for i=1,...,2g.

Remark 5.2.2. The Hasse-Weil Theorem is often referred to as the Riemann
Hypothesis for Function Fields. Let us briefly explain this notation. One can
regard the Zeta function Zp(t) of a function field F//IF, as an analogue of the
classical Riemann (-function

¢(s) == Z n=° (5.18)

(where s € C and Re(s) > 1) in the following manner. Define the absolute
norm of a divisor A € Div(F) by

N(A) := gies 4.

For instance, the absolute norm N(P) of a prime divisor P € Pr is the
cardinality of its residue class field Fp. Then the function

Cr(s) = 2Zr(q™)

can be written as

Cr(s) = Z Apg™" = Z N(A)~,

A€Div(F),A>0

which is the appropriate analogue to (5.18). It is well-known from number
theory that the Riemann (-function (5.18) has an analytic continuation as a
meromorphic function on C. The classical Riemann Hypothesis states that —
besides the so-called trivial zeros s = —2,—4, —6, ... — all zeros of ((s) lie on
the line Re(s) = 1/2.
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In the function field case, the Hasse-Weil Theorem states that

Cr(s)=0=Zp(qg*)=0=|¢"° = q_1/2.

Since |¢—*| = ¢~ ®¢(®), this means that
Cr(s) =0=Re(s) =1/2.

Therefore Theorem 5.2.1 can be viewed as an analogue of the classical Rie-
mann Hypothesis.

Before proving it, we draw an important conclusion from the Hasse-Weil
Theorem.

Theorem 5.2.3 (Hasse-Weil Bound). The number N = N(F) of places
of F/IF, of degree one satisfies the inequality

IN — (¢ +1)] < 29¢"/2.

Proof. Corollary 5.1.16 yields

Hence the Hasse-Weil Bound is an immediate consequence of the Hasse-Weil
Theorem. 0O

Note that Theorem 5.2.3, applied to the function field F, /IF -, gives
IN, — (¢" +1)| < 2gq"/? (5.19)

for all » > 1.

Our proof of the Hasse-Weil Theorem is due to E. Bombieri. The proof is
divided into several steps. The first step is almost trivial.

Lemma 5.2.4. Let m > 1. Then the Hasse-Weil Theorem holds for F/IF, if
and only if it holds for the constant field extension F,/IF m.

Proof. The reciprocals of the roots of Ly(t) are ai,...,az,. By Theorem
5.1.15(f), the reciprocals of the roots of L, (t) are af, ..., a3} (as in Theorem
5.1.15, we denote by L,,(t) the L-polynomial of F,). Our lemma follows
immediately since |o;| = ¢'/? <= |a*| = (¢™)/>. ]

The next step reduces the proof of the Hasse-Weil Theorem to an assertion
that is closely related to (5.19).
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Lemma 5.2.5. Assume there is a constant ¢ € R such that for all r > 1,
N, = (¢ +1) [<eq™?. (5.20)
Then the Hasse-Weil Theorem holds for F/IF,.

Proof. Corollary 5.1.16 states that N, — (¢" + 1) = — 327, o, hence (5.20)
yields
29

,
)L

i=1

< cq"? (5.21)

for all » > 1. Consider the meromorphic function

H(t) =) al (5.22)

Let ¢ := min {|a; '|; 1 <i < 2g}. The convergence radius of the power series
expansion of H(t) around ¢t = 0 is precisely o (since aj?, ..., as, 91 are the only

singularities of H(t)). On the other hand we obtain for [t| < o

H(t) = ig: O_O (ait)" = i (i af )t

By (5.21) this series converges for [t| < ¢~'/2, hence ¢~ /2 < p. This implies
q"/? > |ay| for i = 1,...,2g. Since H?il a; = ¢9 (by Theorem 5.1.15(e)), we
conclude that |a;| = ¢'/2. O

Observe that the inequalities (5.20) are equivalent to an upper bound and
a lower bound for N,: there exist constants ¢; > 0 and ¢ > 0 such that

N, <q"+1+c1q"? (5.23)
and
N, >q +1—cq? (5.24)

for all r > 1. By Lemma 5.2.4 the Hasse-Weil Theorem holds for F/IF, if it
holds for some constant field extension of F'. Therefore it is sufficient to prove
(5.23) and (5.24) under additional assumptions which can be realized in an
appropriate finite constant field extension.

Proposition 5.2.6. Suppose that F/IF, satisfies the following assumptions:
(1) q is a square, and (2) q>(g+1)*.

Then the number N = N(F') of places of F/IF, of degree one can be estimated
by
N < (g+1)+ (29 +1)¢"2.
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Proof. We can assume that there exists a place @ € IPr of degree one (other-
wise N = 0, and the proposition is trivial). Set

w0=q"? m=qg -1 and n:=2g9+q.
One checks easily that
ri=q—1+29+1)¢"* =m+nqo. (5.25)

Let T := {i | 0 < i < m, and 7 is a pole number of @ }. (Recall that i is
called a pole number of @ if there exists an element z € F' with pole divisor
(2)oo = 1Q, cf. Definition 1.6.7.) For every ¢ € T choose an element u; € F
with pole divisor Q. Then the set {u; | ¢ € T} is a basis of .Z(mQ). We
consider the space

2L =2Z(mQ) - ZnQ)"* C Z(rQ).

(By definition, . consists of all finite sums > x,y% with z, € £ (mQ) and
Yy € Z(nQ); obviously .Z is a vector space over IF,, and £ C Z(rQ) by
(5.25).) Our aim is to construct an element 0 # x € % such that

2(P)=0 forallP€Pr withdeg P=1and P# Q. (5.26)

Suppose for a moment that we have found such an element z. Then all places
of degree one (except Q) are zeros of x, and the zero divisor (z)q has degree

deg () > N —1.
Asz e L C Z(rQ),

deg () = deg (z)oo < 7= q— 1+ (29 + 1)g"/%.

1/2

Combining these inequalities, we get N < g + (29 + 1)¢'/#, which proves the

proposition.

Claim 1. Every element y € £ can be written uniquely in the form

y = Z u;zl®  with z € £(nQ), (5.27)

€T

where {u; | i € T} is the above-mentioned basis of £ (mQ@).

The existence of a representation (5.27) follows almost immediately from
the definition of .Z. In order to prove uniqueness, we assume that there is an
equation

D> uial =0 (5.28)

i€T
with z; € Z(nQ), not all x; = 0. For each index i € T with z; # 0 we have

vo(uizl®) = vg(u;) = —i modqp .
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Since m = ¢o—1, the numbers i € T are pairwise distinct modulo gg. Therefore
the Strict Triangle Inequality yields

vQ (Z uix?‘)) = min {vg(w;z") | i € T} # 0.
ieT
This contradiction to (5.28) proves Claim 1.
Next we consider the mapping A : £ — Z((gom + n)Q) given by

)\(g uiz;m) = E ul®z;
ieT i€T

(with z; € Z(nQ)). By Claim 1 this map is well-defined. Observe that A
is not IF,-linear, but it is a homomorphism of the additive group of .# into

Z((gom +n)Q).
Claim 2. The kernel of A is not {0}.

As X is a homomorphism from . into Z((gom + n)Q), it is sufficient to
show that
dim.Z > dim Z((gom + n)Q) (5.29)

(where dim denotes the dimension as a vector space over IF,). We have, by
Claim 1 and the Riemann-Roch Theorem,

dim.Z =¢(mQ) - £(nQ) > (m+1—-g)(n+1—g).

On the other hand, since
gom +n=qo(go — 1) + (29 + q0) =29 + ¢,

we obtain

dim Z((gom +n)Q) = 29+ @) +1-g=g+q+1.
Hence (5.29) follows if we can prove that

(m+1-—g)in+1—g)>g+q+1. (5.30)

Consider the following equivalences:

(m+1—g)n+1—g)>g+qg+1

= (@0—9)29+q@+1-g)>g+q+1
= q-P+p-9g>g+q+1

= g >g*+29+1=(g+1)?

— g>(g+1)*.

As we assumed that ¢ > (g + 1)* (see assumption (2) of Proposition 5.2.6),
(5.30) is established.
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Claim 3. Let 0 # = € £ be an element in the kernel of A and let P # Q
be a place of degree one. Then z(P) = 0.

Note that y(P) # oo for all y € £ because @ is the only pole of y.
Moreover, since IF, is the residue class field of P, we have y(P)? = y(P). Now
we consider an element z € £ with A\(z) = 0. We write 2 = ), u;2]° and
obtain

2Py = (3 w(P) - z(Py)"

€T
=Y ul(P) - 5 (P)"
el
_ (Z ug“zi)(P) = \z)(P) =0.
€T

So we have proved Claim 3. As we mentioned above, this implies the assertion
of Proposition 5.2.6. O

The previous proposition provides an upper bound (5.23) for the numbers
N, (after an appropriate constant field extension). Next we would like to
obtain a lower bound. We begin with a lemma from group theory.

Lemma 5.2.7. Let G’ be a group which is the direct product
G ={o)x G (5.31)

of a cyclic subgroup (o) and a subgroup G C G’ such that ord G = m, ord(c) =
n and m divides n. Suppose that H C G’ is a subgroup of G" with

ordH =ne and ord(HNG)=e. (5.32)
Then there exist exactly e subgroups U C H with the following properties:
U is cyclic of ordern, and UNG = {1}. (5.33)

Proof. For 7 € G we consider the cyclic subgroup (o) C G’. Since o7 = 70
(by (5.31)), ord (¢0) = n and ord (7)|m we conclude that ord(c7) = n. More-
over, (o7)N G = {1} and (o7) # (o7’) for 7 # 7/ (all this follows immediately
from (5.31) because the elements A\ € G’ have a unique representation A = o%p
with 0 <i < n and g € G). Thus we have found m = ord G distinct subgroups
U C G’ with the properties (5.33).

The subgroup G C G’ is a normal subgroup, hence H/H NG ~ HG/G.
By (5.32) this implies that HG = G’, and H/H NG ~ G'/G is cyclic of
order n. Choose an element \g € H whose order modulo H N G is n, and
write \g = 0%’ with 7 € G and a € Z. The exponent a is relatively prime
to n (otherwise there would be an integer 1 < d < n with ¢%¢ = 1, hence
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A =74 € HN G, so the order of \g modulo H N G would be less than n).
Therefore a suitable power A = A\ has a representation A = oy with 79 € G.
Let HNG = {¢1,...,1}. We define

UYD .= (omg1h;) for j=1,...,e.

The subgroups UY) C H are cyclic of order n, they are pairwise distinct, and
Ui nG={1}.

It remains to show that H contains no other cyclic subgroup U of order
n with U NG = {1}. In fact, let U C H be a subgroup satisfying (5.33). As
above we find a generator of U of the specific form o with 7 € G. Since
o1 € H and o9 € H,

76171 = (07‘0)_1(07'1) EHNG ={t1,...,%:}.
Hence 11 = 7o%); for some j, and U = (o71) = (o10%9);) = U, O

The next proposition is the essential step in the proof of a lower bound
for N,. We consider the following situation: E/L is a Galois extension of
function fields of degree [E : L] = m, and it is assumed that IF, is the full
constant field of E and L. We choose an integer n > 0 with m|n and let
E' := EF n (resp. L' := LIF;» C E’) be the corresponding constant field
extension of degree n. Then E’/L is Galois with Galois group G’ = (o) x G,
where G := Gal(E’/L") ~ Gal(E/L) and o is the Frobenius automorphism of
E'JE (i.e., o(z) = z for z € E and o(«) = o4 for a € Fyn). By the previous
lemma, G’ contains exactly m cyclic subgroups U C G’ with ord U = n and
UNG = {1}, say Uy,...,Up,. We can assume that U; = (o).

Let E; be the fixed field of U; (i = 1,...,m). Then F; = E, and we have
the situation as shown in Figure 5.1:

E/
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Denote by g(F;) the genus of E;, and by N(E;) (resp. N(L)) the number of
places of degree one of E; (resp. L).

Proposition 5.2.8. Under the above assumptions the following hold:
(a) ¥, is the full constant field of E;, for 1 <i <m.

(b) E' = E;Fyn and g(E;) = g(E), fori=1,...,m.

(¢) m-N(L)=37" N(E)).

Proof. (a), (b) Note that U; N G = {1}. By Galois theory, E’ is then the
compositum of E; and L', hence E' = E;L' = E;LIF;n = E;IF;n is the
constant field extension of E; with IFy». Since [E’ : E;] = ord U; = n, this
implies that IF, is the full constant field of E;. The genus is invariant under
constant field extensions, so g(E;) = g(E') = g(E) fori=1,...,m.

(c) We consider the sets X := {P € IPy|deg P = 1} and, for i = 1,...,m,
X;:={Q € Pg,|deg Q = 1}, and we have to prove the following assertion:

m

U

i=1

=m-|X]. (5.34)

Let P € X. Choose a place P’ € IPg/ lying over P, and set P, := P'NE. The
relative degree f(Py|P) divides m, as E/L is Galois. Hence f(P;|P) divides
n, and the residue class field of P’ is IF;» by Theorem 3.6.3(g). This means
that the relative degree of P’|P is f(P’|P) = n. Denote by e := e(P’|P) the
ramification index of P in E’/L and by r the number of places in IPg lying
over P (as E'/L is Galois, e depends only on P). We obtain

m-n=[E": L =elP|P)- f(P'|P) - r=c-n-r.

Hence m = e - r, and (5.34) is reduced to the following claims:

Claim 1. For every Q € X; with Q|P there is exactly one place Q' € P g
which lies above Q.

Claim 2. For every place Q' € P/ with Q'|P there are exactly e distinct
places Q € |J;~, X; such that Q'|Q.
Proof of Claim 1. If Q" € TP lies above the place @ € X; and Q|P, then

fQNQ) = f(Q1Q) - f(QIP) = f(Q'|P) =n.

(Observe that f(Q|P) = 1 as Q € X;.) Thus f(Q'|Q) = [E’ : E;], which
implies that @’ is the only extension of @ in E'|E;.

Proof of Claim 2. Here a place Q' € PP with Q'|P is given. Let H C
Gal(E'/L) be the decomposition group of Q' over P, Z C E’ the fixed field
of H and Pz := Q' N Z. Then

ordH = ¢(Q'|P) - f(Q'|P) = e-n
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and f(Pz|P) =1, by Theorem 3.8.2. Tt follows in particular that
IF, is the full constant field of Z . (5.35)

By Galois theory, the fixed field of H NG is the compositum of Z and L'. We
have ZL' = ZLIF gn = ZIFyn and [ZIF jn : Z] = n (by (5.35)), hence

ord(HNG)=[E": Z)/|[ZL' : Z] =ne/n=ce.

As Py is unramified in ZL' = ZIF», it also follows that T := ZL' is the
inertia field and H N G is the inertia group of Q'|P (cf. Theorem 3.8.3).

Now we apply Lemma 5.2.7 once again: Exactly e of the cyclic groups
Ui, ...,Un C Gal(E'/L) of order n with U; NG = {1} are contained in H,
say Ui, ..., Ui, . Let Q;; := Q' N E;;. Because E;; contains the decomposition
field of Q" over P, @' is the only place of £’ lying over @Q;;. On the other
hand, e(Q’'|Q;,) = 1 since E’ is a constant field extension of E;, (by (b)).
This implies f(Q'|Qi;) = [E" : E;;] = n = f(Q'|P), hence deg@;;, = 1. In
this manner we have constructed e distinct places Q;; € U:i1 X, such that
Q'Qi, -

Conversely, suppose that Q € X; for some i € {1,...,m} and Q’|Q. Then
f(Q'1Q) = n. So U; = Gal(E'|E;) is contained in the decomposition group H
of Q" over P, i.e. U; is one of the above groups U;,, and @ is the correspond-
ing place Q;; (j € {1,...,e}). This proves Claim 2 and finishes the proof of
Proposition 5.2.8. 0O

End of the Proof of the Hasse-Weil Theorem 5.2.1. As we mentioned above,
it remains to establish a lower bound (5.24) for N, = N(F,). We proceed
as follows. Choose a rational subfield Fy = IF,(t) C F such that F/Fy is
separable, and a finite extension E DO F such that E/F, is Galois (observe that
there exists a separating element ¢ by Proposition 3.10.2). It is possible that
the constant field of E is a proper extension I« of IF,. In this case we consider
the fields FIF . and FolF e = IFa(t) instead of F' and Fy. The extension
E/FyIF ja is Galois, and it is sufficient to prove the Hasse-Weil Theorem for
FIF i /IF o (by Lemma 5.2.4). So we may change notation and assume from
the beginning that IF, is also the full constant field of F. Moreover we can
assume that

q is a square and q > (g(E) +1)*. (5.36)

Let m := [E : F] and n := [E : Fp|, and consider the constant field exten-
sions B/ = ETFn, F' := FIF;» and Fj := FylF,n. By Lemma 5.2.7 there
exist exactly m distinct cyclic subgroups Vi,...,V,, C Gal(E'/F) of order
n such that V; N Gal(E’'/F’) = {1}. On the other hand there are n cyclic
subgroups Uy,...,U, C Gal(E'/Fy) with the property ord(U;) = n and
U; N Gal(E'/Fj) = {1}. It is easily seen that V; N Gal(E'/Fj) = {1} (by
showing that E’ is the compositum of F with the fixed field of V;), hence we
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can assume that V; = U; for i = 1,...,m. Denote by E; the fixed field of U;,
for i = 1,...,n. Proposition 5.2.8 yields

m

m-N(F)=>" N(E) (5.37)
and .
n-N(F) = Z N(E;). (5.38)

As we assumed (5.36), the upper bound
N(E;) < q+1+ (29(E) +1)q"/?

holds for 1 < i < n, by Proposition 5.2.6. The places of Fyy = IF,(t) of degree
one are the pole of ¢ and, for each o € IF, the zero of t—q; thus N(Fp) = ¢+1.
We combine this with (5.37) and (5.38) and obtain

n

m~N(F):n~N(Fo)+ZN(Ei)*ZN(Ei)

—nalg+1) - > N(E)

i=m-+1
>n(g+1) — (n—m)(g+ 1+ (29(E) + 1)¢"/?)
=m(q+1) — (n—m)(2g(E) +1)q"/?.

Therefore
n—m

N(F)>q+1- (29(E) + 1)q"/*.

Observe that the numbers m,n and g(E) are invariant under constant field
extensions; so we have established a lower bound

N, > q" +1—cyq? (5.24)

with a constant co > 0. This finishes the proof of the Hasse-Weil Theorem. 0O

Using the Hasse-Weil Bound, one can also give an estimate for the number
of places of a fixed degree r. Given a function field F/IF, of genus g, we define

B, :=B,(F):=|{P € Pp; degP =r}|. (5.39)

Observe that By = N(F). There is a close relationship between the numbers
B, and Ny (the number of places of degree one in the constant field extension
Fs = FIF,-), namely

N,=> d-By (5.40)
d|r
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(the sum runs over all integers d > 1 that divide ). This formula follows easily
from Lemma 5.1.9(d): every place P € IPr of degree d|r decomposes into d
places of degree one in IPp , and the extensions P’ of P in F,./F have degree
deg P’ > 1if deg P { r. The Mdbius inversion formula (cf. [24]) converts (5.40)

into ,
T-Brzzu(g> "Ny (5.41)
d|r

Here p: IN — {0, —1,1} denotes the Mébius function which is defined by

1 if n=1,
uwn)=4¢ 0 if there is an integer k > 1 with k?|n,
(—=1)! if n s the product of | distinct primes .

We set
29
Spi==>_aj, (5.42)
i=1
where a1, ..., ay, € C are the reciprocals of the roots of Lp(t) (for g = 0 we

set S, := 0). Then
Ny =q¢"+1+5;,

by Corollary 5.1.16. Substitute this into (5.41) and observe that

Z,u(g)zo for r>1

d|r
(cf. [24]). The result is:

Proposition 5.2.9. For all r > 2,

Corollary 5.2.10. (a) The estimate

1/2 1
q q q
_1+2gq1/2_1>- < (2+7g)-

qT‘
B -1 <
B =< (-
holds for all r > 1.
(b) If g =0 then B, >0 for allr > 1.

(c) For each r such that 2g +1 < q"=1V/2(¢"/2 — 1) there exists at least one
place of degree r. In particular, if r > 4g + 3 then B, > 1.
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Proof. (a) For r = 1 we have B; = N, and the assertion follows easily from
the Hasse-Weil Bound. For r > 2 Proposition 5.2.9 yields

B-Lol 5 (Gl u()s

Setting [ := [r/2] (the integer part of r/2) and observing that |Sy| =
|Zfil af| < 2gq*?, we obtain

1
l r
q ., _ 1 da . 29 /2
B -Li<2 29
| B, 7AI_quJerEilq

d=1
:g.ql71+29q1/2.q7’/271
rogqg-—1 ro g2 -1
1/2 T/2_1
<(—La 2y
q—1 qt/2 -1 T
q7'/2
<(2+7g)- .

(b),(c) From (a) it follows that B, > 0 whenever

T 1/2
T (T ag
r q—1

q
q1/2 -1

) qr/2 -1

r

(5.43)

In the case g = 0, (5.43) holds for all » > 1. This implies (b), and we can
assume g > 1 from now on. A simple calculation shows that (5.43) is equivalent
to
1 r(,1/2 _ 1
N . 4 )
1+ q71/2 q1/2(qr/2 _ 1)

29 (5.44)

The inequalities

q"(¢"/? — 1)

29 + e
i TREICTERSY

1+q-172 <29+1 and ¢ V/2(gY2 - 1) <

are trivial, hence our assumption 2g + 1 < ¢"=1/2(¢/2 — 1) implies (5.44)
and therefore B, > 0. If r > 49 + 3 then

29 + 1 < 22g+1(21/2 _ 1) S 2(7'—1)/2(21/2 _ 1) S q(’r'—l)/2<q1/2 _ 1) .

This completes the proof of (c). O

5.3 Improvements of the Hasse-Weil Bound

In general the Hasse-Weil Bound |N — (¢ 4+ 1)| < 2¢q'/? is sharp. There
are examples of function fields F/IF, such that N = ¢ + 1 + 2g¢*/? (resp.
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N = q+1—2gq'/?). We shall present several examples in Chapter 6. Under
certain assumptions however, the bound can be improved. For instance, if ¢
is not a square, we have the trivial improvement

IN = (q+1)] < [294"7], (5.45)

where [a] denotes the integer part of the real number a. The bound (5.45) can
be ameliorated substantially as follows:

Theorem 5.3.1 (Serre Bound). For a function field F/TF, of genus g the
number of places of degree one is bounded by

IN = (q+1)| <g[2¢"]. (5.46)

Proof. Let A C C be the set of algebraic integers; i.e., a complex number « is
in A if and only if « satisfies an equation a™ +b,,_1a™ ' +---+bja+by =0
with coeflicients b; € Z. It is an elementary fact from algebraic number theory
that

A is a subring of C, and ANQ=Z. (5.47)

For the proof of the Serre Bound we can assume that g > 0. We consider the L-
polynomial L(t) = H?ﬁl (1 —ayt) of F/IF,. The complex numbers as, ..., g4
are algebraic integers with |a;| = ¢'/? (Theorem 5.1.15 and Theorem 5.2.1).
They can be ordered such that o;0g4; = ¢, hence

Q; = gy = q/oy for 1<i<g.
(We denote by & the complex conjugate of «.) Set
vii= i+ a + 20"+ 1,
i = —(ai + @) + [2¢"4] + 1.
By (5.47), v; and §; are real algebraic integers and, as |o;| = ¢'/2, they satisfy
v >0 and 6; >0. (5.48)

Each embedding o : Q(a1,...,q2,) — C permutes «q,...,as, because
122, (t — ou) = LE(t) € Z][t], cf. (5.14). Moreover, if o(c;) = o; then
o(a;) =o(q/a;) = q/o(a;) = o(ai) = @;.

Therefore o acts as a permutation on the sets {v1,...,7,} and {d1,...,04}.

Define
g g
'75=H’Yi and 5::1_[51-.
i=1 i=1

~v and ¢ are algebraic integers which are invariant under all embeddings of
Q(au,...,azy) into C. Hence 7,0 € QN A =Z. By (5.48), vy >0 and 6 > 0,
so we have
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g g
H%-zl and H5i21-
i=1 i=1

The well-known inequality between the arithmetic and geometric mean yields
now

Hence

Observing that Z?il a; = (¢+ 1) — N by Corollary 5.1.16, we obtain
N <q+1+g[2¢"7).

In the same manner, the inequality

ILE
implies that
N >q+1-g2¢"?].

o

One is often interested in function fields which have many places of degree
one. So we introduce the following notion:

Definition 5.3.2. A function field F'/I, of genus g is said to be mazimal if
N =g+ 1+ 2g¢"/2.

Obviously maximal function fields over IF, can exist only if ¢ is a square.
Our next result is due to Y. Ihara. It shows that F'/IF, cannot be maximal if
the genus is large with respect to gq.

Proposition 5.3.3 (Ihara). Suppose that F/IF, is a mazimal function field.
Then g < (¢ —q"/?)/2.

Proof. Let a1, ..., asq be the reciprocals of the roots of L(t). Since

29
N:q+1—Zai and |a;| = ¢/

i=1
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(by Corollary 5.1.16 and Theorem 5.2.1), the assumption N = ¢+ 1 + 2gq'/?
implies

o =—q"% for i=1,...,2g. (5.49)
Next we consider the number Ny of places of degree one in the constant field
extension FIF 2 /TIF ;2. We have No > N and

29
No=q*+1-> o} =¢’+1-2q,
=1

by Corollary 5.1.16 and (5.49). So
g+ 142997 < ¢’ +1-2gq.

The inequality g < (¢ — ¢'/?)/2 follows immediately. O

Thara’s estimate for the genus of a maximal function field cannot be im-
proved in general: in Chapter 6 we shall show that there exist maximal func-
tion fields of genus g = (¢ — ¢*/?)/2 (if q is a square).

One can refine the proof of Proposition 5.3.3 in order to obtain other
bounds for the number of places of degree one. This method was developed
by J.-P. Serre. We proceed as follows: Let

N, = N(F,)=|[{P €Pp,; degP =

where F, = FIF - is the constant field extension of F' of degree r. We write
fori=1,...,2g,

w; = azq 2, (5.50)
where a1, ..., ay, are the reciprocals of the roots of Lg(t). Then |w;| = 1 by
the Hasse-Weil Theorem, and we can assume that

Wogri =wi =w; ' for i=1,....g. (5.51)

2

(This follows from Theorem 5.1.15(e).) By Corollary 5.1.16,

g
Neg =g gy (W W) (5.52)
i=1
Given real numbers ¢y, ¢, ... we multiply (5.52) by ¢, and obtain

g
Nlc,aq_r/2 :cqu/Q—i-crq r/ Z (Wi +w; (Nr—Nl)crq_T/Q. (5.53)

Summing up the equations (5.53) for r = 1,...,m gives
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g

Ny - )‘m(q_l/Z) = )‘m(ql/Q) + A ( q—1/2) +9-— Z fm(wi)

=1
= (Ne = Ni)erg™"/?, (5.54)
r=1

where .
Am(t) =" cpt” (5.55)

r=1

and

T () =14 Xp(t) + A (t7h) (5.56)

for t € C, t # 0. Note that f,,,(t) € R for |t| = 1. For specific choices of the
constants ¢, Equation (5.54) yields good estimates for N. For instance we
show:

Proposition 5.3.4 (Serre’s Explicit Formulas). Suppose thatcy, ..., ¢y, €
IR satisfy the following conditions:

(1) ¢ >0 forr=1,...,m, and not all ¢, = 0.
(2) f(t) >0 for allt € C with |t| = 1 (where f,,,(t) is defined by (5.56)).

Then the number of rational places of F/IF, is bounded by

1/2
N < g Am(q'?)
T (g2 An(gT1/?)

with Ay (t) as in (5.55).

+ 1, (5.57)

Proof. We have N = N; < N, for all » > 1. So (5.54) and the assumptions
(1) and (2) imply

N - Am(qil/Q) < /\m(q1/2) + /\m(qilﬂ) +g.

Dividing this inequality by A, (¢~'/?) yields (5.57) (note that \,,(¢~/?) >0
by assumption (1)). O

In Chapter 7 we will use Proposition 5.3.4 to prove an asymptotic bound
for N(F) when the genus of F' tends to infinity.

5.4 Exercises

In all exercises below we assume that F/IF, is a function field with full con-
stant field IF,, and N = Ny denotes the number of rational places of F/IF,.
The constant field extension of F' of degree r is denoted by F, = FIFyr, and
N, is the number of rational places of F,/IF,. Moreover, L(t) denotes the
L-polynomial of F/IF,.
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5.1. Let F' be a function field of genus 1 over IF5 having N = 10 rational
places.

(i) Determine the L-polynomial L(t) and the class number h = hp.
(ii) Determine Ny and Ns.

(i4i) How many divisors A > 0 are there with deg A =1,2,3 and 47
(iv) Determine the number of places of F/IF5 of degree 2, 3 and 4.

5.2. Show that over every finite field IFy there exists a function field without
rational places.

5.3. Using results of this chapter, find a formula for the number of irreducible
monic poynomials p(x) € IF,[z] of degree degp(x) = n.

5.4. If F/IF, is a function field over a finite field, show that its automorphism
group Aut (F/IF,) is finite.

5.5. Assume that ¢ = ¢2 is a square and the genus of F is g > 1.
(i) Show that F/IF, is maximal if and only if L(t) = (1 + £¢)29.
(i1) If F/IF, is maximal, show that F,./IF is maximal if and only if r is odd.

5.6. Assume that the number of rational places of F/IF, attains the upper
Serre Bound N = ¢ + 1 + ¢[2¢'/?]. Determine the L-polynomial L(t).

Hint. When is the arithmetic mean equal to the geometric mean?

5.7. (i) Let P be a rational place of F/IF,. Show that all integers k with
1 <k < (N —2)/q are gap numbers of P.

(ii) Conclude from (i) the estimate N < ¢+ 1+ qg.

Note. This simple estimate is in general much weaker than the Hasse-Weil
Bound. But note that it is better than Hasse-Weil for ¢ = 2 and ¢ = 3 , where
it coincides with the Serre Bound.

5.8. Assume that F/IF, is a non-rational function field. In this exercise we
will provide a lower bound for the class number h = hp.

(i) Show that the number of positive divisors of F/IF, of degree 2g is equal
toh (¢t —1)/(¢ - 1).

(7i) Consider the constant field extension Fy, of degree 2g. Let () be a rational
place of Iy, and let P = @Q N F;; be the restriction of @ to F. Then a :=
2g/ deg P is an integer, hence we obtain a positive divisor a P of F//IF,. Show
that in this way one constructs at least Nag/2¢g distinct positive divisors of
F/IF, of degree 2g.

(#i) Using (i), (ii) and the Hasse-Weil Bound for Ny,, show that

g—1 ¢*+1-29¢°

> .
= g(gstt —1)
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(iv) Prove that h > (¢ — 1) /4.

(v) Given a real number M > 0, show that there are - up to isomorphism -
only finitely many non-rational function fields over finite fields having class
number A < M. In particular, there exist only finitely many non-rational
function fields over finite fields with class number one (an analogous result
does not hold for algebraic number fields).

5.9. Let F/IF, be a non-rational function field with class number h = 1.
Prove:

(i) ¢ < 4.

(i) If ¢ =4, then g = 1.

(iii) If ¢ = 3, then g < 2.

(iv) If ¢ = 2, then g < 4.

Remark. One can show that there is no function field of class number 1 with

qg=3,9g=2o0rq=2,g9g=4.

5.10. For this exercise we first recall some notations and introduce a few
others. Let S, T C IPr be non-empty subsets of I[Pz such that SUT = IPg
and SNT = (. Let Og = Npes Op be the corresponding holomorphy ring,
cf. Section 3.2. For 0 # = € F, its S-divisor (z)g is defined as

(x)s := Z vp(z)P.

PesS

We consider the following groups:

Div(F), the divisor group of F

Div'(F), the group of divisors of degree 0

Princ(F), the group of principal divisors of F

CI°(F) = Div?(F) /Princ(F) , the group of divisor classes of degree 0
Divg, the subgroup of Div(F') which is generated by all P € S

Princg := {(2)s |0 £z € F}

Clg = Divg/Princg , the S-class group of F

Finally we define

h:= hpg, the class number of F

hs :=ord (Clg), the S-class number of F

rs := ord (Divy N Div?(F)) / (Divy N Princ(F)), the regulator of Og
ug :=ged{deg P | P € T}
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(i) Show that Clg is isomorphic to Div(F')/(Princ(F) + Divr).
(ii) Show that ug = ord(Div(F)/(Div®(F) + Divy)).

(#i) Show that there is an exact sequence

Divy N Div? (F)

Div’(F) + Divy
—
Divy N Princ(F)

Princ(F') + Divyp

0 — ClO(F) —

(iv) Conclude that hg and rg are finite, rg|h and

h
hS =us - —.

rs
Remark. We specialize the situation of this exercise as follows: F' is an exten-
sion of the rational function field IF,(z) of degree [F : IF,(z)] = 2. Choose
S :={P € Pp|vp(x) > 0}, then Og is the integral closure of IF[z] in F (see
Section 3.2). Now we distinguish 3 cases.
Case 1. (x)oo = P1+ P> with P; # P,. Then ug = 1, and rg is the order of the
divisor class [P» — P1] in the class group CI(F'), hence hg = h/ord([P2 — P1]).

Case 2. (2)oo = 2P. Now ug =rg =1 and hg = h.
Case 3. (2)oo = P with deg P = 2. Now ug = 2,rg = 1 and hg = 2h.

In analogy with algebraic number theory, in case 1 the function field F' is
called real-quadratic, and in the cases 2 and 3 it is called imaginary quadratic
(with respect to x).

There are more exercises about function fields over finite fields at the end of
Chapter 6.
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Examples of Algebraic Function Fields

Thus far we have encountered very few explicit examples of algebraic function
fields, namely the rational function field K (x)/K (cf. Section 1.2) and some
quadratic extensions of the rational function field (Example 3.7.6). Now we
would like to discuss some other examples in detail. These examples serve as
an illustration of the general theory of algebraic function fields developed in
Chapters 1, 3, 4 and 5. Some of the examples will be used in Chapter 8 for
the construction of algebraic geometry codes.

Throughout this chapter K denotes a perfect field.

This assumption is not essential; actually most results of Chapter 6 hold for
an arbitrary constant field K, with minor modifications.

6.1 Elliptic Function Fields

The rational function field K (x) has genus 0. Conversely, if F'/K is a function
field of genus 0 which has a divisor A € Div(F) of degree one then F/K is
rational, see Proposition 1.6.3. Therefore the simplest non-rational function
fields are fields of genus one.

Definition 6.1.1. An algebraic function field F/K (where K is the full con-
stant field of F') is said to be an elliptic function field if the following conditions
hold:

(1) the genus of F/K is g =1, and
(2) there exists a divisor A € Div(F') with deg A = 1.

There are numerous connections between elliptic function fields and other
branches of mathematics (such as number theory and complex analysis), and
there exists an extensive literature on the theory of elliptic function fields, cf.
[38]. Here we present only some basic facts on the subject.

H. Stichtenoth, Algebraic Function Fields and Codes, 217
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Proposition 6.1.2. Let F/K be an elliptic function field.
(a) If char K # 2, there exist x,y € F such that F = K(z,y) and

y* = f(o) € K[z] (6.1)

with a square-free polynomial f(x) € K[x] of degree 3.
(b) If char K = 2, there exist x,y € F such that F = K(x,y) and

v’ +y=f(z) € K[x] with degf=3, (6.2)
or )
2 _ .
Y +y—x+7az+b with a,be K and a#0. (6.3)

Proof. Choose a divisor A of degree one. By the Riemann-Roch Theorem,
L(A) =degA+1—g =1 (note that deg A > 2¢g — 2). Hence A is equivalent
to a positive divisor Ay, cf. Remark 1.4.5. As deg A; = 1 we conclude that A;
is a prime divisor A; = P € IPr. So we have shown that an elliptic function
field F//K has at least one place P € IPp with deg P = 1.

We consider the spaces K = Z(0) C Z(P) C ... C Z(nP) C.... Because
2g — 2 = 0, the Riemann-Roch Theorem gives dim.Z(iP) = ¢ for all i > 0,
hence Z(P) = K and Z((i + 1)P) 2 Z(iP) for i > 0. We choose elements
x1 € Z(2P)\K and y; € Z(3P)\.Z(2P). Their pole divisors are

(1)oo = 2P and (Y1) = 3P.

As [F: K(x1)] =2 and [F : K(y1)] = 3 (by Theorem 1.4.11), it follows that
F= K(mlayl)'

The seven elements 1,21, y1, 3, 11y1, 73, y? are in the space £ (6P). Since
L(6P) = 6, there is a non-trivial relation

a1y} + Biziyr +yr = 617 +e1xt + Ma + (6.4)

with aq, 01, ... € K. The coefficient «; does not vanish; otherwise (6.4) would
give an equation for y; over K (1) of degree one (which is impossible as
F =K(x1,y1) and [F : K(z1)] = 2). In the same manner we see that §; # 0.
Multiply (6.4) by «36%; then

51y1 = a151$1
Setting yo := a261y; and x5 := 10121 we obtain F = K (x9,ys) and
+ (ﬂzﬂ?z + 72)3}2 = x% + 62$§ + Aoxo + o (6.5)

with (9,72,... € K. Now we must distinguish the cases char K # 2 and
char K = 2.
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(a) char K # 2. We set y := ya + (B222+72)/2 and x := x3; then F = K(z,v)
and
v =23+ e’ + A+ p= f(z) € K[z] (6.1)

with €, A\, u € K. It remains to show that f(x) is square-free. Suppose the
contrary; i.e., f(z) = (z — {)*(z — n) with {,n € K. Consider the element
z:=y/(x—(). Then 22 =z —n, and F = K(x,y) = K(x,2) = K(2). So F/K
is rational, a contradiction.

(b) char K = 2. We have already shown that F' = K(z2,y2) with

y% + (Bowa +72)y2 = »’U;’ + 5296% + Ao + 2. (6.5)

We claim that Bawa + v2 # 0. In fact, if Bowg + 72 = 0 then y3 € K(x2); i.e.,
the extension F/K (z5) is purely inseparable of degree p = 2. By Proposition
3.10.2 the only intermediate field K C Fy C F such that F/Fy is purely
inseparable of degree p is the field Fy = F?, so K(x3) = FP. However, the
genus of K(xz3)/K is zero, and the genus of FP/K is one (cf. Proposition
3.10.2(c)). This contradiction proves the claim.

We set y3 := yo(Bowa +72)~!; then F = K(x9,y3) and
y§ +yz = (Bawa + ’72)72(533 + €2$§ + Aozo + pi2) . (6.6)

If B2 = 0, the right hand side of (6.6) is a polynomial f(x2) € K[xs] of degree
3, and we are in the situation of (6.2).

If By # 0, the right hand side of (6.6) can be written in the form

ag n T
(B +72)%  Bowa + 2

vro + 0+

with v, 0,0,7 € K and v # 0. As K is perfect, 0 = o for some o7 € K, and
the element yy := y3 + 01(B2x2 + 72) ! satisfies an equation

T2

Boxa + 72 (6.7)

Y + Y1 = 0w + 02 +

with vy, 00,7 € K and vo = v # 0. Also, the coefficient 75 does not vanish
(otherwise F' = K (x3,y4) would be rational by (6.7)). We set y := y4 and
Z = voxs + 02 and obtain F' = K(x,y) with

vy ry=ax+

ax +b (6.:8)

(a,b€ K and a # 0). O

Next we show that each of the above equations (6.1), (6.2) and (6.3) defines
an elliptic function field.
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Proposition 6.1.3. (a) char K # 2. Suppose that F = K (x,y) with
y* = f(x) € K[a], (6.1)

where f(x) is a square-free polynomial of degree 3. Consider the decomposition
f(z) = clli_, pi(z) of f(x) into irreducible monic polynomials p;(z) € K|z
with 0 # ¢ € K. Denote by P; € Pk, the place of K(x) corresponding to
pi(z), and by Py € P (4 the pole of x. Then the following hold:

(1) K is the full constant field of F', and F'/K is an elliptic function field.

(2) The extension F/K(x) is cyclic of degree 2. The places Py, ..., P, and
Py are ramified in F'/K(x); each of them has exactly one extension in
F, say Q1,...,Qr and Qx, and we have e(Q;|P;) = e(Qoo|Psc) = 2,
deg Q; = deg P; and deg Q = 1.

(3) P1,...,P. and Py are the only places of K(x) which are ramified in
F/K(x), and the different of F/K (x) is

Diff(F/K(z)) = Q1+ + Qr + Q-

(b) char K = 2. Suppose that F = K (x,y) with

v’ +y=f(z) € Klz] and degf(x)=3 (6.2)
or )
2 =  — ) K . .
Yy +y x+a:c—|—b with  a,b € and a#0 (6.3)

Denote by Py, € P (y) the pole of x in K(x) and by P" € Pk, the zero of
ax +b in K(x) (in Case (6.3)). Then the following hold:
(1) K is the full constant field of F, and F/K is an elliptic function field.

(2) The extension F/K(x) is cyclic of degree 2. The only places of K(x)
which ramify in F/K(x) are

Py, in Case (6.2),
P, and P', in Case (6.3).

Let Qoo (resp. Q' in Case (6.3)) be the place of F/K lying over P,
(resp. P'). Then deg Qoo = deg @' =1 and

4Q in Case (6.2),

Diff(F/K =
ifH(F/K (@) {2@00 120" in Case (6.3).

Proof. In case char K # 2, all assertions follow easily from Proposition 3.7.3
(see also Corollary 3.7.4 and Example 3.7.6). For the case of char K = 2 apply
Proposition 3.7.8. ]
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For an elliptic function field F/K the zero divisor is a canonical divisor
since
(0)=1=g and deg(0)=0=2g9—2
(see Proposition 1.6.2). In each of the cases (6.1), (6.2) and (6.3) one can
easily write down a differential w € 2 with (w) = 0, namely

y~ldx in Case(6.1),
w=qdx in Case(6.2),
(ax +b)~tdx in Case(6.3).

The proof of this assertion is left to the reader. (Hint: Calculate the divisor
of the differential dz by using Remark 4.3.7(c).)

Ezample 6.1.4. Let us briefly describe the classical example of an elliptic func-
tion field (without giving proofs). Consider a lattice I’ C C; i.e.,

I'=2Zv & Zy

with 71,72 € C\{0} and v /72 € R. An elliptic function (with respect to I)
is a meromorphic function f(z) on C satisfying

fz+7)=f(z) forall yeI.

The elliptic functions form a subfield M (I) of the field of all meromorphic
functions on €, and € C M(I") (we consider a complex number as a constant
function). Two specific non-constant elliptic functions are the Weierstrass p-
function which is defined by

1 1 1
o=zt 3 (=)
2 2\ 7
and its derivative p'(2). It is not difficult to prove the following facts:
(1) M(I") = €(p(2), ¢'(2)), and
(2) 9'(2)* = 4p(2)° = g2 (2) — g3
with constants gs, g3 € €, where the polynomial f(T) = 4T3 — g, T — g3 € C[T]

is square-free. Hence M(I")/C is an elliptic function field by Proposition 6.1.3.
For a € C, every function 0 # f € M(I") has a Laurent series expansion

o0

f(z) = Z ai(z — )’

i=io

with a; € C, iy € Z and a;, # 0. Setting v, (f) := g we define a discrete
valuation v,, hence a place P, of M(I")/C. It is obvious that P, = Pg if
and only if @ = fmod I'. In this manner one obtains all places of the elliptic
function field M(I").
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Ezxample 6.1.5. We would like to investigate some elliptic function fields F'
over the field IF5. Let N denote the number of places of F/IFs of degree one.
The Serre Bound states that

N<2+1+g-[2V/2]=5.

Let us show that (up to isomorphism) there exists exactly one elliptic function
field F/IFy with N = 5. By Proposition 6.1.2(b) we can write F' = Fa(z,y)
with

1
2 _
y+y—x+x+b, belF, (6.8)
or
Y4y = f(x) € Falz], degf(x)=3, (6.9)

Observe that there are exactly 3 places of IFo(x) of degree one, and every
place of F of degree one must lie over one of them. In Case (6.8) two places
of IFo(z) of degree one ramify in F/TFa(x), so N < 4. In Case (6.9) we can
assume that f(z) = 2% + bz + ¢ with b, c € Fy (if f(z) = 2® + 22 + bx + ¢, we
replace y by z := y + x; then 22 + z = 2% + bz + ¢;1). It remains to consider
the four cases f(r) = 23, 2% + 2,2% + 1,23 + 2 + 1. Using Kummer’s Theorem
(or its Corollary 3.3.8) one can easily calculate N in each of these cases; the
result is

1 fory’+y=a3+x+1,

N=<3 fory>’+y=a3o0ra3+1,
5 fory?+y=2a3+2x.

So the only elliptic function field F/TFs with N =5 is
F =Ty(z,y) with y*+y=2>+z. (6.10)

Now we determine the L-polynomial Lp(t) of (6.10). We know by Theorem
5.1.15 that Lp(t) = ag+ait+ast? withag =1, a3 =2and a; = N—(2+1) =
2. Hence
Lp(t)=1+2t+2t* = (1 — at)(1 — at) (6.11)
with o = —1 44 = w2, w = exp (37i/4) (here, i = /—1 € €, and & is the
complex conjugate of ). Consider the constant field extension F,. := FIFyr of
degree r. The number N, of places of degree one of the function field F,./IFar
is given by
N, =2"+1—(a" +a") (6.12)

(cf. Corollary 5.1.16). We obtain N, = 2" +1 —2-27/2. Re (w"), hence

2"+ 1 for r=2,6mod 8,
2" 4+1+42-27/2  for r =4mod8,
N.={2"4+1-2-2"/2  for r =0mod8§,
2" 414 2040/2 for r=1,7mod8,
21 +1—20tD/2 for r =3,5modS8.
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We see that for 7 = 4mod 8 the upper Hasse-Weil Bound g + 1 + 2¢g¢*/? is
attained; for r = 0 mod 8 the lower Hasse-Weil Bound g+1—2gq'/? is attained;
for 7 = 1 the upper Serre Bound ¢ + 1 4 g - [2¢"/?] is attained.

We finish this section with a result that is fundamental to the theory of
elliptic function fields F//K (over an arbitrary field K). Let us recall some
notation: CI(F) is the divisor class group of F/K, and CI°(F) C CI(F) is
the subgroup consisting of the divisor classes of degree zero. For a divisor
B € Div(F), [B] € CI(F) denotes the corresponding divisor class. A ~ B
means that the divisors A, B are equivalent.

Proposition 6.1.6. Let F/K be an elliptic function field. Define
P = {P € Py |deg P = 1}.

Then the following hold:

(a) For each divisor A € Div(F) with deg A = 1 there exists a unique place
Pe IP}I) with A ~ P. In particular IPIE}) £ 0.

(b) Fiz a place Py € ]P}(,l). Then the mapping

@-{]Pf(vl) —  C(F),

P — [P — Py (6.13)

18 bijective.

Proof. (a) Let A € Div(F) and deg A = 1. We show the existence of a place
P e ]P}(,}) with A ~ P as in the proof of Proposition 6.1.2; since ¢(A) =
deg A+1—g > 0, there is a divisor A} ~ A with A; > 0, and from deg A =1
follows immediately that A; = P € ]PI(,}).

Next we prove uniqueness. Suppose that A ~ P and A ~ @ for P,Q € IPIE})
and P # Q. Then P ~ Q; i.e., P — Q = (x) for some x € F. By Theorem
1.4.11 we have [F : K(z)] = deg ()0 = deg@ = 1, hence F = K(z). This is
a contradiction as F/K is elliptic.

(b) First we show that & is surjective: Let [B] € C1°(F). The divisor B + Py
has degree one. By (a) we find a place P € IPIS}) with B + Py ~ P. Then
[B] = [P — Py] = ®(P), and & is surjective.

Suppose now that ¢(P) = &(Q) for P,Q € IPIE}). Then P — Py ~ Q — Py,

hence P ~ . By the uniqueness assertion of (a) it follows that P = Q. O

The bijection @ of the foregoing proposition can be used to carry over
the group structure of CI°(F) to the set IPIE}). That means, we define for
P,Q e IP}(,})

PaQ =2 Yd(P)+D(Q)). (6.14)
Some consequences of this definition are put together in the following propo-
sition.
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Proposition 6.1.7. Let F/K be an elliptic function field. Then:

(a) IPI(,U is an abelian group with respect to the operation © as defined in
(6.14).

(b) The place Py is the zero element of the group IPl(ml).
(¢) For P,Q,R € IPS) the following holds:

PPQ=R < P+Q~R+P.

(d) The map P : IPI(,I) — CI°(F) given by (6.13) is a group isomorphism.
Proof. (a), (b) and (d) are obvious.
(¢) By (6.14) we have the following equivalences:

P&Q=R <+ &(R)=>3P)+dQ)
<~ R*PON(pro)‘F(Q*PQ)
O

We note that the group law on ]wal) depends on the choice of the place
Py. However, the group-theoretical structure of IPS) is independent of this
choice, since IPIE}) is isomorphic to C1° (F) in any case. If F' is represented in
the form F = K(z,y) as in Proposition 6.1.3, one usually chooses Py := Q,
the pole of x.

6.2 Hyperelliptic Function Fields

In this section we discuss another important class of non-rational function
fields over K.

Definition 6.2.1. A hyperelliptic function field over K is an algebraic func-
tion field F/K of genus g > 2 which contains a rational subfield K(x) C F
with [F : K(x)] = 2.

Lemma 6.2.2. (a) A function field F/K of genus g > 2 is hyperelliptic if
and only if there exists a divisor A € Div(F) with deg A =2 and ¢(A) > 2.

(b) Every function field F/K of genus 2 is hyperelliptic.

Proof. (a) Suppose that F//K is hyperelliptic. Choose an element = € F such
that [F': K(z)] = 2, and consider the divisor A := (). Then deg A = 2 and
the elements 1,z € .Z(A) are linearly independent over K, hence ((A) > 2.

Conversely, assume that F'/K has genus g > 2 and that A is a divisor of
degree 2 with £(A) > 2. There is a divisor A; > 0 with Ay ~ A4, so deg A; =2
and ¢(A;) > 2, and we can find an element x € Z(A1)\K. Then (x)s < A1
and therefore [F : K(x)] = deg(2)o < 2. Since F/K is not rational, we
conclude that [F': K(z)] = 2.
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(b) Now a function field F/K of genus g = 2 is given. For each canonical
divisor W € Div(F) we have degW = 2g — 2 = 2 and (W) = g = 2 by
Corollary 1.5.16. This implies that F'/K is hyperelliptic, by (a). ]

If F/K is hyperelliptic and K (z) is a subfield of F' with [F' : K(x)] = 2, the
extension F'/K(x) is separable (if F/K(x) were purely inseparable, F' itself
would be rational, by Proposition 3.10.2). Hence F'/K(z) is a cyclic extension
of degree 2, and we can use Proposition 3.7.3 (resp. 3.7.8) to provide an
explicit description of F//K (analogous to the description of elliptic function
fields given in Section 6.1). For simplicity we restrict ourselves to the case
char K # 2.

Proposition 6.2.3. Assume that char K # 2.

(a) Let F/K be a hyperelliptic function field of genus g. Then there exist
x,y € F such that F = K(z,y) and

v? = f(2) € K[a] (6.15)

with a square-free polynomial f(x) of degree 29 + 1 or 2g + 2.
(b) Conversely, if F = K(x,y) and y*> = f(z) € K[z] with a square-free
polynomial f(x) of degree m > 4, then F/K is hyperelliptic of genus

~J(m—=1)/2 if m=1mod2,
I VY m—-2)/2 if m=0mod2.

(¢) Let F = K (z,y) with y* = f(z) as in (6.15). Then the places P € IP g,
which ramify in F/K(x) are the following :

all zeros of f(x), if deg f(z) = 0mod 2,

all zeros of f(x) and the pole of x, if deg f(x) = 1mod 2.

Hence, if f(x) decomposes into linear factors, exactly 2g + 2 places of K(x)
are ramified in F/K(x).

Proof. (b) and (c) are special cases of Proposition 3.7.3 (cf. also Example
3.7.6).

(a) As F/K(x) is cyclic of degree 2 and char K # 2, there exists an element
z € F such that F = K(z,2) and 22 = u(x) € K(x). Write
u(x):c-Hpi(;v)” ,0#ce K,

with pairwise distinct irreducible monic polynomials p;(z) € K[z] and r; € Z.
Let r; = 2s; +¢;, 8; € Z and ¢; € {0,1}. Set

y::z-Hp;Si.

Then F = K(z,y) and y* = f(z) with a square-free polynomial f(x) € K|[xz].
Now Example 3.7.6 implies that deg f = 2g + 1 or 29 + 2. O
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In the case of char K = 2, all places of F' which are ramified in the
quadratic extension F'/K (x) are wildly ramified, so their different exponent in
Diff(F/K(x)) is at least 2 (by Dedekind’s Different Theorem or Proposition
3.7.8(c)). It follows that the number s of ramified places lies in the interval
1 < s < g+ 1. One can easily construct examples for each s in this range. For
example, the hyperelliptic field F' = K (x,y) with

y* +y=f(z) € K[z], degf(z)=2g+1 (6.16)

has genus g and exactly one ramified place in F'/K(z) (the pole of ). On the

other hand, if
g+1

Vry=> (@+a)’ (6.17)
i=1
with pairwise distinct a; € K, the genus of F/K is g, and we have exactly
g+ 1 ramified places in F//K (x). All this follows immediately from Proposition
3.7.8.

Thus far the condition g > 2 was not essential. Our previous results on
hyperelliptic function fields hold for elliptic function fields as well. However,
the next proposition is false in the case of an elliptic function field.

We recall that the space £2p of differentials of F'/K is a one-dimensional
F-module. Hence for wy,ws € 2p and wy # 0, the quotient wy/wy € F is
defined. 27(0) = {w € 2p|(w) > 0} is the space of regular differentials of
F/K.

Proposition 6.2.4. Consider a hyperelliptic function field F/K of genus g
and a rational subfield K(x) C F with [F : K(xz)] = 2. Then the following
hold:

(a) All rational subfields K(z) C F with [F : K(2)] < g are contained in K (x).
In particular, K (z) is the only rational subfield of F with [F : K(z)] = 2.

(b) K(x) is the subfield of F which is generated by the quotients of regular
differentials of F/K.

Proof. (a) Suppose that [F : K(z)] < g but z ¢ K(z). Then F = K(z,z),
and Riemann’s Inequality (Theorem 3.11.4) yields the contradiction

g<(F:K@)]-1)-(F:K(z)]-1)<g—1.

(b) First we claim that the divisor W := (g—1)- () € Div(F) is a canonical
divisor of F/K. This follows from Proposition 1.6.2 since degW = 2g — 2
(obvious) and £(W) > g (the elements 1,z,...,2971 are in Z(W)). Choose a
differential w € 25 with (w) = W; then the differentials r'w, 0 < i < g—1 are
in 2r(0). As 2r(0) is a g-dimensional vector space over K (Remark 1.5.12),
this implies
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2p(0) = {f(2) -w|f(z) € K[z] and deg f(x) <g—1}.

Thus K () is the subfield of F' generated by the quotients of regular differen-
tials. O

We mention without proof that if /K is a non-hyperelliptic function field
of genus g > 2, the quotients of regular differentials generate F' (under a weak
additional assumption, e.g. the existence of a divisor of degree one), cf. [6].

6.3 Tame Cyclic Extensions of the Rational Function
Field

We study function fields F' = K (z,y) which are defined by an equation
v =a- ] pi(@)™ (6.18)
i=1

with s > 0 pairwise distinct irreducible monic polynomials p;(x) € Klz],
0+#a€ K and 0 # n; € Z. Throughout this section we will assume that the
following conditions hold:

char K tn, and ged(n,n;) =1 for 1<i<s. (6.19)

Note that hyperelliptic function fields of characteristic # 2 are special cases
of (6.18).

Proposition 6.3.1. Suppose that F' = K(x,y) is defined by (6.18) and (6.19).
Then we have:

(a) K is the full constant field of F, and [F : K(x)] = n. If K contains a
primitive n-th root of unity, F/K(x) is a cyclic field extension.
(b) Let P; (resp. P ) denote the zero of p;(x) (resp. the pole of x) in K(x).
The places Py,...,Ps are totally ramified in F/K(x). All places Qoo € Pp
with Qoo | Pao have ramification index e(Quo | Px) = n/d where

d = ged (n Zl n; - deg pi(x)) . (6.20)

No places P € Py other than Pi, ..., Ps, P ramify in F/K(z).
(¢) The genus of F/K is

n—1 - d—1
9=— (—1+Zdegpi($)>_27

i=1

with d as in (6.20).
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Proof. All assertions follow immediately from Proposition 3.7.3, Corollary
3.7.4 and Remark 3.7.5. O

Now we consider some special cases of Proposition 6.3.1.

Ezample 6.3.2. Let F = K(x,y) with

where b, c € K\{0}, b # ¢ and char K 1 mn. Then (6.18) and (6.19) hold, and
we obtain from Proposition 6.3.1

g=(n—1)m—1) = (IF: K@)] - 1)([F: K(y)] - 1).
Thus Riemann’s Inequality (Corollary 3.11.4) is sharp in this case.
Ezample 6.3.3. The function field F' = K (z,y) with defining equation
ax™ +by" =¢, a,b,ce K\{0}, char K {mn

has genus
1
g= 5((71 —1)(m—1)+1—ged(m,n)).

Ezample 6.3.4. A function field F = K(z,y) with
azx" +by" =¢, a,b,ce K\{0}, char K tn

is said to be of Fermat type. Its genus is g = (n — 1)(n — 2)/2 by the previous
example. This shows that the estimate for the genus given in Proposition
3.11.5 cannot be improved in general.

Ezample 6.3.5. Let K = IF ;2 be the finite field of cardinality q?, where ¢ is a
power of a prime number. Consider the function field F' = K(z,y) with

az?™ +by" =c, a,b,ce FN\{0}, n|(g+1). (6.21)
We want to determine the number of rational places
N =N(F/IFp2)=|{P €Pp; degP =1}|.

First we substitute z; := yx, y; := dy with v = a/c and 6" = —b/c, and
we obtain F' = K (x1,y1) with y} = 297" —1 (observe that v,6 € IFg2 since all
elements of IF, are (¢ + 1)-th powers of elements of IF2). So we can assume
from the beginning that F' = K (x,y) with

y =29 —1 and n|(qg+1). (6.22)

Let Py € Pg(y) (resp. Ps) denote the zero of x — a (resp. the pole of x)
in K(z). Each place P € IPp of degree one lies over P, or some P, (with
a € K), hence we have to study the decomposition of P, and Py, in F/K(x).
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Case 1. o € K and a?t! = 1. In this case a is a simple root of the poly-
nomial 79! — 1 € K|[T], and P, is fully ramified in F//K(x) by Proposition
6.3.1(b). So P, has a unique extension P € IPr, and deg P = 1.

Case 2. a € K and a9t # 1. We use Kummer’s Theorem (resp. Corol-
lary 3.3.8) to determine the decomposition of P, in F/K(z). The minimal
polynomial of y over K (z) is o(T) = T™ — (2971 — 1) € K(2)[T], and

0a(T) :=T" — (a® — 1) € K[T]

has n distinct roots 3 € K = IF 2 (here we use that a?t! —1 € IF, \ {0} and
n | (g +1)). For any such § there is a unique place P, g € IPp with P, g | P,
and y — B € P, g, and P, g is of degree one. So P, has n distinct extensions
P € IPr with deg P = 1.

Case 3. o = 0. In this case Kummer’s Theorem does not apply directly
as not all coefficients of the minimal polynomial of y over K(z) are in the
valuation ring O, of P,,. So we consider the element z := y/x(q+1)/” which
satisfies the equation

2" =1—(1/z)9.

As T™ — 1 has n distinct roots in K, we see that P, has n distinct extensions
P € Pp, all of degree one, by Kummer’s Theorem.

There are ¢ + 1 elements a € IF 2 belonging to Case 1, and ¢* — (¢ + 1)
elements o that fall under Case 2. Summing up we find that F/IF 2 has

N=@g+1)+n(@—-(g+1)+n=q+1+n(¢*—q)

places of degree one. By Example 6.3.3 the genus of F'is g = (n—1)(¢—1)/2,
hence

CH1+299=¢+1+qn-1)(g—1)=q+1+n(¢ —q).

We see that the function fields F'/IF ;2 which are defined by (6.21) are maximal;
i.e., they attain the upper Hasse-Weil Bound

N=¢+1+2gq (6.23)

(over the constant field IF;2). Now one can easily determine the L-polynomial
Lp(t) of F/IFgp: if aq,...,azy € C are the reciprocals of the roots of Lp(t)
then

2g
N=¢+1-)Y o, (6.24)
i=1
by Corollary 5.1.16. On the other hand, |«o;| = ¢ by the Hasse-Weil Theorem.
By (6.23) and (6.24) this implies o; = —¢ for i = 1,...,2g, and thus
Lp(t) = (14 qt)%. (6.25)

The above proof shows that Equation (6.25) holds for all maximal function
fields over IFg2.



230 6 Examples of Algebraic Function Fields

Ezample 6.3.6. The special case H := IF2(x,y) with
ozt gyt = (6.26)

is called the Hermitian function field over IF ;2. It is a maximal function field
by (6.23), so it provides an example of a maximal function field of genus
g = q(¢ — 1)/2 and shows that Proposition 5.3.3 cannot be improved. The
number of places of degree one is N =1 + ¢>.

The Hermitian function field has some other remarkable properties. For in-
stance, its automorphism group Aut(H/IF ;2) is very large, cf. [41] and Exercise
6.10. In Section 6.4 we shall give a second description of the Hermitian func-
tion field.

Remark 6.5.7. Once again we consider a function field F = IF 2 (u,v) as in
Example 6.3.5; i.e., au?™ + bv™ = ¢ with a,b,c € IF;\ {0} and n | (¢+1). By
(6.22) we can replace u,v by elements w,t such that F' = IF 2 (¢, w) and

w" =t 1, (6.27)

On the other hand, let H = IF 2 (x,y) be the Hermitian function field given
by 24! 4+ y?t1 = 1. Write ¢ + 1 = sn, choose ¢ € F 2 with (" = —1 and set
z:=(y® € H. Then

SN = Cnyq+1 _ .’13q+1 1.

Thus F' = IF2(u,v) is isomorphic to the subfield IFy2(x,2) € H. In other
words, all function fields which were considered in Example 6.3.5 can be re-
garded as subfields of the Hermitian function field H. More generally, it is
easily seen that the function fields F' = IF 2 (u, v) with

au + ™ =c, a,b,ceF N\{0}, m|(¢g+1) and n|(¢+1) (6.28)

can be regarded as subfields of H. One can show by direct computation that
all function fields (6.28) are maximal.

Ezample 6.3.8. We consider the function field F' = K(y, z) defined by
B ryPr4+y=0. (6.29)

F is called the function field of the Klein Quartic. The polynomial T2 43T +
y € K(y)[T] is absolutely irreducible (by Proposition 3.1.15), so K is the full
constant field of F' (see Corollary 3.6.8), and [F': K(y)] = 3.

It is convenient to choose other generators of F'//K. We multiply (6.29) by
Y5, set  := —y?z and obtain F = K (z,y) with

y =2%/(1 —x). (6.30)

If char K = 7, F// K (x) is purely inseparable; therefore F//K is rational in this
case (Proposition 3.10.2(c)). In case char K # 7 we can apply Proposition
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6.3.1. Exactly three places of K (z) ramify in F'/K (x), namely the pole P, of
x, the zero Py of 2 and the zero P; of x — 1. All these places have ramification
index e = 7 in the extension F/K(z), and the genus of F/K is g = 3.

Now we specialize to K = IF5. As in Chapter 5, N, denotes the number
of places of degree one in the constant field extension F,. = FIFy-. We claim
that

N1:3, N2:5 andN3:24. (631)

N; = 3 is obvious since the three places of IFo(z) of degree one are fully
ramified in F', so each of them has a unique extension of degree one in IPg.
For r = 2 the constant field is IF4 = {0,1,a, o+ 1} where a® + o+ 1 = 0. Let
P, € Pk (,) be the zero of x — . We determine the decomposition of P, in
Fy(x,y)/Fy(x) for v € {o, + 1}. In order to apply Kummer’s Theorem we
have to study the polynomials

3
@a(T):T7+1i =T"+a and

(0%

+1)3
ot (T) =T7 L:W 1.
Pt (T) +1+(1+a) toat

Both polynomials have only simple irreducible factors in IF4[T] as they are
relatively prime to their derivative, and « (resp. a + 1) is the only root of
©a(T) (resp. @a+1(T)) in IF4. Hence there is exactly one place of degree one
lying over P, (resp. P,+1), the other extensions of P, and P, are of degree
> 1. Summing up, we have found exactly 5 places of IFy(z,y)/IFy of degree
one, so Ny = 5.

Next we consider the constant field IFg = IFy(3) where 82 + 3+ 1 = 0.
One has to study the decomposition of the polynomials

5 € Fs[T]

for v € g \ {0,1}. For v € {3,3% 3%} we have ¢,(T) = T7 4+ 1 which
decomposes into seven distinct linear factors in IFg[T]. For v € {33, 3%, 3%},
©~(T) has no root in IFg. Hence N3 = 3 + 3 -7 = 24, and the proof of (6.31)
is finished.

Now it is easy to determine the L-polynomial of the Klein Quartic over
IF5. With the notations as in Corollary 5.1.17 we find S; = S = 0 and
S3=24—(841) =15, hence ag =1, a; = a2 =0, a3 =5, ay = a5 = 0 and
ag = 8. Thus

Lp(t) =1+ 5t 485,

The Klein Quartic over IFg provides an example where the upper Serre Bound
N =q+1+g-[2¢"/?] is attained (Theorem 5.3.1), since we have N = 24 =
8+1+3-[2v8].
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6.4 Some Elementary Abelian p-Extensions of K (),
char K =p >0

In this section K is a field of characteristic p > 0.

The function fields to be discussed in this section have interesting applications
in coding theory, cf. Chapter 8 and 9.

Proposition 6.4.1. Consider a function field F = K (x,y) with
y' +py = f(z) € Klz], (6.32)

where g = p* > 1 is a power of p and 0 # p € K. Assume that deg f =:m > 0
is prime to p, and that all roots of T+ puT = 0 are in K. Then the following
hold:

(a) [F: K(z)] = q, and K s the full constant field of F'.

(b) F/K(x) is Galois. The set A := {y € K |v?+ py = 0} is a subgroup of
order q of the additive group of K. For all o € Gal(F/K (x)) there is a unique
v € A such that o(y) =y + 7, and the map

{Gal(F/K(x)) A,

g H’y

is an isomorphism of Gal(F/K(z)) onto A.

(c) The pole Py, € Pr () of x in K(x) has a unique extension Qo € PPp,
and Qo |Px is totally ramified (i.e., e(Qoo/Px) = q). Hence Qo is a place
of F/K of degree one.

(d) Py is the only place of K(x) which ramifies in F/K(x).
(e) The genus of F/K is g = (¢ —1)(m —1)/2.
(f) The divisor of the differential dz is

(dz) = (29 = 2)Quc = ((¢ = 1)(m — 1) = 2) Qus -

(9) The pole divisor of x (resp. y) is (2)oo = Qoo (T€SP. (Y)oo = MQ o).
(h) Let r > 0. Then the elements x'y’ with

0<i, 0<j<qg—1, qgi+mj<r

form a basis of the space L (rQs) over K.

(i) For all « € K one of the following cases holds:
Case 1. The equation T? + pT = f(a) has q distinct roots in K.
Case 2. The equation T? + pT = f(a) has no root in K.
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In Case 1, for each B with 894 ufB = f(«) there exists a unique place P, g €
Pr such that P, g|P, and y(P, ) = 3. Hence P, has q distinct extensions
in F/K(x), each of degree one.

In Case 2, all extensions of P, in F have degree > 1.

Proof. Equation (6.32) is a special case of the situation which was considered
in Proposition 3.7.10, so (a) - (e) hold.

(g) ()00 = ¢Qoo follows from (c). The elements z and y have the same poles,
hence Qo is the only pole of y as well. Since ¢ - vg__ (y) = vgo, (Y1 +y) =
vg. (f(x)) = —mgq we obtain (¥)eo = MQ -

(f) The different of F/K(x) is Diff(F/K(x)) = (¢ — 1)(m 4+ 1)@, b
Proposition 3.7.10(d). So Remark 4.3.7(c) yields

(dz) = —2(2)oo + Diff (F/K(z)) = ((¢ — 1)(m — 1) = 2) Qe = (29 — 2)Quc

(h) The elements 1,7, ...,y? ! form an integral basis of F//K (z) at all places
P € Py, different from P,. This follows from Theorem 3.5.10(b), as the
minimal polynomial ¢(T') = T9 + uT — f(z) of y over K(x) is in Op[T] and
for all Q|P,
vQ(¢'(y) = vo(u) = 0=d(Q[P).

Let z € Z(rQu0). As Qo is the only pole of z, z is integral over Op for all
P € Pg(), P # P, thus z = Z?;é zjy? with z; € K(z), and z; has no
poles other than P.,. Hence z; is a polynomial in K[z]; i.e.,

q—1
= Z Zaijxiyj with a;; € K. (6.33)

§=0 >0

The elements z’y/ with 0 < j < ¢ — 1 have pairwise distinct pole orders
because vg_ (x) = —q, vo.. (y) = —m and m and ¢ are relatively prime.
Therefore the Strict Triangle Inequality implies

vg.. (2) = min{—ig — jm|a;; # 0}.
This proves (h).

(i) Suppose there is some § € K such that 57+ pf = f(a). It follows that
(B+7)+ p(B+7) = f(a) for all v with 47 + py = 0, so

T9+ uT — f(a HT 3;)

with pairwise distinct elements 3; € K. By Corollary 3.3.8(c) there exists for
j=1,...,¢, a unique place P; € IPp such that P;|P, and y — 3; € P;, and
the degree of P; is one.

In Case 2 the polynomial 77 + uT — f(a) € KIT] splits into pairwise
distinct irreducible factors of degree > 1. By Corollary 3.3.8(a), all places
P € Pp with P|P, have degree > 1. 0
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Ezxample 6.4.2. We consider a special case of the previous proposition, namely
F=Fg(z,y) with y'4+y=a" and ml(g+1). (6.34)
The genus of F is g = (¢ — 1)(m — 1)/2. We claim that F/IF 2> has
N=1+q(1+(¢g—1)m) (6.35)

places of degree one. The pole Qs of x is one of them. The other places of
degree one are extensions of some place P, € IPg(,). Hence, by Proposition
6.4.1(i), we have to count the elements o € IF 2 such that the equation

TI4+T =a™ (6.36)

has a root 3 € IFj2. The map 3 +— (37 + (3 is the trace mapping from IF to
IFy, and therefore it is surjective (cf. Appendix A). Thus (6.36) has a root in
IF > if and only if o™ € ;. Let U C TF» be the subgroup of order (¢ — 1)m
(here we use the assumption m|(¢ + 1)). Then for o € IF 2,

am"elF, < acUU{0}.

Hence N =1+ ¢((q — 1)m + 1) by Proposition 6.4.1(i). This proves (6.35).

Because 1+ q((q — 1)m + 1) = 1 + ¢ + 2gq, the fields which are defined
by (6.34) provide other examples of maximal function fields over IF .

Ezample 6.4.3. The Hermitian function field H which was studied in Example
6.3.6 is given by
H=T,(uv) with wf™ +0971 =1, (6.37)
We choose a, b, c € IF;2 such that
e =—1, b+b=1 and c=—ab?;

then it follows that

ab?+c=0,
ald+c? = (ab?+ )1 =0,
ac? +alc = a(—a®b) + a?(—ab?) = —a? (b +b?) = 1. (6.38)
We set
bu + cv
T = and y = .
u+av u+av

Then H = IF2(x,y), and we obtain

(u+ av)dtt . g7t =1 (6.39)
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and

(u+av)™ - (y? +y)

= (u+ av)(bu + cv)? + (u + av)?(bu + cv)

= (b7 + b)ut™ + (bla + c)ulv + (c? + ba?)uv? + (ac? + a’c)v?t?
=yttt =1 (6.40)

(we have used (6.38)). Comparing Equations (6.39) and (6.40) we see that
H=TFg(x,y) and y'+y= AR

So the Hermitian function field H can be regarded as a special case of the
function fields which were considered in Example 6.4.2. This representation of
H is particularly useful, because we have a simple explicit description of the
canonical divisor W = (dz), the spaces .Z(rQ« ) and all places of degree one
(by Proposition 6.4.1 and Example 6.4.2). For applications to coding theory
in Section 8.3 we put together these results in a lemma.

Lemma 6.4.4. The Hermitian function field over IF 2 can be defined by
H=Tp(z,y) with y?'+y=az7". (6.41)

It has the following properties:

(a) The genus of H is g = q(q — 1)/2.

(b) H has ¢* + 1 places of degree one over IFy2, namely
(1) the common pole Qo of x and y, and

(2) for each a € TF 2 there are q elements 3 € IF 2 such that 37+ = a9,
and for all such pairs («, 3) there is a unique place P, g € Py of degree
one with x(Py 3) = o and y(P, ) = f.

(c) H/IF 2 is a mazimal function field.

(d) The divisor of the differential dzx is (dx) = (¢(¢ — 1) — 2)Qwo.

(e) Forr >0, the elements 2'y? with0 <14, 0<j < q—1 andig+j(qg+1) <r
form a basis of L (rQuo)-

Remark 6.4.5. One can show that the Hermitian function field is - up to iso-
morphism - the only maximal function field over IF 2 of genus g = q(¢—1)/2,
see [34].

6.5 Exercises
6.1. Consider the function field F' = Fao(x,y) over IFo which is defined by

the equation y?> = f(z). For each of the following choices of f(z) € Fa(z),
determine the L-polynomial L(t).
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(i) flz) =2 +1,

(ii) f(x) =23 +z,

(iii) f(x) =23 +x+1,

(i) f(x) = (2? +2)/(2® + 2+ 1).

6.2. Let F' = IF3(z,y) be the elliptic function field over IF'3 which is defined
by the equation y? = 2® — z. Determine N, for all r > 1.

6.3. Show that there exists an elliptic function field over F/IF5 having 10
rational places, cf. Exercise 5.1. Is F unique (up to isomorphism)?

6.4. Construct a function field of genus g = 2 over IF3 with N = 8 rational
places.

6.5. Consider a function field E = IFy(z,y, z) and its subfield F = Fa(x,y),
where z,y, z satisfy the equations

Ve+y+22+1=0 and 2*y+24+3y>+1=0.

(i) Show that [E : F] = [F : IFa(x)] = 2, and that the pole of x is totally
ramified in E/IFy(x).

(#) Determine the genus and the number of rational places of F'/TF. Compare
with Example 6.1.5.

(iii) Determine the genus and the number of rational places of E/IFs.

6.6. (p prime, p = 1mod4) Consider the function field F' = IF,(z,y) with
the defining equation

yp —y= s
It is clear from Proposition 6.4.1 that F/IF,(x) is a Galois extension of degree
[F:TF,(x)] = p, and that = has a unique pole Qo in F.
(i) Show that the Riemann-Roch space .Z(p @) has dimension 2 and is
generated by the elements 1 and z.
(i) Determine all rational places of F//IF,,.
(#i) Show that the automorphism group Aut (F/IF,) acts transitively on the
places of degree one.
Hint. Choose o € IF), with a® = —1 (only here the assumption p = 1 mod 4 is

used). Show that there is an automorphism o € Aut (F/IF,) with o(y) = 1/y
and o(z) = ax/y. This automorphism permutes the zero and the pole of y.

6.7. (p prime, p = 1mod4) Consider the function fields E = IF,(s,t) with
the defining equation
4t = st

and F' =1F,(z,y) with
yp —y= Pt
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(as in the previous exercise).

(i) Show that the extension E/IF,(s) is not Galois, and determine all rational
places of E/IF,,.

(i) Tt follows that F and F have the same number of rational places, namely
N = p+ 1. Show that E and F' are not isomorphic.

(#1i) Consider the constant field extensions Ey := EIF,2 and F, := FIF 2 of
degree 2. Show that Es is isomorphic to Fb.

The subsequent exercises are related to the automorphism group Aut (F/K) of
a function field F/K. Recall that we have already shown the following facts:

(1) The automorphism group of a rational function field K(x)/K is iso-
morphic to PGLa(K) (see Exercise 1.2.)

(2) If K is a finite field, then the automorphism group of F/K is finite
(see Exercise 5.4)

(8) Let K be an algebraically closed field and G a finite subgroup of
Aut (F/K). Assume that the order of G is not divisible by the charac-
teristic of K and that the genus of F/K is g > 2. Then the order of G
satisfies the bound ord G < 84(g — 1) (see Exercise 3.18).

We mention without proof that Aut (F/K) is always a finite group if K is
algebraically closed and the genus of F is > 2. Most proofs of this fact use the
theory of Weierstrass points.

6.8. Let F/K be a function field with exact constant field K, and consider
the constant field extension F'L/L with some algebraic extension field L O K.
(i) Let o be an automorphism of F'//K. Show that there is a unique automor-
phism & of F'L/L whose restriction to F'is o.

(i) Let Aut (F/K) be the group of automorphisms of F' over K. With no-
tation as in (i), show that the map ¢ — & is a monomorphism of Aut (F'/K)
into Aut (FL/L).

As a consequence of (ii), one can consider the automorphism group Aut (F'/K)
as a subgroup of Aut (F'/K), where F'is the constant field extension of F' with
the algebraic closure K of K.

6.9. Consider the rational function field F' := IFy(x) and its automorphism
group G := Aut (F/IF,). We know that G ~ PGLy(IF,), see Exercise 1.2.

(i) Determine the order of G.

(i) Let U :={o € G|o(z) = x + ¢ with ¢ € IF,}. Show that U is a p-Sylow
subgroup of G (with p := charIF,). Find an element z € F such that the
fixed field of U is FV = IF,(z). Describe all ramified places, their ramification
indices and different exponents in F/FY.

(i1i) Let V := {0 € G|o(x) = ax + ¢ with a,c € IF, and a # 0}. Find an
element v € F such that the fixed field of V is FV = IF,(v). Describe all
ramified places, their ramification indices and different exponents in F/FV.
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(iv) Show that exactly 2 places of F'¢ are ramified in F/F, and both of
them are rational places of F. Determine their relative degrees, ramification
indices and different exponents in F/F%. Show that all places of F of degree
2 are conjugate under the group G.

(v) Find an element t € F' such that the fixed field of G is F& = IF(t).

6.10. Let K = IF > and consider the Hermitian function field H = K(x,y)
with defining equation
Yyl +y =it

cf. Lemma 6.4.4. The element = has a unique pole in H that will be denoted
by Qoo-
(i) Show that for each pair (d,e) € K x K with e? + ¢ = d9*! there is an
automorphism o € Aut (H/K) with o(z) = 2+ d and o(y) = y + d9z + e.
These automorphisms form a subgroup V C Aut (H/K) of order ¢>.
(i) Show that for each element ¢ € K* there is an automorphism 7 €
Aut (H/K) with 7(x) = cz and 7(y) = c¢?™y. These automorphisms form a
cyclic subgroup W C Aut (H/K) of order ¢*> — 1.
(iii) Let U C Aut (H/K) be the group which is generated by V and W.
Prove:

(a) ordU = ¢3(¢*> — 1), and V is a normal subgroup of U.

(b) For every p € U holds p(Qs) = Qoo-

(c¢) The group U acts transitively on the set S := {Q | Q is a rational place

of H/K and Q # Qo }-

(iv) Show that every automorphism A € Aut (H/K) with M(Qs) = Qoo lies
in U.
Hint. Observe that the elements 1, z,y form a K-basis of Z((q+ 1)Q), by
Lemma 6.4.4.
(v) Show that there is an automorphism p € Aut (H/K) with pu(z) = z/y
and p(y) = 1/y. This automorphism maps the place Qo to the common zero
of x and y.
(vi) Let G C Aut (H/K) be the group which is generated by U and p. Prove:

(a) G acts transitively on the set of all rational places of H/K.

(b) G = Aut (H/K) and ord G = ¢*(¢® + 1)(¢®> — 1).

(¢c) If g = g(H) denotes the genus of H/K, then ord G > 16g* > 84(g—1).

6.11. We assume for simplicity that K is an algebraically closed field. Let
F/K be a hyperelliptic function field of genus g > 2, and let K (x) C F be its
unique rational subfield with [F' : K(z)] = 2 (cf. Proposition 6.2.4). We set
S :={P € IPp| P is ramified in F/K(x)}.

(i) Recall that |S| =2g+ 2 if char K # 2, and 1 < |S| < g+ 1 if char K = 2.
(i1) Show that Aut (F/K) acts on S (i.e., if 0 € Aut (F/K) and P € S, then
o(P) € S).
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(i1i) Fix a place Py € S and consider U := {0 € Aut (F/K)|o(Py) = Py}
Show that U is a subgroup of Aut (F/K) of finite index.
(iv) Show that the subgroup U as above is a finite group.

(v) Conclude that the automorphism group of a hyperelliptic function field
(over an arbitrary perfect constant field) is finite.

6.12. Let F//K be a function field over an algebraically closed field. For a
place P € IPr we consider its Weierstrass semigroup

W(P) :={r € Ng|r is a pole number of P},

see Definition 1.6.7. Assume now that F/K is hyperelliptic of genus g, and
K(x) C F is the unique rational subfield of F' with [F : K(z)] = 2. Let
S C Py be the set of ramified places in F/K (x) (as in the previous exercise).
Prove:

(i) If P € S, then W(P) = {0,2,4,...,29 — 2,29,29 + 1,29 + 2,...} =
INo \ {1,3,...,29 — 1}.

(is) If P ¢ S, then W(P)={0,g+1,9g+2,...} =Ng\ {1,2,...,9}.

These results show that the Weierstrass points (see Remark 1.6.9) of a hy-
perelliptic function field F//K are exactly the places which are ramified in the

extension F/K(x), where K (z) C F is the unique rational subfield of degree
[F: K(x)] =2

6.13. Let K be a perfect field of characteristic # 2 and F' = K (x,y) a hyper-
elliptic function field of genus g > 2 with the defining equation

2g+1
y2 = H (;L‘ - ai) ;
i=1
with pairwise distinct elements a1, ..., a2411 € K. Let P; € IPr be the unique

zeroof x—a; (i=1,...,2941), and Py € IPr the unique pole of x in F. Let
A; := P,— P, and [4;] € CI(F) be the divisor class of A; (cf. Definition 1.4.3).
We study the subgroup of the divisor class group of F'/K which is generated
by the classes [A1], [As2], ..., [Ag4+1]. Show:

(i) [A;] #[0] and 2[A4;] =[0], for i =1,...,2¢ + 1.

(i) 3227 (A = [0]

(iii) Let M C CI(F') be the subgroup of the divisor class group of F/K which
is generated by [A1], [A2], ..., [A2g+1]. Then M ~ (Z/2Z)%9.

(iv) All divisor classes [A] € C1(F) with 2[A] = [0] (these are called 2-division
classes of F) are in M. Hence the number of 2-division classes of F is 229.

Remark. The previous exercise is a special case of the following much more
general result. Let F//K be a function field of genus g over an algebraically
closed field K. For n > 1 consider the group
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CI(F)(n) = {[A] € CL(F) | n[A] = [0]}.
If n is relatively prime to the characteristic of K, then C1(F)(n) ~ (Z/nZ)?9.

6.14. Let E/K be an elliptic function field. For simplicity we assume that K is
algebraically closed. We are going to study the structure of the automorphism
group Aut (E/K).

Fix a place Py € IPg; then IPg carries the structure of an abelian group (see
Proposition 6.1.7). The addition @ on IPg is given by

P@Q=R <— P+Q~R+ P

for P,Q, R € IPg (~ means equivalence of divisors modulo principal divisors).
For P € Py it follows from Riemann-Roch that ¢(P + Fy) = 2, hence there
exists an element z € E whose pole divisor is (2)s = P + Py. We define the
automorphism op € Aut (E/K) as

op := the non-trivial automorphism of E/K (x) .

We also define

Tp = 0poop, .
Observe that the definion of op and 7p depends on the choice of the place
Py. Prove:
(i) The automorphisms op and 7p are well-defined (i.e., they do not depend
on the specific choice of the element x above).
(ii) For P # @ we have op # 0¢g and 7p # 7. In particular, Aut (E/K) is
an infinite group.
(#i) For all P,Q € IPg holds op(Q)® Q = P and 7p(Q) = P ® Q. Hence 7p
is called a translation automorphism.
(iv) The map P — 7p is a group monomorphism from Py into Aut (E/K).
Its image T := {7p| P € P} C Aut(FE/K) is isomorphic to the group of
divisor classes C1°(E) and hence an infinite abelian subgroup of Aut (E/K).
It is called the translation group of F/K.
(v) The translation group 7T is independent of the choice of the place Py
(which was used for the definition of the group structure on Pg).

(vi) T is anormal subgroup of Aut (E/K), and the factor group Aut (E/K)/T
is finite.

6.15. (char K = p > 0) Consider the rational function field K (z)/K and the
element y := x — x7P. Show:

(i) The extension K (z)/K(y) is separable of degree [K(z) : K(y)] =p + 1.
(ii) The only place of K(y) which is ramified in K (z)/K(y), is the pole Py
of y. There are exactly 2 places of K(x) lying over Pu.
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6.16. (char K = p > 0) Let F/K be a function field over a perfect constant
field K of characteristic p > 0. Using the previous exercise, show that there
exists an element y € F'\ K with the following properties:

(i) The extension F/K (y) is separable.
(i) The pole of y is the only place of K (y) which is ramified in F/K (y).

Compare this result with Exercise 3.6 (ii).
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Asymptotic Bounds for the Number
of Rational Places

Let F/IF, be a function field over a finite field IF,. We have seen in Chapter
5 that the number N of rational places of F' over IF, satisfies the Hasse-
Weil Bound N < ¢ + 1+ 2g¢"'/2, and that this upper bound can be attained
only if g < (¢ — q1/2)/2. Here our aim is to investigate what happens if the
genus is large with respect to ¢q. The results of this chapter have interesting
applications in coding theory, see Section 8.4.

In this chapter we consider function fields F' over the finite field IF,.
The number of rational places of F/IF, is denoted by N = N(F).

7.1 Thara’s Constant A(q)

In order to describe how many rational places a function field over IF, can
have, we introduce the following notation.

Definition 7.1.1. (a) For an integer g > 0 let
Ny(g) := max {N(F)| Fis a function field over IF, of genus g}.

(b) The real number
A(q) = limsup Ny(g)/g

g—00

18 called Thara’s constant.

Remark 7.1.2. Note that N,(g) < ¢+ 1+ g[2¢"/?] by Serre’s Bound (Theorem
5.3.1). Therefore we have the trivial bound 0 < A(q) < [2¢"/?].

Our first aim is to improve the estimate A(q) < [2¢"/?]. The bound given
in Theorem 7.1.3 below, is based on Serre’s explicit formulas, cf. Proposition
5.3.4. For the convenience of the reader we recall this method briefly:

H. Stichtenoth, Algebraic Function Fields and Codes, 243
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Let ¢1,...,¢m > 0 be non-negative real numbers, not all of them equal to 0.
We define the functions

= oot and  fin(t) =1+ A () + Am(t )
r=1
for t € €\ {0} , and we assume that
fm(t) >0 forall t € C with |t|=1. (7.1)

(Note that f,,(t) € IR holds for all ¢ € C with |t| = 1.) Then the number of
rational places of each function field F/IF, of genus g is bounded by

1/2
N < g m(q?)

Am
1. 7.2
S @ Al ) (7.2)

Theorem 7.1.3 (Drinfeld-Vladut Bound). Thara’s constant A(q) is bounded
above by
Alg) < ¢ - 1.

Proof. With notation as above we set, for a fixed integer m > 1,
i =1—— for r=1,....m.

Then we have .
A (T 1——)t".
(t) = E_j( Z)

In order to verify property (7.1) for the function f,, () = 14+ A () + A (t71),
we consider the function

tm+1 t

2:: -1

We have u/(t) = > | 7t"~! and hence

r=1
therefore
An(t) = Z(l - ;)tr = () - L0
ot t (t—=1)(( tm —1) — (L —¢)
S A e =1
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A straightforward calculation shows now that the function f,(t) = 1+ A, (¢)+
Am (t71) can be written as

2—(tm+t™)
mt—1)F"1-1)"

fm(t) - (74)

Since t=! = ¢ for [t| = 1, Equation (7.4) yields f,,(t) > 0 for all t € € with
[t| = 1, so the function f,,(t) satisfies (7.1). Now we obtain from (7.2) the

inequality
N 1 1 An(q'/?) >
— <t -1+ ——2 ], 7.5

= R S wrere %)
where N is the number of rational places of an arbitrary function field over
IF, of genus g. Equation (7.3) implies, for m — oo,

q—1/2 1

B I VA
(172 —1)2 1-¢"7%) 21"

)‘m(q_l/Q) I
Hence for each ¢ > 0 there exists mg € IN with
/\mo(q71/2)71 <q’?—1+¢/2.
We choose gy such that

1 1/2
<1+ Amo (47%)

9 Ao (q7172)

and then, by using (7.5), we obtain the estimate

) <eg/2,

N
—<g/?1+e,
9

for all g > go and all function fields F' over IF'y of genus g. This finishes the
proof of Theorem 7.1.3. O

Remark 7.1.4. Here are some facts about Thara’s constant A(q).

(a) A(q) > 0 for all prime powers ¢ = p° (p a prime number, e > 1). More
precisely, there exists a constant ¢ > 0 such that A(q) > ¢ - loggq for all q.
This result is due to Serre [36], the proof uses class field theory and cannot be
given within the scope of this book. For refinements of Serre’s approach we
refer to the book [31]. In Section 7.3 we will give a simple proof that A(q) > 0
for all ¢ = p© with e > 1.

(b) If ¢ = (% is a square then A(q) = ¢'/? — 1; i.e., in this case the Drinfeld-
Vladut Bound is attained. This equality was first proved by Thara [22] and
Tsfasman, Vladut and Zink [44], using the theory of modular curves. We will
present a more elementary approach due to Garcia and Stichtenoth [12] in
Section 7.4 below.
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(c) If ¢ = £3 is a cube than A(q) > 2(¢* —1)/(£+2). For £ being a prime, this
is a result of Zink [47]; for arbitrary ¢ this bound was first shown by Bezerra,
Garcia and Stichtenoth [4]. In Theorem 7.4.17 we will give a simpler proof
following Bassa, Garcia and Stichtenoth [2].

(d) The exact value of A(q) is not known, for any non-square q.

7.2 Towers of Function Fields

Suppose that we have a sequence of function fields F;/IF, (i = 0,1,2,...)
with g(F;) — oo and lim; .o N(F;)/g(F;) > 0 (where N(F;) denotes the
number of rational places and g(F;) denotes the genus of F;). Then it is clear
that A(q) > lim; oo N(F;)/g(F;); so we obtain a non-trivial lower bound
for A(g). In this and the subsequent sections we will describe a systematic
approach to study such sequences of function fields.

Definition 7.2.1. A tower overIF, is an infinite sequence F = (Fy, F1, Fa,...)
of function fields F;/IF, such that the following hold:

()R CRSRHRS. .. CFRS..

(ii) each extension F;i1/F; is finite and separable;
(iii) the genera satisfy g(F;) — oo for i — oo.

Note that we always assume that IF, is the full constant field of F;, for all
1> 0.

Remark 7.2.2. The condition (iii) above follows from the conditions (i), (ii)
and the following slightly weaker condition

(iii*) g(Fj) > 2 for some j > 0.
Proof. By Hurwitz Genus Formula one has
9(Fip1) =1 > [Fip1: Fil(g(F;) — 1) for all 4.
Since ¢g(F;) > 2 and [Fi41 : F;] > 2, it follows that
9(Fj) < g(Fjy1) < g(Fjp2) < ...y

hence g(F;) — oo for i — oo. O

As we pointed out above, one is interested in the behavior of the quotient
N(F;)/g(F;) for i — oo. It is convenient to consider also the behavior of the
number of rational places and the genus separately.

Lemma 7.2.3. Let F = (Fy, F1, F>, . ..) be a tower over IF,. Then the follow-
ing hold:
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(a) The sequence of rational numbers (N(F;)/[F; : Fo))i>o0 is monotonically
decreasing and hence is convergent in IR=°.

(b) The sequence of rational numbers ((g(F;) — 1)/[F; : Fol)i>o is monotoni-
cally increasing and hence is convergent in IR=° U {o0}.

(c) Let j > 0 such that g(F;) > 2. Then the sequence (N(F;)/(g(F;) —1))i>;
is monotonically decreasing and hence is convergent in IR=C.

Proof. (a) If @ is a rational place of Fj;1, then the restriction P := Q N F;
of @ to F; is a rational place of F;. Conversely, at most [F;;q : F;] rational
places of F;; lie above a rational place of F; (see Corollary 3.1.12). It follows
that N(F;11) < [Fi41: Fi] - N(F;) and therefore

N(F;)

N(Fip1) _ [Fi 2 B
[Fz . Fo]

[Fita: Fo] = [Figa 2 Fol N(F) =

(b) Using Hurwitz Genus Formula for the field extension F;y;/F; we obtain
g(Fig1)—1 > [Fiyq : Fi] (g(F;)—1). Dividing by [F;41 : Fp] we get the desired
inequality

gF) -1 _ g(Fiy) -1

[Fi : F()] - [Fi+1 : Fo]

(¢) The proof is similar to (a) and (b). O

Because of Lemma 7.2.3 the following definitions are meaningful.

Definition 7.2.4. Let F = (Fy, F1, Fs, . ..) be a tower over IF,,.
(a) The splitting rate v(F/Fy) of F over Fy is defined as

l/(f/Fo) = lim N(Fz)/[Fl . Fo} .

i—00
(b) The genus v(F/Fy) of F over Fy is defined as

(F/Fo) = lim g(F)/[F; 2 Fo.

(¢) The limit \(F) of the tower F is defined as

A(F) = lim N(F,)/g(F).

11— 00

Tt is clear from Lemma 7.2.3 and the definition of A(q) that

0 < l/(]:/F()) < 00,
0 < ’Y(]:/Fo) < o0,
0 < XF) < A(g).
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Moreover we have the equation

NF) = v(F/Fo)/v(F/Fo). (7.6)
This means in particular that A(F) = 0 if v(F/Fy) = co.

Definition 7.2.5. A tower F over ¥, is called

(asymptotically) good, if A\(F) >0,
(asymptotically) bad, if M(F) =0,
(asymptotically) optimal, if MF) = A(q).

As an immediate consequence of Equation (7.6) we obtain the following char-
acterization of good towers.

Proposition 7.2.6. A tower F = (Fy, F1, F»,...) over IF, is asymptotically
good if and only if v(F/Fy) > 0 and v(F/Fp) < oo.

It is a non-trivial task to find asymptotically good towers. If one attempts
to construct good towers, it turns out in “most” cases that either v(F/F,) = 0
or that v(F/Fy) = oo (and hence the tower is bad). On the other hand, for
applications in coding theory (and further applications in cryptography and
other areas) it is of great importance to have some good towers explicitly. We
will provide several examples in Sections 7.3 and 7.4.

Definition 7.2.7. Let F = (Fy, F1, Fy,...) and € = (Ey, E1, Es, ...) be tow-
ers over IF,. Then & is said to be a subtower of F if for each i > 0 there exists
an index j = j(i) and an embedding ¢, : E; — F; over IF,.

The following result is sometimes useful:

Proposition 7.2.8. Let £ be a subtower of F. Then A\(E) > A(F). In partic-
ular one has:
(a) If F is asymptotically good then & is also asymptotically good.

(b) If € is asymptotically bad then F is also asymptotically bad.

Proof. Let ¢; : E; — Fj(;) be an embedding of E; into Fj(;). Let H; be the
subfield of F)j(;) which is uniquely determined by the following properties:

o ¢i(E;) € Hy C Fipy.

o H;/vi(E;) is separable.

e Fj;/H; is purely inseparable.
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Then H; is isomorphic to Fj;) by Proposition 3.10.2.(c) and therefore
N(Fw) _ NH) _ Nw(E) _ N(E)
9(Fiay) =1 g(Hi) =1 7 gles(E;)) =1 g(F) -1

The inequality above follows from Lemma 7.2.3(c). For ¢ — oo we obtain the
desired result, A\(F) < A(E). O

In order to study the splitting rate v(F/Fy) and the genus ~(F/Fp) of a
tower F over IFy, we introduce the notions of splitting locus and ramification
locus. Recall that, given a finite extension E/F of function fields, a place
P € Py splits completely in E/F if there are exactly n := [E : F] distinct
places Q1,...,Q, € Py with @Q;|P. Likewise, P is called ramified in E/F if
there is at least one place @ € IPg with Q|P and e(Q|P) > 1.

Definition 7.2.9. Let F = (Fy, F1, F>,...) be a tower over IF,.
(a) The set
Split(F/Fy) := { P € Pg, | deg P = 1 and P splits completely
in all extensions F, /Fy }

is called the splitting locus of F over Fy.
(b) The set

Ram(F/Fy) := { P € Pp, | Pis ramified in F, /F, for somen > 1}
is called the ramification locus of F over Fy.

Clearly the splitting locus Split(F/Fp) is a finite set (which may be empty);
the ramification locus may be finite or infinite.

Theorem 7.2.10. Let F = (Fy, 1, Fs,...) be a tower over IF,,.
(a) Let s := |Split(F/Fy)|. Then the splitting rate v(F/Fy) satisfies

v(F/Fy) > s.

(b) Assume that the ramification locus Ram(F /Fy) is finite and that for each
place P € Ram(F/Fy) there is a constant ap € IR, such that for all n > 0
and for all places Q € Pg, lying above P, the different exponent d(Q|P) is
bounded by

dQIP) < ap - c(QIP). (7.7)

Then the genus v(F/Fy) of the tower is finite, and we have the bound

1
Y(F/Fo) SQ(FO)*lJri Z ap-degP.
PeRam(F/ Fy)
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(¢) Now we assume that the splitting locus of F/Fy is non-empty and that
F | Fy satisfies the conditions in (b). Then the tower F is asymptotically good,
and its limit A\(F) satisfies

25 -
29(Fo) — 2+ ZPGRam(]—'/FO) ap - deg P

where s = |Split(F/Fy)|, and ap is as in (7.7).

Proof. (a) Above each place P € Split(F/Fy) there are exactly [F,, : Fy| places
of F,, and they are all rational. Hence N(F,) > [F, : Fy] - [Split(F/Fy)],
and (a) follows immediately.

(b) For simplity we set g, := g(F,) for all n > 0. The Hurwitz Genus Formula
for F, /Fy gives

29, —2 = [F: Fol200—2)+ Y > dQIP)-degQ
PcRam(F/Fy) Q€lPp, ,Q|P
< [Fu: 2o -2+ Y. > ap-e(QIP)- f(Q|P)-deg P

PeRam(F/Fy) QePr,,Q|P

= [Fo:Fol(200—2)+ > ap-degP- > €(QP): f(QIP)

PeRam(F/Fy) Q€ePr,,Q|P

= [FnFO] 290—2+ Z ap~degP
PeRam(F/Fp)

Here we have used (7.7) and the Fundamental Equality

> e@IP) - F(QIP) = [F : Fo],
QP

see Theorem 3.1.11. Dividing the inequality above by 2[F,, : Fy| and letting
n — oo we obtain the inequality

1
V(F/Fo) SQ(FO)—1+§ Z ap-degP.
PecRam(F/Fy)

(c) follows immediately from (a) and (b), since N(F) = v(F/Fy)/v(F/Fp)
(see Equation (7.6)). ]

The assumption (7.7) about different exponents holds in particular in the
case of tame ramification. We call the tower F = (Fy, Fy, Fb,...) tame if all
ramification indices e(Q|P) in all extensions F,, /F are relatively prime to the
characteristic of IF,; otherwise we say that the tower F/F is wild. Then we
obtain the following corollary to Theorem 7.2.10.
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Corollary 7.2.11. Let F = (Fo, F1, Fs,...) be a tame tower. Assume that
the splitting locus Split(F/Fy) is non-empty and that the ramification locus
Ram(F/Fy) is finite. Then F is asymptotically good. More precisely, setting

5= [Split(F/Fy)| and r := > degP,
PeRam(F/Fy)
we obtain 5
s
ANF) > ————m——.
( ) - 29(F0)—2+7“

Proof. For a tamely ramified place Q|P we have d(Q|P) = e(Q|P) — 1 <
e(Q|P), by Dedekind’s Different Theorem. Therefore we can choose ap := 1
in (7.7), and Theorem 7.2.10(c) gives the desired result. O

The towers that we will construct in Sections 7.3 and 7.4 are often given
in a recursive manner. Let us give a precise definition of what this means.
Recall that a rational function f(T') over IF, is a quotient of two poly-
nomials f(T) = fi(T)/f2(T) with f1(T), fo(T) € TF,[T] and fo(T) # O.
We can assume that f1(T), fo(T) are relatively prime, and then we put
deg f(T) := max{deg f1(T),deg f2(T)}, and call it the degree of f(T). If
f(T) € Fo(T)\IF, then f(T') is said to be non-constant; this is equivalent
to the condition deg f(7') > 1. Note that every polynomial f(7') € IF,[T] can
also be regarded as a rational function.

Definition 7.2.12. Let f(Y) € IFy(Y) and h(X) € IF (X) be non-constant
rational functions, and let F = (Fy, F1, Fa, . ..) be a sequence of function fields.
Suppose that there exist elements x; € F; (i =0,1,2,...) such that

(1) xo is transcendental over IFy and Fy = IFq(xo); i.e., Fy is a rational
function field.

(i1) F; =T, (zo,x1,...,2;) for all i > 0.
(i1i) For all i > 0 the elements x;, x;y1 satisfy f(ziz1) = h(z;).

(iv) [F1: Fo] = deg f(Y).
Then we say that the sequence F is recursively defined over IF by the equation

J(¥) = h(X).

Remark 7.2.13. With the notation of Definition 7.2.12 it follows that
[Fig1: F;]) < deg f(Y) forall i>0.

Proof. We write f(Y) = fi(Y)/f2(Y) with relatively prime polynomials
fiY), fo(Y) € TF,[Y]. Then F;11 = Fi(xi+1), and ;41 is a zero of the
polynomial

@i(Y) = fi(Y) = h(z:) f2(Y) € Fi[Y],
which has degree deg ;(Y) = deg f(Y). O
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Remark 7.2.14. Condition (iv) in Definition 7.2.12 is not really needed in most
proofs on recursive towers. However this assumption holds in all examples of
recursive towers that will be considered in this book, and it will later make
some statements smoother. Clearly (iv) is equivalent to the condition that the
polynomial

oY) = f1(Y) = hwo) oY) € Ty (o) Y]

is irreducible over the field IF,(zo). We remark that the degree [F;+1 : F;] may
be less than deg f(Y") for some i > 1.

Here are two typical examples of recursively defined sequences of function
fields. The first one is given by the equation

Y™ =a(X+0)"+c (7.8)

where a, b, ¢ € IFqX, m > 1 and ged(m, ¢) = 1. The second one is defined by
the equation

Xé
1- X617
where ¢ = ¢? is a square. We will study these two sequences in detail in
Sections 7.3 and 7.4.

Y-y = (7.9)

Now we consider a sequence of fields F = (Fy, F1, Fs,...) which is recur-
sively defined by an equation f(Y) = h(X) with some non-constant rational
functions f(Y) € IF,(Y) and h(X) € IF,(X). In order to decide whether the
sequence F is a tower over IF,, one has first to answer the following questions:

o IsF,GFyforalln>07
o Is IF, the full constant field of F}, for all n >0 ?

Our next proposition (which does not only apply to recursively defined se-
quences of fields) gives sufficient conditions for an affirmative answer to these
questions.

Proposition 7.2.15. Consider a sequence of fields Fy C Fy C Fy, C ...,
where Fy is a function field with the exact constant field I, and [F,41 : F]
< oo for all n > 0. Suppose that for all n there exist places P, € P and
Qn € Pg, ., with Qu|P, and ramification index e(Qy|P,) > 1. Then it follows
that Fn g Fn+1-

If we assume furthermore that e(Qn|Py) = [Fnt1 ¢ Fy] for all n, then I, is
the full constant field of F,, for all n > 0.

Proof. By the Fundamental Equality we have [F,,11 : F,] > e(Qn|P,) and
therefore F,, & F,y1. If we assume the equality e(Q,|P,) = [F41 : F,], then
F,, and F,,;1 have the same constant field (since constant field extensions are
unramified by Theorem 3.6.3). O
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We illustrate the use of Proposition 7.2.15 with a simple example.

Ezample 7.2.16. Let ¢ be a power of an odd prime number. We claim that
the sequence F = (Fy, F1, F>,...) which is recursively defined over IF, by the
equation

X241

22X

is a tower over IF,. Hence we need to prove the following:

(i) Fn G Fuy1, and F, 1/ F, is separable for all n > 0.

(11) IF, is the full constant field of all F,.

(111) g(F;) > 2 for some j.

First we observe that Fj,41 = F(2,41) and 22, = (22 + 1)/2z,, hence
[Fri1 @ Fy] < 2. Since ¢ = 1mod?2, it follows that F,,1/F, is separable.
Our next aim is to find places P, € IPp, and Q, € Pp, ., with Q,|P,
and e(Q,|P,) = 2. Having found such places, items (i) and (ii) will follow
immediately from Proposition 7.2.15. We proceed as follows: Let Fy € IPp, be
the unique pole of zy in the rational function field Fy = IF,(z¢) and choose
some place Qo € P, lying above Py. From the equation 27 = (23 + 1)/2z
we conclude that

Y2

(7.10)

3 +1
20y (01) = vy a2) = e(QulPo) um, (L) = el@ul) - (-1).
therefore e(Qo|Py) = 2 and vg,(z1) = —1 (observe here that e(Qo|FPp) <

[Fl . Fo] S 2)
In the next step we take P; as (Qy, and choose @) as a place of Fy lying
above P;. Again we see from the equation 23 = (22 +1)/2z; that e(Q1|P;) = 2

and vg, (z2) = —1. By iterating this process we obtain the desired places
P, € Pp, and Q,, € Pg,_, with Q,|P, and e(Q,|P,) = 2, for all n > 0.

n+1
It remains to prove (iii). From the equation 23 = (23 +1)/2z0 we see that
exactly the following places of Fy are ramified in Fy/Fy:

e the zero and the pole of xg;

e the two zeros of 23 + 1, if 23 + 1 splits into linear factors in IF,[z¢], or the
place of degree 2 corresponding to 22 + 1, if 3 + 1 is irreducible.

In each case the different degree of F /Fy is deg Diff (Fy /Fy) = 4 by Dedekind’s
Different Theorem, and then the Hurwitz Genus Formula for Fy/F, gives
g(F1) = 1. In the extension F5/F; there is at least one ramified place (namely
the place Q1|P; as constructed above) and hence deg Diff(Fy/Fy) > 1. Again
by Hurwitz Genus Formula we obtain that g(F») > 2. This proves (iii).

Remark 7.2.17. In the following, we will study towers of function fields over
IF, which are recursively defined by an equation f(Y) = h(X). Since each step
in a tower is by definition a separable extension, this implies that the rational
function f(Y) must be separable (i.e., f(Y) ¢ IF,(Y?) where p = charIF,).
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Our main goal is to construct asymptotically good towers F over IF,. Ac-
cording to Theorem 7.2.10 we are therefore interested in formulating criteria
which ensure a non-empty splitting locus Split(F/Fpy) and a finite ramification
locus Ram(F/Fp). In order to tackle these problems for recursively defined
towers, we introduce the notion of the basic function field.

Definition 7.2.18. Let F = (Fy, F1, Fs,...) be a sequence of function fields
which is recursively defined over IF, by the equation f(Y) = h(X), with non-
constant rational functions f(Y'), h(X) over IF,. We define the basic function
field F' corresponding to the tower F by

F =T (z,y) with the relation f(y) = h(z).

Observe that the extension F/IF,(z) is separable by Remark 7.2.17. As a
consequence of condition (iv) in Definition 7.2.12 we have

[F:TF,(x)] = deg f(Y) and [F :TF,(y)] = degh(X).

Moreover, all subfields of F), of the form IF,(z;, zi41) (with 0 < i < n —1)
are IF; - isomorphic to the basic function field F' = IF,(«,y) under the map
L= Tjy Y= Tit1 -

Before giving a first application of the basic function field in Proposition
7.2.20, we introduce a convenient notation for the rational places of a rational
function field.

Definition 7.2.19. Let K(z) be a rational function field over an arbitrary
field K. Then we denote for o € K by (z = «) the unique place of K(z) which

is a zero of z — a.  Likewise we denote by (z = 00) the unique pole of z in
K(z).

Observe that this notation differs from the notation for rational places of
K(z) as used in Section 1.2.

Proposition 7.2.20. Let F = (Fy, F1, Fs,...) be a tower over IF, which is
recursively defined by the equation f(Y) = h(X), and let F =T, (z,y) be the
corresponding basic function field with the relation f(y) = h(x). Assume that
Y CIF,U{oo} is a non-empty set which satisfies the following two conditions:

(1) For all o« € X, the place (x = «) of IFy(z) splits completely in the

extension F/TF  (x).

(2) If « € X and Q is a place of F above the place (x = ), then y(Q) € X.
Then for all o € X, the place (xo = a) of Fy = IFy(xo) splits completely in
F/Fy. In particular, the splitting locus of F/Fy satisfies

ISplit(F/Fo)| =[],

and therefore we obtain a lower bound for the splitting rate v(F/Fy) of the
tower F,
v(F/Fo) = |X].
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Proof. Let o € X. We show by induction that the place (xg = «) splits
completely in F,,/Fy for all n > 0. This is trivial for n = 0, and we assume
now that the assertion holds for some n. We have to show that every place
Q € Py, lying above (xg = «) splits completely in F,,+1/F,. By condition
(2) we know that z,(Q) =: f € X, and then it follows from condition (1) that
the place (z, = ) splits completely in the extension IF,(z,, xnt1)/IFq(xn).
Since F,41 is the composite field of F,, and IF,(z,, zy+1), the place @ splits
completely in F,1/F, by Proposition 3.9.6. The inequality v(F/Fy) > |X|
follows now from Theorem 7.2.10(a). O

Corollary 7.2.21. Let F = (Fy, F1, Fy,...) be a tower over IF, which is re-
cursiwely defined by the equation f(Y) = h(X). Let m := deg f(Y). Assume
that X C IF,, is a non-empty set such that the following condition holds:

For all « € X we have h(a) € IF, (i.e., o is not a pole of the rational
function h(X)), and the equation f(t) = h(«) has m distinct roots
t=701in X.

Then all places (xg = a) with o € X are in the splitting locus of F over Fy,
and the splitting rate satisfies v(F/Fy) > |Z|.

Proof. Consider the basic function field F' = IF,(z,y) with defining equation
f(y) = h(z). Let P = (x = a) with o € X be the place of IF,(x) which is the
zero of  — v, and Op C IFy(x) be the corresponding valuation ring. We write
fY) = f1(Y)/ f2(Y) with relatively prime polynomials f1(Y), f2(Y) € IF,[Y]
and max {deg f1(Y),deg f2(Y)} = m, say fi(Y) = an, Y™ 4+ ... + ap and
oY) =0b,Y™+...4+by . Then y € F is a root of the polynomial

e(Y) = f1(Y) = h(z)fa(Y) € Fy(z)[Y].

By our assumption, the equation fi(t) — h(a)f2(t) = 0 has m distinct roots
b1y Bm € X, so the leading coefficient a,, — b,,h(a) is nonzero. This
means that the function a,, — bph(z) € Fy(x) is a unit in Op. Dividing
oY) by ay — byph(z) gives now an integral equation for y over Op, whose
reduction modulo P has the roots (1,..., ;. By Kummer’s Theorem 3.3.7
there exist m distinct places Q1, ..., Qm € IPr lying above P, with y(Q;) = f;
for i = 1,...,m. We have thus verified the conditions (1), (2) in Proposition
7.2.20, and hence the result follows. 0

Ezample 7.2.16(cont.). We return to the tower F in Example 7.2.16; i.e.,
F is recursively given by the equation f(Y) = h(X) with f(Y) = Y2 and
h(X) = (X? +1)/2X over a field IF, of odd characteristic. One can show
that for all squares ¢ = ¢? (¢ being a power of an odd prime) the splitting
locus of F/Fy is non-empty. Since the proof requires tools, which are not
covered in this book, we shall be content with proving the case ¢ = 9. The



256 7 Asymptotic Bounds for the Number of Rational Places

field IFg can be represented as Fg = IF3(d) with 62 = —1, so we have [Fg =
{0, £1, £6, £(6+1), £(6—1)}. We claim that the set X' := {£(d+1), £(6—1)}
satisfies the condition of Corollary 7.2.21. In fact one finds by straightforward
calculation that

h(+1) =h(6—1) =6 = f(6—-1) = f(—6+1),
h(—=6—1) = h(=0+1) = =0 = f(6+1) = f(=0—1).

We conclude from Corollary 7.2.21 that the splitting rate of F over Fj satisfies
v(F/Fy) = 4.

Next we turn our attention to ramification in towers.

Remark 7.2.22. Let F = (Fy, F1, F>,...) be a tower over IF; and let L D IF,
be an algebraic field extension of IF,. Then we can consider the constant field
extension F' := FL of F by L, which is defined as the sequence of fields

F = (F,F|,F},,..) with F/ :=FL.

It follows that [Fy,, : Fj] = [F;41 : Iy, and L is the full constant field of F},

(3

for all ¢ > 0. Moreover we have g(F]) = g(F;). A place P € IPp, is ramified in
Fi1/F; if and only if the places P’ € IPp, above P are ramified in F} ,/F],
therefore

Ram(F'/F}) = {P' € Py | P' N Fy € Ram(F/Fy)}

and

WF'/Fy) = 7(F/Fo)-
In case of a finite ramification locus we define the ramification divisor of F/Fy
by

R(F/Fy):== >  P;
PcRam(F/Fy)
then we also have
R(F'/Fy) = Congyp, R(F/Fy)

and
deg R(F'/F}) = deg R(F/Fy).

All statements above follow immediately from Section 3.6.

We can now prove a useful criterion for finiteness of the ramification locus
of recursive towers.

Proposition 7.2.23. Let F = (Fy, F1, F>,...) be a recursive tower over IF,
defined by the equation f(Y) = h(X), and let F' = FL = (F}, F{,F},...) be
the constant field extension of F by an algebraic extension field L O IF,. We
denote by F' (resp. F') the basic function field of F (resp. F'), so F = F(z,y)
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and F' = FL = L(z,y) with the relation f(y) = h(x). We assume that all
places of L(x), which ramify in the extension F'/L(x), are rational and hence
the set
Ao = {x(P)| P € Py is ramified in F'/L(x)}

is contained in L U {oo}. Suppose that A is a finite subset of L U {oc} such
that the following two conditions hold:

(1) Ay C A.

(2) If B € A and o € T, U {00} satisfy the equation f(B) = h(a), then

ae A

Then the ramification locus Ram(F'/F}) (and hence also Ram(F/Fy)) is fi-
nite, and we have

Ram(F'/F}) € {P € Py |o(P) € A} .

Proof. By definition, the field F}) is the rational function field F{) = L(z) over
L. Let P € Ram(F'/F}). There is some n > 0 and some place @ of F), above
P such that @ is ramified in the extension F}, | /F},. Setting R := QN L(xy),
we have the situation as shown in Figure 7.1 below.

’
Fn+1

L(xnv I’n+1)

Fig. 7.1.

Since @ is ramified in F}_,/F}, it follows by Abhyankar’s Lemma that the
place R is ramified in the extension L(x,,%pn41)/L(xy). So we have £, :=
2, (Q) € Ag. Setting §; := x;(Q) we obtain f(8; 1) = h(5;) fori =0,...,n—1,
and from Condition (2) we conclude that Sy = x0(Q) = xo(P) is in A. O

Ezample 7.2.16(cont.). We apply Proposition 7.2.23 to the recursive tower
F over IF,, which was considered in Example 7.2.16. Recall that F =
(Fo, F1, Fs, . ..) is recursively defined by the equation

Y? = (X?+1)/2X
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over a field IF, of odd characteristic. We fix a finite field L O IF, which
contains an element & with 62 = —1. The set Ay in Proposition 7.2.23 is given
here by

/10 = {OO, 0, :|:5},

as a direct consequence of Proposition 3.7.3. We consider now the set
A = {0, oo, £1, £6} € LU {0},

and we claim that A satisfies Condition (2) of Proposition 7.2.23. So we have
to show that for all § € A, all solutions a € IFy U {oo} of the equation
(@ +1)/2a = 3% are in A. This is easily checked as follows:

if B=0c0 then a=0 ora=;
if =0 then o = %6 ;
if B==+1 then a=1,;
if =20 then a=—1.

Proposition 7.2.23 implies now that the ramification locus of F' = FL over
F} = L(z) is contained in the set

{(x0 = 0), (zg = 00), (xg = 1), (x0 = —1), (w0 =), (¥0 = —6)} € Ppr(a)-

The tower F is tame, as char(IF,;) # 2 and all extensions F; 1 /F; are of degree
[Fit1: Fi] = 2. So we get the bound

! 6
V(f/Fo)§—1+§ Z degP < —145 =2
PcRam(F/Fy)

for genus of the tower, by Theorem 7.2.10(b)

In the special case ¢ = 9 we have proved (just before Remark 7.2.22) the
inequality v(F/Fy) > 4 for the splitting rate v(F/Fp), hence it follows that
MNF) = v(F/Fy)/v(F/Fy) > 4/2 = 2. Note that Thara’s constant A(9) satis-
fies the inequality A(9) < v/9 — 1 = 2, so we have 2 < \(F) < A(9) < 2.

We summarize the results of Example 7.2.16 as follows:

e The tower F over IFg, which is recursively defined by the equation Y? =
(X? 4 1)/2X, is asymptotically optimal.

o A(9)=2.

Observe that the second assertion is a special case of the equality A(¢?) = g—1
that will be proved in Section 7.4.
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7.3 Some Tame Towers

In this section we present two examples of asymptotically good tame towers.

Both of them are special cases of the next theorem. As usual, I, denotes the
algebraic closure of IF,,.

Theorem 7.3.1. Let m > 2 be an integer with ¢ = 1 mod m. Assume that
the polynomial h(X) € IF,[X] has the following properties:
(1) deg h(X) = m, and the leading coefficient of h(X) is an m-th power
of some element c € TF; .
(2) h(0) =0 and W' (0) # 0; i.e., 0 is a simple zero of h(X).
(3) There exists a subset A CIF, such that for all 3,7 € I,
(a) h(7) =0 = ~v€ A, and
(b) o € Aand B™ =h(a) = [feA.
Then the equation
Y™ = h(X) (7.11)
defines an asymptotically good tower F over IF, with limit

2
A =2

AF) =

Proof. We consider the sequence F = (Fy, F1, Fy,...), where Fy = IF,(z0) is a
rational function field and for all n > 0,

Foi1 = Fy(xpge1) with x3 = h(z,) . (7.12)

Clearly F,,11/F, is a separable extension of degree < m. We show now that
at each step F,y1/F,, there is a place with ramification index e = m (which
implies that [F,41 : F),] = m). Denote by Py = (zg = 0), the zero of zq in Fp.
For n > 0 we choose recursively a place P,y of Fj,11 with P,41|P,, and we
claim that

vp, () =1 and e(Py1|Pn) =m (7.13)

holds for all n > 0. For n = 0 we have vp,(29) = 1. Condition (2) implies
that P is a simple zero of the function h(zg), therefore vp, (h(zo)) = 1. From
(7.12) we get

m-vp (21) = vp, (27") = vp, (h(z0)) = e(P1|Fo) < [Fy : Fo] <m,

hence (7.13) holds for n = 0. Using the same argument, one shows by induction
that (7.13) holds for all n > 0. We conclude that [F},11 : F;] = m and that
IF, is the full constant field of F,, for all n > 0, cf. Proposition 7.2.15.

We claim that the pole (xg = 00) of z( splits completely in all extensions
F, /Fy. In order to prove this we consider the basic function field

F=T,(x,y) with y™ =h(z) .
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According to Proposition 7.2.20, it is sufficient to show:

(i) the place Py := (2 = 00) splits completely in F/IF,(z), and

(ii) if @ € Pp is a place with Q|Px, then y(Q) = cc.
By condition (1) we have y™ = ¢™a™ + ..., so the element z := y/z satisfies
an equation

2" =c" 4 r(1/x) with vp (r(1/2)) >0 and c€IF; .

Hence z is integral over the valuation ring Op_ . The equation Z™ = ¢™ has m
distinct roots in IFy (here we use the assumption ¢ = 1 mod m), and it follows
from Kummer’s Theorem 3.3.7 that Py, splits completely in F'/IF (). This is
assertion (i). Assertion (ii) follows immediately from the equation y™ = h(x).

We have thus shown that the splitting locus of F/Fy is non-empty. As
a consequence, the number N(F),) of rational places of F,, /IF, satisfies the
inequality N(F,) > m™ and therefore the genus g(F},) tends to infinity as
n — o00. So F is in fact a tower over IF,.

The only places of IF;(z) which ramify in the extension F//IF,(z) are zeros
of h(x), by Theorem 3.7.3. Hence Proposition 7.2.23 implies that the ramifi-
cation locus of F/Fy is finite and

|[Ram(F/Fy)| < |4].

(Note that the assumptions of Proposition 7.2.23 follow from the conditions
3(a),(b).) Now Corollary 7.2.11 gives the desired estimate

AMF) =2/(4] - 2)
for the limit of the tower F. 0O

We remark that the cardinality of the set A above is certainly larger than
2 since a tame extension of a rational function field with at most 2 ramified
places (of degree 1) is rational by the Hurwitz Genus Formula.

Proposition 7.3.2. Let ¢ = (2 be a square, { > 2. Then the equation
Yil=1—- (X +1)“!
defines an asymptotically good tower F over I¥, with limit
AMF)=2/(0-1).
For 0 = 3 this tower is optimal over the field IFy.

Proof. We set h(X) =1— (X +1)*"! and A = IF,. We need to check that the
assumptions of Theorem 7.3.1 are satisfied:
(1) The leading coefficient of h(X) is —1, which is a square in IF, since ¢ = £2.



7.4 Some Wild Towers 261

(2) The condition h(0) = 0 is clear, and h'(0) # 0 follows from the equation
B (X)=(X+1)"2

(3)(a) Let h(y) = 0. Then (y+1)"! =1, hence y+1 € IF and vy € IF, = A.
(3)(b) Let « € IFy and B! = h(a) = 1 — (a + 1)*~L. Then h(a) = 0 (if
a# —1) or h(a) =1 (if « = —1), and therefore g € IFy = A.

The use of Proposition 7.3.1 now completes the proof. O

Next we give examples of asymptotically good towers over all non prime
fields.

Proposition 7.3.3. Let ¢ = (¢ with e > 2. Then the equation
ym=1-(X+1)"

with m := (¢ —1)/(¢ — 1) defines an asymptotically good tower F over IFy
with limit
AF) =2 2/(g—2).

For { = e =2 this is an optimal tower over IFy.

Proof. In this case we have h(X) = 1— (X +1)™ and we set A := IF,. Observe
that the map v +— +™ is the norm map from IF, to IF;, and hence is surjective.
Moreover, every element § € Fq with 0™ € IF, is in IF,. Using these facts,
the proof of this proposition is essentially the same as that of Proposition
7.3.2. O

Recall that Thara’s constant A(q) is positive for all prime powers ¢ = p¢,
see Remark 7.1.4(a). Proposition 7.3.3 provides a simple proof of this fact in
the case e > 1. The lower bound A(q) > 2/(¢q — 2) is however rather weak for

q#4

7.4 Some Wild Towers

Thara’s constant A(q) attains the Drinfeld-Vladut Bound A(q) = ¢'/?—1 when
q = /2 is a square, cf. Remark 7.1.4. In this section we will prove this result, by
providing a recursive tower G = (G, G1, Ga,...) over IF, with limit \(G) =
¢ —1, when ¢ = ¢2. We also present a recursive tower H = (Hg, Hy, Ha,...)
over a cubic field IF, with ¢ = ¢3, whose limit satisfies \(H) > 2(¢2—1)/(¢+2),
thus obtaining the bound A(¢3) > 2(¢* —1)/(¢ +2). Both towers G and H are
wild towers; i.e., for some ¢ > 1 there are places which are wildly ramified in
the extensions G;/Gy (resp. H;/Hy).

We begin with the tower G over a quadratic field IF,.
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Definition 7.4.1. Let ¢ = (2 where { is a power of some prime number p. We
define the tower G = (Go, G1,Gs, . ..) of function fields G; over IF, recursively
by the equation

XE
ToxeT
i.e., Go = IFy(x0) is the rational function field, and for all i > 0 we have
Gi+1 = Gi(SL'H_l) with

Yi-y = (7.14)

¢

V4 _ 7
Tiv1 — Tiy1 = 11 (7.15)

We will show that Equation (7.14) actually defines a tower (see Lemma 7.4.3)
and that this tower attains the Drinfeld-Vladut Bound over IF,.

Remark 7.4.2. With the notations of Definition 7.4.1 we set Z; := (x; for
1=0,1,2,..., where ¢ € IF, satisfies the equation ¢*~1 = —1. Then it follows
that

~0 - . ¢
Ti T = (g + i = — (w5 — Tiq)
A E
1—ai™t 14 ¢t-tatt g

This shows that the tower G can also be defined by the equation

XE
Xt=141°
In fact, the tower G was first introduced by Garcia-Stichtenoth [12] with
Equation (7.16) as its defining equation. The reason why we prefer Equation

(7.14) here, is that then the analogy between the towers H, considered below,
and G becomes more obvious.

Yty = (7.16)

Lemma 7.4.3. Equation (7.14) defines a recursive tower G = (Go, G1,Ga, .. .)
over IF . All extensions Gi+1/G; are Galois of degree [Gi41 : G;] = ¢, and the
place (xg = o0) of Gy is totally ramified in all extensions G, /Gy.

Proof. Tt is clear that the equation Y* —Y = X*/(1 — X*71) is separable
and hence all extensions G;1/G; are separable of degree [G,11 : G;] < £. Let
Py := (xo = 00) be the pole of z in the rational function field Gy = IF,(zo).
For all i > 0 we choose recursively a place Pi1; € IPg,,, with P 1|P;, and
we claim that e(P;,,|P;) = ¢. From the equation x§ — z; = 2§ /(1 — 257") we
see that

vp, (2] — 21) = e(Py|Py) - (=1) < 0,

so Py is a pole of 21, and then vp, (v —21) = £-vp, (21) by the Strict Triangle
Inequality. It follows that
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—C-vp (71) = e(P1|Py) < [Gr:Go] <4,

hence e(P;|Py) = ¢ and vp, (z1) = —1. By induction we obtain e(P;1|P;) = ¢
and vp,,, (zi4+1) = —1 for all i > 0. We conclude that G : Gi] = ¢, and TF,
is the full constant field of G; for all ¢ > 0. Since the equation of x;,1 over
G, is an Artin-Schreier equation y* —y = z¢/(1 — zt71), it also follows that
Gi11/G; is Galois.

It remains to show that g(G,,) > 2 for some n. Since

G1 = Go(z1) with 2§ —xy = xf/(1 —2f™)

and the right hand side of this equation has ¢ simple poles in Go (namely the
places (ro = 00) and (¢ = a) for a*~! = 1), the genus of G is

o(@) = 2 v20 = (-1

by Proposition 3.7.8. For all £ # 2 we have thus g(G;) > 2 as desired. For
¢ =2 we have g(G1) = 1. In the extension G3/G; at least one place (namely
the pole of xy) ramifies, and then the Hurwitz Genus Formula for G5/G
shows that g(Ga) > 2. 0

Our next step is to estimate the splitting rate v(G/Gy) over the field IFy.
We are going to apply Corollary 7.2.21.

Lemma 7.4.4. Let G be the tower over IF, (with ¢ = ¢?), which is recursively
defined by Equation (7.14). Then the splitting locus of G/Go satisfies

Split(G/Go) 2 {(zo = a)|a € Fy \ IF,},
and the splitting rate v(G/Gy) satisfies
v(G/Go) > 12— 1.

Proof. We want to show that the set ¥ := IF, \ IF, satisfies the condition of
Corollary 7.2.21. So let a € X; then

ot

. {—1
m S IFq since « 7é 1.

Consider an element 3 € IF, (the algebraic closure of IF,;) with

ot

ﬂe -p = 1——0/_1 . (7.17)

Then
£2
02 0 (67 - «
=B = (1—af~1)  (1—af1)t’ (7.18)
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Adding (7.17) and (7.18) we get

57 g at N a B (@’ — o) + (a —af)
T 1= f? (1 _ aefl)e - (1 _ 0/*1)“1
42
a—«

T 1—af et 0,
since a € IF, and ¢ = 2. Hence B = B ie., B € IF,. Since ‘ — 8 =
af/(1 — a1y # 0, it follows that 8 ¢ IF, and hence 3 € X. It is also clear

that Equation (7.17) has ¢ distinct roots (3. Thus we have verified the condition
of Corollary 7.2.21. This finishes the proof. O

Using Proposition 7.2.23, the ramification locus Ram(G/Gp) can be deter-
mined as follows. We denote by

G := W, (x,y) with the relation y* —y = 2*/(1 —2*71)

the basic function field of the tower G. By the theory of Artin-Schreier exten-
sions, exactly the places (z = 00) and (z = v) with 4*~! =1 (i.e., v € IF))
are ramified in G/IF,(z). So we have

Ao = {x(P)|P € P, () is ramified in G/IF,(x)} = F;S U {oo}.

We set A := 1y U{oo}. In order to verify condition (2) of Proposition 7.2.23,
we must show the following: if 5 € A and a € IF, U {oo} satisfy the relation

ot

B -8 = Tl 1 (7.19)

then a € A. We distinguish two cases:
Case 1. 3 € TFy. Then 3° — 8 =0, and from (7.19) follows a = 0 € A.

Case 2. 3 = oo. Then it follows from (7.19) that a = oo or o/~ =1, so
we have again a € A.

Thus we can apply Proposition 7.2.23 and obtain:

Lemma 7.4.5. The tower G over I (with g = () which is recursively defined
by Equation (7.14) has a finite ramification locus. More precisely one has

Ram(G/Go) C {(zo=0)|8 € Fy U {o0}}.

It is easy to show that the tower G is a wild tower. As we have seen in
Lemma 7.4.3, in each step G;41/G; there are places which are totally (and
hence wildly) ramified. So we do not have the estimate d(Q|P) < e(Q|P)
for all P € Ram(G/Gp) and @ lying above P in some extension G, 2 Go.
However, the following weaker assertion holds.
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Lemma 7.4.6. Let G = (Go, G1,Ga, . ..) be the tower over IF ; which is defined
by Equation (7.14). Let P € Pg, be a place in the ramification locus of G/Gy
and let ) € P, be a place lying above P. Then

d(QIP) = 2¢(Q|P) - 2.

We postpone the proof of this lemma, and we first draw an important
conclusion:

Theorem 7.4.7 (Garcia-Stichtenoth). Let ¢ = (2. Then the equation
Y-y = X¢/(1-Xx"Y

defines a recursive tower G = (Go, G1,Gs,...) over IF,, whose limit is
MNG) =(—-1=¢"?-1,

Therefore the tower G is optimal.

In fact, the first example of a tower over IF, with ¢ = ¢2, attaining the limit
¢ —1, was provided by Y. Thara. He used modular curves for his construction.

Corollary 7.4.8 (Thara). A(q) = ¢'/? —1, if q is a square.

Proof of Theorem 7.4.7. We will apply Theorem 7.2.10. The splitting locus
Split(G/Gyp) has cardinality

ISplit(G/Go)| =: s > €2 —¢
by Lemma 7.4.4. The ramification locus Ram(G/Gy) has cardinality
[Ram(G/Go)| < £+1

by Lemma 7.4.5. All places P € Ram(G/Go) have degree one, and for all
n >0 and all @ € IPg, above P the different exponent is bounded by

d(QIP) < 2e(Q|P)
by Lemma 7.4.6. Now the formula in Theorem 7.2.10(c) gives

2(02 — 1)
A > ——— =/(—-1.
@) = —2+2(L+1)
By the Drinfeld-Vladut Bound we have also the opposite inequality A\(G) <
¢ — 1, therefore the equality A(G) = ¢ — 1 holds. O

Remark 7.4.9. One can easily show that in Lemma 7.4.4 and Lemma 7.4.5
equality holds; i.e.,

Split(G/Go) = {(zo =) |a € F \IF;}, and

Ram(G/Go) = {(zo = B)[B € IFy or f = oo}.
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Remark 7.4.10. One can determine exactly the genus and the number of ra-
tional places for each field G,, in the tower G. However, this requires lengthy
and very technical calculations.

We still have to prove Lemma 7.4.6. To this end we introduce some notation
which will be useful also in connection with other wild towers. We recall a
property of different exponents in a Galois extension E/F of function fields
of degree [E: F]=p=charF. If P € IPr and @ € IPg are places with Q|P,
then

d(Q|P) = k- (e(Q|P)—1) for some integer k > 2. (7.20)

This follows immediately from Hilbert’s Different Formula. Note that (7.20)
holds also if e(Q|P) = 1. In the case of e(Q|P) = p, the integer k in (7.20) is
determined by the higher ramification groups of Q|P as follows:

ord G;(Q|P) = p for 0<i<k, and ord Gx(Q|P) =1.

If we have k = 2 in (7.20), we say that Q|P is weakly ramified. We want to
generalize this notion to certain extensions of degree p™ > p.

Remark 7.4.11. Let E/F be an extension of function fields of degree [E : F| =
p™ with p = char F. Assume that there exists a chain of intermediate fields
F=FyCF; C...CFE,=F with the property

E;11/E; is Galois for all 0 <i<n.

Let P € IPp and Q € IPg with Q|P, and denote the restriction of @ to E; by
Q; := QN E;. Then the following conditions are equivalent:

(1) d(QIP) = 2(e(Q|P) — 1).
(2) d(Qi+11Qi) = 2(e(Qi+1]|Qi) — 1) for all i = 0,...,n — 1.

Proof. (2) = (1): We assume (2) and show by induction that
d(Qit1|P) = 2(e(Qiy1|P) — 1) (7.21)

holds for 0 < i <n—1. The case i = 0 is trivial since P = ()y. Assume (7.21)
for some i with 0 < i < n — 2. Then we obtain, by transitivity of different
exponents,

d(Qit2|P) = e(Qit2|Qit1) - d(Qiy1|P) + d(Qiy2|Qit1)
= e(Qit+2|Qi+1) - 2(e(Qit1]P) — 1) + 2(e(Qit2|Qiv1) — 1)
= 2(e(Qit2|P) — 1).

Thus we have established the induction step. Setting i :=n — 1 in (7.21), we
get d(Q[P) = 2(e(Q|P) = 1).
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(1) = (2): Now we assume that (1) holds. Since the extensions E;;1/F; are
Galois extensions of degree p™ (for some n; > 0), Hilbert’s Different Formula
shows that d(Q;+1]Q:) > 2(e(Q+1]|Q:) — 1) holds for all 7. If this inequality is
strict for some i € {0,...,n — 1}, then the transitivity of different exponents
yields d(Q|P) > 2(e(Q|P) — 1), as in the proof of (2) = (1). This contradicts
the assumption (1), so we have d(Q;+1|Q:) = 2(e(Qi+1]|Q:) — 1) for all i. O

Definition 7.4.12. Let F' be a function field with char F = p > 0. A finite
extension E/F is said to be weakly ramified, if the following conditions hold:

(1) There exist intermediate fields F = Ey C By C ... C E,, = E such
that all extensions E;y1/E; are Galois p-extensions (i.e., [Fi11 : Ej]
is a power of p), fori=0,1,...,n—1.

(2) For all places P € Pp and Q € PPy with Q|P, the different exponent
is given by d(Q|P) = 2(e(Q|P) — 1).

The following proposition is crucial for the proof of Lemma 7.4.6 (and also
for proving that some other wild towers are asymptotically good).

Proposition 7.4.13. Let E/F be a finite extension of function fields and let
M, N be intermediate fields of E O F such that E = MN is the compositum
of M and N. Assume that both extensions M/F and N/F are weakly ramified.
Then E/F is weakly ramified.

Proof. The special case [M : F] = [N : F] = p has been considered in
Proposition 3.9.4. The idea of proof here is to reduce the general case to this
special case. There is a sequence of intermediate fields

F=MyCM C...CMy=M (7.22)

such that all extensions M, 1 /M, are weakly ramified Galois p-extensions. It
is a well-known fact from group theory that every finite p-group G contains
a chain of subgroups {1} = Go C G1 C ... C G5 = G, where G, is a normal
subgroup of Gj41 of index (Gj41 : Gj) = p for j =0,...,s — 1. By Galois
theory we can therefore refine the extensions M; C M; 1, to obtain Galois
steps of degree p; i.e.,

My =M cm® .. cM® =My,

with weakly ramified Galois extensions Mi(j H)/Mi(j ) of degree p. Therefore
we can assume a priori that the extensions M;1/M; in the chain (7.22) are
all Galois of degree p.

In the same way we split the extension N/F' into weakly ramified Galois steps
of degree p. By induction over the degree [N : F], the proof of Proposition
7.4.13 is thus reduced to the case where N/F is Galois of degree [N : F] = p.
So we have the following situation: FF = My C M; C ... C M, = M with
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weakly ramified Galois extensions M;;1/M; of degree p, and E = M N where
N/F is a weakly ramified Galois extension of degree p. The extension E/M
is then Galois of degree 1 or p and we have to show that E/M is also weakly
ramified. If [E : M] = 1 there is nothing to prove, so we consider now the case
[E : M] = p. Setting N; := M;N for i = 0,...,k we obtain a chain of Galois
extensions N = Ny € N; C ... C N, = E with [N;41 : V;] = p, and also
the extensions N; /M; are Galois of degree p. Then it follows from Proposition
3.9.4 by induction over i that all extensions N;/M; are weakly ramified, and
hence E/M is weakly ramified. O

Now we are in a position to prove Lemma 7.4.6, and thereby to finish the
proof of Theorem 7.4.7.

Proof of Lemma 7.4.6. We consider again the recursive tower G = (G, Gy, .. .)
over IF, with ¢ = ¢, which is defined recursively by the equation YE-Y =
X%/(1 — X*1). The assertion of Lemma 7.4.6 is that all extensions G,,/Gy
are weakly ramified. We prove this by induction over n. The fields Gy and G,
are given by Go = IF;(z¢) and G1 = IFy(xg,z1) with

ol —x = ah/(1—ah™h). (7.23)

As follows from Proposition 3.7.8, exactly the places (zg = 00) and (xg = )
with 3 € IF; are ramified in the extensions G1/Gy, with ramification index
e = ¢ and different exponent d = 2(¢ — 1). So G1/Gq is weakly ramified.
For the induction step we assume that G, /Gy is weakly ramified, and we
have to show that also the extension G,4+1/G, is weakly ramified. We set
L; =T ,(z1,...,2;) for 1 <i <n+1, see Figure 7.2 below. The field L, 41
is IF ;-isomorphic to G,, via the isomorphism ¢ : x; — x;41 for 0 < j < n;
therefore L, 11/L; is weakly ramified by induction hypothesis.

Now we observe that Equation (7.23) can be rewritten as

1\ 1 1
i) Z‘oil'{—xl.

This shows that also the extension G1/L; is an Artin-Schreier extension of de-
gree £. In the same way as for the extension G /Gy, it follows from Proposition
3.7.10 that G1/L; is weakly ramified (the ramified places are just the places
(1 = «) with « € TFy). Since G,,41 is the compositum of Gy and L, over
Ly, Proposition 7.4.13 implies that G,,11/L; is weakly ramified. Consequently
the extension G,,+1/G,, is weakly ramified, by Remark 7.4.11. O

Although each step G;41/G; in the tower G is Galois (by Lemma 7.4.3),
the extensions G; /Gy are not Galois for ¢ > 2. This follows from the fact that
the place (xg = 0) € IP¢, has unramified as well as ramified extensions in Gj.
We therefore ask if it is possible to “extend” the tower G = (Gy, G1,Ga,...)
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n+1

N,
/\L/
/
SN

= IFq(.TO Ll E‘q .131
Fig. 7.2.

to a tower G* = (G§, G5, G5, . ..) of function fields G} over IF, having the
following properties:

(1) G is a subtower of G*,

(2) G¥/G§ is Galois for all ¢ > 0,

(3) the tower G* is optimal over TF,; i.e., \(G*) = ¢/ — 1.
An obvious choice would be to take G as the Galois closure of G; over Go.

With regard to an application in coding theory in Chapter 8, we proceed in a
slightly different manner. We will need the following lemma.

Lemma 7.4.14. Let K(x) be the rational function field over a field K 2 TF,.
Consider the subfields K(u) C K(t) C K(x) with

1

t=at -2 and v := (2" —2)" T 1 =t"1 41, (7.24)

Then the following hold:

6(Za) The extensions K(x)/K(u), K(z)/K(t) and K(t)/K(u) are Galois of
egree

[K(z): K(u)]=£(t—1), [K(z): Kt)]=4¢, and [K(t): K(u)]=¢—1.

(b) The place (u = ) of K(u) is totally ramified in the extension K (x)/K(u).
The place of K(x) above (u = 00) is the pole (x = o0) of x, and the place of
K (t) above (u = o00) is the pole (t = c0) of t. The ramification indices and
different exponents are
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e((t=o00)|(u=00)) = -1 and d((t =o0)|(u=00)) = £—2,
e((z =o00)|(t =00)) = ¢ and d((z =o00)|(t =0)) = 2(£—1),
e((x = o0)|(u=00)) = L(l —1) and d((x = o0)|(u=o0)) = (2 2.

Hence (x = 00)|(t = 00) is weakly ramified.

(¢) The place (u = 1) is totally ramified in K (t)/K (u), the place in K(t) above
(u = 1) is the place (t = 0), with ramification index e((t = 0)|(u=1)) =£—1
and different exponent d((t = 0)|(uv = 1)) = £ — 2. In K(x)/K(t) the place
(t = 0) splits completely. The places of K(x) above (t = 0) are exactly the
places (x = B) with § € IFy.

(d) No other places of K(u), except (u = 00) and (u = 1), are ramified in
K(x)/K(u).

(e) If Fp2 C K then the place (u = 0) of K (u) splits completely in K (z)/K (u);
the places of K(z) above (u = 0) are exactly the places (x = o) with a €
2 \ IF,.

Proof. (a) We consider the two subgroups Uy, U; of the automorphism group
of K(x)/K which are defined by

Uy :={oc:ax—ax+blaclF,, belF},

Uy ={c:z—ax+b|lbelF,} CUp.
It is clear that ord Uy = ¢(¢ — 1) and ord U; = ¢, and U is a normal subgroup
of Uy. One checks that w is invariant under all o € Uy, and ¢ is invariant under
all 0 € U;. Since [K(x) : K(u)] =4(¢{ — 1) and [K(z) : K(t)] = ¢ by (7.24),
it follows that K(z)/K (u) is Galois with Galois group Uy, and K (z)/K(t) is
Galois with Galois group Uj.
(b) The assertions concerning ramification indices are obvious, since u and ¢
are polynomials in z. The only non-trivial statements of (b) are

d((z = o00)|(t = 0)) = 2(—1) and d((z = o0)|(u = o0)) = £*—2. (7.25)

In order to prove this, we note that the extension K (x)/K (t) is Galois of order
¢ and e((z = 00)|(t = 00)) = £. Therefore

d((z = 00)|(t = 00)) = 2(£—1)

by Hilbert’s Different Formula. On the other hand, Hurwitz Genus Formula
for K (z)/K(t) yields

—2 = =20+ deg Diff (K (z)/K (t))
and hence
d((x = 00)|(t = 00)) = degDiff (K (z)/K(t)) = 2(£—1).

So we have d((z = c0)|(t = 00)) = 2(¢ — 1). By using the transitivity of the
different exponent in the extensions K(x) O K(t) O K(u), we obtain easily
that d((z = o0)|(u = o)) = £2 — 2.
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(c) Since u — 1 =t~ it is clear that (¢ = 0) is the only place of K (t) above
the place (u = 1) of K(u), with ramification index e((t = 0)[(u=1)) =¢—1
and different exponent d((t = 0)|(u = 1)) = £ — 2. The equation 2 —z =t
shows that (t = 0) splits completely in K (z)/K(t), and the places of K(x)
above (t = 0) are exactly the places (z = ) with 3¢ — 3 = 0.

(d) This follows by Hurwitz Genus Formula for the extension K (x)/K (u) and
parts (b) and (c).

(e) Note that

w=@ -0l = @ )/t - = ] @),

OtEIFZg \IF[

so that assertion (e) follows immediately. O

We return to the construction of the tower G* over IF, with ¢ = 2. We
start with the recursive tower G = (G, G1, Ga, .. .) with the defining equation
Y-V =X/(1-X*1), so we have

L

. X;
Go = ]Fq(il'()) and Gi+1 = Gi(l'lqu) with (Ef+1 — Ti+1 — 1 _xe_l
for all i > 0. We set
to == ab — o and ug = t5 41 = (xf —x0) 1. (7.26)
Then we define G§ := IFy(uo) and
G; = Galois closure of G; over Fy(ug), for i >1. (7.27)

Thus we obtain a sequence of fields
Gy =TF,(up) CTF,(to) CTF () CG; C G5 C ...,

where IFy(to)/IF(uo) is a Galois extension of degree £ —1 and IF,(zo)/TF, (o)
is Galois of degree £. The extension IF,(zo)/IF(uo) is also Galois, by Lemma
7.4.14.

Theorem 7.4.15. Let ¢ = {2 be a square. With the above notation, the fol-
lowing hold:

(a) IF, is the full constant field of G for all i > 0. Therefore the sequence
Gg* = (G}, Gy,G5, .. )

is a tower over IF,, where G§ = IF4(uo) is rational and all extensions G /G
are Galois.

(b) The place (ug = 0) of T, (uo) splits completely in all extensions G /TF 4 (up).
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(c) The places (ug = o0) and (up = 1) are the only places of IFy(ug) which
are ramified in the tower G* over IF,(ug). Both of them are totally ramified
in the extension IF (to)/IF(uo) of degree ¢ — 1.

(d) The extensions G} /IF,(to) are weakly ramified Galois p-extensions (with
p = charIF,).

(e) The tower G* attains the Drinfeld-Vladut Bound
MG =4—-1=¢"2-1.
Proof. We consider the field extensions
IFy(u0) C IFy(to) CFy(z0) =Go CG1 CGa C ... . (7.28)

The first step IFq(to)/IFq(uo) is Galois of degree ¢ — 1, and all other steps
in (7.28) are weakly ramified Galois extensions of degree ¢ (by Lemma
7.4.14 and Lemma 7.4.6). The place (up = 0) of IF,(ug) splits completely in
IFy(z0)/IFq(up). The places of IF,(x¢) above (ug = 0) are exactly the places
(o = a) with a € IF; \ IF; (Lemma 7.4.14(e)). These places (zp = «) are in
the splitting locus of the tower G over Gy = IF,(x¢) (Lemma 7.4.4), and we
conclude that the place (ug = 0) splits completely in all extensions G; /IF; (ug).
It follows from Corollary 3.9.7, that (ug = 0) splits completely in the Galois
closure G of G; over IF(ug) and that IF, is the full constant field of Gf. We
have thus proved parts (a) and (b).

(c) Let P be a place of IF,(ug) which is different from (up = 1) and (ug = 00).
Then P is unramified in Gy = IF (), and the places of Gy lying above P
are different from the places (g = ) with § € IF, U {oo} (Lemma 7.4.14).
By Lemma 7.4.5, the ramification locus of G over G is contained in the set
{(xog = B)| 8 € FpU {oc}}. It follows that P is unramified in all extensions
G;/TF 4 (up). Thus P is unramified in the Galois closure G of G; over IF,(up),
by Corollary 3.9.3. The rest of part (c¢) follow immediately from Lemma 7.4.14.

(d) We denote the Galois group of G /IF,(ug) by I;. Every 7 € I'; maps the
field TF, (o) to itself since IF,(to)/IF,(uo) is Galois. By Lemma 7.4.14(b) and
Lemma 7.4.6, the extension G;/IF(ty) is weakly ramified, hence 7(G;)/IF, (o)
is weakly ramified for all 7 € I5. The field G} is the compositum of the fields
7(G;) with 7 € I3, and we conclude from Proposition 7.4.13 that also the
extension G} /TF,(to) is weakly ramified.

(e) We will apply Theorem 7.2.10(c) to the tower G* over IF,(up); to this
end we need an estimate for the different exponents of ramified places in
G} JTF (up) as in (7.7). So we consider a place P of IF,(ug) which ramifies in
G} (we have P = (ug = o0) or P = (ug = 1) by (c)). Let Q* be a place of G
lying above P and set @) := Q* NIF,(tp). Then Q|P is tamely ramified with
ramification index e(Q|P) = ¢ —1 by (c), and Q*|Q is weakly ramified by (d).
Using transitivity of different exponents we obtain



7.4 Some Wild Towers 273
d(Q"|P) = d(Q"|Q) + e(Q"|Q) - d(Q|P)
=2(e(Q"Q) — 1) + (£ — 2) - e(Q"]Q)

<0 eQ1Q) = o -el@1P). (7.20)

So we have the inequality

AQ*|P) < ap - e(Q*|P) with ap = % .

1
As we have shown in part (b), the place (ug = 0) of IF,(uo) splits completely
in the tower G*. Now Theorem 7.2.10 gives the estimate

2
MNGY) > ————— = (1.
@) = —2+2- 4

The inequality A\(G*) < ¢ — 1 follows from the Drinfeld-Vladut Bound, hence
we have A\(G*) = ¢ — 1. O

In connection with an application in coding theory (see Section 8.4) we
note some specific properties of the tower G*:

Corollary 7.4.16. With the notations of Theorem 7.4.15, we set
n; =[G} :Fy(ug)] = (£—1)-my (7.30)
for every i >0, so m; =[G} : Fy(to)] is a power of p = charIF,. Denote by
ego) ., the ramification index of the place (to =0) in G /IF,(to),
egoo), the ramification index of the place (to = o0) in G /IF,(to).
Thus the principal divisor of to in G is
(o) = ¥ 4; — el B; (7.31)

with positive divisors A;, B; € Div(GF). Then the following hold:
(a) The function field Gf has the genus

1 1
gGH =14m|l—-— - — .
650) 6500)
(b) The zero divisor of ug in G¥ has the form

D; =Y P, (7.32)

with n; rational places Pj(i) € Pg:.
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(c) The differential ") := dug/ug of G has the divisor
(D) = (0el” —2)A; + (e — 2)B; - D;
where the divisors A;, B;, D; are defined by (7.31) and (7.32). At all places
P = Pj(i) < D;, the residue of n(i) 18
resp(n) = 1.

Proof. The places (ty = 0) and ({; = o) are the only places of IF,(ty) which
ramify in the extension G} /IF,(to). Since they are weakly ramified (Theorem
7.4.15(c), (d)), the different of G /IF,(to) is given by

Diff(G} /Ty (to)) = (2¢{ = 2)4; + (2¢{™ = 2)B; ,

(with the divisors A;, B; as in (7.31)). Then the differential dt, (as a differen-
tial of the field G) has the divisor

(dto) = —2¢{>) B; + Diff (G} /Ty (to))
= (26! —2)A; — 2B, (7.33)
by Remark 4.3.7. Since deg A; = mi/ego) and deg B; = mi/egoo), we obtain

m; m;
eEO) 6500) :

29(G7) — 2 = deg(dtg) = (2¢{” —2)

This proves (a). Part (b) is clear from Theorem 7.4.15(b). In order to show
part (c) we note that ug = 1 4 t5~! by (7.26), hence dug = —t§~2dty and
(duo) = (£ =2) - (¢ Ai = ¢ B1) + (dto)
= (el —2)4; — (¢ = 2)e!*™ +2)B;.
The principal divisor of ug in G is
(u0)* = Di— (£~ 1) By,
so the differential (") := dug/ug has the divisor (in G7)
(D) = (£l —2)4; + (!> —2)B; — D; .

At all places P in the support of D;, the element ug is a prime element,
consequently we have resp(dug/ug) = 1 by the definition of the residue of a
differential. O

Now we turn to finite fields IF, where ¢ = £3 is a cube. We investigate the
recursive tower ‘H over IF,, which is given by the equation
_x -1

14 £—1 _
Y =Y)"+1 = X1

(7.34)

Our main result is
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Theorem 7.4.17. Equation (7.34) defines a recursive tower H over the field
IF, with g = 3. Its limit \(H) satisfies

2(0% - 1)
AH) > ————
(H) = 042
The following lower bound for A(¢£3) is due to T. Zink in the case of a

prime number ¢; for arbitrary ¢ it was first shown by Bezerra, Garcia and
Stichtenoth.

Corollary 7.4.18. For ¢ = (3, Ihara’s constant A(q) is bounded below by

2002 — 1)

>
Ald) 2 =55

We will prove Theorem 7.4.17 in several steps. It is convenient to consider
‘H not only over the field IF, but also over any field K which contains IF,. So
we have H = (Hy, Hy, Ha, ...) where Hy = K (yp) is a rational function field
over K, and

=y
. - —Y;
Hiyr = Hi(yir1) with (yiy, —yip1) ™ +1 = e (7.35)

for all 7 > 0. We denote the generators of ‘H by vo,y1, 2, - .. in order to avoid
confusion with the generators xg, x1, xs, ... of the tower G.

The best way to understand the tower H is to study its second basic
function field H := K (x,y, z) which is defined by the equations

A F g L E (7.0
vy -y I 2 R :
and fe-1)
_ -y
(Ze — Z)e 1 + 1 = W =: V. (737)

First we determine the degree of H over some of its subfields as shown in
Figure 7.3 below.

Lemma 7.4.19. Assume that IF, C K. With the above notation we have:
(a) The extensions K(z)/K(u), K(y)/K(u), K(y)/K(v) and K(2)/K(v) are
Galois of degree £(£ —1).

(b) Also the extensions at the next level, K(x,y)/K(x), K(x,y)/K(y),
K(y,z)/K(y) and K(y,z)/K(z) are Galois of degree £(£ —1).

(¢) The extensions K(z,y,z)/K(x,y) and K(z,y,2)/K(y,z) are Galois of
degree £.

(d) K is the full constant field of H = K (z,y, z).
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H=K(z,y,>2)
/
K(z,y) K(y,2)
NN
K(x) K(y) K(z)
NSNS
K(u) K(v)

Fig. 7.3. The second basic function field H.

Proof. (a) By Lemma 7.4.14(a), the extension K (y)/K (u) is Galois of degree
[K(y) : K(u)] = £(f — 1), since u = (y* —y)*~1 + 1. Now we observe that the
equation u = —xf=1 /(z¢=1 — 1)~ is equivalent to

ne 1\’ ~1
((m) _x> +1:“u . (7.38)

As K(xz) = K(1/x) and K (u) = K((u—1)/u), we conclude again from Lemma
7.4.14(a) that K(x)/K(u) is a Galois extension of degree ¢(¢ — 1). The asser-
tions for the extensions K(y)/K(v) and K(z)/K(v) follow analogously.

(b) We consider the extension K (x,y)/K(z). Since K(y)/K(u) is Galois, it
follows from Galois theory that K (z,y)/K(x) is Galois, and its Galois group
Gal(K (z,y)/K(x)) is isomorphic to a subgroup of Gal(K(y)/K(u)). It re-
mains to show that [K(z,y) : K(z)] > ¢(¢ — 1). To this end we consider
ramification in some subextensions of the field H as in Figure 7.4.

For a place R € [Py we denote its restrictions to the corresponding subfields
of H according to Figure 7.4 ; this means for instance that P = RN K(x)
and Q = RN K (v). Specifically we choose a place @ of K(x,y) which is a
zero of the element u. We then have P* = (u = 0). From Equation (7.36) we
see that P = (x = 0) and e(P|P*) = {(¢{ — 1). On the other hand it follows
from Lemma 7.4.14(d) that e(Q*|P*) = 1 and hence e(Q|Q*) = (£ — 1). We
conclude that [K(z,y) : K(2)] = [K(x,y) : K(y)] > £(£—1).

Thus we have shown that K(x,y)/K(xz) is a Galois extension of degree
£(¢ —1). The corresponding claims for the other extensions K(z,vy)/K(y),
K(y,z)/K(y) and K(y, z)/K(z) follow immediately.

(¢) Next we choose a place R of K(x,y,z) which is a pole of . Thus P =
(x = 00), and we obtain from Equations (7.36) and (7.37) that the places P*,
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Fig. 7.4. Places of subfields of H.

Q*, Q and R are as follows:

(u e(P|P*)=1¢—-1,
Q" = (y=00) with e(Q*|P")=L(l—1),
Q = (v=100) with e(Q*|Q)=1(-1,
R = (z=00) with e(R|Q)=1(({—1).

= 00) with

Now Abhyankar’s Lemma yields e(Q|Q*) = 1, e(R*|Q*) = £ and e(R|Q) = ¢
(observe the notation in Figure 7.4), and it follows that

(K(z,y,2) : K(z,y)] = e(R|Q) = {. (7.39)
On the other hand we get from (7.36) and (7.37), that
( 0 )Z—l _ _yZ(Z—l) _
# z B (yffl _ 1)#1

—(W' =)'+
(yéfl _ l)lfl
LL=1)

B N (T L

Therefore we have

(7.40)

for some p € IF;. This is an equation for z over K(z,y) of degree /,
so [K(z,y,z) : K(z,y)] < ¢. With (7.39) we conclude that the extension
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K(x,y,2)/K(z,y) has degree {. From Equation (7.40) it also follows that
K(z,y,2)/K(x,y) is Galois.

(d) We have seen in the proof of (b) and (c¢) that in both extensions
K(z,y)/K(x) and K(z,y,2)/K(x,y) there are totally ramified places. The-
orem 3.6.3(a) implies that K is the full constant field of K(x,y) and of
K(z,y,z). O

Next we determine all places of the field H = K (z,y, z) which are ramified
over the field K(u) (where u is given by Equation (7.36)). For simplicity we
can assume that K contains the field IF,2, since the ramification behavior
(i.e., ramification index and different degree) does not change under constant
field extensions. The following lemma is of fundamental importance for the
investigation of the tower H.

Lemma 7.4.20. We maintain the notation of Equations (7.36), (7.37) and
Figures 7.3, 7.4, and also assume that IFy2 C K. Let R be a place of H which
is ramified in the extension H/K (u). Then the restriction P* = RN K(u) of
R to K(u) is one of the places (u = 0), (u = 1) or (u = ). More precisely
the following hold:

Case 1. P* = (u=0). Then P = (z = 0),
e(Q|P) =e(RIQ)=1 and e(R|R")=".
Case 2. P* = (u=1). Then P = (z = ) with 3 € Fp2 \ TFy,
e(QIP)=t—1, e(R|Q)€e{1,0} and e(RIR")=1.

Case 3. P* =
Q" = (y = 00),

e(QIP) = e(RIQ) = £ and e(Q|Q") = ¢(R|R*) = e(R*|R) = 1.

(u = o0). Then P = (x = «) with some a € T} U {0},

In all cases above where the ramification index is e = £, the corresponding
different exponent is d = 2(¢ — 1).

Proof. Since R|P* is ramified, at least one of the places P|P* or R*|P* is
ramified, see Figure 7.4. We distinguish several cases:

(i) Assume that P|P* is ramified. Since K (z) = K(1/x) and

ne 1\ 1
((2) oot
X X u

(see Equation (7.38)), it follows from Lemma 7.4.14 that P* = (v’ = o0) or
P* = (u' =1).Since v/ =00 < u=0and v =1 < u = oo, we conclude that
P* = (u=0) or P* = (u=00).
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(ii) Now we assume that R*|P* is ramified. Then one of the places Q*|P* or
R*|Q* is ramified.

(iiy) If Q*|P* is ramified then P* = (u = o0) or P* = (u = 1) by Lemma
7.4.14.

(i) If R*|Q* is ramified then R|Q is ramified (see Figure 7.4), hence
Q=(w=0)or Q= (v=1) by Lemma 7.4.14. First we discuss the case
Q = (v = o0). By Equation (7.37) we have then Q* = (y = o) or
Q= (y=7) withy € IF/. If @* = (y = o) then P* = (u = c0), and
if @* = (y =) then P* = (u = 1) by Equation (7.36).
/

It remains to consider the case Q = (v =1) = (v/ = 0) where v/ := (v — 1) /v.

From the equation
’ -1
() - |
-] — = +1=w
Y Y

(see Equation (7.38)) and Lemma 7.4.14(e) we obtain Q* = (1/y = a) with
a € IFp2 \ IFy, hence Q* = (y = 0) with § = a=! € Fy2 \ IF,. Again it follows
from Lemma 7.4.14(e) that P* = (u = 0).

So far we have shown that if R|P* is ramified then P* = (v = 0) or (u = 1)
or (u = 00). Now we have to discuss these three cases.

Case 1. P* = (u = 0). Using Equations (7.36), (7.37) and Lemma 7.4.14
in the same way as above we find that

P=(x=0) and Q" = (y=7) with v € Fp \TF,,
Q= w=1) and R = (z=0) with 3 € TFy,
with ramification indices (resp. different exponents)
e(P|P*) = £({—1) and d(P|P*) = (* -2,
e(@"|PY) = e(@"]Q) =1,
e(R|Q) =¢—1.
Going up one level in Figure 7.4 it follows immediately that
e(Q|P) =1 and e(R*|Q") = £—1,
(Q1Q") = £(E—1) and d(Q|Q") = 2.
We go up another level in Figure 7.4, apply Abhyankar’s Lemma and get
e(R|Q) =1,
e(R|R*) = ¢ and d(R|R*) = 2(£ —1).

This finishes the proof of Lemma 7.4.20 in Case 1. The other two cases are
similar. O
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Corollary 7.4.21. Both extensions K (z,y,z)/K(x,y) and K (x,y,2)/K(y, z)
are weakly ramified Galois extensions of degree (.

We are now able to prove that Equation (7.34) actually defines a tower.

Proposition 7.4.22. Let K be a field with IF, C K, and consider the sequence

H = (Hy, Hy, Hs,...) where Hy = K(yo) is a rational function field, and

Hi-i—l = Hi(yi-i-l) with

LD

¢ -1 —Yi
(Yig1 —Yit1) +1 = G 1)t

for all i > 0. Then H is a tower over K. The extension Hy/Hy is Galois of

degree [Hy : Ho|l = £(£—1), and for all i > 1, the extension H;11/H; is Galois

of degree [H;y1 : H;] = ¢.

Proof. The field Hy = K(yo,y1,y2) is isomorphic to the function field H =
K(z,y,z) that we studied in Lemmas 7.4.19 and 7.4.20. Therefore we know
already that H;/Hy is Galois of degree ¢(¢ — 1), the extension Hs/H;p is
Galois of degree ¢ and K is the full constant field of Hy. Now let ¢ > 2. Since
H;11 = H;(yi+1) and y; 41 satisfies the equation

V4
Yi1
(i -1yt —1)

with some element p € IF) (cf. Equation (7.40)), the extension H;yq/H; is
Galois of degree [H;y1 : H;] < ¢. We show now by induction the following
claim which readily implies the remaining assertions of Proposition 7.4.22.
We fix a place P; € Py, which is a pole of the element yo in H;.

Claim. Let ¢ > 2 and let P; be a place of H; lying above P;. Then P; is
also a pole of y;, and we have

yfﬂ —Yit1 = M-

B(Pi|Pi_1) = { and e(Pi | (yi = OO)) =1.

Proof of the Claim. The case i = 2 follows from Case 3 of Lemma 7.4.20.
So we assume now that the claim holds for some i > 2. Choose a place
P11 of H;41 which lies above P;. The field H;y; is the compositum of
the fields H; and K(y;,y;+1) over K(y;). By induction hypothesis we have
that P, N K(y;) = (ys = o0) and e(P|(y; = o00)) = 1. We set P, =
P 1NK (yi, yi+1) and ]5”1 := P 1NK (yit1)- It follows from Case 3 of Lemma
7.4.20 that P,y is the pole of ;11 in K (y;41) and that e(Pf |(yi = 00)) =/
and e(PZ-il\]SiH) = 1. The situation is shown below in Figure 7.5.

From this picture we see that e(P;11|P;) = £ and e(Pj11|(yix1 = 00)) = 1.
This completes the proof of Proposition 7.4.22.
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HiJrl PiJrl

K(yi) K(yi-H)

Fig. 7.5.

Thus we have proved that Equation (7.34) defines a tower H=(Ho, Hy, Ha, . . .)
over every constant field K O IFy, and that all steps in the tower are Galois,
of degree [Hy : Hol =4(¢ — 1) and [H;4q : H;] = £ for i > 1.

Remark 7.4.23. One of the defining properties of a tower is that it must con-
tain a function field of genus g > 2 (see Definition 7.2.1 and Remark 7.2.2). We
have not verified this property for the tower H yet. One way is to show directly
(using Lemma 7.4.20) that the second basic function field H = K (x,y, z) has
genus g > 2. Another way is to show that the number of rational places N (H,)
tends to infinity as ¢ — oo. We will prove this fact in Lemma 7.4.26 below.

Next we consider the ramification locus of the tower H over Hy. The
following lemma is analogous to Lemma 7.4.5.

Lemma 7.4.24. Assume that 8,2 C K. Then the ramification locus of H
over Hy satisfies

Ram(H/Ho) € {(yo = #)| 8 € Tz U {o0}} .

Before giving the proof of this lemma, we observe that the defining equa-
tion of the tower H can be written in a slightly different way as follows. We
set

FT) = (T =T 41 = (T = T)/(T' - T). (7.41)

Then Equation (7.34) is equivalent to the equation

1
)= —————.
W= T
From (7.41) it is obvious that the zeros of the polynomial f(T) in K are
exactly the elements v € TFy2 \ TF,.

(7.42)
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Proof of Lemma 7.4.24. We want to apply Proposition 7.2.23. We set
Ao = {yo(P) | P € Py, is ramified in Hy/Hy} .

Then Ag = IF}; U {oo} by Lemma 7.4.20, Cases 2 and 3. We claim that the
set

A= /10 U {O} = ]ng @] {OO}
satisfies condition (2) of Proposition 7.2.23. So we consider # € A and
a € K U{oo} where

—_atle=1) 1

S e e ey o B

(note Equation (7.42)). We must show that o € A.
Case 1. g € IFy. Then we have

1
L= f(1/a)
and hence f(1/a) = 0. It follows that 1/a € IFp2 \ IF, and therefore
aelF,\TF, C A

Case 2. 3 = co. It follows from Equation (7.43) that o = oo or a € F/,
hence o € A.

Case 3. 3 € Fy2 \ IFy. Then (8° — 8)*~! + 1 = 0 and therefore a = 0 € A.

1 =

This completes the proof, by Proposition 7.2.23. O
Corollary 7.4.25. The genus v(H/Hy) of the tower H is finite; it is bounded
by
2420
V) < S5

Proof. Recall that both extensions Ho /K (yo,y1) and Hy/K (y1,y2) are weakly
ramified Galois extensions of degree ¢ by Corollary 7.4.21. For all n > 2 we con-
sider the field H,, as the compositum of the fields H,, 1 and K (y5—2,Yn—1,Yn)
over K(Yn—2,Yn—1), and then it follows by induction from Proposition 7.4.13
that H,,/H; is weakly ramified of degree [H,, : Hy] = ("1

Now we estimate the different exponent d(Q)|P) where P € Ram(H/Hy)
and @ is a place of H,, lying above P.

Case 1. P = (yo = ) with o € IF; U {oo}. It follows from Lemma 7.4.20
that P is weakly ramified in Ha/Hy, hence Q|P is weakly ramified in H,,/H
and we obtain in Case 1, that

d(QIP) = 2(e(Q[P) = 1) < 2¢(Q[P).

Case 2. P = (yg = () with 8 € TFp \ IFy. Let P, := Q N Hy, then
e(P1|P) = ¢—1 and Q|P; is weakly ramified by Lemma 7.4.20. It follows that
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dQ|P) =e(Q|Pr)-d(Pr|P)+d(Q]P1)
e@Q[P1)-(£—2)+2(e(Q| P1) — 1)

l l
o el@IP) -2 < @l P).

1

There are (I + 1) places in Case 1 and (¢2 — ¢) places in Case 2, and we obtain
from Theorem 7.2.10(b) the estimate

v(H/Hy) < —1+%-(£+1)-2+%~(£2—z)-7 =

Observe that Corollary 7.4.25 holds for every constant field K O IF,. One
does not need the assumption that K DO IF,z, since the genus v(H/Hp) does
not change under a constant field extension.

Eventually we investigate completely splitting places in the tower H. We
show that the splitting behavior of the tower H over the constant field IFs
is very similar to the splitting behavior of the tower G over IF,2 (see Lemma
7.4.4).

Lemma 7.4.26. Consider the tower H = (Hy, Hy, Ho, . ..), which is defined
by Equation (7.34) over the cubic field K = . Then all places (yo = «)
with o € Fys \ Ty split completely in H/Hy; i.e.,

Split(H/Ho) 2 {(yo = ) | € Fys \ T} .
Therefore the splitting rate v(H/Hy) satisfies
v(H/Hy) > 0* 1.

Proof. We will use Corollary 7.2.21. Accordingly we set

fY) =" —v)t41, (7.44)
h(X) := *_XE(H)_ = ! , (7.45)
(X-t=1ne=t 11— f(1/X)
Y =T \IF,,

and we must show that the following condition holds:

Claim: For all @ € X we have h(a) # oo, and the equation f(t) = h(«)
has ¢(¢ — 1) distinct roots t = v € X.

All assertions of Lemma 7.4.26 follow then immediately by Corollary 7.2.21.
In order to prove the claim we introduce the polynomial

g(Y) == (Y —Y)/(Y* ~Y) € K[Y],
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whose roots are exactly the elements of Y. We have the polynomial identity
JY) =) +1=g(Y), (7.46)

since

) -1 +1 = O (Yﬁ - 1> o

YI—Y)r \ Y-y
VG ,
ve —y! ve —y
= vioy T1= oy =9

Now let « € X = TFys \ IFy, then h(a) # oo by (7.45). It also follows that
1/a € X and hence g(1/a) = 0. From (7.46) we conclude that

1
0 _
Let v be an element in the algebraic closure K with f(v) = h(a), so
1
fn) = T (/) f(/a) (7.48)

by (7.45) and (7.47). Then we obtain
9 = FN(F() -1 +1
14
= (7 my) W - e1 =11 =0

using (7.46) and (7.48). We conclude that v € X, since the zeros of the
polynomial ¢(Y) are exactly the elements of X. The polynomal f(t) — h(«) €
K|[t] has no multiple roots since the derivative f'(t) = (t* —t)*~2 does not
have a common root with f(t) —h(a) = (t* —)~* +1— h(a). This completes
the proof of the claim and hence of Lemma 7.4.26. O

Putting together the results of Corollary 7.4.25 and Lemma 7.4.26, we get
the estimate

T y(H/Ho) T (2+20)/2 £+2

Ay = MO H) 03— 2002 — 1)

for the limit of the tower H. This completes the proof of Theorem 7.4.17.
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7.5 Exercises

7.1. Suppose that F = (Fp, F1, F»,...) and G = (Go, G1,Ga, . ..) are towers
over IF,. Call F and G equivalent if for all 4 > 0 there exist j,k > 0 such that
Fi g Ej Q Fk. Show:
(i) This is an equivalence relation.
(i) Suppose that F and G are equivalent. Then the following hold:

(a) \(F) = A9).

(b) Y(F/Fp) <oo & 7(G/Go) < o0.

(¢c) v(F/Fy) >0 < v(G/Go) > 0.

7.2. Let F = (Fy, F1, P, ...) be a tame tower over IF,. Assume that its ram-
ification locus Ram(F/Fp) is finite and that its splitting locus Split(F/Fp) is
non-empty. Define F* = (Fy, Fy, Fy,...) where F} is the Galois closure of
F;/Fy. Show that F* = (Fy, Fy, F5,...) is an asymptotically good tower over
IF,.

7.3. Assume that F = (Fy, Iy, Fs,...) is an asymptotically good Galois tower
(i.e., all extensions F;/Fy are Galois). Prove:

(i) The ramification locus Ram(F/Fy) is finite.

(i) For some n > 0 there exists a rational place P € IPp, which splits
completely in all extensions F,/F, with m > n.

7.4. Let F = (Fy, F1, F, . ..) be a tower of function fields over IF,. For n > 1
we set D,, := deg(Diff(F,/F,—1)).

(i) Assume that there is a real number € with 0 < e < 1 and an integer m > 1
such that D, 11 < €-[Fp41 : F]- Dy, holds for all n > m. Show that the genus
of F/Fy satisfies v(F/Fp) < oo.

(ii) Now assume that D,, # 0 for some m, and D, 11 > [Fy,4+1 : F,,] - D,, for
all n > m. Show that the genus of F/F is v(F/Fy) = co. In particular, the
tower is asymptotically bad.

7.5. Suppose that the tower F = (Fp, Fy, Fy, . ..) is recursively defined by the
equation f(Y) = h(X) with f(Y) € Fy(Y) and h(X) € IF,(z); i.e.,

(1) Fy =1IFy(zg) and Fyq1 = Fp(2y41) for all n >0,

(2) f(xnt1) = h(zy) for all n > 0.
Assume moreover that

(8) both rational functions f(Y) and h(X) are separable,

(4) The equation f(Y) = h(x,) is absolutely irreducible over Fj,, for all
n >0,

(5) deg f(Y) # deg h(X).
Show that F is asymptotically bad.
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7.6. (charIF, # 2) Suppose that f1(X), f2(X) € IF,[X] are polynomials with
deg f1(X) = 1+ deg f2(X). Show that the equation

Y2 = fi(X)/f2(X)

defines a recursive tower over IF,. If moreover deg f; > 3, this tower is asymp-
totically bad.

7.7. (¢ is a square and charIF, # 2) Consider the tower F = (Fy, Fi, Fb,...)
which is recursively defined over IFy by the equation

Y2=X1-X)/(X+1).

(Note that this equation defines a tower over IF,, by the previous exercise.)
Show that the ramification locus of F/Fy is the set of places P € IPp, with

xo(P) € {0,1,—1, 00}

or
zo(P) € {a € TF, | (a® + 1)(a® — 2a — 1)(a® + 2a — 1) = 0} .
Give an upper bound for v(F/Fyp).

7.8. Consider the tower of the previous exercise over the field IFg;. Show that
at least 8 rational places of Fy are completely splitting in the tower, and
conclude that the limit of the tower satisfies A(F) > 2.

7.9. Prove Remark 7.4.9.

7.10. Let ¢ € Fg be an element with ¢® + ¢+ 1 = 0.
(i) Show that the equation

Y24Y =1/(X? 4 ¢X)

defines a recursive tower F = (Fy, Fy, F», .. .) over IFs.
(#) Show that the ramification locus of F/Fj is finite.

(iii) Prove that F/Fy is weakly ramified, and give an upper bound for the
genus v(F/Fp).
(iv) Ts the tower asymptotically good?

7.11. Let Fy = IF2(x) be the rational function field over IFy. Consider for all
n > 1 the field F,, = Fy(y1,...,Yn), where

Y+ =a(@® + o),
Y3 +y2 =2’ (@® + 1),

Y2 +yn = 22" (2 + 1).
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(i) Show that F, /Fp is Galois of degree [F,, : Fy] = 2™, and that the pole of
x is totally ramified in F,, /Fp.

(i) Determine the genus and the number of rational places of F), /TF5.

(iii) Conclude that the tower F = (Fy, F1, Fy,...) over IFy is asymptotically
bad.

(iv) Generalize this example to arbitrary finite fields IF,.

Remark. Part (iii) of the above exercise is in fact a special case of the following
general result: If a tower F = (Fy, F, Fs,...) over IF; has the property that
all extensions F),/F, are Galois with abelian Galois groups, then the genus of
F/Fy is infinite, and hence the tower is asymptotically bad.

7.12. Let F = (Fy, F1, F3,...) be an asymptotically good tower of function
fields over IF,. Consider a finite extension field £ O Fy having the same
constant field IF,, and define the sequence & := (Ey, Eq, Es,...) by setting
E; .= EF} for all j > 0. Assume that there is at least one rational place of
E/IF, whose restriction to Fp is in the splitting locus of .%# /Fy. Show that &
is an asymptotically good tower over IF,.

7.13. (¢ = p® with @ > 2) Let F/IF; be a function field having at least
one rational place. Show that there exists an asymptotically good tower F =
(Fy, Py, Fs,...) over IF, with Fy = F.
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More about Algebraic Geometry Codes

In Chapter 2 we studied algebraic geometry (AG) codes associated with divi-
sors of an algebraic function field over IF,. Here we continue their investigation.
Let us fix some notation for the whole of Chapter 8.

F/IF, is an algebraic function field of genus g and ¥, is the full con-
stant field of F.

Py, ..., P, € IPrp are pairwise distinct places of degree one.

D=P +...+P,.

G is a divisor of F with supp G Nsupp D = {.

Cz(D,G) = {(x(P1),...,z(P,)) € Fy |z € Z(G)} is the algebraic
geometry code associated with D and G.

Co(D,G) = {(wp,(1),...,wp, (1)) |w € 2p(G — D)} is the dual code
of Co(D,G).

8.1 The Residue Representation of Cqn(D, G)

Let P € IPr be a place of degree one and let w € 2 be a Weil differential.
In Chapter 4 we identified £2p with the differential module Ap (cf. Remark
4.3.7(a)). Via this identification the local component of w at the place P can
be evaluated by means of the residue of w at P, namely wp(u) = resp(uw) for
all u € F (Theorem 4.3.2(d)). In particular we have wp(1) = resp(w). Hence
we have the following alternative description of the code C(D, G).

Proposition 8.1.1.

Co(D,G) = {(resp, (w),...,resp (w))|w € (G — D)}.

It is this representation that is most commonly used in the literature to define
the code Cq(D, G).

H. Stichtenoth, Algebraic Function Fields and Codes, 289
Graduate Texts in Mathematics 254,
(© Springer-Verlag Berlin Heidelberg 2009
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By Proposition 2.2.10 the code Cn(D, G) can also be written as C'o (D, H)
where H = D—G+(n) and n is a differential with vp,(n) = —1 and np,(1) =1
for i =1,...,n. Using results from Chapter 4 one can easily construct such a
differential 7.

Proposition 8.1.2. Let t be an element of F such that vp,(t) = 1 for i =
1,...,n. Then the following hold:

(a) The differential n := dt/t satisfies vp,(n) = —1 and resp,(n) = 1 for
t=1,...,n.

(b) Co(D,G) = Cz(D,D — G + (dt) — (t)).

Proof. (a) Since t is a prime element of P := P;, the P-adic power series of
n = dt/t with respect to ¢ is

1
— 2 dt.
K-

Hence vp(n) = —1 and resp(n) = 1.
(b) Follows immediately from (a) and Proposition 2.2.10. O

Corollary 8.1.3. Suppose that t € F is a prime element for all places
Py, ..., P,.

(a) If 2G — D < (dt/t) then the code C'»(D, Q) is self-orthogonal; i.e.,
Cy(D,G) C Cg(D, G’)L .

(b) If 2G — D = (dt/t) then C»(D,G) is self-dual.

Proof. This is an immediate consequence of Corollary 2.2.11. O

8.2 Automorphisms of AG Codes

The symmetric group S,, (whose elements are the permutations of the set

{1,...,n}) acts on the vector space IF}; via
71'(01, N ,Cn) = (Cﬂ(l), ey Cﬂ.(n))
for 7 € S, and ¢ = (ey,...,¢,) € IFY.

Definition 8.2.1. The automorphism group of a code C C IFy is defined by

Aut(C) :={r e S, |n(C)=C}.
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Obviously Aut(C) is a subgroup of S,,. Many interesting codes have a non-
trivial automorphism group. In this section we study automorphisms of alge-
braic geometry codes that are induced by automorphisms of the corresponding
function field.

Let F/IF, be a function field and let Aut(F/IF,) be the group of automor-
phisms of F over IF, (ie., o(a) = a for 0 € Aut(F/IF,) and a € IF;). The
group Aut(F/IF,) acts on IPp by setting o(P) := {o(z) |z € P}, cf. Lemma
3.5.2. The corresponding valuations vp and v, (p) are related as follows:

Vo) (y) = vp(c™'(y)) forall yeF. (8.1)

Moreover, dego(P) = deg P since o induces an isomorphism of the residue
class fields of P and o(P) given by o(2(P)) := o(z)(c(P)). The action of
Aut(F/TF,) on IPp extends to an action on the divisor group by setting

o (Z in) = ano(P) .

As before we consider divisors D = Py + ...+ P, and G of F/IF, where
Py, ..., P, are distinct places of degree one and supp G Nsupp D = 0.

Definition 8.2.2. We define

Autp ¢(F/IF,) :={o € Awt(F/IF,) |o(D) =D and 0(G) = G}.

Observe that an automorphism o € Autp ¢(F/IF,) need not fix the places
Py, ..., P,, but it yields a permutation of P,...,P,. From (8.1) it follows
easily that

o(Z(G) = Z(G) (8.2)

for o € Autp g(F/IF,), because o(G) = G. Now we show that every auto-

morphism o € Autp, ¢ (F/IF,) induces an automorphism of the corresponding
code C¢ (D, Q).

Proposition 8.2.3. (a) Autp ¢(F/IF,) acts on the code C¢(D,G) by
o((2(Py), .- 2(P))) = (2o (Py)), . 2(o(Pn))

(for x € Z(G)). This yields a homomorphism from Autp o(F/IF,) into
Aut(Ce (D, Q).

(b) If n > 2g+2, the above homomorphism is injective. Hence Autp o(F/IF,)
can be regarded as a subgroup of Aut(C» (D, Q)).

Proof. (a) We begin with the following assertion: given a place P of degree
one and an element y € F' with vp(y) > 0, we have

o(y)(o(P)) = y(P). (8.3)
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In fact, setting a := y(P) € IF,, we obtain y — a € P. Hence o(y) —a =
o(y —a) € o(P), and (8.3) follows.

For the proof of (a) we have to show that for every z € Z(G) and
o € Autp g(F/IF,) the vector (z(o(Pr)),...,z(c(Py))) is in C¢(D,G). As
Z(G) =o(Z(@)) by (8.2), we can write z = o(y) with y € Z(G), so

(@(a(P1)), . x(0(Pn))) = (y(P1), - y(Pa)) € C2(D, G,

by (8.3).

(b) It is sufficient to prove that the only automorphism of F/IF, fixing
more than 2¢g + 2 places of degree one is the identity. So we assume that
0(Q) = Q and 0(Q;) = Q; for i = 1,...,29 + 2, where ¢ € Aut(F/IF,)
and @, Q1, ..., Q2442 are distinct places of degree one. Choose z, 2z € F' such
that (2)ee = 29Q and (2)oe = (2¢ + 1)@ (this is possible by the Riemann-
Roch Theorem). Then IF,(x,z) = F since the degrees [F : IF,(z)] = 2g and
[F:TF,(2)] = 29 + 1 are relatively prime. The elements z — o(z) and z — o(2)
have at least 2g + 2 zeros (namely Q1, ..., Q2g42) but their pole divisor has
degree < 2g + 1 because @ is their only pole. We conclude o(x) = x and
o(z) = z, hence o is the identity. O

Ezample 8.2.4. As an example we consider a BCH code C' of length n over IF,.
As shown in Section 2.3, C' can be realized as a subfield subcode of a rational
AG code as follows: let n | (¢ — 1) and let § € IFym be a primitive n-th root
of unity. Consider the rational function field F = Fym(2). Fori=1,...,n let
P; be the zero of z — 7!, and set Dg:= Py + ...+ P,. Denote by P, resp.
P, the zero resp. the pole of z in F'. Then

C= Cg(Dg,’r‘Po + SPOO) |IFq

with r,s € Z (see Proposition 2.3.9). The automorphism o € Aut(F/IF m)
given by o(z) = 712 leaves the places Py and P, invariant, and we have

O'(Pi):Pi+1 (Z:L,TL—].) and O'(Pn):.Pl

Hence, by Proposition 8.2.3, ¢ induces the following automorphism of the
code Cy(Dg, 7Py + sPx) :

o(cty...,cn) = (ca,...,cn,c1) . (8.4)

This means (in the usual terminology of coding theory) that BCH codes are
cyclic codes.

8.3 Hermitian Codes

In Chapter 6 we discussed several examples of algebraic function fields. One
can use all these examples for the explicit construction of algebraic geometry
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codes. In this section we investigate some codes which are constructed by
means of the Hermitian function field. This class of codes provides interesting
and non-trivial examples of AG codes. These codes are codes over IF 2, they
are not too short compared with the size of the alphabet, and their parameters
k and d are fairly good.

First we recall some properties of the Hermitian function field H (cf.
Lemma 6.4.4). H is a function field over IF 2; it can be represented as
H=Tp(z,y) with y?+y=az7"". (8.5)
The genus of H is g = q(q—1)/2, and H has N = 1+ ¢> places of degree one,
namely
e the unique common pole @), of = and y, and
e for each pair (o, 8) € Fp2 x IF,2 with 37 + 3 = ™! there is a unique
place P, 3 € Py of degree one such that 2(P, 3) = a and y(FPa,5) = B.

Observe that for all o € IF > there exist ¢ distinct elements 3 € IF 2 with
B9+ B = a?tl, hence the number of places P, s is ¢>.

Definition 8.3.1. For r € Z we define the code
Cr:=Cg(D,rQw), (8.6)

where

D= > Pag (8.7)

5q +ﬁ=aq+l

is the sum of all places of degree one (except Qo) of the Hermitian function
field H/IF ;2. The codes C, are called Hermitian codes.

Hermitian codes are codes of length n = ¢ over the field IFg2. For r < s we
obviously have C, C Cs. Let us first discuss some trivial cases. For r < 0,
Z(rQs) = 0 and therefore C,. = 0. For r > ¢ + ¢*> —q—2 = ¢> + (29 — 2),
Theorem 2.2.2 and the Riemann-Roch Theorem yield

dimC, = {(rQux) — {(rQs — D)

=(r+1-9)—(r-¢+1-g)=¢=n.

Hence C, = IFZz in this case, and it remains to study Hermitian codes with
0<r<¢+¢—-q-2
Proposition 8.3.2. The dual code of C,. is

L_C.
CT' - Cq‘3+q2_q_2_7. .

Hence C, is self-orthogonal if 2r < ¢® + ¢*> — q — 2, and C, is self-dual for
r=(@+¢-q-2)/2
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Proof. Consider the element

t:= H (:E—a):xq2—x.

a€lF o

t is a prime element for all places P, 3 < D, and its principal divisor is
(t) = D — ¢3Quo. Since dt = d(z9 — ) = —da, the differential d¢ has the
divisor (dt) = (dz) = (¢* — ¢ —2)Qu (Lemma 6.4.4). Now Theorem 2.2.8 and
Proposition 8.1.2 imply

Ci = Co(D,1Qx) = C (D, D — 1Qu + (dt) — (1))
=Cyg (D7 (q3 +¢¢—q—2— r)QOO) =Cpsyqg2_g_a—r-
O

Our next aim is to determine the parameters of C.. We consider the set I
of pole numbers of @, (cf. Definition 1.6.7); i.e.,

I ={n>0|thereis an element z € H with (2)ec = nQx }-

For s > 0 let
I(s):={nelln<s}. (8.8)

Then |I(s)| = £(sQo0), and the Riemann-Roch Theorem gives
[I(s)|=s+1—q(qg—1)/2 for s>29—1=¢q(¢—1)—1.
From Lemma 6.4.4 we obtain the following description of I(s):
I(s)={n<s|n=dq+jlqg+1) withi>0 and 0 <j <q—1},
hence
[I(s)] = |{(i,j) € Ng x No; j < q—1 and ig+j(qg+1) <s}|.

Proposition 8.3.3. Suppose that 0 < r < ¢> +q¢*> — q— 2. Then the following
hold:

(a) The dimension of Cy is given by

|1(r)] for 0<r<g?,
@ —I(s)| for $<r<+q¢®—q-2,

where s := ¢+ ¢*> —q—2 — 1 and I(r) is defined by (8.8).
(b) For ¢> —q—2 <r < ¢* we have

dimC, =r+1—¢q(g—1)/2.
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(¢) The minimum distance d of C.. satisfies
d>q¢*—r.

If 0<7r<q® and both numbers r and ¢ — r are pole numbers of Quo, then

d=¢>—r.

Proof. (a) For 0 <r < ¢ Corollary 2.2.3 gives
dim C, = dim Z(rQx) = |I(r)].

Forg*<r<¢@+¢—q—2weset s:==¢*+¢>—q—2—r. Then 0 < s <
q*> — ¢ — 2 < ¢3. By Proposition 8.3.2 we obtain

dim C, = ¢* — dimC, = ¢* — |1(s)|.
(b) For ¢ —q—2 =29 —2 < r < ¢3, Corollary 2.2.3 gives

dmC,=r+1—-g=r+1—-q(¢g—1)/2.

(c) The inequality d > ¢* — r follows from Theorem 2.2.2. Now let 0 < r < ¢3
and assume that both numbers » and ¢® —r are pole numbers of Q.. In order
to prove the equality d = ¢> — r we distinguish three cases.

Case 1: r = ¢* — ¢*. Choose i := ¢* — ¢ distinct elements o, ..., o; € IF 2
Then the element

i
z = H(m —ay) € Z(rQx)
v=1

has exactly gi = r distinct zeros P, g of degree one, and the weight of the
corresponding codeword evp(z) € C,. is ¢ — r. Hence d = ¢® — r.

Case 2: v < ¢® — q®>. We write r = iqg+ j(¢+ 1) with i > 0 and 0 < j <
qg—1,50i < ¢>—q—1. Fix an element 0 # v € IF, and consider the set
A:={a €TFpz|al™ #~}. Then |A| = ¢ — (¢+ 1) > i, and we can choose

distinct elements aq,...,a; € A. The element
i
2 = H (x— )
v=1
has ig distinct zeros P, 3 < D. Next we choose j distinct elements 51,...,5; €

IF,2 with 5] + (3, = v and set

J
Hy ﬁy
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z9 has j(q¢+1) zeros P, 3 < D, and all of them are distinct from the zeros of
z1 because 31 + [, =y#altt fory=1,...,jand v =1,...,i. Hence

Zi=zZ122 € f((zq + (g + 1))@00) =Z(rQw)
has r distinct zeros P, g < D. The corresponding codeword evp(z) € C, has
weight ¢3 — 7.

Case 3: ¢ — ¢*> < r < ¢®. By assumption, s := ¢ —r is a pole number and
0<s<q®<¢q— ¢ By case 2 there exists an element z € H with principal
divisor (z) = D’ — sQ+ where 0 < D’ < D and deg D’ = s. The element
w:=129 — z € H has the divisor (u) = D — ¢*Qoo, hence

(z7'u) = (D= D") (¢’ = 5)Qux = (D~ D') — rQuc -
The codeword evp(z~'u) € C, has weight ¢ — r. O

We mention that the minimum distance of C, is known also in the re-
maining cases (where r > ¢, or one of the numbers r or ¢3 — r is a gap of

Qoo)-

One can easily specify a generator matrix for the Hermitian codes C,.. We
fix an ordering of the set T := {(a, ) € Fp2 x Fp2 |87 + 3 = a4T!}. For
s=1iq+j(g+1) (wherei >0 and 0 < j < ¢g— 1) we define the vector

3

us = (') (o ez € (F2)”
Then we have:

Corollary 8.3.4. Suppose that 0 < r < ¢>. Let 0 = 51 < 59 < ... < 5, <7
be all pole numbers < r of Qoo. Then the k x ¢° matriz M, whose rows are
Usy, ..., Us, , 15 a generator matriz of C,.

Proof. Corollary 2.2.3. 0

In the same manner we obtain a parity check matrix for C,. (for r > ¢ —q—2),
since the dual of C, is the code C with s = ¢ +¢*> —q—2 — 7.

Finally we study automorphisms of Hermitian codes. Let H = IF2(z,y)
as before, cf. (8.5). Let

c€F2\{0}, 6€F,2 and p?+ pu=469"". (8.9)
Then p € IF 2, and there exists an automorphism o € Aut(H/IF 2) with
o(x) =ex+0 and o(y) =¥y +edla + pu. (8.10)

(The existence of an automorphism o satisfying (8.10) follows from the fact
that o(y) and o(z) satisfy the equation o(y)?+0(y) = o ()9, which is a con-
sequence of (8.9).) The set of all automorphisms (8.10) of H/IF 2 constitutes
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a group I' C Aut(H/IF2) of order ¢*(¢*> — 1) (as € # 0 and § are arbitrary,
and for each ¢ there are g possible values of ). Clearly 0(Qo) = Qo for all
o € I', and o permutes the places P, g of H since they are the only places of
H of degree one other than )o,. By Proposition 6.3.3, I" acts as a group of
automorphisms on the Hermitian codes C,.. We have proved:

Proposition 8.3.5. The automorphism group Aut(C,.) of the Hermitian code
C,. contains a subgroup of order ¢3(q* —1).

Remark 8.5.6. 1t is easily seen that I" acts transitively on the places P, g; i.e.,
given P, g and P,/ g then there exists some o € I with (P, ) = P g.

8.4 The Tsfasman-Vladut-Zink Theorem

It is well-known in coding theory that large block lengths (hence large dimen-
sion and large minimum distance) are required to achieve reliable transmission
of information. We introduce some notation that will simplify discussion of
asymptotic performance of codes.

Definition 8.4.1. (a) Given an [n,k,d]| code C over IF,, we define its infor-
mation rate
R=R(C):=k/n

and its relative minimum distance

d=0(C):=d/n.

(b) Let V, := {(6(C), R(C)) € [0,1]*|C is a code over F,} and U, C [0, 1]
be the set of limit points of V.

This means: a point (J, R) € IR? is in U, if and only if there are codes C' over
IF, of arbitrary large length such that the point (6(C), R(C)) is arbitrarily
close to (4, R).

Proposition 8.4.2. There is a continuous function aq : [0,1] — [0,1] such
that
Uy ={(6,R)|0<06<1and0<R<au)}.

Moreover the following hold: a;(0) =1, a,(6) =0 for 1 —q=' <6 <1, and

oy is decreasing in the interval 0 <0 <1 — gt

The proof of this proposition requires only elementary techniques of coding
theory; we refer to [29].

For 0 < § < 1 — ¢! the exact value of o,(d) is unknown. However, several
upper and lower bounds are available. In the following propositions we state
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some of these bounds. Proofs can be found in most books on coding theory,
e.g. in [28]. The g-ary entropy function Hy : [0,1 — ¢~ '] — IR is defined by
H,(0) := 0 and

Hy(z) :=x log,(¢ — 1) — x log,(z) — (1 — z) log, (1 — =)
for0<az<1—qg %

Proposition 8.4.3. The following upper bounds for a,(0) hold:
(a) (Plotkin Bound) For0<3§<1-gq !,

q

(b) (Hamming Bound) For0<4§ <1,
ag(0) <1—Hy(8/2).
(c) (Bassalygo-Elias Bound) For 0<§<6:=1-q71,
aqg(0) <1 —Hy(6—\/0(6—9)).

Out of the upper bounds in Proposition 8.4.3, the Bassalygo-Elias Bound
is always the best, see Figure 8.1 below; an even better upper bound (which
is more complicated to state and more difficult to prove) is the McEliece-
Rodemich-Rumsey- Welch Bound, see [28],[32].

Perhaps more important than upper bounds are lower bounds for a,(d), be-
cause every non-trivial lower bound for «,(d) guarantees the existence of ar-
bitrary long codes with good parameters (§(C), R(C)).

Proposition 8.4.4 (Gilbert-Varshamov Bound). For 0<§<1—q7 !,
aq(d) = 1 — Hy(d).

The Gilbert-Varshamov bound is the best lower bound for «,(d) which is
known from elementary coding theory. However, its proof is not constructive
(i.e., it does not provide a simple algebraic algorithm for the construction of
good long codes).

Our aim is to construct algebraic geometry codes of large length in order
to improve the Gilbert-Varshamov Bound. Given an algebraic function field
F/IF, with N = N(F') places of degree one, the length of any AG code
Cy (D, Q) (resp. Cn(D, G)) associated with divisors D and G of F is bounded
by N, since D is a sum of places of degree one. In fact, this is the only
restriction on the length of an AG code which can be constructed by means
of the function field F.
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Gilbert-Varshamov
Bassalygo-Elias
Plotkin

Hamming

Fig. 8.1. Bounds for ¢ = 2.

Lemma 8.4.5. Suppose that Pi, ..., P, are distinct places of F/IF, of degree
one. Then there exists, for each v > 0, a divisor G such that deg G = r and
P, & suppG (fori=1,...,n).

Proof. The lemma is trivial if there is another place @ of degree one, different
from Py, ..., P,. In this case we set G := rQ. If Py, ..., P, are all the places of
F/IF, of degree one, we choose a divisor G ~ P (i.e., G is equivalent to rP;)
such that vp, (G) =0 for i = 1,...,n. This is possible by the Approximation
Theorem. O

According to Lemma 8.4.5 one needs function fields over IF, having many
rational places in order to construct long AG codes. We recall the definition
of Thara’s constant A(q) given in Chapter 7. For g > 0 let

N,(g) := max{N(F) | F is a function field over I, of genus g },

where N(F') denotes the number of places of F/IF, of degree one. Then A(q)
is defined as
Ny(9)

A(q) = limsup —<
)

g—oo
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Proposition 8.4.6. Suppose that A(q) > 1. Then

0g(6) > (1— Alg) ™) = §
in the interval 0 < 6 <1 — A(q)~!.

Proof. Let § € [0,1 — A(q)~!]. Choose a sequence of function fields F;/IF, of
genus g; such that
gi — oo and n;/g; — Alq), (8.11)

where n; := N(F;). Choose r; > 0 such that
ri/ni—>1—6. (8.12)

This is possible as n; — oo for i — oco. Let D; be the sum of all places of
F;/TF, of degree one, thus deg D; = n;. By Lemma 8.4.5 there exists a divisor
G, of F;/TF, such that deg G; = r; and supp G; Nsupp D; = (). Consider the
code C; := Cg(D;,G;); this is an [n;, k;, d;] code whose parameters k; and d;
satisfy the inequalities

ki >degGi+1—g;=r;+1—¢g; and d; >n; —degG; =n; —r;

(cf. Corollary 2.2.3). Hence

i+ 1 i j
ntl g9 4 6 =0(Cy) >1——. (8.13)

R; = R(C;) >

W.l.o.g. we can assume that the sequences (R;);>1 and (0;);>1 are convergent

(otherwise we choose an appropriate subsequence), say R; — R and §; — 5.
From (8.11), (8.12) and (8.13) it follows that R > 1—0 — A(¢q)~! and 0 > 4.
So ay(0) > R>1—6— A(q)~". Since o is non-increasing, this implies

ag(6) = O‘q(g) >1-6-A(g)".

Now we can easily prove the main result of this section.

Theorem 8.4.7 (Tsfasman-Vladut-Zink Bound). Let ¢ = (* be a
square. Then we have for all § with 0 <5 <1 — (¢*/?> —1)71,

1

Proof. By Corollary 7.4.8 we have A(q) = ¢*/?> — 1 if ¢ is a square. Now the
assertion follows immediately from Proposition 8.4.6. O

For all ¢ > 49 the Tsfasman-Vladut-Zink Bound improves the Gilbert-
Varshamov Bound in a certain interval, see Figure 8.2 .
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Fig. 8.2. Bounds for ¢ = 64.

Remark 8.4.8. Also if ¢ is not a square one can obtain an improvement of the
Gilbert-Varshamov Bound if a good lower bound for Thara’s constant A(q)
is available. For instance, let ¢ = ¢3 be a cube. Then we have for all § with
0<86<1—(£+2)/(2(4%> — 1)) the following lower bound for a,(6):

ag(6) > (1 - 2(2”1)) _5. (8.14)

The proof of this bound is exactly the same as in Theorem 8.4.7; one just uses
the bound for A(¢3) given in Corollary 7.4.18. We note that (8.14) improves
the Gilbert-Varshamov Bound for all cubes ¢ > 75.

In the proof of the Tsfasman-Vladut-Zink Theorem we have only used
that there ewists a sequence of function fields F;/IF, (for ¢ = ¢?) with
lim,, oo N(F;)/g(F;) = ¢ — 1. If the function fields F; have additional nice
properties, one can hope that the corresponding AG codes also have nice
properties. As an example for this idea we shall prove the existence of long
self-dual codes whose parameters attain the Tsfasman-Vladut-Zink Bound.
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Theorem 8.4.9. Let ¢ = (2 be a square. Then there exists a sequence of
self-dual codes (C;)i>o over I, with parameters [n;, k;,d;] such that n; — oo
and

lim inf é > - — . (8.15)

Note that Inequality (8.6) just says that the sequence (C};);>o attains the
Tsfasman-Vladut-Zink Bound, because the information rate of a self-dual code
C is R(C) = 1/2. As a consequence we obtain that there are self-dual codes
over IF, (with ¢ = (2 > 49) of arbitrary large length whose performance is
better than the Gilbert-Varshamov bound.

Proof of Theorem 8.4.9. For simplicity we will assume that ¢ is even; i.e.,
charIFy = 2 (the assertion is also true in the case of odd characteristic, but
the proof is then a bit more complicated). We will use the Galois tower G* =
(G§,G7, G35, ...) of function fields over IF, that was studied in Section 7.4, see
Theorem 7.4.15 and Corollary 7.4.16. We recall briefly the properties of this
tower that will be needed below.

The field G§ = TF,;(uo) is a rational function field. For ¢ > 1 we have
n; =[Gy : Ggl = (L —1)m, ,

where m; > £ is a power of p = char IFy. The zero divisor of ug in G} has the
form

()G = D, = 3" P (8.16)
j=1

with pairwise distinct places Pj(i) of degree one, and the divisor of the differ-
ential (") = dug/ug in the function field G¥ is given by

(1) = (ke = 2)A; + (™ ~2)B; - D; (8.17)
with positive divisors A;, B; and

(supp A; Usupp B;) Nsupp D; =0 .

Moreover the degrees of the divisors A;, B; satisfy

e deg A; = e{® - deg B; = n; /(0 — 1) . (8.18)
with certain integers ego)’ el(oo). Now we define the divisor H; € Div(G}) as

2el?

i —

2

(c0)
2 =2
H; = ( JAi+ (——)B; .
At this point we have used the assumption that ¢ (and hence ¢) is even. Since
2H; — D; = (") by (8.17), it follows from Corollary 8.1.3 that the code
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Ci = Cg(Di,Hi) g ]FZ’Z

is self-dual. By Theorem 2.2.2 its minimum distance d; := d(C;) can be esti-
mated by
d; > deg(D; — H;) = deg D; — deg H;
el — 2 el 2
e (2o () ae
1 o
>n; — 3 (éego) deg A; + el(. ) deg Bi)
. E(Z ni o )
I R

_ ‘<1 1
AT

(here we have used Equations (8.16) and (8.18)). Therefore we obtain

1
(=1

d;

— =
Uz

51’ = 5(07,) =

N —

8.5 Decoding AG Codes

For a code to have practical use, it is essential that one has an effective
decoding algorithm. Let us briefly explain what this means. We consider an
[n,k,d] code C C IFy. Then C' is t-error correcting for all ¢ < (d —1)/2, cf.
Section 2.1. Suppose a € IF‘ZL is an n-tuple such that

a=c+e, (8.19)
where ¢ € C' is a codeword and e € IF; has weight
wt(e) < (d—1)/2. (8.20)

Then ¢ is uniquely determined by @ and the conditions (8.19) and (8.20);
it is the unique codeword whose distance to a is minimal. The vector e in
(8.19) is called the error vector of a with respect to C. A decoding algorithm
is an algorithm which calculates for every element a € IF} satisfying (8.19)
and (8.20) the corresponding codeword ¢ (or, equivalently, the corresponding
error vector e).

For algebraic geometry codes a very general decoding algorithm is avail-
able. We consider the code

Cgo = Co(D,G) (8.21)
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with D = Py + ...+ P, and supp D Nsupp G = @, as always in this chapter.
For b = (by,...,b,) € Fy and f € Z(G) we define the syndrome

n

[b7 f] = Z b, - f(Pu) . (8.22)

v=1

The symbol | , ] is obviously bilinear. As Cy; is the dual of C ¢ (D, G) (Theorem
2.2.8), we have

Co=1{belF, [[bf]=0 foral f e Z(G)}. (8.23)

Let ¢t > 0 be an integer and let G1 be a divisor of F/IF, satisfying the following
conditions:

supp G1 Nsupp D =0 ,
deg Gy <deg G —(29—2)—t, (8.24)

We will show that under these assumptions all errors of weight < ¢ can be
corrected by means of a simple algorithm.

Remark 8.5.1. Let d* = deg G — (29 — 2) be the designed distance of Cl, cf.
Section 2.2. We know that d* < d(Cy) where d(Cp,) denotes the minimum
distance of C (Theorem 2.2.7). The following assertions hold:

(a) If Gy and t satisfy (8.24) then ¢t < (d* —1)/2.

(b)) T 0 <t <(d*—1—g)/2 then there exists a divisor G such that (8.24) is
satisfied.

Proof. (a) By (8.24) and Inequality (1.21) of Chapter 1 we have ¢t < ¢(G1) —
1 <degG; and t < deg G — deg G — 2¢g + 1. Adding these inequalities yields
2t <degG+1—2g=d"—1, hence t < (d* —1)/2.

(b) Now we assume that ¢ < (d* — 1 — ¢)/2. We choose a divisor G such that
degGy =g+t and suppGiNsuppD =10. (8.25)

This is possible by the Approximation Theorem. By the Riemann-Roch
Theorem,
UGh)>degGr+1—g=t+1>t.

The assumption ¢ < (d* — 1 — g)/2 is equivalent to d* — 2t — g > 1. So
degG — (2g—2)—t—degGy =d"—2t—g>0.

This proves (8.24). O
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From now on we assume (8.24). Suppose that
a=c+e with c€ Co and wt(e) <t. (8.26)

Let
e=(e1,...,en) and I:'={v|1<v<n and e, #0} (8.27)

be the set of error positions (so |I| = wt(e) < t). In the first step of the de-
coding algorithm we shall construct an error locator function; i.e., an element
0 # f € £(G1) with the property f(P,) = 0 for all v € I. That means that
the error positions are contained in the set

N(f)={v|1<v<n and f(P,)=0}. (8.28)

In the second step we determine the error values e, for all v € N(f). As
e, = 0 for v ¢ N(f), this yields the error vector e. We shall see that each of
these steps requires the solution of a certain system of linear equations. We

specify bases

{f17'-'7fl} Of X(Gl)a

{gla'~'7gk} Of g(G_Gl)a

{h1,...,hm} of Z(G). (8.29)
Note that the choice of these bases does not depend on the vector a which is
to be decoded. It is obvious that frg, € Z(G) for 1 <A <land1<p<k.

Consider the following system of linear equations which plays an essential
role in the decoding algorithm.

1
Z[a,fkgp]mc)\:(), for p=1,... k. (8.30)
A=1

Proposition 8.5.2. With the above notations and assumptions (in particular
(8.24) and (8.26) - (8.29)), the system (8.30) has a non-trivial solution. If

(a1,...,q) is a non-trivial solution of (8.30) we set
l
f= Z arxfn € Z(Gy). (8.31)
A=1
Then f(P,) = 0 for all error positions v € I; i.e., f is an error locator
function.

Proof. I C {1,...,n} is the set of error positions, see (8.27). As |I| < t by
(8.26) and £(G1) > t by (8.24), we have {(G1 — >, .; P,) > 0, cf. Lemma
1.4.8. Choose 0 # z € Z(G1 — >, P,) and write

l

z = Z’y;j,\ with v\ € IF,.
A=1
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Then zg, € Z(G) for 1 < p <k, and we obtain

1
[a, 2g,] = Z a, fagp] - - (8.32)

On the other hand, since ¢ € C and zg, € Z(G), we have [c, zg,] = 0 by
(8.23). Hence

la,zg,] = [c+ e, 29, = [e, 2g,] = Zeu -2(P,) - g,(P,)=0. (8.33)

v=1

(Observe that e, = 0 for v ¢ I and 2(P,) = 0 for v € I, because z is an element
of £(G1—-3,c; P,).) Equations (8.32) and (8.33) show that (y1,...,v) is a
non-trivial solution of (8.30).

Now we take an arbitrary solution (a,...,q;) of the system (8.30) and
set f = Zl/\zl ax fr. Suppose there is an error position vy € I such that

f(P,,) # 0. By (8.24),

deg(G—G1 —ZP,,) > deg G — deg Gy —t > 29 — 2.
vel

This implies

2(G-G -3 R)cz(G-Gi~ > P)

ver vel\{vo}

So we find an element h € £ (G — G;) with h(P,,) # 0 and h(P,) = 0 for all
v eI\ {vy}. We obtain

la, fh] = Zey- P,)-h(P,) = ey, - f(Py,) h(P,,)#0. (8.34)

However, h is a linear combination of g1, ..., gr and

z
a, fgp] = Z a, fxgp) - ax =0,

since (a1, ..., ;) is a solution of (8.30). This contradicts (8.34). O

The cardinality of N(f) ={v|1 <v <nand f(P,) = 0} does not exceed
the degree of G, because f € X(Gl — ZueN(f) Pl,) implies

deg Gy — |[N(f)| > 0. (8.35)

Observe that in general not all v € N(f) are actually error positions.



8.5 Decoding AG Codes 307

In order to determine the error values e,, we consider another system of
linear equations:

Z hy(Py) -z = [a, h,), for p=1,....m. (8.36)
veN(f)

(Recall that {hy,...,h,} is a basis of Z(G), see (8.29).)

Proposition 8.5.3. Under the above hypotheses the system (8.36) has a
unique solution, namely the vector (e, ) en(s)-

Proof. As h,, € Z(G), we have

[aa h#} = [C+evh#} = [evh#] = Zeu . h#(Pu) = Z h,u(Pu) c€y .
v=1 vEN(f)

(Note that e, = 0 for v ¢ N(f) by Proposition 8.5.2.) Hence (e,),en(y) is a
solution of the system (8.36).

Suppose that (b,),en(s) is another solution of (8.36). Define the vector
b= (b1,...,bs) € Fy by setting b, := 0 for v ¢ N(f). Then

[b, hu] = Z hu(Py) - by = [a, hy] = [e; by
vEN(f)

for u=1,...,m. As {hy,..., hy} is a basis of Z(G), this implies b —e € Cp,
by (8.23). The weight of b — e can be estimated as follows:

wt(b—e) <|IN(f)] <degGy < degG — (29 —2) =d*.

(We have used (8.35) and (8.24) once again.) Since the minimum distance of
Cq is > d* we conclude that b = e. 0

Proposition 8.5.2 and 8.5.3 are summarized in the following decoding al-
gorithm for the code Cp. We maintain all previous notation.

Decoding Algorithm 8.5.4. Let an element a € IFy be given.

(1) Find a non-trivial solution (o, ...,a;) of the system (8.30), and set f :=
Zl)\:1 axfx- (If (8.30) has only the trivial solution, we cannot decode a.)

(2) Determine N(f) ={v|1 <v <mn and f(P,) = 0}. (This can be done by
evaluating f(P,) = Zl)\zl axfa(P,) forv=1,...,n.)

(3) If the system (8.36) has a wunique solution (e,),en(s), we set e :=
(e1,...,en) with e, = 0 for v & N(f). (If (8.36) is not uniquely solvable,
we cannot decode a.)

(4) Check whether ¢ := a—e is an element of C; (by calculating the syndromes

le,hy) forp=1,...,m) and whether wt(e) < t. If the answer is yes, we decode
a to the codeword c. If the answer is no, we cannot decode a.
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Theorem 8.5.5 (Skorobogatov-Vladut). (a) Provided Gy and t satisfy
(8.24), the algorithm 8.5.4 decodes all errors of weight < t.

(b) One can choose the divisor Gy in such a way that the algorithm 8.5.4
decodes all errors e of weight

wi(e) < (d" —1-g)/2,
where d* = deg G — (29 — 2) is the designed distance of C\,.

Proof. (a) is obvious from Proposition 8.5.2 and 8.5.3, and (b) follows from
Remark 8.5.1(b). O

Remark 8.5.6. (a) It can happen that steps (1) - (3) of the decoding algorithm
work but that a — e & Cp or wt(e) > t. In either case there is no codeword
¢ € Cp with the property wt(c) < t.

(b) The decoding algorithm 8.5.4 is due to A.N.Skorobogatov and S.G.Vladut,
following an idea of J.Justesen et al. One deficiency of the algorithm is that it
decodes (in general) only errors of weight < (d*—1—g)/2 but not all errors of
weight < (d* —1)/2. There are several variants of the algorithm which correct,
under additional hypotheses, more than (d* — 1 — g)/2 errors.

(¢) There are some completely different approaches to decode AG codes: we
mention the method due to G. L. Feng and T. R. N. Rao (see Chapter 10
in [32]), and the decoding algorithm of M. Sudan (see [17]); this algorithm is
known as list decoding.

8.6 Exercises

8.1. Let F' be a function field over a finite field IF,. We consider divisors G
and D = P, +...4+ P,, where P, ..., P, are distinct places of degree one and
supp G Nsupp D = ) as usual. Show that C»(D,G) = C¢(c(D),s(G)) and
Cn(D,G) = Cq(o(D),o(G)), for every automorphism o of F/TF,.

8.2. (i) Show that the Tsfasman-Vladut-Zink Bound improves the Gilbert-
Varshamov Bound for all ¢ = £2 > 49, but not for ¢ < 25.

(i) Let ¢ = £3 be a cube. Show that the bound

improves the Gilbert-Varshamov bound for all ¢ = ¢ > 343 (see Remark
8.4.8).

8.3. (This exercise will be useful for the following exercises.) Consider the
tower G* = (G§, G5, Gs,...) over the field F, with ¢ = ¢? as in Theorem
7.4.15. It has amongst others the following properties:
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(1) G§ =1 ,(up) is rational,

(2) all extensions G} /G are Galois,

(3) the only places of I, (ug) which are ramified in some extension G}, /G,
are the places (up = 1) and (ug = 00),

(4) the place (ug = 0) splits completely in all extensions G% /GF.

Show that the ramification indices of the places (ug = 1) and (ug = o) in
G} /G tend to infinity, as n — oo.

8.4. A code C' C TF is said to be transitive, if its automorphism group Aut (C)
is a transitive subgroup of the symmetric group S, (i.e., for any two indices
1,7 € {1,2,...,n} there is an automorphism 7 € Aut (C') such that (i) = j).
This is obviously a generalization of the notion of cyclic codes.

Show that the class of transitive codes over IF,, where ¢ = (2 is a square,
attains the Tsfasman-Vladut-Zink Bound. More precisely, let R, > 0 be real
numbers with R = 1—3§—1/(¢—1). Show that there exists a sequence (C}),;>0
of linear codes over IF, with parameters [n;, k;, d;] having the following prop-
erties:

(1) all C; are transitive,

(2) n; — oo as j — oo,

(3) lim;_,o kj/nj > R and lim;_,o dj/n; > 0.
8.5. Assume that ¢ = (2 is a square. Let 0 < R < 1/2 and § > 0 with
R=1-§—1/(¢—1). Show that there is a sequence (C;);>¢ of linear codes
over IF, with parameters [n;, k;, d;] having the following properties:

(1) all C; are self-orthogonal; i.e., C; C C'jl,

(2) n; — oo as j — o0,

(3) im; o kj/n; > R and lim;_,o. d;/n; > 0,

(4) also the dual codes (C'Jl) j>o0 attain the Tsfasman-Vladut-Zink

Bound.

8.6. Let ¢ = /2 be a square. Show that there exists a sequence of self-dual
codes (C;);>o over IF, with parameters [n;, k;, d;] such that n; — co and
liminfézl—L .
i—oo M, 2 (-1

Hint. This exercise is just the assertion of Theorem 8.4.9 which we proved
only in the case where ¢ is even. So you can assume now that ¢ is odd. Again
use the tower (G, G5, G35, ...) as in Theorem 7.4.15. Consider the elements ug
and to as defined in Equation (7.26); they satisfy the equation uy = tg_l + 1.
Choose € € IF; with ¢/~ = —1 and consider the differential w := € - dto/uo
in G7. Show that its divisor has the form (w) = 2H — D where H > 0 and
D is the sum of rational places of G7,. Calculate the residues of w at these
rational places and show that they are squares in IFqX. Conclude that the code
C» (D, H) is equivalent to a self-dual code (see Definition 2.2.13).



9

Subfield Subcodes and Trace Codes

A very useful method of constructing codes over IFy is to restrict codes which
are defined over an extension field IF = . This means that, given a code C' C
(IF4m )™, one considers the subfield subcode Clr, = CNIFy. Many well-known
codes can be defined in this way, for instance BCH codes, Goppa codes and,
more generally, alternant codes (cf. Section 2.3).

There is yet another method of defining a code over IF, if a code over
IF,m is given. This construction uses the trace mapping Tr : Fym — IF,.
An important class of codes which can be represented as trace codes in a
natural manner is the class of cyclic codes (see Example 9.2.4 below). The
subfield subcode construction and the trace construction are closely related
by Delsarte’s Theorem 9.1.2.

In this chapter we present some results on subfield subcodes and trace
codes. It is a surprising fact that the study of trace codes leads to a second
non-trivial relation between coding theory and the theory of algebraic function
fields, see Section 9.2.

9.1 On the Dimension of Subfield Subcodes and Trace
Codes

We consider the field extension IF,m /IF; this is a Galois extension of degree
[IFgm : IF,] = m. Let
Tr: Fem — IF,

denote the trace mapping (cf. Appendix A). For a = (a1,...,a,) € (Fgm)"
we define

Tr(a) := (Tr(ar), ..., Tr(an)) € Y.

In this manner we obtain an IF -linear map Tr : (IFm )" — Ty .

H. Stichtenoth, Algebraic Function Fields and Codes, 311
Graduate Texts in Mathematics 254,
(© Springer-Verlag Berlin Heidelberg 2009
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Definition 9.1.1. Let C C (IFym)™ be a code over IF m

(a) Clw, := CNIFy is called the subfield subcode (or the restriction of C to
F,).

(b) Tr(C) :={Tr(c) |c € C} C Iy is called the trace code of C.

Note that the subfield subcode and the trace code of a code C' C (IFym )™ are
codes over IF, of length n.

Theorem 9.1.2 (Delsarte). For a code C' over IF jm,

(Clw,) " = Tr(CH).

Proof. Recall that we denote by (, ) the canonical inner product on IFy (resp.
on (IFgm)™). In order to prove (Clg,)* 2 Tr(C*) we have to show that

(¢, Tr(a)) =0 forall c€Cly, and a € C*t. (9.1)

Write ¢ = (¢1,...,¢,) and a = (aq,. .., ay,); then

(¢, Tr(a ch Tr(a;) Zczal = Tr({a,c)) = Tr(0) = 0.

We have used here the IF,-linearity of the trace and the fact that (a,c) =0
(which follows from ¢ € C and a € C). This proves (9.1).

Next we show that (C|p,)* C Tr(C*). This assertion is equivalent to
Tr(CH)* C Cl, - (9.2)

Suppose that (9.2) does not hold. Then there exists some u € Tr(C+)+\ C,
hence an element v € C+ with (u,v) # 0. As Tr : Fym — IF, is not the zero
map, there is an element v € IF,m such that Tr(y - (u, v)) # 0. Hence

{u, Tr(yv)) = Tr({u, yv)) = Tr(y - {u,0)) # 0.
But on the other hand we have (u, Tr(yv)) = 0 because u € Tr(C+)+ and
yv € C+. This contradiction proves (9.2). O

There are obvious upper bounds for the dimension of subfield subcodes
and trace codes, namely

dim Clp, < dimC (9.3)

and
dim Tr(C) <m-dimC'. (9.4)

(9.3) follows from the fact that a basis of C|r, over IF, is also linearly in-
dependent over IF,m, and (9.4) follows since Tr : C' — Tr(C) is a surjective
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IF ;-linear mapping and the dimension of C, regarded as a vector space over
the field IFy, is m - dim C.

Using Delsarte’s Theorem we also obtain lower bounds for the dimensions
of subfield subcodes and trace codes:

Lemma 9.1.3. Let C be a code of length n over IFgm. Then
dim C < dimTr(C) < m - dim C (9.5)

and
dimC — (m —1)(n —dim C) < dim Clp, < dimC'. (9.6)

Proof. By Delsarte’s Theorem and (9.3) we have
dim Tr(C) = dim(C*|p,)* =n — dimC*|p, > n—dimC*+ = dim C.

This proves (9.5). The lower estimate in (9.6) is proved in an analogous
manner. O

The bounds given in Lemma 9.1.3 are general bounds, valid for each code
over IFgm. Our aim is to improve these estimates in specific cases, in particular
for certain algebraic geometry codes.

In the following, a subcode of a code C' C (IF;m )™ means an IF ;m-subspace
U C C. By U? we denote the set

U?:={(ai,...,ad)|(a1,...,a,) € U}.
It is obvious that U? is also an IF ;m-subspace of (IF ;m)™.

Proposition 9.1.4. Let C be a code over IFgm and let U C C be a subcode
with the additional property U1 C C. Then

dim Tr(C) <m - (dim C — dim U) + dim U|, .

Proof. We consider the IFy-linear map ¢ : U — C, given by ¢(u) := u? — u.
The kernel of ¢ is easily seen to be

Ker(¢) = Ul, . (9.7)

Since Tr(a?) = Tr(a) for a € IFym, the image of ¢ is contained in the kernel
of the trace map Tr: C — Tr(C); i.e.,

Im(¢) C Ker(Tr). (9.8)
From (9.7) and (9.8) we obtain

dim Tr(C) = dimp, C — dim Ker(Tr) < m - dim C — dim Im(¢)
=m-dimC — (dimp, U — dim Ker(¢))
=m - (dimC — dimU) + dimU|p, .
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Note that Proposition 9.1.4 improves the upper bound (9.5) for the di-
mension of trace codes. We also obtain an improvement of the lower bound
(9.6) for the dimension of subfield subcodes:

Corollary 9.1.5. Let C be a code of length n over IFym and let V.C C* be a
subcode of C+ satisfying V4 C C*+. Then

dimClg, > dimC — (m —1)(n —dim C) +m - dim V' — dim V|,
>dimC — (m—1)(n —dimC — dim V).

Proof. We use Proposition 9.1.4 and Delsarte’s Theorem:

dim Clr, = dim Tr(CH)* = n — dim Tr(CH)
>n— (m- (dimC*t —dim V) + dim V)
=dimC — (m—1)(n—dimC) + m-dimV — dim V|, .

Now we apply the above results to AG codes.

Theorem 9.1.6. Let ' be an algebraic function field of genus g over the
constant field I¥ gm . Consider the AG codes

Cy :=Cg(D,G) and Cgq:=Cq(D,G), (9.9)
where D = Py + ...+ P, (with pairwise distinct places Py, ..., P, of degree

one), supp D Nsupp G = 0 and deg G < n. Suppose that G1 is a divisor of F
satisfying

G <G and q¢-G1 <G. (9.10)
Then
. m(l(G) —(G1))+1 if Gi1 >0,
A€o = {m(é(G) ey fazo, M
and
. n—1—m(tG) - UGy)) if G1 >0,
dim Celw, 2 {n — m((G) - £(GY)) if G20, (9.12)

Proof. Let U := C(D,G4). Tt follows from (9.10) that U? C C». We can
apply Proposition 9.1.4 and obtain
dim Tr(Cy) < m(l(G) — £(G1)) +dim U, . (9.13)

So we have to determine the subfield subcode U, = C2 (D, G1)|r,. Consider
an element € .Z(G4) such that z(P;) € F, for i =1,...,n. Then 27 — x €
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Z(G) and (27 — x)(P;) = 0, hence 2?7 — x € Z(G — D). Since we assumed
that deg(G — D) < 0, it follows that z? — z = 0; i.e., z € IF,,. Consequently

1 if Gy >0
dim U|IF‘( = Zf t="
! 0 Zf G1 Z 0.
Substituting this into (9.13) we get the desired estimate (9.11) for the dimen-
sion of Tr(Cg).
The corresponding estimate (9.12) for the dimension of Co|, follows from
Corollary 9.1.5. O

Remark 9.1.7. In addition to the hypotheses of Theorem 9.1.6 assume that
deg G; > 2g — 2. Then we can replace the terms ¢(G) and ¢(G1) in (9.11) and
(9.12) by deg G and deg G;. This follows immediately from the Riemann-Roch
Theorem.

Example 9.1.8. As an illustration of Theorem 9.1.6 we consider a Goppa code

I'(L,g(z)) = Co(Dr,Go — Py)l|r,

(notation as in Definition 2.3.10 and Proposition 2.3.11). Let ¢1(2) € Fym[2]
be the polynomial of maximal degree such that g;(z)? divides g(z). We set
G1 := (91(2))o — Ps where (g1(2))o is the zero divisor of ¢;(z), and obtain
from (9.12) the estimate

dim I'(L, g(2)) > n — m(deg g(z) — deg g1 (%)) . (9.14)

In many cases, equality holds in (9.14). This will be shown in Proposition
9.2.13.

9.2 Weights of Trace Codes

In this section we investigate some specific trace codes. The main idea is to
relate the weights of their codewords to the number of rational places in certain
algebraic function fields. The Hasse-Weil-Serre Bound then yields estimates
for the weights and the minimum distance of these codes.

First we introduce the codes to be considered.

Definition 9.2.1. Let F' be an algebraic function field over the constant
field Wogm and let V. C F be a finite-dimensional IF g -subspace of F. Let
Py,..., P, € Pp be n distinct places of degree one such that vp,(f) > 0 for
all f eV andi=1,...,n. Set D := P, + ...+ P,. Then we define

CD,V):={(f(P),....f(P)) [ f €V} C (Fgm)"
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and

Trp(V) :=Te(C(D,V)) C Iy ;
i.e., Trp(V) is the trace code of C(D,V) with respect to the extension
Fq"Y}/qu

Note that C(D, V) is a code over IFym, whereas Trp (V) is a code over IFy.
Our main objective in this section is to study the codes Trp (V). Let us first
give some examples of such codes.

Ezample 9.2.2. The codes C(D, V') are a generalization of algebraic geometry
codes. Choosing V := Z(G) where G is a divisor with supp G Nsupp D = 0
as usual, we obtain C(D,V) = C (D, G).

Ezample 9.2.5. Every code C' C IFy over IF, can be represented as C' =
Trp (V) for a suitable choice of V and D. This can be seen as follows. Choose
m € IN sufficiently large such that ¢" > n. Let F := IF;m(z) be the rational
function field over IFym. Choose n distinct elements oy, ..., a, € Fym and
denote by P; € IPr the zero of z — «;. Choose a basis {a(l), .. ,a(’“)} of C
over TF,. Write al) = (agj)7 e 7a£f)). For j = 1,...,k choose a polynomial
fi = fi(z) € Fym[2] satisfying f;(a;) = al(]) fori =1,...,n. Let V.C F be
the IFym-vector space generated by fi,..., fx. Then it is easily verified that
C=Trp(V).

More interesting than the previous example is the fact that specific classes
of codes over IF; can be represented as trace codes in a natural manner. In
the following we give such a representation for cyclic codes.

A code C over IF,; of length n is said to be cyclic if its automorphism group
Aut(C') contains the cyclic shift; i.e.,

(60,61,...,0774,1) c(C = (Cl,...,Cnfl,C()) eC.

As is common in coding theory, we identify IFy with the vector space of
polynomials of degree < n — 1 over IF, via

c=(Cop-iyCn_1) = c(x) =co+carx+...+cp1z" P €Fyfx].  (9.15)
We shall always assume that
ged(n,q) = 1. (9.16)

Let m be the least integer > 1 satisfying ¢”* = 1 mod n. Then the polynomial
z™ — 1 factors over the field IFy» 2 IF, as

n—1

2" —1=[]@-p), (9.17)

v=0
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where § € IF,m is a primitive n-th root of unity. All linear factors in (9.17)
are distinct.

Let us briefly recall some basic facts about cyclic codes, cf. [28]. Given
a cyclic code C' # {0} of length n over IF,, there exists a unique monic
polynomial g(x) € C of minimal degree; it is called the generator polynomial
of C'. The generator polynomial divides =™ — 1, so

9(@) = [ - 8"). (0.18)

vel

where (3 is a primitive n-th root of unity as in (9.17) and I is a certain subset
of {0,...,n—1}. The elements 5” with v € I are called the zeros of C' because
one has the following description of C: for ¢(x) € IF,[z] with degc(x) <n—1,

clx)eC<=¢(f")=0 forall vel. (9.19)

The conditions on the right-hand side of (9.19) can be weakened. To this end
we define the cyclotomic coset C(i) of an integer i € Z, 0 < i <n —1, by

Cli):={j€Z|0<j<n—1 and j=q'i modn for some 1>0}.

It is easily checked that either C(i) = C(i') or C(¢) N C(i') = (). Hence the
set {0,1,...,n — 1} is partitioned into pairwise disjoint cyclotomic cosets;
e, {0,1,...,n =1} = U, Cu (with s < n and C, = C(i,,) for some i,
0<i, <n—1).

For v € Z denote by U the unique integer in {0,1,...,n — 1} with v =
vmodn. Let ) # M C {0,1,...,n—1}. A subset My C Z is called a complete
set of cyclotomic coset representatives of M, if for each v € M there exists a
unique vy € My such that 7y € C(v). It is evident that one can always find a
complete set of cyclotomic coset representatives of M which is contained in
{0,1,...,n—1}.

Now consider the set I C {0,1,...,n—1} given by (9.18); i.e., {#¥ |v € I'}
is the set of zeros of the cyclic code C. Let I be a complete set of cyclotomic
coset representatives of I. Since for ¢(z) € IF,[z],

(BY) =0 ¢(p?") =0,
we can replace (9.19) by the following condition:
clx) e C <= c(p")=0 forall vel, (9.20)

where ¢(z) € IF,[z] and degc(z) < n —1.

The dual code C* of a cyclic code C' is cyclic as well. Let g(z) € IF,[z] be
the generator polynomial of C' and

h(z) := (2" —1)/g(z) € IF,[x]. (9.21)
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The polynomial h(z) is called the check polynomial of C. The reciprocal poly-
nomial h*(x) of h(x),

Bt (z) := h(0)~1 - zdesh@) L p gty (9.22)
is the generator polynomial of C-. Write
ht(x)=[[(@-p°) with JC{0,1,...,n—1}. (9.23)
peJ
It follows from (9.21), (9.22) and (9.23) that

peJ <= ht(B)=0<=h({B")=0
— g A0« p# —vmodn foral vel.

Let Jy be a complete set of cyclotomic coset representatives of J. From (9.20)
we obtain for a(z) = ag + a1z + ... + ap—12" "t € Fy[z],

a(z) € Ct <= a(B*)=0 forall pcJy. (9.24)

Using the canonical inner product (, ) on (IF,m)", the equation a(3”) = 0
can also be written as

{(ag, a1, an—1),(1,8°,6%,...,50"71r)) = 0. (9.25)

Now we are in a position to represent the given cyclic code C' as a trace
code. We consider the rational function field F' = IF m(z) and the vector
space V C F generated by the set {z” | p € Jy}. Denote by P; € IPr the zero of
z—B3""tandset D = P;+...+P,. By definition, the code C(D, V) is generated
— as a vector space over IF = — by the vectors (1,37, %, ..., 3("=D¢) with
p € Jo. We conclude from (9.24) and (9.25) that

Ct=0CD, V), .
Applying Delsarte’s theorem we finally obtain
1L
C=(C(D,V)p,)” =Tx(C(D,V)) =Trp(V).

We summarize:

Proposition 9.2.4. Let C' be a cyclic code of length n over IF, with generator
polynomial g(x), and let Fym = IF,(8) where 3 is a primitive n-th root of
unity. Let J = {0 < p < n—1]g(87°) # 0} and let Jy be a complete set
of cyclotomic coset representatives of J. Consider the rational function field
F =1TFyn(z) over Fym and the IFgm-vector space V- C F which is generated
by {z°|p € Jo}. Then C = Trp(V) where D =P, + ...+ P, and P; € IPp is
the zero divisor of z — 371 (i=1,...,n).
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We return to the general situation as described at the beginning of this
section. Given a finite-dimensional vector space {0} # V C F, there exists
a unique effective divisor A of smallest degree such that (). < A for all
0 # f € V. One can describe A as follows: choose a basis {f1,..., fx} of V,
then

vp(A) = max{vp((fi)e) |1 <i <k} (9.26)
for all P € IPp. For instance, if V = 2(G) and G = G — G_ where G4 >0

and G_ > 0, then A < G;. We associate with the divisor A a second divisor
AD defined by
AV= " P (9.27)
Pesupp A

To avoid complications, we restrict ourselves to the case where ¢ = p is a
prime number and F' is the rational function field over IF,m.

Theorem 9.2.5. Let F = IF,m(z) be the rational function field over IF,m
(where p is a prime number), D = Py + ...+ P, with pairwise distinct places
P; € IPr of degree one, and s := p"™+1—n. Let V C F be a finite-dimensional
IF,m -subspace of F' such that vp,(f) >0 forall f € V andi=1,...,n. Then
the weight w of a codeword in Trp (V') satisfies w =0, w =n or

p—1
—s

)

-1 -1
‘w e L(—Q + deg A + deg A°) - [2p™/?] +
p 2p
where the divisors A and A° are defined by (9.26) and (9.27).

The proof of this theorem requires some preparation. Let us first introduce
some notation. For f € V let

TrD(f) = (Tr(f(Pl))v - ?Tr(f(Pn))) € IF;Lv
so that Trp(V) = {Trp(f) | f e V}.

Definition 9.2.6. An element f € F is said to be degenerate if f can be
written as f =+ (h? — h), with v € Fpm and h € F. Otherwise f is called
non-degenerate.

Lemma 9.2.7. Suppose f € V is degenerate. Then
Trp(f) = (v, ...,0)  with a € TF).
Hence the weight of Trp(f) is 0 or n.

Proof. Write f =+ (h? —h) with v € IF,m and h € F. Since vp,(f) > 0, the
Triangle Inequality yields vp, (h) > 0 for 1 < i < n. Setting ~; := h(FP;) € IFpm
we obtain
Tr(f(F)) = Tr(y) + Tr(y —w) = Tr(9)
independent of ¢ (note that Tr is the trace mapping to IF,, so Tr(v)) = Tr(v:)).
0
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The non-degenerate case is clearly more interesting. In the following propo-
sition we retain notation of Theorem 9.2.5.

Proposition 9.2.8. Suppose f € V is non-degenerate. Then the polynomial
oY) :=YP-Y — f € F[Y] is irreducible over F. Let Ey := F(y) where y is
a root of p(Y); i.e.,

Ey=F(y) with y*—y=F.

The field extension Ey/F is cyclic of degree p, and IFpm is the full constant
field of Ey. Let S := {P € IPp|degP =1 and P ¢ supp D}, so |S| = s =
p™+1—n. Let Si: {Q € Pg, |degQ =1 and QN F' € S}, and denote by 5
the cardinality of S. Then

0<35<ps, (9.28)
and the weight wy := w(Trp(f)) is given by the formula
N(FEf)—5
wp=n— (;)5. (9.29)

(As usual, N(Ey) denotes the number of all places of degree one of E¢/IF,m ).

Proof. We use some facts about Artin-Schreier extensions, cf. Appendix A.
The polynomial ¢(Y) = YP—Y — f is either irreducible in F[Y] or it has a root
in F;i.e., f = hP—h with h € F. Since f is assumed to be non-degenerate, the
irreducibility of ¢(Y") follows, and the field Ey = F(y) defined by y? —y = f
is a cyclic extension of F' of degree p.

Suppose that the constant field L of Ej is strictly larger than IF,n, the
constant field of F. Then L/IF,m is cyclic of degree p, hence L = IFm (4) with
0P —§ =e€ Fpm for some 6 € L. As 0 ¢ F', it is an Artin-Schreier generator
of Ef/F as well, so f = Ae+ (h? — h) with 0 # A € IF, and h € F (see
Appendix A). This is a contradiction as f is non-degenerate, and proves that
IF,m is the full constant field of E.

The support of D consists of two disjoint subsets {Py,...,P,} = NUZ
where

N :={P; € supp D|Tr(f(F)) # 0}

and
Z = {P; € supp D | Tr(f(F;)) = 0}.
We determine the decomposition behavior of the places P; € N (resp. Z) in
the extension E;/E.
Hilbert’s Theorem 90 (Appendix A) states that for v € IFpm,

Tr(y) =0<=~y=p" -3 for some € Fym . (9.30)

Let P, € N and ~; := f(P;). The Artin-Schreier polynomial Y? —Y — ~; has
no root in IF,m by (9.30), hence it is irreducible over IF,m. Now Kummer’s
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Theorem shows that P; has a unique extension @ € IPg,, with relative degree
f(Q|P;) = p. Consequently there are no places of E; of degree one lying over
a place P; € N.

Next we consider a place P; € Z. By (9.30), f(P;) can be written as
f(P) = v = BY — 3; with 8; € IF,m, hence the polynomial Y? —Y — ~;
factors over IF,» into p distinct linear factors. In this case Kummer’s Theorem
implies that P; decomposes into p distinct places of Ey, all of degree one.

The above considerations imply that
N(Ef) =8| +p-|Z] =5+ p(n—|NJ). (9.31)

Since wy = w(Trp(f)) = |N|, (9.29) is an immediate consequence of (9.31).
The estimate (9.28) is trivial. O

The next aim is to determine the genera g(Ey) of the function fields E
(where f € V is non-degenerate). Using Proposition 3.7.8 one can sometimes
calculate g(Ey) precisely. We shall be satisfied with an upper bound on g(Ey).

Lemma 9.2.9. Suppose f € V is non-degenerate. Then

—1
g(Ey) < Z’T(—z +deg A + deg A%),

where A and A° are defined by (9.26) and (9.27).

Proof. This lemma is an easy application of Proposition 3.7.8(d). Observe
that all places P ¢ supp A are unramified in E;/F, and for P € supp A the
integer mp (as defined in Proposition 3.7.8) is obviously bounded by vp(A).

O

Proof of Theorem 9.2.5. By Lemma 9.2.7 we can assume that w = wy is the
weight of a codeword Trp(f) where f € V is non-degenerate. We use the
notation of Proposition 9.2.8. Equation (9.29) yields

N(Ey) =p(n —wy) +5.
We subtract p™ + 1, apply the Serre Bound (Theorem 5.3.1) and obtain
|p(n —wys) +5— (" +1)| < g(Ep) - [20™7]. (9:32)
Since p™ + 1 = s + n, we have
pn—wyp)+5—(p"+1) = (p—n—pws+(5—s).

We substitute this into (9.32), divide by p and estimate g(Ef) by Lemma
9.2.9. The result is
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bt
<=,

p p

p—1 §—S’
wy — n

(—2+ deg A+ deg A°) - [2p™/%].  (9.33)

Finally (9.28) yields that —s < §—s < (p — 1)s, and therefore

il P 1
p p
This finishes the proof of Theorem 9.2.5. O

5.

Remark 9.2.10. (a) In some specific cases the number 5 can be determined
more precisely. In such cases, (9.33) provides a better estimate than does
Theorem 9.2.5, cf. Example 9.2.12 below.

(b) Clearly Theorem 9.2.5 gives non-trivial bounds for the weights of code-
words in Trp (V') only if the length of the code is large in comparison with m
and the degree of A. It turns out that — under this restriction — the estimates
given in Theorem 9.2.5 are often fairly good.

Corollary 9.2.11. Notation as in Theorem 9.2.5. If V £ {0} and V # IF,m,
the minimum distance d of Trp (V) is bounded from below by

d> p;ln 2 1);1(—2 + deg A + deg A°) - [2p™/?]. (9.34)

Proof. The assumption V # {0} and V # IF,= implies that deg A > 0, hence

the right-hand side of (9.34) is < n. Therefore it is sufficient to estimate the

weight w; = w(Trp(f)) for a non-degenerate element f € V. By (9.33),
p—1 s—s p—1

wy > n+ — —2 4+ deg A + deg A%) - [2p™/?].
1z 5 on ( g gA”) - ]

Since 5 > 0, the corollary follows. O

Ezample 9.2.12. We consider the dual C* of the BCH code C over IF, of
length n = p™ — 1 and designed distance § = 2¢t + 1 > 1. Thus

n—1

Zci,@i’\zo for )\:1,...,5—1},

=0

C = {(co,cl,...,cn,l) el

where § € IFpm is a primitive (p™ — 1)-th root of unity, cf. Definition 2.3.8.
Then the weight w of a codeword in the dual code C* satisfies w = 0,w =n
or
m 1 p—1)(2t—1
o - p (1__)|§( )( )

p 2p
In the case p = 2 this can be improved to

- [2p™/?]. (9.35)
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jw—2""1 < % 2T (9.36)

This is the so-called Carlitz- Uchiyama Bound, cf. [28]. Note that the bounds
(9.35) and (9.36) are not covered by Theorem 9.2.5.

We show now how (9.35) and (9.36) follow from our previous results. Let
F = TFpm(z). For 1 < i < nlet P, € IPp be the zero of z — 31, Set
D =P +...+ P, and (z2) = Py — Px. By Proposition 2.3.9 and Delsarte’s
Theorem,

Ct = (Cx(D,aPy+bP)"| . )" = Trp(L(aPy + bPs))

FP
wherea=—1land § =a-+b+2=>0-+1. Since 6 = 2t + 1 we find that
Ct =Trp(L(—Py + 2tPy)).

Let f € £ (—Py+2tPx) be non-degenerate. Consider the corresponding field
extension E; = F(y), defined by y? —y = f. Since f(Py) = 0, the place Py
has p extensions of degree one in Ey. The pole Py, of z ramifies in E;/F.
With notation as in Proposition 9.2.8 we obtain § = p + 1. Hence

1 9(Ey)

wr—(1=2= _pm < . 2pm/2 ,
g — (1 1) g < 22 oy
by (9.32). Since f € £ (—Py + 2tP~,), Proposition 3.7.8 yields
-1 -1)2t-1
o) <Pt (2t = 22D

This proves (9.35). In case p = 2 the genus is < (2¢ —2)/2 because the integer
mp,_, in Proposition 3.7.8 is relatively prime to the characteristic and therefore
mp,_ <2t —1 for p =2, which gives (9.36).

The method of proof of Theorem 9.2.5 can also be used to calculate pre-
cisely the dimension of certain trace codes and of their duals. We illustrate
this idea by an example which also shows that the estimate for the dimension
of trace codes given in Theorem 9.1.6 is often tight.

Proposition 9.2.13. Consider a Goppa code I'(L, g(z)) over IF,,, where L =
Fpm and g(z) € IFym[z] is a monic polynomial without zeros in IFpm (see

Definition 2.3.10). Write

with pairwise distinct irreducible monic polynomials hj(z) € Fpm(z] and ea-
ponents a; > 0. Let a; = pb; +¢; with 0 < c¢; <p—1. Set
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! !
g1(z) == H hi(2)%  and  ga(z) == H hj(z).

Jj=1 j=1
Suppose that
2(p™ +1) > (=2 +degg(2) + deg g2(2)) - [2p™] (9.37)
holds. Then the dimension of I'(L,g(z)) is

dim I'(L, g(2)) = p™ — m(deg g(z) — deg g1(2)) . (9.38)

Proof. By Proposition 2.3.11 and Delsarte’s Theorem we can represent the
dual code I'(L, g(2))* as follows:

D(L,g(2)* = (C2(D,Go = Pt )" = Trp(£(Go— Pw))  (9.39)

with the usual notation: P, is the pole divisor of z in the rational function
field F' = IFm (z), the divisor Gy is the zero divisor of the Goppa polynomial
g(z), and D is the sum of all places of F/IF,m of degree one except Py, (note
that L = IF,m ). The IF,-lincar map Trp : Z(Go — Px) — Trp(Z(Go — Px))
is surjective, and we wish to determine its kernel.

Claim. If f € £(Gy — Px) and Trp(f) = 0, then f is degenerate.

Proof of the Claim. Suppose that f € £(Gy — Px) is non-degenerate and
Trp(f) = 0. We consider the corresponding field extension Ey/F of degree
p (see Proposition 9.2.8). As f(P) = 0, the place P, decomposes into p
distinct places of Ef of degree one (by Kummer’s Theorem). So (9.29) yields
0=wy=p™ —p '(N(Ef) —p); ie,

N(Ef) =p(p™ +1). (9.40)

The genus g(Ey) is bounded by

9(Bg) < Do (-2 + degg(z) + deg ga(2) (9.41)

by Proposition 3.7.8(d). Combining (9.40), (9.41) and the Serre Bound we
obtain

-1
P +1) Sp™ 4 1+ Fo (<2 4+ degg(2) + deg gal2)) - 2077,

which contradicts (9.37). This proves the claim.

Let G1 := (g1(2))o denote the zero divisor of the polynomial g;(z). We
have an IF)-linear map

b Z(Gy — Py) — Ker(Trp) € Z(Go — Py),
' h —— hP —h.



9.3 Exercises 325

Since h? —h = 0 if and only if h € IF,, the kernel of ¢ is I, N £ (G1 — Px) =
{0}. Thus ¢ is injective.

¢ is also surjective. In order to see this, let f € Ker(Trp). By the claim,
f=h—h +v with hy € F,v € Fpm. From Trp(f) = 0 follows that
Tr(y) = 0. This implies by Hilbert’s Theorem 90 that v = o — « with
a € IFym. Hence f = h? — h with h := h; + a € F. The Triangle Inequality
shows that h € Z(G1) (because f = h? — h € Z(Gy)). Moreover it follows

from
[[ h=w=h"—h=feZ(Go~Px),

pelr,
that P is a zero of one of the factors h — p. This factor h— p lies in the space
Z(G1 — Px), hence f = (h—p)? — (h— pu) = ¢(h — u) is in the image of ¢.
In what follows, we denote by dim V' the dimension of a vector space V'
over IF,. We conclude that

dimKer(Trp) = dim .Z(G1 — Px) = m - deggi(z),
hence
dim T(L,g())* = dim Tep(Z(Go — Pac))
=dim.Z(Gy — Ps) — dimKer(Trp) = m(deg g(z) — deg g1 (%)) .
The dimension of the dual code is therefore

dim I'(L, g(2)) = p™ — m(deg g(z) — deg g1(2)) -

9.3 Exercises

9.1. Find a larger class of trace codes for which the method of Proposition
9.2.13 applies.

9.2. Consider the extension IF,m /IF, of degree m > 1 and an arbitrary IF,-
linear map A : IF;m — IF, which is not identically zero. Extend this to a map
A (IFgm)™ — TFy by setting A(c1, ..., ¢n) = (Mer), .-, A(cn)). For a code C
of length n over IF,m define

AMC) :={\e)|ce C},
which is obviously a code over IF, of length n. Show that A(C) = Tr (C).

9.3. Let C be a code of length n over IF m. Assume there is an r x n matrix
M of rank s with coefficients in I such that M - ¢* = 0 for all ¢ € C. Show
that

dim Cly, > dimC — (m —1)(n — s —dim C).

Give examples (with m > 1) of codes where the above estimate is sharp.
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9.4. Let n = p™ — 1 where p is prime and m > 1. Consider a cyclic code C'
over IF, of length n such that (1,1,...,1) ¢ C.

(i) Show that there exists a complete set of coset representatives for C* of the
form Jo = {p1,...,ps} C{1,...,n— 1} such that (p,p;) =1fori=1,...,s.
(#) Show that the weights w of nonzero codewords ¢ € C satisty

lw —p™ (1 - p)| < W 2pm?]

with p := max{p1,...,ps}.



Appendix A. Field Theory

We put together some facts from field theory that we frequently call upon.
Proofs can be found in all standard textbooks on algebra, e.g. [23]

A.1 Algebraic Field Extensions

Let L be a field that contains K as a subfield. Then L/K is called a field
extension. Considering L as a vector space over K, its dimension is called the
degree of L/K and denoted by [L : K].

L/K is said to be a finite extension if [L : K| = n < co. Then there exists
a basis {aq,...,a,} of L/K; i.e., every v € L has a unique representation
v = Y, ¢a; with ¢; € K. If L/K and M/L are finite extensions, then
M/K is finite as well, and the degree is [M : K] =[M : L] - [L : K].

An element o € L is algebraic over K if there is a non-zero polynomial
f(X) € K[X] (the polynomial ring over K) such that f(a) = 0. Among all
such polynomials there is a unique polynomial of smallest degree that is monic
(i.e., its leading coefficient is 1); this is called the minimal polynomial of «
over K. The minimal polynomial is irreducible in the ring K[X], hence it is
often called the irreducible polynomial of o over K.

The field extension L/K is called an algebraic extension if all elements
a € L are algebraic over K.

Let v1,...,7 € L. The smallest subfield of L that contains K and all ele-
ments 71, ..., is denoted by K(v1,...,7,). The extension K(v1,...,7.)/K
is finite if and only if all +; are algebraic over K.

In particular, @ € L is algebraic over K if and only if [K(«a) : K] < co. Let

p(X) € K[X] be the minimal polynomial of o over K and r = deg p(X). Then
[K(a) : K] =r, and the elements 1,a,a?,...,a"~! form a basis of K(a)/K.
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A.2 Embeddings and K-Isomorphisms

Consider field extensions Ly /K and Lo/K. A field homomorphism o : L; —
Lo is called an embedding of Ly into Ly over K, if o(a) = a for all a € K. It
follows that o is injective and yields an isomorphism of L; onto the subfield
o(Ly1) C Ls. A surjective (hence bijective) embedding of L; into Ly over K is
a K -isomorphism.

A.3 Adjoining Roots of Polynomials

Given a field K and a non-constant polynomial f(X) € K[X], there exists an
algebraic extension field L = K(«a) with f(«) = 0. If f(X) is irreducible, this
extension field is unique up to K-isomorphism. This means: if L' = K (/) is
another extension field with f(a’) = 0, then there exists a K-isomorphism
o: L — L' with o(a) = /. We say that L = K(«) is obtained by adjoining
a root of p(X) to K.

If f1(X),..., fr(X) € K[X] are monic polynomials of degree d; > 1, there
exists an extension field Z O K such that all f;(X) split into linear factors
Fi(X) = T2 (X — aij) with ay; € Z, and Z = K({ay; |1 <i<rand 1 <
j <d;}). The field Z is unique up to K-isomorphism; it is called the splitting
field of f1,..., fr over K.

A.4 Algebraic Closure

A field M is called algebraically closed if every polynomial f(X) € M[X] of
degree > 1 has a root in M.

For every field K there exists an algebraic extension K/K with an alge-
braically closed field K. The field K is unique up to K-isomorphism; it is
called the algebraic closure of K.

Given an algebraic field extension L/K, there exists an embedding o :
L — K over K. If [L : K| < oo, the number of distinct embeddings of L to
K over K is at most [L : K].

A.5 The Characteristic of a Field

Let K be a field and let 1 € K be the neutral element with respect to multipli-
cation. For each integer m > 0,let m =1+1+...+1 € K (m summands). If
m # 0 (the zero element of K) for all m > 0, we say that K has characteristic
zero. Otherwise there exists a unique prime number p € IN such that p = 0,
and K is said to have characteristic p. We use the abbreviation char K. It
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is convenient to identify an integer m € Z with the element m € K ; i.e., we
simply write m =m € K.

If char K = 0, then K contains the field @ of rational numbers (up to
isomorphism). In case char K = p > 0, K contains the field IF,, = Z/pZ.

In a field of characteristic p > 0 we have (a +0)? = a?+ b9 for all a,b € K
and ¢ =p’, j > 0.

A.6 Separable Polynomials

Let f(X) € K[X] be a monic polynomial of degree d > 1. Over some extension
field L O K, f(X) splits into linear factors f(X) = Hle(X — ;). The
polynomial f(X) is called separable if o; # o for all i # j; otherwise, f is an
inseparable polynomial.

If char K = 0, all irreducible polynomials are separable. In case char K =
p > 0, an irreducible polynomial f(X) = > a;X? € K[X] is separable if and
only if a; # 0 for some ¢ Z 0 mod p.

The derivative of f(X) =3 a;X* € K[X] is defined in the usual manner
by f(X) = Y ia; X! (where i € IN is considered as an element of K as
in A.5). An irreducible polynomial f(X) € K[X] is separable if and only if
J'(X) #0.

A.7 Separable Field Extensions

Let L/K be an algebraic field extension. An element « € L is called separable
over K if its minimal polynomial p(X) € K[X] is a separable polynomial.
L/K is a separable extension if all a € L are separable over K. If char K = 0,
then all algebraic extensions L/K are separable.

Let @ be an algebraically closed field, & O K, and suppose that L/K is a
finite extension of degree [L : K] = n. Then L/K is separable if and only if
there exist n distinct embeddings oy, ...,0, : L — @ over K (cf. A.4). In this
case an element v € L is in K if and only if o;(y) =~ fori=1,...,n.

Given a tower M O L DO K of algebraic field extensions, the extension
M/K is separable if and only if both extensions M /L and L/K are separable.

A.8 Purely Inseparable Extensions

Consider an algebraic extension L/K where char K = p > 0. An element
v € L is called purely inseparable over K if 4" € K for some 7 > 0. In this
case the minimal polynomial of  over K has the form f(X) = XP° — ¢ with
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¢ € K (and e < r). The extension L/K is purely inseparable if all elements
v € L are purely inseparable over K.

Given an arbitrary algebraic extension L/K, there exists a unique inter-
mediate field S, K C S C L, such that S/K is separable and L/S is purely
inseparable.

A.9 Perfect Fields

A field K is called perfect if all algebraic extensions L/K are separable. Fields
of characteristic 0 are always perfect. A field K of characteristic p > 0 is
perfect if and only if every a € K can be written as a = P, for some (€ K.
All finite fields are perfect (cf. A.15).

A.10 Simple Algebraic Extensions

An algebraic extension L/K is called simple if L = K(«) for some o € L.
The element « is called a primitive element for L/K. Every finite separable
algebraic field extension is simple.

Suppose that L = K(a1,...,,) is a finite separable extension and Ky C
K is an infinite subset of K. Then there exists a primitive element « of the
form a = >\, ¢;a; with ¢; € K.

A.11 Galois Extensions

For a field extension L/K we denote the group of automorphisms of L over
K by Aut(L/K). That is, an element o € Aut(L/K) is a K-isomorphism
of L onto L. If [L : K] < oo, the order of Aut(L/K) is always < [L : K].
The extension L/K is said to be Galois if the order of Aut(L/K) is [L : K].
In this case we call Gal(L/K) := Aut(L/K) the Galois group of L/K. The
following conditions are equivalent, for a field extension L/K of finite degree:
(1) L/K is Galois.
(2) L is the splitting field of separable polynomials f1(X),..., fr(X) €
KI[X] over K.
(3) L/K is separable, and every irreducible polynomial p(X) € K[X] that
has a root in L, splits into linear factors in L[X].
Given a finite separable extension L/K and an algebraically closed field
@ D L, there exists a unique field M, L C M C &, with the following proper-
ties:

(a) M/K is Galois, and
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(b) if LC N C @ and N/K is Galois, then M C N.

This field M is called the Galois closure of L/K. Another characterization
of M is that it is the compositum of the fields o(L) where o runs over all
embeddings of L into @ over K.

A.12 Galois Theory

We consider a Galois extension L/K with Galois group G = Gal(L/K). Let
U:={U CG|U is a subgroup of G}
and
F :={N|N is an intermediate field of L/K}.

For each intermediate field N of L/K the extension L/N is Galois, thus we
have a mapping

F — U,

N +— Gal(L/N). (%)

On the other hand, given a subgroup U C G we define the fized field of U
by
LY :={ceL|o(c)=c forall ocU}.

In this manner we obtain a mapping

u — F,

U~— LY. (%)
Now we can formulate the main results of Galois theory:

(1) The mappings (*) and (*+) are inverse to each other. They yield a 1-1
correspondence between U and F (Galois correspondence).

(2) For U € U we have
[L:LY]=0ordU and [LY:K]=(G:U).

3) If U C G is a subgroup, then U = Gal(L/LY).

4) If N is an intermediate field of L/ K, then N = LY with U = Gal(L/N).
5) For subgroups U,V C G we have U CV <«— LV o LV.

6) Let N7 and Ns be intermediate fields of L/K and N = NNy be the
compositum of Ny and Ny. Then Gal(L/N) = Gal(L/N;) N Gal(L/N3).

(7) If Ny and Ny are intermediate fields of L/K, then the Galois group
of L/(Ny N Ny) is the subgroup of G that is generated by Gal(L/N;7) and
Gal(L/Ny).

(8) A subgroup U C @G is a normal subgroup of G if and only if the
extension LY /K is Galois. In this case, Gal(LY /K) is isomorphic to the factor
group G/U.

(
(
(
(
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A.13 Cyclic Extensions

A Galois extension L/K is said to be cyclic if Gal(L/K) is a cyclic group. Two
special cases are of particular interest: Kummer extensions and Artin-Schreier
extensions.

(1) (Kummer Extensions.) Suppose that L/K is a cyclic extension of de-
gree [L : K] = n, where n is relatively prime to the characteristic of K, and K
contains all n-th roots of unity (i.e., the polynomial X™ — 1 splits into linear
factors in K[X]). Then there exists an element v € L such that L = K(v)
with

Y'=cc€ K, and c#w? forall we K and d|n,d>1. (o)

Such a field extension is called a Kummer Extension. The automorphisms
o € Gal(L/K) are given by o(y) = -+, where ( € K is an n-th root of unity.

Conversely, if K contains all n-th roots of unity (n relatively prime to
char K), and L = K () where ~ satisfies the conditions (o), then L/K is a
cyclic extension of degree n.

(2) (Artin-Schreier Extensions.) Let L/K be a cyclic extension of degree
[L : K] = p = char K. Then there exists an element v € L such that L = K(v),

YWY—~ry=ceK, and c#aP —« foral a € K . (00)

Such a field extension is called an Artin-Schreier Ezxtension of degree p. The
automorphisms of L/K are given by o(y) =y +v with v € Z/pZ C K.

An element vy, € L such that L = K (1) and 77 — 1 € K, is called an
Artin-Schreier generator for L/K. Any two Artin-Schreier generators v and
v of L/K are related as follows: 4 = -y + (b? —b) with 0 # p € Z/pZ and
be K.

Conversely, if we have a field extension L = K(v) where v satisfies (oo)
(and char K = p), then L/K is cyclic of degree p.

A.14 Norm and Trace

Let L/K be a field extension of degree [L : K| = n < co. Each element o € L
yields a K-linear map po : L — L, defined by o (2) := -z for z € L. We
define the norm (resp. the trace) of o with respect to the extension L/K by

Np k(o) :=det(pa) resp. Trpx(a) = Trace(ja) -
This means: if {a,...,a,} is a basis of L/K and

n
- oy = E QijO with aij; € K,
j=1
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then
Np/k(a) = det(aij)1gi,jgn and  Trpk (o Z Qi -

We note some properties of norms and traces.

(1) The norm map is multiplicative; i.e., Nz /g (a-8) = N /i () N /i (3)
for all o, 8 € L. Moreover, N, /g (a) =0 <= a =0, and for a € K we have
Ny /k(a) = a", withn = [L : K.

(2) For a, f € L and a € K the following hold:

Trp (o +B) = Trp/k(a) + Tro/k(8)
Trp/g(a-a)=a-Trp g(a), and
Trp/k(a) =n-a, withn=I[L:K].

In particular Try, /g is a K-linear map.
(3) If L/K and M/L are finite extensions, then

Trar k(@) = Trp i (Trag (@) and
NM/K(OZ) =S NL/K(NM/L(Q))

for all a € M.

(4) A finite field extension L/K is separable if and only if there exists an
element v € L such that Try g (y) # 0 (since the trace map is K-linear, it
follows then that Trp /x : L — K is surjective).

(5) Let f(X)=X"+a,_1 X" '+ ...+ ag € K[X] be the minimal poly-
nomial of o over K, and [L : K] =n =rs (with s = [L : K(«)]). Then

Ni/k(a) = (=1)"ag and Trp/x(a) = —sa,_1.
(6) Suppose now that L/K is separable of degree n. Consider the n distinct

embeddings o1,...,0, : L — @ of L over K into an algebraically closed field
& DO K. Then,

Nz k(o 1_[0z and  Trp/x(a ZU’

for a € L.
(7) In particular, if L/K is Galois with Galois group G = Gal(L/K), then

NL/K HU and ’I‘ITL/K(O{): ZJ(O&)

ceG e

for « € L.
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A.15 Finite Fields

Let p > 0 be a prime number and let ¢ = p™ be a power of p. Then there
exists a finite field IF, with |IF,| = ¢, and IF is unique up to isomorphism; it
is the splitting field of the polynomial X7 — X over the field IF), := Z /pZ. In
this manner, we obtain all finite fields of characteristic p.

The multiplicative group IF‘qX of IF, is a cyclic group of order ¢ — 1; i.e.,

Fq:{oaﬂvﬁ27"'aﬂq_l = 1}7

where 3 is a generator of ]qu.

Let m > 1. Then IF, C IFym, and the extension IF,m /IF, is a Galois
extension of degree m. The Galois group Gal(IF ;= /TF ) is cyclic; it is generated
by the Frobenius automorphism

o {qu — Fym ,

« — af.

In particular, all finite fields are perfect.

The norm and trace map from IF,~ to IF, are given by

2 m—1
_ a1+q+q +...+q

)

NIqu /IR, (@)

Trp,. r, (@) =a+al+...+al
Hilbert’s Theorem 90 states, for o € IF gm,

Tr, ., (@) =0 &= a=p1-3 for some B € Fym.

A.16 Transcendental Extensions

Let L/K be a field extension. An element x € L that is not algebraic over
K is called transcendental over K. A finite subset {z1,...,2,} C L is alge-
braically independent over K if there does not exist a non-zero polynomial
f(Xy,...,X,) € K[Xy,...,X,] with f(z1,...,2,) = 0. An arbitrary sub-
set S C L is algebraically independent over K if all finite subsets of S are
algebraically independent over K.

A transcendence basis of L/K is a maximal algebraically independent sub-
set of L. Any two transcendence bases of L/K have the same cardinality, the
transcendence degree of L/ K.

If L/K has finite transcendence degree n and {zi,...,z,} is a trans-
cendence basis if L/K, the field K(x1,...,2,) € L is K-isomorphic to
K(Xi,...,X,), the quotient field of the polynomial ring K[X,...,X,] in
n variables over K. The extension L/K (z1,...,x,) is algebraic.



Appendix B. Algebraic Curves and Function
Fields

This appendix contains a brief survey of the relations between algebraic curves
and algebraic function fields. For details and proofs we refer to the literature
on algebraic geometry, for instance [11],[18],[37],[38].

We assume that K is an algebraically closed field.

B.1 Affine Varieties

The n-dimensional affine space A® = A"(K) is the set of all n-tuples of ele-
ments of K. An element P = (aq,...,a,) € A" is a point, and a4, ...,a, are
the coordinates of P.

Let K[Xy,...,X,] be the ring of polynomials in n variables over K. A
subset V' C A" is an algebraic set if there exists a set M C K[X3,...,X,]
such that

V={PecA"|F(P)=0 forall FeM}.

Given an algebraic set V' C A", the set of polynomials
I(V)={F € K[Xy,....,X,]| F(P) =0 for all P € V}

is called the ideal of V. I(V') is obviously an ideal in K[X1,...,X,], and it
can be generated by finitely many polynomials Fi,..., F,. € K[Xy,...,X,].
Thus we have

V={PecA"|[i(P)=...=F.(P)=0}.

An algebraic set V' C A" is called irreducible if it cannot be written as
V = ViUV, where V; and V5 are proper algebraic subsets of V. Equivalently,
V is irreducible if and only if the corresponding ideal I(V') is a prime ideal.
An affine variety is an irreducible algebraic set V' C A™.
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The coordinate ring of an affine variety V' is the residue class ring I'(V') =
K[Xy,...,X,]/I(V). As I(V) is a prime ideal, I'(V') is an integral domain.
Every f = F+ I(V) € I'(V) induces a function f : V — K by setting
f(P) := F(P) for P € V. The quotient field
K(V) = Quot(I'(V))

is called the field of rational functions (or the function field) of V. It contains
K as a subfield. The dimension of V' is the transcendence degree of K(V)/K.

For a point P € V let
Op(V)={fe K(V)|f=g/hwith g,h € I'(V) and h(P) #0 }.
This is a local ring with quotient field K (V'), its unique maximal ideal is
Mp(V)={feKV)|f=g/h with g,h € I'(V),h(P) # 0 and g(P) = 0}.

Op(V) is called the local ring of V at P. For f = g/h € Op(V) with h(P) # 0,
the value of f at P is defined to be f(P) := g(P)/h(P).

B.2 Projective Varieties

On the set A"T1\ {(0,...,0)} an equivalence relation ~ is given by

(ag,ai,...,an) ~ (bo,b1,...,by) : <
there is an element 0 # XA € K such that b; = Aa; for 0 <i<mn.

The equivalence class of (ag, a1, ,a,) with respect to ~ is denoted by
(ap a1 :...:ay). The n-dimensional projective space P" = P™(K) is the set
of all equivalence classes

P"={(ap:...:an)|a; € K, not all a; =0}.

An element P = (ag : ... : a,) € P™ is a point, and ao,...,a, are called
homogeneous coordinates of P.

A monomial of degree d is a polynomial G € K[X,...,X,] of the form
G:a~H?:0Xidi with 0 #a € K and " ,d; = d.

A polynomial F' is a homogeneous polynomial if F' is the sum of monomi-

als of the same degree. An ideal I C K[Xj,..., X,] which is generated by
homogeneous polynomials is called a homogeneous ideal.
Let P=(ap:...:a,) € P"and let F € K[X,...,X,] be a homoge-

neous polynomial. We say that F(P) = 0 if F(ao,...,a,) = 0. This makes
sense: since F(Aao, ..., \a,) = A+ F(ag,...,a,) (with d = deg I), one has
F(ag,...,an) =0 < F(Xag,..., a,) =0.
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A subset V' C P" is a projective algebraic set if there exists a set of
homogeneous polynomials M C K[Xj, ..., X,] such that

V={PeP"|F(P)=0foralFeM}.

The ideal I(V) C K[Xo,...,X,], which is generated by all homogeneous
polynomials F' with F(P) = 0 for all P € V, is called the ideal of V. It is a
homogeneous ideal. Irreducibility of projective algebraic sets is defined as in
the affine case. Again, V' C P" is irreducible if and only if I(V') is a homo-
geneous prime ideal in K[Xo,...,X,]. A projective variety is an irreducible
projective algebraic set.

Given a non-empty variety V' C P", we define its homogeneous coordinate
ring by
Ih(V)=K[Xo,...,Xn]/I(V);
this is an integral domain containing K. An element f € I} (V) is said to

be a form of degree d if f = F + I(V) for some homogeneous polynomial
F € K[Xy,...,X,] with deg F = d. The function field of V is defined by

K(V):= {% ‘g, h € I, (V) are forms of the same degree and h # 0} ,

which is a subfield of Quot(I7(V)), the quotient field of I, (V).

The dimension of V' is the transcendence degree of K (V') over K.

Let P = (ag : ... 1 ap) € V and f € K(V). Write f = g/h where
g=G+I(V), h=H+I(V) € I,(V) and G, H are homogeneous polynomials
of degree d. Since

G(Aao, ..., Aa,) M- Gag,. .., an) _ Glao,...,an)
H(\ao, ..., \a,) M -H(ag,...,a,) Hag,...,a,)’

(
we can set f(P) := G(ag,...,a,)/H/ (ag, ap) € K, if H(P) # 0. Then we
say that f is defined at P and call f(P) the value of f at P. The ring

Op(V)={f e K(V)|f is defined at P} C K(V)
is a local ring with maximal ideal

Mp(V)={f € Op(V)| f(P)=0}.

B.3 Covering Projective Varieties by Affine Varieties
For 0 < i < n we consider the mapping ¢; : A* — P" given by

vilag,-.yan—1)=(ag:...:ai—1:1:ia; ... an_1).

©; is a bijection from A" onto the set
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U ={(co:...:cn) €P"|¢; # 0},

and P" = U?:o U;. So P™ is covered by n + 1 copies of the affine space A"
(this is not a disjoint union).
Let V' C P" be a projective variety, then V = [J!_,(V NU;). Suppose that
VNU; # 0. Then
V=, (VNU;) C A

is an affine variety, and the ideal I(V;) (in the sense of B.1) is given by
I(‘/z) = {F(Xo,...,Xifl,].,XiJrl,...Xn)|F S I(V)}

For convenience we restrict ourselves in the following to the case i = n (and
VNU, # 0). The complement H,, = P*\U, ={(ap:...:a,) € P"|a, =0}
is called the hyperplane at infinity, and the points P € V N H,, are the points
of V' at infinity.

There is a natural K-isomorphism « from K (V') (the function field of the
projective variety V') onto K(V,,) (the function field of the affine variety V,, =
0,2 (V N U,)). This isomorphism is defined as follows: Let f = g/h € K(V)
where g, h € I, (V) are forms of the same degree and h # 0. Choose homo-
geneous polynomials G, H € K[Xy,...,X,]| which represent g resp. h. Let
G, = G(Xo, ey X1, 1) and H, = H(Xo, e, Xpo1, 1) S K[XQ, . 7Xn71}-
Their residue classes in I'(V;,) = K[Xo, ..., X,—1]/1(V;,) are g resp. h,. Then
a(f) = g«/h«. Under this isomorphism, the local ring of a point P € VN U,
is mapped onto the local ring of ¢, 1(P) € V,,, hence these local rings are
isomorphic.

B.4 The Projective Closure of an Affine Variety

For a polynomial F = F(Xo,...,X,-1) € K[Xy,...,X,_1] of degree d we
set
F*=X*F(Xo/Xpn,...,Xn_1/Xn) € K[Xo,...,X,].

F* is a homogeneous polynomial of degree d in n + 1 variables.

Consider now an affine variety V' € A" and the corresponding ideal I(V') C
K[Xy,...,X,_1]. Define the projective variety V' C P" as follows:

V={PecP"|F*(P)=0forall FeI(V)}.

This variety V is called the projective closure of V. One can recover V from
V' by the process described in B.3, namely

V=p,(VNU,) =V),.

Consequently the function fields of V' and V are naturally isomorphic, and V
and V' have the same dimension.
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B.5 Rational Maps and Morphisms

Let V. C P™ and W C P™ be projective varieties. Suppose that Fp, ..., F, €
K[Xo,...,X,,] are homogeneous polynomials with the following properties:

(a) Fy, ..., F, have the same degree;

(b) not all F; are in I(V);

(c) for all H € I(W) holds H(Fu,...,F,) € I(V).
Let @ € V and assume that F;(Q) # 0 for at least one i € {0,...,n} (by
(b) such a point exists). Then the point (Fo(Q) : ... : F,(Q)) € P" lies in
W, by (c). Let (Gy,...,Gy) be another n-tuple of homogeneous polynomials
satisfying (a), (b) and (c). We say that (Fp,...,F,) and (Gy,...,G,) are
equivalent if

(d) FiG; = F;G; mod I(V') for 0 <i,j <n.
The equivalence class of (Fp,. .., F},) with respect to this equivalence relation
is denoted by

p=(Fp:...: F,),
and ¢ is called a rational map from V to W.

A rational map ¢ = (Fy : ... : Fy,) is reqular (or defined) at the point
P € V if there exist homogeneous polynomials Go,...,G, € K[Xo,...,Xn]
such that ¢ = (Gp : ... : G,) and G;(P) # 0 for at least one i. Then we set

d(P)=(Go(P):...: Gn(P)) e W,

which is well-defined by (a) and (d).

Two varieties Vi, Vo are birationally equivalent if there are rational maps
¢1: V1 — Vo and ¢o : Vo — Vi such that ¢ o g2 and ¢o 0 1 are the identity
maps on V5 and Vi, respectively. Vi and V5 are birationally equivalent if and
only if their function fields K (V;) and K (V) are K-isomorphic.

A rational map ¢ : V' — W which is regular at all points P € V is called
a morphism. It is called an isomorphism if there is a morphism ¢ : W — V
such that ¢ o1 and 1) o ¢ are the identity maps on W and V, respectively.
In this case V and W are said to be isomorphic. Clearly, isomorphy implies
birational equivalence, but the converse is not true in general.

B.6 Algebraic Curves

A projective (affine) algebraic curve V is a projective (affine) variety of di-
mension one. This means that the field K (V') of rational functions on V' is an
algebraic function field of one variable.

A point P € V is non-singular (or simple) if the local ring Op(V) is a
discrete valuation ring (i.e., Op(V) is a principal ideal domain with exactly
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one maximal ideal # {0}). There exist only finitely many singular points on
a curve. The curve V is called non-singular (or smooth) if all points P € V
are non-singular.

A plane affine curve is an affine curve V' C A%, Its ideal I(V) C K[Xo, X1]
is generated by an irreducible polynomial G € K[Xp, X;] (which is unique
up to a constant factor). Conversely, given an irreducible polynomial G €
K[Xo, X1], the set V = {P € A?|G(P) = 0} is a plane affine curve, and G
generates the corresponding ideal I(V'). A point P € V is non-singular if and
only if

Gx,(P)#0 or Gx,(P)#0 (or both),

where Gx, € K[Xo,X1] is the partial derivative of G with respect to X;
(Jacobi-Criterion).

Accordingly, the ideal of a plane projective curve V- C P? is generated by
an irreducible homogeneous polynomial H € K[X(, X1, X2]. A point P € V
is non-singular if and only if Hx, (P) # 0 for at least one ¢ € {0,1,2}.

If V= {P e A’|G(P) = 0} is a plane affine curve (with an irreducible
polynomial G € K[X, X;] of degree d), the projective closure V C P? is the
set of zeros of the homogeneous polynomial G* = X¢ - G(Xo/X2, X1/X>).

B.7 Maps Between Curves

We consider rational maps ¢ : V' — W where V' and W are projective curves.
The following hold:

(a) ¢ is defined at all non-singular points P € V. Hence, if V is a non-
singular curve, then ¢ is a morphism.

(b) If V is non-singular and ¢ is non-constant then ¢ is surjective.

B.8 The Non-Singular Model of a Curve

Let V' be a projective curve. Then there exists a non-singular projective curve
V'’ and a birational morphism ¢’ : V' — V. The pair (V’,¢’) is unique in
the following sense: given another non-singular curve V" and a birational
morphism ¢” : V' — V, there exists a unique isomorphism ¢ : V' — V" such
that ¢’ = ¢” o ¢. Hence V' (more precisely: the pair (V’/,¢')) is called the
non-singular model of V.

If ¢ : V! — V is the non-singular model of V' and P € V is non-singular,
there exists a unique P’ € V’ with ¢/(P’) = P; for a singular point P € V
the number of P’ € V/ with ¢'(P’) = P is finite (it may be one).
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B.9 The Curve Associated with an Algebraic Function
Field

Starting from an algebraic function field of one variable F//K, there exists a
non-singular projective curve V' (unique up to isomorphism) whose function
field K (V) is (K-isomorphic to) F. One can construct V as follows: choose
x,y € F such that FF = K(x,y) (this is possible by Proposition 3.10.2).
Let G(X,Y) € K[X,Y] be the irreducible polynomial with G(z,y) = 0. Let
W = {P € A?|G(P) = 0} and W C P2 be the projective closure of W. Let
V be the non-singular model of W; then K(V) ~ F.

B.10 Non-Singular Curves and Algebraic Function
Fields

Let V be a non-singular projective curve and let ' = K (V') be its function
field. There is a 1-1 correspondence between the points P € V' and the places
of F/K, given by

P+—— Mp(V),

the maximal ideal of the local ring Op(V'). This correspondence makes it
possible to translate definitions and results from algebraic function fields to
algebraic curves (and vice versa). We give some examples:

— The genus of the curve V is the genus of the function field K (V).

— A divisor of V' is a formal sum D = ) .\, npP where np € Z and
almost all np = 0. The degree of D is deg D = }_ p.y, np. The divisors of V'
form an additive group Div(V'), the divisor group of V.

— The order of a rational function at a point P € V is defined to be vp(f),
where vp is the discrete valuation of K (V) corresponding to the valuation
ring Op(V).

— The principal divisor (f) of a rational function 0 # f € K(V) is (f) =
> pev vp(f)P. The degree of a principal divisor is 0.

— The principal divisors form a subgroup Princ(V') of the divisor group
Div(V). The factor group Jac(V) = Div®(V)/Princ(V), where Div®(V) is the
group of divisors of degree 0, is called the Jacobian of V.

— For D € Div(V) the space .Z (D) is defined as in the function field case.
It is a finite-dimensional vector space over K, its dimension is given by the
Riemann-Roch Theorem.

B.11 Varieties over a Non-Algebraically Closed Field

Thus far it was assumed that K is an algebraically closed field. Now we drop
this assumption and suppose only that K is a perfect field. Let K O K be the
algebraic closure of K.
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~ An affine variety V. C A™(K) is said to be defined over K if its ideal I(V') C
K[Xy,...,X,] can be generated by polynomials Fi,..., F. € K[X1,..., X,].
If V is defined over K, the set

V(K)=VNA"K)={P=(a1,...,a,) €V]alla; € K}

is called the set of K -rational points of V.

Similarly, a projective variety V C P"(K) is defined over K if I(V) is
generated by homogeneous polynomials Fi,..., F,. € K[Xy,...,X,]. A point
P €V is called K-rational if there exist homogeneous coordinates ag, . .., a,
of P which are in K, and we set

V(K)={P € V|P is K-rational} .
Let V C A"(K) be an affine variety defined over K. Define the ideal
I(V/K)=I(V)NK[Xy,..., X,]
and the residue class ring
I'V/K)=K[Xy,...,X,]/I(V/K).
The quotient field
K(V) = Quot(I'(V/K)) C K(V)

is the field of K -rational functionsof V. The field extension K (V)/K is finetely
generated, its transcendence degree is the dimension of V. In the same manner,
the field of K-rational functions of a projective variety can be defined.

Consider two varieties V. C P™(K) and W C P"(K). A rational map ¢ :
V' — W is defined over K if there exist homogeneous polynomials Fy, ..., F), €
K[Xo,...,X,] satisfying the conditions (a), (b) and (c) of B.5, such that
p=(Fy:...: Fp).

Another way to describe K-rational points, K-rational functions etc. on a
variety which is defined over K is the following: Let G /x be the Galois group

of K/K. The action of G /K On K extends naturally to an action on the sets

A'(K), P"(K), K[X4,...,X,], V, ['(V), K(V) etc. For instance, consider a

projective variety V' C P"(K) (defined over K), a point P = (ag : ... : a,) €
V and an automorphism o € Gz ; then P7 = (af : ... : aj). It is easily seen
that

V(K)={PeV|P? =P foral o€ g/},
K(V)={f e K\V)|f7=F forall o€Ggk},

and so on.
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B.12 Curves over a Non-Algebraically Closed Field

Consider a projective curve V- C P™(K) which is defined over K (where K is
perfect and K is the algebraic closure of K as in B.11). Then the field K (V)
of K-rational functions on V' is an algebraic function field of one variable over
K, and K (V) is the constant field extension of K (V) with K.

A divisor D = ) p ., npP € Div(V) is defined over K if D7 = D for
all 0 € Gg i (this means that npe = np for all P € V). The divisors of V
defined over K form a subgroup Div(V/K) C Div(V). For D € Div(V/K) the
space Lk (D) is given by

Z(D) = K(V)N.Z(D).

It is a finite-dimensional K-vector space, and its dimension (over K) equals
the dimension of .Z(D) (over K), by Theorem 3.6.3(d).

A divisor € Div(V/K) with Q@ > 0 is called a prime divisor of V/K
if Q cannot be written as Q = @1 + Q2 with effective divisors Q)1,Q2 €
Div(V/K). It is easily seen that the divisor group Div(V/K) is the free abelian
group generated by the prime divisors. Prime divisors of V/K correspond to
the places of the function field K(V)/K; under this correspondence, prime
divisors of degree one (i.e., K-rational points) of V' correspond to the places
of K(V)/K of degree one.

B.13 An Example

Let K be a perfect field of characteristic p > 0 and let
G(X,Y)=aX" +bY" +c with a,b,ce K\{0}, n>1 and p{n.

(This is Example 6.3.4.) The polynomial G(X,Y") is irreducible (which follows
easily from Eisenstein’s Criterion, cf. Proposition 3.1.15). The affine curve
V = {P € A*(K)|G(P) = 0} is non-singular since for P = (a, 3) € V,

Gx(o,B) =naa" ' #0 or Gy(o,f8) =nbf" ' #0.

Let G*(X,Y,Z) = aX™ + bY™ + ¢Z™; then the projective closure of V is

the curve
V={(a:8:7) € PX(K)|G*(a, ,7) = 0}

We consider the points P € V at infinity; i.e., P = (a : 3 : 0) with (o, 3) #
(0,0) and G*(«, 3,0) = 0. From the equation 0 = G*(«, 3,0) = aa™ + bs"
follows that 8 # 0, so we can set 8 = 1; i.e., P = (a : 1 :0). The equation
aa™ +b = 0 has n distinct roots o € K, so there are n distinct points of V at
infinity. All of them are non-singular since G3 (o, 1,0) = nb # 0.

In the special case K = Fp2 and G(X,Y) = X7 4+ Yotl — 1 (the
Hermitian curve, cf. Example 6.3.6) we want to determine the K-rational



344 Appendix B. Algebraic Curves and Function Fields

points P = («a v) € V(K). First let v # 0; ie., P = (a : 3 : 1).
For all a € K th oﬂ“‘l # 1 there are ¢ + 1 distinct elements 8 € K with
G*(a,3,1) = 0. If a?tt = 1, B = 0 is the only root of G*(a,3,1) = 0.

Finally, if v = 0 there are ¢ + 1 points P = (o : 1 : 0) € V(K). We have
thus constructed all K-rational points on the Hermitian curve over IF 2. Their

number is |(V(IF,2)| = ¢* + 1, in accordance with Lemma 6.4.4.
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additive polynomial, 129
power series expansion, 164
prime element, 4
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valuation
discrete valuation, 4
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Riemann valuation ring, 2
Riemann Hypothesis for Function
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Riemann’s Inequality, 148 Weierstrass Gap Theorem, 34
Riemann’s Theorem, 23

. Weierstrass point, 34
Riemann-Roch weight, 45

Riemann-Roch space, 17

Riemann-Roch Theorem, 30
Zeta function, 185, 188

separably generated, 144 Functional Equation, 192
separating element, 144 Zink Bound, 275
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