
http://www.cambridge.org/9780521771948

This page intentionally left blank

Algebraic Codes on Lines, Planes, and Curves

The past few years have witnessed significant advances in the field of algebraic coding theory. This

book provides an advanced treatment of the subject from an engineering point of view, covering the

basic principles of codes and their decoders. With the classical algebraic codes referred to as codes

defined on the line, this book studies, in turn, codes on the line, on the plane, and on curves. The core

ideas are presented using the ideas of commutative algebra and computational algebraic geometry,

made accessible to the nonspecialist by using the Fourier transform.

Starting with codes defined on a line, a background framework is established upon which the

later chapters concerning codes on planes, and on curves, are developed. Example codes include

cyclic, bicyclic, and epicyclic codes, and the Buchberger algorithm and Sakata algorithm are also

presented as generalizations to two dimensions of the Sugiyama algorithm and the Berlekamp–Massey

algorithm. The decoding algorithms are developed using the standard engineering approach as applied

to two dimensional Reed–Solomon codes, enabling the decoders to be evaluated against practical

applications.

Integrating recent developments in the field into the classical treatment of algebraic coding, this

is an invaluable resource for graduate students and researchers in telecommunications and applied

mathematics.

RICHARD E. BLAHUT is Head of the Department of Electrical and Computer Engineering at the

University of Illinois, Urbana Champaign, where he is also a Professor. He is a Fellow of the IEEE

and the recipient of many awards, including the IEEE Alexander Graham Bell Medal (1998) and

Claude E. Shannon Award (2005), the Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, and the

IEEE Millennium Medal. He was named Fellow of the IBM Corporation in 1980, where he worked

for over 30 years, and was elected to the National Academy of Engineering in 1990.

Algebraic Codes on
Lines, Planes,

and Curves

Richard E. Blahut

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-77194-8

ISBN-13 978-0-511-38660-2

© Cambridge University Press 2008

2008

Information on this title: www.cambridge.org/9780521771948

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521771948

In loving memory of

Lauren Elizabeth Kelley

– who always held the right thought

April 23, 1992 – January 2, 2007

Contents

List of figures page xii

List of tables xv

Preface xvii

1 Sequences and the One-Dimensional Fourier Transform 1

1.1 Fields 2

1.2 The Fourier transform 8

1.3 Properties of the Fourier transform 12

1.4 Univariate and homogeneous bivariate polynomials 16

1.5 Linear complexity of sequences 20

1.6 Massey’s theorem for sequences 23

1.7 Cyclic complexity and locator polynomials 25

1.8 Bounds on the weights of vectors 30

1.9 Subfields, conjugates, and idempotents 34

1.10 Semifast algorithms based on conjugacy 39

1.11 The Gleason–Prange theorem 42

1.12 The Rader algorithm 49

Problems 53

Notes 54

2 The Fourier Transform and Cyclic Codes 56

2.1 Linear codes, weight, and distance 56

2.2 Cyclic codes 60

2.3 Codes on the affine line and the projective line 64

2.4 The wisdom of Solomon and the wizardry of Reed 66

2.5 Encoders for Reed–Solomon codes 70

2.6 BCH codes 72

2.7 Melas codes and Zetterberg codes 75

viii Contents

2.8 Roos codes 76

2.9 Quadratic residue codes 77

2.10 The binary Golay code 86

2.11 A nonlinear code with the cyclic property 89

2.12 Alternant codes 92

2.13 Goppa codes 99

2.14 Codes for the Lee metric 108

2.15 Galois rings 113

2.16 The Preparata, Kerdock, and Goethals codes 122

Problems 132

Notes 135

3 The Many Decoding Algorithms for Reed–Solomon Codes 137

3.1 Syndromes and error patterns 138

3.2 Computation of the error values 144

3.3 Correction of errors of weight 2 148

3.4 The Sugiyama algorithm 151

3.5 The Berlekamp–Massey algorithm 155

3.6 Decoding of binary BCH codes 163

3.7 Putting it all together 164

3.8 Decoding in the code domain 167

3.9 The Berlekamp algorithm 170

3.10 Systolic and pipelined algorithms 173

3.11 The Welch–Berlekamp decoder 176

3.12 The Welch–Berlekamp algorithm 181

Problems 186

Notes 188

4 Within or Beyond the Packing Radius 190

4.1 Weight distributions 191

4.2 Distance structure of Reed–Solomon codes 196

4.3 Bounded-distance decoding 198

4.4 Detection beyond the packing radius 200

4.5 Detection within the packing radius 202

4.6 Decoding with both erasures and errors 203

4.7 Decoding beyond the packing radius 205

4.8 List decoding of some low-rate codes 207

4.9 Bounds on the decoding radius and list size 212

ix Contents

4.10 The MacWilliams equation 217

Problems 221

Notes 223

5 Arrays and the Two-Dimensional
Fourier Transform 224

5.1 The two-dimensional Fourier transform 224

5.2 Properties of the two-dimensional Fourier transform 226

5.3 Bivariate and homogeneous trivariate polynomials 229

5.4 Polynomial evaluation and the Fourier transform 232

5.5 Intermediate arrays 234

5.6 Fast algorithms based on decimation 235

5.7 Bounds on the weights of arrays 237

Problems 245

Notes 246

6 The Fourier Transform and Bicyclic Codes 247

6.1 Bicyclic codes 247

6.2 Codes on the affine plane and the projective plane 251

6.3 Minimum distance of bicyclic codes 253

6.4 Bicyclic codes based on the multilevel bound 255

6.5 Bicyclic codes based on the BCH bound 258

6.6 The (21, 12, 5) bicyclic BCH code 260

6.7 The Turyn representation of the (21, 12, 5) BCH code 263

6.8 The (24, 12, 8) bivariate Golay code 266

6.9 The (24, 14, 6) Wagner code 270

6.10 Self-dual codes 273

Problems 274

Notes 275

7 Arrays and the Algebra of Bivariate Polynomials 277

7.1 Polynomial representations of arrays 277

7.2 Ordering the elements of an array 279

7.3 The bivariate division algorithm 284

7.4 The footprint and minimal bases of an ideal 291

7.5 Reduced bases and quotient rings 296

7.6 The Buchberger theorem 301

x Contents

7.7 The locator ideal 312

7.8 The Bézout theorem 318

7.9 Nullstellensätze 326

7.10 Cyclic complexity of arrays 331

7.11 Enlarging an ideal 333

Problems 344

Notes 345

8 Computation of Minimal Bases 347

8.1 The Buchberger algorithm 347

8.2 Connection polynomials 351

8.3 The Sakata–Massey theorem 358

8.4 The Sakata algorithm 361

8.5 An example 367

8.6 The Koetter algorithm 384

Problems 387

Notes 389

9 Curves, Surfaces, and Vector Spaces 390

9.1 Curves in the plane 390

9.2 The Hasse–Weil bound 393

9.3 The Klein quartic polynomial 394

9.4 The hermitian polynomials 396

9.5 Plane curves and the two-dimensional Fourier transform 402

9.6 Monomial bases on the plane and on curves 404

9.7 Semigroups and the Feng–Rao distance 410

9.8 Bounds on the weights of vectors on curves 417

Problems 424

Notes 426

10 Codes on Curves and Surfaces 428

10.1 Beyond Reed–Solomon codes 429

10.2 Epicyclic codes 431

10.3 Codes on affine curves and projective curves 436

10.4 Projective hermitian codes 440

10.5 Affine hermitian codes 442

10.6 Epicyclic hermitian codes 445

xi Contents

10.7 Codes shorter than hermitian codes 447

Problems 450

Notes 451

11 Other Representations of Codes on Curves 453

11.1 Shortened codes from punctured codes 454

11.2 Shortened codes on hermitian curves 459

11.3 Quasi-cyclic hermitian codes 463

11.4 The Klein codes 465

11.5 Klein codes constructed from Reed–Solomon codes 467

11.6 Hermitian codes constructed from Reed–Solomon codes 473

Problems 480

Notes 482

12 The Many Decoding Algorithms for Codes on Curves 484

12.1 Two-dimensional syndromes and locator ideals 485

12.2 The illusion of missing syndromes 487

12.3 Decoding of hyperbolic codes 489

12.4 Decoding of hermitian codes 497

12.5 Computation of the error values 507

12.6 Supercodes of hermitian codes 509

12.7 The Feng–Rao decoder 512

12.8 The theory of syndrome filling 516

Problems 522

Notes 523

Bibliography 525

Index 534

Figures

1.1 Simple linear recursion page 21

1.2 Linear-feedback shift registers 25

1.3 Construction of new zeros 32

2.1 Placement of spectral zeros 70

3.1 Berlekamp–Massey algorithm 157

3.2 Berlekamp–Massey decoder 166

3.3 Code-domain Berlekamp–Massey algorithm 168

3.4 Decoder that uses the Berlekamp algorithm 171

3.5 Structure of systolic Berlekamp–Massey algorithm 175

3.6 Berlekamp–Massey algorithm 186

4.1 Oversized spheres about sensewords 198

4.2 Decoding up to the packing radius 199

4.3 Decoding to less than the packing radius 199

4.4 List decoding 200

4.5 Decoding beyond the packing radius 200

4.6 Bivariate monomials in (1, k − 1)-weighted graded order 212

5.1 Pattern of spectral zeros forming a cascade set 241

5.2 Typical cascade set 242

6.1 Defining set in two dimensions 249

6.2 Examples of defining sets 253

6.3 Defining set for a (225, 169, 9) Reed–Solomon product code 254

6.4 Defining set for a (225, 197, 9) code 254

6.5 Defining set for a cascade code 256

6.6 Syndromes for a hyperbolic code 257

6.7 Defining set for a hyperbolic code 257

6.8 Defining set for a (49, 39, 5) code 258

6.9 Inferring the spectrum from a few of its components 259

7.1 Division order and graded order 283

7.2 Removing quarter planes from the first quadrant 287

7.3 Conditions on the remainder polynomial 288

7.4 Footprint of {g1(x, y), g2(x, y)} 289

7.5 Possible bidegrees of the conjunction polynomial 290

xiii List of figures

7.6 Typical bivariate footprint 292

7.7 Typical trivariate footprint 292

7.8 Leading monomials of a reduced basis 298

7.9 Footprint of {x3 + x2y + xy + x + 1, y2 + y} 305

7.10 Footprint of an enlarged ideal 305

7.11 Footprint of 〈x3 + xy2 + x + 1, y〉 314

7.12 An insight into Bézout’s theorem 322

7.13 Area of a rectangular footprint 323

7.14 Illustrating the invariance of the area of a footprint 323

7.15 Division order and graded order 324

7.16 Changing the footprint by Buchberger iterations 325

7.17 Possible new exterior corners 335

7.18 Exterior and interior corners of a footprint 338

7.19 Computing the conjunction polynomials 340

8.1 Output of the Buchberger algorithm 348

8.2 Footprint of an ideal 349

8.3 Illustrating the nature of a bivariate recursion 353

8.4 Points reached by two connection polynomials 355

8.5 Division order and graded order 356

8.6 Footprint illustrating the Sakata–Massey theorem 362

8.7 Footprint of a new connection set 363

8.8 Illustrating the Sakata algorithm 369

8.9 Structure of the Koetter algorithm 385

8.10 Initialization and growth of connection polynomials 386

9.1 Klein quartic in the projective plane over GF(8) 395

9.2 Hermitian curve in GF(4)2 398

9.3 The hermitian curve in GF(16)2 399

9.4 Alternative hermitian curve in GF(4)2 402

9.5 Alternative hermitian curve in GF(16)2 402

9.6 Footprint corresponding to the Klein polynomial 406

9.7 Monomial basis for F[x, y]/〈x3y + y3 + x〉 409

9.8 New monomial basis for F[x, y]/〈x3y + y3 + x〉 410

9.9 Array of semigroup elements 412

9.10 Array of semigroup elements augmented with gaps 413

9.11 One construction of a Feng–Rao distance profile 416

10.1 Computing a punctured codeword from its spectrum 435

10.2 Computing a spectrum from its shortened codeword 436

11.1 Weights of monomials for x5 + y4 + y 462

11.2 Hermitian curve over GF(16) in the bicyclic plane 463

11.3 Alternative hermitian curve over GF(16) in the bicyclic plane 464

11.4 Klein curve in the bicyclic plane 466

xiv List of figures

11.5 Quasi-cyclic serialization of the Klein code 466

11.6 Twisted Klein curve in the bicyclic plane 470

11.7 Twisted hermitian curve in the bicyclic plane 474

11.8 Another twisted hermitian curve in the bicyclic plane 479

12.1 Initial set of syndromes 490

12.2 Syndromes for decoding a (225, 190, 13) hyperbolic code 490

12.3 Final footprint for the hyperbolic code 496

12.4 Syndromes for an hermitian code 498

12.5 Decoding an hermitian code over GF(16) 499

12.6 Syndromes for decoding a (64, 44, 15) hermitian code 500

12.7 The start of syndrome filling 501

12.8 Continuation of syndrome filling 505

12.9 Final footprint for the hermitian code 506

12.10 Error pattern for the running example 507

12.11 Error spectrum for the running example 509

12.12 Bispectrum of an hermitian supercode over GF(64) 511

12.13 Geometric proof 521

Tables

1.1 Arithmetic tables for some small fields page 4

1.2 Arithmetic table for GF (4) 6

2.1 The (7, 5) Reed–Solomon code 68

2.2 Extracting a subfield-subcode from a (7, 5) code 73

2.3 Parameters of some binary quadratic residue codes 78

2.4 Weight distribution of Golay codes 88

2.5 Extracting binary codes from a (7, 5, 3) Reed–Solomon code 93

2.6 The cycle of a primitive element in GR(4m) 114

2.7 Galois orbits in GR(4m) and GF(2m) 115

2.8 A code over Z4 and its Gray image 124

3.1 A representation of GF(16) 143

3.2 Example of Berlekamp–Massey algorithm for a sequence of rationals 161

3.3 Example of Berlekamp–Massey algorithm for a

Reed–Solomon (15, 9, 7) code 161

3.4 Sample Berlekamp–Massey computation for a BCH (15, 5, 7) code 164

4.1 Approximate weight distribution for the (31,15,17)

Reed–Solomon code 196

4.2 Code rate versus r 217

6.1 Weight distribution of the (21, 12, 5) BCH code 263

6.2 Comparison of weight distributions 271

6.3 Parameters of some binary self-dual codes 273

8.1 The first six iterations of the example 370

11.1 Preliminary defining sets 472

11.2 Actual defining sets 472

Preface

This book began as notes for a collection of lectures given as a graduate course in the

summer semester (April to July) of 1993 at the Swiss Federal Institute of Technology

(ETH), Zurich, building on a talk that I gave in Brazil in 1992. Subsequently, in the fall

of 1995 and again in the spring of 1998, the course notes were extensively revised and

expanded for an advanced topics course in the Department of Electrical and Computer

Engineering at the University of Illinois, from which course has evolved the final

form of the book that appears here. These lectures were also given in various forms

at Eindhoven University, Michigan Technological University, Binghamton University,

Washington University, and the Technical University of Vienna. The candid reactions of

some who attended these lectures helped me greatly in developing the unique (perhaps

idiosyncratic) point of view that has evolved, a view that insists on integrating recent

developments in the subject of algebraic codes on curves into the classical engineering

framework and terminology of the subject of error-control codes. Many classes of

error-control codes and their decoding algorithms can be described in the language

of the Fourier transform. This approach merges much of the theory of error-control

codes with the subject of signal processing, and makes the central ideas more readily

accessible to the engineer.

The theme of the book is algebraic codes developed on the line, on the plane, and

on curves. Codes defined on the line, usually in terms of the one-dimensional Fourier

transform, are studied in Chapters 2, 3, and 4. These chapters provide a background

and framework against which later chapters are developed. The codes themselves are

defined in Chapter 2, while the decoding algorithms and the performance of the codes

are studied in Chapters 3 and 4. Codes defined on the plane, usually in terms of the

two-dimensional Fourier transform, are studied in Chapters 5 and 6. Codes defined

on curves, again in terms of the two-dimensional Fourier transform, are studied in

Chapters 10, 11, and 12. The exemplar codes under the three headings are the cyclic

codes, the bicyclic codes, and the epicyclic codes. In addition, Chapters 7, 8, and 9

deal with some topics of mathematics, primarily computational algebraic geometry,

in preparation for the discussion of codes on curves and their decoding algorithms.

Readers who want to get quickly to the “algebraic geometry codes without algebraic

xviii Preface

geometry” may be put off by the digressions in the early chapters. My intention, how-

ever, is to assemble as much as I can about the role of the Fourier transform in coding

theory.

The book is a companion to Algebraic Codes for Data Transmission (Cambridge

University Press, 2003), but it is not a sequel to that book. The two books are ind-

ependent and written for different audiences: that book written for the newcomer to the

subject and this book for a reader with a more mathematical background and less need

for instant relevance. The material in these books is not quite engineering and not quite

mathematics. It belongs to an emerging field midway between these two subjects that

is now sometimes called “infomatics.”

I have three goals in preparing this book. The first goal is to present certain recent

developments in algebraic coding theory seamlessly integrated into the classical engi-

neering presentation of the subject. I especially want to develop the theory of codes on

curves in a direct way while using as little of the difficult subject of algebraic geometry

as possible. I have avoided most of the deep theory of algebraic geometry and also its

arcane terminology and notation, replacing much of this with that favorite tool of the

engineer, the Fourier transform. I hope that this makes the material accessible to a larger

audience, though this perhaps makes it unattractive to the algebraic geometer. The sec-

ond goal is to develop the decoding algorithms for these codes with a terminology

and pedagogy that is compatible and integrated with the usual engineering approach to

the decoding algorithms of Reed–Solomon codes. For the most useful of the algebraic

geometry codes – the hermitian codes – the ideas of computational algebraic geometry

have been completely restructured by the engineers so as to develop practical comp-

utational algorithms for decoding. This formulation will make the ideas accessible to

engineers wanting to evaluate these codes against practical applications or desiring to

design encoders and decoders, and perhaps will provide fresh insights to mathemati-

cians. My final goal is to extract some of the ideas implicit in the decoding algorithms

and to present these ideas distilled into independent mathematical facts in a manner

that might be absorbed into the rapidly developing topic of computational commuta-

tive algebra. I do believe that the now active interface between the topics of algebraic

coding and algebraic geometry forms an open doorway through which ideas can and

should pass in both directions.

The book has been strengthened by my conversations many years ago with Doctor

Ruud Pellikaan and Professor Tom Høholdt, and the book is probably a consequence

of those conversations. Professor Ralf Koetter and Professor Judy L. Walker helped

me to understand what little algebraic geometry I know. The manuscript has bene-

fited from the excellent comments and criticism of Professor Ralf Koetter, Professor

Tom Høholdt, Professor Nigel Boston, Professor Douglas Leonard, Doctor Ruud

Pellikaan, Doctor Thomas Mittelholzer, Professor Ian Blake, Professor Iwan Duursma,

Professor Rudiger Urbanke, Doctor William Weeks IV, Doctor Weishi Feng, Doctor

xix Preface

T. V. Selvakumaran, and Doctor Gregory L. Silvus. I attribute the good things in this

book to the help I received from these friends and critics; the remaining faults in the

book are due to me. The quality of the book has much to do with the composition

and editing skills of Mrs. Francie Bridges and Mrs Helen Metzinger. And, as always,

Barbara made it possible. Finally, Jeffrey shared the dream.

“The chief cause of problems is solutions.”

– ERIC SEVAREID

1 Sequences and the One-Dimensional
Fourier Transform

An alphabet is a set of symbols. Some alphabets are infinite, such as the set of real

numbers or the set of complex numbers. Usually, we will be interested in finite alpha-

bets. A sequence is a string of symbols from a given alphabet. A sequence may be of

infinite length. An infinite sequence may be periodic or aperiodic; infinite aperiodic

sequences may become periodic after some initial segment. Any infinite sequence that

we will consider has a fixed beginning, but is unending. It is possible, however, that an

infinite sequence has neither a beginning nor an end.

A finite sequence is a string of symbols of finite length from the given alphabet. The

blocklength of the sequence, denoted n, is the number of symbols in the sequence.

Sometimes the blocklength is not explicitly specified, but is known implicitly only by

counting the number of symbols in the sequence after that specific sequence is given.

In other situations, the blocklength n is explicitly specified, and only sequences of

blocklength n are under consideration.

There are a great many aspects to the study of sequences. One may study the structure

and repetition of various subpatterns within a given sequence of symbols. Such studies

do not need to presuppose any algebraic or arithmetic structure on the alphabet of the

sequence. This, however, is not the aspect of the study of sequences that we shall

pursue. We are interested mainly in sequences – usually of finite blocklength – over

alphabets that have a special arithmetic structure, the structure known as an algebraic

field. In such a case, a sequence of a fixed finite blocklength will also be called a vector.

We can treat sequences over fields by using algebraic methods. We shall study such

sequences by using the ideas of the linear recursion, the cyclic convolution, and the

Fourier transform. We shall study here only the structure of individual sequences (and

only those whose symbol alphabet is an algebraic field – usually a finite field), sets of

sequences of finite blocklength n (called codes), and the componentwise difference of

pairs of sequences (now called codewords) from a given code.

An important property of an individual vector over a field is its Hamming weight (or

weight), which is defined as the number of components at which the vector is nonzero.

An important property of a pair of vectors over a field is the Hamming distance (or

distance) between them, which is defined as the number of coordinates in which the

two vectors differ. We shall devote much effort to determining the weights of vectors

and the distances between pairs of vectors.

2 Sequences and the One-Dimensional Fourier Transform

1.1 Fields

Loosely, an algebraic field is any arithmetic system in which one can add, subtract,

multiply, or divide such that the usual arithmetic properties of associativity, commuta-

tivity, and distributivity are satisfied. The fields familiar to most of us are: the rational

field , which is denoted Q and consists of all numbers of the form a/b where a and b

are integers, b not equal to zero; the real field , which is denoted R and consists of all

finite or infinite decimals; and the complex field , which is denoted C and consists of

all numbers of the form a + ib where a and b are real numbers. The rules of addition,

subtraction, multiplication, and division are well known in each of these fields.

Some familiar arithmetic systems are not fields. The set of integers

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, which is denoted Z, is not a field under ordinary addi-

tion and multiplication. Likewise, the set of natural numbers {0, 1, 2, . . .}, which is

denoted N , is not a field.

There are many other examples of fields, some with an infinite number of elements

and some with a finite number of elements. Fields with a finite number of elements

are called finite fields or Galois fields. The Galois field with q elements is denoted

GF(q), or Fq. The set of nonzero elements of a finite field is denoted GF(q)∗. “The”

Galois field GF(q) exists only if q equals a prime p or a prime power pm, with m an

integer larger than one. For other values of the integer q, no definition of addition and

multiplication will satisfy the formal axioms of a field.

We may define the field F as a set that has two operations defined on pairs of elements

of F ; these operations are called “addition” and “multiplication,” and the following

properties must be satisfied.

(1) Addition axioms. The field F is closed under addition, and addition is associative

and commutative,

a + (b+ c) = (a + b)+ c,

a + b = b+ a.

There is a unique element called zero, denoted 0, such that a + 0 = a, and for

every element a there is a unique element called the negative of a and denoted−a

such that a + (−a) = 0. Subtraction a − b is defined as a + (−b).

(2) Multiplication axioms. The field F is closed under multiplication, and multipli-

cation is associative and commutative

a(bc) = (ab)c,

ab = ba.

3 1.1 Fields

There is a unique element not equal to zero called one, denoted 1, such that 1a = a,

and for every element a except zero, there is a unique element called the inverse

of a and denoted a−1 such that aa−1 = 1. Division a ÷ b (or a/b) is defined

as ab−1.

(3) Joint axiom. The distributive law

(a + b)c = ac + bc

holds for all elements a, b, and c in the field F .

The structure of the finite field GF(q) is simple to describe if q is equal to a prime p.

Then

GF(p) = {0, 1, 2, . . . , p− 1},

and addition and multiplication are modulo-p addition and modulo-p multiplication.

This is all the specification needed to determine GF(p) completely; all of the field

axioms can be verified to hold under this definition. Any other attempt to define a field

with p elements may produce a structure that appears to be different, but is actually this

same structure defined from a different point of view or with a different notation. Thus

for every prime p, the finite field GF(p) is unique but for notation. In this sense, only

one field exists with p elements. A similar remark could be made for the field GF(pm)

for any prime p and integer m larger than 1.

We can easily write down addition and multiplication tables for GF(2), GF(3), and

GF(5); see Table 1.1.

The field GF(4) can not have this modulo-p structure because 2× 2 = 0 modulo 4,

and 2 does not have an inverse under multiplication modulo 4. We will construct GF(4)

in a different way as an extension of GF(2). In general, any field that contains the field

F is called an extension field of F . In such a discussion, F itself is sometimes called

the ground field. A field of the form GF(pm) is formed as an extension of GF(p) by

means of a simple polynomial construction akin to the procedure used to construct the

complex field from the real field. Eventually, we want to describe the general form of

this construction, but first we shall construct the complex field C as an extension of the

real field R in the manner of the general construction.

The extension field will consist of pairs of real numbers to which we attach a definition

of addition and of multiplication. We will temporarily refer to this extension field using

the notation R(2) = {(a, b) | a ∈ R, b ∈ R}. The extension field R(2) must not be

confused with the vector space R2. We also remark that there may be more than one

way of defining addition and multiplication on R(2). To define the arithmetic for the

extension field R(2), we represent the elements of the extension field by polynomials.

We will use the symbol z to construct polynomials for such purposes, leaving the symbol

4 Sequences and the One-Dimensional Fourier Transform

Table 1.1. Arithmetic tables for some small fields

GF(2)

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

GF(3)

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

GF(5)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

x for other things. Thus redefine the extension field as follows:

R(2) = {a + bz | a ∈ R, b ∈ R},

where a + bz is a new and useful name for (a, b). Next, find a polynomial of degree 2

over R that cannot be factored over R. The polynomial

p(z) = z2 + 1

cannot be factored over R. Although there are many other polynomials of degree 2 that

also cannot be factored over R (e.g., z2+ z+1), this p(z) is the usual choice because of

its extreme simplicity. Define the extension field as the set of polynomials with degrees

smaller than the degree of p(z) and with coefficients in R. Addition and multiplication in

R(2) are defined as addition and multiplication of polynomials modulo1 the polynomial

p(z). Thus

(a + bz)+ (c + dz) = (a + c)+ (b+ d)z

and

(a + bz)(c + dz) = ac + (ad + bc)z + bdz2 (mod z2 + 1)

= (ac − bd)+ (ad + bc)z.

1 The phrase “modulo p(z),” abbreviated (mod p(z)), means to take the remainder resulting from the usual
polynomial division operation with p(z) as the divisor.

5 1.1 Fields

This is exactly the form of the usual multiplication of complex numbers if the con-

ventional symbol i =
√
−1 is used in place of z because dividing by z2 + 1 and

keeping the remainder is equivalent to replacing z2 by −1. The extension field that

we have constructed is actually the complex field C. Moreover, it can be shown that

any other construction that forms such an extension field R(2) also gives an alternative

representation of the complex field C, but for notation.

Similarly, to extend the field GF(2) to the field GF(4), choose the polynomial

p(z) = z2 + z + 1.

This polynomial cannot be factored over GF(2), as can be verified by noting that z

and z + 1 are the only polynomials of degree 1 over GF(2) and neither is a factor of

z2 + z + 1. Then

GF(4) = {a + bz | a ∈ GF(2), b ∈ GF(2)}.

The field GF(4) has four elements. Addition and multiplication in GF(4) are defined

as addition and multiplication of polynomials modulo p(z). Thus

(a + bz)+ (c + dz) = (a + c)+ (b+ d)z

and

(a + bz)(c + dz) = ac + (ad + bc)z + bdz2 (mod z2 + z + 1)

= (ac + bd)+ (ad + bc + bd)z

(using the fact that “−” and “+” are the same operation in GF(2)). Denoting the four

elements 0, 1, z, and z + 1 of GF(4) by 0, 1, 2, and 3, the addition and multiplication

tables of GF(4) now can be written as in Table 1.2.

The notation used here may cause confusion because, for example, with this notation

1 + 1 = 0 and 2 + 3 = 1 in this field. It is a commonly used notation, however, in

engineering applications.

To extend any field F to a field F (m), first find any polynomial p(z) of degree m over

F that cannot be factored in F . Such a polynomial is called an irreducible polynomial

over F . An irreducible polynomial p(z) of degree m need not exist over the field F

(e.g., there is no irreducible cubic polynomial over R). Then F (m) does not exist. For

a finite field GF(q), however, an irreducible polynomial of degree m does exist for

every positive integer m. If more than one such irreducible polynomial of degree m

exists, then there may be more than one such extension field. Over finite fields, all such

extension fields formed from irreducible polynomials of degree m are the same, except

for notation. They are said to be isomorphic copies of the same field.

6 Sequences and the One-Dimensional Fourier Transform

Table 1.2. Arithmetic table for GF (4)

GF(4)

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

Write the set of polynomials of degree smaller than m as

F (m) = {am−1zm−1 + am−2zm−2 + · · · + a1z + a0 | ai ∈ F}.

The symbol z can be thought of as a kind of place marker that is useful to facilitate

the definition of multiplication. Addition in F (m) is defined as addition of polynomials.

Multiplication in F (m) is defined as multiplication of polynomials modulo p(z).

The construction makes it evident that if F is GF(q), the finite field with q elements,

then the extension field is also a finite field and has qm elements. Thus it is the field

GF(qm), which is unique up to notation. Every finite field GF(q) can be constructed

in this way as GF(pℓ) for some prime p and some positive integer ℓ. The prime p is

called the characteristic of GF(q).

For example, to construct GF(16) as an extension of GF(2), choose2

p(z) = z4 + z + 1. This polynomial is an irreducible polynomial over GF(2), and it

has an even more important property as follows. If p(z) is used to construct GF(16),

then the polynomial z represents a field element that has order 15 under the multipli-

cation operation. (The order of an element γ is the smallest positive integer n such

that γ n = 1.) Because the order of the polynomial z is equal to the number of nonzero

elements of GF(16), every nonzero element of GF(16) must be a power of z.

Any polynomial p(z) over the ground field GF(q) for which the order of z modulo

p(z) is equal to qm − 1 is called a primitive polynomial over GF(q), and the element

z is called a primitive element of the extension field GF(qm). The reason for using a

primitive polynomial to construct GF(q) can be seen by writing the fifteen nonzero

field elements of GF(16), {1, z, z+1, z2, z2+1, z2+z, z2+z+1, z3, z3+1, z3+z, z3+
z+1, z3+ z2, z3+ z2+1, z3+ z2+ z, z3+ z2+ z+1}, as powers of the field element z.

In this role, a primitive element z generates the field because all fifteen nonzero field

elements are powers of z. When we wish to emphasize its role as a primitive element,

we shall denote z by α. We may regard α as the abstract field element, and z as the

polynomial representation of α. In GF(16), the nonzero field elements are expressed

as powers of α (or of z) as follows:

α1 = z,

α2 = z2,

2 The use of p both for a prime and to designate a polynomial should not cause confusion.

7 1.1 Fields

α3 = z3,

α4 = z + 1, (because z4 = z + 1 (mod z4 + z + 1)),

α5 = z2 + z,

α6 = z3 + z2,

α7 = z3 + z + 1,

α8 = z2 + 1,

α9 = z3 + z,

α10 = z2 + z + 1,

α11 = z3 + z2 + z,

α12 = z3 + z2 + z + 1,

α13 = z3 + z2 + 1,

α14 = z3 + 1,

α15 = 1 = α0.

The field arithmetic of GF(16) works as follows. To add the field elements z3+ z2 and

z2 + z + 1, add them as polynomials with coefficients added modulo 2. (Writing only

the coefficients, this can be expressed as 1100 + 0111 = 1011.) To multiply 1100 by

0111 (here 1100 and 0111 are abbreviations for the field elements denoted previously

as z3 + z2 and z2 + z + 1), write

(1100)(0111) = (z3 + z2)(z2 + z + 1) = α6 · α10 = α16 = α · α15

= α · 1 = α = z

= (0010).

To divide 1100 by 0111, write

(1100)/(0111) = (z3 + z2)/(z2 + z + 1) = α6/α10 = α6α5

= α11 = z3 + z2 + z

= (1110)

(using the fact that 1/α10 = α5 because α5 · α10 = 1).

The field GF(256) is constructed in the same way, now using the irreducible

polynomial

p(z) = z8 + z4 + z3 + z2 + 1

8 Sequences and the One-Dimensional Fourier Transform

(which, in fact, is a primitive polynomial) or any other irreducible polynomial over

GF(2) of degree 8.

In any field, most of the methods of elementary algebra, including matrix algebra and

the theory of vector spaces, are valid. In particular, the Fourier transform of blocklength

n is defined in any field F , providing that F contains an element of order n. The finite

field GF(q) contains an element of order n for every n that divides q−1, because GF(q)

always has a primitive element α, which has order q − 1. Every nonzero element of

the field is a power of α, so there is always a power of α that has order n if n divides

q− 1. If n does not divide q− 1, there is no element of order n.

One reason for using a finite field (rather than the real field) in an engineering problem

is to eliminate problems of round-off error and overflow from computations. However,

the arithmetic of a finite field is not well matched to everyday computations. This is

why finite fields are most frequently found in those engineering applications in which

the computations are introduced artificially as a way of manipulating bits for some

purpose such as error control or cryptography.

1.2 The Fourier transform

The (discrete) Fourier transform, when defined in the complex field, is a fundamental

tool in the subject of signal processing; its rich set of properties is part of the engineer’s

workaday intuition. The Fourier transform exists in any field. Since most of the proper-

ties of the Fourier transform follow from the abstract properties of a field, but not from

the specific structure of a particular field, most of the familiar properties of the Fourier

transform hold in any field.

The Fourier transform is defined on the vector space of n-tuples, denoted Fn. Avector

v in the vector space Fn consists of a block of n elements of the field F , written as

v = [v0, v1, . . . , vn−1].

The vector v is multiplied by the element γ of the field F by multiplying each component

of v by γ . Thus

γ v = [γ v0, γ v1, . . . , γ vn−1].

Here the field element γ is called a scalar. Two vectors v and u are added by adding

components

v+ u = [v0 + u0, v1 + u1, . . . , vn−1 + un−1].

Definition 1.2.1 Let v be a vector of blocklength n over the field F. Let ω be an

element of F of order n. The Fourier transform of v is another vector V of blocklength

9 1.2 The Fourier transform

n over the field F whose components are given by

Vj =
n−1∑

i=0

ωij
vi j = 0, . . . , n− 1.

The vector V is also called the spectrum of v, and the components of V are called

spectral components. The components of the Fourier transform of a vector will always

be indexed by j, whereas the components of the original vector v will be indexed by i.

Of course, V is itself a vector so this indexing convention presumes that it is clear

which vector is the original vector and which is the spectrum. The Fourier transform

relationship is sometimes denoted by v↔ V .

The Fourier transform can also be understood as the evaluation of a polynomial. The

polynomial representation of the vector v = [vi | i = 0, . . . , n− 1] is the polynomial

v(x) =
n−1∑

i=0

vix
i.

The evaluation of the polynomial v(x) at β is the field element v(β), where

v(β) =
n−1∑

i=0

viβ
i.

The Fourier transform, then, is the evaluation of the polynomial v(x) on the n powers

of ω, an element of order n. Thus component Vj equals v(ω j) for j = 0, . . . , n − 1.

If F is the finite field GF(q) and ω is a primitive element, then the Fourier transform

evaluates v(x) at all q− 1 nonzero elements of the field.

The Fourier transform has a number of useful properties, making it one of the

strongest tools in our toolbox. Its many properties are summarized in Section 1, 3.

We conclude this section with a lengthy list of examples of the Fourier transform.

(1) Q or R: ω = +1 has order 1, and ω = −1 has order 2. For no other n is there an

ω in Q or R of order n. Hence only trivial Fourier transforms exist in Q or R. To

obtain a Fourier transform over R of blocklength larger than 2, one must regard R

as embedded into C.

There is, however, a multidimensional Fourier transform over Q or R with 2m

elements. It uses ω = −1 and a Fourier transform of length 2 on each dimension of

a two by two by . . . by two m-dimensional array, and it is a nontrivial example of a

multidimensional Fourier transform in the fields Q and R. (This transform is more

commonly expressed in a form known as the (one-dimensional) Walsh–Hadamard

transform by viewing any vector of length 2m over R as an m-dimensional two by

two by · · · by two array.)

10 Sequences and the One-Dimensional Fourier Transform

(2) C: ω = e−i2π/n has order n, where i =
√
−1. A Fourier transform exists in C

for any blocklength n. There are unconventional choices for ω that work also. For

example, ω = (e−i2π/n)3 works if n is not a multiple of 3.

(3) GF(5): ω = 2 has order 4. Therefore

Vj =
3∑

i=0

2ij
vi j = 0, . . . , 3

is a Fourier transform of blocklength 4 in GF(5).

(4) GF(31): ω = 2 has order 5. Therefore

Vj =
4∑

i=0

2ij
vi j = 0, . . . , 4

is a Fourier transform of blocklength 5 in GF(31). Also ω = 3 has order 30 in

GF(31). Therefore

Vj =
29∑

i=0

3ij
vi j = 0, . . . , 29

is a Fourier transform of blocklength 30 in GF(31).

(5) GF(216+ 1). Because 216+ 1 is prime, an element ω of order n exists if n divides

216 + 1 − 1. Thus elements of order 2ℓ exist for ℓ = 1, . . . , 16. Hence for each

power of 2 up to 216, GF(216 + 1) contains a Fourier transform of blocklength n

equal to that power of 2.

(6) GF((217 − 1)2). This field is constructed as an extension of GF(217 − 1), using

a polynomial of degree 2 that is irreducible over GF(217 − 1). An element ω of

order n exists in the extension field if n divides (217 − 1)2 − 1 = 218(216 − 1).

In particular, for each power of 2 up to 218, GF((217 − 1)2) contains a Fourier

transform of blocklength equal to that power of 2.

(7) GF(16). If GF(16) is constructed with the primitive polynomial p(z) = z4+ z+1,

then z has order 15. Thus ω = z is an element of order 15, so we have the 15-point

Fourier transform

Vj =
14∑

i=0

zij
vi j = 0, . . . , 14.

The components vi (and Vj), as elements of GF(16), can be represented as poly-

nomials of degree at most 3 over GF(2), with polynomial multiplication reduced

by z4 = z + 1.

11 1.2 The Fourier transform

Alternatively, ω = z3 is an element of order 5 in GF(16), so we have the five-point

Fourier transform

V0(z)

V1(z)

V2(z)

V3(z)

V4(z)

=

1 1 1 1 1

1 z3 z6 z9 z12

1 z6 z12 z18 z24

1 z9 z18 z27 z36

1 z12 z24 z36 z48

v0(z)

v1(z)

v2(z)

v3(z)

v4(z)

.

The components of v and of V have been written here in the notation of polynomials

to emphasize that elements of the field GF(16) are represented as polynomials. All

powers of z larger than the third power are to be reduced by using z4 = z + 1.

(8) GF(256). An element ω of order n exists if n divides 255. If the primitive polyno-

mial p(z) = z8 + z4 + z3 + z2 + 1 is used to construct the field GF(256), then z

has order 255. Thus

V0(z)

V1(z)
...

V254(z)

 =

1 1 . . .

1
... zij

v0(z)

v1(z)
...

v254(z)

is a 255-point Fourier transform over GF(256). Each component consists of eight

bits, represented as a polynomial over GF(2), and powers of z are reduced by using

z8 = z4 + z3 + z2 + 1.

(9) Q(16). The polynomial p(z) = z16 + 1 is irreducible over Q. Modulo z16 +
1 multiplication is reduced by setting z16 = −1. An element of Q(16) may be

thought of as a “supercomplex” rational with sixteen parts (instead of two parts). To

emphasize this analogy, the symbol z might be replaced by the symbol i. Whereas a

complex rational is a0+a1i, with a0, a1 ∈Q and here i2 = −1, the “supercomplex”

rational is given by

a0 + a1i+ a2i2 + a3i3 + a4i4 + · · · + a14i14 + a15i15,

with aℓ ∈ Q for ℓ = 1, . . . , 15 and here i16 = −1.

There is a Fourier transform of blocklength 32 in the field Q(16). This is because

z16 = −1 (mod z16 + 1), so the element z has order 32. This Fourier transform

takes a vector of length 32 into another vector of length 32. Components of the

vector are polynomials of degree 15 over Q. The Fourier transform has the form

Vj(z) =
31∑

i=0

zij
vi(z) (mod z16 + 1).

12 Sequences and the One-Dimensional Fourier Transform

We can think of this as an operation on a 32 by 16 array of rational numbers to pro-

duce another 32 by 16 array of rational numbers. Because multiplication by z can

by implemented as an indexing operation, the Fourier transform in Q(16) can be

computed with no multiplications in Q.

1.3 Properties of the Fourier transform

The Fourier transform is important because of its many useful properties. Accordingly,

we will list a number of properties, many of which will be useful to us. A sketch of the

derivation of most of these properties will follow the list.

If V = [Vj] is the Fourier transform of v = [vi], then the following properties

hold.

(1) Linearity:

λv+ µv′ ↔ λV + µV ′.

(2) Inverse:

vi =
1

n

n−1∑

j=0

ω−ijVj i = 0, . . . , n− 1,

where, in an arbitrary field, n is defined as 1+ 1+ 1+ · · · + 1 (n terms).

(3) Modulation:

[viω
iℓ] ↔ [V((j+ℓ))],

where the use of double parentheses ((·)) denotes modulo n.

(4) Translation:

[v((i−ℓ))] ↔ [Vjω
ℓj].

(5) Convolution property:

ei =
n−1∑

ℓ=0

f((i−ℓ))gℓ ↔ Ej = FjGj (convolution to multiplication)

and

ei = figi ↔ Ej =
1

n

n−1∑

ℓ=0

F((j−ℓ))Gℓ (multiplication to convolution).

13 1.3 Properties of the Fourier transform

(6) Polynomial zeros: the polynomial v(x) =
∑n−1

i=0 vix
i has a zero at ω j if and only if

Vj = 0. The polynomial V (y) =
∑n−1

i=0 Vjy
j has a zero at ω−i if and only if vi = 0.

(7) Linear complexity: the weight of a vector v is equal to the cyclic complexity

of its Fourier transform V . (This is explained in Section 1.5 as the statement

wtv = L(V).)

(8) Reciprocation: the reciprocal of a vector [vi] is the vector [vn−i]. The Fourier

transform of the reciprocal of v is the reciprocal of the Fourier transform V :

[v((n−i))] ↔ [V((n−j))].

(9) Cyclic decimation: suppose n = n′n′′; then

[v((n′′i′)) | i′ = 0, . . . , n′ − 1] ↔
[

1

n′′

n′′−1∑

j′′=0

V((j′+n′j′′)) | j′ = 0, . . . , n′ − 1

]
,

where γ = ωn′′ is the element of order n′ used to form the Fourier transform of

blocklength n′. (The folding of the spectrum on the right side is called aliasing.)

(10) Poisson summation formula: suppose n = n′n′′; then

n′−1∑

i′=0

vn′′i′ =
1

n′′

n′′−1∑

j′′=0

Vn′j′′ .

(11) Cyclic permutation: suppose that the integers b and n are coprime, meaning that

the greatest common divisor, denoted GCD(b, n), equals 1; then

[v((bi))] ↔ [V((Bj))],

where B is such that Bb = 1(mod n).

(12) Decimated cyclic permutation: suppose GCD(b, n) = n′′ �= 1, n = n′n′′, and

b = b′n′′. Let γ = ωn′′ be used to form the n′-point Fourier transform of any

vector of blocklength n′. Then

[v((bi′)) | i′ = 0, . . . , n′ − 1] ↔ [V B′j′(mod n′) | j′ = 0, . . . , n′ − 1],

where B′ is such that B′b′ = 1 (mod n′) and

V j′ =
1

n′′

n′′−1∑

j′′=0

Vj′+n′j′′ j′ = 0, . . . , n′ − 1.

This completes our list of elementary properties of the Fourier transform.

14 Sequences and the One-Dimensional Fourier Transform

As an example of property (12), let n = 8 and b = 6. Then n′ = 4, b′ = 3, B′ = 3,

and the transform

[v0, v1, v2, v3, v4, v5, v6, v7] ↔ [V0, V1, V2, V3, V4, V5, V6, V7]

under decimation by b becomes

[v0, v6, v4, v2] ↔
[

V0 + V4

2
,

V3 + V7

2
,

V2 + V6

2
,

V1 + V5

2

]
.

We shall now outline the derivations of most of the properties that have been stated

above.

(1) Linearity:

n−1∑

i=0

ωij(λvi + µv
′
i) = λ

n−1∑

i=0

ωij
vi + µ

n−1∑

i=0

ωij
v
′
i = λVj + µV ′j .

(2) Inverse:

1

n

n−1∑

j=0

ω−ij

n−1∑

ℓ=0

ωℓj
vℓ =

1

n

n−1∑

ℓ=0

vℓ

n−1∑

j=0

ω(ℓ−i)j

= 1

n

n−1∑

ℓ=0

vℓ

n if ℓ = i

1− ω(ℓ−i)n

1− ω(ℓ−i)
= 0 if ℓ �= i.

= vi

(3) Modulation:

n−1∑

i=0

(viω
iℓ)ωij =

n−1∑

i=0

viω
i(j+ℓ) = V((j+ℓ)).

(4) Translation (dual of modulation):

1

n

n−1∑

j=0

(Vjω
ℓj)ω−ij = 1

n

n−1∑

j=0

Vjω
−(i−ℓ)j = v((i−ℓ)).

15 1.3 Properties of the Fourier transform

(5) Convolution property (cyclic):

ei =
n−1∑

ℓ=0

f((i−ℓ))gℓ =
n−1∑

ℓ=0

f((i−ℓ))

1

n

n−1∑

j=0

ω−ℓjGj

= 1

n

n−1∑

j=0

ω−ijGj

n−1∑

ℓ=0

ω(i−ℓ)jf((i−ℓ)) =
1

n

n−1∑

j=0

ω−ijGjFj.

(6) Polynomial zeros: follows immediately from the equation

v(ω j) =
n−1∑

i=0

vi(ω
j) = Vj.

(7) Linear complexity property: deferred until after discussion of linear complexity

in Section 1.5.

(8) Reciprocation. It follows from ωn = 1 that

n−1∑

i=0

v((n−i))ω
ij =

n−1∑

i=0

viω
(n−i)j

=
n−1∑

i=0

viω
i(n−j) = V((n−j)).

(9) Cyclic decimation. Write the spectral index j in terms of a vernier index j′ and a

coarse index j′′:

j = j′ + n′j′′; j′ = 0, . . . , n′ − 1; j′′ = 0, . . . , n′′ − 1.

Then

vn′′i′ =
1

n

n′−1∑

j′=0

n′′−1∑

j′′=0

ω−n′′i′(j′+n′j′′)Vj′+n′j′′

= 1

n

n′−1∑

j′=0

n′′−1∑

j′′=0

ω−n′′i′j′ω−n′′n′i′j′′Vj′+n′j′′ .

Because ωn = 1, the second term in ω equals 1. Then

vn′′i′ =
1

n′

n′−1∑

j′=0

γ−i′j′
(

1

n′′

n′′−1∑

j′′=0

Vj′+n′j′′

)
,

where γ = ωn′′ has order n′.

16 Sequences and the One-Dimensional Fourier Transform

(10) Poisson summation. The left side is the direct computation of the zero com-

ponent of the Fourier transform of the decimated sequence. The right side is

the same zero component given by the right side of the decimation formula in

property (9).

(11) Cyclic permutation. By assumption, b and n are coprime, meaning that they have

no common integer factor. For coprime integers b and n, elementary number

theory states that integers B and N always exist that satisfy

Bb+ Nn = 1.

Then we can write

n−1∑

i=0

ωij
v((bi)) =

n−1∑

i=0

ω(Bb+Nn)ij
v((bi)) =

n−1∑

i=0

ω(bi)(Bj)
v((bi)).

Let i′ = ((bi)). Because b and n are coprime, this is a permutation, so the sum is

unchanged. Then

n−1∑

i=0

ωij
v((bi)) =

n−1∑

i′=0

ωi′Bj
vi′ = V((Bj)).

(12) Decimated cyclic permutation. This is simply a combination of properties (9) and

(10). Because v((bi)) = v((b′n′′i)) = v((b′((n′′i)))), the shortened cyclic permutation

can be obtained in two steps: first decimating by n′′, then cyclically permuting

with b′.

1.4 Univariate and homogeneous bivariate polynomials

A monomial is a term of the form xi. The degree of the monomial xi is the integer i.

A polynomial of degree r over the field F is a linear combination of a finite number

of distinct monomials of the form v(x) =
∑r

i=0 vix
i. The coefficient of the term vix

i

is the field element vi from F . The index of the term vix
i is the integer i. The leading

term of any nonzero univariate polynomial is the nonzero term with the largest index.

The leading index of any nonzero univariate polynomial is the index of the leading

term. The leading monomial of any nonzero univariate polynomial is the monomial

corresponding to the leading term. The leading coefficient of any nonzero univariate

polynomial is the coefficient of the leading term. If the leading coefficient is the field

element one, the polynomial is called a monic polynomial. The degree of the nonzero

polynomial v(x) is the largest degree of any monomial appearing as a term of v(x)

with a nonzero coefficient. The degree of the zero polynomial is −∞. The weight of a

17 1.4 Univariate and homogeneous bivariate polynomials

polynomial is the number of its nonzero coefficients. A polynomial v(x) may also be

called a univariate polynomial v(x) when one wishes to emphasize that there is only

a single polynomial indeterminate x. Two polynomials v(x) and v
′(x) over the same

field can be added by the rule

v(x)+ v
′(x) =

∑

i

(vi + v
′
i)x

i,

and can be multiplied by the rule

v(x)v′(x) =
∑

i

∑

j

vjv
′
i−jx

i.

The division algorithm for univariate polynomials is the statement that, for any two

nonzero univariate polynomials f (x) and g(x), there exist uniquely two polynomials

Q(x), called the quotient polynomial, and r(x), called the remainder polynomial, such

that

f (x) = Q(x)g(x)+ r(x),

and deg r(x) < deg g(x).

The reciprocal polynomial of v(x), a polynomial of degree r, is the polynomial

ṽ(x) =
∑0

i=r vr−ix
i. Sometimesv(x) is regarded as an element of the set of polynomials

of degree less than n over the field F if this is the set of polynomials under consideration.

Then the reciprocal polynomial may be defined as ṽ(x) =
∑n−1−r

i=n−1 vn−1−ix
i, which is in

accord with the definition of a reciprocal vector. Thus the coefficients are written into the

reciprocal polynomial in reverse order, starting with either the first nonzero coefficient

or with coefficient vn−1 even though it may be zero. The context will determine which

definition of ṽ(x) should be understood.

A polynomial v(x) of degree r can be converted into a homogeneous bivariate

polynomial, defined as

v(x, y) =
r∑

i=0

vix
iyr−i.

The term “homogeneous” means that the sum of the exponents of x and y equals r

in every term. The conversion of a univariate polynomial to a homogeneous bivariate

polynomial is a technical device that is sometimes useful in formulating the discussion

of certain topics in a more convenient way.

The nonzero polynomial v(x) over the field F is reducible if v(x) = a(x)b(x) for

some polynomials a(x) and b(x), neither of which has degree 0. A polynomial of

degree larger than 0 that is not reducible is irreducible. (A univariate polynomial that

18 Sequences and the One-Dimensional Fourier Transform

is not reducible in the field F will be reducible when viewed in an appropriate alge-

braic extension of the field F .) The term a(x), if it exists, is called a factor of v(x),

and is called an irreducible factor if it itself is irreducible. For definiteness, we can

require the irreducible factors to be monic polynomials. Any two polynomials with

no common polynomial factor are called coprime polynomials. Any polynomial can

be written as a field element times a product of all its irreducible factors, perhaps

repeated. This product, called the factorization of v(x) into its irreducible factors, is

unique up to the order of the factors. This property is known as the unique factorization

theorem.

The field element β is called a zero of polynomial v(x) if v(β) = 0. Because β is

a field element, all the indicated arithmetic operations are operations in the field F .

The division algorithm implies that if β is a zero of v(x), then x − β is a factor of

v(x). In particular, this means that a polynomial v(x) of degree n can have at most n

zeros.

The field F is an algebraically closed field if every polynomial v(x) of degree 1

or greater has at least one zero. In an algebraically closed field, only polynomials of

degree 1 are irreducible. Every field F is contained in an algebraically closed field. The

complex field C is algebraically closed.

A zero β is called a singular point of the polynomial v(x) if the formal derivative

(defined below) of v(x) is also zero at β. A polynomial v(x) is called a singular polyno-

mial if v(x) has at least one singular point. A polynomial that has no singular points is

called a nonsingular polynomial or a regular polynomial. A polynomial in one variable

over the field F is singular if and only if it has a zero of multiplicity at least 2 in some

extension field of F .

The set of polynomials over the field F is closed under addition, subtraction, and

multiplication. It is an example of a ring. In general, a ring is an algebraic system (sat-

isfying several formal, but evident, axioms) that is closed under addition, subtraction,

and multiplication. A ring that has an identity under multiplication is called a ring with

identity. The identity element, if it exists, is called one. A nonzero element of a ring

need not have an inverse under multiplication. An element that does have an inverse

under multiplication is called a unit of the ring. The ring of polynomials over the field

F is conventionally denoted F[x]. The ring of univariate polynomials modulo xn − 1,

denoted F[x]/〈xn − 1〉 or F◦[x], is an example of a quotient ring. In the quotient ring

F[x]/〈p(x)〉, which consists of the set of polynomials of degree smaller than the degree

of p(x), the result of a polynomial product is found by first computing the polynomial

product in F[x], then reducing to a polynomial of degree less than the degree of p(x) by

taking the remainder modulo p(x). In F[x]/〈xn − 1〉, this remainder can be computed

by repeated applications of xn = 1.

Later, we shall speak frequently of a special kind of subset of the ring F[x], called

an “ideal.” Although at this moment we consider primarily the ring F[x], the definition

of an ideal can be stated in any ring R. An ideal I in F[x] is a nonempty subset of F[x]

19 1.4 Univariate and homogeneous bivariate polynomials

that is closed under addition and is closed under multiplication by any polynomial of

the parent ring F[x]. Thus for I to be an ideal, f (x) + g(x) must be in I if both f (x)

and g(x) are in I , and f (x)p(x) must be in I if p(x) is any polynomial in F[x] and f (x)

is any polynomial in I . An ideal I of the ring R is a proper ideal if I is not equal to R

or to {0}. An ideal I of the ring R is a principal ideal if I is the set of all multiples of a

single element of R. This element is called a generator of the ideal. Every ideal of F[x]
is a principal ideal. A ring in which every ideal is a principal ideal is called a principal

ideal ring.

We need to introduce the notion of a derivative of a polynomial. In the real field,

the derivative is defined as a limit, which is not an algebraic concept. In an arbitrary

field, the notion of a limit does not have a meaning. For this reason, the derivative

of a polynomial in an arbitrary field is simply defined as a polynomial with the form

expected of a derivative. In a general field, the derivative of a polynomial is called a

formal derivative. Thus we define the formal derivative of a(x) =
∑n−1

i=0 aix
i as

a(1)(x) =
n−1∑

i=1

iaix
i−1,

where iai means the sum of i copies of ai (which implies that pai = 0 in a field of

characteristic p because p = 0 (mod p)). The rth formal derivative, then, is given by

a(r)(x) =
n−1∑

i=r

i!
(i − r)!aix

i−r .

In a field of characteristic p, all pth and higher derivatives are always equal to zero,

and so may not be useful. The Hasse derivative is an alternative definition of a derivative

in a finite field that need not equal zero for pth and higher derivatives. The rth Hasse

derivative of a(x) is defined as

a[r](x) =
n−1∑

i=r

(
i

r

)
aix

i−r .

It follows that

a(r)(x) = (r!)a[r](x).

In particular, a(1)(x) = a[1](x). It should also be noted that if b(x) = a[r](x), then, in

general,

b[k](x) �= a[r+k](x).

Hence this useful and well known property of the formal derivative does not carry over

to the Hasse derivative. The following theorem gives a property that does follow over.

20 Sequences and the One-Dimensional Fourier Transform

Theorem 1.4.1 (Hasse) If h(x) is an irreducible polynomial of degree at least 1, then

[h(x)]m divides f (x) if and only if h(x) divides f [ℓ](x) for ℓ = 0, . . . , m− 1.

Proof: This is given as Problem 1.14. �

1.5 Linear complexity of sequences

A linear recursion (or recursion) over the field F is an expression of the form

Vj = −
L∑

k=1

�kVj−k j = L, L+ 1, . . . ,

where the terms Vj and�j are elements of the field F . Given the L connection coefficients

�j for j = 1, . . . , L, the linear recursion produces the terms Vj for j = L, L+1, . . . from

the terms Vj for j = 0, . . . , L − 1. The integer L is called the length of the recursion.

The L coefficients of the recursion are used conventionally to form a polynomial, �(x),

called the connection polynomial and defined as

�(x) = 1+
L∑

j=1

�jx
j

=
L∑

j=0

�jx
j,

where �0 = 1. The linear recursion is denoted concisely as (�(x), L), where �(x) is a

polynomial and L is an integer.

The linear complexity of the (finite or infinite) sequence V = (V0, V1, . . .) is the

smallest value of L for which such a linear recursion exists for that sequence. This

is the shortest linear recursion that will produce,3 from the first L components of the

sequence V , the remaining components of that sequence. The linear complexity of V

will be denoted L(V). If, for a nonzero infinite sequence V , no such recursion exists,

then L(V) = ∞. The linear complexity of the all-zero sequence of any length is defined

to be zero. For a finite sequence of length r, L(V) is always defined and is not larger

than r. For a periodic sequence of period n, L(V) is always defined and is not larger

than n.

The linear complexity can be restated in the language of shift-register circuits. The

linear complexity of V is equal to the length of the shortest linear-feedback shift

3 We avoid the term “generates” here to prevent clashes later with the “generator” of ideals. Thus �(x) generates

the ideal 〈�(x)〉 and produces the sequence V0, V1, . . .

21 1.5 Linear complexity of sequences

–1

1 3
1, –1, 1, 3

Figure 1.1. Simple linear recursion.

register that will produce all of V when initialized with the beginning of V . The coef-

ficients �k of the recursion are the connection coefficients of the linear-feedback shift

register. For example, a shift-register circuit that recursively produces the sequence

(V0, V1, V2, V3) = (3, 1,−1, 1) is shown in Figure 1.1. Because this is the shortest

linear-feedback shift register that produces this sequence, the linear complexity of the

sequence is two. The linear recursion (�(x), L) corresponding to this shift-register

circuit is (1+ x, 2).

The connection polynomial �(x) does not completely specify the recursion because

(as in the example above) it may be that �L = 0. This means that we cannot always

deduce L from the degree of �(x). All that we can deduce is the inequality L ≥
deg �(x). This is why the notation (�(x), L) mentions both �(x) and L. Accordingly,

one may prefer4 to work with the reciprocal form of the connection polynomial, denoted

�̃(x), and also called the connection polynomial or, better, the reciprocal connection

polynomial. This monic polynomial is given by

�̃(x) = xL�(x−1)

= xL +
L∑

k=1

�L−kxk .

Thus �̃k = �L−k . Now we have, more neatly, the equality deg �̃(x) = L. With this

alternative notation, the example of Figure 1.1 is denoted as (�̃(x), L) = (x2 + x, 2).

Possibly, as in the example, �̃(x) is divisible by a power of x because one or more

coefficients including �̃0 are zero, but the length L is always equal to the degree of the

reciprocal connection polynomial �̃(x).

In the rational field Q, the recursion

(�(x), L) = (−x2 − x + 1, 2)

4 This choice is rather arbitrary here, but in Chapter 7, which studies bivariate recursions, the reciprocal form
appears to be unavoidable.

22 Sequences and the One-Dimensional Fourier Transform

(or �̃(x) = x2 − x − 1) produces the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

In contrast, the recursion

(�(x), L) = (−x2 − x + 1, 4)

(or �̃(x) = x4 − x3 − x2) produces the modified sequence

A, B, 2, 3, 5, 8, 13, 21, 34, . . .

when initialized with (A, B, 2, 3), where A and B are any two integers. This is true even

if A and B both equal 1, but, for that sequence, the recursion is not of minimum length,

so then the recursion (−x2 − x + 1, 4) does not determine the linear complexity.

The linear complexity of the Fibonacci sequence – or any nontrivial segment of it –

is 2 because the Fibonacci sequence cannot be produced by a linear recursion of shorter

length. If, however, the first n symbols of the Fibonacci sequence are periodically

repeated, then the periodic sequence of the form (for n = 8)

1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, . . .

is obtained. It is immediately obvious that the linear complexity of this periodic

sequence is at most 8 because it is produced by the recursion Vj = Vj−8. It follows

from Massey’s theorem, which will be given in Section 1.6, that the linear complexity

is at least 6. In fact, it is 6.

A linear recursion of length L for a sequence of length n can be written in the form

Vj +
L∑

k=1

�kVj−k = 0 j = L, . . . , n− 1

(where n may be replaced by infinity). The linear recursion can be expressed concisely as

L∑

k=0

�kVj−k = 0 j = L, . . . , n− 1,

where �0 = 1. The left side is the jth coefficient of the polynomial product �(x)V (x).

Consequently, the jth coefficient of the polynomial product �(x)V (x) is equal to 0 for

j = L, . . . , n− 1. To compute a linear recursion of length at most L that produces V (x),

one must solve the polynomial equation

�(x)V (x) = p(x)+ xng(x)

23 1.6 Massey’s theorem for sequences

for a connection polynomial, �(x), of degree at most L, such that �0 = 1, and p(x)

and g(x) are any polynomials such that deg p(x) < L. Equivalently, one must find �(x)

and p(x) such that

�(x)V (x) = p(x) (mod xn),

where �0 = 1, deg �(x) ≤ L, and deg p(x) < L.

If the sequence is infinite, then the modulo xn operation is removed, and the infinite

sequence V must be expressed as

V (x) = p(x)

�(x)

for �(x) and p(x) of the stated degrees.

1.6 Massey’s theorem for sequences

We will start this section with a useful condition under which two recursions will

continue to agree if they agree up to a certain point. The recursion (�(x), L) produces

the finite sequence V0, V1, . . . , Vr−1 if

Vj = −
L∑

k=1

�kVj−k j = L, . . . , r − 1.

The recursion (�′(x), L′) produces the same sequence V0, V1, . . . , Vr−1 if

Vj = −
L′∑

k=1

�′kVj−k j = L′, . . . , r − 1.

Under what condition will the next term, Vr , produced by each of the two recursions

be the same?

Theorem 1.6.1 (Agreement theorem) If (�(x), L) and (�′(x), L′) both produce the

sequence V0, V1, . . . , Vr−1, and if r ≥ L + L′, then both produce the sequence V0,

V1, . . . , Vr−1, Vr .

Proof: We must show that

−
L∑

k=1

�kVr−k = −
L′∑

k=1

�′kVr−k .

24 Sequences and the One-Dimensional Fourier Transform

By assumption,

Vi = −
L∑

j=1

�jVi−j i = L, . . . , r − 1;

Vi = −
L′∑

j=1

�′jVi−j i = L′, . . . , r − 1.

Because r ≥ L+ L′, we can set i = r − k in these two equations, and write

Vr−k = −
L∑

j=1

�jVr−k−j k = 1, . . . , L′,

and

Vr−k = −
L′∑

j=1

�′jVr−k−j k = 1, . . . , L,

with all terms from the given sequence V0, V1, . . . , Vr−1. Finally, we have

−
L∑

k=1

�kVr−k =
L∑

k=1

�k

L′∑

j=1

�′jVr−k−j

=
L′∑

j=1

�′j

L∑

k=1

�kVr−k−j

= −
L′∑

j=1

�′jVr−j.

This completes the proof. �

Theorem 1.6.2 (Massey’s theorem) If (�(x), L) is a linear recursion that produces

the sequence V0, V1, . . . , Vr−1, but (�(x), L) does not produce the sequence V =
(V0, V1, . . . , Vr−1, Vr), then L(V) ≥ r + 1− L.

Proof: Suppose that the recursion (�′(x), L′) is any linear recursion that produces

the longer sequence V . Then (�(x), L) and (�′(x), L′) both produce the sequence

V0, V1, . . . , Vr−1. If L′ ≤ r − L, then r ≥ L′ + L. By the agreement theorem, both

must produce the same value at iteration r, contrary to the assumption of the theorem.

Therefore L′ > r − L. �

If it is further specified that (�(x), L) is the minimum-length linear recursion that

produces the sequence V0, V1, . . . , Vr−1, then Massey’s theorem can be strengthened

25 1.7 Cyclic complexity and locator polynomials

to the statement that L(V) ≥ max[L, r + 1 − L]. Later, we shall show that L(V) =
max[L, r + 1 − L] by giving an algorithm (the Berlekamp–Massey algorithm) that

computes such a recursion. Massey’s theorem will then allow us to conclude that this

algorithm produces a minimum-length recursion.

1.7 Cyclic complexity and locator polynomials

In this section, we shall study first the linear complexity of periodic sequences. For

emphasis, the linear complexity of a periodic sequence will also be called the cyclic

complexity. When we want to highlight the distinction, the linear complexity of a

finite, and so nonperiodic, sequence may be called the acyclic complexity. The cyclic

complexity is the form of the linear complexity that relates most naturally to the Fourier

transform and to a polynomial known as the locator polynomial, which is the second

topic of this chapter.

Thus the cyclic complexity of the vector V , having blocklength n, is defined as the

smallest value of L for which a cyclic recursion of the form

V((j)) = −
L∑

k=1

�kV((j−k)) j = L, . . . , n− 1, n, n+ 1, . . . , n+ L− 1,

exists, where the double parentheses denote modulo n on the indices. This means that

(�(x), L) will cyclically produce V from its first L components. Equivalently, the linear

recursion (�(x), L) will produce the infinite periodic sequence formed by repeating

the n symbols of V in each period. The cyclic complexity of the all-zero sequence

is zero.

The distinction between the cyclic complexity and the acyclic complexity is illus-

trated by the sequence (V0, V1, V2, V3) = (3, 1,−1, 1) of blocklength 4. The linear

recursion (�(x), L) = (1+ x, 2) achieves the acyclic complexity, and the linear recur-

sion (�(x), L) = (1−x+x2−x3, 3) achieves the cyclic complexity. These are illustrated

in Figure 1.2.

1 1 –1 1

1

++

1

.. . , 1,–1,1,3

–1

3

–1

1,–1,1,3

Figure 1.2. Linear-feedback shift registers.

26 Sequences and the One-Dimensional Fourier Transform

When expressed in the form

V((j)) = −
L∑

k=1

�kV((j−k)) j = 0, . . . , n− 1,

it becomes clear that the cyclic recursion can be rewritten as a cyclic convolution,

L∑

k=0

�kV((j−k)) = 0 j = 0, . . . , n− 1,

where �0 = 1. The left side of this equation can be interpreted as the set of coefficients

of a polynomial product modulo xn − 1. Translated into the language of polynomials,

the equation becomes

�(x)V (x) = 0 (mod xn − 1),

with

V (x) =
n−1∑

j=0

Vjx
j.

In the inverse Fourier transform domain, the cyclic convolution becomes λivi = 0,

where λi and vi are the ith components of the inverse Fourier transform. Thus λi must be

zero whenever vi is nonzero. In this way, the connection polynomial �(x) that achieves

the cyclic complexity locates, by its zeros, the nonzeros of the polynomial V (x).

To summarize, the connection polynomial is defined by its role in the linear recur-

sion. If the sequence it produces is periodic, however, then it has another property.

Accordingly, we shall now define a polynomial, called a locator polynomial, in terms

of this other property. Later, we will find the conditions under which the connection

polynomial and the locator polynomial are the same polynomial, so we take the liberty

of also calling the locator polynomial �(x).

A locator polynomial, �(x) or �◦(x), for a finite set of nonzero points of the form βℓ

or ωiℓ , ℓ = 1, . . . , t, in the field F , is a polynomial of F[x] or F[x]/〈xn−1〉 that has the

points of this set among its zeros, where ω is an element of F of order n. The notation

�◦(x) is used when it is desired to emphasize that the cyclic complexity is under

consideration. Then the polynomial �◦(x) is regarded as an element of F[x]/〈xn − 1〉.
Therefore,

�◦(x) =
t∏

ℓ=1

(1− ωiℓx),

where t is the number of points in the set, and the nonzero value ωiℓ specifies the ℓth

point of the set of points in F . In the context of the locator polynomial, we may refer

27 1.7 Cyclic complexity and locator polynomials

to the points ωiℓ as locations in F . With this notation, we may also call iℓ (or ωiℓ) the

index of the ℓth location. If the field F is the finite field GF(q), and n = q − 1, then

every nonzero element is a power of a primitive element α of the field and, with ω = α,

�◦(x) =
t∏

ℓ=1

(1− αiℓx).

Because the finite field GF(q) has a primitive element α of order q− 1, and V (x) is

a polynomial in the ring of polynomials GF(q)[x]/〈xn − 1〉, we can find the nonzeros

of V (x) at nonzero points of GF(q) by computing V (α−i) for i = 0, . . . , n − 1. This

is the computation of a Fourier transform of blocklength n. The polynomial V (x) has

a nonzero at α−i if V (α−i) �= 0. A locator polynomial for the set of nonzeros of V (x)

is then a polynomial �◦(x) that satisfies

�◦(α−i)V (α−i) = 0.

This means that a locator polynomial for the nonzeros of V (x) is a polynomial that

satisfies

�◦(x)V (x) = 0 (mod xn − 1).

Then, any �◦(x) satisfying this equation “locates” the nonzeros of V (x) by its zeros,

which have the form α−i. If V is a vector whose blocklength n is a divisor of qm − 1,

then only the nonzeros of V (x) at locations of the form ω−i are of interest, where ω

is an element of GF(qm) of order n. In such a case, the primitive element α can be

replaced in the above discussion by an ω of order n. The zeros of �(x) of the form ω−i

locate the indicated nonzeros of V (x).

We have not required that a locator polynomial have the minimal degree, so it need

not be unique. The set of all locator polynomials for a given V (x) forms an ideal, called

the locator ideal. Because GF(q)[x]/〈xn − 1〉 is a principal ideal ring, meaning that

any ideal is generated by a single polynomial of minimum degree, the locator ideal is a

principal ideal. All generator polynomials for this ideal have minimum degree and are

scalar multiples of any one of them. All elements of the ideal are polynomial multiples

of any generator polynomial. It is conventional within the subject of this book to speak

of the unique locator polynomial by imposing the requirements that it have minimal

degree and the constant term �0 is equal to unity. The monic locator polynomial is a

more conventional choice of generator within the subject of algebra.

Now we will prove the linear complexity property of the Fourier transform, which

was postponed until after the discussion of the cyclic complexity. This property may

be stated as follows:

“The weight of a vector v is equal to the cyclic complexity of its Fourier transform V .”

28 Sequences and the One-Dimensional Fourier Transform

Let wt v denote the weight of the vector v. Then the linear complexity property can be

written as

wt v = L(V).

It is assumed implicitly, of course, that n, the blocklength of v, admits a Fourier

transform in the field F (or in an extension of F). Specifically, the field must contain

an element of order n, so n must divide q− 1, or qm − 1, for some integer m.

The proof of the statement follows. The recursion (�(x), L) will cyclically produce

V if and only if

�(x)V (x) = 0 (mod xn − 1).

This is the cyclic convolution

� ∗ V = 0.

By the convolution theorem, the cyclic convolution transforms into a componentwise

product. Then

λivi = 0 i = 0, . . . , n− 1,

where λ is the inverse Fourier transform of �. Therefore λi must be zero everywhere

that vi is not zero. But the polynomial �(x) cannot have more zeros than its degree, so

the degree of �(x) must be at least as large as the weight of v. In particular, the locator

polynomial

�(x) =
t∏

ℓ=1

(1− xω−iℓ)

suffices where wt v = t and (i1, i2, i3, . . . , it) are the t values of the index i at

which vi is nonzero and ω is an element of order n, a divisor of qm − 1. More-

over, except for a constant multiplier, this minimum locator polynomial is unique

because every locator polynomial must have these same zeros. Clearly, then, any

nonzero polynomial multiple of this minimal degree locator polynomial is a locator

polynomial, and there are no others. This completes the proof of the linear complexity

property.

Later, we shall want to compute the recursion (�(x), L) that achieves the cyclic

complexity of a sequence, whereas the powerful algorithms that are known compute

instead the recursion (�(x), L) that achieves the acyclic complexity. There is a simple

condition under which the cyclic complexity and the acyclic complexity are the same.

The following theorem gives this condition, usually realized in applications, that allows

the algorithm for one problem to be used for the other.

29 1.7 Cyclic complexity and locator polynomials

The locator polynomial of V (x) is properly regarded as an element, �◦(x), of the ring

GF(q) [x]/ 〈 xn − 1〉. However, we will find it convenient to compute the connection

polynomial of V (x) by performing the computations in the ring GF(q)[x].
Given polynomial V (x), a connection polynomial for the sequence of coeffi-

cients of V (x) in GF(q)[x] need not be equal to a locator polynomial for V (x) in

GF(q)[x]/〈xn − 1〉, and this is why we use different names. However, we shall see

that, in cases of interest to us, they are the same polynomial.

Theorem 1.7.1 The cyclic complexity and the acyclic complexity of a sequence of

blocklength n are equal if the cyclic complexity is not larger than n/2.

Proof: This is a simple consequence of the agreement theorem. The acyclic complexity

is clearly not larger than the cyclic complexity. Thus, by assumption, the recursions

for the two cases are each of length at most n/2, and they agree at least until the nth

symbol of the sequence. Hence, by the agreement theorem, they continue to agree

thereafter. �

The linear complexity property can be combined with the cyclic permutation property

of the Fourier transform to relate the recursions that produce two periodic sequences

that are related by a cyclic permutation. Suppose that the integers b and n are coprime.

If the recursion (�(x), L) produces the periodic sequence (Vk , k = 0, . . . , n−1), where

�(x) =
L∏

ℓ=1

(1− xωiℓ),

then the recursion (�b(x), L) produces the periodic sequence (V((bk)), k = 0, . . . , n−1),

where

�b(x) =
L∏

ℓ=1

(1− xωbiℓ).

To prove this, let V ′
k
= V((bk)). In the inverse Fourier transform domain, v′i = v((b−1i)),

so vi = v
′
((bi))

. If vi is nonzero, then v
′
((bi))

is nonzero. Therefore �′(x) must have its

zeros at ω−biℓ for ℓ = 1, . . . , L.

If b and n are not coprime, a more complicated version of this is true. Then

�′(x) =
∏

distinct
terms

(1− xγ b′iℓ)

is a connection polynomial, not necessarily minimal, for the decimated sequence, where

γ = ωn′′ , GCD(b, n) = n′′, and b′ = b/n′′.

30 Sequences and the One-Dimensional Fourier Transform

1.8 Bounds on the weights of vectors

The linear complexity property relates the weight of a vector to the length of the linear

recursion that produces the Fourier transform of that vector periodically repeated. By

using this property, the Fourier transform of a vector can be constrained to ensure that

the vector has a weight at least as large as some desired value d .

The theorems of this section describe how patterns of zeros in the Fourier transform

of a vector determine bounds on the weight of that vector. These bounds can also be

obtained as consequences of the fundamental theorem of algebra.

Theorem 1.8.1 (BCH bound) The only vector of blocklength n of weight d − 1 or

less that has d − 1 (cyclically) consecutive components of its transform equal to zero

is the all-zero vector.

Proof: The linear complexity property says that, because the vector v has weight less

than d , its Fourier transform V satisfies the following recursion:

Vj = −
d−1∑

k=1

�kV((j−k)).

This recursion implies that any d − 1 cyclically consecutive components of V equal to

zero will be followed by another component of V equal to zero, and so forth. Thus V

must be zero everywhere. Therefore v is the all-zero vector. �

Theorem 1.8.2 (BCH bound with cyclic permutation) Suppose that b and n are

coprime and a is arbitrary. The only vector v of weight d − 1 or less, whose Fourier

transform satisfies

V((a+bℓ)) = 0 ℓ = 1, . . . , d − 1,

is the all-zero vector.

Proof: The modulation property of the Fourier transform implies that translation of

the spectrum V by a places does not change the weight of v. The cyclic permutation

property implies that cyclic permutation of the transform V by B = b−1 (mod n) places

does not change the weight of v. This gives a weight-preserving permutation of v that

rearranges the d − 1 given zeros of V so that they are consecutive. The BCH bound

completes the proof. �

The BCH bound uses the length of the longest string of zero components in the Fourier

transform of a vector to bound the weight of that vector. Theorems 1.8.3 and 1.8.4 use

other patterns of substrings of zeros. The first of these theorems uses a pattern of evenly

spaced substrings of components that are all equal to zero. The second theorem also

31 1.8 Bounds on the weights of vectors

uses a pattern of evenly spaced substrings of components, most of which are zero, but,

in this case, several may be nonzero.

Theorem 1.8.3 (Hartmann–Tzeng bound) Suppose that b and n are coprime. The

only vector v of blocklength n of weight d − 1 or less, whose spectral components

satisfy

V((a+ℓ1+bℓ2)) = 0
ℓ1 = 0, . . . , d − 2− s

ℓ2 = 0, . . . , s,

is the all-zero vector.

Proof: This bound is a special case of the Roos bound, which is given next. �

Notice that the Hartmann–Tzeng bound is based on s+1 uniformly spaced substrings

of zeros in the spectrum, each substring of length d−1−s. The Roos bound, given next,

allows the evenly spaced repetition of these s+ 1 substrings of zeros to be interrupted

by some nonzero substrings, as long as there are not too many such nonzero substrings.

The Roos bound can be further extended by combining it with the cyclic decimation

property.

Theorem 1.8.4 (Roos bound) Suppose that b and n are coprime. The only vector v

of blocklength n of weight d − 1 or less, whose spectral components satisfy

V((a+ℓ1+bℓ2)) = 0 ℓ1 = 0, . . . , d − 2− s,

for at least s+ 1 values of ℓ2 in the range 0, . . . , d − 2, is the all-zero vector.

Proof: We only give an outline of a proof. The idea of the proof is to construct a new

vector in the transform domain whose cyclic complexity is not smaller and to which

the BCH bound can be applied. From V ↔ v, we have the Fourier transform pair

[V((j+r))] ↔ [viω
ir],

where [·] denotes a vector with the indicated components. This allows us to write the

Fourier transform relationship for a linear combination such as

[β0Vj + β1V((j+r))] ↔ [β0vi + β1viω
ir],

where β0 and β1 are any field elements. The terms vi and viω
ir on the right are both

zero or both nonzero. The linear combination of these two nonzero terms can combine

to form a zero, but two zero terms cannot combine to form a nonzero. This means that

the weights satisfy

wt v ≥ wt [β0vi + β1viω
ir].

32 Sequences and the One-Dimensional Fourier Transform

Vk 000 000 000

Vk 1 000 000 000

Vk 2

–

– 000 000 000

Linear
combination 0 0 0 0 0

Newly created
zeros

Figure 1.3. Construction of new zeros.

The weight on the right side can be bounded by the zero pattern of the vector [β0Vj +
β1V((j+r))]. The bound is made large by the choice of β0 and β1 so as to create a

favorable pattern of zeros.

In the same way, one can linearly combine multiple translates of V , as suggested in

Figure 1.3, to produce multiple new zeros. We then have the following transform pair:

[∑

ℓ

βℓV((j+rℓ))

]
↔
[∑

ℓ

βℓviω
irℓ

]
.

The coefficients of the linear combination are chosen to create new zeros such that the

d − 1 zeros form a regular pattern of zeros spaced by b, as described in Theorem 1.8.2.

The new sequence with components Va+ℓb for ℓ = 0, . . . , d − 2 is zero in at least s+ 1

components, and so is nonzero in at most d − s − 2 components. The same is true

for the sequence Va+ℓb+ℓ2 for each of d − s− 1 values of ℓ2, so all the missing zeros

can be created. Theorem 1.8.2 then completes the proof of Theorem 1.8.4 provided the

new vector is not identically zero. But it is easy to see that the new vector cannot be

identically zero unless the original vector has a string of d − 1 consecutive zeros in its

spectrum, in which case the BCH bound applies. �

The final bound of this section subsumes all the other bounds, but the proof is less

transparent and the bound is not as easy to use. It uses the notion of a triangular matrix,

which is a matrix that has only zero elements on one side of its diagonal.

Theorem 1.8.5 (van Lint–Wilson bound) Given V ∈ GF(q)m, define the compo-

nents of an n by n matrix M by

Mℓj = V((j−ℓ)) j = 0, . . . , n− 1; ℓ = 0, . . . , n− 1,

33 1.8 Bounds on the weights of vectors

and let M̃ be any matrix obtained from M by row permutations and column

permutations. Then v, the inverse Fourier transform of V , satisfies

wt v ≥ rank T ,

where T is any submatrix of M̃ that is triangular.

Proof: The matrix M can be decomposed as

M = �v�T ,

where v is an n by n diagonal matrix, whose diagonal elements are equal to the compo-

nents of the vector v, and � is the matrix describing the Fourier transform. The matrix

� has the elements 	ij = ωij.

Because � has full rank,

rank M = rank v = wt v.

Moreover,

rank M = rank M̃ ≥ rank T ,

from which the inequality of the theorem follows. �

For an application of Theorem 1.8.5, consider a vector of blocklength 7 whose

spectrum is given by (V0, 0, 0, V3, 0, V5, V6). Then

M =

V0 0 0 V3 0 V5 V6

V6 V0 0 0 V3 0 V5

V5 V6 V0 0 0 V3 0

0 V5 V6 V0 0 0 V3

V3 0 V5 V6 V0 0 0

0 V3 0 V5 V6 V0 0

0 0 V3 0 V5 V6 V0

.

The bottom left contains the three by three triangular submatrix

T =

V3 0 V5

0 V3 0

0 0 V3

 .

Clearly, this matrix has rank 3 whenever V3 is nonzero, so, in this case, the weight of

the vector is at least 3. (If V3 is zero, other arguments show that the weight is greater

than 3.)

34 Sequences and the One-Dimensional Fourier Transform

1.9 Subfields, conjugates, and idempotents

The field F has a Fourier transform of blocklength n if F contains an element ω of

order n. If F contains no element of order n, then no Fourier transform exists of

blocklength n over F . If the extension field E contains an element ω of order n, then

there is a Fourier transform of blocklength n in E, which has the same form as before:

Vj =
n−1∑

i=0

ωij
vi j = 0, . . . , n− 1.

Now, however, the vector V has components in the extension field E even if v has

components only in the field F . We wish to describe the nature of any vector V in the

vector space En that is the Fourier transform of a vector v in the vector space Fn.

Theorem 1.9.1 The vector V over the complex field C is the Fourier transform of a

vector v over the real field R if and only if, for all j,

V ∗j = Vn−j.

The vector V over the finite field GF(qm) is the Fourier transform of a vector v over

GF(q) if and only if, for all j,

V
q

j = V((qj)).

Proof: The first statement is well known and straightforward to prove. The second

statement is proved by evaluating the following expression:

V
q

j =
(n−1∑

i=0

ωij
vi

)q

.

In any field of characteristic p,
(

ps

ℓ

)
= ps!/((ps − ℓ)!ℓ!) = 0 (mod p) for 0 < ℓ < ps.

This implies that in GF(qm), (a+ b)q = aq + bq if q is a power of p, because all other

terms are of the form
(

q
ℓ

)
aq−ℓbℓ, and so are equal to zero modulo p because

(
q
ℓ

)
is a

multiple of p. From this we can write

V
q

j =
n−1∑

i=0

ωqij
v

q

i .

35 1.9 Subfields, conjugates, and idempotents

Then we use the fact that aq = a for all a in GF(q) to write

V
q

j =
n−1∑

i=0

ωiqj
vi = V((qj)).

This completes the proof. �

The conjugacy constraint, given by

V
q

j = V((qj)),

leads us to a special relationship between an extension field GF(qm) and a subfield

GF(q); this is the relationship of conjugacy. In the finite field GF(qm), the qith powers

of an element β, for i = 1, . . . , r − 1, are called the q-ary conjugates of β (with r the

smallest positive integer for which βqr = β). The set

{β, βq, βq2
, . . . , βqr−1}

is called the set of q-ary conjugates of β (or the Galois orbit of β). If γ is a conjugate

of β, then β is a conjugate of γ . In general, an element has more than one q-ary

conjugate. If an element of GF(qm) has r q-ary conjugates (including itself), it is an

element of the subfield GF(qr) ⊂ GF(qm), so r divides m. Thus, under conjugacy, the

field decomposes into disjoint subsets called conjugacy classes. The term might also

be used to refer to the set of exponents on a primitive element of the members of a set

of q-ary conjugates.

In the binary field GF(2m), all binary powers of an element β are called the binary

conjugates of β. The binary conjugacy classes in the field GF(16), for example, are

{α0}, {α1, α2, α4, α8}, {α3, α6, α12, α9}, {α5, α10}, and {α7, α14, α13, α11}. The con-

jugacy classes might also be identified with the exponents of α as {0}, {1, 2, 4, 8},
{3, 6, 12, 9}, {5, 10}, and {7, 14, 13, 11}. These sets can be represented by the four-bit

binary representation of the leading term as 0000, 0001, 0011, 0101, and 0111. The

cyclic shifts of each of these four-bit numbers then give the binary representation of

the other elements of that conjugacy class.

The q-ary conjugacy classes of size 1 form the subfield GF(q) within GF(qm).

To recognize the elements of the subfield, note that every element of GF(q) satisfies

βq = β, and xq − x can have only q zeros in GF(qm), so these are the elements in

the q-ary conjugacy classes of size 1. For example, the four elements of GF(64) that

satisfy β4 = β are the four elements of the subfield GF(4).

The sum of all elements of a q-ary conjugacy class of GF(qm),

β + βq + βq2 + · · · + βqr−1
,

36 Sequences and the One-Dimensional Fourier Transform

is called the trace, or the q-ary trace, of β and is denoted tr(β). The q-ary trace is an

element of GF(q) because

(tr(β))q = (β + βq + βq2 + · · · + βqr−1
)q

= βq + βq2 + · · · + βqr−1 + β

= tr(β).

In the binary field GF(2m), the sum of all binary conjugates of β is called the binary

trace of β. Elements in the same conjugacy class have the same binary trace. In the

field GF(16), the binary traces of elements in the conjugacy classes of α0, α1, α3, α5,

and α7 are 1, 0, 1, 1, and 1, respectively.

A binary idempotent polynomial (or idempotent) is a polynomial w(x) over GF(2)

whose transform has components Wj that only take values 0 and 1. Because W 2
j =

Wj, the convolution theorem asserts that an idempotent polynomial satisfies w(x)2 =
w(x)(mod xn − 1). The conjugacy constraint W 2

j = W((2j)) implies that if w(x) is an

idempotent polynomial, then Wj takes the same value, either 0 or 1, on every j for

which αj is in the same conjugacy class.

For example, the binary conjugacy classes of GF(8) are {α0}, {α1, α2, α4}, and

{α3, α6, α5}. Because there are three conjugacy classes and 23 ways of taking

unions of these, there are 23 idempotent polynomials. Of these, two are trivial.

The spectra of the nontrivial idempotent polynomials are W = (1, 0, 0, 0, 0, 0, 0),

(0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1, 1), and all pairwise componentwise sums of these

three spectra. There are six such nontrivial spectra. These correspond to idempotent

polynomials w(x) = x6 + x5 + x4 + x3 + x2 + x + 1, x4 + x2 + x, x6 + x5 + x3,

and all pairwise sums of these polynomials. Each idempotent polynomial satisfies the

equation

w(x)2 = w(x) (mod x7 − 1).

There are exactly six nontrivial solutions to this equation, and we have found all of

them.

A sequence Vj, j = 0, . . . , n−1, in the field GF(qm) that arises by evaluating a poly-

nomial v(x) with coefficients in the field GF(q) must obey the conjugacy constraints.

What can one say about the connection polynomial of such a sequence? The minimum

linear recursion of a sequence always respects conjugacy relationships when they exist.

Seemingly mysterious coincidences occur, which are described by Theorems 1.9.2

and 1.9.3.

37 1.9 Subfields, conjugates, and idempotents

Theorem 1.9.2 If for any sequence V0, V1, . . . , Vn−1 over a field of characteristic 2,

satisfying V 2
j = V((2j)), and for any linear recursion (�(x), L),

Vj = −
L∑

i=1

�iVj−i j = L, . . . , 2r − 1,

then

V2r = −
L∑

i=1

�iV2r−i.

Proof: By assumption, V2r = V 2
r . The proof consists of giving two expressions for

the same term. First, using 1+ 1 = 0 in a field of characteristic 2, we have that

V 2
r =

(
L∑

i=1

�iVr−i

)2

=
L∑

i=1

�2
i V 2

r−i =
L∑

i=1

�2
i V2r−2i.

Second, we have that

V2r = −
L∑

k=1

�kV2r−k =
L∑

k=1

L∑

i=1

�k�iV2r−k−i.

By symmetry, every term with i �= k appears twice, and, in fields of characteristic 2,

these two terms add to 0. Hence only the diagonal terms (with i = k) contribute. Thus

V2r = −
L∑

k=1

�kV2r−k =
L∑

i=1

�2
i V2r−2i.

Because this agrees with the earlier expression for V 2
r and V 2

r = V2r , the theorem is

proved. �

One consequence of the theorem is that if the sequence V0, V1, . . . , Vn−1 is the

Fourier transform of a binary-valued vector, then to test whether (�(x), L) produces

the sequence, only values produced by the recursion for odd values of j need to be

verified. For even values of j, the theorem tells us that the recursion is automatically

satisfied if it is satisfied for all prior values of j.

Now that we have seen how to prove this theorem for finite fields of characteristic

2, we can understand more readily the proof of the theorem generalized to a finite field

of arbitrary characteristic.

38 Sequences and the One-Dimensional Fourier Transform

Theorem 1.9.3 For any sequence satisfying V
q

j = V((qj)) in the field GF(qm) of

characteristic p, and if the linear recursion

Vj = −
L∑

i=1

�iVj−i

holds for j = L, . . . , qr − 1, then it also holds for j = qr.

Proof: We shall give two expressions for the same term. By assumption, V
q

j = V((qj)).

The first expression is given by

V
q
r =

(
−

L∑

i=1

�iVr−i

)q

= −
L∑

i=1

�
q

i V
q

r−i = −
L∑

i=1

�
q

i Vq(r−i).

To derive the second expression, embed the linear recursion into itself to obtain

Vqr = −
L∑

k=1

�kVqr−k = −
L∑

k1=1

�k1

−

L∑

k2=1

�k2Vqr−k1−k2

= (−1)q

L∑

k1=1

L∑

k2=1

· · ·
L∑

kq=1

�k1�k2 · · ·�kq
Vqr−k1−k2−···−kq

.

The final step of the proof is to collapse the sum on the right, because, unless k1 =
k2 = k3 = · · · = kq, each term will recur in multiples of the field characteristic p,

and each group of p identical terms adds to zero modulo p. To continue, regard the

multiple index (k1, k2, k3, . . . , kq) as a q-ary n-tuple. The sum is over all such n-tuples.

Two distinct n-tuples that are related by a permutation give the same contribution to

the sum. The right side is invariant under permutations of the indices (k1, k2, . . . , kq).

In particular, the right side of the equation is invariant under cyclic shifts. Given any

set of indices, consider the set of all of its cyclic shifts, denoted {(k1, k2, . . . , km)}. The

number of elements in this set must divide q and so is a power of p, possibly the zero

power. If two or more terms are related by a permutation, then there are p such equal

terms, and they add to zero modulo p. Therefore the expression collapses to

Vqr = −
L∑

k=1

�kVqr−k = −
L∑

k=1

�
q

k
Vq(r−k).

Consequently, because two terms equal to the same thing are equal to each other, we

have that

Vqr = V
q
r = −

L∑

k=1

�kVqr−k ,

as required. �

39 1.10 Semifast algorithms based on conjugacy

1.10 Semifast algorithms based on conjugacy

A semifast algorithm for a computation is an algorithm that significantly reduces the

number of multiplications compared with the natural form of the computation, but

does not reduce the number of additions. A semifast Fourier transform in GF(q) is a

computational procedure for computing the n-point Fourier transform in GF(q) that

uses about n log n multiplications in GF(q) and about n2 additions in GF(q). We shall

describe a semifast Fourier transform algorithm. It partitions the computation of the

Fourier transform into pieces by using the conjugacy classes of GF(q). In contrast to

the fast Fourier transform algorithm to be discussed in Section 5.6, the semifast Fourier

transform algorithm for the Fourier transform exists even when the blocklength n is a

prime.

The vector v of blocklength n = q − 1 over the finite field GF(q) has component

vi with index i, which we also associate with element αi of GF(q). If q = pm, the

components of v can be partitioned into sets corresponding to the conjugacy classes

of GF(q) over the underlying prime field GF(p). Over the field GF(2), for example,

each conjugacy class of GF(2m) contains at most m elements. For each ℓ, the number

mℓ of elements in the ℓth conjugacy class divides m, and for most ℓ, mℓ equals m.

The algorithm that we will describe for the Fourier transform uses not more than m2
ℓ

multiplications for the ℓth conjugacy class. There are approximately n/m conjugacy

classes, each taking at most m2 multiplications, so the total number of multiplications

can be approximated by

∑

ℓ

m2
ℓ ≈

n

m
m2 = n logp q,

which is about n logp n multiplications.

To formulate the algorithm, we will choose one representative b from each conjugacy

class and decompose v as the sum of vectors

v =
∑

b

v(b),

where the vector v(b) has nonzero component v(b)
i only if i is an element of the conjugacy

class of b, which is Ab = {b, pb, p2b, . . . , pr−1b}, where r is the number of elements

in the conjugacy class of b. Thus,

v
(b)
i =

{
vi i ∈ Ab

0 i �∈ Ab.

40 Sequences and the One-Dimensional Fourier Transform

Then

V =
∑

b

V (b),

where V (b) is the Fourier transform of v(b). Thus it is only necessary to compute the

Fourier transform for each conjugacy class. For each representative b, compute

V
(b)
j =

n−1∑

i=0

ωij
v

(b)
i j = 0, . . . , n− 1,

and then add these vectors together.

Proposition 1.10.1 For fixed b, let r be the cardinality of conjugacy class Ab. The

set of vectors

V
(b)
j =

n−1∑

i=0

ωij
v

(b)
i j = 0, . . . , n− 1,

forms a linear subspace of GF(pm)n of dimension r spanned by V
(b)
0 , V

(b)
1 , . . . , V

(b)
r−1,

the first r components of V (b).

Proof: The set of vectors [V (b)] is a vector space because it is the image of the vector

space [v(b)] under a linear map. By restricting the sum in the Fourier transform to only

those i where the summands are nonzero, which are those i in the bth conjugacy class

Ab, we can write

V
(b)
j =

∑

i∈Ab

ωij
vi =

r−1∑

ℓ=0

ωpℓbj
vpℓb =

r−1∑

ℓ=0

(ωbj)pℓ

vpℓb.

Recall, however, that xpℓ
is a linear function over the field GF(pm). Thus

V
(b)
j + V

(b)

j′ =
r−1∑

ℓ=0

[
(ωbj)pℓ + (ωbj′)pℓ

]
vpℓb

=
r−1∑

ℓ=0

[
ωbj + ωbj′

]pℓ

vpℓb

= V
(b)

k
,

where k is defined by ωbj + ωbj′ = ωbk . This relationship provides the necessary

structure to compute V
(b)
j for values of j from r to n− 1 from those V

(b)
j for values of

j from zero to r − 1. �

41 1.10 Semifast algorithms based on conjugacy

For example, consider a Fourier transform of blocklength 15 over GF(16). The binary

conjugacy classes modulo 15 are {α0}, {α1, α2, α4, α8}, {α3, α6, α12, α9}, {α5, α10}, and

{α7, α14, α13, α11}. The vector v is decomposed by conjugacy classes as

v = v(0) + v(1) + v(3) + v(5) + v(7),

and then the Fourier transform can be written as a sum of Fourier transforms as follows:

V = V (0) + V (1) + V (3) + V (5) + V (7).

In the conjugacy class of α, V
(1)
0 , V

(1)
1 , V

(1)
2 , and V

(1)
3 determine all other V

(1)
j . Because

α4 = α + 1, we find, for example, that V
(1)
4 = V

(1)
1 + V

(1)
0 , that V

(1)
5 = V

(1)
2 + V

(1)
1 ,

and so on. Continuing in this way to express all other components, we obtain

V (1) =
[
V

(1)
0 V

(1)
1 V

(1)
2 V

(1)
3

]

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 ,

where

V
(1)
0

V
(1)
1

V
(1)
2

V
(1)
3

 =

1 1 1 1

ω ω2 ω4 ω8

ω2 ω4 ω8 ω

ω3 ω6 ω12 ω9

v1

v2

v4

v8

 .

This can be computed with sixteen multiplications. (If the multiplications by one are

skipped, it can be computed with only twelve multiplications, but we regard this

refinement as a distraction from the main point.)

Similarly, in the conjugacy class of α3, V
(3)
0 , V

(3)
1 , V

(3)
2 , and V

(3)
3 determine all

others. Because α3 is a zero of the polynomial x4 + x3 + x2 + x + 1, we can write

(α3)4 = (α3)3 + (α3)2 + (α3)1 + (α3)0. Then we find, for example, that V
(3)
4 =

V
(3)
3 + V

(3)
2 + V

(3)
1 + V

(3)
0 . Continuing, we obtain

V (3) =
[
V

(3)
0 V

(3)
1 V

(3)
2 V

(3)
3

]

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

 ,

42 Sequences and the One-Dimensional Fourier Transform

where

V
(3)
0

V
(3)
1

V
(3)
2

V
(3)
3

 =

1 1 1 1

ω3 ω6 ω12 ω9

ω6 ω12 ω9 ω3

ω9 ω3 ω6 ω12

v3

v6

v12

v9

 .

Expressions of the same kind can be written for V (0), V (5), and V (7). The expression

for V (7) also involves a four vector. The expression for V (0), corresponding to the

conjugacy class of zero, is trivial because every component of V (0) is equal to v0. The

expression for V (5) involves a two vector,

[
V

(5)
0

V
(5)
1

]
=
[

1 1

ω5 ω10

][
v5

v10

]
,

and

V (5) =
[
V

(5)
0 V

(5)
1

] [1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

]
.

In total, the computation of the Fourier transform requires a total of fifty-two multipli-

cations (3×42+22) in the field GF(16). Some of these multiplications are by 1 and can

be skipped. In contrast, direct computation of the Fourier transform as defined requires

a total of 225 multiplications in the field GF(16). Again, some of these multiplications

are by 1 and can be skipped.

1.11 The Gleason--Prange theorem

The final two sections of this chapter present several theorems describing proper-

ties, occasionally useful, that are unique to Fourier transforms of prime blocklength.

Although these properties are only of secondary interest, we include them to satisfy our

goal of presenting a broad compendium of properties of the Fourier transform.

Let p be an odd prime and let F be any field that contains an element ω of order p,

or that has an extension field that contains an element ω of order p. This requirement

is equivalent to the requirement that the characteristic of F is not p. Let v be a vector

of blocklength p. The Fourier transform of blocklength p,

Vj =
p−1∑

i=0

ωij
vi j = 0, . . . , p− 1,

43 1.11 The Gleason--Prange theorem

has, of course, all the properties that hold in general for a Fourier transform. Moreover,

because the blocklength is a prime integer, it has several additional properties worth

mentioning. These are the Gleason–Prange theorem, which is discussed in this section,

and the Rader algorithm, which is discussed in Section 1.12.

The indices of v and of V may be regarded as elements of GF(p), and so we

call GF(p) the index field . The index field, which cannot contain an element of

order p, should not be confused with the symbol field F . The elements of GF(p)

can be partitioned as

GF(p) = Q ∪N ∪ {0},

where Q is the set of (nonzero) squares (called the quadratic residues) and N is the

set of (nonzero) nonsquares (called the quadratic nonresidues). Not every element of

GF(p) can be a square because β2 = (−β)2. This means that two elements of GF(p)

map into each square. Not more than two elements can map into each square because

the polynomial x2 − β2 has only two zeros. Thus there must be (p − 1)/2 squares.

This means that there are (p − 1)/2 elements in Q and (p − 1)/2 elements in N . If

π is a primitive element of GF(p), then the squares are the even powers of π and the

nonsquares are the odd powers of π . This partitioning of the index set into squares and

nonsquares leads to the special properties of the Fourier transform of blocklength p.

The Gleason–Prange theorem holds in any field, but the statement of the general case

requires the introduction of Legendre symbols and gaussian sums, which we prefer to

postpone briefly. Initially, to simplify the proof, we temporarily restrict the treatment

to symbol fields F of the form GF(2m).

The Gleason–Prange theorem deals with a vector v of blocklength p, with p a prime,

augmented by one additional component, denoted v∞. With this additional component,

the vector v has length p+1. For the field GF(2m), the additional component is given by

v∞ =
p−1∑

i=0

vi = V0.

The Gleason–Prange permutation of the vector

v = (v0, v1, v2, . . . , vp−1, v∞)

is the vector u with the components ui = v−i−1 , and with u0 = v∞ and u∞ = v0. The

index −i−1 is defined in terms of the operations of the field GF(p). If the Gleason–

Prange permutation is applied twice, the original v is restored because−(−i−1)−1 = i

in GF(p).

For example, with p = 11, the Gleason–Prange permutation of the vector

v = (v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v∞)

44 Sequences and the One-Dimensional Fourier Transform

is the vector

u = (v∞, v10, v5, v7, v8, v2, v9, v3, v4, v6, v1, v0).

The Gleason–Prange permutation of the vector u is the vector v.

We shall say that the spectrum V satisfies a Gleason–Prange condition if either

Vj = 0 for every j ∈ Q, or Vj = 0 for every j ∈ N . For example, for p = 11,

Q = {1, 4, 9, 5, 3} and N = {2, 6, 7, 8, 10}, so both the vector

V = (V0, 0, V2, 0, 0, 0, V6, V7, V8, 0, V10)

and the vector

V = (V0, V1, 0, V3, V4, V5, 0, 0, 0, V9, 0)

satisfy a Gleason–Prange condition.

Theorem 1.11.1 (Gleason–Prange) Over GF(2m), suppose that the extended vectors

v and u are related by the Gleason–Prange permutation. If V satisfies a Gleason–

Prange condition, then U satisfies the same Gleason–Prange condition.

Proof: We shall prove the theorem for the case in which Vj = 0 for j ∈ Q. The other

case, in which Vj = 0 for j ∈ N , is treated the same way.

Because V0 = v∞, the inverse Fourier transform of V can be written as follows:

vi = v∞ +
p−1∑

k=1

ω−ikVk .

Consequently,

v−i−1 = v∞ +
p−1∑

k=1

ωi−1kVk i = 1, . . . , p− 1.

On the other hand, because u0 = v∞, the Fourier transform of u can be written as

follows:

Uj = u0 +
p−1∑

i=1

ωijui j = 1, . . . , p− 1,

= v∞ +
p−1∑

i=1

ωij
v−i−1 ,

45 1.11 The Gleason--Prange theorem

Combining these equations, we obtain

Uj = v∞

1+

p−1∑

i=1

ωij

+

p−1∑

i=1

ωij

p−1∑

k=1

ωi−1kVk j = 1, . . . , p− 1.

Because j is not zero, the first term is zero. Therefore, because Vk = 0 for k ∈ Q, we

have

Uj =
p−1∑

k=1

Vk

p−1∑

i=1

ωij+i−1k =
∑

k∈N

Vk

p−1∑

i=1

ωij+i−1k .

We must show that Uj = 0 if j ∈ Q. This will be so if every ωr that occurs in the

sum occurs twice in the sum because then ωr + ωr = 0 in GF(2m). Given any i, let

ℓ = i−1kj−1. Then ℓj + ℓ−1k = ij + i−1k. So if ℓ �= i, then the exponent of ω occurs

twice in the formula for Uj. It only remains to show that ℓ �= i. But j ∈ Q and k ∈ N .

This means that if i ∈ Q, then ℓ ∈ N , and if i ∈ N , then ℓ ∈ Q. Hence ℓ and i are not

equal, so every ωr occurs twice in the formula for Uj, and the proof is complete. �

The theorem holds because the array Ajk =
∑

i ω
ij+i−1k has an appropriate pattern

of zeros. To illustrate an example of this pattern, let p = 7, and let ω be an element of

GF(7) that satisfies ω3 + ω + 1 = 0. Then it is straightforward to calculate the array

A as follows:

[
6∑

i=1

ωij+i−1k

]
=

ω3 ω5 0 ω6 0 0

ω5 ω6 0 ω3 0 0

0 0 ω5 0 ω3 ω6

ω6 ω3 0 ω5 0 0

0 0 ω3 0 ω6 ω5

0 0 ω6 0 ω5 ω3

.

By the permutation of its rows and columns, this matrix can be put into other attractive

forms. For example, the matrix A can be put into the form of a block diagonal matrix

with identical three by three matrices on the diagonal and zeros elsewhere. Alternatively,

the matrix can be written as follows:

U1

U5

U2

U3

U4

U6

=

ω3 0 ω5 0 ω6 0

0 ω3 0 ω5 0 ω6

ω6 0 ω3 0 ω5 0

0 ω6 0 ω3 0 ω5

ω5 0 ω6 0 ω3 0

0 ω5 0 ω6 0 ω3

V1

V3

V2

V6

V4

V5

,

46 Sequences and the One-Dimensional Fourier Transform

with each row the cyclic shift of the previous row. Then the Gleason–Prange theorem,

stated in the Fourier transform domain, becomes obvious from the above matrix–

vector product. A similar arrangement holds for arbitrary p, which will be explained in

Section 1.12 as a consequence of the Rader algorithm.

The Gleason–Prange theorem holds more generally for a Fourier transform of block-

length p in any field F whose characteristic is not equal to p, provided the definition of

the Gleason–Prange permutation is appropriately generalized. For this purpose, let θ

denote the gaussian sum, which in the field F is defined for any ω of prime order p by

θ =
p−1∑

i=0

χ(i)ωi,

where χ(i) is the Legendre symbol, defined by

χ(i) =

0 if i is a multiple of p

1 if i is a nonzero square (mod p)

−1 if i is a nonzero nonsquare (mod p).

An important property of the Legendre symbol for p prime that we shall use is that

p−1∑

i=0

χ(i)ωij = χ(j)θ ,

which is easy to prove by a change of variables using GCD(j, p) = 1.

Theorem 1.11.2 For any field F whose characteristic is not p, the gaussian sum

satisfies

θ2 = pχ(−1).

Proof: To prove this, consider the zero component of the cyclic convolution (χ ∗χ)0.

This can be found by computing the inverse Fourier transform of the square of the

vector X having the components

Xj =
p−1∑

i=0

χ(i)ωij = χ(j)θ j = 0, . . . , p− 1.

Hence,

(χ ∗ χ)0 =
1

p

p−1∑

j=0

[χ(j)θ]2 = p− 1

p
θ2.

47 1.11 The Gleason--Prange theorem

But the zero component of the convolution can be computed directly. Thus

(χ ∗ χ)0 =
p−1∑

i=0

χ(i)χ(−i)

=
p−1∑

i=1

χ(i2)χ(−1)

= (p− 1)χ(−1),

because i2 is always a square. Hence

(p− 1)χ(−1) = p− 1

p
θ2,

from which we conclude that

θ2

p
= χ(−1).

This completes the proof of the theorem. �

Next, we will generalize the definition of the Gleason–Prange permutation to finite

fields of characteristic p. This permutation is defined for any vector v of blocklength

p+ 1, with p a prime and with component v∞ satisfying

v∞ = −
1

p
θ

p−1∑

i=0

vi.

The Gleason–Prange permutation of the vector v is defined as the vector u with

components

ui = χ(−i−1)v−i−1 i = 1, . . . , p− 1,

and

u0 = χ(−1)v∞,

u∞ = v0.

Because −i−1(mod p) is a permutation, the first line can be written as follows:

u−i−1 = χ(i)vi i = 1, . . . , p− 1.

The Gleason–Prange permutation of the vector u returns to the vector v.

48 Sequences and the One-Dimensional Fourier Transform

Theorem 1.11.3 (Gleason–Prange) Over the field F, suppose that the vectors v and

u are related by the Gleason–Prange permutation. If V satisfies a Gleason–Prange

condition, then U satisfies the same Gleason–Prange condition.

Proof: The proof proceeds along the same lines as the proof of the earlier theorem for

fields of characteristic 2, and it is essentially identical up to the development of the

equation

Uj =
χ(−1)

p

∑

k∈N

Vk

p−1∑

i=1

αij+i−1kχ(i),

which differs from the binary case by the term χ(−1)/p outside the sums and the term

χ(i) inside the sums.

Let ℓ = kj−1i−1. We must show that ℓ �= i and that the ℓth term of the sum cancels

the ith term of the sum. But k ∈ N and j ∈ Q, which implies that i and ℓ have

the opposite quadratic character modulo p. This means that χ(i) = −χ(ℓ), so that

αij+k/iχ(i) = −αℓj+k/ℓχ(ℓ). We conclude that terms in the inner sum cancel in pairs.

Hence Uj = 0.

It remains only to show that
∑p−1

i=0 ui = −(p/θ)u∞. This proof consists of a string

of manipulations, starting with the expression

u∞ = v0 =
1

p

V0 +

p−1∑

j=1

Vj

 = 1

p

−p

θ
v∞ +

p−1∑

j=1

Vj

 .

Because χ(0) = 0 and Vj = 0 unless χ(j) = −1, this can be rewritten as follows:

u∞ =
1

p

−p

θ
v∞ −

p−1∑

j=0

χ(j)Vj

 = 1

p

−p

θ
v∞ −

p−1∑

j=0

χ(j)

p−1∑

i=0

viω
ij

= 1

p

−p

θ
v∞ −

p−1∑

i=0

vi

p−1∑

j=0

χ(j)ωij

= −1

p

p

θ
v∞ + θ

p−1∑

i=0

viχ(i)

 = −1

p

p

θ
v∞ + θ

p−1∑

i=1

u−i−1

 .

The sum at the right is unaffected by a permutation, which means that

u∞ = −
1

p

p

θ
v∞ − θu0 + θ

p−1∑

i=0

ui

 .

49 1.12 The Rader algorithm

But u0 = χ(−1)v∞ and p = θ2χ(−1), from which we conclude that

u∞ = −
1

p
θ

p−1∑

i=0

ui,

which completes the proof. �

1.12 The Rader algorithm

Each nonzero element of GF(p) can be written as a power of π , where π is a primitive

element of the field GF(p). Hence each integer i from 1 to p − 1 can be written

as a power modulo p of π ; the power is called the logarithm of i to the base π in

GF(p). If i = π r(i), then r(i) = logπ i. Thus each nonzero index i of the vector v

has a logarithm. The nonzero index j in the Fourier transform Vj also has a logarithm.

However, it is convenient to treat the index in the transform domain slightly differently.

Let s(j) = − logπ j so that j = π−s(j).

Now write the Fourier transform as follows:

Vj = v0 +
p−1∑

i=1

ωij
vi j = 1, . . . , p− 1,

and

V0 =
p−1∑

i=0

vi.

The reason that v0 and V0 are given special treatment is that zero does not have a base

−π logarithm. Next, write the indices as powers of π as follows:

Vπ−s(j) − v0 =
p−1∑

i=1

ωπ r(i)π−s(j)

vπ r(i) j = 1, . . . , p− 1.

But r(i) is a permutation, and it does not change the sum if the terms are reordered, so

we can define V ′s = Vπ−s − v0 and v
′
r = vπ r , and write

V ′s =
p−2∑

r=0

ωπ r−s

v
′
r s = 0, . . . , p− 2.

This expression is the Rader algorithm for computing V . It is a cyclic convolution

because ωπ r
is periodic with period p − 1. The Rader algorithm has replaced the

50 Sequences and the One-Dimensional Fourier Transform

computation of the Fourier transform of blocklength p by the computation of a cyclic

convolution of blocklength p− 1.

Accordingly, define V ′(x) =
∑p−2

s=0 V ′sxs, and define v
′(x) =

∑p−2
r=0 v

′
rxr . Define the

Rader polynomial as

g(x) =
p−2∑

r=0

ωπ r

xr .

The Rader algorithm expresses the Fourier transform of blocklength p as the polynomial

product

V ′(x) = g(x)v′(x) (mod xp−1 − 1),

or as a (p− 1)-point cyclic convolution

V ′ = g ∗ v′.

The components of v′ are given as the components of v rearranged. The components

of V are easily found as the components of V ′ rearranged.

For an example of the Rader algorithm, let

v = (v0, v1, v2, v3, v4, v5, v6)

be a vector over the field F . Choose the primitive element π = 3 of GF(7) to write the

nonzero indices as i = 3r , so that

v = (v0, vπ0 , vπ2 , vπ1 , vπ4 , vπ5 , vπ3),

from which we obtain

v
′(x) = v5x5 + v4x4 + v6x3 + v2x2 + v3x + v1.

Denote the transform of this vector as

V = (V0, V1, V2, V3, V4, V5, V6)

= (V0, Vπ−0 , Vπ−4 , Vπ−5 , Vπ−2 , Vπ−1 , Vπ−3),

from which we obtain

V ′(x) = V3x5 + V2x4 + V6x3 + V4x2 + V5x + V1.

51 1.12 The Rader algorithm

The Rader polynomial is given by

g(x) =
6∑

r=0

ωπ r

xr

= ω3x5 + ω2x4 + ω6x3 + ω4x2 + ω5x + ω.

Then, except for the terms v0 and V0, the Fourier transforms can be computed as

V ′(x) = g(x)v′(x) (mod x6 − 1),

as one can verify by direct computation. This is a six-point cyclic convolution. In

this way, a p-point Fourier transform has been replaced with a (p − 1)-point cyclic

convolution. This cyclic convolution can be computed in any convenient way, even

by using a six-point Fourier transform, if it exists in that field. Although p is a prime,

p − 1 is composite, so the Good–Thomas fast Fourier transform, to be discussed in

Section 5.6, can be used to compute the convolution.

Finally, one may combine the Rader algorithm with the Gleason–Prange theorem.

This clarifies the example given at the end of Section 1.11. Let V be a vector over

GF(8) of blocklength 7 of the form

V = (V0, 0, 0, V3, 0, V5, V6).

Let v be the inverse Fourier transform of V and let U be the Fourier transform of u,

the Gleason–Prange permutation of v. To form U from V , take the inverse Fourier

transform of V to form v, followed by the Gleason–Prange permutation of v to form u,

followed by the Fourier transform of u to form U . This is given by

Uj = v∞

[
1+

6∑

i=1

ωij

]
+

6∑

i=1

ωij

6∑

k=1

ωi−1kVk j = 1, . . . , 6.

Because j is not zero, the first term is zero. Therefore, because Vk = 0 for k ∈ Q, we

have

Uj =
6∑

i=1

ωij

6∑

k=1

ωi−1kVk .

Both sums can be changed into convolutions by using the Rader algorithm. We will

rewrite this as

Uj−1 =
6∑

i=1

ωj−1i

6∑

k=1

ωi−1kVk

52 Sequences and the One-Dimensional Fourier Transform

by replacing j by j−1. In this way, both summations are changed into identical

convolutions, using the same filter g(x). Now one can express the computation as

U ′(x) = g(x)[g(x)V ′(x)]
= g2(x)V ′(x),

where

V ′(x) =
p−2∑

s=0

[Vπ−s − v0] xs

and

U ′(x) =
p−2∑

s=0

[Uπ s − u0] xs.

Then V ′(x), given above, reduces to

V ′(x) = V3x5 + V6x3 + V5x

and

U ′(x) = U5x5 + U6x3 + U3x.

Modulo x6 − 1, the square of the Rader polynomial g(x) in the field GF(8) is

g2(x) = ω5x4 + ω6x2 + ω3.

Consequently, because U ′(x) = g2(x)V ′(x), we can compute

U ′(x) = (ω5V5 + ω3V3 + ω6V6)x
5 + (ω6V5 + ω5V3 + ω3V6)x

3

+ (ω3V5 + ω6V3 + ω5V6)x

= U5x5 + U6x3 + U3x,

and so U is given by

U =
(
V0, 0, 0, ω6V3 + ω5V5 + ω3V6, 0, ω3V3 + ω6V5 + ω5V6, ω5V3

+ ω3V5 + ω6V6
)
,

which satisfies the same Gleason–Prange condition as V .

53 Problems

Problems

1.1 (a) List the properties of the Walsh–Hadamard transform. Is there a convolution

property?

(b) The tensor product (outer product) of matrices A and B is the matrix con-

sisting of blocks of the form aijB. The tensor product can be used to express

a multidimensional Fourier transform as a matrix–vector product. Describe

a sixteen-point Walsh–Hadamard transform as a matrix–vector product.

1.2 Prove the following properties of the formal derivative:

(a) [f (x)g(x)]′ = f ′(x)g(x)+ f (x)g′(x);
(b) If (x − a)m divides f (x), then f (m)(a) = 0.

1.3 Construct a Fourier transform of blocklength 10 over GF(11). Use the Fourier

transform and the convolution property to compute the polynomial product (x4+
9x3 + 8x2 + 7x+ 6)(x9 + 2x3 + 3x2 + 4x+ 6)(mod 11). Compare the amount

of work with the work of computing the polynomial product directly.

1.4 Find an element ω of order 216 in the field GF(216 + 1).

1.5 Prove that the rings F[x] and F[x]/〈p(x)〉 are principal ideal rings. That is, every

ideal can be written as I = {g(x)a(x)}, where g(x) is a fixed polynomial and

a(x) varies over all elements of the ring.

1.6 Generalize the Walsh–Hadamard transform to Q(i) as constructed by using the

irreducible polynomial p(x) = x2 + 1 over Q. Express this Fourier transform

for blocklength 16 as a matrix with elements ±1, ±i.

1.7 Use the Fourier transform over Q(8), constructed with z8+1, and the convolution

theorem to compute the bivariate polynomial product a(x, y)b(x, y), using only

monovariate polynomial products, where a(x, y) = 1+x−y+x2−y2+x3−y3

and b(x, y) = 1+ x2y2 + x3 + y3 − x3y3.

1.8 Let b be coprime with n. Suppose that �(x) is the polynomial of minimal degree

that cyclically generates V , a vector of blocklength n. What is the polynomial

of minimal degree that cyclically generates the cyclic decimation of V by b?

1.9 Prove the BCH bound using the fact that the number of zeros of the univariate

polynomial p(x) is not larger than the degree of p(x).

1.10 Prove the Hartmann–Tzeng bound. Prove the Roos bound.

1.11 Prove that the cyclic complexity of the vector V is not changed by a cyclic

decimation with an integer b coprime with the blocklength n.

1.12 (a) Prove that in the field GF(q),

(β + γ)q = βq + γ q.

(b) Prove that in the field GF(qm), the q-ary trace satisfies

(i) tr(β + γ) = tr β + tr γ .

54 Sequences and the One-Dimensional Fourier Transform

(ii) tr(ξβ) = ξ(tr β) if ξ ∈ GF(q).

(c) Prove that in the field GF(2m), the binary trace of every element is either 0

or 1.

1.13 What is the linear complexity of the counting sequence (vn+1 = vn + 1)?

1.14 Prove the following property of the Hasse derivative (cited earlier without proof):

if h(x) is an irreducible polynomial of degree at least 1, then [h(x)]m divides

f (x) if and only if h(x) divides f [ℓ](x) for ℓ = 0, . . . , m− 1. Does the statement

hold if the Hasse derivative f [ℓ](x) is replaced by the formal derivative f (ℓ)(x)?

1.15 Prove that the gaussian sum has the following property:

p−1∑

i=0

χ(i)ωij = χ(j)θ .

Thus the gaussian sum is an eigenvalue of the matrix corresponding to the

Fourier transform.

1.16 The Pascal triangle in the rational field is the following infinite arrangement of

integers:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

...

It is defined recursively, forming the elements of each row by adding the two

nearest elements of the previous row.

(a) Describe the Pascal triangle in the field GF(2m).

(b) Formulate an efficient procedure for computing all Hasse derivatives of a

polynomial p(x) over GF(2m).

1.17 To what does the Poisson summation formula reduce in the two extreme cases

(n′, n′′) = (1, n) and (n′, n′′) = (n, 1)?

1.18 Let v and u be two vectors of length p+1 over the field F related by a Gleason–

Prange permutation. Prove that for any fixed γ , and if Vj = γ whenever j is a

quadratic residue in GF(p), then Uj = γ whenever j is a quadratic residue.

Notes

The purpose of this chapter is to provide a compendium of properties of the Fourier

transform from the engineer’s point of view, mingling properties that arise in signal

55 Notes

processing with those that arise in algebraic coding theory. For the most part, these

properties hold in any algebraic field. This unified presentation, independent of any

particular field, is an aid to understanding. In a similar way, placing concrete examples

in various algebraic fields side by side can suggest helpful insights.

The classical bounds of coding theory are presented herein simply as relationships

between the weight of an individual sequence and the pattern of zeros of its Fourier

transform. These bounds are valid in any field. The linear complexity property appeared

explicitly in Blahut (1979), though it is implicit in the bounds of coding theory. This was

discussed by Massey (1998). The role of the Fourier transform in coding theory, though

not under that name, appears in the work of Mattson and Solomon (1961). Schaub’s

doctoral thesis (Schaub, 1988) reinforced interest in a linear complexity approach to

algebraic coding theory. In his thesis, Schaub developed the matrix rank argument for

proving the van Lint–Wilson bound. Massey (1969) first introduced his theorem for

his formulation of the Berlekamp–Massey algorithm. It suits the purposes of this book

to give it an independent identity as a statement concerning linear recurrences.

The Gleason–Prange theorem for finite fields was first published by Mattson and

Assmus (1964). The proof for an arbitrary field is due to Blahut (1991) with a later

simplification by Huffman (1995). The treatment here also draws on unpublished work

of McGuire. The Rader algorithm (Rader, 1968) was introduced for the purpose of

simplifying the computation of a Fourier transform of prime blocklength. In addition

to the semifast algorithm described here, semifast algorithms for the Fourier transform

were given by Goertzel (1968) for the complex field, and by Sarwate (1978) for the

finite fields.

2 The Fourier Transform and Cyclic Codes

Error-control codes are now in widespread use in many applications such as

communication systems, magnetic recording systems, and optical recording systems.

The compact disk and the digital video disk are two familiar examples of such

applications.

We shall discuss only block codes for error control. A block code for error control is

a set of n-tuples in some finite alphabet, usually the finite field GF(q). The reason for

choosing a field as the alphabet is to have a rich arithmetic structure so that practical

codes can be constructed and encoders and decoders can be designed as computational

algorithms. The most popular block codes are linear. This means that the component-

wise sum of two codewords is a codeword, and any scalar multiple of a codeword

is a codeword. So that a large number of errors can be corrected, it is desirable that

codewords be very dissimilar from each other. This dissimilarity will be measured by

the Hamming distance.

The most important class of block codes, the Reed–Solomon codes, will be described

as an exercise in the complexity of sequences and of Fourier transform theory. Another

important class of block codes, the BCH codes, will be described as a class of subcodes

of the Reed–Solomon codes, all of whose components lie in a subfield. The BCH codes

and the Reed–Solomon codes are examples of cyclic codes, which themselves form a

subclass of the class of linear block codes.

2.1 Linear codes, weight, and distance

A linear (n, k) block code C over the field F is a k-dimensional subspace of the vector

space of n-tuples over F . We shall be interested primarily in the case where the field F

is the finite field GF(q). Then a k-dimensional subspace of GF(q)n contains qk vectors

of length n. An (n, k) code is used to represent each k symbol dataword by an n symbol

codeword . There is an overhead of n − k symbols that provides redundancy in the

codeword so that errors (or other impairments) in the received word, or senseword ,

can be corrected. By an appropriate choice of basis for the subspace, the overhead can

57 2.1 Linear codes, weight, and distance

be confined to n − k symbols, called check symbols. The rate of the code is defined

as k/n. The blocklength of the code is n; the datalength or dimension of the code

is k. (The terms blocklength and datalength also apply to nonlinear codes; the term

dimension does not.)

The Hamming weight of a vector is defined as the number of components at which

the vector is nonzero. The Hamming distance between two vectors of the same block-

length is defined as the number of components at which the two vectors are different.

The minimum distance of a code, denoted dmin, is defined as the minimum Hamming

distance between any two distinct codewords of the code. For a linear code, the min-

imum Hamming distance between any pair of codewords is equal to the minimum

Hamming weight of any nonzero codeword.

A linear (n, k) code is also described as a linear (n, k, d) code, which properly means

that d = dmin. This notation is sometimes used informally to mean the weaker statement

that d ≤ dmin, the context usually indicating the intended meaning. The informal usage

arises when the minimum distance is not known or is not evident, but it is known that

d is a lower bound on dmin.

The packing radius of a code, denoted t, is defined as the largest integer smaller

than dmin/2. The packing radius of a code is the largest integer t such that spheres of

Hamming radius t about codewords c(x) of C are disjoint. This should be contrasted

with the covering radius of a code, which is the smallest integer ρ such that spheres of

Hamming radius ρ about codewords cover the whole vector space GF(q)n.

Because the spheres with Hamming radius t centered on codewords are disjoint,

the number of elements of GF(q)n in any such sphere multiplied by the number of

such spheres qk cannot be larger than the total number of elements of GF(q)n. This

means that

qk

t∑

ℓ=0

(q− 1)ℓ
(n

ℓ

)
≤ qn,

an inequality known as the Hamming bound . A linear code that meets the Hamming

bound with equality is called a perfect code. Perfect codes are very rare.

Because it is a k-dimensional subspace of the vector space GF(q)n, a linear code

C can be specified by any basis of this subspace. Any matrix whose k rows form a

basis for the subspace is called a generator matrix for the code and is denoted G. Any

matrix whose n− k rows form a basis for the orthogonal complement is called a check

matrix for the code and is denoted H . Consequently, c is an element of C if and only

if c satisfies either of the two equivalent conditions: c = aG or cHT = 0. The first

condition expresses the codeword c in terms of the dataword a. The second condition

says that C is in the null space of HT. The code C has a codeword of weight w if and

only if H has w linearly dependent columns.

58 The Fourier Transform and Cyclic Codes

The dimension of the linear code C is equal to the rank of the generator matrix G.

Because1 the number of rows of G plus the number of rows of H is equal to the

dimension n of the underlying vector space, the dimension of a code is also equal to n

minus the rank of the check matrix H .

Because the rank of a matrix is equal to both its row rank and its column rank, the

dimension of a linear code C is also equal to the cardinality of the largest set of linearly

independent columns of the generator matrix G. In contrast, the minimum distance of

C is equal to the largest integer d such that every set of d − 1 columns of H is linearly

independent.

There is such a strong parallel in these statements that we will coin a term to

complement the term “rank.”

Definition 2.1.1 For any matrix M:

the rank of M is the largest value of r such that some set of r columns of M is

linearly independent;

the heft of M is the largest value of r such that every set of r columns of M is

linearly independent.

In contrast to the rank, the heft of M need not equal the heft of MT. We will be interested

only in the heft of matrices with at least as many columns as rows.

Clearly, for any matrix M , the inequality

heft M ≤ rank M

holds. The rank can also be described as the smallest value of r such that every set of

r + 1 columns is linearly dependent, and the heft can also be described as the smallest

value of r such that some set of r + 1 columns is linearly dependent.

The dimension k of a linear code is equal to the rank of the generator matrix G,

and the minimum distance of a linear code is equal to one plus the heft of the check

matrix H . Because the rank of a check matrix H equals n− k, and the heft of H equals

dmin − 1, the above inequality relating the heft and the rank of a matrix implies that

dmin ≤ n− k + 1,

an inequality known as the Singleton bound . The quest for good linear (n, k) codes

over GF(q) can be regarded as the quest for k by n matrices over GF(q) with large

heft. For large n, very little is known about finding such matrices.

A linear code that meets the Singleton bound with equality is called a maximum-

distance code.

1 The rank-nullity theorem says the rank of a matrix plus the dimension of its null space is equal to the dimension
of the underlying vector space.

59 2.1 Linear codes, weight, and distance

Theorem 2.1.2 In an (n, k) maximum-distance code, any set of k places may be chosen

as data places and assigned any arbitrary values from GF(q), thereby specifying a

unique codeword.

Proof: A code of minimum distance dmin can correct any dmin − 1 erasures. Because

dmin = n− k+ 1 for maximum-distance codes, the theorem is proved by regarding the

n− k unassigned places as erasures. �

A linear code C is a linear subspace of a vector space GF(q)n. As a vector subspace,

C has an orthogonal complement C⊥, consisting of all vectors v of GF(q)n that are

orthogonal to every element of C, meaning that the inner product
∑n−1

i=0 civi equals

zero for all c ∈ C. Thus

C⊥ =
{

v |
n−1∑

i=0

civi = 0 for all c ∈ C

}
.

The orthogonal complement C⊥ is itself a linear code, called the dual code of C. The

matrices H and G, respectively, are the generator and check matrices for C⊥. Over a

finite field, C and C⊥ may have a nontrivial intersection; the same nonzero vector c

may be in both C and C⊥. Indeed, it may be true that C = C⊥, in which case the code

is called a self-dual code. Even though C and C⊥ may have a nontrivial intersection, it

is still true, by the rank-nullity theorem, that dim(C)+ dim(C⊥) = n.

The blocklength n of a linear code can be reduced to form a new code of smaller

blocklength n′. Let B ⊂ {0, . . . , n− 1} be a set of size n′ that indexes a fixed set of n′

codeword components to be retained in the new code. There are two distinct notions

for reducing the blocklength based on B. These are puncturing and shortening.

A punctured code C(B) is obtained from an (n, k) code C simply by dropping from

each codeword all codeword components with indices in the set Bc. This corresponds

simply to dropping n − n′ columns from the generator matrix G to form a new gen-

erator matrix, denoted G(B). If the rows of G(B) are again linearly independent, the

dimension of the code is not changed. In this case, the number of data symbols remains

the same, the number of check symbols is reduced by n−n′, and the minimum distance

is reduced by at most n− n′.
A shortened code C′(B) is obtained from an (n, k) code C by first forming the sub-

code C′, consisting of all codewords whose codeword components with indices in the

set Bc are zero, then dropping all codeword components with indices in the set Bc. This

corresponds simply to dropping n − n′ columns from the check matrix H to form a

new check matrix, denoted H (B). If the rows of H (B) are again linearly independent,

the redundancy of the code is not changed. In this case, the number of check symbols

remains the same, and the number of data symbols is reduced by n− n′.

60 The Fourier Transform and Cyclic Codes

In summary,

C(B) = {(ci1 , ci2 , ci3 , . . . , cin′) | c ∈ C, iℓ ∈ B};
C′(B) = {(ci1 , ci2 , ci3 , . . . , cin′) | c ∈ C, iℓ ∈ B and ci = 0 for i ∈ Bc}.

The notions of a punctured code and a shortened code will play important roles in

Chapter 10.

A code C over GF(q m) has components in the field GF(q m). The code C may include

some codewords, all of whose components are in the subfield GF(q). The subset of

C consisting of all such codewords forms a code over the subfield GF(q). This code,

which is called a subfield-subcode, can be written as

C′ = C ∩ GF(q)n.

The minimum distance of C′ is not smaller than the minimum distance of C. A subfield-

subcode is a special case of a subcode. In general, a subcode is any subset of a code.

A linear subcode is a subcode that is linear under the obvious inherited operations.

2.2 Cyclic codes

Cyclic codes, including those codes known as Reed–Solomon codes and BCH codes,

which are studied in this chapter, comprise the most important class of block codes for

error correction.

We define a cyclic code of blocklength n over the field F as the set of all n-vectors c

having a specified set of spectral components equal to zero. The set of such vectors is

closed under linear combinations, so the definition implies that a cyclic code is a linear

code. Spectral components exist only if a Fourier transform exists, so a cyclic code of

blocklength n exists in the field F only if a Fourier transform of blocklength n exists in

the field F or in an extension field of F . Fix a set of spectral indices, A = { j1, j2, . . . , jr},
which is called the defining set of the cyclic code. The code C is the set of all vectors

c of blocklength n over the field F whose Fourier transform C satisfies Cjℓ = 0 for

ℓ = 1, . . . , r. Thus

C = {c | Cjℓ = 0 ℓ = 1, . . . , r},

where

Cj =
n−1∑

i=0

ωijci

61 2.2 Cyclic codes

and ω is an element of order n in F or an extension field of F . The spectrum C is called

the codeword spectrum. Moreover, the inverse Fourier transform yields

ci =
1

n

n−1∑

j=0

ω−ijCj.

If F is the finite field GF(q), then n must divide q m − 1 for some m, and so ω is an

element of GF(q m). If n = q m − 1, then ω is a primitive element of GF(q m), and the

cyclic code is called a primitive cyclic code.

To index the q m−1 codeword components of a primitive cyclic code, each component

is assigned to one of the q m− 1 nonzero elements of GF(q m), which can be described

as the q m − 1 powers of a primitive element. Similarly, to index the n codeword

components of a cyclic code of blocklength n, each component is assigned to one of

the n distinct powers of ω, an element of order n. The components of the codeword can

be denoted cωi for i = 0, 1, . . . , n− 1. Because this notation is needlessly clumsy, we

may also identify i with ωi; the components are then denoted ci for i = 0, . . . , n − 1

instead of cωi , according to convenience. The field element zero is not used as an index

for a cyclic code.

A codeword c of a cyclic code is also represented by a codeword polynomial,

defined as

c(x) =
n−1∑

i=0

cix
i.

A codeword spectrum C of a cyclic code is also represented by a spectrum polynomial,

defined as

C(x) =
n−1∑

j=0

Cjx
j.

The Fourier transform and inverse Fourier transform are then given by Cj = c(ω j) and

ci = n−1C(ω−i).

If ω is an element of GF(q), then each spectral component Cj is an element of GF(q),

and, if j is not in the defining set, Cj can be specified arbitrarily and independently of the

other spectral components. If ω is not an element of GF(q), then it is an element of the

extension field GF(q m) for some m, and, by Theorem 1.9.1, the spectral components

must satisfy the conjugacy constraint C
q

j = C((qj)). This means that qj (modulo n)

must be in the defining set A whenever j is in the defining set. In such a case, the

defining set A may be abbreviated by giving only one member (or several members)

62 The Fourier Transform and Cyclic Codes

of each conjugacy class. In this case, for clarity, the defining set itself may be called

the complete defining set, then denoted Ac.

A cyclic code always contains the unique codeword polynomial w(x), called the

principal idempotent, having the property that w(x) is a codeword polynomial and,

for any codeword polynomial c(x), w(x)c(x) = c(x) (mod xn − 1). The principal

idempotent can be identified by its Fourier transform. Clearly, by the convolution

theorem, for any codeword spectrum C, this becomes WjCj = Cj for all j. The codeword

spectrum W with the required property is given by

Wj =
{

0 j ∈ Ac

1 j ∈� Ac,

and this spectrum specifies a unique codeword.

A cyclic code always contains the unique codeword polynomial g(x), called the

generator polynomial of the code, having the property that g(x) is the monic codeword

polynomial of minimum degree. Clearly, there is such a monic codeword polynomial of

minimum degree. It is unique because if there were two monic codeword polynomials

of minimum degree, then their difference would be a codeword polynomial of smaller

degree, which could be made monic by multiplication by a scalar. Every codeword

polynomial c(x) must have a remainder equal to zero under division by g(x). Otherwise,

the remainder would be a codeword polynomial of degree smaller than the degree of

g(x). This means that every codeword polynomial must be a polynomial multiple of

g(x), written c(x) = a(x)g(x). Thus the dimension of the code is k = n− deg g(x).

By the translation property of the Fourier transform, if c is cyclically shifted by b

places, then Cj is replaced by Cjω
jb, which again is zero whenever Cj is zero. Thus

we conclude that the cyclic shift of any codeword of a cyclic code is again a codeword

of the same cyclic code, a property known as the cyclic property. The cyclic codes

take their name from this property, although we do not regard the property, in itself, as

important. The cyclic codes are important, not for the cyclic property, but because the

Fourier transform properties make it convenient to determine their minimum distances

and to develop encoders and decoders. The cyclic property is an example of an auto-

morphism of a code, which is defined as any permutation of codeword components that

preserves the code. The automorphism group of a code is the set of all automorphisms of

the code.

Because C is cyclic, if c(x) is in the code, then xc(x)(mod xn − 1) is in the code as

well, as is a(x)c(x)(mod xn − 1) for any polynomial a(x). By the division algorithm,

xn − 1 = Q(x)g(x)+ r(x),

where the degree of the remainder polynomial r(x) is smaller than the degree of g(x),

so r(x) cannot be a nonzero codeword. But r(x) has the requisite spectral zeros to be a

63 2.2 Cyclic codes

codeword, so it must be the zero codeword. Then r(x) = 0, so

g(x)h(x) = xn − 1

for some polynomial h(x) called the check polynomial.

The central task in the study of a cyclic code is the task of finding the minimum

distance of the code. Because a cyclic code is linear, finding the minimum distance

of the code is equivalent to finding the smallest Hamming weight of any nonzero

codeword of the code. Because the code is completely determined by its defining set,

the minimum distance must be a direct consequence of the code’s defining set. Thus

the relationship between the weight of a vector and the pattern of zeros in its Fourier

transform is fundamental to the nature of cyclic codes. This relationship is described

in large part, though not completely, by the bounds given in Section 1.8. We consider

these bounds as central to the study of cyclic codes – indeed, as a primary reason for

introducing the class of cyclic codes.

A polynomial g(x) over GF(q) can also be regarded as a polynomial over GF(q m).

When used as a generator polynomial, g(x) can define a cyclic code over either GF(q)

or GF(q m).

Theorem 2.2.1 Let g(x), a polynomial over GF(q), divide xq m−1 − 1. The cyclic

code over GF(q) generated by g(x) and the cyclic code over GF(q m) generated by

g(x) have the same minimum distance.

Proof: Let Cq and Cq m be the codes over GF(q) and GF(q m), respectively. Because

Cq ⊂ Cq m , it follows that dmin(Cq) ≥ dmin(Cq m). Let c(x) be a minimum-weight

codeword polynomial in Cq m . Then c(x) = a(x)g(x), where the coefficients of a(x)

and c(x) are in GF(q m) and the coefficients of g(x) are in GF(q). The components of

c are ci =
∑k−1

j=0 gi−jaj. Let c′ be the nonzero vector whose ith component is the ith

component of the q-ary trace of c. We can assume that c′ is not the zero vector, because

if it were, then we would instead consider the codeword γ c for some γ since tr(γ ci)

cannot be zero for all γ unless ci is zero. Then

c′i = tr(ci) = tr
k−1∑

j=0

gi−jaj =
k−1∑

j=0

tr(gi−jaj).

Because gi−j is an element of GF(q), it is equal to its own qth power, and so can be

factored out of the trace. We can conclude that

c′i =
k−1∑

j=0

gi−jtr(aj) =
k−1∑

j=0

gi−ja
′
j.

Thus we see that the polynomial c′(x) is given by g(x)a′(x), and so corresponds to

a codeword in Cq. But the trace operation cannot form a nonzero component c′i from

64 The Fourier Transform and Cyclic Codes

a zero component ci. Therefore the weight of c′ is not larger than the weight of c.

Consequently, we have that dmin(Cq) ≤ dmin(Cq m), and the theorem follows. �

2.3 Codes on the affine line and the projective line

In general, a primitive cyclic code over GF(q) has blocklength n = q m − 1 for some

integer m. When m = 1, the code has blocklength n = q − 1. A code of larger

blocklength may sometimes be desirable. It is possible to extend the length of a cyclic

code of blocklength n = q− 1 to n = q or to n = q+ 1 in a natural way. An extended

cyclic code is described traditionally in terms of a cyclic code of blocklength q − 1

that is extended by one or two extra components. We shall describe these codes more

directly, and more elegantly, in terms of the evaluation of polynomials so that codes of

blocklength q− 1, q, and q+ 1 are of equal status.

The affine line over the finite field GF(q) is the set of all elements of GF(q). The

cyclic line2 over the finite field GF(q) is the set denoted GF(q)∗ of all nonzero elements

of the field. The projective line over the finite field GF(q) is the set, which we denote

GF(q)+ or P (GF(q)), of pairs of elements (β, γ) such that the rightmost nonzero

element is 1. The point (1, 0) of the projective line is called the point at infinity. The

remaining points of the projective line are of the form (β, 1) and, because β can take

on any value of the field, they may be regarded as forming a copy of the affine line

contained within the projective line. The projective line has one point more than the

affine line and two points more than the cyclic line, but, for our purposes, it has a

more cumbersome structure. The cyclic line has one point less than the affine line and

two fewer points than the projective line, but, for our purposes, it has the cleanest

structure. Thus, in effect, GF(q)∗ ⊂ GF(q) ⊂ GF(q)+. The disadvantage of working

on the affine line or projective line is that the properties and computational power of

the Fourier transform are suppressed.

Let V (x) be any polynomial of degree at most n − 1. It can be regarded as the

spectrum polynomial of the vector v. The coefficients of V (x) are the components Vj,

j = 0, . . . , n − 1, of the spectrum V . The vector v, defined by the inverse Fourier

transform

vi =
1

n

n−1∑

j=0

Vjω
−ij,

2 For our purposes, this terminology is convenient because it fits the notion of cyclic as used in “cyclic codes,”
or as in the “cycle” of a primitive element of GF(q), but the similar term “circle” would clash with the point of
view that the real affine line R, together with the point at infinity, form a topological circle.

65 2.3 Codes on the affine and the projective line

is the same as the vector obtained by evaluating the polynomial V (x) on the cyclic line,

using the reciprocal powers of ω and writing

vi =
1

n
V (ω−i).

This vector is given by

v = (v0, v1, v2, . . . , vq−2)

or

v = (vω−0 , vω−1 , vω−2 , . . . , vω−(q−2)).

Thus the components of the vector v can be indexed by i or by the reciprocal powers

of ω.

Constructing vectors by evaluating polynomials in this way can be made slightly

stronger than the Fourier transform because one can also evaluate V (x) at the additional

point x = 0, which evaluation we call v−. Thus the element

v− =
1

n
V (0) = 1

n
V0

can be used as one more component to lengthen the vector v to

v = (v−, v0, v1, . . . , vq−2).

This vector now has blocklength n = q. Rather than the subscript “minus,” the subscript

“infinity” may be preferred. Alternatively, we may write

v = (v−, vω−0 , vω−1 , vω−2 , . . . , vω−(q−2)).

In this case, rather than the subscript “minus,” the subscript “zero” may be preferred

so then all of the q elements of the affine line are used to index the components of the

vector.

It is possible to obtain a second additional component if the defining set has the form

A = {k, . . . , n − 1}. First, replace the spectrum polynomial V (x) by a homogeneous

bivariate polynomial,

V (x, y) =
k−1∑

j=0

Vjx
jyk−1−j,

where k − 1 is the maximum degree of V (x). Then evaluate V (x, y) at all points of the

projective line. This appends one additional component to v because there are q + 1

66 The Fourier Transform and Cyclic Codes

points on the projective line, given by (0, 1), (αi, 1) for i = 0, . . . , q − 2, and (1, 0).

This means that one can evaluate V (x, y) at the point at infinity (1, 0), which evaluation

we call v+. This gives

v+ =
1

n
V (1, 0) = 1

n
Vr ,

which can be used as another component to lengthen the vector v to

v = (v−, v0, v1, . . . , vq−2, v+).

This vector now has blocklength n = q+ 1. An alternative notation for the vector is

v = (v−, vω−0 , vω−1 , vω−2 , . . . , vω−(q−2) , v+).

Rather than the subscripts “minus” and “plus,” the subscripts “zero” and “infinity”

may be preferred, so that the components are then indexed by all of the elements of the

projective line.

To summarize this discussion, we can extend a cyclic code C by one or two compo-

nents. For each c ∈ C, let C(x) be the spectrum polynomial. Then with c− = (1/n)C(0)

and c+ = (1/n)C(1, 0), the singly extended cyclic code is given by

C′ = {(c−, c0, c1, . . . , cq−2)}

and the doubly extended cyclic code is given by

C′′ = {(c−, c0, c1, . . . , cq−2, c+)}.

In this form, an extended cyclic code is not itself cyclic, although it is linear. There are

a few rare examples of doubly extended cyclic codes, however, that do become cyclic

under an appropriate permutation of components.

2.4 The wisdom of Solomon and the wizardry of Reed

The BCH bound tells us how to design a linear (n, k, d) cyclic code of minimum weight

at least d , where d (or sometimes d∗) is called the designed distance of the code. Simply

choose d − 1 consecutive spectral components as the defining set of the cyclic code so

that the BCH bound applies to each codeword.

Definition 2.4.1 An (n, k, d) cyclic Reed–Solomon code over a field F that contains an

element of order n is the set of all vectors over F of blocklength n that have a specified

set of d − 1 consecutive spectral components in the Fourier transform domain equal

to zero.

67 2.4 The wisdom of Solomon and the wizardry of Reed

A cyclic Reed–Solomon code of blocklength n does not exist over F if a Fourier

transform of blocklength n does not exist over F . A narrow-sense Reed–Solomon code

is a Reed–Solomon code with spectral zeros at j = n − d + 1, . . . , n − 1. A primitive

Reed–Solomon code over the finite field GF(q) is a cyclic Reed–Solomon code of

blocklength q− 1.

If codeword c has the spectral component Cj equal to zero for j = j0, j0 +
1, . . . , j0 + d − 2 and codeword c′ has the spectral component C ′j equal to zero for

j = j0, j0 + 1, . . . , j0 + d − 2, then c′′ = αc + βc′ also has spectral components C ′′j
equal to zero for these same indices. Hence the Reed–Solomon code is a linear code.

The dimension of this linear code is denoted k. Because the dimension is equal to

the number of components of the spectrum not constrained to zero, the dimension k

satisfies n− k = d − 1.

A Reed–Solomon code also can be defined in the language of linear algebra. The

Fourier transform is an invertible linear transformation from Fn to Fn. When the result

of the Fourier transform map is truncated to any specified set of d − 1 consecutive

components, then the truncated Fourier transform can be regarded as a linear map

from an n-dimensional vector space to an (n − k)-dimensional vector space, where

n − k = d − 1. The Reed–Solomon code is defined as the null space of this map.

Likewise, the inverse Fourier transform is an invertible linear transformation from Fn

to Fn. When applied to a subspace of Fn of dimension k, consisting of all vectors

with a specified set of d − 1 consecutive components all equal to zero, the inverse

Fourier transform can be regarded as a map from a k-dimensional vector space to an

n-dimensional vector space. The Reed–Solomon code is the image of this map. Hence

it has dimension k.

The BCH bound says that every nonzero codeword of the Reed–Solomon code has

weight at least d and the code is linear, so the minimum distance of the Reed–Solomon

code is at least d = n−k+1. Consequently, the minimum distance is exactly n−k+1

because, as asserted by the Singleton bound, no linear code can have a minimum

distance larger than n − k + 1. This means that an (n, k, d) Reed–Solomon code is

a maximum-distance code, and that the packing radius t of a Reed–Solomon code is

(n− k)/2 if n− k is even and (n− k − 1)/2 if n− k is odd.

A simple nontrivial example of a Reed–Solomon code is a (7, 5, 3) Reed–Solomon

code over GF(8). Choose A = {1, 2} as the defining set of the code. Every codeword

c has C1 = C2 = 0, while C0, C3, C4, C5, and C6 are arbitrary. We may visualize a list

of these codewords c where codeword components are elements of GF(8) given in an

octal notation, as shown in Table 2.1. Even though this is a rather small Reed–Solomon

code, it would be unreasonable to write out this list in full because the full list contains

85 = 32 768 codewords. Because this code was constructed to satisfy the BCH bound

with dmin = 3, every two codewords on the list must differ in at least three places.

Although the definition of a Reed–Solomon code holds in any field F , it appears that

practical applications of Reed–Solomon codes have always used codes over a finite

68 The Fourier Transform and Cyclic Codes

Table 2.1. The (7,5) Reed–Solomon code

0 0 0 0 0 0 0

0 0 0 0 1 6 3

0 0 0 0 2 7 6

0 0 0 0 3 1 5
...

0 0 0 1 0 1 1

0 0 0 1 1 7 2

0 0 0 1 2 6 7

0 0 0 1 3 0 4
...

0 0 0 7 0 7 7

0 0 0 7 1 1 4

0 0 0 7 2 0 1

0 0 0 7 3 6 2
...

0 0 1 0 0 7 3

0 0 1 0 1 1 0

0 0 1 0 2 0 5

0 0 1 0 3 6 6
...

field GF(q). Then n must be a divisor of q− 1. A primitive cyclic Reed–Solomon code

over GF(q) has blocklength q − 1. For those values of n that do not divide q − 1,

an element ω of order n does not exist in GF(q), so a Reed–Solomon code on the

cyclic line does not exist for such an n. However, shortened Reed–Solomon codes do

exist. Longer Reed–Solomon codes – those of blocklength q on the affine line and of

blocklength q+ 1 on the projective line – also exist.

A Reed–Solomon code of blocklength q or q+1 can be defined by extending a Reed–

Solomon code of blocklength q− 1, or by evaluating polynomials on the affine line or

on the projective line. To define a Reed–Solomon code in the language of polynomial

evaluation, let

S = {C(x) | deg C(x) ≤ k − 1},

and let the defining set be A = {k, k + 1, . . . , n− 1}.
The Reed–Solomon code on the cyclic line is given by

C =
{
c | ci =

1

n
C(ω−i), C(x) ∈ S

}
.

69 2.5 The wisdom of Solomon and the wizardry of Reed

The Reed–Solomon code on the affine line is given by

C =
{
c | ci =

1

n
C(βi), βi ∈ GF(q), C(x) ∈ S

}
.

The Reed–Solomon code on the projective line is given by

C =
{
c | ci =

1

n
C(β, γ), C(x, 1) ∈ S

}
,

where C(x, y) is a homogeneous polynomial and (β, γ) ranges over the points of the

projective line. That is, β, γ ∈ GF(q), and either γ = 1 or (β, γ) = (1, 0).

These three versions of the Reed–Solomon code have blocklengths n = q − 1, q,

and q+1. Accordingly, the latter two are sometimes called singly extended and doubly

extended Reed–Solomon codes. We shall prefer to use the term Reed–Solomon code

inclusively to refer to any of the three cases. When it is necessary to be precise, we

shall refer to Reed–Solomon codes of blocklength q − 1, q, or q + 1, respectively, as

cyclic, affine, or projective Reed–Solomon codes.

The extra one or two components that are appended to the cyclic Reed–Solomon

codewords increase the minimum distance of the code by 1 or by 2. This can be seen by

noting that the polynomials C(x) have coefficients Cj equal to zero for j = k, . . . , n−1.

There are n− k consecutive zeros, so the BCH bound says that each codeword of the

cyclic code has minimum weight at least n− k + 1. But the extended symbols are C0

and Ck−1 divided by n. If either or both are zero for any codeword, then the number

of consecutive zeros in the spectrum increases by one or two, so the BCH bound says

that the weight is larger accordingly. If, instead, either or both of C0 and Ck−1 are

nonzero, then either or both of c− or c+ are nonzero, and again the weight is larger

accordingly. Finally, because the code is linear, the minimum distance is equal to the

minimum weight of the code.

The dual of a (q−1, k, q−k) cyclic Reed–Solomon code C over GF(q) with defining

set A is the (q− 1, q− 1− k, k + 1) cyclic Reed–Solomon code C⊥ over GF(q) with

defining set Ac, the complement of A. To see this, let c ∈ C and c⊥ ∈ C⊥ be represented

by codeword polynomials c(x) and c⊥(x), respectively, and observe that the codeword

polynomials satisfy c(ω j)c⊥(ω j) = 0 for all j, from which the convolution property

implies orthogonality of c and c⊥ (as well as orthogonality of c and cyclic shifts of c⊥).

The dual of a (q, k, q− k+ 1) affine Reed–Solomon code over GF(q), with defining

set A = {k, . . . , q− 2} is a (q, n− k + 1) affine Reed–Solomon code over GF(q) with

defining set A⊥ = {q− 1− k, . . . , q− 2}, but defined with α−1 in place of α.

70 The Fourier Transform and Cyclic Codes

2.5 Encoders for Reed–Solomon codes

An encoder is a rule for mapping a k symbol dataword into an n symbol codeword, or

it is a device for performing that mapping. A code will have many possible encoders.

Any encoder that satisfies the taste or the requirements of the designer can be used.

One encoding rule is simply to insert the k data symbols aℓ for ℓ = 0, . . . , k− 1 into

the k unconstrained components of the spectrum

Cj =
{

aj−j0−n+k j = j0 + n− k, . . . , j0 + n− 1

0 j = j0, j0 + 1, . . . , j0 − 1+ n− k,

as illustrated in Figure 2.1. An inverse Fourier transform completes the encoding. The

codeword is given by

ci =
1

n

n−1∑

i=0

ω−ijCj i = 0, . . . , n− 1.

Note that the k data symbols are not immediately visible among the n components of c.

To recover the dataword, one must compute the Fourier transform of c. We refer to this

decoder as a transform-domain encoder.

A more popular encoder, which we call a code-domain encoder,3 is as follows.

Simply define the generator polynomial as follows:

g(x) = (x − ω j0)(x − ω j0+1) · · · (x − ω j0+n−k−1)

= xn−k + gn−k−1xn−k−1 + gn−k−2xn−k−2 + · · · + g1x + g0.

The coefficients of g(x) provide the components of a vector g whose Fourier transform

G is zero in the required components j0, j0 + 1, . . . , j0 + n − k − 1. Thus g(x) itself

is a codeword of weight not larger than n − k + 1. (The BCH bound says that it has

a minimum weight not smaller than n− k + 1, so this is an alternative demonstration

that the Reed–Solomon code has minimum weight equal to n− k + 1.)

0 2a00 0 1a0a

0j

Figure 2.1. Placement of spectral zeros.

3 In the language of signal processing, these encoders would be called time-domain and frequency-domain

encoders, respectively.

71 2.5 Encoders for Reed–Solomon codes

An encoder is as follows. The k data symbols are used to define the data polynomial

a(x) =
k−1∑

i=0

aix
i.

Then

c(x) = g(x)a(x).

The degree of c(x) is given by

deg c(x) = deg g(x)+ deg a(x).

If a(x) has its maximum degree of k − 1, then c(x) has its maximum degree of

deg c(x) = (n− k)+ (k − 1) = n− 1.

Thus multiplication of a(x) by g(x) precisely fills out the n components of the codeword.

Again, the k data symbols are not immediately visible in c(x). They are easily

recovered, however, by polynomial division:

a(x) = c(x)

g(x)
.

Note that this code-domain encoder gives exactly the same set of codewords as the

transform-domain encoder described earlier. The correspondence between datawords

and codewords, however, is different.

Acode-domain encoder is immediately suitable for a shortened Reed–Solomon code,

just as it is suitable for a primitive Reed–Solomon code. To choose n smaller than q−1,

simply reduce the dimension and the blocklength by the same amount.

The encoder we shall describe next is useful because the data symbols are explicitly

visible in the codeword. An encoder with this property is called a systematic encoder.

First, observe that the polynomial xn−ka(x) has the same coefficients as a(x), except

they are shifted in the polynomial by n− k places. The n− k coefficients of xn−ka(x)

with the indices n − k − 1, n − k − 2, . . . , 0 are all zero. We will insert the check

symbols into these n− k positions to produce a codeword of the Reed–Solomon code.

Specifically, let

c(x) = xn−ka(x)− Rg(x)[xn−ka(x)],

72 The Fourier Transform and Cyclic Codes

where Rg(x)[xn−ka(x)] denotes the remainder polynomial, obtained when xn−ka(x) is

divided by g(x). The coefficients of the remainder polynomial occur exactly where

xn−ka(x) itself has all coefficients equal to zero. Thus the two pieces making up c(x)

do not overlap. The coefficients of the data polynomial a(x) are immediately visible

in c(x).

To see that c(x) is indeed a valid codeword polynomial, compute the remainder

polynomial of c(x) divided by g(x) by using the facts that remaindering can be dis-

tributed across addition (or subtraction) and that the remainder of the remainder is the

remainder. Thus,

Rg(x)[c(x)] = Rg(x)[xn−ka(x)− Rg(x)[xn−ka(x)]]

= Rg(x)[xn−ka(x)] − Rg(x)[xn−ka(x)]
= 0.

Therefore c(x), so defined, is a multiple of g(x). This means that it must have the

correct spectral zeros, and so it is a codeword of the Reed–Solomon code. The sys-

tematic encoder produces the same set of codewords as the other two encoders, but the

correspondence between datawords and codewords is different.

2.6 BCH codes

The 85 codewords of the (7, 5, 3) Reed–Solomon code over GF(8) are partially listed in

Table 2.2. If this list is examined, one finds several codewords that are binary-valued:

each component is either 0 or 1. The full list of codewords of the (7, 5, 3) Reed–Solomon

code contains exactly sixteen such binary codewords. These sixteen codewords form

a linear cyclic code over GF(2). This code is called a (7, 4, 3) BCH code over GF(2);

it is also called a (7, 4, 3) Hamming code.

Any subfield-subcode over GF(q) of a Reed–Solomon code over GF(q m) is called

a BCH code. A primitive BCH code is a subfield-subcode of a primitive Reed–

Solomon code. A narrow-sense BCH code is a subfield-subcode of a narrow-sense

Reed–Solomon code.

The BCH codes satisfy the need for codes of blocklength n over GF(q) when GF(q)

contains no element ω of order n, but the extension field GF(q m) does contain such an

element. Then the codeword components are elements of the subfield GF(q), but the

codeword spectral components are elements of GF(q m). Simply choose an (n, k, d)

Reed–Solomon code C over GF(q m) and define the BCH code to be

C′ = C ∩ GF(q)n.

73 2.6 BCH codes

Table 2.2. Extracting a subfield-subcode

from a (7, 5) code

Reed–Solomon code Subfield-subcode

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 6 3

0 0 0 0 2 7 6

0 0 0 0 3 1 5
...

0 0 0 1 0 1 1 0 0 0 1 0 1 1

0 0 0 1 1 7 2

0 0 0 1 2 6 7

0 0 0 1 3 0 4
...

0 0 0 7 0 7 7

0 0 0 7 1 1 4

0 0 0 7 2 0 1

0 0 0 7 3 6 2
...

0 0 1 0 0 7 3

0 0 1 0 1 1 0 0 0 1 0 1 1 0

0 0 1 0 2 0 5

0 0 1 0 3 6 6
...

0 0 1 1 0 6 2

0 0 1 1 1 0 1 0 0 1 1 1 0 1

0 0 1 1 2 1 4

0 0 1 1 3 7 7
...

The minimum distance of the BCH code is at least as large as the designed distance d .

Whereas the packing radius of the Reed–Solomon code C is always t = ⌊(d − 1)/2⌋,
the packing radius of the BCH code C may be larger than ⌊(d − 1)/2⌋ because dmin

may be larger than d . When this point needs to be emphasized, the designed distance

may be denoted d∗, and t may be called the BCH radius. The BCH bound guarantees

that the packing radius is at least as large as the BCH radius t.

The conjugacy constraint C
q

j = C((qj)) gives a complete prescription for defining a

spectrum whose inverse Fourier transform is in GF(q). Every codeword of the BCH

code must satisfy this constraint on its spectrum.

The BCH bound gives a condition for designing a code whose minimum distance is

at least as large as the specified designed distance. A code over GF(q), constructed

74 The Fourier Transform and Cyclic Codes

by imposing both the BCH bound and the conjugacy constraint on the spectrum

components in GF(q m), is a BCH code.

To obtain a binary double-error-correcting code of blocklength 15, choose four con-

secutive components of the spectrum as the defining set. We shall choose j = 1, 2, 3, 4

as the defining set so that C1 = C2 = C3 = C4 = 0. The other components of the

spectrum are elements of GF(16), interrelated by the conjugacy condition

C2
j = C((2j)).

This means that a spectral component with index j, corresponding to conjugacy class

{αj, α2j, . . .}, determines all other spectral components with an index corresponding

to this same conjugacy class. The conjugacy classes modulo 15 lead to the following

partition of the set of spectral components:4

{C0}, {C1, C2, C4, C8}, {C3, C6, C12, C9}, {C5, C10}, {C7, C14, C13, C11}.

To satisfy the BCH bound for a distance-5 code, we choose the defining set A =
{1, 2, 3, 4}. By appending all elements of all conjugacy classes of these elements, one

obtains the complete defining set, which is {1, 2, 3, 4, 6, 8, 9, 12}. Because

C2
0 = C0,

component C0 is an element of GF(2); it can be specified by one bit. Because

C4
5 = C2

10 = C5,

component C5 is an element of GF(4); it can be specified by two bits. Component C7

is an arbitrary element of GF(16); it can be specified by four bits. In total, it takes

seven bits to specify the codeword spectrum. Thus the code is a (15, 7, 5) BCH code

over GF(2).

The (15, 7, 5) binary BCH code can also be described in the code domain in terms

of its generator polynomial. This polynomial must have one zero, αj, corresponding to

each element of the complete defining set. Therefore,

g(x) = (x − α1)(x − α2)(x − α4)(x − α8)(x − α3)(x − α6)(x − α12)(x − α9)

= x8 + x7 + x6 + x4 + 1,

which, as required, has coefficients only in GF(2). Because deg g(x) = 8, n − k = 8

and k = 7.

To obtain a binary triple-error-correcting code of blocklength 63, choose six

consecutive spectral indices as the defining set. We shall choose the defining set

4 The term chord provides a picturesque depiction of the set of frequencies in the same conjugacy class.

75 2.7 Melas codes and Zetterberg codes

A = {1, 2, 3, 4, 5, 6}, which indirectly constrains all components in the respec-

tive conjugacy classes. The appropriate conjugacy classes are {1, 2, 4, 8, 16, 32},
{3, 6, 12, 24, 48, 33}, and {5, 10, 20, 40, 17, 34}. The complete defining set is the union

of these three sets, so the generator polynomial has degree 18. This cyclic code is a

(63, 45, 7) BCH code.

A BCH code may have minimum distance larger than its designed distance. To

obtain a binary double-error-correcting code of blocklength 23, choose four consecu-

tive spectral indices as the defining set. We shall choose j = 1, 2, 3, 4 as the defining

set so that C1 = C2 = C3 = C4 = 0. Because 23 · 89 = 211 − 1, the spec-

tral components are in the field GF(211). The other components of the spectrum are

elements of GF(211), interrelated by the conjugacy condition. There are three conju-

gacy classes modulo 23, and these partition the Fourier spectrum into the following

“chords”:

{C0},
{C1, C2, C4, C8, C16, C9, C18, C13, C3, C6, C12},
{C22, C21, C19, C15, C7, C14, C5, C10, C20, C17, C11}.

Only the elements in the set containing C1 are constrained to zero. Therefore the code

is a (23, 12, 5) BCH code. However, this code actually has a minimum distance larger

than its designed distance. We shall see later that the true minimum distance of this

code is 7. This nonprimitive BCH code is more commonly known as the (23, 12, 7)

binary Golay code.

2.7 Melas codes and Zetterberg codes

Let m be odd and n = 2m − 1. Using the Hartmann–Tzeng bound, it is not hard to

show that the binary cyclic code of blocklength n = 2m − 1, with spectral zeros at

j = ±1, has minimum distance equal to at least 5. Such a code is called a Melas

double-error-correcting code. The dimension of the code is k = 2m − 1 − 2m.

Thus the parameters of the Melas codes are (31, 21, 5), (127, 113, 5), (511, 493, 5),

and so on.

Let m be even and n = 2m+1. A Fourier transform over GF(2) of blocklength n lies

in GF(22m). Using the Hartmann–Tzeng bound, it is not hard to show that the binary

cyclic code of blocklength n = 2m + 1, with a spectral zero at j = 1, has minimum

distance equal to at least 5. Such a code is called a Zetterberg double-error-correcting

code. The dimension of the Zetterberg code is k = 2m + 1− 2m. Thus the parameters

of the Zetterberg codes are (33, 23, 5), (129, 115, 5), (513, 495, 5), and so on.

76 The Fourier Transform and Cyclic Codes

2.8 Roos codes

There are some binary cyclic codes whose minimum distance is given by the Roos

bound. We call these Roos codes. The Roos codes are interesting cyclic codes, but they

do not have any special importance. We shall describe two codes of blocklength 127.

These are the first members of a family of codes of blocklength 2m − 1 for m =
7, 9, 11, . . . In each case, we will outline the argument used to construct the Roos

bound to show that the weight of any nonzero codeword is at least 5.

The (127, 113) binary cyclic code, with defining set A = {5, 9}, has its spec-

tral zeros at components with indices in the complete defining set Ac = {5, 10,

20, 40, 80, 33, 66} ∪ {9, 18, 36, 72, 17, 34, 68}. This set of spectral indices contains the

subset {9, 10, 17, 18, 33, 34}. The Roos construction is based on the fact that if c′ is

defined as

c′i = ci + Aciω
i,

then C ′j = Cj+ACj+1. By the modulation property, the vector [ciω
i] has spectral zeros

in the set {8, 9, 16, 17, 32, 33}. Therefore c′ has spectral zeros in the set {9, 17, 33} and,

unless it is identically zero, has weight not larger than the weight of c. But c′ cannot

be identically zero unless C ′8 and C ′11 are both zero, which means that either c is zero

or has weight at least 5. Furthermore, if C25 is not zero, the constant A can be chosen

so that C25 + AC26 is equal to zero. Then c′ has spectral zeros at {9, 17, 25, 33}. Thus

there are four spectral zeros regularly spaced with a spacing coprime to n. The BCH

bound, suitably generalized, implies that c′ has weight at least five. The weight of c

cannot be less. Therefore the code is a (127, 113, 5) binary code. It is not a BCH code,

but it has the same minimum distance as the (127, 113, 5) binary BCH code.

A second example of a Roos code is the (127, 106) binary cyclic code with

defining set A = {1, 5, 9}. The complete defining set Ac contains the subset

{(8, 9, 10), (16, 17, 18), (32, 33, 34)}. By the construction leading to the Roos bound,

the two vectors [ciω
i] and [ciω

2i] have spectra that are two translates of C. Thus

[ciω
i] has spectral zeros at {(7, 8, 9), (15, 16, 17), (31, 32, 33)}, and [ciω

2i] has spec-

tral zeros at {(6, 7, 8), (14, 15, 16), (30, 31, 32)}. Then the vector c, with components

ci + Aciω
i + A′ciω

2i, has spectral zeros at indices in the set {8, 16, 32}. More-

over, for some choice of the constants A and A′, spectral zeros can be obtained at

{8, 16, 24, 32, 40}. Thus unless c′ is all zero, the weight of codeword c is not smaller

than a word with spectral zeros in the set {8, 16, 24, 32, 40}. By the BCH bound, the

weight of that word is at least 6.

Furthermore, if the weight of c is even, the complete defining set contains the set

{(0, 1, 2), (8, 9, 10), (16, 17, 18), (32, 33, 34)}.

77 2.9 Quadratic residue codes

Hence by the Roos bound, the weight of an even-weight codeword c is at least as large

as a word with defining set {0, 8, 16, 24, 32, 40}. Because 8 is coprime to 127, we can

conclude that the weight of an even-weight codeword is at least 8. Hence the code is

a (127, 106, 7) binary cyclic code. It is not a BCH code, but it has the same minimum

distance as the (127, 106, 7) BCH code.

2.9 Quadratic residue codes

The binary quadratic residue codes are cyclic codes of blocklength p, with p a prime,

and dimension k = (p+ 1)/2. When extended by one bit, a quadratic residue code has

blocklength p + 1 and rate 1/2. The family of quadratic residue codes contains some

very good codes of small blocklength. No compelling reason is known why this should

be so, and it is not known whether any quadratic residue code of large blocklength

is good.

Binary quadratic residue codes only exist for blocklengths of the form p = 8κ ± 1

for some integer κ . In general, the minimum distance of a quadratic residue code is not

known. The main facts known about the minimum distance of quadratic residue codes,

which will be proved in this section, are the following. If p = 8κ − 1,

(i) dmin = 3 (mod 4);

(ii) dmin(dmin − 1) > p.

If p = 8κ + 1,

(i) dmin is odd;

(ii) d2
min > p.

The Hamming bound, together with the above facts, provide upper and lower bounds on

the minimum distance of quadratic residue codes. These bounds are useful for quadratic

residue codes of small blocklength, but are too weak to be useful for quadratic residue

codes of large blocklength.

Table 2.3 gives a list of the parameters of some binary quadratic residue codes

for which the minimum distance is known. Most codes on this list have the largest

known minimum distance of any binary code with the same n and k, and this is what

makes quadratic residue codes attractive. However, not all quadratic residue codes are

this good. Also, satisfactory decoding algorithms are not known for quadratic residue

codes of large blocklength, nor are their minimum distances known.

The most notable entry in Table 2.3 is the (23, 12, 7) Golay code, which will be

studied in Section 2.10. When extended by one bit, it becomes the (24, 12, 8) code that

is known as the extended Golay code. Among the quadratic residue codes, extended by

78 The Fourier Transform and Cyclic Codes

Table 2.3. Parameters of some binary

quadratic residue codes

n k dmin

7 4 3(a)

17 9 5(a)

23 12 7(a)

31 16 7(a)

41 21 9(a)

47 24 11(a)

71 36 11

73 37 13

79 40 15(a)

89 45 17(a)

97 49 15

103 52 19(a)

113 57 15

127 64 19

151 76 19

(a)As good as the best code known of this n and k.

one bit, are some very good codes, including binary codes with parameters (24, 12, 8),

(48, 24, 12), and (104, 52, 20). All of these codes are self-dual codes.

Quadratic residue codes take their name from their relationship to those elements of a

prime field GF(p) that have a square root. We have already stated in Section 1.11 that in

the prime field GF(p), p �= 2, exactly half of the nonzero field elements are squares in

GF(p) – those (p−1)/2 elements that are an even power of a primitive element; these

field elements are the elements that have a square root. The set of quadratic residues,

denoted Q, is the set of nonzero squares of GF(p), and the set of quadratic nonresidues

of GF(p), denoted N , is the set of nonzero elements that are not squares.

Let π be a primitive element of GF(p). Then every element of GF(p), including

−1, can be written as a power of π , so the nonzero elements of GF(p) can be written

as the sequence

π1, π2, π3, . . . ,−1,−π1,−π2,−π3, . . . ,−πp−2, 1,

in which nonsquares and squares alternate and π is a nonsquare (otherwise, every power

of π would also be a square, which cannot be). Because πp−1 = 1 and (−1)2 = 1, it

is clear that π (p−1)/2 = −1. If (p− 1)/2 is even (which means that p− 1 is a multiple

of 4), then −1 appears in the above sequence in the position of a square; otherwise, it

appears in the position of a nonsquare.

79 2.9 Quadratic residue codes

Theorem 2.9.1 In the prime field GF(p), the element −1 is a square if and only if

p = 4κ + 1 for some integer κ; the element 2 is a square if and only if p = 8κ ± 1 for

some integer κ .

Proof: The first statement of the theorem follows immediately from the remarks prior

to the theorem. To prove the second statement, let β be an element of order 8, possibly

in an extension field. This element must exist because 8 and p are coprime. Then β8 = 1

and β4 = −1, so β2 = −β−2. Let γ = β + β−1, and note that

γ 2 = (β + β−1)2 = β2 + 2+ β−2 = 2.

Thus 2 is a square. It remains only to show that γ is in the field GF(p) if and only if

p = 8κ ± 1. But in a field of characteristic p,

(β + β−1)p = βp + β−p.

If p = 8κ ± 1, then because (by the definition of β) β8 = 1,

(β + β−1)p = β8κ±1 + 1

β8κ±1

= β±1 + 1

β±1

= β + β−1.

Thus γ p = γ , so γ is an element of GF(p). On the other hand, if p �= 8κ ± 1, then

p = 8κ ± 3. Because β8 = 1,

(β + β−1)p = β8κ±3 + 1

β8κ±3

= β±3 + 1

β±3

= β3 + β−3.

But β2 = −β−2, so β3 = −β−1 and β−3 = −β. We conclude that γ p = −γ . But

every element of GF(p) satisfies γ p = γ , which means that γ is not an element of

GF(p). This completes the proof of the theorem. �

When the field GF(p) is written in the natural way as

GF(p) = {0, 1, 2, . . . , p− 1},

the squares and nonsquares appear in an irregular pattern. When studying quadratic

residue codes, it may be preferable to write the nonzero elements in the order of powers

80 The Fourier Transform and Cyclic Codes

of a primitive element π of GF(p). Thus we will think of GF(p) in the alternative

order

GF(p) = {0, π0, π1, π2, . . . , πp−2}.

We may list the coordinates of the codeword c in permuted order to give the equivalent

codeword:

c′ = (c0, cπ0 , cπ1 , cπ2 , . . . , cπp−2).

Definition 2.9.2 A binary quadratic residue code of blocklength p, with p a prime,

is a binary cyclic code whose complete defining set A ⊂ GF(p) is the set of nonzero

squares in GF(p).

The locator field GF(2m) should not be confused with the index field GF(p), which

is not a subfield of the locator field. The locator field GF(2m) of the binary quadratic

residue code is the smallest extension of the symbol field GF(2) that contains an element

of order p. Although the binary quadratic residue codes are over the symbol field GF(2),

the quadratic residues used in the definition are in the field GF(p), p �= 2.

The generator polynomial g(x) of the cyclic binary quadratic residue code has a

zero in GF(2m) at ω j whenever j is a quadratic residue, where GF(2m) is the smallest

extension field of GF(2) that contains an element ω of order p. It follows from this

definition that

g(x) =
∏

j∈Q

(x − ω j).

The binary quadratic residue code of blocklength p exists only if the generator poly-

nomial g(x) has all its coefficients in the symbol field GF(2). This means that every

conjugate of a square in GF(p) must also be a square in GF(p). Consequently, the

complete defining set of the code must be equal to Q. The following theorem will allow

us to specify when this is so.

Theorem 2.9.3 A binary quadratic residue code has a blocklength of the form

p = 8κ ± 1.

Proof: A binary cyclic code must have 2j in the defining set whenever j is in the

defining set. But if j is a quadratic residue, then 2j is a quadratic residue only if 2 is

also a quadratic residue. We have already seen that 2 is a quadratic residue only if

p = 8κ ± 1, so the proof is complete. �

Definition 2.9.4 An extended binary quadratic residue code of blocklength p+1, with

p a prime, is the set of vectors of the form

c = (c0, c1, . . . , cp−1, c∞),

81 2.9 Quadratic residue codes

where (c0, c1, . . . , cp−1) is a codeword of the binary quadratic residue code of

blocklength p and

c∞ =
p−1∑

i=0

ci.

In a moment, we will show that the minimum weight of a quadratic residue code is

always odd. But when any codeword of odd weight is extended, c∞ = 1. Therefore

the minimum weight of the extended quadratic residue code is always even.

Our general understanding of the minimum distance of quadratic residue codes comes

mostly from the following two theorems.

Theorem 2.9.5 The minimum weight of a binary quadratic residue code is odd.

Proof: A quadratic residue code is defined so that its spectrum satisfies the quadratic

residue condition given in Section 1.11 in connection with the Gleason–Prange theorem.

This quadratic residue code can be extended by one component by appending the symbol

c∞ =
p−1∑

i=0

ci.

Choose any nonzero codeword c of the cyclic code of even weight. The symbol c∞ of

the extended code must be zero for a cyclic codeword of even weight. Because the code

is cyclic, we may choose the nonzero codeword so that c0 = 1. The Gleason–Prange

theorem tells us that the Gleason–Prange permutation is an automorphism of every

extended quadratic residue code, so there is a permutation that interchanges c0 and c∞.

This permutation produces another codeword of the extended code of the same weight

that has a 1 in the extended position. Dropping this position gives a nonzero codeword

of the cyclic code with weight smaller by 1. Therefore for any nonzero codeword of

even weight in the cyclic code, there is another codeword of weight smaller by 1. Hence

the minimum weight of the cyclic code must be odd. �

Theorem 2.9.6 Let c be a codeword of odd weight w from a quadratic residue code

of blocklength p. There exists a nonnegative integer r such that

w
2 = p+ 2r.

Moreover, if p = −1 (mod 4), then w satisfies the stronger condition

w
2 −w + 1 = p+ 4r.

Proof: Every nonsquare can be expressed as an odd power of the primitive element π .

Let s be any nonsquare element of GF(p). Then js is an even power of π and hence is

a square if and only if j is not a square.

82 The Fourier Transform and Cyclic Codes

Let c(x) be any codeword polynomial of odd weight, and let c̃(x) = c(xs) (mod

xp − 1), where s is any fixed nonsquare. The coefficients of c̃(x) are a permutation

of the coefficients of c(x). We will show that c(x)c̃(x) (mod xp − 1) is the all-ones

polynomial. It must have odd weight because c(x) and c̃(x) both have odd weight.

By assumption, Cj = c(ω j) = 0 for all nonzero j that are squares modulo p, and

so C̃j = c̃(ω j) = 0 for all j that are nonsquares modulo p. Thus CjC̃j = 0 for all

nonzero j. Further, because c(x) and c̃(x) each has an odd weight, C0 = c(ω0) = 1 and

C̃0 = c̃(ω0) = 1. Therefore

CjC̃j =
{

1 if j = 0

0 otherwise.

Then, by the convolution theorem, the inverse Fourier transform of both sides leads to

c(x)c̃(x) = x p−1 + x p−2 + · · · + x + 1.

Therefore c(x)c̃(x) (mod xp − 1) has weight p, as can be seen from the right side of

this equation.

To prove the first statement of the theorem, we calculate the weight of c(x)c̃(x)

(mod xp − 1) by an alternative method. Consider the computation of c(x)c̃(x). There

are w
2 terms in the raw polynomial product c(x)c̃(x), and these terms cancel in pairs

to produce a polynomial with p ones. Thus p = w
2 − 2r, where r is a nonnegative

integer. The proof of the first statement of the theorem is complete.

To prove the second statement of the theorem, recall that if p = −1 (mod 4), then

−1 is a nonsquare modulo p. A codeword polynomial c(x) of odd weight w can be

written as follows:

c(x) =
w∑

ℓ=1

xiℓ .

Choose s = −1 so that c̃(x) = c(x−1), which can be written as follows:

c̃(x) =
w∑

ℓ=1

x−iℓ .

The raw polynomial product c(x)c̃(x) has w
2 distinct terms before modulo 2 cancella-

tion. Of these w
2 terms, there are w terms of the form xiℓx−iℓ , all of which are equal to

1. Because w is odd, w− 1 of these terms cancel modulo 2, leaving w
2−w+ 1 terms.

The remaining terms cancel four at a time, because if

xiℓx−iℓ′ = xik x−ik′ ,

83 2.9 Quadratic residue codes

and so cancel modulo 2, then

xiℓ′ x−iℓ = xik′ x−ik ,

and these two terms also cancel modulo 2. Thus such terms drop out four at a time.

We conclude that, altogether, w − 1 + 4r terms cancel for some, as yet undeter-

mined, nonnegative integer r. Hence, for some r, the weight of the product c(x)c̃(x) is

given by

wt[c(x)c̃(x)] = w
2 − (w − 1+ 4r),

which completes the proof of the theorem. �

Corollary 2.9.7 (Square-root bound) The minimum distance of a quadratic residue

code of blocklength p satisfies

dmin ≥
√

p.

Proof: The code is linear so the minimum distance is equal to the weight of the

minimum-weight codeword. The minimum-weight codeword of a binary quadratic

residue code has odd weight. Thus Theorem 2.9.6 applies. �

Corollary 2.9.8 Every codeword of a binary cyclic quadratic residue code of

blocklength p of the form p = 4κ − 1 has weight either 3 or 0 modulo 4.

Proof: If the codeword c of the cyclic quadratic residue code has odd weight w, then

the theorem allows us to conclude that

w
2 −w + 1 = p+ 4r

= 4κ − 1+ 4r.

Hence,

w
2 −w = −2 (mod 4).

This is satisfied for odd w only if w = 3 modulo 4.

An argument similar to the one used in the proof of Theorem 2.9.5 allows us to

conclude that for every codeword of even weight, there is a codeword of weight smaller

by 1. Thus a nonzero codeword of the cyclic quadratic residue code of even weight w

can be cyclically shifted into a codeword of the same weight with c0 = 1. Because

the weight is even, the codeword can be extended to a codeword with c∞ = 0. The

Gleason–Prange permutation produces a new extended codeword c′ with c′∞ = 1 and

c′0 = 0. When this symbol c′∞ is purged to obtain a codeword of the cyclic quadratic

84 The Fourier Transform and Cyclic Codes

residue code, that codeword has odd weight which must equal 3 modulo 4. Hence the

original codeword has weight equal to 0 modulo 4. �

Corollary 2.9.9 The weight of every codeword of an extended binary quadratic

residue code of blocklength p is a multiple of 4 if p = −1 modulo 4.

Proof: This follows immediately from the theorem. �

An extended quadratic residue code of blocklength p+ 1 has a rather rich automor-

phism group. There are three permutations that suffice to generate the automorphism

group for most quadratic residue codes, though, for some p, the automorphism group

may be even larger.

Theorem 2.9.10 The automorphism group of the extended binary quadratic residue

code of blocklength p + 1 contains the group of permutations generated by the three

following permutations:

(i) i → i + 1 (mod p),∞→∞;

(ii) i → π2i (mod p),∞→∞;

(iii) i →−i−1 (mod p), i �= 0, 0 →∞,∞→ 0.

Proof: The first permutation is the cyclic shift that takes index i into index i + 1

modulo p (and ∞ into ∞). It is an automorphism because the underlying quadratic

residue code is a cyclic code.

The second permutation takes codeword index i into index π2i (and ∞ into ∞),

where π is a primitive element of GF(p). Let d be the permuted sequence. Let C and

D be the Fourier transforms of c and d . The cyclic permutation property of the Fourier

transform (applied twice) says that if di is equal to cπ2i, then Dj is equal to Cσ 2j, where

πσ = 1 (mod p). Because π is primitive in GF(p), σ is also primitive in GF(p). But

Cσ 2j is an automorphism because every nonzero j can be written as σ r for some r, so

j = σ r goes to σ 2j = σ r+2. If σ r is a square, then so is σ r+2.

The third permutation uses the structure of the field GF(p) within which the indices

of the quadratic residue code lie. Because each index i is an element of GF(p), both

the inverse i−1 and its negative −i−1 are defined. Thus the permutation

i →−i−1

is defined on the extended quadratic residue code, with the understanding that

−(1/0) = ∞ and −(1/∞) = 0.

Let di = c−1/i, for i = 0, . . . , p − 1, be the permuted sequence. The sequence d is

the Gleason–Prange permutation of the sequence c, and c satisfies the Gleason–Prange

condition. Hence by the Gleason–Prange theorem, the sequence d is a codeword of the

quadratic residue code, as was to be proved. �

85 2.9 Quadratic residue codes

Recall that every cyclic code contains a unique idempotent w(x) that satisfies

w(x)c(x) = c(x) (mod xn − 1)

for all codeword polynomials c(x). In a binary quadratic residue code, the princi-

pal idempotent has an attractive form. There are two possibilities, depending on the

choice of ω.

Theorem 2.9.11 Let w(x) be the principal idempotent of the binary cyclic quadratic

residue code of blocklength p. If p = 4κ−1, then, depending on the choice of ω, either

w(x) =
∑

i∈Q

xi or w(x) =
∑

i∈N

xi.

If p = 4κ + 1, then, depending on the choice of ω, either

w(x) = 1+
∑

i∈Q

xi or w(x) = 1+
∑

i∈N

xi.

Proof: The spectrum of the principal idempotent satisfies

Wj =
{

0 if j is a nonzero square

1 otherwise.

It is only necessary to evaluate the inverse Fourier transform:

wi =
p−1∑

j=0

ω−ijWj.

If p− 1 = 4κ − 2, the equation

w0 =
p−1∑

j=0

Wj

sums an even number of ones, and so w0 = 0. If p − 1 = 4κ , the first equation sums

an odd number of ones, and so w0 = 1.

We use the Rader algorithm to express wi in the form

w
′
r = W0 +

p−2∑

s=0

gr−sW
′
s ,

where w
′
r = wπ r and W ′

s = Wπ−s . This equation can be rewritten as follows:

w
′
r+2 = W0 +

p−2∑

s=0

gr−sW
′
s+2.

86 The Fourier Transform and Cyclic Codes

But W ′
s+2 = W ′

s , so w
′
r+2 = w

′
r . Because w has only zeros and ones as components,

we conclude that w′ is an alternating sequence of zeros and ones. It is easy to exclude

the possibility that w′ is all zeros or is all ones. That is, either wi is zero when i is a

square and one otherwise, or wi is zero when i is a nonsquare and one otherwise. Hence

the theorem is proved. �

Both cases in the theorem are possible, and the theorem cannot be tightened. To

show this, we evaluate the single component w1:

w1 =
p−1∑

j=0

ω−jWj = 1+
p−1∑

j∈N

ω−j = 1+
p−1∑

j∈Q

ω−π j,

where π is a primitive element of GF(p). But ν = ωπ also has order p, and therefore

could have been used instead of ω in the definition of g(x). With this choice, w1 would

be as follows:

w1 =
p−1∑

j=0

ν−jWj = 1+
p−1∑

j∈N

ω−π j = 1+
p−1∑

j∈Q

ω−j.

So, if ω is chosen as the element of order n, then w1 = 1 +
∑

N ω−j, while if ν is

chosen as the element of order n, then w1 = 1+
∑

Q ω−j. But

0 =
p−1∑

j=0

ω−j = 1+
p−1∑

j∈N

ω−j +
p−1∑

j∈Q

ω−j,

so w1 cannot be invariant under the choice of ω.

2.10 The binary Golay code

The (23, 12, 7) binary quadratic residue code is a remarkable code that deserves special

attention. This code was discovered earlier than the other quadratic residue codes.

For this reason, and because of its special importance, the (23, 12, 7) binary quadratic

residue code is also called the binary Golay code. The binary Golay code is unique up

to the permutation of components. It is the only (23, 12, 7) binary code. When extended

by one additional check bit, the Golay code becomes the (24, 12, 8) extended Golay

code. The (24, 12, 8) extended Golay code is also unique up to the permutation of

components.

According to Theorem 2.9.6, the minimum distance of this code satisfies

d2
min − dmin = p− 1+ 4r

87 2.10 The binary Golay code

for some unspecified nonnegative integer value of r. The possibilities for the right

side are

p− 1+ 4r = 22, 26, 30, 34, 38, 42, 46, . . .

Because dmin is known to be odd for a binary quadratic residue code, the possibilities

for the left side are

32 − 3 = 6,

52 − 5 = 20,

72 − 7 = 42,

92 − 9 = 72,

112 − 11 = 110,

and so forth.

The integer 42 occurs on both sides of the equation. Thus the value dmin = 7 satisfies

the square-root bound. Larger integers, such as 11, also solve the square-root bound,

but these can be excluded by the Hamming bound, which is given by the following

counting argument. Because dmin is at least 7, spheres of radius 3 about codewords do

not intersect. There are
∑3

ℓ=0

(
23
ℓ

)
= 211 points within distance 3 from a codeword,

and there are 212 codewords. Because there are 223 = 211212 points in GF(2)23, every

point of the space is not more than distance 3 from a codeword. Hence spheres of radius

4 around codewords cannot be disjoint, so the minimum distance between codewords

is at most 7.

Because of its importance, we will summarize what has been proved as a theorem.

Theorem 2.10.1 The binary Golay code is a perfect triple-error-correcting code.

Proof: By the square-root bound, the minimum distance is at least 7. By the Hamming

bound, the minimum distance is at most 7. Moreover, because

212
[(

23

0

)
+
(

23

1

)
+
(

23

2

)
+
(

23

3

)]
= 223,

the Golay code is a perfect code. �

The number of codewords of each weight of the Golay code is tabulated in Table 2.4.

This table is easy to compute by examining all codewords. It agrees with the assertion

of Corollary 2.9.8, which says that every codeword in the Golay code has weight,

modulo 4, equal to 3 or 4.

The next task is to find the generator polynomial of the Golay code. Because it is

a quadratic residue code, we know that the Golay code is a cyclic code and so has a

88 The Fourier Transform and Cyclic Codes

Table 2.4. Weight distribution of Golay codes

Weight (23, 12) code Extended (24, 12) code

0 1 1

7 253 0

8 506 759

11 1288 0

12 1288 2576

15 506 0

16 253 759

23 1 0

24 — 1

4096 4096

generator polynomial. Let g(x) and g̃(x) be the following two reciprocal polynomials

in the ring GF(2)[x]:

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1,

g̃(x) = x11 + x9 + x7 + x6 + x5 + x + 1.

By direct multiplication, it is easy to verify that

(x − 1)g(x)g̃(x) = x23 − 1.

Hence either g(x) or g̃(x) can be used as the generator polynomial of a (23, 12) cyclic

code. To show that these codes are the only (23, 12) cyclic codes, it is enough to show

that these polynomials are irreducible, because this means that there could be no other

factors of x23 − 1 of degree 11.

Because 2047 = 23 × 89, we know that if α is a primitive element in the field

GF(2048), then ω = α89 has order 23, as does ω−1. Let f (x) and f̃ (x) denote the

minimal polynomials of ω and ω−1, respectively. The conjugates of ω are the elements

of the set

B = {ω, ω2, ω4, ω8, ω16, ω9, ω18, ω13, ω3, ω6, ω12},

which has eleven members. The conjugates of ω−1 are the inverses of the conjugates

of ω. Because the conjugates of ω and their inverses altogether total 22 field elements,

and the 23rd power of each element equals 1, we conclude that both f (x) and f̃ (x) have

degree 11. Hence,

(x − 1)f (x)f̃ (x) = x23 − 1,

89 2.11 A nonlinear code with the cyclic property

which, by the unique factorization theorem, is unique. But we have already seen that

this is satisfied by the g(x) and g̃(x) given earlier. Hence the generator polynomials g(x)

and g̃(x) are the minimal polynomials of α89 and α−89 in the extension field GF(2048).

These polynomials must generate the Golay code and the reciprocal Golay code.

2.11 A nonlinear code with the cyclic property

Not all codes that satisfy the cyclic property are cyclic codes. A code may satisfy the

cyclic property and yet not be linear. We shall construct a nonlinear binary code that

satisfies the cyclic property. We shall still refer to this as a (15, 8, 5) code even though the

code is not linear. The datalength is 8, which means that there are 28 codewords. Because

the cyclic code is nonlinear, it does not have a dimension. The comparable linear cyclic

code is the (15, 7, 5) binary BCH code, which is inferior because it contains only 27

codewords. The nonlinear (15, 8, 5) cyclic code may be compared with the (15, 8, 5)

Preparata code, which is a noncyclic, nonlinear binary code that will be studied in

other ways in Section 2.16.

Let ω be any element of GF(16) of order 15 (thus a primitive element) used to

define a fifteen-point Fourier transform. Define the code C as the set of binary words

of blocklength 15 whose spectra satisfy the constraints C1 = 0, C3 = A, and C5 = B,

where either

(1) B = 0 and A ∈ {1, ω3, ω6, ω9, ω12}

or

(2) A = 0 and B ∈ {1, ω5, ω10},

and all other spectral components are arbitrary insofar as the conjugacy constraints

allow. Clearly, this code is contained in the (15, 11, 3) Hamming code and contains the

(15, 5, 7) BCH code.

By the modulation property of the Fourier transform, a cyclic shift of b places

replaces C3 by ω3bC3 and replaces C5 by ω5bC5. This means that the cyclic shift

of every codeword is another codeword. However, this code is not a linear code. In

particular, the all-zero word is not a codeword.

Because C0 is an arbitrary element of GF(2), and C7 is an arbitrary element of

GF(16), C0 and C7 together represent five bits. An additional three bits describe the

eight choices for A and B. Altogether it takes eight bits to specify a codeword. Hence

there are 256 codewords; the code is a nonlinear (15, 8) code.

The minimum distance of the code is 5, as will be shown directly by an investigation

of the linear complexity of codewords. Because the code is a subcode of the BCH

90 The Fourier Transform and Cyclic Codes

(15, 11, 3) code, the distance between every pair of codewords is at least 3, so we need

only to prove that it is not 3 or 4. Thus we must prove that if codeword c has spectral

components C1 = 0, C3 = A, and C5 = B, and c′ has spectral components C ′1 = 0,

C ′3 = A′, and C ′5 = B′, as described above, then the difference v = c − c′ does not

have weight 3 or 4. This is so by the BCH bound if A = A′ = 0. We need only consider

the cases where either A or A′ is nonzero or both A and A′ are nonzero.

The method of proof is to show that, for both of these cases, there is no linear

recursion of the form Vj =
∑4

k=1 �kVj−k that is satisfied by the spectrum V . Starting

with V 2
j = V((2j)) and repeating the squaring operation twice more, we have

V 8
3 = V((24)) = V9.

The recursion provides the following equations:

V4 = �1V3 +�2V2 +�3V1 +�4V0,

V5 = �1V4 +�2V3 +�3V2 +�4V1,

V6 = �1V5 +�2V4 +�3V3 +�4V2,

V7 = �1V6 +�2V5 +�3V4 +�4V3,

V8 = �1V7 +�2V6 +�3V5 +�4V4,

V9 = �1V8 +�2V7 +�3V6 +�4V5,

V10 = . . .

If the weight of v is less than 5, then the weight is either 3 or 4. If the weight of v is 4,

then V0 = 0. If the weight of v is 3, then �4 = 0. In either case, �4V0 = 0. Because

V1 = V2 = V4 = V8 = 0, and V6 = V 2
3 , these equations reduce to the following:

0 = �1V3,

V5 = �2V3,

V 2
3 = �1V5 +�3V3,

V7 = �1V 2
3 +�2V5 +�4V3,

0 = �2V 2
3 +�3V5,

V9 = �2V7 +�3V 2
3 +�4V5.

We have already remarked that if V3 = 0, then the BCH bound asserts that the weight

of v is at least 5. We need only consider the case in which V3 is nonzero. Then

91 2.11 A nonlinear code with the cyclic property

the first equation requires that �1 = 0, so the recursion reduces to the following

simplified equations:

V5 = �2V3,

V3 = �3,

V7 = �2V5 +�4V3,

V 8
3 = �2V7 +�3V 2

3 +�4V5.

If A is nonzero and A′ is zero, then B is zero and B′ is nonzero. By the definition of

A and B′, V3 is a nonzero cube and V5 is a nonzero fifth power. Because 3 and 5 are

coprime integers, there is a cyclic shift of b places such that V3ω
3b = 1 and V5ω

5b = 1.

Then we may take V3 = V5 = 1 without changing the weight of v. We need only show

that no vector v with V1 = 0, V3 = 1, and V5 = 1 has weight 3 or 4. In this case, the

equations from the recursion become

1 = �2,

1 = �3,

V7 = �2 +�4,

1 = �2V7 +�3 +�4,

which reduce to

V7 = 1+�4

and

1 = V7 + 1+�4.

However, these two equations are not consistent. The contradiction implies that under

the stated assumptions, the linear complexity cannot be 3 or 4. This means that the

weight of v is at least 5 if both A and B′ are nonzero.

Finally, if A and A′ are both nonzero, then B and B′ are both zero. Moreover, A− A′

must be a noncube because the sum of two cubes in GF(16) is never a cube, which

is easy to see from a table of GF(16) (see Table 3.1). Thus, we must show that no

vector v, with V1 = 0, V3 a noncube, and V5 = 0, has weight 3 or 4.

If V3 = A − A′ is a nonzero noncube and V5 = B − B′ = 0, then the equations of

the recursion require that �2 = 0, �3 = V3, and V 5
3 = 1. But if V 5

3 = 1 in GF(16),

then V3 is a cube, while V3 = A − A′ must be a noncube as the sum of two nonzero

cubes. This contradiction implies that the weight of v cannot be 3 or 4 under the stated

assumptions, which means that the weight of v is at least 5.

92 The Fourier Transform and Cyclic Codes

We conclude that the minimum distance of the code is at least 5, so the code is a

nonlinear (15, 8, 5) code.

2.12 Alternant codes

A BCH code over GF(q) of blocklength n = q m − 1 is a subfield-subcode of a Reed–

Solomon code over GF(q m), and so it has at least as large a minimum distance as the

Reed–Solomon code. Unfortunately, even though the original Reed–Solomon code has

a great many codewords, the subfield-subcode uses very few of them. BCH codes of

large blocklength and large minimum distance have dimensions that are small and quite

disappointing. In this section, we shall study a method to form better codes by reduc-

ing the Reed–Solomon code to a subfield-subcode in another way. This construction

produces a large class of codes known as alternant codes and a subclass of alternant

codes known as Goppa codes. The alternant codes are studied in this section, and the

Goppa codes are studied in Section 2.13.

Let CRS be an (n, K , D) Reed–Solomon code over GF(q m). Let g be a fixed vector5 of

length n, called a template, all of whose components are nonzero elements of GF(q m).

A generalized Reed–Solomon code, CGRS(g), is a code formed by componentwise

multiplication of g with each of the Reed–Solomon codewords. That is,

CGRS(g) =
{
c | c = gc′, c′ ∈ CRS

}
,

where gc′ denotes the vector whose ith component is gic
′
i for i = 0, . . . , n−1. The code

CGRS(g) is a linear code. This code contains (q m)K vectors, as does the code CRS, and

the minimum distance of CGRS(g) is the same as the minimum distance of CRS. Both

are equal to D. Thus the generalized Reed–Solomon code is also an (n, K , D) code.

A few of the vectors of CGRS(g) may have all of their components in the smaller

field GF(q), and the set of such vectors forms a linear code over GF(q). This subfield-

subcode of CGRS(g) is known as an alternant code. Specifically, the alternant code

CA(g) is defined as follows:

CA(g) = CGRS(g) ∩ GF(q)n

=
{
c | ci ∈ GF(q); c = gc′, c′ ∈ CRS

}
.

Because all gi are nonzero, we may also write this statement in terms of an inverse

template denoted g−1 with components g−1
i . Then

CA(g) = {c | ci ∈ GF(q); g−1c = c′; c′ ∈ CRS}.

5 The use of the notation g and, in Section 2.13, h for the template and inverse template is not to be confused
with the use of the notation G and H for the generator matrix and check matrix.

93 2.12 Alternant codes

Table 2.5. Extracting binary codes from a (7, 5, 3) Reed–Solomon code

g = (5, 6, 1, 4, 1, 1, 7)

BCH code Reed–Solomon code alternant code

0 0

0 0 0 0 1 6 3

0 0 0 0 2 7 6

0 0 0 0 3 1 5
...

0 0 0 1 0 1 1 0 0 0 1 0 1 1

0 0 0 1 1 7 2

0 0 0 1 3 0 4
...

0 0 0 7 0 7 7

0 0 0 7 1 1 4 0 0 0 1 1 1 1

0 0 0 7 2 0 1

0 0 0 7 3 6 2
...

0 0 1 0 0 7 3

0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0

0 0 1 0 2 0 5

0 0 1 0 3 6 6
...

An alternant code, in general, is not a cyclic code. It is easy to see that an alternant

code is a linear code and that the minimum distance is at least as large as the minimum

distance of the underlying Reed–Solomon code, though it may be larger.

The way that this construction extracts a binary code from a Reed–Solomon code

over GF(2m) is illustrated in Table 2.5. This small example is based on the (7, 5, 3)

Reed–Solomon code over GF(8), which expressed in octal notation with template

g = (5, 6, 1, 4, 1, 1, 7). Each component gi of g is a nonzero element of GF(8), which

is expressed in octal notation. Of course, one cannot hope to find a binary code better

than the (7, 4, 3) Hamming code, so the alternant code constructed in Figure 2.5 cannot

contain more than sixteen codewords. This example is too small to give an interesting

code. For larger examples, however, it may be that codes better than BCH codes

can be found in this way. Indeed, it can be proved that for large values of n and k,

by choosing an appropriate template g, one will obtain an (n, k, d) alternant code

whose dimension k is large – much larger than that of a BCH code of comparable

n and d . Unfortunately, no constructive procedure for choosing the template g is

known.

94 The Fourier Transform and Cyclic Codes

For a more complete example, let CRS be the extended (8, 6, 3) Reed–Solomon code

with defining set {6, 0}. Choosing the template g = (1 1 α5 α3 α5 α6 α6 α3) gives the

alternant code with check matrix given by

H =
[

1 1 α2 α4 α2 α α α4

0 1 α3 α6 α5 α5 α6 α3

]
.

The first column corresponds to the symbol appended to give the extended code.

Replacing each element of GF(8) by its three-bit representation yields

H =

1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 1 1 1 0 0 1

0 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

.

The six rows of H are linearly independent, and hence this check matrix specifies

an (8, 2, 5) alternant code. It is easy to verify that a generator matrix for this code is

given by

G =
[

1 1 1 1 0 1 0 0

1 1 0 0 1 0 1 1

]
.

We shall see in Section 2.13 that this particular alternant code is actually a Goppa code.

To appreciate why one cannot hope to find the template g by unstructured search

methods for large codes, note that over GF(q m) there are (q m − 1)n templates

with nonzero coefficients, and each of these templates produces a generalized Reed–

Solomon code with (q m)K codewords. To find a binary code of blocklength 255, one

would have to search over 255255 templates, approximately 10600, and each template

would produce a generalized Reed–Solomon code over GF(256) with 256K codewords,

from which the binary codewords would be extracted to form the binary code. Many of

the codes constructed in this way would be worthless, and others would be worthwhile.

We do not know how to find the templates that produce good binary codes – we will

show only that they do exist. And, of course, even if a good template were known,

it would not be practical, in general, simply to list all the codewords; there would

be too many. One would need a practical encoding algorithm that would produce the

appropriate codeword when it was needed.

Because of the way in which an alternant code is related to the Reed–Solomon code,

it is apparent that the minimum distance is at least as large as the designed distance

95 2.12 Alternant codes

of the Reed–Solomon code. The following theorem says, further, that the dimension

satisfies k ≥ n− (d − 1)m.

Theorem 2.12.1 Let CGRS be an (n, K , D) generalized Reed–Solomon code over

GF(q m), and let CA be an (n, k, d) subfield-subcode of CGRS over GF(q). Then D ≤ d

and n− (d − 1)m ≤ k ≤ K.

Proof: The inequality D ≤ d is apparent. This inequality leads immediately to the

inequality D + K ≤ d + K , whereas the inequality d + k ≤ D + K holds because

the Reed–Solomon code satisfies the Singleton bound with equality and the subfield-

subcode need not. Together these two inequalities lead to the inequality k ≤ K .

The only inequality still requiring proof is n− (d−1)m ≤ k. The generalized Reed–

Solomon code is a linear code determined by n − K check equations over GF(q m).

Each check equation is a linear combination of elements of GF(q) with coefficients

in GF(q m). Each such linear combination can be viewed as m check equations with

coefficients in GF(q) that the subfield-subcode must satisfy. These m(n − K) check

equations over GF(q) need not be linearly independent. The inequality (n − k) ≤
m(n−K) follows. To complete the proof, set n−K for the Reed–Solomon code equal

to D − 1, so n ≤ k + m(D − 1) ≤ k + m(d − 1). �

Because a BCH code is actually a special case of an alternant code in which the

template is all ones, the theorem holds for the class of BCH codes. With reference to

Theorem 2.12.1, one wishes to choose the template of an alternant code such that the

inequality bound n− (d − 1)m ≤ k is satisfied as loosely as possible, and, more to the

point, that the code is better than the corresponding BCH code. This may occur either

because d ≥ D or because k ≥ n− (D − 1)m, or both.

For example, let CRS be a primitive cyclic Reed–Solomon code over GF(2m), with

defining set {0, 1}. If the template is all ones, then, because C0 = 0, all codewords of

the binary alternant code have even weight, and, because C1 = 0, all codewords of that

code are binary Hamming codewords. Thus dmin = 4 and k = n− (m+ 1). If, instead,

the template is gi = αi for i = 0, . . . , n − 1, then the generalized Reed–Solomon

code is actually a Reed–Solomon code with defining set {1, 2}. Hence the alternant

code is a Hamming code with dmin = 3 and k = n − m. Both of these examples

are actually BCH codes: one has a larger dimension and one has a larger minimum

distance.

Alternant codes are attractive because, as we shall see, there are templates that give

much better alternant codes than the BCH code. For blocklength n = 2m − 1, there

are nn templates. Some of these give good codes. In particular, there are sequences of

alternant codes of increasing blocklength such that the rate k/n and relative minimum

distance dmin/n both remain bounded away from zero as n goes to infinity. This is a

consequence of the following theorem.

96 The Fourier Transform and Cyclic Codes

Theorem 2.12.2 For any prime power q and integer m, let n = q m−1, and let d and

r be any integers that satisfy

d−1∑

j=1

(
n

j

)
(q− 1) j < (q m − 1)r .

Then there exists an alternant code over GF(q) of blocklength n, dimension k ≥ n−mr,

and minimum distance dmin ≥ d.

Proof: The method of proof is to fix an (n, k) Reed–Solomon code over GF(q m) and

an arbitrary vector v over GF(q) of weight j. Then count the number of templates for

which v belongs to the alternant code formed by that template from the fixed Reed–

Solomon code. We conclude that there are not enough v of weight less than d to allow

every template to produce at least one such v. Thus at least one of the templates gives

an alternant code that has no v of weight less than d . This alternant code must have

minimum distance at least as large as d .

Step (1) Let CRS be a fixed Reed–Solomon code over GF(q m) of blocklength n and

dimension K = n− r. For each template g, let CA(g) be the alternant code over GF(q)

generated from CRS by g. Then

CA(g) = {c ∈ GF(q)n | g−1c ∈ CRS},

and g−1c denotes the vector {g−1
i ci | i = 0, . . . , n− 1}. Because gi �= 0 for all i, there

are (q m−1)n such templates that can be used with the Reed–Solomon code CRS to form

an alternant code, possibly not all of the alternant codes are different. Each alternant

code is a subfield-subcode of the generalized Reed–Solomon code {c ∈ GF(q m)n |
g−1c ∈ CRS}. The generalized Reed–Solomon code is linear and has r check equations

over GF(q m) that become at most mr check equations over GF(q). For each such code,

it follows from Theorem 2.12.1 that

k ≥ n− mr.

Step (2) Choose any vector v over GF(q) of nonzero weight j < d . This vector v

may appear as a codeword in one or more of the alternant codes defined in Step (1).

There are
∑d−1

j=1

(
n
j

)
(q− 1) j such vectors of nonzero weight less than d .

Step (3) A vector v of weight j appears (q m − 1)n−r times in the collection of

alternant codes defined in Step (1). This is because, as asserted by Theorem 2.1.2, any

n − r places in a Reed–Solomon codeword specify the codeword. If we fix v, there

are exactly n − r places in g that can be independently specified such that g−1v is

in CRS.

97 2.12 Alternant codes

Step (4) The number of templates that give rise to an alternant code containing

a codeword of weight less than d is not larger than the product of the num-

ber of vectors of weight less than d and the number of templates for which a

given vector could be a codeword in the alternant code produced by that tem-

plate. From Steps (2) and (3), this product is given by (q m − 1)n−r
∑d−1

j=1

(
n
j

)

(q− 1)j. From Step (1), the number of templates is (q m − 1)n. Suppose

(q m − 1)n > (q m − 1)n−r

d−1∑

j=1

(
n

j

)
(q− 1) j.

Then some code of dimension at least n−mr does not contain any codeword of weight

smaller than d , and so has minimum distance at least as large as d . This is equivalent

to the statement of the theorem. �

Corollary 2.12.3 An (n, k) binary alternant code exists that satisfies

d−1∑

j=1

(
n

j

)
< 2n−k .

Proof: With q = 2, the theorem states that if

d−1∑

j=1

(
n

j

)
< (2m − 1)r ,

then there exists a binary alternant code with minimum distance at least as large as d

and with k ≥ n−mr, so such a code exists with k = n−mr. The corollary then follows

because 2m − 1 < 2m. �

The class of alternant codes is very large because the number of templates over

GF(q) of blocklength q m−1 is (q m−1)q m−1. Theorem 2.12.12 and Corollary 2.12.13

only tell us that some of these templates give good alternant codes, but they do not

indicate how to find them. In fact, little is known about how to find the good alternant

codes.

The following corollary is a restatement of the previous corollary in a somewhat

more convenient form, using the function

H2(x) = −x log2 x − (1− x) log2(1− x) 0 ≤ x ≤ 1,

which is known as the (binary) entropy.

98 The Fourier Transform and Cyclic Codes

Corollary 2.12.4 (Varshamov–Gilbert bound) A binary code of rate R and relative

minimum distance d/n exists for sufficiently large n, provided that

H2

(
d

n

)
< 1− R.

Proof: The weak form of Stirling’s approximation is given by

n! = 2n log2 n+o(1),

where o(1) is a term that goes to zero as n goes to infinity. Using the weak form of

Stirling’s approximation, we can form the following bound:

d−1∑

j=1

(
n

j

)
>

(
n

d − 1

)
= n!

(d − 1)!(n− d + 1)! = 2n[H2(p)+o′(1)],

where p = d/n and o′(1) is a term that goes to zero as n goes to infinity. The difference

between p = d/n and (d − 1)/n is absorbed into o′(1). Therefore Corollary 2.12.3

can be written 2n[H2(p)+o′(1)] < 2n(1−R), where R = k/n. Under the statement of the

corollary, the condition of Corollary 2.12.3 will be satisfied for sufficiently large n. The

corollary follows. �

The Varshamov–Gilbert bound can also be proved for other classes of codes. At

present, it is not known whether a class of binary codes exists that is asymptotically

better than the Varshamov–Gilbert bound. The alternant codes form a very large class,

however, and without some constructive methods for isolating the good codes, the

performance statement of Corollary 2.12.4 is only an unfulfilled promise.

Because an alternant code is closely related to a Reed–Solomon code, any procedure

for decoding the Reed–Solomon code can be used to decode the alternant code out to

the designed distance. The only change that is needed is a new initial step to modify

the senseword, using the inverse of the template to reconstruct a noisy Reed–Solomon

codeword. This observation, however, misses the point. The appeal of an alternant code

is that its minimum distance can be much larger than its designed distance. A binary

alternant code used with a Reed–Solomon decoder has little advantage over a binary

BCH code used with that decoder. The only advantage is that, although the Reed–

Solomon decoder can only correct to the designed distance, it can detect error patterns

up to the minimum distance. This might be a minor reason to use an alternant code in

preference to a BCH code, but it does not fulfil the real purpose of a code.

Finally, we remark that, though we do not have decoders for alternant codes that

decode to their minimum distances, this lack remains of little importance because we

cannot even find the good codes.

99 2.13 Goppa codes

2.13 Goppa codes

A special subclass of alternant codes, the subclass of Goppa codes, was discovered

earlier than the general class and remains worthy of individual attention. We know the

subclass of Goppa codes retains the property that it contains many good codes of large

blocklength, but we do not yet know how to find the good Goppa codes because this

subclass is still of such a large size. However, the Goppa codes of small blocklength

can be constructed. These small codes are interesting because there are some codes

with combinations of blocklength, dimension, and minimum distance that cannot be

achieved with BCH codes or other known codes.

Recall that an alternant code of blocklength n = q m−1 is associated with a template

g with nonzero components gi. Define an inverse template h with nonzero components

hi such that (1/n)gihi = 1. Thus hi = ng−1
i . The template and the inverse template

have Fourier transforms G and H , which can be represented as polynomials G(x)

and H (x). The convolution property of the Fourier transform converts the expression

(1/n)gihi = 1 to the expression (1/n)G(x)H (x) = n, so that

gihi =
1

n
G(ω−i)

1

n
H (ω−i).

To develop this same statement in a roundabout way, note that G(x) has no zeros in

GF(q m) because G(ω−i) = ngi �= 0. Hence G(x) is coprime to xn − 1, and, by the

extended euclidean algorithm for polynomials, the polynomials F(x) and E(x) over

GF(q) exist such that

G(x)F(x)+ (xn − 1)E(x) = 1.

That is, over GF(q),

G(x)F(x) = 1 (mod xn − 1),

so the asserted H (x) does indeed exist as the polynomial n2F(x).

The definition of the alternant codes is easily restated in the transform domain, and

this is the setting in which the Goppa codes will be defined. Let ω be an element

of GF(q m) of order n. Let H (x) be a fixed polynomial such that H (ω−i) �= 0 for

i = 0, . . . , n − 1, and let j0 and t be fixed integers. The alternant code CA is the set

containing every vector c whose transform C satisfies two conditions:

C
q

j = C((qj))

100 The Fourier Transform and Cyclic Codes

and

n−1∑

k=0

H((j−k))Ck = 0 j = j0, . . . , j0 + 2t − 1.

The first of these two conditions ensures that the code-domain codewords are GF(q)-

valued. The second condition is a convolution, corresponding to the componentwise

product g−1
i ci of the code-domain definition of the alternant code given in Section 2.12.

The vector

C ′j =
n−1∑

k=0

H((j−k))Ck j = 0, . . . , n− 1

might be called the filtered spectrum of the alternant codeword. The second condition

states that the filtered spectrum C′ must be the spectrum of a Reed–Solomon codeword.

In the language of polynomials, this becomes C ′(x) = H (x)C(x), where C ′(x) is the

spectrum polynomial of a Reed–Solomon code.

An equivalent statement of this formulation can be written in terms of G as follows:

Cj =
n−1∑

k=0

G((j−k))C
′
k j = 0, . . . , n− 1.

In the language of polynomials, this becomes C(x) = G(x)C ′(x).
All of the preceding remarks hold for any alternant code. For an alternant code to be a

Goppa code, G(x) is required to satisfy the additional condition given in the following

definition.

Definition 2.13.1 A Goppa code of designed distance d is an alternant code of

designed distance d with nonzero template components of the form gi = (1/n)G(ω−i),

where G(x) is a polynomial of degree d − 1.

The new condition is that the polynomial G(x) is now required to have degree d −1.

This polynomial is called the Goppa polynomial. If G(x) is an irreducible polynomial,

then the Goppa code is called an irreducible Goppa code. Because of the restriction

that deg G(x) = d −1, the Goppa code is a special case of an alternant code. As for the

general case of alternant codes, G(x) can have no zeros in the field GF(q m), so all gi

are nonzero, unless the code is a shortened code.

A narrow-sense Goppa code is a Goppa code for which the underlying Reed–

Solomon code is a narrow-sense Reed–Solomon code. Thus if C(x) is the spectrum

polynomial of the narrow-sense Goppa code, then the polynomial C(x) = G(x)C ′(x)
has degree at most n − 1, so a modulo xn − 1 reduction would be superfluous. This

is because C ′(x) has degree at most n − d − 2, and G(x) has degree d − 1, so the

polynomial C(x) has degree at most n− 1, even without the modulo xn − 1 reduction.

101 2.13 Goppa codes

Theorem 2.13.2 In a Goppa code with Goppa polynomial G(x) and defining set

j0, . . . , j0 + d − 2, c is a codeword if and only if

n−1∑

i=0

ci

ωij

G(ω−i)
= 0 j = j0, . . . , j0 + d − 2.

Proof: The proof follows directly from the convolution property of the Fourier

transform. �

Theorem 2.13.3 A Goppa code with Goppa polynomial of degree d−1 has minimum

distance dmin and dimension k satisfying

dmin ≥ d ,

k ≥ n− (d − 1)m.

Proof: The proof follows immediately from Theorem 2.12.1. �

As a subclass of the class of alternant codes, the class of Goppa codes retains the

property that it includes many codes whose minimum distance is much larger than d .

Just as for the general case of an alternant code, however, not much is known about

finding the good Goppa codes. Similarly, no good encoding algorithms for general

Goppa codes are known, and no algorithms are known for decoding Goppa codes up

to the minimum distance.

It is possible to define the Goppa codes in a more direct way without mentioning

the underlying Reed–Solomon codes. This alternative description of the Goppa codes

is the content of the following theorem. The theorem can be proved as an immediate

consequence of the GF(q) identity,

∏

i′ �=i

(1− xωi′) =
n−1∑

j=0

ωijx j,

which can be verified by multiplying both sides by (1 − xωi). Instead we will give a

proof using the convolution property of the Fourier transform.

Theorem 2.13.4 The narrow-sense Goppa code over GF(q), with blocklength n =
q m − 1 and with Goppa polynomial G(x), is given by the set of all vectors c =
(c0, . . . , cn−1) over GF(q) satisfying

n−1∑

i=0

ci

∏

i′ �=i

(1− xωi′) = 0 (mod G(x)).

102 The Fourier Transform and Cyclic Codes

Proof: The condition of the theorem can be written

n−1∑

i=0

ci

∏

i′ �=i

(1− xωi′) = C ′(x)G(x),

where C ′(x) is a polynomial of degree at most n − d because G(x) is a polynomial

of degree d − 1, and the left side is a polynomial of degree at most n − 1. That is,

C ′(x) is the spectrum polynomial of a narrow-sense Reed–Solomon code of dimen-

sion k = n − d − 1. We only need to show that the polynomial on the left side,

denoted

C(x) =
n−1∑

i=0

ci

∏

i′ �=i

(1− xωi′),

is the spectrum polynomial of the Goppa codeword. Consequently, we shall write

C(ω−i) = ci

∏

i′ �=i

(1− ω−iωi′),

= ci

n∏

k=1

(1− ωk).

Recall the identity

n∏

k=1

(x − ωk) =
n∑

ℓ=1

xℓ,

which is equal to n when x = 1. Therefore C(ω−i) = nci, so C(x) is indeed the

spectrum polynomial of codeword c. Thus the condition of the theorem is equivalent

to the condition defining the narrow-sense Goppa code:

C(x) = C ′(x)G(x),

which completes the proof of the theorem. �

The representation given in Theorem 2.13.4 makes it easy to extend the Goppa code

by one symbol to get a code with blocklength q m. Simply append the field element

zero as another location number. Then we have the following definition.

103 2.13 Goppa codes

Definition 2.13.5 The Goppa code over GF(q) of blocklength n = q m and with

Goppa polynomial G(x) is given by the set of all vectors c = (c0, . . . , cn−1) over

GF(q) satisfying

n−1∑

i=0

ci

∏

i′ �=i

(1− βi′x) = 0 (mod G(x)),

where βi ranges over all q m elements of GF(q m).

We now turn to the special case of binary Goppa codes, restricting attention to those

binary codes whose Goppa polynomial has no repeated zeros in any extension field.

Such a code is called a separable binary Goppa code. For separable binary Goppa

codes, we shall see that the minimum distance is at least 2d − 1, where d − 1 is the

degree of G(x). This is more striking than the general bound for any Goppa code,

dmin ≥ d , although of less significance than it might seem.

Theorem 2.13.6 Suppose that G(x), an irreducible polynomial of degree d − 1, is a

Goppa polynomial of a narrow-sense binary Goppa code. Then dmin ≥ 2d − 1.

Proof: The polynomial G(x) has no zeros in GF(2m). For a binary code, ci is either

0 or 1. Let A be the set of integers that index the components in which ci is 1. Then

Theorem 2.13.4 can be rewritten as follows:

∑

i∈A

∏

i′ �=i

(1− xωi′) = 0 (mod G(x)).

Many of the factors in the product (those for which i′ ∈ A) are in every one of the

terms of the sum and can be brought outside the sum as

∏

i′ �∈A

(1− xωi′)

∑

i∈A

∏

i′∈A

i′ �=i

(1− xωi′)

 = 0 (mod G(x)).

Because G(x) has no zeros in GF(2m), it must divide the second term on the left. Now

write those i in the set A as iℓ for ℓ = 1, . . . , ν. Then the second term on the left can

be written as
∑ν

ℓ=1

∏
ℓ′ �=ℓ(1− xβℓ′), where βℓ = ωiℓ .

To interpret this term, consider the reciprocal form of the locator polynomial of

codeword c, which is given by

�c(x) =
ν∏

ℓ=1

(x − βℓ),

where βℓ is the field element corresponding to the ℓth one of codeword c, and ν is the

weight of codeword c. The degree of �c(x) is ν. The formal derivative of �c(x) is

104 The Fourier Transform and Cyclic Codes

given by

�′c(x) =
ν∑

ℓ=1

∏

ℓ′ �=ℓ

(x − βℓ′).

The right side is the term that we have highlighted earlier. Because that term is divided

by G(x), we can conclude that �′c(x) is divided by G(x).

Moreover, �′c(x) itself can be zero only if �c(x) is a square, which is not the case,

so �′c(x) is a nonzero polynomial and all coefficients of �′c(x) of odd powers of x are

equal to zero because it is the formal derivative of a polynomial over a finite field of

characteristic 2. Thus, it can be written

�′c(x) =
L∑

ℓ=0

aℓx2ℓ

=
(

L∑

ℓ=0

a
1/2
ℓ xℓ

)2

because in a field of characteristic 2, every element has a square root.

Suppose we have a separable Goppa code with Goppa polynomial G(x). Then not

only does G(x) divide �′c(x), but because �′c(x) is a nonzero square, G(x)2 must also

divide �′c(x). This shows that ν − 1 ≥ deg �′c(x) ≥ degG(x)2. Because G(x)2 has a

degree of 2(d − 1), we conclude that dmin ≥ 2d − 1. �

The theorem says that for any designed distance d = r + 1, a binary Goppa code

exists with dmin ≥ 2r + 1 and k ≥ 2m − mr. This code can be compared with an

extended binary BCH code with designed distance r + 1 for which the extended code

satisfies dmin ≥ r+ 2 and k ≥ 2m− (1/2)mr− 1. To facilitate the comparison, replace

r by 2r′ for the BCH code. Then dmin ≥ 2r′ + 2 and k ≥ 2m − mr′ − 1. Thus the

significance of Theorem 2.13.6 is that, whereas an extended binary BCH code is larger

by 1 in minimum distance, an extended binary Goppa code is larger by 1 in dimension.

The theorem promises nothing more than this.

Although the theorem appears to make a separable Goppa code rather attractive

because it has minimum distance of at least 2r + 1, we should point out that the

definition produces only r syndromes rather than 2r, and the usual locator decoding

techniques of Reed–Solomon codes do not apply directly. One would need to design a

decoding algorithm for these codes that uses only r syndromes.

This concludes our discussion of the theory of Goppa codes. We have presented all

the known facts of significance about Goppa codes except for the statement that Goppa

codes achieve the Varshamov–Gilbert bound, which proof we omit.

Good examples of large Goppa codes remain undiscovered. The smallest interesting

example of a Goppa code is an (8, 2, 5) binary Goppa code, which was used as an

105 2.13 Goppa codes

example of an alternant code in Section 2.12. Take G(x) = x2 + x + 1. The zeros of

this polynomial are distinct and are in GF(4) and in all extensions of GF(4). Thus

none are in GF(8). Hence G(x) can be used to obtain a Goppa code with blocklength 8,

minimum distance at least 5, and dimension at least 2. We shall see that the dimension

is 2 and the minimum distance is 5.

ThedefinitionoftheGoppacodeinTheorem2.13.2isnotsuitableforencodingbecause

it defines the Goppa code in terms of a check matrix over the extension field GF(2m).

To find a generator matrix for the (8, 2, 5) code of our example, using this theorem, one

must write out a check matrix over GF(8), convert it to a check matrix over GF(2),

extract a set of linearly independent rows, and then manipulate the resulting matrix into

a systematic form. For our example of the (8, 2, 5) code, this is straightforward. The

check matrix for the (8, 2, 5) code, with the Goppa polynomial x2 + x + 1, is given by

H =
[

1 1 α2 α4 α2 α α α4

0 1 α3 α6 α5 α5 α6 α3

]
.

Replacing each field element by its three-bit representation yields

H =

1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 1 1 1 0 0 1

0 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

.

These six rows are linearly independent, so H is a nonsystematic check matrix for

the (8, 2, 5) binary code. It can be used to form a generator matrix, G, by elementary

methods. This process for finding G would be elaborate for large Goppa codes and

gives an encoder in the form of an n by k binary generator matrix. Accordingly, we will

describe an alternative encoder for the code by a process in the transform domain.

The Goppa polynomial G(x) = x2 + x + 1 leads to the inverse Goppa polynomial

H (x) = x6 + x5 + x3 + x2 + 1, because H (x)G(x) + x(x7 − 1) = 1. The underlying

(7, 5, 3) cyclic Reed–Solomon code C′ of blocklength 7 has spectral zeros at α−1 and

α−2, and C ′(x) = H (x)C(x). Thus C ′5 = C ′6 = 0, and C ′
k

satisfies the equation

C ′k =
n−1∑

j=0

Hk−jCj,

from which we get the check equations

0 = C0 + C1 + C3 + C4 + C6,

0 = C6 + C0 + C2 + C3 + C5.

106 The Fourier Transform and Cyclic Codes

Any spectrum that satisfies these check equations and the conjugacy constraints C2
j =

C((2j)) is a codeword spectrum. Clearly, C0 ∈ GF(2) because C2
0 = C0. Using the

conjugacy constraints to eliminate C2, C4, C5, and C6 from the above equations yields

0 = C0 + (C1 + C4
1)+ (C3 + C2

3),

0 = C0 + C2
1 + (C3 + C2

3 + C4
3).

These can be manipulated to give

C0 = C1 + C2
1 ,

C3 = C1 + C2
1 + C4

1 .

The first equation can be solved in GF(8) only if C0 = 0. Then C1 ∈ {0, 1}, and C3 is

determined by C1. Hence there are only two codewords, as determined by the value of

C1. However, this is not the end of the story. The Reed–Solomon code can be extended

by an additional component, c+, which is then also used to extend the Goppa code.

The above equations now become

c+ = C0 + (C1 + C4
1)+ (C3 + C2

3),

0 = C0 + C2
1 + (C3 + C2

3 + C4
3),

which can be manipulated into

C0 = C1 + C2
1 + c+,

C3 = C1 + C2
1 + C4

1 .

These are satisfied if we take c+ = C0, with the encoding rule

C0 ∈ {0, 1},
C1 ∈ {0, 1},

and C3 is equal to C1. Thus we have two binary data symbols encoded by the values

of C0 and C1.

Thus in summary, to encode two data bits, a0 and a1, set C0 = c+ = a0, set

C1 = C3 = a1, and set all conjugates to satisfy C2j = C2
j . An inverse Fourier transform

then produces the codeword.

The (8, 2, 5) binary extended Goppa code, given in this example, might be com-

pared with an (8, 4, 4) binary extended Hamming code. Both are binary alternant codes

constructed from the same (8, 5, 4) extended Reed–Solomon code.

For an example of a larger binary Goppa code we will choose the Goppa polynomial

G(x) = x3 + x + 1, which has three distinct zeros in GF(8) or in any extension of

107 2.13 Goppa codes

GF(8), and hence has no zeros in GF(32). Then by Theorem 2.13.6, G(x) can be used

as the Goppa polynomial for a (31, 16, 7) Goppa code, or a (32, 17, 7) extended Goppa

code. The (31, 16, 7) binary Goppa code is not better than a (31, 16, 7) binary BCH

code. However, the (32, 17, 7) extended Goppa code has a larger dimension, whereas

the (32, 16, 8) extended BCH code has a larger minimum distance.

This Goppa code can be described explicitly by writing out a 32 by 17 binary gener-

ator matrix or a 32 by 15 binary check matrix. Instead, we will work out an encoder in

the transform domain. The Goppa polynomial G(x) = x3 + x + 1 leads to the inverse

Goppa polynomial:

H (x) = x30 + x27 + x24 + x23 + x20 + x18 + x17 + x16 + x13

+ x11 + x10 + x9 + x6 + x4 + x3 + x2,

because H (x)G(x) = (x2 + 1)(x31 − 1)+ 1.

The underlying cyclic Reed–Solomon code C′ for the Goppa code C has the defining

set {28, 29, 30}. To examine the structure of this Goppa code, recall that

C ′k =
n−1∑

j=0

Hk−jCj,

from which we have the three check equations

0 = C0 + C3 + C6 + C7 + C10 + C12 + C13 + C14 + C17

+ C19 + C20 + C21 + C24 + C26 + C27 + C28,

0 = C30 + C2 + C5 + C6 + C9 + C11 + C12 + C13 + C16

+ C18 + C19 + C20 + C23 + C25 + C26 + C27,

0 = C29 + C1 + C4 + C5 + C8 + C10 + C11 + C12 + C15

+ C17 + C18 + C19 + C22 + C24 + C25 + C26,

and the conjugacy constraints

C2
j = C2j.

Straightforward algebraic manipulation reduces these to three encoding constraint

equations:

C3 =
[
C2

1 + C4
1 + C8

1 + C16
1

]
+
[
C4

7 + C16
7

]
+
[
C11 + C2

11 + C8
11 + C16

11

]
,

C5 = c+ + C0 +
[
C1 + C8

1 + C16
1

]
+
[
C11 + C2

11 + C4
11 + C8

11

]
,

C15 =
[
C2

1 + C16
1

]
+
[
C2

7 + C4
7 + C8

7 + C16
7

]
+
[
C11 + C2

11 + C4
11 + C8

11 + C16
11

]
.

108 The Fourier Transform and Cyclic Codes

To encode seventeen data bits, set c+ and C0 each to one data bit, set C1, C7, and C11

each to five data bits, and set C3, C5, and C15 by the above constraint equations. An

inverse Fourier transform completes the encoding. This Goppa code can correct three

errors, but, because the defining set of the underlying Reed–Solomon code has only

three consecutive elements, the methods of locator decoding, discussed in Chapter 3,

cannot be used as such. However, an alternant code exists with the same performance

and with six consecutive elements of the defining set, so locator decoding applies as

such to that code. The polynomial x6 + x2 + 1, which is the square of the Goppa

polynomial x3 + x + 1, can be used with a similar construction and with a defining

set of size 6 to produce a code with the same performance as the Goppa code with the

Goppa polynomial x3 + x + 1.

Our two examples of Goppa codes, the (8, 2, 5) binary Goppa code and the (32, 17, 7)

binary Goppa code, are the best linear binary codes known of their respective block-

lengths and dimensions. Their performance is described by the theorems of this section.

However, the main attraction of the class of Goppa codes is their good asymptotic per-

formance, and the examples given do not illustrate this asymptotic behavior. Specific

classes of Goppa codes that illustrate the asymptotic behavior have never been found.

2.14 Codes for the Lee metric

The ring of integers modulo q is denoted, as is standard, by Zq. The Lee weight of an

element β of Z4, with the elements written {0, 1, 2, 3}, is defined as

wL(β) =

0 if β = 0

1 if β = 1 or 3

2 if β = 2.

The Lee weight can be written as wL(β) = min[β, 4−β]. The Lee distance between two

elements of Z4 is the Lee weight of their difference magnitude: dL(β, γ) = wL(|β−γ |).
Similarly, the Lee weight of an element β of Zq, with the elements of Zq written {0,

. . ., q− 1}, is the integer

wL(β) = min[β, q− β].

If the elements of Zq are regarded as a cyclic group, then the Lee weight of β is

the length of the shortest path on the cycle from β to the zero element. The Lee

distance between two elements of Zq is the Lee weight of their difference magnitude,

dL(β, γ) = wL(|β − γ |). The Lee distance is the length of the shortest path on the

cycle from β to γ .

The Lee weight of sequence c ∈ Zn
q is the sum of the Lee weights of the n components

of c. Thus wL(c) =
∑n−1

i=0 wL(ci). The Lee distance, denoted dL(c, c′), between two

109 2.14 Codes for the Lee metric

sequences, c and c′, of equal length, is defined as the sum of the Lee weights of the

componentwise difference magnitudes
∑n−1

i=0 wL|ci − c′i|.
An alternative to the Hamming weight of a sequence on an alphabet of size q is the

Lee weight of that sequence. An alternative to the Hamming distance between two finite

sequences of the same length on an alphabet of size q is the Lee distance between the

two sequences. The Lee weight and the Lee distance are closely related to the modulo-

q addition operation. Thus it is natural to introduce the ring Zq into the discussion.

Indeed, the full arithmetic structure of Zq will be used later to design codes based on

Lee distance.

A code C of blocklength n and size M over the ring Zq is a set of M sequences of

blocklength n over the ring Zq. The code C is a subset of Zn
q. Acode over the ring Zq may

be judged either by its minimum Hamming distance or by its minimum Lee distance.

In the latter case, we may refer to these codes as Lee-distance codes, thereby implying

that Lee distance is the standard of performance. Codes over Z4 might also be called

quadary codes to distinguish them from codes over GF(4), often called quaternary

codes.

Only the addition operation in Zq is needed to determine the Lee distance between

two codewords. The multiplication operation in Zq comes into play only if the code is

a linear code. A linear code over Zq is a code such that the Zq componentwise sum of

two codewords is a codeword, and the componentwise product of any codeword with

any element of Zq is a codeword. Even though Zn
q is not a vector space, the notions of

generator matrix and check matrix of a code do apply.

For example, over Z4 let

G =

1 1 1 3

0 2 0 2

0 0 2 2

 .

Let a = [a0 a1 a2] be a dataword over Z4. Then the codeword c = [c0 c1 c2 c3] over

Z4 is given by c = aG. Although this representation of the code in terms of a generator

matrix appears very familiar, the usual operations that exist for a generator matrix over

a field need not apply. For example, it is not possible to make the leading nonzero

element of the second row of G equal to 1 by rescaling because the inverse of 2 does

not exist in Z4.

A cyclic code over the ring Zq is a linear code over Zq with the property that the

cyclic shift of any codeword is another codeword. The codewords of a cyclic code can

be represented as polynomials. Then the codewords of a cyclic code can be regarded

as elements of Zq[x] or, better, of Zq[x]/〈xn − 1〉. One way to form a cyclic code is as

the set of polynomial multiples of a polynomial, g(x), called the generator polynomial.

Of course, because Zq is not a field, the familiar properties of cyclic codes over a field

need not apply.

110 The Fourier Transform and Cyclic Codes

Our first example of a Lee-distance cyclic code over Z4 is a (7, 4, 5) cyclic code,

which can be extended to an (8, 4, 6) code over Z4 in the usual way by appending an

overall check sum. The generator polynomial for the cyclic code is given by

g(x) = x3 + 2x2 + x + 3.

The check polynomial is given by

h(x) = x4 + 2x3 + 3x2 + x + 1.

This (7, 4, 5) cyclic code has the generator matrix

G =

3 1 2 1 0 0 0

0 3 1 2 1 0 0

0 0 3 1 2 1 0

0 0 0 3 1 2 1

 .

When extended by one additional check symbol, this code is an (8, 4, 6) code over Z4,

known as the octacode. The octacode has the following generator matrix:

G =

1 3 1 2 1 0 0 0

1 0 3 1 2 1 0 0

1 0 0 3 1 2 1 0

1 0 0 0 3 1 2 1

as a matrix over Z4.

The subject of cyclic codes over Zq has many similarities to the subject of cyclic

codes over a field, but there are also considerable differences. Various properties that

hold for cyclic codes over a field do not hold for cyclic codes over a ring. One difference

is that the degree of the product a(x)b(x) can be smaller than the sum of the degrees

of a(x) and b(x). Indeed, it may be that a(x)b(x) = 1, even though both a(x) and b(x)

have degrees larger than 0. Thus such an a(x) has an inverse under multiplication. Any

such a(x) is a unit of the ring Zq[x]. For example, the square of 2x2 + 2x + 1 over

Z4 is equal to 1, which means that 2x2 + 2x + 1 is a unit of Z4[x]. Moreover, there is

no unique factorization theorem in the ring of polynomials over a ring. For example,

observe that

x4 − 1 = (x − 1)(x + 1)(x2 + 1)

= (x + 1)2(x2 + 2x − 1),

so there are (at least) two distinct factorizations over Z4 of the polynomial x4− 1. This

behavior is typical. Many polynomials over Zq have multiple distinct factorizations.

111 2.14 Codes for the Lee metric

To eliminate this ambiguity, we will choose to define a preferred factorization by using

a preferred kind of irreducible polynomial known as a basic irreducible polynomial.

A basic irreducible polynomial f (x) over Z4 is a polynomial such that f (x)(mod 2) is

an irreducible polynomial over GF(2). Thus the polynomial f (x) over Z4 is mapped

into a polynomial over GF(2) by mapping coefficients 0 and 2 into 0, and mapping

coefficients 1 and 3 into 1. The polynomial f (x) is a basic irreducible polynomial

over Z4 if the resulting polynomial over GF(2) is irreducible. The polynomial f (x)

is a primitive basic irreducible polynomial over Z4 (or primitive polynomial) if the

resulting polynomial over GF(2) is primitive.

For example, the irreducible factorization

x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1)

is a factorization over Z4 into basic irreducible polynomials because, modulo 2, it

becomes

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1),

which is an irreducible factorization over GF(2). The polynomial x3 + 2x2 + x − 1 is

called the Hensel lift of polynomial x3 + x + 1. The Hensel lift to Z4 of a polynomial

over GF(2) can be computed by a procedure called the Graeffe method .

Starting with the irreducible polynomial f (x) over GF(2), the Graeffe method first

sets

f (x) = fe(x)+ fo(x),

where fe(x) and fo(x) are made up of the terms of f (x) with even and odd indices,

respectively. Then

f̃ (x2) = ±
[
fe(x)

2 − fo(x)
2
]

determines the Hensel lift f̃ (x). The sign is chosen to make the leading coefficient

positive, given that Z4 is written {0,±1, 2}.
For example, starting with f (x) = x3 + x2 + 1 over GF(2), we have fe(x) = x2 + 1

and fo(x) = x3. Then

f̃ (x2) = ±
[
(x2 + 1)2 − x6

]

= x6 − x4 + 2x2 − 1,

112 The Fourier Transform and Cyclic Codes

because −2 = 2 (mod 4). Therefore

f̃ (x) = x3 − x2 + 2x − 1

is the corresponding basic irreducible polynomial over Z4.

Using the Graeffe method, the factorization

x7 − 1 = (x − 1)(x3 + x2 + 1)(x3 + x + 1)

over GF(2) is easily “lifted” to the basic factorization

x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1)

over Z4. All the factors are primitive basic irreducible polynomials. The expression

over Z4 is easily “dropped” to the original expression over GF(2) by setting−1 equal

to +1 and setting 2 equal to 0.

Not every polynomial over Z4 is suitable as a generator polynomial for a cyclic

code over Z4. For the code to be a proper cyclic code, one must respect the algebraic

structure of Z4[x]. Just as one can form cyclic codes of blocklength n over GF(2) by

using the irreducible factors of xn−1 over GF(2) and their products, one can also form

cyclic codes of blocklength n over Z4 by using the basic irreducible factors of xn − 1

and their products. However, the possibilities are more extensive. Let g(x) be any basic

irreducible factor of xn−1 over Z4. Then g(x) can be used as the generator polynomial

of a cyclic code over Z4 of blocklength n. Moreover, 2g(x) can also be used as the

generator polynomial of a different cyclic code, also of blocklength n. Besides these,

there are other possibilities. One can take two basic irreducible factors, g1(x) and g2(x),

of xn − 1 as generator polynomials and form the code whose codeword polynomials

are of the form

c(x) = a1(x)g1(x)+ 2a2(x)g2(x),

where the degrees of a1(x) and a2(x) are restricted so that each of the two terms on the

right has a degree not larger than n− 1. An instance of a cyclic code with this form is

based on a factorization of the polynomial g(x) as g(x) = g′(x)g′′(x), where g(x) is a

basic irreducible factor of xn − 1. The code as

C = {a1(x)g
′(x)g′′(x)+ 2a2(x)g

′′(x)},

with the understanding that the degrees of a1(x) and a2(x) are restricted so that each of

the two terms in the sum has a degree not larger than n− 1. However, this code may be

unsatisfactory unless g1(x) and g2(x) are appropriately paired. This is because the same

codeword may arise in two different ways. For example, if the degree conditions allow,

113 2.15 Galois rings

set a1(x) = 2g2(x) and a2(x) = g1(x). Then c(x) is the zero codeword polynomial

even though a1(x) and a2(x) are nonzero.

The way to obtain a cyclic code with this form without this disadvantage is to begin

with

xn − 1 = h(x)g(x)f (x),

where f (x), g(x), and h(x) are monic polynomials over Z4. Then define the code

C = {a1(x)g(x)f (x)+ 2a2(x)h(x)f (x)},

with the understanding that the degrees of a1(x) and a2(x) are restricted so that each of

the two terms in the sum has a degree not larger than n−1. Thus g1(x) = g(x)f (x) and

g2(x) = h(x)f (x). In this way, the polynomial f (x) has filled out the degrees of g1(x)

and g2(x) so that the choice a1(x) = 2g2(x) violates the degree condition on a1(x).

To see that the code C is a cyclic code over Z4, let codeword c(x) have the leading

coefficient cn−1 = a + 2b, where a ∈ {0, 1} and b ∈ {0, 1}. Then

xc(x) = xc(x)− a(xn − 1)− 2b(xn − 1)

= xc(x)− ah(x)g(x)f (x)− 2bh(x)g(x)f (x)

= [xa1(x)− ah(x)]g(x)f (x)+ 2(xa2(x)− bg(x))h(x)f (x),

which, modulo xn− 1, is an element of the code C. Of course, one need not restrict the

code in this way. One could use the more general form by restricting the encoder so

that the same codeword does not represent two different datawords.

The theory of cyclic codes over rings has not been developed in depth for the general

case. It has been developed primarily for codes of the form {a(x)f (x)} and, even then,

not in great depth.

2.15 Galois rings

A cyclic code over Z4 can be studied entirely in terms of the polynomials of the ring

Z4[x]. However, just as it is productive to study codes over the field GF(q) in the

larger algebraic field GF(q m), so, too, it is productive to study codes over Z4 in a

larger algebraic system called a Galois ring. A Galois ring over Z4 is defined in a

way analogous to the definition of an extension field of GF(q). Let h(x) be a primitive

basic irreducible polynomial (a primitive polynomial) of degree m over Z4. Then, with

the natural definitions of addition and multiplication, Z4[x] is a ring of polynomials

over Z4, and the Galois ring Z4[x]/〈h(x)〉 is the ring of polynomials modulo h(x).

This Galois ring has 4m elements, and is denoted GR(4m). Although some properties of

114 The Fourier Transform and Cyclic Codes

Table 2.6. The cycle of a primitive

element in GR(4m)

ξ1 = x

ξ2 = x2

ξ3 = 2x2 − x + 1

ξ4 = −x2 − x + 2

ξ5 = x2 − x − 1

ξ6 = x2 + 2x + 1

ξ7 = 1 = ξ0.

Galois fields carry over to Galois rings, other properties do not. In particular, the Galois

ring GR(4m) cannot be generated by a single element. However, there will always be

an element with order 2m, which we will call ξ . It is a zero of a primitive polynomial

over Z4, and hence may be called a primitive element, though it does not generate the

Galois ring in the manner of a primitive element of a Galois field. If ξ is a primitive

element of GR(4m), then every element of GR(4m) can be written as a + 2b, where

a and b are elements of the set {0, 1, ξ , ξ2, . . . , ξ2m−2}. Because 2m · 2m = 4m, this

representation accounts for all 4m elements of the ring GR(4m). With the convention

that ξ−∞ = 0, every element of GR(4m) can be written in the biadic representation as

ξ i + 2ξ j.

For example, to construct the Galois ring GR(43), choose the primitive polynomial

x3 + 2x2 + x − 1 over Z4. Then let ξ = x, and write the cycle of ξ , as shown in

Table 2.6. The 64 elements of GR(64), then, are those of the form a+ 2b, where a, b ∈
{0, 1, ξ , ξ2, . . . , ξ6}. Of course, the biadic representation is not the only representation.

Each element of GR(64) can also be written as a polynomial over Z4 in x of degree at

most 6, with multiplication modulo h(x).

It is now an easy calculation in this Galois ring to verify the following factorizations:

x3 + 2x2 + x − 1 = (x − ξ)(x − ξ2)(x − ξ4),

x3 − x2 + 2x − 1 = (x − ξ3)(x − ξ6)(x − ξ5),

x − 1 = (x − ξ0).

Each such factorization can be regarded as a kind of lift to GR(43) of a like factorization

over GF(23). The primitive element ξ of GR(4m) becomes the primitive element α of

GF(2m) when GR(4m) is mapped into GF(2m). This means that the cyclic orbit of ξ ,

taken modulo 2, becomes the cyclic orbit of α.

In general, the elements of the Galois ring GR(4m) may be represented in a variety of

ways. One, of course, is the definition as
∑

i aix
i, a polynomial in x of degree at most

115 2.15 Galois rings

Table 2.7. Galois orbits in GR(4m) and GF(2m)

ξ1 = x α1 = x

ξ2 = x2 α2 = x2

ξ3 = x + 1 +2(x2 + x) α3 = x + 1

ξ4 = x2 + x +2(x2 + x + 1) α4 = x2 + x

ξ5 = x2 + x + 1 +2(x + 1) α5 = x2 + x + 1

ξ6 = x2 + 1 +2x α6 = x2 + 1

ξ7 = 1 = ξ0 α7 = 1 = α0

m− 1. We have also seen that we may write an arbitrary ring element, β, in the biadic

representation

β = ξ i + 2ξ j

= a + 2b,

where a and b, or a(β) and b(β), denote the left part and right part of β, respectively.

Each part is a power of ξ . This representation is convenient for some calculations. As

a third representation, it may be helpful to see the elements of GR(4m) lying above the

elements of GF(2m). For this purpose, regard the element β of GR(4m) to be written

as βo+ 2βe, where βo and βe, called the odd part and the even part of the ring element

β, are both polynomials in x with all coefficients from {0, 1}.
To find the representation β = βo + 2βe, write the odd part as βo = β modulo 2,

then the even part βe is determined as the difference between β and βo. With due care,

both βo and βe can be informally regarded as elements of the extension field GF(2m),

though operations in GR(4m) are actually modulo 4, not modulo 2.

To see the relationship between ξ and α, the comparison of the cycles of ξ and α,

given in Table 2.7, is useful: The cycle of ξ is the same as in Table 2.6, but expressed to

show the role of the two. We may summarize this relationship by writing ξ j = αj+2γj,

where 2γj is defined as ξ j − αj. Thus αj is the odd part of ξ j and γj is the even part

of ξ j.

The following proposition tells how to calculate the representation ξ i+2ξ j from any

other representation of β.

Proposition 2.15.1 Let β = a+ 2b denote the biadic representation of β ∈ GR(4m).

Then

a = β2m

and

2b = β − a.

116 The Fourier Transform and Cyclic Codes

Proof: To prove the first expression, observe that

β2 = (a + 2b)2

= a2 + 4ab+ 4b2 (mod 4)

= a2.

Because a is a power of ξ , and so has order dividing 2m − 1, repeated squaring now

gives β2m = a2m = a, which is the first expression of the proposition. The second

expression is then immediate. �

Proposition 2.15.2 Let a(β)+2b(β) be the biadic representation of any β ∈ GR(4m).

Then

a(β + γ) = a(β)+ a(γ)+ 2(βγ)2m−1
,

a(βγ) = a(β)a(γ).

Proof: Using Proposition 2.15.1, the statement to be proved can be restated as

(β + γ)2m = β2m + γ 2m + 2(βγ)2m−1
.

For m = 1, this is elementary:

(β + γ)2 = β2 + γ 2 + 2βγ .

Because 4 = 0 in this ring, it is now clear that

(β + γ)4 = (β2 + γ 2)2 + 4(βγ)(β2 + γ 2)+ 4(β2γ 2)

= (β2 + γ 2)2

= β4 + γ 4 + 2β2γ 2.

The recursion is now clear, so the proof of the first identity is complete. The proof of

the second identity follows from βγ = (a + 2b)(a′ + 2b′) = aa′ + 2(ab′ + a′b). �

The statement of Proposition 2.15.2 will now be extended to the generalization in

which there are n terms in the sum.

Proposition 2.15.3 Let a(βℓ) + 2b(βℓ) denote the biadic representation of βℓ ∈
GR(4m). Then

a

(n∑

ℓ=1

βℓ

)
=

n∑

ℓ=1

a(βℓ)+ 2
n∑

ℓ=1

∑

ℓ′ �=ℓ

(βℓβℓ′)
2m−1

.

117 2.15 Galois rings

Proof: If there are two terms in the sum, the statement is true by Proposition 2.15.2.

Suppose that the expression is true if there are n− 1 terms in the sum. Then

a

(n∑

ℓ=1

βℓ

)
= a

(n−1∑

ℓ=1

βℓ + βn

)

= a

(
n−1∑

ℓ=1

βℓ

)
+ a(βn)+ 2(β2m−1

n)

(
n−1∑

ℓ=1

βℓ

)2m−1

=
n−1∑

ℓ=1

a(βℓ)+ 2
n−1∑

ℓ=1

∑

ℓ′ �=ℓ

(βℓβℓ′)
2m−1 + a(βn)+ 2(β2m−1

n)

(n−1∑

ℓ=1

βℓ

)2m−1

=
n∑

ℓ=1

a(βℓ)+ 2
n∑

ℓ=1

∑

ℓ′ �=ℓ

(βℓβℓ′)
2m−1

,

as was to be proved. �

In GR(4m), the square of the ring element c = a+2b is always c2 = a2, independent

of b because 4 = 0 in this ring. In this sense, squaring is a lossy operation. A useful

variant of the squaring function is the frobenius function, defined in the Galois ring

GR(4m) as cf = a2 + 2b2. Now the trace in GR(4m) can be defined as tr(c) =
c + cf + · · · + cf m−1

.

There is also a Fourier transform in the Galois ring GR(4m). A “vector” c of

blocklength n = 2m − 1 over the ring GR(4m) has a Fourier transform, defined as

Cj =
n−1∑

i=0

ξ ijci,

where ξ is a primitive element of GR(4m) and n = 2m − 1 is the order of ξ . The

Fourier transform C is also a vector of blocklength n over the ring GR(4m). Because

Z4 is contained in GR(4m), a vector c over Z4 of blocklength n is mapped into a

vector C over GR(4m) by the Fourier transform. Moreover, by setting 2 = 0, the

Fourier transform in the ring GR(4m) can be dropped to a Fourier transform in the field

GF(2m), with components Cj =
∑n−1

i=0 αijci.

Many elementary properties of the Fourier transform hold for the Galois ring Fourier

transform. The inverse Fourier transform can be verified in the usual way by using the

relationship

n−1∑

i=0

ξ i = 1− ξn

1− ξ
= 0

118 The Fourier Transform and Cyclic Codes

unless ξ = 1. Therefore, because an inverse Fourier transform exists, each c

corresponds to a unique spectrum C.

There is even a kind of conjugacy relationship in the transform domain. Let c be

a vector over Z4, written c = a + 2b, with components displayed in the biadic rep-

resentation as ci = ai + 2bi. Because c is a vector over Z4, the components satisfy

ai ∈ {0, 1} and bi ∈ {0, 1}. Then the spectral components are given by

Cj =
n−1∑

i=0

(ai + 2bi)ξ
ij.

Although Cj is not itself in the biadic representation, each term within the sum is in the

biadic representation, because ai and bi can only be zero or one.

We now express the spectral component Cj in the biadic representation as Cj = Aj+
2Bj. By Proposition 2.15.3, the left term of the biadic representation of Cj =

∑
i ciξ

ij

is given by

Aj =
∑

i

aiξ
ij + 2

∑

i

∑

i′ �=i

((ai + 2bi)ξ
ij(ai′ + 2bi′)ξ

i′j)2m−1
.

Because 4 = 0 in this ring, the second term can be simplified so that

Aj =
∑

i

aiξ
ij + 2

∑

i

∑

i′ �=i

(aiξ
ij)2m−1

(ai′ξ
i′j)2m−1

and 2Bj = Cj − Aj. We conclude that

Cj = Aj + 2Bj

=
(∑

i

aiξ
ij + 2

∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j)2m−1

)

+ 2

(∑

i

biξ
ij +

∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j)2m−1

)

is the biadic representation of Cj.

Although this representation for Cj seems rather complicated, it is the starting point

for proving the following useful theorem. This theorem characterizes the spectral com-

ponents of a vector over Z4. In particular, the theorem says that component C2j, which

is given by

C2j =
n−1∑

i=0

aiξ
2ij + 2

n−1∑

i=0

biξ
2ij,

119 2.15 Galois rings

is related to Cj by a conjugacy constraint. The theorem also implies that if Cj = 0, then

C2j = 0 as well.

Theorem 2.15.4 Let c be a vector of blocklength n = 2m− 1 over Z4. Then the com-

ponents of the Fourier transform C satisfy C2j = Cf
j , where Cf

j denotes the frobenius

function of Cj.

Proof: We will give an explicit computation using the formula derived prior to the

statement of the theorem. Write

Cf
j =

(∑

i

aiξ
ij + 2

∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j)2m−1

)2

+ 2

(∑

i

biξ
ij +

∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j)2m−1

)2

.

The first term has the form (x+ 2y)2, which expands to x2 + 4xy+ 4y2 = x2 (mod 4).

The second term has the form 2(x + y)2, which expands to 2(x2 + 2xy + y2) =
2(x2 + y2) (mod 4). Therefore

Cf
j =

(∑

i

aiξ
ij

)2

+ 2

[(∑

i

biξ
ij

)2

+
(∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j)2m−1

)2]
.

Now rewrite each of these three squares. The first square is expanded as

(∑

i

aiξ
ij

)2

=
∑

i

(aiξ
ij)2 + 2

∑

i

∑

i′ �=i

(aiai′ξ
ijξ i′j).

Each of the second two squares can be expanded in this way as well, but the cross terms

drop out because 4 = 0 in the ring Z4. The summands in these latter two terms then

become (biξ
ij)2 and ((aiai′ξ

ijξ i′j)2m−1
)2. Therefore because each ai or bi can only be a

zero or a one,

Cf
j =

∑

i

aiξ
2ij + 2

∑

i

∑

i′ �=i

aiai′ξ
ijξ i′j + 2

∑

i

biξ
2ij + 2

∑

i

∑

i′ �=i

aiai′ξ
ijξ i′j

=
n−1∑

i=0

aiξ
2ij + 2

n−1∑

i=0

biξ
2ij

= C2j,

as was to be proved. �

This theorem allows us to conclude that, as in the case of a Galois field, if g(x) is

a polynomial over Z4 with a zero at the element ξ i of the Galois ring GR(4m), then it

120 The Fourier Transform and Cyclic Codes

also has a zero at the element ξ2i. In particular, a basic irreducible polynomial over Z4,

with a zero at β, has the form

p(x) = (x − β)(x − β2) . . . (x − β2r−1
),

where r is the number of conjugates of β in GR(4m).

A cyclic code over GR(4m) that is defined in terms of the single generator polynomial

g(x) consists of all polynomial multiples of g(x) of degree at most n − 1. Every

codeword has the form c(x) = a(x)g(x). Although g(x) is the Hensel lift of a polynomial

over GF(2m), a(x)g(x) need not be the Hensel lift of a polynomial over GF(2m). In

particular, not every a(x) over GR(4m) is the Hensel lift of a polynomial over GF(2m).

One way to define a cyclic code over Z4 – but not every cyclic code over Z4 – is as

the set of polynomials in Z4[x]/〈xn−1〉with zeros at certain fixed elements of GR(4m).

This is similar to the theory of cyclic codes over a field. For example, the cyclic code

with the primitive polynomial x3 + 2x2 + x − 1 as the generator polynomial g(x) can

be defined alternatively as the set of polynomials over Z4 of degree at most 7 with a

zero at the primitive element ξ , a zero of g(x). Thus c(x) is a codeword polynomial if

c(ξ) = 0. Then Theorem 2.15.4 tells us that c(ξ2) = 0 as well, and so forth.

In the case of a cyclic code over a Galois field, the generator polynomial g(x) can

be specified by its spectral zeros. Similarly, a single generator polynomial for a cyclic

code over Z4 can be specified by its spectral zeros. Because the spectral zeros define

a simple cyclic code over Z4, the minimum distance of that code is somehow implicit

in the specification of the spectral zeros of the single generator polynomial. Thus, we

might hope for a direct statement of this relationship analogous to the BCH bound.

However, a statement with the simplicity of the BCH bound for a Lee-distance code

over Z4 is not known. For this reason, it is cumbersome to find the minimum distance

of a cyclic code over Z4 that is defined in this way.

A cyclic code over Z4 can be dropped to the underlying code over GF(2), where the

BCH bound does give useful, though partial, information about the given Lee-distance

code. If codeword c over Z4 is dropped to codeword c over GF(2), then the codeword

c will have a 1 at every component where the codeword c̄ has either a 1 or a 3. Hence

the minimum Lee distance of the Z4 code is at least as large as the minimum Hamming

distance of that binary code, and that minimum distance satisfies the BCH bound.

Our two examples of cyclic codes over Z4 that will conclude this section are known

as Calderbank–McGuire codes. These codes over Z4 are defined by reference to the

Galois ring GR(45). They are related to the binary (32, 16, 8) self-dual code based on the

binary (31, 16, 7) cyclic BCH code, in the sense that the Calderbank–McGuire codes can

be dropped to these binary codes. The cyclic versions of the two Calderbank–McGuire

codes are a (31, 18.5, 11) cyclic Lee-distance code over Z4 and a (31, 16, 13) cyclic

Lee-distance code over Z4. When extended by a single check symbol, these cyclic codes

over Z4 are, respectively, a (32, 18.5, 12) Lee-distance code over Z4 and a (32, 16, 14)

121 2.15 Galois rings

Lee-distance code over Z4. When the symbols of Z4 are represented by pairs of bits

by using the Gray map (described in Section 2.16), these codes become nonlinear

(64, 37, 12) and (64, 32, 14) binary Hamming-distance codes, with datalengths 37 and

32, respectively. Their performance is better than the best linear codes known. The

comparable known linear codes are the (64, 36, 12) and (64, 30, 14) BCH codes, with

the dimensions 36 and 30.

The first Calderbank–McGuire cyclic code is the set of polynomials c(x) of block-

length 31 over Z4 that satisfy the conditions c(ξ) = c(ξ3) = 2c(ξ5) = 0, where ξ is a

primitive element of GR(45). The condition 2c(ξ5) = 0 means that c(ξ5) must be even,

but not necessarily zero, which accounts for the unusual datalength of this (31, 18.5, 11)

cyclic Calderbank–McGuire code over Z4. Accordingly, the check matrix of this cyclic

code is given by

H =

1 ξ1 ξ2 · · · ξ30

1 ξ3 ξ6 · · · ξ90

2 2ξ5 2ξ10 · · · 2ξ150

 .

In the Galois ring GR(45), the elements ξ , ξ3, and ξ5 each have five elements in their

conjugacy classes. This means that the first two rows of H each reduce the datalength

by 5. The third row only eliminates half of the words controlled by the conjugacy class

of ξ5. Thus n− k = 12.5 and n = 31, so k = 18.5.

The cyclic (31, 18.5, 11) Calderbank–McGuire code over Z4 can be lengthened by

a simple check symbol to form the (32, 18.5, 12) extended Calderbank–McGuire code

over Z4. The lengthened code has the check matrix

H =

1 1 ξ1 ξ2 · · · ξ30

0 1 ξ3 ξ6 · · · ξ90

0 2 2ξ5 2ξ10 · · · 2ξ150

 .

There are two noteworthy binary codes that are closely related to this code. A linear

code of blocklength 32 is obtained by simply dropping the codewords into GF(2),

which reduces every symbol of Z4 to one bit – a zero or a one according to whether the

Lee weight of the Z4 symbol is even or odd. This map takes the Z4 code into a linear

binary (32, 22, 5) code. It is an extended BCH code. The other binary code is obtained

by using the Gray map to represent each symbol of Z4 by two bits. The Gray map takes

the Z4 code into a nonlinear binary (64, 37, 12) code. The performance of this code is

better than any known linear binary code.

If the 2 is struck from the last row of H of the cyclic code, then we have the second

Calderbank–McGuire cyclic code, which has c(ξ) = c(ξ3) = c(ξ5) = 0 in GR(45).

This gives a cyclic (31, 16, 13) Lee-distance code over Z4 with datalength 16. It can be

lengthened by a simple check symbol to form a (32, 16, 14) Lee-distance code over Z4.

122 The Fourier Transform and Cyclic Codes

The lengthened code has the check matrix

H =

1 1 ξ1 ξ2 · · · ξ30

0 1 ξ3 ξ6 · · · ξ90

0 1 ξ5 ξ10 · · · ξ150

 .

The Gray map takes the Z4 code into a nonlinear (64, 32, 14) binary Hamming-distance

code.

Inspection of the check matrices makes it clear that the two cyclic Calderbank–

McGuire codes over Z4, of blocklength 31, are contained in the cyclic Preparata code

over Z4 of blocklength 31, which is defined in Section 2.16 and has the check matrix

H =
[

1 ξ1 ξ2 · · · ξ30
]

.

Likewise, the extended Calderbank–McGuire codes over Z4, of blocklength 32, are

contained in the extended Preparata code over Z4 of blocklength 32.

We do not provide detailed proofs of the minimum distances of the Calderbank–

McGuire codes here. Instead, we leave this as an exercise. Some methods of finding

the minimum Lee distance of a code over Z4 are given in Section 2.16. There we state

that every codeword can be written as c(x) = c1(x)+2c2(x), where c1(x) and c2(x) have

all coefficients equal to zero or one. Thus by reduction modulo 2, the Z4 polynomial

c(x) can be dropped to the binary codeword c1(x). As a binary codeword, c1(x) has

zeros at α1, α3, and α5, and so has minimum Hamming weight at least equal to 7. If

c1(x) is zero, then c2(x) drops to a binary codeword with spectral zeros at α1 and α3.

This means that c2(x) has Hamming weight at least 5, so the Z4 codeword 2c2(x) has

Lee weight at least 10. This codeword extends to a codeword with Lee weight at least

equal to 12. For the second Calderbank–McGuire code, the codeword c(x) = 2c2(x)

has Lee distance at least 14 and this codeword extends to a codeword with Lee weight

at least 14. Other codewords of the Calderbank–McGuire code – those for which both

c1(x) and c2(x) are nonzero – are much harder to analyze.

2.16 The Preparata, Kerdock, and Goethals codes

A nonlinear binary code is interesting whenever the code has more codewords than any

comparable linear code that is now known or, in some cases, better than any linear

code that exists. Some well known families of such nonlinear binary codes are the

Preparata codes, the Kerdock codes, and the Goethals codes. Other notable examples

are the Calderbank–McGuire codes that were mentioned in the previous section. The

exemplar code of this kind is the binary (15, 8, 5) Nordstrom–Robinson nonlinear code

that can be extended to a binary (16, 8, 6) nonlinear code. The Nordstrom–Robinson

123 2.16 The Preparata, Kerdock, and Goethals codes

code is both the simplest of the Preparata codes and the simplest of the Kerdock codes.

Because the Nordstrom–Robinson code is a nonlinear code, the notion of a dimension

does not apply. Because there are 28 codewords, we may still refer to this code as a

(15, 8, 5) code. Now the second term of the notation (n, k, d) is the datalength of the

code, referring to the base-2 logarithm of the number of codewords. The datalength of

the Nordstrom–Robinson code is 8.

The Nordstrom–Robinson code can be generalized to binary codes of longer block-

length of the form 2m+1 − 1, m odd, either with the minimum distance fixed or with

the redundancy fixed. The first case gives a family of (2m+1 − 1, 2m+1 − 2(m+ 1), 5)

nonlinear binary codes, known as Preparata codes, and the second case gives a family

of (2m+1− 1, 2(m+ 1), 2m− 2(m−1)/2− 1) nonlinear binary codes, known as Kerdock

codes. A binary Preparata code is a double-error-correcting code, and a binary Kerdock

code is a multiple-error-correcting code. As binary codes, the Preparata codes and

the Kerdock codes can be extended by a single check bit that increases the minimum

Hamming distance by 1.

We also briefly mention another family of binary nonlinear triple-error-correcting

codes known as the family of Goethals codes. The binary Goethals codes have minimum

Hamming distance 7 and can be extended by a single check bit that increases the

minimum Hamming distance by 1.

The nonlinear codes of this section can be constructed by converting linear codes

over Z4 into nonlinear codes over GF(2), using a map known as the Gray map. The

resulting nonlinear codes are the best binary codes known of their blocklength and

datalength. The Gray map is the following association of elements of Z4 with pairs of

elements of GF(2):

0 → 00,

1 → 01,

2 → 11,

3 → 10.

The Gray map is intrinsically nonlinear if the binary image is to be added componen-

twise. Thus, for example, in Z4, consider 3 + 1 = 0. Adding the Gray map of both

terms componentwise on the left side gives 10+01, which equals 11, whereas the Gray

map of the right side is 00, which is not the same. Addition is not preserved by the

Gray map. The Gray map, when applied componentwise to a sequence c in Zn
4, pro-

duces a sequence c̃ in GF(2)2n. The sequence c̃ has twice as many components as the

sequence c.

The Lee weight and the Lee distance are defined so that, under the Gray map,

the Hamming weight satisfies wH(c̃) = wL(c) and the Hamming distance satisfies

124 The Fourier Transform and Cyclic Codes

dH(c̃, c̃′) = dL(c, c′). Thus the Lee distance between two sequences in Zn
4 is equal to

the Hamming distance between their Gray images in GF(2)2n.

Recall that the linear code C over the ring Zq is a code over Zq, such that ac + bc′

is a codeword of C whenever c and c′ are codewords of C. A code C ∈ Zn
4 is converted

to a code C̃ ∈ GF(2)2n by the Gray map. In general, even though the code C is a linear

code in Zn
4, the code C̃ will be a nonlinear code in GF(2)2n.

By applying the Gray map to every codeword, the linear code C in Zn
4 is converted

into a nonlinear binary code, called the Gray image of C. From a concrete point of view,

the Gray map relates two codes, one over Z4 and one over GF(2). From an abstract

point of view, there is only one code, but with two different notations and two different

notions of distance.

This method of constructing codes in GF(2)2n yields some noteworthy binary codes.

For example, let C be the Lee-distance code over Z4 that is produced by the generator

matrix

G =
[

1 0 1

0 1 3

]
.

Table 2.8 gives the sixteen codewords of this Lee-distance code and the 16 binary

codewords of its Gray image. By inspection of the table, it is easy to see that the binary

code is nonlinear. What is harder to see from the table is that for any d , the number

of codewords at distance d from any codeword is the same for every codeword. A

code with this property is known as a distance-invariant code. Because the original

Table 2.8. A code over Z4 and its Gray image

Codewords of C Codewords of C′

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 1

2 0 2 1 1 0 0 1 1

3 0 3 1 0 0 0 1 0

0 1 3 0 0 0 1 1 0

1 1 0 0 1 0 1 0 0

2 1 1 1 1 0 1 0 1

3 1 2 1 0 0 1 1 1

0 2 2 0 0 1 1 1 1

1 2 3 0 1 1 1 1 0

2 2 0 1 1 1 1 0 0

3 2 1 1 0 1 1 0 1

0 3 1 0 0 1 0 0 1

1 3 2 0 1 1 0 1 1

2 3 3 1 1 1 0 1 0

3 3 0 1 0 1 0 0 0

125 2.16 The Preparata, Kerdock, and Goethals codes

code in Zn
4 is linear, it is obviously a distance-invariant code. The Gray image of this

Lee-distance code must also be distance-invariant under Hamming distance because

the Gray map preserves the distance structure.

For a more interesting example, recall that the octacode is an (8, 4, 6) extended cyclic

code over Z4, corresponding to the generator polynomial g(x) = x3+ 2x2+ x+ 3 and

the check polynomial h(x) = x4 + 2x3 + 3x2 + x + 1. Therefore its Gray image is a

(16, 8, 6) nonlinear binary code. The Gray image of the octacode, in fact, may be taken

to be the definition of the (extended) Nordstrom–Robinson code.

We want to generalize the Nordstrom–Robinson code to longer blocklengths. Toward

this end, first recall that the factorization of x7 − 1 into basic irreducible polynomials

is given by

x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1).

Either of the two factors of degree 3 can be used to form a cyclic code over Z4. These

two codes are equivalent codes, one polynomial being the reciprocal of the other. The

Gray image of either of these codes is the (16, 8, 6) Nordstrom–Robinson code of

blocklength 16 and datalength 8.

The generalization of the code is based on the factorization

x2m−1 − 1 = (x − 1)g(x)h(x),

in Z4, where one of the two nontrivial factors is a primitive basic irreducible polynomial

over Z4, and the other is a product of the remaining basic irreducible polynomials of

the factorization of x2m−1 − 1. Each of these polynomials, h(x) and g(x), can be used

to form a cyclic code over Z4 of blocklength 2m − 1 or an extended cyclic code over

Z4 of blocklength 2m.

The cyclic codes over Z4, with generator polynomials h(x) and (the reciprocal of)

g(x), are dual codes using the natural definition of an inner product over Z4. One is the

Preparata code over Z4 and one is the Kerdock code over Z4. First, we will discuss the

Preparata code over Z4 and its binary image over GF(2).

Definition 2.16.1 A cyclic Preparata code over Z4 of blocklength n = 2m − 1, m

odd, is a cyclic code over Z4 whose generator polynomial g(x) is a primitive basic

irreducible factor of x2m−1−1 in the Galois ring GR(4m). An extended Preparata code

over Z4 of blocklength 2m is a cyclic Preparata code over Z4 augmented by a simple

Z4 check sum.

Because the degree of g(x) is m, a cyclic Preparata code over Z4 has dimension

2m− 1−m. Thus it has 42m−1−m codewords, as does the extended Preparata code. We

shall see in Theorem 2.16.2 that these cyclic and extended codes are (2m− 1, 2m− 1−
m, 4) and (2m, 2m − 1 − m, 6) codes over Z4, respectively. A binary Preparata code

of blocklength 2m+1 is the Gray image of the extended Preparata code of blocklength

126 The Fourier Transform and Cyclic Codes

2m over Z4. An original Preparata code of blocklength 2m+1− 1 is a binary Preparata

code of blocklength 2m+1 that is punctured by one bit, and so has blocklength 2m+1 −
1. Because each of the 2m − 1 − m data symbols of the Preparata code over Z4 is

represented by two bits in a binary Preparata code, the datalength of the binary code is

2m+1− 2− 2m. These binary Preparata codes, then, are (2m+1, 2m+1− 2− 2m, 6) and

(2m+1 − 1, 2m+1 − 2− 2m, 5) nonlinear codes over GF(2), respectively.

The cyclic Preparata code over Z4 of blocklength 2m− 1 can be described as the set

of polynomials over Z4 of degree at most 2m−2 with a zero at ξ , where ξ is a primitive

element of Z4. This means that a cyclic Preparata code over Z4 has a check matrix of

the form

H = [1 ξ1 ξ2 · · · ξn−1],

and an extended Preparata code has a check matrix of the form

H =
[

1 1 1 1 · · · 1

0 1 ξ1 ξ2 · · · ξn−1

]
.

For the cyclic code, by Theorem 2.15.4, the codeword polynomials have a second

zero at ξ2, and so forth. Therefore, because a codeword polynomial c(x) satisfies

c(ξ1) = c(ξ2) = 0 over Z4, there are two consecutive spectral zeros. Writing the

“vectors” of Zn
4 as c = a + 2b, where ai ∈ {0, 1} and bi ∈ {0, 1}, the codewords of

a cyclic Preparata code with b set to the zero vector are the codewords of the binary

Hamming code of the same blocklength. Thus the codeword c can be dropped to the

binary Hamming codeword a with spectral zeros at α1 and α2. By the BCH bound, if

the Hamming codeword a is nonzero, it has Hamming weight at least 3. If, instead a is

the zero vector but codeword c is nonzero, then c = 2b where b is a nonzero Hamming

codeword, so c has Lee weight at least 6. This much is easy to infer from the BCH

bound. Before treating the general case, we examine some examples.

The cyclic Preparata code of blocklength 7 with the generator polynomial

g(x) = x3 + 2x2 + x − 1

has spectral zeros at ξ1, ξ2, and ξ4. One codeword polynomial of this code is given by

c(x) = g(x)

= x3 + 2x2 + x − 1

= (x3 + x + 1)+ 2(x2 + 1).

The BCH bound applied to the odd part of c(x) says that the odd part must have

Hamming weight at least 3. This codeword has an odd part with Hamming weight 3

127 2.16 The Preparata, Kerdock, and Goethals codes

and an even part with Hamming weight 2. The Lee weight of the combined Z4 codeword

is 5. When extended by a simple check sum, the extended code has Lee weight equal

to 6. The BCH bound does not apply to the even part of this codeword because the odd

part is nonzero. However, a different codeword polynomial of this code is given by

c(x) = 2g(x)

= 2(x3 + x + 1).

The odd part of this codeword is zero, so the BCH bound applies to the even part. It

says that the even part of this codeword has Hamming weight at least 3, and so the

codeword has Lee weight at least 6. Yet another codeword polynomial of this code is

given by

c(x) = (x + 1)g(x)

= x4 − x3 − x2 − 1

= (x4 + x3 + x2 + 1)+ 2(x3 + x2 + 1)

= (x + 1)(x3 + x + 1)+ 2(x2 + x)+ 2(x3 + x + 1).

The last line decomposes this codeword by exhibiting separately three terms: the under-

lying binary Hamming codeword; the even term in the middle formed by the Hensel

lifting of the underlying binary Hamming codeword; and the last term added as an

even multiple of another Hamming codeword. The Z4 codeword has Lee weight equal

to 4, and viewed as integers the components of the codeword sum to −2. Thus when

extended by a simple check sum, the Lee weight of the codeword is 6 because the Z4

check sum is 2. This example shows how a cyclic codeword of Lee weight 4 may extend

to a codeword of Lee weight 6 In fact, Theorem 2.16.2 states that every codeword of a

cyclic Preparata code over Z4 has Lee weight at least 4 and has Lee weight at least 6

when extended by a simple Z4 check sum.

We will give an elementary proof of the following theorem. In Chapter 3, we will

give a decoding algorithm for a Preparata code that serves as an alternative proof of

the theorem.

Theorem 2.16.2 A cyclic Preparata code over Z4 has minimum Lee distance equal

to 4. An extended Preparata code over Z4 has minimum Lee distance equal to 6.

Proof: Let C be the cyclic Preparata code over Z4 of blocklength n. We will prove that

every nonzero codeword of C has Lee weight at least 4, and that every codeword of

the cyclic code with Lee weight 4 must have components summing to 2. This implies

that for every such codeword, c∞ = 2, and so the extended codeword has Lee weight

6. Furthermore, every codeword with Lee weight 5 must have components summing

to ±1. For every such codeword c∞ = ±1, and the extended codeword again has Lee

weight 6.

128 The Fourier Transform and Cyclic Codes

If a nonzero codeword c has no components of Lee weight 1, it must drop to the

all-zero codeword. Then c has the form of a Hamming codeword multiplied by 2

(c = 2b), and so has Lee weight at least 6. Furthermore, if a nonzero codeword has any

components of Lee weight 1, then there must be at least three components of Lee weight

1, because every such codeword can be dropped to a binary Hamming codeword. In

such a codeword, if there is also at least one component of Lee weight 2, then the

codeword c has Lee weight at least 5 and extends to a codeword of Lee weight at least

6. Therefore we only need consider codewords in which all nonzero components have

Lee weight 1. We will first show that there are no such codewords of Lee weight 3.

A codeword with three components of Lee weight 1 could only have the form

c(x) = xi + x j ± xk

(possibly after multiplying c(x) by −1), in which the coefficient of xk may be either

+1 or −1. Evaluating c(x) at ξ and ξ2 gives

c(ξ) = ξ i + ξ j ± ξ k = 0,

c(ξ2) = ξ2i + ξ2j ± ξ2k = 0.

These equations can be rewritten as

(ξ i + ξ j)2 = (∓ξ k)2,

ξ2i + ξ2j = ∓ξ2k .

If the coefficient of xk in c(x) is negative, these combine to give 2ξ iξ j = 0, which is

a contradiction because ξ i and ξ j are both nonzero. If, instead, the coefficient of xk is

positive, the two equations combine to give 2ξ iξ j = 2ξ2k , which means that ξ i−kξ j−k =
1. We also know that ξ i−k+ξ j−k = 1, which means that (x−ξ i−k)(x−ξ j−k) = x2+x+1.

But the polynomial x2 + x + 1 has no zeros in GF(2m) if m is odd, so xi + x j + xk

cannot be a codeword. Thus there are no codewords of Lee weight 3.

To show that a cyclic codeword with four components of Lee weight 1 must have

an extension symbol with Lee weight 2, we will show that no such cyclic codeword

whose components sum to 0 or 4 can exist. Such a codeword with four components,

each of Lee weight 1, would have the form

c(x) = (xi + x j)± (xk + xℓ)

(possibly after multiplying c(x) by−1), in which the coefficients of xk and xℓ are both

1 or both −1. Evaluating c(x) at ξ and ξ2 gives

c(ξ) = (ξ i + ξ j)± (ξ k + ξ ℓ) = 0,

c(ξ2) = (ξ2i + ξ2j)± (ξ2k + ξ2ℓ) = 0.

129 2.16 The Preparata, Kerdock, and Goethals codes

These equations can be rewritten as

(ξ i + ξ j)2 = (ξ k + ξ ℓ)2,

(ξ2i + ξ2j) = ∓(ξ2k + ξ2ℓ).

If the coefficients of xk and xℓ in c(x) are both negative, these combine to give 2ξ iξ j =
2ξ kξ ℓ, and we already know that ξ i+ξ j = ξ k+ξ ℓ = 0. Next, dropping these equations

to the underlying field GF(2m) gives αiαj = αkαℓ and αi + αj + αk + αℓ = 0. These

combine to give αi−ℓ + 1 = αj−ℓ(αi−ℓ + 1), which means that αj−ℓ = 1. This

contradiction, that x j = xℓ, proves there is no codeword of the form xi + x j − xk − xℓ.

To show a contradiction for a codeword of the form xi + x j + xk + xℓ, combine the

two equations

(ξ i + ξ j + ξ k + ξ ℓ)2 = 0

and

ξ2i + ξ2j + ξ2k + ξ2ℓ = 0

to give

2(ξ iξ j + ξ iξ k + ξ iξ ℓ + ξ jξ k + ξ iξ ℓ + ξ kξ ℓ) = 0.

We already know that ξ i + ξ j + ξ k + ξ ℓ = 0. Drop these equations to the underlying

field to write

αi + αj + αk + αℓ = 0

and

αiαj + αiαk + αiαℓ + αjαk + αjαℓ + αkαℓ = 0.

Then

(x − αi)(x − αj)(x − αk)(x − αℓ) = x4 + (αi + αj + αk + αℓ)x3 + (αiαj + αiαk

+ αiαℓ + αjαk + αjαℓ + αkαℓ)x2 + (αiαjαk

+ αiαjαℓ + αiαkαℓ + αiαjαℓ)x + αiαjαkαℓ.

The coefficients of x3 and x4 are zero, so we have

(x − αi)(x − αj)(x − αk)(x − αℓ) = x4 + Ax + B

130 The Fourier Transform and Cyclic Codes

for some constants A and B. But if any polynomial of degree 4 has four zeros, it can be

written as the product of two quadratics, each with two of the zeros. Then

x4 + Ax + B = (x2 + ax + b)(x2 + cx + d)

= x4 + (a + c)x3 + (ac + b+ d)x2 + (ad + bc)x + bd .

This means that a+ c = 0, ac+b+d = 0, and ad +bc = A. Then a = c, b+d = a2,

and so a3 = A. Such an a exists only if A has a cube root. But if A has a cube root, then

by the substitution y = A1/3x, the original equation becomes y4 + y + B/A4/3 = 0,

which, as before, has quadratic factors only if a3 = 1. Such an a does not exist in

GF(2m) if m is odd, so such a polynomial with four distinct zeros does not exist.

Thus every codeword of Lee weight 4 has an odd number of components equal to

−1. For such a codeword the extension symbol is 2, so the extended codeword has Lee

weight 6. This completes the proof of the theorem. �

This concludes the discussion of the Preparata codes. Next we discuss the Kerdock

codes which over Z4 are the duals of the Preparata codes.

Definition 2.16.3 A cyclic Kerdock code over Z4 of blocklength 2m − 1, m odd, is a

cyclic code over Z4 whose generator polynomial g(x) is (x2m−1−1)/(x−1)h(x), where

h(x) is a primitive basic irreducible factor of x2m−1− 1 in the Galois ring GR(4m). An

extended Kerdock code over Z4 of blocklength 2m is a cyclic Kerdock code augmented

by a simple Z4 check sum.

Because the degree of g(x) is n − (m + 1), where n = 2m − 1, a cyclic Kerdock

code over Z4 has dimension m+ 1. Thus it has 4m+1 codewords, as does the extended

Kerdock code. A binary Kerdock code of blocklength 2m+1 is the Gray image of the

extended Kerdock code over Z4. An original Kerdock code of blocklength 2m+1− 1 is

a binary Kerdock code of blocklength 2m+1 punctured by one bit. The binary code is

nonlinear as a consequence of the nonlinearity of the Gray map. It inherits the distance-

invariance property from the underlying cyclic code over Z4. Because the binary codes

have 4m+1 = 22(m+1) codewords, these codes have datalength 2(m+ 1).

Theorem 2.16.4 A cyclic Kerdock code over Z4 of blocklength 2m − 1 has mini-

mum Lee distance equal to 2m − 2(m−1)/2 − 2. An extended Kerdock code over Z4 of

blocklength 2m has minimum Lee distance equal to 2m − 2(m−1)/2.

Proof: The proof of this theorem is not given. �

The theorem allows us to conclude that an original binary Kerdock code of

blocklength 2m+1 − 1 has minimum distance

dmin = 2m − 2(m−1)/2 − 1

131 2.16 The Preparata, Kerdock, and Goethals codes

because distance is preserved under the Gray map, and puncturing a binary code by

one place can reduce the distance between two codewords by at most 1.

Because

x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1)

and the latter two factors are reciprocals (but for sign), the Kerdock code over Z4 of

blocklength 7 is the same as the Preparata code over Z4 of blocklength 7. Furthermore,

it is clear from their definitions that the Preparata code and the (reciprocal) Kerdock

code of the same blocklength over Z4 are duals. However, because the binary Preparata

codes and the binary Kerdock codes are nonlinear, the notion of a dual code does not

properly apply. Nevertheless, the binary codes do inherit some residual properties of

this kind from the fact that the overlying Kerdock and Preparata codes over Z4 are

duals. For these reasons, the binary Kerdock code and the binary Preparata code of

blocklength 2m are sometimes called formal duals.

There is one other class of codes over Z4 that will be mentioned. This is the class

of Goethals codes over Z4, which codes have minimum distance 7. We will end the

section with a brief description of these codes. The cyclic Goethals code over the ring

Z4 of blocklength n = 2m − 1, for m odd and at least 5, is defined by the check matrix

H =
[

1 ξ1 ξ2 ξ3 . . . ξ (n−1)

2 2ξ3 2ξ6 2ξ9 . . . 2ξ3(n−1).

]

where ξ is an element of GR(4m) of order n. This check matrix specifies that c(x) is a

codeword if and only if c(ξ) is zero and c(ξ3) is even. It is not required that c(ξ3) be

zero. Indeed, the Goethals code over Z4 of blocklength 2m − 1 is the set of codewords

of the Preparata code over Z4 of blocklength 2m − 1 for which c(ξ3) is even. The

extended Goethals code of blocklength 2m is the cyclic Goethals code of blocklength

2m − 1 augmented by a simple Z4 check sum. The extended Goethals code has the

check matrix

H =

1 1 1 1 1 . . . 1

0 1 ξ1 ξ2 ξ3 . . . ξ (n−1)

0 2 2ξ3 2ξ6 2ξ9 . . . 2ξ3(n−1)

 .

This means that c(x) is a codeword of the extended Goethals code if and only if c∞+c(1)

is zero, c(ξ) is zero, and c(ξ3) is even.

In the Galois ring GR(4m), the element ξ0 has only itself in its conjugancy class,

and both ξ1 and ξ3 have m elements in their conjugancy classes. The third row of H ,

however, only eliminates half of the words controlled by the conjugacy class of ξ3.

Hence the redundancy satisfies n− k = 1+ m+ m/2 so the dimension of a Goethals

code over Z4 is k = 2m − 3m/2− 1.

132 The Fourier Transform and Cyclic Codes

The extended Goethals code can be shortened by taking all codewords for which the

extension symbol is zero, then dropping that extension symbol. The shortened code

has the check matrix

H =

1 1 1 1 . . . 1

1 ξ1 ξ2 ξ3 . . . ξ (n−1)

2 2ξ3 2ξ6 2ξ9 . . . 2ξ3(n−1)

 .

This is the check matrix of another cyclic code over Z4 contained within the cyclic

Goethals code.

The binary Goethals code is the image under the Gray map of the extended Goethals

code over the ring Z4. The binary Goethals code is a nonlinear (2m+1, 2m+1−3m−2, 8)

binary code. The datalength of the nonlinear binary Goethals code is 2m − 3m− 2. It

may be presented in a punctured form as a nonlinear (2m+1 − 1, 2m+1 − 3m − 2, 7)

binary triple-error-correcting code.

For example, for m = 5, the cyclic Goethals code over Z4 is a (31, 23.5) code, and

the extended Goethals code is a (32, 23.5, 8) code. The Gray map yields a (64, 47, 8)

binary code that can be punctured to obtain a nonlinear (63, 47, 7) binary code. The

datalength of these codes is 47. For m = 7, the cyclic Goethals code is a (127, 116.5)

code over Z4, and the extended Goethal code is a (128, 116.5, 8) code over Z4. The Gray

map yields a (256, 233, 8) code that can be punctured to obtain a (255, 233, 7) code.

The datalength of this code is 233. The comparable BCH code is a linear (255, 231, 7)

binary code. The (63, 47, 7) and the (255, 233, 7) binary Goethals codes are the best

distance-7 binary codes known of their respective blocklengths. No linear binary codes

are known with parameters as good or better than these.

Problems

2.1 Prove that the Hamming distance is a metric. (A metric is nonnegative,

symmetric, and satisfies the triangle inequality.)

2.2 Prove that a generator polynomial of a cyclic code, defined as a monic codeword

polynomial of minimum degree, is unique.

2.3 (a) Prove that the dual of a cyclic Reed–Solomon code is a cyclic Reed–Solomon

code.

(b) What is the dual of an affine Reed–Solomon code?

(c) What is the dual of a projective Reed–Solomon code?

2.4 Prove that a BCH code of blocklength 17 over GF(16) is a maximum-distance

code. Prove that it is equivalent to a doubly extended Reed–Solomon code. Can

these remarks be generalized to other blocklengths?

133 Problems

2.5 Prove or disprove the following generalization of the BCH bound. The only

vector in GF(q)m of weight d−1 or less that has d−1 sequential components of

its filtered spectrum T = H∗C equal to zero (Tk = 0, for k = k0, . . . , k0+d−2),

where H is an invertible filter, is the all-zero vector.

2.6 Suppose that A is any invertible matrix.

(a) Prove that if H̃ = HA, then heft H̃ = heft H .

(b) Let H be a check matrix for the cyclic code C. Let H̃ be the row-wise

Fourier transform of H . That is, H̃ = H�, where

� =

1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

 .

What can be said relating heft H̃ to heft H?

(c) Prove the BCH bound from this property.

2.7 Let c′(x) and c′′(x) be two minimum-weight codewords in the cyclic code C.

Must it always be true that c′′(x) = Axℓc′(x) for some field element A and integer

ℓ?

2.8 Is the dual of an (8, 4, 4) extended binary Hamming code equivalent to the

extension of the dual of the (7, 4, 3) cyclic binary Hamming code?

2.9 A Vandermonde matrix is a square matrix in which the elements in the ℓth row

are the ℓth powers of corresponding elements of the first row.

(a) Show that a Vandermonde matrix is full rank if the elements in the first row

are nonzero and distinct.

(b) Find the minimum distance of the Reed–Solomon code as a consequence of

this property of the Vandermonde matrix.

2.10 Prove that the sum of two cubes in GF(16) is never a cube.

2.11 Find the generator polynomial for an (11, 6, d) code over GF(3). Is this code a

quadratic residue code? Is it a perfect code? What is d? (This code is known as

the ternary Golay code).

2.12 Using {1, α, α6} as a basis for GF(8), show that the binary expansion of a

(7, 5, 3) Reed–Solomon code, obtained by replacing each symbol of GF(8) by

three symbols of GF(2), is equivalent to a (21, 15, 3) BCH code.

2.13 Use the van Lint–Wilson bound to show that the (23, 12) binary Golay code

has minimum distance 7. (Row permutation 0, 22, 19, 3, 7, 20, 18, and column

permutation 5, 6, 9, 11, 21, 8, 10 will be helpful.)

2.14 Prove that the Singleton bound also holds for nonlinear codes.

2.15 Prove that the (127, 113) Roos code has minimum distance 5. Prove that the

(127, 106) Roos code has minimum distance 7.

2.15 Suppose that g(x) = (x+ 1)g′(x) generates a binary cyclic code with minimum

distance d . Show that g′(x) need not generate a binary code with minimum

134 The Fourier Transform and Cyclic Codes

distance at least d − 1. (Hint: Choose g′(x) to have zeros at α and α−1.) Is the

following statement true? “Puncturing a code by eliminating one check symbol

reduces the minimum distance by at most one.”

2.16 Verify that
(

90

0

)
+
(

90

1

)
+
(

90

2

)
= 212.

Despite this suggestive formula, a (90, 78, 5) linear code does not exist, so there

is no linear perfect code with these parameters. Is there a simple proof?

2.17 Prove that the binary Golay code is not the Gray image of a linear code in Z4.

2.18 Let G(x) = x2 + x + 1 be the Goppa polynomial for a (32, 22, 5) Goppa code.

Derive an encoding rule and give a decoding procedure.

2.19 Let G(x) = x2 + x + α3 be the Goppa polynomial for a (16, 8, 5) Goppa code,

where α is a primitive element in GF(16). Find a check matrix for this code.

2.20 The tetracode is a (4, 2, 3) linear code over GF(3) with the generator matrix

given by

G =
[

1 0 1 1

0 1 1 2

]
.

The hexacode is a (6, 3, 4) over GF(4) with generator matrix given by

G =

1 0 0 1 α α

0 1 0 α 1 α

0 0 1 α α 1

 .

In each case, prove that the code is a unique self-dual code with the stated

parameters.

2.21 Factor the polynomial x4 − 1 over Z4 in two distinct ways into irreducible

polynomials over Z4[x].
2.22 The trace code of a linear code C is obtained by replacing each component of

each codeword by its trace. Prove that the dual of the subfield-subcode of C is

equal to the trace code of the dual code of C.

2.23 Prove that the class of Goppa codes satisfies the Varshamov–Gilbert bound.

2.24 (a) Is the Hensel lift to Z4 of the product of two polynomials over GF(2) equal

to the product of the Hensel lifts?

(b) Is the Hensel lift to Z4 of the sum of two polynomials over GF(2) equal to

the sum of the Hensel lifts?

(c) Let g(x) be the Hensel lift of g(x), a primitive binary polynomial dividing

x2m−1 − 1. Is every codeword polynomial of the Preparata code over Z4

generated by g(x) the Hensel lift of a binary codeword of the code generated

by g(x)?

135 Notes

2.25 Find the basic irreducible factors over Z4 of x15 − 1.

2.26 Does the Singleton bound hold for Lee-distance codes?

2.27 Prove that ξ i + ξ j �= ξ k for all i, j, and k, where ξ is a primitive element of the

Galois ring GR(4m).

2.28 Let g′(x) and g′′(x) be products of distinct irreducible factors of xn − 1 over

Z4.

(a) Define the code C over Z4 as

C = {a1(x)g
′(x)g′′(x)+ 2a2(x)g

′′(x)},

with the understanding that the degrees of a1(x) and a2(x) are restricted so

that each of the two terms in the sum has a degree not larger than n − 1.

Prove that C is a cyclic code over Z4.

(b) Express the two Calderbank–McGuire codes in this form.

2.29 Prove that the two extended Calderbank–McGuire codes over Z4 have minimum

distance 12 and 14, respectively.

Notes

Cyclic codes have long occupied a central position in the subject of algebraic coding.

We have slightly de-emphasized the cyclic property in order to give equal importance

to codes of blocklengths q−1, q, and q+1. The terms “codes on the cyclic line,” “codes

on the affine line,” and “codes on the projective line” were chosen because they have

an appealing symmetry and give the desired starting point for similar classifications

that we want to make for codes on the plane in Chapter 6 and for codes on curves

in Chapter 10. Moreover, with these terms, the Reed–Solomon codes of blocklengths

q − 1, q, and q + 1 are more nearly on an equal footing. There is some merit in the

term “code on the cyclic line” in preference to “cyclic code” because it de-emphasizes

the cyclic property, which really, in itself, is not an important property of a code. The

cyclic form of the Reed–Solomon codes was discovered by Reed and Solomon (1960),

independently by Arimoto (1961), and was interpreted only later as a construction on

the projective line. The doubly extended form was discovered by Wolf (1969). The

BCH codes were discovered independently of the Reed–Solomon codes by Bose and

Ray–Chaudhuri (1960), and also by Hocquenghem (1959).

The class of cyclic codes was introduced by Prange (1957). The Golay code (Golay,

1949) is special; it can be viewed in many ways. The quadratic residue codes were

introduced by Prange (1958) as examples of cyclic codes. The binary Golay code,

which is one example of a quadratic residue code, had been discovered earlier than

the general class of quadratic residue codes. The binary Golay code was shown to be

136 The Fourier Transform and Cyclic Codes

the only (23, 12, 7) binary code by Pless (1968). The quadratic residue codes were

first studied by Prange (1957) and others, Assmus and Mattson (1974) includes a

compendium of this work. No satisfactory statement describing the minimum distance

of quadratic residue codes of large blocklength is known.

The alternant codes were introduced by Helgert (1974), under this name because the

check matrix can be put in the form of an alternant matrix. The Goppa codes (Goppa,

1970), are now seen as a subclass of the alternant codes.

The nonlinear (15, 8, 5) cyclic code, discussed in Section 2.10, was discussed by

Blahut (1983). It can be compared with the (15, 8, 5) Preparata code. Preparata codes

exist for blocklengths n of the form 22m − 1. The Preparata codes are examples of a

family of nonlinear codes, also including Goethals codes and Kerdock codes, which

can be constructed as a representation in GF(2) of a linear code over the ring Z4.

The Preparata codes have an interesting history. Preparata (1968) discovered that

class based on studying the properties of the smallest code in the class, the (15, 8, 5)

code, which was already known under the name of the Nordstrom–Robinson code

(Nordstrom and Robinson, 1967). Using a computer, Nordstrom and Robinson had

constructed the (15, 8, 5) nonlinear code as an extension of both the still earlier (12, 5, 5)

nonlinear Nadler code (Nadler, 1962) and the (13, 6, 5) nonlinear Green code (Green,

1966). In turn, the class of Preparata codes has stimulated the discovery of other

nonlinear codes: the Kerdock low-rate codes (Kerdock, 1972) and the triple-error-

correcting Goethals codes (Goethals, 1976). The recognition that these nonlinear codes

(slightly altered) are images of linear codes over Z4 came simultaneously to several

people and was jointly published by Hammons et al. (1994). We take the liberty of using

the original names for the modern version of the codes over Z4, regarding the Gray

map as simply a way of representing the elements of Z4 by pairs of bits. The structure

of cyclic codes over Z4 was studied by Calderbank et al. (1996) and by Pless and

Qian (1996). Calderbank and McGuire (1997) discovered their nonlinear (64, 37, 12)

binary code that led them, with Kumar and Helleseth, directly to the discovery of

the nonlinear (64, 32, 14) binary code. The octacode, which is a notable code over

Z4, was described by Conway and Sloane (1992). The role of the basic irreducible

polynomial was recognized by Solé (1989). The relationship between the octacode and

the Nordstrom–Robinson code was observed by Forney, Sloane, and Trott (1993).

3 The Many Decoding Algorithms for
Reed–Solomon Codes

Decoding large linear codes, in general, is a formidable task. For this reason, the

existence of a practical decoding algorithm for a code can be a significant factor in

selecting a code. Reed–Solomon codes – and other cyclic codes – have a distance

structure that is closely related to the properties of the Fourier transform. Accordingly,

many good decoding algorithms for Reed–Solomon codes are based on the Fourier

transform.

The algorithms described in this chapter form the class of decoding algorithms known

as “locator decoding algorithms.” This is the richest, the most interesting, and the

most important class of algebraic decoding algorithms. The algorithms for locator

decoding are quite sophisticated and mathematically interesting. The appeal of locator

decoding is that a certain seemingly formidable nonlinear problem is decomposed into

a linear problem and a well structured and straightforward nonlinear problem. Within

the general class of locator decoding algorithms, there are many options, and a variety

of algorithms exist.

Locator decoding can be used whenever the defining set of a cyclic code is a set of

consecutive zeros. It uses this set of consecutive zeros to decode, and so the behavior of

locator decoding is closely related to the BCH bound rather than to the actual minimum

distance. Locator decoding, by itself, reaches the BCH radius, which is the largest

integer smaller than half of the BCH bound, but reaches the packing radius of the code

only if the packing radius is equal to the BCH radius. For a Reed–Solomon code (and

most BCH codes), the minimum distance is equal to the BCH bound, so, for these

codes, locator decoding does reach the packing radius. Locator decoding is the usual

choice for the Reed–Solomon codes.

Locator decoding algorithms are based on the use of the polynomial �(x), known

as the locator polynomial. Because locator decoding exploits much of the algebraic

structure of the underlying field, it forms a powerful family of decoding algorithms that

are especially suitable for large codes. The choice of an algorithm may depend both on

the specific needs of an application and on the taste of the designer. The most important

decoding algorithms depend on the properties of the Fourier transform. For this reason,

the topic of decoding Reed–Solomon codes may be considered a branch of the subject

of signal processing. Here, however, the methods of signal processing are used in a

138 The Many Decoding Algorithms for Reed–Solomon Codes

Galois field instead of the real or complex field. Another instance of these methods,

now in a Galois ring, is also briefly discussed in this case for decoding a Preparata

code. Except for the decoding of Preparata codes, the methods of locator decoding are

not yet worked out for codes on rings.

3.1 Syndromes and error patterns

A codeword c is transmitted and the channel makes errors. If there are errors in not

more than t places, where t = ⌊(dmin−1)/2⌋ is the packing radius of the code, then the

decoder should recover the codeword (or the data symbols contained in the codeword).

The vector v, which will be called the senseword , is the received word in a data

communication system and is the read word in a data storage system. The senseword v

is the codeword c corrupted by an error vector e. The ith component of the senseword

is given by

vi = ci + ei i = 0, . . . , n− 1,

and ei is nonzero for at most t values of i. If not more than t components are in error,

then a bounded-distance decoder is one that must recover the unique codeword (or the

data symbols contained in the codeword) from the senseword v. In contrast, a complete

decoder must recover a codeword that is nearest to the senseword regardless of how

many components are in error. For large codes, a complete decoder is neither tractable

nor desirable.

We only consider codes whose alphabet is a field, so it is meaningful to define the

error in the ith component of the codeword to be ei = vi − ci. Consequently, the

senseword v can be regarded as the codeword c corrupted by an additive error vector e,

and the error vector e is nonzero in at most t components.

A linear code over the field F , usually the finite field GF(q), is associated with a

check matrix, H , such that cHT = 0 for every codeword c. Therefore

vHT = (c + e)HT = eHT.

For a general linear code, the syndrome vector s, with components called syndromes,

is defined as

s = vHT = eHT.

For a linear code, the task of decoding can be decomposed into a preliminary task and a

primary task. The preliminary task is to compute the syndrome vector s = vHT, which

is a linear operation taking the n vector e to an (n− k) vector s. The primary task is to

139 3.1 Syndromes and error patterns

solve the equation

s = eHT

for that vector e with weight not larger than t. This is the task of solving n−k equations

for the n-vector e of minimum weight. The set of such n vectors of weight at most t is not

a linear subspace of GF(q)n, which means that the map from the set of syndrome vectors

s back to the set of error vectors e is not a linear map. To invert requires a nonlinear

operation from the space of (n − k) vectors to the space of n vectors. Because every

correctable error pattern must have a unique syndrome, the number of vectors in the

space of syndromes that have such a solution is
∑t

ℓ=0(q−1)ℓ
(

n
ℓ

)
. This number, which

is not larger than qn−k , is the number of elements in the space of (n − k) vectors that

have correctable error patterns as inverse images, under a bounded-distance decoder,

in the n-dimensional space of error patterns.

For small binary codes, one can indeed form a table of the correctable error pat-

terns and the corresponding syndromes. A fast decoder, which we call a boolean-logic

decoder, consists of a logic tree that implements the look-up relationship between syn-

dromes and error patterns. A boolean-logic decoder can be extremely fast, but can be

used only for very simple binary codes.

For cyclic Reed–Solomon codes and other cyclic codes, it is much more convenient

to use an alternative definition of syndromes in terms of the Fourier transform. The

senseword v has the following Fourier transform:

Vj =
n−1∑

i=0

ωij
vi j = 0, . . . , n− 1,

which is easily computed. By the linearity of the Fourier transform,

Vj = Cj + Ej j = 0, . . . , n− 1.

Furthermore, by the construction of the Reed–Solomon code,

Cj = 0 j = 0, . . . , n− k − 1.

Hence

Vj = Ej j = 0, . . . , n− k − 1.

To emphasize that these are the n − k components of the error spectrum E that are

immediately known from V , they are frequently denoted by the letter S and called

(spectral) syndromes, though they are not the same as the syndromes introduced earlier.

To distinguish the two definitions, one might call the former code-domain syndromes

140 The Many Decoding Algorithms for Reed–Solomon Codes

and the latter transform-domain syndromes. Thus the transform-domain syndrome is

given by

Sj = Ej = Vj j = 0, . . . , n− k − 1.

Here we are treating the special case where j0 = 0. There is nothing lost here because

the modulation property of the Fourier transform tells us what happens to c when C is

cyclically translated. By using the modulation property, the entire discussion holds for

any value of j0.

Represented as polynomials, the error-spectrum polynomial is given by

E(x) =
n−1∑

j=0

Ejx
j,

and the syndrome polynomial is given by

S(x) =
n−k−1∑

j=0

Sjx
j.

The error-spectrum polynomial has degree at most n−1, and the syndrome polynomial

has degree at most n− k − 1.

Because dmin = n− k + 1 for a Reed–Solomon code, the code can correct t errors,

where t = ⌊(n− k)/2⌋. Our task, then, is to solve the equation

Sj =
n−1∑

i=0

ωijei j = 0, . . . , n− k − 1

for the error vector e of smallest weight, given that this weight is at most t. An alternative

task is to find the error transform E of blocklength n, given that Ej is equal to the known

Sj for j = 0, . . . , n − k − 1, and e has weight at most t = ⌊(n − k)/2⌋. Any decoder

that uses such syndromes in the Fourier transform domain is called a transform-domain

decoder.

The first decoding step introduces, as an intermediate, an auxiliary polynomial �(x)

known as the locator polynomial or the error-locator polynomial. We shall see that

the nonlinear relationship between the set of syndromes and the error spectrum E is

replaced by a linear relationship between the syndromes Sj and the coefficients of the

error-locator polynomial �(x). The nonlinear operations that must show up somewhere

in the decoder are confined to the relationship between �(x) and the remaining com-

ponents of E, and that nonlinear relationship has the simple form of a linear recursion.

The obvious linear procedure of finding the coefficients of the linear recursion from

the syndromes by direct matrix inversion is known as the Peterson algorithm.

141 3.1 Syndromes and error patterns

Given the error vector e of (unknown) weight ν, at most t, consider the polynomial

given by

�(x) =
ν∏

ℓ=1

(1− xωiℓ),

where the indices iℓ for ℓ = 1, . . . , ν point to the ν ≤ t positions that are in error. These

positions correspond to the nonzero components of e. Then λi = (1/n)�(ω−i) is equal

to zero if and only if an error ei occurred at the component with index i, and this cannot

hold for any �(x) of smaller degree. Therefore eiλi = 0 for all i. By the convolution

property of the Fourier transform, this implies that

�(x)E(x) = 0 (mod xn − 1),

which confirms that �(x) is indeed the error-locator polynomial. Written in terms of

its coefficients, this polynomial equation becomes

ν∑

k=0

�kE((j−k)) = 0 j = 0, . . . , n− 1,

where the double parentheses on the indices denote modulo n. Because �0 = 1, this

equation can be rewritten as follows:

Ej = −
ν∑

k=1

�kE((j−k)) j = 0, . . . , n− 1,

which is a simple linear recursion that the components of the error spectrum must

satisfy.

The statement that the length ν of the recursion is equal to the weight of e follows

from the previous discussion. This is an instance of the linear complexity property,

which was discussed in Section 1.5. The error vector e has weight ν at most t, so the

linear complexity property says that all components of E can be cyclically produced

by a linear recursion of length at most t,

Ej = −
t∑

k=1

�kE((j−k)) j = 0, . . . , n− 1,

where �(x) is the locator polynomial of the error vector e. The important reason for

developing this cyclic recursion is that it is a set of linear equations relating the unknown

coefficients �k and the components of E. Of the n equations contained in the above

recursion, there are t equations that involve only the 2t known components of E and

142 The Many Decoding Algorithms for Reed–Solomon Codes

the t unknown components of �. These are as follows:

Et = −(�1Et−1 +�2Et−2 + · · · +�tE0),

Et+1 = −(�1Et +�2Et−1 + · · · +�tE1),

...

E2t−1 = −(�1E2t−2 +�2E2t−3 + · · · +�tEt−1).

These t equations, expressed in matrix form, are given by

Et−1 Et−2 . . . E0

Et Et−1 E1
...

...

E2t−2 E2t−3 . . . Et−1

�1

�2
...

�t

 = −

Et

Et+1
...

E2t−1

 .

This matrix equation can be solved for the connection coefficients �j by any conve-

nient computational procedure for solving matrix equations. One such procedure is

the method of gaussian elimination. Because it is assumed that the error vector e has

weight at most t, the matrix equation must have a solution. If the determinant of the

matrix is zero, then there are fewer than t errors. This means that the leading coefficient

�t is zero. If the determinant is zero, simply replace t by t − 1 in the matrix equation

and solve the smaller problem in the same way. In this way, the matrix is eventually

reduced to a ν by ν matrix with a nonzero determinant.

Once � is known, the other components of the error spectrum E can be computed,

one by one, by using the following recursion:

Ej = −
t∑

k=1

�kE((j−k)) j = 2t, . . . , n− 1.

This recursion provides the unavoidable nonlinear function that must be part of the

decoding algorithm. An inverse Fourier transform then gives the error vector e. Next,

componentwise subtraction yields

ci = vi − ei i = 0, . . . , n− 1.

Finally, the data symbols are recovered from the code symbols by inverting the operation

used by the encoder, normally an easy calculation.

This completes the development of an elementary decoding algorithm for bounded-

distance decoding of Reed–Solomon and other BCH codes. However, this is only the

start of a line of development that goes much further. Locator decoding has now grown

far more sophisticated, driven by a need to simplify the computations of the decoding

143 3.1 Syndromes and error patterns

Table 3.1. A representation of GF(16)

α0 = 1

α1 = z

α2 = z2

α3 = z3

α4 = z + 1

α5 = z2 + z

α6 = z3 + z2

α7 = z3 + z + 1

α8 = z2 + 1

α9 = z3 + z

α10 = z2 + z + 1

α11 = z3 + z2 + z

α12 = z3 + z2 + z + 1

α13 = z3 + z2 + 1

α14 = z3 + 1

algorithm. There are many different ways to organize the computations, using ideas

from signal processing to reduce the computational burden. We shall discuss the various

enhancements of the Peterson algorithm, beginning in Section 3.4.

As an example of the Peterson algorithm, we shall work through the decoding of a

(15, 9, 7) Reed–Solomon code over GF(16). Because n = 15 is a primitive blocklength,

we can choose ω = α, where α is a primitive element of GF(16). We will choose α such

that α4 + α+ 1 = 0. The field representation is as shown in Table 3.1. We will choose

the particular (15, 9, 7) Reed–Solomon code with the defining set {1, 2, 3, 4, 5, 6}. For

this example, note that we have chosen a defining set that starts at j0 = 1 rather than at

j0 = 0, as was the case chosen earlier.

Suppose that the dataword, the codeword, and the senseword are, respectively,

given by

d = 0, 0, 0, 0, 0, 0, 0, 0, 0,

c = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

v = 0, 0, 0, 0, 0, 0, 0, α, 0, α5, 0, 0, α11, 0, 0,

with indices running from high to low.

The first step of decoding is to compute the Fourier transform of v; only six

components are needed. This computation yields

V = −, α12, 1, α14, α13, 1, α11,−,−,−,−,−,−,−,−.

144 The Many Decoding Algorithms for Reed–Solomon Codes

These six components are equal to the corresponding six components of E. Next, solve

for � from the equation

E3 E2 E1

E4 E3 E2

E5 E4 E3

�1

�2

�3

 = −

E4

E5

E6

 .

Thus

�1

�2

�3

 =

α14 1 α12

α13 α14 1

1 α13 α14

−1

α13

1

α11

 =

α14

α11

α14

 ,

and one can conclude that the error-locator polynomial is given by

�(x) = 1+ α14x + α11x2 + α14x3.

This polynomial can be factored as follows:

�(x) = (1+ α2x)(1+ α5x)(1+ α7x).

This, in turn, means that the errors are at locations i = 2, 5, and 7.

3.2 Computation of the error values

The Peterson algorithm, described in the previous section, decomposes the problem

of error correction into the task of finding the error-locator polynomial and the task of

computing the error values. Once the locator polynomial is known, it only remains

to compute the error values from the locator polynomial and the syndromes. The

computation can proceed in any of several ways. We shall describe three approaches.

The first method of computing the error values, called recursive extension, is to use

the recursion

Ej = −
t∑

k=1

�kE((j−k))

to produce the complete error spectrum. Thus, in our running example,

E7 = �1E6 +�2E5 +�3E4

= α14 · α11 + α11 · 1+ α14 · α13

= α5.

145 3.2 Computation of the error values

Similarly,

E8 = α14 · α5 + α11 · α11 + α14 · 1
= 1

and

E9 = α14 · 1+ α11 · α5 + α14 · α11

= α6.

The process continues in this way until all components of E are known. This yields

E = (α9, α12, 1, α14, α13, 1, α11, α5, 1, α6, α7, 1, α10, α3, 1).

An inverse Fourier transform of E yields

e = 0, 0, 0, 0, 0, 0, 0, 0, α, 0, α5, 0, 0, α11, 0, 0

as the error pattern.

The second method of computing the error values is called the Gorenstein–Zierler

algorithm. Because �(x) can be factored and written as

�(x) = (1+ α2x)(1+ α5x)(1+ α7x),

we know that the errors are at locations i = 2, 5, and 7. Then the Fourier transform

relationship Ej =
∑n−1

i=0 eiω
ij can be truncated to write the following matrix equation:

α2 α5 α7

α4 α10 α14

α6 1 α6

e2

e5

e7

 =

E1

E2

E3

 ,

which can be inverted to find the three error values e2, e5, and e7.

The third method of computing the error values is called the Forney algorithm. The

Forney algorithm computes the error vector e with the aid of a new polynomial, Ŵ(x),

called the error-evaluator polynomial, and the formal derivative of �(x), given by

�′(x) =
t∑

j=1

j�jx
j−1.

To derive the Forney algorithm, recall that

�(x)E(x) = 0 (mod xn − 1).

146 The Many Decoding Algorithms for Reed–Solomon Codes

This can be written

�(x)E(x) = −Ŵ(x)(xn − 1)

for some polynomial Ŵ(x). Because deg �(x) ≤ t and deg E(x) ≤ n− 1, the degree of

the product �(x)E(x) is at most t + n − 1. From this we conclude that deg Ŵ(x) < t,

and the jth coefficient of �(x)E(x) is zero for j = t, . . . , n− 1. Consequently, we can

write

Ŵ(x) = �(x)E(x) (mod xℓ)

for any ℓ satisfying t ≤ ℓ ≤ n−1. If ℓ is chosen larger than 2t, however, the expression

would involve unknown components of E, because Ej is known only for j < 2t.

We will choose ℓ = 2t and write

Ŵ(x) = �(x)E(x) (mod x2t).

This choice allows the equation to be expressed in matrix form:

E0 0 0 · · · 0 0 0

E1 E0 0 · · · 0 0 0
...

...

Et−1 Et−2 Et−3 · · · E1 E0 0

Et Et−1 Et−2 · · · E2 E1 E0

Et+1 Et−2 Et−1 · · · E3 E2 E1
...

...

E2t−1 E2t−2 E2t−3 · · · Et+1 Et Et−1

1

�1

�2
...

�ν

0
...

0

=

Ŵ0

Ŵ1

Ŵ2
...

Ŵν−1

0

0
...

0

,

where ν ≤ t is the actual degree of �(x). This matrix equation could also be written

in terms of the monic form of the reciprocal of �(x), denoted �̃(x). This alternative is

given by �̃(x) = �−1
ν xν�(x−1). Then

0 0 0 . . . 0 0 E0

0 0 0 . . . 0 E0 E1
...

...

0 E0 E1 . . . Et−3 Et−2 Et−1

E0 E1 E2 . . . Et−2 Et−1 Et

E1 E2 E3 . . . Et−1 Et Et+1
...

...

Et−1 Et Et+1 . . . E2t−3 E2t−2 E2t−1

1

σ1

σ2

σ3
...

σν

0
...

0

=

Ŵ0

Ŵ1

Ŵ2
...

Ŵν−1

0

0

0

.

147 3.2 Computation of the error values

As written, the matrix and the vector on the right have been partitioned into two parts.

The bottom part of the matrix is a Hankel matrix.

Theorem 3.2.1 (Forney) Given the locator polynomial �(x), the nonzero components

of the error vector e occur where �(ω−i) equals zero and are given by

ei = −
Ŵ(ω−i)

ω−i�′(ω−i)
,

where

Ŵ(x) = �(x)E(x) (mod x2t).

Proof: The formal derivative of the equation

�(x)E(x) = −Ŵ(x)(xn − 1)

is

�′(x)E(x)+�(x)E′(x) = Ŵ′(x)(1− xn)− nxn−1Ŵ(x).

Set x = ω−i, noting that ω−n = 1. This yields

�′(ω−i)E(ω−i)+�(ω−i)E′(ω−i) = −nωiŴ(ω−i).

But ei is nonzero only if �(ω−i) = 0, and, in that case,

ei =
1

n

n−1∑

j=0

Ejω
−ij = 1

n
E(ω−i),

from which the equation of the theorem can be obtained. �

The Forney formula was derived for j0 = 0, but the properties of the Fourier trans-

form show how to modify this for any j0. Simply cyclically shift the spectrum of zeros

by j0 places so that the pattern of zeros begins at j = 0. By the modulation property

of the Fourier transform, this multiplies the error spectrum by ωij0 . Thus the computed

error pattern must be corrected by this factor. Therefore

ei = −
Ŵ(ω−i)

ω−i(j0−1)�′(ω−i)

is the general formula.

148 The Many Decoding Algorithms for Reed–Solomon Codes

Our running example of decoding is completed by using the Forney algorithm to

compute the error magnitudes as follows. Because j0 = 1, the matrix equation is

given by

E1 0 0 0

E2 E1 0 0

E3 E2 E1 0

E4 E3 E2 E1

E5 E4 E3 E2

E6 E5 E4 E3

1

�1

�2

�3

 =

Ŵ0

Ŵ1

Ŵ2

0

0

0

,

where �(x) = 1+α14x+α11x2+α14x3. Because the left side is known, the right side

can be computed by using Table 3.1 as follows:

α12 0 0 0

1 α12 0 0

α14 1 α12 0

α13 α14 1 α12

1 α13 α14 1

α11 1 α13 α14

1

α14

α11

α14

 =

α12

α12

α8

0

0

0

.

This gives Ŵ(x) = α12 + α12x + α8x2. Furthermore, �′(x) = α14 + α14x2. Finally,

because j0 = 1,

ei =
Ŵ(ω−i)

�′(ω−i)
.

The errors are known to be at locations i = 8, 10, 13, so ω−i takes the values α7, α5,

and α2. Therefore e8 = α, e10 = α5, and e13 = α11.

3.3 Correction of errors of weight 2

A binary extended BCH code over GF(2) with minimum distance 5 can be decoded

in a simple way by factoring a quadratic equation over GF(2). An extended Preparata

code over Z4 can be decoded in a similar simple way by dropping combinations of the

Z4 syndromes into GF(2), then factoring a quadratic equation over GF(2). We shall

develop these decoding procedures for distance-5 codes both over GF(2) and over Z4

in this section. In each case, because the extended code must have even weight, the

existence of a two-error-correcting decoder implies further that the extended code has

weight 6 so it can detect triple errors. This means that the decoders that we describe

149 3.3 Correction of errors of weight 2

can be easily extended – though we will not do so – to detect triple errors as well as

correct double errors.

A BCH code of minimum distance 5 over GF(2) is the set of polynomials c(x) such

that c(α) = c(α3) = 0. The syndromes are S1 = v(α) = e(α) and S3 = v(α3) = e(α3).

For a single-error pattern, e(x) = xi, so S1 = αi and S3 = α3i. This case can be

recognized by noting that S3
1 + S3 = 0. Then the exponent of α, in S1, points to the

location of the error. For a double-error pattern, e(x) = xi + xi′ . The syndromes are

S1 = X1 + X2, which is nonzero, and S3 = X 3
1 + X 3

2 , where X1 = αi and X2 = αi′ .

This case can be recognized by noting that S3
1 + S3 �= 0. Then

(x − X1)(x − X2) = x2 + S1x + (S3
1 + S3)/S1.

The polynomial on the right side depends only on the syndromes. By factoring the right

side, as by trial and error, one obtains X1 and X2. The exponents of α in X1 and X2

point to the two error locations. Thus this process forms a decoding algorithm for a

distance-5 BCH code.

We will now give a comparable decoding algorithm for an extended Preparata

code over the ring Z4 that corrects all error patterns of Lee weight 2 or less. This

means that the minimum Lee distance of the code is at least 5, and since the min-

imum distance of the extended code must be even, it is at least 6. This decoding

algorithm provides an alternative proof that the minimum distance of the extended

Preparata code is (at least) 6. The decoding algorithm also applies to an extended

Preparata code over GF(2m) simply by regarding each pair of bits as a symbol

of Z4.

Let v(x) be any senseword polynomial with Lee distance at most 2 from a code-

word c(x) of the Preparata code. The senseword polynomial v(x) can be regarded as

a codeword polynomial c(x) corrupted by an error polynomial as v(x) = c(x)+ e(x).

The correctible sensewords consist of two cases: single errors, either with e(x) = 2xi

or with e(x) = ±xi; and double errors, with e(x) = ±xi ± xi′ . (Detectable error

patterns, which we do not consider here, have Lee weight 3 and consist of double

errors with e(x) = 2xi ± xi′ and triple errors with e(x) = ±xi ± xi′ ± xi′′ .) Because

the codewords are defined by c∞ + c(1) = 0 and c(ξ) = c(ξ2) = 0, the sense-

word v(x) can be reduced to three pieces of data. These are the three syndromes

S0 = v∞ + v(1) = e∞ + e(1), S1 = v(ξ) = e(ξ), and S2 = v(ξ2) = e(ξ2). We

will give an algorithm to compute e(x) from S0, S1, and S2. (Although syndrome S2

contains no information not already in S1, it is more convenient to use both S2 and S1

as the input to the decoder.)

The syndrome S0 is an element of Z4, corresponding to one of three situations. If

S0 = 0, either there are no errors or there are two errors with values +1 and −1. If

S0 = ±1, then there is one error with value ±1. If S0 = 2, then either there are two

errors, both with the same value +1 or −1, or there is a single error with value 2.

150 The Many Decoding Algorithms for Reed–Solomon Codes

Suppose there is a single error, so e(x) = eix
i, and

S0 = ei,

S1 = e(ξ) = eiξ
i,

S2 = e(ξ2) = eiξ
2i,

where ei = ±1 or 2. The case of a single error of Lee weight 1 can be recognized by

noting that S0 is ±1, or by computing S2m

1 and finding that S2m

1 = S1. The case of a

single error of Lee weight 2 can be recognized by noting that S0 = 2 and S2
1 = 0.

If either instance of a single error is observed, then ξ i = S1/S0. The exponent of ξ

uniquely points to the single term of e(x) with a nonzero coefficient. Syndrome S0 is

the value of the error.

For the case of a correctable pattern with two errors, S0 = 0 or 2 and S2m

1 �= S1.

Because the Lee weight is 2, ei = ±1 and ei′ = ±1. Then

S0 = e(1) = ±1± 1,

S1 = e(ξ) = ±ξ i ± ξ i′ ,

S2 = e(ξ2) = ±ξ2i ± ξ2i′ .

Syndrome S0 = 0 if the two errors have opposite signs. In this case, without loss of

generality, we write e(x) = xi − xi′ . If, instead, the two errors have the same sign,

syndrome S2 = 2. Thus for any correctable pattern with two errors, we have

S2
1 − S2 = ξ2i + 2ξ iξ i′ + ξ2i′ ∓ ξ2i ∓ ξ2i′

=

2(ξ iξ i′ + ξ2i′) if S0 = 0

2(ξ iξ i′) if S0 = 2 and both errors are + 1

2(ξ2i + ξ iξ i′ + ξ2i′) if S0 = 2 and both errors are − 1.

In any case, this is an element of Z4 that has only an even part, which is twice the odd

part of the term in parentheses. Every even element of GR(4m) is a unique element of

GF(2m) multiplied by 2, so the terms in parentheses can be dropped into GF(2m). Let

B be the term S2
1 − S2, reduced by the factor of 2. Then

B =

αiαi′ + α2i if S0 = 0

αiαi′ if S0 = 2 and both errors are + 1

α2i + αiαi′ + α2i′ if S0 = 2 and both errors are − 1.

Let A denote S1 modulo 2 and let X1 and X2 denote ξ i and ξ i′ modulo 2. Then the

equations, now in GF(2), become

A = X1 + X2

151 3.4 The Sugiyama algorithm

and

B+ X 2
1 = X1X2 if S0 = 0,

B = X1X2 if S0 = 2 and both errors are + 1,

B+ A2 = X1X2 if S0 = 2 and both errors are − 1.

It is trivial to solve the first case by substituting X2 = A + X1 into B + X 2
1 = X1X2.

This yields X1 = B/A and X2 = A + B/A. The latter two cases, those with S0 = 2,

though not distinguished by the value of S0, can be distinguished because only one of

them has a solution. To see this, reduce the equations to observe that, in the two cases,

X1 and X2 are the solutions of either

z2 + Az + B = 0

or

z2 + Az + A2 + B = 0.

The first of these can be solved only if trace(B/A2) = 0. The second can be solved only

if trace(B/A2) = 1. Only one of these can be true, so only one of the two polynomials

has its zeros in the locator field.

3.4 The Sugiyama algorithm

The euclidian algorithm is a well known algorithm for computing the greatest common

divisor of two polynomials over a field (up to a scalar multiple if the GCD is required

to be a monic polynomial). The euclidean algorithm consists of an iterative application

of the division algorithm for polynomials. The division algorithm for polynomials says

that any a(x) and b(x) with deg b(x) ≤ deg a(x) can be written as follows:

a(x) = Q(x)b(x)+ r(x),

where Q(x) is called the quotient polynomial and r(x) is called the remainder

polynomial.

Theorem 3.4.1 (euclidean algorithm for polynomials) Given two polynomials a(x)

and b(x) over the field F with deg a(x) ≥ deg b(x), their greatest common divisor is

the last nonzero remainder of the recursion

a(r−1)(x) = Q(r)(x)b(r−1)(x)+ b(r)(x),

a(r)(x) = b(r−1)(x),

152 The Many Decoding Algorithms for Reed–Solomon Codes

for r = 0, 1, . . . , with a(0)(x) = a(x) and b(0)(x) = b(x), halting at that r for which

the remainder is zero.

Proof: At iteration r, the division algorithm can be used to write

a(r−1)(x) = Q(r)(x)b(r−1)(x)+ b(r)(x),

where the remainder polynomial b(r)(x) has a degree smaller than that of b(r−1)(x).

The quotient polynomial will be written as follows:

Q(r)(x) =
⌊

a(r−1)(x)

b(r−1)(x)

⌋
.

In matrix form, the iteration is given by
[

a(r)(x)

b(r)(x)

]
=
[

0 1

1 −Q(r)(x)

][
a(r−1)(x)

b(r−1)(x)

]
.

Also, define the two by two matrix A(r)(x) by

A(r)(x) =
[

0 1

1 −Q(r)(x)

]
A(r−1)(x),

with the initial value

A(0)(0) =
[

1 0

0 1

]
.

This halts at the iteration R at which b(R)(x) = 0. Thus
[

a(R)(x)

0

]
= A(R)(x)

[
a(x)

b(x)

]
.

Any polynomial that divides both a(x) and b(x) must divide a(R)(x). On the other hand,

any polynomial that divides both a(r)(x) and b(r)(x) divides a(r−1)(x) and b(r−1)(x), and

in turn, a(r−2)(x) and b(r−2)(x) as well. Continuing, we can conclude that any polyno-

mial that divides a(R)(x) divides both a(x) and b(x). Hence a(R)(x) = GCD[a(x), b(x)],
as was to be proved. �

Corollary 3.4.2 The greatest common divisor of a(x) and b(x) can be expressed as a

polynomial combination of a(x) and b(x).

Proof: This follows from the expression
[

a(R)(x)

0

]
= A(R)(x)

[
a(x)

b(x)

]

by observing that A(r)(x) is a matrix of polynomials. �

153 3.4 The Sugiyama algorithm

Corollary 3.4.2 is known as the extended euclidean algorithm for polynomials. In par-

ticular, if a(x) and b(x) are coprime, then polynomials A(x) and B(x) exist, sometimes

called Bézout coefficients, such that

a(x)A(x)+ b(x)B(x) = 1.

In this section, our task is the decoding of Reed–Solomon codes, for which we want

to invert a system of equations over the field F of the form

Et−1 Et−2 · · · E0

Et Et−1 · · · E1
...

...

E2t−2 E2t−3 · · · Et−1

�1

�2
...

�t

 = −

Et

Et+1
...

E2t−1

 .

A matrix of the form appearing here is known as a Toeplitz matrix, and the system

of equations is called a Toeplitz system of equations. This system of equations is a

description of the recursion

Ej = −
t∑

k=1

�kE((j−k)) j = t, . . . , 2t − 1.

We saw in Section 3.2 that this can be expressed as the polynomial equation

�(x)E(x) = Ŵ(x)(1− xn),

where deg �(x) ≤ t and deg Ŵ(x) ≤ t − 1 because all coefficients on the right side

for j = t, . . . , 2t − 1 are equal to zero and involve only known coefficients of E(x).

Solving the original matrix equation is equivalent to solving this polynomial equation

for �(x).

The Sugiyama algorithm, which is the topic of this section, interprets this com-

putation as a problem in polynomial algebra and solves the equivalent polynomial

equation

�(x)E(x) = Ŵ(x) (mod x2t)

for a �(x) of degree less than t, with E(x) given as the input to the computation.

The internal iteration step of the Sugiyama algorithm is the same as the internal

iteration step of the euclidean algorithm for polynomials. In this sense, a substep of the

euclidean algorithm for polynomials is used as a substep of the Sugiyama algorithm.

For this reason, the Sugiyama algorithm is sometimes referred to as the euclidean

algorithm. We regard the Sugiyama algorithm as similar to, but different from, the

euclidean algorithm because the halting condition is different.

154 The Many Decoding Algorithms for Reed–Solomon Codes

Let a(0)(x) = x2t and b(0)(x) = E(x). Then the rth iteration of the euclidean

algorithm can be written as follows:

[
a(r)(x)

b(r)(x)

]
=
[

A
(r)
11 (x) A

(r)
12 (x)

A
(r)
21 (x) A

(r)
22 (x)

][
x2t

E(x)

]
,

and

b(r)(x) = A
(r)
22 (x)E(x) (mod x2t).

Such an equation holds for each r. This has the form of the required decoding compu-

tation. For some r, if the degrees satisfy deg A
(r)
22 (x) ≤ t and deg b(r)(x) ≤ t − 1, then

this equation provides the solution to the problem. The degree of b(r)(x) decreases at

every iteration, so we can stop when deg b(r)(x) < t. Therefore define the stopping

index r by

deg b(r−1)(x) ≥ t,

deg b(r)(x) < t.

It remains to show that the inequality

deg A
(r)
22 (x) ≤ t

is satisfied, thereby proving that the problem is solved with �(x) = A
(r)
22 (x). Toward

this end, observe that because

det

[
0 1

1 −Q(ℓ)(x)

]
= −1,

it is clear that

det
r∏

ℓ=1

[
0 1

1 −Q(ℓ)(x)

]
= (−1)r

and

[
A

(r)
11 (x) A

(r)
12 (x)

A
(r)
21 (x) A

(r)
22 (x)

]−1

= (−1)r

[
A

(r)
22 (x) −A

(r)
12 (x)

−A
(r)
21 (x) A

(r)
11 (x)

]
.

Therefore

[
x2t

E(x)

]
= (−1)r

[
A

(r)
22 (x) −A

(r)
12 (x)

−A
(r)
21 (x) A

(r)
11 (x)

][
a(r)(x)

b(r)(x)

]
.

155 3.5 The Berlekamp–Massey algorithm

Finally, we conclude that

deg x2t = deg A
(r)
22 (x)+ deg a(r)(x)

because deg A
(r)
22 (x) > deg A

(r)
12 (x) and deg a(r)(x) ≥ deg b(r)(x). Then, for r ≤ r,

deg A
(r)
22 (x) = deg x2t − deg a(r)(x)

≤ 2t − t

= t,

which proves that the algorithm solves the given problem.

Note that the Sugiyama algorithm is initialized with two polynomials, one of degree

2t and one of degree 2t − 1, and that during each of its iterations the algorithm repeat-

edly reduces the degrees of these two polynomials eventually to form the polynomial

�(x) having degree t or less. Thus the computational work is proportional to t2. In

the next section, we shall give an alternative algorithm, called the Berlekamp–Massey

algorithm, that starts with two polynomials of degree 0 and increases their degrees

during its iterations to form the same polynomial �(x) of degree t or less. It, too,

requires computational work proportional to t2, but with a smaller constant of propor-

tionality. The Berlekamp–Massey algorithm and the Sugiyama algorithm both solve

the same system of equations, so one may inquire whether the two algorithms have

a common structural relationship. In Section 3.10, we shall consider the similarity of

the two algorithms, which share similar structural elements but are essentially different

algorithms.

3.5 The Berlekamp–Massey algorithm

The Berlekamp–Massey algorithm inverts a Toeplitz system of equations, in any field F ,

of the form

Et−1 Et−2 · · · E0

Et Et−1 · · · E1
...

...

E2t−2 E2t−3 · · · Et−1

�1

�2
...

�t

 = −

Et

Et+1
...

E2t−1

 .

The Berlekamp–Massey algorithm is formally valid in any field, but it may suffer from

problems of numerical precision in the real field or the complex field. The computational

problem it solves is the same problem solved by the Sugiyama algorithm.

156 The Many Decoding Algorithms for Reed–Solomon Codes

The Berlekamp–Massey algorithm can be described as a fast algorithm for finding a

linear recursion, of shortest length, of the form

Ej = −
ν∑

k=1

�kE((j−k)) j = ν, . . . , 2t − 1.

This is the shortest linear recursion that produces Eν , . . . , E2t−1 from E0, . . . , Eν−1. This

formulation of the problem statement is actually stronger than the problem of solving

the matrix equation because the matrix equation may have no solution. If the matrix

equation has a solution, then a minimum-length linear recursion of this form exists,

and the Berlekamp–Massey will find it. If the matrix equation has no solution, then

the Berlekamp–Massey algorithm finds a linear recursion of minimum length, but with

ν > t, that produces the sequence. Thus the Berlekamp–Massey algorithm actually

provides more than was initially asked for. It always computes the linear complexity

L = L(E0, . . . , E2t−1) and a corresponding shortest linear recursion that will produce

the given sequence.

The Berlekamp–Massey algorithm, shown in Figure 3.1, is an iterative procedure for

finding a shortest cyclic recursion for producing the initial r terms, E0, E1, . . . , Er−1,

of the sequence E. At the rth step, the algorithm has already computed the linear

recursions (�(i)(x), Li) for all i smaller than r. These are the linear recursions that, for

each i, produce the first i terms of the sequence E. Thus for each i = 0, . . . , r − 1, we

have already found the linear recursion

Ej = −
Li∑

k=1

�
(i)

k
Ej−k j = Li, . . . , i

for each i smaller than r. Then for i = r, the algorithm finds a shortest linear recursion

that produces all the terms of the sequence E. That is, it finds the linear recursion

(�(r)(x), Lr) such that

Ej = −
Lr∑

k=1

�
(r)

k
Ej−k j = Lr , . . . , r.

The rth step of the algorithm begins with a shortest linear recursion,

(�(r−1)(x), Lr−1), that produces the truncated sequence Er−1 = E0, E1, . . . , Er−1.

Define

δr = Er −

−

Lr−1∑

k=1

�
(r−1)

k
Er−k

=
Lr−1∑

k=0

�
(r−1)

k
Er−k

157 3.5 The Berlekamp–Massey algorithm

Initialize
�(x) = B(x) = 1

No Yes∆ = 0
?

?

L = r = 0

2L ≤ r – 1

r ← r+1

r = 2t

Yes

No

Halt

d = 0

d = 1
L ← r – L

�(x)
B (x)

�(x)
B (x)

–∆x
(1 – d)x

I
∆–1d

n–1

j = 0
Σ∆ = �j Er – j

Figure 3.1. Berlekamp–Massey algorithm.

as the discrepancy in the output of the recursion at the rth iteration. The discrepancy δr

need not be zero. If δr is zero, the output of the recursion is the desired field element.

It is then trivial to specify the next linear recursion. It is the same linear recursion as

found in the previous iteration. In this case, set

(�(r)(x), Lr) = (�(r−1)(x), Lr−1)

as a shortest linear recursion that produces the truncated sequence Er , and the iteration

is complete. In general, however, δr will be nonzero. Then

(�(r)(x), Lr) �= (�(r−1)(x), Lr−1).

158 The Many Decoding Algorithms for Reed–Solomon Codes

To see how �(r−1)(x) must be revised to get �(r)(x), choose an earlier iteration count m,

smaller than r, such that

Lm−1∑

k=0

�
(m−1)

k
Ej−k =

{
0 j < m− 1

δm j = m− 1.
.

By translating indices so that j + m− r replaces j and then scaling, this becomes

δr

δm

Lm−1∑

k=0

�
(m−1)

k
Ej−(r−m)−k =

{
0 j < r − 1

δr j = r − 1,

where δm is nonzero and Ej is regarded as zero for j negative. This suggests the

polynomial update

�(r)(x) = �(r−1)(x)− δr

δm

xr−m�(m−1)(x),

and deg �(r)(x) = Lr ≤ max[Lr−1, r − m+ Lm−1]. To verify that this works, write

Lr∑

k=0

�
(r)

k
Ej−k =

Lr∑

k=0

�
(r−1)

k
Ej−k −

δr

δm

Lr∑

k=0

�
(m−1)

k
Ej−(r−m)−k .

If j < r, the first sum is zero, and because j − (r −m) < m, the second sum is defined

and is also zero. If j = r, the first sum equals δr , and because r − (r − m) = m, the

second sum equals δm. Therefore

Lr∑

k=0

�
(r)

k
Ej−k =

{
0 j < r

δr − (δr/δm)δm = 0 j = r.

Consequently,

Ej = −
Lr∑

k=1

�
(r)

k
Ej−k j = Lr , . . . , r,

and the new polynomial �(r)(x) provides a new linear recursion that produces one more

symbol than the previous linear recursion.

To ensure that the recursion is a minimum-length recursion, we need to place an

additional condition on the choice of �(m−1)(x). Until now, we only required that m be

chosen so that δm �= 0. Now we will further require that m be the most recent index such

that Lm > Lm−1. This requirement implies the earlier requirement that δm �= 0, so that

condition need not be checked. The following theorem shows that this last condition

ensures that the new recursion will be of minimum length. By continuing this process

for 2t iterations, the desired recursion is found.

159 3.5 The Berlekamp–Massey algorithm

Theorem 3.5.1 (Berlekamp–Massey) Suppose that L(E0, E1, . . . , Er−2) = L. If the

recursion (�(x), L) produces E0, E1, . . . , Er−2, but (�(x), L) does not produce E0,

E1, . . . , Er−1, then L(E0, E1, . . . , Er−1) = max[L, r − L].

Proof: Let E(r) = E0, E1, . . . , Er−1. Massey’s theorem states that

L(E(r)) ≥ max[L, r − L].

Thus it suffices to prove that

L(E(r)) ≤ max[L, r − L].

Case (1) E(r) = (0, 0, . . . , 0, Er−1 �= 0). The theorem is immediate in this case because

a linear shift register of length zero produces E(r−1) = (0, 0, . . . , 0), while a

linear shift register of length r is needed to produce E(r) = (0, 0, . . . , 0, Er−1).

Case (2) E(r−1) �= (0, 0, . . . , 0). The proof is by induction. Let m be such that

L(E(m−1)) < L(E(m)) = L(E(r−1)). The induction hypothesis is that

L(E(m)) = max[Lm−1, m − Lm−1]. By the construction described prior to

the theorem,

L(E(r)) ≤ max[L, Lm−1 + r − m].

Consequently,

L(E(r)) ≤ max[L(E(r−1)), r − L(E(r−1))]
= max[L, r − L],

which proves the theorem. �

Corollary 3.5.2 (Berlekamp–Massey algorithm) In any field, let S1, . . . , S2t be

given. Under the initial conditions �(0)(x) = 1, B(0)(x) = 1, and L0 = 0, let the

following set of equations be used iteratively to compute �(2t)(x):

δr =
Lr−1∑

j=0

�
(r−1)
j Sr−j,

Lr = ǫr(r − Lr−1)+ (1− ǫr)Lr−1,
[

�(r)(x)

B(r)(x)

]
=
[

1 −δrx

δ−1
r ǫr (1− ǫr)x

][
�(r−1)(x)

B(r−1)(x)

]
,

r = 1, . . . , 2t, where ǫr = 1 if both δr �= 0 and 2Lr−1 ≤ r − 1, and otherwise ǫr = 0.

Then �(2t)(x) is the polynomial of smallest degree with the properties that �
(2t)
0 = 1,

160 The Many Decoding Algorithms for Reed–Solomon Codes

and

Sr +
Lr−1∑

j=1

�
(2t)
j Sr−j = 0 r = L2t , . . . , 2t − 1.

The compact matrix formulation given in the corollary includes the term δ−1
r ǫr .

Because δr can be zero only when ǫr is zero, the term δ−1
r ǫr is then understood to be

zero. The Berlekamp–Massey algorithm, as shown in Figure 3.1, saves the polynomial

�(x) whenever there is a length change as the “interior polynomial” B(x). This B(x)

will play the role of �(m−1)(x) when it is needed in a later iteration. In Corollary 3.5.2,

the interior polynomial B(x) is equal to δ−1
m xr−m�(m)(x). When ǫr = 1, B(x) is replaced

by �(x), appropriately scaled, and when ǫr = 0 it is multiplied by x to account for the

increase in r.

Note that the matrix update requires at most 2t multiplications per iteration, and

the calculation of δr requires no more than t multiplications per iteration. There are

2t iterations and hence at most 6t2 multiplications. Thus using the algorithm will

usually be much better than using a matrix inversion, which requires on the order of t3

multiplications.

The Berlekamp–Massey algorithm is formally valid in any field. However, the deci-

sion to branch is based on whether or not δr equals zero, so in the real field the algorithm

is sensitive to problems of computational precision.

A simple example of the iterations of the Berlekamp–Massey algorithm in the

rational field is shown in Table 3.2. In this example, the algorithm computes the

shortest recursion that will produce the sequence 1, 1, 0, 1, 0, 0 in the rational

field.

A second example of the iterations of the Berlekamp–Massey algorithm in the field

GF(16) is shown in Table 3.3. In this example, the algorithm computes the shortest

recursion that will compute the sequence α12, 1, α14, α13, 1, α11 in the field GF(16).

This is the sequence of syndromes for the example of the (15, 9, 7) Reed–Solomon

code, using the same error pattern that was studied earlier in Section 3.1. As before,

the senseword is the all-zero codeword, and α is the primitive element of GF(16) that

satisfies α4 = α + 1.

Now we turn to the final task of this section, which is to exploit the structure of the

Berlekamp–Massey algorithm to improve the Forney formula by eliminating the need

to compute Ŵ(x).

Corollary 3.5.3 (Horiguchi–Koetter) Suppose �(x) has degree ν. The components

of the error vector e satisfy

ei =

0 if �(ω−i) �= 0
ω−i(ν−1)

ω−iB(ω−i)�′(ω−i)
if �(ω−i) = 0,

161 3.5 The Berlekamp–Massey algorithm

Table 3.2. Example of Berlekamp–Massey

algorithm for a sequence of rationals

S0 = 1

S1 = 1

S2 = 0

S3 = 1

S4 = 0

S5 = 0

r δr B(x) �(x) L

0 1 1 0

1 1 1 1− x 1

2 0 x 1− x 1

3 −1 −1+ x 1− x + x2 2

4 2 −x + x2 1+ x − x2 2

5 1 1+ x − x2 1+ x − x3 3

6 0 x + x2 − x3 1+ x − x3 3

�(x) = 1+ x − x3

Table 3.3. Example of Berlekamp–Massey algorithm for a Reed–Solomon

(15, 9, 7) code

g(x) = x6 + α10x5 + α14x4 + α4x3 + α6x2 + α9x + α6

v(x) = αx7 + α5x5 + α11x2 = e(x)

S1 = αα7 + α5α5 + α11α2 = α12

S2 = αα14 + α5α10 + α11α4 = 1

S3 = αα21 + α5α15 + α11α6 = α14

S4 = αα28 + α5α20 + α11α8 = α13

S5 = αα35 + α5α25 + α11α10 = 1

S6 = αα42 + α5α30 + α11α12 = α11

r δr B(x) �(x) L

0 1 1 0

1 α12 α3 1+ α12x 1

2 α7 α3x 1+ α3x 1

3 1 1+ α3x 1+ α3x + α3x2 2

4 1 x + α3x2 1+ α14x 2

5 α11 α4 + α3x 1+ α14x + α11x2 + α14x3 3

6 0 α4x + α3x2 1+ α14x + α11x2 + α14x3 3

�(x) = 1+ α14x + α11x2 + α14x3

= (1+ α7x)(1+ α5x)(1+ α2x)

162 The Many Decoding Algorithms for Reed–Solomon Codes

where B(x) is the interior polynomial computed by the Berlekamp–Massey

algorithm.

Proof: The actual number of errors is ν, the degree of �(x). Define the modified error

vector ẽ by the components ẽi = eiB(ω−i). To prove the corollary, we will first show

that B(ω−i) is nonzero everywhere that ei is nonzero. Then we will apply the Forney

formula to the modified error vector ẽ, and finally divide out B(ω−i).

The iteration equation of the Berlekamp–Massey algorithm can be inverted as

follows:

[
(1− ǫr)x δrx

−δ−1
r ǫr 1

][
�(r)(x)

B(r)(x)

]
= x

[
�(r−1)(x)

B(r−1)(x)

]
.

If �(r)(x) and B(r)(x) have a common factor other than x, then �(r−1)(x) and B(r−1)(x)

have that factor also. Hence by induction, �(0)(x) and B(0)(x) also have that same factor.

Because �(r)(x) does not have x as a factor, and because �(0)(x) = B(0)(x) = 1, there

is no common factor. Therefore

GCD[�(x), B(x)] = 1.

Because �(x) and B(x) are coprime, they can have no common zero. This means

that the modified error component ẽi is nonzero if and only if error component ei is

nonzero. Consequently, �(x) is also the error-locator polynomial for the modified error

vector ẽ. For the modified error vector, the syndromes are

S̃j =
n−1∑

i=0

eiB(ω−i)ωij j = 0, . . . , 2t − 1

=
n−1∑

k=0

BkSj−k

=
{

0 j < ν − 1

1 j = ν − 1

where the second line is a consequence of the convolution theorem, and the third line is

a consequence of the structure of the Berlekamp–Massey algorithm. Thus S̃(x) = xν−1.

The modified error-evaluator polynomial for the modified error vector is

given by

Ŵ̃(x) = �(x)̃S(x) (mod xν)

= xν−1.

163 3.6 Decoding of binary BCH codes

The Forney algorithm, now applied to the modified error vector, yields

ẽi = −
Ŵ̃(ω−i)

ω−i�′(ω−i)
,

from which the conclusion of the corollary follows. �

3.6 Decoding of binary BCH codes

The decoding algorithms for BCH codes hold for BCH codes over any finite field.

When the field is GF(2), however, it is only necessary to find the error location;

the error magnitude is always equal to 1. Table 3.4 shows the computations of the

Berlekamp–Massey algorithm used to decode a noisy senseword of the (15, 5, 7) triple-

error-correcting binary BCH code. The calculations can be traced by passing six times

around the main loop of Figure 3.1. An examination of Table 3.4 suggests the possibility

of a further simplification. Notice that δr is always zero on even-numbered iterations,

because the trial recursion produces the correct syndrome. We shall see that this is

always the case for binary codes, so even-numbered iterations can be skipped. For

example, tracing through the algorithm of Figure 3.1, and using the fact that S4 =
S2

2 = S4
1 for all binary codes, gives

δ1 = S1 �(1)(x) = S1x + 1

δ2 = S2 + S2
1 = 0 �(2)(x) = S1x + 1

δ3 = S3 + S1S2 �(3)(x) = (S−1
1 S3 + S2)x

2 + S1x + 1

δ4 = S4 + S1S3 + S−1
1 S2S3 + S2

2 = 0.

This calculation shows that δ2 and δ4 will always be zero for any binary BCH code.

Indeed, Theorem 1.9.2 leads to the more general statement that δr = 0 for all even

r for any binary BCH code. Specifically, if any syndrome sequence S1, S2, . . . , S2ν−1

that satisfies S2
j = S2j and the recursion

Sj = −
ν∑

i=1

�iSj−i j = ν, . . . , 2ν − 1,

then that recursion will next produce the term

S2ν = S2
ν .

Thus there is no need to test the recursion for even values of j; the term δj is then always

zero.

164 The Many Decoding Algorithms for Reed–Solomon Codes

Table 3.4. Sample Berlekamp–Massey computation for a BCH (15, 5, 7) code

g(x) = x10 + x8 + x5 + x4 + x2 + x + 1

v(x) = x7 + x5 + x2 = e(x)

S1 = α7 + α5 + α2 = α14

S2 = α14 + α10 + α4 = α13

S3 = α21 + α15 + α6 = 1

S4 = α28 + α20 + α8 = α11

S5 = α35 + α25 + α10 = α5

S6 = α42 + α30 + α12 = 1

r δr B(x) �(x) L

0 1 1 0

1 α14 α 1+ α14x 1

2 0 αx 1+ α14x 1

3 α11 α4 + α3x 1+ α14x + α12x2 2

4 0 α4x + α3x2 1+ α14x + α12x2 2

5 α11 α4 + α3x + αx2 1+ α14x + α11x2 + α14x3 3

6 0 α4x + α3x2 1+ α14x + α11x2 + α14x3 3

�(x) = 1+ α14x + α11x2 + α14x3

= (1+ α7x)(1+ α5x)(1+ α2x)

Because δr is zero for even r, we can analytically combine two iterations to give, for

odd r, the following:

�(r)(x) = �(r−2)(x)− δrx2B(r−2)(x),

B(r)(x) = ǫrδ
−1
r �(r−2)(x)+ (1− ǫr)x

2B(r−2)(x).

Using these formulas, iterations with even r can be skipped, thereby resulting in a faster

decoder for binary codes.

3.7 Putting it all together

A complete decoding algorithm starts with the senseword v and from it computes first

the codeword c, then the user dataword. Locator decoding treats this task by breaking it

down into three main parts: computation of the syndromes, computation of the locator

polynomial, and computation of the errors. We have described several options for these

various parts of the decoding algorithm. Now we will discuss putting some of these

options together. Alternatives are algorithms such as the code-domain algorithm and the

165 3.7 Putting it all together

Welch–Berlekamp algorithm, both of which are described later in the chapter, which

suppress the transform-domain syndrome calculations.

Computation of the transform-domain syndromes has the structure of a Fourier

transform and can be computed by the Good–Thomas algorithm, the Cooley-Tukey

algorithm, or by other methods. Because, in a finite field, the blocklength of a Fourier

transform is not a power of a prime, and because all components of the Fourier trans-

form will not be needed, the advantages of a decimation algorithm may not be fully

realized.

Figure 3.2 shows one possible flow diagram for a complete decoding algorithm

based on the Berlekamp–Massey algorithm, describing how all n components of the

spectrum vector E are computed, starting only with the 2t syndromes. The 2t iter-

ations of the Berlekamp–Massey algorithm are on the path to the left. First, the

Berlekamp–Massey algorithm computes the error-locator polynomial; then the remain-

ing n − 2t unknown components of E are computed. After the 2t iterations of the

Berlekamp–Massey algorithm, the path to the right is taken. The purpose of the

path to the right is to change the other n − 2t components of the computed error

spectrum, one by one, into the corresponding n − 2t components of the actual error

spectrum E.

The most natural test for deciding that the original 2t iterations are finished is the test

“r > 2t.” We will provide an alternative test that suggests methods that will be used

for the decoders for two-dimensional codes (which will be given in Chapter 12). The

alternative test is r−L > t. Once this test is passed, it will be passed for all subsequent

r; otherwise, if L were updated, Massey’s theorem would require the shift register to

have a length larger than t.

The most natural form of the recursive extension of the known syndromes to the

remaining syndromes, for r > 2t (or for r > t + L), is as follows:

Er = −
L∑

j=1

�jEr−j r = 2t, . . . , n− 1.

To derive an alternative form of the recursive extension, as is shown in Figure 3.2,

recall that the Berlekamp–Massey algorithm uses the following equation:

δr = Vr −

−

L∑

j=1

�jVr−j

 .

166 The Many Decoding Algorithms for Reed–Solomon Codes

∆ = 0
?

�(x) = B(x) = 1
L = r = 0

n –1

i = 0
v

ij viΣEj =

n –1

j = 0
v–ijEjΣei =

n –1

j = 0
�j Er – jΣ∆ =

2L < r
?

r ← r + 1

r ≤ 2t

r = n

Yes

Yes

Halt

More
than t errors

No

No

Er ← Er – ∆

ci = vi – ei

d = 1
L ← r – L

d = 0

�(x)
B(x)

�(x)
B(x)

–∆x
(1 – d)x

I
∆–1d

Figure 3.2. Berlekamp–Massey decoder.

If Vj = Ej for j < r, this becomes

δr = Vr −

−

L∑

j=1

�jEr−j

= Vr − Er .

This equation is nearly the same as the equation for recursive extension and can be

easily adjusted to provide that computation. Therefore, instead of using the natural

equation for recursive extension, one can use the equation of the Berlekamp–Massey

167 3.8 Decoding in the code domain

algorithm, followed by the adjustment

Er = Vr − δr .

This slightly indirect way of computing Er (Vr is added into δr , then subtracted out) has

the minor advantage that the equation for δr is used in the flow diagram with no change.

It may seem that such tricks are pointless, but they can be significant in structuring the

decoder operations for a high-performance implementation. Moreover, this trick seems

to be unavoidable in the code-domain implementation in the following section because

the syndromes needed by the linear recursion are never computed.

Finally, we recall that recursive extension is not the only way to compute the error

pattern from the locator polynomial. In Section 3.2, we studied the Gorenstein–Zierler

algorithm and the Forney formula. These procedures may be faster computationally,

but with a more complicated structure.

3.8 Decoding in the code domain

The Berlekamp–Massey algorithm takes as its input the sequence of syndromes Sj,

which is obtained as a sequence of 2t components of the Fourier transform

Sj = Ej =
n−1∑

i=0

viω
ij j = 0, . . . , 2t − 1,

and computes the locator polynomial �(x). The syndromes are computed from the

senseword v, then the error-locator polynomial is computed from the syndromes.

Finally, all components of the error spectrum Ej for j = 0, . . . , n−1 are computed from

the error-locator polynomial. After all components of E are found, an inverse Fourier

transform computes the error vector e. There are several alternatives to this procedure

after the locator polynomial is computed. These all use some form of an inverse Fourier

transform. Thus the decoder has the general structure of a Fourier transform, followed

by the computational procedure of the Berlekamp–Massey algorithm, followed by an

inverse Fourier transform.

It is possible to eliminate the Fourier transform at the input and the inverse Fourier

transform at the output of the computation by analytically taking the inverse Fourier

transform of the equations of the Berlekamp–Massey algorithm. This is illustrated

in Figure 3.3. Now the senseword v itself plays the role of the syndrome. With this

approach, rather than push the senseword into the transform domain to obtain the

syndromes, push the equations of the Berlekamp–Massey algorithm into the code

domain by means of the inverse Fourier transform on the equations. Replace the locator

polynomial �(x) and the interior polynomial B(x) by their inverse Fourier transforms

168 The Many Decoding Algorithms for Reed–Solomon Codes

Initialize
λi = bi = 1 ∀i

∆ = 0
?

Yes

Yes

No

No

?

?

L = r = 0

2L ≤ r –1

r ← r + 1

r = 2t

Yes

No

Halt

d = 0d = 1
L ← r – L

λi
bi

λi
bi

–∆v– i

(1 – d)v–i
I

∆–1d

n –1

i =0
vir λi viΣ∆ =

Figure 3.3. Code-domain Berlekamp–Massey algorithm.

λ and b, respectively:

λi =
1

n

n−1∑

j=0

�jω
−ij; bi =

1

n

n−1∑

j=0

Bjω
−ij.

In the Berlekamp–Massey equations, simply replace the transform-domain variables

�k and Bk with the code-domain variables λi and bi; replace the delay operator x

with multiplication by ω−i; and replace componentwise products with convolutions.

Replacement of the delay operator with a multiplication by ω−i is justified by the

translation property of the Fourier transform. Replacement of a componentwise product

with a convolution is justified by the convolution theorem. Now the raw senseword v,

unmodified, plays the role of the syndrome. The code-domain algorithm, in the form of

the following set of recursive equations, is used to compute λ
(2t)
i for i = 0, . . . , n− 1

169 3.8 Decoding in the code domain

and r = 1, . . . , 2t:

δr =
n−1∑

i=0

ωi(r−1)
[
λ

(r−1)
i vi

]
,

Lr = ǫr(r − Lr−1)+ (1− ǫr)Lr−1,
[

λ
(r)
i

b
(r)
i

]
=
[

1 −δrω
−i

δ−1
r ǫr (1− ǫr)ω

−i

][
λ

(r−1)
i

b
(r−1)
i

]
.

The initial conditions are λ
(0)
i = 1 for all i, b

(0)
i = 1 for all i, L0 = 0, and ǫr = 1 if

both δr �= 0 and 2Lr−1 ≤ r − 1, and, otherwise, ǫr = 0. Then λ
(2t)
i = 0 if and only if

ei �= 0.

For nonbinary codes, it is not enough to compute only the error locations; we must

also compute the error magnitudes. After the 2t iterations of the Berlekamp–Massey

algorithm are completed, an additional n− 2t iterations may be executed to change the

vector v to the vector e. If the computations were in the transform domain, these would

be computed by the following recursion:

Ek = −
t∑

j=1

�jEk−j k = 2t, . . . , n− 1.

It is not possible just to write the Fourier transform of this equation – some restructuring

is necessary. Write the equation as

δr = Vr −

−

L∑

j=1

�jEk−j

=
L∑

j=0

�jV
(r−1)

k−j
,

which is valid if V
(r−1)
j = Ej for j < r. This is so if r = 2t, and we will set up the

equation so that it continues to be true.

The following equivalent set of recursive equations for r = 2t, . . . , n− 1 is suitably

restructured:

δr =
n−1∑

i=0

ωir
v

(r−1)
i λi,

v
(r)
i = v

(r−1)
i − 1

n
δrω

−ri.

170 The Many Decoding Algorithms for Reed–Solomon Codes

Starting with v
(2t)
i = vi and λi = λ

(2t)
i for i = 0, . . . , n − 1, the last iteration

results in

v
(n)
i = ei i = 0, . . . , n− 1.

This works because Ek = Vk for k = 0, . . . , 2t − 1, and the new equations, although

written in the code domain, in effect are sequentially changing Vk to Ek for k =
2t, . . . , n− 1.

The code-domain decoder deals with vectors of length n rather than with vectors of

length t used by the transform-domain decoder. The decoder has no Fourier transforms,

but has the complexity n2. Its advantage is that it has only one major computational

module, which is easily designed into digital logic or a software module. For high-rate

codes, the time complexity of the code-domain algorithm may be acceptable instead

of the space complexity of the transform-domain algorithm.

3.9 The Berlekamp algorithm

If the Forney formula is to be used to compute error values, then the error-evaluator

polynomial must be computed first. The expression

Ŵ(x) = �(x)E(x) (mod x2t)

presented in Section 3.2 has a simple form but cannot be computed until after �(x) is

computed. An alternative approach is to compute iteratively �(x) and Ŵ(x) simultane-

ously in lockstep. The method of simultaneous iterative computation of �(x) and Ŵ(x)

is called the Berlekamp algorithm. Figure 3.4 shows how the Berlekamp algorithm

can be used with the Forney formula. However, the Horiguchi–Koetter formula is an

alternative to the Forney formula that does not use Ŵ(x), so it may be preferred to the

Berlekamp algorithm.

Algorithm 3.9.1 (Berlekamp algorithm) If

[
Ŵ(0)(x)

A(0)(x)

]
=
[

0

−x−1

]

and, for r = 1, . . . , 2t,

[
Ŵ(r)(x)

A(r)(x)

]
=
[

1 −δrx

δ−1
r ǫr (1− ǫr)x

][
Ŵ(r−1)(x)

A(r−1)(x)

]
,

with δr and ǫr as in the Berlekamp–Massey algorithm, then Ŵ(2t)(x) = Ŵ(x).

171 3.9 The Berlekamp algorithm

Initialize
Ek = Vk, k = 0,...,n – 1

?

?

?

Λ(x) = B(x) = 1
Γ(x) = 0 A(x) = x –1

L = r = 0

If Λ(v–i) = 0

If Λ (v–i) ≠ 0

viΓ(v–i)
Λ�(v–i)

ci = vi +

ci = vi

∆ = 0

r = 2t

2L ≤ r –1

No

No

Yes

Yes

Yes

No

Halt

d = 0d = 1
L ← r – L

Λ(x)
B(x)

Λ(x)
B(x)

–∆x
(1 – d)x

I
∆–1d

n –1

k =0
ΛrEr – 1 – kΣ∆ =

n –2

j =1
j Λjx

j – 1Σ∆�(x) =

Γ(x)
A(x)

Γ(x)
A(x)

–∆x
(1 – d)x

I
∆–1d

r = r + 1

Figure 3.4. Decoder that uses the Berlekamp algorithm.

Proof: For r = 1, . . . , 2t, define the polynomials

Ŵ(r)(x) = E(x)�(r)(x) (mod xr),

A(r)(x) = E(x)B(r)(x)− xr−1 (mod xr),

for r = 1, . . . , 2t, with �(r)(x) and B(r)(x) as in the Berlekamp–Massey algorithm.

Clearly, Ŵ(x) is equal to Ŵ(2t)(x).

172 The Many Decoding Algorithms for Reed–Solomon Codes

Using the iteration rule of the Berlekamp–Massey algorithm to expand the right

side of

[
Ŵ(r)(x)

A(r)(x)

]
=
[

E(x)�(r)(x)

E(x)B(r)(x)− xr−1

]
(mod xr)

leads to

[
Ŵ(r)(x)

A(r)(x)

]
=
[

1 −δr

δ−1
r ǫr (1− ǫr)

][
E(x)�(r−1)(x)

xE(x)B(r−1)(x)

]
−
[

0

xr−1

]
(mod xr).

But

δr =
n−1∑

j=0

�
(r−1)
j Er−1−j,

so

Ŵ(r−1)(x)+ δrxr−1 = E(x)�(r−1)(x) (mod xr).

Then

[
Ŵ(r)(x)

A(r)(x)

]
=
[

1 −δr

δ−1
r ǫr (1− ǫr)

][
Ŵ(r−1)(x)+ δrxr−1

xA(r−1)(x)+ xr−1

]
−
[

0

xr−1

]

=
[

1 −δrx

δ−1
r ǫr (1− ǫr)x

][
Ŵ(r−1)(x)

A(r−1)(x)

]
.

This is the iteration asserted in the statement of the algorithm.

To verify the initialization of the algorithm, we will verify that the first iteration

yields the correct result. This would be

Ŵ(1)(x) = E(x)(1− δ1x) (mod x1),

= E0,

and, if E0 = 0,

A(1)(x) = E(x)x − x0 = −1 (mod x1),

or, if E0 �= 0,

A(1)(x) = E(x)E−1
0 − x0 = 0 (mod x1).

173 3.10 Systolic and pipelined algorithms

Therefore the first iteration yields

[
Ŵ(1)(x)

A(1)(x)

]
=
[

1 −δ1x

ǫδ−1
1 (1− ǫ)x

][
0

−x−1

]
.

Because E0 = δ1, this reduces to Ŵ(1)(x) = E0, and

A(1)(x) =
{
−1 if E0 = 0

0 if E0 �= 0,

as required for the first iteration. Thus the first iteration is correct, and iteration r is

correct if iteration r − 1 is correct. �

3.10 Systolic and pipelined algorithms

The performance of a fast algorithm for decoding is measured by its computational

complexity, which can be defined in a variety of ways. The most evident way to define

the computational complexity of an algorithm is its total number of elementary arith-

metic operations. These are the four operations of addition, multiplication, subtraction,

and division. In a large problem, however, these elementary operations may be less

significant sources of complexity than is the pattern of movement of data flow as it

passes between operations. The complexity of such movement of data, however, is

hard to quantify.

A systolic algorithm is one in which the computations can be partitioned into small

repetitive pieces, which will be called cells. The cells are arranged in a regular, usually

square, array. If, further, the cells can be arranged as a one-dimensional array with data

transferred in only one direction along the array, the algorithm would instead be called

a pipelined algorithm. During one iteration of a systolic algorithm, each cell is allowed

to exchange data with neighboring cells, but a cell is not normally allowed to exchange

any (or much) data with distant cells. The complexity of a cell is considered to be less

important than the interaction between cells. In this sense, a computational algorithm

has a structure that may be regarded as something like a topology. In such a situation,

the topology of the computation may be of primary importance, while the number of

multiplications and additions may be of secondary importance.

We shall examine the structure of the Berlekamp–Massey algorithm and the

Sugiyama algorithm from this point of view. The Berlekamp–Massey algorithm and the

Sugiyama algorithm solve the same system of equations, so one may inquire whether

the two algorithms have a common structure. We shall see in this section that the two

algorithms can be arranged to have a common computational element, but the way that

this element is used by the two algorithms is somewhat different. Indeed, there must be

174 The Many Decoding Algorithms for Reed–Solomon Codes

a difference because the polynomial iterates of the Berlekamp–Massey algorithm have

increasing degree, whereas the polynomial iterates of the Sugiyama algorithm have

decreasing degree.

The Berlekamp–Massey algorithm begins with two polynomials of degree 0, �(x)

and B(x), and, at each iteration, may increase the degree of either or both polynomial

iterates. The central computation of the rth iteration of the algorithm has the form

[
�(x)

B(x)

]
←−

[
1 −δrx

ǫrδ
−1
r ǫrx

][
�(x)

B(x)

]
,

where δr is the discrepancy computed during the rth iteration, ǫr = 1 − ǫr is either

zero or one, and δr can be zero only when ǫr is zero. Depending on the values of the

parameters δr and ǫr , the update matrix takes one of the following three forms:

A(r) =
[

1 0

0 x

]
,

[
1 −δrx

0 x

]
, or

[
1 −δrx

δ−1
r 0

]
.

Each of the 2t iterations involves multiplication of the current two-vector of polynomial

iterates by one of the three matrices on the right. The Berlekamp–Massey algorithm

terminates with a locator polynomial, �(x), of degree ν at most equal to t.

In analyzing the structure of the Berlekamp–Massey algorithm, it is important to note

that the iterate δr is a global variable because it is computed from all coefficients of �(x)

and B(x). (It is interesting that a similar iterate with this global attribute does not occur

in the Sugiyama algorithm.) An obvious implementation of a straightforward decoder

using the Berlekamp–Massey algorithm might be used in a computer program, but

the deeper structure of the algorithm is revealed by formulating high-speed hardware

implementations.

A systolic implementation of the Berlekamp–Massey algorithm might be designed

by assigning one cell to each coefficient of the locator polynomial. This means that,

during iteration r, the jth cell is required to perform the following computation:

�j = �j − δrBj−1,

Bj = ǫrδ
−1
r + ǫrBj−1,

δr+1,j = �jSr−j.

The computations within a single cell require that Bj and Sj be passed from neighbor

to neighbor at each iteration, as shown in Figure 3.5, with cells appropriately initialed

to zero. In addition to the computations in the cells, there is one global computation

for the discrepancy, given by δr+1 =
∑

j δr+1,j, in which data from all cells must be

combined into the sum δr+1, and the sum δr+1 returned to all cells. During the rth

iteration, the jth cell computes �j, the jth coefficient of the current polynomial iterate

175 3.10 Systolic and pipelined algorithms

Λ0, B0

Sr...,S3,S2,S1

Λj – 1, Bj – 1

Sr – j +1

dr+1,0 dr+1,j –1 dr+1,j dr+1,j+1 dr+1,t

dr+1

Λj , Bj

Sr–j

Sum

Λj+1, Bj+1

Sr– j–1

Λt , Bt

Sr– t
··· ···

Figure 3.5. Structure of systolic Berlekamp–Massey algorithm.

�(r)(x). After 2t iterations, the computation of �(x) is complete, with one polynomial

coefficient in each cell.

An alternative version of the Berlekamp–Massey algorithm might be a pipelined

implementation of 2t cells, with the rth cell performing the rth iteration of the algorithm.

This would be a high-speed decoder in which 2t Reed–Solomon sensewords are being

decoded at the same time. As the last cell is performing the final iteration on the least-

recent Reed–Solomon codeword still in the decoder, the first cell is performing the first

iteration on the most-recent Reed–Solomon codeword in the decoder. This decoder

has the same number of computational elements as 2t Berlekamp–Massey decoders

working concurrently, but the data flow is different and perhaps simpler.

The Sugiyama algorithm, in contrast to the Berlekamp–Massey algorithm, begins

with two polynomials of nonzero degree, one of degree 2t, and one of degree 2t−1. At

each iteration, the algorithm may decrease the degrees of the two polynomial iterates.

The central computation of the Sugiyama algorithm at the ℓth iteration has the following

form:

[
s(x)

t(x)

]
←−

[
0 1

1 −Q(ℓ)(x)

][
s(x)

t(x)

]
.

The Sugiyama algorithm terminates with the locator polynomial �(x) of degree ν.

The polynomial �(x) is the same locator polynomial as computed by the Berlekamp–

Massey algorithm. The coefficients of the quotient polynomial Q(ℓ)(x) are computed,

one by one, by the division algorithm.

Because Q(ℓ)(x) need not have degree 1, the structure of one computational step of

the Sugiyama algorithm seems quite different from the structure of one computational

step of the Berlekamp–Massey algorithm. Another difference in the two algorithms is

that the Sugiyama algorithm has a variable number of iterations, while the Berlekamp–

Massey algorithm has a fixed number of iterations. However, there are similarities at a

deeper level. It is possible to recast the description of the Sugiyama algorithm to expose

common elements in the structure of the two algorithms.

176 The Many Decoding Algorithms for Reed–Solomon Codes

To restructure the Sugiyama algorithm, let dℓ denote the degree of Q(ℓ)(x), and write
[

0 1

1 −Q(ℓ)(x)

]
=
[

0 1

1 −Q
(ℓ)
0

][
1 −Q

(ℓ)
1 x

0 1

][
1 −Q

(ℓ)
2 x2

0 1

]
. . .

[
1 −Q

(ℓ)

dℓ
xdℓ

0 1

]
.

To multiply any vector by the matrix on the left side, multiply that vector, sequentially,

by each matrix of the sequence on the right side. Indeed, this matrix factorization is

easily seen to be a representation of the individual steps of the division algorithm. With

this decomposition of the matrix on the right by the product of matrices on the left,

the notion of an iteration can be changed so that each multiplication by one of these

submatrices on the left is counted as one iteration. The iterations on this new, finer scale

now have the form
[

s(x)

t(x)

]
←
[

ǭr −δrxℓ

ǫr ǭr − δrǫr

][
s(x)

t(x)

]
,

where ǭr = 1 − ǫr and δr = Q
(ℓ)
r . The degrees of the polynomials decrease by one

at each iteration, and now the Sugiyama algorithm has a fixed number of iterations.

The two by two matrices now more closely resemble those of the Berlekamp–Massey

algorithm.

A systolic implementation of the Sugiyama algorithm can be designed by defining

one cell to perform the computation of one coefficient of (s(x), u(x)). Then δr must be

provided as a global variable to all cells. This is strikingly different from the case of the

Berlekamp–Massey algorithm because now, since δr arises naturally within one cell, it

need not be computed as a global variable.

It is possible to make the similarity between the Sugiyama algorithm and the

Berlekamp–Massey algorithm even stronger by redefining the polynomials to make

each matrix contain only the first power of x. Let u(x) = xℓδrt(x). Then the iteration

can be written as follows:
[

s(x)

u(x)

]
=
[

ǫr −δrx

ǫr (ǫr − δrǫr)x

][
s(x)

u(x)

]
.

Another change can be made by recalling that the Sugiyama algorithm terminates

with a normalization step to put the result in the form of a monic polynomial. The

coefficient δr = Q
(ℓ)
r is the rth coefficient of the quotient polynomial iteration ℓ. If t(x)

is found to be monic, then δr is immediately available as a coefficient of s(x).

3.11 The Welch–Berlekamp decoder

The Welch–Berlekamp algorithm provides yet another method for decoding Reed–

Solomon codes. In contrast to many other decoding algorithms, and in correspondence

177 3.11 The Welch–Berlekamp decoder

with the code-domain Berlekamp–Massey algorithm of Section 3.8, the Welch–

Berlekamp decoder provides a method for decoding directly from the code-domain

syndromes rather than the transform-domain syndromes, as is the case for many other

decoders.

The Welch–Berlekamp decoder for Reed–Solomon codes consists of the Welch–

Berlekamp algorithm, discussed in Section 3.12, augmented by the additional steps

that are described in this section. These additional steps prepare the senseword for

the algorithm and interpret the result of the algorithm. The senseword is prepared by

converting it to a polynomial M (x) called the modified syndrome polynomial. This is

a syndrome in altered form, which we will define below.

The purpose of this section is to recast the decoding problem in the form of the

polynomial equation

�(x)M (x) = N (x) (mod G(x)),

where G(x) has the form1

G(x) =
2t−1∏

ℓ=0

(x − Xℓ),

with all Xℓ distinct, and where the unknown polynomials �(x) and N (x) satisfy

deg �(x) ≤ t and deg N (x) < t. These two polynomials are the error-locator polyno-

mial, defined in earlier sections, and the modified error-evaluator polynomial, defined

later. Although this polynomial equation will be developed in this section in terms

of polynomials in the transform domain, it will be solved in the Section 3.12 by an

algorithm that accepts the modified syndromes in the code domain.

Let c(x)be a codeword polynomial from an (n, k)Reed–Solomon code with generator

polynomial g(x), having zeros at αj for d − 1 consecutive values of j, and let

v(x) = c(x)+ e(x),

where the error polynomial

e(x) =
ν∑

ℓ=1

eiℓxiℓ

has weight ν. The code-domain syndrome polynomial, defined as

s(x) = Rg(x)[v(x)]
= Rg(x)[e(x)],

1 Whereas the previously defined generator polynomial g(x) has d∗−1 consecutive zeros in the transform domain,
the new polynomial G(x) has d∗ − 1 consecutive zeros in the code domain.

178 The Many Decoding Algorithms for Reed–Solomon Codes

is easy to compute from v(x) by simple polynomial division.

The syndrome polynomial differs from e(x) by the addition of a polynomial multiple

of g(x), which means that it can be written as

s(x) = ĉ(x)+ e(x)

for some other codeword polynomial ĉ(x). This equation then leads to a surrogate

problem. Instead of finding c(x) that is closest to v(x), find ĉ(x) that is closest to s(x).

From s(x) and ĉ(x), it is trivial to compute e(x), then c(x). For this reason, finding the

surrogate codeword polynomial ĉ(x) is equivalent to finding e(x).

The purpose of the forthcoming lemma is to provide an opening statement regarding

the null space of an r by n Vandermonde matrix T , over the field F , as given by

T =

1 1 . . . 1

β1
1 β1

2 . . . β1
n

β1
1 β2

2 . . . β2
n

...
...

...

βr−1
1 βr−1

2 . . . βr−1
n

,

where β1, . . . , βn are distinct but arbitrary elements of the field F , and r is less than n.

The null space of T consists of all vectors v such that T v = 0.

The formula to be given in the lemma is suggestive of the Forney formula, but is

actually quite different. The proof is based on the well known Lagrange interpolation

formula:

f (x) =
n−1∑

ℓ=0

f (βℓ)
�ℓ′ �=ℓ(x − βℓ′)

�ℓ′ �=ℓ(βℓ − βℓ′)
.

This can be written as

f (x) =
n−1∑

ℓ=0

g(x)

(x − βℓ)

f (βℓ)

g′(βℓ)
,

where g(x) = �r−1
ℓ=0(x − βℓ).

Lemma 3.11.1 Over the field F, let v be any vector of blocklength n in the null space

of the r by n Vandermonde matrix T with r less than n. There exists a polynomial N (x)

over F of degree at most n− r such that

vi =
N (βi)

g′(βi)

for i = 0, . . . , n− 1, where g(x) = �r−1
ℓ=0(x − βℓ).

179 3.11 The Welch–Berlekamp decoder

Proof: The null space of T is the set of v such that T v = 0. The null space is a subspace

of dimension n−r of the n-dimensional vector space over F . For each polynomial N (x)

of degree less than n− r, let

vi =
N (βi)

g′(βi)

for i = 0, . . . , n − 1. Because g(x) has no double zeros, g′(βi) is nonzero. Additional

columns with additional, distinct βi can be appended to make T into a full rank Van-

dermonde matrix, which will have an inverse. This means that each such N (x) must

produce a unique v. Thus, the space of polynomials N (x) of degree less than n− r and

the null space of T have the same dimension.

To complete the proof, we only need to show that all such v are in the null space

of T . The Lagrange interpolation formula,

f (x) =
n−1∑

ℓ=0

f (βℓ)
�ℓ′ �=ℓ(x − βℓ′)

�ℓ′ �=ℓ(βℓ − βℓ′)
,

can be applied to xjN (x) for j = 0, 1, . . . , r − 1 to write

xjN (x) =
n−1∑

ℓ=0

β
j

ℓN (βℓ)

g′(βℓ)

∏

ℓ′ �=ℓ

(x − βℓ′) j = 0, 1, . . . , r − 1.

But deg N (x) < n− r, so, for j = 0, . . . , r − 1, the polynomial xjN (x) has degree less

than n− 1. Because the degrees of the polynomials on both sides of the equation must

be the same, the coefficient of the monomial of degree n− 1 on the right must be zero.

That is,

n−1∑

ℓ=0

β
j

ℓ

N (βℓ)

g′(βℓ)
= 0

for j = 0, 1, . . . , r − 1. Thus the vector with components N (βℓ)/g′(βℓ) for

ℓ = 0, . . . , n− 1 is in the null space of T , and the proof is complete. �

One consequence of the lemma is an unusual description of a Reed–Solomon code,

which we digress to describe in the following corollary. The converse of the corollary

is also true.

Corollary 3.11.2 Let C be an (n, k, r + 1) Reed–Solomon code over F with spectral

zeros at j = 0, . . . , r − 1. Let

G(x) =
∏

βi∈S

(x − βi),

180 The Many Decoding Algorithms for Reed–Solomon Codes

where S is any set of m distinct elements of F, with m at least as large as r. For each

polynomial N (x) over F of degree less than m− r, and for each i at which G(βi) = 0,

define

ci =
N (βi)

G′(βi)
.

Otherwise, define ci = 0. Then c is a codeword of the Reed–Solomon code C.

Proof: If m = r, the proof is immediate because then N (x) = 0 and the only such

codeword is the all-zero codeword. More generally, recall that c is a Reed–Solomon

codeword that has all its nonzero values confined to locations in the set of locations S

if and only if
∑

i=S ωijci = 0 for j = 0, . . . , r− 1. The corollary then follows from the

lemma. �

Theorem 3.11.3 establishes the Welch–Berlekamp key equation for �(x), which

can be solved by the algorithm given in Section 3.12. It expresses the error-locator

polynomial �(x) in terms of the modified syndrome polynomial, M (x), which is defined

in the proof, and an additional polynomial, N (x), which we will call the modified

error-evaluator polynomial.

Theorem 3.11.3 The error-locator polynomial �(x) satisfies the polynomial equation

�(x)M (x) = N (x) (mod G(x)),

where M (x) is the modified syndrome polynomial and the polynomial N (x) (the modified

error-evaluator polynomial) has degree at most t − 1.

Proof: Start with the key equation

�(x)S(x) = Ŵ(x) (mod x2t).

Because deg Ŵ(x) < ν, this allows us to write

∑

k

�kSj−k = 0 for k = ν, ν + 1, . . . , 2t − 1.

The left side can be manipulated as follows:

n−1∑

k=0

�kSj−k =
n−1∑

k=0

�k

n−1∑

i=0

siω
i(j−k) =

n−1∑

i=0

si

(
n−1∑

k=0

�kω
−ik

)
ωij =

n−1∑

i=0

siλiω
ij.

Using Lemma 3.11.1 with βi = ωi, we can write

λisi =
N (ωi)

g′(ωi)
i = 0, . . . , r − 1.

181 3.12 The Welch–Berlekamp algorithm

Define the modified code-domain syndrome as mi = sig
′(ωi), and note that mi equals

zero whenever si equals zero. Define the modified syndrome polynomial M (x) as the

transform-domain polynomial corresponding to the code-domain vector m. Now we

can write

λimi − N (ωi) = 0 i = 0, . . . , r − 1.

But for any vector v of blocklength n, vi = 0 for i = 0, . . . , r − 1 if and only if

V (x) = 0 (mod G(x)).

Therefore

�(x)M (x) = N (x) (mod G(x)),

as asserted in the theorem.

It remains to show that the modified error-evaluator polynomial N (x) has degree at

most t − 1. Define g∗(x) and N ∗(x) by g(x) = g∗(x)GCD(�(x), g(x)) and N (x) =
N ∗(x)GCD(�(x), g(x)). Then

deg N (x) = deg N ∗(x)+ deg g(x)− deg g∗(x)

≤ deg W (x)+ deg g∗(x)− r − 1+ deg g(x)− deg g∗(x)

= deg W (x)− 1

≤ t − 1.

This completes the proof of the theorem. �

3.12 The Welch–Berlekamp algorithm

The Welch–Berlekamp algorithm has been developed to solve the decoding equation

formulated in the preceding section. In this section, we shall describe the Welch–

Berlekamp algorithm more generally as a fast method to solve a certain polynomial

equation, regardless of the origin of the polynomial equation.

The Welch–Berlekamp algorithm is an algorithm for solving the polynomial equation

�(x)M (x) = N (x) (mod G(x))

for polynomials N (x) and �(x) of least degree, where M (x) is a known polynomial

and

G(x) =
2t∏

ℓ=1

(x − Xℓ)

182 The Many Decoding Algorithms for Reed–Solomon Codes

is a known polynomial with distinct linear factors. This is the form of the polynomial

equation derived in Section 3.11. This is the case in which we are interested. In contrast,

recall that the Berlekamp–Massey algorithm is an algorithm for solving the equation

�(x)S(x) = Ŵ(x) (mod x2t).

If all the constants Xℓ in G(x) are replaced by zeros, x2t results, and the second poly-

nomial equation is obtained (but with the notation S(x) and Ŵ(x) instead of M (x) and

N (x)). For this reason, the two problems might seem to be similar, but they are actually

quite different because, in the first problem, the 2t factors of G(x) must be distinct,

while, in the second problem, the 2t factors of x2t are the same.

Based on our experience with the Berlekamp–Massey algorithm, we may anticipate

an algorithm that consists of solving two equations simultaneously,

N (r)(x) = �(r)(x)M (x) (mod G(r)(x)),

A(r)(x) = B(r)(x)M (x) (mod G(r)(x)),

where, for r = 1, . . . , 2t,

G(r)(x) =
r∏

ℓ=1

(x − Xℓ) .

We will find that the Welch–Berlekamp algorithm has this form. The rth iteration

begins with the primary polynomials N (r−1)(x) and A(r−1)(x) computed by the (r−1)th

iteration and augments these polynomials and others to compute the new polynomials

required of the rth iteration. Eventually, at iteration n− k, the solution provided by the

Welch–Berlekamp algorithm is the solution to the original problem.

The algorithm will be developed by using the mathematical notion of a module.

A module is similar to a vector space, except that a module is defined over a ring

rather than over a field. Consequently, the properties of a module are weaker and more

general than those of a vector space. Although, in general, a module is not a vector

space, the elements of a module might informally be called vectors because a more

specific term is not in common use. In this section, the “ring of scalars” for the modules

is the polynomial ring F[x].
We shall actually solve the more general polynomial equation

�(x)M (x)+ N (x)H (x) = 0 (mod G(x))

for �(x) and N (x), where the polynomials M (x) and H (x) are known and

G(x) =
n−k∏

ℓ=1

(x − ωℓ),

where, now, Xℓ = ωℓ.

183 3.12 The Welch–Berlekamp algorithm

If H (x) = −1, the equation to be solved reduces to the Welch–Berlekamp key

equation, which is the particular equation in which we are interested. However, by

allowing H (x) to be a polynomial, a recursive structure will be found for a module

of solutions. Then we can choose from the module a particular solution for which

H (x) = −1.

We shall need to refer to a few facts from the theory of modules. In particular,

although every vector space has a basis, a module need not have a basis. The property

that the underlying ring must have to ensure the existence of a basis for the module is

that the ring should be a principal ideal ring. For any field F , the ring F[x] is always a

principal ideal ring, so a module over F[x] does have a basis. This is the case in which

we are interested. In contrast, F[x, y] is not a principal ideal ring, so a module over

F[x, y] need not have a basis.

The set of all solutions, (�(x) N (x)), of the equation

�(x)M (x)+ N (x)H (x) = 0 (mod G(x))

is easily seen to be a module over F[x]. We denote this module by M. In fact, we

will actually compute this module M of all solutions (�(x) N (x)) of this equation by

computing a basis for the module. There must be a basis for the module because F[x]
is a principal ideal ring. Accordingly, we will describe the module in terms of a basis.

In particular, to find (�(x) N (x)), we shall construct a basis for this module. Then we

need only look within the module to extract the particular element (�(x) N (x)) that

satisfies the necessary conditions on the solution.

Let [ψ11(x) ψ12(x)] and [ψ21(x) ψ22(x)] be any two vectors that form a basis for

the module M. Then each solution of the equation can be written as a combination of

these basis vectors. This means that [�(x) N (x)] can be expressed as follows:

[�(x) N (x)] = [a(x) b(x)]
[

ψ11(x) ψ12(x)

ψ21(x) ψ22(x)

]
,

where a(x) and b(x) are coefficients forming the linear combination of the basis vectors.

Given the polynomials M (x) and H (x), let

M ∗(x) = M (x)/GCD[M (x), H (x)],
H∗(x) = H (x)/GCD[M (x), H (x)].

Then, because M ∗(x) and H∗(x) are coprime polynomials, the extended euclidean

algorithm assures that the equation

e∗(x)M ∗(x)+ h∗(x)H∗(x) = 1

is satisfied by some pair of polynomials (e∗(x), h∗(x)). It is easy to see that the two

vectors (G(x)e∗(x) G(x)h∗(x)) and (−M ∗(x) H∗(x)) form a basis for the module M.

184 The Many Decoding Algorithms for Reed–Solomon Codes

Proposition 3.12.1 The two vectors

b1 = (G(x)e∗(x) G(x)h∗(x))

and

b2 = (−H∗(x) M ∗(x))

form a basis for the module {(�(x) N (x))} defined by the equation

�(x)M (x)+ N (x)H (x) = 0,

where M (x) and H (x) are given.

Proof: Direct inspection shows that the two vectors solve the polynomial equation and

are linearly independent, so they form a basis for a module of dimension 2. �

Proposition 3.12.2 For any basis of the module M,

det

[
ψ11(x) ψ12(x)

ψ21(x) ψ22(x)

]
= γ G(x)

for some constant γ , where the rows of the matrix are the basis vectors.

Proof: The determinant of the matrix formed by these two basis vectors is clearly

G(x). Any other basis can be written in terms of this basis as follows:

[
ψ11(x) ψ12(x)

ψ21(x) ψ22(x)

]
=

[
a11(x) a12(x)

a21(x) a22(x)

][
G(x)e∗(x) G(x)h∗(x)
−H∗(x) M ∗(x)

]
.

The determinant of the first matrix on the right side is a polynomial. Because this

transformation between bases can be inverted, the reciprocal of that determinant is also

a polynomial. Because these two polynomials must be reciprocals, they must each be

a scalar. Hence the determinant of the left side is a scalar multiple of G(x). �

To construct the recursive algorithm, we shall solve a sequence of smaller problems.

For i = 1, . . . , n−k, let M(i) be the module over F[x] of all solutions [�(i)(x) N (i)(x)]
for the equation

�(i)(x)M (x)+ N (i)(x)H (x) = 0 (mod G(i)(x)),

where

G(i)(x) =
i∏

ℓ=1

(x − ωℓ).

185 3.12 The Welch–Berlekamp algorithm

This gives a nested chain of modules,

M(1) ⊃M(2) ⊃M(3) ⊃ · · · ⊃M(n−k) =M.

For i = 1, this reduces to

�(1)(x)M (x)+ N (1)(x)H (x) = 0 (mod x − ω).

We shall regard the four polynomials �(x), M (x), N (x), and H (x) that appear in the

equation to be solved as representing transform-domain vectors, so that we may define

the code-domain vectors asλi = (1/n)�(α−i), νi = (1/n)N (α−i), µi = (1/n)M (α−i),

and hi = (1/n)H (α−i). Then, in the code domain, the equation to be solved becomes

λiµi + νihi = 0 i = 1, . . . , n− k,

where the vectors µ and h are known, and the vectors λ and ν are to be computed such

that this equation is satisfied. It is easy to see what is required in the code domain for

each component, but we must give the solution in the transform domain. However, we

will develop an algorithm that begins with the code-domain variables µ and h and ends

with the transform-domain variables �(x) and N (x).

The first iteration, for i = 1, is to form the module of all vectors (�(x) N (x)) such

that, for a given µ and h, the equation

λ1µ1 + ν1h1 = 0

is satisfied. Suppose that µ1 is nonzero. Then a basis for the module M(1) consists of

two vectors of polynomials given by

b
(1)
1 (x) = (−ν1 µ1),

b
(1)
2 (s) = (1− ω1x 0).

It is easy to see that, for i = 1, the two vectors b
(1)
1 (x) and b

(1)
2 (x) span the set of solution

vectors (�(x) N (x)) to the expression �(x)M (x)+ N (x)H (x) = 0 (mod 1− xω1).

Thus for any polynomial coefficients a1(x) and a2(x), we have the following solution:

[�(x) N (x)] = [a1(x) a2(x)]

[
−h1 s1

1− xω1 0

]
.

To verify the solution, let

[λi νi] =
[

1

n
�(ω−i)

1

n
N (ω−i)

]
,

186 The Many Decoding Algorithms for Reed–Solomon Codes

(1) Initialize:

�(0) =
[

1 1
0 1

]
.

(2) Choose jℓ such µ
(ℓ−1)
jℓ

is nonzero. Halt if there is no such jℓ.

(3) For k = 1, . . . , n, set

[
µ

(ℓ)
k

λ
(ℓ)
k

]
=
[

−h
(ℓ−1)
j

µ
(ℓ−1)
j

(ωk−1 − ωj−1) 0

] [
µ

(ℓ−1)
k

λ
(ℓ−1)
k

]
.

(4)

[
�

(ℓ)
11 �

(ℓ)
12

�
(ℓ)
21 �

(ℓ)
22

]
=
[

h
(ℓ−1)
k

µ
(ℓ−1)
k

(x − ω j−1) 0

]
 �

(ℓ−1)
11 �

(ℓ−1)
12

�
(ℓ−1)
21 �

(ℓ−1)
22

 .

(5) Increment ℓ. Then go to step (2).

Figure 3.6. Welch–Berlekamp algorithm.

so

λiµi + νihi =
1

n
a1(ω

−i)[−hiµi + µihi] +
1

n
a2(ω

−i)(1− ω−iω1)

= 0 for i = 1.

so the first iteration indeed is correct.

Now we turn to the next iteration. Because of the nesting of modules, any solution

to the equation for i = 2, . . . , n− k must be in the module M(i). Define

[
µ

(1)
i

λ
(1)
i

]
=
[

−h1 µ1

ω−1 − ω−i 0

][
µi

λi

]
i = 2, 3, . . . , n− k,

noting that the bottom row is not all zero. The two rows are linearly independent if si

is nonzero.

The Welch–Berlekamp algorithm continues in this way as shown in Figure 3.6.

Problems

3.1 A linear map from one vector space to another is a map that satisfies

f (av1 + bv2) = af (v1)+ bf (v2),

187 Problems

where a and b are any elements of the underlying field. Show the mapping

that takes each senseword v to the closest error word e cannot be a linear map.

Consequently, a decoder must contain nonlinear functions.

3.2 Periodically repeat the first eight symbols of the Fibonacci sequence to give the

following sequence:

1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, . . .

Use the Berlekamp–Massey algorithm to compute the minimum-length linear

recursion that produces the above sequence.

3.3 Prove that if the sequence S = (S0, S1, . . . , Sr−1) has linear complexity L′, and

the sequence T = (T0, T1, . . . , Tr−1) has linear complexity L′′, then the sequence

S + T has linear complexity not larger than L′ + L′′.
3.4 Show that the syndromes of a BCH code, given by

Sj =
n−1∑

j=0

ωi(j+j0)
vi j = 1, . . . , 2t,

form a sufficient statistic for computing e. That is, show that no information

about e which is contained in v is lost by the replacement of v by the set of

syndromes.

3.5 (a) Design an encoder for the nonlinear (15, 8, 5) code, discussed in

Section 2.11, by modifying a nonsystematic encoder for a BCH (15, 5, 7)

code.

(b) Devise a decoder for the same code by augmenting the binary form of the

Berlekamp–Massey algorithm with one extra iteration.

(c) Using part (a), derive a code-domain decoder for this code.

3.6 (a) The (15, 11, 5) Reed–Solomon code with j0 = 1 is defined over the field

GF(16) and constructed with the primitive polynomial p(x) = x4 + x + 1.

Let a set of syndromes be S1 = α4, S2 = 0, S3 = α8, and S4 = α2. Find the

generator polynomial of the code.

(b) Find the error values using the Peterson–Gorenstein–Zierler decoder.

(c) Repeat by using the Berlekamp–Massey algorithm.

3.7 The nonlinear (15, 8, 5) code, discussed in Section 2.11, can be decoded by using

the Berlekamp–Massey algorithm for binary codes for three iterations (r = 1,

3, and 5) and then choosing A and B so that �5 = 0. By working through the

iterations of this algorithm, set up an equation that A and B must solve.

3.8 A (255, 223) Reed–Solomon code over GF(256) is to be used to correct any

pattern of ten or fewer errors and to detect any pattern of more than ten errors.

Describe how to modify the Berlekamp–Massey algorithm to accomplish this.

How many errors can be detected with certainty?

188 The Many Decoding Algorithms for Reed–Solomon Codes

3.9 Let m be even and let r be such that

GCD(2r ± 1, 2m/2 − 1) = 1.

A generalized extended Preparata code of blocklength n = 2m consists of the set

of binary codewords described by the pairs c = (a, b), satisfying the following

conditions:

(i) a and b each has an even number of ones;

(ii) A1 = B1;

(iii) As + As
1 = Bs, where s = 2r + 1.

Find the number of codewords and the minimum distance of such a code.

3.10 The irreducible polynomial x20+x3+1 is used to construct GF(220) with α = x

primitive. A Reed–Solomon code is given over this field with j0 = 1, distance 5,

and blocklength 220 − 1 = 1 048 575. Suppose that the syndromes of a given

senseword are S1 = v(α) = x4, S2 = v(α2) = x8, S3 = v(α3) = x12+ x9+ x6,

and S4 = v(α4) = x16.

(a) Are the errors in the subfield GF(2)? Why?

(b) How many errors are there? Why?

(c) Find the error-locator polynomial �(x).

(d) Find the location of the error or errors. Find the magnitudes of the error or

errors.

3.11 Improve the double-error-correcting decoder for the binary BCH code with Ham-

ming distance 6, described in this chapter, to detect triple errors as well. Repeat

for the extended Preparata codes with Lee distance 6.

3.12 Are the code-domain syndrome and the transform-domain syndrome of a cyclic

code related by the Fourier transform? How is one related to the other?

3.13 Describe how the code-domain Berlekamp–Massey algorithm can be augmented

to compute a (frequency-domain) error-locator polynomial �(x) directly from

the code-domain syndromes by also running a shadow copy of the iteration in

the transform domain.

Notes

The popularity of Reed–Solomon codes and other cyclic codes can be attributed, in

large part, to the existence of good decoding algorithms. By specializing to the class

of Reed–Solomon codes and BCH codes, very powerful and efficient algorithms can

be developed. These are the specialized methods of locator decoding, which are quite

effective for codes of this class. Peterson (1960) made the first important step in the

189 Notes

development of these locator decoding algorithms when he introduced the error-locator

polynomial as a pointer to the error pattern, and so replaced a seemingly intractable

nonlinear problem by an attractive linear problem.

Locator decoding was discussed in the context of nonbinary codes by Gorenstein

and Zierler (1961). In its original form, locator decoding involved inverting matri-

ces of size t. Berlekamp (1968) introduced a faster form of this computation, for

which Massey (1969) later gave a simpler formulation and an appealing develop-

ment in the language of shift registers. Forney (1965), and later Horiguchi (1989)

and Koetter (1997), developed attractive methods of computing the error magni-

tudes. Blahut (1979) reformulated the family of locator decoding algorithms within

the Fourier transform methods of signal processing. He also recast the Berlekamp–

Massey algorithm in the code domain so that syndromes need not be computed. Welch

and Berlekamp (1983) patented another decoding algorithm in the code domain that also

eliminates the need to compute syndromes. Further work in this direction was published

by Berlekamp (1996). Dabiri and Blake (1995) reformulated the Welch–Berlekamp

algorithm in the language of modules, using ideas from Fitzpatrick (1995), with the

goal of devising a systolic implementation. Our discussion of the Welch–Berlekamp

algorithm follows this work as described in Dabiri’s Ph.D. thesis (Dabiri, 1996). The

Welch–Berlekamp algorithm is sometimes viewed as a precursor and motivation for

the Sudan (1997) family of decoding algorithms that is described in Chapter 4.

4 Within or Beyond the Packing Radius

The geometric structure of a code over a finite field consists of a finite set of points

in a finite vector space with the separation between any two points described by the

Hamming distance between them. A linear code has the important property that every

codeword sees the same pattern of other codewords surrounding it. A tabulation of

all codeword weights provides a great deal of information about the geometry of a

linear code. The number of codewords of weight w in a linear code is equal to the

number of codewords at distance w from an arbitrary codeword.

Given any element, which we regard geometrically as a point, of the vector space,

not necessarily a codeword, the task of decoding is to find the codeword that is closest

to the given point. The (componentwise) difference between the given point and the

closest codeword is the (presumed) error pattern. A bounded-distance decoder corrects

all error patterns of weight not larger than some fixed integer τ , called the decoding

radius. Abounded-distance decoder usually uses a decoding radius equal to the packing

radius t, though this need not always be true. In this chapter, we shall study both the case

in which τ is smaller than t and the case in which τ is larger than t, though the latter case

has some ambiguity. In many applications, a bounded-distance decoder is preferred to

a complete decoder. In these applications, the limited decoding distance of a bounded-

distance decoder can actually be a strength because, in these applications, a decoding

error is much more serious than a decoding failure. Then the packing inefficiency of

the code becomes an advantage. When the number of actual errors exceeds the packing

radius, it is much more likely that the bounded-distance decoder will fail to decode

rather than produce an incorrect codeword. In other applications, a decoding failure

may be as undesirable as a decoding error. Then a complete decoder will be indicated.

In fact, however, it is usually not necessary to use anything even close to a complete

decoder; a decoder could perform usefully well beyond the packing radius and still fall

far short of a complete decoder.

For a large code, the packing radius may be an inadequate descriptor of the true

power of the code to correct errors because many error patterns of weight much larger

than the packing radius t are still uniquely decodable – some decodable error patterns

may have weight comparable to the covering radius. Of course, if τ is any integer

larger than the packing radius t of the code C, then there are some error patterns of

191 4.1 Weight distributions

weight τ that cannot be uniquely decoded. The point here is that, in many large codes

with large τ , these ambiguous codewords may be so scarce that they have little effect

on the probability of decoding error in a bounded-distance decoder. The reason that

bounded-distance decoders for this case have not been widely used is that efficient

decoding algorithms have not been available.

A false neighbor of error pattern e is a nonzero codeword c that is at least as close

to e as the all-zero codeword. An error pattern e is uniquely and correctly decodable if

and only if it has no false neighbors.

Much of this chapter will be spent studying the weight and distance structure of Reed–

Solomon codes and the implications for decoding. Other than for Reed–Solomon codes,

very little can be said about the weight and distance structure of most linear codes unless

the code is small enough to do a computer search. One strong statement that can be

made involves a set of identities known as the MacWilliams equation. This equation

relates the weight distribution of a code to the weight distribution of its dual code. The

MacWilliams equation may be useful if the dual code is small enough for its weight

distribution to be found by direct methods such as computer search. We will end the

chapter by deriving the MacWilliams equation.

4.1 Weight distributions

For any code C, the number of codewords at distance ℓ from a given codeword c, in

general, depends on the codeword c. A linear code, however, is invariant under any

vector-space translation of the code that places another codeword at the origin. This

means that the number of other codewords at distance ℓ from a particular codeword is

independent of the choice of codeword. Every codeword of a linear code sees exactly the

same number of other codewords at distance ℓ from itself. This number is denoted Aℓ.

If a linear block code has a minimum distance dmin, then we know that at least one

codeword of weight dmin exists, and no codewords of smaller nonzero weight exist.

Sometimes, we are not content with this single piece of information; we wish to know

how many codewords have weight dmin and what is the distribution of the weights of

the other codewords. For example, in Table 2.3, we gave a list of codeword weights

for the (23, 12, 7) binary Golay code. For any small code, it is possible to find a similar

table of all the weights by exhaustive search. But exhaustive search is intractable for

most codes of interest. Instead, analytical techniques can be employed, if they can be

found. Since even the minimum distance is unknown for many codes, it is clear that,

in general, such analytical techniques will be difficult to find.

Let Aℓ denote the number of codewords of weight ℓ in an (n, k) linear code. The

(n+ 1)-dimensional vector, with components Aℓ for ℓ = 0, . . . , n, is called the weight

distribution of the code. Obviously, if the minimum distance is dmin = d , then

192 Within or Beyond the Packing Radius

A0 = 1, A1, . . . , Ad−1 are all zero and Ad is not zero. To say more than this, we

will need to do some work.

The weight distribution tells us a great deal about the geometric arrangement of

codewords in GF(q)n. A sphere of radius dmin centered on the all-zero codeword

contains exactly Admin other codewords; all of them are on the surface of the sphere.

For example, a (31,15,17) Reed–Solomon code over GF(32) has 8.22×109 codewords

of weight 17. A sphere around the origin of radius 17 has 8.22 billion codewords on its

surface. There are even more codewords on the surface of a sphere of radius 18, and

so forth. The weight distribution gives the number of codewords on each such sphere,

and so reveals a great deal about the geometry of these points. There may be other

questions that can be posed about the geometric arrangement of codewords that are not

answered by the weight distribution.

Describing the weight distribution of a code analytically is a difficult problem, and

this has not been achieved for most codes. For the important case of the Reed–Solomon

codes (or any maximum-distance code), an analytical solution is known. This section

will provide a formula for the weight distribution of a maximum-distance code. The

formula is obtained using the fact stated in Theorem 2.1.2 that, in a maximum-distance

code, the values in any n− k places are forced by the values in the other k places.

For an arbitrary linear code, we will not be able to give such a formula. It is clear

from the proof of Theorem 2.1.2 that, if the code is not a maximum-distance code, then

it is not true that any set of k places may be used as designated places. This statement

applies to all nontrivial binary codes because, except for the repetition codes and the

simple parity-check codes, no binary code is a maximum-distance code.

For a maximum-distance code, we can easily compute the number of codewords

of weight d = dmin. Such a codeword must be zero in exactly n − d components.

Theorem 2.1.2 states that for a maximum-distance code, any set of k = n − d + 1

components of a codeword uniquely determines that codeword. Partition the set of

integers from 0 to n− 1 into two sets, Td and T c
d

, with Td having d integers. Consider

all codewords that are zero in those places indexed by the integers in T c
d

. Pick one

additional place. This additional place can be assigned any of q values. Then n− d + 1

codeword components are fixed; the remaining d − 1 components of the codeword are

then determined as stated in Theorem 2.1.2. Hence there are exactly q codewords for

which any given set of n− d places is zero. Of these, one is the all-zero codeword and

q− 1 are of weight d . The n− d locations at which a codeword of weight d is zero, as

indexed by elements of T c
d

, can be chosen in
(

n
d

)
ways, so we have

Ad =
(n

d

)
(q− 1),

because there are q − 1 nonzero codewords corresponding to each of these

zero patterns.

193 4.1 Weight distributions

To find Aℓ for ℓ > d , we use a similar, but considerably more complicated, argument.

This is done in proving the following theorem.

Theorem 4.1.1 The weight distribution of a maximum-distance (n, k, d) linear code

over GF(q) is given by A0 = 1, Aℓ = 0 for ℓ = 1, . . . , d − 1, and, for ℓ ≥ d,

Aℓ =
(n

ℓ

)
(q− 1)

ℓ−d∑

j=0

(−1) j

(
ℓ− 1

j

)
qℓ−d−j.

Proof: That this weight is zero for ℓ < d follows from the definition of d for ℓ < d .

The proof of the theorem for ℓ ≥ d is divided into three steps as follows.

Step (1) Partition the set of integers from zero to n− 1 into two sets, Tℓ and T c
ℓ , with

Tℓ having ℓ integers, and consider only codewords that are equal to zero in those places

indexed by the integers in T c
ℓ and are nonzero otherwise. Let Mℓ be the number of such

codewords of weight ℓ. We shall prove that Mℓ is given by

Mℓ = (q− 1)

ℓ−d∑

j=0

(−1) j

(
ℓ− 1

j

)
qℓ−d−j.

Then, because Mℓ does not depend on Tℓ, we have, for the total code,

Aℓ =
(n

ℓ

)
Mℓ.

The expression for Mℓ will be proved by developing an implicit relationship, for ℓ

greater than d , between Mℓ and Mℓ′ for ℓ′ less than ℓ.

Choose a set of n − d + 1 designated components as follows. All of the n − ℓ

components indexed by the integers in T c
ℓ are designated components, and any ℓ−d+1

of the components indexed by the integers in Tℓ are also designated components. Recall

that the components indexed by T c
ℓ have been set to zero. By arbitrarily specifying the

latter ℓ− d + 1 components, not all zero, we get q ℓ−d+1 − 1 nonzero codewords, all

of weight at most ℓ.

From the set of ℓ places indexed by Tℓ, we can choose any subset of ℓ′ places. There

will be Mℓ′ codewords of weight ℓ′ whose nonzero components are confined to these

ℓ′ places. Hence,

ℓ∑

ℓ′=d

(
ℓ

ℓ′

)
Mℓ′ = qℓ−d+1 − 1.

This recursion implicitly gives Md+1 in terms of Md , Md+2 in terms of Md and Md+1,

and so forth. Next, we will solve the recursion to give an explicit formula for Mℓ.

194 Within or Beyond the Packing Radius

Step (2) In this step, we will rearrange the equation stated in the theorem into a form

more convenient to prove. Treat q as an indeterminate for the purpose of manipulating

the equations as polynomials in q. Define the notation

N2∑

n=−N1

anqn

=

N2∑

n=0

anqn

as an operator, keeping only coefficients of nonnegative powers of q. Note that this is

a linear operation. With this convention, the expression to be proved can be written as

follows:

Mℓ = (q− 1)

q−(d−1)

ℓ−1∑

j=0

(−1) j

(
ℓ− 1

j

)
qℓ−1−j

.

The extra terms included in the sum correspond to the negative powers of q and do not

contribute to Mℓ. Now we can collapse the summation by using the binomial theorem

to write

Mℓ = (q− 1)
⌈

q−(d−1)(q− 1)ℓ−1
⌉

.

Step (3) To finish the proof, we will show that the expression for Mℓ derived in step (2)

solves the recursion derived in step (1). Thus

ℓ∑

ℓ′=d

(
ℓ

ℓ′

)
Mℓ′ =

ℓ∑

ℓ′=0

(
ℓ

ℓ′

)
Mℓ′

= (q− 1)

ℓ∑

ℓ′=0

(
ℓ

ℓ′

)⌈
q−(d−1)(q− 1)ℓ

′−1
⌉

= (q− 1)

⌈
q−(d−1)(q− 1)−1

ℓ∑

ℓ′=0

(
ℓ

ℓ′

)
(q− 1)ℓ

′
⌉

= (q− 1)

⌈
q−d

(
1− 1

q

)−1

qℓ

⌉

= (q− 1)

⌈ ∞∑

i=0

qℓ−d−i

⌉

= (q− 1)

ℓ−d∑

i=0

q ℓ−d−i

= qℓ−d+1 − 1,

as was to be proved. �

195 4.1 Weight distributions

Corollary 4.1.2 The weight distribution of an (n, k) maximum-distance code over

GF(q) is given by A0 = 1, Aℓ = 0 for ℓ = 1, . . . , d − 1, and, for ℓ ≥ d,

Aℓ =
(n

ℓ

) ℓ−d∑

j=0

(−1) j

(
ℓ

j

)
(qℓ−d+1−j − 1).

Proof: Use the identity

(
ℓ

j

)
=
(

ℓ− 1

j

)
+
(

ℓ− 1

j − 1

)

to rewrite the equation to be proved as follows:

Aℓ =
(n

ℓ

) ℓ−d∑

j=0

(−1) j

[(
ℓ− 1

j

)
+
(

ℓ− 1

j − 1

)]
(qℓ−d+1−j − 1)

=
(n

ℓ

)

ℓ−d∑

j=0

(−1) j

(
ℓ− 1

j

)
(qqℓ−d−j − 1)

−
ℓ−d+1∑

j=1

(−1) j−1
(

ℓ− 1

j − 1

)
(qℓ−d+1−j − 1)

 .

Now replace j by i in the first term and j − 1 by i in the second term to write

Aℓ =
(n

ℓ

)
(q− 1)

ℓ−d∑

i=0

(−1)i

(
ℓ− 1

i

)
qℓ−d−i.

The last line is the statement of Theorem 4.1.1, which completes the proof of the

theorem. �

The above corollary is useful for calculating the weight distribution of a Reed–

Solomon code. As an example, the weight distribution of the (31, 15, 17) Reed–

Solomon code over GF(32) is shown in Table 4.1. Even for small Reed–Solomon

codes such as this one, the number of codewords of weight ℓ can be very large. This

explains why it is not practical, generally, to find the weight distribution of a code by

simple enumeration of the codewords.

196 Within or Beyond the Packing Radius

Table 4.1. Approximate weight distribution

for the (31,15,17) Reed–Solomon code

ℓ Aℓ

0 1

1–16 0

17 8.22× 109

18 9.59× 1010

19 2.62× 1012

20 4.67× 1013

21 7.64× 1014

22 1.07× 1016

23 1.30× 1017

24 1.34× 1018

25 1.17× 1019

26 8.37× 1019

27 4.81× 1020

28 2.13× 1021

29 6.83× 1021

30 1.41× 1022

31 1.41× 1022

4.2 Distance structure of Reed–Solomon codes

A Reed–Solomon code is a highly structured arrangement of qk points in the vector

space GF(q)n. The most important geometrical descriptor of the code is the minimum

distance (or the packing radius). Indeed, the large minimum distance of these codes

is one property responsible for the popularity of the Reed–Solomon codes. As for

any code, a sphere of radius dmin − 1 about any codeword does not contain another

codeword. In addition, spheres about codewords of radius not larger than the packing

radius t do not intersect.

Because we know the weight distribution of a Reed–Solomon code, we know exactly

how many Reed–Solomon codewords are in any sphere centered on a codeword. The

number of codewords within a sphere of radius τ about any codeword is given in terms

of the weight distribution as
∑τ

ℓ=0 Aℓ. If τ equals t (or is smaller than t), then the only

codeword in the sphere is the codeword at the center of the sphere.

The volume of a sphere of radius τ about any codeword is the number of points of

GF(q)n in that sphere. This is

V =
τ∑

ℓ=0

(q− 1)ℓ
(n

ℓ

)
,

197 4.2 Distance structure of Reed–Solomon codes

because there are
(

n
ℓ

)
ways of choosing ℓ places and there are (q− 1)ℓ ways of being

different from the codeword in all of these places. If τ is the packing radius t, then any

two such spheres about codewords are disjoint.

To appreciate the practical aspects of this comment, consider the (256, 224, 33)

extended Reed–Solomon code over the field GF(256), which has packing radius 16.

There are qkV = 256224∑16
ℓ=0 255ℓ

(
256
ℓ

)
points inside the union of all decoding

spheres, and there are 256256 points in the vector space GF(256)256. The ratio of these

two numbers is 2.78 × 10−14. This is the ratio of the number of sensewords decoded

by a bounded-distance decoder to the number of sensewords decoded by a complete

decoder. A randomly selected word will fall within one of the decoding spheres with

this probability. Thus, with extremely high probability, the randomly selected word will

fall between the decoding spheres and will be declared uncorrectable. Even though the

disjoint decoding spheres cannot be made larger, almost none of the remaining space is

inside a decoding sphere. Our intuition, derived largely from packing euclidean spheres

in three-dimensional real vector space, is a poor guide to the 224-dimensional vector

subspace of GF(256)256. If the decoding spheres are enlarged to radius t+1, then they

will intersect. A sphere will have one such intersection for each codeword at minimum

distance. For the (256, 224, 33) extended Reed–Solomon code, a decoding sphere of

radius 17 will intersect with 255
(

256
33

)
other such decoding spheres. But there are

25517
(

256
17

)
words on the surface of a sphere of radius 17. The ratio of these numbers

is on the order of 10−23. Thus ambiguous sensewords are sparse on the surface of that

decoding sphere.

Clearly, we may wish to tinker with our notion of a bounded-distance decoder by

attempting to decode partially to a radius larger than the packing radius. We can visualize

making the decoding spheres larger, but with dimples in the directions of the nearest

neighboring codewords. Although decoding to a unique codeword cannot be guaranteed

when the decoding radius exceeds the packing radius, for a large code most sensewords

only a small distance beyond the packing radius have a unique nearest codeword and

so can be uniquely decoded.

A far more difficult task is to find how many codewords are in a sphere of radius τ ,

centered on an arbitrary point v of GF(q)n. Of course, if τ is not larger than t, then

there cannot be more than one codeword in such a sphere, but there may be none.

If τ is larger than t, then the answer to this question will depend on the particular v, as

is suggested by Figure 4.1. This figure shows the decoding situation from the point of

view of the sensewords. Two sensewords are marked by an× in the figure, and spheres

of radius τ are drawn about each senseword. One senseword has two codewords within

distance τ ; the other has only one codeword within distance τ . For a given value of τ ,

we may wish to count how many v have ℓ codewords in a sphere of radius τ about v. A

more useful variation of this question arises if the weight of v is specified. For a given

value of τ , how many v of weight w have ℓ codewords in a sphere of radius τ about v?

198 Within or Beyond the Packing Radius

Figure 4.1. Oversized spheres about sensewords.

Equivalently, for a given value of τ , how many v, lying on a sphere of radius w about

the all-zero codeword, have ℓ codewords in a sphere of radius τ about v?

For any v, the proximate set of codewords is the set of all codewords that are closest

to v. There must be at least one codeword c in the set of proximate codewords. There

can be multiple proximate codewords only if they all are at the same distance.

A false neighbor of an arbitrary vector v is any nonzero codeword in the set of

proximate codewords. If the weight of v is at most t, then v has no false neighbors. For

any τ larger than t, some v of weight τ will have a false neighbor, though most will

not. We would like to know how many such v have a false neighbor. This question will

be partially answered in the following sections.

4.3 Bounded-distance decoding

Abounded-distance decoder is one that decodes all patterns of τ or fewer errors for some

specified integer τ . In Chapter 3, we discussed bounded-distance decoders that decode

up to the packing radius t, which is defined as the largest integer smaller than dmin/2.

Figure 4.2 shows the decoding situation from the point of view of the codewords. In

this figure, spheres of radius t are drawn about each codeword. These spheres do not

intersect, but they would intersect if the spheres were enlarged to radius t+ 1. A sense-

word that lies within a decoding sphere is decoded as the codeword at the center of that

sphere. A senseword that lies between spheres is flagged an uncorrectable. Because

Hamming distance is symmetric, a sphere of radius t drawn about any senseword

would contain at most one codeword. The illustration in Figure 4.2, drawn in euclidean

two-dimensional space, does not adequately show the situation in n dimensions.

In n dimensions, even though the radius of the spheres is equal to the packing

199 4.3 Bounded-distance decoding

Figure 4.2. Decoding up to the packing radius.

Figure 4.3. Decoding to less than the packing radius.

radius t, the region between the spheres is much larger than the region within the

spheres.

To reduce the probability of incorrect decoding, the decoding spheres can be made

smaller, as in Figure 4.3, but this will make the probability of correct decoding smaller

as well. The decoding will be correct if the senseword lies in the decoding sphere about

the correct codeword.

To increase the probability of correct decoding, the decoding spheres can be made

larger, as shown in Figure 4.4. The decoding spheres will overlap if their com-

mon radius is larger than the packing radius. This results in a decoder known as

a list decoder because there can be more than one decoded codeword. An alter-

native to the list decoder, in which the decoding regions are no longer spheres,

is shown in Figure 4.5. In this decoding situation, the senseword is decoded as

the closest codeword provided that codeword is within Hamming distance τ of the

senseword.

200 Within or Beyond the Packing Radius

Figure 4.4. List decoding.

Figure 4.5. Decoding beyond the packing radius.

4.4 Detection beyond the packing radius

Abounded-distance decoder corrects all error patterns up to a specified weight τ , usually

chosen to be equal to the packing radius t. If τ is equal to t, then the bounded-distance

decoder will correct every error pattern for which the number of errors is not larger

than t. If this decoder is presented with an error pattern in which the number of errors is

larger than t, then it will not correct the error pattern. The decoder may then sometimes

decode incorrectly and may sometimes fail to decode. The usual requirement is that

the decoder must detect the error whenever a senseword lies outside the union of all

decoding spheres. Such a senseword is said to have an uncorrectable error pattern,

a property that depends on the chosen value of τ . It is important to investigate how

a particular decoding algorithm behaves in the case of an uncorrectable error pattern.

201 4.4 Detection beyond the packing radius

For example, the Peterson algorithm first inverts a t by t matrix of syndromes, and

that matrix does not involve syndrome S2t−1. If the determinant of this matrix and

all submatrices are equal to zero, the decoding will be completed without ever using

syndrome S2t−1. An error pattern for which all syndromes except S2t−1 are zero will be

decoded as the all-zero error word, even though this cannot be the correct error pattern

if S2t−1 is nonzero. Thus error patterns that are beyond the packing radius, yet not in a

false decoding sphere, may be falsely decoded by the Peterson decoder.

One obvious way to detect an uncorrectable error pattern after the decoding is com-

plete is to verify that the decoder output is, indeed, a true codeword and is within

distance t of the decoder input. This final check is external to the central decoding algo-

rithm. There are other, less obvious, checks that can be embedded within the decoding

algorithm.

An uncorrectable error pattern in a BCH codeword can be detected when the error-

locator polynomial does not have the number of zeros in the error-locator field equal

to its degree, or when the degree of �(x) is larger than τ , or when the error pattern

has one or more components not in the symbol field GF(q). All of these cases can be

recognized by observing properties of the recursively computed error spectrum:

Ej = −
t∑

k=1

�kEj−k .

The error pattern will be in GF(q) if and only if the error spectrum over GF(qm) satisfies

the conjugacy constraint E
q

j = E((q j)) for all j. If this condition is tested as each Eq j is

computed, whenever Ej is already known, then an uncorrectable error pattern may be

detected and the computation can be halted. For a Reed–Solomon code, n = q− 1, so

this test is useless because then ((q j)) = j and the test only states the obvious condition

that E
q

j = Ej in GF(q).

The following theorem states that deg �(x) is equal to the number of zeros of �(x)

in GF(q) if and only if Ej is periodic with its period n dividing q − 1. By using this

test, �(x) need not be factored to find the number of its zeros.

If either of the two conditions fails, that is, if

E
q

j �= E((q j)) for some j

or

E((n+j)) �= Ej for some j,

then a pattern with more than t errors has been detected.

Theorem 4.4.1 Let ω be an element of order n, a divisor of q− 1. In the field GF(q),

suppose that �(x) with degree τ , at most equal to n/2, is the smallest degree polynomial

202 Within or Beyond the Packing Radius

for which

Ej = −
τ∑

k=1

�kEj−k

for j = τ , . . . , τ + n− 1. The number of distinct powers of ω that are zeros of �(x) in

GF(q) is equal to deg �(x) if and only if En+j = Ej for j = τ , . . . , τ + n− 1.

Proof: If En+j = Ej holds for j = τ , . . . , τ + n − 1, then the recursion requires

that En+j = Ej must then hold for all j. This can be written as (xn − 1)E(x) = 0.

The recursion also implies that �(x)E(x) = 0. Then, by the proof of Theorem 1.7.1,

�(x)E(x) = 0 (modxn− 1). Thus �(x) divides xn− 1, and so all of its zeros must also

be distinct zeros of xn − 1.

To prove the converse, observe that if the number of distinct powers of ω that are zeros

of �(x) is equal to the degree of �(x), then �(x) divides xn−1. But then �(x)E(x) = 0

(mod xn− 1), so the recursion must satisfy En+j = Ej for j = τ , . . . , τ + n− 1. �

4.5 Detection within the packing radius

To reduce the probability of a false decoding, a bounded-distance decoder may be

designed to correct only up to τ errors, where τ is strictly smaller than the packing

radius t. Then every pattern of more than t errors, but less than dmin − τ errors, can be

detected, but not corrected. It is very easy to modify the Berlekamp–Massey algorithm

to decode Reed–Solomon codes for this purpose. The modified Berlekamp–Massey

algorithm processes 2τ syndromes in the usual way, and so makes 2τ iterations to

generate �(x). If at most τ errors occurred, then, after 2τ iterations, �(x) will be a

polynomial of degree at most τ , and the computation of �(x) is complete. To verify

this, the iterations of the algorithm are continued to process the remaining dmin−1−2τ

syndromes. If at most τ errors occurred, the algorithm will not attempt to update �(x)

during any of the remaining 2t − 2τ iterations. If the degree of �(x) is larger than τ ,

or if the algorithm does attempt to update �(x) during any of these remaining 2t − 2τ

iterations, then there must be more than τ errors. In such a case, the senseword can be

flagged as having more than τ errors.

The following argument shows that, provided ν is less than dmin − τ , every pat-

tern of ν errors will be detected by this procedure. We are given syndromes Sj for

j = 0, . . . , dmin − 2. Therefore we have the syndromes Sj, for j = 0, . . . , τ + ν − 1.

If we had 2ν syndromes, Sj for j = 0, . . . , 2ν − 1, then we could correct ν errors.

Suppose a genie could give us these extra syndromes, Sj, for j = τ + ν, . . . , 2ν − 1.

Then we could continue the Berlekamp–Massey algorithm to compute an error-locator

203 4.6 Decoding with both erasures and errors

polynomial whose degree equals the number of errors, ν. The Berlekamp–Massey algo-

rithm contains a rule for updating L, which says that if the recursion (�(x), L) is to be

updated and 2L < r, then L is replaced by r − L. But at iteration 2τ , by assumption

L2τ ≤ τ , and δr equals zero for r = 2τ + 1, . . . , τ + ν. Thus L is not updated by the

Berlekamp–Massey algorithm before iteration τ + ν + 1. Therefore

L2ν ≥ (τ + ν + 1)− L2τ

≥ (τ + ν + 1)− τ

= ν + 1.

But then deg �(x) = L2ν ≥ ν + 1, which is contrary to the assumption that there are

at most ν errors.

4.6 Decoding with both erasures and errors

The decoder for a Reed–Solomon code may be designed both to fill erasures and correct

errors. This decoder is used with a channel that makes both erasures and errors. Hence

a senseword now consists of channel input symbols, some of which may be in error,

and blanks that denote erasures.

To decode a senseword with errors and erasures, it is necessary to find a codeword

that differs from the senseword in the fewest number of places. This will be the correct

codeword provided the number of errors ν and the number of erasures ρ satisfy

2ν + ρ + 1 ≤ dmin.

The task of finding the error-locator polynomial now becomes a little more compli-

cated. We must find the error-locator polynomial, even though some symbols of the

senseword are erased. To do this, we will devise a way to mask off the erased symbols

so that the errors can be corrected as if the erasures were not there.

Suppose theρ erasures are at locations i1, i2, . . . , iρ .At the positions with these known

indices, the senseword vi has blanks, which initially we will fill with zeros. Define the

erasure vector as that vector of length n having component fiℓ for ℓ = 1, . . . , ρ equal

to the erased symbol; in all other locations, fi = 0. Then

vi = ci + ei + fi i = 0, . . . , n− 1,

where ei is the error value and fi is the erased value.

Let ψ be any vector that is zero at every erasure location and nonzero at every

nonerasure location. We can suppress the values of the erasure components in v by

204 Within or Beyond the Packing Radius

means of a componentwise multiplication of ψ and v. Thus, for i = 0, . . . , n− 1, let

vi = ψivi

= ψi(ci + ei + fi)

= ψici + ψiei.

Because ψi is zero at the erasure locations, the values of the erased symbols are not

relevant to this equation. Define the modified codeword by ci = ψici and the modified

error word by ei = ψiei. The modified senseword becomes

vi = ci + ei i = 0, . . . , n− 1.

This equation puts the problem into the form of a problem already solved, provided

there are enough syndromes.

To choose an appropriate ψ , define the erasure-locator polynomial

�(x) =
ρ∏

ℓ=1

(1− xωiℓ) =
n−1∑

j=0

�jx
j,

where the indices iℓ for ℓ = 1, . . . , ρ point to the erasure locations. The inverse Fourier

transform of the vector � has component ψi equal to zero whenever i is an erasure

location and ψi is not equal to zero otherwise. This is the ψi that was required earlier.

The equation

vi = ψici + ei

becomes

V = � ∗ C +E

in the transform domain. Because �(x) is a polynomial of degree ρ, the vector �

is nonzero only in a block of ρ + 1 consecutive components (from j = 0 to j = ρ).

Because c is a codeword of a Reed–Solomon code, C is zero in a defining set of dmin−1

cyclically consecutive components. Therefore the nonzero components of C lie in a

cyclically consecutive block of length at most n−dmin+1. The convolution � ∗C has

its nonzero components within a block consisting of at most n−dmin+1+ρ cyclically

consecutive components. Thus the convolution � ∗ C is zero in a block of dmin−1−ρ

consecutive components. This means that if ν is any integer satisfying

ν ≤ (dmin − 1− ρ)/2,

then it is possible to decode ν errors in c.

205 4.7 Decoding beyond the packing radius

Any errors-only Reed–Solomon decoder will recover c̄ from v̄ if ν satisfies this

inequality. In particular, one may use any procedure that computes the error-locator

polynomial �(x) from v̄. Once the error-locator polynomial �(x) is known, it can be

combined with the erasure-locator polynomial. Define the error-and-erasure locator

polynomial �(x) as follows:

�(x) = �(x)�(x).

The error-and-erasure locator polynomial now plays the same role that the error-locator

polynomial played before. The zeros of �(x) point to the locations that have either

errors or erasures. Because λi is zero if i is the location of either an error or an erasure,

λi(ei + fi) = 0. The convolution theorem then leads to

� ∗ (E + F) = 0,

where the left side is a cyclic convolution. Because �0 = 1 and �j = 0 for j > ν + ρ,

this can be written in the form of a cyclic recursion:

Ej + Fj = −
ν+ρ∑

k=1

�k(E((j−k)) + F((j−k))).

In this way, the sum Ej + Fj is computed for all j. Because

Cj = Vj − (Ej + Fj) j = 0, . . . , n− 1,

the rest of the decoding is straightforward.

4.7 Decoding beyond the packing radius

Techniques that decode a Reed–Solomon code a small distance beyond the BCH bound

can be obtained by forcing the Berlekamp–Massey algorithm to continue beyond n− k

iterations. After the algorithm has completed n − k iterations, the n − k syndromes

have all been used, and no more syndromes are available. The decoding algorithm can

then be forced to continue analytically, leaving the missing syndromes as unknowns,

and the computation of the locator polynomial becomes a function of these unknowns.

The unknowns are then selected to obtain a smallest-weight error pattern, provided it

is unique, in the symbol field of the code. If the error pattern is not unique, then the

unknowns can be selected in several ways and a list of all codewords at equal distance

from the senseword can be obtained. Because the complexity of this procedure increases

very quickly as one passes beyond the packing radius of the code, only a limited

penetration beyond the packing radius is possible in this way.

206 Within or Beyond the Packing Radius

First, consider a Reed–Solomon code with a defining set {ω0, . . . , ω2t−1} in the field

GF(q). We wish to form the list of all codewords within distance τ of the senseword v.

If τ is larger than t, then there will be some v for which there are at least two codewords

on the decoded list. For other v, for the same τ , there will be no codewords on the

decoded list. If the error pattern has a weight only a little larger than t, then usually

there will be exactly one codeword on the list.

Any polynomial �(x) of degree ν, with ν distinct zeros in GF(q) and �0 = 1, is an

error-locator polynomial for the error pattern if

n−1∑

j=0

�jSr−j = 0 r = ν, . . . , 2t − 1.

If such a polynomial of the smallest degree has a degree at most t, then it is the

polynomial produced by the Berlekamp–Massey algorithm. Even when there are more

than t errors, the polynomial of smallest degree may be unique, and the senseword can

be uniquely decoded whenever that unique polynomial can be found. If the polynomial

of smallest degree is not unique, then there are several possible error patterns, all

of the same weight, that agree with the senseword. To force the Berlekamp–Massey

algorithm beyond the packing radius to radius τ , one can introduce 2(τ − t) additional

syndromes as unknowns. Then solve for �(x) in terms of these unknown syndromes

and choose the unknowns to find all polynomials �(x) with deg �(x) distinct zeros

in the locator field GF(q). Each of these is a valid locator polynomial that produces a

unique error spectrum. The complexity of this approach of forcing missing syndromes

is proportional to q2(τ−t), so it is impractical if τ is much larger than t, even if q

is small.

Other cyclic codes may be decoded beyond the packing radius – or at least beyond

the BCH bound – in the same way. For an arbitrary cyclic code, it is sometimes

true that the packing radius is larger than the BCH radius. Many such codes do not

have good performance, and we need not worry about decoding those. There are a

few such cases, however, where the codes are good. The (23, 12, 7) binary Golay

code, for which the BCH bound is only 5, is one example. Another example is the

(127, 43, 31) binary BCH code, which has a designed distance of only 29. The method of

forcing the Berlekamp–Massey algorithm beyond the designed distance can be used for

these codes.

If the packing radius is larger than the BCH radius and the number of errors is not

larger than the packing radius, then there is a unique locator polynomial, �(x), that

satisfies all the syndromes, even if the syndromes are noncontiguous. The binary Golay

code is a case in point. Although the Berlekamp–Massey algorithm would be a poor

choice to decode the binary Golay code – much better algorithms are available – it is an

instructive example of the technique of syndrome filling. Suppose that the senseword

has three errors. The syndromes are at the zeros of the generator polynomial. Because the

207 4.8 List decoding of some low-rate codes

code is a binary code, syndromes with even index are squares of syndromes occurring

earlier in the same cycle of the index sequence. Only the syndromes with odd index

need be used in the decoding (as was discussed in Section 3.5), and S1, S3, S9, S13 are

the only syndromes with odd index. To form the locator polynomial �(x) for a pattern

of three errors in GF(2), the Berlekamp–Massey algorithm requires syndromes S1,

S3, and S5; all are elements of the locator field GF(211). Syndrome S5, an element of

GF(211), is missing, but can be found by trial and error. There is only one way to assign

a value to S5 such that the linear recursion given by

Sj = −
3∑

k=1

�kSj−k ,

formed by the Berlekamp–Massey algorithm, correctly produces the syndromes S9

and S13. However, trying all 211 possibilities for S5, even in a symbolic way, is rather

clumsy and not satisfactory, so we will not develop this method further for the Golay

code.

Later, in Chapter 12, we shall see that a generalization of syndrome filling to two-

dimensional codes becomes quite attractive in the context of hyperbolic codes and

hermitian codes.

4.8 List decoding of some low-rate codes

We shall now study the topic of bounded-distance decoding beyond the packing radius

from a fresh point of view. Given the senseword v, the task is to find all codewords

c such that the Hamming distance between v and c is not larger than some given τ

that is larger than the packing radius t. Because we have chosen τ larger than t, the

decoded codeword need not be unique. Depending on the particular senseword, it may

be that no codewords are decoded, or that only one codeword is decoded, or that several

codewords are decoded.

An (n, k) narrow-sense Reed–Solomon code can be described as the set of codewords

of blocklength n whose spectra are described by polynomials C(x) of degree at most

k − 1. Let α0, α1, . . . , αn−1 be n distinct elements of the field GF(q). Then the code is

given by

C = {(C(α0), C(α1), . . . , C(αn−1)) | C(x) ∈ GF(q)[x], degC(x) < k < n}.

Under this formulation, the Reed–Solomon codewords are written as

c = (C(α0), C(α1), . . . , C(αn−1)).

208 Within or Beyond the Packing Radius

If α0, α1, . . . , αn−1 are all of the nonzero elements of GF(q), then C is a primitive

cyclic Reed–Solomon code. If α0, α1, . . . , αn−1 are some, but not all, of the nonzero

elements of GF(q), then C is a punctured Reed–Solomon code. If α0, α1, . . . , αn−1 are

all of the elements of GF(q), including the zero element, then C is a singly extended

Reed–Solomon code.

The decoding algorithm of this section recovers the spectrum polynomial from the

senseword v. The recovery of the correct spectrum polynomial C(x) from the senseword

v is equivalent to the recovery of the correct codeword c from the senseword v. From this

point of view, the traditional decoding problem can be restated as follows. Whenever

the number of errors is less than, or equal to, the packing radius t, then find the unique

polynomial C(x) ∈ GF(q)[x] such that the vector c = (C(α0), C(α1), . . . , C(αn−1))

and the senseword v differ in at most t positions. That is, find a polynomial C(x) of

degree less than k such that

‖{i | C(αi) �= vi i = 0, . . . , n− 1}‖ ≤ t,

where ‖S‖ denotes the cardinality of the set S . Clearly, this is an alternative statement

of the task of bounded-distance decoding.

In contrast, our decoding task in this section is the task of list decoding. The task

now is to find all polynomials C(x) such that

‖{i | C(αi) �= vi i = 0, . . . , n− 1}‖ ≤ τ ,

where τ is an integer larger than t. An equivalent statement of this condition is

‖{i | C(αi) = vi i = 0, . . . , n− 1}‖ > n− τ .

This condition may be satisfied by a single C(x), by several C(x), or by none.

The Sudan decoder is a list decoder for low-rate Reed–Solomon codes that, given any

senseword v, will compute all codewords c such that the Hamming distance dH(c, v)

is not larger than some specified integer τ , called the Sudan radius, provided that τ

has not been chosen too large. More directly, the Sudan decoder finds every spectrum

polynomial C(x) corresponding to a codeword, c, within Hamming distance τ of the

senseword v. The Sudan decoder is a version of a bounded-distance decoder with a

radius larger than t, and so sometimes it gives more than one codeword as its output.

By saying that the decoder can correct up to τ errors, we mean that if the number

of errors is less than or equal to τ , then the decoder can find all spectrum polyno-

mials C(x) over GF(q) for which the corresponding codeword satisfies the distance

condition.

For any positive integers a and b, the weighted degree (or the (a, b)-weighted degree)

of the monomial x j′y j′′ is aj′+bj′′. The weighted degree of the polynomial v(x, y) is the

largest weighted degree of any monomial appearing in a term of v(x, y) with a nonzero

209 4.8 List decoding of some low-rate codes

coefficient. The weighted degree of the polynomial v(x, y) is denoted deg(a,b)
v(x, y).

The weighted degree can be used to put a partial order, called the weighted order, on

the polynomials by partially ordering the polynomials by the values of their weighted

degrees. (The partial order becomes a total order if a supplementary rule is given for

breaking ties.)

The Sudan decoder for an (n, k) Reed–Solomon code is based on finding and factoring

a certain bivariate polynomial Q(x, y), called the Sudan polynomial. The complexity

of the algorithm is dominated by the complexity of two tasks: that of finding Q(x, y)

and that of factoring Q(x, y). These tasks will not be regarded as part of the theory of

the Sudan decoder itself, but require the availability of other algorithms for those tasks

that the Sudan decoder can call.

Given the senseword v, by letting xi = αi and yi = vi define n points (xi, yi), for

i = 0, . . . , n − 1, in the affine plane GF(q)2. The xi are n distinct elements of GF(q)

paired with the n components yi = vi of the senseword v, so the n points (xi, yi) are

distinct points of the plane. There exist nonzero bivariate polynomials

Q(x, y) =
∑

j′,j′′
Qj′j′′x

j′y j′′

over GF(q) with zeros at each of these n points. These are the polynomials that sat-

isfy Q(xi, yi) = 0 for i = 0, . . . , n − 1. Because Q(xi, yi) = 0 for i = 0, . . . , n − 1,

we have a set of n linear equations for the unknown coefficients Qj′j′′ . The poly-

nomial Q(x, y) that has the required zeros must exist if the bidegree is constrained

so that the number of coefficients is not too large. We shall require such a bivari-

ate polynomial Q(x, y) for which deg(1,k−1)Q(xi, yi) < n − τ , where k is the

dimension of the Reed–Solomon code. The weighted degree is chosen less than

n − τ to guarantee the existence of a nonzero solution for the set of unknown Qj′j′′ .

Then we will show that every spectrum polynomial C(x) satisfying appropriate dis-

tance conditions for an (n, k) Reed–Solomon code can be extracted from the Sudan

polynomial Q(x, y).

Theorem 4.8.1 (Sudan theorem) Let Q(x, y) be a nonzero bivariate polynomial for

which

deg(1,k−1) Q(x, y) < n− τ

that satisfies Q(xi, yi) = 0 for i = 0, . . . , n−1. Then for any C(x) of degree at most k−1,

the polynomial y − C(x) is a factor of Q(x, y) if the vector c = (C(x0), . . . , C(xn−1))

is within Hamming distance τ of the vector y = (y0, . . . , yn−1).

Proof: Let C(x) be the spectrum polynomial of any codeword c, whose Hamming

distance from the senseword v is at most τ . This means that C(xi) �= yi for at most τ

values of i, or, equivalently, C(xi) = yi for at least n− τ values of i.

210 Within or Beyond the Packing Radius

Because Q(xi, yi) = 0 for i = 0, . . . , n− 1 and C(xi) = yi for at least n− τ values

of i, we have Q(xi, C(xi)) = 0 for at least n − τ values of i. But, for any C(x) with

degree less than k, Q(x, C(x)) is a univariate polynomial in only x, and

deg Q(x, C(x)) ≤ deg(1, k−1) Q(x, y)

< n− τ .

A nonzero polynomial in one variable cannot have more zeros than its degree. Because

Q(x, C(x)) does have more zeros than its largest possible degree, it must be the zero

polynomial.

Now view Q(x, y) as a polynomial in the ring GF(q)[x][y]. This polynomial, which

we now denote Qx(y), is a polynomial in y with its coefficients in GF(q)[x]. Then we

have that Qx(C(x)) is identically zero. Because GF(q)[x] is a ring with identity, the

division algorithm for rings with identity implies that because C(x) is a zero of Qx(y),

then y − C(x) is a factor of Q(x, y). This is the statement that was to be proved. �

The Sudan theorem leads to the structure of the Sudan decoder. This decoder is a list

decoder consisting of three stages. The input to the Sudan decoder is the senseword v.

The senseword v is represented as a set of points in the plane, given by {(αi, vi) | i =
0, . . . , n − 1}, which we write as {(xi, yi) | i = 0, . . . , n − 1}, where xi = αi and

yi = vi.

Step (1) Find any nonzero bivariate polynomial Q(x, y) over GF(q) such that

Q(xi, yi) = 0 for all i = 1, . . . , n, and deg(1,k−1) Q(x, y) < n− τ .

Step (2) Factor the bivariate polynomial Q(x, y) into its irreducible bivariate factors

over GF(q).

Step (3) List all polynomials C(x) whose degrees are less than k for which y − C(x)

is a factor of Q(x, y) and C(xi) �= yi for at most τ values of i.

The Sudan theorem justifies this procedure if the polynomial Q(x, y) with the required

weighted degree exists and can be found. This polynomial will always exist if the

decoding radius τ is not too large. One way to determine a value of τ for which a

suitable Sudan polynomial exists is to choose any integer m smaller than k− 1 and any

integer ℓ such that

(k − 1)

(
ℓ+ 1

2

)
+ (m+ 1)(ℓ+ 1) > n.

Then choose τ satisfying m+ℓ(k−1) < n−τ . We shall see that this choice of τ assures

that the needed Sudan polynomial Q(x, y), exists and can be computed. Specifically, we

will show that the specified conditions on m and ℓ, together with the condition on the

211 4.8 List decoding of some low-rate codes

weighted degree of Q(x, y), combine to ensure the existence of the bivariate polynomial

Q(x, y) with the required properties. The Sudan theorem then states that because Q(x, y)

has these required properties, every polynomial C(x) for which ‖{i | C(xi) �= yi}‖ ≤ τ

corresponds to a factor of Q(x, y) with the form y − C(x). By finding the factors

of this form, one finds the nearby codewords. These are the codewords c for which

dH(v, c) ≤ τ .

To prove the first claim, define

Q(x, y) =
ℓ∑

j′′=0

m+(ℓ−j′′)(k−1)∑

j′=0

Qj′j′′x
j′y j′′ .

Then

deg(1,k−1) Q(x, y) ≤ j′′(k − 1)+ m+ (ℓ− j′′)(k − 1)

= m+ ℓ(k − 1)

< n− τ .

The number of unknown coefficients Qj′j′′ is equal to the number of terms in the double

sum defining Q(x, y). For a fixed j′′, the inner sum has m+ (ℓ− j′′)(k − 1)+ 1 terms.

Then

ℓ∑

j′′=0

[(ℓ− j′′)(k − 1)+ m+ 1] =
ℓ∑

i=0

i(k − 1)+
ℓ∑

i=0

(m+ 1)

= (k − 1)
(

ℓ+ 1

2

)
+ (m+ 1)(ℓ+ 1).

Therefore Q(x, y) has exactly (k − 1)
(

ℓ+1
2

)
+ (m+ 1)(ℓ+ 1) unknown coefficients,

which is larger than n because of how m and ℓ were chosen. On the other hand, the set of

equations Q(xi, yi) = 0 for i = 0, . . . , n− 1 yields a set of n linear equations involving

the more than n coefficients Qj′j′′ . This set of linear equations can be expressed as a

matrix equation

MQ = 0.

By forming a vector Q composed of the unknown coefficients Q j′j′′ , and a matrix M

with elements x
j′

i y
j′′

i , the number of unknowns is larger than the number of equations.

This means that the number of rows of M is smaller than the number of columns of M .

212 Within or Beyond the Packing Radius

Hence at least one nonzero solution exists for the set of Qj′j′′ . This provides the required

Q(x, y).

4.9 Bounds on the decoding radius and list size

The Sudan theorem leads to the Sudan decoder. We have considered the Sudan decoder

only in its most basic form; more advanced versions are known. The Sudan theorem

also leads to statements about the performance of the Sudan decoder in terms of the

relationship between the Sudan decoding radius, the list size, and the code rate. These

statements include the observation that the Sudan radius reduces to the packing radius

for high-rate Reed–Solomon codes. The Sudan theorem also leads to inferences about

the distance structure of a low-rate Reed–Solomon code at distances larger than the

packing radius.

The Sudan polynomial must have at least n + 1 monomials. At the same time,

its (1, k − 1)-weighted degree should be made small. In the previous section, the

polynomial

Q(x, y) =
ℓ∑

j′′=0

m+(ℓ−j′′)(k−1)∑

j′=0

Qj′j′′x
j′y j′′

was used as the Sudan polynomial. This polynomial has a total of (k − 1)
(

ℓ+1
2

)
+

(m + 1)(ℓ + 1) monomials. In this section, we will look more carefully at the Sudan

polynomial and define it slightly differently.

The Sudan theorem says that to correct up to τ errors, one should use a Sudan

polynomial Q(x, y) with deg(1,k−1) Q(x, y) < n − τ . To make τ large, we must make

deg(1, k−1) Q(x, y) small without violating the constraints in the definition of the Sudan

polynomial. To see how best to choose the monomials of Q(x, y), in Figure 4.6 we

show the bivariate monomials x j′y j′′ arranged in the order of increasing (1, k − 1)-

weighted degree, which is defined as j′ + (k − 1)j′′. The ℓth row consists of those

1, x, x2, · · · , xk– 2,

xk– 1, y, xk , xy, xk+1 , x2y, · · · , x2(k– 1)– 1, xk– 2y,

x 2(k– 1), xk– 1y, y 2,· · · , x3(k– 1)– 1, x2(k– 1)– 1y, xk– 2y 2,
...

x(r – 1)(k– 1) , x (r – 2)(k– 1)y, · · · , y r – 1, · · · , x r (k– 1)– 1, x(r – 1)(k– 1)– 1y, · · · , xk– 2y r – 1,
...

Figure 4.6. Bivariate monomials in (1, k − 1)-weighted graded order.

213 4.9 Bounds on the decoding radius and list size

monomials whose (ℓ, k − 1)-weighted degree is smaller than ℓ(k − 1), but not smaller

than (ℓ−1)(k−1). This means that the monomial xi′yi′′ is placed before the monomial

x j′y j′′ if i′ + i′′(k − 1) < j′ + j′′(k − 1) or if i′ + i′′(k − 1) = j′ + j′′(k − 1) and

i′′ < j′′. Groups of monomials with the same (1, k − 1)-weighted degree are clustered

in Figure 4.6 by highlighting each cluster with an underline. For all monomials on

the ℓth row, the number of monomials in the same cluster is ℓ. The total number of

monomials on the ℓth row is exactly ℓ(k − 1). The total number of monomials in the

first ℓ rows is
∑ℓ

i=0 i(k − 1) =
(

ℓ
2

)
(k − 1).

To make the Sudan radius τ large, the (1, k − 1)-weighted degree should be made

small. Thus to obtain the required Q(x, y) with the fewest monomials, one should

pick the n+ 1 monomials appearing first in the ordered list of bivariate monomials as

given in Figure 4.6. The (1, k − 1)-weighted degree of the (n + 1)th monomial is the

largest (1, k − 1)-weighted degree of any linear combination of these monomials. This

elementary method of determining the number of terms needed in Q(x, y) results in

simpler expressions for the Sudan decoding radius, and for the bound on the number

of list-decoded codewords.

Before we give the general expression, we shall work out several examples of

the exact expression for the Sudan decoding radius τ and the upper bound on the

list size.

Example Choose the set of all monomials whose (1, k − 1)-weighted degree is less

than 2(k−1). There are 3(k−1) such monomials. These are the monomials in the first

two rows of Figure 4.6. If 3(k − 1) > n, one can form a linear combination of these

3(k−1) monomials in the first two rows to form a bivariate polynomial, Q(x, y), passing

through n points (xi, yi) for i = 1, . . . , n and satisfying deg(1,k−1) Q(x, y) < 2(k − 1).

Because this Q(x, y) has a y degree equal to 1, the Sudan polynomial can have at most

one factor of the form y − C(x).

Let deg(1,k−1) Q(x, y) = M . By assumption, the leading monomial of Q(x, y) is on

the second row of Figure 4.6. There are k − 1 clusters on the first row, each clus-

ter with a single monomial. There are k − 1 clusters on the second row, each cluster

with two monomials. Of these k − 1 clusters on the second row, M + 1 − (k − 1)

clusters have terms with degree M or less, and so appear in Q(x, y). Therefore,

there are k − 1 + 2(M + 1 − (k − 1)) monomials appearing in a polynomial

Q(x, y) of degree M . We require that the number of monomials be larger than n.

Therefore

k − 1+ 2(M + 1− (k − 1)) > n,

which leads to

M >
n+ k − 3

2
.

214 Within or Beyond the Packing Radius

But M = n− τ − 1, so the Sudan radius can be obtained as

τ = n− 1−M

< n− 1− n+ k − 3

2

= n− k + 1

2
= dmin

2
.

Therefore τ is not larger than the packing radius of the code.

The statement 3(k − 1) > n is equivalent to the statement (k − 1)/n > 1/3. Thus

we see that for an (n, k) Reed–Solomon code with rate k/n > 1/3 + 1/n, the Sudan

decoder can find at most one codeword within a Hamming distance equal to the packing

radius of the code, which is no better than the performance of the conventional locator

decoding algorithms.

Example Consider the set of all monomials whose (1, k − 1)-weighted degree is

less than 3(k − 1). There are 6(k − 1) such monomials as listed in Figure 4.6.

So if 6(k − 1) > n, then there exists a Sudan polynomial, Q(x, y), for which

deg(1,k−1) Q(x, y) < 3(k − 1) and Q(xi, yi) = 0 for i = 1, . . . , n. Because this Q(x, y)

has y degree equal to 2, it can have only two factors of the form y − C(x).

Again, let deg(1,k−1) Q(x, y) = M . By assumption, the leading monomial of Q(x, y)

is on the third row of Figure 4.6, so M is not smaller than 2(k − 1) and not larger than

3(k−1). Thus, referring to Figure 4.6, there are k−1 clusters on the first row, each cluster

with a single monomial. There are k−1 clusters on the second row, each cluster with two

monomials. The number of clusters taken from the third row is M −2(k−1)+1, each

cluster with three monomials. Therefore, the total number of monomials with (1, k−1)-

weighted degree not larger than M is (k − 1)+ 2(k − 1)+ 3(M − 2(k − 1)+ 1). We

require that the number of monomials be larger than n. Therefore

M >
n+ 3k − 6

3
.

But M = n− τ − 1, so the Sudan radius can be obtained as

τ =
⌈2n− 3k + 3

3

⌉
−1 = 2dmin − (k − 1)

3
− 1,

which is larger than the packing radius if 2(k − 1) < dmin.

The inequality 6(k− 1) > n can be expressed as (k− 1)/n > 1/6. We conclude that

if an (n, k) Reed–Solomon code has the rate k/n > 1/6+ 1/n, then the Sudan decoder

can decode at most two codewords with up to τ errors provided 1/6 < (k−1)/n ≤ 1/3.

In particular, the (256, 64, 193) extended Reed–Solomon code over GF(256) has

a packing radius equal to 96 and a Sudan radius equal to 107. The Sudan decoder

can correct up to 107 errors. Whenever there are 96 or fewer errors, the decoder will

215 4.9 Bounds on the decoding radius and list size

produce one codeword. When there are more than 96 errors, but not more than 107

errors, the decoder may sometimes produce two codewords, but this is quite rare. Even

if there are 107 errors, the decoder will almost always produce only one codeword. We

can conclude that there are at most two codewords of a (256, 64, 193) Reed–Solomon

code within Hamming distance 107 of any vector in the vector space GF(256)256. This

means that any sphere of radius 107 about any point of the space will contain at most

two codewords of an extended (256, 65, 193) Reed–Solomon code.

In general, one may consider the set of all bivariate monomials whose (1, k − 1)-

weighted degree is less than ℓ(k − 1). By generalizing the above examples, one can

determine the relationship between the rate of the Reed–Solomon code and the largest

number of codewords that the Sudan decoder can produce. Specifically, we have the

following proposition.

Proposition 4.9.1 For any (n, k) Reed–Solomon code and any integer ℓ larger than

1, if

2n

ℓ(ℓ+ 1)
+ 1 < k ≤ 2n

ℓ(ℓ− 1)
+ 1,

then there are at most ℓ− 1 codewords up to the Sudan decoding radius τ , which is

τ =
⌈ (ℓ− 1)(2n− ℓk + ℓ)

2ℓ

⌉
− 1.

Proof: To ensure that the bivariate polynomial Q(x, y) has more than n free coefficients,

and has (1, k − 1)-weighted degree M , select at least the first n + 1 monomials of

Figure 4.6. The total number of monomials on the ℓth row is ℓ(k − 1), and the total

number of monomials on the first ℓ rows is
(

ℓ
2

)
(k − 1). It is necessary to choose

M ≥ (ℓ− 1)(k − 1), because, otherwise, the number of unknown coefficients cannot

be greater than n. It is sufficient to choose M < ℓ(k−1). Thus the number of monomials

with (1, k − 1)-weighted degree not larger than M is given by

ℓ(ℓ− 1)

2
(k − 1)+ ℓ(M − (ℓ− 1)(k − 1)+ 1) > n,

where the first term on the left is the number of monomials in the first ℓ − 1 rows in

Figure 4.6 and M − (ℓ − 1)(k − 1) + 1 is the number of clusters in the ℓth row that

have monomials of degree M or less. Thus

M >
n

ℓ
+ (ℓ− 1)(k − 1)

2
− 1.

Substituting M = n− τ − 1, we obtain

τ <
(ℓ− 1)(2n− ℓk + ℓ)

2ℓ
,

216 Within or Beyond the Packing Radius

or, equivalently,

τ =
⌈ (ℓ− 1)(2n− ℓk + ℓ)

2ℓ

⌉
− 1.

By the properties imposed on Q(x, y), all codewords within Hamming distance τ of

any vector in the vector space GF(q)n correspond to factors of Q(x, y) with the form

y − C(x). But the (1, k − 1)-weighted degree of Q(x, y) is less than ℓ(k − 1), which

implies that if Q(x, y) is regarded as a polynomial in y over the ring GF(q)[x], then its

degree is at most ℓ− 1. Such a polynomial can have at most ℓ− 1 factors of the form

y − C(x). Therefore for a Reed–Solomon code whose rate satisfies the inequality of

the proposition, the Sudan decoder can find at most ℓ− 1 codewords. This completes

the proof of the proposition. �

Except for a few cases, the bound on the list size in Proposition 4.9.1 is equal to the

y degree of the optimal Q(x, y). Note, however, that the first ℓ−1 monomials in the ℓth

row of Figure 4.6 have a y degree at most ℓ− 2, which is why the bound is not always

tight.

Let Nmax be the largest number of Reed–Solomon codewords in any sphere of Sudan

radius τ . By an argument similar to the proof of the above proposition, we immediately

have the following corollary.

Corollary 4.9.2 For any (n, k) Reed–Solomon code such that

2n

ℓ(ℓ+ 1)
+ 1 < k ≤ 2n

ℓ(ℓ− 1)
+ 1,

then Nmax equals ℓ− 1 if

k

n
≤ 2

ℓ(ℓ− 1)
+ 1

n

(
1− 2

ℓ

)
,

and otherwise equals ℓ− 2.

Proof: If n ≥ [ℓ(ℓ− 1)/2](k − 1)+ ℓ− 1, then the y degree of the optimal Q(x, y) is

ℓ− 1 and otherwise it is ℓ− 2. �

Although the corollary allows the possibility that Nmax = ℓ − 2, the case that

Nmax = ℓ − 1 is much more common. For example, among all Reed–Solomon codes

of blocklength 256 and dimension k ≥ 27, the upper bound fails to be tight for only

one code, namely when k is 86.

Given a blocklength n, we can easily find the range of k for various values of the

integer ℓ. This can be seen in Table 4.2.

The Sudan theorem can be used to provide a statement about the geometrical con-

figuration of codewords in a Reed–Solomon code, which is given in the following

proposition.

217 4.10 The MacWilliams equation

Table 4.2. Code rate versus r

ℓ Code rate Range of k Nmax

2
k

n
>

1

3
+ 1

n

n+ 3

3
< k 1

3 1
6 +

1
n < k

n ≤
1
3 +

1
n

n+ 1

3
< k ≤ n+ 3

3
1

n+ 6

6
< k ≤ n+ 1

3
2

4 1
10 +

1
n < k

n ≤
1
6 +

1
n

n+ 3

6
< k ≤ n+ 6

6
2

n+ 10

10
< k ≤ n+ 3

6
3

Proposition 4.9.3 Suppose that the integers n > k > 1 satisfy

ℓ

2
≤ n

k − 1
<

ℓ+ 1

2

for an integer ℓ ≥ 2. Then any sphere of a radius less than (ℓ − 1)(2n − ℓk + ℓ)/2ℓ

about any point of the vector space GF(q)n contains at most ℓ − 1 codewords of any

(n, k) Reed–Solomon code over GF(q).

Proof: If an (n, k) Reed–Solomon code has parameters satisfying the stated inequality,

then it has a rate satisfying the inequality in the corollary, and the conclusion follows

from the previous proposition. �

4.10 The MacWilliams equation

The weight distribution of a maximum-distance code is given in Section 4.1. For codes

that are not maximum-distance codes, we do not have anything like Theorem 4.1.1.

For small n, the weight distribution can be found by a computer search, but for large n

this becomes impractical quickly. In general, we do not know the weight distribution

of a code of moderate blocklength.

The strongest tool we have is an expression of the relationship between the weight

distribution of a linear code and the weight distribution of its dual code–an expression

known as the MacWilliams equation. The MacWilliams equation holds for any linear

code over a finite field. The MacWilliams equation also holds for linear codes over

certain rings, in particular Z4, provided the notions of an inner product and a dual code

are appropriately defined.

It is clear that a linear code, C, implicitly determines its dual code, C⊥, and so

the weight distribution of C⊥ is implicit in C. The MacWilliams equation makes this

connection of weight distributions explicit. It completely describes the relationship

218 Within or Beyond the Packing Radius

between the weight distribution of the code C and the weight distribution of the dual

code C⊥.

Before we can derive the MacWilliams equation, we need to introduce the ideas of

the intersection and direct sum of two subspaces of a vector space and to prove some

properties.

Let U and V be any two linear subspaces of Fn. Then U ∩V , called the intersection

of U and V , denotes the set of vectors that are in both U and V ; and U + V , called

the direct sum, denotes the set of all linear combinations au+ bv, where u and v are in

U and V , respectively, and a and b are scalars. Both U ∩ V and U + V are subspaces

of Fn.

Theorem 4.10.1

dim[U ∩ V] + dim[U + V] = dim[U] + dim[V].

Proof: A basis for U ∩V has dim[U ∩V] vectors. Because U ∩V is contained in both

U and V , this basis can be extended to a basis for U by adding dim[U] − dim[U ∩ V]
more basis vectors, none of which are in V . Similarly, it can be extended to a basis for

V by adding dim[V] − dim[U ∩V]more basis vectors, none of which are in U . All of

these basis vectors taken together form a basis for U + V . That is,

dim[U + V] = dim[U ∩ V] + (dim[U] − dim[U ∩ V])+ (dim[V] − dim[U ∩ V]),

from which the theorem follows. �

Theorem 4.10.2

U⊥ ∩ V⊥ = (U + V)⊥.

Proof: U is contained in U + V , and thus (U + V)⊥ is contained in U⊥. Similarly,

(U + V)⊥ is contained in V⊥. Therefore (U + V)⊥ is contained in U⊥ ∩ V⊥. On

the other hand, write an element of U + V as au + bv, and let w be any element of

U⊥ ∩ V⊥. Then w · (au + bv) = 0, and thus U⊥ ∩ V⊥ is contained in (U + V)⊥.

Hence the two are equal. �

Let Aℓ for ℓ = 0, . . . , n and Bℓ for ℓ = 0, . . . , n be the weight distributions of the

linear code C and its dual code C⊥, respectively. Define the weight polynomials

A(x) =
n∑

ℓ=0

Aℓxℓ and B(x) =
n∑

ℓ=0

Bℓxℓ.

The following theorem relates these two polynomials.

219 4.10 The MacWilliams equation

Theorem 4.10.3 (MacWilliams) The weight polynomial A(x) of an (n, k) linear code

over GF(q) and the weight polynomial of its dual code are related as follows:

qkB(x) = [1+ (q− 1)x]nA

(
1− x

1+ (q− 1)x

)
.

Proof: The proof will be in two parts. In part (1), we shall prove that

n∑

i=0

Bi

(
n− i

m

)
= qn−k−m

n∑

j=0

Aj

(
n− j

n− m

)

for m = 0, . . . , n. In part (2), we shall prove that this equates to the condition of the

theorem.

Part (1) For a given m, partition the integers from zero to n − 1 into two subsets,

Tm and T c
m , with set Tm having m elements. In the vector space GF(q)n, let V be

the m-dimensional subspace, consisting of all vectors that have zeros in components

indexed by the elements of T c
m . Then V⊥ is the (n−m)-dimensional subspace consisting

of all vectors that have zeros in components indexed by the elements of Tm.

Because

(C ∩ V)⊥ = C⊥ + V⊥,

we can write

dim[C⊥ + V⊥] = n− dim[C ∩ V].

On the other hand,

dim[C⊥ + V⊥] = (n− k)+ (n− m)− dim[C⊥ ∩ V⊥].

Equating these yields

dim[C⊥ ∩ V⊥] = dim[C ∩ V] + n− k − m.

For each choice of Tm, there are qdim[C∩V] vectors in C ∩V and qdim[C⊥∩V⊥] vectors

in C⊥ ∩ V⊥. Consider {Tm} to be the collection of all such Tm. Enumerate the vectors

in each of the C ∩ V that can be produced from some subset Tm in the collection {Tm}.
There will be

∑
{Tm} qdim[C∩V] vectors in the enumeration, many of them repeated

appearances. Similarly, an enumeration of all vectors in each C⊥ ∩ V⊥ produced from

Tm in {Tm} is given by

∑

{Tm}
qdim[C⊥∩V⊥] = qn−k−m

∑

{Tm}
q[C∩V].

220 Within or Beyond the Packing Radius

To complete part (1) of the proof, we must evaluate the two sums in the equation. We

do this by counting how many times a vector of weight j in C shows up in a set C ∩ V .

A vector of weight j is in C ∩ V whenever the j positions fall within the m positions

in which vectors in V are allowed to be nonzero, or, equivalently, whenever the n−m

positions where vectors in V must be zero fall within the n − j zero positions of the

codeword. There are
(

n−j
n−m

)
choices for the n−m zero components, and thus the given

codeword of weight j shows up in
(

n−j
n−m

)
sets. There are Aj codewords of weight j.

Therefore

∑

{Tm}
qdim[C∩V] =

n∑

j=0

Aj

(
n− j

n− m

)
.

Similarly, we can count the vectors in C⊥ ∩ V⊥. The earlier equation then becomes

n∑

i=0

Bi

(
n− i

m

)
= qn−k−m

n∑

j=0

Aj

(
n− j

n− m

)
.

Because m is arbitrary, the first part of the proof is complete.

Part (2) Starting with the conclusion of part (1), write the polynomial identity as

follows:

n∑

m=0

ym

n∑

i=0

Bi

(
n− i

m

)
=

n∑

m=0

ymqn−k−m

n∑

j=0

Aj

(
n− j

n− m

)
.

Interchange the order of the summations:

n∑

i=0

Bi

n−i∑

m=0

(
n− i

m

)
ym = qn−k

n∑

j=0

Aj

n∑

m=0

(
n− j

n− m

)(
y

q

)n (
q

y

)n−m

,

recalling that
(

n−i
m

)
= 0 if m > n− i. Using the binomial theorem, this becomes

n∑

i=0

Bi(1+ y)n−i = qn−k

n∑

j=0

Aj

(
y

q

)n (
1+ q

y

)n−j

.

Finally, make the substitution y = (1/x)− 1 to get

qkx−n

n∑

i=0

Bix
i = qn

n∑

j=0

Aj

(
1− x

xq

)n (1+ (q− 1)x

1− x

)n−j

221 Problems

or

qk

n∑

i=0

Bix
i = (1+ (q− 1)x)n

n∑

j=0

Aj

(
1− x

1+ (q− 1)x

)j

,

which completes the proof of the theorem. �

We close this section with a simple application of Theorem 4.10.3. By explicitly

listing the codewords, we can see that the weight distribution of the Hamming (7, 4)

code is given by

(A0, A1, . . . , A7) = (1, 0, 0, 7, 7, 0, 0, 1),

and thus

A(x) = x7 + 7x4 + 7x3 + 1.

The dual code is the binary cyclic code known as the simplex code. Its generator

polynomial

g(x) = x4 + x3 + x2 + 1

has zeros at α0 and α1. The weight polynomial B(x) of the simplex code is given by

24B(x) = (1+ x)7A

(
1− x

1− x

)

= (1− x)7 + 7(1+ x)3(1− x)4 + 7(1+ x)4(1− x)3 + (1+ x)7.

This reduces to

B(x) = 7x4 + 1.

The weight distribution of the (7,3) simplex code consists of one codeword of weight 0

and seven codewords of weight 4.

Problems

4.1 Show that the number of codewords of weight ℓ in an (n, k, d) Reed–Solomon

code is equal to the number of vectors C of length n having linear complexity ℓ

and Cj0 = Cj0+1 = · · · = Cj0+d−2 = 0.

4.2 Use the MacWilliams equation and Table 2.4 to compute the weight distribution

of the dual of the (24, 12, 8) extended Golay code. Why is the answer obvious?

222 Within or Beyond the Packing Radius

4.3 Verify that the sequence of terms Aℓ in the weight distribution formula for a

maximum-distance (n, k) code sums to qk . Why must this be so?

4.4 What is the decoding radius for the Sudan decoder for a (7, 3) Reed–Solomon

code?

4.5 Consider a (64, 59, 5) Reed–Solomon code over GF(64).

(a) How many codewords have weight 5?

(b) How many codewords have weight 6?

(c) How many error patterns have weight 3?

(d) What fraction of error patterns of weight 3 is undetected?

(e) What is the probability that a random senseword will be decoded?

4.6 (a) What is the area of a circle of radius 1 in R2? What is the area of a circle of

radius 1 − ǫ? What fraction of the area of a unit circle lies within ǫ of the

circle’s edge?

(b) What is the volume of a sphere of radius 1 in R3? What is the volume of

a sphere of radius 1 − ǫ? What fraction of the volume of a unit sphere lies

within ǫ of the surface?

(c) Repeat this exercise in Rn. What fraction of the hypervolume of a

hypersphere lies within ǫ of the surface in the limit as n goes to infinity?

4.7 (a) Two circles of radius 1 in R2 have their centers separated by distance 2− ǫ,

where ǫ is positive. What is the area of the overlap as a fraction of the area

of a circle?

(b) Two spheres of radius 1 in R3 have their centers separated by distance 2−ǫ,

where ǫ is positive. What is the area of overlap as a fraction of the volume

of a sphere?

(c) Repeat this exercise in Rn.

4.8 (a) Form a cap of a unit circle in the euclidean plane by placing a line perpen-

dicular to a radius halfway between the origin and the circumference. What

is the ratio of the area of this cap to the area of the circle?

(b) Repeat this calculation for a unit sphere.

(c) What can be said about the corresponding calculation for a hypersphere of

dimension n in the limit as n goes to infinity?

4.9 (a) Partition a unit square in R2 into four equal squares. Draw the maximum

circle in each of the four squares. Draw another circle between and touching

the four circles. What is the radius of this circle?

(b) Partition a unit cube in R3 into eight equal cubes. Draw the maximum sphere

in each of the eight cubes. Draw another sphere between and touching the

eight spheres. What is the radius of this sphere?

(c) Repeat this exercise in Rn. Does the central sphere ever have a radius larger

than 1/2? What is the radius of the central sphere in the limit as n goes to

infinity?

223 Notes

4.10 Let C(x) be a univariate polynomial over F , and let Q(x, y) be a bivariate

polynomial over F such that Q(x, C(x)) = 0. Prove that y − C(x) is a factor of

Q(x, y).

4.11 If two binary codes have the same weight distribution, do they necessarily have

the same distance distribution? Give two (5, 2, 2) binary codes with the same

weight distributions and different distance distributions.

4.12 A distance-invariant code is one for which the distribution of distances from one

codeword to other codewords does not depend on the specified codeword.

(a) Is every linear code a distance-invariant code?

(b) Is the (15, 8, 5) nonlinear code given in Section 2.11 a distance-invariant

code?

(c) Prove that the Gray image of a linear code over Z4 is always a distance-

invariant code.

4.13 A (256, 256−2t) Reed–Solomon code over the field GF(257) is used to encode

datawords of eight-bit symbols into codewords of eight-bit symbols. Whenever

a check symbol takes on the value 256, it is replaced by the eight-bit symbol 0.

How many codewords are encoded with a single error? How many codewords

are encoded with ν errors? How does this reduce the performance of the code?

4.14 Describe how to use the Sudan decoder for decoding Reed–Solomon codes on

a channel that makes both errors and erasures.

4.15 Describe how to use the Sakata algorithm (described in Section 8.4) to compute

a basis for the ideal of all bivariate polynomials that has zeros at n given points

of the bicyclic plane (see also Problem 8.11).

Notes

The formula for the weight distribution of a maximum-distance code was first published

in a laboratory report by Assmus, Mattson, and Turyn (1965), and was independently

discovered the following year by Forney (1966) and by Kasami, Lin, and Peterson

(1966). MacWilliams derived her equation in 1963 (MacWilliams, 1963). Blahut (1984)

reformulated erasure decoding so that it is a simple preliminary initialization phase of

the Berlekamp–Massey algorithm. The Sudan approach to list decoding first appeared

in 1997, and was improved in Guruswami and Sudan (1999). Asimple description of the

structure and performance was given by W. Feng (Feng, 1999; Feng and Blahut, 1998).

Because of the complicated polynomial computations, the original Sudan decoder did

not initially appear in a mature form suitable for practical implementation. Later work

by Koetter, and by Roth and Ruckenstein (2000), simplified these computations and

made the decoder more attractive.

5 Arrays and the Two-Dimensional
Fourier Transform

An array v = [vi′i′′] is a doubly indexed set of elements from any given alphabet. The

alphabet may be a field F , and this is the case in which we are interested. We will

be particularly interested in arrays over the finite field GF(q). An array is a natural

generalization of a sequence; we may refer to an array as a two-dimensional sequence

or, with some risk of confusion, as a two-dimensional vector.

An array may be finite or infinite. We are interested in finite n′ by n′′ arrays, and

in those infinite arrays [vi′i′′] that are indexed by nonnegative integer values of the

indices i′ and i′′. An infinite array is periodic if integers n′ and n′′ exist such that

vi′+n′,i′′+n′′ = vi′i′′ . Any finite array can be made into a doubly periodic infinite array

by periodically replicating it on both axes.

The notion of an array leads naturally to the notion of a bivariate polynomial; the ele-

ments of the array v are the coefficients of the bivariate polynomial v(x, y). Accordingly,

we take the opportunity in this chapter to introduce bivariate polynomials and some

of their basic properties. The multiplication of bivariate polynomials is closely related

to the two-dimensional convolution of arrays. Moreover, the evaluation of bivariate

polynomials, especially bivariate polynomials over a finite field, is closely related to

the two-dimensional Fourier transform.

This chapter is restricted to two-dimensional arrays, bivariate polynomials, and the

two-dimensional Fourier transform. However, it is possible to define an array in more

than two dimensions. Indeed, nearly everything in this and subsequent chapters gen-

eralizes to more than two dimensions, much of it in a very straightforward manner,

although there may be a few pitfalls along the way. However, for concreteness, we

prefer to stay in two dimensions so that the ideas are more accessible.

5.1 The two-dimensional Fourier transform

If the field F (or an extension of the field F) contains elements β and γ of order

n′ and n′′, respectively, then the n′ by n′′ array v has a bispectrum V , which is

another n′ by n′′ array whose components are given by the following two-dimensional

225 5.1 The two-dimensional Fourier transform

Fourier transform:

Vj′j′′ =
n′−1∑

i′=0

n′′−1∑

i′′=0

β i′j′γ i′′j′′
vi′i′′

j′ = 0, . . . , n′ − 1

j′′ = 0, . . . , n′′ − 1.

The two-dimensional Fourier transform relationship will be represented by a doubly

shafted arrow,

v⇔V ,

instead of the singly shafted arrow used for the one-dimensional Fourier transform.

The two-dimensional Fourier transform can be written as follows:

Vj′j′′ =
n′−1∑

i′=0

β i′j′

n′′−1∑

i′′=0

γ i′′j′′
vi′i′′

 ,

or as

Vj′j′′ =
n′′−1∑

i′′=0

γ i′′j′′

n′−1∑

i′=0

β i′j′
vi′i′′

 .

These expressions are arranged to emphasize that several copies of the one-dimensional

Fourier transform are embedded within the two-dimensional Fourier transform. Thus

the first rearrangement suggests an n′′-point one-dimensional Fourier transform on

each row, followed by an n′-point one-dimensional Fourier transform on each column.

The second rearrangement suggests an n′-point one-dimensional Fourier transform on

each column followed by an n′′-point one-dimensional Fourier transform on each row.

Because each of the one-dimensional Fourier transforms can be inverted by the inverse

one-dimensional Fourier transform, it is apparent that the inverse two-dimensional

Fourier transform is given by

vi′i′′ =
1

n′
1

n′′

n′−1∑

j′=0

n′′−1∑

j′′=0

β−i′j′γ−i′′j′′Vj′j′′
i′ = 0, . . . , n′ − 1

i′′ = 0, . . . , n′′ − 1.

The field elements n′ and n′′ in the denominator are understood to be the sum of n′ ones

and of n′′ ones, respectively, in the field F .

When n′ = n′′ = n, it is simplest – though not necessary – to choose the same

element for β and γ . Then with ω an element of order n, we write the two-dimensional

Fourier transform as

Vj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ωi′j′ωi′′j′′
vi′i′′

j′ = 0, . . . , n− 1

j′′ = 0, . . . , n− 1,

226 Arrays and the Two-Dimensional Fourier Transform

and the inverse two-dimensional Fourier transform as

vi′i′′ =
1

n2

n−1∑

j′=0

n−1∑

j′′=0

ω−i′j′ω−i′′j′′Vj′j′′
i′ = 0, . . . , n− 1

i′′ = 0, . . . , n− 1.

The inverse two-dimensional Fourier transform is very similar to the two-

dimensional Fourier transform. This similarity can be emphasized by writing it in

the following form:

v((n′−i′))((n′′−i′′)) =
1

n2

n′−1∑

j′=0

n′′−1∑

j′′=0

ωi′j′ωi′′j′′Vj′j′′ .

Accordingly, we define the reciprocal array v as the n′ by n′′ array with components

ṽi′i′′ = v((n′−i′))((n′′−i′′)).

The reciprocal array is formed simply by reversing all rows and reversing all columns.

Alternatively, one can write the inverse two-dimensional Fourier transform as

follows:

vi′i′′ =
1

n2

n′−1∑

j′=0

n′′−1∑

j′′=0

ωi′j′ωi′′j′′V((n′−j′))((n′′−j′′)).

Accordingly, we define the reciprocal bispectral array as the n′ by n′′ array with

components

Ṽj′j′′ = V((n′−j′))((n′′−j′′)).

The relationship ṽ⇔ Ṽ then follows immediately.

5.2 Properties of the two-dimensional Fourier transform

Many useful properties of the two-dimensional Fourier transform carry over from

the one-dimensional Fourier transform. Such properties include linearity, modulation,

translation, and the convolution property. The translation property, for example, says

that the array [v((i′−ℓ′))((i′′−ℓ′′))] transforms into the array [Vj′j′′β
ℓ′j′γ ℓ′′j′′]. The meaning

of the double parentheses notation should be apparent; in the first index, the double

parentheses denote modulo n′, and in the second they denote modulo n′′. A list of the

properties follows.

227 5.2 Properties of the 2D Fourier transform

(1) Inversion:

vi′i′′ =
1

n′n′′

n′−1∑

j′=0

n′′−1∑

j′′=0

β−i′j′γ−i′′j′′Vj′j′′
i′ = 0, . . . , n′ − 1

i′′ = 0, . . . , n′′ − 1,

where

n′ = 1+ 1+ 1+ · · · + 1(n′ terms)

n′′ = 1+ 1+ 1+ · · · + 1(n′′ terms).

(2) Linearity:

λv+ µv′ ⇔ λV + µV ′.

(3) Modulation:

[vi′i′′β
i′ℓ′γ i′′ℓ′′] ⇔ [V((j′+ℓ′))((j′′+ℓ′′))].

(4) Translation:

[v((i′−ℓ′))((i′′−ℓ′′))] ⇔[Vj′j′′β
ℓ′j′γ ℓ′′j′′].

(5) Convolution property:

e = f ∗ ∗ g ⇔ Ej′j′′ = Fj′j′′Gj′j′′
j′ = 0, . . . , n′ − 1

j′′ = 0, . . . , n′′ − 1,

where

[f ∗ ∗g]i′i′′ =
n′−1∑

ℓ′=0

n′′−1∑

ℓ′′=0

f((i′−ℓ′))((i′′−ℓ′′))gℓ′ℓ′′ .

(6) Polynomial zeros: the bivariate polynomial v(x, y) =
∑n′−1

i′=0

∑n′′−1
i′′=0 vi′i′′x

i′yi′′ has

a zero at (β j′ , γ j′′) if and only if Vj′j′′ = 0. Likewise the bivariate polynomial

V (x, y) =
∑n′−1

j′=0

∑n′′−1
j′′=0 Vj′j′′x

j′yj′′ has a zero at (β−i′ , γ−i′′) if and only if vi′i′′ = 0.

(7) Linear complexity: the weight of the square array v is equal to the cyclic complexity

of its two-dimensional Fourier transform V .

(8) Reciprocation:

[
v((n′−i′)),i′′

]
⇔
[
V((n′−j′)),j′′

]
,

[
vi′,((n′′−i′′))

]
⇔
[
Vj′,((n′′−j′′))

]
.

228 Arrays and the Two-Dimensional Fourier Transform

(9) Twist property: suppose n′ = n′′ = n. Then

[vi′,((i′′+bi′))] ⇔[V((j′−bj′′)),j′′],

where the indices are cyclic (modulo n).

Most of these properties are immediate counterparts of properties of the one-

dimensional Fourier transform. The linear complexity property, however, is not

straightforward; it will take some effort in Chapter 7 to explain the linear complexity

and the cyclic complexity of a two-dimensional array.

The twist property has no counterpart in one dimension. The twist property says that

if the i′th row of a square n by n array is cyclically shifted by bi′ places, then the j′′th
column of the Fourier transform is cyclically shifted by−bj′′ places. The twist property

is proved by defining the new array v′ with the components given by

v
′
i′i′′ = vi′,((i′′+bi′)),

which has the following Fourier transform:

V ′j′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ωi′j′ωi′′j′′
vi′,((i′′+bi′))

=
n−1∑

i′=0

n−1∑

i′′=0

ωi′(j′−bj′′)ω(i′′+bi′)j′′
vi′,((i′′+bi′)).

But

n−1∑

i′′=0

ω(i′′+bi′)j′′
vi′,((i′′+bi′)) =

n−1∑

i′′=0

ωi′′j′′
vi′i′′

because the offset by bi′ simply amounts to a rearrangement of the terms, and this does

not change the sum. Therefore

V ′j′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ωi′(j′−bj′′)ωi′′j′′
vi′i′′

= V((j′−bj′′)),j′′ ,

as was to be proved.

229 5.3 Bivariate and homogeneous trivariate polynomials

5.3 Bivariate and homogeneous trivariate polynomials

A bivariate monomial is a term of the form xi′yi′′ . The degree of the monomial xi′yi′′

is i′ + i′′. For fixed positive integers a and b, the weighted degree of the monomial

xi′yi′′ is ai′ + bi′′. A bivariate polynomial, v(x, y), is a linear combination of distinct

bivariate monomials. The coefficient of the term vi′i′′x
i′yi′′ is the field element vi′i′′ . The

bi-index of the term vi′i′′x
i′yi′′ is the pair of integers (i′, i′′). The degree (or total degree)

of the polynomial v(x, y), denoted deg v(x, y), is the largest degree of any monomial

appearing in a term of v(x, y) with a nonzero coefficient. The weighted degree of

the polynomial v(x, y), denoted deg(a,b)
v(x, y), is the largest weighted degree of any

monomial appearing in a term of v(x, y) with a nonzero coefficient.

The bivariate polynomial v(x, y) may be regarded as a polynomial in x whose coef-

ficients are polynomials in y. The degree of this univariate polynomial is called the x

degree of v(x, y). The x degree and the y degree, taken together, form the pair (sx, sy),

called the componentwise degree of v(x, y). The degree of the polynomial cannot be

larger than sx + sy, but it need not equal sx + sy because the polynomial v(x, y) need

not include the monomial xsx ysy .

In Chapter 7, we will study ways to put an order on the monomials. Only then can

we define the notions of leading term and monic polynomial, as well as another notion

that will be introduced called the bidegree of a bivariate polynomial. The degree, the

componentwise degree, and the bidegree ofv(x, y) will be denoted degv(x, y), compdeg

v(x, y), and bideg v(x, y), respectively.

The bivariate polynomial v(x, y) is reducible over the field F if v(x, y) =
a(x, y)b(x, y) for some polynomials a(x, y) and b(x, y), both over the field F , and

neither of which has degree 0. A nonconstant polynomial that is not reducible is called

an irreducible polynomial. If a polynomial is not reducible in the field F , then it may

be reducible when viewed in a sufficiently large algebraic extension of the field F . The

nonconstant polynomial v(x, y) over the field F is called absolutely irreducible if it is

not reducible in any algebraic extension of the field F . The polynomials a(x, y) and

b(x, y), if they exist, are factors of v(x, y), and are called irreducible factors if they

themselves are irreducible. Any nonconstant polynomial can be written uniquely as a

product of its irreducible factors, possibly repeated. We will state this formally as the

unique factorization theorem for bivariate polynomials after giving the definition of a

monic bivariate polynomial in Section 7.2.

The point (β, γ) ∈ F2 is called a zero or affine zero (or bivariate zero) of the

polynomial v(x, y) if v(β, γ) = 0, where

v(β, γ) =
∑

i′

∑

i′′
vi′i′′β

i′γ i′′ .

230 Arrays and the Two-Dimensional Fourier Transform

The bivariate polynomial v(x, y) over the field F is also a bivariate polynomial over an

extension field of F , so it may have zeros over the extension field that are not in the

given field. When it is necessary to emphasize that the zeros are those in the field of the

polynomial, they may be called rational points, or rational zeros, of the polynomial.

The point (β, γ) is called a singular point of the polynomial v(x, y) if it is a zero of

v(x, y), and, moreover, the partial derivatives evaluated at β, γ satisfy

∂v(β, γ)

∂x
= 0

∂v(β, γ)

∂y
= 0.

(A formal partial derivative of a polynomial is defined in the same way as a formal

derivative.) A nonsingular point of the bivariate polynomial v(x, y) is called a regular

point of v(x, y). Passing through the regular affine point (β, γ) is the line

(x − β)
∂v(β, γ)

∂x
+ (y − γ)

∂v(β, γ)

∂y
= 0,

called the tangent line to v(x, y) at the point (β, γ).

We shall want to define a nonsingular polynomial as one with no singular points.

Before doing this, however, we must enlarge the setting to the projective plane. In a

certain sense, which will become clear, the bivariate polynomial v(x, y) may want to

have some additional zeros at “infinity.” However, a field has no point at infinity, so

these zeros are “invisible.” To make the extra zeros visible, we will change the bivariate

polynomial into a homogeneous trivariate polynomial and enlarge the affine plane to

the projective plane. A homogeneous polynomial is a polynomial in three variables:

v(x, y, z) =
∑

i′

∑

i′′

∑

i′′′
vi′i′′i′′′x

i′yi′′zi′′′ ,

for which v(λx, λy, λz) = λi
v(x, y, z) for some i. This means that every term of a trivari-

ate homogeneous polynomial has the same degree; if the degree is i, then vi′i′′i′′′ = 0

unless i′ + i′′ + i′′′ = i. Therefore vi′i′′i′′′ = vi′i′′(i−i′−i′′). The original polynomial can

be recovered by setting z equal to 1.

The projective plane is the set of points (x, y, z)with the requirement that the rightmost

nonzero component is a 1. Thus we can evaluate the trivariate homogeneous polynomial

at points of the form (x, y, 1), (x, 1, 0), and (1, 0, 0). The set of points of the form (x, y, 1)

forms a copy of the affine plane that is contained in the projective plane. The other points

– those with z = 0 – are the points at infinity. A projective zero of the homogeneous

polynomial v(x, y, z) is a point of the projective plane (β, γ , δ) such that v(β, γ , δ) = 0.

Projective zeros of the form (β, γ , 1) are also affine zeros.

The formal reason for introducing projective space is that the zeros of bivariate

polynomials can be described in a more complete way. In the projective plane, all

231 5.3 Bivariate and homogeneous trivariate polynomials

zeros become visible. This is important to recognize because a linear transformation

of variables can send some zeros off to infinity, or pull zeros back from infinity. The

number of polynomial zeros in the projective plane does not change under a linear

transformation of variables. The practical reason for introducing the projective plane is

that these zeros at infinity can be useful in some applications. In particular, these extra

zeros will be used in later chapters to extend the blocklength of a code.

Any bivariate polynomial v(x, y) can be changed into a trivariate homogeneous

polynomial by inserting an appropriate power of z into each term to give each monomial

the same degree. Thus the Klein polynomial

v(x, y) = x3y + y3 + x

becomes

v(x, y, z) = x3y + y3z + z3x.

The original Klein polynomial is recovered by setting z = 1.

The hermitian polynomial

v(x, y) = xq+1 + yq+1 − 1

becomes

v(x, y, z) = xq+1 + yq+1 − zq+1.

The original hermitian polynomial is recovered by setting z = 1.

We can now define a nonsingular polynomial. The bivariate polynomial v(x, y) over

the field F is called a nonsingular bivariate polynomial (or a regular polynomial or a

smooth polynomial) if it has no singular points anywhere in the projective plane over

any extension field of F . The polynomial is nonsingular if

∂v(x, y, z)

∂x
= 0,

∂v(x, y, z)

∂y
= 0,

and

∂v(x, y, z)

∂z
= 0

are not satisfied simultaneously at any point (x, y, z) in any extension field of F at which

v(x, y, z) = 0.

232 Arrays and the Two-Dimensional Fourier Transform

Associated with every polynomial is a positive integer called the genus of the polyno-

mial. The genus is an important invariant of a polynomial under a linear transformation

of variables. For an arbitrary polynomial, the genus can be delicate to define. Since we

shall deal mostly with irreducible nonsingular polynomials, we will define the genus

only for this case. (The alternative is to give a general definition. Then the following

formula, known as the Plücker formula, becomes a theorem.)

Definition 5.3.1 The genus of a nonsingular bivariate polynomial of degree d is the

integer

g = 1

2
(d − 1)(d − 2) =

(
d − 1

2

)
.

5.4 Polynomial evaluation and the Fourier transform

Many properties of cyclic codes follow directly from properties of the Fourier transform.

Likewise, many properties of bicyclic and epicyclic codes, which we shall study in later

chapters, follow from properties of the two-dimensional Fourier transform.

The Fourier transform has been described as the evaluation of the polynomial v(x)

on the n powers of an nth root of unity. Let ω be an element of order n in the field F .

Then

Vj = v(ωj)

=
n−1∑

i=0

viω
ij,

which can be regarded either as the polynomial v(x) evaluated at ωj, or as the jth

component of the Fourier transform V . If F is the finite field GF(q) and ω is an

element of order q− 1, then every nonzero element of the field is a power of ω, so the

Fourier transform can be regarded as the evaluation of v(x) at every nonzero element

of the field.

The Fourier transform fails to evaluate v(x) at the zero of the field. This exception

could be viewed as a slight weakness of the Fourier transform in a finite field. We

have seen, however, that it is straightforward to append one additional component to

the Fourier transform by evaluating v(x) at the point at zero. We have also seen that

a second component can be appended by evaluating v(x) at the point at infinity of the

projective line.

The two-dimensional Fourier transform can be described in like fashion, as the

evaluation of a bivariate polynomial on the n2 pairs of powers of an nth root of unity.

233 5.4 Polynomial evaluation and the Fourier transform

Let the array v be represented as the bivariate polynomial v(x, y), given by1

v(x, y) =
n′−1∑

i′=0

n′′−1∑

i′′=0

vi′i′′x
i′yi′′ .

The components of the Fourier transform can be written as

follows:

Vj′j′′ = v(β j′ , γ j′′)

=
n′−1∑

i′=0

n′′−1∑

i′′=0

vi′i′′β
i′j′γ i′′j′′ ,

which can be regarded either as the polynomial v(x, y) evaluated at the point (β j′ , γ j′′),

or as the (j′, j′′)th component of the bispectrum V .

In some situations, the evaluation of bivariate polynomials on an n by n array is a more

convenient description. In other instances, the Fourier transform is more convenient to

work with. If F is the finite field GF(q), and ω is an element of order n = q− 1, then

every nonzero element of the field is a power of ω, so the two-dimensional Fourier

transform can be regarded as the evaluation of v(x, y) at every pair of nonzero elements

of GF(q). There are (q−1)2 such points. The Fourier transform fails to evaluate v(x, y)

at those 2q− 1 points at which either x or y is the zero element of the field.

Thus we are confronted with a choice: either use the two-dimensional Fourier trans-

form – enjoying all its properties – on an array of (q − 1)2 points, or use polynomial

evaluation to form a larger array of q2 points. In the language of coding theory, either use

the two-dimensional Fourier transform to form bicyclic codes of blocklength (q− 1)2,

with the bicyclic set of automorphisms, or use polynomial evaluation to extend the

code to blocklength q2, thus spoiling the bicyclic structure. We will take an ambivalent

position regarding this issue, speaking sometimes in terms of the Fourier transform,

which produces an array of (q− 1)2 components, and speaking sometimes in terms of

polynomial evaluation, which produces an array of q2 components.

The inverse two-dimensional Fourier transform also can be viewed as the evaluation

of the bivariate polynomial. Let the array V be represented as the polynomial V (x, y),

given by

V (x, y) =
n′−1∑

j′=0

n′′−1∑

j′′=0

Vj′j′′x
j′yj′′ .

1 We may regard this polynomial to be an element of the ring F[x, y]/〈xn′ − 1, yn′′ − 1〉.

234 Arrays and the Two-Dimensional Fourier Transform

Then the components of the inverse two-dimensional Fourier transform can be written

vi′i′′ =
1

n′n′′
V (β−i′ , γ−i′′).

Consequently, whenever it suits our convenience, we can express the inverse two-

dimensional Fourier transform in this way as the evaluation of a spectral polynomial

V (x, y). In particular, if n′ = n′′ = n,

vi′i′′ =
1

n2
V (ω−i′ , ω−i′′),

where ω = β = γ .

5.5 Intermediate arrays

We have already noted that the two-dimensional Fourier transform can be written

either as

Vj′j′′ =
n′−1∑

i′=0

β i′j′

n′′−1∑

i′′=0

γ i′′j′′
vi′i′′

 ,

or as

Vj′j′′ =
n′′−1∑

i′′=0

γ i′′j′′

n′−1∑

i′=0

β i′j′
vi′i′′

 .

The first rearrangement has an inner sum that describes an n′′-point one-dimensional

Fourier transform on each row of the array v. The second rearrangement has an inner

sum that describes an n′-point one-dimensional Fourier transform on each column of

the array v. Accordingly, define the intermediate array w = [wj′i′′] by

wj′i′′ =
n′−1∑

i′=0

β i′j′
vi′i′′

and the intermediate array W = [Wi′j′′] by

Wi′j′′ =
n′′−1∑

i′′=0

γ i′′j′′
vi′i′′ .

235 5.6 Fast algorithms based on decimation

This suggests the following diagram:

v↔ W

� �
w↔ V ,

where a horizontal arrow denotes a one-dimensional Fourier transform relationship

along every row of the array and a vertical arrow denotes a one-dimensional Fourier

transform relationship along every column of the array. The (two-dimensional) bispec-

trum V can be obtained from v first by computing W , then computing V , or first by

computing w, then computing V . The rows of the array W are the (one-dimensional)

spectra of the rows of the array v. The columns of the array w are the spectra of the

columns of the array v.

The intermediate arrays w and W are themselves (nearly) related by the two-

dimensional Fourier transform

wj′i′′ =
1

n

n′−1∑

i′=0

β i′j′γ−i′′j′′Wi′j′′ .

Except for the factor of 1/n, this is exactly the form of the Fourier transform with β

and γ−1 as the elements of order n′ and n′′. Even the factor of 1/n can be suppressed

by redefining w.

One consequence of this observation is that various properties relating an array to

its two-dimensional Fourier transform, as discussed in Section 5.2, also apply to the

relationship between the intermediate arrays w and W . This corresponds to a mixture

of properties on the original arrays. For example, the array v can be cyclically shifted

on one axis and modulated on the other axis. Then, by the properties of the Fourier

transform, V is modulated on one axis and cyclically shifted on the other axis.

5.6 Fast algorithms based on decimation

A fast algorithm for a computation is a procedure that significantly reduces the number

of additions and multiplications needed for the computation compared with the natural

way to do the computation. A fast Fourier transform is a computational procedure for

the n-point Fourier transform that uses about n log n multiplications and about n log n

additions in the field of the Fourier transform. We shall describe fast Fourier transform

algorithms that exist whenever n is composite. These fast algorithms are closely related

to the two-dimensional Fourier transform.

A two-dimensional Fourier transform can arise as a rearrangement of a one-

dimensional Fourier transform. Such rearrangements are called decimation algorithms

236 Arrays and the Two-Dimensional Fourier Transform

or fast Fourier transform algorithms. The term “decimation algorithm” refers to the

method of breaking a large Fourier transform into a combination of small Fourier trans-

forms. The term fast Fourier transform refers to the computational efficiency of these

algorithms. The following paragraphs describe the Good–Thomas decimation algo-

rithm and the Cooley–Tukey decimation algorithm, which arise as fast algorithms for

computing a one-dimensional Fourier transform.

The Good–Thomas decimation algorithm uses the chinese remainder theorem, which

is an elementary statement of number theory, to convert a one-dimensional Fourier

transform of composite blocklength n = n′n′′ into an n′ by n′′ two-dimensional Fourier

transform, provided n′ and n′′ are coprime. Because n′ and n′′ are coprime, integers

N ′ and N ′′ exist such that N ′n′ + N ′′n′′ = 1. Let the index i be replaced by i′ =
i(mod n′) and i′′ = i(mod n′′). Let the index j be replaced by j′ = N ′′j(mod n′) and

j′′ = N ′j(mod n′′). The chinese remainder theorem produces the following inverse

relationships:

i = N ′′n′′i′ + N ′n′i′′ (mod n)

and

j = n′′j′ + n′j′′ (mod n).

Therefore

ωij = β i′j′γ i′′j′′ ,

where β = ωN ′′n′′2 has order n′ and γ = ωN ′n′2 has order n′′. Therefore, by defining

the two-dimensional arrays, also called v and V , in terms of the vectors v and V as

vi′i′′ = v((N ′′n′′i′+N ′n′i′′))

and

Vj′j′′ = V((n′′j′+n′j′′)),

we obtain the following the expression:

Vj′j′′ =
n′−1∑

i′=0

n′′−1∑

i′′=0

β i′j′γ i′′j′′
vi′i′′ .

The original one-dimensional Fourier transform now has been expressed in a form

exactly the same as a two-dimensional Fourier transform.

The Cooley–Tukey decimation algorithm is an alternative algorithm that converts a

one-dimensional Fourier transform of composite blocklength n = n′n′′ into a vari-

ation of a two-dimensional Fourier transform. In this case, the factors n′ and n′′

237 5.7 Bounds on the weights of arrays

need not be coprime. Let

i = i′ + n′i′′i′ = 0, . . . , n′ − 1; i′′ = 0, . . . , n′′ − 1;

j = n′′j′ + j′′j′ = 0, . . . , n′ − 1; j′′ = 0, . . . , n′′ − 1.

Then, because ωn′n′′ = 1,

ωij = β i′j′ωi′j′′γ i′′j′′ ,

where β = ωn′′ and γ = ωn′ . Therefore by defining the two-dimensional arrays

vi′i′′ = v((i′+n′i′′)) and Vj′j′′ = V((n′′j′+j′′)),

also called v and V , we have the following expression:

Vj′j′′ =
n′−1∑

i′=0

β i′j′

ωi′j′′

n′′−1∑

i′′=0

γ i′′j′′
vi′i′′

 .

This nearly has the form of a two-dimensional Fourier transform, but is spoiled by

the appearance of ωi′j′′ . The original one-dimensional Fourier transform now has been

expressed in a form almost the same as a two-dimensional Fourier transform. Thus the

Cooley–Tukey decimation algorithm is less attractive than the Good–Thomas decima-

tion algorithm, but its great advantage is that it can be used even when n′ and n′′ are

not coprime.

5.7 Bounds on the weights of arrays

The pattern of zeros in the bispectrum of a nonzero (two-dimensional) array gives

information about the Hamming weight of the array just as the pattern of zeros in the

spectrum of a nonzero (one-dimensional) vector gives information about the Hamming

weight of the vector. We shall use the pattern of zeros in the bispectrum of an array to

bound the weight of the array.

A special case is an array in which the number of rows and the number of columns are

coprime. Then the chinese remainder theorem can be used to turn the two-dimensional

Fourier transform into a one-dimensional Fourier transform. In this way, various bounds

on the weight of sequences become bounds on the weight of such arrays. In this section,

we are concerned, instead, with bounds on the weight of a square two-dimensional array

based on the pattern of zeros in its bispectrum. We will convert bounds on the weight

of sequences into bounds on the weight of the arrays. We will also develop bounds on

the weight of arrays directly.

238 Arrays and the Two-Dimensional Fourier Transform

One way to derive distance bounds based on bispectral zeros for a general array is

simply to take the product of the one-dimensional bounds on the weight of vectors,

given in Section 1.8. Thus the BCH bound on the weight of a vector can be used to

give a bound relating the weight of an array to the pattern of zeros in the bispectrum of

that array.

BCH product bound Any nonzero n by n array v whose bispectrum V has a consec-

utive columns equal to zero, and b consecutive rows equal to zero, must have a weight

at least equal to (a + 1)(b+ 1).

Proof: Let W be the intermediate array obtained by computing the inverse Fourier

transform of every column of V . Each column of W is either everywhere zero or, by

the BCH bound, has a weight at least b+ 1. Thus if v is nonzero, W has at least b+ 1

nonzero rows. Every such nonzero row has at least a consecutive zeros. Because v is

the row-wise inverse Fourier transform of W , v has at least a+ 1 nonzero components

in every nonzero row, and there are at least b+ 1 nonzero rows. �

BCH dual product bound Any nonzero n by n array v whose bispectrum V is zero

in an a by b subarray must have weight at least min(a + 1, b+ 1).

Proof: Suppose, without loss of generality, that a is the number of columns in the sub-

array of zeros. Because v is nonzero, the bispectrum V is nonzero. If the a consecutive

columns passing through the subarray are not all zero, then there is at least one nonzero

column in V with at least b consecutive zeros. The BCH bound then asserts that there

are at least b + 1 nonzero rows. Otherwise, there are at least a consecutive nonzero

columns, and so at least one nonzero row with at least a consecutive zeros. The BCH

bound then asserts that there are at least a + 1 nonzero columns, and so at least a + 1

nonzero elements. �

For an example of the BCH product bound, consider the nonzero array v whose

bispectrum V , written as an array, has a zero pattern of the form

V =

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

.

Then v must have weight at least 12 because the bispectrum has three consecutive

columns of zeros and two consecutive rows of zeros. To repeat explicitly the argument

239 5.7 Bounds on the weights of arrays

for this example, observe that the BCH bound implies that the inverse Fourier transform

of each nonzero row has weight at least 4, so the intermediate array has at least four

nonzero columns and two consecutive zeros in each such column. Then, again by the

BCH bound, v has at least three nonzero elements in each nonzero column, and there

are at least four nonzero columns.

For an example of the BCH dual product bound, consider the nonzero array v whose

bispectrum has a zero pattern of the form

V =

0 0 0

0 0 0

.

There are three columns with two consecutive zeros. If these columns are all zero, there

is a nonzero row with three consecutive zeros, so the weight of v is at least 4. If at least

one of the three columns is not all zero, then there are at least three nonzero rows in v,

so v has weight at least 3.

The BCH product bound is not the only such product relationship between the pattern

of bispectral zeros and the weight of an array. One could also state a Hartmann–Tzeng

product bound and a Roos product bound in the same way.

Next, we will give a statement regarding a single run of consecutive bispectral

zeros in either the row direction or the column direction. To be specific, we will

describe these zeros as lying consecutively in the row direction. The statement remains

the same if the consecutive bispectral zeros lie in the column direction. A simi-

lar statement can be given even with the bispectral zeros lying along a generalized

“knight’s move.”

BCH bispectrum property Any two-dimensional array v of weight d − 1 or less,

with d − 1 consecutive zeros in some row of its bispectrum V , has zeros for every

element of that row of the bispectrum.

Proof: Without loss of generality, suppose that V has d − 1 consecutive zeros in its

first row. Because v has weight at most d − 1, the intermediate array w, obtained by

taking the Fourier transform of each column of v, has at most d − 1 nonzero columns,

and so at most d − 1 nonzero elements in the first row. Because the Fourier transform

of the first row of w has d − 1 consecutive zeros, the first row of w, and of V , must all

be zero. �

240 Arrays and the Two-Dimensional Fourier Transform

For example, if the array v has bispectrum V containing four zeros in a row, as

follows:

V =

0 0 0 0

 ,

then either v has at least five nonzero columns, or the entire first row of V is zero. In

the latter case, if v is nonzero, it has at least one nonzero column of weight at least 2.

No more than this can be concluded.

The BCH bispectrum property can be combined with the twist property of the two-

dimensional Fourier transform to show that any two-dimensional square array v of

weight d − 1 or less, with d − 1 consecutive zeros in a diagonal of its bispectrum V ,

has zeros in every element of that diagonal. This can be generalized further to place the

consecutive zeros on various definitions of a generalized diagonal. In effect, placing

consecutive zeros on any “straight line" leads to an appropriate generalization of the

BCH bound.

The BCH bispectrum condition finds its strength when it is applied simultaneously

in the row direction of an array and the column direction, as described next. Indeed,

then it includes the product bound as a special case.

Truncated BCH product bound Any nonzero n by n array whose bispectrum V has

a consecutive columns each equal to zero in a2+2a rows and a consecutive rows each

equal to zero in a2 + 2a consecutive columns must have weight at least (a + 1)2.

For example, suppose that the array v has bispectrum V containing two consecutive

rows with eight consecutive zeros and two consecutive columns with eight consecutive

zeros. Such a bispectrum is given by

V =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

.

Suppose that the array v has weight at most 8. Then the intermediate array, formed by

taking the Fourier transform of each column of v, has at most eight nonzero columns,

so each row of the intermediate array has at most eight nonzero elements. Any such row

241 5.7 Bounds on the weights of arrays

j ��

6
5
4 0 0
3 0 0
2 0 0 0
1 0 0 0
0 0 0 0 0 0 0

0 1 2 3 4 5 6 j �

Figure 5.1. Pattern of spectral zeros forming a cascade set.

that has eight consecutive zeros in its Fourier transform must, by the BCH bound, be all

zero. Thus the top two rows, because they have eight consecutive zeros, must actually

be all zero. Similarly, the two columns of given zeros are also all zero. Therefore this

reduces to the product bound. Hence if v is not all zero, it has weight at least 9.

It is reasonable now to ask whether the pattern of required spectral zeros can be

further reduced without changing the bound on minimum distance. In fact, we shall

see that the bispectral array

V =

0 0 0 0 0 0 0 0

0 0 0 0

0 0

0 0

0

0

0

0

,

if nonzero, corresponds to a vector v of weight at least 9. This is a consequence of the

multilevel bound, which will be described next.

The multilevel bound will be given with the bispectral zeros arranged in a pattern

known as a cascade set. Such a set is best described if the bispectrum is displayed

against a pair of coordinate axes, rather than as a matrix, so that the pattern will appear

with the rows indexed from bottom to top. Figure 5.1 shows a set of zeros clustered in

such a pattern.

Definition 5.7.1 The cascade set � is a proper subset of NN 2 with the property that if

(k ′, k ′′) ∈ �, then (j′, j′′) ∈ � whenever j′ ≤ k ′ and j′′ ≤ k ′′.

Figure 5.2 is an illustration of a typical cascade set.

A cascade set always has this form of a descending stairway with a finite number

of steps of varying integer-valued rises and runs. A cascade set is completely defined

242 Arrays and the Two-Dimensional Fourier Transform

j ��

j �
0

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

Figure 5.2. Typical cascade set.

by specifying its exterior corners. These are the elements of NN 2 marked by dots in

Figure 5.2.

Definition 5.7.2 The cascade hull of a set of points in NN 2 is the smallest cascade set

that contains the given set of points.

The zeros of a bispectrum, in totality or in part, may form a cascade set. An example

of a bispectrum, V , can be constructed with its zeros forming the cascade set shown in

Figure 5.2. Any set of zeros of V that forms a cascade set leads to the following bound

on the weight of a nonzero array v.

Multilevel bound Any nonzero n by n array v, whose set of bispectral zeros contains

a cascade set � that includes all (j′, j′′) such that (j′ + 1)(j′′ + 1) < d , has weight at

least d .

Proof: The bispectrum V of the array v can be converted to the array v in two steps,

described as follows:

v

↑
w← V .

The horizontal arrow denotes a Fourier transform along each row of V producing

the intermediate array w; the vertical arrow denotes a Fourier transform along each

column of w producing the array v. The BCH componentwise bound will be used to

bound the number of nonzero columns in w, and then the BCH componentwise bound

will be used a second time to bound the number of nonzero entries in each nonzero

column of v.

Let d (j′) denote the BCH bound on the weight of the j′th row of w, as determined by

the number of consecutive zeros in that row of V . If row zero is not all zero, then it has

weight at least d (0). Then there are at least d (0) nonzero columns in v, each of weight

at least 1. If row zero, instead, is everywhere zero, but row one is not everywhere zero,

243 5.7 Bounds on the weights of arrays

then v has at least d (1) nonzero columns. Each nonzero column of v has weight at least

2 because each column of w is zero in row zero. Similarly, if all rows of w before row

j′′ are zero, and row j′′ is not zero, then there are at least d (j′′) nonzero columns in v.

Thus each nonzero column has weight at least j′′ + 1, because each such column of w

has j′ consecutive zeros in the initial j′′ rows.

Because the array is not zero everywhere, one of the assumptions about the number

of all-zero leading rows must be true, so one of the bounds holds. The weight of the

array v is not smaller than the smallest such bound. That is,

wt v ≥ min
j′=0,...,n−1

[(j′ + 1)d (j′)].

But

d (j′) = min
j′|(j′,j′′) �∈�

(j′′ + 1).

Combining these yields

wt v ≥ min
(j′,j′′)�∈�

[(j′ + 1)(j′′ + 1)] ≥ d ,

as was to be proved. �

To see that the bound is tight, let gj′(x) be a polynomial with spectral zeros at all

j smaller than j′ and let gj′′(x) be a polynomial with spectral zeros at all j smaller

than j′′. Then the product gj′(x)gj′′(y) has weight (j′ + 1)(j′′ + 1).

A special case of the multilevel bound is known as the hyperbolic bound.

Hyperbolic bound Any nonzero n by n array, whose set of bispectral zeros is a

hyperbolic set given by

A = {(j′, j′′) | (j′ + 1)(j′′ + 1) < d},

must have weight at least d .

To complete this section, there is one more bound that we will include. To prove this

bound, we must anticipate facts, such as Bézout’s theorem, that are not discussed until

Chapter 7. We shall call this bound the weak Goppa bound because the same techniques

will be used in Chapter 9 to give a stronger bound, known as the Goppa bound.

Weak Goppa bound Any nonzero n by n two-dimensional array v over F , whose n

by n bispectrum V over F is zero for j′ + j′′ > J , has weight at least n2 − nJ .

Proof: An n by n bispectrum exists only if F contains an element of order n. Therefore

the bound is vacuous either if F = GF(2) (because then n = 1), or if J ≥ n, so we can

ignore these cases.

244 Arrays and the Two-Dimensional Fourier Transform

A statement equivalent to the theorem is that V (x, y), a nonzero bivariate polynomial

of degree at most J over the field F , has at most nJ zeros of the form (ω−i′ , ω−i′′),

where ω is an element of order n in F . Regard the array V as a polynomial V (x, y)

of degree at most J . To prove the bound, it suffices to find an irreducible polynomial,

G(x, y), of degree n that has a zero at every point of the form (ω−i′ , ω−i′′). Bézout’s

theorem asserts that V (x, y) has at most nJ zeros in common with such a G(x, y), so

V (x, y) can have at most nJ zeros of the form (ω−i′ , ω−i′′). Therefore v, because it has

n2 components, has weight at least n2 − nJ .

Let

G(x, y) = xn − 1+ βyn − β,

where β �= 1 if the characteristic of the field is 2; otherwise, β = 1. The polynomial

G(x, y) has degree n and has the required zeros at every (ω−i′ , ω−i′′). The three partial

derivatives of the homogeneous trivariate polynomial G(x, y, z) are

∂G(x, y, z)

∂x
= nxn−1;

∂G(x, y, z)

∂y
= βnyn−1;

∂G(x, y, z)

∂z
= −(1+ β)nzn−1.

If the characteristic of the field is p, then n divides pm − 1; therefore n is not zero in

F . Because the three partial derivatives are all equal to zero only if x = y = z = 0,

which is not a point of the curve, the polynomial is nonsingular. Therefore according to

a theorem to be given (as Theorem 9.1.1) in Section 9.1, the polynomial is irreducible,

so V (x, y) and G(x, y) can have no common polynomial factor. The proof is complete

because Bézout’s theorem now says that V (x, y) has at most nJ zeros on the bicyclic

plane. �

If the field is the finite field GF(q) with the characteristic p, a slightly stronger

statement can be obtained by proving that the polynomial

G′(x, y) = xq − x + yq − y

is irreducible. This polynomial G′(x, y) has all the bicyclic zeros of G(x, y) and addi-

tional zeros whenever either x or y (or both) equals zero. Because q = 0 in GF(q), the

partial derivatives of G′(x, y) reduce to

∂G′(x, y)

∂x
= ∂G′(x, y)

∂y
= −1 �= 0,

so the polynomial is nonsingular and so is irreducible. The nonzero polynomial V (x, y)

of degree at most J can have at most q zeros in common with G′(x, y). Therefore V (x, y)

must have at least q2 − qJ nonzeros in the affine plane.

245 Problems

Problems

5.1 Do absolutely irreducible univariate polynomials with degree larger than 1 exist?

Do absolutely irreducible bivariate polynomials with degree larger than 1 exist?

5.2 Let n′ and n′′ be coprime. Given an (n′, k ′) cyclic code with generator polynomial

g′(x) and an (n′′, k ′′) cyclic code with generator polynomial g′′(x), answer the

following.

(a) Prove that the product code formed from these two cyclic codes is equivalent

to an (n′n′′, k ′k ′′) cyclic code.

(b) What is the minimum distance?

(c) Find the generator polynomial in terms of g′(x) and g′′(x).
5.3 Rearrange the components of the one-dimensional vector v of blocklength 35

into a two-dimensional array, and rearrange the components of its spectrum

V into another two-dimensional array so that the two arrays are related by a

two-dimensional Fourier transform.

5.4 Let a′ and n be coprime and let a′′ and n be coprime. Show that any two-

dimensional array v of weight d − 1 or less, for which Vj′0+a′k,j′′0+a′′k = 0 for

k = 1, . . . , d − 1, also satisfies Vj′0+a′k,j′′0+a′′k = 0 for k = 0, . . . , n− 1.

5.5 Set up the equations for computing an n′ by n′′ two-dimensional Fourier

transform, where n′ and n′′ are coprime, as a one-dimensional Fourier transform.

5.6 State and prove the two-dimensional conjugacy constraint

V
q

j′j′′ = V((qj′)),((qj′′))

for the two-dimensional Fourier transform in the field GF(q).

5.7 Is the polynomial

p(x, y) = x17 + y16 + y

singular or nonsingular?

5.8 A two-dimensional cyclic convolution, denoted e = f ∗ ∗g, is given by

ei′i′′ =
n−1∑

ℓ′=0

n−1∑

ℓ′′=0

f((i′−ℓ′))((i′′−ℓ′′))gℓ′ℓ′′ .

State and prove the two-dimensional convolution theorem.

5.9 An elliptic polynomial over the field F is a polynomial of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

(An elliptic curve is the set of rational zeros of an elliptic polynomial.) What is

the genus of a nonsingular elliptic polynomial?

246 Arrays and the Two-Dimensional Fourier Transform

5.10 How many zeros does the Klein polynomial have in the affine plane over GF(8)?

5.11 (a) Prove that the Klein polynomial over any field of characteristic 2 is

nonsingular.

(b) Prove that the hermitian polynomials over any field of characteristic 2 are

nonsingular.

5.12 For any field F , let F◦[x, y] = F[x, y]/〈xn − 1, yn − 1〉, with typical ele-

ment p(x, y) =
∑n−1

i′=0

∑n−1
i′′=0 pi′i′′x

i′yi′′ . The transpose of the element p(x, y)

of F◦[x, y] is the element pT(x, y) = p(y, x). The reciprocal of the element

p(x, y) is the element p̃(x, y) = xn−1 yn−1 p(x−1, y−1).

For any field F , let p = [pi′i′′ i′ = 0, . . . , n− 1; i′′ = 0, . . . , n− 1] be an n by

n array of elements of F . The transpose of the n by n array p is the array pT =
[pi′′i′]. The reciprocal of the n by n array p is the array p̃ = [pn−1−i′,n−1−i′′].

A polynomial of F◦[x, y], with defining set A ⊂ {0, . . . , n − 1}2, is the

polynomial p(x, y) with coefficient pi′i′′ equal to zero for all (i′, i′′) ∈ A. Let

AJ = {(i′, i′′)|i′ + i′′ > J }. Prove that if p(x, y) has defining set AJ and p(x, y)

has defining set Ac
J , then pT(x, y) has defining set A2n−3−J .

Notes

The two-dimensional Fourier transform is widely used in the literature of two-

dimensional signal processing and image processing. Most of the properties of the

two-dimensional Fourier transform parallel properties of the one-dimensional Fourier

transform and are well known. The role of the two-dimensional Fourier transform

in coding theory and in the bounds on the weight of arrays, such as the BCH

componentwise bound, was discussed by Blahut (1983).

A statement very similar to the weak Goppa bound appears in the computer science

literature under the name Schwartz’s lemma. This lemma, published in 1980, is used

in the field of computer science for probabilistic proofs of computational complexity

(Schwartz, 1980). The hyperbolic bound appears in the work of Saints and Heegard

(1995).

The Good–Thomas decimation algorithm (Good, 1960; Thomas, 1963) is well

known in signal processing as a way to use the chinese remainder theorem to change a

one-dimensional Fourier transform of composite blocklength into a two-dimensional

Fourier transform. The Good–Thomas decimation algorithm is closely related to the

decomposition of a cyclic code of composite blocklength with coprime factors into a

bicyclic code.

6 The Fourier Transform and Bicyclic Codes

Given the field F , the vector space Fn exists for every positive integer n, and a linear

code of blocklength n is defined as any vector subspace of Fn. Subspaces of dimension k

exist in Fn for every integer k ≤ n. In fact, very many subspaces of dimension k exist.

Each subspace has a minimum Hamming weight, defined as the smallest Hamming

weight of any nonzero vector in that subspace. We are interested in those subspaces of

dimension k over GF(q) for which the minimum Hamming weight is large.

In the study of Fn and its subspaces, there is no essential restriction on n. This remark

is true in the finite field GF(q) just as in any other field. However, in the finite field,

it is often useful to index components of the vector space GF(q)n by the elements of

the field GF(q), when n = q, or by the nonzero elements of the field GF(q), when

n = q − 1. The technique of using the elements of GF(q) to index the components

of the vector over GF(q) is closely related both to the notion of a cyclic code and to

polynomial evaluation. The essential idea of using nonzero field elements as indices

can be extended to blocklength n = (q− 1)2 by indexing the components of the vector

v by pairs of nonzero elements of GF(q). Then the vector v is displayed more naturally

as a two-dimensional array.

A two-dimensional array can be rearranged into a one-dimensional vector by placing

its rows side by side, or by placing its columns top to bottom. Thus an n = n′n′′ code

can be constructed as a subset of the set of n′ by n′′ arrays. Such a code is sometimes

called a two-dimensional code because codewords are displayed as two-dimensional

arrays. Of course, if it is a linear code, the code as a vector space will have a dimension,

denoted k, but in a different sense – in the sense of a code. A two-dimensional code is

also called a bivariate code when codewords are regarded as bivariate polynomials.

6.1 Bicyclic codes

One class of two-dimensional codes is the class of bivariate codes called two-

dimensional cyclic codes or bicyclic codes. A bicyclic code may be defined by the

property that the two-dimensional code is invariant under both a cyclic shift in the row

248 The Fourier Transform and Bicyclic Codes

direction and a cyclic shift in the column direction. Bicyclic codes can also be defined

in terms of the two-dimensional Fourier transform.

Recall that we may describe a cyclic code in terms of its spectrum using the

terminology of the Fourier transform,

Cj =
n−1∑

i=0

ωijci j = 0, . . . , n− 1,

where ω is an element of order n of the finite field GF(q). A cyclic code is defined as

the set of vectors of length n with a fixed set of components of the Fourier transform

C equal to zero.

In a similar way, a bicyclic code is defined in terms of the two-dimensional Fourier

transform,

Cj′j′′ =
n′−1∑

i′=0

n′′−1∑

i′′=0

β i′j′γ i′′j′′ci′i′′ ,

where β and γ are elements of GF(q) of order n′ and n′′, respectively. An n′ by n′′

bicyclic code consists of the set of n′ by n′′ arrays c with a fixed set of components

of the two-dimensional Fourier transform C equal to zero. This fixed set of bi-indices

is called the defining set A of the bicyclic code. In the language of polynomials, a

bicyclic code is the set of bivariate polynomials c(x, y) of componentwise degree at

most (n′ − 1, n′′ − 1), such that

Cj′j′′ = 0 (j′, j′′) ∈ A,

where Cj′j′′ = c(β j′ , γ j′′). Clearly, a bicyclic code is a linear code.

To define an (n′n′′, k) code on the bicyclic plane over GF(q), let n′ and n′′ be divisors

of q− 1. Select a set of n′n′′ − k components of the two-dimensional n′ by n′′ Fourier

transform to be a (two-dimensional) defining set, denotedA, and constrain these n′n′′−k

components of the bispectrum to be zero. Figure 6.1 provides an example of a defining

set in an array with n′ = n′′ = 7. The remaining k components of the bispectrum can

be filled with any k symbols from GF(q), and the two-dimensional inverse Fourier

transform then gives the codeword corresponding to those given symbols. Indeed, this

assignment could be the encoding rule, with the k unconstrained components of C filled

with the k data symbols.

The same bicyclic code can be stated in either of two ways. One way is as follows:

C = {c = [ci′i′′] | c(ωj′ , ωj′′) = 0 for (j′, j′′) ∈ A}

249 6.1 Bicyclic codes

0 0
0
0

0
0

0 0

Figure 6.1. Defining set in two dimensions.

(which is in the form cHT = 0); the other is

C =
{
c =

[
1

n′n′′
C(ω−i′ , ω−i′′)

]
| Cj′j′′ = 0 for (j′, j′′) ∈ A

}

(which is in the form c = aG).

Recall that a cyclic code is a set of vectors with the property that it is closed under

cyclic shifts. Likewise, a bicyclic code is a set of n′ by n′′ arrays that is closed under both

cyclic shifts in the row direction and cyclic shifts in the column direction. Once again,

the bicyclic codes take their name from this property, although we do not regard the

property as especially important. Rather, the important property of the bicyclic codes

is the relationship between the code-domain representation and the transform-domain

representation, as defined by the Fourier transform.

The two-dimensional Fourier transform can be computed in either order:

Cj′j′′ =
n′−1∑

i′=0

β i′j′
n′′−1∑

i′′=0

γ i′′j′′ci′i′′

=
n′′−1∑

i′′=0

γ i′′j′′
n′−1∑

i′=0

β i′j′ci′i′′ .

Define two intermediate arrays b and B as follows:

bj′i′′ =
n′−1∑

i′=0

β i′j′ci′i′′ ;

Bi′j′′ =
n′′−1∑

i′′=0

γ i′′j′′ci′i′′ .

250 The Fourier Transform and Bicyclic Codes

Then C can be computed from either b or B as follows:

Cj′j′′ =
n′′−1∑

i′′=0

γ i′′j′′bj′i′′ ;

Cj′j′′ =
n′−1∑

i′=0

β i′j′Bi′j′′ .

This set of equations can be represented by the following diagram:

c ←→ B

� �
b ←→ C,

where a horizontal arrow denotes a one-dimensional Fourier transform relationship

along every row of the array and a vertical arrow denotes a one-dimensional Fourier

transform relationship along every column of the array. The rows of the array B are the

spectra of the rows of c (viewed as row codewords). The columns of b are the spectra

of the columns of c (viewed as column codewords). Because b and B, in effect, are also

related by a two-dimensional Fourier transform, one might also regard b as a codeword

(of a different, noncyclic code) and B as its bispectrum.

It is well known that if n′ and n′′ are coprime, then an n′ by n′′ bicyclic code is equiva-

lent to a cyclic code. To form the bicyclic codewords from the cyclic codewords, simply

read down the extended diagonal. Because GCD[n′, n′′] = 1, the extended diagonal

{(i(mod n′), i(mod n′′)) | i = 0, . . . , n − 1} passes once through every element of the

array. Likewise, a cyclic code of blocklength n′n′′ is equivalent to a bicyclic code. One

way to map from the cyclic code into the bicyclic code is simply to write the compo-

nents of the cyclic code, in order, down the extended diagonal of the n′ by n′′ array.

This relationship between the cyclic form and the bicyclic form of such a code, when n′

and n′′ are coprime, can be formally described by the chinese remainder theorem. The

relationship between the one-dimensional spectrum and the two-dimensional spectrum

can be described by the Good–Thomas algorithm. Specifically, the codeword index i

is replaced by i′ = i(mod n′) and i′′ = i(mod n′′). The index i can be recovered from

(i′, i′′) by using the expression

i = N ′′n′′i′ + N ′n′i′′ (mod n),

where the integers N ′ and N ′′, sometimes called Bézout coefficients, are those satisfying

N ′n′ + N ′′n′′ = 1. Further, the bispectrum indices are given by

j′ = N ′′j (mod n′)

251 6.2 Codes on the affine and projective planes

and

j′′ = N ′j (mod n′′).

In this way, any cyclic code of blocklength n = n′n′′ with n′ and n′′ coprime can be

represented as a bicyclic code.

6.2 Codes on the affine plane and the projective plane

A primitive bicyclic code over GF(q) has blocklength n = (q − 1)2. By appending

additional rows and columns, a linear code of blocklength n = q2 can be described in a

natural way as an extended bicyclic code. We shall describe such codes more directly,

and more elegantly, in terms of the evaluation of bivariate polynomials.

The affine plane over the finite field GF(q), denoted GF(q)2, consists of the set of

all pairs of elements of GF(q). The bicyclic plane over the finite field GF(q), denoted

GF(q)∗2, is the set of all pairs of nonzero elements of GF(q). The bicyclic plane has the

structure of a torus. The projective plane over the finite field GF(q), denoted GF(q)2+

or P 2(GF(q)), is the set of triples (β, γ , δ) of elements of GF(q) such that the rightmost

nonzero element of the triple is a one. The point (0, 0, 0) is not part of the projective

plane. Thus by going from the affine plane into the projective plane, the points (β, γ)

are replaced by the points (β, γ , 1), and new points (β, 1, 0) and (1, 0, 0) are created.

Each point with z = 0 is called a “point at infinity.” The set of points at infinity is

called the “line at infinity.” The set of points of the projective plane that are not points

at infinity forms a copy of the affine plane within the projective plane. The points of

the affine plane are called affine points.

The projective plane has more points than the affine plane or the bicyclic plane, but

it also has a more cumbersome structure. The bicyclic plane has fewer points than

the affine plane or the projective plane, but it has the simplest structure, which is the

structure of a torus. Often, it is helpful to think in terms of the projective plane, even

though the applications may be in the affine plane or the bicyclic plane. Other times, it

is simpler to think in terms of the bicyclic plane.

Let C(x, y) be a bivariate polynomial of componentwise degree at most (n−1, n−1).

We can regard the coefficients of C(x, y) as a bispectrum C, with components Cj′j′′ for

j′ = 0, . . . , n−1 and j′′ = 0, . . . , n−1. The array c is obtained by the two-dimensional

inverse Fourier transform

ci′i′′ =
1

n2

n−1∑

j′=0

n−1∑

j′′=0

Cj′j′′ω
−i′j′ω−i′′j′′ ,

252 The Fourier Transform and Bicyclic Codes

which is the same as the array obtained by evaluating the polynomial C(x, y) at all pairs

of reciprocal powers of ω,

ci′i′′ =
1

n2
C(ω−i′ , ω−i′′).

Evaluating bivariate polynomials in this way is slightly stronger, in one sense, than

is the two-dimensional Fourier transform, because one can also evaluate C(x, y) at the

points with x = 0 or y = 0. The array c then has q2 components. To define a code on

the affine plane, choose a fixed set of bi-indices as the defining set A. Let

S = {C(x, y) | Cj′j′′ = 0 for (j′, j′′) ∈ A}.

The code on the affine plane over GF(q) is defined as

C =
{
c = 1

n2
[C(β, γ)] β, γ ∈ GF(q) | C(x, y) ∈ S

}
.

Thus polynomial C(x, y) is evaluated at every point of the affine plane. The bicyclic

code, then, is the restriction of the affine code to the bicyclic plane.

To extend the code by q+1 additional components, define the code on the projective

plane. Replace C(x, y) by the homogeneous trivariate polynomial C(x, y, z) of the

form

C(x, y, z) =
q−1∑

j′=0

q−1∑

j′′=0

Cj′j′′x
j′yj′′zJ−j′−j′′ ,

where J is the largest degree of any C(x, y) in S. Redefine S as a set of homogeneous

trivariate polynomials,

S = {C(x, y, z) | Cj′j′′ = 0 for (j′, j′′) ∈ A}.

The code in the projective plane is defined as

C =
{
c = 1

n2
[C(β, γ , δ)] | C(x, y, z) ∈ S

}
,

where (β, γ , δ) ranges over the points of the projective plane. Because the projective

plane has q2 + q + 1 points, the extended code has blocklength n = q2 + q + 1. The

253 6.3 Minimum distance of bicyclic codes

blocklength of the code on the projective plane is larger than the blocklength of the

code on the affine plane, which is q2.

6.3 Minimum distance of bicyclic codes

The weight of an individual n by n array is related to the pattern of zeros of its two-

dimensional Fourier transform, as was studied in Section 5.7. We can choose the pattern

of zeros to ensure that the weight of the array is large. This relationship can be used

to define a code as the set of all arrays with a given set of bispectral zeros. Statements

relating dmin to the defining set A can be made directly from the bounds on the weight

of an array that were given in Section 5.7.

Two examples of bicyclic codes are product codes and dual-product codes. The

defining set of a product code consists of all elements of selected rows and all elements of

selected columns of the array. The defining set of a dual-product code is the complement

of the defining set of a product code. Figure 6.2 shows examples of defining sets for a

product code and a dual-product code. On the left, the defining set gives a product code.

It is the product of two cyclic codes; the defining set consists of rows and columns of

the array. On the right, the defining set gives the dual of a product code, which, by the

BCH dual-product bound given in Section 5.7, has minimum distance 4.

A two-dimensional code that is designed to fit the BCH product bound is called a

BCH product code, or, if the symbol field and the locator field are the same, a Reed–

Solomon product code. The bispectrum of a (225, 169, 9) Reed–Solomon product code

over GF(16) is illustrated in Figure 6.3.

The product code illustrated in Figure 6.3 is the product of two (15, 13, 3) Reed–

Solomon codes over GF(16). Each component code has minimum distance 3, so the

product code has minimum distance 9. To see the strength of the truncated BCH product

bound of Section 5.7, consider reducing the defining set of this example. The bispectrum

has two consecutive rows equal to zero, and two consecutive columns equal to zero.

But the truncated BCH product bound says that to ensure the weight of a vector is at

least 9, it is enough to have only eight consecutive zeros in each of these rows and

columns. This means that there is a (225, 197, 9) code over GF(16) with the defining

set shown in Figure 6.4.

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0
0 0
0 0

0 0 0 0 0 0 0
0 0

0 0 0
0 0 0
0 0 0

Figure 6.2. Examples of defining sets.

254 The Fourier Transform and Bicyclic Codes

0 0
0 0
0 0
0 0
0 0
0 0
0 d = 90
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.3. Defining set for a (225, 169, 9) Reed–Solomon product code.

0 0
0 0
0 0 d = 9
0 0
0 0
0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 6.4. Defining set for a (225, 197, 9) code.

The dual of a product code, called a dual-product code, can also be studied with

the aid of the dual-product bound. In the two-dimensional array of bispectral compo-

nents, choose an a by b rectangular subarray as the two-dimensional defining set of the

code. Any codeword of weight min(a, b) or less must have a bispectrum that is zero

everywhere in any horizontal or vertical stripe passing through the rectangle of check

frequencies. This implies, in turn, that the bispectrum is zero everywhere; therefore the

codeword is the all-zero codeword. Consequently,

dmin ≥ 1+min(a, b) = min(a + 1, b+ 1).

Hence the example gives a (49, 45, 3) code over GF(8). The binary subfield-subcode

is a (49, 39) d ≥ 3 code. A dual-product code does not have a large minimum distance.

255 6.4 Bicyclic codes based on the multilevel bound

The bispectral zeros of the dual-product code can always be chosen so that the

defining set is given by

A = {(j′, j′′) | j′ = 0, . . . , a − 1; j′′ = 0, . . . , b− 1},

which is a cascade set. Now the minimum distance can be seen to be a consequence of

the multilevel bound,

dmin ≥ min
(j′,j′′)�∈A

(j′ + 1)(j′′ + 1),

which reduces to the expression dmin ≥ min(a + 1, b+ 1) given earlier. Any cascade

set can be regarded as the union of rectangles, so a cascade defining set can be regarded

as a union of rectangular defining sets. In this way, the multilevel bound is then seen

to be a generalization of the dual-product bound.

For example, if C1 and C2 are each a dual-product code with bispectral zeros in sets

A1 and A2, defined as above, and C = C1 ∩ C2, then this code has bispectral zeros for

all (j′, j′′) in the set A = A1∪A2, which again is a cascade set. The minimum distance

satisfies

dmin ≥ min
(j′,j′′) �∈A

(j′ + 1)(j′′ + 1)

by the multilevel bound.

In the following two sections, we shall discuss two examples of bicyclic codes,

namely the hyperbolic codes and other bicyclic codes based on the BCH bound. The

minimum distances of these codes are not noteworthy, though they may have other

desirable attributes. Two-dimensional codes with good minimum distances can be

obtained by puncturing or shortening. In Chapter 10, we shall discuss a powerful

method of puncturing (or shortening) that uses a bivariate polynomial to define a set

of points in the plane, which will define the components of a punctured or shortened

bicyclic code.

6.4 Bicyclic codes based on the multilevel bound

The two examples of the defining sets of bicyclic codes that we have illustrated in

Section 6.3 are both cascade sets. A cascade code is a two-dimensional code whose

defining set is a cascade set. A general example of such a defining set is shown

256 The Fourier Transform and Bicyclic Codes

0
0
0
0 0 0
0 0 0 0 0
0 0 0 0 0

Figure 6.5. Defining set for a cascade code.

in Figure 6.5. The bispectrum of the cascade code corresponding to the cascade set

of Figure 6.5 has the following form:

C =

0 0 0 0 0 C0,5 C0,6

0 0 0 0 0 C1,5 C1,6

0 0 0 C2,3 C2,4 C2,5 C2,6

0 C3,1 C3,2 C3,3 C3,4 C3,5 C3,6

0 C4,1 C4,2 C4,3 C4,4 C4,5 C4,6

0 C5,1 C5,2 C5,3 C5,4 C5,5 C5,6

C6,0 C6,1 C6,2 C6,3 C6,4 C6,5 C6,6

.

Standard matrix notation requires that the row with j′ = 0 be written at the top, and

that Cj′j′′ be the entry in row j′ and column j′′. In contrast, the illustration of the cascade

set, with indices arranged in the usual pattern of a cartesian coordinate system, shows

a reflection of the visual pattern of zeros.

The inverse Fourier transform of any row of this matrix is a Reed–Solomon codeword.

The set of inverse Fourier transforms of any row of all such matrices is a Reed–Solomon

code. The BCH bound gives the minimum weight of each of these Reed–Solomon

codes. The intermediate array, then, consists of rows that are codewords of different

Reed–Solomon codes. The multilevel bound can then be obtained by applying the BCH

bound to each column of the intermediate array.

A bicyclic code designed to exploit the multilevel bound

dmin ≥ min
(j′,j′′)�∈A

(j′ + 1)(j′′ + 1)

is called a hyperbolic code. The name derives from the fact that (x + 1)(y + 1) = d is

the equation of a hyperbola.

Definition 6.4.1 A hyperbolic code with designed distance d is a bicyclic code with

defining set given by

A = {(j′, j′′) | (j′ + 1)(j′′ + 1) < d}.

257 6.4 Bicyclic codes based on the multilevel bound

Unknown

Known

S6

(j9+1)(j99+1) = rS3
S1 S4
S0 S2 S5

Figure 6.6. Syndromes for a hyperbolic code.

0
0
0
0 0
0 0 0
0 0 0 0 0 0

Figure 6.7. Defining set for a hyperbolic code.

The defining set of a hyperbolic code is bounded by a hyperbola, as illustrated in

Figure 6.6.

Proposition 6.4.2 The minimum distance d of a hyperbolic code is at least as large

as its designed distance.

Proof: An obvious combination of the multilevel bound with the statement of the

theorem yields

dmin ≥ min
j′,j′′ �∈A

(j′ + 1)(j′′ + 1)

= min
(j′+1)(j′′+1)≥d

(j′ + 1)(j′′ + 1)

= d ,

which proves the proposition. �

For example, the defining set for a (49, 35, 7) hyperbolic code over GF(8), with

d = 7, is shown in the bispectrum of Figure 6.7. This hyperbolic code, when judged

solely by dimension and minimum distance, is inferior to the (63, 51, 7) BCH code over

GF(8). The comparison is less clear for decoders that decode beyond the minimum

distance. The hyperbolic code also has the minor feature that for a code of blocklength

258 The Fourier Transform and Bicyclic Codes

(q−1)2 over GF(q), the computations of the decoding algorithm are in the symbol field

GF(q); it is not necessary to introduce an extension field for the decoding algorithm.

6.5 Bicyclic codes based on the BCH bound

A bivariate code may be preferred to a long univariate code even if its minimum

distance is less. This is because the decoding complexity may be much less, and the

code may be able to correct a great many error patterns well beyond the packing radius,

which more than compensates for the smaller packing radius. A bicyclic code may be

designed by repeatedly using the BCH bispectrum property, described in Section 5.7.

The defining set may be rather irregular, consisting of the union of enough consecutive

runs in various directions that, taken together, ensure the minimum distance of the code

through repeated application of the BCH bispectrum property.

An example of such a code is the (49, 39, 5) code over GF(8), whose bispectrum is

given in Figure 6.8. The defining set of this code is as follows:

A = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 2), (2, 3), (3, 2), (3, 4), (6, 3)}.

To see that the minimum distance of this code is at least 5, suppose that a codeword c

has weight less than 5. Then we can use the BCH bispectrum property of Section 5.7

to conclude that the top row of the bispectrum is zero everywhere, as in part (a) of

Figure 6.9. Then we conclude that column two is zero everywhere, as in part (b) of

Figure 6.9. Next, we conclude that the general diagonal (j′, j′′) = (0, 1) + (1, 6)j is

zero everywhere, as in part (c) of Figure 6.9. We continue in this way to conclude

that the general diagonal (j′, j′′) = (2, 2) + (1, 4)j is zero everywhere, as in part (d)

of Figure 6.9. Continuing with the steps, as shown in parts (e), (f), and beyond, we

eventually find that the entire array is zero. Hence if the weight of c is less than 5, then

c is the all-zero array. Thus the minimum distance of this code is at least 5.

A senseword v = c + e for a bicyclic code with defining set A is decoded by

evaluating v(x, y) at (ωj′ , ωj′′) for (j′, j′′) ∈ A. The two-dimensional syndrome of the

0 0 0 0
0
0 0
0 0

0

Figure 6.8. Defining set for a (49, 39, 5) code.

259 6.5 Bicyclic codes based on the BCH bound

0 0 0 0 0 0 0
0
0 0
0 0

0

(a)

0 0 0 0 0 0 0
0
0 0
0 0
0
0
0 0

(b)

0 0 0 0 0 0 0
0
0 0
0 0
0 0
0 0

0 0 0

(c)

0 0 0 0 0 0 0
0 0

0 0
0 0
0 0 0

0 0 0
0 0 0

(d)

0 0 0 0 0 0 0
0 0 0

0 0 0 0
0 0 0
0 0 0

0 0 0
0 0 0

(e) (f)

0 0 0 0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0

0 0 0

Figure 6.9. Inferring the spectrum from a few of its components.

error pattern ei′i′′ is defined as

Sj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ei′i′′ω
i′j′ωi′′j′′ (j′, j′′) ∈ A,

which can be computed from the two-dimensional senseword v. The task, then, is to

recover the error pattern from the two-dimensional syndromes.

A pattern of ν errors can be described in terms of row locators, column locators, and

error magnitudes. The ℓth error, lying in row i′ℓ and column i′′ℓ , has a row locator, defined

as Xℓ = ωi′ℓ , and a column locator, defined as Yℓ = ωi′′ℓ . The ℓth error magnitude is

defined as Zℓ = ei′ℓi′′ℓ
. Then the (j′, j′′) syndrome can be written more compactly as

Sj′j′′ =
ν∑

ℓ=1

ZℓX
j′

ℓ Y
j′′

ℓ (j′, j′′) ∈ A.

This set of nonlinear equations can always be solved for Xℓ, Yℓ, and Zℓ for ℓ = 1, . . . , ν

when ν is not larger than the packing radius t. Tractable algorithms are known only for

special A, as in the previous example.

Thus suppose that we choose the defining set A to include {(1, 1)}, (1, 2), . . . , (1, 2t)}.
The syndromes are

S11 = Z1X1Y1 + Z2X2Y2 + · · · + ZνXνYν = E11,

S12 = Z1X1Y 2
1 + Z2X2Y 2

2 + · · · + ZνXνY 2
ν = E12,

...

S1,2t = Z1X1Y 2t
1 + Z2X2Y 2t

2 + · · · + ZνXνY 2t
ν = E1,2t .

260 The Fourier Transform and Bicyclic Codes

With the substitution Wℓ = ZℓXℓ, this set of equations is familiar from the decoding of

a Reed–Solomon code. There is a difference, however; here the Yℓ need not be distinct

because several errors might occur in the same column. It is a simple matter, however,

to observe that the terms with the same Yℓ combine to obtain a similar set of equations

with possibly smaller ν, and this smaller set also satisfies ν ≤ t. Then the Berlekamp–

Massey algorithm, followed by recursive extension, will yield E11, E12, . . . , E1n, the

entire first row of the error bispectrum.

In general, if ν ≤ t errors occur, then, for any integers j′0, j′′0 and a′, a′′, the

syndromes Sj′0+a′k,j′′0+a′′k for k = 1, . . . , 2t uniquely determine the entire line of syn-

dromes Sj′0+ak,j′′0+a′k for k = 1, . . . , n. To compute this line of syndromes, let Y ℓ′ for

ℓ′ = 1, . . . , ν′ denote the distinct terms X a′
ℓ Y a′′

ℓ over ℓ. Then

Sj′0+a′k,j′′0+a′′k =
ν∑

ℓ=1

ZℓX
j′0+a′k
ℓ Y

j′′0+a′′k
ℓ

=
ν′∑

ℓ′=1

X ℓ′Y
k

ℓ′ k = 1, . . . , 2t,

where ν′ ≤ ν ≤ t, and X ℓ′ denotes the sum of the factors multiplying Y
k

ℓ′ in each

equation. The Berlekamp–Massey algorithm, followed by recursive extension, will

produce all the syndromes in this line. In particular, any 2t consecutive syndromes in

a straight line (horizontal, vertical, or at any angle) can be extended to all syndromes

in that line. Repeated applications of this process complete the decoding.

6.6 The (21, 12, 5) bicyclic BCH code

To obtain a binary double-error-correcting BCH code of blocklength 21, choose ω = α3

in the extension field GF(64). Then ω has order 21, so we have a Fourier transform of

blocklength 21. The conjugacy classes modulo 21 of ω are as follows:

{ω0},
{ω1, ω2, ω4, ω8, ω16, ω11},
{ω3, ω6, ω12},
{ω5, ω10, ω20, ω19, ω17, ω13},
{ω7, ω14},
{ω9, ω18, ω15},

261 6.6 The (21, 12, 5) bicyclic BCH code

and these partition the spectral components into the following chords:

{C0},
{C1, C2, C4, C8, C16, C11},
{C3, C6, C12},
{C5, C10, C20, C19, C17, C13},
{C7, C14},
{C9, C18, C15}.

To satisfy the BCH bound for a distance-5 code, choose C1 and C3 equal to zero,

which makes all conjugates of C1 and C3 also equal to zero. The other spectral compo-

nents are arbitrary, except for the conjugacy constraint that C2
j = C2j. This constraint

implies that C0 ∈ GF(2), C5 ∈ GF(64), C7 ∈ GF(4), and C9 ∈ GF(8). Other-

wise, these components can be specified arbitrarily. All other spectral components are

determined by the conjugacy constraints.

The (21, 12, 5) BCH code can also be described as a bicyclic code. As such, it is

cyclic in both the row direction and the column direction. Then it has the form of a set

of three by seven, two-dimensional binary arrays. The codeword c, with indices i′ and

i′′, is a three by seven, two-dimensional array of the form

c =

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6

c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

c2,0 c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

 .

The bispectrum C of the bicyclic codeword c has the form

C =

C0,0 C0,1 C0,2 C0,3 C0,4 C0,5 C0,6

C1,0 C1,1 C1,2 C1,3 C1,4 C1,5 C1,6

C2,0 C2,1 C2,2 C2,3 C2,4 C2,5 C2,6

 .

The bispectrum is in the field GF(64), because that field is the smallest field containing

both an element of order 3 and an element of order 7.

To obtain a bicyclic binary BCH double-error-correcting code of blocklength 21, let

α be a primitive element in the extension field GF(64), and let β = α21 and γ = α9.

Then (β, γ) has biorder three by seven, so we have a three by seven two-dimensional

Fourier transform. Because the code is binary, the components of the bispectrum satisfy

the two-dimensional conjugacy constraint:

C2
j′j′′ = C((2j′)),((2j′′)).

262 The Fourier Transform and Bicyclic Codes

This constraint breaks the bispectrum into two-dimensional conjugacy classes. The first

index is interpreted modulo 7; the second, modulo 3. The two-dimensional conjugacy

classes modulo 7 by 3 can be used to partition the components of the array C into

two-dimensional chords, just as the one-dimensional conjugacy classes modulo 21 can

be used to partition the components of the vector C into one-dimensional chords. The

two-dimensional and one-dimensional chords are as follows:

{C0,0}, {C0},
{C1,1, C2,2, C1,4, C2,1, C1,2, C2,4}, {C1, C2, C4, C8, C16, C11},
{C0,3, C0,6, C0,5}, {C3, C6, C12},
{C1,3, C2,6, C1,5, C2,3, C1,6, C2,5}, {C5, C10, C20, C19, C17, C13},
{C0,1, C0,2, C0,4}, {C9, C18, C15},
{C1,0, C2,0}, {C7, C14}.

The entries in the two columns are equivalent, related by the chinese remainder theorem,

and portray two ways of representing the same 21-point vector.

The conjugacy constraint implies that C0,0 ∈ GF(2), C0,1 ∈ GF(8), C1,1 ∈ GF(64),

C1,3 ∈ GF(64), C1,0 ∈ GF(4), and C0,3 ∈ GF(8). All other bispectral components are

implied by the conjugacy constraint. The resulting code is a (21, 12, 5) bicyclic binary

BCH code. To satisfy the BCH bound for a distance-5 code, we shall choose C1,1 =
C0,3 = 0, which makes all conjugates of C1,1 and C0,3 zero also. The other bispectral

components are arbitrary, except that they must satisfy the conjugacy constraint. The

bispectrum, then, can be rewritten as follows:

C =

C0,0 C0,1 C2
0,1 0 C4

0,1 0 0

C1,0 0 0 C1,3 0 C4
1,3 C16

1,3

C2
1,0 0 0 C8

1,3 0 C32
1,3 C2

1,3

=

C0

C1

C2

 .

The two-dimensional codeword c is obtained by taking a two-dimensional inverse

Fourier transform of C. This consists of taking either the seven-point inverse Fourier

transform of all rows of c, then taking the three-point inverse Fourier transform of all

columns, or first taking the three-point inverse Fourier transform of all columns of c,

then taking the seven-point inverse Fourier transform of all rows.

A superficial inspection of the bispectrum C immediately tells us much about the

structure of a codeword. The BCH bound says that because there are four consecutive

zeros down the extended diagonal (C1,1 = C2,2 = C0,3 = C1,4 = 0), the weight of

a nonzero codeword is at least 5. Furthermore, unless C0,1 is zero, there are at least

three nonzero rows in a codeword, because then there are two consecutive zeros in a

263 6.7 Turyn representation of the (21, 12, 5) BCH code

Table 6.1. Weight distribution

of the (21, 12, 5) BCH code

ℓ Aℓ

0 or 21 1

1 or 20 0

2 or 19 0

3 or 18 0

4 or 17 0

5 or 16 21

6 or 15 168

7 or 14 360

8 or 13 210

9 or 12 280

10 or 11 1008

nonzero column of the bispectrum. Finally, because the top row of C is the spectrum

of a Hamming codeword, the column sums of c must form a Hamming codeword. In

particular, if c has odd weight, either three or seven columns must have an odd number

of ones. Therefore a codeword of weight 5 has exactly three columns with an odd

number of ones.

We will show later that if c is a bicyclic BCH codeword of weight 5, then every row

of this array has odd weight, and if c is a codeword of weight 6, then there are two rows

of the array that have odd weight. This means that appending a check sum to each row

triply extends the code to a (24, 12, 8) code.

The weight distribution of the (21, 12, 5) binary BCH code is given in Table 6.1.

6.7 The Turyn representation of the (21, 12, 5) BCH code

The binary (21, 12, 5) bicyclic BCH code can be represented as a linear combination

of three binary (7, 4, 3) Hamming codewords. This representation, known as the Turyn

representation, is given by the concatenation of three sections,

c =| c0 | c1 | c2 |,

where

c0

c1

c2

 =

1 0 1

1 1 0

1 1 1

b0

b1

b2

 .

264 The Fourier Transform and Bicyclic Codes

The vectors b1 and b2 are any two – possibly the same – codewords from the binary

(7, 4, 3) Hamming code, with spectra given by

B1 = [B1,0 0 0 B1,3 0 B4
1,3 B2

1,3],

B2 = [B2,0 0 0 B2,3 0 B4
2,3 B2

2,3],

and b0 is any codeword from the reciprocal binary (7, 4, 3) Hamming code, with

spectrum

B0 = [B0,0 B0,1 B2
0,1 0 B4

0,1 0 0].

The components B0,0, B1,0, and B2,0 are elements of GF(2), while the components

B0,1, B1,3, and B2,3 are elements of GF(8).

The three Hamming codewords can be recovered from c as follows:

b0

b1

b2

 =

1 0 1

1 1 0

1 1 1

−1

c0

c1

c2

 =

1 1 1

1 0 1

0 1 1

c0

c1

c2

 .

A hint of the Turyn representation appears in the structure of the bispectrum C of the

bicyclic BCH code given in Section 6.7 as

C =

C0,0 C0,1 C2
0,1 0 C4

0,1 0 0

C1,0 0 0 C1,3 0 C4
1,3 C16

1,3

C2
1,0 0 0 C8

1,3 0 C32
1,3 C2

1,3

 =

C0

C1

C2

 .

The top row, denoted C0, is the spectrum of a reciprocal (7, 4, 3) Hamming codeword.

The middle and bottom rows, denoted C1 and C2, resemble the spectrum of a (7, 4, 3)

Hamming codeword, except the elements are from the field GF(64) instead of GF(8).

To put the rows of the array C in the form of Hamming spectra, we will write GF(4)

and GF(64) as extensions of GF(2) and GF(8), respectively. Let β be a zero of the

polynomial x2 + x + 1, which is irreducible over GF(2). Then

GF(4) = {a + βb | a, b ∈ GF(2)}

and

GF(64) = {a + βb | a, b ∈ GF(8)},

where a can be called the “real part” and b can be called the “imaginary part” of the

element of GF(4) or of GF(64). Then each element of C1 and C2 can be broken into

265 6.7 Turyn representation of the (21, 12, 5) BCH code

a real part and an imaginary part, sum that

C =

C0

C1

C2

=

C0R

C1R

C2R

+ β

0

C1I

C2I

 .

Let C8
1 denote a row whose elements, componentwise, are the eighth powers of the

elements of C1. This row is then equal to row C2; so we have

C2 = C8
1 = (C1R + βC1I)

8 = C8
1R + β8C8

1I

= C1R + β2C1I,

where we have used the facts that β3 = 1 and a8 = a for any element a of GF(8).

Therefore

C =

C0

C1

C2

 =

C0

C1R + βC1I

C1R + β2C1I

 =

1 0 0

0 1 β

0 1 β2

C0

C1R

C1I

 .

Next, referring to the diagram

c ←→ B

� �
b ←→ C,

we will show that B is an array of three rows, each of which is a Hamming codeword

spectrum.

First, compute the three-point inverse Fourier transform of each column of C. Thus

B0

B1

B2

 =

1 1 1

1 β−1 β−2

1 β−2 β−1

C0

C1

C2

 .

266 The Fourier Transform and Bicyclic Codes

From the previous derivation, this becomes

B0

B1

B2

 =

1 1 1

1 β2 β

1 β β2

C0

C1

C8
1

=

1 1 1

1 β2 β

1 β β2

1 0 0

0 1 β

0 1 β2

C0

C1R

C1I

=

1 0 1

1 1 0

1 1 1

C0

C1R

C1I

 .

Now the components of vectors C1R and C1I are in GF(8) and are the spectra of

binary Hamming codewords, and C0 is the spectrum of a reciprocal binary Hamming

codeword. Finally, take the inverse Fourier transform of each row vector on both sides

of this equation. This is the horizontal arrow in the above diagram of Fourier transforms.

This yields

c0

c1

c2

 =

1 0 1

1 1 0

1 1 1

b0

b1

b2

 ,

as was asserted earlier.

6.8 The (24, 12, 8) bivariate Golay code

There are two cyclic Golay codes: the (23, 12, 7) binary cyclic Golay code and the

(11, 6, 5) ternary cyclic Golay code, each of which can be extended by one sym-

bol. We will consider only the (23, 12, 7) binary cyclic Golay code and the (24, 12, 8)

extended binary Golay code. There are many ways of constructing the extended Golay

code. The (24, 12, 8) extended binary Golay code is traditionally obtained by extend-

ing the (23, 12, 7) binary Golay code by a single bit. Here we will give an original

method that constructs a (24, 12, 8) code by appending one check bit to each row of the

(21, 12, 5) binary bicyclic BCH code. It is obliquely related to the Turyn representation

267 6.8 The (24, 12, 8) bivariate Golay Code

of the Golay code. The triply extended binary BCH codeword has the following

form:

c+ =

c+0
c+1
c+2

 =

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6 c+0
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c+1
c2,0 c2,1 c2,2 c2,3 c2,4 c2,5 c2,6 c+2

=

1 0 1

1 1 0

1 1 1

b+0
b+1
b+2

 ,

where the plus superscript denotes an overall binary check symbol on each row.

As follows from the previous section, in this representation b+1 and b+2 are extended

Hamming codewords of blocklength 8, and b+0 is an extended reciprocal Hamming

codeword of blocklength 8. To show that the triply extended code has minimum

weight 8, we will show that every codeword of the (21, 12, 5) binary bicyclic BCH

code of weight 5 must have three rows of odd weight, that every codeword of weight 6

must have two rows of odd weight, and (obviously) every codeword of weight 7 must

have at least one row of odd weight. Then we can conclude that the (24, 12, 8) binary

triply extended BCH code is the (24, 12, 8) extended binary Golay code because, as

we have said but not proved, only one linear (24, 12, 8) binary code exists. Thus we

will conclude that the (24, 12, 8) binary triply extended BCH code, with any single

component deleted, becomes a cyclic code under a suitable permutation.

The bispectrum of the (21, 12, 5) bicyclic BCH code is given by

C =

C0

C1

C2

 =

C0,0 C0,1 C2
0,1 0 C4

0,1 0 0

C1,0 0 0 C1,3 0 C4
1,3 C16

1,3

C2
1,0 0 0 C8

1,3 0 C32
1,3 C2

1,3

 .

Note that each row of the bispectrum C individually satisfies a Gleason–Prange condi-

tion. Each row either has zeros at all indices that are equal to a nonzero square modulo

p, or it has zeros at all indices that are not equal to a nonzero square modulo p, where

p = 7.

As an example of C, we write one codeword bispectrum of the (21, 12, 5) bicyclic

BCH code by setting C7 = 0 and C0 = C5 = C9 = 1. Then

C =

1 1 1 0 1 0 0

0 0 0 1 0 1 1

0 0 0 1 0 1 1

 .

268 The Fourier Transform and Bicyclic Codes

Take the three-point inverse Fourier transform of each column, then take the seven-point

inverse Fourier transform of each row to obtain the codeword c:

C =

1 1 1 0 1 0 0

0 0 0 1 0 1 1

0 0 0 1 0 1 1

↓

1 1 1 0 1 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

→

0 0 0 1 0 1 1

1 0 0 0 0 0 0

1 0 0 0 0 0 0

 = c.

Codeword c has weight 5, and each row has odd weight. Moreover, all 21 bicyclic

translates of

c =

0 0 0 1 0 1 1

1 0 0 0 0 0 0

1 0 0 0 0 0 0

are codewords. Because there are only 21 minimum-weight codewords, this accounts

for all minimum-weight codewords.

Each of the three rows of C, denoted C0, C1, and C2, is the spectrum of a codeword

over GF(4), which codewords we denote by b0, b1, and b2. Thus we have the following

Fourier transform relationship:

b0 ←→ C0,

b1 ←→ C1,

b2 ←→ C2.

Because C0, C1, and C2 individually satisfy a Gleason–Prange condition, b0, b1, and

b2 can each be rearranged by using the Gleason–Prange permutation, thereby producing

three new valid GF(4) codewords. This means that the columns of the array

b =

b0

b1

b2

 ,

triply extended along rows, can be rearranged by the Gleason–Prange permutation to

produce another triply extended array that corresponds to another codeword spectrum

which also satisfies a Gleason–Prange condition. But the columns of b are simply the

three-point Fourier transforms of the columns of the codeword c. If the columns of c are

269 6.8 The (24, 12, 8) bivariate Golay Code

permuted by the Gleason–Prange permutation, then so are the columns of b. Because

this permutation of b produces an array corresponding to another valid codeword, this

permutation of c also produces another valid codeword.

Theorem 6.8.1 The binary (21, 12, 5) bicyclic BCH code, triply extended, is

equivalent to the (24, 12, 8) extended Golay code.

Proof: The set of such triply extended codewords forms a linear code. Because the

blocklength is increased by 3, and, as we will show, the minimum weight has been

increased by 3, this is actually a (24, 12, 8) code. It is equivalent to the extended binary

Golay code. We will prove only that the code has distance 8, accepting the fact that the

binary Golay code is unique. We must prove that bicyclic BCH codewords of weight

5, 6, or 7 will always have at least three, two, or one ones, respectively, in the three

extension bits.

Because each row of C satisfies the Gleason–Prange condition, the Gleason–Prange

permutation of the set of columns of c produces another codeword of the triply extended

bicyclic BCH code. By using both a cyclic shift in the row direction of the bicyclic code

and the Gleason–Prange permutation on the columns of the triply extended code, an

automorphism of the triply extended code can be produced under which the extension

column is interchanged with any chosen column. The new extension column can then

be deleted to obtain another codeword of the bicyclic BCH code. We will show that

whenever a codeword of the extended code has a weight less than 8, a column of that

codeword can be deleted to obtain a codeword of the (21, 12, 5) bicyclic BCH code

with weight less than 5. Because such a codeword does not exist in that BCH code, the

extended code can have no codeword of weight less than 8.

To this end, recall that every nonzero codeword c of the bicyclic BCH code has

weight at least 5 (by the BCH bound) and the triply extended codeword must have

even weight, so it has weight at least 6. Moreover, the column sum of a bicyclic BCH

codeword c is a binary Hamming codeword, denoted b0, and the column sum of the

triply extended codeword c+ is an extended binary Hamming codeword, denoted b+0 ,

and so has weight 0, 4, or 8. If c+ has weight 6, then the column sum b+0 must have

either weight 0 or weight 4. Hence it has at least one column with at least two ones.

Using the Gleason–Prange permutation, one such column of weight 2 can be moved

to the extension position and deleted to give a bicyclic codeword of weight 4. Because

there is no bicyclic codeword of weight 4, the extended code can have no codeword of

weight 6. Hence every nonzero codeword has weight not smaller than 8. �

We have concluded that this is the binary (24, 12, 8) extended Golay code because

only one linear binary (24, 12, 8) code exists. Thus we come to the rather unexpected

conclusion that the triply extended BCH (21, 12, 5) code with any component deleted,

under a suitable permutation, becomes the cyclic Golay code. The number of codewords

of weight 8 in the extended code is the sum of the numbers of codewords of weights 5,

270 The Fourier Transform and Bicyclic Codes

6, 7, and 8 in the BCH (21, 12, 5) code. Thus there are 759 codewords of weight 8 in

the triply extended code.

6.9 The (24, 14, 6) Wagner code

The (24, 14, 6) Wagner code is a linear, binary code that was discovered more than 40

years ago by computer search. The Wagner code claims no close relatives and does not

appear as an example of any special class of codes. It has no (23, 14, 5) cyclic subcode.

The literature of the Wagner code is not extensive, and no simple construction of it is

known to date. We shall construct the Wagner code in this section.

Together, the Golay code and the Wagner code provide the following pair of linear

binary codes:

(24, 14, 6) and (24, 12, 8).

Thus we might ask: “Whose cousin is the Wagner code?” hoping that the Golay code

might be the answer. However, the extended Golay code cannot be a subcode of the

Wagner code because the (23, 12, 8) Golay code is a perfect code, and the minimum

weight of any of its cosets is at most 3. The contrast between the two codes is even

more evident from the comparison of the weight distribution of the Wagner code with

the weight distribution of the Golay code, shown in Table 6.2 for the full Wagner code

and for a punctured Wagner code.

Of course, we can always say that the Wagner code is a subcode of the union of certain

cosets of the Golay code. This statement, however, says almost nothing because the

whole vector space is the union of cosets of the Golay code.

We will construct the Wagner code as a concatenated code, which is a code inside a

code. Consider the (8, 4, 4) code C1 over GF(4) with the generator matrix

G1 =

1 0 0 0 1 0 α α

0 1 0 0 α 1 0 α

0 0 1 0 α α 1 0

0 0 0 1 0 α α 1

 ,

where α is a primitive element of GF(4) = {0, 1, α, 1+ α}. An inspection verifies that

the minimum distance of code C1 is 4. The code C1 could be regarded as a (16, 8, 4)

code over GF(2) by replacing each element of G1 by a two by two matrix:

replace 0 by

[
0 0

0 0

]
, 1 by

[
1 0

0 1

]
, and α by

[
0 1

1 1

]
.

But this is not the code we want. We want, instead, a (24, 8, 8) code.

271 6.9 The (24, 14, 6) Wagner code

Table 6.2. Comparison of weight distributions

ℓ Aℓ

Wagner code Golay code

(23, 14, 5) (24, 14, 6) (23, 12, 7) (24, 12, 8)

0 or 23/24 1 1 1 1

1 or 22/23 0 0 0 0

2 or 21/22 0 0 0 0

3 or 20/21 0 0 0 0

4 or 19/20 0 0 0 0

5 or 18/19 84 0 0 0

6 or 17/18 252 336 0 0

7 or 16/17 445 0 253 0

8 or 15/16 890 1335 506 759

9 or 14/15 1620 0 0 0

10 or 13/14 2268 3888 0 0

11 or 12/13 2632 0 1288 0

12 – 5264 – 2576

Toward this end, let C2 be the (3, 2, 2) code over GF(2) with generator matrix

given by

G2 =
[

1 0 1

0 1 1

]
.

The concatenation of codes C1 and C2 is the binary (24, 8, 8) code C12, in which each

symbol of a codeword of C1 is regarded as a pair of bits, and those two bits are encoded

by C2. To find the 8 by 24 generator matrix G12 for code C12, replace each zero by

[
0 0 0

0 0 0

]
,

replace each one by

[
1 0 1

0 1 1

]
,

and replace each α by

[
0 1 1

1 1 0

]
.

272 The Fourier Transform and Bicyclic Codes

(The third matrix is obtained by multiplying the columns of G2, regarded as elements

of GF(4), by α.) The resulting generator matrix for C12 is given by

G12 =

1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1

.

The dual code of C12, denoted C⊥12, is the code with a check matrix equal to G12. It is

easy to see that C⊥12 has minimum distance 3 because the first three columns of G2 are

linearly dependent. Therefore C⊥12 is a (24, 16, 3) code. In fact, there are 24 codewords of

weight 4. To obtain a code C′with minimum distance 6, we will expurgate all codewords

of odd weight or of weight 4. Words of odd weight are eliminated by appending a single

parity-check equation to H . Words of weight 4 are eliminated by noting that such words

have a single 1 in either the first 12 positions or the last 12 positions.

Finally, the Wagner code is defined as a subcode of the code C⊥12. It is defined by

the check matrix H , consisting of G12 augmented by two additional rows, one row of

weight 12 with ones in the first 12 columns, and one row of weight 12 with ones in the

last 12 columns. Thus

H =

1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

.

This H gives a (24, 14) code. The last two rows of H , taken together, eliminate all

codewords of C12 with odd weight. This eliminates all codewords of weight 3 or 5. The

last row eliminates all codewords with odd weight in the last 12 bits. The next-to-last

row eliminates all codewords with odd weight in the first 12 bits. This eliminates all

codewords of weight 4. Because all codewords of weight 3, 4, or 5 are eliminated, the

minimum distance of the Wagner code is 6.

273 6.10 Self-dual codes

6.10 Self-dual codes

The (23, 12, 7) binary Golay code is a very special code, because it is the only nontrivial

perfect binary code other than the binary Hamming codes. The (24, 12, 8) extended

binary Golay code is a self-dual code that comes from the Golay code, and the (8, 4, 4)

extended Hamming code is a self-dual code that comes from the Hamming code. (Recall

that a self-dual code is a code that satisfies C = C⊥.) It is natural to look for other good

self-dual, binary codes. For brevity, we will mention here only those good self-dual

codes whose blocklengths are multiples of 8, especially those whose blocklengths are

multiples of 24. Thus for multiples of 24, one might hope to find binary linear codes

with the following parameters: (24, 12, 8), (48, 24, 12), and (72, 36, 16). Of these the

(24, 12, 8) and the (48, 24, 12) binary self-dual codes do exist. The second is an extended

binary quadratic residue code. However, the quadratic residue code of blocklength 72

is a (72, 36, 12) code, so it is not the conjectured code. In fact, it is not known whether

a (72, 36, 16) binary code exists, whether linear or nonlinear. This is a long-standing

and straightforward unsolved question of coding theory.

The parameters of some selected binary self-dual codes are shown in Table 6.3. The

codes that were selected to put in this table are those that have a blocklength equal to

a multiple of 8 and are also the best codes known of their blocklength. A few of the

quadratic residue codes, but not all, satisfy both of these conditions and are listed in

the table. However, all quadratic residue codes are self-dual codes, and so would be

listed in a more extensive table.

Table 6.3 was deliberately formed to be rather suggestive and to call for conjectures

regarding missing entries. However, although the code parameters suggest a pattern, the

underlying codes are very different, at least in their conventional representation. What

deeper pattern may be hidden within this list of codes, if any, remains undiscovered.

Table 6.3. Parameters of some

binary self-dual codes

n k d

8 4 4 Hamming code

16 8 4

24 12 8 Golay code

32 16 8 quadratic residue code

48 24 12 quadratic residue code

56 28 12 double circulant code

64 32 12 double circulant code

80 40 16 quadratic residue code

96 48 16 Feit code

274 The Fourier Transform and Bicyclic Codes

Problems

6.1 Prove that the (24, 12, 8) extended Golay code has 759 codewords of

weight 8.

6.2 Prove that no binary (24, 14, 6) code is the union of cosets of the binary (24, 12, 8)

extended Golay code.

6.3 Let C be an (n, n − 1) simple binary parity-check code, and let C3 be the (n3,

(n− 1)3) binary code obtained as the three-dimensional product code, using C

as each component code.

(a) How many errors can C3 correct?

(b) Give two error patterns of the same weight that have the same syndrome,

and so are uncorrectable.

6.4 Using the Turyn representation, describe the construction of a (72, 36, d) code

from the (24, 12, 8) Golay code and its reciprocal. What is d?

6.5 Let C′ be the (24, 12, 8) binary Golay code constructed by the Turyn represen-

tation, and let C′′ be the (24, 4, 4) code obtained by padding the (8, 4) binary

Hamming code with 16 zeros. What are the possible weights of c′ + c′′, where

c′ ∈ C′ and c′′ ∈ C′′.
6.6 Construct a binary (18, 7, 7) linear code as a triply extended bicyclic BCH code.

6.7 The (21, 15, 3) bicyclic binary BCH code is obtained by setting spectral com-

ponent C1,1 and all its conjugates equal to zero. The two-dimensional spectrum

of the codeword c is given by

C =

C0,0 C0,1 C0,2 C0,3 C0,4 C0,5 C0,6

C1,0 0 0 C1,3 0 C1,5 C1,6

C2,0 0 0 C2,3 0 C2,5 C2,6

 .

This code has minimum distance equal to at least 3. Because there are two consec-

utive zeros in several columns, the BCH bound says that, unless such a column

is everywhere zero, then there are three nonzero rows in the codeword c. Can

this code be triply extended by a check on each row to obtain a (24, 15, 6) code?

6.8 By viewing it as a bicyclic code, prove that the cyclic code of blocklength 21

and defining set {0, 1, 3, 7} has minimum weight 8. How does this compare to

the BCH bound?

6.9 The Turyn construction of the binary Golay code can be used to construct a

(72, 36, 12) code by replacing the three extended Hamming codes by three Golay

codes.

(a) Show that this code has dimension 36 and minimum distance 12.

(b) What is the minimum distance of the (69, 36) BCH code with spectral zeros

at C1 and C23. Can it be triply extended to form a (72, 36, 12) code?

275 Notes

6.10 What is the minimum distance of the (93, 48) narrowsense binary BCH code?

Can this code be triply extended to form a binary (96, 48, 16) code? What is the

relationship to the Turyn construction?

6.11 A 15 by 15 binary bicyclic code over GF(16) has the defining set

A = {j′ = 1, 2 and j′′ = 1, 2, . . . , 8} ∪ {j′ = 1, 2, . . . , 8 and j′′ = 1, 2}

containing 28 elements. What is the complete defining set of this code? What is

the minimum distance? What is the dimension?

6.12 Give a definition of a fast Reed–Solomon code in a form that anticipates the

use of the Good–Thomas fast Fourier transform. How might this simplify the

encoder and decoder?

6.13 Can the (49, 39, 5) code over GF(8), specified by Figure 6.9, be extended by

four symbols to produce a (53, 43, 5) code? How? What can be said beyond this?

6.14 (a) Can the Turyn representation be used to construct the Wagner code from

three linear codes of blocklength 8?

(b) Can the Turyn representation be used to construct a (48, 36, 6) code from

three linear codes of blocklength 16?

6.15 The dual of the (2m − 1, 2m − 1 − m) binary Hamming code is a (2m − 1, m)

code, called a simplex code (or first-order Reed–Muller code). Is the dual of the

(2m, 2m − 1 − m) extended binary Hamming code equivalent to the extended

simplex code? If not, what is the relationship?

6.16 A nonlinear binary code with blocklength 63 is given by the set of vec-

tors c of blocklength 63 whose spectra C satisfy C1 = C3 = C5 = 0,

C7 = A, and C9 = B, where A ∈ {1, α7, α14, α21, α28, α35, α42, α49, α56} and

B ∈ {1, α9, α18, α27, α36, α45, α54}.
(a) Is the code cyclic?

(b) How many codewords does this code have?

(c) What is the minimum distance of the code?

(d) How does this code compare to the (63, 35, 9) BCH code?

6.17 Show that the binary Gleason–Prange theorem can be extended to arrays with

rows of length p+1. That is, if the rows of arrays v and u are related by a Gleason–

Prange permutation, and if each row of the two-dimensional Fourier transform

V satisfies a Gleason–Prange condition, then the corresponding row of the two-

dimensional Fourier transform satisfies the same Gleason–Prange condition.

Notes

Some two-dimensional codes of simple structure have been found to be useful in appli-

cations. These are the interleaved codes and the product codes. These codes are used,

276 The Fourier Transform and Bicyclic Codes

not because their minimum distances are attractive, but because their implementations

are affordable and because of good burst-correcting properties. Decoders for inter-

leaved codes routinely correct many error patterns beyond their minimum distances.

A general investigation of the structure of two-dimensional bicyclic codes can be found

in Ikai, Kosako, and Kojima (1974) and Imai (1977). In general, the study of two-

dimensional codes has not produced codes whose minimum distances are noteworthy.

The exceptions are the two-dimensional bicyclic codes whose component blocklengths

are coprime, but these codes are equivalent to one-dimensional cyclic codes. Therefore

two-dimensional codes are not highly valued by those who judge codes only by n, k,

and d .

The construction, herein, of the Golay code as a triply extended, two-dimensional

BCH code seems to be original. It is related to an observation of Berlekamp (1971).

Other than some recent work by Simonis (2000), the Wagner code has been largely

ignored since its discovery (Wagner, 1965). Duursma, in unpublished work, provided

the construction of the Wagner code as a concatenated code that is given in this chapter.

The terms “codes on the bicyclic plane,” “codes on the affine plane,” and “codes on

the projective plane” were selected to continue and parallel the classification begun in

Chapter 2. This classification will be completed in Chapter 9.

7 Arrays and the Algebra of Bivariate
Polynomials

An array, v = [vi′i′′], defined as a doubly indexed set of elements from a given alphabet,

was introduced in Chapter 5. There we studied the relationship between the two-

dimensional array v and its two-dimensional Fourier transform V . In this chapter,

further properties of arrays will be developed by drawing material from the subject of

commutative algebra, but enriching this material for our purposes and presenting some

of it from an unconventional point of view.

The two-dimensional array v can be represented by the bivariate polynomial v(x, y),

so we can study arrays by studying bivariate polynomials, which is the theme of this

chapter. The polynomial notation provides us with a convenient way to describe an

array. Many important computations involving arrays can be described in terms of the

addition, subtraction, multiplication, and division of bivariate polynomials. Although

n-dimensional arrays also can be studied as n-variate polynomials, in this book we shall

treat only two-dimensional arrays and bivariate polynomials.

As the chapter develops, it will turn heavily toward the study of ideals, zeros of

ideals, and the relationship between the number of zeros of an ideal and the degrees

of the polynomials in any set of polynomials that generates the ideal. A well known

statement of this kind is Bézout’s theorem, which bounds the number of zeros of an

ideal generated by two polynomials.

7.1 Polynomial representations of arrays

An n′ by n′′ array, v = [vi′i′′], over the field F can be represented as a bivariate

polynomial v(x, y), given by

v(x, y) =
n′−1∑

i′=0

n′′−1∑

i′′=0

vi′i′′x
i′yi′′ .

For a square array, which is our usual case, we will set n = n′ = n′′.
The set of bivariate polynomials over the field F is closed under addition and multi-

plication. It is a ring. The ring of bivariate polynomials over the field F is conventionally

278 Arrays and the Algebra of Bivariate Polynomials

denoted F[x, y]. The ring of bivariate polynomials modulo xn − 1 and modulo yn − 1

is a quotient ring, which is conventionally denoted F[x, y]/〈xn − 1, yn − 1〉. We also

use the simpler notation F◦[x, y] for this quotient ring. In the quotient ring F◦[x, y], a

multiplication product is reduced by setting xn = 1 and yn = 1.

The ideal I in F[x, y] is a nonempty subset of F[x, y] that is closed under addition of

its elements and is closed under multiplication by any bivariate polynomial. Thus for a

subset I to be an ideal in F[x, y], f (x, y)+g(x, y) must be in I if both f (x, y) and g(x, y)

are in I , and f (x, y)p(x, y) must be in I if p(x, y) is any bivariate polynomial in F[x, y]
and f (x, y) is any polynomial in I . An ideal of F[x, y] is called a proper ideal if it is

not equal to {0} or F[x, y]. An ideal of F[x, y] is called a principal ideal if there is one

element of the ideal such that every element of the ideal is a multiple of that element.

If g1(x, y), g2(x, y), . . . , gn(x, y) are any bivariate polynomials over F , the set of their

polynomial combinations is written as follows:

I =
{

n∑

ℓ=1

aℓ(x, y)gℓ(x, y)

}
,

where the aℓ(x, y) are arbitrary polynomials in F[x, y]. It is easy to see that the set I

forms an ideal. The polynomials g1(x, y), g2(x, y), . . . , gn(x, y) are called generators

of the ideal I , and, taken together, the generator polynomials form a generator set,

denoted G = {g1(x, y), . . . , gn(x, y)}. This ideal is conventionally denoted as

I = 〈g1(x, y), . . . , gn(x, y)〉,

or as I(G). We shall see that every ideal of F[x, y] can be generated in this way.

In general, an ideal does not have a unique generator set; an ideal may have many

different generator sets. A principal ideal can always be generated by a single polyno-

mial, but it may also be generated by other generator sets containing more than one

polynomial.

Recall that for any field F , not necessarily algebraically closed, the affine plane over

F consists of the set F2 = {(x, y) | x ∈ F , y ∈ F}. A zero (or affine zero) of the

polynomial v(x, y) is the pair (β, γ) of elements of F such that v(β, γ) = 0. Thus

an affine zero of v(x, y) is a point of the affine plane. The set of affine zeros of the

polynomial v(x, y) is a set of points in the affine plane. A zero (or affine zero) of an

ideal I in F[x, y] is a point of the affine plane that is a zero of every element of I . The

set of affine zeros of the ideal I , denoted Z(I), is a set of points in the affine plane.

It is equal to the set of common zeros of any set of generator polynomials for I . The

set of common affine zeros of a set of irreducible multivariate polynomials is called a

variety or an affine variety. An affine variety in the plane formed by a single irreducible

bivariate polynomial is called a plane affine curve.

279 7.2 Ordering the elements of an array

In the ring F[x, y], the reciprocal polynomial ṽ(x, y) of the bivariate polynomial

v(x, y) is defined as

ṽ(x, y) = xsx ysy
v(x−1, y−1),

where (sx, sy) is the componentwise degree of v(x, y). In the ring F◦[x, y] =
F[x, y]/〈xn − 1, yn − 1〉, the reciprocal polynomial of v(x, y) is defined as follows:

ṽ(x, y) = xn−1yn−1
v(x−1, y−1).

This reciprocal polynomial corresponds to the reciprocal array ṽ with elements

ṽi′i′′ = v(n−1−i′),(n−1−i′′).

The context will convey which form of the reciprocal polynomial is to be understood

in any discussion.

7.2 Ordering the elements of an array

The elements of an array have two indices, both nonnegative integers. This double index

(j′, j′′) is called the bi-index of the indexed element. We shall have many occasions to

rearrange the elements of the two-dimensional array (either a finite array or an infinite

array) into a one-dimensional sequence so that we can point to them, one by one, in a

fixed order. This is called a total order on the elements of the array. A total order on

any set is an ordering relationship that can be applied to any pair of elements in that set.

The total order is expressed as (j′, j′′) ≺ (k ′, k ′′), meaning that (j′, j′′) comes before

(k ′, k ′′) in the total order.

When the total order has been specified, it is sometimes convenient to represent the

double index (j′, j′′) simply by the single index j, meaning that (j′, j′′) is the jth entry in

the total order. Then we have two possible meanings for addition. By j + k, we do not

mean the (j+ k)th entry in the total order; by j+ k, we always mean (j′+ k ′, j′′+ k ′′).
Likewise, by j − k, we mean (j′ − k ′, j′′ − k ′′). Occasionally, we mildly violate this

rule by writing r − 1 to index the term before the rth term in a sequence. In this case,

subtraction is not at the component level. The context, and the fact that 1 is not in the

form of a bi-index, will make it clear when this is the intended meaning.

A total order on an array of indices implies a total order on the monomials xj′yj′′ of

a bivariate polynomial. In particular, a total order determines the leading monomial

xs′ys′′ and the leading term vs′s′′x
s′ys′′ of the bivariate polynomial v(x, y). This is the

unique monomial for which (s′, s′′) is greater than (j′, j′′) for any other monomial xj′yj′′

with nonzero coefficient. The bi-index (s′, s′′) of the leading monomial of v(x, y) is

280 Arrays and the Algebra of Bivariate Polynomials

called the bidegree of v(x, y), and is denoted bideg v(x, y). (Recall that the degree of

the polynomial is defined as s′ + s′′, and the componentwise degree (sx, sy) is defined

separately for the x and y variables.) The bidegree of a polynomial cannot be determined

until a total order is specified.

There are many ways of defining a total order. We shall limit the possible choices to

those total orders that respect multiplication by monomials. This means that if the array

[vi′i′′] is represented by the polynomial v(x, y), then the coefficients of the polynomial

retain the same relative order when the polynomial v(x, y) is multiplied by the monomial

xayb. In particular, if

(j′, j′′) ≺ (k ′, k ′′),

then for any positive integers a and b we require that

(j′ + a, j′′ + b) ≺ (k ′ + a, k ′′ + b).

Total orders that satisfy this condition are called monomial orders or term orders. The

two most popular monomial orders are the lexicographic order and the graded order.

The lexicographic order is defined as (j′, j′′) ≺ (k ′, k ′′) if j′′ < k ′′, or if j′′ = k ′′

and j′ < k ′. The lexicographic order is usually unsatisfactory for infinite arrays, but is

perfectly suitable for polynomials.

For example, the indices of a three by three array, arranged in increasing

lexicographic order, are as follows:

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2).

The nine elements of the array v, listed with indices in increasing lexicographic order,

are as follows:

v00, v10, v20, v01, v11, v21, v02, v12, v22.

The corresponding bivariate polynomial v(x, y), with terms arranged so their indices

are in decreasing lexicographic order, is given by

v(x, y) = v22x2y2 + v12xy2 + v02y2 + v21x2y + v11xy + v01y + v20x2 + v10x + v00.

In particular, with the lexicographic order specified, the nonzero polynomial v(x, y) has

a monomial of largest degree, namely x2y2 if v22 is nonzero, and a leading coefficient,

namely v22. The bidegree of v(x, y) in the lexicographic order is (2, 2). If v22 were equal

to 1, v(x, y) would be an example of a monic bivariate polynomial in lexicographic

order.

Note that in our definition of the lexicographic order the monomial x precedes the

monomial y (reading from the right). As an alternative, the definition could be inverted

281 7.2 Ordering the elements of an array

so that y precedes x. A serious disadvantage of the lexicographic order is that, for an

infinite array, a monomial can be preceded by an infinite number of other monomials.

We shall avoid using the lexicographic order, preferring instead an order in which every

monomial is preceded only by a finite number of other monomials.

The graded order (or graded lexicographic order) is defined as (j′, j′′) ≺ (k ′, k ′′) if

j′ + j′′ < k ′ + k ′′, or if j′ + j′′ = k ′ + k ′′ and j′′ < k ′′. The indices of a three by three

array, arranged in increasing graded order, are as follows:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2).

The nine elements of the array, listed with indices in increasing graded order, are as

follows:

v00, v10, v01, v20, v11, v02, v21, v12, v22.

The polynomial v(x, y), with terms arranged with indices in decreasing graded order,

is given by

v(x, y) = v22x2y2 + v12xy2 + v21x2y + v02y2 + v11xy + v20x2 + v01y + v10x + v00.

The bidegree of v(x, y) in the graded order is (2, 2).

The polynomial v(x, y) has the same leading term, namely v22x2y2, for both the

lexicographic order and the graded order, provided v22 is nonzero. If v22 and v12 are

both zero, however, then in the lexicographic order the leading term of the polyno-

mial would be v02y2, while in the graded order the leading term would be v21x2y.

Thus before determining the leading term it is necessary to specify the ordering

rule.

Another total order on indices (or monomials) that is useful is the weighted order.

Let a and b be fixed positive integers. The weighted order (or weighted graded order)

is defined as (j′, j′′) ≺ (k ′, k ′′) if aj′ + bj′′ < ak ′ + bk ′′, or if aj′ + bj′′ = ak ′ + bk ′′

and j′′ < k ′′.
For example, with a = 3 and b = 2, the indices of a three by three array, arranged

in increasing weighted order, are as follows:

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . .

The bidegree of v(x, y) in the weighted order is (3, 0). Note that (2, 0) appears before

(0, 3) in this weighted order. The polynomial v(x, y), with leading coefficient v30 and

written with terms in decreasing weighted order, is given by

v(x, y) = v30x3 + v21x2y + v12xy2 + v20x2 + v03y3 + v11xy

+ v02y2 + v10x + v01y + v00.

282 Arrays and the Algebra of Bivariate Polynomials

The bidegree of v(x, y) in the weighted order is (3, 0). Note that the positions of x2 and

y3 in this weighted order are not as they would be in the graded order.

The bidegree of a polynomial depends on the choice of total order. When we wish

to be precise, we shall speak of the lexicographic bidegree, the graded bidegree, or

the weighted bidegree. The weighted bidegree is not the same as the weighted degree,

defined in Sections 4.8 and 5.3. For a specified a and b, the weighted degree, denoted

deg(a,b)
v(x, y), is the largest value of aj′ + bj′′ for any monomial with a nonzero

coefficient.

For example, the polynomial

v(x, y) = x5y2 + x3y3 + xy4

has deg v(x, y) = 7, compdeg v(x, y) = (5, 4), and bideg v(x, y) = (5, 2) in the graded

order, while in the lexicographic order, bideg v(x, y) = (1, 4). In the weighted order

with a = 2 and b = 3, the weighted bidegree and the weighted degree are expressed

as bideg v(x, y) = (5, 2) and deg(a,b)
v(x, y) = 16.

An example of an order that is not a total order is the division order, which is denoted

j <
< k or (j′, j′′) <

< (k ′, k ′′), meaning that j′ < k ′ and j′′ < k ′′. The nonstrict form of this

inequality is denoted j <≤ k, or (j′, j′′)<≤ (k ′, k ′′), meaning that j′ ≤ k ′ and j′′ ≤ k ′′. (We

do not define a notation for strict inequality on only one component.) The division

order is not a total order, because there are some pairs (j′, j′′) and (k ′, k ′′) that cannot

be compared in the division order. This is called a partial order. Note, for example, that

(3, 7) and (4, 2) cannot be compared by using the division order. A simple illustration

will show that j <
< k is not the opposite of j >

≥ k. The first inequality means j′ < k ′ and

j′′ < k ′′. Its opposite is j′ ≥ k ′ or j′′ ≥ k ′′. The second inequality means that j′ ≥ k ′

and j′′ ≥ k ′′.
The division order on indices is closely related to a division order on monomials.

The monomial xj′yj′′ comes before xk ′yk ′′ in the division order if the monomial xj′yj′′

divides, as polynomials, the monomial xk ′yk ′′ . In terms of the exponents, this becomes,

(j′, j′′)<≤ (k ′, k ′′) if j′ ≤ k ′ and j′′ ≤ k ′′.
The contrast between the division order and the graded order is shown in Figure 7.1.

The highlighted region in Figure 7.1(a) shows the set of (j′, j′′) such that (j′, j′′) <
≤ (5, 3).

The highlighted region in Figure 7.1(b) shows the set of (j′, j′′) such that (j′, j′′) �
(5, 3), where (j′, j′′) � (k ′, k ′′) means that Figure 7.1(a) is equal to, or smaller than,

Figure 7.1(b) in the graded order. These (j′, j′′) satisfy the sequence

(0, 0) � (1, 0) � (0, 1) � (2, 0) � (1, 1) � · · · � (6, 2) � (5, 3).

The shaded region in Figure 7.1(a) is contained in the shaded region in part (b) because

(j′, j′′) � (k ′, k ′′) if (j′, j′′)<≤ (k ′, k ′′).

283 7.3 Ordering the elements of an array

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) (b)

Figure 7.1. Division order and graded order.

The division order can be used to restate the definition of a cascade set as follows:

The cascade set P is a proper subset of N2 with the property that if (k ′, k ′′) ∈ P and

(j′, j′′) <
≤ (k ′, k ′′), then (j′, j′′) ∈ P .

For any monomial order, the degrees of a(x, y) and b(x, y) add under polynomial

multiplication a(x, y)b(x, y), as do the bidegrees and the componentwise degrees. Thus

if a(x, y) and b(x, y) have bidegrees (s′, s′′) and (r′, r′′), respectively, then a(x, y)b(x, y)

has bidegree (s′ + r′, s′′ + r′′) and degree s′ + s′′ + r′ + r′′. If a(x, y) and b(x, y)

have componentwise degrees (sx, sy) and (rx, ry), respectively, then a(x, y)b(x, y) has

componentwise degree (sx + rx, sy + ry).

Amonic polynomial has been defined as a bivariate polynomial v(x, y) whose leading

coefficient vs′s′′ is 1. Note that a polynomial may lose its status as a monic polynomial

if the choice of total order is changed because, then, the leading term may change.

A monic irreducible polynomial is called a prime polynomial. Any nonconstant poly-

nomial v(x, y) can be written uniquely (up to the order of the factors) as the product

of a field element and its prime polynomial factors pℓ(x, y), some perhaps raised to a

power mℓ. Thus

v(x, y) = β

N∏

ℓ=1

pℓ(x, y)mℓ .

This statement – that every bivariate polynomial has a unique factorization – is called

the unique factorization theorem (for bivariate polynomials). In general, any ring

that satisfies the unique factorization theorem is called a unique factorization ring,

so the ring of bivariate polynomials over a field is an example of a unique factorization

ring.

284 Arrays and the Algebra of Bivariate Polynomials

7.3 The bivariate division algorithm

Recall that the division algorithm for univariate polynomials states that for any two

univariate polynomials, f (x) and g(x), the quotient polynomial Q(x) and the remainder

polynomial r(x) are unique and satisfy

f (x) = Q(x)g(x)+ r(x)

and deg r(x) < deg g(x).

In the ring of bivariate polynomials, we shall want to divide simultaneously by two

(or more) polynomials. Given g1(x, y) and g2(x, y), we will express the polynomial

f (x, y) as

f (x, y) = Q1(x, y)g1(x, y)+ Q2(x, y)g2(x, y)+ r(x, y),

where the remainder polynomial r(x, y) satisfies bideg r(x, y) � bideg f (x, y), and no

term of r(x, y) is divisible by the leading term of either g1(x, y) or g2(x, y). Of course,

because we speak of leading terms and the bidegree of polynomials, we are dealing

with a fixed total order, which (unless otherwise specified) we shall always take to be

the graded order.

The procedure we shall study mimics the steps of the division algorithm for uni-

variate polynomials, reducing step by step the degree of a scratch polynomial, also

called f (x, y). At each step, if possible, the leading term of f (x, y) is canceled by the

leading term of either g1(x, y) or g2(x, y), multiplied by an appropriate monomial and

coefficient. Otherwise, the leading term of f (x, y) is assigned to the remainder poly-

nomial r(x, y). To make the procedure unambiguous, g1(x, y) is chosen as the divisor

polynomial, whenever possible, in preference to g2(x, y).

The procedure will be made clear by an example. In GF(2), let

f (x, y) = x4 + x3y + xy2 + xy + x + 1,

g1(x, y) = x3 + xy + 1,

g2(x, y) = xy + y2 + 1.

Initialize the quotient polynomials and the remainder polynomial as Q1(x, y) =
Q2(x, y) = r(x, y) = 0.

Step (1) Multiplying g1(x, y) by x gives a leading term of x4, which will cancel the

leading term of f (x, y). Then

f (1)(x, y) = f (x, y)− xg1(x, y)

= x3y + x2y + xy2 + xy + 1,

285 7.3 The bivariate division algorithm

Q
(1)
1 (x, y) = x,

Q
(1)
2 (x, y) = 0,

r(1)(x, y) = 0.

Step (2) Multiplying g1(x, y) by y gives a leading term of x3y, which will cancel the

leading term of f (1)(x, y). Then

f (2)(x, y) = f (1)(x, y)− yg1(x, y)

= x2y + xy + y + 1,

Q
(2)
1 (x, y) = x + y,

Q
(2)
2 (x, y) = 0,

r(2)(x, y) = 0.

Step (3) No monomial multiple of the leading term of g1(x, y) will cancel the leading

term of f (2)(x, y). Multiplying g2(x, y) by x gives a leading term of x2y, which will

cancel the leading term of f (2)(x, y). Then

f (3)(x, y) = f (2)(x, y)− xg2(x, y)

= xy2 + xy + x + y + 1,

Q
(3)
1 (x, y) = x + y,

Q
(3)
2 (x, y) = x,

r(3)(x, y) = 0.

Step (4) Again, g1(x, y) cannot be used, but g2(x, y) multiplied by y can be used to

cancel the leading term of f (3)(x, y). Then

f (4)(x, y) = f (3)(x, y)− yg2(x, y)

= y3 + xy + x + 1,

Q
(4)
1 (x, y) = x + y,

Q
(4)
2 (x, y) = x + y,

r(4)(x, y) = 0.

Step (5) The leading term of f (4)(x, y) cannot be canceled by any multiple of g1(x, y)

or g2(x, y), so it is assigned to the remainder polynomial. Then

f (5)(x, y) = xy + x + 1,

Q
(5)
1 (x, y) = x + y,

286 Arrays and the Algebra of Bivariate Polynomials

Q
(5)
2 (x, y) = x + y,

r(5)(x, y) = y3.

Step (6) The leading term of f (5)(x, y) can be canceled by g2(x, y). Then

f (6)(x, y) = f (4)(x, y)− g2(x, y)

= y2 + x,

Q
(6)
1 (x, y) = x + y,

Q
(6)
2 (x, y) = x + y + 1,

r(5)(x, y) = y3.

In the final two steps, y2 then x will be assigned to the remainder polynomial, because

they cannot be canceled by any multiple of g1(x, y) or g2(x, y).

The result of the division algorithm for this example is as follows:

f (x, y) = Q1(x, y)g1(x, y)+ Q2(x, y)g2(x, y)+ r(x, y)

= (x + y)g1(x, y)+ (x + y + 1)g2(x, y)+ y3 + y2 + x.

Note that bideg [(x+ y)g1(x, y)] � bideg f (x, y), and bideg [(x+ y+ 1)g2(x, y)] �
bideg f (x, y).

The same procedure can be used with more than (or less than) two divisor polyno-

mials, gℓ(x, y) for ℓ = 1, . . . , L, to compute a set of L quotient polynomials and one

remainder polynomial, as stated in the following theorem.

Theorem 7.3.1 (division algorithm for bivariate polynomials) Let G = {gℓ(x, y) |
ℓ = 1, . . . , L} be a set of bivariate polynomials from F[x, y]. Then every f (x, y) can be

written as follows:

f (x, y) = Q1(x, y)g1(x, y)+ · · · + QL(x, y)gL(x, y)+ r(x, y),

where

bideg r(x, y) � bideg f (x, y),

bideg [Qℓ(x, y)gℓ(x, y)] � bideg f (x, y),

and no monomial of r(x, y) is divisible by the leading monomial of any gℓ(x, y).

Proof: The proof can be obtained by formalizing the example given prior to the

theorem. �

287 7.3 The bivariate division algorithm

0

1

2

3

4

5

6

7

8

9
j ��

0 1 2 3 4 5 6 7 8 j�

Figure 7.2. Removing quarter planes from the first quadrant.

Given an ordered set of polynomials, G, the remainder polynomial will often be

written as follows:

r(x, y) = RG[f (x, y)].

This is read as “r(x, y) is the remainder, under division by G, of f (x, y).” The condition

that no monomial of r(x, y) is divisible by the leading monomial of any gℓ(x, y) of G is

illustrated in Figure 7.2 for a case with L = 3. Each filled circle in the figure represents

the leading monomial of one of the gℓ(x, y). The set of monomials excluded by each

gℓ(x, y) is highlighted as a quarter plane. No monomial of r(x, y) can lie in any of these

quarter planes.

In general, the decomposition of f (x, y) given in Theorem 7.3.1 is not unique. The

result of the division algorithm will depend, in general, on the order in which the gℓ(x, y)

are listed; the remainder polynomial may be different if the gℓ(x, y) are permuted, and

the quotient polynomials may also be different. In Section 7.4, we will show that if the

polynomials of G form a certain preferred kind of set, known as a minimal basis for

the ideal formed by G, then the remainder polynomial r(x, y) does not depend on the

order in which the polynomials of G are listed.

Figure 7.3 shows the conditions, given in Theorem 7.3.1, on the monomials of r(x, y)

for a typical application of the division algorithm using the graded order. The open circle

represents the leading monomial of f (x, y). The upper staircase boundary of Figure 7.3

represents the condition that

bideg r(x, y) � bideg f (x, y),

as required by the theorem. The monomials of r(x, y) must be under this staircase. The

solid circles represent the leading monomials of the gℓ(x, y). Theorem 7.3.1 requires

that all monomials of the remainder polynomial r(x, y) must lie in the set of those

288 Arrays and the Algebra of Bivariate Polynomials

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

j ��

j �

Figure 7.3. Conditions on the remainder polynomial.

monomials that are not divisible by the leading monomial of any gℓ(x, y). This requires

that the possible monomials of the r(x, y) correspond to a cascade set determined by

the leading monomials of the gℓ(x, y). The combination of the two conditions means

that the indices of all monomials of r(x, y) lie in the shaded region of Figure 7.3.

We will close this section by describing a useful computation for forming, from

any two polynomials g1(x, y) and g2(x, y), another polynomial that is contained in the

ideal 〈g1(x, y), g2(x, y)〉, but in some sense is “smaller.” To set up this computation,

we shall introduce additional terminology. Let G be any set of polynomials in the ring

of bivariate polynomials F[x, y], with a fixed total order on the bi-indices. We need to

coin a term for the set of bi-indices that are not the leading bi-index of any polynomial

multiple of an element of the given set G.

Definition 7.3.2 The footprint, denoted �(G), of the set of bivariate polynomials

given by

G = {g1(x, y), g2(x, y), . . . , gn(x, y)}

is the set of index pairs (j′, j′′), both nonnegative, such that xj′yj′′ is not divisible by the

leading monomial of any polynomial in G.

Thus the complement of �(G) can be written as follows:

�(G)c = {(j′, j′′) | (j′, j′′) = bideg [a(x, y)gℓ(x, y)]; gℓ(x, y) ∈ G}.

If any polynomial multiple of an element of G has leading bi-index (j′, j′′), then (j′, j′′)
is not in �(G). Later, we will consider the footprint of the ideal generated by G, which

will be denoted �(I(G)). Although �(I(G)) is always contained in �(G), the two need

not be equal to �(G). In Section 7.4, we will determine when the two footprints are

equal.

289 7.3 The bivariate division algorithm

0

1

2

3

4

5

6

7

8

j 99

0 1 2 3 4 5 6 7 8 9 j 9

Figure 7.4. Footprint of {g1(x, y), g2(x, y)}.

The footprint of a set of polynomials is always a cascade set. An example of a

footprint of set G = {g1(x, y), g2(x, y)} is shown in Figure 7.4. The squares containing

the two solid circles correspond to the leading monomials of g1(x, y) and g2(x, y). The

quadrant that consists of every square above and to the right of the first of these solid

circles is not in the footprint of the set G. The quadrant that consists of every square

above and to the right of the second of these solid circles is not in the footprint of the

set G. The shaded squares are in the footprint, including all squares on the vertical strip

at the left going to infinity and on the horizontal strip at the bottom going to infinity.

We shall now describe the promised useful operation, which we call a conjunction,

that produces from two polynomials, g1(x, y) and g2(x, y) of set G, another polynomial

in the ideal 〈g1(x, y), g2(x, y)〉, whose leading monomial (unless it is the zero polyno-

mial) is within the footprint of G. This polynomial is called the conjunction polynomial

of g1(x, y) and g2(x, y), and is denoted b
g1g2
G (x, y). The conjunction polynomial will

be found to be a linear polynomial combination of g1(x, y) and g2(x, y), and will be

expressed as follows:

b
g1g2
G (x, y) = a1(x, y)g1(x, y)+ a2(x, y)g2(x, y).

This means that the conjunction polynomial is in the ideal generated by g1(x, y) and

g2(x, y).

Suppose, without loss of meaningful generality, that g1(x, y) and g2(x, y) are monic

polynomials. Denote the leading monomial of g1(x, y) by xs′ys′′ ; the bidegree of g1(x, y)

is (s′, s′′). Denote the leading monomial of g2(x, y) by xr′yr′′ ; the bidegree of g2(x, y)

is (r′, r′′). The conjunction polynomial of g1(x, y) and g2(x, y) is defined as

b
g1g2
G (x, y) = RG[f (x, y)],

290 Arrays and the Algebra of Bivariate Polynomials

where

f (x, y) = m1(x, y)g1(x, y)− m2(x, y)g2(x, y),

and

m1(x, y) = xr′yr′′/GCD[xs′ys′′ , xr′yr′′],

m2(x, y) = xs′ys′′/GCD[xs′ys′′ , xr′yr′′].

The monomials m1(x, y) and m2(x, y) are chosen to “align” the polynomials g1(x, y)

and g2(x, y) so that, after the multiplications by m1(x, y) and m2(x, y), the leading

monomials are the same. Hence the monomials m1(x, y) and m2(x, y) are called align-

ment monomials. The alignment monomials can take several forms, such as 1 and

xs′−r′ys′′−r′′ , or xr′−s′yr′′−s′′ and 1, or yr′′−s′′ and xs′−r′ , according to the signs of r′− s′

and r′′ − s′′.
Figure 7.5 illustrates the procedure for a case in which s′ ≥ r′ and r′′ ≥ s′′. The

leading monomials of g1(x, y) and g2(x, y) are denoted by two filled circles, located at

coordinates (s′, s′′) and (r′, r′′). The asterisk in the illustration denotes the monomial

of least degree that is divisible by the leading monomials of both g1(x, y) and g2(x, y).

The shaded region is the intersection of the footprint of {g1(x, y), g2(x, y)} and the set of

remainders allowed by the division algorithm. The leading monomial of f (x, y) is not

greater than the monomial indicated by the open circle in the figure. The conjunction

polynomial is the remainder polynomial and, unless it is identically zero, it has bidegree

in the shaded region.

The expression for the division algorithm,

f (x, y) = Q1(x, y)g1(x, y)+ Q2(x, y)g2(x, y)+ RG[f (x, y)],

∗

0 1 2 3 4 5 6 7 8 9 j 9

j 0
8

7

6

5

4

3

2

1

0

Figure 7.5. Possible bidegrees of the conjunction polynomial.

291 7.4 The footprint and minimal bases of an ideal

together with the definition of f (x, y), show that we can write the conjunction

polynomial in the form of a polynomial combination:

b
g1g2
G (x, y) = a1(x, y)g1(x, y)+ a2(x, y)g2(x, y).

Thus the conjunction polynomial is in the ideal generated by G. We have seen that,

unless it is the zero polynomial, its leading monomial lies in �(G).

Now, unless it is zero, rename the conjunction polynomial g3(x, y) and append it

to the set G to form a new set, again called G. Unless g3(x, y) is equal to zero, the

new set of polynomials G = {g1(x, y), g2(x, y), g3(x, y)} has a footprint that is strictly

smaller than the footprint of {g1(x, y), g2(x, y)}. To reduce the footprint further, the

conjunction operation can again be applied, now to the pair (g1(x, y), g3(x, y)) and to

the pair (g2(x, y), g3(x, y)), producing the new conjunction polynomials g4(x, y) and

g5(x, y). These, if nonzero, can be further appended to the set G, thereby reducing the

footprint even further. Later, we shall examine this process rather closely. By finding

conditions on the fixed points of this conjunction operation, we shall discover several

important facts about sets of bivariate polynomials.

7.4 The footprint and minimal bases of an ideal

It is a well known fact that the number of zeros of the univariate polynomial p(x) is

not larger than the degree of p(x). An indirect way of saying this is that the number

of zeros of p(x) is not larger than the number of nonnegative integers smaller than the

leading bi-index of p(x). This seems like a needlessly indirect way of stating this fact.

It is, however, the form of the theorem that will generalize to two (or more) dimensions

in a way that fits our needs.

We shall be interested in the number of affine zeros of an ideal in the ring of bivariate

polynomials. This will have a close relationship to the footprint of the ideal. The

footprint of an ideal is already defined because an ideal is a set of polynomials, and the

footprint is defined for any set of polynomials. For emphasis and for the integrity of

this section, however, we will repeat the definition specifically for an ideal.

Definition 7.4.1 The footprint of the ideal I ⊂ F[x, y], denoted �(I), is the set of

index pairs (j′, j′′), both nonnegative, such that (j′, j′′) is not the leading bi-index of

any polynomial in I .

Thus, with regard to the ideal I , partition the set of all bivariate monomials into

those monomials that are leading monomials of at least one polynomial of I and those

monomials that are not the leading monomial of any polynomial of I . The footprint of

I is the set of bi-indices that correspond to the monomials of the second set.

292 Arrays and the Algebra of Bivariate Polynomials

The area of a footprint is the number of points (j′, j′′) in the footprint. Possibly the

area is infinite. It is obvious that the footprint is empty and that its area is zero if the

ideal I is F[x, y] itself. The converse of this statement – that the footprint is not empty

except when the ideal I is F[x, y] itself – follows from the fact, that if the footprint is

empty, then the trivial monomial x0y0 is in the ideal, as are all polynomial multiples of

x0y0.

If (j′, j′′) is not in the footprint of I and (k ′, k ′′) >
≥ (j′, j′′), then (k ′, k ′′) is not in

the footprint of I either. This means that the footprint �(I) of any proper ideal I is a

cascade set. A typical footprint is illustrated in Figure 7.6. Some special points outside

the footprint, denoted by solid circles in the illustration, are called exterior corners of

the footprint.

We will only study ideals in the ring of bivariate polynomials, although the gener-

alization to the ring of multivariate polynomials is straightforward. For example, an

illustration of a footprint of an ideal in the ring of trivariate polynomials is shown in

Figure 7.7, which depicts how the notion of an exterior corner generalizes to three

dimensions. Each exterior corner of the figure is indicated by a dot.

The footprint of a bivariate ideal is completely specified by its exterior corners. For

each exterior corner, there is a polynomial in the ideal I with its leading monomial in

0 1 2 3 4 5 6 7

4

3

2

1

0

j9

j 0

Figure 7.6. Typical bivariate footprint.

j 0

j -

j 9

Figure 7.7. Typical trivariate footprint.

293 7.4 The footprint and minimal bases of an ideal

this exterior corner. Indeed, there must be a monic polynomial in I with this property.

The monic polynomial, however, need not be unique. This is because the difference of

two monic polynomials, both with their leading monomials in the same exterior corner

of the footprint, can have a leading monomial that is not in the footprint.

This leads to the following definition.

Definition 7.4.2 A minimal basis for the ideal I is a set of polynomials, {gℓ(x, y)} ⊂ I ,

that consists of exactly one monic polynomial with a bidegree corresponding to each

exterior corner of the footprint of I .

Theorem 7.4.3 The footprint of a minimal basis for the ideal I ⊂ F[x, y] is the same

as the footprint of I .

Proof: For any set of polynomials G = {g1(x, y), . . . , gn(x, y)}, it is evident that

�(〈g1(x, y), . . . , gn(x, y)〉) ⊆
n⋂

ℓ=1

�(〈gℓ(x, y)〉),

or, more concisely,

�(I(G)) ⊆ �(G),

because every polynomial in G is also in I(G). This inclusion holds with equality if G

contains a minimal basis for the ideal it generates. This is evident because a minimal

basis includes, for each exterior corner, one polynomial whose leading monomial lies

in that exterior corner. �

Thus a minimal basis is a set of monic polynomials of the ideal that has the same

footprint as the entire ideal, and all polynomials of that set are essential to specifying

the footprint.

The minimal basis of an ideal is not unique. We shall see that any minimal basis of

I is a generator set for I . A minimal basis remains a generator set if it is enlarged by

appending any other polynomials of I to it. Any set of polynomials of I that contains a

minimal basis of an ideal I is called a Gröbner basis1 or a standard basis of I . AGröbner

basis may be infinite, but we shall show in what follows that a minimal basis must be

finite. This is the same as saying that the number of exterior corners in any cascade

set must be finite. Loosely speaking, a descending staircase with an infinite number

of steps at integer-valued coordinates cannot be contained in the first quadrant of the

(j′, j′′) plane.

Theorem 7.4.4 A minimal basis in F[x, y] is finite.

1 A Gröbner basis is not required to be a minimal set. To respect the more common usage of the word basis, it
might be better to use instead the terminology “Gröbner spanning set."

294 Arrays and the Algebra of Bivariate Polynomials

Proof: Partition the first quadrant of the (j′, j′′) plane into two parts, using the diagonal

line j′ = j′′. This line must cross the boundary of the cascade set at some point, say at

the point (k, k). Because steps in the footprint only occur at integer coordinates, there

can be at most k exterior corners above this crossing point, and there can be at most k

exterior corners below this crossing point. Hence there can be only a finite number of

exterior corners, and, because there is one minimal basis polynomial for each exterior

corner, there can be only a finite number of polynomials in a minimal basis. �

Because the polynomials of a minimal basis are in one-to-one correspondence with

the exterior corners of a cascade set, we will sometimes order the polynomials of a

minimal basis by using the integer order on the exponent of y (or of x) in the leading

monomial, calling this order the staircase order. This is not the same as ordering the

minimal polynomials by using a specified total order on the leading monomials.

The set of polynomial combinations of the minimal polynomials, denoted

〈gℓ(x, y)〉 =
{∑

ℓaℓ(x, y)gℓ(x, y)
}

,

where the polynomial coefficients aℓ(x, y) are arbitrary, forms an ideal contained in the

original ideal. The following theorem says that it is equal to the original ideal, so the

minimal basis completely determines the ideal. Thus it is appropriate to call it a basis.

Theorem 7.4.5 An ideal is generated by any of its minimal bases.

Proof: Let f (x, y) be any element of I , and let {gℓ(x, y) | ℓ = 1, . . . , L} be a mini-

mal basis. Then by the division algorithm for bivariate polynomials we can write the

following:

f (x, y) = a1(x, y)g1(x, y)+ a2(x, y)g2(x, y)+ · · · + aL(x, y)gL(x, y)+ r(x, y).

Because f (x, y) and all gℓ(x, y) are in I , we conclude that the remainder polynomial

r(x, y) is in I also. Therefore the leading monomial of r(x, y) is not an element of

�(I). On the other hand, by the properties of the division algorithm, we know that the

nonzero remainder polynomial r(x, y) has a leading monomial that is not divisible by

the leading monomial of any of the gℓ(x, y). Therefore, as implied by Theorem 7.4.3,

if r(x, y) is nonzero, its leading index must lie in �(I). The contradiction proves that

r(x, y) must be the zero polynomial. �

In general, the remainder polynomial produced by the division algorithm may depend

on the order of the polynomials in the setG. The following theorem states that this cannot

happen if G is a minimal basis.

295 7.4 The footprint and minimal bases of an ideal

Theorem 7.4.6 Under division by the minimal basis G = {gℓ(x, y) | ℓ = 1, . . . , L},
any polynomial f (x, y) has a unique remainder, independent of the order of the elements

of G.

Proof: The division algorithm states that no term of the remainder polynomial r(x, y)

is divisible by the leading term of any gℓ(x, y). Thus the monomials of the remainder

polynomial are in the footprint of the ideal, which, because G is a minimal basis, is

equal to �(I(G)). Suppose that

f (x, y) = Q1(x, y)g1(x, y)+ · · · + QL(x, y)gL(x, y)+ r(x, y)

and

f (x, y) = Q′1(x, y)g1(x, y)+ · · · + Q′L(x, y)gL(x, y)+ r′(x, y)

are two expressions generated by the division algorithm. Then

r(x, y)− r′(x, y) =
[
Q1(x, y)− Q′1(x, y)

]
g1(x, y)+ · · ·

+
[
QL(x, y)− Q′L(x, y)

]
gL(x, y).

Therefore r(x, y) − r′(x, y) is in the ideal I(G). But no monomial of r(x, y) − r′(x, y)

is divisible by the leading monomial of any polynomial in the ideal. Hence r(x, y) −
r′(x, y) = 0, and so r(x, y) = r′(x, y). �

Although the remainder polynomial is unique under division by a minimal basis,

the quotient polynomials need not be unique. The quotient polynomials may vary for

different rearrangements of the polynomials of the minimal basis. In Section 7.5, we

shall see how to choose the minimal basis so that the quotient polynomials are unique

as well.

Theorem 7.4.7 (Hilbert basis theorem) Every ideal in the ring of bivariate

polynomials is finitely generated.

Proof: Every ideal has a minimal basis, and a minimal basis always consists of a

finite number of polynomials because a footprint has only a finite number of exterior

corners. �

Although we have stated the bivariate case only, the Hilbert basis theorem also holds

in the ring of n-variate polynomials, as do most of the notions we have discussed.

Indeed, one can show that, if every ideal of the ring R is finitely generated, then every

ideal of the ring R[x] is finitely generated as well. The Hilbert basis theorem tells us

that the set of zeros of an ideal in F[x, y] is actually the set of common zeros of a finite

number of polynomials. If these polynomials are irreducible, then these common zeros

form a variety in the affine plane.

296 Arrays and the Algebra of Bivariate Polynomials

The following theorem says that any nested chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆
· · · ⊆ F[x, y] must eventually be constant. (Any ring with this property is called a

noetherian ring.)

Corollary 7.4.8 (ascending chain condition) The ring F[x, y] does not contain an

infinite chain of properly nested ideals.

Proof: Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an infinite chain of nested ideals. We must show

that eventually this chain is constant. Let

I =
∞⋃

ℓ=1

Iℓ.

This is an ideal in F[x, y], so it is generated by a minimal basis. For each generator

polynomial in this finite set, there must be a value of ℓ at which that generator polynomial

first appears in Iℓ. There is only a finite number of such ℓ, so there is a largest. The

largest such ℓ corresponds to an ideal Iℓ that includes all generator polynomials of I .

Therefore for this value of ℓ, Iℓ = I , and consequently Iℓ′ = I for all ℓ′ ≥ ℓ. �

Note that a converse statement is also true: any ring that does not contain an infinite

chain of properly nested ideals contains only rings that are finitely generated.

Definition 7.4.9 If a minimal basis for an ideal in F[x, y] consists only of monomials,

then the basis is called a monomial basis, and the ideal it generates is called a monomial

ideal.

Corresponding to every ideal, I ⊂ F[x, y], is a unique monomial ideal, denoted I∗,
which is obtained by replacing each polynomial of a minimal basis of I by its leading

monomial, then using these monomials as a basis to generate I∗. The footprint of I

suffices to specify the monomial ideal I∗.

7.5 Reduced bases and quotient rings

The minimal basis of an ideal need not be unique; there can be many choices for a

minimal basis of an ideal. Because we want to make the choice of basis unique, we

constrain the basis further. The unique basis that we will now define is perhaps the most

useful of the minimal bases of an ideal.

Definition 7.5.1 A minimal basis is called a reduced basis if every nonleading

monomial of each basis polynomial has a bi-index lying in the footprint of the ideal.

Equivalently, no leading monomial of a basis polynomial in a reduced basis divides

any monomial appearing in any other basis polynomial.

297 7.5 Reduced bases and quotient rings

It is trivial to compute a reduced basis from a minimal basis because every invertible

polynomial combination of the polynomials of a minimal basis contains a minimal basis.

Simply list the polynomials of the minimal basis such that the leading monomials are

in the total order. Then, as far as possible, subtract a monomial multiple of the last

polynomial from each of the others to cancel monomials from other polynomials.

Repeat this, in turn, for each polynomial higher in the list. (This process is similar to

putting a matrix into reduced echelon form by gaussian elimination, hence the term

“reduced basis.”)

Theorem 7.5.2 For each fixed monomial order, every nonzero ideal of F[x, y] has

exactly one reduced basis.

Proof: Order the polynomials of any minimal basis of ideal I by their leading monomi-

als; no two have the same leading monomial. Polynomial combinations of polynomials

can be used to cancel a monomial that is a leading monomial of one polynomial from

any other polynomial appearing on the list. Thus every ideal has at least one reduced

basis.

To prove that the reduced basis is unique, let G and G ′ be two reduced bases for I .

For each exterior corner of the footprint, each reduced basis will contain exactly one

monic polynomial with its leading monomial corresponding to that exterior corner. Let

gℓ(x, y) and g′ℓ(x, y) be the monic polynomials of G and G ′, respectively, corresponding

to the ℓth exterior corner of the footprint. By the division algorithm, their difference

can be written as follows:

gℓ(x, y)− g′ℓ(x, y) = Q1(x, y)g1(x, y)+ · · · + QL(x, y)gL(x, y)+ r(x, y).

Because all gℓ(x, y) are in the ideal, r(x, y) is in the ideal also. But the leading monomial

of r(x, y) is not divisible by the leading monomial of any of the reduced polynomials.

Thus

r(x, y) = RG[gℓ(x, y)− g′ℓ(x, y)]
= 0.

By the definition of the reduced basis, all terms of gℓ(x, y) − g′ℓ(x, y) are elements of

the footprint of I , and, hence, no term of gℓ(x, y)− g′ℓ(x, y) is divisible by the leading

monomial of any gk(x, y). This implies that

gℓ(x, y)− g′ℓ(x, y) = 0

for all ℓ, so the reduced basis is unique. �

The theorem tells us that, in the graded order, there is a unique correspondence

between reduced bases and ideals of F[x, y]. One way to specify an ideal is to specify

298 Arrays and the Algebra of Bivariate Polynomials

4

3

2

1

0

0 1 2 3 4 5 6 7

j 0

j 9

Figure 7.8. Leading monomials of a reduced basis.

its reduced basis. First, illustrate a footprint, as shown in Figure 7.8. Each black dot

in an exterior corner corresponds to the leading monomial of one polynomial of the

reduced basis. The coefficient of that monomial is a one. The other monomials of a basis

polynomial must lie within the footprint, each paired with a coefficient from the field

F to form one term of the polynomial. For an ideal with the footprint in the illustration,

there are four polynomials in the reduced basis; these have the following form:

g1(x, y) = x7 + g
(1)
60 x6 + g

(1)
50 x5 + g

(1)
40 x4 + · · · ;

g2(x, y) = x4y + g
(2)
32 x3y2 + g

(2)
40 x4 + g

(2)
31 x3y + · · · ;

g3(x, y) = xy3 + g
(3)
30 x3 + g

(3)
21 x2y + g

(3)
12 xy2 + · · · ;

g4(x, y) = y4 + g
(4)
30 x3 + g

(4)
21 x2y + g

(4)
12 xy2 + · · · .

Each polynomial has one coefficient, possibly zero, for each gray square smaller than its

leading monomial in the graded order. These coefficients are not completely arbitrary,

however; some choices for the coefficients will not give a basis for an ideal with this

footprint. Later, we will give a condition on these coefficients that ensures that the

polynomials do form a reduced basis.

Looking at Figure 7.8, the following theorem should seem obvious.

Theorem 7.5.3 If appending a new polynomial enlarges an ideal, then the footprint

of the ideal becomes smaller.

Proof: It is clear that after appending a new polynomial, the footprint must be contained

in the original footprint, so it is enough to show that the footprint does not remain the

same. Let I be the original ideal and I ′ the expanded ideal. Because the ideals are not

equal, the reduced basis for I is not the same as the reduced basis for I ′. Consider any

polynomial of the reduced basis for I ′ not in the reduced basis for I . There can be only

one monic polynomial in the ideal with the leading monomial of that reduced basis

polynomial. Hence that exterior corner of �′ is not an exterior corner of �. Hence

� �= �′, and the proof is complete. �

299 7.5 Reduced bases and quotient rings

Now we turn our attention to certain polynomials that are not in the ideal I . Specifi-

cally, we will consider those polynomials whose monomials all lie inside the footprint.

Polynomials with all monomials in � are not in I , because no polynomial of I has a

leading monomial lying in the footprint of I . Nevertheless, the set of these polynomials

can itself be given its own ring structure, defined in terms of the structure of I . This

ring structure underlies the notion of a quotient ring.

The formal definition of a quotient ring uses the concept of an equivalence class.

Every I ⊂ F[x, y] can be used to partition F[x, y] into certain subsets called equivalence

classes. Given any p(x, y) ∈ F[x, y], the equivalence class of p(x, y), denoted {p(x, y)},
is the set given by

{ p(x, y)+ i(x, y) | i(x, y) ∈ I}.

The set of such sets, called a quotient ring, is denoted F[x, y]/I :

F[x, y]/I = {{p(x, y)+ i(x, y) | i(x, y) ∈ I}, p(x, y) ∈ F[x, y]}.

Thus all elements of F[x, y] that differ by an element of I are equivalent.

To give F[x, y]/I a ring structure, we must define the ring operations. This means that

wemustdefinetheadditionandmultiplicationofequivalenceclasses, andthenverify that

thesedefinitionsdosatisfy theaxiomsofa ring.Additionormultiplicationofequivalence

classes is quite straightforward in principle. Define the sum of equivalence classes

{a(x, y)} and {b(x, y)} as the equivalence class {a(x, y) + b(x, y)}. Define the product

of equivalence classes {a(x, y)} and {b(x, y)} as the equivalence class {a(x, y)b(x, y)}.
It is straightforward to prove that the sum or product does not depend on the choice of

representatives from the sets {a(x, y)} and {b(x, y)}, so the definitions are proper.

A more concrete, and more computational, approach to the notion of a quotient ring

is to define the elements of the quotient ring as individual polynomials, as follows. Let

I be an ideal with the footprint �. The footprint of I is a cascade set �, which we use

to define the support of a two-dimensional array of elements from the field F . To define

the quotient ring, first define the set given by

F[x, y]/I = {p(x, y) | pi′i′′ = 0 if (i′, i′′) �∈ �}.

To form the polynomial p(x, y) of F[x, y]/I , simply fill the cells of � with any coeffi-

cients pi′i′′ . This array of coefficients defines a polynomial of F[x, y]/I . The coefficients

are arbitrary, and each choice of coefficients gives one element of the quotient ring;

there are no others. To reconcile this definition with the formal definition of F[x, y]/I ,

the individual polynomial p(x, y) is regarded as the canonical representative of an

equivalence class of that formal definition.

Addition in the quotient ring is defined as addition of polynomials. Under addition,

F[x, y]/I is a vector space, and the monomials that correspond to the cells of � are a

basis for this vector space.

300 Arrays and the Algebra of Bivariate Polynomials

Multiplication in the quotient ring is defined as multiplication of polynomials modulo

G, where G is the reduced basis for the ideal I . Thus

a(x, y) · b(x, y) = RG[a(x, y)b(x, y)].

The ring multiplication can be described in a very explicit way. To multiply b(x, y) by x

or y, the elements of the reduced basis G are used to “fold back” those terms of xb(x, y)

or yb(x, y) that are outside the support of F[x, y]/I , which support is given by the

footprint �. In the general case, when b(x, y) is multiplied by a(x, y), the polynomial

product a(x, y)b(x, y) produces terms whose indices lie outside the support of �. Those

coefficients are then folded back, one by one, into � by subtracting, one by one,

polynomial multiples of elements of G to cancel terms outside of �. Because G is a

reduced basis for I , as a consequence of Theorem 7.4.6, it does not matter in which

order the terms are folded back; the final result will be the same.

Every polynomial gℓ(x, y) of the reduced basis of the ideal I can be conveniently

written as a sum of the form

gℓ(x, y) = xmℓynℓ + g−ℓ (x, y),

where the monomial xmℓynℓ corresponds to an exterior corner of the footprint �, and

g−ℓ (x, y) is an element of the quotient ring F[x, y]/I . Reduction modulo G simply

consists of eliminating monomials outside the footprint, one by one, by setting xmℓynℓ =
−g−ℓ (x, y) as needed and in any order. For this purpose, it may be convenient to order

the polynomials of G by the staircase order such that mℓ is decreasing with ℓ. Then the

steps of the reduction could be ordered by decreasing mℓ.

Theorem 7.5.4 The quotient ring is a ring.

Proof: Clearly, the set is closed under addition and closed under multiplication. To

verify that it satisfies the properties of a ring, recall that, for a reduced basis, the equation

f (x, y) = Q1(x, y)g1(x, y)+ · · · + QL(x, y)gL(x, y)+ r(x, y)

for any f (x, y) is satisfied by a unique r(x, y). The associative law for multiplication is

verified by setting f (x, y) = a(x, y)b(x, y)c(x, y) and noting that the r(x, y) solving this

equation will be the same no matter how it is computed because G is a reduced basis.

Thus

RG[a(x, y)RG[b(x, y)c(x, y)]] = RG[[RG[a(x, y)b(x, y)]]c(x, y)].

The other ring properties are verified by similar reasoning. �

301 7.6 The Buchberger theorem

7.6 The Buchberger theorem

As we have seen, a reduced basis G for an ideal can be used in two important construc-

tions: it can be used to construct the ideal I as the set of polynomial combinations of

elements of G, or it can be used to carry out multiplication in the quotient ring F[x, y]/I .

Because the reduced basis is so important, we want a test that can be used to recognize

a reduced basis. It is enough here to give a test to recognize a minimal basis, because

it is easy to recognize when a minimal basis is a reduced basis.

Theorem 7.6.1 (Buchberger) A set of polynomials, G = {g1(x, y), . . . , gL(x, y)},
contains a minimal basis for the ideal I of F[x, y] generated by G if and only if all

conjunction polynomials b
gℓgℓ′
G (x, y), ℓ = 1, . . . , L and ℓ′ = 1, . . . , L, are equal to zero.

Proof: The condition of the theorem can be seen to be necessary by repeating a

recurring argument. Suppose that G contains a minimal basis and that a conjunction

polynomial is not equal to zero. The conjunction polynomial is in the ideal I , so its

leading monomial is not in the footprint �(I). But the conjunction polynomial has a

leading monomial not divisible by the leading monomial of any gℓ(x, y) of G. Therefore

since the conjunction polynomial is nonzero, its leading monomial is in the footprint

�(I). The contradiction proves that if G contains a minimal basis, then the conjunction

polynomial is zero.

To show that the condition is also sufficient will take some effort. We will show

that if all conjunction polynomials are zero, then G must contain a minimal basis by

showing that �(G) = �(I(G)).

Choose any polynomial v(x, y) in the ideal I . Then because I is generated by G, we

have the representation

v(x, y) =
L∑

ℓ=1

hℓ(x, y)gℓ(x, y)

for some expansion polynomials hℓ(x, y), ℓ = 1, . . . , L. This representation for v(x, y)

need not be unique; in general, there will be many ways to choose the hℓ(x, y).

The bidegree of v(x, y) satisfies

bideg v(x, y) � max
ℓ

bideg hℓ(x, y)gℓ(x, y),

where, if equality does not hold, there must be a cancellation among the leading terms

of the hℓ(x, y)gℓ(x, y). We will show that we can always choose the hℓ(x, y) so that this

inequality is satisfied with equality.

Let δ = maxℓ bideg hℓ(x, y)gℓ(x, y), and consider only those hℓ(x, y) for which

bideg hℓ(x, y)gℓ(x, y) = δ. If bideg v(x, y) ≺ δ, cancellation must occur in the

302 Arrays and the Algebra of Bivariate Polynomials

leading monomial, so there must be at least two such terms, say hj(x, y)gj(x, y) and

hk(x, y)gk(x, y). We shall focus our attention on the pair of polynomials hj(x, y) and

hk(x, y), replacing them by new polynomials, of which at least one has a smaller bide-

gree. The leading monomials of hj(x, y) and hk(x, y) align gj(x, y) and gk(x, y) to have a

common leading monomial so that the cancellation can occur. These leading monomi-

als need not be the minimal monomials that align gj(x, y) and gk(x, y) when computing

the conjunction polynomial of gj(x, y) and gk(x, y).

Because all conjunction polynomials are assumed to be zero, we can write

x
a′j y

a′′j gj(x, y)− xa′
k ya′′

k gk(x, y) =
L∑

ℓ=1

Qjkℓ(x, y)gℓ(x, y)

with quotient polynomials Qjkℓ(x, y), where x
a′j y

a′′j and xa′
k ya′′

k are the minimal mono-

mials that align gj(x, y) and gk(x, y). The left side has bidegree smaller than δ, as do all

terms on the right side. From this equation, we can write gj(x, y) in terms of gk(x, y):

xb′yb′′
[
x

a′j y
a′′j gj(x, y)

]
= xb′yb′′

[
xa′

k ya′′
k gk(x, y)+

L∑

ℓ=1

Qjkℓ(x, y)gℓ(x, y)

]
,

where the terms in the sum on ℓ on the right do not contribute to the leading mono-

mial, and where (b′, b′′) can be chosen so that the leading monomial on each side has

bidegree δ. In other words, (b′, b′′) is chosen such that x
b′+a′j y

b′′+a′′j and xb′+a′
k yb′′+a′′

k

are equal to the leading monomials of hj(x, y) and hk(x, y).

Now add and subtract a scalar multiple of the two sides of this equality from the

earlier expression for v(x, y) to write

v(x, y) = hj(x, y)gj(x, y)+
∑

ℓ�=j

hℓ(x, y)gℓ(x, y)

= hj(x, y)gj(x, y)− Axb′yb′′x
a′j y

a′′j gj(x, y)

+
∑

ℓ �=j

hℓ(x, y)gℓ(x, y)+ Axb′yb′′
[

xa′
k ya′′

k gk(x, y)+
L∑

ℓ=1

Qjkℓ(x, y)gℓ(x, y)

]

for some scalar A. The next step of the proof is to gather terms to rewrite this as follows:

v(x, y) = h′j(x, y)gj(x, y)+
L∑

ℓ�=j

h′ℓ(x, y)gℓ(x, y),

where the new jth expansion polynomial is given by

h′j(x, y) = hj(x, y)− Ax
b′+a′j y

b′′+a′′j + Axb′yb′′Qjkj(x, y),

303 7.6 The Buchberger theorem

and A has been chosen to cancel the leading monomial in the first two terms on the

right so that the leading monomial of h′j(x, y) has a bidegree smaller than the bidegree

of hj(x, y). The new kth expansion polynomial is given by

h′k(x, y) = hk(x, y)+ Axb′+a′
k yb′′+a′′

k + Axb′yb′′Qjkk(x, y).

The other new expansion polynomials are

h′ℓ(x, y) = hℓ(x, y)+ Axb′yb′′Qjkℓ(x, y) ℓ �= j or k.

For every ℓ other than j, hℓ(x, y)gℓ(x, y) can have a leading monomial of bidegree δ only

if it had it before, while for ℓ = j the bidegree of hj(x, y)gj(x, y) is smaller. In this way,

the number of expansion polynomials h′ℓ(x, y) for which bideg h′ℓ(x, y)gℓ(x, y) = δ is

reduced by at least one. After this step, if there are two or more such terms remaining

with bidegree equal to δ, the process can be repeated. If there are no such terms

remaining, the value of δ is reduced, and the process is repeated for that new value of

δ. The process will halt only if exactly one term remains for the current value of δ.

Thus, for the process to stop, we see that, eventually, we will obtain the polynomials

hℓ(x, y) such that

bideg v(x, y) = max
ℓ

bideg hℓ(x, y)gℓ(x, y),

because there can be no cancellation in the leading monomial. From this equality, we

see that the leading monomial of v(x, y) is divisible by the leading monomial of one

of the gℓ(x, y). Thus �(G) = �(I(G)), so, for each exterior corner of �(I(G)), G

contains a polynomial with its leading monomial corresponding to that exterior corner.

We conclude that the set G contains a minimal basis, and the proof is complete. �

The Buchberger theorem might be a bit daunting because it requires the computation

of L(L − 1)/2 conjunction polynomials. The following corollary presents the condi-

tion of the Buchberger theorem in a way that requires the computation of only L − 1

conjunction polynomials. We shall see that with the polynomials arranged in staircase

order (decreasing mℓ), the
(

L
2

)
equalities required by the theorem reduce to only those

L− 1 equalities given by

RG[ynℓ+1−nℓgℓ(x, y)] = RG[xmℓ−mℓ+1gℓ+1(x, y)]

for ℓ = 1, . . . , L − 1. This simplification is closely tied to the footprint of the set of

generator polynomials. Each leading monomial of a generator polynomial accounts

for one exterior corner of the footprint, and the conjunction polynomial needs to be

computed only for pairs of polynomials that correspond to neighboring exterior corners.

The notation g(x, y) = xmyn + g−(x, y) for a generator polynomial is used in this

corollary so that the leading monomial can be displayed explicitly.

304 Arrays and the Algebra of Bivariate Polynomials

Corollary 7.6.2 The set of monic polynomials G = {gℓ(x, y) = xmℓynℓ + g−ℓ (x, y) |
ℓ = 1, . . . , L} is a reduced basis for an ideal with footprint � if and only if there is one

leading monomial xmℓynℓ for each exterior corner of �, all nonleading monomials are

in �, and with the elements of G arranged in a staircase order,

RG[ynℓ+1−nℓg−ℓ (x, y)] = RG[xmℓ−mℓ+1g−ℓ+1(x, y)],

for ℓ = 1, . . . , L− 1.

Proof: The polynomials are in a staircase order such that m0 > m1 > m2 > · · · > mL

and n0 < n1 < n2 < · · · < nL. Theorem 7.6.1 requires that

RG[ynℓ′−nℓgℓ(x, y)− xmℓ−mℓ′gℓ′(x, y)] = 0

for all ℓ and ℓ′ > ℓ. Because the leading monomials cancel, and the operation of

forming the remainder modulo G can be distributed across addition, the Buchberger

condition can be rewritten:

RG[ynℓ′−nℓg−ℓ (x, y)] = RG[xmℓ−mℓ′g−
ℓ′ (x, y)]

for all ℓ and ℓ′ > ℓ. To prove the theorem, we will assume only that this equation holds

for ℓ = 1, . . . , L−1 and ℓ′ = ℓ+1, and we will show that this implies that the equation

holds for all ℓ and ℓ′ > ℓ. In particular, we will show that because neighbors satisfy this

condition, then second neighbors must satisfy this condition as well, and so on. This

will be shown as a simple consequence of the fact that the g−ℓ (x, y) are all elements

of F[x, y]/I . By reinterpreting the multiplications as operations in the quotient ring

F[x, y]/I , the operator RG becomes a superfluous notation and can be dropped. The

proof, then, consists of the following simple calculations in F[x, y]/I .

We are given that

ynℓ+1−nℓg−ℓ (x, y) = xmℓ−mℓ+1g−ℓ+1(x, y)

and

ynℓ−nℓ−1g−ℓ−1(x, y) = xmℓ−1−mℓg−ℓ (x, y).

From these, we can write the following:

ynℓ+1−nℓ[ynℓ−nℓ−1g−ℓ−1(x, y)] = ynℓ+1−nℓ[xmℓ−1−mℓg−ℓ (x, y)]
= xmℓ−1−mℓ[ynℓ+1−nℓg−ℓ (x, y)]
= xmℓ−1−mℓ[xmℓ−mℓ+1g−ℓ+1(x, y)].

305 7.6 The Buchberger theorem

Therefore

ynℓ+1−nℓ−1g−ℓ−1(x, y) = xmℓ−1−mℓ+1g−ℓ+1(x, y).

Thus, if the condition of the corollary holds for neighbors, it also holds for second

neighbors. In the same way, the condition can be verified for more distant neighbors,

and the proof of the theorem is complete. �

As an example of the theorem, consider the ideal I = 〈x3+ x2y+ xy+ x+1, y2+ y〉
in the ring GF(2)[x, y]. By Buchberger’s theorem, the set G = {x3+ x2y+ xy+ x+ 1,

y2 + y} contains a minimal basis because the conjunction polynomial given by

RG[y2(x3 + x2y + xy + x + 1)− x3(y2 + y)]

is equal to zero. Moreover, the set G has no subset that will generate the ideal, so the

set itself is a minimal basis and, in fact, is the reduced basis for I . Thus the footprint of

this ideal can be easily illustrated, as shown in Figure 7.9.

The theorem also tells us how to enlarge the ideal 〈x3+ x2y+ xy+ x+ 1, y2+ y〉 to

a new ideal, whose footprint is illustrated in Figure 7.10. To the original reduced basis,

we simply adjoin a new polynomial, whose leading monomial is in the new exterior

corner, and for it to be in the reduced basis of the new ideal, all nonleading terms of

the new polynomial with nonzero coefficients must correspond to points of the new

footprint. Thus the new polynomial appended to the basis G has the form

p(x, y) = x2y + ax2 + bxy + cx + dy + e,

Figure 7.9. Footprint of {x3 + x2y + xy + x + 1, y2 + y}.

Figure 7.10. Footprint of an enlarged ideal.

306 Arrays and the Algebra of Bivariate Polynomials

where the unspecified coefficients a, b, c, d , and e are not arbitrary; they must be

chosen to satisfy the Buchberger theorem. A straightforward computation of conjunc-

tion polynomials shows that there are exactly six such p(x, y), all with coefficients in

GF(8), but we defer discussion of this point until Section 7.11 because then we will be

prepared to give other insights as well.

We end this section with a rather long discussion of the important fact that the

bivariate polynomials comprising any set G have no common polynomial factor if and

only if the footprint of the ideal generated by G has a finite area. This fact is given as

Theorem 7.6.4, whose proof rests on the unique factorization theorem. Theorem 7.6.4

can be read immediately, but instead we will preview the discussion of that theorem by

first giving a simplified version with only two polynomials in the reduced basis.

Proposition 7.6.3 Suppose that the set G = {g1(x, y), g2(x, y)} forms a minimal basis

for the ideal I ⊂ F[x, y]. Then the footprint of G has a finite area if and only if the two

polynomials of G do not have a common nontrivial polynomial factor.

Proof: The footprint of the ideal has two exterior corners at (m1, n1) and (m2, n2),

with m1 > m2 and n2 > n1. The footprint has infinite area unless both n1 and m2

are zero. Corresponding to the two exterior corners of G are the leading monomials

of g1(x, y) and g2(x, y), given by xm1yn1 and xm2yn2 . Clearly, if g1(x, y) and g2(x, y)

have a common nontrivial polynomial factor, say a(x, y), then n1 and m2 cannot both

be zero, so the area is infinite.

Suppose now that g1(x, y) and g2(x, y) have no common nontrivial polynomial factor.

We must show that n1 and m2 are both zero. By the Buchberger theorem,

RG[yn2−n1g1(x, y)− xm1−m2g2(x, y)] = 0,

which is equivalent to the equation

yn2−n1g1(x, y)− xm1−m2g2(x, y) = Q1(x, y)g1(x, y)+ Q2(x, y)g2(x, y)

for some quotient polynomials Q1(x, y) and Q2(x, y). Thus

[
yn2−n1 − Q1(x, y)

]
g1(x, y) =

[
xm1−m2 + Q2(x, y)

]
g2(x, y).

We can conclude, moreover, that yn2−n1 and xm1−m2 are the leading monomials of

the two bracketed terms by the following argument. First, observe that the leading

monomials on the left side of the previous equation cancel, so

bideg
[
yn2−n1g1(x, y)− xm1−m2g2(x, y)

]
≺ bideg

[
yn2−n1g1(x, y)

]
;

bideg
[
yn2−n1g1(x, y)− xm1−m2g2(x, y)

]
≺ bideg

[
xm1−m2g2(x, y)

]
.

307 7.6 The Buchberger theorem

Also observe that the division algorithm states that

bideg [Q1(x, y)g1(x, y)] � bideg
[
yn2−n1g1(x, y)− xm1−m2g1(x, y)

]

≺ bideg [yn2−n1g1(x, y)];
bideg [Q2(x, y)g2(x, y)] � bideg

[
yn2−n1g1(x, y)− xm1−m2g2(x, y)

]

≺ bideg [xm1−m2g2(x, y)].

Under any monomial order, the bidegrees of polynomials add under multiplication of

polynomials, so the division algorithm requires that

bideg [Q1(x, y)] ≺ bideg
[
yn2−n1

]
;

bideg [Q2(x, y)] ≺ bideg
[
xm1−m2

]
,

as was claimed.

Now we can conclude that, because g1(x, y) and g2(x, y) have no common polynomial

factor, the unique factorization theorem requires that the expression

[
yn2−n1 − Q1(x, y)

]
g1(x, y) =

[
xm1−m2 + Q2(x, y)

]
g2(x, y)

can be partially factored as

[a(x, y)g2(x, y)]g1(x, y) = [a(x, y)g1(x, y)]g2(x, y)

for some common polynomial a(x, y), where

a(x, y)g2(x, y) = yn2−n1 − Q1(x, y),

a(x, y)g1(x, y) = xm1−m2 + Q2(x, y).

The product of the leading monomials on the left of the first of these two equations

must equal yn2−n1 , from which we conclude that the leading monomial of a(x, y) does

not depend on x. The product of the leading monomial on the left of the second of

these two equations allows us to conclude that the leading monomial of a(x, y) does

not depend on y. Hence a(x, y) has degree 0, and

xm1yn1 + g−1 (x, y) = xm1−m2 + Q2(x, y),

xm2yn2 + g−2 (x, y) = yn2−n1 − Q1(x, y).

Consequently, we conclude that if g1(x, y) and g2(x, y) have no common nontrivial

polynomial factor a(x, y), then m2 and n1 are both zero, and

g1(x, y) = xm1 + Q2(x, y),

g2(x, y) = yn2 − Q1(x, y).

as was to be proved. �

308 Arrays and the Algebra of Bivariate Polynomials

The general version of this proposition has more than two polynomials in a minimal

basis of an ideal I ⊂ F[x, y]. Certainly, if any two polynomials of I have no common

nontrivial polynomial factor, then those two polynomials generate an ideal whose foot-

print has finite area and contains the footprint of I . Hence �(I) must have finite area as

well. However, the general situation is more subtle. It may be that, pairwise, generator

polynomials do have a common polynomial factor but, jointly, do not have a common

polynomial factor. An example of such a case is

G = {a(x, y)b(x, y), b(x, y)c(x, y), c(x, y)a(x, y)}.

Then, any pair of generator polynomials generates an ideal whose footprint has infinite

area, but the full set of generator polynomials generates an ideal whose footprint has

finite area.

Before we prove the proposition for the case with an arbitrary number of polynomials

in a minimal basis, we further preview the method of proof by considering an ideal

with three polynomials in a minimal basis. Then the Buchberger theorem yields two

equations:

yn2−n1g1(x, y)− xm1−m2g2(x, y) =
3∑

ℓ=1

Q
(1)
ℓ (x, y)gℓ(x, y)

and

yn3−n2g2(x, y)− xm2−m3g3(x, y) =
3∑

ℓ=1

Q
(2)
ℓ (x, y)gℓ(x, y).

Although the leading monomials of the terms on the left could be canceled, we choose

not to cancel them. Instead, we will allow these monomials to migrate to different

positions in the equations so that we can recognize the leading monomials within these

equations.

Abbreviate gℓ(x, y) by gℓ and Q
(ℓ)

ℓ′ (x, y) by Q
(ℓ)

ℓ′ , and eliminate g2(x, y) from these

two equations, to obtain the following single equation:

[
(xm1−m2 + Q

(1)
2)Q

(2)
1 − (yn3−n2 − Q

(2)
2)(yn2−n1 − Q

(1)
1)
]

g1

=
[
(xm1−m2 + Q

(1)
2)(xm2−m3 + Q

(2)
3)− (yn3−n2 − Q

(2)
2)Q

(1)
3

]
g3.

The leading term on the left is the product of yn3−n2yn2−n1 = yn3−n1 . The leading term

on the right is the product xm1−m2xm2−m3 = xm1−m3 . By gathering other terms into new

polynomials A1(x, y) and A2(x, y), we may write this equation compactly as follows:

(
yn3−n1 + A1(x, y)

)
g1(x, y) = (xm1−m3 + A3(x, y))g3(x, y),

309 7.6 The Buchberger theorem

where only the leading monomial yn3−n1 is written explicitly in the first term on the

left, and only the leading monomial xm1−m3 is written explicitly in the first term on the

right. Consequently, again by the unique factorization theorem, we conclude that either

the leading monomials of g1(x, y) and g3(x, y) must involve only x and y, respectively,

or g1(x, y) and g3(x, y) have the nontrivial polynomial factor a(x, y) in common.

To see that a common factor a(x, y) of g1(x, y) and g3(x, y) must then also

divide g2(x, y), note that the two equations of the Buchberger theorem imply that

any common factor a(x, y) of both g1(x, y) and g3(x, y) must be a factor of both

[xm1−m2+Q
(1)
2 (x, y)]g2(x, y) and [yn3−n2−Q

(2)
2 (x, y)]g2(x, y), where xm1−m2 and yn3−n2

are the leading monomials of the bracketed terms. Because a(x, y) cannot divide both

bracketed terms, it must divide g2(x, y). Hence a(x, y) divides all three polynomials

of the reduced basis unless the leading monomial of g1(x, y) involves only x and the

leading monomial of g3(x, y) involves only y.

The general theorem involves essentially the same proof, but the reduced basis now

has L polynomials. To carry through the general proof, we will need to set up and solve

a linear system of polynomial equations of the form A(x, y)a(x, y) = b(x, y), where

A(x, y) is a matrix of polynomials, and a(x, y) and b(x, y) are vectors of polynomials.

The matrix A(x, y) is a matrix of polynomials, so it need not have an inverse within the

ring of polynomials because detA(x, y) can have an inverse only if it is a polynomial

of degree 0. However, for our needs, it will be enough to use Cramer’s rule in the

divisionless form:

(det A(x, y))ai(x, y) = det A(i)(x, y),

where A(i)(x, y) is the matrix obtained by replacing the ith column of A(x, y) by the

column vector b(x, y) on the right side of the previous equation. The definition of a

determinant applies as well to a matrix of polynomials. As usual, the determinant of

the matrix A(x, y), with elements aij(x, y), is defined as

det A(x, y) =
∑

ξi1...ina1i1(x, y)a2i2(x, y) · · · anin(x, y),

where i1, i2, . . . , in is a permutation of the integers 1, 2, . . . , n; the sum is over all

possible permutations of these integers; and ξi1···in is ±1, according to whether the

permutation is even or odd. In particular, the product of all diagonal terms of A(x, y)

appears in det A(x, y), as does the product of all terms in the first extended off-diagonal,

and so on.

Theorem 7.6.4 Suppose that the set of bivariate polynomials G forms a minimal basis

for the ideal in F[x, y] that it generates. Then either the footprint of G has finite area,

or the elements of G have a common nontrivial polynomial factor.

Proof: Index the generator polynomials in staircase order. The footprint of the ideal

has an exterior corner at (mℓ, nℓ), corresponding to the generator polynomial gℓ(x, y)

310 Arrays and the Algebra of Bivariate Polynomials

for ℓ = 1, . . . , L. Clearly, if the generator polynomials have a nontrivial common

polynomial factor, then n1 and mL cannot both be zero, so the footprint has infinite

area.

The proof of the converse begins with the corollary to the Buchberger theorem, which

states that

ynℓ+1−nℓgℓ(x, y)− xmℓ−mℓ+1gℓ+1(x, y) =
L∑

ℓ′=1

Q
(ℓ)

ℓ′ (x, y)gℓ′(x, y) ℓ = 1, . . . , L− 1.

Let δℓ = mℓ − mℓ+1 and ǫℓ = nℓ+1 − nℓ, and abbreviate gℓ(x, y) as gℓ and Q
(ℓ)

ℓ′ (x, y)

as Q
(ℓ)

ℓ′ . The system of equations can be written in matrix form as follows:

yǫ1 −xδ1 0 · · · 0

0 yǫ2 −xδ2 0

0 0 yǫ3 · · · 0
...

...

0 0 0 . . . −xδL−1

g1

g2

g3
...

gL

=

Q
(1)
1 Q

(1)
2 · · · Q

(1)
L

Q
(2)
1 Q

(2)
2 · · · Q

(2)
L

...
...

Q
(L−1)
1 Q

(L−1)
2 · · · Q

(L−1)
L

g1

g2

g3
...

gL

,

where the matrices have L columns and L−1 rows. This equation can be rearranged as

M

g1

g1

g3
...

gL−1

=

Q
(1)
L

Q
(2)
L
...

xδL−1 + Q
(L−1)
L

gL,

where

M =

Q
(1)
1 − yǫ1 xδ1 + Q

(1)
2 Q

(1)
3 · · · Q

(1)
L−1

Q
(2)
1 Q

(2)
2 − yǫ2 xδ2 + Q

(2)
3 · · ·

...
...

...

Q
(L−1)
1 Q

(L−1)
L−1 − yǫL−1

is an L−1 by L−1 matrix of polynomials. The common term gL(x, y) has been factored

out of every term of the vector on the right, so we can treat it separately. By Cramer’s

311 7.6 The Buchberger theorem

rule, we can write

(det M(x, y))g1(x, y) = (det M(1)(x, y))gL(x, y).

Because the product of all diagonal terms of M(x, y) forms one of the terms of

det M(x, y), we can conclude further that �L−1
ℓ=1 yǫℓ is the leading monomial of

det M(x, y) because each factor in the product is the leading monomial of one term

of the matrix diagonal. This leading monomial is equal to ynL−n1 . Moreover, �L−1
ℓ=1 xδℓ

is the leading monomial of det M(1)(x, y). This monomial is equal to xm1−mL . Thus, for

some appropriate polynomials A1(x, y) and AL(x, y),

[ynL−n1 + A1(x, y)]g1(x, y) = [xm1−mL + AL(x, y)]gL(x, y).

From this, as in the proof of Proposition 7.6.3, we can conclude that if g1(x, y) and

gL(x, y) have no common nontrivial polynomial factor, then the leading monomial of

g1(x, y) is xm1−mL and the leading monomial of gL(x, y) is ynL−n1 . This means that n1

and mL are zero, so

g1(x, y) = xm1 + g−1 (x, y),

gL(x, y) = ynL + g−L (x, y).

Therefore the footprint has finite area.

Our final task is to show that the common factor a(x, y) must also divide any other

generator polynomial gk(x, y). Consider the ideal Ik = 〈g1(x, y), gk(x, y), gL(x, y)〉,
generated by only these three polynomials. The ideal I contains the ideal Ik , so �(I) is

contained in �(Ik). Let Gk = {g(k)
ℓ (x, y)} be a minimal basis for Ik . Each g

(k)
ℓ (x, y) is a

linear combination of g1(x, y), gk(x, y), and gL(x, y). Moreover, since the conjunction

polynomial associated with this set of generator polynomials must equal zero, we

have

ynk−n1g1(x, y)− xm1−mk gk(x, y) =
∑

ℓ

Q
(1)
ℓ (x, y)g

(k)
ℓ (x, y)

and

ynL−nk gk(x, y)− xmk−mLgL(x, y) =
∑

ℓ

Q
(L)
ℓ (x, y)g

(k)
ℓ (x, y).

But the g
(k)
ℓ (x, y) are polynomial combinations of g1(x, y), gk(x, y), and gL(x, y). There-

fore any common polynomial factor of both g1(x, y) and gL(x, y) must also be a factor

of both [xm1−mk + A1(x, y)]gk(x, y) and [ynL−nk + A2(x, y)]gk(x, y) for some polyno-

mials A1(x, y) and A2(x, y). We conclude that a(x, y) is a factor of gk(x, y). The same

argument holds for every k, so a(x, y) divides all polynomials of G. �

312 Arrays and the Algebra of Bivariate Polynomials

7.7 The locator ideal

Let f (x, y) and g(x, y) be nonzero polynomials over the field F of degree m and degree

n, respectively, and with no common polynomial factor. In Section 7.8, we shall discuss

Bézout’s theorem, which says that the number of common zeros of f (x, y) and g(x, y)

in F2 is at most mn. In the language of ideals, Bézout’s theorem says that an ideal,

I = 〈 f (x, y), g(x, y)〉, generated by two coprime polynomials, has at most mn zeros in

F2. This may be viewed as a generalization to bivariate polynomials of the statement

that a (univariate) polynomial of degree n over the field F has at most n zeros over F

(or over any extension of F). In this section, we shall give a different generalization

of this statement, formulated in the language of polynomial ideals, that counts exactly

the number of affine zeros of certain ideals, not necessarily ideals defined by only two

generator polynomials.

The notion of the footprint will be used in this section as a vehicle to pass the

well known properties of linear vector spaces over to the topic of commutative algebra,

where these properties become statements about the zeros of ideals. Though it will

take several pages to complete the work of this section, the result of this work can be

expressed succinctly: every proper ideal of F[x, y] has at least one affine zero in an

appropriate extension field, and the largest ideal with a given finite set of affine zeros

in F2 has a footprint with an area equal to the number of affine zeros in the set.

For any finite set of points P in the affine plane over F , let I(P) be the set consisting

of all bivariate polynomials in F[x, y] having a zero at every point of P . Then I(P) is

an ideal. It is the locator ideal for the points of P .

Definition 7.7.1 A locator ideal is an ideal in F[x, y] with a finite number of affine

zeros in F2 contained in no larger ideal in F[x, y] with this same set of affine zeros.

Clearly, I is a locator ideal if and only if I = I(Z(I)), where Z(I) is the finite set

of rational affine zeros of I . It is apparent that the locator ideal for a given finite set

of affine points of F2 is the set of all bivariate polynomials whose zeros include these

points. Obviously, the locator ideal for a given set of affine points is unique. For the

finite field GF(q), both xq − x and yq − y are always elements of every locator ideal.

The locator ideal is unique because if there were two different locator ideals with

the same set of zeros, then the ideal generated by the union of those two ideals would

be a larger ideal with the same set of zeros. Moreover, a locator ideal over a finite

field can have no unnecessary zeros. This is because an unnecessary zero at (αa, αb),

for example, could be eliminated by appending to the ideal the polynomial p(x, y) =
(
∑

i xiα−ia)(
∑

i yiα−ib), which has a zero everywhere except at (αa, αb). This remark

is closely related to the statement that will be called the discrete weak nullstellensatz

in Section 7.9.

313 7.7 The locator ideal

The locator ideal in F[x, y] is the largest ideal that has a given set of zeros in F2.

However, the word “maximal" cannot be used here because it has another meaning.

A maximal ideal is a proper ideal that is not contained in a larger proper ideal. This

might be, as in a finite field, a locator ideal with a single zero, but not a locator ideal

with two zeros.

In later sections, we shall study the role of the locator ideal in “locating” the nonzeros

of a given bivariate polynomial, V (x, y). In this section, we shall develop the important

fact that the number of affine zeros in F2 of a locator ideal is equal to the area of its

footprint. (Thus the locator footprint for a finite set of points has the same cardinality

as the set of points.) This statement is a generalization of the statement that the minimal

monovariate polynomial, having zeros at n specified points, has degree n.

Before proving this statement, we will provide an example that explains these notions.

Consider the ideal I = 〈x3+xy2+x+1, y2+xy+y〉 in the ring of bivariate polynomials

over GF(8), with monomials ordered by the graded order. We shall find the footprint

and all affine zeros of this ideal, and we shall find that it is a locator ideal; there is no

larger ideal with the same set of affine zeros. Even before we compute the footprint, it

should be apparent that (in the graded order) the footprint of I is contained in the set of

indices {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} because I is generated by polynomials

with leading monomials x3 and y2. This quick computation says that the footprint has

area at most 6. We shall see in a moment that the actual area of the footprint is 3.

To find the affine zeros of the ideal, I = 〈x3 + xy2 + x + 1, y2 + xy + y〉, set

x3 + xy2 + x + 1 = 0,

y2 + xy + y = y(y + x + 1) = 0.

The second equation says that either y = 0 or y = x + 1. But if y = x + 1, the first

equation yields

x3 + x(x + 1)2 + x + 1 = 1 �= 0.

Therefore zeros can occur only if y = 0, and the first equation becomes

x3 + x + 1 = 0.

This has three zeros in the extension field GF(8). Thus we have found three zeros

in the affine plane GF(8)2, which can be expressed as (α, 0), (α2, 0), and (α4, 0). In

Section 7.8, we will find that three more zeros of this ideal, which are needed in that

section to satisfy the equality form of Bézout’s theorem, lie at infinity. The locator

ideal, in contrast, considers only affine zeros, which is why we have that

�(〈x3 + xy2 + x + 1, y2 + xy + y〉) = 3

314 Arrays and the Algebra of Bivariate Polynomials

for the ideal, but, for the set,

�({x3 + xy2 + x + 1, y2 + xy + y}) = 6.

What is the footprint of the ideal I = 〈x3 + xy2 + x + 1, y2 + xy + y〉? To answer,

first find a minimal basis. Because

y(x3 + xy2 + x + 1)+ (x2 + xy + x)(y2 + xy + y) = y,

we have that y ∈ I . Because y2 + xy + y is a multiple of y, the ideal can be written as

follows:

I = 〈x3 + xy2 + x + 1, y〉.

The Buchberger theorem allows us to conclude that G = {x3 + xy2 + x + 1, y} is a

minimal basis for I because RG[y(x3 + xy2 + x+ 1)− x3y] = 0. (What is the reduced

basis?)

The footprint of I is illustrated in Figure 7.11. The footprint has area 3, which is

equal to the number of affine zeros of I in GF(8)2.

If we choose to regard I as an ideal in, say, GF(32)[x, y] instead of GF(8)[x, y],
we will find that there are no affine zeros over the ground field GF(32), a field that

does not contain GF(8). The smallest extension field of GF(32) that contains all of the

affine zeros of I is GF(215) since this extension field of GF(32) contains GF(8), and

GF(8) actually is the field where the zeros lie. The reason for the discrepancy between

the area of the footprint and the number of affine zeros in GF(32) is that I is not a

locator ideal in the ring of polynomials GF(32)[x, y], so the statement does not apply.

We also note that, even in the algebraic closure of GF(32), or of GF(8), this ideal has

no additional zeros. Thus in the algebraic closure, I(Z(I)) = I , where Z(I) denotes

the set of zeros of I .

The conclusion of this example is actually quite general and underlies much of

the sequel. It is restated below as a theorem, whose proof begins with the following

proposition.

Figure 7.11. Footprint of 〈x3 + xy2 + x + 1, y〉.

315 7.7 The locator ideal

Proposition 7.7.2 For any I ⊂ F[x, y], the dimension of the vector space F[x, y]/I

is equal to the area of the footprint of I .

Proof: As a vector space, F[x, y]/I is spanned by the set of monomials that are not

the leading monomial of any polynomial in I . Because these monomials are linearly

independent, they form a basis. There is one such monomial for each point of the

footprint of I , so the number of monomials in the vector space basis is equal to the area

of the footprint of I . �

Theorem 7.7.3 The number of affine zeros over F of a locator ideal in F[x, y] is equal

to the area of the footprint of that ideal.

Proof: Let I be a locator ideal in the ring F[x, y] for a finite set of t points, (βℓ, γℓ), for

ℓ = 1, . . . , t in the affine plane F2. Let { pi(x, y) | i = 1, . . . , n} be a (possibly infinite)

basis for the vector space F[x, y]/I . Let b(x, y) be any element of F[x, y]/I . It can be

written as follows:

b(x, y) =
n∑

i=1

aipi(x, y),

for some set of coefficients {ai | i = 1, . . . , n}, which can be arranged as the vector a.

Let b be the vector of blocklength t with components bℓ = b(βℓ, γℓ) for ℓ = 1, . . . , t.

Then the equation

b(βℓ, γℓ) =
n∑

i=1

aipi(βℓ, γℓ)

can be represented as the following matrix equation:

b = Pa,

where the t by n matrix P has the elements Pℓi = pi(βℓ, γℓ).

We now provide the proof of the theorem in three steps.

Step (1) This step shows the following. Let I be an ideal in the ring F[x, y] having

the finite set B of t zeros in the affine plane F2. Then the dimension of F[x, y]/I as a

vector space over F is not smaller than t. That is, n ≥ t, where n = dimF[x, y]/I .

The proof of step (1) follows. Let B = {(βℓ, γℓ) | ℓ = 1, . . . , t}. It is an elementary

fact that for any vector b = [b1, b2, . . . , bt] of length t, there is a polynomial s(x, y) ∈
F[x, y] with s(βℓ, γℓ) = bℓ for ℓ = 1, . . . , t. It is given by the Lagrange interpolation

formula:

s(x, y) =
n∑

ℓ=1

bℓ

�ℓ′ �=ℓ(x − βℓ′)(y − γℓ′)

�ℓ′ �=ℓ(βℓ − βℓ′)(γℓ − γℓ′)
.

316 Arrays and the Algebra of Bivariate Polynomials

Every polynomial in I has a zero at (βℓ, γℓ) for ℓ = 1, . . . , t. Therefore s(x, y) maps into

the polynomial p(x, y) of the quotient ring F[x, y]/I for which p(βℓ, γℓ) = s(βℓ, γℓ).

Thus we conclude that for every b, there is a polynomial p(x, y) in F[x, y]/I such that

p(βℓ, γℓ) = bℓ. The polynomial p(x, y) has at most n nonzero coefficients, which can

be arranged into a vector a of length n, regarding xi′yi′′ for (i′, i′′) ∈ � as a basis for

F[x, y]/I . Then the statement p(βℓ, γℓ) = βℓ can be written Pa = b, where P is an n

by t matrix with elements of the form β i′
ℓ γ i′′

ℓ for each (i′, i′′) ∈ �. The set of all such b

forms a t-dimensional vector space that is covered by Pa, where a is an element of an

n-dimensional vector space. Therefore n ≥ t.

Step (2) This step shows the following. If B is a finite set of t points in the affine

plane F2 and I ⊂ F[x, y] is the locator ideal of B, then the dimension of F[x, y]/I , as

a vector space over F , is not larger than the number of elements of B. That is, n ≤ t,

where n = dimF[x, y]/I .

The proof of step (2) follows. Let b(x, y) be any polynomial in F[x, y]/I . If

b(βℓ, γℓ) = 0 for ℓ = 1, . . . , t, then b(x, y) ∈ I because I is a locator ideal for B.

But the only element in both I and F[x, y]/I is the zero polynomial. Therefore the null

space of the map Pa = b has dimension 0. This implies that n ≤ t.

Step (3) The first two steps and the proposition combine to show that the area of the

footprint of the locator ideal is equal to the number of zeros of the ideal. �

The line of reasoning used in this proof will be used later in Section 7.8 to give the

affine form of Bézout’s theorem. We will only need to show that if f (x, y) and g(x, y)

are two elements of F[x, y] of degree m and n, respectively, that have no factor in

common, then the dimension of F[x, y]/〈 f (x, y), g(x, y)〉 is not larger than mn. Then

Bézout’s theorem will follow from step (1).

Corollary 7.7.4 If the number of affine zeros of the ideal I is equal to the area of

�(I), then I is the locator ideal for these zeros.

Proof: We will show that if I is not the locator ideal for these zeros, then the footprint

of I cannot have an area equal to the number of zeros of I . Let Z be the set of zeros

of I . Certainly, I is contained in the locator ideal of Z . If I is not the locator ideal of

Z , then additional polynomials must be appended to I to form the locator ideal. Then,

by Theorem 7.5.3, the footprint must become smaller, so it cannot have an area equal

to the number of zeros of I . �

Theorem 7.7.3 will be useful in many ways, and it underlies much of the sequel.

Here we use it to draw several elementary conclusions regarding the number of zeros

of an ideal.

First, we consider the set of common zeros of two distinct irreducible polynomials,

or, equivalently, the set of zeros of the ideal generated by these two polynomials. It may

seem rather obvious that two distinct irreducible polynomials can have only a finite

number of common zeros. In the real field, this remark comes from the notion that

317 7.7 The locator ideal

the curves defined by the two polynomials cannot wiggle enough to cross each other

infinitely often. This conclusion, however, requires a proof. We will find that this is a

consequence of Theorem 7.7.3 by showing that two distinct irreducible polynomials

must generate an ideal whose footprint has finite area.

For example, consider I = 〈x2y + xy + 1, xy2 + 1〉 over the field GF(2). Because

y3(x2y + xy + 1)+ (xy2 + y2 + 1)(xy2 + 1) = y3 + y2 + 1

and

y(x2y + xy + 1)+ (x + 1)(xy2 + 1) = x + y + 1,

we can conclude that neither (0, 3) nor (1, 0) is in the footprint of I . Hence the footprint

has a finite area (which is not larger than 6). From this, using Theorem 7.7.3, it is a

short step to infer that the two polynomials have a finite number of common zeros.

Indeed, I = 〈x2y+ xy+ 1, xy2 + 1〉 can be regarded as an ideal over any extension of

GF(2), so the total number of affine zeros in any extension field is at most six.

Theorem 7.7.5 Two bivariate polynomials with no common nontrivial polynomial

factor have at most a finite number of common affine zeros in F2.

Proof: Let G be a minimal basis for the ideal I formed by the two polynomials f (x, y)

and g(x, y). Then the polynomials of G can have no common nontrivial polynomial

factor because, if they did, then f (x, y) and g(x, y) would also. Therefore the footprint

of I ′ has a finite area, and so G has a finite number of common affine zeros in F , as do

f (x, y) and g(x, y). �

Corollary 7.7.6 A bivariate2 ideal cannot have an infinite number of zeros unless all

polynomials in its reduced basis have a common polynomial factor.

Proof: Suppose there is no common polynomial factor. Then each pair of generator

polynomials has at most a finite number of common zeros. Any zero of the ideal is a

zero of every pair of its generator polynomials, so, by the theorem, there are at most a

finite number of zeros of the ideal. �

Conversely, if all polynomials of a reduced basis have a common polynomial factor,

then the ideal has an infinite number of zeros in the algebraic closure of the field because

a single nontrivial bivariate polynomial has an infinite number of zeros. If all generators

have a common polynomial factor, the ideal has all the zeros of this polynomial factor.

An ideal generated by the single polynomial 〈g(x, y)〉 in an algebraically closed field

F must have many zeros in the affine plane (unless g(x, y) has degree 0), because, for

any β ∈ F , either g(x, β) or g(β, y) must be a univariate polynomial with at least one

2 This is an example of a statement in the ring of bivariate polynomials that is not true in the ring of trivariate
polynomials.

318 Arrays and the Algebra of Bivariate Polynomials

zero. Also, the ideal 〈x−β, y−γ 〉, generated by two polynomials, clearly has a zero at

(β, γ). The general form of this statement, that every proper ideal in F[x, y] has at least

one zero, seems quite plausible and easy to accept, but is actually deeper and trickier

to prove than it seems. It will be proved in Section 7.9.

7.8 The Bézout theorem

A set of generator polynomials for an ideal of F[x, y] determines the ideal, and so,

indirectly, determines the number of zeros of the ideal. We want to know what can be

said about the number of zeros of an ideal if the generator polynomials are not fully

specified. For example, if we are given only the leading monomials of the generator

polynomials, then what can we say about the number of zeros of the ideal? If, moreover,

we are given that the polynomials have no common polynomial factor, then, as we

shall see, we can bound the number of zeros of the ideal by using the bidegrees of

the generator polynomials. If there are only two generator polynomials, this bound is

simply stated and is known as the Bézout theorem.

The corresponding question for an ideal of F[x] is elementary. The number of zeros

of any univariate polynomial p(x) over the field F is not larger than the degree of

p(x), and the number of common zeros of several polynomials is not larger than the

smallest of their degrees. If the field F is an algebraically closed field, then the number

of zeros of the polynomial p(x) is exactly equal to the degree of p(x), provided multiple

zeros are counted as such. For example, a polynomial of degree m over the rational

field need not have any zeros, but if it is regarded as a polynomial over the complex

field, which is algebraically closed, then it will have exactly m zeros, provided multiple

zeros are counted as such. We can always embed a field into an algebraically closed

extension field. For example, the union of all extension fields is an algebraically closed

extension field. In this sense, a univariate polynomial of degree m always has exactly

m zeros.

A nonsingular univariate polynomial, which is defined as a univariate polynomial

with the property that the polynomial and its derivative are not simultaneously zero

at any point, has no multiple zeros. Then we have the following statement: in an

algebraically closed field, a nonsingular polynomial of degree m has exactly m distinct

zeros.

What is the corresponding statement for bivariate polynomials? We cannot give any

general relationship between the degree of a bivariate polynomial and the number of

its zeros. For example, over the real field, the polynomial

p(x, y) = x2 + y2 − 1

has an uncountably infinite number of zeros.

319 7.8 The Bézout theorem

We can make a precise statement, however, about the number of simultaneous zeros

of two polynomials. This is a generalization to bivariate polynomials of the familiar

statement that the number of zeros of a univariate polynomial is not larger than its

degree. The generalization, known as Bézout’s theorem, says that two bivariate polyno-

mials of degree m and n, respectively, that do not have a polynomial factor in common,

have at most mn common zeros. The number of common zeros is equal to mn if the field

is algebraically closed, the plane is extended to the projective plane, and the common

multiple zeros are counted as such.

Thus Bézout’s theorem tells us that as polynomials over GF(2), the polynomial

f (x, y) = x3y + y3 + x

and the polynomial

g(x, y) = x2 + y + 1

have exactly eight common zeros in the projective plane, possibly repeated (in a

sufficiently large extension field).

Theorem 7.8.1 (Bézout’s theorem) Let f (x, y) and g(x, y) be bivariate polynomials

over the field F of degree m and degree n, respectively, and with no common polynomial

factor. In the projective plane over a sufficiently large extension field of F, the number

of points at which f (x, y) and g(x, y) are both zero, counted with multiplicity, is equal

to mn.

Only the affine form of Bézout’s theorem will be proved herein, this by an uncon-

ventional method. The affine form states that the number of common zeros in the affine

plane of the two polynomials is at most mn. It will be proved as a corollary to a more

general theorem at the end of the section.

For an example of Bézout’s theorem, we will consider the two polynomials x3 +
y2x + x2 + 1 and y2 + xy + y over GF(2). The second polynomial can be factored as

y(y + x + 1), which equals zero if and only if y = 0 or y = x + 1. If y = 0, the first

polynomial reduces to x3+x2+1, which has three zeros in GF(8). If y = x+1, the first

polynomial reduces to x2+x+1, which has two zeros in GF(4). We will write these five

zeros in GF(64) because this is the smallest field that contains both GF(4) and GF(8).

If α is an appropriate element of GF(64), then GF(4)∗ is the orbit of α21, and GF(8)∗

is the orbit of α9. In terms of α, the zeros of x3 + x2 + 1 are at α27, α45, and α54. In

terms of α, the zeros of x2+x+1 are at α21 and α42. Thus the given pair of polynomials

has five common affine zeros at (α27, 0), (α45, 0), (α54, 0), (α21, α42), and (α42, α21).

The sixth common zero, required by Bézout’s theorem, cannot be an affine zero. To

find it, we must write the polynomials in homogeneous form, as x3 + y2x + x2z + z3

and y2 + xy + yz. (Recall that to view the zeros in the projective plane, one must

replace f (x, y) and g(x, y) by the homogeneous trivariate polynomials f (x, y, z) and

320 Arrays and the Algebra of Bivariate Polynomials

g(x, y, z), and then the rightmost nonzero coordinate of (x, y, z) must be a one.) Then

to find the points at infinity, set z = 0 and y = 1. This gives the polynomials x3 + x

and x + 1, which have a common zero when x = 1. Thus the sixth common zero

is at (1, 1, 0). To conclude, in projective coordinates, the six zeros are at (α27, 0, 1),

(α45, 0, 1), (α54, 0, 1), (α21, α42, 1), (α42, α21, 1), and (1, 1, 0).

In Section 7.7, we studied the ideal in GF(2)[x, y] formed by the two polynomials

x3+y2x+x+1 and y2+xy+y, and we found only three affine zeros. Bézout’s theorem

tells us that the two polynomials have exactly six zeros in common. Where are the

other three zeros? To make these zeros visible, write the polynomials in homogeneous

trivariate form: x3+y2x+xz2+z3 and y2+xy+yz. There is a zero at the projective point

(x, y, z) = (1, 1, 0). Moreover, to provide three zeros, this must be a multiple zero with

multiplicity 3. Hence we have found the six zeros required by Bézout’s theorem. These

are (α, 0, 1), (α2, 0, 1), (α4, 0, 1), (1, 1, 0), (1, 1, 0), and (1, 1, 0), where α ∈ GF(8).

The zero of multiplicity 3 has been listed three times. Except for the fact that we have

not given – nor will we give – a formal definition of the term multiplicity, this completes

our examples of Bézout’s theorem. (For the record, the multiplicity of zeros has the

same intuitive interpretation as it does for polynomials of one variable, but is more

delicate to define precisely.)

To avoid the issue of multiplicity of common zeros, several conditions are needed.

We must first restrict f (x, y) and g(x, y) to be nonsingular polynomials, because then

all affine zeros of each polynomial have multiplicity 1. Less obvious is the condition

that f (x, y) and g(x, y) cannot have a point of tangency. At such a point, the pair of

polynomials (f (x, y), g(x, y)) can have a multiple zero, even though each is nonsingular.

This is a rather technical consideration we only hint at by considering the two points

in R2 at which a straight line intersects a circle. As the line is moved away from the

center of the circle, the two points of intersection move closer together and eventually

coalesce when the line becomes tangent to the circle. Thus the two zeros merge to

become a double zero at the point of tangency.

A polynomial of degree 1 is given by ℓ(x, y) = ax + by + c, where a and b are not

both zero. This is the equation of a line. A polynomial of degree 1 and a polynomial of

degree m have common zeros at not more than m points unless the polynomials share

a common polynomial factor. Therefore if f (x, y) is a bivariate polynomial of degree

m with coefficients in the field F , and if f (x, y) and the polynomial of degree 1, ℓ(x, y),

have more than m common zeros, then ℓ(x, y) must divide f (x, y), with division as

bivariate polynomials.

Two lines intersect in one point. This remark leads to an easy interpretation of

Bézout’s theorem for two homogeneous polynomials f (x, y) and g(x, y), of degrees

m and n, respectively. Simply divide the two bivariate homogeneous polynomials

by ym and yn, respectively, and set t = x/y to produce two univariate polynomi-

als f (t, 1) and g(t, 1), respectively. Then in a sufficiently large extension field of F ,

f (t, 1) = a�m
i=1(t − βi) and g(t, 1) = b�n

i=1(t − γj). This means that f (x, y) =

321 7.8 The Bézout theorem

a�m
i=1(x − βiy) and is zero on the line x = βiy. Similarly, g(x, y) = b�n

j=1(x − γjy).

For each i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, the line x−βiy = 0 intersects the line x−γjy = 0

at the origin. In this way, we see that two homogeneous bivariate polynomials have a

common zero of multiplicity mn at the origin.

We shall provide proof of a restricted form of Bézout’s theorem: that the number

of affine zeros is at most mn; there may be other zeros at infinity, which we do not

count. Our approach is unconventional. It is to show that the number of points in the

footprint of the ideal, generated by two coprime polynomials, cannot be larger than the

product of the degrees of the two polynomials. We already know that the number of

affine zeros of a locator ideal is equal to the number of points in the footprint. Bézout’s

theorem follows by combining these two statements. However, rather than proceed

with this plan directly, we will provide a more general statement regarding the number

of zeros of an ideal when given only the bidegrees of a set of generator polynomials.

Bézout’s theorem then follows from this general statement.

Before starting the proof of the theorem, we will look carefully at some examples.

Over GF(2), let

f (x, y) = x5 + x4y + x2y3 + · · · ,

g(x, y) = x2y + xy2 + y3 + · · · ,

where the unstated terms are arbitrary monomials of smaller degree in the graded order.

The polynomials have the leading monomials x5 and x2y in the graded order with x ≻ y.

First, note that, up to the leading term,

yf (x, y)+ (x3 + xy2)g(x, y) = xy5 + · · · ,

which has the leading monomial xy5, and

(xy + y2)f (x, y)+ (x4 + x3y + x2y2 + xy3 + y4)g(x, y) = y7 + · · · ,

which has the leading monomial y7. Thus the ideal 〈 f (x, y), g(x, y)〉 has polynomials

with leading monomials x5, x2y, xy5, and y7. It is possible that these are all of the leading

monomials of the reduced basis, and so the footprint of the ideal 〈 f (x, y), g(x, y)〉may

be as shown in Figure 7.12. Indeed, this will be the footprint if the unspecified terms of

f (x, y) and g(x, y) happen to be such that Buchberger’s theorem is satisfied. The area

of the footprint of this ideal is 15, which is equal to the product of the degrees of f (x, y)

and g(x, y). Because the area is 15, Theorem 7.7.3 implies that there are exactly 15

common affine zeros of f (x, y) and g(x, y) if and only if 〈 f (x, y), g(x, y)〉 is a locator

ideal. This is not an unimportant coincidence. It is an example of a general rule we need

to understand. We will see that the area of the footprint is never larger than the product

of the degrees of f (x, y) and g(x, y). Because the number of zeros of 〈f (x, y), g(x, y)〉

322 Arrays and the Algebra of Bivariate Polynomials

7

6
5

4
3
2
1

0

0 1 2 3 4 5 6

Figure 7.12. An insight into Bézout’s theorem.

is not larger than the area of the footprint (with equality if this is a locator ideal), we

will see that the number of common zeros is not larger than the product of the degrees.

A geometric insight into Bézout’s theorem can be obtained from an inspection of

Figure 7.12. Consider the white square at the intersection of the column of squares

that runs through the lowest dot and the row of squares that runs through the second

lowest dot. The diagonal (of slope −1) from this square, up and to the left, contains

the leading monomial of the third basis polynomial. Similarly, the two middle dots

determine another white square by their row/column intersection. The diagonal (of

slope −1) through that white square contains the leading monomial of the fourth basis

polynomial. In general, each pair of polynomials of the reduced basis of the ideal will

imply another polynomial of the reduced basis with a leading monomial on, or below,

the diagonal defined by the previously formed step.

To prove the affine form of Bézout’s theorem, we will prove that the area of the

footprint of the ideal 〈 f (x, y), g(x, y)〉 is not larger than the product of the degrees of

f (x, y) and g(x, y). We will generalize Bézout’s theorem to a statement that the leading

monomials of any set of generators of any ideal in F[x, y] determine an upper bound

on the number of affine zeros of the ideal. The affine form of Bézout’s theorem is

then obtained as a corollary to this more general statement by restricting it to only two

polynomials. Before giving the proof, we will examine a few more simple cases.

First, suppose that the leading monomial of g(x, y) is xm and the leading monomial

of h(x, y) is yn. If g(x, y) and h(x, y) form a minimal basis of 〈g(x, y), h(x, y)〉, and this

is a locator ideal, then the area of the footprint is clearly mn, as shown in Figure 7.13.

In this case, there are at most mn common affine zeros. If g(x, y) and h(x, y) do not

form a minimal basis, or if 〈g(x, y), h(x, y)〉 is not a locator ideal, then the footprint of

the ideal is contained within this rectangle, and so the area of the footprint is strictly

smaller than mn. Therefore the ideal 〈g(x, y), h(x, y)〉 has fewer than mn zeros.

In the general case, although the polynomials g(x, y) and h(x, y) have degrees m and

n, respectively, their leading monomials need not be xm and yn, respectively. In general,

the leading monomials have the form xsym−s and xn−ryr , respectively. The footprint

323 7.8 The Bézout theorem

n

m

Figure 7.13. Area of a rectangular footprint.

n–s

n

m

s

m

n–s

Figure 7.14. Illustrating the invariance of the area of a footprint.

of the set {g(x, y), h(x, y)} is infinite, but if the two polynomials have no common

polynomial factor, then the footprint of the ideal 〈g(x, y), h(x, y)〉 must be finite. This

means that a minimal basis must include polynomials with leading monomials of the

form xm′ and yn′ .

The simplest such example is an ideal of the form 〈g(x, y), h(x, y)〉 that has three

polynomials in its reduced basis, as indicated by the three dots in Figure 7.14. In this

example, the leading monomial of g(x, y) is xm and the leading monomial of h(x, y) is

ysxn−s with s �= n; thus, both are monic polynomials. The nonzero polynomial

f (x, y) = ysg(x, y)− xm−n+sh(x, y),

which has a degree at most m+ s, is in the ideal. Under division by g(x, y) and h(x, y),

the remainder polynomial r(x, y) has a degree at most m+s. Because we have specified

that there are only three polynomials in the minimal basis, its leading monomial must

involve only y. If the remainder polynomial has the largest possible degree, then its

leading monomial is ym+s and the footprint is as shown in Figure 7.14. It has the area

sm+ m(n− s) = mn, again equal to the product of the degrees of g(x, y) and h(x, y).

324 Arrays and the Algebra of Bivariate Polynomials

If the remainder polynomial has less than the largest possible degree, then the area of

the footprint will be smaller than the product of the degrees of g(x, y) and h(x, y).

In general, this process of appending a conjunction polynomial to a set of polynomials

may need to be repeated an arbitrary number of times, terminating with a minimal basis

that must contain one polynomial, whose leading monomial is solely a power of y, and

another, whose leading monomial is solely a power of x. The set of bidegrees of the

polynomials computed in this way defines a cascade set. This cascade set must contain

the footprint of the ideal; therefore its area is a bound on the area of the footprint.

We will bound the area by finding a finite sequence of cascade sets whose areas are

nonincreasing, the first of which has the area mn and the last of which contains the

footprint.

Consider the cascade set � with the exterior corners at

{(s′1, s′′1), (s
′
2, s′′2), (s

′
3, s′′3), . . . , (s′M , s′′M)},

with s′1 < s′2 < s′3 < · · · < s′M and s′′1 > s′′2 > s′′3 > · · · > s′′M . If the exterior corners

satisfy s′′1 = 0 and s′M = 0, then the cascade set has a finite area. Otherwise, the cascade

set has an infinite area. To facilitate the proof of the Bézout theorem, we define the

essential cascade set �̂ as the cascade set with the exterior corners at

{(s′1 + s′′1 , 0), (s′2, s′′2), (s
′
3, s′′3), . . . , (s′M−1, s′′M−1), (0, s′M + s′′M)}.

The essential cascade set is obtained by moving the two extreme exterior corners to

the boundary (along lines of slope −1). It has a finite area. A cascade set with finite

area is equal to its essential cascade set. Define the essential area of a cascade set to

be equal to the area of its essential cascade set. This is the shaded area of Figure 7.15.

The essential area of a finite cascade set is equal to its area. The following theorem is

a precursor of a generalized form of Bézout’s theorem.

j 0

8

7

3

2

1

0

6

5

4

0 1 2 3 4 5 6 7 8 9 j 9

Figure 7.15. Division order and graded order.

325 7.8 The Bézout theorem

Theorem 7.8.2 The essential area of the footprint of a set of bivariate polynomials is

nonincreasing under the appending of a conjunction polynomial of those polynomials.

Proof: The proof involves only simple geometric reasoning. Because appending a

polynomial to a set of polynomials cannot make the footprint larger, and so cannot

make the essential cascade set larger, no proof is needed if the footprint has a finite

area.

Suppose that the footprint has an infinite area, with exterior corners at (s′1, s′′1),
(s′2, s′′2), . . . , (s′M , s′′M) s′′1 > s′′2 > s′′3 , where s′1 < s′2 < s′3 < · · · < s′M and s′1 and

s′′M are not both zero. Again, there is nothing to prove unless the new exterior cor-

ner is above the previous top corner or to the right of the previous bottom corner. To

align polynomials with the leading monomials xs′1ys′′1 and xs′2ys′′2 , with s′1 < s′2 and

s′′1 > s′′2 , it is required that these polynomials be translated to have the leading mono-

mial xs′2ys′′1 . Then, under division by G, the degree of the remainder polynomial is at

most s′2+ s′′1 > s′1+ s′′2 . Hence the new exterior corner lies in the square formed by the

top left corner and the bottom right corner, so the essential area does not increase. �

The proof of the following corollary is similar to the Buchberger algorithm, which

is described in Chapter 8. The Buchberger theorem suggests that a minimal basis for

an ideal can be obtained by repeatedly appending nonzero conjunction polynomials to

the set of generator polynomials G. Enlarge G by appending conjunction polynomials

until Corollary 7.6.2 is satisfied. The essential area is finite and is nonincreasing when

conjunction polynomials are appended, as is shown in Figure 7.16. This construction

n + s

n + s

n

n

m

Figure 7.16. Changing the footprint by Buchberger iterations.

326 Arrays and the Algebra of Bivariate Polynomials

leads to the following corollary. If the ideal is generated by two coprime polynomials,

then the corollary reduces to the affine form of Bézout’s theorem.

Corollary 7.8.3 The number of zeros of an ideal with no common nontrivial polyno-

mial factor is not larger than the essential area of the footprint of any set of generator

polynomials.

Proof: Compute a minimal basis by appending conjunction polynomials as needed.

The essential area of the footprint is nonincreasing under the operation of appending a

conjunction polynomial, so the area of the footprint of the minimal basis is not larger

than the essential area of the given set of generator polynomials. The process eventually

stops, at which point the footprint is equal to its essential cascade set. Because the

number of zeros of the ideal is not larger than the area of the footprint of the minimal

basis, the corollary follows from the theorem. �

Corollary 7.8.4 (Bézout’s theorem) Over the field F, let g(x, y) and h(x, y) be bivari-

ate polynomials of degree m and n, respectively, and with no common nontrivial

polynomial factor. The footprint of 〈g(x, y), h(x, y)〉 has an area not larger than mn.

Proof: This is a special case of the previous corollary. The polynomials have lead-

ing monomials of the form xm−ryr and xn−sys, respectively. Hence the footprint of

{g(x, y), h(x, y)} has exterior corners at (m − r, r) and (n − s, s), so the essential area

of the footprint is mn. �

7.9 Nullstellensätze

We shall want to know when a given ideal is the largest ideal with its set of zeros. The

answer to this question is given by a theorem due to Hilbert, known as the nullstellensatz,

one of the gems of nineteenth century mathematics. For any ideal I in F[x, y], let Z(I)

denote the set of affine zeros of I . We may assume that the field F is large enough to

contain all the affine zeros of I . We may even dismiss this concern from the discussion

by demanding that only algebraically closed fields be studied. However, we are mostly

interested in finite fields, and these are never algebraically closed. Furthermore, in a

finite field with q = n+ 1 elements, it is often desirable to work in the ring F◦[x, y] =
F[x, y]/〈xn − 1, yn − 1〉, rather than F[x, y]. Then the theorems of this section become

almost trivial.

For any set of points P in the affine plane over F , or some extension of F , let I(P)

denote the ideal in F[x, y] consisting of all bivariate polynomials that have zeros at

every point of P .

We shall discuss both the nullstellensatz and its companion, the weak nullstellensatz,

but first we will give discrete versions of the weak nullstellensatz and the nullstellensatz

327 7.9 Nullstellensätze

reformulated for ideals of the quotient ring F◦[x, y] = F[x, y]/〈xn− 1, yn− 1〉. (Ideals

in a quotient ring are defined, just as are ideals in F[x, y].) The discrete versions will

actually be more useful for some of our needs. The discrete versions of these theorems

can be seen as rather obvious consequences of the convolution theorem, an elementary

property of the two-dimensional Fourier transform, and are immediate observations to

the field of signal processing.

For any ideal I in F◦[x, y] = F[x, y]/〈xn − 1, yn − 1〉, as before, let Z◦(I) denote

the set of bicyclic zeros of I in the smallest extension of F that contains an element ω

of order n, provided such an extension field exists. More simply, we may assume that

F is chosen large enough so that it contains an element ω of order n. In any case, the

bicyclic zeros of I are the zeros of the form (ω j′ , ω j′′).

Theorem 7.9.1 (discrete weak nullstellensatz) If F contains an element ω of order

n, then every proper ideal of the quotient ring F[x, y]/〈xn − 1, yn − 1〉 has at least one

zero in the bicyclic plane.

Proof: The bicyclic plane is the set of all points of the form (ω j′ , ω j′′). Let I be an

ideal of F◦[x, y] = F[x, y]/〈xn − 1, yn − 1〉 with no bicyclic zeros. Every polynomial

s(x, y) of I can be represented by an n by n array of coefficients, denoted s. Thus

the ring F[x, y]/〈xn − 1, yn − 1〉 can be regarded as the set {s} of all n by n arrays

under componentwise addition and bicyclic convolution. Accordingly, we may regard

F◦[x, y] as the set {s} of such arrays and I as an ideal of F◦[x, y]. Every such s has

an n by n two-dimensional Fourier transform S with components given by Sj′j′′ =∑
j′
∑

j′′ ω
i′j′ωi′′j′′si′i′′ . Thus the Fourier transform maps the ring F◦[x, y] into the set

of Fourier transform arrays {S} and maps the ideal I into an ideal I∗ ⊂ {S}, which is

the transform-domain representation of the ideal I . The defining properties of an ideal,

under the properties of the Fourier transform, require that the ideal I∗ ⊂ {S} is closed

under componentwise addition, and that the componentwise product of any element of

I∗ with any array A is an element of I∗. Thus the set I∗ itself is an ideal of the ring of

all n by n arrays under componentwise addition and multiplication.

If I has no bicyclic zeros of the form (ω j′ , ω j′′), then, for every bi-index (r′, r′′),
one can choose an array S(r′,r′′) in I∗ that is nonzero at the component with bi-index

(r′, r′′). For any such S(r′,r′′), one can choose the array A(r′,r′′), nonzero only where

(j′, j′′) = (r′, r′′), so that

A
(r′,r′′)
j′j′′ S

(r′,r′′)
j′j′′ =

{
1 (j′, j′′) = (r′, r′′)
0 (j′, j′′) �= (r′, r′′).

Thus for every (r′, r′′), there is an element of I , denoted δ(r′,r′′)(x, y), such that

δ(r′,r′′)(ω j′ , ω j′′) =
{

1 if(j′, j′′) = (r′, r′′)
0 if(j′, j′′) �= (r′, r′′).

328 Arrays and the Algebra of Bivariate Polynomials

The set of all such δ(r′,r′′)(ω j′ , ω j′′) forms a basis for the vector space of all n by n

arrays. Therefore I∗ contains all n by n arrays. Thus I is equal to F◦[x, y], so I is not a

proper ideal. �

It is now clear that if F has an element ω of order n, then the ideals of F◦[x, y] =
F[x, y]/〈xn − 1, yn − 1〉 can be expressed in terms of the Fourier transform in a simple

way. Let I be any ideal of F◦[x, y] and let Z◦(I) denote the zeros of the ideal I in the

discrete bicyclic plane {(ω j′ , ω j′′)} over F . The following theorem says that if F has

an element ω of order n, then any ideal I of F◦[x, y] is completely characterized by its

set of zeros Z◦ in the bicyclic plane over F .

Theorem 7.9.2 (discrete nullstellensatz) If F has an element of order n, and J is an

ideal of the ring F◦[x, y] = F[x, y]/〈xn − 1, yn − 1〉, then I(Z◦(J)) = J .

Proof: Let ω be an element of F of order n. For any element s(x, y) of F◦[x, y], let

Sj′j′′ = s(ω j′ , ω j′′) be the (j′, j′′)th component of its Fourier transform. Following the

line of the proof of Theorem 7.9.1, for each (ωr′ , ωr′′) �∈ Z◦(I) there is an element

s(r′,r′′)(x, y) of J for which its Fourier transform Sr′r′′
j′j′′ is nonzero at the component with

bi-index (j′, j′′) equal to (r′, r′′). Moreover, there is an element a(x, y) of F◦[x, y] such

that Aj′j′′ = a(ω j′ , ω j′′) is nonzero only at (r′, r′′). In particular, a(x, y) can be chosen

such that a(x, y)s(x, y) has the following Fourier transform:

δ(r′,r′′)(ω j′ , ω j′′) =
{

1 if (j′, j′′) = (r′, r′′)
0 if (j′, j′′) �= (r′, r′′).

This means that for every (ωr′ , ωr′′) �∈ Z◦(I), there is a function δ(r′r′′)(x, y) in J such

that

δ(r′,r′′)(ω j′ , ω j′′) =
{

1 if (j′, j′′) = (r′, r′′)
0 if (j′, j′′) �= (r′, r′′).

Clearly, the set of such δ(r′,r′′)(x, y) is a vector space basis of J , so the ideal that these

generate is J itself. �

The generalization of Theorems 7.9.1 and 7.9.2 to the ring F[x, y] will take some

work. The result of this work will be the two forms of the Hilbert nullstellensatz. First,

we will introduce some terminology.

The radical of the ideal I is given by

√
I = {s(x, y) | s(x, y)m ∈ I , m ∈ N}.

An ideal I is called a radical ideal if
√

I = I . A radical ideal is defined by the property

that whenever p(x, y)m ∈ I , then p(x, y) ∈ I . It is informative to contrast a radical ideal

with a prime ideal. A prime ideal is defined by the property that if p(x, y)q(x, y) is an

329 7.9 Nullstellensätze

element of the ideal I , then p(x, y) or q(x, y) must be an element of I . Every prime ideal

is necessarily a radical ideal.

Every ideal with at least one zero is a proper ideal. Because every ideal with multiple

zeros is contained in an ideal with only one zero, it is enough to consider only a maximal

ideal I over the extension field with a single zero at (a, b). But this ideal has a minimal

basis {x − a, y − b} and a footprint with area 1, so it is not the ring F[x, y].
The nullstellensatz asserts that I(Z(I)) =

√
I for any ideal I in the ring of bivariate

polynomials over an algebraically closed field F . Thus I(Z(I)) contains a polyno-

mial p(x, y) if and only if p(x, y) itself, or a power of p(x, y), is already in I . In

particular, if p(x, y) is an irreducible polynomial in an algebraically closed field, then

I(Z(〈p(x, y)〉)) = 〈 p(x, y)〉.
We shall first state the weak nullstellensatz. The method of proof used for the discrete

case does not work here because there is an infinite number of points at which zeros

must be voided. Therefore a much different proof is needed.

Theorem 7.9.3 (weak nullstellensatz) The only ideal in the ring F[x, y] over F that

has no affine zeros in any extension of F is F[x, y] itself.

Proof: This follows from Theorem 7.9.4 below. �

Any ideal I has a minimal basis and a footprint �. In Section 7.4, we saw that if I is

a locator ideal with no affine zeros in any extension field, then the footprint is empty.

The only exterior corner is (0, 0), so the minimal basis is {1}. Thus I = 〈1〉 = F[x, y].
The upcoming proof of the nullstellensatz will make use of the trivariate version of this

fact: the only ideal in the ring F[x, y, z] that has no affine zeros in any extension of F

is F[x, y, z] itself.

In our applications, we must deal with fields that are not algebraically closed, so

we want to impose the notion of algebraic closure as weakly as possible. For this, it

is enough to embed the field F into its smallest extension field that contains all the

zeros of I . Our definition of Z(I), as the set of zeros in the smallest extension field of

F that contains all the zeros of I , actually makes unnecessary the condition that F be

algebraically closed.

Theorem 7.9.4 (nullstellensatz) If F is an algebraically closed field, then the ideal

I(Z(J)) ⊂ F[x, y] is equal to the set of bivariate polynomials p(x, y) ∈ F[x, y] such

that some power pm(x, y) is an element of J .

Proof: Let {gℓ(x, y) | ℓ = 1, . . . , M } be a minimal basis for J . We will embed R =
F[x, y] into the ring of trivariate polynomials R̃ = F[x, y, t]. Each basis polynomial

gℓ(x, y) ∈ R will be regarded as the polynomial gℓ(x, y, t) ∈ R̃, which, in fact, does not

depend on t. The ideal J becomes the ideal of R̃ consisting of all trivariate polynomials

of the form �M
ℓ=1a(x, y, t)gℓ(x, y).

330 Arrays and the Algebra of Bivariate Polynomials

Suppose that p(x, y) ∈ I(Z(J)). We wish to show that pm(x, y) ∈ J for some m. First,

we will form a new polynomial in three variables, given by p̃(x, y, t) = 1 − tp(x, y).

Then consider the ideal J̃ ⊂ F[x, y, t], defined by appending p̃(x, y, t) as an additional

generator.

J̃ = 〈g1(x, y), g2(x, y), . . . , gM (x, y), 1− tp(x, y)〉.

Step (1) We shall first prove that the ideal J̃ has no affine zeros, so the footprint of

J̃ has area 0. Then we can conclude that J̃ = 〈1〉.
Consider any (α, β, γ) in any extension of F . If (α, β) ∈ Z(J), then (α, β) is a zero

of p(x, y), so (α, β, γ) is not a zero of 1− tp(x, y) for any γ . If (α, β) �∈ Z(J), then for

some ℓ, gℓ(α, β) �= 0. Because gℓ(x, y) ∈ J̃ , gℓ(α, β, γ) �= 0, so (α, β, γ) is not a zero

of J̃ for any γ . In either case, (α, β, γ) is not a zero of J̃ . Because every proper ideal

has a zero, we can conclude that J̃ = F[x, y, t].
Step (2) From step (1), we can write the following:

1 =
M∑

ℓ=1

aℓ(x, y, t)gℓ(x, y)+ aM+1(x, y, t)(1− tp(x, y)).

Let m be the largest exponent of t appearing in any term and set t = z−1. Multiply

through by zm to clear the denominator. Then

zm =
M∑

ℓ=1

zmaℓ(x, y, z−1)gℓ(x, y)+ zmaM+1(x, y, z−1)

(
1− p(x, y)

z

)
.

Let bℓ(x, y, z) = zmaℓ(x, y, z−1) so that

zm =
M∑

ℓ=1

bℓ(x, y, z)gℓ(x, y)+ zmaM+1(x, y, z−1)

(
1− p(x, y)

z

)
.

Now replace z by p(x, y). Then

pm(x, y) =
M∑

ℓ=1

bℓ(x, y, p(x, y))gℓ(x, y).

But bℓ(x, y, p(x, y)) when expanded is a polynomial in F[x, y]. Thus pm(x, y) ∈ J , as

was to be proved. �

331 7.10 Cyclic complexity of arrays

7.10 Cyclic complexity of arrays

The one-dimensional cyclic complexity property is as follows: The weight of a one-

dimensional sequence of length n is equal to the cyclic complexity of its Fourier

transform. Is it possible to generalize this to a cyclic complexity property for the

two-dimensional Fourier transform? The answer is “yes” if we provide appropriate

definitions for the terms “weight” and “linear complexity” for arrays. The first term is

immediate. The Hamming weight, denoted wt(v), of an n by n array v is the number

of nonzero components of the array. The two-dimensional Fourier transform of v is the

array V . We want to define the cyclic complexity of the array V . Then we will prove

the statement that the weight of v is equal to the cyclic complexity of V .

To define the cyclic complexity of the array V , we resort to the language of

polynomials, replacing the array V by the bivariate polynomial

V (x, y) =
n−1∑

j′=0

n−1∑

j′′=0

Vj′j′′x
j′yj′′ ,

which we regard as an element of the ring F◦[x, y] = F[x, y]/〈xn−1, yn−1〉. The array

V , represented by the polynomial V (x, y), has the inverse two-dimensional Fourier

transform v. The weight of v is the number of values of vi′i′′ = (1/n2)V (ω−i′ , ω−i′′)

that are nonzero.

Every n by n array V is associated with a locator ideal, which we will now intro-

duce. A locator polynomial for the array V (or the polynomial V (x, y)) is a nonzero

polynomial, �(x, y), that satisfies

�(x, y)V (x, y) = 0.

We are usually interested in the case in which V (x, y) is doubly periodic, with period n in

both directions. Then we regard V (x, y) as an element of F◦[x, y], and, for emphasis, we

then sometimes write the locator polynomial as �◦(x, y) as a reminder of this periodic

property. Then,

�◦(x, y)V (x, y) = 0 (mod 〈xn − 1, yn − 1〉).

This polynomial product is equivalent to a two-dimensional cyclic convolution, �◦ ∗
∗V , on the arrays formed by the coefficients of these polynomials. The properties of

the Fourier transform tell us that the polynomial product is equal to zero if and only if

�◦(ω−i′ , ω−i′′)V (ω−i′ , ω−i′′) = 0
i′ = 0, . . . , n− 1

i′′ = 0, . . . , n− 1.

332 Arrays and the Algebra of Bivariate Polynomials

Because the n by n array v =
[
(1/n2)V (ω−i′ , ω−i′′)

]
has finite weight, the locator

polynomial (now called simply �(x, y)) needs only a finite number of zeros to satisfy

this equation. Therefore locator polynomials for V do exist and can be specified by

any array λi′i′′ = (1/n2)�(ω−i′ , ω−i′′) that has zeros wherever vi′i′′ is nonzero. The

name “locator polynomial” refers to the fact that the set of nonzeros of the polynomial

V (x, y) is contained in the set of zeros of �(x, y). In this sense, �(x, y) “locates” the

nonzeros of V (x, y). However, �(x, y) may also have some additional zeros; these then

are at the zeros of V (x, y). Thus the zeros of �(x, y) do not fully locate the nonzeros

of V (x, y). To fully specify the nonzeros, we will consider the set of all such �(x, y).

It is trivial to verify that the set of such �(x, y) forms an ideal in the ring of bivariate

polynomials.

Definition 7.10.1 The locator ideal for the array V (or the polynomial V (x, y)) is

given by

�(V) = {�(x, y) | �(x, y) is a locator polynomial for V }.

To reconcile this definition with the earlier Definition 7.7.1, simply note that the

polynomial V (x, y) has a finite number of bicyclic nonzeros and that �(V) is the ideal

consisting of all polynomials with zeros at the nonzeros of V (x, y).

This definition of the locator ideal �(V) is very different from our earlier way of

specifying ideals in terms of generators in the form

� = 〈�(ℓ)(x, y) | ℓ = 1, . . . , L〉.

To reconcile this definition with Definition 7.7.1, we remark that the locator ideal of

V (x, y) is the locator ideal for the set of nonzeros of V (x, y). A major task of Chapter 8

will be the development of an efficient algorithm for computing, from the array V , the

minimal basis {�(ℓ)(x, y)} for the locator ideal of V .

Now we are ready to discuss linear complexity. We shall define the linear complexity

of the (two-dimensional) array V in terms of the locator ideal of �(V). To understand

this, we first examine this version of the locator ideal in one dimension:

�(V) = {�(x) | �(x)V (x) = 0 (mod xn − 1)}.

To state the linear complexity of the sequence V (or the polynomial V (x)), we could first

observe that, because every ideal in one variable is a principal ideal, every polynomial

in �(V) is a polynomial multiple of a generator of the ideal (perhaps normalized

so that �0 = 1). Then we could define the linear complexity of V as the degree

of this minimal degree univariate polynomial in �(V). This generator polynomial is

the smallest degree polynomial whose zeros annihilate the nonzeros of V (x). This, in

essence, is the definition of linear complexity given in Chapter 1. In the ring of bivariate

333 7.11 Enlarging an ideal

polynomials, however, an ideal need not be generated by a single polynomial, so this

form of the definition does not generalize to two dimensions. Accordingly, we must

define linear complexity in a way that does not assume a principal ideal. Therefore

we use the following, slightly more cumbersome, definition of linear complexity. The

linear complexity L(V) of the one-dimensional periodic sequence V is the number of

values of the nonnegative integer j, such that xj is not the leading monomial of any

�(x) in �(V). More simply, the linear complexity of the sequence V is the area of the

footprint �(�(V)).

Now this definition is in a form that carries over to two dimensions, provided a

total order that respects monomial multiplication is defined on the set of bivariate

monomials. We will usually use the graded order because, in this total order, the

number of monomials proceeding a given monomial is finite. Some other total orders

may also be suitable. The generalization to two-dimensional arrays is now immediate.

Definition 7.10.2 The linear complexity L(V) of the array V is the area of the

footprint of the locator ideal of V .

We end the section with the linear complexity property of the two-dimensional

Fourier transform. This is a generalization of the linear complexity property of

sequences, which was discussed in Section 1.5.

Theorem 7.10.3 Let F contain an element of order n. The weight of a two-dimensional

n by n array over F is equal to the linear complexity of its two-dimensional Fourier

transform.

Proof: Because F contains an element of order n, an n-point Fourier transform exists

in F . The weight of an array is equal to the number of zeros of its locator ideal, as was

stated in the remark following Definition 7.10.1. The number of zeros of the locator ideal

is equal to the area of its footprint, and this is the definition of linear complexity. �

Definition 7.10.2 can be expressed concisely as L(V) = ‖�(�(V))‖, while

Theorem 7.10.3 can be expressed as wt(v) = L(V).

7.11 Enlarging an ideal

We are now ready to return to the example started in Section 7.6. Recall that the task

stated in that section was to enlarge the ideal I = 〈x3 + x2y + xy + x + 1, y2 + y〉 of

GF(2)[x, y] – whose footprint was shown in Figure 7.9 – so that the point (2, 1) is an

exterior corner of the new footprint, as shown in Figure 7.10. To do this, the polynomial

g3(x, y) = x2y+ax2+bxy+cx+dy+e, with the leading monomial in the new exterior

corner, is appended to the basis, and the constants a, b, c, d , and e, with the leading

334 Arrays and the Algebra of Bivariate Polynomials

monomial in the new exterior corner, are chosen so that the new basis

G = {x3 + x2y + xy + x + 1, y2 + y, g3(x, y)}

is a reduced basis. First, compute the first of the two conjunction polynomials that

involve g3(x, y). Let

f (x, y) = yg3(x, y)− x2(y2 + y)

= ax2y + bxy2 + cxy + dy2 + ey − x2y,

and choose the five constants such that

RG[f (x, y)] = 0.

This means that f (x, y) is in the ideal generated by G. Because G is a reduced basis,

division by G is straightforward. Simply set x3 = x2y + xy + x + 1, y2 = y, and

x2y = ax2 + bxy + cx + dy + e whenever possible in f (x, y), performing the steps of

this reduction in any convenient order. This yields the following:

RG[f (x, y)] = a(a + 1)x2 + (c + ba)xy + c(a + 1)x + (e + da)y + e(a + 1),

where a, b, c, d , and e are now to be chosen from extension fields of GF(2) so that the

right side is equal to zero. We conclude from the first term that we must choose either

a = 0 or a = 1. The other coefficients, then, must be as follows. If a = 0, then c = 0

and e = 0. If a = 1, then c = b and e = d .

Next, compute the other conjunction polynomial. Let

f (x, y) = xg3(x, y)− y(x3 + x2y + xy + x + 1)

= ax3 + bx2y + cx2 + dxy + ex − x2y2 − xy2 − xy − y,

and further restrict the free coefficients so that

RG[f (x, y)] = 0.

If a = 0, then this requires that b satisfies b3 + b + 1 = 0 and that d satisfies d =
(b+1)−1. If a = 1, this requires that b satisfies b3+b+1 = 0 and d satisfies d = b−1.

Thus with α, α2, and α4 as the three elements of GF(8), satisfying α3 + α + 1 = 0,

335 7.11 Enlarging an ideal

we have exactly six possibilities for g3(x, y):

g3(x, y) = x2y + αxy + α4y,

g3(x, y) = x2y + α2xy + αy,

g3(x, y) = x2y + α4xy + α2y,

g3(x, y) = x2y + x2 + αxy + αx + α6y + α6,

g3(x, y) = x2y + x2 + α2xy + α2x + α5y + α5,

g3(x, y) = x2y + x2 + α4xy + α4x + α3y + α3.

Note that there are six points in the footprint and six ways of appending a new polyno-

mial to the basis in order to reduce the footprint to five points. We shall see that this is

not a coincidence.

To develop this example a little further, choose the first of the g3(x, y) computed

above as the new generator polynomial. This gives the new ideal generated by the

reduced basis:

G = {x3 + x2y + xy2 + x + 1, y2 + y, x2y + αxy + α4y}.

The new ideal is a larger ideal whose footprint has area 5. How can this new reduced

basis be further expanded, in turn, so that the area of the footprint is decreased to

4? There are two ways in which a new exterior corner can be specified to reduce the

footprint to area 4, and these are shown in Figure 7.17. Thus the new basis polynomial

is either

g4(x, y) = x2 + axy + bx + cy + d

or

g4(x, y) = xy + ax + by + c,

Figure 7.17. Possible new exterior corners.

336 Arrays and the Algebra of Bivariate Polynomials

where, as before, the constants a, b, c, and d are yet to be specified. We will consider

each polynomial in turn. First, we append to G the polynomial

g4(x, y) = x2 + axy + bx + cy + d ,

and choose a, b, c, and d such that the three conjunction polynomials including g4(x, y)

are zero.

Let

f (x, y) = yg4(x, y)− (x2y + αxy + α4y)

= axy2 + (b− α)xy + cy2 + (d − α4)y.

This reduces to

RG[f (x, y)] = (a + b+ α)xy + (c + d + α4)y.

The coefficients are yet to be specified so that

RG[f (x, y)] = 0,

from which we conclude that a + b = α and c + d = α4.

To compute the second conjunction polynomial, let

f (x, y) = y2g4(x, y)− x2(y2 + y)

= x2y + axy3 + bxy2 + cy3 + dy2.

From this, one can calculate

RG[f (x, y)] = (a + b+ α)xy + (c + d + α4)y

= 0,

which is the same condition encountered previously.

Finally, to compute the third conjunction polynomial, let

f (x, y) = xg4(x, y)− (x3 + x2y + xy + x + 1)

= (a + 1)x2y + bx2 + (c + 1)xy + (d + 1)x + 1.

From this, one can calculate that

RG[f (x, y)] = [c + (a + 1)α + 1+ ba]xy + [d + 1+ b2]x
+ [bc + (a + 1)α4]y + 1+ bf

= 0.

337 7.11 Enlarging an ideal

From 1+ bd = 0, we conclude that d = b−1, and from d + 1+ b2 = 0, we conclude

that b satisfies b3 + b + 1 = 0, so b = α, α2, or α4. We conclude that we have the

following three possibilities:

a = 0, b = α, c = α3, d = α6;

a = α4, b = α2, c = 1, d = α5;

a = α2, b = α4, c = α6, d = α3.

This specifies three possible polynomials for the new basis polynomial.

However, we have not yet found all the ways of appending a new polynomial to

get a footprint of area 4. We can, instead, eliminate a different interior corner of the

footprint. To do so, we append a polynomial of the form

g4(x, y) = xy + ax + by + c,

choosing a, b, and c so that the three conjunction polynomials are all zero.

Let

f (x, y) = xg4(x, y)− (x2y + αxy + α4y)

= ax2 + (b+ α)xy + cx + α4y.

Then

RG[f (x, y)] = ax2 + (b+ α)(ax + by + c)+ cx + α4y = 0,

from which we conclude that a = c = 0 and b satisfies b(b+α) = α4. This is solved by

b = α5 or b = α6. This yields two more solutions that, together with the three earlier

solutions, total five choices of a polynomial to append as a new generator polynomial.

These are as follows:

g4(x, y) = x2 + αx + α3y + α6,

g4(x, y) = x2 + α4xy + α2x + y + α5,

g4(x, y) = x2 + α2xy + α4x + α6y + α3,

g4(x, y) = xy + α5y,

g4(x, y) = xy + α6y.

For each choice of g4(x, y) to be appended to the basis, a new ideal is formed whose

footprint has area 4. No other choice of g4(x, y), with its leading monomial in the

current footprint, will give a new footprint of area 4; every other choice will give a

footprint of an area smaller than 4, possibly area 0. The new footprint has either two or

three exterior corners, so the reduced basis has only two or three generator polynomials,

338 Arrays and the Algebra of Bivariate Polynomials

not four. This means that the old set of generator polynomials needs to be purged of

superfluous polynomials to form a reduced basis.

Note that before appending polynomial g4(x, y), there were five points in the footprint

and there are five choices for g4(x, y) that give a footprint of area 4. We made a similar

observation earlier when there were six points in the footprint and six choices for

g3(x, y) that give a footprint of area 5. Evidently, the new generator polynomial causes

one of the zeros of the ideal to be eliminated. Each possible choice of a new generator

polynomial corresponds to eliminating a different zero.

The lengthy calculations we have just finished are examples of a general procedure

for enlarging a given ideal, I , in order to reduce the area of the footprint by 1, which we

will develop in the remainder of this section. If the elements of the original ideal do not

have a common nontrivial polynomial factor, then the footprint has finite area and the

procedure systematically computes all ideals in which the given ideal is contained by

removing points from the footprint, one by one, in various orders. Figure 7.18 shows

the exterior corners of a typical footprint marked with dots and the interior corners

marked with asterisks. Simply choose any interior corner of the footprint, then append

to the reduced basis of the ideal a new polynomial whose leading monomial is in the

chosen interior corner, and all of whose other monomials are in the footprint. Every

other coefficient of the new polynomial is chosen in any way, provided only that all

conjunction polynomials are zero.

The footprint � of I = 〈g1(x, y), . . . , gL(x, y)〉 is a cascade set. We will require that

the basis polynomials are arranged in staircase order. The new polynomial p(x, y) that

is appended will be a monic polynomial with all of its monomials in the footprint �

and with its leading monomial corresponding to one of the interior corners of the foot-

print, as illustrated in Figure 7.18. This interior corner will have coordinates (mℓ − 1,

nℓ+1 − 1) for some ℓ, as determined by two neighboring exterior corners with coordi-

nates (mℓ, nℓ) and (mℓ+1, nℓ+1). These two neighboring exterior corners correspond to

the two polynomials gℓ(x, y) and gℓ+1(x, y) of the reduced basis, which we will refer

Figure 7.18. Exterior and interior corners of a footprint.

339 7.11 Enlarging an ideal

to more simply as g(x, y) and h(x, y), and write

g(x, y) = xmℓynℓ + g−(x, y),

h(x, y) = xmℓ+1ynℓ+1 + h−(x, y).

To reduce the footprint, the single interior corner, corresponding to monomial

xmℓ−1ynℓ+1−1, will be removed from the footprint � by appending to G the new

polynomial

p(x, y) = xmℓ−1ynℓ+1−1 + p−(x, y),

where all coefficients of p−(x, y) have indices in the footprint � and occur prior to the

leading monomial of p(x, y) in the total order. This is written as follows:

p−(x, y) =
∑

(ℓ′ ,ℓ′′)∈�

(ℓ′ ,ℓ′′)≺(mℓ−1,nℓ+1−1)

pℓ′ℓ′′x
ℓ′yℓ′′ .

Our only remaining task is to show that the coefficients of this polynomial p−(x, y) can

always be chosen so that the new polynomial p(x, y) is a part of the reduced basis for

a new ideal. This is a consequence of the following theorem. To earn the use of this

theorem, we will need to go through a somewhat long and tedious, though elementary,

algebraic proof.

Theorem 7.11.1 A reduced basis for the ideal I in F[x, y], with footprint of finite area,

can be augmented by a single polynomial, perhaps with coefficients in an extension

field F ′ of F, to produce a set of polynomials that contains a reduced basis for an ideal

I ′ ⊂ F ′[x, y], with footprint of area smaller by 1.

Proof: Choose any interior corner of the footprint of I . Let p(x, y) = xmℓ−1ynℓ+1−1 +
p−(x, y) be a polynomial with the leading monomial in that interior corner and with

all other coefficients, yet to be determined, lying within the other cells of the footprint.

The enlarged set of L+ 1 generator polynomials is given by

G ′ = {g1(x, y), . . . , g(x, y), p(x, y), h(x, y), . . . , gL(x, y)},

where p(x, y) has been inserted between g(x, y) = gℓ(x, y) and h(x, y) = gℓ+1(x, y) to

preserve the staircase order. This set generates the new ideal I ′ with footprint �′. To

prove the theorem, we must show only that the coefficients of the polynomial p(x, y)

can be chosen so that all conjunction polynomials are equal to zero. By Corollary 7.6.2,

for G ′ to be a reduced basis for I ′, it is enough for the coefficients pℓ′ℓ′′ of p(x, y) to

be assigned so that the two conjunction polynomials of p(x, y) with its two neighbors

g(x, y) and h(x, y) are zero. This is because any conjunction polynomial not involving

340 Arrays and the Algebra of Bivariate Polynomials

p(x, y) is surely zero, since appending p(x, y) to the set of divisors cannot change a zero

remainder to a nonzero remainder. �

The conjunction polynomial of p(x, y) and g(x, y), set equal to zero, will impose

relationships on the coefficients across rows of the array. Likewise, the conjunction

polynomial of p(x, y) and h(x, y), set equal to zero, will impose relationships on the

coefficients across columns of the array. We must show that these two sets of rela-

tionships are consistent and can be satisfied by at least one array of coefficients for

p(x, y).

By aligning the leading monomials, we can write the two conjunction polynomials

of interest, set equal to zero, as follows:

RG′[xmℓ−mℓ+1−1h(x, y)− yp(x, y)] = 0,

RG′[ynℓ+1−nℓ−1g(x, y)− xp(x, y)] = 0.

How these two equations have been formed can be seen by reference to Figure 7.19, in

which squares show some of the cells of the footprint �, those near the interior corner

to be deleted. The exterior corners of � corresponding to g(x, y) and h(x, y) are marked

by g and h. The interior corner of � that will be turned into an exterior corner of the

new footprint is the square marked by p. The first equation comes from aligning h(x, y)

and p(x, y) to the cell of Figure 7.19 marked by the upper asterisk. The second equation

comes from aligning g(x, y) and p(x, y) to the cell of Figure 7.19 marked by the lower

asterisk. The leading monomials cancel, so the two equations reduce to

RG′[xmℓ−mℓ+1−1h−(x, y)] = RG′[yp−(x, y)]

and

RG′[ynℓ+1−nℓ−1g−(x, y)] = RG′[xp−(x, y)].

Because G ′ is a reduced basis, these modulo G ′ reductions are computed simply by

folding back terms into the quotient ring F[x, y]/I ′. However, it may be necessary to

enter the extension field F ′ to find the coefficients of p(x, y).

p
1+l

1+l

n

m

h

g

m

i

i

n

Figure 7.19. Computing the conjunction polynomials.

341 7.11 Enlarging an ideal

We will first restate the left sides of these two expressions, then the right sides. The

left sides of the two expressions, with mℓ − mℓ+1 = m and nℓ+1 − nℓ = n, can be

written as follows:

RG′[xm−1h−(x, y)] = RG[xm−1h−(x, y)] − RG[ãp(x, y)],

RG′[yn−1g−(x, y)] = RG[yn−1g−(x, y)] − RG[b̃p(x, y)],

where the coefficients ã and b̃ are given by the coefficient of xm−1yn−1 in the first term

on the right. These equations can be abbreviated:

RG′[xm−1h−(x, y)] = h̃(x, y)− ãp(x, y),

RG′[yn−1g−(x, y)] = g̃(x, y)− b̃p(x, y),

where h̃(x, y) and g̃(x, y) are polynomials all of whose coefficients are determined by

G and so are also known. The expression says that to fold back xm−1h−(x, y) onto the

footprint of I ′, first fold back xm−1h−(x, y) onto the footprint of I , using the polynomials

of G, then fold back the single exterior corner (m − 1, n − 1) of that result onto the

footprint of I ′, using the newly appended generator polynomial p(x, y).

To simplify notation in the coming equations, we will write the first two coefficients

of p−(x, y) as a and b, respectively:

p−(x, y) = axm−1yn−2 + bxm−2yn−1 + · · ·

These are the two coefficients of p(x, y) that will hold our attention.

The right sides of the earlier two expressions, in the arithmetic of the quotient ring

F[x, y]/I , are given by

RG′[yp−(x, y)] = yp−(x, y)− ap(x, y),

RG′[xp−(x, y)] = xp−(x, y)− bp(x, y),

where the coefficients a and b in the two equations are equal to the coefficients of

xm−1yn−1 in the first terms of yp−(x, y) and xp−(x, y), respectively, on the right. The

leading monomials of the terms ap(x, y) and bp(x, y) cancel the leading monomials

of the terms yp−(x, y) and xp−(x, y), respectively. Combining the equations by pairs

yields

(ã − a)p(x, y) = h̃(x, y)− yp−(x, y),

(b̃− b)p(x, y) = g̃(x, y)− xp−(x, y).

These two equations are understood to be equations in the quotient ring F[x, y]/I ,

and the polynomials h̃(x, y) and g̃(x, y) are known. The monomials contained in the

342 Arrays and the Algebra of Bivariate Polynomials

footprint of I form a vector-space basis of F[x, y]/I , which means that the polynomial

equations can be rewritten as the following matrix equations:

(ã − a)Ip = h̃−Ap,

(b̃− b)Ip = g̃ − Bp,

from which we can solve the two equations for p to write

p = [A+ (ã − a)I]−1h̃;

p = [B + (b̃− b)I]−1g̃.

The elements of the inverse matrices on the right are rational functions in a and b,

respectively, of the form r(a)/ det(a) and r′(b)/ det′(b). The first rows are given by

det(a)a −
∑

i

r(a)hi = 0,

det(b)b−
∑

i

r′(b)gi = 0,

which yields a polynomial in a equal to zero and a polynomial in b equal to zero.

Furthermore, multiplying the earlier equation for the first conjunction polynomial

by x and the earlier equation for the second conjunction polynomial by y yields

RG[xmh−(x, y)] = RG[yng−(x, y)],

from which we obtain

xh̃(x, y) = yg̃(x, y)

in the ring F[x, y]/I . We must only show that there is at least one p(x, y) satisfying

this system of three equations in F[x, y]/I . It will suffice to work in the ring F[x, y],
deferring the modulo G reduction until later.

The terms on both sides in the monomial xm−1yn−1 cancel by design and need not

be considered further. Equating coefficients of the other monomials yields

h̃i′i′′ − Api′i′′ = pi′,i′′−1 − api′i′′ .

Setting (i′, i′′) = (m− 1, n− 2), and recalling that a = pm−1,n−2, yields

a(a − A)+ h̃m−1, n−2 = pm−1, n−3,

343 7.11 Enlarging an ideal

which yields a polynomial in the unknown a that we can write as follows:

a(a − A)− pm−1, n−3 + h̃m−1, n−2 = 0.

The last term is the unknown pm−1,m−3, which can be eliminated by using the equation

obtained by setting the coefficient of the monomial xm−1yn−3 equal to zero,

h̃m−1, n−3 − Apm−1, n−3 = pm−1, n−4 − apm−1,n−3,

from which we obtain

(a − A)pm−1, n−3 = pm−1, n−4 − h̃m−1, n−3,

which can be used to eliminate pn−1, n−3 from the earlier equation. Thus

a(a − A)2 − (a − A)h̃m−1, n−2 = pm−1, n−4 − h̃m−1, n−3.

Repeating this process, pm−1, n−4 can be eliminated in terms of pm−1, n−5, and so on.

The process stops with pm−1,0 because there is no pm−1,−1. In this way, a polynomial

in only the unknown a is obtained. All coefficients of this polynomial are known.

Consequently, in some extension field F ′ of F , there is an element that satisfies this

polynomial.

Once a is known, the sequence of equations just encountered can be used to solve

for other unknown coefficients. Thus

(A− a)pm−1,0 = h̃m−1,0

can then be solved for pm−1,0, one by one;

(A− a)pm−1,i = h̃m−1,i − pm−1,i−1

can be solved for pm−1,i for i = 1, . . . , n− 2.

Now consider the second conjunction polynomial to be satisfied. Using the same

arguments leads to

g̃i′i′′ − Bpi′i′′ = pi′−1,i′′ − bpi′i′′ ,

where B and b are defined analogously to A and a. In the same way as before, b can

be found as a zero of a univariate polynomial. All remaining coefficients can then be

determined.

344 Arrays and the Algebra of Bivariate Polynomials

Problems

7.1 Is the minimal basis for an ideal unique? Either prove that it is unique or give a

counterexample.

7.2 How many monomial orders on N exist? How many monomial orders on N2

exist?

7.3 Prove that (j′, j′′) � (k ′, k ′′) if (j′, j′′) <
≤ (k ′, k ′′).

7.4 Find two ideals, I1 and I2, in F[x, y] such that I1
⋃

I2 is not an ideal.

7.5 Show that every ideal in F[x] is a principal ideal, but that principal ideals are

atypical in F[x, y].
7.6 Prove that an equivalent definition of a radical ideal is the following: an ideal I

is a radical ideal if and only if no element of its reduced basis {gℓ(x, y)} can be

expressed as a power of another element of I .

7.7 In the ring GF(2)[x, y], how many ideals are there with footprint

� = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}

in the graded order?

7.8 Show that every set of monomials in F[x, y] contains a minimal basis for the

ideal it generates. Is this minimal basis a reduced basis?

7.9 Prove that addition and multiplication in the quotient ring F[x, y]/I are

well defined; that is, prove that the sum and product in the quotient ring do

not depend on the choice of representatives.

7.10 Generalize the treatment of the Hilbert basis theorem, given in this chapter, to

polynomial rings in m variables. Specifically, prove that every ideal in the ring

F[x1, . . . , xm] is finitely generated.

7.11 A maximal ideal of F[x, y] is a proper ideal that is not properly contained in

another proper ideal. Show that if F is algebraically closed, then every maximal

ideal of F[x, y] has the form 〈x − a, y − b〉.
7.12 Prove that if R is a noetherian ring, then R[x] is a noetherian ring.

7.13 Let G be a reduced basis for an ideal under the graded order. Show that the

staircase order on the leading monomials need not put the basis polynomials in

the same order as does the graded order.

7.14 Prove that the area of the footprint of an ideal in F[x, y] does not depend on the

choice of monomial order.

7.15 Prove that if the number of affine zeros of an ideal is fewer than the area of the

footprint of that ideal, then the ideal is not a locator ideal, and that there is a

larger ideal with that same set of zeros.

7.16 (Dickson’s lemma) Let S be any subset of Nn of the form ∪∞ℓ=1(uℓ + Nn),

where the uℓ are elements of Nn. Prove that there exists a finite set of points of

345 Notes

Nn, denoted v1, v2, . . . , vr , such that

S =
r⋃

ℓ=1

(vℓ +Nn).

7.17 How many affine zeros does the ideal I = 〈x3+xy2+x2+1, y2+xy+y〉 have?

What is the area of the footprint of I? Compute the footprint for the graded order

with x ≺ y and for the graded order with y ≺ x.

7.18 Prove that every bivariate polynomial over the field F has a unique factorization

in F[x, y].
7.19 The Klein quartic polynomial is x3y+ y3+ x. Find a reduced basis for the ideal

〈x3y+ y3+ x, x7− 1, y7− 1〉 in GF(8)[x, y]. What is the area of the footprint of

the ideal? How many affine zeros does the Klein quartic polynomial have? How

many monomials are in a monomial basis for this ideal? List the monomials.

7.20 If all polynomials of a reduced basis for an ideal are irreducible, is the ideal

necessarily a prime ideal?

7.21 A footprint for a specific ideal in the ring F[x, y, z] of trivariate polynomials has

11 exterior corners. Show that there is a set of 11 trivariate polynomials that

generates this ideal.

7.22 Let I be a prime ideal of F[x, y]. Prove that the quotient ring F[x, y]/I is a field.

Notes

The material of this chapter belongs to those branches of mathematics known as com-

mutative algebra and computational algebraic geometry, but the presentation has been

reshaped to conform with the traditional presentation of the subject of algebraic coding

theory. Although most of the concepts hold in the ring of polynomials in m variables, I

prefer to think through the development given in F[x, y], partly to make it explicit and

shaped for the application to coding theory, and partly because the development here

is unconventional, and I want to be sure to get it right for the purpose at hand.

The Gröbner bases were introduced independently by Hironaka (under the name

standard basis) and by Buchberger (1985). The later name, Gröbner basis, has come

to be preferred in the literature. The definition of a Gröbner basis is not sufficiently

restrictive for our needs, because the definition allows superfluous polynomials to be

included within a Gröbner basis. The special cases of minimal bases and reduced bases

are defined with more restrictions, and so are more useful. A treatment of Gröbner bases

along the line of this book may be found in Lauritzen (2003).

I consider the notion of a footprint as a natural companion to the definition of a

Gröbner basis, but I do not find this notion to be explicit in the literature. Because

346 Arrays and the Algebra of Bivariate Polynomials

I have used the footprint as a starting point for the discussion of ideals, and also for

Bézout’s theorem, I needed to introduce a name. My choice captures, at least for me,

the correct intuition. I also consider the equality between the number of zeros of an

ideal and the area of its footprint as a key theorem. This equality is implicit in the

algorithm of Sakata, although he does not extract it as an independent fact. The notion

of the footprint is explicit in that algorithm because it recursively computes an ideal

by first finding the footprint, then fitting its exterior corners with basis polynomials.

The proof of the affine form of Bézout’s theorem, by using the area of the footprint,

may be original. This approach also provides a generalization to a set of more than

two mutually coprime polynomial by bounding the number of common affine zeros in

terms of only the bidegrees of the generator polynomials.

The Buchberger theorem was used by Buchberger as a key step in the derivation of

his algorithm. Because I find other uses for this theorem, I have given it a separate

place in the development, and also a proof that I prefer.

The Hilbert basis theorem and the nullstellensatz were proved by Hilbert (1890,

1893). An insight into this theorem can be found in the lemma of Dickson (1913).

Because we will deal with fields that are not algebraically closed, and only with points

of the field that are nth roots of unity, we have also stated the nullstellensatz here in a

restricted form that is suited to the tone of this book.

8 Computation of Minimal Bases

An ideal in the ring F[x, y] is defined as any set of bivariate polynomials that satisfies

a certain pair of closure conditions. Examples of ideals can arise in several ways. The

most direct way to specify concretely an ideal in the ring F[x, y] is by giving a set

of generator polynomials. The ideal is then the set of all polynomial combinations of

the generator polynomials. These generator polynomials need not necessarily form a

minimal basis. We may wish to compute a minimal basis for an ideal by starting with

a given set of generator polynomials. We shall describe an algorithm, known as the

Buchberger algorithm, for this computation. Thus, given a set of generator polynomials

for an ideal, the Buchberger algorithm computes another set of generator polynomials

for that ideal that is a minimal basis.

A different way of specifying an ideal in the ring F[x, y] is as a locator ideal for the

nonzeros of a given bivariate polynomial. We then may wish to express this ideal in

terms of a set of generator polynomials for it, preferably a set of minimal polynomials.

Again, we need a way to compute a minimal basis, but starting now from a differ-

ent specification of the ideal. We shall describe an algorithm, known as the Sakata

algorithm, that performs this computation.

Both the Buchberger algorithm and the Sakata algorithm compute a minimal basis of

an ideal, but they start from quite different specifications of the ideal. Consequently, the

algorithms are necessarily very different in their structures. The Buchberger algorithm

may be regarded as a generalization of the euclidean algorithm, and the Sakata algorithm

may be regarded as a generalization of the Berlekamp–Massey algorithm.

8.1 The Buchberger algorithm

Every ideal in F[x] is generated by a single polynomial. Thus, any ideal of F[x]
that is specified by two polynomials as I = 〈 f (x), g(x)〉 can be re-expressed as I =
〈h(x)〉, where h(x) = GCD〈f (x), g(x)〉. This follows from the well known relationship

GCD[f (x), g(x)] = a(x)f (x)+b(x)g(x), given as Corollary 3.4.2. If f (x) and g(x) are

coprime, then the ideal I is F[x] itself. The euclidean algorithm for polynomials finds

348 Computation of Minimal Bases

the greatest common divisor of two polynomials, and so it may be regarded as a method

for computing a single generator polynomial for the ideal I = 〈h(x)〉 ⊂ F[x]whenever

I is specified by two polynomials as I = 〈 f (x), g(x)〉. Thus the euclidean algorithm

computes the (unique) minimal basis for an ideal specified by two polynomials in

F[x]. From this point of view, the generalization of the euclidean algorithm to ideals

in F[x, y] (or F[x1, . . . , xm]) is called the Buchberger algorithm. The bivariate ideal

I ⊂ F[x, y] may be specified by a set of generator polynomials, G = {gℓ(x, y) |
ℓ = 1, . . . , L}, that need not form a minimal basis with respect to a given monomial

order. Buchberger’s algorithm is a method of computing a minimal basis for the ideal

generated by G. The Buchberger algorithm uses the bivariate division algorithm for

polynomials.

We shall first describe a straightforward, though inefficient, form of Buchberger’s

algorithm. It consists of “core” iterations, followed by a cleanup step that discards

unneeded generator polynomials. Each Buchberger core iteration begins with a set

of monic polynomials, Gi = {gℓ(x, y) | ℓ = 1, . . . , Li}, that generates the given

ideal I and appends additional monic polynomials gℓ(x, y) for ℓ = Li + 1, . . . , Li+1

to produce the larger set Gi+1, which also generates the same ideal. These additional

polynomials are computed from the others as conjunction polynomials. Then the core

iteration is repeated. The core iterations terminate at the first iteration during which no

new polynomials are appended. At the termination of these core iterations, as we shall

see from the Buchberger theorem, the enlarged set of polynomials contains a minimal

basis and, in general, some extra polynomials that can then be discarded.

To extract a minimal basis from the final set of polynomials, simply compute the

footprint, as defined by the set of leading monomials of these polynomials. This can

be done by marking the leading monomials on a grid representing N2. Each leading

monomial excludes from the footprint all points of the quarter plane above and to the

right of it. This is shown in Figure 8.1. Each small circle corresponds to one of the

Figure 8.1. Output of the Buchberger algorithm.

349 8.1 The Buchberger algorithm

polynomials of G∗ by designating its leading monomial. The two rightmost circles

designate leading monomials that do not play a role in defining the footprint; hence,

those polynomials can be deleted from the basis. In this way, discard those polynomials

that are not needed to fill all exterior corners of the footprint. The remaining polynomials

(four in Figure 8.1) form a minimal basis for the ideal. Then it is straightforward to

compute a reduced basis from the minimal basis.

Given the ordered set of polynomials G, the core iteration of the Buchberger algo-

rithm computes a conjunction polynomial for each pair of elements of G. To compute

a conjunction polynomial, as described in Section 7.3, take two bivariate monic poly-

nomials from the set, align the polynomials as necessary, by multiplying each by

a monomial so that both polynomials have the same leading monomial, then sub-

tract the two aligned polynomials to cancel the leading monomials, and finally reduce

modulo the ordered set G to produce a new polynomial in the ideal generated by

the set G.

The most straightforward (though inefficient) form of the Buchberger algorithm

repeats this computation for each pair of polynomials to form the core iteration; this

requires the computation of
(

Li

2

)
conjunction polynomials. If all

(
Li

2

)
conjunction

polynomials are zero, the process halts. Otherwise, normalize each nonzero remainder

polynomial to make it monic, and enlarge the set of generator polynomials by appending

every distinct new monic polynomial to the set G. Then repeat the core iteration for the

new set G.

Figure 8.2 shows an example in which an ideal is initially defined by three generator

polynomials, represented by three small circles corresponding to the leading monomials

of the three polynomials. Starting at each small dot is a quarter plane, consisting of

all points above this point in the division order. No point in this quarter plane above

a dot can be in the footprint of the ideal, nor can any point in this quarter plane be

Figure 8.2. Footprint of an ideal.

350 Computation of Minimal Bases

the leading monomial of a polynomial generated in a subsequent Buchberger core

iteration.

Figure 8.2 also highlights the footprint of the ideal generated by these three poly-

nomials. The Buchberger algorithm approaches the footprint of an ideal from above.

Each new conjunction polynomial, if not the zero polynomial, has a leading monomial

that is not dominated by the leading monomials of the polynomials already computed.

The algorithm halts with set Gi when each exterior corner of the footprint is occupied

by the leading monomial of a polynomial of Gi. Other polynomials in the set Gi that do

not correspond to an exterior corner can be discarded.

The footprint of the set of leading monomials of the polynomials in G defines a

cascade set, which is nonincreasing under the core iteration. We must prove that the

algorithm eventually reduces the footprint of the increasing set of generator polynomials

to the footprint of the ideal.

The Buchberger algorithm is certain to halt, because at each step, unless all con-

junction polynomials computed in that step are zero, new polynomials are produced

whose leading monomials are not divisible by the leading monomial of any previous

polynomial. This can be done only a finite number of times, because the footprint is

reduced at each step, either by deleting a finite number of squares, or by cropping one

or more infinite rows or columns along the horizontal or vertical axis; there are only a

finite number of such infinite rows or columns.

The following proposition says that any set which is unchanged by a core iteration

of the Buchberger algorithm must contain a minimal basis.

Proposition 8.1.1 The Buchberger algorithm terminates with a set of polynomials

that contains a minimal basis for the ideal generated by G.

Proof: This is an immediate consequence of the Buchberger theorem, given as Theo-

rem 7.6.1, which says that if Gi at any iteration does not contain a minimal basis, then

the computation does not yet terminate. �

This näive form of the Buchberger algorithm is not acceptable, even for moderate

problems, because of its complexity, which is illustrated by recursively repeating the

assignment L →
(

L
2

)
. Clearly, the number of computations is explosive (unless most

conjunction polynomials are zero). Indeed, L is doubly exponential in the number of

iterations n, being proportional to eaen
.

Embellishments to Buchberger’s algorithm that reduce computational complexity

are easy to find. Prior to each Buchberger core iteration, reduce Gi, if possible, as

follows. We may assume that all polynomials of Gi are monic. Let G∗i ⊆ Gi consist

of those polynomials that correspond to the exterior corners of �(Gi). If G∗i �= Gi for

each gℓ(x, y) ∈ Gi that is not in G∗i , compute r(x, y) = RG∗i
[gℓ(x, y)]. Delete gℓ(x, y)

from Gi, and, if r(x, y) is nonzero, append it to Gi. Repeat this step for the new Gi

until G∗i = Gi. At this point, every polynomial of Gi corresponds to an exterior corner

351 8.2 Connection polynomials

of �(Gi). Then put the polynomials in staircase order and proceed with the next core

iteration of the Buchberger algorithm. When the elements of Gi are arranged in staircase

order, it is enough to compute the conjunction polynomials only for the L− 1 pairs of

consecutive polynomials in Gi, given by Corollary 7.6.2. The algorithm can stop when

these conjunction polynomials are all zero.

8.2 Connection polynomials

The Sakata algorithm, to be developed in Section 8.4, computes a certain locator

ideal – provided such an ideal is defined – by iteratively computing a set of polynomials

that terminates with a set of minimal polynomials for that locator ideal. During the

computations, the intermediate polynomials are called connection polynomials and

their coefficients are called connection coefficients. These are named for the way they

are used to connect the elements of a bivariate array.

For a given total order, which we usually take to be the graded order, the initial

elements of the bivariate array V form a sequence. For each bi-index (j′, j′′) that

occurs in the sequence V , Vj′j′′ has a fixed place in the sequence. The jth element in

the sequence is then denoted Vj, and each j of the sequence corresponds to one bi-

index (j′, j′′). The bivariate recursion connects the given elements of the bivariate array

V = [Vj′j′′]. These are elements whose index j satisfies j � r, where Vr is the last term

of the sequence in the total order.

We define the polynomial �(x, y) of bidegree s (corresponding to the bivariate

sequence �0, �1, . . . , �s−1, �s in the total order) to be a connection polynomial for

the bivariate sequence V = V0, V1, . . . , Vr−1, Vr if the bivariate recursion

∑

k ′

∑

k ′′
�k ′k ′′Vj′+k ′,j′′+k ′′ = 0

is satisfied for every j � r for which all terms in the sum are contained in the sequences

�0, . . . , �s and V0, . . . , Vr . This last condition is because the summation on the left can

be executed only if all terms in the sum are given. The summations in the indices refer

to ordinary addition on each component. Both the total order and the division order are

in play, which leads to some interesting interactions between these two orders.

The definition of a connection polynomial is worded in such a way that if there is no

j = (j′, j′′) for which the defining sum can be executed, then �(x, y) is a connection

polynomial by default. It is easier to include this vacuous case as a connection polyno-

mial than to exclude it. This means, however, that all �(x, y) of sufficiently large degree

are connection polynomials. Therefore the difference of two connection polynomials

may fail to be a connection polynomial, so the set is not an ideal. Nevertheless, the set

of all connection polynomials for a given V does have a footprint, and this footprint

352 Computation of Minimal Bases

does have a set of exterior corners. The minimal connection polynomials are the monic

polynomials with their leading monomials in these exterior corners.

Generally, the connection polynomials do not generate an ideal, so in general we do

not refer to these polynomials as generator polynomials. However, we are ultimately

interested in sets of connection polynomials that do form an ideal – specifically, a

locator ideal. The Sakata algorithm in its normal use for decoding will terminate with a

set of minimal connection polynomials, called a minimal connection set, that generates

a locator ideal.

The bivariate recursion is rewritten more concisely by using a single index to refer

to total order. Then we write the recurison as

s∑

k=0

�kVj+k = 0,

where, as usual, j + k always means (j′ + k ′, j′′ + k ′′). We shall say that the bivariate

polynomial �(x, y) produces the element Vr of the array from the previous elements

of the array V0, V1, . . . , Vr−1 if we can find a bi-index j = (j′, j′′), so this recursion

involves the term Vr multiplied by a nonzero �k and, otherwise, involves only earlier

terms of the given sequence V0, V1, . . . , Vr−1. Then the equation can be solved for

Vr in terms of those Vj appearing earlier in the sequence. We shall say that �(x, y)

reaches the rth term of the array whenever all terms Vj+k on the left side of the above

equation are from the given sequence, even if the sum does not equal zero. In general,

the bivariate polynomial �(x, y) need not reach a selected term of the sequence that

precedes Vr simply because it reaches Vr . This situation is quite different from the

univariate case.

The bivariate recursion has been defined with a plus sign in the subscript. Recall that

a univariate recursion is written in the following form:

Vj = −
L∑

k=1

�kVj−k .

The univariate recursion is represented by the univariate connection polynomial �(x),

with coefficient �0 equal to 1. It would be convenient to use the same form of recursion

– with a minus sign – for the bivariate case, with j and k now representing bivariate

indices (j′, j′′) and (k ′, k ′′). However, we would then run into problems. Whereas the

univariate polynomial �(x), after division by a suitable power of x, always has a

nonzero �0, the arbitrary bivariate polynomial �(x, y) need not have a nonzero �00,

even after the monomial xayb of largest possible degree has been divided out.1 The

1 For consistency, the one-dimensional discussion could be reworked to use a plus sign, but we prefer to retain
the conventional treatment in that case.

353 8.2 Connection polynomials

bivariate recursion given by

Vj = −
1

�00

L∑

k=1

�kVj−k

would fail to be meaningful whenever �00 = 0. Fortunately, this difficulty can be

avoided because the leading monomial �s of �(x, y) is, by definition, always nonzero.

To be able to reference the recursion to the nonzero leading monomial is why we simply

define the recursion with a plus sign in the index of V instead of a minus sign.

By adopting the normalization convention that �s = 1, the bivariate recursion∑s
k=0 �kVj+k = 0 can be put into the following form:

Vj+s = −
s−1∑

k=0

�kVj+k .

The array � can be described by the monic bivariate polynomial �(x, y) of bidegree s.

We may also define r = j + s to put the recursion into the following more convenient

form:

Vr = −
s−1∑

k=0

�kVk+r−s.

The subtraction in the index is a bivariate subtraction. It is meaningful whenever r >
≥ s,

which is equivalent to the statement that �(x, y) reaches r. Note that if r >
≥ s and r′ ≻ r,

we cannot conclude that r′ >≥ s. It is this interplay between the graded order and the

division order that introduces a complicated and rich structure into the study of bivariate

recursions that does not occur in the study of univariate recursions.

With the help of Figure 8.3, a geometric interpretation can be given to the notion of

producing the element Vr of the sequence of bivariate elements. In the middle section

of Figure 8.3 is shown the support of the sequence V = V0, . . . , V31. The bi-index

5

4

3

2

1

0

0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

4

5

6

Λ(x, y) V(x, y)

j 0 j 0 j 0

j 9j9j 9

Figure 8.3. Illustrating the nature of a bivariate recursion.

354 Computation of Minimal Bases

associated with the term V31 is (4, 3). If the sequence is the sequence of coefficients

of the polynomial V (x, y), then the leading monomial is x4y3. The support of the

polynomial �(x, y) is shown on the left. The polynomial �(x, y) reaches V31 because

the leading monomial of xy2�(x, y) agrees with the leading monomial of V (x, y), and

further, every monomial of xy2�(x, y) corresponds to a monomial of V (x, y). Therefore

the linear recursion is defined. The right side of Figure 8.3 shows the support of the

set of monomials x j′y j′′ , such that x j′y j′′�(x, y) has all its monomials in the set of

monomials of V (x, y).

For an example of a set of connection polynomials in the field GF(8), constructed

with the primitive element α satisfying α3 = α+1, consider the sequence V represented

by the following polynomial:

V (x, y) = 0y3 + α5xy2 + α6x2y + α3x3 + α5y2 + 0xy + αx2 + α6y + αx + α3.

The polynomial V (x, y) is specified up to terms with bidegree (0, 3), but actually has

bidegree (1, 2) because the leading specified term of the sequence V is a zero. Therefore,

in such cases, precision requires us to say that V (x, y) has bidegree at most r = (r′, r′′),
but the sequence has a leading term Vr .

Among the many connection polynomials for V (x, y) are the polynomials �(1)(x, y)

and �(2)(x, y), given by

�(1)(x, y) = x2 + α6x + 1,

�(2)(x, y) = y + α6x + α6.

To check that these are connection polynomials, it is convenient to write V (x, y) as a

two-dimensional array of coefficients as follows:

V =

0

α5 α5

α6 0 α6

α3 α α α3

Likewise, the two connection polynomials �(1)(x, y) and �(2)(x, y) are represented as

the following arrays:

�(1) = 1 α6 1 �(2) = 1

α6 α6

To compute
∑s

k=0 �
(ℓ)

k
Vk for ℓ = 1 or 2, we visualize overlaying the array �(ℓ) on the

array V , multiplying the overlying coefficients, and summing the products, which sum

must equal zero. Similarly, to compute
∑s

k=0 �
(ℓ)

k
Vj+k , we can visualize the array �(ℓ)

355 8.2 Connection polynomials

j �

j � j �

j �

3

2

1

0

5

4

0

3

2

1

0

5

4

1 2 3 4 5 0 1 2 3 4 5

Figure 8.4. Points reached by two connection polynomials.

right-shifted and up-shifted by (j′, j′′) positions, and, provided that the shifted copy of

�(ℓ) lies within the support of V , laid on the array V in the new position. Again, the

sum of products must equal zero. This view gives the algebraic structure a geometric

interpretation. Indeed, this method of description might be called “geometric algebra.”

Figure 8.4 shows the possible values of shifts, (j′, j′′), for the two polynomials

�(ℓ)(x, y) of the example. If point j = (j′, j′′) is a shaded square in the appropriate half

of Figure 8.4, then x j′y j′′�(ℓ)(x, y) lies within the support of V (x, y). For each such

point, it is simple to verify that the sum of the products equals zero.

With these as examples, we are now ready for the formal definition of a connection

polynomial.

Definition 8.2.1 The monic polynomial �(x, y) of bidegree s is said to be a connection

polynomial for the bi-index sequence V = V0, V1, . . . , Vr if

s∑

k=0

�kVj+k = 0

for all j satisfying s <≤ j � r.

The upper limit of r−s is chosen so that all terms of the sum are from the given finite

sequence V . The condition s <≤ j � r mixes the division order and the graded order, as

shown in Figure 8.5. The point j is smaller than r in the graded order, and the shaded

points are smaller than (or equal to) j in the division order.

The set of all connection polynomials, called the connection set, has a footprint

�, called the connection footprint, consisting of all (j′, j′′) such that x j′y j′′ is not the

leading monomial in the (graded) total order of any connection polynomial. Every

exterior corner of � has a monic connection polynomial whose leading monomial

lies in that exterior corner. These monic polynomials are called minimal connection

polynomials.

356 Computation of Minimal Bases

j �

j

j�

r

Figure 8.5. Division order and graded order.

Definition 8.2.2 A minimal connection set for the finite bivariate sequence V =
V0, V1, . . . , Vr is a set consisting of one monic connection polynomial for each exterior

corner of the footprint of the connection set of that bivariate sequence.

Any bivariate sequence that consists of a nonzero final term Vr preceded by all zeros

has no connection polynomial that reaches Vr because then
∑

k �kVk+r−s could not

equal zero. In this case, the connection set only has polynomials that lie outside the

support of V.

It may be that the connection set for V0, V1, . . . , Vr−1 is not a connection set for

V0, V1, . . . , Vr−1, Vr because it does not produce Vr . This means that for a bivariate

sequence of length r, the connection set may lose its status as a connection set when

the bivariate sequence is extended to length r + 1.

The minimal connection set has been introduced because it is a convenient form for

the generalization of the agreement theorem and of Massey’s theorem, and also because

we have good algorithms for computing a minimal connection set. The minimal connec-

tion set differs in several ways from a minimal basis of the locator ideal for the nonzeros

of the polynomial V (x, y). The definition of a connection polynomial specifies that only

a segment of length r of the sequence of coefficients is to be tested, and the equation of

the test involves a sum of indices, rather than a difference of indices, as would be seen

in a convolution. Also, the indices are not regarded as modulo n. In Section 8.3, we

give a condition for equivalence of a minimal basis for a locator ideal for the nonze-

ros of V (x, y) and for the set of minimal connection polynomials of the sequence of

coefficients of V (x, y). When this condition holds, as it does in many applications,

the locator ideal can be determined by first computing the minimal connection set

and then reciprocating the polynomials. Even more simply, when this condition holds

(β, γ) is a zero of the locator ideal if and only if (β−1, γ−1) is a zero of the minimal

connection set.

357 8.2 Connection polynomials

For a fairly large example of a minimal connection set, take the following polynomial

over GF(16), with primitive element α satisfying α4 = α + 1:

V (x, y) = α6y5 + α7y4x + α7y3x2 + α12y2x3 + α5yx4 + α5x5

+ α5y4 + α4y3x + 0+ α12yx3 + α2x4

+ α6y3 + α11y2x + α14yx2 + α7x3

+ α9y2 + α9yx + α5x2

+ 0y + α14x

+ α9.

A minimal connection set for V (x, y) is the set containing the following three

polynomials:

�(1)(x, y) = x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13;

�(2)(x, y) = x2y + α13xy + α3x2 + α3y + α6x + α6;

�(3)(x, y) = y2 + α10xy + α13y + α13x + α11.

It is easiest to hand check that these are connection polynomials if the polynomial

coefficients are arranged in the natural way as two-dimensional arrays:

�(1) = α7 α14 α3

α13 α 0 α5 1
�(2) = α3 α13 1

α6 α6 α3 �(3) =
1

α13 α10

α11 α13

Likewise, the coefficients of V (x, y) can be arranged in the following array:

V =

α6

α5 α7

α6 α4 α7

α9 α11 0 α12

0 α9 α14 α12 α5

α9 α14 α5 α7 α2 α5

To verify that �(1)(x, y), for example, is a connection polynomial, simply overlay the

array �(1) on the array V in any compatible position and compute the sum of products.

The sum must equal zero for every such compatible position.

We shall return to this example often. In Section 8.4, we give an algorithm that com-

putes �(1)(x, y), �(2)(x, y), and �(3)(x, y) from V (x, y). This is the Sakata algorithm.

In Chapter 10, this example will be used in two examples of decoding. First, it will be

used for decoding a code known as a hyperbolic code, then for decoding a code known

as a hermitian code.

358 Computation of Minimal Bases

8.3 The Sakata–Massey theorem

Let V = V0, V1, V2, . . . , Vr−1 be a bivariate sequence arranged in the graded order, and

let �(x, y) be a monic bivariate polynomial, with leading index s in the graded order.

This requires that �s is nonzero. Suppose that

s∑

k=0

�kVj+k = s s >
≥ j ≺ r,

provided all terms in the sum are defined. The last term of the bivariate sequence that

appears in the sum corresponding to j = r − s− 1 and k = s is Vr−1. If r <
≤ s, there is a

unique way to extend the sequence by one symbol, Vr , so that

s∑

k=0

�kVr−s+k = 0.

To find the required value of Vr , write

0 = �sVr +
s−1∑

k=0

�kVr+k−s.

Then, because �s = 1,

Vr = −
s−1∑

k=0

�kVk+r−s

is the required next term in the sequence.

If each of two such polynomials, �(x, y) and �∗(x, y), produces the same sequence

V = V0, V1, V2, . . . , Vr−1, will each of the two polynomials next produce the same

symbol Vr? The answer, in general, is no. The following theorem gives a condition

that ensures that the next term Vr will be the same. Because the theorem can be applied

recursively, it says that if two bivariate recursions produce the same sequence for

sufficiently many terms, then each will produce the same subsequent terms whenever

those terms can be reached by both recursions. In particular, it says that the next terms

are equal. Thus

s−1∑

k=0

�kVr+k−s =
s∗−1∑

k=0

�∗kVr+k−s∗ .

Theorem 8.3.1 (agreement theorem) Suppose that each of the two monic polynomi-

als �(x, y) and �∗(x, y) produces the bi-index sequence V0, V1, …, Vr−1. If r >
≥ s+ s∗,

359 8.3 The Sakata–Massey theorem

and if either produces the longer bi-index sequence V0, V1, …, Vr−1, Vr , then so does

the other.

Proof: Because r >≥ s+ s∗, we can write

Vr+k−s = −
s∗−1∑

i=0

�∗i Vr+k+i−s−s∗

and

Vr+k−s∗ = −
s−1∑

k=0

�kVr+k+i−s−s∗ .

Therefore,

s−1∑

k=0

�kVr+k−s = −
s−1∑

k=0

�k

s∗−1∑

i=0

�∗i Vr+k+i−s−s∗

= −
s∗−1∑

i=0

�∗i

s−1∑

k=0

�kVr+k+i−s−s∗

=
s∗−1∑

i=0

�∗i Vr+i−s∗ ,

as was to be proved. �

Next, we generalize the Massey theorem to two dimensions. Recall that Massey’s

theorem in one dimension is an inequality relationship between the length of a

minimum-length linear recursion that produces a sequence and the length of a

minimum-length linear recursion that produces a proper subsequence of that sequence.

If (�(x), L) is the shortest linear recursion that produces the univariate sequence

(V0, V1, . . . , Vr−1), and (�(x), L) does not produce V = (V0, V1, . . . , Vr−1, Vr), then

L(V) ≥ max[L, r + 1− L].
The generalization to two dimensions follows.

Theorem 8.3.2 (Sakata–Massey theorem) If �(x, y), a polynomial of bidegree

s, produces the bivariate sequence V0, V1, . . . , Vr−1, but not the longer sequence

V0, V1, . . . , Vr−1, Vr , then, provided r− s >≥ 0, the connection footprint for the sequence

V0, V1, . . . , Vr−1, Vr contains the point r − s.

Proof: If �(x, y) does not reach r, then the condition r− s >≥ 0 does not hold, and there

is nothing to prove, so we may suppose that �(x, y) does reach r, but does not produce

Vr . Suppose �∗(x, y) exists with the leading monomial xr′−s′yr′′−s′′ that produces the

360 Computation of Minimal Bases

sequence V0, V1, . . . , Vr−1, Vr . Then it produces the sequence V0, V1, . . . , Vr−1. But

�(x, y) produces the sequence V0, V1, . . . , Vr−1. By the agreement theorem, because

r >
≥ s+ (r − s), both �(x, y) and �∗(x, y) must produce the same value at Vr , contrary

to the assumption of the theorem. Hence xr′−s′yr′′−s′′ cannot be the leading monomial

of any such �∗(x, y). Thus r − s lies in the connection footprint. �

An alternative statement of the Sakata–Massey theorem is given in the following

corollary. The notation r −� means the set that is obtained by inverting a copy of the

set �, translating by r, and possibly truncating the set to avoid introducing negative

coordinates. That is,

r −� = {(i′, i′′)>≥ 0 | (r′ − i′, r′′ − i′′) ∈ �}.

Corollary 8.3.3 Let � and �′ be the connection footprints for the sequences V0,

V1, . . ., Vr and V0, V1, . . ., V ′r , respectively, where V ′r �= Vr , and otherwise the two

sequences are the same. Then

� ∪ (r −�′) ⊃ {(i′, i′′) | i′ ≤ r′ and i′′ ≤ r′′}.

Proof: Suppose i′ ≤ r′ and i′′ ≤ r′′, and that i �∈�. Then there is a minimal connection

polynomial with the leading index i in the minimal connection set of V0, V1, . . . , Vr .

The Sakata–Massey theorem then says that the connection footprint for V0, V1, . . . , V ′r
contains the bi-index r − i. That is, i ∈ r −�′, as was to be proved. �

Corollary 8.3.3 implies that

‖� ∪ (r −�′)‖ ≥ (r′ + 1)(r′′ + 1),

where ‖S‖ denotes the cardinality of the set S . Consequently,

‖�‖ + ‖�′‖ ≥ ‖�‖ + ‖(r −�′)‖ ≥ ‖� ∪ (r −�′)‖ ≥ (r′ + 1)(r′′ + 1).

This is a deceptively powerful statement. Suppose one knows that both ‖�‖ ≤ t and

‖�′‖ ≤ t. Then

‖�‖ + ‖�′‖ ≤ 2t.

If (r′ + 1)(r′′ + 1) ≥ 2t + 1, the two statements are not compatible. The following

proposition is the only way to reconcile this.

Proposition 8.3.4 Let v have weight at most t and v ⇔ V . Let (r′ + 1)(r′′ + 1) ≥
2t + 1. Then in the graded order, there is exactly one way to extend the sequence

V0, V1, . . . , Vr−1 to the sequence V0, V1, . . . , Vr−1, V̂r such that the connection footprint

has an area not larger than t, and this is with V̂r = Vr .

361 8.4 The Sakata algorithm

This proposition provides a statement that will be important in decoding. It says

when decoding two-dimensional codes whose error patterns have weight at most t,

syndrome Sr is not needed if (r′ + 1)(r′′ + 1) ≥ 2t + 1. Its value can be inferred from

the other syndromes by the requirement that the footprint has an area not larger than t.

There is one last detail to cover in this section. Later, we shall need to compute the

locator ideal of an array, but we will have powerful algorithms to compute the minimal

connection set. The following theorem provides a condition, usually realized in our

applications, that allows the algorithm for one problem to be used on another.

Theorem 8.3.5 The (reciprocal) locator ideal and the minimal connection set of an

n by n periodic array are equal if the linear complexity of the array is not larger than

n2/4.

Proof: This is a simple consequence of the agreement theorem. The connection foot-

print is contained in the footprint of the locator ideal. Thus, in each case, the footprint

has an area at most n2/4. Two polynomials, one from each ideal, must agree at least

until the midpoint of the n by n array. Hence, by the agreement theorem, they continue

to agree thereafter. �

8.4 The Sakata algorithm

The two-dimensional generalization of the Berlekamp–Massey algorithm is called the

Sakata algorithm. It is a procedure for computing a minimal set of connection polyno-

mials for a given bivariate sequence V0, V1, . . . , Vr in a given total order; we will use

only the graded order in our examples. Recall that we have defined a minimal set of

connection polynomials for the bivariate sequence as consisting of one monic connec-

tion polynomial for each exterior corner of the connection footprint of the sequence,

one leading monomial in each exterior corner.

We may be given the sequence V0, V1, . . . , Vr as a low-order fragment of the sequence

of coefficients of a bivariate polynomial, V (x, y), representing the bispectrum V of a

two-dimensional array v of Hamming weight at most t. If the sequence fragment is

large enough, the set of connection polynomials generates a locator ideal for the set of

nonzeros of V (x, y).

Both the Buchberger algorithm and the Sakata algorithm are algorithms for comput-

ing a minimal basis for a bivariate ideal. However, they start with two quite different

specifications of the ideal. The Buchberger algorithm starts with an ideal specified in

terms of an arbitrary set of generator polynomials, not necessarily a minimal basis; the

ideal is specified as follows:

I = 〈gℓ(x, y) | ℓ = 1, . . . L〉.

362 Computation of Minimal Bases

The Buchberger algorithm re-expresses the ideal in terms of a new set of generator

polynomials that forms a minimal basis. The Sakata algorithm starts only with an

initial portion of the polynomial V (x, y) and computes a set of minimal connection

polynomials, which gives a minimal basis of the locator ideal for the set of nonzeros

of the given polynomial V (x, y), provided the number of nonzeros is not too large. The

initial coefficients of the polynomial V (x, y) are given in a specified total order, which

we take to be the graded order, but no nonzero polynomial of the connection set is

known at the start of the computation.

The Sakata algorithm is an iterative algorithm, which begins iteration r by knowing

from iteration r − 1 a minimal connection set for V0, V1, . . . , Vr−1, described by the

set of Mr−1 minimal polynomials {�(r−1,m)(x, y) | m = 1, . . . , Mr−1}, and it computes

a minimal connection set for V0, . . . , Vr−1, Vr , described by the set of Mr minimal

polynomials {�(r,m)(x, y)} | m = 1, . . . , Mr}.
It is not necessary to specify the entire connection set; it is enough to specify a minimal

connection set. To find a minimal connection set, it is enough first to find the connection

footprint, then to find a monic connection polynomial for each exterior corner of the

footprint. Of course, if the minimal connection set {�(r,m)(x, y) | m = 1, . . . , Mr}were

known, the footprint �r at iteration r would be completely determined, but this minimal

connection set is not known at the start of the iteration. The algorithm starts an iteration

by computing the footprint �r , then computing the set of monic polynomials to fit the

exterior corners of the footprint. The computation of the footprint is an essential first

step of each iteration of the algorithm.

The Sakata–Massey theorem has a central role in the algorithm. It describes how

the footprint is updated from one iteration to the next. Figure 8.6 shows a hypothetical

footprint after the iteration r − 1. The shaded region of the Figure 8.6 is the footprint.

The footprint has exterior corners marked by filled circles and interior corners marked

by open circles. In this example, the exterior corners tell us that a minimal connection

set has four polynomials with bidegrees s equal to (5, 0), (3, 1), (2, 3), and (0, 4). To

illustrate the role of the Sakata–Massey theorem, suppose that r = (6, 3). The first three

0
0

1

1

2

2

3

3

4

4

5

5

6

j �

j �

Figure 8.6. Footprint illustrating the Sakata–Massey theorem.

363 8.4 The Sakata algorithm

5

4

3

2

1

0
0 1 2 3 4 5 6

j �

j �

Figure 8.7. Footprint of a new connection set.

polynomials, those of bidegrees (5, 0), (3, 1), and (2, 3), reach r. Computing r − s, we

have (6, 3)− (5, 0) = (1, 3), (6, 3)− (3, 1) = (3, 2), and (6, 3)− (2, 3) = (4, 0). This

means that one or more of the points (1, 3), (3, 2), and (4, 0) will need to be appended

to the footprint if the connection polynomial corresponding to that exterior corner fails

to produce Vr . Of these, only (3, 2) is not already an element of the footprint. If the

point (3, 2) is appended, then all smaller points in the division order are appended also,

which would lead to the new footprint, shown in Figure 8.7. The two new points of

the new footprint have been highlighted in Figure 8.7. These two new points change

the set of exterior corners. The point (4, 1) is an exterior corner of this new footprint.

Thus a new monic connection polynomial with bidegree s = (4, 1) is needed, and the

polynomial with bidegree (3, 1) is no longer a connection polynomial for the longer

sequence. It may also be necessary to change the other polynomials corresponding to

other exterior corners, but their leading monomials will not change.

The algorithm updates three quantities at the rth iteration: the first is the footprint

�r; the second is the set of polynomials {�(r,m)(x, y) | m = 1, . . . , Mr}, which we call

minimal connection polynomials, or exterior polynomials; and the third is the set of

scratch polynomials {B(r,n)(x, y) | n = 1, . . . , Nr}, which we call interior polynomials.

Each filled circle in Figure 8.6 designates one of the Mr minimal connection polynomials

�(r,m)(x, y) by pointing to the exterior corner corresponding to its leading monomial.

Each open circle represents one of the interior polynomials B(r,n)(x, y) by pointing

to the box corresponding to its leading monomial. Each interior polynomial was a

minimal connection polynomial of an earlier iteration, but multiplied by a suitable

scalar. Although an interior polynomial was a connection polynomial at an earlier

iteration, it is not a connection polynomials at the current (or any future) iteration.

During the rth iteration, all of these quantities are updated. If the connection footprint

does not change, then, even if the minimal connection polynomials need to be modi-

fied, their leading monomials do not change. If the connection footprint grows larger,

it will have one or more new exterior corners. In such a case, the corresponding mini-

mal connection polynomials must be updated, and the number of minimal connection

polynomials may change.

364 Computation of Minimal Bases

Now we will provide a brief outline of the algorithm.

• Test each minimal connection polynomial �(r−1,m)(x, y) that reaches r against the

next term Vr .

• If one or more of the minimal connection polynomials that reaches r fails to produce

the term Vr , use the Sakata–Massey theorem to compute the new footprint. The new

footprint may be the same as the old footprint, or it may be larger.

• Form a new minimal connection polynomial to fit each exterior corner of the new

footprint by taking a polynomial combination of the previous minimal connection

polynomial and an interior polynomial so that the new polynomial produces the

term Vr .

• If the footprint has become larger, update the set of interior polynomials for use in

future iterations. Each interior polynomial is either unchanged from the previous

iteration, or is a multiple of a discarded minimal connection polynomial from the

previous iteration.

Next, we will fill in the details of the algorithm. The discussion, in part, mimics the

discussion of the Berlekamp–Massey algorithm, given in Section 3.5. To understand

the structure of the Sakata algorithm before continuing further into this section, it may

be helpful first to study the lengthy example of a computation in Section 8.5.

Each minimal connection polynomial �(r−1,m)(x, y) for m = 1, . . . , Mr−1, from the

previous iteration, is tested against Vr as follows. Recall that the polynomial �(x, y)

of bidegree s reaches r if r − s >
≥0. Componentwise, this requires that r′ − s′ ≥ 0 and

r′′ − s′′ ≥ 0. For each minimal connection polynomial �(r−1,m)(x, y) that reaches r,

define the discrepancy as follows:

δ(r−1,m)
r =

s∑

k=0

�
(r−1,m)

k
Vk+r−s

= Vr −
(
−

s−1∑

k=0

�
(r−1,m)

k
Vk+r−s

)

= Vr − Ṽr .

The discrepancy δ
(r−1,m)
r will exist for some m. When it exists, it may be either zero

or nonzero. For other m, �(r−1,m)(x, y) does not reach Vr and the discrepancy does not

exist. When the discrepancy exists, we may also redefine the earlier discrepancies as

follows:

δ
(r−1,m)
j =

s∑

k=0

�
(r−1,m)

k
Vk+j−s j � r.

However, because of the definition of �(r−1,m)(x, y), this term δ
(r−1,m)
j must be equal

to zero for all j ≺ r for which it exists.

365 8.4 The Sakata algorithm

If for m = 1, . . . , Mr−1 every new discrepancy δ
(r−1,m)
r that exists is zero, the iteration

is complete. Otherwise, the footprint and the set of the minimal connection polynomials

must be updated. First, use the Sakata–Massey theorem to see whether the footprint

is to be enlarged. This theorem says that if δ
(r−1,m)
r exists and is not zero, then the

point (r − sm) is contained in the footprint �r , where sm is the bidegree of polynomial

�(r−1,m)(x, y).

Let M = {m1, m2, . . .} be the set of m for which the discrepancy δ
(r−1,m)
r exists and

is nonzero. For each m = 1, . . . , Mr−1, define the set

Qm = {(j′, j′′) | (j′, j′′)<
≤ (r′ − s′m, r′′ − s′′m)}.

The set Qm must be adjoined to the footprint whenever m ∈ M. The new footprint is

given by

�r = �r−1

⋃(⋃

m∈M

Qm

)
.

It may be that �r = �r−1, or it may be that �r is strictly larger than �r−1. If �r

is larger than �r−1, then the number Mr of exterior corners of the new footprint may

be equal to, or may be larger than, the number Mr−1 of exterior corners of the old

footprint.

We must compute one minimal connection polynomial for each exterior corner. To

explain this, we will describe an experiment. Suppose that polynomial �(r−1,m)(x, y) of

bidegree s gave a nonzero discrepancy at iteration r that led to the mth exterior corner.

Consider the monic polynomial of bidegree r, given by

�(x, y) = xr′−s′yr′′−s′′�(r−1,m)(x, y).

The polynomial �(x, y) has the same coefficients as �(r−1,m)(x, y), but they are trans-

lated so that the leading monomial moves from s to r. Therefore �(r−1,m)(x, y) has the

required leading monomial. Recall that the discrepancy is given by

δj =
s∑

k=0

�
(r−1,m)

k
Vk+j−s

for those j � r for which all terms of the sum are defined. Letting ℓ = k + s − t, this

can be expressed as follows:

δj =
t∑

k=t−s

�
(r−1,m)

k+s−t
Vk+j−t

366 Computation of Minimal Bases

=
s∑

ℓ=0

�
(r−1,m)
ℓ Vj+ℓ−s

= δ
(r−1,m)
j =

{
0 j ≺ r

δr �= 0 j = r

whenever δj is defined. Thus, although �(x, y) has the desired bidegree of r− s, it fails

to be a connection polynomial for the new sequence because δr �= 0. Recalling the

development of the Berlekamp–Massey algorithm, we will try to modify this �(x, y)

so that, when computed with the new �(x, y), δr becomes zero and all other δj remain

zero.

Define a modified monic polynomial of bidegree r − s, given by

�(x, y) = xt′−s′yt′′−s′′�(r−1,m)(x, y)− Axb′yb′′�(i−1,n)(x, y),

where �(i−1,n)(x, y) is the nth of the minimal connection polynomials at a previous

iteration, that is, at iteration i − 1.

The polynomial �(x, y) is a connection polynomial for the longer sequence if δj = 0

for all j � r for which δj is defined. We will ensure that this is so by careful specification

of the parameters i, A, and b = (b′, b′′). First, choose i and �(i−1,n)(x, y) so that

δ
(i−1,n)
i �= 0. Let

A = δ
(r−1,m)
r

δ
(i−1,n)
i

,

and let s be the bidegree of �(i−1,n)(x, y). With this choice of �(x, y), we repeat the

computation of δj, given by

δj =
t∑

k=0

�kVj+k−t

for all j � r for which all terms are defined. Therefore

δj =
t∑

k=t−s

�
(r−1,m)

k+s−t
Vj+k−t −

δ
(r−1,m)
r

δ
(i−1,n)
i

t∑

k=0

�
(i−1,n)

k−b
Vj+k−t .

We want δr to be zero, so we must choose b so that

δr = δ(r−1,m)
r − δ

(r−1,m)
r

δ
(i−1,n)
i

δ
(i−1,n)
i

= 0,

367 8.5 An example

and so the second sum is zero for j ≺ r. In the second summation, recall that �(i−1,n)

k−b
=

0 for k−b < 0. Choose b = (i−s)−(r−s), and make the change of variables ℓ = k−b

to obtain

t∑

k=b

�
(r−1,m)

k−b
Vj+k−s =

t−b∑

ℓ=0

�
(i−1,n)
ℓ Vj+ℓ+b−s

=
{

δ
(i−1,n)
i j = r

0 j � r.

The condition that δ(i−1,n) is nonzero is satisfied by many �(i−1,n)(x, y). All that

remains is to specify which of these polynomials should be chosen. The polyno-

mials that need to be saved for this purpose, in fact, are the interior polynomials,

expressed as

B(r−1,n)(x, y) = 1

δ
(i−1,n)
i

xb′yb′′�(r−1,n)(x, y),

one for each interior corner. The normalization by δ
(i−1,n)
i is for computational con-

venience, because it eliminates the need to store this term separately. Once these are

saved, the previous minimal polynomials need not be saved; they can be discarded

because it is certain they will not be used again.

8.5 An example

We now give an example of the Sakata algorithm in the field GF(16), an example that is

rather elaborate and will fill the entire section. The example will be further embellished

in various ways in Chapter 12, where it becomes the basis for several examples of

decoding two-dimensional codes; one example (in Section 12.3) is a code on the plane,

and another (in Section 12.4) is a code on a curve.

We will continue with the example V (x, y) in the field GF(16) that appeared at the

end of Section 8.2. The bivariate polynomial of this example, with terms arranged in

the graded order, is as follows:

V (x, y) = α6y5 + α7y4x + α7y3x2 + α12y2x3 + α5yx4 + α5x5

+ α5y4 + α4y3x + 0+ α12yx3 + α2x4

+ α6y3 + α11y2x + α14yx2 + α7x3

+ α9y2 + α9yx + α5x2

+ 0y + α14x

+ α9.

368 Computation of Minimal Bases

The coefficients of this polynomial were obtained as the first 21 coefficients of the

Fourier transform of a 15 by 15 array v. The full Fourier transform V is depicted in

Chapter 12 (Figure 12.8) and the array v is depicted in Figure 12.7. The full arrays

V and v play no role at the present time. However, in Chapter 12, we will refer back

to this example; furthermore, additional components of the Fourier transform will be

appended to V (x, y), and the example will be continued.

In the graded order, the 21 coefficients of V (x, y) form the following sequence:

V0, . . . , V20 = α9, α14, 0, α5, α9, α9, α7, α14, α11, α6, α2, α12,

0, α4, α5, α5, α5, α12, α7, α7, α6.

The polynomial V (x, y) will also be represented by arranging its coefficients in the

following array:

V =

α6

α5 α7

α6 α4 α7

α9 α11 0 α12

0 α9 α14 α12 α5

α9 α14 α5 α7 α2 α5

As we shall see, this representation makes the recurring product V (x, y)�(x, y) easy to

compute.

The Sakata algorithm requires 21 iterations to work its way through the 21 terms of the

sequence V . We will work through each of these 21 steps. The algorithm is initialized

with the empty set as the footprint, and with the polynomials �(−1,1)(x, y) = 1 as a

single exterior polynomial and B(−1,1)(x, y) = 1 as a single interior polynomial. As

we proceed through the 21 steps, the Sakata algorithm will compute the footprint at

each iteration. This will form a sequence of footprints shown in Figure 8.8. At each

iteration, the algorithm will also compute a minimal connection polynomial for each

exterior corner of the footprint, and an interior polynomial for each interior corner of

the footprint.

Before proceeding with the interations, it may be helpful to examine Table 8.1,

which summarizes the iterates computed by the Sakata algorithm during the first six

iterations of the example. If at step r, �(r−1,n)(x, y) is not updated, then �(r,n)(x, y) =
�(r−1,n)(x, y), and if B(r−1,n)(x, y) is not updated, then B(r,n)(x, y) = B(r−1,n)(x, y).

Step (0) Set r = 0 = (0, 0). Using polynomial �(−1,1)(x, y), compute δ
(−1,1)
0 :

δ
(−1,1)
0 =

s∑

k=0

�
(−1,1)

k
Vk−s

= �
(−1,1)
0 V0 = α9.

369 8.5 An example

(0) (1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10)

(15) (16)

Figure 8.8. Illustrating the Sakata algorithm.

Because δ
(−1,1)
0 �= 0, the point r − s = (0, 0) must be appended to the footprint. Then

the new footprint is � = {(0, 0)}. Thus the new footprint has two exterior corners,

(1, 0) and (0, 1). The two connection polynomials are given by

�(0,1)(x, y) = x�(−1,1)(x, y)+ α9B(−1,1)(x, y)

= x + α9

and

�(0,2)(x, y) = y�(−1,1)(x, y)+ α9B(−1,1)(x, y)

= y + α9,

which we abbreviate as follows:

�(0,1) = α9 1 �(0,2) = 1

α9

370 Computation of Minimal Bases

Table 8.1. The first six iterations of the example

Footprint exterior

corners Polynomials over GF(16)

r {�(r,m)(x, y)} {B(r,n)(x, y)}

(0,0) {1} {1}
0 = (0, 0) {(1, 0), (0, 1)} {x + α9, y + α9} {α6}
1 = (1, 0) {(1, 0), (0, 1)} {x + α5, y + α9} {α6}
2 = (0, 1) {(1, 0), (0, 1)} {x + α5, y} {α6}
3 = (2, 0) {(2, 0), (0, 1)} {x2 + α5x + α14, y} {α6, α7x + α12}
4 = (1, 1) {(2, 0), (0, 1)} {x2 + α5x + α14, y + αx + α6} {α6, α7x + α12}
5 = (0, 2) {(2, 0), (1, 1), (0, 2)} {x2 + α5x + α14, {α7x + α12,

xy + αx2 + α9x + α10, α2y + α3x + α8}
y2 + αxy + α6y + α4}

(Note it is not possible to compute either δ
(0,1)
0 or δ

(0,2)
0 . The two polynomials �(0,1)(x, y)

and �(0,2)(x, y) vacuously satisfy the condition to be connection polynomials.)

Because the footprint is enlarged in this step, it is also necessary to change the set

of interior polynomials. There is only one interior corner, so we define

B(0,1)(x, y) = �(−1,1)(x, y)/δ
(−1,1)
0

= α6.

Step (1) Set r = 1 = (1, 0). Because bideg �(0,1)(x, y) = (1, 0)<≤ (1, 0), δ
(0,1)
1 exists.

Because bideg �(0,2)(x, y) = (0, 1) �<≤ (1, 0), δ
(0,2)
1 does not exist. Using polynomial

�(0,1)(x, y) and r − s = (0, 0), we compute δ
(0,1)
1 ,

δ
(0,1)
1 =

s∑

k=0

�
(0,1)

k
Vr−s+k

= α9α9 + α14 = α3 + α14 = 1 �= 0.

Therefore

�(1,1)(x, y) = �(0,1)(x, y)+ δ
(0,1)
1 B(0,1)(x, y)

= x + α5.

(As a check, note that δ
(1,1)
1 , which is calculated by using �(1,1)(x, y), is zero). Because

δ
(0,2)
1 does not exist, the corresponding polynomial is not changed. Thus

�(1,2)(x, y) = �(0,2)(x, y)

= y + α9.

371 8.5 An example

We abbreviate the current minimal connection polynomials as follows:

�(1,1) = α5 1 �(1,2) = 1

α9

Step (2) Set r = 2 = (0, 1). Polynomial �(1,1)(x, y) does not reach (0, 1). Using

polynomial �(1,2)(x, y) = y + α9 and r − s = (0, 0), we compute δ
(1,2)
2 :

δ
(1,2)
2 =

s∑

k=0

�
(1,2)

k
Vr+k−s

= α9α9 + 0 = α3 �= 0.

Because r− s = (0, 0) is already in the footprint, the footprint is not enlarged. The new

minimal connection polynomials are

�(2,1)(x, y) = �(1,1)(x, y)

= x + α5

and

�(2,2)(x, y) = �(1,2)(x, y)+ α3B(1,1)(x, y)

= y + α9 + α9

= y.

We abbreviate these minimal connection polynomials as follows:

�(2,1) = α5 1 �(2,2) = 1

0

Step (3) Set r = 3 = (2, 0). Polynomial �(2,2)(x, y) does not reach (2, 0). Using

polynomial �(2,1)(x, y) = x + α5 and r − s = (1, 0), we compute δ
(2,1)
3 :

δ
(2,1)
3 =

s∑

k=0

�
(2,1)

k
V(1,0)+k

= α5α14 + α5

= α8 �= 0.

Because r− s = (1, 0) is not already in the footprint, the footprint must be enlarged to

include this point. Anew exterior corner, (2, 0), is formed. The new minimal connection

372 Computation of Minimal Bases

polynomials are

�(3,1)(x, y) = x�(2,1)(x, y)+ α8B(2,1)(x, y)

= x2 + α5x + α14

and

�(3,2)(x, y) = �(2,2)(x, y)

= y,

which we abbreviate as follows:

�(3,1) = α14 α5 1 �(3,2) = 1

0

As a check, note that if the new polynomial �(3,1)(x, y) is now used to compute δ
(3,1)
3 ,

then

δ
(3,1)
3 = α14α9 + α5α14 + α5

= 0.

Because the footprint was enlarged in this step, it is also necessary to update the set of

interior polynomials. The interior corners are at (0, 0) and (1, 0). Accordingly, define

B(3,1)(x, y) = B(2,1)(x, y)

= α6

and

B(3,2)(x, y) = �(2,1)(x, y) / δ
(2,1)
3

= α7x + α12.

Step (4) Set r = 4 = (1, 1). Polynomial �(3,1)(x, y) does not reach (1, 1). Using

polynomial �(3,2)(x, y) = y and r − s = (1, 0), we compute δ
(3,2)
4 :

δ
(3,2)
4 =

s∑

k=0

�
(3,2)

k
V(1,0)+k

= 0+ α9 �= 0.

373 8.5 An example

Because r− s = (1, 0) is already in the footprint, the footprint is not enlarged. The new

minimal connection polynomials are

�(4,1)(x, y) = �(3,1)(x, y)

= x2 + α5x + α14

and

�(4,2)(x, y) = �(3,2)(x, y)+ α9B(3,2)(x, y)

= y + αx + α6,

which we abbreviate as follows:

�(4,1) = α14 α5 1 �(4,2) = 1

α6 α

The interior polynomial B(3,2)(x, y) is chosen because it has its first nonzero discrepancy

at i = 3 = (2, 0), so that

i − bideg B(3,2)(x, y) = r − bideg �(3,2)(x, y) = (1, 0),

and the contributions to the new discrepancy produced by each term of �(4,2)(x, y)

cancel.

Step (5) Set r = 5 = (0, 2). Only polynomial �(4,2)(x, y) reaches the point (0, 2).

Using polynomial �(4,2)(x, y) = y + αx + α6 and r − s = (0, 1), we compute δ
(4,2)
5 :

δ
(4,2)
5 =

s∑

k=0

�
(4,2)

k
V(0,1)+k

= α6 · 0+ α · α9 + 1 · α9

= α13 �= 0.

Because r − s = (0, 1) is not already in the footprint, the footprint must be enlarged

to include this point. Consequently, two new exterior corners, (1, 1) and (0, 2), are

formed, and new minimal connection polynomials are needed to go with these two

new corners: one polynomial with bidegree (1, 1) and one polynomial with bidegree

(0, 2).

The polynomial x�(4,2)(x, y) is one minimal connection polynomial with bidegree

(1, 1), as required, that has zero discrepancy for every point that it can reach, though

there may be others.

The polynomial y�(4,2)(x, y) has bidegree (0, 2) and does reach r, but with the

nonzero discrepancy at r. The interior polynomial B(4,1)(x, y) is chosen because it has

374 Computation of Minimal Bases

its first nonzero discrepancy at i = 0 and bidegree s = (0, 0). Thus i − s = (0, 0) =
r − bideg y�(4,2)(x, y). The three minimal connection polynomials now are

�(5,1)(x, y) = �(4,1)(x, y)

= x2 + α5x + α14,

�(5,2)(x, y) = x�(4,2)(x, y)

= xy + αx2 + α6x,

and

�(5,3)(x, y) = y�(4,2)(x, y)+ α13B(4,1)(x, y)

= y2 + αxy + α6y + α4,

which we abbreviate as follows:

�(5,1) = α14 α5 1 �(5,2) = 0 1

0 α6 α
�(5,3) =

1

α6 α

α4 0

Because the footprint has changed, the interior polynomials must be updated:

B(5,1)(x, y) = B(4,2)(x, y)

= α7x + α12;

B(5,2)(x, y) = �(4,2)(x, y)/δ
(4,2)
5

= α2y + α3x + α8.

Step (6) Set r = 6 = (3, 0). Only polynomial �(5,1)(x, y) = x2 + α5x + α14 reaches

(3, 0). Using this polynomial and r − s = (1, 0), we compute δ
(5,1)
6 :

δ
(5,1)
6 =

s∑

k=0

�
(5,1)

k
V(1,0)+k

= α14α14 + α5α5 + α7 = 1 �= 0.

Because r− s = (1, 0) is already in the footprint, the footprint is not enlarged. Interior

polynomial B(5,1)(x, y) is chosen to revise �(5,1)(x, y) because it has its first nonzero

discrepancy at i = 3 = (2, 0), so that

i − bideg B(5,1)(x, y) = r − bideg �(5,1)(x, y).

375 8.5 An example

The minimal connection polynomials are

�(6,1)(x, y) = �(5,1)(x, y)+ B(5,1)(x, y)

= x2 + α13x + α5,

�(6,2)(x, y) = �(5,2)(x, y)

= xy + αx2 + α6x,

and

�(6,3)(x, y) = �(5,3)(x, y)

= y2 + αxy + α6y + α4,

which we abbreviate as follows:

�(6,1) = α5 α13 1 �(6,2) = 0 1

0 α6 α
�(6,3) =

1

α6 α

α4 0

Step (7) Set r = 7 = (2, 1). Two polynomials, �(6,1)(x, y) and �(6,2)(x, y), reach the

point (2, 1). Using polynomial �(6,1)(x, y) and r − s = (0, 1), we compute δ
(6,1)
7 :

δ
(6,1)
7 =

s∑

k=0

�
(6,1)

k
V(0,1)+k

= α5 · 0+ α13α9 + α14

= α �= 0.

Using polynomial �(6,2)(x, y) and r − s = (1, 0), we compute δ
(6,2)
7 :

δ
(6,2)
7 =

s∑

r=0

�
(6,2)

k
V(1,0)+k

= 0 · α14 + α6α5 + αα7 + α14

= α �= 0.

Because (0, 1) and (1, 0) are already in the footprint, the footprint is not enlarged. The

new minimal connection polynomials are

�(7,1)(x, y) = �(6,1)(x, y)+ αB(6,2)(x, y)

= x2 + α3y + α11x + α6,

376 Computation of Minimal Bases

�(7,2)(x, y) = �(6,2)(x, y)+ αB(6,1)(x, y)

= xy + αx2 + α14x + α13,

and

�(7,3)(x, y) = �(6,3)(x, y)

= y2 + αxy + α6y + α4,

which we abbreviate as follows:

�(7,1) = α3

α6 α11 1
�(7,2) = 0 1

α13 α14 α
�(7,3) =

1

α6 α

α4 0

Step (8) Set r = 8 = (1, 2). Two polynomials, �(7,2)(x, y) and �(7,3)(x, y), reach the

point (1, 2). Using polynomial �(7,2)(x, y) and r − s = (0, 1), we compute δ
(7,2)
8 :

δ
(7,2)
8 = α13 · 0+ α14α9 + 0 · α9 + αα14 + α11

= α9 �= 0.

Using polynomial �(7,3)(x, y) and r − s = (1, 0), we compute δ
(7,3)
8 :

δ
(7,3)
8 = α4α14 + 0 · α5 + α6α9 + 0 · α7 + αα14 + α11

= α5 �= 0.

Because (0, 1) and (1, 0) are already in the footprint, the footprint is not enlarged. The

new minimal connection polynomials are

�(8,1)(x, y) = �(7,1)(x, y)

= x2 + α3y + α11x + α6,

�(8,2)(x, y) = �(7,2)(x, y)+ α9B(7,2)(x, y)

= xy + αx2 + α11y + α5x + α14,

and

�(8,3)(x, y) = �(7,3)(x, y)+ α5B(7,1)(x, y)

= y2 + αxy + α6y + α12x + α10,

377 8.5 An example

which we abbreviate as follows:

�(8,1) = α3

α6 α11 1
�(8,2) = α11 1

α14 α5 α
�(8,3) =

1

α6 α

α10 α12

Step (9) Set r = 9 = (0, 3). One polynomial, �(8,3)(x, y), reaches the point (0, 3).

Using polynomial �(8,3)(x, y) and r − s = (0, 1), we compute δ
(8,3)
9 :

δ
(8,3)
9 = α10 · 0+ α12α9 + α6α9 + 0 · α14 + αα11 + 1 · α6

= α11 �= 0.

Because (0, 1) is already in the footprint, the footprint is not enlarged. The new minimal

connection polynomials are

�(9,1)(x, y) = �(8,1)(x, y)

= x2 + α3y + α11x + α6,

�(9,2)(x, y) = �(8,2)(x, y)

= xy + αx2 + α11y + α5x + α14,

and

�(9,3)(x, y) = �(8,3)(x, y)+ α11B(8,2)(x, y)

= y2 + αxy + y + α5x + α2,

which we abbreviate as follows:

�(9,1) = α3

α6 α11 1
�(9,2) = α11 1

α14 α5 α
�(9,3) =

1

1 α

α2 α5

Step (10) Set r = 10 = (4, 0). One polynomial, �(9,1)(x, y), reaches the point (4, 0).

Using the polynomial �(9,1)(x, y) and r − s = (2, 0), we compute δ
(9,1)
10 = α5 �= 0.

Because (2, 0) is not in the footprint, the footprint is enlarged to include this point. A

new exterior corner at (3, 0) is created. The new minimal connection polynomials are

�(10,1)(x, y) = x�(9,1)(x, y)+ α5B(9,1)(x, y)

= x3 + α3xy + α11x2 + α4x + α2,

�(10,2)(x, y) = �(9,2)(x, y)

= xy + αx2 + α11y + α5x + α14,

378 Computation of Minimal Bases

and

�(10,3)(x, y) = �(9,3)(x, y)

= y2 + αxy + y + α5x + α2,

which we abbreviate as follows:

�(10,1) = 0 α3

α2 α4 α11 1
�(10,2) = α11 1

α14 α5 α

�(10,3) =
1

1 α

α2 α5

Because the footprint has changed, the interior polynomials must be updated so that

there is an interior polynomial corresponding to each interior corner. These are

B(10,1)(x, y) = �(9,1)(x, y)/δ
(9,1)
10

= α10x2 + α13y + α6x + α;

B(10,2)(x, y) = B(9,2)(x, y)

= α2y + α3x + α8.

Step (11) Set r = 11 = (3, 1). Two polynomials, �(10,1)(x, y) and �(10,2)(x, y), reach

the point (3, 1). Using polynomial �(10,1)(x, y) and r−s = (0, 1), we compute δ
(10,1)
11 =

α6 �= 0. Using the polynomial �(10,2)(x, y) and r − s = (2, 0), we compute δ
(10,2)
11 =

α6 �= 0. Because (0, 1) and (2, 0) are already in the footprint, the footprint is not

enlarged. The new minimal connection polynomials are

�(11,1)(x, y) = �(10,1)(x, y)+ α6B
(10,2)
10 (x, y)

= x3 + α3xy + α11x2 + α8y + α14x + α13,

�(11,2)(x, y) = �(10,2)(x, y)+ α6B
(10,1)
10 (x, y)

= xy + α13y + α14x + α,

and

�(11,3)(x, y) = �(10,3)(x, y)

= y2 + αxy + y + α5x + α2,

379 8.5 An example

which we abbreviate as follows:

�(11,1) = α8 α3

α13 α14 α11 1
�(11,2) = α13 1

α α14

�(11,3) =
1

1 α

α2 α5

Step (12) Set r = 12 = (2, 2). Two polynomials, �(11,2)(x, y) and �(11,3)(x, y), reach

the point (2, 2). Using polynomial �(11,2)(x, y) and r−s = (1, 1), we compute δ
(11,2)
2 =

0. Using polynomial �(11,3)(x, y) and r− s = (2, 0), we compute δ
(11,3)
12 = 0. Thus the

minimal connection polynomials are unchanged:

�(12,1)(x, y) = �(11,1)(x, y)

= x3 + α3xy + α11x2 + α8y + α14x + α13;

�(12,2)(x, y) = �(11,2)(x, y)

= xy + α13y + α14x + α;

�(12,3)(x, y) = �(11,3)(x, y)

= y2 + αxy + y + α5x + α2.

Step (13) Set r = 13 = (1, 3). Two polynomials, �(12,2)(x, y) and �(12,3)(x, y), reach

the point (1, 3). Using polynomial �(12,2)(x, y) and r−s = (0, 2), we compute δ
(12,2)
13 =

0. Using polynomial �(12,3)(x, y) and r− s = (1, 1), we compute δ
(12,3)
13 = 0. Thus the

minimal connection polynomials are unchanged:

�(13,1)(x, y) = �(12,1)(x, y)

= x3 + α3xy + α11x2 + α8y + α14x + α13;

�(13,2)(x, y) = �(12,2)(x, y)

= xy + α13y + α14x + α;

�(13,3)(x, y) = �(12,3)(x, y)

= y2 + αxy + y + α5x + α2.

Step (14) Set r = 14 = (0, 4). One polynomial, �(13,3)(x, y), reaches the point (0, 4).

Using polynomial �(13,3)(x, y) and r − s = (0, 2), we compute δ
(13,3)
14 = 0. Thus the

380 Computation of Minimal Bases

minimal connection polynomials are unchanged:

�(14,1)(x, y) = �(13,1)(x, y)

= x3 + α3xy + α11x2 + α8y + α14x + α13;

�(14,2)(x, y) = �(13,2)(x, y)

= xy + α13y + α14x + α;

�(14,3)(x, y) = �(13,3)(x, y)

= y2 + αxy + y + α5x + α2.

Step (15) Set r = 15 = (5, 0). One polynomial, �(14,1)(x, y), reaches the point (5, 0).

Using polynomial �(14,1)(x, y) and r − s = (2, 0), we compute δ
(14,1)
15 = α8 �= 0.

Because (2, 0) is already in the footprint, the footprint is not enlarged. The new minimal

connection polynomials are

�(15,1)(x, y) = �(14,1)(x, y)+ α8B(14,1)(x, y)

= x3 + α3xy + α5x2 + α14y + α10,

�(15,2)(x, y) = �(14,2)(x, y)

= xy + α13y + α14x + α,

and

�(15,3)(x, y) = �(14,3)(x, y)

= y2 + αxy + y + α5x + α2,

which we abbreviate as follows:

�(15,1) = α14 α3

α10 0 α5 1
�(15,2) = α13 1

α α14 �(15,3) =
1

1 α

α2 α5

Step (16) Set r = 16 = (4, 1). Two polynomials, �(15,1)(x, y) and �(15,2)(x, y), reach

the point (4, 1). Using polynomial �(15,1)(x, y) and r−s = (1, 1), we compute δ
(15,1)
16 =

α5 �= 0. Using polynomial �(15,2)(x, y) and r− s = (3, 0), we compute δ
(15,2)
16 = α5 �=

0. Because neither (1, 1) nor (3, 0) is already in the footprint, the footprint is enlarged

to include these two points. New exterior corners are created at (4, 0) and (2, 1). The

381 8.5 An example

new minimal connection polynomials are

�(16,1)(x, y) = x�(15,1)(x, y)+ α5B(15,2)(x, y)

= x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13,

�(16,2)(x, y) = x�(15,2)(x, y)+ α5B(15,1)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6,

and

�(16,3)(x, y) = �(15,3)(x, y)

= y2 + αxy + y + α5x + α2,

which we abbreviate as follows:

�(16,1) = α7 α14 α3

α13 α 0 α5 1
�(16,2) = α3 α13 1

α6 α6 α3

�(16,3) =
1

1 α

α2 α5

Because the footprint has changed, the interior polynomials must be updated with one

interior polynomial at each interior corner. These are

B(16,1)(x, y) = �(15,1)(x, y)/δ
(15,1)
16

= α10x3 + α13xy + x2 + α9y + α5;

B(16,2)(x, y) = �(15,2)(x, y)/δ
(15,2)
16

= α10xy + α8y + α9x + α11;

B(16,3)(x, y) = B(15,2)(x, y)

= α2y + α3x + α8.

Step (17) Set r = 17 = (3, 2). Two polynomials, �(16,2)(x, y) and �(16,3)(x, y), reach

the point (3, 2). Using polynomial �(16,2)(x, y) and r−s = (1, 1), we compute δ
(16,2)
17 =

0. Using polynomial �(16,3)(x, y) and r − s = (3, 0), we compute δ
(16,3)
17 = α13 �= 0.

Because (3, 0) is already in the footprint, the footprint is not enlarged. The new minimal

382 Computation of Minimal Bases

connection polynomials are

�(17,1)(x, y) = �(16,1)(x, y)

= x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13,

�(17,2)(x, y) = �(16,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6,

and

�(17,3)(x, y) = �(16,3)(x, y)+ α13B(16,2)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(17,1) = α7 α14 α3

α13 α 0 α5 1
�(17,2) = α3 α13 1

α6 α6 α3

�(17,3) =
1

α13 α10

α11 α13

Step (18) Set r = 18 = (2, 3). Two polynomials, �(17,2)(x, y) and �(17,3)(x, y), reach

the point (2,3). Using polynomial �(17,2)(x, y) and r−s = (0, 2), we compute δ
(17,2)
18 =

0. Using polynomial �(17,3)(x, y) and r − s = (2, 1), we compute δ
(17,3)
18 = 0. The

minimal connection polynomials are unchanged:

�(18,1)(x, y) = �(17,1)(x, y)

= x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13;

�(18,2)(x, y) = �(17,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6;

�(18,3)(x, y) = �(17,3)(x, y)

= y2 + α10xy + α13y + α13x + α11.

Step (19) Set r = 19 = (1, 4). One polynomial, �(18,3)(x, y), reaches the point (1, 4).

Using polynomial �(18,3)(x, y) and r−s = (1, 2), we compute δ
(18,3)
19 = 0. The minimal

383 8.5 An example

connection polynomials are unchanged:

�(19,1)(x, y) = �(18,1)(x, y)

= x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13;

�(19,2)(x, y) = �(18,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6;

�(19,3)(x, y) = �(18,3)(x, y)

= y2 + α10xy + α13y + α13x + α11.

Step (20) Set r = 20 = (0, 5). One polynomial, �(19,3)(x, y), reaches the point (0, 5).

Using polynomial �(19,3)(x, y) and r−s = (0, 3), we compute δ
(19,3)
20 = 0. The minimal

connection polynomials are unchanged:

�(20,1)(x, y) = �(19,1)(x, y)

= x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13;

�(20,2)(x, y) = �(19,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6;

�(20,3)(x, y) = �(19,3)(x, y)

= y2 + α10xy + α13y + α13x + α11.

This completes the 21 iterations of the Sakata algorithm. The result of these 21

iterations is a set of three minimal connection polynomials for V (x, y). There is one

minimal connection polynomial for each exterior corner of the minimal connection

footprint for V (x, y). These three minimal connection polynomials are abbreviated as

follows:

�(20,1) = α7 α14 α3

α13 α 0 α5 1
�(20,2) = α3 α13 1

α6 α6 α3

�(20,3) =
1

α13 α10

α11 α13

It may be instructive at this point to recompute the discrepancy for each coefficient

of V (x, y) that each minimal connection polynomial can reach. All discrepancies will

be zero. The minimal connection polynomials computed in this section will become

more interesting in Sections 12.3 and 12.4. In Section 12.3, we will append more

384 Computation of Minimal Bases

terms to V (x, y), and will continue the iterations to find a locator ideal for decoding

a hyperbolic code. In Section 12.4, we will append more terms to V (x, y), and will

continue the iterations to find a locator ideal for decoding an hermitian code.

8.6 The Koetter algorithm

The Sakata algorithm updates a set of connection polynomials during each iteration,

but the pattern of the computation is somewhat irregular. For one thing, the number of

minimal connection polynomials does not remain constant, but can grow from itera-

tion to iteration. The Sakata algorithm is initialized with a single minimal connection

polynomial, and as it iterates it gradually increases the number of minimal connection

polynomials as well as the degrees and coefficients of these polynomials. Furthermore,

each connection polynomial is tested and updated on an irregular schedule. In some

applications of the Sakata algorithm, the irregular pattern in the way that the polyno-

mials are processed may be considered a shortcoming because it does not map neatly

onto a systolic implementation.

The Koetter algorithm is an alternative structure of the Sakata algorithm that forces

a strong uniformity of structure onto the computation. It consists of a fixed number

of connection polynomials, equal to the maximum number that might be needed. Not

all of these connection polynomials correspond to exterior corners of the footprint.

Each minimal connection polynomial is processed and updated during every iteration.

The Koetter algorithm offers the advantage of a very regular structure and is therefore

suitable for a systolic implementation, shown in Figure 8.9. The penalty for this regular

structure is that extra computations are performed. Many cells of the systolic array will

start out idle or performing computations that are unnecessary. These computations

could be eliminated, but only by destroying the systolic structure of the algorithm.

For a finite field, the polynomials xq − x and yq − y are elements of every locator

ideal. Hence the point (q, 0) is not in the footprint, which means that there are at most

q exterior corners in the footprint. A minimal basis for any ideal of GF(q)[x, y] cannot

have two polynomials whose leading monomials have the same value of j′′. Hence there

are at most q polynomials in any minimal basis of an ideal, though there may be fewer.

During the iterations of the Sakata algorithm, there is one polynomial in the set of

connection polynomials for each exterior corner of the footprint. Because the footprint

has at most q exterior corners, there are at most q minimal polynomials, though there

may be fewer.

The Koetter algorithm instead introduces q polynomial iterates, one for each value

of j′′, even though some may be unneeded. In each row of the (j′, j′′) plane, regard the

first square that is not in the footprint as a potential exterior corner. The true exterior

corners are some of these. In each row of the (j′, j′′) plane, the last cell that is in the

385 8.6 The Koetter algorithm

Berlekamp–Massey
algorithm

Berlekamp–Massey
algorithm

Berlekamp–Massey
algorithm

Berlekamp–Massey
algorithm

Berlekamp–Massey
algorithm

m

m

m
m

m

m

Stream of syndromes

s(1) (x, y)

s(2) (x, y)

s(3) (x, y)

s(L–1) (x, y)

s(L) (x, y)

Figure 8.9. Structure of the Koetter algorithm.

footprint is regarded as a potential interior corner. The actual interior corners are some

of the potential interior corners.

The Koetter algorithm always iterates q connection polynomials �(ℓ)(x, y) for

ℓ = 1, . . . , q, one for each row. It also uses q interior polynomials B(ℓ)(x, y) for

ℓ = 1, . . . , q, again one for each row. It is initialized with q interior polynomials

and q exterior polynomials. Each minimal connection polynomial is initialized with

a leading monomial and with a different value of j′′. Each of q minimal connection

polynomials is checked and possibly updated at every iteration.

The elegant structure of the Koetter algorithm is based on the observation that the

essential structure of the Berlekamp–Massey algorithm can be made to appear multi-

ple times as a module within the structure of the Sakata algorithm, one copy for each

connection polynomial. The Koetter algorithm consists of q copies of the Berlekamp–

Massey algorithm, all working in lock step on the same sequence of syndromes to

embody the Sakata algorithm. The Koetter algorithm is also based on the observation

386 Computation of Minimal Bases

1 2 3 4 5 6 7 . . .

1
2
3

.

.

.

0
0

Figure 8.10. Initialization and growth of connection polynomials.

that the necessary interior polynomial for each Berlekamp–Massey module, implement-

ing the Sakata algorithm, is always available within a neighboring Berlekamp–Massey

module when needed. Thus, each Berlekamp–Massey module passes data to its cycli-

cally adjacent neighbors. During each iteration, the interior polynomial is passed from

module i to module i + 1, modulo q, where it is used if needed; otherwise, it is

discarded.

Figure 8.10 provides an overview of how the minimal polynomials are developed

by the Koetter algorithm. To start, the polynomial iterates, some or most of which may

be superfluous, are initialized as 1, y, y2, . . . , ym−1. These are depicted in Figure 8.10

by the column of circles on the left. As the algorithm proceeds, iteration by iteration,

the q polynomials are each updated in such a way that each polynomial �(ℓ)(x, y)

for ℓ = 1, . . . q may be replaced by a new polynomial, whose leading term has a y

degree that does not change, while the x degree may increase or may remain the same.

Thus the leading monomial of each polynomial is regarded as moving across rows dur-

ing the iterations, as depicted in Figure 8.10. Moreover, this is accomplished in such a

way that the dots marking the leading monomials retain this staircase arrangement.

The Koetter algorithm was introduced to decode codes on curves, which will be

defined in Chapter 10. Just as for the Sakata algorithm, the Koetter algorithm can be

augmented in various ways to take advantage of other considerations in an application.

Thus in Chapter 12, we shall see an example in which prior information about the

ideal can be used to restrict the footprint further. In the example of Chapter 12, the

polynomial G(x, y) = xq+1 + yq + y, with leading monomial xq+1, is known to be in

387 Problems

the locator ideal. The monomials xj′yj′′, j′ = 0, 1, . . . and j′′ = 0, 1, . . . , q − 1, form a

basis for GF(q)/〈G(x, y)〉. We regard these monomials as arranged in the appropriate

total order, such as the weighted order.

Problems

8.1 Given the first six elements under the graded order of the two-dimensional array

V over GF(16) as

V =

...

α12

0 α12

α12 α2 α8 . . .

 ,

calculate the locator polynomial �(x, y) by executing the six steps of the Sakata

algorithm.

8.2 An ideal I ⊆ R[x, y, z] is given by

I = 〈x + y + z − 13, x + y − z − 1, x + 5y + z − 17〉.

Use the Buchberger algorithm to compute a Gröbner basis for I with respect to

the lexicographic order x # y # z. Compare the steps of this computation to

the steps of gaussian elimination used to solve the following linear systems of

equations:

x + y + z = 13,

x + y − z = 1,

x + 5y + z = 17.

Is it appropriate to say that the Buchberger algorithm is a generalization of

gaussian elimination to general polynomial equations?

8.3 Given the recursion n(ℓ) =
(

n(ℓ−1)

2

)
for ℓ = 1, . . . , t, how does n(t) depend

on t?

8.4 (a) Given the system of equations

y2 − x3 + x = 0

388 Computation of Minimal Bases

and

y3 − x2 = 0

to be solved, graph the equations and find the (three) solutions.

(b) Use the Buchberger algorithm to find a reduced basis for the ideal with these

two polynomials as generators.

(c) From the reduced basis, find the zeros of the ideal.

8.5 Prove the division algorithm for bivariate polynomials.

8.6 (a) Using the Buchberger algorithm, find a reduced basis with respect to the

lexicographic order for the ideal

I = 〈x3 − y2, x2 − y3 + y〉

over the field R.

(b) Is I ∩R[x] a principal ideal? Give a reduced basis for I ∩R[x].
8.7 Given an ideal I ⊂ F[x, y]with two distinct term orders, does there exist a single

set of generator polynomials that is a Gröbner basis with respect to both term

orders?

8.8 Use the Sakata algorithm to find a set of connection polynomials for the following

array:

V =

α6

α5 α7

α6 α4 α7

α9 α11 0 α12

0 α9 α14 α12 α5

α9 α14 α5 α7 α2 α5

8.9 Using the Buchberger algorithm, find a reduced basis with respect to the graded

order for the ideal 〈x3y + x3 + y〉 in the ring GF(2)[x, y]/〈x7 − 1, y7 − 1〉.
8.10 A particular epicyclic hermitian code with minimum distance 33 is specified. If

this code is only required to decode to the packing radius, what is the largest

number of exterior corners that the footprint of the error locator ideal can have?

8.11 Is it true that for an ideal I ⊂ F[x, y], the monic polynomial of least bidegree in

the total order must appear in the reduced basis of I?

8.12 Describe how to use the Sakata algorithm to compute a minimal basis for the

ideal with zeros at t specified points in the bicyclic plane. Express the algorithm

in both the “transform domain” and the “code domain.” Is the algorithm valid

in the (a, b)-weighted degree?

8.13 Prepare a detailed flow diagram for the Koetter algorithm.

389 Notes

Notes

The notion of a basis for an ideal is a natural one, though it seems that it played

a somewhat subdued role in the early development of commutative algebra. It was

Buchberger’s definition of a Gröbner basis and the development of his algorithm to

compute such a basis that led to the emergence of the minimal basis in a more promi-

nent role in applications and, indeed, to much of the development of computational

commutative algebra. The Buchberger algorithm (Buchberger, 1985) for computing a

Gröbner basis may be regarded as a generalization of the euclidean algorithm.

Imai (1977) was drawn independently to the notion of a minimal basis of an ideal in

his study of bicyclic codes in order to generalize the notion of the generator polynomial

to two dimensions. Imai also suggested the need for a two-dimensional generalization

of the Berlekamp–Massey algorithm. This suggestion was the stimulus that led Sakata

(then visiting Buchberger) to the quest for the algorithm that now bears his name.

Sakata (1990) developed his algorithm for the decoding of bicyclic codes. His algo-

rithm computes a locator ideal that will locate the nonzeros of the polynomial V (x, y)

anywhere in the bicyclic plane. Side conditions, such as the knowledge that all nonzeros

of V (x, y) fall on a curve, are easily accommodated by the Sakata algorithm, but are

not an essential part of it. Thus the Sakata algorithm was already waiting and would

soon be recognized as applicable to the decoding of codes on curves. One of Sakata’s

insights was that the footprint of the locator ideal, which he called the delta set, is an

essential property of an ideal.

An alternative to the Sakata algorithm for computing a locator ideal is the Porter

algorithm (Porter, 1988), which is a slight reformulation of the Buchberger algorithm

to suit this task. The Porter algorithm and the Sakata algorithm are in much the same

relationship for the two-dimensional problem as are the Sugiyama algorithm and the

Berlekamp–Massey algorithm are for the one-dimensional problem.

Koetter (1996) studied the various papers that discussed the structure of the Sakata

algorithm and sought a more elegant formulation. The Koetter algorithm can be viewed

as a systolic reformulation of Sakata’s algorithm. The Koetter algorithm is useful

primarily in those applications in which an upper bound on the number of minimal

polynomials is known, as is the typical case for codes on curves. Leonard (1995)

describes the Sakata algorithm as a systematic and highly structured procedure for row

reduction of a matrix.

9 Curves, Surfaces, and Vector Spaces

Now that we have studied the ring of bivariate polynomials and its ideals in some detail,

we are nearly ready to resume our study of codes. In Chapter 10, we shall construct

linear codes as vector spaces on plane curves. This means that the components of the

vector space are indexed by the points of the curve. Over a finite field, a curve can have

only a finite number of points, so a vector space on a curve in a finite field always has

a finite dimension.

Before we can study codes on curves, however, we must study the curves themselves.

In this chapter, we shall study curves over a finite field, specifically curves lying in a

plane. Such curves, called planar curves or plane curves, are defined by the zeros of a

bivariate polynomial. We shall also study vectors defined on curves – that is, vectors

whose components are indexed by the points of the curve – and the weights of such

vectors. Bounds on the weight of a vector on a curve will be given in terms of the pattern

of zeros of its two-dimensional Fourier transform. These bounds are companions to the

bounds on the weight of a vector on a line, which were given in Chapter 1, and bounds

on the weight of an array on a plane, which were given in Chapter 4.

9.1 Curves in the plane

Recall from Section 5.4 that a bivariate polynomial over the field F is given by

v(x, y) =
∑

i′

∑

i′′
vi′i′′x

i′yi′′ ,

where each sum is a finite sum and the coefficients vi′i′′ are elements of the field F . The

degree of the bivariate polynomial v(x, y) is the largest value of the sum i′+ i′′ for any

nonzero term of the polynomial.

The bivariate polynomial v(x, y) is evaluated at the point (β, γ) in the affine plane

F2 by the following expression:

v(β, γ) =
∑

i′

∑

i′′
vi′i′′β

i′γ i′′ .

391 9.1 Curves in the plane

Recall that a zero of the polynomial v(x, y) is a point, (β, γ), at which v(β, γ) is equal

to zero, that a singular point of v(x, y) is a point, (β, γ), at which v(β, γ) is equal to

zero, and that all partial derivatives of v(x, y) are equal to zero. A nonsingular point of

the bivariate polynomial v(x, y) is called a regular point of v(x, y). A nonsingular poly-

nomial (or a regular polynomial) is a polynomial that has no singular points anywhere

in the projective plane. Thus the polynomial v(x, y, z) is nonsingular if

∂v(x, y, z)

∂x
= 0,

∂v(x, y, z)

∂y
= 0,

and

∂v(x, y, z)

∂z
= 0

are not satisfied simultaneously at any point of the projective curve v(x, y, z) = 0 in

any extension field of F .

Theorem 9.1.1 A nonsingular bivariate polynomial is absolutely irreducible.

Proof: Suppose the bivariate polynomial v(x, y) is reducible in F or in an extension

field of F . Then

v(x, y) = a(x, y)b(x, y),

where both a(x, y) and b(x, y) each have degree at least 1 and have coefficients in F or

a finite extension of F . By the Bézout theorem, we know that the homogeneous forms

of the polynomials a(x, y, z) and b(x, y, z) have at least one common projective zero.

Therefore

∂v(x, y, z)

∂x
= a(x, y, z)

∂b(x, y, z)

∂x
+ b(x, y, z)

∂a(x, y, z)

∂x

is equal to zero at a common projective zero of a(x, y, z) and b(x, y, z). By a similar

argument, we see that the y and z partial derivatives of v(x, y, z) are also zero at this

same point, so the polynomial v(x, y, z) is singular. �

It is essential to the validity of the theorem that a nonsingular polynomial be defined

as one that has no singular points anywhere in the projective plane. For example, (over

any field) the polynomial x2y + x has no singular points in the affine plane, but it is

not irreducible. The reason that Theorem 9.1.1 does not apply is that, in the projective

plane, the polynomial x2y + x has a singular point at (0, 1, 0).

The converse of the theorem is not true. For example, the polynomial x3+y3+y2+y

over GF(3) is absolutely irreducible, as can be verified by multiplying out each trial

392 Curves, Surfaces, and Vector Spaces

factorization over GF(3) or extensions of GF(3). However, this polynomial is singular

because the point (0, 1, 1) is not a regular point.

A polynomial of the form

v(x, y) = xa + yb + g(x, y),

where a and b are coprime and deg g(x, y) < b < a is always regular at every point of

the affine plane provided g(x, y) is not divisible by x or y. Besides these affine points,

the polynomial v(x, y) has exactly one zero at infinity, at (0, 1, 0), which is a regular

point if and only if a = b+ 1. Such polynomials are always absolutely irreducible.

Acurve in the affine plane (or affine curve) is the set of all affine zeros of an irreducible

bivariate polynomial over F . A curve will be denoted by X . Thus for the irreducible

polynomial v(x, y), the curve is given by

X = {(β, γ) ∈ F2 | v(β, γ) = 0}.

The zeros of the bivariate polynomial v(x, y) are the points of the curve X . The zeros

in the affine plane are also called affine points of the curve. A curve in the projective

plane is the set of all projective zeros of an irreducible bivariate polynomial over F .

A regular curve (or a smooth curve) in the affine plane is the set of all affine zeros of a

regular irreducible bivariate polynomial over F . A regular curve in the projective plane

is the set of all projective zeros of such a nonsingular polynomial over F . For example,

over the real field, the set of zeros of the polynomial v(x, y) = (x2 + y2 − 1)(x2 +
y2− 4) does not define a regular curve because v(x, y) is a reducible polynomial. Each

irreducible factor, however, does define a regular curve.

We shall give several examples of curves stated as problems as follows.

Problem 1 In the plane Q2, how many points are on the circle

x2 + y2 = 1?

Problem 2 In the plane Q2, how many points are on the curve

xm + ym = 1

for m > 2?

Problem 3 In the plane GF(8)2, how many points are on the curve

x3y + y3 + x = 0?

This curve is called the Klein curve.

393 9.2 The Hasse–Weil bound

Problem 4 In the plane GF(q2)2, how many points are on the curve

xq+1 + yq+1 + 1 = 0?

This set of points in the plane GF(q2)2 is called an hermitian curve.

Problems of this sort are referred to as “finding the number of rational points on

a curve” because of the intuitive notion in problems 1 and 2 that the curve exists in

some extension of the rational field, say the real field, and the task is to find how many

rational points the curve passes through. In problems 3 and 4, the term “rational” is

used only in a suggestive sense. The curve is thought of in a larger, algebraically closed

field, and the task is to count the number of “rational” points in the ground field (e.g.,

points in GF(8)2 or points in GF(q2)2) through which the curve passes.

Problems of this kind can be very difficult. Until recently, one of these four problems

had remained unsolved for more than three centuries, even though many excellent

mathematicians devoted much of their lives toward finding its solution.

We are interested only in problems 3 and 4. Since the field is not too large, these

two problems, if all else fails, can be solved through direct search by simply trying all

possibilities; there is only a finite number.

9.2 The Hasse–Weil bound

The genus is an important parameter of a polynomial – or of a curve – that is difficult

to define in full generality. We have defined the genus (in Definition 5.3.1) only for

the case of a nonsingular, bivariate polynomial of degree d by the so-called Plücker

formula: g =
(

d−1
2

)
. In Section 9.7, we will discuss another method of determining

the genus of a polynomial by counting the so-called Weierstrass gaps.

The Hasse–Weil bound states that the number of rational points n on a curve of genus

g in the projective plane over GF(q) satisfies

n ≤ q+ 1+ 2g
√

q

if the curve of genus g is defined by an absolutely irreducible bivariate polynomial. This

is a deep theorem of algebraic geometry, which we will not prove. Serre’s improvement

of the Hasse–Weil bound is a slightly stronger statement. It states that the number of

rational points n on a curve in the projective plane over GF(q), defined by an absolutely

irreducible polynomial of genus g, satisfies

n ≤ q+ 1+ g⌊2√q⌋.

When searching for bivariate polynomials of a specified degree over GF(q) with a large

number of rational points, if a polynomial is found that satisfies this inequality with

394 Curves, Surfaces, and Vector Spaces

equality, then the search need not continue for that value of q and that degree, because

no bivariate polynomial of that degree can have more rational points. If we consider

only irreducible nonsingular plane curves of degree d , this inequality can be rewritten

as follows:

n ≤ q+ 1+
(

d−1
2

)
⌊2√q⌋.

Our statement of the Hasse–Weil bound suits our needs, but it is not the fullest

statement of this bound. The full statement of the Hasse–Weil bound is given as an

interval:

q+ 1− g⌊2√q⌋ ≤ n ≤ q+ 1+ g⌊2√q⌋.

However, for the polynomials we shall consider, the inequality on the left side is empty

of information, so, for our purposes, there is no need to consider the lower inequality.

One can conclude from the Hasse–Weil bound that, for any sequence of absolutely

irreducible polynomials of increasing genus g over the field GF(q), the number of

rational points n(g) satisfies limg→∞(n(g)/g) ≤ 2
√

q. This statement can be strength-

ened. The Drinfeld–Vlǎdut bound is the statement that, in certain special cases,

limg→∞(n(g)/g) ≤ √
q − 1. The Drinfeld–Vlǎdut bound holds with equality if q

is a square. The Drinfeld–Vlǎdut bound states that the number of points on curves

of large genus grows only as the square root of the field size, though with g as a

proportionality factor.

9.3 The Klein quartic polynomial

Now we are ready to solve problems 3 and 4 of Section 9.1, which we will do in this

section and in Section 9.4.

The Klein polynomial, over the field GF(8), is given by

G(x, y) = x3y + y3 + x.

The Klein polynomial is absolutely irreducible. It follows from the Plücker formula

that the Klein polynomial has genus given by

g = 1

2
(4− 1)(4− 2) = 3.

When written as a trivariate homogeneous polynomial, the Klein polynomial is

given by

G(x, y, z) = x3y + y3z + z3x.

395 9.3 The Klein quartic polynomial

The Klein curve X is the set of zeros of the Klein polynomial.

The Serre improvement to the Hasse–Weil bound says that the number of rational

points of the Klein polynomial satisfies

n ≤ 8+ 1+ 3⌊2
√

8⌋ = 24.

We shall show that n = 24 by finding all 24 rational points in the projective plane.

Clearly, three of the points are (0,0,1), (0,1,0), and (1,0,0). We need to find 21 more

rational points; they will be of the form (β, γ , 1). Let β be any nonzero element of

GF(8). Then γ must be a solution, if there is one, of the equation

y3 + β3y + β = 0.

Make the change of variables y = β5
w to get

β(w3 +w + 1) = 0.

This equation has three zeros in GF(8), namely w = α, α2, and α4. Therefore y =
β5α, β5α2, and β5α4 are the three values of y that go with the value β for the variable

x. Because there are seven nonzero values in GF(8), and β can be any of these seven

values, this yields 21 more zeros of the Klein polynomial. Altogether we have 24 zeros

of the polynomial, namely (0,0,1), (0,1,0), (1,0,0), and (β, γ , 1), where β is any nonzero

element of GF(8) and γ = β5α, β5α2, and β5α4.

Figure 9.1 shows the projective curve over GF(8) and the points of the Klein curve

lying in the projective plane. The projective plane consists of the eight by eight affine

plane, with coordinates labeled by the elements of GF(8) and the nine points of the

plane at infinity. The row labeled ∞, which is appended as the top row of the figure,

denotes points of the form (x, 1, 0), together with the single point (1, 0, 0). These points

of the projective plane at infinity form a copy of the projective line. The 24 dots in

Figure 9.1 are the 24 points of the Klein quartic.

�

�

• •
a

6 • • •
a

5 • • •
a 4 • • •
a

3 • • •
a

2 • • •
a

1 • • •
a

0 • • •
0 •

0 a
0 a

1 a
2 a

3 a
4

a
5 a

6

Figure 9.1. Klein quartic in the projective plane over GF(8).

396 Curves, Surfaces, and Vector Spaces

The Klein curve has two points at infinity, as shown in Figure 9.1. This is an intrinsic

property of the Klein curve and not an accident of the coordinate system. Under any

invertible transformation of the coordinate system, the curve will still have two points

at infinity.

9.4 The hermitian polynomials

The hermitian polynomial over the field1 GF(q2), in homogeneous trivariate form, is

given by

G(x, y, z) = xq+1 + yq+1 − zq+1.

We sometimes refer to this polynomial as the Fermat version of the hermitian polyno-

mial. We will usually deal with the hermitian polynomials over fields of characteristic

2, so we will usually write the hermitian polynomial as

G(x, y, z) = xq+1 + yq+1 + zq+1,

with all plus signs.

The hermitian curve X is the set of zeros of the hermitian polynomial. It is straight-

forward to show that the hermitian polynomial is nonsingular, because the three partial

derivatives set equal to zero reduce to x = y = z = 0, which is not a point of the

projective plane. Therefore it follows from the Plücker formula that the genus of the

hermitian polynomial is g = (1/2)q(q− 1).

The Hasse–Weil bound says that the number of rational points on the curve X satisfies

n ≤ q2 + 1+ q2(q− 1),

which reduces to

n ≤ q3 + 1.

We shall show that n = q3+ 1 by finding all q3+ 1 zeros. Choose a primitive element

α in GF(q2); the element α has order q2 − 1. Hence αq−1 has order q + 1, and αq+1

has order q − 1. This means that for any β in the field GF(q2), βq+1 is an element of

GF(q), as is βq+1 + 1. Each nonzero element of GF(q) is the (q+ 1)th power of any

of q+ 1 elements of GF(q2).

1 It is common practice here to write the field as GF(q2). If it were written GF(q), then the exponents in G(x, y, z)

would be
√

q+ 1, which is needlessly awkward.

397 9.4 The hermitian polynomials

First, we will find the zeros that lie in the projective plane among the points at infinity.

These are the points with z = 0. They are not visible when looking only in the affine

plane. If z = 0 in projective coordinates, then y = 1, and the polynomial reduces to

xq+1 + 1 = 0.

This means that there are q+ 1 zeros of the form (α(q−1)i, 1, 0) for i = 0, . . . , q.

All other zeros lie in the affine plane. If z = 1 then

xq+1 + yq+1 + 1 = 0.

By the same argument used for z = 0, we conclude that there are q + 1 points on the

curve of the form (x, 0, 1) and q + 1 points of the form (0, y, 1). All that remains is to

count the number of points of the form (x, y, 1), with both x and y nonzero. In such a

case, xq+1 (or yq+1) cannot equal one, because this would require that yq+1 = 0 (or

xq+1 = 0). Otherwise, xq+1, denoted γ , can be one of the q − 2 elements of GF(q),

excluding the elements zero and one. Thus we have the following pair of simultaneous

equations:

xq+1 = γ ;

yq+1 = γ + 1.

There are (q − 2)(q + 1)2 solutions of this form, because, for each of q − 2 choices

for γ , there are q + 1 solutions to the first equation and q + 1 solutions to the second

equation.

Altogether, we have found

(q− 2)(q+ 1)2 + 3(q+ 1) = q3 + 1

zeros. Because the Hasse–Weil bound states that the number of zeros cannot be greater

than q3 + 1, we have found all of them. A hermitian polynomial has all the zeros that

the Hasse–Weil bound allows for a polynomial of its degree. In part, this is why it is

regarded as desirable for constructing codes.

The affine points of the projective curve have the form (β, γ , 1), and are represented

more simply as (β, γ). The bicyclic points of the affine plane have the form (ωi′ , ωi′′),

and so exclude the affine points with zero in either coordinate. The curve has (q −
2)(q+ 1)2 points in the bicyclic plane. The 2(q+ 1) points of the form (β, 0) or (0, γ)

are in the affine plane, but not in the bicyclic plane. In addition to these are the q + 1

points at infinity, which have the form (β, 1, 0).

Summarizing, the polynomial

G(x, y) = xq+1 + yq+1 + 1

398 Curves, Surfaces, and Vector Spaces

has q3+1 projective zeros: q+1 zeros of the form (β, 1, 0); 2(q+1) zeros of the form

(β, 0, 1) or (0, γ , 1); and (q− 2)(q+ 1)2 zeros of the form (β, γ , 1), with β and γ both

nonzero.

For the special case of GF(4) = GF(22), the hermitian polynomial

G(x, y, z) = x3 + y3 + z3

has 23 + 1 = 9 zeros in the projective plane over GF(4).

For the special case of GF(16) = GF(42), the hermitian polynomial

G(x, y, z) = x5 + y5 + z5

has 43 + 1 = 65 zeros in the projective plane over GF(16).

For the special case of GF(64) = GF(82), the hermitian polynomial

G(x, y, z) = x9 + y9 + z9

has 83 + 1 = 513 zeros in the projective plane over GF(64).

For the special case of GF(256) = GF(162), the hermitian polynomial

G(x, y, z) = x17 + y17 + z17

has 163 + 1 = 4097 zeros in the projective plane over GF(256).

Figure 9.2 shows the hermitian curve in the projective plane over GF(4). Figure 9.3

shows the hermitian curve in the projective plane over GF(16).

An alternative version of the hermitian curve is also used – and is often preferred –

because it has fewer points at infinity. The Stichtenoth version of the hermitian curve

is based on the polynomial

G(x, y) = yq + y − xq+1.

The reason this polynomial is also said to define the hermitian curve is that it is

related by a coordinate transformation to the polynomial used previously. To obtain

�

� • • •
v

2 •
v

1 •
v

0 •
0 • • •

0 v
0 v

1 v
2

Figure 9.2. Hermitian curve in GF(4)2.

399 9.4 The hermitian polynomials

�
� • • • • •

v
14 • • • • •

v
13 • • • • •

v
12 •

v
11 • • • • •

v
10 • • • • •

v
9 •

v
8 • • • • •

v
7 • • • • •

v
6 •

v
5 • • • • •

v
4 • • • • •

v
3 •

v
2 • • • • •

v
1 • • • • •

v
0 •
0 • • • • •

0 v
0 v

1 v
2 v

3 v
4 v

5 v
6 v

7 v
8 v

9
v

10 v
11 v

12 v
13 v

14

Figure 9.3. The hermitian curve in GF(16)2.

this correspondence, start with the earlier homogeneous trivariate polynomial in the

variables (u, v, w),

G(u, v, w) = uq+1 + v
q+1 −w

q+1,

and make the following change of variables:

u

v

w

 =

1 0 1

1 1 0

1 1 1

x

y

z

 .

The hermitian polynomial then becomes

(x + z)q+1 + (x + y)q+1 − (x + y + z)q+1

or

(xq + zq)(x + z)+ (xq + yq)(x + y)− (xq + yq + zq)(x + y + z).

Expanding the products and canceling like terms leads to the polynomial

xq+1 − yqz − yzq,

which is the Stichtenoth version of the polynomial. Incidently, this transformation pro-

vides convincing evidence for the proposition that it is often easier to treat a polynomial

in the homogeneous trivariate form, even when only the affine plane is of interest. It

400 Curves, Surfaces, and Vector Spaces

is much harder to make the transformation between the two versions of the hermitian

polynomial when the polynomial is written in the bivariate form.

The reason for the alternative formulation of the hermitian curve is that, as we shall

see, of the q3 + 1 zeros of the homogeneous polynomial

xq+1 − yqz − yzq,

only one of them, namely the point (0, 1, 0), is a zero at infinity. All zeros of this

polynomial can be found by rearranging the zeros of

uq+1 + v
q+1 −w

q+1,

by using the follwing transformation:

x

y

z

 =

1 0 1

1 1 0

1 1 1

−1

u

v

w

 =

1 1 1

1 0 1

0 1 1

u

v

w

 .

Instead, we will find the zeros directly. The affine zeros are the solutions of

xq+1 − yq − y = 0,

which are obtained by taking, in turn, each nonzero element γ of GF(q2) for x and

finding the zeros of

yq + y = γ q+1.

To see that there are q such zeros for each γ , let y = γ q+1
w and note that (γ q+1)q =

γ q+1 in GF(q2), so if γ �= 0, the equation becomes

γ q+1(wq +w + 1) = 0.

In general, this polynomial is not irreducible. In particular, we have the following

factorizations into irreducible polynomials:

x4 + x + 1 = x4 + x + 1;

x8 + x + 1 = (x2 + x + 1)(x6 + x5 + x3 + x2 + 1);

x16 + x + 1 = (x8 + x6 + x5 + x3 + 1)(x8 + x6 + x5 + x4 + x3 + x + 1).

Next, we will show that w
q + w + 1 has q zeros in the field GF(q2) when q is a

power of 2.

401 9.4 The hermitian polynomials

Proposition 9.4.1 Let q = 2m. The polynomial xq+x+1 over GF(2) has all its zeros

in GF(q2).

Proof: It is enough to show that xq+ x+ 1 divides xq2−1+ 1, because all the zeros of

the latter polynomial are in GF(q2). But q is a power of 2, so

(xq + x + 1)(xq + x + 1)q−1 = (xq + x + 1)q

= xq2 + xq + 1.

Therefore

x(xq2−1 − 1) = xq2 − x

= (xq + x + 1)[(xq + x + 1)q−1 − 1].

Thus xq+ x+ 1 divides xq2−1− 1. But xq2−1− 1 completely factors over GF(q2) into

q2−1 distinct linear factors. Therefore xq+ x+1 completely factors over GF(q2) into

q distinct linear factors, and the proof is complete. �

From the proposition, we can conclude that x2m + x + 1 is always reducible over

GF(2) if m is larger than 2 by the following argument. Because 22m = (2m)2, only

if m is equal to 2, GF((2m)2) is a proper subfield of GF(22m
) whenever m is greater

than 2. Therefore if α generates GF(22m
), α is not an element of GF((2m)2). However,

if x2m + x + 1 were irreducible, it could be used to extend GF(2) to GF(22m
) by

appending α to GF(2) and setting α2m = α + 1, in which case α would be a zero of

x2m + x + 1. However, the proposition says that the zeros are in GF((2m)2), and α is

not in GF((2m)2). Thus x2m + x + 1 is not irreducibile if m is larger than 2.

In addition to the affine zeros of G(x, y, z), we can find the zeros at infinity from

G(x, y, 0) = xq+1 = 0.

We conclude that only the point (0, 1, 0) is a zero at infinity.

Summarizing, the polynomial over GF(q2)

G(x, y) = xq+1 − yq − y

has q3+ 1 projective zeros: one zero of the form (0, 1, 0), q zeros of the form (0, γ , 1),

and q3 − q zeros of the form (β, γ , 1), with β and γ both nonzero. In particular, the

curve has q3+ 1 points in the projective plane, q3 points in the affine plane, and q3− q

points in the bicyclic plane.

Figure 9.4 shows the Stichtenoth version of the hermitian curve in the projective

plane over GF(4). There are eight points in the affine plane and one point at infinity.

Figure 9.5 shows the Stichtenoth version of the hermitian curve in the projective plane

402 Curves, Surfaces, and Vector Spaces

�
�

•
�

2 • • •
�1 • • •
�0 •
0 •

0 �0 �1 �2

Figure 9.4. Alternative hermitian curve in GF(4)2.

�

� •
14 • • • • •

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � � �

�

13 • • • • •
12 • • • • •
11 • • • • •
10 •
9 • • • • •
8 • • • • •
7 • • • • •
6 • • • • •
5 •
4 • • • • •
3 • • • • •
2 • • • • •
1 • • • • •
0 •
0 •

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 9.5. Alternative hermitian curve in GF(16)2.

over GF(16). There are 64 points in the affine plane that are zeros of the Stichtenoth

polynomial, and one point at infinity.

9.5 Plane curves and the two-dimensional Fourier transform

In a finite field, the operation of evaluating a polynomial at all nonzero points of the field

and the operation of computing a one-dimensional Fourier transform are essentially the

same. Likewise, the operation of evaluating a bivariate polynomial at the points of the

bicyclic plane and the operation of computing a two-dimensional Fourier transform

are essentially the same. For the same reason, the computation of the points of a

curve in a finite field is closely related to the two-dimensional Fourier transform. This

relationship is most natural if the curve is restricted to the bicyclic plane because this

is where the Fourier transform is defined. The curve is obtained simply by computing

the two-dimensional Fourier transform and noting where the zeros occur.

403 9.5 Plane curves and the 2D Fourier transform

Using the Fourier transform to evaluate the curve does not evaluate G(x, y) at points

of the form (0, γ) or (β, 0), nor at points at infinity. Because the two-dimensional

Fourier transform has many strong and useful properties, it is often useful to shorten a

curve to the bicyclic plane by deleting those points. If points other than the points of

the bicyclic plane are to be used, they must then be regarded as special points, and they

must be handled separately.

We shall regard the curve X as lying in the code domain and the polynomial

G(x, y) as lying in the transform domain. The inverse Fourier transform gi′i′′ =
(1/n2)G(ω−i′ , ω−i′′) can be used to compute the curve from the polynomial. In the

language of the Fourier transform, the bicyclic curve, defined by the n by n array G, is

the set of points of the bicyclic plane at which the inverse Fourier transform g is equal

to zero:

X =
{
(ω−i′ , ω−i′′) | gi′i′′ = G(ω−i′ , ω−i′′) = 0

}
.

The zero elements of g comprise the curve X within the bicyclic plane. The bicyclic

plane over a finite field can be regarded as a torus, so this segment of the curve lies on

the torus. Accordingly, we shall call this segment the epicyclic segment of the curve.

Given any plane curveX , a polynomial C(x, y) can be evaluated on the bicyclic points

ofX by computing all the components of the inverse two-dimensional Fourier transform

c, then down-selecting to only those components of c lying on the curve. This forms the

vector c(X), whose components are indexed by the points of X . Indeed, any vector that

is defined on the points of the curve X can be regarded as so computed by the evaluation

of a polynomial, which evaluation can be found by using the two-dimensional Fourier

transform.

The polynomial C(x, y), evaluated along the curve X , becomes the vector c(X) =
[C(Pℓ) | ℓ = 0, . . . , n − 1], where Pℓ for ℓ = 1, . . . , n are the points of the curve X .

Thus, to evaluate C(x, y) along the curve X , one may compute the array c with the

components

ci′i′′ =
1

n2
C(ω−i′ , ω−i′′),

then restrict c to the curve X :

c(X) = [ci′i′′ | (ω−i′ , ω−i′′) ∈ X]
= [C(Pℓ) | Pℓ ∈ X].

Any vector v of blocklength n on the curve X is a vector whose components are

indexed by the n points of the curve. The ℓth component of v, indexed by the point

Pℓ, is denoted vℓ for ℓ = 0, . . . , n − 1. Although v is a vector of blocklength n, it is

sometimes convenient to think of its n components embedded into an N by N array

404 Curves, Surfaces, and Vector Spaces

with the ℓth component of v placed at the position along the curve X corresponding to

the point Pℓ. In such a case, we will refer to the vector as v(X) and the two-dimensional

array as v. To form this representation, simply zero-pad v(X) to form the N by N array,

called v, indexed by i′ and i′′, with vi′i′′ appearing at the (i′, i′′) location of the array if

(i′, i′′) ∈ X , and a zero appearing at the (i′, i′′) location if (i′, i′′) �∈ X . Then we may

take the two-dimensional Fourier transform of the array v, with components given by

Vj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

vi′i′′ω
i′j′ωi′′j′′

=
∑

(i′,i′′)∈X

vi′i′′ω
i′j′ωi′′j′′ .

Using the polynomial

v(x, y) =
n−1∑

i′=0

n−1∑

i′′=0

vi′i′′x
i′yi′′ ,

this can be expressed as

Vj′j′′ = v(ωj′ , ωj′′)

= v(P−1
ℓ).

What has been accomplished here? Our collection of one-dimensional Fourier trans-

forms of vectors v of various blocklengths n has been enriched by establishing a kind

of modified Fourier transform that lies between a one-dimensional Fourier transform

and a two-dimensional Fourier transform. The components of vector v are assigned to

the points of a curve in a zero-padded two-dimensional array which is transformed by

an N by N two-dimensional Fourier transform. We shall see that many properties of the

vector v can be deduced from the properties of the two-dimensional Fourier transform.

9.6 Monomial bases on the plane and on curves

The ring of bivariate polynomials F[x, y] is closed under addition and scalar multipli-

cation, so it can be regarded as a vector space. Therefore, as a vector space, it can be

expressed in terms of any of its vector-space bases. We shall use the set of bivariate

monomials as a basis. Using the graded order to order the monomials, the vector-space

basis is {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, . . .}. The number of monomials is infi-

nite, so the number of elements in the basis is infinite. Thus, regarded as a vector space,

the ring F[x, y] is an infinite-dimensional vector space over F .

405 9.6 Monomial bases on the plane and on curves

Just as F[x, y] can be regarded as a vector space, so too the quotient ring

F[x, y]/〈G(x, y)〉 can be regarded as a vector space. It is a vector subspace of F[x, y].
Does this vector subspace have a basis that is contained in the basis for F[x, y]? In

general, it is not true that a basis for a vector subspace can be found as a subset of a

given basis for the entire vector space. However, if we choose a monomial basis for

F[x, y], then there is a subset of the basis that forms a basis for F[x, y]/〈G(x, y)〉. The

ring F[x, y]/〈G(x, y)〉, when regarded as a vector space, always has a vector-space basis

consisting of monomials.

The ring F◦[x, y] = F[x, y]/〈xn − 1, yn − 1〉 of bivariate polynomials modulo 〈xn −
1, yn− 1〉mimics the ring F[x, y], but it is much simpler because all polynomials have

a componentwise degree smaller than (n, n). The ring F◦[x, y] also can be regarded as

a vector space. It, too, has a basis consisting of bivariate monomials; now the only

monomials in the basis are those of componentwise degree smaller than (n, n). There

are n2 such monomials, and they are linearly independent, so F◦[x, y] is a vector space

of dimension n2. We will often be interested in the case in which F = GF(q) and n is

equal to q − 1 (or perhaps a divisor of q − 1). Then the vector space over GF(q) has

dimension (q− 1)2.

The quotient ring F◦[x, y]/〈G(x, y)〉 = F[x, y]/〈G(x, y)〉◦, where

〈G(x, y)〉◦ = 〈G(x, y), xn − 1, yn − 1〉,

can be regarded as a vector subspace of F◦[x, y]. We are interested in the rela-

tionship between the dimension of this subspace and the number of bicyclic zeros

of G(x, y). Equivalently, we want to find the relationship between the number of

bicyclic zeros of G(x, y) and the number of monomials in a monomial basis for the

quotient ring F◦[x, y]/〈G(x, y)〉. The discrete nullstellensatz tells us that if G(x, y)

has no bicyclic zeros, then 〈G(x, y)〉◦ = F◦[x, y], so the quotient ring is the trivial

ring {0}.

Theorem 9.6.1 Let F = GF(q) and let F◦[x, y] = F[x, y]/〈xq−1 − 1, yq−1 − 1〉. The

number of monomials in a monomial basis for F◦[x, y]/〈G(x, y)〉 is equal to the number

of bicyclic rational zeros of G(x, y).

Proof: Let p0, . . . , pN−1 be the N points of the bicyclic plane over GF(q), where

N = (q − 1)2. Let P0, . . . , Pn−1 be the n bicyclic rational zeros of G(x, y). Then

{P0, . . . , Pn−1} ⊂ {p0, . . . , pN−1}. Let ϕ0, . . . , ϕN−1 be the N monomials of compo-

nentwise degree at most (q − 2, q − 2), where, again, N = (q − 1)2. Consider the N

by N matrix M whose elements are the N monomials evaluated at the N points of the

plane. This matrix (which is actually the matrix corresponding to the two-dimensional

406 Curves, Surfaces, and Vector Spaces

Fourier transform) has full rank:

M =

ϕ0(p0) ϕ0(p1) · · · ϕ0(pN−1)

ϕ1(p0) ϕ1(p1) · · · ϕ1(pN−1)
...

...

ϕN−1(p0) ϕN−1(p1) · · · ϕN−1(pN−1)

 .

Now delete each column that does not correspond to one of the n rational zeros of

G(x, y), as given by the set {P0, . . . , Pn−1}. Because the original matrix has full rank,

the surviving n columns remain linearly independent, so there must be a linearly inde-

pendent set of n rows. The rows in any linearly independent set of rows correspond to

n monomials, and these monomials form a basis. �

For an example of this theorem, let G(x, y) be the Klein quartic polynomial given by

G(x, y) = x3y + y3 + x,

and let F◦[x, y] = GF(8)[x, y]/〈x7− 1, y7− 1〉. The reduced basis G∗ for 〈G(x, y)〉◦ ⊂
F◦[x, y] is {x7 − 1, y7 − 1, x3y + y3 + x, xy5 + x2y2 + x5 + y}, which can be verified

by using the Buchberger theorem to check that all conjunction polynomials are zero.

The footprint of this ideal is shown in Figure 9.6. The area of the footprint is 21, and

G(x, y) has 21 bicyclic zeros. Moreover, the ring F◦[x, y]/〈G(x, y)〉 has dimension 21.

Multiplication in this ring is polynomial multiplication modulo G∗.
Theorem 9.6.1 says that if G(x, y) has n bicyclic rational zeros, then there are n

monomials in any monomial basis for F◦[x, y]/〈G(x, y)〉. This is also equal to the area

of the footprint of the ideal, and the monomials corresponding to the points of the

footprint are independent, so those monomials must form a basis.

Let G(x, y) be a bivariate polynomial of the form

G(x, y) = xa + yb + g(x, y),

Figure 9.6. Footprint corresponding to the Klein polynomial.

407 9.6 Monomial bases on the plane and on curves

where a and b are coprime and a > b > deg g(x, y). A polynomial of this form has

exactly one zero at infinity, which is a regular point if and only if a = b + 1. The

Stichtenoth version of an hermitian polynomial is an example of a polynomial of this

form.

For this form of polynomial G(x, y), we have

xa = −yb − g(x, y)

in the quotient ring F[x, y]/〈G(x, y)〉. Therefore the monomial xa is linearly dependent

on other monomials. To form a basis, either xa or some other suitable monomial must

be deleted from the set of monomials. We choose to delete xa. Likewise, monomials

such as xa+1 or xay are also linearly dependent on other monomials and can be deleted

to form a basis. Thus a monomial basis for the ring F[x, y]/〈G(x, y)〉 is {xi′yi′′ |i′ =
0, . . . , a − 1; i′′ = 0, . . .}. Similarly, a monomial basis for the ring F◦[x, y]/〈G(x, y)〉
is {xi′yi′′ | i′ = 0, . . . , a − 1; i′′ = 0 . . . , n− 1}.

In general, there will be many ways to choose n monomials to form a basis. We want

to determine if there is a preferred choice. In particular, we want to define a monomial

basis that supports a total order on the basis monomials and has a certain desirable form.

This desired total order will be the weighted order – if there is one – that is implied by

the polynomial G(x, y).

Definition 9.6.2 The weight function ρ on a quotient ring of polynomials of the form

R = F[x, y]/〈G(x, y)〉

is the function2

ρ : R → NN ∪ {−∞},

satisfying, for any polynomials f (x, y), g(x, y), and h(x, y) of R, the following

properties:

(1) ρ(λf) = ρ(f) for every nonzero scalar λ;

(2) ρ(f + g) ≤ max[ρ(f), ρ(g)] with equality if ρ(f) < ρ(g);

(3) if ρ(f) < ρ(g) and h is nonzero, then ρ(hf) < ρ(hg);

(4) if ρ(f) = ρ(g), then for some nonzero scalar λ, ρ(f − λg) < ρ(f);

(5) ρ(fg) = ρ(f)+ ρ(g).

A weight function need not exist for every such quotient ring. A function that satisfies

properties (1)–(4) is called an order function. Note that it follows from property (5) that

ρ(0) is±∞. By convention, we choose ρ(0) = −∞. Thus it follows from property (4)

that ρ(g) = −∞ only if g = 0. It follows from property (5) that ρ(1) = 0. Without

2 A weight function should not be confused with the weight of a vector.

408 Curves, Surfaces, and Vector Spaces

loss of generality, we will require that for any weight function, the set of weights has

no common integer factor.

A weight function, if it exists, assigns a unique weight to each monomial of that

ring, and thus orders the monomials. The weighted bidegree of a polynomial is the

largest weight of any of its monomials. The weight function ρ, applied to monomials,

satisfies ρ(ϕiϕj) = ρ(ϕi) + ρ(ϕj). Because each monomial ϕi has a unique weight,

ρ(ϕi) = ρi, the weight can be used as an alternative index on the monomials, now

writing a monomial with an indirect index as ϕρi
. This indirect indexing scheme allows

us to write

ϕρi+ρj
= ϕρi

ϕρj
,

now referring to the monomial by its weight.

As an example of a weight function, consider the ring of bivariate polynomials over

the field GF(16) modulo the hermitian polynomial x5+y4+y. The properties defining

a weight function require that, because ρ(x5) = ρ(y4 + y) = ρ(y4), we must have

5ρ(x) = 4ρ(y). Let ρ(x) = 4 and ρ(y) = 5. Then the weight function3 on monomials

is defined by

ρ(xi′yi′′) = 4i′ + 5i′′.

This weight function extends linearly to all polynomials in the ring. It is now straight-

forward to verify that all properties of a weight function are satisfied. The weight

function implies a weighted order as a total order on the monomials of the ring. Thus

the monomials and weights are given by

ϕi = 1 x y x2 xy y2 x3 x2y xy2 . . .

ρ(ϕi) = 0 4 5 8 9 10 12 13 14 . . .

y3 x4 x3y x2y2 xy3 y4 x4y x3y2 · · ·
15 16 17 18 19 20 21 22 · · ·

Note that x5 is the first monomial not in the ring, so the repetition ρ(x5) = ρ(y4), which

threatened to be a violation of uniqueness, does not occur. With indirect indexing, this

list is reversed to write

ρi = 0 4 5 8 9 10 12 13 14 . . .

ϕρi
= 1 x y x2 xy y2 x3 x2y xy2 . . .

y3 x4 x3y x2y2 xy3 y4 x4y x3y2 · · ·
15 16 17 18 19 20 21 22 · · ·

3 If a fixed polynomial p(x, y) admits a weight function on the set of monomials spanning F[x, y]/〈p(x, y)〉, then
the weight function of a monomial is called the pole order of the monomial. If any straight line tangent to
the curve defined by the polynomial does not intersect the curve elsewhere, then that polynomial will induce
a weight function on the set of monomials modulo that polynomial. For this reason, codes defined on such a
curve (admitting a weight function on monomials) are called one-point codes.

409 9.6 Monomial bases on the plane and on curves

As before, the weights are all different. Again, although ρ(x5) = 20 would be a

repetition, the monomial x5 is not in the basis. Note that the integers 1, 2, 3, 6, 7, and 11

do not appear as weights. We shall discuss these missing integers, called Weierstrass

gaps, in some detail in the following section. The number of missing integers is six,

which equals the genus g of the hermitian polynomial. We shall see that this is not a

coincidence.

Our second example illustrates the fact that a weight function need not exist for

every ring of the form F[x, y]/〈G(x, y)〉. For some purposes, such a ring is flawed

and is not useful. Nevertheless, to illuminate further the notion of a weight function,

we shall show that there is a subring of such a ring on which a weight function does

exist. Consider the ring of bivariate polynomials over the field GF(8) modulo the Klein

polynomial x3y + y3 + x. In this ring, x3y = y3 + x, so the monomial x3y is not in the

basis. The monomial basis for F[x, y]/〈x3y + y3 + x〉 is easiest to see when arranged

in the array shown in Figure 9.7.

In this ring, x3y = y3 + x, so ρ(x3y) = ρ(y3 + x). The properties of a weight

function require that ρ(x3y) = max[ρ(y3), ρ(x)]. Thus

3ρ(x)+ ρ(y) = max[3ρ(y), ρ(x)]
= 3ρ(y),

because ρ(x) and ρ(y) are both nonnegative. Thus, one concludes that 3ρ(x) = 2ρ(y)

so that ρ(x) = 2 and ρ(y) = 3. This implies that the weight function on monomials

must be defined so that ρ(xi′yi′′) = 2i′+3i′′. Finally, we can write ρ(x3+y2)+ρ(y) =
ρ(x3y + y3) = ρ(x). Thus ρ(x3 + y2) = −1. But a weight cannot be negative, so we

conclude that a weight function does not exist.

To continue this example, we will find the subring R′ ⊂ F[x, y]/〈G(x, y)〉 on which

a weight function can be defined. We do this by eliminating certain troublesome mono-

mials. The requirement that ρ(x) = 2 and ρ(y) = 3 implies the following assignment

of weights to monomials:

ϕi = 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x2y2 · · ·
ρ(ϕi) = 0 2 3 4 5 6 6 7 8 9 8 10 · · ·

– – –
y 6 xy 6 x 2y6 – – – –
y 5 xy 5 x 2y5 – – – –
y 4 xy 4 x 2y4 – – – –
y 3 xy 3 x 2y3 – – – –
y 2 xy 2 x 2y2 – – – –
y xy x 2y – – – –
1 x x 2 x 3 x 4 x 5 x 6

Figure 9.7. Monomial basis for F[x, y]/〈x3y + y3 + x〉.

410 Curves, Surfaces, and Vector Spaces

y6 xy 6 x2y6 – –
y5 xy 5 x2y5 – –
y4 xy 4 x2y4 – –
y3 xy 3 x2y3 – –
y2 xy 2 x2y2 – –
y xy x2y – –
1 – – – –

Figure 9.8. New monomial basis for F[x, y]/〈x3y + y3 + x〉.

The monomial x3y does not appear because x3y = y3 + x. By inspection, we see once

again that this choice of ρ(ϕi) is not a weight function, because it does not assign

unique weights to the monomials. It is possible, however, to salvage something that

does have a weight function. By eliminating all powers of x except x0, this becomes

ϕi = 1 y xy y2 x2y xy2 y3 x2y2 xy3 · · ·
ρ(ϕi) = 0 3 5 6 7 8 9 10 11 · · ·

Although the monomials x and x2 have unique weights, they were eliminated as well

to ensure that the new set of monomials is closed under multiplication of monomials.

Now the set of monomials has a total order defined by the polynomial weights. The

new monomial basis may be easier to see when it is arranged as in the two-dimensional

array in Figure (9.8).

The ring R′ generated by these monomials is a subring of R. The set of monomials

can also be regarded as a basis for a vector space, so R′ is also a vector space. Within

the ring R′, multiplication is reduced modulo the Klein polynomial, just as for the ring

GF(8)[x, y]/〈x3y + y3 + x〉. We end this exercise with the conclusion that the ring R′

does have a weight function even though the larger ring does not.

9.7 Semigroups and the Feng–Rao distance

The set of integer values taken by a weight function has a simple algebraic structure.

This structure has a formal name.

Definition 9.7.1 A semigroup S is a set with an associative operation, denoted +,

such that x + y ∈ S whenever x, y ∈ S.

We will consider only semigroups with an identity element, denoted 0. A semigroup

with an identity element is also called a monoid . Note that the definition of a semigroup

does not require that the addition operation has an inverse. Thus a semigroup is a weaker

structure than a group. We will be interested only in those semigroups that are subsets

of the natural integers N , with integer addition as the semigroup operation. Given the

411 9.7 Semigroups and the Feng–Rao distance

semigroup S ⊂ N , with the elements listed in their natural order as integers, we shall

denote the rth element of the semigroup by ρr . Any set of integers generates such a

semigroup by taking all possible sums. The smallest set of integers that generates a

semigroup of integers is called the set of generators for that semigroup.

Definition 9.7.2 The gaps of the integer semigroup S are the elements of Sc.

The set of gaps of S is called the gap sequence. The elements of the integer semigroup

S are called nongaps.

For example, the semigroup generated by 3, 5, and 7 is {ρ1, ρ2, . . .} = {0, 3, 5,

6, 7, 8, 9, . . .}. There are three gaps in this semigroup. The gap sequence is {1, 2, 4}. The

semigroup generated by 4 and 5 is {ρ1, ρ2, . . .} = {0, 4, 5, 8, 9, 10, 12, 13, . . .}. There are

six gaps in the semigroup generated by 4 and 5. The gap sequence is {1, 2, 3, 6, 7, 11}.
A semigroup of this kind, formed by at least two coprime integers, always has only a

finite number of gaps.

The reason we have introduced the notion of a semigroup is because the set of weights

defined by a weight function is always a semigroup. If the ring F[x, y]/〈G(x, y)〉 has

a weight function, then the set of weights forms a semigroup. The number of gaps of

the semigroup is equal to the number of missing weights in the weight function for

F[x, y]/〈G(x, y)〉. More formally, in algebraic geometry, gaps of a semigroup that arise

in this way with reference to a polynomial G(x, y) are called Weierstrass gaps. It is

well known in algebraic geometry that if F[x, y]/〈G(x, y)〉 has a weight function, then

the number of Weierstrass gaps of the resulting integer semigroup is equal to the genus

g of G(x, y). For our purpose, we could take this to be the definition of the genus of

a polynomial whenever it can be applied. If this method of finding the genus and the

Plücker formula both apply, then they will agree. Both methods apply if, on the one

hand, the quotient ring F[x, y]/〈G(x, y)〉 has a weight function, and, on the other hand,

if the polynomial G(x, y) is nonsingular.

Lemma 9.7.3 Let s �= 0 be any element of the semigroup S ⊂ N. Then

‖S − (s+ S)‖ = s.

Proof: By definition, s+ S = {s+ a | a ∈ S}. Because S is a semigroup, s+ S ⊂ S.

Therefore in the set subtraction of the lemma, each element of s+S deletes one element

of S. If the last gap of S is at integer t, then the last gap of s+ S is at integer t + s. Set

S has t + s− g elements smaller than t + s. Set s+ S has t − g elements smaller than

t + s. Because s+ S ⊂ S, we conclude that

‖S − (s+ S)‖ = (t + s− g)− (t − g) = s,

as was to be proved. �

412 Curves, Surfaces, and Vector Spaces

By using the lemma on the weight function of a ring, the following theorem is

obtained.

Theorem 9.7.4 If the ring R ⊂ F[x, y] has the weight function ρ and f (x, y) ∈ R,

then

dim[R/〈f (x, y)〉] = ρ(f).

Proof: Every monomial has a unique weight, and these weights form a semigroup.

Let wt f (x, y) = s. Then the weights of the ideal 〈 f 〉 are the elements of the set s+ S.

The elements of R/〈 f 〉 have weights in the set S − 〈s + S〉. The lemma says that the

cardinality of this set is s. �

Every element ρr+1 of the semigroup S ⊂ NN is an integer. Most elements of S can

be written as the sum of two smaller elements of S. Thus for most elements, ρr+1, we

can write

ρr+1 = ρi + ρj.

In fact, most elements of S can be written as the sum of two smaller elements in more

than one way. Define

Nr = {(i, j) | ρr+1 = ρi + ρj}.

We will be interested in ‖Nr‖, the cardinality of the set N . One way to compute Nr is

to form an array with ρi + ρj listed in location ij. For our example generated by 3, 5,

and 7, this array has the form shown in Figure (9.9).

Then ‖Nr‖ is equal to the number of times that ρr+1 appears in this array.

It may be easier to understand this array if a space is inserted for each of the g gaps.

Then the array is as shown in Figure (9.10).

With these spaces inserted, the back-diagonal connecting any integer in the first row

with that same integer in the first column crosses every appearance of this same integer

1 2 3 4 5 6 7 8 9 . . .

�

� � � � � � � � �

�
�

�

�

�
�

�

�

1 0 3 5 6 7 8 9 10 11 . . .
2 3 6 8 9 10 11 12 13 14
3 5 8 10 11 12 13 14 15
4 6 9 11 12 13 14 15
5 7 10 12 13 14 15
6 8 11 13 14 15
7 9 12 14 15
8 10 13 15
9 11 14
...

...

.

Figure 9.9. Array of semigroup elements.

413 9.7 Semigroups and the Feng–Rao distance

� � . . .
0 3 5 6 7 8 9 10 11 . . .

3 6 8 9 10 11 12 13 14

5 8 10 11 12 13 14 15
6 9 11 12 13 14 15
7 10 12 13 14 15
8 11 13 14 15
9 12 14 15

10 13 15
11 14

...
...

.
�

�

�

�
�

�

�

3

4

5

6

7

8

9

� 2

�1

1 2 3 4 5 6 7 8 9� � � � � � � � �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9.10. Array of semigroup elements augmented with gaps.

and no other integer. Now it is easy to see that ‖Nr‖ = r + 1+ g − f (r), where f (r)

is a function of r that is eventually equal to 2g. The term f (r) can be understood by

observing that each back-diagonal can cross each gap value at most twice, once for that

gap in the horizontal direction and once for that gap in the vertical direction. Eventually,

a back-diagonal crosses each gap exactly twice. The remaining term r + 1+ g can be

seen, because ρr is the counting sequence with the g gaps deleted.

Definition 9.7.5 The Feng–Rao distance profile is given by

dFR(r) = min
s≥r
‖Ns‖,

where ‖Nr‖ is the cardinality of the set

Nr = {(i, j) | ρr+1 = ρi + ρj}.

To compute ‖Nr‖, we must examine ρr+1.

As an example, we will compute dFR(r) for the integer semigroup generated by

3, 5, and 7. This is ρi = 0, 3, 5, 6, 7, 8, 9, 10, 11, . . . If r = 1, then ρ2 = 3, which

(because ρ1 = 0) can be written as either ρ1 + ρ2 = ρ2, or ρ2 + ρ1 = ρ2. Thus

N1 = {(1, 2), (2, 1)} and ‖N1‖ = 2. If r = 2, then ρ3 = 5, and N2 = {(1, 3), (3, 1)}
and ‖N2‖ = 2. If r = 3, then ρ4 = 6, which can be written in three ways: as

ρ1 + ρ4 = ρ4, as ρ4 + ρ1 = ρ4, or as ρ2 + ρ2 = ρ4. Thus N3 = {(1, 4), (2, 2), (4, 1)},
and ‖N3‖ = 3. It is not true that ‖Nr‖ is nondecreasing, as can be seen by noting that

N4 = {(1, 5), (5, 1)}, so ‖N4‖ = 2. Continuing in this way, we obtain in the following

sequence:

‖Nr‖ = 2, 2, 3, 2, 4, 4, 5, 6, 7, . . .

414 Curves, Surfaces, and Vector Spaces

The gap sequence for this semigroup is {1, 2, 4}. Because the number of gaps is finite,

eventually the sequence ‖Nr‖ will become simply the counting sequence.4

The Feng–Rao distance profile dFR(r) is obtained by taking the minimum of all terms

of the sequence that do not precede the rth term. Because eventually the sequence is

monotonically increasing, this minimum is straightforward to evaluate. The sequence

dFR(r) for r = 1, 2, 3, . . . is given by

dFR(r) = min
s≥r
‖Ns‖

= 2, 2, 2, 2, 4, 4, 5, 6, 7, . . .

As a second example, we compute dFR(r) for the integer semigroup generated by

4 and 5. This semigroup corresponds to the hermitian polynomial x5 + y4 + y. The

sequence of integers forming the integer semigroup is given by

ρr = 0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, . . . ,

and the gap sequence is {1, 2, 3, 6, 7, 11}. Then

‖Nr‖ = 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 9, 10, . . .

and

dFR(r) = 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 8, 8, 8, 9, 10, . . .

Eventually, this becomes the counting sequence.

The Feng–Rao distance profile cannot be expressed by a simple formula, so the

following weaker, but simpler, distance profile is often useful. In many applications, it

is entirely adequate.

Definition 9.7.6 The Goppa distance profile for an integer semigroup with g gaps is

given by

dŴ(r) = r + 1− g.

This definition applies, indirectly, to the polynomial G(x, y) only if G(x, y) has a

weight function. Alternatively, we can define the Goppa distance profile directly in

terms of the polynomial G(x, y).

Definition 9.7.7 The Goppa distance profile for the polynomial G(x, y) with

genus g is

dŴ(r) = r + 1− g.

4 In passing, we point out the curiosity that ‖Nr‖ is essentially the autocorrelation function of the indicator
function of the gap sequence.

415 9.7 Semigroups and the Feng–Rao distance

Whenever the ring F[x, y]/〈G(x, y)〉 has a weight function, three are two definitions

of the Goppa distance profile for the polynomial G(x, y) and these are consistent. This

is because the number of gaps g in the weight sequence of polynomial G(x, y) is equal

to the genus g of G(x, y), whenever G(x, y) has a weight function.

For example, for a polynomial of genus 3 with weight function generated by 3, 5,

and 7, the number of gaps is three. Then, for r = 1, 2, 3, . . . ,

dŴ(r) = −1, 0, 1, 2, 3, 4, 5, 6, 7, . . . ,

as compared with the Feng–Rao distance profile

dFR(r) = 2, 2, 2, 2, 4, 4, 5, 6, 7, . . .

Note that the two sequences eventually agree.

This example illustrates the following theorem.

Theorem 9.7.8

dŴ(r) ≤ dFR(r)

with equality if r is larger than the largest gap.

Proof: The Goppa distance profile is defined as dŴ(r) = r + 1− g. As we have seen,

eventually the Feng–Rao distance profile dFR(r) is the counting sequence with g terms

deleted. �

The following theorem, stated only for a semigroup with two generators a′ and a′′,
gives an alternative and simple graphical method of computing the Feng–Rao distance

profile. Let

L′r = {(r′, r′′) | a′r′ + a′′r′′ = ρr+1}.

Let Lr = hull{(r′, r′′) ∈ L′r | r′ < a′}, where “hull” denotes the cascade hull of the

indicated set.

Theorem 9.7.9 The Feng–Rao distance profile can be stated as follows:

dFR(r) = min
s≥r
‖Ls‖.

Proof: Every ρℓ is a linear combination of a′ and a′′, so ρr+1 can be decomposed as

the following:

ρr+1 = ρℓ + ρm

= ℓ′a′ + ℓ′′a′′ + m′a′ + m′′a′′

= (ℓ′ + m′)a′ + (ℓ′′ + m′′)a′′.

416 Curves, Surfaces, and Vector Spaces

ℓ��

ℓ��

7

6

5

4

3

2

1

0

0

0 4 8 12 16 20 24

2521171395

10 14 18 22 26

27231915

20 24 28

2925

30

1 2 3 4 5 6 7 8

Figure 9.11. One construction of a Feng–Rao distance profile.

Every way in which (r′, r′′) can be decomposed as (ℓ′ + m′, ℓ′′ + m′′) yields one

way of writing ρr+1 as the sum of ρℓ and ρm. Because we must not count the same

decomposition twice, r′ is restricted to be less than a′. �

A graphical method, illustrated in Figure 9.7, of computing the Feng–Rao distance

profile is developed with the aid of Theorem 9.7.9 for the case in which the semigroup

has two generators. In this example, the generators are 4 and 5. Each square in Figure 9.7

is given a score, consisting of four counts for each step on the horizontal axis and

five counts for each step on the vertical axis. The vertical axis is restricted to be

less than 4, which ensures that no score appears twice in the array. Each individual

square and the square with zero score define a rectangle. The number of unit squares

in the rectangle is its area, which is ‖Nr‖. As the individual squares are visited in

order as determined by the scores, the sequence of areas give the Feng–Rao distance

profile ‖Nr‖.

Definition 9.7.10 The hyperbolic distance profile for a semigroup sequence with two

generators a′ and a′′ is given by

‖Hr‖ = (r′ + 1)(r′′ + 1);

dH(r) = min
s≥r
‖Hs‖,

where r′ and r′′ are the integers satisfying

ρr+1 = a′r′ + a′′r′′.

417 9.8 Bounds on the weights of vectors on curves

For an example of the hyperbolic distance profile, consider the semigroup generated

by the integers 4 and 5. Then

ρr = 0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, . . . ,

‖Nr‖ = 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 9, 10, 12, 12, 13, 14, 15, . . . ,

‖Hr‖ = 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 6, 10, 12, 12, 7, 12, . . .

Therefore

dFR(r) = 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 8, 8, 8, 9, 10, 12, 12, 13, 14, 15, 16, . . . ,

dH(r) = 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, . . . ,

dŴ(r) = −,−,−,−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

For this example, dFR(r) is at least as large as dH(r). In fact, the maximum of dH(r)

and dŴ(r) gives a good underbound to dFR(r).

9.8 Bounds on the weights of vectors on curves

We now return to our continuing task of giving bounds on the weights of vectors on

lines, planes, and curves, completing the task here by giving bounds on the weights of

vectors on curves.

Recall that a one-dimensional vector of blocklength n over the field F is given by

v = [vi | i = 0, . . . , n− 1].

In Section 1.8, we developed bounds on the weight of the one-dimensional vector v in

terms of the pattern of zeros in its one-dimensional Fourier transform V . Recall further

that a two-dimensional n by n array over the field F is given by

v = [vi′i′′ | i′ = 0, . . . , n− 1; i′′ = 0, . . . , n− 1].

In Section 5.7, we developed bounds on the weight of the two-dimensional array v in

terms of the two-dimensional pattern of zeros in its two-dimensional Fourier transform

V . Now we will develop bounds on the weights of vectors defined on plane curves,

regarding such a curve as embedded in a two-dimensional array.

The vector v of blocklength n over F on the curve X is given by

v = [vℓ | Pℓ ∈ X , ℓ = 0, . . . , n− 1],

418 Curves, Surfaces, and Vector Spaces

where the curve is the set of points

X = {Pℓ = (βℓ, γℓ) | G(βℓ, γℓ) = 0}

and G(x, y) is the irreducible bivariate polynomial defining the curve X . The vector v

will also be referred to as v(X). In this section, we shall develop bounds on the weight

of the vector v(X) on the curve X in terms of the two-dimensional pattern of zeros in

its two-dimensional Fourier transform V . For simplicity, we will usually require that

G(x, y) be a nonsingular, irreducible bivariate polynomial.

We shall give two bounds: the Goppa bound and the Feng–Rao bound. In general,

the Goppa bound is weaker than the Feng–Rao bound, although in most situations the

two are equivalent. The Goppa bound, which was discovered earlier, is often preferred

because its much simpler form makes it more convenient to use, and it is usually just as

good. The proof of the Feng–Rao bound uses rank arguments and gaussian elimination,

and it requires that a weight function exists for G(x, y). Our indirect proof of the Goppa

bound, by reference to the Feng–Rao bound, does not apply to those G(x, y) for which

a weight function does not exist. Then a more direct proof must be used. We will not

provide this direct proof for such G(x, y), leaving the proof as an exercise. After we

give the proof of the Feng–Rao bound, we will give yet another bound as an alternative

that is proved by using the Sakata–Massey theorem to bound the area of a connection

footprint.

Goppa bound Let X be a curve of length n, defined by a regular polynomial of

genus g. The only vector v(X) of weight dŴ(r) − 1, or less, on the curve X , that has

two-dimensional Fourier transform components Vj′j′′ equal to zero for j′ + j′′ ≤ r, is

the all-zero vector.

Proof: Provided a weight function exists for G(x, y), the Goppa bound is a special case

of the Feng–Rao bound. Then the Goppa bound can be inferred from the Feng–Rao

bound, which is given next, using the properties of weight functions. We do not provide

a proof of the Goppa bound for curves without a weight function. �

The proof of the Feng–Rao bound requires careful attention to indexing, because

sometimes we index components by i and sometimes by the weight ρi. Because a weight

is unique, specifying the weight of a component designates a unique component. This

is a form of indirect indexing. Let Vρi
denote the component of V corresponding to

a monomial with weight ρi. Spectral component Vρi
is defined as a Fourier transform

component expressed as follows:

Vρi
=

n∑

ℓ=1

vℓϕρi
(Pℓ).

419 9.8 Bounds on the weights of vectors on curves

To understand the meaning of this expression, it may be useful to first write

Vj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

vi′i′′ω
i′j′ωi′′j′′

=
n−1∑

i′=0

n−1∑

i′′=0

vi′i′′x
j′yj′′ |

x=ωi′ ,y=ωi′′ .

The term vi′i′′ is zero for all (i′, i′′) that are not on the curve X . Now replace the

bi-index (i′, i′′) by ℓ, which indexes only the points of X , and sum only over such

points. Replace the bi-index (j′, j′′) by ρi, which indexes the sequence of monomials

ϕρi
(x, y). The expression of the Fourier transform becomes

Vρi
=
∑

ℓ

vℓϕρi
(x, y) |(x,y)=Pℓ

=
n∑

ℓ=1

vℓϕρi
(Pℓ),

as was stated earlier.

We will now introduce a new array, W , with elements

Wij = Vρi+ρj
.

Again, we caution against possible confusion regarding indices. The indices ı and

in this matrix are indices in the total order, which we will distinguish by font in the

remainder of this section. Thus the pair (ı,) refers to a pair of points in the total order.

Each individual index in the total order itself corresponds to a pair of componentwise

indices. Thus the term Vρı , written in terms of its componentwise indices, is Vj′(ı),j′′(ı).

The index ı can be thought of as an indirect address pointing to the bi-index (j′, j′′),
pointing to Vj′j′′ in its defining two-dimensional array. Thus the pair (ı,) can be

interpreted as ((j′(ı), j′′(ı)), (j′(), j′′()).

To understand the matrix W , it is best to inspect an example. The example we give

is the semigroup generated by 3, 5, and 7. This semigroup is {0, 3, 5, 6, 7, 8, 9, . . .}. The

matrix W , written explicitly, is as follows:

W =

V0 V3 V5 V6 V7 V8 V9 · · ·
V3 V6 V8 V9 V10 V11 V12 · · ·
V5 V8 V10 V11 V12 V13 V14 · · ·
V6 V9 V11 V12 V13 V14 V15 · · ·
V7 V10 V12 V13 V14 V15 V16 · · ·
V8 V11 V13 V14 V15 V16 V17 · · ·
...

...
...

...

.

420 Curves, Surfaces, and Vector Spaces

The indices in the first row run through all elements of the semigroup in their natural

order, as do the indices in the first column. The indices of other elements of W are

found by adding the indices of the elements in the corresponding first row and first

column. If false columns and false rows, corresponding to the gaps of the semigroup,

are inserted into the matrix with false entries represented by hyphens, it is easy to fill

in the matrix. In row are the components of V indexed by the semigroup, starting

with ρ , and skipping an element at each gap,

W =

V0 − − V3 − V5 V6 V7 V8 V9 · · ·
− − − − − − − − − −
− − − − − − − − − −
V3 − − V6 − V8 V9 V10 V11 V12

− − − − − − − − − −
V5 − − V8 − V10 V11 V12 V13 V14

V6 − − V9 − V11 V12 V13 V14 V15

V7 − − V10 − V12 V13 V14 V15 V16

V8 − − V11 − V13 V14 V15 V16 V17 · · ·
...

...

.

The false columns and false rows make it easy to see the pattern by which the elements

are arranged in W . The actual matrix W , however, does not have these false columns

and false rows.

We are now ready to derive the Feng–Rao bound in terms of the matrix W . The

Feng–Rao distance profile dFR(r) was defined in Definition 9.7.5.

Feng–Rao bound Suppose that the bivariate polynomial G(x, y) has a weight function.

The only vector v of length n on the curve G(x, y) = 0 having weight dFR(r) − 1 or

less, whose two-dimensional Fourier transform components are equal to zero for all

indices smaller than r + 1 in the weighted order, is the all-zero vector.

Proof: Because the weight of the vector v is nonzero, there must be a smallest integer,

r, such that Vr+1 �= 0. We will prove the bound for that value of r. Because the

Feng–Rao distance dFR(r) is nondecreasing, the statement is also true for smaller r.

Consider the bivariate spectral components arranged in the weighted order

Vρ0 , Vρ1 , Vρ2 , Vρ3 , . . . , Vρi
, . . . , Vρr , Vρr+1 .

Recall that the matrix W is defined with the elements

Wı = Vρı+ρ .

421 9.8 Bounds on the weights of vectors on curves

The proof consists of proving two expressions for the rank of W ; one is that

wt v = rank W ,

and the other is that

rank W ≥ ‖Nr‖,

where ‖Nr‖ is defined in Definition 9.7.5 as the cardinality of the set {(ı,) | ρr+1 =
ρı + ρ }. Putting these last two expressions together proves the theorem.

To relate the rank of W to the weight of v, write

Wı =
n∑

ℓ=1

vℓϕρı+ρ (Pℓ) =
n∑

ℓ=1

vℓϕρı (Pℓ)ϕρ (Pℓ).

We will write W as a matrix factorization. Let V be the diagonal matrix given by

V =

v1 0 . . . 0

0 v2 0
...

. . .

0 vn

 ,

and let M be the matrix

M = [Mıℓ] = [ϕρı (Pℓ)].

The factorization of W can be written

[Wı] = [ϕρı (Pℓ)]

v1 0 . . . 0

0 v2 0
...

. . .

0 vn

 [ϕρ (Pℓ)]T,

and now has the form

W =MV MT.

The two outer matrices on the right side, M and MT, have full rank. Hence the rank of

W is equal to the number of nonzero elements on the diagonal of the diagonal matrix.

Consequently,

wt v = rank W ,

422 Curves, Surfaces, and Vector Spaces

so the weight of v is equal to the rank of W .

It remains to bound the rank of W in terms of the Feng–Rao distance. The array W

has the form

W =

Vρ0 Vρ1 Vρ2 Vρ3 Vρ4 Vρ5 · · ·
Vρ1 Vρ1+ρ1 Vρ1+ρ2 Vρ1+ρ3 Vρ1+ρ4 Vρ1+ρ5

Vρ2 Vρ2+ρ1 Vρ2+ρ2 Vρ2+ρ3

Vρ3 Vρ3+ρ1 Vρ3+ρ2

...

.

How many times does Vρk
appear in W? Each distinct Vρi

corresponds to a unique

monomial, and each monomial has a unique weight. The number of times that Vρr+1

appears is the same as the number of times that ρr+1 = ρı + ρ . This means that Vρr+1

appears ‖Nr‖ times in the array W . The indices are elements of a semigroup.

To find the rank of W , observe that it has the form

W =

0 ∗
∗

∗
∗

∗
∗

∗
∗

,

where each element denoted by an asterisk is in a different row and a different column.

All elements denoted by an asterisk are equal, and each is equal to Vρr+1 . We have

chosen r such that Vρr+1 is the first nonzero term in the sequence.

Each element of W above or to the left of an appearance of an asterisk is zero.

Therefore the number of linearly independent columns of W is at least as large as the

number of times Vρr+1 appears in W . Thus we have

rank W ≥ ‖Nr‖.

Now we collect all the pieces,

wt v = rank W ≥ ‖Nr‖ ≥ min
s≥r
‖Ns‖ = dFR(r),

to conclude the proof of the Feng–Rao bound. �

This proof of the Feng–Rao bound is somewhat subtle, but the method is direct, and,

despite the indirect indexing, is essentially straightforward. An alternative proof, of

423 9.8 Bounds on the weights of vectors on curves

a slightly different statement, that uses the Sakata–Massey theorem is much different

and much simpler, but it does require that the Sakata–Massey theorem has been proved

previously. This alternative proof uses the Sakata–Massey theorem to bound the area

of the footprint of the locator ideal.

The Sakata–Massey theorem says that if �(x, y) has bidegree s and produces

V0, V1, . . . , Vr−1, but not V0, V1, . . ., Vr−1, Vr , then the footprint contains the point

r − s. But the trivial polynomial �(x, y) = 1, for which s = 0, produces the sequence

V0, . . . , Vr−1 if all terms of this sequence are zero, but �(x, y) fails to produce the next

term Vr if Vr is nonzero. Therefore the footprint of the locator ideal for the sequence

0, 0, …, 0, Vr contains the point r = (r′, r′′). This means that the area of the footprint

is at least (r′ + 1)(r′′ + 1). Thus

wt v ≥ (r′ + 1)(r′′ + 1)

if Vr is the first nonzero spectral component. This argument has shown that the weight of

v is bounded by the hyperbolic distance profile, which is not as strong as the Feng–Rao

distance profile.

As an example, consider the hermitian polynomial x5+ y4+ y. The weight function

for this polynomial is given by

ρ(xi′yi′′) = 4i′ + 5i′′.

The basis monomials are

y3 xy3 x2y3 x3y3 x4y3 x5y3

y2 xy2 x2y2 x3y2 x4y2 x5y2

y xy x2y x3y x4y x5y . . .

1 x x2 x3 x4 x5

The weighted order based on this weight function assigns the following order to the

monomials

9 13 17

5 8 12 16

2 4 7 11 15

0 1 3 6 10 14 18 · · ·

The Sakata–Massey theorem says that if Vr is the first nonzero term in the sequence

V0, V1, V2, . . ., Vj, . . ., then the footprint �r contains the square marked r. Because the

footprint must be a cascade set, it contains the rectangle defined by the square marked

0 and the square marked r. It is easy to write down the sequence consisting of the areas

of the locator footprints �r . Thus

‖�r‖ = 1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 6, 10, . . .

424 Curves, Surfaces, and Vector Spaces

Now recall that the Feng–Rao distance profile can be written as follows:

dFR(r) = min
s≥r
‖�s‖

= 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, . . .

We conclude, as before, that if Vr is the first nonzero spectral component in the ordered

sequence, then wt v ≥ dFR(r).

Problems

9.1 In the plane Q2, how many points are on the circle x2 + y2 = 1?

9.2 Let p(x, y, z) = x3 + y3 + z3. How many points does the polynomial p(x, y, z)

have in the projective plane over GF(2), over GF(4), and over GF(8)?

9.3 Show that the Klein polynomial is absolutely irreducible.

9.4 Let v = (x, y, z) be a vector of elements of GF(q2), where q is a power of 2, and

let v† = (xq, yq, zq) be the vector of q-ary conjugates of the elements of v. Show

that the hermitian polynomial can be written v · v† = 0. Use this representation

to derive the Stichtenoth form of the polynomial.

9.5 The polynomial p(x, y) = x5 + y2 + y + 1 over GF(2) has genus 2. Show

that this polynomial has 212 + 28 + 1 zeros over GF(212). Compare this with

the Hasse–Weil bound. Show that p(x, y) has 28 − 26 + 1 zeros over GF(28).

Compare this with the Hasse–Weil bound.

9.6 Prove that the semigroup S , formed under integer addition by two coprime

integers, has at most a finite number of gaps.

9.7 Suppose the semigroup S is generated by integers b and b + 1 under integer

addition.

(a) Prove that the number g of gaps is

(
b

2

)
.

(b) Prove that the largest gap is 2g − 1.

9.8 Prove the following. A polynomial of the form

G(x, y) = xa + yb + g(x, y),

for which a and b are coprime and a > b > deg g(x, y), is regular at every

affine point. A polynomial of this form has exactly one point at infinity, which

is a regular point if and only if a = b+ 1.

9.9 Is the polynomial p(x, y) = x2 + y2 irreducible over GF(3)? Is it absolutely

irreducible? Are these statements true over all finite fields?

425 Problems

9.10 Prove the following. A polynomial of the form

G(x, y) = xa + yb + g(x, y),

where a = b+ 1 and b > deg g(x, y), is absolutely irreducible.

9.11 Prove that a weight function does not exist for the Klein polynomial.

9.12 Prove that a weight function for a ring, if it exists, assigns a unique weight to

each monomial of that ring and so orders the monomial.

9.13 Does a transformation of coordinates exist that will represent the Klein curve

with only one point at infinity?

9.14 (a) Show that the curve defined by the hermitian polynomial intersects any

straight line tangent to the curve only once. What is the multiplicity of

this intersection? (A code defined on such a curve is sometimes called a

one-point code.)

(b) Show that the curve defined by the Klein quartic polynomial intersects any

straight line tangent to the curve at a second point.

9.15 Prove that the projective curve defined by

xmy + ymz + zmx = 0

has no singular points over GF(q) if GCD(m2 − m+ 1, q) = 1.

9.16 An elliptic polynomial over the field F is a polynomial of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where the coefficients are the elements of F . Suppose that F = GF(q). Estimate

how many points in the bicyclic plane over GF(q) are zeros of this polynomial.

The set of rational points of an elliptic polynomial is called an elliptic curve.

9.17 The polynomial

p(x, y) = x10 + y8 + x3 + y

has genus 14. Show that it has 65 (rational) zeros in the projective plane over

GF(8), only one of them at infinity. (This is first of a series of polynomials

associated with the Suzuki group.)

9.18 Let {ρr} be an integer semigroup generated by a finite set of integers, and let

Nr = {(i, j) | ρi + ρj = ρr+1}.

Define the indicator function of the gap sequence as a sequence of zeros and ones

according to the presence or absence of a gap. Let φ(r) be the autocorrelation

function of the indicator function. Describe ‖Nr‖ in terms of φ(r) for the integer

426 Curves, Surfaces, and Vector Spaces

semigroup generated by the integers 3, 5, and 7. Prove the appropriate statement

for the general case.

9.19 (a) Show that the reduced basis for the ideal in the ring GF(8)[x, y]/〈x7 −
1, y7 − 1〉, generated by x3y + x3 + y, is given by

{x3 + x2 + x + y + 1, x2y + x2 + y2 + xy + x + y + 1, y3 + x2 + 1}.

(b) What is the area of the footprint of this ideal?

(c) How many bicyclic zeros does x3y + x3 + y have?

9.20 Let F◦[x, y] = GF(2)[x, y]/〈x15−1, y15−1〉. Find a reduced basis for the ideal

F◦[x, y]/〈x17 + y16 + y〉. Sketch the footprint for this ideal. What is the area of

the footprint?

9.21 Prove that the graphical construction of the Feng–Rao distance is valid. Can this

graphical construction be generalized to a semigroup with three generators?

9.22 Prove the Goppa bound.

Notes

I have tried to emphasize a parallel structure in the treatment of the bounds on the

weights of vectors in Chapter 1, bounds on the weights of arrays in Chapter 4, and

bounds on the weights of vectors on curves in Chapter 9. In each of these chapters, the

bounds are presented as bounds on individual vectors. Then, to define linear codes, the

bounds are applied to sets of vectors in Chapter 2, Chapter 5, and Chapter 10.

The Feng–Rao bound is implicit in the work of Feng and Rao (1994). It was made

explicit by Pellikaan (1992), who first realized that the Feng–Rao distance is sometimes

larger than the Goppa distance. Consequently, the Feng–Rao bound is stronger than

the Goppa bound. The role of semigroups in the analysis of codes on curves was

recognized by Garcia, Kim, and Lax (1993). The practice of writing the matrices

with blanks at the gap locations apparently first appeared in Feng, Wei, Rao, and

Tzeng (1994). This practice makes the structure of the matrix more apparent. The roles

of the weight function and the order function were developed by Hφholdt, van Lint,

and Pellikaan (1998).

The dissertation by Dabiri (1996) discussed monomial bases of quotient rings. The

discussion of monomial bases of quotient rings is closely related to the celebrated

Riemann–Roch theorem of algebraic geometry. The Hasse–Weil bound is discussed in

Stichtenoth (1993). These theorems are examples of the powerful methods of algebraic

geometry that were put to good use in the development of codes on curves. The genus

and gonality are properties of a polynomial whose full definition requires more alge-

braic geometry than this book has required. The Drinfeld–Vlǎdut bound (Drinfeld and

427 Notes

Vlǎdut, 1993) is an example of a contribution to algebraic geometry that came from

the study of the theory of codes.

The alternative form of the hermitian polynomials was suggested by

Stichtenoth (1988) as a way to move some points of the hermitian curve from the

line at infinity into the affine plane. His form of the hermitian curve has only one point

at infinity, and it is the preferred form for hermitian codes.

10 Codes on Curves and Surfaces

Codes on curves, along with their decoding algorithms, have been developed in recent

years by using rather advanced topics of mathematics from the subject of algebraic

geometry, which is a difficult and specialized branch of mathematics. The applications

discussed in this book may be one of the few times that the somewhat inaccessible

topics of algebraic geometry, such as the Riemann–Roch theorem, have entered the

engineering literature. With the benefit of hindsight, we shall describe the codes in

a more elementary way, without much algebraic geometry, emphasizing connections

with bicyclic codes and the two-dimensional Fourier transform.

We shall discuss the hermitian codes as our primary example and the Klein codes as

our secondary example. The class of hermitian codes, in its fullest form, is probably

large enough to satisfy whatever needs may arise in communication systems of the near

future. Moreover, this class of codes can be used to illustrate general methods that apply

to other classes of codes. The Klein codes comprise a small class of codes over GF(8)

with a rather rich and interesting structure, though probably not of practical interest.

An hermitian code is usually defined on a projective plane curve or on an affine plane

curve. These choices for the definition are most analogous to the definitions of a doubly

extended or singly extended Reed–Solomon code. In studying some code properties –

especially in connection with decoding – it is also natural, however, to use the term

“hermitian code” to refer to the code defined on the bicyclic plane. This consists of all

points of the affine plane that do not have a zero in either coordinate. The distinction

is also significant in the discussion of dual codes. Accordingly, we shall define “codes

on projective curves,” “codes on affine curves,” and “codes on epicyclic curves.”

These are analogous to Reed–Solomon codes on the projective line (doubly extended

Reed–Solomon codes), Reed–Solomon codes on the affine line (singly extended Reed–

Solomon codes), and Reed–Solomon codes on the cyclic line (cyclic Reed–Solomon

codes).

In this chapter, we shall define our codes from the point of view of the encoder. More

specifically, the codes on curves studied in this chapter are obtained by puncturing

codes on the plane. This leaves us with an issue later when we deal with the task

of decoding, because decoders are immediately suitable for shortened codes, not for

punctured codes. Fortunately, for many codes of interest, a punctured code can also be

429 10.1 Beyond Reed–Solomon codes

viewed as the shortened form of a different code. Then the encoder can treat the code

as a punctured code, while the decoder can treat it as a shortened code. This comment

will become more fully explained in Chapter 11 when we discuss shortened codes.

10.1 Beyond Reed–Solomon codes

The Reed–Solomon codes (and other BCH codes) are very successful in practical

applications, and they continue to satisfy most needs for designers of digital commu-

nication systems and digital storage systems. However, in the field GF(2m), a cyclic

Reed–Solomon code cannot have a blocklength larger than 2m − 1 (or 2m + 1 on the

projective line). For example, over GF(256), the longest cyclic Reed–Solomon code

has blocklength n = 255. The longest projective Reed–Solomon code has blocklength

n = 257.

The Reed–Solomon code chosen for the Voyager and Galileo spacecraft is the

(255, 223, 33) cyclic code over GF(256). We will compare the hermitian codes to

this code. For the purpose of our comparison, it is convenient to replace this code with

the (256, 224, 33) affine Reed–Solomon code over GF(256). This code can correct

sixteen symbol errors; each code symbol is an eight-bit byte.

In practice, very long records of data must be transmitted, much longer than 224

bytes. To use the (256, 224, 33) code, these data records are broken into blocks of 224

bytes each, and each data block is individually encoded into a 256-byte codeword.

The codewords are then transmitted sequentially, possibly interleaved, to form a long

codestream. The codewords are uncoupled, and the structure of one codeword provides

no help in correcting errors in a different codeword.

Consider a message of 3584, eight-bit bytes broken into sixteen blocks of 224 bytes

each, and encoded into sixteen extended Reed–Solomon codewords of 256 bytes each.

Concatenating or interleaving these sixteen codewords to form a single codeword of

4096 bytes gives a (4096, 3584, 33) code. The minimum distance is still 33 because,

given two distinct codewords, the underlying Reed–Solomon codewords might be

identical in fifteen out of the sixteen blocks. Thus the (4096, 3584, 33) code is only

guaranteed to correct sixteen byte errors. There will be patterns of seventeen errors – all

occurring in the same Reed–Solomon codeword – that cannot be corrected. However,

the code will correct other patterns with more than sixteen errors, provided that not

more than sixteen errors occur in any single codeword. It may even be able to correct

256 error bytes, but only if they are properly distributed, sixteen byte errors to every

256-byte codeword. Of course, random errors need not be so cooperative. If seventeen

byte errors fall into the same 256-byte codeword, that error pattern cannot be corrected.

Other ways to obtain a code over GF(256) with length larger than q+ 1 are to use a

larger locator field or to use a larger symbol field. If the larger symbol field is equal to the

430 Codes on Curves and Surfaces

larger locator field, then the code is still a Reed–Solomon code. For example, one may

use a Reed–Solomon code over GF(212) instead of a Reed–Solomon code over GF(28).

This means that the arithmetic of the encoder and decoder will be in the larger field,

and so may be more expensive or slower. There might also be the minor inconvenience

of transcribing the code alphabet to the channel alphabet. Finally, the twelve-bit error

symbols might not be well matched to a given channel error mechanism. For example,

errors may arise on eight-bit boundaries because of the structure of a communication

system.

If only the locator field is enlarged, but not the symbol field, the appropriate code

is a BCH code in GF(q). A BCH code may be unsatisfactory, because the number of

check symbols may be excessive. For example, a BCH code of blocklength q2 − 1

over GF(q) typically requires about four check symbols per error to be corrected. A

Reed–Solomon code of blocklength q−1 over GF(q) requires only two check symbols

per error to be corrected.

Yet another approach, and the main subject of this chapter, is to use the points of an

hermitian curve to index the components of the codeword.

The hermitian codes that we will describe are more attractive than the other

approaches, as judged by the error correction. We will describe a (4096, 3586) her-

mitian code that has a minimum distance not less than 391. This code can correct 195

byte errors no matter how they are distributed.

The hermitian code can also be compared to a shortened BCH code. A summary

comparison is as follows.

(1) A (4096, 3584, 33) interleaved Reed–Solomon code over GF(256) that corrects

any pattern of sixteen byte errors, a small fraction of patterns of 256 byte errors,

and a number of intermediate cases, including all burst errors of length 256 bytes.

(2) A (4096, 3586, 391) hermitian code over GF(256) that corrects any pattern of 195

byte errors.

(3) A (4096, 3585, 264) shortened BCH code over GF(256) that corrects any pattern

of 131 byte errors.

(4) A (4096, 3596, 501) Reed–Solomon code over GF(4096) that corrects any pattern

of 250 symbol errors in a codeword of twelve-bit symbols.

The code in example (1) will correct any pattern of 16 byte errors as contrasted with the

hermitian code which will correct any pattern of 195 byte errors. However, this may

be an over-simplified comparison. Both codes can correct many error patterns beyond

the packing radius, though it can be difficult to compare two codes with respect to this

property. In particular, the interleaved Reed–Solomon code can correct burst errors

or length 256 bytes. Thus it may be preferred in an application that makes primarily

burst errors. The code of example (2) is clearly better than the code of example (3),

which is shortened from a (4369, 3858, 264) BCH code. Moreover, the decoder for

the BCH code requires computations in GF(216), while the decoder for the hermitian

431 10.2 Epicyclic codes

code requires computations only in GF(28). A more detailed comparison of the codes

in examples (1) and (2) requires a specification of the statistics of the error model of

a particular application, and also a detailed specification of the decoders behavior for

patterns of error beyond the packing radius. We will not provide such a comparison.

10.2 Epicyclic codes

The affine plane over GF(q) consists of those points of the projective plane over GF(q)

whose z coordinate is not equal to zero. The bicyclic plane over GF(q) consists of those

points of the affine plane over GF(q) whose x and y coordinates are both not equal to

zero. Recall that a bicyclic code is defined in Section 6.1 as the set of two-dimensional

arrays c with elements indexed by the points of the bicyclic plane, and whose bispectra

satisfy

Cj′j′′ = 0 for (j′, j′′) ∈ A,

where the defining set A is a subset of {0, . . . , q−2}2. No compelling rule is known for

choosing the defining set A to obtain exceptional bicyclic codes. Accordingly we will

describe some bicyclic codes that can be punctured or shortened to give noteworthy

codes.

The notions of puncturing and shortening were introduced in Section 2.1. Choose

any subset B of the bicyclic plane {0, . . . , q − 2}2 with points indexed as {i′, i′′}. Let

P0, P1, P2, . . . , Pn−1, indexed by ℓ, denote the n elements of B. Each such Pℓ is a

point of the bicyclic plane. The point Pℓ can be written as (αi′ , αi′′) or1 (ω−i′ , ω−i′′),

and sometimes we may refer to Pℓ as P(i′,i′′), and to ℓ as (i′, i′′), for (i′, i′′) ∈ B. To

puncture the two-dimensional code C, delete all components of the code not indexed by

the elements of B. Then the punctured code, denoted C(B), and whose codewords are

denoted c(B), has blocklength n equal to ‖B‖. The codeword components are given by

cℓ = C(Pℓ) ℓ = 0, . . . , n− 1,

where

C(x, y) =
N−1∑

j′=0

N−1∑

j′′=0

Cj′j′′x
j′y j′′

is a bispectrum polynomial, satisfying Cj′j′′ = 0 if (j′, j′′) is an element of the two-

dimensional defining set A. The punctured code C(B) consists of codewords c(B) that

1 The negative signs can be used when we want the polynomial evaluation to have the form of the inverse
two-dimensional Fourier transform.

432 Codes on Curves and Surfaces

are obtained by discarding all components of c that are indexed by elements of Bc, the

complement of set B. When there is no possibility of confusion with the underlying

two-dimensional code C, we may refer to C(B) simply as C and to codeword c(B)

simply as c.

In a variation of this construction, we may instead shorten the two-dimensional code

C. The shortened code C′(B), whose codewords are denoted c′(B), consists of only the

codewords of C for which every component indexed by an element of Bc is equal to

zero, such components are then deleted. Thus a codeword of the subcode is any array

c that satisfies the following two constraints:

Cj′j′′ = 0 for (j′, j′′) ∈ A;

ci′i′′ = 0 for (i′, i′′) ∈ Bc,

where both A and B are subsets of {0, . . . , q− 2}2. The components of the codewords

that are not indexed by elements of B are dropped from the codewords to form the

codewords c(B) of blocklength n′.
Thus, from the set of bispectrum polynomials C(x, y) satisfying Cj′j′′ = 0 if (j′, j′′) ∈

A, we form the punctured code,

C(B) = {c(B) = (c0, . . . , cn−1) | cℓ = C(Pℓ) for ℓ ∈ B; Cj′j′′ = 0 for (j′, j′′) ∈ A},

and the shortened code,

C′(B) = {(c′(B) = (c0, . . . , cn−1) | c ∈ C(B) and ci′i′′ = 0 for (i′, i′′) ∈ Bc},

as two alternatives. For a fixed C, the punctured code has more codewords than the

shortened code. This apparent disadvantage of shortening, however, is not real. Because

a shortened code, in general, has a smaller dimension but a larger minimum distance

than the corresponding punctured code, the apparent disadvantage goes away if one

chooses a different code to shorten than the code that was chosen to puncture. This

will be more evident in Chapter 11. Because the dropped components of a shortened

code are always equal to zero, it is trivial for the receiver to reinsert those zeros to

recover a noisy codeword of the original bicyclic code in the form of a q − 1 by

q − 1 array. The dropped components of a noisy punctured codeword, however, are

not as easy to recover. These components must be inferred from the received noisy

components, a potentially difficult task. Thus we see that we prefer to encode a punc-

tured code and we prefer to decode a shortened code. It is not trivial to reconcile this

conflict.

It remains to specify the sets A and B so that the punctured code, or the shortened

code, has good properties, and this is far from a simple task. Algebraic geometry now

enters as part of the definition of the set B, which is defined as the curve X in GF(q)2.

This curve X is the set of zeros of the bivariate polynomial G(x, y) and the set B

433 10.2 Epicyclic codes

is chosen to be the curve X . For this reason, we refer to such codes as “codes on

curves.”

In this section, codes on curves are restricted to only those points of the curve

that lie in the bicyclic plane. Because the bicyclic plane over a finite field can be

regarded as a torus, a code on the bicyclic plane can be regarded as defined on a

curve on a torus. Certain automorphisms of the code are then seen in terms of corre-

sponding translations on the torus. Bicyclic shifts on the bicyclic plane, or torus, that

leave the curve invariant, map codewords to codewords. This is a consequence of the

two-dimensional convolution theorem, which says that bicyclic translations of code-

words correspond to multiplying components of the bispectrum by powers of ω,

thereby leaving the defining set unaffected. We refer to codes with translation invari-

ants on the bicyclic plane as epicyclic codes. Epicyclic codes are not themselves

cyclic.

The underlying bicyclic code over GF(q) is the q − 1 by q − 1 two-dimensional

code whose defining set is A = {(j′, j′′) | j′ + j′′ > J } or its complement Ac =
{(j′, j′′) | j′ + j′′ ≤ J }. In this chapter, we will puncture the bicyclic code with defining

set A. In the next chapter, we will shorten the bicyclic code with Ac as the defining

set. The reason for choosing A as the defining set of the punctured code and Ac as

the defining set of the shortened code is to respect the dual relationship between the

two types of codes, to anticipate the role of the Feng–Rao bound, and to facilitate the

following discussion of the dual relationship. However, either defining set could be

complemented, and we sometimes do so to get an equivalent code.

We shall see in this chapter that the punctured code on a curve defined by a polynomial

of degree m has dimension and designed distance satisfying

k = mJ − g + 1 d = n− mJ .

We shall see in Chapter 11 that the shortened code on a curve defined by a polynomial

of degree m has dimension and minimum distance satisfying

k = n− mJ + g − 1 d = mJ − 2g + 2,

where n is the common blocklength of the two codes.

Although the performance formulas seem very different, they are actually equivalent.

To see this, let mJ ′ = n−mJ + 2g− 2, and consider the performance of the shortened

code with mJ ′ in place of mJ . Then

k = n− mJ + g − 1

= n− (n− mJ + 2g − 2)+ g − 1

= mJ − g + 1.

434 Codes on Curves and Surfaces

Furthermore,

d = mJ ′ − 2g + 2

= (n− mJ + 2g − 2)− 2g + 2

= n− mJ .

Thus the punctured code with design parameter mJ has the same performance

parameters as the shortened code with design parameter n− mJ + 2g − 2.

The punctured code is defined as follows. Let G(x, y) be a nonsingular bivariate

polynomial of degree m with coefficients in the field GF(q). Let P0, P1, P2, . . . , Pn−1

be the rational bicyclic points of G(x, y). These are the zeros of G(x, y) in the bicyclic

plane over the base field GF(q).

For the defining set, let A = {(j′, j′′) | j′ + j′′ > J }. Every bispectrum polynomial

C(x, y) has the coefficient Cj′j′′ = 0 if j′ + j′′ > J . Let SJ denote the set of bispectrum

polynomials that consists of the zero polynomial and all bivariate polynomials of degree

at most J and with coefficients in GF(q). Thus

SJ = {C(x, y) | deg C(x, y) ≤ J } ∪ {0}.

The epicyclic code C(X), lying on the curve X in the bicyclic plane, is the punctured

code defined as follows:

C(X) = {c(X) | cℓ = C(Pℓ) for ℓ = 0, . . . , n− 1; C(x, y) ∈ SJ }.

The number of codewords in C(X) need not be the same as the number of polynomials

in SJ , because the same codeword might be generated by several polynomials in SJ .

Indeed, if J ≥ r, then G(x, y) itself will be in SJ , and it will map into the all-zero

codeword as will any polynomial multiple of G(x, y).

It is evident that this construction gives a linear code. In Section 10.3, we show that

the linear code has qk codewords, where the dimension k is given by

k =

1

2
(J + 1)(J + 2) if J < m

1

2
(J + 1)(J + 2)− 1

2
(J − m+ 1)(J − m+ 2) if J ≤ m,

and with dmin ≥ n− mJ .

We can identify the coefficients of the bispectrum polynomial C(x, y) with the com-

ponents of the two-dimensional Fourier transform C of the codeword c. Thus the

bispectrum C of codeword c is given by

C =
{
Cj′j′′ | j′ = 0, . . . , q− 2; j′′ = 0, . . . , q− 2

}
,

satisfying Cj′j′′ = 0 for j′ + j′′ > J .

435 10.2 Epicyclic codes

zero

Encoder

Don't care

Don't care

C (x,y)

C1,0
C0,0C0,1

C1,0
C0,0C0,1

Figure 10.1. Computing a punctured codeword from its spectrum.

The relationship between the two-dimensional punctured codeword c(X) and its

two-dimensional spectrum C(X), depicted symbolically in Figure 10.1, is immediately

compatible with the notions of encoding. The left side depicts the coefficients of the

bispectrum polynomial C(x, y), arranged as an array C = [Cj′j′′]. Because C(x, y)

has degree J , the array is such that Cj′j′′ = 0 if j′ + j′′ > J . The defining set A is

labeled “zero.” The doubly shafted arrow in Figure 10.1 denotes the inverse Fourier

transform

ci′i′′ =
1

n2

n−1∑

j′=0

n−1∑

j′′=0

Cj′j′′ω
−i′j′ω−i′′j′′ ,

where, here, n = q− 1. The right side of Figure 10.1 depicts the codeword as a set of

values lying along a planar curve. The curve denotes the set B. The complement Bc is

labeled “don’t care.” The codeword, when restricted to the bicyclic plane, is the vector

that consists of those components of the two-dimensional inverse Fourier transform

lying on the curve, defined by G(x, y) = 0.

The convolution property of the Fourier transform shows that the bispectrum of

a codeword retains zeros in the same components if the bicyclic plane, or torus, is

cyclically shifted in the row direction or the column direction. This is because a bicyclic

shift of the bicyclic plane corresponds to multiplication of the bispectral components

by powers of ω, which means that a bispectral component that is zero remains zero.

Thus a cyclic shift that preserves the curve also preserves the code.

The code definition is not immediately compatible with the notion of decoding, how-

ever. This is because the codeword bispectrum polynomial C(x, y) is not immediately

recoverable by computing the two-dimensional Fourier transform of the codeword. All

values of ci′i′′ = C(ω−i′ , ω−i′′), not on the curve, have been discarded. All that remains

known of the structure is depicted in Figure 10.2. Those components of the array c that

436 Codes on Curves and Surfaces

zero

Decoder

Don't know

Don't know

C (x,y)

C1,0
C0,0C0,1

C1,0

C0,0C0,1

Figure 10.2. Computing a spectrum from its shortened codeword.

are not on the curve are unknown. The decoder must infer these unknown components

to compute the Fourier transform, and it is far from obvious how this can be done.

The definition of the shortened form of the code reverses the situation. Now the

definition is immediately compatible with the notions of decoding, because components

of the array c, not on the curve, are known to be zero, but the definition is not compatible

with the notions of encoding. Not every polynomial C(x, y) can be used to encode a

shortened code. Only those that evaluate to zero off the curve can be used. It is not

immediately obvious how to select a bispectrum polynomial, C(x, y), that will produce

an array c with the required zero elements. Later, we will give a simple rectification of

this difficulty for the case of bicyclic hermitian codes.

10.3 Codes on affine curves and projective curves

Let G(x, y, z) be a regular, homogeneous, trivariate polynomial of degree m, with

coefficients in the field GF(q). Let P0, P1, P2, . . . , Pn−1 be the rational projective points

of G(x, y, z). These are the zeros of G(x, y, z) in the projective plane of the base field

GF(q).

Let SJ denote the set that consists of the zero polynomial and all homogeneous

trivariate polynomials C(x, y, z) of degree at most J , and with coefficients in GF(q).

The punctured code C(X) in the projective plane is defined as follows:

C(X) = {c(X) | cℓ = C(Pℓ) for ℓ = 0, . . . , n− 1; C(x, y, z) ∈ SJ }.

It is immediately evident that C(X) is a linear code, because the sum of two elements of

SJ is an element of SJ . Just as for codes on curves in the bicyclic plane, the number of

codewords in C(X) need not be the same as the number of polynomials in SJ , because

437 10.3 Codes on affine curves and projective curves

the same codeword might be generated by several polynomials in SJ . Possibly, if

J ≥ m, then G(x, y, z) will be in SJ , and it will map into the all-zero codeword as

will any polynomial multiple of G(x, y, z). Likewise, any two polynomials, whose

difference is a multiple of G(x, y, z), will map into the same codeword.

By working in the projective plane, one may obtain additional points of the curve

at infinity, thereby increasing the blocklength of the code. Many popular curves have

only a single point at infinity, which means that the blocklength of the projective code

will be larger by one. This single additional component might not be considered worth

the trouble of using projective coordinates. Possibly, a representation of a curve with a

single point at infinity, if it exists, may be attractive precisely because the affine code

is nearly as good as the projective code, and little is lost by choosing the convenience

of the affine code.

The punctured code C(X) in the affine plane is defined in the same way. Let G(x, y)

be a nonsingular bivariate polynomial of degree m, with coefficients in the field GF(q).

Let P0, P1, P2, . . . , Pn−1 be the rational affine points of G(x, y). These are the zeros of

G(x, y) in the affine plane over the base field GF(q). Let SJ denote the set that consists

of the zero polynomial and all bivariate polynomials C(x, y) of degree at most J , and

with coefficients in GF(q). Then

C(X) = {c(X) | cℓ = C(Pℓ) for ℓ = 0, . . . , n− 1; C(x, y) ∈ SJ }.

The code in the affine plane is the same as the code in the projective plane but with all

points at infinity deleted. The code in the bicyclic plane is the same as the code in the

affine plane but with all points with a zero coordinate deleted.

A lower bound on the minimum distance of code C in the affine plane or the bicyclic

plane can be computed easily by using Bézout’s theorem in the affine plane. The

identical proof can be given in the projective plane by using Bézout’s theorem in the

projective plane.

Theorem 10.3.1 The minimum distance of the code C on the smooth plane curve X

satisfies

dmin ≥ n− mJ ,

where m is the degree of the polynomial defining X .

Proof: Because G(x, y) was chosen to be irreducible, C(x, y) and G(x, y) can have no

common factor unless C(x, y) is a multiple of G(x, y). If C(x, y) is a multiple of G(x, y),

it maps to the all-zero codeword. Therefore, by Bézout’s theorem, either C(x, y) maps

to the all-zero codeword, or C(x, y) has at most mJ zeros in common with G(x, y)

in the base field GF(q). This means that the codeword has at least n − mJ nonzero

components. �

438 Codes on Curves and Surfaces

Henceforth we shall assume that J < n/m. Otherwise, the bound of the theorem

would be uninformative.

Next, we will determine the dimension k of the code C. First, consider the dimension

of the space SJ . This is the number of different terms xj′yj′′zj′′′ , where j′+ j′′+ j′′′ = J .

To count the number of such terms, write a string of j′ zeros followed by a one, then a

string of j′′ zeros followed by a one, then a string of j′′′ zeros. This is a binary number

of length J +2 with J zeros and two ones. The number of such binary numbers is equal

to the number of monomials of the required form. Thus

dim SJ =
(

J + 2

2

)
= 1

2
(J + 2)(J + 1).

The code C is obtained by a linear map from SJ onto the space of vectors on n points.

Therefore

k = dim C = dim SJ − dim(null space).

If J < m, then no polynomial in SJ is a multiple of G(x, y, z), so the dimension of

the null space is zero. If J ≥ m, then the null space is the space of all homogeneous

polynomials of the form

C(x, y, z) = G(x, y, z)A(x, y, z),

where A(x, y, z) is a homogeneous polynomial of degree J − m. Hence, reasoning as

before, the null space has dimension
(

J−m+2
2

)
. We conclude that

k =

1

2
(J + 1)(J + 2) if J < m

1

2
(J + 1)(J + 2)− 1

2
(J − m+ 1)(J − m+ 2) if J ≥ m.

The second case can be multiplied out as follows:

1

2
(J + 1)(J + 2)− 1

2
(J − m+ 1)(J − m+ 2) = mJ − 1

2
(m− 1)(m− 2)+ 1

= mJ − g + 1,

where g =
(

m−1
2

)
is the genus of the polynomial G(x, y, z). This is summarized in the

following corollary, which applies equally to codes on the bicyclic, affine, or projective

plane.

Corollary 10.3.2 A code of blocklength n on a smooth plane curve of degree m has

parameters satisfying the following conditions.

439 10.3 Codes on affine curves and projective curves

(1) If J < m:

k = 1

2
(J + 2)(J + 1) dmin ≥ n− mJ .

(2) If J ≥ m:

k = mJ − g + 1 dmin ≥ n− k − g + 1.

If the code is punctured by dropping those rational points of G(x, y, z) that have

z = 0, then we need only deal with the affine points (x, y, 1). Then we can think of

SJ as containing all polynomials C(x, y) = C(x, y, 1) whose degree is at most J . If

the code is further punctured by dropping these rational points of G(x, y), with x or

y equal to zero, then the epicyclic form of the code is obtained. Evaluating C(x, y) at

those rational points of G(x, y), with both x and y nonzero, is the same as computing

the inverse Fourier transform

ci′i′′ =
1

n2

n−1∑

i′=0

n−1∑

i′′=0

ω−i′j′ω−i′′j′′Cj′j′′

and keeping ci′i′′ only if (ω−i′ , ω−i′′) is a zero of G(x, y) = G(x, y, 1). These n values

of ci′i′′ form the codeword.

As a simple example of these ideas, we will describe an unconventional construction

of the doubly extended Reed–Solomon code, this time as a code in the projective plane.

The polynomial of degree m equal to one given by

G(x, y, z) = x + y + z

has genus g equal to zero over any finite field GF(q). It has n = q+ 1 rational points,

namely (−1, 1, 0) and (α,−1− α, 1). We can choose any J < n/m = q+ 1. Because

k = J + 1, any k ≤ q+ 1 is possible, and

dmin ≥ n− k + 1.

Using the Singleton bound, we conclude that

dmin = n− k + 1,

so this is a maximum-distance code. This amounts to yet another description of the

doubly extended Reed–Solomon codes over GF(q), this time as codes on a diagonal

line in the projective plane over GF(q).

440 Codes on Curves and Surfaces

10.4 Projective hermitian codes

Codes defined on hermitian curves, either punctured codes or shortened codes, are

called hermitian codes. We shall examine those codes obtained by puncturing to the pro-

jective hermitian curve. The Fermat version of the homogeneous hermitian polynomial

of degree q+ 1,

G(x, y, z) = xq+1 + yq+1 − zq+1,

has genus g = (1/2)q(q− 1) and has q3+ 1 zeros in the projective plane over the field

GF(q2). The Stichtenoth version of the homogeneous hermitian polynomial of degree

q+ 1 over GF(q2) is

G(x, y, z) = xq+1 − yqz − yzq.

It also has genus g = (1/2)q(q− 1) and q3 + 1 zeros in the projective plane over the

field GF(q2). The two polynomials will form equivalent codes.

We can choose any integer, J < n/m, where m = q + 1 is the degree of G(x, y, z).

Because n = q3 + 1, this becomes J < q2 − q + 1. Then, by Corollary 10.3.2, for

J < q+ 1 the codes have performance described by

n = q3 + 1;

k = 1

2
(J + 2)(J + 1);

dmin ≥ n− (q+ 1)J .

For J ≥ q+ 1, the codes have performance described by

n = q3 + 1;

k = (q+ 1)J − g + 1;

dmin ≥ n− k − g + 1.

We will calculate these performance parameters for the fields GF(4), GF(16), GF(64),

and GF(256).

For the field GF(4), q = 2 and g = 1. Thus m = 3 and J ≤ 2. Because J cannot be

larger than 2 in this field, projective hermitian codes over GF(4) can only have J = 1

or 2, and performance parameters given by

n = 9; k = 1

2
(J + 2)(J + 1); dmin ≥ 9− 3J .

441 10.4 Projective hermitian codes

Thus there are only two codes: the (9, 3, 6) code and the (9, 6, 3) code over GF(4),

respectively.

For the field GF(16), q = 4 and g = 6. Thus, m = 5 and J ≤ 12. For J = 1, . . . , 4,

the performance parameters of the projective hermitian codes over GF(16) are given by

n = 65; k = 1

2
(J + 2)(J + 1); dmin ≥ 65− 5J ,

while for J = 5, . . . , 12, the performance parameters are given by

n = 65; k = 5J − 5; dmin ≥ 65− 5J .

Thus, these hermitian codes in the projective plane over GF(16), for J =
1, . . . , 4, 5, 6, . . . , 11, 12, have performance parameters given by (65, 3, 60), (65, 6, 55),

(65, 10, 50), (65, 15, 45), (65, 20, 40), (65, 25, 35), (65, 30, 30), (65, 35, 25),

(65, 40, 20), (65, 45, 15), (65, 50, 10), and (65, 55, 5).

For the field GF(64), q = 8 and g = 28. Thus m = 9 and J ≤ 56. For J = 1, . . . , 8,

the performance parameters are given by

n = 513; k = 1

2
(J + 2)(J + 1); dmin ≥ 513− 9J .

For J = 9, 10, . . . , 56, the performance parameters of the projective hermitian codes

over GF(64) are given by

n = 513; k = 9J − 27; dmin ≥ 513− 9J .

Thus, these hermitian codes in the projective plane over GF(64) have performance

parameters, for J = 1, . . ., 8, 9, 10, 11, . . ., 55, 56, given by (513, 3, 504), (513, 6, 495),

. . ., (513, 45, 441), (513, 54, 432), (513, 63, 423), . . ., (513, 477, 9).

For the field GF(256), q = 16 and g = 120. Thus, m = 17 and J ≤ 240. For

J = 1, . . . , 16, the performance parameters are given by

n = 4097; k = 1

2
(J + 2)(J + 1); dmin ≥ 4097− 17J ,

while for J = 17, . . . , 240, the performance parameters of the projective hermitian

codes over GF(256) are given by

n = 4097; k = 17J − 119; dmin ≥ 4097− 17J .

Thus, these hermitian codes in the projective plane over GF(256) have perfor-

mance parameters, for J = 1, . . . , 16, 17, 18, 19, . . . , 239, 240, given by

(4097, 3, 4080), (4097, 6, 4063), …, (4097, 153, 3825), (4097, 170, 3808), (4097, 187,

3791), (4097, 204, 3774), …, (4097, 3944, 34), (4097, 3961, 17).

442 Codes on Curves and Surfaces

10.5 Affine hermitian codes

An hermitian code can be further punctured to the affine plane. It is then called

an affine hermitian code. An affine hermitian code is a code of a smaller block-

length and with a simpler structure than a projective hermitian code. Accordingly,

the encoders and decoders are simpler, both conceptually and in implementation. The

parameters of the code depend on which form of the hermitian polynomial is used

to define the curve. This is because the number of points of the curve that lie at

infinity depend on which form of the hermitian polynomial is used. We will discuss

the parameters of the affine hermitian codes, constructed first with the Fermat ver-

sion of the hermitian polynomial, then with the Stichtenoth version of the hermitian

polynomial.

When constructed from the Fermat version of the hermitian polynomial,

G(x, y) = xq+1 + yq+1 − 1,

the affine hermitian code has blocklength n = q3 − q. Consequently, the blocklength

and (the bound on) minimum distance of the shortened code are both reduced by q+ 1

compared with the projective code. Therefore, the affine hermitian codes, constructed

from the Fermat version of the hermitian polynomial, for J < q+1, have performance

described by

n = q3 − q;

k = 1

2
(J + 2)(J + 1);

dmin ≥ n− (q+ 1)J ,

while for J ≥ q+ 1, the codes have performance described by

n = q3 − q;

k = (q+ 1)J − g + 1;

dmin ≥ n− k − g + 1.

We will calculate these performance parameters for the fields GF(4), GF(16), GF(64),

and GF(256).

For the field GF(4), q = 2 and g = 1. The only hermitian codes are for J = 1 and

2. The only code worth mentioning is a (7, 3, 4) code over GF(4).

For the field GF(16), q = 4 and g = 6. Thus m = 5 and J ≤ 11. For J = 1, . . . , 4,

the performance parameters of the affine hermitian codes over GF(16) based on the

443 10.5 Affine hermitian codes

Fermat version of the hermitian polynomial are given by

n = 60; k = 1

2
(J + 2)(J + 1); dmin ≥ 60− 5J ,

while for J = 5, . . . , 11, the performance parameters of the codes are given by

n = 60; k = 5J − 5; dmin ≥ 60− 5J .

Thus, these affine hermitian codes over GF(16), for J = 1, . . . , 4, 5, 6, . . . , 11, have

performance parameters given by (60, 3, 55), (60, 6, 50), (60, 10, 45), . . . , (60, 30, 25),

(60, 35, 20), . . . , and (60, 50, 5).

For the field GF(64), q = 8 and g = 28. Thus m = 9 and J ≤ 55. For J = 1, . . . , 8,

the performance parameters of the affine hermitian codes over GF(64) based on the

Fermat version of the hermitian polynomial are given by

n = 504; k = 1

2
(J + 2)(J + 1); dmin ≥ 504− 9J ,

while for J = 9, 10, . . . , 55, the performance parameters of the codes are

n = 504; k = 9J − 27; dmin ≥ 504− 9J .

Thus, these affine hermitian codes over GF(64), for J = 1, . . . , 8, 9, 10, . . . , 55,

have performance parameters given by (504, 3, 495), (504, 6, 486), . . . , (504, 45, 432),

(504, 54, 443), . . . , (504, 468, 9).

For the field GF(256), q = 16 and g = 120. Thus m = 17 and J ≤ 239. For

J = 1, . . . , 16, the performance parameters of the affine hermitian codes over GF(256)

based on the Fermat version of the hermitian polynomial are given by

n = 4080; k = 1

2
(J + 2)(J + 1); dmin ≥ 4080− 17J ,

while for J = 17, . . . , 239, the performance parameters of the codes are given by

n = 4080; k = 17J − 119; dmin ≥ 4080− 17J .

Thus, these affine hermitian codes over GF(256), for J = 1, . . . , 239, have perfor-

mance parameters given by (4080, 3, 4063), (4080, 6, 4046), . . . , (4080, 153, 3808),

(4080, 170, 3791), . . . , (4080, 3944, 17).

This completes our brief inventory of codes on the affine plane constructed from the

Fermat version of the hermitian polynomial.

We now turn to the second variation on this topic. This is the topic of codes on the

affine plane constructed from the Stichtenoth version of the hermitian polynomial. With

the polynomial

G(x, y) = xq+1 + yq + y,

444 Codes on Curves and Surfaces

the affine hermitian code has blocklength n = q3. Consequently, the Stichtenoth version

of the hermitian polynomial will produce codes of larger blocklength when evaluated

in the affine plane. The affine hermitian codes, constructed with this polynomial, are

nearly the same as the projective hermitian codes, except that the blocklength and the

(bound on) minimum distance are both reduced by one.

For the field GF(16), q = 4 and g = 6. Thus m = 5 and J ≤ 12. For J = 1, . . . , 4,

the performance parameters of these affine hermitian codes over GF(16) based on the

Stichtenoth version of the hermitian polynomial are given by

n = 64; k = 1

2
(J + 2)(J + 1); dmin ≥ 64− 5J ,

while, for J = 5, . . . , 12, the performance parameters of the codes are given by

n = 64; k = 5J − 5; dmin ≥ 64− 5J .

Thus, these affine hermitian codes over GF(16), for J = 1, . . . , 4, 5, 6, . . . , 12,

have performance parameters given by (64, 3, 59), (64, 6, 54), (64, 10, 49),

(64, 15, 44), . . . , (64, 45, 14), (64, 50, 9), (64, 55, 4).

For the field GF(64), q = 8 and g = 28. Thus m = 9 and J ≤ 56. For J = 1, . . . , 8,

the performance parameters of these affine hermitian codes over GF(64) based on the

Stichtenoth version of the hermitian polynomial are given by

n = 512; k = 1

2
(J + 2)(J + 1); dmin ≥ 512− 9J ,

while, for J = 9, 10, . . . , 56, the performance parameters of these affine hermitian

codes are given by

n = 512; k = 9J − 27; dmin ≥ 512− 9J .

Thus, these affine hermitian codes over GF(64), for J = 9, 10, . . . , 56, have perfor-

mance parameters given by (512, 3, 503), (512, 6, 494), . . ., (512, 45, 440),

(512, 54, 431), (512, 63, 422), . . ., (512, 477, 8).

For the field GF(256), q = 16 and g = 120. Thus m = 17 and J ≤ 240. For

J = 1, . . . , 16, the performance parameters of the affine hermitian codes over GF(256)

based on the Stichtenoth version of the hermitian polynomial are given by

n = 4096; k = 1

2
(J + 2)(J + 1); dmin ≥ 4096− 17J ,

while, for J = 17, . . . , 240, the performance parameters of the affine hermitian codes

are given by

n = 4096; k = 17J − 119; dmin ≥ 4096− 17J .

445 10.6 Epicyclic hermitian codes

Thus, the affine hermitian codes over GF(256), for J = 1, 2, . . . , 239, 240, have

performance parameters given by (4096, 3, 4079), (4096, 6, 4062), . . . , (4096, 3944,

33), (4096, 3961, 16).

10.6 Epicyclic hermitian codes

An hermitian code can be further punctured to the bicyclic plane. Much of the underlying

structure of the hermitian codes stands out quite clearly when the code is restricted to

the bicyclic plane, thereby defining an epicyclic hermitian code. Because of the simpler

structure, some might even take the view that the epicyclic code is the more fundamental

form of the hermitian code, just as some might take the view that the cyclic code is the

more fundamental form of the Reed–Solomon code.

The bicyclic plane over a finite field can be regarded as a torus. The epicyclic form

of the hermitian code, then, lies on a torus, and many of its automorphisms are shifts

on the torus that leave the code invariant. There is also a simple characterization of the

dual of an epicyclic hermitian code, which will be given in Section 10.7.

The epicyclic hermitian code over GF(q2), when using the Fermat form xq+1 +
yq+1 + 1, has blocklength n = (q − 2)(q + 1)2 = q3 − 3q − 2, in contrast to the

corresponding affine hermitian code, which has blocklength n = q3 − q.

For the field GF(16), q = 4 and g = 6. Thus m = 5 and J ≤ 9. For J = 1, . . . , 4,

the performance parameters of these epicyclic hermitian codes over GF(16) based on

the Fermat form of the hermitian polynomial are given by

n = 50; k = 1

2
(J + 2)(J + 1); dmin ≥ 50− 5J ,

while, for J = 5, . . . , 9, the performance parameters of the codes are given by

n = 50; k = 5J − 5; dmin ≥ 50− 5J .

Thus, these epicyclic hermitian codes over GF(16), for J = 1, . . . , 4, 5, 6, . . . , 9 have

performance parameters given by (50, 3, 45), (50, 6, 40), (50, 10, 35), . . . , (50, 30, 15),

(50, 35, 10), (50, 40, 5).

For the field GF(64), q = 8 and g = 28. Thus m = 9 and J ≤ 53. For J = 1, . . . , 8,

the performance parameters of these epicyclic hermitian codes over GF(64) based on

the Fermat form of the hermitian polynomial are given by

n = 486; k = 1

2
(J + 2)(J + 1); dmin ≥ 486− 9J ,

while, for J = 9, . . . , 53, the performance parameters of the codes are given by

n = 486; k = 9J − 27; dmin ≥ 486− 9J .

446 Codes on Curves and Surfaces

Thus, these epicyclic codes over GF(64), for J = 1, . . . , 53, have performance param-

eters given by (486, 3, 477), (486, 6, 468), . . . , (486, 45, 414), (486, 54, 405), . . . ,

(486, 450, 9).

For the field GF(256), q = 16 and g = 120. Thus m = 17 and J ≤ 237. For

J = 1, . . . , 16, the performance parameters of these epicyclic codes over GF(256)

based on the Fermat form of the hermitian polynomial are given by

n = 4046; k = 1

2
(J + 2)(J + 1); dmin ≥ 4046− 17J ,

while, for J = 54, . . . , 237, the performance parameters of the codes are given by

n = 4046; k = 17J − 119, dmin ≥ 4046− 17J .

Thus, these affine hermitian codes over GF(256), for J = 1, . . . , 237, have perfor-

mance parameters given by (4046, 3, 4029), (4046, 6, 4012), . . . , (4046, 153, 3774),

(4046, 170, 3757), . . . , (4046, 3910, 17).

This completes our brief inventory of codes on the bicyclic plane constructed from

the Fermat version of the hermitian polynomial.

We now turn to the second variation on the topic of epicyclic hermitian codes. This is

the topic of epicyclic codes constructed from the Stichtenoth version of the hermitian

polynomial. The epicyclic hermitian code over GF(q2), using the Stichtenoth form

xq+1 + yq + y, has blocklength n = q3 − q, in contrast to the corresponding affine

hermitian code, which has blocklength q3.

For the field GF(16), q = 4 and g = 6. Thus m = 5 and J ≤ 11. For J = 1, . . . , 4,

the performance parameters of these epicyclic hermitian codes over GF(16) based on

the Stichtenoth version of the hermitian polynomial are given by

n = 60; k = 1

2
(J + 2)(J + 1); dmin ≥ 60− 5J ,

while, for J = 5, . . . , 11, the performance parameters of the codes are given by

n = 60; k = 5J − 5; dmin ≥ 60− 5J .

Thus, these epicyclic hermitian codes over GF(16), for J = 1, . . . , 4, 5, 6, . . . , 11,

have performance parameters given by (60, 3, 55), (60, 6, 50), (60, 10, 45), (60, 15, 40),

(60, 20, 35), (60, 25, 30), (60, 30, 25), (60, 35, 20), (60, 40, 15), (60, 45, 10), and

(60, 50, 5).

For the field GF(64), q = 8 and g = 28. Thus m = 9 and J ≤ 55. For J = 1, . . . , 8,

the performance parameters of these epicyclic hermitian codes over GF(64) based on

the Stichtenoth version of the hermitian polynomial are given by

n = 504; k = 1

2
(J + 1)(J + 1); dmin ≥ 504− 9J ,

447 10.7 Codes shorter than hermitian codes

while, for J = 9, . . . , 55, the performance parameters of the codes are given by

n = 504; k = 9J − 27; dmin ≥ 504− 9J .

Thus, these epicyclic hermitian codes over GF(64), for J = 1, . . . , 55, have

performance parameters given by (504, 3, 495), (504, 6, 486), . . . , (504, 45, 432),

(504, 54, 423), . . . , (504, 459, 18), (504, 468, 9).

For the field GF(256), q = 16 and g = 120. Thus m = 17 and J ≤ 239. For

J = 1, . . . , 16, the performance parameters of these epicyclic hermitian codes over

GF(256) based on the Stichtenoth polynomial are given by

n = 4080; k = 1

2
(J + 2)(J + 1); dmin ≥ 4080− 17J ,

while, for J = 17, . . . , 239, the performance parameters of the codes are given by

n = 4080; k = 17J − 119; dmin ≥ 4080− 17J .

Thus, these epicyclic hermitian codes over GF(256), for J = 1, . . . , 239, have perfor-

mance parameters given by (4080, 3, 4063), (4080, 6, 4046), . . . , (4080, 153, 3808),

(4080, 170, 3791), . . . , (4080, 3944, 17).

10.7 Codes shorter than hermitian codes

An affine Reed–Solomon code over GF(q2) has blocklength q2. An affine hermitian

code over GF(q2) based on the polynomial xq+1 + yq + y has blocklength q3. Thus

the hermitian code is q times as long as the Reed–Solomon code. For example, the

hermitian code over the field GF(256) is sixteen times as long as the Reed–Solomon

code over GF(256). Although the notion of codes on curves was introduced in order to

find long codes, for some applications the hermitian code may actually be too long. Are

there good classes of codes whose blocklengths lie between q2 and q3? We shall give

a sequence of codes for the field GF(256) having blocklengths 256, 512, 1024, 2048,

and 4096. A code from this sequence of blocklength 256 is a Reed–Solomon code over

GF(256). A code from this sequence of blocklength 4096 is an hermitian code over

GF(256).

Recall that the hermitian polynomial x17+ y16+ y has 4096 affine zeros, so it can be

used to form a code of blocklength 4096. A polynomial that is similar to the hermitian

polynomial is x17+ y2+ y. We shall see that this alternative polynomial has 512 affine

zeros. It can used to form a code of blocklength 512 over GF(256). This is twice as

long as a Reed–Solomon code over this field. In this sense, the code that is based on

polynomial x17 + y2 + y is the simplest generalization of a Reed–Solomon code in a

family that includes the hermitian code.

448 Codes on Curves and Surfaces

The bivariate polynomial x17 + y2 + y has genus 8, and it has all the zeros allowed

by the Hasse–Weil bound. Such a polynomial is called a maximal polynomial. The

polynomial x17+ y2+ y is singular, having a singular point at infinity, and so its genus

cannot be determined from the Plücker formula. The genus can be determined from the

cardinality of the gap sequence2 of the integer semigroup generated by 2 and 17. The

semigroup consists of the sequence ρr = 0, 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, . . .

The gaps in this sequence form the set {1, 3, 5, 7, 9, 11, 13, 15}. Because there are eight

gaps, the genus of the polynomial x17 + y2 + y is 8.

The Hasse–Weil bound

n ≤ q+ 1+ g⌊2√q⌋

then says that the number of rational points of the polynomial x17 + y2 + y is at most

513. We shall see that this polynomial has as many zeros as the Hasse–Weil bound

allows. First, note that there is one projective zero at infinity. This is the point (0, 1, 0).

Then, note that at any value of x, say x = γ , there can be at most two values of y that

satisfy y2 + y + γ 17 = 0. To see that this polynomial in y always has two solutions,

note that γ 17 is always an element of GF(16). Let β = γ 17. Then y2 + y + β either

factors in GF(16), and so has two zeros in GF(16), or is irreducible in GF(16), and so

has two zeros in GF(256). Either way, the polynomial y2 + y + γ 17 has two zeros for

each of 256 values of γ . This gives 512 zeros in the affine plane GF(256)2 and a total

of 513 zeros in the projective plane.

We are nearly ready to describe all of the promised collection of polynomials that

give good codes of various lengths. First, we will return to the hermitian polynomial

over GF(256) to analyze its structure in more detail. This polynomial, which has 4080

bicyclic zeros, can be written in the form

x17 + y16 + y = x17 + 1+ p(y),

where

p(y) = y16 + y + 1

= (y8 + y6 + y5 + y3 + 1)(y8 + y6 + y5 + y4 + y3 + y + 1).

Because each of its two (irreducible) factors has degree 8, we conclude that the univari-

ate polynomial p(y) has all its zeros in GF(256). Now we can see that some, but not

all, of the zeros of x17 + y16 + y occur where both x17 + 1 = 0 and p(y) = 0. Because

the first equation has seventeen solutions and the second has sixteen solutions, the pair

2 This could have been given as a more general definition of the genus since it applies to more polynomials than
does the Plücker formula.

449 10.7 Codes shorter than hermitian codes

has 272 solutions. More generally, we can separate the polynomial as

x17 + y16 + y = (x17 + β)+ (y16 + y + β),

where β is a nonzero element of GF(16). The polynomial x17+β has seventeen zeros.

The polynomial y16 + y + β has sixteen zeros, which can be found by making the

substitution y = βw. This yields

y16 + y + β = β(w16 +w + 1),

and the zeros of y16 + y + β are easily found from the zeros of w
16 + w + 1. There

are fifteen nonzero values of β. Finally, the zeros of the original bivariate polynomial

are simply computed by pairing, for each value of β, the zeros of two univariate

polynomials. This gives 15 · 16 · 17 = 4080 bicyclic zeros.

The observation that the hermitian polynomial can be constructed by finding

a polynomial p(y) that has sixteen zeros leads us to define the following list of

polynomials:

G(x, y) = x17 + y2 + y;

G(x, y) = x17 + y4 + y;

G(x, y) = x17 + y8 + y4 + y2 + y;

G(x, y) = x17 + y16 + y.

In each case, the polynomial has the form

G(x, y) = x17 + 1+ p(y),

where p(y) is a univariate polynomial over GF(2) that has all its zeros in GF(256).

The four univariate polynomials p(y) are given by

p(y) = y2 + y + 1;

p(y) = y4 + y + 1;

p(y) = y8 + y4 + y2 + y + 1;

p(y) = y16 + y + 1;

= (y8 + y6 + y5 + y3 + 1)(y8 + y6 + y5 + y4 + y3 + y + 1).

Those four polynomials have two, four, eight, and sixteen zeros, respectively, in

GF(256). By repeating the previous analysis of the hermitian polynomial, we can

conclude that the four bivariate polynomials G(x, y) have 4080, 2040, 1020, and 510

bicyclic zeros, respectively. These polynomials can be used to construct codes whose

blocklengths are multiples of 255. In particular, the codes have blocklengths equal to

255 times two, four, eight, or sixteen.

450 Codes on Curves and Surfaces

Problems

10.1 Prepare a table comparing the following codes:

(a) the hermitian codes over GF(64) of blocklength 512;

(b) the composite Reed–Solomon codes over GF(64) of blocklength 512;

(c) the BCH codes over GF(64) of blocklength 512;

(d) the Reed–Solomon codes over GF(642) of blocklength 256.

10.2 Prepare a list of hermitian codes over GF(1024).

10.3 Factor p(y) = y16 + y + 1 over GF(2). Show that all zeros of p(y) are in

GF(256). Repeat for the polynomials y8 + y4 + y2 + y + 1, y4 + y + 1, and

y2 + y + 1.

10.4 (a) What is the gap sequence for the polynomial

p(x, y) = x17 + y4 + y?

(b) What is the genus of this polynomial? Why?

(c) How many rational zeros does the Hasse–Weil bound allow for this

polynomial?

(d) Find the rational zeros.

10.5 (a) How many mod-q conjugates are there of an element of GF(q2)?

(b) Define the norm of the vector v over GF(q2) as 〈v · v∗〉, where v∗ denotes

the vector whose components are the conjugates of the components of v

(with β∗ = β if β is an element of GF(q)). Let v = (x, y, z). What is the

norm of v?

10.6 Show that the polynomial

p(x) = (xq+1 + yq+1 + 1)q−1 + 1

is irreducible over GF(q2).

10.7 Consider the polynomial

p(x, y, z) = x15y3 + y15z3 + z15x3

over GF(64).

(a) What does Serre’s improvement of the Hasse–Weil bound say about the

number of rational points?

(b) Show that the polynomial has 948 rational points.

(c) What are the parameters of the codes obtained by evaluating polynomials

along this curve?

10.8 Prove that the dual of a shortened linear code is a puncture of the dual code.

451 Notes

10.9 Using Problem 10.8, show that a shortened epicyclic hermitian code is

equivalent to a punctured epicyclic hermitian code.

10.10 Ahyperelliptic curve is a curve formed from a nonsingular polynomial of genus

g of the form

p(x, y) = y2 + h(x)y − f (x),

where deg f (x) = 2g + 1 and deg h(x) < g. Show that the zeros of the

polynomial

p(x, y) = x17 + y2 + y

form a hyperelliptic curve. Graph this polynomial over the real field.

10.11 Consider the polynomial

p(x, y, z) = xry + yrz + zrx

over the field GF(q). Show that the polynomial is irreducible if q and r2−r+1

are coprime.

10.12 Extend the (49, 35, 7) bicyclic hyperbolic code over GF(8) to the projective

plane. What are the performance parameters?

10.13 Let GF(27) = GF(2)[x]/〈x7 + x + 1〉. For y = x4 + x3 + 1 ∈ GF(27)∗,
determine a ∈ {0, 1, . . . , 126} such that y = xa. (Hint: Use the euclidean

algorithm to write y as a quotient y = g(x)/h(x) of two polynomials g(x) and

h(x), each of degree at most 3 in x.)

10.14 Construct a (91, 24, 25) binary code by puncturing first a (92, 24, 26) binary

code, which is obtained by starting with a (23, 8, 13) Klein code over GF(8)

and replacing each octal symbol by four bits, one of which is a simple parity

check on the other three. Is there a cyclic (91, 24, 25) binary code?

10.15 Prepare a table of code parameters for the codes based on the polynomials of

Section 10.7.

10.16 Find the change of variables that will change the Stichtenoth version of the

hermitian polynomial into the Fermat version of the hermitian polynomial.

Verify correctness by working through the change of variables. Is there any

other change of variables with binary coefficients that will give another form

of the hermitian polynomial? Why?

Notes

The Reed–Solomon codes, although introduced on the affine line, were originally

popularized in cyclic form. These cyclic codes were later lengthened to the affine line

452 Codes on Curves and Surfaces

and the projective line. The hermitian codes were introduced in the projective plane and

studied there, and only later were they shortened to the affine plane or the bicyclic plane.

Perhaps this difference in history is because Reed–Solomon codes were popularized and

applied by engineers, whereas hermitian codes were first discussed by mathematicians.

The idea of using the points of an algebraic curve to index the components of a

code is due to Goppa (1977, 1981). The very powerful and elegant theorems of alge-

braic geometry, notably the Reimann-Roch theorem and the Hasse–Weil theorem, were

immediately available to investigate the nature of such codes. These powerful theorems

led the early research away from the practical issues of encoder and decoder design for

codes of moderate blocklength and toward the study of asymptotic statements about

the performance of very large codes. A major milestone in this direction is Tsfasman,

Vlădut, and Zink (1982), which proved that in fields at least as large as GF(49), there

exist codes on curves whose performance is not only better than known codes, but

better than known asymptotic bounds on the performance of codes of very large block-

length. The paper by Justesen et al. (1989) developed the notions of codes on curves

more directly, using the theorems of algebraic geometry only with a light touch to

determine the performance of the codes, thereby making the codes more accessible to

those with little or no algebraic geometry, and opening the door to many later devel-

opments. Hermitian codes comprise an elegant family of codes on curves that form

a rather compelling generalization of Reed–Solomon codes, and so have been widely

studied. In this book, the family of hermitian codes is our preferred instance of a family

of codes on curves. In this chapter, we view the hermitian codes as punctured codes; in

the next chapter, we view them as shortened codes. Indeed, these codes are the same

when restricted to the bicyclic plane. The punctured codes are also called evaluation

codes. The true minimum distances of hermitian codes were determined by Yang and

Kumar (1988).

The term “epicyclic code” was introduced in this chapter because I found it desirable

to speak of codes restricted to the bicyclic plane as a class, and no suitable standard

term seemed to exist. Though the codes themselves are not cyclic, the codes of interest

do have several internal cyclic properties, so the term “epicyclic” seems to fit. With

this term, moreover, we can complete our classification, begun in Chapters 2 and 5,

for codes on lines and codes on planes, by introducing the names “codes on epicyclic

curves,” “codes on affine curves,” and “codes on projective curves.”

One may even choose to take the view that, just as the cyclic form is the more

elementary form of the Reed–Solomon code, so too the epicyclic form is the more

elementary form of the hermitian code. Certainly, the points outside the bicyclic plane

have a different character and must be treated much differently within the usual locator

decoding and encoding algorithms.

11 Other Representations of Codes on Curves

In contrast to the class of Reed–Solomon codes, which was introduced by engi-

neers, the class of hermitian codes was introduced by mathematicians as an example

of an important class of algebraic geometry codes. In this chapter, we shall rein-

troduce hermitian codes as they might have appeared had they been discovered by

the engineering community. Some additional insights will be exposed by this alter-

native formulation. In particular, we will shift our emphasis from the notion of

punctured codes on curves to the notion of shortened codes on curves. We then

give constructions of hermitian codes as quasi-cyclic codes and as linear combina-

tions of Reed–Solomon codes akin to the Turyn construction. Much of the structure

of hermitian codes stands out quite clearly when a code is restricted to the bicyclic

plane (or torus), thereby forming an epicyclic hermitian code. If one takes the view

that the cyclic form is the more fundamental form of the Reed–Solomon code, then

perhaps one should take the parallel view that the epicyclic form is the more funda-

mental form of the hermitian code. In particular, we shall see that, for the epicyclic

form of an hermitian code, there is no difference between a punctured code and a

shortened code. This is important because the punctured code is compatible with

encoding and the shortened code is compatible with decoding. In Section 11.2, we

shall provide a method for the direct construction of shortened epicyclic hermitian

codes.

The epicyclic hermitian code inherits certain automorphisms from the underlying

curve. An epicyclic hermitian code can be converted into a quasi-cyclic code. For

example, the fifty components of the epicyclic hermitian codeword c over GF(16)

can be serialized in any way to form a one-dimensional codeword. We shall see in

Section 11.3 that, under one such serialization, this fifty-point one-dimensional code-

word has the quasi-cyclic form of ten concatenated segments: c = | c0 | c1 | · · · | c9 |,
where each of the ten segments consists of five components taking values in GF(16).

A cyclic shift of c by one segment (or five components) produces another codeword.

Also, each of the ten segments can be individually cyclically shifted by one component

to produce another codeword of the same code.

We shall also see in this chapter how some codes on curves can be constructed

from Reed–Solomon codes in the same field. To this end, in Section 11.6 we

454 Other Representations of Codes on Curves

will give a Turyn representation of hermitian codes in terms of Reed–Solomon

codes.

11.1 Shortened codes from punctured codes

There are several close relationships between the punctured version and the shortened

version of an epicyclic code which we will explore in this section. For one thing, the

punctured codes and the shortened codes have the simple relationship of duality. Just

as the dual of a cyclic Reed–Solomon code is a cyclic Reed–Solomon code, so, too, the

dual of a punctured epicyclic hermitian code is a shortened epicyclic hermitian code.

Indeed, the dual of a punctured epicyclic code on any curve is a shortened epicyclic

code on that same curve. For another thing, when restricted to the bicyclic plane,

the punctured version and the shortened version of an hermitian code have equivalent

performance, and indeed are the same code.

We saw in Chapter 10 that the dimension and the minimum distance of a punctured

code CJ (X) on a curve X are given by

k = mJ − g + 1 dmin ≥ n− mJ .

In this chapter, we shall see that the dimension and the minimum distance of a shortened

code C′J (X) on a curve X are given by

k = n− mJ + g − 1 dmin ≥ mJ − 2g + 2.

These performance descriptions appear to be quite different, but it is only a matter of

the choice of J . If mJ in the second pair of formulas is replaced by n− mJ + 2g − 2,

the second pair of formulas reduces to the first pair of formulas.

More strikingly, for epicyclic hermitian codes, we will make a stronger statement.

Not only is the performance of a punctured epicyclic hermitian code equivalent to a

shortened epicyclic hermitian code, a punctured epicyclic hermitian codes is a shortened

epicyclic hermitian code. The same hermitian code can be described either way.

Recalling the notions of puncturing and shortening, the punctured form of a code on

the plane curve X is given by

C(X) =
{
c(X) | c ⇔ C; Cj′j′′ = 0 if (j′, j′′) ∈ A

}
,

and the shortened form of the hermitian code is given by

C′J (X) = {c(X) | c ⇔ C; Cj′j′′ = 0 if (j′, j′′) ∈ A′, c(X c) = 0},

where A and A′ are the defining sets of the two codes. If A = A′ = {(j′, j′′) |
j′ + j′′ ≤ J }, then both the code C(X) and the code C′(X) are obtained from the same

455 11.1 Shortened codes from punctured codes

primitive bicyclic code C = {c | c ⇔ C; deg C(x, y) ≤ J }; the first code is obtained

by puncturing C; the second, by shortening C.

Instead of choosing the same defining set for the two codes, it is more common to

use complementary sets as the two defining sets, and this is the form that we used

to state the performance equations at the start of the section. For this purpose, set

A = {(j′, j′′) | j′ + j′′ ≤ J } and set A′ = Ac. Then, in the language of polynomials,

the codes are defined as

CJ (X) = {c(X) | c ⇔ C; deg C(x, y) ≤ J }

and

C′J (X) = {c(X) | c ⇔ C; deg C̃(x, y) ≤ J , c(X c) = 0},

where a polynomial C̃(x, y) is the reciprocal of a polynomial C(x, y). While these

constructions of a punctured code CJ (X) and a shortened code C′J (X) appear to give

different codes, for epicyclic hermitian codes, they actually are equivalent constructions

in that they define the same set of codes. Specifically, we will prove that, for epicyclic

hermitian codes, CJ (X) is equivalent to C′
J+q2−2

(X) and is the dual of C′
2q2−5−J

. This

first statement is important because the punctured form is more suitable for encoding,

while the shortened form is more suitable for decoding.

The simplest demonstration that the two constructions give dual codes is to start from

the general fact that the dual of any shortened linear code is a puncture of the dual of

the linear code (see Problem 10.8). The punctured form of the hermitian code CJ (X)

arises by puncturing the bicyclic code defined by the set of bispectrum polynomials

C(x, y) that satisfy deg C(x, y) ≤ J . This means that the (unpunctured) bicyclic code

has defining set A = {(j′, j′′) | j′ + j′′ > J } (or j′ + j′′ ≥ J + 1). The dual C⊥ of this

bicyclic code has defining set Ac = {(j′, j′′) | j′ + j′′ ≤ J }. But this defining set is not

in the standard form of our definition of a shortened code; it must be reciprocated. The

two-dimensional spectrum is defined on a q − 1 by q − 1 array with indices running

from zero to q− 2. The reciprocal of j′ and j′′ are q− 2− j′ and q− 2− j′′. This means

that the reciprocal of Ac is given by

Ãc = {(j′, j′′) | (q− 2− j′)+ (q− 2− j′′) ≤ J }
= {(j′, j′′) | j′ + j′′ ≥ 2q− 4− J }.

With q replaced by q2, we conclude that the reciprocal of the dual hermitian code has

spectral components that satisfy C̃⊥
j′j′′ = 0 for j′ + j′′ > 2q2 − 5− J .

Next we will show that the punctured form of the hermitian code with parameter J is

the reciprocal of the shortened form of the hermitian code with parameter J + q2 − 1.

This is an important observation because it says that we may encode by viewing the

code as a punctured code and decode by viewing the same code as a shortened code.

456 Other Representations of Codes on Curves

Define the hermitian mask polynomial over GF(q2), with q = 2m, as follows:

H (x, y) = G(x, y)q−1 + 1

= (xq+1 + yq+1 + 1)q−1 + 1.

For any nonzero β and γ , βq+1 and γ q+1 have order q − 1, and so βq+1 and γ q+1

are elements of GF(q). Thus G(β, γ) = βq+1 + γ q+1 + 1 is always an element of

GF(q). This means that G(ω−i′ , ω−i′′)q−1 can only be zero or one. Therefore hi′i′′ =
H (ω−i′ , ω−i′′) equals zero if gi′i′′ is not zero, and equals one if gi′i′′ is zero. Then because

h2
i′i′′ = hi′i′′ in the bicyclic plane, the convolution theorem tells us that H (x, y)2 =

H (x, y) modulo 〈xq2−1 − 1, yq2−1 − 1〉.
This conclusion can also be reached directly. Recall that q is a power of 2, and using

(β + 1)2 = β2 + 1, write the following:

H (x, y) =
((

xq+1 + yq+1 + 1
)q−1

+ 1

)2

=
(

xq+1 + yq+1 + 1
)2q−2

+ 1

=
(

xq+1 + yq+1 + 1
)q (

xq+1 + yq+1 + 1
)q−2

+ 1.

Because q is a power of 2, and xq2 = x (mod xq2−1− 1) and yq2 = y (mod yq2−1− 1),

the first term becomes

(xq+1 + yq+1 + 1)q = xq2
xq + yq2

yq + 1

= xq+1 + yq+1 + 1.

Therefore

H (x, y)2 = H (x, y) (mod 〈xq2−1 − 1, yq2−1 − 1〉),

from which we conclude, as before, that H (x, y) is a bivariate idempotent polynomial.

The mask polynomial H (x, y) can be used to redefine the epicyclic hermitian code

as follows. Instead of evaluating the polynomial C(x, y) ∈ SJ on the bicyclic plane,

first multiply C(x, y) by H (x, y), then evaluate D(x, y) = H (x, y)C(x, y) on the bicyclic

plane. Let

D(X) = {d | d ⇔ D; D(x, y) = H (x, y)C(x, y); C(x, y) ∈ SJ }.

Then

di′i′′ =
{

ci′i′′ if (ω−i′ , ω−i′′) ∈ X

0 if (ω−i′ , ω−i′′) �∈ X .

457 11.1 Shortened codes from punctured codes

Because only those n points along the curve X are used to form the codeword, this

actually changes nothing about the codeword. Thus

D(X) = C(X).

Nevertheless, this reformulation makes the task of the decoder much more accessible.

Whereas ci′i′′ is not given to the decoder at points not on the curve, di′i′′ is known by the

decoder to be zero at those points. This means that the decoder can proceed as if D(X)

were the code. The following theorem says, moreover, that D(X) is the shortened

code.

Theorem 11.1.1 The punctured epicyclic hermitian code CJ (X) and the shortened

epicyclic hermitian code C′
q2−1−J

(X) are equivalent.

Proof: Let c be the codeword of the punctured code CJ (X) corresponding to the

spectrum polynomial C(x, y) ∈ SJ . This polynomial satisfies deg C(x, y) ≤ J ,

and the polynomial H (x, y) satisfies deg H (x, y) = q2 − 1. Therefore D(x, y) =
H (x, y)C(x, y) ∈ SJ+q2−1.

Evaluating D(x, y) on the curve X gives the same result as evaluating C(x, y) on the

curve X , so c is a codeword of CJ+q2−1. But evaluating D(x, y) at all points P of the

bicyclic plane gives D(P) = 0 for all P �∈ X , so we conclude that d is also a codeword

of the shortened code C′
J+q2−1

(X). Hence C′
J+q2−1

(χ) ⊇ Cj(χ).

To show that every codeword of the shortened code C ′
J+q2−1

(X) can be formed in

this way, suppose that c′ corresponds to the spectrum polynomial C ′(x, y) ∈ SJ+q2−1.

Because c′ is a codeword of the shortened code, C ′(P) must be zero for any point P not

on the curve. That is, C ′(P) = 0 whenever H (P) = 0. A variation of the nullstellensatz,

given in Theorem 7.9.2 as the weak discrete nullstellensatz, states that the ideal I(Z(J))

is equal to J . Let I = 〈H (x, y)〉. This means that C ′(x, y) is a multiple of H (x, y), say

C(x, y)H (x, y). Hence C′
J+q2−1

(X) ⊆ CJ (X). �

Theorem 11.1.1 asserts that a punctured epicyclic hermitian code can also be regarded

as a shortened epicyclic hermitian code. This means, of course, that the dimension and

minimum distance of a code agree for the two descriptions. To verify this, recall that

the punctured epicyclic hermitian code CJ has the following performance parameters:

k = mJ − g + 1 dmin ≥ n− mJ .

The shortened epicyclic hermitian code, on the other hand, denoted C′
q2−2−J

= C′
J ′ ,

with J ′ = q2 − 2− J , has dimension

k = n− mJ ′ + g − 1.

458 Other Representations of Codes on Curves

But, because n = q3 − q, this becomes

k = q3 − q− (q+ 1)(q2 − 2− J)+ 1

2
q(q− 1)− 1

= mJ + 1− g,

which is the same as the dimension of CJ . In a similar way, the shortened code C′
q2−2−J

,

with J ′ = q2 − 2− J , has minimum distance

dmin ≥ mJ ′ − 2g + 2

= n− mJ .

Thus, as promised by Theorem 11.1.1, the code viewed as a shortened code has the same

performance as the code viewed as a punctured code. This is in accordance with the

earlier discussion that said that for every punctured epicyclic code there is a shortened

epicyclic code on the same curve with the same performance. Here, however, we have

gone even further for the special case of an hermitian code. In this case, the code not

only has the same performance, it is the same code but for reciprocation.

For example, the hermitian curve over the field GF(16) is based on the polynomial

G(x, y) = x5 + y5 + 1,

which has the inverse Fourier transform

gi′i′′ = G(ω−i′ , ω−i′′).

The punctured epicyclic codeword c(X), corresponding to spectrum polynomial

C(x, y), consists only of those components of the inverse Fourier transform c, with

components ci′i′′ = C(ω−i′ , ω−i′′), for which (ω−i′ , ω−i′′) is on the curve X . The com-

ponents of c not on the curve are discarded. Therefore an inverse Fourier transform

cannot recover C(x, y) directly from the punctured codeword c(X) because the miss-

ing components of c are not available. Instead, by setting the missing components to

zero, and taking an inverse Fourier transform, the product H (x, y)C(x, y) is recovered

instead of just C(x, y).

The mask polynomial is given by

H (x, y) = G(x, y)G(x, y)2 + 1

= x5y10 + x10y5 + y10 + x10 + y5 + x5 (mod 〈x15 − 1, y15 − 1〉).

It has the inverse Fourier transform

hi′i′′ = H (ω−i′ , ω−i′′)

= g3
i′i′′ + 1.

459 11.2 Shortened codes on hermitian curves

Because G(x, y) has sixty bicyclic zeros, and the bicyclic plane has 225 points, we see

that H (x, y) has exactly 165 bicyclic zeros. It is easy to check further that H (x, y) has a

total of 183 projective zeros. The two curves X and Y , defined by G(x, y) and H (x, y),

are disjoint in the bicyclic plane and together completely fill the bicyclic plane over

GF(16). Of course, from Bézout’s theorem, we know that G(x, y) and H (x, y) have

seventy-five common zeros somewhere, though none of them are in the bicyclic plane

over GF(16).

As a final illustration, note that the hermitian curve over GF(16)2, based on the

polynomial

G(x, y) = x5 + y4 + y,

has a mask polynomial over GF(16)2, given by

H (x, y) = G(x, y)3 + 1 (mod〈x15 − 1, y15 − 1〉)
= y3 + y6 + y9 + y12 + x5(y2 + y8)+ x10(y + y4),

which is equal to its own square, so it can take only the values zero and one. This

polynomial has the property that

H (β, γ) =
{

1 if G(β, γ) = 0

0 if G(β, γ) �= 0.

To verify this, one performs the following polynomial multiplication:

G(x, y)H (x, y) = (y + y4)(x15 − 1)+ y(y15 − 1),

which says that every point (β, γ) is a zero of G(x, y)H (x, y). Finally, evaluate H (x, y)

on the curve x5 + y4 + y = 0 to get

H (x, y)|x5+y4+y=0 = y3 + y6 + y9 + y12.

The right side equals one for every nonzero value of y in GF(16). Therefore G(x, y)

and H (x, y) have no common zeros in the bicyclic plane.

11.2 Shortened codes on hermitian curves

The family of punctured codes on the curve corresponding to the polynomial G(x, y),

as defined in Section 10.3 by the defining set AJ = {(j′, j′′) | j′ + j′′ > J }, contains

codes of dimension k for k = mJ − g + 1 and for J = m, m + 1, . . ., where m

460 Other Representations of Codes on Curves

is the degree and g is the genus of the polynomial G(x, y). Because the designed

distance of a punctured code was given by d∗ = n−mJ as a consequence of Bézout’s

theorem, the maximum degree J of the set of bispectrum polynomials C(x, y) plays

an important role and J appears in the performance formulas multiplied by m, the

degree of G(x, y). Accordingly, within this family of punctured codes, as J increases,

the dimension k increases, by multiples of m, and the designed distance d∗ decreases

by multiples of m. This is a somewhat sparse family of codes. However, there are

many other defining sets between AJ and AJ+1, and also many codes between CJ and

CJ+1. Instead of evaluating polynomials in a set whose total degree is constrained, to

enlarge the class of codes defined on G(x, y), we will evaluate polynomials in a set

whose weighted degree is constrained. For example, most of the hermitian codes over

GF(256), as described in Section 10.5, have dimensions that are spaced by multiples of

17. We might want to have a code whose dimension lies between two of these available

dimensions. Moreover, as already mentioned, these codes are punctured codes, and

so are not immediately compatible with the task of decoding. For these reasons, one

may want to give an alternative definition of the codes. In this section, we shall define

the hermitian codes in a more deliberate way, as shortened codes, that enables us to

enlarge the family of codes. To do so, we will replace the degree of the bispectrum

polynomial by the weighted degree, which is a more delicate notion of degree that gives

each relevant monomial a unique weight whenever the polynomial admits a weight

function. Accordingly, we will restrict the choice of the polynomial G(x, y) to those

polynomials that admit a weight function. Then, instead of using Bézout’s theorem to

bound the minimum distance of a punctured code, we shall use the Feng–Rao bound

to bound the minimum distance of a shortened code. Among the codes constructed in

this way are the same codes as before, as well as many new codes.

A linear code on the curve X over GF(q) is any vector space over GF(q) whose

components are indexed by the n points of the curve X . The codewords are the

elements of this vector space. One defines a code by specifying the vector space

on the curve. The method that we have used in Chapter 10 to specify the vector

space is by constraints on the two-dimensional Fourier transform, setting to zero

certain components of the bispectrum. The defining set A of the code C specifies

those components of the two-dimensional Fourier transform C(x, y) in which every

codeword c is constrained to be zero. In that chapter, the polynomial C(x, y) is con-

strained only by its degree, which does not require the introduction of a monomial

order. In this section, we will constrain C(x, y) using the weighted graded order on

monomials.

The introduction of a monomial order is not the only change to be found in this

section. In addition to introducing the weighted graded order as the monomial order,

we will also change the codes from punctured codes on curves to shortened codes on

curves. These two changes go together well, and so we introduce them at the same

time. In addition, we will use the Feng–Rao bound instead of the Bézout theorem. The

461 11.2 Shortened codes on hermitian curves

Feng–Rao bound applies directly to the weighted graded order and it applies directly

to the shortened codes.

The Feng–Rao bound, given in Section 9.8, states that the only vector v of length

n on the curve G(x, y) = 0 having weight dFR(r)− 1 or less, whose two-dimensional

Fourier transform components are equal to zero for all indices smaller than r + 1

in the weighted order, is the all-zero vector. Because the Feng–Rao distance cannot

be stated analytically, we will usually use the weaker Goppa distance instead. The

Goppa distance profile is dŴ(r) = r + 1 − g, where r is the number of monomials

in the defining set. Thus, for a code on the curve defined by G(x, y) and with the

first r monomials in the weighted order as the defining set, the minimum distance

satisfies

dmin ≥ dŴ(r)

= r + 1− g,

as asserted by the Goppa bound.

To restate this expression in terms of a defining set A, recall that the only mono-

mials that need to be counted are those with j′ < m, where m is the degree of

G(x, y). To count these monomials, observe that there are m such monomials with

j′ + j′′ = j for large enough j, fewer than m monomials for small j, and that j takes on

J values. Thus there are fewer than mJ monomials. The defining set has the following

form:

A = {(j′, j′′) | j′ + j′′ ≤ J ; j′ < m},

and the number of monomials is the area of this trapezoidal set. By a straightforward

calculation, we will conclude that the area of this set is ‖A‖ = mJ − g + 1. One way

to organize this calculation is to observe that there can be up to m monomials for each

value of j = j′ + j′′, and there are J + 1 values of j. Because some values of j have

fewer than m monomials, we can write the area as follows:

r = ‖A‖

= m(J + 1)−
m−1∑

j=0

j

= m(J + 1)− 1

2
m(m− 1)

= mJ − 1

2
(m− 1)(m− 2)+ 1.

462 Other Representations of Codes on Curves

Therefore, for such a defining set, the designed distance d∗ is given by

d∗ = r + 1− g

= mJ − 2g + 2,

as asserted earlier. Finally, the dimension of the code is given by

k = n− r

= n− mJ + g − 1.

For example, the hermitian curve over GF(16) can be defined by using the poly-

nomial G(x, y) = x5 + y4 + y. We have seen that for this polynomial, the weights

of the monomials can be defined by setting ρ(x) = 4 and ρ(y) = 5. Then

ρ(x j′y j′′) = 4j′ + 5j′′. These monomials weights are shown in Figure 11.1.

To construct a code, we will select all j′ and j′′ such that 4j′ + 5j′′ < m as the

indices of the defining set A. For each choice of m, one obtains a hermitian code over

GF(16). In particular, if m = 31, then the code consists of all arrays on the affine

plane GF(16)2 such that Cj′j′′ is zero for all j′, j′′, corresponding to 4j′+ 5j′′ ≤ 31. The

blocklength of the affine code is 64 because there are sixty-four points on the affine

curve using the polynomial x9 + y8 + y. The dimension of the code is 38 because

there are twenty-six monomials for which 4j′+5j′′ ≤ 31. These twenty-six monomials

are 1, x, y, x2, . . . , x4y3. The minimum distance of the code is at least 21 according to

the Feng–Rao bound. Thus, as asserted, one obtains a (64, 38, 21) code. Clearly, it is

a simple matter to increase or decrease the defining set by one element to make the

dimension of the code smaller or larger by one. The minimum distance of the code is

then determined by the Feng–Rao bound.

30

25

20

5

10

15

0

29

24

9

14

19

4

28

13

18

23

8 24

25

20

21

26

16

17

22

27

12

7

6

5

2

3

4

1

j99

0

0 1 2 6543 7 j98

Figure 11.1. Weights of monomials for x5 + y4 + y.

463 11.3 Quasi-cyclic hermitian codes

11.3 Quasi-cyclic hermitian codes

In this section, we shall see that the hermitian codes over GF(q2) can be viewed as

quasi-cyclic codes over that same field.

Our first example is the Fermat version of the hermitian curve over the bicyclic

plane, as shown in Figure 11.2, for GF(16) (for which q = 4). This curve has fifty

points restricted to the torus GF(16)∗2. The fifty components of an epicyclic hermitian

codeword lie on the fifty points of the shortened hermitian curve. It is clear from

Figure 11.2 that the bicyclic portion of the hermitian curve is mapped onto itself if

the bicyclic plane is cyclically shifted by three places in the row direction (or by three

places in the column direction). To see that under such a shift a codeword of an epicyclic

hermitian code is mapped to another codeword of that same code, we refer to the

translation property of the Fourier transform. This property says that a cyclic translate of

the two-dimensional codeword in the bicyclic plane by three places in the row direction

(or in the column direction) is equivalent to multiplying the bispectrum componentwise

by ω3j′ (or by ω3j′′). The codeword c of C corresponds to a bispectrum C, which, in

turn, is represented by the polynomial C(x, y). If the polynomial C(x, y) with coefficient

Cj′j′′ is replaced by a new polynomial, B(x, y), with coefficients Bj′j′′ = Cj′j′′ω
3j′ (or

Bj′j′′ = Cj′j′′ω
3j′′), then the degree of the polynomial is unchanged. This means that

B(x, y) is also in the set SJ . Consequently, the cyclic translation of a codeword by three

places, either rowwise or columnwise, in the bicyclic plane is another codeword.

The fifty components of codeword c, lying on the fifty points of the hermitian curve,

can be serialized in any way to form a one-dimensional codeword. For example, the

14 • • • • •
13 • • • • •
12

11 • • • • •
10 • • • • •
9

8 • • • • •
7 • • • • •
6

5 • • • • •
4 • • • • •
3

2 • • • • •
1 • • • • •
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14� � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11.2. Hermitian curve over GF(16) in the bicyclic plane.

464 Other Representations of Codes on Curves

fifty components can be serially ordered by reading the points of the curve across rows.

As a one-dimensional vector, this codeword has the form of ten concatenated segments,

c =| c0 | c1 | · · · | c9 |,

where each segment consists of the five components in one of the nonzero rows of the

two-dimensional array.

Certain automorphisms of the epicyclic hermitian code are obvious consequences

of the underlying curve, as shown for GF(16) in Figure 11.2. A fifty-point codeword,

written by rows as a fifty-point vector, produces another codeword when cyclically

shifted by five places. Hence the code is a quasi-cyclic code, which is the term given to

a code that is not cyclic but is invariant under cyclic shifts of b places, b �= 1. Moreover,

the code is composed of ten segments, each of which has length 5. If each of the ten

segments is individually cyclically shifted by one place, then another codeword of the

same hermitian code is obtained.

For a second example, the intersection of the Stichtenoth version of the hermitian

curve over GF(16) with the bicyclic plane, as shown in Figure 11.3, has sixty points.

The sixty components of the corresponding epicyclic hermitian codeword lie on the

sixty points of the hermitian curve restricted to the torus. It is clear from Figure 11.3

that a cyclic shift by one place in the row direction, followed by a cyclic shift by five

places in the column direction, will leave the curve unchanged. The code is invariant

under this bicyclic shift because, by the convolution theorem, the degree of C(x, y)

is not changed by cyclic shifts of the array c. Now it is easy to see several ways to

serialize the hermitian code in a way that forms a one-dimensional, quasi-cyclic code

with b = 4. Thus, for example, a one-dimensional vector can be written in the form of

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

• • • • •
• • • • •

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14� � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11.3. Alternative hermitian curve over GF(16) in the bicyclic plane.

465 11.4 The Klein codes

15 concatenated segments,

c =| c0 | c1 | · · · | c13 | c14 |,

where each segment consists of the four components of a column written in order,

starting from the component with three zeros below it. Clearly the cyclic shift of c by

four places gives another codeword, and the cyclic shift of each segment by one place

also gives another codeword.

11.4 The Klein codes

A small family of codes over GF(8) of blocklength 24 on the projective plane, or of

blocklength 21 on the bicyclic plane, can be constructed by using the Klein quartic

polynomial. We call these Klein codes.

The Klein polynomial,

G(x, y) = x3y + y2 + x,

has degree r = 4 and genus g = 3. The homogeneous form of the Klein polynomial,

G(x, y, z) = x3y + y3z + z3x,

has 24 zeros in the projective plane over GF(8). Thus the codes have blocklength

n = 24 in the projective plane. To define a code, we can choose any J < n/r = 6,

thereby obtaining a code whose minimum distance dmin satisfies

dmin ≥ n− rJ ,

and whose dimension k satisfies

k =
{

1
2 (J + 2)(J + 1) J < 4

rJ − g + 1 J ≥ 4.

Thus we have the following Klein codes over the field GF(8):

J = 1 (24,3) dmin ≥ 20;

J = 2 (24,6) dmin ≥ 16;

J = 3 (24,10) dmin ≥ 12;

J = 4 (24,14) dmin ≥ 8;

J = 5 (24,18) dmin ≥ 4.

466 Other Representations of Codes on Curves

ω
ω
ω
ω
ω
ω
ω

ω ω ω ω ω ω ω

6 • • •
5 • • •
4 • • •
3 • • •
2 • • •
1 • • •
0 • • •

0 1 2 3 4 5 6

Figure 11.4. Klein curve in the bicyclic plane.

6 c5 c15 c16
5 c6 c7 c17
4 c19 c8 c18
3 c9 c10 c20
2 c0 c1 c11
1 c2 c12 c13
0 c3 c4 c14

0 1 2 3 4 5 6

ω

ω

ω

ω

ω

ω

ω ω ω ω ω ω ω

Figure 11.5. Quasi-cyclic serialization of the Klein code.

The Klein curve restricted to the bicyclic plane is shown in Figure 11.4. When so

restricted, the Klein curve has twenty-one points. Therefore the epicyclic form of a

Klein code, which lies on this set of twenty-one points, has blocklength 21.

By restricting the Klein curve to the bicyclic plane, which can be regarded as a torus,

several automorphisms of the Klein code become more evident as automorphisms of

the epicyclic Klein code. If the bicyclic plane is cyclically shifted by one place along

the row direction, then cyclically shifted by two places along the column direction, the

Klein curve is mapped onto itself. This means that a codeword will map onto another

codeword under this bicyclic shift, provided the new spectrum polynomial also has a

degree at most J . But by the convolution theorem, under this bicyclic shift the spectrum

coefficient Cj′j′′ is replaced by Cj′j′′α
j′α2j′′ , which coefficient is still zero if j′+ j′′ ≤ J .

Therefore this particular bicyclic shift takes a codeword onto a codeword. This bicyclic

shift property is similar to the cyclic shift property of a cyclic code. It can be used to

put the Klein code in the form of a one-dimensional, quasi-cyclic code.

The twenty-one components of codeword c, lying on the twenty-one points of the

Klein curve, can be serialized in any way to form a one-dimensional codeword. For

example, the twenty-one components can be serially ordered by reading across by

rows. To arrange the Klein code in the form of a quasi-cyclic code, it is enough to

arrange the components sequentially in an order that respects the bicyclic shift described

above. Figure 11.5 labels the twenty-one components of the Klein code to give a

serialization that forms a quasi-cyclic code. Other serializations with this property are

readily apparent.

467 11.5 Klein codes constructed from Reed–Solomon codes

11.5 Klein codes constructed from Reed–Solomon codes

In Section 6.9, we saw that the Turyn representation of the binary Golay code is a

concatenation of three binary codewords in the form c = | c0 | c1 | c2 |. The individual

codewords are given by

c0

c1

c2

 =

1 0 1

1 1 0

1 1 1

b0

b1

b2

 ,

where b1 and b2 are any codewords of the (8, 4, 3) extended Hamming code over

GF(2) and b0 is any codeword of the (8, 4, 4) reciprocal extended Hamming code

over GF(2). We shall see in this section that an epicyclic Klein code over GF(8)

has a similar representation as a linear combination of three Reed–Solomon codes

over GF(8). Each codeword c of the (21, k, d) Klein code is represented as a con-

catenation of the form c = | c0 | c1 | c2 |. The individual codewords are

given by

c0

c1

c2

 =

1 α2 α

1 α4 α2

1 α α4

b0

b1

b2

 ,

where α is the primitive element used to construct GF(8), and b0, b1, and b2 are

codewords from three different Reed–Solomon codes over GF(8).

This representation is interesting because of its similarity to the Turyn representa-

tion. It also provides a convenient method of encoding the Klein code; first encode

the data into three Reed–Solomon codewords, then perform the indicated linear

transformation.

For example, we shall see that, to express the (21, 7, 12) epicyclic Klein code with

this representation, b0 is a codeword of a (7, 3, 5) Reed–Solomon code over GF(8) with

defining set {3, 4, 5, 6}; b1 is a codeword of a (7, 2, 6) Reed–Solomon code over GF(8)

with defining set {0, 1, 2, 3, 4}; and b2 is a (7, 2, 6) Reed–Solomon code over GF(8) with

defining set {5, 6, 0, 1, 2}. Together, these three Reed–Solomon codes encode seven data

symbols, and the dimension of the underlying Klein code equals 7. The concatenation

b =| b0 | b1 | b2 | has minimum distance 5 because b0 has minimum distance 5. We

can conclude that the matrix operation ensures that c =| c0 | c1 | c2 | has minimum

distance 12 by showing that this gives a representation of a Klein code with minimum

distance 12.

468 Other Representations of Codes on Curves

Our first step in developing this representation of the Klein code is to study the

two-dimensional Fourier transform of a sparse array over GF(8) of the following form:

c =

0 0 0 0 0 0 0

c10 c11 c12 c13 c14 c15 c16

c20 c21 c22 c23 c24 c25 c26

0 0 0 0 0 0 0

c40 c41 c42 c43 c44 c45 c46

0 0 0 0 0 0 0

0 0 0 0 0 0 0

.

Because the indices of the three rows that are allowed to be nonzero form a conjugacy

class, the structure of GF(8) and the structure of the Fourier transform interact and thus

simplify the relationship between this c and its bispectrum. This is the same interaction

that was used to derive a semifast Fourier transform algorithm in Section 1.10. In that

section, we saw that the seven-point Fourier transform in GF(8),

V0

V1

V2

V3

V4

V5

V6

=

1 1 1 1 1 1 1

1 α1 α2 α3 α4 α5 α6

1 α2 α4 α6 α1 α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α1 α5 α2 α6 α3

1 α5 α3 α α6 α4 α2

1 α6 α5 α4 α3 α2 α1

0

v1

v2

0

v4

0

0

,

can be reduced to

V0

V1

V2

V3

V4

V5

V6

=

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1

1 1 1

α1 α2 α4

α2 α4 α1

v1

v2

v4

 ,

from which we can extract the inverse relationship,

v1

v2

v4

 =

1 α2 α1

1 α4 α2

1 α1 α4

V0

V1

V2

 .

469 11.5 Klein codes constructed from Reed–Solomon codes

To apply this to our problem, recall that the two-dimensional Fourier transform

Cj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ci′i′′ω
i′j′ωi′′j′′

can be represented by the following diagram:

c ↔ B

� �
b ↔ C.

For the seven by seven, two-dimensional Fourier transform we are studying, a horizon-

tal arrow denotes a one-dimensional, seven-point Fourier transform relationship along

every row of the array, and a vertical arrow denotes a one-dimensional, seven-point

Fourier transform relationship along every column of the array. The rows of the array

b are the spectra of the rows of c (viewed as row codewords). The columns of B are

the spectra of the columns of c (viewed as column codewords).

Thus, four rows of B are zero rows, namely all rows other than rows numbered

1, 2, and 4. Retaining only the three nonzero rows, we can write

B1

B2

B4

 =

1 α2 α

1 α4 α2

1 α α4

C0

C1

C2

 .

Now refer to the earlier diagram and take the seven-point inverse Fourier transform

of each of the three rows of this equation. The inverse Fourier transform of row cj′′ is

row bi′′ , and the inverse Fourier transform of row Bj′′ is row ci′′ . Thus

c1

c2

c4

 =

1 α2 α

1 α4 α2

1 α α4

b0

b1

b2

 ,

and all other rows of c are zero. This simplified expression, which we have derived for

a special case of the Fourier transform, will be especially useful.

Now we return to the study of the Klein code, which we recast to fit the above form

of the Fourier transform. The method can be motivated by examining Figure 11.4. If the

i′th column of Figure 11.4 is cyclically downshifted by 5i′ places, the curve is “twisted”

into the simple form shown in Figure 11.6.

Thus our reformulation of the Klein codes uses the twist property of the two-

dimensional Fourier transform, but formulated in the language of polynomials. Because

we want to reserve the notation G(x, y) and C(x, y) for these polynomials after the twist

470 Other Representations of Codes on Curves

• • • • • • •

• • • • • • •
• • • • • • •

6

5

4

3

2

1

0

0 1 2 3 4 5 6

ω

ω

ω

ω

ω

ω

ω ω ω ω ω ω ω

Figure 11.6. Twisted Klein curve in the bicyclic plane.

operation, in this section the Klein polynomial before the twist operation is denoted

G′(x, y) and the codeword spectrum polynomial before the twist operation is denoted

C ′(x, y). Replace the variable y by x5y3 so that the polynomial

G′(x, y) = x3y + y3 + x

becomes the twisted polynomial

G(x, y) = G′(x, x5y3)

= x8y3 + x15y9 + x

= x(y3 + y2 + 1),

by using the fact that x8 = x in the ring of polynomials over GF(8) modulo the ideal

〈x7 − 1, y7 − 1〉. Under this transformation, the Klein curve takes the simple form

shown in Figure 11.6. To show this, let gi′i′′ = G(ωi′ , ωi′′), choosing ω = α. Then

gi′i′′ = G(αi′ , αi′′), and

g =

g00 g01 g02 g03 g04 g05 g06

0 0 0 0 0 0 0

0 0 0 0 0 0 0

g30 g31 g32 g33 g34 g35 g36

0 0 0 0 0 0 0

g50 g51 g52 g53 g54 g55 g56

g60 g61 g62 g63 g64 g65 g66

.

Now the twenty-one bicyclic zeros of the twisted Klein polynomial G(x, y) have become

very orderly. Indeed, the twenty-one zeros in the bicyclic plane form three “lines.” (This

pattern of zeros is a consequence of the fact that the gonality of the Klein polynomial

is 3, a term that we will not define.) Because the codeword components must be zero

everywhere that g is nonzero, the codeword c has the special form for which we have

given the Fourier transform at the start of this section.

There is one further comment that is needed here. The evaluation G(αi′, αi′′) is not

the inverse Fourier transform that we have been using. The inverse Fourier transform

471 11.5 Klein codes constructed from Reed–Solomon codes

instead corresponds to G(α−i′, α−i′′). Thus we are actually forming a reciprocal of

the Klein curve that we have defined previously. This is a convenient modification

because it allows us to consider C(x, y) as a reciprocal of the bispectrum polynomial

instead of the bispectrum polynomial itself. This means that instead of the condition

that deg C(x, y) ≤ J , we have Cj′j′′ = 0 if j′ + j′′ < J . This is consistent with our

convention for shortened codes.

There is no longer any reason to retain the original indices on the c vectors.

Accordingly, we now redefine c4 as c0, and write

c0

c1

c2

 =

1 α α4

1 α2 α

1 α4 α2

b0

b1

b2

 ,

where b0 ↔ C0, b1 ↔ C1, and b2 ↔ C2.

All that remains to do is to describe C0, C1, and C2. These come from three rows

of the bivariate polynomial C(x, y) as a consequence of twisting C ′(x, y). Evidently,

C0, C1, and C2 are vectors of blocklength 7 over GF(8), except that certain of their

components are equal to zero. This observation follows from the fact that polynomial

C ′(x, y) is arbitrary, except that C ′
j′j′′ = 0 if j′ + j′′ < J . Thus, to describe C0, C1,

and C2, we need to observe what happens to the zero coefficients of C ′(x, y) under the

twist operation. Replace y by x5y to obtain

C(x, y) = C ′(x, x5y) =
6∑

j′=0

6∑

j′′=0

x j′x5j′′y j′′C ′j′j′′

so that Cj′j′′ = C ′
j′−5j′′, j′′ . Thus Cj′j′′ = 0 if ((j′− 5j′′))+ j′′ < J . This means: if J = 2,

C0 has its components equal to zero for j′ = 0, 1, 2; C1 has its components equal to

zero for j′ = 5, 6; and C2 has its components equal to zero for j′ = 3. In addition, the

constraints

C3 = C1 + C0,

C4 = C2 + C1,

C5 = C2 + C1 + C0,

C6 = C2 + C0,

must be satisfied. Because C3, C4, C5, and C6 are not constrained by the required

bispectral zeros, they are completely defined by the constraint equations.

If J = 3, the situation is more complicated, because the equation of the curve

creates other constraining relationships among the spectral components. The constraint

((j′− 5j′′))+ j′′ < 3 means that C0 has its components equal to zero for j′ = 0, 1, 2, 3;

472 Other Representations of Codes on Curves

Table 11.1. Preliminary defining sets

J = 2 J = 3 J = 4 J = 5

A′0 { 0, 1, 2 } { 0, 1, 2, 3 } { 0, 1, 2, 3, 4 } { 0, 1, 2, 3, 4, 5 }
A′1 { 5, 6 } { 5, 6, 0 } { 5, 6, 0, 1 } { 5, 6, 0, 1, 2 }
A′2 { 3 } { 3, 4 } { 3, 4, 5 } { 3, 4, 5, 6 }
A′3 { − } { 1 } { 1, 2 } { 1, 2, 3 }
A′4 { − } { − } { 6 } { 6, 0 }
A′5 { − } { − } { − } { 4 }
A′6 { − } { − } { − } { − }

Table 11.2. Actual defining sets

J = 2 J = 3 J = 4 J = 5

A0 { 0, 1, 2 } { 0, 1, 2, 3 } { 0, 1, 2, 3, 4 } { 0, 1, 2, 3, 4, 5 }
A1 { 5, 6 } { 5, 6, 0, 1 } { 5, 6, 0, 1, 2 } { 5, 6, 0, 1, 2, 3, 4 }
A2 { 3 } { 3, 4 } { 3, 4, 5, 6 } { 3, 4, 5, 6, 0 }

C1 has its components equal to zero for j′ = 5, 6, 0; C2 has its components equal to

zero for j′ = 3, 4; and C3 has its components equal to zero for j′ = 1. Then because

C3 = C1 + C0, this last condition also requires that C1j′ = 0 for j′ = 1.

To find the defining sets, in general, from the constraint ((j′ − 5j′′)) + j′′ < J , we

will first form the preliminary table (Table 11.1).

Then, to accommodate the constraints relating the spectral components, the actual

defining sets of the three Reed–Solomon codes are found to be as given in Table 11.2.

Thus we see that C0, C1, and C2 each has a cyclically sequential set of terms in its

defining set, so each is the spectrum of a Reed–Solomon code with a defining set as

tabulated. (These codes are actually defined with the primitive element α−1.) Thus the

twenty-one-point Klein codeword can be expressed as the concatenation c = | c0 |
c1 | c2 | of three sections, given by

c0

c1

c2

 =

α α2 1

α2 α4 1

α4 α 1

b0

b1

b2

 ,

and b0 ∈ C1, b1 ∈ C2, and b2 ∈ C3, where C0, C1, and C2 are the appropriate Reed–

Solomon codes.

For J = 2, the three Reed–Solomon codes have spectra with defining sets {0, 1, 2},
{5, 6}, and {3}, respectively. Altogether, there are six check symbols and fifteen data

symbols.

473 11.6 Hermitian codes from Reed–Solomon codes

For J = 3, the three Reed–Solomon codes have spectra with defining sets {0, 1, 2, 3},
{5, 6, 0, 1}, and {3, 4}. Altogether, there are ten check symbols and eleven data symbols.

For J = 4, the three Reed–Solomon codes have spectra with defining sets

{0, 1, 2, 3, 4}, {5, 6, 0, 1, 2}, and {3, 4, 5, 6}. Altogether, there are fourteen check symbols

and seven data symbols.

For J = 5, the three Reed–Solomon codes have spectra with defining sets

{0, 1, 2, 3, 4, 5}, {5, 6, 0, 1, 2, 3, 4}, and {3, 4, 5, 6, 0}. Altogether there are eighteen check

symbols and three data symbols.

By restricting the code to the bicyclic plane, three codeword components at infinity

have been dropped. We may want to reinsert these components. If the bicyclic (x, y)

plane is extended to the projective (x, y, z) plane, there are three more zeros of the

Klein polynomial G′(x, y, z) at (0, 0, 1), (0, 1, 0), and (1, 0, 0). This means that the three

components at infinity are C ′J 0, C ′0J , and C ′00, and they have a simple correspondence

to components extending the three Reed–Solomon codes.

11.6 Hermitian codes constructed from Reed–Solomon codes

The hermitian codes over GF(q2) have been defined in two ways: first, using the Fermat

version of the hermitian polynomial,

xq+1 + yq+1 + 1,

and second using the Stichtenoth version of the hermitian polynomial,

xq+1 + yq + y.

In the projective plane, the codes defined by using these two polynomials are equivalent.

When restricted to the bicyclic plane, however, these two forms of the epicyclic hermi-

tian code are quite different. The first has blocklength n = (q−2)(q+1)2 = q3−3q−2;

the second has blocklength n = q(q2−1). We have also seen in Section 10.7 that either

of the two cases can be viewed as a quasi-cyclic code, though with two different block-

lengths. In this section, we show that the shortened hermitian codes can be represented

in a manner similar to the Turyn representation. The first case can be represented as

a linear combination of q + 1 shortened Reed–Solomon codes over GF(q2), each of

blocklength (q − 2)(q + 1). The second case can be represented as a linear combina-

tion of q cyclic Reed–Solomon codes over GF(q2), each of blocklength q2 − 1. We

shall give these two constructions only in the field GF(16). First, we will describe one

hermitian code over GF(16) as a linear combination of four Reed–Solomon codes of

blocklength 16 by starting with the Stichtenoth form of the hermitian polynomial. Then

we will describe an hermitian code as a linear combination of five shortened Reed–

Solomon codewords, each of blocklength 10, by starting with the Fermat form of the

474 Other Representations of Codes on Curves

hermitian polynomial. The hermitian codes in any other field of characteristic 2 of the

form GF(q2) can be treated in similar ways.

The formulation of the shortened hermitian code as a linear combination of four

Reed–Solomon codes is obtained by appropriately twisting the plane so that the

hermitian curve becomes four straight lines. The twist property of the Fourier trans-

form explains what happens to the codeword spectrum. We will first apply the twist

operation to the Stichtenoth version of the hermitian polynomial. Because we want to

reserve the notation G(x, y) and C(x, y) for these polynomials after the twist operation,

in this section the hermitian polynomial prior to the twist operation is denoted G′(x, y)

and the codeword spectrum polynomial prior to the twist operation is denoted C ′(x, y).

With w replacing y, this polynomial is G′(x, w) = xq+1 +w
q +w. Now replace w by

xq+1y (mod xq2−1 − 1); then the polynomial becomes

G(x, y) = G′(x, xq+1y)

= xq+1(yq + y + 1).

The curve shown in Figure 11.3, with q = 4, now takes the simple form portrayed in

Figure 11.7. The zeros of G(x, y) now are only along the four rows of the (x, y) plane

at which yq + y + 1 = 0; these are the four rows indexed by the set {α, α2, α4, α8}.
Thus, under the transformation of coordinates, the hermitian curve X has become four

straight lines. In the general case, the hermitian curve of blocklength n = q(q2 − 1) is

twisted into q straight lines, each with q2 − 1 points.

To find the bispectrum C of codeword c, compute the two-dimensional Fourier

transform. Because c is in the shortened hermitian code C(X), only the components

of c on the curve X can have nonzero values, so there is no need to compute the

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11.7. Twisted hermitian curve in the bicyclic plane.

475 11.6 Hermitian codes from Reed–Solomon codes

Fourier transforms of the other rows. Thus the four Fourier transforms along the four

rows can be computed first; then the Fourier transforms along the columns can be

computed.

Recall that the two-dimensional Fourier transform given by

Cj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ci′i′′α
i′j′αi′′j′′

can be represented by the following diagram:

c ↔ B

� �
b ↔ C,

where now a horizontal arrow denotes a one-dimensional, fifteen-point Fourier trans-

form relationship along every row of the array, and a vertical arrow denotes a

one-dimensional, fifteen-point Fourier transform relationship along every column of

the array. The columns of the array b are the spectra of the columns of c (viewed as

column codewords). The rows of B are the spectra of the rows of c (viewed as row

codewords).

We must compute the one-dimensional Fourier transform of each column. Accord-

ingly, it is appropriate to study the one-dimensional Fourier transform of a vector of

blocklength 15 that is nonzero only in components indexed by 1, 2, 4, and 8. This

instance of the Fourier transform was studied in Section 1.10 for another reason. There

we observed that if only these four components of v are nonzero, then the first four

components of the Fourier transform, given by

V0

V1

V2

V3

 =

1 1 1 1

α1 α2 α4 α8

α2 α4 α8 α16

α3 α6 α12 α24

v1

v2

v4

v8

 ,

are sufficient to determine all fifteen components of the Fourier transform. It is

straightforward to compute the inverse of the matrix to write

v1

v2

v4

v8

 =

α14 α2 α 1

α13 α4 α2 1

α11 α8 α4 1

α7 α α8 1

V0

V1

V2

V3

 .

This is the inverse Fourier transform augmented by the side information that vi is equal

to zero for all values of i, except i = 1, 2, 4, and 8. Thus the four components V0,

476 Other Representations of Codes on Curves

V1, V2, and V3 are sufficient to recover v, and hence are equivalent to the full Fourier

transform. Thus all fifteen components of V can be computed from V0, V1, V2, and V3.

To make this explicit, recall that x2 is a linear function in a field of characteristic 2.

This means that the terms (α j′′)2, (α j′′)4, and (α j′′)8 are actually linear functions of

α j′′ . This implies that

Vj + Vk = (α j + αk)v1 + (α j + αk)2
v2 + (α j + αk)4

v4 + (α j + αk)8
v8

= Vℓ,

where ℓ is determined by αℓ = α j + αk . This relationship constrains the spectrum

polynomial V (x). Accordingly, the four values of Vj for j = 0, 1, 2, and 3 determine all

other values of Vj.

This constraint, applied to the fifteen components of the vector V , yields the

following relationships:

V4 = V1 + V0,

V5 = V2 + V1,

V6 = V3 + V2,

V7 = V3 + V1 + V0,

V8 = V2 + V0,

V9 = V3 + V1,

V10 = V2 + V1 + V0,

V11 = V3 + V2 + V1,

V12 = V3 + V2 + V1 + V0,

V13 = V3 + V2 + V0,

V14 = V3 + V0.

In this way, all fifteen components of the Fourier transform V can be computed from

V0, V1, V2, and V3.

We return now to the study of the twisted hermitian codes. The twisted codeword

array c is nonzero only on the four lines illustrated in Figure 11.7, and the two-

dimensional Fourier transform c must satisfy the constraint deg C(x, y) ≤ J . This

gives two constraints, one in the code domain and one in the transform domain, both of

which must be satisfied. We will work backwards from the transform domain. Accord-

ing to the earlier discussion, it is enough to work with the first four components of C if

the others are constrained by the equations given earlier. Because only four rows of c

are nonzero, only four rows of B are nonzero. Accordingly, we can collapse the inverse

477 11.6 Hermitian codes from Reed–Solomon codes

Fourier transform on columns as follows:

B1

B2

B4

B8

 =

α14 α2 α 1

α13 α4 α2 1

α11 α8 α4 1

α7 α α8 1

C0

C1

C2

C3

 .

Note that the rows of this matrix are related to each other by a squaring operation.

Now take the fifteen-point Fourier transform of the four vectors on the right

(C0, C1, C2, and C3) and the vectors on the left (B1, B2, B4, and B8). The Fourier

transform can be interchanged with the matrix multiplication in this equation to give

our desired representation:

c1

c2

c4

c8

 =

α14 α2 α 1

α13 α4 α2 1

α11 α8 α4 1

α7 α α8 1

b0

b1

b2

b3

 .

The four codewords b0, b1, b2, and b3 are Reed–Solomon codewords given by the

inverse Fourier transforms of C0, C1, C2, and C3. This representation in the manner

of the Turyn representation gives the hermitian codeword c as the concatenation c =
|c1|c2|c4|c8| in terms of the four Reed–Solomon codewords b0, b1, b2, and b3. All of

this, of course, is merely a property of the Fourier transform over the finite field GF(16),

as described in Section 1.10. This is our desired representation of the Stichtenoth version

of the hermitian code over GF(16): as a matrix combination of the four Reed–Solomon

codes, denoted b0, b1, b2, and b3. To complete the description, we must specify the

four Reed–Solomon codes from which the four codewords b0, b1, b2, and b3 are taken.

These codes are completely defined by their spectral zeros, which can be found by

examining the movement of the spectral zeros of the hermitian codes under the twist

operation.

Recall that deg C ′(x, w) ≤ J and C(x, y) = C ′(x, xq+1y)(mod xq2−1−1). By writing

C(x, y) =
∑n−1

j′=0 Cj′(y)x j′ , we can conclude that Cj′j′′ = 0 if ((j′−(q+1)j′′))+j′′ > J .

This constrains various components of C0, C1, C2, and C3 to be zero either directly

or indirectly, because these components are related to other components of Cj that are

constrained to be zero.

For an hermitian code over GF(16), q = 4 and g = 6. For a straightforward example,

let J = 4. This gives a (50, 15, 30) epicyclic hermitian code, which can be expressed

by a Turyn representation. Then, we have that C0 has components equal to zero for

j′ = 0, 1, 2, 3; that C1 has components equal to zero for j′ = 2, 3, 4; that C2 has

components equal to zero for j′ = 4, 5; and that C3 has components equal to zero for

j′ = 6.

478 Other Representations of Codes on Curves

For a more complicated example, let J = 6. Then, we have that C0 has components

equal to zero for j′ = 0, 1, 2, 3, 4, 5; that C1 has components equal to zero for j′ =
2, 3, 4, 5, 6; that C2 has components equal to zero for j′ = 4, 5, 6, 7; and that C3

has components equal to zero for j′ = 6, 7, 8. However, this does not complete the

enumeration of the spectral zeros. We also know that C4 has components equal to

zero for j′ = 8, 9, and C5 has components equal to zero for j′ = 10. Because C4 =
C1+C0, we obtain the additional constraint that C0,8 = C1,8 and C0,9 = C1,9. Similarly,

because C5 = C2 + C1, we have the additional constraint C1,10 = C2,10. Thus, in

this example, the Reed–Solomon codewords cannot be specified independently. Some

spectral components must be constrained to take the same values.

To conclude this section, we will develop a Turyn representation for the alterna-

tive formulation of the shortened hermitian code, based on the Fermat version of the

hermitian polynomial. For this purpose, we will apply the twist operation to the bicyclic

plane, observing its effect on the Fermat version of the hermitian polynomial. To do

so, replace y by xy, as follows:

G(x, y) = G′(x, xy)

= xq+1(yq+1 + 1)+ 1.

The twisted hermitian curve in the bicyclic plane is the set of zeros of this polynomial,

shown in Figure 11.8. These zeros lie on five lines in the bicyclic plane into which the

hermitian curve has been twisted. These zeros mark the coordinates of the hermitian

code. However, not every point of these lines is a zero. Accordingly, we will describe

the hermitian code as a linear combination of five shortened Reed–Solomon codes of

blocklength 10. Because the points of the twisted curve do not fill out full rows of the

matrix, the Fermat version of the hermitian polynomial does not work quite as neatly

under the twist operation. As shown in Figure 11.8, some columns of the matrix contain

no points of the curve. This is why Reed–Solomon codes that underlie this form of the

hermitian code are shortened Reed–Solomon codes. Moreover, the twisted curve lies

on the rows indexed by elements of two conjugacy classes. These are the conjugacy

classes of α0 and α3, based on the primitive element α.

Recall that the two-dimensional Fourier transform

Cj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ci′i′′α
i′j′αi′′j′′

can be represented by the following diagram:

c ↔ B

� �
b ↔ C,

479 11.6 Hermitian codes from Reed–Solomon codes

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14� � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11.8. Another twisted hermitian curve in the bicyclic plane.

where now a horizontal arrow denotes a one-dimensional, fifteen-point Fourier trans-

form relationship along every row of the array, and a vertical arrow denotes a

one-dimensional, fifteen-point Fourier transform relationship along every column of

the array. The rows of the array b are the spectra of the rows of c (viewed as row

codewords). The columns of B are the spectra of the columns of c (viewed as column

codewords).

We will need a fifteen-point Fourier transform in GF(16) of a vector that is zero in

all components except those indexed by 0, 3, 6, 9, or 12. It is enough to write out only

the columns of the Fourier transform matrix corresponding to these five unconstrained

components. It is also enough to compute only the first five components of V . The

other components can be computed from these five, using the fact that the spectrum

is periodic with period 5. The five-point Fourier transform written with ω = α3 and

vector v = (v0, v3, v6, v9, v12) takes the following form:

V0

V1

V2

V3

V4

=

1 1 1 1 1

1 α3 α6 α9 α12

1 α6 α12 α3 α9

1 α9 α3 α12 α6

1 α12 α9 α6 α3

v0

v3

v6

v9

v12

.

The inverse of this Fourier transform is given by

v0

v3

v6

v9

v12

=

1 1 1 1 1

1 α12 α9 α6 α3

1 α9 α3 α12 α6

1 α6 α12 α3 α9

1 α3 α6 α9 α12

V0

V1

V2

V3

V4

.

480 Other Representations of Codes on Curves

This five-point transform is the Fourier transform that is used in the column direction

in Figure 11.8.

Now we can apply the inverse five-point Fourier transforms to the twisted form of

the hermitian code. What this amounts to is a restatement of the hermitian code as

follows:

c0

c3

c6

c9

c12

=

1 1 1 1 1

1 α12 α9 α6 α3

1 α9 α3 α12 α6

1 α6 α12 α3 α9

1 α3 α6 α9 α12

b0

b1

b2

b3

b4

,

where b0, b1, b2, b3, and b4 are five Reed–Solomon codewords, from different codes,

with spectra C0, C1, C2, C3, and C4, respectively. Because c0, c3, c6, c9, and

c12 are to be shortened to the same ten components, b0, b1, b2, b3, and b4 can be

shortened to those ten components as well. The concatenation c = |c0|c3|c6|c9|c12|
then results in a representation of the hermitian code in the manner of the Turyn

representation.

To conclude, we must describe the spectral zeros of the five individual Reed–Solomon

codewords b0, b1, b2, b3, and b4. Recall that deg C ′(x, w) ≤ J , and that C(x, y) =
C ′(x, xy)(mod xq2−1 − 1). Furthermore, C(x, y) =

∑n−1
j′=0 Cj′(y)x j′ . From these we

conclude that Cj′j′′ = 0 if ((j′− j′′))+ j′ > J . For each j′′, the Reed–Solomon spectrum

Cj′′ has its j′th component equal to zero for all j′, satisfying ((j′ − j′′)) > J − j′.
For a straightforward example, let J = 4. Then we have that C0 has components

equal to zero for j′ = 0, 1, 2, 3; that C1 is equal to zero for j′ = 1, 2, 3; that C2 is

equal to zero for j′ = 2, 3; that C3 is equal to zero for j′ = 3; and that C4 has no

spectral components constrained to zero. There are ten spectral zeros set equal to zero,

so n− k = 10.

Problems

11.1 The Stichtenoth version of the hermitian polynomial over GF(16) is as follows:

p(x, y) = x17 + y16 + y.

Sketch the epicyclic form of this hermitian curve over GF(16) on a 15 by

15 grid. Then permute the elements of the horizontal axis and the vertical axis

to rearrange the points of the hermitian curve into blocks. What automorphisms

of the curve are evident in this description?

11.2 What are the dimension and minimum distance of the epicyclic form of the

hermitian code over GF(16), based on the Stichtenoth form of the hermitian

481 Problems

polynomial? What are the dimension and minimum distance of the binary

subfield-subcode of this code?

11.3 Let A = {(j′, j′′) | j′, j′′ ≥ 0; j′ + j′′ ≤ J ; j′ < m}. Compute ‖A‖ in two ways.

One way is by summing the number of terms with j fixed, where j = j′ + j′′.
A second way is by first writing

‖A‖ = 1

2
(J + 1)(J + 2)− 1

2
(J + 1− m)(J + 2− m)

then expanding the product terms and simplifying the expression. How is this

approach explained?

11.4 Let p(x, y) = x5y + y5 + x be a polynomial over GF(64). How many bicyclic

zeros does this polynomial have?

11.5 Sketch the Klein curve in the bicyclic plane. What are the bicyclic automor-

phisms of the Klein curve?

11.6 Let c = |c0|c1|c2|, where

c0

c1

c2

 =

1 α2 α1

1 α4 α2

1 α1 α4

b0

b1

b2

 .

Note that b0 is a Reed–Solomon code with spectral zeros at B0,1 and B0,2;

b1 is a (7, 5, 3) Reed–Solomon code with spectral zeros at B1,5 and B1,6; and

b2 is a (7, 6, 2) Reed–Solomon code with a spectral zero at B2,0. Show that the

octal code has minimum distance 6. Show that the binary subfield-subcode is

the binary Golay code.

11.7 State the Turyn representation of the Klein code of blocklength 24. Explain

the relationship of the three Reed–Solomon extension components to the three

components of the Klein code at infinity.

11.8 The epicyclic codes over GF(16) based on the polynomial

p(x, y) = x17 + y2 + y

have dimension 510. Describe these codes as the combination of Reed–

Solomon codes. Also describe the bicyclic automorphisms of the codes.

11.9 The polynomial

p(w) = w
5 +w

2 + 1

is primitive over GF(32). Using the substitution w = y11z, p(w) can be used

to form the homogeneous polynomial

p(x, y, z) = x2y2z5 + x7z2 + y9

482 Other Representations of Codes on Curves

over GF(32). Verify that this polynomial has two singular points. Does this

polynomial have a weight function? Determine the genus of the polynomial

p(x, y) = y9 + x7 + x2y2

by examining the gap sequence.

11.10 Construct a table of the family of codes on the hermitian curve over GF(16)

by using the Feng–Rao bound.

11.11 The shortened epicyclic hermitian codes are based on the Feng–Rao bound,

which allows a code to be defined with defining set equal to the first r monomials

in the graded order for any value of r. Can a punctured epicyclic hermitian

code be constructed as well by evaluating polynomials consisting of only the

first r monomials in the graded order for any value of r?

11.12 Show that an epicyclic code is a self-dual code if J = q2 − 2. What are the

parameters of the self-dual binary subfield-subcode if q = 16?

Notes

A code on an algebraic plane curve can be constructed from a bicyclic code either

by puncturing or shortening to the curve. These methods have different attributes and

the resulting codes are analyzed by different methods. The punctured codes are best

analyzed by using Bézout’s theorem. The shortened codes were originally analyzed

using the Riemann–Roch theorem, but this theorem is not easily accessible and it

is so powerful that it may hide some of the basic structure. For this purpose, the

Riemann–Roch theorem has been superseded by the Feng–Rao bound.

The use of the weighted degree and the Feng–Rao bound to construct a large fam-

ily of shortened codes on curves was introduced by Feng and Rao (1994), and was

formally developed in the Ph.D. thesis of Duursma (1993). Hφholdt, van Lint, and

Pellikaan (1998) further refined this approach by introducing the use of an order

function.

The Klein codes were introduced by Hansen (1987) and were later studied by many

others, including Pellikaan (1998). The representation of a Klein code as a linear

combination of Reed–Solomon codes was discussed by Blahut (1992). A similar rep-

resentation for an hermitian code in terms of Reed–Solomon codes was discovered

independently by Yaghoobian and Blake (1992). The representation for the Stichtenoth

form of the hermitian code in terms of Reed–Solomon codes seems to be original

here. The similarity of these representations to the Turyn representation is striking.

Feng (1999) studied the relationship between the Turyn representation of the Golay

483 Notes

code and codes over GF(8) expressed on the Klein quartic. The automorphism group of

an hermitian code, which is independent of representation, was studied by Xing (1995).

At the present time, large surveys of plane curves over finite fields with many rational

points do not exist. Justesen et al. (1989) provided some computer-generated curves,

which have been incorporated into the exercises of this book.

12 The Many Decoding Algorithms for
Codes on Curves

Codes based on the two-dimensional Fourier transform can be decoded by methods

analogous to those methods discussed in Chapter 3 for decoding codes that are based

on the one-dimensional Fourier transform, such as the Reed–Solomon codes and other

BCH codes. Just as for decoding one-dimensional cyclic codes, the task of finding the

errors may be divided into two subtasks: finding the locations of the errors, then finding

the magnitudes of the errors. In particular, the family of locator decoding algorithms

introduces the notion of a bivariate error-locator polynomial, �(x, y), into one step

of the decoding. However, we no longer have the neat equality that we had in one

dimension between the degree of the locator polynomial �(x) and the number of its

zeros. It now takes several polynomials to specify a finite number of bivariate zeros,

and so, in two dimensions, we use the locator ideal instead of a locator polynomial

as was used in one dimension. Now we have a neat equality between the number

of zeros of the locator ideal {�ℓ(x, y) | ℓ = 1, . . . , L} and the area of the locator

footprint.

The methods for decoding two-dimensional bicyclic codes can also be applied to

the decoding of codes on curves. However, restricting a code to a curve in general

increases the minimum distance. This means that the decoding algorithm must then be

strengthened to reach the minimum distance of the code.

In this chapter, we study decoding algorithms for both bicyclic codes and codes on

curves. We give two examples of decoding, both for codes over GF(16). One is an

example of decoding a hyperbolic code, and the other is an example of decoding an

hermitian code. In each of the two examples, the code has a defining set that provides

the set of syndromes. The defining sets in the two examples are not the same, but these

two sets do have a large intersection. We shall choose exactly the same error pattern for

the two codes. Because the error patterns are the same, the syndromes in the intersection

of the two defining sets are equal. Therefore the decoding steps corresponding to these

common syndromes are the same. This allows an instructive comparison of the same

decoding algorithm when used for two different codes against the same error pattern.

The two cases deal with the missing syndromes similarly, though not in exactly the

same way.

485 12.1 Two-dimensional syndromes and locator ideals

12.1 Two-dimensional syndromes and locator ideals

We shall study the decoding of the two-dimensional noisy codeword v = c+e for both

the case in which c is a codeword on the full bicyclic plane and the case in which c

is a codeword restricted to a curve of the bicyclic plane. In either case, the codeword

is transmitted and the channel makes errors. The senseword is v = c + e. In the

first case, the components of the senseword will cover the full bicyclic plane. In the

second case, the components of the senseword will be restricted to a curve in the plane

corresponding to the definition of the code. Accordingly, in that case, we will regard

the senseword as padded with zeros and arranged in the form of a full two-dimensional

array, with zeros filling all the elements of the array that are not part of the curve. In this

way, the decoding of codes on a plane and the decoding of codes on a curve are unified.

Of course, in the computations one can suppress those components of the shortened

codeword that are known to be zero, but conceptually we consider those components to

be there. (If the code had been punctured to lie on a curve, rather than shortened, then

there is an additional difficulty because it is not evident to the decoder how to restore

the components that have been dropped. This is why we study only the decoding of

shortened codes, rather than punctured codes.)

The senseword, which is the codeword c corrupted by an additive error vector e, has

the following components:

vi′i′′ = ci′i′′ + ei′i′′ i′ = 0, . . . , n− 1

i′′ = 0, . . . , n− 1.

If the error vector e is nonzero in at most t places with t ≤ (dmin−1)/2, then the decoder

should be able to recover the codeword (or the data symbols defining the codeword).

The senseword v has the Fourier transform V , given by

Vj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ωi′j′ωi′′j′′
vi′i′′

j′ = 0, . . . , n− 1

j′′ = 0, . . . , n− 1,

which is easily computed from the senseword. It immediately follows from the linearity

of the Fourier transform that

Vj′j′′ = Cj′j′′ + Ej′j′′
j′ = 0, . . . , n− 1

j′′ = 0, . . . , n− 1.

But, by construction of the code,

Cj′j′′ = 0 (j′, j′′) ∈ A.

486 The Many Decoding Algorithms for Codes on Curves

Hence

Vj′j′′ = Ej′j′′ (j′, j′′) ∈ A.

Whenever we need a reminder that we know Ej′j′′ only for (j′, j′′) ∈ A, we will introduce

the alternative notation

Sj′j′′ = Vj′j′′ = Ej′j′′ (j′, j′′) ∈ A,

and refer to Sj′j′′ for (j′, j′′) ∈ A as a two-dimensional syndrome. Sometimes it is con-

venient to overreach the original intent of the terminology and refer to the components

Ej′j′′ for (j′, j′′) �∈ A as missing syndromes, again referring to them for this purpose by

Sj′j′′ .

The error array E and the syndrome array S may be represented as bivariate

polynomials E(x, y) and S(x, y), defined by

E(x, y) =
n−1∑

j′=0

n−1∑

j′′=0

Ej′j′′x
j′yj′′ and S(x, y) =

∑

(j′,j′′)∈A

Sj′j′′x
j′yj′′ .

Thus the syndrome polynomial is the error spectrum polynomial “cropped” to the

complete defining set A.

The error-locator polynomial that was used in the one-dimensional case is replaced

in the two-dimensional case by the error-locator ideal. The error-locator ideal is given

by

� = {�(x, y) | �(x, y)E(x, y) = 0},

where the polynomial product is interpreted in the cyclic form, meaning modulo 〈xn−
1, yn − 1〉. However, the error-locator ideal must be computed from the expression

� = {�(x, y) | �(x, y)S(x, y) = 0},

with the understanding that only terms of the polynomial product involving known

coefficients of S(x, y) can be used. We express the locator ideal in terms of a minimal

basis as follows:

� = 〈�(ℓ)(x, y) | ℓ = 1, . . . , L〉.

The first task of decoding is to compute the minimal basis {�(ℓ)(x, y) | ℓ = 1, . . . , L}
from the syndrome polynomial S(x, y).

After the minimal polynomials �(ℓ)(x, y) of the locator ideal are known, the full

error spectrum can be recovered by any of several methods. One method is to use the

487 12.2 The illusion of missing syndromes

set of recursions

∑

k ′

∑

k ′′
�

(ℓ)

k ′k ′′Ej′−k ′,j′′−k ′′ = 0

for ℓ = 1, . . . , L, which follows from the definition of the locator ideal. To use this set

of recursions, choose j′, j′′, and ℓ so that only one unknown component of E appears in

the equation; the equation then can be solved for that component, which then becomes a

known component. This process is repeated to obtain, one by one, the other components

of E, stopping when all are known. From the full error spectrum E, the error pattern

e is computed as an inverse Fourier transform.

An alternative procedure to find e is first to find the zeros of the ideal �. This gives the

location of the errors. The magnitudes can be computed by setting up a system of linear

equations in the unknown error magnitudes, or by a two-dimensional generalization of

the Forney formula.

Not all coefficients of the polynomial E(x, y) are known initially; only the syndrome

polynomial S(x, y) is known at first. We will start out by computing the connection

set for S(x, y) because algorithms are available for computing the connection set for

a sequence of syndromes. If the error pattern is correctible, it is trivial to convert the

connection set for S(x, y) to a basis for the locator ideal for E(x, y).

We studied the two-dimensional generalization of the Berlekamp–Massey algorithm,

known as the Sakata algorithm, in Chapter 8. The Sakata algorithm computes, for each r,

a set of minimal connection polynomials {�(ℓ,r)(x, y)} for the sequence S0, S1, . . . , Sr−1,

and the footprint � of this connection set. The pair ({�(ℓ,r)(x, y)}, �) has the same role

for the Sakata algorithm that (�(ℓ)(x), L) has for the Berlekamp–Massey algorithm.

In this chapter, the Sakata algorithm will be regarded as a computational module that

can be called upon as needed. For the purposes of this chapter, it is not necessary to

understand why the algorithm works, only to understand how to use it.

12.2 The illusion of missing syndromes

The decoding of a code on the plane GF(q)2 using the Sakata algorithm, or a code

on a curve (such as an hermitian code), is based on finding the locator ideal by first

computing the connection set and its footprint. If the error pattern is correctable, then

the set of minimal connection polynomials generates the locator ideal. This is similar to

the one-dimensional case, but with a more elaborate structure. In the two-dimensional

case, however, there may be additional considerations. In particular, even though the

number of errors t satisfies 2t + 1 ≤ dmin, there may not be enough syndromes to set

up the number of linear equations in the coefficients of �(x, y) needed to ensure that

the connection set can be computed by inverting the set of linear equations. Indeed, for

488 The Many Decoding Algorithms for Codes on Curves

the hermitian codes, a careful analysis would show that enough linear equations to find

the coefficients of �(x, y) are available only if t satisfies the inequality 2t+ 1 ≤ d − g,

where g is the genus of the hermitian curve and d is the designed distance of the code.

The decoding situation is similar to the situation for a few BCH codes, such as

the (23, 12, 7) binary Golay code and the (127, 43, 31) binary BCH code. For these

codes, locator decoding, as by using the Berlekamp–Massey algorithm, unembellished,

decodes only to the BCH radius, given as the largest integer not larger than (d − 1)/2,

where d is the designed distance of the BCH code. To mimic this, define the false decod-

ing radius of an hermitian code as (d−g−1)/2. The Sakata algorithm, unembellished,

can decode only to the false decoding radius. There are not enough syndromes for the

Sakata algorithm to reach the actual packing radius or even the Goppa radius. We will

refer to the additional needed syndromes as missing syndromes.

This limitation, however, is due to a deficiency of the locator decoding algorithm in

its elementary form, not a limitation of the code. Any code with the minimum distance

dmin can correct up to (dmin − 1)/2 errors, and the set of syndromes contains all the

information that the code provides about the error pattern. Therefore the syndromes

must uniquely determine the error if the error weight is not greater than the packing

radius (dmin − 1)/2. Thus it must be possible to determine the missing syndromes

from the given syndromes. There must be a way to extract full value from the known

syndromes. We will show that, from a certain point of view, it is only an illusion that

needed syndromes are missing. Every needed syndrome is either known, or is implicit

in the other syndromes. Moreover, and more subtly, a missing syndrome is completely

determined only by those syndromes appearing earlier in the total order. It follows from

the Sakata–Massey theorem that each missing syndrome can be determined just at the

time it is needed in the Sakata recursion. A simple procedure determines this missing

syndrome.

In the coming sections, we illustrate a method, called syndrome filling, that appends

the missing syndromes to the given syndromes as they are needed. The connection set

is computed recursively by Sakata’s algorithm. Whenever the next needed syndrome

is unknown, that iteration is altered so that the missing syndrome is found before

the procedure is continued. Later, in Section 12.7, we will prove that the method of

syndrome filling is sound.

There are two ways to fill the missing syndromes for codes on curves, but only one

way to fill missing syndromes for codes on the full plane. For a code on a curve, some

of the syndromes are implied by the equation of the curve and can be inferred from that

equation. Otherwise, the missing syndromes can be filled because, as implied by the

Sakata–Massey theorem, there is only one value of the missing syndrome for which the

recursion can continue under the condition that 2‖�‖ < dmin. By finding this unique

value, the missing syndrome is filled and the recursion continues.

Syndrome filling is easiest to understand for unshortened bicyclic codes, in particular

hyperbolic codes, because there is only one mechanism for syndrome filling. This makes

489 12.3 Decoding of hyperbolic codes

it easy to prove that syndrome filling works for these codes. The decoding of hyperbolic

codes will be studied in Section 12.3, when the equation of the curve comes into play.

For a code on a curve, it is more difficult to give a formal proof that syndrome

filling always works. This is because the method of syndrome filling is interconnected

with the method of using the equation of the curve to estimate implied syndromes that

are related to the given syndrome. The decoding of hermitian codes will be studied

in Section 12.4. The proof that syndrome filling works for codes on curves is more

complicated, and hence will be deferred until Section 12.7.

12.3 Decoding of hyperbolic codes

A hyperbolic code, with the designed distance d , is defined in Section 6.4 as a

two-dimensional cyclic code on the bicyclic plane GF(q)2, with the defining set

given by

A = {(j′, j′′) | (j′ + 1)(j′′ + 1) < d}.

The defining set A is described as the set of bi-indices bounded by a hyperbola. The

two-dimensional syndromes are computed from the noisy senseword,

Sj′j′′ =
n−1∑

i′=0

n−1∑

i′′=0

ωi′j′ωi′′j′′
vi′i′′ ,

for all (j′, j′′) ∈ A.

We will choose our example of a hyperbolic code so that we can build on the example

of the Sakata algorithm that was given in Section 8.5. That example applied the Sakata

algorithm to the array of syndromes that is repeated here in Figure 12.1. A larger

pattern of syndromes is shown in Figure 12.2. These are the syndromes for a senseword

corresponding to a (225, 190, 13) hyperbolic code over GF(16). The syndromes are

the spectral components of the senseword lying below the defining hyperbola. We will

use the additional syndromes, given in Figure 12.2, to continue the example begun

in Section 8.5. By using the support of the complete defining set A of the code, the

syndromes in Figure 12.2 are cropped from the bispectrum of the error pattern shown

in Figure 12.9.

Because this code has designed distance 13, we are assured that if the senseword

is within distance 6 of any codeword, then it can be uniquely decoded. Perhaps sur-

prisingly, the Sakata algorithm, together with the filling of missing syndromes, will

also uniquely decode many sensewords that are at a distance larger than 6 from the

nearest codeword. We shall see that the pattern of syndromes in Figure 12.1 actually

corresponds to a pattern of seven errors, and this pattern will be correctly decoded.

490 The Many Decoding Algorithms for Codes on Curves

j�

j��

6
5 �

�

�

� �

�

�

�

� �

�

� �

�

�

�

�

�

�

6

4 5

7

3 6 4 7

2 9 11 0 12

1 0 9 14 12 5

0

0 1 2 3 4 5 6 7 8
 9 14 5 7 2 5

Figure 12.1. Initial set of syndromes.

j��

14
13
12
11 �

�

�

�

�

�

�

�

� �

�

�

� �

�

�

� �

�

�

� � � � �

�

�

�

�

6

10 7

9 1
8 9

7 0
6 11

5 6 4

4 5 7

3 6 4 7

2 9 11 0 12

1 0 9 14 12 5 5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 j�

 9 14 5 7 2 5 1 8 13 12 0 2

Figure 12.2. Syndromes for decoding a (225, 190, 13) hyperbolic code.

It may be helpful to the understanding of syndrome filling to recall the development

of the Sakata–Massey theorem. This development begins with the two-dimensional

agreement theorem, given as Theorem 8.3.1 in Chapter 8.

Recall that the agreement theorem states the following. “Suppose �(x, y) and

�∗(x, y) each produces the bi-index sequence V0, V1, . . ., Vr−1 in the graded order.

If r >
≥ s+ s∗, and if either produces the longer bi-index sequence V0, V1, . . . , Vr−1, Vr ,

then so does the other.”

The Sakata–Massey theorem then follows as the statement that if �(x, y), of bidegree

s, produces the sequence V0, V1, . . . , Vr−1 but does not produce the next term Vr then

the connection footprint �′ for the longer sequence V0, V1, . . . , Vr contains the point

r−s = (r′−s′, r′′−s′′). This statement, in turn, leads to the statement that �∪(r−�′)
has an area at least (r′+1)(r′′+1), where � is the connection footprint for the original

sequence.

491 12.3 Decoding of hyperbolic codes

The Sakata algorithm processes the syndrome sequence S0, S1, . . . (in the graded

order) to produce the set of minimal connection polynomials {�(ℓ)(x, y)}. In the exam-

ple of Figure 12.2, the first 23 syndromes in the graded order are known, but the 24th

syndrome is missing. We argue that, whenever a syndrome of a senseword within

(nearly) the packing radius is missing, the Sakata–Massey algorithm tells us that it can

always (often) be filled in the unique way that minimizes the growth of the footprint of

the connection set.

We employ the recursive structure of the Sakata algorithm for the computation. At

the start of the rth step, the decoder has previously computed the connection set and the

connection footprint �r−1 for the partial sequence S0, S1, . . . , Sr−1 in the graded order.

Then the connection set for the longer sequence S0, S1, . . . , Sr−1, Sr must be computed.

If Sr is a missing syndrome, the decoder must first find Sr in order to continue. We

first show that only one choice of the missing syndrome will give a locator ideal with

a footprint of area t or less. This means that if Sr is the correct value of the missing

syndrome, then the locator footprint � for that sequence satisfies

�(S0, S1, . . . , Sr−1, Sr) ≤ t,

whereas if S ′r is any incorrect value of the missing syndrome, then

�(S0, S1, . . . , Sr−1, S ′r) > t.

Let � be the footprint of the connection set for the correct sequence, and let �′ be

the connection set for the incorrect sequence. By the corollary to the Sakata–Massey

theorem, Corollary 8.3.3, for r = (r′, r′′), the set � ∪ (r −�′) must have area at least

(r′ + 1)(r′′ + 1), which is at least 2t + 1 if r is not in the defining set. Because � has

an area at most t, this means that �′ has area at least t + 1, which cannot be, so S ′r
is identified as an incorrect value of the rth syndrome. This statement is true for any

incorrect value S ′r of the syndrome. Thus Sr is identified as the correct value of that

syndrome, as was claimed.

We will describe the first 45 iterations of the Sakata algorithm that are needed to

decode the pattern of seven errors underlying the syndromes of Figure 12.2. The first

21 iterations of the Sakata algorithm (from step (0) to step (20)) are the same as the 21

iterations of the long example given in Section 8.5, which applied the Sakata algorithm

to the array of syndromes repeated in Figure 12.1.

That example in Section 8.5 terminated after step (20) with the three minimal

connection polynomials:

�(20,1)(x, y) = x4 + α3x2y + α5x3 + α14xy + α7y + αx + α13;

�(20,2)(x, y) = x2y + α13xy + α3x2 + α3y + α6x + α6;

�(20,3)(x, y) = y2 + α10xy + α13y + α13x + α11,

492 The Many Decoding Algorithms for Codes on Curves

which we abbreviate as follows:

�(20,1) = α7 α14 α3

α13 α 0 α5 1
�(20,2) = α3 α13 1

α6 α6 α3

�(20,3) =
1

α13 α10

α11 α13

Turning to Figure 12.2, we can immediately continue the example with two more

iterations because we are given the next two syndromes.

Step (21) Set r = 21 = (6, 0). Syndrome S6,0 is known and is equal to 1. One

polynomial, �(20,1)(x, y), reaches the point (6,0). Using polynomial �(20,1)(x, y) and

r − s = (2, 0), we compute the discrepancy δ
(20,1)
21 to be α6 �= 0. Because (2,0) is

already in the footprint, the footprint is not enlarged. The new minimal connection

polynomials corresponding to the exterior corners are

�(21,1)(x, y) = �(20,1)(x, y)+ α6xB(20,2)(x, y)

= x4 + α9x2y + α5x3 + x2 + α7y + α5x + α13,

�(21,2)(x, y) = �(20,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6,

and

�(21,3)(x, y) = �(20,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(21,1) = α7 0 α9

α13 α5 1 α5 1
�(21,2) = α3 α13 1

α6 α6 α3

�(21,3) =
1

α13 α10

α11 α13

Step (22) Set r = 22 = (5, 1). Syndrome S5,1 is known and is equal to α5. Two

minimal connection polynomials �(21,1)(x, y) and �(21,2)(x, y) reach the point (5,1).

Using polynomial �(21,1)(x, y) and r−s = (1, 1), we compute the discrepancy δ
(21,1)
22 =

α �= 0. Using polynomial �(22,2)(x, y) and r− s = (3, 0), we compute δ
(21,2)
22 = α �= 0.

493 12.3 Decoding of hyperbolic codes

Because (1,1) and (3,0) are already in the footprint, the footprint is not enlarged. The

new minimal connection polynomials are

�(22,1)(x, y) = �(21,1)(x, y)+ αB(21,1)(x, y)

= x4 + α9x2y + α3x3 + α14xy + α4x2 + α6y + α5x + 1,

�(22,2)(x, y) = �(21,2)(x, y)+ αB(21,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(22,3)(x, y) = �(21,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(22,1) = α6 α14 α9

1 α5 α4 α3 1
�(22,2) = α α4 1

α4 α7 α3

�(22,3) =
1

α13 α10

α11 α13

At this point, the situation changes. The next syndrome S23 is missing. In fact, the next

three syndromes S23, S24, and S25 are missing, though other syndromes placed later in

the sequence are known. Accordingly, the next three steps use the minimal connection

polynomials to infer the missing syndromes.

Step (23) Set r = 23 = (4, 2). Syndrome S4,2 is missing. All three polynomials

�(22,1)(x, y), �(22,2)(x, y), and �(23,3)(x, y) reach the point r = (4, 2), so each can be

used to estimate the unknown S4,2. The three estimates are S
(1)
4,2 = α6, S

(2)
4,2 = α6, and

S
(3)
4,2 = α6. These estimates are all the same, so S4,2 is now known to be α6. Because

the three estimates agree, the Sakata algorithm can continue. Because of the choice

of S4,2, the discrepancy for every minimal connection polynomial is zero. The set of

minimal connection polynomials does not change during this iteration. If one of the

three estimates were different, then that minimal connection polynomial would need

to be updated.

Step (24) Set r = 24 = (3, 3). Syndrome S3,3 is missing. Only two minimal connection

polynomials reach the point r = (3, 3). Each can be used to estimate S3,3. The estimates

are Ŝ
(2)
3,3 = α3 and Ŝ

(3)
3,3 = α3. These estimates are the same, so S3,3 is now known to be

α3. Because of this choice of S3,3, the discrepancy for both connection polynomials is

zero. The set of minimal connection polynomials does not change during this iteration.

494 The Many Decoding Algorithms for Codes on Curves

Step (25) Set r = 25 = (2, 4). Syndrome S2,4 is missing. Only two minimal connection

polynomials reach the point r = (2, 4). Each can be used to estimate S2,4. The two

estimates are both α6. Thus S2,4 is now known to be α6. The set of minimal connection

polynomials does not change during this iteration.

Step (26) Set r = 26 = (1, 5). Syndrome S1,5 is known and is equal to α4. Only

one minimal connection polynomial �(25,3)(x, y) reaches the point r = (1, 5) from

the earlier syndromes. The discrepancy δ
(25,3)
26 is zero. The set of minimal connection

polynomials does not change during this iteration.

Step (27) Set r = 27 = (0, 6). Syndrome S0,6 is known and is equal to α11. Only

one minimal connection polynomial �(26,3)(x, y) reaches the point r = (0, 6). The

discrepancy δ
(26,3)
27 is zero. The set of minimal connection polynomials does not change

during this iteration.

Step (28) Set r = 28 = (7, 0). Syndrome S7,0 is known and is equal to α8. Only

one minimal connection polynomial �(27,1)(x, y) reaches the point r = (7, 0). Using

polynomial �(27,1)(x, y) and r − s = (3, 0), we compute the discrepancy δ
(27,1)
28 = α8.

Because (3, 0) is already in the footprint, the footprint is not enlarged. The set of

minimal connection polynomials changes to

�(28,1)(x, y) = �(27,1)(x, y)+ α8B(27,2)(x, y)

= x4 + α3x3 + α9x2y + α4x2 + xy + αx + α11y + α,

�(28,2)(x, y) = �(27,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(28,3)(x, y) = �(27,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(28,1) = α11 α0 α9

α1 α1 α4 α3 1
�(28,2) = α α4 1

α4 α7 α3

�(28,3) =
1

α13 α10

α11 α13

Step (29) to step (35) There is no change to the connection set during these iterations;

all missing syndromes are filled in turn.

Step (36) Set r = 36 = (8, 0). Syndrome S8,0 is known and is equal to α13. Only one

connection polynomial �(35,1) reaches the point (8, 0). The discrepancy δ
(35,1)
36 is α7.

495 12.3 Decoding of hyperbolic codes

Because (8, 0)−(4, 0) = (4, 0), which was not in the footprint, the footprint is enlarged

to include the point (4, 0). The new minimal connection polynomials are

�(36,1)(x, y) = x�(35,1)(x, y)+ α7B(35,2)(x, y)

= x5 + α3x4 + α9x3y + α4x3 + α0x2y

+ α1x2 + α9xy + α0y + α3,

�(36,2)(x, y) = �(35,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(35,3)(x, y) = �(35,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(36,1) = α0 α9 α0 α9

α3 0 α1 α4 α3 1
�(36,2) = α α4 1

α4 α7 α3

�(36,3) =
1

α13 α10

α11 α13

At this point we notice a concern. The current footprint has area 7, while the hyper-

bolic code has minimum distance 13, and so can only guarantee the correction of six

errors. Thus we could now choose to declare the error pattern to be uncorrectable.

Instead, we continue as before, filling missing syndromes as long as this process

continues to work.

Step (37) to step (44) There is no change to the set of minimal connection polynomials

during these iterations; all missing syndromes are filled in turn.

Step (45) Set r = 45 = (9, 0). Syndrome S9,0 is known and is equal to α12. The

discrepancy δ
(44,1)
45 = α10. Only one connection polynomial �(44,1)(x, y) reaches the

point (9, 0). Then

�(45,1)(x, y) = �(44,1)(x, y)+ α10B(44,1)(x, y)

= x5 + α9x3y + α12x3 + α11x2y + α14

x2 + α1xy + α4x + α3y + α7,

�(45,2)(x, y) = �(44,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

496 The Many Decoding Algorithms for Codes on Curves

and

�(45,3)(x, y) = �(44,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(45,1) = α3 α1 α11 α9

α7 α4 α14 α12 0 1
�(45,2) = α α4 1

α4 α7 α3

�(45,3) =
1

α13 α10

α11 α13

At the end of this step, if the set of three minimal connection polynomials is tested, it

will be found to have seven zeros. This is equal to the area of the connection footprint

as shown in Figure 12.3.

Therefore the set of minimal connection polynomials generates the locator ideal for

an error word with errors at the locations of these seven zeros. Indeed, if the senseword

lies within the packing radius about the correct codeword, this must be the error pattern.

Therefore the computation of the locator ideal is complete, and further iterations will

not change the locator ideal, but will only fill missing syndromes. If desired, the process

can be continued to fill missing syndromes until all known syndromes have been visited

to ensure that the error pattern is indeed a correctable error pattern.

At this point, the locator ideal has been computed and the error correction can proceed

by any of the several methods described in Section 12.5. The most straightforward

of the methods described there is to continue the iterations described above to fill

syndromes, producing a new syndrome at each iteration until the full bispectrum of the

error pattern is known. An inverse two-dimensional Fourier transform then completes

the computation of the error pattern.

j��

j�

Figure 12.3. Final footprint for the hyperbolic code.

497 12.4 Decoding of hermitian codes

12.4 Decoding of hermitian codes

An epicyclic hermitian code of designed distance d was defined in Section 10.6 as

a two-dimensional code shortened, or punctured, to lie on an hermitian curve in the

bicyclic plane. The shortened code c is suitable for decoding, because all components

ci′i′′ are zero for indices (i′, i′′) that do not correspond to points of the curve. This code

can be decoded to the designed distance by the methods of two-dimensional locator

decoding, such as the Sakata algorithm. However, embellishments to the Sakata algo-

rithm are needed to account for missing and implied syndromes. The implied syndromes

are found by using the knowledge that nonzero components of the codeword and the

senseword can only occur for points on the curve. This works because the equation of

the curve G(x, y) = 0 introduces dependencies among the Fourier transform compo-

nents. Let gi′i′′ = (1/n2)G(ω−i′ , ω−i′′) and consider the array vi′i′′gi′i′′ , where v is the

senseword padded with zeros and embedded into a two-dimensional array. For every

(i′, i′′), either vi′i′′ or gi′i′′ equals zero, so vi′i′′gi′i′′ = 0. By the convolution theorem,

G(x, y)V (x, y) = 0. This gives a relationship among the coefficients of V (x, y). Like-

wise, G(x, y)C(x, y) = 0 and G(x, y)E(x, y) = 0. These equations provide relationships

among the coefficients of C(x, y), and among the coefficients of E(x, y). In particular,

because G(x, y) = xq+1 = yq+y, we know that xq+1E(x, y)+yqE(x, y)+yE(x, y) = 0.

This means that Ej′−q−1,j′′ = Ej′,j′′−q + Ej′,j′′−1.

For example, in the plane GF(256)2, the hermitian curve is defined by the polynomial

G(x, y) = x17 + y16 + y. The expression G(x, y)C(x, y) = 0 implies that

Cj′+17, j′′ + Cj′, j′′+16 + Cj′, j′′+1 = 0.

By replacing j′ + 17 by j′, this becomes

Cj′j′′ = Cj′−17, j′′+16 + Cj′−17, j′′+1.

When these three terms are arranged in the total order, Cj′j′′ is the last term of the three.

If the other two terms are known, then Cj′j′′ can be computed from them. We then say

that Cj′j′′ is given by the equation of the curve. If (j′−17, j′′+16) and (j′−17, j′′+1)

are in the defining set of the code, then we say that the extra syndrome Sj′j′′ is given

by the equation of the curve, or that Sj′j′′ is an implied syndrome. In particular, if the

syndromes Sj′j′′ are known for j′ = 0, . . . , 16 and for j′′ = 0, . . . , 254, then all other

Sj′j′′ are implied by the equation of the curve. Figure 12.4 shows the array of syndromes

partitioned into known syndromes, implied syndromes, and missing syndromes. The

implied syndromes can be inferred from the known syndromes by the equation of

the curve. We shall see that the missing syndromes can then be inferred by using the

Sakata–Massey theorem, provided the number of errors does not exceed the designed

packing radius of the code.

498 The Many Decoding Algorithms for Codes on Curves

missing
syndromes

implied
syndromes

known
syndromes

Figure 12.4. Syndromes for an hermitian code.

We summarize this observation as follows. Let v be a vector on an hermitian curve

with weight at most t and v ⇔ V . Suppose that r satisfies J < r′ + r′′ < J + q and

r′ ≤ q. There is exactly one way to extend the sequence V0, V1, . . . , Vr−1 to a sequence

V0, V1, . . . , Vr so that the locator ideal has a footprint with area at most t. This statement

will be examined more fully in Section 12.7. For now, we will accept the statement as

an unsupported assertion.

Figure 12.5 is a detailed algorithm for finding the connection set for an hermitian

code. The algorithm uses the Sakata algorithm, augmented with two options for syn-

drome filling. If a syndrome is known, then it is used in the natural way to proceed with

the current iteration. If a syndrome is implied, then it is computed from the equation of

the curve before proceeding with the current iteration. If the syndrome is missing, then

it is chosen as the unique value for which ‖�r‖ ≤ t. To find the missing syndrome,

there is no need to try every possible value for Sr; only those values produced by the

most recent set of minimal connection polynomials need to be tried. We shall see that

the majority of the connection polynomials must produce the correct syndrome.

As a simple example of a decoder based on the Sakata algorithm, we shall consider

the (60, 40, 15) epicyclic hermitian code over GF(16), defined on the curve x5 + y4 +
y = 0 over GF(16). This code can correct seven errors. We will decode a senseword

based on the set of syndromes shown in Figure 12.1. These syndromes are based on

an error pattern with seven errors at the seven points (i′, i′′) = (0, 1), (2, 3), (8, 3),

(1, 7), (11, 3), (5, 3), and (14, 3) as discussed in Section 12.5. These seven points

all happen to be on the curve, because for each of these values of (i′, i′′), the point

(αi′ , αi′′) is a zero of x5 + y4 + y. This fact was not a prior condition and was not

499 12.4 Decoding of hermitian codes

Compute known
syndromes

Compute connection set
for S0,S1, ..., Sr

Initialize
r = 0

Exit
Yes

No

Yes

No

Sj 9j 0 Sj 9–17,j 0 + 16 Sj 9–17,j 0 + 1=

Does
Sr exist

?

r = Rmax
?

r ← r + 1

+ Find unique Sr
such that
∆r≤ t

Figure 12.5. Decoding a hermitian code over GF(16).

relevant to the decoder for the hyperbolic code in Section 12.3, and there that fact

was completely incidental to the calculations of that decoder. The hermitian code,

however, only exists on the points of the curve, and errors can only occur on the points

of the curve, and the decoder can use this prior information. By choosing the same

error pattern for both the hyperbolic code and the hermitian code, the calculations

of the decoding algorithms are nearly the same, although some of the reasoning is

different.

500 The Many Decoding Algorithms for Codes on Curves

The magnitudes of the seven errors are the values e0,1 = α12, e2,3 = α2, e8,3 = α15,

e1,7 = α11, e11,3 = α, e5,3 = α12, and e14,3 = α7. For all other (i′, i′′), ei′i′′ = 0. The

error polynomial underlying the syndromes is given by

e(x, y) =
14∑

i′=0

14∑

i′′=0

ei′i′′x
i′yi′′

= (α10x14 + α0x11 + α8x8 + α6x5 + α1x2)y3 + α7xy7 + α6y.

The error polynomial e(x, y) is not known to the decoder; only the syndromes are

known. The task of the decoder is to compute this polynomial from the syndromes.

The syndromes are defined as Sj′j′′ = e(αj′ , αj′′) for j′ + j′′ ≤ 5. The pattern of

syndromes for the hermitian code is shown in Figure 12.6. This is a much smaller set

of syndromes than the set available to the hyperbolic code. However, now the decoder

knows that errors can only occur at the points of the curve, and it uses this prior

information. The decoder for the hyperbolic code had to deal with errors anywhere in

the bicyclic plane.

The next two syndromes in sequence, S6,0 and S5,1, can be filled immediately by

using the equation of the curve to write

Sj′j′′ = Sj′−5, j′′+4 + Sj′−5, j′′+1.

Although this equation could also be used to compute syndrome S5,0 from syndromes

S0,4 and S0,1, this is not necessary because syndrome S5,0 is already known. The two

j��

j�

14
13
12
11
10
9
8
7
6
5 �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

6

4 5 7

3 6 4 7

2 9 11 0 12

1 0 9 14 12 5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 9 14 5 7 2 5

Figure 12.6. Syndromes for decoding a (64, 44, 15) hermitian code.

501 12.4 Decoding of hermitian codes

6
5 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

6

4 5 7

3 6 4 7

2 9 11 0 12

1 0 9 14 12 5 5

0 9 14 5 7 2 5 1
0 1 2 3 4 5 6 7 8 j�

j��

Figure 12.7. The start of syndrome filling.

implied syndromes are seen to have the values S6,0 = S1,4 + S1,1 = 1 and S5,1 =
S0,5 + S0,2 = α5. The syndrome array, when filled with these two implied syndromes,

S6,0 and S5,1, is given in Figure 12.7.

There are twenty-three syndromes here, twenty-one satisfying j′ + j′′ ≤ 5, and the

two that were computed as implied syndromes from the equation of the curve. Because

we are using the graded order, with y larger than x, the two extra syndromes S6,0 = 1

and S5,1 = α5 come immediately after the twenty-one normal syndromes. In the graded

order, the sequence of syndromes is as follows:

α9, α14, 0, α5, α9, α9, α7, α14, α11, α6, α2, α12,

0, α4, α5, α5, α5, α12, α7, α7, α6, 1, α5, S4,2, S3,3, . . .

Starting in position (23) and continuing, the missing syndromes S4,2, S3,3, . . . appear as

unknowns. This is the same sequence of syndromes used in Section 12.3 for decoding

a hyperbolic code. Hence the Sakata algorithm consists of the same steps insofar as the

known sequence of syndromes allows. In particular, steps (21) and (22) are the same

for decoding the senseword of the hermitian code as they were for the senseword of

the hyperbolic code. We can simply repeat these steps from Section 12.3 because the

syndromes are the same.

Step (21) Set r = 21 = (6, 0). One polynomial �(20,1)(x, y) reaches the point (6, 0).

Using polynomial �(20,1)(x, y) and r − s = (2, 0), we compute δ
(20,1)
21 to be α6 �= 0.

Because (2, 0) is already in the footprint, the footprint is not enlarged. The new minimal

connection polynomials are

�(21,1)(x, y) = �(20,1)(x, y)+ α6xB(20,2)(x, y)

= x4 + α9x2y + α5x3 + x2 + α7y + α5x + α13,

�(21,2)(x, y) = �(20,2)(x, y)

= x2y + α13xy + α3x2 + α3y + α6x + α6,

502 The Many Decoding Algorithms for Codes on Curves

and

�(21,3)(x, y) = �(20,3)(x, y)

= y2 + αxy + y + α5x + α9,

which we abbreviate as follows:

�(21,1) = α7 0 α9

α13 α5 1 α5 1
�(21,2) = α3 α13 1

α6 α6 α3

�(21,3) =
1

α13 α10

α11 α13

Step (22) Set r = 22 = (5, 1). Two polynomials �(21,1)(x, y) and �(21,2)(x, y) reach

the point (5,1). Using polynomial �(21,1)(x, y) and r−s = (1, 1), we compute δ
(21,1)
22 =

α �= 0. Using polynomial �(22,2)(x, y) and r− s = (3, 0), we compute δ
(21,2)
22 = α �= 0.

Because (1,1) and (3,0) are already in the footprint, the footprint is not enlarged. The

new minimal connection polynomials are

�(22,1)(x, y) = �(21,1)(x, y)+ αB(21,1)(x, y)

= x4 + α9x2y + α3x3 + α14xy + α4x2 + α6y + α5x + 1,

�(22,2)(x, y) = �(21,2)(x, y)+ αB(21,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(22,3)(x, y) = �(21,3)(x, y)

= y2 + αxy + y + α5x + α9,

which we abbreviate as follows:

�(22,1) = α6 α14 α9

1 α5 α4 α3 1
�(22,2) = α α4 1

α4 α7 α3

�(22,3) =
1

α13 α10

α11 α13

Before continuing, we will make some remarks. All of the original syndromes have

now been used. No more unused syndromes are known. The next syndromes, S4,2, S3,3,

503 12.4 Decoding of hermitian codes

and S2,4, are not known. Indeed, no other syndromes later in the sequence are known,

though some are implied by the equation of the curve. Because ‖�22‖ = 6, it could

be that �22 is the correct connection footprint for a pattern of six errors, but it cannot

possibly be the connection footprint for a pattern of seven errors, which we know is the

case. However, all syndromes have now been used, even the two extra syndromes, S6,0

and S5,1. There is no more information available to the decoder, even though it is not

yet finished. Thus this example makes it evident that something more can be squeezed

from the syndromes to enable the correction of seven errors. At this point, the notion

of syndrome filling should become almost intuitively self-evident, though not proved.

Indeed, how could the situation be otherwise?

The next syndrome is missing and will be filled by a majority decision among syn-

drome estimates. Subsequent syndromes will be found by this same method, or will be

found from the equation of the curve. We shall see that the footprint of the connection

set does not change until syndrome S3,4 is reached at iteration number 32.

The sequence of intermediate steps is as follows.

Step (23) Set r = 23 = (4, 2). All three polynomials reach the point r = (4, 2), so

each can be used to estimate the unknown S4,2. The three estimates are Ŝ
(1)
4,2 = α6,

Ŝ
(2)
4,2 = α6, and Ŝ

(3)
4,2 = α6. The majority decision is that S4,2 = α6, and the Sakata

algorithm can continue. Because the three estimates agree, the three discrepancies all

are equal to zero, so the set of minimal connection polynomials does not change.

Step (24) Set r = 24 = (3, 3). Only two polynomials reach the point r = (3, 3).

Each can be used to estimate S3,3. The estimates are Ŝ
(2)
3,3 = α3, and Ŝ

(3)
3,3 = α3. Thus

S3,3 = α3. Because the two estimates agree, both discrepancies are zero, so the set of

the minimal connection polynomials does not change.

Step (25) Set r = 25 = (2, 4). Only two polynomials reach the point r = (2, 4). Each

can be used to estimate S2,4. The two estimates are both α6. Thus S2,4 = α6. Again,

the set of minimal connection polynomials does not change.

Step (26) Set r = 26 = (1, 5). Only one polynomial reaches the point r = (1, 5). Thus

S1,5 = α4. The discrepancy is zero, and the set of minimal connection polynomials

does not change.

Step (27) Set r = 27 = (0, 6). Only one polynomial reaches the point r = (0, 6).

Thus S0,6 = α11. Again, the discrepancy is zero, and the set of minimal connection

polynomials does not change.

The next three syndromes can be inferred from the equation of the curve.

Step (28) Set r = 28 = (7, 0). Syndrome S7,0 can be computed as an implied syndrome

using the equation of the curve as S7,0 = S2,4+S2,1 = α8. Only one minimal connection

polynomial �(27,1)(x, y) reaches the point r = (7, 0). Using polynomial �(27,1)(x, y)

and r − s = (3, 0), we compute that the discrepancy δ
(27,1)
28 is α8. Because (3, 0) is

504 The Many Decoding Algorithms for Codes on Curves

already in the footprint, the footprint is not enlarged. The set of minimal connection

polynomials changes to

�(28,1)(x, y) = �(27,1)(x, y)+ α8B(27,2)(x, y)

= x4 + α3x3 + α9x2y + α4x2 + xy + αx + α11y + α,

�(28,2)(x, y) = �(27,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(28,3)(x, y) = �(27,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(28,1) = α11 α0 α9

α1 α1 α4 α3 1
�(28,2) = α α4 1

α4 α7 α3

�(28,3) =
1

α13 α10

α11 α13

Step (29) Set r = 29 = (6, 1). Syndrome S6,1 can be computed as an implied syndrome,

using the equation of the curve, as S6,1 = S1,5 + S1,2 = α4 + α11 = α13. Two

polynomials �(28,1) and �(28,2) reach the point (6, 1). The discrepancy is zero for both.

The set of minimal connection polynomials does not change.

Step (30) Set r = 30 = (5, 2). Syndrome S5,2 can be computed as an implied syndrome,

using the equation of the curve, as S5,2 = S0,6 + S0,3 = α11 + α6 = α1. All three

connection polynomials reach the point (15, 2). All three discrepancies are zero. The

set of minimal connection polynomials does not change.

Step (31) Set r = 31 = (4, 3). Syndrome S4,3 is missing. All three connection poly-

nomials reach the point (4,3) to give the three estimates S
(1)
4,3 = α10, Ŝ

(2)
4,3 = α10, and

Ŝ
(3)
4,3 = α10. Then, by syndrome voting, the value of S4,3 is α10. Because the three esti-

mates of S4,3 are the same, all discrepancies are zero. The set of minimal connection

polynomials does not change.

In this way, one by one, the missing syndromes are filled. At the end of iteration (31),

the array of syndromes has been filled, as shown in Figure 12.8.

Step (32) to step (35) There is no change to the connection set during these iterations.

All missing syndromes are filled.

505 12.4 Decoding of hermitian codes

 11

 6 4

 5 7 6

 6 4 7 3 10

 9 11 0 12 6
0 9 14 12 5 5 13

 9 14 5 7 2 5 1 8

�

�

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 j�

j��

Figure 12.8. Continuation of syndrome filling.

Step (36) Set r = 36 = (8, 0). Syndrome S8,0 is implied by the equation of the

curve; it is equal to α13. Only one connection polynomial reaches the point (8, 0).

The discrepancy δ
(35,1)
36 is α7. Because (8, 0) − (4, 0) = (4, 0), which is not in the

current footprint, the footprint must be enlarged to include this point. The new minimal

connection polynomials are

�(36,1)(x, y) = x�(35,1)(x, y)+ α7B(35,2)(x, y)

= x5 + α3x4 + α9x3y + α4x3

+ α0x2y + α1x2 + α9xy + α0y + α3,

�(36,2)(x, y) = �(35,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(36,3)(x, y) = �(26,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as follows:

�(36,1) = α0 α9 α0 α9

α3 0 α1 α4 α3 1
�(36,2) = α α4 1

α4 α7 α3

�(36,3) =
1

α13 α10

α11 α13

The footprint �36 is given in Figure 12.9. For this footprint, ‖�36‖ = 7. Because

we know that the error pattern has seven errors, the footprint will not change further

during subsequent iterations. However, further iterations are necessary to complete the

formation of the minimal connection polynomials.

506 The Many Decoding Algorithms for Codes on Curves

j��

j�

Figure 12.9. Final footprint for the hermitian code.

Step (37) to step (44) There is no change to the set of minimal connection polynomials

during these steps.

Step (45) Set r = 45 = (9, 0). The discrepancy δ
(44,1)
45 = α10. Then

�(45,1)(x, y) = �(44,1)(x, y)+ α10B(44,1)(x, y)

= x5 + α9x3y + α12x3 + α11x2y + α14x2

+ α1xy + α4x + α3y + α7,

�(45,2)(x, y) = �(44,2)(x, y)

= x2y + α4xy + α3x2 + αy + α7x + α4,

and

�(45,3)(x, y) = �(44,3)(x, y)

= y2 + α10xy + α13y + α13x + α11,

which we abbreviate as

�(45,1) = α3 α1 α11 α9

α7 α4 α14 α12 0 1
�(45,2) = α α4 1

α4 α7 α3

�(45,3) =
1

α13 α10

α11 α13

At this point, the area of the footprint has area 7, and the three minimal connection poly-

nomials have seven common zeros. The computation of the locator ideal is complete.

Any further iterations will not change the connection polynomials, only fill missing

syndromes. If desired, the process can be continued to fill missing syndromes until all

syndromes have been visited. Because this is a correctable error pattern, the minimal

507 12.5 Computation of the error values

connection polynomials become the minimal generator polynomials for the locator

ideal.

At this point, the locator ideal has been computed and can be used to correct the errors

by any of the several methods described in Section 12.5. The most straightforward of

the methods, described in that section, is to continue the iterations, producing a new

syndrome at each iteration until the full bispectrum of the error pattern is known. An

inverse two-dimensional Fourier transform then completes the computation of the error

pattern.

12.5 Computation of the error values

After the error-locator ideal has been computed, the location and the value of each error

must be computed. There are several methods we may use to achieve this. We shall

describe three methods of computing the errors from the locator ideal. These are the

counterparts to the three methods of computing the error values that were described

earlier, in Section 3.2, for codes on the line. Whichever method is used, the result of

the computation is the array of errors, which is then subtracted from the senseword to

obtain the corrected codeword.

The array of errors that underlies our running example is shown in Figure 12.10. The

error pattern can be represented by the polynomial e(x, y), given by

e(x, y) = (α10x14 + α0x11 + α8x8 + α6x5 + α1x2)y3 + α7xy7 + α6y.

e =

0 α6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 α7 0 0 0 0 0 0 0
0 0 0 α1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α8 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α10 0 0 0 0 0 0 0 0 0 0 0

Figure 12.10. Error pattern for the running example.

508 The Many Decoding Algorithms for Codes on Curves

The error bispectrum, shown in Figure 12.11, is the Fourier transform of this array

of errors. It can be computed by evaluating the polynomial e(x, y) at all points of the

bicyclic plane. Because the errors lie on the hermitian curve, the first five columns

of this array determine all others by the relationship Ej′j′′ = Ej′−5, j′′+4 + Ej′−5, j′′+1.

The syndromes that were used in Sections 12.3 and Section 12.4 are the appropriate

components of Figure 12.8.

The locator ideal for the running example, as computed in both Section 12.3 and

Section 12.4, is generated by the following minimal locator polynomials:

�(1) = α3 α1 α11 α9

α7 α4 α14 α12 0 1
�(2) = α α4 1

α4 α7 α3 �(3) =
1

α13 α10

α11 α13

To find the location of the errors, the common zeros of these three polynomials are

found. For the hyperbolic code, all 225 points of the bicyclic plane GF(16)∗2 need to

be tested. For the hermitian code, only the sixty points on the epicyclic curve need to

be tested. (We have chosen the seven errors to be the same for the two examples, so the

seven errors in the senseword of the hyperbolic code are all on the hermitian curve, but

the senseword of the hyperbolic code could have had errors anywhere in the bicyclic

plane.)

The first method uses recursive extension to compute all coefficients of the bispec-

trum polynomial S(x, y). This amounts to a continuation of the steps of the embellished

Sakata algorithm, with additional steps to fill all missing or implied syndromes. Each

minimal polynomial �(ℓ)(x, y) of the locator ideal satisfies the polynomial equation

�(ℓ)(x, y)S(x, y) = 0, which gives the two-dimensional recursion. Every such equation

with a single unknown component, Sj′j′′ , can be used to solve for that unknown compo-

nent, which then becomes known. Eventually, by two-dimensional recursive extension,

the array of bispectral components shown in Figure 12.11 is completely filled. The

inverse Fourier transform of this array is the error pattern shown in Figure 12.10.

To compute the array S = E by recursive extension, it is enough first to compute

only the first five columns. Locator polynomials �(2)(x, y) and �(3)(x, y) are sufficient

for this purpose. The other columns can be filled by using the equation of the curve or,

better, the equation of the curve can be built into the computation of the inverse Fourier

transform.

The second method uses a straightforward matrix inverse, in the manner used in

the Peterson algorithm. First, the locations of the ν errors are found by finding the

common zeros of the three generators of the locator ideal. This gives the indices of

the nonzero locations of the array e. This is a sparse array with at most t nonzero

locations. Each syndrome is a linear combination of these nonzero error magnitudes.

Then it is straightforward to set up a system of ν linear equations in the ν unknown

error magnitudes.

509 12.6 Supercodes of hermitian codes

The third method is based on a generalization of the Forney formula. The formal

derivative of a polynomial in one variable is replaced by a formal derivative along a

curve. The formula needed for a curve is more complicated and less attractive, how-

ever, than the original Forney formula. Moreover, a locator polynomial and its partial

derivative may both be zero at the same point. In this case, the generalized formula

becomes indeterminate. Then either a generalization of l’Hôpital’s rule must be used,

or a different locator polynomial must be chosen.

The generalization of the Forney formula has the following form:

ei =

Ŵ[ℓ−1](ω j′ , ω j′′)

�[ℓ](ω j′ , ω j′′)
if �(ω j′ , ω j′′) = 0

0 if �(ω j′ , ω j′′) �= 0,

where ℓ is the smallest integer for which �[ℓ](ω j′ , ω j′′) �= 0, and [ℓ] denotes the ℓth

Hasse derivative. The Hasse derivative along the hermitian curve is given by

�[ℓ](x′, y′′) = �[ℓ,0](x′, y′′)+ (x′)q�[ℓ−1,1](x′, y′)+ · · · + (x′)ℓq�[0,ℓ](x′, y′),

where the notation �[ℓ
′,ℓ′′](x, y) denotes the Hasse partial derivative combining the ℓ′th

derivative in x and the ℓ′′th derivative in y.

12.6 Supercodes of hermitian codes

Bicyclic codes on the plane were studied in Chapter 6. No bicyclic code (without

puncturing or shortening) was found to be significant in terms of the minimum distance,

though perhaps some may be practical if they are to be decoded beyond the minimum

α9 α14 α5 α7 α2 α5 α0 α8 α13 α12 0 α2 α12 α9 α10

0 α9 α14 α12 α5 α5 α13 α10 0 α5 α13 α6 α8 α2 α7

α9 α11 0 α12 α6 α1 α9 α3 α6 α3 α13 α0 α13 α5 α1

α6 α4 α7 α3 α10 α5 α14 α6 α5 α3 0 0 α13 α2 α5

α5 α7 α6 α1 α14 α5 α14 α3 α9 α0 α10 α8 α4 α12 α12

α6 α4 α10 α12 α9 α12 α5 α13 α3 α4 α13 α7 α2 α14 α10

α11 α14 α4 α2 α12 α7 α3 α0 0 α14 α9 α11 α13 α7 α9

0 α1 0 α2 α1 α5 α14 α8 α11 α6 α7 α5 α3 α10 α3

α9 α9 α12 α8 α7 α3 α4 α11 α10 α7 α7 0 α3 α7 α11

1 α12 α11 α6 α6 α5 α4 α8 α14 α4 α5 α13 α9 α2 0
α7 α9 α0 α2 α7 α6 α10 α3 α8 α2 α8 α12 α7 α1 α13

α6 α4 α9 α7 α10 α4 α8 α5 0 α4 α7 α1 α3 α12 α6

α14 α6 0 α7 α10 α13 α4 α13 α1 α11 α6 α10 α8 α0 α7

α13 α14 α2 α13 α3 α9 α9 α1 α0 α12 α2 0 α8 α12 α7

0 α2 α1 α11 α4 α5 α9 α13 α4 α8 0 α3 α14 α7 α2

Figure 12.11. Error spectrum for the running example.

510 The Many Decoding Algorithms for Codes on Curves

distance. In Chapters 10 and 11, certain bicyclic codes were punctured or shortened to

lie on a plane curve to obtain codes that are attractive in terms of minimum distance. In

this section, we show that some of these codes can be further improved by augmenting

certain of their cosets to produce better codes.

The true minimum distance of a shortened hermitian code is at least as large as the

Feng–Rao distance, while the designed distance of a shortened hermitian code is often

defined to be the Goppa distance. For some hermitian codes, the Feng–Rao distance

is larger than the Goppa distance. This means that the true minimum distance of the

code is larger than the designed distance. For these codes, it is possible to enlarge

the hermitian code – without reducing its designed distance – to a new linear code

that contains the hermitian code. We will not follow this line of thought in this form

further in this section. Instead, we will follow a different line of thought to a similar

purpose. We will construct a code that merges the definition of a hyperbolic code with

the definition of an hermitian code. This construction draws on the intuition developed

in the decoding examples of Sections 12.3 and 12.4. In Section 12.3, to infer certain

missing syndromes the extended Sakata algorithm used the fact that the code being

decoded was a hyperbolic code. In Section 12.4, to infer certain missing syndromes the

extended Sakata algorithm used the fact that the code being decoded is an hermitian

code. We will merge the attributes of these two codes into one code so that both kinds

of syndromes can be inferred.

The hyperbolic bound suggests how to construct this new code by forming the union

of an hermitian code with certain of its cosets to increase its dimension. The original

hermitian code is a subcode of the new code, and the new code is a supercode of the

original hermitian code.

A codeword of the hermitian code is a vector with the components ci for i = 0, . . . ,

n− 1, where i indexes the n points (i′, i′′) of the hermitian curve, those points at which

G(ω−i′ , ω−i′′) is equal to zero. For the shortened hermitian code, the codeword spectral

components satisfy Cj′j′′ = 0 if j′ + j′′ ≤ J . Every other spectral component Cj′j′′ is

arbitrary, provided the array c is zero for those components that do not lie on the curve.

The defining set of the shortened hermitian code is given by

A1 = {(j′, j′′) | j′ + j′′ ≤ J }.

The designed distance of the shortened code is d∗ = mJ − 2g + 2, and the dimension

of this code is k = n− m J + g − 1.

The defining set of the hyperbolic code is given by

A2 = {(j′, j′′) | (j′ + 1)(j′′ + 1) ≤ d∗}.

The designed distance of the hyperbolic code is d∗.
For the hermitian supercode, the defining set is chosen to consist of those (j′, j′′) that

are in both defining sets. The codeword spectra satisfies Cj′j′′ = 0 if (j′, j′′) ∈ A1∩A2.

511 12.6 Supercodes of hermitian codes

Thus,

A = {(j′, j′′) | j′ + j′′ ≤ J }
⋂
{(j′, j′′) | (j′ + 1)(j′′ + 1) ≤ d∗},

and J satisfies mJ = d∗ + 2g − 2. Consequently Cj′j′′ is equal to zero if the two

conditions m(j′+ j′′) ≤ d∗+ 2g− 2 and (j′+ 1)(j′′+ 1) ≤ d∗ are both satisfied. For

all other (j′, j′′), the bispectrum component Cj′ j′′ is arbitrary, provided the constraint

imposed by the curve is satisfied.

If the set A2 is not contained in the set A1, there will be fewer elements in the

intersection A = A1 ∩ A2 than in the set A2. Because there are fewer such (j′, j′′)
in A than in A1, the constraints of the defining set are looser. There will be more

codewords satisfying the new constraints, so the dimension of the resulting code is

larger.

Syndrome Sj′j′′ will be known only if m(j′+ j′′) ≤ d∗+2g−2 and (j′+1)(j′′+1) ≤
d∗ are both satisfied. It follows from the Sakata–Massey theorem that each unknown

syndrome can be inferred by a subsidiary calculation, augmenting the Sakata algorithm

just at the time that it is needed. Because the unknown syndromes that result from the

new hyperbolic constraint can be inferred by the decoder, there is no reduction in the

designed distance because of the redefinition of the defining set.

It remains to show that this discussion is fruitful by showing the existence of hermitian

codes with defining set A1 such that A2 � A1. Only if this is so will there exist such

codes better than hermitian codes. We will not provide general conditions under which

this is so (see Problem 12.10). Instead, we will establish this fact by giving a simple

example.

A bispectrum of an hermitian supercode with designed distance 27 over GF(64) is

shown in Figure 12.12. The hermitian polynomial x9 + y8 + y over GF(64) has genus

7
6
5

2
3
4

1

j��

0
0 1 2 6543 87 j�9

12
11
10

8
9

Figure 12.12. Bispectrum of an hermitian supercode over GF(64).

512 The Many Decoding Algorithms for Codes on Curves

28 and degree m = 9. For an hermitian code and a hyperbolic code of designed distance

27, the two defining sets are

A1 = {(j′, j′′) | 9(j′ + j′′) ≤ 81}

and

A2 = {(j′, j′′) | (j′ + 1)(j′′ + 1) ≤ 27}.

These sets are, in part,

A1 = {. . . , (6, 3), (5, 4), (4, 5), (3, 6), . . .}

and

A2 = {. . . , (6, 3), (5, 3), (4, 4), (3, 5), (3, 6), . . .}.

In particular, the points (5, 4) and (4, 5) are not elements of A1 ∩ A2. These points

are shown as shaded in Figure 12.12. These shaded points correspond to components

of the bispectrum that are constrained to zero in the hermitian code but are not so

constrained in the hermitian supercode because they do not lie in the hyperbolic set

(j′ + 1)(j′′ + 1) ≤ 27. Accordingly, the supercode has a larger dimension than the

hermitian code. The number of syndromes can be found to be fifty-two by counting the

fifty-two white squares below j′ = 9 and under the shaded region. Thus, the dimension

is 452, so the code is a (504, 452, 27) code over GF(64). This code is superior to the

(504, 450, 27) hermitian code over GF(64).

12.7 The Feng–Rao decoder

The Feng–Rao decoder is a procedure for inferring hidden syndromes from the given

syndromes by using matrix rank arguments. The structure of the Feng–Rao decoder is

closely related to the proof of the Feng–Rao bound. The Feng–Rao decoder is presented

here because its conceptual structure provides valuable insight into the decoding prob-

lem. Indeed, it replaces the various strong tools of algebraic geometry with a rather

straightforward decoding algorithm that is based on elementary matrix rank arguments.

Nothing beyond linear algebra is needed to understand the computations of the decoder,

but the proof of performance requires a statement of the Feng–Rao bound. Even more,

the Feng–Rao decoder will decode up to the decoding radius defined by the Feng–Rao

513 12.7 The Feng–Rao decoder

bound, whereas the Riemann–Roch theorem asserts only that the minimum distance is

at least as large as the Goppa bound.

The Feng–Rao decoder requires that the ring F[x, y]/〈G(x, y)〉 has a weight function,

which we will denote by ρ. Let ρ1, ρ2, …be the weights corresponding to the monomials

in the weighted graded order. Consider the bivariate syndromes arranged in the weighted

graded order as follows:

Sρ0 , Sρ1 , Sρ2 , Sρ3 , . . . , Sρi
, . . . , Sρr−1 , Sρr .

The next syndrome, Sρr+1 , is missing because ϕr+1 is not a monomial corresponding

to an element of the defining set. We will find Sρr+1 by a majority vote of multiple

estimates of it. Once Sρr+1 is found, the same procedure can then be used to find Sρr+2 ,

and so, in turn, all missing syndromes. An inverse two-dimensional Fourier transform

of the array of syndromes then gives the error pattern.

Because ρ is a weight function, we know that ρ forms a semigroup. Accordingly, for

any ı and , there is a k such that1 ρk = ρı + ρ . This allows us to define an array, R,

with the terms from the sequence of syndromes as elements according to the definition

of terms as

Rı = Sρı+ρ .

Thus

R =

Sρ0 Sρ1 Sρ2 Sρ3 Sρ4 . . .

Sρ1 Sρ1+ρ1 Sρ1+ρ2 Sρ1+ρ3 . . .

Sρ2 Sρ2+ρ1 Sρ2+ρ2 Sρ2+ρ3 . . .

Sρ3 Sρ3+ρ1 Sρ3+ρ2

Sρ4

...

.

Some of the elements of this array are known. Other elements of this array are not

known because they come after the last known syndrome Sρr+1 . In each row, the initial

elements are known, starting from the left side of the row over to the last known element

in that row. After this last known element in a row, all subsequent elements of that row

are unknown.

We have seen a matrix with a similar structure earlier, in Section 9.8, in connec-

tion with the proof of the Feng–Rao bound. In that section, we wrote the matrix W

1 Because the array R will be defined with elements Sj = Sj′j′′ that themselves form a different two-dimensional
array comprising the bispectrum of the error pattern, we will henceforth use ı and as the indices of R.

514 The Many Decoding Algorithms for Codes on Curves

suggestively as follows:

W =

0 ∗
∗

∗
∗

∗
∗

∗
∗

,

where each element denoted by an asterisk is in a different row and a different column.

Then, in the proof of the Feng–Rao bound, we saw that rank W = wt v. But wt v ≤ t,

so we know that rank W ≤ t.

We can do a similar analysis of the matrix R. The known syndromes appear in the

matrix R where W has one of its constrained zeros. These are the positions above and

to the left of the asterisk. First, we rewrite the matrix as follows:

R =

Sρ0 Sρ1 Sρ2 ∗
Sρ1 Sρ1+ρ1 Sρ1+ρ2 ∗

∗
∗

∗
∗

∗
∗

,

where each asterisk denotes the first syndrome in that row whose value is not known.

If gaps are inserted within the rows and columns, as in Section 9.8, then the asterisks

will lie on a straight line. As in the proof of the Feng–Rao bound in Section 9.8, this

matrix of syndromes can be factored as follows:

R = [ϕρı (Pℓ)]

e0 0 . . . 0

0 e1 0
...

. . .

0 en−1

 [ϕρ (Pℓ)]T.

This equation has the form

R =MEMT.

515 12.7 The Feng–Rao decoder

Each of the two outer matrices M and MT has full rank, and E is a diagonal matrix with

rank equal to the weight of e. This means that the rank of R is equal to the number of

errors. Thus a bounded distance decoder can presume that the rank of R is at most t. If

the rank of R is larger than t, the decoder is not expected to find the correct codeword.

The proof of the next theorem uses the notion of a pivot or sentinel of a matrix.

This notion is well known in the process of gaussian elimination, a popular method of

solving a system of linear equations. Let R(ı,) denote the submatrix of R with index

(0, 0) as the upper left corner and index (ı,) as the lower right corner. The submatrix

R(ı,) is obtained by cropping the rows of R after row ı and cropping the columns

of R after column . In the language of gaussian elimination, a pivot of the matrix R

is a matrix location (ı,) at which R(ı,) and R(ı − 1, − 1) have different ranks.

Specifically, if (ı,) is a pivot, then

rank R(ı,) = rank R(ı − 1, − 1)+ 1.

The number of pivots in the matrix R is equal to the rank of R. For our situation, the

rank of the matrix R is at most t. This means that the number of pivots is at most t.

To see that there are ν pivots when ν is the rank of R, consider the sequence of

submatrices formed from R by starting with a column matrix consisting of the first

column, then appending columns one by one to obtain a sequence of submatrices. At

some steps of this process, the rank of the submatrix does not change; at other steps, the

rank increases by one. Because the rank of R is ν, there will be exactly ν steps of the

process at which the rank of the submatrix increases by one. Mark those submatrices

where the rank increases. There will be ν marked submatrices. Next, apply the same

process to the rows of each marked submatrix. Start with the top row of the marked

submatrix and append rows one by one until the submatrix reaches its maximum rank.

The bottom right index (ı,) of this final submatrix is a pivot, and there will be ν

pivots. Moreover, there can be only one pivot in each column because when a column

is appended the rank of a submatrix can increase only by one. Further, by interchanging

rows and columns of R, and then repeating this discussion, we can conclude that there

can be only one pivot in each row.

We will argue in proving the next theorem that, for many of the appearances of the

first missing syndrome Sρr+1 as an element of R, that element can be estimated, and the

majority of estimates of this missing syndrome will be the correct value of Sρr+1 . Hence

the missing syndrome can be estimated by majority vote and the missing syndrome can

be recovered. The process then can be repeated to recover the next missing syndrome,

Sρr+2 and so on. In this way, all syndromes can be found and the error spectrum can be

fully recovered. An inverse Fourier transform then completes the decoding.

The first missing syndrome in the total order is Sρr+1 , which we will write more simply

as Sr+1. If syndrome Sr+1 were known, it would replace the asterisk in the expression

for R. Let ν be the rank of R, which is initially unknown, except that ν cannot be larger

516 The Many Decoding Algorithms for Codes on Curves

than t for a bounded distance decoder. Then for any (ı,) that indexes a matrix location

of the first missing syndrome Sr+1, consider the four submatrices R(ı − 1, − 1),

R(ı, − 1), R(ı − 1,), and R(ı,). If the first three of these submatrices have the

same rank, then (ı,) is declared to be a candidate for an estimate of Sr . This criteria

ensures that a candidate cannot be in a row or a column that has a pivot in the known

part of the matrix. The matrix R(ı,) has the unknown Sr in its lower right corner. This

element can be chosen so that the rank of R(ı,) is equal to the rank of R(ı−1, −1).

For every candidate (ı,), an estimate Ŝr+1 of Sr+1 can be computed in this way. Some

of these estimates may be correct and some may be wrong.

Theorem 12.7.1 If the number of errors in a senseword is at most (dFR(r) − 1)/2,

then the majority of the estimates of the first missing syndrome Sr give the correct value.

Proof: Let K denote the number of known pivots. These are the pivots in the known

part of the matrix. Of the estimates of Sr , let T denote the number of correct estimates

and let F denote the number of incorrect estimates. Each incorrect estimate is another

pivot of the full matrix. This means that K +F is not larger than the rank of the matrix

R, which is not larger than t. Thus

K + F ≤ t = ⌊(dFR(r)− 1)/2⌋.

There cannot be two pivots in the same row or column of matrix R. Therefore, if index

(ı,) is a pivot in the known part of the matrix, then all entries (ı, ′) in the ıth row with

 ′ > are not pivots, and all entries (ı′,) in the th column with ı′ > ı are not pivots.

This means that at most 2K appearances of Sr can fail the rank condition on candidates.

Therefore, because there are at least dFR(r) appearances of Sr in R, there must be at

least dFR(r)− 2K candidates. Because there are T + K candidates, we conclude that

dFR(r)− 2K ≤ T + F .

Combining these inequalities yields

2(K + F)+ 1 ≤ dFR(r) ≤ T + F + 2K ,

from which we conclude that F < T , as was to be proved. �

12.8 The theory of syndrome filling

All that remains to be discussed is the formal justification of syndrome filling. In

Section 12.7, we discussed syndrome filling from the perspective of the Feng–Rao

bound. In this section we will discuss the fact that, for the extended Sakata decoders

that we have studied in Sections 12.3 and 12.4, the missing syndromes needed for

517 12.8 The theory of syndrome filling

decoding can always be filled, provided the number of errors is less than the packing

radius of the code. This discussion is necessary in order to validate formally the Sakata

decoder. This has already been discussed for hyperbolic codes in the introduction to

Section 10.3. The proof there used the fact that the defining set is a hyperbolic set. In

that case, the Sakata–Massey theorem asserts that there is only one possible value for

the missing syndrome. We will summarize this discussion here for hyperbolic codes so

as to prepare the way for a similar discussion on hermitian codes.

A hyperbolic code, with the designed distance d∗ = 2t+ 1, is defined in Section 6.4

as a two-dimensional cyclic code on the bicyclic plane GF(q)2 with the defining set

given by

A = {(j′, j′′) | (j′ + 1)(j′′ + 1) < 2t + 1}.

The defining set A is described as the set of bi-indices bounded by a hyperbola. The

syndromes are those components of the bispectrum indexed by each (j′, j′′) ∈ A of the

two-dimensional Fourier transform of the noisy senseword.

Proposition 12.8.1 For a senseword within the designed distance of a hyperbolic

code, there is only one way to extend an ordered sequence of syndromes with a subse-

quent missing syndrome, not in the defining set, that will produce a connection footprint

of area at most t, where 2t + 1 ≤ d∗.

Proof: A corollary to the Sakata–Massey theorem (Corollary 8.3.3) states that if

�(x, y), a polynomial of degree s, produces the bi-index sequence S0, S1, . . . , Sr−1,

but does not produce the longer sequence S0, S1, . . . , Sr−1, Sr , then the connection

footprint �r−1 for S0, S1, . . . , Sr−1 and the connection footprint �r for S0, S1, . . . , Sr

satisfy the following:

‖�r−1 ∪ (r −�r)‖ ≥ (r′ + 1)(r′′ + 1),

where r = (r′, r′′). But if syndrome Sr is a missing syndrome, we know that (r′, r′′) �∈
A, so (r′ + 1)(r′′ + 1) ≥ 2t + 1. Combining these statements leads to

‖�r−1‖ + ‖�r‖ ≥ ‖�r ∪ (r′ −�r−1)‖
≥ (r′ + 1)(r′′ + 1) ≥ 2t + 1.

But since ‖�r−1‖ is not larger than t, ‖�r‖ must be larger than t. Because we are

considering a decodable senseword for a code with designed distance at least 2t + 1,

the true footprint has area at most t. We conclude that �r cannot be the true footprint

because its area is too large, and so only the correct Sr can be the missing syndrome. �

518 The Many Decoding Algorithms for Codes on Curves

Recall that the Sakata algorithm, when decoding a hyperbolic code, will develop a

set of connection polynomials. The conclusion of the proposition regarding a missing

syndrome will apply to each connection polynomial that reaches that missing syndrome.

We must also present a similar proof for the case of a shortened hermitian code. In

that proof, however, the equation of the curve will become entangled with the Sakata–

Massey theorem, so we must start the proof at a more basic level. We shall develop the

notions for the hermitian code based on the polynomial

G(x, y) = xq+1 + yq + y,

which gives an epicyclic code of blocklength n = q3 − q over the field GF(q2). The

designed distance of the shortened code is given by

d∗ = (q+ 1)J − 2g + 2.

Because 2g = q(q− 1), this also can be written as follows:

d∗ = (q+ 1)(J − q+ 2).

We require that the algorithm decode up to this designed distance.

The equation of the curve G(x, y) = 0 creates a linear relationship among the

syndromes given by

Sj′+q+1, j′′ + Sj′, j′′+q + Sj′, j′′+1 = 0.

This expression mimics the equation of the curve, but expressed in terms of syndromes

in the transform domain. If only one of these three syndromes is missing, it can be

inferred by using this equation. If two of these syndromes were missing, then either

or both can be estimated by using any minimal connection polynomial that reaches it.

However, the case where two syndromes of this equation are both missing does not

occur in the decoding of hermitian codes.

Suppose that the connection set has been computed for syndromes S0, S1, . . . , Sr−1

and that syndrome Sr is missing. We will show first that only one choice of the missing

Sr will give a connection set whose footprint has area at most t. This means that only one

choice of the missing Sr corresponds to an error pattern of weight at most t. Therefore,

in principle, a search over GF(q2), trying each possible syndrome in turn, will give the

unknown syndrome Sr . A better procedure uses each minimal connection polynomial

from the previous iteration to estimate a candidate value of that syndrome.

The first step is to define a subset of the set of syndrome indices where the required

facts will be proved. Given any point r = (r′, r′′), let

K1 = {(j′, j′′) | 0 ≤ j′ ≤ r′; 0 ≤ j′′ ≤ r′′},
K2 = {(j′, j′′) | 0 ≤ j′ ≤ q; 0 ≤ j′′ ≤ r′′ − q},

519 12.8 The theory of syndrome filling

and

K = K1 ∪K2.

This region of the j′, j′′ plane will be enough for our needs.

The following proposition bounds the cardinality of K provided r′ ≤ q. If r′ > q, the

proposition is not needed because syndromes with r′ > q are implied by the equation

of the curve.

Proposition 12.8.2 Suppose that r = (r′, r′′) satisfies J < r′+r′′ < J+q and r′ ≤ q.

Then ‖K‖ is at least as large as the designed distance d∗.

Proof: If K2 is not empty, then

‖K1 ∪K2‖ = (r′ + 1)(r′′ + 1)+ (q− r′)(r′′ − q+ 1).

If K2 is empty, then r′′ − q < 0, so

‖K1 ∪K2‖ = (r′ + 1)(r′′ + 1)

≥ (r′ + 1)(r′′ + 1)+ (q− r′)(r′′ − q+ 1).

Both cases can be combined, and we proceed as follows:

‖K‖ ≥ (r′ + 1)(r′′ + 1)+ (q− r′)(r′′ − q+ 1)

= (q+ 1)(r′ + r′′)− r′ − q2 + q+ 1

≥ (q+ 1)(J + 1)− r′ − q2 + q+ 1

≥ (q+ 1)(J + 1)− q− q2 + q+ 1

= (q+ 1)(J + 1)− q2 + 1

= (q+ 1)(J − q+ 2)

= d∗,

as was to be proved. �

The next proposition justifies the definition of the set K. Before presenting this

proposition, we motivate it by a simple example in the ring R = GF(16)[x, y]/〈x5 +
y4 + y〉. Suppose we are given that the point (0, 4) is contained in the footprint �(I)

of an ideal I of the ring R. Then we claim that (4, 0) is also in the footprint �(I) of the

ideal I . For if (4, 0) is not in �(I), then there is a monic polynomial of I with leading

monomial x4. This polynomial, p(x, y) must have the form

p(x, y) = x4 + ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j

520 The Many Decoding Algorithms for Codes on Curves

for some constants a, b, . . . , j. Therefore,

xp(x, y)+ (x5 + y4 + y) = y4 + ax4 + bx3 + · · · + y + jx.

This polynomial is in the ideal I and has leading monomial y4, so the point (0, 4) is

not in the footprint, contradicting the stated assumption. Thus (4, 0) is in the footprint

of I , as asserted.

Proposition 12.8.3 In the ring GF(q2)[x, y]/〈xq+1+ yq+ y〉, if the point (r′, r′′) is in

the footprint �(I) of ideal I , then (q, r′′ − q) is also in the footprint �(I).

Proof: The statement is empty if r′′ − q is negative. Suppose r′′ − q is nonnegative

and suppose that �(I) does not contain (q, r′′ − q). Then there is a polynomial p(x, y)

in I with leading term xqyr′′−q. Without loss of generality, we may assume that p(x, y)

contains no monomial xj′yj′′ with j′ > q because such monomials may be canceled by

adding an appropriate multiple of xq+1 + yq + y to p(x, y). Now consider p(x, y) with

terms written in the graded order as follows:

p(x, y) = xqyr′′−q +
∑

j′

∑

j′′
pj′j′′x

j′yj′′ .

Rewrite this by setting j′ + j′′ = ℓ and summing over ℓ and j′. This yields

p(x, y) = xqyr′′−q +
r′+r′′∑

ℓ=0

ℓ∑

j′=0

pj′,ℓ−j′x
j′yℓ−j′ .

The only nonzero term in the sum with ℓ = r′ + r′′ is the term pr′r′′x
r′yr′′ . Multiply by

xr′+1 to write

xr′+1p(x, y) = xr′+q+1yr′′−q + xr′
r′+r′′∑

ℓ=0

ℓ∑

j′=0

pj′,ℓ−j′x
j′yℓ−j′ .

Make the substitution xq+1 = yq + y in the first term on the right. Then

xr′+1p(x, y) = xr′yr′′ +
r′+r′′∑

ℓ=0

ℓ∑

j′=0

pj′,ℓ−j′x
r′+j′yℓ−j′ (mod xq+1 + yq + y).

It only remains to argue that the first term on the right is the leading term of the

polynomial. This situation is illustrated in Figure 12.13. The square marked by a circle

indicates the point (r′, r′′); the left square marked by an asterisk indicates the point

(q, r′′ − q); and the right square marked by an asterisk indicates the point (r′ + q +
1, r′′ − q). The substitution of yq + y for xq+1 deletes the point (r′ + q + 1, r′′ − q),

replacing it by the point (r′, r′′), which now is the leading monomial, as asserted. �

521 12.8 The theory of syndrome filling

* *

Figure 12.13. Geometric proof.

Proposition 12.8.4 For a senseword within the designed distance of an hermitian

code, there is only one way to extend an ordered sequence of syndromes with a subse-

quent missing syndrome, not in the defining set, that will produce a connection footprint

of area at most t, where 2t + 1 ≤ d∗.

Proof: Acorollary to the Sakata–Massey theorem (Corollary 8.3.3) says that if �(x, y),

a polynomial of degree s, produces the bi-index sequence S0, S1, . . . , Sr−1, but does not

produce the larger sequence S0, S1, . . . , Sr−1, Sr , then the connection footprint �r−1

for S0, S1, . . . , Sr−1 and the connection footprint �r for S0, S1, . . . , Sr−1, Sr satisfies

(r′, r′′) ∈ �r−1 ∪ (r −�r).

This statement applies even if the code were not restricted to lie on the hermitian curve.

By requiring the code to lie on the hermitian curve, and appealing to Proposition 12.8.3,

we also have

(q, r′′ − q) ∈ �r−1 ∪ (r −�r)

Combining these statements with Proposition 12.8.2 gives

‖�r‖ + ‖�r−1‖ ≥ ‖�r ∪�r−1‖
≥ ‖K‖
≥ d∗ ≥ 2t + 1.

But since ‖�r−1‖ is not larger than t, ‖�r‖ must be larger than t. Because we are

considering a decodable senseword for a code with designed distance at least 2t + 1,

the true footprint has an area at most equal to t. We conclude that �r cannot be the

true footprint because its area is too large, and so only the correct Sr can be the missing

syndrome. �

522 The Many Decoding Algorithms for Codes on Curves

Problems

12.1 The (49, 35, 7) hyperbolic code over GF(8), with syndromes in the graded

order, is to be decoded using the Sakata algorithm. Prove that the missing

syndromes are actually not needed because the discrepancy must be zero on

each iteration, corresponding to a missing syndrome, and from this condition

the missing syndrome can be inferred.

12.2 For the hermitian code over GF(16), prove that the syndromes satisfy

4∑

ℓ=0

Sj′, j′′+3ℓ = 0.

12.3 Prove the following generalization of l’Hôpital’s rule in an arbitrary field, F :

if P(x) and Q(x) are polynomials over F , with a common zero at β, then

P′(x)/Q′(x) = p(x)/q(x), where p(x) and q(x) are defined by P(x) = (x −
β)p(x) and Q(x) = (x − β)q(x).

12.4 Describe how the Sakata algorithm can be used to fill erasures in the absence

of errors.

12.5 Derive a two-dimensional generalization of erasure and error decoding.

12.6 Derive a two-dimensional generalization of the Forney algorithm.

12.7 Formulate a halting condition for the Sakata algorithm that ensures that the

set of connection polynomials is a minimal basis of a locator ideal wherever

the error radius is within the packing radius. Can this condition be extended

beyond the packing radius?

12.8 Estimate the complexity of the process of recursive extension for two-

dimensional codes. Consider both codes on a plane and codes on curves. Is

there a difference in complexity? Why?

12.9 Over the bicyclic plane GF(16)∗2, let C be the two-dimensional Fourier trans-

form of a two-dimensional array c that is nonzero only on some or all of the

points of the epicyclic hermitian curve, based on the polynomial x5 + y4 + y.

Suppose that only the first five columns of C are given. Formulate an efficient

computational procedure for computing the array c.

12.10 (a) Show that a proper supercode of an hermitian code over GF(q2) based on

the polynomial xq+1+ yq+ y with designed distance d∗ cannot be formed

based on the defining set

A = {(j′ + 1)(j′′ + 1) ≤ d∗}
⋃
{m(j′ + j′′) ≤ d∗ + 2g − 2},

523 Notes

where m = g + 1 if

q+ 1−
√

q+ 1 <
√

d∗ < q+ 1+
√

q+ 1.

(b) For what d∗ do such codes exist over GF(64)?

(c) Find the dimension of such a code over GF(64) for d∗ = 180.

Notes

The history of how locator decoding was generalized to decode codes on curves is a

fascinating case study in the development of ideas. We shall outline this history only

for the decoding of codes on plane curves. The introduction by Goppa (1977, 1981) of

codes on algebraic curves demanded the development of efficient decoding algorithms

for these codes. The natural first step is to generalize the methods of locator decoding

for one-dimensional cyclic codes to the decoding of two-dimensional codes defined on

the plane. Accordingly, the Peterson algorithm for locator decoding was generalized

to codes on plane curves by Justesen et al. (1989). This paper introduced the two-

dimensional locator polynomial, a polynomial that has the error locations among its

zeros. In retrospect, it is easy to see that the generalizations of both the Berlekamp–

Massey algorithm and the Sugiyama algorithm should have been sought immediately,

but this was not so obvious at the time. The Sakata algorithm (Sakata, 1990) was first

developed as a two-dimensional generalization of the Berlekamp–Massey algorithm to

bicyclic codes on the full plane, though not without a great deal of insight and effort.

The Sakata algorithm was later applied to codes on curves by Justesen et al. (1992),

but without reaching the designed distance of the code. Later, the Sakata algorithm was

embellished to reach the designed distance of the code in a paper by Sakata et al. (1995),

based on the notion of majority voting for missing syndromes. The method of majority

voting was introduced by Feng and Rao (1993), and refined by Duursma (1993a).

In addition to the class of decoders that generalize the Berlekamp–Massey algorithm

to two dimensions, there are the decoders that generalize the Sugiyama algorithm to

two dimensions. Porter (1988), in his Ph.D. thesis, provided this generalization of

the Sugiyama algorithm that corrects to within σ of the Goppa bound, where σ is a

parameter known as the Clifford defect. Ehrhard provided an algorithm from this point

of view that decodes to the Goppa radius.

The Sakata algorithm provides only the locations of the errors, not the magnitudes.

Leonard (1995, 1996) provided an appropriate generalization of the Forney formula to

codes on curves, and also generalized erasure and error decoding. The generalization of

524 The Many Decoding Algorithms for Codes on Curves

the Forney formula to codes on curves was also studied by Hansen, Jensen, and Koet-

ter (1996), and by O’Sullivan (2002). The use of recursive extension to obtain the full

bispectrum of the error pattern was discussed by Sakata, Jensen, and Hφholdt (1995).

The construction of supercodes of hermitian codes by incorporating the hyper-

bolic bound was suggested by Blahut (1995). The method of syndrome filling by

majority voting, developed from the point of view of matrix rank arguments and gaus-

sian elimination, is due to Feng and Rao (1993). These ideas were made precise by

Duursma (1993b). The complexity of the Feng–Rao decoder may not compare well

with other methods of decoding codes on curves because it involves the computation

of the rank for each of a series of matrices of increasing size. However, it has the

virtue that the computations can be understood with only linear algebra. Perhaps future

improvements or embellishments will make the Feng–Rao decoder more attractive,

even practical. Syndrome filling was applied to hyperbolic codes by Saints and Hee-

gard (1995). Many other aspects of decoding codes on curves were explored in the

1990s, such as can be found in O’Sullivan (1995, 1997, 2002).

The term “missing syndrome” is an oxymoron, since the term “syndrome” refers

to a known piece of data. Although the term is not really satisfactory, it is used here

because there does not seem to be a better alternative. What is needed is a good name

for an individual component of a Fourier transform. One may hope that a satisfactory

term will be suggested in the future.

Bibliography

S. Arimoto, Encoding and Decoding of p-ary Group Codes and the Correction System, Information

Processing in Japan, vol. 2, pp. 320–325, 1961 (in Japanese).

E. F. Assmus, Jr. and H. F. Mattson, Jr., Coding and Combinatorics, SIAM Review, vol. 16,

pp. 349–388, 1974.

E. F. Assmus, Jr., H. F. Mattson, Jr., and R. J. Turyn, Cyclic Codes, Report AFCRL-65-332, Air Force

Cambridge Research Laboratories, Bedford, MA, 1965.

E. F. Assmus, Jr., H. F. Mattson, Jr., and R. J. Turyn, Research to Develop the Algebraic Theory

of Codes, Report AFCRL-67-0365, Air Force Cambridge Research Laboratories, Bedford, MA,

1967.

S. Arimoto, Encoding and Decoding of p-ary Group Codes and the Correction System, Information

Processing in Japan, (in Japanese), vol. 2, pp. 320–325, 1961.

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

E. R. Berlekamp, CodingTheory and the Mathieu Groups, Information and Control, vol. 18, pp. 40–64,

1971.

E. R. Berlekamp, Bounded Distance+1 Soft-Decision Reed–Solomon Decoding, IEEE Transactions

on Information Theory, vol. IT-42, pp. 704–720, 1996.

E. R. Berlekamp, G. Seroussi, and P. Tong, AHypersystolic Reed–Solomon Decoder, in Reed–Solomon

Codes and Their Applications, S. B. Wicker and V. K. Bhargava, editors, IEEE Press, 1994.

E. Bézout, Sur le degré des équations résultantes de l’évanouissement des inconnus, Histoire de

l’Académie Royale des Sciences, anneé 1764, pp. 288–338, Paris, 1767.

E. Bézout, Théorie générale des équation algébriques, Paris, 1770.

R. E. Blahut, A Universal Reed–Solomon Decoder, IBM Journal of Research and Development,

vol. 28, pp. 150–158, 1984.

R. E. Blahut, Algebraic Codes for Data Transmission, Cambridge University Press, Cambridge, 2003.

R. E. Blahut, Algebraic Geometry Codes without Algebraic Geometry, IEEE Information Theory

Workshop, Salvador, Bahia, Brazil, 1992.

R. E. Blahut, Algebraic Methods for Signal Processing and Communications Coding, Springer-Verlag,

New York, 1992.

R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1985.

R. E. Blahut, On Codes Containing Hermitian Codes, Proceedings of the 1995 IEEE International

Symposium on Information Theory, Whistler, British Columbia, Canada, 1995.

R. E. Blahut, The Gleason–Prange Theorem, IEEE Transactions on Information Theory, vol. IT-37,

pp. 1264–1273, 1991.

R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading, MA, 1983.

R. E. Blahut, Transform Techniques for Error-Control Codes, IBM Journal of Research and

Development, vol. 23, pp. 299–315, 1979.

526 Bibliography

I. F. Blake, Codes over Certain Rings, Information and Control, vol. 20, pp. 396–404, 1972.

I. F. Blake, C. Heegard, T. Høholdt, and V. Wei, Algebraic Geometry Codes, IEEE Transactions on

Information Theory, vol. IT-44, pp. 2596–2618, 1998.

E. L. Blokh and V. V. Zyablov, Coding of Generalized Concatenated Codes, Problems of Information

Transmission, vol. 10, pp. 218–222, 1974.

R. C. Bose and D. K. Ray-Chaudhuri, On a Class of Error Correcting Binary Group Codes, Information

and Control, vol. 3, pp. 68–79, 1960.

B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem

nulldimensionalen Polynomideal, Ph.D. Thesis, University of Innsbruck, Austria, 1965.

B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, in Multidi-

mensional Systems Theory, N. K. Bose, editor, D. Reidel Publishing Company, pp. 184–232,

1985.

A. R. Calderbank and G. McGuire, Construction of a (64, 237, 12) Code via Galois Rings, Designs,

Codes, and Cryptography, vol. 10, pp. 157–165, 1997.

A. R. Calderbank, G. McGuire, P. V. Kumar, and T. Helleseth, Cyclic Codes over Z4, Locator

Polynomials, and Newton’s Identities, IEEE Transactions on Information Theory, vol. IT-42,

pp. 217–226, 1996.

T. K. Citron, Algorithms and Architectures for Error Correcting Codes, Ph.D. Dissertation, Stanford

University, Stanford, CA, 1986.

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, Second Edition, Springer-

Verlag, New York, 1992.

D. Coppersmith and G. Seroussi, On the Minimum Distance of Some Quadratic Residue Codes, IEEE

Transactions on Information Theory, vol. IT-30, pp. 407–411, 1984.

D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1992.

D. Dabiri, Algorithms and Architectures for Error-Correction Codes, Ph.D. Dissertation, University

of Waterloo, Ontario, Canada, 1996.

D. Dabiri and I. F. Blake, Fast Parallel Algorithms for Decoding Reed–Solomon Codes Based on

Remainder Polynomials, IEEE Transactions on Information Theory, vol. IT-41, pp. 873–885,

1995.

P. Delsarte, Four Fundamental Parameters of a Code and Their Combinatorial Significance,

Information and Control, vol. 27, pp. 407–438, 1973.

P. Delsarte, On Subfield Subcodes of Modified Reed–Solomon Codes, IEEE Transactions on

Information Theory, vol. IT-21, pp. 575–576, 1975.

L. E. Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime

Factors, American Journal of Mathematics, vol. 35, pp. 413–422, 1913.

J. L. Dornstetter, On the Equivalence Between Berlekamp’s and Euclid’s Algorithms, IEEE

Transactions on Information Theory, vol. IT-33, pp. 428–431, 1987.

V. G. Drinfeld and S. G. Vlǎdut, Number of Points on anAlgebraic Curve, Functional Analysis, vol. 17,

pp. 53–54, 1993.

I. M. Duursma, Decoding Codes from Curves and Cyclic Codes, Ph.D. Dissertation, Eindhoven

University, Eindhoven, Netherlands, 1993a.

I. M. Duursma, Algebraic Decoding Using Special Divisors, IEEE Transactions on Information

Theory, vol. IT-39, pp. 694–698, 1993b.

D. Ehrhard, Über das Dekodieren Algebraisch-Geometrischer Coden, Ph.D. Dissertation, Universität

Düsseldorf, Düsseldorf, Germany, 1991.

D. Ehrhard, Achieving the Designed Error Capacity in Decoding Algebraic-Geometric Codes, IEEE

Transactions on Information Theory, vol. IT-39, pp. 743–751, 1993.

527 Bibliography

S. V. Fedorenko, A Simple Algorithm for Decoding Reed–Solomon Codes and its Relation to the

Welch–Berlekamp Algorithm, IEEE Transactions on Information Theory, vol. IT-51, pp. 1196–

1198, 2005.

W. Feit, A Self Dual Even (96, 48, 16) Code, IEEE Transactions on Information Theory, vol. IT-20,

pp. 136–138, 1974.

G.-L. Feng and T. R. N. Rao, Decoding Algebraic-Geometric Codes up to the Designed Minimum

Distance, IEEE Transactions on Information Theory, vol. IT-39, pp. 37–45, 1993.

G.-L. Feng and T. R. N. Rao, A Simple Approach for Construction of Algebraic-Geometric Codes

From Affine Plane Curves, IEEE Transactions on Information Theory, vol. IT-40, pp. 1003–1012,

1994.

G.-L. Feng and T. R. N. Rao, Improved Geometric Goppa Codes, Part I, Basic Theory, IEEE

Transactions on Information Theory, vol. IT-41, pp. 1678–1693, 1995.

G.-L. Feng, V. K. Wei, T. R. N. Rao, and K. K. Tzeng, Simplified Understanding and Effect Decoding

of a Class of Algebraic-Geometric Codes, IEEE Transactions on Information Theory, vol. 40,

pp. 981–1002, 1994.

W. Feng, On Decoding Reed–Solomon Codes and Hermitian Codes, Ph.D. Dissertation, University

of Illinois, Urbana, Illinois, 1999.

W. Feng and R. E. Blahut, A Class of Codes that Contains the Klein Quartic Codes, Proceedings of

the 30th Conference on Information Sciences and Systems, Princeton, NJ, 1996.

W. Feng and R. E. Blahut, Some Results on the Sudan Algorithm, Proceedings of the 1998 IEEE

International Symposium on Information Theory, Cambridge, MA, 1998.

P. Fitzpatrick, On the Key Equation, IEEE Transactions on Information Theory, vol. IT-41, pp. 1–13,

1995.

G. D. Forney, Jr., On Decoding BCH Codes, IEEE Transactions on Information Theory, vol. IT-11,

pp. 549–557, 1965.

G. D. Forney, Jr., Concatenated Codes, The M.I.T. Press, Cambridge, MA, 1966.

G. D. Forney, Jr., Transforms and Groups, in Codes, Curves, and Signals: Common Threads in

Communication, A. Vardy, editor, Kluwer Academic, Norwell, MA, 1998.

G. D. Forney, Jr., N. J. A. Sloane, and M. D. Trott, The Nordstrom–Robinson code is the Binary Image

of the Octacode, Proceedings DIMACS/IEEE Workshop on Coding and Quantization, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical

Society, 1993.

W. Fulton, Algebraic Curves, Benjamin-Cummings, 1969; reprinted inAdvanced Book Classic Series,

Addison-Wesley, Reading, MA, 1989.

A. Garcia, S. J. Kim, and R. F. Lax, Consecutive Weierstrass Gaps and Minimum Distance of Goppa

Codes, Journal of Pure and Applied Algebra, vol. 84, pp. 199–207, 1993.

O. Geil and T. Høholdt, Footprints or Generalized Bézout’s Theorem, IEEE Transactions on

Information Theory, vol. IT-46, pp. 635–641, 2000.

O. Geil and T. Høholdt, On Hyperbolic Codes, Proceedings of AAECC-14, Melbourne, November

2001, Springer LNCS, 2002.

G. Goertzel, An Algorithm for the Evaluation of Finite Trigometric Series, American Mathematical

Monthly, vol. 65, pp. 34–35, 1968.

J. M. Goethals, Nonlinear Codes Defined by Quadratic Forms Over GF(2), Information and Control,

vol. 31, pp. 43–74, 1976.

M. J. E. Golay, Notes on Digital Coding, Proceedings of the IRE, vol. 37, p. 657, 1949.

I. J. Good, The Interaction Algorithm and Practical Fourier Analysis, Journal of the Royal Statistical

Society, vol. B20, pp. 361–375, 1958; addendum, vol. 22, pp. 372–375, 1960.

528 Bibliography

V. D. Goppa, A New Class of Linear Error-Correcting Codes, Problemy Peredachi Informatsii, vol. 6,

pp. 207–212, 1970.

V. D. Goppa, Codes Associated with Divisors, Problemy Peredachi Informatsii, vol. 13, pp. 33–39,

1977; Problems of Information Transmission, vol. 13, pp. 22–26, 1977.

V. D. Goppa, Codes on Algebraic Curves, Doklady Akad. Nauk SSSR, vol. 259, pp. 1289–1290, 1981;

Soviet Math. Doklady, vol. 24, pp. 170–172, 1981.

D. C. Gorenstein and N. Zierler, A Class of Error-Correcting Codes in pm Symbols, Journal of the

Society of Industrial and Applied Mechanics, vol. 9, pp. 207–214, 1961.

M. W. Green, Two Heuristic Techniques for Block Code Construction, IEEE Transactions on

Information Theory, vol. IT-12, p. 273, 1966.

V. Guruswami and M. Sudan, Improved Decoding of Reed–Solomon Codes and Algebraic Geometry

Codes, IEEE Transactions on Information Theory, vol. IT-45, pp. 1757–1767, 1999.

R. W. Hamming, Error Detecting and Error Correcting Codes, Bell System Technical Journal, vol. 29,

pp. 147–160, 1950.

A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, The Z4-linearity

of Kerdock, Preparata, Goethals, and Related Codes, IEEE Transactions on Information Theory,

vol. IT-40, pp. 301–319, 1994.

J. P. Hansen, Codes from the Klein Quartic, Ideals and Decoding, IEEE Transactions on Information

Theory, vol. IT-33, pp. 923–925, 1987.

J. P. Hansen and H. Stichtenoth, Group Codes on CertainAlgebraic Curves with Many Rational Points,

Proceedings of Applied Algebra Engineering Communications Computing-1, vol. 1, pp. 67–77,

1990.

J. P. Hansen, H. E. Jensen, and R. Koetter, Determination of Error Values for Algebraic-

Geometric Codes and the Forney Formula, IEEE Transactions on Information Theory, vol. IT-42,

pp. 1263–1269, 1996.

C. R. P. Hartmann, Decoding Beyond the BCH Bound, IEEE Transactions on Information Theory,

vol. IT-18, pp. 441–444, 1972.

C. R. P. Hartmann and K. K. Tzeng, Generalizations of the BCH Bound, Information and Control,

vol. 20, pp. 489–498, 1972.

H. Hasse, Theorie der høheren Differentiale in einem algebraischen Funktionenkørper mit vollkomme-

nen Konstantenkørper bei beliebiger Charakteristik, J. Reine & Angewandte Math., vol. 175,

pp. 50–54, 1936.

C. Heegard, J. H. Little, and K. Saints, Systematic Encoding via Gröbner Bases for a Class ofAlgebraic

Geometric Goppa Codes, IEEE Transactions on Information Theory, vol. IT-41, 1995.

H. H. Helgert, Alternant Codes, Information and Control, vol. 26, pp. 369–381, 1974.

T. Helleseth and T. Klφve, The Newton Radius of Codes, IEEE Transactions on Information Theory,

vol. IT-43, pp. 1820–1831, 1997.

A. E. Heydtmann and J. M. Jensen, On the Equivalence of the Berlekamp–Massey and the Euclidian

Algorithm for Decoding, IEEE Transactions on Information Theory, vol. IT-46, pp. 2614–2624,

2000.

D. Hilbert, Über die Theorie der Algebraischen Formen, Mathematische Annalen, vol. 36, pp. 473–

534, 1890.

D. Hilbert, Über die Vollen Invarientensysteme, Mathematische Annalen, vol. 42, pp. 313–373, 1893.

D. Hilbert, Gesammelte Abhandlungen, vol. II (collected works), Springer, Berlin, 1933.

J. W. P. Hirschfeld, M. A. Tsfasman, and S. G. Vlâdut, The Weight Hierarchy of Higher Dimensional

Hermitian Codes, IEEE Transactions on Information Theory, vol. IT-40, pp. 275–278, 1994.

529 Bibliography

A. Hocquenghem, Codes Correcteurs d’erreurs, Chiffres, vol. 2, pp. 147–156, 1959.

T. Høholdt, On (or in) the Blahut Footprint, in Codes, Curves, and Signals: Common Threads in

Communication, A. Vardy, editor, Kluwer Academic, Norwell, MA, 1998.

T. Hφholdt and R. Pellikaan, On the Decoding of Algebraic-Geometric Codes, IEEE Transactions on

Information Theory, vol. IT-41, pp. 1589–1614, 1995.

T. Hφholdt, J. H. van Lint, and R. Pellikaan, Algebraic Geometry Codes, Handbook of Coding Theory,

V. S. Pless and W. C. Huffman, editors, Elsevier, Amsterdam, pp. 871–961, 1998.

T. Horiguchi, High Speed Decoding of BCH Codes Using a New Error Evaluation Algorithm,

Elektronics and Communications in Japan, vol. 72, no. 12, part 3, 1989.

W. C. Huffman, The Automorphism Group of the Generalized Quadratic Residue Codes, IEEE

Transactions on Information Theory, vol. IT-41, pp. 378–386, 1995.

T. W. Hungerford, Algebra, Springer-Verlag, 1974.

T. Ikai, H. Kosako, and Y. Kojima, On Two-Dimensional Cyclic Codes, Transactions of the Institute

of Electronic Communication of Japan, vol. 57A, pp. 279–286, 1974.

H. Imai, A Theory of Two-Dimensional Cyclic Codes, Information and Control, vol. 34, pp. 1–21,

1977.

C. D. Jensen, Codes and Geometry, Ph.D. Dissertation, Denmarks Teknishe Højskole, Denmark,

1991.

J. Justesen, K. J. Larson, H. E. Jensen, A. Havemose, and T. Høholdt, Construction and Decoding

of a Class of Algebraic Geometry Codes, IEEE Transactions on Information Theory, vol. IT-35,

pp. 811–821, 1989.

J. Justesen, K. J. Larsen, H. E. Jensen, and T. Hφholdt, Fast Decoding of Codes from Algebraic Plane

Codes, IEEE Transactions on Information Theory, vol. IT-38, pp. 111–119, 1992.

W. M. Kantor, On the Inequivalence of Generalized Preparata Codes, IEEE Transactions on

Information Theory, vol. IT-29, pp. 345–348, 1983.

T. Kasami, S. Lin, and W. W. Peterson, Some Results on Weight Distributions of BCH Codes, IEEE

Transactions on Information Theory, vol. IT-12, p. 274, 1966.

A. M. Kerdock, AClass of Low-Rate Nonlinear Codes, Information and Control, vol. 20, pp. 182–187,

1972.

C. Kirfel and R. Pellikaan, The Minimum Distance of Codes in an Array Coming From Telescopic

Semigroups, Coding Theory and Algebraic Geometry: Proceedings of AGCT-4, Luminy, France,

1993.

C. Kirfel and R. Pellikaan, The Minimum Distance of Codes in an Array Coming From Tele-

scopic Semigroups, IEEE Transactions on Information Theory, vol. IT-41, pp. 1720–1732,

1995.

F. Klein, Über die Transformation Siebenter Ordnung Die Elliptischen Functionen, Mathematics

Annals, vol. 14, pp. 428–471, 1879.

R. Koetter, A Unified Description of an Error Locating Procedure for Linear Codes, Proceedings:

Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria, 1992.

R. Koetter, A Fast Parallel Berlekamp–Massey Type Algorithm for Hermitian Codes, Proceedings:

Algebraic and Combinatorial Coding Theory, pp. 125–128, Nogorad, Russia, 1994.

R. Koetter, On Algebraic Decoding of Algebraic-Geometric and Cyclic Codes, Ph.D. Dissertation,

Linköping University, Linköping, Sweden, 1996.

R. Koetter, On the Determination of Error Values for Codes from a Class of Maximal Curves, Pro-

ceedings of the 35th Allerton Conference on Communication, Control, and Computing, University

of Illinois, Monticello, Illinois, 1997.

530 Bibliography

R. Koetter, A Fast Parallel Implementation of a Berlekamp–Massey Algorithm for Algebraic-

Geometric Codes, IEEE Transactions on Information Theory, vol. IT-44, pp. 1353–1368,

1998.

P. V. Kumar and K. Yang, On the True Minimum Distance of Hermitian Codes, Coding Theory and

Algebraic Geometry: Proceedings of AGCT-3, Lecture Notes in Mathematics, vol. 158, pp. 99–107,

Springer, Berlin, 1992.

N. Lauritzen, Concrete Abstract Algebra, Cambridge University Press, Cambridge, 2003.

D. A. Leonard, Error-Locator Ideals for Algebraic-Geometric Codes, IEEE Transactions on

Information Theory, vol. IT-41, pp. 819–824, 1995.

D. A. Leonard, A Generalized Forney Formula for Algebraic-Geometric Codes, IEEE Transactions

on Information Theory, vol. IT-42, pp. 1263–1269, 1996.

R. J. McEliece, The Guruswami-Sudan Decoding Algorithm for Reed–Solomon Codes, IPN Progress

Report, pp. 42–153, 2003.

F. J. MacWilliams, A Theorem on the Distribution of Weights in a Systematic Code, Bell System

Technical Journal, vol. 42, pp. 79–94, 1963.

D. M. Mandelbaum, Decoding of Erasures and Errors for Certain Reed–Solomon Codes by Decreased

Redundancy, IEEE Transactions on Information Theory, vol. IT-28, pp. 330–336, 1982.

Yu. I. Manin, What is the Maximum Number of Points on a Curve Over F2? Journal of the Faculty

of Science, University of Tokyo, vol. 28, pp. 715–720, 1981.

J. L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Transactions on Information Theory,

vol. IT-15, pp. 122–127, 1969.

J. L. Massey, Codes and Ciphers: Fourier and Blahut, in Codes, Curves, and Signals: Common

Threads in Communication, A. Vardy, editor, Kluwer Academic, Norwell, MA, pp. 1998.

H. F. Mattson, Jr. and E. F. Assmus, Jr., Research Program to Extend the Theory of Weight Distribu-

tion and Related Problems for Cyclic Error-Correcting Codes, Report AFCRL-64-605, Air Force

Cambridge Research Laboratories, Bedford, MA, July 1964.

H. F. Mattson, Jr. and G. Solomon, ANew Treatment of Bose–Chaudhuri Codes, Journal of the Society

of Industrial and Applied Mathematics, vol. 9, pp. 654–699, 1961.

M. Nadler, A 32-Point n equals 12, d equals 5 Code, IRE Transactions on Information Theory,

vol. IT-8, p. 58, 1962.

A. W. Nordstrom and J. P. Robinson, An Optimum Linear Code, Information and Control, vol. 11,

pp. 613–616, 1967.

M. E. O’Sullivan, Decoding of Codes Defined by a Single Point on a Curve, IEEE Transactions on

Information Theory, vol. IT-41, pp. 1709–1719, 1995.

M. E. O’Sullivan, Decoding Hermitian Codes Beyond (dmin − 1)/2, Proceedings of the IEEE

International Symposium on Information Theory, Ulm, Germany, 1997.

M. E. O’Sullivan, The Key Equation for One-Point Codes and Efficient Evaluation, Journal of Pure

and Applied Algebra, vol. 169, pp. 295–320, 2002.

R. H. Paschburg, Software Implementation of Error-Correcting Codes, M.S. Thesis, University of

Illinois, Urbana, Illinois, 1974.

R. Pellikaan, On the Decoding by Error Location and the Number of Dependent Error Positions,

Discrete Mathematics, vols. 106–107, pp. 369–381, 1992.

R. Pellikaan, The Klein Quartic, the Fano Plane, and Curves Representing Designs, in Codes, Curves,

and Signals: Common Threads in Communication, A. Vardy, editor, Kluwer Academic, Norwell,

MA, pp. 1998.

W. W. Peterson, Encoding and Error-Correction Procedures for the Bose–Chaudhuri Codes, IEEE

Transactions on Information Theory, vol. IT-6, pp. 459–470, 1960.

531 Bibliography

V. Pless, On the Uniqueness of the Golay Codes, Journal of Combinatorial Theory, vol. 5,

pp. 215–228, 1968.

V. Pless and Z. Qian, Cyclic Codes and Quadratic Residue Codes over Z4, IEEE Transactions on

Information Theory, vol. IT-42, pp. 1594–1600, 1996.

A. Poli and L. Huguet, Error Correcting Codes, Theory and Applications, Mason, Paris, 1989.

S. C. Porter, Decoding Codes Arising from Goppa’s Construction on Algebraic Curves, Ph.D. Disser-

tation, Yale University, New Haven, 1988.

S. C. Porter, B.-Z. Shen, and R. Pellikaan, Decoding Geometric Goppa Codes Using an Extra Place,

IEEE Transactions on Information Theory, vol. IT-38, no. 6, pp. 1663–1676, 1992.

E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Report AFCRC-TN-57-103, Air Force

Cambridge Research Center, Cambridge, MA, 1957.

E. Prange, Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms, Report AFCRC-

TN-58-156, Air Force Cambridge Research Center, Bedford, MA, 1958.

F. P. Preparata, A Class of Optimum Nonlinear Double-Error-Correcting Codes, Information and

Control, vol. 13, pp. 378–400, 1968.

Z. Qian, Cyclic Codes over Z4, Ph.D. Dissertation, University of Illinois, Chicago, 1996.

C. M. Rader, Discrete Fourier Transforms When the Number of Data Samples is Prime, Proceedings

of the IEEE, vol. 56, pp. 1107–1108, 1968.

K. Ranto, Z4-Goethals Codes, Decoding, and Designs, Ph.D. Dissertation, University of Turku,

Finland, 2002.

I. S. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields, Journal of the Society of

Industrial and Applied Mathematics, vol. 8, pp. 300–304, 1960.

C. Roos, A New Lower Bound for the Minimum Distance of a Cyclic Code, IEEE Transactions on

Information Theory, vol. IT-29, pp. 330–332, 1983.

R. M. Roth and A. Lempel, Application of Circulant Matrices to the Construction and Decoding of

Linear Codes, IEEE Transactions on Information Theory, vol. IT-36, pp. 1157–1163, 1990.

R. M. Roth and G. Ruckenstein, Efficient Decoding of Reed–Solomon Codes Beyond

Half the Minimum Distance, IEEE Transactions on Information Theory, vol. IT-46,

pp. 246–257, 2000.

K. Saints and C. Heegard, On Hyperbolic Cascaded Reed–Solomon Codes, Proceedings of Tenth

International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes,

San Juan, Puerto Rico, 1993.

K. Saints and C. Heegard, On Hyperbolic Cascade Reed–Solomon Codes, Proceedings of AAECCC-

10, Lecture Notes in Computer Science, vol. 673, pp. 291–393, Springer, Berlin, 1993.

K. Saints and C. Heegard, Algebraic-Geometric Codes and Multidimensional Cyclic Codes: AUnified

Theory Using Gröbner Bases, IEEE Transactions on Information Theory, vol. IT-41, pp. 1733–

1751, 1995.

S. Sakata, Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite

Two-Dimensional Array, Journal of Symbolic Computation, vol. 5, pp. 321–337, 1988.

S. Sakata, Extension of the Berlekamp–Massey Algorithm to N Dimensions, Information and

Computation, vol. 84, pp. 207–239, 1990.

S. Sakata, H. E. Jensen, and T. Høholdt, Generalized Berlekamp–Massey Decoding of Algebraic-

Geometric Codes up to Half the Feng–Rao Bound, IEEE Transactions on Information Theory,

vol. IT-41, pp. 1762–1768, 1995.

S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, and T. Høholdt, Fast Decoding of Algebraic-

Geometric Codes up to the Designed Minimum Distance, IEEE Transactions on Information

Theory, vol. IT-41, pp. 1672–1677, 1995.

532 Bibliography

D. V. Sarwate, Semi-fast Fourier Transforms over GF(2m), IEEE Transactions on Computers, vol.

C-27, pp. 283–284, 1978.

T. Schaub, A Linear Complexity Approach to Cyclic Codes, Doctor of Technical Sciences Dissertation,

ETH Swiss Federal Institute of Technology, 1988.

J. Schwartz, Fast Probabilistic Algorithms for Verification of Polynomial Identities, Journal of the

Association of Computing Machinery, vol. 27, pp. 701–717, 1980.

J. P. Serre, Sur les nombres des points rationnels d’une courbe algebrique sur un corps fini, Comptes

Rendus Academy of Science, Paris, vol. 297, serie I, pp. 397–401, 1983.

B.-Z. Shen, Algebraic-Geometric Codes and Their Decoding Algorithms, Ph.D. Thesis, Eindhoven

University of Technology, 1992.

J. Simonis, The [23, 14, 5]Wagner Code is Unique, Report of the Faculty of Technical Mathematics

and Informatics Delft University of Technology, Delft, pp. 96–166, 1996.

J. Simonis, The [23, 14, 5] Wagner Code Is Unique, Discrete Mathematics, vol. 213, pp. 269–282,

2000.

A. N. Skorobogatov and S. G. Vlǎdut, On the Decoding of Algebraic-Geometric Codes, IEEE

Transactions on Information Theory, vol. IT-36, pp. 1461–1463, 1990.

P. Solé, A Quaternary Cyclic Code, and a Family of Quadriphase Sequences with Low Correlation

Properties, Lecture Notes in Computer Science, vol. 388, pp. 193–201, 1989.

M. Srinivasan and D. V. Sarwate, Malfunction in the Peterson–Zierler–Gorenstein Decoder, IEEE

Transactions on Information Theory, vol. IT-40, pp. 1649–1653, 1994.

H. Stichtenoth, A Note on Hermitian Codes over GF(q2), IEEE Transactions on Information Theory,

vol. IT-34, pp. 1345–1348, 1988.

H. Stichtenoth, On the Dimension of Subfield Subcodes, IEEE Transactions on Information Theory,

vol. IT-36, pp. 90–93, 1990.

H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.

M. Sudan, Decoding of Reed–Solomon Codes Beyond the Error-Correction Bound, Journal of

Complexity, vol. 13, pp. 180–183, 1997.

M. Sudan, Decoding of Reed–Solomon Codes Beyond the Error-Correction Diameter, Proceedings

of the 35th Annual Allerton Conference on Communication, Control, and Computing, University

of Illinois at Urbana-Champaign, 1997.

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A Method for Solving Key Equations for

Decoding Goppa Codes, Information and Control, vol. 27, pp. 87–99, 1975.

L. H. Thomas, Using a Computer to Solve Problems in Physics, in Applications of Digital Computers,

Ginn and Co., Boston, MA, 1963.

H. J. Tiersma, Remarks on Codes From Hermitian Curves, IEEE Transactions on Information Theory,

vol. IT-33, pp. 605–609, 1987.

M. A. Tsfasman, S. G. Vlădut, and T. Zink, Modular Curves, Shimura Curves and Goppa Codes,

Better Than Varshamov–Gilbert Bound, Mathematische Nachrichten, vol. 104, pp. 13–28, 1982.

B. L. van der Waerden, Modern Algebra (2 volumes), translated by F. Blum and T. J. Benac,

Frederick Ungar, New York, 1950 and 1953.

J. H. van Lint and T. A. Springer, Generalized Reed–Solomon Codes From Algebraic Geometry, IEEE

Transactions on Information Theory, vol. IT-33, pp. 305–309, 1987.

J. H. van Lint and R. M. Wilson, On the Minimum Distance of Cyclic Codes, IEEE Transactions on

Information Theory, vol. IT-32, pp. 23–40, 1986.

T. J. Wagner, A Remark Concerning the Minimum Distance of Binary Group Codes, IEEE

Transactions on Information Theory, vol. IT-11, p. 458, 1965.

533 Bibliography

T. J. Wagner, ASearch Technique for Quasi-Perfect Codes, Information and Control, vol. 9, pp. 94–99,

1966.

R. J. Walker, Algebraic Curves, Dover, New York, 1962.

L. Welch and E. R. Berlekamp, Error Correction for Algebraic Block Codes, U.S. Patent 4 633 470,

1983.

J. K. Wolf, Adding Two Information Symbols to Certain Nonbinary BCH Codes and Some

Applications, Bell System Technical Journal, vol. 48, pp. 2405–2424, 1969.

J. Wu and D. J. Costello, Jr., New Multi-Level Codes over GF(q), IEEE Transactions on Information

Theory, vol. IT-38, pp. 933–939, 1992.

C. Xing, On Automorphism Groups of the Hermitian Codes, IEEE Transactions on Information

Theory, vol. IT-41, pp. 1629–1635, 1995.

T. Yaghoobian and I. F. Blake, Hermitian Codes as Generalized Reed–Solomon Codes, Designs,

Codes, and Cryptography, vol. 2, pp. 15–18, 1992.

K. Yang and P. V. Kumar, On the True Minimum Distance of Hermitian Codes, in Lecture Notes in

Mathematics, H. Stichtenoth and M. A. Tsfasman, editors, vol. 1518, pp. 99–107, Springer, Berlin,

1988.

Index

Page numbers in bold refer to the most important page, usually where the index entry is defined or explained in
detail.

absolutely irreducible polynomial, 229, 245, 391
acyclic complexity, 25
addition, 2
affine curve, 392
affine line, 64
affine plane, 230, 251, 278
affine point, 392, 397
affine variety, 278
affine zero, 229, 278
agreement theorem, 23

algebra
commutative, 277, 312
geometric, 355

algebraic extension, 229
algebraic field, 2
algebraic geometry, 426, 428
algebraically closed field, 18, 318
algorithm

Berlekamp, 170
Berlekamp–Massey, 155, 159,

160, 202
Buchberger, 347, 361
Cooley–Tukey, 236, 236

decimation, 235, 236
division, 17
euclidean, 153, 347
fast, 235
fast Fourier transform, 236
Good–Thomas, 236, 250
Gorenstein–Zierler, 145
Koetter, 384
Peterson, 140, 201
pipelined, 173
polynomial division, 17, 286, 348
Porter, 389
Rader, 43, 49
Sakata, 347, 361, 487
semifast, 39
Sugiyama, 151, 153

systolic, 173, 389
Welch–Berlekamp, 181

aliasing, 13
alignment monomial, 290
alphabet, 1
alternant code, 92, 136
aperiodic sequence, 1
area of a footprint, 292
array, 224, 277

bivariate, 351
doubly periodic, 224
periodic, 224
reciprocal, 226

ascending chain condition, 296
associative law, 2
autocorrelation function, 414, 425
automorphism, 62, 81, 233, 453, 464, 481

hermitian code, 453, 480
automorphism group, 62

basic irreducible polynomial, 111
primitive, 111

basis
Gröbner , 293
minimal, 293
monomial, 405
reduced, 296
standard, 293, 345

BCH bispectrum property, 239
BCH bound, 30, 73, 238
BCH code, 72

narrow-sense, 72
primitive, 72

BCH dual product bound, 238
BCH product bound, 238
BCH product code, 253
BCH radius, 73, 137, 206, 488
Berlekamp algorithm, 170

535 Index

Berlekamp–Massey algorithm, 25, 155, 159, 160,
202, 347, 361

Bézout coefficient, 153, 250
Bézout theorem, 277, 312, 319, 437
bi-index, 229, 248, 279
biadic representation, 114
bicyclic code, 247, 248, 431

primitive, 251
bicyclic plane, 251

bidegree, 229, 280, 321
graded, 282
lexicographic, 282
weighted, 282, 408

binary conjugate, 35
binary entropy, 97
biorder, 261
bispectrum, 224, 251, 267
bivariate array, 351
bivariate code, 247
bivariate monomial, 229
bivariate polynomial, 229, 248, 277, 390

nonsingular, 231
bivariate recursion, 353
block code, 56
blocklength, 1, 57

bound
BCH, 30, 73, 238
BCH product, 238
Drinfeld–Vlǎdut, 394
Feng–Rao, 418, 420, 513
Goppa, 418
Hamming, 57, 87
Hartmann–Tzeng, 31, 75
Hasse–Weil, 393
hyperbolic, 243
multilevel, 510
Roos, 31, 31, 76
Singleton, 58, 67, 133, 439
square-root, 83
van Lint–Wilson, 32
Varshamov–Gilbert, 98
weak Goppa, 243

bounded-distance decoder, 138, 190, 200, 207
Buchberger algorithm, 347, 361, 387
Buchberger core computation, 349
Buchberger theorem, 301, 346, 349, 350

Calderbank–McGuire code, 121, 135
cascade code, 255
cascade hull, 242, 415
cascade set, 241, 283, 288, 292, 324
cell, 173
characteristic, 6, 38
check matrix, 57
check polynomial, 63

ring code, 110
check symbol, 57, 430

chinese remainder theorem, 236, 250
chord, 75, 262
class, conjugacy, 262
code, 1

alternant, 92
BCH, 72
BCH product, 253
bicyclic, 247, 248, 431
binary Golay, 86

bivariate, 247
block, 56
Calderbank–McGuire, 121
cascade, 255
cyclic, 60
distance-invariant, 124
doubly extended Reed–Solomon, 69, 439
dual, 59
dual-product, 253, 254
epicyclic, 431, 433, 452
error-control, 56
extended Golay, 77, 86, 274
generalized Reed–Solomon, 92
Goethals, 122
Golay, 77, 86, 206
Goppa, 92, 99

hamming, 72, 221
hermitian, 357, 441
hyperbolic, 256, 357
Kerdock, 122
Klein, 465
linear, 56, 138, 247, 460
maximum-distance, 58, 439
Melas, 75
Nordstrom–Robinson, 125
perfect, 57, 133
Preparata, 89, 122
primitive bicyclic, 251
primitive cyclic, 61
product, 253
punctured, 59, 431
quadratic residue, 77
quasi-cyclic, 464, 466
Reed–Solomon, 66, 467
Reed–Solomon product, 253
Roos, 76
self-dual, 59, 78
separable Goppa, 103
shortened, 59, 255, 431
simplex, 221
singly extended Reed–Solomon, 69
Wagner, 270
Zetterberg, 75

code domain, 167, 177
code-domain decoder, 168, 187
code-domain encoder, 70, 71
code-domain syndrome, 139, 177
codeword, 1, 56

536 Index

codeword polynomial, 61
codeword spectrum, 61
coefficient, 16, 229

connection, 21, 142
leading, 16, 280

commutative law, 2
commutative algebra, 277, 312, 345, 389
compact disk, 56
complete decoder, 138, 190, 197
complete defining set, 62
complex field, 2, 5
complexity

acyclic, 25
cyclic, 25
linear, 13, 20, 227, 332, 333

componentwise degree, 229, 280
concatenated code, 270
conjugacy class, 35, 74, 262
conjugacy constraint, 35, 61, 73, 201

ring, 119
two-dimensional, 245

conjugate, 35
binary, 35

conjunction, 289
conjunction polynomial, 289, 301,

325, 349
connection coefficient, 21, 142, 351
connection footprint, 355, 418
connection polynomial, 20, 29, 351

minimal, 352
constraint, conjugacy, 35, 61, 73
convolution property, 12, 15

two-dimensional, 227, 327
Cooley–Tukey algorithm, 236

coprime, 13, 16, 30, 236, 237, 250, 392,
407, 424

polynomials, 18, 312
core iteration, 349
corner

exterior, 242, 292, 362
interior, 362

covering radius, 57, 190
Cramer’s rule, 309
cryptography, 8
curve, 392

hermitian, 393
Klein, 392
planar, 390
plane, 390
regular, 392
smooth, 392

cyclic code, 60
doubly extended, 66
nonlinear, 89
over ring, 109
primitive, 61
quasi-, 466

singly extended, 66
two-dimensional, 247

cyclic complexity, 25
of arrays, 331

cyclic convolution property, 15, 51
cyclic decimation property, 13, 15, 31
cyclic line, 64
cyclic permutation property, 13, 16

cyclic property, 62

data polynomial, 71
data symbol, 70
datalength, 57, 89, 121, 123

Calderbank–McGuire code, 121
Goethals code, 132
Kerdock code, 130
Preparata code, 126

dataword, 56, 57, 70
decimation algorithm, 235, 236
decoder

Berlekamp–Massey, 166
boolean-logic, 139
bounded-distance, 138, 190, 200
code-domain, 168, 170, 187
complete, 138, 190, 197
list, 199, 208
locator, 137
Sudan, 208
transform domain, 140
Welch–Berlekamp, 176

decoder bounded-distance, 207
decoding error, 190
decoding failure, 190
decoding radius, 190

decoding sphere, 200
defining set, 60, 137

bicyclic code, 248, 253
complete, 62
epicyclic code, 431

degree, 16, 229, 280, 390
bidegree, 229, 280

componentwise, 229, 280
total, 229
weighted, 208, 282, 460
weighted bidegree, 282

delta set, 389
derivative

formal, 19, 147, 230
Hasse, 19, 54, 509
partial, 230

designed distance, 66, 73, 206
Dickson’s lemma, 344
dimension, 58

of a code, 57
direct sum, subspace, 218
discrepancy, 157, 364

537 Index

discrete nullstellensatz, 327, 328, 405
disk, video, 56
distance, 1

designed, 66
Feng–Rao, 410, 413, 510
Goppa, 414
Hamming, 56

Lee, 108
minimum, 57

distance profile, 413
Feng–Rao, 413
Goppa, 414
hyperbolic, 416

distance-invariant code, 124, 223
distributive property law, 3
division, 3
division algorithm, 17, 18

bivariate polynomial, 286, 348, 388
ring with identity, 210
univariate polynomial, 17, 151, 348

division order, 282
doubly extended cyclic code, 66
doubly extended Reed–Solomon code, 69, 439
doubly periodic array, 224
Drinfeld–Vlǎdut bound, 394
dual, formal, 131
dual code, 59, 134, 217, 273, 450

hermitian code, 454
punctured code, 450
Reed–Solomon code, 69, 454
ring, 125

dual-product code, 253, 254

element, primitive, 6
elliptic curve, 425
elliptic polynomial, 245, 425
encoder, 70

code-domain, 71
systematic, 71
transform-domain, 70

entropy, 97
epicyclic code, 433, 452
epicyclic curve, 403
epicyclic hermitian code, 445
equivalence class, 299
erasure, 203
erasure-locator polynomial, 204
error control, 8
error detection, 200
error spectrum, 140, 141
error vector, 142
error-control code, 56
error-evaluator polynomial, 145, 170
error-locator ideal, 486
error-locator polynomial, 140, 486
error-spectrum polynomial, 140

euclidean algorithm
extended, 99, 153
for polynomials, 99, 151, 153, 347

evaluation, 9, 232, 390
bivariate polynomial, 390

evaluation code, 452
extended Golay code, 77, 86, 274
extended quadratic residue code, 80
extension field, 3, 34
exterior corner, 242, 362

of a footprint, 292
exterior polynomial, 363

factor, 18, 229
irreducible, 229, 392

false decoding radius, 488
false neighbor, 191, 198
fast algorithm, 235
fast Fourier transform, 236
Feng–Rao bound, 418, 420, 460, 513
Feng–Rao decoder, 512
Feng–Rao distance, 410, 413, 420, 510
Fermat version, 396
Fibonacci sequence, 22, 187
field, 2

algebraic, 2
algebraically closed, 18, 318
complex, 2, 5
extension, 3, 34
finite, 1, 2
Galois, 2
rational, 2
real, 2

filtered spectrum, 100
finite field, 1, 2
finite sequence, 1
footprint, 291, 313, 345, 350

connection, 355, 418
of an ideal, 291
locator, 313
of a set of polynomials, 289

formal derivative, 19, 53, 147, 230
partial, 230

formal dual, 131
formula

Forney, 147, 162,
170, 509

Horiguchi–Koetter, 160, 170
Plücker, 232
Poisson summation, 13

Forney formula, 147, 160, 162, 170, 509
Fourier transform, 8, 224

multidimensional, 9
two-dimensional, 224

frequency-domain encoder, 70

538 Index

Frobenius function, Galois ring, 117
fundamental theorem of algebra, 30

Galois field, 2
Galois orbit, 35
Galois ring, 113
gap, 411, 413

Weierstrass, 411
gap sequence, 411, 414, 425, 450
gaussian elimination, 142, 297, 387, 418
gaussian sum, 46, 54
generalized Reed–Solomon code, 92
generator, 19

of a semigroup, 411
of an ideal, 19, 278

generator matrix, 57
ring code, 109

generator polynomial, 62, 70, 278
ring code, 110

generator set, 278, 293
genus, 232, 245, 411, 426, 448, 451, 482
geometric algebra, 355
geometry, algebraic, 428
Gleason–Prange condition, 44, 52, 267
Gleason–Prange permutation, 43, 83, 268
Gleason–Prange theorem, 43, 44, 48, 81
Goethals code, 122, 123, 131

Golay code, 75, 77, 86, 206, 266
binary, 86, 266
binary extended, 266
extended, 86, 274
ternary, 133
Turyn representation, 267, 467, 481

gonality, 426, 470
Good–Thomas algorithm, 51, 236, 250
Goppa bound, 418, 426
Goppa code, 92, 99, 134

binary, 103
narrow-sense, 100
separable, 103

Goppa distance, 414
Goppa polynomial, 100, 134
Goppa radius, 488
Gorenstein–Zierler algorithm, 145
Gorenstein–Zierler decoder, 187
graded bidegree, 282
graded order, 281
Graeffe method, 111
Gray image, 124, 223
Gray map, 123

greatest common divisor, 13
polynomial, 151, 348

Gröbner basis, 293, 345
ground field, 3

Hamming bound, 57, 87
Hamming code, 72, 221, 263, 264

Hamming codeword, 263
Hamming distance, 1, 56, 123
Hamming weight, 1, 57, 123, 331
Hankel matrix, 147
Hartmann–Tzeng bound, 31, 53, 75
Hasse derivative, 19, 54, 509
Hasse–Weil bound, 393, 424, 450
heft, 58, 133
Hensel lift, 111, 134
hermitian code, 357, 428, 440, 441

affine, 442
epicyclic, 445, 453
projective, 440
punctured, 454
quasi-cyclic, 453
shortened, 454

hermitian curve, 393, 396, 398
hermitian polynomial, 231, 396, 408, 473

Fermat version, 396, 473, 480
Stichtenoth version, 398, 473

hexacode, 134
Hilbert basis theorem, 295, 344
homogeneous polynomial, 17

bivariate, 65
trivariate, 231

Horiguchi–Koetter formula, 160, 170
hyperbolic bound, 243
hyperbolic code, 256, 357, 489, 517

decoding, 489, 517
hyperelliptic curve, 451

ideal, 18, 278
bivariate, 278
error-locator, 486
locator, 27, 312, 484
maximal, 344
prime, 328
principal, 27, 278, 333
proper, 19, 278

radical, 328
idempotent polynomial, 36, 62, 85, 456
index, 16

leading, 16
index field, 43
infinity

line at, 251
point at, 64, 251

inner product, 59, 125
integer, 2
interior corner, 362
interior polynomial, 160, 363
interleaved code, 275
intermediate array, 234
intersection, subspace, 218
inverse, 3

in a ring, 110

539 Index

inverse Fourier transform, 12, 14
one-dimensional, 225
two-dimensional, 225

inversion, 227
irreducible factor, 18, 229, 392
irreducible polynomial, 5, 17

absolutely, 229
bivariate, 229, 392

isomorphic, 5

Kerdock code, 122, 123
Klein code, 465
Klein curve, 392
Klein polynomial, 231, 394, 406, 409
Koetter algorithm, 384, 388

l’Hôpital’s rule, 509
Lagrange interpolation, 178, 315
leading coefficient, 16, 280
leading index, 16
leading monomial, 16

bivariate, 279
leading term, 16

bivariate, 279
Lee distance, 108
Lee weight, 108
Legendre symbol, 46
lemma

Dickson, 344
Schwartz, 246

lexicographic bidegree, 282
lexicographic order, 280
line

affine, 64
cyclic, 64
projective, 64
tangent, 230

line at infinity, 251
linear code, 56, 60, 138, 247, 460

ring, 109, 124
linear complexity, 13, 20, 332, 333

of arrays, 228
linear complexity property, 15, 27, 141
linear recursion, 20, 156
linear-feedback shift register, 21
linearity property, 12, 227
locator decoding, 137, 214
locator footprint, 313, 484, 491
locator ideal, 27, 312, 484
locator polynomial, 26, 137, 140, 331

two-dimensional, 331
Logarithm, base π , 49

MacWilliams equation, 191, 217

MacWilliams theorem, 219

mask polynomial, 456, 458
Massey theorem, 24, 159, 359
matrix

check, 57
generator, 57
Hankel, 147
Toeplitz, 153
triangular, 33
Vandermonde, 133

maximal ideal, 313, 329, 344
maximal polynomial, 448
maximum-distance code, 58, 132, 192, 217, 439
Melas code, 75
metric, 132
minimal basis, 293, 305
minimal connection polynomial, 352, 363
minimal connection set, 352, 362
minimum distance, 57

minimum weight, 57

missing syndrome, 205, 486, 488, 522
modulation property, 12, 14, 140, 227
module, 182
monic polynomial, 16, 27, 229

bivariate, 280, 283
monoid, 410
monomial, 16

alignment, 290
bivariate, 229

monomial basis, 296, 405, 426
monomial order, 280
multidimensional Fourier transform, 9
multilevel bound, 242, 255, 510
multiple zero, 318, 320
multiplication, 2

narrow-sense BCH code, 72
narrow-sense Goppa code, 100
narrow-sense Reed–Solomon code, 67
natural number, 2
noetherian ring, 296, 344
nongap, 411
nonresidue, quadratic, 43
nonsingular polynomial, 231, 391

bivariate, 231
univariate, 18, 318

Nordstrom–Robinson code, 125
norm, 450
null space, 57
nullstellensatz, 326, 457

discrete, 329, 405
weak, 329

octacode, 110, 136
one-point code, 408, 425
orbit, Galois, 35

540 Index

order, 6
division, 282
graded, 281
lexicographic, 280
monomial, 280
total, 279
weighted, 281, 407, 420

order function, 407
orthogonal complement, 59
outer product, 53

packing radius, 57, 67, 138, 190, 205, 206, 214
BCH code, 73

parity-check code, 192
partial derivative, 230
Pascal triangle, 54
perfect code, 57, 87, 133
permutation, 16

Gleason–Prange, 43, 268
permutation property, 13

cyclic, 13, 16

Peterson algorithm, 140, 201
Peterson–Gorenstein–Zierler decoder, 187
pipelined algorithm, 173
pivot, 515
Plücker formula, 232, 393, 396, 448
planar curve, 390
plane

affine, 251, 278
bicyclic, 251

projective, 230, 251, 319
plane affine curve, 278
plane curve, 390
point

affine, 392
rational, 393
regular, 230, 391, 407, 424
singular, 18, 230

point at infinity, 64, 251
Poisson summation formula, 13, 16, 54
pole order, 408
polynomial, 16

basic irreducible, 111
bivariate, 229, 248, 277, 390
check, 63
codeword, 61
conjunction, 289, 301
connection, 20, 29, 351

data, 71
erasure-locator, 204
error-evaluator, 145
error-locator, 140, 486
error-spectrum, 140
generator, 62, 70
Goppa, 100
hermitian, 231, 396, 408, 473

homogeneous, 65, 230
idempotent, 36
interior, 363
irreducible, 5, 17, 229, 391, 392
irreducible bivariate, 391, 392
Klein, 231, 394, 409
locator, 26, 137, 331
mask, 458
monic, 16, 229
nonsingular, 18, 231, 391
prime, 283
primitive, 6
quotient, 17, 151, 284, 286
Rader, 50
reciprocal, 17, 21, 279
reciprocal connection, 21
reducible, 17
regular, 231, 391
remainder, 17, 151, 284, 286
scratch, 160
singular, 18, 392
smooth, 231

spectrum, 61
Sudan, 209, 212
syndrome, 140, 177
trivariate, 230
univariate, 16

polynomial combination, 278
polynomial evaluation, 232
polynomial representation, 9
polynomial zero, 13
Porter algorithm, 389
Preparata code, 89, 122, 123

decoding, 149
prime, 3
prime ideal, 328, 345
prime polynomial, 283
primitive BCH code, 72
primitive bicyclic code, 251
primitive cyclic code, 61
primitive element, 6, 61

Galois ring, 113
primitive polynomial, 6

Galois ring, 111
primitive Reed–Solomon code, 68
principal ideal, 19, 27, 278, 333, 344, 388
principal ideal ring, 19, 27, 53, 183
principal idempotent, 62, 85
produce, 20
product bound

BCH truncated, 240
product code, 253

BCH, 253
Reed–Solomon, 253

projective line, 64
projective plane, 230, 251, 319
projective zero, 230

541 Index

proper ideal, 19, 278
property

BCH bispectrum, 239
convolution, 15

cyclic, 62
linear complexity, 15, 141
modulation, 14, 227
translation, 12, 14, 227
twist, 228, 469

proximate set of codewords, 198
punctured code, 59, 255, 431, 432, 450

quadary codes, 109
quadratic nonresidue, 43, 78
quadratic residue, 43, 54, 78
quadratic residue code, 77, 133
quasi-cyclic code, 464, 466
quaternary code, 109
quotient polynomial, 17, 151, 284, 286
quotient ring, 18, 299

Rader algorithm, 43, 49, 85
Rader polynomial, 50
radical ideal, 328, 344
radical of an ideal, 328
radius

BCH, 73, 137, 488
covering, 57

false decoding, 488
Goppa, 488
packing, 57, 67, 137, 138
Sudan, 208

rank, 58
rank-nullity theorem, 58, 59
rational field, 2
rational point, 230, 393
rational zero, 230
reach, 352
real field, 2
received word, 56
reciprocal array, 226, 246, 279
reciprocal connection polynomial, 21
reciprocal polynomial, 17, 21, 246, 279

bivariate, 279
reciprocal vector, 13
reciprocation property, 13, 15, 227
recursion, 20

bivariate, 353
linear, 20
univariate, 352

recursive extension, 144
reduced basis, 296, 305
reduced echelon form, 297
reducible polynomial, 17

Reed–Muller code, 275
Reed–Solomon code, 66, 208, 428, 467

cyclic, 69
doubly extended, 69, 439
interleaved, 430
narrow-sense, 67
primitive, 67, 68
product, 253
projective, 69
punctured, 208
shortened, 68, 71
singly extended, 69

regular curve, 392
regular point, 230, 391, 407, 424
regular polynomial, 18, 231, 391
remainder polynomial, 17, 72, 151, 284, 286
repetition code, 192
representation, Turyn, 263
Riemann–Roch theorem, 426, 428, 482
ring, 18

bivariate polynomial, 277
noetherian, 296
polynomial, 18
principal ideal, 19, 183
quotient, 18
unique factorization, 283

ring with identity, 18
Roos bound, 31, 31, 53, 76
Roos code, 76, 133

Sakata algorithm, 347, 361, 487
Sakata–Massey theorem, 359, 362, 418, 423, 491
scalar, 8
Schwartz lemma, 246
scratch polynomial, 160
self-dual code, 59, 78, 134, 273
semifast algorithm, 39
semifast Fourier transform, 39
semigroup, 410
senseword, 56, 138, 485
separable Goppa code, 103
sequence, 1

Fibonacci, 22
finite, 1

Serre’s improvement, 393
set

cascade, 241, 283, 292, 324
complete defining, 62
defining, 60, 253

shift register
linear-feedback, 21

shortened code, 59, 255, 431, 432, 450
signal processing, 8
simplex code, 221
Singleton bound, 58, 67, 133, 135, 439
singly extended cyclic code, 66

542 Index

singly extended Reed–Solomon code, 69
singular point, 18, 230, 391
singular polynomial, 18, 392
smooth curve, 392
smooth polynomial, 231
spectral component, 9
spectral index, 60
spectrum, 9

codeword, 61
error, 141

spectrum polynomial, 61, 64
sphere, decoding, 200
square-root bound, 83
staircase order, 294
standard basis, 293, 345
Stichtenoth version, 398, 407, 443, 473, 480
Stirling approximation, 98

weak form, 98
subcode, 60
subfield, 34
subfield-subcode, 60, 72, 92
subtraction, 2
Sudan decoder, 208, 222, 223
Sudan polynomial, 209, 212
Sudan radius, 208, 213, 214
Sudan theorem, 209

sufficient statistic, 187
Sugiyama algorithm, 151, 153, 173
supercode, 509
Suzuki group, 425
symbol

check, 57, 430
data, 70

syndrome, 138, 139, 149, 486
code-domain, 139, 177
implied, 497
missing, 205, 486, 488, 497
spectral, 139
transform-domain, 140
two-dimensional, 258, 486

syndrome filling, 488
syndrome polynomial, 140, 177, 486

modified, 180
systematic encoder, 71
systolic algorithm, 173, 389

tangent line, 230
template, 92
tensor product, 53
term, 16, 229
term order, 280
tetracode, 134
theorem

agreement, 23, 358, 490
Bézout, 312, 319, 319, 437
Buchberger, 301, 349

chinese remainder, 236, 250
Gleason–Prange, 43, 44, 48, 81
Hilbert basis, 295
MacWilliams, 219
Massey, 24
rank-nullity, 58
Riemann–Roch, 426, 428, 482
Sakata–Massey, 359, 362, 418
Sudan, 209
unique factorization, 18, 283

time-domain encoder, 70
Toeplitz matrix, 153
Toeplitz system, 153, 155
torus, 251, 403, 433
total degree, 229
total order, 279
trace, 36, 53, 63, 117

q-ary, 36, 53, 63
binary, 36, 54
Galois ring, 117

trace code, 134
transform

Fourier, 8
Walsh–Hadamard, 9

transform domain, 177
transform-domain decoder, 140
transform-domain encoder, 70
transform-domain syndrome, 140
translation property, 12, 14, 227
transpose, 246
triangle, Pascal, 54
triangle inequality, 132
triangular matrix, 32, 33
trivariate polynomial, 230
truncated BCH product bound, 240
Turyn representation, 263, 274, 467

Golay code, 267
hermitian code, 473, 477
Klein code, 467, 473

twist property, 228, 469, 474
two-dimensional cyclic code, 247
two-dimensional Fourier transform, 224
two-dimensional syndrome, 258, 486

uncorrectable error pattern, 200
unique factorization ring, 283
unique factorization theorem, 18, 229

bivariate, 283, 306, 345
unit, of a ring, 18, 110
univariate polynomial, 16, 17, 318

van Lint–Wilson bound, 32, 133
Vandermonde matrix, 133, 178
variety, 278, 295

affine, 278
Varshamov–Gilbert bound, 98, 134

543 Index

vector, 1, 8, 182
error, 142

vector space, 8, 218
video disk, 56

Wagner code, 270
Walsh–Hadamard transform, 9, 53
weak Goppa bound, 243
weak nullstellensatz, 326, 329

discrete, 312
Weierstrass gap, 393, 409, 411
weight, 1, 28

of an array, 331
Hamming, 57, 331
Lee, 108
of a polynomial, 17
minimum, 57

of vectors on curves, 417
weight distribution, 87, 191, 217

(21, 12, 5) binary BCH code, 263
Golay code, 87, 270
Hamming code, 221
maximum-distance code, 192, 193
simplex code, 221
Wagner code, 270

weight function, 407, 411, 482
hermitian polynomial, 408
Klein polynomial, 409

weight polynomial, 218
weighted bidegree, 282, 408
weighted degree, 208, 229, 282, 460

monomial, 208, 229
polynomial, 208, 229

weighted order, 209, 281, 407, 420
Welch–Berlekamp algorithm, 181
Welch–Berlekamp decoder, 176

zero, 2, 18, 229
affine, 229, 278
bivariate, 229
bivariate polynomial, 392
multiple, 318
of a polynomial, 18
of an ideal, 278, 295
polynomial, 13
projective, 230
rational, 230

Zetterberg code, 75

	Cover
	Half-title
	Title
	Copyright
	Contents
	List of figures
	List of tables
	Preface
	1 Sequences and the One-Dimensional Fourier Transform
	1.1 Fields
	1.2 The Fourier transform
	1.3 Properties of the Fourier transform
	1.4 Univariate and homogeneous bivariate polynomials
	1.5 Linear complexity of sequences
	1.6 Massey's theorem for sequences
	1.7 Cyclic complexity and locator polynomials
	1.8 Bounds on the weights of vectors
	1.9 Subfields, conjugates, and idempotents
	1.10 Semifast algorithms based on conjugacy
	1.11 The Gleason--Prange theorem
	1.12 The Rader algorithm
	Problems
	Notes

	2 The Fourier Transform and Cyclic Codes
	2.1 Linear codes, weight, and distance
	2.2 Cyclic codes
	2.3 Codes on the affine line and the projective line
	2.4 The wisdom of Solomon and the wizardry of Reed
	2.5 Encoders for Reed–Solomon codes
	2.6 BCH codes
	2.7 Melas codes and Zetterberg codes
	2.8 Roos codes
	2.9 Quadratic residue codes
	2.10 The binary Golay code
	2.11 A nonlinear code with the cyclic property
	2.12 Alternant codes
	2.13 Goppa codes
	2.14 Codes for the Lee metric
	2.15 Galois rings
	2.16 The Preparata, Kerdock, and Goethals codes
	Problems
	Notes

	3 The Many Decoding Algorithms for Reed–Solomon Codes
	3.1 Syndromes and error patterns
	3.2 Computation of the error values
	3.3 Correction of errors of weight 2
	3.4 The Sugiyama algorithm
	3.5 The Berlekamp–Massey algorithm
	3.6 Decoding of binary BCH codes
	3.7 Putting it all together
	3.8 Decoding in the code domain
	3.9 The Berlekamp algorithm
	3.10 Systolic and pipelined algorithms
	3.11 The Welch–Berlekamp decoder
	3.12 The Welch–Berlekamp algorithm
	Problems
	Notes

	4 Within or Beyond the Packing Radius
	4.1 Weight distributions
	4.2 Distance structure of Reed–Solomon codes
	4.3 Bounded-distance decoding
	4.4 Detection beyond the packing radius
	4.5 Detection within the packing radius
	4.6 Decoding with both erasures and errors
	4.7 Decoding beyond the packing radius
	4.8 List decoding of some low-rate codes
	4.9 Bounds on the decoding radius and list size
	4.10 The MacWilliams equation
	Problems
	Notes

	5 Arrays and the Two-Dimensional Fourier Transform
	5.1 The two-dimensional Fourier transform
	5.2 Properties of the two-dimensional Fourier transform
	5.3 Bivariate and homogeneous trivariate polynomials
	5.4 Polynomial evaluation and the Fourier transform
	5.5 Intermediate arrays
	5.6 Fast algorithms based on decimation
	5.7 Bounds on the weights of arrays
	Problems
	Notes

	6 The Fourier Transform and Bicyclic Codes
	6.1 Bicyclic codes
	6.2 Codes on the affine plane and the projective plane
	6.3 Minimum distance of bicyclic codes
	6.4 Bicyclic codes based on the multilevel bound
	6.5 Bicyclic codes based on the BCH bound
	6.6 The (21, 12, 5) bicyclic BCH code
	6.7 The Turyn representation of the (21, 12, 5) BCH code
	6.8 The (24, 12, 8) bivariate Golay code
	6.9 The (24, 14, 6) Wagner code
	6.10 Self-dual codes
	Problems
	Notes

	7 Arrays and the Algebra of Bivariate Polynomials
	7.1 Polynomial representations of arrays
	7.2 Ordering the elements of an array
	7.3 The bivariate division algorithm
	7.4 The footprint and minimal bases of an ideal
	7.5 Reduced bases and quotient rings
	7.6 The Buchberger theorem
	7.7 The locator ideal
	7.8 The Bézout theorem
	7.9 Nullstellensätze
	7.10 Cyclic complexity of arrays
	7.11 Enlarging an ideal
	Problems
	Notes

	8 Computation of Minimal Bases
	8.1 The Buchberger algorithm
	8.2 Connection polynomials
	8.3 The Sakata–Massey theorem
	8.4 The Sakata algorithm
	8.5 An example
	8.6 The Koetter algorithm
	Problems
	Notes

	9 Curves, Surfaces, and Vector Spaces
	9.1 Curves in the plane
	9.2 The Hasse–Weil bound
	9.3 The Klein quartic polynomial
	9.4 The hermitian polynomials
	9.5 Plane curves and the two-dimensional Fourier transform
	9.6 Monomial bases on the plane and on curves
	9.7 Semigroups and the Feng–Rao distance
	9.8 Bounds on the weights of vectors on curves
	Problems
	Notes

	10 Codes on Curves and Surfaces
	10.1 Beyond Reed–Solomon codes
	10.2 Epicyclic codes
	10.3 Codes on affine curves and projective curves
	10.4 Projective hermitian codes
	10.5 Affine hermitian codes
	10.6 Epicyclic hermitian codes
	10.7 Codes shorter than hermitian codes
	Problems
	Notes

	11 Other Representations of Codes on Curves
	11.1 Shortened codes from punctured codes
	11.2 Shortened codes on hermitian curves
	11.3 Quasi-cyclic hermitian codes
	11.4 The Klein codes
	11.5 Klein codes constructed from Reed–Solomon codes
	11.6 Hermitian codes constructed from Reed–Solomon codes
	Problems
	Notes

	12 The Many Decoding Algorithms for Codes on Curves
	12.1 Two-dimensional syndromes and locator ideals
	12.2 The illusion of missing syndromes
	12.3 Decoding of hyperbolic codes
	12.4 Decoding of hermitian codes
	12.5 Computation of the error values
	12.6 Supercodes of hermitian codes
	12.7 The Feng–Rao decoder
	12.8 The theory of syndrome filling
	Problems
	Notes

	Bibliography
	Index

