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Introduction

This text presents an introduction to algebra suitable for upper-level undergraduate
or beginning graduate courses. While there is a very extensive offering of textbooks
at this level, in my experience teaching this material I have invariably felt the
need for a self-contained text that would start ‘from zero’ (in the sense of not
assuming that the reader has had substantial previous exposure to the subject) but
that would impart from the very beginning a rather modern, categorically minded
viewpoint and aim at reaching a good level of depth. Many textbooks in algebra
brilliantly satisfy some, but not all, of these requirements. This book is my attempt
at providing a working alternative.

There is a widespread perception that categories should be avoided at first
blush, that the abstract language of categories should not be introduced until a
student has toiled for a few semesters through example-driven illustrations of the
nature of a subject like algebra. According to this viewpoint, categories are only
tangentially relevant to the main topics covered in a beginning course, so they can
simply be mentioned occasionally for the general edification of the reader, who will
in time learn about them (by osmosis?). Paraphrasing a reviewer of a draft of the
present text, ‘Discussions of categories at this level are the reason why God created
appendices.’

It will be clear from a cursory glance at the table of contents that I think
otherwise. In this text, categories are introduced on page[I8] after a scant reminder
of the basic language of naive set theory, for the main purpose of providing a context
for universal properties. These are in turn evoked constantly as basic definitions
are introduced. The word ‘universal’ appears at least 100 times in the first three
chapters.

I believe that awareness of the categorical language, and especially some ap-
preciation of universal properties, is particularly helpful in approaching a subject
such as algebra ‘from the beginning’. The reader I have in mind is someone who
has reached a certain level of mathematical maturity—for example, who needs no
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xviii Introduction

special assistance in grasping an induction argument—but may have only been ex-
posed to algebra in a very cursory manner. My experience is that many upper-level
undergraduates or beginning graduate students at Florida State University and at
comparable institutions fit this description. For these students, seeing the many in-
troductory concepts in algebra as instances of a few powerful ideas (encapsulated in
suitable universal properties) helps to build a comforting unifying context for these
notions. The amount of categorical language needed for this catalyzing function
is very limited; for example, functors are not really necessary in this acclimatizing
stage.

Thus, in my mind the benefit of this approach is precisely that it helps a true
beginner, if it is applied with due care. This is my experience in the classroom,
and it is the main characteristic feature of this text. The very little categorical
language introduced at the outset informs the first part of the book, introducing
in general terms groups, rings, and modules. This is followed by a (rather tradi-
tional) treatment of standard topics such as Sylow theorems, unique factorization,
elementary linear algebra, and field theory. The last third of the book wades into
somewhat deeper waters, dealing with tensor products and Hom (including a first
introduction to Tor and Ext) and including a final chapter devoted to homological
algebra. Some familiarity with categorical language appears indispensable to me
in order to appreciate this latter material, and this is hopefully uncontroversial.
Having developed a feel for this language in the earlier parts of the book, students
find the transition into these more advanced topics particularly smooth.

A first version of this book was essentially a careful transcript of my lectures in
a run of the (three-semester) algebra sequence at FSU. The chapter on homological
algebra was added at the instigation of Ed Dunne, as were a very substantial number
of the exercises. The main body of the text has remained very close to the original
‘transcript’ version: I have resisted the temptation of expanding the material when
revising it for publication. I believe that an effective introductory textbook (this
is Chapter 0, after all...) should be realistic: it must be possible to cover in class
what is covered in the book. Otherwise, the book veers into the ‘reference’ category;
I never meant to write a reference book in algebra, and it would be futile (of me)
to try to ameliorate excellent available references such as Lang’s ‘Algebra’.

The problem sets will give an opportunity to a teacher, or any motivated reader,
to get quite a bit beyond what is covered in the main text. To guide in the choice of
exercises, I have marked with a > those problems that are directly referenced from
the text, and with a — those problems that are referenced from other problems. A
minimalist teacher may simply assign all and only the > problems; these do nothing
more than anchor the understanding by practice and may be all that a student
can realistically be expected to work out while juggling TA duties and two or three
other courses of similar intensity as this one. The main body of the text, together
with these exercises, forms a self-contained presentation of essential material. The
other exercises, and especially the threads traced by those marked with —, will offer
the opportunity to cover other topics, which some may well consider just as essen-
tial: the modular group, quaternions, nilpotent groups, Artinian rings, the Jacob-
son radical, localization, Lagrange’s theorem on four squares, projective space and
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Grassmannians, Nakayama’s lemma, associated primes, the spectral theorem for
normal operators, etc., are some examples of topics that make their appearance in
the exercises. Often a topic is presented over the course of several exercises, placed
in appropriate sections of the book. For example, ‘Wedderburn’s little theorem’
is mentioned in Remark (that is: Remark in Chapter [TI)); particular
cases are presented in Exercises [TI2.11] and [VIZ.T7 and the reader eventually ob-
tains a proof in Exercise[VIIIF.T4] following preliminaries given in Exercises[VIIIE.12]
and The — label and perusal of the index should facilitate the navigation
of such topics. To help further in this process, I have decorated every exercise with
a list (added in square brackets) of the places in the book that refer to it. For
example, an instructor evaluating whether to assign Exercise will be imme-
diately aware that this exercise is quoted in Exercise [VIIIF.I8] proving a particular
case of Dirichlet’s theorem on primes in arithmetic progressions, and that this will
in turn be quoted in §VIIIT.G] discussing the realization of abelian groups as Galois
groups over Q.

I have put a high priority on the requirement that this should be a self-contained
text which essentially crosses all t’s and dots all i’s, and does not require that the
reader have access to other texts while working through it. T have therefore made
a conscious effort to not quote other references: I have avoided as much as possible
the exquisitely tempting escape route ‘For a proof, see ....” This is the main reason
why this book is as thick as it is, even if so many topics are not covered in it. Among
these, commutative algebra and representation theory are perhaps the most glaring
omissions. The first is represented to the extent of the standard basic definitions,
which allow me to sprinkle a little algebraic geometry here and there (for example,
see VIR, and of a few slightly more advanced topics in the exercises, but I stopped
short of covering, e.g., primary decompositions. The second is missing altogether.
It is my hope to complement this book with a ‘Chapter 1’ in an undetermined
future, where I will make amends for these and other shortcomings.

By its nature, this book should be quite suitable for self-study: readers working
on their own will find here a self-contained starting point which should work well
as a prelude to future, more intensive, explorations. Such readers may be helped
by the following ‘9-fold way’ diagram of logical interdependence of the chapters:

IV

s 4
II IX
- S | o~
I VII VIII
S o~ -
I1I VI
N v
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This may however better reflect my original intention than the final product. For a
more objective gauge, this alternative diagram captures the web of references from
a chapter to earlier chapters, with the thickness of the lines representing (roughly)
the number of references:

IX I

VIII III

VII v

VI v

With the self-studying reader especially in mind, I have put extra effort into
providing an extensive index. It is not realistic to make a fanfare for each and every
new term introduced in a text of this size by an official ‘definition’; the index should
help a lone traveler find the way back to the source of unfamiliar terminology.

Internal references are handled in a hopefully transparent way. For example,
Remark TI1.1.16 refers to Remark 1.16 in Chapter III; if the reference is made from
within Chapter III, the same item is called Remark 1.16. The list in brackets
following an exercise indicates other exercises or sections in the book referring to
that exercise. For example, Exercise Bl in Chapter [lis followed by [5.1] §VITITTL
§IXIT2 IXILIA): this alerts the reader that there are references to this problem in
Exercise 511 in Chapter [l section [Tl in Chapter [VIIIl section in Chapter [X]
and Exercise in Chapter [[X] (and nowhere else).

Acknowledgments. My debt to Lang’s book, to David Dummit and Richard
Foote’s ‘Abstract Algebra,” or to Artin’s ‘Algebra’ will be evident to anyone who
is familiar with these sources. The chapter on homological algebra owes much to
David Eisenbud’s appendix on the topic in his ‘Commutative Algebra’, to Gelfand-
Manin’s ‘Methods of homological algebra’, and to Weibel’s ‘An introduction to
homological algebra’. But in most cases it would simply be impossible for me to
retrace the original source of an expository idea, of a proof, of an exercise, or of
a specific pedagogical emphasis: these are all likely offsprings of ideas from any
one of these and other influential references and often of associations triggered by
following the manifold strands of the World Wide Web. This is another reason
why, in a spirit of equanimity, I resolved to essentially avoid references altogether.
In any case, I believe all the material I have presented here is standard, and I only
retain absolute ownership of every error left in the end product.
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I am very grateful to my students for the constant feedback that led me to
write this book in this particular way and who contributed essentially to its success
in my classes. Some of the students provided me with extensive lists of typos and
outright mistakes, and I would especially like to thank Kevin Meek, Jay Stryker,
and Yong Jae Cha for their particularly helpful comments. I had the opportunity
to try out the material on homological algebra in a course given at Caltech in the
fall of 2008, while on a sabbatical from FSU, and I would like to thank Caltech
and the audience of the course for their hospitality and the friendly atmosphere.
Thanks are also due to MSRI for hospitality during the winter of 2009, when the
last fine-tuning of the text was performed.

A few people spotted big and small mistakes in preliminary versions of this
book, and I will mention Georges Elencwajg, Xia Liao, and Mirroslav Yotov for
particularly precious contributions. I also commend Arlene O’Sean and the staff at
the AMS for the excellent copyediting and production work.

Special thanks go to Ettore Aldrovandi for expert advice, to Matilde Marcolli
for her encouragement and indispensable help, and to Ed Dunne for suggestions
that had a great impact in shaping the final version of this book.

Support from the Max-Planck-Institut in Bonn, from the NSA, and from Cal-
tech, at different stages of the preparation of this book, is gratefully acknowledged.
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Chapter 1

Preliminaries: Set theory
and categories

Set theory is a mathematical field in itself, and its proper treatment (say via the
famous ‘Zermelo-Frankel” axioms) goes well beyond the scope of this book and the
competence of this writer. We will only deal with so-called ‘naive’ set theory, which
is little more than a system of notation and terminology enabling us to express
precisely mathematical definitions, statements, and their proofs.

Familiarity with this language is essential in approaching a subject such as
algebra, and indeed the reader is assumed to have been previously exposed to it.
In this chapter we first review some of the language of naive set theory, mainly in
order to establish the notation we will use in the rest of the book. We will then
get a small taste of the language of categories, which plays a powerful unifying role
in algebra and many other fields. Our main objective is to convey the notion of
‘universal property’, which will be a constant refrain throughout this book.

1. Naive set theory

1.1. Sets. The notion of set formalizes the intuitive idea of ‘collection of objects’.
A set is determined by the elements it contains: two sets A, B are equal (written
A = B) if and only if they contain precisely the same elements. ‘What is an ele-
ment?’ is a forbidden question in naive set theory: the buck must stop somewhere.
We can conveniently pretend that a ‘universe’ of elements is available to us, and
we draw from this universe to construct the elements and sets we need, implicitly
assuming that all the operations we will explore can be performed within this uni-
verse. (This is the tricky point!) In any case, we specify a set by giving a precise
recipe determining which elements are in it. This definition is usually put between
braces and may consist of a simple, complete, list of elements:

A:={1,2,3}

1
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i the set consisting of the integers 1, 2, and 3. By convention, the ordeIE in which
the elements are listed, or repetitions in the list, are immaterial to the definition.
Thus, the same set may be written out in many ways:

{1,2,3} = {1,3,2} = {1,2,1,3,3,2,3,1,1,2,1,3}.

This way of denoting sets may be quite cumbersome and in any case will only really
work for finite sets. For infinite sets, a popular way around this problem is to write
a list in which some of the elements are understood as being part of a pattern—for
example, the set of even integers may be written

E:{ a_230727476a"'}7

but such a definition is inherently ambiguous, so this leaves room for misinterpre-
tation. Further, some sets are simply ‘too big’ to be listed, even in principle: for
example (as one hopefully learns in advanced calculus) there are simply too many
real numbers to be able to ‘list’ them as one may ‘list” the integers.

It is often better to adopt definitions that express the elements of a set as
elements s of some larger (and already known) set S, satisfying some property P.
One may then write

A= {s € S5|s satisfies P}
(€ means element of...) and this is in general precise and unambiguou&ﬁ.

We will occasionally encounter a variation on the notion of set, called ‘multiset’.
A multiset is a set in which the elements are allowed to appear ‘with multiplicity’:
that is, a notion for which {2,2} would be distinct from {2}. The correct way to
define a multiset is by means of functions, which we will encounter soon (see Ex-

ample [2.2]).
A few famous sets are

e (): the empty set, containing no elements;

e N: the set of natural numbers (that is, nonnegative integers);

e Z: the set of integers;

e Q: the set of rational numbers;

e R: the set of real numbers;

e C: the set of complex numbers.
Also, the term singleton is used to refer to any set consisting of precisely one
element. Thus {1}, {2}, {3} are different sets, but they are all singletons.

Here are a few useful symbols (called quantifiers):
e J means there exists... (the existential quantifier);
1:= is a notation often used to mean that the symbol on the left-hand side is defined by
whatever is on the right-hand side. Logically, this is just expressing the equality of the two
sides and could just as well be written ‘=’; the extra : is a psychologically convenient decoration
inherited from computer science.
2 Ordered lists are denoted with round parentheses: (1,2,3) is not the same as (1,3,2).
3But note that there exist pathologies such as Russell’s paradoz, showing that even this style
of definitions can lead to nonsense. All is well so long as S is indeed known to be a set to begin
with.
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e V means for all... (the universal quantifier).

Also, 3! is used to mean there exists a unique. . .

For example, the set of even integers may be written as
E={a€Z|(3neZ)a=2n}:
in words, “all integers a such that there exists an integer n for which a = 2n”. In
this case we could replace 3 by 3! without changing the set—but that has to do
with properties of Z, not with mathematical syntax. Also, it is common to adopt
the shorthand
E={2n|neZ},

in which the existential quantifier is understood.

Being able to parse such strings of symbols effortlessly, and being able to write
them out fluently, is extremely important. The reader of this book is assumed to
have already acquired this skill.

Note that the order in which things are written may make a big difference. For
example, the statement

MaeZ)(FbeZ) b=2a
is true: it says that the result of doubling an arbitrary integer yields an integer;
but

(FbeZ)(NVaeZ) b=2a
is false: it says that there exists a fixed integer b which is ‘simultaneously’ twice as
much as every integer—there is no such thing.

Note also that writing simply
b=2a

by itself does not convey enough information, unless the context makes it completely
clear what quantifiers are attached to a and b: indeed, as we have just seen, different
quantifiers may make this into a true or a false statement.

1.2. Inclusion of sets. As mentioned above, two sets are equal if and only if
they contain the same elements. We say that a set S is a subset of a set T if every
element of S is an element of 7', in symbols,

SCT.

By convention, S C T means the same thing: that is (unlike < vs. <), it does not
exclude the possibility that S and T may be equal. To avoid any confusion, I will
consistently use C in this book. One adopts S C 7' to mean that S is ‘properly’
contained in T that is, S CT and S #T.

We can think of ‘inclusion of sets’ in terms of logic: S C T means that
s€efS = seT

(the quantifier Vs is understood); that is, ‘if s is an element of S, then s is an element
of T7; that is, all elements of S are elements of T'; that is, S C T as promised.

Note that for all sets S, ) C .S and S C S.
IfSCTand T C S, then S=1T.



4 I Preliminaries: Set theory and categories

The symbol |S| denotes the number of elements of S, if this number is finite;
otherwise, one writes |S| = co. If S and T are finite, then

SCT = |8 <|T.

The subsets of a set S form a set, called the power set, or the set of parts
of S. For example, the power set of the empty set () consists of one element:
{@}. The power set of S is denoted Z(S); a popular alternative is 2°, and indeed
|2(8)| = 291 if S is finite (cf. Exercise ELTT]).

1.3. Operations between sets. Once we have a few sets to play with, we can
obtain more by applying certain standard operations. Here are a few:

e U: the union;
e N: the intersection;

o .. the difference;

o II: the disjoint union;

e x: the (Cartesian) product;

e and the important notion of ‘quotient by an equivalence relation’.
Most of these operations should be familiar to the reader: for example,
{1,2,4} U {3,4,5} = {1,2,3,4,5}

while
{1,2,4} ~ {3,4,5} = {1,2}.

In terms of Venn diagrams of infamous ‘new math’ memory:

SNT S\T

(the solid black contour indicates the set included in the operation).

Several of these operations may be written out in a transparent way in terms
of logic: thus, for example,

seSNT < (seSandseT).

Two sets S and T are disjoint if SNT = (), that is, if no element is ‘simulta-
neously’ in both of them.

The complement of a subset T' in a set S is the difference set S \T" consisting
of all elements of S which are not in T'. Thus, for example, the complement of the
set of even integers in Z is the set of odd integers.

The operations I, x, and quotients by equivalence relations are slightly more
mysterious, and it is very instructive to contemplate them carefully. We will look



1. Naive set theory 5

at them in a particularly naive way first and come back to them in a short while
when we have acquired more language and can view them from a more sophisticated
viewpoint.

1.4. Disjoint unions, products. One problem with these operations is that their
output may not be defined as a set, but rather as a set up to isomorphisms of sets,
that is, up to bijections. To make sense out of this, we have to talk about functions,
and we will do that in a moment.

Roughly speaking, the disjoint union of two sets S and T is a set SIIT obtained
by first producing ‘copies’ S’ and T" of the sets S and T, with the property that
S’NT" =), and then taking the (ordinary) union of S” and 7”. The careful reader
will feel uneasy, since this ‘recipe’ does not define one set: whatever it means to
produce a ‘copy’ of a set, surely there are many ways to do so. This ambiguity will
be clarified below.

Nevertheless, note that we can say something about S II T even on these very
shaky grounds: for example, if S consists of 3 elements and T' consists of 4 elements,
the reader should expect (correctly) that S 11T consists of 7 elements.

Products are marred by the same kind of ambiguity, but fortunately there is
a convenient convention that allows us to write down ‘one’ set representing the
product of two sets S and T: given S and T, we let S x T be the set whose
elements are the ordered pairsﬁ (s,t) of elements of S and T"

S x T :={(s,t) such that s € S, ¢t e T}.
Thus, if S ={1,2,3} and T = {3,4}, then
SxT = {(1> 3)7 (174)7 (27 3)7 (274)7 (3> 3)7 (374)}~

For a more sophisticated example, R x R is the set of pairs of real numbers, which
(as we learn in calculus) is a good way to represent a plane. The set Z x Z could
be represented by considering the points in this plane that happen to have integer
coordinates. Incidentally, it is common to denote these sets R?, Z?2; and similarly,
the product A x A of a set by itself is often denoted AZ2.

If S and T are finite sets, clearly |S x T'| = |S]|T].

Also note that we can use products to obtain explicit ‘copies’ of sets as needed
for the disjoint union: for example, we could let S” = {0} x S, T" = {1} x T,
guaranteeing that S’ and T” are disjoint (why?); and there is an evident way to
‘identify’ S and S’, T and T’. Again, making this precise requires a little more
vocabulary.

The operations U, N, I, x extend to operations on whole ‘families’ of sets: for
example, if Sq,..., S, are sets, we write

()Si=Sn%n---NS,

i=1

40ne can define the ordered pair (s,t) as a set by setting (s,t) = {s, {s,t}}: this carries the
information of the elements s, t, as well as conveying the fact that s is special (= the first element
of the pair).



6 I Preliminaries: Set theory and categories

for the set whose elements are those elements which are simultaneously elements of
all sets S1,...,5,; and similarly for the other operations. But note that while it is
clear from the definitions that, for example,

S1USyU S35 =(S1US2)US3 =57 U(SyUS3),
it is not so clear in what sense the sets
Sl X SQ X Sg, (Sl X SQ) X Sg, Sl X (SQ X Sg)

should be ‘identified’ (where we can define the leftmost set as the set of ‘ordered
triples’ of elements of Sy, Sz, S3, by analogy with the definition for two sets). In
fact, again, we can really make sense of such statements only after we acquire the
language of functions. However, all such statements do turn out to be true, as
the reader probably expects; by virtue of this fortunate circumstance, we can be
somewhat cavalier and gloss over such subtleties.

More generally, if . is a set of sets, we may consider sets

Us s s IIs

ses Ses ses Ses
for the union, intersection, disjoint union, product of all sets in .. There are
important subtleties concerning these definitions: for example, if all S € % are
nonempty, does it follow that [[g. S is nonempty? The reader probably thinks
so, but (if . is infinite) this is a rather thorny issue, amounting to the aziom of
choice.

By and large, such subtleties do not affect the material in this course; we will
partly come to terms with them in due timeﬁ, when they become more relevant to
the issues at hand (cf. gVIE3).

1.5. Equivalence relations, partitions, quotients. Intuitively, a relation on
elements of a set .S is some special affinity among selections of elements of S. For
example, the relation < on the set Z is a way to compare the size of two integers:
since 2 < 5, 2 ‘is related to’ 5 in this sense, while 5 is not related to 2 in the same
sense.

For all practical purposes, what a relation ‘means’ is completely captured by
which elements are related to which elements in the set. We would really know all
there is to know about < on Z if we had a complete list of all pairs (a,b) of integers
such that a < b. For example, (2,5) is such a pair, while (5,2) is not.

This leads to a completely straightforward definition of the notion of relation:
a relation on a set S is simply a subset R of the product S x S. If (a,b) € R, we
say that a and b are ‘related by R’ and write

aRD.

Often we use fancier symbols for relations, such as <, <, =, ~, ....

5The reader will have to employ the axiom of choice in some exercises every now and then,
even before we come back to these issues, but this will probably happen below the awareness level,
and so it should.
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The prototype of a well-behaved relation is ‘=", which corresponds to the ‘di-
agonal’
{(a,b) € S x S|a=0b} ={(a,a)|]ac S} TS5 xS.

Three properties of this very special relation turn out to be particularly important:
if ~ denotes for a moment the relation = of equality, then ~ satisfies

o reflexivity: (Va € S) a ~ a;

o symmetry: Va € S) (YbeS)a~b = b~ a;

o (ransitivity: (Va € S) (Vbe S) (Vee S), (a~bandb~c) = a~c.

That is, every a is equal to itself; if a is equal to b, then b is equal to a; etc.

Definition 1.1. An equivalence relation on a set S is any relation ~ satisfying
these three properties. a

In terms of the corresponding subset R of S x S, ‘reflexivity’ says that the
diagonal is contained in R; ‘symmetry’ says that R is unchanged if flipped about
the diagonal (that is, if every (a, b) is interchanged with (b, a)); while unfortunately
‘transitivity’ does not have a similarly nice pictorial translation.

The datum of an equivalence relation on S turns out to be equivalent to a type
of information which looks a little different at first, that is, a partition of S. A
partition of S is a family of disjoint nonempty subsets of S, whose union is S: for
example,
2 ={{1,4,7},{2,5,8},{3,6},{9}}
is a partition of the set
{1,2,3,4,5,6,7,8,9}.

Here is how to get a partition of S from a relation ~ on S: for every element
a € S, the equivalence class of a (w.r.t. ~) is the subset of S defined by

[al~ :=={be S|b ~ a};
then the equivalence classes form a partition &, of S (Exercise [[2).

Conversely (Exercise [[3]) every partition & is the partition corresponding in
this fashion to an equivalence relation. Therefore, the notions of ‘equivalence rela-
tion on S’ and ‘partition of S’ are really equivalent.

Now we can view 2., as a set (whose elements are the equivalence classes with
respect to ~). This is the quotient operation mentioned in §I3

Definition 1.2. The quotient of the set S with respect to the equivalence relation ~
is the set

S/~ =P
of equivalence classes of elements of S with respect to ~. a
Example 1.3. Take S = Z, and let ~ be the relation defined by

a~b <= a—0is even.

Then Z/~ consists of two equivalence classes:

Z)~={[0]~, 1]~ }.
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Indeed, every integer b is either even (and hence b—0 is even, so b ~ 0, and b € [0]..)
or odd (and hence b—1 is even, so b ~ 1, and b € [1]..). This is of course the starting
point of modular arithmetic, which we will cover in due detail later on (§III23). .

One way to think about this operation is that the equivalence relation ‘becomes
equality in the quotient’: that is, two elements of the quotient S/~ are equal if and
only if the corresponding elements in S are related by ~. In other words, taking a
quotient is a way to turn any equivalence relation into an equality. This observation
will be further formalized in ‘categorical terms’ in a short while (§5.3)).

Exercises

Exercises marked with a > are referred to from the text; exercises marked with a
- are referred to from other exercises. These referring exercises and sections are
listed in brackets following the current exercise; see the introduction for further
clarifications, if necessary.

1.1. Locate a discussion of Russell’s paradox, and understand it.

1.2. > Prove that if ~ is an equivalence relation on a set S, then the corresponding
family &, defined in I3l is indeed a partition of S: that is, its elements are
nonempty, disjoint, and their union is S. [{LH]

1.3. > Given a partition & on a set S, show how to define a relation ~ on S such
that & is the corresponding partition. [JI5]

1.4. How many different equivalence relations may be defined on the set {1,2,3}?

1.5. Give an example of a relation that is reflexive and symmetric but not transitive.
What happens if you attempt to use this relation to define a partition on the set?
(Hint: Thinking about the second question will help you answer the first one.)

1.6. > Define a relation ~ on the set R of real numbers by settinga ~ b <= b—a €
Z. Prove that this is an equivalence relation, and find a ‘compelling’ description
for R/~. Do the same for the relation =~ on the plane R x R defined by declaring

(al,ag)%(bl,bg) <= by —a1 € Z and by — ay € Z. [mﬂm

2. Functions between sets

2.1. Definition. A common thread we will follow for just about every structure
introduced in this book will be to try to understand both the type of structures
and the ways in which different instances of a given structure may interact.

Sets interact with each other through functions. It is tempting to think of a
function f from a set A to a set B in ‘dynamic’ terms, as a way to ‘go from A
to B’. Similarly to the business with relations, it is straightforward to formalize
this notion in ways that do not need to invoke any deep ‘meaning’ of any given f:
everything that can be known about a function f is captured by the information of
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which element b of B is the image of any given element a of A. This information
is nothing but a subset of A x B:

I;:={(a,b) e AxB|b= f(a)} CAxB.
This set I'¢ is the graph of f; officially, a function really ‘is’ its graplrﬁ.

Not all subsets I' C A x B correspond to (‘are’) functions: we need to put one
requirement on the graphs of functions, which can be expressed as follows:

(Vae A)(3b e B) (a,b) eIy,
or (‘in functional notation’)
(Vae A)(Fbe B) f(a)=0.

That is, a function must send each element a of A to exactly one element of B,
depending on a. ‘Multivalued functions’ such as ++/z (which are very important
in, e.g., the study of Riemann surfaces) are not functions in this sense.

To announce that f is a function from a set A to a set B, one writes f : A — B
or draws the following picture (‘diagram’):

A%B.

The action of a function f : A — B on an element a € A is sometimes indicated by
a ‘decorated’ arrow, as in

a— f(a).

The collection of all functions from a set A to a set B is itself a setﬂ denoted BA.
If we take seriously the notion that a function is really the same thing as its graph,
then we can view B4 as a (special) subset of the power set of A x B.

Every set A comes equipped with a very special function, whose graph is the
diagonal in A x A: the identity function on A

id4 : A— A
defined by (Va € A) ida(a) = a. More generally, the inclusion of any subset S of a
set A determines a function S — A, simply sending every element s of S to ‘itself’
in A.
If S is a subset of A, we denote by f(S) the subset of B defined by
f(S):={beB|(FacS)b= f(a)}.

That is, f(.5) is the subset of B consisting of all elements that are images of elements
of S by the function f. The largest such subset, that is, f(A), is called the image
of f, denoted ‘im f’.

Also, f|s denotes the ‘restriction’ of f to the subset S: this is the function
S — B defined by

(Vs €S): [ls(s) = f(s).

6To be precise, it is the graph 'y together with the information of the source A and the
target B of f. These are part of the data of the function.

7This is another ‘operation among sets’, not listed in §L31 Can you see why we use B4 for
this set? (Cf. Exercise 2101)
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That is, f|s is the composition (in the sense explained in §23)) foi, wherei: S — A
is the inclusion. Note that f(S) = im(f|s).

2.2. Examples: Multisets, indexed sets. The ‘multisets’ mentioned briefly
in L0 are a simple example of a notion easily formalized by means of functions.
A multiset may be defined by giving a function from a (regular) set A to the
set N* of positiveﬁ integers; if m : A — N* is such a function, the corresponding
multiset consists of the elements a € A, each taken m(a) times. Thus, the multiset
{a,a,a,b,b,b,b,b,c} is really the function m : {a,b,c} — N* for which m(a) = 3,
m(b) = 5, m(c) = 1. As with ordinary sets, the order in which the elements are
listed is not part of the information carried by a multiset. Simple set-theoretic
notions such as inclusion, union, etc., extend in a straightforward way to multisets.
For another viewpoint on multisets, see Exercise

Another example is given by the use of ‘indices’. If we write let ay,...,a,
be integers. .., we really mean consider a function a : {1,...,n} — Z..., with
the understanding that a; is shorthand for the value a(i) (for i = 1,...,n). It is
tempting to think of an indexed set {a;};c; simply as a set whose elements happen
to be denoted a;, for ¢ ranging over some ‘set of indices’ I; but such an indexed set
is more properly a function I — A, where A is some set from which we draw the
elements a;. For example, this allows us to consider ag and a; as distinct elements
of {a;}ien, even if by coincidence ag = a1 as elements of the target set A.

It is easy to miss such subtleties, and some abuse of notation is common and
usually harmless. These distinctions play a role in (for example) discussions of
linear independence of sets of vectors; cf. VT2

2.3. Composition of functions. Functions may be composed: if f: A — B and
g : B — C are functions, then so is the operation g o f defined by

() (Va e A) (g0 f)(a):=g(f(a)):

that is, we use f to go from A to B, then apply g to reach C'. Graphically we may
draw pictures such as

A%BLC or A%B
gof \lg
gof

C

Such graphical representations of collections of (for example) sets connected by
functions are called diagrams. We will draw many diagrams, and in contexts sub-
stantially more general than the one at hand right now.

We say that the diagrams drawn above ‘commute’, or ‘are commutative’, mean-
ing that if we start from A and travel to C in either of the two possible ways pre-
scribed by the diagram, the result of applying the functions one encounters is the
same. This is precisely the content of the statement (*).

8Some references allow 0 as a possible multiplicity.
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Composition is associative: that is, if f: A— B, g: B—C,and h:C — D
are functions, then ho (go f) = (hog) o f. Graphically, the diagram

hog
AL Bl 03D
\/!

commutes. This important observation should be completely evident from the
definition of composition.

The identity function is very special with respect to compositions: if f: A -+ B
is any function, then idg o f = f and f oidy = f. Graphically, the diagrams

idp

At p e a4 T
\_/l
f !
commute.

2.4. Injections, surjections, bijections. Special kinds of functions deserve high-
lighting:

e A function f: A — B is injective (or an injection or one-to-one) if
(Vo' € A)y(Va" € A) o #d" = f(d')# f(d"):
that is, if f sends different elements to different elementd].

e A function f: A — B is surjective (or a surjection or onto) if
(VbeB)(Fac A) b= f(a):
that is, if f ‘covers the whole of B’; more precisely, if im f = B.

Injections are often drawn < ; surjections are often drawn —».

If f is both injective and surjective, we say it is bijective (or a bijection or a
one-to-one correspondence or an isomorphism of sets.) In this case we often write
f:AS B, or

A B,
and we say that A and B are ‘isomorphic’ sets.

Of course the identity function id4 : A — A is a bijection.

If A= B, that is, if there is a bijection f : A — B, then the sets A and B may
be ‘identified’ through f, in the sense that we can match precisely the elements a
of A with the corresponding elements f(a) of B. For example, if A is a finite set
and A = B, then B is necessarily also a finite set and |A| = |B].

This terminology allows us to make better sense of the considerations on ‘dis-
joint union’ given in L3t the ‘copies’ A’, B’ of the given sets A, B should simply

90ften one checks this definition in the contrapositive (hence equivalent) formulation, that is,

(Va' € A) (Va" € A) f(d') = f(a") = o' =d".
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be isomorphic sets to A, B, respectively. The proposal given at the end of §I.4] to
produce such disjoint ‘copies’ works, because (for example) the function

f:A={0} x A
defined by
(Va e A) f(a)=(0,a)

is manifestly a bijection.

2.5. Injections, surjections, bijections: Second viewpoint. There is an al-
ternative and instructive way to think about these notions.

If f: A— B is a bijection, then we can ‘flip its graph’ and define a function
g:B— A:

that is, we can let a = g(b) precisely when b = f(a). (The fact that f is both
injective and surjective guarantees that the flip of I'y is the graph of a function
according to the definition given in §27I1 Check this!)

This function g has a very interesting property: graphically,

A%BLA, BLAL)B
\_/ \_/

ida idp
commute; that is, go f =ids and f o g = idg. The first identity tells us that g is

a ‘left-inverseld of f; the second tells us that g is a ‘right-inverse’ of f. We simply
say that it is the inverse of f, denoted f~'. Thus, ‘bijections have inverses’.

What about the converse? If a function has an inverse, is it a bijection? This
is true, but in fact we can be much more precise.
Proposition 2.1. Assume A # (), and let f: A — B be a function. Then
(1) [ has a left-inverse if and only if it is injective.

(2) [ has a right-inverse if and only if it is surjective.

Proof. Let’s prove (1).

(=) If f: A— B has a left-inverse, then there exists a g : B — A such that
go f=1id4. Now assume that a’ # a” are arbitrary different elements in A; then
g9(f(a')) =ida(a’) = a’ # d”" =ida(a") = g(f(a"));
that is, g sends f(a’) and f(a”) to different elements. This forces f(a’) and f(a”)

to be different, showing that f is injective.

(<=) Now assume f : A — B is injective. In order to construct a function
g: B — A, we have to assign a unique value g(b) € A for each element b € B. For
this, choose any fixed element s € A (which we can do because A # (}); then set

a if b= f(a) for some a € A,
IOV =5 b gimf,

10Never mind that g is drawn to the right of f in the diagram—we say that g is a left-inverse
of f because it is written to the left of f: go f =id4.
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In words, if b is the image of an element a of A, send it back to a; otherwise, send
it to your fixed element s.

The given assignment defines a function, precisely because f is injective: indeed,
this guarantees that every b that is the image of some a € A by f is the image of a
unique a (two distinct elements of A cannot be simultaneously sent to b by f, since
f is injective). Thus every b € B is sent to a unique well-defined element of A, as
is required of functions.

Finally, the function g : B — A is a left-inverse of f. Indeed, if a € A, then
b= f(a) is of the first type, so it is sent back to a by g; that is, go f(a) = a = ida(a)
for all a € A, as needed.

The proof of (2) is left as an exercise (Exercise 22)). O

Corollary 2.2. A function f: A — B is a bijection if and only if it has a (two-
sided) inverse.

This is not completely innocent: if f has both a left-inverse and a right-inverse,
why should it have one inverse that works as both on the left and on the right?
Try to prove this by yourself now. We will come back to this issue soon (in ).

If a function is injective but not surjective, then it will not have a right-inverse,
and if the source has at least two elements, it will necessarily have more than one
left-inverse (this should be clear from the argument given in the proof of Proposi-
tion 21]). Similarly, a surjective function will in general have many right-inverses;
they are often called sections.

Proposition 2] hints that something deep is going on here. The definition
of injective and surjective maps given in §2.4] relied crucially on working directly
with the elements of our sets; Proposition 2] shows that in fact these properties
are detected by the way functions are ‘organized’ among sets. Even if we did not
know what ‘elements’ means, still we could make sense of the notions of injectivity
and surjectivity (and hence of isomorphisms of sets) by exclusively referring to
properties of functions.

This is a more ‘mature’ point of view and one that will be championed when we
talk about categories. To some extent, it should cure the reader from the discomfort
of talking about ‘elements’, as we did in our informal introduction to sets, without
defining what these mysterious entities are supposed to be.

The standard notation for the inverse of a bijection f is f~!. This symbol is
also used for functions that are not bijections, but in a slightly different context: if
f: A — B is any function and T' C B is a subset of B, then f~1(T) denotes the
subset of A of ‘all elements that map to T7; that is,

f7UT)={a€ Al f(a) € T}.

If T = {q} consists of a single element of B, f~(7T) (abbreviated f~!(gq)) is called
the fiber of f over q. Thus a function f : A — B is a bijection if it has nonempty
fibers over all elements of B (that is, f is surjective), and these fibers are in fact
singletons (that is, f is injective). In this case, this notation f~! matches nicely
with the notation of ‘inverse’ mentioned above.
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2.6. Monomorphisms and epimorphisms. There is yet another way to express
injectivity and surjectivity, which appears at first more complicated than what we
have seen so far but which is in fact even more basic.

A function f: A — B is a monomorphism (or monic) if the following holds:
for all sets Z and all functions o/, : Z — A
foa/:foa//:a/:a//.

Proposition 2.3. A function is injective if and only if it is a monomorphism.

Proof. ( = ) By Proposition 2] if a function f : A — B is injective, then it
has a left-inverse g : B — A. Now assume that o/, o’ are arbitrary functions from
another set Z to A and that

fod' =foa;

compose on the left by g, and use associativity of composition:
(gof)oa’ =go(foa')=go(foa”)=(g0f)oa";
since g is a left-inverse of f, this says
idqgoa =idgoa”,
and therefore
o =a”,

as needed to conclude that f is a monomorphism.

( <= ) Now assume that f is a monomorphism. This says something about
arbitrary sets Z and arbitrary functions Z — A; we are going to use a microscopic

portion of this information, choosing Z to be any singleton {p}. Then assigning

functions o', : Z — A amounts to choosing to which elements o/ = o/(p),
a’ = o"(p) we should send the single element p of Z. For this particular choice

of Z, the property defining monomorphisms, foa’ = foa” = o' = a”, becomes
OO/ — Oa” R, a/ — Oé//
fod(p p :
that is,
fld)=fd") = o =da".
Now two functions from Z = {p} to A are equal if and only if they send p to the
same element, so this says
fld)=fd") = d =d".
This has to be true for all o/, o, that is, for all choices of distinct a’, @’ in A. In
other words, f has to be injective, as was to be shown. O

The reader should now expect that there be a definition in the style of the one
given for monomorphisms and which will turn out to be equivalent to ‘surjective’.
This is the case: such a notion is called epimorphism. Finding it, and proving
the equivalence with the ordinary definition of ‘surjective’, is left to the reade

(Exercise 2.3)).

M This is a particularly important exercise, and I recommend that the reader write out all
the gory details carefully.
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2.7. Basic examples. The basic operations on sets provided us with several im-
portant examples of injective and surjective functions.

Example 2.4. Let A, B be sets. Then there are natural projections ma, mpg:

Ax B

7N
A B

defined by
wa((a,b)) :=a, wp((a,b)):=0
for all (a,b) € A x B. Both of these maps are (clearly) surjective. N
Example 2.5. Similarly, there are natural injections from A and B to the disjoint
union:
A\ /B
AllB

obtained by sending a € A (resp., b € B) to the corresponding element in the
isomorphic copy A’ of A (resp., B’ of B) in AIl B. J

Example 2.6. If ~ is an equivalence relation on a set A, there is a (clearly surjec-
tive) canonical projection

A—» A/~

obtained by sending every a € A to its equivalence class [a].. a

2.8. Canonical decomposition. The reason why we focus our attention on in-
jective and surjective maps is that they provide the basic ‘bricks’ out of which any
function may be constructed.

To see this, we observe that every function f : A — B determines an equivalence
relation ~ on A as follows: for all a’,a” € A,

a ~d <= f(d)= f(a").
(The reader should check that this is indeed an equivalence relation.)

Theorem 2.7. Let f : A — B be any function, and define ~ as above. Then f
decomposes as follows:

f

where the first function is the canonical projection A — A/~ (as in Example ,
the third function is the inclusion im f C B, and the bijection [ in the middle is
defined by

f(la]~) = f(a)
for alla € A.
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The formula defining f shows immediately that the diagram commutes; so all
we have to verify in order to prove this theorem is that

e that formula does define a function;

e that function is in fact a bijection.

The first item is an instance of a class of verifications of the utmost importance.
The formula given for f has a colossal built-in ambiguity: the same element in A/~
may be the equivalence class of many elements of A; applying the formula for f
requires choosing one of these elements and applying f to it. We have to prove
that the result of this operation is independent from this choice: that is, that all
possible choices of representatives for that equivalence class lead to the same result.

We encode this type of situation by saying that we have to verify that f is
well-defined. We will often have to check that the operations we consider are well-
defined, in contexts very similar to the one epitomized here.

Proof. Spelling out the first item discussed above, we have to verify that, for
all , a” in A,

(]~ ="l = f(a') = f(a").
Now [a']~. = [a”]~ means that a’ ~ a”, and the definition of ~ has been engineered

precisely so that this would mean f(a’) = f(a”) as required here. So f is indeed
well-defined.

To verify th~e second item, that is, that f : A/~ —im f is a bijection, we check
explicitly that f is injective and surjective.
Injective: T f([a/].) = f([a"]~), then f(a’) = f(a”) by definition of f; hence
a’ ~ a" by definition of ~, and then [a']. = [a”]~. Therefore
fd]) = f([a"]~) = [a')~ = [a"]~

proving injectivity.
Surjective: Given any b € im f, there is an element a € A such that f(a) = b.
Then }
fla]~) = fa) =0
by definition of f . Since b was arbitrary in im f, this shows that f is surjective, as
needed. ]

Theorem [27] shows that every function is the composition of a surjection, fol-
lowed by an isomorphism, followed by an injection. While its proof is trivial, this is
a result of some importance, since it is the prototype of a situation that will occur
several times in this book. It will resurface every now and then, with names such
as ‘the first isomorphism theorem’.

2.9. Clarification. Finally, we can begin to clarify one comment about disjoint
unions, products, and quotients, made in §L.4l Our definition of AIl B was the
(conventional) union of two disjoint sets A’, B’ isomorphic to A, B, respectively.
It is easy to provide a way to effectively produce such isomorphic copies (as we did
in §L4); but it is in fact a little too easy—many other choices are possible, and
one does not look any better than any other. It is in fact more sensible not to
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make a fixed choice once and for all and simply accept the fact that all of them
produce acceptable candidates for AIl B. From this egalitarian standpoint, the
result of the operation AIl B is not ‘well-defined’ as a set in the sense specified
above. However, it is easy to see (Exercise 2.9]) that AII B is well-defined up to
1somorphism: that is, that any two choices for the copies A’, B’ lead to isomorphic
candidates for AIl B. The same considerations apply to products and quotients.

The main feature of sets obtained by taking disjoint unions, products, or quo-
tients is not really ‘what elements they contain’ but rather ‘their relationship with
all other sets’. This will be (even) clearer when we revisit these operations and
otherd in the context of categories.

.|
Exercises

2.1. > How many different bijections are there between a set S with n elements

and itself? [§IIE2.T]

2.2. > Prove statement (2) in Proposition 2l You may assume that given a family
of disjoint nonempty subsets of a set, there is a way to choose one element in each

member of the famil. [§2.5] m

2.3. Prove that the inverse of a bijection is a bijection and that the composition
of two bijections is a bijection.

2.4. > Prove that ‘isomorphism’ is an equivalence relation (on any set of sets).

[T

2.5. > Formulate a notion of epimorphism, in the style of the notion of monomor-
phism seen in 2.6, and prove a result analogous to Proposition 23] for epimor-

phisms and surjections. [§2.6, §4.2]

2.6. With notation as in Example 24 explain how any function f : A — B
determines a section of 4.

2.7. Let f: A — B be any function. Prove that the graph I'; of f is isomorphic
to A.

2.8. Describe as explicitly as you can all terms in the canonical decomposition
(cf. §Z]) of the function R — C defined by r ~ €2>™". (This exercise matches one
assigned previously. Which one?)

2.9. > Show that if A’ =2 A” and B’ = B”, and further A’'NB’ = () and A”NB" = (),
then A’UB’ = A” U B”. Conclude that the operation AII B (as described in §T.4)

is well-defined up to isomorphism (cf. §29)). [§229 BT
2.10. > Show that if A and B are finite sets, then |B4| = |B|I4|. [§21] 2111 §IIET]

12The reader should also be aware that there are important variations on the operations we
have seen so far—particularly important are the fibered flavors of products and disjoint unions.
13 This (reasonable) statement is the aziom of choice; cf. m
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2.11. > In view of Exercise EI0 it is not unreasonable to use 24 to denote the set
of functions from an arbitrary set A to a set with 2 elements (say {0,1}). Prove
that there is a bijection between 24 and the power set of A (cf. §I.2)). [§L2 M3

3. Categories

The language of categories is affectionately known as abstract nonsense, so named
by Norman Steenrod. This term is essentially accurate and not necessarily deroga-
tory: categories refer to nonsense in the sense that they are all about the ‘structure’,
and not about the ‘meaning’, of what they represent. The emphasis is less on how
you run into a specific set you are looking at and more on how that set may sit
in relationship with all other sets. Worse (or better) still, the emphasis is less on
studying sets, and functions between sets, than on studying ‘things, and things
that go from things to things’ without necessarily being explicit about what these
things are: they may be sets, or groups, or rings, or vector spaces, or modules, or
other objects that are so exotic that the reader has no right whatsoever to know
about them (yet).

‘Categories’ will intuitively look like sets at first, and in multiple ways. Cat-
egories may make you think of sets, in that they are ‘collections of objects’, and
further there will be notions of ‘functions from categories to categories’ (called func-
tor). At the same time, every category may make you think of the collection of
all sets, since there will be analogs of ‘functions’ among the things it contains.

3.1. Definition. The definition of a category looks complicated at first, but the
gist of it may be summarized quickly: a category consists of a collection of ‘objects’,
and of ‘morphisms’ between these objects, satisfying a list of natural conditions.

The reader will note that I refrained from writing a set of objects, opting for
the more generic ‘collection’. This is an annoying, but unavoidable, difficulty: for
example, we want to have a ‘category of sets’, in which the ‘objects’ are sets and
the ‘morphisms’ are functions between sets, and the problem is that there simply
is not a set of all set. In a sense, the collection of all sets is ‘too big’ to be a set.
There are however ways to deal with such ‘collections’, and the technical name for
them is class. There is a ‘class’ of all sets (and there will be classes taking care of
groups, rings, etc.).

An alternative would be to define a large enough set (called a universe) and
then agree that all objects of all categories will be chosen from this gigantic entity.

In any case, all the reader needs to know about this is that there is a way to
make it work. We will use the term ‘class’ in the definition, but this will not affect
any proof or any other definition in this book. Further, in some of the examples
considered below the class in question is a set (we say that the category is small
in this case), so the reader will feel perfectly at home when contemplating these
examples.

14However, we will not consider functors until later chapters: our first formal encounter with
functors will be in Chapter [VIT1l
15That is one thing we learn from Russell’s paradox.
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Definition 3.1. A category C consists of

e a class Obj(C) of objects of the category; and

e for every two objects A, B of C, a set Homc (A, B) of morphisms, with the
properties listed below. a

As a prototype to keep in mind, think of the objects as ‘sets’ and of morphisms
as ‘functions’. This one example should make the defining properties of morphisms
look natural and easy to remember:

e For every object A of C, there exists (at least) one morphism 14 € Homc (A4, A),
the ‘identity’ on A.

e One can compose morphisms: two morphisms f € Homc(A,B) and g €
Hom¢ (B, C) determine a morphism ¢gf € Homc(A,C). That is, for every
triple of objects A, B, C of C there is a function (of sets)

Homc (A, B) x Homc¢ (B, C) — Homc (A, C),
and the image of the pair (f, g) is denoted gf.

e This ‘composition law’ is associative: if f € Homc (A, B), g € Hom¢(B, C),
and h € Home(C, D), then

(hg)f = h(gf)
e The identity morphisms are identities with respect to composition: that is,
for all f € Homc (A, B) we have

fla=f, 1pf=1/[.

This is really a mouthful, but again, to remember all this, just think of functions
of sets. One further requirement is that the sets

Homc¢ (A, B), Homc(C, D)

be disjoint unless A = C'; B = D; this is something you do not usually think about,
but again it holds for ordinary set-functiond'd. That is, if two functions are one and
the same, then necessarily they have the same source and the same target: source
and target are part of the datum of a set-function.

A morphism of an object A of a category C to itself is called an endomorphism;
Homc (A, A) is denoted Endc(A). One of the axioms of a category tells us that
this is a ‘pointed’ set, as 14 € Endc(A). The reader should note that composition
defines an ‘operation’ on Endc(A): if f,¢ are elements of Endc(A), so is their
composition gf.

Writing ‘f € Homc (A, B)’ gets tiresome in the long run. If the category is
understood, one may safely drop the index C, or even use arrows as we do with
set-functions: f : A — B. This also allows us to draw diagrams of morphisms in
any category; a diagram is said to ‘commute’ (or to be a ‘commutative’ diagram) if
all ways to traverse it lead to the same results of composing morphisms along the
way, just as explained for diagrams of functions of sets in §2.31

167 will often use the term ‘set-function’ to emphasize that we are dealing with a function in
the context of sets.
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In fact, I will now feel free to use diagrams as possible objects of categories.
The official definition of a diagram in this context would be a set of objects of a
category C, along with prescribed morphisms between these objects; the diagram
commutes if it does in the sense specified above. The specifics of the visual repre-
sentation of a diagram are of course irrelevant.

3.2. Examples. The reader should note that 90% of the definition of the notion
of category goes into explaining the properties of its morphisms; it is fair to say
that the morphisms are the important constituents of a category. Nevertheless,
it is psychologically irresistible to think of a category in terms of its objects: for
example, one talks about the ‘category of sets’. The point is that usually the kind
of ‘morphisms’ one may consider are (psychologically at least) determined by the
objects: if one is talking about sets, what can one possibly mean for ‘morphism’
other than a function of sets? In other situations (cf. Example below or Exer-
cise B it is a little less clear what the morphisms should be, and looking for the
‘right’ notion may be an interesting project.

Example 3.2. Tt is hopefully crystal clear by now that sets (as objects), together
with set-functions (as morphisms), form a category; if not, the reader must stop
here and go no further until this assertion sheds any residual myster.

There is no universally accepted, official notation for this important category.
It is customary to write the word ‘Set’ or ‘Sets’, with some fancy decoration for
emphasis. For example, in the literature one may encounter SET, Sets, Get, (Sets),
and many amusing variations on these themes. We will use ‘sans-serif’ fonts to
denote categories; thus, Set will denote the category of sets. Thus

e Obj(Set) = the class of all sets;
e for A, B in Obj(Set) (that is, for A, B sets) Homse (A, B) = BA.

Note that the presence of the operations recalled in §§T.3HI.0lis not part of the
definition of category: these operations highlight interesting features of Set, which
may or may not be shared by other categories. We will soon come back to some of
these operations and understand more precisely what they say about Set. a

Example 3.3. Here is a completely different example.

Suppose S is a set and ~ is a relation on S satisfying the reflexive and transitive
properties. Then we can encode this data into a category:

e objects: the elements of S;

e morphisms: if a, b are objects (that is, if a,b € S), then let Hom(a, b) be the
set consisting of the element (a,b) € S x S if a ~ b, and let Hom(a,b) = 0
otherwise.

17T will give the reader such prompts every now and then: at key times, it is more useful
to take stock of what one knows than blindly march forward hoping for the best. A difficulty at
this time signals the need to reread the previous material carefully. If the mystery persists, that’s
what office hours are there for. But typically you should be able to find your way out on your
own, based on the information I have given you, and you will most likely learn more this way.
You should give it your best try before seeking professional help.



3. Categories 21

Note that (unlike in Set) there are very few morphisms: at most one for any pair
of objects, and no morphisms at all between ‘unrelated’ objects.

We have to define ‘composition of morphisms’ and verify that the conditions
specified in §3.1] are satisfied. First of all, do we have ‘identities’? If a is an object
(that is, if @ € S), we need to find an element

1, € Hom(a, a).

This is precisely why we are assuming that ~ is reflexive: this tells us that Va,
a ~ a; that is, Hom(a, a) consists of the single element (a, a). So we have no choice:
we must let

1, = (a,a) € Hom(a, a).

As for composition, let a, b, ¢ be objects (that is, elements of S) and

f € Hom(a,b), ¢ € Hom(b,c);

we have to define a corresponding morphism gf € Hom(a, c). Now,
f € Hom(a,b)
tells us that Hom(a,b) is nonempty, and according to the definition of morphisms
in this category that means that a ~ b, and f is in fact the element (a,b) of S x S.
Similarly, g € Hom(b, ¢) tells us b ~ ¢ and g = (b, ¢). Now
a~bandb~c = a~c
since we are assuming that ~ is transitive. This tells us that Hom(a, ¢) consists of
the single element (a,c). Thus we again have no choice: we must let
gf = (a,c¢) € Hom(a,c).

Is this operation associative? If f € Hom(a,b), g € Hom(b, ¢), and h € Hom(c, d),
then necessarily

f:(avb)a g:(b,c), h:(cvd)

and

gf = (a,c), hg=(b,d)
and hence

h(gf) = (a,d) = (hg)f,
proving associativity.

The reader will have no difficulties checking that 1, is an identity with respect

to this composition, as needed (Exercise B3]).

The most trivial instance of this construction is the category obtained from a
set S taken with the equivalence relation ‘=’; that is, the only morphisms are the
identity morphisms. These categories are called discrete.

As another example, consider the category corresponding to endowing Z with

the relation <. For example,
3
3

2

5 7
13

—14
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is a (randomly chosen) commutative diagram in this category. It would still be a
(commutative) diagram in this category if we reversed the vertical arrow 3 — 3 or
if we added an arrow from 3 to 4, while we are not allowed to draw an arrow from 4
to 3, since 4 £ 3.

These categories are very special—for example, every diagram drawn in them
is necessarily commutative, and this is very far from being the case in, e.g., Set.
Also note that these categories are all small. a

Example 3.4. Here is anothel™ example of a small category.
Let S again be a set. Define a category S by setting

e ODbj(S) = 2(9), the power set S (cf. §L.2 and Exercise [Z11);

e for A, B objects of S (that is, A C S and B C S) let Homg (A, B) be the pair
(A,B) if AC B, and let Homg(A, B) = () otherwise.

The identity 14 consists of the pair (A, A) (which is one, and in fact the only
one, morphism from A to A, since A C A). Composition is obtained by stringing
inclusions: if there are morphisms

A—- B, B->C

in g, then A C B and B C C; hence A C C and there is a morphism A — C.
Checking the axioms specified in 3] should be routine (make sure this is the
casel).

Examples in this style (but employing more sophisticated structures, such as
the family of open subsets of a topological space) are hugely important in well-
established fields such as algebraic geometry. 3

Example 3.5. The next example is very abstract, but thinking about it will make
you rather comfortable with everything we have seen so far; and it is a very common
construction, variations of which will abound in the course.

Let C be a category, and let A be an object of C. We are going to define a
category C4 whose objects are certain morphisms in C and whose morphisms are
certain diagrams of C (surprise!).

e ODbj(C4) = all morphisms from any object of C to A; thus, an object of C4 is
a morphism f € Homc(Z, A) for some object Z of C. Pictorially, an object of

C4 is an arrow Z LAin C; these are often drawn ‘top-down’, as in

Z

|

What are morphisms in C4 going to be? There really is only one sensible way to
assign morphisms to a category with objects as above. The brave reader will want
to stop reading here and continue only after having come up with the definition
independently. There will be many similar examples lurking behind constructions

18 Actually, this is again an instance of the categories considered in Example 33} Do you see
why? (Exercise [3.5])
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we will encounter in this book, and ideally speaking, they should appear completely
natural when the time comes. A bit of effort devoted now to understanding this
prototype situation will have ample reward in the future. Spoiler follows, so put
these notes away now and jot down the definition of morphism in C4.

Welcome back.

e Let f1, fo be objects of C4, that is, two arrows

A Zo
fll sz
A A

in C. Morphisms f; — fo are defined to be commutative diagrams

Z4 L} Zo
W /o
A

in the ‘ambient’ category C.

That is, morphisms f; — fo correspond precisely to those morphisms o : 27 — Z5
in C such that fi = fe0.

Once you understand what morphisms have to be, checking that they satisfy
the axioms spelled out in §3.11is straightforward. The identities are inherited from
the identities in C: for f : Z — A in Cy4, the identity 1; corresponds to the diagram

VA 1—Z> 7
N/
A
which commutes by virtue of the fact that C is a category. Composition is also a

subproduct of composition in C. Two morphisms f; — fo — f3 in C4 correspond
to putting two commutative diagrams side-by-side:

21%22;)23

e

A

and then it follows (again because C is a category!) that the diagram obtained by
removing the central arrow, i.e.,

Z —— T 7y

AN A
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also commutes. Check all this(!), and verify that composition in C4 is associative
(again, this follows immediately from the fact that composition is associative in C).

Categories constructed in this fashion are called slice categories in the literature;
they are particular cases of comma categories. a

Example 3.6. For the sake of concreteness, let’s apply the construction given in
Example to the category constructed in Example B3] say for S = Z and ~ the
relation <. Call C this category, and choose an object A of C—that is, an integer,
for example, A = 3. Then the objects of C4 are morphisms in C with target 3, that
is, pairs (n,3) € Z x Z with n < 3. There is a morphism

(m,3) = (n,3)

if and only if m < n. In this case C4 may be harmlessly identified with the
‘subcategory’ of integers < 3, with ‘the same’ morphisms as in C. 2

Example 3.7. An entirely similar example to the one explored in Example 3.5 may
be obtained by considering morphisms in a category C from a fixed object A to all
objects in C, again with morphisms defined by suitable commutative diagrams. This
leads to coslice categories. The reader should provide details of this construction

(Exercise BT). a

Example 3.8. As a ‘concrete’ instance of a category as in ExampleB.1 let C = Set
and A = a fixed singleton {x}. Call the resulting category Set”.

An object in Set” is then a morphism f : {*} — S in Set, where S is any set.
The information of an object in Set™ consists therefore of the choice of a nonempty
set S and of an element s € S—that is, the element f(x): this element determines,
and is determined by, f.

Thus, we may denote objects of Set™ as pairs (S, s), where S is any set and
s € S is any element of S.

A morphism between two such objects, (S, s) — (T, t), corresponds then (check
this!) to a set-function o : S — T such that o(s) =t.

Objects of Set™ are called ‘pointed sets’. Many of the structures we will study
in this book will be pointed sets. For example (as we will see) a ‘group’ is a set G
with, among other requirements, a distinguished element e (its ‘identity’); ‘group
homomorphisms’ will be functions which, among other properties, send identities to
identities; thus, they are morphisms of pointed sets in the sense considered above._

Example 3.9. It is useful to contemplate a few more ‘abstract’ examples in the
style of Examples and Bl These will be essential ingredients in the promised
revisitation of some of the operations mentioned in §L.31 Their definition will appear
disappointedly simple-minded to the reader who has mastered ExamplesB.5land 3.7

This time we start from a given category C and two objects A, B of C. We
can define a new category C4 p by essentially the same procedure that we used in
order to define Cy4:
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e Obj(Cy4, p) = diagrams

2
Z
N,
in C; and
e morphisms
2 2
Zl ZZ
., .,

I will leave to the reader the task of formalizing this rough description. This example
is really nothing more than a mixture of C4 and Cg, where the two structures
interact because of the stringent requirement that the same ¢ must make both
sides of the diagram commute:

Ji=/f0 and g1 = g0
‘simultaneously’.

Flipping most of the arrows gives an analogous variation of Example B.7, pro-
ducing a category which we may ] denote cAB ; details are left to the reader.

Example 3.10. As a final variation on these examples, we conclude by considering
the fibered version of C4 p (and cAB ). Take this as a test to see if you have really
understood C4 p—experts would tell you that this looks fairly sophisticated for
students just learning categories, so don’t get disheartened if it does not flow too
well at first (but pat yourself on the shoulder if it does!). Start with a given
category C, and this time choose two fixed morphisms o : A — C, 3 : B — C in C,
with the same target C. We can then consider a category C, g as follows:

e Obj(Cu,p) = commutative diagrams
A
. e N 3
N

in C, and

19There does not seem to be an established notation for these commonplace categories.
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e morphisms correspond to commutative diagrams

\
/

\\?,

Zl—)ZQ

;

g1

A solid understanding of Example will make this example look just as tame; at
this point the reader should have no difficulties formalizing it (that is, explaining
how composition works, what identities are, etc.).

Also left to the reader is the construction of the ‘mirror’ example coh, starting
from two morphisms o : C — A, B : C — B with common source. a

.|
Exercises

3.1. > Let C be a category. Consider a structure C°” with

e ODbj(C?) := Obj(C);

e for A, B objects of C°? (hence objects of C), Homcer (A, B) := Homc(B, A).
Show how to make this into a category (that is, define composition of morphisms
in C°7 and verify the properties listed in §3.1]).

Intuitively, the ‘opposite’ category C°? is simply obtained by ‘reversing all the

arrows’ in C. [511 §VITILT §IXIT2) IXITI0|

3.2. If A is a finite set, how large is Endset(A)?

3.3. > Formulate precisely what it means to say that 1, is an identity with respect
to composition in Example B3] and prove this assertion. [§3.2]

3.4. Can we define a category in the style of Example B3] using the relation < on
the set Z7?

3.5. > Explain in what sense Example[3:4lis an instance of the categories considered

in Example (32

3.6. > (Assuming some familiarity with linear algebra.) Define a category V by
taking Obj(V) = N and letting Homy (n, m) = the set of m x n matrices with real
entries, for all n,m € N. (I will leave the reader the task of making sense of a
matrix with 0 rows or columns.) Use product of matrices to define composition.

Does this category ‘feel’ familiar? [§VIR.T], gVITIIT3]

3.7. > Define carefully objects and morphisms in Example 37 and draw the dia-
gram corresponding to composition. [§3.2]

3.8. > A subcategory C' of a category C consists of a collection of objects of C with
sets of morphisms Home: (A, B) € Homc (A, B) for all objects A, B in Obj(C’), such
that identities and compositions in C make C’ into a category. A subcategory C’ is
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full if Hom¢/ (A, B) = Homc (A4, B) for all A, B in Obj(C’). Construct a category
of infinite sets and explain how it may be viewed as a full subcategory of Set. [4]

VILT JVITILS)

3.9. > An alternative to the notion of multiset introduced in §2.7] is obtained by
considering sets endowed with equivalence relations; equivalent elements are taken
to be multiple instances of elements ‘of the same kind’. Define a notion of morphism
between such enhanced sets, obtaining a category MSet containing (a ‘copy’ of ) Set
as a full subcategory. (There may be more than one reasonable way to do this!
This is intentionally an open-ended exercise.) Which objects in MSet determine
ordinary multisets as defined in §221 and how? Spell out what a morphism of
multisets would be from this point of view. (There are several natural notions
of morphisms of multisets. Try to define morphisms in MSet so that the notion
you obtain for ordinary multisets captures your intuitive understanding of these

objects.) [§2.2] §3.2 E3]

3.10. Since the objects of a category C are not (necessarily interpreted as) sets,
it is not clear how to make sense of a notion of ‘subobject’ in general. In some
situations it does make sense to talk about subobjects, and the subobjects of any
given object A in C are in one-to-one correspondence with the morphisms A — Q
for a fixed, special object Q2 of C, called a subobject classifier. Show that Set has a
subobject classifier.

3.11. > Draw the relevant diagrams and define composition and identities for the
category C*P mentioned in Example Do the same for the category C**
mentioned in Example BI0 [§55] B2

4. Morphisms

Just as in Set we highlight certain types of functions (injective, surjective, bijective),
it is useful to try to do the same for morphisms in an arbitrary category. The reader
should note that defining qualities of morphisms by their actions on ‘elements’ is
not an option in the general setting, because objects of an arbitrary category do
not (in general) have ‘elements’.

This is why we spent some time analyzing injectivity, etc., from different view-
points in §§2. 4126 It turns out that the other viewpoints on these notions do
transfer nicely into the categorical setting.

4.1. Isomorphisms. Let C be a category.

Definition 4.1. A morphism f € Homc (A, B) is an isomorphism if it has a (two-
sided) inverse under composition: that is, if 3g € Homc (B, A) such that

gf =14, fg=1p. 3

Recall that in §2.5] the inverse of a bijection of sets f was defined ‘elementwise’;
in particular, there was no ambiguity in its definition, and we introduced the nota-
tion f~! for this function. By contrast, the ‘inverse’ ¢ produced in Definition E1]
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does not appear to have this uniqueness explicitly built into its definition. Luckily,
its defining property does guarantee its uniqueness, but this requires a verification:

Proposition 4.2. The inverse of an isomorphism is unique.

Proof. We have to verify that if both g; and g5 : B — A act as inverses of a
given isomorphism f : A — B, then g1 = g2. The standard trick for this kind of
verification is to compose f on the left by one of the morphisms, and on the right
by the other one; then apply associativity. The whole argument can be compressed
into one line:

g1 =911 = 91(fg2) = (91f)92 = 1ag2 = g2
as needed. ]

Note that the argument really proves that if f is a morphism with a left-
inverse g; and a right-inverse go, then necessarily f is an isomorphism, g1 = g2,
and this morphism is the (unique) inverse of f. Look back at Corollary

Since the inverse of f is uniquely determined by f, there is no ambiguity in
denoting it by f~!.

Proposition 4.3. With notation as above:

e Fach identity 14 is an isomorphism and is its own inverse.
o If f is an isomorphism, then f=1 is an isomorphism and further (f~1)~! = f.

e If f € Homc(A, B), g € Homc (B, C) are isomorphisms, then the composition
gf is an isomorphism and (gf) "' = f~tg~ L.

Proof. These all ‘prove themselves’. For example, it is immediate to verify that
f~tg~ ! is a left-inverse of ¢f: indee@,

g NahHh=r"g 9N =f"0sf)=f"f=1a

The verification that f~'¢g~! is also a right-inverse of ¢f is analogous. O

Note that taking the inverse reverses the order of composition: (gf)~! =
fteh

Two objects A, B of a category are isomorphic if there is an isomorphism
f: A — B. An immediate corollary of Proposition is that ‘isomorphism’ is an
equivalence relationPY. If two objects A, B are isomorphic, one writes A = B.

Example 4.4. Of course, the isomorphisms in the category Set are precisely the
bijections; this was observed at the beginning of §2.5 J

Example 4.5. As noted in Proposition {3 identities are isomorphisms. They
may be the only isomorphisms in a category: for example, this is the case in
the category C obtained from the relation < on Z, as in Example Indeed,
for a,b objects of C (that is, a,b € Z), there is a morphism f : a — b and a

20 Associativity of composition implies that parentheses may be shuffled at will in longer
expressions, as done here (cf. Exercise [£]]).

21The reader should have checked this in Exercise 2.4} for Set; the same proof will work in
any category.
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morphism g : b — a only if @ < b and b < a, that is, if @ = b. So an isomorphism
in C necessarily acts from an object a to itself; but in C there is only one such
morphism, that is, 1,. a

Example 4.6. On the other hand, there are categories in which every morphism is
an isomorphism; such categories are called groupoids. The reader ‘already knows’
many examples of groupoids; cf. Exercise J

An automorphism of an object A of a category C is an isomorphism from A to
itself. The set of automorphisms of A is denoted Autc(A); it is a subset of Endc(A).
By Proposition 3] composition confers on Autc(A) a remarkable structure:

e the composition of two elements f,g € Autc(A) is an element gf € Autc(A);

e composition is associative;

e Autc(A) contains the element 1,4, which is an identity for composition (that
is, fla=1af = f);

e cvery element f € Autc(A) has an inverse f~1 € Autc(A).

In other words, Autc(A) is a group, for all objects A of all categories C.

We will soon devote all our attention to groups!

4.2. Monomorphisms and epimorphisms. As pointed out above, we do not
have the option of defining for morphisms of an arbitrary category a notion such
as ‘injective’ in the same way as we do for set-functions in §2.4t that definition
requires a notion of ‘element’, and in general no such notion is available for objects
of a category. But nothing prevents us from defining monomorphisms as we did in
§2.6 in an arbitrary category:

Definition 4.7. Let C be a category. A morphism f € Homc(A4, B) is a monomor-
phism if the following holds:
for all objects Z of C and all morphisms o/, " € Homc(Z, A),

fod =fod = o =d". a
Similarly, epimorphisms are defined as follows:

Definition 4.8. Let C be a category. A morphism f € Homc (A, B) is an epimor-
phism if the following holds:

for all objects Z of C and all morphisms ', 3" € Homc(B, Z),
ﬁlof:B//of:/Blzﬁ//. 3

Example 4.9. As proven in Proposition -3 in the category Set the monomor-
phisms are precisely the injective functions. The reader should have by now checked
that, likewise, in Set the epimorphisms are precisely the surjective functions (cf. Ex-
ercise [Z0]). Thus, while the definitions given in §2.6] may have looked counterintu-
itive at first, they work as natural ‘categorical counterparts’ of the ordinary notions
of injective/surjective functions. a
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Example 4.10. In the categories of Example B3] every morphism is both a
monomorphism and an epimorphism. Indeed, recall that there is at most one mor-
phism between any two objects in these categories; hence the conditions defining
monomorphisms and epimorphisms are vacuous. a

Contemplating Example reveals a few unexpected twists in these defini-
tions, which defy our intuition as set-theorists. For instance, in Set, a function is
an isomorphism if and only if it is both injective and surjective, hence if and only
if it is both a monomorphism and an epimorphism. But in the category defined
by < on Z, every morphism is both a monomorphism and an epimorphism, while
the only isomorphisms are the identities (Example [5]). Thus this property is a
special feature of Set, and we should not expect it to hold automatically in every
category; it will not hold in the category Ring of rings (cf. §III23)). It will hold in
every abelian category (of which Set is not an example!l), but that is a story for a
very distant future (Lemma [XIT.3]).

Similarly, in Set a function is an epimorphism, that is, surjective, if and only if
it has a right-inverse (Proposition [Z]); this may fail in general, even in respectable
categories such as the category Grp of groups (cf. Exercise [8.24).

Exercises

4.1. > Composition is defined for two morphisms. If more than two morphisms are
given, e.g.,

Al sp_.¢c D—4E,

then one may compose them in several ways, for example:

(ih)(gf), (i(hg))f, i((hg)f), etc.

so that at every step one is only composing two morphisms. Prove that the result
of any such nested composition is independent of the placement of the parentheses.
(Hint: Use induction on n to show that any such choice for f, f,—1 - f1 equals

(( o ((fnfn—l)fn—Z) e )fl)
Carefully working out the case n =5 is helpful.) [§411 §IIIT3]

h

4.2. > In Example[3.3] we have seen how to construct a category from a set endowed
with a relation, provided this latter is reflexive and transitive. For what types of
relations is the corresponding category a groupoid (cf. Example 6] 7 [§24.1]

4.3. Let A, B be objects of a category C, and let f € Homc(A4, B) be a morphism.

e Prove that if f has a right-inverse, then f is an epimorphism.
e Show that the converse does not hold, by giving an explicit example of a cate-
gory and an epimorphism without a right-inverse.

4.4. Prove that the composition of two monomorphisms is a monomorphism. De-
duce that one can define a subcategory Cono Of a category C by taking the same



5. Universal properties 31

objects as in C and defining Homc, . (A, B) to be the subset of Homc(A, B) con-
sisting of monomorphisms, for all objects A, B. (Cf. Exercise B8 of course, in
general Cpono is not full in C.) Do the same for epimorphisms. Can you define
a subcategory Chonmono Of C by restricting to morphisms that are not monomor-
phisms?

4.5. Give a concrete description of monomorphisms and epimorphisms in the cate-
gory MSet you constructed in Exercise B (Your answer will depend on the notion
of morphism you defined in that exercise!)

5. Universal properties

The ‘abstract’ examples in §3] may have left the reader with the impression that
one can produce at will a large number of minute variations of the same basic ideas,
without really breaking any new ground. This may be fun in itself, but why do we
really want to explore this territory?

Categories offer a rich unifying language, giving us a bird’s eye view of many
constructions in algebra (and other fields). In this course, this will be most apparent
in the steady appearance of constructions satisfying suitable universal properties.
For instance, we will see in a moment that products and disjoint unions (as reviewed
in I3 and following) are characterized by certain universal properties having to
do with the categories C4 p and C*B considered in Example

Many of the concepts introduced in this course will have an explicit description
(such as the definition of product of sets given in §I4) and an accompanying de-
scription in terms of a universal property (such as the one we will see in §5.4]). The
‘explicit’ description may be very useful in concrete computations or arguments,
but as a rule it is the universal property that clarifies the true nature of the con-
struction. In some cases (such as for the disjoint union) the explicit description may
turn out to depend on a seemingly arbitrary choice, while the universal property
will have no element of arbitrariness. In fact, viewing the construction in terms
of its corresponding universal property clarifies why one can only expect it to be
defined ‘up to isomorphism’.

Also, deeper relationships become apparent when the constructions are viewed
in terms of their universal properties. For example, we will see that products of
sets and disjoint unions of sets are really ‘mirror’ constructions (in the sense that
reversing arrows transforms the universal property for one into that for the other).
This is not so clear (to this writer, anyway) from the explicit descriptions in §L41

5.1. Initial and final objects.

Definition 5.1. Let C be a category. We say that an object I of C is initial in C
if for every object A of C there exists ezxactly one morphism I — A in C:

VA € Obj(C): Homc(I, A) is a singleton.
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We say that an object F' of C is final in C if for every object A of C there exists
ezactly one morphism A — F in C:

VA € Obj(C): Homc(A, F) is a singleton. J

One may use terminal to denote either possibility, but in general I would advise
the reader to be explicit about which ‘end’ of C one is considering.

A category need not have initial or final objects, as the following example shows.

Example 5.2. The category obtained by endowing Z with the relation < (see
Example B3] has no initial or final object. Indeed, an initial object in this category
would be an integer ¢ such that ¢ < a for all integers a; there is no such integer.
Similarly, a final object would be an integer f larger than every integer, and there
is no such thing.

By contrast, the category considered in Example does have a final object,
namely the pair (3, 3); it still has no initial object. J

Also, initial and final objects, when they exist, may or may not be unique:

Example 5.3. In Set, the empty set ) is initial (the ‘empty graph’ defines the
unique function from ) to any given object!), and clearly it is the unique set that
fits this requirement (Exercise [£.2)).

Set also has final objects: for every set A, there is a unique function from A
to a singleton {p} (that is, the ‘constant’ function). Every singleton is final in Set;
thus, final objects are not unique in this category. a

However, T claim that if initial/final objects exist, then they are unique up
to a unique isomorphism. 1 will invoke this fact frequently, so here is its official
statement and its (immediate) proof:

Proposition 5.4. Let C be a category.
o If I, I are both initial objects in C, then I = I5.
e If F, F5 are both final objects in C, then Fy = F5.

Further, these isomorphisms are uniquely determined.

Proof. Recall that (by definition of category!) for every object A of C there is at
least one element in Homc (A, A), namely the identity 14. If T is initial, then there
is a unique morphism I — I, which therefore must be the identity 1;.

Now assume I; and Iy are both initial in C. Since I is initial, there is a unique
morphism f: Iy — I in C; we have to show that f is an isomorphism. Since I is
initial, there is a unique morphism g : Iy — I; in C. Consider gf : Iy — I; as
observed, necessarily

gf = 111
since [7 is initial. By the same token

fg=1y,
since I is initial. This proves that f : Iy — I is an isomorphism, as needed.

The proof for final objects is entirely analogous (Exercise (.3)). a
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Proposition (B4 “explains” why, while not unique, the final objects in Set are
all isomorphic: no singleton is more ‘special’ than any other singleton; this is the
typical situation. There may be psychological reasons why one initial or final object
looks more compelling than others (for example, the singleton {0} = 2% may look
to some like the most ‘natural’ choice among all singletons), but this plays no role
in how these objects sit in their category.

5.2. Universal properties. The most natural context in which to introduce uni-
versal properties requires a good familiarity with the language of functors, which we
will only introduce at a later stage (cf. §VIIIMT]). For the purpose of the examples
we will run across in (most of) this book, the following ‘working definition’ should
suffice.

We say that a construction satisfies a universal property (or ‘is the solution to
a universal problem’) when it may be viewed as a terminal object of a category.
The category depends on the context and is usually explained ‘in words’ (and often
without even mentioning the word category).

In particularly simple cases this may take the form of a statement such as ) is
universal with respect to the property of mapping to sets; this is synonymous with
the assertion that () is initial in the category Set.

More often, the situation is more complex. Since being initial/final amounts to
the existence and uniqueness of certain morphisms, the ‘explanation’ of a universal
property may follow the pattern, “object X is universal with respect to the following
property: for any Y such that..., there exists a unique morphism Y — X such
that....”

The not-so-naive reader will recognize that this explanation hides the definition
of an accessory category and the statement that X is terminal (probably final in
this case) in this new category. It is useful to learn how to translate such wordy
explanations into what they really mean. Also, the reader should keep in mind that
it is not uncommon to sweep under the rug part of the essential information about
the solution to a universal problem (usually some key morphism): this information
is presumably implicit in any given set-up. This will be apparent from the examples
that follow.

5.3. Quotients. Let ~ be an equivalence relation defined on a set A. Let’s parse
the assertion:

“The quotient A/~ is universal with respect to the property of mapping A to a
set in such a way that equivalent elements have the same image.”

What can this possibly mean, and is it true?

The assertion is talking about functions
A2tz
with Z any set, satisfying the property

"

a ~ad = )= ().
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These morphisms are objects of a category (very similar to the category defined in
Example [B1); for convenience, let’s denote such an object by (¢, Z). The only rea-
sonable way to define morphisms (1, Z1) — (@2, Z3) is as commutative diagrams

Z, —2— 7,
80,\ //7\2
A

This is the same definition considered in Example B.7

Does this category have initial objects?

Claim 5.5. Denoting by 7 the ‘canonical projection’ defined in Example 2.6, the
pair (m, A/~) is an initial object of this category.

This is what our writer meant by the mysterious assertion copied above. Once
this is understood, it is very easy to prove that the assertion is indeed correct.

Proof. Consider any (¢, Z) as above. We have to prove that there exists a unique
morphism (m, A/~) — (@, Z), that is, a unique commutative diagram

A/~ - 5z
x %
A
that is, a unique function ¥ making this diagram commute.

Let [a]. be an arbitrary element of A/~. If the diagram is indeed going to
commute, then necessarily
?(lal~) = e(a);
this tells us that @ is indeed unique, if it exists at all—that is, if this prescription
does define a function A/~ — Z.

Hence, all we have to check is that p is well-defined, that is, that if [a;]~ =
[as]~, then p(a1) = p(az2); and indeed

[a1]~ = [az]v = a1 ~ a2 = p(a1) = p(az).

This is precisely the condition that morphisms in our category satisfy. O

Note the several levels of sloppiness in the assertion considered above: it does
not tell us very explicitly what category to consider; it does not tell us that we
should especially pay attention to initial objects in this category. Worst of all,
the solution to the universal problem is not really A/~, but rather the morphism
i A= Al

The reader should practice the skill of translating loose assertions such as the
one given above into precise statements; it is not at all uncommon to run into
examples at the same level of ‘abuse of language’ as this one.

The reason why we get away with writing such assertions is that the context
really allows the experienced reader to parse them effectively, and they are substan-
tially more concise than their spelled-out version. After all, there is in general no
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conceivable choice for a morphism A — A/~ other than the canonical projection;
hence, neglecting to mention it is forgivable. Also, the final object in the category
considered above is supremely uninteresting (what is it? cf. Exercise [0.3]), so surely
we must have meant the initial one.

What do we learn by viewing quotients in terms of their universal property?
For example, suppose ~ is the equivalence relation defined starting from a function
f:A— B,asin §8 Then the reader will realize easily that im f also satisfies
the universal property given above for A/~; therefore (by Proposition B4) im f
and A/~ must be isomorphic. This is precisely the content of Theorem 27} thus,
the universal property sheds some light on the ‘canonical decomposition’ studied

in 2.8

5.4. Products. It is also a very good exercise to stare at a familiar construction
and try to see the universal property which may be behind it. I will now encourage
you, dear reader, to contemplate the notion of the product of two sets given in §I.4]
and to see if the universal property it satisfies jumps out at you. Spoiler follows,
so this is a good time to stop reading these notes and to try on your own.

Here is the universal property. Let A, B be sets, and consider the product Ax B,
with the two natural projections:

A
o
AXx B
B B
(see Example 24)). Then for every set Z and morphisms

A
fa
Z/
P

there exists a unique morphism o : Z — A X B such that the diagram

commutes.

In this situation, o is usually denoted f4 X fg.

Proof. Define Vz € Z
o(z) = (fa(2), [B(2)).
This function?3 manifestly makes the diagram commute: Vz € Z

ma0(z) = ma(fa(2), fB(2)) = fa(2),

22Note that there is no ‘well-definedness’ issue this time.
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showing that m4o = f4 and similarly mpo = fp.

Further, the definition is forced by the commutativity of the diagram; so o is
unique, as claimed. O

In other words, products of sets (or, more precisely, products of sets together
with the information of their natural projections to the factors) are final objects in
the category C4 p considered in Example B0 for C = Set.

What is the advantage of viewing products this way? The main advantage
is that the universal property may be stated in any category, while the definition
of products given in §I.4] only makes sense in Set (and possibly in other categories
where one has a notion of ‘elements’). We say that a category C has (finite) products,
or is a category ‘with (finite) products’, if for all objects A, B in C the category C4 p
considered in Example B9 has final objects. Such a final object consists of the data
of an object of C, usually denoted A x B, and of two morphisms A x B — A,
Ax B — B.

Note that a ‘product’ from this perspective does not need to ‘look like a prod-
uct’. Consider our recurring example of the category obtained from < on Z, as
in Example B3l Does this category have products? Objects of this category are
simply integers a, b € Z; call a x b for a moment the ‘categorical’ product of a and b.
The universal property written out above becomes, in this case, for all z € Z such
that z < a and z < b, we have z < a X b.

This universal problem does have a solution Va,b: it is conventionally not
called a x b, but rather min(a,b). It is immediate to see that min(a,d) satisfies
the property. Thus this category has products, and in fact we see that the product
in this category amounts to the familiar operation of taking the minimum of two
integers.

Thus there is an unexpected connection between ‘the Cartesian product of two
sets’ and ‘the minimum of two integers’: both are examples of products, taken
in different categories; they both satisfy ‘the same’ universal property, in different
contexts.

5.5. Coproducts. The prefix co- usually indicates that one is ‘reversing all ar-
rows’. Just as products are final objects in the categories C4 g obtained by consid-
ering morphisms in C with common source, whose targets are A and B, coproducts
will be initial objects in the categorie C*P of morphisms with common tar-
get, whose sources are A and B. Dear reader, look away and spell this universal
property out before we do.

Here it is. Let A, B be objects of a category C. A coproduct AIl B of A
and B will be an object of C, endowed with two morphisms iy : A — AIl B,
i : B — AIl B and satisfying the following universal property: for all objects Z

23These categories were also considered in Example £ cf. Exercise 111
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and morphisms

commutes.

The symmetry with the universal property of products is hopefully completely
apparent. We say that a category C has coproducts if this universal problem has a
solution for all pairs of objects A and B.

Is the reader familiar with any coproduct? Yes!

Proposition 5.6. The disjoint union is a coproduct in Set.

Proof. Recall (4] that the disjoint union A IT B is defined as the union of two
disjoint isomorphic copies A’, B’ of A, B, respectively; for example, we may let
A" = {0} x A, B’ = {1} x B. The functions i4, ip are defined by

ia(a) = (0,a), ip(b)=(1,b),
where we view these elements as elements of ({0} x A)U ({1} x B).

Now let fa : A — Z, fg : B — Z be arbitrary morphisms to a common target.
Define
c: AIIB=({0} x A)U({1} x B) = Z
by

fe(b) ifc=(1,b) € {1} x B.

This definition makes the relevant diagram commute and is in fact forced upon us
by this commutativity, proving that o exists and is unique. O

o(e) = {fA(a) if c = (0,a) € {0} x A,

This observation tells us that the category Set has coproducts and further sheds
considerable light on the mysteries of disjoint unions. For example, there was an
element of arbitrariness in our choice of ‘a’ disjoint union, although different choices
led to isomorphic notions. Now we see why: terminal objects of a category are not
unique in general, although they are unique up to isomorphism (Proposition B.4]);
there is not a ‘most beautiful’ disjoint union of two sets just as there is not a ‘most
beautiful” singleton in Set (cf. §5.101).

Also, an unexpected ‘symmetry’ between products and disjoint unions becomes
suddenly apparent from the point of view of universal properties.
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The reader is invited to contemplate the notion of coproduct in the other cat-
egories we have encountered. For example (and probably not surprisingly at this
point) the category obtained from < on Z does have coproducts: the coproduct of
two objects (i.e., integers) a, b is simply the mazimum of a and b.

.|
Exercises

5.1. Prove that a final object in a category C is initial in the opposite category C?
(cf. Exercise BT]).

5.2. > Prove that () is the unique initial object in Set. [§5.1]

5.3. > Prove that final objects are unique up to isomorphism. [§5.1]

5.4. What are initial and final objects in the category of ‘pointed sets’ (Exam-
ple BR)? Are they unique?

5.5. > What are the final objects in the category considered in §5.3I° [§5.3]

5.6. > Consider the category corresponding to endowing (as in Example B3] the
set ZT of positive integers with the divisibility relation. Thus there is exactly one
morphism d — m in this category if and only if d divides m without remainder;

there is no morphism between d and m otherwise. Show that this category has
products and coproducts. What are their ‘conventional’ names? [§VIIET]

5.7. Redo Exercise 2.9 this time using Proposition 5.4

5.8. Show that in every category C the products A x B and B x A are isomorphic,
if they exist. (Hint: Observe that they both satisfy the universal property for the
product of A and B; then use Proposition [(.4])

5.9. Let C be a category with products. Find a reasonable candidate for the
universal property that the product A x B x C of three objects of C ought to
satisfy, and prove that both (A x B) x C' and A x (B x C) satisfy this universal
property. Deduce that (A x B) x C and A x (B x (') are necessarily isomorphic.

5.10. Push the envelope a little further still, and define products and coproducts
for families (i.e., indexed sets) of objects of a category.
Do these exist in Set?
It is common to denote the product A x --- x A by A™.
n times

5.11. Let A, resp. B be a set, endowed with an equivalence relation ~ 4, resp. ~p.
Define a relation ~ on A x B by setting

(al,bl) ~ (ag,bg) < a1 ~A Q2 and bl ~pB bg.
(This is immediately seen to be an equivalence relation.)

e Use the universal property for quotients (§5.3)) to establish that there are func-
tions (A x B)/~ — A/~4, (AX B)/~— B/~p.
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e Prove that (A x B)/~, with these two functions, satisfies the universal property
for the product of A/~4 and B/~p.

e Conclude (without further work) that (A x B)/~ 2 (A/~4) x (B/~p).
5.12. = Define the notions of fibered products and fibered coproducts, as terminal ob-

jects of the categories C, 3, C*# considered in Example B0 (cf. also Exercise BIT),
by stating carefully the corresponding universal properties.

As it happens, Set has both fibered products and coproducts. Define these
objects ‘concretely’; in terms of naive set theory. [[B.9 MGE.T0, [TIETT]
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Chapter I1

Groups, first encounter

In this chapter we introduce groups, we observe they form a category (called Grp),
and we study ‘general’ features of this category: what are the monomorphisms and
the epimorphisms in this category? what is the appropriate notion of ‘equivalence
relation’ and ‘quotients’ for a group? does a ‘decomposition theorem’ hold in Grp?
and other analogous questions.

In Chapter [[IIl we will acquire a similar degree of familiarity with rings and
modules. A more object-oriented analysis of Grp (for example, a treatment of the
famous Sylow theorems, ‘composition series’, or the classification of finite abelian
groups) is deferred to Chapter [Vl

1. Definition of group
1.1. Groups and groupoids.

Joke 1.1. Definition: A group is a groupoid with a single object. a

This is actually a perfectly viable definition, since groupoids have been defined
already (in Example [IE6); but most mathematicians would find it ludicrous to
introduce groups in this fashion, or they will at the very least politely express
doubts on the pedagogical effectiveness of doing so. In order to redeem myself, I
will parse this definition right away to show what it really says. If * is the lone
object of such a groupoid G,

Homg (*, %) = Autg(x)

(because G is a groupoid!), and this set carries all the information about G. Call
this set G. Then (by definition of category) there is an associative operation on G,
with an identity 1., and (by definition of groupoid, which says that every morphism
in G is an isomorphism) every g € G has an inverse g~! € G.
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That is what a group idl: a set G with a composition law satifsying a few key
axioms, i.e., associativity, existence of identity, and existence of inverses.

1.2. Definition. Now for the official definition. Let G be a nonempty set, endowed
with a binary operation, that is, a ‘multiplication’ map

o:GxG—G.

Our notation will be
o(g,h)=:geh

or simply gh if the name of the operation can be understood. The careful reader
may have expected that we should write h e g, in the style of what we have done
for categories, but this is what common conventions dictatd.

Definition 1.2. The set GG, endowed with the binary operation e (briefly, (G, e),
or simply G if the operation can be understood) is a group if

(i) the operation e is associative, that is,
(Vg,h,k € G): (geh)ek=ge(hek);
(ii) there exists an identity element eq for e, that is,
(Jec € G) (Vg€ G): geec=g=cecey;
(iii) every element in G has an inverse with respect to e, that is,
VgeG)(FheG): geh=eg=nhey. a

Example 1.3. Since we explicitly require G to be nonempty, the most economical
way to concoct a group is by letting G = {e} be a singleton. There is only one
function G x G — @ in this case, so there is only one possible binary operation
on G, defined by

cee =e.

The three axioms trivially hold for this example, so {e} is equipped with a unique
group structure.

This is usually called the trivial group; purists should call any such group a
trivial group, since every singleton gives rise to one. a

Example 1.4. The reader should check carefully (cf. Exercise [2]) that (Z,+),
(Q,4), (R,+), (C,+), and several variations using - (for example, the subset
{+1,—1} of Z, with ordinary multiplication) all give examples of groups. While
very interesting in themselves, these examples do not really capture at any intuitive
level ‘what’ a group really is, because they are too special. For example, all these
examples are commutative (see §L.0)). J

1From this perspective, Joke [I] is a little imprecise: the group is not the groupoid G, but
rather the set of isomorphisms in G, endowed with the operation of composition of morphisms.
2Not without exceptions; see for example permutation groups, discussed in §2
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Example 1.5. My readers are likely familiar with an extremely important non-
commutative example, namely the group of invertible, n xn matrices with (say) real
entries, n > 2. I will generally shy away from this class of examples in these early
chapters, since we will have ample opportunities to think about matrices when we
approach linear algebra (starting in Chapter [VI)). But we may occasionally borrow
a matrix or two before then. The reader should now check that 2 x 2 matrices

(¢ 4

with real entries, and such that ad—bc # 0, form a group under the ordinary matrix
multiplication:

ai b1 ) a9 bg _ ajaz + blcg a1b2 + bldg

a1 dy c2 da craz +dicy crba +didy)
(The condition ad — be # 0 guarantees that the matrix is invertible. What is its
inverse?) Since, for example,

GGG 62606 )

this group is indeed not commutative.

The group of invertible n x n matrices with real entries is denoted GL,,(R). _

We will encounter more representative examples in §21

1.3. Basic properties. From the ‘groupoid’ point of view, the identity es would
be denoted 1,. It is not uncommon to omit G from the notation (when the group
is understood) and to use different symbols rather than e to denote this element:
1 and 0 are popular alternatives, depending on the context. In any case, for any
given group G this element is unique. That is, no other element of G can work as
an identity:

Proposition 1.6. If h € G is an identity of G, then h = eg.

Incidentally, this makes groups pointed sets in the sense of Example[lI3.8 every
group has a well-defined distinguished element.

Proof. Using first that eq is an identity and then that h is an identity, one getsﬁ
h = 6gh = €qg-

(Amusingly, this argument only uses that eg is a ‘left’ identity and A is a ‘right’
identity.) O

Proposition 1.7. The inverse is also unique: if hy, ho are both inverses of g in G,
then hq = hs.

3 As previously announced, we may omit the symbol e for the operation, since for the time
being we are only considering one operation. This will be done without warning in the future.
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Proof. This actually follows from Proposition (by viewing G as the set of
isomorphisms of a groupoid with a single object). The reader should construct
a stand-alone proof, using the same trick, but carefully hiding any reference to
morphisms. O

Proposition [[ 7] authorizes us to give a name to the inverse of ¢: this is usuallyﬁ

denoted g~ 1.

One more notational item is in order. The definition of a group only contem-
plates the ‘product’ of two elements; in multiplying a string of elements, one may in
principle have a choice as to the order in which products are executed. For example,

(g1 092) @93
stands for: apply the operation e to g; and go, and then apply e again to the result
of this operation and g3; while

g1 (g299s3)

stands for: apply e to go and g3, and then apply it again to ¢g; and to the result of
this operation.

Associativity tells us precisely that the result of the operation on three elements
does not depend on the way in which we perform it. With this in mind, we are
authorized to write

g1 ® g2 @ gs;

this expression is not ambiguous, by associativity. What about four or more ele-
ments? The reader should have checked in Exercise [IIZ.1] that all ways to associate
any number of elements leads to the same result. So we are also authorized to write
things like

g19G20gze---0gj7;

this is also unambiguous. The reader should keep in mind, however, that of course
the order in which the elements are listed is important: in general,

g10Go®gse---0gir F greg egze - -eqy.

Of course no such care is necessary if all g; coincide; the conventional ‘power’

notation can then be usecﬁ: ¢° = e, and for a positive integer n
- ~1 —1
gn — g ..... g, g n — g ..... g .
— —_—
n times n times

It is easy to check that then Vg € G and Vm,n € Z

4But note the ‘abelian’ case, discussed in g5
5In the abelian case one uses ‘multiples’; cf. L5
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1.4. Cancellation. ‘Cancellation’ holds in groups. That is,
Proposition 1.8. Let G be a group. Then Va,g,h € G
ga=ha = g=h, ag=ah = g=h.
1

Proof. Both statements are proven by multiplying (on the appropriate side) by a~
and applying associativity. For example,

ga=ha = (ga)a ' = (ha)a™' = g(aa™") = h(aa™') = geg = heg
= g=nh.

The proof for the other implication follows the same pattern. O

Examples of operations which do not satisfy cancellation, and hence do not
define groups, abound. For instance, the operation of ordinary multiplication does
not make the set R of real numbers into a group: indeed, 0 ‘cannot be cancelled’
since 1-0 = 2-0 even if 1 # 2. Of course, the problem here is that 0 does not
have an inverse in R, with respect to multiplication. As it happens, this is the only
problem with this example: ordinary multiplication does make

R* := R~ {0}

into a group, as the reader should check immediately.

1.5. Commutative groups. One axiom not appearing in the definition of group
is commutativity: we say that the operation e is ‘commutative’ if

(iv) (Vg,h€G): geh=heg.

We say that two elements g, h ‘commute’ if gh = hg. Thus, in a commutative
group any two elements commute.

‘Commutative groups’ are important objects: they arise naturally in several
contexts, especially as ‘modules over the ring Z’ (about which we will have a lot to
say in Chapter [Il and beyond). When they do so, they are usually called abelian
groups.

The notation used in treating abelian groups differs somewhat from the stan-
dard notation for groups. This is to emphasize the ‘Z-module structure’, and it is
helpful when an abelian group coexists with other operations—a situation which
we will encounter frequently.

Thus, the operation in an abelian group A is, as a rule, denoted by + and is
called ‘addition’; the identity is then called 0 4; and the inverse of an element a € A
is denoted —a (and maybe should be called the ‘opposite’?). The ‘power’ notation
is of course replaced by ‘multiple’: 0a = 0, and for a positive integer n

nao=a+---+a, (—n)a=(—a)+---(—a).
N——r —_———
n times n times
The reader should keep in mind that at this stage ‘na’ is a notation, not the

result of applying a binary operation to two elements n, a of A. Indeed, n € Z may
very well not be an element of A in any reasonable sense. Moreover, it may very
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well be that na = ma even if n # m, in spite of the fact that ‘cancellation’ works
in groups.

The qualifier ‘abelian’ and the notation 04, —a, etc., are mostly used for com-
mutative groups arising in certain standard situations: for example, the notions
of rings, modules, vector spaces are defined by suitably enriching a commutative
group, which is then promoted to ‘abelian’ for notational convenience.

There are other situations in which commutative groups arise naturally, without
triggering the ‘abelian’ notation. For example, the group (R*,-) mentioned at the
end of §T4] is commutative, but its operation is indicated by - (if at all), and its
identity element is written 1. History, rather than logic, is often the main factor
determining notation.

1.6. Order.

Definition 1.9. An element g of a group G has finite order if9 g" = e for some
positive integer n. In this case, the order |g| is the smallest positive n such that
g" = e. One writes |g| = oo if g does not have finite order. J

By definition, if g™ = e for some positive integer n, then |g| < n. One can be
more precise:

Lemma 1.10. If g™ = e for some positive inleger n, then |g| is a divisor of n.

Proof. As observed, n > |g| by definition of order, that is, n— |g| > 0. There must
then exisf] a positive integer m such that

r=n—|g|]-m>0 and n-—|g|-(m+1) <0,
that is, r < |g|. Note that

—m

g =g =gt (g = e =

By definition of order, |g| is the smallest positive integer such that g9/ = e. Since
r is smaller than |g| and ¢" = e, r cannot be positive; hence r = 0 necessarily. This
says

that is, n = |g|-m, proving that n is indeed an integer multiple of |g| as claimed. O

This lemma has the following immediate and useful consequence, which we
encourage the reader to keep firmly in mind:

Corollary 1.11. Let g be an element of finite order, and let N € Z. Then

g~ =e < N is a multiple of |g|.

60f course in an abelian group we would write the following prescription as ng = 0.

"Purists may object that here I am surreptitiously using fairly sophisticated information
about Z, namely the ‘division algorithm’, hence essentially the fact that Z is a Euclidean domain!
This is material that will have to wait until Chapter [l to be given some justice. I may as well
be open about it and admit that yes, I am assuming that my readers have already acquired a
thorough familiarity with the operations of addition and multiplication among integers. Shame
on me!
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Definition 1.12. If G is finite as a set, its order |G| is the number of its elements;
we write |G| = oo if G is infinite. J

Cancellation implies that |g| < |G| for all g € G. Indeed, this is vacuously true
if |G| = oo; if G is finite, consider the |G| + 1 powers

@ =e99%d, ..., 9°

of g. These cannot all be distinct; hence
(3i,j) 0<i<j<|G| such that g’ = g’.
By cancellation (that is, multiplying on the right by g—)
g =e,
showing |g| < (j — i) < |G,
We will soon be able to formulate a much more precise statement concerning
the relation between the order of a group and the order of its elements: if g € G

and |G| is finite, then the order of g divides the order of G. This will be an
immediate consequence of Lagrange’s theorem; cf. Example .15l

Another general remark concerning orders is that their behavior with respect
to the operation of the group is not always predictable: it may very well happen
that g, h have finite order in a group G, and yet |gh| = oo, or |gh| = your favorite
positive integer: work out Exercise [[L12] and Exercise if you don’t believe it.

On the other hand, the situation is more constrained if g and A commute. In

the extreme case in which g = h, it is easy to obtain a very precise statement:

Proposition 1.13. Let g € G be an element of finite order. Then g™ has finite
order Ym > 0, and in fac

] = lem(m, lg]) _ gl
m ged(m, |g|)
Proof. The equality of the two numbers lcm(z"g D and o d(‘gj 7y follows from ele-

mentary properties of ged and lem: lem(a, b) = ab/ ged(a, b) for all a and b. So we

m| = lem(m,|g|)
= po .

only need to prove that |g
The order of g™ is the least positive d for which

md

g =6
that is (by Corollary [LTI]) for which md is a multiple of |g|. In other words, m|g
is the smallest multiple of m which is also a multiple of |g|:

™

mlg™| = lem(m, |g]).

The stated formula follows immediately from this. O

In general, for commuting elements,

Proposition 1.14. If gh = hg, then |gh| divides lem(|g], |h]).

8The notation lem stands for ‘least common multiple’. I am also assuming that the reader is
familiar with simple properties of gcd and lem.
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Proof. Let |g| = m, |h| = n. If N is any common multiple of m and n, then
g~ = h" = e by Corollary [LIT} Since g and h commute,

N — (ah)(aoh) - -+.. —_ s Y . — NpN —
(gh)™ = (gh)(gh) (gh) = g9 g-hh h=g"h" =e.
N times N times N times

As this holds for every common multiple N of m and n, in particular
(gh)lcm(mm) —e.

The statement then follows from Lemma [I.10] O

One cannot say more about |gh| in general, even if g and h commute (Exer-
cise [[13]). But see Exercise [ 14] for an important special case.

.|
Exercises

1.1. > Write a careful proof that every group is the group of isomorphisms of a
groupoid. In particular, every group is the group of automorphisms of some object

in some category. [§2.1]

1.2. > Consider the ‘sets of numbers’ listed in §I.1] and decide which are made into
groups by conventional operations such as + and -. Even if the answer is negative
(for example, (R, -) is not a group), see if variations on the definition of these sets

lead to groups (for example, (R*,) is a group; cf. §T4). [JT2]
1.3. Prove that (gh)~! = h=tg~! for all elements g, h of a group G.

1.4. Suppose that g2 = e for all elements g of a group G; prove that G is commu-
tative.

1.5. The ‘multiplication table’ of a group is an array compiling the results of all
multiplications g e h:

° e h
e e h
g | 9 geh

(Here e is the identity element. Of course the table depends on the order in which
the elements are listed in the top row and leftmost column.) Prove that every row
and every column of the multiplication table of a group contains all elements of the
group exactly once (like Sudoku diagrams!).
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1.6. — Prove that there is only one possible multiplication table for G if G has
exactly 1, 2, or 3 elements. Analyze the possible multiplication tables for groups
with exactly 4 elements, and show that there are two distinct tables, up to re-
ordering the elements of G. Use these tables to prove that all groups with < 4
elements are commutative.

(You are welcome to analyze groups with 5 elements using the same technique,
but you will soon know enough about groups to be able to avoid such brute-force

approaches.) [219]
1.7. Prove Corollary [Tl

1.8. = Let G be a finite abelian group with exactly one element f of order 2. Prove
that [[,cq g = /. EI6]
1.9. Let G be a finite group, of order n, and let m be the number of elements g € G

of order exactly 2. Prove that n — m is odd. Deduce that if n is even, then
G necessarily contains elements of order 2.

1.10. Suppose the order of ¢ is odd. What can you say about the order of g2?
1.11. Prove that for all g, h in a group G, |gh| = |hg|. (Hint: Prove that |aga™!| =
lg| for all a, g in G.)

1.12. > In the group of invertible 2 x 2 matrices, consider

0 -1 0 1
o= 7a) =)
Verify that |g| =4, |h| = 3, and |gh| = co. [{LH]

1.13. > Give an example showing that |gh| is not necessarily equal to lem(|g], |h]),
even if g and h commute. [§L6] [CT4]

1.14. > As a counterpoint to Exercise [[13] prove that if ¢ and h commute and
gcd(lgl, |h]) = 1, then |gh| = |g| |h|. (Hint: Let N = |gh|; then g = (h=1)N. What
can you say about this element?) [§1.6] [LT15] §IVI2.H]

1.15. — Let G be a commutative group, and let g € G be an element of maximal
finite order, that is, such that if h € G has finite order, then |h| < |g|. Prove that
in fact if h has finite order in G, then |h| divides |g|. (Hint: Argue by contradiction.
If |h| is finite but does not divide |g|, then there is a prime integer p such that |g| =
p™r, |h| = p™s, with r and s relatively prime to p and m < n. Use Exercise [T to

compute the order of gP”" h*.) [§2.11 EITl IVIGI5]

2. Examples of groups

2.1. Symmetric groups. In T we have already observed that every object A
of every category C determines a group, called Autc(A), namely the group of auto-
morphisms of A. In a somewhat artificial sense it is clear that every group arises in
this fashion (cf. Exercise [[T)); this fact is true in more ‘meaningful’” ways, which will
become apparent when we discuss group actions (§9): cf. especially Theorem
and Exercise
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In any case, this observation provides the reader with an infinite class of very
important examples:

Definition 2.1. Let A be a set. The symmetric group, or group of permutations
of A, denoted Sy, is the group Autset(A). The group of permutations of the set
{1,...,n} is denoted by S,,. 3

The terminology is easily justified: the automorphisms of a set A are the set-
isomorphisms, that is, the bijections, from A to itself; applying such a bijection
amounts precisely to permuting (‘scrambling’) the elements of A. This operation
may be viewed as a transformation of A which does not change it (as a set), hence
a ‘symmetry’.

The groups S are famously large: as the reader checked in Exercise [I2.1]
|Sn| = n!. For example, |S7o| > 109 which is substantially larger than the
estimated number of elementary particles in the observable universe.

Potentially confusing point: The various conventions clash in the way the op-
eration in S, should be written. From the ‘automorphism’ point of view, elements
of S4 are functions and should be composed as such; thus, if f,g € Sy = Autse(A),
then the ‘product’ of f and g should be written g o f and should act as follows:

(VpeA): go f(p)=g(f(p)).

But the prevailing style of notation in group theory would write this element
as fg, apparently reversing the order in which the operation is performed.

Everything would fall back into agreement if we adopted the convention of writ-
ing functions after the elements on which they act rather than before: (p)f rather
than f(p). But one cannot change century-old habits, so we have no alternative
but to live with both conventions and to state carefully which one we are using at
any given time.

Contemplating the groups S,, for small values of n is an exercise of inestimable
value. Of course S is a trivial group; Sy consists of the two possible permutations:

11 12

{2H2 and {291
which we could call e (identity) and f (flip), with operation

ee=ff=e ef=fe=/Ff.

In practice we cannot give a new name to every different element of every permuta-
tion group, so we have to develop a more flexible notation. There are in fact several
possible choices for this; for the time being, we will indicate an element o € .S, by
listing the effect of applying ¢ underneath the list 1,...,n, as a matrid]. Thus the
elements e, f in S may be denoted by

=3k

9This is only a notational device—these matrices should not be confused with the matrices
appearing in linear algebra.
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In the same notational style, S3 consists of

Gen)GiaG2)0:26136: 00

For the multiplication, I will adopt the sensible (but not very standard) convention
mentioned above and have permutations act ‘on the right’: thus, for example,

12 3\(1 2 3 1 23
1<213>(312)2<312>1
and similarly
1 2 3\(1 2 3 12 3\(1 2 3
2(213><312>:3’ 3(213)(312>:2'
12 3\(1 2 3y (1 2 3
2 13)\3 12/ 13 2

since the permutations on both sides of the equal sign act in the same way on
1, 2, 3. The reader should now check that

12 3\ /1 2 3\ (123
31 2)\2 13/ \3 2 1)
/1 23 (1 2 3
T=\2 1 3) Y7\ 3 1 2)

yx # xy,
showing that the operation in S35 does not satisfy the commutative axiom. Thus,

S3 is a noncommutative group; the reader will immediately realize that in fact S, is
noncommutative for all n > 3.

That is,

That is, letting

then

While the commutation relation does not hold, other interesting relations do
hold in S3. For example,
x2 = e) y3 = e)
showing that S3 contains elements of order 1 (the identity e), 2 (the element z),
and 3 (the element y); cf. Exercise (Incidentally, this shows that the result

of Exercise [[L.TH does require the commutativity hypothesis.) Also,

(12 3\ _
e 2 1) T

as the reader may check. Using these relations, we see that every product of any
assortment of x and y, 2"y’ y™ ..., may be reduced to a product z’y’ with
0<i<1,0<j<2, that is, to one of the six elements

e, y, Y oz, wy, 3y

for example,

Y 2y’ = () (2?) 2’y = (ya)y? = (ay?)y® = 2’y = ay.
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On the other hand, these six elements are all distinct—this may be checked by
cancellation and order consideration@. For example, if we had 2y? = y, then we
would get * = y~! by cancellation, and this cannot be since the relations tell us
that 2 has order 2 and y~! has order 3.

The conclusion is that the six products displayed above must be all six elements
of 83:
S3 = {e,z.y, 2y, 4%, 2y*}.
In the process we have verified that S5 may also be described as the group ‘gener-
ated’ by two elements = and y, with the ‘relations’ z2 = e, y> = e, yx = x>

More generally, a subset A of a group G ‘generates’ G if every element of G
may be written as a product of elements of A and of inverses of elements of A. We
will deal with this notion more formally in §6.3] and with descriptions of groups in
terms of generators and relations in §3.2

2.2. Dihedral groups. A ‘symmetry’ is a transformation which preserves a struc-
ture. This is of course just a loose way to talk about automorphisms, when we may
be too lazy to define rigorously the relevant category. As automorphisms of objects
of a category, symmetries will naturally form groups.

One context in which this notion may be visualized vividly is that of ‘geometric
figures’ such as polygons in the plane or polyhedra in space. The relevant category
could be defined as follows: let the objects be subsets of an ordinary plane R? and
let morphisms between two subsets A, B consist of the ‘rigid motions’ of the plane
(such as translations, rotations, or reflections about a line) which map A to a subset
of B. A rigorous treatment of these notions would be too distracting at this point,
so I will appeal to the intuition of the reader, as I do every now and then.

From this perspective, the ‘symmetries’ of a subset of the plane are the rigid
motions which map it onto itself; they clearly form a group.

The dihedral groups may be defined as these groups of symmetries for the
regular polygons. Placing the polygon so that it is centered at the origin (thereby
excluding translations as possible symmetries), we see that the dihedral group for
a regular n-sided polygon consists of the n rotations by 27 /n radians about the
origin and the n distinct reflections about lines through the origin and a vertex or a
midpoint of a side. Thus, the dihedral group for a regular n-sided polygon consists
of 2n elements; I will denotd™] this group by the symbol Dsy,.

Again, contemplating these groups, at least for small values of n, is a wonder-
ful exercise. There is a simple way to relate the dihedral groups to the symmetric
groups of 211 capturing the fact that a symmetry of a regular polygon P is de-
termined by the fate of the wvertices of P. For example, label the vertices of an
equilateral triangle clockwise by 1, 2, 3; then a counterclockwise rotation by an
angle of 27 /3 sends vertex 1 to vertex 3, 3 to 2, and 2 to 1, and no other symmetry
of the triangle does the same.

10Tt may of course also be checked by explicit computation of the corresponding permutations,
but I am trying to illustrate the fact that the relations are ‘all we need to know’.

HUnfortunately there does not seem to be universal agreement on this notation: some ref-
erences use the symbol D,, for what I call Dy, here.
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/N

In other words, we can associate with the counterclockwise rotation of an equilateral
triangle by 27 /3 the permutation

1 2 3
(51 5)es

Such a labeling defines a function

Visually, this looks like

D6 —)53;

further, this function is injective (since a symmetry is determined by the permuta-
tion of vertices it induces). In fancier language, which we will master in due time,
we say that Dg acts (faithfully) on the set {1,2,3}.

It is clear that this can be done in several ways (for example, we could label the
vertices in different ways). However, any such assignment will have the property
that composition of symmetries in Do, corresponds to composition of permutations
in S,; the reader should carefully work this out for several examples involving
Dg — Sz and Dg — Sj.

A concise way to describe the situation is that these functions are (group)
homomorphisms (cf. §). Since both Dg and S3 have 6 elements and the function
Dg — S3 given above is injective, it must also be surjective. Thus there are bijective
homomorphisms between Dg and S3; we say that these groups are isomorphic
(cf. §43]). We will study these concepts very carefully in the next several sections.

As an alternative (and more abstract) way to draw the same conclusion, denote
by y the counterclockwise rotation considered above and by x the reflection about
the line through the center and vertex 3 of our equilateral triangle:

Reflecting twice gives the identity, as does rotating three times; thus

?=e y=e

Further, yz (rotating counterclockwise by 27/3, then flipping about the slanted
line) is the same symmetry as xy? (flipping first, then rotating clockwise by 27 /3).
That is,

yr = x>,
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In other words, the group Dg is also generated by two elements x, y, subject to the
relations 2 = e, y3 = e, yx = zy?—precisely as we found for S3. Since Dg and S3
admit matching descriptions in terms of generators and relations (that is, matching
presentations; cf. §8.2), ‘of course’ they are isomorphic.

2.3. Cyeclic groups and modular arithmetic. Let n be a positive integer. Con-
sider the equivalence relation on Z defined b
(Ma,beZ): a=b modn < n|(b—a).

This is called congruence modulo n. We have encountered this relation already, for
n = 2, in Example It is very easy to check that it is an equivalence relation,
for all n; the set of equivalence classes is often denoted by Z,,, Z/(n), Z/nZ, or F,,.
We will opt for Z/nZ, which is not preempted by other notiond™. I will denote
by [a],, the equivalence class of the integer a modulo n, or simply [a] if no ambiguity
arises.

The reader should check carefully that Z/nZ consists of exactly n elements,
namely

0n, [, -, [0 1

We can use the group structure on Z to induce an (abelian) group structure on
Z/nZ. In order to do this, we define an operation + on Z/nZ, by setting Va,b € Z

[a] + [b] :== [a + b].

Of course we have to check that this prescription is well-defined; luckily, this is
very easy: the following small lemma does the job, as it shows that the result of
the operation does not depend on the representatives chosen for the classes.

Lemma 2.2. If a = a’modn and b = b modn, then

(a+b)=(a +V) mod n.

Proof. By hypothesis n | (¢’ — a) and n | ()’ — b); therefore 3k, ¢ € Z such that
(@' —a)=kn, (' —0b)=In.
Then
(@ +V)—(a+b)=(a" —a)+{ —b) =kn+ln=(k+0)n,

proving that n divides (a’ + V') — (a + b), as needed. O

Therefore, we have a binary operation + on Z/nZ. It is immediately checked
that the resulting structure is a group. Associativity is inherited from Z:
(lal + b)) +[d = [a+b] + [ = [(a+b) +c] = [a+ (b+c)] = [a] + [b+ ] = [a] + ([b] + [c]);
and so are the identity [0] and ‘inverse’ —[a] = [—a].

It is also immediately checked that the resulting groups Z/nZ are commutative,
as the abelian-style notation suggests:

[a] +[b] = [a +b] = [b+ a] = [b] + [a].
12The notation n | m stands for n is a divisor of m; that is, m = nk for some integer k.

13When n = p is prime, Zyp is the official notation for ‘p-adic integers’, which are a completely
different concept; see Exercise [VIIITT9l
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I trust that this material is not new to the reader, who should in any case check
all these assertions carefully.

The abelian groups thus obtained, together with Z, are called cyclic groups;
a popular alternative notation for the group (Z/nZ,+) is C,. This is adopted
especially when one wants to use the ‘multiplicative’ rather than ‘additive’ notation;
thus we can say that C), is generated by one element x, with the relation x™ = e.

Cyclic groups are tremendously important, and we will come back to them in
later sections. For the time being we record the fact that the element

1], € Z/nZ

generates the group, in the sense that every other element may be obtained as a
multiple of this element. For example, if m > 0 is an integer, then

mlp =14 +1p =1+ +[n=m-[1n.
N—————
m times m times

Equivalently, we may phrase this fact by observing that the order of [1],, in Z/nZ
is m: this implies that the n multiples 0 [1],,, 1+ [1]n, ..., (n — 1) - [1],, must all be
distinct, and hence they must fill up Z/nZ.

Proposition 2.3. The order of [m],, in Z/nZ is 1 if n | m, and more generally

] = s

" ged(m,n)’
Proof. If n | m, then [m], = [0],. If n does not divide m, observe again that
[m], = m[1],, and apply Proposition O

Remark 2.4. As a consequence, the order of every element of Z/nZ divides n =
|Z/nZ|, the order of the group. We will see later (Example BIH]) that this is a
general feature of the order of elements in any finite group. a

Corollary 2.5. The class [m],, generates Z/nZ if and only if gcd(m,n) = 1.

This simple result is quite important. For example, if n = p is a prime integer,
it shows that every nonzero class in the group Z/pZ generates it. In any case,
it allows us to construct more examples of interesting groups. The reader should
check (or recall; cf. Exercise ZI4) that there also is a well-defined multiplication
on Z/nZ, given by

[a]n - [b]n = [ab] .
This operation does not define a group structure on Z/nZ: indeed, the class [0],
does not have a multiplicative inverse. On the other hand, for any positive n denote
by (Z/nZ)* the subset of Z/nZ consisting of classes [m], such that ged(m,n) = 1:

(Z/nZ)* = {[m], € Z/nZ| ged(m,n) = 1}.

This subset is clearly well-defined: if m = m/modn, then ged(m,n) =1 <
ged(m/,n) = 1 (Exercise [ZIT), so the defining property of classes in (Z/nZ)* is
independent of representatives.

Proposition 2.6. Multiplication makes (Z/nZ)* into a group.
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Proof. Simple properties of ged’s show that if ged(my,n) = ged(ma,n) = 1, then
ged(myme,n) = 1. (For example, if a prime integer divided both n and mjms, then
it would necessarily divide my or ms, and one of the two ged’s would not be 1.)
Therefore, the product of two elements in (Z/nZ)* is an element of (Z/nZ)*, and
- does define a binary operation

(Z/nZ)* x (Z/nZ)" — (Z/nZ)".

It is clear that this operation is associative (because multiplication is associative
in Z); [1],, is an element of (Z/nZ)* and is an identity with respect to multiplication;
so all we have to check is that elements of (Z/nZ)* have multiplicative inverses
in (Z/nZ)*.

This follows from Corollary If gcd(m,n) = 1, then [m], generates the
additive group Z/nZ, and hence some multiple of [m],, must equal [1],:

(Fa€eZ): a-[ml,=1]n;
this implies
[aln[m]y = [1]n.

Therefore [m),, does have a multiplicative inverse in Z/nZ, namely [a],,. The reader
will verify that ged(a,n) = 1, completing the proof. O

For instance, [8];5 has a multiplicative inverse in (Z/15Z)*. Tracing the argu-
ment given in the proof,
2:84(-1)-15=1,
and hence [2]15 - [8]15 = [1]15: the multiplicative inverse of [8]5 is [2]5.
For n = p a positive prime integer, the group ((Z/pZ)*,-) has order (p — 1).
We will have more to say about these groups in later sections (cf. Example E.G]).

Exercises

2.1. = One can associate an n X n matrix M, with a permutation

o € S, by letting the entry at (7, (i)o) be 1 and letting all other entries be 0.
For example, the matrix corresponding to the permutation

1 2 3
0’<3 1 2)653

would be
0 0 1
M,=11 0 0
01 0
Prove that, with this notation,
Myr = MM,

for all o, 7 € S,,, where the product on the right is the ordinary product of matrices.

MVIET3]
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2.2. > Prove that if d < n, then S,, contains elements of order d. [§21]
2.3. For every positive integer n find an element of order n in Sy.

2.4. Define a homomorphism Dg — S; by labeling vertices of a square, as we did
for a triangle in §2.21 List the 8 permutations in the image of this homomorphism.

2.5. > Describe generators and relations for all dihedral groups Ds,,. (Hint: Let  be
the reflection about a line through the center of a regular n-gon and a vertex, and let
y be the counterclockwise rotation by 27/n. The group Da,, will be generated by x
and y, subject to three relationd™d. To see that these relations really determine Ds,,,
use them to show that any product z* g2y ... equals z’y’ for some i, j with

0<i<1,0<j<n) R4 qIVIZH]

2.6. > For every positive integer n construct a group containing elements g, h such
that |g| =2, |h| = 2, and |gh| = n. (Hint: For n > 1, Ds,, will do.) [JL.0]

2.7. = Find all elements of Ds, that commute with every other element. (The
parity of n plays a role.) [[VIT2]

2.8. Find the orders of the groups of symmetries of the five ‘platonic solids’.
2.9. Verify carefully that ‘congruence mod n’ is an equivalence relation.
2.10. Prove that Z/nZ consists of precisely n elements.

2.11. > Prove that the square of every odd integer is congruent to 1 modulo 8.
[VIIET]

2.12. Prove that there are no nonzero integers a, b, ¢ such that a®+b? = 3¢%. (Hint:

By studying the equation [a]3 + [b]3 = 3[c] in Z/4Z, show that a, b, ¢ would all

have to be even. Letting a = 2k, b = 2/, ¢ = 2m, you would have k? + ¢? = 3m?2.

What’s wrong with that?)

2.13. > Prove that if ged(m, n) = 1, then there exist integers a and b such that
am +bn =1.

(Use Corollary [Z5l) Conversely, prove that if am+bn = 1 for some integers a and b,

then ged(m,n) = 1. 215 §VIZT V4]

2.14. > State and prove an analog of Lemma 2.2] showing that the multiplication

on Z/nZ is a well-defined operation. [§2.3] T2

2.15. = Let n > 0 be an odd integer.
e Prove that if ged(m,n) = 1, then ged(2m + n,2n) = 1. (Use Exercise Z131)
e Prove that if ged(r, 2n) = 1, then ged(“£®,n) = 1. (Ditto.)

e Conclude that the function [m],, — [2m + nla, is a bijection between (Z/nZ)*
and (Z/2nZ)*.

14Two relations are evident. To ‘see’ the third one, hold your right hand in front of and
away from you, pointing your fingers at the vertices of an imaginary regular pentagon. Flip the
pentagon by turning the hand toward you; rotate it counterclockwise w.r.t. the line of sight by 72°;
flip it again by pointing it away from you; and rotate it counterclockwise a second time. This
returns the hand to the initial position. What does this tell you?
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The number ¢(n) of elements of (Z/nZ)* is Euler’s ¢-function. The reader has just
proved that if n is odd, then ¢(2n) = ¢(n). Much more general formulas will be

given later on (cf. Exercise VIE8)). [VIIEIT]
2.16. Find the last digit of 1238237238456 (Work in Z/10Z.)
2.17. > Show that if m = m’ mod n, then ged(m,n) = 1 if and only if ged(m/, n) =

1. [923]

2.18. For d < n, define an injective function Z/dZ — S,, preserving the operation,
that is, such that the sum of equivalence classes in Z/dZ corresponds to the product
of the corresponding permutations.

2.19. > Both (Z/5Z)* and (Z/127Z)* consist of 4 elements. Write their multiplica-
tion tables, and prove that no re-ordering of the elements will make them match.

(Cf. Exercise [LAl) [§23]

3. The category Grp

Groups will be the objects of the category Grp. In this section we define the
morphisms in the category and deal with simple properties of these morphisms.

3.1. Group homomorphisms. As we know, a group consists of two distinct
types of information: a set G and an operatio

mg:GxGE—=G

satisfying certain properties. For two groups (G, m¢g) and (H,mpy), a group homo-
morphism

¢ (Gyma) — (H,mp)
is first of all a function (usually given the same name, ¢ in this case) between the
underlying sets; but this function must ‘know about’ the operations mg on G, my
on H. What is the most natural requirement of this sort?

Note that the set-function ¢ : G — H determines a function
(pxp):GxG— HxH:

we could invoke the universal property of products to obtain this function (cf. Ex-
ercise B]), but since we are dealing with sets, there is no need for fancy language
here—just define the function by

(V(a,b) € G xG) = (px9)(a,b) = (p(a), p(b)).

There is a diagram combining all these maps:

GxGE% HxH

mcl lmH

151n 41l mq was denoted e; here we need to keep track of operations on different groups, so
for a moment I will use a symbol recording the group (and evoking ‘multiplication’).
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What requirement could be more natural than asking that this diagram commute?

Definition 3.1. The set-function ¢ : G — H defines a group homomorphism if the
diagram displayed above commutes. 4

This is a seemingly complicated way of saying something simple: since ¢ and
meq, my are functions of sets, commutativity means the following. For all a,b € G,
the two ways to travel through the diagram give

abl—)(p(ab) O QO(CL) (,D(b)

where I now write - for both operations: in G on the left, in H on the right.
Commutativity of the diagram means that we must get the same result in both
cases; therefore, Definition [3.] can be rephrased as

the set-function ¢ : G — H is a group homomorphism if Va,b € G
pla-b) =p(a) o(b).

In other words, ¢ is a homomorphism if it ‘preserves the structure’. This may
sound more familiar to our reader. As usual, the reason to bring in diagrams (as
in Definition B is that this would make it easy to transfer part of the discussion
to other categories.

If the context is clear, one may simply write ‘homomorphism’, omitting the
qualifier ‘group’.

3.2. Grp: Definition. For G, H groupﬂ we define
Homg (G, H)

to be the set of group homomorphisms G — H.

If G, H, K are groups and ¢ : G — H, v : H — K are two group homo-
morphisms, it is easy to check that the composition ¥ o ¢ : G — K is a group
homomorphism: from the diagram point of view, this amounts to observing that
the ‘outer rectangle’ in

(Yop) X (Yop)

—_ T
GxG——HxH—KxK
X X
]

oy

161 am yielding to the usual abuse of language that lets us omit explicit mention of the
operation.
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must commute if the two ‘inner rectangles’ commute. For arbitrary a,b € G, this
means,

—

b 2)

(Y op)(a-b) =1p(p(a-b)) = P(p(a) - p(b) = P(p(a)) - P(p(b))
= (Yop)(a) (Yoyp)(d)

where (1) holds because ¢ is a homomorphism and (2) holds because 9 is a homo-
morphism.

—

Further, it is clear that composition is associative (because it is for set-functions)
and that the identity function idg : G — G is a group homomorphism. Therefore,
Grp is indeed a category.

3.3. Pause for reflection. The careful reader might raise an objection: the group
axioms prescribe the existence of an identity element ez and of an ‘inverse’; that
is, a specific function

1g:G—=G, glg) =g "

Shouldn’t the definition of morphism in Grp keep track of this type of data? The
definition we have given only keeps track of the multiplication map m.

The reason why we can get away with this is that preserving m automatically
preserves e and ¢:

Proposition 3.2. Let p: G — H be a group homomorphism. Then
* pleq) =en;
* VgeG, pg7h) =wlg)".

In terms of diagrams, the second assertion amounts to saying that

G5 H

must commute.

Proof. The first item follows from the definition of homomorphism and cancella-
tion: since ey = ey - ep,
en - plea) = plea) = plea - eq) = pleq) - plea),
which implies ey = p(eq) by ‘cancelling p(eq)’.
The proof of the second assertion is similar: Vg € G,

-1

-g9) =¢leg) =em = (9)"" - p(9),

implying ¢(g~!) = ¢(g)~* by cancellation. O
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3.4. Products et al. The categories Grp and Set look rather alike at first: given
a group, we can ‘forget’ the information of multiplication and we are left with a set;
given a group homomorphism, we can forget that it preserves the multiplication
and we are left with a set-function. A concise way to express this fact is that there
is a ‘functor’ Grp ~ Set (called in fact a ‘forgetful’ functor); we will deal with
functors more extensively much later on, starting in Chapter [VII1l

However, there are important differences between these two categories. For
example, recall that Set has a unique initial object (that is, (}) and this is not the
same as the final objects (that is, the singletons). Also recall that a trivial group
is a group consisting of a single element (Example [[3)).

Proposition 3.3. Trivial groups are both initial and final in Grp.
This makes trivial groups ‘zero-objects’ of the category Grp.

Proof. It should be clear that trivial groups are final: there is only one function
from a set to a singleton, that is, the constant function; this is vacuously a group
homomorphism.

To see that trivial groups are initial, let T = {e} be a trivial group; for any
group G, define ¢ : T'— G by T'(e) = ec. This is clearly a group homomorphism,
and it is the only possible one since every group homomorphism must send the
identity to the identity (Proposition B2)). O

Here is a similarity: Grp has products; in fact, the product of two groups G, H
is supported on the product G x H of the underlying sets.

To see this, we need to define a multiplication on G x H; the catchword here
is componentwise: define the operation in G x H by performing the operation on
each component separately. Explicitly, define Vg1, g2 € G, Vhy,ho € H

(g1, 71) - (92, h2) = (9192, h1h2).

This operation defines a group structure on G x H: the operation is associative, the
identity is (eq, e ), and the inverse of (g,h) is (g~ ', h~1). All needed verifications
are left to the reader. The group G x H is called the direct product of the groups G
and H.

Also note that the natural projections
GxH
TG TH
G / \ H
(defined as set-functions as in §I2.4]) are group homomorphisms: again, this follows
immediately from the definitions.
Proposition 3.4. With operation defined componentwise, G x H is a product

in Grp.

Proof. Recall (§lI54) that this means that G x H satisfies the following universal
property: for any group A and any choice of group homomorphisms ¢g : A — G,
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g : A — H, there exists a unique group homomorphism pg X ¢y making the
diagram
el G

TG

AT P o H
x

Now, a unique set-function pg X ppg exists making the diagram commute,
because the set G x H is a product of G and H in Set. So we only need to check
that g X ¢p is a group homomorphism, and this is immediate (if cumbersome):
Ya,b € A,

YH

H

commute.

v x pr(ab) = (¢c(ab), pr(ab)) = (pc(a)pc(b), pr(a)em(b))
= (pc(a), pr(a))(wc(d), pu (b)) = (pc x pu(a))(pc X ¢u(b)).
O

What about coproducts? They do exist in Grp, but their construction requires
handling presentations more proficiently than we do right now, and general coprod-
ucts of groups will not be used in the rest of the book; so the reader will have to
deal with them on his or her own. For an important example, see Exercise 3.8}
more will show up in Exercises and 0.7 since free groups are themselves par-
ticular cases of coproducts. The reader will finally produce the coproduct of any
two groups explicitly in Exercise For now, just realize that the disjoint union,
which works as a coproduct in Set (Proposition [I5.6]), is not an option in Grp: there
is no reasonable group structure on the disjoint union. The coproduct of G and H
in Grp is denoted G * H and is called the free product of G and H.

3.5. Abelian groups. The category Ab whose objects are abelian groups, and
whose morphisms are group homomorphisms, will in a sense be more important for
us than the category Grp. In many ways, as we will see, Ab is a ‘nicer’ categor
than Grp. Again the trivial groups are both initial and final (that is, ‘zero’) objects;
products exist and coincide with products in Grp. But here is a difference: unlike
in Grp, coproducts in Ab coincide with products. That is, if G and H are abelian
groups, then the product G x H (with the two natural homomorphisms G — G x H,
H — G x H) satisfies the universal property for coproducts in Ab (cf. Exercise B3).
When working as a coproduct, the product G x H of two abelian groups is often
called their direct sum and is denoted G & H.

There is a pretty subtlety here, which may highlight the power of the language:
even if G and H are commutative, the product G x H does not (necessarily) satisfy

17As we will see in due time (Proposition [TI5.3), Ab is one instance of a general class of
categories of ‘modules over a commutative ring R’ (for R = Z). Unlike Grp, these categories are
abelian, which makes them very well-behaved. We will learn two or three things about abelian
categories in Chapter =<1
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the universal property for coproducts in Grp, even if it does in Ab. For an explicit
example, see Exercise

.|
Exercises

3.1. > Let ¢ : G — H be a morphism in a category C with products. Explain why
there is a unique morphism (¢ X ¢) : G x G — H x H compatible in the evident
way with the natural projections.

(This morphism is defined explicitly for C = Set in §3.11) [§3.1] B2]
3.2. Let ¢ : G — H, v : H— K be morphisms in a category with products, and

consider morphisms between the products G x G, H x H, K x K as in Exercise Bl
Prove that

() x (Pop) = (¥ x P)(p X ).
(This is part of the commutativity of the diagram displayed in §3.21)

3.3. > Show that if G, H are abelian groups, then G x H satisfies the universal

property for coproducts in Ab (cf. §5.5). (3.5 B8l JIINGET]
3.4. Let GG, H be groups, and assume that G = H x G. Can you conclude that H
is trivial? (Hint: No. Can you construct a counterexample?)

3.5. Prove that Q is not the direct product of two nontrivial groups.

3.6. > Consider the product of the cyclic groups Cs, Cs (cf. §23): Cy x C3. By
Exercise B3] this group is a coproduct of Cy and C3 in Ab. Show that it is not a
coproduct of Cy and C5 in Grp, as follows:

e find injective homomorphisms Cy — S35, C3 — Sj;

e arguing by contradiction, assume that Cy x C5 is a coproduct of Cs, C3, and
deduce that there would be a group homomorphism Cy x C3 — S3 with certain
properties;

e show that there is no such homomorphism.

[93.3]

3.7. Show that there is a surjective homomorphism Z x Z — Cs x C3. (* denotes
coproduct in Grp; cf. §3.41)

One can think of Z %« Z as a group with two generators x, y, subject to no
relations whatsoever. (We will study a general version of such groups in §5 see
Exercise [(.01)

3.8. > Define a group G with two generators z,y, subject (only) to the relations
2?2 = eq, y> = eg. Prove that G is a coproduct of Cy and C3 in Grp. (The reader

will obtain an even more concrete description for Cy * C3 in Exercise @14} it is
called the modular group.) [§3.4] [0.14]

3.9. Show that fiber products and coproducts exist in Ab. (Cf. Exercise[I5.121 For
coproducts, you may have to wait until you know about quotients.)
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4. Group homomorphisms

4.1. Examples. For any two groups G, H, the set Homg., (G, H) is certainly
nonempty: at the very least we can define a homomorphism G — H by sending
every element of G to the identity ey of H. Thus, Home,,(G, H) is a ‘pointed set’

(cf. Example [[38]).

There is a purely categorical way to think about this: since Grp has zero-
objects {x} (recall that trivial groups are both initial and final in Grp; cf. Proposi-
tion B3)), there are unique morphisms

G- {x}, {x}>H

in Grp; their composition is the distinguished element of Homg,, (G, H) mentioned
above; we will call this element the trivial morphism.

More ‘meaningful” examples can be constructed by considering the groups en-
countered in §2b for instance, the function Dg — S3 defined in §2.2is a homomor-
phism. Such examples will likely all be instances of the notion of group action. In
general, an ‘action’ of a group G on an object A of a category C is a homomorphism

G — Autc(A);

that is, a group G ‘acts’ on an object if the elements of G determine isomorphisms
of that object to itself, in a way compatible with compositions. If C = Set, this
means that elements of G determine specific permutations of the set A. For exam-
ple, the symmetries of an equilateral triangle (that is, elements of Dg) determine
permutations of the vertices of that triangle (that is, permutations of a set with
three elements), and they do so compatibly with composition; this is what gives
us homomorphisms Dg — S3. We say that Dg ‘acts on the set of vertices’ of the
triangle.

The reader can (and should) construct many more examples of this kind. We
will have much more to say about actions of groups and other algebraic entities in
later sections.

Here is an example with a different flavor: the exponential function is a homo-
morphism from (R, +) to the group (R>?,-) of positive real numbers, with ordinary
multiplication as operation. Indeed, e®*t? = e%b. A similar (and very important)
class of examples may be obtained as follows: let G be any group and g € G any

element of G; define an ‘exponential map’ ¢, : Z — G by
NMaeZ): e4(a):=g"
Then ¢, is (clearly) a group homomorphism. The element g generates G if and only
if €4 is surjective.
One concrete instance of this homomorphism (in the abelian environment, thus
using multiples rather than powers) is the ‘quotient’ function 7, : Z — Z/nZ,
a—a-[1], =laly:

with the notation introduced above, this is €[y}, . This function is surjective; hence
[1],, generates Z/nZ. In fact, as observed in §2.3 (Corollary 2H), [m], gener-
ates Z/nZ if and only if ged(m,n) = 1.
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If m | n, there is a homomorphism

m s L/l — L)mZ

| S

Z/nZ —— 7/mZ

making the diagram

commute: that is,
T ([a]n) = [a]m;
the reader should check carefully that this function is well-defined (Exercise E.T]).

If my and my are both divisors of n, we have homomorphisms 7}, , 7y, from

Z/nZ to both Z/m1Z and Z/msZ and hence to their direct product. For instance,
since 6 = 2 - 3, there is a homomorphism

Z)67 — 1)27 x 7]3Z
(or, in ‘multiplicative notation’, Cs — Co x C3). Explicitly,

[0J6 = ([0]2,[0]5), [ = ([1]2,[1]3), [2]6 = ([0]2, [2]3),
Ble = ([U2,[0]3),  [4l6 = ([0)2,[1]3), [5l6 = ([1]2,[2]3)-

Note that this homomorphism is a bijection; as we will see in a moment (§4.3]), this
makes it an isomorphism; in particular, Cg is also a product of Cy and C5 in Grp.

One can concoct a homomorphism Z/nZ — Z/mZ also if n | m: for example,
the function Z/2Z — Z/4Z defined by

[0]2 = [0]4, [1]2 = [2]4

n

is clearly a group homomorphism. Unlike 7],

compatibla:9 with the homomorphisms 7.

this homomorphism is not nicely

On the other hand, is there a nontrivial group homomorphism (for example)
C, — C7? Note that there are 7* = 2,401 set-functions from C, to Cy (cf. Ex-
ercise [IZ.I0); the question is whether any of these functions (besides the trivial
homomorphism sending everything to e) preserves the operation. We already know
that a homomorphism must send the identity to the identity (Proposition B2), and
that already rules out all but 343 functions (why?); still, it is unrealistic to write
all of them out explicitly to see if any is a homomorphism.

The reader should think about this before we spill the beans in the next sub-
section.

18 Also, note that while 7" preserves multiplication as well as sum, this new homomorphism
does not; that is, it is not a ‘ring homomorphism’. This is immediately visible in the given
example: [1]2 - [1]2 = [1]2, but [2]4 - [2]4 = [0]4.
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4.2. Homomorphisms and order. Group homomorphisms are set-functions pre-
serving the group structure; as such, they must preserve many features of the the-
ory. Proposition is an instance of this principle: group homomorphisms must
preserve identities and inverses. It is also clear that if ¢ : G — H is a group homo-
morphism and g is an element of finite order in G, then ¢(g) must be an element
of finite order in H: indeed, if ¢" = eg for some n > 0, then

p(9)" = »(9") = plea) = en.
In fact, this observation establishes a more precise statement:

Proposition 4.1. Let ¢ : G — H be a group homomorphism, and let g € G be an
element of finite order. Then |o(g)| divides |g|.

Proof. As observed, ¢(g)!9! = egr; applying Lemma [[I0 gives the statement. [

Example 4.2. There are no nontrivial homomorphisms Z/nZ — Z: indeed, the
image of every element of Z/nZ must have finite order, and the only element with
finite order in (Z,+) is 0.

There are no nontrivial homomorphisms ¢ : C4y — C7. Indeed, the orders of
elements in Cy divide 4 (cf. Proposition 23], and the orders of elements in Cy
divides 7. Thus, the order of each ¢(g) must divide both 4 and 7; this forces
lo(g)| =1 for all g, that is, ¢(g) = e for all g € Cy. J

Of course the order itself is not preserved: for example, 1 € Z has infinite
order, while [1],, = m,(1) € Z/nZ has order n (with notation as in §4.1]). Order is
preserved through isomorphisms, as we will see in a moment.

4.3. Isomorphisms. An isomorphism of groups ¢ : G — H is (of course) an
isomorphism in Grp, that is, a group homomorphism admitting an inverse
o ''H- G

which is also a group homomorphism. Taking our cue from Set, if a homomorphism
of groups is an isomorphism, then it must in particular be a bijection between the
underlying sets. Luckily, the converse also holds:

Proposition 4.3. Let ¢ : G — H be a group homomorphism. Then ¢ is an
isomorphism of groups if and only if it is a bijection.

Proof. One implication is immediate, as pointed out above. For the other impli-
cation, assume ¢ : G — H is a bijective group homomorphism. As a bijection, ¢
has an inverse in Set:

ol H =G
we simply need to check that this is a group homomorphism. Let hy, ho be elements
of H, and let g1 = ¢~ !(h1), g2 = ¢ *(h2) be the corresponding elements of G. Then
e (b ho) = 97 0(91) - 0(92) = ¢ (@917 92)) = g1 g2 = () - (ho)
as needed. ]
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Example 4.4. The function Dg — S5 defined in §2.2]is an isomorphism of groups,
since it is a bijective group homomorphism. So is the exponential function (R, 4) —
(R>9.) mentioned in &Il If the exponential function €, : Z — G determined by
an element g € G (as in §4.7)) is an isomorphism, we say that G is an ‘infinite cyclic’
group.

The function 7§ x 7§ : Cg — Cq x C3 studied (‘additively’) in §&1] is an
isomorphism. a

Definition 4.5. Two groups G, H are isomorphic if they are isomorphic in Grp
in the sense of ATl that is (by Proposition 3], if there is a bijective group
homomorphism G — H. a

We have observed once and for all in JIIT] that ‘isomorphic’ is automatically
an equivalence relation. We write G = H if G and H are isomorphic.

Automorphisms of a group G are isomorphisms G — G these form a group
Autep(G) (cf. AT, usually denoted Aut(G).

Example 4.6. We have introduced our template of cyclic groups in §231 The
notion of isomorphism allows us to give a formal definition:

Definition 4.7. A group G is cyclic if it is isomorphic to Z or to C,, = Z/nZ for
somd] 7. 3

Thus, Cy x C3 is cyclic, of order 6, since Cy x C3 = (Cs. More generally
(Exercise £9) C),, x C), is cyclic if ged(m,n) = 1.

The reader will check easily (Exercise 3] that a group of order n is cyclic if
and only if it contains an element of order n.

There is a somewhat surprising source of cyclic groups: if p is prime, the
group ((Z/pZ)*,-) is cyclic. We will prove a more general statement when we have
accumulated more machinery (Theorem [VIGI0), but the adventurous reader can
already enjoy a proof by working out Exercise .11l This is a relatively deep fact;
note that, for example, (Z/127Z)* is not cyclic (cf. Exercise 219 and Exercise [L10).
The fact that (Z/pZ)* is cyclic for p prime means that there must be integers a
such that every nonmultiple of p is congruent to a power of a; the usual proofs of
this fact are not constructive, that is, they do not explicitly produce an integer with
this property. There is a very pretty connection between the order of an element of
the cyclic group (Z/pZ)* and the so-called ‘cyclotomic polynomials’; but that will
have to wait for a little field theory (cf. Exercise [VIIE.TH]).

As we have seen, the groups Dg and S3 are isomorphic. Are Cg and S3 iso-
morphic? There are 46,656 functions between the sets Cs and S3, of which 720 are
bijections and 120 are bijections preserving the identity. The reader is welcome to
list all 120 and attempt to verify by hand if any of them is a homomorphism. But
maybe there is a better strategy to answer such questions. ... a

Isomorphic objects of a category are essentially indistinguishable in that cate-
gory. Thus, isomorphic groups share every group-theoretic structure. In particular,

19This includes the possibility that n = 1, that is, trivial groups are cyclic.
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Proposition 4.8. Let ¢ : G — H be an isomorphism.

° (VgeG): lp(g)l = lgl;
o G is commutative if and only if H is commutative.

Proof. The first assertion follows from Proposition @I} the order of ¢(g) divides
the order of g, and on the other hand the order of g = ¢~ !(p(g)) must divide the
order of ¢(g); thus the two orders must be equal.

The proof of the second assertion is left to the reader. O

Further instances of this principle will be assumed without explicit mention.

Example 4.9. Cg % S3, since one is commutative and the other is not. Here is
another reason: in Cg there is 1 element of order one, 1 of order two, 2 of order
three, and 2 of order six; in S3 the situation is different: 1 element of order one, 3
of order two, 2 of order three. Thus, none of the 120 bijections Cs — S3 preserving
the identity is a group homomorphism.

Note: Two finite commutative groups are isomorphic if and only if they have
the same number of elements of any given order, but we are not yet in a position
to prove this; the reader will verify this fact in due time (Exercise [VIEI3]). The
commutativity hypothesis is necessary: there do exist pairs of nonisomorphic finite
groups with the same number of elements of any given order (same exercise). a

4.4. Homomorphisms of abelian groups. I have already mentioned that Ab
is in some ways ‘better behaved’ than Grp, and I am ready to highlight another
instance of this observation. As we have seen, Home,, (G, H) is a pointed set for
any two groups G, H. In Ab, we can say much more: Homay, (G, H) is a group (in
fact, an abelian group) for any two abelian groups G, H.

The operation in Homay, (G, H) is ‘inherited’ from the operation in H: if ¢, :
G — H are two group homomorphisms, let ¢ + 1 be the function defined by

(VaeG):  (p+4)(a):=¢la) +¢(a).
Is ¢ + 1 a group homomorphism? Yes, because Va,b € G

(p+9)(a+b) =pla+b)+1(a+b) = (pla) + @) + (¥(a) + (b))

!
= (p(a) + () + (p(0) + ¥ (b)) = (¢ + ¥)(a) + (¢ + ¥)(b).
Note that the equality marked by ! uses crucially the fact that H is commutative.

With this operation, Homap (G, H) is clearly a group: the associativity of + is
inherited from that of the operation in H; the trivial homomorphism is the identity
element, and the inversd®] of ¢ : G — H is defined (not surprisingly) by

(VaeG): (=p)(a) = —¢(a).
In fact, note that these conclusions may be drawn as soon as H is commutative:

Homg, (G, H) is a group if H is commutative (even if G is not). In fact, if H is

20Unfortunate clash of terminology! I mean the ‘inverse’ as in ‘group inverse’, not as a
possible function H — G.
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a commutative group, then HA = Homset(A, H) is a commutative group for all
sets A; we will come back to this group in §5.4

Exercises

4.1. > Check that the function 7)), defined in §4.1]is well-defined and makes the
diagram commute. Verify that it is a group homomorphism. Why is the hypothe-
sis m | n necessary? [§4.1]

4.2. Show that the homomorphism 73 x 3 : Cy — Co X Cy is not an isomorphism.

In fact, is there any isomorphism Cy — Cy x C57

4.3. > Prove that a group of order n is isomorphic to Z/nZ if and only if it contains
an element of order n. [§43]

4.4. Prove that no two of the groups (Z,+), (Q,+), (R,+) are isomorphic to one
another. Can you decide whether (R,+), (C,+) are isomorphic to one another?

(Cf. Exercise [VIITT1)
4.5. Prove that the groups (R~ {0},-) and (C ~ {0}, -) are not isomorphic.

4.6. We have seen that (R, +) and (R>?, ) are isomorphic (Example[d4). Are the
groups (Q, +) and (Q~°,-) isomorphic?

4.7. Let G be a group. Prove that the function G — G defined by g — ¢! is a
homomorphism if and only if G is abelian. Prove that g — ¢ is a homomorphism
if and only if G is abelian.

4.8. = Let G be a group, and let g € G. Prove that the function v, : G — G defined
by (Va € G) : v4(a) = gag™' is an automorphism of G. (The automorphisms -, are
called ‘inner’ automorphisms of G.) Prove that the function G — Aut(G) defined
by g — 74 is a homomorphism. Prove that this homomorphism is trivial if and

only if G is abelian. [6.7 71T IVITH]

4.9. > Prove that if m, n are positive integers such that ged(m,n) = 1, then
Crnn = Cpy x Cy. [$E3 ET0 §IVIGTL VIGF]

4.10. > Let p # ¢ be odd prime integers; show that (Z/pgZ)* is not cyclic. (Hint:
Use Exercise to compute the order N of (Z/pgZ)*, and show that no element
can have order N.) [§4.3]

4.11. > In due time we will prove the easy fact that if p is a prime integer, then
the equation % = 1 can have at most d solutions in Z/pZ. Assume this fact, and
prove that the multiplicative group G = (Z/pZ)* is cyclic. (Hint: Let g € G be an
element of maximal order; use Exercise to show that !9l = 1 for all h € G.

Therefore. . ..) [§4.3] ET5] EI6 IVIE.3]
4.12. - o Compute the order of [9]31 in the group (Z/31Z)*.

e Does the equation 23 — 9 = 0 have solutions in Z/31Z? (Hint: Plugging in
all 31 elements of Z/31Z is too laborious and will not teach you much. Instead,
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use the result of the first part: if ¢ is a solution of the equation, what can you say
about |c|?) NIIETH
4.13. — Prove that Aute,,(Z/2Z x Z/27) = S5. [[VIET14]

4.14. > Prove that the order of the group of automorphisms of a cyclic group C,, is
the number of positive integers r <n that are relatively prime to n. (This is called

Euler’s ¢-function; cf. Exercise [6.141) [§IVIT4 IVIT22] §IVIR.H]

4.15. = Compute the group of automorphisms of (Z, +). Prove that if p is prime,
then Aute,,(Cp) = Cp—1. (Use Exercise I111) [VIEI2]

4.16. — Prove Wilson’s theorem: an integer p > 1 is prime if and only if
(p—1)!'=-1 mod p.

(For one direction, use Exercises [[8 and [Tl For the other, assume d is a proper
divisor of p, and note that d divides (p — 1)!; therefore. ...) [VIEIT]

4.17. For a few small (but not too small) primes p, find a generator of (Z/pZ)*.
4.18. Prove the second part of Proposition 4.8

5. Free groups

5.1. Motivation. Having become more familiar with homomorphisms, we can
now contemplate one fancier example of a group. The motivation underlying this
new construction may be summarized as follows: given a set A, whose elements
have no special ‘group-theoretic’ property, we want to construct a group F(A)
containing A ‘in the most efficient way’.

For example, if A = (), then a trivial group will do. If A = {a} is a singleton,
then a trivial group will not do: because although a trivial group {a} would itself
be a singleton, that one element a in it would have to be the identity, and that
is certainly a very special group-theoretic property. Instead, I propose that we
construct an infinite cyclic group (a) whose elements are ‘formal powers’ a™, n € Z,

and we identify a with the power a':

(@)= {-- a2 070" = e, = a,a%, 0%, };

we take all these powers to be distinct an efine multiplication in the eviden

take all th P to be disti d defi Itiplication in th ident
way—so that the exponential map

€q: Z— {a), eu(n):=a"
is an isomorphism. The fact that ‘all powers are distinct’ is the formal way to

implement the fact that there is nothing special about a: in the group F'({a}) = (a),
a obeys no condition other than the inevitable a® = e.

Summarizing: if A is a singleton, then we may take F(A) to be an infinite
cyclic group.

The task is to formalize the heuristic motivation given above and construct a
group F(A) for every set A. As T often do, I will now ask the reader to put away
this book and to try to figure out on his or her own what this may mean and how
it may be accomplished.
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5.2. Universal property. Hoping that the reader has now acquired an individual
viewpoint on the issue, here is the standard answer: the heuristic motivation is
formalized by means of a suitable universal property. Given a set A, our group F(A)
will have to ‘contain’ A; therefore it is natural to consider the category .#4 whose
objects are pairs (j, G), where G is a group and

jiA—=G
isa set—functio from A to G and morphisms
(J1,G1) = (j2, G2)

are commutative diagrams of set-functions

Gli)Gg

P

A

in which ¢ is required to be a group homomorphism.

The reader will be reminded of the categories we considered in Example [B3.7t
the only difference here is that we are mixing objects and morphisms of one cate-
gory (that is, Grp) with objects and morphisms of another (related) category (that
is, Set). The fact that we are considering all possible functions A — G is a way to
implement the fact that we have no a prior: group-theoretic information about A:
we do not want to put any restriction on what may happen to the elements of A
once they are mapped to a group G; hence we consider all possibilities at once.

A free group F(A) on A will be (the group component of) an initial object
in .#4. This choice implements the fact that A should map to F(A) in the ‘most
efficient way’: any other way to map A to a group can be reconstructed from
this one, by composing with a group homomorphism. In the language of universal
properties, we can state this as follows: F(A) is a free group on the set A if there is a
set-function j : A — F(A) such that, for all groups G and set-functions [ : A — G,
there exists a unique group homomorphism ¢ : F/(A) — G such that the diagram

F(A) 2@

1A

A

commutes. By general nonsense (Proposition M54, this universal property de-
fines F'(A) up to isomorphism, if this group exists. But does F'(A) exist?

Before giving a ‘concrete’ construction of F'(A), let’s check that if A = {a} is
a singleton, then F(A) = Z, as proposed in §5.I1 The function j : A — Z will send
a to 1 € Z. For any group G, giving a set-function f : A — G amounts to choosing

21We could assume that j is injective, identifying A with a subset of G; the construction
would be completely analogous, and the resulting group would be the same. However, considering
arbitrary functions leads to a stronger, more useful, universal property.
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one element g = f(a) € G. Now there is a unique homomorphism ¢ : Z — G
making the diagram

z—*%.G

v

{a}

commute: because this forces ¢(1) = p o j(a) = f(a) = g, and then the homo-
morphism condition forces ¢(n) = ¢g™. That is, ¢ is necessarily the exponential
map €, considered in §L.I1 Therefore, infinite cyclic groups do satisfy the universal
property for free groups over a singleton.

5.3. Concrete construction. As we know, terminal objects of a category need
not exist. So I have to convince the reader that free groups F'(A) exist, for every
set A.

Given any set A, we are going to think of A as an ‘alphabet’ and construct
‘words’ whose letters are elements of A or ‘inverses’ of elements of A. To formalize
this, consider a set A’ isomorphic to A and disjoint from it; call a=! the element
in A’ corresponding to a € A. A word on the set A is an ordered list

(ala A, aan);
which we denote by the juxtaposition
W= ai1ag - - Qp,

where each ‘letter’ a; is either an element a € A or an element a=! € A’. I will
denote the set of words on A by W(A); the number n of letters is the ‘length’ of w;
I include in W(A) the ‘empty word” w = (), consisting of no letters.

For example, if A = {a} is a singleton, then an element of W (A) may look like

1 -1 1 1

a “a “aaaa Caa .
An element of W({z,y}) may look like
x:mc_lyy_lxxy_lx_lyy_la:y_lx.

Now the notation I have chosen hints that elements in W(A) may be redundant:
for example,

1

rzyy “x and xx

are distinct words, but they ought to end up being the same element of a group
having to do with words. Therefore, we want to have a process of ‘reduction” which
takes a word and cleans it up by performing all cancellations. Note that we have
to do this ‘by hand’, since we have not come close yet to defining an operation or
making formal sense of considering a~' to be the ‘inverse’ of a.

Describing the reduction process is invariably awkward—it is a completely ev-
ident procedure, but writing it down precisely and elegantly is a challenge. I will
settle for the following.
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e Define an ‘elementary’ reduction r : W(A) — W(A): given w € W(A), search
for the first occurrence (from left to right) of a pair aa™' or a~la, and let
r(w) be the word obtained by removing such a pair. In the two examples
given above,

r(a *a"taaaa" aa™t) = a taaa " aa !,
r(a:xx_1yy_1xxy_1x_1yy_1:vy_1x) = xyy_lx:vy_lx_lyy_la:y_lx.

e Note that r(w) = w precisely when ‘no cancellation is possible’; We say that
w is a ‘reduced word’ in this case.

Lemma 5.1. If w € W(A) has length n, therPd rL %) (w) is a reduced word.

Proof. Indeed, either r(w) = w or the length of r(w) is less than the length of w;
but one cannot decrease the length of w more than n/2 times, since each non-
identity application of r decreases the length by two. (Il

e Now define the ‘reduction’ R : W(A) — W(A) by setting R(w) = L3 (w),
where n is the length of w. By the lemma, R(w) is always a reduced word.

For example, R(a ta"taaaa taa™1) is the empty word, since

r*(a ra  aaaa " aat) = r3(a" taaa " taat) = r*(aa"taa™) = r(aa”t) = ();

and R(zzz lyy~? Le=tyy=tay~le) = zxay ly 'z, as the reader may

check.

Ty

Let F(A) be the set of reduced words on A, that is, the image of the reduction
map R we have just defined.

We are ready to (finally) define free groups ‘concretely’. Define a binary oper-
ation on F'(A) by juztaposition & reduction: for reduced words w, w’, define w - w’
as the reduction of the juxtaposition of w and w’,

w-w' = R(ww').
It is essentially evident that F'(A) is a group under this operation:

e The operation is associative.
e The empty word e = () is the identity in F(A), since ew = we = w (no
reduction is necessary).
e If w is a reduced word, the inverse of w is obtained by reversing the order of
the letters of w and replacing each a € A by a=! € A’ and each a~! by a.
The most cumbersome of these statements to prove formally is associativity; it
follows easily from (for example) Exercise [1.41

There is a function j : A — F(A), defined by sending the element a € A to the
word consisting of the single ‘letter’ a.

Proposition 5.2. The pair (j, F'(A)) satisfies the universal property for free groups
on A.

22| q] denotes the largest integer < q.
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Proof. This is also essentially evident, once one has absorbed all the notation.
Any function f : A — G to a group extends uniquely to a map ¢ : F(A) —
G, determined by the homomorphism condition and by the requirement that the
diagram commutes, which fixes its value on one-letter words a € A (as well as
ona~led).

To check more formally that ¢ exists as a homomorphism, one can proceed as
follows. If f: A — G is any function, we can extend f to a set-function

p:W(A) =G
by insisting that on one-letter words a or a=! (for a € A),
¢la) = f(a), ¢la™) = fla)™",
and that ¢ is compatible with juxtaposition:
Glww') = p(w)p(w')
for any two words w, w’. The key point now is that reduction is invisible for ¢:
P(R(w)) = ¢(w),

since this is clearly the case for elementary reductions; therefore, since ¢ : F(A) —
G agrees with ¢ on reduced words, we have for w,w’ € F(A)

pw-w') =gw-w') = g(Rww')) = g(ww') = G(w)@(w') = p(w)p(w') :
that is, ¢ is a homomorphism, as needed. O

Example 5.3. It is easy to ‘visualize’ F'({a}) = Z; but it is already somewhat
challenging for the free group on two generators, F({x,y}). The best I can do is
the following: behold the infinite grap

*-i--e
] .
L L Tt .
3 ° . 3
.-l . .-l .
. .
. . 4 .
. .
*-i--e *-i--e
. . [ [ . .
@--1----- e . R e .

3 ° . . ° .
.-l . oo .
. .
. . . .
° °
o . .- .
[ . . . . .
@--1----- R . R R e .

° . 3 3 . °
. . .-l . .-l . . .

. .

. . 4 .

. .

o . o .

. . . .

L oo .

° .

oo

23This is an example of the Cayley graph of a group (cf. Exercise[80): a graph whose vertices
correspond to the elements of the group and whose edges connect vertices according to the action
of generators.
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obtained by starting at a point (the center of the picture), then branching out in
four directions by a length of 1, then branching out similarly by a length of 1/2, then
by 1/4, then by 1/8, then... (and I stopped there, to avoid cluttering the picture
too much). Then every element of F'({z,y}) corresponds in a rather natural way to
exactly one dot in this diagram. Indeed, we can place the empty word at the center;
and we can agree that every z in a word takes us one step to the right, every z—!
to the left, every y up, and every 3! down. For example, the word yz~'yx takes
us here:

3 ° . . ° .
.-l . oo .
. .
. . . .
° °
o . .- .
[ . . . . .
@--1----- R . R R e .
° . 3 3 . °
. . .-l . .-l . . .
. .
. . 4 .
. .
o . o .
. . . .
L R .
° .
oo

The reader will surely encounter this group elsewhere: it is the fundamental
group of the ‘figure 8. a

5.4. Free abelian groups. We can pose in Ab the same question answered above
for Grp: that is, ask for the abelian group F%°(A) which most efficiently contains
the set A, provided that we do not have any additional information on the elements
of A. Of course we do know something about the elements of A this time: they
will have to commute with each other in F?*(A). This plays no role if A = {a} is
a singleton, and therefore F%({a}) = F({a}) = Z; but the requirement is different
for larger sets, so we should expect a different answer in general.

The formalization of the heuristic requirement is precisely the same universal
property that gave us free groups, but (of course) stated in Ab: F(A) is a free
abelian group on the set A if there is a set-function j : A — F%(A) such that,
for all abelian groups G and set-functions f : A — G, there exists a unique group
homomorphism ¢ : F**(A) — G such that the following diagram commutes:

Fob(A) X— @

14

A
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Again, Proposition [I[54] guarantees that F2°(A) is unique up to isomorphism,
if it exists; but we have to prove it exists! This is in some way simpler than for Grp,
in the sense that F%°(A) is easier to understand, at least for finite sets A.

To fix ideas, I will first describe the answer for a finite set, say A = {1,--- ,n}.
I will denote by Z®" the direct sum

VASERRNGY/
S ——
n-times
recall (§33)) that this group ‘is the same as’ the product?d z» (but we view it as a
coproduct). There is a function j : A — Z®", defined by

§() = (0,---,0, 1 ,0,---,0)€Z°"

i-th place

Claim 5.4. For A={1,---,n}, Z%" is a free abelian group on A.

Proof. Note that every element of Z®" can be written uniquely in the form
i, m;ij(i): indeed,

(ml’... 7mn> = (m1,0,-~- ’0)+(0’m2707... ,0)_|_..._|_(()7... ;O7mn)
=m1(170,"' ,0)—|—m2(0,1,0,--- 70)_~_..._~_mn(0,... ,0,1)
=myj(1) 4 +mnj(n),

and (mq,---,my) = (0,---,0) if and only if all m; are 0.

Now let f : A — G be any function from A = {1,--- ,n} to an abelian group G.
I define ¢ : Z®" — G by

@ <Zmij(i)> = Zmz‘f(i) :
i=1 i=1

indeed, we have no choice—this definition is forced by the needed commutativity
of the diagram

zen . a

1A

A

and by the homomorphism condition. Thus ¢ is certainly uniquely determined, and
we just have to check that it is a homomorphism. This is where the commutativity
of G enters:

¢ (Z m;j(z’)> +o (Z mé’j(i)) =D mif) + Yo mi f@) =" (mi +mi)f(i)

=1
because G is commutative,
= (Z(ﬂ% + m?)]’(l’)) =¢ (Z m; 5 (i) + Zmélj(i)>
i=1 i=1 i=1
as needed. O

24Indeed, it is common to denote this group by Z", omitting the @. No confusion is likely,
but I will try to distinguish the two to emphasize that they play different categorical roles.
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Remark 5.5. A less hands-on, more high-brow argument can be given by contem-
plating the universal property defining free abelian groups vis-a-vis the universal
property for coproducts; cf. Exercise 5.7} J

Now for the general case: let A be any set. As we have seen, H* = Homse (A, H)
has a natural abelian group structure if H is an abelian group (§4.4)); elements
of H# are arbitrary set-functions o : A — H. We can define a subset H®4 of HA
as follows:

H® .= {a: A — H|a(a) # ey for only finitely many elements a € A}.

The operation in H# induces an operation in H®4, which makes H®4 into a
grou

The reader should note that H®4 is the whole of H4 if A is a finite set; and
that Z%4 = 797 if A = {1,--- ,n}: indeed, (my,--- ,m,) € Z®" may be identified
with the function {1,--- ,n} — Z sending i to m;.

For H = Z there is a natural function j : A — Z%4, obtained by sending a € A
to the function j, : A — Z defined by

A ) 1 ifz=a,
(Vzx e A): ja(l‘).—{o ifx 4 a.

Note that for A = {1,---,n} and identifying Z®4 = Z®"  this function j is the
same function denoted j earlier.

Proposition 5.6. For every set A, F(A) = 794,

Proof. The key point is again that every element of Z®4 may be written uniquely
as a finite sum

Z mg jla), mg # 0 for only finitely many a;
acA

once this is understood, the argument is precisely the same as for Claim 54 O

25Thus H®4 is a subgroup of HA; cf. §8



78 II. Groups, first encounter

.|
Exercises

5.1. Does the category .# 4 defined in §5.2 have final objects? If so, what are they?

5.2. Since trivial groups T are initial in Grp, one may be led to think that (e, T')
should be initial in .#4, for every A: e would be defined by sending every element
of A to the (only) element in T'; and for any other group G, there is a unique
homomorphism T — G. Explain why (e, T) is not initial in .4 (unless A = ().

5.3. > Use the universal property of free groups to prove that the map j : A — F(A)
is injective, for all sets A. (Hint: It suffices to show that for every two elements
a, b of A there is a group G and a set-function f : A — G such that f(a) # f(b).
Why? How do you construct f and G?7) [§IIIE.3]

5.4. > In the ‘concrete’ construction of free groups, one can try to reduce words
by performing cancellations in any order; the process of ‘elementary reductions’
used in the text (that is, from left to right) is only one possibility. Prove that the
result of iterating cancellations on a word is independent of the order in which the
cancellations are performed. Deduce the associativity of the product in F(A) from

this. [§53]
5.5. Verify explicitly that H®4 is a group.

5.6. > Prove that the group F({z,y}) (visualized in Example [53]) is a coproduct
Z+7 of Z by itself in the category Grp. (Hint: With due care, the universal property
for one turns into the universal property for the other.) [§34] B B.7]

5.7. > Extend the result of Exercise £.0 to free groups F({z1,...,2,}) and to free
abelian groups F({z,...,z,}). [§3.4 45.4]

5.8. Still more generally, prove that F(AIIB) = F(A)+F(B) and that F**(AIIB) =
F(A) @ F(B) for all sets A, B. (That is, the constructions F, F® ‘preserve
coproducts’.)

5.9. Let G = Z®N. Prove that G x G 2 G.
5.10. - Let F' = Fe(A).

e Define an equivalence relation ~ on F by setting f’ ~ f if and only if f— f’ = 2g
for some g € F. Prove that F/~ is a finite set if and only if A is finite, and in
that case |F/~| = 2/41,

e Assume F(B) = Fe(A). If A is finite, prove that B is also, and that A =~ B
as sets. (This result holds for free groups as well, and without any finiteness
hypothesis. See Exercises and [VIIT201)

L4 T3]
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6. Subgroups

6.1. Definition. Let (G,-) be a group, and let (H,e) be another group, whose
underlying set H is a subset of G.

Definition 6.1. (H,e) is a subgroup of G if the inclusion function i : H — G is a
group homomorphism. a

For example, the trivial group consisting of the single element eq is a subgroup
of G.

If (H,e) is a subgroup of (G, -), then Vhy, ho € H:
We say that the operation e on H is ‘induced’ from the operation - on G; in practice

one omits explicit mention of ¢ and of the operations, and (*) guarantees that no
ambiguity will arise from this.

The subgroup condition may be streamlined. A subset H of a group G deter-
mines a subgroup if the operation - in G induces (by (*)) a binary operation in H
(we say that H is closed with respect to the operation in G), satisfying the group
axioms. Since the identity and inverses are preserved through homomorphisms
(Proposition 32)), the identity ey of H will have to coincide with the identity eq
of G and the inverse of an element A € H has to be the same as the inverse of that
element in G. The most economical way to say all this is

Proposition 6.2. A nonempty subset H of a group G is a subgroup if and only if
(Ya,be H): ab~'c H.

Proof. It is clear that if H is a subgroup, then the stated condition holds: indeed,
if b € H, then the inverse of b must also be in H and H is closed under the operation
of G.

Conversely, assume the stated condition holds; we have to check that H is
closed under the operation of G, the induced operation on H is associative, and
it admits an identity element and inverses (that is, it contains eg and is closed
under taking inverses in (). Since H is nonempty, we can find an element h € H.
Choosing a = b = h, we see that

eq=hh ™' =ab™! € H,;
thus H contains the identity. Given any h € H, choosing a = e and b = h shows

that
hl=ech t=ab! e H;

thus H contains the inverse of any of its elements. Given any hq, hy € H, choose
a=hy, b= h;l; the stated condition says that

h1h2 = hl((hg)il)il = alfl (S I{7
proving that H is closed under the operation.

Finally, the fact that the operation is associative in GG implies immediately that
the induced operation is associative in H, concluding the proof that H, with the
induced operation, is a group. O
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This criterion makes it particularly straightforward to check simple facts con-
cerning subgroups. For example,

Lemma 6.3. If {H,}aca is any family of subgroups of a group G, then
H= ﬂ H,
acA
is a subgroup of G.
Proof. This follows right away from Proposition H is nonempty, because
e € H, for all a, so e € H; and
a,beH = (Va€A):abcH, = Na€A):ab '€ H, = ab '€ H,

proving that H is a subgroup of G. ]

Similarly,

Lemma 6.4. Let ¢ : G — G’ be a group homomorphism, and let H' be a subgroup
of G'. Then ¢~ (H') is a subgroup of G.

Proof. Recall (end of §IZTH) that ¢~ !(H’) consists of all g € G such that ¢(g) €
H'. Since ¢(eg) = eqr € H', this set is nonempty. If a,b € ¢~ *(H'), then ¢(a)
and ¢(b) are in H’, and hence

plab™") = p(a)p(b) ™ € H' :
thus, ab=! € ¢~Y(H’). This implies that ¢~*(H’) is a subgroup of G, by Proposi-
tion O

6.2. Examples: Kernel and image. Every group homomorphism ¢ : G — G’
determines two interesting subgroups:

e the kernel of p, ker ¢ C G; and

e the image of ¢, imp C G’.

Definition 6.5. The kernel of ¢ : G — G’ is the subset of G consisting of elements
mapping to the identity in G’:

kerp :={g € Glp(g) = ec} = ¢ " (ec). J

Since {e¢} is a subgroup of G’, Lemma [6.4] shows that ker ¢ is indeed a sub-
group of GG. For an (even) more explicit argument, note that ker ¢ is nonempty,
since e € ker p; and if a, b are in ker ¢, then

plab™!) = p(a)p(b) ' = ecreg) = ear,
proving that ab~! € ker . This shows that ker ¢ is a subgroup of G, by Proposi-
tion

The verification that im ¢ is a subgroup is left to the reader. In fact, the reader
should check that the image of any subgroup of G is a subgroup of G’.

We will soon (§771) see that kernels are ‘special’ subgroups. As with most
constructions of importance in algebra, they satisfy a universal property, which
may be expressed as follows.
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Proposition 6.6. Let ¢ : G — G’ be a homomorphism. Then the inclusion i :
ker p <= G s final in the categor@ of group homomorphisms o : K — G such that
w o« is the trivial map.

In other words, every group homomorphism « : K — G such that ¢ o a is the
trivial homomorphism (denoted ‘0’ in the diagram) factors uniquely through ker ¢:

0

Ka/a\w/‘a'
BN
ker ¢

Proof. If o : K — G is such that ¢ o «v is the trivial map, then Vk € K

poa(k) = p(a(k)) = ec,

that is, a(k) € ker p. We can (and must) then let @ : K — ker ¢ simply be « itself,
with restricted target. O

Proposition [6.6] indicates how one might define a notion analogous to ‘kernel’ in
very general settings. This viewpoint will be championed much later in this book,
especially in Chapter [XI

Remark 6.7. The argument shows that in fact kernels of group homomorphisms
satisfy a somewhat stronger universal property: any set-function o : K — G
such that the image of ¢ o o is the identity in G’ must factor (as a set-function)
through ker . a

6.3. Example: Subgroup generated by a subset. If A C G is any subset, we
have a unique group homomorphism

va:F(A) = G

extending this inclusion, by the universal property of free groups. The image of
this homomorphism is a subgroup of G, the subgroup generated by A in G, often
denoted®1 (A).

Of course, if G is abelian, then ¢4 factors through F*(A), so we may replace
F(A) by F%(A) in this case.

The ‘concrete’ description of free groups (§5.3)) leads to the following description
of (A): it consists of all products in G of the form

a1a2a3 -+ Qp

where each a; is either an element of A, the inverse of an element of A, or the
identity. This is clearly the most ‘economical’ way to manufacture a subgroup
of G, given the elements of A.

26The reader should specify what the morphisms are in this category.
271f A ={g1,...,gr} is a finite set, one writes (g1,...,gr).
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The reader who has not (yet) developed a taste for free groups may prefer
the following alternative description: (A) is the intersection of all subgroups of G

containing A,
(A) = N H.
H subgroup of G, H D A
Indeed, the intersection on the right-hand side is a subgroup of G by Lemma [(.3]
it contains A, and it is clearly the smallest subgroup satisfying this condition.

If A = {g} consists of a single element, then F(A) = Z and ¢4 : Z — G is
nothing but the ‘exponential map’ ¢, (cf. §11); (A) = (g) is then the image of this
map:

(9) =im(ey) ={...,97 %9 " e,0,9% ... }.
The subgroup (g) is the ‘cyclic subgroup generated by ¢’: indeed, (g) is cyclic in the
sense of Definition .7} the reader can easily check this fact already (Exercise[6.4]); it
will also be recovered as an immediate consequence of the construction of quotients

(ct. §TH).

Definition 6.8. A group G is finitely generated if there exists a finite subset A C G
such that G = (A). 4

For examples, cyclic groups are finitely generated (in fact, they are generated
by a singleton). By definition, a group is finitely generated if and only if there is a
surjective homomorphism

F{l,...,n}) > G

for some n. One of the most memorable results proven in this book will give
a classification of finitely generated abelian groups: we will be able to prove that
every such group is a direct sum of cyclic groups (Theorem [VI6.6] Exercise [VII2.T9]
and the generalization given in Theorem [VIE.G]). The situation for general groups
is considerably more complex. The classification of finite (simple) groups is one of
the major achievements of twentieth-century mathematics, and it is spread over at
least 10,000 pages of research articles. To appreciate the difference in complexity,
note that there are 42 abelian groups of order 1024 up to isomorphism (as the
reader will be able to establish in due time: Exercise [VIG.6); allegedly, there are
49,487,365,402 if we count noncommutative ones as well?.

6.4. Example: Subgroups of cyclic groups. We are ready to determine all
subgroups of all cyclic groups, that is, all subgroups of Z and of Z/nZ, for all n > 0
(because every cyclic group is isomorphic to one of these; cf. Definition 7). The
result is easy to remember: subgroups of cyclic groups are themselves cyclic groups.

It is convenient to start from Z. For d € Z we let
dZ :=(d) ={m € Z|3q € Z,m = dq};

that is, dZ denotes the set of integer multiples of d. Of course this is nothing but
the ‘cyclic subgroup of Z generated by d’.

Proposition 6.9. Let G C Z be a subgroup. Then G = dZ for some d > 0.

28This comparison is a little unfair, however, since it so happens that more than 99% of all
groups of order < 2000 have order 1024.
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The proof will actually show that if G C Z is nontrivial, then d is the smallest
positive element of G, and the reader is invited to remember this useful fact.

Remark 6.10. By Proposition [6.9] every nontrivial subgroup of Z is in fact iso-
morphic to Z. Putting this a little strangely, it says that every subgroup of the
free group on one generator is free. It is in fact true that every subgroup of a
(finitely generated) free group is free; we will not prove this fact, although the dili-
gent reader will get a taste of the argument in Exercise In any case, beware
that free groups on two generators already contain subgroups isomorphic to free
groups on arbitrarily many generators. Indeed, the commutator subgroup (cf. Ex-
ercise[T12) [F, F] for F' = F({x,y}) is isomorphic to a free group on infinitely many
generators (unfortunately, we will not prove this beautiful statement either). a

Proof of Proposition If G = {0}, then G = 0Z. If not, note that G must
contain positive integers: indeed, if a € G and a < 0, then —a € G and —a > 0.
We can then let d be the smallest positive integer@ in G, and I claim G = dZ.

The inclusion dZ C G is clear. To verify the inclusion G C dZ, let m € G, and
apply ‘division with remainder’ to write
m=dq+r,
with 0 <7 < d. Since m € G and dZ C G and since G is a subgroup, we see that
r=m—dq € G.

But d is the smallest positive integer in GG, and r € G is smaller than d; so r cannot
be positive. This shows r = 0, that is, m = qd € dZ; G C dZ follows, and we are
done. ]

The ‘quotient” homomorphism 7, : Z — Z/nZ (cf. §41)) allows us to establish
the analogous result for finite cyclic groups:

Proposition 6.11. Let n > 0 be an integer and let G C Z/nZ be a subgroup. Then
G is the cyclic subgroup of Z/nZ generated by [d),, for some divisor d of n.

Proof. Let 7, : Z — Z/nZ be the quotient map, and consider G’ := 7, }(G). By
Lemmal6.4]l G’ is a subgroup of Z; by Proposition [6.9] G’ is a cyclic subgroup of Z,
generated by a nonnegative integer d. It follows that

G =mn(G') = mn((d) = ([d]n);

thus G is indeed a cyclic subgroup of Z/nZ, generated by a class [d],,. Further, since
n € G’ (because m,(n) = [n], = [0], € G) and G’ = dZ, we see that d divides n, as
claimed. 0

As a consequence of Proposition [B.11] there is a bijection between the set of
subgroups of Z/nZ and the set of positive divisors of n. For example, Z/12Z has

29T am secretly appealing to the ‘well-ordering principle’. That every set of positive integers
should have a smallest element is one of those fact about Z—Ilike the availability of division-with-
remainder—that I am assuming the reader is already familiar with.
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exactly 6 subgroups, because 12 has 6 positive divisors: 1, 2, 3, 4, 6, and 12. Here
is the corresponding list of subgroups:

((L]12) = {[0]12, [1]12, [2]12, [3]12, [4]12, [5]12, [6]12, [7]12, [8]12, [9]12, [10]12, [11]12},
([2l12) = {[0]12, [2]12, [4]12, [6]12, [8]12, [10]12},
([3]12) = {[0)12, [3]12, [6]12, [9]12},
(4]12) = {[0]12, [4]12, [8]12},
([6]12) = {[0]12, [6]12},
((12]12) = {[0]12}.

Also note that if dy, dy are both divisors of n, and dy | da, then ([d1],) 2 ([d2]n)-
That is, the correspondence between subgroups of Z/nZ and divisors of n preserves
the natural lattice structure carried by these sets. We can draw these lattices
for Z/6Z as follows:

1 {[o], (1], [21], [3], [4], [5]}

6 {07}

where lines connect multiples in one picture and subsets in the other. The reader
will draw the lattice of subgroups of S3, noting that it looks completely different
from the one for Z/6Z.

Contemplating subgroups of cyclic groups has pretty (and useful) ‘number-
theoretic’ consequences; cf. Exercise [6.14]

6.5. Monomorphisms. I end this section with some categorical considerations.

If H is a subgroup of G, the inclusion H < G is an example of a monomorphism
in Grp in the ‘categorical’ sense of L2l In fact, it is easy to characterize all
monomorphisms ¢ € Homg, (G, G’) (where G, G’ are any groups):

Proposition 6.12. The following are equivalent:

(a) © is a monomorphism;

(b) kery ={eq};
(¢) ¢ : G— G is injective (as a set-function).

Proof. (a) = (b): Assume (a) holds, and consider the two parallel compositions

ker w:i;G—<p>G’ ,
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where 4 is the inclusion and e is the trivial map. Both ¢ oi and ¢ oe are the trivial
map; since ¢ is a monomorphism, this implies ¢ = e. But ¢ = e implies that ker ¢
is trivial, that is, (b) holds.

(b) = (c¢): Assume ker ¢ = {eg}. Then

o(91) = ¢(g2) = @(g1)p(g2) " = e = @(g19:") = ecr
- glggl ckerp = glg;1 =eq = g1 = ga2.
This shows that ¢ is injective, as needed.

(¢c) = (a): If  is injective, then it satisfies the defining property for monomor-
phisms in Set: that is, for any set Z and any two set-functions o/, a” : Z — G,

pod =pod < o =d".

This must hold in particular if Z has a group structure and o/, o’ are group
homomorphisms, so ¢ is a monomorphism in Grp. |

The equivalence (a) <= (c) may lead the reader to think that from the point
of view of monomorphisms, Grp and Set are pretty much alike. This is not quite so:
while it is true that homomorphisms with a left-inverse are necessarily monomor-
phisms, as in Set (cf. Exercise G.I5)), the converse is not true in Grp (cf. Exer-

cise [G.10).

.|
Exercises

6.1. — (If you know about matrices.) The group of invertible n x n matrices with
entries in R is denoted GL,,(R) (Example[[H). Similarly, GL,,(C) denotes the group
of n x n invertible matrices with complex entries. Consider the following sets of
matrices:

e SL,(R)={M € GL,,(R) | det(M) = 1};

SL,(C) ={M € GL,(C) | det(M) = 1};

0,(R) ={M € GL,(R) | MM* = M'M = I, };

SO, (R) ={M € 0,(R) |det(M) = 1};

U(n) ={M € GL,(C)|MM" = MTM = I,,};

SU(n) = {M € U(n) | det(M) = 1}.

Here I,, stands for the n x n identity matriz, M? is the transpose of M, M is the
conjugate transpose of M, and det(M) denotes the determinanttd of M. Find all

possible inclusions among these sets, and prove that in every case the smaller set
is a subgroup of the larger one.

These sets of matrices have compelling geometric interpretations: for example,

SO3(R) is the group of ‘rotations’ in R?. [RS8 011 MMIMT4 VG146

301f you are not familiar with some of these notions, that’s ok: leave this exercise and similar
ones alone if that is the case. We will come back to linear algebra and matrices in Chapter [V1]
and following.
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6.2. — Prove that the set of 2 x 2 matrices

()

with a, b, d in C and ad # 0 is a subgroup of GLo(C). More generally, prove that the
set of n x n complex matrices (a;;)1<; j<n With a;; = 0 for ¢ > j and a1 - - appn # 0
is a subgroup of GL, (C). (These matrices are called ‘upper triangular’, for evident

reasons.) [[VIL20]

6.3. — Prove that every matrix in SU(2) may be written in the form
a+bi c+di
—c+di a—bi

where a,b,c,d € R and a? + b? + ¢? + d*> = 1. (Thus, SU(2) may be realized as
a three-dimensional sphere embedded in R*; in particular, it is simply connected.)

B3 M5

6.4. > Let G be a group, and let g € G. Verify that the image of the exponential
map €, : Z — G is a cyclic group (in the sense of Definition B.7). [§6.3 §7.5]

6.5. Let G be a commutative group, and let n > 0 be an integer. Prove that
{g" | g € G} is a subgroup of G. Prove that this is not necessarily the case if G is
not commutative.

6.6. Prove that the union of a family of subgroups of a group G is not necessarily
a subgroup of G. In fact:

e Let H, H' be subgroups of a group G. Prove that H U H' is a subgroup of G
only if H C H or H' C H.

e On the other hand, let Hy C H; C Hy C --- be subgroups of a group G. Prove
that ;> H; is a subgroup of G.

6.7. = Show that inner automorphisms (cf. Exercise L8] form a subgroup of
Aut(G); this subgroup is denoted Inn(G). Prove that Inn(G) is cyclic if and only
if Inn(G) is trivial if and only if G is abelian. (Hint: Assume that Inn(G) is cyclic;
with notation as in Exercise B8 this means that there exists an element a € G
such that Vg € G In € Z v, = ~;. In particular, gag~ ' = a"aa™" = a. Thus a
commutes with every g in G. Therefore....) Deduce that if Aut(G) is cyclic, then

G is abelian. [710, [VITH)

6.8. Prove that an abelian group G is finitely generated if and only if there is a
surjective homomorphism

7® - D7 — G
—_———
n times

for some n.

6.9. Prove that every finitely generated subgroup of Q is cyclic. Prove that Q is
not finitely generated.
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6.10. — The set of 2 x 2 matrices with integer entries and determinant 1 is denoted
SL2 (Z)

SLo(Z) = a b such that a,b,c,d € Z,ad —bc=1.
c d

Prove that SLo(Z) is generated by the matrices

0 -1 1 1
8—(1 0) and t—(o 1).

(Hint: This is a little tricky. Let H be the subgroup generated by s and ¢. Given a

b) in SLo(Z), it suffices to show that you can obtain the identity

matrix m = ¢
“\c d

by multiplying m by suitably chosen elements of H. Prove that (é _(i> and

(—1q (1)) are in H, and note that

a b\ (1 —q\ _[(a b-—gqa dab 1 0\ _ [(fa—qgb b

c d)\0 1) \c d—gqc an c d)\—q 1) \c—qd dJ)°
Note that if ¢ and d are both nonzero, one of these two operations may be used
to decrease the absolute value of one of them. Argue that suitable applications of

these operations reduce to the case in which ¢ = 0 or d = 0. Prove directly that
m € H in that case.) [

6.11. Since direct sums are coproducts in Ab, the classification theorem for abelian
groups mentioned in the text says that every finitely generated abelian group is a
coproduct of cyclic groups in Ab. The reader may be tempted to conjecture that
every finitely generated group is a coproduct in Grp. Show that this is not the case,
by proving that S3 is not a coproduct of cyclic groups.

6.12. Let m, n be positive integers, and consider the subgroup (m,n) of Z they
generate. By Proposition [(.9]

(m,n) =dZ
for some positive integer d. What is d, in relation to m, n?

6.13. — Draw and compare the lattices of subgroups of Cy x C5 and Cy. Draw the
lattice of subgroups of Ss, and compare it with the one for Cg. [T]

6.14. > If m is a positive integer, denote by ¢(m) the number of positive integers
r <m that are relatively prime to m (that is, for which the ged of r» and m is 1);
this is called Euler’s ¢- (or ‘totient’) function. For example, ¢(12) = 4. In other
words, ¢(m) is the order of the group (Z/mZ)*; cf. Proposition

Put together the following observations:

o ¢(m) = the number of generators of C,,
e every element of C), generates a subgroup of C),,

e the discussion following Proposition [E.11] (in particular, every subgroup of C,,
is isomorphic to C,,, for some m | n),
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to obtain a proof of the formula

Z o(m) =n.

m>0,m|n

(For example, ¢(1) +¢(2) +¢(3) +d(4) +d(6) +¢(12) = 1 +1+2+2+2+4 = 12.)
E14 96.4 BI5 MIE.S VINE.2]

6.15. > Prove that if a group homomorphism ¢ : G — G’ has a left-inverse,
that is, a group homomorphism v : G’ — G such that 9 o ¢ = idg, then ¢ is a
monomorphism. [§6.5] [616]

6.16. > Counterpoint to Exercise .15t the homomorphism ¢ : Z/3Z — S3 given

! so([O]):G ) 2)7 w<[1l>=(§ | 3) *"“2”:@ ; :D

is a monomorphism; show that it has no left-inverse in Grp. (Knowing about normal
subgroups will make this problem particularly easy.) [§6.5]

7. Quotient groups

7.1. Normal subgroups. Before tackling ‘quotient groups’, I should clarify in
what sense kernels are special subgroups, as claimed in §6.2

Definition 7.1. A subgroup N of a group G is normal if Vg € G, Vn € N,
gng~t € N. a

Note that every subgroup of a commutative group is normal (because then Vg €
G, gng~! = n € N). However, in general not all subgroups are normal: examples
may be found already in S3 (cf. Exercise [[T]). There exist noncommutative groups
in which every subgroup is normal (one example is the ‘quaternionic group’ Qs;
cf. Exercise [IIICI2 (iv)), but they are very rare.

Lemma 7.2. If o : G — G’ is any group homomorphism, then ker ¢ is a normal
subgroup of G.

Proof. We already know that ker ¢ is a subgroup of G; to verify it is normal note
that Vg € G, Vn € ker ¢

plgng™") = e(9)e(n)e(g™") = p(g)ecre(g) ™ = ecr,
proving that gng~! € ker . (]

Loosely speaking, therefore, kernel = normal. In fact more is true, as we
will see in a little while; for now I don’t want to spoil the surprise for the reader.
(Can the reader guess?)

There is a convenient shorthand to express conditions such as normality: if
g € G and A C @ is any subset, we denote by gA, Ag, respectively, the following
subsets of G
gA:={heG|(3Fac A):h=ga},



7. Quotient groups 89

Ag:={h e G|(3a € A): h=ag}.
Then the normality condition can be expressed by
(Vg€ G): gNg~'CN,
or in a number of other ways:
gNg'=N or gNCNg or gN=Ng

for all g € G. The reader should check that these are indeed equivalent conditions
(Exercise [[3]) and keep in mind that ‘gN = Ng’ does not mean that g commutes
with every element of N; it means that if n € N, then there are elements n’,n”” € N,
in general different from n, such that gn = n’g (so that gN C Ng) and ng = gn”
(so that Ng C gN).

7.2. Quotient group. Recall that we have the notion of a quotient of a set by
an equivalence relation (§IILH) and that this notion satisfies a universal property
(clumsily stated in §lII5.3). Tt is natural to investigate this notion in Grp.

We consider then an equivalence relation ~ on (the set underlying) a group Gj
we seek a group G/~ and a group homomorphism 7 : G — G/~ satisfying the ap-
propriate universal property, that is, initial with respect to group homomorphisms
¢ : G — G’ such that a ~ b = p(a) = @(b).

Tt is natural to try to construct the group G/~ by defining an operation e on the
set G/~. The situation is tightly constrained by the requirement that the quotient
map 7 : G — G/~ (as in {lI206) be a group homomorphism: for if [a] = 7(a),
[b] = w(b) are elements of G/~ (that is, equivalence classes with respect to ~),
then the homomorphism condition forces

[a] @ [b] = 7(a) @ w(b) = w(ab) = [ab].

But is this operation well-defined? This amounts to conditions on the equivalence
relation, which we proceed to unearth.

For the operation to be well-defined ‘in the first factor’, it is necessary that if
[a] = [a'], then [ab] = [a'b] regardless of what b is; that is,

Vge@): a~ad = ag~dyg.
Similarly, for the operation to be well-defined in the second factor we need
VgeG): a~ad = ga~gd.
Luckily, this is all that there is to it:
Proposition 7.3. With notation as above, the operation
[a] @ [b] := [ab]
defines a group structure on G/~ if and only if Va,d',g € G
a~da = ga~gd andag~dyg.

In this case the quotient function m : G — G/~ is a homomorphism and is universal
with respect to homomorphisms ¢ : G — G’ such that a ~ o' = p(a) = p(a’).
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Proof. We have already noted that the condition is necessary. To prove it is
sufficient, with the stated consequences, assume Va,d’, g € G

a~d = ga~gd and ag ~ d'g.
Then the operation
[a] @ [b] := [ab]
is well-defined, and we have to verify that it defines a group structure on G/~. The
associativity of e is inherited from the associativity of G: Va,b,c € G

(la] o [0]) @ [c] = [ad] ® [c] = [(ab)c] = [a(be)] = [a] @ [bc] = [a] @ ([b] @ [c]).
The class [e¢] is an identity with respect to this operation: Vg € G
9] @ [ec] = [gec] = [g],  [ec] e lg] = leag] = [g].
The class [g7!] is the inverse of [g]:
lg7 ' elgl =gl =lecl, gl elg™]=1l997"] = [ec].

This shows G/~ is indeed a group, and we have already observed that 7 : G — G/~
is a homomorphism: this is what led us to the definition of e.

To prove that G/~ satisfies the universal property, assume
0:G—= G

is a group homomorphism such that a ~ ¢/ = ¢(a) = p(a’). Since (cf. §lE3I)
the set G/~ satisfies the corresponding universal property in Set, we know that
there exists a unique set-function

0:G/~— G,
defined®] by &([a]) == ¢(a). So we only need to check that this function ¢ is in fact
a group homomorphism, and this is immediate:

$(la] o [b]) = @([abl) = p(ab) = p(a)p(b) = G([al)$([b])
for all [a], [b] € G/~, as needed. O

I will say that ~ is compatible with the group structure of G if the condition given
in Proposition [Z.3] holds. Since the operation e on the quotient G/~ is uniquely
determined by the operation on G, I yield to the usual abuse of language and omit
it. If ~ is compatible, I will call G/~ the quotient group of G by ~.

7.3. Cosets. The conditions obtained in Proposition [T.3]
() Mge@G): a~b = ga~ gb,

(1) (Vge@): a~b = ag~byg,

lead to a complete description of all compatible relations on a group G. In fact,
each of these two conditions leads to a description of the relations satisfying it, and
we will analyze them separately; the reader should keep in mind that we have a
group structure on G/~ only if both are satisfied.

Let’s begin with (}). Here is the description:

31The point of qlI53] is precisely that this function is well-defined.
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Proposition 7.4. Let ~ be an equivalence relation on a group G, satisfying (T).
Then
e the equivalence class of e is a subgroup H of G; and

e a~b < a 'be H «— aH =bH.

Proof. Let H C G be the equivalence class of the identity; H # () as eq € H. For

a,b € H, we have eg ~ b and hence b~! ~ eg (applying (1), multiplying on the left

by b=1); hence ab~! ~ a (by (1) again, multiplying on the left by a); and hence
ab™! ~a ~ eq

by the transitivity of ~ and since a € H. This shows that ab~! € H for all a,b € H,

proving that H is a subgroup (by Proposition [6.2]).

Next, assume a,b € G and a ~ b. Multiplying on the left by a~!, (1) implies
eq ~ a~'b, that is, a='b € H. Since H is closed under the operation, this implies
a~'bH C H, hence bH C aH; as ~ is symmetric, the same reasoning gives aH C
bH; and hence aH = bH. Thus, we have proved

a~b = a'be H = aH = bH.

Finally, assume aH = bH. Then a = aeg € bH, and hence a~'b € H. By definition
of H, this means eq ~ a~'b. Multiplying on the left by a shows (by (f) again)
that a ~ b, completing the proof. O

Proposition [Z.4] shows that the equivalence classes of an equivalence relation
satisfying (f) are in fact all of the form
aH

for a fixed subgroup H, as a ranges in G. These important subsets determined by
a subgroup H deserve a name.

Definition 7.5. The left-cosets of a subgroup H in a group G are the sets aH, for
a € G. The right-cosets of H are the sets Ha, a € G. J
Now, a ‘converse’ to Proposition [4] holds:
Proposition 7.6. If H is any subgroup of a group G, the relation ~y, defined by
(Va,beG): a~pb < a'bec H
is an equivalence relation satisfying (1).

Proof. This is straightforward and is mostly left to the reader (Exercise [[8). To
see that the relation satisfies (1), note that
a~pb = a'beH = a "(¢7'g)be H = (ga) '(gb) € H = ga ~1, gb

for all g € G. |

Taken together, Propositions [(4] and show

Proposition 7.7. There is a one-to-one correspondence between subgroups of G
and equivalence relations on G satisfying (1); for the relation ~j, corresponding to
a subgroup H, G/~1, may be described as the set of left-cosets aH of H.
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The reader should have no difficulty producing the mirror statements (and
proofs) giving a similarly exhaustive description of all equivalence relations satisfy-
ing (17). The end result will be

Proposition 7.8. There is a one-to-one correspondence between subgroups of G
and equivalence relations on G satisfying (1T); for the relation ~gr corresponding to
a subgroup H, G/~pr may be described as the set of right-cosets Ha of H.

The relation corresponding to H in this second way is defined by

a~pb < ab e H <= Ha = Hb.

What may be surprising at first is that the relations ~;, and ~g corresponding
to the same subgroup H may very well not be the same relation. That is, left-cosets
and right-cosets of a subgroup need not coincide. Of course eH = He = H, and
more generally

(Vhe H): hH=Hh=H.
Further
(VaeG): a€aHNHa;

hence, if aH = Hb for any b, then in fact necessarily aH = Ha. This is of course
automatically true if G is commutative, but it is simply not the case in general.

Example 7.9. Let G = S5, and let H be the subgroup consisting of the identity

and the 1 <+ 2 switch:
1 2 3 1 2 3
H_{<1 2 3)’(2 1 3)}

Then
1 2 3 I — 1 2 3 1 2 3
3 1 2 o 31 2)’\3 2 1 ’
while
I 1 2 3\ 1 2 3 1 2 3
31 2) 31 2)’\1 3 2 ’

This state of affairs simply reflects the fact that the two conditions () and (}7)
are different: there is no reason to expect that if one holds, the other one should
also hold (unless G is commutative, of course). Once more, keep in mind that both
have to hold for the quotient G/~ to be a group, compatibly with the operation
in G cf. Proposition [T.3]

7.4. Quotient by normal subgroups. To stress the main point again, an arbi-
trary subgroup H of G leads to two partitions of G, which we have denoted

G/~ ={aH|ac G}, G/~r={Ha|acG}.
The relation ~j, satisfies property (f) listed at the beginning of 73t ~p satisfies
(f1)- A priori, these relations, and hence the corresponding partitions, are different.
The condition that ~7, and ~g coincide (as is necessarily the case, for example,
if G is commutative) translates into a condition on H: for such ‘special’ subgroups,

(1) and (1f) get back together. The good news is that this condition is easy to
identify and is not new to the reader.
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Proposition 7.10. The relations ~p,, ~g corresponding to a subgroup H coincide

if and only if H is normal.

Proof. Two relations coincide if the corresponding partitions agree. Therefore
~p=~pg <= left- and right-cosets of H coincide <= (Vg € G) : gH = Hg.

But this is one of the equivalent conditions defining the notion of normal subgroup
(cf §7700), proving the statement. O

The innocent-looking Proposition is of fundamental importance. If H is
normal, then the one equivalence relation ~=~=~p corresponding to H satisfies
both () and () (by Proposition [T4] and its mirror statement), and hence (by
Proposition [[3]) the quotient

G/~={aH|a€ G} ={Hal|a € G}
has a natural group structure.

Definition 7.11. Let H be a normal subgroup of a group G. The quotient group
of G modulo H, denoted®? 1 G/H, is the group G/~ obtained from the relation ~
defined above. In terms of (left-) cosets, the product in G/H is defined by

(aH)(bH) := (ab)H.
The identity element e,y of the quotient group G/H is the coset of the identity,
6gH =H. |
By Proposition [Z.3] the quotient function
m:G—G/H

sending g € G to gH = Hg is a group homomorphism and is universal with respect
to group homomorphisms ¢ : G — G’ such that aH = bH = ¢(a) = ¢(b). This
universal property is extremely useful, so I will grace it with theorem status:

Theorem 7.12. Let H be a normal subgroup of a group G. Then for every group
homomorphism ¢ : G — G’ such that H C kery there exists a unique group
homomorphism ¢ : G/H — G’ so that the diagram

G—— @

Rz

G/H
commutes.
Proof. We only need to match the stated universal property with the one we
proved in Proposition [[3] and indeed,
H Ckerp < (Yhe H): ¢o(h) =eq
is equivalent to

(Va,b e G): ab le H = ap(ab_l) =eq

32In a large display I sometime use the full ‘fraction’ notation %
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that is, to
(VYa,b € G):ab™t € H = p(a) = ¢(b)
and finally, keeping in mind how the relation ~ corresponding to H is defined,
VMa,be G):a~b = ¢(a) = ¢(b),

the condition giving the universal property in Proposition (Il

7.5. Example. The reader is already very familiar with an important class of
examples: the cyclic groups Z/nZ. Indeed, in §2.3] we defined Z/nZ as the set of
equivalence classes in Z with respect to the congruence equivalence relation

(Va,b€Z): a=b modn < n|(b—a).
Now we recognize that n | (b — a) is equivalent to
b—a€enz,

which is the relation ~j, corresponding (in ‘abelian’ notation) to the subgroup nZ
of Z. This subgroup is of course normal, since Z is abelian. The ‘congruence classes
mod n’ are nothing but the cosets of the subgroup nZ in Z; using abelian notation
for cosets, we could write

[a]l, = a+ (nZ).

Of course the operation defined on Z/nZ in §2.3 matches precisely the one defined
above for quotient groups. This justifies the notation Z/nZ introduced in §2.3

The reader can already appreciate in this simple context the usefulness of The-
orem [[L12] Let g € G be an element of order n and consider the exponential map

€g:Z—G, Nm— gV
By Corollary [LTT]
kere, = {N € Z| N is a multiple of |g|} = nZ.

Theorem [Z.12] then implies right away that €, factors through the quotient:

7Z—2 G

N,

Z/nZ
That is, there is an induced map
Z/nZ — {(g).

In fact, the ‘canonical decomposition’ of {28 implies that this is an isomorphism
(verifying that (g) is cyclic in the sense of Definition 7] as the reader should have
checked ‘by hand’ already in Exercise [6.4]). We will formalize this observation in
general in the next section.

Also note that |g| =n = [(g)] in this case.
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7.6. kernel <= normal. If H is a normal subgroup, we have now constructed
in gory detail a group G/H and a surjective homomorphism

m:G— G/H.

What is the kernel of 77 The identity of G/H is the coset eqH, that is, H itself.
Therefore

kerr={geG|gH=H}=H.
This observation completes the circle of ideas begun in 7.1t there we had noticed
that every kernel (of a group homomorphism) is a normal subgroup; and now
we have verified that every normal subgroup is in fact a kernel (of some group
homomorphism). I encapsulate this in the slogan

kernel <= normal :

in group theor, ‘kernel’ and ‘normal subgroup’ are equivalent concepts.

For example, every subgroup in an abelian group is the kernel of some homo-
morphism: yet another indication that life is simpler in Ab than in Grp.

Exercises

7.1. > List all subgroups of S3 (cf. Exercise [B.I3) and determine which subgroups
are normal and which are not normal. [§7.1]

7.2. Is the image of a group homomorphism necessarily a normal subgroup of the
target?

7.3. > Verify that the equivalent conditions for normality given in §7.1] are indeed
equivalent. [§7.1]

7.4. Prove that the relation defined in Exercise B.10] on a free abelian group F =
F(A) is compatible with the group structure. Determine the quotient F//~ as a
better known group.

7.5. — Define an equivalence relation ~ on SLy(Z) by letting A ~ A" <— A’ =
+A. Prove that ~ is compatible with the group structure. The quotient SLy(Z)/~
is denoted PSLy(Z) and is called the modular group; it would be a serious contender
in a contest for ‘the most important group in mathematics’, due to its role in
algebraic geometry and number theory. Prove that PSLo(Z) is generated by the

(cosets of the) matrices
0 -1 1 -1
(1 0) and (1 0) .

(You will not need to work very hard, if you use the result of Exercise [6.I0.) Note
that the first has order 2 in PSLy(Z), the second has order 3, and their product has
infinite order. [0.17]

33We will run into analogous observations in ring theory, where we will verify that kernels
and ideals coincide, and for modules, as kernels and submodules again coincide.
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7.6. Let G be a group, and let n be a positive integer. Consider the relation
a~b <= (3g€G)ab™ =g

e Show that in general ~ is not an equivalence relation.

e Prove that ~ is an equivalence relation if G is commutative, and determine the
corresponding subgroup of G.

7.7. Let G be a group, n a positive integer, and let H C G be the subgroup
generated by all elements of order n in G. Prove that H is normal.

7.8. > Prove Proposition [[.6l [§73]

7.9. State and prove the ‘mirror’ statements of Propositions [Z.4] and [T.6] leading
to the description of relations satisfying ({7).

7.10. — Let G be a group, and H C G a subgroup. With notation as in Exercise[6.7],
show that H is normal in G if and only if Vv € Inn(G), v(H) C H.

Conclude that if H is normal in G, then there is an interesting homomorphism
Inn(G) — Aut(H). [R25]

7.11. > Let G be a group, and let [G,G] be the subgroup of G generated by all
elements of the form aba='b~!. (This is the commutator subgroup of G; we will
return to it in §IVIB3l) Prove that [G,G] is normal in G. (Hint: With notation
as in Exercise E8, g - aba™'b~! - g71 = 7,(aba"'b71).) Prove that G/[G,G] is
commutative. [Z12 §IVIB.3]

7.12. > Let F = F(A) be a free group, and let f : A — G be a set-function
from the set A to a commutative group G. Prove that f induces a unique homo-
morphism F/[F, F|] — G, where [F, F] is the commutator subgroup of F' defined
in Exercise [[TIl (Use Theorem [[12}) Conclude that F/[F,F] = F®(A). (Use

Proposition [541) [§6.4] 13 VIT20]

7.13. = Let A, B be sets and F(A), F(B) the corresponding free groups. Assume
F(A) = F(B). If A is finite, prove that B is also and A = B. (Use Exercise

to upgrade Exercise 5101) [510, VIT20]
7.14. Let G be a group. Prove that Inn(G) is a normal subgroup of Aut(G).

8. Canonical decomposition and Lagrange’s theorem

I will collect in this section a number of observations on the structure of quotient
groups. All these results are straightforward, given the background work done so
far. Some of them are often given fancy names such as first isomorphism theorem
in the literature; I am not too fond of such terminology: the universal property
proven in Theorem is really the only thing I need to take along, and it serves
me wonderfully well. The ‘isomorphism theorems’ are all immediate applications
of this universal property.
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8.1. Canonical decomposition. The first observation comes from the canoni-
cal decomposition for set-functions, obtained in 28 every set-functions may be
viewed as the composition of a surjective map, followed by a bijective map, followed
by an injective map. We now know enough to state the corresponding (very useful)
results in Grp:

Theorem 8.1. Every group homomorphism ¢ : G — G’ may be decomposed as

follows:
©

GWG/

where the isomorphism ¢ in the middle is the homomorphism induced by ¢ (as in
Theorem [[12).

It is important that the reader agree that we have already proved anything
that deserves to be proven here. We know that the projection on the left and the
inclusion on the right are homomorphisms and ¢ comes from Theorem The
decomposition is the same one obtained at the level of set-functions in {28 in
particular, the function in the middle is a bijection. Since bijective homomorphisms
are isomorphisms (Proposition 3], it is an isomorphism.

Theorem should induce the following Pavlovian reaction: exposed to any
group homomorphism ¢ : G — G’, the reader should instantaneously view G/ ker ¢
as (canonically identified with) a subgroup of G’. What is usually called the ‘first
isomorphism theorem’ is the particular case corresponding to surjective homomor-
phisms:

Corollary 8.2. Suppose ¢ : G — G’ is a surjective group homomorphism. Then

G = ¢
ker ¢’
Proof. imp = G’ in Theorem B11 O

This result is very useful—it comes in extremely handy when proving that two
groups are isomorphic, both in theoretical contexts (as we will see in the rest of
this section) and in concrete instances.

Example 8.3. If H; C G; and Hy C (s, then the product H; x Hs may be
viewed as a subset of G; x Gy. It is clear that if G1, G2 are groups and H,, H>
are subgroups, then H; X Hs is a subgroup of G; x G3. The following claim is a
prototype application of Corollary

Claim 8.4. If Hy C Gy and Hy C G5 are normal subgroups, then Hy X Hy is a
normal subgroup of the group G1 x Gy and

Gl X G2 ~ Gl % GQ
H1 X H2 - H1 HQ.
Indeed, composing the projections

7T1:G1><G2—)G1, 7T2:G1><G2—>G2
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with the morphisms to the quotients gives surjective homomorphisms

Gl G2
G x Gy — — Gy X Gy = —
™ 1 X G2 H,’ T2 1 X G2 H,
and hence a homomorphism
Gy Gs
T Gl X G2 — E X E

by the universal property of products. Explicitly,
m(g1, 92) = (91 Hx, g2 H2) :

in particular, 7 is surjective and
kerm = {(g1,92) € G1 x G2 [ (g1 Hx, g2H2) = (Hi, H2)}
={(91,92) € G1 x G2 | g1 € H1,92 € Ha}
= Hl X HQ.
The claim then follows immediately from Corollary
The result (of course) extends to more factors in the product. Any such check

should become second nature and is usually left to the reader. a

Example 8.5. As a particular case of Claim B4 take H; = {eq,} C G and
HQ = Gg Q GQZ
Gl X G2 ~ Gl % % ~ G
G2 {ec,} G2 b
where on the left we identify G2 with the subgroup {eq,} x G2. For instancd®]

(cf. T

% ~ CQ X 03
Cs  Cs
Example 8.6. The cyclic group C3 may be viewed as a subgroup of the dihedral

group Dg: the rotations of a triangle give a copy of Cj3 inside Dg. Then Cj is
normal in Dg, and

=~ (5. J

This can of course be checked ‘by hand’. But note that there is an evident surjective
homomorphism Dg — Cs, whose kernel is C3: map an element o of Dg to the
identity in Cy if it does not flip the triangle (that is, precisely when o € Cj),
and map it to the other element if it does. Corollary implies the stated facts
immediately. a

Example 8.7. One can give a circle (denoted S') a group structure by identifying
its points with rotations of a plane about a point and adding them accordingly.
The function

p: RN — g1

34 Abuses of language such as the formula which follows—in which one is not explicitly spec-
ifying how to realize C3 as a subgroup of Cg, because there is really only one way to do it—are
unfortunately commonplace.
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mapping a number r to the result of a rotation by 277 radians is then a surjective
group homomorphism; this is the identity precisely when we rotate by an integer
multiple of 27. Hence

kerp=7Z CR.
By Corollary B2] therefore,
R
— =gl
Z

(Cf. Exercise [ILGl) Geometrically, this amounts to ‘wrapping’ R infinitely many
times around the circle, realizing R as the ‘universal cover’ of S'; here, Z plays the
role of ‘fundamental group’ of S*. N

8.2. Presentations. Every group is a quotient of a free group, and every abelian
group is a quotient of a free abelian group. Indeed, every group G can be surjected
upon by a free group, and in many ways (at the very least, F'(G) will do!). Abelian
groups may be likewise surjected upon by free abelian groups. Then Corollary
produces the needed isomorphism of G with a quotient of a free group.

A presentation of a group G is an explicit isomorphism
F(A)
R

where A is a set and R is a subgroup of ‘relations’. In other words, a presentation
is an explicit surjection

G

p: F(A) -G

of which R is the kernel. This is especially useful if A is small, and R may be
described very explicitly; usually this is done by listing ‘enough’ relations, that is,
a set Z of words r, € R = ker p generating it in the sense that R is the smallest
normal subgrou of F'(A) containing Z.

Thus, a presentation of a group G is usually encoded as a pair (A|#), where A
is a set and Z C F(A) is a set of words, such that G = F(A)/R with R as above.

A group is finitely presented if it admits a presentation (A|#) in which both
A and Z are finite. Finitely presented groups are not (necessarily) ‘small’: for
example, the free group on finitely many generators is (trivially) finitely presented.

We have already run into several examples of presentations. For instance,
the free group F'(A) is presented by (A|)). More interestingly, the description
of S5 given in §2.1] ‘presents’ S3 as a quotient of the free group F({z,y}) (cf. Ex-
ample [£.3) by the smallest normal subgroup containing z2, y*, and yr = xy?:
(x,y|2?,y3, xyzy) in shorthand. From this point of view, it is clear that groups
admitting the same presentation (example: S3 and Dg) are isomorphic.

The situation is less idyllic than it may seem at first, though: even if a presen-
tation of a group G is known, it may be very hard to establish whether two explicit

35Note that this is a different requirement than the one adopted in §6.3] in which normality
plays no role.
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combinations of the generators coincide in G. This is known as the word problem,
and it has been shown to be undecidable in genera.

In any case, now that we know about presentations of groups, finding coprod-
ucts in Grp should be straightforward: see Exercise

There is a ‘mirror’ statement analogous to the fact that all groups are quotients
of free groups: every group may be realized as a subgroup of a symmetric group.
This elementary observation goes under the name of Cayley’s theorem; its natural
place is within the discussion of group actions (cf. Theorem [.5).

8.3. Subgroups of quotients. The lattice of subgroups (cf. §6.4) of a quo-
tient G/H can be described very explicitly in terms of the lattice of subgroups
of the group G: simply keep the part of the lattice of subgroups of G corresponding
to subgroups which contain H.

Example 8.8. Here is the effect of this operation on the lattice of subgroups of
C12 2 7./127 (labeled by generators; cf. §6.4)), after quotienting by H = ([6]) = Cs:

The result matches the lattice of subgroups of Cg 2 C15/Cs. J

Here is why this works. First note that if H C K are subgroups of a group G
and H is normal in GG, then H is normal in K.

Proposition 8.9. Let H be a normal subgroup of a group G. Then for every
subgroup K of G containing H, K/H may be identified with a subgroup of G/H.
The function

w : {subgroups K of G containing H} — {subgroups of G/H }
defined by uw(K) = K/H s a bijection preserving inclusions.
Proof. The group K/H consists of the cosets aH € G/H with a € K, and in

this sense it is a subset (and clearly a subgroup) of G/H. It is also clear that if
HCKCL,then w(K)=K/H C L/H =u(L); that is, u preserves inclusions.

36That is, there is no general algorithm that, given a presentation of a group G and two
words in the generators, will establish (in a finite time) whether those two words represent the
same element of G.
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Thus we simply have to verify that u is a bijection, and for this it suffices to
produce an inverse function

v : {subgroups of G/H} — {subgroups K of G containing H }.
Then let K’ be a subgroup of G/H; define v(K') to be the subset of G:
K:=7nYK')={acG|aH € K'},

where 7 : G — G/H is the canonical projection. Then K is a subgroup of G (by
Lemma [64) and contains H (because H = 7~ !(e) and e € K’). The reader will
check that v and v are inverses of each other. |

In fact, the correspondence is even nicer, in the sense that it preserves normal-
ity. The following statement is often called the third isomorphism theorem:

Proposition 8.10. Let H be a normal subgroup of a group G, and let N be a
subgroup of G containing H. Then N/H is normal in G/H if and only if N is
normal in G, and in this case

G/H _ G

NN
Proof. If N is normal, then consider the projection

G
G— —:
N
the subgroup H is contained in N, which is the kernel of this homomorphism, so
we get (by the universal property of quotients, Theorem [[.12)) an induced homo-

morphism

¢.,G
H "N’
The subgroup N/H of G/H is the kernel of this homomorphism; therefore it is
normal.
Conversely, if N/H is normal in G/H, consider the composition
G G/H
— — = ——,
H N/H
The kernel of this homomorphism is N; therefore N is normal. Further, this ho-
momorphism is surjective; hence the stated isomorphism (G/H)/(N/H) = G/N
follows immediately from Corollary O

G

8.4. HK/H vs. K/(HNK). SectionB3deals with two ‘nested’ subgroups H C K
of a group G. What if H, K are not nested?

The notation introduced in §7.] extends to subsets of G: if A C G, B C G,
then AB denotes the subset

AB :={abla € A, b€ B}.

It would be nice if HK were guaranteed to be a subgroup of G as soon as H and K
are subgroups, but this is simply not the case in general, if G is not commutative.
It s, however, the case if one of the subgroups is normal. The following is often
called the second isomorphism theorem.
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Proposition 8.11. Let H, K be subgroups of a group G, and assume that H is
normal in G. Then

e HK 1is a subgroup of G, and H is normal in HK;

e HN K is normal in K, and

HK , K
H HnNnK’
Proof. To verify that HK is a subgroup of G when H is normal, note that HK is
the union of all cosets Hk, with k € K; that is,
HE =7 (=(K)),

where 7 : G — G/H is the canonical projection. Since m(K) is a subgroup of G/H,
HK is a subgroup by Lemma [64] Tt is clear that H is normal in HK.

For the second part, consider the homomorphism
p:K— HK/H

sending k € K to the coset Hk (that is, the inclusion K — HK followed by the
canonical projection to the quotient). This is surjective: indeed, every element of
HK/H may be written as a coset

Hhk, he HkeK,

but Hhk = Hk, so Hhk = (k) is in the image of ¢. By the omnipresent Corol-

lary B2]
HK _ K

H ~ kery’

What is ker ¢?
kero ={ke K|pk)=e}={ke K|Hk=H}={kec K|ke H} =HNK,
with the stated result. O

8.5. The index and Lagrange’s theorem. The notation G/H is used to denote
the set of left—coset of H, even when H is not normal in G. Thus G/H is a set
in general, and it is a group when H is in fact normal in G.

Definition 8.12. The index of H in G, denoted [G : H], is the number of elements
|G/H| of G/H, when this is finite, and oo otherwise. J

Thus, [G : H] (if finite) denotes the number of left-cosets of H in G, regardless
of whether H is normal in G.
Lemma 8.13. Let H be a subgroup of a group G. Then Vg € G the functions
H — gH, h— gh,
H— Hg, h—hg
are bijections.
37This may seem an arbitrary choice (why not right-cosets?). It is. Writing from left to right
gives us a bias towards left-actions, and G acts nicely on the left on the set of left-cosets; this will

make better sense when we get to Example In any case, there is a bijection between the set
of left-cosets and the set of right-coset: Exercise [0.10
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Proof. Both functions are surjective by definition of coset. Cancellation implies
that they are injective. O

Corollary 8.14 (Lagrange’s theorem). If G is a finite group and H C G is a
subgroup, then |G| =[G : H| - |H|. In particular, |H| is a divisor of |G]|.

Proof. Indeed, G is the disjoint union of |G/ H| distinct cosets gH, and |gH| = |H]|
by Lemma O

Lagrange’s theorem is more useful than it may appear at first.

Example 8.15. The order |g| of any element g of a finite group G is a divisor
of |G|: indeed, |g| equals the order of the subgroup (g) generated by g.

Note: Therefore, ¢/ = eg for all finite groups G, all g € G. a

Example 8.16. If |G| is a prime integer p, then necessarily G = Z/pZ.

Indeed, let g € G be any element other than the identity; then (g) is a subgroup
of G, of order > 1. By Lagrange’s theorem, |(g)| = p = |G|; that is, G = (g) is
cyclic of order p, as claimed. a

Example 8.17 (Fermat’s little theorem). Let p be a prime integer, and let a be
any integer. Then a? = a mod p.

Indeed, this is immediate if @ is a multiple of p; if a is not a multiple of p, then
the class [a], modulo p is nonzero, so it is an element of the group (Z/pZ)*, which
has order p — 1. Thus

[alp™" = 1]

(Example BI3); hence [a]h = [a], as claimed. N

Warning: However, do not ask too much of Lagrange’s theorem. For example,
it does not say that if d is a divisor of |G|, then there exists a subgroup of G of
order d (the smallest counterexample is A4, a group of order 12, which does not
contain subgroups of order 6; the reader will verify this in Exercise [VIEIT); it
does not even say that if p is a prime divisor of |G|, then there is an element of
order p in GG. This latter statement happens to be true, but for ‘deeper’ reasons.
The abelian case is easy (cf. Exercise BIT). The general case is called Cauchy’s
theorem, and we will deal with it later on (cf. Theorem [VIZT]).

The index is a well-behaved invariant. It is clearly multiplicative, in the sense
that if H C K are subgroups of GG, then

[G:H|=|G: K] -|K:H]
provided that these numbers are finite. Also, if H and K are subgroups of G and H
is normal (so that HK is a subgroup as well; cf. Proposition BIT), then
[H|- K|
|HNK|
(again, provided this has a chance of making sense, that is, if the orders are finite):
this follows immediately from the isomorphism in Proposition BTl and index con-

siderations. In fact, the formula holds even without assuming that one of the
subgroups is normal in G. Do you see why? (Exercise [R21])

K| =



104 II. Groups, first encounter

Further, if H and G are finite, then Lemma [R13] implies immediately that the
index of H in G, defined as the number of left-cosets of H in G, also equals the
number of right-cosets of H. It is in fact easy to show that there always is a bijection
between the set G/H of left-cosets and the set of right-cosets (cf. Exercise 0.10),
regardless of finiteness hypotheses. The set of right-cosets of H in G is often
(reasonably) denoted H\G.

8.6. Epimorphisms and cokernels. The reader may expect that a mirror state-
ment to Proposition [6.12] should hold for group epimorphisms. This is almost true:
a homomorphism ¢ : G — H is an epimorphism (in the category Grp) if and only
if it is surjective. However, while one implication is easy, the proofs I know for
epimorphism = surjective in Grp are somewhat cumbersome.

The situation is leaner (as usual) in Ab: there is in Ab a good notion of cokernel;
this is part of what makes Ab an ‘abelian category’.

As is often the case, the reader may now want to pause a moment and try
to guess the right definition. Keeping in mind the universal property for kernels
(Proposition [6.6]), can the reader come up with the universal property defining
‘cokernels’? Can the reader prove that these exist in Ab and detect epimorphisms?
Don’t look ahead!

Here is how the story goes. The universal property is (of course) obtained by
reversing the arrows in the property for kernels: given a homomorphism ¢ : G — G’
of abelian groups, we want an abelian group coker ¢ equipped with a homomorphism

7: G’ — coker

which is initial with respect to all morphisms « such that awo o = 0. That is, every
homomorphism « : G’ — L such that a0 is the trivial map must factor (uniquely)

through coker ¢:
0

e E

©
s
Elrey

coker ¢

Cokernels exist in Ab: because the image of ¢ is a subgroup of G’, hence a normal
subgroup of G’ since G’ is abelian; the condition that « o ¢ is trivial says that

im ¢ C ker o, and hence
!

- & coker p
im
satisfies the universal property, by Theorem [7.12]

The ‘problem’ in Grp is that im ¢ is not guaranteed to be normal in G’; thus
the situation is more complex.

Also note that, in the abelian case, G'/im ¢ automatically satisfies a stronger
universal property: as stated, but with respect to any set-function G’ — L which
is constant on cosets of im ¢.

We can now state a true mirror of Proposition [6.12] in Ab:
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Proposition 8.18. Let ¢ : G — G’ be a homomorphism of abelian groups. The
following are equivalent:

(a) @ is an epimorphism;

(b) coker ¢ is trivial;

(¢) ¢ : G — G is surjective (as a set-function,).

Proof. (a) = (b): Assume (a) holds, and consider the two parallel compositions

s

G—2 @' —=coker ¢,

where 7 is the canonical projection and e is the trivial map. Both moy and eoy are
the trivial map; since ¢ is an epimorphism, this implies 7 = e. But m = e implies
that coker ¢ is trivial, that is, (b) holds.

(b) = (c): If cokerp = G'/imy is trivial, then im¢ = G’; hence ¢ is
surjective.

(¢) = (a): If ¢ is surjective, then it satisfies the universal property for epi-
morphisms in Set: for any set Z and any two set-functions o’ and o’ : G’ — Z,

dop=a"op <= o =da".

This must hold in particular if Z is endowed with a group structure and o/, o/’ are
group homomorphisms, so ¢ is an epimorphism in Grp. O

A cokernel may be defined in Grp: the universal property for the cokernel
of p : G — G’ is satisfied by G'/N, where N is the smalles@,normal subgroup
of G’ containing im ¢ (Exercise B22)). But Proposition fails, because the
implication (b) = (c) does not hold: in Grp it is no longer true that only surjective
homomorphisms have trivial cokernel (cf. Exercise B23).

Exercises

8.1. If a group H may be realized as a subgroup of two groups GG; and G5 and if
Gi1 G

H H’
does it follows that G; = G537 Give a proof or a counterexample.

8.2. — Extend Example as follows. Suppose G is a group and H C G is a
subgroup of index 2, that is, such that there are precisely two (say, left-) cosets

of H in G. Prove that H is normal in G. [0.11] [VITI6]

8.3. Prove that every finite group is finitely presented.

38The intersection of any family of normal subgroups is normal, as the reader may readily
check, so this subgroup exists.
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8.4. Prove that (a,bla?,b? (ab)") is a presentation of the dihedral group Da,.
(Hint: With respect to the generators defined in Exercise 2] set ¢ = x and
b = zy; prove you can get the relations given here from the ones you obtained
in Exercise 23] and conversely.)

8.5. Let a, b be distinct elements of order 2 in a group G, and assume that ab has
finite order n > 3. Prove that the subgroup generated by a and b in G is isomorphic
to the dihedral group Da,. (Use the previous exercise.)

8.6. = Let G be a group, and let A be a set of generators for G; assume A is
finite. The corresponding Cayley gmph@ is a directed graph whose set of vertices
is in one-to-one correspondence with G, and two vertices g1, go are connected by
an edge if go = g1a for an a € A; this edge may be labeled a and oriented from ¢y
to go. For example, the graph drawn in Example for the free group F({z,y})
on two generators x, y is the corresponding Cayley graph (with the convention that
horizontal edges are labeled x and point to the right and vertical edges are labeled y
and point up).

Prove that if a Cayley graph of a group is a tree, then the group is free.
Conversely, prove that free groups admit Cayley graphs that are trees. [§5.3] 0.15]

8.7. > Let (A|Z), resp., (A'|#'), be a presentation for a group G, resp., G’ (cf. §82);
we may assume that A, A’ are disjoint. Prove that the group G * G’ presented by
(AUA' |\ Z2uZR)

satisfies the universal property for the coproduct of G and G’ in Grp. (Use the
universal properties of both free groups and quotients to construct natural homo-

morphisms G — G xG', G' — G« G'.) [§34] §82 O0.14]

8.8. = (If you know about matrices (cf. Exercise [6.1]).) Prove that SL,(R) is
a normal subgroup of GL,(R), and ‘compute’ GL,,(R)/SL,(R) as a well-known

group. [VIE3]

8.9. — (Ditto.) Prove that SO3(R) = SU(2)/{+£I2}, where I, is the identity matrix.
(Hint: Tt so happens that every matrix in SO3(R) can be written in the form

a’?+b% —c? — d? 2(be — ad) 2(ac + bd)
2(ad + be) a? -+ —d? 2(cd — ab)
2(bd — ac) 2(ab + cd) a? —b? —c* + d?

where a,b, c,d € R and a®+b?+c?+d? = 1. Proving this fact is not hard, but at this
stage you will probably find it computationally demanding. Feel free to assume this,
and use Exercise to construct a surjective homomorphism SU(2) — SO3(R);
compute the kernel of this homomorphism.)

Ipf{ﬁou know a little topology, you can now conclude that the fundamental

group? of SO3(R) is Co. [0.11 VT3]

39Warning: This is one of several alternative conventions.

401f you really want to believe this fact, remember that SO3(R) parametrizes rotations in R3.
Hold a tray with a glass of water on top of your extended right hand. You should be able to rotate
the tray clockwise by a full 360° without spilling the water, and your muscles will tell you that
the corresponding loop in SO3(R) is not trivial. But then you will be able to rotate the tray again
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8.10. View Z X Z as a subgroup of R x R:

Describe the quotient

RxR

Z X 7
in terms analogous to those used in Example[R7 (Can you ‘draw a picture’ of this
group? Cf. Exercise [II.0)

8.11. (Notation as in Proposition BI0l) Prove ‘by hand’ (that is, without invoking
universal properties) that N is normal in G if and only if N/H is normal in G/H.

8.12. (Notation as in Proposition BTI1l) Prove ‘by hand’ (that is, by using Propo-
sition [6.2]) that HK is a subgroup of G if H is normal.

8.13. — Let G be a finite group, and assume |G| is odd. Prove that every element
of G is a square. [B17]

8.14. Generalize the result of Exercise B I3} if G is a group of order n and k is an
integer relatively prime to n, then the function G — G, g — ¢* is surjective.

8.15. Let a, n be positive integers, with a > 1. Prove that n divides ¢(a™ — 1),
where ¢ is Euler’s ¢-function; see Exercise [0.14]l (Hint: Example BI5l)

8.16. Generalize Fermat’s little theorem to congruences modulo arbitrary (that is,
possibly nonprime) integers. Note that it is not true that " = amodn for all
a and n: for example, 2* is not congruent to 2 modulo 4. What is true? (This
generalization is known as Fuler’s theorem.)

8.17. > Assume G is a finite abelian group, and let p be a prime divisor of |G|.
Prove that there exists an element in G of order p. (Hint: Let g be any element
of G, and consider the subgroup (g); use the fact that this subgroup is cyclic to
show that there is an element h € (g) in G of prime order ¢. If ¢ = p, you are done;

otherwise, use the quotient G/(h) and induction.) [§85 BI B20, §IVIZT]

8.18. Let G be an abelian group of order 2n, where n is odd. Prove that G has
exactly one element of order 2. (It has at least one, for example by Exercise
Use Lagrange’s theorem to establish that it cannot have more than one.) Does the
same conclusion hold if GG is not necessarily commutative?

a full 360° clockwise without spilling any water, taking it back to the original position. Thus, the
square of the loop is (homotopically) trivial, as it should be if the fundamental group is cyclic of
order 2.
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8.19. Let G be a finite group, and let d be a proper divisor of |G|. Is it necessarily
true that there exists an element of G of order d? Give a proof or a counterexample.

8.20. > Assume G is a finite abelian group, and let d be a divisor of |G|. Prove
that there exists a subgroup H C G of order d. (Hint: induction; use Exercise BIT])

[VIZ2]

8.21. > Let H, K be subgroups of a group G. Construct a bijection between the
set of cosets h KK with h € H and the set of left-cosets of HN K in H. If H and K
are finite, prove that

H] - K|

HK| = ————.
| | |H N K|

(B3 JIVILT]

8.22. > Let ¢ : G — G’ be a group homomorphism, and let N be the smallest
normal subgroup containing im ¢. Prove that G'/N satisfies the universal property

of coker ¢ in Grp. [§8.0]
8.23. > Consider the subgroup

1 2 3 1 2 3
n={(1 530G 1 )
of S3. Show that the cokernel of the inclusion H < S5 is trivial, although H < S5

is not surjective. [§8.0]

8.24. > Show that epimorphisms in Grp do not necessarily have right-inverses.
(D]

8.25. Let H be a commutative normal subgroup of G. Construct an interesting
homomorphism from G/H to Aut(H). (Cf. Exercise [[.I0])

9. Group actions

9.1. Actions. As mentioned in §4&.1] an action of a group G on an object A of a
category C is simply a homomorphism

o: G — Autc(A).

The way to interpret this is that every element g € G determines a ‘transformation
of A into itself’, i.e., an isomorphism of A in C, and this happens compatibly with
the operation of G and composition in C.

In a rather strong sense, we really only care about groups because they act on
things: knowing that G acts on A tells us something about A; group actions are
one key tool in the study of geometric and algebraic entities.

In fact, group actions are one key tool in the study of groups themselves: one
of the best ways to ‘understand’ a group is to let it act on an object A, hoping
that the corresponding homomorphism ¢ is an isomorphism, or at least an injective
monomorphism. For example, we were lucky with Dg in §22k we let Dg act on a
set with three elements (the vertices of an equilateral triangle) and observed that
the resulting o is an isomorphism. Thus Dg = S35. We would be almost as lucky
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by letting Dg act on the vertices of a square: then o would at least realize Dg as
an explicit subgroup of Sy, which simplifies its analysis.

Definition 9.1. An action of a group G on an object A of a category C is faithful
(or effective) if the corresponding o : G — Autc(A) is injective. 4

The case C = Set is already very rich, and we focus on it in this chapter.

9.2. Actions on sets. Spelling out our definition of action in case A is a set, so
that Autc(A) is the symmetric group Sa, we get the following:

Definition 9.2. An action of a group G on a set A is a set-function
p:GxA— A
such that p(eg,a) = a for all a € A and

(Vg,h € G),(Va € A) . p(gh,a) = p(g, p(h,a)). 4

Indeed, given a function p satisfying these conditions, we can define ¢ : G —
Homset(A, A) by o(g)(a) = p(g,a). (This defines o(g) as a set-function A — A, as
needed.) This function preserves the operation, because

o(gh)(a) = p(gh,a) = p(g, p(h, a)) = o(g)(p(h, a)) = o(g)(a(h)(a))
=o(g) oa(h)(a).

In particular, this verifies that o(g~1) acts as the inverse of o(g): because (Va € A)
o(g7") 0 7(9)(a) = o(g ™ 9)(a) = or(ec) () = plea,a) = a.
Thus the image of ¢ consists of invertible set-functions; ¢ is acting as a function
o:G — Sy,

and we have verified that this is a homomorphism, as needed.

Conversely, given a homomorphism o : G — Sy, define p : G x A — A by
p(g,a) = o(g)(a); the same argument (read backwards) shows that p satisfies the
needed properties.

It is unpleasant to carry p along. In practice, one just writes ga for p(g, a); the
requirements in Definition amount then to eqa = a for all a € A and

(Vg,h € G),(Va € A): (gh)a = g(ha),

‘as if” p defined an associative operation.

If G acts on A, then ega = a for all a € A; the action of a group G on a set A
is faithful if and only if the identity eg is the only element g of G such that ga = a
for all @ € A, that is, ‘fixing’ every element of A. An action is free if the identity eqg
is the only element fixing any element of A.

Example 9.3. Every group G acts in a natural way on the underlying set G. The
function p : G x G — G is simply the operation in the group:

(Vg,a € G): p(g,a) = ga.
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In this case the defining property really is associativity. This is referred to as the
action by left-multiplication] of G on itself. There is (at least) another very natural
way to act with G on itself, by conjugation: define p: G x G — G by

p(g,h) = ghg™".
This is indeed an action: Vg, h, k € G,
p(g, p(h, k) = gp(h,k)g~' = g(hkh™")g~" = (gh)k(gh)~" = p(gh, k). J

Example 9.4. More generally, G acts by left-multiplication on the set G/H of
left-cosets (cf. §8H]) of any subgroup H: act by g € G on aH € G/H by sending it
to (ga)H. N

These examples of actions are extremely useful in studying groups, as we will see
in Chapter[[Vl For instance, an immediate consequence is the following counterpart

to 82

Theorem 9.5 (Cayley’s theorem). Fuvery group acts faithfully on some set. That
is, every group may be realized as a subgroup of a permutation group.

Proof. Indeed, simply observe that the left-multiplication action of G on itself is
manifestly faithful. |

The notion defined in Definition is, for the sake of precision, called a left-
action. A right-action would associate to each pair (g,a) with g € G and a € A an
element ag € A; our make-believe associativity would now say

a(gh) = (ag)h

for all a € A and g,h € G. This is a different requirement than the one given in
Definition 0.2} multiplication on the right in a group G gives a prototypical example
of a right-action of G (on itself).

Every right-action may be turned into a left-action with due care (cf. Exer-
cise [@3). Therefore it is not restrictive to just consider left-actions; from now on,
an ‘action’ will be understood to be a left-action, unless stated otherwise.

9.3. Transitive actions and the category G-Set.

Definition 9.6. An action of a group G on a (nonempty) set A is transitive if
Ya,b € A dg € G such that b = ga. a

For example, the left-multiplication action of a group on itself is transitive.
Transitive actions are the basic ingredients making up every action; this is seen by
means of the following important concepts.

Definition 9.7. The orbit of a € A under an action of a group G is the set
O¢(a) :={ga|g € G}. N

41 This is left-multiplication in the sense that the ‘acting’ element g of G is placed to the left
of the element a ‘acted upon’.
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Definition 9.8. Let G act on a set A, and let a € A. The stabilizer subgroup of
a consists of the elements of G which fix a:

Stabg(a) :={g € G|ga = a}. a

Orbits of an action of a group G on a set A form a partition of A; and we
have an induced, transitive action of G' on each orbit. Therefore we can, in a
sense, ‘understand’ all actions if we understand transitive actions. This will be
accomplished in a moment, by studying actions related to stabilizers.

For any group G, sets endowed with a (left) G-action form in a natural way
a category G-Set: objects are pairs (p, A), where p : G x A — A is an action (as
in Definition 0.2 and morphisms between two objects are set-functions which are
compatible with the actions. That is, a morphism

(p, A) = (o', A")
in G-Set amounts to a set-function ¢ : A — A’ such that the diagram

Gx A% o
Pl Jp’
A

©

commutes. In the usual shorthand notation omitting the p’s, this means that
Vg € G, Va € A,
g9p(a) = ¢(ga);
that is, the action ‘commutes’ with ¢. Such functions are called (G-)equivariant.
We therefore have a notion of isomorphism of G-sets (defined as in §IZT); the
reader should expect (and should verify) that these are nothing but the equivariant
bijections.

Among G-sets we single out the sets G/H of left-cosets of subgroups H of G
as noted in Example [0.4] G acts on G/H by left-multiplication.

Proposition 9.9. Every transitive left-action of G on a nonempty set A is isomor-
phic to the left-multiplication of G on G/H, for H = the stabilizer of any a € A.

Proof. Let G act transitively on a set A, let a € A be any element, and let
H = Stabg(a). T claim that there is an equivariant bijection

v:G/H—= A
defined by

p(gH) = ga
for all g € G.

Indeed, first of all ¢ is well-defined: if g1H = goH, then gl_lgg € H, hence
(gflgg)a = a, and it follows that g1a = goa as needed. To verify that ¢ is bijective,
define a function ¢ : A — G/H by sending an element ga of A to gH; v is well-
defined because if gya = gsa, then gfl(gga) = a, So gflgg € Hand ¢1H = goH. Tt
is clear that ¢ and 1 are inverses of each other; hence ¢ is a bijection.

Equivariance is immediate: ¢(¢'(¢H)) = ¢'ga = g'0(gH). O
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Corollary 9.10. If O is an orbit of the action of a finite group G on a set A, then
O is a finite set and

O]  divides |G]|.

Proof. By Proposition [0 there is a bijection between O and G/ Stabg(a) for any
element a € O; thus

O] - [ Stabg(a)| = |G|

by Corollary O

Corollary @.I0] upgrades Lagrange’s theorem to orbits of any action; it is ex-
tremely useful, as it provides a very strong constraint on group actions.

Example 9.11. There are no transitive actions of S3 on a set with 5 elements.
Indeed, 5 does not divide 6. 2

Ultimately, almost everything we will prove in Chapter [[V] on the structure of
finite groups will be a consequence of ‘counting arguments’ stemming from applica-
tions of Corollary [0.10] to actions of a group by conjugation or left-multiplication.

There may seem to be an element of arbitrariness in the statement of Propo-
sition what if we change the element a of which we are taking the stabilizer?
The stabilizer may change, but it does so in a controlled way:

Proposition 9.12. Suppose a group G acts on a set A, and let a € A, g € G,
b= ga. Then

Stabg (b) = g Stabg(a)g ™.

Proof. Indeed, assume h € Stabg(a); then

(ghg™ 1) (b) = gh(g 'g9)a = gha =ga = :

thus ghg~! € Stabg(b). This proves the D inclusion; C follows by the same argu-
ment, noting that a = g~ 1b. O

For example, if Stabg(a) happens to be normal, then it is really independent
of a (in any given orbit). In any case, there is an isomorphism of G-sets beween
G/H and G/(gHg™!), as follows from these considerations (and as the reader will
independently check in Exercise [0.13)).
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.|
Exercises

9.1. (Once more, if you are already familiar with a little linear algebra...) The
matrix groups listed in Exercise all come with evident actions on a vector
space: if M is an n x n matrix with (say) real entries, multiplication to the right by
a column n-vector v returns a column n-vector Mv, and this defines a left-action
on R" viewed as the space of column n-vectors.

e Prove that, through this action, matrices M € O, (R) preserve lengths and
angles in R™.

e Find an interesting action of SU(2) on R3. (Hint: Exercise BA)
9.2. The effect of the matrices

1 0 0 1
0 -1/’ -1 0
on the plane is to respectively flip the plane about the y-axis and to rotate it 90°

clockwise about the origin. With this in mind, construct an action of Dg on R2.

9.3. If G = (G,-) is a group, we can define an ‘opposite’ group G° = (G, e)
supported on the same set GG, by prescribing
(Vg,heG): geh:=h-g.
e Verify that G° is indeed a group.
e Show that the ‘identity’: G° — G, g — g is an isomorphism if and only if G is
commutative.
e Show that G° = G (even if G is not commutative!).
e Show that giving a right-action of G on a set A is the same as giving a homo-
morphism G° — Sy, that is, a left-action of G° on A.

e Show that the notions of left- and right-actions coincide ‘on the nose’ for com-
mutative groups. (That is, if (g, a) — ag defines a right-action of a commutative
group G on a set A, then setting ga = ag defines a left-action).

e For any group G, explain how to turn a right-action of G into a left-action
of G. (Note that the simple ‘flip’ ga = ag does not work in general if G is not
commutative.)

9.4. As mentioned in the text, right-multiplication defines a right-action of a group
on itself. Find another natural right-action of a group on itself.

9.5. Prove that the action by left-multiplication of a group on itself is free.

9.6. Let O be an orbit of an action of a group G on a set. Prove that the induced
action of G on O is transitive.

9.7. Prove that stabilizers are indeed subgroups.

9.8. For G a group, verify that G-Set is indeed a category, and verify that the
isomorphisms in G-Set are precisely the equivariant bijections.
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9.9. Prove that G-Set has products and coproducts and that every object of G-Set
is a coproduct of objects of the type G/H = {left-cosets of H}, where H is a
subgroup of G and G acts on G/H by left-multiplication.

9.10. Let H be any subgroup of a group GG. Prove that there is a bijection between
the set G/H of left-cosets of H and the set H\G of right-cosets of H in G. (Hint:
G acts on the right on the set of right-cosets; use Exercise [@3] and Proposition [0.9])

9.11. — Let G be a finite group, and let H be a subgroup of index p, where p is
the smallest prime dividing |G|. Prove that H is normal in G, as follows:

Interpret the action of G on G/H by left-multiplication as a homomorphism
o:G— 5,

Then G/kero is (isomorphic to) a subgroup of S,. What does this say about
the index of ker o in G?

e Show that kero C H.

e Conclude that H = ker o, by index considerations.

Thus H is a kernel, proving that it is normal. (This exercise generalizes the result

of Exercise B2) [0.12]

9.12. — Generalize the result of Exercise [0.11] as follows. Let G be a group, and
let H C G be a subgroup of index n. Prove that H contains a subgroup K that is
normal in G and such that [G : K] divides the ged of |G| and n!l. (In particular,

G : K] <n!l) [VI2Z3]

9.13. > Prove ‘by hand’ that for all subgroups H of a group G and Vg € G, G/H and
G/(gHg ') (endowed with the action of G by left-multiplication) are isomorphic

in G-Set. [§9.3]

9.14. - Prove that the modular group PSLs(Z) is isomorphic to the coproduct Cyx*
C3. (Recall that the modular group PSLy(Z) is generated by x = ({ 7)) and
y = (] ~5). satisfying the relations % = y* = e in PSLy(Z) (Exercise [[J). The
task is to prove that x and y satisfy no other relation: this will show that PSLy(Z)
is presented by (z,y|2?%,y3), and we have agreed that this is a presentation for
Cy x C3 (Exercise B8 or [B7). Reduce this to verifying that no products

(') (y ) () o (yFa)(y i) - (yae)y
with one or more factors can equal the identity. This latter verification is tradi-

tionally carried out by cleverly exploiting an actiofd. Let the modular group act
on the set of irrational real numbers by

a b (r) ar+b
r)= .
c d cr+d
Check that this does define an action of PSLo(Z), and note that
1

) =11 g )= ye) =14 ye()

o
14

42The modular group acts on CU {co} by Mébius transformations. The observation that it
suffices to act on R\ Q for the purpose of this verification is due to Roger Alperin.
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Now complete the verification with a case-by-case analysis. For example, a product
(y*'2)(y*1) - - - (y*'2)y cannot equal the identity in PSLy(Z) because if it did, it
would act as the identity on R \ @, while if » < 0, then y(r) > 0, and both yz and
y~'x send positive irrationals to positive irrationals.) [B.8]

9.15. — Prove that every (finitely generated) group G acts freely on any corre-
sponding Cayley graph. (Cf. Exercise 86l Actions on a directed graph are defined
as actions on the set of vertices preserving incidence: if the vertices vy, vy are
connected by an edge, then so must be gvy, gvs for every g € G.) In particular,
conclude that every free group acts freely on a tree. [0.10]

9.16. > The converse of the last statement in Exercise [0.17]is also true: only free
groups can act freely on a tree. Assuming this, prove that every subgroup of a free
group (on a finite set) is free. [§6.4]

9.17. > Consider G as a G-set, by acting with left-multiplication. Prove that
Autg_set(G) =2 G. [§21]

9.18. Show how to construct a groupoid carrying the information of the action of
a group G on a set A. (Hint: A will be the set of objects of the groupoid. What
will be the morphisms?)

10. Group objects in categories

10.1. Categorical viewpoint. The definition of group (Definition [[L2)) is firmly
grounded on the category Set: A group is a set G endowed with a binary opera-
tion. ... However, we have noticed along the way (for example, in §3) that what is
really behind it is a pair of functions:

m:GxG—G, 1:G—=G

satisfying certain properties (which translate into associativity, existence of inverses,
etc.). Much of what we have seen could be expressed exclusively in terms of these
functions, systematically replacing considerations on ‘elements’ by suitable commu-
tative diagrams and enforcing universal properties as a means to define key notions
such as the quotient of a group by a subgroup. For example, homomorphisms may
be defined purely in terms of the commutativity of a diagram: cf. Definition 311

This point of view may be transferred easily to categories other than Set, and
the corresponding notions are very important in modern mathematics.

Definition 10.1. Let C be a category with (finite) products and with a final
object 1.

A group object in C consists of an object G of C and of morphisms

m:GxG—G, e:1l—-G, 1:G—>G
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in C such that the diagrams

mxidg

(GxG)xG GxG—"—@G
| |
Gx(GxGQ) 2" axGg—" .G
1x G- axa Gx199% G @
U L
G G
G A2iexa ¥ axa G2 6x6 2% gxa
l [ J»
1 = G 1 ‘ G
commute. J

Comments. The morphism A = idg X id¢g is the ‘diagonal’ morphism G —
G x G induced by the universal property for products and the identity map(s)
G — G. Likewise, the other unnamed morphisms in these diagrams are all uniquely
determined by suitable universal properties. For example, there is a unique mor-
phism € : G — 1 because 1 is final. The composition with the projection

G- e — @

is the identity; so is

exidg

1xG G 1xG

(why?); therefore the projection 1 x G — G is indeed an isomorphism, as indicated.

The reader will hopefully realize immediately (Exercise [0.2]) that our original
definition of groups given in {I] is precisely equivalent to the definition of group
object in Set: the commutativity of the given diagrams codifies associativity and
the existence of two-sided identity and inverses.

Most interesting categories the reader will encounter (not necessarily in this
book), such as the category of topological spaces, differentiable manifolds, algebraic
varieties, schemes, etc., will carry ‘their own’ notion of group object. For example,
a topological group is a group object in the category of topological spaces; a Lie
group is a group object in the category of differentiable manifolds, etc.
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Exercises

10.1. Define all the unnamed maps appearing in the diagrams in the definition of
group object, and prove they are indeed isomorphisms when so indicated. (For the
projection 1 x G — G, what is left to prove is that the composition

I1xG—-G—=1xG

is the identity, as mentioned in the text.)

10.2. > Show that groups, as defined in §I.21 are ‘group objects in the category of

sets’. [410.1]

10.3. Let (G, -) be a group, and suppose o : G x G — @ is a group homomorphism
(w.r.t. ) such that (G, o) is also a group. Prove that o and - coincide. (Hint: First
prove that the identity with respect to the two operations must be the same.)

10.4. Prove that every abelian group has exactly one structure of group object in
the category Ab.

10.5. By the previous exercise, a group object in Ab is nothing other than an
abelian group. What is a group object in Grp?
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Rings and modules

1. Definition of ring

In this chapter we will do for rings and modules what we have done in Chapter [Ilfor
groups: describe them in general terms, with particular attention to distinguished
subobjects and quotients. More detailed information on these structures will be
deferred to later chapters: in Chapter [V] we will look more carefully at several
interesting classes of rings, and modules (over commutative rings) will take center
stage in our rapid overview of linear algebra in Chapter [VI] and following. In this
chapter I will also include a brief jaunt into homological algebra, a topic that will
entertain us greatly in Chapter [X]

1.1. Definition. Rings (and modules) are defined by ‘decorating’ abelian groups
with additional data. As motivation for the introduction of such structures, note
that all number-based examples of groups that we have encountered, such as Z or R,
are endowed with an operation of multiplication as well as the ‘addition’ making
them into (abelian) groups. The ‘ring axioms’ will reflect closely the properties and
compatibilities of these two operations in such examples.

These examples are, however, very special. A more sophisticated motivation
for the introduction of rings arises by analyzing further the structure of homomor-
phisms of abelian groups. Recall (§II4]) that if G, H are abelian groups, then
Homay, (G, H) is also an abelian group. In particular, if G is an abelian group, then
so is the set of endomorphisms Endap(G) = Homap(G,G). More is true: mor-
phisms from an object of a category to itself may be composed with each other (by
definition of category!). Thus, two operations coexist in Endap(G): addition (in-
herited from G, making Endap(G) an abelian group), and composition. These two
operations are compatible with each other in a sense captured by the ring axioms:

Definition 1.1. A ring (R, +,-) is an abelian group (R, +) endowed with a second
binary operation -, satisfying on its own the requirements of being associative and
having a two-sided identity, i.e.,

119
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o (Vr,s,teR): (r-s)-t=r-(s-t),
e (JlgeR) (VreR): r-lp=r=1g-r

(which make (R,-) a monoid), and further interacting with + via the following
distributive properties:

o (Vr,s,teR): (r+s)-t=r-t+s-tandt-(r+s)=t-r+t-s. N

The notation - is often omitted in formulas, and we usually refer to rings by
the name of the underlying set.

Warning: What I am calling a ‘ring’, others may call a ‘ring with identity’
or a ‘ring with 1’: it is not uncommon to exclude the axiom of existence of a
‘multiplicative identity’ from the list of axioms defining a ring. Rings without
1dentity are sometimes called rngs, but I am not sure this should be encourage.
The reader should check conventions carefully when approaching the literature.
Examples of structures without a multiplicative identity abound: for example, the
set 27Z of even integers, with the usual addition and multiplication, satisfies all the
ring axioms given above with the exception of the existence of 1 (and is therefore
a rng). But in these notes all rings will have 1.

Of course the multiplicative identity is necessarily unique: the argument given
for Proposition M6 works verbatim.

The identity element of the abelian group underlying a ring is denoted Og (or
simply 0, in context) and is called the ‘additive’ identity. This is a special element
with respect to multiplication:

Lemma 1.2. In a ring R,

for allr € R.

Proof. Indeed, 0 = 0 + 0; hence, applying distributivity,
r-0=r-(0+0)=r-0+r-0,
from which 7 -0 = 0 by cancellation (in the group (R, +)). The equality 0-r =0 is

proven similarly. ([l

It is equally easy to check that multiplication behaves as expected on ‘subtrac-
tion’. In fact, if —1 denotes the additive inverse of 1, then the additive inverse —r
of any r € R is the result of the multiplication (—1)-7: indeed, using distributivity,

r+(=1)-r=1-r+(-1)-r=1-1)-r=0-r=0
(by Lemma [[2]) from which (—1)r = —r follows by (additive) cancellation.

IThe term ‘rng’ was introduced with this meaning by Jacobson; but essentially at the same
time Mac Lane introduced Rng as the name for the category of rings with identity. Hoping to steer

clear of this clash of terminology I have opted to call this category ‘Ring’.
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1.2. First examples and special classes of rings.

Example 1.3. We can define a ring structure on a trivial group {x} by letting
x % = x (as well as x + % = x); this is often called the zero-ring. Note that 0 = 1
in this ring (cf. Exercise [[T]). N

Example 1.4. More interesting examples are the number-based groups such as Z
or R, with the usual operations. These are very well known to our reader, who will
realize immediately that they satisfy the requirements given in Definition [T} but
they are very special. Why? a

To begin with, note that multiplication is commutative in these examples; this
is not among the requirements we have posed on rings in the official definition given
above.

Definition 1.5. A ring R is commutative if
e (Vr,seR): r-s=s-r. 3

Commutative rings (with identity) form an extremely important class of rings;
commutative algebra is the subfield of algebra studying them. We will focus on
commutative rings in later chapters; in this chapter we will develop some of the
basic theory for the more general case of arbitrary rings (with 1).

Example 1.6. An example of a noncommutative ring that is (likely) familiar to
the readers is the ring of 2 x 2 matrices with, say, real entries: matrices can be
added ‘componentwise’, and they can be multiplied as recalled in Example [IIL5E
the two operations satisfy the requirements in Definition [[11

Square matrices of any size, and with entries in any ring, form a ring (Exer-
cise [[4)). J
Example 1.7. The reader is already familiar with a large class of (commutative)
rings: the groups Z/nZ, endowed with the multiplication defined in §III2.3] (that is:
[a], - [b]n := [ab],; this is well-defined (cf. Exercise [M2.T4)) satisfy the ring axioms
listed above. a

The rings Z/nZ prompt me to highlight an important point. Another reason
why rings such as Z, Q, R, ...are special is that multiplicative cancellation by
nonzero elements holds in these rings. Of course additive cancellation is automatic,
since rings are in particular (abelian) groups; and multiplicative cancellation clearly
fails in general since one cannot ‘cancel 0’ (by Lemma[[2]). But even the fact that

(VMa€eR,a#0): a-b=a-¢c = b=c,
which holds, for example, in Z, does not follow from the ring axioms.

Indeed, this cancellation property does not hold in all rings; it may well fail in
the rings Z/nZ. For example,

(2]6 - [4]6 = [8l6 = [2]6 = [2]6 - [1]s
even though [4]¢ # [1]s.

The problem here is that in Z/6Z there are elements a # 0 such that a-b =0
for some b # 0 (take a = [2]g, b = [3]6)-
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Definition 1.8. An element a in a ring R is a left-zero-divisor if there exist ele-
ments b # 0 in R for which ab = 0. J

The reader will have no difficulty figuring out what a right-zero-divisor should
be. The element 0 is a zero-divisor in all nonzero rings R; the zero ring is the only
ring without zero-divisors(!).

Proposition 1.9. In a ring R, a € R is not a left- (resp., right-) zero-divisor if
and only if left (resp., right) multiplication by a is an injective function R — R.

In other words, a is not a left- (resp., right-) zero-divisor if and only if multi-
plicative left- (resp., right-) cancellation by the element a holds in R.

Proof. Let’s verify the ‘left’ statement (the ‘right’ statement is of course entirely
analogous). Assume a is not a left-zero-divisor and ab = ac for b,¢ € R. Then, by
distributivity,

a(b—c)=ab—ac=0,
and this implies b — ¢ = 0 since a is not a left-zero-divisor; that is, b = ¢. This
proves that left-multiplication is injective in this case.

Conversely, if a is a left-zero-divisor, then 3b # 0 such that ab = 0 = a - 0; this
shows that left-multiplication is not injective in this case, concluding the proof. [

Rings such as Z, Q, etc., are commutative rings without (nonzero) zero-divisors.
Such rings are very special, but very important, and they deserve their own termi-
nology:

Definition 1.10. An integral domain is a nonzero commutative ring R (with 1)
such that
(Va,be R): ab=0 = a=0o0rb=0. N

Chapter [V] will be entirely devoted to integral domains.

An element which is not a zero-divisor is called a non-zero-divisor. Thus, inte-
gral domains are those nonzero commutative rings in which every nonzero element
is a non-zero-divisor. By Proposition [[L9, multiplicative cancellation by nonzero
elements holds in integral domains. The rings Z, Q, R, C are all integral domains.
As we have seen, some Z/nZ are not integral domains.

Here is one of those places where the reader can do him/herself a great favor by
pausing a moment and figuring something out: answer the question, which Z/nZ
are integral domains? This is entirely within reach, given what the reader knows
already. Don’t read ahead before figuring this out—this question will be answered
within a few short paragraphs, spoiling all the fun.

There are even subtler reasons why Z is a very special ring: we will see in due
time that it is a ‘UFD’ (unique factorization domain); in fact, it is a ‘PID’ (principal
ideal domain); in fact, it is more special still!, as it is a ‘Euclidean domain’. All of
this will be discussed in Chapter [V] particularly VIl

However, Q, R, C are more special than all of that and then some, since they
are fields.
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Definition 1.11. An element u of a ring R is a left-unit if Jv € R such that uv = 1;
it is a right-unit if v € R such that vu = 1. Units are two-sided units. a

Proposition 1.12. In a ring R:
e w is a left- (resp., right-) unit if and only if left- (resp., right-) multiplication
by u is a surjective functions R — R;

e if u is a left- (resp., right-) unit, then right- (resp., left-) multiplication by u
is injective; that is, u is not a right- (resp., left-) zero-divisor;

e the inverse of a two-sided unit is unique;

o two-sided units form a group under multiplication.

Proof. These assertions are all straightforward. For example, denote by p, : R —
R right-multiplication by u, so that p,(r) = ru. If u is a right-unit, let v € R be
such that vu = 1; then Vr € R

Pu © pu(1) = pu(rv) = (rv)u =r(vu) =rlg =r.
That is, p, is a right-inverse to p,,, and therefore p,, is surjective (Proposition [I2.T]).

Conversely, if p, is surjective, then there exists a v such that 1z = p(,)(v) = vu,
so that u is a right-unit.

This checks the first statement, for right-units.

For the second statement, denote by A, : R — R left-multiplication by wu:
Ay () = ur. Assume u is a right-unit, and let v be such that vu = 1g; then Vr € R

A 0 Ay (1) = Ay (ur) = v(ur) = (vu)r = 1gr = 1.
That is, A, is a left-inverse to Ay, so A, is injective (Proposition [IZ] again).
The rest of the proof is left to the reader (Exercise [L9]). O
Since the inverse of a two-sided unit w is unique, we can give it a name; of
course we denote it by 1. The reader should keep in mind that inverses of left- or

right-units are not unique in general, so the ‘inverse notation’ is not appropriate
for them.

Definition 1.13. A division 1ing is a ring in which every nonzero element is a
two-sided unit. .
We will mostly be concerned with the commutative case, which has its own

name:

Definition 1.14. A field is a nonzero commutative ring R (with 1) in which every
nonzero element is a unit. 4

The whole of Chapter [VIIl will be devoted to studying fields.

By Proposition [[L.12] (second part), every field is an integral domain, but not
conversely: indeed, Z is an integral domain, but it is not a field. Remember:

field = integral domain,
integral domain = field.

There is a situation, however, in which the two notions coincide:
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Proposition 1.15. Assume R is a finite commutative ring; then R is an integral
domain if and only if it is a field.

Proof. One implication holds for all rings, as pointed out above; thus we only have
to verify that if R is a finite integral domain, then it is a field. This amounts to
verifying that if a is a non-zero-divisor in a finite (commutative) ring R, then it is
a unit in R.

Now, if a is a non-zero-divisor, then multiplication by a in R is injective (Propo-
sition [[L9); hence it is surjective, as the ring is finite, by the pigeon-hole principle;
hence a is a unit, by Proposition [[L.12] a

Remark 1.16. A little surprisingly, the hypothesis of commutativity in Proposi-
tion [L.IAlis actually superfluous: a theorem known as Wedderburn’s little theorem
shows that finite division rings are necessarily commutative. The reader will prove

this fact in a distant future (Exercise [VIIIG.14). N

Example 1.17. The group of units in the ring Z/nZ is precisely the group (Z/nZ)*
introduced in §IIIZ-3} indeed, a class [m], is a unit if and only if (right-) multipli-
cation by [m],, is surjective (by Proposition [[I2]), if and only if the map a — a[m],
is surjective, if and only if [m], generates Z/nZ, if and only if ged(m,n) = 1
(Corollary M2H), if and only if [m], € (Z/nZ)*.

In particular, those n for which all nonzero elements of Z/nZ are units (that is,
for which Z/nZ is a field) are precisely those n € Z for which ged(m,n) = 1 for all
m that are not multiples of n; this is the case if and only if n is prime. Putting this
together with Proposition [[LT0 we get the pretty classification (for integers p # 0)

Z/pZ integral domain <= Z/pZ field <= p prime,
which the reader is well advised to remember firmly. 3
Example 1.18. The rings Z/pZ, with p prime, are not the only finite fields. In

fact, for every prime p and every integer r > 0 there is a (unique, in a suitable
sense) multiplication on the product group

Z/pZ % - X L/pZ

r times
making it into a field. A discussion of these fields will have to wait until we have
accumulated much more material (cf. §VTIET]), but the reader could already try
to construct small examples ‘by hand’ (cf. Exercise [[TT). a

1.3. Polynomial rings. We will study polynomial rings in some depth, especially
over fields; they are another class of examples that is to some extent already familiar
to our reader. I will capitalize on this familiarity and avoid a truly formal (and
truly tedious) definition.

Definition 1.19. Let R be a ring. A polynomial f(x) in the indeterminate x and
with coefficients in R is a finite linear combination of nonnegative ‘powers’ of z
with coefficients in R:
f(z) = Zaixi =ap+ a1r +agx + -,
i>0
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where all a; are elements of R (the coefficients) and we require a; = 0 for i > 0.
Two polynomials are taken to be equal if all the coefficients are equal:

Zaixi:Zbixi — Vi>0): a;=b. 4

i>0 i>0

The set of polynomials in = over R is denoted by R[z]. Since all but finitely
many a; are assumed to be 0, one usually employs the notation
flx) = a0+ a1z 4 -+ apa”
for Zizo a;x’, if a; = 0 for i > n.
At this point the reader should just view all of this as a notation: a polynomial
really stands for an element of an infinite direct sum of the group (R,+). The

‘polynomial’ notation is more suggestive as it hints at what operations we are going
to impose on R[x]: if
f@) =3 aet and g(z) =3 b,
i>0 i>0

then we define

f@)+g(x) =Y (ai+b)a’

i>0

f(x)-g(z) = Z Z aibja:i"’j.

k>0 itj=k
To clarify this latter definition, see how it works for small k: f(z) - g(z) equals

aobo + (aob1 + a1bo)x + (aobs + a1by + asbo)z”® + (aobs + aibs 4 azby + azbo)z® + -,

and

that is, business as usual.

It is essentially straightforward (Exercise [I3]) to check that R[z], with these
operations, is a ring; the identity 1 of R is the identity of R[z], when viewed as a
polynomial (that is, 1g[,) = 1g + 0z + 0z +---).

The degree of a nonzero polynomial f(z) =Y ,.,a;z’, denoted deg f(z), is the
largest integer d for which agy # 0. This notion is very useful, but really behaves
well (Exercise [[LI4)) only if R is an integral domain: for example, note that over
R=7Z/6Z

deg([1] + [2]x) =1, deg([1]+ [3]z) =1, but
deg(([1] + [2]z) - ([1] + [3])) = deg([1] + [5]z) =1 # 1 + 1.
Polynomials of degree 0 (together with 0) are called constants; they form a ‘copy’
of R in RJx], since the operations +, - on constant polynomials are nothing but the
original operations in R, up to this identification. It is sometimes convenient to
assign to the polynomial 0 the degree —oc.

Polynomial rings in more indeterminates may be obtained by iterating this
construction:
Rla,y,2) = Rla][y][:);
elements of this ring may be written as ‘ordinary’ polynomials in three indetermi-
nates and are manipulated as usual. It can be checked easily that the construction
does not really depend on the order in which the indeterminates are listed, in the
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sense that different orderings lead to isomorphic rings (in the sense soon to be de-
fined officially). Different indeterminates commute with each other; constructions
analogous to polynomial rings, but with noncommuting indeterminates, are also
very important, but we will not develop them in this book (we will glance at one

such notion in Example [VITIEETT).

We will occasionally consider a polynomial ring in infinitely many indetermi-
nates: for example, we will denote by R[x1,xs,...] the case of countably many
indeterminates. Keep in mind, however, that polynomials are finite linear combi-
nations of finite products of the indeterminates; in particular, every given element
of R[x1,xa,...] only involves finitely many indeterminates. An honest definition of
this ring involves direct limits, which await us in JVITIT4l

Rings of power series may be defined and are very useful; the ring of series
Z;’io a; 7" = ag+a1x+asx®+. .. in x with coefficients in R, and evident operations,
is denoted R][x]]. Regrettably, we will only occasionally encounter these rings in
this book.

The ring R[z] is (clearly) commutative if R is commutative; it is an integral
domain if R is an integral domain (Exercise [[T5)); but it has no chances of being
a field even if R is a field, since z has no inverse in R[z]. The question of which
properties of R are ‘inherited’ by R|z] is subtle and important, and we will give it
a great deal of attention in later sections.

1.4. Monoid rings. The polynomial ring is an instance of a rather general con-
struction, which is occasionally very useful. A semigroup is a set endowed with an
associative operation; a monoid is a semigroup with an identity element. Thus a
group is a monoid in which every element has an inverse; positive integers with
ordinary addition form a semigroup, while the set N of natural numbers (that is,
nonnegative integersﬁ) is a monoid under addition.

Given a monoid (M, -) and a ring R, we can obtain a new ring R[M] as follows.
Elements of R[M] are formal linear combinations

E A+ M

where the ‘coefficients’ a,, are elements of R and a,, # 0 for at most finitely many
summands (hence, as in I3 as an abelian group R[M] is nothing but the direct
sum R®M). Operations in R[M] are defined by

(Z am-m)—l—(z by -m) = Z(am+bm)'m>

meM meM meM
(Zamm)(zbmm): Z Z (amlbmz)'m'
meM meM meM myimao=m

The identity in R[M]is 1g-1p, viewed as a formal sum in which all other summands
have 0 as coefficient.

2Some disagree, and insist that N should not include 0.
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The reader will hopefully see the similarity with the construction of the poly-
nomial ring R[z] in §I3} in fact (Exercise [[LTT) the polynomial ring R[x] may be
interpreted as R[N].

Group rings are the result of this construction when M is in fact a group. The
group ring R[Z] is a ring of ‘Laurent polynomials’ R[z,x~!], allowing for negative
as well as positive exponents.

Exercises

1.1. > Prove that if 0 =1 in a ring R, then R is a zero-ring. [{L.2]

1.2. — Let S be a set, and define operations on the power set Z(S) of S by setting
VA, B € Z(S)

A+B:=(AUB)~(ANB), A-B=ANB:

(where the solid black contour indicates the set included in the operation). Prove
that (Z(S),+, ) is a commutative ring. 23] B15]

1.3. = Let R be a ring, and let S be any set. Explain how to endow the set R® of
set-functions S — R of two operations +, - so as to make R® into a ring, such that
R% is just a copy of R if S is a singleton. [Z3]

1.4. > The set of n x n matrices with entries in a ring R is denoted M., (R). Prove
that componentwise addition and matrix multiplication make M, (R) into a ring,
for any ring R. The notation gl,(R) is also commonly used, especially for R = R
or C (although this indicates one is considering them as Lie algebras) in parallel with
the analogous notation for the corresponding groups of units; cf. Exercise [[lIG.1l In
fact, the parallel continues with the definition of the following sets of matrices:

s1u(R) = {M € gl,(R)| tr(M) = 0};

s, (C) = {M € gL, (C) | tr(M) = O};

s50,(R) ={M €sl,(R) | M + M' =0};

su(n) = {M € sl,(C)| M + M' = 0}.

Here tr(M) is the trace of M, that is, the sum of its diagonal entries. The other no-

tation matches the notation used in Exercise[lll6.T1 Can we make rings of these sets
by endowing them with ordinary addition and multiplication of matrices? (These

sets are all Lie algebras; cf. Exercise VIITAl) [T2 24 59, VT2, VT4

1.5. Let R be aring. If a, b are zero-divisors in R, is a+b necessarily a zero-divisor?

1.6. = An element a of a ring R is nilpotent if a™ = 0 for some n.
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e Prove that if @ and b are nilpotent in R and ab = ba, then a+b is also nilpotent.

e Is the hypothesis ab = ba in the previous statement necessary for its conclusion
to hold?

B.I2

1.7. Prove that [m] is nilpotent in Z/nZ if and only if m is divisible by all prime
factors of n.

1.8. Prove that 2 = +1 are the only solutions to the equation 22 = 1 in an integral
domain. Find a ring in which the equation 22 = 1 has more than 2 solutions.

1.9. > Prove Proposition [[12 [§12]

1.10. Let R be a ring. Prove that if a € R is a right-unit and has two or more
left-inverses, then a is not a left-zero-divisor and is a right-zero-divisor.

1.11. > Construct a field with 4 elements: as mentioned in the text, the underlying
abelian group will have to be Z/2Z x Z /2Z; (0,0) will be the zero element, and (1,1)
will be the multiplicative identity. The question is what (0,1) - (0,1), (0,1) - (1,0),
(1,0) - (1,0) must be, in order to get a field. [§L.2 §VIET]

1.12. > Just as complex numbers may be viewed as combinations a + bi, where
a,b € R and i satisfies the relation i> = —1 (and commutes with R), we may
construct a rinﬂ H by considering linear combinations a + bi + ¢j + dk where
a,b,c,d € R and i, j, k commute with R and satisfy the following relations:
P=2=k=-1, ij=—ji=k, jk=—-kj=1, ki=—ik=]j.
Addition in H is defined componentwise, while multiplication is defined by imposing
distributivity and applying the relations. For example,
(1+it+s) (24+k) =1-240-24j-2+1-k+i-k+j-k=2+2i+2j+k—j+i=2+3i+j+k.
(i) Verify that this prescription does indeed define a ring.
(ii) Compute (a + bi + ¢j + dk)(a — bi — ¢j — dk), where a,b,c,d € R.
(iii) Prove that H is a division ring.
Elements of H are called quaternions. Note that Qg := {1, +i, +j, +k} forms a
subgroup of the group of units of H; it is a noncommutative group of order 8, called
the quaternionic group.
(iv) List all subgroups of Qs, and prove that they are all normal.
(v) Prove that Qs, Dg are not isomorphic.

(vi) Prove that Qg admits the presentation (z,y|2%y~2,y*, xyz~ty).

[T 24 IVIT T2, [VIET6, TVIE.T7 VI6.T9)

1.13. > Verify that the multiplication defined in R[z] is associative. [§L3]

3The letter H is chosen in honor of William Rowan Hamilton.
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1.14. > Let R be a ring, and let f(x),g(xz) € R[z] be nonzero polynomials. Prove
that

deg(f () + g(x)) < max(deg(f(z)), deg(g(x))).
Assuming that R is an integral domain, prove that
deg(f(z) - g(x)) = deg(f(x)) + deg(g(x)).
[9L.3]

1.15. > Prove that R[z] is an integral domain if and only if R is an integral domain.

[9L.3]
1.16. Let R be a ring, and consider the ring of power series R[[x]] (cf. §L3)).

(i) Prove that a power series ag + a1z + agz? + - -+ is a unit in R[[z]] if and only
if ap is a unit in R. What is the inverse of 1 — z in R[[z]]?

(ii) Prove that R][[z]] is an integral domain if and only if R is.
1.17. > Explain in what sense R[z] agrees with the monoid ring R[N]. [T4]

2. The category Ring

2.1. Ring homomorphisms. Ring homomorphisms are defined in the natural
way: if R, S are rings, a function ¢ : R — S is a ring homomorphism if it preserves
both operations and the identity element. That is, ¢ must be a homomorphism of
the underlying abelian groups,

(Va,be R):  @(a+b) =p(a)+ @),
it must preserve the operation of multiplication,

(Va,be R): p(ab) = p(a)p(b),
and finally
o(1r) = 1s.
It is evident that rings form a category, with ring homomorphisms as mor-
phisms. I will denote this category by Ring.

The zero-ring is clearly final in Ring. However, note that it is not initial:
because of the requirement that ring homomorphisms send 1 to 1, the only rings
to which zero-rings map homomorphically are the zero-rings (Exercise 2.1]).

The category Ring does have initial objects: the ring of integers Z (with the
usual operations 4+, -) is initial in Ring. Indeed, for every ring R we can define a
group homomorphism ¢ : Z — R by

(VYneZ): ¢n)=n-1g,

that is, as the ‘exponential map’ €1, corresponding to 1z € R; cf. §IIIETl But ¢ is
in fact a ring homomorphism, since ¢(1) = 1, and

p(mn) = (mn)1g = m(nlg) = (mlg) - (nlg) = p(m) - p(n),
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where the equality < holds by the distributivity axioml]. This ring homomorphism
is unique, since it is determined by the requirement that ¢(1) = 1» and by the fact
that ¢ preserves addition. Thus for every ring R there exists one and only one ring
homomorphism Z — R, showing that Z is initial in Ring.

This should already convince the reader that Z is a very special ring. There is
in fact nothing arbitrary about Z: knowledge of the group Z determines the ring
structure of Z, as will be underscored below. This is one of the main reasons why
I included the ‘identity’ axiom in the list in Definition [T} there are many noniso-
morphic structures of ‘ring without identity’ on the group (Z, +) (cf. Exercise 2.15]),
but only one structure of ring with identity (Exercise 2.10]).

Ring homomorphisms preserve units: that is, if u is a (left-, resp., right-) unit
in Rand ¢ : R — S is a ring homomorphism, then ¢(u) is a (left-, resp., right-)
unit. Indeed, if v is a (right-, say) inverse of u, then

p(u)p(v) = p(uv) = p(1r) = 1s,
so that ¢(v) is a (right-) inverse of ¢(u).

On the other hand, the image of a non-zero-divisor by a ring homomorphism
may well be a zero-divisor: for example, the canonical projection w : Z — Z/67Z

is a ring homomorphism, and 2 is a non-zero-divisor in Z, yet w(2) = [2]¢ is a
zero-divisor.

2.2. Universal property of polynomial rings. Polynomial rings satisfy a uni-
versal property not unlike the one for free groups explored in §III5.21 The simplest
(and possibly most useful) case is for the polynomial rings Z[z1, - - , 2], and with
respect to commutative rings; 1 will leave the reader the pleasure of stating and
proving fancier notions.

Let A = {a1,...,a,} be a set of order n. Consider the category Z4 whose
objects are pairs (j, R), where R is a commutative rinéﬁ and

j:A—=R
is a set-function (cf. §III521); morphisms
(J1, B1) = (j2, R2)
are commutative diagrams
Ry —— Ry

i

A
in which ¢ is a ring homomorphism.

For example, (i,Z[x1, -+ ,z,]) is an object of Za, where i : A — Z[xy, -+ , ]
sends ay, to xp.

4The reader should parse this display carefully, as there is a potentially confusing mix of two
operations: multiples (such as m1lpg) and multiplication in R (explicitly denoted here by -).

5For the reader interested in generalizations: only the requirement that j(a1),...,j(an)
commute with one another is needed here.
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Proposition 2.1. (i,Z[xy, - ,x,)]) s initial in Z.

Proof. Let (j, R) be an arbitrary object of %; we have to show that there is a

unique morphism (i, Z[xy, - ,z,]) — (j, R), that is, there exists exactly one ring
homomorphism ¢ : Z[z1,- -+ ,z,] — R such that
Zlxy, - xp] 23R
{ /
j
A
commutes.

As usual in these verifications, the key point is that the requirements posed
on ¢ force its definition. The postulated commutativity of the diagram means that
o(xr) = jlag) for k = 1,--- ,n. Then, since ¢ must be a ring homomorphism,
necessarily

P My, @Y ayr) = D (i, (@) - plan)
=" dmiy i i) )

where ¢ : Z — R is the unique ring homomorphism (as Z is initial in Ring).

Thus, if ¢ exists, then it is unique. On the other hand, the formula we just
obtained clearlyﬁ preserves the operations and sends 1 to 1, so it does define a ring
homomorphism, concluding the proof. (I

Example 2.2. For n = 1, Proposition [Z1] says that if s is any element of a ring S,
then there is a unique ring homomorphism Z[z] — S sending « to s and ‘extending’
the unique ring homomorphism ¢ : Z — S. In this case the commutativity of S is
immaterial (why?). 3

Example 2.3. More generally, let a: R — S be a fixed ring homomorphism, and
let s € S be an element commuting with «(r) for all » € R. Then there is a unique
ring homomorphism @ : R[z] — S extending « and sending x to s (Exercise 2.0]).

In particular, we get an ‘evaluation map’ for polynomials over commutative
rings as follows. Given a polynomial f(z) = > ,. iz’ € Rlz], every r € R
determines an element

flir)= Z a;rt:

i>0
this may be viewed as @(f(x)), where @ is obtained as above with « =idg : R — R
and s = 7.

Thus, every polynomial f(z) determines a polynomial function f : R — R,
defined by r — f(r). It is a good idea to keep the two concepts of ‘polynomial’ and
‘polynomial function’ well distinct (cf. Exercise 271). J

6Well, it is really clear that it preserves addition; multiplication requires a bit of work, which
the reader would be well advised to perform. This is where the commutativity of R is used.
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2.3. Monomorphisms and epimorphisms. The kernel of a homomorphism ¢ :
R — S of rings is

kero :={r e R|p(r)=0}:
that is, it is nothing but the kernel of ¢ when the latter is viewed as a homomor-
phism of groups. As such, ker ¢ is a subgroup of (R, +); it satisfies an even stronger
1"equirementﬂ7 which we will explore at great length in §31

The reader may hope that an analog to Proposition [[Il[6.12] holds in Ring, and
this is indeed the case:

Proposition 2.4. For a ring homomorphism ¢ : R — S, the following are equiva-
lent:

(a) @ is a monomorphism;

(b) kery = {0};
(¢c) ¢ is injective (as a set-function,).

Proof. We prove (a) = (b), leaving the rest to the reader. Assume ¢ : R — S is
a monomorphism and r € ker . Applying the extension property of Example 2.2
we obtain unique ring homomorphisms ev, : Z[z] — R such that ev,.(z) = r and
evy : Z[x] = R such that ev(z) = 0. Consider the parallel ring homomorphisms:

Z[w]%ﬁRL)S :

since o(r) = 0 = ¢(0), the two compositions ¢ o ev,., v o evy agree (because they
agree on Z and they agree on x); hence ev, = evq since @ is a monomorphism.
Therefore

r=ev.(x) =evo(x) =0.
This proves r € ker¢p = r =0, that is, (b). O

By Proposition 24 if S — R is a monomorphism, then S may be identified
with a subset of R; the following definition formalizes this situation.

Definition 2.5. A subring S of a ring R is a ring whose underlying set is a subset
of R and such that the inclusion function S < R is a ring homomorphism. a

Equivalently, a subring of R is a subset S C R which contains 1z and satisfies
the ring axioms with respect to the operations +, - induced from R. It is immedi-
ately checked that S C R is a subring if it is a subgroup of (R, +), it is closed with
respect to -, and it contains 1g. As a nonexample, the zero-ring is not a subring of
a nonzero ring R (because it does not contain 1p).

Proposition 24 may induce the reader to believe that Ring and Grp are rather
similar from this general categorical standpoint. But a new phenomenon occurs
concerning epimorphisms. A surjective map of rings is certainly an epimorphism
in Ring, since it is already an epimorphism in Set—we have run into this argument
earlier (e.g., ‘(c) = (a)’ in Proposition [MIBIY)); but unlike as in Set, Grp, and Ab,

"Note that ker ¢ cannot be a subring in any reasonable sense, according to our definition of
ring, since it does not contain a multiplicative identity in all but very pathological situations. It
is a subring if the identity requirement is omitted.
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epimorphisms need not be surjectiveﬁ in Ring. Indeed, consider the inclusion ho-
momorphism of rings

L Z—Q:
¢ is not surjective, and hence it is not an epimorphism in Set or Ab (can the reader
‘describe’ coker (7 Exercise [Z12)); but it is an epimorphism of rings. Indeed, if o,
«o are parallel ring homomorphisms

Z%Q%R

and aq, as agreeﬁ on Z, say a = a1z = as|z, then they must agree on Q: because
forp,q € Z, q #0,

o <13> — awpoilg ) = a(pale)? (i=1,2)

q
is the same for botHd. Thus, ¢ satisfies the categorical requirement for epimor-
phisms (cf. §IZ0).
Warning: Thus, in Ring, a homomorphism may well be both a monomorphism
and an epimorphism without being an isomorphism!

2.4. Products. Products exist in Ring: if Rj, Ry are rings, then R; X Ry may
be defined by endowing the direct product of groups Ry x Ro (cf. §II34) with
componentwise multiplication. Thus, both operations on Ry x Ry are defined com-
ponentwise: V(ai,az),(b1,b2) € Ry x Ra,

(a1,a2) + (b, b2) := (a1 + b1, as + ba),

(a1, az2) - (b1,b2) = (a1 - by, az - ba).
The identity in Ry x Rp is (1g,,1r,). The reader will check (Exercise 2I3)) that
R1 X Ry is indeed a categorical product in Ring.

The reader should keep in mind that in general this is not the only ring struc-
ture one can define on the direct product of underlying groups. For example, as
mentioned in L2 one can define a field whose underlying group is Z/pZ x Z/pZ,
while the product ring Z/pZ x Z/pZ is very far from being a field (why?).

The situation with coproducts is more unfortunate—dealing with this in any
generality (even for the case of commutative rings) requires tensor products, and
by the time we develop tensor products (§VIIIRI), we will have almost forgotten
this question. But the universal property reviewed in §2.2] suffices to deal with
simple examples, and the reader should work out one template case now, for fun

(Exercise 214)).

Incidentally—with the case of abelian groups in mind (§III35]), the reader may
be tempted to consider a ‘direct sum of rings’, agreeing with the product in the finite

8Unfortunately, some references define ring epimorphisms as ‘surjective ring homomor-
phisms’; this should be discouraged.

9 As they must, since Z is initial.

10Note that a(q) must have a double-sided inverse in R since ¢ has one in Q, namely 1/q.
In particular, a1(¢™ %) = a2(¢™!) must agree, since they must equal this unique inverse of a(q);
cf. Proposition [[L12]
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case and maybe giving something interesting in general. This is less promising than
it looks: it does not satisfy the universal property of coproducts in Ring (why?),
and, further, the ‘infinite version’ is not a ring because it is missing the identity.

2.5. Endap(G). This is as good a place as any to expand a little on one of the main
examples of rings, and one that is not quite as special as the examples reviewed
in 4121

For every abelian group G, the group Endap,(G) := Homap(G, G) of endo-
morphisms of G is a ring, under the operations of addition and composition (as
discussed in the paragraph preceding Definition [[T]). Indeed, associativity follows
from the category axioms, and distributivity is immediately checked.

It is instructive to examine carefully the endomorphism ring of the abelian
group (Z,+):

Proposition 2.6. Enda,(Z) = Z as rings.

Proof. Consider the function
¢ : Endap(Z) - Z
defined by
p(a) = (1)

for all group homomorphisms « : Z — Z. Then ¢ is a group homomorphism: the
addition in Endap(Z) is defined so that Vn € Z

(a+ B)(n) = a(n) + B(n)
(cf. gMEA); in particular
pla+p)=(a+pB)(1) = al) + (1) = p(a) + ().

Further, ¢ is a ring homomorphism. Indeed, for o, 8 in Endap(Z) denote «(1)
by a; then
a(n) =na(l) = na=an

for all n € Z; in particular,

Therefore,

p(aof) = (aopB)(1) = a(f(1)) = a(1)B(1) = p(a)p(B)
as needed. Also, p(idz) =idz(1) = 1.

Finally, ¢ has an inverse: for a € Z, let ¥(a) be the homomorphism « : Z — Z
defined by

(VneZ): aln)=an;
the reader will easily check that 1 is a ring homomorphism and inverse to ¢.

Therefore  is a ring isomorphism, verifying the statement. ]



2. The category Ring 135

Proposition gives a sense in which the ring structure on Z is truly ‘natu-
ral’: this structure arises naturally from categorical considerations, there is nothing
‘arbitrary’ about it.

More generally, the rings Endap,(G) and other rings arising as endomorphism
rings of other structures (e.g., vector spaces) are arguably the most important class
of examples of rings. The entire theory of modules is based on the observation that
Endap(G) is a ring for every abelian group G.

Some of the notions reviewed in §L.2] are expressed very concretely in these
endomorphism rings; for example, the group of units in Endap(G) is nothing but

AutAb(G).

Every ring R interacts with the ring of endomorphisms of the underlying abelian
group (R,+). For r € R, define left- and right-multiplication by r by A, .,
respectively. That is, Va € R

Ar(a) =ra, p(a) = ar.
The following observation is nothing more than easy notation juggling, but it is

useful; it is a ‘ring analog’ of Cayley’s theorem (Theorem [IQ.5]):

Proposition 2.7. Let R be a ring. Then the function r — X\, is an injective ring
homomorphism

AN R— EDdAb(R).

Proof. For any r € R and for all a,b € R, distributivity gives

Ar(a+b) =r(a+b) =ra+rb= \(a)+ A\ (D) :
this shows that A, is indeed an endomorphism of the group (R, +), that is, A, €
EndAb(R).

The function A : R — Endap(R) defined by the assignment r — A, is clearly
injective, since if r # s, then

so that A\, # As.

We have to verify that A is in fact a homomorphism of rings. Recall that the
addition in Endap(R) is inherited from R (cf. §IEA): for all r,s € R, A\, + \s is
defined by

Ma e R): (A +As)(a) = A(a) + As(a).

Thus, the fact that A preserves addition is an immediate consequence of distribu-
tivity: for all r;s,a € R,

Args(a) = (r+s)a=ra+ sa = \.(a) + As(a).
As for multiplication, it is associativity’s turn to do its job:
Ars(a) = (rs)a =r(sa) = rXs(a) = Ar(As(a)) = (A 0 As)(a).

Of course A; is the identity, completing the verification. ]
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The function p : R — Endap(R) defined by r +— pu, is ‘almost’ a ring homo-
morphism: the reader will check (Exercise ZI8]) that

Hrgs = My + s,

Hrs = s © [y,
and p; = idg. That is, p would in fact be a ring homomorphism if we ‘reversed’
multiplicatio in R. Of course this issue disappears if R happens to be commu-
tative (since then \ = p).

.|
Exercises

2.1. > Prove that if there is a homomorphism from a zero-ring to a ring R, then R

is a zero-ring [§2.1]

2.2. Let R and S be rings, and let ¢ : R — S be a function preserving both
operations +, -.

e Prove that if ¢ is surjective, then necessarily ¢(1r) = 1g.
e Prove that if ¢ # 0 and S is an integral domain, then ¢(1g) = 1g.

(Therefore, in both cases ¢ is in fact a ring homomorphism).

2.3. Let S be a set, and consider the power set ring &2(S) (Exercise [[2) and
the ring (Z/2Z)° you constructed in Exercise [[3 Prove that these two rings are
isomorphic. (Cf. Exercise [I2.T11)

2.4. Define functions H — gly(R) and H — glo(C) (cf. Exercises [[4] and [CT2) by

a b c d

atbitcjrdks | 0@ T4

d a —b|’

—-d —c b a

. . a+bi c+di
a+bz+cy+dkn—>(_c+di a—bz‘)

for all a,b,c,d € R. Prove that both functions are injective ring homomorphisms.
Thus, quaternions may be viewed as real or complex matrices.

2.5. = The norm of a quaternion w = a + bi + ¢j + dk, with a,b,c,d € R, is the
real number N(w) = a? + b? + ¢* + d>.

Prove that the function from the multiplicative group H* of nonzero quaternions
to the multiplicative group RT of positive real numbers, defined by assigning to
each nonzero quaternion its norm, is a homomorphism. Prove that the kernel of

this homomorphism is isomorphic to SU(2) (cf. Exercise [IE3). [FEI0, MVIEIT
V619

HThis issue is entirely analogous to the business of right-actions vs. left-actions; cf. 10,3
especially Exercise [L1I0.3
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2.6. > Verify the ‘extension property’ of polynomial rings, stated in Example

(922

2.7. > Let R =7/27, and let f(x) = 22 —x; note f(x) # 0. What is the polynomial
function R — R determined by f(x)? [22 §VIE2 VIET]

2.8. Prove that every subring of a field is an integral domain.

2.9. - The center of a ring R consists of the elements a such that ar = ra for
all 7 € R. Prove that the center is a subring of R.

Prove that the center of a division ring is a field. 211 MVIRT7 NVINGE.TI4
VIIET4]

2.10. — The centralizer of an element a of a ring R consists of the elements r € R
such that ar = ra. Prove that the centralizer of a is a subring of R, for every a € R.

Prove that the center of R is the intersection of all its centralizers.

Prove that every centralizer in a division ring is a division ring. 21T, IVIZT7,

VI 1A

2.11. — Let R be a division ring consisting of p? elements, where p is a prime.
Prove that R is commutative, as follows:

e If R is not commutative, then its center C' (Exercise ) is a proper subring
of R. Prove that C' would then consist of p elements.

e Let r € R, r ¢ C. Prove that the centralizer of r (Exercise ZI0]) contains both
r and C.

e Deduce that the centralizer of r is the whole of R.

e Derive a contradiction, and conclude that R had to be commutative (hence, a
field).

This is a particular case of Wedderburn’s theorem: every finite division ring is a

field. [[VIZI7 VIIE.16]

2.12. > Consider the inclusion map ¢ : Z < Q. Describe the cokernel of ¢ in Ab
and its cokernel in Ring (as defined by the appropriate universal property in the

style of the one given in §IIR.G). [§2.3) §5]

2.13. > Verify that the ‘componentwise’ product Ry X Ry of two rings satisfies the
universal property for products in a category, given in 5.4l [§2.4]

2.14. > Verify that Z[x1, 23] (along with the evident morphisms) satisfies the uni-
versal property for the coproduct of two copies of Z[z] in the category of commu-
tative rings. Explain why it does not satisfy it in Ring. [§24]

2.15. > For m > 1, the abelian groups (Z,+) and (mZ,+) are manifestly iso-
morphic: the function ¢ : Z — mZ, n — mn is a group isomorphism. Use this
isomorphism to transfer the structure of ‘ring without identity’ (mZ,+,-) back
onto Z: give an explicit formula for the ‘multiplication’ e this defines on Z (that
is, such that ¢(a @ b) = ¢(a) - ¢(b)). Explain why structures induced by different
positive integers m are nonisomorphic as ‘rings without 1.
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(This shows that there are many different ways to give a structure of ring
without identity to the group (Z,+). Compare this observation with Exercise 2.16])

(9211

2.16. > Prove that there is (up to isomorphism) only one structure of ring with
identity on the abelian group (Z,+). (Hint: Let R be a ring whose underlying
group is Z. By Proposition 2.7 there is an injective ring homomorphism A : R —
Endap(R), and the latter is isomorphic to Z by Proposition Prove that A is

surjective.) [§2.1] 2T15)

2.17. — Let R be a ring, and let £ = Endap(R) be the ring of endomorphisms
of the underlying abelian group (R, +). Prove that the center of E is isomorphic
to a subring of the center of R. (Prove that if @ € E commutes with all right-
multiplications by elements of R, then « is left-multiplication by an element of R;
then use Proposition 27])

2.18. > Verify the statements made about right-multiplication u, following Propo-
sition 277 [§2.5]

2.19. Prove that for n € Z a positive integer, Enday(Z/nZ) is isomorphic to Z/nZ
as a ring.

3. Ideals and quotient rings

3.1. Ideals. In both Set and Grp we have been able to ‘classify’ surjective mor-
phisms: in both cases, a surjective morphism is, up to natural identifications, a
quotient by a (suitable) equivalence relation. In Grp, we have seen that such equiv-
alence relations arise in fact from certain substructures: normal subgroups.

The situation in Ring is analogous. We will establish a canonical decomposition
for rings, modeled after Theorems [I2.7] and [[IR.I} the corresponding version of the
‘first isomorphism theorem’ (Corollary [I82) will identify every surjective ring
homomorphism with a quotient by a suitable substructure. The role of normal
subgroups will be played by ideals.

Definition 3.1. Let R be a ring. A subgroup I of (R,+) is a left-ideal of R if
rI C I for all » € R; that is,

(MreR)(NVael): racl,
it is a right-ideal if Ir C I for all r € R; that is,
(VreR)(Nael): arel.

A two-sided ideal is a subgroup I which is both a left- and a right-ideal. a

Of course in a commutative ring there is no distinction between left- and right-
ideals. Even in the general setting, we will almost exclusively be concerned with
two-sided ideals; thus I will omit qualifiers, and an ideal of a ring will implicitly be
two-sided.
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Remark 3.2. As seen in §2.3] a subring of R is a subset S C R which contains 1
and satisfies the ring axioms with respect to the operations +, - induced from R.

Ideals are close to being subrings: they are subgroups, and they are closed
with respect to multiplication. But the only ideal of a ring R containing 1p is
R itself: this is an immediate consequence of the ‘absorption properties’ stated in
Definition Bl Thus ideals are in general not subrings; they are ‘rngs’. a

Ideals are considerably more important than subrings in the development of
the theory of ring. Of course the image of a ring homomorphism is necessarily a
subring of the target; but a lesson learned from §IIR.1] and following is that kernels
really capture the structure of a homomorphism, and kernels are ideals:

Example 3.3. Let ¢ : R — S be any ring homomorphism. Then ker ¢ is an ideal
of R.

Indeed, we know already that ker ¢ is a subgroup; we have to verify the absorp-
tion properties. These are an immediate consequence of Lemma for all € R,
all a € ker ¢, we have

p(ra) = o(r)p(a) = ¢(r) - 0=0,

plar) = p(a)p(r) =0-¢(r) =0.

More generally, it is easy to verify that the inverse image of an ideal is an ideal
(Exercise B2) and {0g} is clearly an ideal of S.

Similarly to the situation with normal subgroups in the context of groups, we
will soon see that ‘kernels of ring homomorphisms’ and ‘ideals’ are in fact equivalent
concepts. J

3.2. Quotients. Let I be a subgroup of the abelian group (R,+) of a ring R.
Subgroups of abelian groups are automatically normal, so we have a quotient group
R/I, whose elements are the cosets of I:

r+1

(written, of course, in additive notation). Further, we have a surjective group
homomorphism

R
7T:R—>7, r—r+1.

As we have explored in great detail for groups, this construction satisfies a suit-
able universal property with respect to group homomorphisms (Theorem [T.T2]).
Of course we are now going to ask under what circumstances this construction can
be performed in Ring, satisfying the analogous universal property with respect to
ring homomorphisms.

That is, what should we ask of I, in order to have a ring structure on R/I,
so that m becomes a ring homomorphism? Go figure this out for yourself, before
reading ahead!

12 Arguably, the reason is that ideals are precisely the submodules of a ring R.
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As so often is the case, the requirement is precisely what tells us the answer.
Since 7 will have to be a ring homomorphism, the multiplication in R/I must be
as follows: for all (a+I), (b+1I) in R/I,

(a+1)-(b+1) =m(a) -m(b) = m(ab) = ab + 1,
where the equality Y is forced if 7 is to be a ring homomorphism.
This says that there is only one sensible ring structure on R/I, given by
Ma,be R): (a+I)(b+1I):=ab+1.
The reader should realize right away that if this operation is well-defined, then it

does make R/I into a ring: associativity will be inherited from the associativity
in R, and the identity will simply be the coset 1 + I of 1.

So all is well, if the proposed operation is well-defined. But is it going to be
well-defined?

Example 3.4. It need not be, if I is an arbitrary subgroup of R. For example,
take Z as a subgroup of Q; then

0+Z=1+4+Z
(= Z) as elements of the group Q/Z, and § + Z is another coset, yet
1 1 1
—+ZL=2#-+Z=1--+1.
0 5 + # 5 + 5 + _|

Assume then that the operation is well-defined, so that R/I is a ring and
m: R — R/I is a ring homomorphism. What does this say about I?

Answer: I is the kernel of R — R/I, so necessarily I must be an ideal, as seen
in Example

Conversely, let us assume [ is an ideal of R, and verify that the proposed

prescription for the operation in R/I is well-defined. For this, suppose
o +I=ad"+1 and V +I1=0"+1,
recall that this means that o’ —a’ € I, V" — V' € I; then
'V —a't =ad" — "V + "V — b = a//(b// _ b/) + (a// o a/)b/ el
using both the left-absorption and right-absorption properties of Definition Bl
This says precisely that
alb/+I: a//b/l+I7

proving that the operation is well-defined.

Summarizing, we have verified that R/I is a ring, in such a way that the

canonical projection 7 : R — R/I is a ring homomorphism, if and only if I is an
ideal of R.

Definition 3.5. This ring R/I is called the quotient ring of R modulo I. a

Example 3.6. We know that all subgroups of (Z,+) are of the form nZ for a
nonnegative integer n (Proposition [IEJ). Tt is immediately verified that all sub-
groups of Z are in fact ideals of the ring (Z, +, ). The quotients Z/nZ are of course
nothing but the rings so-denoted in §I.2] (and earlier).
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The fact that Z is initial in Ring now prompts a natural definition. For a ring R,
let f:Z — R be the unique ring homomorphism, defined by a — a - 1r. Then
ker f = nZ for a well-defined nonnegative integer n determined by R.

Definition 3.7. The characteristic of R is this nonnegative integer n. a

Thus, the characteristic of R is n > 0 if the order of 1 as an element of (R, +)
is a positive integer n, while the characteristic is 0 if the order of 15 is cc. a

I have now fulfilled my promise to identify the notions of ideal and kernel of
ring homomorphisms: every kernel is an ideal (cf. Example B3]); and on the other
hand every ideal I is the kernel of the ring homomorphisms R — R/I. We have
the slogan:

kernel <= ideal
in the context of ring theory.

The key universal property holds in this context as it does for groups; cf. The-
orem I reproduce the statement here for reference, but the reader should
realize that very little needs to be proven at this point: the needed (group) ho-
momorphism exists and is unique by Theorem [[IZ.12, and verifying it is a ring
homomorphism is immediate.

Theorem 3.8. Let I be a two-sided ideal of a ring R. Then for every ring homo-
morphism ¢ : R — S such that I C ker ¢ there exists a unique ring homomorphism
@:R/I — S so that the diagram

R—"——38
R/I

commutes.

As a reminder to the lazy reader, ¢ is defined by

Plr+1) = ¢(r);
(part of) the content of the theorem is that this function is well-defined (if I C
ker ¢), and it is a ring homomorphism.

3.3. Canonical decomposition and consequences. As the reader should now
expect, Theorem B.8lis the key element in a standard decomposition of every ring ho-
momorphism. This is entirely analogous to the decomposition of set-functions stud-
ied in 2] and the decomposition of group homomorphisms obtained in T8I
Here is the statement:

Theorem 3.9. FEvery ring homomorphism ¢ : R — S may be decomposed as

follows:
]

R ke g 5

m e
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where the isomorphism ¢ in the middle is the homomorphism induced by ¢ (as in
Theorem [B.8)).

The reader will realize that this statement requires no proof at this point: the
decomposition holds at the level of groups (by Theorem [MI81]) and the maps are
all ring homomorphisms as observed earlier in this section.

The ‘first isomorphism theorem’ for rings is an immediate corollary:

Corollary 3.10. Suppose ¢ : R — S is a surjective ring homomorphism. Then
~ R
~ kerp’

As in the group case, the reader should develop the healthy instinctive reaction
of viewing every surjective homomorphism of rings as a quotient (by an ideal), up
to a natural identification.

Equally instinctive should be the realization that ideals of a quotient R/I are in
one-to-one correspondence with ideals of R containing I. Once more, not a whole
lot is new here: we already know (cf. §[lI8.3) that the function

u : {subgroups J of R containing I} — {subgroups of R/I}

defined by u(J) = J/I is a bijection preserving inclusions; it takes a moment to
check that J/I is an ideal of R/I if and only if .J is an ideal of R. The main content of
this observation is best packaged in the corresponding ‘third isomorphism theorem’:

Proposition 3.11. Let I be an ideal of a ring R, and let J be an ideal of R
containing I. Then J/I is an ideal of R/I, and

R_/I jass E
J/I o J
Proof. Since I C J = ker(R — R/J), we have an induced ring homomorphism
p:R/I - R/J
by Theorem B8 Explicitly, o(r + I) = r + J; ¢ is manifestly surjective. Since
kero={r+I|lo(r+I)=J}={r+I|lr+J=J={r+1|reJ}=J/I,

we see that J/I is an ideal (since it is a kernel), and the stated isomorphism follows
from Corollary O

What about the ‘second’ isomorphism theorem? This would be a relation

between the ideals
I+J J

I’ InJ
of the rings R/I, R/(I N J), respectively, assuming I and J are ideals of R (and
where it is immediately checked that I + .J and I N J are indeed ideal).

The reader may want to go back to {84l for the version of this story for
groups. My feeling is that Ring is not the best place to play this game, since

13The notation I + J should not surprise the reader: I, J are subgroups of the abelian
group R, so we know what it means to ‘add’ them; cf. 711
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(I'+.J)/I,J/(IN.J) are not even rings according to my conventions. Modules will
be a more natural context for this result.

In any case, the reader will benefit the most from exploring the matter on
his/her own; cf. Exercise B1T

.|
Exercises

3.1. Prove that the image of a ring homomorphism ¢ : R — S is a subring of S.
What can you say about ¢ if its image is an ideal of S7 What can you say about ¢
if its kernel is a subring of R?

3.2. > Let ¢ : R — S be a ring homomorphism, and let .J be an ideal of S. Prove
that I = ¢~1(J) is an ideal of R. [§3.1]

3.3. = Let ¢ : R — S be a ring homomorphism, and let J be an ideal of R.

e Show that ¢(J) need not be an ideal of S.
e Assume that ¢ is surjective; then prove that ¢(J) is an ideal of S.
e Assume that ¢ is surjective, and let I = ker; thus we may identify S with
R/I. Let J = ¢(J), an ideal of R/I by the previous point. Prove that
BRI, R
J I+J
(Of course this is just a rehash of Proposition B11l) 1]

3.4. Let R be a ring such that every subgroup of (R,+) is in fact an ideal of R.
Prove that R = Z/nZ, where n is the characteristic of R.

3.5. = Let J be a two-sided ideal of the ring M,,(R) of n x n matrices over a ring R.
Prove that a matrix A € M,,(R) belongs to .J if and only if the matrices obtained
by placing any entry of A in any position, and 0 elsewhere, belong to J. (Hint:
. 000 abc 000 000
de =

Carefully contemplate the operation ((1) 0 8) (g e > ((1) 0 8) (2 0 8).) B4l
3.6. - Let J be a two-sided ideal of the ring M,,(R) of n X n matrices over a
ring R, and let I C R be the set of (1,1) entries of matrices in .J. Prove that I is
a two-sided ideal of R and J consists precisely of those matrices whose entries all
belong to I. (Hint: Exercise[B3l) [B9]

3.7. Let R be a ring, and let a € R. Prove that Ra is a left-ideal of R and aR is
a right-ideal of R. Prove that a is a left-, resp. right-, unit if and only if R = aR,
resp. R = Ra.

3.8. > Prove that a ring R is a division ring if and only if its only left-ideals and
right-ideals are {0} and R.

In particular, a commutative ring R is a field if and only if the only ideals of R

are {0} and R. B9 94.3]
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3.9. = Counterpoint to Exercise It is not true that a ring R is a division
ring if and only if its only two-sided ideals are {0} and R. A nonzero ring with this
property is said to be simple; by Exercise[3.8] fields are the only simple commutative
rings.

Prove that M., (R) is simple. (Use Exercise B:6l) HE20]

3.10. > Let ¢ : Kk — R be a ring homomorphism, where k is a field and R is a
nonzero ring. Prove that ¢ is injective. [§VIE2] VIE2]

3.11. Let R be a ring containing C as a subring. Prove that there are no ring
homomorphisms R — R.

3.12. > Let R be a commutative ring. Prove that the set of nilpotent elements of R
is an ideal of R. (Cf. Exercise This ideal is called the nilradical of R.)

Find a noncommutative ring in which the set of nilpotent elements is not an

ideal. 313 IR VIBI3] gVINZ3)

3.13. = Let R be a commutative ring, and let N be its nilradical (cf. Exercise B.12)).
Prove that R/N contains no nonzero nilpotent elements. (Such a ring is said to be

reduced.) [0 VIS

3.14. — Prove that the characteristic of an integral domain is either 0 or a prime
integer. Do you know any ring of characteristic 1?7 [VIETT]

3.15. = A ring R i{] Boolean if a> = a for all « € R. Prove that Z(9) is
Boolean, for every set S (cf. Exercise [2)). Prove that every nonzero Boolean ring
is commutative and has characteristic 2. Prove that if an integral domain R is

Boolean, then R = Z/27. [£23] ME3]

3.16. — Let S be aset and 7' C S a subset. Prove that the subsets of S contained
in T form an ideal of the power set ring &?(.S). Prove that if S is finite, then every
ideal of Z2(S) is of this form. For S infinite, find an ideal of Z(S) that is not of

this form. [VITH]

3.17. > Let I, J be ideals of a ring R. State and prove a precise result relating the
ideals (I 4+ J)/I of R/I and J/(INJ)of R/(INJ). [§33]

4. Ideals and quotients: Remarks and examples. Prime and
maximal ideals

4.1. Basic operations. It is often convenient to define ideals in terms of a set of
generators.

Let a € R be any element of a ring. Then the subset I = Ra of R is a left-ideal
of R. Indeed, for all r € R we have

rl =rRa C Ra
as needed. Similarly, aR is right-ideal.

M After George Boole.
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In the commutative case, these two subsets coincide and are denoted (a). This
is the principal ideal generated by a. For example, the zero-ideal {0} = (0) and the
whole ring R = (1) are both principal ideals.

In general (Exercise 1)), if {1, }aeca is a family of ideals of a ring R, then the
sum ) I, is an ideal of R. If a, is any collection of elements of a commutative
ring R, then

(aa)aeA = Z(aa)
acA
is the ideal generated by the elements a,. In particular,

(a1,...,an) = (a1)+ -+ (an)

is the smallest ideal of R containing aq, ..., a,; this ideal consists of the elements
of R that may be written as

riay 4+ -+ rpan

for r1,...,7, € R. An ideal I of a commutative ring R is finitely generated if
I=(ay,...,ay,) for some ay,...,a, € R.

Example 4.1. It is a good idea to get used to a bit of ‘calculus’ of ideals and
quotients in terms of generators; judicious use of the isomorphism theorems yields
convenient statements. For example, let R be a commutative ring, and let a,b € R;
denote by b the class of b in R/(a). Then

(R/(a))/(b) = R/(a,b).
Indeed, this is a particular case of Proposition B.I1] since

7 _ (a,0)

as ideals of R/(a). J

Note that principal ideals are (very special) finitely generated ideals. These
notions are so important that we give special names to rings in which they are
satisfied by every ideal.

Definition 4.2. A commutative ring R is Noetherian if every ideal of R is finitely
generated. a

Definition 4.3. An integral domain R is a PID (‘Principal Ideal Domain’) if every
ideal of R is principal. a

Thus, PIDs are (very special) Noetherian rings. In due time we will deal at
length with these classes of rings (cf. Chapter [V]); Noetherian rings are very impor-
tant in number theory and algebraic geometry.

The reader is already familiar with an important PID:

Proposition 4.4. Z is a PID.

Proof. Let I C Z be an ideal. Since [ is a subgroup, I = nZ for some n € Z, by
Proposition [II6.9 Since nZ = (n), this shows that I is principal. O
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The fact that Z is a PID captures precisely ‘why’ greatest common divisors
behave as they do in Z: if m, n are integers, then the ideal (m, n) must be principal,
and hence

(m,n) = (d)
for some (positive) integer d. This integer is manifestly the ged of m and n: since
m € (d) and n € (d), then d | m and d | n, etc.

If k is a field, the ring of polynomials k[z] is also a PID; proving this is easy,
using the ‘division with remainder’ that we will run into very soon (§4.2)); the reader
should work this out on his/her own (Exercise [4]) now. This fact will be absorbed
in the general theory when we review the general notion of ‘Euclidean domain’,
in VI

By contrast, the ring Z[x] is not a PID: indeed, the reader should be able to
verify that the ideal (2,2) cannot be generated by a single element. As we will see
in due time, greatest common divisors make good sense in a ring such as Z[x], but
the matter is a little more delicate, since this ring is not a PID[.

There are several more basic operations involving ideals; for now, the following
two will suffice.

e Again assume that {I,}.ca is a collection of ideals of a ring R. Then the
intersection (), 4 Lo is (clearly) an ideal of R; it is the largest ideal contained
in all of the ideals I,,.

e If I, J are ideals of R, then IJ denotes the ideal generated by all products
ij with i € I, j € J. More generally, if I1,..., I, are ideals in R, then the
‘product’ I - - - I, denotes the ideal generated by all products i -- -4, with
1, € I.

The reader should note the clash of notation: in the context of groups (especially
qIBA) 7J would mean something else. Watch out!

Tt is clear that I.J C INJ: every element ij with ¢ € I and j € Jisin I (because
I is a right-ideal) and in J (because .J is a left-ideal); therefore I N J contains all
products ij, and hence it must contain the ideal I.J they generate. Sometime the
product agrees with the intersection:

(4)NB3)=(12)=(4)-(3) inZ;
and sometime it does not:

(4)N(6) = (12) # (24) = (4) - (6).
The matter of whether I.J = I N J is often subtle; a prototype situation in which
this equality holds is given in Exercise

4.2. Quotients of polynomial rings. I have already observed that the quotient
Z/nZ is our familiar ring of congruence classes modulo n. Quotients of polynomial
rings by principal ideals are a good source of ‘concrete’, but maybe less familiar,
examples.

151t is, however, a ‘UFD’, that is, a ‘unique factorization domain’. This suffices for a good

notion of ged; cf. VIZT1
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Let R be a (nonzero) ring, and let
f(z) = 2 +ag 12+t awtao € R[z]

be a polynomial; for convenience, I am assuming that f(x) is monic, that is, its
leading coefficient (the coefficient of the highest power of x appearing in f(z)) is 1.
In terms of ideals, this is not a serious requirement if the coefficient ring R is a
field (Exercise 7)), but it may be substantial otherwise: for example, (2z) C Z[x]
cannot be generated by a monic polynomial. Also note that a monic polynomial
is necessarily a non-zero-divisor (Exercise [L.8)) and that if f(z) is monic, then

deg(f(z)g(x)) = deg f(z) + deg g(z) for all polynomials g(z).

It is convenient to assume that f(x) is monic because we can then divide
by f(z), with remainder. That is, if g(x) € R[z] is another polynomial, then
there exist polynomials ¢(x), r(z) € R[z] such that

9(z) = f(x)q(x) + r(x)
andq degr(z) < deg f(z). This is simply the process of ‘long division’ of polyno-
mials, which is surely familiar to the reader, and can be performed over any ring
when dividing by monic polynomial.
The situation appears then to be similar to the situation in Z, where we also
have division with remainder. Quotients and remainders are uniquely@ determined

by g(z) and f(x):
Lemma 4.5. Let f(z) be a monic polynomial, and assume

f(@)q(z) +7i(z) = f(2)g2(x) + ra2(2)

with both r1(x) and ra(x) polynomials of degree < deg f(x). Then q1(z) = ¢2(x)
and ri(x) = ro(z).

Proof. Indeed, we have
@) (@ (z) = @2(2)) = r2(x) — ri(@);

if ro(x) # ri(x), then ro(x) —r1(z) has degree < deg f(z), while f(x)(q1(x) —q2(x))
has degree > deg f(x), giving a contradiction. Therefore r1(x) = ro(z), and q1( ) =
g2(x) follows right away since monic polynomials are non-zero-divisors. O

The preceding considerations may be summarized in a rather efficient way in
the language of ideals and cosets. We will now restrict ourselves to the commutative
case, mostly for notational convenience, but also because this will guarantee that
ideals are two-sided ideals, so that quotients are defined as rings (cf. §32I).

16Note: With the convention that the degree of the polynomial 0 is —oo, the condition
degr(z) < deg f(z) is satisfied by r(z) = 0.

"The key point is that if n > d, then for all a € R we have az™ = az"™~?f(x)+ h(z) for some
polynomial h(z) of degree < n. Arguing inductively, this shows that we may perform division
by f(x) with remainder for all ‘monomials’ ax™, and hence (by linearity) for all polynomials
g(z) € R[z].

18This assertion has to be taken with a grain of salt in the noncommutative case, as different
quotients and remainders may arise if we divide ‘on the left’ rather than ‘on the right’.
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Assume then that R is a commutative ring. What we have shown is that, if
f(z) is monic, then for every g(z) € R[x] there exists a unique polynomial r(x) of
degree < deg f(z) and such that

9(x) + (f(z)) = r(z) + (f(2))
as cosets of the principal ideal (f(z)) in R[z].
Refining this observation leads to a useful group-theoretic statement. Note that
polynomials of degree < d may be seen as elements of a direct sum
R =R@---@R:
—_——
d times

indeed, the function ¢ : R®? — R[x] defined by
P((ro,r1, -+ ,ra—1)) =ro+r@+ - +rg_1a?!

is clearly an injective homomorphism of abelian groups, hence an isomorphism onto
its image, and this consists precisely of the polynomials of degree < d. I will glibly
identify R®? with this set of polynomials for the purpose of the discussion that
follows.

The next result may be seen as a way to concoct many different and interesting
ring structures on the direct sum R%%:

Proposition 4.6. Let R be a commutative ring, and let f(x) € R[z] be a monic
polynomial of degree d. Then the function
¢ : R[z] — R®?

defined by sending g(x) € Rx] to the remainder of the division of g(x) by f(z)
induces an isomorphism of abelian groups

R[] ~ pdd

(f(=)

Proof. The given function ¢ is well-defined by Lemma [£5] and it is surjective
since it has a right inverse (that is, the function 1 : R®? — R[z] defined above).

I claim that ¢ is a homomorphism of abelian groups. Indeed, if

g1(x) = f(@)q(x) +m1(z) and  ga(2) = f(2)ga(z) + r2(2)
with degr(z) < d, degra(x) < d, then

91(x) + g2(2) = f(2)(q1(2) + g2(2)) + (r1(2) + 7a(2))
and deg(ri(x) + r2(z)) < d: this implies (again by Lemma [35])

e(91(z) + g2(x)) = r1(z) + r2(2) = @(91(2)) + ¢ (g2(2))-

By the first isomorphism theorem for abelian groups, then, ¢ induces an iso-
morphism
M ~ Rp®d
ker ¢ '
On the other hand, ¢(g(x)) = 0 if and only if g(x) = f(x)q(z) for some q(x) € R]x],
that is, if and only if g(z) is in the principal ideal generated by f(z). This shows
ker o = (f(z)), concluding the proof. O
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Example 4.7. Assume f(x) is monic of degree 1: f(xz) = x — a for some a € R.
Then the remainder of g(x) after division by f(z) is simply the ‘evaluation’ g(a)
(cf. Example 23)): indeed,
9(z) = (z —a)g(z) +r
for some r € R (the remainder must have degree < 1; hence it is a constant);
evaluating at a gives
gla)=(a—a)q(a) +r=0-qg(a)+r=r
as claimed. In particular, g(a) = 0 if and only if g(z) € (z — a).
The content of Proposition in this case is that the evaluation map
Rlz] = R, g(z)— g(a)
induces an isomorphism
Rlz]
(x —a)

of abelian groups; the reader will verify (either by hand or by invoking Corol-
lary BI0) that this is in fact an isomorphism of rings. J

=R

Example 4.8. It is fun to analyze higher-degree examples. For every monic
f(x) € RJz] of degree d, Proposition gives a potentially different ring (that
is, R[z]/(f(z))) isomorphic to R®? as a group; one can then use this isomorphism
to define a new ring structure onto the group R®%.

For d = 1 all these structures are isomorphic (as seen in Example .7); but
interesting structures already arise in degree 2. For a concrete example, apply this
procedure with f(z) = 22 + 1: Proposition gives an isomorphism of groups

Rla]
(% +1)
what multiplication does this isomorphism induce on R & R? Take two elements
(agp,a1), (bo,b1) of R @ R. With the notation used in Proposition .G, we have

ROR=

(ag,a1) = p(ag + ar1x), (bo,b1) = ¢(bo + b1 ).
Now a bit of high-school algebra gives
(ap + a1)(bg + biz) = agbo + (aghy + arbo)x + arbya®
= (2 4 1)arby + ((agbo — a1b1) + (aobr + arbo)z)
which shows
o((ag + a1z)(bg + b1x)) = (apbp — a1by, apby + a1by).
Therefore, the multiplication induced on R & R by this procedure is defined by
(ap,a1) - (bo,b1) = (apby — a1b1, apby + a1bp).

This recipe may seem somewhat arbitrary, but note that upon taking R = R, the
ring of real numbers, and identifying pairs (z,y) € R @ R with complez numbers
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x + 4y, the multiplication we obtained on R & R matches precisely the ordinary
multiplication in C. Therefore,

R

B g
(z2+1)

as rings. In other words, this procedure constructs the ring C ‘from scratch’,

starting from R[z]. N

The point is that the polynomial equation z? + 1 = 0 has no solutions in R;
the quotient R[x]/(2%+ 1) produces a ring containing a copy of R and in which the
polynomial does have roots (that is, £ the class of x in the quotient). The fact that
this turns out to be isomorphic to C may not be too surprising, considering that C
is precisely a ring containing a copy of R and in which 22 + 1 does have roots (that
is, +1).

Such constructions are the “algebraist’s way” to solve equations. We will come
back to them in §VIE.2] and in a sense the whole of Chapter [VII will be devoted to
this topic.

4.3. Prime and maximal ideals. Other ‘qualities’ of ideals are best expressed
in terms of quotients. I am still assuming that our rings are commutative—both
due to unforgivable laziness and because that is the only context in which we will
use these notions.

Definition 4.9. Let I # (1) be an ideal of a commutative ring R.

e [ is a prime ideal if R/I is an integral domain.

e [ is a mazimal ideal if R/I is a field. 4

Example 4.10. For all a € R, the ideal (x—a) is prime in R[z] if and only if R is an
integral domain; it is maximal if and only if R is a field. Indeed, R[z]/(z —a) & R,
as we have seen in Example .7

The ideal (2, z) is maximal in Z[x], since

Zlz] L Zal/(x) , Z _
co @ @

is a field (for the isomorphism =, cf. Example ). J

Of course these notions may be translated into terms not involving quotients
at all, and it is largely a matter of sesthetic preference whether prime and max-
imal ideals should be defined as in Definition or by the following equivalent
conditions:

Proposition 4.11. Let I # (1) be an ideal of a commutative ring R. Then
o [ is prime if and only if for all a,b € R
abel = (a€l orbel);
o [ is mazimal if and only if for all ideals J of R
ICJ = (I=JorJ=R).
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Proof. The ring R/I is an integral domain if and only if Va,b € R/I
a-b=0 = (@=0o0rb=0).

This condition translates immediately to the given condition in R, witha =a + I,
b=0b+1I, since the 0 in R/T is I.

As for maximality, the given condition follows from the correspondence between
ideals of R/I and ideals of R containing I (§3.3]) and the observation that a commu-
tative ring is a field if and only if its only ideals are (0) and (1) (Exercise BY). O

From the formulation in terms of quotients, it is completely clear that

maximal = prime;

indeed, fields are integral domains. This fact is of course easy to check in terms of
the other description, but the argument is a little more cumbersome (Exercise 14)).
Prime ideals are not necessarily maximal, but note the following:

Proposition 4.12. Let I be an ideal of a commutative ring R. If R/I is finite,
then I is prime if and only if it is maximal.

Proof. This follows immediately from Proposition [L15] O

For example, let (n) be an ideal of Z, with n > 0; then
(n) prime <= (n) maximal <= n is prime as an integer.

Indeed, for nonzero n the ring Z/nZ is finite, so Proposition 12 applies; cf. Ex-
ample [LT7

In general, the set of prime ideals of a commutative ring R is called™ the
spectrum of R, denoted Spec R. We can ‘draw’ SpecZ as follows:

5) () a1 A3) A7) _eee

\\\///

Actually, attributing the fact that nonzero prime ideals of Z are maximal to
the finiteness of the quotients (as I have just done) is slightly misleading; a better
‘explanation’ is that Z is a PID, and this phenomenon is common to all PIDs:

Proposition 4.13. Let R be a PID, and let I be a nonzero ideal in R. Then I is
prime if and only if it is maximal.

Proof. Maximal ideals are prime in every ring, so we only need to verify that
nonzero prime ideals are maximal in a PID; we will use the characterization of
prime and maximal ideals obtained in Proposition LTIl Let I = (a) be a prime
ideal in R, with a # 0, and assume I C J for an ideal of R. As R is a PID, J = (b)

19Believe it or not, the term is borrowed from functional analysis.
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for some b € R. Since I = (a) C (b) = J, we have that a = bc for some ¢ € R. But
then b € (a) or ¢ € (a), since I = (a) is prime.
If b € (a), then (b) C (a); and I = J follows. If ¢ € (a), then ¢ = da for some
d € R. But then
a = bc = bda,
from which bd = 1 since cancellation by the nonzero a holds in R (since R is an
integral domain). This implies that b is a unit, and hence J = (b) = R.

That is, we have shown that if I C J, then either I = J or J = R: thus [ is
maximal, by Proposition 11l |

Example 4.14. Let k be a field. Then nonzero prime ideals in k[x] are maximal,
since k[z] is a PID (as the reader has hopefully checked by now; cf. Exercise EA)).
Therefore, a picture of Spec k[x] would look pretty much like the picture of SpecZ
shown above: with the maximal ideals at one level, all containing the prime (and
nonmaximal) ideal (0).

This picture is particularly appealing for fields such as k = C, which are al-
gebraically closed, that is, in which for every nonconstant f(z) € k[z] there exists
r € k such that f(r) = 0. It would take us too far afield to discuss this notion at
any length now; but the reader should be aware that C is algebraically closed. We
will come back to thif?d. Assuming this fact, it is easy to verify (Exercise E2T])
that the maximal ideals in C[z] are all and only the ideals

(z = 2)
where z ranges over all complex numbers. That is, stretching our imagination a
little, we could come up with the following picture for Spec C|z]:

() (z=1)  (z=1)

0)

There is a ‘complex lind?]] worth’ of maximal ideals: for each z € C we have the
maximal (z — z); the prime (0) is contained in all the maximal ideals; and there
are no other prime ideals.

The picture for Spec C[z] may serve as justification for the fact that, in algebraic
geometry, C[xz] is the ring corresponding to the ‘affine line’ C; it is the ring of an
algebraic curve. It turns out that the fact that there is exactly ‘one level’” of maximal

20 A particularly pleasant proof may be given using elementary complex analysis, as a conse-
quence of Liouville’s theorem, or the maximum modulus principle; cf. §VI5.3
21T know: it looks like a plane. But it is a line, as a complex entity.
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ideals over (0) in C[x] reflects precisely the fact that the corresponding geometric
object has dimension 1.

In general, the (Krull) dimension of a commutative ring R is the length of the
longest chain of prime ideals in R. Thus, Proposition tells us that PIDs other
than fields, such as Z, have ‘dimension 1’. In the lingo of algebraic geometry, they
all correspond to curves. a

Example 4.15. For examples of rings of higher dimension, consider
klxy, ..., x5l
where k is a field. Note that there are chains of prime ideals of length n

(0) C (1) € (z1,22) T S (T1,...,Tp)

= =

in this ring. (Why are these ideals prime? Cf. Exercise [LI3l) This says that
klx1,...,x,] has dimension > n. One can show that n is in fact the longest length of
a chain of prime ideals in k[x1, ..., 2,]; that is, the Krull dimension of k[z1, ..., z,]
is precisely n. In algebraic geometry, the ring Clzy,...,x,] corresponds to the
n-dimensional complex space C™.

Dealing precisely with these notions is not so easy, however. Even the seemingly

simple statement that the maximal ideals of C[z1, ..., z,] are all and only the ideals
(x1 — 21, ..., Ty — 2p), for (21,...,2,) € C", requires a rather deep result, known
as Hilbert’s Nullstellensatz. a

We will come back to all of this and get a very small taste of algebraic geometry
in VIR after we develop (much) more machinery.

.|
Exercises

4.1. > Let R be a ring, and let {I,}neca be a family of ideals of R. We let

Z I, = {Z ro such that r, € I, and r, = 0 for all but finitely many a} .
acA a€cA

Prove that ) I, is an ideal of R and that it is the smallest ideal containing all of
the ideals I,,. [§4.1]

4.2. > Prove that the homomorphic image of a Noetherian ring is Noetherian. That
is, prove that if ¢ : R — S is a surjective ring homomorphism and R is Noetherian,
then S is Noetherian. [§6.4]

4.3. Prove that the ideal (2, z) of Z[z] is not principal.

4.4. > Prove that if & is a field, then k[z] is a PID. (Hint: Let I C k[z] be any ideal.
If I = (0), then I is principal. If I # (0), let f(z) be a monic polynomial in I of
minimal degree. Use division with remainder to construct a proof that I = (f(z)),
arguing as in the proof of Proposition [G.9) [§41] §£3 VIZA §VIET] VT2
VIIT.2)
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4.5. > Let I, J be ideals in a commutative ring R, such that I + J = (1). Prove
that IJ = InJ. [§E1 VIGT]

4.6. Let I, J be ideals in a commutative ring R. Assume that R/(I.J) is reduced
(that is, it has no nonzero nilpotent elements; cf. Exercise B.I3]). Prove that I.J =
Ind.

4.7. > Let R = k be a field. Prove that every nonzero (principal) ideal in k[z] is
generated by a unique monic polynomial. [§£2] §VIIT.2]

4.8. > Let R be a ring and f(z) € R[z] a monic polynomial. Prove that f(x) is
not a (left- or right-) zero-divisor. [§4.2] 9]

4.9. Generalize the result of Exercise 4.8 as follows. Let R be a commutative
ring, and let f(z) be a zero-divisor in R[x]. Prove that 3b € R, b # 0, such that
f(x)b = 0. (Hint: Let f(z) = agz® + --- + ao, and let g(x) = b.z® + --- + by be
a nonzero polynomial of minimal degree e such that f(z)g(z) = 0. Deduce that
aqg(x) = 0, and then prove aq_;g(z) = 0 for all i. What does this say about b.?)

4.10. — Let d be an integer that is not the square of an integer, and consider the
subset of C defined b

Q(Vd) := {a+bVd|a,b € Q}.
e Prove that Q(v/d) is a subring of C.
e Define a function N : Q(v/d) — Q by N(a + bVd) := a®> — b*d. Prove that
N(zw) = N(2)N(w) and that N(z) # 0 if z € Q(\/d), z # 0.

The function N is a ‘norm’; it is very useful in the study of Q(v/d) and of its
subrings. (Cf. also Exercise 2.5])
e Prove that Q(v/d) is a field and in fact the smallest subfield of C containing
both Q and v/d. (Use N.)
e Prove that Q(v/d) = Q[t]/(t> — d). (Cf. Example E8])

MICT? M8, ME.T3, VTITT2)

4.11. Let R be a commutative ring, a € R, and fi(z),..., f-(z) € R[z].
e Prove the equality of ideals

(fi(@),.... fr(x),2 —a) = (fi(a),..., fr(a),x — a).
e Prove the useful substitution trick

R[z] ~ R

(fl(x)a"'va(x)’x_a’) (fl(a)v"'afr(a’))'
(Hint: Exercise B3l)

4.12. > Let R be a commutative ring and a1, - - - , a, elements of R. Prove that
Rlxq,...,zy] ~R
(1 — a1,y Ty — ap)

VIR

220f course there are two ‘square roots of d’; but the definition of Q(\/E) does not depend
on which one is used.
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4.13. > Let R be an integral domain. For all &k = 1,...,n prove that (z1,...,zx)
is prime in R[xy,...,z,]. [§43]

4.14. > Prove ‘by hand’ that maximal ideals are prime, without using quotient
rings. [§4.3]

4.15. Let ¢ : R — S be a homomorphism of commutative rings, and let I C S be
an ideal. Prove that if I is a prime ideal in S, then ¢~1(I) is a prime ideal in R.
Show that ¢~1(I) is not necessarily maximal if I is maximal.

4.16. Let R be a commutative ring, and let P be a prime ideal of R. Suppose 0 is
the only zero-divisor of R contained in P. Prove that R is an integral domain.

4.17. = (If you know a little topology...) Let K be a compact topological space,
and let R be the ring of continuous real-valued functions on K, with addition and
multiplication defined pointwise.

(i) Forp € K, let M, = {f € R| f(p) = 0}. Prove that M, is a maximal ideal in
R.
(ii) Prove that if f1,..., f, € R have no common zeros, then (f1,..., f.) = (1).
(Hint: Consider fZ +---+ f2.)
(iii) Prove that every maximal ideal M in R is of the form M, for some p € K.
(Hint: You will use the compactness of K and (ii).)

Conclude that p — M, defines a bijection from K to the set of maximal ideals
of R. (The set of maximal ideals of a commutative ring R is called the mazimal
spectrum of R; it is contained in the (prime) spectrum Spec R defined in §4.3
Relating commutative rings and ‘geometric’ entities such as topological spaces is
the business of algebraic geometry.)

The compactness hypothesis is necessary: cf. Exercise V310 [VIZ.I0]

4.18. Let R be a commutative ring, and let N be its nilradical (Exercise B12).
Prove that N is contained in every prime ideal of R. (Later on the reader will
check that the nilradical is in fact the intersection of all prime ideals of R: FExer-
cise VIBI3)

4.19. Let R be a commutative ring, let P be a prime ideal in R, and let I; be
ideals of R.
(i) Assume that Iy --- I, C P; prove that I; C P for some j.
(ii) By (i), if P 2 j=, I, then P contains one of the ideals I;. Prove or disprove:
if P 2 (;2, I;, then P contains one of the ideals I;.

4.20. Let M be a two-sided ideal in a (not necessarily commutative) ring R. Prove
that M is maximal if and only if R/M is a simple ring (cf. Exercise B3]).

4.21. > Let k be an algebraically closed field, and let I C k[z] be an ideal. Prove
that I is maximal if and only if I = (z — ¢) for some ¢ € k. [§43] §VIE2] gVIIRTL
VT2

4.22. Prove that (2% + 1) is maximal in R[z].



156 III. Rings and modules

4.23. A ring R has Krull dimension 0 if every prime ideal in R is maximal. Prove
that fields and Boolean rings (Exercise BI5) have Krull dimension 0.

4.24. Prove that the ring Z[z] has Krull dimension > 2. (It is in fact exactly 2;
thus it corresponds to a surface from the point of view of algebraic geometry.)

5. Modules over a ring

I have emphasized the parallels between the basic theory of groups and the basic
theory of rings; there are also important differences. In Grp, one takes the quotient
of a group, by a (normal sub)group, and the results is a group: throughout the
process one never leaves Grp. The situation is in a sense even better in Ab, where
the normality condition is automatic; one simply takes the quotient of an abelian
group by an abelian (sub)group, obtaining an abelian group.

The situation in Ring is not nearly as neat. One of the three characters in the
story is an ideal: which is not a ring according to the axioms listed in Definition [[.T],
in all but the most pathological cases. In other words, the kernel of a homomorphism
of rings is (usually) not a ring. Also, cokernels do not behave as one would hope
(cf. Exercise Z12]). Even if one relaxes the ring definition, giving up the identity
and making ideals subrings, there is no reasonably large class of examples in which
the ‘ideal’ condition is automatically satisfied by substructures. In short, Ring is
not a particularly pleasant category.

Modules will fix all these problems. If R is a ring and I C R is a two-sided
ideal, then all three structures R, I, and R/I are modules over R. The category
of R-modules is the prime example of a well-behaved category: in this category
kernels and cokernels exist and do precisely what they ought to. The category
Ab is a particular case of this construction, since it is the category of modules
over Z in disguise (Example[B54l). The category of modules over a ring R will share
many of the excellent properties of Ab; and we will get a brand new, well-behaved
category for each ring R. These are all example of the important notion of
abelian category.

5.1. Definition of (left-) R-module. In short, R-modules are abelian groups
endowed with an action of R. To flesh out this idea, recall that ‘actions’ in general
denote homomorphisms into some kind of endomorphism structure: for example,
we defined group actions in Q1] as group homomorphisms from a fixed group to
the groups of automorphisms of objects of a category.

We can give an analogous definition of the action of a ring on an abelian group.
Indeed, recall that if M is an abelian group, then Enda,(M) := Homap (M, M) is
a ring in a natural way (cf. §20). A left-action of a ring R on M is then simply a
homomorphism of rings

o : R — Endap(M);

23In fact, it can be shown (‘Freyd-Mitchell’s embedding theorem’) that every small abelian
category is equivalent to a subcategory of the category of left-modules over a ring. So to some
extent we can understand abelian categories by understanding categories of modules well enough.
We will come back to this in Chapter [[X]
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we will say that ¢ makes M into a left-R-module.
Similarly to the situation with group actions, it is convenient to spell out this
definition.

Claim 5.1. The datum of a homomorphism o as above is precisely the same as the
datum of a function
p:RxM—M

satisfying the following requirements: (Vr,s € R) (Vm,n € M)

plr.m +n) = p(r,m) + p(r,n);

p(r+s,m) = p(r,m)+ p(s,m);
e p(rs,m) = p(?‘ p(s,m));
p(l,m) =

The proof of this claim follows precisely the pattern of the discussion in the
beginning of 0.2 so it is left to the reader (Exercise[[.2). Of course the relation
between p and o is given by

plr.m) = o(r)(m).
As always, carrying p around is inconvenient, so it is common to omit mention of
it: p(r,m) is often just denoted rm; this makes the requirements listed above a
little more readable. Summarizing and adopting this shorthand,

Definition 5.2. A left-R-module structure on an abelian group M consists of a
map R x M — M, (r,m) — rm, such that

e r(m+n)=rm-+rn;
o (r+s)m=rm+ sm;

(rs)m = r(sm);

e 1lm =m. J

Right-R-modules are defined analogously. The reader can glance back at 19l
especially Exercise[[TI0.3], for a reminder on right- vs. left-actions; the issues here are
analogous. Thus, for example, a right- R-module structure may be identified with
a left- R°-module structure, where R° is the ‘opposite’ ring obtained by reversing
the order of multiplication (Exercise [51). However, note that R and R° have no
good reasons to be isomorphic in general (while every group is isomorphic to its
opposite).

These issues become immaterial if R is commutative: then the identity R — R°
is an isomorphism, and left-modules/right-modules are identical concepts. The
reader will not miss much by adopting the blanket assumption that all rings men-
tioned in this section are commutative. It is occasionally important to make this
hypothesis explicit (for example in dealing with algebras, cf. Example[5.8]), but most
of the material we are going to review works verbatim for, say, left-modules over
an arbitrary ring as for modules over a commutative ring. I will write ‘module’ for
‘left-module’, for convenience; it will be the reader’s responsibility to take care of
appropriate changes, if necessary, to adapt the various concepts to right-modules.
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5.2. The category R-Mod. The reader should spend some time getting familiar
with the notion of module, by proving simple properties such as

(YmeM): 0-m=0,
(YmeM): (=1)-m=-m,

where M is a module over some ring (Exercise 53). The following fancier-sounding
(but equally trivial) property is also useful in developing a feel for modules:

Proposition 5.3. FEvery abelian group is a Z-module, in exactly one way.

Proof. Let G be an abelian group. A Z-module structure on G is a ring homo-
morphism

Z — EndAb(G).

Since Z is initial in Ring (§211), there exists exactly one such homomorphism, prov-
ing the statement. O

Thus, ‘abelian group’ and ‘Z-module’ are one and the same notion. Quite
concretely, the action of n € Z on an element a of an abelian group simply yields
the ordinary ‘multiple’ na; this operation is trivially compatible with the operations
in Z.

A homomorphism of R-modules is a homomorphism of (abelian) groups which
is compatible with the module structure. That is, if M, N are R-modules and
@ : M — N is a function, then ¢ is a homomorphism of R-modules if and only if

o (Ymy € M)(Vmg € M) : @o(my +ma) = p(m1) + @(ma);
o (VreR)(Yme M): o(rm)=ro(m).

It is hopefully clear that the composition of two R-module homomorphisms is an
R-module homomorphism and that the identity is an R-module homomorphism:

R-modules form a category
which T will denotd?] ‘R-Mod’.

Example 5.4. The category Z-Mod of Z-modules is ‘the same as’ the category Ab:
indeed, every abelian group is a Z-module in exactly one way (Proposition B3],
and Z-module homomorphisms are simply homomorphisms of abelian groups.  J

Example 5.5. If R = k is a field, R-modules are called k-vector spaces. 1 will
call the category of vector spaces over a field k ‘k-Vect’; this is just another name
for k-Mod. Morphisms in k-Vect are often called® linear maps. ‘Linear algebra’ is
the study of k-Vect (extended to R-Mod when possible); Chapters [VI and [VITT will
be devoted to this subject. a

24Tf R is not commutative, we should agree on whether R-Mod denotes the category of left-
modules or of right-modules. I will mean ‘left-modules’.

25This term is also used for homomorphisms of R modules for more general rings R, but not
as frequently.
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Example 5.6. Any homomorphism of rings o : R — S may be used to define an
interesting R-module: define p: R x .S — S by

p(r,s) == a(r)s
for all » € R and s € S. The operation on the right is simply multiplication in .S,
and the axioms of Definition are immediate consequence of the ring axioms and
of the fact that « is a homomorphism. For instance, taking S = R and « = idg
makes R a (left-) module over itself.

It is common to write rs rather than a(r)s.

The ring operation in S and the R-module structure induced by « are linked
even more tightly if we require R to be commutative and « to map R to the center
of S: that is, if we require a(r), s to commute for every r € R, s € S. Indeed, in this
case the left-module structure defined above and the right-module structure defined
analogously would coincide; further, with these requirements the ring operation in .S

(517 52) > S1S92
is compatible with the R-module structure in the sense tha@
(r1s1)(rase) = a(r1)sia(ra)ss = a(ry)a(ry)s1s2 = (r172)(8152)

Vri,r9 € R, Vs1,s89 € S: that is, we can ‘move’ the action of R at will through
products in S.

Due to their importance, these examples deserve their own official name:

Definition 5.7. Let R be a commutative ring. An R-algebra is a ring homomor-
phism « : R — S such that «(R) is contained in the center of S. J

The usual abuse of language leads us to refer to an R-algebra by the name of
the target S of the homomorphism. Thus, an R-algebra ‘is’ an R-module S with a
compatible ring structure, or, if you prefer, a ring S with a compatible R-module
structure. An R-algebra S is a division algebra if S is a division ring.

There is an evident notion of ‘ R-algebra homomorphism’ (preserving both the
ring and module structure), and we thus get a category R-Alg. The situation
simplifies substantially if S is itself commutative, in which case the condition on
the center is unnecessary. ‘Commutative R-algebras’ form a category, which the
attentive reader will recognize as a coslice category (Example [l3.7)) in the category
of commutative rings.

Also, note that Z-Alg is just another name for Ring (why?).

The polynomial rings R[z1,...,2,], as well as all their quotients, are commu-
tative R-algebras. This is a particularly important class of examples; for R = k
an algebraically closed field, these are the rings used in ‘classical’ affine algebraic

geometry (cf. §VIIIRT). J

The trivial group 0 has a unique module structure over any ring R and is a zero-
object in R-Mod, that is, it is both initial and final. As in the other main categories
we have encountered, a bijective homomorphism of R-modules is automatically an

26More generally, this choice makes the multiplication in S ‘R-bilinear’.
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isomorphism in R-Mod (Exercise [[12]). In these and many other respects, the
category R-Mod (for any commutative ring R) and Ab are similar.

If R is commutative, the similarity goes further: just as in the category Ab, each
set Homp_mod (M, N) may itself be seen as an object of the category (cf. §IIEANT.
Indeed, let M and N be R-modules. Since homomorphisms of R-modules are in
particular homomorphisms of abelian groups,

HomR_Mod(M, N) g HomAb(M, N)

as sets (up to natural identifications). The operation making Homap (M, N) into an
abelian group, as in §lIIEAl clearly preserves Hom g wmod(M, N); it follows that the
latter is an abelian group. For r € R and ¢ € Hompg_mod(M, N), the prescription

(YmeM): (re)(m):=reo(m)

defines a function?d ro¢ : M — N. This function is an R-module homomorphism if
R is commutative, because (Va € R), (Ym € M)

!
(re)(am) =ro(am) = (ra)p(m) = (ar)p(m) = a(re(m)).

Thus, we have a natural action of R on the abelian group Hompg mod(M, N), and it

is immediate to verify that this makes Homp_mod (M, N) into an R-module.

Watch out: if R is not commutative, then in general Homp_mod (M, N) is ‘just’
an abelian group. More structure is available if M, N are bimodules; cf. VITIE.2

5.3. Submodules and quotients. Since R-modules are an ‘enriched’ version of
abelian groups, we can progress through the usual constructions very quickly, by
just pointing out that the analogous constructions in Ab are preserved by the R-
module structure.

A submodule N of an R-module M is a subgroup preserved by the action of R.
That is, for all € R and n € N, the element rn (defined by the R-module structure
of M) is in fact in N. Put otherwise, and perhaps more transparently, N is itself
an R-module, and the inclusion N C M is an R-module homomorphism.

Example 5.8. We can view R itself as a (left-) R-module (cf. Example (.0); the
submodules of R are then precisely the (left-)ideals of R. 3

Example 5.9. Both the kernel and the image of a homomorphism ¢ : M — M’
of R-modules are submodules (of M, M’, respectively). N

Example 5.10. If r is in the center of R and M is an R-module, then rM =
{rm|m € M} is a submodule of M. If I is any (left-)ideal of R, then IM =
>, rimi|ri € I,m; € M} is a submodule of M.

If N is a submodule of M, then it is in particular a (normal) subgroup of the
abelian group (M, +); thus we may define the quotient M /N as an abelian group.

27Notational convention: One often writes Homp (M, N) for Hompg_mod(M, N). T will not
adopt this convention here but I will use it freely in later chapters.

28Parse the notation carefully: r¢ is the name of a function on the left, while r¢(m) on the
right is the action of the element r € R on the element p(m) € N, defined by the R-module
structure on N.
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Of course it would be desirable to see this as a module, and as usual there is only
one reasonable way to do so: we will want the canonical projection

m: M — M/N
to be an R-module homomorphism, and this forces
r(m+ N)=rn(m)=mx(rm)=rm+ N
for all m € M. That is, we are led to define the action of R on M /N by
r(m+ N):=rm+ N.

Claim 5.11. For all submodules N, this prescription does define a structure of
R-module on M/N.

The proof of this claim is immediate and is left to the reader. The R-module
M/N is (of course) called the quotient of M by N.

Example 5.12. If R is a ring and [ is a two-sided ideal of R, then all three of I,
R, and the quotient ring R/I are R-modules: I is a submodule of R, and the rings
R and R/I are in fact R-algebras if R is commutative (cf. Example [(5.6)). 4

Example 5.13. If R is not commutative and I is just a (say) left-ideal, then
the quotient R/I is not defined as a ring, but it is defined as a left-module (the
quotient of the module R by the submodule I). The action of R on R/I is given
by left-multiplication: r(a+ I) = ra + I.

The reader should now expect a universal property for quotients, and here it is:

Theorem 5.14. Let N be a submodule of an R-module M. Then for every ho-
momorphism of R-modules ¢ : M — P such that N C ker ¢ there exists a unique
homomorphism of R-modules ¢ : M/N — P so that the diagram

commutes.

As in previous appearances of such statements, this is an immediate conse-
quence of the set-theoretic version (llI5.3)) and of easy notation matching and com-
patibility checks. For an even faster proof, one can just apply Theorem [II7.12] and
verify that ¢ is an R-module homomorphism.

Since every submodule N is then the kernel of the canonical projection M —
M /N, our recurring slogan becomes, in the context of R-Mod

kernel <= submodule :

unlike as in Grp or Ring, being a kernel poses no restriction on the relevant sub-
structures. Put otherwise, ‘every monomorphism in R-Mod is a kernel’; this is one
of the distinguishing features of an abelian category.
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5.4. Canonical decomposition and isomorphism theorems. The discussion
now proceeds along the same lines as for (abelian) groups; the statements of the key
facts and a few comments should suffice, as the proofs are nothing but a rehashing
of the proofs of analogous statements we have encountered previously. Of course
the reader should take the following statements as assignments and provide all the
needed details.

In the context of R-modules, the canonical decomposition takes the following
form:

Theorem 5.15. Every R-module homomorphism ¢ : M — M’ may be decomposed

as follows:
©

Mijg;;;7Nz;;\WM’
@

where the isomorphism ¢ in the middle is the homomorphism induced by ¢ (as in

Theorem [B.14).

The ‘first isomorphism theorem’ is the following consequence:

Corollary 5.16. Suppose p : M — M’ is a surjective R-module homomorphism.
Then
M

M = .
ker ¢

If M is an R-module and N is a submodule of M, then there is a bijection

(cf. JTIR3)
u : {submodules P of M containing N} — {submodules of M/N}
preserving inclusions, and the ‘third isomorphism theorem’ holds:
Proposition 5.17. Let N be a submodule of an R-module M, and let P be a
submodule of M containing N. Then P/N is a submodule of M/N, and
M/N M
P/N P’
We also have a version of the ‘second isomorphism theorem’ (cf. Proposi-
tion [IR.IT), with simplifications due to the fact that normality is not an issue
in the theory of modules:

Proposition 5.18. Let N, P be submodules of an R-module M. Then

e N + P is a submodule of M ;
e NN P is a submodule of P, and
N+P P
N T NnP
More generally, it is hopefully clear that the sum ) N, and the intersec-
tion (), No of any family {N,}. of submodules of an R-module M (which are

defined as subgroups of the abelian group M; cf. for example Lemma [IE3]) are
submodules of M.
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.|
Exercises

5.1. > Let R be a ring. The opposite ring R° is obtained from R by reversing the
multiplication: that is, the product a e b in R° is defined to be ba € R. Prove that
the identity map R — R° is an isomorphism if and only if R is commutative. Prove
that M., (R) is isomorphic to its opposite (not via the identity map!). Explain
how to turn right-R-modules into left- R-modules and conversely, if R = R°. [§5.1]

VIIIET9)
5.2. > Prove Claim Bl [§5.1]

5.3. > Let M be a module over a ring R. Prove that 0-m = 0 and that (—1) -m =
—m, for all m € M. [§5.2]

5.4. = Let R be aring. A nonzero R-module M is simple (or irreducible) if its only
submodules are {0} and M. Let M, N be simple modules, and let ¢ : M — N be
a homomorphism of R-modules. Prove that either ¢ = 0 or ¢ is an isomorphism.
(This rather innocent statement is known as Schur’s lemma.) [BI0) 616 VIITT6]

5.5. Let R be a commutative ring, viewed as an R-module over itself, and let M
be an R-module. Prove that Hompg mod (R, M) = M as R-modules.

5.6. Let G be an abelian group. Prove that if G has a structure of Q-vector space,
then it has only one such structure. (Hint: First prove that every element of G
has necessarily infinite order. Alternative hint: The unique ring homomorphism
Z — Q is an epimorphism.)

5.7. Let K be a field, and let k¥ C K be a subfield of K. Show that K is a vector
space over k (and in fact a k-algebra) in a natural way. In this situation, we say
that K is an extension of k.

5.8. What is the initial object of the category R-Alg?

5.9. = Let R be a commutative ring, and let M be an R-module. Prove that
the operation of composition on the R-module Endpg mod(M) makes the latter an
R-algebra in a natural way.

Prove that M,,(R) (cf. Exercise[[4)) is an R-algebra, in a natural way. [VIITI2]
VT3]

5.10. Let R be a commutative ring, and let M be a simple R-module (cf. Exer-
cise [04)). Prove that Endpmoed(M) is a division R-algebra.

5.11. > Let R be a commutative ring, and let M be an R-module. Prove that
there is a natural bijection between the set of R[z]-module structures on M and

EndR—Mod (M) [m

5.12. > Let R be a ring. Let M, N be R-modules, and let ¢ : M — N be a
homomorphism of R-modules. Assume ¢ is a bijection, so that it has an inverse ¢!
as a set-function. Prove that ¢~! is a homomorphism of R-modules. Conclude
that a bijective R-module homomorphism is an isomorphism of R-modules. [§52]

VIRT, §IXIT3]
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5.13. Let R be an integral domain, and let I be a nonzero principal ideal of R.
Prove that I is isomorphic to R as an R-module.

5.14. > Prove Proposition 518 [§57]

5.15. Let R be a commutative ring, and let I, J be ideals of R. Prove that
I-(R/J)=(I+J)/J as R-modules.

5.16. — Let R be a commutative ring, M an R-module, and let a € R be a nilpotent
element, determining a submodule aM of M. Prove that M =0 <= aM = M.
(This is a particular case of Nakayama’s lemma, Exercise [VIB.8l) [VIB.8]

5.17. > Let R be a commutative ring, and let I be an ideal of R. Noting that
7 - IF C PFF define a ring structure on the direct sum

Reesg (1) ::@Ij =RolIoPello---.
720
The homomorphism sending R identically to the first term in this direct sum makes
Reesgr(]) into an R-algebra, called the Rees algebra of I. Prove that if a € R is

a non-zero-divisor, then the Rees algebra of (a) is isomorphic to the polynomial
ring R[z] (as an R-algebra). [EI8]

5.18. With notation as in Exercise B.17 let a € R be a non-zero-divisor, let I be
any ideal of R, and let J be the ideal al. Prove that Reesg(J) = Reesg(I).

6. Products, coproducts, etc., in R-Mod

I have stated several times that categories such as R-Mod are ‘well-behaved’. We
will explore in this section the sense in which this can be formalized at this stage.
The bottom line is that these categories enjoy the same nice properties that we
have noted along the way for the category Ab.

I will also include here some general considerations on finitely generated mod-
ules and algebras.

As in the previous section, I will write ‘module’ for ‘left-module’; the reader
should make appropriate adaptations to the case of right-modules. Little will be
lost by assuming that all rings appearing here are commutative (thereby removing
the distinction between left- and right-modules).

6.1. Products and coproducts. As in Ab, products and coproducts exist, and
finite products and coproducts coincide, in R-Mod. Indeed, recall the construction
of the direct sum of two abelian groups (§IlIB35): if M and N are abelian groups,
then M @& N denotes their product, with componentwise operation. If M and N are
R-modules, we can give an R-module structure to M & N by prescribing Vr € R

r(m,n) := (rm,rn).

This defines the direct sum of M, N, as an R-module. Note that M @& N comes
together with several homomorphisms of R-modules:

oy MO®N —- M, wy: M®N —> N
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sending (m,n) to m, n, respectively, and

Z'M:M—>M€BN, iN:N—)M@N
sending m to (m,0) and n to (0,n).
Proposition 6.1. The direct sum M & N satisfies the universal properties of both
the product and the coproduct of M and N.
Proof. Product: Let P be an R-module, and let ¢y : P =+ M, on : P — N be
two R-module homomorphisms. The definition of an R-module homomorphism

oM Xen: P> M®&N

is forced by the needed commutativity of the diagram

\;

(Vpe P): (em x ¢n)(p) = (eum(p), on(P))-
This 4s an R-module homomorphism, and it is the unique one making the diagram
commute; therefore M & N works as a product of M and N.

That is,

Coproduct: View the preceding argument through a mirror! Let P be an R-
module, and let ¥p; : M — P, ¢y : N — P be two R-module homomorphisms.
The definition of an R-module homomorphism

Yy @YN M ON — P

is forced by the needed commutativity of the diagram

%

That i, (vm € M)(vn € N)
(vm @ ) (m,n) = (Ya & ¥Yn)(m, 0) + (Y @ Pn)(0,7)
= (Ym ®Yn) oin(m) + (Y & Yn) 0 in(n)
= thu(m) + ¥n(n).
This is an R-module homomorphism: it is a homomorphism of abelian groups by

virtue of the commutativity of addition in P, and it clearly preserves the action of R.

29This should look familiar; cf. Exercise
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Since it is the unique R-module homomorphism making the diagram commute, this
verifies that M & N works as a coproduct of M and N. O

It may seem like a good idea to write M x N rather than M & N when viewing
the latter as the product of M and N; but in due time (§VIIIR) we will encounter
M x N again, in the context of ‘bilinear maps’, and in that context M x N is not
viewed as an R-module.

The reader should also work out the fibered versions of these constructions;
cf. Exercises [6.10] and [G.TT]

The fact that finite products and coproducts agree in R-Mod does not extend
to the infinite case (Exercise [6.7]).

6.2. Kernels and cokernels. The facts that R-Mod has a zero-object (the 0-
module), its Hom sets are abelian groups (§5.2)), and it has (finite) products and
coproducts make R-Mod an additive category. The fact that R-Mod has well-
behaved kernels and cokernels, which we review next, upgrades it to the status of
abelian category. (We will come back to these general definitions in §IXIIl)

In general, monomorphisms and epimorphisms do not automatically satisfy
good properties, even when objects of a given category are realized by adding
structure to sets. For example, we have seen that the precise relationship between
‘surjective morphism’ and ‘epimorphism’ may be rather subtle: epimorphisms are
surjective in Grp, but for complicated reasons (§III8.G]); and there are epimorphisms
that are not surjective in Ring (§2.3)).

The situation in R-Mod is as simple as it can be. Recall that we have identified
universal properties for kernels and cokernels (cf. §IIIR.); in the category R-Mod
these would go as follows: if

p: M — N
is a homomorphism of R-modules, then ker ¢ is final with respect to the property
of factoring R-module homomorphisms a : P — M such that ¢ o = 0:

0

P
)

ker ¢

while coker ¢ is initial with respect to the property of factoring R-module homo-
morphisms 3 : N — P such that 5o ¢ =0:

coker ¢
Proposition 6.2. The following hold in R-Mod:

e kernels and cokernels exist;
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e © is a monomorphism <= kery is trivial <= ¢ is injective as a set-
function;

e ¢ is an epimorphism <= coker g is trivial <= ¢ is surjective as a set-
Sfunction.

Further, every monomorphism identifies its source with the kernel of some mor-
phism, and every epimorphism identifies its target with the cokernel of some mor-
phism.

This proposition of course simply generalizes to R-Mod facts we know already
from our study of Ab, and a quick review should suffice for the careful reader. Ker-
nels exist: indeed, the ‘standard’ definition of kernel satisfies the universal proper-
ties spelled out above (same argument as in Proposition [G.6). Cokernels exist:
indeed, let

N
coker p = ——;

m e

if 6: N — P is such that § o ¢ = 0, then im¢ C ker §; so § must factor uniquely
through N/im ¢ by the universal property of quotients, Theorem .14l That is,
N/im ¢ does satisfy the universal property for cokernels.

The proofs of all the implications in the second and third points in Proposi-
tion follow familiar patterns from (for example) Proposition [TE.12] and Propo-
sition [MBTY The last sentence of Proposition simply reiterates the slogan
submodule <= Fkernel and its mirror statement (which is just as true). Further
details are left to the reader.

By the way, whatever happened to the conditions characterizing monomor-
phisms and epimorphisms in Set (Proposition [I21))? In Set, a function with non-
empty source is a monomorphism if and only if it has a left-inverse, and it is an
epimorphism if and only if it has a right-inverse. We have learned not to expect any
of this to happen in more general categories. Modules are not an exception: the
function Z — Z defined by ‘multiplication by 2’ is a monomorphism without a left-
inverse, and the projection Z — Z/27 is an epimorphism without a right-inverse.
We will come back to this point in 7.2

6.3. Free modules and free algebras. The universal property of free R-modules
is modeled after the properties defining the other free objects we have encountered:
the goal is to define the R-module containing a given set A ‘in the most efficient
way’. Again, the situation will match the case of abelian groups closely, so the
reader may want to refer back to 5.4l

The universal property formalizing the heuristic requirement goes as follows:
given a set A, we are seeking an R-module F'#(A), called a free R-module on the
set A, together with a set-function j : A — F®(A), such that for all R-modules
M and set-functions f : A — M there exists a unique R-module homomorphism
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¢ : FE(A) — M such that the diagram

commutes. Abstract nonsense guarantees that such an R-module is unique up to
isomorphism if it exists at all (Proposition [I5.4) and that the function j : A —
FE(A) is necessarily injective (cf. Exercise [I5.3). The question is, does it exist?

The answer will not appear to be very exciting, since it generalizes directly the
case of abelian groups (that is, Z-modules). Given any set A, define the (possibly
infinite) direct sum N®4 of an R-module N as follows:

N .= {a: A — N|a(a) # 0 for only finitely many elements a € A}.

Of course this agrees with the definition given for abelian groups in .4t N®4
has an evident R-module structure, obtained by defining, for all » € R and a € A,

(ra)(a) = r(afa)).

For N = R we may define a function j : A — R®4 by sending a € A to the
function j, : A — R:

. 1 ) 1 ifz=a,
(Vz € A): ja(x)'_{() if © # a.

Claim 6.3. FE(A) ~ Re4.

The proof of this claim matches precisely the proof of Proposition [LI5.6] and
is left to the reader (Exercise G1). The key is that every element of R®4 may be
written uniquely as a finite sum

> raa

acA
(shorthand for ), 7aj(a)); incidentally, this is how elements of ‘the free R-
module on A’ are often written—this is legal, by virtue of Claim

In particular, for A = {1,...,n} a finite set, Claim[G3]states that the R-module
R®" with j : A — R®" defined by
](Z):(O,,O 1 Oa"'vo)eR@na

’ i-th place7
satisfies the universal property for FE({1,...,n}).

This is all entirely analogous to the story for Z-modules. The situation becomes
a little more interesting if we switch from R-modules to commutative R-algebras;
the category is different, so we should expect a different answer. The finite case is
essentially the only one we will need in these notes, so assume A = {1,...,n} is
a finite set. In this case, we write R[A] for the polynomial ring R[x1,...,2,]; we
have a set-function j : A — R[A], defined by j(i) = z;.

Proposition 6.4. R[A] is a free commutative R-algebra on the set A.
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Proof. The statement translates into the following: for every commutative R-
algebra S and every set-function f : A — S, there exists a unique R-algebra
homomorphism ¢ : R[A] — S such that the diagram

R[A] 2§

T4

commutes. Since S is an R-algebra, we have a fixed homomorphism of rings « :
R — S (cf. Example E@). Then we may construct ¢ : R[A] = R[z1,...,2,] = S
by applying n times the ‘extension property’ of Example extend « to R[z1] so
as to map x1 to f(1), then to R[x1,z2] = R[z1][x2] so as to map x2 to f(2), ete.
Note that each extension is uniquely determined by its requirements.

This gives ¢ as a ring homomorphism and shows that it is unique. The reader
will verify that ¢ is also (automatically) an R-module homomorphism, and hence
a homomorphism of R-algebras, concluding the proof. O

After the fact, the reader may want to revisit §2.2] and recognize that the ‘uni-
versal property of polynomial rings Z[z1, ..., x,] given there was really a version of
their role as free objects in the category of commutative rings, a.k.a. commutative
Z-algebras.

It is not difficult to identify free objects in the larger category R-Alg: they
consist of ‘noncommutative polynomial rings’ R(A), with variables from the set A
but without any condition relating ab and ba for a # b in A. More precisely, R(A)
is isomorphic to the monoid ring (cf. §I.4) over the free monoid on A, consisting of
all finite strings of elements in A, with operation defined by concatenationPd. We
will encounter this ring again, but only in the distant future (Example VITIFETIT).

6.4. Submodule generated by a subset; Noetherian modules. Let M be
an R-module, and let A C M be a subset of M. By the universal property of free
modules, there is a unique homomorphism of R-modules

©a: R4 — M.

The image of this homomorphism is a submodule of M, the submodule generated
by A in M, usually denoted (A) (or (a1,...,an) if A ={ai,...,a,} is finite). Thus,
(A) = {Z rqa|rq # 0 for only finitely many elements a € A}.

acA
It is hopefully clear that (A) is the smallest submodule of M containing A.
The module M is finitely generated if M = (A) for a finite set A, that is, if
and only if there is a surjective homomorphism of R-modules
R®" — M

for some n. One of the highlights of Chapter VI will be the classification of finitely
generated modules over PIDs (Theorem [VIE.G). I have already briefly mentioned

30This construction is similar to the free group on A, but without the complication of the
presence of inverses and of possible cancellations.
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the case for Z (recall that Z is a PID and Z-modules are nothing but abelian
groups!) back in 6.3l

Finitely generated R-modules are tremendously important, but they are not as
well-behaved as one might hope at first. For example, it may be that a module M
is finitely generated, but some submodule of M is not finitely generated!

Example 6.5. Let R = Z[x1,xo,...], a polynomial ring on infinitely many inde-
terminates. Then R is finitely generated as an R-module: indeed, 1 generates it.
However, the ideal

(Il, To, ... )
of R generated by all indeterminates is not finitely generated as an R-module

(Exercise [614)). J

Definition 6.6. An R-module M is Noetherian if every submodule of M is finitely
generated as an R-module. a

Thus, a ring R is Noetherian in the sense of Definition if and only if it is
Noetherian ‘as a module over itself’. The ring in Example is not Noetherian.

We will study the Noetherian condition more carefully later on (§VIILT]); but
we can already see one reason why this is a good, ‘solid’ notion.

Proposition 6.7. Let M be an R-module, and let N be a submodule of M. Then
M is Noetherian if and only if both N and M /N are Noetherian.

Proof. If M is Noetherian, then so is M /N (same proof as for Exercise[4.2]), and so
is N (because every submodule of N is a submodule of M, so it is finitely generated
because M is Noetherian). This proves the ‘only if” part of the statement.

For the converse, assume N and M /N are Noetherian, and let P be a submodule
of M; we have to prove that P is finitely generated. Since PN N is a submodule
of N and N is Noetherian, PN N is finitely generated. By the ‘second isomorphism
theorem’, Proposition .18

P _P+N
PNN N~
and hence P/(P N N) is isomorphic to a submodule of M/N. Since M/N is Noe-
therian, this shows that P/(P N N) is finitely generated.

It follows that P itself is finitely generated, by Exercise O

Corollary 6.8. Let R be a Noetherian ring, and let M be a finitely generated
R-module. Then M is Noetherian (as an R-module).

Proof. Indeed, by hypothesis there is an onto homomorphism R®" — M of R-
modules; hence (by the first isomorphism theorem, Corollary [B.16) M is isomorphic
to a quotient of R®™. By Proposition[6.7, it suffices to prove that R®™ is Noetherian.

This may be done by induction. The statement is true for n = 1 by hypothesis.
For n > 1, assume we know that R®(~1 is Noetherian; since R®(™~1) may be
viewed as a submodule of R®", in such a way that
RO

Ree - 1
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(Exercise [64]), and R is Noetherian, it follows that R®™ is Noetherian, again by
applying Proposition O

6.5. Finitely generated vs. finite type. If S is an R-algebra, it may be ‘finitely
generated’ in two very different ways: as an R-module and as an R-algebra. It is
important to keep these two concepts well distinct, although unfortunately the
language used to express them is very similar.

The following definitions differ in three small details. . .

“S is finitely generated as a module “S' is finitely generated as an algebra
over R if there is an onto homomor- over R if there is an onto homomor-
phism of R-modules from the free R- phism of R-algebras from the free R-
module on a finite set to S.” algebra on a finite set to S.”

The mathematical difference is more substantial than it may appear. As we
have seen in §6.3] the free R-module over a finite set A = {1,...,n} is isomorphic
to R®™; the free commutative R-algebra over A is isomorphic to R[z1,...,z,].
Thus, a commutative®] ring S is finitely generated as an R-module if there is an
onto homomorphism of R-modules

RO §

for some n; it is finitely generated as an R-algebra if there is an onto homomorphism
of R-algebras

Rlzy,...,xp) > S
for some n. In other words, S is finitely generated as an R module if and only if
S = R®" /M for some n and a submodule M of R®"; it is a finite-type R-algebra
if and only if S = R[xy,...,x,]|/I for some n and an ideal T of R[x1,...,z,].

We say that S is finite in the first casd*d and of finite type in the second. It
is clear that ‘finite’ = ‘finite type’; it should be just as clear that the converse
does not hold.

Example 6.9. The polynomial ring R[z] is a finite-type R-algebra, but it is not
finite as an R-module. J

The distinction, while macroscopic in general, may evaporate in special, impor-
tant cases. For example, one can prove that if £ and K are fields and k C K, then
K is of finite type over k if and only if it is in fact finite as a k-module (that is, it is
a finite-dimensional k-vector space). This is one version of Hilbert’s Nullstellensatz,
a deep result we already mentioned in Example and that we will prove (in an
important class of examples) in gVINEZ2

David Hilbert’s name is associated to another important result concerning
finite-type R-algebras: if R is Noetherian (as a ring, that is, as an R-module)

31We are mostly interested in the commutative case, so I will make this hypothesis here;
the only change in the general case is typographical: (---) rather than [---]. Also, note that a
commutative ring is finitely generated as an algebra if and only if it is finitely generated as a
commutative algebra; cf. Exercise [G.15}

32This is particularly unfortunate, since S may very well be an infinite set.
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and S is a finite-type R-algebra, then S is also Noetherian (as a ring, that is, as
an S-module). This is an immediate consequence of the so-called Hilbert’s basis
theorem.

The proof of Hilbert’s basis theorem is completely elementary: it could be given
here as an exercise, with a few key hints; we will see it in §VITT1

Exercises

6.1. > Prove Claim [63 [§63]

6.2. Prove or disprove that if R is ring and M is a nonzero R-module, then M is
not isomorphic to M @ M.

6.3. Let R be a ring, M an R-module, and p : M — M an R-module homo-
morphism such that p? = p. (Such a map is called a projection.) Prove that
M = kerp @ imp.

6.4. > Let R be a ring, and let n > 1. View R®("~1) as a submodule of R®", via

the injective homomorphism R®("~1) < R®" defined by
(riyeeoyrn_1) = (r1,...,7n-1,0).
Give a one-line proof that
Ro™
— = R.
R&(n—1)

[96.4

6.5. > (Notation as in §6.31) For any ring R and any two sets A;, Ag, prove that
(R®A)®A2 o~ R®(A1xAz) [V

6.6. — Let R be a ring, and let F' = R®" be a finitely generated free R-module.
Prove that Hompg_mod(F, R) = F. On the other hand, find an example of a ring R
and a nonzero R-module M such that Hompg mod(M, R) = 0. [68]

6.7. > Let A be any set.

e For any family {M,}aca of modules over a ring R, define the product [[,c 4 Ma
and coproduct @, 4 M,. If M, = R for all a € A, these are denoted RA, R®A,
respectively.

e Prove that ZN 22 Z®N. (Hint: Cardinality.)

[96.1 6.8

6.8. Let R be a ring. If A is any set, prove that Homp.poq(RP4, R) satisfies
the universal property for the product of the family {R,}sca, where R, = R for
all a; thus, Homp.med(R¥4, R) = RA. Conclude that Homp mod(RE4, R) is not
isomorphic to R¥4 in general (cf. Exercises 6.6 and [6.7])

6.9. — Let R be a ring, F' a nonzero free R-module, and let ¢ : M — N be a
homomorphism of R-modules. Prove that ¢ is onto if and only if for all R-module
homomorphisms « : F' — N there exists an R-module homomorphism 5 : F' — M
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such that o = p o 3. (Free modules are projective, as we will see in Chapter [VIII})
L3 V155

6.10. > (Cf. Exercise[IE12l) Let M, N, and Z be R-modules, and let p: M — Z,
v: N — Z be homomorphisms of R-modules.

Prove that R-Mod has ‘fibered products’: there exists an R-module M x ; N
with R-module homomorhisms 7p; : M Xz N — M, wn : M Xz N — N, such that
pomy = vomy, and which is universal with respect to this requirement. That is, for
every R-module P and R-module homomorphisms ¢ : P — M, on : P — N such
that poyy = vopy, there exists a unique R-module homomorphism P — M xz N
making the diagram

commute. The module M x z N may be called the pull-back of M along v (or of N
along i, since the construction is symmetric). ‘Fiber diagrams’

Mxz N——N
| = |
M — A
are commutative, but ‘even better’ than commutative; they are often decorated by

a square, as shown here. [§6.1] 61T §IXITA]

6.11. > Define a notion of fibered coproduct of two R-modules M, N, along an
R-module A, in the style of Exercise (and cf. Exercise [I[5.12)

A—2 N

|l

M— M@ s N
Prove that fibered coproducts exist in R-Mod. The fibered coproduct M @4 N is
called the push-out of M along v (or of N along p). [6.1]
6.12. Prove Proposition

6.13. Prove that every homomorphic image of a finitely generated module is finitely
generated.

6.14. > Prove that the ideal (21,2, ...) of the ring R = Z[x1, 22, . ..] is not finitely
generated (as an ideal, i.e., as an R-module). [§6.4]

6.15. > Let R be a commutative ring. Prove that a commutative R-algebra S is
finitely generated as an algebra over R if and only if it is finitely generated as a

commutative algebra over R. (Cf. §6.5) [§6.5]
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6.16. > Let R be a ring. A (left-)R-module M is cyclic if M = (m) for some
m € M. Prove that simple modules (cf. Exercise B4 are cyclic. Prove that an
R-module M is cyclic if and only if M = R/I for some (left-)ideal I. Prove that

every quotient of a cyclic module is cyclic. [617 VIIET]

6.17. = Let M be a cyclic R-module, so that M = R/I for a (left-)ideal I (Exer-
cise [6.16]), and let N be another R-module.

e Prove that Homp mod(M,N) =2 {n € N|(VYa € I),an = 0}.
e For a,b € Z, prove that Homap(Z/aZ,Z/VZ) = Z/ ged(a, b)Z.

i

6.18. > Let M be an R-module, and let NV be a submodule of M. Prove that if N
and M/N are both finitely generated, then M is finitely generated. [J6.4]

7. Complexes and homology

In many contexts, modules arise not ‘one at a time’ but in whole series: for example,
a real manifold of dimension d has one ‘homology’ group for each dimension from 0
to d. It is necessary to develop a language capable of dealing with whole sequences
of modules at once. This is the language of homological algebra, of which we will
get a tiny taste in this section, and a slightly heartier course in Chapter [X]

7.1. Complexes and exact sequences. A chain complex of R-modules (or, for
simplicity, a complex) is a sequence of R-modules and R-module homomorphisms

dito dit1 d; di—y
oo —— My — M, — M —— -

such that (Vi) : d; od;11 = 0.

The notation (M,,ds) may be used to denote a complex, or simply M, for
simplicity (but do not forget that the homomorphisms d; are part of the information
carried by a complex).

A complex may be infinite in both directions; ‘tails’ of 0’s are (usually) omitted.
Several possible alternative conventions may be used: for example, indices may be
increasing rather than decreasing, giving a cochain complex (whose homology is
called cohomology; this will be our choice in Chapter [X]). Such choices are clearly
mathematically immaterial, at least for the simple considerations which follow.

The homomorphisms d; are called boundary, or differentials, due to important
examples from geometry. Note that the defining condition

di o di+1 =0
is equivalent to the requirement
imd; 1 C kerd,.

I carry in my mind an image such as
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when I think of a complex. The ovals are the modules M;; the fat black dots are the
0 elements; the gray ovals, getting squashed to zero at each step, are the kernels;
and I thus visualize the fact that the image of ‘the preceding homomorphism’ falls
inside the kernel of ‘the next homomorphism’.

The picture is inaccurate in that it hints that the ‘difference’ between the image
of d;i+1 and the kernel of d; (that is, the areas colored in a lighter shade of gray)
should be the same for all i; this is of course not the case in general. In fact, almost
the whole point about complexes is to ‘measure’ this difference, which is called the
homology of the complex (cf. §7.3). We say that a complex is ezact ‘at M;’ if it has
no homology there; that is,

im d7;+1 = ker di-

Visually,

This complex appears to be exact at the oval in the middle.

For example, if M; = a trivial module (usually denoted simply by 0), then the
complex is necessarily exact at M;, since then imd; 1 = kerd; = 0.

A complex is exact and is often called an exact sequence if it is exact at all its
modules.

Example 7.1. A complex

0 L—2sM

is exact at L if and only if a is a monomorphism.

Indeed, exactness at L is equivalent to ker « = image of the trivial homomor-
phism 0 — L, that is, to

keroo = 0.

This is equivalent to the injectivity of a (Proposition [6.2)). J
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Example 7.2. A complex

M- N 0

is exact at N if and only if 8 is an epimorphism.

Indeed, the complex is exact at IV if and only if im 8 = kernel of the trivial
homomorphism N — 0, that is, im 3 = N. a

Definition 7.3. A short exact sequence is an exact complex of the form

0 L— - N 0. ,

As seen in the previous two examples, exactness at L and N is equivalent to «
being injective and [ being surjective. The extra piece of data carried by a short
exact sequence is the exactness at M, that is,

ima = ker §;
by the first isomorphism theorem (Corollary [B.16l), we then have
M M
ker3  ima’

>~

All in all, we have good material to work on some more Pavlovian conditioning: at
the sight of a short exact sequence as above, the reader should instinctively identify
L with a submodule of M (via the injective map «) and N with the quotient M/L
(via the isomorphism induced by the surjective map [, under the auspices of the
first isomorphism theorem).

Short exact sequences abound in nature. For example, a single homomorphism
@ : M — M’ gives rise immediately to a short exact sequence

0 —— kergp M im 0.

In fact, one important reason to focus on short exact sequences is that this obser-
vation allows us to break up every exact complex into a large number of short exact
sequences: contemplate the impressive diagram

N

imd; 1 = kerd;

o / \ .
z+2 2+1 d
\ / .

imd;4o = kerd; 41 imd; =

v
SN N

The diagonal sequences are short exact sequences, and they interlock nicely by the
exactness of the horizontal complex.
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This observation simplifies many arguments; cf. for example Exercise

7.2. Split exact sequences. A particular case of short exact sequence arises by
considering the second projection from a direct sum: My & My — My; there is then
an exact sequence

0—— My —— My My —— My —— 0,

obtained by identifying M7 with the kernel of the projection. These short exact
sequences are said to ‘split’; more generally, a short exact sequence

0 M, N Moy 0

‘splits’ if it is isomorphic to one of these sequences in the sense that there is a
commutative diagram

0 M,y N Moy 0

Lok

0 —— M{ —— M{ & My —— M; ——0

in which the vertical maps are all isomorphism.

Example 7.4. The exact sequence of Z-modules

2,7 Z 0

0 VA .

is not split. a

Splitting sequences give us the opportunity to go back to a question we left
dangling at the end of §6.2t what should we make of the condition of ‘having a
left- (resp., right-) inverse’ for a homomorphism? We realized that this condition is
stronger than the requirement of being a monomorphisms (resp., an epimorphism);
can we give a more explicit description of such morphisms?

Proposition 7.5. Let o : M — N be an R-module homomorphism. Then

e ¢ has a left-inverse if and only if the sequence

0 M-

N coker p —— 0

splits.
e © has a right-inverse if and only if the sequence

LN 0

0 ker ¢ M

splits.

Proof. I will prove the first part and leave the other as an exercise to the reader

(Exercise [7.6)).

33In fact, this last requirement is somewhat redundant; cf. Exercise [.111
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If the sequence splits, then ¢ may be identified with the embedding of M into
a direct sum M @® M’, and the projection M & M’ — M gives a left-inverse of ¢.
Conversely, assume that ¢ has a left-inverse 1:

0—sM-—24N
PNEE
M

Then I claim that N is isomorphic to M & kery and that ¢ corresponds to the
identification of M with the first factor: M — M & kervy = N. The isomorphism
M @ kerp — N is given by

(m7 k) = @(m) + k5
its inverse N — M @ ker ) is
n = ((n),n — ep(n)).
The element n — @ (n) is in ker ¢ as it should be, since
Y(n—p(n)) = ¥(n) — Yey(n) = (n) —P(n) = 0.

All necessary verifications are immediate and are left to the reader. |

Because of Proposition [[.5] R-module homomorphisms with a left-inverse are
called split monomorphisms, and homomorphisms with a right-inverse are called
split epimorphisms.

We will come back to split exact sequences (in the more demanding context
of Grp) in §IVIE2 and then later again when we return to modules and, more
generally, to abelian categories (Chapters [VIII and [X]).

7.3. Homology and the snake lemma.

Definition 7.6. The i-th homology of a complex

dit2 dit1 d; di—1

Mg: --- M q M; M; 4
of R-modules is the R-module

ker d;
Hy(M,) = — % ;
11m di+1
That is, H;(M,) is a module capturing the ‘light gray annulus’ in my heuristic
picture of a complex. Of course

H;(M,) =0 <= imd;+; = kerd; <= the complex M, is exact at M; :
that is, the homology modules are a measure of the ‘failure of a complex from being

exact’.

Example 7.7. In fact, homology should be thought of as a (vast) generalization
of the notions of kernel and cokernel. Indeed, consider the (very) particular case in
which M, is the complex

0 M, —2

My 0.
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Then
Hy(M,) 2 kery, Hy(M,) =2 coker . N

I will end this very brief excursion into more abstract territories by indicating
how a commutative diagram involving two short exact sequences generates a ‘long
exact sequence’ in homology. This is actually a particular case of a more general
construction—according to which a suitable commutative diagram involving three
complexes yields a really long ‘long exact homology sequence’. We will come back to
this general construction when we deal more extensively with homological algebra
in Chapter [Xl The reader is also likely to learn about it in a course on algebraic
topology, where this fact is put to impressive use in studying invariants of manifolds.

In the simple form we will analyze, this is affectionately known as the snake
lemma. Consider two short exact sequences linked by homomorphisms, so as to
form a commutative diagra:

aq B1

0 Ly M, Ny 0
[ Bo
0 Lo My Ny 0

Lemma 7.8 (The snake lemma). With notation as above, there is an exact sequence

0—>ker)\—>ker,u—>kerl/i>coker)\—>C0ker,u—>cokerz/—>0.

Remark 7.9. Most of the homomorphisms in this sequence are induced in a com-
pletely straightforward way from the corresponding homomorphisms A, p, v. The
one ‘surprising’ homomorphism is the one denoted §; I will discuss its definition
below. a

Remark 7.10. In view of Example[.7] we could have written the sequence in this

statement as
0—— Hl(L.) —_— Hl(M.) e Hl(N.)
)
QE(M.) — Ho(Ny) —— 0

A

where Lo is the complex 0 Ly Lo 0, etc. The snake lemma
generalizes to arbitrary complexes Lo, Mo, No, producing a ‘long exact homology
sequence’ of which this is just the tail end. As mentioned above, we will discuss
this rather straightforward generalization later (§IXIB3]). 3

Remark 7.11. A popular version of the snake lemma does not assume that «; is
injective and 3 is surjective: that is, we could consider a commutative diagram of

34In fact, it is better to view this diagram as three (very short) complexes linked by R-
module homomorphisms «;, ; so that ‘the rows are exact’. In fact, one can define a category
of complezxes, and this diagram is nothing but a ‘short exact sequence of complexes’; this is the
approach we will take in Chapter [[X]
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exact sequences

Ly My Ny 0
ook
0 Lo MO NO

The lemma will then state that there is ‘only’ an exact sequence

ker A ker i1 ker v —°— coker A —— coker  — coker v . a

PROVING the snake lemma is something that should not be done in public, and
it is notoriously useless to write down the details of the verification for others to
read: the details are all essentially obvious, but they lead quickly to a notational
quagmire. Such proofs are collectively known as the sport of diagram chase, best
executed by pointing several fingers at different parts of a diagram on a blackboard,
while enunciating the elements one is manipulating and stating their fat.

Nevertheless, I should explain where the ‘connecting’ homomorphism § comes
from, since this is the heart of the statement of the snake lemma and of its proof.
Here is the whole diagram, including kernels and cokernels; thus, columns are exact
(as well as the two original sequences, placed horizontally):

0 0 0

0 ker A ker y —— kerv

coker \ —— coker yy — cokerv —— 0

0 0 0

By the way, I trust that the reader now sees why this lemma is called the snake
lemma.

Definition of the snaking homomorphism 6. Let a € ker v. I claim that a can be
mapped through the diagram all the way to coker A, along the solid arrows marked

35Real purists chase diagrams in arbitrary categories, thus without the benefit of talking
about ‘elements’, and we will practice this skill later on (Chapter [X]). For example, the snake
lemma can be proven by appealing to universal property after universal property of kernels and
cokernels, without ever choosing elements anywhere. But the performing technique of pointing
fingers at a board while monologuing through the argument remains essentially the same.
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here:
0 0 0
0 — — :
0 ............... ............... c——» b .............. 0
[ J— e —20 o K e 0
l Bo
JJE— ............................... 0
0 0 0
Indeed,

e kerv C Nip; so view a as an element b of Nj.
e (3 is surjective, so 3¢ € My, mapping to b.
e Let d = u(c) be the image of ¢ in M.

e What is the image of d in the spot marked *? By the commutativity of the
diagram, it must be the same as v(b). However, b was the image in N; of
a € kerv, so v(b) = 0. Thus, d € ker 5y. Since rows are exact, ker Sy = im ay;
therefore, de € Ly, mapping to d.

e Finally, let f € coker A be the image of e.

I want to set d(a) := f.

Is this legal? At two steps in the chase we have taken preimages:

e Jdc € M such that 51(c) = b,

e Je € Ly such that ap(e) = d.
The second step does not involve a choice: because «q is injective by assumption,
so the element e mapping to d is uniquely determined by d. But there was a choice

involved in the first step: in order to verify that  is well-defined, we have to show
that choosing some other ¢ would not affect the proposed value f for d(a).

This is proved by another chase. Here is the relevant part of the diagram:

[ J— e o cLb .............. 0
()R~ eLd ...............
R
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Then B;1(c’ — ¢) = 0; by exactness, g € Ly such that (¢’ — ¢) = a1(g):

[ J— g—2 5 (d —¢) g 0
3| ’
[ A(g) i
o JE

and it follows (by the commutativity of the diagram and the injectivity of ) that
changing ¢ to ¢ modifies e to e + A(g) and f to f + 0 = f. That is, f is indeed
independent of the choice.

Thus § is well-defined!

This is a tiny part of the proof of the snake lemma, but it probably suf-
fices to demonstrate why reading a written-out version of a diagram chase may
be supremely uninformative.

The rest of the proof (left to the reader(!) but T am not listing this as an
official exercise for fear that someone might actually turn a solution in for grading)
amounts to many, many similar arguments. The definition of the maps induced
on kernels and cokernels is substantially less challenging than the definition of the
connecting morphism § described above. Exactness at most spots in the sequence

0—>ker/\—>keru—>kerl/i)coker/\—mokeru—)cokerv—)0

is also reasonably straightforward; most of the work will go into proving exactness
at ker v and coker A.

Dear reader: don’t shy away from trying this, for it is excellent, indispens-
able practice. Miss this opportunity and you will forever feel unsure about such
manipulations.

The snake lemma streamlines several facts, which would not be hard to prove
individually, but become really straightforward once the lemma is settled. For
example,

Corollary 7.12. In the same situation presented in the snake lemma (notation as
in §73), assume that w is surjective and v is injective. Then X is surjective and v
is an isomorphism.

Proof. Indeed, p surjective = coker u = 0; v injective = kerv = 0 (Proposi-
tion [6.2)). Feeding this information into the sequence of the snake lemma gives an
exact sequence

0 —— ker \ —— ker y — 0 — coker \ —— 0 —— cokerv —— 0
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Exactness implies coker A = coker v = 0 (Exercise[TI]); hence A and v are surjective,
with the stated consequences. O

Several more such statements may be proved just as easily; the reader should
experiment to his or her heart’s content.

.|
Exercises

7.1. > Assume that the complex
0 M 0
is exact. Prove that M = 0. [{.3]

7.2. Assume that the complex
0 M M’ 0
is exact. Prove that M = M'.

7.3. Assume that the complex

@

0 L M M’ N 0
is exact. Show that, up to natural identifications, L = ker ¢ and N = coker ¢.

7.4. Construct short exact sequences of Z-modules

0 AL A Z 0
and
0 7,&N 78N 78N 0.
(Hint: David Hilbert’s Grand Hotel.)

7.5. > Assume that the complex
L M N
is exact and that L and N are Noetherian. Prove that M is Noetherian. [§7.1]

7.6. > Prove the ‘split epimorphism’ part of Proposition (472
7.7. > Let

0 M N P 0

be a short exact sequence of R-modules, and let L be an R-module.
(i) Prove that there is an exact sequencel@
0—— HomR_Mod(P, L) —_— HomR_Mod(N, L) —_— HOHIR_MOd (M, L)

(ii) Redo Exercise [6I7 (Use the exact sequence 0 — I — R — R/I — 0.)

36In general, this will be a sequence of abelian groups; if R is commutative, so that each
Homp Mod is an R-module (§5:2), then it will be an exact sequence of R-modules.
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(iii) Construct an example showing that the rightmost homomorphism in (i) need
not be onto.

(iv) Show that if the original sequence splits, then the rightmost homomorphism
in (i) is onto.

[ VITIE T4, §VITIGET]
7.8. > Prove that every exact sequence
0 M N F 0
of R modules, with F free, splits. (Hint: Exercise [6.9}) [§VITIEA4]

7.9. Let

0 M N F 0

be a short exact sequence of R-modules, with F' free, and let L be an R-module.
Prove that there is an exact sequence

0 — Hompg-mod (F, L) — HomR_Mod(N, L) — HOIIlR_MOd(M, L) —0.
(Ct. Exercise [[LT])

7.10. > In the situation of the snake lemma, assume that \ and v are isomorphisms.
Use the snake lemma and prove that y is an isomorphism. This is called the ‘short
five-lemma,” as it follows immediately from the five-lemma (cf. Exercise [[14), as

well as from the snake lemma. [VITIG.2T] [XI24]
7.11. > Let
(*) 0 M, N M, 0

be an exact sequence of R-modules. (This may be called an ‘extension’ of Ms
by M;i.) Suppose there is any R-module homomorphism N — M; @ My making
the diagram

0 My N My 0
|
]

4
0O—— M —— M ®My — My —0

commute, where the bottom sequence is the standard sequence of a direct sum.
Prove that (*) splits. [72]

7.12. — Practice your diagram chasing skills by proving the ‘four-lemma’: if

A1 Bl Ol D1
ool
AO BO CO DO

is a commutative diagram of R-modules with exact rows, « is an epimorphism, and
B, 0 are monomorphisms, then v is a monomorphism. [Z13] IXI2.3]
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7.13. Prove anothe version of the ‘four-lemma’ of Exercise [(.12} if

By Ch D, Ey
bl
BQ CO DO Eo

is a commutative diagram of R-modules with exact rows, § and 0 are epimorphisms,
and € is a monomorphism, then ~ is an epimorphism.

7.14. — Prove the ‘five-lemma’: if

A1 B1 01 D1 El
O (O (O (|
Ay By Co Dy Ey

is a commutative diagram of R-modules with exact rows, 8 and § are isomorphisms,
«v is an epimorphism, and € is a monomorphism, then 7 is an isomorphism. (You can
avoid the needed diagram chase by pasting together results from previous exercises.)

[Z.10]

7.15. — Consider the following commutative diagram of R-modules:

0 0 0
0 Lo Moy Ny 0
0 Ly M,y Ny 0
B
0 Ly My Ny 0
0 0 0

Assume that the three rows are exact and the two rightmost columns are exact.
Prove that the left column is exact. Second version: assume that the three rows
are exact and the two leftmost columns are exact; prove that the right column is
exact. This is the ‘nine-lemma’. (You can avoid a diagram chase by applying the
snake lemma,; for this, you will have to turn the diagram by 90°.) [ZI6]

7.16. In the same situation as in Exercise [[.15] assume that the three rows are
exact and that the leftmost and rightmost columns are exact.

e Prove that « is a monomorphism and 3 is an epimorphism.

e Is the central column necessarily exact?

371t is in fact unnecessary to prove both versions, but to realize this one has to view the
matter from the more general context of abelian categories; cf. Exercise [XI2.3]
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(Hint: No. Place Z ® Z in the middle, and surround it artfully with six copies of Z
and two 0’s.)

e Assume further that the central column is a complex (that is, S oa = 0); prove
that it is then necessarily exact.

7.17. — Generalize the previous two exercises as follows. Consider a (possibly
infinite) commutative diagram of R-modules:

0 Lz-i-l Mi+1 —_— Ni+1 —0
0 L; M,; N; 0
0 L7471 Mi,1 _— Ni,1 —0

in which the central column is a complex and every row is exact. Prove that the
left and right columns are also complexes. Prove that if any two of the columns
are exact, so is the third. (The first part is straightforward. The second part
will take you a couple of minutes now due to the needed diagram chases, and a
couple of seconds later, once you learn about the long exact (co)homology sequence

in fIXIZ3) XIBI12]
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Chapter IV

Groups, second encounter

In this chapter we return to Grp and study several topics of a less ‘general’ nature
than those considered in Chapter [l Most of what we do here will apply exclusively
to finite groups; this is an important example in its own right, as it has spectacular
applications (for example, in Galois theory; cf. §VIII7), and it is a good subject
from the expository point of view, since it gives us the opportunity to see several
general concepts at work in a context that is complex enough to carry substance,
but simple enough (in this tiny selection of elementary topics) to be appreciated
easily.

1. The conjugation action

1.1. Actions of groups on sets, reminder. Groups really shine when you let
them act on something. This section will make this point very effectively, since
we will get surprisingly precise results on finite groups by extremely simple-minded
applications of the elementary facts concerning group actions that we established

back in §I1E0L

Recall that we proved (Proposition [[I[Q9) that every transitive (left-) action of
a group G on a set S is, up to a natural notion of isomorphism, ‘left-multiplication
on the set of left-cosets G/H’. Here, H may be taken to be the stabilizer Stabg(a)
of any element a € S, that is (Definition [II0.8) the subgroup of G fixing a. This
fact applies to the orbits of every left-action of G on a set; in particular, the number
of elements in a finite orbit O equals the index of the stabilizer of any a € O; in
particular (Corollary [I@.T0) the number of elements |O] of an orbit must divide
the order |G| of G, if G is finite.

These considerations may be packaged into a useful ‘counting’ formula, which
we could call the class formula for that action; this name is usually reserved to the
particular case of the action of G onto itself by conjugation, which we will explore
more carefully below.

187



188 IV. Groups, second encounter

In order to state the formula, assume G acts on a set S; for a € S, let G,
denote the stabilizer Stabg(a). Also, let Z be the set of fized points of the action:

Z={aecS|(Vgeq): ga=a}.

Note that a € Z7 <= G, = G; we could say that a € Z if and only if the orbit
of a is ‘trivial’, in the sense that it consists of a alone.

Proposition 1.1. Let S be a finite set, and let G be a group acting on S. With
notation as above,

S| =121+ ) [G: Gl

a€A

where A C S has ezactly one element for each nontrivial orbit of the action.

Proof. The orbits form a partition of S, and Z collects the trivial orbits; hence

S| =12+ Y |0al,

a€A

where O, denotes the orbit of a. By Proposition [II29, the order |O,| equals the
index of the stabilizer of a, yielding the statement. O

The main strength of Proposition [Tl rests in the fact that, if G is finite, each
summand [G : G,] divides the order of G (and is > 1). This can be a strong
constraint, when some information is known about |G|. For example, let’s see what
this says when G is a p-group:

Definition 1.2. A p-group is a finite group whose order is a power of a prime
integer p. a

Corollary 1.3. Let G be a p-group acting on a finite set S, and let Z be the fixed
point set of the action. Then

|Z] =|S| mod p.

Proof. Indeed, each summand [G : G,] in Proposition [Tl is a number larger
than 1, and a power of p; hence it is 0 mod p. ([l

For instance, in certain situations this can be used to establisH] that Z # (): see
Exercise [Tl Such immediate consequences of Proposition [[.T] will assist us below,
in the proof of Sylow’s theorems.

n this sense, Proposition [l is an instance of a class of results known as ‘fixed point
theorems’. The reader will likely encounter a few such theorems in topology courses, where the
role of the ‘size’ of a set may be played by (for example) the Euler characteristic of a topological
space.
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1.2. Center, centralizer, conjugacy classes. Recall (Example [M03) that ev-
ery group G acts on itself in at least two interesting ways: by (left-) multiplication
and by conjugation. The latter action is defined by the following p: G x G — G-

p(g,a) = gag™".

As we know (§[II02), this datum is equivalent to the datum of a certain group
homomorphism:
o:G— Sa

from G to the permutation group on G.

This action highlights several interesting objects:

Definition 1.4. The center of G, denoted Z(G), is the subgroup ker o of G. J

Concretely, the centeifd of G is
Z(G)={g9g€ G| (Va€qG): ga=ag}.

Indeed, o(g) is the identity in S¢ if and only if o(g) acts as the identity on G; that
is, if and only if gag~! = a for all a € G; that is, if and only if g commutes with all
elements of GG. In other words, the center is the set of fixed points in G under the
conjugation action.

Note that the center of a group G is automatically normal in G: this is nearly
immediate to check ‘by hand’, but there is no need to do so since it is a kernel by
definition and kernels are normal.

A group G is commutative if and only if Z(G) = G, that is, if and only if the
conjugation action is trivial on G.

In general, feel happy when you discover that the center of a group is not trivial:
this will often allow you to set up proofs by induction on the number of elements
of the group, by mod-ing out by the center (this is, roughly, how we will prove the
first Sylow theorem). Or note the following useful fact, which comes in handy when
trying to prove that a group is commutative:

Lemma 1.5. Let G be a finite group, and assume G/Z(G) is cyclic. Then G is
commutative (and hence G/Z(G) is in fact trivial).
Proof. (Cf. Exercise[[H) As G/Z(G) is cyclic, there exists an element g € G such
that the class ¢Z(G) generates G/Z(G). Then Va € G

aZ(G) = (92(G))"
for some r € Z; that is, there is an element z € Z(G) of the center such that
a=g"z.

If now a, b are in G, use this fact to write

a=g"z, b=g’w

for some s € Z and w € Z(G); but then
ab = (g"z)(g"w) = g""*2w = (¢°w)(g"2) = ba,

2Why ‘Z’? ‘Center’ ift Jentrum auf Deutfd).
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where I have used the fact that z and w commute with every element of G. As a
and b were arbitrary, this proves that G is commutative. O

Next, the stabilizer of @ € G under conjugation has a special name:

Definition 1.6. The centralizer (or normalizer) Zg(a) of a € G is its stabilizer
under conjugation. a

Thus,

Zg(a) ={g € Glgag™" =a} ={g € G|ga=nag}

consists of those elements in G which commute with a. In particular, Z(G) C Zg(a)
for all a € G in fact, Z(G) = N,cq Za(a). Clearly a € Z(G) <= Zg(a) = G.

If there is no ambiguity concerning the group G containing a, the index G may
be dropped.

Definition 1.7. The conjugacy class of a € G is the orbit [a] of a under the
conjugation action. Two elements a, b of G are conjugate if they belong to the
same conjugacy class. 3

The notation [a] is not standard; C(a) is used more frequently, but I am not
fond of it. Using [a] reminds us that these are nothing but the equivalence classes
of elements of G under a certain interesting equivalence relation.

Note that [a] = {a} if and only if gag™! = a for all g € G; that is, if and only
if ga = ag for all g € G; that is, if and only if a € Z(G).

1.3. The Class Formula. The ‘official’ Class Formula for a finite group G is the
particular case of Proposition [[T] for the conjugation action.

Proposition 1.8 (Class formula). Let G be a finite group. Then
Gl =12(G)|+)_1G: Z(a)),
acA

where A C G is a set containing one representative for each nontrivial conjugacy
class in G.

Proof. The set of fixed points is Z (@), and the stabilizer of a is the centralizer Z(a);
apply Proposition [[11 O

The class formula is surprisingly useful. In applying it, keep in mind that every
summand on the right (that is, both |Z(G)| and each [G : Z(a)]) is a divisor of |G|;
this fact alone often suffices to draw striking conclusions about G.

Possibly the most famous such application is to p-groups, via Corollary

Corollary 1.9. Let G be a nontrivial p-group. Then G has a nontrivial center.

Proof. Since |Z(G)| = |G|modp and |G| > 1 is a power of p, necessarily |Z(G)]| is
a multiple of p. As Z(G) # 0 (since eq € Z(G)), this implies |Z(G)| > p. O
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For example, it follows immediately (from Corollary [L9and Lemma[[5} cf. Ex-
ercise [LG)) that if p is prime, then every group of order p? is commutative.

In general, the class formula poses a strong constraint on what can go on in a
group.

Example 1.10. Consider a group G of order 6; what are the possibilities for its
class formula?

If G is commutative, then the class formula will tell us very little:
6 = 6.

If G is not commutative, then its center must be trivial (as a consequence of La-
grange’s theorem and Lemma [[H); so the class formula is 6 = 1+ ---, where - - -
collects the sizes of the nontrivial conjugacy classes. But each of these summands
must be larger than 1, smaller than 6, and must divide 6; that is, there are no
choices:

6=14+2+4+3

is the only possibility. The reader should check that this is indeed the class formula
for Ss; in fact, S3 is the only noncommutative group of order 6 up to isomorphism

(Exercise [LT3). N

Another useful observation is that normal subgroups must be unions of conju-
gacy classes: because if H is a normal subgroup, a € H, and b = gag~! is conjugate
to a, then

begHg ' =H.
To stick with the |G| = 6 example, note that every subgroup of a group must
contain the identity and its size must divide the order of the group; it follows that
a normal subgroup of a noncommutative group of order 6 cannot have order 2, since
2 cannot be written as sums of orders of conjugacy classes (including the class of
the identity).

1.4. Conjugation of subsets and subgroups. We may also act by conjugation
on the power set of G: if A C G is a subset and g € G, the conjugate of A is
the subset gAg~'. By cancellation, the conjugation map a — gag~" is a bijection
between A and gAg~*.

This leads to terminology analogous to the one introduced in §I.2

Definition 1.11. The normalizer Ng(A) of A is its stabilizer under conjugation.
The centralizer of A is the subgroup Zg(A) C Ng(A) fixing each element of A.

Thus, g € Ng(A) if and only if gAg~! = A4, and g € Zg(A) if and only if
Ya € A, gag™! = a.

For A = {a} a singleton, we have Ng({a}) = Zc({a}) = Zg(a). In general,
Za(A) € Na(A).

If H is a subgroup of G, every conjugate gHg~
conjugate subgroups have the same order.

L of H is also a subgroup of G;

3If A is finite (but not in general), this condition is equivalent to gAg—! C A.
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Remark 1.12. The definition implies immediately that H C Ng(H) and that H
is normal in G if and only if Ng(H) = G. More generally, the normalizer N¢(H)
of H in G is (clearly) the largest subgroup of G in which H is normal. J

One could apply Proposition [[.T] to the conjugation action on subsets or sub-
group; however, there are too many subsets, and one has little control over the
number of subgroups. Other numerical considerations involving the number of
conjugates of a given subset or subgroups may be very useful.

Lemma 1.13. Let H C G be a subgroup. Then (if finite) the number of subgroups
conjugate to H equals the index |G : Ng(H)| of the normalizer of H in G.

Proof. This is again an immediate consequence of Proposition [[19.9] O

Corollary 1.14. If [G : H] is finite, then the number of subgroups conjugate to H
is finite and divides |G : H].

Proof.
(G H|=[G: Ng(H)| [Nc(H) : H]

(cf. IIRTI). O

One of the celebrated Sylow theorems will strengthen this statement substan-
tially in the case in which H is a mazimal p-group contained in a finite group G.
For a statement concerning the size of the normalizer of an arbitrary p-subgroup of
a group, see Lemma [Z.0

Another useful numerical tool is the observation that if H and K are subgroups
of a group G and H C Ng(K)—so that gKg~! = K for all ¢ € H—then conjuga-
tion by g € H gives an automorphism of K. Indeed, I have already observed that
conjugation is a bijection, and it is immediate to see that it is a homomorphism:
Vkl, ko € K

(9k19™ ") (gkag™ ") = gki(9™ ' 9)kag™" = g(kika)g™".
Thus, conjugation gives a set-function
v H — Autgrp(K).

The reader will check that this is a group homomorphism and will determine ker

(Exercise [L21)).

This is especially useful if H is finite and some information is available con-
cerning Aute,(K) (for an example, see Exercise L14). A classic application is
presented in Exercise [[.22]
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Exercises

1.1. > Let p be a prime integer, let G be a p-group, and let S be a set such that
|S] £ 0mod p. If G acts on S, prove that the action must have fixed points. [§L.1]

23]

1.2. Find the center of Dy,. (The answer depends on the parity of n. You have
actually done this already: Exercise [JI2771 This time, use a presentation.)

1.3. Prove that the center of S, is trivial for n > 3. (Suppose that o € S,, sends
a to b # a, and let ¢ # a,b. Let 7 be the permutation that acts solely by swapping
b and ¢. Then compare the action of o7 and 70 on a.)

1.4. > Let G be a group, and let N be a subgroup of Z(G). Prove that N is normal
in G. [22]

1.5. > Let G be a group. Prove that G/Z(G) is isomorphic to the group Inn(G) of
inner automorphisms of G. (Cf. Exercise [lI48l) Then prove Lemma [[5 again by
using the result of Exercise (912

1.6. > Let p, g be prime integers, and let G be a group of order pq. Prove that
either G is commutative or the center of G is trivial. Conclude (using Corollary [[.9))
that every group of order p?, for a prime p, is commutative. [{L3]

1.7. Prove or disprove that if p is prime, then every group of order p? is commu-
tative.

1.8. > Let p be a prime number, and let G be a p-group: |G| = p". Prove that G
contains a normal subgroup of order p* for every nonnegative k < r. [Z.7]

1.9. = Let p be a prime number, GG a p-group, and H a nontrivial normal subgroup
of G. Prove that H N Z(G) # {e}. (Hint: Use the class formula.) BII]

1.10. Prove that if G is a group of odd order and g € G is conjugate to g~!, then
g = €qg.

1.11. Let G be a finite group, and suppose there exist representatives g1, ..., g, of
the r distinct conjugacy classes in G, such that V7,7, g;9; = gjg;. Prove that G is
commutative. (Hint: What can you say about the sizes of the conjugacy classes?)

1.12. Verify that the class formula for both Dg and Qg (cf. Exercise [TIMLCT2) is
8 =242+ 2+ 2. (Also note that Dg % Qs.)

1.13. > Let G be a noncommutative group of order 6. As observed in Example[T.10,
G must have trivial center and exactly two conjugacy classes, of order 2 and 3.

e Prove that if every element of a group has order < 2, then the group is com-
mutative. Conclude that G has an element y of order 3.

e Prove that (y) is normal in G.

e Prove that [y] is the conjugacy class of order 2 and [y] = {y,y*}.

e Prove that there is an z € G such that yzr = x>
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e Prove that x has order 2.
e Prove that x and y generate G.
e Prove that G = Ss.

913 2.5

1.14. Let G be a group, and assume [G : Z(G)] = n is finite. Let A C G be any
subset. Prove that the number of conjugates of A is at most n.

1.15. Suppose that the class formula for a group G is 60 =1+ 15+ 20 + 12 + 12.
Prove that the only normal subgroups of G are {e} and G.

1.16. > Let G be a finite group, and let H C G be a subgroup of index 2. For
a € H, denote by [a]y, resp., [a]g, the conjugacy class of a in H, resp., G. Prove
that either [a]lg = [a]¢ or [a]y is half the size of [a]g, according to whether the
centralizer Z¢(a) is not or is contained in H. (Hint: Note that H is normal in G,

by Exercise B2} apply Proposition [IRIT) [§44]

1.17. — Let H be a proper subgroup of a finite group G. Prove that G is not the
union of the conjugates of H. (Hint: You know the number of conjugates of H;
keep in mind that any two subgroups overlap, at least at the identity.) [[I8] [L20]

1.18. Let S be a set endowed with a transitive action of a finite group G, and
assume |S| > 2. Prove that there exists a ¢ € G without fixed points in S, that
is, such that gs # s for all s € S. (Hint: By Proposition [0 you may assume
S = G/H, with H proper in G. Use Exercise [[L.T1)

1.19. Let H be a proper subgroup of a finite group G. Prove that there exists a
g € G whose conjugacy class is disjoint from H.

1.20. Let G = GLy(C), and let H be the subgroup consisting of upper triangular
matrices (Exercise [[6.2). Prove that G is the union of the conjugates of H. Thus,
the finiteness hypothesis in Exercise [[L17] is necessary. (Hint: Equivalently, prove
that every 2 x 2 matrix is conjugate to a matrix in H. You will use the fact that
C is algebraically closed; see Example [TIIET4L)

1.21. > Let H, K be subgroups of a group G, with H C Ng(K). Verify that the
function v : H — Autgp(K) defined by conjugation is a homomorphism of groups
and that kery = H N Zg(K), where Zg(K) is the centralizer of K. [§4] [22]

1.22. > Let G be a finite group, and let H be a cyclic subgroup of G of order p.
Assume that p is the smallest prime dividing the order of G and that H is normal
in G. Prove that H is contained in the center of G.

(Hint: By Exercise [[2]] there is a homomorphism v : G — Autg.,(H); by
Exercise [MEET4, Aute,p,(H) has order p — 1. What can you say about 4?) [1.4]

2. The Sylow theorems

2.1. Cauchy’s theorem. The ‘Sylow theorems’ consist of three statements con-
cerning p-subgroups (cf. Definition [[2)) of a given finite group G. The form I will
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give for the first of these statements will tell us that G contains p-groups of all sizes
allowed by Lagrange’s theorem: if p is a prime and p* divides |G|, then G contains
a subgroup of order p*. The proof of this statement is an easy induction, provided
the statement for k£ = 1 is known: that is, provided that one has established

Theorem 2.1 (Cauchy’s theorem). Let G be a finite group, and let p be a prime
divisor of |G|. Then G contains an element of order p.

As it happens, only the abelian version of this statement is needed for the proof
of the first Sylow theorem; then the full statement of Cauchy’s theorem follows
from the first Sylow theorem itself. Since the (diligent) reader has already proved
Cauchy’s theorem for abelian groups (in Exercise [MIBIT), we could directly move
on to Sylow theorems.

However, there is a quick prooﬂ of the full statement of Cauchy’s theorem
which does not rely on Sylow and is a good illustration of the power of the general
‘class formula for arbitrary actions’ (Proposition [[T]). T will present this proof,
while also encouraging the reader to go back and (re)do Exercise [IBT7 now.

Proof of Theorem [2.3 Consider the set S of ordered p-tuples of elements of G:

(@1,-..,ap)

such that a1 ---a, = e. I claim that |S| = |G|P~!: indeed, once ay,...,a, 1 are
chosen (arbitrarily), then a, is determined as it is the inverse of a; - - - a,_1.

Therefore, p divides the order of S as it divides the order of G.

Also note that if a; ---a, = e, then

ag - -apa] = €

(even if G is not commutative): because if a; is a left-inverse to as - - - ap, then it is
also a right-inverse to it.

Therefore, we may act with the group Z/pZ on S: given [m] in Z/pZ, with
0 <m < p, act by [m] on

(a1,...,ap)
by sending it to
(@mt1y ey Qpy QL ey Q)
as we just observed, this is still an element of S.
Now Corollary [[L3] implies
|Z|=1S|=0 mod p,

where Z is the set of fixed points of this action. Fixed points are p-tuples of the
form

(*) (a,...,a);

and note that Z # (), since {e,...,e} € Z. Since p > 2 and p divides |Z|, we
conclude that |Z| > 1; therefore there exists some element in Z of the form (¥*),
with a # e.

4This argument is apparently due to James McKay.
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This says that there exists an a € G, a # e, such that a? = e, proving the
statement. O

We should remark that the proof given here proves a more precise result than
the raw statement of Theorem [ZT} every element of order p in G generates a cyclic
subgroup of G of order p, and we are able to say something about the number of
such subgroups.

Claim 2.2. Let G be a finite group, let p be a prime divisor of |G|, and let N be
the number of cyclic subgroups of G of order p. Then N =1 mod p.

The proof of this fact is left to the reader (as an incentive to really understand
the proof of Theorem 2.T).

Claim 22 coupled with the simple observation that if there is only 1 cyclic
subgroup H of order p, then that subgroup must be normal (Exercise [2.2)), suffices
for interesting applications.

Definition 2.3. A group G is simple if it is nontrivial and its only normal sub-
groups are {e} and G itself. N

Simple groups occupy a special place in the theory of groups: one can ‘break
up’ any finite group into basic constituents which are simple groups; we will see
how this is done in §3.I1 Thus, it is important to be able to tell whether a group is
simple or notl.

Example 2.4. Let p be a positive prime integer. If |G| = mp, with 1 < m < p,
then G is not simple.

Indeed, consider the subgroups of G with p elements. By Claim[2.2] the number
of such subgroups is = 1modp. Thus, if there is more than one such subgroup,
then there must be at least p + 1. Any two distinct subgroups of prime order can
only meet at the identity (why?); therefore this would account for at least

1+(p+1)(p-1)=p°

elements in G. Since |G| = mp < p?, this is impossible. Therefore there is only
one cyclic subgroup of order p in GG, which must be normal as mentioned above,
proving that G is not simple. 2

2.2. Sylow I. Let p be a prime integer. A p-Sylow subgroup of a finite group G
is a subgroup of order p”, where |G| = p"m and ged(p,m) = 1. That is, P C G is
a p-Sylow subgroup if it is a p-group and p does not divide [G : P).

If p does not divide the order of G, then GG contains a p-Sylow subgroup: namely,
{e}. This is not very interesting; what is interesting is that G' contains a p-Sylow
subgroup even when p does divide the order of G:

Theorem 2.5 (First Sylow theorem). Every finite group contains a p-Sylow sub-
group, for all primes p.

5In fact, a complete list of all finite simple groups is known: this is the classification result
mentioned at the end of gIIlm arguably one of the deepest and hardest results in mathematics.
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The first Sylow theorem follows from the seemingly stronger statement:

Proposition 2.6. If p* divides the order of G, then G has a subgroup of order p*.

The statements are actually easily seen to be equivalent, by Exercise [[8 in
any case, the standard argument proving Theorem proves Proposition [2.6] and
I see no reason to hide this fact. Here is the argument:

Proof of Proposition If £ = 0, there is nothing to prove, so we may assume
k > 1 and in particular that |G| is a multiple of p.

Argue by induction on |G|: if |G| = p, again there is nothing to prove; if |G| > p
and G contains a proper subgroup H such that [G : H] is relatively prime to p,
then p¥ divides the order of H, and hence H contains a subgroup of order p* by
the induction hypothesis, and thus so does G.

Therefore, we may assume that all proper subgroups of G have index divisible
by p. By the class formula (Proposition [[8]), p divides the order of the center Z(G).
By Cauchy’s theorenﬁ, Ja € Z(G) such that a has order p. The cyclic subgroup
N = (a) is contained in Z (@), and hence it is normal in G (Exercise[[4]). Therefore
we can consider the quotient G/N.

Since |G/N| = |G|/p and p* divides |G| by hypothesis, we have that p*~!
divides the order of G/N. By the induction hypothesis, we may conclude that
G/N contains a subgroup of order p*~!. By the structure of the subgroups of
a quotient (83 especially Proposition [IRJ), this subgroup must be of the
form P/N, for P a subgroup of G.

But then |P| = |P/N|-|N| =p*~!-p = p*, as needed. O

There are slicker ways to prove Theorem We will see a pretty (and in-
sightful) alternative in §23F but the proof given above is easy to remember and is
a good template for similar arguments.

Remark 2.7. The diligent reader worked out in Exercise a stronger state-
ment than Proposition 6], for abelian groups. The arguments are similar; the
advantage in the abelian case is that any cyclic subgroup produced by Cauchy’s
theorem is automatically normal, while ensuring normality requires a few twists
and turns in the general case (and, as a result, yields a weaker statement). 4

2.3. Sylow II. Theorem tells us that some maximal p-group in G attains
the largest size allowed by Lagrange’s theorem, that is, the maximal power of the
prime p dividing |G]|.

One can be more precise: the second Sylow theorem tells us that every maximal
p-group in |G| is in fact a p-Sylow subgroup. It is as large as is allowed by Lagrange’s
theorem.

The situation is in fact even better: all p-Sylow subgroups are conjugates of
each othelﬂ. Moreover, even better than this, every p-group inside G must be
contained in a conjugate of any fixed p-Sylow subgroup.

6Note that, as mentioned in §2.11 we only need the abelian case of this theorem.
7Of course if P is a p-Sylow subgroup of G, then so are all conjugates gPg~! of P.
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The proof of this very precise result is very easy!

Theorem 2.8 (Second Sylow theorem). Let G be a finite group, let P be a p-Sylow
subgroup, and let H C G be a p-group. Then H is contained in a conjugate of P:
there exists g € G such that H C gPg~1!.

Proof. Act with H on the set of left-cosets of P, by left-multiplication. Since there
are [G : P] cosets and p does not divide [G : P], we know this action must have
fixed points (Exercise [T]): let gP be one of them. This means that Vh € H:

hgP = gP;

that is, g~ 'hgP = P for all h in H; that is, g"'Hg C P; that is, H C gPg~ ', as
needed. O

We can obtain an even more complete picture of the situation. Suppose we
have constructed a chain

Hy={e}CH  C---CHy

of p-subgroups of a group G, where |H;| = p'. By Theorem 2.8 we know that Hy,
is contained in some p-Sylow subgroup, of order p” = the maximum power of p
dividing the order of G. But I claim that the chain can in fact be continued one
step at a time all the way up to the Sylow subgroup:

Hy={e}CH C---CH,CHp1 C---CHy

and, further, H; may be assumed to be normal in Hj ;. The following lemma will
simplify the proof of this fact considerably and will also help us prove the third
Sylow theorem.

Lemma 2.9. Let H be a p-group contained in a finite group G. Then
[Ne(H): H =[G : H mod p.

Proof. If H is trivial, then Ng(H) = G and the two numbers are equal.

Assume then that H is nontrivial, and act with H on the set of left-cosets of H
in G, by left-multiplication. The fixed points of this action are the cosets gH such
that Yh € H

hgH = gH,
that is, such that g~'hg € H for all h € H; in other words, H C gHg ', and hence
(by order considerations) gHg~! = H. This means precisely that g € Ng(H).
Therefore, the set of fixed points of the action consists of the set of cosets of H
in Ng(H)

The statement then follows immediately from Corollary O

As a consequence, if Hy, is not a p-Sylow subgroup ‘already’; in the sense that p
‘still” divides [G : Hy], then p must also divide [Ng(Hy) : Hy]. Another application
of Cauchy’s theorem tells us how to obtain the next subgroup Hy41 in the chain.
More precisely, we have the following result.
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Proposition 2.10. Let H be a p-subgroup of a finite group G, and assume that H
is not a p-Sylow subgroup. Then there exists a p-subgroup H' of G containing H,
such that [H' : H| =p and H is normal in H'.

Proof. Since H is not a p-Sylow subgroup of G, p divides [Ng(H) : H], by
Lemma Since H is normal in Ng(H), we may consider the quotient group
N¢(H)/H, and p divides the order of this group. By Theorem 2l N¢(H)/H has
an element of order p; this generates a subgroup of order p of Ng(H)/H, which
must be (cf. JI83) of the form H'/H for a subgroup H' of Ng(H).

It is straightforward to verify that H’ satisfies the stated requirements. |

The statement about ‘chains of p-subgroups’ follows immediately from this
result.

Note that Cauchy’s theorem and Proposition 2.0l provide a new proof of Propo-
sition and hence of the first Sylow theorem.

2.4. Sylow III. The third (and last) Sylow theorem gives a good handle on the
number of p-Sylow subgroups of a given finite group . This is especially useful in
establishing the existence of normal subgroups of G: since all p-Sylow subgroups
of a group are conjugates of each other (by the second Sylow theorem), if there is
only one p-Sylow subgroup, then that subgroup must be normafd.

Theorem 2.11 (Third Sylow theorem). Let p be a prime integer, and let G be
a finite group of order |G| = p"m. Assume that p does not divide m. Then the
number of p-Sylow subgroups of G divides m and is congruent to 1 modulo p.

Proof. Let N, denote the number of p-Sylow subgroups of G.

By Theorem 2.8 the p-Sylow subgroups of G are the conjugates of any given
p-Sylow subgroup P. By Lemma [[.T3] N, is the index of the normalizer N¢(P)
of P; thus (Corollary [LT4) it divides the index m of P. In fact,

m=[G:P|=[G: Na(P)]- [Na(P) : P| = N, - [Na(P) : P,
Now, by Lemma 2.9 we have
m =[G : P| = [Ng(P): P] mod p;
multiplying by N,, we get
mN, =m mod p.
Since m # 0mod p and p is prime, this implies
N, =1 mod p,
as needed. ]

Of course there are other ways to prove Theorem 2.I1t see for example Exer-

cise 2111

8For an alternative viewpoint, see Exercise [Z.21
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2.5. Applications. Consequences stemming from the group actions we have en-
countered, and especially the Sylow theorems, may be applied to establish exquisitely
precise facts about individual groups as well as whole classes of groups; this is often
based on some simple but clever numerology.

The following examples are exceedingly simple-minded but will hopefully con-
vey the flavor of what can be done with the tools we have built in the previous
two sections. More examples may be found among the exercises at the end of this
section.

2.5.1. More nonsimple groups.

Claim 2.12. Let G be a group of order mp”, where p is a prime integer and
1 <m < p. Then G is not simple.

(Cf. Example [Z4])

Proof. By the third Sylow theorem, the number IV, of p-Sylow subgroups divides m
and is of the form 14 kp. Since m < p, this forces k = 0, N, = 1. Therefore G has
a normal subgroup of order p"; hence it is not simple. O

Of course the same argument gives the same conclusion for every group of order
mp”, where (m,p) = 1 and the only divisor d of m such that d =1 mod pisd = 1.

Example 2.13. There are no simple groups of order 2002.
Indeecﬂ
2002 =2-7-11-13;
the divisors of 2-7-13 are
1,2,7,13,14,26,91, 182:

of these, only 1 is congruent to 1mod11. Thus there is a normal subgroup of
order 11 in every group of order 2002. 3

The reader should not expect the third Sylow theorem to always yield its fruits
so readily, however.

Example 2.14. There are no simple groups of order 12.

Note that 3 = 1mod 2 and 4 = 1 mod 3: thus the argument used above does not
guarantee the existence of either a normal 2-Sylow subgroup or a normal 3-Sylow
subgroup.

However, suppose that there is more than one 3-Sylow subgroup. Then there
must be 4, by the third Sylow theorem. Since any two such subgroups must intersect
in the identity, this accounts for exactly 8 elements of order 3. Excluding these
leaves us with the identity and 3 elements of order 2 or 4; that is just enough room
to fit one 2-Sylow subgroup. This subgroup will then have to be normal.

Thus, either there is a 3-Sylow normal subgroup or there is a 2-Sylow normal
subgroup—either way, the group is not simple. a

91t is safe to guess that this statement has been assigned on hundreds of algebra tests across
the world in the year 2002.
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Even this more refined counting will often fail, and one has to dig deeper.

Example 2.15. There are no simple groups of order 24.

Indeed, let G be a group of order 24, and consider its 2-Sylow subgroups; by
the third Sylow theorem, there are either 1 or 3 such subgroups. If there is 1, the
2-Sylow subgroup is normal and G is not simple. Otherwise, G acts (nontrivially)
by conjugation on this set of three 2-Sylow subgroups; this action gives a nontrivial
homomorphism G — S3, whose kernel is a proper, nontrivial normal subgroup
of G—thus again G is not simple. 2

The reader should practice by selecting a random number n and trying to say
as much as he/she can, in general, about groups of order n. Beware: such problems
are a common feature of qualifying exams.

2.5.2. Groups of order pq, p < q prime.

Claim 2.16. Assume p < q are prime integers and ¢ Z 1 mod p. Let G be a group
of order pq. Then G is cyclic.

Proof. By the third Sylow theorem, G has a unique (hence normal) subgroup H
of order p. Indeed, the number N, of p-Sylow subgroups must divide ¢, and ¢ is
prime, so N, = 1 or q. Necessarily /N, = 1modp, and ¢ # 1 modp by hypothesis;
therefore N, = 1.

Since H is normal, conjugation gives an action of G on H, hence (by Exer-
cise [L2T)) a homomorphism v : G — Aut(H). Now H is cyclic of order p, so
|Aut(H)| = p — 1 (Exercise [IETI4); the order of y(G) must divide both pg and
p — 1, and it follows that - is the trivial map.

Therefore, conjugation is trivial on H: that is, H C Z(G). Lemma [[3] implies
that G is abelian.

Finally, an abelian group of order pq, with p < ¢ primes, is necessarily cyclic:
indeed it must contain elements g, h of order p, ¢, respectively (for example by
Cauchy’s theorem), and then |gh| = pq by Exercise [IILI4 O

For example, this statement ‘classifies’ all groups of order 15, 33, 35, 51, ...:
such groups are necessarily cyclic.

The argument given in the proof is rather ‘high-brow’, as it involves the auto-
morphism group of H; that is precisely why I gave it. For low-brow alternatives,
see Exercise 218 or Remark [(£.41

The condition ¢ Z 1 mod p in Claim [ZT0lis clearly necessary: indeed, |S3| = 2-3
is the product of two distinct primes, and yet S3 is not cyclic. The argument given
in the proof shows that if |G| = pq, with p < ¢ prime, and G has a normal subgroup
of order p, then G is cyclic. If ¢ = 1modp, it can be shown that there is in fact
a unique noncommutative group of order pg up to isomorphism: the reader will
work this out after learning about semidirect products (Exercise [5.12]). But we are
in fact already in the position of obtaining rather sophisticated information about
this group, even without knowing its construction in general (Exercise 219)).

For fun, let’s tackle the case in which p = 2.
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Claim 2.17. Let q be an odd prime, and let G be a noncommutative group of
order 2q. Then G = Doy, the dihedral group.

Proof. By Cauchy’s theorem, Jy € GG such that y has order ¢q. By the third Sylow
theorem, (y) is the unique subgroup of order ¢ in G (and is therefore normal).
Since G is not commutative and in particular it is not cyclic, it has no elements of
order 2g; therefore, every element in the complement of (y) has order 2; let x be
any such element.

The conjugate xyz ' of y by x is an element of order ¢, so ryx~! € (y). Thus,
xyz~! =" for some r between 0 and ¢ — 1.

Now observe that

()" = (zyz ) =ayz" = 2%y(x

1

—1)2 =y

since || = 2. Therefore, yrz_ = e, which implies

q|(r?=1)=(-1)(r+1)
by Corollary [Tl Since g is prime, this says that ¢ | (r — 1) or ¢ | (r + 1); since

0<r<qg—1,it follows that r =1 orr=q— 1.

If r = 1, then zyax~! = y; that is, zy = yz. But then the order of zy is 2¢ (by

Exercise [ILT4), and G is cyclic, a contradiction.

Therefore » = ¢ — 1, and we have established the relations
2

r° =e,
y! =e,
yr = xyd L.
These are the relations satisfied by generators x,y of D4, as the reader hopefully
verified in Exercise [MI2.5 the statement follows. O

Claim 2T yields a classification of groups of order 2¢, for ¢ an odd prime: such
a group must be either abelian (and hence cyclic, by the usual considerations) or
isomorphic to a dihedral group. For ¢ = 3, we recover the result of Exercise
every noncommutative group of order 6 is isomorphic to Dg = Ss3.

.|
Exercises

2.1. > Prove Claim 221 [§21]
2.2. > Let G be a group. A subgroup H of G is characteristic if o(H) C H for

every automorphism ¢ of G.
e Prove that characteristic subgroups are normal.

e Let H C K C (G, with H characteristic in K and K normal in G. Prove that
H is normal in G.

e Let G, K be groups, and assume that G contains a single subgroup H isomor-
phic to K. Prove that H is normal in G.



FExercises 203

e Let K be a normal subgroup of a finite group G, and assume that |K| and
|G /K| are relatively prime. Prove that K is characteristic in G.

(210 2.4 XT3 §3.3]

2.3. Prove that a nonzero abelian group G is simple if and only if G = Z/pZ for
some positive prime integer p.

2.4. > Prove that a nontrivial group G is simple if and only if its only homomorphic
images (i.e., groups G’ such that there is an onto homomorphism G — G’) are the
trivial group and G itself (up to isomorphism). [§3.2]

2.5. Let G be a simple group, and assume ¢ : G — G’ is a nontrivial group
homomorphism. Prove that ¢ is injective.

2.6. Prove that there are no simple groups of order 4, 8, 9, 16, 25, 27, 32, or 49.
In fact, prove that no p-group of order > p? is simple.

2.7. Prove that there are no simple groups of order 6, 10, 14, 15, 20, 21, 22, 26,
28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57, or 58. (Hint: Example [2.4])

2.8. Let G be a finite group, p a prime integer, and let N be the intersection of
the p-Sylow subgroups of G. Prove that IV is a normal p-subgroup of G and that
every normal p-subgroup of G is contained in N. (In other words, G/N is final
with respect to the property of being a homomorphic image of G of order |G|/p*
for some «.)

2.9. = Let P be a p-Sylow subgroup of a finite group G, and let H C G be a p-
subgroup. Assume H C Ng(P). Prove that H C P. (Hint: P is normal in Ng(P),
so PH is a subgroup of N¢(P) by Proposition [IRIT] and |PH/P| = |H/(PNH)|.
Show that this implies that PH is a p-group, and hence PH = P since P is a
maximal p-subgroup of G. Deduce that H C P.) 2I0]

2.10. — Let P be a p-Sylow subgroup of a finite group G, and act with P by
conjugation on the set of p-Sylow subgroups of G. Show that P is the unique fixed
point of this action. (Hint: Use Exercise 2.9]) [211]

2.11. > Use the second Sylow theorem, Corollary [[L.T4], and Exercise 2.10] to paste
together an alternative proof of the third Sylow theorem. [§2.4]

2.12. Let P be a p-Sylow subgroup of a finite group G, and let H C G be a
subgroup containing the normalizer Ng(P). Prove that [G : H] = 1 mod p.

2.13. — Let P be a p-Sylow subgroup of a finite group G.

e Prove that if P is normal in G, then it is in fact characteristic in G (cf. Exer-
cise 2.2)).

e Let H C G be a subgroup containing the Sylow subgroup P. Assume P is
normal in H and H is normal in G. Prove that P is normal in G.

e Prove that Ng(Ng(P)) = Ng(P).

B.I2

2.14. Prove that there are no simple groups of order 18, 40, 45, 50, or 54.
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2.15. Classify all groups of order n < 15, n # 8,12: that is, produce a list of
nonisomorphic groups such that every group of order n #£ 8,12, n < 15 is isomorphic
to one group in the list.

2.16. — Let G be a noncommutative group of order 8.

e Prove that GG contains elements of order 4 and no elements of order 8.

e Let y be an element of order 4. Prove that G is generated by y and by an
element = ¢ (y), such that 22 = e or 2?2 = y2.

o In either case, G = {e,y,v%,v>, z,yx,y?x,y3x}. Prove that the multiplication
table of G is determined by whether 22 = e or 22 = 32, and by the value of xy.

e Prove that necessarily zy = y3x. (Hint: To eliminate xy = y*x, multiply on
the right by y.)

e Prove that G = Dg or G = Q)s.

[6.2, VTIG.6]
2.17. - Let R be a division ring (Definition [TICT3)), and assume |R| = 64. Prove
that R is necessarily commutative (hence, a field), as follows:
e The group of units of R has order 63. Prove it has a commutative subgroup G
of order 9. (Sylow.)
e Prove that R is the only sub-division ring of R containing G.

e Prove that the set of elements of R commuting with every element of G is a
sub-division ring of R containing G. (Cf. Exercise [II2.T101)

e Conclude that G is contained in the center of R. Recall that the center of
R is a sub-division ring of R (cf. Exercise [IIZ9), and conclude that R is

commutative.

Like Exercise [TI2.TT] this is a particular case of a theorem of Wedderburn, accord-
ing to which every finite division ring is a field. [VIIE.I0]

2.18. > Give an alternative proof of Claim .16l as follows: use the third Sylow
theorem to count the number of elements of order p and ¢ in G; use this to show
that there are elements in GG of order neither 1 nor p nor ¢; deduce that G is cyclic.

[92.3]

2.19. > Let G be a noncommutative group of order pq, where p < ¢ are primes.

Show that ¢ = 1 mod p.
Show that the center of G is trivial.
Draw the lattice of subgroups of G.

e Find the number of elements of each possible order in G.

e Find the number and size of the conjugacy classes in G.
[42.5]
2.20. How many elements of order 7 are there in a simple group of order 1687

2.21. Let p < g < r be prime integers, and let G be a group of order pgr. Prove
that G is not simple.
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2.22. Let G be a finite group, n = |G|, and p be a prime divisor of n. Assume
that the only divisor of n that is congruent to 1 modulo p is 1. Prove that G is not
simple.

2.23. - Let N, denote the number of p-Sylow subgroups of a group G. Prove
that if G is simple, then |G| divides N,! for all primes p in the factorization of |G|.
More generally, prove that if G is simple and H is a subgroup of G of index N> 1,
then |G| divides N!. (Hint: Exercise [T[0I21) This problem capitalizes on the idea
behind Example 225

2.24. > Prove that there are no noncommutative simple groups of order less than 60.
If you have sufficient stamina, prove that the next possible order for a noncommu-
tative simple group is 168. (Don’t feel too bad if you have to cheat and look up a
few particularly troublesome orders > 60.) [§4.4]

2.25. — Assume that G is a simple group of order 60.

e Use Sylow’s theorems and simple numerology to prove that G has either five
or fifteen 2-Sylow subgroups, accounting for fifteen elements of order 2 or 4.
(Exercise 2:23] will likely be helpful.)

e If there are fifteen 2-Sylow subgroups, prove that there exists an element g € G
of order 2 contained in at least two of them. Prove that the centralizer of g has
index 5.

Conclude that every simple grouﬂ of order 60 contains a subgroup of index 5.

E22]

3. Composition series and solvability

I have claimed that simple groups (in the sense of Definition 23] are the ‘basic
constituents’ of all finite groups. Among other things, the material in this section
will (partially) justify this claim.

3.1. The Jordan-Hélder theorem. A series of subgroups G; of a group G is a
decreasing sequence of subgroups starting from G:

G=Gy2G12G22 .
The length of a series is the number of strict inclusions.

A series is normal if G;41 is normal in G; for all i. We will be interested in
the maximal length of a normal series in Gj if finite, I will denote this number]
by £(G). The number ¢(G) is a measure of how far G is from being simple. Indeed,
¢(G) = 0 if and only if G is trivial, and £(G) = 1 if and only if G is simple: for a
simple group, the only maximal normal series is

G 2 {e}.

10The reader will prove later (Exercise B22)) that there is in fact only one simple group of
order 60 up to isomorphism and that this group contains exactly five 2-Sylow subgroups. The
result obtained here will be needed to establish this fact.

1 There does not appear to be a standard notation for this concept.
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Definition 3.1. A composition series for G is a normal series
G=Gy2G12G22---2G, ={e}

such that the successive quotients G;/G;41 are simple. 2

It is clear (by induction on the order) that finite groups have composition series,
while infinite groups do not necessarily have one (Exercise[33]). Tt is also clear that
if a normal series has maximal length ¢(G), then it is a composition series. What
is not clear is that the converse holds: conceivably, there could exist composition
series of different lengths (the longest ones having length ¢(G)). For example, why
can’t there be a finite group G with ¢(G) = 3 and two different composition series

G 2 G 2 Gy 2 {e}

and

¢ 2 ¢ 2 {9

=

(that is: a finite group G with £(G) = 3 and a simple normal subgroup G such
that G/G is simple)?

Part of the content of the Jordan-Hélder theorem is that (luckily) this cannot
happen. In fact, the theorem is much more precise: not only do all composition
series have the same length, but they also have the same quotients (appearing,
however, in possibly different orders).

Theorem 3.2 (Jordan-Hélder). Let G be a group, and let
G=Go2G12G22 2 Gy ={e},
G=Gh2GL DGy 2Gly =1{e}

be two composition series for G. Then m = n, and the lists of quotient groups
H; = G;/Giy1, H = G}/G},, agree (up to isomorphism) after a permutation of
the indices.

Proof. Let
(*) G=G2G12G,2---2G, ={e}

be a composition series. Argue by induction on n: if n = 0, then G is trivial, and
there is nothing to prove. Assume n > 0, and let

(**) G=G,2G12G,2 - 2G, ={e}
be another composition series for G. If G5 = G, then the result follows from the

induction hypothesis, since G; has a composition series of length n — 1 < n.

We may then assume Gy # G. Note that G1G} = G: indeed, G1G] is normal
in G (Exercise B3), and G; € G1G; but there are no proper normal subgroups
between G7 and G since G/ is simple.

Let K = G1 NGY. The distinct subgroups G; N K determine a composition
series

KOK DKy 2D - DK, ={e}
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of K: this is not difficult to see, and will be verified more formally in the proof
of Proposition [34l By Proposition (the “second isomorphism theorem”),
G G GGy G G o G
K GinGgy G & K G

are simple. Therefore, we have two new composition series for G:

and

G2G 2K 2K 22 {e

=

G2G 2K2K 2 -2 {e

- =

which only differ at the first step. These two series trivially have the same length
and the same quotients (the first two quotients get switched from one series to the
other).

Now I claim that the first of these two series has the same length and quotients
as the series (*). Indeed,

Gi2K2K 2Ky 2.2 K, ={e}

is a composition series for G1: by the induction hypothesis, it must have the same
length and quotients as the composition series

Gr2G22 - 2G, ={eh
verifying my claim (and note that, in particular, r =n — 2).
By the same token, applying the induction hypothesis to the series (of length
n—1)
Gi2K 2K 2Ky 2 2 Kyp={e},

shows that the second series has the same length and quotients as (**), and the
statement follows. O

3.2. Composition factors; Schreier’s theorem. Two normal series are equiv-
alent if they have the same length and the same quotients (up to order). The
Jordan-Holder theorem shows that any two mazimal finite series of a group are
equivalent. That is, the (isomorphism classes of the) quotients of a composition
series depend only on the group, not on the chosen series. These are the compo-
sition factors of the group. They form a multised of simple groups: the ‘basic
constituents’ of our loose comment back in §21

It is clear that two isomorphic groups must have the same composition factors.
Unfortunately, it is not possible to reconstruct a group from its composition factors
alone (Exercise B4)). One has to take into account the way the simple groups are
‘elued’ together; we will come back to this point in §5.21

The intuition that the composition factors of a group are its basic constituents
is reinforced by the following fact: if G is a group with a composition series, then
the composition factors of every normal subgroup N of G are composition factors
of G and the remaining ones are the composition factors of the quotient G/N.

125ce {22 for a reminder on multisets: they are sets of elements counted with multiplicity.
For example, the composition factors of Z/47Z form the multiset consisting of two copies of Z/27.
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Example 3.3. Let G = Z/6Z = {[0],[1],[2].[3], [4], [5]}. Then
{[0], [1], (2], [3], [4], [51} 2 {[0], [3]} 2 {[0]}

is a composition series for G; the quotients are Z/37Z, Z/2Z, respectively. The (nor-
mal) subgroup N = {[0],[2], [4]} ‘turns off” the second factor: indeed, intersecting
the series with N gives

{[01, 2], (4]} 2 {[0]} = {[0},

a series with composition factor Z/37Z. On the other hand, ‘mod-ing out by N’
turns off the first factor: keeping in mind [3] + N = [1] + N, etc., we find

{l0]+ N, [1] + N} = {[0] + N, [1] + N} 2 {[0] + N},

a series with lone composition factor Z/2Z. a

This phenomenon holds in complete generality:

Proposition 3.4. Let G be a group, and let N be a normal subgroup of G. Then
G has a composition series if and only if both N and G /N have composition series.
Further, if this is the case, then

UG) = U(N) + €(G/N),

and the composition factors of G consist of the collection of composition factors
of N and of G/N.

Proof. If G/N has a composition series, the subgroups appearing in it correspond
to subgroups of G containing N, with isomorphic quotients, by Proposition
(the “third isomorphism theorem”). Thus, if both G/N and N have composition
series, juxtaposing them produces a composition series for G, with the stated con-
sequence on composition factors.

The converse is a little trickier. Assume that G has a composition series
G=Gy2G12G,2---2G, ={e}

and that N is a normal subgroup of G. Intersecting the series with N gives a
sequence of subgroups of the latter:

N=GNNDOG NND---D{e} NN ={e}

such that G;+1 N N is normal in G; N N, for all . I claim that this becomes a
composition series for N once repetitions are eliminated. Indeed, this follows once
we establish that
G;iNN
Gi+1 NN

is either trivial (so that G;o1 NN = G; N N, and the corresponding inclusion may
be omitted) or isomorphic to G;/G;41 (hence simple, and one of the composition
factors of G). To see this, consider the homomorphism

G
GiﬂN;)Gi—» L
Giy1
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the kernel is clearly G;+1 N N; therefore (by the first isomorphism theorem) we have
an injective homomorphism
G;,NN G;
(ﬁ
GitiNN Git1

identifying (G; N N)/(G;+1 N N) with a subgroup of G;/G;+1. Now, this subgroup
is normal (because N is normal in G) and G; /G, is simple; our claim follows.

As for G/N, obtain a sequence of subgroups from a composition series for G:

EDGlNQGzND---D {e(;}N

N= N N 22y = leamt
such that (G;11N)/N is normal in (G;N)/N. As above, we have to check that
(GiN)/N
(GipaN)/N

is either trivial or isomorphic to G;/G;1. By the third isomorphism theorem, this

quotient is isomorphic to (G;N)/(Gi+1N). This time, consider the homomorphism
GiN

Gi1N

this is surjective (check!), and the subgroup G, of the source is sent to the identity
element in the target; hence (by Theorem [IZ.I2)) there is an onto homomorphism
G; G;N
— .
Giy1 G N

Since G; /Gy is simple, it follows that (G;N)/(G;+1N) is either trivial or isomor-
phic to it (Exercise [Z4]), as needed.

Summarizing, we have shown that if G has a composition series and N is normal
in G, then both N and G/N have composition series. The first part of the argument
yields the statement on lengths and composition factors, concluding the proof. [J

One nice consequence of the Jordan-Holder theorem is the following observa-
tion. A series is a refinement of another series if all terms of the first appear in the
second.

Proposition 3.5. Any two normal series of a finite group ending with {e} admit
equivalent refinements.

Proof. Refine the series to a composition series; then apply the Jordan-Hoélder
theorem. 0

In fact, Schreier’s theorem asserts that this holds for all groups (while the
argument given here only works for groups admitting a composition series, e.g.,
finite groups). Proving this in general is reasonably straightforward, from judicious
applications of the second isomorphism theorem (cf. Exercise B.7]).
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3.3. The commutator subgroup, derived series, and solvability. It has
been a while since we have encountered a universal object; here is one. For any
group G, consider the category whose objects are group homomorphisms o : G — A
from G to a commutative group and whose morphisms o — [ are (as the reader
should expect) commutative diagrams

&
AR\
ALB

Does this category have an initial object? That is, given a group G, does there
exist a commutative group which is universal with respect to the property of being
a homomorphic image of G?

Yes.

Such a group may well be thought of as the closest ‘commutative approximation’
of the given group G. To verify that this universal object exists, we introduce the
following important notion. (The diligent reader has begun exploring this territory
already, in Exercise [IIT.I11)

Definition 3.6. Let G be a group. The commutator subgroup of G is the subgroup
generated by all elements

where ¢ is a homomorphism.

ghgflhfl
with g, h € G. 2

The element ghg~'h~! is often denoted [g, h] and is called the commutator of g
and h. Thus, g, h commute with each other if and only if [g, h] = e.

In the same notational style, the commutator subgroup of G should be denoted
[G, G]; this is a bit heavy, and the common shorthand for it is G’, which offers
the possibility of iterating the notation. Thus, G” may be used to denote the
commutator subgroup of the commutator subgroup of G, and G denotes the i-
th iterate. I will adopt this notation in this subsection for convenience, but not
elsewhere in this book (as I want to be able to ‘prime’ any letter I wish, for any
reason).

First we record the following trivial, but useful, remark:

Lemma 3.7. Let ¢ : G1 — Go be a group homomorphism. Then ¥g,h € G1 we
have

©([g,h]) = [¢(9), p(h)]
and p(G7) C G.

This simple observation makes the key properties of the commutator subgroup
essentially immediate (cf. Exercise [[IIZ.IT]):
Proposition 3.8. Let G’ be the commutator subgroup of G. Then
e G' is normal in G;

e the quotient G/G' is commutative;
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e if a: G — A is a homomorphism of G to a commutative group, then G' C
ker a;

e the natural projection G — G /G’ is universal in the sense explained above.

Proof. These are all easy consequences of Lemma 3.7

—By Lemma [3.7] the commutator subgroup is characteristic, hence normal

(cf. Exercise 2.2)).

—By Lemma [B7] the commutator of any two cosets gG’, hG' is the coset of the
commutator [g, h]; hence it is the identity in G/G’. As noted above, this implies
that G/G’ is commutative.

—Let a: G — A be a homomorphism to a commutative group. By Lemma [3.7]
a(G') C A’ = {e}: that is, G’ C ker a.

—The universality follows from the previous point and from the universal prop-
erty of quotients (Theorem [IITT2). O

Taking successive commutators of a group produces a descending sequence of
subgroups,
GQGIQG//QG///Q"',
which is ‘normal’ in the sense indicated in §3.11
Definition 3.9. Let G be a group. The derived series of G is the sequence of

subgroups
GQG/QG//QGHIQ"'. B

The derived series may or may not end with the identity of G. For example,

if G is commutative, then the sequence gets there right away:
G2 G ={e};

however, if GG is simple and noncommutative, then it gets stuck at the first step:

G=G=G"=-..
(indeed, G’ is normal and # {e} as G is noncommutative; but then G’ = G since
G is simple).
Definition 3.10. A group is solvable if its derived series terminates with the iden-
tity. J

For example, abelian groups are solvable.

The importance of this notion will be most apparent in the relatively distant
future because of a brilliant application of Galois theory (§VIIIZ4). But we can
already appreciate it in the way it relates to the material we just covered. A normal
series is abelian, resp., cyclic, if all quotients are abelian, resp., cycli.
Proposition 3.11. For a finite group G, the following are equivalent:

(i) All composition factors of G are cyclic.

(i) G admits a cyclic series ending in {e}.

13Thus, a composition series should be called ‘simple’; to our knowledge, it is not.
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(iii) G admits an abelian series ending in {e}.

(iv) G is solvable.

Proof. (i) = (ii) = (iii) are trivial. (ili) = (i) is obtained by refining an
abelian series to a composition series (keeping in mind that the simple abelian
groups are cyclic p-groups).

(iv) = (iii) is also trivial, since the derived series is abelian (by the second
point in Proposition [3.])).

Thus, we only have to prove (iii) = (iv). For this, let

G=G2G12G:2 - 2G, = {e}

be an abelian series. Then I claim that G®) C G, for all i, where G®) denotes the
i-th ‘iterated’ commutator subgroup.

This can be verified by induction. For i = 1, G/G; is commutative; thus
G' C G4, by the third point in Proposition B8 Assuming we know G C G;, the
fact that G;/G,41 is abelian implies G; C G;41, and hence

G = (GWY C G C Gy,

as claimed.
In particular we obtain that G C @G, = {e}: that is, the derived series
terminates at {e}, as needed. O

Example 3.12. All p-groups are solvable. Indeed, the composition factors of a
p-group are simple p-groups (what else could they be?), hence cyclic. a

Corollary 3.13. Let N be a normal subgroup of a group G. Then G is solvable if
and only if both N and G/N are solvable.

Proof. This follows immediately from Proposition 3.4l and the formulation of solv-
ability in terms of composition factors given in Proposition 311} O

It is worth mentioning that any subgroup H of a solvable group is solvable:
indeed, the commutator H' of H is a subgroup of the commutator G’ of G, hence
H'"CG", H"” C G, and so on.

The Feit-Thompson theorem asserts that every finite group of odd order is
solvable. This result is many orders of magnitude beyond the scope of this book:
the original 1963 proof runs about 250 pages.
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.|
Exercises

3.1. Prove that Z has normal series of arbitrary lengths. (Thus, ¢(Z) is not finite.)

3.2. Let G be a finite cyclic group. Compute ¢(G) in terms of |G|. Generalize to
finite solvable groups.

3.3. > Prove that every finite group has a composition series. Prove that Z does
not have a composition series. [§31]

3.4. > Find an example of two nonisomorphic groups with the same composition
factors. [§3.2]

3.5. > Show that if H, K are normal subgroups of a group G, then H K is a normal
subgroup of G. [§31]

3.6. Prove that G; x G5 has a composition series if and only if both G; and G4
do, and explain how the corresponding composition factors are related.

3.7. > Locate and understand a proof of (the general form of) Schreier’s theorem
that does not use the Jordan-Hélder theorem. Then obtain an alternative proof of
the Jordan-Hoélder theorem, using Schreier’s. [§32]

3.8. > Prove Lemma 37 [§3.3]

3.9. Let GG be a nontrivial p-group. Construct explicitly an abelian series for G,
using the fact that the center of a nontrivial p-group is nontrivial (Corollary [L9]).
This gives an alternative proof of the fact that p-groups are solvable (Example B12).

3.10. — Let G be a group. Define inductively an increasing sequence Zy = {e} C
7y C Zy C --- of subgroups of G as follows: for i > 1, Z; is the subgroup of G
corresponding (as in Proposition [MI8A) to the center of G/Z;_1.

e Prove that each Z; is normal in G, so that this definition makes sense.
A group i nilpotent if Z,, = G for some m.

e Prove that G is nilpotent if and only if G/Z(G) is nilpotent.

e Prove that p-groups are nilpotent.

e Prove that nilpotent groups are solvable.

e Find a solvable group that is not nilpotent.

EID 512 611

3.11. — Let H be a nontrivial normal subgroup of a nilpotent group G (cf. Ex-
ercise B.I0). Prove that H intersects Z(G) nontrivially. (Hint: Let » > 1 be the
smallest index such that 3h # e, h € HN Z,. Contemplate a well-chosen commuta-
tor [g, h].) Since p-groups are nilpotent, this strengthens the result of Exercise [L9

B.14

M There are many alternative characterizations for this notion that are equivalent to the one
given here but not too trivially so.
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3.12. Let H be a proper subgroup of a finite nilpotent group G (cf. Exercise B10)).
Prove that H C Ng(H). (Hint: Z(G) is nontrivial. First dispose of the case in
which H does not contain Z(G), and then use induction to deal with the case
in which H does contain Z(G).) Deduce that every Sylow subgroup of a finite
nilpotent group is normaltd. (Use Exercise 2T3])

3.13. — For a group G, let G(¥ denote the iterated commutator, as in §3.31 Prove
that each G is characteristic (hence normal) in G. [B14]

3.14. Let H be a nontrivial normal subgroup of a solvable group G.

e Prove that H contains a nontrivial commutative subgroup that is normal in G.
(Hint: Let r be the largest index such that K = H N G is nontrivial. Prove
that K is commutative, and use Exercise B3] to show it is normal in G.)

e Find an example showing that H need not intersect the center of G nontrivially

(cf. Exercise BIT]).

3.15. Let p, ¢ be prime integers, and let G be a group of order p?q. Prove that G
is solvable. (This is a particular case of Burnside’s theorem: for p, q primes, every
group of order p%q® is solvable.)

3.16. > Prove that every group of order < 120 and # 60 is solvable. [§44] VINTF]

3.17. Prove that the Feit-Thompson theorem is equivalent to the assertion that
every noncommutative finite simple group has even order.

4. The symmetric group

4.1. Cycle notation. It is time to give a second look at symmetric groups. Recall
that S,, denotes the group of permutations (i.e., automorphisms in Set) of the set
{1,...,n}. In §III2lwe denoted elements of S, in a straightforward but inconvenient

way:
(1 2345678
7=\8 1 2 7 5 3 4 6

would stand for the element in Sg sending 1 to 8, 2 to 1, etc.

There is clearly “too much” information here (the first row should be implicit),
and at the same time it seems hard to find out anything interesting about a per-
mutation from this notation. For example, can the reader say anything about the
conjugates of o in Sg? For maximal enlightenment, try to do Exercise Il now, and
then try again after absorbing the material in §421 In short, we should be able to
do better.

As often is the case, thinking in terms of actions helps. By its very definition,
the group S,, acts on the set {1,...,n}; so does every subgroup of S,. Given a
permutation o € S,,, consider the cyclic group (o) generated by ¢ and its action on
{1,...,n}. The orbits of this action form a partition of {1,...,n}; therefore, every

15This property characterizes finite nilpotent groups; cf. Exercise 511
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o € S, determines a partition of {1,...,n}. For example, the element o € Sg given
above splits {1,...,8} into three orbits:

{1,2,3,6,8}, {4,7}, {5}

The action of (o) is transitive on each orbit. This means that one can get from
any element of the orbit to any other element and then back to the original one by
applying ¢ enough times. In the example,

1-8—-6—-3—2—1 4—7—4, 5~ 5.

Definition 4.1. A (nontrivial) cycle is an element of S,, with exactly one nontrivial
orbit. For distinct aq,...,a, in {1,...,n}, the notation
(araz...a.)
denotes the cycle in S,, with nontrivial orbit {a1,...,a,}, acting as
ap > ag > A > oag.

In this case, r is the length of the cycle. A cycle of length r is called an r-cycle. J

The identity is considered a cycle of length 1 in a trivial way and is denoted by
(1) (and could just as well be denoted by (i) for any 7).

Note that (ajas...a,) = (az...ara1) according to the notation introduced
in Definition Ek the notation determines the cycle, but a nontrivial cycle only
determines the notation ‘up to a cyclic permutation’.

Two cycles are disjoint if their nontrivial orbits are. The following observation
deserves to be highlighted, but it does not seem to deserve a proof:

Lemma 4.2. Disjoint cycles commute.

The next one gives us the alternative notation we were looking for.

Lemma 4.3. Fveryo € S,,, 0 # e, can be written as a product of disjoint nontrivial
cycles, in a unique way up to permutations of the factors.

Proof. As we have seen, every o € S, determines a partition of {1,...,n} into
orbits under the action of (). If o # e, then (o) has nontrivial orbits. As o acts
as a cycle on each orbit, it follows that o may be written as a product of cycles.

The proof of the uniqueness is left to the reader (Exercise [2)). O

The cycle notation for o € S, is the (essentially) unique expression of o as a
product of disjoint cycles found in Lemma (or (1) for ¢ = e). In our running
example,

o = (18632)(47),

and keep in mind that this expression is unique cum grano salis: we could write
o = (63218)(47) = (74)(21863) = (32186)(74) = - - - ,

and all of these are ‘the same’ cycle notation for o.
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4.2. Type and conjugacy classes in S,,. The cycle notation has obviously an-
noying features—such as the not-too-unique uniqueness pointed out a moment ago,
or the fact that

(123)

can be an element of S3 just as well as of Syggpog, and only the context can tell.
However, it is invaluable as it gives easy access to quite a bit of important informa-
tion on a given permutation. In fact, much of this information is carried already
by something even simpler than the cycle decomposition.

A partition of an integer n > 0 is a nonincreasinglE sequence of positive integers
whose sum is n. It is easy to enumerate partitions for small values of n. For example,
5 has 7 distinct partitions:

5=1+14+1+1+1

=2+1+4+1+1

=2+2+1

=3+1+1

=3+2

=441

=5.

The partition \;y > Ay > --- > A\, may be denoted

A1y Al

for example, the fourth partition listed above would be denoted [3,1,1]. A nicer
‘visual’ representation is by means of the corresponding Young (or Ferrers) diagram,
obtained by stacking A\; boxes on top of Ay boxes on top of A3 boxes on top of....
For example, the diagrams corresponding to the seven partitions listed above are

[L,LL,1,1] [2,1,1,1] [2,2,1] [3.1,1] [3.2] [4.1] [5]

Definition 4.4. The type of o € S,, is the partition of n given by the sizes of the
orbits of the action of () on {1,...,n}. 4

It is hopefully clear (from the argument proving Lemma [3) that the type
of 0 € 5,, is simply given by the lengths of the cycles in the decomposition of o as
the product of disjoint cycles, together with as many 1’s as needed. In our running
example,

o = (18632)(47) € S

has type [5, 2, 1]:

160f course this choice is arbitrary, and nondecreasing sequences would do just as well.
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The main reason why ‘types’ are introduced is a consequence of the following
simple observation.

Lemma 4.5. Let 7 € S, and let (a1 ...a,) be a cycle. Then

m(ay...a.)T = (a7 . Lapmh).

The funny notation a;7' stands for the action of the permutation 7' on

a; € {1,...,n}; recall that we agreed in §II2.7] that we would let our permutations
act on the right, for consistency with the usual notation for products in groups.

Proof. This is verified by checking that both sides act in the same way on {1,...,n}.
For example, for 1 <i <r

(@it (a1 ... a,) 7™ = aifar .. a,)7 " = agpar !

as it should; the other cases are left to the reader. (I

By the usual trick of judiciously inserting identity factors 7—'7, this formula
for computing conjugates extends immediately to any product of cycles:

m(ay...ap) - (by...b)T P = (a1t iapr ) (b h).

This holds whether the cycles are disjoint or not. However, since 7 is a bijection,
disjoint cycles remain disjoint after conjugation. This is essentially all there is to
the following important observation:

Proposition 4.6. Two elements of S,, are conjugate in Sy, if and only if they have
the same type.

Proof. The ‘only if’ part of this statement follows immediately from the preceding
considerations: conjugating a permutation yields a permutation of the same type.
As for the ‘if” part, suppose

o1 = (a1...ar)(bl...bs)n-(cl...ct)
and

oy =(ay...al)(b}...b.)---(c)...c})
are two permutations with the same type, written in cycle notation, with » > s >
-+« >t (so the type is [r,s,...,t]). Let 7 be any permutation such that a; = a}7,
bj =7, ..., ek = ¢;7 forall 4, j, ..., k. Then Lemma ET implies o5 = 70177,
so o1 and o9 are conjugate, as needed. O

Example 4.7. In Sg,
(18632)(47) and (12345)(67)

must be conjugate, since they have the same type. The proof of Proposition
tells us that

7(18632)(47)7 ! = (12345)(67)
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for
(1 2 3 4 5 6 7 8
T“l1 863247 5)
and of course this may be checked by hand in a second. Running this check, and

especially staring at the second row in 7 wis-a-vis the cycle notation of the first
permutation, should clarify everything. a

Summarizing, the type (or the corresponding Young diagram) tells us every-
thing about conjugation in 5,,.

Corollary 4.8. The number of conjugacy classes in S, equals the number of par-
titions of n.

For example, there are 7 conjugacy classes in S5, indexed by the Tetris look-
alikes drawn above.

It is also reasonably straightforward to compute the number of elements in each
conjugacy class, in terms of the type. For example, in order to count the number
of permutations of type [2,2,1] in S5, note that there are 5! = 120 ways to fill the
corresponding Young diagram with the numbers 1,...,5:

ap| az

asz| a4

as

that is, 120 ways to write a permutation as a product of two 2-cycles:

(ara2)(asas);

but switching a; <> as and az <> a4, as well as switching the two cycles, gives the
same permutation. Therefore there are

120

=15
2.-2.2

permutations of type [2,2,1]. Performing this computation for all Young diagrams
for S5 gives us the size of each conjugacy class, that is, the class formula (cf. §L.2))
for Ss:

120=1+10+ 15+ 20 + 20 + 30 + 24.

Example 4.9. There are no normal subgroups of size 30 in S5.

Indeed, normal subgroups are unions of conjugacy classes (§L3)); since the
identity is in every subgroup and 30 — 1 = 29 cannot be written as a sum of the
numbers appearing in the class formula for Sy, there is no such subgroup. a

This observation will be dwarfed by much stronger results that we will prove
soon (such as Theorem [220] Corollary 2T]); but it is remarkable that such precise
statements can be established with so little work.
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4.3. Transpositions, parity, and the alternating group. For n > 1, consider
the polynomials

An: H (l‘i—l‘j)EZ[xl,...,l‘n],
1<i<j<n
that is,

Ay =1,
Ay =11 — 29,
Az = (21 — 22) (21 — 23)(22 — T3),

Ay = (21 — x2) (1 — 23) (21 — Ta) (22 — 23) (T2 — @4) (23 — T4),

We can act with any o € S, on A,,, by permuting the indices according to o:
Ao = H (Tie — Tjo)-
1<i<j<n
For example,
A4(1234) = (:L‘Q — :L‘g)(,@g — $4)(£L‘2 — LL‘l)(wg — :L‘4)(:L‘3 — $1)(£L‘4 — 1'1) = —A4.

In general, it is clear that A, o is still the product of all binomials (z; — x;), where
the factors are permuted and some factors may change sign in the process. Hence,
A,o = +A,, where the factor +1 depends on o.

Definition 4.10. The sign of a permutation o € S,,, denoted (—1)7, is determined
by the action of o on A,,:
Apo=(-1)7A,.
We say that a permutation is even if its sign is +1 and odd if its sign is —1. a
Note that Vo, 7 € S,, we have
Ap(o7) = (Apo)T:

it follows that (—1)°" = (=1)7(—1)". Viewing {—1,+1} as a group under multi-
plicatio, we see that the ‘sign’ function

€: S, =+ {-1,41}, ¢(o):=(-1)°
is a homomorphism.

Here is a different viewpoint on this sign function. A transposition is a cycle of
length 2. Every permutation is a product of transpositions:

Lemma 4.11. Transpositions generate Sy,.

Proof. Indeed, by Lemma 3] it suffices to show that every cycle is a product of
transpositions, and indeed

(ai...a,) = (araz2)(araz) - - - (a1a,),

as may be checked by applyinﬂ both sides to every element of {1,...,n}. (I

17This is the group of units in Z; of course it is isomorphic to Cs.
18Don’t forget that permutations act on the right.
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Of course a given permutation may be written as a product of transpositions
in many different ways. However, whether an even number of transpositions or an
odd number is needed only depends on o. Indeed,

Lemma 4.12. Let 0 = 717 be a product of transpositions. Then o is even,
resp., odd, according to whether r is even, resp., odd.

Proof. This follows immediately from the facts that e is a homomorphism and the
sign of a transposition is —1: indeed, (ij) acts on A, by permuting its factors and
changing the sign of an odd number of factors (for i < j, the factor (z; — x;) and
the pairs of factors (z; — ), (xx — ;) for all i < k < j). O

Definition 4.13. The alternating group on {1,...,n}, denoted A,,, consists of all
even permutations o € S,,. J

The alternating group is a normal subgroup of S,,, and
[Sh:Ap] =2
for n > 2: indeed, A, = kere, and € is surjective for n > 2.

It is very easy to tell whether a permutation o belongs to A,, in terms of the
type of o. Indeed (by the argument proving LemmaTT]) a cycle is even, resp., odd,
if it has odd, resp., even, length'¥. Pictorially, a permutation o € S, is even if and
only if n and the number of rows in the Young diagram of o have the same parity.
Take n =5 for example:

* * * *

The starred types correspond to even permutations. Adding up the sizes of the
corresponding conjugacy classes,

14+ 15+ 20+ 24 = 60,
confirms that As has index 2 in Ss.

However, do not read too much into this computation: I am not claiming that
these are the sizes of the conjugacy classes in As, only that these are the conjugacy
classes in S5 making up the normal subgroup As. Conjugacy in A, is rather
interesting and ties in nicely with the issue of the simplicity of A,,.

4.4. Conjugacy in A,; simplicity of A, and solvability of S,,. Denote by
[0]s,, resp., [0]a,, the conjugacy class of an even permutation o in S,,, resp., A,.
Clearly [0]a, C [o]s,; we proceed to compare these two sets.

n = n

Lemma 4.14. Letn > 2, and let 0 € A,,. Then [o]a, = [o]s, or the size of [0]a,
is half the size of [o]s,, according to whether the centralizer Zg, (o) is not or is
contained in A,,.

19Note the unfortunate terminology clash. For example, 3-cycles are even permutations.
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Proof. (Cf. Exercise [.I0) Note that
Za,(0)=A,NZg, (0):

this follows immediately from the definition of centralizer (Definition [[6l). Now
recall that the centralizer of o is its stabilizer under conjugation, and therefore the
size of the conjugacy class of o equals the index of its centralizer.

If Zs,(0) C Ay, then Za, (o) = Zs, (0), so that

S0t Zs, (0)] = 1S+ Za, (0)] =[S0 : Au[An s Za, (0)] = 2 [Ay : Za, (0]
therefore, [0] 4, is half the size of [0]g, in this case.

If Zs, (o) € A,, then note that A,Zg (o) = S,: indeed, A,Zs, (o) is a sub-

group of S,, (because A,, is normal; cf. Proposition [IRIT]), and it properly con-
tains A,, so it must equal S,, as A,, has index 2 in S,,. By index considerations

(cf. Exercise [TIB2T])
[An 2 Za, (0)] =[An: An N Zg, (0)] = [AnZs, (0) : Zs, (0)] = [Sn : Zs, (0)],

so the classes have the same size. Since [0]a, C [0]s, in any case, it follows that
[0]a, = [o]s,, completing the proof. O

Therefore, conjugacy classes of even permutations either are preserved from S,
to A,, or they split into two distinct, equal-sized classes. We are now in a position
to give precise conditions determining which happens when.

Proposition 4.15. Let 0 € A,,, n > 2. Then the conjugacy class of o in S, splits
into two conjugacy classes in A, precisely if the type of o consists of distinct odd
numbers.

Proof. By Lemma [LT4] we have to verify that Zg, (o) is contained in A,, precisely
when the stated condition is satisfied; that is, we have to show that

I'— 7iseven

O =TO0T
precisely when the type of o consists of distinct odd numbers.

Write o in cycle notation (including cycles of length 1):
o= (ar...ax)(bi...b,) - (c1...¢),

and recall (Lemma [LH) that

1

ror = (a7t oaxt (bt bMT_l) (et e,

Assume that \, ..., v are odd and distinct. If To7~! = o, then conjugation

by 7 must preserve each cycle in o, as all cycle lengths are distinct:

T(ay...ax)t ' =(a1...ay), etc.,
that is,
(a7t caxt™Y) = (a1...ay), etc.
This means that 7 acts as a cyclic permutation on (e.g.) aq,...,a) and therefore

in the same way as a power of (aj ...ay). It follows that

T={(a1...a)"(b1...b,)" (c1...c,)
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for suitable r,s,...,t. Since all cycles have odd lengths, each cycle is an even
permutation; and 7 must then be even as it is a product of even permutations.
This proves that Zg, (o) C A, if the stated condition holds.

Conversely, assume that the stated condition does not hold: that is, either some
of the cycles in the cycle decomposition have even length or all have odd length but
two of the cycles have the same length.

In the first case, let 7 be an even-length cycle in the cycle decomposition of o.
Note that 777! = ¢: indeed, 7 commutes with itself and with all cycles in o other
than 7. Since 7 has even length, then it is odd as a permutation: this shows that
Zs, (o) € A, as needed.

In the second case, without loss of generality assume A = p, and consider the
odd permutation
T = (albl)(ang) cee (a)\b)\) :
conjugating by 7 simply interchanges the first two cycles in o; hence 707! = 0.
As 7 is odd, this again shows that Zg, (o) € A,, and we are done. O

Example 4.16. Looking again at As, we have noted in §4.3] that the types of
the even permutations in S5 are [1,1,1,1,1], [2,2,1], [3,1,1], and [5]. By Proposi-
tion the conjugacy classes corresponding to the first three types are preserved
in Ay, while the last one splits.

Therefore there are exactly 5 conjugacy classes in As, and the class formula
for As is
60=1+15+20+ 12+ 12. 3

Finally! We can now complete a circle of thought begun in the first section of
this chapter. Along the way, the reader has hopefully checked that every simple
group of order < 60 is commutative (Exercise 2:224]); and we now see why 60 is
special:

Corollary 4.17. The alternating group As is a simple noncommutative group of
order 60.

Proof. A normal subgroup of Aj is necessarily the union of conjugacy classes,
contains the identity, and has order equal to a divisor of 60 (by Lagrange’s theorem).
The divisors of 60 other than 1 and 60 are

2,3,4,5,6,10,12, 15, 20, 30;
counting the elements other than the identity would give one of
1,2,3,4,5,9,11,14,19, 29

as a sum of numbers # 1 from the class formula for As. But this simply does not
happen. O

The reader will check that Ag is simple, by the same method (Exercise E2T).
It is in fact the case that all groups A,, n > 5, are simple (and noncommutative),
implying that S,, is not solvable for n > 5, and these facts are rather important in
view of applications to Galois theory (cf., e.g., Corollary [VIIIZT6]). Note that A,
is trivial, Az = Z /37 is simple and abelian, and Ay is not simple (Exercise 2.24)).
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The alternating group Aj is also called the icosahedral (rotation) group: indeed,
it is the group of symmetries of an icosahedron obtained through rigid motions.
(Can the reader verify@ this fact?)

The simplicity of A,, for n > 5 may be established by studying 3-cycles. First
of all, it is natural to wonder whether every even permutation may be written as a
product of 3-cycles, and this is indeed so:

Lemma 4.18. The alternating group A, is generated by 3-cycles.
Proof. Since every even permutation is a product of an even number of 2-cycles,

it suffices to show that every product of two 2-cycles may be written as product of
3-cycles. Therefore, consider a product

(ab)(cd)

with a # b, ¢ # d. If (ab) = (cd), then this product is the identity, and there is
nothing to prove. If {a,b}, {c,d} have exactly one element in common, then we
may assume ¢ = a and observe

(ab)(ad) = (abd).
If {a, b}, {c,d} are disjoint, then
(ab)(ed) = (abe)(ade),

and we are done. O

Now we can capitalize on our study of conjugacy in A,:

Claim 4.19. Let n > 5. If a normal subgroup of A, contains a 3-cycle, then it
contains all 3-cycles.

Proof. Normal subgroups are unions of conjugacy classes, so we just need to verify
that 3-cycles form a conjugacy class in A,,, for n > 5. But they do in S,,, and the

type of a 3-cycle is [3,1,1,...] for n > 5; hence the conjugacy class does not split
in A,,, by Proposition O

The general statement now follows easily by tying up loose ends:

Theorem 4.20. The alternating group A, is simple for n > 5.

Proof. We have already checked this for n = 5, and the reader has checked it for
n = 6. For n > 6, let N be a nontrivial normal subgroup of A,,; we will show that
necessarily N = A,,, by proving that N contains 3-cycles.

Let 7 € N, 7 # (1), and let 0 € A, be a 3-cycle. Since the center of A, is
trivial (Exercise [{.14)) and 3-cycles generate A,, we may assume that 7 and o do
not commute, that is, the commutator

1

[r,0] = T(or  o™) = (ror Yot

201t is good practice to start with smaller examples: for instance, the tetrahedral rotation
group is isomorphic to Ag4.
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is not the identity. This element is in N (as is evident from the first expression,
as N is normal) and is a product of two 3-cycles (as is evident from the second
expression, since the conjugate of a 3-cycle is a 3-cycle).

Therefore, replacing 7 by [, 0] if necessary, we may assume that 7 € N is
a nonidentity permutation acting on < 6 elements: that is, on a subset of a set
T C{1,...,n} with |[T| = 6. Now we may view Ag as a subgroup of A, by letting
it act on T'. The subgroup N N Ag of Ag is then normal (because N is normal) and
nontrivial (because 7 € N N Ag and 7 # (1)). Since Ag is simple (Exercise 21]),
this implies N N Ag = Ag. In particular, N contains 3-cycles.

By Claim [£19] this implies that N contains all 3-cycles. By Lemma I8 it
follows that N = A,,, as needed. O

Corollary 4.21. For n > 5, the group S, is not solvable.

Proof. Since A, is simple, the sequence

Sn 2 An 2{(1)}

=

is a composition series for S,. It follows that the composition factors of S,, are
7Z/27 and A,,. By Proposition BI1] S, is not solvable. O

In particular, S5 is a nonsolvable group of order 120. This is in fact the smallest
order of a nonsimple, nonsolvable group; cf. Exercise 3.16!

.|
Exercises

4.1. > Compute the number of elements in the conjugacy class of
1 2 3 4 5 6 7 8
8 1.2 7 5 3 4 6

in Sg. [§41]

4.2. > Suppose
(ar...ap)(by...bs) -+ (c1...ct) =(dy...dy)(er...ep) - (f1.- fuw)

are two products of disjoint cycles. Prove that the factors agree up to order.

(Hint: The two corresponding partitions of {1,...,n} must agree.) [§4.]]

4.3. Assume o has type [A1,..., A\;] and that the \;’s are pairwise relatively prime.
What is |o|? What can you say about |o|, without the additional hypothesis on
the numbers \;?

4.4. Make sense of the ‘Taylor series’ of the infinite product
1 1 1 1 1

(1-z) (1—22) (1-2%) (1-2% (1-2a5

Prove that the coefficient of z™ in this series is the number of partitions of n.

4.5. Find the class formula for S, n < 6.
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4.6. Let N be a normal subgroup of Sy. Prove that |[N| =1, 4, 12, or 24.

4.7. > Prove that S, is generated by (12) and (12...n).
(Hint: It is enough to get all transpositions. What is the conjugate of (12) by

(12...n)?7) B3 VIS

4.8. = For n > 1, prove that the subgroup H of S, consisting of permutations
fixing 1 is isomorphic to S,,—1. Prove that there are no proper subgroups of S,

properly containing H. [VIIZIT]

4.9. By Exercise 7] Sy is generated by (12) and (1234). Prove that (13) and
(1234) generate a copy of Dg in S4. Prove that every subgroup of Sy of order 8 is
conjugate to ((13), (1234)). Prove there are exactly 3 such subgroups. For all n > 3
prove that S, contains a copy of the dihedral group Ds,,, and find generators for it.

4.10. — e Prove that there are exactly (n — 1)! n-cycles in S,,.
e More generally, find a formula for the size of the conjugacy class of a permu-

tation of given type in S,. [LIT]

4.11. Let p be a prime integer. Compute the number of p-Sylow subgroups of S,,.
(Use Exercise [I01) Use this result and Sylow’s third theorem to prove again the
‘only if” implication in Wilson’s theorem (cf. Exercise [IET0])

4.12. > A subgroup G of S, is transitive if the induced action of G on {1,...,n}
is transitive.

e Prove that if G C S, is transitive, then |G| is a multiple of n.

e List the transitive subgroups of S3.

e Prove that the following subgroups of Sy are all transitive:
— ((1234)) = C4 and its conjugates,

= ((12)(34), (13)(24)) = C x (s,

— ((12)(34), (1234)) = Dg and its conjugates,

— A4, and S4
With a bit of stamina, you can prove that these are the only transitive sub-
groups of Sy.

[VITTS]

4.13. (If you know about determinants.) Prove that the sign of a permutation o,
as defined in Definition .10} equals the determinant of the matrix M, defined in
Exercise 211

4.14. > Prove that the center of A, is trivial for n > 4. [§44]

4.15. Justify the ‘pictorial’ recipe given in §4.3] to decide whether a permutation
is even.

4.16. The number of conjugacy classes in A,,, n > 2, is (allegedly)
1,3,4,5,7,9,14, 18,24, 31,43, . . ..

Check the first several numbers in this list by finding the class formulas for the
corresponding alternating groups.
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4.17. > e Find the class formula for Ay.
e Use it to prove that A4 has no subgroup of order 6. [{[IIR.H]

4.18. For n > 5, let H be a proper subgroup of A,,. Prove that [A4,, : H|] > n.
Prove that A,, does have a subgroup of index n for all n > 3.

4.19. Prove that for n > 5 there are no nontrivial actions of A,, on any set S with
|S] < n. Construct?] a nontrivial action of A, on a set S, |S| = 3. Is there a
nontrivial action of A4 on a set S with |S| = 2?

4.20. — Find all fifteen elements of order 2 in A;, and prove that As has exactly
five 2-Sylow subgroups. [L22]

4.21. > Prove that Ag is simple, by using its class formula (as is done for A5 in the

proof of Corollary L17). [§4.4]

4.22. — Verify that A is the only simple group of order 60, up to isomorphism.
(Hint: By Exercise225] a simple group G of order 60 contains a subgroup of index 5.
Use this fact to construct a homomorphism G — S, and prove that the image of
this homomorphism must be A;5.) Note that A5 has exactly five 2-Sylow subgroups;
cf. Exercise Thus, the other possibility contemplated in Exercise does

not occur. [2:25]

5. Products of groups

We already know that products exist in Grp (see §III34); here we analyze this notion
further and explore variations on the same theme, with an eye towards the question
of determining the information needed to reconstruct a group from its composition
factors.

5.1. The direct product. Recall from {34 that the (direct) product of two
groups H, K is the group supported on the set H x K, with operation defined com-
ponentwise. We have checked (Proposition [lIB4) that the direct product satisfies
the universal property defining products in the category Grp.

There are situations in which the direct product of two subgroups N, H of a
group G may be realized as a subgroup of G. Recall (Proposition [IBIT) that if
one of the subgroups is normal, then the subset NH of G is in fact a subgroup
of G. The relation between NH and N x H depends on how N and H intersect in
G, so we take a look at this intersection.

The ‘commutator’ [A, B] of two subsets A, B of G (see §33) is the subgroup
generated by all commutators [a,b] with a € A, b € B.

Lemma 5.1. Let N, H be normal subgroups of a group G. Then
[N,H C NNH.

21You can think algebraically if you want; if you prefer geometry, visualize pairs of opposite
sides on a tetrahedron.
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Proof. It suffices to verify this on generators; that is, it suffices to check that
[n,h] = n(hn *h™) = (nhn Hh ' e NN H

for all n € N, h € H. But the first expression and the normality of N show that
[n, h] € N; the second expression and the normality of H show that [n,h] € H. O

Corollary 5.2. Let N, H be normal subgroups of a group G. Assume NNH = {e}.
Then N, H commute with each other:

(Vn e N) (Vh € H) nh= hn.

Proof. By Lemmalbdl [N, H] = {e} ift NNH = {e}; the result follows immediately.
|

In fact, under the same hypothesis more is true:

Proposition 5.3. Let N, H be normal subgroups of a group G, such that NN H =
{e}. Then NH =2 N x H.

Proof. Consider the function
¢o:NxH—NH

defined by ¢(n, h) = nh. Under the stated hypothesis, ¢ is a group homomorphism:
indeed

¢((n1, h1) - (n2, h2)) = @((ning, hihs))
== n1n2h1h2

=11 h1n2h2
since N, H commute by Corollary [5.2]

= ¢((n1, 1)) - p((n2, ha)).

The homomorphism ¢ is surjective by definition of NH. To verify it is injective,
consider its kernel:

kero = {(n,h) € N x H|nh = e}.

If nh =e, thenn € N and n = h~! € H; thus n = e since NN H = {e}. Using the
same token for h, we conclude h = e; hence (n, h) = the identity in N x H, proving
that ¢ is injective.

Thus ¢ is an isomorphism, as needed. O

Remark 5.4. This result gives an alternative argument for the proof of Claim 2.TGt
if |G| = pq, with p < ¢ prime integers, and G contains normal subgroups H, K of
order p, g, respectively (as is the case if ¢ Z 1 mod p, by Sylow), then H N K = {e}
necessarily, and then Proposition B3] shows HK = H x K. As |[HK| = |G| = pq,
this proves G = H x K 2 Z/pZ x Z/qZ. Finally, (1, 1) has order pq in this group,
so G is cyclic, with the same conclusion we obtained in Claim .10 a
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5.2. Exact sequences of groups; extension problem. Of course, the hypoth-
esis that both subgroups N, H are normal is necessary for the result of Proposi-
tion B3 for example, the permutations (123) and (12) generate subgroups N, H
of S3 meeting only at {e}, and N is normal in S3, but S3 = NH is not isomor-
phic to the direct product of N and H. It is natural to examine this more general
situation.

Let N, H be subgroups of a group G, with N normal (but with no a priori
assumptions on H) and such that N N H = {e}; assume G = NH. We are after a
description of the structure of G in terms of the structure of N and H.

It is notationally convenient to use the language of exact sequences, introduced
for modules in §ITIITTl A (short) exact sequence of groups is a sequence of groups
and group homomorphisms

G-l H 1

where 1 is surjective and ¢ identifies N with ker«). In other words (by the first
isomorphism theorem), use ¢ to identify N with a subgroup of G; then the sequence
is exact if NV is normal in G and v induces an isomorphism G/N — H.

1 N

The reader should pause a moment and check that if G, N, H are abelian, then
this notion matches precisely the notion of short exact sequence of abelian groups
(i.e., Z-modules) from §IIIIT.T} a notational difference is that here the trivial group
is denoted®? ‘1 rather than ‘0",

Of course there always is an exact sequence
l1——N—>NxH—H—1:

map n € N to (n,eg) and (n,h) € N x H to h. However, keep in mind that this
is a very special case: to reiterate the example mentioned above, there also is an
exact sequence

1 Cs Ss Co 1,

yet Sg ;'\Lé C3 X C2.

Definition 5.5. Let N, H be groups. A group G is an extension of H by N if
there is an exact sequence of groups

1 N G H 1. J

The extension problem aims to describe all extensions of two given groups,
up to isomorphism. For example, there are two extensions of C; by C3: namely
Cs = C3 x Cy and S3; we will soon be able to verify that, up to isomorphism, there
are no other extensions.

The extension problem is the ‘second half’ of the classification problem: the
first half consists of determining all simple groups, and the second half consists of
figuring out how these can be put together to construct any grou. For example,

22This is not unreasonable, since groups are more often written ‘multiplicatively’ rather than
additively, so the identity element is more likely to be denoted 1 rather than 0.

23 As mentioned earlier, the first half has been settled, although the complexity of the work
leading to its solution justifies some skepticism concerning the absolute correctness of the proof.
The status of the second half is, as far as I know, (even) murkier.
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if

G=Gy2G12Gy2G32Gy={e}
is a composition series, with (simple) quotients H; = G;/G;+1, then G is an ex-
tension of Hy by an extension of Hy by an extension of Ha by Hs: knowing the

composition factors of G and the extension process, it should in principle be possible
to reconstruct G.

We are going to ‘solve’ the extension problem in the particular case in which
H is also a subgroup of G, intersecting N at {e}.

Definition 5.6. An exact sequence of groups

1 N G H 1

(or the corresponding extension) is said to split if H may be identified with a
subgroup of G, so that N N H = {e}.

We encountered this terminology in §IIIIT.2lfor modules, thus for abelian groups.
Note that the notion examined there appears to be more restrictive than Defini-
tion [5.6] since it requires G to be isomorphic to a direct product N x H. This
apparent mismatch evaporates because of Proposition in the abelian case,
every split extension (according to Definition [5.0]) is in fact a direct product.

Of course split extensions are anyway very special, since quotients of a group G
are usually not isomorphic to subgroups of G, even in the abelian case (cf. Exer-

cise [B.4)).

Lemma 5.7. Let N be a normal subgroup of a group G, and let H be a subgroup
of G such that G = NH and NN H = {e}. Then G is a split extension of H by N.

Proof. We have to construct an exact sequence

1 N G H 1;

we let N — G be the inclusion map, and we prove that G/N = H. For this,
consider the composition

a:H<— G— G/N.

Then « is surjective: indeed, since G = NH, Vg € G we have g = nh for some
n € N and h € H, and then

gN = nhN = h(h"'nh)N = hN = a(h).

Further, keraw = {h € H|hN = N} = NN H = {e}; therefore « is also injective,
as needed. O

To recap, if in the situation of Lemma [5.7] we also require that H be normal
in G, then G is necessarily isomorphic to the ‘trivial” extension N x H: this is what
we have proved in Proposition We are seeking to describe the extension ‘even
if” H is not normal in G.



230 IV. Groups, second encounter

5.3. Internal/semidirect products. The attentive reader should have noticed
that the key to Proposition E3]is really Corollary if both NV and H are normal
and NNH = {e}, then N and H commute with each other. This is what ultimately
causes the extension NH to be trivial. Now, recall that as soon as N is normal,
then every subgroup H of G acts on N by conjugation: in fact (cf. Exercise [L21])
conjugation determines a homomorphism

v i H = Autgp(N), h— .

(Explicitly, for h € H the automorphism 7y, : N — N acts by y,(n) := hnh™1.)
The subgroups H and N commute precisely when -y is trivial. Corollary shows
that if N and H are both normal and N N H = {e}, then ~ is indeed trivial.

This is the crucial remark. The next several considerations may be summarized
as follows: if N is normal in G, H is a subgroup of G, NN H ={e} and G = NH,
then the extension G of H by N may be reconstructed from the conjugation action
v : H — Autgp (V). The reader is advised to stare at the following triviality, which
is the motivating observation for the general discussion:

(*) (an,ng S N), (Vhl, hy € H) nihinghy = (nl(thLQh;l)) (hlhg)
This says that if we know the conjugation action of H on N, then we can recover
the operation in G from this information and from the operations in N and H.

Here is the general discussion. It is natural to abstract the situation and begin
with any two groups N, H and an arbitrary hOmomorphis

9:H—>AutGrp(N), h w0y,
Define an operation ey on the set N x H as follows: for ni,no € N and hy, hy € H,
let
(n1,h1) e (n2, ha) = (n10p, (n2), hihz).

This will look more reasonable once it is compared with (*)!

Lemma 5.8. The resulting structure (N x H, eg) is a group, with identity element
(eN, eH).

Proof. The reader should carefully verify this. For example, inverses exist because
(n1,h1) 8 (0,1 (ny ), hy') = (01, (0,1 (07 1)), by = (ming ' en) = (en, en)
and similarly in the reverse order. (Il

Definition 5.9. The group (N x H,ey) is a semidirect product of N and H and is
denoted by N xg H. a

For example, the ordinary direct product is a semidirect product and corre-
sponds to # = the trivial map. If the reader feels a little uneasy about giving
one name (semidirect product) for a whole host of different groups supported on
the Cartesian product, welcome to the club. In fact, it gets worse still: it is not

24The reason why I am not denoting the image of h by 6 as 0(h) is that this is an automor-
phism of N and I dislike the notation 6(h)(n) for the image of n € N obtained by applying the
automorphism corresponding to h. The alternative 05 (n) looks a little easier to parse.



5. Products of groups 231

uncommon to omit ‘0’ from the notation and simply write N x H for a semidirect

produc.

In any case, the notation ey is too heavy to carry around, so we generally revert
back to the usual simple juxtaposition of elements in order to denote multiplication
in N xg H. The following proposition checks that semidirect products are split
extensions:

Proposition 5.10. Let N, H be groups, and let 6 : H — Autgp(N) be a homo-
morphism; let G = N x9 H be the corresponding semidirect product. Then

e (G contains isomorphic copies of N and H;

the natural projection G — H is a surjective homomorphism, with kernel N ;
thus N is normal in G, and the sequence

1—— N—NxyH—H ——1
is (split) exact;
NNH= {eg},'
e G=NH;

the homomorphism 0 is realized by conjugation in G: that is, for h € H and
n € N we have

On(n) = hnh™*
in G.
Proof. The functions N — G, H — G defined for n € N, h € H by
ne— (n,em), h— (en,h)

are manifestly injective homomorphisms, allowing us to identify N, H with the
corresponding subgroups of G. It is clear that NN H = {(en,en)} = {eq}, and

(n,en) o9 (en,h) = (n,h)

shows that G = NH.
The projection G — H defined by

(n,h) — h
is a surjective homomorphism, with kernel V; therefore N is normal in G. Finally,
(eNa h) ®9 (77‘7 eH) ®9 (eN> h)_l = (eh(n)> h) ®9 (6N7 h_l) = (ah(n)v eH)7

as claimed in the last point. |

Our original goal of ‘reconstructing’ a given split extension of a group H by a
group N is a sort of converse to this proposition. More precisely,

25This is actually OK, if N and H are given as subgroups of a common group G, in which
case the implicit action is just conjugation.
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Proposition 5.11. Let N, H be subgroups of a group G, with N normal in G.
Assume that NN H = {e}, and G = NH. Let y: H — Autgp(N) be defined by
conjugation: for h € H,n € N,

Yu(n) = hnh™*t.
Then G = N x, H.
Proof. Define a function

¢:Nx,H—=G

by ¢(n, h) = nh; this is clearly a bijection. We need to verify that ¢ is a homomor-
phism, and indeed (Vni,ng € N), (Vhy,hy € H):

@((n1, h1) oy (n2, ha)) = @((n174, (n2), hih2))

p((n1(hinahy "), hihs))

nyhing(hy *hi)he = (n1h1)(nohs)

¢((n1, h1))p((n2, ho))

as needed. O

When realized ‘within’ a group, as in the previous proposition, the semidirect
product is sometime called an internal product.

Remark 5.12. If N and H commute, then the conjugation action of H on N is
trivial; therefore v is the trivial map, and the semidirect product N x, H is the
direct product N x H. Thus, Proposition [E.ITlrecovers the result of Proposition [(.3]
in this case. a

Example 5.13. The automorphism group of C} is isomorphic to the cyclic group Cs:
if C3 = {e,y,y?}, then the two automorphisms of C3 are

e e, e e,
id : y=y, o y'—>y27
(TR Ve y? .

Therefore, there are two homomorphisms Cy — Auter,(Cs): the trivial map, and
the isomorphism sending the identity to id and the nonidentity element to o. The
semidirect product corresponding to the trivial map is the direct product C3 x Cy =2
Cs; the other semidirect product C3 x (s is isomorphic to S3. This can of course
be checked by hand (and you should do it, for fun); but it also follows immediately
from Proposition 11 since N = ((123)), H = ((12)) C S3 satisfy the hypotheses
of this result. a

The reader should contemplate carefully the slightly more general case of dihe-
dral groups (Exercise E11]); this enriches (and in a sense explains) the discussion
presented in Claim 2171

In fact, semidirect products shed light on all groups of order pq, for p < ¢
primes; the reader should be able to complete the classification of these groups
begun in §2.5.2 and show that if ¢ = 1 mod p, then there is exactly one such non-
commutative group up to isomorphism (Exercise £.12)).
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The reader would in fact be well-advised to try to use semidirect products to
classify groups of small order: if a nontrivial normal subgroup N is found (typically
by applying Sylow’s theorems), with some luck the classification is reduced to the
study of possible homomorphisms from known groups to Autg.,(/N) and can be
carried out. See Exercise for a further illustration of this technique.

.|
Exercises

5.1. > Let G be a finite group, and let Py, ..., P, be its nontrivial Sylow subgroups.
Assume all P; are normal in G.

e Prove that G = P; x --- x P,. (Induction on r; use Proposition [53])

e Prove that G is nilpotent. (Hint: Mod out by the center, and work by induction
on |G|. What is the center of a direct product of groups?)

Together with Exercise 310} this shows that a finite group is nilpotent if and only
if each of its Sylow subgroups is normal. [B12] §6.1]

5.2. Let G be an extension of H by N. Prove that the composition factors of G
are the collection of the composition factors of H and those of V.

5.3. Let
G=Go2G12 - 2G,={e}

be a normal series. Show how to ‘connect’ {e} to G by means of r exact sequences
of groups using the groups G; and the quotients H; = G;/Gi41.

5.4. > Prove that the sequence

0 7 2

Z /27 0
is exact but does not split. [§5.2]

5.5. In Proposition [[III7.5] we have seen that if an exact sequence

@

0 M N N/(p(M)) ——0

of abelian groups splits, then ¢ has a left-inverse. Is this necessarily the case for
split sequences of groups?

5.6. Prove Lemma 5.3

5.7. Let N be a group, and let o : N — N be an automorphism of N. Prove
that @ may be realized as conjugation, in the sense that there exists a group G
containing N as a normal subgroup and such that a(n) = gng~! for some g € G.

5.8. Prove that any semidirect product of two solvable groups is solvable. Show
that semidirect products of nilpotent groups need not be nilpotent.

5.9. > Prove that if G = N x H is commutative, then G =2 N x H. [§6.]]
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5.10. Let N be a normal subgroup of a finite group G, and assume that |N|
and |G/N]| are relatively prime. Assume there is a subgroup H in G such that
|H| = |G/N|. Prove that G is a semidirect product of N and H.

5.11. > For all n > 0 express Ds, as a semidirect product C,, xy Cs, finding 6
explicitly. [§5.3]

5.12. > Classify groups G of order pq, with p < ¢ prime: show that if |G| = pq,
then either G is cyclic or ¢ = 1 mod p and there is exactly one isomorphism class
of noncommutative groups of order pq in this case. (You will likely have to use the
fact that Autgy,(Cy) = Cy—q if ¢ is prime; cf. Exercise [ILTH) (925 §5.3]

5.13. = Let G = N X9 H be a semidirect product, and let K be the subgroup of G
corresponding to ker@ C H. Prove that K is the kernel of the action of G on the
set G/H of left-cosets of H. [5.14]

5.14. Recall that S3 = Autgp(Ce x C2) (Exercise [ILTI3). Let ¢ be this isomor-
phism. Prove that (Cy x C3) %, S3 2 Sy. (Hint: Exercise [£.131)

5.15. > Let G be a group of order 28.

e Prove that G contains a normal subgroup N of order 7.

e Recall (or prove again) that, up to isomorphism, the only groups of order 4 are
Cy and Cy x Cy. Prove that there are two homomorphisms Cy — Autgrp (V)
and two homomorphisms Cy X Cy — Autg.,(IN) up to the choice of generators
for the sources.

e Conclude that there are four groups of order 28 up to isomorphism: the two
direct products Cy x C7, Cy x Cy x C7, and two noncommutative groups.

e Prove that Dsg =2 C5 x D14. The other noncommutative group of order 28 is a
generalized quaternionic group.

[95.3]

5.16. Prove that the quaternionic group Qg (cf. Exercise [TIIIT2) cannot be written
as a semidirect product of two nontrivial subgroups.

5.17. Prove that the multiplicative group H* of nonzero quaternions (cf. Exer-
cise [MILCT2) is isomorphic to a semidirect product SU(2) x R*. (Hint: Exer-
cise [MIZAL) TIs this semidirect product in fact direct?

6. Finite abelian groups

I will end this chapter by treating in some detail the classification theorem for finite
abelian groups mentioned in JIIG.3l

6.1. Classification of finite abelian groups. Now that we have acquired more
familiarity with products, we are in a position to classify all finite abelian group@

260f course fancier semidirect products will not be needed here; cf. Exercise
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In due time (Proposition VIZTT Exercise [VIZTI9) we will in fact be able to
classify all finitely generated abelian groups: as mentioned in Example [IE3] all
such groups are products of cyclic group. In particular, this is the case for finite
abelian groups: this is what we prove in this section.

Since in this section we exclusively deal with abelian groups, we revert to the
abelian style of notations: thus the operation will be denoted +; the identity will
be 0; direct products will be called direct sums (and denoted @); and so on.

First of all, T will congeal into an explicit statement a simple observation that
has been with us in one form or another since at least as far back a@ Exercise|llll4.9

Lemma 6.1. Let G be an abelian group, and let H, K be subgroups such that |H|,
|K| are relatively prime. Then H+ K =~ H @ K.

Proof. By Lagrange’s theorem (Corollary [BT4), H N K = {0}. Since subgroups
of abelian groups are automatically normal, the statement follows from Proposi-
tion 0

Now let G be a finite abelian group. For each prime p, the p-Sylow subgroup
of GG is unique, since it is automatically normal in G. Since the distinct nontrivial
Sylow subgroups of G are p-groups for different primes p, Lemma [6.1] immediately
implies the following result.

Corollary 6.2. Every finite abelian group is the direct sum of its nontrivial Sylow
subgroups.

(The diligent reader knew already that this had to be the case, since abelian groups
are nilpotent; cf. Exercise (1) Thus, we already know that every finite abelian
group is a direct sum of p-groups, and our main task amounts to classifying abelian
p-groups for a fixed prime p. This is somewhat technical; we will get there by a
seemingly roundabout path.

Lemma 6.3. Let G be an abelian p-group, and let g € G be an element of mazximal
order. Then the eract sequence

0 (9) G G/(9) 0

splits.

Put otherwise, there is a subgroup L of G such that L maps isomorphically to
G/(g) via the canonical projection, that is, such that (¢)NL = {0} and (g)+L = G.
Note that it will follow that G = (g) & L, by Proposition (5.3l

The main technicality needed in order to prove this lemma is the following
particular case:

Lemma 6.4. Let p be a prime integer and r > 1. Let G be a noncyclic abelian
group of order p"tt, and let g € G be an element of order p". Then there exists an
element h € G, h & (g), such that |h| = p.

27The natural context to prove this more general result is that of modules over Euclidean
rings or even principal ideal domains.

281n fact, this observation will really find its most appropriate resting place when we prove
the Chinese Remainder Theorem, Theorem [VIG. 11
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Lemma [G.4]is a special case of Lemma[G.3]in the sense that, with notation as in
the statement, necessarily (h) = G/(g), and in fact G = (g) @ (h) (and the reader
is warmly encouraged to understand this before proceeding!). That is, we can split
off the ‘large’ cyclic subgroup (g) as a direct summand of G, provided that G is
not cyclic and not much larger than (g). Lemma claims that this can be done
whenever (g) is a maximal cyclic subgroup of G. We will be able to prove this more
general statement easily once the particular case is settled.

Proof of Lemma Denote (g) by K, and let A’ be any element of G, ' ¢ K.
The subgroup K is normal in G since G is abelian; the quotient group G/K has
order p. Since h' € K, the coset b’ + K has order p in G/K; that is, ph/ € K. Let
k=pl.

Note that |k| divides p”; hence it is a power of p. Also |k| # p", otherwise
|'| = p"+1 and G would be cyclic, contrary to the hypothesis.

Therefore |k| = p® for some s < r; k generates a subgroup (k) of the cyclic
group K, of order p*. By Proposition [IEIT] (k) = (p"~*g). Since s < r, (k) C
(pg); thus, k = mpg for some m € Z.

Then let h = h' —mg: h # 0 (since ' ¢ K), and

ph =ph' —p(mg) =k —k =0,

showing that |h| = p, as stated. O

Proof of Lemma Argue by induction on the order of G; the case |G| = p° =
1 requires no proof. Thus we will assume that G is nontrivial and that the statement
is true for every p-group smaller than G.

Let ¢ € G be an element of maximal order, say p”, and denote by K the
subgroup (g) generated by g; this subgroup is normal, as G is abelian. If G = K,
then the statement holds trivially. If not, G/K is a nontrivial p-group, and hence it
contains an element of order p by Cauchy’s theorem (Theorem 2.)). This element
generates a subgroup of order p in G/K, corresponding to a subgroup G’ of G of
order p"t1, containing K. This subgroup is not cyclic (otherwise the order of g is
not maximal).

That is, we are in the situation of Lemmal6.4} hence we can conclude that there
is an element h € G’ (and hence h € G) with h ¢ K and |h| = p. Let H = (h) C G
be the subgroup generated by h, and note that K N H = {0}.

Now work modulo H. The quotient group G/H has smaller size than G, and
g+ H generates a cyclic subgroup K’ = (K+H)/H = K/(KNH) 2 K of maximal
order in G/H. By the induction hypothesis, there is a subgroup L’ of G/H such
that K’ 4+ L' = G/H and K' N L' = {0g/u}. This subgroup L’ corresponds to a
subgroup L of G containing H.

Now I claim that (i) K + L = G and (ii) K N L = {0}. Indeed, we have the
following:

(i) For any a € G, there exist mg+ H € K', { + H € L’ such that a + H =
mg + ¢+ H (since K' + L' = G/H). This implies « — mg € L, and hence
a € K + L as needed.
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(ii) fae KNL,thena+H € K'NL" = {0g/g }, and hence a € H. In particular,
a € KN H = {0}, forcing a = 0, as needed.

(i) and (ii) imply the lemma, as observed in the comments following the statement.
O

Now we are ready to state the classification theorem; the proof is quite straight-
forward after all this preparation work. We first give the statement in a somewhat
coarse form, as a corollary of the previous considerations:

Corollary 6.5. Let G be a finite abelian group. Then G is a direct sum of cyclic
groups, which may be assumed to be cyclic p-groups.

Proof. As noted in Corollary [62] G is a direct sum of p-groups (as a consequence
of the Sylow theorems). I claim that every abelian p-group P is a direct sum of
cyclic p-groups.

To establish this, argue by induction on |P|. There is nothing to prove if P is
trivial. If P is not trivial, let ¢ be an element of P of maximal order. By Lemma[G.3]

P=(gor
for some subgroup P’ of P; by the induction hypothesis P’ is a direct sum of cyclic

p-groups, concluding the proof. O

6.2. Invariant factors and elementary divisors. Here is a more precise version
of the classification theorem. It is common to state the result in two equivalent
forms.

Theorem 6.6. Let G be a finite nontrivial abelian group. Then

e there exist prime integers pi,...,p, and positive integers n;; such that |G| =
Hijp?""j and
Z
G= @ T
ij
oy P
e there exist positive integers 1 < dy | --- | ds such that |G| =dy---ds and

Z Z
e A &y

Further, these decompositions are uniquely determined by G.

The first form is nothing but a more explicit version of the statement of Corol-
lary 6.5 so it has already been proven. I will explain how to obtain the second
form from the first. The uniqueness statement?d is left to the reader (Exercise [61)).

The prime powers appearing in the first form of Theorem are called the
elementary divisors of G; the integers d; appearing in the second form are called
ivariant factors. To go from elementary divisors to invariant factors, collect the

290f course the ‘uniqueness’ statement only holds up to trivial manipulation such as a per-
mutation of the factors. The claim is that the factors themselves are determined by G, in the sense
that two direct sums of either form given in the statement are isomorphic only if their factors
match.
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elementary divisors in a table, listing (for example) prime powers according to in-
creasing primes in the horizontal direction and decreasing exponents in the vertical
direction; then the invariant factors are obtained as products of the factors in each
row:

— 711 121 731

d, = Pq Do P3
_ n12 22 732

dr—1 = || py P2 P3
_ 13 23 33

dr—2 = || py P2 P3

Conversely, given the invariant factors d;, obtain the rows of this table by
factoring d; into prime powers: the condition dy | - - - | d, guarantees that these will
be decreasing.

Repeated applications of Lemma show that if d = p}*---pl'~ for distinct
primes p; and positive n; (as is the case in each row of the table), then
Z _, Z Z
ﬁ o~ W B P pf—?"Z’
proving that the two decompositions given in Theorem are indeed equivalent.
This will likely be much clearer once the reader works through a few examples.

Example 6.7. Here are the two decompositions for a (random) group of order
29160 = 23 - 3% . 5:

Z.2Z 2 2 2 _Z 2 Z\ (L Z_Z L
27, 27, 27, 37 37 327  32Z 57 )  \3Z = 6Z 18Z 90Z

and here is the corresponding table of invariant factors/elementary divisors:

0=12[3]5
18=| 2|32
6=12|3
3= 3

Example 6.8. There are exactly 6 isomorphism classes of abelian groups of or-
der 360. Indeed, 360 = 23 - 32 - 5; the six possible tables of elementary divisors
are shown below. In terms of invariant factors, the six distinct abelian groups of
order 360 (up to isomorphism, by the uniqueness part of Theorem [6.0]) are therefore

z z_ 2z Z_ 1 1T
360Z° 27~ 1807’ 27~ 27 ~ 907’
Z Z Z Z Z Z Z

32102 6z ez 2z 6z Y30z
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360= |23 |3 |5 | | 180= 2|32 |5| |90={2[3%|5
2= || 2 2= || 2
2= 2
120= |23 |3 |5 60= 22|35 30=12]35
3= 3 6=1 2|3 6=1{ 2|3
2= || 2

6.3. Application: Finite subgroups of multiplicative groups of fields. Any
classification theorem is useful in that it potentially reduces the proof of general
facts to explicit verifications. Here is one example illustrating this strategy:

Lemma 6.9. Let G be a finite abelian group, and assume that for every integer
n > 0 the number of elements g € G such that ng = 0 is at most n. Then G is
cyclic.

The reader should try to prove this ‘by hand’, to appreciate the fact that
it is not entirely trivial. It does become essentially immediate once we take the
classification of finite abelian groups into account. Indeed, by Theorem [6.6]

Z Z
G~ Z ...
anz YA
for some positive integers 1 < dj | --- | ds. But if s > 1, then |G| > ds and dsg =0

for all g € G (so that the order of g divides dy), contradicting the hypothesis.
Therefore s = 1; that is, G is cyclic.

Lemma is the key to a particularly nice proof of the following important
fact, a weak form of whichPd we ran across back in Example Recall that the
set F™* of nonzero elements of a field F' is a commutative group under multiplication.
Also recall (Example [TIET) that a polynomial f(z) € F[z] is divisible by (z — a)
if and only if f(a) = 0; since a nonzero polynomial of degree n over a field can
have at most n linear factors, this shows?!| that if f(x) € F[z] has degree n, then
f(a) =0 for at most n distinct elements a € F.

Theorem 6.10. Let F' be a field, and let G be a finite subgroup of the multiplicative
group (F*,-). Then G is cyclic.

Proof. By the considerations preceding the statement, for every n there are at
most n elements a € F such that a™ — 1 = 0, that is, at most n elements a € G
such that ™ = 1. Lemma [6.9] implies then that G is cyclic. |

30The diligent reader has proved that particular case in Exercise [IIE-IIl The proof hinted
at in that exercise upgrades easily to the general case presented here. The point is not that the
classification theorem is necessary in order to prove statements such as Theorem [G.I0} the point
is that it makes such statements nearly evident.

31Unique factorization in F[z] is secretly needed here. We will deal with this issue more
formally later; cf. Lemma V511
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As a (very) particular case, the multiplicative group ((Z/pZ)*,-) is cyclic: this
is the fact pointed to in Example [[1l[1.0]

Preview of coming attractions: Finitely generated (as opposed to just finite)
abelian groups are also direct sums of cyclic groups. The only difference between
the classification of finitely generated abelian groups and the classification of finite
abelian groups explored here is the possible presence of a ‘free’ factor Z®" in the
decomposition. The reader will first prove this fact in Exercise [VI2.19] as a conse-
quence of ‘Gaussian elimination over integral domains’, and then recover it again
as a particular case of the classification theorem for finitely generated modules
over PIDs, Theorem Neither Gaussian elimination nor the very general
Theorem are any harder to prove than the particular case of finite abelian
groups laboriously worked out by hand in this section—a common benefit of finding
the right general point of view is that, as a rule, proofs simplify. Technical work
such as that performed in order to prove Lemma is absorbed into the work
necessary to build up the more general apparatus; the need for such technicalities
evaporates in the process.

.|
Exercises

6.1. > Prove that the decomposition of a finite abelian group G as a direct sum
of cyclic p-groups is unique. (Hint: The prime factorization of |G| determines the
primes, so it suffices to show that if

Z _, L
p’“lZ PP p7"mZ o~ p31Z PP p_an,
withry > -+ >rp and s; > -+ > s, then m = n and r; = s; for all 2. Do this by
induction, by considering the group pG obtained as the image of the homomorphism

G — G defined by g +— pg.) [§6.2, VTG VIET2]
6.2. Complete the classification of groups of order 8 (cf. Exercise 2.10]).

6.3. Let G be a noncommutative group of order p?, where p is a prime integer.
Prove that Z(G) 2 Z/pZ and G/Z(G) 2 Z/pZ x 7/ pZ.

6.4. Classify abelian groups of order 400.

6.5. Let p be a prime integer. Prove that the number of distinct isomorphism classes
of abelian groups of order p” equals the number of partitions of the integer 7.

6.6. > How many abelian groups of order 1024 are there, up to isomorphism?

[II6.3]

6.7. = Let p > 0 be a prime integer, G a finite abelian group, and denote by
p: G — G the homomorphism defined by p(g) = pg.

e Let A be a finite abelian group such that pA = 0. Prove that A X Z/pZ&®---®
Z/pZ.

e Prove that pker p and p(coker p) are both 0.
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e Prove that ker p = coker p.

e Prove that every subgroup of G of order p is contained in ker p and that every
subgroup of G of index p contains im p.

e Prove that the number of subgroups of G of order p equals the number of
subgroups of G of index p.

i

6.8. — Let G be a finite abelian p-group, with elementary divisors p™, ..., p"" (n; >
ng > ---). Prove that G has a subgroup H with invariant divisors p™,...,p™
(my > mg > ---) if and only if s < r and m; < n; for i = 1,...,s. (Hint: One
direction is immediate. For the other, with notation as in Exercise [6.7] compare
ker p for H and G to establish s < r; this also proves the statement if all n; = 1.
For the general case use induction, noting that if G = @, Z/p™Z, then p(G) =

@i Z/pnFlZ)

Prove that the same description holds for the homomorphic images of G. [6.9]

6.9. Let H be a subgroup of a finite abelian group G. Prove that G contains a sub-
group isomorphic to G/H. (Reduce to the case of p-groups; then use Exercise [6.8])
Show that both hypotheses ‘finite’ and ‘abelian’ are needed for this result. (Hint:
Qs has a unique subgroup of order 2.)

6.10. The dual of a finite group G is the abelian group GV := Homg,, (G, C*),
where C* is the multiplicative group of C.

e Prove that the image of every o € GV consists of roots of 1 in C, that is, roots
of polynomials ™ — 1 for some n.

e Prove that if G is a finite abelian group, then G = GV. (Hint: First prove
this for cyclic groups; then use the classification theorem to generalize to the
arbitrary case.)

In §VITIB.H we will encounter another notion of ‘dual’ of a group.

6.11. e Use the classification theorem for finite abelian groups (Theorem [6:6) to
classify all finite modules over the ring Z/nZ.

e Prove that if p is prime, all finite modules over Z/pZ are fred?d.

6.12. Let G, H, K be finite abelian groups such that G® H = G @ K. Prove that
H=K.

6.13. — Let G, H be finite abelian groups such that, for all positive integers n, G
and H have the same number of elements of order n. Prove that G = H. (Note:
The ‘abelian’ hypothesis is necessary! Cy x Cy and Qg x Cs are nonisomorphic
groups both with 1 element of order 1, 3 elements of order 2, and 12 elements of

order 4.) [§ITE3]

6.14. Let G be a finite abelian p-group, and assume G has only one subgroup of or-
der p. Prove that G is cyclic. (This is in some sense a converse to Proposition G111
You are welcome to try to prove it ‘by hand’, but use of the classification theorem
will simplify the argument considerably.)

32 As we will see in Proposition [VIIELI0} this property characterizes fields.
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6.15. Let G be a finite abelian group, and let @ € G be an element of mazimal
order in G. Prove that the order of every b € G divides |a|. (This essentially
reproduces the result of Exercise [TIITTH)

6.16. Let G be an abelian group of order n, and assume that G has at most one
subgroup of order d for all d | n. Prove that G is cyclic.




E—
Chapter V

Irreducibility and
factorization in integral
domains

We move our attention back to rings and analyze several useful classes of integral
domains. One guiding theme in this chapter is the issue of factorization: we will
address the problem of existence and uniqueness of factorizations of elements in a
ring, abstracting good factorization properties of rings such as Z or klz] (for k a
field) to whole classes of integral domains. The reader may want to associate the
following picture with the first part of this chapter:

Euclidean Domains

Blanket assumption: all rings considered in this chapter will be commutativeﬁl. In
fact, most of the special classes of rings we will consider will be integral domains,

1 Also, recall that all our rings have 1; cf. Definition [Tl

243



244 V. Irreducibility and factorization in integral domains

that is, commutative rings with 1 and with no nonzero zero-divisors (cf. Defini-

tion [IILI0).
1. Chain conditions and existence of factorizations

1.1. Noetherian rings revisited. Let R be a commutative ring. Recall that R
is said to be Noetherian if every ideal of R is finitely generated (Definition [TIE2]).
In fact, this is a special case of the corresponding definition for modules: a mod-
ule M over a ring R is Noetherian if every submodule of M is finitely generated
(Definition [MG.6). In 6.4 we have verified that this condition is preserved
through exact sequences: if M, N, P are R-modules and

0 N M P 0

is an exact sequence of R-modules, then M is Noetherian if and only if both NV
and P are Noetherian (Proposition [TIG.7). An easy and useful consequence of this
fact is that every finitely generated module over a Noetherian ring is Noetherian

(Corollary [TI6.F).

The Noetherian condition may be expressed in alternative ways, and it is useful
to acquire some familiarity with them.

Proposition 1.1. Let R be a commutative ring, and let M be an R-module. Then
the following are equivalent:

(1) M is Noetherian; that is, every submodule of M is finitely generated.
(2) Every ascending chain of submodules of M stabilizes; that is, if
Ny C Ny, CN3gC---
is a chain of submodules of M, then 3i such that N; = N;41 = Nijjo = ...

(8) Every nonempty family of submodules of M has a mazimal element w.r.t. in-
clusion.

The second condition listed here is called the ascending chain condition (a.c.c.)
for submodules. For M = R, Proposition [[.T] tells us (among other things) that a
ring is Noetherian if and only if the ascending chain condition holds for its ideals.

Proof. (1) = (2): Assume that M is Noetherian, and let
N CNyCN3C---

be a chain of submodules of M. Consider the union
N:UM:
i

the reader will verify that N is a submodule of M. Since M is Noetherian, N is

finitely generated, say N = (ny,...,n,). Now ny € N = ny € N; for some i;
by picking the largest such i, we see that 3¢ such that all ny,--- ,n, are contained
in N;. But then N C N;, and since N; C N; ;1 C --- are all contained in N = Nj,
it follows that N; = N;4+1 = N;jio = ... as needed.

(2) = (3): Arguing contrapositively, assume that M admits a family .7 of
submodules that does not have a maximal element. Construct an infinite ascending
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chain as follows: let Ny be any element of .%; since N; is not maximal in .%, there
exists an element Ny of % such that Ny C Nj; since Ny is not maximal in %, there
exists an element N3 of % such that Ny C N3; etc. The chain

NG Ny G N3 G&-ee

does not stabilize, showing that (2) does not hold.

(3) = (1): Assume (3) holds, and let N be a submodule of M. Then the
family .7 of finitely generated submodules of N is nonempty (as (0) € .#); hence it
has a maximal element N’. Say that N’ = (nq,...,n,). Now I claim that N’ = N:
indeed, let n € N; the submodule (nq,...,n,,n) is finitely generated, and therefore
it is in &; as it contains N’ and N’ is maximal, necessarily (ny,...,n,,n) = N’;in
particular n € N, as needed.

This shows that NV = N’ is finitely generated, and since N C M was arbitrary,
this implies that M is Noetherian. O

Noetherian rings are a very useful and flexible class of rings. In IG5 I
mentioned the important fact that every finite-type algebra over a Noetherian ring is
Noetherian. ‘Finite-type (commutative) algebra’ is just a fancy name for a quotient
of a polynomial ring (§IIIG.H), so this is what the fact states:

Theorem 1.2. Let R be a Noetherian ring, and let J be an ideal of the polynomial
ring Rlxy,...,x,]. Then the ring R[x1,...,x,]/J is Noetherian.

Note that finite-type R algebras are (in general) very far from being finitely
generated as modules over R (cf. again §IIIIG.H), so it would be foolish to expect
them to be Noetherian as R-modules. The fact that they turn out to be Noetherian
as rings (that is, as modules over themselves) provides us with a huge class of
examples of Noetherian rings, among which are the rings of (classical) algebraic
geometry and number theory. Thus, entire fields of mathematics are a little more
manageable thanks to Theorem

The proof of this deep fact is surprisingly easy. By Exercise [[LT] it suffices to
prove that
R Noetherian = R|[x1,...,x,] Noetherian;
and an immediate induction reduces the statement to the following particular case,
which carries a distinguished name:

Lemma 1.3 (Hilbert’s basis theorem). R Noetherian = R[x] Noetherian.

Proof. Assume R is Noetherian, and let I be an ideal of R[z]. We have to prove
that I is finitely generated.
Recall that if f(x) = agaz? +aq 12971 +--- +ap € R[r] and agq # 0, then ag is
called the leading coefficient of f(x). Consider the following subset of R:
A={0}U{a € R|a is a leading coefficient of an element of I}.

It is clear that A is an ideal of R (Exercise[[L0)); since R is Noetherian, A is finitely
generated. Thus there exist elements fi(z),..., f-(z) € I whose leading coefficients
ai,...,a, generate A as an ideal of R.
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Now let d; be the degree of f;(x), and let d be the maximum among these
degrees. Consider the sub-R-module

M= {1,z,22 ... 291 C R[z],

that is, the R-module consisting of polynomials of degree < d. Since M is finitely
generated as a module over R, it is Noetherian as an R-module (by Corollary [TI6.8]).
Therefore, the submodule

MnI
of M is finitely generated over R, say by g1(z),...,gs(x) € I.

Claim 1.4.
I = (fl(x)v ] fr(x),gl(x), s ags(x))'
This claim implies the statement of the theorem. To prove the claim, we only
need to prove the C inclusion; to this end, let a(x) € I be an arbitrary polynomial

in I. If dega(x) > d, let a be the leading coefficient of «(z). Then a € A, so
3b1,...,b, € R such that

a:b1a1+...+bTaT.
Letting e = deg a(x), so that e > d; for all ¢, this says that
a(zr) — b1xe—d1 filz) = — brxe_der(a?)

has degree < e. Iterating this procedure, we obtain a finite list of polynomials
B1(x),...,Br(x) € R[x] such that

a(z) = pi(@) fi(z) = = Br(2) fr()

has degree < d. But this places this element in M N I; therefore dcq,...,¢cs € R
such that

a(z) = (@) fi(@) — - = Br(2) fr(2) = c191(2) + - -+ + c595(@),

and we are done, since this verifies that

a(x) = Bi(z) fi(z) + -+ Br(@) fr(2) + crg1(2) + -+ + csgs (@)
€ (fi(@),..., [r(2), 91(2), .- ., gs(2)),
completing the proof of Claim [[.4] hence of Lemma [[.3] hence of Theorem[[2l [

1.2. Prime and irreducible elements. Let R be a (commutative) ring, and let
a,b € R. We say that a divides b, or that a is a divisor of b, or that b is a multiple
of a, if b € (a), that is,

(3ce R), b=ac
We use the notation a | b.

Two elements a, b are associates if (a) = (b), that is, if a | b and b | a.

Lemma 1.5. Let a, b be nonzero elements of an integral domain R. Then a and b
are associates if and only if a = ub, for u a unit in R.
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Proof. Assume a and b are associates. Then dec,d € R such that
b=ac, a=bd;
therefore a = bd = acd, i.e.,
a(l —cd) =0.
Since cancellation by nonzero elements hold in integral domains, this implies c¢d = 1.
Thus ¢ is a unit, as needed.

The converse is left to the reader. O

Incidentally, here the reader sees why it is convenient to restrict our attention to
integral domains. This argument really shows that if (a) = (b) # (0) in an integral
domain, and b = ca, then c is necessarily a unit. Away from the comfortable
environment of integral domains, even such harmless-looking statements may fail:
in Z/6Z the classes [2]s, [4]s of 2 and 4 are associates according to our definition,
and [4]s = [2]6 - [2]6, yet [2]6 is not a unit. However, [4]¢ = [5]6 - [2]s and [5]6 is a
unit, so this is not a counterexample to Lemma In fact, Lemma may fail
over rings with ‘non-harmless’ zero-divisors (yes, there is such a notion).

The notions reviewed above generalize directly the corresponding notions in Z.
We are going to explore analogues of other common notions in Z, such as ‘primality’
and ‘irreducibility’, in more general integral domains.

Definition 1.6. Let R be an integral domain.

e An element a € R is prime if the ideal (a) is prime; that is, a is not a unit
and (cf. Proposition [TIETT)
albe = (a|b or alc).
e An element a € R is irreducible if a is not a unit and
a =bc = (bis a unit or ¢ is a unit).
Note that 0 is always reducible (integral domains are nonzero rings!). For

nonzero elements, there are useful alternative ways to think about the notion of
‘irreducible’: a nonunit a # 0 is irreducible if and only if

e ¢ = bc implies that a is an associate of b or of ¢;
e a = be implies that (a) = (b) or (a) = (¢) (Lemma [LH);
(a) € (b) = (b) = (a) or (b) = (1) (Exercise [[12);

(a) is maximal among proper principal ideals (rephrasing the previous point!).

It is important to realize that primality and irreducibility are not equivalent,
even for nonzero elements; this is somewhat counterintuitive since they are equiv-
alent in Z, as the reader should verifyﬁ (Exercise [[13]). What is true in general is
that prime is stronger than irreducible:

Lemma 1.7. Let R be an integral domain, and let a € R be a nonzero prime
element. Then a is irreducible.

2This fact will be fully explained by the general theory, so the reader should work this out
right away.
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Proof. Since (a) is prime, (a) # (1); hence a is not a unit. If a = be, then
bc = a € (a); therefore b € (a) or ¢ € (a) since (a) is prime. Assuming without
loss of generality b € (a), we have (b) C (a). On the other hand a = be implies
(a) C (b): hence (a) = (b), that is, a and b are associates, as needed. O

We will soon see under what circumstances the converse statement holds.

1.3. Factorization into irreducibles; domains with factorizations.

Definition 1.8. Let R be an integral domain. An element r € R has a factorization
(or decomposition) into irreducibles if there exist irreducible elements q1, ..., g,
such that r = ¢ - - - gy

This factorization is unique if the elements ¢; are determined by r up to order
and associates, that is, if whenever
r = qi P q”/n
is another factorization of r into irreducibles, then m = n and ¢} is an associate
of ¢; after (possibly) shuffling the factors. a

Definition 1.9. An integral domain R is a domain with factorizations (or ‘factor-
izations exist in R’) if every nonzero, nonunit element r € R has a factorization
into irreducibles. a

Definition 1.10. An integral domain R is factorial, or a unique factorization
domain (abbreviated UFD), if every nonzero, nonunit element r € R has a unique
factorization into irreducibles. a

The terminology introduced in Definition does not appear to be too stan-
dard; by contrast, UFDs are famous.

We will study the unique factorization condition in §21 For now, it seems
worth spending a little time contemplating the mere existence of factorizations.
Interestingly, this condition is implied by an ascending chain condition, for a special
class of ideals.

Proposition 1.11. Let R be an integral domain, and let v be a monzero, nonunit
element of R. Assume that every ascending chain of principal ideals

(r) C(r1) C (r2) C(r3) C -

stabilizes. Then r has a factorization into irreducibles.

Proof. Assume that r does not have a factorization into irreducible elements. In
particular, r is itself not irreducible; thus dri,s; € R such that » = r;s; and
(r) € (r1), (r) € (s1). If both r1, s; have factorizations into irreducibles, the

product of these factorizations gives a factorization of r; thus we may assume that
(e.g.) 1 does not have a factorization into irreducibles. Therefore we have

(r) € (r1)
and r, does not have a factorization; iterating this argument constructs an infinitely
increasing chain

(r)C(r) S (ra) S (rs) -+,
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contradicting our hypothesis. |

Thus, factorizations exist in integral domains in which the ascending chain con-
dition holds for principal ideals. This has the following immediate and convenient
consequence:

Corollary 1.12. Let R be a Noetherian domain. Then factorizations exist in R.

Proof. By Proposition [Tl Noetherian domains satisfy the ascending chain condi-
tion for all ideals. O

Corollary verifies part of the picture presented at the beginning of the
chapter: the class of Noetherian domains is contained in the class of domains with
factorization. This inclusion is proper: for instance, the standard example of a
non-Noetherian ring,

Zlxy, 9,23, .. ],
(Example [MIG.E) does have factorizations. Indeed, every given polynomial f €
Z[x1,x2,...] involves only finitely many variabled’, so it belongs to a subring
Z[z1,- -, 2z,] isomorphic to an ordinary polynomial ring over Z; further, this sub-
ring contains every divisor of f. It follows easily (cf. Exercise [[.TH]) that the ascend-
ing chain condition for principal ideals holds in Z[x1,x2,x3,...], because it holds
in Z[x1,...,2,] (since this ring is Noetherian, by Hilbert’s basis theorem).
Exercises

Remember that in this section all rings are taken to be commutative.

1.1. > Let R be a Noetherian ring, and let I be an ideal of R. Prove that R/I is a
Noetherian ring. [§T.T]

1.2. Prove that if R[z] is Noetherian, so is R. (This is a ‘converse’ to Hilbert’s
basis theorem.)

1.3. Let k be a field, and let f € k[z], f & k. For every subring R of k[x] containing
k and f, define a homomorphism ¢ : k[t] — R by extending the identity on &k and
mapping ¢ to f. This makes every such R a k[t]-algebra (Example [TIEG]).

e Prove that k[z] is finitely generated as a k[t]-module.
e Prove that every subring R as above is finitely generated as a k[t]-module.

e Prove that every subring of k[x] containing k is a Noetherian ring.

1.4. Let R be the ring of real-valued continuous functions on the interval [0, 1].
Prove that R is not Noetherian.

1.5. Determine for which sets S the power set ring Z?(5) is Noetherian. (Cf. Ex-
ercise [TIBI6)

3Remember that polynomials are finite linear combinations of monomials; cf. m
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1.6. > Let I be an ideal of R[z], and let A C R be the set defined in the proof of
Theorem Prove that A is an ideal of R. [§I1]

1.7. Prove that if R is a Noetherian ring, then the ring of power series R][x]]
(cf. §IIIM3) is also Noetherian. (Hint: The order of a power series > .- a;z" is the
smallest 7 for which a; # 0; the dominant coefficient is then a;. Let A; C R be the
set of dominant coefficients of series of order i in I, together with 0. Prove that
A; is an ideal of R and Ag € A1 € Ay C ---. This sequence stabilizes since R is
Noetherian, and each A; is finitely generated for the same reason. Now adapt the
proof of Lemma [[3])

1.8. Prove that every ideal in a Noetherian ring R contains a finite product of prime
ideals. (Hint: Let .# be the family of ideals that do not contain finite products of
prime ideals. If .% is nonempty, it has a maximal element M since R is Noetherian.
Since M € %, M is not itself prime, so Ja,b € Rst.a & M, b & M, yet ab € M.
What’s wrong with this?)

1.9. — Let R be a commutative ring, and let I C R be a proper ideal. The reader
will prove in Exercise that the set of prime ideals containing I has minimal
elements (the minimal primes of I). Prove that if R is Noetherian, then the set
of minimal primes of I is finite. (Hint: Let .% be the family of ideals that do not
have finitely many minimal primes. If .# # (), note that .# must have a maximal
element I, and [ is not prime itself. Find ideals Jy, Js strictly larger than I, such
that J;Jo C I, and deduce a contradiction.) [VIEI0]

1.10. — By Proposition [T} a ring R is Noetherian if and only if it satisfies the
a.c.c. for ideals. A ring is Artinian if it satisfies the d.c.c. (descending chain con-
dition) for ideals. Prove that if R is Artinian and I C R is an ideal, then R/T is
Artinian. Prove that if R is an Artinian integral domain, then it is a field. (Hint:
Let r € R, r # 0. The ideals (r") form a descending sequence; hence (r") = (r™*1)
for some n. Therefore....) Prove that Artinian rings have Krull dimension 0 (that
is, prime ideals are maximal in Artinian ringsﬁ). 2100

1.11. Prove that the ‘associate’ relation is an equivalence relation.

1.12. > Let R be an integral domain. Prove that a nonzero a € R is irreducible if
and only if (a) is maximal among proper principal ideals of R. [J1.2] §2.3]

1.13. > Prove that, for nonzero elements, prime <= irreducible in Z. [§I.2] §2.3]

1.14. For a,b in a commutative ring R, prove that the class of a in R/(b) is prime
if and only if the class of b in R/(a) is prime.

1.15. > Identify S = Z[z1,...,2,] in the natural way with a subring of the poly-
nomial ring in countably infinitely many variables R = Z[z1,x2,23,...]. Prove
that if f € S and (f) C (g) in R, then g € S as well. Conclude that the ascend-
ing chain condition for principal ideals holds in R, and hence R is a domain with

factorizations. [JI.3] 43

4One can prove that Artinian rings are necessarily Noetherian; in fact, a ring is Artinian if
and only if it is Noetherian and has Krull dimension 0. Thus, the d.c.c. implies the a.c.c., while
the a.c.c. implies the d.c.c. if and only if all prime ideals are maximal.
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1.16. Let

R— Z[l‘l,IQ,Ig,...]

(v — a3, w0 —23,...)"
Does the ascending chain condition for principal ideals hold in R?

1.17. > Consider the subring of C:
Z[V=5] := {a +biv5|a,b € Z}.
e Prove that this ring is isomorphic to Z[t]/(t* + 5).

e Prove that it is a Noetherian integral domain.

e Define a ‘norm’ N on Z[/—5] by setting N(a + biv/5) = a® + 5b°. Prove that
N(zw) = N(2)N(w). (Cf. Exercise [TIZI0)

e Prove that the units in Z[/=5] are £1. (Use the preceding point.)

e Prove that 2, 3, 1 +iv/5, 1 — iv/5 are all irreducible nonassociate elements of
Z[V=5).

e Prove that no element listed in the preceding point is prime. (Prove that the
rings obtained by mod-ing out the ideals generated by these elements are not
integral domains.)

e Prove that Z[\/=5] is not a UFD.
({22 218 6.14]

2. UFDs, PIDs, Euclidean domains

2.1. Irreducible factors and greatest common divisor. An integral domain
R is a UFD if factorizations exist in R and are unique in the sense of Definition [[8

Thus, in a UFD all elements (other than 0 and the units) determine a multiset
(a set of elements ‘with multiplicity’; cf. §lILI) of irreducible factors, determined
up to the associate relation. We can also agree that units have no factors; that is,
the corresponding multiset is ().

The following trivial remark is at the root of most elementary facts about
UFDs, such as the characterization of Theorem 2.5t
Lemma 2.1. Let R be a UFD, and let a,b,c be nonzero elements of R. Then
o (a) C (b) <= the multiset of irreducible factors of b is contained in the
multiset of irreducible factors of a;
e a and b are associates (that is, (a) = (b)) <= the two multisets coincide;

e the irreducible factors of a product be are the collection of all irreducible factors
of b and of c.

The proof is left to the reader (Exercise [ZI). The advantage of working in
a UFD resides in the fact that ring-theoretic statements about elements of the
ring often reduce to straightforward set-theoretic statements about multisets of
irreducible elements, by means of Lemma 2.1
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One important instance of this mechanism is the existence of greatest common
divisors. T have liberally used this notion (at least for integers) in previous chapters;
now we can appreciate it from a more technical perspective.

Definition 2.2. Let R be an integral domain, and let a,b € R. An element d € R
is a greatest common divisor (often abbreviated ‘ged’) of a and b if (a,b) C (d) and
(d) is the smallest principal ideal in R with this property. J

In other words, d is a ged of @ and b if d | a, d | b, and
cla,c|lb = c|d.
This definition is immediately extended to any finite number of elements.

Note that greatest common divisors are not defined uniquely by this prescrip-
tion: if d is a greatest common divisor of a and b, so is every associate of d. Thus,
the notation ‘ged(a,b)’ should only be used for the associate class formed by all
greatest common divisors of a,b. Of course, language is often (harmlessly) abused
on this point. For example, the fact that we can talk about the greatest common
divisor of two integers is due to the fact that in Z there is a convenient way to choose
a distinguished element in each class of associate integers (that is, the nonnegative
one).

Also note that greatest common divisors need not exist (cf. Exercise [23]); but
they do exist in UFDs:

Lemma 2.3. Let R be a UFD, and let a,b be nonzero elements of R. Then a,b
have a greatest common divisor.

Proof. We can write
a:uqlal...q;‘lr7 b:UQIBIqET

where u and v are units, the elements ¢; are irreducible, ¢; is not an associate of g;
for i # j, and a; > 0, B; > 0 (so that the multisets of irreducible factors of a,
resp., b, consist of those ¢; for which a; > 0, resp., 5; > 0; the units u, v are
included since the irreducible factors are only defined up to the associate relation).

I claim that
d— qmin((yl,B]) ... min(a,,B;)
- 11

is a ged of @ and b. Indeed, d is clearly a divisor of a and b; and if ¢ also divides
a and b, then the multiset of factors of ¢ must be contained in both multisets of
factors for @ and b (by Lemma 21)); that is,

— 1 Y
C—wa '.'qT'T

with w a unit and ~; < a4, v < B;. This implies 7; < min(«;, f;), and hence ¢ | d
(again by Lemma [27]), as needed. O

Of course the argument given in the proof generalizes one of the standard
ways to compute greatest common divisors in Z: find smallest exponents in prime
factorizations. But note that this is not the only way to compute the ged in Z;
we will come back to this point in a moment. In fact, greatest common divisors
in Z have properties that should not be expected in a more general domain: for
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example, the result of Exercise [I2.13] does not generalize to arbitrary domains
(and not even to arbitrary UFDs), as the reader will check in Exercise 2]

2.2. Characterization of UFDs. It is easy to construct integral domains where
unique factorization fails. The diligent reader has already analyzed one example
(Exercise [LT1); for another, in the domainfd

C['r’ y’ Z? w}

(2w — yz)
the (classes of the) elements x, y, z, w are irreducible and not associates of one

another; since xw —yz = 0 in R, the element r = xw has two distinct factorizations
into irreducibles: r = zw = yz.

Note that this ring is Noetherian, by Theorem (and in particular factor-
izations do exist in R). Thus, there are Noetherian integral domains that are not
UFDs.

Also note that this ring provides an example in which the converse to Lemma[l.7]
does not hold: indeed, (the class of) x is irreducible, but the quotient

(C[‘TJ? y)z7w]/( )) ~ C[x7y7 Z)w] (C['/E)yv Z’ w]
—_— T = =
(2w — yz) (2, 2w — y2) (2,yz)
is not an integral domain (because y # 0, z # 0, and yet yz = 0 in this ring); that
is, x is not prime.

In fact, and maybe a little surprisingly, the issue of unique factorization is
inextricably linked with the relation between primality and irreducibility. Indeed,
the ‘converse’ to Lemma [[.7] does hold in UFDs:

Lemma 2.4. Let R be a UFD, and let a be an irreducible element of R. Then a
s prime.

Proof. The element a is not a unit, by definition of irreducible. Assume bc € (a):
thus (be) C (a), and by Lemma 2] the irreducible factors of a, that is, a itself,

must be among the factors of b or of c. We have b € (a) in the first case and ¢ € (a)
in the second. This shows that (a) is a prime ideal, as needed. ]

In fact, more is true. Provided that the ascending chain condition for principal
ideals holds, then UFDs are characterized by the equivalence between irreducibility
and primality.

Theorem 2.5. An integral domain R is a UFD if and only if

e the a.c.c. for principal ideals holds in R and

e cvery irreducible element of R is prime.

Proof. ( = ) Assume that R is a UFD. Lemma [24] shows that irreducible ele-
ments of R are prime. To prove that the a.c.c. for principal ideals holds, consider
an ascending chain

(r1) C (ra) S (r3) - .

5In algebraic geometry, this is the ring of a ‘quadric cone in A%’. The vertex of this cone (at
the origin) is a singular point, and this has to do with the fact that R is not a UFD.
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By Lemma [2.1] this chain determines a corresponding descending chain of multisets
of irreducible factors. A descending chain of finite multisets clearly stabilizes, and it
follows (by Lemma [ZT] again) that (r;) = (ri41) = (ri42) = ... for large enough i.

( < ) Now assume that R satisfies the a.c.c. for principal ideals and irre-
ducibles are prime. Proposition [[.TT]implies that factorizations exist in R; we have
to verify uniqueness. Let q1,...,¢n and qf,...,q, be irreducible elements of R,

and assume
/

Q@ m =G
Then ¢;---q), € (q1), and (q1) is a prime ideal (by hypothesis); thus ¢} € (q1)
for some i, which we may assume to be 1 after changing the order of the factors.
Therefore ] = ugy for some u € R. Since ¢} is irreducible and ¢; is not a unit,
necessarily u is a unit. Thus ¢; and ¢} are associates. Canceling ¢; and replacing ¢}
by ugb, we find

G2 Qm :qé...q;.
Repeating this process matches all factors one by one. It is clear that m = n,
because otherwise we will obtain 1 = a product of irreducibles, contradicting the
fact that irreducibles are not units. O

Theorem [2.H]is a pleasant statement, but it does not make it particularly easy to
check whether a given ring is in fact a UFD. The situation is not unlike that with
Noetherian rings: the a.c.c. is a sharp equivalent formulation of the Noetherian
condition, but in practice one relies more often on other tools, such as Hilbert’s
basis theorem, in order to establish that a given ring is Noetherian. Does an analog
of Hilbert’s basis theorem hold for unique factorization domains?

Answering this question requires some preparatory work, and we will come back
to it in g4

2.3. PID = UFD. There are simple ways to produce examples of UFDs.
Recall (from §IIIH) that a principal ideal domain (abbreviated PID) is an integral
domain in which every ideal is principal. In JIIIIH we have observed that

e PIDs are Noetherian.

e Z and k[z] (where k is a field) are PIDs.

e If Ris a PID and a,b € R, then d is a greatest common divisor for a and b if
and only if (a,b) = (d). In particular, if d is a greatest common divisor of a
and b in a PID R, then d is a linear combination of @ and b: Jr,s € R such
that d = ra + sb.

e If I is a nonzero ideal in a PID, then [ is prime if and only if it is maximal.
We now add one important point to this list:
Proposition 2.6. If R is a PID, then it is a UFD.
Proof. Let R be a PID. The a.c.c. (for principal ideals, as all ideals in R are prin-

cipal!) holds in R since PIDs are Noetherian. We verify that irreducible elements
are prime in R, which implies that R is a UFD by Theorem 2.5l
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Let a € R be an irreducible element. Ideals generated by irreducible elements
are maximal among principal ideals (Exercise [I2)), hence (a) is a maximal ideal
in R as all ideals in R are principal. Since maximal ideals are prime it follows that
(a) is prime, as needed. O

In particular, k[z] is a UFD if k is a field, and Z is a UFD—which hopefully
will not come as a big surprise to our readerdd. Note that at this point we have
recovered the fact stated in Exercise [[13]in full glory.

Proposition justifies another feature of the picture given at the beginning
of this chapter: the class of PIDs is contained in the class of UFDs. We will soon
see that the inclusion is proper, that is, that there are UFDs which are not PIDs;
for example, Z[z] is not a PID (Exercise 212]), yet

Z[z] is a unique factorization domain

as we will soon be able to prove (Theorem {I4)). In fact, there are UFDs which
are not Noetherian, as represented in the picture; however, these examples are best
discussed after more material has been developed (Example [L.I8]).

The reader can already get a feel for the gap between UFD and PID, by con-
templating the fact (recalled above and essentially tautological) that, in a PID,
greatest common divisors of a, b are linear combinations of a and b. This is a
very strong requirement: for example, it characterizes PIDs among Noetherian do-
mains, as the reader will check (Exercise 27); it does not hold in general UFDs

(Exercise 2.4]).

2.4. Euclidean domain — PID. The excellent properties of Z and k[x] (where
k is a field) make these rings even more special than PIDs: they are Euclidean
domains.

Informally, Euclidean domains are rings in which one may perform a ‘division
with remainder’: this is the case for Z and for k[z], as observed in §[IIA The point
is that in both Z and k[x] one can define a notion of ‘size’ of an element: |n| for an
integer n and deg f(x) for a polynomial f(z). In both cases, one has control over
the size of the ‘remainder’ in a division. The definition of Euclidean domain simply
abstracts this mechanism.

For the purpose of this discussiorﬂ, a valuation on an integral domain R is any
function v : R~ {0} — Z=°.

Definition 2.7. A Fuclidean valuation on an integral domain R is a valuation
satisfying the following propertyﬁ: for all @ € R and all nonzero b € R there exist
q,m € R such that

a=qgb+r,
with either r = 0 or v(r) < v(b). An integral domain R is a Fuclidean domain if it
admits a Euclidean valuation. 3

6This fact is known as the fundamental theorem of arithmetic.

"Entire libraries have been written on the subject of valuations, studying a more precise
notion than what is needed here.

81t is not uncommon to also require that v(ab) > v(b) for all nonzero a,b € R; but this is not
needed in the considerations that follow, and cf. Exercise 215



256 V. Irreducibility and factorization in integral domains

We say that ¢ is the quotient of the division and r is the remainder. Division
with remainder in Z and in k[z] (where k is a field) provide examples, so that Z
and k[z] are Euclidean domains.

Proposition 2.8. Let R be a Euclidean domain. Then R is a PID.

The proof is modeled after the instances encountered for Z (Proposition [TTE.4))
and k[x] (which the reader has hopefully worked out in Exercise [TIIEZ).

Proof. Let I be an ideal of R; we have to prove that I is principal. If I = {0},
there is nothing to show; therefore, assume I # {0}. The valuation maps the
nonzero elements of I to a subset of Z=%; let b € I be an element with the smallest
valuation. Then I claim that I = (b); therefore I is principal, as needed. Since
clearly (b) C I, we only need to verify that I C (b).

For this, let a € I and apply division with remainder: we have
a=qgb+r
for some ¢,r in R, with = 0 or v(r) < v(b). But
r=a—qgbel:

by the minimality of v(b) among nonzero elements of I, we cannot have v(r) < v(b).
Therefore r = 0, showing that a = ¢gb € (), as needed. |

Proposition 2§ justifies one more feature of the picture at the beginning of the
chapter: the class of Euclidean domains is contained in the class of principal ideal
domains.

This inclusion is proper, as suggested in the picture. Producing an explicit
example of a PID which is not a Euclidean domain is not so easy, but the gap
between PIDs and Euclidean domains can in fact be described very sharply: PID
may be characterized as domains satisfying a weaker requirement than ‘division
with remainder’.

More precisely, a ‘Dedekind-Hasse valuation’ is a valuation v such that Va,b,
either (a,b) = (b) (that is, b divides a) or there exists r € (a, b) such that v(r) < v(b).
This latter condition amounts to requiring that there exist ¢,s € R such that
as = bq+r with v(r) < v(b); hence a Euclidean valuation (for which we may in fact
choose s = 1) is a Dedekind-Hasse valuation. It is not hard to show that an integral
domain is a PID if and only if it admits a Dedekind-Hasse valuation (Exercise 2221]).
For example, this can be used to show that the ring Z[(1 ++/—19)/2] is a PID: the
norm considered in Exercise 218 in order to prove that this ring is not a Euclidean
domain turns out to be a Dedekind-Hasse valuationd. Thus, this ring gives an
example of a PID that is not a Euclidean domain.

One excellent feature of Euclidean domains, and the one giving them their
names, is the presence of an effective algorithm computing greatest common divi-
sors: the Fuclidean algorithm. As Fuclidean domains are PIDs, and hence UFDs,
we know that they do have greatest common divisors. However, the ‘algorithm’

9This boils down to a case-by-case analysis, which I am happily leaving to my most patient
readers.
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obtained by distilling the proof of Lemma is highly impractical: if we had to
factor two integers a, b in order to compute their ged, this would make it essentially
impossible (with current technologies and factorization algorithms) for integers of
a few hundred digits. The Euclidean algorithm bypasses the necessity of factoriza-
tion: greatest common divisors of thousand-digit integers may be computed in a
fraction of a second.

The key lemma on which the algorithm is based is the following trivial general
fact:

Lemma 2.9. Let a =bq+r in a ring R. Then (a,b) = (b,r).
Proof. Indeed, r = a — bq € (a,b), proving (b,r) C (a,b); and a = bg+r € (b, 1),
proving (a,b) C (b, 7). O
In particular,
(Ve e R), (a,b) C(c) < (b,r) C(c);

that is, the set of common divisors of a,b and the set of common divisors of b, 7
coincide. Therefore,

Corollary 2.10. Assume a =bq+r. Then a, b have a gcd if and only if b, r have
a ged, and in this case ged(a, b) = ged(b, ).

Of course ‘ged(a, b) = ged(b, )’ means that the two classes of associate elements
coincide.

These considerations hold over any integral domain; assume now that R is a
Fuclidean domain. Then we can use division with remainder to gain some control
over the remainders r. Given two elements a, b in R, with b # 0, we can apply
division with remainder repeatedly:

a = bQ1 + 71,
b= 142 + 72,

1 =T2q3 + 73,

as long as the remainder r; is nonzero.

Claim 2.11. This process terminates: that is, rny = 0 for some N.

Proof. Each line in the table is a division with remainder. If no r; were zero, we
would have an infinite decreasing sequence

U(b) > U(Tl) > U(’I“g) > v(rg) > ...

of nonnegative integers, which is nonsense. O
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Thus the table of divisions with remainders must be as follows: letting ro = b,
a=roq1 + 11,
b=riq2+ 12,

1 =T2q3 + T3,

TN-3 =TN-2qN-1+TN-1,
rN_2 = TN_14N

with ry_1 75 0.

Proposition 2.12. With notation as above, rn_1 is a ged of a, b.

Proof. By Corollary 210
ged(a,b) = ged(b,r1) = ged(ry,m2) = -+ = ged(ry—2,rN-1).

But ry_—2 =rn_1gn_1 gives ry_o € (ry—1); hence (ry_o,7n—1) = (ry—1). There-
fore ry_1 is a ged for ry_o and ry_1, hence for @ and b, as needed. O

The ring of integers and the polynomial ring over a field are both Euclidean
domains. Fields are Euclidean domains (as represented in the picture at the be-
ginning of the chapter), but not for a very interesting reason: the remainder of the
division by a nonzero element in a field is always zero, so every function qualifies
as a ‘Euclidean valuation’ for trivial reasons.

We will study another interesting Euclidean domain later in this chapter (§6.2)).

Exercises

2.1. > Prove Lemma 211 [§2.1]

2.2. Let Rbe a UFD, and let a, b, ¢ be elements of R such that a | bc and ged(a, b) =
1. Prove that a divides c.

2.3. Let n be a positive integer. Prove that there is a one-to-one correspondence
preserving multiplicities between the irreducible factors of n (as an integer) and
the composition factors of Z/nZ (as a group). (In fact, the Jordan-Holder theorem
may be used to prove that Z is a UFD.)

2.4. > Consider the elements z,y in Z[x,y]. Prove that 1 is a ged of « and y, and
yet 1 is not a linear combination of z and y. (Cf. Exercise [M2131) [§211 §2.3]

2.5. > Let R be the subring of Z[t] consisting of polynomials with no term of
degree 1: ag + ast® + - - + aqt®.
e Prove that R is indeed a subring of Z[t], and conclude that R is an integral

domain.

e List all common divisors of t° and % in R.
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e Prove that t° and 5 have no ged in R.

2.1

2.6. Let R be a domain with the property that the intersection of any family of
principal ideals in R is necessarily a principal ideal.

e Show that greatest common divisors exist in R.
e Show that UFDs satisfy this property.

2.7. > Let R be a Noetherian domain, and assume that for all nonzero a, b in R,
the greatest common divisors of @ and b are linear combinations of a and b. Prove
that R is a PID. [§2.3]

2.8. Let R be a UFD, and let I # (0) be an ideal of R. Prove that every descending
chain of principal ideals containing I must stabilize.

2.9. — The height of a prime ideal P in a ring R is (if finite) the maximum length h
of a chain of prime ideals Py C P; C -+ C P, = P in R. (Thus, the Krull dimension
of R, if finite, is the maximum height of a prime ideal in R.) Prove that if R is a
UFD, then every prime ideal of height 1 in R is principal. [210]

2.10. — It is a consequence of a theorem known as Krull’s Hauptidealsatz that
every nonzero, nonunit element in a Noetherian domain is contained in a prime
ideal of height 1. Assuming this, prove a converse to Exercise 2.9, and conclude
that a Noetherian domain R is a UFD if and only if every prime ideal of height 1
in R is principal. [0

2.11. Let R be a PID, and let I be a nonzero ideal of R. Show that R/I is an
artinian ring (cf. Exercise [[I0]), by proving explicitly that the d.c.c. holds in R/I.

2.12. > Prove that if R[z] is a PID, then R is a field. [§2.3] §VIITI]

2.13. > For a, b, ¢ positive integers with ¢ > 1, prove that ¢® — 1 divides ¢” — 1 if
and only if a | b. Prove that % — 1 divides 2° — 1 in Z[z] if and only if a | b. (Hint:
For the interesting implications, write b = ad + r with 0 < r < a, and take ‘size’

into account.) [§VINET NVTIET3)

2.14. > Prove that if k is a field, then k[[z]] is a Euclidean domain. [§43]

2.15. > Prove that if R is a Euclidean domain, then R admits a Euclidean valua-
tion T such that T(ab) > v(b) for all nonzero a,b € R. (Hint: Since R is a Euclidean
domain, it admits a valuation v as in Definition X7 For a # 0, let T(a) be the
minimum of all v(ab) as b € R, b # 0. To sec that R is a Euclidean domain with
respect to U as well, let a, b be nonzero in R, with b1 a; choose ¢, r so that a = bq+r,
with v(r) minimal; assume that v(r) > ©(b), and get a contradiction.) [§2:4] 216]

2.16. Let R be a Euclidean domain with Euclidean valuation »; assume that
v(ab) > wv(b) for all nonzero a,b € R (cf. Exercise ZI5]). Prove that associate
elements have the same valuation and that units have minimum valuation.

2.17. = Let R be a Euclidean domain that is not a field. Prove that there exists a
nonzero, nonunit element ¢ in R such that Va € R, 3¢,7 € R with a = qc + r and
either r = 0 or  a unit. 21§
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2.18. > For an integer d, denote by Q(+/d) the smallest subfield of C containing
Q and V/d, with norm N defined as in Exercise See Exercise [[.IT] for the
case d = —b; in this problem, you will take d = —19.

Let § = (14 41/19)/2, and consider the following subring of Q(v/—19):
1+iv1
7[6] = {a+b++\/_9 lab € Z}.

e Prove that the smallest values of N(z) for z = a+bd € Z[)] are 0, 1, 4, 5. Prove
that N(a+ bd) > 5 if b # 0.

e Prove that the units in Z[] are £1.

o If ¢ € Z[)] satisfies the condition specified in Exercise 2-I7] prove that ¢ must
divide 2 or 3 in Z[¢], and conclude that ¢ = £2 or ¢ = 3.

e Now show that Bg € Z[] such that § = gc + r with ¢ = £2,+3 and r = 0, £1.
Conclude that Z[(1 + +/—19)/2] is not a Euclidean domain. [§2.4] [6.14]

2.19. = A discrete valuation on a field k is a surjective homomorphism of abelian
groups v : (k*,-) = (Z,+) such that v(a+b) > min(v(a),v(b)) for all a,b € k* such
that a + b € k*.

e Prove that the set R := {a € k* |v(a) > 0} U {0} is a subring of k.

e Prove that R is a Euclidean domain.

Rings arising in this fashion are called discrete valuation rings, abbreviated DVR.
They arise naturally in number theory and algebraic geometry. Note that the

Krull dimension of a DVR is 1 (Example [TI[ZT4); in algebraic geometry, DVRs
correspond to particularly nice points on a ‘curve’.

e Prove that the ring of rational numbers a/b with b not divisible by a fixed prime
integer p is a DVR.

2220, VITITI9)

2.20. = As seen in Exercise 219 DVRs are Euclidean domains. In particular, they
must be PIDs. Check this directly, as follows. Let R be a DVR, and let ¢ € R be an
element such that v(¢) = 1. Prove that if I C R is any nonzero ideal, then I = (%)
for some k > 1. (The element ¢ is called a ‘local parameter’ of R.) [EI3] VIIRZIF]

2.21. > Prove that an integral domain is a PID if and only if it admits a Dedekind-
Hasse valuation. (Hint: For the <= implication, adapt the argument in Proposi-
tion I8 for =, let v(a) be the size of the multiset of irreducible factors of a.)

(2.4

2.22. - Suppose R C S is an inclusion of integral domains, and assume that R is
a PID. Let a,b € R, and let d € R be a ged for a and b in R. Prove that d is also
a ged for a and bin S. B2

2.23. Compute d = ged(5504227617645696, 2922476045110123). Further, find a, b
such that d = 5504227617645696 a + 2922476045110123 b.
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2.24. > Prove that there are infinitely many prime integers. (Hint: Assume by
contradiction that pq,...,py is a complete list of all positive prime integers. What
can you say about p; - --- - py + 17 This argument was already known to Euclid,

more than 2,000 years ago.) 225 §5.2 5.11]

2.25. — Variation on the theme of Euclid from Exercise Let f(z) € Z[z] be
a nonconstant polynomial such that f(0) = 1. Prove that infinitely many primes
divide the numbers f(n), as n ranges in Z. (If p1,...,py were a complete list of
primes dividing the numbers f(n), what could you say about f(p;---pnz)?)

Once you are happy with this, show that the hypothesis f(0) = 1 is unnecessary.
(If £(0) = a # 0, consider f(p;---pyaz). Finally, note that there is nothing special
about 0.)

3. Intermezzo: Zorn’s lemma

3.1. Set theory, reprise. We leave ring theory for a moment and take a little
detour to contemplate an issue from set theory. As remarked at the very outset,
only naive set theory is used in this book; all set-theoretic operations we have used
so far are nothing more than a formalization of intuitive ideas regarding collections
of objects. However, I will occasionally need to refer to a less ‘intuitively obvious’
set-theoretic statement: for example, this statement is needed in order to show that
every proper ideal in a ring is contained in a maximal ideal (Proposition [3.1).

This set-theoretic fact is Zorn’s lemma. An order relation on a set Z is a
relation < which is reflexive, transitive, and antisymmetric: the first two terms are
familiar to the reader, and the third means that

(Va,be Z), a=<bandb=<a = a=hb.

Typical prototypes are the < relation on Z or the inclusion relation C among subsets
of a given set. We use a < b to denote a < b and b # a.

A pair (Z, <), consisting of a set Z and an order relation < on Z, is called
a poset, for partially ordered set. The qualifier ‘partially’ is not necessary, but
convenient, as it reminds us that if a,b € Z, then it is not necessarily the case
that a < b or b < a: for example, C does not satisfy this additional requirement
in general (while (Z, <) does). An order is total if it does satisfy this additional
requirement. A totally ordered set is not called a ‘toset’, as would seem reasonable,
but rather a chain.

An element m of a poset Z is mazimal if nothing comes properly ‘after’ it in
the order:

MaeZ), m=<a = m=a.

For example, maximal ideals in a ring are maximal elements in the set of proper
ideals, that is, ideals # (1) (by Proposition [TIETT). An upper bound for a subset S
of a poset Z is an element u € Z coming after every element of S

(Va € S), a=u.
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Notions of ‘smallest’ (or, rather, ‘least’) or ‘largest’ are defined in the evident
way.

Posets may or may not have maximal elements, upper bounds, etc.: for exam-
ple, the family of finite subsets of an infinite set does not have maximal elements.

All this terminology comes together in the following statement:

Lemma 3.1 (Zorn’s lemma). Let Z be a nonempty poset. Assume that every chain
in Z has an upper bound in Z; then there exists a maximal element in Z.

The status of Zorn’s lemma is peculiar: on the one hand, it is complex enough
that no one I know of finds it ‘intuitively clear’; on the other hand, it turns out to
be logically equivalen@ to the axiom of choice, which does look reasonable to most
people, and to the ‘well-ordering theorem’;, which I find intuitively unreasonable.
I will not prove all these equivalences (the diligent reader will prove them in the
exercises and should in any case have no trouble locating more detailed proofs);
but I will attempt to describe the situation in general terms and explain why the
unreasonable statement implies the other two.

The axiom of choice states that if .Z is a family of disjoint nonempty subsets of
a set Z, then we can form a new set by selecting one element x from each X € .%.
This may sound reasonable, but it raises rather subtle points: for example, it can
be shown that this axiom is independent of the other axioms of (Zermelo-Fréankel)
set theory. Also, it has disturbingly counterintuitive consequences, such as the
Banach-Tarski parado.

The subtlety of the axiom of choice boils down to the following question: how
does one choose the element x? This is not controversial if Z (and hence .7) is
finite, but, not surprisingly, it becomes an issue if Z is infinite.

A suitable order relation on Z would come in handy here: if < is an order
relation on Z such that every nonempty subset of Z has a least element, then we
could simply let x be the least element of X for each X € .#. We say that Z
is well-ordered by =, or that < is a well-ordering on Z, if this is the case. (The
abbreviation woset is also used in the literature, but not very often.) For example,
the set Z>° of positive numbers is well-ordered by <; this fact is called the well-
ordering principle.

Thus, the statement of the axiom of choice is really ‘clear’ if the set Z is the
set Z>0 of positive numbers. It may seem somewhat less so for the set Z, since Z
is not well-ordered by <; however, it takes a moment (Exercise B4]) to construct a
different relation on Z, making Z a well-ordered set. Thus, the axiom of choice is
also completely transparent for Z = Z or any countable set (like Q) for that matter.

The well-ordering principle is at the basis of proofs by induction: in fact (cf. Ex-
ercise [30)) it is equivalent to the so-called principle of induction. More is true,
however. If (Z, <) is any woset, then we can consider the following ‘principle of
induction’ on Z:

10 Equivalent in the sense that each can be derived from the other together with the other
axioms of ‘Zermelo-Fréankel’ set theory.

1 One can subdivide a solid ball of radius 1 into finitely many pieces, then reassemble them
after rotations and translations in 3-space and obtain two balls of radius 1.
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Let S C Z be a subset such that Va € Z
(WeZ), b<a = beS) = acs;

then S = Z.

That is, Z is the only set S with the property that a € S if all b < a are in S.
(Note that the least element a of Z is automatically in S, since the condition on
all b < a is vacuously true in this case.)

The reader will recognize that for Z = Z>° with the relation <, this is the
ordinary principle of induction.

Claim 3.2. Let Z be any woset. Then the principle of induction holds for Z.

Proof. Let S C Z be a subset with the property given above, and assume S C Z.
Then the complement 7' of S in Z is nonempty; hence it has a least element a.
Now if b < a, then necessarily b € S (otherwise b € T, contradicting the fact that a
is the least element in 7"). But the property of S then forces a € S, contradiction.
Therefore T is empty; i.e., S = Z. O

This is remarkable, since it extends induction to uncountable set, provided
a well-ordering is available.

For example, if we had a well-ordering on R, then we could prove a statement
about all reals ‘by induction’. Many people find this somewhat counterintuitive,
and hence so seems the following amazing claim:

Theorem 3.3 (Well-ordering theorem). FEvery set admits a well-ordering.

As argued above, this implies that the axiom of choice holds on every set: if you
accept the well-ordering theorem, the statement of the axiom of choice becomes as
evident for every set as it is for the set of positive integers. The catch is of course
that the axiom of choice is used in the proof of the well-ordering theorem; in fact,
the statements are equivalent.

In any case, the statement of the well-ordering theorem is easy to absorb (even
if perhaps less ‘intuitively clear’ than the axiom of choice). The well-ordering
theorem is equivalent to Zorn’s lemma, since they are both equivalent to the axiom
of choice. The good news is that the derivation of Zorn’s lemma from the well-
ordering theorem is reasonably straightforward:

Well-ordering theorem = Zorn’s lemma. Let (Z, <) be a nonempty poset such
that every chain in Z has an upper bound in Z. By the well-ordering theorem, there
is a well-ordering'd < on Z. Define a function f from Z to the power set of Z as

12Even beyond; in the context of ordinals this induction principle is called transfinite induc-
tion.

IBWatch out: we are considering two orderings on Z: < (about which we want to say
something) and < (about which we know something already).
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follows:
{a} if ({a} U | f()) is totally ordered by <;
b<a
0 if {a} U U f(b)) is not totally ordered by <.
b=<a
The fact that Z is well-ordered by =< implies that f is defined for every a € Z.
Indeed, let T' be the set of elements of Z for which f is not defined; if T # 0,
T has a least element a w.r.t. <; but then f(b) is defined for all b < a, and the
prescription given for f(a) defines f at a, a contradiction.
Let S = U,cz f(a). It is clear that S is totally ordered by <: if a,b € S, and
(say) b < a, then both a and b belong to

{ayuJ 1),

b<a

fla) =

which is totally ordered by < by construction.
I claim that S is a mazimal totally ordered subse of Z:

Claim 3.4. If SCS' C Z and S’ is totally ordered by <, then S = 5'.

Indeed, let T be the complement of S in S’. If T is nonempty, let a € T and

observe that
oo
b<a
is totally ordered by <, since it is a subset of {a} U S C S’. But then f(a) = {a},
that is, @ € S, a contradiction.

Since S is a chain, by the hypothesis of Zorn’s lemma S has an upper bound,
m. It is now clear that m must be maximal in Z w.r.t. <, verifying the statement
of Zorn’s lemma. Indeed, if m’ > m, then S U {m'} is totally ordered; hence
S = SU{m'} by the claim. This means m’ € S, and hence m’ = m since m is an
upper bound for S. O

Zorn’s lemma is the key to several basic results in algebra, the first of which we
are about to encounter; the reader will sample a few more results in the exercises.
The reader will also encounter equally basic applications of Zorn’s lemma (or of
other manifestations of the axiom of choice) in other fields: for example Tychonoff’s
theorem in topology and the Hahn-Banach theorem in functional analysis.

3.2. Application: Existence of maximal ideals. Recall (§IIIIL3) that an
ideal m of a ring R is mazimal if and only if R/m is a field, if and only if no
other ideal stands between m and R = (1), that is, if and only if m is maximal with
respect to inclusion, in the family of proper ideals of R. It is not obvious from this
definition that maximal ideals exist, but they do:

Proposition 3.5. Let I # (1) be a proper ideal of a commutative ring R. Then
there exists a mazimal ideal m of R containing I.

4 The existence of maximal totally ordered subsets is known as the Hausdorff mazimal prin-
ciple; it is also equivalent to the axiom of choice.
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This is immediate if R is Noetherian, by applying condition (3) from Propo-
sition [[T] to the family of proper ideals of R containing I. The argument for
arbitrary rings is a classic application of Zorn’s lemma. In fact, this is the first
application given by M. Zorn in his 1935 article introducing a ‘maximum principle’
(now known as Zorn’s lemma). The result had earlier been proven by Krull, using
the well-ordering theorem.

Proof. The set .# of proper ideals of R containing [ is ordered by inclusion. Then
let € be a chain of proper ideals, and consider

U = U J.
Jev
I claim that U is a proper ideal containing I; hence it is an upper bound for %
in .#. This proves that every chain in .# has an upper bound, and it follows that
# has maximal elements, by Zorn’s lemma.

To verify my claim, it is clear that U contains I and that it is an ideal (for
example, if a,b € U, then 3J € € such that a,b € J; hence a+0b € J, and therefore
a+b e U). We have to check that U is proper. But if U = (1), then 1 € J for some
J € 7, contradicting the fact that .# consists of proper ideals. O

Note that this argument relies crucially on the fact that R has a multiplicative
unit 1, and indeed the stated fact is not true in general for rings without 1 (Exer-
cise[B9). Also, the use of Zorn’s lemma is not just a convenient trick; the statement
is known to be equivalent to the axiom of choice, by work of W. Hodges.

.|
Exercises

3.1. Prove that every well-ordering is total.

3.2. Prove that a totally ordered set (Z, <) is a woset if and only if every descending
chain
Rl Wall% Wl

in Z stabilizes.

3.3. Prove that the axiom of choice is equivalent to the statement that a set-
function is surjective if and only if it has a right-inverse (cf. Exercise [II2.2)).

3.4. > Construct explicitly a well-ordering on Z. Explain why you know that Q
can be well-ordered, even without performing an explicit construction. [§31]

3.5. > Prove that the (ordinary) principle of induction is equivalent to the state-
ment that < is a well-ordering on Z>°. (To prove by induction that (Z>°, <)
is well-ordered, assume it is known that 1 is the least element of Z>° and that
Vn € Z>Y there are no integers between n and n + 1.) [§51]

3.6. In this exercise assume the truth of Zorn’s lemma and the conventional set-
theoretic constructions; you will be proving the well-ordering theorem.
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Let Z be a nonempty set, and let 2 be the set of pairs (S, <) consisting of a
subset S of Z and of a well-ordering < on S. Note that £ is not empty (singletons
can be well-ordered). Define a relation < on % by prescribing

(5,<) = (T, <)

if and only if S C T', < is the restriction of <’ to S, and every element of S precedes
every element of T\ S w.r.t. <'.

e Prove that < is an order relation in &.

e Prove that every chain in 2 has an upper bound in Z.

e Use Zorn’s lemma to obtain a maximal element (M,<) in 2. Prove that

M=7Z.

Thus every set admits a well-ordering, as stated in Theorem 3.3
3.7. In this exercise assume the truth of the axiom of choice and the conventional
set-theoretic constructions; you will be proving the well-ordering theore.

Let Z be a nonempty set. Use the axiom of choice to choose an element
~v(S) ¢ S for each proper subset S C Z. Call a pair (5, <) a y-woset if S C Z, <
is a well-ordering on S, and for every a € S, a = v({b € S,b < a}).

e Show how to begin constructing a y-woset, and show that all y-wosets must
begin in the same way.

Define an ordering on y-wosets by prescribing that (U, <") < (T, <) if and only if
U C T and <" is the restriction of <’.

Prove that if (U, <") < (T, <’), then y(U) € T.

For two y-wosets (S, <) and (T, <’), prove that there is a maximal y-woset
(U, <") preceding both w.r.t. <. (Note: There is no need to use Zorn’s lemmal)

Prove that the maximal ~-woset found in the previous point in fact equals
(S,<) or (T,<’). Thus, < is a total ordering.

Prove that there is a maximal v-woset (M, <) w.r.t. <. (Again, Zorn’s lemma
need not and should not be invoked.)

e Prove that M = Z.

Thus every set admits a well-ordering, as stated in Theorem

3.8. Prove that every nontrivial finitely generated group has a maximal proper
subgroup. Prove that (Q,+) has no maximal proper subgroup.

3.9. > Consider the rng (= ring without 1; cf. §IIIIILT]) consisting of the abelian
group (Q, +) endowed with the trivial multiplication ¢r = 0 for all ¢, € Q. Prove
that this rng has no maximal ideals. [§3.2]

3.10. — As shown in Exercise [TIIZ 17l every maximal ideal in the ring of continuous
real-valued functions on a compact topological space K consists of the functions
vanishing at a point of K.

157 learned this proof from notes of Dan Grayson.
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Prove that there are maximal ideals in the ring of continuous real-valued func-
tions on the real line that do not correspond to points of the real line in the same
fashion. (Hint: Produce a proper ideal that is not contained in any maximal ideal
corresponding to a point, and apply Proposition B.5l) [[TIEIT]

3.11. Prove that a UFD R is a PID if and only if every nonzero prime ideal in R is
maximal. (Hint: One direction is Proposition For the other, assume that
every nonzero prime ideal in a UFD R is maximal, and prove that every maximal
ideal in R is principal; then use Proposition 3.0 to relate arbitrary ideals to maximal
ideals, and prove that every ideal of R is principal.)

3.12. = Let R be a commutative ring, and let I C R be a proper ideal. Prove that
the set of prime ideals containing I has minimal elements. (These are the minimal

primes of 1.) [LY]
3.13. - Let R be a commutative ring, and let N be its nilradical (Exercise [TII3.12)).
Let r € N.
e Consider the family .% of ideals of R that do not contain any power r* of r for
k > 0. Prove that . has maximal elements.
e Let I be a maximal element of .#. Prove that I is prime.
e Conclude » ¢ N = r is not in the intersection of all prime ideals of R.

Together with Exercise [TIEIR] this shows that the nilradical of a commutative
ring R equals the intersection of all prime ideals of R. [[TIFEIS] VTS

3.14. — The Jacobson radical of a commutative ring R is the intersection of the
maximal ideals in R. (Thus, the Jacobson radical contains the nilradical.) Prove
that r is in the Jacobson radical if and only if 1 + rs is invertible for every s € R.

[TES)

3.15. Recall that a (commutative) ring R is Noetherian if every ideal of R is finitely
generated. Assume the seemingly weaker condition that every prime ideal of R is
finitely generated. Let .# be the family of ideals that are not finitely generated
in R. You will prove .# = 0.

o If .Z # (), prove that it has a maximal element I.

e Prove that R/I is Noetherian.

e Prove that there are ideals .J;, J5 containing I, such that J;Jo C 1.

e Give a structure of R/I module to I/JyJo and Jy/J1Js.
Prove that I/J;Js is a finitely generated R/I-module.

e Prove that I is finitely generated, thereby reaching a contradiction.

Thus, a ring is Noetherian if and only if its prime ideals are finitely generated.

4. Unique factorization in polynomial rings

We now return to regular programming and study unique factorization in polyno-
mial rings; we will finally establish the fact (already hinted at) that R[x] is a UFD
if Ris a UFD.
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Among the necessary preparatory work we also discuss the field of fractions of
an integral domain; this is a particular instance of the process of localization of a
ring (or a module) at a multiplicative subset, which the diligent reader will explore
a little more in the exercises.

4.1. Primitivity and content; Gauss’s lemma. One issue that we have en-
countered already, and will encounter again, is the description of the ideals of
the polynomial ring R[x], given enough information about R. For example, we
have proved that the ideals of k[x] are principal if & is a field, and Hilbert’s basis
theorem shows that all ideals of R[z] are finitely generated if all ideals of R are

(Exercise [MIE4] and Lemma [L3]).
An even more naive observation is simply that every ideal I of R generates an
ideal of R[z]:
IR[z] == {ao + a1z + - - - + aqz® € R[x]|Vi,a; € I}.
Lemma 4.1. Let R be a ring, and let I be an ideal of R. Then
Rlz] _ R
>~ —J[z].
IR[z] I

The proof of this lemma is a standard application of the first isomorphism
theorem and is left to the reader (Exercise E.T]).

Corollary 4.2. If I is a prime ideal of R, then IR[x] is prime in R[x].

Proof. If I is prime in R, then R/ is an integral domain; hence so is R[z]/IR[z]
(R/I)[x], and therefore I R[z] is prime in R|x].

O e

We will use this fact in a moment.

The following definitions can be studied for every commutative ring; our main
application will be to UFDs.

Definition 4.3. Let R be a commutative ring, and let
f=ao+aiz+- - +as? € Rz]
be a polynomial.
e [ is very primitive if for all prime ideals p of R, f & pR]z].
e f is primitive if for all principal prime ideals p of R, f & pR[z]. J

The notion of ‘